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ABSTRACT

CHAOTIC AND PERIODIC DYNAMICS OF A SLIDER CRANK

MECHANISM WITH SLIDER CLEARANCE

BY

Faramarz Farahanchi

Bearing clearance is one of the most important factors influencing the dynamic

performance and durability of mechanisms. In this thesis, the problem of a planar

slider crank mechanism with clearance at the sliding bearing is investigated. This

problem is relevant to the phenomenon known as piston slap to automotive engineers.

In this study the influence of the clearance gap size, bearing friction, crank speed,

and impact parameters on the response of the system are investigated. Three types

of response are observed: chaotic, transient chaos, and periodic. It is shown that

chaotic motion is prevalent over a range of parameters which corresponds to high

crank speeds and/or low values of the bearing friction with relatively ideal impacts.

Periodic response is generally observed at low crank speeds and also at low values

of the coefficient of restitution. Poincare maps and statistical profiles of the impact

locations and severity are used to characterize the motion and to obtain information

regarding possible patterns of wear due to repeated impacts. As expected, chaotic

motions lead to quite uniform distributions of impacts while periodic motions lead to

highly localized impact locations. Hence, chaotic motions may be beneficial, as they

provide a more desirable pattern of impacts.
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Chapter 1

Introduction

Of the many factors which influence the dynamic performance and durability of mech-

anisms, one of the most important is bearing clearance. Such clearances often lead to

high localized stresses and thus to increased fatigue, noise, and wear. In this thesis

we choose a simple model problem which is of interest in automotive applications in

order to show that the dynamic response of such systems, which has been known to be

quite complicated, can, in fact, be chaotic. We also describe the influence of various

system parameters on the response and provide means of displaying data which may

be helpful in understanding patterns of fretting and wear.

The problem under investigation is a slider crank mechanism with clearance be-

tween the slider and its supporting structure. This problem is relevant to the phe-

nomenon known as piston slap to automotive engineers. Due to the clearance, re-

peated impacts occur between the slider and its supporting structure, resulting in

fatigue, dynamical stress, noise, and wear. In order to control these effects, one must

understand the underlying dynamics.
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In recent years, the effects of clearance at the joints of mechanical systems has

been studied by many researchers. Most closely related to the present work is that

of Wilson and Fawcett [11] who considered the case of a slider crank mechanism with

clearance at the sliding bearing. They consider all possible impact configurations of

the slider using a two degree of freedom model and present simulation results for that

model. Other researchers have considered clearance at revolute joints in mechanisms

using a variety of methods. The research done in this area includes studies of the

response of rigid link systems with clearances at joints [15, 16, 6, 17], as well as those

with joint clearance and flexible links [18, 19]. Some investigations have considered

systems in which only a single joint has clearance [15, 16, 6, 17], while others consider

clearances in several of the joints of the mechanism [20, 21].

In these investigations, several different approaches are proposed. Grant and

Fawcett [7] suggested methods for predicting contact loss and a method of preventing

loss of contact. Dubowsky and Norris [8] provide an analytical and experimental study

for prediction of impact and they defined the Impact Prediction Number (IPN) which

correctly predicts the trends observed in their study. Dubowsky and Gardener [18]

considered multi-link flexible mechanisms with multiple clearance connections. The

methodology employed in that study was a perturbation coordinate approach and it

was shown that simpler models yield useful insights into behavior of the more complex

systems. Mansour and Townsend [9] took a momentum-exchange approach in their

study of impacts at a joint. They studied the local and path-spectra of the impacts

between the socket and the connecting pin and from these the dominant impacts at

the joints were identified and investigated.
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In the work presented here, the problem of the planar slider crank mechanism with

clearance between a cylindrical slider and its supporting structure is investigated. The

equations of motion for the system are derived by using Lagrange’s method along with

a simple impact rule, and these are investigated by numerical solutions and Poincare

maps. The response of the system appears to be generally chaotic over a wide range

of parameters although periodic motions become more common as dissipation effects

are increased. Having determined the response of the system, techniques developed

in recent years, such as Poincare maps, are applied for further investigation of the

response.

Other studies along similar lines include that of Karagiannis [13] who studied

the problem of gear backlash. He has developed an understanding of the periodic

and chaotic behavior of gear backlash by applying similar methods. Pheiffer and

Kunert [14] have also applied these methods to the problem of rattling in gears due

to backlash. In addition, Shaw [1] has studied the response of an oscillator with

constraints subjected to harmonic excitation by using similar methods.

This thesis is arranged as follows. The underlying assumptions and the equations

of motion for the system under study are provided in Chapter 2. Chapter 3 describes

the methods of analysis. Chapter 4 contains the main results and describes the

influence of various important system parameters on features of the response by using

simulations. A discussion and directions for future research are provided in Chapter 5.

Some detailed derivations and a summary of the simulation routine are provided in

the appendices.



Chapter 2

Mathematical Model

In this chapter we describe the model employed and derive the equations which gov-

erns its dynamics. The basic assumptions are provided first. Next, the differential

equation which describes the free flight dynamics, that is, the motion between im-

pacts, is derived. It is nondimensionalized and then linearized based on a small clear-

ance assumption. The rules which govern the impact dynamics are then presented.

Also, a complete discussion regarding the possible regions of potential sliding and

the attendant constraint forces is included. This provides a complete set of dynamic

equations which are studied in subsequent chapters.

2.1 Basic Assumptions

In order to provide some insight into the effects of clearances on the motion of a con-

necting rod / piston assembly in a slider crank mechanism, we introduce a simplified

model, shown in Figure 2.1, which employs the following assumptions:



All motions occur in a fixed plane.

All components are rigid.

The bearings joining the connecting rod to the crank and the piston have no

clearance.

The bearing which connects the connecting rod to the crank provides a viscous

type frictional moment which is proportional to the relative rotational rate

between the crank and connecting rod.

The crank speed is constant.

The nominal mechanism, that is, the one without clearance, is an on-line slider

crank.

The clearances for the piston are symmetrically placed about the nominal piston

path and have a fixed magnitude along the cylinder wall.

Gravitational effects are ignored. This is valid when the mechanism lies in a

horizontal plane or when the crank speed is sufficiently large that inertial forces

dominate the response.

The piston is a cylindrical roller which is attached to the connecting rod at its

geometric center. This simple geometry allows for the isolation of the effects of

A the clearance from complications associated with the piston geometry. It also

reduces the mechanism to a single degree of freedom system, since the piston

orientation does not affect the dynamics.
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o Impacts between the piston and the walls are instantaneous and modeled by a

simple impact rule which employs a constant coefficient of restitution.

2.2 Derivation of the Equation of Motion for Free

Flight Motion

For deriving the equation of motion, the Lagrangian approach is used. To apply

the Lagrangian method, the kinetic energy and potential energy of each component

is required. Based on the assumptions made in the previous section, there is no

potential energy in any component of the system. In order to obtain the kinetic

energy of each component, the center of mass velocity and angular velocity of each

component is required.

Y

 

Figure 2.1: Schematic view of the model

For the generalized coordinate which describes the configuration of the system we

choose 2/2 , the angle which measures the deviation of the connecting rod centerline

from its nominal (that is, zero clearance) orientation; see Figure 2.1. This angle is

chosen since it will remain small when the clearance is small.
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From Figure 2.1 the displacement of the center of mass of the uniform connecting

rod can be expressed in terms of Kb , the angle measuring the deviation of the

connecting rod form its nominal position, (,6 , the angle between the nominal position

of the connecting rod and the horizontal, and 0, the crank angle measured as indicated

in Figure 2.1, as follows:

2:, = rc059+ élcosw—ib)

y, = r sin9 — élsinM—zp)

Note that if) and 0 are related; this will be subsequently exploited.

By taking the time derivative of the above displacements, the horizontal and

vertical velocities of the connecting rod center of mass can be expressed in terms of

96, «p, and 0 as follows

i, = —r0.sin0-%I(¢.3—¢l) 3in(¢—¢)

g, = r0 cosH—%I($—¢3) WSW-'1’)

By using the above velocities and the angular velocity of the connecting rod, ¢+¢ ,

the kinetic energy of the connecting rod is obtained

1:: %m(x'3+ :23) + g J. «is + a)” (2.1)



  



01‘

T, = émfl—résinO—élfi—Jt) sin(¢—¢)]2

+[ro' cow—gnaw) cos(¢—¢)P}+§J. (4w)? (2.2)

where m is the mass of the connecting rod and J, is the moment of inertia of the

connecting rod about its mass center.

From Figure 2.1 the displacement of the center of slider in terms of ¢, 1p, and 0

is determined to be

:c, = r c030 + Icos(¢-¢)

y, = rsin0 —Isin(¢—z/2)

By taking time derivatives of these, the horizontal and vertical velocities of the

slider are obtained

is = —résin0—l(ql—zp) sin(¢—z/))

37: = récOSO—Htp—zp) cos(¢—¢)

Note that in the absence of clearance the vertical position and velocity of the

slider piston must be zero. This can be verified by using the geometry of the nominal

mechanism. Due to the rotational symmetry of the slider mass, its angular orientation

is inconsequential to the response of the system and thus only its translation is of
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interest here. The relevant kinetic energy of the slider is

01'

T. = g M (at: + :23) (2.3)

T, =: %M{[—r03in0—l(<,iS-1/})si11(<15--¢)l2

+ M coso —I(¢-¢) case—«pm (2.4)

where M is the mass of the slider piston.

Having obtained expressions for the kinetic energies of the components, the total

kinetic energy of the system is then expressed as

Ttotal —

Tidal _

fI‘total _

T. + T.

émctz + :23) + éJAJ» + 213)” + $4403 + 93)

gm { [st sin0 -— $1 (4.5-113) sin(¢—¢)12

+[ra cosO— guts—:13) cow-11)) PM? (43%)”

+ éMfl—ré sin0 — 1(45 — t) sin (43 - #012

+ W cow - 103 — ti) cos (¢ — 31)) 1’} (2.5)

The frictional moment at the crank-connecting rod connection is assumed to be

proportional to the relative angular velocity of the components connected there. The
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resulting dissipative moment on the connecting rod can be expressed as

M2 = -02(-é - ¢ + Kb.) (2-6)

For determining the equation of motion, Lagrange’s method is then applied:

_(____) _ _ = Q' (2.7)

where

q = 1b

Q, = -62("é-¢.5+t/3)

L = Ttotal

which results in the following equation of the motion for the system

%m{—flzrl [sinflt cos(¢ — 1p) — cos Qt sin ((15 — 1.0)] - :- 12 ( (I; — '2; l}

— M {921:1 [sinflt cos(¢—1/J)+ cosflt sin(¢—¢) + 12( 45—1/3)”

+ J. (513+ d3) = —c2 (—9 - 43+ «13) (2-8)

2.3 Nondimensionalization

It is convenient to present the equation of motion in dimensionless form. By nondi-

mensionalizing, the number of parameters associated with the equation of motion is
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reduced. In order to nondimensionalize the equation of motion, both sides of the

equation are first divided by M12512 as follows:

figs—23992,»: [sin nt cos (¢ — xi) + cos nt sin (¢ — 1101—; I” ( 55- 113)}

- W132); {flzrl [sinflt cos (¢ — 11)) + COS Qt sin (‘A - ¢) + 12(9- I; M}

Jr ,. ,, _c2 . . .

+W (<15 + 1P) = M1202 (-9 - ¢ + 4)) (2'9)
 

 

 

 

T

6 = 7

_ L’i

0‘ “ M

Jr

3 = M12

A M129

A = 1—{231n21'

T = at

M

£
2

(Y

the dimensionless equation of motion is obtained by straightforward rescaling. It is

given by
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—%a{£[sinr cos(¢—¢) + cosr sin(¢—¢)1+§(¢"—¢")}

— {élsinr cos(¢—z/2)+ sins-01+ (¢”—¢")}

+,B (¢"+1,0") = —A (—1 — ¢'+z0') (2.10)

2.4 Linearization in 1,0

Note that, from Figure 2.1, (0 can be written in terms of 0 based on the following

constraint equation

I sin¢= r sin0 (2.11)

or in dimensionless form

sin¢= é sinr (2.12)

since T=Qt=0.

Since 10 will be restricted to small angles for all reasonable clearances, the following

approximations can be used for 10

c0310 = 1+0(z,02)

sim0 = wows

By using the above assumptions, retaining only those terms linear in t0 and

derivatives of 1,0 , and utilizing equation 2.12, the equation of motion can be expressed
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in linearized form in terms of 10. The dimensionless, linearized equation of motion is

given by

where

a a" + b w + chw = f(r) (2.13)

40 + 1 + 3

A

(1+é-a)§A cosr—(l +31?!) {2 sinz'r

 

1 ((3—0 sinr 1 .

(Ea-i-l-fl) A3 +(EA+-2-a£A) smr

l 1 . A6 cosr

+(§E2 +162 a)s1n2r+A+—-A———

Note that in the equation of motion (i.e., equation 2.13), the only dimensionless

system parameter that depends on the crank frequency fl is the dissipation param-

eter , A . This implies that a study which varies A is equivalent to one which varies

the crank operating speed. Also note that the equation of motion has both external

and parametric excitation which arise from the gross motion of the connecting rod.

The solution of this equation of motion describes the motion of the connecting rod

during flights between the barriers.

2.5 Impact Conditions

The magnitude of the clearance is described by the difference between the slider

radius (in the plane of motion), r“, and the distance from the nominal piston motion
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centerline to the cylinder wall, (1 . Thus the piston is free to move a distance d — 7'"

up or down from its nominal position.

Based on this gap the motion of the connecting rod is restricted to lie in a region

10min S 10 5 10m” . From the geometry of the model, for I 10 |<< 1 the maximum

and minimum values that 10 can achieve can be shown to be given by

 

 

 

fpmaz = P (2'14)

\/1 — £2 sin2 7'

2l’min = “P (2.15)

\/l — {2 sin2 1'

where

_ d — r“

” ' 1

is the dimensionless gap size. Note that 10",“. = -—z/)m,-,, is valid only for linearized

case (i.e. under the assumption of small gap size). A detailed derivation of 10m“,

and 10min are provided in Appendix A.

Figure 2.2 depicts the time dependent region in which 10 can lie without impact

occurring. Note that impact occurs whenever 10 = 10",” or 1,0 = 10",," is satisfied

during a given motion. A simple impact rule is assumed in which the relative velocity

after impact is proportional to the relative velocity before impact, with the constant

of proportionality equal to the negative of the coefficient of restitution [24]. This is

done by using the vertical component of the absolute velocity of the slider center,

3}. . This is the natural velocity to use since it is normal to the impact surface and
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p=0m

l I l I W l

0.01 —' 1pm“: _

Ibms'n _"

0.005 - -

20 o

—0.005 - -

—0.01

l l l l l I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0 - Crank Angle

Figure 2.2: The Constraints for 20

since it gives the relative velocity between the slider and the stationary supporting

structure. The impact rule is given by

y‘aftcr = _e ysbefore
(2.16)

Using the expression for g, from section 2.2, nondimensionalizing, linearizing in 1,0 ,

and solving for 10“,," leads to the following expression for the velocity after impact

in terms of 10 :

£2 sinr cosr

A2 III) I — eibbcfore (2'17)0.}... = (1 + e)[ 

where

Coefficient of restitution8
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and 1/1 = 10m: 01' '11 = tbmtn-

Note that 10“,," is found by assuming simple impacts between the roller and

the wall of the cylinder. In simulations the exact location and time of the impact

is determined in the simulations by applying Newton’s root solving method to the

conditions 10 = 20",” or 10 = 10",," (see Appendix B for details).

We now have a complete set of dynamic equations. Equation 2.13 gives the free

flight and equations 2.14, 2.15, and 2.17 determine the impact conditions. It should

be noted that since an infinite number of impacts can occur in finite time, sliding

motions may occur in which 20 = 10",“ or 10 = 10".," for finite time durations (see

Wilson and Fawcett [11]); this is considered in the following section.

2.6 Sliding Conditions

In the problem under investigation there are occasions in which the roller may slide

along the supporting structure. This occurs when several impacts occur close together

in such a manner that the relative velocity goes to zero via an infinite number of im-

pacts which occur in finite time. This is analogous to the simple problem of dropping

an inelastic ball on a rigid surface and letting it bounce; it similarly comes to rest

in a finite time after an infinite number of impacts ( Greenwood [25], pp 160-161

). In the mechanism under consideration, this typically occurs when the friction at

the joint connecting the crank and the connecting rod is large, or if the coefficient of

restitution is small, or some combination of these conditions.

The analysis of sliding motions is carried out as follows. We begin by computing
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the normal forces between the roller and the supporting structure under the assump-

tion that the roller moves along paths «,0 = 1,0,“; or 10 = 10”,,“ . These are the forces

which would be required to maintain contact and will represent the actual contact

forces in these cases in which the force is compressive. A tensile force is non-physical

and occurs in regions where sliding will not occur. For a given set of parameters

( A, p ) as the crank advances these forces vary and change direction at certain crank

angles. At those angles where the force changes from compression to tension, the

roller, if sliding, will be released into free motion between the constraints. Crank

angles at which the force changes from tension to compression correspond to the

beginning of crank angle intervals in which sliding can occur on the corresponding

constraint. This analysis indicates that there exists four types of crank angle regions:

0 those in which sliding can occur only along the upper constraint,

0 those in which sliding can occur only along the lower constraint,

0 those where sliding can not occur along either constraint.

0 those where sliding can occur along either constraint.

Depending on p and A , the crank angle may be broken into distinct intervals

of these types. It should be remembered that free flight can occur in any region, and

that sliding will occur in the allowed region only under certain conditions.

The constraint force is derived using the principle of virtual work and Lagrange’s

method. The procedure is to first obtain the equation of motion for an uncon-

strained connecting rod with and applied vertical force on the roller. The constraints
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10 = 10",“ and 1,0 = 10",,-,, are then substituted into the equation of motion and

the resulting applied forces , i.e. those required to maintain contact on the lower and

upper constraints, respectively, are solved for directly.

Lagrange’s equation for this case is given by

— —- — — = ' 2.18

where

Q = The generalized constraint force due to the supporting structure,

Q' = Generalized forces due to dissipation,

T = Kinetic Energy of the system.

The principle of virtual work is applied for deriving the generalized constrained

force Q . The virtual work done by an applied force is given by the applied force

times an arbitrary virtual displacement

Note that in this case, the coordinate y is a function of the generalized coordinate

and time ( i.e. y = f(z0,t)). Thus, virtual displacements of y can be expressed in

terms of the corresponding virtual displacement of 1.0 by differentiating y with



 

Up]

and



19

respect to 10 while holding time fixed:

This results in the corresponding virtual work

__ 33’6W _ F (9—20- 6¢ (2.21)

'
< \  

S
n
"
-
.
.
-

  

Figure 2.3: The model through the virtual displacement of the roller

Figure 2.3 presents a schematic view of the the model. Note that in this figure the

uPper supporting structure is replaced by a force F,, acting on the roller. From the

geometry of the model, as shown in Figure 2.3, the following relationship between y

a-Ild 1,0 is obtained

3] = Isin¢ — I sin(¢ — 20) (2.22)
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which results in the following derivative

3% = 1cos(¢ — (b) (2.23)

Substituting the above in to the virtual work equation results in

(SW = —F,, lcos(¢ — 20) 610 (2.24)

which can be written as

6W = Q 51/) (2.25)

where Q is the generalized force associated with the generalized coordinate 10 and

is given by

Q = —F., I cos(¢ — 10) (2.26)

The following expression, equation 2.5, for the kinetic energy was derived in section

2.2

11..., = gMurn sinm +1 sin(¢—¢).(J>—¢)]”

+[rfl coth—%I(ti>—z,0) cos(¢—1,0)]2}

+-;-m{[rfl sinflt 4%: sin(¢—z0)(<0-10)]2

+ I’” ”8‘" “i" cosmos—43m + $2054.12)”

By using the above equation, the equation of motion which takes into consideration



 

  

IO

0U
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the constraint generalized force is found by applying equation 2.19 with the following:

d 8T 8T
$577)) _ .07). = % m{—92rl [sinflt cos(d> — (,0) + COS Qt sin (45 — 10)]

—-;-I2(<0—10)}- M {Q2r1[sinflt cos(¢—(0)

+ coth sin(¢-t0) + 12(55—10)]}+ J,($+1,Z)

Qu = —F,,Icos(¢—10)

Q' = —c1,0+cfl+cql

The above is non-dimensionalized by dividing both sides of the above equation by

M I 02 , as in section 2.2 . The dimensionless form of the equation of motion which

includes the generalized force is then given by:

—%a£[sin 7 cos ((0 — 10) + COS 7' sin (<0 - 10)] - i495” - ‘1’")

—£ [sin 1’ cos ((0 - 10) + cos 1 sin ((0 - 10)] — (43” — t0”)

— 5 (¢" — ‘0’”) = -fucos(¢ " ‘0’) + A + ,\¢’ - All), (2-27)

where the dimensionless parameters are described in section 2.2.

The new dimensionless parameter fu corresponds to the dimensionless generalized

force from the upper surface acting on the roller. A similar analysis can be carried out

for the lower supporting structure. The dimensionless generalized constraint forces

on the roller from the upper and lower structures are given by

Fu/l

f,” = M102 (2.28) 
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where f; is the force of the lower supporting structure on the roller. It is obtained

by using the same approach as above with F} taken in the opposite direction of

Fu for consistency in sign: a positive force implies compression between the relevant

constraint and the roller.

The forces of the constraints on the roller at 10",“ and 10m” are obtained by

simply solving the equation of motion for f“), , yielding:

f“); = SSS—(Z—i—tp-fi—éaflsinrcos ((0 — 10) + cos T sin (<0 -— 10)]

-€ [sinT COS (45 - *0) + COS T sin (<0 - 0)] - (¢” - t0”)

‘ i002” - 112”) + 3 (¢” + 112”) — A - M’ + W} (229)

with 1,0 = 10m” for the ”u” and 10 2 10min for the ”I” subscript. Note that

the ”— ” corresponds to the force of the upper supporting structure on the roller

(i.e. f“) and ”+ ” corresponds to the force of the lower supporting structure on the

roller (i.e. f; ). Based on this sign convention, whenever the force is positive, the

roller may be sliding and whenever it is negative the roller cannot be sliding on the

corresponding supporting structure. Thus, in order to have the roller sliding on the

supporting structure, 10 must be at its maximum / minimum, and fu / f; must be

positive, respectively.

The parameters which influence the possibility of sliding are the gap size and the

bearing friction (or, equivalently, the crank speed). The gap size affects the geometry

While the bearing friction (crank speed) influences the moment on the connecting rod

Which in turn influences the constraint force. The coefficient of restitution cannot
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affect the constraint force, and hence does not play a role in determining the ( A, p )

parameter regions or crank angle intervals in which sliding may occur. However, it

does influence how frequently sliding actually does occur in these regions since it has

a direct effect on the time required for settle-out of the impacts into a sliding motion.

A set of results are presented here that demonstrates the effect of these parameters

on constraint force. These results are based on the parameter set given in section 4.1.

For p = 0, and A = 0 the constraint forces possess the following symmetries:

(i) fu = -f; and (ii) fu(9 + 7r) = —fu(0). For p = 0,A 54 0 symmetry (2') holds

but (if) is broken. For p 79 0, A = 0 symmetry (2) is broken while (ii) holds. As

is demonstrated below, these facts have some interesting consequences.

p = 0.01, A = 0.01

0.4

0.3

0.2

0.1

Force 0

—0.1

—0.2

—0.3

_0.4 l 1 I J | J

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0 - Crank Angle

 

 

   
 

Figure 2.4: Constraint force on the roller at A = 0.01

Figure 2.4 presents the forces of the upper and lower supporting structures on the

roller for p = 0.01 and A = 0.01. Note that, there are two crank angles at which the

constraint forces change direction. From approximately 0 to 1r in crank angle the



24

roller may slide along the upper surface while from approximately 7r to 27r it may

slide along the lower surface.

0.5

0.4

0.3
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Figure 2.5: Constraint force on the roller at A = 0.1

Figure 2.5 shows the case with p = 0.01 and A = 0.1. As the dissipation

parameter increases, the force tending to hold the roller against the upper supporting

structure increases, in which case the roller can be sliding along the upper supporting

structure for a longer period. Figure 2.6 demonstrates the effect of increasing the

dissipation parameter to 0.25. Comparison between Figures 2.4, 2.5, and 2.6 suggests

that as A increases, as expected, the force of the supporting structure on the roller

increases and the sliding region on the upper supporting structure is extended.

Although in the figures shown to this point it appears that f,, = —f1 , this is not

the case in general. It is true only for p = 0 . The quantity (fu + f,) deviates

from zero as p is increased from zero. This lack of symmetry allows for a situation

in which the roller may slide along the upper constraint over the entire crank cycle
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p 2: 0.01, A = 0.25
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Figure 2.6: Constraint force on the roller at A = 0.25

p = 0.020, A = 0.267
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Figure 2.7: Constraint force on the roller at A = 0.267, p = 0.02
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and may also slide along the lower constraint over a small crank interval. Such a case

is shown in Figure 2.7 for p = 0.02 and A = 0.267

p = 0.01, A = 0.1

0.05 T I T I f

0.04 - f r

0.03 r "
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0.01 '- "
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—0.04 - -

_005 1 1 1 1 1
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9 - Crank Angle
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Figure 2.8: Blow up of the constraint force on the roller

The lack of symmetry also permits the existence of small crank angle intervals

over which sliding may occur on either the upper or the lower structure. Figure 2.7

clearly shows such a interval in the range 4.96 < 0 < 5.14 . A similar situation occurs

near the leftmost crossing point (i.e., the continuation of the crossing at 0 = 7r for

p = A = 0) of f“ and f; for all values of p and A for which crossings occur. Similarly,

near the second crossing point (the continuation of the one originating at 0 = 21r

for p = A = 0), there exists an interval over which sliding cannot occur along either

constraint. Figure 2.8 shows a blow up of the case from Figure 2.5 (A = 0.1, p = 0.01)

which clearly shows these regions. These intervals are typically small and for small

p do not have a significant effect on the dynamics of the system.

Figure 2.9 represents the results of having very large friction at the joint (or low
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p = 0.01, A = 0.35
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Figure 2.9: Constraint force on the roller at A = 0.35

speed), A = 0.35. Here the roller may slide along the upper supporting structure

throughout the entire crank cycle. Note that in this situation, if started in a sliding

mode of motion, the roller will remain sliding along the upper surface and will never

release.

Figure 2.10 presents an overview of the effect of the gap size and the dissipation

coefficient on the sliding of the roller on the upper and lower supporting structures.

Region I corresponds to the parameter ranges where there can be sliding on both

parts of the supporting structure during one cycle, for example, as shown in Fig-

ures 2.4, 2.5, and 2.6. Region II represents the parameter range in which the roller

can be sliding on the upper supporting structure during the entire cycle and there is

some interval in each cycle for which the roller can also slide on the lower supporting

structure, for example, as shown in Figure 2.7. Finally, region III corresponds to the

range of parameters for which the roller can slide on the upper surface over the entire
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Dissipation Coefficient vs. Gap Size
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Figure 2.10: Regions of Sliding on the Supporting Structure.

crank cycle and nowhere can it slide in contact with the lower surface, for example,

Figure 2.9.



Chapter 3

Methods of Analysis

 

In this chapter, three methods for presenting the results obtained from the equations

of motion, equation 2.13 and equation 2.17, are described. First, the concept of a

Poincare map is introduced as a geometrical means of presenting simulation data.

Next, a statistical analysis which presents the average number of impacts and the

associated impact velocities along locations of the supporting structure is described.

This method of presentation provides information regarding possible patterns of wear

in the cylinder. Finally, impact spectra are defined that provide information regarding

the number of impacts and the associated impact velocities as a function of the crank

angle. This is essentially a polar representation of the statistical analysis.

3.1 Poincare Section

An important conceptual tool for understanding the behavior of a time periodic sys-

tem is the Poincare map. Typically this map is defined to sample the system’s

29



  

displa

perio<

ten '1

in set

tion

152

wh

tht.



30

displacement and velocity, or, more generally, its dynamics state variables, once per

period of the excitation. Using such a map, a continuous-time non-autonomous sys-

tem is reduced to a discrete-time system with one less dimension.

The linearized and dimensionless equation of motion, equation 2.13, was obtained

in section 2.2, and is restated here:

a 10” + b 10’ + C(TW = f(T)

where C(T), and f(T) are all periodic in T with period 21r.

Note that this equation is valid for 10",,“ S 10 5 10",“. Also, based on the assump-

tions given section 2.1, whenever 1,0 = 10",” or 10 = 10min the simple impact rule [24]

is applied (i.e. equation 2.17) which results in a jump in velocity given by:

 

[52 sin 1 cos 7'

Illaftcr = (1 + e) A2 71") l - czi’before

where e is a coefficient of restitution with a value between zero and unity. Note that

the above equations completely determine the dynamics of the system.

To define the Poincare section for this system, we first write the equation of motion

in the form of a first order system of equations with (1,0, 10, r(mod21r)) = (2:1, 0:2, 0)

as follows:

331’ = $2 (3.1)

$2, —-b-$2 — Ema +E (3.2)

a a a



      

(the:

$90.

liq,

Ia};
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0’ = 1 (3.3)

where ( )’ corresponds to the dimensionless time derivative (as described in

section 2.3 ).

The three variables, (2:1 , x2, 6), are required for specifying the state of the system.

In this three-dimensional phase space, solutions are restricted to

10min < 2:1 3 10m”. The time variable is taken to be the crank angle so that it

takes on values between 0 and Zr , i.e. 0 S 0 S 27r .

 

   
 

Figure 3.1: Three Dimensional phase space, with the restriction

Figure 3.1 illustrates the three dimensional extended phase space (10 ,10 ,r)

and its restrictions for the present system. It can be seen that a Poincare section is

conveniently defined in this case using the surface of 10",“ or 10,,,,-n in the three
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dimensional space. The Poincare section for this system is thus defined as

Z = {($11 $216) I 131 = Il’maan $2 > 0} (3.4)

The Poincare’ map P is a rule that takes points in 2 back into 2 under the

action of the equation of motion. It can be represented as

P i Z —" Z a 01', (3214120914) = P0323300 (35)

where the points (2:2,, 9,) are in Z . Note that points in 2 correspond to the velocity

of the roller as it is just coming in to contact with the constraint at 10 = :21 2 10m“,

at the ith impact, that is 2:2,- : 10,- , and the crank angle at which the impact occurs,

0; .

The map P simply relates points between successive impacts in an implicit func-

tional form. The map can not be written in closed form for this system and will

be generated by directly sampling the points as defined during simulations. Simi-

lar maps have been used in the investigations of other impacting systems and are

known to possess interesting singular behavior (see Shaw [3], Shaw and Holmes [4],

Karagiannis [13], Whiston [22], and Pheiffer and Kunert [14] ).

3.2 Impact Distribution Profile

The following approach is taken for performing the statistical analysis. We define the

domain of the possible dimensionless impact locations on the supporting structure as
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D = [1 — C, 1 + C], and the coordinate a: as the location of an impact measured such

that :1: = 1 corresponds to the mid point of D . Thus a: E D. Note that a: = 1 —6

corresponds to the crank angles 0 = (2n + 1)1r (for n =0, :l:1, :i:2, . . .) and a: = 1 +6

corresponds to the crank angles 0 = 2n1r ( for n = 0, i1, i2, . . .).

The domain D is subdivided into j equal subintervals of width A2: = Z]; , desig-

nated as Asa-,1 = 1,2, - . - , j. In each Ax,- , there will be N,- impacts during 12 crank

rotations. The total number of impacts during this time is given by N = £{=1N;.

We designate the impact velocities over this period according to their impact

location by labeling them as 10k(A$,'), k = 1,2,---,N,-. Based on this, we can

compute an average impact velocity for each interval Ax,- as

< 10(Axt) >= 2&1 110M“) i= 1,2, - - - ,J' (35)
 

Bar graphs of < 1,0(A:r,-) > versus A3,- for i = 1,2,~ - ~ , j provide a measure

of the number of impacts and their severity, given by the impact velocity, versus

the dimensionless location of the impact on the supporting structure. It is worth

noting that this distribution is the product of the average impact velocity in each

Am.- and the fraction of impacts which occur in each Ax,- , that is %. If 10 is

a stationary process, then as N —-> 00 these graphs will converge on to a limiting

distribution. These plots provide useful information regarding possible locations of

wear, heat generation, noise generation, and fatigue due to repetitive impacts. They

will be referred to as impact profiles or impact distribution profiles. In these diagrams

average impact velocities on the upper supporting structure are shown with positive



34

sign while those on the lower supporting structure are shown with a negative sign. In

this manner a single diagram can capture the entire impact distribution.

3.3 Impact Spectra

Impact spectra provide information relating the number and severity of impacts to the

crank angle. Note that impact spectra are a polar representation of the data defined

in the previous section. Here we define the domain as D = [0, 2w) . We subdivide

the domain into j equal subinterval of width A0, labeled as A0;,z' = 1, 2, - - - , j . Let

N, be the number of impacts which occur in A0.- in n revolutions of the crank and

let N = 2le N.- be the total number of impacts. Here the impact velocities are

labeled according to the crank angle at impact as 43,.(A0.), k = 1, 2, - ~ - , N,- . Based

on this, we compute an average velocity for each interval A0,- as

 

N- '
- .1 A0,

< 10(A05) >= 2"" I)“ ) (3.7)

N

This polar representation of the impact velocity provides useful information re-

lating the impacts and the corresponding crank angles. Note that separate spectra

figures must be produced for impacts on the upper and lower supporting structure.



Chapter 4

Results

4.1 Introduction

In this chapter we present results from simulations. Results are presented in various

forms: simple time traces (10 vs. t), phase planes (1]) vs. 10), Poincare maps, impact

distribution profiles, and impact spectra. We emphasize the use of impact distribution

profiles since these are the most relevant to the practical issues of wear.

Some general observations for a typical chaotic response are given first, and then

these are followed by sets of simulations which describe some general behaviors which

are observed as the gap size, p, the dissipation parameter, A, and the coefficient of

restitution, e, are varied. These results are grouped into three sets. The first is

for parameter ranges where sliding is not observed during the steady state response,

this range is for small values of A (A << 1) and e values slightly less than unity

((1 — 6) << 1). The second set of simulations is also for 6 near unity, but A values

are large enough so that sliding occurs during the steady state motion. The final set

35
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of simulations is carried for fixed p and A, with e decreasing. This set indicates the

general trend observed as the impacts become more dissipative.

In the simulations three general types of responses are observed. The simplest

type of response is periodic, in which impact patterns are repeated and the motion is

regular. The second type of motion is ultimately periodic, but experiences “transient

chaos” . This occurs when chaos is observed over a significant period well beyond what

would be typically considered as transient, and the motion then transits into a periodic

pattern, in which it remains thereafter. The last type of response is chaos which is

sustained over at least 1000 crank cycles. Each of these three types are observed

in sliding and non-sliding cases, although periodic motions are more prevalent when

sliding occurs.

Typical values for a slider-crank in an automotive four-cylinder gasoline engine,

taken from a particular Ford Motor Company engine [12], are used in this study.

They are

m = 0.00399 lb. sec.2 in.‘1

M = 0.00210 lb. sec.2 in.‘1

r = 1.6535 in.

I = 5.4570 in.

I, = 0.0295 lb. sec.2 in.
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which result in the following dimensionless parameter values

5 = 0.3030

0 = 1.9000

fl = 0.4719

Note that throughout this investigation, these values are kept constant and the

study is performed based on varying the values of the dissipation parameter, A , the

gap size, p , and the coefficient of restitution, e.

4.2 General Observation of Chaotic Motion

Figure 4.1 represents a time trace of the steady state behavior of the system (i.e.

10 vs. 1' ) for two crank cycles, for parameter values A = 0.05,p = 0.01,and e = 0.9,

obtained after 25 cycles during which transients have decayed. Note that, while

certain patterns are repeated, no strict periodicity is observed in this figure. In fact,

the system has a chaotic response to the periodic excitation provided by the crank.

Also, note that from this figure it is explicitly seen that 10 is constrained by 10,“,

and 10mg... Figure 4.2 shows the phase portrait (1,0 vs. 10) of the system for the same

two cycles of the crankshaft with the same parameters. A Poincare plot of the

system showing points corresponding to the absolute velocity before impact at the

top side of the cylinder and the crank angle at impact is presented in Figure 4.3. This

plot, taken over 3000 crank revolutions, clearly demonstrates the chaotic behavior of
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p = 0.01, A = 0.05, Steady State Behavior for 2 cycles
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Figure 4.3: Poincare Map, A = 0.05 and p = 0.01

the system. During an initial transient period, the points from the map appear to be

randomly placed. However, as more data points are taken the highly ordered pattern

shown is formed. Figure 4.4 and Figure 4.5 contain two consecutive magnifications

of the Poincare plot (Figure 4.3) which demonstrate the fractal nature of this chaotic

attractor (Moon [26]).

An interesting feature of this strange attractor is that it is composed of several

”lobes”, some of which are distinct but others of which conjugate near zero velocity.

These lobes are correlated to the physical motion in the following way: A series of

impacts occur which has points in these lobes moving sequentially from the upper left

to the lower right. This corresponds to a simple sequence of impacts which occur as

the crank advances and for which the impact velocity being reduced at each impact.

Eventually the moment acting on the connecting rod reverses sign, and it is released

from this sequence for some time. As the time trace of Figure 4.1 shows, there is some

pattern to the motion and although is not periodic, certain features are repeated each

crank cycle. This results in the observed structure of the Poincare map.
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4.3 Non-sliding Dynamics

For the simulations presented in this section, we keep the coefficient of restitution,

e, fixed at a value of 0.9 and carry out simulations for the 3 x 3 parameter matrix

with A = 0.025, 0.05, 0.075 and p = 0.01, 0.015, 0.2. The results are depicted in

the form of impact distribution patterns and are presented in Figures 4.6 - 4.14. It is

noted that all three types of response occur. The cases (A, p) = (0.025, 0.01), (0.025,

0.015), and (0.075, 0.01) exhibit transient chaos (i.e., Figures 4.6, 4.7, and 4.12),

cases (A,p) = (0.025, 0.02), (0.05, 0.01), (0.05, 0.02), (0.075, 0.015), and (0.075,

0.02) (i.e., Figures 4.8, 4.9, 4.11, 4.13, and 4.14) exhibit sustained chaos, and case

(A, p) = (0.05, 0.015) (i.e., Figure 4.10) is periodic without a chaotic transient. The

impact distribution patterns reflect these facts in the following way: chaos results

in a widely distributed set of impacts, periodicity is reflected by clean spikes, and

transient chaos is dominated by spikes but has superimposed some more uniformly

distributed impacts whose level depends on the duration of the chaos in relation to the

duration of the total data sample. As the sample length is increased, this background

will decrease in amplitude.

We show Poincare maps and impact spectra for three cases that represent the

three types of motions: (A,p) = (0.05, 0.015) for periodic motion, see Figures 4.18,

4.19, and 4.20; (A,p) = (0.025, 0.01) for transient chaos, see Figures 4.15, 4.16, and

4.17; and (A, p) = (0.075,0.02) for for sustained chaos, see Figures 4.21, 4.22, and 4.23.

A comparison of the Poincare maps, impact spectra, and impact distribution patterns

for these cases indicates the sufficiency of the impact distribution for characterizing
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Figure 4.6: Impact Distribution Pattern, A = 0.025 and p = 0.010
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Figure 4.13: Impact Distribution Pattern, A = 0.075 and p = 0.015
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Figure 4.14: Impact Distribution Pattern, A = 0.075 and p = 0.020
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Figure 4.19: Impact Spectra, Upper Wall A = 0.05 and p = 0.015
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Figure 4.22: Impact Spectra, Upper Wall A = 0.075 and p = 0.02
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The following observation can be made based on the impact distribution patterns

shown in Figures 4.6 - 4.14. Chaotic motions lead to a quite uniform spreading of

the impacts over a range of locations while periodic motions lead to highly localized

impact locations. Also, as a general rule, the average impact velocities increase as

the gap size is increased. This is expected since the free motion has a longer time in

which to build up momentum before impact.

Also note that, as expected, the impact velocities are greater on the upper con-

straint than on the lower. Also, this difference increases as A is increased. This is due

to the increase of the moment acting on the connecting rod from the bearing, and

in particular from the A (0 + (0) term which is biased by the rotation direction. In

all cases, there are regions in which very small impact velocities occur (this is most

directly seen by considering the Poincare maps). These small impact velocities will

result, as A increased or e is decreased, in motions in which sliding occurs during

some part of the cycle.

Another point worth noting is that there is no apparent correspondence relating

the parameter variation to specific trends in the types of motion observed (at least in

this parameter range). Chaos and periodicity occur for (A, p) values without rhyme

or reason. In fact, for the periodic motions observed, very slight changes in the

parameters rendered the motion chaotic. It is therefore impossible to draw substantive

conclusions regarding non-sliding motions, other than the general observations given

above. In addition, a priori prediction of the nature of the response at a given set

of parameters is impossible. One must simply run the simulation to determine the

steady state motion.
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4.4 Dynamics Involving Sliding

In the simulation routine, the appearance of an extremely low relative velocity at

impact is assumed to initiate sliding. At such a point the simulation program simply

advances the crank angle to the release value and starts the free flight conditions at

1(’(9) = ¢max(0) (or 10(9) = 10m;n(0), respectively) and 10(0) = 10,,,,,,,(0) (or 10(0) =

10m,n(0), respectively) with 9 set at the release value. Details of these algorithms are

given in Appendix B.

In these simulations 6 is again fixed at 0.9 and a 3 x 3 matrix of (A, p) values

is considered with A = 0.15, 0.20, 0.25 and p = 0.010, 0.015, 0.020 . Note that the

A values are larger here, corresponding to values where sliding occurs during some

part of the motion. Again the results are presented in the form of impact distribution

diagrams given in Figures 4.24 - 4.32. Periodic motions are much more prevalent as

A is increased in this parameter range. This is quite simply due to the fact that in

general dissipation tends to discourage chaos.

As in the case of non-sliding motions, an increase in the gap size results in larger

impact velocities and increases in A tend to increase the difference between the impact

velocity magnitudes on the upper supporting structure and the lower supporting

structure. Increases in A also tend to suppress chaotic dynamics. This can be seen in

the impact distribution patterns provided in this section (Figures 4.24 - 4.32).
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Figure 4.25: Impact Distribution Pattern, A = 0.15 and p = 0.015
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Figure 4.26: Impact Distribution Pattern, A = 0.15 and p = 0.020
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Figure 4.29: Impact Distribution Pattern, A = 0.20 and p = 0.020
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Figures 4.33 and 4.34 present the two Poincare maps for p = 0.015, with A =

0.2 and 0.25. At A = 0.2 the motion is chaotic. During this chaotic motion, sliding

occurs intermediately, but not infrequently. As A is increased , at approximately

A = 0.22 only transient chaos is observed, and for A = 0.23 and above, simple periodic

motion occurs. The case of A = 0.25 indicates that these periodic motions involve

cycles of low velocity impacts concluding in sliding, and then release. A time trace

p 9 0.015) - 0.8

0.1: ‘ 

 

 

  
tic 2:0 3:0 4:0 530 do

Crank Anglo 0

Figure 4.33: Poincare Map, A = 0.2 and p = 0.015

p - 0.010. A- 0.28
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Figure 4.34: Poincare Map, A = 0.25 and p = 0.015

 

for the case of (A, p) = (0.25,0.015) is shown in figure 4.35. Note that this is shown

for three crank cycles and the response is periodic.

Note that in the case of relatively large values of the dissipation coefficient A ,

unlike the case of lower values of A , the response of the system does not change
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Figure 4.35: Time Trace, e = 0.9, A = 0.25, and p = 0.015

from periodic to chaotic with small variations of p. In the previous section it is seen

that with the slightest change of the gap size at a fixed A, the response changes

from periodic to chaotic, while in the case of high A , if the response periodic,

small variations of the gap size do not affect the periodicity. This can be seen in

Figures 4.36, 4.34, and 4.37.

p 9 0.01 . A. 0.20

 

   
0.0 1.0 2 o .1 0 0'0 5'0 5'0

Crank Angle 9

Figure 4.36: Poincare Map, A = 0.25 and p = 0.01

Note that at the highest dissipation coefficient used in this study, A = 0.25,
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Figure 4.37: Poincare Map, A = 0.25 and p = 0.02

there are no impacts on the lower supporting structure. Comparison of these impact

distribution patterns with the ones presented in the previous section ‘suggest that as A

increases the locations of the impacts on the lower supporting structure become more

limited and the impacts on the lower supporting structure become more sever. Note

that the impact locations shift toward the end of the supporting structure (i.e. head

of the cylinder) and for A above 0.25 there is no impact on the lower supporting

structure. These observations are consistent with the constraint forces shown in

chapter 2. There it was observed that as A increases the region over which the

net moment on the connecting rod which leads to impacts on the lower structure

becomes smaller and moves towards the piston position corresponding to 0 = 0. For

A beyond a critical value, depending on p, over no range of crank angle intervals

does the net moment push the connecting rod toward the lower structure. In such

a case impacts will not generally occur on the lower structure during steady state

operation.

To this point we have not varied the coefficient of restitution 13. Reduction in

the value of e has a predictable outcome: motions increase their sliding duration and
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become periodic. This is true over all ranges of A and p considered in this work. As an

example we take (A,p) = (005,002) (a case considered with e = 0.9 in section 4.3)

and reduce c. This case is one in which the bearing dissipation is small (or the crank

speed is high) and the gap is quite large, conditions ripe for chaos. Figures 4.21, 4.38,

and 4.39 present the Poincare maps for 6 values of 0.9, 0.7, and 0.5. It can be seen

that as the coefficient of restitution decreases, the response changes from chaotic to

transient chaos and eventually periodic motion appears. Note that at values of 6 near

unity no sliding occurs and as 0 decreases sliding occurs more often. Figures 4.8, 4.40,

and 4.41 provide the impact distribution pattern for those values of the coefficient of

restitution.
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Figure 4.38: Poincare Map, 6 = 0.7, A = 0.05, and p = 0.02
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Figure 4.39: Poincare Map, e = 0.5, A = 0.05, and p = 0.02
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Figures 4.42, 4.43, and 4.44 show results in the form of time traces over three

crank revolutions for these three cases. As expected, the motion develops substantial

sliding and becomes periodic. Note that in the limit 6 —+ 0 sliding will nearly always

occur since the rebound velocity is zero. While transient chaos may occur even in the

case of e = 0 , periodic motions will dominate the response (see Shaw/Holmes [5]).
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Figure 4.42: Time Trace, 12 = 0.9, A = 0.05, and p = 0.02
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Figure 4.43: Time Trace, 12 = 0.7, A = 0.05, and p = 0.02
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Figure 4.44: Time Trace, e = 0.5, A = 0.05, and p = 0.02



Chapter 5

Discussions and Future Direction

for Research

This study is a first step in a series of studies which should be carried out in order

to more completely understand the dynamics of piston-slap. The model developed

and investigated herein was designed so as to facilitate the analysis and simulations in

order that some general observations could be made regarding the influence of various

system parameters on the response of a slider-crank mechanism with slider clearance.

Of particular interest was the possibility and characterization of chaotic motions in

this system.

It has been shown that chaotic motions are prevalent over a range of parameters

which correspond to high crank speeds and/or low bearing friction with relatively

ideal impacts (that is, coefficient of restitution near to unity). In applications, one

tends to design so as to minimize bearing friction in order to maximize efficiency and

reduce energy consumption. This may have an additional benefit if it encourages

60
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chaos (for the reasons given below). However, in typical automotive applications, the

effective coefficient of restitution is on the order of e = 0.4 (Fawcett and Wilson [11])

which indicates that sliding motions will most likely dominate the response of pistons

in automotive engines. The data also indicates that impact velocities are more severe

for larger gap sizes. This is expected and is due to the fact that the connecting

rod/piston assembly has a longer time duration over which to build up momentum

between impacts.

One must be very cautious in using information obtained from simulations of the

type presented here due to their demonstrated sensitivity on parameter changes in

the model and. due to the limitations of the model itself. Due to this, it may be

practically impossible to construct a model which is capable of predicting the nature

of the system response over a range of speeds with any confidence. Chaos, transient

chaos, and periodic motions are all possible and, in fact, due to the very possibility

of transient chaos, it is possible to observe either chaos or periodicity for a given set

of parameters depending entirely on the initial conditions and on the time scale over

which the response is observed.

The results presented here indicate that chaotic motion may have a beneficial effect

with regards to wear in mechanisms with clearances. This is simply due to the fact

that the distribution of impacts is more uniform when the system responds in a chaotic

manner than when the motion is periodic. The repeated impact patterns associated

with periodic motions can lead to more highly localized wear. One must be careful in

drawing too firm conclusions from this observation, however, since periodic motions

with significant sliding may induce less wear than motions with a greater number of
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impacts, independent of how well distributed they are. In addition, consideration of

noise generation and fatigue may offset any potential benefits in reducing wear, since

increases in sliding duration are typically correlated with fewer impacts per cycle.

These are topics which lie outside the scope of this thesis, but should be considered

in future work on this subject.

The statistical means of data presentation used in this thesis are, for two reasons,

of more practical use than the Poincare maps which are typically used to present

chaotic dynamics. First, by showing normalized average impact velocities after the

completion of a long-term simulation, in place of individual velocities at each impact,

one obtains an integral average measure which cannot be obtained from the pattern

of the Poincare maps. Second, and more significant, is the fact that the impact

distribution diagrams and impact spectra can be used for more complex models,

including those with more than one degree of freedom, by indicating actual impact

locations and impact velocities regardless of the particular configuration of the system

at impact. In contrast, the Poincare map for even a two degree of freedom model (such

as the one described below) contains all information about the state of the system at

impact; it is four dimensional, and therefore difficult to represent in graphical form.

The following are some possible directions for improving the model for future

studies:

0 Consideration of the piston geometry. A first step in this direction would be to

make the piston rectangular and include its dynamics, resulting in a two degree

of freedom model.
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0 Consideration of an end-load acting on the piston. This would represent gas-

pressure effects in engine applications.

0 Non-symmetric placement of the connecting rod-piston bearing joint. This tech-

nique is currently used to suppress piston-slap ( [23]).

0 Inclusion of friction in all bearing joints which influence the dynamics.

By implementing the above improvements, the resulting two degree of freedom

model will provide a more accurate prediction of the motion of a piston in a cylinder.
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Derivation of gbmax and ¢min

The maximum and minimum values of d) that are possible due to the existence of

the clearance are found by directly using the geometry of the model. Figure A.1

   

Y i

EA

: '- Ibmaz

.......... .. -----.p.

0’ :0 D X

Figure A.1: The maximum angle

contains a schematic view of the model showing the connecting rod in its maximum

possible position (i.e. 1,!) = 1pm”). In this figure, 0’ corresponds to the center of crank

rotation, line if corresponds to the line along which the slider center will travel when

the roller moves along the upper slider boundary, and the X -axis corresponds to the
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nominal path of center of the roller. Also, A is the clearance that exists between

the upper supporting structure and the upper edge of the roller (the size of A is

exaggerated in the Figure A.1 for clarity). Note that 1,0sz depends on the crank angle

9, or equivalently, is time dependent. Note also that as the gap size A decreases to

zero, the model approaches a system without clearance. The maximum possible angle

is found by applying some simple trigonometric identities. Note that in this figure

E is equal to KC- which is the length of the connecting rod (i.e. AD =AC = 1).

Considering A AOD we obtain

mzl sin¢

The height of A ABC is

IKE-=1 Sin¢—A

and also the [ACE is known to be

ZACB = ¢ — 112",“

Using the following identity

al
l
3|

Sin(¢ _ 11157103) =
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with the known values yields

Isind—A

1 (A.1)
SID(¢ - Ipmax) =

The rules of summation of angles results in

I sin ()5 — A

sin d) cos 1pm” — cos ¢ sin 2pm,, = I

For small gap sizes, and thus small angles 11) , a Taylor expansion in terms of 1,!) is

employed. Using

cosz/J = 1+0(¢2)

simb = MOO/)3)

and considering only linear terms in 112, the following is obtained:

 sin¢ —cos¢¢....= ’ 8m", ’ A

Solving for 11)me gives

A
= — A2

and recalling that

 

Icos¢= fp—rzsinzflt
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results in

A

max: =
A.3

¢ x/l2—r2sin2flt ( )

The dimensionless form is obtained by dividing through by 1 resulting in

1pm“: = p (A4)
 

\/ 1 — 62 sin2 7'

where p is the dimensionless gap size given by

_ A

P " 1

where A = d — r“ in the notation of section 2.5.

By applying a similar approach the minimum possible angle for the connecting

rod can be found. It is given by

 

min = -p A5

1,0 \/1—£2 sinz'r ( )

Note that am and dam-n , the maximum and minimum angles that the connect-

ing rod can deviate from its nominal position due to the existence of the clearance,

depend on the crank angle orientation as well as the system’s fixed geometrical prop-

erties.

‘
I

r
y
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Simulation Routine

The routine used for the simulations takes into consideration non-sliding motion and

sliding motion. As a result, it is capable of handling a wide range of parameter values.

In this routine, the equation of motion (equation 2.13) is written in terms of two

first order differential equations as given in section 3.1 (equations 3.2, 3.3). The

two differential equations which describe the motion of the connecting rod angle

are numerically solved by using a forth order Runge-Kutta method with a nominal

step size of 0.005. Starting from some initial conditions inside the constraints and

stepping through time, eventually a violation of the constraints on the roller occurs

(i.e. 2:1 > zbma, or 2:1 < I/ngn). By using Newton’s root solving method, the crank

angle at which x1 = 1pm,,- ( or $1 = 2pm..) is found. Then, the impact rule is applied

and the post impact velocity is determined by equation 2.17. Once the post impact

velocity and the location of the impact have been determined, the solver continues

to solve for :01 and 922, using these as initial locations for the free flight equations

of motion. A period of 30 crank cycles is allowed for the system to achieve “steady
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state“ and then the required data is collected over a a number of crank cycles (typically

1500 - 3000). Occasionally Newton’s method does not converge, for example when the

impact velocity is very small. This difficulty occurs most frequently for larger values

of A , in which case the following procedure takes place. In such cases a reduced step

size of 0.0001 is used for the integrator from the pre-impact point until the clearance

condition is violated. If Newton’s method fails again, the step size is reduced further.

Whenever the relative post-impact velocity is less than some very small value,

WJ — Kbmaxl 01‘ Id) — 15min] < e (e = 0.005 is used) , the roller is assumed to slide from

that point until it is released at the crank angle at which the constraint force becomes

zero. At this location the system will once again begin free flight with initial conditions

of 2:1 = 112",” and x2 = dim” for the upper supporting structure and x1 = 2pm... and

x2 = 35",,” for the lower supporting structure. Figure B.1 provides a flow chart for

the simulation routine for the dynamics of the system under investigation.



 

70

Suing tomm

andLC.

 

   
 
 F—u—p +6
 

RX411! and»

msSOLVE

   

No >Yum:

Y<Ynin

  

ya

 

Nm‘:Method

‘—> msRoarsovan

M
’
é

   

 

 

 

 
 

 

   

  

1’

ya

lambda

swam..-

ya min; the roller In

the rule-u beads:

No 1

Set than!“LC.
 

'I' (t) ‘0'” (t) .‘I’nu (1:)

‘I” (1) ‘P'nu (t) S's-u“- (t)

1 I Rel-oin.

 

  
  

 

 
 

 

 

 

Figure B.1: Flow Chart: Simulation Routine
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