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ABSTRACT

DESIGN OF REPAIRABLE AND FULLY
DIAGNOSABLE FOLDED PROGRAMMABLE
LOGIC ARRAYS FOR YIELD ENHANCEMENT

By

Jyhyeuan Ding

The entire manufacturing process of integrated circuits (ICs) has three major yield
steps that affect the total production run of any IC product. These major steps are: wafer
processing yield, probe yield, and final test yield. The most critical step, however, is
probe yield, which dramatically affects the number of functional devices. Probe yield,
defined as the number of good die from a processed wafer, is affected by both die size and
defect density. If the die size or the defect density increases, then total IC yield
percentages rapidly decline.

IC yield has always been a crucial factor in successful commercial manufacturing. The
technologies of ICs evolved from LSI, VLSI, to ULSI in the past two decades. However,
as the complexity of digital devices increases and geometry shrinks, the probability of
having faulty components also increases, thereby lowering the chip yield. One practical
solution to low probe yield problem is the use of fault-tolerant design.

In order to ensure large PLA (Programmable Logic Array) chips to be manufactured
with reasonable yield level, a design of repairable and fault-diagnosable PLA has been
proposed recently. The design achieves a full diagnosability for single and multiple stuck-

at, bridging, and crosspoint faults, and has led to a significant improvement in chip yield.



However, the design requires an excessive area overhead for fault diagnosis and
repair. These increases in die size would reduce the number of die that can be placed on a
wafer. In this thesis, an alternative fault-tolerant design of PLAs with folding techniques
is presented to reduce the die size, while still achieving the same diagnosability during
the manufacturing process. In addition, the design also achieves a full testability after the
chip is packaged.

This thesis presents the fault-tolerant designs of PLAs with various folding
techniques provided by PLEASURE. The chip areas required for various folding
techniques are compared. Results demonstrate that fault-tolerant design of PLA with
simple column folding techniques generally provides a "better" solution where chip yield
improvement is concerned.

The computer-aided design (CAD) tools play a very important role in VLSI design.
They can reduce the turnaround time and make design changes more quickly. In this
thesis, an automatic layout generator, ALGFPLA, has been developed and implemented
on SUN 3/160 under UNIX operating system for generating physical layout of fault-
tolerant folded PLAs.
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Chapter 1

Introduction

The entire manufacturing process of integrated circuits (ICs) has three major yield
steps that affect the total number of functional IC products that are realized [1]. The
major steps are: wafer processing yield, probe yield, and final test yield. Wafer
processing yield is defined as the percentage of good wafers that survive the
manufacturing process. This yield is usually above 90%. Probe yield is defined as the
percentage of good chips per wafer. This yield ranges from 30% to 60% depending upon
the wafer die size. Finally, final test yield is the percentage of devices that pass a final
test program which occurs after the die has been packaged. Usually, this percentage is
over 95%.

The most dominant of these three is probe yield, which dramatically affects the
number of functional devices. The die size and defect density are the two dominant
factors that affect the probe yield. The yield falls very rapidly as either the die size or the
defect density increases.

The advent of Very Large Scale Integrated (VLSI) circuit technology illustrates the
continuing trend toward increasing gate counts on a logic chip. As the complexity of
digital devices increases and the geometry shrinks, the probability of having faulty
components also increases, and thus the probe yield decreases. The low probe yield

problem can be alleviated either by improving manufacture process [2], or by introducing
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fault-tolerant design [3]. The former, a technique-dependent solution, is very costly and
quite difficult to implement within a short time. The latter is a trend of the future in

manufacturing [4 - 8].

1.1 Problem Statement and Objectives

Due to the complexity and cost of designing chips nowadays, a structured form of
logic implementation is desirable [9]. During the last few years, Programmable Logic
Arrays (PLAs) [10, 11] have become increasingly common for implementing Boolean
logic functions in VLSI circuit chips [12]. In order to ensure large PLA chips to be
manufactured with reasonable yield level, a design of fault-diagnosable and repairable
PLAs has been recently proposed [4 - 8], in which a partially defective chip can be
repaired without reconfiguring the external routing. The fault-tolerant design achieves a
full diagnosability and repairability of single and multiple stuck-at, bridging, and
crosspoint faults, and has led to a significant improvement in chip yield.

Although the structural regularity of PLAs offers design simplicity in producing VLSI
circuits, PLAs generally require larger chip area and longer delay time than random logic
implementation. With the recent development of sophisticated multi-level logic design
tools, standard cells and gate arrays have been popularly implemented with multi-level
logic circuits to reduce both chip area and propagation delay time. However, as far as the
testable design and the fault tolerance for yield enhancement are concerned, the features
are very difficult to apply to the gate array and standard cell implementations due to their
irregularity. Therefore, in order to enhance chip yield and to make the circuit easily
testable, the fault-tolerant design of the regular structure PLAs is definitely feasible in
VLSI/ULSI implementation.

However, the fault-tolerant PLA design requires an excessive area overhead for the

purposes of fault diagnosis and repair. The increase in die size would reduce the number
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of die that can be placed on a wafer. Folding techniques [13-15] have been commonly
implemented to significantly reduce the chip area. In practice, however, folded PLAs are
very difficult to test and the failure rate is higher than the conventional PLA due to the
complexity caused by folding. Thus, lower chip yield has been found as a problem of
implementing with folded PLAs. This motivates to propose a fault-tolerant design of
folded PLAs. Folding techniques are adopted to reduce the chip area, thereby increasing
the number of die that can be placed on a wafer. On the other hand, the fault-tolerant
design is to fully diagnose the faults in the chip, thus enhance the yield.

Generating an efficient mask layout which implements a complex circuit function often
causes a bottleneck for later design stages [16]. Therefore, developing the automatic
layout generation programs is quite necessary and these programs play today an
increasingly important role in VLSI circuits design. The use of program generated layout
of regular structures increases their generality and their reusability. In this study, an

automatic layout generator is presented.

1.2 Thesis Organization

This thesis presents an innovative fault-tolerant design for folded PLAs and an
automatic layout generator. Chapter 2 reviews the design of fault-tolerant PLAs and
introduces some folding techniques.

Chapter 3 proposes the fault-tolerant design of a folded PLA with a simple column
folding technique. This design achieves a full diagnosability and repairability for single
and multiple stuck-at faults, bridging faults, and crosspoint faults during the
manufacturing process.

In order to automatically generate the layout mask for a fault-tolerant design of folded
PLAs, an automatic layout generator, ALGFPLA, is presented in Chapter 4. The layout

generator has been implemented on SUN 3/160 under UNIX operating system.
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In Chapter 5, fault-tolerant designs of PLA with various folding techniques are
presented. The simulation results for various designs are compared.
Finally, Chapter 6 summarizes the work of this thesis and describes the feature

research in the area of fault-tolerant PLA designs.



Chapter 2

Background

2.1 Fault-Tolerant PLA Design

A Programmable Logic Array is a two-level AND-OR logic network that implements
the combinational circuits. By adding the storage elements such as latches and flip-flops,
PLAs can also realize sequential circuits. A typical PLA consists of two planes: AND
plane and OR plane. Figure 2.1 illustrates a PLA implemented by a NOR-NOR structure
in NMOS technology. Three fault models are generally considered for such a PLA
structure: Crosspoint fault, Stuck-at fault, and Bridging fault [17 - 22].

2.1.1 Fault Models

A crosspoint fault is caused by the unintentional presence or absence of a transistor
in the AND plane or OR plane. Four cases can be identified: Growth fault (or G-fault),
Shrinkage fault (or S-fault), Disappearance fault (or D-fault), and Appearance fault (or
A-fault). The first two occur in the AND plane, while the last twb are in the OR plane. A
Growth fault is caused by missing crosspoint in the AND plane. This results in the
disappearance of an input variable from a product term, i.e., in the Karnaugh map, the

number of minterms for this product term is increased. A Shrinkage fault results from an
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extra crosspoint in the AND plane. With the appearance of an input variable in a product
term, the number of minterms is decreased. Similarly, A Disappearance fault has a
missing crosspoint in the OR plane, and an Appearance fault has an extra crosspoint in
the OR plane.

A stuck-at fault, the simplest type of fault, is a line permanently set to logic states 1
or 0. This fault is caused by the faulty line being opened or shorted to the power or ground
line (GND). While a stuck-at-0 (s-a-0) fault at the input bit line causes the variable of
this bit line to disappear from the product terms, a stuck-at-1 (s-a-1) faulty input bit line
results in s-a-0 faults at those product lines which connect to this faulty line. Similarly,
an s-a-1 faulty product line causes the output lines to have s-a-0 faults if the output
lines connect to this product line. An s-a-0 product line will cause the product term of
this product line to disappear from the outputs. Finally, the result of a stuck-at fault at an
output line is quite obvious - the output will be stuck at its present level.

The last fault model is the bridging fault, which is a short between two adjacent or
crossing lines. This fault forces the same logic value to appear on the bridged lines. In the
NMOS technology, a wired-AND is assumed. Only when both of the bridged lines are at
logic 1 will the values appear on these bridged lines be logic 1’s; otherwise, they will be

logic 0’s.

2.1.2 Fault-Tolerant Design

The fault-tolerant PLA (FTPLA) design [6 - 8] includes both the fault-diagnosable
and repairable design. While the fault diagnosability is accomplished by employing the
additional shift registers, spare lines achieve the fault repairability. More specifically,
Figure 2.2 illustrates the schematic diagram for a fault-diagnosable PLA (FDPLA). Two
shift registers are employed: Input line’s Shift Register (ISR) and Product line’s Shift

Register (PSR). The shift registers are operated with the control circuitries shown in
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Figure 2.2 Schematic Diagram for Fault-Diagnosable PLA.

Figure 2.3.
Basically, the PSR (ISR) is used to enable only one product line (input bit line) at a
time. As shown in Table 2.1, the pattern (MP, R, W) = (0, 0, 1) writes a 1 to the (2i)-th

product line (or Py;) and all 0’s to the remaining product lines, i.e., P,; is the only enabled

line. In addition, the PSR (ISR) also allows to read the content of each product line (input
bit line), thereby significantly enhancing the diagnosability.

Figure 2.4 shows a schematic diagram of a fault-repairable PLA (FRPLA). The
original PLA is augmented by Spare Input Selector Circuit (SISC), Spare Output Selector
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Circuit (SOSC), and spare lines. Basically, when a faulty line is detected and located, we
reconfigure the selector circuits to switch this faulty line to a corresponding spare line. In

order to repair faults described in Section 2.1.1, a set of repair rules is summarized in
Table 2.2.
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10

Table 2.1 Shift Registers Operations for: (a) PSR; and (b) ISR

@
W R Mp §; § S3 Sy Operations
0 0 «x 0O 0 0 o Isolate PSR from the PLA
0O 1 O O 1 0 O Read EVEN
o 1 1 1 0 0 O Read ODD
1 0 O 0O 1 1 O Write data of RC to EVEN and set ODD to 0
1 0 1 1 0 0 1 Write data of RC to ODD and set EVEN to 0
1 1 x X X X X Invalid Case

Remark: ODD --- odd-numbered product line.
EVEN--- even-numbered product line.

(b)

M; 85 S¢ S7 Sg Operations

0O 0 O Isolate ISR from the PLA

Read COMP

Read TRUE

Write data of RC to COMP and set TRUE to 0
Write data of RC to TRUE and set COMP to 0
Invalid Case

-—-OO~—-—O€
—_ -0 O O %
® - O = O X
® = O = O O
* O = O
®x O = O O
®x - O O O

Remark: COMP--- complemented bit line.
TRUE --- true bit line.
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Figure 2.4 Schematic Diagram of a Fault-Repairable PLA.
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Table 2.2 Repair Rules
Fault Type Spare Line
1. Stuck-at Fault
Input bit line Input bit line
Product line Product line
Output line Output line
2. Crosspoint Fault
Growth Input bit line
Product line
Shrinkage Input bit line
Product line
Disappearance Product line
Output line
Appearance Product line
Output line
3. Bridging Fault
(1) Adjacent
Input bit lines Input bit lines
Product lines Product lines
Output lines Output lines
(2) Crossing
Input and product lines Input bit line
and product line
Product and output lines  Product line
and output line

Notes

remark 1
remark 2
remark 3

remark 1
remark 2
remark 1
don’t care
don’t care
remark 3
remark 2
remark 3

remark 1
remark 2
remark 3

remark 1
remark 2
remark 2
remark 3

Remarks: 1. Faulty bit line is disconnected from SISC, and is connected to

GND.

2. Faulty product line is disconnected from its pull-up transistor,

and connected to GND.

3. Faulty output line is disconnected from its pull-up transistor

and SOSC, and connected to GND.
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2.1.3 Fault Diagnosis and Repair Process

The fault diagnosis and repair process [8] consists of four major steps: (1) detect
faults in augmented circuitry, (2) identify and repair faults in the AND plane, (3) identify
and repair faults in the OR plane, and (4) repair crosspoint faults.

Faults in the AND plane include: Stuck-at faults at input bit lines, Bridging faults at
adjacent input bit lines, Bridging faults between input bit lines and product lines, Stuck-at
faults at product line, and Crosspoint faults (G- and S-faults). Faults in the OR plane
include: Stuck-at faults at output lines, Bridging faults between output lines and product
lines, Bridging faults between adjacent product lines, Bridging faults between adjacent
output lines, and Crosspoint faults (A- and D-faults). In this implementation, the stuck-
at and bridging faults must be repaired immediately when they are identified. Otherwise,
the stuck-at faults may mask some other faults so that the precise identification of fault
types cannot be made.

In this process, the augmented circuitry is tested first. Since the augmented circuitry
is non-redundant, any faults are considered as fatal. As such, the repair process must be
terminated. After the augmented circuitry has been proved to be fault-free, the following
steps of fault diagnosis and repair process can then be implemented. Basically, the faults
in the AND plane are identified as follows. Stuck-at and bridging faults at bit lines are
identified by observing the contents of bit lines from the ISR cells. This is followed by
observing the contents of the product lines from the PSR to locate the stuck-at and
bridging faults at the product lines. In addition, the contents of the product lines can also
be used to identify the crosspoint faults (G- and S- faults). Similarly, by applying
patterns from the PSR and observing the output lines, one can locate the stuck-at and
bridging faults at the output lines, as well as the crosspoint faults (D- and A- faults).
Based on a fault map consisting of all crosspoint faults, a spare allocation algorithm can

efficiently utilize the spare lines to repair crosspoint faults.
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Previous research has demonstrated that the fault diagnosis and repair process can
achieve a full diagnosability of single and multiple stuck-at faults, bridging faults, and

crosspoint faults [8].

2.1.4 Design Evaluation

The fault-tolerant PLA design includes both fault diagnosability and repairability. The
original PLA is augmented by adding extra chip area for fault diagnosis and repair use.
Figure 2.5 shows the physical layout of a fault-tolerant PLA "mish", and Figure 2.6
illustrates the floor plan. The layout includes the original PLA, the spare lines, the shift
registers, and control circuits. Based on the floor plan, Table 2.3 compares the chip areas
required for the original PLA, (1, 2, 1)-FRPLA, and FDPLA for various PLAs, where (1,
2, 1)-FRPLA means that the FRPLA has one spare input bit line, two spare product
lines, and one spare output line.

Table 2.3 depicts that the fault-tolerant design of the (100, 400, 100)-PLA with (1, 2,
1) spare assignment requires an additional 11.54% area overhead. Research has
demonstrated that the yield of this design can be enhanced nearly five times higher than

the nonredundant design [8].

Table 2.3 Area Overhead of FTPLASs

Original Augmented PLA
PLA (1,2, 1)-FRPLA FDPLA FTPLA
n pP|m Area Area % Area % %

50 [190 | 67 | 2210460 | 134868 | 6.10 324800 14.69 20.80
60 |200 | 60 | 2495564 | 142564 | 5.71 358400 14.36 20.07
100 {200 | 100 | 4104524 | 189924 | 4.63 448000 10.91 15.54
100 | 400 {100 | 8022924 | 253924 |3.16 672000 8.38 11.54
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Figure 2.5 Physical Layout of FTPLA "mish".
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Figure 2.6 A Floor Plan of Fault-Tolerant PLA.
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2.2 Folding Techniques

The conventional PLA has a major drawback of having a lower transistor rate which
results in a significant waste of silicon area. One way to reduce the wasted area is to
compact the array by using folding techniques. Folding is a technique that attempts to
reduce the area of a PLA by exploiting its sparsity. The objective is to determine
permutations of the rows (and/or columns) which permit a maximal set of column pairs
(row pairs) to be implemented in the same column (row) of the physical logic array. A
number of folding techniques have been proposed [13 - 15, 23 - 26]. Folding techniques
overcome array sparseness by cutting and rearranging input, output, and product lines.

Figure 2.7 shows the schematic diagram of a Simple Column Folded Programmable
Logical Array (SCFPLA). One input enters the top of SCFPLA, referred to as TOP input,
and one enters from the bottom of SCFPLA, referred to as BOTTOM input, in the same
physical column. A bit column is defined as the column having one or two input bit lines.
If a bit column has two input bit lines, then they are separated by a "cut". We define the
TOP output, BOTTOM output, and output column in the same fashion as discussed
above. In this folding technique, product line folding is not allowed.

A Simple Row Folded Programmable Logical Array (SRFPLA) is a structure in which
two logical rows may share one physical row. According to the array structures, two
cases can be identified: AND-OR-AND structure (SRFPLA-A), and OR-AND-OR
structure (SRFPLA-O), as shown in Figure 2.8.

Simple folding is just a special case of multiple folding. For a Multiple Column Folded
PLA (MCFPLA), as shown in Figure 2.9, an input (or output) can enter a PLA either
from the top, the bottom, or the side of the PLA. With the Multiple Row Folded PLA
(MRFPLA), the array structure can be repeated in two different ways. Figure 2.9
illustrates the AND-OR and OR-AND structures for MRFPLAs.
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Figure 2.7 Schematic Diagram of a SCFPLA.
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SCFPLA SRFPLA-A SRFPLA-O
Figure 2.8 Block Diagrams of Simple Folded PLAs.

PLEASURE is an interactive program for simple/multiple constrained/unconstrained
row and/or column folding of PLAs [27]. The PLA description is given as input to the
program in the form of two-level sum-of-products logic implicants. The output of the
program is a symbolic table representing the folded array with the positions of the active

devices corresponding to the cubes of the logic function, the location of the cuts and the
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contacts between columns and connection rows. The symbolic table is suitable to be
processed by a layout generator which generates the mask layout of the array according
to a given technology. Note that the symbolic table of PLEASURE, as listed in Table 2.4,
is technology independent. Figure 2.10 shows an example of PLEASURE for simple

column folding technique.
l t-w}f AND | OR | AND OR | AND |7
- T B it i

- - OR |AND | OR | AND| OR |-

Bt /T | |
MCFPLA W T Y I e

MRFPLA-O

Figure 2.9 Block Diagram of Multiple Folded PLA.

Table 2.4 Symbols of PLEASURE:
(a) AND Plane; and (b) OR Plane

(a) AND Plane
Normal Split below
Contact to true bit line 1 !
Contact to complemented bit line 0 o
No contact - _
(b) OR Plane

Contact to output line I i
No contact ~ =
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Figure 2.10 An Example of PLEASURE for Simple Column Folding:
(a) Personality Matrix , (b) Schematic Diagram of PLA; and
(c) Personality Matrix , (d) Schematic Diagram of SCFPLA.




Chapter 3

Fault-Tolerant SCFPLA Design

This chapter describes a fault-tolerant design of PLA with Simple Column Folding

technique (SCFPLA). The proposed fault-tolerant design includes the fault-diagnosable
design and repairable design.

3.1 Fault-Diagnosable SCFPLA Design

Fault diagnosability of a PLA, as shown in Figure 2.2, is accomplished by adding the
shift registers ISR and PSR to the original PLA. The features of ISR and PSR
significantly enhance the controllability and observability of the PLA. For a SCFPLA,
since the bit columns in the folded AND plane are shared by the TOP inputs and the
BOTTOM inputs, it is virtually difficult to insert the shift register ISR. Therefore, an
alternate fault-diagnosable structure is proposed.

Figure 3.1 illustrates a schematic diagram of the proposed fault-diagnosable structure
for the SCFPLA. Both AND and OR planes are composed of folded and unfolded parts.
Similar to the fault-diagnosable design of Figure 2.2, the PSR is connected to the product
lines, and the ISR is used in the unfolded part of the AND plane. In order to achieve the
full diagnosability, an ISR-like structure is presented for the folded part of the AND plane.

20
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Figure 3.1 Schematic Diagram of a Fault-Diagnosable SCFPLA.

3.1.1 PSR and ISR

Figure 3.2 illustrates the PSR and ISR cells and the corresponding control circuitry.

The operations of the PSR and ISR in Figure 3.2 are the same as those in Figure 2.3.
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However, the redundant circuit in Figure 2.3 is removed. More specifically, the signal So

and the associated pass transistors, in Figure 2.3, are used to isolate the ISR and PSR

from the PLA. When Sy = 0, or the pass transistor is OFF, Table 2.1 shows that the
signals S; through Sg are also at logic 0’s. This implies that the pass transistor control
by S is redundant.

The extra power line Vddl, in the FDPLA of Figure 2.2 can also be eliminated. The
power line Vdd1 was used to disable the input decoder in order to avoid the data conflict
when we apply patterns from the ISR to the bit lines. In fact, the data conflict can be
avoided by matching the patterns. Specifically, when enabling only the even-numbered bit
line of the i-th input, i.e., loading 1 to this enabled bit line and 0’s to other bit lines from
ISRs, unlike Vddl is set O to disable the input decoders in [8], we may apply a logic O to
the i-th input and 1’s to other inputs. This application will not conflict the data loaded
from the ISRs. Similarly, for enabling the odd-numbered bit line of the i-th input, a logical
1 is applied to the i-th input. Figure 3.3 illustrates the detail operation. Therefore, the
BOTTOM input decoders in the unfolded AND plane do not need this extra power line
vddl.

3.1.2 An ISR-like Structure for TOP Input Decoder

The TOP inputs of the SCFPLA, as shown in Figure 2.7, will be modified as an ISR-
like structure. The modifications include the restructuring of the original SCFPLA and the
use of multiplexing circuitry. The former allows enabling only one bit column of the folded

part at a time, while the latter allows reading the contents of the bit columns.
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Figure 3.2 Control Circuits and Modified Cells of Shift Registers: (a) PSR; and (b) ISR.
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Figure 3.3 Circuit Diagram for "write" Mode ISR:
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Figure 3.4 ill the sct ic  di of a restructured SCFPLA, or
RSCFPLA. The RSCFPLA and the conventional SCFPLA, as shown in Figure 2.7, have
the same OR plane and unfolded AND plane structure, but their foldled AND plane
structures are slightly different. In SCFPLA, the “"cut" of the folded bit column is
performed during the manufacturing process. In contrast, the RSCFPLA preserves the
completeness of the folded bit columns, i.e., the "cut" process will be performed after the

fault diagnosis and repair process.
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Figure 3.4 Schematic Diagram of a Restructured SCFPLA.

In order to enable only one bit column at a time, the bit column structure is also
modified. Figure 3.5 (a) shows that, in a conventional SCFPLA, the true (complemented)
bit line of a BOTTOM input decoder shares a bit column with the true (complemented) bit
line of a TOP input decoder. In RSCFPLA, we switch over the true bit line and the
complemented bit line of the TOP input decoder, as illustrated in Figure 3.5 (b). This
modification gives the combined TOP and BOTTOM input decoders the capability to
enable only one bit column at a time. Table 3.1 shows the combinations of TOP and
BOTTOM inputs and the data being assigned to the bit columns for both the conventional
SCFPLA and the RSCFPLA.
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SCFPLA RSCFPLA

(a) (b)

Figure 3.5 Bit Column Structures: (a) SCFPLA; and (b) RSCFPLA.

Table 3.1. Input Signal Combinations

SCEPLA RSCFPLA
BOTTOM TOP
INPUT INPUT ODD EVEN ODD EVEN
0 0 0 1 . *
0 1 1 0 0 1
1 0 1 0 1 0
1 1 1 0 0 0

*: previous value

In a RSCFPLA, when all TOP and BOTTOM inputs hold 1’s (except the i-th
BOTTOM input which holds 0), only the (2i)-th bit column will have logic value 1 and all

the others will have logic value 0’s. This means that only the (2i)-th bit column is
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enabled and all others are disabled. Conversely, when only the i-th TOP input holds O,
this enables only the (2i-1)-th bit column. In other words, the modification allows
enabling only one bit column of the folded AND plane at a time.

It should be mentioned that BOTTOM input decoders of folded AND plane do not
need the extra power line Vddl. Since this proposed design allows applying signals from
both TOP and BOTTOM inputs in the folded AND plane, it is not necessary to disable
the BOTTOM inputs of the folded AND plane using Vdd1. As the BOTTOM inputs of the
unfolded AND plane do not need Vddl either, the proposed fault-diagnosable design in
Figure 3.1 does not require the extra power line Vddl. Therefore, the number of extra
signals needed in this revised design is less than in [8].

To read the content of each bit column in the folded AND plane, a multiplexing

circuitry, as shown in Figure 3.6, is employed for each TOP input. According to ISR of
Figure 3.2, the signal w is used to control the operation of "read" and "write", i.e., W =

0 reads the content of bit column, and W = 1 writes data to the bit column. The signals

Sg and Sg are used to select the true or complemented bit columns to perform "read"

function. During normal operation, or writing values to bit columns during the diagnosis

and repair process, W is set to be 1 and S5 = Sg =0, i.e., the circuit acts as a regular

input decoder, as shown by the solid lines in Figure 3.6 (a). On the other hand, reading

values from the bit columns during the diagnosis and repair process, W is set to be 0

and (SS , S6) =(0,1) (or (1,0)) to read the content of the even (odd) bit column, as

indicated by the dotted lines in Figure 3.6 (a). Figure 3.6 (b) shows the physical layout of

the ISR-like structure, where each input takes 16 Awide and 90 A long.



28

[72]
(=
i

(@)

Figure 3.6 ISR-like TOP Input Decoder:
(a) Schematic Diagram; and (b) Physical Layout.

3.2 Fault-Repairable SCFPLA Design

To avoid complex routing and to repair the faulty PLA, spare input/output/product

lines are added to the SCFPLA to replace the faulty lines, and two control circuits SISC
and SOSC are also used for line reconfiguration.
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3.2.1 Spare Input Column and SISC

Figure 2.4 shows that the SISC is added to the input portion of the conventional PLA
between the input decoder and the AND plane. In this design, as shown in Figure 3.7,
the SISC for the BOTTOM inputs is referred to as BSISC, while the SISC for the TOP
inputs is referred to as TSISC.

When an input bit column that contains two bit lines is faulty, as indicated by the
dotted line in Figure 3.7, both BSISC and TSISC are programmed, i.e., the Normal-OFF
links are now ON and the Normal-ON links are now OFF, to switch these inputs to a
spare input column. On the other hand, when an input bit column that contains only one
input bit line is faulty, the same procedure is performed only for BSISC. After the SISCs
have been reconfigured, we connect the faulty input columns to GND, to avoid the faulty
input columns affecting the functions of the product lines, and disconnect the spare input

columns from the GND.

3.2.2 Spare Output Column and SOSC

Similarly, Figure 3.8 shows that the TSOSC and BSOSC are added to the OR plane
for the TOP and BOTTOM outputs, respectively. A Normal-OFF link between each
output bit column and GND and a Normal-ON link between each spare output column
and GND are also added. Notice that Normal-ON link between each output bit column
and its pull-up transistor and a Normal-OFF link between each spare output column and
its pull-up transistor in [8] are not necessary in this proposed design. This is because
we put the pull-up transistor between the TSOSC/BSOSC and output inverter. Once we
switch the TSOSC/BSOSC, the pull-up transistor has also been switched to the spare
output column from the faulty output column. Therefore, the number of pull-up transistors

in the OR plane of this design is less than in Figure 2.4 [8].
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Figure 3.8 Schematic Diagram for SOSC and Spare Output Column.
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3.2.3 Spare Product Lines

Figure 3.9 illustrates that both TOP spare product lines and BOTTOM spare product
lines are added into the PLA. The TOP (or BOTTOM) spare line repairs the faulty
product line which contains only TOP (or BOTTOM) inputs and outputs. Similar to the
FRPLA design, this design also requires the following programmable links: Normal-ON
link between each product line and its pull-up transistor, Normal-OFF link between each
product line and GND, Normal-OFF link between each spare product line and its pull-up
transistor, and Normal-ON link between each spare product line and GND.

When a faulty product line is detected and located, it is first disconnected from its
pull-up transistor by programming the Normal-ON link to OFF and then it is connected
to GND by programming the Normal-OFF link to ON. In this operation, two cases are
identified:

1. If this faulty product line connects to only bottom side (or top side), a BOTTOM (or
TOP) spare product line is programmed and this spare line is connected to its pull-
up transistor and disconnected from GND by programming its links, or

2. If this faulty product line connects to both bottom side and top side, it is repaired by
one TOP spare product line and one BOTTOM spare product line.

3.2.4 Repair Rules

Since the defects that are likely to occur in the SCFPLA are similar to those in the
conventional PLAs, the repair rules for the SCFPLA are the same as the ones in Table
2.2. The unique fault that occurs in an SCFPLA is a bridging fault caused by the "cut"
process. Specifically, in an SCFPLA, a "cut" is applied to a bit (or output) column that is

shared by two bit (or output) lines. An improper "cut" process (i.e., the line is cut
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Figure 3.9 Schematic Diagram for Spare Product Lines.
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incompletely) would introduce a bridging fault between two lines which is difficult to test
in the conventional folded PLAs. This fault can be detected and located in the proposed
fault-tolerant design. The repair of this fault is described in the fault-diagnosis and repair

process.

3.3 Fault Diagnosis and Repair Process

According to the fault models and the repair rules described in the previous sections,
fault diagnosis and repair process, as shown in Appendix 1, is proposed to locate and

repair all single and multiple crosspoint, stuck-at, and bridging faults.

3.4 Design Evaluation

Figure 3.10 shows a floor plan of the fault-tolerant SCFPLA. The area of the fault-

tolerant SCFPLA is estimated by the following formula:

Area = (16nb + l6sn + 30)(22sp +8p+ 83n +43) + (8mb + 22sm +21) (8sm +
22sp +8p+81)+ 8mt x 71 + 140(8p + 16nb - 16nt) + l6nt x 90 +

16nt(8sn +10) + 8mt(8sm + 10), @3.1)
where n, : number of TOP input lines, s, : number of spare input lines,

ny, : number of BOTTOM input lines,

m, : number of TOP output lines, S} number of spare output lines,

my,: number of BOTTOM output lines.

P : number of product lines, s..: number of spare product lines.

p
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Figure 3.10 Floor Plan of the Fault-Tolerant SCFPLA.
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In order to demonstrate the effectiveness of the proposed design in area reduction,
the areas of various benchmark PLAs [28] are estimated. The first four columns of Table
3.2 lists the PLA names, the number of inputs (n), outputs (m), and product terms (p).
The chip areas for (1, 2, 1)-FTPLAs are estimated in accordance with the floor plan
shown in Figure 2.6. Columns 6 and 7 show the number of BOTTOM inputs and outputs
computed using the PLEASURE program. Based on the floor plan shown in Figure 3.10,
the areas of (1, 2, 1)-SCFPLA are calculated from Equation (3.1). Column 8 compares
the area ratio of the proposed design versus the FTPLA design. The results show that
the proposed design reduces the chip area as much as 47%. This implies that the number
of die that can be placed in a wafer is doubled, thereby increasing the overall chip yield.

According to the physical layouts for both the conventional PLA design and the
proposed design for the PLA "mish", as shown in Figure 3.11, the proposed design not

only provides the fault tolerance, but also consumes less chip area.

3.5 Fully Testable SCFPLA Design

The key to the fully testable PLA design is the use of additional hardware to enable
only one product line at a time to make the PLA fully testable [21, 29]. Although the
internal structure of SCFPLA is a little different from the conventional PLA, the
Input/Output (I/O) relation still remains the same. As a result, from the I/O’s function,
we may not even notice the slight modification of the structure. Since the fault-tolerant
SCFPLA design contains PSRs to enable or disable each product line, this makes the
proposed design fully testable by the pin overhead from signals W, Mp, and Sin. In other

words, the proposed design achieves a full diagnosability during the manufacturing
process. On the other hand, after the chip is packaged, the proposed design is turned into

a fully testable design.
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Table 3.2 Simulation Results

(SCFPLA)

(1,2,1)-SCFPLA

name n m P Area ny my, %
S5xpl 7 10 65 270024 7 6 91.8
9sym 9 1 84 440832 X
addeé *
adr4 8 S 75 288312 8 3 94.8
alul 12 8 19 143784 7 4 67.9
alu2 10 8 68 308080 10 5 93.7
alu3 10 8 66 300832 10 4 92.1
apla 10 12 25 162808 10 7 90.7
bco 21 11] 179 1046152 17 10 87.5
bca 16 46| 180 1354736 16 31 86.3
bcb 16 39| 156 1113792 16 28 89.1
bcc 16 45| 137 1051496 16 30 86.3
bcd 16 38| 117 856600 16 22 84.5
chkn 29 71 140 979440 24 4 84.4
ck 4 7 9 60488 3 5 83.4
col4 14 1 14 206832 X
cps 24 102| 162 2070304 21 64 76.2
dcl 4 7 9 60488 4 5 92.3
dc2 8 7 39 181048 7 4 87.6
dist 8 S| 120 431232 8 4 97.1
dk17 10 11 18 133456 10 6 90.3
dk27 8 9 10 88592 8 5 90.4
dk48 15 17 21 193688 15 9 89.1
exep 28 62| 109 1216408 24 31 74.3
f51m 8 8 76 309200 8 4 91.8
gary 15 11| 107 562600 14 8 91.6
in0 15 11| 107 562600 14 8 91.6
inl 15 17| 104 595408 14 17 95.8
in2 19 10] 135 763640 16 8 87.9

X : SCFPLA cannot be obtained by PLEASURE.

* . Number of care or column exceeds the PLEASURE limit.
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Table 3.2 Continued

(1121 1)-FTPLA

(ll 21 1)-SCFPLA

name n m P Area ny, my, %
in3 34 29 74 779440 24 19 73.8
in4 32 20| 212 1694800 23 10 74.2
in5 24 14 62 486400 16 11 74.9
iné6 33 23 54 580544 18 14 62.5
in?7 26 10 54 444256 16 7 69.4
jbp 36 57| 122 1452752 26 31 70.6
misg 56 23 69 993384 28 12 55.2
mish 94 34 82 1757440 47 17 52.7
mlp4 8 8| 127 480968 8 6 95.5
opa 17 61 79 771272 15 40 80.6
radd 8 5 75 288312 8 3 94.8
rckl 32 7 32 357216 32 6 95.0
rd53 5 3 31 117992 5 2 95.2
rd73 7 31 127 414664 7 2 96.9
risc 8 31 28 212672 7 16 79.3
root 8 5 57 231144 8 4 96.3
sgn 7 3 38 218288 X
sqr6 6 11 50 213136 6 6 90.0
ti 43 67| 213 2737784 30 38 69.5
tial *
vg2 25 81 110 734608 25 4 94.3
wim 4 7 9 60488 3 6 84.9
x1ldn 27 6] 110 755024 26 3 92.9
x2dn 82 47| 104 2000128 45 24 57.6
x6dn 38 5 81 744648 24 5 70.0
x7dn *
x9dn 27 71 120 820464 26 4 93.1
z4 7 4 59 220920 7 2 94.4
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(b)

Figure 3.11 Layouts of the PLA "mish":
(a) Conventional; and (b) Fault-Tolerant SCFPLA.




Chapter 4

Automatic Layout Generator

This chapter describes an automatic layout generator, ALGFPLA, that generates the
layout mask for fault-tolerant SCFPLAs. The layout generator is built on the MPACK
library [30] using MAGIC graphics editor. ALGFPLA has been implemented on SUN
3/160 under UNIX operating system.

4.1 Development

ALGFPLA consists of two major steps: (1) create a template; and (2) compile
PLEASURE’s symbolic output into layout masks. ALGFPLA requires a template to
generate its fault-tolerant SCFPLAs. To make an ALGFPLA template, a sample fault-
tolerant SCFPLA layout is designed. This sample includes at least one example of each
possible combination of template tiles. It also contains all possible features, such as: the
TOP and BOTTOM inputs and outputs, transistors connected to true and complemented
signals in the AND plane, transistors connected to output signals in the OR plane, the
spare input/output/product lines and control circuits for repairable design, and the shift
registers and control circuits for fault-diagnosable design. With this template, ALGFPLA
can then generate a large fault-tolerant SCFPLA. Figure 4.1 shows a template of a fault-

tolerant SCFPLA in NMOS technology with two metal layers.

40
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Figure 4.1 An ALGFPLA Template for Fault-Tolerant SCFPLAs.
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The ALGFPLA template of Figure 4.1 is composed of the following ten blocks.

(0]
)
3
C)
&)
©)
¢)
@®
®

The core of the AND plane.

The core of the OR plane.

The input.

The output.

The pull-up transistor of product line.
The spare input line.

The spare output line.

The spare product line.

The shift register.

(10) The connection.

In association with the above blocks, Figure 4.2 shows the block diagram of the

ALGFPLA template. The template may contain one or more blocks. Each block signifies

a single array of one or more tiles from the tile library. The tiles involved in each block are

defined as follows.
(10) 3 1o © (10) (C)] ¢)]
(8)
3) (1 (6) (1) 2) ) ) 9
10) (€]
& @ ©)

Figure 4.2 Block Diagram for the Template.
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The core of the AND plane (or AND-core):

Basically, the AND-core consists of input lines, product lines, and
crosspoints. A crosspoint may present in either the true or the complemented
bit line. It is also possible that no crosspoint presents in either line. Since the
pull-down transistor, if present, is connected to ground, it is necessary to
provide a contact for the pull-down transistor. Moreover, a contact may be
shared by adjacent cross points to save the area.

In AND-core, three tiles and_[, and_r, and and_null are created for the
crosspoint possibility and two tiles and noc, and_con are for the contact
possibility, as shown in Figure 4.3, where the polysilicon line and metal line
represent the input bit line and product line, respectively, while the diffusion line
is the GND line.

and_null

Remarks:

Polysilicon line Diffusion line
Metal line Diffusion-Metal Contact

Figure 4.3 Tiles in the AND-Core.
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In PLEASURE’s data format, ’1’ or ’!" physically means that a pull-down
transistor exists between a product line and a true bit line. Thus, it is realized
by three tiles (and_con, and_l, and and_noc), as shown in Figure 4.4. Similarly,
a’0’ or ’0’ is realized by (and_con, and_r, and and_con), while the ’-* or ’_’ is
realized by (and_noc, and_null, and and_noc). Figure 4.5 illustrates an example
of ALGFPLA compiling the AND array of the PLEASURE’s symbolic format
into layout mask. Notice that the adjacent tiles are overlapped as shown to

save area.

Figure 4.5 An Example of the Core of AND Plane.
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The core of the OR plane (or OR-core):

The OR-core consists of output lines, product lines, and crosspoints. Since
the even- and odd-numbered product lines share the same ground line, the
product lines pair is included in a single tile. This results in four different
possibilities for the pull-down transistors: a transistor on the odd-numbered
product line only, a transistor on the even-numbered product line only,
transistors on both even- and odd-numbered product lines, and no transistor at
all. Therefore, four tiles (or_ud, or_d, or_u, or_null) for these four possibilities,
and two tiles (or_noc, or_con) for the connection between tiles are created, as
shown in Figure 4.6, where the polysilicon and metal lines represent the
product and output lines, respectively, while the diffusion line is a GND line.

‘Figure 4.7 illustrates the four possible combinations of tiles for the OR
array. For example, in PLEASURE’s data format, a 'I’ means that a pull-down
transistor exists between the output and the product lines. Therefore, two
consecutive 'I’s in an output column are implemented by the tiles (or_con,
or_ud, and or_con). Figure 4.8 illustrates an example of ALGFPLA compiling
the OR array in PLEASURE’s data format into layout mask. Notice that the
consecutive connection tiles in a same column are overlapped.

In the proposed SCFPLA, the "cut" for the folded part of the OR array is
required in the layout mask. Similar to Figure 4.6, Figure 4.9 presents the five
tiles (or_fud, or_fu, or_fd, or_fnull, or_frnoc) that are used to define the portion
where the "cut" is needed. Figure 4.10 shows the four possible combinations of
the PLEASURE’s data format and the layout mask implementing these five
basic tiles. Figure 4.11 gives an example of ALGFPLA compiling the

personality matrix into layout mask.



or_con or_noc

Figure 4.8 An Example of the Core of OR Plane.




47

or_fu or_fd or_fnull

or_fnoc

Figure 4.11 An Example for the Special Tiles in the Core of OR Plane.
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(3) - (5) The input and output lines, and pull-up transistor of product line:

(6)

M

Figure 4.12 illustrates the tiles involved in these blocks. As shown in
Figure 4.12 (a), two tiles ( inputl, inpur2) are used for the BOTTOM and TOP
inputs, respectively. For the output lines, both tiles (outputl s, output?_s) are
respectively represented for the TOP and BOTTOM output lines. Each output
line takes 8 A in width. In our implementation, in order to fit two adjacent output
lines into a 16 A width, both lines are compacted. Thus, the tiles (inpurl_d,
input2_d) represent two adjacent output lines on both top and bottom sides as
shown in Figure 4.12 (b).

Since a product line only takes 8 A in height, the pull-up transistor must

also be designed 8 A in height. In order to obey the design rule, two types of
pull-up transistor tile (pdt_pulupl, pdt_pullup?) are needed, as shown in Figure
4.12 (c).

The spare input line:

A spare input line can be partitioned into several blocks. Each block is
composed of one or more tiles. Specifically, in Figure 4.13, the tile spare_inputl
is used for the connection corner of SISC and spare input from BOTTOM input,
while the spare_input4 is for the TOP input. The tile spare_input3 is for the
cross section of a spare input line and a spare product line. Finally, the tile
spare_inpuz? is for the regular product lines.

The spare output line:

Figure 4.14 illustrates the tiles involved in this block. The tile
spare_output3 is the connection comer of SOSC and spare output line. The tile
spare_output6 is the cross section of a spare output line and a spare product
line. As discussed in Figure 4.6, the odd-numbered and even-numbered product
lines form a pair. A product line pair on the spare output line is constructed

using two tiles (spare_outputl and spare_output?). As the layout is painted
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Input2 Input2 Input2 Input2

outputl_d [;

Inputl Inputl Inputl Inputl
(@)

output2 d [

(b)

pdt_pullupl

pdt_pullup2
pdt_pullupl

pdt_pullup2

7 AND-core

pdt_pullupl

Figure 4.12 Examples: (a) Inputs; (b) Outputs; and
(c) Pull-up transistors for product lines.
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from the bottom to the top side, if the number of product lines is odd, the tiles
(spare_outputl and spare_output4) are used for the single product line left out
from the pairs. The tile spare_outputS is for the connection corner of SOSC and
the spare output line. Finally, if the number of product lines is even, the tile
spare_output7 represents the corner of SOSC and the spare output line.

spare_input4
spare_input2
spare_input3
: Remarks:
spare_inputl 2: Spare_input2
3: Spare_input3

Figure 4.13 An Example of a Spare Input Line.
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spare-output5 spare-output?

spare-output4

spare-output2
spare-outputl

spare-output6

spare-output3

Remarks:

1: Spare_outputl
2: Spare_output2
3: Spare_output3
6: Spare_output6

(@) (b)

Figure 4.14 Examples of Spare Output Lines:
(a) Odd Number of Product Lines; and
(b) Even Number of Product Lines.
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(8) The spare product line:

The bottom-side spare product line, as shown in Figure 4.15 (a), can be
partitioned into following blocks (the tiles required for each block is given in
parentheses): a pull-up transistor (spare_p_i pullup), cross section of input bit
lines (spare_p_i2, spare_p_il), spare input lines (spare_input3),
interconnection between two planes (spare_p_conl), cross section of output
lines (spare_p_ol), and spare output lines (spare_output5).

As shown in Figure 4.15 (b) and (c), the top-side spare product line has
the same partitioning as the bottom-side except the tiles in the OR array, such
as (spare_p_con2, spare_p_o2, spare_outputS) in the situation of odd number of
product lines and (spare_p_con3, spare_p_o3, spare_output7) in the situation of
even number of product lines.

(9) & (10) The shift register and connection:

Figure 4.16 shows that the shift registers PSR and ISR and the control
circuits are partitioned into four basic tiles: (psr, isr, psr_control, isr_control).

The remaining tiles are required for tile interconnection. In this
implementation, 15 tiles are created. They are (or_gnd _con, or_gnd _noc,
and_or_con_d, conl, con2, con3, cond, conS, conb, con7, con8, con9, conlO,

conll, conl2).
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Ezixizixizi&gizzszg

| :
spare_p_i_pullup spare_input3 spare_p_conl spare_output6

(a) Bottom Side Spare Product Line

spare_p_con2
(b) Top Side Spare Product Line (Odd Number of Product Lines)

:tzixixlzxjag}xi

u 211 121 1 |2 i 211 21 1 ¢ z:z:;:sxsxaqgigs:szgl
N\
\

spare_p_con3 spare_output7

(c) Top Side Spare Product Line (Even Number of Product Lines)

Remarks:
1: Spare_p_il a: Spare_p ol
2: Spare_p_i2 b: Spare_p o2
3: Spare_p_i3 c: Spare_p o3
u: Spare_p_i_pullup i: Spare_input3

Figure 4.15 Examples of Spare Product Lines: (a) Bottom Side;
(b) Top Side (Odd Number of Product Lines); and
(c) Top Side (Even Number of Product Lines).




54

isr_control

psr_control

V7777777727277 777727272727

SO

i J-v:r_ MM“HN r v drd uww 72777777 u“-;\ 777777 MN
7 B £
& gaim 6
3o SARAARAAA N g
Y AN

N

BN NANANN

RSSSSNNNNNSSeS
\ 4 R/
B/ 7778771
\ m\/\\\\».n\\\(\
\ N\ % [». - 0 £
RN AN AL AR
VT RALARRL 277 IYA,
..H?%é%ﬁ%w %@E& i

7

Sedefetetegedetotegeetetess
7/

/
/
/
/
’
/
o
B

N m N m.m.m..ﬁwum\
e\ . hE o &
o

N
N

=1 3 | SN
BB\ N N NN NN NN

isr isr

--------------

Figure 4.16 An Example of Shift Registers and Their Control Circuits.
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4.2 Algorithm and Examples

Algorithm I illustrates the major steps in ALGFPLA, and the program coded in "C" is
given in Appendix 2. The program assembles tiles into the desired module. Typically, the
program reads a file (in PLEASURE’s data format) and then calls the tile placement
routine in the MPACK library.

Algorithm I:
Step 1: Initialization.
1.1: Process command line arguments.
1.2: Create a new tile.
1.3: Load in the template tiles.
Step 2: Compile input data.
2.1: Read the input data.
2.2: Separate folded columns from unfolded columns.
2.3: Restructure input bit columns.
Step 3: Layout generation
3.1: Paint and place tiles.

3.2: Print the generated layout mask.

The program must first include the file mpack.h which defines the interface to the
MPACK library. Next, the TPinitialize procedure is called to process command line
arguments, open an input file, and load in a template. The routine TPcreate_tile(name) is
to create a new, empty tile and give the name "name". This is followed by loading in the
template tiles by the routine TPname_to_tile(name) that assigns a unique ID for the tile.
For example,

tinputl = TPname_to_tile("inputl");
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The pointer tinputl points to the tile "inputl” of Figure 4.12 (a).

Next, the program reads the input data and computes where to place the next tile. In
our implementation, the input data in PLEASURE format is sorted to separate the folded
part from unfolded part. In addition, the bit columns are restructured as discussed in
Figure 3.5. After the input data are compiled, the painting and placement routine,
TPpaint _tile, is carried out. For example,

x =TPpaint_tile (a, b, c);
means that the tile "@" is painted into the tile "b" such that its lower left corner is placed
at the position "c" in the tile "b". In this implementation, the PLA is painted by the
following sequence: the lower part, middle part, and upper part. When all tiles are placed
the program calls the routine TPwrite_tile to create the output file.

Two examples are given below to demonstrate the ALGFPLA. The first example is
to illustrate the use of routines in MPACK while the second is to show our layout

generator.

Example 1:

A code constructing a set of tiles in a layout of Figure 4.17 is given as follows.

I* program which generates the layout in Figure 4.17 */

positionx = 20; position.y = 30;

rect = TPpain:_tile (tpdt_pullupl, output, align(position, tLL(tpdt_pullupl)));
rect = TPpaint_tile (tand_con, output, align(rLR(rect), tLL(tand_con)));

rect = TPpaint_tile (tand_r, output, align(rLR(rect), tLL(tand_r)));

rect = TPpain:_tile (tand_con, output, align(rLR(rect), tLL(tand_con)));

rect = TPpaint_tile (tand_l, output, align(rLR(rect), tLL(tand_l)));

/* */
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(20, 30) pdt_pullupl and 1 and_r

Figure 4.17 Example 1.

The code illustrates that the lower left corner of the layout is located at (20, 30). The
tiles pdt pullupl, and_con, and_r, and_con, and and_l are placed side by side. Note that
rLR() specifies the location of the lower right comer of the tile, and align() computes the

location for placement of the tile.

Example 2:
Consider an input data (in PLEASURE format), as shown in Figure 4.18 (a), the

program, as listed in Appendix 2, compiles the data and generates the layout mask
shown in Figure 4.18 (b).
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Input: 1-01 I~~1
1100 iIi~
0! -- ~~11
e 1.1 =TT
0100 I~1I~
(@
Output:
; : ou
-l
H
3 -
%
-
1
(®) +

Figure 4.18 Example 2: (a) Personality Matrix; and
(b) Layout generated by ALGFPLA.
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4.3 Summary and Discussion

An automatic layout generator MRPLA was developed for repairable PLAs [8].
Basically, the layout generator was built on the MQUILT [30] routine. The major
limitations of MRPLA are: (1) the use of single character symbols limit the number of
possible named tiles, and (2) the requirement that tiles have the same height. These
limitations result in increasing complexity for creating the tiles, particularly for
complicated layouts like folded PLAs. In this study, the proposed layout generator, built
on MPACK, allows us to define as many tiles as needed, place adjacent tiles with

different height, and paint the tiles to any location.



Chapter 5

Fault-Tolerant Designs of PLAs with
Other Folding Techniques

This chapter describes the fault-tolerant designs of PLAs with other folding
techniques: SRFPLA-A, SRFPLA-O, and MCFPLA. Each fault-tolerant design includes
the fault-diagnosable and repairable design. A comparison of fault-tolerant designs with

various folding techniques is also provided.

5.1 Fault-Tolerant Design of SRFPLA-A

In a SRFPLA-A, as shown in Figure 2.8, the PLA is constructed with AND-OR-
AND structure. Its inputs come into both AND planes and outputs come out in the
middle OR plane. This reduces the height of the PLA, thereby reducing the PLA area. The
repairable SRFPLA-A design can be accomplished by adding SISCs, SOSCs, and spare
lines, as shown in Figure 5.1 where all dimensions are given in units of A. Based on this

floor plan, the area of the repairable SRFPLA-A design is:

Area = (16sn + 225m + 16n + 8m + 92)(8p + 225p +27) + (8s, +44)(16s, +
16n + 60) + (8sm +51)8p + 22sm),

where n : number of input lines, s, : number of spare input lines,
m : number of output lines, Sy, number of spare output lines,
p : number of product lines, s..: number of spare product lines.

P
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Vdd and GND [27%Pull-up & Links Vdd and GND
22sp). Spare Product Lines
3 E -8
a AND OR 2l g AND
Pull-ug & g ‘5" O Pull-ug
[Links| S 1| 8A 3 g |Links
“|| per product % o %
&)
= 16\ 8?- < 16A
302 perinput  [il6}  Pperdutput ﬂﬁx per input 30A
(8s+ 1D SISC | |]Bs,+ 14 SOSC SISC |
vdd
33A Input Decoder 37A Output inverter Input Decoder

Figure 5.1 Floor Plan of the Fault-Repairable SRFPLA-A.

The fault diagnosability of a SRFPLA-A is achieved by adding the PSRs and ISRs to it.
However, the separation of each row should be preserved until the fault diagnosis and repair

process is completed. Since each shift register takes 16 x 140 A in area, the total area for the

fault-tolerant SRFPLA-A is:

Area = (area of fault-repairable SRFPLA-A) + (2n + p) x 8 x 140.

Table 5.1 lists the simulation results of the fault-tolerant SRFPLA-A design for various
PLAs. Column 5 calculates the chip area required for the (1, 2, 1)-FTPLA design. With the
applications of PLEASURE, the number of product lines computed for SRFPLA-A is given in

column 6. The last column shows the ratio of the required chip area for the proposed fault-

tolerant SRFPLA-A design over that for the FTPLA design.
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Table 5.1 Simulation Results (SRFPLA-A)

(1,2,1)-FTPLA (1,2,1)-SRFPLA-A
name n m 12) area p %
alul 12 8 19 143784 13 96.5
cps 24 | 102| 162 2070304 161 103.9
in4 32 20| 212 1694800 211 109.7
in5 24 14 62 486400 61 109.9
iné6 33 23 54 580544 50 101.8
in7 26 10 54 444256 52 108.3
Jjbp 36 57| 122 1452752 114 99.7
misg 56 23 69 993384 36 68.2
mish 94 34 82 1757440 42 65.2
x2dn 82 471 104 2000128 64 71.4

5.2 Fault-Tolerant Design of SRFPLA-O

Figure 5.2 shows the floor plan of a repairable design for the SRFPLA-O. Together
with the shift registers, for fault-diagnosable design, the area of the fault-tolerant
SRFPLA-O design is:

Area = (16sn + 22sm +16n + 8m + 92)(8p + 22sp +27)+ (8sn + 44)(16sn +
16n ) + (8spy, + 51)(22s;, + 8m + 60) + (2n + p) x 8 x 140,

where n : number of input lines, S, - number of spare input lines,

m : number of output lines, Sy number of spare output lines,

p : number of product lines, Sp* number of spare product lines.

Table 5.2 lists the simulation results for various PLAs.
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Figure 5.2 Floor Plan of the Fault-Repairable SRFPLA-O.
Table 5.2 Simulation Results (SRFPLA-0)
(1,2,1)-FTPLA (1,2,1)-SRFPLA-O
name n m p area P %
alul 12 8| 19 143784 11 89.3
cps 24 ] 102]| 162 2070304 151 96.9
in4 32 20| 212 1694800 211 104.4
in$ 24 14| 62 486400 60 104.1
iné 33 23] 54 580544 47 95.7
in7 26 10{ 54 444256 49 99.8
jbp 36 57| 122 1452752 106 92.1
misg 56 23] 69 993384 38 69.8
mish 94 34| 82 1757440 48 70.6




64
5.3 Fault-Tolerant Design of MCFPLA

Figure 5.3 shows a schematic diagram of a PLA with multiple folding technique
computed using PLEASURE and its personality matrix. The MCFPLA design allows the

inputs to come into the AND plane from top, bottom, and left-hand side. Since an input

line takes 16 A in width, it is necessary to reserve two product lines (each has 8 A in
height) for a sided input line. Figure 5.4 illustrates a floor plan of a repairable and fault-
diagnosable MCFPLA design. The area can be estimated by the following formula.

Area = (16ny + 165, + 30) % (8s,(8s,, + 22sp +8p+ 8ns +43) + (8mb +228
+21) x(8sm + 22sp +8p+ 8ns +81) + 16nt(8sn +10) + 1440nt +
8m, x (8s, + 10) + 568mt + 528ns+ (an - 2nt + p) % 8 x 140,

where ny : number of BOTTOM input lines,  ng : number of side input lines,
n, :number of TOP input lines, Sy, : number of spare input lines,
my, : number of BOTTOM output lines, s,.: number of spare output lines,

m, : number of TOP output lines,

p :number of product lines, Sp* number of spare product lines.
PLEASURE: MCFPLA g_ I 0,0,
-~ N LI ,_11:6
0-1 i~ e + RS
01' ~1 —3 —Q— Rf
-0- I~
b IS-DOE;j I ®3
L l
10- ~1 — % Rs
N § 5 VY
L I, I 372
(@) (b)

Figure 5.3 An Example of MCFPLA.
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Figure 5.4 Floor Plan of the Fault-Repairable MCFPLA.
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Table 5.3 summarizes the simulation results of the fault-tolerant design for various

PLAs. The results show that the areas can be significantly reduced.

Table 5.3 Simulation Results (MCFPLA)

(1,2,1)-FTPLA (1,2,1)-MCFPLA
name n m P area ng | ny my, %
alul 12 8 19 143784 2 7 5173.1
cps 24 1102 | 162 2070304 0121 56 | 72.1
exep 28 62 | 109 1216408 0|24 31 174.3
in3 34 29 74 779440 8 |19 19 | 70.6
in4 32 20 | 212 1694800 3|24 11 | 77.9
inS 24 14 62 486400 5114 10 | 73.3
iné 33 23 54 580544 7119 14 | 70.6
in?7 26 10 54 444256 8 |13 8 169.8
jbp 36 57 | 122 1452752 7121 30 | 66.3
misg 56 23 69 993384 40 |10 13 | 47.5
mish 94 34 82 1757440 67 | 21 27 | 57.5
ti 43 67 | 213 2737784 14 | 20 46 | 65.8
x2dn 82 47 | 104 2000128 51 | 23 24 | 54.1

5.4 Comparison

In order to compare the performance of various fault-tolerant folded PLA designs,
Table 5.4 summarizes the results in Table 3.2, 5.1, 5.2, and 5.3.

Results show that the fault-tolerant designs of PLAs with column folding techniques
are better than those PLAs with row folding techniques. Although the MCFPLA design
is slightly better than the SCFPLA design in some cases, it should be mentioned that the
fabrication process using the multiple folding technique is much more complicated than
the simple folding technique. Therefore, this study suggests that fault-tolerant simple

folded PLA design will provide "better” results as far as chip yield is concerned.
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Table 5.4 Results Comparison

name SRFPLA-A SRFPLA-O SCFPLA MCFPLA
alul 96.5 89.3 67.9 73.1
cps 103.9 96.9 76.2 72.1
exep X X 74.3 74.3
in3 X X 73.8 70.6
in4 109.7 104.4 74.2 77.9
in$S 109.9 104.1 74.9 73.3
iné6 101.8 95.7 62.5 70.6
in7 108.3 99.8 69.4 69.8
jbp 99.7 92.1 70.6 66.3
misg 68.2 69.8 55.2 47.5
mish 65.2 70.6 52.7 57.5
ti X X 69.5 65.8
x2dn 71.4 X 57.6 54.1
x6dn X X 70.0 X

Remark: X indicates that the folded PLA cannot be obtained by PLEASURE.




Chapter 6

Conclusions

This chapter summarizes the major contribution of this study and outlines directions

for future research.

6.1 Summary of Major Contribution

In order to ensure that large PLA chips are manufactured at a reasonable yield level,
a fault-tolerant design, using folding techniques that allow full diagnosis and fault repair,
is presented for yield enhancement. The major contribution in this study is that, taking
the advantages of both folding techniques and fault-tolerant design technique, the
proposed design not only achieves a full diagnosability of single and multiple stuck-at,
bridging, and crosspoint faults, but also requires less chip area than the fault-tolerant
design in [8] and thus increases the number of die that can be placed on a wafer.
Moreover, the proposed design is fully testable after the chip is packaged.

The other contribution is the development of an automatic layout generator for fault-
tolerant folded PLAs. Chapter 4 describes the procedure of developing an automatic
layout generator. The layout generator ALGFPLA compiles the PLEASURE’s data
format into layout masks. The ALGFPLA has been implemented on SUN 3/160 under the
UNIX operating system.

68
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6.2 Directions for Future Research

According to the technological implementation and design style, numerous folding
techniques have been proposed and implemented. The tradeoffs are area reduction and
regularity, i.e., the area reduction is often paid for by the increase in irregularity. In
practice, the irregularity structure generally results in increasing the defect density in the
fabrication process. As a result, it is not always guaranteed that the more the area
reduction, the higher the overall chip yield. A "good" folding algorithm may be good for
reducing the array size, but it may be not suitable for the fault-tolerant design. The
significance of the fault-tolerant design of folded PLAs should be in reducing the die size
while still achieving the full diagnosability and repairability.

In this thesis, the PLEASURE program was used to demonstrate the effectiveness of
the proposed fault-tolerant design. Our simulation results shown in Chapter 5 have found
that the chip area reduction is not significant for other folding techniques. In practice,
however, the deficiency is caused by folding algorithms that originally designate for area
reduction, not for fault-tolerant design. Therefore, the development of a "good" algorithm
that is suitable for fault-tolerant design is a very interesting subject for future research.

Spare line allocation and optimal redundancy for achieving the maximum yield are also
very important in the fault-tolerant design, particularly for folded PLAs. A higher
probability of repair can be achieved if a larger number of spares is added. However, since
the added redundancy and the associated circuitry are also susceptible to defects, too
much redundancy may have a "diminishing" effect on the chip. The optimal redundancy is
highly dependent on both the failure rate of the fabricated chips and the folding
algorithms. Consequently, achieving maximum yields using optimal redundancy is also an
important research subject.

According to the technological implementation and design style, numerous folding

techniques have been proposed and implemented. However, there is still no single folding
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algorithm that is universally efficient for all PLAs. As a result, designers must face the
problem of selecting an appropriate technique to match their goals and constraints.
Therefore, it is necessary to develop a selection system that automatically produces the
physical layout of the "optimal” fault-tolerant/fully testable PLA structure which meets
the design requirements. We envision a system that allows the designers to: specify a
set of logic functions to be realized by a PLA, optionally specify the desired yield level,
select an appropriate structure that may be with or without folding depending upon the
yield level desired, and to provide the physical layout of the resultant structure. A
knowledge-based system can be employed to realize this vision. The knowledge base
should contain the candidate folding algorithms and the corresponding layout generators.

F {
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APPENDIX 1

Fault Diagnosis and repair Process

According to the fault models and the repair rules described in this thesis, this fault
diagnosis and repair process can recover single and multiple stuck-at, bridging, and
crosspoint faults. Keep in mind that both stuck-at and bridging faults must be repaired
immediately after they have been identified.

Part 1: Detect Faults in the Augmented Circuits

The augmented circuits considered are ISR, PSR, and control circuits. Since the
augmented circuits are non-redundant, they are fault detectable but not fault repairable.

To test the function of the shift registers, first, they are isolated from PLA by setting
both signals R and W to logic 0. Then, by applying a sequential test pattern (0101...0101)
from Sin to these registers, the outputs can be observed from Sout. Since the function of
control circuit could be observed from some extra register cells, the control circuit is also
fully testable. Therefore, after the augmented circuits have been tested to be fault-free,
the following steps of fault diagnosis and repair process can be implemented.

Part 2: Locate and Repair Faults in the AND Plane

The faults in the AND plane include:
Type 1: Stuck-at fault at input bit column.
Type 2: Bridging fault between two adjacent input bit columns.
Type 3: Bridging fault between input bit column and product line.

Type 4: Stuck-at fault at product line.
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Type §: Bridging fault between two adjacent product lines.
Type 6: G-fault and S-fault.

Follow the steps below, the faults of Type 1 through Type S5 can be located and
repaired, while the fault of Type 6 can be located.

Step 1: Set TOP input decoder and ISR to "read" mode, apply the input pattern (1, 1, ...,
1) and (0, O, ..., 0) to the BOTTOM inputs. At the same time, set the PSR to
"write" mode and write O’s to all the product lines. Thus the data on the input bit
columns, read from TOP input decoder and ISR, are expected to be: ALL1 = (1, 0,
1,0, .., 1, 0) for the input pattern (1, 1, ..., 1), and ALLO= (0, 1,0, 1, ..., 0, 1) for
the input pattern (0, O, ..., 0).

The stuck-at faults at the input bit columns can be located by examining the zero bits

in ALL, where ALL = ALL1 © ALLOQ. Once the stuck-at fault at the input bit column
(Type 1) is located, it should be repaired immediately, i.e., switch it to a spare input line

and connect this faulty input bit column to GND.
Property 1: Type 2 and Type 3 faults are equivalent to stuck-at faults.

Proof:

Case I. One of the bridged lines has stuck-at fault.
Since bridged lines should have the same logic, this bridging fault will force
both bridged lines to have the same stuck-at fault.

Case I1. None of the bridged lines contains stuck-at fault.
For Type 2, since the data expected on the adjacent input bit columns are
always different, with the assumption of wired-AND logic, the bridged
columns will be diagnosed as having stuck-at-0 fault.

For Type 3, since 0’s have been written to the product lines, the bridged
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input bit column will be diagnosed as having stuck-at-0 fault.

Therefore, after Step 1, all Typel and Type 2 faults can be located and repaired while
only part of Type 3 faults have been taken care of.

Step 2: Set TOP input decoder and ISR to "write" mode and assign O’s to all the input bit
columns. Set PSR to "read" mode and read the value of each product line, which

is expected to be 1. Therefore, a zero means a stuck-at-0 fault.

Notice that in the case of bridging fault between input bit column and product line,
because in Step 1 the bridged input bit column had been connected to GND after it was
diagnosed as having s-a-0 fault, the bridged product line will be diagnosed as having s-
a-0 fault. (This completes the diagnosis and repair of Type 3 fault.)

Step 3: Set TOP input decoder and ISR to "write" mode and a walking 1 is passing
through the input bit columns, i.e., only one bit column is enabled with value 1

and all other bit columns are disabled. Read the states of product lines from PSR.

)

i-th product line when the j-th bit column is enabled, i.e., nj = 1 (0) means there is (no)

crosspoint between the j-th input bit column and the i-th product line.

Finally, we can construct matrix N = [ “ij ] where n; is the inverse of the value on the

Property 2: If the i-th row of matrix N contains all Os, then the i-th product line is
diagnosed as having s-a-1 fault. (This finishes the diagnosis and repair of
Type 4 fault)

Proof:
In this case, either multiple crosspoint faults or s-a-1 fault could happen to this

product line. For simplification of fault location process, treat it as s-a-1 fault.

Property 3: If the i-th and (i+1)-th rows of matrix N are identical, the i-th and (i+1)-th
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product lines are diagnosed as having bridging fault (Type 5).

Proof:

In this case, either multiple crosspoint faults or bridging fault could happen to
these two product lines. Again, for simplification of fault location process, treat
this case as bridging fault between two adjacent product lines.

Now, let matrix A = [ 85 ] be the personality matrix of AND array. After the faults of

Type 1 through Type 5 have been repaired, the G-fault and S-fault (Type 6) can be
locatedbyexaminingthenonzcrobitsinmatriwahercC=[cij]=N®A=[nij®aij

1. These faults will be repaired until all the crosspoint faults of AND plane and OR plane
have been located to optimally use the redundancy.

Part 3: Locate and Repair Faults in the OR Plane

The faults in the OR plane include:
Type 7 : Stuck-at fault at output line.
Type 8 : Bridging fault between output line and product line.
Type 9 : Bridging fault between two adjacent output lines.
Type 10: Bridging fault between two output lines which share one bit column.
Type 11: A-fault and D-fault.
Follow the steps below, the faults of Type 7 through Type 10 can be located and
repaired, while Type 11 fault can be located.

Step 4: Set PSR to "write" mode and assign O’s to the product lines. Read the values on
the output lines from both TOP and BOTTOM output inverters.

Notice that the output values should be O’s, therefore, an output value 1 indicates

that the corresponding output line has stuck-at-1 fault (Type 7).
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Property 4: The bridging fault between output and product lines is equivalent to stuck-at
fault (Type 8).

Proof:

In the case when none of them contains stuck-at fault, the logic O in the bridged
product line will force the bridged output line to have s-a-1 fault. On the other
hand, since the faulty output line is repaired by disconnecting it from SOSC and
connecting it to GND, the bridged product line is thus forced to have s-a-0 fault.

Step 5: Set PSR to "write" mode and a walking 1 is passing through the product lines,
that is, enable only the i-th product line by assigning 1 to this product line and
disable all other product lines by assigning 0’s to these product lines. When PSR
is set to "write" mode, ISR and TOP input decoder are set to "read" mode. To
assign this walking 1 to the i-th product line successfully and avoid pulled-down
by the input, apply a specific input pattern to the BOTTOM input decoders. This
pattern can be found in the matrix N. When the walking 1 is passing through the
product lines, read the states of the output lines from both BOTTOM and TOP

output inverters.

A similar way as Step 3, two matrices B = [ bij L T=[ tij ] can be constructed, for

BOTTOM and TOP output inverters respectively where bij (tij) is the value at the j-th

BOTTOM (TOP) output inverter when the i-th product line is enabled. Note that the j-th

column of matrices B and T represent the same bit column in the folded OR plane.

Property S: IF the j-th column of matrix B (T) contains all 0’s, then the j-th bottom
(top) side output line is diagnosed as having s-s-O fault. (This completes the

diagnosis and repair of Type 7 fault.)
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Proof:
The j-th column of matrix B (T) containing all O’s implies that either the j-th

bottom (top) output line has s-a-0 fault, or all crosspoints at this line are missed.
For simplicity, diagnose it as s-a-0 fault.

Property 6: If the i-th rows of matrices B and T contain all 0’s, then the i-th product line
is diagnosed as having s-a-0 fault. (This completes the diagnosis and repair
of Type 8 fault.)

Proof:

Again, either multiple crosspoint faults or s-a-0O fault could have happened. For
simplicity, treat it as s-a-0 fault.

Property 7: If the j-th column and the (j+1)-th column of matrix B (T) are identical, then
the j-th and the (j+1)-th bottom (top) side output lines are diagnosed as
having bridging fault (Type 9).

Proof:

In this case, either multiple crosspoint faults or bridging fault could have
happened. For simplicity, treat it as bridging fault.

Property 8: If the j-th columns of matrices B and T (when the j-th column of the matrix T
is available) are identical, then the j-th BOTTOM and the j-th TOP output
lines are diagnosed as having bridging fault (Type 10).

Proof:
Case I : The cut is complete.
Since the cut is complete, the upper part of the j-th column in matrix B and
the lower part of the j-th column in matrix T should all be 0’s. Now, if the j-
th columns of matrices B and T are identical, then these two columns

should contain all 0’s. This case is impossible after Property 5.
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Case II: The cut is incomplete.

Since the cut is incomplete, this is exactly Type 10 fault.

After the faults of Type 7 through Type 10 have been located and repaired, the
remaining faults in the OR plane are Type 11 faults, i.e., A-faults and D-faults. Now,

construct matrix D = [ dij ] where dij = bij (3>) 4 when 5 is available, or dij = bij when

there is no Y- Let matrix R = [ T ] be the personality matrix for OR array. A-fault and D-

fault could be located by examining the non zero bits in matrix E where e = [ € 1=D®

Part 4: Repair Crosspoint Faults

According to the repair rules, both G-fault and S-fault can be repaired either by spare
input lines, and/or spare product lines. Similarly, both A-fault and D-fault can be repaired
either by spare output lines, and/or spare product lines. By concatenating matrices C and
E, a fault map is formed. The spare allocation algorithm developed in [31] can be used to

efficiently repair these crosspoint faults.

Part 5: Locate and Repair Incomplete Cuts in AND Plane

After the faults of Type 1 through Type 11 have been located and repaired, in other
words, there is no fault in the SCFPLA, the cut of the input bit columns is performed.
However, this may also fail. Therefore, bridging fault between two input bit lines which
share one bit column may happen. This fault is caused by improperly laser cutting.
Although with the advent of today’s laser programming techniques, the chance of having

such fault is very slim, it should also been considered to achieve full diagnosability. In
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fact, this fault can be easily detected by altering the input signals at the BOTTOM input
decoders from 0 to 1 and observing the received signals from TOP input decoders (in
"read” mode). The signal change should not affect the observed signal if the "cut" is
performed properly; otherwise, this bridging fault is detected and the fault can be repaired
by applying another cut. As a result, the proposed fault-tolerant SCFPLA design is a
fully diagnosable and repairable design.



APPENDIX 2

ALGFPLA Program

#include "/usr/local/vlsi-ucb86/lib/mpack.h"”
#include <stdio.h>

#include <ctype.h>

#defineTEMPLATE_DIR "~ding”

#define tempfile "ftscfpla-out"

#define even(x) (!(x & 1))

#define odd(x) (x & 1)

#define maxdim 220

/* */

/* subroutines declaration */

/* */

void init():

void load_in_template():

void read_ in _data();

void sort_fold_unfold();

void restructure():

void shrink():

void paint_lower();

void paint_middle();

void paint_upper();

void save_result():;

/* */

/* tile names declaration */

/* */

TILE fpla;

TILE tand_null,tand_l,tand_r,tand_con,tand_noc;

TILE tor_ud,tor_null,tor_con,tor_noc,tor_d,tor_u,tor_fud,tor_fu,
tor_fd,tor_fnull,tor_fnoc:;

TILE tinputl,tinput2;

TILE toutputl_d,toutputl_s,toutput2_d,toutput2_s;

TILE tpdt_pullupl,tpdt_pullup2;

TILE tspare_inputl,tspare_input2,tspare_input3,tspare_input4;

TILE tspare_. _outputl, tspare_output2, tspare output3, tspare outputd,
tspare_ “output5, tspare outputé, tspare_ _output?;

TILE tspare_p_il,tspare_p 12,tspare_p_i3,tspare_p_i_pullup,
tspare_p__ conl tspare_p con2 tspare_p_con3,
tspare_p_ol,tspare_p_ of,tspare_p o

TILE tpsr,t sr,tisr control,tpsr_ control,

TILE tconl,tcon2,tcon3,tcond,tcon5,tconé,tcon?,tcond,tcon9r,tconlo,
tconll, tconl2,tor_gnd _con,tor_gnd _noc,tand_or_con_d;

char and[maxdim] [maxdim], or [maxdim] [maxdim];

int np,ni,no,nif,nof;

RECTANGLE oldr, row_start,or_last_row;

main(argc,argv)
int argc:;

char
{

x*argv;
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init (argc,argv) ;
load_in_template();
read in data():

sort_fold_unfold():

restructure() ;
shrink();

paint_lower();
paint_middle (
paint upper ()
save result()

’
):
;
:

}
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/* */
/* initial step */
/* */
void init (argc,argv)
int argc:
char **argv;
{
int i j'
TPinitialize(argc, argv, TEMPLATE_DIR);
oldr=origin_rect;row start-origin rect;
for (i=0;i<maxdim;i+¥)
{ for (j=0;j<maxdim; j++)
{ and(i] [J1='-’; :
or[i1([]3] ='~'; 3
) i
}
}
/* */
5* create a new tile and load in the template tiles *5
x *

void load_in_template()
{

fpla = TPcreate_tile(tempfile):

/*

*/

/* 1. the core of the AND plane (AND core) */
tand null = TPname_to_tile("and_null");

tand_1l = TPname_to_tile("and_1");
tand_r = TPname_to_tile("and_r");
tand_con = TPname_to_tile("and_con");
tand_noc = TPname_to_tile("and_noc");
/* */
/* 2. the core of the OR plane (OR_core x/
tor_ud = TPname_to_tile("or_ud");
tor_null = TPname_to_tile("or_null”");
tor_con = TPname_to_tile("oxr_con");
tor_noc = TPname_to_tile("or_noc");
tor_d = TPname_to_tile("or_d");
tor_u = TPname_to_tile("or_u");
tor_fud = TPname_to_tile("or_fud"):;
tor_fu = TPname_to_tile("or_fu");
tor_f£fd = TPname_to_tile("or_£d");
tor_fnull = TPname to_tile("or_fnull");
y tor_fnoc = TPname_to_tile("or_fnoc"); /
* *
/* 3. the input */
tinputl = TPname_to_tile("inputl");
tinput2 = TPname_to_tile("input2");
/* */
/* 4. the output */
toutputl_d = TPname_to_tile("outputl_d");
toutputl s = TPname _to tile( outputl_s");
toutput2_d = TPname_to_tile("output2_ —d") ;

toutput2_s

TPname to tile("outputz s");
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/* */

/* 5. the pullup transitor for product line */

tpdt_pullupl = TPname_to_tile("pdt_pullupl”);

tpdt_pullup2 = TPname_to_tile("pdt_pullup2®);
*/

/*

/* 6. the spare input line */
tspare_inputl = TPname_to_tile("spare inputl®);
tspare_input2 = TPname_to_tile("spare_input2®);
tspare_input3 = TPname_to_tile("spare_input3®);

y tspare_input4 = TPname_to_tile("spare_input4");

* *

/* 7. the spare output line *x/
tspare_outputl = TPname_to_tile("spare_outputl”);
tspare_output2 = TPname_to_tile("spare_output2”);
tspare_output3 = TPname_to_tile("spare_output3”);
tspare_output4 = TPname_to_tile("spare_outputd”);
tspare_output5 = TPname_to_tile("spare_output5”):;
tspare_output6é = TPname_to_tile("spare_ outputé”):;
tspare_output?7 = TPname_;o_;ile("spare_gutput7");

/* *

/* 8. the spare product line *x/
tspare_p_i_ pullup = TPname_to_tile("spare_p_i pullup”);
tspare p_ 1 = TPname_to_tile("spare p_il");
tspare p_ 12 = TPname_to_tile("spare p i2"):;
tspare_p_i3 = TPname_to_tile("spare p_i3");
tspare p ol = TPname_to_tile("spare_p_ol");
tspare_p_o2 = TPname_to_tile("spare_p_o2");
tspare_p_ o3 = TPname_to_tile("spare_p_o3"):;
tspare_p_conl = TPname_to_tile("spare p_conl"):;
tspare_p_con2 = TPname_to_tile("spare_ p_con2");
tspare_p_con3 = TPname_to_tile("spare_p_con3");

/* *

/* 9. the shift register */
tisr = TPname_to_tile("isr");
tpsr = TPname_to_tile("psr"):
tisr_control = TPname_to_tile("isr_control");
tpsr_control = TPname_to_tile("psr_control™);

/* */

/* 10. the connection */
tconl = TPname_to_tile("conl");
tcon2 = TPname_to_tile("con2");
tcon3 = TPname_to_tile("con3");
tcond = TPname_to_tile("con4d");
tconS = TPname_to_tile("con5"):
tconé = TPname_to_tile("coné");
tcon? = TPname_to_tile("con7");
tcon8 = TPname_to_tile("con8");
tcon9r = TPname_to_tile("con9r");
tconl0 = TPname_to_tile("conl0");
tconll = TPname_to_tile("conll");
tconl2 = TPname_to_tile("conl2");
tor_gnd_con = TPname_to_tile("or_gnd con");
tor_gnd_noc = TPname_to_tile("or_gnd_noc");
tand_or_con_d = TPname_to_tile("and or_con_d"):

/e 7
/* read the input data */
/* */

void read_in_data()
{

int x1,x2,y:
char ch;
y=1; ch=getchar():



83

while (ch!=EOF)
{ x1=0;
while ((ch==’1’) || (ch==’!1’) || (ch==’0') || (ch=='0")
|l (Chm=m?—7) | | (Ch==’_'))
{ and([x1++] (y]l=ch;
ch = getchar();

}

while (! ((ch==’I")]||(ch==’'~’) || (ch==’4i’) || (Ch=='=’)))
ch = getchar():

x2=0;

while ((Ch==’I’) || (ch=m’~’) || (ch==/1’) || (Ch==’=’))

{ or[x2++] [yl=ch;

ch = getchar():

}
while (! ((ch==’\n’) || (ch==EQOF))) ch = getchar();

ch = getchar():

y++;
}
np=y-1; ni=xl; no=x2;
. .
/* rearrange pla:| and-plane | or-plane | >/
| folded unfolded | unfolded folded | *;
/* *

void sort_fold unfold()
{

int i,valid, 3, k;
char tmp;
i=0;valid=ni-1;
while (i<=valid)
{ i=1;

while ((and[i](j]!=’!’)&&(and (1] (J]!="0’)&&(and (L] [J)!="_")

&& (j<=np)) J++;
if (3>np)
{ for (k=1;k<=np;k++)

{ tmp=and(i] [k];

and(i] [k]l=and([valid] (k];
and(valid] (k]=tmp;

}
valid--;

}
) else i++;
nif=valid+l;
i=0;valid=no-1;
while (i<=valid)
{ i=1;
while ((or([i])[j]!='4i’)&&(or(i])[J]!='=")&& (j<=np)) IJ++:
if (3>np)
i++;
else

{ for (k=1;k<=np;k++)
{ tmp=or (1] [k];
or(i]) [k]=or([valid] [k];
or(valid] (k]=tmp;

}
valid--;
}

}

nof=no-valid-1;
}
/* */
/* restructure input bit columns :;
/%
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void restructure()

int i'j;
for (i=0;i<nif;i++)
{ j=1;
while ((and([i][J]!="!’)&&(and(i][j]!="0")&&(and(i](j]!=" ")
&& (J<=np)) J++; -
while (3>0)
{ switch(and[1i]1[3])
{ case ’!’:
and[i] [J]1='0’;
break:;
case ’'0o’:
and[1i]) (31=""'";
break;
case ’'1’:
and([1] [J]1='0’;
break;
case ’'0’:
and(i] [3j]1="1";
break;

==

/" .
/* change the symbols below the cut and above the highest contact */
/* in the OR plane */
/* */
void shrink()

{

int 1,3)j,valid;
for (i=no-nof;i<no;i++)

{ i=1;
while ((or[i][J]!=’4i’)&&(oxr(i]([J]!='=")&& (J<=np)) I++;
valid=j;
I++;
while ((j<=np)&&(or[i])[j)=='~"))
{ or(i]([J]l="+';
J++;
}
if (or(i] (valid]=='=’)
{ while ((valid>0)&&(or(i](valid]!=’'1’))
{ or(i] (valid]='+’;
valid--;
}
}
}
}
/* */
/* paint the lower part of scfpla */
/* */

void paint_lower ()
{
int 4;
row_start.y bot=row_start.y bot+87;
oldr=row_start;
oldr=TPpaint_tile(tconl, fpla,align(rLR(oldr),tLL(tconl)));
for (1=0;1i<nif; i++) oldr=TPpaint_tile(tinputl, fpla,align(
rLR(oldr) ,tLL(tinputl)));
oldr=TPpaint_tile(tspare_inputl, fpla,align(
rLR(oldr),tLL(tspare_inputl))):
for(i=nif;i<ni;i++)

L 2 P e
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oldr=TPpaint_tile(tinputl,fpla,align(rLR(oldr),tLL(tinputl)));
oldr.y_bot=oldr.y bot-32;
oldr=TPpaint tile(tcon2,fpla,align(rLR(oldr),tLL(tcon2)));
for(i=0;i<=no/2-1;i++)
oldr=TPpaint_tile(toutputl_d, fpla,align(
rLR(oldr),tLL(toutputl _d))):
if (odd(no))
oldr=TPpaint_tile(toutputl_s, fpla,align(
rLR(oldr),tLL(toutputl_s)));
oldr.y bot =0;
oldr=TPpaint tile(tcon3, fpla,align(rLR(oldr),tLL(tcon3)));
oldr=TPpaint _tile(tspare output3,fpla,align/(
rUL (oldr),tLL(tspare _output3d)));
oldr.y _bot =0;
oldr=TPpaint _tile(tpsr_control,fpla,align(
rlR (oldr), tLL(tpsr control))):;
row_start.y | bot-row start.y bot+51;
row_ —start.x right-o,

oldr=row_start;
oldr=TPpaint _tile(tspare_p_ inullup,fpla,align(
rLR(oldr),tLL(tspare_p 1 pullup))):
for(i=0;1i<nif; i++)
{ oldr=TPpaint_tile(tspare p 1i2,fpla,align(
rLR(oldr),tLL(tspare_p 12))):
oldr=TPpaint tile(tspare_p 11, fpla,align(
rLR(oldr),tLL(tspare_p 11))),

}
oldr=TPpaint_tile(tspare_p 1i3,fpla,align(
rLR (oldr),tLL(tspare 13))),
oldr=TPpaint tile(tspare nput3, fpla,align (
rLR(oldr),tLL(tspare_input3)));
for(i=nif;i<ni;i++)
{ oldr=TPpaint_tile(tspare_p_ i2,fpla,align(
rLR(oldr), tLL(tspare_p_iZ))),
oldr=TPpaint tile(tspare_p 11, fpla,align(
rLR(oldr),tLL(tspare_p il))),

}

oldr=TPpaint_tile(tspare_p 1i2,fpla,align(
rLR(oldr),tLL(tspare_p__ 12))),

oldr=TPpaint tile(tspare_p conl, fpla,align(
rLR(oldr),tLL(tspare_p_ conl))),

oldr.y bot -oldr y_bot+2;

for(i=0;1i<no;i++)

oldr=TPpaint_tile(tspare_p_ ol,fpla,align(
rLR(oldr), tLL(tspare_p_ol))),

oldr=TPpaint tile(tspare _outputé6, fpla,align(
rLR(oldr),tLL(tspare_outputG)));

row_start.y bot=row_start.y bot+21;

}

/* =*/
/* paint the middle part of pla */
/* *x/
void paint_middle ()
{

int 41,3:

for (i=np;i>0;i--)

{ oldr=row start;

if (odd(np-i+l))
oldr=TPpaint_tile(tpdt_pullupl,fpla,align(
rLR(oldr),tLL(tpdt _pullupl))):;
else oldr=TPpaint t11e(tpdt_pullup2 fpla,align(
rLR(oldr),tLL(tpdt_pullup2))):
oldr=TPpaint_tile(tand_con,fpla,align(
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rLR(oldr),tLL(tand_con))):
for (j=0;3<nif; j++){
switch (and(3j] [1])
{ case ’ ’: case '-':
oldr=TPpaint_tile(tand_null,fpla,align(
rLR(oldr),tLL(tand_null)));
break;
case ’'!’: case ’'1’:
oldr=TPpaint_tile(tand_r,fpla,align(
rLR(oldr),tLL(tand_r)));
break:;
case ‘o’: case ’'0’:
oldr=TPpaint_tile(tand_ 1, fpla,align(
rLR(oldr),tLL(tand_1)));
break;
}
if ((and[j][i]=="1") || (and[)] (1])=="1!")
|l (and(j+1]) [1]=="0") | | (and[J+1] [1]=="0"))
oldr=TPpaint_tile(tand con,fpla,align(
rLR(oldr),tLL(tand _con)));
else oldr=TPpaint_tile(tand_noc, fpla,align/(
rLR(oldr) ,tLL(tand_noc)));

}
oldr=TPpaint_tile(tspare_input2,fpla,align(
rLR (oldr) ,tLL(tspare_input2)));
oldr=TPpaint_tile(tand con,fpla,align(
rLR(oldr),tLL(tand_con)));
for (j=nif;j<ni;j++)
{ switch (and(3][41))
{ case ' ’': case '-’':
oldr=TPpaint_tile(tand_null, fpla,align(
rLR(oldr),tLL(tand_null)));
break;
case ’'!’: case ’'1’:
oldr=TPpaint_tile(tand_r,fpla,align(
rLR(oldr),tLL(tand_r)));
break;
case ‘o’: case ’'0’:
oldr=TPpaint_tile(tand_l,fpla,align(
rLR(oldr),tLL(tand_l1)));
break:

}
if (j==ni-1)
oldr=TPpaint_tile(tand_con,fpla,align(
rLR(oldr),tLL(tand con)));
else if ((and(j][i]=="1")||(and[]j] [i]==""!")
|1 (and(3j+1] [1]=="0") | | (and[]+1] [1]=='0"))
oldr=TPpaint_tile(tand_con,fpla,align(
rLR(oldr),tLL(tand_con)));
else oldr=TPpaint_tile(tand_noc, fpla,align(
rLR(oldr),tLL(tand _noc))):

if (odd(np-i+1))
oldr=TPpaint_tile(tand_or_con_d, fpla,align(
rLR (oldr) ,tLL(tand_or_con_d)));

else

{ oldr.x_right=oldr.x_right+12;
oldr.y bot=oldr.y_bot-4;

}

if (i==1)

or_last_row=oldr;
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for (J=0;3j<no;j++)
{ if (odd(np-i+l))
{ if ((or[3j)(i]=="I’) || (or[J](i]=="4")
Il (or(J] [1+1])=="1") || (or[J] [1+1]=="1"))
oldr=TPpaint_tile(tor_con,fpla,align(
rLR(o0ldr),tLL(tor _con)));
else if ((or[j][i]--'+')&&(or[j][i+1]--'+'))
oldr=TPpaint_tile(tor_fnoc, fpla,align(
rLR(oldr), tLL(tor_fnoc)));
else oldr=TPpaint_: tile(tor _noc, fpla,align(
rLR (oldr),tLL(tor_noc))):

else
{ if (((or[j)[i)=='I")&&(ox ()] [i+1]=="T"))
Il ((or[J]) [1]=="1")&& (ox(J] [1+1]=="1")))
oldr=TPpaint_tile(tor_ud,fpla,align/(
rLR (oldr), tLL(tor_ud))):;
else if ((or[j][i]n-’I')&&(or[j][1+1]-'~'))
oldr=TPpaint_tile(tor_u,fpla,align(
rLR(oldr),tLL(tor_u))):
else if (((or{Jj][i)=='~")g& (or([j][i+1])==’T"))
1 ((or[J] [i]==m’~")&& (or[J] [1+1]=="1")))
oldr=TPpaint_tile(tor_d,fpla,align(
rLR(oldr) ,tLL(tor_d)));
else if (((or[j)[i)=='I’)gs(or[j][i+1]=m=’+7))
[1((or[J](1)==’1’)g& (oxr(J] [1+1]==’+")))
oldr=TPpaint_tile(tor_fu,fpla,align(
rLR(oldr),tLL(tor_fu)));
else if ((or[j][i]--'i')&&(or[j][i+1]--'I’))
oldr=TPpaint_tile(tor_fud,fpla,align(
rLR(oldx), tLL(tor fud))):
else if ((or[j][i]-'+')&&(or[j][i+1]-’I’))
oldr=TPpaint_tile(tor_£fd,fpla,align(
rLR(oldr),tLL(tor_£d)));
else if ((or[j][i]-'~')&&<or[j][i+1]-' "))
oldr=TPpaint_tile(tor_null, fpla,align(
rLR (oldr) ,tLL(tor null))),
else oldr=TPpaint_ tile(tor fnull, fpla,align(
rLlR (oldr) ,tLL(tor fnull))),
}

}
if (odd(np-i+1))
{ oldr=TPpaint_tile(tspare_outputl, fpla,align(
rLR(oldr),tLL(tspare _outputl)));
oldr=TPpaint_ tile(tor _gnd_noc,fpla,align(
rLR (oldr) ,tLL(tor_gnd_noc))):
oldr.y top-oldr y_top-1;
oldr=TPpaint tile(tpsr,fpla,align(rUR(oldr) tLL(tpsr))):

else
{ oldr=TPpaint_tile(tspare_output2, fpla,align(
rLR(oldr),tLL(tspare _output2)));
oldr=TPpaint_ tile(tor —gnd_con, fpla,align(
rLR(oldr),tLL(tor gnd_con)));
}

if ((i==1)&& (odd(np)))
{ or_last_row.y bot=or_last_row.y_bot+4;
oldr=or_last_row;
for (3j=0;3<no;j++)
{ if ((or[j][1i)=="I")1|(or(j][1i])=="1"))
oldr=TPpaint_tile(tor_d,fpla,align(
rLR(oldr),tLL(tor _d)));
else oldr=TPpaint_tile(tor_null, fpla,align(
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rLR(oldr) ,tLL(tor_null)));

oldr=TPpaint_tile(tspare_output4, fpla,align(
rLR(oldr),tLL(tspare_output2)));

oldr=TPpaint_tile(tor_gnd_con,fpla,align(
rLR(oldr),tLL(tor_gnd _con)));

}

else if ((i==1)s&&(even(np)))

{ or_last_row.y bot=or_last_row.y bot+12:;
oldr=or_last_row;
for (3=0;3<no; j++)
{ if ((or[J](i)=="1") || (or[j]l[1]=="1"))

oldr=TPpaint_tile(tor_con,fpla,align(

rLR(oldT), tLL(tor con)));

else oldr=TPpaint_ tile(tor _noc, fpla,align(

rLR (oldT), tLL(tor noc))):;

oldr=TPpaint_tile(tspare_outputl,fpla,align(
rLR(oldr) ,tLL(tspare_outputl)));
oldr=TPpaint_ tile(tor —gnd_noc, fpla,align(
rLR(oldr) ,tLL(tor_gnd_noc)));
}
row_start.y bot=row_start.y bot+8;

/* */
/* paint the upper part of pla */
/* */

void paint_upper()

{

int 1;
oldr=row_start;
oldr=TPpaint _tile(tspare_p . inullup,fpla,align(
rLR(oldr),tLL(tspare_p_I pullup)));
for(i=0;i<nif; i++)
{ oldr=TPpaint_tile(tspare_p_i2,fpla,align(
rLR (oldr),tLL(tspare_p 12))),
oldr=TPpaint_ tile(tspare _11,fpla,align(
rLR(oldr),tLL(tspare_p il))),

}
oldr=TPpaint_tile(tspare p 1i3,fpla,align(
rLR(oldr) ,tLL (tspare Ip 13))),
oldr=TPpaint tile(tspare nput3, fpla,align(
rLR(oldr),tLL(tspare input3))):
for(i=nif;i<ni;i++) ,
{ oldr=TPpaint_tile(tspare_p_i2, fpla,align(
rLR(oldr),tLL(tspare_p 1i2))):
oldr=TPpaint tile(tspare_p i1,fpla,align(
rLR(oldr), tLL(tspare_p_ il))),

}
oldr=TPpaint_tile(tspare_p_i2,fpla,align(
rLR(oldr),tLL(tspare_p_ 12))),
if (odd(np))
{ oldr.y_bot =oldr.y bot+8;
oldr=TPpaint tile(tspare_p con2,fpla,align(
rLR(oldr),tLL(tspare_p_: con2))),
}
else
oldr=TPpaint_tile(tspare p con3,fpla,align(
rLR(oldr),tLL(tspare_p_con3)));
for(i=0;1i<no;i++)
{ if (odd(np))
oldr=TPpaint_tile(tspare p o02,fpla,align(
rLR(oldr), tLL(tspare_p_: 02))),
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else oldr=TPpaint_tile(tspare p o03,fpla,align(
rLR(oldr) ,tLL(tspare_p_ o3))),

}
if (odd(np))
oldr=TPpaint_tile(tspare_output5,fpla,align(
rLR(oldr), tLL(tspare_output5)));
else oldr=TPpaint_| tile(tspare output7,fpla,align(
rLR(oldr),tLL(tspare output7)));
oldr-TPpaint_tile(tcon7,fpla,alIén(rLR(oldr),tLL(tcon?)));
if (odd(np))
oldr=TPpaint_tile(tconl2, fpla,align(rUL(oldr),tLL(tconl2)));
else
oldr=TPpaint_tile(tconlO,fpla,align(rUL(oldr),tLL(tconl0)));
row_start.y_| bot-row start.y bot+21;
oldr=row _start;
oldr=TPpaint_tile(tcon5,fpla,alignrLR(oldr),tLL(tcon5)));
for (1=0;1i<nif; i++)
oldr=TPpaint_tile(tinput2,fpla,align(rLR(oldr),tLL(tinput2)));
oldr=TPpaint_tile(tspare_input4, fpla,align (
rLR(oldr), tLL(tspare input4))):;
oldr=TPpaint_ tile(tconG fpla,align(rUL(oldr),tLL(tconé6)));
oldr.y bot =o0ldr. y_bot-16;
for(i=0;i<ni-nif;i++)
oldr=TPpaint_tile(tisr,fpla,align(rLR(oldr),tLL(tisr)));
oldr=TPpaint__ tile (tcon4, fpla,align(rLR(oldr), tLL(tcon4))),
oldr.y bot =o0ldr. y_bot+6;
oldr-TPpaint tile(tcon8, fpla,align(rLL(oldr),tLL(tcon8)));
for (i=nof;i<no;i++)
oldr=TPpaint_tile(tcon9r,fpla,align(rLR(oldr),tLL(tcondr)));
for (1=0;i<=nof/2-171i++)
oldr=TPpaint_tile(toutput2_d,fpla,align(
rLR(oldr), tLL(toutputZ d))):
if (odd(nof))
oldr=TPpaint_tile (toutput2_s,fpla,align(
rLR(oldr), tLL(toutputz 8))):;
oldr=TPpaint_tile(tconll, fpla, align(rLR(oldr),tLL(tconll)));
oldr.y bot =oldr.y bot-6;
oldr=TPpaint_tile(tIsr_control, fpla,align(
rLR (oldr) ,tLL(tisT_ control))).
}

/* */
/* save the result */
/* */

void save_result()

{
}

TPwrite_tile(fpla,""):
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