


THESIS STATE

IIUIIHUIIHNIINIIINIHHIIIMI

3 00910 9996

This is to certify that the

dissertation entitled

Architecture and Statistical Model of a Pulse-Mode
Digital Multilayer Neural Network

presented by

Young~Chul Kim

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Electrical
Engineering

A= -

Major professor

Date ~b. 7 1293

MSU is an Affirmative Action/Equal Opportunity Institution 0-127T71



| LIBRARY
| Michigan State
i University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.

DATE DUE DATE DUE DATE DUE

;] 'Y ﬁ,t

MSU Is An Affirmative Actior/Equal Opportunity Institution
cicirc pm3-p.1







ARCHITECTURE AND STATISTICAL
MODEL OF A PULSE-MODE DIGITAL

MULTILAYER NEURAL NETWORK

By

Young-Chul Kim

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1993




ABSTRACT

ARCHITECTURE AND STATISTICAL
MODEL OF A PULSE-MODE DIGITAL
MULTILAYER NEURAL NETWORK

By

Young-Chul Kim

A new architecture for a pulse-mode digital neural network is presented. Algebraic
neural operations are replaced by stochastic processes using pseudo-random pulse se-
quences. Synaptic weights and neuron states are represented as probabilities and
estimated as average rates of pulse occurrences in corresponding pulse sequences. A
statistical model of error (or noise) is developed to estimate relative accuracy associ-
ated with stochastic computing in terms of a mean and a variance.

The stochastic computing model translates into simple logic gates as basic com-
puting elements leading to a high neuron-density on a chip. Furthermore, the use
of simple logic gates for neural operations, the pulse-mode signal representation, and
the modular design techniques lead to a massively parallel yet compact and flexible
network architecture well-suited for VLSI implementation. Any size feed-forward net-
work can be configured using the modules. Processing speed is independent of the

network size.



Multilayer feed-forward networks are modeled and applied to pattern classifica-
tion problems such as encoding and character recognition. The architecture and all
digital sub-components in the proposed neural network are modeled and simulated
in VHDL. Computational accuracy is analyzed and the network performance is eval-
uated in terms of a correct classification rate. The simulation experiments in these
applications show the network performance is competitive with that of determinis-
tic DMNN simulations and ordinary back-propagation networks while retaining the

desirable properties of high speed and high density on a chip.






Copyright by

Young-Chul Kim

1993







To my parents and my wife







ACKNOWLEDGEMENTS

I would like to thank my major advisor, Dr. Michael A. Shanblatt, for his guid-
ance and encouragement throughout the years of this research.

I also want to thank all the members of my Ph.D guidance committee, Dr. P.
David Fisher, Dr. Chin-Long Wey, Dr. Moon-Jung Chung, and Dr. Jacob Plotkin,
for their valuable comments and suggestions.

Finally, I wish to dedicate this dissertation to my parents for their love, under-
standing, and support, my wife, Gyea-Sook Kim, for her love, patience, encourage-
ment, and my lovely children, Jong-Seok and So-Youn.

vi




TABLE OF CONTENTS

LIST OF TABLES x
LIST OF FIGURES xi
1. Introduction 1
1.1 Overview. . . . . . . o oo i e e 2
1.2 Problem Statement . . . . ... ... ... L Lo 4
1.3 Research Tasks . . .. .. ... ... ... ... ... 5
1.4 Organization of the Dissertation . . . . . ... ... .. ........ 8

2. Background 10
2.1 Artificial Neural Networks . . . . ... ... ... ... ........ 11
2.1.1 Biological/Artificial Neurons . . . . .. ... .......... 11

2.1.2 FeedbackModel . . . . . ... ... ... o 14

2.1.3 Feedforward Model . . . . ... ... ... ... ...... 19

2.14 Recurrent Model . . .. .. ... ... ... ... ... ... 24

2.2 Artificial Neural Network Implementations . . . . . . ... ... ... 26
2.2.1 Analog and Hybrid Implementations . . .. ... ... .... 27

2.2.2 Digital Implementations . . .. ................. 29

2.3 Pattern Recognition and Neural Networks . . . ... ... ... ... 33
2.3.1 Statistical Approach . . ... ... ... . o000 33

2.3.2 Structural Approach . . ... ... ............... 35

2.3.3 Neural Network Approach . . . .. .. ... .......... 35

2.4 Behavioral Modelingwith VHDL . . . .. .. ............. 36
2.4.1 Behavioral Modeling . . . ... ... ... ... ..., ... 37

2.4.2 VHDL Characteristics . . . .. .. .. ... .......... 38

3. Stochastic Computing in Neural Networks 42
3.1 Introduction . . ... ... ... ... ... ... .. ... ... 43
3.2 Generating Probability . . ... .. .. ... ... ... ... ... 44
3.2.1 Pseudo-Random Pulse Sequences . .. ... .......... 44

vii







3.2.2 Generating Probability . . . .. ... ..., .. ..., ... 47

3.3 Distribution of Estimated Generating Probability . . ... .. .. .. 48
3.3.1 Factorial Moment Generating Function . . . . . .. ... ... 48
3.3.2 Binomial Distribution Model . . . . . . ... ... ... .... 49
3.3.3 New Distribution Model . . . . .. ... ... ......... 51

3.4 Stochastic Computingin ANNs . . ... ... ... ... ....... 53
3.4.1 Basic Stochastic Computations . . .. .. ... ........ 53
3.4.2 Stochastic Computingin the DMNN . . ... ... ...... 55

3.5 Back-Propagationinthe DMNN . . .. ... ... ... ... ..... 58

. Pulse-mode Digital Multilayer Neural Networks 63

4.1 Basic Computing Elements . . . . . . ... ... ... .. ...... 64
4.1.1 Random Pulse Generator . . . . .. ... ............ 64
4.1.2 SynapticElement . . . ... ... ... ... .. ... 65
4.1.3 Input Neuron Body Element . . . . . . ... .. ... ..... 66
4.14 Regular Neuron Body Element . . ... ... ......... 67

4.2 Modular Architecture . . . . . . .. ... Lo 69

4.3 DMNN COpProcessor . . . . v v v v v v v vt it e e e e e e e 72

4.4 Behavioral model of a DMNN Coprocessor . . . . .. ... ...... 73
44.1 Introduction . ... ... ... ... ... . ... .. ... 73
4.4.2 Design Methodology . . .. .. ................. 74
4.4.3 Coprocessor Controlin VHDL . . . . . ... ... ....... 76
444 DMNNModelin VHDL .. ... ... ............. 78

4.5 Hardware Complexity. . . . . . . . . ... .. .. .. ... .. ... 79

. Analysis of the DMNN 81

5.1 Statistical Models . . . . . ... ... ..o 81
5.1.1 Synaptic Multiplication. . . . . . ... ... ... ... ..., 82
5.1.2 Two-input Logical OR . . . . . .. ... ... ........ 82

5.2 Effects of Random Noise in Hidden Layers . . . .. ... ... .. .. 88
5.2.1 First Hidden Layer . . . ... ... ... ............ 88
522 KthHidden Layer. . .. ... ... ... ............ 90
5.2.3 Neural Activation . . . . .. .. .. ... ... L ... 93

5.3 Network PerformanceModel . . . . . . . ... ... .......... 95

54 Simulations . . .. ... ... L 97

. DMNN Application: Pattern Classification 102

6.1 Introduction . . . ... ... ... ... ... 102




6.2 Methodology . .. .. .. ... ... .. 104

6.2.1 Training and Classification . . . . . .. ... ... ... .... 105

6.3 Benchmark Problems . . . . . ... .. ... .............. 107

6.3.1 DMNN XOR Problem Solver . . ... ............. 107

632 DMNNEncoder.......................... 110

6.4 DMNN Character Recognizer . . . ... ................ 111

6.41 DataSet .. ... .. ... ... ... ..., 111

6.4.2 Experimental Results and Network Performance . . . . . . .. 111

6.5 Summary . . . .. ... e e e e e e e e 118

7. Conclusion 119

7.1 Summary . .. .. ... e 119

72 Contributions . . . . ... ... . L e 121

7.3 FutureResearch . . .. .. ... ... . ... ... ... ..., 122

APPENDICES 124
A Derivation of the rth Factorial Moment of a Hypergeometric Random

Variable X . . . .. ... 124

B Program for DMNN Back-Propagation Training . . . . .. ... ... 126

C VHDL Code and Corresponding Schematics . . .. ... ... .. .. 130

D  Input Data for DMNN Binary Classifiers . . . . ... ... ...... 143

BIBLIOGRAPHY 153

ix




3.1

4.1
4.2
4.3

5.1

5.2

5.3

6.1
6.2
6.3
6.4
6.5
6.6

LIST OF TABLES

Number of distinct PN sequences with the maximal length period. . . 46
Chip area required by basic digital components. . . . . .. . ... .. 80
Chip area required by DMNN elements. . . . . ... ... ... .... 80
Chip area required by two example networks. . . . . ... ... ... 80

Standard deviations of ¥;(‘on’) and ¥;(‘off’) when no = 25, ny = 5,

ny =5,and (a) N =127; (b) N=255; (c) N=511.. . ... ... .. 99
Standard deviations of ¥;(‘on’) and ¥;(‘off’) when no = 25,n; =

10,ny = 5, ng = 5, and (a) N = 127; (b) N = 255; (c) N =511. ... 100
P,,, obtained from equation 5.13 and correct classification rates from

VHDL simulations. . . . . ... .. ... ... .. ... ... ... 101
Representation of the XOR problemina DMNN. . .. ........ 107
Actual outputs of an n-bit two-layer DMNN for solving XOR problem. 108
Representation of the 8-to-3 encoding problem in a DMNN. . .. .. 109
Average number of iterations required for training in experiment 1. . 114
Performance of the DMNN 5-digit recognizer. . ... ... ... ... 115
Performance of the DMNN 10-digit recognizer . .. .. .. .. .. .. 117




2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1

3.2
3.3

3.4

4.1

4.2
4.3
44
4.5

LIST OF FIGURES

A biological neuron. . . . . ... ... Lo 11
An electrical synapse. . . . . . . . ... oL oo 12
A simplified artificial neuron. . . . . ... .. ... oo 13
A sigmoid threshold function. . . . .. .. ... ... ... ... .. 14
The Hopfield networkmodel.. . . . . . . ... ... .......... 15
The Kennedy-Chua network model. . . . . .. . .. .. ... ..... 18
A simple perceptron. . . . . ... ... L oo 19
A multilayer perceptron. . . . . . ... ... oo oL, 21
A Boltzmann machine consisting of visible and hidden units. . . . . . 24
The structure of a processing elementin [64).. . . . . ... ... ... 31
A typical character recognition system. . . . . ... .. ... ... .. 33
Entity declarationin VHDL. . . . . . ... ... ... ........ 38
The flow of design data in VHDL design process. . .. .. .. .. .. 41

(a) The block diagram of a LFSR. Examples of LFSRs with a maximal
length period where (b) ¢, ¢, ..., c7 = 1000001 and (c) ¢, c3,...,¢7 =
0101011, . . . . . e e e e e e e e e 45
A random pulse generator for fractional numberz . . . .. .. .. .. 47
Duality between Boolean operations and numerical operations, where
the sampling clock period = 20 is assumed and the number of ‘1’ pulses
generated during the period in z(n)is 20z forz . ... ... ... .. 54
Stochastic computations in the DMNN (a) synaptic multiplication; (b)
logical OR; (c) neural activation. . .. ... .............. 57

(a) A maximum length 8-order LFSR where f(z) = 2 ® 73 ® z4 ® zs;

(b) a random pulse generator forv;. . . . ... ... Lo L 64
(a) A synaptic element (SYN); (b) a block diagram of a SYN. . ... 66
(a) An input neuron body (INB); (b) a block diagram of INB. . . .. 67
(a) A regular neuron body element (RNB); (b) a block diagram of RNB. 68
An input layer module (ILM). . . . . ... ... ... ........ 69

x1




4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1

5.2

5.3

5.4

6.1
6.2
6.3

6.4

Cl1
C.2
C3

A synaptic array module (SAM). . .. .. .. ... ... ..., 70

A regular neuron array module (RNAM). . . . ... ... ... .... 70
The general architectureof the DMNN. . . . . . ... ... ... ... 71
A DMNN COprocessor. . . . . . v v v v v v v v i it i e 72
The design hierarchy of a DMNN coprocessor. . . . ... ... .. .. 75
VHDL code implementing the DMNN coprocessor. . . . ... .. .. 7
VHDL code implementing the DMNN. . . ... ... ......... 78

2-input logical OR where the dotted lines illustrate the deterministic
nature of the output sequence netjpn). . . . . . ... ... L. 83
0, obtained from equation 5.5 when (a) N = 127; (d) N = 255,
and o,;, obtained from actual simulations when (b,c) N = 127; (e,f)

N =285, . . o e e e e e e e e 85
(a) K¥K} with various network configurations when net; = 0.55, no =
36, and k > 1; (b) standard deviation of net; with respect to net;. .. 92

The distribution of ¥; in the hidden layer (o) and the output layer (+)
for 8825 tests compared to a binomial distribution when v; = (a) 0.45

or (b)0.54, k=2,n0=25,n,=5,andny=5. ............ 94
An example DMNN for solving the XOR problem. . . . . . .. .. .. 108
An example DMNN for solving the 8-to-3 encoding problem. . . . . . 110
For 5-digit classification in experiment 1: (a) pixel images of a typical

data set; (b) Hamming distances between two digits. . . . .. .. .. 112
For 10-digit classification in experiment 2: (a) pixel images of a typical

data set; (b) Hamming distances between two digits. . . . ... ... 113
An n-bit register with parallelload. . . . . .. ... ... ....... 140
An n-bit magnitude comparator. . ... ... ... ... ... 141
An n-bit up-counter. . . . ... ... L 142

xii




CHAPTER 1

Introduction

Artificial neural networks (ANN) present a practical approach to solving computa-
tionally intensive and (or) ill-defined problems such as pattern recognition, optimiza-
tion, adaptive control, associative memory, and some complez information processing
tasks. Dedicated VLSI implementation is crucial to building fast ANNs fully utilizing
the parallelism embedded in ANN computations. This dissertation presents a new
architecture for a digital feedforward neural network using stochastic computing tech-
niques. Random notse effects in this architecture are also presented. The applicability
of the network is demonstrated using pattern classification ezamples. This includes
the network architecture, analysis, modeling, simulation, and applications. This chap-
ter begins with a brief overview of the ANN implementation models. The problem to
be solved is then defined, followed by the research tasks. Finally, the organization of

this dissertation is outlined.



1.1 Overview

An artificial neural network is a highly interconnected array of simple computing
elements inspired by the computational strengths of biological neural systems. The
structure of individual nerve cells, called neurons, in biological neural systems is well
understood. The neuron is specialized to conduct electrochemical impulses from or to
sensory organs and other neurons. Its function is accomplished by means of hairlike
nerve fibers. However, it is not yet well known how this neural network with its mas-
sive parallel interconnections functions as memory and manipulates complex human
behaviors. Over the last decade many researchers from the fields of physics, mathe-
matics, computer science, and engineering have provided useful theoretical analyses
for various models of ANNs [1-11]. Neural network topologies and some design pro-
cedures have been proposed and many of these ANN models have been proven to
be superior to conventional digital computers in areas such as pattern recognition,
combinatorial optimization, associative memory, and human information processing
tasks.

It is now widely believed that the massive parallelism and computational power of
the human brain results from the global and complex interconnections among a large
number of neurons rather than from the complexity of individual neurons. One of
the major goals in the field of ANN implementation is to produce dedicated hardware
that mimics those dense interconnections among a large number of neural elements.
Most of the current ANN models, however, rely on computer simulations. With the
help of the current advancements in integrated electronics, optical, and electro-optical
technologies, dedicated hardware implementation of ANNs is now progressing [12-18].
To date, many analog and hybrid ANNs have been built using CMOS [12,15-17] or

CCD technology [14]. Most of these are analog implementations of simple feedback




or feedforward neural networks. Analog implementation offers high-speed with low
hardware cost. The primary disadvantages of analog processing are the inaccuracy of
analog computations and the low design flexibility due to the physical constraints of
analog electronic devices.

Digital ANN implementation can take advantage of some of the benefits of current
VLSI technology such as well-understood and advanced design techniques and tools.
Several digital neural networks based on custom VLSI design have been developed
where a neuron is a processing element consisting of computing units, registers, and a
loop-up table (or memory) [19-23]. This approach has an increased area requirement
and the level of parallelism decreases significantly due to the communication over-
head. Recently, however, a new digital approach has been introduced to reduce the
hardware requirement and to increase the level of parallelism. In this new approach,
a synaptic multiplication and (or) a neuron activation function is implemented with
simple logic gates using stochastic computing techniques [28-32].

In this dissertation, a set of fundamental research tasks are described which are
aimed toward developing an efficient architecture and statistical model of a pulse-
mode Digital Multilayer Neural Network (DMNN) based on stochastic computing. A
statistical model is developed by which the accuracy of stochastic computing in the
DMNN is analyzed. The operational characteristics and performance of the DMNN
are quantified. The applicability of the developed network is demonstrated using
benchmark comparisons and example character recognition problems. The results of
this research contribute to the establishment of a pulse-mode DMNN which has a

compact, flexible, and expandable structure.




1.2 Problem Statement

Many current ANN models rely on software simulations using serial or parallel
digital computers. The speed of all software simulators, even those run on parallel
machines, is far from equaling that of specialized VLSI ANNs. This is due mainly
to the sequential nature of control flow and the communication overhead in digital
computers. Some VLSI analog or hybrid ANN implementations have been built us-
ing matrices of fixed or variable resistors and nonlinear amplifiers [12,15-17,24,25,56].
Analog implementations of ANNs have the potential for high density; however, with
current VLSI technology, it is very difficult to build large (or multichip) analog ANNs.
This is mainly due to the inaccuracy of analog elements, the unavailability of reliable
permanent analog storage devices, and design parameter variations such as noise,
temperature, and high parasitic capacitances on external I/O pins. Difficulties in
VLSI analog implementation of ANNs limit their density on a chip and constrained
their applications, in turn, leading to a limitation in solving real engineering prob-
lems.

A digital approach is a viable alternative alleviating some of the above drawbacks
to analog implementation. Digital implementation can take advantage of some of
the benefits of current VLSI technology such as well-understood and advanced de-
sign techniques. Nevertheless, dedicated VLSI digital implementation has been less
developed because a conventional digital approach to ANN implementation has an
increased area requirement and complex connectivity. In order to build a large digital
neural network, a space-efficient network architecture must be developed.

Some digital ANN architectures using stochastic computing techniques show the
possibility of the low-cost and high-speed digital ANN implementation [28-32]. In

these architectures, algebraic operations are replaced by random processes using ran-




dom pulse sequences. Simple logic gates combined with some other simplistic com-
ponents perform multiplications and nonlinear transformation of signals. In this
approach, the network performs pseudo-analog computations with operands ranging
from 0.0 to 1.0. An operand z in the pulse-mode representation is the probability
of pulse occurrence in the corresponding binary pseudo-random pulse sequence z(y)
generated at each clock. However, the overall feedforward network architecture which
is programmable and expandable to any size has not yet been established. The math-
ematical model of the pulse-mode digital neural network also must be developed to
estimate the relative accuracy of stochastic computations and to anticipate the net-
work performance. Furthermore, the applicability of the developed neural network

architecture must be verified using real-world application examples.

1.3 Research Tasks

The tasks of this research are to (1) develop a pulse-mode digital neuron ar-
chitecture and the corresponding statistical model; (2) develop an efficient DMNN
architecture and the statistical model of error (or noise) in the DMNN and analyze
the accuracy of stochastic computations utilized in the DMNN; (3) Formulate the
framework of VHDL modeling techniques for the DMNN and simulate the DMNN in
VHDL; and (4) apply pattern classification problems to the DMNN and evaluate the
network performance and compare the performance of the DMNN classifier with the
results from other deterministic feedforward neural networks.

To develop a pulse-mode digital neuron model, the first step is to investigate var-
ious stochastic computing techniques using similarities between boolean algebra and

probability algebra. The study is concentrated on developing a digital neuron model



in which a non-linear transfer (sigmoid) function is embedded, which is essential to
ANN models. Also various digital neuron architectures are studied, including those
published recently. Simultaneously, all necessary components are developed in such a
way that each of them can contribute to a simple and regular neuron architecture. A
statistical model of the neuron is developed. The computing accuracy of a synaptic
multiplication and a neuron activation is estimated in terms of means and variances.
A regular neuron architecture is sought in such a way that it leads to an expandable
network architecture.

The second task is the development of a DMNN architecture and an analysis of
the network. Existing feedforward network models with advanced architectures are
explored. A flexible and modular architecture for the DMNN is sought such that the
network can be programmed for different network configurations by simply connecting
basic modules. The effective network structure to minimize the correlation between
multiple pseudo-random pulse sequences is sought. The number of clock cycles per
sampling period for the pulse-code representation of signals is determined in such a
way that the required accuracy for a particular application problem is satisfied. A
variable register length is one of the design issues for the DMNN. This decision may
be made using knowledge gleaned from simulation results of actual problems. Simul-
taneously, network analysis is performed based on the statistical models to estimate
the differences between the results obtained by the DMNN and those obtained by the
deterministic calculation. At this stage, some assumptions are made for the analy-
sis on distributions of synaptic weights and neuron activations because they depend
highly on network architectures and application problems.

The third task involves VHDL modeling and simulation which demonstrate effi-
cient behavioral modeling techniques for the DMNN. First of all, the clever use of
VHDL semantics is necessary to get a precise model. Detailed investigations are un-

dertaken on process statements, functions, and delay characteristics. A logic block







can be modeled using process statements and accompanying wait statements for the
flow control in a VHDL description. In VHDL, a function subprogram defines an
algorithm for computing values or representing the behavior of a hardware model.
One of the useful functions in modeling digital neural networks is the bus resolution
function which defines the resolution of output values for a common output signal.
The delay model in VHDL must provide an accurate view of the timing associated
with the logic gate. In addition, an effective naming convention is considered in order
to develop VHDL models conveniently and to document them properly.

For the last task, some testbench problems and character recognition problems are
applied to the developed DMNN. This demonstrates the applicability of the DMNN.
Traditional pattern recognition systems rely on programmable algorithms based on
statistical or syntactical approaches. They perform a mapping from the observation
space to the interpretation space by extracting features from observed data and clas-
sifying the collected features into certain categories. The developed DMNN should
self-organize the complex mapping required to solve the problem and provide a fast
classification rate. The back-propagation algorithm for the DMNN is programmed
in C and the DMNN will be modeled in VHDL. The network is trained on a host
computer. After the training, the network configuration is determined and the clas-
sification of test patterns is performed by the DMNN. Testbench problems are tested
on the DMNN at first. These problems include “exclusive OR” and “encoding” prob-
lems. The experimental results show the strength as well as the limitations of the
DMNN. The performance measures include the number of classifications per second
and the correct classification rate. Next, character classification problems are applied
to demonstrate its applicability to real-world problems. The experimental results are
compared with those of other approaches. For a particular problem, the proper rep-

resentation for input and output patterns, and the best choice of a register length



in the DMNN is determined. As a result, a design procedure for a DMNN binary

classifier is proposed.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 contains
the background discussion of related topics. It begins with a discussion of various
artificial neural network models, and it briefly describes the existing hardware im-
plementations of ANNs. This is followed by a discussion of traditional and ANN
approaches for solving pattern classification problems. It ends with the brief discus-
sion of VHDL characteristics and behavioral modeling techniques.

Chapter 3 presents the fundamentals of stochastic computing techniques. The
techniques for generating random pulse sequences using Linear Feedback Shift Reg-
isters (LFSRs) and the randomness properties of the pulse sequences are presented.
Synaptic weights and neuron activations are represented as generating probabilities
with the pulse sequences. The statistical model of the generating probability is de-
veloped in terms of mean and variance. Then stochastic computing techniques to
perform a synaptic multiplication and a signal intergration are discussed.

Chapter 4 proposes an architecture for the DMNN. The DMNN consists of synap-
tic elements, neuron body elements, and necessary connections. To develop an overall
network architecture, modular design techniques are used. The DMNN is trained with
the Back-Propagation (BP) learning rule suitable for the pulse-mode feed-forward
neural network. A generic architecture of the DMNN coprocessor which can be at-
tached to a host computer is proposed. The DMNN coprocessor is composed of the
DMNN, a control unit, a memory unit, and some digital components. The network

configuration for solving a particular problem is determined during the training ses-




sion. Once the training is completed, the determined synaptic weights and network
configuration are loaded into the memory in the DMNN coprocessor from a host com-
puter. Then, the programmed or hardwired control unit can be used to control the
operations of the coprocessor during the classification session.

Random noises (errors) are involved in the stochastic computations of network
operations. In Chapter 5, the statistical models of the network operations performed
using stochastic computing techniques are presented. The relationship between the
computing accuracy and the register length (or the sampling period), and the relation-
ship between the computing accuracy and the network architecture will be discovered.
The overall random noise effects on hidden and output layers are analyzed. The va-
lidity of the developed models and analysis results is justified by simulations.

In Chapter 6, the DMNN coprocessor is modeled and simulated in VHDL. Some
testbench problems and character classification problems are applied to the coproces-
sor. A design procedure for solving binary classification problems with the DMNN
coprocessor is proposed. Testbench problems are tested to see the applicability of the
DMNN to binary classification problems. Network performance of DMNN character
classifiers is evaluated in terms of successful classification rates. The network perfor-
mance is compared with that of deterministic DMNN simulations or other ordinary
back-propagation networks.

Finally, Chapter 7 contains the conclusions, contributions, and future direction of

this work.



CHAPTER 2

Background

Many artificial neural network models have been developed based on current knowl-
edge of biological neurons and with the help of available analytic methods for linear or
nonlinear dynamic systems. Network topology, computational characteristics of neu-
ron elements, and learning rules play key roles in specifying artificial neural networks.
In the first section, feedback , feedforward, and recurrent models are discussed with
learning rules associated with the network models. In recent years, many software
and hardware implementations of these models have been developed. Among them,
some software simulators, analog, and digital electronic ANNs are discussed in the
next section, followed by related issues. Pattern classification is one of the major
applications for feedforward ANNs. Traditional and neural network approaches used
for pattern classification are presented. This chapter concludes with a brief discussion
of behavioral modeling and VHSIC (Very High Speed Intergrated Circuit) Hardware
Description Language (VHDL).

10






11

2.1 Artificial Neural Networks

In this section, a brief review of biological and artificial neurons is provided. Next,
typical feedback network models such as the Hopfield model and the Kennedy-Chua
model are discussed in relation to ANNs. This is followed by a discussion of feedfor-

ward network models and the Boltzmann machine as a recurrent network model.

2.1.1 Biological/Artificial Neurons

2.1.1.1 Biological Neuron

The biological nervous system consists of two principal classes of cells, the neurons
and the neuroglia. The neuroglia are cells that fill the spaces between the neurons
[33]. The neuron is a fundamental processing unit of all nervous systems. Most neu-
rons contain four distinct regions which carry out the specialized functions of the cell:

the cell body, the dendrites, the axon, and the synapse (Figure 2.1).

nucleus axon hillock synapse
axon /
\ [
k D % A
T -

. cell body
dendrite

Figure 2.1. A biological neuron.






Axons are specialized for carrying information toward other cells without reducing
the magnitude of signals. Action potentials originate at the axon hillock and travel
to synapses, from which point signals are passed to other cells. Dendrites receive
signals from sensory organs or from the axons of other neurons, convert these signals
into electrical impulses, and transmit them to the cell body. The cell body receives
signals independently. If the electrical impulses are greater than a certain threshold,
action potentials are generated and are actively conducted down the axon. The action
potentials are pulse streams with a pulse-width of about 1 msec.

Synapses generally pass signals to other cells in only one direction; an axon ter-
minal from a presynaptic cell sends chemical or electrical signals through a synaptic
gap. The signals are collected by a postsynaptic cell. Two types of synapses exist in
biological neural systems: electrical and chemical. They differ in both structure and
function. Cells communicating by electrical synapses are connected by gap junctions
(Figure 2.2). This allows an electrical pulse to pass from the presynaptic cell to the
postsynaptic cell. In chemical synapses, chemical substances, called neurotransmit-
ters, are involved in passing the signals [33]. An action potential is generated in the

postsynaptic cell.

presynaptic cell
/ plasma membrane

\ G D e E S e /
Postsynaptic cell

¥ . axon
gap junction
connection

Figure 2.2. An electrical synapse.






13

Two types of signals occur in synapses: excitatory and inhibitory. With an ex-
citatory synapse, the signal from the presynaptic cell causes a change in the plasma
membrane of the postsynaptic cell that tends to induce an action potential. How-
ever, with an inhibitory synapse a nerve impulse in a presynaptic neuron affects the
electrical properties of the postsynaptic membrane in such a way as to prevent the
generation of an action potential. Excitatory and inhibitory stimuli often affect a

single neuron in combination.

2.1.1.2 Artificial Neuron

An artificial neuron can be considered as a simple processing element which sums
the weighted inputs and passes the result through a threshold or activation function.
Figure 2.3 shows this simplified neuron.

The input signals, which come from either sensors or outputs of other neurons,
form the input vector, X = (z,---,zj,---,z,). The weights associated with each
input form the weight vector, W; = (wq, - -, w;j,- -+, wiy,) for the ith neuron, where
w;; represents the connection strength between the ith and jth neurons. A threshold

function can be modeled by associating a threshold 6; in each neuron.

Non-linear activation
function

Yi

Figure 2.3. A simplified artificial neuron.






14

The output of the ith neuron, y;, is then given by

yi = (X W = 6) (2.1)

where f(-) is the threshold function. The most pervasive threshold function is the
sigmoid function because it is a bounded, monotonic, non-decreasing function that
provides a graded, nonlinear response, most resembling a biological neuron. The

sigmoid function is shown in Figure 2.4.

A

y
1.0
G’:XP(%))

S

v

Figure 2.4. A sigmoid threshold function.

2.1.2 Feedback Model

Two feedback ANN models are reviewed: the Hopfield model and the Kennedy-
Chua model. In feedback neural networks, neural elements are connected to one an-
other by feedback paths from outputs to inputs of neural elements. Continuous-valued
neural elements are normally implemented as electrical circuits, and the network dy-
namics are described by differential equations. A key issue of these networks is to

define an energy function which always decreases during the dynamical evolution.



2.1.2.1 The Hopfield Model

The Hopfield model is a one-layer feedback network which consists of intercon-
nected nonlinear analog neurons. Many implementations have been built based on
this model. The general structure of this network is shown in Figure 2.5. In this
model, each neuron is an amplifier with a capacitor C; and a register p; at the input
node. The output of neuron j, vj, is connected to the input of neuron z, u;, via a

conductance w;;.

l4 I I3 I4
® .
° ° Weight
connection
. T T e

¢ C2 C3 Cs4
AV:ER VAR V-am
']
.
.
\J \J \J \J
121 Vo V3 V4

Figure 2.5. Hopfield network model.




16

The dynamics of an interacting system of n neurons can be described by the

nonlinear differential equation

du; i U
C;E = E w;;v; — E + I.‘ (22)
where
1 n
— =—++ Wiy,
R, pi ,Z:l ’

I; is an external input current, v; = f;(u;), and f; is a sigmoid function. R;C; forms
the time constant of neuron ¢ for charging and discharging and u;/R; is the leakage

current. The energy function defined by integral of equation 2.2 is

1 n n 1
—QZZw;jv;v, ZIU, + ER.,/ f1(&)d¢é; (2.3)

i=1j=1 =1

du; _ _ 9FE
for C,jd—t* = -3,

If w;; = wy; for all 7 and j, the time derivative of the energy function is

1 df(w) OE ),

z:C' du; av.) (24)

Since f(u;) is monotonically increasing, &~ dE < 0 for all t. As a result, the value of the
energy function is strictly decreasing and becomes zero only at the equilibrium point
where —C'.d;t =0 for all z.

Equations 2.2 and 2.3 define a gradient system and thus guarantee convergence.
The Hopfield model has been applied to combinatorial optimization problems where it
has been observed that the network model converges to a good solution in a few time
constants [6, 10]. The objective function of the combinatorial problem is mapped

to the computational energy function through the adjustments of the connectivity

strengths w;;. Local minima of the energy function correspond to solutions to the



17

problem. When the Hopfield network is used as an associative memory, solutions for
this network model may be memory patterns stored in the network. Approximately
0.15n memory patterns are simultaneously stored before the patterns become too

close to each other and tend to merge [4].

2.1.2.2 The Kennedy-Chua Model

A canonical circuit model with feedback was proposed for solving both linear and
nonlinear programming problems by Kennedy and Chua [35, 36]. This model uses
integrators as neuron elements. The structural parameters of the networks correspond
to the coefficients of the objective function and constraints descriptions. Figure 2.6
shows an architecture of the model, where p-cells are constraint amplifiers, [-cells are
integrators, and V is the node voltages vy, v, -,v,. The network dynamics can be

described by

dvi __Of 5~ 99
C; i ——E}:—jﬂlb(g:(v))aw (2-5)

where C; is capacitance, v; is the voltage of node ¢, f(v) is the objective function,

and g(V) are constraints. The corresponding energy function is

g:(V)

E(V) = f(V) +2 UL (2:6)

Since 4 & E < 0for all t, E(V) is a Lyapunov function ensuring the system convergence to
a stable equilibrium point without oscillation [36]. This model requires more hardware
to form the integrator than the Hopfield model does, but it is superior to the Hopfield
model in solving linear programming problems for which the Kennedy-Chua model

guarantees a stable equilibrium point while the Hopfield model does not [79].



\
/
.7

>lj
e

et
121212

2l s

;

k

7 Bzl GEEz

Conennnn






19

2.1.3 Feedforward Model

The Hopfield and Kennedy-Chua models are examples of one-layer feedback struc-
tures. The interconnection structures of biological neurons are often organized into
multiple layers of cells [7, 33]. Layered feedforward networks were first studied in de-
tail by Rosenblatt and his colleagues in the early 1960’s [42]. Since then, feedforward
multilayered structures and learning algorithms for training have been developed.
The networks are trained with a set of input-target pairs as examples and can suc-
cessfully generalize what has been learned. Feedforward networks have been applied

to pattern recognition [37, 38, 49], robotics [39], and control problems [40, 41].

2.1.3.1 Simple Perceptrons

A simple perceptron is a single layered feedforward neural network, consisting of n

inputs and an output layer. Figure 2.7 illustrates an example of a simple perceptron.

Figure 2.7. A simple perceptron.






20

z! is the ith element of the input pattern and y! is the output of neuron i when
pattern u is presented to the network. w;; is the connection weight between neuron
i and the jth element of the input pattern. If the number of patterns is p such that

u=1,2,--- p, the output in the output layer can be described by

vt = (O] wizh +6;)

i=1

f(i w;;Ty ),

where z§ = 1 for all p, wijp = 0; is a bias, and f(-) is the continuous sigmoid function.
When t! is the desired output of neuron 7 for input pattern g, the cost function,

which measures the system’s performance, is defined by

1 & L
E = §§=:1E
= ST T -y
- ST (T @

The connection weights, w;;, are changed by the gradient descent algorithm.

OF

8w,~,-

030 Y wiseh). (2.8

pu=1

Aw;j = -1

The condition for the existence of a solution in the simple perceptron is the linear in-
dependence of the input patterns [43]. The simple perceptron can not solve problems
in which input patterns are not linearly independent, and may offer alternate par-
tial solutions [43]. However, multilayer feedforward neural networks with nonlinear

neuron elements can overcome this limitation.



21

2.1.3.2 Multilayer Perceptrons

A multilayer perceptron (or feedforward neural network) consists of an input layer,
an output layer, and one or more hidden layers in between. Figure 2.8 shows the
generic structure of a multilayer neural network. y; is the output of neuron ¢ and w;;
are connection strengths between neuron pairs. Outputs of any layer are weighted
and summed as an input to a neuron in the next layer. An external input is applied

to the input layer.

Figure 2.8. Multilayered feed-forward neural network.






22

Given pattern u, where p = 1,2,---,p, a net input net? in neuron ¢ in any layer is
netf-‘ = E w,-jy;‘ (29)
J

where y is the output of neuron j in the previous layer when pattern u is presented.

y5 = 1 is often used. Thus, neuron ¢ produces output

vl = f(net!) = f(Q_wiiyf) (2.10)

where f(-) is a differentiable sigmoid function. For a given input pattern, the output

of the output layer is compared to the target pattern and the connection weights
between layers are modified in a backward direction according to the error. This is
known as back-propagation learning. Given pattern y, the error measure is

B = 5 Y - o) (211)

where ¢! and y! are the desired output and actual output for the ith output neuron,

respectively, when pattern p is presented. The back-propagation rule states that
wij(k) = wi;(k—1) + 3 Auwi;(k) (2.12)
m

For the output-to-hidden layer connections, the gradient descent rules gives

OE*
Ow;;
OE* Onet!
—”W 0w,~,-
OE* 0Oy! Onet!
T OyF Bnet? dwy;
= nél'yf (2.13)

Auwii(k) = —nq




23

where 6 = (& — y!') fi(net{).
In the hidden-to-hidden (or input) layer connections, A,w;; for the connection be-
tween neuron ¢ in the hidden layer and neuron j in the lower layer can be obtained

by using the chain rule.

Aywij(k) = —nq

Bw;,-
_TI@E“ oyt
dy;’ wi;
_ OE* Onet} Oy!
- ”Zk: Onet; Oy Ow;

where 6 = f(net?) ¥ 8wk and k denotes neurons in the upper layer.

The overall measure of the error is therefore

E =) E“ (2.15)

Thus, the back-propagation rule for any layer has the form

P OE*

Bw.-,-

Awi; = -1

pu=1

P
= 1Y 8y (2.16)

pu=1

Some variations of the ordinary back-propagation algorithm have been suggested
in order to help the networks learn faster or escape local minima [45-47]). Multilayer
feedforward networks trained by these back-propagation algorithms have been used

to solve pattern classification problems [45, 48-50].



24

2.1.4 Recurrent Model

Recurrent networks allow connections in both directions between a pair of layers,
and within a layer to itself. The Boltzmann machineis a well-known recurrent network

with symmetric connections [51, 52].
2.1.4.1 Boltzmann Machine

The Boltzmann machine consists of visible and hidden units where the visible
units can be divided into input and output units. Figure 2.9 illustrates the structure

of the Boltzmann machine. The units are stochastic and take output value v; = +1

with probability f(k;) and value v; = —1 with probability 1 — f(k;), where

hi =3 wiv;
;

and
B) — 1
f( ) - l + e_ggh'
O\ .
Output units
#,

. \.,\
Hidden Visible
units units

.4"/
.‘/ ' ',‘/-

Input units

-/

Figure 2.9. A Boltzmann machine consisting of visible and hidden units.






25

Here f = 1 where T is pseudo-temperature. If w;; = wj; for all 7 and j, the energy

function

1
H{v;} = —-2- Z Zw,-jv;vj (217)
LI}

has a minimum at a stable state characterized by v; = sgn(h;) where sgn(h;) = +1
if h; > 0, otherwise sgn(h;) = —1.
The probability of finding the system in a particular state {v;}, after equilibrium

is reached, is given by the Boltzmann-Gibbs distribution

P{v;} = e 2t

where Z is a normalized constant.
Boltzmann learning adjusts the connections w;; such that the states of the visible
units, a, have a desired probability distribution. Let B be the states of the hidden

units. The probability P, of finding the visible units in state « irrespective of 3 is

P. = 3 Pug
B

= Y7t (2.18)
B
where
1 B a
H,3 = —EZZw,-jvi ﬁvjﬁ.
i
The relative entrophy between actual probability P, and desired probabilities R, is

E =) R,log %. (2.19)



26

E>0and E=0if P, = R, for all a. The gradient descent rule gives

OE
aw;,-

R, 0P,
= 2R 5w,

= 9B Y RuPaavPoi?— < S:S; > (2.20)
« B

Awij = -

where the correlations < S;S; > are measured by taking a time average of S;S; and the
system must reach an equilibrium state for each a. A simulated annealing procedure is
used to rapidly achieve a global minimum. Disadvantages of the Boltzmann machines
are that learning requires an extremely long convergence time even with simulated
annealing and its hardware implementation is impractical.

Boltzmann machines have been applied to various problems: statistical pattern
recognition [7], constraint satisfaction problems [51], and combinational optimization

[53].

2.2 Artificial Neural Network Implementations

Many current ANN models rely on software simulations run on serial or parallel
digital computers. The speed of software simulation even on a parallel machine is
far from equaling that of specialized hardware ANNs mainly because of programming
and communication overhead. To date, a number of ANN hardware prototypes have
been built using electronic, optical, and opto-electronic technologies. Electronic ANN
hardware implementations, software simulators run on digital computers, and related
issues are discussed. ANN implementations can be divided into three categories based
on the method used to express the values within the network: analog, digital, and

hybrid.







27

2.2.1 Analog and Hybrid Implementations

Analog computation performed in analog or hybrid electronic hardware uses some
fundamental physical principles such as the linear attenuation of voltage by an elec-
trical resistor and the nonlinear transfer characteristics of an amplifier. In a simple
analog neural network, the interconnections are simple fixed value resistors (see Figure

2.5). The output voltage of neuron 1 is given by
vi = f(Q_ wijv;)
3=0

where w;; is the conductance of the resistor between neuron ¢ and neuron j and f(-) is
the transfer function of the amplifier. Neural networks with fixed value resistors can
be used when the network function is known in advance and weight changes are not
needed. This type of network with 256 neurons was designed on a single chip using
standard CMOS technology by Jackel, et al. [15]. This circuit was not programmable
due to the fixed synaptic weights.

ANNSs can be programmed by storing synaptic weights in memory. A static mem-
ory cell has been used as storage for a weight bit where the neurons and synapses were
binary units. Multiplication was performed by a logical XOR gate [16]. For many
applications, a higher resolution for weight values is required. One way of storing
analog weights is to use a capacitor [55, 56]. A weight can be stored as the voltage
difference between two capacitors; the voltage difference is multiplied by the input
voltage in the circuits. The main disadvantage of this dynamic storage technique is
that it requires refresh circuitry to overcome the charge leakage on the capacitance.

An alternate way is to store weights digitally. In this case, a digital-to-analog
(D/A) converter is required at each connection to perform an analog multiplication

of the stored weight with the input signal. A matrix with 1024 multiplying D/A con-







28

verters was built using CMOS technology, where a weight was represented in four-bit
magnitude plus a sign bit [57].

A floating gate field effect transistor (FET) was used as a device to combine the
weight storage and the multiplication, where the weight was determined by the charge
stored in the floating gate. However, the weight range and polarity difficulties were
significant limitations [58]. To overcome these difficulties, a Gilbert multiplier [59]
was used to carry out the weight multiplication while a floating gate FET was used
simply for weight storage [60]. Sage and his associates designed an ANN chip based
on Metal Nitride Oxide Semiconductor (MNOS) floating gate transistor technology
and Charge Coupled Device (CCD) technology [14]. Analog weights were stored in
MNOS floating gate transistors. Charge packages instead of currents were added to
compute the sum of products. This circuit implemented a simple Hopfield-type neu-
ral network by operating with binary inputs and analog weights.

In analog computation, available mathematical functions are limited because those
functions are found in some physical principles of devices. When a complex transfer
function is required, it is difficult to implement correctly using analog hardware alone.
In this case, hybrid ANN hardware is more appropriate where the sum of products
is carried out with analog components, digitized for the transfer function processing,
and then converted back to analog [24).

The potential advantage of analog computation is that operations in the network
can be performed using inexpensive hardware. However, analog computation results
in low accuracy and limited dynamic range due to physical constraints, such as ther-
mal and quantum noise of analog components. In addition, design flexibility in analog
implementation is strictly constrained because only mathematical functions resulting

from physical principles are available for use.




29

2.2.2 Digital Implementations

In this section, the two mainstream approaches to digital implementation of ANNs
are discussed: software simulations on general-purpose or special-purpose computers

and dedicated VLSI implementation.

2.2.2.1 Software Simulators

ANN simulations on digital computers can be divided into two categories: ANN
simulations on general-purpose parallel computers and ANN simulations on special-
purpose processors.

Many general-purpose parallel machines, consisting of a large number of process-
ing elements, are currently used for ANN simulation. Processing elements, cooperated
on the same task, communicate through a single high speed data path between pro-
cessing elements. A neural network and data are partitioned into different processing
elements. Each processing element may have a dedicated memory to store data as-
signed. For example, the Warp machine, which was a systolic array of 10 processing
elements, was used to implement a back-propagation network [61]. Each processing
element contained an adder, a multiplier, and an ALU. The 39 Mbyte cluster memory
was used to store weights and 17 million weight updates per second was achieved.
Forrest, et al. used a Distributed Array Processor (DAP) consisting of 4096 proces-
sors to implement a Hopfield network [62]. The DAP was able to perform 25 million
additions per second. The use of general-purpose parallel machines for ANN sim-
ulations can be justified for the problems to be completed in a feasible amount of
simulation time. However, large-size ANNs often require faster simulations.

Special purpose processors, which are designed for ANN simulations and attached



30

as coprocessors to a host computer, are often called neurocomputers. A user program
run on the host computer calls a special subroutine, and controls the neurocomputer
whenever needed. Three methods for attaching a neurocomputer to a host computer
have been defined [58]. The first method is to install the neurocomputer as a memory-
mapped device on the host computer. In this method, the neurocomputer shares the
memory space of the host computer. Data transfers between the host computer and
the neurocomputer are controlled by the central processing unit in the host with ad-
dresses in the memory space. The second method is to attach the neurocomputer as
a peripheral device using a standard peripheral interface . The neurocomputer can
be ported from one type of host computer to another relatively easily. The first and
second methods have high bus loading problems on the host computer. In addition,
the second method suffers from the reduced bandwidth of the peripheral interface.
Thus, these two approaches are appropriate for small computers. The third approach
is to attach the neurocomputer as a coprocessor to a host computer via a local area
network (LAN). This method has the advantage that the neurocomputer can access
memory servers and other outboard devices on a high-bandwidth LAN.

Several manufacturers, such as TRW, Science Applications International Corpo-
ration, and Hecht-Nielsen Neurocomputers, developed neurocomputers. For example,
Mark III and Mark IV neurocomputers were developed by TRW [63]. The Mark III
(Mark IV) machine consisted of many Motorola 68010 (68020) based single board
computers mounted on a broadcast bus backplane. These systems used the Artificial
Neural System Environment (ANSE) developed at TRW for specifying the neural
network to be implemented. A neural network was called on the Mark III (IV) from
user software on the DEC Micro VAX through an user interface. The Mark IV had
an ultra high-speed graphics display facility for monitoring the activity of the neural
network. The Mark III and Mark IV systems were able to process up to 450,000 and

5,000,000 interconnections per second, respectively.



31

2.2.2.2 Dedicated Hardware Implementations

In order to fully utilize the parallelism embedded in ANN computations, the de-
sign of dedicated VLSI ANN digital systems is desired. A three-layer feedforward
ANN was designed to classify handwritten numbers [20]. The network consisted of
50 neurons and 6688 fixed interconnections using a 2-micron CMOS process. The
resulting VLSI layout was 7.9 x 9.2 mm? in size. This design is quite compact, but
its flexibility was so low due to the fixed synaptic weights. Suzuki and Atlas mapped
an ANN to an array of custom processors [64, 65]. Figure 2.10 shows the structure
of the proposed processing element, where the blocks represent special operations for
the network update. A weight matrix W and a threshold vector 8 are stored in the

product-sum unit (PSU). The arithmetic unit (AU) performs operations required for

back-propagation.

A
T

mux A -
vy -

d
Lw ] [ o]

PSU

Y DF DO

AU

B o

Figure 2.10. The structure of a processing element in [64].






32

The derivative of a nonlinear function (DF), desired outputs (DO), and a learning
rate (n) are stored in the memory of the AU. Neural activations (X) and the error
value (8) are accessed by both the PSU and the AU. This ANN hardware has a high
design flexibility, but hardware requirements for this design are large.

As indicated in the above two examples, dedicated digital ANN implementations
can facilitate high parallelism, but it is difficult to simultaneously achieve the desired
high design flexibility and high density on a chip.

A new digital approach - digital ANNs using stochastic computing techniques -
replaces algebraic operations in ANNs by stochastic processes using pseudo-random
pulse sequences [28, 31, 32]. Simple logic gates combined with other digital compo-
nents perform multiplications and nonlinear transformation of signals.

In this new approach, the values for synaptic weights and input operands are
normalized after a network has been trained [28, 32] or all operands are restricted
to the range between 0.0 and 1.0 both for training and testing [66]. An operand z
in the pulse-mode representation is the probability of pulse occurrence in the corre-
sponding binary sequence z() at each clock. Z is the estimate of z taken over finite
clock periods N. Stochastic computations using random pulse sequences inherently
utilize concurrent processing in all synaptic and neuron elements. Furthermore, the
use of simple logic gates as computing elements allows a high neuron-density on a
chip and a relatively compact network architecture. High design flexibility can also be
achieved by making the network programmable. However, network speed depends on
the length of a sampling clock period. The sampling clock period is the time required
to estimate the computation results. A longer sampling clock period yields more ac-
curate computations. Thus, there exists a trade-off between speed and accuracy in
this approach. Details on the network architecture, analysis, and performance will be

discussed in following chapters.






33

2.3 Pattern Recognition and Neural Networks

Pattern recognition is concerned with classification or description of complex pat-
terns by means of some measured properties. A pattern recognition svstem requires
data acquisition, data representation, and data classification.

The design of a pattern recognition system involves the following three steps: (1)
data acquisition, (2) preprocessing, and (3) decision making [68]. A tvpical character

recognition system is illustrated in Figure 2.11.

Digitized Size normalization, Matching Identity of
character matrix Noise cleaning character
_}_' Pre- _L> Feature _L., Decision _L>
processor extractor maker

Figure 2.11. A typical character recognition system.

The first stage involves image processing, the last two stages deal with the pattern
recognition. Mask (joint occurrences of black and white pixels), strokes and bays in
various directions, the location of end points, and the intersection of line segments
and loops, are all popular features for character recognition. Most pattern recognition
systems utilize one of the following three approaches: statistical, structural, or neural

network.

2.3.1 Statistical Approach

In the statistical approach, a pattern is represented in terms of N features. Each



34

pattern can be viewed as a point in the N-dimensional space. If the choice of features
is good, then pattern vectors belonging to different classes will occupy different regions
of this feature space. The objectivein this approach is to establish decision boundaries
in the feature space to separate patterns belonging to different classes.

Assume that a given sample pattern belongs to one of M classes ¢1,c¢z, -+, cm
based on its feature vector x = (z1,z2,---,zn) and that x has a class-conditional
density p(x|c;). Bayes decision rule states that a pattern with x as its feature vector

is assigned to class ¢; if

p(ci|x) > p(e;|x)  for all j #1
where p(c;|x) is the posterior: density for class ¢;, defined as

p(x|ci)p(ci)
M, p(x|ei)p(c)

p(cilx) =

where p(c;) is a priori probability density for class ¢;. If p(¢;) = 1/M, then the
Bayes decision rule is identical to the maximum-likelihood decision rule. The decision

boundary between pattern class ¢; and c; is defined by

p(eilx) — p(c;|x) = 0.

If class-conditional densities are multivariate Gaussian, then

p(x|e;) = N(p;, 1),

where y; is the mean vector for class ¢; and I denotes the identity covariance matrix.



35

If p(¢;) for all ¢ are equal, then

x — gl

plex) = — XA
where || - || denotes the Euclidean norm. As a result, a pattern x is assigned to the
class of the closest mean vector. If the class-conditional densities are known, Bayes
decision rule can be used to design a classifier. If they are not known, they must be

estimated by training with sample patterns.

2.3.2 Structural Approach

When the number of features required to establish a reasonable decision boundary
is very large, it is more appropriate to view a pattern as being composed of simple sub-
patterns. In the structural approach, a complex pattern is represented in terms of the
interrelationships among the simplest subpatterns, called primitives. This paradigm
has been used in situations where the patterns have a definite structure which can be
captured in terms of a set of rules.

The primitives or grammatical rules must be inferred from the available samples.
In this approach, the difficulty resides in segmentation or reliable extraction of the

primitives from a finite number of pattern samples.

2.3.3 Neural Network Approach

The neural network approach is based on the notion that a network of simple

processing elements arranged in a manner similar to a biological neural system might



36

be able to self-organize itself to recognize and classify patterns. The Perceptron is
considered as the first significant development of such in the early 1960s [2]. The basis
for the inherent power of Perceptron devices was well understood. However, at that
time, no method was known for training multilayer Perceptron devices and the cost
for full implementation of those devices was extremely high. VLSI technology has
advanced and the price of processors has dropped tremendously. More significantly,
the generalized delta rule developed in 1986 by Rumelhart, et al. provides a practical
way for training the multilayer Perceptrons [8]. Today, perceptron-like models trained
by the generalized delta rule are being applied to pattern recognition.

In pattern recognition systems using the neural network approach, all stages or
some of stages in Figure 2.11 can be combined into one neural network. The net-
work learns the mapping from the observation space to the interpretation space by
a training algorithm. In this approach, human interactions involved in statistical or
structural pattern recognition systems are minimized. Most recognition processes are

performed in an autonomous manner.

2.4 Behavioral Modeling with VHDL

In the design of large systems like ANNs, use of Design Automation (DA) becomes
necessary. The simulation and verification of a design using a behavioral description
language at an early stage of the design process also becomes more important as the
complexity of systems continues to grow. VHDL is a typical behavioral description
language which is semantically oriented for digital systems. Digital ANNs can be

modeled and simulated using VHDL.



37

2.4.1 Behavioral Modeling

A promising approach for implementing artificial neural networks is the fabrica-
tion of special-purpose VLSI chips. Traditionally designers start with a gate-level or
a circuit-level schematic. However, as systems become more complex, a top-down
design approach is needed in order to manage complexity and to reduce the design
time and development costs. Test and modification of an original design can be done
in an early stage of the design process. Top-down design starts with a high-level spec-
ification which is decomposed into lower level specifications in a hierarchical fashion.
Designers look at the system at an abstract level in a high-level specification. Hard-
ware Description Languages (HDLs) are crucial to the high-level design [69-72].

VHDL is a typical HDL that can be used to express the function and logical
organization of circuits, ranging from simple logic gates to complex digital systems
[73-77). VHDL is fast becoming an industry standard. The U.S. government made it
a standard language, requiring the use of VHDL as the design and description mech-
anism in Department of Defense (DoD) hardware designs. Compilers, translating the
structural design in VHDL to an intermediate format such as Caltech Intermediate
Format (CIF), are being produced by many CAD vendors.

In VHDL one can model the behavior of systems and simulate them to verify
the design. Modeling involves specifying the inputs and outputs of a device, and
describing its behavior and/or structure. For example, when an ANN is modeled in
VHDL, its behavior may be described by a set of static or dynamic equations by
using function statements. Structure is described by interconnections of the subcom-
ponents (synapses and neurons). An efficient and precise modeling of VLSI ANNs
is facilitated by analysis of VHDL semantics, including a detailed investigation of

process statements, functions, and delay characteristics.



38

2.4.2 VHDL Characteristics

The primary element in VHDL is a design entity which can represent portions of a
hardware design ranging from simple logic gates to complex digital systems. A design
entity consists of two different types of descriptions: the entity declaration and one
or more architectural bodies. The entity declaration defines the interface between the

entity and the outside world. Figure 2.12 illustrates an example entity declaration.

entity COUNTER is

generic (time_dglag;time: 10 ns);
port (clk, reset: in bit;
sum: buffer integer);

end COUNTER

Figure 2.12. Entity declaration in VHDL.

The ports are the signals through which the design entity communicates with other
modules. Their declaration can be any predefined or user-defined type. The port and
local item defined in the entity declaration are made available to architectural bodies
associated with this entity. A set of parameters, called generics, provides a channel
for static information to be communicated to a design entity from its environment.
Generics can be used to specify timing characteristics, the bit size of ports, or other
descriptive characteristics of a design such as temperature, capacitance, location, etc.

An architecture body supports three implementation styles of a design entity: be-
havioral, structural, and data-flow. The behavioral body describes the system model

in sequential program statements just like programs written in a high-level program-




39

ming language. The structural body describes a design entity purely in terms of its
subcomponents and their interconnections. Finally, the data-flow body decomposes
the architecture into a set of concurrent register assignments under the control of
gating signals. Data-flow style emphasizes the flow of information between memory
and gating elements. All three styles may be intermixed in an architectural body.

A VHDL design entity is a template to be used in creating specific instances of a
component via the component instantiation statement. A component may represent
a structural partitioning of the design or a functional decomposition of a large system.
Because this feature essentially isolates one level of design from another, two differ-
ent design methodologies can be accommodated: top-down approach and bottom-up
approach. In the former approach, the architectural body can be written in terms
of abstract lower-level components. Such components must be fully described with a
vaiiety of design entities later in the code. In the latter approach, the local compo-
nent declaration specifies the portion of the interface from an existing design entity
that resides in the design library.

Designers may specify the behavior of a subsystem and leave the implementation
details of structural design to others. Thus, VHDL designers can model simply the
function of the system independent of any implementation technology.

A VHDL description is evaluated when an event occurs at one of the component’s
inputs. The evaluation yields a new set of projected values for the outputs of the com-
ponent. This effect may, in turn, causes additional changes. Independent sequences
of events can occur simultaneously. The event-driven semantics of VHDL are based
on the assumptions that all signals in a design propagate in well-defined directions
and that signal propagation always includes a delay.

A typical signal assignment statement consists of a driver and a target. A driver
is a source of the value for a signal. A signal may have multiple sources. If a signal

has more than one source, then all sources can participate in the calculation of the



40

value. Such a signal must be a resolved signal, and the resolution function calculates
one effective value from an array of values. The target of a signal assignment is the
signal on the left hand side of the assignment operator. The simulator creates a driver
for each element of a target of every concurrent signal assignment [74].

Timing is one of the most important aspects of a VHDL model. The representation
of time in VHDL has both a macrotime scale and a microtime scale. The macrotime
scale represents real time (nanoseconds, microseconds, etc.) which is measured in
discrete units. The microtime scale represents a unit delay which is essentially not
measurable. Any number of micro-units of time may exist between any two macro-
units of time. With two time scales, designers can perform unit-delay or real-time
simulations [73].

There are two kinds of statements in VHDL: sequential and concurrent. Sequen-
tial statements are used to define algorithms for the execution of a subprogram or
process. They are executed one at a time. Concurrent statements al;e executed in an
asynchronous pseudo-parallel fashion. They are used to define interconnected blocks
and processes that jointly describe the overall behavior or structure of a design.

Figure 2.13 shows the flow of data in the design process under a VHDL hardware
support environment including an analyzer, a profiler, and a simulator. The design
library contains intermediate representations of VHDL descriptions. The library unit
resulting from the analysis of a design unit is placed into a working library. Only one
library may be the working library during the analysis of any given design unit [74].

The analyzer accepts a VHDL source code, translates it into the intermediate
form, and stores it in the design library. It checks the syntax and semantic rules
of the language. The profiler pulls all necessary design entity interfaces, bodies,
functions, and packages from the library, then configures a cross-section of a design
hierarchy. The simulator and other tools may use this configuration. The simulator

records signal histories and dynamic errors.






41

An understanding of VHDL semantics and characteristics enables designers to use
VHDL as an economical hardware design testbench. A system can be first modeled
behaviorally with a high-level specification using appropriate modeling techniques,
verifying the correctness of the design. Later, the high-level specification can be
decomposed into lower level specifications, incorporating more implementing tech-
nological constraints. Finally, when the system is modeled in complete structural
descriptions, the precise feasibility and detail of a hardware realization can be as-

sessed.

Simulation
{DL: ?th?r Profiler %}2‘;’; (l:ontrol

Source ools control and data

* A

VHDL Inter- Int Si Result

Analy- diate er- imu- esu

An y E‘;n:a € Profiler mediate lator

form

Figure 2.13. The flow of design data in VHDL design process.



CHAPTER 3

Stochastic Computing in Neural

Networks

An approach to performing arithmetic operations using random pulse sequences is
discussed. In this approach, a number is normalized into a fraction from 0 to 1. The
fractional number is encoded using a random pulse stream where it is represented by
the probability of a pulse occurrence in each clock period. Algebraic operations are re-
placed by stochastic processes, and computational results ezpressed as probabilities are
estimated in finite clock periods. Inaccuracies are inherently associated with stochastic
computing and can be described in terms of mean and variance. In this chapter, the
method for generating random pulse streams is discussed and a new statistical model
for the estimate of probability generated from a random pulse generator is developed.
Stochastic computing techniques, which can be utilized in digital artificial neural net-

works, are presented.

42



43

3.1 Introduction

Von Neuman first observed that normalized numbers or voltages could be rep-
resented by probabilities and that some properties of the nervous system could be
explained through statistics [80]. He intended to show that simple algebraic opera-
tions such as addition and multiplication could be performed by simple logical gates.
Later, stochastic computing techniques using random pulse streams were proposed in
the 1960’s [81, 82].

In stochastic computation, the operands are normalized and represented by proba-
bilities which are actually encoded in random pulse streams. Probability is estimated
as a relative frequency of ‘1’ pulse occurrences in a finite but long pulse stream. Since
the probability can not be measured exactly, errors by estimation are introduced in
the form of variance when the stochastic computing techniques are used. At the time
it was originally proposed in the 1960’s, integration technology was not mature and
the hardware cost for arithmetic devices was expensive. A main objective in using
stochastic computing techniques was to implement some algebraic computations by
inexpensive large parallel processors at the cost of speed and accuracy. Since then,
the hardware cost of digital computing elements has continued to drop as VLSI tech-
nology has advanced tremendously. Consequently, the idea of stochastic computing
had been discarded.

However, the idea has been resurgent as an alternative to deterministic computa-
tions in the area of artificial neural networks since late 1980’s. The main reason is that
stochastic computing using random pulse sequences shares one very important char-
acteristic with ANN dynamics: network performance depends not on the accuracy
of calculations performed in an individual processing element, but on the collective

properties of the network (or system) where each processing element does not nec-



44

essarily perform correct computations. Recently, some neural network architectures
have been proposed based on this idea and applied to some engineering problems such

as associative memory [28] or binary classification [32].

3.2 Generating Probability

3.2.1 Pseudo-Random Pulse Sequences

A pseudo-random pulse (or binary) sequence can be generated by a tapped Linear
Feedback Shift Register (LFSR) [67]. Figure 3.1 shows the diagram of an n-bit LFSR.

The feedback function f(z1,z2,---,z,) is expressed in the form
f(z1, 22, zn) =1 D 22 @ -+ - D CnZn

where each constant ¢; is either 1 or 0, the symbol @ denotes modulo-2 adddition,
and z; and z, indicate the values of the most significant and least significant bits,
respectively. For a given register length n, the maximal length period of a sequence
1S Prmaz = 2" — 1.

Define {a,} be a PN sequence if and only if it is a binary sequence satisfying a

linear recurrence

ay = Z ciak—; (modulo 2)

1=1
and has ppne; as a period. There are 2" combinations to select ¢;’s. Only a limited
number of ¢; combinations can form the maximal length PN sequences. In order to
form a maximal length PN sequence, ¢; is determined by the primitive polynomial

[67).



45

X1 X2 X3 -0 T Xp-1 Xn

»| MSB - - LSB

flxpxg,--- xp)

(a)

— | MSB | LSB
(b)

] MSB LSB
(©)

Figure 3.1. (a) The block diagram of Linear Feedback Shift Register (LFSR); examples

of LFSRs with a maximal length period where (b) {c},cp, . . ., ¢7} = {1000001} and (c)
{Cl, Coev s C7} = {010101 1 }



46

Table 3.1. Number of distinct PN sequences with the maximal length period.

[0 | Pmaz [ Non | D] Pmas | Non |

1 1 1| 8 255 | 16
2 3 I 9 511 | 48
3 7 21 10| 1023 | 60
4 15 2| 11| 2047 | 176
5 31 6 12| 4095 | 144
6 63 6 13| 8191 | 630
71 127 18| 14 | 16383 | 756

Table 3.1 shows the number of distinct PN sequences, N,,, with period p = pyaz
with respect to the LFSR register length. For a given register length n, a sequence
{a.} has the following random properties assuming that each 0 and 1 is replaced by

1 and -1, respectively [67]:

1. The number of 1’s is nearly equal to the number of -1’s in a maximal period

Pmaz- More precisely,

Pmaz

|Ean|§1.

n=1

2. Every possible array of n consecutive terms occurs exactly once, except all 0’s.
This indicates that all n-bit integer numbers from 1 to 2" — 1 are generated

exactly once in pp,z.

3. The autocorrelation of a,, is

1 Pmazx 1 lf T = 0
C(r) = Y ananyr =
Pmaz n=1 "'l/pma:l: if 0 <7< Pmaz-

These random properties of a, are utilized for encoding fractional numbers into cor-

responding random pulse streams.




47

3.2.2 Generating Probability

In order to utilize stochastic computing techniques, the values of all operands must
lie between 0 and 1. The fractional numbers represented by probabilities are encoded
in random pulse streams. If the fractional number is stored in an n-bit register, the
resolution is le-T For example, when n = 8, 0.0 is stored as ‘00000000°, 1/255 as
‘00000001, 2/255 as ‘00000010°, etc. The random pulse stream corresponding to a
fractional number can be generated by comparing the number with a pseudo random

number. The pseudo random numbers can be generated from a PN sequence by tak-

ing all bits of the LFSR in parallel, as indicated in property 2 of the PN sequence.

1
2n—1

Fractional numbers from to 1 equally spaced by - are generated exactly once
in a period 2" — 1. The distribution of the pseudo random number is close to an
ideal uniform distribution. Figure 3.2 shows the diagram of a random pulse generator
(RPG) for a fractional number z.

Generating probability = is defined as the probability of pulse occurrence in the
corresponding random pulse sequence z () at each clock. z is estimated in a sampling
clock period, where the sampling clock period is defined as finite clock periods taken
for estimation of z. Error (or noise) is involved in estimating the generating proba-

bility in finite clock periods. Thus, estimate Z can be modeled as an original signal

plus random noise.

X(n)

clk ] I_H_l ﬂ -

Digital t
LFSR comparator

Figure 3.2. A random pulse generator for fractional number x.



48
3.3 Distribution of Estimated Generating Prob-

ability

The generating probability of the random pulse generator has been modeled as a
binomial distribution in the literature [82, 83]. However, the distribution can be more
precisely modeled by regarding the estimate as a hypergeometric random variable.
This new model of the estimate is important, especially for case when a short sampling

clock period is taken for estimation.

3.3.1 Factorial Moment Generating Function

The following terms are defined:
z: A fractional number or a generating probability.
T(n): The pseudo-random pulse sequence for z.

N: The period of z(,) such that N = 2" — 1, where n is the order of a maximum

length LFSR.
P,: The sampling clock period for estimation.

X: A capital z is a discrete random variable indicating the number of logic level ‘1’

pulses occurring in z(y), where 0 < X < P, such that X =0,1,2,...,P,.
E(X): The expected value of X.

Var(X): The variance of X.

z: The estimate of z and a random variable such that £ = X/P;.



49

The factorial moment generating function of the distribution of a random variable X

is formally defined as follows [84]:

n(t) = E(tX) = / : % fx(z)dz. (3.1)

Differentiating n(t) k¥ times and substituting 1 for ¢ gives

dk
n®(1) = WE(tX)h:l
= E[X(X=1)--- (X —k+1)], (3.2)

where E[X(X —1)--- (X — k + 1)] are called the factorial moments.

The variance of X can be computed from the first two factorial mements as

Var(X) = E[X(X - 1)] + E(X) — [E(X)]%. (3.3)

3.3.2 Binomial Distribution Model

If the occurrence of successive pulses in a sequence z(y) is statistically independent,
the sequence is called a Bernoulli sequence. The random variable X of interest is the
number of logic level 1’s occurring in a sampling clock period P,. X is a Bernoulli
variable. Consider X = k indicating k logic level 1’s occur in P, clock periods.

Let the probability of pulse occurrence at each clock period in z(,) be £ = p. The
probability of one particular sequence with k logic level 1’s in n clock periods is

pF(1 —p)" k.



50

The number of sequences with k logic level 1’s in n clock periods is the same as the
number of ways of taking k objects at a time from n objects. The number is

n n!

(&) = kl(n — k)!

The quantity (}) is called the binomial coef ficient.

Thus, the probability function of X can be expressed by
P(X =k)= @)1 -p)" %, k=0,1,...,n. (3.4)
The density function of X is

fx(z) = ki(:)pku — Py *6(z — k).

The distribution of X is binomial.
The factorial moment generating function of a binomial distribution is obtained

using the binomial theorem as follows:

n(t) = E(t)

= S G -p)*

k=0

= S -

k=0

= [pt+(1-p)]" (3.5)

The mean and variance of X can be computed using the first two factorial moments,

7'(1) and 7”(1) as

E(X)=np and Var(X) = np(l — p). (3.6)




51

Thus, the mean and variance of Z are, respectively

E(3)=p and Var(z)=P1=P) (3.7)

n

3.3.3 New Distribution Model

A pseudo-random pulse sequence, z(,), has been modeled in the literature as a
Bernoulli sequence [82, 83]. However, the pulse occurrence in z(n) is not perfectly

independent because a maximum length LFSR generates fractional numbers between

1

7=7 and 1 such that each number occurs exactly once in a period. Accordingly, the

pulse occurrence in z() has statistical dependency.

If P, =n and z = p =1/N, the probability that £ ‘1’ pulses in z(,) occur during
the sampling clock period n is the same as the probability that k black balls are
taken out in n withdrawals from the box containing ! black balls and N — ! white
balls, one ball being withdrawn at a time without replacement. Thus, the sampling
distribution of X can be more closely modeled by the hypergeometric distribution.

When z = p = I/N and P, = n, the probability function of X is

where [ is a natural integer, t.e., ! € {0,1,2,---,N — 1, N}.
Let (k), be the product of r consecutive integers starting with k. Then, the rth

factorial moment is

N
E[(X).] = Zj(k)rP(X=k)
&y, WD

k=r (E)



The detailed derivation of equation 3.8 can be found in Appendix A.

The expected value of X is

E(X) =

and for 7 = 2 in equation 3.8,

52

(D)(n)-

(N)-

.

E[(X)r]lr=1

In

N

[(I1-1Dn(n-1)

E[X(X -1)] =

From equations 3.9 and 3.10, the variance of X can be computed as

N(N =1)

Var(X) = E(X?) -[EX)]?

= E[X(X - )] + E(X) - [E(X)*

(I-1n(n-1) In

= n

N N

= np(l -

N(N -1)
_I_N—lN—n

+N—

N -1

N-—n

p)N_l'

(o

Thus, the expected value and variance of i are, respectively,

E(#)

g
ke’

ST IS

=2

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)



53

and

Var(z) = %Var(X)

_ p(ln"’) 11:77:711 (3.13)

where 0 < 1’:’,’:’1‘ <1 when 1 <n < N. As noted from equation 3.13, when N is large
(implying a wide LFSR) the distribution of Z tends to the binomial distribution. If
P, = N =n, Var(z) = 0 and £ becomes a constant z.

This new statistical model is used to perform an analysis on random noise ef-

fects in digital multilayer neural networks (DMNN). The DMNN architecture will be

developed in Chapter 4 and the analysis will be performed in Chapter 5.

3.4 Stochastic Computing in ANNSs

Stochastic computing exploits the similarities between probability algebra and
Boolean algebra. Logical operations with simple logical gates over multiple pulse

sequences correspond to pseudo-analog computations.

3.4.1 Basic Stochastic Computations

A random pulse sequence () is a sequence of pulses whose probability z can not
be measured at any one clock period, but it can be approximated by a measurement
of average pulse rate. Any Boolean operation over individual pulses corresponds to
an algebraic operation among variables represented by their respective average pulse
rates [82]. Figure 3.3 shows the duality between logical operations with actual pulse

occurrences and numerical operations with pulse occurrence probabilities.



w=0511 [T 1 OO 10
Um) — !
V(n) —
| W) =Um) AND vy v=04 1 10 001
W=Uuv. t
U(n)
V(i) — w=0.2
Z(n) = u(n) OR V(n) rI n I_I

Z=Uu+v-uv.

e —[} =07 [ [ [

H(n) =NOT u(n)
u=1-u.

Figure 3.3. Dualtity between Boolean operations and numerical operations, where the samp-
ling clock period = 20 is assumed and the number of ‘1’ pulses generated during the period in
X(n) is 20 x for x.

If two sequences z(,) and y(,) are statistically independent, the probability of pulse

occurrence in an output sequence z(,) of an AND gate is

z = P(Z(n) = l)
= P(.’I:(n) =1A Yn) = 1)
= P(x(n) = 1) P(y(,,) = 1)

= zy (3.14)

and the probability of pulse occurrence in an output sequence z(,) of an OR gate is



95

¢ = Pl =1)
= P(Z(n) =1V Yn) = 1)

= z+4+y-—zy. (3.15)

Instead of being statistically independent, if two sequences are mutually exclu-
sive, implying that no two pulses coincide in two random pulse sequences, P(z(,) =
1 A ym) =1) = zy = 0 in equation 3.15. Thus the logical OR performs a direct
summation.

The NOT gate in Figure 3.3 (c) produces an output pulse whenever no input
pulse occurs. If z(,) is an input pulse sequence of a NOT gate, the probability of

pulse occurrence in an output sequence z(,) is

z = P(Z(n)=1)
= l—P(:I:(n)=1)

= 11—z (316)

A complete set of examples of stochastic computations utilizing the duality be-

tween Boolean operations and algebraic operations can be found in reference [82].

3.4.2 Stochastic Computing in the DMNN

Neural operations in a stochastic neural network of the type considered here are

performed with basic gates using pulse sequences as inputs. Let w;; and v; be the



56

connection weight between neurons 7 and j and the neural activation of neuron j,
respectively. If two sequences w;j(n) and vj(,) are statistically independent, the prob-

ability of pulse occurrence in an output sequence m;;(,) of an AND gate is

mi; = P(m;j(n) = 1)
= P(wijin) =1 A vjm) = 1)

= w;jvj. (317)

Input summation and nonlinear transformation can be performed simultaneously
using logical OR operation. The inputs of an OR gate are product sequences, m;(),
produced from AND gates. Two kinds of synaptic weights w} and wj; are necessary,
positive (or excitatory) and negative (or inhibitory) for most feedforward neural net-
works. Thus, two separate OR gates per neuron are needed to form excitatory and
inhibitory net inputs. Let net} be the probability of a pulse occurrence in the output
sequence net}}n) of an n-input OR gate for an excitatory net input in neuron ¢ and
net; likewise for an inhibitory net input (See Figure 3.4). net} and net; can be

described by

+ _— +
nett = P(net], =1)

= 1= (1= P(my = D)(1 = P(my = 1))~ (1 = P(m,, = 1))

= =TI -m})

i=1

- 1- ﬁ(1 — w}v;) (3.18)



57

Vimp T t
(a)

m'l t:

l‘ (n) : netia ne l(n)E I] [| I]

Min(n) ' t
(b)

el — Vi(n)

netin)y —d Vi(n)
© !

Figure 3.4. Stochastic computations in the DMNN (a) synaptic multiplication; (b) logical
OR; (c) neural activation.

and

net; = 1—[[(1+wjv,). (3.19)

5=1

Two net inputs, formed from dedicated OR gates, AND together to form the activa-

+

tion function. If two sequences netj,, and net},, are statistically independent, the

probability of a pulse occurrence, v;, in the activation sequence is

v, = P(v,-(n)= 1)
= P(net} y=1 A nety,, =0)

i(n i(n

= net}(1 — net])




58

= [1- f[(l - w;-;vj)] f[(l + wi‘jvj). (3.20)

i=1

The nonlinear activation function, described in equation 3.20, is continuous and
differentiable, indicating that back-propagation can be used for training [8]. This
form of stochastic computation will be used for developing a generic DMNN archi-

tecture in the next chapter.

3.5 Back-Propagation in the DMNN

The DMNN is a feedforward neural network which can be trained with the back-
propagation algorithm discussed in Section 2.1.3.2. The back-propagation algorithm
performs gradient descent iteratively over a sum-squared error measure. This section
shows how the non-traditional neuron activation function described in the previous
section is incorporated into the back-propagation algorithm.

Define n; as the number of neurons in the :th layer. The input layer is not
counted as a layer. Accordingly, for a k-layer DMNN;| ny and nj indicate the number
of elements in an input pattern and the number of output neurons in the output layer,
respectively. The training for the DMNN can be done off-line or on-line using a digital
computer. The choice depends on whether or not the resolution of the DMNN can
represent the changes of synaptic weights during training for a particular application
problem. The resolution of an n-bit DMNN is -1~. For example, it is approximately
1073 for an 10-bit DMNN. However, more than 10~5 precision is often required in
most application problems. That is the reason that the DMNN must be trained off-
line in most cases.

Whenever an input pattern is presented to the network, the output pattern of the



59

output layer is compared to the target pattern; the connection weights between layers
are modified in a backward direction according to the error. Given pattern y, the

sum-squared error measure is

1 &
Eu = 5 Z(t‘“‘ - 'v“,‘)2 (321)

=1

where t,; is the target output for the :th neuron in the output layer when input
pattern u is presented and v,; is the ith element of the actual output pattern. The

overall measure of the sum-squared error over p training patterns is
E=)E,. (3.22)

Thus, the back-propagation rule states that
p
Aw;j(k) = Z A,,w.-j(k) (323)
u=1

where the subscript k denotes the number of iterations and A, w;; is the change to be
made to the weight from the 7th to jth neuron unit following presentation of pattern

u. The gradient descent rule for positive weights states

OE,
aw,'-';-

OE, 0Ov,; Onet};

A,‘w‘-*;(k) = N

= - . 2
nav,,.- Onet; owf; (3:24)
Similarly, the weight change for negative weights is given by
. Onet=.
Aywi;(k) = 0B, Ovyi Jnely; (3.25)

-1 Ovy,; Onety; Owy;




60

Define
€ = _OE',"
6v,,.~
s+ OFE, .. Ov,;
u Onett; " Onet}’
OE;, 6‘0‘"'
- = — = €, . 3.26
- Onety; u Onet; (3.26)
By equations 3.18 to 3.20, we can obtain
8v,,,~
=1 £
Onet}; M i
Onet?, ;
ne:, =(1- netl}) "f'_
aw,-_,,- 1- w"j'l)”]
and
v
_ — t+
Onet; iy
Onet, Vyj
L= —(1 — net; I
Bw,‘] ( ‘“)1 + w,'-"jv,‘j
In the output layer,
€ui = bui — Vg (3.27)

In the hidden layers,

_ BE,

€pi = -
i)
Bv“,-




61

_ aE“ anet:k aE“ anet;k
- ; _anet:k vy + ; _anet;k v,
w _ w
= 2[6 k(l net ) k' ]+ Z:[ 6;;1:(1 net“k)l—I-—] (3 28)
In ut Wy, Vi

Then, the changes in positive and negative weights, resulting from the presentation

of training pattern p are described respectively by following recursive forms:

Bau(h) = bl
= 765(1 — neth, 1_‘;}% (3.29)
and
Awi(k) = b agif_f‘
= —nb(1 - net;,-)-l—I%%;; (3.30)
where 8F; = €,i(1 — nety;) and é;; = —enet];.

The back-propagation algorithm incorporating the activation function imple-
mented in the DMNN has two forms:

n Zu-l ( net:,)l—wﬁ; if w,'j = ‘UJ:;

Aw;j(k) = (3.31)

-7 Z“_l (1 net“i)mJ;;Tj if wi; = wy;.

Gradient descent, described above, can be extremely slow for small  while it can
oscillate for large 7 [43]. In order to achieve the most rapid learning, a learning rate 7
which is as large as possible without leading to oscillation must be chosen. One way

to accelerate the learning is to add a momentum term.

Awii(k) = —1 Z

pu=1

a i(k—1) (3.32)



62

where « is the momentum parameter such that 0 < a@ < 1. a determines the ef-
fect of past weight changes on the current direction of movement in weight space.
This provides each connection weight w;; with a kind of momentum so that it tends
to change in the direction of the average downhill force instead of oscillating with
high-frequency variations of the error surface in the weight space. In turn, the effec-
tive learning rate can be made larger without divergent oscillations occurring. A C

program implementing the back-propagation in the DMNN is listed in Appendix B.



CHAPTER 4

Pulse-mode Digital Multilayer

Neural Networks

In this chapter, digital architectures of basic elements such as synaptic elments
and neuron body elements are developed. Using these basic elements, the modular
architecture for digital feedforward neural networks is developed as a Digital Multi-
layer Neural Network (DMNN). Use of simple logic gates as computing elements and
modular design techniques will lead to the DMNN architecture being relatively com-
pact in size and ezpandable to any size network. Furthermore, massive parallelism
embedded in stochastic computations using random pulse streams is fully utilized with
this architecture. A generic architecture of a DMNN coprocessor is also presented.
All components in the DMNN and the DMNN coprocessor are modeled and simulated
in VHDL. Use of VHDL as the modeling tool for the DMNN coprocessor is discussed

briefly. Finally, the hardware complezity of the DMNN is estimated.

63



64

4.1 Basic Computing Elements

A random pulse generator, a synaptic element, an input neuron body element,
and a regular neuron body element are developed as basic computing elements in the

DMNN. These basic elements are used to develop a modular network architecture.

4.1.1 Random Pulse Generator

The block diagram of a random pulse generator was presented in Chapter 3. The
random pulse generator (RPG) is comprised of a tapped LFSR and a digital com-
parator. In Figure 4.1(a), the order of a LFSR is 8 and the example feedback function
is f(z) = 2, ® 23 ® x4 B zs implemented by XOR logic gates, where the period of

sequence v, is 28 — 1 = 255. Figure 4.1(b) shows the structure of a random pulse

generator using D flip-flops, XOR logic gates, and a digital comparator.

clk

xl X2 - - x6 X7 xg
D D D D D
FF |¢{ FF --- | FF |l¢{ FF|e{ FF
® ° ® e |

L]

Y

L]

Y

fx

Jc2€91c3€9x4®)c8 )

clk

Figure 4.1. (a) A maximum length 8-order LFSR where f(x) = x, ® x, & x, ® x,;

LFSR

(a)

Digital
comparator

(b)

(b) a pseudo-random pulse generator for v;.

Vi(ni
Vi(n) ;



65

At every clock period, a logic ‘1’ pulse is generated if v; > z. Otherwise, a logic ‘0’

pulse is generated.

4.1.2 Synaptic Element

A large number of synaptic multiplications are required, even for a small size
feedforward neural network. For example, if the network consists of m layers exclud-
ing an input layer, the number of synaptic multiplications required per feedforward

operation is

m
Z nnp—i
=1

where n; i1s the number of neuron elements in the /th layer and ng is the number of
input patterns applied to the input layer. Each synaptic multiplication in the DMNN
is performed relatively more slowly than a deterministic calculation done on a digital
computer, but all the multiplications in the network can be performed in parallel.
Let w;; and v; be the synaptic weight between neuron elements ¢ and j and the
neural activation in neuron element ¢, respectively. Figure 4.2 shows the structure
and block diagram of a digital synaptic element (SYN). The VHDL code for a SYN
model is listed in Appendix C. The SYN consists of a random pulse generator (RPG),
a weight register, two AND gates, and two wired-OR lines. Weight w;; is represented
as an r-bit fractional number, where the MSB is a sign bit and the rest represent
the magnitude in sign-magnitude format. With w;; loaded into a weight register, the
corresponding random pulse stream w;j(,,) is generated through the RPG. The pulse
stream is transmitted to two AND gates: the upper one for positive weights and the
lower one for negative weights. If the synaptic weight is positive, a resulting product
sequence m;"j(n) is transmitted to an excitatory net-input line. Otherwise, m;,, is

transmitted to an inhibitory net-input line.



66

’leti( ))+ neti(n)‘

sign bit: ‘1’= negative —__
géd et register } I> >J(n)
> magnitude — /

select | -

- ..
N R N

|| J L/
ck gl & LFSR

(a)
load cli select

Wij Myt
i) — M-

(b)

Figure 4.2. (a) A synaptic element (SYN); (b) a block diagram of a SYN.

4.1.3 Input Neuron Body Element

An input neuron body element (INB) consists of an n-bit register, a tapped LFSR,
and a digital comparator. Figure 4.3 shows the structure and block diagram of the
INB. The tapped LFSR and the digital comparator forms a random pulse generator
(RPG). The role of the INB is to convert the value of the :th element in an input
pattern, v;, to a corresponding random pulse sequence v;(,,). No computation occurs
in this element. v; is loaded into the register at the rising edge of the clock with load
= ‘1" and select = ‘1’. The select signal corresponds to the word line from an address

b

decoder. A binary pulse v;,) is generated every clock cycle when load = ‘0’.



select Vi

select  v;

load n-bit register ¢ ‘
clk )

clk —p INB

R
\/ ¥
comparator
) o : Vi(n)

\

Vi(n)

(a) (b)

A

Figure 4.3 . (a) An input neuron body (INB); (b) a block diagram of INB.

4.1.4 Regular Neuron Body Element

Two net-input pulse streams, transmitted from synaptic elements, are collected
in an up-counter in a regular neuron body element (RNB) through an AND gate to
form a neural activation. Figure 4.4 shows the structure and block diagram of an
RNB. A VHDL model of the RNB is listed in Appendix C. An RNB consists of an
AND gate, an OR gate, an up-counter, 2x1 multiplexers, a buffer, and an RPG. Let
net} and net; be an excitatory and inhibitory input for neuron i, respectively. In a

DMNN, product sequences m;;(,) from synaptic elements are logically ORed to form

+
i(n

a net-input. netj, is ANDed with (neti'(n))’ to form a neural activation v; in neuron
1, where (neti"(n))’ is the complement of net . vi is estimated as v; which is actually
the value of the up-counter after each iteration.

After each iteration, the signal new_iter changes ‘0’ to ‘1’ and then the output
of a counter is transferred to a buffer via a 2x1 multiplexer at the next clock. At

a same time, the up-counter is reset. This output is used to generate a new action






68

pulse sequence v;(,) while the up-counter continues to accumulate incoming pulses. v;
(dotted arrow) is used as an output of a neuron z in the output layer, while v;,) (solid
arrow ) is used in the hidden layers. If load is ‘1°, the buffer is reset to an initial input
value at a new clock cycle. Otherwise, a new neuron state is loaded when new_iter

is ‘1’. The buffer is enabled when load or new_iter is ‘1°.

neti(nf'* v netipny

clk new iter

> * Up counter r -
data load

> 1 | —r <

Mux (2x1)

select I

> Buffer

?—
LFSR |
Comparator
Vi(n)* Vi ¥
(a)

data neti(n)+ neti(n)'

clk new_iter
select:= RNB t load
Y

Vimy Y

(b)

Figure 4.4. (a) A regular neuron body element (RNB); (b) a block diagram of RNB.



69

4.2 Modular Architecture

The DMNN can be constructed from four basic modules: input layer module,
synaptic array module, regular neuron body array module, interconnection module.
The input layer module (ILM) is composed of a group of input neuron body elements.
It receives inputs and transforms them into corresponding binary pulse sequences.
Figure 4.5 shows the structure of the ILM. The pulse sequences generated are trans-
mitted to the synaptic elements in the next layer through an interconnection module
(ICM). A synaptic array module (SAM) consists of a group of synaptic elements and
net-input lines. Figure 4.6 shows the structure of the SAM. Synaptic weights w;; are
loaded before network operations start. w;j,)’s from SYNs in the SAM are logically
ANDed with vj(,) transmitted from the previous layer. All synaptic mult<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>