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ABSTRACT

ELECTRONIC AND STRUCTURAL PROPERTIES OF ATOMIC

CLUSTERS

BY

YANG WANG

In this Thesis I have studied the electronic and structural properties of small

atomic clusters, namely alkali metal clusters and the C60 carbon fullerene cluster. In

my research, I addressed the possibility of collective excitations in small clusters, and

found similarities between the excitation spectra of these two type of systems.

In alkali metal clusters, specifically Nan and Lin, I calculated the equilibrium struc-

ture and electronic excitations, as well as their damping, using ab initio methods. I

used the Local Density Approximation (LDA) to describe the ground state proper-

' ties of these systems, and the Random Phase Approximation (RPA) for the electronic

excitations. Results for the excitation spectra of clusters with the “magic number”

of n = 2,8 atoms are in good agreement with experimental data. I found that even

in small clusters, one single excitation exhausts most of the total oscillator strength,

which has also been observed experimentally. My calculations indicate that the cou-

pling of electronic levels to vibrational degrees of freedom accounts quantitatively for

the observed width of the collective electronic excitations in alkali dimers.

In the C60 system, my main interest has been devoted to the dielectric response

of isolated clusters, and elastic properties and stability of the C60 fullerite solid in its

pristine and intercalated phases.
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In the C60 solid, 1 found a very low value of the bulk modulus at zero pressure while

at high pressures the bulk modulus of fullerite exceeds that of diamond and a phase

transformation to diamond is likely. My calculations for the stability of potential

C60 based superconductors indicate that alkali and some alkaline earth elements form

stable fullerite intercalation compounds.

My calculations on the static polarizability and hyperpolarizability of the isolated

Ceo cluster have shown that the valence electrons are quite delocalized. Our RPA

calculations of the dynamical response indicate a strong screening of low—lying excita-

tions, which transfer their oscillator strength to a giant collective mode at he; s: 20 eV.

This mode has been subsequently observed experimentally. This high energy collec-

tive excitation which is very similar to a Mie plasmon results from a large electron

delocalization across the fullerene and a large charge density in the C60 cluster.



 

. “C

Ya

ant



Publications

“Stiffness of a Solid Composed of C60 Clusters”,

Yang Wang, David Tomanek, and George F. Bertsch,

Phys. Rev. BR 44, 6562 (1991).

“Collective Plasmon Excitations in C60 clusters”,

George F. Bertsch, Aurel Bulgac, David Tomanek, and Yang Wang,

Phys. Rev. Lett. 67, 2690 (1991).

“Hyperpolarizability of the C60 Fullerene Cluster”,

Yang Wang, George F. Bertsch, and David Tomanek,

Z. Phys. D (1993).

“Stability of C60 Fullerite Intercalation Compounds”,

Yang Wang, David Tomanek, George F. Bertsch, and Rodney S. Ruotf,

Phys. Rev. B (1993).

“Lanthanide and Actinide Based Fullerite Compounds:

Potential AzCso Superconductors?”

Rodney S. Ruoff, Yang Wang, and David Tomanek,

Chem. Phys. Lett. (1993).

“Fullereneynes: A New Form of Porous Fullerenes”,

Ray H. Baughman, Douglas S. Galvao, Changxing Cui,

Yang Wang, and David Tomanek, Chem. Phys. Lett. (1993).

“Collective Electronic Excitations and their Damping in Small Alkali Clusters”,

Yang Wang, Caio Lewenkopf, David Tomanek, George F. Bertsch,

and Susumu Saito, (submitted for publication).



 

 

to

UN

for

pu:

ins;

adx

fina

Scit



ACKNOWLEDGMENTS

With great respect and deep gratitude, I would like to express deepest thanks

to both of my advisers, Professors David Tomanek and George F. Bertsch. Without

their professional guidance and endless encouragement, it would have been impossible

for me to complete my graduate study. Prof. Tomanek’s scientific research ethics and

pursuit for physics have had a great influence on me. Prof. Bertsch’s enormous

physical insight and elegant way of doing physics have always been and will be an

inspiration to me. I thank both of them for their understanding, support and patient

advising during the pass three and half years. I would also like to acknowledge the

financial support by the Center for Fundamental Material Research and the National

Science Foundation.

I am very grateful to Prof. N. Birge, Prof. D. Stump, and especially Prof.

S. D. Mahanti for their service on my guidance committee and the encouragement I

have received. I would like to thank other members in our weekly discussions: Prof.

A. Bulgac, Dr. G. Overney, Dr. C. Lewenkopf, Mr. W. Zhong, Mr. N. Ju, and Mr.

J. Foxwell. I would like to express my special thanks to Prof. Kovacs for his help

I received in my pursuit of graduate study at Michigan State University, and Mrs.

S. Conroy, Mrs. S. Holland, and Mrs. J. King for their help.

Thanks are also due to my friends, B. Lian, Q. Yang, Z. Sun, J. Chen, N. Mousseau,

H. Seong, C. Hsu, F. Liu, W. Yang, A. Azhari, E. Ramakrishnan, Dr. L. Zhao, Dr.

Y. S. Li, Dr. Y. Cai, Dr. S. Saito, and many others for their help and friendship.

Finally, I heartily thank my parents for their unconditional love, constant moral

support, and for their stressing the importance of education.



 

Cc

LIST

LIST

1 Int

1.1

1.2



Contents

LIST OF TABLES

LIST OF FIGURES

1 Introduction

1.1 Alkali Metal Clusters ...........................

1.1.1 Cluster synthesis and experimental techniques .........

1.1.2 Structural properties .......................

1.1.3 Electronic shell structure .....................

1.1.4 Optical response .........................

1.2 Carbon Clusters ..............................

1.2.1 Synthesis of C60 and the C60 crystal ...............

1.2.2 Structural properties of C60 and the C60 crystal ........

1.2.3 Electronic properties of C60 and the C50 crystal ........

1.2.4 Optical response of C60 and the C60 crystal ..........

2 Computational Techniques

2. 1 Density Functional Theory (DFT) ....................

ii

vi

12

20

21

22

28

3O

38

39



 

.
6
)
.

4St

4.2

4.3

5 Elle:

5.1



2.1.1 Local Density Approximation (LDA) .............. 39

2.1.2 Norm conserving pseudopotentials ................ 41

2.2 Jellium model ............................... 44

2.3 Tight—binding Hamiltonian ........................ 47

2.4 Random Phase Approximation (RPA) .................. 49

3 Alkali Clusters J 56

3.1 Equilibrium geometry of small alkali clusters .............. 58

3.2 Collective electronic excitations (Mie plasmon) in small alkali clusters 62

3.3 Damping of the Mie plasmon in small alkali clusters .......... 69

3.4 Conclusions ................................ 71

4 Structural Properties of Cso and Solid C60 76

4.1 Structural and elastic properties of the C60 based solid ........ 76

4.2 Stability of donor and. acceptor intercalated C60 solid ......... 87

4.2.1 Born—Haber cycle ......................... 88

4.2.2 Structural and cohesive properties of fullerite intercalation com-

pounds ............................... 96

4.2.3 Discussion ............................. 104

4.3 Conclusions ................................ 113

5 Electronic Properties of the C60 Clusters 124

5.1 Linear and nonlinear static polarizability of C60 ............ 124

iii



5.2 Collective electronic excitations of C60 .................

5.3 Conclusions ................................

6 Summary and Conclusions

iv



List of Tables

3.1 Ground state properties of sodium and lithium dimers: Equilibrium

bond length dc, dissociation energy D,, and vibration frequency w... . 61

3.2 Collective electronic excitations in small sodium and lithium clusters.

Our results for the plasmon frequency hwpza,mon and its width F are

listed together with results based on spherical jellium [25], thELLYRpA,

and results of the classical Mie theory, thge. ............. 64

4.1 Total ionization energy [tot of C60 .................... 93

4.2 Total electron affinity Am of C60 .................... 93

4.3 Madelung constants a for the structures considered in this work. . . 94

5.] Calculated and observed optical susceptibilities of C60 and CeHe molecules. 130



List of Figures

1.1

1.2

1.3

1.4

Typical experimental setup for cluster spectroscopy: Cluster source

and time-of-flight spectrometer [From de Heer et al, Solid State Physics

40, 128 (1987)]. .............................

Equilibrium geometries of small sodium clusters [From Bonacic et al,

Phys. Rev. B 37, 4369 (1988) and Moullet et al, Phys. Rev. Lett.

65, 476 (1990)]. .............................

Mass abundance spectrum of NaN clusters. (a)Mass abundance spec-

trum of NaN clusters, N=4—75. The inset corresponds to N=75—100.

(b) The calculated second derivative A2(N) of the total energy E(N)

of jellium clusters, defined in Eq. (1.1), as a function of cluster size

[From Knight et al, Phys. Rev. Lett. 52, 2141 (1984)]. ........

Optical response of the Na; cluster using the depletion technique.

[From Wang et al, Chem. Phys. Lett. 166, 26 (1990)]. ........

vi



1.5 A classical picture of the Mie plasmon. (a) If no electrical field is

applied, the positive and negative charge background coincide with

each other. (b) Under an external electrical field with a particular

frequency, the negative charge background will move back and forth

with respect to the positive background. Since the collective motion

results in a nonvanishing total charge density only near the surface, it

is often called the surface plasmon of the cluster. ...........

1.6 Dependence of the collective electronic excitation energy on the cluster

size in NaN clusters. Energies derived from reflectivity change spectra

(solid circles) and energies calculated via sum rule from experimental

static polarizabilities (open circles) are compared with jellium calcula-

tions (crosses) [From Parks et al, Phys. Rev. Lett. 62, 2301 (1989)].

1.7 Damping mechanisms for collective electronic excitations. (3.) Static

fragmentation due to aspherical shape. (b) Landau damping. (c)

Electron—vibration coupling. ......................

1.8 Schematic diagram of the pulsed supersonic nozzle used to generate

carbon cluster beams [From Kroto et al, Nature 318, 162 (1985)].

1.9 Experimental mass spectrum of carbon clusters [From Kroto et al,

Nature 318, 162 (1985)]. .........................

1.10 Structure of the C60 “buckyball” cluster. ................

1.11 Mass production technique for fullerite [From Huffman, Physics Today,

44, 22 (1991)]. ..............................

vii

15

17

19

23

24

25



1.12

1.13

2.1

2.2

(a) Single—particle energy level spectrum of a C30 cluster, as obtained

using the tight—binding Hamiltonian described in Section 2.3. The

levels have been sorted by symmetry. (b) Expanded region of the

energy level spectrum near the Fermi level. Allowed dipole transitions

between states with gerade (g) and ungerade (u) parity are shown by

arrows [From G. F.Bertsch, A. Bulgac, D. Tomanek, and Y. Wang,

Phys. Rev. Lett. 67, 2690 (1991)]. ...................

Optical response of the C60 cluster [From H. Ajie et al, J. Phys. Chem.

94, 8630 (1990)]. .............................

The 33, 317 and 3d pseudo wave functions and the corresponding all—

electron wave functions of the sodium atom. Outside the core radius

re, the pseudo wave functions and the all-electron wave functions are

the same. Inside the core, the pseudo wave functions are nodeless and

smooth. At re, the spatial derivative of the all—electron and the pseudo

wave functions, as well as their first energy derivatives, agree with each

other. The eigenvalues associated with the pseudo wave function agree

with those of the all—electron wave function. The bottom panel shows

the pseudopotentials for the s, p and d states. Inside the core radius,

the pseudopotentials are finite, and at large radii, the pseudopotentials

approach —e2/r. .............................

Energy spectrum and self—consistent potential of the Nag cluster ob-

tained from the spherical jellium model. ................

viii

31



3.1

3.2

3.3

4.1

Franck—Condon broadening of the collective electronic excitations in

(a) Na2 and (b) Liz. The lowest levels are the LDA dissociation energies

D(d) of the dimers as a function of the bond length d. The higher levels

give the excitations energies, which are presented as D(d) + ERpA(d)

[From Y. Wang et al, (submitted for publication)]. ..........

Calculated spectral function of Na; (in arbitrary units) and its broad-

ening due to nuclear zero—point motion (dashed line), as compared to

the observed photoionization spectrum of Ref. [6] (solid line). The

width of the Gaussian envelop is 0.10 eV and the displayed theoretical

data are red—shifted by 0.5 eV with respect to the calculated results

[From Y. Wang et al, (submitted for publication)]. ..........

Calculated oscillator strength distribution in the excitation spectrum

of Nag [From Y. Wang et al, (submitted for publication)]. ......

Schematic drawing of the the elastic parameters describing the inter-

action between neighboring C60 clusters in fullerite. The weak Van

der Waals bond between these clusters can be mapped onto an anhar-

monic soft spring (spring constant CI). The compressibility of the stiff

C60 fullerene cluster itself can be described by a stiff anharmonic spring

(spring constant Cg) [From Y. Wang, D. Tomanek, and G. F. Bertsch,

Phys. Rev. BR 44, 6562 (1991)]. ...................

ix

60

66

68



4.2

4.3

4.4

4.5

(3.) Binding energy of hexagonal graphite (with respect to isolated lay-

ers, per carbon atom) as a function of the interlayer spacing d. The

solid line represents a modified Morse fit [Eqs. (4.1) and (4.2)] to ab

initio LDA results of Overney et al, J. Phys. C 4, 4233 (1992). (b)

Negative gradient of the energy given in (a), corresponding to the in-

terlayer force [From Y. Wang, D. Tomanek, and G. F. Bertsch, Phys.

Rev. BR 44, 6562 (1991)]. .......................

(a) Interaction energy between two C60 fullerene clusters as a func-

tion of the closest approach distance d. (b) Negative gradient of the

interaction energy in (a), corresponding to the pairwise force between

neighboring C60 clusters. (c) Binding energy of an isolated C60 fullerene

cluster as a function of the cluster radius R. ((1) Negative gradient of

the binding energy given in (c). Note the difference in scales between

(b) and (d) [From Y. Wang, D. Tomanek, and G. F. Bertsch, Phys.

Rev. BR 44, 6562 (1991)]. .......................

(a) Binding energy of fee-fullerite (per C60 cluster, with respect to

isolated carbon atoms) as a function of cell volume V. (b) Pressure

dependence of the equilibrium cell volume V of fullerite. (c) Pressure

dependence of the bulk modulus B of fullerite (solid line), as compared

to diamond (dashed line, from Yin et al, Phys. Rev. Lett. 50, 2006

(1983)) [From Y. Wang, D. Tomanek, and G. F. Bertsch, Phys. Rev.

BR 44, 6562 (1991)]. ..........................

Phonon dispersion relation u(k) of bulk fullerite with fee structure

[From Y. Wang, D. Tomanek, and G. F. Bertsch, Phys. Rev. BR 44,

6562 (1991)]. ...............................

81

83

84



4.6

4.7

4.8

4.9

4.10

4.11

Born—Haber cycle used to predict the formation enthalpy AH? of (a)

donor and (b) acceptor C60 fullerite intercalation compounds [From

Y. Wang, D. Tomanek, G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B

(1993)]. ..................................

Predicted equilibrium lattice constant a, bulk modulus B, and forma-

tion enthalpy AH? for C60 fullerite intercalation compounds ACso(fcc

structure). Results are presented for elements A from the 1A, 2A,

6A and 7A groups of the periodic table [From Y. Wang, D. Tomanek,

G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)]. ........

Predicted equilibrium lattice constant a, bulk modulus B, and forma-

tion enthalpy AH? for C60 fullerite intercalation compounds A3C60(fcc

structure). Results are presented for elements A from theilA, 2A,

6A and 7A groups of the periodic table [From Y. Wang, D. Tomanek,

G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)]. ........

Predicted equilibrium lattice constant a, bulk modulus B, and forma-

tion enthalpy AH}J for C60 fullerite intercalation compounds A6C60(bcc

structure). Results are presented for elements A from the 1A, 2A, 6A

and 7A groups of the periodic table [From Y. Wang, D. Tomanek,

G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)]. ........

Phonon band structure of (a) KCGO, (b) K3C60, and (c) Rbngo [From

Y. Wang, D. Tomanek, G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B

(1993)]. ..................................

Phonon density of states (solid line) and integrated density of states

(dashed line) of K3C50 [From Y. Wang, D. Tomanek, G. F. Bertsch,

and R. S. Ruoff, Phys. Rev. B (1993)]. ................

xi



5.1

5.2

5.3

5.4

The Graphs for (a) the second order, and (b) the fourth order pertur-

bation theory expressions in Eqs. (5.4) and (5.5). —t- represents a

particle state and -t— denotes a hole state. ..............

Free response (a) and RPA response (b) of C60 clusters to an external

electromagnetic field (solid line). The sharp levels have been broadened

by adding an imaginary part hr] = 0.2 eV to the energy. The dashed

line indicates the integrated oscillator strength. (c) Observed pho-

toabsorption spectrum of C60 in solution [From H. Ajie et al, J. Phys.

Chem. 94, 8630 (1990) and G. F. Bertsch, A. Bulgac, D. Tomanek,

and Y. Wang, Phys. Rev. Lett. 67, 2690 (1991)]. ...........

Dipole response of C60 clusters to an external electromagnetic field,

shown in an expanded energy region. (a) Free response, (b) RPA re-

sponse based on the charge term D9), and (c) RPA response based on

both the charge and the dipole terms D9) and D?) in Eq. (5.6). (d)

Interacting response of a thin jellium shell, describing the electron—

electron interactions in LDA. The response function is given by the

solid line, and the integrated oscillator strength is shown by the dashed

line [From G. F. Bertsch, A. Bulgac, D. Tomanek, and Y. Wang,

Phys. Rev. Lett. 67, 2690 (1991)]. ...................

Observed C30 photoion yield as a function of photon energy displaying

excitation of the giant plasmon resonance [From I. V. Hertel et al,

Phys. Rev. Lett. 68, 784 (1992)]. ....................

xii



Chapter 1

Introduction

A cluster is a stable aggregate of atoms or molecules, the size of which can range from

few atoms to a vaguely defined limit of thousands of atoms or molecules. Clusters seem

to be the bridge connecting the discrete atomic and molecular limit and the continuum

crystal limit. These systems have many unique and interesting properties, such as

unconventional atomic packing [1], electronic shell structure [2], collective electronic

excitations [3], magnetic properties vastly different from the bulk [4]. Clusters have

attracted many researchers from different disciplines, and a great effort has been

devoted to understand their physical properties [5, 6, 7, 8, 9, 10]. Cluster science is

a fascinating new field and one of the fastest growing fields in the past ten years.

For a long time, cluster research concentrated on alkali metal clusters exhibiting a

rich variety of phenomena, many of which have been explained by an electronic shell

model taken from nuclear physics [2, 6, 11]. A more timely and exciting example of

cluster research is the C60 molecule, which aroused a tremendous research activity

and many speculations about potential applications in the past two years. Five years

after it was first proposed in 1985 [1], it was crowned “molecule of the year” in 1991

by the Science magazine. C60 is the first existing example of a homonuclear molecule

that has the icosahedral symmetry [12]. These moleculars, packed into a crystal,



have established a third form of crystalline carbon, based on the C60 cluster, which

is called “fullerite” [13].

Atomic clusters can be composed of a single atomic species, as homonuclear clus-

ters, or a mixture of elements, composing a heteronuclear aggregate. Many different

types of clusters have been investigated. Among them, the structural and thermal

properties of noble gas clusters, such as argon clusters [14], have been studied. Clus-

ters composed of metallic elements, such as alkali and alkaline earth elements, have

attracted great attention, and many theoretical [10] and experimental [6] studies

have been devoted to understand their behavior. Clusters with nonmetallic elements,

such as silicon and carbon, have many interesting properties and potential applica-

tions [1, 15], in the semiconductor technology and in novel materials based on carbon

clusters.

As mentioned before, clusters exhibit properties of both molecules with a discrete

spectrum and the bulk with a continuum spectrum. These properties include the

electronic structure [10], response to an external electromagnetic field [3], magnetic [4]

and thermal properties [16]. In this work I will discuss the atomic packing and

electronic properties of clusters, as well as their response to external perturbations

(pressure, external field, temperature).

The stacking of atoms in a cluster is crucial for the stability of the cluster. Since

clusters have a large fraction of surface atoms, and the environments of the bulk

and surface atoms are quite different, one cannot simply consider them as a piece

of the crystalline structure. The structure of a cluster will determine the formation

process, the thermal properties of the cluster [16], the evaporation and dissociation

patterns [17]. It will also have an effect on the electronic structure [18].

The electronic structure plays a major role in the bonding between the atoms.



Hence it affects the cluster stability, the interaction of the cluster with other atoms

or the embedding matrix, its electromagnetic response, and other properties. Since

one is dealing with finite Fermi systems, quantum size effects, such as shell structure

of the electrons, can be seen. The character of electronic excitations in a cluster will

be reminiscent of both the discrete single—particle excitation spectrum in the atomic

limit and the collective plasmon behavior of the electron gas in the bulk limit.

In this Thesis, I will focus on describing the equilibrium atomic structure and opti-

cal response of small alkali metal clusters, namely Liz, Na2, and Nag, and a prominent

carbon cluster, namely the C60 molecule. The Thesis is organized as follows. In the

remaining part of this Chapter, I will present the basic concepts used in this field,

which will provide the background for further discussions. In Chapter 2, I present

the theoretical tools I used in this study. The equilibrium structure of metal clusters

will be studied by state-of-the-art ab initio LDA calculations. The optical response,

mainly due to the collective motion of the delocalized electrons, will be described

using the Random Phase Approximation (RPA). The corresponding results are pre-

sented in Chapter 3. In Chapter 4, I will present results for the structural properties

of fullerite, a novel bulk material based on the C60 cluster, and will also address the

stability of fullerite intercalation compounds. Finally, in Chapter 5, I will present

results on the static polarizability, hyperpolarizability, and the optical response of

C60, obtained using a tight—binding Hamiltonian.

1.1 Alkali Metal Clusters

In this Section, I will discuss some basic concepts related to alkali metal clusters

which will be useful for subsequent discussions in Chapter 3.

Alkali metal clusters are one of the best studied types of clusters so far, both



theoretically and experimentally [6]. Among the alkali metal clusters, the sodium

systems have been most thoroughly investigated [2]. Sodium is heavier than lithium

which may exhibit nuclear quantum effects [19]. The heavier potassium has many

stable isotopes, which makes the interpretation of mass abundance spectra difficult.

Knight and coworkers [2, 20] found that the shell structure in sodium clusters is more

pronounced than in potassium clusters, due to the larger Fermi energy (Fermi energy

in the free electron model is inversely proportional to the squared Wigner—Seitz free

electron radius r,). This fact implies unique features for the stability of Na clusters. In

Li clusters, the electronic shell structure is also not well pronounced for the following

reason. The large optical electronic mass in bulk lithium m“ = 1.56mc [21] indicates a

strong electron—phonon coupling, which would make a static model of the ion lattice

questionable for the lithium clusters. Therefore, sodium clusters are the simplest

object to study if one wants to understand the collectivity of electronic excitations

and, at a later stage, the coupling of electronic excitations to nuclear degrees of

freedom.

1.1.1 Cluster synthesis and experimental techniques

A major experimental achievement in cluster physics is that now one can generate

and investigate free clusters. This comes as a significant advantage when compared to

the previous experimental setup, where clusters were investigated in a supporting ma-

trix [22]. The latter experimental setup does not allow for a clear distinction of cluster

features from those of the matrix [23]. More important, the cluster—matrix interac-

tion can modify cluster properties significantly. With the development of molecular

beam techniques, one is able to produce and detect free clusters over a large range of

size and to analyze their basic properties [2, 24]. Alkali clusters can be produced in
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Ifig-Ire 1.1: Typical experimental setup for cluster spectroscopy: Cluster source and

t’Lne~Oi'-flight spectrometer [From de Heer et al, Solid State Physics 40, 128 (1987)].



sufficiently large numbers to obtain statistically relevant information.

In Figure 1.1, I show a typical experimental setup for generating and analyzing

cluster beams. At the far left is a supersonic nozzle source, in which the bulk metal is

evaporated and the metal vapor mixes and condenses in a cold inert carrier gas. At the

exit of the source, the mixture is ejected into the vacuum via a pinhole nozzle. The

metal vapor undergoes an adiabatically rapid cooling, and condenses into clusters.

Following the source, the cluster beam goes through a series of collimating slits and

mechanic choppers. A laser light is used to ionize the cluster. Cluster ions are

subsequently accelerated to generate a time-of-flight mass spectrum.

1 . 1 .2 Structural properties

The equilibrium geometry is an important property of a cluster. Because of the sig-

nificant fraction of low coordinated surface atoms, the cluster is not just a piece of the

bulk lattice. The ground state geometry is crucial for the stability of the cluster and

will also determine the other properties of the cluster, such as the polarizability [18],

frequency of the collective electronic response [25], and the fission patterns [17], just

to name a few.

Since present experimental tools cannot tell us directly where the nuclei are located

in the free clusters, we have no direct information on regarding equilibrium structure

of a cluster. Thus, the knowledge of the equilibrium structure of a cluster relies

on theoretical calculations. Many investigations have addressed this question mostly

using ab initio methods. Considerable progress has been made despite the substantial

difficulties associated with this approach [18, 26, 27, 28].

Among the ab initio techniques, one can list the HF—CI calculations (Hartree—

Fock plus configuration interaction) [27], pseudopotential DFT (Density Functional



  

  
Figure 1.2: Equilibrium geometries of small sodium clusters [From Bonacic et al,

Phys. Rev. B 37, 4369 (1988) and Moullet et al, Phys. Rev. Lett. 65, 476 (1990)].



Theory) calculations based on the LDA (Local Density Approximation) [29], LSD

(Local Spin Density) calculations [18], and calculations based on the Car—Parrinello

method (unified density—functional theory and molecular dynamics) [28]. It has been

found that there are generally many different geometries with a very similar total

energy. Therefore each cluster has possibly several coexisting isomers. In general,

most of the calculations agree with each other as far as the equilibrium geometry is

concerned. Minor disagreements are found typically in some details such as the exact

bond length.

In Figure 1.2, geometries of different small sodium clusters are shown. From Nag

to Nas, the clusters have a planar structure. Nat has a rhombic equilibrium geometry.

Nas has an almost trapezoidal shape. N36 is a relatively flat pentagonal pyramid,

as stable as a planar structure with the D3}, symmetry. Na7 exhibits the first 3—D

structure in the sequence, a pentagonal bipyramid. For Nas, the energetical lowest

geometry is the T4 geometry with four caps attached to the four faces of an inner

tetrahedron.

1.1.3 Electronic shell structure

The mass abundance spectrum of sodium clusters, shown in Figure 1.3(a), revealed

interesting new physics. Clusters with a certain number of atoms (N=2, 8, 20, 40,

58, 92, )..., are much more abundant than their neighbours, indicating a remarkable

stability of these clusters. The above mentioned numbers are called “magic numbers”,

in analogy to the magic numbers of nucleus associated with very stable nuclei. This

observation shows that one is dealing with finite spherical Fermi systems, similar to

nuclei. The magic numbers are determined mainly by the number of valence electrons

in the clusters [11], corresponding to the closure of an electronic shell. This is con-
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firmed in the abundance spectrum of the positively charged potassium clusters [30].

In all alkali clusters, the magic numbers N=2, 8, 20, 40, 58, 92, ..., are common. For

other elements, the magic numbers can be substantially different.

The shell structure underlying the abundancies in the mass spectra, results from

quantum size effect in these systems. To understand the shell structure of clusters,

detailed quantum calculations are necessary. Calculations of the electronic structure

of a cluster are a challenging subject. The quantum chemistry approach typically

starts with the Hartree—Fock (HF) method, which is based on the independent elec-

tron approximations and neglects the correlation between spin—up and spin-down

electrons. A more sophisticated approach is based on configuration interaction (CI)

calculations, which is exact and includes all correlation effects if the full CI expansion

is included. HF can be done routinely for small clusters, but CI calculations can only

be performed only for few fixed geometries due to the large number of configurations

necessary for a converged calculation. HF—CI calculations are feasible only for small

clusters (less than 10 atoms with the nowadays available computational resources).

On the other hand, physicists developed the Local Density Approximation (LDA)

which is based on the Density Functional Theory (DFT) (the details will be discussed

in Chapter 2). The Local Density Approximation to the DFT involves a local potential

which mimics correlation effects in a mean-field framework, i. e., it is superior to HF.

Compared to CI calculations, LDA calculations are easier but still give accurate

ground state geometries. LDA is a powerful tool to calculate the total energy of a

quantum system with a given atomic geometry, but is computationally intensive.

The simplest theoretical approach is the so—called jellium model, which has been

used in solid state physics and nuclear physics for a long time. In the jellium model,

the ions are smeared out to form a jellium of positive charges. The electrons move in
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a potential of spherical symmetry generated by the jellium background. The jellium

model is especially useful for large clusters, where the symmetry lowering due to the

ions makes full ab initio calculations computationally prohibitively demanding. This

simple model provides a good semi—quantitative understanding of different aspects of

the physics governing the stability and electronic excitation spectra [11].

The requirements for a meaningful applicability of the jellium model are that the

electrons be delocalized and the positions of the ions do not play an important role.

It is generally agreed that this is the case in most alkali metal clusters [6].

Jellium calculations assume that electrons are moving in a spherical potential well.

All the energy levels are obtained by solving the Kohn—Sham equations (see Chapter

2) self—consistently. The electrons fill the levels in ascending order with the constraint

of satisfying the Pauli principle. Clusters with fully occupied shells of electrons will

have a lower total energy than neighbouring clusters, and are therefore more stable.

A quantity A2 has been defined to measure the relative stability of the clusters,

A2=E(N+1)+E(N—1)—2E(N) (1.1)

where E(N) is the total energy of electrons in spherical jellium with N electrons.

A2(N) is the second derivative of the total energy E(N), and represents the relative

binding energy change for clusters with N atoms compared to clusters with N +1 and

N -— 1 atoms. A peak in A2(N) indicate that the cluster with N atoms is relatively

stable than its neighbors. In Figure 1.3(b), A2 is shown for sodium clusters as a

function of the cluster size. As we can see, the trends clearly match the observed

mass abundance spectrum of sodium clusters, shown in Figure 1.3(a).
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1.1.4 Optical response

The response of a system to an external time dependent electromagnetic field is called

optical response. There are essentially two experimental techniques to measure the

optical response of free clusters. Namely the depletion technique and the resonant

two—photon ionization technique. In addition to the setup for the generation and

detection of clusters, shown in Figure 1.1, the depletion technique uses a pulsed laser

which propagates collinearly against the molecular beam. At resonance, the cluster

beam is depleted due to the dissociation of the excited clusters which have absorbed

a photon from the pulsed laser beam. The resonant two—photon ionization uses the

first laser (pump) to pump the cluster and the second laser (probe) to further ionize

it, before the cluster beam enters the time-of-flight mass spectrometer (in a typical

experimental setup, only one laser is used to pump and probe the clusters at the

same energy). The mass spectrum provides a direct measure of the cross section as a

function of the laser beam energy.

In Figure 1.4, I show the observed optical response of the Nag cluster using the

depletion technique [31]. In this spectrum we can see a single prominent peak at

490 nm (2.53 eV). This peak is due to a collective excitation of the valence electrons.

Its oscillator strength exhausts almost the entire Thomas—Reiche—Kuhn (TRK) sum

rule (f—sum rule), which indicates that essentially all the valence electrons participate

in the resonance. As I will discuss below, the physics of this transition is very similar

to the dielectric response of a classical metal sphere.

In 1908, Mie [32] studied the optical response of small systems. In particular,

he studied the optical response of a metal sphere to an external electric field with a

wavelength much larger than the sphere radius. Under the influence of an external

field, the negative charges move back and forth with respect to the positive charge
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background, as illustrated in Figure 1.5. Mie established that the collective motion

of the electrons, the so—called “Mie plasmon”, solely depends on the density of the

electrons n, as

2 41rne2
w . = ——
M3:

(1.2)
3mc

Here, me is the mass of the electrons and e the electron charge. The factor 3 in the

denominator occurs due to the spherical geometry. Since the rigid displacement of the

electronic charge on a constant spherical ionic background results in a nonvanishing

charge density only close to the surface, this collective motion is sometimes called the

surface plasmon of the cluster.

In applying this classical model to clusters, two questions arise immediately. The

first one is how large should the cluster be to support a collective electronic motion.

As I will discuss later, even very small clusters can exhibit collective excitations. The

second one arises from the fact that in this simple classical description the energy of

the plasmon is independent of the cluster size and is totally determined by the free

electron density of the cluster. Will the optical response of a cluster be peaked at the

same energy, independent of cluster size? The answer is no. The energy of the col-

lective excitation has a size dependence. In Figure 1.6, I show the experimental data

showing the dependence of the excitation energy on the size of sodium clusters [33].

The frequency shifts from 2.4 eV in small clusters of about 10 atoms to the value

3.4 eV near the bulk limit. The energy of the collective mode obtained from the Mie

formula overestimates the plasmon energy in small clusters. The discrepancy cannot

be explained without a detailed calculation. Its origin is speculated to be partly due

to the inadequacy of the spherical jellium model, partly due to the quantum effects,

such as the spill-out of electrons which is neglected in the Mie theory, and finally

the electronic structure of the cluster which can be significantly different from jellium



 

Figure 1.5: A classical picture of the Mie plasmon. (a) If no electrical field is applied,

the positive and negative charge background coincide with each other. (b) Under an

external electrical field with a particular frequency, the negative charge background

will move back and forth with respect to the positive background. Since the collective

motion results in a nonvanishing total charge density only near the surface, it is often

called the surface plasmon of the cluster.
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spheres.

The first improvement over the classical Mie description are RPA calculations

for spherical jellium [34, 35, 36, 37]. Assuming that the position of the ions can be

neglected, the electrons are assumed to move in a spherical potential well. Particle—

hole interactions in the excited states are considered in RPA. LDA—RPA results for

spherical jellium show a weak size dependence of the excitation energy [36].

Within the ab initio approach, CI calculations of electronic excitations have been

carried out for small sodium clusters [38, 39]. Due to the large number of electrons,

the calculations have been done with empirical core potentials. Since the computa-

tional load is large, the CI calculations have been performed only for several selected

geometries, and the expansion space has been limited to low energy states. Therefore,

the results can only give semiquantitive answers [38].

To overcome these difficulties and to get a quantitative understanding of the ex-

perimental results, we adopted the ab initio LDA—RPA approach. We describe the

ground state and the single particle spectrum using LDA, and calculate the electronic

excitations using RPA. As I have mentioned in Section 1.1.2, LDA has the advantage

of a local exchange—correlation potential, hence it includes some correlation effects.

It has been shown that LDA gives reliable results for the structure of sodium clus-

ters [18]. RPA is a linear response theory, and is the small amplitude limit of the

time—dependent LDA. It considers the one—particle one—hole interactions and is most

suitable for a large number of active electrons. Our ab initio results for electronic

excitations in alkali clusters will be presented in Chapter 3.

According to the simple Mie classical picture discussed above, the optical response

spectrum of a cluster exhibits only one single sharp peak. But due to different damp-

ing mechanisms, a broad peak is observed in the experiment. For example, in the
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case of Nag, the observed width of the plasmon peak is about 0.25 eV, as shown in

Figure 1.4.

There are three different known mechanisms which give rise to a fragmentation

of the plasmon, namely: fragmentation due to a static shape deformation, Landau

damping, and the coupling of electronic excitations to the vibration modes.

The static fragmentation due to shape deformations, illustrated in Figure 1.7(a),

occurs simply due to the fact that the cluster is asymmetric. For a cluster with a

magic number of electrons, the shape is spherical in the jellium model. Non—magic

clusters are likely to be prolate or even oblate ellipsoids in the jellium approximation

in analogy to nuclei. According to the Mie theory, for a non—spherical geometry, a

single resonance frequency will be split into two or three distinct peaks [25]. The

oscillator strengths will also be divided into the corresponding parts. If the splitting

is small and the levels are indistinguishable, the absorption will be observed as a

single broad peak.

If there is a large density of electronic states near the highest occupied molec-

ular orbital (HOMO) (close to the Fermi energy), damping can also be caused by

particle—hole excitations which can build up a collective state. This will smear out

the spectrum, as shown in Figure 1.7(b). This mechanism is called Landau damp-

ing [40]. Landau damping is not important for the small clusters since the energy

levels are well separated in energy and particle-hole excitations unlikely. For large

clusters, however, Landau damping is the major plasmon fragmentation mechanism,

since the energy levels are very dense.

There is also damping due to the coupling of electronic excitations to vibration

modes. This mechanism is very similar to the Frank—Condon effect in molecular

physics. This effect is illustrated in Figure 1.7(c), where I plot the electronic levels
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as a function of the generalized coordinate. The lowest curve represents the ground

state total energy EM, which can be obtained by LDA. The other curves are given

by Eta: + (RPA, where (RPA is the electronic excitation energy. In the Frank—Condon

model, the configuration coordinate remains unchanged during the transition, since

the electronic excitation is much faster than the motion of the ions; we can speak of an

adiabatic process. The probability density distribution of the nuclear coordinates due

to the ionic zero point motion will spread the energies of the electronic excitations.

This latter mechanism can also give rise to thermal line broadening of the plasmon.

As we discussed above, the vibrational zero point motion couples to the electronic

excitations and hence broadens a given transition even at T = 0 K. At higher temper-

atures, the thermal energy can activate higher vibration modes, which increase the

shape fluctuations of the cluster. This is the so—called thermal line broadening. The

line width resulting from this mechanism has been estimated for the jellium model,

and the temperature dependence of the broadening has been found to be propor-

tional to \/T [25], where T is the temperature of the cluster. At zero temperature,

the linewidth will be due to zero—point motion only.

In Chapter 2, I will address these mechanisms again for the interpretation of

the results for the equilibrium structure, collective electronic excitations, and their

damping in N32 and Nag,

1.2 Carbon Clusters

In the last years, carbon clusters have been investigated extensively both experimen—

tally and theoretically, by chemists and physicists alike [8]. The importance of carbon

clusters in chemistry is evident, since the whole organic chemistry is based on carbon

compounds. A good understanding of carbon composites is a prerequisite for gain-
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ing insight into chemical reactions involving organic compounds. In physics, one of

the original motivation for an investigation of carbon clusters is the still unanswered

question regarding the absorption spectrum of the interstellar dust. An unexplained

absorption line is believed to be caused by carbon and its clusters [50]. The study

of carbon clusters and their interaction with other elements in the laboratory could

provide us with a unique tool to gain further understanding of the universe.

One family of carbon clusters is represented by the fullerenes [41]. Fullerenes

designate a group of carbon clusters with a hollow cage structure and only pentagons

and hexagons on the surface. From Euler’s rule for closed polyhedra (C — E + F=2,

where C, E, and F are the number of corners, edges, and faces, respectively), one

can deduce that the number of pentagons in any fullerene is 12. The best known

member of this family, which has been identified so far, is the C60 cluster [1], the

so—called buckminsterfullerene. This name was inspired by the well known architect

Buckminster Fuller, who designed geodesic dome structures.

The study of C60 clusters lead also to the discovery of a novel crystalline material

fullerite [13], a crystal composed of C60 clusters. Fullerite is the third pure crystalline

form of carbon, in addition to diamond and graphite.

One of the aims of this work is to study in detail the structural and electronic

properties of the C60 cluster and the C60 solid. In the following sections I will re-

view the basic properties of the C60 molecule and of fullerite; these concepts will be

necessary for the discussion that follows in Chapters 4 and 5.

1.2.1 Synthesis of C60 and the C60 crystal

C60 was first synthesized using laser vaporization of graphite [l]. The experimental

setup is shown in Figure 1.8. The method can be summarized as follows: graphite is
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vaporized by a laser, the generated carbon plasma is carried to a nozzle by helium gas

which provides the environment to cool the gas. The cooled carbon gas aggregates

into clusters, which are ejected from the nozzle in a supersonic molecular beam.

The molecular beam is analyzed using the time—of—flight mass spectrometer. The

outstanding characteristic of the mass abundance spectrum, shown in Figure 1.9, was

that a single cluster with 60 atoms was observed to be far more abundant than any

other cluster size. The high stability of this cluster with 60 atoms has been postulated

to result from a closed cage structure, shown in Figure 1.10. In the mass abundance

spectrum, the C70 cluster turned out to be very abundant as well, hence probably

more stable than the neighboring clusters.

The above graphite vaporization method produces only free C60 clusters which are

hard to analyze in any detail. In 1990, however, a new method [13] was developed,

which is able not only to produce C60 clusters in bulk quantities but can also produce

the crystalline fullerite solid.

The experimental setup is depicted in Figure 1.11. Graphite rods are butted

together and a high current passes through. Carbon vaporizes in the vicinity of the

contact and in the helium gas the carbon plasma condenses into soot. The soot

contains a large fraction of C60 clusters and also a sizable amount of C70 clusters.

Since C60 and C70 can be dissolved in benzene, they can be separated from the soot.

C60 can be separated from C70 by high—pressure liquid chromatography. Drying the

solvent, one obtains the C60 fullerite crystal.

1.2.2 Structural properties of C60 and the C60 crystal

Since a single crystal consisting of pure C60 clusters can be produced, crystalgraphic

techniques can be used to determine not only the lattice structure but also the struc-
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Figure 1.8: Schematic diagram of the pulsed supersonic nozzle used to generate carbon

cluster beams [Horn Kroto et al, Nature 318, 162 (1985)].
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Figure 1.9: Experimental mass spectrum of carbon clusters. [From Kroto et al, Nature

318, 162 (1985)]
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Figure 1.10: Structure of the C30 “buckyball” cluster.
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Figure 1.11: Mass production technique for fullerite. [From Huffman, Physics Today,

44, 22 (1991)]
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ture of the cluster itself. Based on X-ray diffraction data [13], fullerite has been

shown to be a close-packed molecular solid with a face-centered cubic structure and

with a nearest neighbor distance D = 10.04 A. Raman and infrared (IR) spectroscopy

data [42, 43] confirm that the “soccer ball” structure of C60 is preserved in the solid.

The C60 cluster has an uncommon hollow cage structure, resembling a soccer

ball, composed of 12 pentagons and 20 hexagons. It is a truncated icosahedron and

hence has Ih symmetry. Nuclear—magnetic—resonance (NMR) experiments [44] show

a single peak in the absorption spectrum at room temperature, which indicates that

all the carbon atoms in the cluster are equivalent and that the clusters rotate in the

lattice. C60 is a low strain structure; it is nearly spherical, and all pentagons are

separated by hexagons. Because of this geometry, carbon atoms have neither pure

sp2 nor sp3 bonding, which are typical of graphite and diamond, respectively. In the

hexagonal bonds the p; electrons, which are locally perpendicular to the surface, form

a resonant 7r bond, while in the pentagons, an anti—resonant 7r bond is formed. The

result is that the bond length in the hexagons is shorter than that in the pentagons.

The chemical bonds in the pentagons are called “single” bonds and those remaining in

the hexagons “double” bonds. Extended-X-Ray-Absorption-Fine-Structure (EXAFS)

data [42] indicate that the single bond length is 1.45 A and the double bond length is

1.40 A. The average carbon-carbon nearest-neighbour distance in C60 Clo—c = 1.42 A,

the same as in graphite. This bond length corresponds to a radius R = 3.55 A of the

C60 fullerene cluster.

Because of the large lattice constant of the fullerite crystal, the closest distance

between the two surfaces of adjacent clusters is d = 2.9 A at zero pressure, somewhat

smaller than the interlayer spacing in graphite, d = 3.35 A. Due to this large equilib-

rium separation between C60 clusters, their mutual interaction is mainly via Van der
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Waals forces, which are weak. However, the C60 cluster itself is a rigid object, due to

the covalent bonding between the atoms. Pressure dependent X-ray diffraction data,

obtained in a diamond—anvil cell, indicate a large change of the bulk modulus of ful-

lerite as a function of pressure [45]. Speculations that the stiffness of fullerite might

exceed that of diamond, the hardest material known, will be addressed in Chapter 4.

Perhaps the most exciting property of C60 fullerite is superconductivity which

occurs when the crystal is doped. Following the discovery of superconductivity in

K3C60 with a critical temperature Tc = 18 K [46], new compounds have been synthe-

sized using a large variety of intercalants [47], yielding critical temperatures as high

as 33 K in C82RbC60 [48]. While Tc values of doped fullerite are still below those

found in high-Tc cuprate perovskite superconductors, intercalated fullerite shows su-

perior material properties and hence bears a higher potential for applicability. The

intercalation process and the rigid—band behavior of intercalated fullerite resembles

in many ways the extensively studied graphite intercalation compounds. The crucial

property of fullerite intercalation compounds Ame is their stability against decom-

position into the components in the standard state, i.e. C60(solid) and A(solid). The

formation enthalpy is of interest not only for the donor compounds mentioned above,

but also for potential acceptor compounds. The stability of intercalated fullerite will

be addressed in Section 4.2.

1.2.3 Electronic properties of C60 and the C60 crystal

In Figure 1.12, I show the energy spectrum of the C60 cluster. A large energy gap

of 2.2 eV contributes to the extraordinary stability of the C60 cluster. The highest

occupied molecular orbital (HOMO) is five fold degenerate and the lowest unoccupied

molecular orbital (LUMO) is three fold degenerate. The levels near the Fermi level are
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using the tight—binding Hamiltonian described in Section 2.3. The levels have been
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(u) parity are shown by arrows [From G. F.Bertsch, A. Bulgac, D. Tomanek, and

Y. Wang, Phys. Rev. Lett. 67, 2690 (1991)].
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all formed by the 1r system of electrons. The electronic states of C60 have a definite

parity, and optical excitations follow dipole selection rules. As a consequence, the

HOMO to LUMO dipole transition is parity forbidden.

An interesting feature of the energy level spectrum is that the levels can be grouped

into rotational bands characterized by the angular momentum L. Due to the 1;,

symmetry of the cluster, the 2L + 1 fold degeneracy of energy levels in the rotational

band with angular momentum L is broken. The representations of the I], group give

as possible degeneracies 1(a), 3(t), 4(g), and 5(h).

A recent photoemission experiment [49] shows that the spectrum of the C60 solid

contains remarkably sharp lines, indicating a small band dispersion. This small band

dispersion results from the large separation between the clusters. The energy bands

are derived from the C60 orbitals. Their isolated molecular character is most pro-

nounced for the deeply bound states. Solid C60 is a semiconductor with an indirect

energy gap of 1.9 eV. The cubic symmetry of the crystal field splits the molecular

orbitals of isolated C60, For example, the hu HOMO level is split into a three—fold

and a doubly degenerate band.

Because of the three dimensional resonant 7r system of the C60 cluster, which is

very similar to that of conjugated polymers, a nonlinear behavior of the electromag-

netic response is expected. This topic is the subject of Section 5.1.

1.2.4 Optical response of C50 and the C60 crystal

The interest in the optical response of C50 originates in certain unexplained features

of the absorption and emission spectra of interstellar dust [50]. The spectrum can

be used as a unique tool to identify the components of the interstellar matter, which

have not been accounted for so far; this will greatly improve our knowledge of the
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outer space.

After the hollow cage structures for C60 was proposed, many theoretical studies

predicted the energy spectrum and optical response of C60, The HOMO to LUMO

dipole transition is forbidden by symmetry and the lowest dipole allowed transition

is a HOMO to LUMO+1 excitation. This has been first suggested in a semiempir-

ical CI calculation [51], which has shown that the first allowed transition occurs at

3.6 eV, with an oscillator strength of 0.08. This motivated the experimental work of

Heath et al [52]. They found the lowest transition to occur at 3.22 eV with a much

smaller oscillator strength 0.004, more than one order of magnitude smaller than the

theoretical results. This discrepancy is one of the subjects of our study presented in

Chapter 5.

C60 is a resonant 7r bonding system, in analogy to graphite. Each atom has three

neighbouring atoms. In Figure 1.13, we show the low—frequency optical response of

C60 in solution [53]. Several broad peaks have been observed in the energy region

between 3—6 eV. In this energy region, the excitations involve mostly 7r electrons. I

will discuss the optical spectrum in Section 5.2. There, I not only find a satisfactory

explanation of the experimental results in the low energy region, but also predict

an unusual high energy collective mode, due to the collective excitation of the va-

lence electrons. This massively high—energy collective electronic excitation in a small

covalently bonded cluster comes as a surprise.
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Chapter 2

Computational Techniques

In the past twenty years, the rapid development of computational facilities has pro-

vided us with the ability to predict the equilibrium structure and electronic proper-

ties of materials. Eventually it will be possible to design novel materials with the

desired properties. This progress is made possible not only by the development of

computer technology, but especially by new computational methods. Many compu-

tational techniques, such as Hartree—Fock configuration interaction (HF—CI), Local

Density Approximation (LDA) [1], the Car-Parrinello method [2], the embedded—

atom method [3], and the quantum Monte Carlo technique [4] have been developed

and have the power to accurately predict structural, electronic, and other properties

of clusters.

Ab initio HF—CI calculations with Gaussian orbitals (such as implemented in the

GAUSSIAN code) have been used extensively, and have become a basic research tool

in chemistry. Due to the large amount of computer resources required by ab initio cal-

culations, many semi-empirical methods appropriate for different purposes have been

developed in the meantime, such as CNDO (complete neglect of differential overlap),

INDO (intermediate neglect of differential overlap), NDDO (neglect of diatomic dif-

ferential overlap) and MNDO (minimum neglect of differential overlap). Today, these

38



39

names have become common jargon in the chemistry literature.

Physicists also developed many computational methods to obtain a clear physical

picture of different phenomena. In this Chapter I will review the ab initio and other

computational methods used in our calculations.

2.1 Density Functional Theory (DFT)

In 1964, Hohenberg and Kohn [5] showed that the total energy of a system in a

nondegenerate ground state is a unique functional of the total charge density p(r).

This theorem forms the basis of the Density Functional Theory (DFT).

Moreover, from the point view of the variational principle, the correct charge

density has been shown to minimize the total energy of the system in the ground

state, i. e.,

Elpl = Tlp1+ / d? meaU‘”) + EH19] + Exclpl = min- (2-1)

Here, T[p] stands for the kinetic energy functional, V6341") stays for the external field

(e. g., the Coulomb field of the ion cores). E'H[p] gives the Hartree energy, which is

the electrostatic energy of the electrons, and Exc[p] is the exchange and correlation

energy functional.

Since especially the general form of Ezc[p] is unknown, Kohn and Sham proposed

the Local Density Approximation (LDA) to DFT as a workable scheme to determine

p and the total energy [1].

2.1.1 Local Density Approximation (LDA)

Starting from the variational principle of the DFT, given in Equation (2.1), Kohn

and Sham [1] developed a set of self—consistent equations which use the concept of
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the quasiparticles in the spirit of mean field theory:

{—é- v2 +v...ipi + anpl + man. = ..«i , (2.2)

where the total charge density is given by

m = f Ida-(Fll’. (2.3)

In the first Kohn—Sham Equation (2.2),

(r__l_)d

W1?)/_Ir— rlldr (2.4)

is the Hartree potential, and

6Exc[Pl

V...(r‘) = 6pm

(2.5)

is the exchange-correlation “potential”. The Kohn—Sham equations are typically

solved iteratively, until self—consistency is achieved. The total energy of the system

is given by

Etot—— Z: 65— ép—|:Pf(;|)drdrl + Exc[p]- / ch(pp()(r"')dr. (2.6)

In the Local Density Approximation (LDA), the nonlocal functional Exc[p] is re—

placed by a local function Em(p), given by

E..ipi as / exc(P(7"))P("')d7"- (2.7)

The form of Exc(p) is assumed to be universal, given by the homogeneous electron

gas [6]. The local exchange—correlation potential is then given by

léc(p(i‘1)=;;(exc(p(fi)p(i’)) - (2-8)
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Several parametrized forms of the exchange—correlation energy have been pro-

posed [6]. A simple expression for the local exchange has been given by Slater [7]

and the correlation energy, as parametrized by Ceperley and Alder [4, 8] based on a

quantum Monte Carlo calculation, reads in atomic units

 

0.916

Earchange = '" 1‘ (2'9)

and

E 1 _ —0.2846/(1 +1.0529r;/2 + 0.3334r,) for r. > 1 (210)

°°"°’“"°" ‘ 0.0622 in(r,) — 0.096 + (0.004 ln(r,) — 0.0232)r, for r, < 1 . '

Here, 1', is the Wigner—Seitz radius given by

3-1‘, = p'l. (2.11)

2.1.2 Norm conserving pseudopotentials

A sodium atom has eleven electrons, ten of them in the core. A full calculation

of Nag, therefore, has to consider 22 electrons, and a calculation of Nag will deal

with 88 electrons. This represents a very large configurational space. Moreover, the

determination of multi—center integrals between the valence wave functions is difficult

due to the many nodes in the core region, imposed by the orthogonality between the

valence and the core wave functions.

It is well known that the localized core electrons do not contribute to bonding

between the atoms in a cluster. Cohesion is mainly due to the valence electrons in the

region of large valence wave function overlap, which is smooth outside the core region.

It would appear as desirable to discuss cohesion in atomic clusters by smooth pseudo

wave functions, the eigenstates of a conveniently defined atomic pseudopotential .
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The optimum pseudopotential yields wave functions which resemble the valence wave

functions in the interesting region outside the core, and which are smooth and nodeless

inside the core. A further requirement on the pseudo wave function is that it has

the the same eigenvalue as the all—electron wave function. A pseudopotential is

typically generated to describe best a specific electronic configuration of an atom.

Transferability of a pseudopotential, i.e., its ability to describe different electronic

configurations with adequate accuracy, is crucial when addressing inhomogeneous

systems such as atomic clusters.

In this work, I use the so—called Hamann—Schliiter—Chiang (HSC) norm—conserving

ab initio pseudopotential [9]. It satisfies the following four criteria:

(1) Eigenvalues associated with the all—electron and pseudo wave functions agree

for a chosen “prototype” electronic configuration.

(2) All—electron and pseudo wave functions agree beyond a chosen core radius re.

(3) The integrated total charge between r = 0 and a given radius r for the all—

electron and the pseudo wave functions agree for r > 1°C for each valence state. This

property is called norm conservation, and will guarantee that the electrostatic poten-

tial produced outside rc is identical for the true and the pseudo charge distributions.

(4) The logarithmic spatial derivatives of the all—electron and the pseudo wave

function and their first energy derivatives agree for r > rc. This will make the

scattering properties of the true ion cores to be reproduced by the pseudopotential

with minimum error. Additional shifts of the eigenstates with respect to the atomic

situation occur due to orbital hybridization mainly outside the core region, which is

described correctly by the pseudopotential .

In this formalism the interaction between the valence electrons and the ion cores
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Figure 2.1: The 3s, 3p and 3d pseudo wave functions and the corresponding all-

electron wave functions of the sodium atom. Outside the core radius re, the pseudo

wave functions and the all—electron wave functions are the same. Inside the core, the

pseudo wave functions are nodeless and smooth. At re, the spatial derivative of the

all—electron and the pseudo wave functions, as well as their first energy derivatives,

agree with each other. The eigenvalues associated with the pseudo wave function

agree with those of the all—electron wave function. The bottom panel shows the

pseudopotentials for the s, p and of states. Inside the core radius, the pseudopotentials

are finite, and at large radii, the pseudopotentials approach -—e2/r.
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is represented by a pseudopotential. The pseudopotentials can also be angular mo-

mentum dependent, and this type of pseudopotentials are called “nonlocal pseudopo-

tentials”. The residual interaction between the electrons is described by the Hartree

term plus a local density-dependent interaction which accounts for exchange and

correlation effects. The latter are described using the parameterization of Ref. [8],

which is based on electron-gas correlation energies calculated in Ref. [4]. The pseudo

wave functions in a cluster are obtained using these potentials in the Kohn—Sham

Equations (2.2). Then, the total energy of the atomic cluster is given by Eq. (2.6).

Figure 2.1 displays the radial part of the all-electron wave functions (from an all-

electron LDA calculation) and the pseudo wave functions of the sodium atom, along

with the nonlocal pseudopotentials. For 1' larger than the core radius rc, both wave

function are identical. For 1' smaller than re, the pseudo wave function is nodeless

and smooth. The bottom panel of Figure 2.1 displays the pseudopotential. Inside

the core radius re, the pseudopotential is finite and always less attractive than the

full LDA potential. Far away from the core, the ionic pseudopotential takes on the

—ez/r form.

2.2 Jellium model

As I mentioned in Chapter 1, the simplest theoretical approach to describe the elec-

tronic structure of a metallic cluster is the jellium model, which has been used in

solid state physics and nuclear physics for a long time. The spherical jellium back-

ground model addresses the behavior of a free electron gas in a finite system. The

basic assumption is that the ionic positions do not play an important role. In the

jellium model, the positive ions are smeared out as a homogeneous jelly across a finite

volume, and the electrons adjust to the confining potential [10].
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Figure 2.2: Energy spectrum and self—consistent potential of the Nas clusterobtained

from the spherical jellium model.
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The experimentally observed mass abundancies associated with the shell structure

of sodium clusters by Knight et al. [11] can be explained by the jellium model [10].

The jellium model is especially suitable for large clusters, for which the computations

are beyond the capacity of quantum chemistry methods. In this case, the jellium

model proved to be very powerful and has provided us with a good understanding of

quantum finite size effects [10].

Conventionally, we take the density of the jellium background as the density p

of the valence electrons in the corresponding bulk material. The radius R of the

spherical jellium background, similar to the nuclear radius, is given by

R = r,Z‘/3 . (2.12)

Here, 1', is the Wigner—Seitz radius of the bulk, given by Eq. (2.11), and Z is the

total number of valence electrons in the cluster. In the case of neutral (monovalent)

alkali metals, Z is equal to the number of atoms. A self—consistent solution of the

Kohn—Sham equations yields the electronic structure of the cluster.

The first closed—shell configuration in Na,, clusters occurs for N32. Nag has the

second closed shell configuration, which also means that it is more stable than its

neighbouring clusters. Since Nas has a closed shell structure, we do not expect energy

lowering upon symmetry reduction, due to Jahn—Teller effect. The cluster keeps

spherical symmetry, so the spherical jellium model will be appropriate to use. In

Figure 2.2, I show the self consistent potential and the energy spectrum of the Nag

cluster, based on the spherical jellium background model [12].

The self consistent potential is very similar to the Woods-Saxon potential of nuclei.

The ls and 1p levels are fully occupied. The first unoccupied level is the 1d state,

separated from the 1p level by 1.52 eV. Clusters with fully occupied electron shells
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have a higher binding energy per atom than neighbouring clusters. They are relatively

more stable and occur more abundantly in the mass spectra.

2.3 Tight—binding Hamiltonian

The jellium model is best applicable to alkali metal clusters, where the electrons

are delocalized. This assumption does not apply in nonmetallic clusters. In this

Section, I will discuss the tight—binding Hamiltonian, which is suitable for nonmetal

clusters with strong covalent, directional bonds. The usage of this semiempirical

Hamiltonian for carbon clusters is motivated by the fact that ab initio techniques

become enormously cumbersome when applied to anything but very small systems,

such as small molecules, or infinitely large crystals. It is far from trivial to apply ab

initio methods to very large but finite systems, such as the carbon fullerenes, with an

adequate accuracy.

In order to determine the single—particle wavefunctions and energy levels in C60, I

use a tight—binding model which has been recently developed [13] to study the relative

stability of different carbon cluster structures. The tight—binding Hamiltonian, which

considers only the s and p valence electrons of C, is given by

H = anai’mm; + E tag(r;j)a;,,-a3,j . (2.13)

at a,e,t',j

Here, i labels the atomic sites and a = 3, p3, p,,, p, labels the atomic orbitals. co, is the

orbital energy, and tag are the hopping matrix elements between different sites. The

parameters have been obtained from a global fit to Local Density Approximation

(LDA) [1, 5] calculations of the electronic structure of C2, a graphite monolayer,

and bulk diamond, for different nearest—neighbor distances [13], similar to what had

been done previously to describe silicon clusters [14]. The diagonal elements of this



The



48

Hamiltonian are the energy levels 6, = —7.3 eV and e, = 0.0 eV. The off—diagonal

matrix elements tag(r) are assumed to have a distance dependence ~ r’z. Their values

for r = 1.546 A, which is the equilibrium nearest—neighbor distance in diamond, are

V.” = —3.63 eV, Vm = 4.20 eV, V,” = 5.38 eV, and Vm = —2.24 eV in the

Slater—Koster parametrization [15]. In this Hamiltonian, we consider those atoms as

nearest neighbors which are closer than the cutoff distance rc = 1.67 A. This is the

average of the nearest— and second nearest—neighbor distances in bulk diamond, and

hence near the minimum of the radial distribution function.

The total energy of a carbon cluster has been given as a sum of four terms,

11

E... = 2n... + 2: as.) + 24(2) + u :3 (q.- - 4?)”. (2.14)
«1' i=1

The first term in Eq. (2.14) is the one-electron energy of the cluster, obtained using the

tight—binding Hamiltonian. The second term consists of pairwise repulsive energies

E..(d) arising from nuclear repulsion and the overlap of the ion cores. E, is defined as

the difference of the “exact” calculated ab initio binding energy and the tight—binding

one—electron energy of C2. The third term represents corrections to the binding

energy during the transition to higher (bulk—like) coordination numbers Z,-. The

parameters in this term are chosen to reproduce binding energies of selected bulk-like

structures. The final fourth term is an intra—atomic Coulomb repulsion arising from

possible charge transfers between inequivalent sites. Zero point vibrational energies

are neglected. A more detailed discussion of this Hamiltonian is given in Ref. [13].

The binding energy of a Cu cluster (with respect to isolated atoms) is then given

by

Beck = n Etot(C atom) -" Etot(Cn)- (2.15)
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This tight—binding energy formula contains the essential physics which governs bond-

ing in carbon structures. It addresses directionality of bonding and the electronic shell

structure. It is easily applicable to very large carbon clusters, which are inaccessible

to ab initio techniques, at the expense of avoiding an explicit treatment of multi-

center integrals which can be important in small structures. It is expected to give a

reasonably accurate interpolation between the dimer and selected bulk structures [13].

In Chapters 4 and 5, I will use this Hamiltonian to study carbon clusters. This

is done in two steps. First, the equilibrium geometry of the free C60 cluster and C60

under “hydrostatic pressure” is determined. Once the geometry is given, I address the

nonlinear optical properties of the C60 clusters and collectivity of electronic excitations

in this system.

2.4 Random Phase Approximation (RPA)

In this Section I will outline our approach to study the optical response spectrum of

clusters. This approach will be used in Chapters 3 and 5.

The single particle energy spectrum of a system is the basis for calculating its

optical response to an external electromagnetic field. In the crudest approximation,

the allowed excitations can be estimated as the energy differences in the single—particle

spectrum, and their transition strength from the Fermi’s golden rule, using the dipole

matrix element between the initial state and the final state. In this approximation,

the configuration of all but the one electron to be excited is frozen, and only this

electron is allowed to change its quantum state. This is the so—called free response of

a system, and only considers single—particle transitions.

This approximation completely ignores the important effect of collective dynamical

screening of electronic excitations by the other electrons in the system. This collective
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response modifies the transition energy, transition strength, hence the entire response

function as compared to that obtained assuming free response. I will use the linear

response theory to address the response of clusters to small perturbations.

In order to describe the dynamical response to external fields, I use the Random

Phase Approximation (RPA) which has been developed by Bohm and Pines [16].

RPA is equivalent to the time—dependent Hartree-Fock theory in the limit of small

amplitudes. It considers one particle—one hole interactions, and hence presents more

realistic results than free response.

The independent-particle polarization propagator (particle—hole Green’s function)

11° defined as

ace 1 1

11°02 aw) = Z¢?‘(fl( H We) , (2.16)
— c,- — w H — c,- + w

where Ibo is the independent—particle wave function, e,- is the single particle energy,

and w is the energy of the photon (h = 1). The RPA polarization propagator is given

by [121

6 .0

IIRPA(F,F/) = n°(t=',.=i)+ j[amt-311%a)5—:1(;—:)2n3“(r3,n), (2.17)

where V is composed of a Coulomb and an exchange—correlation term, and it is given

by a local potential, and p is the charge density. 1) = (IV/tip is called the residual

interaction. In matrix form, Equation (2.17) can be expressed as

11““ = (1 + mfg—$411". (2.18)

The free response spectrum to an external potential Vex, is relative to the imaginary

part of the free polarization propagator and is given by

304...,0) = Z < 1114.,” >2 6(4) — E,- _ 13,). (2.19)

f
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The RPA response spectrum can be obtained using the imaginary part of the RPA

polarization propagator from

shah...) = 1 / dFdFII/m(1"',w)I/;$,(Fl,w)ImII(i°‘, 79,41). (2.20)

S(Vuhw) obeys the energy weighted sum rule [12]

/5(w)wdw= /d“(——VV"“)p , (2.21)
2mc

where mc stands for the electron mass and p0 stands for the ground state charge

density.

In the case of an external electromagnetic dipole field with the electric field com-

ponent aligned along the z axis, Vat = —eEz. The sum rule for the dipole operator

is the Thomas—Reiche—Kuhn (TRK) (or f—) sum rule [17],

2

Z<i|z|f>2w=N ,

2mc

 (2.22)

which relates the integrated oscillator strength to the number of active electrons.

The dynamic polarizability of the system is given by

01(0) = —e2 / dam zII(r"',r"/,w)zl, (2.23)

which can be also applied to the static case 02 = 0.

If we assume that all the oscillator strength is collected in a single mode, namely

the Mie plasmon, the f—sum rule can be used to relate the plasmon frequency w to

the static polarizability a by

 

2 Ne2
w __ . (2.24)

1" mea
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The above equations give the RPA formulation in coordinate space. If the inter-

action is taken as a local function, the above outlined formulation is the best choice

for calculating optical response. This is the case in the jellium model, where the

single—particle spectrum and the exchange interaction is obtained using LDA [12].

In the case of non—local potentials, the AB matrix representation of RPA is more

appropriate. In matrix RPA, the system response to perturbations is given by [18]

(134* 2113*) (if)=“’(_xy)
(2.25)

A and B are (sub-) matrices, given by

Aphmth: = (e,, — eh)6,,,pt6h,h' + vphv,hpi, (2.26)

and

Bphm’h’ = vpp'Jih’ - (2.27)

The matrix elements vmm of the residual interaction 1) can be expressed as

..,,,,, = / «mews/1220?.mamas/1mm, (2.28)

using the convention that m,n represent the unoccupied (particle) states and i, j

the occupied (hole) states. Xpi, stands for particle—hole amplitudes and th for hole-

particle amplitudes.

Eq. (2.25) is a nonhermitian eigenvalue equation, but it can be replaced by the

following Hermitian problem:

wgua = (A — B)1/2(A + B)(A — 3W2.a (2.29)
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where u“ E Xa + Y“ is the eigenvector. In the case of local potentials,

”ph’.hp’ = ”pp'.hh' (2-30)

and the equation can be expressed in terms of the single—particle energy matrix

ephm’h' = (610 " eh)6p.p'6h.h’ as

02211“ = 61/2(€ + 2v)61/2u°‘. (2.31)
or

where the vector and matrix indices have been omitted for simplicity and 113,, repre-

sents the amplitude of the particle-hole configuration Iph"1 > in the collective mode

0.

Finally, the transition strength associated with an external field F(r) is given by

12.1.1131. < PlFlh > I2
 

 

< a F 0 >2: 2.32

I I we th 11131.12 ( )

Thus, the oscillator strength associated with the vibration is

°' < F h > 2

020, < aIFIO >2: '2’)” up” P] I I (2.33)

:ph lughl2

From this it may be seen that the total (or integrated) oscillator strength is the same

as for the free response. In other words, the f-sum rule is automatically satisfied.
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Chapter 3

Alkali Clusters

Alkali metal clusters are very interesting systems which bridge the gap between iso-

lated atoms and bulk metals. The large degree of delocalization of valence electrons,

characteristic of the simple metals, is an important property of these clusters. This

delocalization shows up most dramatically in the appearance of magic numbers cor-

responding to shell orbitals encompassing the entire cluster [1, 2]. The electronic

response of these systems is particularly interesting in that it shows one of the char-

acteristics of a macroscopic plasmon, namely a large fraction of the oscillator strength

concentrated in a narrow frequency range [3]. In the following, we will address this

collective mode as the cluster plasmon mode [3]. In contrast to the prediction of the

classical Mie theory as applied to metal spheres, this collective mode is typically 30%

lower in frequency for small clusters, and does show a pronounced size dependence [4].

The results of this study will also be published elsewhere [5].

Of especial interest to us is the width of the collective excitation. The observed

width of the plasmon peak is 0.11 eV in N32 [6] and 0.25 eV in Nas [7], much larger

than the natural line width for the photoexcitation which is due to the life time of the

excitation. In large clusters with a high density of states near the highest occupied

(HOMO) and lowest unoccupied molecular orbital (LUMO), particle—hole excitations

56
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(Landau damping) and multiparticle—hole excitations will dominate the fragmenta-

tion of the plasmon [8, 9]. In the small clusters with n S 8 — 40 atoms, however,

Landau damping is considered to be negligible due to the low level density near the

HOMO. As we will show below, the dominant plasmon damping mechanism in these

systems results from the coupling of electronic excitations to cluster vibrations. The

quantum motion of nuclei gives a broadening which is described more precisely as a

distribution of states with a variable number of vibrational quanta excited together

with the plasmon. An increased nuclear motion in the ground state has been esti-

mated to account for a line broadening with increasing temperature [10, 11].

Because of the large number of vibrational modes and the small value of the

vibrational energy, it hardly makes sense to study this effect by explicit calculation

of the vibrational wave functions and the associated Franck-Condom factors for the

transitions. Instead, we shall apply an approximation that directly gives the width

of the strength distribution irrespective of the quantization of the vibrational final

state.

We determine the ground state structural and electronic properties of small alkali

clusters using the Local Density Approximation (LDA) [12]. Electronic excitations

are calculated using the Random Phase Approximation (RPA) [13], using LDA single—

particle wave functions and energies. In this Chapter, we apply this formalism to Liz,

Na; and Lia, Nag clusters. The complete spectroscopy of the dimers is well estab-

lished [14]. Consequently, these systems are ideally suitable for testing the accuracy

of our methods in the ground state, and the power of our predictions in the excited

state. For the larger clusters, the scenario is not so clear, since even their exact

ground state geometry is uncertain [15, 16, 17, 18]. We proceed as follows. We first

demonstrate the precision of our method by calculating the ground state properties
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of the bulk metals and comparing them to experimental data. We do the same for

the ground state of the addressed clusters. Next, we use the LDA-RPA to determine

the excitation spectra. Finally, we determine the coupling of electronic excitations to

cluster vibrations and compare the results with experiment.

3.1 Equilibrium geometry of small alkali clusters

In our LDA calculations, we consider the valence electrons only, and describe the ef-

fect of the core electrons by ab initio norm—conserving nonlocal pseudopotentials. Our

pseudopotentials have been generated using the Hamann—Schlfiter—Chiang scheme [19].

The electronic configurations which we used to generate the pseudopotentials, Li

230'82p0'l [with the core radii rc(2s) = 0.915 A and rc(2p) = 0.788 A] and Na

330'73p0'13d0'05 [rc(3s) = 1.005 A, rc(3p) = 1.323 A, rc(3d) = 1.746 A], provide very

good transferability especially towards the excited states. A partial core correction

has been used in the LDA calculations [20]. We use the Ceperley—Alder parametriza-

tion of the exchange—correlation potential [21] in the Kohn—Sham equations.

In order to minimize the influence of a finite basis on our results, we decide to

place our clusters on a face—centered cubic superlattice with a large lattice constant.

This minimizes the volume associated with each cluster for a constant inter-cluster

separation. Plane waves are the natural basis in this case which can be improved

systematically. We find this approach more reliable for alkali clusters with delocalized

electron states than an atom—centered Gaussian basis. Treatment of an isolated

cluster in real space on a radial grid turns out numerically as involved as our approach.

We used an energy cutoff in the Fourier expansion of the charge density Em” = 6.9 Ry

for the solid and Ema, = 4.0 Ry for the clusters. Symmetry has been used to reduce the

computational effort. The lattice constant a = 15 A for the superlattice guarantees
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negligible overlap between the clusters and hence vanishing crystal field splitting, as

verified by comparing the band structure at different points in the Brillouin zone.

The calculated ground state properties of bulk Li are the lattice constant aLDA =

3.42 A (amp, = 3.49 A [22]), the bulk cohesive energy (with respect to an isolated

coh

spin—polarized atom) ELDA = 1.64 eV (E222, = 1.63 eV [22]), and the bulk modulus

BLDA = 0.112x 1011Pa (Bap; = 0.116x10uPa [22]). The corresponding values for Na

are aw. = 4.0411 (am. = 4.23/1 [22]), Egg, = 1.23 eV (135%, = 1.11 eV [22]), and

BLDA = 0.089x1011 Pa (Bap: = 0.068x1011 Pa [22]). As expected from converged

LDA calculations, the bulk is somewhat overbound. The larger difference between the

calculated and the observed bulk moduli is presumably due to the pseudopotential

approximation which suppresses exchange and correlation between valence and core

orbitals. This effect is expected to be much smaller in atomic clusters where long—

range exchange and correlation is absent.

The smallest system we aim to describe are the dimers, the first closed—shell system

within the spherical jellium background model. The large stability of alkali dimers is

explained within the jellium model by a large separation between the fully occupied

ls state and the empty 1p state of the cluster. The dimer geometry deforms the

charge density along the molecular axis, and splits the threefold degenerate 1p level

into one a and two 1r states. The dimer has only one nuclear degree of freedom, the

dimer stretch mode, which simplifies the calculation of electron-vibration coupling

significantly.

In Figure 3.1, we show the total energy of the system as a function of the inter-

atomic distance. LDA results for dissociation energies, bond lengths and vibrational

energies of L12 and Nag, shown in Table 3.1, are in striking agreement with the ex-

perimental values [14].
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Figure 3.1: Franck-Condon broadening of the collective electronic excitations in (a)

Na; and (b) Liz. The lowest levels are the LDA dissociation energies D(d) of the

dimers as a function of the bond length d. The higher levels give the excitations

energies, which are presented as D(d) + ERpA(d) [From Y. Wang et al, (submitted

for publication)].
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Table 3.1: Ground state properties of sodium and lithium dimers: Equilibrium bond

length dc, dissociation energy 0,, and vibration frequency we.

 

 

 

    

System dc(A) Dc(eV) hw,(meV)

expt.“ theory expt.“ theory expt.“ theory

L12 2.672 2.730 1.03 1.01 43.572 46.0

Nag 3.078 3.032 0.72 0.91 19.742 20.0 
 

 

“ See G. Herzberg, “Molecular Spectra and Molecular Structure. I Spectra of

Diatomic Molecules”, second edition, (D. Van Nostrand Company, Inc.),

New York, 1950.

The next closed shell configuration in alkali clusters occurs for 8 atoms. The

physics of these systems is much more complex due to their 18 nuclear degrees of

freedom and many different isomers which lie close in energy. As mentioned before,

not even the equilibrium geometry is well established [15, 16, 17, 18], although cal-

culations [16, 17, 18] suggest the Ta symmetry for the ground state. Consequently,

we base our calculations on this geometry. The LDA superlattice calculations are

essentially the same as for the dimers, but we increase the fcc lattice constant to a =

50 A in order to minimize the interaction between clusters. The latter was checked

by observing the calculated band dispersion Ac across the Brillouin zone. Our value

Ac z 0.01 eV, gives an estimate for the upper bound of cluster-cluster interaction.

We use again an energy cutoff of 4.0 Ry, corresponding to a plane wave basis with

4279 components. The equilibrium structure of these clusters in the T4 geometry is

uniquely defined by the radial distance d,- of the “inner tetrahedron” atoms from the

cluster center, and the corresponding distance do of the outer tetrahedron atoms. The

calculated atomization energy per atom for the Nag cluster in equilibrium geometry

with d.- = 2.11 A and do = 3.51 A is 0.77 eV, in reasonable agreement with the value

of 0.86 eV, obtained in a previous LSDA calculation [15].
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3.2 Collective electronic excitations (Mie plasmon)

in small alkali clusters

Once the equilibrium geometries are known, we proceed to calculate the response to

external electric fields. The static response is a ground state property of the system

and can be obtained directly from LDA. We use the above described superlattice

geometry1 to determine the static dielectric response of these systems to a field which

is parallel or perpendicular to the dimer axis. For an isolated Na atom we find

aLDA(Na) = 22.0 A3, in good agreement with the experimental value of aczpt(Na)

= 23.6 A3 [23]. The polarizability of a negatively charged sodium ion aLDA(Na")

is 63.0 A3, much larger than that of the atom, caused by the weak binding of the

outermost electron. The polarizability of the N32 along the axis is agDA(Nag) =

63.5 A3, while the value perpendicular to the axis is aiDA(Na2) = 22.1 A3. The

3
average over all directions of the polarizability gives (aLDA(Na2)) = ézifl a.- =

35.9 A3, which can be measured experimentally. This value agrees well with Local

Spin Density Approximation (LSDA) calculations of Moullet et al. [18], who obtained

a"(Na2) = 53 A3 and 011(Na2) = 30 A3, leading to (aLDA(Na2)) = 37.7 A3.

Once the static dielectric response is established, we proceed to calculate the

electronic excitation spectrum within the linear response framework. We use the

RPA which is based on an electronic ground state described by LDA. RPA automati-

cally satisfies energy-weighted sum rules, and has the correct physical limits, namely

independent-particle transitions at high momentum transfer, where the interaction

is weak, and strong collective excitations at low momentum transfer, where the in-

 

1In a cluster superlattice, the external field is generally modified by the field of the induced

dipoles on the other sites. Since our system has inversion symmetry, the corresponding correction

vanishes exactly at each lattice point, and is very small over the cluster volume. The polarizabilities

of atoms and dimers can then be obtained directly using second order perturbation theory.



63

teraction is strong. It is customary in condensed matter physics to implement RPA

by choosing the potential field as the basic object of computation. In this case, the

wave function enters indirectly via the dynamic polarizability. However, if only a few

electron states participate in the excitation, the most efficient approach is to set up

the RPA equations for the wave function directly [24]. We shall use this method in

the present work.

We start with the single-electron wave functions 45,-(r) and energies 6;, obtained

from the LDA calculation. We shall need both occupied and unoccupied orbitals,

from which we construct the particle—hole states. We designate the particle-hole

state as [ij ’1), where i designates an unoccupied (particle) state and j an occupied

(hole) state. The Hamiltonian matrix may be separated into a diagonal part that

gives the energy of the particle—hole state, and an off—diagonal part that describes

the coupling to other particle—hole excitations. The diagonal part includes the kinetic

energy operator and the self-consistent Hartree and exchange—correlation field. We

write this part of the Hamiltonian matrix as

(ii-116127”) = 6ii'6jj'(€i - fjl- (3-1)

The residual interaction contributes matrix elements of the form

(ii-lino“) = / 445601509110, 6151014109. (32)

where 1) includes the residual Coulomb interaction and exchange correlation. The

RPA eigenvectors u“ and their associated frequencies too, are given by the eigenvalue

Equation (2.31).

Let us first discuss the application of the above formalism to the dimers, Liz

and Na2. The results of our calculations for these systems, obtained using different

approximations, are summarized in Figure 3.1 and Table 3.2.
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Table 3.2: Collective electronic excitations in small sodium and lithium clusters. Our

results for the plasmon frequency heapgamon and its width F are listed together with

results based on spherical jellium [25], thELLYRpA, and results of the classical Mie

theory, thie-

 

 

 

System hwpzamon (CV) F (6V) thELLYRPA (CV) thgc (8V)

expt. theory expt. theory theory theory

Liz 2.23 0.063 3.6 4.6

N32 1.92“ 2.43 0.11“ 0.095 2.8 3.5

L13 3.6 4.6

Nag 2.535 3.10 0.25" 0.03 2.8 3.5      
 

 

‘ See A. Herrmann et al, Chem. Phys. Lett. 52, 418 (1977).

b See C. R. C. Wang et al, Chem. Phys. Lett. 166, 26 (1990).

In Figure 3.1, we plot the energy of the dimers for a given electronic configuration

as a function of the bond length d. The lowest curve gives LDA results for the 12:

ground state. The 12: curve is obtained by adding the RPA excitation energy to the

energy of the 12; state. In the adiabatic approximation, we determine the transitions

from the energy difference between the vibrational ground state and the excited state

in the same geometry, as indicated by arrows in Figure 3.1. From Figure 3.1 we notice

that the potential energy surface and equilibrium geometry of the excited state are

different from those of the ground state. The equilibrium bond length (12,313A(Na2) =

3.50 A compares well with the experimental value dz’czp,(Naa) = 3.63 A [14]. The

corresponding value for Liz is d:RPA(Li2) = 3.17 A, which again compares well with

the observed value d:,cxp,(Li2) = 3.10 A [14]. Experimental data [14] indicate that the

energy difference between the 12: ground state at de and the 121' excited state at d;

is 1.76 eV for L12 and 1.82 eV for Na2. These energies compare reasonably well with

our LDA—RPA results of 2.20 eV for Li; and 2.33 eV for Na2. However, a comparison

between calculated and observed adiabatic (vertical) excitation energies in Table 3.2
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shows that the calculated plasmon energy is blue—shifted by 0.5 eV (see Figure 3.2)

with respect to the observed value. This blue shift is characteristic of LDA—RPA

calculations, and reflects the incorrect asymptotic behavior of the effective potential

which is exponential decay instead of } potential [9].

As we will discuss below, the difference between the potential energy surfaces in the

ground and the excited state is responsible for vibrational broadening of electronic

excitations. Of particular importance in this respect is the shape of the excited

potential energy surface. We find our calculated values for the vibrational frequencies

in the 12: state w;(Li2) = 31.7 meV and w;(Na2) = 17.8 meV to compare very well

with the experimental data [14] w:,cxp,(Li2) = 31.7 meV and w"c’c,,,,,,,(Na2) = 14.6 meV.

As expected and discussed in the following, these results are superior to calcu-

lations for spherical jellium representing Na; and Liz clusters. Our corresponding

LDA—RPA results, obtained using the JELLY—RPA program [25], are shown in Ta-

ble 3.2. In the jellium model scenario, the single-particle ground state has a 13

character, and the lowest unoccupied states have 1p, 1d and the 23 character. The

spherical potential clearly cannot describe the splitting of the first two excited states

which is substantial in the dimers. Among the above jellium states, there is only

one dipole—allowed transition from the ground state, namely the Is --1 1p transition.

Other allowed transitions have a much larger excitation energy, and are essentially

single-particle transitions. Our numerical results, shown in Table 3.2, yield values for

the collective excitations in jellium which lie up to 60% above the LDA—RPA results

for the realistic geometry, mainly due to the spherical approximation in the jellium

model. Another important disadvantage of spherical jellium is that it cannot address

vibrational damping of electronic excitations, which we shall discuss below.

Next, we turn to the L13 and Nas clusters. The results for the collective excitation
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Figure 3.2: Calculated spectral function of Na; (in arbitrary units) and its broad-

ening due to nuclear zero—point motion (dashed line), as compared to the observed

photoionization spectrum of Ref. [6] (solid line). The width of the Gaussian envelop

is 0.10 eV and the displayed theoretical data are red—shifted by 0.5 eV with respect

to the calculated results [From Y. Wang et al, (submitted for publication)].
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energies in these systems, obtained using different approximations, are summarized

in Table 3.2. The LDA calculation for spherical jellium gives the occupied ground

state levels at C(18) = —4.46 eV and ((11)) = —3.19 eV. The lowest unoccupied

states lie at 5(1d) = —1.65 eV and C(28) = —1.15 eV. The relatively large HOMO—

LUMO gap of 1.54 eV contributes substantially to the stabilization of this magic

cluster size. The LDA—RPA calculations for this system predicts a plasmon energy

of thELLYRPA = 2.8 eV.

Our LDA calculation for Nas in Td geometry shows that the lowest nondegenerate

unoccupied level, corresponding to the jellium 23 level, lies at c = —0.82 eV and is

lower in energy than the manifold of levels originating from the jellium 1d level. This

manifold results from symmetry breaking of the fivefold degenerate 1d type level of

the spherical jellium into a threefold degenerate level at e = —0.73 eV (consisting of

orbitals with my,yz, 23: character) and a doubly degenerate level at at e = —0.35 eV

(consisting of orbitals with 222 — 3:2 — y”, 3:2 — y2 character).

The RPA spectrum of Nas in the realistic geometry discussed above is given in

Figure 3.3. The spectrum shows three distinct peaks, but is dominated by a sin-

gle resonance at hwplamon = 3.1 eV. This is in agreement with experimental results

which show three distinctive resonance [7], but disagrees with previously calculated

photoabsorption spectra which has five excitations [26]. The strong resonance ex-

hausts 87.4% of the f—sum rule, which is indicative of its strong collective charac-

ter. As in N32, this value is blue-shifted with respect to the experimental value

thlasmon,expt : 253 CV [7]
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3.3 Damping of the Mie plasmon in small alkali

clusters

Our above results indicate that the present scheme is able to determine collective

electronic excitations reasonably well, especially when compared to the jellium model.

We now turn to the fragmentation of this collective mode. Due to the low level density

near the HOMO, Landau damping is improbable in these systems [9]. The dominant

broadening mechanism at T = 0 K is the coupling of the electronic excitations to

nuclear zero—point motion, as described by the Franck—Condon effect. With increasing

temperature, higher vibration modes and possibly transformations between different

isomers are likely to further broaden the plasmon linewidth. This thermal broadening

mechanism is expected to play a more pronounced role in the larger n = 8 atom

clusters with soft vibrational modes.

A Hamiltonian which describes the coupling between the electronic excited state

so and the vibrational normal modes p with energy 7101,, is [27]

H = cIc (6., + Z Mu(a]‘ + a») + z hwpala,‘ . (3.3)

it it

Here, c1 and a1 are the creation operators for electronic and vibrational states, re-

spectively. In the case of dimers, Eq.(3.3) is simplified due to the presence of a single

ground state vibration mode with energy from. The coupling of electrons to nuclear

motion is described by the term M(a’r +a) E F3:, where F is the slope of the potential

energy surface for the excited state at the transition point. As a result, the exact

solution for the spectral density distribution A(hw) at zero temperature is given by

the Poisson distribution [27]

A(hw) = 21re’9 Z 131-715(50) -—- cc + ghwo — hwln) , (3.4)

11:0 '
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where 021 is the vibrational frequency of the excited state. In this equation, g is related

to the slope F and the ground state vibration energy from by g = F2/(2mhwg), and

it gives the corresponding quantum level. A(hw) is hence a sum of equally spaced

delta functions (as shown in Figure 3.2), with separation energy hwo and a Poisson

peak height distribution. In the limit of large g, the Poisson distribution can be

approximated by a Gaussian distribution, as

 

°° l git-92’

A h = ’ 2.. 6 h — c h — h . 3.5( w) ”gin/21716 ( w 6 +9 (.00 com) ( )

The resulting line shape has a full—width at half maximum (FWHM) P, which is given

by

71an

mwo

 r = 2F (3.6)

for the vibrational ground state corresponding to T = 0 K. An intuitive way to

understand this formula is the following. The probability distribution for a harmonic

oscillator in the ground state is a Gaussian with a width (Ar)2 = h/(mwo). Assuming

that the dependency of the excitation energy on a: is given by AE = FAx, one obtains

for the distribution of excitation energies f(E) = exp{—mwo(E — Eo)2/(hF2)}. This

is essentially the same result as in Eq. (3.6).

Our results for the plasmon damping in Na2 and Liz are summarized in Table 3.2

and Figure 3.2. For Liz, no such experimental data are available to the best of our

knowledge. For Nag, we obtain for the 123' —-+ 12: transition a FWHM of 0.10 eV,

in very good agreement with the experimental value F = 0.11 eV [6]. The perfect

agreement of the envelope functions in Figure 3.2 indicates that in this case, the

coupling between electronic and vibrational degrees of freedom dominates the plasmon

fragmentation. For the 12: —> 111,, transition, we predict a line width of 0.06 eV. No

experimental data for the line width are presently available for this transition.
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Investigations of the vibrational broadening of collective electronic excitations are

in progress for Lig and Nag. The calculation is more complex not only due to the

larger cluster size, but also due to the significantly larger number of nuclear degrees

of freedom in these systems. In order to obtain a rough estimate of the plasmon line

broadening in these systems, we proceed as follows. We assume that the broadening

is dominated by a single low-frequency mode with a large quadrupolar component.

We restrict our calculations of the clusters with assumed T4 geometry to the lowest

vibration mode with ng symmetry, which is obtained using the parametrized Many—

Body Alloy Hamiltonian [28]. The LDA—RPA calculation for this distortion indicates

only a very small line broadening in Nag of P z 0.03 eV, much smaller than the

observed value 1‘th = 0.25 eV [7]. The discrepancy between the calculated and the

observed value may be due to our neglect of the other vibrational degrees of freedom,

or a large temperature of the observed clusters. For a thermally excited cluster, I‘

can be estimated in analogy to Ref. [11] as I‘ = 2F{(k3Tln 2)/(mwg)}1/2. Using

this expression, and relying on the validity of the harmonic approximation, we find

a line broadening of 0.25 eV to correspond to a temperature T z 4000 K for the

vibrational mode above. Even though this temperature is likely to be overestimated

by the harmonic approximation, our result suggests that other vibrational modes

contribute significantly to the line broadening. Moreover, substantial line broadening

could result from structural transitions between different isomers of the n = 8 atom

structures which are very close in energy [15, 16, 17, 18].

3.4 Conclusions

In conclusion, I have presented results for the equilibrium structure and collective

electronic excitations and their damping in small Na, and Lin clusters. In the calcu-



72

lations, we have used the Local Density Approximation to describe the ground state

properties of these systems, and the Random Phase Approximation for the electronic

excitations. We have discussed the collective excitations in the first two closed—shell

clusters with n = 2, 8 atoms in detail. Our results indicate that the coupling of elec-

tronic levels to vibrational degrees of freedom accounts quantitatively for the observed

width of the collective electronic excitations in alkali dimers. More calculations are

necessary to address the damping mechanism of the collective electronic excitations

in Lig and Nag.
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Chapter 4

Structural Properties of C60 and

SOIId 060

The carbon atom has two 23 electrons and two 2p electrons in the valence shell.

These four valence electrons can hybridize in various ways, leading to sp, sp2 and sp3

bonding in carbon. Carbon crystallines either in the layered graphite structure with

sp2 bonding, or in the diamond structure with 3123 bonding, the hardest material in

nature. Recently [I], a third form of solid carbon has been synthesized: fullerite, a

crystal based on the C60 clusters.

In this Chapter, I will investigate the structural properties of the C60 crystal and

the stability of fullerite intercalation compounds. The results pertinent to the elastic

behaviors of solid C60 have been published in the meantime as Ref. [2] and those

related to C60 intercalation compounds as Ref. [3].

4.1 Structural and elastic properties of the C50

based solid

When crystallized, C60 clusters [4] form a solid with a facecentered cubic structure

which has been given the name “fullerite” [1]. In spite of the considerable effort

76
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invested in understanding the equilibrium properties of C60 clusters [5, 6, 7, 8], many

questions regarding the material properties of fullerite remain open. So far, based on

X-ray diffraction data [1], fullerite has been shown to be a close-packed molecular solid

with a face-centered cubic structure and a nearest distance between neighboring C60

clusters D = 10.04 A. Extended-X-Ray-Absorption-Fine-Structure (EXAFS) data [9]

indicate an average carbon-carbon nearest-neighbour distance dc-c = 1.42 A which

is the same as in graphite. This bond length corresponds to a radius R = 3.55 A

of the fullerene cluster. In other words, the closest distance between two surfaces of

adjacent clusters is d = 2.9 A at zero pressure. Raman and infrared (IR) spectroscopy

data [9, 10, 11, 12] confirm that the “soccer ball” structure of C60 is preserved in the

solid. Pressure dependent X-ray diffraction data, obtained in a diamond anvil cell,

indicate a large change of the bulk modulus of fullerite as a function of pressure [13].

In this Section, I will address the static and elastic properties of fullerite as a

function of pressure. I will present a physical model, based on first principles calcula-

tions, for the cohesion of the solid. In this investigation, I will focus on the interesting

question, whether fullerite can become less compressible than diamond.

When fullerite is compressed, part of the volume reduction comes from squeezing

the clusters closer together, and part from the compression of the clusters themselves.

Our model exploits this distinction to make a tractable calculation without the full-

scale apparatus of the Local Density Approximation (LDA) theory [14]. While the

LDA is computationally feasible with present computers [5], it does not provide the

insight possible with a simplified treatment. Also, the LDA does not have any funda-

mental significance for purely Van der Waals forces which dominate the interaction

at separations between the C60 clusters which are much larger than their equilibrium

distance. A schematic picture of the model is shown in Figure 4.1. Effectively, there
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are two spring constants, c1 associated with the interaction between clusters and c2

associated with the compression of the clusters themselves.

Under external pressure, we expect C60 clusters not to deviate much from a spher-

ical shape due to the close—packed structure of the crystal with twelve-fold coordina-

tion of the lattice sites. Also, the symmetry of the lattice is incompatible with the

icosahedral symmetry of C60, which would make distortions towards a cubooctahe-

dral shape difficult. This is supported by the low activation energy of only z 0.15 eV

(per cluster) for molecular rotation [15]. We shall therefore treat the clusters in the

spherical approximation.

The C60 surface is similar to a curved piece of graphite, with predominantly sp2

bonding and a nearest neighbor distance of dc_c = 1.42 A. Owing to the large

equilibrium separation of d = 2.9A between C60 clusters, their mutual interaction is

mainly due to a Van der Waals force which should be very similar to the interaction

between layers of graphite. We shall base this part of our model on the LDA results for

interactions between graphite layers [16]. Our expectation, confirmed by the analysis,

is that the individual clusters are highly incompressible compared to the interaction

between clusters. Thus, for low pressures at least, there is a close relationship between

the compressibility of fullerite and the c-axis compressibility of graphite.

We shall model the Van der Waals interaction assuming that atoms in the neigh-

boring graphite layers interact pairwise [17], as

E = ZZUU‘Q) . (4.1)

The pair interaction is constructed to reproduce the ab initio LDA calculations

for the binding energy of graphite [16]. We use a modified Morse potential of the
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Figure 4.1: Schematic drawing of the the elastic parameters describing the interac-

tion between neighboring C30 clusters in fullerite. The weak Van der Waals bond

between these clusters can be mapped onto an anharmonic soft spring (spring con-

stant CI). The compressibility of the stiff C60 fullerene cluster itself can be'described

by a stiff anharmonic spring (spring constant 0,») [From Y. Wang, D. Tomének, and

G. F. Bertsch, Phys. Rev. BR 44, 6562 (1991)].
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form

U(r) = 040 — ash-2))? — 11+ 13.64" . (4.2)

Here, i, j denote atoms in adjacent graphite layers, Dc is the equilibrium binding

energy of these atoms, r, is the equilibrium distance between these atoms, and E, de-

scribes an additional hard-core repulsion. B and [3’ describe the distance dependence

of these interactions. The binding energy of graphite as a function of the interlayer

distance d, obtained using Eqs. (4.1) and (4.2), is shown in Figure 4.2(a) together

with the LDA data. The corresponding interlayer force is shown in Figure 4.2(b).

The parameters used in Eq. (4.2) are listed below‘.

Since the Van der Waals interaction is long-ranged, it is convenient to replace the

double sum in Eq. (4.1) by a double integral which averages over the atomic sites.

The interatomic binding energy U is then replaced by the energy (7 corresponding

to the interaction energy between two small areas AA in adjacent graphite layers.

Then,

E = [41 drl [42 dr2U(|r1 — rzl) , (4.3)

U(r) = De[(1 — e-f’t'vel)2 — 1] + E,e‘”" . (4.4)

We use Eqs. (4.3) and (4.4) to determine the interaction energy Ede between

neighboring C60 clusters and note that the double integral extends over the surface

areas of both clusters. In case that the direct line connecting the area elements at

r1 and r2 contains a part of any cluster, we neglect the corresponding contribution

to the double integral due to screening. The resulting pairwise interaction energy

 

1In Eq. (4.2), we use D, = 6.50 x10‘3 eV, rc = 4.05 A, E, = 6.94 x10"3 eV, 6 = 1.00 A'1 and

,6’ = 4.0 A”. In Eq. (4.4), we use D8 = 9.47 x 10"” eVA“ and E, = 9.915 x 10"" eVA‘”. The

parameters in Eqs. (4.2) and (4.4) are related by the fact that the area per C atom in graphite is

2.619 A“.
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Figure 4.2: (a) Binding energy of hexagonal graphite (with respect to isolated layers,

per carbon atom) as a function of the interlayer spacing d. The solid line represents

a modified Morse fit [Eqs. (4.1) and (4.2)] to ab initio LDA results of Overney et

al, J. Phys. C 4, 4233 (1992). (b) Negative gradient of the energy given in (a),

corresponding to the interlayer force [From Y. Wang, D. Tomanek, and G. F. Bertsch,

Phys. Rev. BR 44, 6562 (1991)].
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between neighboring clusters is shown in Figure 4.3(a). The corresponding force,

given in Figure 4.3(b), indicates that at zero pressure, the distance of closest approach

between neighboring Cso clusters is d = 2.65 A.

We calculate the binding energy E60 of an isolated C60 cluster using a modified

tight—binding Hamiltonian [18], which had been tested successfully in previous studies

of the equilibrium structure and vibration modes of small Sin clusters [19]. The

breathing mode of the C60 cluster is described by the dependence of the binding

energy on the cluster radius R, as shown in Figure 4.3(c). The restoring force, shown

in Figure 4.3(d), is zero at the equilibrium radius Reg = 3.25 A.

With all force constants at hand, we can now proceed to calculate the equation of

state of fullerite. The solid can now be viewed as an fcc lattice of fullerenes represented

by mass points and connected with strongly anharmonic nearest neighbor springs,

shown in Figure 4.1. In compressed fullerite, the equilibrium geometry minimizes the

binding energy per C60 cluster in the fcc structure

Ecoh(D) = GEde(d) + E6002) (4.5)

with fixed D = d + 2R, corresponding to a unit cell volume V = D3/\/2. The first

term in this equation correctly avoids double counting the nearest neighbor Van der

Waals bonds, and the second term is the energy of an isolated C60. The binding

energy of fullerite Ecoh(V) is shown in Figure 4.4(a). At T = 0, one obtains the

pressure from p = —dEcoh/dV and the bulk modulus from B = —-V(0p/6V).

In Figs. 4.4(b) and 4.4(c), we show the dependence of the cell volume and the

bulk modulus on the external pressure. From these results it is obvious that the

elastic behavior of fullerite resembles closely that of an inert gas solid. At very small

pressures, the interactions between clusters are dominated by the compressible Van
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the closest approach distance d. (b) Negative gradient of the interaction energy in

(a), corresponding to the pairwise force between neighboring C30 clusters. (c) Binding

energy of an isolated Cm fullerene cluster as a function of the cluster radius R. ((1)

Negative gradient of the binding energy given in (c). Note the difference in scales

between (b) and (d) [From Y. Wang, D. Tomanek, and G. F. Bertsch, Phys. Rev.

BR 44, 6562 (1991)].
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der Waals bonds causing a very low bulk modulus B a: 0.2 Mbar. With increasing

external pressure, the clusters themselves are compressed at a high cost in energy,

causing a large increase in the bulk modulus. We found it instructive to compare

the bulk modulus of fullerite at high pressures to diamond. The diamond data of

Ref. [20], obtained using LDA calculations, are shown in Figure 4.4(c) by a dashed

line. From our calculation, we conclude that the compressibility of fullerite exceeds

that of diamond only at pressures exceeding z 70 GPa.

As discussed earlier, fullerite can be viewed as an fcc solid consisting of heavy mass

points representing 060 clusters, with nearest neighbor interactions. In Figure 4.5,

we show the phonon band structure of this lattice. The relatively low vibration

frequencies result from the heavy mass of the clusters and the weak Van der Waals

interactions at p = 0.

It should be possible to turn fullerite locally into diamond under very large pres-

sures. The mechanism is very similar to that discussed by Fahy et al. for the conver-

sion of rhombohedral graphite with sp2 bonding to diamond with sp3 bonding [21].

This transition is initiated in graphite by a strong interlayer coupling occurring when

inter- and intralayer carbon nearest-neighbor bonds are comparable. In fullerite,

this transition should occur when the distance of closest approach between adjacent

fullerene clusters d is close to 1.5 A. This occurs at the upper end of the pressure

scale in Figs. 4.3(b) and 4.3(c) and should be more easily achieved in fullerite than in

graphite. Following this prediction, a transformation from fullerite to diamond has

indeed been achieved experimentally [22].

In this study, we used Eqs. (4.3) and (4.4) to calculate the interaction between

neighboring clusters which have been approximated by spherical shells. As mentioned

earlier, the atomic granularity of the clusters is averaged out to a large degree. Based
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Figure 4.5: Phonon dispersion relation V(k) of bulk fullerite with fcc structure [From

Y. Wang, D. Tomanek, and G. F. Bertsch, Phys. Rev. BR 44, 6562 (1991)].
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on our expression in Eqs. (4.1) and (4.2), we find a residual activation energy for clus-

ter rotation of the order of 0.1 eV (per cluster), in fair agreement with experimental

data [15].

4.2 Stability of donor and acceptor intercalated

€60 solid

Perhaps the most exciting property of C60 fullerite is superconductivity which occurs

in the doped compound. Following the discovery of superconductivity in K3060 with

a transition temperature Tc = 18 K [23], new compounds have been synthesized us-

ing a variety of intercalants [24, 25, 26, 27, 28], yielding critical temperatures as high

as 33 K in CsszCeo [29]. While Tc values of doped fullerite are still below those

found in high—Tc perovskite superconductors [30], intercalated fullerite shows supe-

rior materials properties and hence bears the higher potential for applicability. The

intercalation process and the rigid-band behavior of intercalated fullerite resembles

in many ways the extensively studied graphite intercalation compounds [31].

The crucial property of fullerite intercalation compounds AxCGO is their stability

against decomposition into the components in the standard state, i.e. C60(solid) and

A(solid). The formation enthalpy is of interest not only for the donor compounds

mentioned above, but also for potential acceptor compounds. This quantity is hard to

calculate, since cohesion in these ionic compounds is dominated by a large Madelung

energy [32, 33]. Still, even a rough estimate of the formation enthalpies across the

periodic table is useful when considering the synthesis of novel Cso based materials.

The difficulty to obtain a reliable value for the formation enthalpy is best illustrated

by the spread of ab initio values for the formation enthalpy of K3C60 from K metal
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and bulk C60, ranging from AHO = —1.7 eV per K atom 34 to AH0 = —6.6 eV 35 2,
f f

indicative of an extremely exothermic intercalation process.

We decompose the formation process of fullerite intercalation compounds into

well-defined steps and estimate the energy involved in each step across the periodic

table. These steps are combined into a thermodynamic Born—Haber cycle which de-

termines the formation enthalpy. The prerequisite for this calculation is a detailed

knowledge of the structure, lattice constant and compressibility. Since this infor-

mation is not available for most of the systems discussed here, we calculate these

properties, together with the phonon structure, for the compounds of interest first.

This is interesting information on its own merit and will be presented together with

the calculated formation energies.

4.2.1 Born—Haber cycle

The formation enthalpy AH? at T = 0 K of AnCso is defined by

. . nAH? .

nA(soIzd) + 060(solzd) ———» AnCso(solzd) . (4.6)

If AH? is negative, the compound AnCso is stable against decomposition into the

pure components, namely the intercalant A in its solid form, A(solid), and pure

fullerite, 060(801Id). We determine AH}J by formally decomposing the formation

process of a fullerite intercalation compound into several physically well defined steps

and evaluating the energies involved in the individual steps. This procedure, known

as the Born—Haber cycle, has been used to determine reaction enthalpies of complex

multi—stage reactions. The cycle for the formation of the donor compound A3C60 is

illustrated in Figure 4.6(a).

 

2The value quoted has been obtained using the experimental cohesive energy of metallic K,

Ecoh(K) = 0.934 eV, and of fullerite, Ecoh(C50) = 1.6 eV. The latter value is a theoretical result

obtained in the same reference.
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and (b) acceptor C60 fullerite intercalation compounds [From Y. Wang, D. Tomanek,

G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)].
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The first step involves the separation of the reference system into individual A

atoms and C60 molecules, taking into account that 3 A atoms occur in the formula

unit of the doped solid. The energy involved in this step is the cohesive energy of A,

3Ecoh(A), and the binding energy of a C60 molecule in Cm (solid), Ecoh(C60 solid). In

the next step, we consider the ionization of the three A atoms and the charge transfer

to the C60 molecule. Here we have implied that C60 can act as electron acceptor;

the electron affinity of the C60 molecule will be discussed later. This step requires

the energy 3 I(A), I(A) being the the ionization energy of the A atom. The three

electrons are transferred from the donor atoms to the C60 molecule and release the

energy Am = A(Cso)+A(C§0)+A(C§;), where A is the electron affinity. In the last

step, the A+ and Cg; ions are combined to form the solid, thereby releasing the

formation energy Ecoh(A§Cg';). Hence, the total energy gain during the formation of

the A§C23 system is

AH? = 3E...(A) + 13...].(060) + 31(A) — A(Cso) — A(Ce-o) — A(Céo‘)

- fled/1:030.) - (4-7)

The relatively low ionization potential of C60 makes it a potential electron donor,

raising the question about the stability of acceptor intercalated fullerite. The Born—

Haber cycle for the formation of the acceptor compound A3Cso is illustrated in Fig-

ure 4.6(b). It differs from the former one in the direction of charge transfer between

the intercalant and the matrix. The electron affinity A(A) of the intercalant and the

ionization potentials of multiply charged C60 clusters, I(C23), are required in this

step. The formation energy of the compound from the ions, Ecoh(A§ C23), is defined

with respect to the appropriately charged ions, and is given by

AH? = 3Ecoh(A) + Ecoh(060) — 3A(A) + I(Ceo) + [(0:0) + I(C620+)

_ coh(A;ng.) ° (4.8)
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When evaluating the formation enthalpy using the Born—Haber cycle, we approx-

imated each step by the corresponding energy and hence have neglected the con-

tributions of nonzero temperature and pressure to AH?, which we estimate to be

of the order of S 0.1 eV. Precise experimental data exist for the cohesive energies

Ecoh(A) [36], the ionization potentials I(A) and electron affinities A(A) across the

periodic table [37, 38]. Unfortunately, no reliable experimental values exist for the

binding energy of a Cso molecule in single crystals of C60, and ab initio techniques

tend to underestimate the weak Van der Waals binding between the C60 clusters [5].

Therefore, we estimate this quantity in the close—packed fullerite lattice using a pair

bond model as Ecoh(C'60 solid) = 6D(C’60 - 060). The distance dependence of the pair

potential D(Ceo — 060) is given by the Morse form

D(r) = D.((1_ gar-~02 — 1) , (4.9)

where DC is the the dissociation energy of a pair of C60 molecules and r.3 is their

nearest—neighbor distance, and where ,6 describes the distance dependence of the

060-060 interaction. We use rc = 10.04 A [6], ,3 = 0.866 A“, and De = 0.8 eV based

on a combination of our previous calculation for the Geo solid [39] and experimental

data [13]. Recent experimental data suggest a smaller value Ecoh(C'60 solid) = 1.76 eV

(at T = 0 K) for polycrystalline C60 films [40]. As we will show later on, an accurate

value of the cohesive energy is not crucial for the stability of the compounds since it

is partly or mostly compensated in the formation of the compound with the same fcc

crystal structure. It only has a small influence on the formation energy of the AeCeo

phase with a bcc structure, and a small inaccuracy in Ecoh(C6O solid) will not reverse

the conclusions we draw.

We use the experimental results for the electron affinity of neutral C60, A(Ceo)

= 2.74 eV [41], and the ionization potential I(C60) = 7.54 :i: 0.04 eV [42]. We note
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that the electron affinity of Cm is only slightly smaller than that of the electronega-

tive elements in group 7A, which makes the C60 molecule a good electron acceptor.

On the other hand, the ionization potential of the C60 molecule lies close to that

of electropositive Mg, which makes the C60 molecule a good electron donor as well.

When calculating the higher electron affinities and ionization potentials, we modify

the above values by the electrostatic energy which occurs during the attachment or de-

tachment of electrons from a charged sphere with the C60 molecule radius R = 3.5 A.

The calculated total ionization potentials and electron affinities are summarized in

Tables 4.1 and 4.2. These estimates are in good general agreement with available ex-

perimental data of Refs. [43, 44, 45, 46]. In particular, there is experimental evidence

for a linear dependence of the ionization potentials and electron affinities on the final

state charge [47].

The formation energy Ecoh(A,f C26” of the intercalation compound from the ions

depends strongly on the structure. Here, we consider the ACso and A3C60 solid with

the fcc structure, and the A6C60 solid with the bee structure [32]. Ecoh(A,fC20‘ ) can

be decomposed into three terms,

Z

—Ecoh(A:Cgo-) : EMadelung 'l' EBM — ED( 510- _ 030-) ' (410)

The factor Z in the pair potential term denotes the coordination number of the C60

molecules, which is 12 in the close—packed fcc structure and 8 in the bcc structure.

The formation of intercalation compounds is driven by a large gain in Madelung

energy. We consider a complete charge transfer between the intercalants and the C60

clusters, in agreement with ab initio results of Refs. [34, 35] for the alkali compounds.

We express the Madelung energy per unit cell as

EMadclung = —0q2/a - (4.11)
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Table 4.1: Total ionization energy Ito; corresponding to the process C60 AC3;+n e‘.

 

 

Final state configuration 0:0 C620T Cg}f 033L 0%?

1....(eV)a 7.545 19.20 34.96 106.98 362.07

19.006

 

 

  
 

 

‘ The first line contains data used in our calculation.

b Experimental value of Hertel et al, Phys. Rev. Lett. 68, 784 (1992),

based on photoionization.

c Experimental value of Steger et al, Chem. Phys. Lett. (1992), based on

photoionization.

Table 4.2: Total electron affinity Am corresponding to the process Ceo+n e" ———>C30' .

 

 

 

Final state configuration Ce], 0:; Cgo‘ 030- C(33-

Atot (8V) 2.74“ 3.42 1.09 -—24.65 —173.06     
 

“ Experimental value of S. H. Yang et al, Chem. Phys. Lett. 139, 233 (1987).
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Table 4.3: Madelung constants a for the structures considered in this work.

 

 

Structure a

A+Cg0 3.4951

.43“ng 22.1220

A303; 56.2670

 

    
 

Here, q is the charge on the intercalant and a is the lattice constant of the conven-

tional cubic unit cell. The Madelung constants for the different structures have been

evaluated using the Ewald method. Our values are in agreement with previous re-

sults [32, 33] and are listed in Table 4.3. Note that the Madelung constants for A3C60

and A6060 are extremely large when compared to the ACeo compound. This fact is

mainly due to the large number of neighboring counter—ions for each C60 cluster.

The gain in Madelung energy is only partly compensated by the (mainly) closed—

shell repulsion between the A+ and the C35 ions in the lattice. An accurate knowledge

of this repulsive interaction is necessary since it affects not only the cohesive energy,

but also the equilibrium structure and compressibility of the bulk compounds. We

model this closed—shell repulsion energy E'BM by pairwise Born-Mayer type repulsive

potentials K?M(r) [48] as

EBM = Z V.JBM(T) . (4.12)

i<j

The pairwise potentials have been parametrized as [48]

KJBMO") = 0,113.—g , (4.13)

where

. . 11+!“

(1,,- =b(1+3+—) .274. (4.14)
n,- n,-
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Here, 2.- and z,- are the valences of the two interacting ions, n,- and 11,- are the numbers

of valence electrons in the outer shells of the ions, and r.- and r,- are the ionic radii.

The valences have negative signs for electronegative ions. We use 11 = 8 for all

simple ions except for Li where we use 12 = 2. We neglect the z/n term at the

C60 sites due to the large number of valence electrons on the C60 molecule. We use

p = 0.345 A for the characteristic length of the Born—Mayer repulsion across the

whole periodic table [48]. For ion pairs containing a Cm molecule, corresponding to

the indexj in Eq. (4.14), we use r,- = r(C60) and express b as b = 5exp[—r(C60)/p].

We determine the value of 6 using the observed structural and elastic properties of

K3C60 [49] and find 5 = 1.76 x 105 eV. We find that this value of b fits the properties of

Rb3Ceo [49, 50], and use it for all other intercalation compounds as well. In Eq. (4.12)

we only consider repulsive interactions between the C60 sites and the neighboring

intercalant ions. We find that the non—Coulombic (mainly closed—shell) repulsion

between the intercalant ions can be neglected due to their small ionic radii and large

separations. We estimate the repulsive energy between two intercalant sites using the

Many Body Alloy Hamiltonian [51]. At the closest interionic distance, which is found

in A6C60, the pair interaction energy is z0.02 eV and can be safely neglected when

compared to the other energy terms. Of course, the interionic Coulomb repulsion is

taken care of in the Madelung energy.

Finally, the intercalated solid is further stabilized by attractive interactions be-

tween neighboring Cg; clusters, stemming from weakly overlapping valence orbitals

and Van der Waals interactions. Again, we decompose these interactions energies into

pairwise energies. In the A3C60 compound, the energy gain associated with attrac-

tive Cm—Cso interactions is 6 D(ng — 26'). As discussed, the Coulomb repulsion

part of this pairwise interaction is taken care of in the Madelung energy. In this
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context, we note that the inhomogeneity in the induced charge on the surface of the

C60 molecules does not change the crystal energy, since the corresponding interac-

tions average to zero in the crystal. On the other hand, the extra charge on a C60

molecule, which itself has 240 valence electrons, has a negligible effect on the non—

Coulombic part of the interaction between a pair of C60 molecules. Consequently,

D(Cg; — 20') as D(Cso — 060)- This fact explains why AH? is not sensitive to

D(C'eo — 060), as mentioned above. In the case of ACso and A3C60, the pristine and

the intercalated solids have the same structure. Then, the contribution of Van der

Waals interactions between C60 molecules to AH? stemming from the first and the

last step of the Born-Haber cycle will nearly cancel.

4.2.2 Structural and cohesive properties of fullerite inter-

calation compounds

The energies associated with the individual steps in the Born-Haber cycle depend

sensitively on the equilibrium structure of the corresponding compounds. Especially,

the large Madelung energies which stabilize the intercalated compounds are balanced

by repulsive interactions which in turn are closely related to the elastic properties

of the compounds. In order to calculate these energies with adequate precision, we

found it necessary to obtain accurate estimates of the equilibrium lattice constants

and bulk moduli for all compounds of interest.

Pristine fullerite is a face-centered cubic solid at room temperature, with C60

occupying the Bravais lattice sites. The conventional cubic unit cell has a large

lattice constant a = 14.20 A [6]. The lattice contains two types of interstitial sites,

namely the smaller tetrahedral and the larger octahedral sites, which can be occupied

by intercalants. There are two tetrahedral sites and one octahedral site per C60 in

the lattice. Using rc = 0.92 A for the atomic radius of carbon [36] and 3.5 A for the
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radius of the C60 molecule, we find that the diameter of the larger octahedral cavity

is z5.4 A and that of the smaller tetrahedral cavity is #35 A. These large sizes

guarantee that especially the octahedral cavity can host any element in the periodic

table. In the alkali intercalated (and superconducting) A3C60 compound [32], which

is the most stable phase for the alkali systems, all octahedral and tetrahedral sites

are filled. We found it instructive to compare formation energies in this compound

to the ACeo phase with the N2101 structure, where the intercalants occupy only the

octahedral sites. Upon prolonged exposure of fullerite to the intercalant metal vapor,

a transition from the fcc A3C60 phase to the saturated phase AsCso with the body—

centered cubic structure is observed [52]. In this case, each C60 molecule is surrounded

by 24 intercalant ions.

As in graphite intercalation compounds, the stability of each of these phases is

determined by the energetics of electron transfer between the intercalant and the

C60. For a given element, this energetics is given by the relationship between the

ionization potential and electron affinity of the intercalant atom and the C50 molecule,

respectively. As we discussed in Section 11, C60 can act both as electron donor and

electron acceptor. Consequently, both acceptor and donor elements can in principle

be intercalated in fullerite. We investigate donor intercalants from groups 1A and

2A and acceptor intercalants from groups 6A and 7A and summarize our results in

Figures 4.7, 4.8, and 4.9.

We determine the equilibrium lattice constant a of the compound by maximiz-

ing the cohesive energy of the intercalated solid with respect to the isolated ions,

Ecoh(A,‘tC€0") (or the corresponding acceptor compound), using the expression in

Eq. (4.10). The bulk modulus B is obtained from the second derivative of Ecoh(a)

with respect to a in the equilibrium geometry. The distance dependence of D(Ceo—
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Figure 4.7: Predicted equilibrium lattice constant a, bulk modulus B, and formation

enthalpy AH? for C60 fullerite intercalation compounds AC60(fcc structure). Results

are presented for elements A from the 1A, 2A, 6A and 7A groups of the periodic table

[From Y. Wang, D. Tomanek, G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)].
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Figure 4.8: Predicted equilibrium lattice constant a, bulk modulus B, and formation

enthalpy AH? for C30 fullerite intercalation compounds A3C60(fcc structure). Results

are presented for elements A from the 1A, 2A, 6A and 7A groups of the periodic table

[From Y. Wang, D. Tomanek, G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)].
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Figure 4.9: Predicted equilibrium lattice constant a, bulk modulus B, and formation

enthalpy AH? for C30 fullerite intercalation compounds A6C60(bcc structure). Results

are presented for elements A from the 1A, 2A, 6A and 7A groups of the periodic table

[From Y. Wang, D. Tomanek, G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)].
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Figure 4.10: Phonon band structure of (a) KCso, (b) K3050, and (c) Rb3Cso [From

Y. Wang, D. Tomanek, G. F. Bertsch, and R. S. Ruoff, Phys. Rev. B (1993)].
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C60), EMadclung and EBM in the intercalated solid has been discussed in Eqs. (4.9),

(4.11) and (4.12), respectively. Since both a and B are of intrinsic interest, they

are also listed in Figures 4.7, 4.8, and 4.9 for all the intercalation compounds we

investigated.

Once the equilibrium structure and the elastic behavior of the intercalated com-

pounds are known, the phonon spectra can be calculated by constructing the dynam-

ical matrix. These phonon spectra are important in the determination of relevant

phonon modes which can couple conduction electrons and lead to superconductiv-

ity [53, 54, 55, 56, 57, 58]. In Figure 4.10 we present the phonon band structure of

K060, K3C60, and Rb3C60 along the high symmetry lines in the Brillouin zone. The

corresponding phonon density of states for the superconducting compound K3060 [23]

is shown in Figure 4.11. The calculated phonon spectrum is characterized by low lying

C60 derived acoustic modes which show little or no hybridization with high—frequency

alkali derived optical modes, which can be understood as Einstein modes.

From our results in Figures 4.7, 4.8, and 4.9 we conclude that the lattice constant

a increases with increasing atomic number of the intercalant within the same group.

The decrease of a when comparing neighboring alkali and alkaline earth elements is

due to the larger Madelung energy in the divalent donor based solid. A similar trend

is found when comparing neighboring group 6A and group 7A elements, where group

6A based compounds have the smaller lattice constant. We find intercalant—induced

changes of the lattice constant to be relatively moderate due to the large size of the

interstitial sites in fullerite. Opposite and much more pronounced trends as for the

lattice constant are found for the bulk modulus B. The main reason for this fact is

the strongly anharmonic interionic repulsive interaction which leads to stiffer bonds

at smaller values of the lattice constant.
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The most important information which comes from our calculations is the forma-

tion energy AH? of intercalated fullerite. As seen from our results in Figures 4.7, 4.8,

and 4.9, we expect only alkali and heavy alkaline earth elements to form stable ful-

lerite intercalation compounds, indicated by the negative sign of AH} As we discuss

in the following Section, the trends across the periodic table can be understood from

the delicate balance between the Madelung energy, ionization potentials and electron

affinities of the intercalant atoms.

4.2.3 Discussion

The results for the formation enthalpies, presented in Figures 4.7, 4.8, and 4.9, can

be interpreted as resulting from several trends across the periodic table. The heats

of formation are dominated by the Madelung energy which, for a given group, does

not change significantly due to only moderate changes of the lattice constant. More

important are the changes of the ionization potential and electron affinity between

elements in the same group which enter in the second step of the Born-Haber cycle,

shown in Figure 4.6. Due to the decreasing ionization potential of group 1A and

2A elements with increasing atomic number, the heavier elements get ionized more

easily. This is reflected in larger absolute values for the reaction enthalpies, which

are indicative of a strongly exothermic intercalation process, in agreement with the

experimental trends [23, 24, 25, 26, 27]. An analogous decrease of the electron affinity

with increasing atomic number occurs in groups 6A and 7A. The heavier intercalants

are less likely to accept electrons and are consequently less reactive. This leads to

an increasingly endothermic behavior during the intercalation process of heavy group

6A and 7A elements.

We assume that group 2A elements are doubly ionized which is more difficult to  
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achieve than the single ionization of their alkali neighbors. This results in a smaller

energy gain (or even a loss) during the intercalation process. For the acceptor ele-

ments, attachment of two electrons in the 6A group is much more difficult than of a

single electron in the halide neighbor, resulting in larger energy losses predicted for

the intercalation of group 6A elements as compared to group 7A elements.

A more detailed discussion of the formation enthalpies of fullerite intercalation

compounds is presented, group by group, in the following subsections.

Group 1A

In the most dilute system with the ACGO stoichiometry, only Li does not form a com-

pound, mainly due to the large cohesive energy of the Li metal and the high ionization

potential of the Li atom. Na has a smaller cohesive energy and a lower ionization

potential than Li which makes the compound with NaCl structure marginally sta.

ble. The Na atom is much smaller than the interstitial sites and is likely to be in

off—center geometry. The additional gain in Madelung energy (with respect to the

high—symmetry geometry) is likely to further stabilize this compound. The radii of

group 1A intercalant elements never exceed the size of the octahedral cavity, result-

ing in very small changes of the lattice constant and bulk modulus. On the other

hand, the cohesive energies and atomic ionization potentials of alkali metals steadily

decrease from K to Rb and Cs, which is reflected in the increased stability of the

intercalation compounds with the heavier elements.

In the A3C60 phase, all the alkali elements form stable intercalation compounds

due to large Madelung energies. The calculated energy gain per atom in this phase

is larger than in the ACso phase, which is confirmed by the experimental observa-

tion that the A3C60 phase does not decompose into ACeo and the pure metal. The
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occupation of the smaller tetrahedral sites in the A3C60 phase makes these struc-

tures stiffer, which is reflected in a significantly larger bulk modulus. K3C60 and

Rb3C60 are the most thoroughly investigated fullerite intercalation compounds to

date [23, 24, 25, 26, 27, 49, 50, 59, 60]. As we mentioned in Section II, the cal-

culated repulsive interactions are based on the observed lattice constant and bulk

modulus of K3C60. We test our predictions in Rbngo, where we find our predicted

lattice constant a = 14.41 A to be in close agreement with the experimental value

an,“ = 14.49 A [49, 50], and the predicted bulk modulus B = 0.24 MBar to be in

similar agreement with the experimental value Bap: = 0.22 MBar [49].

As shown in Figure 4.9, all alkali compounds A6C60 with the bee structure are

stable. This has been confirmed by the successful synthesis of the AsCso compounds,

where A = Li, Na, K, Rb and Cs [52, 60, 61, 62, 63]. The observed insulating

behavior of these compounds is easily understood by the complete filling of the tlu

orbital of the C60 molecules by six donor electrons. The bcc structure of the AsCso

phase has a smaller packing fraction than the fcc lattice. There are only octahedral

interstitial sites in this structure, three per C60 molecule, all of them filled by four

alkali atoms (each alkali atom belongs to two neighboring octahedral sites). The

intercalants are well separated from each other by a nearest neighbor distance which

is Z l A larger than the bond length in the alkali metal. As we mentioned before,

the Born-Mayer repulsive energy between the intercalants is negligibly small in this

geometry as we estimated. The electrostatic attraction between the cg; molecules

and the large number of alkali counter—ions reduces the distance between nearest

neighbor C60 molecules by z 0.2 A with respect to the value in pristine fullerite. We

find the absolute value of the Madelung energy to be much larger in the A6C60 than

the A3C60 phase, in spite of the strong Coulomb repulsion between four intercalant
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ions at the same octahedral site. The energy gain per intercalant atom in the A6C60

phase is only slightly smaller than in the A3C60 phase. The negative sign of AH?

shows that the AsCeo phase can be formed by intercalating A into the A3C60 phase;

the slightly smaller value of AH? indicates that A6C60 is the saturated phase. We

find the reaction

13060 + 3A(metal) 3E» 16060 (4.15)

to be exothermic with AB = —4.95 eV in the case of K, which indicates that AeCeo

will not decompose into A3C60 and the metal A. On the other hand, one can speculate

about the possibility to synthesize the A3C60 compound by mixing the pristine C60

solid and the saturated AeCso compound, as

In the case of K, we find this reaction to be exothermic with AB = —1.32 eV.

This “back titration” is used as a well-defined synthesis process for K3C60 [49] and

Rbano [61]. The bulk modulus of the AsCso alkali compounds is considerably larger

than in the other phases since all interstitial sites are occupied by four intercalant

atoms. We find our theoretical value for the lattice constant of K6C60, a = 11.26 A,

to be in close agreement with the experimental value amp; = 11.39 A [52].

Group 2A

We assume in our calculations that the group 2A elements transfer both of their

valence electrons to C60 in the compound. We find that among these elements, only

Ba is stable in the ACso phase. The lattice constant of alkaline earth intercalation

compounds is smaller than that of the comparable alkali compounds, mainly due to
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the larger value of the Madelung energy. This decrease of the lattice constant from

group 1A to group 2A is reflected in an increased bulk modulus B. As in the alkali

compounds, we predict that the bulk modulus does not change from the heavy to the

light intercalants.

In the A3C60 phase, we find the compounds of Ca, Sr and Ba to be stable. The

lattice constants decrease considerably as compared to the ACso phase, which is

accompanied by a strong increase in B. Superconductivity at 8.4 K has been ob-

served in Ca intercalated fullerite with simple cubic structure and the stoichiometry

CasCso [28]. Our predictions regarding stable phases of alkaline earth based com-

pounds have been further confirmed by the recently observed stable phases of Sr and

Ba compounds [64].

The alkaline earth elements, which form stable A3C60 compounds, also form stable

AsCeo compounds. The large difference of 11.5 eV between the formation enthalpies

of the Be and the Ba compounds is mainly caused by the difference of 12.3 eV between

the first and second ionization energies of these elements. Based on our calculated

formation enthalpies for the A3C60 and A6C60 we conclude that the A3C60 phase

can be formed by an exothermic reaction from a mixture of pristine C60 and AsCso,

as indicated in Eq. (4.16). The strongly attractive Coulomb interactions reduce the

lattice constant of the C60 matrix substantially, more in the group 2A than in the

group 1A intercalation compounds. In the hypothetical Ca6C60 compound, the lattice

constant is 0.98 A smaller than in the corresponding compound of the neighboring

element K; the corresponding reduction of the Geo-C60 nearest neighbor distance in

the Ca compound is 0.85 A. This closer packing is reflected in the bulk moduli. In

the AeCeo phase, typical values of B are more than twice as large as those in the

more dilute A3C60 phase, and comparable to metallic Fe.
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As we pointed out above, the inability of Mg to form a stable intercalation com-

pound is mainly due to its large first and second ionization potentials. At this point,

it is instructive to speculate whether a stable compound could be formed based on

Mg". We have performed the calculations for the Born—Haber cycle of ngcg; and

compared the results to those for Nango' and found that the equilibrium structures

are very similar and most steps are energetically equivalent. The main difference be-

tween Na+ and Mg+ based compounds is the first ionization potential of the atoms,

which is 7.65 eV for Mg and 5.14 eV for Na. This reduces the formation enthalpy of

fullerite compounds based on monovalent Mg by 2.5 eV with respect to comparable

Na compounds, and hence makes the ngCso compounds unstable. The only pos-

sibility for a Mg—based fullerite compound to be stable exists if the bonds between

Mg intercalants and the C60 matrix are covalent. This seems to be confirmed by the

recent synthesis of a Mg-based C60 compound which has nonmetallic character [64].

Group 7A

We find that none of the halide compounds are stable with respect to pure C60 and

the halide gas. In order to understand this fact, we compared the individual energies

occurring in the Born—Haber cycles of alkali and halide compounds in the same row of

the periodic table. We found that the energy associated with the first step, involving

the vaporization of solid C60 and dissociation of molecular halide, and the last step,

namely the formation of the intercalation compound from the respective ions, are

very similar for the different group 1A and 7A systems. The large difference occurs

during the ionization step on the atomic level, as we can illustrate for the A3C60

compound. We find that the energy necessary to ionize an alkali atom is very similar

to the energy gain associated with electron attachment to a halide atom. Yet the
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energy to triply ionize a C60 cluster, I = 34.96 eV, is much larger than the energy

gain when attaching three electrons to a C60 molecule, A = 1.09 eV (see Tables 4.1

and 4.2). The large ionization energy of C60 enters the Born-Haber cycle for halide

intercalation compounds, and hence can be viewed as the cause of their instability.

The arguments used to explain the positive value of the formation enthalpy AH?

in the A3C60 halide phase apply also to the ACso and AsCso phases. The stability of

alkali compounds and the instability of halide compounds can again be explained by

comparing the vastly different total ionization potentials and electron affinities of the

C60 cluster for the given ionic final state, which are given in Tables 4.1 and 4.2.

The variation of the formation enthalpy between the light and the heavy halides

has two origins. First, the light halides have a larger electron affinity which results in

the stabilization of the compound. Second, the lattice constant 0 decreases from the

heavy towards the light elements, resulting in a larger Madelung energy gain during

the formation of the solid from the ions. The decrease of a with decreasing atomic

number is accompanied by a strong increase of the bulk modulus. There are two

counteracting trends which change the lattice constant from the ACso to the A3Ceo

phase. As our results in Figures 4.7, 4.8, and 4.9 indicate, the lattice expansion due

to the large halide ions occupying the smaller tetrahedral sites in the A3C60 lattice

is partly compensated by the Madelung energy gain during lattice contraction. This

still applies in the hypothetical Ango phase, where the lattice constant is significantly

smaller than in the A3C60 compounds, mainly due to the Madelung energy gain

associated with lattice contraction. This lattice contraction is again reflected in the

large increase of the bulk modulus in the AeCso phase as compared to the A3C60

phase. Still, the bulk moduli of halide intercalated compounds are well below those

of comparable alkali compounds, mainly due to the larger compressibility of the halide
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ions.

The arguments for the stability of halide intercalation compounds apply, of course,

only to the structures we studied here. Other possible structures we can think of could

contain endohedrals or halide molecules. The latter possibility has been confirmed

recently, when varying amounts of 12 have been found in C60 following exposure to

iodine [65, 66]. Fluorine atoms, on the other hand, tend to form covalent bonds with

C60, giving rise to a new compound based on fluorinated fullerenes such as C60F36 [67].

Group 6A

Our results in Figures 4.7, 4.8, and 4.9 indicate that group 6A elements, same as

group 7A elements, do not form stable intercalation compounds. Free doubly charged

group 6A A2‘ ions are known to be unstable [68]. Since no reasonable estimate is

available for the second electron affinity of these ions [69], we simply assume the

second electron affinity to be the same as the first electron affinity. When used in

the Born—Haber cycle, this value gives the lower limit of the formation enthalpy of

the compound. The positive values for AH? which we find for all group 6A elements

are again to be blamed mainly on the large ionization potential of the C60 molecule,

which dominates over the increased Madelung energy due to the larger charge of the

acceptor ions. Again, our results only apply to the three hypothetical geometries

we studied here. We cannot exclude the existence of other different group 6A based

intercalation compounds, such as compounds containing intercalant molecules. As

for group 7A elements, the variations in AH? within the 6A group are linked with

variations of the lattice constant of the compound and changes of the electron affinity

of the elements. We find the trends in the structural properties (a, B) of group 6A

based compounds to closely follow those found in group 7A intercalation compounds.
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Phonon Spectra and Superconductivity

One of the most important properties of intercalated fullerite is superconductivity,

which has been observed in many alkali intercalation compounds with the A3C60

stoichiometry [23, 24, 25, 26, 27, 29]. The observed nonzero isotope effect [70, 71, 72] in

these compounds makes the electron-phonon coupling mechanism a likely candidate

for the pairing of electrons. Reliable phonon spectra are an essential prerequisite for

the resolution of the remaining uncertainties regarding the important phonon modes

which are responsible for superconductivity in these compounds [53, 54, 55, 56, 57, 58].

Our results for the phonon spectra of KCso, K3C60, and Rb3C60 are shown in Figs. 4.10

and 4.11.

The phonon spectra consist of low lying C60 derived acoustic modes which are

well separated from high-frequency optical modes due to the alkali intercalants. The

latter modes have low dispersion and can be interpreted as Einstein modes. The

frequency of the optical modes increases with increasing stiffness of the interaction

potential between the alkali atom, acting as Einstein oscillator, and the matrix. For

a given intercalant A, this frequency is expected to be lower in the ACso structure,

where only the octahedral sites are filled, than in the A3C60 structure, which contains

occupied tetrahedral sites. In the latter case, we expect two optical bands, one due to

octahedral sites at a frequency comparable to ACeo, and the other at a much higher

frequency due to alkali atoms in tetrahedral sites. This is clearly the case for the

optical modes at u = 1.8 THz (due to octahedral K) and at u = 2.7 THz (due to

tetrahedral K) in KCso and K3C60, as shown in Figs. 4.10(a) and (b). Figure 4.10(c)

reflects the fact that the bonding in Rb3C60 and K3C60 are similar. The comparison of

the corresponding spectra indicates that the optical modes of alkali atoms are reduced

in frequency according to the large 2:1 mass ratio between Rb and K. The acoustic
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Geo-derived part of the spectrum is much less affected by the change form K to Rb.

The absence of hybridization between the alkali and the C60 derived modes has

also been predicted previously by Zhang et al. [33], albeit due to different physics.

Our results indicate that in the equilibrium geometry of K3C60, the K-Cso bonds

are compressed in the tetrahedral sites, while the Cso-Cso bonds are stretched. The

stiff K—Cso interaction potentials — especially in the tetrahedral sites — push the

corresponding Einstein modes above the highest C60 derived acoustic modes, hence

suppressing hybridization. The calculation in Ref. [33] is based on the simplifying

assumption that all individual bonds in the lattice are relaxed. The consequence

of this model is a suppressed hybridization between the K-derived optical and C60—

derived acoustic modes in spite of the fact that the Einstein modes due to tetrahedral

K atoms are predicted [33] to lie in the frequency range of C60 fullerite.

4.3 Conclusions

Among the structural properties of C60 in the solid, I have investigated the elastic

response of the pristine and intercalated crystals to hydrostatic pressure, and the

stability of the intercalation compounds.

In pristine fullerite, our results indicate that at zero pressure, carbon atoms in

neighboring “buckminsterfullerene” clusters are no closer than 2.65 A apart and in-

teract by pairwise Van der Waals forces. At increasing pressures, we observe a gradual

transition to a hard-core repulsion between neighboring clusters. Only at high pres-

sures beyond z70 GPa, the bulk modulus of fullerite exceeds that of diamond and a

fullerite to diamond transformation should occur.

In C50 fullerite intercalation compounds with the ACso, A3C60, and A6C60 stoi-

chiometries, T = 0 K formation enthalpies have been predicted using a thermody-
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namic Born-Haber cycle. Energies associated with the individual steps in the cycle

have been carefully estimated using available experimental and theoretical data for

both donor and acceptor compounds. The corresponding calculations provide de-

tails of the structure, lattice constant, and the bulk modulus of the intercalation

compounds as well as the phonon spectrum.

We have evaluated and listed the corresponding structural and elastic data to-

gether with the predicted formation enthalpies for groups 1A, 2A, 6A and 7A of

the periodic table. Phonon spectra, available from our total energy calculations, are

presented for selected alkali intercalation compounds which show superconducting

behavior.

Our results indicate that alkali elements form stable fullerite intercalation com-

pounds. We found alkaline earth elements Ca, Sr, and Ba to be the most prominent

candidates for intercalation. The corresponding calculations for acceptor intercalants

indicate that none of the group 6A and 7A based ionic intercalation compounds is

stable with respect to solid C60 and the intercalant in the standard form. Our results,

however, do not address the possibility of intercalating molecules, or modifying the

C60 matrix in a chemical reaction.

The usefulness of our approach to estimate formation enthalpies can ultimately

only be judged by corresponding experiments. We also hope that future experiments

can reduce the uncertainty regarding some of the quantities used in the Born—Haber

cycle, such as the higher electron affinities and ionization potentials of C60 molecules,

and equilibrium structures, lattice constants and bulk moduli of the compounds. We

have also successfully applied the Born—Haber cycle method to calculate the for-

mation enthalpy of rare earth intercalation compounds [73]. The stability of these

compounds depends crucially on the charge transfer between the components, which
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is also responsible for their superconducting properties. Similar calculations for the

stability of endohedral A@C60 compounds [74] indicate the importance of the polar-

ization energy of the C60 shell for their stability, in agreement with available ab initio

results.
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Chapter 5

Electronic Properties of the C60

Clusters

In Section 1.2, I briefly discussed the equilibrium structure and the electronic struc-

ture of the C60 fullerene. In this Chapter, I will present results of my calculations,

based on the tight—binding Hamiltonian described in Chapter 2, for the electronic

properties of this cluster. In Section 5.1 I will discuss the static polarizability and

hyperpolarizability of C60 and in Section 5.2, I will present results for the dynamical

response of the C60 cluster to an external electromagnetic field.

The following results for the static polarizability have been published in Ref. [1]

and those for the dynamical response in Ref. [2].

5.1 Linear and nonlinear static polarizability of

C60

C60 is a unique molecule with a hollow spherical cage structure. One of the most

important properties of such a system is the static polarizability. This quantity de-

scribes the induced dipole moment in an external electrical field, and hence provides

a direct measure of the degree of mobility for the electrons. Once the polarizability of
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the C30 cluster is known, the susceptibility of the C60 solid, a macroscopic property,

can be determined using the Clausius-Mossotti relation. Of great importance, specif-

ically for applications in sensor technology, is the nonlinear component of the static

polarizability. In analogy to long conjugated polymers, a large nonlinear polarizabil-

ity in C60 would appear highly plausible. My investigation has been motivated by

a report of Blau and coworkers [3] of a very large absolute value1 of the third—order

polarizability I7] = 1.5 x 10‘42 m5/V2 = 1.07 x 10‘28 esu for C60 molecules in ben-

zene solution. This value is enormous compared to that of the benzene solvent [4],

7 = 3.85 x 10"36 esu, and would make these systems prime candidates for a direct

application in nonlinear optical devices. An independent study of the same property,

performed on C60 in solution using second harmonic generation measurements [5], in-

dicated a substantially smaller value of the hyperpolarizability M = 7.5 x 10'3" esu.

Similar results to the latter study have been obtained using degenerate four—wave

mixing for C60 films [6, 7], yielding the third order optical susceptibility for the solid

X(3) = 7 x 10"12 esu, which corresponds to2 M m 3.13 x 10‘34 esu. On top of the

discrepancy between the different experimental data, the expression for the nonlinear

susceptibility [8] which has been applied to calculate 7 in C60 is of doubtful applica-

bility, and fails by several orders of magnitude to reproduce the data in Ref. [3], as

also shown in Ref. [9].

In an attempt to clarify the situation for these interesting systems [10, 11], we

have calculated the optical response of an isolated C60 cluster. Since this is not easy

even for simple molecules, we first verified the validity of our approach by applying

the same computational techniques to the benzene molecule which is well understood.

 

lPresent experimental methods are unable to determine the sign of 7 in C60.

2As we discuss later on, )6” is related to 7 through the density of C60 clusters and the Lorentz

field factors associated with the shielding of the external field.
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Let us consider an isolated C60 molecule in the electric field 8. The induced dipole

moment p is given (to the lowest three orders) by

p: 05+783, (5-1)

where a is the (linear) polarizability and 7 is the (third order) hyperpolarizability.

Here we also note that the second order hyperpolarizability is zero in centrosymmetric

systems such as the C60 cluster. These polarizabilities can be determined from the

energy change3 of a molecule due to an external field 8

AB = —%a82 — £784 . (5.2)

For the corresponding solid, the polarization density P is related to p and 8 by the

density of constituents N. In cgs units, it is given by“’5

P : Np = x‘”8 + X(3)s3 . (5.3)

Calculations of higher—order static polarizabilities are very nontrivial due to the high

accuracy requirements even in relatively simple systems such as benzene [12]. To

evaluate the energy change AB in Eq. (5.2) due to an applied electric field, we use

the tight—binding Hamiltonian discussed in Chapter 2. In the presence of the static

electric field 8 along the z direction, we consider a shift of the on—site energies by

A6 = —e£z.

3We will use electrostatic cgs units (esu) from now on. For isolated molecules, the conver-

sion factors from SI to esu are as follows. a is given in sz/V [SI] or cm3 [esu], and a [SI]

= (4160/106)a [esu]. 7 is given in Cm“/V3 [SI], and the corresponding conversion is 7 [SI] =

41rco/(9 x 1014)7 [esu]. Note that our definition of 7 in Eq. (5.1) does not contain 60. Conse-

quently, the conversion of 7 values in m’SV‘2 units to our SI units involves a multiplication by

to = 0.885 x IO'IICV'lm’l.

4For the solids, the conversion factors from SI to esu are x“) [S1] = 411' x“) [esu] and xm [SI] =

41r/(9 x 108)x(3) [esu].

sln SI units, P is defined by P = 60(X(1)£ + x(3)£3), hence it contains an extra factor 60 as

compared to the definition in Eq. (5.3).
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To obtain the static polarizabilities, we use two approaches. We determine the

energy change of the system due to 8 using perturbation theory and check the numer-

ical results by directly diagonalizing the Hamiltonian in the presence of the electric

field.

The perturbative vacuum amplitude diagrams for the second and fourth order

perturbation terms are shown in Figure 5.1. As discussed above, the linear polariz-

ability is related to the energy change of the system. In second-order perturbation

theory, this energy change is given by

AEm—— 2ZZ 7],—7%vaP" (5.4)
1. _

Here, p and h label single particle and hole states, respectively, and E? (Eh) denote

the corresponding energies. For the electric field along the z direction, the transition

matrix elements are given by Vi,- =< 2'] — e82]j >. The prefactor 2 takes care of

the spin degeneracy. The third—order nonlinear polarizability is related to the energy

change in fourth-order perturbation theory which is given by [13]

 

 

Vh V IV! :1 uhAB“) =
p pr 2? p

222?:ng
(Eh — Ep)(Eh — Ep’)(Eh _ E13")

Vhp Vpp'nlh' Vh’h

—2

223;; (E), - E,)(E;, " EP'XE” — EP')

Vhp Vph" Vh"h' Vh'h

+:22: (E. — E.)(E. — E.)(E.~ - E.)P h’ h”

 

EVthph'Vh'pIme

{3222112. — E.)(E. - E.)(E. - E.) ' (5'5)Pp'h'

 

Diagrams 2 and 3 in the fourth order diagrams are equal, giving the prefactor of 2 in

the second term. The fourth term of the Eq. (5.5) is the sum of diagrams 5 and 6.

AE“) can also be calculated in perturbation theory using a basis of many—particle
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Figure 5.1: The Graphs for (a) the second order, and (b) the fourth order perturbation

theory expressions in Eqs. (5.4) and (5.5). -+— represents a particle state and -+—

denotes a hole state.
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states [14, 15]. However, that formula is more difficult to use numerically since its

energy denominators can be small, unlike the particle—hole energies in Eq. (5.5).

The expressions in Eqs. (5.4) and (5.5), together with Eq. (5.2), yield directly the

optical polarizabilities a and 7. We find that the values for a and 7 obtained using

perturbation theory agree with values which we calculate directly by diagonalizing

the tight—binding Hamiltonian.

In order to determine the reliability of our approach, we first calculate the linear

and third-order polarizabilities of the benzene molecule, a system which has been

studied extensively both experimentally [4, 16] and theoretically [12]. For this pur-

pose, we have to augment our tight—binding Hamiltonian for carbon by parameters

suitable for hydrogen. We adjust the difference between the H13 and C2p energies to

the difference of the atomic ionization potentials, which gives E(HIS) = —2.3 eV. For

the hydrogen—carbon hopping integrals, we use V,” = —3.15 eV and V,,,,, = 1.7 eV

at the H—C distance of 1.07 A found in CGHG, obtained by fitting the level spectrum

of a CH radical which we calculated using the Local Density Approximation [17].

Our results for CeHe are presented in Table 5.1. The calculated polarizability

in the plane of the benzene molecule is a” = 31.1 A3. Assuming the same value

of the polarizability along the two principal axes in the molecular plane and zero

perpendicular to it, we would predict < 0: >= (2/3)a“ = 20.7 A3. This value is

consistent with the experimental result < 0 >= 10.0 A3 obtained for the solution [4]

in view of the fact that we have neglected internal screening in the benzene molecule.

The third order polarizability turns out to be 7” = 13.5 x 10‘36 esu, giving < 7 >=

9.0 X 10"36 esu. This is again comparable to the ab initio results [12] in the range

of < 7 >= 1.3 — 1.7 x 10"36 esu and experimental data of Ref. [4] giving < 7 >=

3.85 x 10’36 esu. Our hyperpolarizability is somewhat larger than the ab initio results
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Table 5.1: Calculated and observed optical susceptibilities of C60 and CeHs molecules.

 

 

 

 

    
 

 

< abare > < ascreened > X“) < 7bare > < 7screened > X(3)

(A3) (A3) (esu) (10'36 esu) (10"36 esu) (10‘1” esu)

0.116 a 20.7 9.0

G.H., b 10.02 3.85 0.101

60" 215.0 35.7 0.063 346.2 2.3c 0.05d

60° 195 56 0.116

060’ 1.07 x 108

C60“ 750

06.," 0.23911 313 7

“ Present calculation.

5 Experimental values of Ref. [4].

C This value is obtained using < ab". > and < amemd > of Ref. [18].

d This value is obtained using the experimental value 71 = 2 of Ref. [6] in the

expression 712 = 1 + 42x“).

° Theoretical values of Ref. [18].

f Experimental values of Ref. [3].

5 Experimental values of Ref. [5].

11
Experimental values of Ref. [6].

which again is to be expected due to our neglect of intramolecular screening.

Screening is even more important in the large C60 cluster than in benzene, and

we shall include it in our calculations of this system. For a spherical molecule such

as the C60 fullerene, the screened linear and third order nonlinear polarizabilities are

given by

abare

ascreencd = abare/(l + R3 ) a (5'6)

 

and

abarc

7screened = ”flare/(1 "l" R3 )1l , (5.7)
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where R is the radius of the fullerene. The matrix surrounding the cluster in a bulk

sample also modifies the external field and hence the screening. We determine the

bulk linear susceptibility using

41r

X“) = Nascrccned/(l _ ”'3‘Nascreened) a (5.8)

which is equivalent to the Clausius—Mossotti relation. In the same way, we calculate

the third—order nonlinear susceptibility using

47r

X(3) = NVscrcencd/(l _ E'Ivascreened)4 - (5.9)

In these equations, N z 1/720 A3 is the density of clusters and amemd and 7.,mencd

are the screened linear and nonlinear polarizabilities of an isolated cluster, respec-

tively.

Our results for the C60 clusters and the solid are given in Table 5.1. As mentioned

above, our perturbation theory calculations are consistent with results obtained by a

direct diagonalization of the Hamiltonian in a weak external field. We fit the energy

to Eq. (5.2) using 5 = 0 — 0.01 V/A which is much weaker than the field 8 z 0.7 V/A

when the first level crossing occurs. We find a large bare polarizability 0164.. = 215 A3,

which is reduced considerably due to the internal depolarization field to amcmd =

35.7 A3, close to R3 = 42.8 A3 the linear polarizability of a metallic sphere. It is also

in agreement with the quantum—chemical result [19] a z 300 — 400 a.u., depending

on the basis set. The latter value is very close to that for a classical metallic sphere

with a radius R = 3.5 A, amemd = R3 = 42.9 A3. Of course, such large screening

cannot be expected in the planar benzene molecule.

The polarizability of an isolated cluster can be inferred from the linear suscepti-

bility or index of refraction of the bulk material using the Clausius—Mossotti equa-

tion. Our predicted susceptibility is x“) = 0.06, in relatively poor agreement with
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the experimental value x“) = 0.24 [6]. Part of the reason for this discrepancy is

that Coulomb interaction is overestimated by the approximation of Ref. [2]; a better

treatment of the Coulomb interaction with the tight—binding Hamiltonian yields a

susceptibility of x“) = 0.116 [18]. Also, the crystal field in the bulk breaks the sym-

metry of the C60 molecule, so that direct HOMO—ALUMO transitions can occur.

The susceptibility of the solid would also be increased by the possibility of a virtual

electron transfer between C60 molecules.

We find a very large positive value of < 71,...c >= 3.5 x 10'3“ esu for the bare third

order hyperpolarizability, more than one order of magnitude larger than in benzene.

Our value is in fact within the range of two of the experiments, Refs. [5] and [6].

However, this value gets screened by the induced dipole field in the C60 which will

be much stronger than in the planar C6H6 structure [20]. Using the screening factor

01mm...) /04,...c = 3.5 from Ref. [18], we find < 78mm... >= 2.3 x 10"36 esu, about the

same as in benzene. For the solid, we obtain x(3) = 5 x 10"“ esu using the empirical

susceptibility, which is almost two orders of magnitude smaller than the experimental

value of Ref. [6].

We do not understand the origin of this large discrepancy. One possible reason is

the high laser frequency 711.) z 1.2 eV used in the experiments. We have considered

the effect of the frequency dependence in the perturbation calculation, Eq. (5.5). We

find that a substantial change in the hyperpolarizability only occurs due to virtual

two—photon transitions within a very narrow energy range of the HOMO—LUMO

transition. Since the transition is spread out by crystal field effects, we ignore this

enhancement in the present paper. Another possibility is that one must go beyond

the tight—binding approximation to calculate this quantity, as seems to be the case

for the linear susceptibility.
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In any case, our result is more than seven orders of magnitude below the data

quoted in Ref. [3], and we conclude that these data are probably in error.

5.2 Collective electronic excitations of C60

In this Section I will discuss the dynamical response of a C60 cluster to an external

electromagnetic field. Motivated by a measurement of the photoabsorption strength

in C60 clusters in the low frequency region [21], we have calculated the electromag-

netic response of this remarkable system at nonzero frequencies. As I discuss in the

following, we obtain quantitative agreement with the experiment for 77.10 S 10 eV.

Moreover, our calculations predict a giant Mic—type resonance at 710) z 20 eV, which

was later observed experimentally [22].

We use linear response theory, which is most appropriate for large systems with

mobile electrons where screening can be significant. Within the one—electron theory,

for which we shall use mostly a tight—binding model, the dipole operator has two

contributions, from a dipole moment due to intersite charge transfer, and from the

dipole moment on a site. We write the dipole operator as

Dz : D£‘)+D]})

= 2 al.-aw 2(i) + (1201,19... + al,..a...) , (5.10)

01,3

where 2(3) is the z—coordinate of the i—th carbon atom and d is the s —-) p2 dipole

matrix element on a carbon atom.

Starting from an independent particle picture, we define the polarization propa-

gator for the free dipole response by [23]

II(O)w = < Dzh> 2 . .
D.( ) gl pl l I(Cp-Eh)2_(w+"})2

 (5.11)
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Here, p and h label particle and hole eigenstates of the single—particle Hamiltonian

and 6,, and c), are the corresponding particle and hole energies.

The full response requires the interaction between electrons, which we shall ap-

proximate as a pure Coulomb interaction. For the dipole response we only need

to consider the fields generated by D9) and D12). We shall first consider a simple

approximation, keeping only the charge operator 0],". Then the electron—electron

interaction is e2 D9) Dgll/Re', where R z 3.5 A is the radius of the C60 cluster. The

screened response function due to D9) in Eq. (5.1) is given in this approximation

by [23]

How) = (1 + nl°’(w);::)-‘n£°)(w) . (5.12)

Note that in the present approach the 11’s are ordinary functions and the equation is

algebraic and easily computed. We shall later consider a more refined approximation

by including the dipole moments on the sites, described by D12). The effect will be

to replace Eq. (5.3) by a 2 x 2 matrix equation

11 : (‘1' + fI(°)17)-‘fl(°) , (5.13)

Here, we have separated the charge and the internal dipole operators and write

the free response as a 2 X 2 matrix with elements

2(6, —- Eh)

IN) = < w01><hwm > . ..4400) 2:: 14 z I I z b? (€p__efi)2__(u)4_zn)2

mh

 (5.14)

l7 in Eq. (5.4) is the 2 x 2 matrix of the interaction, given by

~ 62 1 1/2

V = E5( 1/2 R/2d )' (5°15)



135

The HOMO to LUMO transition is forbidden by parity, and the lowest optically

allowed transitions are hu --1 tlg, hg —) t1“, and hu —-1 kg, with tight—binding excita-

tions energies of 2.8 eV, 3.1 eV, and 4.3 eV. These values compare well with the LDA

values 2.9 eV, 3.1 eV and 4.1 eV [24] and are reflected in the free response shown

in Figure 5.2(a). As we discuss in the following, the electron interaction changes the

excitation energies significantly and is essential for even a qualitative understanding

of the transitions strengths.

Our results for the screened response, based on the RPA treatment of the tight—

binding Hamiltonian and the charge dipole operator D9), are shown in Figure 5.2(b).

A comparison to the free response shows that the lowest allowed particle—hole transi-

tion is slightly shifted in energy to 2.9 eV and agrees well with the observed [21, 25]

value of 3.1 eV. The oscillator strength6 of this transition is drastically reduced by

a factor of 400 from the value 3.8 in the free response to 0.010 in the RPA. This

brings the transition strength close to the measured [25] oscillator strength of 0.004.

An independent calculation of the interacting response has been performed using

the quantum-chemical CNDO/S method [26], but this method yielded an oscillator

strength of 0.08, which is considerably less screening than in RPA.

Turning to the next few excitations, we find the transitions to be shifted sub-

stantially upward in energy as compared to the free response shown in Figure 5.2(a).

This brings them into fair agreement with the observed [21, 25] dipole excitations at

3.76 eV, 4.82 eV and 5.85 eV. These transitions are also screened, but the screening

factor is only in the range 10—30. They thus appear relatively strong compared to the

low transition, in agreement with the experimental data of Ref. [25] [see Figure 5.2(c)].

The results for the low—lying excitations are essentially unaffected when the on—

 

6The oscillator strength is defined by f = 2771.] < fIDzli > |2(E, - E§)/h2.
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Figure 5.2: Free response (a) and RPA response (b) of C60 clusters to an external

electromagnetic field (solid line). The sharp levels have been broadened by adding

an imaginary part 717) = 0.2.eV to the energy. The dashed line indicates the inte-

grated oscillator strength. (c) Observed photoabsorption spectrum of C60 in solution

[From H. Ajie et al, J. Phys. Chem. 94, 8630 ( 1990) and G. F. Bertsch, A. Bulgac,

D. Tomanek, and Y. Wang, Phys. Rev. Lett. 67, 2690 (1991)].
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site dipole operator D?) is added to the response7. For example, the positions of the

low states are shifted by less then 0.1 eV, and the strength of the lowest transition

is changed by only 5%. As we will discuss below, the effect of D9) on the higher

excitations is much more pronounced.

Turning to the plasmon—like transitions at high energy, we first note that the

tight—binding Hamiltonian with the operator 0]” has a total oscillator strength of

N = 2m/h2 £th I < plDfi‘llh > [2(cp—eh) z 180, which is, of course, the same in both

the free response and in RPA. This value is close to the theoretical upper bound of 240,

ignoring the core electrons, giving some credibility to the model for the entire energy

range. Figure 5.3 displays the excitation spectrum of C60 extending up to plasmon

energies, obtained using several approximations. The D9) free response function,

shown in Figure 5.3(a), has a broad band of transitions in the “intermediate” energy

range hw z 10 - 20 eV. With the electron—electron interaction present, the main

effect of the Coulomb field is to collect the strength of these transitions into a single

collective excitation, a Mie—type plasmon. The spectrum shown in Figure 5.3(b) has

this giant resonance at an unusually high frequency 711.) z 30 eV, well beyond the

typical plasmon range (7102 < 10 eV), which has not been observed so far. In contrast

to the low energy region, the inclusion of the on—site dipole term D12) has a substantial

effect on the high—frequency response. The total integrated oscillator strength is

reduced to 71, leaving most of the total strength outside the model space. We find

that these extra terms shift the plasmon energy to has z 20 eV and decrease the

oscillator strength by a factor of £2 when compared to the results in Figure 5.3(b). A

similar plasmon mode at 710: z 22 eV has been observed previously [27] in amorphous

carbon films.

7The oscillator strength is defined by f = 2me| < fIDzli > [2(E', — E;)/f12.
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in an expanded energy region. (a) Free response, (b) RPA response based on the

charge term D9), and (c) RPA response based on both the charge and the dipole

terms D9) and D?) in Eq. (5.6). (d) Interacting response of a thin jellium‘shell,

describing the electron—electron interactions in LDA. The response function is given

by the solid line, and the integrated oscillator strength is shown by the dashed line

[From G. F. Bertsch, A. Bulgac, D. Tomének, and Y. Wang, Phys. Rev. Lett. 67,
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This high frequency Mie—like plasmon has its origin in the high valence electron

density p in the Geo cluster, and can be understood qualitatively by considering a

conducting spherical shell with a radius R z 3.5 A and 240 conduction electrons. The

Mic frequency for a solid conducting sphere is given by 7110 = [47r)r)e""/(3m)]1/2 z 25 eV.

We have also made a jellium calculation for a charged spherical shell using the program

JELLYRPA [28], and find the strength function shown in Figure 5.3(d). The energy

agrees with Figure 5.3(c), but in the jellium model the total oscillator strength is

concentrated in the plasmon. An additional plausibility argument for the jellium

picture of C60 follows from the static polarizability a. We find the classical conducting

sphere value a = R3 = 290 a.u. to be in good agreement with the tight—binding value

of 250 a.u. and the quantum—chemical result [19] a z 300 — 400 a.u., depending on

the basis set.

Our predictions for the Mie plasmon at 710) z 20 eV have been confirmed by

photoionization experiments on free C60 clusters [22]. The C3}, photoion yield as a

function of photon energy is reproduced in Figure 5.4 and shows a clear maximum

in the predicted energy range. Note the low frequency cutoff in the experimental

spectrum at the ionization potential of C60 at 7.54 eV.

1 would like to mention that there are several other effects that should be included

in a more refined treatment of the response function. We have neglected higher

multipolarities of the Coulomb screening field, as well as the exchange and correlations

terms in the residual interaction. These additional terms could alter the very large

screening factor for the lowest transitions. However, we feel that the dipolar Coulomb

interaction is dominant in the Mie plasmon region, and a refinement of this interaction

would not significantly affect the results. This has been confirmed by a subsequent

calculation of Bulgac and Ju [18].
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5.3 Conclusions

1 have presented results for the static and dynamic dielectric response of the C60

cluster, based on a tight—binding Hamiltonian for the single—particle states.

Our calculations of the polarizability and hyperpolarizability of the C60 cluster

have shown that the valence electrons are quite delocalized. Its linear polarizability

is close to that of a metal sphere and the hyperpolarizability is close to that of

conjugated polymers which can be understood in the free electron model.

Our RPA calculations of the dynamical response indicate strong dynamical screen-

ing which results in a collective electronic plasmon mode in C60, Due to the strong

Coulomb interaction between the electrons, the lowest allowed excitation at 710) z

3 eV is strongly screened by a factor of 400 as compared to the free response, in

good agreement with experiment. Other low lying dipole excitations are moderately

suppressed. We predict a giant collective resonance at an unusually high energy

770) z 20 eV, which has been recently observed experimentally [22]. We interpret

this mode as a Mie plasmon caused by the large delocalization of the carbon valence

electrons and the large charge density.
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Chapter 6

Summary and Conclusions

Cluster physics is a fascinating new field of growing importance. Thanks to my

advisors, I have been able to actively participate in the research in this field, and

to witness its rapid growth. In this Thesis 1 have investigated both metallic clusters

and nonmetallic clusters. The main achievements of this Thesis are: (1) predictive

calculations for the optical response of small Lin and Nan clusters, specifically the

evolution and fragmentation of the plasmon mode; (2) predictions of the stiffness

of C60 fullerite as a function of external pressure; (3) prediction of the stability of

the fullerite intercalation compounds; (4) investigations of the linear and nonlinear

polarizability of the C60 cluster; (5) predictions of the dynamical dielectric response

of C60, specifically the high—frequency Mie plasmon mode.

In Chapter 1, I presented a brief overview of cluster properties. I have focused on

the structural and electronic properties of alkali metal clusters and the C60 cluster

and discussed the experimental techniques as well as theoretical concepts pertinent

to my Thesis.

Chapter 2 has been devoted to the theoretical tools used in the study of clusters

in this Thesis. I reviewed the techniques used in this Thesis, namely the Density

Functional Formalism and the Local Density Approximation (LDA) as well as the
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tight-binding formalism for ground-state properties of clusters, and the Random

Phase Approximation (RPA) for electronic excitations.

In Chapter 3, I have presented results for the equilibrium structure of small Nan

and Lin clusters and collective electronic excitations and their damping in these sys-

tems. The results for the collective excitations in the first two closed—shell clusters

with n = 2,8 atoms are given in detail. Our results indicate that the coupling of

electronic levels to vibrational degrees of freedom accounts quantitatively for the ob-

served width of the collective electronic excitations in alkali dimers. The origin of the

analogous line broadening in Nag is presently unresolved.

In Chapter 4, I have presented calculations of the equilibrium structure of 060

fullerite as a function of external pressure. I found that at zero pressure, carbon

atoms in neighboring C60 clusters are no closer than 2.65 A apart and interact by

pairwise Van der Waals forces. Consequently, the bulk modulus of C60 should be very

low, similar to a molecular solid. With increasing hydrostatic pressure, a gradual

transition to a hard-core repulsion between neighboring clusters is predicted. Only at

high pressures beyond @70 GPa, the bulk modulus of fullerite is expected to exceed

that of diamond, and a transition to diamond is predicted.

In order to sort out the likely candidates for C60 based superconductors, I have

also calculated T = 0 K formation enthalpies of donor and acceptor based C60 ful-

lerite intercalation compounds with the A060, A3C60, and A6C60 stoichiometries, as

well as their structural and elastic properties. The results indicate that all alkali

and some alkaline earth elements form stable fullerite intercalation compounds. The

corresponding calculations for acceptor intercalants indicate that none of the group

6A and 7A based ionic intercalation compounds is stable with respect to solid 060

and the intercalant in the standard form.
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I have devoted Chapter 5 to the study of the electronic properties of the C60

cluster. Our calculations, based on a parametrized tight—binding Hamiltonian, have

proven the valence electrons to be quite delocalized, giving rise to a large polarizabil-

ity and hyperpolarizability of the C60 cluster. Our RPA calculations of the dynami-

cal response indicate strong dynamical screening resulting in significant screening of

low—lying excitations, and a giant collective resonance at an unusually high energy

771.0 m 20 eV. This mode, which has been recently observed experimentally, has been

interpreted as a Mie plasmon mode, which results from the large delocalization of the

valence electrons and their large charge density in C60,
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