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ABSTRACT

DESIGN OF REPAIRABLE AND FULLY

DIAGNOSABLE FOLDED PROGRAMMABLE

LOGIC ARRAYS FOR YIELD ENHANCEMENT

By

Jyhyeuan Ding

The entire manufacturing process of integrated circuits (ICs) has three major yield

steps that affect the total production run of any IC product. These major steps are: wafer

processing yield, probe yield, and final test yield. The most critical step, however, is

probe yield, which dramatically affects the number of functional devices. Probe yield,

defined as the number of good die from a processed wafer, is affected by both die size and

defect density. If the die size or the defect density increases, then total IC yield

percentages rapidly decline.

IC yield has always been a crucial factor in successful commercial manufacturing. The

technologies of ICs evolved from LSI, VLSI, to ULSI in the past two decades. However,

as the complexity of digital devices increases and geometry shrinks, the probability of

having faulty components also increases, thereby lowering the chip yield. One practical

solution to low probe yield problem is the use of fault-tolerant design.

In order to ensure large PLA (Programmable Logic Array) chips to be manufactured

with reasonable yield level, a design of repairable and fault-diagnosable PLA has been

proposed recently. The design achieves a full diagnosability for single and multiple stuck-

at, bridging, and crosspoint faults, and has led to a significant improvement in chip yield.



However, the design requires an excessive area overhead for fault diagnosis and

repair. These increases in die size would reduce the number of die that can be placed on a

wafer. In this thesis, an alternative fault-tolerant design of PLAs with folding techniques

is presented to reduce the die size, while still achieving the same diagnosability during

the manufacturing process. In addition, the design also achieves a full testability after the

chip is packaged.

This thesis presents the fault-tolerant designs of PLAs with various folding

techniques provided by PLEASURE. The chip areas required for various folding

techniques are compared. Results demonstrate that fault-tolerant design of PLA with

simple column folding techniques generally provides a "better" solution where chip yield

improvement is concerned.

The computer-aided design (CAD) tools play a very important role in VLSI design.

They can reduce the turnaround time and make design changes more quickly. In this

thesis, an automatic layout generator, ALGFPLA, has been developed and implemented

on SUN 3/160 under UNIX operating system for generating physical layout of fault-

tolerant folded PLAs.
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Chapter 1

Introduction

 

The entire manufacturing process of integrated circuits (ICs) has three major yield

steps that affect the total number of functional IC products that are realized [1]. The

major steps are: wafer processing yield, probe yield, and final test yield. Wafer

processing yield is defined as the percentage of good wafers that survive the

manufacturing process. This yield is usually above 90%. Probe yield is defined as the

percentage of good chips per wafer. This yield ranges from 30% to 60% depending upon

the wafer die size. Finally, final test yield is the percentage of devices that pass a final

test program which occurs after the die has been packaged. Usually, this percentage is

over 95%.

The most dominant of these three is probe yield, which dramatically affects the

number of functional devices. The die size and defect density are the two dominant

factors that affect the probe yield. The yield falls very rapidly as either the die size or the

defect density increases.

The advent of Very Large Scale Integrated (VLSI) circuit technology illustrates the

continuing trend toward increasing gate counts on a logic chip. As the complexity of

digital devices increases and the geometry shrinks, the probability of having faulty

components also increases, and thus the probe yield decreases. The low probe yield

problem can be alleviated either by improving manufacture process [2], or by introducing
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fault-tolerant design [3]. The former, a technique-dependent solution, is very costly and

quite difficult to implement within a short time. The latter is a trend of the future in

manufacturing [4 - 8].

1.1 Problem Statement and Objectives

Due to the complexity and cost of designing chips nowadays, a structured form of

logic implementation is desirable [9]. During the last few years, Programmable Logic

Arrays (PLAs) [10, 11] have become increasingly common for implementing Boolean

logic functions in VLSI circuit chips [12]. In order to ensure large PLA chips to be

manufactured with reasonable yield level, a design of fault-diagnosable and repairable

PLAs has been recently proposed [4 - 8], in which a partially defective chip can be

repaired without reconfiguring the external routing. The fault-tolerant design achieves a

full diagnosability and repairability of single and multiple stuck-at, bridging, and

crosspoint faults, and has led to a significant improvement in chip yield.

Although the structural regularity of PLAs offers design simplicity in producing VLSI

circuits, PLAs generally require larger chip area and longer delay time than random logic

implementation. With the recent development of s0phisticated multi-level logic design

tools, standard cells and gate arrays have been popularly implemented with multi-level

logic circuits to reduce both chip area and propagation delay time. However, as far as the

testable design and the fault tolerance for yield enhancement are concerned, the features

are very difficult to apply to the gate array and standard cell implementations due to their

irregularity. Therefore, in order to enhance chip yield and to make the circuit easily

testable, the fault-tolerant design of the regular structure PLAs is definitely feasible in

VLSI/ULSI implementation.

However, the fault-tolerant PLA design requires an excessive area overhead for the

purposes of fault diagnosis and repair. The increase in die size would reduce the number
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of die that can be placed on a wafer. Folding techniques [13- 15] have been commonly

implemented to significantly reduce the chip area. In practice, however, folded PLAs are

very difficult to test and the failure rate is higher than the conventional PLA due to the

complexity caused by folding. Thus, lower chip yield has been found as a problem of

implementing with folded PLAs. This motivates to propose a fault-tolerant design of

folded PLAs. Folding techniques are adopted to reduce the chip area, thereby increasing

the number of die that can be placed on a wafer. On the other hand, the fault-tolerant

design is to fully diagnose the faults in the chip, thus enhance the yield.

Generating an efficient mask layout which implements a complex circuit function often

causes a bottleneck for later design stages [16]. Therefore, developing the automatic

layout generation programs is quite necessary and these programs play today an

increasingly important role in VLSI circuits design. The use of program generated layout

of regular structures increases their generality and their reusability. In this study, an

automatic layout generator is presented.

1 .2 Thesis Organization

This thesis presents an innovative fault-tolerant design for folded PLAs and an

automatic layout generator. Chapter 2 reviews the design of fault-tolerant PLAs and

introduces some folding techniques.

Chapter 3 proposes the fault-tolerant design of a folded PLA with a simple column

folding technique. This design achieves a full diagnosability and repairability for single

and multiple stuck-at faults, bridging faults, and crosspoint faults during the

manufacturing process.

In order to automatically generate the layout mask for a fault-tolerant design of folded

PLAs, an automatic layout generator, ALGFPLA, is presented in Chapter 4. The layout

generator has been implemented on SUN 3/160 under UNIX operating system.
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In Chapter 5, fault-tolerant designs of PLA with various folding techniques are

presented. The simulation results for various designs are compared.

Finally, Chapter 6 summarizes the work of this thesis and describes the feature

research in the area of fault-tolerant PLA designs.



Chapter 2

Background

 

2.1 Fault-Tolerant PLA Design

A Programmable Logic Array is a two-level AND-OR logic network that implements

the combinational circuits. By adding the storage elements such as latches and flip-flops,

PLAs can also realize sequential circuits. A typical PLA consists of two planes: AND

plane and OR plane. Figure 2.1 illustrates a PLA implemented by a NOR-NOR structure

in NMOS technology. Three fault models are generally considered for such a PLA

structure: Crosspointfault, Stuck-atfault, and Bridgingfault [l7 - 22].

2.1.1 Fault Models

A crosspoint fault is caused by the unintentional presence or absence of a transistor

in the AND plane or OR plane. Four cases can be identified: Growth fault (or G-fault),

Shrinkage fault (or S-fault), Disappearance fault (or D-fault), and Appearance fault (or

A-fault). The first two occur in the AND plane, while the last two are in the OR plane. A

Growth fault is caused by missing crosspoint in the AND plane. This results in the

disappearance of an input variable from a product term, i.e., in the Karnaugh map, the

number of minterms for this product term is increased. A Shrinkage fault results from an

5
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extra crosspoint in the AND plane. With the appearance of an input variable in a product

term, the number of minterms is decreased. Similarly, A Disappearance fault has a

missing crosspoint in the OR plane, and an Appearance fault has an extra crosspoint in

the OR plane.

A stuck-at fault, the simplest type of fault, is a line permanently set to logic states 1

or 0. This fault is caused by the faulty line being opened or shorted to the power or ground

line (GND). While a stuck-at-O (s-a-O) fault at the input bit line causes the variable of

this bit line to disappear from the product terms, a stuck-at-l (s-a-l) faulty input bit line

results in s-a-O faults at those product lines which connect to this faulty line. Similarly,

an s-a-l faulty product line causes the output lines to have s-a—O faults if the output

lines connect to this product line. An s-a-O product line will cause the product term of

this product line to disappear from the outputs. Finally, the result of a stuck-at fault at an

output line is quite obvious - the output will be stuck at its present level.

The last fault model is the bridging fault, which is a short between two adjacent or

crossing lines. This fault forces the same logic value to appear on the bridged lines. In the

NMOS technology, a wired-AND is assumed. Only when both of the bridged lines are at

logic 1 will the values appear on these bridged lines be logic 1’s; otherwise, they will be

logic 0’s.

2.1 .2 Fault-Tolerant Design

The fault-tolerant PLA (Fl'PLA) design [6 - 8] includes both the fault-diagnosable

and repairable design. While the fault diagnosability is accomplished by employing the

additional shift registers, spare lines achieve the fault repairability. More specifically,

Figure 2.2 illustrates the schematic diagram for a fault-diagnosable PLA (FDPLA). Two

shift registers are employed: Input line’s Shift Register (ISR) and Product line’s Shift

Register (PSR). The shift registers are operated with the control circuitries shown in



 

 
n

Inputs Outputs

m
11 I2 I 0102 03 0

Figure 2.2 Schematic Diagram for Fault-Diagnosable PLA.

 

Figure 2.3.

Basically, the PSR (ISR) is used to enable only one product line (input bit line) at a

time. As shown in Table 2.1, the pattern (MP, R, W) = (0, 0, 1) writes a l to the (2i)-th

product line (or P2i) and all 0’s to the remaining product lines, i.e., P2i is the only enabled

line. In addition, the PSR (ISR) also allows to read the content of each product line (input

bit line), thereby significantly enhancing the diagnosability.

Figure 2.4 shows a schematic diagram of a fault-repairable PLA (FRPLA). The

original PLA is augmented by Spare Input Selector Circuit (SISC), Spare Output Selector
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Circuit (SOSC), and spare lines. Basically, when a faulty line is detected and located, we

reconfigure the selector circuits to switch this faulty line to a corresponding spare line. In

order to repair faults described in Section 2.1.1, a set of repair rules is summarized in

Table 2.2.
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Table 2.1 Shift Registers Operations for: (a) PSR; and (b) ISR
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Operations

Isolate PSR from the PLA

Read EVEN

Read ODD

Write data of RC to EVEN and set ODD to 0

Write data of RC to ODD and set EVEN to 0

Invalid Case

ODD --- odd-numbered product line.

EVEN--- even-numbered product line.
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Operations

Isolate ISR from the PLA

Read COMP

Read TRUE

Write data of RC to COMP and set TRUE to 0

Write data of RC to TRUE and set COMP to 0

Invalid Case

COMP--- complemented bit line.

TRUE --- true bit line.
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Table 2.2 Repair Rules

Fault Type Spare Line

1. Stuck-at Fault

Input bit line Input bit line

Product line Product line

Output line Output line

2. Crosspoint Fault

Growth Input bit line

Product line

Shrinkage Input bit line

Product line

Disappearance Product line

Output line

Appearance Product line

Output line

3. Bridging Fault

( 1) Adjacent

Input bit lines Input bit lines

Product lines Product lines

Output lines Output lines

(2) Crossing

Input and product lines Input bit line

and product line

Product and output lines Product line

and output line

Notes

remark l

remark 2

remark 3

remark l

remark 2

remark 1

don’t care

don’t care

remark 3

remark 2

remark 3

remark l

remark 2

remark 3

remark l

remark 2

remark 2

remark 3

Remarks: 1. Faulty bit line is disconnected from SISC, and is connected to

GND.

2. Faulty product line is disconnected from its pull-up transistor,

and connected to GND.

3. Faulty output line is disconnected from its pull-up transistor

and SOSC, and connected to GND.
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2.1.3 Fault Diagnosis and Repair Process

The fault diagnosis and repair process [8] consists of four major steps: (1) detect

faults in augmented circuitry, (2) identify and repair faults in the AND plane, (3) identify

and repair faults in the OR plane, and (4) repair crosspoint faults.

Faults in the AND plane include: Stuck-at faults at input bit lines, Bridging faults at

adjacent input bit lines, Bridging faults between input bit lines and product lines, Stuck-at

faults at product line, and Crosspoint faults (G- and S-faults). Faults in the OR plane

include: Stuck-at faults at output lines, Bridging faults between output lines and product

lines, Bridging faults between adjacent product lines, Bridging faults between adjacent

output lines, and Crosspoint faults (A- and D-faults). In this implementation, the stuck-

at and bridging faults must be repaired immediately when they are identified. Otherwise,

the stuck-at faults may mask some other faults so that the precise identification of fault

types cannot be made.

In this process, the augmented circuitry is tested first. Since the augmented circuitry

is non-redundant, any faults are considered as fatal. As such, the repair process must be

terminated. After the augmented circuitry has been proved to be fault-free, the following

steps of fault diagnosis and repair process can then be implemented. Basically, the faults

in the AND plane are identified as follows. Stuck-at and bridging faults at bit lines are

identified by observing the contents of bit lines from the ISR cells. This is followed by

observing the contents of the product lines from the PSR to locate the stuck-at and

bridging faults at the product lines. In addition, the contents of the product lines can also

be used to identify the crosspoint faults (G- and S- faults). Similarly, by applying

patterns from the PSR and observing the output lines, one can locate the stuck-at and

bridging faults at the output lines, as well as the crosspoint faults (D- and A- faults).

Based on a fault map consisting of all crosspoint faults, a spare allocation algorithm can

efficiently utilize the spare lines to repair crosspoint faults.
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Previous research has demonstrated that the fault diagnosis and repair process can

achieve a full diagnosability of single and multiple stuck-at faults, bridging faults, and

crosspoint faults [8].

2.1.4 Design Evaluation

The fault-tolerant PLA design includes both fault diagnosability and repairability. The

original PLA is augmented by adding extra chip area for fault diagnosis and repair use.

Figure 2.5 shows the physical layout of a fault-tolerant PLA "mish", and Figure 2.6

illustrates the floor plan. The layout includes the original PLA, the spare lines, the shift

registers, and control circuits. Based on the floor plan, Table 2.3 compares the chip areas

required for the original PLA, (1, 2, 1)-FRPLA, and FDPLA for various PLAs, where (1,

2, 1)-FRPLA means that the FRPLA has one spare input bit line, two spare product

lines, and one spare output line.

Table 2.3 depicts that the fault-tolerant design of the (100, 400, 100)-PLA with (1, 2,

1) spare assignment requires an additional 11.54% area overhead. Research has

demonstrated that the yield of this design can be enhanced nearly five times higher than

the nonredundant design [8].

Table 2.3 Area Overhead of FTPLAs

 

 

 

Original Augmented PLA

PLA (1, 2, l)-FRPLA FDPLA ‘FI'PLA

n p m Area Area % Area % %

 

50 190 67 2210460 134868 6.10 324800 14.69 20.80

60 200 60 2495564 142564 5.71 358400 14.36 20.07

100 200 100 4104524 189924 4.63 448000 10.91 15.54

100 400 100 8022924 253924 3.16 672000 8.38 l 1.54
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Figure 2.5 Physical Layout of F'I'PLA "mish".

 

  
 

 

 

 

    
 

 

   

 

 

   

 

  

 

 

 

Figure 2.6 A Floor Plan of Fault-Tolerant PLA.
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2.2 Folding Techniques

The conventional PLA has a major drawback of having a lower transistor rate which

results in a significant waste of silicon area. One way to reduce the wasted area is to

compact the array by using folding techniques. Folding is a technique that attempts to

reduce the area of a PLA by exploiting its sparsity. The objective is to determine

permutations of the rows (and/or columns) which permit a maximal set of column pairs

(row pairs) to be implemented in the same column (row) of the physical logic array. A

number of folding techniques have been proposed [13 - 15, 23 - 26]. Folding techniques

overcome array sparseness by cutting and rearranging input, output, and product lines.

Figure 2.7 shows the schematic diagram of a Simple Column Folded Programmable

Logical Array (SCFPLA). One input enters the top of SCFPLA, referred to as TOP input,

and one enters from the bottom of SCFPLA, referred to as BOTTOM input, in the same

physical column. A bit column is defined as the column having one or two input bit lines.

If a bit column has two input bit lines, then they are separated by a "cut". We define the

TOP output, BOTTOM output, and output column in the same fashion as discussed

above. In this folding technique, product line folding is not allowed.

A Simple Row Folded Programmable Logical Array (SRFPLA) is a structure in which

two logical rows may share one physical row. According to the array structures, two

cases can be identified: AND-OR-AND structure (SRFPLA-A), and OR-AND-OR

structure (SRFPLA-O), as shown in Figure 2.8.

Simple folding is just a special case of multiple folding. For a Multiple Column Folded

PLA (MCFPLA), as shown in Figure 2.9, an input (or output) can enter a PLA either

from the top, the bottom, or the side of the PLA. With the Multiple Row Folded PLA

(MRFPLA), the array structure can be repeated in two different ways. Figure 2.9

illustrates the AND-OR and OR-AND structures for MRFPLAs.
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Figure 2.7 Schematic Diagram of a SCFPLA.
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Figure 2.8 Block Diagrams of Simple Folded PLAs.

  

 

PLEASURE is an interactive program for simple/multiple constrained/unconstrained

row and/or column folding of PLAs [27]. The PLA description is given as input to the

program in the form of two-level sum-of-products logic implicants. The output of the

program is a symbolic table representing the folded array with the positions of the active

devices corresponding to the cubes of the logic function, the location of the cuts and the
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contacts between columns and connection rows. The symbolic table is suitable to be

processed by a layout generator which generates the mask layout of the array according

to a given technology. Note that the symbolic table of PLEASURE, as listed in Table 2.4,

is technology independent. Figure 2.10 shows an example of PLEASURE for simple

 

 

   

 

 

      
 

   

      
 

    

   
 

 

        
 

  

    

column folding technique.

1 1m 1 AND OR AND OR AND

-... 11 111.........1 11 111m; 11

AND OR MRFPLA-A

Z: - :: OR AND OR AND OR ..........

ll" lllm'l , .
MCFPLA 111.-....1 11 H1..........1 11 m.......1

MRFPLA-O

Figure 2.9 Block Diagram of Multiple Folded PLA.

 

Table 2.4 Symbols of PLEASURE:

(a) AND Plane; and (b) OR Plane

(a) AND Plane

Normal Split Elgw

Contact to true bit line 1 l

Contact to complemented bit line 0 o

No contact - _

(b) OR Plane

Normal Split below

HContact to output line i

No contact ~ =
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Figure 2.10 An Example of PLEASURE for Simple Column Folding:

(a) Personality Matrix , (b) Schematic Diagram of PLA; and

(c) Personality Matrix , (d) Schematic Diagram of SCFPLA.

 



Chapter 3

Fault-Tolerant SCFPLA Design

 

This chapter describes a fault-tolerant design of PLA with Simple Column Folding

technique (SCFPLA). The proposed fault-tolerant design includes the fault-diagnosable

design and repairable design.

3.1 Fault-Diagnosable SCFPLA Design

Fault diagnosability of a PLA, as shown in Figure 2.2, is accomplished by adding the

shift registers ISR and PSR to the original PLA. The features of ISR and PSR

significantly enhance the controllability and observability of the PLA. For a SCFPLA,

since the bit columns in the folded AND plane are shared by the TOP inputs and the

BOTTOM inputs, it is virtually difficult to insert the shift register ISR. Therefore, an

alternate fault-diagnosable structure is proposed.

Figure 3.1 illustrates a schematic diagram of the proposed fault-diagnosable structure

for the SCFPLA. Both AND and OR planes are composed of folded and unfolded parts.

Similar to the fault-diagnosable design of Figure 2.2, the PSR is connected to the product

lines, and the ISR is used in the unfolded part of the AND plane. In order to achieve the

full diagnosability, an ISR-like structure is presented for the folded part of the AND plane.
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Figure 3.1 Schematic Diagram of a Fault-Diagnosable SCFPLA.

 

3.1.1 PSR and ISR

Figure 3.2 illustrates the PSR and ISR cells and the corresponding control circuitry.

The operations of the PSR and ISR in Figure 3.2 are the same as those in Figure 2.3.
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However, the redundant circuit in Figure 2.3 is removed. More specifically, the signal SO

and the associated pass transistors, in Figure 2.3, are used to isolate the ISR and PSR

from the PLA. When 80 = 0, or the pass transistor is OFF, Table 2.1 shows that the

signals 81 through 88 are also at logic 0’s. This implies that the pass transistor control

by So is redundant.

The extra power line Vddl, in the FDPLA of Figure 2.2 can also be eliminated. The

power line Vddl was used to disable the input decoder in order to avoid the data conflict

when we apply patterns from the ISR to the bit lines. In fact, the data conflict can be

avoided by matching the patterns. Specifically, when enabling only the even-numbered bit

line of the i-th input, i.e., loading 1 to this enabled bit line and 0’s to other bit lines from

ISRs, unlike Vddl is set 0 to disable the input decoders in [8], we may apply a logic 0 to

the i-th input and 1’s to other inputs. This application will not conflict the data loaded

from the ISRs. Similarly, for enabling the odd-numbered bit line of the i-th input, a logical

1 is applied to the i-th input. Figure 3.3 illustrates the detail operation. Therefore, the

BOTTOM input decoders in the unfolded AND plane do not need this extra power line

Vddl.

3.1.2 An iSR-Iike Structure for TOP Input Decoder

The TOP inputs of the SCFPLA, as shown in Figure 2.7, will be modified as an ISR-

like sanctum. The modifications include the restructuring of the original SCFPLA and the

use of multiplexing circuitry. The former allows enabling only one bit column of the folded

part at a time, while the latter allows reading the contents of the bit columns.
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Figure 3.2 Control Circuits and Modified Cells of Shift Registers: (a) PSR; and (b) ISR.
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ODD = 0
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Input Decoder

ISR

(b)

Figure 3.3 Circuit Diagram for "write" Mode ISR:

(a) MI = 1; and (b) MI = o.

 

Figure 3.4 illustrates the schematic diagram of a restructured SCFPLA, or

RSCFPLA. The RSCFPLA and the conventional SCFPLA, as shown in Figure 2.7, have

the same OR plane and unfolded AND plane structure, but their folded AND plane

structures are slightly different. In SCFPLA, the "cut" of the folded bit column is

performed during the manufacturing process. In contrast, the RSCFPLA preserves the

completeness of the folded bit columns, i.e., the "cut" process will be performed after the

fault diagnosis and repair process.
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Figure 3.4 Schematic Diagram of a Restructured SCFPLA.

 

In order to enable only one bit column at a time, the bit column structure is also

modified. Figure 3.5 (a) shows that, in a conventional SCFPLA, the true (complemented)

bit line of a BOTTOM input decoder shares a bit column with the true (complemented) bit

line of a TOP input decoder. In RSCFPLA, we switch over the true bit line and the

complemented bit line of the TOP input decoder, as illustrated in Figure 3.5 (b). This

modification gives the combined TOP and BOTTOM input decoders the capability to

enable only one bit column at a time. Table 3.1 shows the combinations of TOP and

BOTTOM inputs and the data being assigned to the bit columns for both the conventional

SCFPLA and the RSCFPLA.
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SCFPLA RSCFPLA

  
  

(a) (b)

Figure 3.5 Bit Column Structures: (a) SCFPLA; and (b) RSCFPLA.

 

Table 3.1. Input Signal Combinations

m R LA

BOTTOM TOP

INPUT INPUT ODD EVEN ODD EVEN

0 0 0 1 * *

0 1 1 0 0 1

l 0 1 O 1 0

1 l 1 0 0 0

*: previous value

In a RSCFPLA, when all TOP and BOTTOM inputs hold 1’s (except the i-th

BOTTOM input which holds 0), only the (2i)-th bit column will have logic value 1 and all

the others will have logic value 0’s. This means that only the (2i)-th bit column is
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enabled and all others are disabled. Conversely, when only the i-th TOP input holds 0,

this enables only the (2i-1)-th bit column. In other words, the modification allows

enabling only one bit column of the folded AND plane at a time.

It should be mentioned that BOTTOM input decoders of folded AND plane do not

need the extra power line Vddl. Since this proposed design allows applying signals from

both TOP and BOTTOM inputs in the folded AND plane, it is not necessary to disable

the BOTTOM inputs of the folded AND plane using Vddl. As the BOTTOM inputs of the

unfolded AND plane do not need Vddl either, the proposed fault-diagnosable design in

Figure 3.1 does not require the extra power line Vddl. Therefore, the number of extra

signals needed in this revised design is less than in [8].

To read the content of each bit column in the folded AND plane, a multiplexing

circuitry, as shown in Figure 3.6, is employed for each TOP input. According to ISR of

Figure 3.2, the signal W is used to control the operation of "read" and "write", i.e., W =

0 reads the content of bit column, and W = 1 writes data to the bit column. The signals

85 and 56 are used to select the true or complemented bit columns to perform "read"

function. During normal operation, or writing values to bit columns during the diagnosis

and repair process, W is set to be 1 and 35 = 36 =0, i.e., the circuit acts as a regular

input decoder, as shown by the solid lines in Figure 3.6 (a). On the other hand, reading

values from the bit columns during the diagnosis and repair process, W is set to be 0

and (SS , S6) =(0,1) (or (1,0)) to read the content of the even (odd) bit column, as

indicated by the dotted lines in Figure 3.6 (a). Figure 3.6 (b) shows the physical layout of

the ISR-like structure, where each input takes 16 lwide and 90 it long.
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3.2 Fault-Repairabie SCFPLA Design

and SOSC are also used for line reconfiguration.

Figure 3.6 ISR-like TOP Input Decoder:

(b)

   
(a) Schematic Diagram; and (b) Physical Layout.
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3.2.1 Spare Input Column and SISC

Figure 2.4 shows that the SISC is added to the input portion of the conventional PLA

between the input decoder and the AND plane. In this design, as shown in Figure 3.7,

the SISC for the BOTTOM inputs is referred to as BSISC, while the SISC for the TOP

inputs is referred to as TSISC.

When an input bit column that contains two bit lines is faulty, as indicated by the

dotted line in Figure 3.7, both BSISC and TSISC are programmed, i.e., the Normal-OFF

links are now ON and the Normal-ON links are now OFF, to switch these inputs to a

spare input column. On the other hand, when an input bit column that contains only one

input bit line is faulty, the same procedure is performed only for BSISC. After the SISCs

have been reconfigured, we connect the faulty input columns to GND, to avoid the faulty

input columns affecting the functions of the product lines, and disconnect the spare input

columns from the GND.

3.2.2 Spare Output Column and SOSC

Similarly, Figure 3.8 shows that the TSOSC and BSOSC are added to the OR plane

for the TOP and BOTTOM outputs, respectively. A Normal-OFF link between each

output bit column and GND and a Normal-ON link between each spare output column

and GND are also added. Notice that Normal-ON link between each output bit column

and its pull-up transistor and a Normal-OFF link between each spare output column and

its pull-up transistor in [8] are not necessary in this proposed design. This is because

we put the pull-up transistor between the TSOSC/BSOSC and output inverter. Once we

switch the TSOSC/BSOSC, the pull-up transistor has also been switched to the spare

output column from the faulty output column. Therefore, the number of pull-up transistors

in the OR plane of this design is less than in Figure 2.4 [8].
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Figure 3.7 Schematic Diagram for SISC and Spare Input Column.
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Figure 3.8 Schematic Diagram for SOSC and Spare Output Column.
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3.2.3 Spare Product Lines

Figure 3.9 illustrates that both TOP spare product lines and BOTTOM spare product

lines are added into the PLA. The TOP (or BOTTOM) spare line repairs the faulty

product line which contains only TOP (or BOTTOM) inputs and outputs. Similar to the

FRPLA design, this design also requires the following programmable links: Nonnal-ON

link between each product line and its pull-up transistor, Normal-OFF link between each

product line and GND, Normal-OFF link between each spare product line and its pull-up

transistor, and Normal-ON link between each spare product line and GND.

When a faulty product line is detected and located, it is first disconnected from its

pull-up transistor by programming the Normal-ON link to OFF and then it is connected

to GND by programming the Normal-OFF link to ON. In this operation, two cases are

identified:

1. If this faulty product line connects to only bottom side (or top side), a BOTTOM (or

TOP) spare product line is programmed and this spare line is connected to its pull-

up transistor and disconnected from GND by programming its links, or

2. If this faulty product line connects to both bottom side and top side, it is repaired by

one TOP spare product line and one BOTTOM spare product line.

3.2.4 Repair Rules

Since the defects that are likely to occur in the SCFPLA are similar to those in the

conventional PLAs, the repair rules for the SCFPLA are the same as the ones in Table

2.2. The unique fault that occurs in an SCFPLA is a bridging fault caused by the "cut"

process. Specifically, in an SCFPLA, a "cut" is applied to a bit (or output) column that is

shared by two bit (or output) lines. An improper "cut" process (i.e., the line is cut
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Figure 3.9 Schematic Diagram for Spare Product Lines.
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incompletely) would introduce a bridging fault between two lines which is difficult to test

in the conventional folded PLAs. This fault can be detected and located in the proposed

fault-tolerant design. The repair of this fault is described in the fault-diagnosis and repair

process.

3.3 Fault Diagnosis and Repair Process

According to the fault models and the repair rules described in the previous sections,

fault diagnosis and repair process, as shown in Appendix 1, is proposed to locate and

repair all single and multiple crosspoint, stuck-at, and bridging faults.

3.4 Design Evaluation

Figure 3.10 shows a floor plan of the fault-tolerant SCFPLA. The area of the fault-

tolerant SCFPLA is estimated by the following formula:

Area = (l6nb + 16sn + 30)(22sP + 8p + 85n +43) + (8mb + 22sm + 21) (8sm +

22sp + 8p + 81) + 8mt x 71+ 140(8p + 16nb - 16nt) + l6nt x 90 +

l6nt(8sn + 10) + 8mt(8sm + 10), (3.1)

where nt : number ofTOP input lines, sn : number of spare input lines,

nb : number of BOTTOM input lines,

mt : number of TOP output lines, sm: number of spare output lines,

mb: number of BOTTOM output lines.

p : number of product lines, 5 : number of spare product lines.

P
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Figure 3.10 Floor Plan of the Fault-Tolerant SCFPLA.
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In order to demonstrate the effectiveness of the proposed design in area reduction,

the areas of various benchmark PLAs [28] are estimated. The first four columns of Table

3.2 lists the PLA names, the number of inputs (n), outputs (m), and product terms (p).

The chip areas for (1, 2, l)-FTPLAs are estimated in accordance with the floor plan

shown in Figure 2.6. Columns 6 and 7 show the number of BOTTOM inputs and outputs

computed using the PLEASURE program. Based on the floor plan shown in Figure 3.10,

the areas of (1, 2, l)-SCFPLA are calculated from Equation (3.1). Column 8 compares

the area ratio of the proposed design versus the FTPLA design. The results show that

the proposed design reduces the chip area as much as 47%. This implies that the number

of die that can be placed in a wafer is doubled, thereby increasing the overall chip yield.

According to the physical layouts for both the conventional PLA design and the

proposed design for the PLA "mish", as shown in Figure 3.11, the proposed design not

only provides the fault tolerance, but also consumes less chip area.

3.5 Fully Testable SCFPLA Design

The key to the fully testable PLA design is the use of additional hardware to enable

only one product line at a time to make the PLA fully testable [21, 29]. Although the

internal structure of SCFPLA is a little different from the conventional PLA, the

Input/Output (I/O) relation still remains the same. As a result, from the I/O’s function,

we may not even notice the slight modification of the structure. Since the fault-tolerant

SCFPLA design contains PSRs to enable or disable each product line, this makes the

proposed design fully testable by the pin overhead from signals W, Mp’ and Sin. In other

words, the proposed design achieves a full diagnosability during the manufacturing

process. On the other hand, after the chip is packaged, the proposed design is turned into

a fully testable design.



37

Table 3.2 Simulation Results (SCFPLA)

 

(112! ll-SCFPLA

 

 

      

name n m p Area nb mb %

5pr 7 10 65 270024 7 6 91.8

9sym 9 1 84 440832 x ’

add6 *

adr4 8 5 75 288312 8 3 94.8

alul 12 8 19 143784 7 4 67.9

alu2 10 8 68 308080 10 5 93.7

alu3 10 8 66 300832 10 4 92.1

apla 10 12 25 162808 10 7 90.7

ch 21 11 179 1046152 17 10 87.5

bca 16 46 180 1354736 16 31 86.3

bcb 16 39 156 1113792 16 28 89.1

bcc 16 45 137 1051496 16 30 86.3

bed 16 38 117 856600 16 22 84.5

chkn 29 7 140 979440 24 4 84.4

ck 4 7 9 60488 3 5 83.4

c014 14 1 14 206832 X

cps 24 102 162 2070304 21 64 76.2

dcl 4 7 9 60488 4 5 92.3

dc2 8 7 39 181048 7 4 87.6

dist 8 5 120 431232 8 4 97.1

de7 10 11 18 133456 10 6 90.3

dk27 8 9 10 88592 8 5 90.4

dk48 15 17 21 193688 15 9 89.1

exep 28 62 109 1216408 24 31 74.3

f51m 8 8 76 309200 8 4 91.8

gary 15 11 107 562600 14 8 91.6

inO 15 11 107 562600 14 8 91.6

inl 15 17 104 595408 14 17 95.8

in2 19 10 135 763640 16 8 87.9  
 

X : SCFPLA cannot be obtained by PLEASURE.

* : Number of care or column exceeds the PLEASURE limit.
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Table 3.2 Continued

 

(l,2,1)-FTPLA (1! 21 ll-SCFPLA

 

 

 

name r1 at p Area nb mb %

in3 34 29 74 779440 24 19 73.8

in4 32 20 212 1694800 23 10 74.2

in5 24 14 62 486400 16 11 74.9

in6 33 23 54 580544 18 14 62.5

in7 26 10 54 444256 16 7 69.4

jbp 36 57 122 1452752 26 31 70.6

misg 56 23 69 993384 28 12 55.2

mish 94 34 82 1757440 47 17 52.7

mlp4 8 8 127 480968 8 6 95.5

opa 17 61 79 771272 15 40 80.6

radd 8 5 75 288312 8 3 94.8

rckl 32 7 32 357216 32 6 95.0

rd53 5 3 31 117992 5 2 95.2

rd73 7 3 127 414664 7 2 96.9

rise 8 31 28 212672 7 16 79.3

root 8 5 57 231144 8 4 96.3

sqn 7 3 38 218288 X

sqr6 6 11 50 213136 6 6 90.0

ti 43 67 213 2737784 30 38 69.5

tial *

vg2 25 8 110 734608 25 4 94.3

wim 4 7 9 60488 3 6 84.9

xldn 27 6 110 755024 26 3 92.9

x2dn 82 47 104 2000128 45 24 57.6

x6dn 38 5 81 744648 24 5 70.0

x7dn *

x9dn 27 7 120 820464 26 4 93.1

24 7 4 59 220920 7 2 94.4       
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(b)

Figure 3.11 Layouts of the PLA "mish":

(a) Conventional; and (b) Fault-Tolerant SCFPLA.

 



Chapter 4

Automatic Layout Generator

 

This chapter describes an automatic layout generator, ALGFPLA, that generates the

layout mask for fault-tolerant SCFPLAs. The layout generator is built on the MPACK

library [30] using MAGIC graphics editor. ALGFPLA has been implemented on SUN

3/160 under UNIX operating system.

4.1 Development

ALGFPLA consists of two major steps: (1) create a template; and (2) compile

PLEASURE’s symbolic output into layout masks. ALGFPLA requires a template to

generate its fault-tolerant SCFPLAs. To make an ALGFPLA template, a sample fault-

tolerant SCFPLA layout is designed. This sarnple includes at least one example of each

possible combination of template tiles. It also contains all possible features, such as: the

TOP and BOTTOM inputs and outputs, transistors connected to true and complemented

signals in the AND plane, transistors connected to output signals in the OR plane, the

spare input/output/product lines and control circuits for repairable design, and the shift

registers and control circuits for fault-diagnosable design. With this template, ALGFPLA

can then generate a large fault-tolerant SCFPLA. Figure 4.1 shows a template of a fault-

tolerant SCFPLA in NMOS technology with two metal layers.

40
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The ALGFPLA template of Figure 4.1 is composed of the following ten blocks.

(1) The core of the AND plane.

(2) The core of the OR plane.

(3) The input.

(4) The output.

(5) The pull-up transistor of product line.

(6) The spare input line.

(7) The spare output line.

(8) The spare product line.

(9) The shift register.

 

(10) The connection.

In association with the above blocks, Figure 4.2 shows the block diagram of the

ALGFPLA template. The template may contain one or more blocks. Each block signifies

a single array of one or more tiles from the tile library. The tiles involved in each block are

defined as follows.

 

 

 
 

 

    
 

 

   

(10) (3) (10) (9) (10) (4) (9)

(3L

(5) <1) (6) <1) (2) (7) (2) <9)
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(3) (4) (9)   
 

Figure 4.2 Block Diagram for the Template.
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The core of the AND plane (or AND—core):

Basically, the AND-core consists of input lines, product lines, and

crosspoints. A crosspoint may present in either the true or the complemented

bit line. It is also possible that no crosspoint presents in either line. Since the

pull-down transistor, if present, is connected to ground, it is necessary to

provide a contact for the pull-down transistor. Moreover, a contact may be

shared by adjacent cross points to save the area.

In AND—core, three tiles and_l, and_r, and and_null are created for the

crosspoint possibility and two tiles and_noc, and_con are for the contact

possibility, as shown in Figure 4.3, where the polysilicon line and metal line

represent the input bit line and product line, respectively, while the diffusion line

is the GND line.

 

 

  

         

 

 

 

   
Remarks:

 

are Polysilicon line Diffusion line

Metal line Diffusion-Metal Contact

Figure 4.3 Tiles in the AND-Core.
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In PLEASURE’s data format, ’1’ or ’1’ physically means that a pull-down

transistor exists between a product line and a true bit line. Thus, it is realized

by three tiles (and_con, and_l, and and_noc), as shown in Figure 4.4. Similarly,

a ’0’ or ’o’ is realized by (and_con, and_r, and and_con), while the ’-’ or ’__’ is

realized by (and_noc, and_null, and and_noc). Figure 4.5 illustrates an example

of ALGFPLA compiling the AND array of the PLEASURE’s symbolic format

into layout mask. Notice that the adjacent tiles are overlapped as shown to

save area.

 

’1’ or ’1’ ->

 

  

’09 or 90’ —> §¢M

and_noc and_r and_con

 

and_noc and_null and_noc

Figure 4.4 Relation Between the AND Array and the Cells.

 

 
Figure 4.5 An Example of the Core of AND Plane.
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The core of the OR plane (or OR-core):

The OR-core consists of output lines, product lines, and crosspoints. Since

the even- and odd-numbered product lines share the same ground line, the

product lines pair is included in a single tile. This results in four different

possibilities for the pull-down transistors: a transistor on the odd-numbered

product line only, a transistor on the even-numbered product line only,

transistors on both even- and odd-numbered product lines, and no transistor at

all. Therefore, four tiles (or_ud, or_d, or_u, or_null) for these four possibilities,

and two tiles (or_noc, or_con) for the connection between tiles are created, as

shown in Figure 4.6, where the polysilicon and metal lines represent the

product and output lines, respectively, while the diffusion line is 3. GND line.

Figure 4.7 illustrates the four possible combinations of tiles for the OR

array. For example, in PLEASURE’s data format, a ’1’ means that a pull-down

transistor exists between the output and the product lines. Therefore, two

consecutive ’I’s in an output column are implemented by the tiles (or_con,

or_ud, and or_con). Figure 4.8 illustrates an example of ALGFPLA compiling

the OR array in PLEASURE’s data format into layout mask. Notice that the

consecutive connection tiles in a same column are overlapped.

In the proposed SCFPLA, the "cut" for the folded part of the OR array is

required in the layout mask. Similar to Figure 4.6, Figure 4.9 presents the five

tiles (or_fud, or_fu, or_fd, orfnull, or_fnoc) that are used to define the portion

where the "cut" is needed. Figure 4.10 shows the four possible combinations of

the PLEASURE’s data format and the layout mask implementing these five

basic tiles. Figure 4.11 gives an example of ALGFPLA compiling the

personality matrix into layout mask.



 

 

or_con or_noc

 

 

 

   
Figure 4.8 An Example of the Core of OR Plane.
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or_fnull

or_fnoc

  
Figure 4.9 Special Tiles in the OR-Core.

10,1
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theor_con I I

    

 

  

       lilllllllllllllllilllllllll

      
was

Sat.

 

 

 
 

      

  
Figure 4.11 An Example for the Special Tiles in the Core of OR Plane.
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(3) - (5) The input and output lines, and pull-up transistor of product line:

(6)

(7)

Figure 4.12 illustrates the tiles involved in these blocks. As shown in

Figure 4.12 (a), two tiles ( input], input2) are used for the BOTTOM and TOP

inputs, respectively. For the output lines, both tiles (output1_s, output2_s) are

respectively represented for the TOP and BOTTOM output lines. Each output

line takes 8 it in width. In our implementation, in order to fit two adjacent output

lines into a 16 2. width, both lines are compacted. Thus, the tiles (input1_d,

input2_d) represent two adjacent output lines on both top and bottom sides as

shown in Figure 4.12 (b).

Since a product line only takes 8 l in height, the pull-up transistor must

also be designed 8 A. in height. In order to obey the design rule, two types of

pull-up transistor tile (pdt_pulup1, pdt_pullup2) are needed, as shown in Figure

4.12 (c).

The spare input line:

A spare input line can be partitioned into several blocks. Each block is

composed of one or more tiles. Specifically, in Figure 4.13, the tile spare_inputl

is used for the connection comer of SISC and spare input from BOTTOM input,

while the spare_input4 is for the TOP input. The tile spare_input3 is for the

cross section of a spare input line and a spare product line. Finally, the tile

spare_inputZ is for the regular product lines.

The spare output line:

Figure 4.14 illustrates the tiles involved in this block. The tile

spare_ourput3 is the connection corner of SOSC and spare output line. The tile

spare_output6 is the cross section of a spare output line and a spare product

line. As discussed in Figure 4.6, the odd-numbered and even-numbered product

lines form a pair. A product line pair on the spare output line is constructed

using two tiles (spare_outputl and spare_outputZ). As the layout is painted
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Figure 4.12 Examples: (a) Inputs; (b) Outputs; and

(c) Pull-up transistors for product lines.
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from the bottom to the top side, if the number of product lines is odd, the tiles

(spare_outputl and spare_output4) are used for the single product line left out

from the pairs. The tile spare_output5 is for the connection comer of SOSC and

the spare output line. Finally, if the number of product lines is even, the tile

spare_output7 represents the comer of SOSC and the spare output line.

 

 

s,» . ‘5.:.~

iiigni111 m iii ‘gigrtgg spare_input4

X' 52.3: .i' M; 5'3!

spare_input2

spare_input3

s are in utl Remarks:
p - p 2: Spare_input2

3: Spare_input3 
Figure 4.13 An Example of a Spare Input Line.
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spare-output5
Spare-output7

,, spare-output4

N 15' 333335333; spare-output2

spare-outputl

.:.,.,.,.,., .. Spare-outputé

spare-output3

1&2 Remarks:

. ‘2‘ 1: Spare_outputl

2: Spare_output2

 

3: Spare_output3

6‘ Spare_output6

(a)
(b)

Figure 4.14 Examples of Spare Output Lines:

(a) Odd Number of Product Lines; and

(b) Even Number of Product Lines.
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(8) The spare product line:

The bottom-side spare product line, as shown in Figure 4.15 (a), can be

partitioned into following blocks (the tiles required for each block is given in

parentheses): a pull-up transistor (spare_p_i_pullup), cross section of input bit

lines (spare_p_i2, spare_p_i1), spare input lines (spare_input3),

interconnection between two planes (spare_p_con1), cross section of output

fines(quuedpgoflhandspan:ouqnnlhuxwhpansfnapufifi.

As shown in Figure 4.15 (b) and (c), the top—side spare product line has

the same partitioning as the bottom-side except the tiles in the OR array, such

as (spare_p_con2, spare_p_02, spare_outputb') in the situation of odd number of

product lines and (spare_p_con3, spare_y_o3, spare_output7) in the situation of

even number of product lines.

(9) & (10) The shift register and connection:

Figure 4.16 shows that the shift registers PSR and ISR and the control

circuits are partitioned into four basic tiles: (psr, isr, psr_control, isr_control).

The remaining tiles are required for tile interconnection. In this

implementation, 15 tiles are created. They are (or_gnd_con, or_gnd_noc,

and_or_con_d, con], con2, con3, con4, con5, con6, con7, con8, con9, conIO,

conII , con12).
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(c) Top Side Spare Product Line (Even Number of Product Lines)

Remarks:

1: Spare_p_il a: Spare_p_ol

2: Spare_p_12 b: Spare__p_o2

3: Spare_p__i3 c: Spare__p_o3

11: Spare_p_i_pullup i: Spare_input3

Figure 4.15 Examples of Spare Product Lines: (a) Bottom Side;

(b) Top Side (Odd Number of Product Lines); and

(c) Top Side (Even Number of Product Lines).
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Figure 4.16 An Example of Shift Registers and Their Control Circuits. 
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4.2 Algorithm and Examples

Algorithm I illustrates the major steps in ALGFPLA, and the program coded in "C" is

given in Appendix 2. The program assembles tiles into the desired module. Typically, the

program reads a file (in PLEASURE’s data format) and then calls the tile placement

routine in the MPACK library.

Algorithm 1:

Step 1: Initialization.

1.1: Process command line arguments.

1.2: Create a new tile.

1.3: Load in the template tiles.

Step 2: Compile input data.

2.1: Read the input data.

2.2: Separate folded columns from unfolded columns.

2.3: Restructure input bit columns.

Step 3: Layout generation

3.1: Paint and place tiles.

3.2: Print the generated layout mask.

The program must first include the file mpack.h which defines the interface to the

MPACK library. Next, the TPinirialize procedure is called to process command line

arguments, open an input file, and load in a template. The routine TPcreate_tile(name) is

to create a new, empty tile and give the name "name". This is followed by loading in the

template tiles by the routine TPname_to_tile(name) that assigns a unique ID for the tile.

For example,

tinputI = TPname_ro_tile("inputI ");
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The pointer tinputl points to the tile "input!" of Figure 4.12 (a).

Next, the program reads the input data and computes where to place the next tile. In

our implementation, the input data in PLEASURE format is sorted to separate the folded

part from unfolded part. In addition, the bit columns are restructured as discussed in

Figure 3.5. After the input data are compiled, the painting and placement routine,

TPpaint_tile, is carried out. For example,

x = TPpat’nt_tile (a, b, c);

means that the tile "a" is painted into the tile "b" such that its lower left comer is placed

at the position "c" in the tile "b". In this implementation, the PLA is painted by the

following sequence: the lower part, middle part, and upper part. When all tiles are placed

the program calls the routine TPwrite_tile to create the output file.

Two examples are given below to demonstrate the ALGFPLA. The first example is

to illustrate the use of routines in MPACK while the second is to show our layout

generator.

Example 1:

A code constructing a set of tiles in a layout of Figure 4.17 is given as follows.

/* program which generates the layout in Figure 4.1 7 */

positionx = 20; positiony = 30;

rect = TPpaint_tile (tpdt_pullupl, output, align(position, tLL(tpdt_pullupI)));

rect = TPpat'nt_tile (tand_con, output, align(rLR(rect), tLL(taud_con)));

rect = TPpaint_tile (tand_r, output, align(rLR(rect), tLL(tand_r)));

rect = TPpat'nt_tile (tand_con, output, align(rLR(rect), tLL(tand_con)));

rect = TPpaint_tile (tand_l, output, align(rLR(rect), tlL(tand_l))),°

[at *l
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(20, 30) pdt_pullup1

Figure 4.17 Example 1.

 

The code illustrates that the lower left comer of the layout is located at (20, 30). The

tiles pdt_pullup1, and_con, and_r, and_con, and and_l are placed side by side. Note that

rLR() specifies the location of the lower right comer of the tile, and align() computes the

location for placement of the tile.

Example 2:

Consider an input data (in PLEASURE format), as shown in Figure 4.18 (a), the

program, as listed in Appendix 2, compiles the data and generates the layout mask

shown in Figure 4.18 (b).
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Input: 1-011~~1

1100 iIi~

0!-- ~~II

1-11~I~I

0100 I~I~

(a)

Output:

 (b)

Figure 4.18 Example 2: (a) Personality Matrix; and

(b) Layout generated by ALGFPLA.
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4.3 Summary and Discussion

An automatic layout generator MRPLA was developed for repairable PLAs [8].

Basically, the layout generator was built on the MQUILT [30] routine. The major

limitations of MRPLA are: (1) the use of single character symbols limit the number of

possible named tiles, and (2) the requirement that tiles have the same height. These

limitations result in increasing complexity for creating the tiles, particularly for

complicated layouts like folded PLAs. In this study, the proposed layout generator, built

on MPACK, allows us to define as many tiles as needed, place adjacent tiles with

different height, and paint the tiles to any location.



Chapter 5

Fault-Tolerant Designs of PLAs with

Other Folding Techniques

 

This chapter describes the fault-tolerant designs of PLAs with other folding

techniques: SRFPLA-A, SRFPLA-O, and MCFPLA. Each fault-tolerant design includes

the fault-diagnosable and repairable design. A comparison of fault-tolerant designs with

various folding techniques is also provided.

5.1 Fault-Tolerant Design of SRFPLA-A

In a SRFPLA-A, as shown in Figure 2.8, the PLA is constructed with AND-OR-

AND structure. Its inputs come into both AND planes and outputs come out in the

middle OR plane. This reduces the height of the PLA, thereby reducing the PLA area. The

repairable SRFPLA-A design can be accomplished by adding SISCs, SOSCs, and spare

lines, as shown in Figure 5.1 where all dimensions are given in units of 1.. Based on this

floor plan, the area of the repairable SRFPLA-A design is:

Area = (16sn + 22$m + 16n + 8m + 92)(8p + 22sP + 27) + (85n + 44)(16$n +

16n + 60) + (85m + 51)(8p + 225m),

where n : number of input lines, sn : number of spare input lines,

m : number of output lines, sm: number of spare output lines,

p : number of product lines, sp: number of spare product lines.
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Figure 5.1 Floor Plan of the Fault-Repairable SRFPLA-A.

 

The fault diagnosability of a SRFPLA-A is achieved by adding the PSRs and ISRs to it.

However, the separation of each row should be preserved until the fault diagnosis and repair

process is completed. Since each shift register takes 16 x 140 A in area, the total area for the

fault-tolerant SRFPLA-A is:

Area = (area of fault-repairable SRFPLA-A) + (2n + p) x 8 x 140.

Table 5.1 lists the simulation results of the fault-tolerant SRFPLA-A design for various

PLAs. Column 5 calculates the chip area required for the (1, 2, 1)-FTPLA design. With the

applications ofPLEASURE, the number of product lines computed for SRFPLA-A is given in

column 6. The last column shows the ratio of the required chip area for the proposed fault-

tolerant SRFPLA-A design over that for the FTPLA design.
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Table 5.1 Simulation Results (SRFPLA—A)

 

 

 

(1,2,1)-FTPLA (1,2,1)-SRFPLA-A

name n m p area p %

alul 12 8 19 143784 13 96.5

cps 24 102 162 2070304 161 103.9

in4 32 20 212 1694800 211 109.7

in5 24 14 62 486400 61 109.9

in6 33 23 54 580544 50 101.8

in? 26 10 54 444256 52 108.3

jbp 36 57 122 1452752 114 99.7

misg 56 23 69 993384 36 68.2

mish 94 34 82 1757440 42 65.2

x2dn 82 47 104 2000128 64 71.4        
 

5.2 Fault-Tolerant Design of SRFPLA-O

Figure 5.2 shows the floor plan of a repairable design for the SRFPLA-O. Together

with the shift registers, for fault-diagnosable design, the area of the fault-tolerant

SRFPLA-O design is:

Area = (16sn + 22$In + 16h + 8m + 92)(8p + 22sp + 27)+ (8sn + 44)(16sn +

l6n ) + (88m + 51)(22sm + 8m + 60) + (2n + p) x 8 x140,

where n : number of input lines, sn : number of spare input lines,

m : number of output lines, sm: number of spare output lines,

p : number of product lines, sp: number of spare product lines.

Table 5.2 lists the simulation results for various PLAs.
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Figure 5.2 Floor Plan of the Fault-Repairable SRFPLA-O.

Table 5.2 Simulation Results (SRFPLA-O)

(1,2,1)-FTPLA (1,2,1)-SRFPLA-O

name n m p area p 8

alul 12 8 19 143784 11 89.3

cps 24 102 162 2070304 151 96.9

in4 32 20 212 1694800 211 104.4

in5 24 14 62 486400 60 104.1

in6 33 23 54 580544 47 95.7

in7 26 10 54 444256 49 99.8

jbp 36 57 122 1452752 106 92.1

misg 56 23 69 993384 38 69.8

mish 94 34 82 1757440 48 70.6      
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5.3 Fault-Tolerant Design of MCFPLA

Figure 5.3 shows a schematic diagram of a PLA with multiple folding technique

computed using PLEASURE and its personality matrix. The MCFPLA design allows the

inputs to come into the AND plane from top, bottom, and left-hand side. Since an input

line takes 16 7. in width, it is necessary to reserve two product lines (each has 8 A in

height) for a sided input line. Figure 5.4 illustrates a floor plan of a repairable and fault-

diagnosable MCFPLA design. The area can be estimated by the following formula.

Area = (16nb + 16sn + 30) x (8sm(8sn + 22sp + 8p + 8ns + 43) + (8mb + 22$m

+21) x(8sm + 2281) + 8p + 8ns + 81) + l6nt(85n + 10) + 1440nt +

8mt x (8sm + 10) + 568mt + 528ns+ (2nb - 2nt + p) x 8 x 140,

where "b : number ofBOTTOM input lines, 118 : number of side input lines,

 

 

 

 

  
 

 
 

  
 
      

nt : number of TOP input lines, 311 : number of spare input lines,

mb : number of BOTTOM output lines, sm: number of spare output lines,

mt : number of TOP output lines,

p : number of product lines, sp: number of spare product lines.

PLEASURE: MCFPLA I6 IE1 01 04

/ \ I _ T ,_ 11:6

0-1 1~ ...—.1. R;

001 - I~ I .45 1: R1- - ~

. R

z ; - ~ 1 I5M—T 3

1 o - ~ I j— ; R5

\ / g g
C’3 0212 I4 13

(a) (b)

Figure 5.3 An Example of MCFPLA.
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Figure 5.4 Floor Plan of the Fault-Repairable MCFPLA.
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Table 5.3 summarizes the simulation results of the fault-tolerant design for various

PLAs. The results show that the areas can be significantly reduced.

Table 5.3 Simulation Results (MCFPLA)

 

 

 

(1,2,1)-FTPLA (1,2,1)-MCFPLA

name n m p area nS nb mb %

alul 12 8 19 143784 2 7 5 73.1

cps 24 102 162 2070304 0 21 56 72.1

exep 28 62 109 1216408 0 24 31 74.3

in3 34 29 74 779440 8 19 19 70.6

in4 32 20 212 1694800 3 24 11 77.9

ins 24 14 62 486400 5 14 10 73.3

in6 33 23 54 580544 7 19 14 70.6

in7 26 10 54 444256 8 13 8 69.8

jbp 36 57 122 1452752 7 21 30 66.3

misg 56 23 69 993384 40 10 13 47.5

mish 94 34 82 1757440 67 21 27 57.5

ti 43 67 213 2737784 14 20 46 65.8

x2dn 82 47 104 2000128 51 23 24 54.1          
 

5.4 Comparison

In order to compare the performance of various fault-tolerant folded PLA designs,

Table 5.4 summarizes the results in Table 3.2, 5.1, 5.2, and 5.3.

Results show that the fault-tolerant designs of PLAs with column folding techniques

are better than those PLAs with row folding techniques. Although the MCFPLA design

is slightly better than the SCFPLA design in some cases, it should be mentioned that the

fabrication process using the multiple folding technique is much more complicated than

the simple folding technique. Therefore, this study suggests that fault-tolerant simple

folded PLA design will provide "better" results as far as chip yield is concerned.
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Table 5.4 Results Comparison

 

 

 

name SRFPLA-A SRFPLA-O SCFPLA MCFPLA

alul 96.5 89.3 67.9 73.1

cps 103.9 96.9 76.2 72.1

exep X X 74.3 74.3

in3 X X 73.8 70.6

in4 109.7 104.4 74.2 77.9

in5 109.9 104.1 74.9 73.3

in6 101.8 95.7 62.5 70.6

in7 108.3 99.8 69.4 69.8

jbp 99.7 92.1 70.6 66.3

misg 68.2 69.8 55.2 47.5

mish 65.2 70.6 52.7 57.5

ti X X 69.5 65.8

x2dn 71.4 X 57.6 54.1

x6dn X X 70.0 X    
 

Remark: X indicates that the folded PLA cannot be obtained by PLEASURE.

 



Chapter 6

Conclusions

 

This chapter summarizes the major contribution of this study and outlines directions

for future research.

6.1 Summary of Major Contribution

In order to ensure that large PLA chips are manufactured at a reasonable yield level,

a fault-tolerant design, using folding techniques that allow full diagnosis and fault repair,

is presented for yield enhancement. The major contribution in this study is that, taking

the advantages of both folding techniques and fault-tolerant design technique, the

proposed design not only achieves a full diagnosability of single and multiple stuck-at,

bridging, and crosspoint faults, but also requires less chip area than the fault—tolerant

design in [8] and thus increases the number of die that can be placed on a wafer.

Moreover, the proposed design is fully testable after the chip is packaged.

The other contribution is the development of an automatic layout generator for fault-

tolerant folded PLAs. Chapter 4 describes the procedure of developing an automatic

layout generator. The layout generator ALGFPLA compiles the PLEASURE’s data

format into layout masks. The ALGFPLA has been implemented on SUN 3/160 under the

UNIX operating system.

68



69

6.2 Directions for Future Research

According to the technological implementation and design style, numerous folding

techniques have been proposed and implemented. The tradeoffs are area reduction and

regularity, i.e., the area reduction is often paid for by the increase in irregularity. In

practice, the irregularity structure generally results in increasing the defect density in the

fabrication process. As a result, it is not always guaranteed that the more the area

reduction, the higher the overall chip yield. A "good" folding algorithm may be good for

reducing the array size, but it may be not suitable for the fault-tolerant design. The

significance of the fault-tolerant design of folded PLAs should be in reducing the die size

while still achieving the full diagnosability and repairability.

In this thesis, the PLEASURE program was used to demonstrate the effectiveness of

the proposed fault-tolerant design. Our simulation results shown in Chapter 5 have found

that the chip area reduction is not significant for other folding techniques. In practice,

however, the deficiency is caused by folding algorithms that originally designate for area

reduction, not for fault-tolerant design. Therefore, the development of a "good" algorithm

that is suitable for fault-tolerant design is a very interesting subject for future research.

Spare line allocation and optimal redundancy for achieving the maximum yield are also

very important in the fault-tolerant design, particularly for folded PLAs. A higher

probability of repair can be achieved if a larger number of spares is added. However, since

the added redundancy and the associated circuitry are also susceptible to defects, too

much redundancy may have a "diminishing" effect on the chip. The optimal redundancy is

highly dependent on both the failure rate of the fabricated chips and the folding

algorithms. Consequently, achieving maximum yields using optimal redundancy is also an

important research subject.

According to the technological implementation and design style, numerous folding

techniques have been proposed and implemented. However, there is still no single folding
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algorithm that is universally efficient for all PLAs. As a result, designers must face the

problem of selecting an appropriate technique to match their goals and constraints.

Therefore, it is necessary to develop a selection system that automatically produces the

physical layout of the "optimal" fault-tolerant/fully testable PLA structure which meets

the design requirements. We envision a system that allows the designers to: specify a

set of logic functions to be realized by a PLA, optionally specify the desired yield level,

select an appropriate structure that may be with or without folding depending upon the

yield level desired, and to provide the physical layout of the resultant structure. A

knowledge-based system can be employed to realize this vision. The knowledge base

should contain the candidate folding algorithms and the corresponding layout generators.

1
"
"
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APPENDIX 1

Fault Diagnosis and repair Process

According to the fault models and the repair rules described in this thesis, this fault

diagnosis and repair process can recover single and multiple stuck-at, bridging, and

crosspoint faults. Keep in mind that both stuck-at and bridging faults must be repaired

immediately after they have been identified.

Part 1: Detect Faults in the Augmented Circuits

The augmented circuits considered are ISR, PSR, and control circuits. Since the

augmented circuits are non-redundant, they are fault detectable but not fault repairable.

To test the function of the shift registers, first, they are isolated from PLA by setting

both signals R and W to logic 0. Then, by applying a sequential test pattern (0101...0101)

from Sin to these registers, the outputs can be observed from Sout. Since the function of

control circuit could be observed from some extra register cells, the control circuit is also

fully testable. Therefore, after the augmented circuits have been tested to be fault-free,

the following steps of fault diagnosis and repair process can be implemented.

Part 2: Locate and Repair Faults in the AND Plane

The faults in the AND plane include:

Type 1: Stuck-at fault at input bit column.

Type 2: Bridging fault between two adjacent input bit columns.

Type 3: Bridging fault between input bit column and product line.

Type 4: Stuck-at fault at product line.
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Type 5: Bridging fault between two adjacent product lines.

Type 6: G-fault and S-fault.

Follow the steps below, the faults of Type 1 through Type 5 can be located and

repaired, while the fault of Type 6 can be located.

Step 1: Set TOP input decoder and ISR to "read" mode, apply the input pattern (1, 1, ...,

l) and (0, 0, ..., 0) to the BOTTOM inputs. At the same time, set the PSR to

"write" mode and write 0’s to all the product lines. Thus the data on the input bit

columns, read from TOP input decoder and ISR, are expected to be: ALLl = (l, 0,

1, 0, ..., 1, 0) for the input pattern (1, l, ..., 1), and ALLO = (0, l, 0, l, ..., 0, l) for

the input pattern (0, 0, ..., 0).

The stuck-at faults at the input bit columns can be located by examining the zero bits

in ALL, where ALL = ALLl 6 ALLO. Once the stuck-at fault at the input bit column

(Type 1) is located, it should be repaired immediately, i.e., switch it to a spare input line

and connect this faulty input bit column to GND.

Property 1: Type 2 and Type 3 faults are equivalent to stuck-at faults.

Proof:

Case I. One of the bridged lines has stuck-at fault.

Since bridged lines should have the same logic, this bridging fault will force

both bridged lines to have the same stuck-at fault.

Case 11. None of the bridged lines contains stuck-at fault.

For Type 2, since the data expected on the adjacent input bit columns are

always different, with the assumption of wired-AND logic, the bridged

columns will be diagnosed as having stuck-at-O fault.

For Type 3, since 0’s have been written to the product lines, the bridged
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input bit column will be diagnosed as having stuck-at-O fault.

Therefore, after Step 1, all Typel and Type 2 faults can be located and repaired while

only part of Type 3 faults have been taken care of.

Step 2: Set TOP input decoder and ISR to "write" mode and assign 0’s to all the input bit

columns. Set PSR to "read" mode and read the value of each product line, which

is expected to be 1. Therefore, a zero means a stuck-at-O fault.

Notice that in the case of bridging fault between input bit column and product line,

because in Step 1 the bridged input bit column had been connected to GND after it was

diagnosed as having s-a-O fault, the bridged product line will be diagnosed as having s-

a-0 fault. (This completes the diagnosis and repair of Type 3 fault.)

Step 3: Set TOP input decoder and ISR to "write" mode and a walking 1 is passing

through the input bit columns, i.e., only one bit column is enabled with value 1

and all other bit columns are disabled. Read the states of product lines from PSR.

Finally, we can construct matrix N = [ “ij ] where “ij is the inverse of the value on the

i-th product line when the j-th bit column is enabled, i.e., “ij = 1 (0) means there is (no)

crosspoint between the j-th input bit column and the i-th product line.

Property 2: If the i-th row of matrix N contains all 0s, then the i—th product line is

diagnosed as having s-a-l fault. (This finishes the diagnosis and repair of

Type 4 fault)

Proof:

In this case, either multiple crosspoint faults or s-a-l fault could happen to this

product line. For simplification of fault location process, treat it as s-a—l fault.

Property 3: If the i-th and (i+l)-th rows of matrix N are identical, the i-th and (i+1)-th
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product lines are diagnosed as having bridging fault (Type 5).

Proof:

In this case, either multiple crosspoint faults or bridging fault could happen to

these two product lines. Again, for simplification of fault location process, treat

this case as bridging fault between two adjacent product lines.

Now, let matrix A = [ aij ] be the personality matrix of AND array. After the faults of

Type 1 through Type 5 have been repaired, the G-fault and S-fault (Type 6) can be

locatedbyexarniningthenonzerobitsinmatriwahereC=[cij]=N$A=[niJ-$aij

]. These faults will be repaired until all the crosspoint faults of AND plane and OR plane

have been located to optimally use the redundancy.

Part 3: Locate and Repair Faults in the OR Plane

The faults in the OR plane include:

Type 7 : Stuck-at fault at output line.

Type 8 : Bridging fault between output line and product line.

Type 9 : Bridging fault between two adjacent output lines.

Type 10: Bridging fault between two output lines which share one bit column.

Type 11: A-fault and D-fault.

Follow the steps below, the faults of Type 7 through Type 10 can be located and

repaired, while Type 11 fault can be located.

Step 4: Set PSR to "write" mode and assign 0’s to the product lines. Read the values on

the output lines from both TOP and BOTTOM output inverters. A

Notice that the output values should be 0’s, therefore, an output value 1 indicates

that the corresponding output line has stuck-at—l fault (Type 7).
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Property 4: The bridging fault between output and product lines is equivalent to stuck-at

fault (Type 8).

Proof:

In the case when none of them contains stuck-at fault, the logic 0 in the bridged

product line will force the bridged output line to have s-a-l fault. On the other

hand, since the faulty output line is repaired by disconnecting it from SOSC and

connecting it to GND, the bridged product line is thus forced to have s-a—O fault.

Step 5: Set PSR to "write" mode and a walking 1 is passing through the product lines,

that is, enable only the i-th product line by assigning l to this product line and

disable all other product lines by assigning 0’s to these product lines. When PSR

is set to "write" mode, ISR and TOP input decoder are set to "read" mode. To

assign this walking 1 to the i-th product line successfully and avoid pulled-down

by the input, apply a specific input pattern to the BOTTOM input decoders. This

pattern can be found in the matrix N. When the walking 1 is passing through the

product lines, read the states of the output lines from both BOTTOM and TOP

output inverters.

A similar way as Step 3, two matrices B = [ bij ], T = [ tij ] can be constructed, for

BOTTOM and TOP output inverters respectively where bij (tij) is the value at the j-th

BOTTOM (TOP) output inverter when the i-th product line is enabled. Note that the j-th

column of matrices B and T represent the same bit column in the folded OR plane.

Property 5: IF the j-th column of matrix B (T) contains all 0’s, then the j-th bottom

(top) side output line is diagnosed as having s-s-O fault. (This completes the

diagnosis and repair of Type 7 fault.)
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Proof:

The j-th column of matrix B (T) containing all 0’s implies that either the j-th

bottom (top) output line has s-a-O fault, or all crosspoints at this line are missed.

For simplicity, diagnose it as s—a-0 fault.

Property 6: If the i-th rows of matrices B and T contain all 0’s, then the i-th product line

is diagnosed as having s-a-0 fault. (This completes the diagnosis and repair

of Type 8 fault.)

Proof:

Again, either multiple crosspoint faults or s-a-O fault could have happened. For

simplicity, treat it as s-a—O fault.

Property 7: If the j-th column and the (j+l)-th column of matrix B (T) are identical, then

the j-th and the (j+l)-th bottom (top) side output lines are diagnosed as

having bridging fault (Type 9).

Proof:

In this case, either multiple crosspoint faults or bridging fault could have

happened. For simplicity, treat it as bridging fault.

Property 8: If the j-th columns of matrices B and T (when the j-th column of the matrix T

is available) are identical, then the j-th BOTTOM and the j-th TOP output

lines are diagnosed as having bridging fault (Type 10).

Proof:

Case I : The cut is complete.

Since the cut is complete, the upper part of the j-th column in matrix B and

the lower part of the j-th column in matrix T should all be 0’s. Now, if the j-

th columns of matrices B and T are identical, then these two columns

should contain all 0’s. This case is impossible after Property 5.



78

Case II: The cut is incomplete.

Since the cut is incomplete, this is exactly Type 10 fault.

After the faults of Type 7 through Type 10 have been located and repaired, the

remaining faults in the OR plane are Type 11 faults, i.e., A-faults and D-faults. Now,

COHStl'UCt matrix D = [ dij ] where dij =3 bij e tij when tij is available, 01' dij = bij when

there is no tij' Let matrix R = [ rij ] be the personality matrix for OR array. A-fault and D-

fault could be located by examining the non zero bits in matrix B where e = [ eij ] = D 69

Part 4: Repair Crosspoint Faults

According to the repair rules, both G-fault and S-fault can be repaired either by spare

input lines, and/or spare product lines. Similarly, both A-fault and D-fault can be repaired

either by spare output lines, and/or spare product lines. By concatenating matrices C and

E, a fault map is formed. The spare allocation algorithm developed in [31] can be used to

efficiently repair these crosspoint faults.

Part 5: Locate and Repair Incomplete Cuts in AND Plane

After the faults of Type 1 through Type 11 have been located and repaired, in other

words, there is no fault in the SCFPLA, the cut of the input bit columns is performed.

However, this may also fail. Therefore, bridging fault between two input bit lines which

share one bit column may happen. This fault is caused by improperly laser cutting.

Although with the advent of today’s laser programming techniques, the chance of having

such fault is very slim, it should also been considered to achieve full diagnosability. In
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fact, this fault can be easily detected by altering the input signals at the BOTTOM input

decoders from 0 to 1 and observing the received signals from TOP input decoders (in

"read" mode). The signal change should not affect the observed signal if the "cut" is

performed properly; otherwise, this bridging fault is detected and the fault can be repaired

by applying another cut. As a result, the proposed fault-tolerant SCFPLA design is a

fully diagnosable and repairable design.



APPENDIX 2

ALGFPLA Program

#include ”lusr/local/vlsi-ucb86/lib/mpack.h"

#include <stdio.h>

#include <ctype. h>

#defineTEMPLATE_DIR "~ding"

 

 

 

 

#define tempfile ”ftscfpla-out"

#define even(x) (1(x & 1))

#define odd(x) (x 8 1)

#define maxdim 220

/*
*/

/* subroutines declaration */

/* */

void init():

void load_in_template();

void read:in._data();

void sort:fold_unfold();

void restEuctuEe():

void shrink();

void paint_1ower();

void paint_middle();

void paint_upper();

void save_Eesult():

/*
*/

/* tile names declaration */

/*
*/

TILE fpla:

TILE tand_null, tand_l, tand_r,tand_con,tand_noc:

TILE tor_ud,tor_null, tor_con,tor_noc,tor_d,tor_u,tor_fud,tor_fu,

torLtd,torfnull, toE_fnoc:

TILE tinputl, tinput2;

TILE toutputl d,toutputl_s,toutput2_d,toutput2_s;

TILE tpdt_pulIupl, tpdt_pullup2;

TILE tspare_inputl, tspare_inputZ, tspare_input3, tspare_input4;

TILE tspare__outputl, tspare_outputz, tspaEe_output3, tspare_output4,

tspare_-output5, tspareoutput6, tspare__output7;

TILE tspare_p_il, tspare_p4i2, tspare_p_i3, tspare_p_i_pullup,

tspare_p_con1, tspare_p con2,,tspare§p_con3,

tspare _ol, tspare_p_02,tspare_p_o

TILE tpsr,t sE,tisr_control, tpsr_control;

TILE tcon1,tcon2, tcon3, tcon4,tcon5,tcon6,tcon7, tcon8, tcon9r,tcon10,

tcon11,tcon12, tor_gnd_con,tor_gnd_noc,tand_or_con_d:

char andlmaxdim][maxdim],or[maxdim][maxdim];

int np,ni,no,nif,nof:

RECTANGLE oldr,rou_start,or_last_row;

main(argc,argV)

int argc:

char **argv:
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init(argc,argV);

load_in_template():

readinEdata():

sort_EfoId_unfold():

restEuctuEe():

shrink():

paint_lower()

paint_Emiddle(

paintE_upper()

save_Eesult()

I

):

I

I

}

 

 

 

 

 

*
*/

/* initial step */

/* */

void init(argc,argv)

int argc:

char **argV: I

{

int i,j;

TPinitialize(argc, argv, TEMPLATE_DIR);

oldraorigin_rect; row_start-originErect;

for (i=0; i<maxdim: i++)

{ for (j-O; j<maxdim;j++)

{ andIillj]-’-

orliltj] -’~'. ‘.

1 fl

}

}

/* */

;* create a new tile and load in the template tiles *;

t *

void load_in_template()

{

fpla - TPcreate_tile(tempfile):

/*
*/

/* 1. the core of the AND plane (AND core) */

tand null TPname_to_tile("and_null");

 

 

 

tand:l - TPnameEtoLtile("and1");

tand_r - TPnameEtoLtile("andr”);

tanchon - TPnameE_toLtile("andcon");

tand_noc - TPnameEtoLtile("andnoc");

/*
*/

/* 2. the core of the OR plane (OR_core */

tor_ud - TPname_to_tile("or_ud");

tor_null - TPnameE_to_tile("or_Enull");

tor_con - TPnameE_toItile("orcon");

tor_noc - TPnameEtoLtile("ornoc");

tor_d - TPnameEtoEtile("orE_d"):

tor_u - TPnameE_toLtile("oru");

tor_fud - TPnameEtoLtile(”orfud");

tor_fu - TPnameE_toLtile("orfu");

tor_fd - TPnameE_toLtile(”orfd");

tor_fnu11 - TPnameE_toLti1e("orfnull");

tor_fnoc - TPnameE_toLtile("orfnoc");

/* */

/* 3. the input */

tinputl - TPname_to_tile("input1");

tinput2 - TPnameEtoEtile("input2");

 

/* */

/* 4. the output */

toutput1_d = TPname_to_tile("output1_d");

toutputlEs - TPname_to_tile("output1_s");

toutput2:d - TPnameE_toEtile(”output2_Ed"):

toutput2_s TPnameE_toEtile("output2Es");
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/* */

/* 5. the pullup transitor for product line */

tpdt_pullup1 - TPname_to_tile("pdt_pullup1");

tpdt_pullup2 - TPname_to_tile("pdt_pullup2");

*/

 

 

 

 

 

 

 

 

/*

/* 6. the spare input line */

tspare_inputl - TPname_to_tile("spare_inputl");

tspare_inputZ - TPname_to_tile("spare_inputZ”):

tspare_inputS - TPname_to_tile("spare_input3");

/ tspare_input4 - TPname_to_tile("spare_input4");

*
*/

/* 7. the spare output line */

tspare_outputl - TPname_to_tile(”spare_outputl”):

tspare_outputZ - TPname_to_tile(”spare_outputZ");

tspare_outputS - TPname_to_tile("spare_output3");

tspare_output4 - TPname_to_tile(”spare_output4"):

tspare_outputs - TPname_to_tile(”spare_outputS”);

tspare_outputG - TPname_to_tile("spare_outputG");

tspare_output7 - TPname_to_tile("spare_output7”);

/*
*/

/* 8. the spare product line */

tspare_p_i_pullup - TPname_to_tile("spare_p_i_pullup");

tspare_p_il - TPname_to_tile("spare_p_il");

tspare_p_i2 - TPname_to_tile("spare_p_iZ”);

tspare_p_13 - TPname_to_tile("spare_p_i3"):

tspare_p_o1 - TPname_to_tile("spare_p_ol”);

tspare_p_92 - TPname_to_tile("spare_p_oZ”);

t3pare_p_o3 - TPname_to_tile("spare_p_oB");

tspare_p_conl - TPname_to_tile("spare_p_conl”);

tspare_p_con2 - TPname_to_tile(”spare_p_con2");

tspare_p_con3 - TPname_to_tile("spare_p_conB”);

/*
*/

/* 9. the shift register */

tisr - TPname_to_tile("isr");

tpar - TPname_to_tile(”psr");

tisr_control - TPname_to_tile(”isr_control");

tp3r_control - TPname_to_tile("psr_control");

/*
t/

/* 10. the connection */

tconl - TPname_to_tile(”conl");

tcon2 - TPname_to_tile(”con2");

tcon3 - TPname_to_tile("con3");

tcon4 - TPname_to_tile("con4");

tconS - TPname_to_tile(“conS");

tcon6 - TPname_to_tile(”con6”);

tcon? - TPname_to_tile("con7");

tcon8 - TPname_to_tile(”con8"):

tcon9r - TPname_to_tile(”con9r");

tconlO - TPname_to_tile("con10");

tconll - TPname_to_tile("con11");

tcon12 - TPname_to_tile("con12");

tor_gnd_con - TPname_to_tile("or_gnd_con");

tor gnd_noc - TPname_to_tile("or gnd_noc"):

tand_or_con_d - TPname_to_tile("and_or_con_d");

}* */

/* read the input data */

/* */

void read_in_data()

{

int x1,x2,y;

char ch:

y=1; chagetchar();
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while (ch!-EOF)

{ xl-O;

while ((ch--'1')||(ch--’!’)II(ch-=’0’)|l(ch=-’o')

’ )l|(ch--'-')||(ch--’

{ and[x1++][y]-ch;

ch - getchar();

}

While (!((ch-'I')ll(ch--'~')ll(ch--’i')ll(ch'-’-')))

ch - getchar();

xZ-O;

while ((ch--'I')l|(ch--’~')ll(ch--’i')||(ch--'-’))

{ or[x2++][y]-ch;

ch - getchar();

}

while (!((ch-'\n’)||(ch--EOF))) ch - getchar();

ch - getchar();

'2‘.

 

 

y++;

}

np-y-l; ni-xl; no-x2;

L */
/* rearrange pla:| and-plane I or-plane I */

I folded unfolded I unfolded folded l *j ,

/ t * I

Tom sort_fold_unfold () i ~..

int i,valid,j,k;

char tmp;

i-0;valid-ni-1:

while (i<-valid)

{ j-l;

while ((andIi][j]!-'!’)&&(and[i][j]!-'o’)&&(and[i][j]!-'_’)

&&(j<-np)) j++;

if (j>np)

{ for(k-1;k<-np;k++)

{ tmp-andli][k];

and[11[k]=and[valid][k];

and[valid][k]-tmp:

 

 

}

valid-:

}

else i++;

}

nif-va11d+1:

i-0:valid-no-1;

while (i<-valid)

I j-l:

while ((orli][j]!-'i')&&(or[i][j]!-'-')&&(j<-np)) j++:

if (j>np)

i++;

else

{ for(k-1:k<-np:k++)

{ tmp-orti] [k] .-

or[i][k]-or[valid][k];

or[valid][k]-tmp;

}

valid--;

}

}

nofano-valid-l:

}

/* */

/* restructure input bit columns *;

/* *  



84

void restructure()

int i,j;

for (i-0:i<nif;i++)

{ j-l:

while ((andli][j]!-'!')&&<and[i][j]!-’o’)&&(and[iltj1!-’ ')
5&(j<-np)) j++;

_

while (j>0)

{ switch(and[i][j])

{ case '!':

andIi] [j]-'o' ;

break:

case ’0’:

andIi][31='!’:

break;

case '1':

and[i] [j]-’O’ ;

break:

case '0':

and[i1[j]-’l’;

break;

}*
*/

/* change the symbols below the cut and above the highest contact */

/* in the OR plane */

/* */

void shrink()

{

 

int i,j,valid;

for (i-no-nof;i<no:i++)

 

{ 3'1:

while ((orIi][j]!-'i')&&(or[i][j]!-'-')&&(j<-np)) j++;

valid-j:

j++;

while ((j<-np)&&(or[i][j]--'~'))

{ 0r[1][j]-'+':

j++;

}

if (or[i][valid]--'-')

{ while ((valid>0)&&(or[i][valid]!-'I'))

{ or[i][valid]-'+';

valid-:

}

l

}

}

/* */

/* paint the lower part of scfpla */

/*
*/

 

void paint_lower()

{

int i:

row_start.y_bot-row_start.y_bot+87;

oldr-row_start;

oldr-TPpaint tile(tcon1,fpla,align(rLR(oldr),tLL(tconl)));

for(i=0;i<nif;i++) oldraTPpaint_tile(tinputl,fpla,align(

rLR(oldr),tLL(tinputl)));

oldr=TPpaint_tile(tspare_inputl,fpla,align(

rLR(oldr),tLL(t3pare_inputl)));

for(i=nif;i<ni;i++)

 

'
3
‘
;

f
‘

 



}
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oldr-TPpaint_tile(tinputl,fpla,align(rLR(oldr),tLL(tinputl)));

oldr. y_botsoldr. y_bot-32;

oldr=TPpaint_tile(tcon2, fpla, align(rLR(oldr), tLL(tcon2)));

for(i=0; i<=no/2-1; i++)

oldr=TPpaint_tile(toutput1_d,fpla, align(

rLR(oldr), tLL(toutput1_d)));

if (odd(no))

oldr-TPpaint_tile(toutput1_s, fpla, align(

rLR(oldr), tLL(toutput1_s)));

oldr. y_bot -0;

oldr=TPpaint_tile(tcon3, fpla, align(rLR(oldr), tLL(tcon3)));

oldr-TPpaint_tile(tspare_output3, fpla,align(

rUL(oldr),tLL(tspare_output3)));

oldr. y_bot -0;

oldr-TPpaint_tile(tpsr_control, fpla,align(

rLR(oldr), tLL(tpsr_control))):

row_start. y_bot-row_start. y_bot+51;

row_start. x”right-0

oldr-row_start;

oldr=TPpaintJile(tspare_p_inullup,fpla,align(

rLR(oldr), tLL(tspare_p_ _pullup)));

for(i-O; i<nif; i++)

( oldr-TPpaint_tile(tspare_p_12,fp1a,align(

rLR(oldr), tLL(tspare_p_i2)));

oldr-TPpaint_tile(tspare_p_iL fpla, align(

rLR(oldr), tLL(tspare_p_il)));

}

oldr=TPpaint_tile(tspare_p_i3, fpla,align(

rLR(oldr),tLL(tspareIp_13)));

oldr-TPpaint_tile(tspare_ nput3, fpla, align(

rLR(oldr), tLL(tspare_input3)));

for(i=nif; i<ni; i++)

{ oldr=TPpaint_tile(tspare_p_12, fpla align(

rLR(oldr), tLL(tspare_p_i2))):

oldr-TPpaint_tile(tspare_p_il,fp1a,align(

rLR(oldr), tLL(tspare_p_i1)));

}

oldr=TPpaint_tile(tspare_p_12, fpla,align(

rLR(oldr), tLL(tspare_p_i2)));

oldr=TPpaint_tile(tspare_p_con1, fpla,align(

rLR(oldr), tLL(tspare_p_con1)));

oldr. y_bot -oldr. y_bot+2;

for(i=0; i<no; i++)

oldr-TPpaint_tile(tspare_p_ol, fpla,align(

rLR(oldr), tLL(tspare_p_ol)));

oldr=TPpaint_tile(tspare_output6, fpla, align(

rLR(oldr),tLL(tspare_output6))):

row_start.y_bot-row_start.y_bot+21;

 

 

/* */

/* paint the middle part of pla */

/* */

void paint_middle()

{

int i,j:

for (i=np;i>0;i--)

{ oldr-row_start;

if (odd(np-i+1))

oldr=TPpaint_tile(tpdt_pullup1,fpla,align(

rLR(oldr),tLL(tpdt_pullup1)));

else oldr=TPpaint_tile(tpdt_pullup2, fpla, align(

rLR(oldr) tLL(tpdt_pullup2)));

oldr=TPpaint_tile(tand_con, fpla, align(
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rLR(oldr),tLL(tand_con))):

for (j-0:j<nif:j++){

switch (and[j][i])

{ case ’ ': case ’-':

oldr-TPpaint_tile(tand_null,fpla,align(

rLR(oldr),tLL(tand_hull)));

break:

case '!': case '1':

oldr-TPpaint_tile(tand r,fpla,align(

rLR(oldr) ,tLL (tand_r) ) ) ,-

break:

case '0': case '0’:

oldr-TPpaint_tile(tand l,fpla,align(

rLR(oldr),tLL(tad3_l))):

break:

}

if ((ande] [1.1-'4') I I (andtjl [i]--’ V)

l|(and[j+1][i]-'0')ll(and[j+1][i]'-’O'))

oldr-TPpaint_tile(tand_con,fpla,align(

rLR(oldr),tLL(tand_con)));

else oldr-TPpaint_tile(tand noc,fpla,align(

rLR(oldr),tLL(tana;poc))):

}

oldr-TPpaint_tile(tspare_inputZ,fpla,align(

rLR(oldr),tLL(tspare_input2)));

oldr-TPpaint_tile(tand con,fpla,align(

rLR(oldr),tLL(tana;con))):

for (j-nif;j<ni;j++)

{ switch (and[j][i])

{ case ’ ': case '-':

oldr-TPpaint_tile(tand_null,fpla,align(

rLR(oldr),tLL(tand_hull)));

break:

case '!’: case ’1':

oldr-TPpaint_tile(tand_r,fpla,align(

rLR(oldr),tLL(tand_r))):

break:

case ’0': case '0':

oldr-TPpaint_tile(tand l,fpla,align(

rLR(oldr),tLL(tah3_l)));

break:

1

if (j--ni-1)

oldr-TPpaint_tile(tand_con,fpla,align(

rLR(oldr),tLL(tand_con)));

else if ((and[j][i]-’1’)ll(and[j][i]--’!’)

||(and[j+1][i]--'0')ll(and[j+1][i]--'o’))

oldr-TPpaint_tile(tand con,fpla,align(

rLR(oldr),tLL(tana;con)));

else oldr-TPpaint_tile(tand_hoc,fpla,align(

rLR(oldr),tLL(tand_noc))):

if (odd(np-i+l))

oldr-TPpaint tile(tand or_con d,fpla,align(

rLR(oldr),tLL(taha_or_coH;d)));

else

{ oldr.x_right-oldr.x_right+12:

oldr.y_bot-oldr.y_bot-4:

}

if (is-1)

or_last_row=oldr:
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for (j-0:j<no:j++)

{ if (odd(np-i+1))

I

else

}

if ((orljJIi]--'I') IIIorIj][11--’i')

llIorIj][i+1]--'I’)||(or[j][i+1]--'i'))

oldr-TPpaint_tile(tor_con,fpla,align(

rLR(oldr),tLL(tor_con)));

else if ((or[j][i]--'+’)&&(or[j][i+1]--'+'))

oldr-TPpaint_tile(tor_fnoc, fpla, align(

rLR(oldE), tLL(toE_fnoc))):

else oldr-TPpaint_tile(tor_noc,fpla,align(

rLR(oldE), tLL(toE_noc))):

if (((or[j][i]-'I')&&(or[j][1+1]--'I'))

IIIIorIj][1]-’I')&&(or[j][1+1]-'i')))

oldr-TPpaint_tile(tor_ud,fpla,align(

rLR(oldE), tLL(tor_ud)));

else if ((orlj][i]-'I’)&&(3r[j][i+1]-’~ ’))

oldr-TPpaint_tile(tor_u,fpla,align(

rLR(oldE), tLL(tor_u)));

else if (((or[j][i]--’~ ’)&&(or[j][i+1]--’I'))

II((or[j][i]--'~')&&(or[j][1+1]--’i’)))

oldr-TPpaint_tile(tor_d,fpla,align(

rLR(oldr):tLL(tor d))):

else if (((or[j][i]--'I')&&Tor[j][i+1]--'+'))

II((orthIiI-'i’)&&(or[j][1+1]-'+’)))

oldr-TPpaint_tile(tor_fu,fpla,align(

rLR(oldE) tLL(toE_fu)));

else if ((or[j][i]--’i’)&&(3r[j][i+1]--’I'))

oldr=TPpaint_tile(tor_fud,fpla, align(

rLR(oldE), tLL(toE_fud))):

else if ((or[j][i]-'+')&&(3r[j][i+1]-’I'))

oldr-TPpaint_tile(tor_fd,fpla, align(

rLR(oldE), tLL(toE_fd)));

else if ((or[j][i]--’~ ')&&(3r[j][i+1]-’~’))

oldr-TPpaint_tile(tor_null, fpla,align(

rLR(oldE), tLL(toE_null)));

else oldr-TPpaint_tile(tor_Enull, fpla, align(

rLR(oldE), tLL(toE_fnull))):

I

if (oddInp-i+1))

{ oldr-TPpaint_tile(tspare_output1, fpla,align(

rLR(oldE), tLL(tspare_outputl)));

oldr-TPpaint_tile(tor_gndEnoc,fp1a,align(

rLR(oldr), tLL(tor_gna_noc))):

oldr. y_top-oldr. y_top-l;

oldr-TPpaint_tile(tpsr,fpla,align(rUR(oldr), tLL(tpsr)));

else

{ oldr-TPpaint_tile(tspare_outputz, fpla,align(

rLR(oldE) tLL(tspare_output2))):

oldr-TPpaint_tile(tor_gnd_con,fpla, align(

}

rLR(oldE),tLL(toE_gnd_con)I):

if ((i--l)&&(odd(np)))

{ or_last_row.Lbot-or_last_row.Lbot+4;

oldr-or_last_row:

for (j-O; j<n3; j++)

I if ((or[j][i]=-’I’)Il(or[j][i]--’i'))

oldr=TPpaint_tile(tor_d,fpla,align(

rLR(oldr),tLL(tor_d)));

else oldr=TPpaint_tile(tor_null,fpla,align(
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rLR(oldr),tLL(to:_null)));

}

oldr-TPpaint_tile(tspare_putput4,fpla,align(

rLR(oldr),tLL(tspare_putput2)));

oldrtTPpaint_tile(to:_gnd_con,fpla,align(

rLR(oldr),tLL(tor_gnd_con)));

}

else if ((i--1)&&(even(np)))

{ or last row. y_bot-or_last_row. y_bot+12;

olHr-OLlast_row:

for (j-O; j<n3:j++)

{ if ((ortj][11-'I’)||(or[j][iJ--’i’))

oldr-TPpalnLtile(tor_con,fpla,align(

rLR(oldE), tLL(toE_con)));

else oldr-TPpainLtile(torJoc,fpla,align(

rLR(oldEL tLL(toE_noc))):

oldr-TPpaint_tile(tspare_putputl,fpla,align(

rLR(oldr),tLL(tspare_putputl)));

oldr-TPpaint_;ile(to:_gnd_noc,fpla,align(

rLR(oldr),tLL(tor_gnd_noc)));

}

row_start.y_bot-rov_start.y_bot+8;

 /* */

/* paint the upper part of pla */

/*
*/

 

void paint_ppper()

{

int i:

oldr=row_start;

oldr=TPpaint_tile(tspare_p_inullup,fp1a,align(

rLR(oldE), tLL(tspare_p_ _pullup)));

for(i-0; i<nif; i++)

{ oldr-TPpaint_tile(tspare_p_12, fpla,align(

rLR(oler tLL(tspare_p 12)));

oldr-TPpsint_tile(tspare_p_El, fpla,align(

rLR(oler tLL(tspare_p_il)));

}

oldr-TPpaint_tile(tspare_p_13,fpla,align(

rLR(oldr),tLL(tspare '_13)));

oldr=TPpaint_;ile(tspare_ nput3,fpla,align(

rLR(oldr),tLL(tspare_input3)));

for(i-nif;i<ni;1++) .

{ oldr-TPpaint_pile(tspare_p_12,fpla,align(

rLR(oler tLL(tspare_p_12)));

oldr-TPpaint_tile(tspare_p_il, fpla, align(

rLR(oldr), tLL(tspare_p_il)));

}

oldr=TPpaint_;ile(tspare_p_12,fpla,align(

rLR(oldr),tLL(tspare_p_12)));

if (odd(np))

{ oldr. y_bot soldr. y_bot+8:

oldr-TPpaint_tile(tspare_p_con2, fpla, align(

rLR(oler tLL(tspare_p_con2)));

}

else

oldr-TPpaint_fiile(tspare_p_con3,fpla,align(

rLR(oldr),tLL(tspare_p_con3)));

for(i=0;i<no;i++)

{ if (odd(np))

oldr=TPpaint_tile(tspare_p_02, fpla, align(

rLR(oldr),tLL(tspare_p_02)));
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else oldr-TPpaint_tile(tspare_p_o3,fpla,align(

rLR(oldr),tLL(tspare_p_o3)));

}

if (odd(np))

oldr-TPpaint_tile(tspare_outputS, fpla,align(

rLR(oldr), tLL(tspare_output5))):

else oldr-TPpaint_tile(tspare_output7, fpla,align(

rLR(oldr),tLL(tspare output7)));

oldr-TPpaint_tile(toon7,fpla,alIgn(rLR(oldr),tLL(tcon7)));

if (odd(np))

oldr-TPpaint_tile(tcon12,fpla,align(rUL(oldr),tLL(tcon12)));

else

oldr-TPpaint_tile(toonlo, fpla,align(rUL(oldr),tLL(tcon10)));

row_start. y_bot-row_start. y_bot+21;

oldr-row_start:

oldr-TPpaint_tile(tconS, fpla,aliganR(oldr), tLL(tcon5)));

for(i-O; i<nif; i++)

oldr-TPpaint_tile(tinputz, fpla,align(rLR(oldr), tLL(tinput2)));

oldr-TPpaint_tile(tspare_input4, fpla,align(

rLR(oldr) tLL(tspare_input4)));

oldr-TPpaint_tile(tconG, fpla,align(rUL(oldr),tLL(tcon6)));

oldr. y_bot -oldr. y_bot-16:

for(i-O; i<ni-nif; i++)

oldr-TPpaint_tile(tisr,fpla, align(rLR(oldr), tLL(tisr))):

oldr-TPpaint_tile(tcon4, fpla,align(rLR(oldr), tLL(tcon4)));

oldr. y_bot -oldr. y_bot+6:

oldr-TPpaint_tile(toonB, fpla,align(rLL(oldr), tLL(tcon8)));

for(i-nof; i<no; i++)

oldr-TPpaint_tile(tcon9r,fpla, align(rLR(oldr), tLL(tconQr)));

for(i-0; i<-nof/2-1,-i++)

oldr-TPpaint_tile(toutput2_d,fpla,align(

rLR(oldr),tLL(toutput2_d)));

if (odd(nof))

oldr-TPpaint_tile(toutput2_s,fpla,align(

rLR(oldr), tLL(toutput2_s))):

oldr-TPpaint_tile(tconll, fpla, align(rLR(oldr), tLL(tcon11)));

oldL y_bot -oldL y bot--6:

oldr-TPpaint_tile(tIsr_control, fpla,align(

rLR(oldr), tLL(tisr_control)));

 /*
*/

/* save the result */

*/ 

void save_result()

{

}

TPwrite_tile(fpla,”"):
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