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ABSTRACT

ARCHITECTURE AND STATISTICAL

MODEL OF A PULSE—MODE DIGITAL

MULTILAYER NEURAL NETWORK

By

Young- Chul Kim

A new architecture for a pulse-mode digital neural network is presented. Algebraic

neural operations are replaced by stochastic processes using pseudo—random pulse se-

quences. Synaptic weights and neuron states are represented as probabilities and

estimated as average rates of pulse occurrences in corresponding pulse sequences. A

statistical model of error (or noise) is developed to estimate relative accuracy associ-

ated with stochastic computing in terms of a mean and a variance.

The stochastic computing model translates into simple logic gates as basic com~

puting elements leading to a high neuron-density on a chip. Furthermore, the use

of simple logic gates for neural operations, the pulse-mode signal representation, and

the modular design techniques lead to a massively parallel yet compact and flexible

network architecture well-suited for VLSI implementation. Any size feed-forward net-

work can be configured using the modules. Processing speed is independent of the

network size.



 

Multilayer feed-forward networks are modeled and applied to pattern classifica-

tion problems such as encoding and character recognition. The architecture and all

digital sub-components in the proposed neural network are modeled and simulated

in VHDL. Computational accuracy is analyzed and the network performance is eval-

uated in terms of a correct classification rate. The simulation experiments in these

applications show the network performance is competitive with that of determinis-

tic DMNN simulations and ordinary back—propagation networks while retaining the

desirable properties of high speed and high density on a chip.
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CHAPTER 1

Introduction

 

Artificial neural networks (ANN) present a practical approach to solving computa-

tionally intensive and (or) ill-defined problems such as pattern recognition, optimiza-

tion, adaptive control, associative memory, and some complex information processing

tasks. Dedicated VLSI implementation is crucial to building fast ANNs fully utilizing

the parallelism embedded in ANN computations. This dissertation presents a new

architecture for a digital feedforward neural network using stochastic computing tech-

niques. Random noise effects in this architecture are also presented. The applicability

of the network is demonstrated using pattern classification examples. This includes

the network architecture, analysis, modeling, simulation, and applications. This chap-

ter begins with a brief overview of the ANN implementation models. The problem to

be solved is then defined, followed by the research tasks. Finally, the organization of

this dissertation is outlined.



1 . 1 Overview

An artificial neural network is a highly interconnected array of simple computing

elements inspired by the computational strengths of biological neural systems. The

structure of individual nerve cells, called neurons, in biological neural systems is well

understood. The neuron is specialized to conduct electrochemical impulses from or to

sensory organs and other neurons. Its function is accomplished by means of hairlike

nerve fibers. However, it is not yet well known how this neural network with its mas-

sive parallel interconnections functions as memory and manipulates complex human

behaviors. Over the last decade many researchers from the fields of physics, mathe-

matics, computer science, and engineering have provided useful theoretical analyses

for various models of ANNs [1—11]. Neural network topologies and some design pro-

cedures have been proposed and many of these ANN models have been proven to

be superior to conventional digital computers in areas such as pattern recognition,

combinatorial optimization, associative memory, and human information processing

tasks.

It is now widely believed that the massive parallelism and computational power of

the human brain results from the global and complex interconnections among a large

number of neurons rather than from the complexity of individual neurons. One of

the major goals in the field of ANN implementation is to produce dedicated hardware

that mimics those dense interconnections among a large number of neural elements.

Most of the current ANN models, however, rely on computer simulations. With the

help of the current advancements in integrated electronics, optical, and electro—optical

technologies, dedicated hardware implementation of ANNs is now progressing [12-18].

To date, many analog and hybrid ANNs have been built using CMOS [12,15-17] or

CCD technology [14]. Most of these are analog implementations of simple feedback

    



 

 

or feedforward neural networks. Analog implementation offers high-speed with low

hardware cost. The primary disadvantages of analog processing are the inaccuracy of

analog computations and the low design flexibility due to the physical constraints of

analog electronic devices.

Digital ANN implementation can take advantage of some of the benefits of current

VLSI technology such as well-understood and advanced design techniques and tools.

Several digital neural networks based on custom VLSI design have been developed

where a neuron is a processing element consisting of computing units, registers, and a

loop—up table (or memory) [19—23]. This approach has an increased area requirement

and the level of parallelism decreases significantly due to the communication over-

head. Recently, however, a new digital approach has been introduced to reduce the

hardware requirement and to increase the level of parallelism. In this new approach,

a synaptic multiplication and (or) a neuron activation function is implemented with

simple logic gates using stochastic computing techniques [28-32].

In this dissertation, a set of fundamental research tasks are described which are

aimed toward developing an efficient architecture and statistical model of a pulse-

mode Digital Multilayer Neural Network (DMNN) based on stochastic computing. A

statistical model is developed by which the accuracy of stochastic computing in the

DMNN is analyzed. The operational characteristics and performance of the DMNN

are quantified. The applicability of the developed network is demonstrated using

benchmark comparisons and example character recognition problems. The results of

this research contribute to the establishment of a pulse-mode DMNN which has a

compact, flexible, and expandable structure.

 



 

 

1.2 Problem Statement

Many current ANN models rely on software simulations using serial or parallel

digital computers. The speed of all software simulators, even those run on parallel

machines, is far from equaling that of specialized VLSI ANNs. This is due mainly

to the sequential nature of control flow and the communication overhead in digital

computers. Some VLSI analog or hybrid ANN implementations have been built us-

ing matrices of fixed or variable resistors and nonlinear amplifiers [12,15—17,24,25,56].

Analog implementations of ANNs have the potential for high density; however, with

current VLSI technology, it is very difficult to build large (or multichip) analog ANNs.

This is mainly due to the inaccuracy of analog elements, the unavailability of reliable

permanent analog storage devices, and design parameter variations such as noise,

temperature, and high parasitic capacitances on external I/O pins. Difficulties in

VLSI analog implementation of ANNs limit their density on a chip and constrained

their applications, in turn, leading to a limitation in solving real engineering prob-

lems.

A digital approach is a viable alternative alleviating some of the above drawbacks

to analog implementation. Digital implementation can take advantage of some of

the benefits of current VLSI technology such as well-understood and advanced de—

sign techniques. Nevertheless, dedicated VLSI digital implementation has been less

developed because a conventional digital approach to ANN implementation has an

increased area requirement and complex connectivity. In order to build a large digital

neural network, a space-efficient network architecture must be developed.

Some digital ANN architectures using stochastic computing techniques show the

possibility of the low-cost and high-speed digital ANN implementation [28-32]. In

these architectures, algebraic operations are replaced by random processes using ran-

 



 

 

 

 

dom pulse sequences. Simple logic gates combined with some other simplistic com-

ponents perform multiplications and nonlinear transformation of signals. In this

approach, the network performs pseudo-analog computations with operands ranging

from 0.0 to 1.0. An operand :c in the pulse-mode representation is the probability

of pulse occurrence in the corresponding binary pseudo-random pulse sequence 3(a)

generated at each clock. However, the overall feedforward network architecture which

is programmable and expandable to any size has not yet been established. The math-

ematical model of the pulse-mode digital neural network also must be developed to

estimate the relative accuracy of stochastic computations and to anticipate the net-

work performance. Furthermore, the applicability of the developed neural network

architecture must be verified using real—world application examples.

1 .3 Research Tasks

The tasks of this research are to (1) develop a pulse-mode digital neuron ar-

chitecture and the corresponding statistical model; (2) develop an efficient DMNN

architecture and the statistical model of error (or noise) in the DMNN and analyze

the accuracy of stochastic computations utilized in the DMNN; (3) Formulate the

framework of VHDL modeling techniques for the DMNN and simulate the DMNN in

VHDL; and (4) apply pattern classification problems to the DMNN and evaluate the

network performance and compare the performance of the DMNN classifier with the

results from other deterministic feedforward neural networks.

To develop a pulse-mode digital neuron model, the first step is to investigate var-

ious stochastic computing techniques using similarities between boolean algebra and

probability algebra. The study is concentrated on developing a digital neuron model



 

 

 

in which a non-linear transfer (sigmoid) function is embedded, which is essential to

ANN models. Also various digital neuron architectures are studied, including those

published recently. Simultaneously, all necessary components are developed in such a

way that each of them can contribute to a simple and regular neuron architecture. A

statistical model of the neuron is developed. The computing accuracy of a synaptic

multiplication and a neuron activation is estimated in terms of means and variances.

A regular neuron architecture is sought in such a way that it leads to an expandable

network architecture.

The second task is the development of a DMNN architecture and an analysis of

the network. Existing feedforward network models with advanced architectures are

explored. A flexible and modular architecture for the DMNN is sought such that the

network can be programmed for different network configurations by simply connecting

basic modules. The effective network structure to minimize the correlation between

multiple pseudo—random pulse sequences is sought. The number of clock cycles per

sampling period for the pulse-code representation of signals is determined in such a

way that the required accuracy for a particular application problem is satisfied. A

variable register length is one of the design issues for the DMNN. This decision may

be made using knowledge gleaned from simulation results of actual problems. Simul-

taneously, network analysis is performed based on the statistical models to estimate

the differences between the results obtained by the DMNN and those obtained by the

deterministic calculation. At this stage, some assumptions are made for the analy-

sis on distributions of synaptic weights and neuron activations because they depend

highly on network architectures and application problems.

The third task involves VHDL modeling and simulation which demonstrate effi~

cient behavioral modeling techniques for the DMNN. First of all, the clever use of

VHDL semantics is necessary to get a precise model. Detailed investigations are un-

dertaken on process statements, functions, and delay characteristics. A logic block

 





 

 

can be modeled using process statements and accompanying wait statements for the

flow control in a VHDL description. In VHDL, a function subprogram defines an

algorithm for computing values or representing the behavior of a hardware model.

One of the useful functions in modeling digital neural networks is the bus resolution

function which defines the resolution of output values for a common output signal.

The delay model in VHDL must provide an accurate view of the timing associated

with the logic gate. In addition, an effective naming convention is considered in order

to develop VHDL models conveniently and to document them properly.

For the last task, some testbench problems and character recognition problems are

applied to the developed DMNN. This demonstrates the applicability of the DMNN.

Traditional pattern recognition systems rely on programmable algorithms based on

statistical or syntactical approaches. They perform a mapping from the observation

space to the interpretation space by extracting features from observed data and clas-

sifying the collected features into certain categories. The developed DMNN should

self-organize the complex mapping required to solve the problem and provide a fast

classification rate. The back-propagation algorithm for the DMNN is programmed

in C and the DMNN will be modeled in VHDL. The network is trained on a host

computer. After the training, the network configuration is determined and the clas-

sification of test patterns is performed by the DMNN. Testbench problems are tested

on the DMNN at first. These problems include “exclusive OR” and “encoding” prob-

lems. The experimental results show the strength as well as the limitations of the

DMNN. The performance measures include the number of classifications per second

and the correct classification rate. Next, character classification problems are applied

to demonstrate its applicability to real-world problems. The experimental results are

compared with those of other approaches. For a particular problem, the proper rep-

resentation for input and output patterns, and the best choice of a register length



 

 

 

in the DMNN is determined. As a result, a design procedure for a DMNN binary

classifier is proposed.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 contains

the background discussion of related topics. It begins with a discussion of various

artificial neural network models, and it briefly describes the existing hardware im-

plementations of ANNs. This is followed by a discussion of traditional and ANN

approaches for solving pattern classification problems. It ends with the brief discus-

sion of VHDL characteristics and behavioral modeling techniques.

Chapter 3 presents the fundamentals of stochastic computing techniques. The

techniques for generating random pulse sequences using Linear Feedback Shift Reg-

isters (LFSRs) and the randomness properties of the pulse sequences are presented.

Synaptic weights and neuron activations are represented as generating probabilities

with the pulse sequences. The statistical model of the generating probability is de—

veloped in terms of mean and variance. Then stochastic computing techniques to

perform a synaptic multiplication and a signal intergration are discussed.

Chapter 4 proposes an architecture for the DMNN. The DMNN consists of synap—

tic elements, neuron body elements, and necessary connections. To develop an overall

network architecture, modular design techniques are used. The DMNN is trained with

the Back-Propagation (BP) learning rule suitable for the pulse-mode feed-forward

neural network. A generic architecture of the DMNN coprocessor which can be at—

tached to a host computer is proposed. The DMNN coprocessor is composed of the

DMNN, a control unit, a memory unit, and some digital components. The network

configuration for solving a particular problem is determined during the training ses-

 



sion. Once the training is completed, the determined synaptic weights and network

configuration are loaded into the memory in the DMNN coprocessor from a host com-

puter. Then, the programmed or hardwired control unit can be used to control the

operations of the coprocessor during the classification session.

Random noises (errors) are involved in the stochastic computations of network

operations. In Chapter 5, the statistical models of the network operations performed

using stochastic computing techniques are presented. The relationship between the

computing accuracy and the register length (or the sampling period), and the relation-

ship between the computing accuracy and the network architecture will be discovered.

The overall random noise effects on hidden and output layers are analyzed. The va-

lidity of the developed models and analysis results is justified by simulations.

In Chapter 6, the DMNN coprocessor is modeled and simulated in VHDL. Some

testbench problems and character classification problems are applied to the coproces-

sor. A design procedure for solving binary classification problems with the DMNN

coprocessor is proposed. Testbench problems are tested to see the applicability of the

DMNN to binary classification problems. Network performance of DMNN character

classifiers is evaluated in terms of successful classification rates. The network perfor-

mance is compared with that of deterministic DMNN simulations or other ordinary

back-propagation networks.

Finally, Chapter 7 contains the conclusions, contributions, and future direction of

this work.



CHAPTER 2

Background

 

Many artificial neural network models have been developed based on current knowl-

edge of biological neurons and with the help of available analytic methods for linear or

nonlinear dynamic systems. Network topology, computational characteristics of neu-

ron elements, and learning rules play key roles in specifying artificial neural networks.

In the first section, feedback , feedforward, and recurrent models are discussed with

learning rules associated with the network models. In recent years, many software

and hardware implementations of these models have been developed. Among them,

some software simulators, analog, and digital electronic ANNs are discussed in the

next section, followed by related issues. Pattern classification is one of the major

applications for feedforward ANNs. Traditional and neural network approaches used

for pattern classification are presented. This chapter concludes with a brief discussion

of behavioral modeling and VHSIC {Very High Speed Intergrated Circuit) Hardware

Description Language (VHDL).
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2.1 Artificial Neural Networks

In this section, a brief review of biological and artificial neurons is provided. Next,

typical feedback network models such as the Hopfield model and the Kennedy—Chua

model are discussed in relation to ANNs. This is followed by a discussion of feedfor—

ward network models and the Boltzmann machine as a recurrent network model.

2.1.1 Biological/Artificial Neurons

2.1.1.1 Biological Neuron

The biological nervous system consists of two principal classes of cells, the neurons

and the neuroglia. The neuroglia are cells that fill the spaces between the neurons

[33]. The neuron is a fundamental processing unit of all nervous systems. Most neu-

rons contain four distinct regions which carry out the specialized functions of the cell:

the cell body, the dendrites, the axon, and the synapse (Figure 2.1).

“UCICUS axon hillock synapse

axon /

\ é ’
K W -».‘

’ 7" -

11 b d

dendrite ce 0 y

Figure 2.1. A biological neuron.

 





 

Axons are specialized for carrying information toward other cells without reducing

the magnitude of signals. Action potentials originate at the axon hillock and travel

to synapses, from which point signals are passed to other cells. Dendrites receive

signals from sensory organs or from the axons of other neurons, convert these signals

into electrical impulses, and transmit them to the cell body. The cell body receives

signals independently. If the electrical impulses are greater than a certain threshold,

action potentials are generated and are actively conducted down the axon. The action

potentials are pulse streams with a pulse-width of about I msec.

Synapses generally pass signals to other cells in only one direction; an axon ter-

minal from a presynaptic cell sends chemical or electrical signals through a synaptic

gap. The signals are collected by a postsynaptic cell. Two types of synapses exist in

biological neural systems: electrical and chemical. They differ in both structure and

function. Cells communicating by electrical synapses are connected by gap junctions

(Figure 2.2). This allows an electrical pulse to pass from the presynaptic cell to the

postsynaptic cell. In chemical synapses, chemical substances, called neurotransmit-

ters, are involved in passing the signals [33]. An action potential is generated in the

postsynaptic cell.

presynaptic cell

/ plasma membrane

    

  

. . axon
gap junction

connection

Postsynaptic cel

 

Figure 2.2. An electrical synapse.
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Two types of signals occur in synapses: excitatory and inhibitory. With an ex-

citatory synapse, the signal from the presynaptic cell causes a change in the plasma

membrane of the postsynaptic cell that tends to induce an action potential. How-

ever, with an inhibitory synapse a nerve impulse in a presynaptic neuron affects the

electrical properties of the postsynaptic membrane in such a way as to prevent the

generation of an action potential. Excitatory and inhibitory stimuli often affect a

single neuron in combination.

2. 1.1.2 Artificial Neuron

An artificial neuron can be considered as a simple processing element which sums

the weighted inputs and passes the result through a threshold or activation function.

Figure 2.3 shows this simplified neuron.

The input signals, which come from either sensors or outputs of other neurons,

form the input vector, X = (r1,---,:r,-, - - - ,xn). The weights associated with each

input form the weight vector, W.- = (wil, - - - , wij, - - - , w...) for the ith neuron, where

wij represents the connection strength between the ith and jth neurons. A threshold

function can be modeled by associating a threshold 0,- in each neuron.

  

  

Non-linear activation

function

 

Yi

 

        

Figure 2.3. A simplified artificial neuron.
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The output of the ith neuron, y,, is then given by

Eli :f(X'I/I/i“6i) (2.1)

where f() is the threshold function. The most pervasive threshold function is the

sigmoid function because it is a bounded, monotonic, non-decreasing function that

provides a graded, nonlinear response, most resembling a biological neuron. The

sigmoid function is shown in Figure 2.4.

y=1/(1+ exp(-x))

/
‘
!

 

Figure 2.4. A sigmoid threshold function.

2.1 .2 Feedback Model

Two feedback ANN models are reviewed: the Hopfield model and the Kennedy-

Chua model. In feedback neural networks, neural elements are connected to one an-

other by feedback paths from outputs to inputs of neural elements. Continuous-valued

neural elements are normally implemented as electrical circuits, and the network dy-

namics are described by differential equations. A key issue of these networks is to

define an energy function which always decreases during the dynamical evolution.



2.1.2.1 The Hopfield Model

The Hopfield model is a one-layer feedback network which consists of intercon-

nected nonlinear analog neurons. Many implementations have been built based on

this model. The general structure of this network is shown in Figure 2.5. In this

model, each neuron is an amplifier with a capacitor C.- and a register p,- at the input

node. The output of neuron j, 1),, is connected to the input of neuron i, u,-, via a

conductance wij.

   

Weight

connecuon

Outputs

V1 V2 V3 V4

Figure 2.5. Hopfield network model.
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The dynamics of an interacting system of n neurons can be described by the

nonlinear differential equation

u-

— -- w,v — -—i + 1; (2-2)

,2; J ’ R.-

where

= —1+ wt 9a 5: .
Pi j=l

I,- is an external input current, v,- = f,(u,-), and f,- is a sigmoid function. 12,-0.- forms

the time constant of neuron i for charging and discharging and ui/R; is the leakage

current. The energy function defined by integral of equation 2.2 is

2
i=1 j

wwv. _;1... + 2‘12.f" We.)d5.- (23)
1 i=1

m
I
H

TI. TI

du _ _m
for Ci—(Ri — avi-

If 11);,- = 11),; for all i and j, the time derivative of the energy function is

—=—§é~Lit)%i> (24>

Since f(u,)18 monotonically1ncreasing,——d—E < 0 for all t. As a result, the value of the

energy function is strictly decreasing and becomes zero only at the equilibrium point

where%—— =—C.-dj5,* = 0 for all i.

Equations 2.2 and 2.3 define a gradient system and thus guarantee convergence.

The Hopfield model has been applied to combinatorial optimization problems where it

has been observed that the network model converges to a good solution in a few time

constants [6, 10]. The objective function of the combinatorial problem is mapped

to the computational energy function through the adjustments of the connectivity

strengths My. Local minima of the energy function correspond to solutions to the
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problem. When the Hopfield network is used as an associative memory, solutions for

this network model may be memory patterns stored in the network. Approximately

0.15n memory patterns are simultaneously stored before the patterns become too

close to each other and tend to merge [4].

2.1.2.2 The Kennedy—Chua Model

A canonical circuit model with feedback was proposed for solving both linear and

nonlinear programming problems by Kennedy and Chua [35, 36]. This model uses

integrators as neuron elements. The structural parameters of the networks correspond

to the coefficients of the objective function and constraints descriptions. Figure 2.6

shows an architecture of the model, where p-cells are constraint amplifiers, f-cells are

integrators, and V is the node voltages v1, v2, - - - , vn. The network dynamics can be

described by

@5591 "‘ . . in
C. d, — sufgp’IgJII/IIav. (2.5)

where C; is capacitance, v,- is the voltage of node i, f(v) is the objective function,

and g(V) are constraints. The corresponding energy function is

m 9.1V)

E(V) = f(V) + Z l. mods. (2.6)
i=1

Since if- S 0 for all t, E(V) is a Lyapunov function ensuring the system convergence to

a stable equilibrium point without oscillation [36]. This model requires more hardware

to form the integrator than the Hopfield model does, but it is superior to the Hopfield

model in solving linear programming problems for which the Kennedy-Chua model

guarantees a stable equilibrium point while the Hopfield model does not [79].
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Figure 2.6. The Kennedy-Chua network model.





2.1 .3 Feedforward Model

The Hopfield and Kennedy-Chua models are examples of one-layer feedback struc-

tures. The interconnection structures of biological neurons are often organized into

multiple layers of cellsi[7, 33]. Layered feedforward networks were first studied in de-

tail by Rosenblatt and his colleagues in the early 1960’s [42]. Since then, feedforward

multilayered structures and learning algorithms for training have been developed.

The networks are trained with a set of input—target pairs as examples and can suc-

cessfully generalize what has been learned. Feedforward networks have been applied

to pattern recognition [37, 38, 49], robotics [39], and control problems [40, 41].

2.1.3.1 Simple Perceptrons

A simple perceptron is a single layered feedforward neural network, consisting of n

inputs and an output layer. Figure 2.7 illustrates an example of a simple perceptron.

Y1 3’2 ‘ ‘ ' .Ym-l I’m

WI] ..

  
 

Figure 2.7. A simple perceptron.
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:3? is the ith element of the input pattern and yf‘ is the output of neuron i when

pattern p is presented to the network. w;,- is the connection weight between neuron

i and the jth element of the input pattern. If the number of patterns is p such that

,u = 1, 2, - - - ,p, the output in the output layer can be described by

yi = wijxj+6i)

i
f
]
:

IIM
:

where :58 = 1 for all ,u, wio = 0.- is a bias, and f() is the continuous sigmoid function.

When tf‘ is the desired output of neuron i for input pattern ,u, the cost function,

which measures the system’s performance, is defined by

1” u
E 2 EEE

= ézzwyr‘t

= $23: vow-Mr. (27>

The connection weights, w;,-, are changed by the gradient descent algorithm.

8E

ang

= n for — you; waxy). (2.8)
11:1

 

Awe = -77

The condition for the existence of a solution in the simple perceptron is the linear in-

dependence of the input patterns [43]. The simple perceptron can not solve problems

in which input patterns are not linearly independent, and may offer alternate par-

tial solutions [43]. However, multilayer feedforward neural networks with nonlinear

neuron elements can overcome this limitation.
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2.1.3.2 Multilayer Perceptrons

A multilayer perceptron (or feedforward neural network) consists of an input layer,

an output layer, and one or more hidden layers in between. Figure 2.8 shows the

generic structure of a multilayer neural network. y,- is the output of neuron i and w,,-

are connection strengths between neuron pairs. Outputs of any layer are weighted

and summed as an input to a neuron in the next layer. An external input is applied

to the input layer.

yi yn

0 0 layer

X

l I I

.
3
3 I I I

H
3

Figure 2.8. Multilayered feed-forward neural network.
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Given pattern p, where u = 1,2, ~ - - ,p, a net input netf‘ in neuron i in any layer is

netf‘ = 2 way; (2.9)

i

where y;‘ is the output of neuron j in the previous layer when pattern [1 is presented.

yo‘ = 1 is often used. Thus, neuron i produces output

it: f(net“) - f(Zw..y;-‘) (2.10)

where f() is a differentiable sigmoid function. For a given input pattern, the output

of the output layer is compared to the target pattern and the connection weights  
between layers are modified in a backward direction according to the error. This is

known as back-propagation learning. Given pattern p, the error measure is

1

E" = 5:0? — yf‘)2 Q“)

where tf‘ and yf‘ are the desired output and actual output for the ith output neuron,

respectively, when pattern ,a is presented. The back-propagation rule states that

we“) = w.-,-(k — 1) + EMMA“ (2-12)
it

For the output-to—hidden layer connections, the gradient descent rules gives

6E“

310.5

8E“ Bnetf‘

“"W awo-

_176E“ 3y” anet"

flay,” Bneti‘ (9ng

= 775.9% (2-13)

Auwidk) = -77
 

 

 

  



23

where 6r = (t? — yomnett).

In the hidden-to-hidden (or input) layer connections, prg, for the connection be-

tween neuron i in the hidden layer and neuron j in the lower layer can be obtained

by using the chain rule.

AuwijUC) = ”77
 

6ng

_776E“ 6y,”

33/.“ 5‘ij

3E“ anetf 8y?

— _T’;3netfcl By,” 810,-,-

 

 

where 65‘ = f,’ (net?) 2,, 6;:wk; and k denotes neurons in the upper layer.

The overall measure of the error is therefore

E = E E“. (2.15)

Thus, the back-propagation rule for any layer has the form

P 6E“

”=1 awb‘

 

Awu = ‘7]

P

u=1

Some variations of the ordinary back-propagation algorithm have been suggested

in order to help the networks learn faster or escape local minima [45-47]. Multilayer

feedforward networks trained by these back-propagation algorithms have been used

to solve pattern classification problems [45, 48-50].
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2.1.4 Recurrent Model

Recurrent networks allow connections in both directions between a pair of layers,

and within a layer to itself. The Boltzmann machine is a well-known recurrent network

with symmetric connections [51, 52].

2.1.4.1 Boltzmann Machine

The Boltzmann machine consists of visible and hidden units where the visible

units can be divided into input and output units. Figure 2.9 illustrates the structure

of the Boltzmann machine. The units are stochastic and take output value v,- = +1

with probability f(h,) and value v,- = —l with probability 1 — f(h,), where

h.- = Z wuvj

,-

and

_ 1

" 1 + e—2Bh'
f(h)

 

Output pnits

Hidden Vi§ib1e
units

units 

 
_/

’4’

. .

x“ .

Input units 
Figure 2.9. A Boltzmann machine consisting of visible and hidden units.
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Here ,8 = % where T is pseudo—temperature. If w;,- = w,,- for all i and j, the energy

function

H{v.-} = —% Z ngjvgvj (2.17)

has a minimum at a stable state characterized by v,- = sgn(h,-) where sgn(h,—) = +1

if h,- 2 0, otherwise sgn(h,-) = —1.

The probability of finding the system in a particular state {vi}, after equilibrium

is reached, is given by the Boltzmann-Gibbs distribution

_ {o.

P{v.~} = eflzrl

where Z is a normalized constant.

Boltzmann learning adjusts the connections ng such that the states of the visible

units, a, have a desired probability distribution. Let fl be the states of the hidden

units. The probability Por of finding the visible units in state a irrespective of ,6 is

Pa = Zap

[3

= Ze’fllflg (2.18)

B

where

1

Hag = —5 ZZ wijvflfi'US-yfi.

1' j

The relative entrophy between actual probability PO, and desired probabilities RC, is

R

7):. (2.19)E: ZRalog
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E _>_ 0 and E = 0 if R, = R... for all a. The gradient descent rule gives

 

Awe = ~77

 

= ”fizzaapmavrfivffi— < 5.5,- >] (2.20)

a fi

where the correlations < 5.5,- > are measured by taking a time average of Sgsj and the

system must reach an equilibrium state for each a. A simulated annealing procedure is

used to rapidly achieve a global minimum. Disadvantages of the Boltzmann machines

are that learning requires an extremely long convergence time even with simulated

annealing and its hardware implementation is impractical.

Boltzmann machines have been applied to various problems: statistical pattern

recognition [7], constraint satisfaction problems [51], and combinational optimization

[53].

2.2 Artificial Neural Network Implementations

Many current ANN models rely on software simulations run on serial or parallel

digital computers. The speed of software simulation even on a parallel machine is

far from equaling that of specialized hardware ANNs mainly because of programming

and communication overhead. To date, a number of ANN hardware prototypes have

been built using electronic, optical, and opto—electronic technologies. Electronic ANN

hardware implementations, software simulators run on digital computers, and related

issues are discussed. ANN implementations can be divided into three categories based

on the method used to express the values within the network: analog, digital, and

hybrid.
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2.2.1 Analog and Hybrid Implementations

Analog computation performed in analog or hybrid electronic hardware uses some

fundamental physical principles such as the linear attenuation of voltage by an elec-

trical resistor and the nonlinear transfer characteristics of an amplifier. In a simple

analog neural network, the interconnections are simple fixed value resistors (see Figure

2.5). The output voltage of neuron i is given by

vi = f(Z w;,-v,-)

i=0

where 10,-, is the conductance of the resistor between neuron i and neuron j and f() is

the transfer function of the amplifier. Neural networks with fixed value resistors can

be used when the network function is known in advance and weight changes are not

needed. This type of network with 256 neurons was designed on a single chip using

standard CMOS technology by Jackel, et al. [15]. This circuit was not programmable

due to the fixed synaptic weights.

ANNs can be programmed by storing synaptic weights in memory. A static mem-

ory cell has been used as storage for a weight bit where the neurons and synapses were

binary units. Multiplication was performed by a logical XOR gate [16]. For many

applications, a higher resolution for weight values is required. One way of storing

analog weights is to use a capacitor [55, 56]. A weight can be stored as the voltage

difference between two capacitors; the voltage difference is multiplied by the input

voltage in the circuits. The main disadvantage of this dynamic storage technique is

that it requires refresh circuitry to overcome the charge leakage on the capacitance.

An alternate way is to store weights digitally. In this case, a digital-to-analog

(D/A) converter is required at each connection to perform an analog multiplication

of the stored weight with the input signal. A matrix with 1024 multiplying D/A con-
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verters was built using CMOS technology, where a weight was represented in four-bit

magnitude plus a sign bit [57].

A floating gate field effect transistor (FET) was used as a device to combine the

weight storage and the multiplication, where the weight was determined by the charge

stored in the floating gate. However, the weight range and polarity difficulties were

significant limitations [58]. To overcome these difficulties, a Gilbert multiplier [59]

was used to carry out the weight multiplication while a floating gate PET was used

simply for weight storage [60]. Sage and his associates designed an ANN chip based

on Metal Nitride Oxide Semiconductor (MNOS) floating gate transistor technology

and Charge Coupled Device (CCD) technology [14]. Analog weights were stored in

MNOS floating gate transistors. Charge packages instead of currents were added to

compute the sum of products. This circuit implemented a simple Hopfield-type neu-

ral network by operating with binary inputs and analog weights.

In analog computation, available mathematical functions are limited because those

functions are found in some physical principles of devices. When a complex transfer

function is required, it is difficult to implement correctly using analog hardware alone.

In this case, hybrid ANN hardware is more appropriate where the sum of products

is carried out with analog components, digitized for the transfer function processing,

and then converted back to analog [24].

The potential advantage of analog computation is that operations in the network

can be performed using inexpensive hardware. However, analog computation results

in low accuracy and limited dynamic range due to physical constraints, such as ther-

mal and quantum noise of analog components. In addition, design flexibility in analog

implementation is strictly constrained because only mathematical functions resulting

from physical principles are available for use.
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2.2.2 Digital Implementations

In this section, the two mainstream approaches to digital implementation of ANNs

are discussed: software simulations on general-purpose or special-purpose computers

and dedicated VLSI implementation.

2.2.2.1 Software Simulators

ANN simulations on digital computers can be divided into two categories: ANN

simulations on general-purpose parallel computers and ANN simulations on special-

purpose processors.

Many general-purpose parallel machines, consisting of a large number of process-

ing elements, are currently used for ANN simulation. Processing elements, cooperated

on the same task, communicate through a single high speed data path between pro-

cessing elements. A neural network and data are partitioned into different processing

elements. Each processing element may have a dedicated memory to store data as-

signed. For example, the Warp machine, which was a systolic array of 10 processing

elements, was used to implement a back—propagation network [61]. Each processing

element contained an adder, a multiplier, and an ALU. The 39 Mbyte cluster memory

was used to store weights and 17 million weight updates per second was achieved.

Forrest, et al. used a Distributed Array Processor (DAP) consisting of 4096 proces-

sors to implement a Hopfield network [62]. The DAP was able to perform 25 million

additions per second. The use of general-purpose parallel machines for ANN sim-

ulations can be justified for the problems to be completed in a feasible amount of

simulation time. However, large-size ANNs often require faster simulations.

Special purpose processors, which are designed for ANN simulations and attached
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as coprocessors to a host computer, are often called neurocomputers. A user program

run on the host computer calls a special subroutine, and controls the neurocomputer

whenever needed. Three methods for attaching a neurocomputer to a host computer

have been defined [58]. The first method is to install the neurocomputer as a memory-

mapped device on the host computer. In this method, the neurocomputer shares the

memory space of the host computer. Data transfers between the host computer and

the neurocomputer are controlled by the central processing unit in the host with ad-

dresses in the memory space. The second method is to attach the neurocomputer as

a peripheral device using a standard peripheral interface . The neurocomputer can

be ported from one type of host computer to another relatively easily. The first and

second methods have high bus loading problems on the host computer. In addition,

the second method suffers from the reduced bandwidth of the peripheral interface.

Thus, these two approaches are appropriate for small computers. The third approach

is to attach the neurocomputer as a coprocessor to a host computer via a local area

network (LAN). This method has the advantage that the neurocomputer can access

memory servers and other outboard devices on a high—bandwidth LAN.

Several manufacturers, such as TRW, Science Applications International Corpo-

ration, and Hecht-Nielsen Neurocomputers, developed neurocomputers. For example,

Mark III and Mark IV neurocomputers were developed by TRW [63]. The Mark III

(Mark IV) machine consisted of many Motorola 68010 (68020) based single board

computers mounted on a broadcast bus backplane. These systems used the Artificial

Neural System Environment (ANSE) developed at TRW for specifying the neural

network to be implemented. A neural network was called on the Mark III (IV) from

user software on the DEC Micro VAX through an user interface. The Mark IV had

an ultra high-speed graphics display facility for monitoring the activity of the neural

network. The Mark III and Mark IV systems were able to process up to 450,000 and

5,000,000 interconnections per second, respectively.
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2.2.2.2 Dedicated Hardware Implementations

In order to fully utilize the parallelism embedded in ANN computations, the de-

sign of dedicated VLSI ANN digital systems is desired. A three-layer feedforward

ANN was designed to classify handwritten numbers [20]. The network consisted of

50 neurons and 6688 fixed interconnections using a 2—micron CMOS process. The

resulting VLSI layout was 7.9 x 9.2 mm) in size. This design is quite compact, but

its flexibility was so low due to the fixed synaptic weights. Suzuki and Atlas mapped

an ANN to an array of custom processors [64, 65]. Figure 2.10 shows the structure

of the proposed processing element, where the blocks represent special operations for

the network update. A weight matrix W and a threshold vector 0 are stored in the

product—sum unit (PSU). The arithmetic unit (AU) performs operations required for

back-propagation.
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Figure 2.10. The structure of a processing element in [64].
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The derivative of a nonlinear function (DF), desired outputs (DO), and a learning

rate (77) are stored in the memory of the AU. Neural activations (X) and the error

value (6) are accessed by both the PSU and the AU. This ANN hardware has a high

design flexibility, but hardware requirements for this design are large.

As indicated in the above two examples, dedicated digital ANN implementations

can facilitate high parallelism, but it is difficult to simultaneously achieve the desired

high design flexibility and high density on a chip.

A new digital approach - digital ANNs using stochastic computing techniques -

replaces algebraic operations in ANNs by stochastic processes using pseuddrandom

pulse sequences [28, 31, 32]. Simple logic gates combined with other digital compo-

nents perform multiplications and nonlinear transformation of signals.

In this new approach, the values for synaptic weights and input operands are

normalized after a network has been trained [28, 32] or all operands are restricted

to the range between 0.0 and 1.0 both for training and testing [66]. An operand :1:

in the pulse-mode representation is the probability of pulse occurrence in the corre-

sponding binary sequence :r(,,) at each clock. 5: is the estimate of .1: taken over finite

clock periods N. Stochastic computations using random pulse sequences inherently

utilize concurrent processing in all synaptic and neuron elements. Furthermore, the

use of simple logic gates as computing elements allows a high neuron-density on a

chip and a relatively compact network architecture. High design flexibility can also be

achieved by making the network programmable. However, network speed depends on

the length of a sampling clock period. The sampling clock period is the time required

to estimate the computation results. A longer sampling clock period yields more ac-

curate computations. Thus, there exists a trade-off between speed and accuracy in

this approach. Details on the network architecture, analysis, and performance will be

discussed in following chapters.
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2.3 Pattern Recognition and Neural Networks

Pattern recognition is concerned with classification or description of complex pat-

terns by means of some measured prOperties. A pattern recognition system requires

data acquisition, data representation, and data classification.

The design of a pattern recognition system involves the following three steps: (1)

data acquisition, (2) preprocessing, and (3) decision making [68]. A typical character

recognition system is illustrated in Figure 2.11.

 
 
 

Digitized . Size normalization, Matching Identity of

character matnx Noise cleaning character

i. Pre- __i_> Feature __i__> Decision _I_>
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Figure 2.1 1. A typical character recognition system.

The first stage involves image processing, the last two stages deal with the pattern

recognition. Mask (joint occurrences of black and white pixels), strokes and bays in

various directions, the location of end points, and the intersection of line segments

and loops, are all popular features for character recognition. Most pattern recognition

systems utilize one of the following three approaches: statistical, structural, or neural

network.

2.3.1 Statistical Approach

In the statistical approach, a pattern is represented in terms of N features. Each
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pattern can be viewed as a point in the N-dimensional space. If the choice of features

is good, then pattern vectors belonging to diflerent classes will occupy different regions

of this feature space. The objective in this approach is to establish decision boundaries

in the feature space to separate patterns belonging to different classes.

Assume that a given sample pattern belongs to one of M classes c1,c2, - . - ,cM

based on its feature vector x = ($1,232, - - - ,xN) and that x has a class-conditional

density p(x|c,-). Bayes decision rule states that a pattern with x as its feature vector

is assigned to class c,- if

p(CIIX) Z p(CjIX) for all i7“

where p(c,-|x) is the posteriori density for class q, defined as

P(XIC:‘)P(C£)

iii P(XIC:‘)P(C£)

 

P(C:'IX) = E

where p(c,-) is a priori probability density for class c,-. If p(c,-) = l/M, then the

Bayes decision rule is identical to the maximum-likelihood decision rule. The decision

boundary between pattern class c.- and c,- is defined by

P(CiIx) - P(CjIX) = 0-

If class-conditional densities are multivariate Gaussian, then

P(XIC:') = NW, 1),

where p,- is the mean vector for class c; and I denotes the identity covariance matrix.



35

If p(c,-) for all i are equal, then

IX - it-II2
p(c.-|x) = —'———,—*-.

where [I - M denotes the Euclidean norm. As a result, a pattern x is assigned to the

class of the closest mean vector. If the class-conditional densities are known, Bayes

decision rule can be used to design a classifier. If they are not known, they must be

estimated by training with sample patterns.

2.3.2 Structural Approach

When the number of features required to establish a reasonable decision boundary

is very large, it is more appropriate to View a pattern as being composed of simple sub-

patterns. In the structural approach, a complex pattern is represented in terms of the

interrelationships among the simplest subpatterns, called primitives. This paradigm

has been used in situations where the patterns have a definite structure which can be

captured in terms of a set of rules.

The primitives or grammatical rules must be inferred from the available samples.

In this approach, the difficulty resides in segmentation or reliable extraction of the

primitives from a finite number of pattern samples.

2.3.3 Neural Network Approach

The neural network approach is based on the notion that a network of simple

processing elements arranged in a manner similar to a biological neural system might
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be able to self-organize itself to recognize and classify patterns. The Perceptron is

considered as the first significant development of such in the early 19603 [2]. The basis

for the inherent power of Perceptron devices was well understood. However, at that

time, no method was known for training multilayer Perceptron devices and the cost

for full implementation of those devices was extremely high. VLSI technology has

advanced and the price of processors has dropped tremendously. More significantly,

the generalized delta rule developed in 1986 by Rumelhart, et al. provides a practical

way for training the multilayer Perceptrons [8]. Today, perceptron-like models trained

by the generalized delta rule are being applied to pattern recognition.

In pattern recognition systems using the neural network approach, all stages or

some of stages in Figure 2.11 can be combined into one neural network. The net-

work learns the mapping from the observation space to the interpretation space by

a training algorithm. In this approach, human interactions involved in statistical or

structural pattern recognition systems are minimized. Most recognition processes are

performed in an autonomous manner.

2.4 Behavioral Modeling with VHDL

In the design of large systems like ANN3, use of Design Automation (DA) becomes

necessary. The simulation and verification of a design using a behavioral description

language at an early stage of the design process also becomes more important as the

complexity of systems continues to grow. VHDL is a typical behavioral description

language which is semantically oriented for digital systems. Digital ANNs can be

modeled and simulated using VHDL.
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2.4.1 Behavioral Modeling

A promising approach for implementing artificial neural networks is the fabrica—

tion of special-purpose VLSI chips. Traditionally designers start with a gate—level or

a circuit-level schematic. However, as systems become more complex, a top-down

design approach is needed in order to manage complexity and to reduce the design

time and development costs. Test and modification of an original design can be done

in an early stage of the design process. Top-down design starts with a high-level spec-

ification which is decomposed into lower level specifications in a hierarchical fashion.

Designers look at the system at an abstract level in a high—level specification. Hard-

ware Description Languages (HDLs) are crucial to the high-level design [69-72].

VHDL is a typical HDL that can be used to express the function and logical

organization of circuits, ranging from simple logic gates to complex digital systems

[73-77]. VHDL is fast becoming an industry standard. The US. government made it

a standard language, requiring the use of VHDL as the design and description mech-

anism in Department of Defense (DoD) hardware designs. Compilers, translating the

structural design in VHDL to an intermediate format such as Caltech Intermediate

Format (CIF), are being produced by many CAD vendors.

In VHDL one can model the behavior of systems and simulate them to verify

the design. Modeling involves specifying the inputs and outputs of a device, and

describing its behavior and/or structure. For example, when an ANN is modeled in

VHDL, its behavior may be described by a set of static or dynamic equations by

using function statements. Structure is described by interconnections of the subcom-

ponents (synapses and neurons). An efficient and precise modeling of VLSI ANNs

is facilitated by analysis of VHDL semantics, including a detailed investigation of

process statements, functions, and delay characteristics.
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2.4.2 VHDL Characteristics

The primary element in VHDL is a design entity which can represent portions of a

hardware design ranging from simple logic gates to complex digital systems. A design

entity consists of two different types of descriptions: the entity declaration and one

or more architectural bodies. The entity declaration defines the interface between the

entity and the outside world. Figure 2.12 illustrates an example entity declaration.

 

entity [COUNTER is . ,

« generic .(timegdelayz‘time: 10 ns);

p. port (elk, reset: in it;

' sum: bufferinteger);

end COUNTER

   

Figure 2.12. Entity declaration in VHDL.

The ports are the signals through which the design entity communicates with other

modules. Their declaration can be any predefined or user-defined type. The port and

local item defined in the entity declaration are made available to architectural bodies

associated with this entity. A set of parameters, called generics, provides a channel

for static information to be communicated to a design entity from its environment.

Generics can be used to specify timing characteristics, the bit size of ports, or other

descriptive characteristics of a design such as temperature, capacitance, location, etc.

An architecture body supports three implementation styles of a design entity: be—

havioral, structural, and data-flow. The behavioral body describes the system model

in sequential program statements just like programs written in a high-level program-
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ming language. The structural body describes a design entity purely in terms of its

subcomponents and their interconnections. Finally, the data-flow body decomposes

the architecture into a set of concurrent register assignments under the control of

gating signals. Data-flow style emphasizes the flow of information between memory

and gating elements. All three styles may be intermixed in an architectural body.

A VHDL design entity is a template to be used in creating specific instances of a

component via the component instantiation statement. A component may represent

a structural partitioning of the design or a functional decomposition of a large system.

Because this feature essentially isolates one level of design from another, two differ-

ent design methodologies can be accommodated: top-down approach and bottom-up

approach. In the former approach, the architectural body can be written in terms

of abstract lower—level components. Such components must be fully described with a

variety of design entities later in the code. In the latter approach, the local compo-

nent declaration specifies the portion of the interface from an existing design entity

that resides in the design library.

Designers may specify the behavior of a subsystem and leave the implementation

details of structural design to others. Thus, VHDL designers can model simply the

function of the system independent of any implementation technology.

A VHDL description is evaluated when an event occurs at one of the component’s

inputs. The evaluation yields a new set of projected values for the outputs of the com-

ponent. This effect may, in turn, causes additional changes. Independent sequences

of events can occur simultaneously. The event-driven semantics of VHDL are based

on the assumptions that all signals in a design propagate in well-defined directions

and that signal propagation always includes a delay.

A typical signal assignment statement consists of a driver and a target. A driver

is a source of the value for a signal. A signal may have multiple sources. If a signal

has more than one source, then all sources can participate in the calculation of the
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value. Such a signal must be a resolved signal, and the resolution function calculates

one effective value from an array of values. The target of a signal assignment is the

signal on the left hand side of the assignment operator. The simulator creates a driver

for each element of a target of every concurrent signal assignment [74].

Timing is one of the most important aspects of a VHDL model. The representation

of time in VHDL has both a macrotime scale and a microtime scale. The macrotime

scale represents real time (nanoseconds, microseconds, etc.) which is measured in

discrete units. The microtime scale represents a unit delay which is essentially not

measurable. Any number of micro-units of time may exist between any two macro-

units of time. With two time scales, designers can perform unit-delay or real-time

simulations [73].

There are two kinds of statements in VHDL: sequential and concurrent. Sequen-

tial statements are used to define algorithms for the execution of a subprogram or

process. They are executed one at a time. Concurrent statements are executed in an

asynchronous pseudo-parallel fashion. They are used to define interconnected blocks

and processes that jointly describe the overall behavior or structure of a design.

Figure 2.13 shows the flow of data in the design process under a VHDL hardware

support environment including an analyzer, a profiler, and a simulator. The design

library contains intermediate representations of VHDL descriptions. The library unit

resulting from the analysis of a design unit is placed into a working library. Only one

library may be the working library during the analysis of any given design unit [74].

The analyzer accepts a VHDL source code, translates it into the intermediate

form, and stores it in the design library. It checks the syntax and semantic rules

of the language. The profiler pulls all necessary design entity interfaces, bodies,

functions, and packages from the library, then configures a cross-section of a design

hierarchy. The simulator and other tools may use this configuration. The simulator

records signal histories and dynamic errors.





An understanding of VHDL semantics and characteristics enables designers to use

VHDL as an economical hardware design testbench. A system can be first modeled

behaviorally with a high-level specification using appropriate modeling techniques,

verifying the correctness of the design.

decomposed into lower level specifications, incorporating more implementing tech-

nological constraints. Finally, when the system is modeled in complete structural

descriptions, the precise feasibility and detail of a hardware realization can be as-
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Later, the high-level specification can be

->'

  
   

Figure 2.13. The flow of design data in VHDL design process.
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CHAPTER 3

Stochastic Computing in Neural

Networks

 

An approach to performing arithmetic operations using random pulse sequences is

discussed. In this approach, a number is normalized into a fraction from 0 to I. The

fractional number is encoded using a random pulse stream where it is represented by

the probability of a pulse occurrence in each clock period. Algebraic operations are re-

placed by stochastic processes, and computational results expressed as probabilities are

estimated in finite clock periods. Inaccuracies are inherently associated with stochastic

computing and can be described in terms of mean and variance. In this chapter, the

method for generating random pulse streams is discussed and a new statistical model

for the estimate of probability generated from a random pulse generator is developed.

Stochastic computing techniques, which can be utilized in digital artificial neural net-

works, are presented.

42
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3. 1 Introduction

Von Neuman first observed that normalized numbers or voltages could be rep-

resented by probabilities and that some properties of the nervous system could be

explained through statistics [80]. He intended to show that simple algebraic opera-

tions such as addition and multiplication could be performed by simple logical gates.

Later, stochastic computing techniques using random pulse streams were proposed in

the 1960’s [81, 82].

In stochastic computation, the operands are normalized and represented by proba-

bilities which are actually encoded in random pulse streams. Probability is estimated

as a relative frequency of ‘1’ pulse occurrences in a finite but long pulse stream. Since

the probability can not be measured exactly, errors by estimation are introduced in

the form of variance when the stochastic computing techniques are used. At the time

it was originally proposed in the 1960’s, integration technology was not mature and

the hardware cost for arithmetic devices was expensive. A main objective in using

stochastic computing techniques was to implement some algebraic computations by

inexpensive large parallel processors at the cost of speed and accuracy. Since then,

the hardware cost of digital computing elements has continued to drop as VLSI tech-

nology has advanced tremendously. Consequently, the idea of stochastic computing

had been discarded.

However, the idea has been resurgent as an alternative to deterministic computa-

tions in the area of artificial neural networks since late 1980’s. The main reason is that

stochastic computing using random pulse sequences shares one very important char-

acteristic with ANN dynamics: network performance depends not on the accuracy

of calculations performed in an individual processing element, but on the collective

properties of the network (or system) where each processing element does not nec—
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essarily perform correct computations. Recently, some neural network architectures

have been proposed based on this idea and applied to some engineering problems such

as associative memory [28] or binary classification [32].

3.2 Generating Probability

3.2.1 Pseudo-Random Pulse Sequences

A pseudo-random pulse (or binary) sequence can be generated by a tapped Linear

Feedback Shift Register (LFSR) [67]. Figure 3.1 shows the diagram of an n-bit LFSR.

The feedback function f(iltl, x2, - - - ,xn) is expressed in the form

f(x11329”°ixn)= C1331 $62372 Q " ' $611171:

where each constant c,~ is either 1 or 0, the symbol EB denotes modulo-2 adddition,

and 9:1 and mu indicate the values of the most significant and least significant bits,

respectively. For a given register length n, the maximal length period ofa sequence

is pmaJ: = 2" — 1.

Define {an} be a PN sequence if and only if it is a binary sequence satisfying a

linear recurrence

a;c = E ciakn (modulo 2)

i=1

and has pm” as a period. There are 2" combinations to select eg’s. Only a limited

number of c,- combinations can form the maximal length PN sequences. In order to

form a maximal length PN sequence, c,- is determined by the primitive polynomial

[67].
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Figure 3.1. (a) The block diagram of Linear Feedback Shift Register (LFSR); examples

of LFSRs with a maximal length period where (b) {c1,02, . . ., c7} = { 1000001 } and (c)

[c]. (:2, . . ., c7} = {0101011}.
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Table 3.1. Number of distinct PN sequences with the maximal length period.

 

InIPmazI anII 11I PmaxIanI
 

 

1 1 1 8 255 16

2 3 1 9 511 48

3 7 2 10 1023 60

4 15 2 11 2047 176

5 31 6 12 4095 144

6 63 6 13 8191 630

7 127 18 14 16383 756         

Table 3.1 shows the number of distinct PN sequences, an, with period p = pm”

with respect to the LFSR register length. For a given register length n, a sequence

{an} has the following random properties assuming that each 0 and 1 is replaced by

I and -1, respectively [67]:

1. The number of 1’s is nearly equal to the number of -l’s in a maximal period

pm”. More precisely,

Pma:

[207.131-

71:1

2. Every possible array of n consecutive terms occurs exactly once, except all 0’s.

This indicates that all n-bit integer numbers from 1 to 2" -— 1 are generated

exactly once in pm”.

3. The autocorrelation of an is

 

Pma: I If T = 0

cm = 1 Z) anam =
pm“: 11:1 —1/pmaz If 0 < T < pmax-

These random properties of an are utilized for encoding fractional numbers into cor-

responding random pulse streams.
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3.2.2 Generating Probability

In order to utilize stochastic computing techniques, the values of all operands must

lie between 0 and 1. The fractional numbers represented by probabilities are encoded

in random pulse streams. If the fractional number is stored in an n-bit register, the

 resolution is 2,34. For example, when n = 8, 0.0 is stored as ‘00000000’, 1/‘255 as

‘00000001’, 2/255 as ‘00000010’, etc. The random pulse stream corresponding to a

fractional number can be generated by comparing the number with a pseudo random

number. The pseudo random numbers can be generated from a PN sequence by tak-

ing all bits of the LFSR in parallel, as indicated in property 2 of the PN sequence.

Fractional numbers from 571:]— to 1 equally spaced by 2,,1—_1 are generated exactly once

in a period 2” — I. The distribution of the pseudo random number is close to an

ideal uniform distribution. Figure 3.2 shows the diagram of a random pulse generator

(RPG) for a fractional number x.

Generating probability a: is defined as the probability of pulse occurrence in the

corresponding random pulse sequence f(n) at each clock. a: is estimated in a sampling

clock period, where the sampling clock period is defined as finite clock periods taken

for estimation of 3:. Error (or noise) is involved in estimating the generating proba—

bility in finite clock periods. Thus, estimate 5: can be modeled as an original signal

plus random noise.

x(n)

clk __ I—I Us...

Digital t

LFSR comparator

 

    
 

   

 

Figure 3.2. A random pulse generator for fractional number x.
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3.3 Distribution of Estimated Generating Prob-

ability

The generating probability of the random pulse generator has been modeled as a

binomial distribution in the literature [82, 83]. However, the distribution can be more

precisely modeled by regarding the estimate as a hypergeometric random variable.

This new model of the estimate is important, especially for case when a short sampling

clock period is taken for estimation.

3.3.1 Factorial Moment Generating Function

The following terms are defined:

2:: A fractional number or a generating probability.

$0,): The pseudo—random pulse sequence for :r.

N: The period of $(n) such that N = 2" — 1, where n is the order of a maximum

length LFSR.

P3: The sampling clock period for estimation.

X: A capital :1: is a discrete random variable indicating the number of logic level ‘1’

pulses occurring in 33(71), where 0 S X g P, such that X = 0,1,2,. . . ,P,.

E(X): The expected value of X.

Var(X): The variance of X.

It: The estimate of :1: and a random variable such that i: = X/P,
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The factorial moment generating function of the distribution of a random variable X

is formally defined as follows [84]:

g(t) = E(tX) = /°° efx(a:)d:1:. (3.1)

Differentiating n(t) k times and substituting 1 for t gives

Me) = iii-EM.-.
dt" —

= E[X(X—1)~-(X—k+1)], (3.2)

where E[X(X — 1) - - - (X — k + 1)] are called the factorial moments.

The variance of X can be computed from the first two factorial mements as

Var(X) = E[X(X — 1)] + E(X) — [E(X)]2. (3.3)

3.3.2 Binomial Distribution Model

If the occurrence of successive pulses in a sequence 3(a) is statistically independent,

the sequence is called a Bernoulli sequence. The random variable X of interest is the

number of logic level 1’s occurring in a sampling clock period P,. X is a Bernoulli

variable. Consider X = k indicating k logic level 1’s occur in P, clock periods.

Let the probability of pulse occurrence at each clock period in 3(a) be :1: = p. The

probability of one particular sequence with k logic level 1’s in n clock periods is

p"(1 - 19)“-
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The number of sequences with k logic level 1’s in 71. clock periods is the same as the

number of ways of taking k objects at a time from n objects. The number is

n!

(2) : k!(n — k)!'

The quantity (2) is called the binomial coefficient.

Thus, the probability function of X can be expressed by

P(X = IC) = (2)1931 -p)""‘. k = 0.1,..-

The density function of X is

n.

, n. (3.4)

fx(=v) = 2(2):)"(1- 19)""‘V<5(=r - k)-
k=0

The distribution of X is binomial.

The factorial moment generating function of a binomial distribution is obtained

using the binomial theorem as follows:

770) = E(tx)

= 2n: t"(’13)p"(1 — P)"""
k=0

= :09th — p)""‘
k=0

= [Pt + (1 —P)l"- (3.5)

The mean and variance of X can be computed using the first two factorial moments,

"‘(1) and 17”(1) as

E(X) = tip and Var(X) = np(1 — p). (3.6)
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Thus, the mean and variance of i: are, respectively

E(iz) = p and Var(ir) = M. (3.7)
n

3.3.3 New Distribution Model

A pseudo-random pulse sequence, 1301), has been modeled in the literature as a

Bernoulli sequence [82, 83]. However, the pulse occurrence in 3(a) is not perfectly

independent because a maximum length LFSR generates fractional numbers between

5},- and I such that each number occurs exactly once in a period. Accordingly, the

pulse occurrence in :1:(,,) has statistical dependency.

If P, = n and x = p = l/N, the probability that k ‘1’ pulses in :1:(,,) occur during

the sampling clock period It is the same as the probability that k black balls are

taken out in n withdrawals from the box containing l black balls and N — l white

balls, one ball being withdrawn at a time without replacement. Thus, the sampling

distribution of X can be more closely modeled by the hypergeometric distribution.

When a: = p = UN and P, _—_ n, the probability function of X is

PM = k, = (up?)

where l is a natural integer, i.e., l E {0,1,2,---,N —1,N}.

Let (k), be the product of r consecutive integers starting with k. Then, the rth

factorial moment is

N

E[(X).] = E(k)rP(X=k)
Ic=r

if“), (1) 2:1)

kzr if)



 

The detailed derivation of equation 3.8 can be found in Appendix A.

The expected value of X is

E(X) = E((X).]|.=1

 

_ ’13
_ N

and for r = 2 in equation 3.8,

ll—lnn—l

E[X(X —1)]= ( N(])V (_ 1) I

From equations 3.9 and 3.10, the variance of X can be computed as

Var(X) = E(X?) — [E(X)]:

= E[X(X —1)]+ E(X) — [E(X >12

 

 

 

_ l(l—l)n(n—1)+l_n_(_ln)

" N(N—l) N N

__ niN—lN—n

— N N N—l

N—n

Thus, the expected value and variance of :i: are, respectively,

 E(e) =

”
U

:
[
r
—
a

Z
l
i

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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and

 

Var(si) = $Var(X)

_ 10(1 -P) N --n
— n N _1 (3.13)

 where 0 S it: 5 1 when l _<_ n S N. As noted from equation 3.13, when N is large

(implying a wide LFSR) the distribution of :3: tends to the binomial distribution. If

P, = N = n, Var(i) = 0 and :1: becomes a constant :13.

This new statistical model is used to perform an analysis on random noise ef-

fects in digital multilayer neural networks (DMNN). The DMNN architecture will be

developed in Chapter 4 and the analysis will be performed in Chapter 5.

3.4 Stochastic Computing in ANNs

Stochastic computing exploits the similarities between probability algebra and

Boolean algebra. Logical operations with simple logical gates over multiple pulse

sequences correspond to pseudo—analog computations.

3.4.1 Basic Stochastic Computations

A random pulse sequence (E(n) is a sequence of pulses whose probability :1: can not

be measured at any one clock period, but it can be approximated by a measurement

of average pulse rate. Any Boolean operation over individual pulses corresponds to

an algebraic operation among variables represented by their respective average pulse

rates [82]. Figure 3.3 shows the duality between logical operations with actual pulse

occurrences and numerical operations with pulse occurrence probabilities.



 

 

“(n)

 

 
V(n)
 

“(ID

 
”(n) _.

 

WIn) = “(n1 AND VIn)

W = u V.

2(n) = “(11) OR V(n)

z = u+v-uv.

It-(n) = NOT um)

§=I-u.

“=05jI—I fl TI Hf] I__II—L

v=0.4[ n r1 I‘l III—‘l

w=02I n r1 [‘1

 

2:0-7I1flljl II I
I

t

Z=0-5[rII—I I—mI—I II

Figure 3.3. Dualtity between Boolean operations and numerical operations, where the samp-

ling clock period = 20 is assumed and the number of ‘1’ pulses generated during the period in

x(,,) is 20 x for x.

If two sequences :1:(,,) and g(n) are statistically independent, the probability of pulse

occurrence in an output sequence z(,,) of an AND gate is

and the probability of pulse occurrence in an output

2 = P(z(,,) =1)

P($(n) = I /\ y(,,) = I)

P(.’E(n) = 1)P(y(,,) = I)

333! (3.14)

sequence z(,,) of an OR gate is
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z = P(z(n)=1)

= P(.’E(n) =1 V g(n) =1)

= P($(n) =1)+P(y(n) =1)“ P($(n) =1 A y(n)=1)

= :r+y—:1:y. (3.15)

Instead of being statistically independent, if two sequences are mutually exclu-

sive, implying that no two pulses coincide in two random pulse sequences, P(a:(,,) =

1 A y(n) = 1) = my = 0 in equation 3.15. Thus the logical OR performs a direct

summation.

The NOT gate in Figure 3.3 (c) produces an output pulse whenever no input

pulse occurs. If 1%,) is an input pulse sequence of a NOT gate, the probability of

pulse occurrence in an output sequence z(,,) is

z = P(z(n)=1)

= I - P($(n) = I)

= 1— 1:. (3.16)

A complete set of examples of stochastic computations utilizing the duality be-

tween Boolean operations and algebraic operations can be found in reference [82].

3.4.2 Stochastic Computing in the DMNN

Neural operations in a stochastic neural network of the type considered here are

performed with basic gates using pulse sequences as inputs. Let w;, and v, be the
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connection weight between neurons i and j and the. neural activation of neuron j,

respectively. If two sequences mm”) and vj(,,) are statistically independent, the prob-

ability of pulse occurrence in an output sequence mm”) of an AND gate is

mu : P(m.-,-(..) =1)

= P(w.~,-(..) = 1 A We) =1)

= wijvj.
(317)

Input summation and nonlinear transformation can be performed simultaneously

using logical OR operation. The inputs of an OR gate are product sequences, mm”),

produced from AND gates. Two kinds of synaptic weights 10,1",- and wg- are necessary,

positive (or excitatory) and negative (or inhibitory) for most feedforward neural net-

works. Thus, two separate OR gates per neuron are needed to form excitatory and

inhibitory net inputs. Let net;I be the probability of a pulse occurrence in the output

sequence netfin) of an n-input OR gate for an excitatory net input in neuron i and

net: likewise for an inhibitory net input (See Figure 3.4). net?” and net," can be

described by

net?” = P(net$n)=1)

I

= 1— (1 - P(mii(n)=1))(1— P(mii(n) = 1)) ' ' ' (1 — P(m:+n(n) =1»

=1—II(1-m;-§-)
3:1

= 1— fin — 7.0333,) (3.13)
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Figure 3.4. Stochastic computations in the DMNN (a) synaptic multiplication; (b) logical

OR; (c) neural activation.

and

net,’ 2 1— H(1+ wfjvj). (3.19)

3:1

Two net inputs, formed from dedicated OR gates, AND together to form the activa-

tion function. If two sequences netxn) and netzm are statistically independent, the

probability of a pulse occurrence, 1),, in the activation sequence is

v,- = P(v,-(,,) = l)

= P(net+
i(1i

) = I A net-"(1,, = 0)

= netfll — netf)
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= [1— H(1 -— wit-15)] fi(1 + wfjvj). (3.20)

i=1 3:1

The nonlinear activation function, described in equation 3.20, is continuous and

differentiable, indicating that back-propagation can be used for training [8]. This

form of stochastic computation will be used for developing a generic DMNN archi-

tecture in the next chapter.

3.5 Back-Propagation in the DMNN

The DMNN is a feedforward neural network which can be trained with the back-

propagation algorithm discussed in Section 2.1.3.2. The back-propagation algorithm

performs gradient descent iteratively over a sum-squared error measure. This section

shows how the non-traditional neuron activation function described in the previous

section is incorporated into the back-propagation algorithm.

Define n; as the number of neurons in the ith layer. The input layer is not

counted as a layer. Accordingly, for a k-layer DMNN, no and n). indicate the number

of elements in an input pattern and the number of output neurons in the output layer,

respectively. The training for the DMNN can be done off-line or on-line using a digital

computer. The choice depends on whether or not the resolution of the DMNN can

represent the changes of synaptic weights during training for a particular application

problem. The resolution of an n-bit DMNN is 271:1. For example, it is approximately

10’3 for an 10-bit DMNN. However, more than 10"5 precision is often required in

most application problems. That is the reason that the DMNN must be trained off-

line in most cases.

Whenever an input pattern is presented to the network, the output pattern of the
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output layer is compared to the target pattern; the connection weights between layers

are modified in a backward direction according to the error. Given pattern ,u, the

sum-squared error measure is

= -:20: -v,,,-) (3.21)

2i=1

where t“; is the target output for the ith neuron in the output layer when input

pattern p is presented and v,“- is the ith element of the actual output pattern. The

overall measure of the sum-squared error over p training patterns is

E = 2: E, (3.22)

Thus, the back-propagation rule states that

Aw.,(k): 211,211.,“ (3.23)

:1

where the subscript k denotes the number of iterations and Anus-,- is the change to be

made to the weight from the ith to jth neuron unit following presentation of pattern

,u. The gradient descent rule for positive weights states

as,

aw};

WBE va 8nd,],-

- flavuganetl} 8w}:- . (3’24)

 

411103;“) = ’77

 

Similarly, the weight change for negative weights is given by

77,,BE 8v,“ Brief;-

fllavuganet; 01.0,,-

 AuwS-(k): (3.25)
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Define

6 _(9E,,

u: — 1

at)”;

+ _ 8E” _ e ‘ 6v,“-

“" — Bnet; — 1.. Bnetti’

8E 61) g

5;; = ——u_ = Cut—p_ - (3.26)
and”; anal,"-

By equations 3.18 to 3.20, we can obtain

81),“-

= 1 — t_.,

Bnetz} ne ‘"

anet+- -

+‘" =(1— net:,)—Z”—f,_-—

610,-,- 1 — tub-v“,

and

3v,"-

—— = —net+-,

Bnet; “‘

Bnet; v -

—T‘ = —(1 — net’,)—M—.

8w,j “ 1 + wfjvu,

In the output layer,

6],; = t“; — Um. (3.27)

In the hidden layers,

__ as.
C - _ _

I“ 8v,“-
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_ 2“ 6E“ Onettk+z_ 8E, and;c

— k anettk 3v,“- anet;k 3v,“-
’6

= £161},(l—net:k)1—:———

  

mic-+1”;
’W]+:[—6;1—net;k)i—Iwi—-]. (3.28)

kiviu'

Then, the changes in positive and negative weights, resulting from the presentation

of training pattern ,u are described respectively by following recursive forms:

 

A.w3§-(k) = 775.11%

= 775:,(1 — net;- l—j-blgv—m (3.29)

and

..3... =
= —176;,-(1 — new-1:11:35; (3.30)

where 6:,- = (Em-(1 — net;,-) and 6;,- = —e,,,-net,']’,~.

The back-propagation algorithm incorporating the activation function imple-

mented in the DMNN has two forms:

772?: 6+;‘(1 — net+¢)::137 If w,-- = w?-

3...,(1) = I ‘ " 1 ’ ’ (3.31)
—n Zflfl 6;,(1 — "660% if M5 = 10,—].

Ijv.’

Gradient descent, described above, can be extremely slow for small 7) while it can

oscillate for large n [43]. In order to achieve the most rapid learning, a learning rate 17

which is as large as possible without leading to oscillation must be chosen. One way

to accelerate the learning is to add a momentum term.

P

AngUC) = —77 2 8E“ + aAw;,-(k — I) (3.32)

“=1 5ij
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where a is the momentum parameter such that 0 S a S 1. 0 determines the ef-

fect of past weight changes on the current direction of movement in weight space.

This provides each connection weight 10,-,- with a kind of momentum so that it tends

to change in the direction of the average downhill force instead of oscillating with

high-frequency variations of the error surface in the weight space. In turn, the effec-

tive learning rate can be made larger without divergent oscillations occurring. A C

program implementing the back-propagation in the DMNN is listed in Appendix B.



CHAPTER 4

Pulse-mode Digital Multilayer

Neural Networks

 

In this chapter, digital architectures of basic elements such as synaptic elments

and neuron body elements are developed. Using these basic elements, the modular

architecture for digital feedforward neural networks is developed as a Digital Multi-

layer Neural Network (DMNN). Use of simple logic gates as computing elements and

modular design techniques will lead to the DMNN architecture being relatively com-

pact in size and expandable to any size network. Furthermore, massive parallelism

embedded in stochastic computations using random pulse streams is fully utilized with

this architecture. A generic architecture of a DMNN coprocessor is also presented.

All components in the DMNN and the DMNN coprocessor are modeled and simulated

in VHDL. Use of VHDL as the modeling tool for the DMNN coprocessor is discussed

briefly. Finally, the hardware complexity of the DMNN is estimated.

63
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4.1 Basic Computing Elements

A random pulse generator, a synaptic element, an input neuron body element,

and a regular neuron body element are developed as basic computing elements in the

DMNN. These basic elements are used to develop a modular network architecture.

4.1.1 Random Pulse Generator

The block diagram of a random pulse generator was presented in Chapter 3. The

random pulse generator (RPG) is comprised of a tapped LFSR and a digital com-

parator. In Figure 4.1(a), the order of a LFSR is 8 and the example feedback function

is f(sc) = 2:2 69 32;, EB :54 ER 328 implemented by XOR logic gates, where the period of

sequence v(,,) is 28 — l = 255. Figure 4.1(b) shows the structure of a random pulse

generator using D flip-flops, XOR logic gates, and a digital comparator.
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vi vl(n)T

[k x vim) ,l] mu Ht ,

C LFSR '—* , ,

Digital

comparator

(b)

Figure 4.1. (a) A maximum length 8-order LFSR where f ( x) = x, e x, a; x, @ x8;

(b) a pseudo-random pulse generator for v,.
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At every clock period, a logic ‘1’ pulse is generated if v,- 2 3:. Otherwise, a logic ‘0’

pulse is generated.

4.1 .2 Synaptic Element

A large number of synaptic multiplications are required, even for a small size

feedforward neural network. For example, if the network consists of m layers exclud-

ing an input layer, the number of synaptic multiplications required per feedforward

operation is

m

2: n1n1_1

1:]

where n; is the number of neuron elements in the lth layer and no is the number of

input patterns applied to the input layer. Each synaptic multiplication in the DMNN

is performed relatively more slowly than a deterministic calculation done on a digital

computer, but all the multiplications in the network can be performed in parallel.

Let w;,- and v,- be the synaptic weight between neuron elements i and j and the

neural activation in neuron element i, respectively. Figure 4.2 shows the structure

and block diagram of a digital synaptic element (SYN). The VHDL code for a SYN

model is listed in Appendix C. The SYN consists of a random pulse generator (RPG),

a weight register, two AND gates, and two wired-OR lines. Weight m, is represented

as an r-bit fractional number, where the MSB is a sign bit and the rest represent

the magnitude in sign-magnitude format. With ng loaded into a weight register, the

corresponding random pulse stream w,,-(,,) is generated through the RPG. The pulse

stream is transmitted to two AND gates: the upper one for positive weights and the

lower one for negative weights. If the synaptic weight is positive, a resulting product

sequence mil-1'01) is transmitted to an excitatory net-input line. Otherwise, mE'J-(n) is

transmitted to an inhibitory net-input line.
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Figure 4.2. (a) A synaptic element (SYN); (b) a block diagram of a SYN.

4.1.3 Input Neuron Body Element

An input neuron body element (INB) consists of an n-bit register, a tapped LFSR,

and a digital comparator. Figure 4.3 shows the structure and block diagram of the

INB. The tapped LFSR and the digital comparator forms a random pulse generator

(RPG). The role of the INB is to convert the value of the ith element in an input

pattern, 1),, to a corresponding random pulse sequence v,(,,). No computation occurs

in this element. v,- is loaded into the register at the rising edge of the clock with load

= ‘1’ and select = ‘1’. The select signal corresponds to the word line from an address

decoder. A binary pulse v,(,,) is generated every clock cycle when load 2 ‘0’.
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Figure 4.3 . (a) An input neuron body (INB); (b) a block diagram of INB.

4.1.4 Regular Neuron Body Element

Two net-input pulse streams, transmitted from synaptic elements, are collected

in an up-counter in a regular neuron body element (RNB) through an AND gate to

form a neural activation. Figure 4.4 shows the structure and block diagram of an

RNB. A VHDL model of the RNB is listed in Appendix C. An RNB consists of an

AND gate, an OR gate, an up—counter, 2x1 multiplexers, a buffer, and an RPG. Let

net? and net,- be an excitatory and inhibitory input for neuron i, respectively. In a

DMNN, product sequences 772,-,(,,) from synaptic elements are logically ORed to form

a net-input. netfin) is ANDed with (neti—(M) to form a neural activation v,- in neuron

i, where ("Gig—(7.)), is the complement of new"). v,- is estimated as 23,- which is actually

the value of the up-counter after each iteration.

After each iteration, the signal new_iter changes ‘0’ to ‘1’ and then the output

of a counter is transferred to a buffer via a 2x1 multiplexer at the next clock. At

a same time, the up—counter is reset. This output is used to generate a new action
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pulse sequence v,(,,) while the up-counter continues to accumulate incoming pulses. v,

(dotted arrow) is used as an output of a neuron i in the output layer, while vim) (solid

arrow ) is used in the hidden layers. If load is ‘1’, the buffer is reset to an initial input

value at a new clock cycle. Otherwise, a new neuron state is loaded when new_iter

is ‘1’. The buffer is enabled when load or new_iter is ‘1’.

”etim); * ”etim)-
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Figure 4.4. (a) A regular neuron body element (RNB); (b) a block diagram of RNB.
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4.2 Modular Architecture

The DMNN can be constructed from four basic modules: input layer module,

synaptic array module, regular neuron body array module, interconnection module.

The input layer module (ILM) is composed of a group of input neuron body elements.

It receives inputs and transforms them into corresponding binary pulse sequences.

Figure 4.5 shows the structure of the ILM. The pulse sequences generated are trans-

mitted to the synaptic elements in the next layer through an interconnection module

(ICM). A synaptic array module (SAM) consists of a group of synaptic elements and

net-input lines. Figure 4.6 shows the structure of the SAM. Synaptic weights 111,-,- are

loaded before network operations start. w,,-(,,)’s from SYNS in the SAM are logically

ANDed with v,(,,) transmitted from the previous layer. All synaptic multiplications

in the same layer are performed simultaneously. A regular neuron body array module

(RNAM) consists of a group of regular neuron bodies. Figure 4.7 shows the structure

of RNAM. Pulses on two net—input sequences transmitted from the SAM are collected

in an up-counter of neuron i through an AND gate to form v,-(,,). All v,(,,)’s from the

RNAM are produced simultaneously.
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Figure 4.5. An input layer module (ILM).
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Since the action pulse sequences from the previous layer are used to form the

action pulse sequences in the neurons of the next layer, there may exist a correlation

between new action pulse sequences in the next layer without the buffering scheme

used in the RNBS. The dedicated pulse generator in each RNB functions as a filter

eliminating correlation by producing the uncorrelated pulse sequences for the new

neuron activations formed after each iteration. Again, an [CM is a group of connec-

tion lines that transmit action pulse sequences from the previous layer to the SAM

in the next layer.

Using the modules discussed above, any size DMNN with an arbitrary number

of neurons in each layer and an arbitrary number of the layers can be configured.

Figure 4.8 shows the general architecture of the DMNN. Just like in a pipelined ar-

chitecture, once the layers are full, results from the output layer are available after

each sampling clock period.
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An advantage of this architecture is that there are no unused synaptic elements in the

network and there is no n—bit prescaler in a neuron body. This increases the possible

neuron-density on a chip while retaining the high degree of flexibility and expand-

ability. The DMNN network can be optimized in terms of the minimum number of

neurons in a given number of layers when it is customized for a particular application.

4.3 DMNN Coprocessor

The DMNN can be viewed as a coprocessor as shown in Figure 4.9. The copro-

cessor is composed of a DMNN, a controller, a memory, an iteration counter (IRC),

and a clock generator. The DMNN coprocessor can be attached to a host computer
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through an standard interface (not shown). The controller consists of a microprocessor

and a control unit which can be microprogrammed or hardwired. The memory and

the DMNN in the coprocessor may have their own address decoders. The network

is trained on the host computer. After training, the network configuration, trained

weights, input patterns, and some control commands are downloaded from the host

memory.

4.4 Behavioral model of a DMNN Coprocessor

The DMNN architecture proposed in the preceding sections is modeled using

VHDL. The design methodology and procedure for developing a DMNN coprocessor

are discussed here. A DMNN coprocessor and a DMNN architecture are used as

example behavioral models using VHDL in this section. Complete VHDL code listings

for all other components required to implement the coprocessor can be found in

Appendix C.

4.4.1 Introduction

Functional behavior and structure of the DMNN can be modeled and simulated

using VHDL. Various advantages are obtained by using VHDL as a modeling tool for

the DMNN architecture. These advantages include:

1. The function and logical organization of the DMNN can be developed and tested

without involving details of the implementing technology.

2. Design modification resulting from design errors or changes can be made in an

early stage of design process without additional cost.



74

3. VHDL is flexible, allowing different network configurations to be modeled with-

out significant changes to an original design.

4.4.2 Design Methodology

A top-down design approach is needed to manage the complexity of large systems

like a DMNN. The model of the DMNN coprocessor starts with a high-level spec-

ification of the network. The high level description is decomposed into lower level

specifications in a hierarchical fashion. Figure 4.10 shows the design hierarchy of a

DMNN coprocessor. At the highest level, the whole system can be viewed as a co—

processor. This coprocessor is built using a DMNN, a control unit, a clock generator,

an iteration generator, and memory.

Each component (or VHDL design entity), shown in Figure 4.10, is described in

VHDL using either of two styles of descriptions: behavioral or structural. All compo-

nents (dotted boxes or ovals) residing in lower branches of the hierarchy are modeled

using behavioral descriptions. The reason for this is that the structures or gate level

designs of these components are well known and available in most design automation

(DA) libraries. Secondly, the complete structural descriptions for these components

cause the resulting VHDL simulation kernel to run extremely slow and to occupy a

large amount of memory. Each behavioral description can be eventually replaced by

a structural description without changing other entities. All other components are

modeled using structural descriptions.

This hierarchical design scheme combined with the natural modularity of the

DMNN architecture makes design modification and simulation much easier.
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4.4.3 Coprocessor Control in VHDL

In order to model the DMNN coprocessor in VHDL and apply the model to some

example problems, the following procedures have been followed.

Step 1. Back-propagation for the DMNN, described in Chapter 3, trains the net-

work, finds a network architecture converging below a predefined sum-squared

error, and then writes the final synaptic weights and

Step 2. The DMNN coprocessor reads these files and a file for test patterns.

Step 3. The coprocessor initializes the LFSRs in the network and loads synaptic

weight registers with the trained weight values before the network operation

starts.

Step 4. The coprocessor initiates the controller, and the controller starts generating

control signals.

Step 5. The network (DMNN) starts classifying input patterns until classifications

are completed. The output patterns are written into memory each time one

input pattern is classified.

Step 6. Results are written into a file.

A part of VHDL code for the DMNN coprocessor is shown as a test bench in Fig-

ure 4.11. The complete code is listed in Appendix C. The network architecture,

problem specification, variable definition, and some subprograms are described in a

package, named dmnn_paclc. Once the run signal changes from ‘0’ to ‘1’, a simulation

kernel autonomously performs Step 2 to Step 6 as above.
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use work.dmnn_pack.all;

entity dmnn_test_bench is

end dmnn_test_bench;

architecture behavior of dmnn_test_bench is

component clock

port(start: in bit;

clk_out: out bit);

end component;

component step_cnt - - - end component;

component dmnn_net - - - end component;

component control_unit - - - end component;

component RAM - - - end component;

type out_bits is array(natural range 1 to out_unit_no) of bit;

signal run, clk_sig, net_1oad: bit:='0';

signal net_ena_sig, clk_ena, new_iter: bit:='0';

signal pattem_sig: neura1_array; signal weight_sig: neural_matrix;

signal state_sig: out_state_array;

signal ram_rw, ram_ena: bit;

signal ram_net_state: pattem_matrix;

for all: clock use entity work.clock(clk_behavior);

for all: step_cnt use entity work.step_cnt(step_cnt_dmnn);

for all: control_unit use entity work.control_unit(behavior);

for all: dmnn_net use entity work.dmnn_net(behavior);

for all: RAM use entity work.RAM(behavior);

begin run <= '1' after 5 ns;

C1k_Blk: clock port map (clk_ena, clk_sig);

Step_B1k: step_cnt port map (clk_sig, new_iter);

Control_B1k: control_unitportmap (run,new_iter,net_load, ram_rw,

clk_ena,net_ena_sig,ram_ena);

dmnn_net_BLK: dmnn_net port map (net_load, clk_sig, net_ena_sig,

new_iter,pattem_sig,weight_sig,state_sig);

RAM_BLK: RAM port map (ram_ena,ram_rw,state_sig,

pattem_sig,weight_sig);

end behavior;

Figure 4.11. VHDL code implementing the DMNN coprocessor.
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4.4.4 DMNN Model in VHDL

The DMNN itself consists of an input layer, a hidden layer(s), and an output

layer. Each layer and all components required in the. layer are generated by compo—

nent instances in structural descriptions. Figure 4.12 shows the part of VHDL code

for the DMNN model. Any size network can be modeled by specifying the network

configuration in the d77mn-pack. The components are connected by wires, modeled

as signals in VHDL. The network supports complete connectivity between neuron

elements, but unnecessary synaptic elements are effectively disconnected by loading

a zero weight for that synapse.

use work.dmnn_pack.all;

entity dmnn_net is port ( net_load, net_clk, net_enable, next_period: in bit;

new_pattern: in neural_array; weight_in: in neural_matn'x;

net_state_out: out out_state_array);

end dmnn_net;

architecture behavior of dmnn_net is

component synapse - - - end component;

component neuron_body - - - end component;

signal clk: bit; signal syn_ran_in: neura1_matrix;

signal body_ran_in, net_output: neural_array; - — -

for all: synapse use entity work.synapse(synap_dmnn);

for all: neuron_body use entity work.neuron_body(nbody_dmnn);

begin Main_blk: block(net_enable=’1‘) begin

clk<= guarded net_enable and net_clk;

ex_wired_or<=guarded Wired_Or(ex_or);

in__wired_or<=guarded Wired_Or(in__or);

end block;

lnput_Layer: - - -

Hidden_Layer: - - -

Output__Layer: - - -

end behavior;

Figure 4.12. VHDL code implementing the DMNN.
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4.5 Hardware Complexity

To access the hardware complexity of the DMNN, define Ag and A00 as the chip

areas required by an n-input NAND gate and by component X, respectively. For a

reasonable number of inputs, say n S 10, it is assumed that an inverter is viewed

as a special case of an n-input NAND and an n-input AND is modeled as an n-

input NAND followed by an inverter. If all components and modules in the DMNN

are designed only using NAND gates and necessary connections, a measure of the

hardware complexity of a DMNN with m layers is given by

A(DMNN) = AUNB) ' no + Auma) Z n; + A(SYN) Z 71; 'ni-l (4-1)

t=1 1:]

where no and n,- are the number of elements in an input pattern applied to the net-

work and the number of neurons in the ith layer, respectively.

Assume that a D or J-K flip flop (FF) is implemented by 5 NAND gates

(Aurp) = 5A,,), a 2x1 multiplexer (MUX) by 4 NAND gates (A(MUX) = 4A,,), and

a two-input exclusive OR (XOR) gate by 4 NAND gates (Agog) = 4A,). The gate

level schematics of essential basic digital components, such as an n-bit register, an

n—bit comparator, and an n-bit up-counter, can be found in Appendix D. Table 4.1

presents the relative chip area required by each of these components based on the

unit NAND gate.

In Table 4.1, it is assumed that 3 XOR gates are needed to implement a feedback

function of a LFSR. This leads to the assessment of hardware complexity for the INB,

RNB, and RNB modules. Table 4.2 shows the chip area required by these DMNN

elements.

Using equation 4.1 and Table 4.2, the chip area required by any size DMNN can

be estimated. Table 4.3 presents the chip area of two example networks with respect
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to the register length n and the unit NAND gate area Ag. A network configuration

in this table is represented by no x n1 x .. ., where no and n,- denote the number of

neurons in the input layer and the number of neurons in the ith layer, respectively.

Table 4.1. Chip area required by basic digital components.

 

 

 

Component Chip area

n-bit register (RGT) nA(Fp) + 2nAg = 7nAg

n-order LFSR. nA(pp) + 3A(XOR) = (5n + 12)Ag

n 2x1 MUXs (MUXs) nA(MUx) = 4nAg

n-bit comparator (CMP) 6nAg + 2Ag = (6n + 2)Ag

n-bit up-counter (CNT) nA(pp) + 2(n f 1)Ag = (7n — 2)Ag      
Table 4.2. Chip area required by DMNN elements.

 

 

 

DMNN element Chip area

INB Amer) + A(LFSR) + A(CMP) = (1872 + 14)Ag

RNB A(INB) + A(CNT) + A(MUX..) + 5A9 = (2972 + 17)Ag

SYN AUNB) + 5149 = (1877. +19)Ag      
Table 4.3. Chip area required by two example networks.

 

 

 

 

Register Network configuration

length (n) 36 x 9 x 10 36 x 30 x 10

8 77,901 Ag 226,788 Ag

9 86,554 Ag 253,436 Ag

10 95,203 Ag 280,084 Ag       



CHAPTER 5

Analysis of the DMNN

 

The statistical model of the estimated probability generated from the random pulse

generator was developed in Chapter 3. Based on this model, statistical models of

synaptic multiplication and signal integration are developed. Then the models are ex-

tended to hidden layers and the output layer. An analysis which predicts the error

bounds on the results of the computations occurring in the DMNN is also presented.

A critical comparison to deterministically computed results can then be made.

5. 1 Statistical Models

For analysis, it is assumed that multiple pulse sequences are statistically uncor-

related and the effect of quantization is negligible when the register length is greater

than 7 [67, 78].

81
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5.1.1 Synaptic Multiplication

An algebraic expression for the output of an AND gate in a synaptic element is

mij = w;,-v,-. Since the estimations w},- and 23, of w;,- and Uj can be represented by the

original signal plus random noise (error) in the first hidden layer, the estimation mg,-

of m,,- can be described by

"iii : (wij + Ant-MW '1' A18)

= ngvj + ngAo‘j + vjAwfi,‘ + Aw1jAU3' (5.1)

where A5: is random noise with zero mean and variance Var(i). The expected value

Of Tl’lgj lS

E(ml'j) = me" = wa'vj (5-2)

and the variance of rrigj is

Var(rri,,-) = 10,2. Var(tij) + v]? - Var(uiij) (5.3)

where the second order term is omitted from equation 5.1. In reality, the second order

term is not zero because two pulse sequences have a very small, but still negligible,

cross-correlation [67].

5.1.2 Two-input Logical OR

Before developing the statistic model of an n-input logical OR, the model for

a 2-input OR is developed. Let mil 2 mam”) = max[m.-1,m,-2] and let nk be the

number of neurons in the kth hidden layer. The statistic model for net,- is complex



O
O
0
0

because the output estimation results from the nonlinear transformation of nib-’5.

It can be approximated, however, using the hypergeometric distribution. The key

reason for using this model is that the deterministic nature can be observed in the

output sequence, as shown in dotted lines in Figure 5.1.

The pulses of 7n,1(,,) always appear on the output sequence net,(,,). W'hen 771,-] =

1,1/N and mo 2 liz/N,

NET,- =li1 +1V.

where W is a random variable indicating the number of pulse occurrences in mm”)

during N — [,1 clock cycles and NET,- (with capital letters) represents the number of

pulses in net,(,,) observed during the sampling period.

mi1(n)

mi2(n) .

neti = mu + mi2 - mu mi2

H H n H H

 

 

  
 

H n n n

rm n n H .

Figure 5.1. 2-input logical OR where the dotted lines illustrate the deterministic nature

of the output sequence netim).
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The probability function of W is

P(W= k) =W

The expected value of net,- is

_ N

E(net,) = %+%Zk-P(W= k)

k=0

In (N — 151)].‘2

N + N2

= mil + mi2 " mama

2

= 1— H(1 - mg). (5.4)

 

  

j=1

The variance of net,- is

Var(net,) = Nl—zvafiW)

_ NJ-V-z’li'17m2(1 _ mi2)Nl,: 1 (5.5)

Figure 5.2 shows the standard deviation, amen) = W, obtained from

equation 5.5 (a,d) and those obtained by simulation (b,c,e,f). In this figure, N = 127

for (a) to (c) and N = 255 for (d) to (f). The same feedback functions with different

LFSR initial values for mu and mi; are used in (b) and (e) while different polynomial

functions are used in (c) and (f). 2:1 63 232 69 2:3 EB :34 is used as a feedback function for

LFSRs for mu and 777.52 in (b) and (e). (131 G) 2:2 EB x3 GB 14 and $2 ED x3 63 .15., GB 235 are

used for mu and mg; in (c) and (f), respectively.
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Figure 5.2. one“. obtained from equation 5.5 when (a) N = 127; d) N 255, and( :

one}, obtained from actual simulations when (b,c) N = 127; (e,f) N = 255.
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Figure 5.2. Continued.
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Figure 5.2. Continued.





88

5.2 Effects of Random Noise in Hidden Layers

5.2.1 First Hidden Layer

In the following, assume P, = n = N, as is the case in the DMNN. This as- '

sumption eliminates any error associated with the conversion of a synaptic weight w,

and a neuron activation v,- into the average pulse rates of the corresponding pulse

sequences w;,-(,,) and v,-(,,). Since Var(tij) = Var(uiij) = 0 from equation 3.13 when

n = N, then VClT'(7Tl:{J') == 0 in equation 5.3. This deterministic nature of the synap-

tic multiplications in the first hidden layer contributes to the high accuracy of the

stochastic computing technique.

Two assumptions are made for an n-input OR. The validity of these assumptions

has been justified by experimental results. Define Nah" as the effective period of an

LFSR in the kth hidden layer. Noff(= N) is the effective period of an LFSR in the
6

input layer.

Assumption 1: An increase in the number of OR inputs in the first hidden layer

has the same effect as increasing the period N of the LFSR to Nelff with the

sampling period, P, = N, unchanged, and holding the ratio lgj/N such that

me = l.,-/N = (michlffl/Nelff'

Assumption 2: As n increases, the deterministic ratio in net,- decreases such that

m,(ma,,) = mu == max[m,-1, mig, . . . ,m,,,] = flO—ZL; for a fixed net,, where 0 < ,6 S

1.

The ratio, Nclff/N, and fl depend on the application problem, the network architec-

ture, and the input patterns. It is impossible to find N61” and E in closed forms.

Based on our experimental results for binary classification, however, N61,, can be ap-

proximated as N + a1(no — 2)N for no _>_ 2 where 01 is an incremental parameter for

the first hidden layer and no is the number of inputs in the input layer. 01 varies
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between 0.03 and 0.04. In the following, 6 = 1 is assumed.

Based on these assumptions, equations 5.4 and 5.5 for the 2-input OR can be gen-

eralized for an no—input OR in the first hidden layer. To do so, separate the no mgj’s

into two quantities: mil = mam”) = 11"} and m;, = 1-ng,(1—m.—,) = mngclff/Nelff

Now E(nét;) and Var(net,) can be obtained in a straightforward manner. NET,- is

the summation of a constant l.-1 and a random variable W,

NET.- = 1.1 + W.

The probability function of W for an n-input OR operation is

(filiera )(Nla "mierir)

 P(W = k) = N’f'h‘k

(Ne-ill“)

Thus, the expected value of net,- is

E( at) “1+1fivjk P(W k)ne 5 = — — ' =

N N k=0

_ In (N - li1)lir

— N + —N2—’
no

= 1— (I — m;1)H(1— mgj)

i=2

= 1— H(I - m,,). (5.6)

i=1

The variance of net,- is

(N—ln) Neln"(N—ln)
Var(netg) =  
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If (net.- — m;1)/(1 — mg) and net,/, /no are substituted for m,,. and mil, respectively,

  

 

. 1 — —l— N1 — N :-
Var(net,-) = i gnetgfl — netg) C”, + ‘1

N1 — 71,—: Ne}, — 1

1 1

= I{i}\{{b net,(1 — netg),
(5'7)

where K; = (1 — VlT—ol/(l — 3%) and K51 = (N61,, — N + l;1)/(Nclff — ).

5.2.2 Kth Hidden Layer

The procedure developed in the previous section for the first hidden layer can be

expanded to generalized stochastic models for a synaptic multiplication and a logical

OR in the kth hidden layer. In the kth hidden layer, E(TTiij) and VGT(TT£{J') can be

described by equations 5.2 and 5.3. Var(Trlij) is non-zero in the kth hidden layer

when k 2 2 because the first term in the right side of equation 5.3 is non-zero due

to the random noise introduced by the lower layer. One more assumption is made to

take this effect into account, where the input layer and the output layer are regarded

as the 0th hidden layer and the last hidden layer, respectively.

Assumption 3: The random noise introduced from the lower layer ((k-1)th hidden

layer) causes al. to increase such that a], Z ak_1, while assumptions 1 and 2 are

still held. For our analysis, on. = ak-1 + 0.005 has been used.

Thus, the effective period of an LFSR in the kth hidden layer is

= Nf,-,‘[1 + dun.-. — 2)]

N H[l + a,(n,-_1 — 2)]. (5.8)

i=1
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As a result, the generalized forms of equations 5.6 and 5.7 for the kth hidden layer

 

are

. nk—l

E(net,) = I - 11(1— mgj) (5.9)

i=1

and

k k

Var(net,) = KR?" net,(1—net,-), (5.10)

 where K5: (1— wail/(1" —’;—°‘/_fl_:) and K: = (fof — N + 1,1)“an — 1).

If statistically independent Bernoulli sequences are assumed, K5K: = 1 and the

distribution of net,- is binomial. In equation 5.10, Var(net,) is bounded to that of

the binomial distribution as the ng’s, for i < k, become very large. Figure 5.3(a)

shows Kfo with respect to Ti]; and lc when N = 255, no = 36, and net,- = 0.55. As

seen in Figure 5.3(a), as n1 and n2 become large the distribution tends towards the

binomial. Figure 5.3(b) shows the standard deviation of nét, with respect to net,- for

various network configurations. The standard deviation of the binomial distribution

is shown for comparison and the standard deviation of net,- is skewed to the right

because 1(1fo increases as net,- increases in equation 5.10.
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Figure 5.3. (a) K5K,1“ with various network configurations when net,- = 0.55, no = 36,

and lc > 1; (b) standard deviation of nét, with respect to net,.
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5.2.3 Neural Activation

Finally, the statistical model of estimation 13,- of a neuron activation in any layer

can be expressed as

23, = (net;F + Am?) (1 — net,— + Ami-ti")

= netf(1 — net?) + nethm-g + (1 — netf)AM‘t,

t.

where the second-order term is omitted as before. The expected value and variance

of 23,- in the kth hidden layer are

E(zig) = netf(1— netf) (5.11)

and

VGT(’(3,’) = netszar(net,-') + (l — netf)2Var(ndt§"). (5.12)

As n), and k become very large in equation 5.10, the distributions of ndtf and (1

- net: ) are both approximately binomial. Furthermore, if P, = N is very large, the

distributions are close to Gaussian. Since the random error of 13,- is approximated as

the linear transformation of the random errors of net? and net," in equation 5.12, the

distribution of 13, is also close to Gaussian. Figure 5.4(a,b) shows the actual distri-

bution of a neuron in the output layer as obtained by simulation with v, = 0.54 (a)

or 0.45 (b), k = 2,no = 25,n1 = 5, and n; = 5. As Figure 5.4 indicates, the output

distribution is observed to be close to Gaussian while the variance is relatively small.
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Figure 5.4. The distribution of 23,- in the hidden layer (0) and the output layer (+) for

8825 tests compared to a binomial distribution when v, = (a) 0.45 or (b) 0.54, k = 2,

no 2 25, n] = 5, and no = 5.
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5.3 Network Performance Model

To effectively use this statistical model for analysis, architectural information on

the number of layers and the number of neurons in each layer, as well as represen-

tational information on the values of the input and target patterns are needed. In

addition, some assumptions on the values of net? and net,’ must be made. Those

values depend on input and target patterns as well as the application problem. In

addition to obtaining the variances of estimated outputs in the output layer using

equations 5.9 to 5.10, the model will enable the differences between the results ob-

tained from the DMNN and the results obtained from deterministic calculations to

be presented.

Binary classification problems are one of the possible target applications of the

DMNN and are considered here for analysis. The number of the output neurons cor-

responds to the number of classifications. 0.45 and 0.55 are used to represent ‘on’ and

‘off’ of a neuron in the output layer, respectively. The network is trained in such a

way that only one output neuron is ‘on’ for a given input pattern. After training, the

architectural and representational information is fixed. Two network configurations

are considered: a two-layer feedforward network with k = 2,no = 25,n1 = 5, and

n2 = 5 and a three-layer feedforward network with It = 3,no = 25,n1 = 10,n2 = 5,

and n3 = 5. Tables 5.1 and 5.2 show the standard deviations of the estimated output

values in the given network configuration with respect to various possible combina-

tions of net?" and net,- leading to the target values (0.45 and 0.55); 01 = 0.035 and

fl = 1 are assumed.

Taking the distributions of 13,-(‘on’) and 13,-(‘off ’) to be Gaussian, the network cor-

rectly classifies the input pattern as the classification i if 13; > 0.5 and 13, S 0.5 for

all j 75 i. Consider first the case of a network with two output neurons and define

the random variables V0,, 2 ti,(‘on’) and Voff = 13,-(‘off’). The density functions of Von
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and V0“ are

1

fvon(v0n) = -———C_(v°n—fi
m)2/2a©on

#27?me

and

1 — —’ 2 202e (”on ”all)/ v0,

2
27rovou

fVo/j(v0ff)= I,

where 60,, and 6,,” are the mean values of V0,, and V,” respectively.

Thus the probability of the event {Von S 0.5} is

P(V,., g 0.5) = va(0.5)

0.5

= 0 fv...(€)d€

and the probability of the event {Von > 0.5} is

P(v.,,,go.5) = 1—FV,,,(0.5)

= 1— [imam

where Fvo..(von) is the distribution function of Van. va(vo,,) can be described in

terms of the standard Gaussian distribution function F(u) by making the variable

change

(van _ Fan)

O’V .
071

u:

Consequently, Fvon(vo,,) = F(m) and Fv0”(v,ff) = PUMP—17°11).
0V0" 0V0]!

Thus, for a given input pattern, the probability that an input pattern will be correctly

classified, Pm, in the network with two output neurons is

Pm, = P(V,,. > 0.5 /\ V0,, 3 0.5)

= P(V.,.. > 0.5)P(Vou .<_ 0.5)

= (1 — va(0.5))Fv,,,(0-5)
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= (1_ F(0.5— 0.55))F(0.5— 0.45),

Oven 0V0]!

where V0,, and V,” are assumed to be statistically uncorrelated.

Therefore, in the general case where the network has n), output neurons

“I:

Pea,- = P(V0n > 0.5) HP(Voff S 0.5)

i?“

P(V.,.. > 0.5)P(V.,,, g 0.5)“-1

: (I — Fvon(0.5))FVoH(0.5)“-1

= (1 _ F(M))p(w)nrl, (5.13)

0V0" 0V,"

where the 2333 are assumed to be statistically uncorrelated.

5.4 Simulations

Performance results for the VHDL models developed in Chapter 4 are presented

here to demonstrate the validity of the statistical analysis.

Two basic experiments have been conducted. The first involves classifying 5 digits

from 0 to 4 while the second involves classifying 10 digits from 0 to 9. The networks

are trained with two sets of training data. The first training set consists of ideal

digits (1 pattern per digit) and the second consists of the first data set plus 10%

noisy patterns (3 patterns per digit). P% noisy patterns were created by randomly

inverting P% of the pixels in the ideal digits. For experiment 1, each pattern consists

of 6x4 pixels and for experiment 2 each pattern has 7x5 pixels.

Table 5.3 shows Poo, for three different network configurations obtained from equa-

tion 5.13. In this table, the first column indicates the order of the LFSR, the second

column shows Pm directly obtained from equation 5.13 while the third column shows

correct classification rates obtained from VHDL simulation. The top row in the table
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shows the network configuration in form of no x n1 x no where no, n1, and n2 indicate

the number of neurons in the input layer, the first hidden layer, and the output layer,

respectively. Figures in parenthesis in the third column indicate the correct classifica-

tion rates when the classification is determined by the neuron with maximum value.

Only two-layer networks (one hidden layer and one output layer) are considered here.

Each figure in the third column is based on extensive tests (> 20,000 runs). Twenty

sets of weights are used and more than 1000 different sets of initial LFSR values per

set of weights are used. As shown in Table 5.3, the DMNN character recognizers pro-

duce the correct classification rates close to PCO,’s in the given network configurations.

Differences are mainly caused by the fact that the exact values of parameters a), and

6 can not be found although they are bounded for binary classification as described in

assumptions 1 and 2. Thus, these values must be selected as arbitrary points within

the boundary to calculate fof. To obtain Pea, in the table, al = 0035,01; = 0.04,

and fl = 1 have been used. Thus, the statistical analysis is shown to produce valid

results for the DMNN character recognizers.





99

Table 5.1. Standard deviations of 23,-(‘on’) and 13,-(‘off’) when no = 25, n1 2 5, n2 = 5,

and (a) N =127; (b) N = 255; (c) N = 511.

 

 

 

 

 

 

             
 

 

 

 

 

 

 

             
 

 

 

 

 

 

 

           
 

E7175): 0.55 J] E(tig) = 0.45

net? [I 0.6 0.7 0.8 0.9 1.0 net: 0.6 0.7 0.8 0.9 1.0

net,’ H 0.083 0.214 0.313 0.389 0.45 net,- 0.25 0.357 0.438 0.5 0.55

03,-, [I 0.026 0.025 0.025 0.025 0.026 09-, 0.024 0.024 0.025 0.026 0.027

dog/0% H 0.587 0.563 0.561 0.572 0.592 dog/03 0.543 0.543 0.558 0.581 0.601

(a)

( E(fig) :: 0.55 “ E(tlg) = 0.45

net? H 0.6 0.7 0.8 0.9 1.0 net; 0.6 0.7 0.8 0.9 1.0

net,’ H 0.083 0.214 0.313 0.389 0.45 net,’ 0.25 0.357 0.438 0.5 0.55

do... H 0.018 0.018 0.018 0.018 0.018 do“. 0.017 0.017 0.018 0.018 0.019

Uo-i/O'B ll 0.587 0.563 0.560 0.572 0.592 dog/0’3 0.543 0.543 0.557 0.581 0.609

(b)

[ E7175): 0.55 H E(fig) = 0.45 J

net?” H 0.6 0.7 0.8 0.9 1.0 net: H 0.6 0.7 0.8 0.9 1.0

net,‘ I] 0.083 0.214 0.313 0.389 0.45 net,‘ H 0.25 0.357 0.438 0.5 0.55

do, H 0.013 0.012 0.012 0.013 0.013 do". H 0.012 0.012 0.012 0.013 0.013

dog/03 H 0.586 0.562 0.560 0.572 0.592 dog/0'3 H 0.542 0.542 0.557 0.581 0.609

(C)

* 03 indicates the standard deviation of 13,- when Bernoulli sequences are used.
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Table 5.2. Standard deviations of 73,-(‘on’) and ti;(‘off’) when no = 25, n1 = 10, n2 = 5,

n3 = 5, and (a) N =127; (b) N = 255; (c) N = 511.

 

 

 

 

 

 

             
 

 

 

 

 

 

 

             
 

 

 

 

 

 

 

             
 

[ E07,) = 0.55 1] E(6,) = 0.45 1

net: |] 0.6 0.7 0.8 0.9 1.0 net: 0.6 0.7 0.8 0.9 1.0

net,- [I 0.083 0.214 0.313 0.389 0.45 net,- 025 0.357 0.438 0.5 0.55

a... ”0.029 0.028 0.028 0.029 0.030 6.... 0.027 0.027 0.028 0.029 0.031

(ya/cg H 0.668 0.640 0.639 0.655 0.681 mm; 0.621 0.619 0.635 0.661 0.694

(a)

676..) = 0.55 [1 E(6,) = 0.45

net:r u 0.6 0.7 0.8 0.9 1.0 net: 0.6 0.7 0.8 0.9 1.0

net,- "0.083 0.214 0.313 0.389 0.45 net,- 0.25 0.357 0.438 0.5 0.55

03;, I] 0.020 0.020 0.020 0.020 0.021 a... 0.019 0.019 0.020 0.021 0.022

avg/03 [I 0.667 0.640 0.638 0.654 0.681 Jo‘s/0'3 0.621 0.619 0.634 0.661 0.694

(b)

E(v‘.) = 0.55 [1 13(5) = 0.45

net;F I] 0.6 0.7 0.8 0.9 1.0 net;P 0.6 0.7 0.8 0.9 1.0

net,- [I 0.083 0.214 0.313 0.389 0.45 net,- 0.25 0.357 0.438 0.5 0.55

09-, H 0.015 0.014 0.014 0.014 0.015 a... 0.014 0.014 0.014 0.014 0.015

a..-,/a3 H 0.667 0.640 0.638 0.654 0.680 aux/03 0.620 0.618 0.634 0.660 0.693

(C)

* 03 indicates the standard deviation of 13,- when Bernoulli sequences are used.
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Table 5.3. Pea, obtained from equation 5.13 and correct classification rates from

VHDL simulations.

 

25 x 5 x 5 for 5—digit classification
 

Pea, obtained

from equation 5.13

correct classification rate

obtained from VHDL simulations
 

8—bit

9-bit   

86.55% ~ 90.91%

98.59% ~ 99.18%  

92.5%(97.9%)

99.3%(99.65%)
 

 

36 x 9 x 10 for 10-digit classification
 

Pea, obtained

from equation 5.13

correct classification rate

obtained from VHDL simulations
 

    

8-bit 86.64% ~ 92.94% 86.73%(97.8%)

9-bit 97.93% ~ 99.74% 92.6%(99.94%)

10-bit 100% 98.7%(99.06%)
 

 

36 x 30 x 10 for 10-digit classification
 

Pea, obtained

from equation 5.13

correct classification rate

obtained from VHDL simulations
 

    

8-bit 74.25% ~ 83.7% 80.27%(92.4%)

9511 96.39% ~ 98.64% 91.2%(99.1%)

10-bit 99.91% ~ 100% 99.1%(99.6%)
 

 

 

 





CHAPTER 6

DMNN Application: Pattern

Classification

 

A DMNN architecture can be viewed as a coprocessor with the addition of a control

unit and memory components. A DMNN coprocessorfor classifying binary patterns is

modeled and simulated in VHDL. A general design procedure for constructing DMNN

binary classifiers is discussed. XOR and encoding problems are applied as testbench

problems. Then numeric character classification problems are applied. Convergence

properties in DMNNs during training are also discussed. Classification performance

for these networks is evaluated in comparison to that obtained from deterministic

DMNN simulations and ordinary back-propagation networks.

6. 1 Introduction

The purpose of pattern classification is to perform a mapping from observation

space to interpretation space by extracting features from observed data and classify-

ing the collected features into a certain category [85]. An important aspect of pattern
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classification is the determination of the discriminant (or operator) that produces an

estimate of the class membership of an input pattern. Some of the early work in

pattern classification was inspired by the idea that a network of processing elements

arranged in a manner similar to a biological neural network might be able to learn

the requisite operators in an autonomous manner.

The Perceptron was the first significant development of such in the early 1960s,

suggesting a general approach to the automatic learning discriminants for pattern

classification [42]. However, at that time, even though the power of the generalized

Perceptron devices were well understood, no practical method for training layered

Perceptron devices was known. Furthermore, the analysis of single-layer Perceptron

devices by Minsky and Papert in 1969 revealed the limitation of the Perceptron [2].

That is, a single-layer Perceptron can not classify linearly unseparable patterns. Since

then, no significant further progress in Perceptron-related research had been achieved

until the early 19803. i

The early disappointments with the Perceptron approach caused most traditional

pattern recognition researchers to concentrate on geometric or structural approaches.

In these approaches, pattern recognition systems made use of the results of statistical

communication and estimation theory or mathematical linguistics.

In 1986, Rumelhart, et al. introduced a new algorithm, called the generalized

delta rule (or back-propagation), for training multilayer Perceptrons. The means of

autonomous mapping from observation space to interpretation space is now possible.

However, learning using the ordinary back-propagation algorithm is impractically

slow. Many versions of the ordinary back-propagation have been developed to accel-

erate learning [43].

One current research emphasis is on implementing pattern classification systems

using the neural network approach on advanced computer architectures or in dedi-

cated VLSI hardware. In this chapter, binary classification problems are applied to
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the DMNN to test its applicability to pattern classification using the VHDL model

of the DMNN described in previous chapters.

6.2 Methodology

A generic DMNN architecture has been modeled as a coprocessor in VHDL. Binary

classification problems are applied to the DMNN coprocessor as testbench problems.

In order to construct the network for solving a particular classification problem, sam-

pling data (or patterns) must be selected carefully. The sampling data are often

divided into training data and testing data. 'The DMNN must be trained off-line on

a host computer. Once training is completed, test data are applied to the DMNN

coprocessor whose network architecture is set up as a result of training. Based on the

test results, the performance of a DMNN pattern classifier is evaluated.

A back-propagation algorithm has been programmed in C. Each pattern is of

an array of binary values. The number of neurons in the input layer of a DMNN

equals the number of elements in the pattern vector plus one. The additional input

is required to provide the synaptic elements located in upper layers with a constant

threshold input (1.0). The number of neurons in the output layer is the same as the

number of categories into which the sampling patterns are to be classified. Only one

output neuron is turned on when an input pattern is applied to the network. For

example, if an input pattern belongs to category # 1, only the first output neuron is

turned on and all the other neurons are turned off. The values representing ‘on’ and

‘off’ of output neurons are determined during the training session. These values can

be any intermediate values between 0.0 and 1.0.
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6.2.1 Training and Classification

A DMNN must be trained with training and target patterns before it is used for

classification. During training, network configuration, synaptic weights, and values

representing the ‘on’ and ‘off’ thresholds of output neurons are determined. This

information is needed to construct the DMNN for testing or classifying patterns.

Training requires the following steps:

Step 1. Start with an initial network configuration.

 

Step 2. Initialize synaptic weights to random values generated between 0.0 and 1.0.

Step 3. Apply training patterns and corresponding target patterns one by one.

Step 4. Once all the training patterns are applied, perform one pass of feedforward

operations and calculate a sum-squared error of the network. Then propagate

the error in a backward direction and modify the synaptic weights.

Step 5. Repeat step 4 iteratively until the network converges in such a way that the

sum-squared error reaches a predefined error-threshold. If the network oscillates

or is stuck at a high local minimum in error surface, increase the number of

neurons in the hidden layers (and the number of hidden layers if necessary)‘

and repeat steps 2 to 5.

 Step 6. Once the network reaches the predefined error-threshold, check to see if all

the synaptic weights are valid, i.e., —1.0 S Wij S 1.0 for all i and j. If one

or more synaptic weights are not valid, increase the number of neurons in the

 

‘See reference [43] for detailed procedures suggested by some researchers.
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hidden layers (and the number of hidden layers if necessary) and repeat steps

2 to 6.

Step 7. Save the final synaptic weights and the network configuration.

Our experimental experience suggests two layers (one hidden layer and one output

layer) are enough for binary classification using the DMNN architecture. It has also

been observed, through extensive training with an arbitrary size DMNN, that there is

a relationship between the existence of solutions, equivalently low sum-squared error

states, and the ratio of an input range and an output range. 0.1 was found to work

well as the ratio as this always produced valid trained weights with the given input

pattern representations. 0.0 and 1.0 have been used to represent ‘0’ and ‘1’ binary

values respectively. 0.45 and 0.55 have been used as target values corresponding to

‘on’ and ‘off’ thresholds at the output neurons.

Once the training has been completed, the network configuration and synaptic

weights obtained from the training are loaded into the DMNN coprocessor. Then

test patterns are applied to the network to see how well the network classifies them.

Define the minimal network configuration for solving a particular problem as the

network that converges to an error state equal to or below the predefined error thresh-

old with a mimum number of neurons in the hidden layers and a minimum number of

hidden layers. A network configuration can be represented by no x n1 x - - -, where no

and n1 denote the number of elements in an input pattern and the number of neurons

in the first hidden layer, respectively.

In following two sections, some benchmark problems and character classification

problems are applied and their performance is evaluated; only minimal network con-

figurations for these problems are illustrated.
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6.3 Benchmark Problems

Two benchmark problems are applied to the DMNN coprocessor to test its ability

classifying linearly unseparable patterns (XOR problem) and to test whether or not

the DMNN can work as a data compressor (Encoding problem). In these testbench

problems, the training data and the testing data are the same.

6.3.1 DMNN XOR Problem Solver

The XOR problem is a typical example of 4 input patterns that can not be cor—

rectly classified by a single-layer Perceptron. Thus, it is often used to test whether or

not an artificial neural network can classify linearly unseparable data. Table 6.1 shows

the representation of the XOR problem in a DMNN. Figure 6.1 shows an example

of the two-layer DMNN for solving the XOR problem, where the values of synaptic

weights are set at one before quantization is applied.

Table 6.2 shows the actual outputs of the network illustrated in Figure 6.1 with

respect to the register length n. In Table 6.2, each figure is rounded to 3 decimal

places. As shown in Table 6.2, when n > 7, the DMNN can classify the 4 input

patterns correctly. However, when n S 6, the network misclassifies one of them be-

Table 6.1. Representation of the XOR problem in a DMNN.

 

 

11 12 O

0.0 0.0 0.45

0.0 1.0 0.55

1.0 0.0 0.55

1.0 1.0 0.45     



Output layer

Hidden layer

Input layer

Figure 6.1. An example DMNN for solving the XOR problem.
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w50 = 0.443

w53 = 0.539

W54 = -0.684

W40 = -10‘4

W41 = 0.344

W42 = 0.348

W30 = 0.023

W31 = 0.915

W32 = 0.924

Table 6.2. Actual outputs of an n-bit two-layer DMNN for solving XOR problem.

 

 

 

         

I] 12 77210 72:9 7128 7227 n=6 n=5

0.0 0.0 0.451 0.456 0.461 0.468 0.469 0.500

0.0 1.0 0.549 0.556 0.563 0.563 0.688 0.563

1.0 0.0 0.549 0.556 0.570 0.578 0.719 0.563

1.0 1.0 0.457 0.449 0.445 0.484 0.625 0.438   
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cause errors on synaptic weights caused by quantization become too large. The min-

imal network configuration for solving the XOR problem is 3 x 2 x 1.

6.3.2 DMNN Encoder

An encoding problem is used here to test whether or not the DMNN has the abil-

ity to compress data. An 8-to-3 encoding problem is considered here as an example.

Table 6.3 shows the representation of the problem in the DMNN.

Figure 6.2 shows an example of the two-layer DMNN for solving the 8-to—3 encod-

ing problem. The minimal network configuration is 9 x 3 x 3. The DMNN successfully

encodes 8-bit data to 3-bit data when n 2 8, verifying that the DMNN is able to

compress data.

Data for network configurations, training and test patterns, and initial LFSR val-

ues for solving the XOR and the 8-to—3 encoding problems are listed in Appendix D.

Table 6.3. Representation of the 8-to—3 encoding problem in a DMNN.

 

11 I; 1;, I4 15 16 I7 18 01 02 03

 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45 0.45 0.45

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.55 0.45 0.45

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.45 0.55 0.45

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.55 0.55 0.45

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.45 0.45 0.55

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.55 0.45 0.55

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.45 0.55 0.55

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.55 0.55 0.55     
 

 



W9’1 = - 0.0026

W9’2 = - 0.0018

W93 = 0.3277

169,4 = 0.3240

W95 = -0.0006

W9’6 = -0.0011

w9,7 = 0.2861

W93 = 0.2822

Wg’o = 0.0001

 

W10’1 = -0025

W102 = 0.3106

W103 = -0.0016

W10’4 = 0.3107

W10’5 = -0.0003

Wm, = 0.3032

W10’7 = -0.0007

“2,0,3 = 0.3022

W100 = 0.
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W11’1 = -0.0442

Wm= -0.0201

W11’3 = 0.0149

”411,4 = -0.0001

W115 = 0.2971

W11,6 = 0.2867

W11,7 = 0.3223

W113 = 0.3129

W1”) = 0.0563

 

8
.
"

W129 = -0.0413

W12’10 = 0.0207

W12,“ = 0.6153

“1120 = 0.4310

W13’9 = 0.5892

W13’10 = 0.0101

W13,11 = 0.0811

W13,0 = 0-

W14,9 = 0.0001

1914,10 = 0.5928

W14,“ = 0.0164

W14,0 = 0.4481

Figure 6.2 An example DMNN for solving the 8-to-3 encoding problem.
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6 -4 DMNN Character Recognizer

Two experiments have been conducted involving the classification of numeric char»

acters. The first experiment involves classifying 5 digits from O to 4 while the second

experiment involves classifying 10 digits from 0 to 9.

6 -4.1 Data Set

For each experiment, a network is trained with two sets of training data. The first

set consists of ideal digits (1 pattern per digit) and the second consists of the first

 

data set plus 10% noisy patterns (3 patterns per digit). The test data set is composed

Of the first data set, the second data set, and 20 % noisy patterns (3 patterns per

digit). P% noisy patterns are created by randomly inverting P% of the pixels in the

ideal digits. For experiment 1, each pattern consists of 6x4 pixels and for experiment

2 each pattern has 7x5 pixels. Figure 6.3 and 6.4 show the pixel images of a typical

data set used in experiments 1 and 2, respectively. The average Hamming distances

between ideal digits are 10.2 and 12.1 for experiment 1 and 2, respectively.

6.4.2 Experimental Results and Network Performance

Experimental results are compared to results from the program ‘annclass’ sim-

ulating ordinary multilayer neural networks built on the Rochester Connectionist

Simulator. A continuous sigmoid function is used as a neuron transfer function in

the comparison simulation. The purpose of experiment 1 is to find the relationship

between network convergence and network configuration.
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(a) (b) (C)

digit “0” “1” “2n “3” “4”

“O” O 13 9 10 13

“1” 13 O 6 11 8

“2” 9 6 0 9 12

13

“3” 10 11 9 O 11

“4” 8 12 11 0

(d)

Figure 6.3. For S-digit classification in experiment 1: (a) ideal digits; (b) typical 10% noisy

digits; (c) typical 20 % noisy digits; (d) Hamming distance between ideal digits.
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(a) (b) (C) (a) (b) (C)

 

cfigh “O” “l” “2” “3" “4” “5” “6” “7" “8” “9”

“0” 0 17 11 10 19 11 9 9 5 11

“1” 17 0 10 15 20 14 16 18 16 20

“2” 11 10 0 9 20 12 12 14 8 l4

“3” 10 15 9 0 17 7 9 ll 7 9

“4” 19 20 20 17 0 14 16 18 18 14

“5” ll 14 12 7 14 0 4 12 8

 

 

 

 

 

 

 

 

 

“6” 9 16 12 9 16 4 0 12 8

“7” 9 18 14 ll 18 12 12 0 12

“8” 5 16 8 7 18 8 8 12 0 10

             “9” 11 20 14 9 14 8 8 4 10 0
 

(d)

Figure 6.4. For lO-digit classification in experiment 2: (a) ideal digits; (b) typical 10% noisy

digits; (c) typical 20 % noisy digits; (d) Hamming distance between ideal digits.
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Table 6.4. Average number of iterations required for training in experiment 1.

 

 

 

 

 

DMNN ‘annclass’

Trained with a = 0.0 Trained with a = 0.5 Trained with a = 0.5

N1 N2 N0. of iterations N1 N; No. of iterations N1 N2 N0. of iterations

*4 0 2086 *4 0 1738 *5 0 13311

10 0 420 10 O 293 10 0 17212

30 0 332 30 0 182 15 0 11905

50 0 274 50 0 135 25 0 14108

6 4 12263 6 4 7482 8 4 79320

8 6 10446 8 6 4959 8 8 35480

10 8 7427 10 8 2972 10 8 44520

12 10 6135 12 10 1820 12 10 55025           
 

Table 6.4 shows the average number of iterations required to converge with a given

network configuration for the DMNN and ‘annclass’ when they are trained with the 5

ideal digits. Each figure in the table is the average value based on 10 different initial

sets of weights. For the DMNN, 1; (learning rate) = 0.2, a (momentum parameter)

= 0.5, and Erntd (error threshold) = 10‘4 are used, while 17 = 1.0, a = 0.5, and

Err-td = 10"2 are used for ‘annclass’. The use of smaller values of 17 and Err-td for

training the DMNN is affected by the constraints in its operation range. In Table

6.4, * indicates a minimal network configuration, and N1 and N2 are the numbers of

neurons in the first and second hidden layers, respectively.

As shown in Table 6.4, the number of iterations increases in general as the number

of hidden layers increases or the number of neurons in the hidden layer decreases in

DMNNs, but there is no clear relationship between the network configuration and the

number of iterations in ‘annclass’. It is noted that the DMNN network can be train-
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Table 6.5. Performance of the DMNN 5-digit recognizer.

 

Trained with the ideal digits

 

 

Resubstitution Misclassified error Misclassified error

error rate rate on 10% noisy data rate on 20% noisy data

8-bit DMNN 7.5% 32.2% 55.6%

9-bit DMNN 0.7% 11.7% 30%

C simulation 0% 8.5% 43%    
 

 

Trained with the ideal digits plus 10% noisy data

 

 

Resubstitution Misclassified error

error rate rate on 20% noisy data

8-bit DMNN 5% 38.7%

9-bit DMNN 0% 26.7%

C simulation 0% 35.3%      
 

ed with a significantly reduced number of iterations compared to ‘annclass’, which

requires approximately 14000 (average) iterations for two-layer networks and 55000

for three-layer networks. The fast convergence obtained in the DMNN results from

the fact that the values of output neurons can take on intermediate values between 0

and 1 as targets.

Table 6.5 shows the performance results of the DMNN 5—digit recognizer with 8

and 9 bit register lengths. The results of a deterministic DMNN simulation (in C)

directly calculating the network operations are also given for comparison. The clas-

sification of test patterns is determined by the MSBs of the magnitude parts of the

numbers in the output neurons. If the output of a neuron in the output layer is greater

than or equal to 0.5, the neuron is considered to be ‘on’. If no neuron or more than
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1 neuron are turned ‘on’, the test is considered a misclassification. Typical synaptic

weights and network configuration for 5-digit classification are listed in Appendix D.

Each figure in Table 6.5 is based on 20 tests. For each test, new synaptic weights

are loaded. Resubstitution error is obtained by testing the DMNN with the training

data set. As shown in this table, the DMNN character recognizer with a 9-bit register

length produces results whose performance level is close to that of the determinis-

tic simulation on resubstitution data. It is noted that the performance of the 9-bit

DMNN is better than that of the deterministic simulation on 20% noisy data. The

reason is perhaps that the random noise may help enhance the network performance.

It is also shown that the DMNN classifies patterns better when the training data

contain noisy data. Meanwhile, when the register length is less than 8 bits, the mis—

classification error rate is more than 50%, even on resubstitution tests.

For experiment 2, the 5-digit classification problem is extended to a 10-digit clas-

sification problem and the pixel images of each pattern are increased to 7X5. The

network performance is again compared with that of the deterministic DMNN sim-

ulation and ‘annclass’ in terms of a correct classification rate. Table 6.6 shows the

performance results of the DMNN 10-digit recognizer when the register length is 8,

9, or 10. For training, 17 = 0.05, a = 0.0, and Err_td = 0.005 are used. Only two-

layer networks (one hidden layer and one output layer) are considered here. For the

DMNN, the minimal network configurations are 36 x 9 x 10 and 36 X 30 x 10 when

it is trained with the first set of training data and the second set of training data,

respectively. The number of neurons in the hidden layer for ‘annclass’ ranges from

5 to 20 for both. The first three rows show the results obtained from the DMNN

coprocessor, followed by the results of the deterministic simulation and data from

‘annclass’. An example of synaptic weights and network configuration for 10-digit

classification is listed in Appendix D.
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Table 6.6. Performance of the DMNN 10-digit recognizer.

 

Trained with the ideal digits on the 36x9x10 DMNN

 

 

    
 
 

 

 

Resubstitution Misclassified error Misclassified error

error rate rate on 10% noisy data rate on 20% noisy data

8-bit DMNN 2.2% 16.2% 43.3%

9-bit DMNN 0.06% 9.7% 36.6%

10-bit DMNN 0.94% 7.8% 37.1%

C simulation 0.0% 6.7% 35.0%

annclass 0.0% 15.8% 30.8%

Trained with the ideal digits plus 10% noisy data on the 36x30x10 DMNN

Resubstitution Misclassified error

error rate rate on 20% noisy data

8-bit DMNN 7.6% 25.4%

9-bit DMNN 0.9% 20.3%

10-bit DMNN 0.4% 15.1%

C simulation 0.0% 13.5%

annclass 0.0% 16.7%      
 

Each entry in Table 6.6 is based on extensive tests (> 20,000 runs). Twenty sets of

weights are used and more than 1000 different sets of initial LFSR values per set of

weights are used. Correct classification is determined by the output neuron with a

maximum value and the test is considered a misclassification when an incorrect neuron

has a maximum value. As shown in Table 6.6, the DMNN character recognizer with

a 9-bit register length produces results whose performance level is close to that of

the deterministic simulation and competitive to that of the ‘annclass’. The correct

classification rates obtained from the DMNN are close to those for the deterministic
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simulation, which indicates the quantization does not have significant effect on the

network performance when the register length is greater than 8. Better performance

from the DMNN than average values shown in Table 6.6 can be obtained by choosing

a set of initial values of LFSR’S carefully for a given set of weights.

6.5 Summary

Digital multilyer neural networks for binary classification problems have been

modeled and simulated in VHDL. Any size feedforward neural network can be con-

structed by simply interconnecting the desired number of predefined modules. All

operations in the same layer are performed in parallel and all operations between the

layers are performed in a pipelined manner. Thus, the DMNN architecture utilizes

full parallelism embedded in ANN computations. Its processing speed depends only

on the clock frequency and the register length, not on the network size. When an

n-bit register length and W MHz clock-cycle are used for the DMNN character rec-

leO8

2"-1

 ognizer, the processing speed is about patterns per second.

The DMNN architecture is also extremely compact. The chip areas required by

10-digit DMNNs are less than 1.0 x 105/19 and 3.0 x 105/lg for 36 x 9 x 10 and 36 x

30 x 10 network configurations, respectively, as was determined in section 4.5. The

classification performance of two-layer DMNNs for 5-digit and 10-digit classifications

is found to be competitive to that of deterministic DMNN simulations and ordinary

back-propagation networks when the register length is greater than 7.

 

 



CHAPTER 7

Conclusion

 

A new architecture for a VLSI-based digital multilayer neural network has been

developed in this dissertation. Statistical models for stochastic computations utilized

in this architecture have been developed. Network analysis has been performed based

on the statistical models. VHDL models of DMNN pattern classifiers indicate that the

classification performance of this architecture is competitive to that of deterministic

simulations or ordinary back-propagation networks while retaining the desirable prop-

erties of high speed and high density on a chip. This chapter begins with a summary

of the research work, followed by an identification of the major contributions of this

work. A discussion offuture research issues concludes the chapter.

7. 1 Summary

The development of fast, space-efficient, and programmable architectures for

dedicated VLSI ANNs which are applicable to real engineering problems is a current

challenge in ANN research. Analog VLSI ANNs have the potential for high speed

and high density on a chip. However, the unavailability of reliable permanent analog

119
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storage devices makes it difficult to build programmable analog ANNs and design

parameter variations, such as noise and temperature, diminish the accuracy in analog

computations. Furthermore, high parasitic capacitances on external I/O pins and

difficulties in designing large analog systems make it difficult to build large size or

multi-chip ANNs. A conventional digital approach using ALU units or special hard-

ware as computing elements leads to increased hardware requirements and decreased

parallelism. A promising solution to these problems has been demonstrated in this

research work.

A pulse-mode digital multilayer neural network (DMNN) architecture, which can

be implemented using simple logic gates and simplistic digital components, has been

developed. The DMNN performs pseudo-analog computations using stochastic com-

puting techniques and random pulse streams. The modular DMNN architecture is

programmable and compact in size. Any size feedforward neural network can be built

by interconnecting the desired number of modules.

In the DMNN, all operations in the same layer are performed in parallel and

all operations between the layers are performed in pipeline. Thus full parallelism is

utilized. Processing speed depends only on the clock frequency and register length,

not on the network size. When the network is used for pattern classification, about

200,000 patterns per second can be classified with a 50 MHz clock assuming an 8-bit

register length.

Statistical models of operations occurring in the DMNN have also been developed.

The variance of the random noise (or error) resulting from the estimation of the gener-

ating probabilities has been shown to be bounded to the binomial distribution which

can be obtained when Bernoulli sequences are assumed. Network analysis for binary

classification has been performed. Experimental results show that the successful re—

covery rate of target patterns for training data closely matches what was anticipated

by the analytical results. It is also shown that the low variances in estimated compu-
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tational results in the DMNN lead to the high success rate in the recovery of target

patterns.

The DMNN has been applied successfully to binary classification problems such as

XOR, encoding, and character classification. Two-layer DMNNs for these problems

have been simulated in VHDL. Their performance has been found to be competitive to

that obtained from deterministic DMNN simulations and ordinary back-propagation

networks when the register length is greater than 7.

The hardware requirement for implementing DMNNS is significantly reduced com-

pared to other digital approaches. For example, the 8, 9, and 10-bit DMNNs, whose

network configuration is 36 x 30 x10, can be built using about 2.27 x 105, 2.53 x 105,

and 2.80 X 105 NAND gates, respectively. This indicates that a 10-bit register length

DMNN for 10-digit recognition can be built on a single chip.

7.2 Contributions

The major contributions of this research are:

1. A VLSI-based pulse-mode digital multilayer neural network (DMNN) architec-

ture has been developed. Stochastic computing techniques and use of simple

logic gates as computing elements lead to a space-efficient network architec-

ture. The DMNN is programmable so that many network configurations can

be formed and its modular architecture makes the networks expandable to any

size.

2. Statistical models for estimated probabilities resulting from network operations

have been developed using the statistical dependence of pulse occurrence in a

pseudo-random pulse stream generated from a tapped LFSR and the determin-
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istic nature observed in gate operations. The random noise effects on network

operations have been quantified.

3. VHDL has been used as a modeling tool for a DMNN coprocessor. The 11i-

erarchical design capability supported by VHDL, combined with the natural

modularity of the DMNN architecture makes design analysis simple.

4. Character classification problems have been applied to this model and it has

been shown that the classification performance of DMNN 5-digit and lO-digit

classifiers is competitive to that obtained from deterministic DMNN simulations

and ordinary back-propagation networks while retaining the desired high speed

and high hardware density.

7.3 Future Research

The DMNN architecture has been developed in a mixed mode using gate-level

and register-transfer level designs, but it can be fully described at the gate-level. To

implement the DMNN architecture as a dedicated VLSI ANN, two approaches are

possible: custom-design and semicustom-design. The DMNN with a minimal network

configuration, dedicated to a particular application problem, can be built on a single

chip using a custom-design methodology. But, a semicustom-design method is more

appropriate when modularity or expandability is a more important factor than size.

Any size network can be built using the defined modules. These modules can be

implemented using gate arrays and/or standard cells.

There is no reason that feedback networks, such as the Hopfield network or the

Boltzmann machine, can not be constructed using the modules developed in this

work. However, in order for the modules to be used for feedback networks, statistical
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models for analizing the random noise effects caused by stochastic computations on

network dynamics must be developed.

Finally, DMNN binary classifiers described in this thesis may be further used for

solving more complex pattern classification problems. In an n-bit DMNN, 2" — 1

levels are available to represent the values of elements in input and output patterns.

Thus, each multi-level input pattern can contain more information or can represent a

more complex pattern. Furthermore, multi—level output neurons can make it possible

to represent multiple categories in an encoded form using fewer output neurons. A

simple example of such was illustrated in the 8-to-3 encoder in Chapter 6. However,

in order to make use of this advantage, one condition must be satisfied. That is,

networks with given input and output data representations must converge during

training to an equilibrium point in the error surface which is equal to or below a

desired error threshold.
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APPENDIX A

Derivation of the rth Factorial

Moment of a Hypergeometric

Random Variable X

The probability function for a hypergeometric random variable X is

PM, 2 1..) = (vs/3731!)

where l is a natural number (i.e., l 6 0,1,2,..., N — 1, N).

Let (k), be the product of r consecutive integers starting with k such that (k), =

k(k — l) - - - (k — r + 1). Then, the rth factorial moment is

N

E[(X),] = :(k)TP(X=l)
k=r

: inn—(0)531). (A.l)

By using the identity
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we can obtain

N N

Sauna-.5) = 3042:9635)
k=r kzr

N l (N )(1 l

: (llr 2;)(j—T)((7.__r3_—j 4 l

J:

N (l—r)((N—r)-—(l—r))

 

= (0.63:); ’ (£117

: (”Tail—:1.)

n T N

Thus, substituting equation A.2 for equation A.1 gives
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)
l

o
r
=

;
J
<
n
e
u
r
o
n
_
n
o
;

-
H
-

i
?
(
w
e
i
g
h
t
s
[
i
]
[
j
]
>
=
0
.
(
l
l

t
e
m
_
n
e
t
_
e
x
[
l
r
]
[
i
l
=
t
e
m
_
n
e
t
_
e
x
[
k
]
[
i
]
*
(
1
.
0
-
w
e
i
g
h
t
s
[
i
]
[
j
]

t
e
m
_
i
n
p
a
t
t
e
m
[
i
]
)
;
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  e
l
s
e

t
e
m
_
_
n
e
t
_
i
n
[
k
]
[
i
]
=
t
e
m
_
n
e
t
_
i
n
[
k
]

[
i
]
*
(
1
.
O
+
w
e
i
g
h
t
s
[
i
]
[
i
]

}
*
t
e
m
_
i
n
p
a
t
t
e
m
[
i
]
)
;

t
e
m
_
n
e
t
_
e
x
[
k
]

[
i
]
=
l
.
O
-
t
e
m
_
n
e
t
_
e
x
[
k
]

[
i
]

;

t
e
m
_
n
e
t
_
i
n
[
k
]
[
i
]
=
1
.
0
-
t
e
m
_
n
e
t
_
i
n
[
k
]
[
i
]
;

}
t
e
m
_
i
n
p
a
t
t
e
m
[
i
]
=
t
e
m
_
n
e
t
_
e
x
[
k
]

[
i
]
*
(
1
.
0
-
t
e
m
_
n
e
t
_
_
i
n
[
k
]
[
i
]
)
;

f
o
r
(
n
1
=
0
;
n
1
<
n
e
u
r
o
n
_
n
o
;
n
1
+
+
)

E

p
o
t
e
n
t
i
a
l
[
k
]
[
n
l
]
=
t
e
m
_
i
n
p
a
t
t
e
m

n
1
]
;

n
e
t
_
e
x
[
k
]
[
n
1
]
=
t
e
m
_
n
e
t
_
e
x
[
k
]
[
n
1
]
;

}
n
e
t
_
i
n
[
k
]
[
n
1
]
=
t
e
m
_
n
e
t
_
i
n
[
k
]
[
n
1
]
;

}

}

/
*

B
a
c
k
-
p
r
o
p
a
g
a
t
i
o
n
o
p
e
r
a
t
i
o
n
s
i
n
t
h
e
D
M
N
N

*
/

b
a
c
k
p
r
o
p
a
r
_
o
p
(
)

{
s
t
a
t
i
c
i
n
t
i
t
e
r
_
c
n
t
=
0
;

i
n
t
i
,
j
,
k
,
i
i
,
j
j
,
k
k
,
h
;

fl
o
a
t
d
e
l
t
a
_
w
g
t
n
e
u
r
o
n
_
n
o
]
[
n
e
u
r
o
n
_
n
o
]
;

fl
o
a
t
d
e
l
t
a
_
w
g

[
n
e
u
r
o
n
_
n
o
]
[
n
e
u
r
o
n
_
n
o
]
;

fl
o
a
t
e
r
r
o
r
[
n
e
u
r
o
n
_
n
o
]
,
a
b
s
_
e
r
r
o
r
,
n
e
w
_
s

r
s
u
m
_
e
r
r
o
r
,
s
q
r
s
u
m
_
e
r
r
o
r
l

fl
o
a
t
d
e
l
t
a
_
w
g
t
l
[
n
e
u
r
o
n
_
n
o
]
[
n
e
u
r
o
n
_
n
o

,
o
l
d
_
s
q
r
s
u
m
_
e
r
r
o
r
=
0
.
0
;

fl
o
a
t
o
l
d
_
d
e
l
t
a
_
w
g
t
[
n
e
u
r
o
n
_
n
o
]
[
n
e
u
r
o
n
_
n
o
]
,
t
o
t
a
l
_
s
s
e
_
c
h
a
n
g
e
;

f
o
r
(
i
=
0
;
i
<
n
e
u
r
o
n
_
n
o
;
i
+
+
)

{

f
o
r
(
j
=
0
;
j
<
n
e
u
r
o
n
_
n
o
;
j
+
+
)

{

n
e
w
_
w
e
i
g
h
t
s
[
i
]

'
]
=
w
e
i

h
t
s
[
i
]
[
i
]
;
d
e
l
t
a
_
w
g
t
[
i
]
[
j
]
=
0
.
0
;

}
o
l
d
_
d
e
l
t
a
_
w
g
t
[
i

[
i
]
=
0
.

;
d
e
1
t
a
_
w
g
t
2
[
i
]
[
i
]
=
0
.
0
;

}

i
t
e
r
_
c
n
t
=
i
t
e
r
_
c
n
t
+
1
;

a
b
s
_
e
r
r
o
r
-
-
0
.
0
;

n
e
w
_
s

r
s
u
m
_
e
r
r
o
r
=
0
.
0
;

f
o
r
(
h
=

;
h
<
p
a
t
t
e
r
n
_
n
o
;
h
H
)

{

f
o
r
(
i
=
0
;
i
<
n
e
u
r
o
n
_
n
o
;
i
+
+
)

e
r
r
o
r
[
i
]
=
0
.
0
;

i
i
=
i
n
_
l
a
y
e
r
;

s
q
r
s
u
m
_
e
r
r
o
r
=
0
.
0
;

f
o
r
(
j
j
=
0
;
j
i
<
o
u
t
T
l
a

e
r
;
j
j
+
+
)

{

J
=
n
e
u
r
o
n
_
n
o
-

-
;

e
r
r
o
r
fi
]
=
t
a
r
g
e
l
t
l
h
]
[
i
]
-
p
o
t
e
n
t
i
a
l
[
h
]
[
i
]
;

f
o
r
(
i
=
u
;
r
<
n
e
u
r
o
n
_
n
o
;
1
+
+
)

{

 d
e
l
t
a
_
w
g
t
l
U
]
[
i
]
=
1
.
0
;

s
w
i
t
c
h
(
n
e
t
_
c
o
n
U
]
[
i
]
)

{

c
a
s
e

1
:

i
f
(
w
e
i
g
h
t
s

’
]
[
i
]
$
>
$
=

0
.
0
)

{

f
o
r
(
k
=
0
;

<
n
e
u
r
o
n
_
n
o
;
k
+
+
)

{

if
ci

‘i
ei

gm
sn

tl
ii

li
—z

do
io
&
&
l
k
f
i
i
a
o

g
h
m
m

e
t
a
w
t

i
-
e
t
a
w

'
i

.
-
w
e
i

t
s
“

}
g

*p
ot

en
ti

al
ft

ii
rt

ll
;

d
e
l
t
a
_
w
g
t
L
i
]
[
i
]
=
e
t
a
*
e
r
r
o
r
[
i
]
*

1
.
0
-
n
e
t
_
i
n
[
h
]

'
]
)

*
p
o
t
e
n
t
i
a
l
[
h
]

[
i
*
d
e
l
t
a
_
w
g
t
1

[
i
]
;

d
e
l
t
a
_
w
g
t
2
[
j
]
[
i
]
=
e
t
a
*
e
r
r
o
r
[
j
]

(
1
.
0
-
n
e
t
_
i
n

]
[
i
]
)

}
*
(
1
.
0
-
n
e
t
_
e
x
[
h
]
[
j
]
)
;

e
l
s
e

f
o
r
{
k
=
0
;
k
<
n
e
u
r
o
n
_
n
o
;
k
+
+
)

{

i
f
w
e
i
g
h
t
s
L
i
]
[
k
]
<
0
.
0
&
&

k
!
=

i
)

d
e
l
t
a
_
w
g
t
]
[
i
]
[
i
]
=
d
e
l
t
a
_
w

1
'
]
[
i
]
*
(
1
.
0
+
w
e
i
g
h
t
s
[
j
]
[
k
]

}
*
P
o
t
e
n
t
i
a
l

h
l
l

l
)
;

d
e
l
t
a
_
w
g
t
fi
]
[
i
]
=
e
t
a
*
e
r
r
o
r

'
]
*
n
e
t
_
e
x
[
h
]
[
j
]
*
p
o
t
e
n
t
i
a
l
[
h
]
[
i
]

*
d
e
l
t
a
_
w
g
t

'
]
[
i
]
;

d
e
l
t
a
_
w
g
t
2
[
i
]
[
i
]
=
e
t
a
*
e
r
r
o
r

'
]
*
(
1
.
0

-
n
e
t
_
i
n
[
h
]
[
i
]
)

*
n
e
L
e
x
l
h
l
b
l
;

}
b
r
e
a
k
;

d
e
f
a
u
l
t
:

}
d
e
l
t
a
_
w
g
t
fi
]
[
i
]
=
0
.
0
;

b
r
e
a
k
;

n
e
w
_
w
e
i
g
h
t
s
B
]
[
i
]
=
n
e
w
_
w
e
i
g
h
t
s

'
]
[
i
]
+
d
e
l
t
a
_
w
g
t
[
j
]
[
i
]
;

n
e
w
_
w
e
i
g
h
t
s

]
[
i
l
=
n
e
w
_
w
e
i
g
h
t
s

'
]
[
i
]
+
g
a
m
m
a

o
l
d
_
d
e
l
t
a
_
w
g
t

'
[
i
]
;

}
o
l
d
_
d
e
l
t
a
_
w
g
t
[
i
]
[
i
]
=
d
e
l
t
a
_
w
g
t
U

[
i
]
;

i
f
(
e
r
r
o
r
U
]
<
0
.
0
)
a
b
s
_
e
r
r
o
r
=
a
b
s
_
e
r
r
o
r
—
e
r
r
o
r
[
j
]
;

e
l
s
e
a
b
s
_
e
r
r
o
r
=
a
b
s
_
e
r
r
o
r
+
e
r
r
o
r
[
i
]
;

}
s
q
r
s
u
m
_
e
r
r
o
r
=
s
q
r
s
u
m
_
e
r
r
o
r
+
e
r
r
o
r
[
j
]
*
e
r
r
o
r
[
j
]
;

s
q
r
s
u
m
_
e
r
r
o
r
=
s
q
r
s
u
m
_
e
r
r
o
r
/
2
.
0
;

n
e
w
_
s

r
s
u
m
_
e
r
r
o
r
=
n
e
w
_
s
q
r
s
u
m
_
e
r
r
o
r
+
s
q
r
s
u
m
_
e
r
r
o
r
;

k
k
=
i
i
t

l
_
l
z
i
i
f
y
e
r
'

.
f
o
r
0
=
r
i
;
]
<

+
h
l
_
l
a
y
e
r

;
J
+
+
)

{

 

 

 

 





 

}
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n
e
w
_
w
e
i
g
h
t
s

'
]
[
i
]
=
n
e
w
_
w
e
i
g
h
t
s

n
e
w
_
w
e
i
g
h
t
s

]

f
o
r
(
k
=
k
k
;
k
<

k
k
+
o
u
t
_
_
l
a
y
e
r
;
k
+
+
)

{

i
f
(
p
o
t
e
n
t
i
a
l
[
h
]
[
j
]
1
:
0
0
)

-
=

4
d
r

t
k
'
*
'
h
m
k
'

e
r
r
o
r
U
]
g
g
g
d
a
i
r
i
i
u
i
fi
w
u

I
D
]

w
e
x
g

[
l
b
]

e
r
r
o
r
[
i
]
=
e
r
r
o
r
[
j
]
+
d
e
l
t
a
_
w
g
t
2
[
k
]
[
j
]
*
w
e
i
g
h
t
s
[
k
]
[
i
]
;

e
l
s
e

e
r
r
o
r
[
i
]
=
e
r
r
o
r
[
j
]
/
e
t
a
;

f
o
r
(
i
=
0
;
i
<
n
e
u
r
o
n
_
n
o
;
i
+
+
)

{

d
e
l
t
a
_
w
g
t
l

[
j
]
[
i
]
=
l
.
0
;

s
w
i
t
c
h
(
n
e
t
_
c
o
n
L
i
]
[
i
]
)

{

c
a
s
e

1
:

i
f
(
w
e
i
g
)

t
s
L
i
]
[
i
]
$
>
$
=
0
.
0
)

{

f
o
r
(
k
—

;
k
<
n
e
u
r
o
n
_
n
o
;
k
+
+
)

{

i
f
(
w
e
i
g
h
t
s

'
]
[
k
]
>
=
0
.
0
&
&

k
!
=

i
)

d
e
l
t
a
_
w
g
t

[
j
]
[
i
]
=
d
e
l
t
a
_
w

t
1

'
]
[
i
]
*
(
1
.
0
—
w
e
i
g
h
t
s
[
i
]
[
k
]

}
*
P
o
t
e
n
fi
a
l

h
]
[

1
)
;

d
e
l
t
a
_
w
g
t
U
]
[
i
]
=
e
t
a
*
e
r
r
o
r
[
i
]
*
(
l
.
0
-
n
e
t
_
i
n
[
h
]

'
1
)

}
*
p
o
t
e
n
t
i
a
l
[
h
]
[
i
]
*
d
e
l
t
a
_
w
g
t
l
[
]

[
i
]
;

1

c
f
?

1
i
=
0
;
k
<
n
e
u
r
o
n
_
n
o
;
k
+
+
)

{

i
f
w
e
i
g
h
t
s
l
e
k
]
<
0
.
0
&
&

k
!
=

i
)

d
l
t
a

1
"
=
d
e
l
t
a

1
"
*
1
.
0
+
'
t
s
°
k

e}
.
w
g
t

['
][
ll
po
te
nfi
ai
fii
ir
ll
ii
i]

(
w
e
i
g
h

r
m

1

d
e
l
t
a

"
-
t
a
*

'
*
r

'
*

t
e
t
i
a
l

'
}
.
g
v
g
t
a
l
i
l
l
l
l
—
g
d
e
fi
t
a
r
g
r
v
b
g
l
t
l
r
fi
e
]
fi
fi
x
m
l
b
l

9
0

n
[
h
i
l
l
]

r
e

;

d
e
f
a
u
l
t
:

}
d
e
l
t
a
_
w
g
t
fi
]
[
i
]
=
0
.
0
;

b
r
e
a
k
;

']

[
i
]
=
n
e
w
_
w
e
i
g
h
t
s

]

*
o
l
d
_
d
e
l
t
a
w
g
t
U

[

o
l
d
_
d
e
l
t
a
_
w
g
t
fi
fl
i
]
=

d
e
l
t
a
:
w
g
t
[
]
]
[
i
]
;

}
}
i
i
l
g
n
e
w
_
s
q
r
s
u
m
_
e
r
r
o
r
$
<
=
t
o
r
_
e
r
r
o
r
)
c
o
n
_
fl
a
g
=
1
;

i
f
(
i
t
e
r
_
c
n
t
%

d
i
s
p
n
0
)
=

1
)

{

p
r
i
n
t
f
(
"
a
b
s
_
e
r
r
o
r
=
%
f
"
,
a
b
s
_
e
r
r
o
r
)
;

 f
p
r
i
n
t
f
(
f
p
,
"
a
b
s
_
e
r
r
o
r
=
%
t
“
,
a
b
s
_
e
r
r
o
r
)
;

r
i
n
t
i
fi
'

s
s

e
r
r
o
r
:
%
f
"
n
e

_
s
q
r
s
u
m
_
e
r
r
o
r
)
;

r
m

(
f
p
,
"
s
s
_
e
r
r
o
r
=
%
t
‘
,
n
e
w
_
s
q
r
s
u
m
_
e
r
r
o
r
)
;

}

/
*

*
/

V
I
’
B
L
E
C
D
O

i
n
t

i
,
j
;

s
t
a
t
i
c
fl
o
a
t
s
d
n
n
_
s
r
a
n
d
O
;

f
o
r
(
i
=
0
;
i
<
n
e
u
r
o
n
_
n
o
;
i
+
+
)

{

i
f
(
i
<
i
n
_
l
a
y
e
r

ll
i
=
-
-
n
e
u
r
o
n
_
n
o

-
1
)

{

f
o
r
(
i
=
0
;
j
<
n
e
u
r
o
n
_
n
o
;
j
+
+
)

{

i
(
i
=
=
]
)

w
e
i
g
h
t
s
[
i
]

]
=
1
.
0
;

e
l
s
e

w
e
é
g
h
t
s
fi
]

'
]
—

.
0
;

p
r
i
n
t
f
(
"

[
%
d
]
[

a
d
]
:

%
.
3
t
"
,
i
,
j
,
w
e
i
g
h
t
s
[
i
]
[
i
]
)
;

R
a
n
d
o
m

g
e
n
e
r
a
t
i
o
n
f
o
r
i
n
i
t
i
a
l
w
e
i
g
h
t
s

}
}

e
l
s
e

f
o
r
l
f
=
0
;
j
<
n
e
u
r
o
n
_
n
o
;
j
+
+
)

{

i
(
n
e
t
_
c
o
n
[
i
]

'
]
=
=
1
)

w
e
i
g
h
t
s
[
i
]
[
i
]
=
s
d
n
n
_
s
r
a
n
d
0
;

e
l
s
e
w
e
i

h
t
s
i
]
[
j
]
=
0
.
0
;

}
p
r
i
p
t
f
(
"
W
%
d
]
[
%
d
]
=

%
.
3
t
"
,
i
,
j
,
w
e
i
g
h
t
s
[
i
]
[
j
]
)
;

[
I
I
I

fl
o
a
t
s
d
n
n
_
s
r
a
n
d
(
)

{
i
n
t
x
;
fl
o
a
t
y
;

x
=
m

a
n
d
(
s
e
e
d
)
;
x
=
x
+
R
A
N
D
_
M
A
X
;

y
=
(

o
a
t
)
(
x
/
(
2
0
.
0
*
R
A
N
D
_
M
A
X
)
)
;

r
e
t
u
r
n
y
;

}
}

R
a
n
d
o
m
n
u
m
b
e
r
g
e
n
e
r
a
t
i
o
n

*
I

}
i
n
t
m
y
r
a
n
d
(
i
n
t
_
s
e
e
d
)

i
n
t
i
n
t
_
s
e
e
d
;

{
s
t
a
t
i
c
i
n
t
r
a
n
_
c
n
t
=
0
,
n
e
x
t
;

i
f
(
r
a
n
_
c
n
t
=
0
)
n
e
x
t
=

i
n
t
_
_
s
e
e
d
;

e
l
s
e
n
e
x
t
=
n
e
x
t
*
1
1
0
3
5
1
5
2
4
5

4
»
1
2
3
4
5
;

r
a
n
_
c
n
t
=
r
a
n

c
n
t
+

1
;

r
e
t
u
r
n
(
(
i
n
t
)
(
n
e
x
t
l
6
5
5
3
6
)
%

3
2
7
6
8
)
;

 

 

 



APPENDIX C

VHDL Code and Corresponding Schematics

  





130

  C
.
1
V
H
D
L
C
o
d
e
f
o
r
D
M
N
N

M
o
d
e
l
i
n
g

C
.
1
.
1
V
H
D
L
P
a
c
k
a
g
e

p
a
c
k
a
g
e
d
m
n
n
_
p
a
c
k

i
s

c
o
n
s
t
a
n
t
c
l
o
c
k
_
p
e
r
i
o
d
:
n
a
t
u
r
a
l
:
=
2
0
;

c
o
n
s
t
a
n
t
N
_
b
i
t
s
:
n
a
t
u
r
a
l
:
=
9
;

c
o
n
s
t
a
n
t
N
_
n
e
u
r
o
n
:

n
a
t
u
r
a
l
:
=
3
4
;

c
o
n
s
t
a
n
t
N
_
l
a
y
e
r
:
n
a
t
u
r
a
l
:
=
2
;

c
o
n
s
t
a
n
t
N
_
p
a
t
t
e
r
n
:
n
a
t
u
r
a
l
:
=
3
5
;

c
o
n
s
t
a
n
t
i
n
_
u
n
i
t
_
n
o
:
n
a
t
u
r
a
l
:
=
2
4
;

c
o
n
s
t
a
n
t
h
i
d
d
e
n
_
u
n
i
t
_
n
o
:
n
a
t
u
r
a
l
:
=
4
;

c
o
n
s
t
a
n
t
o
u
t
_
u
n
i
t
_
n
o
:
n
a
t
u
r
a
l
:
=
5
;

s
u
b
t
y
p
e
n
e
u
r
a
l
_
b
y
t
e

i
s
B
I
T
_
V
E
C
T
O
R
(
N
_
b
i
t
s
d
o
w
n
t
o

1
)
;

s
u
b
t
y
p
e
n
e
u
r
a
l
_
b
i
t
_
v
e
c
t
o
r

i
s
B
I
T
_
V
E
C
T
O
R
(
N
_
n
e
u
r
o
n
d
o
w
n

1
)
;

t
y
p
e
n
e
u
r
a
l
_
b
i
t
_
m
a
t
r
i
x
i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
N
_
n
e
u
r
o
n
)

o
f
n
e
u
r
a
l
_
b
i
t
_
v
e
c
t
o
r
;

t
y
p
e
n
e
u
r
a
l
_
a
r
r
a
y

i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
N
_
n
e
u
r
o
n
)
o
f

n
e
u
r
a
l
b
y
t
e
;

t
y
p
e
o
u
t
_
s
t
a
t
e
_
a
r
r
a
y

i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
o
u
t
_
u
n
i
t
_
n
o
)

o
f
n
e
u
r
a
l
_
b
y
t
e
;

t
y
p
e
n
e
u
r
a
l
_
m
a
t
r
i
x

i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
N
_
n
e
u
r
o
n
)
o
f

n
e
u
r
a
l
_
a
r
r
a
y
;

t
y
p
e
p
a
t
t
e
r
n
_
m
a
t
n
°
x

i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
N
_
p
a
t
t
e
r
n
)
o
f

n
e
u
r
a
l
_
a
r
r
a
y
;

f
u
n
c
t
i
o
n
L
F
S
R

n
(
(
n
u
v
a
l
u
e
,
r
n

t
y
p
e

f
u
n
c
t
i
o
n
W
i
r
e
d
:
r
1
:
n
e
u
r
a
l
_

n
e
u
r
a
l
_
b
i
t
_
v
e
c
t
o
r
;

f
u
n
c
t
i
o
n
b
y
t
e
_
v
a
l
(
i
n
p
u
t
:
n
e
u
r
a
l
_
b
y
t
e
)
r
e
t
u
r
n
n
a
t
u
r
a
l
;

f
u
n
c
t
i
o
n
i
n
t
_
t
o
_
b
y
t
e
(
i
n
t
_
v
a
l
u
e
:
n
a
t
u
r
a
l
)
r
e
t
u
r
n
n
e
u
r
a
l
_
b
y
t
e
;

f
u
n
c
t
i
o
n
b
y
t
e
_
t
o
_
r
e
a
l
(
i
n
_
b
y
t
e
:
n
e
u
r
a
l
_
b
y
t
e
)
r
e
t
u
r
n
r
e
a
l
;

f
u
n
c
t
i
o
n
r
’
e
a
l
_
t
o
_
b
y
t
e
(
i
n
_
r
e
a
l
:
r
e
a
l
)
r
e
t
u
r
n
n
e
u
r
a
l
_
b
y
t
e
;

e
n
d
d
m
n
n
_
p
a
c
k
;

p
a
c
k
a
g
e
b
o
d
y
d
m
n
n
_
p
a
c
k

i
s

n
e
u
r
a
l

e
r
e
t
u
r
n

b
i
t
;

a
t
'
r
i
x
)
r
e
t
1
.
T
r
n
y
t

)

 f
u
n
c
t
i
o
n
L
F
S
R
_
f
u
n
(
m
g
_
v
a
l
u
e
,
m
g
_
_
t
y
p
e
:
n
e
u
r
a
l
_
b
y
t
e
)
r
e
t
u
r
n
b
i
t
i
s

v
a
r
i
a
b
l
e
f
e
e
d
b
a
c
k
_
b
i
t
:

b
i
t
:
=
'
0
'
;

b
e
g
i
n

f
o
r

i
i
n
(
N
_
b
i
t
s

-
1
)
d
o
w
n
t
o

1
l
o
o
p

f
e
e
d
b
a
c
k
_
b
i
t
:
=
f
e
e
d
b
a
c
k
_
b
i
t
x
o
r
(
m
g
_
v
a
l
u
e
(
i
)
a
n
d
r
n
g
_
t
y
p
e
(
i
)
)
;

e
n
d
l
o
o
p
;

r
e
t
u
r
n
f
e
e
d
b
a
c
k
_
b
i
t
:

e
n
d
;

f
u
n
c
t
i
o
n
W
i
r
e
d
_
O
r
(
i
n
p
u
t
:
n
e
u
r
a
l
_
b
i
t
_
m
a
t
r
i
x
)
r
e
t
u
r
n
n
e
u
r
a
l
_
b
i
t
_
v
e
c
-

t
o
r
i
s

v
a
r
i
a
b
l
e
o
r
e
d
_
o
u
t
:
n
e
u
r
a
l
_
b
i
t
_
v
e
c
t
o
r
;

b
e
g
i
n

l
o
o
p
_
o
u
t
:

f
o
r

i
i
n

1
t
o
N
_
n
e
u
r
o
n
l
o
o
p

l
o
o
p
_
i
n
:

f
o
r
j
i
n

1
t
o
N
_
n
e
u
r
o
n
l
o
o
p

i
f
(
i
n
p
u
t
(
i
)
(
j
)
=
'
1
'
)
t
h
e
n
o
r
e
d
_
o
u
t
(
i
)
:
=
'
1
'

e
n
d

i
f
;

e
n
d
l
o
o
p
l
o
o
p
_
i
n
;

e
n
d
l
o
o
p
l
o
o
p
_
o
u
t
;

r
e
t
u
r
n
o
r
e
d
_
o
u
t
;

e
n
d
;

f
u
n
c
t
i
o
n
b
y
t
e
_
v
a
l
(
i
n
p
u
t
:
n
e
u
r
a
l
_
b
y
t
e
)
r
e
t
u
r
n
n
a
t
u
r
a
l

i
s

v
a
r
i
a
b
l
e
i
n
t
_
v
a
l
:
n
a
t
u
r
a
l
:
=
0
;

b
e
g
i
n

f
o
r

i
i
n
O
‘
L
b
i
t
s

-
1
)
d
o
w
n
t
o

1
l
o
o
p

i
f
(
i
n
p
u
t
(
i
)
=
'
1
'
)
t
h
e
n
i
n
t
_
v
a
l
:
=
i
n
t
_
v
a
l
+
2
*
*
(
i
-
1
)
;

e
n
d

i
f
;

e
n
d
l
o
o
p
;

r
e
t
u
r
n
i
n
t
_
v
a
l
;

e
n
d
;

f
u
n
c
t
i
o
n
i
n
t
_
t
o
_
b
y
t
e
(
i
n
t
_
v
a
l
u
e
:
n
a
t
u
r
a
l
)
r
e
t
u
r
n
n
e
u
r
a
l
_
b
y
t
e

i
s

v
a
r
i
a
b
l
e
i
n
t
_
v
a
l
:
n
a
t
u
r
a
l
;

v
a
r
i
a
b
l
e
b
y
t
e
_
v
a
l
:
n
e
u
r
a
l
_
b
y
t
e
;

b
e
g
i
n

i
n
t
_
v
a
l
:
=
i
n
t
_
v
a
1
u
e
;
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  f
o
r

i
i
n
(
N
_
b
i
t
s

-
1
)
d
o
w
n
t
o

1
l
o
o
p

i
f
(
i
n
t
_
v
a
l
/
(
2
*
*
(
i
-
1
)
)
>
=

1
)
t
h
e
n

b
y
t
e
_
v
a
l
(
i
)
:
=
'
1
'
;

i
n
t
_
v
a
l
:
=
i
n
t
_
v
a
l

-
(
2
*
*
(
i
-
1
)
)
;

e
l
s
e
b
y
t
e
_
v
a
l
(
i
)
:
=
0
;

e
n
d

i
f
;

e
n
d
l
o
o
p
;

r
e
t
u
r
n
b
y
t
e
_
v
a
l
;

e
n
d
;

f
u
n
c
t
i
o
n
b
y
t
e
_
t
o
_
r
e
a
l
(
i
n
_
b
y
t
e
:
n
e
u
r
a
l
_
b
y
t
e
)
r
e
t
u
r
n
r
e
a
l

i
s

v
a
r
i
a
b
l
e
r
e
a
l
_
v
a
l
:
r
e
a
l
:
=
0
.
0
;

v
a
r
i
a
b
l
e
c
n
t
_
1
:
n
a
t
u
r
a
l
:
=
0
;

b
e
g
i
n

f
o
r
i
i
n
(
N
_
b
i
t
s

-
1
)
d
o
w
n
t
o

1
l
o
o
p

i
f
(
i
n
_
b
y
t
e
(
i
)
=
'
1
'
)
t
h
e
n

r
e
a
l
_
v
a
l
:
=
r
e
a
l
_
v
a
l
+
1
.
0
/
(
2
.
0
*
*
(
N
_
b
i
t
s

-
i
)
)
;

c
n
t
_
l
:
=
c
n
t
_
1
+
1

;

e
n
d

i
f
;

e
n
d
l
o
o
p
;

i
f
(
c
n
t
_
1
=
N
_
b
i
t
s
-
1
)
t
h
e
n
r
e
a
l
_
v
a
l
:
=
1
.
0
;

e
n
d

i
f
;

i
f
(
i
n
_
b
y
t
e
(
N
_
b
i
t
s
)
=
'
1
'
)
t
h
e
n
r
e
a
l
_
v
a
l
:
=
r
e
a
l
_
v
a
l
*
(
-

1
.
0
)
;

e
n
d

i
f
;

r
e
t
u
r
n
r
e
a
l
_
v
a
l
:

e
n
d
;

f
u
n
c
t
i
o
n
r
e
a
l
_
t
o
_
b
y
t
e
(
i
n
_
r
e
a
l
:
r
e
a
l
)
r
e
t
u
r
n
n
e
u
r
a
l
_
b
y
t
e

i
s

v
a
r
i
a
b
l
e
r
e
a
l
_
v
a
l
:
r
e
a
l
:
=
0
.
0
;

v
a
r
i
a
b
l
e
b
y
t
e
_
v
a
l
:
n
e
u
r
a
l
_
b
y
t
e
;

b
e
g
i
n

r
e
a
l
_
v
a
l
:
=
i
n
_
r
e
a
l
;

i
f
(
r
e
a
l
_
v
a
l
<
0
.
0
)
t
h
e
n

b
y
t
e
_
v
a
l
(
N
_
b
i
t
s
)
:
=
’
1
'
;

r
e
a
l
_
v
a
l
:
=
r
e
a
l
_
v
a
l
*
(
-
l
.
0
)
;

e
n
d

i
f

;

f
o
r

i
i
n
(
N
_
b
i
t
s

-
1
)
d
o
w
n
t
o

1
l
o
o
p

 i
f
(
r
e
a
l
_
v
a
l
/
(
1
.
0
/
2
.
0
*
*
(
N
_
b
i
t
s
-
i
)
)
>
=

1
.
0
)
t
h
e
n

b
y
t
e
_
v
a
l
(
i
)
:
=
'
1
'
;

r
e
a
l
_
v
a
l
:
=
r
e
a
l
_
v
a
l

-
(
1
.
0
/
2
.
0
*
*
(
N
_
b
i
t
s
-
i
)
)
;

e
l
s
e

b
y
t
e
_
v
a
l
(
i
)
:
=
0
;

e
n
d

i
f
;

e
n
d
l
o
o
p
;

i
f
(
r
e
a
l
_
v
a
l
/
(
1
.
0
/
2
.
0
*
*
N
_
b
i
t
s
)
>
=

1
.
0
)
t
h
e
n
b
y
t
e
_
v
a
l
(
l
)
:
=
'
1
'
;

e
n
d

i
f
;

r
e
t
u
r
n
b
y
t
e
_
v
a
l
:

e
n
d
;

e
n
d
d
m
n
n
_
p
a
c
k
;

C
.
1
.
2
D
M
N
N

C
o
p
r
o
c
e
s
s
o
r

u
s
e
w
o
r
k
.
d
n
n
_
p
a
c
k
.
a
l
l
;

e
n
t
i
t
y
d
m
n
n
_
c
o
p
r
o
c
e
s
s
o
r

i
s

e
n
d
d
m
n
n
_
c
o
p
r
o
c
e
s
s
o
r
;

a
r
c
h
i
t
e
c
t
u
r
e
t
e
s
t
b
e
n
c
h
o
f
d
m
n
n
_
c
o
p
r
o
c
e
s
s
o
r

i
s

c
o
m
p
o
n
e
n
t
c
l
o
c
k

p
o
r
t
(
s
t
a
r
t
:
i
n
b
i
t
;

c
l
k
_
o
u
t
:
o
u
t

b
i
t
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
s
t
e
p
_
c
n
t

p
o
r
t
(
s
t
e
p
_
c
l
k
:
i
n
b
i
t
;

n
e
w
_
s
t
e
p
:
o
u
t

b
i
t
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
d
n
n
_
n
e
t

p
o
r
t
(
n
e
t
_
l
o
a
d
,
n
e
t
_
c
l
k
,
n
e
t
_
e
n
a
b
l
e
,
n
e
x
t
_
p
e
r
i
o
d
:
i
n

b
i
t
;

n
e
w
_
p
a
t
t
e
m
:
i
n
n
e
u
r
a
l
_
a
r
r
a
y
;

w
e
i
g
h
t
_
i
n
:
i
n
n
e
u
r
a
l
_
m
a
t
r
i
x
;

n
e
t
_
s
t
a
t
e
_
o
u
t
:
o
u
t
o
u
t
_
s
t
a
t
e
_
a
r
r
a
y
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
c
o
n
t
r
o
l
_
u
n
i
t

p
o
r
t
(
c
t
l
_
e
n
a
b
l
e
,
c
t
l
_
p
r
d
:
i
n

b
i
t
;

n
e
t
_
1
0
3
d
,
r
a
m
_
r
w
,
c
l
k
_
o
n
,
n
e
t
_
o
n
,
r
a
m
_
o
n
:
o
u
t

b
i
t
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;
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  c
o
m
p
o
n
e
n
t
R
A
M

p
o
r
t
(
r
a
r
n
_
e
n
a
b
l
e
,
r
_
w
:
i
n
b
i
t
;

s
t
a
t
e
_
i
n
:
i
n
o
u
t
_
s
t
a
t
e
_
a
r
r
a
y
;

n
e
w
_
p
a
t
t
e
m
:
o
u
t
n
e
u
r
a
l
_
a
r
r
a
y
;

w
e
i
g
h
t
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
m
a
t
r
i
x
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

t
y
p
e
o
u
t
_
b
i
t
s

i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
o
u
t
_
u
n
i
t
_
n
o
)
o
f
b
i
t
;

s
i
g
n
a
l
o
u
t
_
l
i
g
h
t
:
o
u
t
_
b
i
t
s
;

s
i
g
n
a
l
r
u
n
:

b
i
t
:
=
'
0
'
;

s
i
g
n
a
l
c
l
k
_
s
i
g
:

b
i
t
:
=
'
0
'
;

s
i
g
n
a
l
n
e
t
_
l
o
a
d
_
s
i
g
:

b
i
t
:
=
'
0
'
;

s
i
g
n
a
l
n
e
t
_
e
n
a
_
s
i
g
:

b
i
t
:
=
'
0
'
;

s
i
g
n
a
l
c
l
k
_
e
n
a

s
i
g
:
b
i
t
:
=
'
0
'
;

s
i
g
n
a
l
n
e
w
_
p
r
é
L
s
r
g
:

b
i
t
:
=
'
0
'
;

s
i
g
n
a
l
n
e
w
_
p
a
t
t
e
r
n
_
s
i
g
:
n
e
u
r
a
l
_
a
r
r
a
y
;

s
i
g
n
a
l
n
e
t
_
w
e
i
g
h
t
_
i
n
:
n
e
u
r
a
l
_
m
a
t
r
i
x
;

s
i
g
n
a
l
n
e
t
_
s
t
a
t
e
_
s
i
g
:
o
u
t
_
s
t
a
t
e
_
a
r
r
a
y
;

s
i
g
n
a
l
r
a
m
_
r
w
_
s
i
g
:

b
i
t
;

s
i
g
n
a
l
r
a
m
_
e
n
a
_
s
i
g
:

b
i
t
;

s
i
g
n
a
l
r
a
m
_
n
e
t
_
s
t
a
t
e
:
p
a
t
t
e
r
n
_
m
a
t
r
i
x
;

f
o
r

a
l
l
:
c
l
o
c
k
u
s
e
e
n
t
i
t
y
w
o
r
k
.
c
l
o
c
k
(
c
l
k
_
b
e
h
a
v
i
o
r
)
;

f
o
r

a
l
l
:
s
t
e
p
_
c
n
t
u
s
e
e
n
t
i
t
y
w
o
r
k
.
s
t
e
p
_
c
n
t
(
s
t
e
p
_
c
n
t
_
d
n
n
)
;

f
o
r

a
l
l
:
c
o
n
t
r
o
l
_
u
n
i
t
u
s
e
e
n
t
i
t
y
w
o
r
k
c
o
n
t
r
o
l
_
u
n
i
t
(
b
e
h
a
v
i
o
r
)
;

f
o
r

a
l
l
:
d
n
n
_
n
e
t
u
s
e
e
n
t
i
t
y
w
o
r
k
d
n
n
_
n
e
t
(
b
e
h
a
v
i
o
r
)
;

f
o
r

a
l
l
:
R
A
M

u
s
e
e
n
t
i
t
y
w
o
r
k
.
R
A
M
(
b
e
h
a
v
i
o
r
)
;

b
e
g
i
n

o
u
t
_
l
i
g
h
t
(
1
)
<
=
n
e
t
_
s
t
a
t
e
_
s
i
g
(
1
)
(
N
_
b
i
t
s
-
1
)
;

o
u
t
_
l
i
g
h
t
(
2
)
<
=
n
e
t
_
s
t
a
t
e
_
s
i
g
(
2
)
(
N
_
_
b
i
t
s
-
l
)
;

o
u
t
_
l
i
g
h
t
E
B
)

=
n
e
t
_
s
t
a
t
e
_
s
i
g
€
3
)
E
N
_
b
i
t
s
-
l
g
;

o
u
t
_
l
i
g
h
t
4

<
=
n
e
t
_
s
t
a
t
e
_
s
i
g
4

N
_
b
i
t
s
-
l

;

o
u
t
_
l
i
g
h
t
(
5
)
<
=
n
e
t
_
s
t
a
t
e
_
s
i
g
(
5
)
(
N
_
b
i
t
s
-
1
)
;

r
u
n
<
=

'
1
'
a
f
t
e
r
5

n
s
;

C
l
k
_
B
l
k
:
c
l
o
c
k
p
o
r
t
m
a
p

(
c
l
k
_
e
n
a
_
s
i
g
,
c
l
k
_
s
i
g
)
;

S
t
e
p
_
B
l
k
:
s
t
e
p
_
c
n
t
p
o
r
t
m
a
p

(
c
l
k
_
s
i
g
,
n
e
w
_
p
r
d
_
s
i
g
)
;

C
o
n
t
r
o
l
_
B
l
k
:
c
o
n
t
r
o
l
_
u
n
i
t
p
o
r
t
m
a
p
(
r
u
n
,
n
e
w
_
p
r
d
_
s
i
g
,

n
e
t
_
l
o
a
d
_
s
i
g
,
r
a
m
_
r
w
_
s
i
g
,
c
l
k
_
e
n
a
_
s
i
g
,

n
e
t
_
e
n
a
_
s
i
g
,
r
a
m
_
e
n
a
_
s
i
g
)
;

 D
n
n
_
n
e
t
_
B
L
K
:
d
n
n
_
n
e
t
p
o
r
t
m
a
p

(
n
e
t
_
l
o
a
d
_
s
i
g
,
c
l
k
_
s
i
g
,

n
e
t
_
e
n
a
_
s
i
g
,
n
e
w
_
p
r
d
_
s
i
g
,
n
e
w
_
p
a
t
t
e
r
n
_
s
i
g
,

n
e
t
_
w
e
i
g
h
t
_
_
i
n
,
n
e
t
_
s
t
a
t
e
_
s
i
g
)
;

R
A
M
_
B
L
K
:
R
A
M

p
o
r
t
m
a
p
(
r
a
m
_
e
n
a
_
s
i
g
,
r
a
m
_
r
w
_
s
i
g
,

n
e
t
_
s
t
a
t
e
_
s
i
g
,
n
e
w
_
p
a
t
t
e
r
n
_
s
i
g
,
n
e
t
_
w
e
i
g
h
t
_
i
n
)
;

e
n
d
t
e
s
t
b
e
n
c
h
;

C
.
l
.
3
D
M
N
N
:
N
e
t
w
o
r
k

u
s
e
w
o
r
k
.
d
m
n
n
_
p
a
c
k
.
a
l
l
;

e
n
t
i
t
y
d
m
n
n
_
n
e
t

i
s

D
O
M

n
e
t
_
l
o
a
d
,
n
e
t
_
c
l
k
,
n
e
t
_
e
n
a
b
l
e
,
n
e
x
t
_
p
e
r
i
o
d
:
i
n

b
i
t
;

n
e
w
_
p
a
t
t
e
r
n
:
i
n
n
e
u
r
a
l
_
a
r
r
a
y
;

w
e
i
g
h
t
_
i
n
:
i
n
n
e
u
r
a
l
_
m
a
t
r
i
x
;

n
e
t
_
s
t
a
t
e
_
o
u
t
:
o
u
t
o
u
t
_
s
t
a
t
e
_
a
r
r
a
y
)
;

e
n
d
d
m
n
n
_
n
e
t
;

u
s
e

s
t
d
.
t
e
x
t
i
o
;

u
s
e
s
t
d
s
i
m
u
l
a
t
o
r
_
s
t
a
n
d
a
r
d
.
t
e
r
m
i
n
a
t
e
;

a
r
c
h
i
t
e
c
t
u
r
e
b
e
h
a
v
i
o
r
o
f
d
m
n
n
_
n
e
t

i
s

c
o
m
p
o
n
e
n
t
s
y
n
a
p
s
e

p
o
r
t
(
s
y
n
_
l
o
a
d
,
s
y
n
_
c
l
k
:
i
n

b
i
t
;

s
y
n
_
w
e
i
g
h
t
,
s
y
n
_
r
a
n
_
i
n
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

a
c
t
i
o
n
_
s
t
r
e
a
m
:
i
n
b
i
t
;

e
x
_
n
e
t
_
o
u
t
,
i
n
_
n
e
t
_
o
u
t
:
o
u
t

b
i
t
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
n
e
u
r
o
n
_
b
o
d
y

p
o
r
t
(
e
x
_
n
e
t
_
i
n
p
u
t
,
i
n
_
n
e
t
_
i
n
p
u
t
,
b
o
d
y
_
l
o
a
d
,
b
o
d
y
_
c
l
k
,

s
t
e
p
_
c
n
t
:
i
n
b
i
t
;

i
n
i
t
_
s
t
a
t
e
:
i
n
n
e
u
r
a
l
_
a
r
r
e
;

i
n
i
t
_
r
a
n
d
o
m
:
i
n
n
e
u
r

_
b
y
t
e
;

o
u
t
p
u
t
_
s
t
r
e
a
m
:
o
u
t

b
i
t
;

n
e
u
r
o
n
o
u

u
t
:
o
u
t
n
e
u
r
a
l
b

e
;

e
n
d
c
o
r
n

n
e
n
t
;
’

t
p

‘
y
t
)

s
i
g
n
a
l

c
l

:
b
i
t
;

s
i
g
n
a
l
s
y
n
_
r
a
n
_
i
n
:
n
e
u
r
a
l
_
m
a
t
r
i
x
;

s
i
g
n
a
l
b
o
d
y
_
r
a
n
_
i
n
,
n
e
t
_
o
u
t
p
u
t
:
n
e
u
r
a
l
_
a
r
r
a
y
;

s
i
g
n
a
l
o
u
t
_
s
t
r
e
a
m
,
i
n
_
w
i
r
e
d
_
o
r
,
e
x
_
w
i
r
e
d
_
o
r
:

n
e
u
r
a
l
_
b
i
t
_
v
e
c
t
o
r
;
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  s
i
g
n
a
l
e
x
_
o
r
,
i
n
_
o
r
:
n
e
u
r
a
l
_
b
i
t

m
a
t
r
i
x
;

f
o
r

a
l
l
:
s
y
n
a
p
s
e
u
s
e
e
n
t
i
t
y
w
o
r
k
.
s
y
n
a
p
s
e
(
s
y
n
a
p
_
d
m
n
n
)
;

f
o
r

a
l
l
:
n
e
u
r
o
n
_
b
o
d
y
u
s
e
e
n
t
i
t
y
w
o
r
k
.
n
e
u
r
o
n
_
b
o
d
y

(
n
b
o
d
y

d
m
n
n
)
;

b
e
g
i
n M
a
i
n
_
b
l
k
:
b
l
o
c
k
(
n
e
t
_
e
n
a
b
1
e
=
'
1
'
)

b
e
g
i
n

c
1
k
<
=
g
u
a
r
d
e
d
n
e
t
_
e
n
a
b
l
e
a
n
d
n
e
t

c
l
k
;

e
x
_
w
i
r
e
d
_
o
r
<
=
g
u
a
r
d
e
d
W
i
r
e
d
_
O
r
(
e
x
_
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r
)
;

i
n
_
w
i
r
e
d
_
o
r
<
=
g
u
a
r
d
e
d
W
i
r
e
d
_
O
r
(
i
n
_
o
r
)
;

e
n
d
b
l
o
c
k

I
n
i
t
_
R
N
G
:
p
r
o
c
e
s
s

t
y
p
e
i
n
t
_
a
r
r
a
y
i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
N
_
n
e
u
r
o
n
)
o
f
i
n
t
e
g
e
r
;

t
y
p
e

i
f
i
i
t
‘
t
i
i
fi
r
t
a
i
h
i
i
s
a
r
r
a
y
(
n
a
t
u
r
a
l
r
a
n
g
e

1
t
o
N
_
n
e
u
r
o
n
)
o
f

fi
l
e
F
_
s
r
§
n
_
i
r
i
i
'
t
e
x
t
i
o
.
T
E
X
T
i
s
i
n
"
s
y
n
_
r
a
n
_
i
n
p
u
t
"
;

fi
l
e
F
_
b
r
a
n
_
i
n
:
t
e
x
t
i
o
.
T
E
X
T

i
s
i
n
"
b
o
d
y
_
r
a
n
_
r
n
p
u
t
"
;

v
a
r
i
a
b
l
e
L
3
,
L
4
:
t
e
x
t
i
o
.
L
I
N
E
;
v
a
r
i
a
b
l
e
i
n
_
v
e
c
:
n
e
u
r
a
l
r
a
r
r
a
y
;

v
a
r
i
a
b
l
e
i
n
_
w
e
i
g
h
t
:
n
e
u
r
a
l
_
m
a
t
r
i
x
;
v
a
r
i
a
b
l
e
i
n
_
b
r
a
n
:
i
n
t
_
a
r
r
a
y
;

v
a
r
i
a
b
l
e
i
n
_
s
r
a
n
:
i
n
t
_
m
a
t
r
i
x
;
v
a
r
i
a
b
l
e
n
e
w
_
i
t
e
r
:
n
a
t
u
r
a
l
z
=

;

b
e
g
i
n L
3

:
=
n
e
w
S
T
R
I
N
G
'

(
"
"
)
;
L
4

:
=
n
e
w
S
T
R
I
N
G
'

(
"
"
)
;

f
o
r

i
i
n

1
t
o
N
_
n
e
u
r
o
n
l
o
o
p

t
e
x
t
i
o
.
r
e
a
d
l
i
n
e

b
r
a
n

i
n
,
b
4
)
;

t
e
x
t
i
o
.
r
e
a
d

,
_
b
T
r

r
)
;

b
o
d
y
_
r
a
n
_
i
n
(
i

=
i
n
t
_
t
o
_
b
y
t
e
(
i
n
_
b
r
a
n
(
i
)
)
;

e
n
d
l
o
o
p
;

f
o
r

i
i
n

t
o
i
n
_
u
n
i
t
_
n
o
l
o
o

f
o
r
d
]
i
n

l
t
o
N
_
n
e
u
r
o
n

0
0
p

'
(
i
=
j
)
t
h
e
n

t
e
x
t
i
o
.
r
e
a
d
l
i
n
e
(
F
_
s
r
a
n
_
i
n
,
L
3
)
;

1
t
e
x
t
i
o
.
r
e
a
d
(
L
3
,
i
n
_
s
r
a
n
(
i
)
(
j
)
)
;

e
s
e

i
n
_
s
r
a
n
(
i
)
(
i
)
:
=
0
;

e
n
d

i
f
;

s
y
n
_
r
a
n
_
i
n
(
i
)
(
j
)
<
=
i
n
t
_
t
o
_
b
y
t
e
(
i
n
_
s
r
a
n
(
i
)
(
i
)
)
;

e
n
d
l
o
o
p
;

e
n
d
1
0
0

;

f
o
r

i
i
n
{
i
n
_
u
n
i
t
n
o
+
1
)
t
o
N
_
n
e
u
r
o
n
l
o
o
p

f
o
r
j
i
n

1
t
o
N
_
n
e
u
r
o
n
l
o
o
p

 

t
e
x
t
i
o
.
r
e
a
d
l
i
n
e
(
F
_
s
r
a
n
_
i
n
,
L
3
)
;

t
e
x
t
i
o
.
r
e
a
d
(
L
3
,
i
n
_
s
r
a
n
(
i
)
(
j
)
)
;

s
y
n
_
r
a
n
_
i
n
(
i
)
(
j
)
<
=
i
n
t
_
t
o
_
b
y
t
e
(
i
n
_
s
r
a
n
(
i
)
(
i
)
)
;

e
n
d
l
o
o
p
;

e
n
d
l
o
o
p
;

w
a
i
t
f
o
r
1
0
0
m
s
;

t
e
r
m
i
n
a
t
e
;

e
n
d
p
r
o
c
e
s
s
;

l
n
p
u
t
_
L
a
y
e
r
:

f
o
r

i
i
n

1
t
o
i
n
_
u
n
i
t
_
n
o
g
e
n
e
r
a
t
e

I
n
p
u
t
_
S
y
n
a
p

e
l
e
m
e
n
t
:

s
y
n
a
p
s
e
p
b
r
t
m
a
p
(
n
e
t
_
l
o
a
d
,
c
l
k
,
w
e
i
g
h
t
_
i
n
(
i

(
i
)
,

s
y
n
_
r
a
n
_
i
n
(
i
)
(
i
)
,
o
u
t
_
s
t
r
e
a
m
(
i
)
,
e
x
_
o
r
(
i
)
(
i
)
,
1
)
n
_
o
r
(
i
)
(
i
)
)
;

I
n
p
u
t
_
B
o
d
y
_
e
l
e
m
e
n
t
:

n
e
u
r
o
n
_
b
o
d
y
p
o
r
t
m
a
p
(
e
x
_
w
i
r
e
d
_
o
r
(
i
)
,
i
n
_
w
i
r
e
d
_
o
r
(
i
)
,

n
e
t
_
l
o
a
d
,
c
l
k
,
n
e
x
t
_
p
e
r
i
o
d
,
n
e
w
_
p
a
t
t
e
m
(
i
)
,

b
o
d
y
_
r
a
n
_
i
n
(
i
)
,
o
u
t
_
s
t
r
e
a
m
(
i
)
,
n
e
t
_
o
u
t
p
u
t
(
i
)
)
;

e
n
d
g
e
n
e
r
a
t
e
I
n
p
u
t
_
L
a
y
e
r
;

H
i
d
d
e
n
_
_
L
a
y
e
r
:
f
o
r
j
i
n
(
i
n
_
u
n
i
t
_
n
o
+
1
)
t
o
(
i
n
_
u
n
i
t
_
n
o
+

h
i
d
d
e
n
_
u
n
i
t
_
n
o
)

g
e
n
e
r
a
t
e

H
_
S
Y
N
A
P
S
E
_
A
R
R
A
Y
:

f
o
r
i
i
n

1
t
o
i
n
_
u
n
i
t
_
n
o
g
e
n
e
r
a
t
e

H
i
d
d
e
n
_
S
y
n
a
p
_
e
1
e
m
e
n
t
:

.
,

,

s
y
n
a
p
s
e
p
o
r
t
m
a
p

(
n
e
t
g
l
o
a
d
,
c
l
k
,
w
e
r

h
t
_
r
n
_

)
(
i
)
,

s
y
n
_
r
a
n

i
n
g
)
(
i
)
,
o
u
t

s
e
a
r
n
(
r

,

e
x
_
0
r
0
7
(
1
)
.
m
_
0
r
0
)
0
)
)
;

e
n
d
g
e
n
e
r
a
t
e
H
_
S
Y
N
A
P
S
E
_
A
R
R
A
Y
;

H
_
T
h
r
e
s
h
o
l
d
_
s
y
n
a

s
e
:

,
.

s
y
n
a
p
s
e
p
0

m
a
p
(
n
e
t
_
l
o
a
d
,
c
l
k
,
w
e
r
g
h
t
_
r
n
(
j
)
(
N
_
n
e
u
r
o
n
)
,

s
y
n
-
’
m
e
i
i
t
l
fi
‘
l
r
fi
i
t
‘
é
’
i
‘
l
d
fi
l
‘
h
i
t
e
fi
‘
l
i
r

_a
‘é

i‘
if

fil
l;

H
i
d
d
e
n
_
_
B
o
d

_
e
l
e
m
e
n
t
:

,
,

,
,

,

n
e
u
r
n
_
b
o
d
y
p
o
r
t
m
a
p
(
e
x
_
w
r
r
e
d
_
o
r
(
]
)
,
r
n
_
w
r
r
e
d
_
o
r
(
]
)
,

'l
ft
a‘
t’
i‘
lfi
lh

3T
5u
if
§§
€r
xt
e<
ih
lé
it
fg
tn
tl
ll
to
>)
;

e
n
d
g
e
n
e
r
a
t
e
H
i
d
d
e
n
_
L
a
y
e
r
;

O
u
t
p
u
t
_
L
a
y
e
r
:
f
o
r
k
i
n
(
i
n
_
u
n
i
t
_
n
o
+
h
i
d
d
e
n
_
u
n
i
t
_
n
o
+
1
)
t
o

(
i
n
_
u
n
i
t
_
n
o
+
h
i
d
d
e
n
_
u
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w
a
i
t
u
n
t
i
l
r
a
m
_
e
n
a
b
l
e
=
'
l
'
a
n
d
n
o
t
r
a
m
_
e
n
a
b
l
e
'
s
t
a
b
l
e
;

i
f
(
r
_
w
=
'
0
'
)
t
h
e
n

p
a
t
t
e
r
n
_
c
n
t
l
:
=
p
a
t
t
e
m
_
c
n
t
1
+
1

;
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f
o
r

i
i
n

1
t
o
o
u
t
_
u
n
i
t
_
n
o
l
o
o
p

s
t
a
t
e
_
m
e
m
(
p
a
t
t
e
r
n
_
c
n
t
l
)
(
i
)
<
=
s
t
a
t
e
_
i
n
(
i
)
;

e
n
d
l
o
o
p
;

w
a
i
t
f
o
r
5

n
s
;

i
f
(
p
a
t
t
e
r
n
_
c
n
t
l
=
N
_
p
a
t
t
e
r
n
)
t
h
e
n

f
o
r

i
i
n

1
t
o
N
_
p
a
t
t
e
m
l
o
o
p

f
o
r
j
i
n

1
t
o
o
u
t
_
u
n
i
t
_
n
o
l
o
o
p

s
t
a
t
e
_
o
u
t
(
i
)

'
)
:
=
b
y
t
e
_
t
o
_
r
e
a
1
(
s
t
a
t
e
_
m
e
m
(
i
)
(
j
)
)

t
e
x
t
i
o
.
w
r
i
t
e

3
,
s
t
a
t
e
_
o
u
t
(
i
)
(
j
)
)
;

t
e
x
t
i
o
.
w
r
i
t
e
l
i
n
e
(
F
_
o
u
t
,
L
3
)
;

e
n
d
l
o
o
p
;

e
n
d
l
o
o
p
;

p
a
t
t
e
r
n
_
c
n
t
l
:
=
0
;

e
n
d

i
f
;

e
n
d

i
f
;

i
f
(
r
_
w
z
'
l
'
)
t
h
e
n

p
a
t
t
e
r
n
.
c
n
t
2
:
=
p
a
t
t
e
r
n
_
c
n
t
2
+
l

;

f
o
r

i
i
n

l
t
o
N
_
n
e
u
r
o
n
l
o
o
p

n
e
w
_
p
a
t
t
e
r
n
(
i
)
<
=
p
a
t
t
e
m
_
m
e
m
(
p
a
t
t
e
m
_
c
n
t
2
)
(
i
)
;

f
o
r
j
i
n

1
t
o
N
_
n
e
u
r
o
n
l
o
o
p

w
e
i
g
h
t
_
o
u
t
(
i
)
(
j
)
<
=
w
e
i
g
h
t
_
m
e
m
(
i
)
(
j
)
;

e
n
d
l
o
o
p
;

e
n
d
l
o
o
p
;

i
f
(
p
a
t
t
e
r
n
_
c
n
t
2
=
N
_
p
a
t
t
e
r
n
)
t
h
e
n

p
a
t
t
e
r
n
_
c
n
t
2
:
=
0
;

e
n
d

i
f
;
e
n
d

i
f
;

e
n
d
p
r
o
c
e
s
s
;

e
n
d
b
e
h
a
v
i
o
r
;

C
.
l
.
6
S
y
n
a
p
t
i
c
E
l
e
m
e
n
t

u
s
e
w
o
r
k
.
d
m
n
n
_
p
a
c
k
.
a
l
l
;

e
n
t
i
t
y
s
y
n
a
p
s
e

i
s
p
o
r
t
(
s
y
n
_
l
o
a
d
i
,
s
y
n
_
c
l
k
:
i
n
b
i
t
;

s
y
n
_
w
e
i
g
h
t
,
s
y
n
_
r
a
n
_
i
n
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

a
c
t
i
o
n
_
s
t
r
e
a
r
n
:
i
n
b
i
t
;

e
x
_
n
e
t
_
o
u
t
,
i
n
_
n
e
t
_
o
u
t
:
o
u
t

b
i
)
t
;

e
n
d
s
y
n
a
p
s
e
;

a
r
c
h
i
t
e
c
t
u
r
e
s
y
n
a
p
_
d
m
n
n
o
f
s
y
n
a
p
s
e

i
s

c
o
m
p
o
n
e
n
t
R
G
T

’

 

p
o
r
t
(
r
g
t
_
l
o
a
d
,
r
g
t
_
c
l
k
:
i
n
b
i
t
;

r
g
t
_
i
n
,
r
g
t
_
o
u
t
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
R
N
G

p
o
r
t
(
m
g
_
i
n
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

m
g
_
l
o
a
d
,
r
g
n
_
c
l
k
:
i
n

b
i
t
;

m
g
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
C
M
P

p
o
r
t
(
c
m
p
_
i
n
l
,
c
m
p
_
i
n
2
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

c
m
p
_
o
u
t
:
o
u
t
b
i
t
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

s
i
g
n
a
l
r
a
n
_
n
u
m
,
w
e
i
g
h
t
_
o
u
t
:
n
e
u
r
a
l
_
b
y
t
e
;

s
i
g
n
a
l
c
o
m
_
o
u
t
:

b
i
t
;

f
o
r

a
l
l
:
R
G
T

u
s
e
e
n
t
i
t
y
w
o
r
k
.
R
G
T
(
R
G
T
_
d
m
n
n
)
;

f
o
r

a
l
l
:
R
N
G

u
s
e
e
n
t
i
t
y
w
o
r
k
.
R
N
G
E
R
N
G
8
_
t
1
)
;

f
o
r

a
l
l
:
C
M
P

u
s
e
e
n
t
i
t
y
w
o
r
k
.
C
M
P
C
M
P
_
d
m
n
n
)
;

b
e
g
i
n R
N
G
_
1
:
R
N
G

p
o
r
t
m
a
p
(
s
y
n
_
r
a
n
_
i
u
s
y
n
_
l
o
a
d
,
s
y
n
_
c
l
k
,

r
a
n
_
n
u
m
)
;

C
M
P
_
l
:
C
M
P

p
o
r
t
m
a
p

(
w
e
i
g
h
t
_
o
u
t
,
r
a
n
_
n
u
m
,
c
o
m
_
o
u
t
)
;

W
T
_
R
E
G
:
R
G
T

p
o
r
t
m
a
p
(
s
y
n
_
l
o
a
d
,
s
y
n
_
c
l
k
,
s
y
n
_
w
e
i
g
h
t
,

S
y
n
a
p
s
e
_
o
p
e
r
a
t
i
o
n
:

w
e
i
g
h
t
_
o
u
t
)
;

,

p
r
o
c
e
s
s
(
w
e
r
g
h
t
_
o
u
t
(
N
_
b
i
t
s
)
c
o
m
_
o
u
t
,
a
c
t
i
o
n
_
s
t
r
e
a
m
)

b
e
g
i
n

v
a
r
i
a
b
l
e
e
x
_
a
n
d
o
u
t
,
i
n
_
a
n
d
o
u
t
:

b
i
t
;

e
x
_
a
n
d
o
u
t
=
c
o
m

o
u
t
a
n
d
a
c
t
i
o
n
_
s
t
r
e
a
m

,
a
n
d
’
n
o
t
w
e

h
t
o
u
t
N

b
i
t
s

;

i
n
_
a
n
d
o
u
t
:
:
c
o
m
_
o
u
t
a
n
d
fi
c
t
i
o
n

t
r
E
a
m

)

a
n
d

w
e
i
g
h
t
_
o
u
t
(
N
_
b
i
t
s
)
;

e
x
_
n
e
t
_
o
u
t
<
=
e
x
_
a
n
d
o
u
t

a
f
t
e
r
4

n
s
;

i
n
_
n
e
t
_
o
u
t
<
=
i
n
_
a
n
d
o
u
t
a
f
t
e
r
4

n
s
;

e
n
d
p
r
o
c
e
s
s
;

e
n
d
s
y
n
a
p
_
d
m
n
n
;

C
.
l
.
7
N
e
u
r
o
n
B
o
d
y
E
l
e
m
e
n
t

u
s
e
w
o
r
k
.
d
m
n
n
_
p
a
c
k
.
a
l
l
;
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  e
n
t
i
t
y
n
e
u
r
o
n
_
b
o
d
y

i
s

p
o
r
t
(
e
x
_
n
e
t
_
i
n
p
u
t
,
i
n
_
n
e
t
_
i
n
p
u
t
,
b
o
d

_
c
l
k
,
s
t
e
p
_
c
n
t
,

:
i
n

b
i
t
;

i
n
i
t
_
s
t
a
t
e
,
i
n
i
t
_
r
a
n
d
o
m
:
i
n
n
e
u
r
a
l
_

y
t
e
;

o
u
t
p
u
t
_
s
t
r
e
a
m
:
o
u
t

b
i
t
;

n
e
u
r
o
n
_
o
u
t
p
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
n
e
u
r
o
n
_
b
o
d
y
;

a
r
c
h
i
t
e
c
t
u
r
e
N
m
e
n
n

o
f
n
e
u
r
o
n
_
b
o
d
y

i
s

c
o
m
p
o
n
e
n
t

p
o
r
t
(
m
u
x
_
i
n
l
,
m
u
x
_
i
n
2
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

m
u
x
-
s
e
l
:
i
n
b
i
t
;

m
u
x
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
R
G
T

p
o
r
t
(
r
g
t
_
l
o
a
d
,
r
g
t
_
c
l
k
:
i
n
b
i
t
;

r
g
t
_
i
n
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

r
g
t
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
C
N
T

p
o
r
t
(
c
n
t
_
i
n
,
c
n
t
_
c
l
k
,
r
e
s
e
t
:
i
n
b
i
t
;

c
n
t
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
R
N
G

p
o
r
t
(
m
g
_
i
n
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

m
g
_
l
o
a
d
,
r
n
g
_
c
l
k
:
1
n
b
i
t
;

m
g
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

c
o
m
p
o
n
e
n
t
C
M
P

p
o
r
t
(
c
m
p
_
i
n
1
,
c
m
p
_
i
n
2
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

c
m
p
_
o
u
t
:
o
u
t
b
i
t
)
;

e
n
d
c
o
m
p
o
n
e
n
t
;

s
i
g
n
a
l
r
a
n
_
n
u
m
,
c
o
u
n
t
e
r
_
o
u
t
,
m
u
x
_
o
u
t
_
s
i
g
:
n
e
u
r
a
l
_
b
y
t
e
;

s
i
g
n
a
l
c
u
r
r
e
n
t
_
s
t
a
t
e
:
n
e
u
r
a
l
_
b
y
t
e
;

s
i
g
n
a
l
b
u
f
f
e
r
_
l
o
a
d
,
u
p
_
s
i
g
:

b
i
t
;

f
o
r

a
l
l
:
M
U
X

u
s
e
e
n
t
i
t
y
w
o
r
k
.
M
U
X
(
m
u
x
_
d
m
n
n
)
;

f
o
r

a
l
l
:
R
G
T

u
s
e
e
n
t
i
t
y
w
o
r
k
.
R
G
T
(
R
G
T
_
d
m
n
n
)
;

f
o
r

a
l
l
:
C
N
T

u
s
e
e
n
t
i
t
y
w
o
r
k
.
C
N
T
C
N
T
_
d
m
n
n

f
o
r

a
l
l
:
R
N
G

u
s
e
e
n
t
i
t
y
w
o
r
k
.
R
N
G
(
R
N
G
S
_
t
2
)
;

b
e

f
o
r

a
l
l
:
C
M
P

u
s
e
e
n
t
i
t
y
w
o
r
k
.
C
M
P
(
C
M
P
_
d
m
n
n
)
;

g
i
n n
e
t
_
i
n
p
u
t
:
p
r
o
c
e
s
s
(
e
x
_
n
e
t
_
i
n
p
u
t
,
i
n
_
n
e
t
_
i
n
p
u
t
)

b
e
g
i
n

 

p
_
s
i
g
<
=
e
x
_
n
e
t
_
i
n
p
u
t
a
n
d
n
o
t
i
n
_
n
e
t
_
i
n
p
u
t
a
f
t
e
r
4

n
s
;

e
n
d
p
r
o
c
e
s
s
;

n
e
x
t
_
b
s
t
e
p
:

p
r
o
c
e
s
s
(
b
o
d
y
_
l
o
a
d
,
s
t
e
p
_
c
n
t
)

e
g
r
n

b
u
f
f
e
r
_
l
o
a
d
<
=
b
o
d
y
_
l
o
a
d
o
r
s
t
e
p
_
c
n
t
a
f
t
e
r
4

n
s
;

e
n
d
p
r
o
c
e
s
s
;

M
U
X
_
1
:
M
U
X

p
o
r
t
m
a
p

(
i
n
i
t
_
s
t
a
t
e
,
c
o
u
n
t
e
r
_
o
u
t
b
o
d
y
J
o
a
d
,

m
u
x
_
o
u
t
_
s
i
g
)
;

B
U
F
F
E
R
]
:
R
G
T

p
o
r
t
m
a
p

(
b
u
f
f
e
r
_
l
o
a
d
,
b
o
d
y
_
c
l
k
,

m
u
x
_
o
u
t
_
s
r
g
,
c
u
r
r
e
n
t
_
s
t
a
t
e
)
;

C
O
U
N
T
E
R
:
C
N
T

p
o
r
t
m
a
p

(
u
p
_
s
i
g
,
b
o
d
y
_
c
l
k
,
s
t
e
p
_
c
n
t
,

c
o
u
n
t
e
r
_
o
u
t
)
;

R
N
G
_
2
:
R
N
G

p
o
r
t
m
a
p
(
i
n
i
t
_
r
a
n
d
o
m
,
b
o
d
y
_
1
o
a
d
,
b
o
d
y
_
c
l
k
,

r
a
n
_
n
u
m
)
;

C
M
P
_
l
:
C
M
P

p
o
r
t
m
a
p
(
c
u
r
r
e
n
t
_
s
t
a
t
e
,
r
a
n
_
n
u
m
,

o
u
t
p
u
t
_
s
t
r
e
a
m
)
;

n
e
u
r
o
n
_
o
u
t
p
u
t
<
=

c
u
r
r
e
n
t
_
s
t
a
t
e
;

e
n
d
N
b
o
d
y
_
d
m
n
n
;

C
.
l
.
8
R
e
g
i
s
t
e
r

u
s
e
w
o
r
k
.
d
r
n
n
n
_
p
a
c
k
.
a
l
l
;

e
n
t
i
t
y
R
G
T

r
s

p
o
r
t
(
r
g
t

l
o
a
d
:
i
n
h
i
t
;

r
g
t
_
c
l
k
;
i
n

b
i
t
;

r
g
t
_
i
n
:
i
n
n
e
u
r
a
l
_
b
y
t
e
;

r
g
t
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
R
G
T
;

a
r
c
h
i
t
e
c
t
u
r
e
R
G
T
_
d
m
n
n
o
f
R
G
T

i
s

b
e
g
i
n r
o
c
e
s
s
(
r
g
t
_
c
1
k
)

e
g
r
n

i
f
(
r
g
k
t
r
c
l
k
=

'
1
'
a
n
d
r
g
t
_
l
o
a
d
=

'
l
'
a
n
d
n
o
t
r
g
t
_
c
l
k
'
s
t
a
b
l
e

)

.
e
n

r
g
t
_
o
u
t
<
=

r
g
t
_
i
n
a
f
t
e
r
1
0
n
s
;

e
n
d

i
f
;

e
n
d
p
r
o
c
e
s
s
;

e
n
d
R
G
T
_
d
m
n
n
;
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  C
.
l
.
9
R
a
n
d
o
m
N
u
m
b
e
r
G
e
n
e
r
a
t
o
r

u
s
e
w
o
r
k
.
d
m
n
n
_
p
a
c
k
.
a
l
l
;

e
n
t
i
t
y
R
N
G

i
s p
o
r
t
(
m
g
_
i
n
:

i
n
n
e
u
r
a
l
_
b
y
t
e
;

m
g
_
l
o
a
d
,
m
g
_
c
l
k
:

i
n
b
i
t
;

m
g
_
o
u
t
:
o
u
t
n
e
u
r
a
l
_
b
y
t
e
)
;

e
n
d
R
N
G
;

-
-
-
-
-
-
-
R
N
G
S
_
t
1

i
s
a
t
y
p
e
#
1
R
N
G
w
h
o
s
e
c
o
n
fi
g
u
r
a
t
i
o
n

i
s
-
-
-
-

-
-
-
-
-
-
-
-
4
3
5

:
1
0
0
0
1
1
1
0
1
=
>
"
0
0
1
1
1
0
0
0
1
"

a
r
c
h
i
t
e
c
t
u
r
e
R
N
G
S
_
t
1
o
f
R
N
G

i
s

b
e
g
i
n

p
r
o
c
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c
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c
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p
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c
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p
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p
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C.2 Figures
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Figure C.1. An n-bit register with parallel load.

 



141

an-l

bn-l

    

A = (an-1 an-2 - - - a1 30)

B =(bu-~1bn-2 ' - - b1 b0)

bn-3

 

(A2 B)

Figure C.2. Ann-bit magnitude comparator.
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Increment
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Figure C.3. An n-bit up-counter.



APPENDIX D

Input Data for DMNN Binary Classifiers
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