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ABSTRACT

HYDRAULIC ANALYSIS OF SURFACE IRRIGATION
SYSTEMS USING THE FINITE
ELEMENT METHOD

By

Walid Hani Shayya

A mathematical formulation for the hydraulic analysis of flow conditions
in furrow and border irrigation systems is presented in this research study.
The methodology is based on applying the one-dimensional Galerkin
formulation of the finite element method to the numerical solution of the
hydrodynamic or the so-called Saint-Venant equations. n Numerical
developments of the complete and simplified forms of the hydrodynamic
equations were prepared using both linear and quadratic one-dimensional
finite element forms of these equations. The studied models include the
hydrodynamic, zero-inertia, and kinematic wave models. A general
one-dimensional surface irrigation computer model (FE-SURFDSGN) was
developed based on this formulation. This computer model simulates the
various phases of flow in border and furrow irrigation systems using the
hydrodynamic, zero-inertia, and kinematic wave models. Currently, only the
kinematic wave finite element analysis is fully operational for a complete
irrigation cycle in the present version of the computer model. The



Kostiakov-Lewis equation was used as the infiltration function in this
development even though both the mathematical development and the
developed finite element model allow for utilization of any other infiltration
function. Actual field measurements were utilized to validate
FE-SURFDSGN. These data were taken from previous studies that were
conducted in Colorado and Idaho. Although the computer model is still in the
developmental stage, its application to the simulation of the various phases of
flow in surface irrigation systems is very reasonable as demonstrated through
the various runs that were conducted. The results of this research work
indicate that the finite element method provides accurate simulation of the
flow conditions in both border and furrow irrigation systems. These results
also suggest that the method developed through this research can be used as
an effective tool for the hydraulic analysis of flow conditions in surface
irrigation systems.
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I. INTRODUCTION

Surface irrigation is the most important method of irrigation in the world.
Kay (1986) reported that surface irrigation still covers more than 956% of all
irrigated land worldwide in spite of the popularity of sprinkler and trickle
irrigation systems. In the United States, around 62% of irrigated land is
currently under surface irrigation (Bajwa et al., 1987). These figures reflect
the importance of this type of irrigation practice and the need for additional
improvements in both the design and operation of surface irrigation systems.
As Bassett et al. (1980) described it, this process may be accomplished through
the "skillful combination of experience and thorough understanding of the
processes involved”. Recent theoretical developments in the area of surface
irrigation system design should serve as an excellent means for better
understanding the physical processes involved in the hydraulic design and
field evaluation of surface irrigation systems. These developments involve the
application of numerical analyses to the modeling of surface irrigation systems
which will in turn increase the accuracy of the design and improve the
performance of the system with the least incurred cost.

The earliest models of surface irrigation systems dealt only with water
advance down the border or furrow. Among the many early works that were
based on this approach are the developments by Lewis and Milne (1938), Hall
(1956), Philip and Farrell (1964), and Hart et al. (1968). These approaches
were based on the principle of conservation of mass together with assumptions
regarding average depth of surface flow. These have resulted in assumptions
that water at the upper end of the border is at normal depth and that both

1



surface and subsurface water profiles are of a monomial power law of a fixed or
assumed degree. The application of these assumptions produced acceptable
results at times and fundamental errors at other times (Strelkoff and
Katopodes, 1977a).

An alternative approach is to numerically solve the two partial
differential equations that govern the unsteady water flow conditions in open
channels. These partial differential equations, or the so-called Saint-Venant
equations, consist of an equation of continuity and an equation of motion. The
latter equations can be developed based on applying the principles of
conservation of mass and momentum or energy to a controlled volume of flow
in a channel. The hydrodynamic equations, which have been studied since the
turn of century, describe the unsteady spatially varied flow of water across the
soil surface. With the recent rapid advancement in numerical techniques and
the computing potentials of computers in general and microcomputers in
particular, the possibilities and alternatives of solving surface irrigation
problems based on the numerical approximations of the hydrodynamic
equations look increasingly promising. In recent years, the hydrodynamic
equations were applied to the analysis of overland flow in watershed
hydrology, open channel flow, and surface irrigation. These equations were
utilized either in complete form or after implementing some simplifying
assumptions which would result in the zero-inertia and the kinematic wave
models.

A. Scope and Objectives

The general scope of this research work was to develop finite element
Galerkin formulations of the complete and simplified forms of the
hydrodynamic equations (equations that were developed based on the



application of the conservation of mass and momentum principles) as applied

to the simulation of flow conditions in surface irrigation systems. The physical

flow conditions in border and furrow irrigation systems were represented by a
mathematical model that could incorporate the aforementioned complete and
simplified forms of the hydrodynamic equations with a finite element
numerical solution procedure, initial and boundary conditions, and other
necessary physical parameters. The specific objectives of this research were

1.

To develop a finite element solution procedure of the Saint-Venant
equations for the hydraulic analysis of surface irrigation systems.

To create a general solution approach that will accommodate the available
mathematical models of the Saint-Venant equations in the analysis of
surface irrigation systems.

To develop an approach to easily incorporate the varying boundary
conditions of the advance, ponding, depletion, and recession phases of
surface irrigation into the solution process with minimal arbitrary or
experimental parameters.

To develop a computer model that will utilize the above mathematical
concepts for the hydraulic analysis of flow conditions in border and furrow

irrigation systems.
To numerically evaluate and compare the results of the finite element

model to actual field measurements from existing surface irrigation
systems.



II. REVIEW OF THEORY AND LITERATURE

The anglysis of surface irrigation systems is a process that involves many
parameters. One approach. for the design is to establish analytical
relationships among the various factors affecting the flow conditions in surface
irrigation problems. These factors include length of the field, inflow time,
inflow rate, surface runoff, deep percolation, application depth, soil intake
characteristics, and land slope. This approach has been utilized in the design
of surface irrigation systems for many years. However, it is incapable of
defining or estimating the spatially distributed flow conditions in surface
irrigation systems.

The process of overland flow across a soil surface is both spatially varied
and unsteady. The principles of continuity of mass and continuity of
momentum or energy can be applied to describe overland flow conditions in
irrigation systems. Applying these concepts will result in the so-called
hydrodynamic equations that are commonly known as the Saint-Venant
Equations. These equations, which have been studied since the turn of
century, describe the unsteady spatially varied flow of water across soil
surface. Originally, graphical solutions were utilized for the solution of the
above equations. However, the application of these equations was limited to
restricted, simplified cases (Strelkoff, 1970). With the advent of high speed
digital computers, numerical approximations of the Saint-Venant equations
became feasible.

This review expounds the basic background of surface irrigation as
related to surface flow description and infiltration. Also, it elucidates the

4



theory in the literature on the numerical solution procedures of the
Saint-Venant equations, particularly those utilizing the finite difference and
finite element methods as well the method of characteristics to describe the
spatially distributed flow conditions in surface irrigation systems.

A. Basic Background of Surface Irﬂgaﬁon

The basic modeling of surface irrigation systems involves many factors
that are generally common to the available types of systems. These types
include borders, furrows, and basins (Walker and Skogerboe, 1986). The
hydraulic flow characteristics of basins is a special case of the border flow
(Bassett et al., 1980). For this reason, only the hydraulics of borders and
furrows will be discussed in this section. The geometry of flow in both furrow
and border irrigation systems are generally similar. The major difference
arises from the width of the channel which is narrow for furrows and usually
wide for borders. The width of the border strip is generally wide enough to
ignore the contribution of channel walls to both flow retardate and infiltration,
an assumption which is not applicable to irrigation furrows (Bassett et al.,
1980).

The different types of surface irrigation systems involve numerous
physical characteristics that may be defined by common terminology. This
terminology, together with the basic concepts of surface irrigation systems, is
well documented in the literature. This section will review the basic concepts
of surface irrigation systems without much detail. The reader is referred to
Walker and Skogerboe (1986), Bassett et al. (1980), and Kay (1988) for more
in-depth description of the different types of surface irrigation systems.



1. Flow Description

The flow of free water in surface irrigation systems is gradually varied
and unsteady. The infiltration of water into the soil seems to dominate this
hydraulic characteristic of flow. Bassett et al. (1980) reported that the state of
water flow in surface irrigation systems is mostly turbulent or transitional, a
flow regime that is characterized by a Reynold’s number around or above 1000
even though numbers well below 1000 are frequently encountered. The
Reynold’s number is a dimensionless ratio of the inertial to viscous forces
(Binder, 1973).

The flow regime of water in surface irrigation systems is usually
sub-critical. This is characterized by Froude numbers well below unity. The
Froude number is a dimensionless ratio of the inertial to the gravitational
forces. Bassett et al. (1980) reported that critical and super-critical flow
regimes might occur just behind the wetting front in the advance phase of both
sloping borders and furrows, and just ahead of the drying front during the

recession phase.

2. Flow Phases

There are four phases of flow in a typical surface irrigation cycle. These
include the advance, ponding, depletion, and recession phases. The advance
phase represents the first portion of irrigation time during which water
advances down the furrow or border. The ponding phase starts at the end of
the advance phase when the advancing front reaches the end of the furrow or
border. This phase extends till water is shut-off at the inlet boundary. The
duration of this phase is zero if the inlet water is turned off before water
reaches the end of the furrow or border. The next phase of irrigation
represents the portion of the total irrigation time between inlet flow shut-off



and the beginning of water recession at the inlet boundary. The final phase of
flow is the recession phase which represents the portion of the total irrigation
time between the beginning of water recession at the inlet boundary and the
complete disappearance of water from the furrow or border.

B. Surface Irrigation Infiltration

The simulation of flow in surface irrigation systems relies on the
knowledge of the hydraulic characteristics and infiltration (Walker and
Humpherys, 1983, and Strelkoff and Souza, 1984). However, the most critical
step in studying the hydraulics and distribution of water in surface irrigation
systems is to establish a reasonable estimate of the infiltration function.
Clemmens (1981) described the determination of the infiltration
characteristics of the soil as "the biggest stumbling block in accurately
describing or predicting the irrigation process”. Infiltration has always been
referred to as the impeding factor to improving both the design and
performance of surface irrigation systems (Elliott et al., 1982a, and Elliott et
al., 1983b).

1. Infiltration Equations

There are many infiltration equations that have been developed
throughout the years. Walker and Skogerboe (1987) classified these equations
into three general categories. These include theoretically, physically, and
empirically based equations. A good example of an infiltration equation that
was developed based on the single-phase flow solution of the one-dimensional
Darcy equation is the Richard’s equation (Walker and Skogerboe, 1987). This
equation has the form
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where 0 is the soil moisture content on volume basis, 4 is the total pressure

head, K is the hydraulic conductivity, z is the vertical distance downward from
the soil surface, and ¢ is the infiltration opportunity time.

The Green and Ampt equation is a good example of the physically based
equations. It was developed based on the assumption that soil could be
modeled as a bundle of capillary tubes (Hillel, 1980). The Green and Ampt
equation has the form (Walker and Skogerboe, 1987)

- (ea-ei)h’
I —K[l-i’-—z—] [2.2]

where / is the infiltration rate, 6, is the saturated soil moisture content, 6, is

the initial soil moisture content, 4’ is the suction at the wetting front in the
soil, X is the hydraulic conductivity in the wetted zone, and Z is the cumulative
infiltration depth at any specific point in the space dimension.

Infiltration is a complex physical process that is very difficult to
characterize in irrigated fields where anistropic and heterogeneous conditions
usually prevail. This leads to the conclusion that an empirical approach to
assess this process is more practical than a purely theoretical approach (Blair
and Smerdon, 1987).

There are many empirical infiltration equations that were developed in
the literature. These empirical infiltration equations have always been
expressed in either exponential or power form. However, the infiltration
equations in power forms have been widely adopted to estimate infiltration in
surface irrigation problems because of the simplicity and practicality of these
equations (Fok, 1967).



Empirical infiltration equations are the result of fitting observed
infiltration data to explicit time-dependent equations. Many infiltration
equations fall under this category. A good example of these equations are the
Kostiakov and the Kostiakov-Lewis equations. The Kostiakov equation is one
of the earliest equations of infiltration (Hillel, 1980). This equation has the

form
I=aks*™ [2.3]

where ¢ is the infiltration opportunity time and a and k are two empirical

parameters obtained from infiltration tests in the field. The major draw back
of this equation is that the infiltration rate approaches zero at long times.
Hence, it is more applicable to horizontal rather than vertical infiltration. The
Kostiakov-Lewis equation has the same form as the Kostiakov equation with
an added term to correct the latter problem of the Kostiakov equation (James,
1988). This results in

I=aki“ "+ f, [2.4]

where f, is an empirical parameter that represents the infiltration rate as the

infiltration opportunity time, z, becomes considerably large. Elliott and
Walker (1980 and 1982) used the Kostiakov-Lewis function which has the
additional term for the asymptotic long-time infiltration. Their results
suggested that the Kostiakov-Lewis infiltration equation is highly effective in
predicting infiltration if a steady state infiltration rate can be assessed.

Clemmens (1981) suggested using a two-branch function of the Kostiakov
equation where the cumulative infiltration depth, Z, is represented by two
equations. The first equation applies before the steady state infiltration is
reached while the second applies after. Clemmens’ proposed equations for the
cumulative infiltration have the form
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Z=kt* for 1<t

=kt +ilt—1) for t>¢ [2.5]

where i, is the final infiltration rate and 1 is the time at which the final
infiltration rate is reached.

Philip (1957a and 1957b) developed an equation similar to the
Kostiakov-Lewis equation but with more physical significance. His equation
has the form

Z=5t"+At [2.6]
where S is the sorptivity. The parameter A was defined by Philip as

A =K,+I=K,+(§K°-K,) [2.7]

x

where K, and K, are soil parameters. Kunze and Kar-Kuri (1983) and Kunze

and Shayya (1990) defined the parameter A as the hydraulic conductivity of
the soil and suggested the adjustment of the sorptivity term by a factor to
implement this denotation. Fangmeier and Ramsey (1978) made a comparison
between the Philip equation and the Kostiakov-Lewis equation. They
concluded that the Philip equation provided better estimates of infiltration
compared to the Kostiakov-Lewis equation. However, the coefficients in the
Philip equation are more difficult to obtain.

The U.S. Soil Conservation Service (1974 and 1984) developed an
equation that relates the cumulative infiltration and the opportunity time as

Z=ed+g [2.8]

where ¢, f, and g are empirical parameters.
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2. Parameter Estimation of Infiltration Equations

Determining infiltration parameters in the various empirical infiltration
equations previously discussed is a very critical step in the design and
operation of surface irrigation systems. One approach for the estimation of
these parameters can be accomplished through the utilization of direct field
measurements of infiltration using ring infiltrometers. However, such
measurements do not reflect the actual hydraulic characteristics at the time of
irrigation (Bouwer, 1957, and Blair and Trout, 1989). They can also be very
time consuming and costly. Many scientists attempted to assess the
variability of infiltration parameters and infiltration along furrows using
infiltrometers and moisture measurements (Bautista and Wallender, 1985;
Izadi and Wallender, 1985; and Bali and Wallender 1986). Brakensiek et al.
(1979) discussed the application of a new infiltrometer system and its
utilization in the estimation of infiltration parameters in the Green and Ampt
function. Blair and Trout (1989) presented a field guide for the construction
and operation of a recirculating infiltrometer, a device that can be used in the
measurement of infiltration and the estimation of infiltration parameters in
various infiltration functions.

Another approach for the parameter estimation of infiltration equations
is to implement a numerical solution procedure of surface flow equations in
conjunction with advance, storage, and inflow-outflow field measurements.
Christiansen et al. (1966) and Fangmeier and Ramsey (1978) implemented the
volume balance method in the estimation of infiltration parameters in the
Kostiakov equation. Elliott et al. (1983a) simulated advance trajectories of
water in furrows using assumed infiltration functions and the zero-inertia
model. They then estimated the actual field infiltration using actual field
advance trgjectories and simulated advance trajectories by the zero-inertia
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model. Katopodes et al. (1991) presented a procedure for estimating both
infiltration parameters and soil roughness in surface irrigation systems using
a linearized zero-inertia model.

In 1987, Kaytal et al. developed an infiltration equation that accounts for
the two-dimensional infiltration flow conditions in furrows. Their approach
was an attempt to develop infiltration functions that are applicable throughout
the growing season instead of one irrigation only. The approach that they
followed included the numerical solution of the Richard’s infiltration equation
in furrows using the finite element method. The Richard’s equation was
utilized in conjunction with basic soil data and furrow shape parameters in
order to estimate the parameters of a power infiltration function. The latter
function had two independent variables which include the top width of flow as
well as the cultivation depth.

More recently, Walker and Busman (1990) discussed an approach to use a
kinematic wave simulation model in conjunction with the simplex method to
determine the infiltration parameters from early stages of furrow advance.
Their approach was based on minimizing the differences between predicted
and measured advance rates. They concluded that this procedure will provide
estimates of the infiltration parameters with sufficient accuracy.

The Kostiakov and Kostiakov-Lewis infiltration equations are the most
widely used infiltration equations in surface irrigation problems. The
parameter-estimation of these equations was the subject of many
investigations. Norum and Gray (1970) presented a method for deriving the
values of the parameters in the modified Kostiakov function. Smith (1972)
used surface irrigation data and a kinematic wave model to characterize the
infiltration parameters in the Kostiakov-Lewis equation. Elliott et al. (1982a
and 1983b) presented a method for deriving the values of the parameters in the
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modified Kostiakov function using dimensionless advance curves and furrow
irrigation field data. Elliott and Walker (1980 and 1982) reported on the use
of two-point volume balance methodology to establish the parameters of the
Kostiakov-Lewis function based on advance data measurements. Sirjani and
Wallender (1989) attempted to approximate the mean and variance of the
parameters in the Kostiakov-Lewis infiltration equation using the first order
analysis.

One last method for estimating the infiltration parameters in various
infiltration functions is to analyze the inflow-outflow measurements. The
infiltration is calculated as the difference between measured water inflow and
outflow from a border or furrow section. However the major disadvantage of
this method is the sensitivity of the infiltration estimates to the accuracy of
flow measurements (Trout and Mackey, 1988b). The accuracy of these
measurements depend on many factors. These factors are affected by the flow
characteristics and the geometry of furrows and borders. Bautista and
Wallender (1985) reported that infiltration rate is usually greater in blocked
furrows with flowing water compared to stagnant tests.

Strelkoff and Souza (1984) considered six different schemes for
incorporating the variable depth effect into the computations of infiltration in
furrows. They concluded that the "wetted perimeter based on local depth is the
best choice of traverse length to characterize furrow intake in mathematical
models of furrow irrigation". Izadi and Wallender (1985) statistically
examined furrow hydraulic characteristics in space and time and related these
characteristics to infiltration. Trout (1986) conducted a study to measure the
effect of both overland flow velocity and furrow hydraulic parameters on
infiltration. His conclusion was that furrow infiltration increases by
increasing the wetted perimeter of flow. He also reported that flow velocity is
inversely related to furrow infiltration rate.
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To summarize, there are various methods for obtaining infiltration data
of surface irrigation systems. These include the ring infiltrometer, ponding,
two-point, blocked furrow, inflow/outflow, and recirculating infiltrometer
methods. As outlined in this section, these procedures were utilized directly
and indirectly by many scientists in the parameter estimation of the
infiltration functions for surface irrigation systems. The reader is referred to
the texts by James (1988) and Walker and Skogerboe (1987) for a detailed
description of the various infiltration measurement devices and the procedures
followed in their implementation in the field.

3. Effect of Infiltration on System Performance

Improving the efficiency of furrow irrigation systems can be attained by
accurate assessment of infiltration (Elliott and Walker, 1980, and Elliott and
Walker, 1982). On the other hand, accounting for the spatial variability in
infiltration is very essential in evaluating the performance of surface irrigation
systems (Bautista and Wallender, 1985, and Davis and Fry, 1963). Trout and
Mackey (1985 and 1988a) attempted to quantify the effect of both inflow and
infiltration variability on the uniformity of water application and runoff in
furrows. They concluded that the consequences of inflow and infiltration
variability are excessive deep percolation as well as runofflosses in some areas
of the field while other areas receive inadequate amounts of water. Sirjani and
Wallender (1989) conducted a study to assess the effect of temporal and spatial
variability of infiltration on the performance of furrow irrigation systems.
Fonteh and Podmore (1989) developed a kinematic wave furrow irrigation
model using a physically based infiltration function. Their model could
simulate spatially varied infiltration along furrows using geostatistics and
their results seemed to be most accurate under fine textured soil conditions.
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The spatial and temporal variability in infiltration seems to affect crop
yield. Kemper et al. (1982) reported that yield decreases substantially by low
uniformity of water distribution throughout the length of the run. They
presented several treatments which can increase or decrease infiltration in
order to improve uniformity. One approach for reducing infiltration rate
involves the practice of surge irrigation. Surge irrigation is defined as "the
intermittent application of irrigation water to furrows or borders" (Bishop et
al., 1981). Surge flow creates a series of on and off inflow conditions at the
inlet (Izuno and Podmore, 1986). The characterization of infiltration under
surge irrigation systems was studied by many scientists (Bishop et al., 1981;
Izuno et al., 1985; Kemper et al., 1988; and Samani et al., 1985). The reader is
referred to these references for more details.

C. Surface Flow Equations

The principles of mass, and momentum (or energy) can be utilized to
describe the flow of water over soil surface. These principles result in two
first-order, nonlinear partial differential equations. The resultant differential
equations approximate the spatially varied and unsteady flow conditions in
open channels and surface hydrology. These same equations can also be
applied to the hydraulic analysis of water flow conditions in surface irrigation
systems.

1. Saint-Venant Equations

The two equations that result from applying the above principles are
known as the Saint-Venant equations. The first equation results from
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applying the conservation of mass principle to a control volume of flow in
surface irrigation systems. It is usually referred to as the continuity equation
and has the form

dA 90  ,
a'+ax+l--0 [2.9]

where A is the cross sectional area of flow, Q is the flow rate, / is the
infiltration rate per unit length, ¢ is time, and x is the distance along the
direction of flow. The second equation is referred to as the momentum
equation and results from applying the conservation of momentum principle to
the same fluid element. This equation has the form (Strelkoff, 1969)

_o.[22)%2 Q°T oy (119
S°‘sf+(Alg)ax +(1—A’g )a:*(Ag)az [2.10]

where y is the flow depth, g is the acceleration due to gravity, T is the top

width of flow cross section, S, is the slope of the channel bed, and S, is the
friction slope. Equation [2.10] describes unsteady non-uniform flow
conditions. The last term in the above equation cancels out if steady
non-uniform flow conditions are presumed. Of note, with steady uniform flow
assumptions, the last three terms of [2.10] mutually cancel.

Another approach can be followed to develop an equation which can
replace [2.10]. This development can be based on the principle of conservation
of energy. However, both the approach and the resultant equation will be
inherently different from the equation developed based on the momentum
approach (Martin and Wiggert, 1975; Yen, 1973; and Strelkoff, 1969).

Brutsaert (1971) verified the Saint-Venant equations experimentally for
open channel flow conditions. His approach included the comparison of the
results from the numerical solution of these equations to the flow
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measurements of a physical model. The solution procedure encompassed the
implementation of a finite difference computational algorithm with implicit
and explicit differences at interior cells and boundaries, respectively. He
concluded that the Saint-Venant equations represented the physical flow
system reasonably well. However, these positive results are only attainable
under proper mathematical conditions and appropriate description of
boundary conditions, hydraulic resistance to flow, and channel parameters.
The formulation and verification of the Saint-Venant equations for other
related problems were the concern of many scientists. These analyses were
reported in many references including Morgali and Linsley (1965), Kruger and
Bassett (1965), Wooding (1965b), Brakensiek (1966), Chen and Hansen (1966),
Ragan (1966), Liggett and Woolhiser (1967), Strelkoff (1969), Brutsaert (1971),
and Katopodes and Schamber (1983). These references concluded basically
that the application of the Saint-Venant equations to surface flow problems
produced good results when the various assumptions implemented in the
development of these equations were not violated. Many of these assumptions
were discussed in details in the journal articles by Strelkoff (1969) and Yen
(1973).

2. Uniform Flow Equations

There are three popular equations for establishing relationships among
flow rate, slope of channel bed, and channel geometry. These equations are
essential for defining the friction slope in the momentum equation, [2.10].
Originally, these equations were developed for the analysis of uniform flow
conditions in open channels. Thus, these equations are frequently referred to
as uniform flow equations. However, these equations may be used to
approximate the friction slope for nonuniform, unsteady, turbulent flow
conditions at a given instant (Morgali and Linsley, 1965). The first equation is
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known as the Chezy equation after it was introduced by a French engineer of
that name in 1768 (Henderson, 1966). The development of the Chezy equation
was based on the dimensional analysis of the resistance equation with the
assumption that flow conditions are uniform. The Chezy equation has the

form
Q =CAR"’s}” [2.11]

where C is the Chezy coefficient and R is the hydraulic radius which
represents the ratio of the area of flow to the wetted perimeter.

A more practical formula was developed in 1889 by an Irish engineer by
the name of Robert Manning (Chow, 1959). The Manning equation is widely
used for steady flow conditions of incompressible fluids in prismatic open
channels (Streeter and Wylie, 1979). The Manning equation is an empirical
equation with the form

_A
Q =—R™S; [2.12]
where n is Manning’s roughness coefficient. The Manning equation is very

popular in many Western countries (Henderson, 1966). Besides, it has well
documented roughness coefficients that were developed over the years.

The third equation is the Darcy-Weisbach equation that was originally
developed for pipe-flow. This equation can be expressed as (Brater and King,
1976)

0= 8?8 ARYS? [2.13]

where f is Darcy-Weisbach’s roughness coefficient.
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The relationships between C, n, and f can be summarized by

C =;R"‘ [2.14]
and
8 2
f= :,',', [2.15)

These roughness coefficients change with varying conditions (Walker and
Skogerboe, 1987). A complete discussion of these flow equations can be found
in Chow (1959), Henderson (1966), Streeter and Wylie (1979), White (1979),
and Bassett et al. (1980).

D. Surface Irrigation Models

There are several techniques that have been developed over the years to
model surface irrigation processes mathematically. Most of these techniques
are based on the application of the principles of conservation of mass and
momentum which are referred to as the Saint-Venant equations. The
Saint-Venant equations are applied either in complete or simplified forms.
This results in four general models, one complete form and three simplified
forms. The application of the simplified forms of the Saint-Venant equations
to the analysis of surface irrigation systems offer simpler and faster surface
irrigation modeling approaches. However, the accuracy of the results is
reduced either slightly or appreciably depending on the level of simplifications.

Strelkoff (1970) classified the numerical procedures that may be
implemented in the solution of the complete or simplified first-order nonlinear
equations of hydrodynamic models into two categories. The first approach is to
convert the original system of partial differential equations into an equivalent
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system of ordinary differential equations. This transformation is
accomplished by changing the independent variables through the introduction
of an alternate coordinate system that is inclined at an angle to the original
space-time system (Strelkoff, 1970). The resulting ordinary system of
differential equations is then solved numerically using methods such as the
finite difference method. The resultant equations are algebraic instead of
being ordinary differential equations. This approach is referred to as the
method of characteristics. @ The theoretical basis for the method of
characteristics is reviewed in details by Streeter and Wylie (1967), Strelkoff
(1970), Liggett and Cunge (1975), and Wylie and Streeter (1983). The second
approach involves the implementation of one of many available numerical
solution schemes which directly replace the first-order nonlinear partial
differential equations by difference quotients. This approach results in a
system of algebraic equations instead of the original partial differential
equations.

1. Hydrodynamic Models

Mathematical models that result from applying the Saint-Venant
equations to the analysis of surface flow problems without any simplifications
are referred to as hydrodynamic models. These models have high potential to
be very accurate in predicting flow conditions in surface flow problems and
surface irrigation systems in particular. However, these models depend
heavily on the accuracy of the provided input information (Strelkoff and
Katopodes, 1977a). Bassett et al. (1980) described the roughness and
infiltration parameters as the two main sources of input error which affect the
precision of such models. Besides, the complex, delicate nature of the
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hydrodynamic models represents their major drawback. This results in
lengthy computation times and makes such models expensive to operate when
it comes to computer cost (Bassett, 1980, and James, 1988).

Over the years, hydrodynamic models were developed by many scientists
based on the method of characteristics and applied to the analysis of flow
conditions in open channels and surface irrigation systems. Bassett (1972)
developed a model of water advance in border irrigation by solving both the
continuity and momentum equations in their complete form for unsteady
spatially varied flow conditions using the method of characteristics as
described by Streeter and Wylie (1967). In his development, Bassett utilized a
fixed rectangular grid in the space-time plane. He used the Kostiakov
infiltration function and applied the Chezy equation to the evaluation of
friction slope. He concluded that the developed model predicts flow conditions
in borders with acceptable accuracy. This conclusion was based on the
comparison of model results to actual laboratory and field measurements.
Kincaid et al. (1972) and Sakkas and Strelkoff (1974) also applied the method
of characteristics to the solution of the complete hydrodynamic equations for
border irrigation advance. They reported that their developed models
predicted the flow conditions in borders reasonably well. However, their
developments covered only the advance phase of irrigation instead of the
complete phases of surface irrigation. However, they claimed that their
approaches can be extended to the simulation of the recession phase with
proper boundary conditions.

Bassett and Fitzsimmons (1976) extended the work of Bassett (1972) by
presenting a mathematical model for the analysis of the complete phases of the
irrigation process in borders. Their model was based on the same approach,
i.e, the application of the equations of continuity and momentum in their
complete forms using the method of characteristics. They reported good
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results in general. However, they have also reported some problems of
instability and the high execution costs which were associated with the
required extensive computer time. Katopodes and Strelkoff (1977a) applied
also the method of characteristics to the approximation of the hydrodynamic
equations in borders. In their study, a comparison of the results from their
developed model and actual field measurements were made and the associated
accuracy and costs of model execution were assessed. They concluded that the

solution results were correct to second order accuracy.

The major disadvantage of the method of characteristics usually lies in
the total number of unknowns. By implementing this method, the two
nonlinear partial differential equations represented by equations [2.9] and
[2.10] are transformed into four ordinary differential equations (Katopodes
and Strelkoff, 1977a). These equations are

dv+w) [ o Iw=c)

— -g[so S ag ] [2.16]
along

dx

3-v+c [2.17]
and
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dt
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where v is the flow velocity, o is the Escoffier stage variable (Escoffier and

Boyd, 1962), and c is the celerity wave. The celerity and Escoffier stage
variables are defined as

Cﬂ/% [220]

and

0= %dy [2:21]

o;\u

where y is the flow depth. The Escoffier stage variable, ®, reduces to 2c when
the above method is applied to the hydraulic analysis of borders.

The ordinary differential equations ([2.16] to [2.19]) that were the result
of applying the method of characteristics to the complete first order, nonlinear
hydrodynamic equations were never applied successfully to the simulation of
flow conditions in furrow irrigation systems (Walker and Skogerboe, 1987).

The finite difference schemes for the direct solution of the Saint-Venant
equations are preferred by many scientists. Using these techniques, the
hydrodynamic equations are solved at a finite number of grid points in the
space-time plane (Liggett and Cunge, 1975). Two basic types of
finite-difference schemes are usually used in the literature (Strelkoff, 1970,
and Liggett and Cunge, 1975). The first represents the explicit schemes where
the algebraic equations are arranged to be solved for one unknown at a time.
These numerical schemes, although simple, are unstable and usually require
excessive computation times due to the need for the selection of small time
steps (Liggett and Woolhiser, 1967, and Strelkoff, 1970). This prompted many
investigators to avoid using these schemes, a trend which is especially true in
recent developments. On the other hand, the implicit schemes solve for a
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group of unknowns simultaneously rather than one at a time. These
numerical schemes permit larger time steps but require the solution of a
system of nonlinear simultaneous equations at each time step. They are
usually more desirable in the direct solution of the Saint-Venant equations
because of their stability and high accuracy. Various analyses of stability and
accuracy of both explicit and implicit finite difference schemes, as applied to
the direct solution of the complete continuity and momentum equations, can be
found in Liggett and Woolhiser (1967), Strelkoff (1970), Price (1974), and
Liggett and Cunge (1975).

A number of scientists have reported on the successful application of
implicit finite difference numerical schemes to the direct solution of the
Saint-Venant equations in open channels. The latest development was
reported by Swain and Chin (1990) for modeling unsteady flow in regulated
open channels. Their development would also allow for the simulation of
hydraulic structures, an option that is not available in many current open
channel models.

Walker and Skogerboe (1987) presented an implicit finite difference
scheme for the direct solution of the continuity and momentum equations in
furrows. Their scheme was based on the Eulerian integration approach, a
numerical procedure which approximates the hydrodynamic equations using
the concept of multi-cell deforming control volume. Using this approach, the
continuity and momentum equations as represented by [2.9] and [2.10],
respectively, become

[6(Q, - Qp)+(1-6)(Q, - Q))10¢ - [6(A, +2Z, - A, - Z,)]x
~[(1-0)Ar+Zy-Ay-Z,))0x =0 [2.22]

and
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l[ ¢@Q.-0)+( ‘¢)(Q3-Qu)] + (P+Q%Ag—(P+Q%Ag),
8 ot &x

N (l_e)[(P+Q’/Ag).-(P+Q’/Ag»]

&x
= S00¢A, +(1—0)Az] —So(1 - 0) [¢4, + (1 - )A, ]
+0[4D, + (1 —0)D,] +(1-0)[¢D, +(1-)Dy] =0 [2.23]

where A is the cross sectional area of flow, Q is the flow rate across the

respective cell boundaries, Z is the infiltrated volume per unit length, & is the
time step, &x is the length of the cell, 0 is the time-averaging coefficient to
account for the nonlinear variation in the flow profile over time, ¢ is the
space-averaging coefficient to account for the nonlinear variation in the flow
profile over the cell length, D is the drag (AS)), and P is the pressure force. The
subscripts / and M in [2.23] represent the left and right cell boundaries,
respectively, at time ¢;_, while the subscripts L and R represent the left and
right cell boundaries, respectively, at time ;. Walker and Skogerboe (1987)
presented a detailed description of their mathematical development from its
inception to the final form as represented by the nonlinear algebraic equations
in [2.22] and [2.23]). They discussed the implementation and applications of
this implicit finite difference scheme to furrow and border irrigation systems.
Also, they discussed the basic advantages of this procedure over the method of
characteristics approach. The primary advantage relates to the number of
computational unknowns which is half as much in the former method
compared to the latter method.

As to the application of the finite element method to the numerical
solution of hydrodynamic equations, Katopodes (1984) developed a dissipative
Galerkin scheme for the solution of these equations as applied to open
channels with discontinuous flow. All the energy diffusing terms were
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neglected in the hydrodynamic equations and his development was restricted
to one-dimensional flow in a prismatic channel with a rectangular cross
section. Katopodes reported excellent results using the dissipative Galerkin
scheme and was very optimistic about the utility of the finite element method
in computing surges and shocks in open channels. Akanbi and Katopodes
(1988) extended the work of Katopodes (1984) to two-dimensional overland
flow problems. Their development was for the solution of flood wave
propagation on initially dry land. They were very successful in solving the two
dimensional shallow-water equations with a dissipative Galerkin scheme
which involved a deforming and moving computational grid.

To conclude this section, it is clear that the one-dimensional graduslly
varied hydrodynamic equations together with appropriate initial and
boundary conditions are capable of high accuracy. However, the numerical
solution of either the two partial differential motion equations or the four
ordinary differential equations developed from applying the method of
characteristics is costly due to excessive requirement of computations which
can be time-consuming. This makes the solution of the simplified forms of the
Saint-Venant equations more desirable especially when such models produce
acceptable results (Miller and Cunge, 1975). The models that are based on the
complete hydrodynamic equations are not usually intended for the design or
specific applications because of the high operational costs. However, such
models can be used as standards of comparison for the simplified models which
have the potential to produce good results at minimal cost.

2. Zero-Inertia Models

The zero-inertia model is a simplified form of the hydrodynamic model.
The continuity equation ([2.9]) is kept unchanged while the acceleration and
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inertial terms in the momentum equation ([2.10]) are ignored based on the
assumption that such terms are negligible in most flow conditions of surface
irrigation systems (Strelkoff and Katopodes, 1977a). This assumption results
in the following simplified momentum equation

%=S,—So [2.24)

The zero-inertia model was first proposed by Brakensiek et al. (1966) in
the context of flood routing where he described the process of propagation of
flood hydrographs through the watershed channel system. Brakensiek (1966)
discussed the appropriateness of the assumptions of the zero-inertia model.
His results revealed that the zero-inertia model produced excellent results
compared to the full hydrodynamic model in the regions of slowly accelerating
flow conditions in watershed channel systems. More recently, the accuracy of
the zero-inertia model in channel routing was the center of attention of many
investigations including those of Ponce et al. (1978), Ponce and Theurer (1982),
and Ponce (1987).

Strelkoff (1972) and Katopodes (1974) were the first to apply the
zero-inertia model to surface irrigation. Their applications were prepared for
borders. The solution technique that they followed was similar to the
nonlinear shooting technique which was utilized by Brakensiek et al. (1966).
However, the latter solution approach had some convergence problems
towards the end of the depletion phase. Strelkoff and Katopodes (1977a)
presented a new numerical approach for the solution of the zero-inertia model.
The numerical approach they developed precluded the problems that were
encountered in their previous work. Their model examined the process of
irrigation as a deforming control volume with upper and lower boundaries.
This numerical approach included the solution of a system of nonlinear
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equations for each time step by first linearizing and solving the system using
the double-sweep technique as described by Liggett and Cunge (1975). The
selected time step was constant. Their linearization technique produced very
realistic results for the prediction of both advance and recession phases in
border irrigation systems.

The zei'o-inertia model developed by Strelkoff and Katopodes (1977a) was
the center of attention for many scientists. Several investigations were
conducted to refine and verify the model against field measurements. Strelkoff
and Katopodes (1977b) discussed establishing appropriate boundary
conditions for the zero-inertia model when a free over-fall downstream
boundary occurs. Clemmens and Fangmeier (1978) discussed the ways to
improve the numerical solution of the model when diked-end conditions occur
at the downstream boundary following the completion of the advance phase.
Clemmens (1979) verified the zero-inertia model for advance and recession in
blocked-end borders with actual field measurements. He concluded that the
agreement was generally good. However, he reiterated the notion that
successful application of the zero-inertia, or any other mathematical model of
surface irrigation, is dependent on the accuracy of infiltration and soil
roughness measurements. Elliott et al. (1982b) developed a mathematical
model to simulate the advance phase of flow in furrow irrigation based on the
zero-inertia assumptions. The approach they followed in their development
was similar to that of Strelkoff and Katopodes (1977a) which included the
integration of the governing equations over finite cells in the space-time plane.
The cross sectional area of flow and wetted perimeter were related to flow
depth through the implementation of power curve relationships. Their results
revealed that the zero-inertia model simulated the hydraulics of advance
phase of furrow irrigation very effectively. Jaynes (1986) presented a
numerical procedure for the solution of sloping and level borders based on the
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zero-inertia model. His model utilized a finite difference scheme to model both
advance and recession phases of flow conditions. The depth gradient term in
the simplified momentum equation was expressed explicitly and averaged over
the entire border. The author reported that this simplification made the model
simpler to program and the required computer code less cumbersome.

The zero-inertia approximation of the full hydrodynamic model was
utilized by many investigators for different applications in surface irrigation.
Fangmeier and Strelkoff (1979) evaluated the U. S. Soil Conservation design
criteria for sloping borders without runoff using a mathematical procedure
which was based on the zero-inertia model. They concluded that the design
charts of the U. S. Soil Conservation Service (1974) were reasonable for graded
borders. However, they suggested that these charts be supplemented by a
mathematical model, similar to their developed model. This would provide
those designing irrigation systems with specific guidelines on the range of
applicability of the charts for various irrigation flow parameters. Rayej and
Wallender (1985) developed a nonlinear zero-inertia model for furrow
irrigation. Later, they developed a zero-inertia model for surge flow irrigation
based on their previous work (Wallender and Rayej, 1985). The non-linearity
of the governing equations allowed for simultaneous modeling of wet and dry
sections of furrows. Their model provided adequate simulations of the advance
and recession phases of flow when compared to three sets of field data that
utilized for comparison. Schwankl and Wallender (1988) studied the effect of
the spatially-varying infiltration and wetted perimeter on furrow advance and
infiltrated water distribution using a similar zero-inertia model developed by
Rayej and Wallender (1985). More recently, Schmitz and Seus (1990)
presented an analytical solution of the zero-inertia model as applied to the



30

advance phase in sloping and level borders. Their development was based on
the assumption of a "moving momentum representative cross section in the
water body".

The zero-inertia model was analyzed by many investigators to study its
general response. This was accomplished through the process of
non-dimensionalizing the solution to produce families of dimensionless
advance curves in borders, level basins, and furrows (Katopodes and Strelkoff,
1977b; Clemmens and Strelkoff, 1981; Strelkoff and Clemmens, 1981; and
Elliott et al., 1983a). These curves were restricted solely to the advance phase.
Hence, they cannot be utilized to predict the entire irrigation process.
However, these evaluations have produced very important design
methodologies for level and sloping basins and borders (Clemmens and
Strelkoff, 1979, and Strelkoff and Clemmens, 1981).

In short, the zero-inertia model represents a simplified hydrodynamic
model that is intermediate in computational approach between the fully
hydrodynamic model represented by [2.9] and [2.10] and the kinematic wave
model which will be discussed in the following section. The zero-inertia model
was utilized in various areas of open channels and surface hydrology as well as
flood-routing and surface irrigation. The zero-inertia approximation
transforms the system of partial differential equations in [2.9] and [2.10] from
hyperbolic to parabolic form. This reduces the computer time requirements for
the execution of this group of models. Many studies revealed that the
zero-inertia model produces excellent results in the simulation of the hydraulic
behavior of basin, border, and furrow irrigation systems as long as the
assumptions of the model are not violated. The zero-inertia model appears to
be very applicable to the above areas of irrigation since the assumption of
neglecting the inertial terms in the momentum equation is realistic given the
low values of Froude numbers prevailing under actual field conditions
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(Strelkoff and Katopodes, 1977b, and Clemmens, 1978). The computational
cost of the zero-inertia model is certainly cheaper than that of the complete

hydrodynamic model.

8. Kinematic Wave Models

The Kinematic wave model is the most simplified form of the
hydrodynamic model. This model is based on the assumption that the inertial
terms in the momentum equation together with the term that describes the
pressure variation in the direction of flow are negligible ([2.10]). The
continuity equation ([2.9]) is kept unchanged. The simplified momentum
equation has the form

So=S, [2.25]

This above equation implies that flow is at normal depth throughout the
domain of solution (Bassett et al., 1980). The kinematic wave approximation
is only applicable when the slope of the channel bed is steep. Given the
relation that is depicted in [2.25], a uniform flow equation such as Chezy
([2.11)]), Manning ([2.12]), or Darcy-Weisbach ([2.13]) may be used to relate
flow rate (Q) to flow depth (y) or cross-sectional area (A).

The kinematic wave model was named after identifying the fact that the
method projects the movement of a kinematic shock wave. Since every
kinematic wave model utilizes a uniform equation to establish flow-depth
relationship, these models are frequently referred to in the literature as
"uniform depth" or "uniform flow" models (Walker and Skogerboe, 1987).

The kinematic wave method as a technique was first proposed by
Lighthill and Whitham (1955) for modeling overland flow. Later, it was
utilized in the solution of watershed problems and in predicting flood
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movements in rivers (Henderson and Wooding, 1964; Wooding, 1965a; and
Wooding, 1965b). Woolhiser and Liggett (1967) examined the errors
introduced by the application of the kinematic wave model to overland flow
problems. Their work showed that the simplified hydrodynamic model based
on the kinematic wave assumptions is applicable to these problems within a
certain range of input parameters. Following their application, the kinematic
wave theory was heavily utilized in many investigations on surface runoff in
watershed hydrology (Brakensiek, 1967; Woolhiser, 1969; and Singh, 1975).
Singh (1976) conducted a study to assess the discretization error of four
different finite difference numerical schemes frequently used in solving the
kinematic wave equations. He examined the problems of convergence and
stability of these schemes. Since then, many other investigations were
conducted in different areas of surface hydrology and open channel flow using
kinematic wave models. The most recent is a study by Hromadka and DeVries
(1988) where they examined the use of the kinematic wave method in open
channel flow routing of runoff hydrographs. Their work concentrated on the
significance of the computational errors in the application of numerical
procedures of the kinematic wave models. They were also interested in
assessing the effect of the various assumptions implemented with the
kinematic wave model as opposed to the complete hydrodynamic model.

The utilization of the kinematic wave theory in hydrologic applications
was extended to sloping, free draining borders by Chen (1970) and Smith
(1972). In his development, Chen based the solution of the kinematic wave
model on the method of characteristics with the help of initially prescribed
initial and boundary conditions. Chen indicated that the depth or discharge of
flow at any time and distance from the inlet can "be determined from the
family of characteristic curves in the x, ¢-plane”. In his conclusions, he stated
that "the kinematic wave method may only be valid for super-critical flow. For
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other than super-critical flow, the more general hydrodynamic approach
should be adopted’. Smith (1972) discussed two methods for solving the
kinematic wave model in flood wave movement and attenuation in dry alluvial
channels. The first included the application of the method of characteristics
outlined by Chen (1970). This approach reduces the partial differential
equation as represented by the continuity equation in [2.9] to
two-characteristic ordinary differential equations in the x, ¢-plane combined
with a third equation for shock movement. The second included the solution of
the same partial differential equation using finite difference approximation
and a rectangular grid. After comparing the results of both numerical
approaches to available field data, Smith reported that the kinematic wave
assumption was very reasonable for the particular cases of unsteady wave flow
addressed. These cases included sloping border irrigation and ephemeral flood
routing. He cited both the work of Woolhiser and Liggett (1967) and Tinney
and Bassett (1961) as the proper indication for the appropriateness of the
kinematic wave assumption under the conditions of his study. Once again,
Smith reported that the results of the kinematic wave models were more
sensitive to the infiltration function.

The formulation of free boundary problems in surface irrigation using
both complete hydrodynamic and kinematic wave models was investigated by
Sherman and Singh (1978 and 1982). In their work, Sherman and Singh
presented explicit formulations of the free boundary problems in surface
irrigation. Their approach was also based on the method of characteristics.

As was the case with other models, the kinematic wave model was first
developed for border irrigation, and later applied to furrow irrigation systems.
Walker and Humpherys (1983) highlighted three essential modifications in the
mathematical procedures utilized in the analysis of border irrigation systems
before these analyses are implemented in the simulation of furrow irrigation
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systems. These include the description of the geometry of flow cross section,
implementation of an infiltration function that accounts for both steady and
time dependent infiltration rates, and assessing the effect of the wetted
perimeter on the infiltration function. Walker and Humpherys accounted for
the first two modifications in their study which included the development of an
implicit finite difference scheme to the direct solution of the kinematic wave
furrow irrigation model. Their scheme was based on the Eulerian integration
approach which represents the numerical approximation of the continuity
equation based on the concept of multi-cell deforming control volume. Using
this approach the continuity equation became

{[6Q, +(1-0)Q,] - [6Q, + (1 -6)Q,]}d¢
+{[0A, + (1 -9)A,] - [¢4, + (1 - $)A,]}ox
+{[0Z, + (1 - )Z;] - [6Z, + (1 - $)Z,]}3x =0 [2.26]

The subscripts / and M represent the left and right cell boundaries,

respectively, at time 7;_, while the subscripts L and R represent the left and
right cell boundaries, respectively, at time ;, Walker and Humpherys gave a
detailed description of their mathematical development. In their conclusions,
they reported that the kinematic wave analysis is "a satisfactory tool to predict
water advance, intake, and runoff from sloped furrow irrigated systems".
After comparing the characteristic furrow model to the integral model, they
reported that "the integral model was superior on the basis of its adaptability
to both surged and continuous flows, less sensitivity to the size of the time
step, and the numerical stability of the solution”. This was supported by the
work of Walker and Lee (1981). Izuno and Podmore (1985) developed yet
another kinematic wave model for surge and continuous irrigation of furrows.
The surge infiltration function utilized in their study was based on the
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two-branch function of the Kostiakov equation as suggested by Clemmens
(1981). They reported acceptable model predictions of advance under surged
and continuous furrow irrigation applications.

The kinematic wave assumption simplifies the analysis of surface
irrigation systems immensely. However, this same assumption limits the use
of kinematic wave models to the free draining graded borders and furrows with
relatively steep slopes (James, 1988). Hence, the model is inapplicable to
dead-level fields and diked borders or furrows. The limitations can be
attributed to the facts that the normal depth is infinite in the first case while
the kinematic wave solution would be only influenced by the upstream
boundary conditions (no downstream boundary conditions could be imposed on
the flow) in the second case (Bassett et al., 1980).

4. Volume Balance Models

Volume balance models are the most simplified form of the fully dynamic
equations. These models neglect the entire momentum equation and
implement some approximations to the continuity equation. The continuity
equation ([2.9]) is applied to the entire flow profile at once (Bassett et al.,
1980). The continuity equation is integrated over space, which represents the
length of the advancing stream, to produce (Hart et al., 1968, and Bassett et
al., 1980)

_dV,(t) av,(t)
Qo= dt T di

[2.27]

where Q, is the inlet flow rate, V,(¢) is the surface volume of water, and V,(¢) is

the infiltrated volume of water. Equation [2.27] can be further integrated over
time to yield
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g =V,(0)+V, () [2.28]

The surface and infiltrated volumes of water can be determined by integrating
V,(t) and V,(z) over the advance distance and substituting the results in [2.28].
This results in (Walker and Skogerboe, 1987)

0= [ A6 0ds + [ Z6s,12as [2.29]
[1] 0

where s is the integrand of x and Z is the infiltrated volume per unit length.

Since the momentum equation which describes the temporal and spatial
variation is completely ignored, the volume balance model is based on the
assumption that the average area of flow is a constant, A. If the infiltration is
considered to be a function of intake-opportunity time, [2.29] reduces to

Qy=Ax+ fza-r,)ds [2.30]
0

where ¢—¢, is the intake-opportunity time and ¢, is the time at which the
advancing front of the stream reaches distance s.

The various volume balance models presented in the literature can be
classified into four different categories. The first category is based on the
recursive approach. The work by Hall (1956) and Strelkoff (1977) represent
two good examples of this category of volume balance models. While Hall
(1956) solved the border advéance problem, Strelkoff modeled all phases of
irrigation in borders including the depletion and recession phases. The second
category of the volume balance models is based on the Kernel function
approach. The work by Hart et al. (1968) was based on this approach. Their
work was also applied to border irrigation systems using the Kostiakov
infiltration equation. The third category of volume balance models utilizes the
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Laplace transform approach. In this approach the Laplace transform of [2.30]
is established. A good example of such an approach is the research work by
Philip and Farrell (1964). The last group of volume balance models is based on
the power advance approach. Among the many researchers that followed this
approach were Fok and Bishop (1965), Wilke and Smerdon (1965), Chen
(1966), and Singh and Chauhan (1972).

Since the volume balance model has the basic approximations of the
kinematic wave model together with many other assumptions, it must at least
have the same limitations that were highlighted in the previous section. As a
matter of fact, the volume balance models have additional inaccuracies since
the shape functions are presumed arbitrarily (Bassett et al., 1980). However,
the volume balance models have the cheapest execution costs among the
various models covered to this point. This makes this approach good for quick,
rough initial calculations.

E. Numerical Solution of the Hydrodynamic Equations

The solution of the full hydrodynamic equations or a simplified form of
these equations requires the implementation of a numerical solution
procedure. The partial differential equations that are represented by the
Saint-Venant equations could be transformed to ordinary differential
equations after utilizing the method of characteristics. Then, the resultant
ordinary differential equations are usually solved numerically. Another
alternative implements the transformation of the above partial differential
equations to a system of algebraic equations amenable to solution.

There are various numerical techniques for solving differential equations.
The finite difference and finite element methods represent the two most widely
used procedures for obtaining numerical solutions to both ordinary and partial



38

differential equations. These numerical procedures are utilized in many
problems especially overland flow problems which cover various areas of
hydraulics and hydrology including flood routing and open channel flow.

1. Finite Difference

The finite difference method approximates ordinary or partial differential
equations with difference equations. Using this numerical method, a
continuum is replaced by a series of discrete points between which the
differentials are approximated. The finite difference method has been the
most widely used procedure for approximating differential equations
numerically. It was heavily utilized repeatedly in the solution of
shallow-water equations which describe flow conditions in both open channels
and overland flow (Liggett and Woolhiser, 1967). Over the last several years,
many scientists utilized the finite difference method in the direct or indirect
solution of the simplified or complete hydrodynamic equations as applied to
surface irrigation problems. The review of such work was briefly outlined in
the previous section on surface irrigation models and therefore will not be
repeated in this section.

2. Finite Element

The finite element method utilizes an integral formulation to generate a
system of algebraic equations after approximating a continuum with a
continuous piecewise smooth functions (Segerlind, 1984). This method was
initially developed for the analysis of problems in structural mechanics. Later,
the finite element method was applied to the numerical solution of various
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classes of problems. The application of the finite element method to many fluid

mechanics problems serves as a good evidence for the wide spread use of this
numerical technique.

The application of the finite element method to overland flow problems
was the subject of many investigations. Among the many early publications
are the studies by Guymon (1972), Taylor et al. (1974), Judah et al. (1975),
Desai (1979), Ross et al. (1977; 1979; and 1980), and Heatwole et al. (1982). All
of these researchers have reported some success in utilizing the finite element
method for modelling the various physical processes in overland flow problems
which are governed by the shallow-water equations. The most recent
developments in this area were the studies by Katopodes (1984), Akanbi and
Katopodes (1988), Hu et al. (1989), Kaneko (1989), Kashiyama and Kawahara
(1989), and Vieux (1989).

On the other hand, the application of the finite element method to
irrigation problems has been very limited. Much of the prior work focused on
utilizing the finite element formulation in the analysis of both pressure and
flow conditions in sprinkler and drip irrigation systems as well as
pipe-network analyses. The application of the finite element method in these
areas was unique in the sense that the solution processes didn’t start from the
partial or ordinary differential equations but rather from utilizing the direct
stiffness procedure of the finite element method. The reader is referred to the
work by Bralts (1981) and Bralts and Segerlind (1985) for a detailed
description of this approach.

F. Synopsis

After reviewing the theory and literature that is pertinent to this research

work, it was clear that an extensive amount of work has been done in the area
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of numerical analysis of surface irrigation systems based on the hydrodynamic
equations. However, what seems to be lacking is a general numerical
formulation of the complete and simplified forms of the hydrodynamic
equations in one model. Even though many comparison were made in the
literature among the various forms of the hydrodynamic equations as applied
to surface irrigation systems, these comparisons were not done on the same
basis. On the other hand, it was observed that the finite element method was
not exploited in the area of numerical analysis of surface irrigation systems.
The application of the finite element method to many fluid mechanics
problems serves as a good evidence for the wide spread use of this numerical
technique. This also serves as an indication that the method could successfully
be used for the hydraulic analysis of surface irrigation systems.

Based on the above, it was felt that there is a need to develop a
mathematical formulation of the Saint-Venant equations for the analysis of
surface irrigation systems using the finite element method. The numerous
features of this numerical technique makes it attractive to the solution of
initial and boundary value problems that can be described by first or second
order partial differential equations. The simplicity in handling boundary
conditions and the ability of the method to accurately handle complex solution
domains are two of the many important features of the finite element method.



III. METHODOLOGY

The flow of water across the soil surface in any surface irrigation systems
is spatially varied. Moreover, the hydraulic design and analysis of surface
irrigation systems is a time dependent process. The hydraulics of flow in both
sloping furrow and border irrigation systems is governed by two first-order
partial differential equations. These unsteady flow equations were developed
originally by A.J.C. Barre De Saint-Venant in 1871 (Miller and Yevjevich,
1975). The development of the Saint-Venant equations was based on the
application of the conservation of mass and momentum principles to the
analysis of surface flow conditions in open channels. Since their development,
the Saint-Venant equations have been used in many areas of hydrology
including the study of river floods and propagation of tides in river channels.
These equations were later used in the analysis of flow conditions in surface
irrigation systems.

There are four general mathematical schemes that result from applying
the Saint-Venant equations to the hydraulic analysis of surface flow problems
in general and surface irrigation problems in particular. These mathematical
approaches result in one of the following models: hydrodynamic, zero-inertia,
kinematic wave, and volume balance models. The primary difference among
the above list of models lies in the number of assumptions that are
implemented in the Saint-Venant equations.

In order to analyze various surface flow problems in any of the above
models, a numerical procedure needs to be implemented. Historically, these
numerical procedures have been based on the finite difference method, the

41



42

method of characteristics, or a combination of both. Such models were
developed over the years by many scientists as was discussed in the previous
chapter. More recently, the finite element numerical procedure was
implemented in the solution of surface flow problems. However such
developments were limited to the areas of surface hydrology and open
channels.

The sole purpose of this research study is to develop a methodology for
implementing the Galerkin formulation of the finite element numerical
procedure to the hydraulic analysis of flow conditions in surface irrigation
systems. A general finite element model will be developed to perform the
hydraulic analysis of surface irrigation problems using the hydrodynamic,

zero-inertia, and kinematic wave models.

A. Research Approach

Five fundamental objectives are presented as the goals of this research.
The approaches utilized to achieve these objectives are delineated below.

Objective 1. To develop a finite element solution procedure of the
Saint-Venant equations for the hydraulic analysis of

surface irrigation systems.

The approach to be followed under Objective 1 will be to apply the
Galerkin formulation of the finite element method to the solution of the
Saint-Venant equations using both linear and quadratic one-dimensional
elements. The Galerkin formulation will be applied to both the continuity and
momentum equations with respect to the space coordinate for a fixed instant of
time. Each will result in a system of first-order differential equations in the
time domain. The resultant two systems of ordinary differential equations will
be combined into one general system. Then, a finite difference approximation
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in the time domain will be applied to the final general system of equations to
generate a system of algebraic equations which will then be solved iteratively
over time. The direct stiffness procedure will be utilized in building global
systems of equations at various time steps.

Objective 2. To create a general solution approach that will
accommodate the available mathematical models of the
Saint-Venant equations in the analysis of surface

irrigation systems.

The approach to be followed under Objective 2 will be to establish the
coefficients that will implement the various assumptions utilized in
establishing the hydrodynamic, zero-inertia, and kinematic wave
mathematical models from the Saint-Venant equations. By choosing these
coefficients, the solution process would be performed based on the selected
model. The general development would apply to the selected model and the
solution process will never be altered by the choice of the mathematical model.

Objective 3. To develop an approach to easily incorporate the varying
boundary conditions of the advance, ponding, depletion,
and recession phases of surface irrigation into the solution
process with minimal arbitrary or experimental

parametei's.

The approach to be followed under Objective 3 will include the
modification of the final system of equations to incorporate given boundary
conditions under varying physical phases of an irrigation cycle. The possibility
of implementing this approach should be straight forward since including
boundary conditions at a later stage of the solution process is one of the
primary features of the finite element method. The dimensions of the total
system of equations will remain unchanged at any instance in time.
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Objective 4. To develop a computer model that will utilize the above
mathematical concepts for the hydraulic analysis of flow
conditions in border and furrow irrigation systems.

The approach to be followed under Objective 4 will be to implement the
finite element mathematical development of the motion equations in building
a computer model that will simulate the advance, ponding, depletion, and
recession phases of both furrow and border irrigation systems. The computer
model will be developed to run on any IBM-compatible microcomputer with a
Random Access Memory (RAM) of 512 Kbytes or more and an MS-DOS version
2.00 or higher.

Objective 5. To numerically evaluate and compare the results of the
finite element model to actual field measurements from
existing surface irrigation systems.

The approach to be followed under Objective 6§ will be to compare the
results to be obtained from running the developed finite element computer
model to those reported from actual field measurements for existing surface
irrigation systems. A graphics routine will be developed to display both
simulated and actual data of the various flow phases of irrigation on the same
graph. The graphical display will include plots of actual and predicted
advance and recession trajectories of flow and will be revealed after the
conclusion of any surface irrigation simulation run. This will be utilized to
evaluate the utility of the developed finite element model and its ability to
accurately simulate the hydraulic conditions of flow in surface irrigation
systems.
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B. Theoretical Development

There are two basic equations that can be utilized in the hydraulic
analysis of flow conditions in open channels and surface irrigation systems.
The two equations, or the so-called Saint-Venant equations, were developed
based on applying the conservation of mass and momentum principles to flow
conditions. This research will utilize these equations as the basis for the
hydraulic analysis of various surface irrigation systems. The finite element
method will be used then to solve these equations numerically. The resultant
numerical model will then be applied to the analysis of hydraulic conditions in
furrow and border irrigation systems. This general development may also be
applied to the analysis of flow conditions in open channels with or without
infiltration. However, the assumption that the slope of channel bed is mild
will be utilized in the development, an assumption which is very reasonable in
surface irrigation systems but not necessarily true in many open channels.

1. Development of the Saint-Venant Equations

The development of the Saint-Venant equations will be repeated in this
section to delineate the important principles of these two equations as related
to surface irrigation.

a. Continuity Equation

The volume of water stored in a fluid element (Figure 1) within a spatially |
varied furrow is represented by the following relationship

dva=vn'u—V~-Vl [31]



Figure 1. An enlarged fluid element within a furrow with a spatially varied
unsteady flow.
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where dV, is the change in the stored volume within the element during time

dt, V,, is the total inflow during d¢t, V., is the total outflow during dt, and V,
is the total infiltration during d¢. The total inflow during a time step dt is
described as
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where Q,, and Q.. are the inflow rates at times ¢ and ¢+d¢, respectively.

The total outflow during the time step dt is
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where Q,, and Q,,,,, are the outflow rates at times ¢ and ¢+dt, respectively.

The total infiltration volume during the time step dt is

V, = ( Vl(:) +2Vl(l +di) }ﬂ
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where V,, and V,,,,, are the average infiltration rates at times ¢ and ¢+dt,

respectively. These two terms can be developed separately as
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where I, and I, ,, are the left boundary infiltration rates per unit length at

times ¢ and ¢+dt, respectively, and I, and I, are the right boundary

infiltration rates per unit length at times ¢ and ¢+dt, respectively.

substituting the above two terms, V, becomes

1 I+3dx
Vv, =§[(ldx)+(14x +g‘—1dtdx +li_a'_)dtdx)]dt

2 o
I +!dx
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Substituting [3.2], [3.3], and [3.4], in [3.1] results in

After

[34]
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dv,=[Qds] —[th +%dxdt] — (I dxds) [3.5]
or
v, 92,
=5 = &I [3.6]

The storages in the element at times ¢ and ¢+d¢ can be defined by the

following two terms
| B2
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Vigoay= [An(ua);Az(nu)] dx
1 0A +§
-i[(A 'Pgdl)-!{(“ +—dx |+ 3 ):ldt
M
_ laA 2 laA { += )
=Adx+ dx 23: T 2wt
~Adx + Z(laidxdt)
[3.8]

=Adx +§—'—dxdt
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where A, and A,,,, are the left boundary areas of flow at times ¢ and ¢+dt,

respectively; Ay, and Ay, are the right boundary areas of flow at times ¢ and
t+dt, respectively; and V,, and V,,,,, are the storages at times ¢ and ¢+dt,
respectively. Substituting [3.7] and [3.8] in [3.6], the continuity equation
would result as follows

Q Y=V
Fw dx —Ildx = &

[(adx +3 dxdr)- (aax)]
d

0A
‘?d"

or

a4 aQ+I=0

— e —

3%t [3.9]

b. Forces Acting on the Fluid Element

There are three forces which act upon the fluid element in Figure 2.
These include the force due to the weight of the fluid element, the pressure
force which represents the resultant of two pressure forces acting on the
upstream and downstream boundaries of the fluid element, and the friction
force which results from the resistance to water flow due to the viscous force
along the wetted perimeter of the element. These forces can be assessed as
discussed below.

i. Weight forces : The weight of the fluid element can be expressed as

F' =[F"L-.-2F'(_‘Zﬂ] [3.10]
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Figure 2. Acting forces on an enlarged fluid element within a furrow with a
spatially varied unsteady flow.
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where F,, and F,., are the forces due to the weight of water at times ¢ and

t+dt, respectively. The first component of [3.10] can be written as

[ Anm‘“‘xn] i

Foy=7 2

. L(AH(A;:dx)]dx

- Y94 42
-7Adx+2axdx

~yAdx [3.11]

where 7yis the specific weight of water and A,,, and A, are the cross sectional

areas of flow at the upstream and downstream boundaries of the fluid element,
respectively, at time ¢. The second component of [3.10] can be defined as

S LR

.—.'5’ :(A +%%d:)+((,4 +%d,)+a(‘“_%")d,]:dx

ot
_ ~ -
- 104 104 , , i(f“:dx)
Y-Adx+2a'dtdt+2axdx+ ot dtdx_
[ 10A 10A
—YLAdx+2atdtdx+23td‘dx]
=yAdx +y%dtdx [3.12]

where Ay,q) and Ay, are the cross sectional areas of flow at the upstream

and downstream boundaries of the fluid element, respectively, at time ¢+dt.
Substituting [3.11] and [3.12] in [3.10] results
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. [YAdx]+[yAdx +vy2 dedx
- 2
Y0A

=YAdx +5 5 didx [3.13)

The component of the weight of the fluid element with the direction of
flow, F,,, is obtained from

F,=sina-F,

where « is the angle between the lower boundary, or the bottom of the

channel, of the fluid element and the horizontal plane. If the slope of the lower
boundary (S, is assumed to be small, the sine of the angle can be
approximated by the tangent. This results in

F, ,=Tana-F,
=SoF,
where S, is the slope of the furrow or border. Substituting [3.13] in the above
equation results in

104
Fuy =YASelt +55-dtdxS, [3.14]

The second term in the equation above is negligible compared to the first term
which contains the cross sectional area of flow. Therefore, Equation [3.14]
reduces to

F, =YASyx [3.15]

ii. Pressure forces: The pressure force, F,, which represents the resultant

of the pressure forces acting on the upstream and downstream boundaries of
the fluid element can be written as



F,=F,-F, [3.16]

where F, and F, are the pressure force acting on left and right boundaries,

respectively. The pressure force acting on the left boundary of the fluid
element can be determined as follows

F, =[ Ft(:)“‘px(ua)]

2
——[('yhA)+'y(Ah +a—§tidz)]
_ YoAh
=YhA +5—== [3.17]

where F,, and F,,,, are the pressure forces acting on the left boundary at

times ¢ and ¢+d¢, respectively; v is the specific weight of water; and & is the
distance from the water surface to the centroid of the left and right areas of

flow. The pressure force acting on the right side boundary of the fluid element
can be written as

F, =[ F. W)+;Xt+&)]

__[(yAh +y——dx\ (Mh +va§x dx+y Ak dx)dtn

ot

=yAh+y2Ak = dx+ya(7h)dt+7§—)

~YAh +7a;x" dx +;a(;th) [3.18]

where F,, and F,,,, represent the pressure forces which act on the right

boundary of the fluid element at times ¢ and ¢+dt, respectively. Substituting
[3.17] and [3.18] in [3.16] produces
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- YAk . \_ 9Ah . ,YOAR)
F,-(‘yhA-l-za’ ) (7hA+7axdx+2 5 dt)

=—y=—=dx [3.19]

Potter and Wiggert (1991) developed the following relationship using the
Leibnitz rule from calculus (refer to page 463 of their text):

i;% =A [3.20]

Substituting [3.20] in [3.19] results in

3y
F,=—yAdxs [3:21]

iii. Friction forces: The friction force, F,, which results from the

resistance to water flow can be expressed as
F,=1Pdx [3.22]

where 1,18 the shear stress at and P is the wetted parameter. The slope of the

friction slope can be defined as (Potter and Wiggert, 1991)

s 1=% [323]

Equation [3.22] can be rearranged as

T PA ydx
AY

TA Ydx
R'y

F,-—-

[3:24]
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where R =A/P. Substituting Equation [3.23] in [3.24] results in

c. Unsteady Momentum

The conservation of momentum in Figure 2 follows Newton’s second law
of motion (Walker and Skogerboe, 1987). It states that the resultant force
which acts on the fluid element in motion is equal to the rate of momentum
change within the element and the momentum flux across the element
boundaries. This can be represented by the following relationship |

SForces)= POV~ GOV + 20 13:26]

where m is the mass of the fluid element, Q is the flow rate, v is the flow

velocity, p is the density of the fluid, X (Forces) is the summation of forces
(F. +F,—F)), (pQv), is the average momentum flux into the element, (pQv),..
is the average momentum flux out of the element, and (d(mv)dr) is the
average momentum change during the time increment, d¢. The first two right
side terms of Equation [3.26] can be evaluated individually as follows :

(PQv),, =%[(va)+ (va +i§ﬂdt)]

=pOv +%[v%fi+gg] [3:27)
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oo Za) 3]
%[ p(Q K] dx)(v +% dx) +pi(Q +:dx)(v +zdx)] d:]

ot

ov
=va+pv%gdx+anxdx+p3$ax

A gapesiehlegatd

=pQv +pv%%dx +pQ%dx

t Q0 90 a0 o i
*E‘z"[( *ax“*)(a: *aar )*(Q*'&‘“)(x*m“)]
0 pr[ 90 &Q
-va+pvaxdx+anxdx+ [ = +vaxatdx]
ﬁaan 0
e amat Qa: Q5o

pdi[oQov .  9Q ]
M ETRACT (3.281

=

If the second and third order differential products are assumed negligible, then
[3.28] reduces to

o0 pvdtaQ derav

ov
va,,-va+pv§-dx+pQ$dx+ 2 at 2 o [3.29]
The change of momentum, d(mv), can be determined as
dimv)=(mv),, ,—(mv), [3.30]

where (mv),,, and (mv), are the average momentums at times ¢ and ¢ +dt,

respectively. The first term of the right side expression of [3.30] can be
expressed as
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(mv),= pA,,kv,,hdx

[3.31]

where A, and v, are the average cross sectional area of flow and average

flow velocity, respectively, at time ¢. These two terms can be evaluated

separately as shown below

Ay +Ay,
A, ="

@+(a+2ax)
= 2
14

=A +-2-§dx

Dt Vo
Yo 572
w)+(v+2ax)
B 2

19v
=y +E$dx

Substituting the above two terms in [3.31] results in

10A 1ov
(mv),= p(A +§—a—x—dx)(v +E;dx)dx

=p(Av +éﬂdx’+vaA dx*+ 124 ade’)

2 2 40x ox
=pAvdx

[3.32]

[3.33]

[3.34]

where both second and third order differential products are assumed
negligible. The second term of the right hand side expression of Equation

[3.30] can be evaluated as
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LD WETY S [3.35)

where A,  and are is the average cross sectional area of flow and

v“"ha

the average flow velocity, respectively, at time ¢ +dr. These two terms can be
evaluated individually as

Ayt Ay u
~eed 2

1 oA A+2dx
PRSTANLES)
10A 10A 10A 10°A
T AT "R P Ay
dA 10A 13*A

=A +-57dt+2axdx+2axatdxdt

=A dxdt

v Vigeant Ay a
~eds 2

=%[(v +%dt)+((v+%dx)+§(%dx)dtﬂ

1ov 1ov 1ov 1~
AP AL T A Ay wr
v 1v. 1%

V¥t m® 2

dxdt

dxdt

Substituting the above two terms in [3.35] produces
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1aA 13%4
MV)e0= p(A+ dr+> 2axa:d"d')

v, 1, 1P
-(v+-a-t-dt+2ax zaxatdxdt)dx

=0(Avdx A gty AP 42 A DY dx’dt)

ot 20x 2 dxot

vaA 2gy 4 LOADV 12
w( dtdx + dtdx zataxdxdt)

laAan 2,2 voA 2 l?iav 2 10A dv 3
‘{zaaxatd“" a mat Mima”

laA azv 3 VazA 2 laV azA 2 5.2
“{zam‘“‘ Hara T i a ma s

1vPA ., 1FA P ..,
“’(Eé?'a?&“"“ imamal ¥ [3.36)

When the second, third, and fourth order differentials are assumed negligible,
[3.36] reduces to

(mv),,.=p(Avdx +A %dtdx +v%‘:;d:dx) [3.37]

Substituting [3.34] and [3.37] in [3.30] results in

d(mv)= (pAvdx+pA dtdx+pv%dtdx) (pAvdx)

or

dmv)_ v 94
o =PAS dr+pvS dr [3.38]

The individual relationships that were developed to this point as
presented by [3.27], [3.29], and [3.38] are substituted in [3.26] to yield
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pvdtoQ = pQdtov
'("Q” 2 ' 2 ar)

+(pA %dx +pv%dx)

Q0 o il oA
2o +pQ - dx +pAS-dx +pv s dx

%*-Qav-i-Aav*-vaAyt

pv

d

<

a&x od O

or

F,+F,-F,= p( aQ+an+A3:+v%': [3.39]

Substituting the expressions for F,,, F,, and F; (i.e., Equations [3.15], [3.21],

and [3.26]) in [3.39] results in

YASdx - yA%dx -YASdx = p(v-ag+an+A +va“}n [3.40]

The specific weight, v, may then be replaced by pg where g is the acceleration
due to gravity. The next step will be to divide [3.40] by pgAdx to produce

dy 00 _ov ,dv 0A
So=3,~ 5= A( +an+Aat+vatJ [3.41]
or
ay voQ Qodv lov v oA
So—8;= ax Aax*gaax+gar+gaa: [3.42]
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Since the discharge rate of flow, Q, is a preferable term over the flow

velocity, v, Equation [3.42] can be rewritten as a function of Q instead of v
based on the expression

90 _do(vA)
LS

=A%+v%% [3.43]

where £ is the independent variable of differentiation which represents either
x or t. Equation [3.43] can be rearranged into

=L2(A 0 _ %) (3.44]

Substituting Equation [3.44] in [3.42] results in

e % QA0 0[1(,30_ %)
S-S =%t ga ax+gA|_A’(Aax ™ ]

1/1(,9Q 0dA\]. (Q/A)0A
*E[A’(Aar Qar)]+ gA o

2Q30_Q’3A+ 100
gA%dx gA’dx gA ot

=%+

Since both the cross sectional are of flow, A, and the flow depth, y, are

exclusively independent variables, one of these variables can be used instead
of both. If the channel is assumed to be prismatic, the term dA/dx in the above
equation can be replaced with Tdy/dx. The resultant equation is
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QT oy 2000 100
So=S5,= (1- A’)ax tiam tgA [3.45]

Equation [3.45] can be rewritten exclusively in terms of A instead of both A and
y. This step results in

1_0%)9A_ 2090 1930
So=S;= (T gA’)ax+gA’ax+gAaz [3.46]

d. Steady Momentum

If a steady momentum is assumed, the change in momentum within the
fluid element with respect to the time domain is assumed negligible. This
reduces Equation [3.26] to

2(Forces)=(PQV)oe— (PQV);s [3.47]

Substituting the results that were obtained earlier as represented by
Equations [3.27] and [3.29] in Equation [3.47] leads to

XForces)=(va+pvgdx+pQ%dx+PVd'aQ Pthav)

ox 2 or 2 o
(e ez
v tx +p0 Pt
(%% an)dx [348]

The expressions that correspond to the various forces that are acting on
the fluid element as represented Equations [3.15], [3.21], and [3.25] are then
substituted in the equation above to produce
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YASdx —YA %dx-'us,dx =p[v%%+0%]dx [3.49]

Following the same step as discussed in the previous section which include the
replacement of the specific weight, v, by pg and the division of [3.49] by pgAdx

The change in flow velocity with respect to x, dv/dx, in the above equation is
then replaced by the expression of [3.44] to produce

5 S = ay Lo ortf, aQ aA)
0T gA ox gAI_A’ ox

2090 0%

gAx gA’x B30

=&
o

+

Since the channel is assumed to be prismatic, the term dA/dx can be
exchanged by Tdy/ax. Equation [3.51] reduces to

So—S,=(l f: )3)' + 20 90 [3.52]

ox gA’ax
Equation [3.52] can be rewritten in terms of A instead of y. The resultant

equation is

s.,—s,=(1 o )%+£§Q [3.53]
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2. Finite Element Formulation Using Linear Elements

The numerical solution of the Saint-Venant equations will be presented in
this section. This analysis is accomplished using the Galerkin formulation of
the finite element method. T!ae space dimension is discretized using linear
elements. This development is prepared for the solution of furrow irrigation
systems,beaﬁnginmindthattheborderisaspecialcaseoftheﬁm-ow
irrigation problem.

a. Formulation of the Continuity Equation Using Linear
Elements

A system of linear equations is generated by evaluating the weighted
residual integral

RG)= fW(x)( +2,4 [3.54)

which is the result of integrating the product of the continuity equation ([3.9])
and a weighting function, W(x), over the length of the element. The Galerkin
formulation of [3.64] is based on considering the shape functions N; and N; as
the weighting functions at nodes i and j, respectively (Segerlind, 1984). Since
the element selected in Figure 3 is linear, there will be two linear equations
(shape functions) for each element.

The finite element formulation is applied after representing the
unknowns by linear approximations of the form

=N, +N®, [3.55]

or



F
(A) Fe
Section F-F
A
— X i J
=L =]
(B)

Figure 3. Finite element discretization. (A) Furrow flow. (B) Generic
one-dimensional linear element.
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)
¢“=[N; N { d:.}

J
=[N]1{®} [3.56)
where ¢ is the unknown; N; and N; are the shape functions at nodes i and j,
respectively; and ®; and ®; are the values of the unknowns at nodes i and j,

respectively. The convention that { } and [] represent a vector and matrix
quantities, respectively, will be followed throughout this development.

Based on [3.56], the cross sectional area of flow, A, and the flow rate, 0,
can be represented by

AQ,8)=NA(1)+NA1)

=[N, N]{A'}
i J Aj
=[NI{A()} [3.57]
and

Q(x,t)=NQ,)+N,Q;1)

Q
=[N, N} { Qj}
=[N]{Q(®)} [3.58]
The shape functions for the one-dimensional linear element are expressed
as
X j -X
N=" [3.59]
and
X —X‘

[3.60]



where L is the length of the element.

The shape functions are written in the local system of coordinates which
allows for easier integration over the element. The shape functions for a
coordinate system located at node i are obtained from [3.59] and [3.60] by
replacing x with X; +s and resulting in

N K @its) L-s

i L L
=1-% [3.61]
and
N,= X+ Z) -X;
_ % [3.62]
Equations [3.61] and [3.62] can be rewritten in the matrix form
[N]=[N; N)
=[ 1 _% %] [3.63]

The partial derivative of [3.58] with respect to x is computed by
evaluating the partial derivatives of N; and N; since the nodal values Q;(t) and
Q;(t) are constants with respect to the x — or s —space dimension. The partial
derivative of [3.68] becomes
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=[B]{Q} [3.64]

dimension are
N, N, 1 3.65)
oo L 3.
and
aN; adN; 1
%L [3.66]

Equations [3.65] and [3.66] then rewritten in the matrix form

BN‘%‘
ax dx

[B]=[_
11
=['Z Z] [3.67)
Substituting [3.67] in [3.64] produces
0 _ _[_1 1]/e
2 =[B10} = L]{Q,} (3.8

The partial derivative of [3.57] with respect to time is computed by taking
the partial derivatives of A; and A; with respect to time and multiplying the
results by the shape functions. This assumption is true since the latter are
considered to be constant with respect to time. The resultant equation is
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=[N1{A} [3.69]

Substituting the shape functions in [3.54] results in the system of
equations

ll
R = J'N‘(%%+%+1)dx [3.70]
8‘ .

and

R = IN —+—+1)¢: [3.71)
Rewriting Equations [3.70] and [3.71] in matrix form results in

R.‘"} IN( +—+I)dr

fN —+—+I )4:

%
= J‘[N]’(%«u%%u [3.72]
x

where [N]” is the transpose of matrix [N].

Substituting [3.68] and [3:69] in [3.72] yields
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ﬁ

(&)= [INT V1 {A}+ B1{Q} + s
X

or

5 ) x -

&)= [VT V1{A}ax + [INTT[B{Q)ax + [INTrd (3.73)
x x %

The individual terms of [3.73] are integrated separately over the length of
the element in the local system of coordinates to result in

) L
Jovr Ay = [y viasia)
x 0

[
okﬁh

S L
L
S S |s
f4] (-3
=flp KN e
: (l_i)i s
L)L L?
L L
3 6
=, L@
6 3
L[2 1
=3[1 2]{“
=[C.1{A} 3.74]
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% L
[wrrB@)e = [N BIast0)
= 0

L 1—i

L 1 1
-[i s ['z z]“‘{Q}

L L? L L?
= . 7 lastoy
Az L
A1l
2 2
| 1 1@
2 2
= [K.1{Q}

[3.75]

The infiltration from the element can be expressed in various forms.

% L L, l-%
f INVIdx =1 f[N]’ds =]
% 0 ° £
L
L _L)
2 2
=] £ =] —Eb
2 2)
=-I{F.}

These forms result in several equations that were discussed in the previous
chapter. Many of these equations are expressed as a function of infiltration
opportunity time only. The infiltration term is then constant with respect to

the x — or s —space dimension and can be moved outside the integral. This
results in

[3.76]
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Substituting [3.74], [3.76), and [3.76] in [3.73] results in

| IR | L
en _L[2 1JA | 2 2{[Q]_,] 2
wey =gl ] z]{A,-}" 11 {c,-} N B
2 2 2
or
{R}=[C){A}+[K,){Q}-I{F,} [3.78)

A system of equations is generated by evaluating the following weighted
residual integral for the linear element

ﬁ
- 1_0°124 2090 130 . _
R(x)-IW(x)[(T gA=)ax+gA=ax+g -, S,)]dx [3.79]

which is the result of integrating the product of the unsteady momentum
equation, [3.46], and a weighting function, W(x), over the length of the element.
Based on the previous discussion, the Galerkin formulation of [3.79] utilizes
the shape functions N; and N; as the weighting functions at nodes i and j,
respectively.

Substituting the shape functions in [3.79] and rewriting the results in a
matrix form produces
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©
R;

( 2 )
1 0°10A 2000 1
o= {R“’ IN{\T 34° )& TgATax " gA
wt-f])-
dA oQ
ax ax

% -
1 0% a4 1
= f [N]T-(——Q—)g"'m%f"'g %?—(SO—S,)]dx [3.80]
or

2
® = f[zvl (——f—) wr+f[~1’2f,‘;f

%

x,
+[wr— L e~ (VI 5, -Spae [381]
x x

The partial derivative dA/dx is determined by evaluating the derivative of
[3.567] with respect to the space dimension. This is accomplished by evaluating
the partial derivatives of N; and N; with respect to x since the nodal values A;()
and A;(r) are constant with respect to the x — or s —space dimension. This
results in

=Alﬁ

g

=[Bl{A} [3.82]

¥
a»l%

|2

The partial derivative dQ/dx was developed earlier as expressed by
Equation [3.68].
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The partial derivative 90 /0t is determined by evaluating the derivative of

[3.568] with respect to time. This is accomplished by evaluating the partial
derivatives of Q; and Q; with respect to time and multiplying the results by the
shape functions N; and N; that are constant with respect to time. This results

in

=[N1{Q} [3.83]

Using [3.68], [3.82], and [3.83], the individual terms of Equation [3.81] are
integrated individually as follows :

2
ﬁN] (T A,) = f[NI (} ﬁ,)wm}m

L 1-i
(12 11
‘(T gA’)f s [L L]d"{"}
L

0
(1.2 )2 2
'(T w) 1 1|¥

2 2

2
=(l-L)IKJ {4} [3.84)
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fw]’ B - f[N]’ L B11Q)s

=;2%[K,1 {0} [3.85]

3 L
190 . (L
!{N]’ g = [Nz 10

[

1-

S
1 L s s
i T A

e

1
A {0}

A Wit~
Wity ot~

L
1
=2alC0} [3.86)
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% L
[T 5= ax = (5,-5) [vTTas
x 0

=(S- s,>f L

(SN

=S-S50,

ad L

=So=Sp{F.}
Substituting [3.84], [3.86], [3.86], and [3.87] in [3.81] produces
ren=|1_2° 20
o= (T 8A,)[K]{A}+( )[K]{Q}
1
*{g—A)[CJ {0}-(S,—-Sp{F.}

L 1_0°
=(8A)[CJ{Q}+(T A’)[K]{A}

20 )[K]{Q} ~(So-S){F.}
or

{RE}=[C {0} +[K ) {A}+[K, 0] {Q} - {F.}

[3.87]

[3.88]

[3.89]

The residual vector of the linear element for the steady momentum
equation, [3.63], is developed in the similar way as the unsteady momentum

equation. The result is
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1 04,200
. {R(‘)} !N{(T el S/)]dx
Rj(‘) y) 1 2\aA >
M-S 28 o
G
Y 2
= f [N]’[(%-;%)%%+;2%%—(so-s,)]dx [3.90]

or

(R} = f[N] (;——;)a" ar+ [P 222 ax
x

x,
- (7 ,- spax B391]
5

Substituting [3.84], [3.85], and [3.87] in [3.91] yields

2
(R =(-;--g—i;)[K]{A}+(2Q)[K]{Q} - Ss-S)IF.) B2

{RE} =K, 1 {A}+[K, 0] {Q}—{F.} [3.93]

A special case of the momentum equation is the zero-inertia equation
which is based on the assumption that the change in momentum is negligible.
This assumption drastically reduces the momentum equation and greatly
simplifies the process of numerical analysis. Based on the above assumption,
[3.26] reduces to
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X(Forces)=0 [3.94]
Substituting the forces in [3.94] results in

F, +F,-F;=0 [3.95]
Substituting [3.15], [3.21], and [3.25] in [3.95] produces

YASdx —7A %dx -YASdx =0 [3.96]

or
Som8y=22 [3.97]
or
T Se-5)=0 [3.98]

The residual vector of the linear element for the zero-inertia momentum
equation, [3.98], can be developed in a similar way as discussed in the previous
section. The result is

- }( =5~ S,)}t-
=l
[l

R
fuv] (———(so S,)}t-

or
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5 5
'Y= [T 228~ [T 5, -Sae 3.9
% %

The first term of [3.99] is developed based on Equation [3.82]. This
results in

% L
rloA , rl
I[Nl 73 = [N HiBMAYs

1
= (K.1{4)
= K.} {A} [3.100]

The second term of [3.99] was developed earlier in [3.87]. However, the
friction slope, S, can be expressed as a function of flow rate, Q, and
cross-sectional area of flow, A, using any of the uniform flow equations that

were reviewed in Chapter II. If the Manning equation is selected, Equation
[3.87] becomes
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L
2

L
2

L[S,
T2 So=S$p);

nQ;
sﬁ_(AsRim]z

nQ;
s“'(AfR,;"T

(i)
L So _L ARP
—Z{Sq,-} 3 "0, [3.101]
AR

Substituting [3.100] and [3.101] in [3.99] yields the system of equations

ﬁ
[T e5,-5x = 5,5
x

(Sl o

1 1 L n’Q}
1|72 2 A.-} 2A7R” L{Soi}
R} == + - [3.102
) n_11 {Aj L0l 2|5y :
2 2 2 AR}

Equation [3.102] is rewritten in a form similar to that of the steady momentum
formulation which is expressed by [3.93]. This results in

11 Lwg
en_ 1 2 2|[A] [ 247" Q| L[S
mr=n 3l e o) s
2 2 0

24"

=%[K,1 {A}+[K 1{Q}-S,{F.}

or
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{RE} =K, 1{A}+[K 1{Q}-{F.} [3.103)

Surface irrigation analysis can be performed based on both the continuity
and momentum equations, or the so-called the Saint-Venant equations ([3.9]
and [3.46]). Various assumptions are implemented to simplify the momentum
equation ([3.46]) to the so-called kinematic wave approximation. This
approximation is based on the assumption that the inertial terms together
with the term that describes the pressure variation of flow in the momentum

equation are negligible. The simplified momentum equation then has the form
So—5,=0 [3.104]

while the continuity equation ([3.9]) is kept unchanged. These assumptions
imply that surface flow is at normal depth throughout the domain of solution.
Based on the above assumptions, Equation [3.104] is utilized in [2.11], [2.12],
or [2.13] to calculate the flow rate, Q, at nodes i and j. If the Manning equation
([2.12]) is selected, the following equations result

0, =T ARPSY
and

Q; =%‘1an Soi-
or

(-’I;R,.’"s;."}«,.-g,. =0 (3.105]
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and
(%R,.“s;;’)a,. ~Q;=0 [3.106]

where R; and R; are the hydraulic radii at nodes i and j, respectively. Since we

are primarily interested in the contribution of nodes i and j to the element,
only half of the flow terms in [3.105)] and [3.106] will be utilized as the element
contribution to the final system of equations. Equations [3.105] and [3.106]
can be combined together in a matrix form to yield

31 1
So3 - 0
RS2 0 |[A .
%[ LI, }{ A‘}+ 2 , {g{}={g} [3.107]
0 Ryl ¥ [0 -5
or
[Kul{A}+[K,]1{Q}-{F,}={0} [3.108]

where {F,}= {g}

The linear one-dimensional finite element formulation of the continuity
equation, [3.78], can be rewritten as

1 1 L

oy _L[2 1A .| 72 2{[@]_,] 2
we1= 1 2]{A,-}" 11 {cj} e (3.1091

2 2| 2

On the other hand, [3.89], [3.93], [3.103], and [3.108] can be expressed in the
general form
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_(=c) & (e—cy)

+
(o =£ 2, ¢ Qu} 2 2 2 {A‘}
{RE} 6[ ¢, 2‘—‘1]{01 *. _(ca=cy) (Cz-cs)+ﬁ A,

2 2 2

—04 + CQ C4

2 2 |[@] [f
Cc Ci+Co {Qj}—{fj} [3.110]

2 2

where ¢, ¢,, ¢ €3, €4 C;, Cj, [;, and f; are coefficients that vary based on the

selected model.

There are four different models that will result based on the previous
discussion. These include

i. Hydrodvnamic Model I : This model is the result of combining both the
continuity equation and the unsteady momentum equation. The various
coefficients in [3.110] may be expressed as

C o) ) 8 )

L L
6=0, =0, f=7(5%-S), ad f=3(5-5)

Co

ii. Hydrodynamic Model II : This model is the result of combining both
the continuity equation and the steady momentum equation. The various

coefficients in [3.110] may be expressed as

2
N TR

L L
6=0, =0, f=3(S%-5), md f=3(-5);
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iii. Zero-Inertia Model : This model is the result of combining both the
continuity equation and the zero-inertia assumptions that result in [3.98). The
various coefficients in [3.110] may be expressed as

L n? 1
Co’i#’ ¢, =0, c;=(f") =0, ¢=0,

L L
_s“, and fizisq’.

c;=0, c;=0, ﬁ=2

iv. Kinematic Wave Model : This model is the result of combining both
the continuity equation and the kinematic wave or the uniform flow
assumptions that result in [3.108]. The various coefficients in [3.110] may be

expressed as

Co =-1, Cl =0, C2= 0, C3 = 0, C‘ =0,
_l M2 _l M2 _ -0.
G==R"SY, ¢==R"Sy, f=0, d f=0

Equations [3.109] and [3.110] are solved simultaneously for every
element to determine both the flow rate, Q, and the cross sectional area of flow,
A, at each node. These equations are combined together to produce one system
of equations for every element. The resultant system of equations has the

general form



R, 2 0 1 01(A
R = Ru| _L|0 2, 0 ¢ |]O;
R;[T6|1 0 2 o0]]4
R, 0 ¢ 0 2]|p,
0 -1 0
1| —q+c+c; —c,+cy, -y
2 0 -1 0
-C,+¢, -C, =G+t
L)
2
-—4fi>
=L
2
| Ji

or

{R“} =[C1{d}+[K]{®}-{F}

1 (A
Cs Q;
1 |{]4
C+6o] |Q,

[3.111]

[3.112]
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3. Finite Element Formulation Using Quadratic Elements

The numerical solution of the Saint-Venant equations is repeated in this
section. However, the analysis this time is accomplished based on the c¢ sub
Galerkin formulation of the finite element method and using quadratic

element.

A system of equations is generated by evaluating the weighted residual
integral

x
Rkx)= J'W(x)(%l:-+§+1}x [3.113]
x

which is the result of integrating the product of the continuity equation ([3.9])
and weighting function, W(x), over the length of the quadratic element. The
Galerkin formulation of [3.113] is based on considering the shape functions N;,
N;, and N, as the weighting functions at nodes i, j, and &, respectively. Since
the element in Figure 4 is quadratic, there will be a system of three equations

for every element.

The finite element formulation is applied after representing the
unknowns by linear approximations of the form

or



F
(A) P
| Section F-F
L i . 4 @
° . ° i : . —o
—
(B)
ol 1
T——o XF T ﬂl T © -
o
(C)

Figure 4. Finite element discretization. (A) Furrow flow. (B) Generic
quadratic element in the system of local coordinates. (C) Generic
quadratic element in the system of natural coordinates.
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®,
=N, N, N,
o,

=N1{9} [3.115]

where ¢ is the unknown; N;, N;, and N, are the shape functions at nodes i, j, and
k, respectively; and ®@;, ®,, and @, are the values of the unknowns at nodes i, j,
and k, respectively.

Based on [3.115], the cross sectional area of flow, A, and the flow rate, Q,
are expressed as

A(x,0)=NA0)+NA(0)+NA)

A ()

=[N, N; NJ{A®
A1)

=[N1{A(")} [3.116]

and
Q(x,t)=N,Q:(t) +N,Q;(r)+N,0,(r)
Q)
=[M Nj NJ Qj(‘)
Q1)
=IN{Q()} [3.117)

The shape functions for the one-dimensional quadratic element are
expressed by the following equations (Segerlind, 1984)

N= G- X)E-X) [3.118]

N =-S5 -X)6-X) [3.119)



No= 26 -X) G -X) [3.120]

where L is the length of the element.

The shape functions can be written in the system of local coordinates
which allow Afor easier integration over the element. The shape functions for a
system of coordinates located at node i are obtained from [3.118], [3.119], and
[3.120] by replacing x with X;+s (Figure 4a). This results in the following
equations:

2
N, =i‘i(x.'+s -X)X;+s-X,)

=i2_z.(s _IE‘)(; -L) [3.121]

4
Nj =-E(Xi+s -X‘)(X"*S -x,)

=-26)6-L) [3.122)

Ny= S +s = X)®+5-X)
2 L
=P(’)(’ _5) [3.123]

The shape functions are then rewritten in the system of natural
coordinates which consist of a pair of length ratios as shown in Figure 4b.
These ratios are defined as (Segerlind, 1984)

1,=('Lgi) and z,=(%) [3.124]
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where s is the distance from node i. The shape functions which are expressed

by [3.121], [3.122], and [3.123] can be rewritten in the system of natural
coordinates and the results are

ne(¥E) )
()

==L

==l [3.125]
v-{i) )
=4l [3.126]

e (2)27)
(E)r)

=L(L-1)
=L -1l [3.127]

The system of natural coordinates is very essential for directly evaluating
various integrals that contain the shape functions directly as will be
highlighted in the subsequent discussion.

The partial derivative of Equation [3.117] with respect to x is computed by
evaluating the partial derivatives of N, N;, and N, with respect to x since the
nodal values Q;(t), Q;(t), and Q,(¢) are assumed constant with respect to the x -
or s —space dimension. The partial derivative of [3.117] becomes



92

=[B]{Q} [3.128]

The derivatives of the shape functions with respect to the x — or s —space
dimension are as follows:

4( 3L
=_5( ‘T) [3.129]
oaN. oN.
&I= asl" :2((S-L)+s)
8( L)
——E ks —E} [3.130]

N, _dN, 2(' L) )
+s

=P(s 'I) [3.131]

The derivatives of the shape functions which are expressed by [3.129],
[3.130], and [3.131] is expressed in the system of natural coordinates as

GL-1,-2) (3.132)
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=-7 (L-1) [3.133]

=2GL-1) [3.134]

The partial derivative of Equation [3.116] with respect to time is
computed by evaluating the partial derivatives of the cross sectional are of
flow, A, at nodes i, j, and k. The products of the resulting functions and the
respective shape functions which are considered constant with respect to time
produce

o

0A;
=[N; N; N, 3:-’- S

0A,

=[N1{A} [3.135)

Substituting the shape functions in [3.135] results in the system of
equations



&

R®= J‘N,-(%+%+I)dx [3.136]
x
% o 20

R®= fzv,(iga;u}u [3.137]
&
T (oA

R{”=j~ §+%‘?-+1}n [3.138]
%

Equations [3.137], [3.137], and [3.138] can be rewritten in the matrix form

-

+

% A 20
N,.(—+—+I}n
. l‘ o x
i X
on=lgol o] y[34, 3% |
{Rg)}— 2,(‘) = Nl(a"l'ax"'l}!
k
oA Q0
¥ ox

z,.r <
~~— -

+
~
N

‘ne

¥|&
+

41
¥

-

[3.139]

]
] N
2
-y
—

where [N}’ is the transpose of matrix [N].

Substituting [3.128] and [3.136] in [3.139] results in

)
(R} = [INT V1A } +[B1{Q} + D
x
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) = )
&)= [T N1 {AYar + [INT 1B1{QYax + N1 (3.140
x % x

The individual terms of Equation [3.140] are then integrated over the
length of the quadratic element in either system of local or natural
coordinates. However, the system of natural coordinates is used in the
development of this section since such a system simplifies the integration
process immensely. The first right side term of Equation [3.140] is evaluated

as
X L
i vitAyas = [N vIasiA)
x [

1
= [ ViLasA)
0

—

1 Il -I,l,
=L ahL -4l AL L-lhLldL{A}

0 122 ‘lxlz
o B-2hL+RG AGL-4KL RG-RL-LL+LL
=L 4L -4l 1671 aL-40  |dL{A}
| BE-RL- LB+ G AL -4 D-20L+10
[3.141]
where s=(LL), —h—L and L=(1-1)-
The various integrals in [3.141] are reduced to the form
fz;"(l D"~y = T 3.142]
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where I'(n + 1) = n! (Abramowitz and Stegun, 1964). The integrals of the matrix

in [3.141] are then evaluated separately as follows:

[@-2 2= [ a2 [ Rians [ 22,
0 0 0 0

__40 (3 ) 2w
@0+ A\G+1+01 ) 22+
=% [3.143]
Y 311 2121
3 292\ 47 — _
!‘4’""4’"’)""“((3+1+1)! (2+2+1)!)
=%0 [3.144]
Y 212! 311! 1131
272 3 3 272 - - -
{"‘L'""’*"”*"”)‘”"(2+2+1)! G+1+1) (1+3+1)
a4
T@+2+1) 120 [3.143]
y 212!
292\ 47 _
!(la'é)d"‘l (2+2+1)!)
=1% [3.146]
r 131 2121
3 1212 g7 — _
{(4111:-41112)4‘:-‘((“3“)! (2+2+1)!)
=T§_o [3.147)
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1
CrPag O (113 2121
!‘l" 24+ bbb =G (1+3+1)!)+(2+2+1)1
16
= [3.148]
Substituting [3.143] through [3.148] in [3.141] results in
5 L[4 2 -1 A
[wrmnae=2l 2 16 2 {4
% -1 2 4 ]|4
=[C.]{A} [3.149]

The second integral of [3.140] is evaluated using the same procedure.
This results in

X3 L
i B1eQax = fuv]’ [Blds{Q}
x 0

1
= [V B 1L}
0

1 g‘hh
-L | [ 4L, ][%(312—1,-2) L) FGh-h)]ani0)

o g'hh

J-RralL =300 -2 + 201, -8, +4LE +4L AL -3LE -1
= 121,13 - 4171, - 81, -6, +160]L, 1241 - 4Ll

°| 30—+, -20+21L, -4L+8LL 47, 3L-4LE+1,

-dL{Q} [3.150]

where s=(LL), :—Z=L, and ,=(1-1)-

The integrals of the matrix in [3.150] can be evaluated separately as

follows:



1
[envam-siz-2+ 21001~
0

o u2a ) (20
@+2+1)1 ) | @+0+1)!

Jazg- s -stiyar=1

-16

24

f(—sz, 42+ -2+ 200 )d, = 3((0

211!

98

310!

2!1!

G+0+ D)

2+1+1)

112!

(1+2+1)!)'

111!
a+1+1)!

013!

+3+1)!)

111
)*2((1 F1+0)

211!

(2+1+1)1)

112!
(1+2+1)

Ye+r1+0)

=4
T2

_ 012!
O+2+

+ 111!
!

(1+1+1)

. 2111
f(-sz L+ 4,2+ 41dl, = '8((2+1+1)z)+
3101
G+0+1)i
_16
T4
1121

f(—la,z;+ 1612L)dl, = -1

1+2+1)

Jor

112!

1+2+1)

211!
2+1+1)

)

)

-0

)
)

)

[3.151]

[3.152]

[3.153]

[3.154]

[3.155]
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1
T A £ 112!
!"“’2+8’1’2’4"W’2"“((0+3+1)!)*8((1+2+1)!)

211!
@@+1+1)!

; ; am ) uat
f“”’ = 3hk~ il = ‘((2+1+1)!) 3((1+2+1)!)

30
G+0+1)!

I
TN

1
2 a2y ar M2\ [ 2m
.!-(12""'4'"’)‘”"1 (1+2+1)!) (2+1+1)1)

"
N

. 013! 1121
J‘G” =4l + kbl = 3((o+3+1)!) ‘((1+2+1)t)

211!
2+1+1)

_12
T 24

Substituting [3.151] through [3.169] in [3.150] results in

1 -12 16 -41(2
I[N] [B]{Q}dx-ﬁ[ 16 0 16] )
12

4 -16 o
=[K.]1{Q}

[3.156]

[3.157]

[3.158]

[3.159]

[3.160]
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The third integral of [3.140] is evaluated using a similar procedure as
shown above. This results in

X L
Ty _ T
J"[N] Idx-l_!'[N] ds

1
_ T
=1 {[N] Ldl,

1 112'1112
=IL f aL b [3.161]
° l,z-ld,

where s=(LL), —=L, and L=(1-1)-

dlz

The integrals of the vector in [3.161] are evaluated separately as follows:

) __200 1
{‘"'"")‘”"(uon)! 1+1+1)!

=% [3.162]
.f (“hbl, = ‘((2::)2 1)1)
=% [3.163]
{ G ""’)‘"':(ogzi 1)!'(14-l ilq!- 1!
=% [3.164]

Substituting [3.162], [3.163], and [3.164] in [3.161] produces
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5 1
f[N]’Idx = %{4}

1

=-I{F,} [3.165]

Substituting [3.149], [3.160], and [3.165] in [3.140] results in

4 2 -1 A;
{R,“’}=§[ 2 16 2]{A,]

-1 2 4 ]|4
+$l :1135 1: -1-6”2}—%-{3} (3.166]
4 -16 12]|g, -1
or
{R¥}=[C.H{A}+[K,]{Q} - I{F.} [3.167]

A system of equations is generated by evaluating the following weighted
residual integral

5 2
R(x)= J‘W(")[(%'%S)%*' :fz?, +g; %? - (So-S,)]dx [3.168]
x

which is the result of integrating the product of the unsteady momentum
equation, [3.46], and a weighting function, W(x), over the length of the



102

quadratic element. As discussed in the previous section, the Galerkin
formulation of [3.168] is based on considering the shape functions N;, N;, and N,
as the weighting functions at nodes i, j, and &, respectively.

Substituting the shape functions in [3.169] and rewriting the results in a
matrix form yields the system of equations

Fo[(1_0%)24 2030 130
N{j gm)ax"gmax* Yo —(So— S,)dx

x
{RD}= R‘:" -<anrl~l,{(l o ‘aA+2QaQ 1 90 - (S -S)-dxb
R{o JI\T gA’jax "gatox gAY
T (1 0*Yoa 2030 1aQ |
3"'[5 2% Jax Vpater Ao TV

5
(e[l 0204 20030 13Q .
-J[N] (T gA’)ax+gAzax+gAat = S,)]dx

or

") = f[N]’(;—T)—mﬁN]’%gf

fuv]’ 104 fuvl’(so - S s [3.169]

The partial derivative dA/dx is determined by evaluating the derivative of
[3.116] with respect to the space dimension. This is accomplished through the
evaluation of the partial derivatives of the shape functions with respect to x
gince the nodal values 4;,, A;,, and A, are assumed constant with respect to
the x — or s —space dimension . This results in
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=[B]{A} [3.170]

The partial derivative dQ/dx was evaluated earlier as expressed by
Equation [3.128].

The partial derivative of dQ /0 is determined by evaluating the derivative

of [3.117] with respect to time. This is accomplished through the evaluation of
the partial derivative of flow rate, O, at nodes i, j, and &, respectively, with
respect to time and multiplying the results with the respective shape functions
which are assumed constant with respect to time. This results in

00 , 00 . 0d0, 00,

o Ny TN N

ot
%,
or
o0,
o |
0,
=[N, N, NJ{Q,
0,

=[N1{Q} [3.171]

=[N; N; N,

The various terms of Equation [3.169] are integrated individually after
utilizing the results of Equations [3.170], [3.128], and [3.171]. The first term is
determined as
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L
- 1 0°
ﬁ 1(;-7) as= [ (, As)[‘”"‘{‘}
(—T-——A;)ﬁm [BILdL{A} (.172)

The right side integral of [3.172] is evaluated separately as

Lh-hl,
ﬁm’wudz, Lf{ 4l ][‘(sz,-a-z) L) ZOb-b)]a

G-
R+, -308 20+ 20, -8IL+4LE +4E  ALL-3L5 -1
= 12,17 - 4171, - 81,1, -6, 5 +16lL, 1245 -417, |dL,
| 3L-4 L+ L2042,  —4L+8LE -4, 3L-4LL+1L
[3.173]
ds
where s=(L), —=L, and L=(1-1)-

The integrals of the matrix in [3.173] were evaluated previously.
Substituting [3.151] through [3.169] in [3.173] yields

12 16 -
ﬁN] BLdL=o]-16 0 16 [3.174]
4 -16 12
Substituting [3.174] in [3.172] yields
_ _a (A,
[N]( ) 1 2 Wll-16 o 16lia
oz e )& \T o8 %) "0 6 1 |a
(1 QQ\
75 Jrawmy [3.175]
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The second integral of [3.169] is evaluated using the same procedure. The
result is

9Q ;- 2
ﬁNl (g A,)g = [ [N]’(g A,)[B]dv{c}

20 ) (oot
=| =5 | | INT [BILdL{Q} [3.176]
(gA’ !

The right side integral of [3.176] was evaluated previously ([3.174]).
Substituting [3.174] in [3.176] results in

» -12 16 -4](@
20 100 sz)( )
dx = -16 0 16
I " (g“z)a" AR 4 -6 12 o

& o,

K.1{Q} [3.177]

The third integral of [3.169] is evaluated using a similar procedure as
discussed in the earlier discussion. The result is

ﬁm( )—dx fuv]’( )[Nlds{Q}

1
=(8lA)f[~1’ INILdL{O} [3.178]
0

The right side integral of [3.178] was evaluated previously ([3.149]). The
results are summarized as

1 L 4 2 -1
f[N]’[N]Ldz,=§6 2 16 2 [3.179]
J -1 2 4

Substituting [3.179] in [3.178] results in



106

Jr (e8] 2, % 3l

=(lA)[c¢1 {0} [3.180]

oo

The last integral of [3.169] is evaluated using the same procedure as
discussed above

L

I.
[T 5= 8ax = (5,-5,) [NTTas
x 0

"
=S-S5 | INTLdL,

' [(B-hh
=L(5,-5p (1 4, fa [3.181]

o 122‘1112

The integrals of the vector in [3.181] were evaluated earlier in [3.162] through
[3.164]. Substituting these equations in [3.181] produces

5 1
i s,-spax =s, -s,)(%‘){4}
x 1
=(So—Sp){F.} [3.182)

Substituting [3.1756), [3.177], [3.180], and [3.182] in [8.169] produces the
system of equations
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-11(Q:

s ¢ g
el 2,

12 16 -4](Q]
%)(%) -16 0 16 [{Q;}
g | 4 -16 0,]
A
-s-5)(%) 4} [3.183)
1

2
wen=( )[C]{Q}+(%—%)[K]{A}

:Q )m{a} —~So-S){F.}
= [CI{O} + Ko ) {A}+ K] {Q} - So—S) {F.) [3.184]

The residual vector of the three-nodal quadratic element for the steady
momentum equation, [3.63], is developed by following the same procedure of
the unsteady momentum equation. The result is



108

'}N{h 0 a4, 2000

(T oa Jax tgaran 0™ s,)
R |- '
' ( 2 ) 9
(eh (o) = l_Q aA 2QaQ -
{Rn)}" R;( = J.N{\T gAzJax Azax (So S,)dl*
R®| | -
X
1_0%)A, zQaQ
sx‘ p
Toa(1 02\ 2000
=f V] \T ga’ Jax T ax o= S’)] 3.183]
x

or

(. 1 0% )oA 209
= for (-2 Jtare fovr 202

)

—f[N]’ (So— Sy)dx [3.186)

x

Substituting [3.175], [3.177], and [3.182] in [3.186] results in

-12 16 -4][A]

{Rﬁ:’}=(;-i ) -;Z) -16 0 16 |{A;}
g 4 -16 12]|a,

(\[12 16 -47(Q]
ﬁ) -16 0 16 |{0;}
4 -16 12]|Q,

1
{4 [3.187]
1
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2
(&) = (-;—.-—QA—,)[K]{AH(zQ)[K]{Q} - Sy-S)HF.)

=K l{A}+[K 5] {Q} - {F,} [3.188]

The residual vector of the quadratic element for the zero-inertia
momentum equation, [3.177], is developed based on the same procedure that
was followed in the previous section. The result is

(%
124 W
;‘N{ == (5~ s,) dx
RO s 124 7
{RE} ={RJ ={) N,[T-;-E-(s,-s,) dx
RY x -
& 5 _
N,[——-(s,,-s,) dx
;‘ -
8.
-| [N]’[%%-(so-s,)]dx
x
or
x )
®e= [ [N]’(%)%dx-ﬁzv]’(so-smx [3.189]
x x

Substituting [3.175] and [3.182] in [3.189] results in the system of equations

(@] 5 Wapes@ff e
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where (1/T) is the new coefficient in [3.98] instead of (1/T —Q%gA?). The friction

slope, S, is expressed as a function of flow rate, Q, and cross sectional area of

flow, A, using any of the uniform flow tions that were r d in Chapt:
II. If the Manni tion is selected, [3.190] b
12 16 -4][A (So=5p);
{RL"}=(1)(i)[-16 0 16:| -Llas,-sy,
T N2 6
4 -16 (So-5p),
-12 16 5, S
—(lJ[i)[ 16 0 6 {A 4+ ‘u} “{4\;
\T)\24)| i*s A )
4 -16 Sa S
i -12 16 -4][A
=(;)( ) -16 0 16 |44
4 -16 A

1

24
nQ;
ARP

)‘1

L nQ; L
i {A,Rf’) _E{f‘"}

nQ,
ARP

J

The system of equations above can be rewritten in a similar form as that of the
steady momentum formulation ([3.188]). This results in
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iz 16 - (4;
{R,f,"}=(—)(—) -16 0 16]<A-
TAB) 4 -16 12]a,
o, i
B ,
L 0 llzgj o Qi
MG AJR® !
Q,
o o o
_ ATRS
Su
_% 45, [3.191]
Sou
or
(RO} =K1 {A}+ K gl {Q}-SoF.}
=[Kul{A}+[K,]1{Q}-{F,} {3.192)

As was discussed previously, various assumptions are implemented to
simplify [3.46] to the so-called kinematic wave approximation. Under these

assumptions, the momentum equation reduces to
So=S;=0 [3.193]

Equation [3.193] is utilized in the Manning equation ([2.12]) to calculate
the flow rate, Q, at individual nodes. This results in

1
Q= ;AiR.m S’
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1
Q;= ;Ajkim SJ?
and
1
o,= ;;A.Rf” s&n

where R, R, and R, are the hydraulic radii at nodes i, j, and &, respectively.

The above equations can be rewritten as

(%R,?”s;."}q.-g,:o [3.194]

Gk}”sgf}a,—g,:o [3:195]
and

(%Rf"sé")ﬂg -0,=0 [3.196]

Since we are primarily interested in the contribution of nodes i, j, and & to the

individual element, only half of the flow terms in Equations [3.194] through
[3.196] will be utilized as the element contribution to the final system of
equations. Thus, Equations [3.194], [3.195], and [3.196] can be rewritten in
the matrix form

1
. RSy 0 0 A) |2 0 0 () 0
| 0 2RSS 0 AR+ 0 -1 0 |30;p=10 [3.197]

0 0  R®S¥||A: Q) 0

or

[Kul{A}+[K1{Q}-{F,}={0}
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The one-dimensional quadratic element formulation of the continuity
equation, [3.167], is rewritten as

4 2 -1 A
{R,‘"}=3—0[ 2 16 2] A
-1 2 4 ]|4

1216 4] ()
24 24 24 0, 6
16 16 —4IL

4-5 0 3 [Q’}"T’ (3.198]
4 16 12|@ gy

| 24 24 24 | ‘T

On the other hand, Equations [3.183], [3.187], [3.191], and [3.197] are
expressed in the general form
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L 4c, 2, -¢|(O
{R“} = % 2, 16¢, 2 |40,
- 01 201 4(.'1 Q‘
[He—c)+¢;  16(c;—¢)) e —¢) ]
2 24 24 A
-16(c,~c,) 16(c,~cy) ||,
W= 9 T ¥
A
4(c,—¢y) -16(c;—c;) (ca—c)+c |V
24 24 2 )
[—c,+Ccy 16¢c, —4c, ]
2 4 24
-16¢, 16¢, 2 (4
125 % =2 [{%Y
4C4 -1664 Cq+Coi Qk f;
| 24 24 2

[3.199]

where cq;, Coj» Caxs C1» C2s C3s Cas Cis Cjs Cuy [ fj» @NA f; are coefficients that vary based

on the selected model.

There are four different models that will result based on the previous

discussion. These include

i. Hydrodvnamic Model I: This model is the result of combining both the
continuity equation and the unsteady momentum equation. The various

coefficients in [3.199] may be expressed as

cu=0, ¢ =0,

a(L) an
gA

(

cu=0,

1

T

) ()

L L
F=E6-5),  f=cGe-S), ad  f=gGe-S),:

c;=0,

; c;=0,

20
gA?

)
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ii. Hydrodynamic Model II : This model is the result of combining both
the continuity equation and the steady momentum equation. The various
coefficients in [3.199] may be expressed as

=0, € =0, Cu=0, ¢;=0, c;=0, ¢, =0,

2
o o) (8] ()

f;=%(so“sf)p -t}=%(so—sl)’ and f;=%(so-s,)‘.

iii. Zero-Inertia Model : This model is the result of combining both the
continuity equation and the zero-inertia assumptions that produced [3.98].
The various coefficients in [3.199] may be expressed as

Ln?Q; 4Ln’Q; Ln*Q,
c;=0,

Co =—r Cop;i =— Ca=—"—0 i
YU3ARY YR " 3ARS

¢;=0, ¢=0, ¢=0, c,=(—), =0, ¢=0,

L L L
f; =gsw f, =zs0j’ and j =gsot .

iv. Kinematic Wave Model : This model is the result of combining both
the continuity equation and the kinematic wave or the uniform flow

assumptions that produced [3.193]). The various coefficients in [3.199] may be
expressed as
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Equations [3.198] and [3.199] should be solved simultaneously for every
element to determine both the flow rate, Q, and the cross sectional area of flow,
A, at each node. However, these systems of equations are combined together
to produce one system of equations for every element. The resultant system of

equations will have the form
4 (‘)!
R‘(i) 4 0 2 0 -1 074
R:‘) 0 44 0 2, 0 -¢flQ
RY
{R(‘)}=< © >=£ 2 0 16 0 2 0 <Af>
RY[730] 0 2, 0 16, 0 2 |]g,
RY -1 0 2 0 4 0|4
LRS; | 0 —¢ 0 2 0 4 LQk
0 -2 0 16 0 _4
24 24 L
—Cs+C; =C,+cy 16cs 16c, —dcs ~4c, ‘ -
2 2 % % u a |[A |,
16 16 Q' i
+ ° U 0 0 0 24 A __uéﬁ
16, ~l6c, 16c, 16c, |1 4f |
24 24 € Coj 2 2% ||a ,
-IL
0 2 0 _16 0 12 flo, —-
24 24 24 | 6
des 4c,  —16cs -16¢c, Cs+C CotCu | S )
| 4 24 24 24 2 2
[3.200]
or
{R“} =[C1{d} +[K]{®}-{F} (3:201]

where c¢;=c;-c;.
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4. Finite Element Development Using Nonstandard Galerkin
Formulation

An oscillation free solution can be generated using the nonstandard
Galerkin formulation of the linear finite element problem. The formulation
utilizes asymmetric weighting functions for approximating the space
derivatives. These asymmetric weighting functions have the form (Allen et al.,
1988; Lapidus and Pinder, 1982)

X;-x . (x-X)(x-X))

Ny=~t—+30—"7 [3.202]

x=X; , @x-X)x-X))
NJ =T-3a Lz 2

[3.203]

where L is the length of the element (refer to Figure 3). The shape functions

are then substituted as the weighting functions in Equations [3.72], [3.80],
[3.90], and [3.99] for the continuity, unsteady momentum, steady momumtum,
and simplified momentum (with zero-inertia assumption) equations,
respectively. Then the entire integration process is repeated. After completing
this step, the resultant element stiffness matrix, [K_], will have the form

1 [NraN. o,
T —— Y i) -1
f[N] X = f[N] 1) {®}ds = {N}[&x ax’]ds{tb}

lelca
2

= 22 1 Hier=xao) [3.204

- — —+_

2 2 22

N

where @ represents either A or Q.
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On the other hand, the time derivatives in the above equations may be
approximated using yet another nonstandard Galerkin procedure. This
procedure involves the lumping of the coefficients of the time derivative. In
order to accomplish this step, the variation of dA/0t and 3Q/dr with respect to x
are assumed constant within the midpoints of adjacent linear elements
(Segerlind, 1984). This step is discussed in the following section for both linear
and quadratic elements.

5. Finite Element Development Using Lumped Formulation

The finite element development of the variation of the dA/dt and 3Q/0¢

terms of the Saint-Venant equations with respect to the space dimension was
performed in the previous two sections based on the so-call_ed consistent or
standard finite element Galerkin formulation. This formulation was utilized
in establishing the weighting functions together with approximating the
variation of time derivatives of area of flow and flow rate with respect to x for
both the continuity, [3.9], and momentum, [3.46], equations. This
development was based on the assumption that the variations in the time
derivative are linear and quadratic for the linear and quadratic finite
elements, respectively (Segerlind, 1984). The linear and quadratic shape
functions were then used as a weighting coefficients for the linear and the
quadratic element formulations, respectively. The resultant element
capacitance matrix for the linear element in both the continuity and
momentum equations had the form

ca=g|7 3] [3:205)

On the other hand, applying the consistent finite element formulation to the
quadratic element resulted in the capacitance matrix
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L 4 2 -1

[C.] =§5 2 16 2 [3.206)
-1 2 4

An alternative to the above approach for defining the variation of dA/ot

and 0Q/d¢ with respect to x is to assume that these are constant within the
midpoints of adjacent linear elements (Segerlind, 1984). This concept is
referred to as the lumped or nonstandard finite element Galerkin formulation.
Under this assumption, the variation of both dA/dr and dQ/dr with respect to x
are written explicitly using the step function. This concept is applied to both
linear and quadratic element formulations.

a. Linear Element

As discussed by Segerlind (1984), the variation of both dA/d¢ and 3Q/o¢
within the element can be written using the step functions

soi-de-g a5 207
and
o {4 H-4T
ot 1k
wher "(‘-EHI N .

The selection of the step function in [3.209] is based on the assumption that the
variations of dA/0r and dQ/0¢t with respect to x are constant within the
midpoints of adjacent elements.
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The quantities multiplying A;, A;, Q;, and Q, are the new shape functions,
N; and N}, where
N'= l-h( -’5‘) | [3210]

e . L
~,=h( -5) [3.211]

Substituting [3.210] and [3.211] in [3.207] and [3.208] results in

.aAi ® j
a R=NG N

=[N"1{A} (3212
and

L )= N g
ot
=IV10) (3213

Subetituting the same shape functions (Equations [3.210] and [3.211]) as the
weighting functions in the first right side term of [3.73] and the third right side
term of [3.81] results in

3 L
[T A yas = [V vIastA)
x 0

=[C.1{A} [3:214]

x L
[T vy = (VT VIas10)
% ()

=[C.1{Q} [3.215]
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L
where [C.1= [INT IV'lds [3.216]
0

The element capacitance matrix, [C,], can be readily evaluated since N;N; =1,

N;N; =0, and N;N; =1. These terms are the result of the characteristics of the
shape functions. Each shape function has a value of one at its own node and
zero at the other nodes (Segerlind, 1984). Substituting these terms in [8.216]
results in

L L

N;N; N;N,
i 58 5

LT1 O
A

The resultant new capacitance matrix in [3.217] together with the new
stiffness matrix in [3.204] are then utilized in establishing a general linear
element system of equations for the nonstandard finite element Galerkin
formulation. This is accomplished by following the same approach that
resulted in [3.111] which represents the general linear element system of
equations developed based on the consistent finite element formulation. The
resultant general system of equations will have the form
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R?) 1 0 o o01(A
Rl Ll0 ¢, 0 0|0,
(¢ =4 -u>=_ 1 i
{R)}'Rg) 2|0 0 1 0}]4
RY) 0 0 0 ¢]|Q
0 -1+a 0 1-a A;
W1 Fl+o)s+c; (l+a),+c, (1-a)cs (1-a), ||Q
2 0 -1-a 0 l1-a A
(-1-a)cs -l-o), (Q+a)s+c; (1+a),+c, [}
2
J;
qﬂ} [3.218]
2
/P
or
{R“} =[C]{d}+[K1{®}-{F} [3.219]

where ¢, ¢,, ¢3, ¢y, ¢4, C;, Cj, f;, and f; are as defined previously.

b. Quadratic Element

In this section, the same approach is followed as shown above. The
resulting variations of both dA/0r and dQ/dr within a quadratic element are
written using the step functions

%(xﬁ[l"'(s'%)]a%{h( -%)]

[l S =
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30 % (. L
To(s- 53 Ple-%]
00; 5L \19Q;
1- h(s ——) 7 ( ——)]—aT [3.221]
L 0 for s<%
where h(s-—)= > [3.222]
6 L
1 for s>=
6,
oy [0 for s<5—;'-
and h( -—) > [3.223])
6 5L
1 for s>?

It is important at this point to emphasize the fact that the selection of the step
functions in [3.222] and [3.223]’ is based on the assumption that the variations
of dA/ot and dQ /0t with respect to x are limited to three constant values within
the length of the quadratic element. These values are constant in the intervals
0 to L/6, L/6 to 5L/6, and 5L/6 to L.

The quantities multiplying A;, A;, A,, Q., Q;, and Q, are the new shape

functions (N;, N;, and N,) where
N = l—h(s -%) [3.224]
wi=[{e-E ][ -e-% ) 2251
N;=h( -%") [3.226)

Substituting [3.224], [3.225], and [3.226] in Equations [3.220] and [3.221]
resultsin
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aA aA, aA.
=[N"1{A} [3.227]
and
aQ BQ BQ .00,
?(x) Na at at +Nk at
=[N"1{Q} [3.228]

After implementing the same shape functions (Equations [3.224], [3.225], and
[3.226)) as the weighting functions in the first right side term of Equation
[3.140) and the third right side term of Equation [3.169], the following
equations result

5 L
[T 1Ay = [V IvIastA)
x 0

=[C.]{A} [3.229]

[T w10 = [V IvIasio)

=[C.1{Q} [3.230]
L

where €)= [N IN'las [3.231]
0

The element capacitance matrix, [C.], can be readily evaluated since N;N; =1,

N;N; =0, N;N, =0, N,N; =1, N/N; =0, and N;N; = 1. Substituting these terms in
[3.231] results in
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L L[N:N; NN; NN,
f[N‘]’ [N')ds =f N;N| N;N; NN, |ds
o °LN:N; NN; NN,

1 00 %0 o o tfO 0 0
0 0 Oldas+ (|0 1 olas+[|o 0 olds
0 00 t[o 0 0 X0 0 1

n
o;ﬁalp

L o [0 0 ojfooo

- so & o400 0

000 6 0o L

000 lo oo 6

L[IOO

=304o] [3.232]
001

The resultant capacitance matrix in [3.232] is utilized in establishing a
new general system of equations for the quadratic element. This is
accomplished by following the same approach that resulted in [3.200] which
represents the general system of equations based on the consistent finite
element formulation. The resultant system of equations has the form



126

[(p(e)
R;f) 1 00 0 0 0](4
Ry 0c, 00 0 0f|0
R?! Llo 0 4 0 o0 of]4
Ry ={"91=-2 Il
{)}‘R;;}sooo«,oogj
R® 0 00 0 1 Of|A
R:‘.‘Z 0 0 000 0 cf|g,
i 12 16 4
0 -2 0 % o -
—Cs+C; —C,+cy 16¢cs 16¢c, —4cs -4c,
2 2 24 24 24 24
16 16
) 0 ~% 0 0 0 2
-16cs  -16¢, 16cs  16¢c,
24 4 9 Y T u
4 16 12
0 % 0 -z 0 %
ﬁ 404 -16C5 —16C4 Cs+C;y Cqt+Coy
| 24 24 24 24 2 2

or

{R®} =[C]{d}+[K1{®} - {F}

> =<

L)

6
J;
4L

6 }
4f;
=I,L

6

L A

[3.233]

[3.234]

where ¢y, Coj» Cas C1» €2 €3y Coy Ciy Cj» Cuy f;» and f; are as defined previously and

Cs=Cy—C;.

The lumping of the coefficients of the time derivative usually produces
smoother numerical solutions compared to the standard finite element

Galerkin formulation (Allen et al., 1988).

The lumped finite element

formulation has fewer constraints on the time step compared to the consistent
finite element formulation. The consistent formulation will violate physical
reality and produce numerical oscillations if the selected value of the ©
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parameter is less than 2/3 in the two-level time scheme (Segerlind, 1984). The
latter scheme will result from implementing the finite difference solution in
time as will be demonstrated in the next two sections.

6. Direct Stiffness Method

Segerlind (1984) defined the direct stiffness method as "the procedure for
incorporating the element matrices into the final system of equations".
Equations [3.219] and [3.233] represent the general finite element system of
equations for the linear and quadratic elements, respectively. These element
matrices can be incorporated into the final system of equations in a
straightforward manner. The element matrices will be assembled into a
banded system of equations as discussed in the text by Segerlind (1984). The
zero coefficients outside the bandwidth will not to be stored. The bandwidth is
defined as one plus the greatest distance between the last non-zero coefficient
and the diagonal coefficient in a row (Segerlind, 1984). Since both the linear
and quadratic elements of the finite element grid of the surface irrigation
problems will be numbered successively from left to right as shown in Figures
3 and 4, the bandwidths of these problems will be four and six, respectively.
The reason the bandwidths are of values of twice as much as the classic linear
and quadratic one-dimensional grids is due to the number of unknowns per
node. As discussed earlier, there are two unknowns per node for the surface
irrigation problems which include the area of flow, A, and the flow rate, Q,
compared to only one unknown per node for the classic one-dimensional finite
element grids.

By applying the direct stiffness procedure, the following global system of
equations result

{Rg} =[Col{®} + (K] {®} - {F5} [3.235)
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where {R;} is the global residual vector, {®} is the global vector of unknowns

A and Q, {¢} is the global vector of the unknown derivatives with respect to
time, [C/] is the global capacitance matrix, [K;]is the global stiffness matrix,
and {Fg} is the global force vector.

The system of equations in [3.235] represents a system of nonlinear
first-order differential equations in the time domain. The boundary conditions
should be incorporated into this system before it can be worked out further as
will be shown in the next section.

7. Finite Difference Solution in Time

After applying the direct stiffness procedure as discussed in the previous
section, the finite element solution of both the continuity and the unsteady
momentum equations for both linear and quadratic elements results in a
general system of linear-ordinary differential equations in the time domain
(Equation [3.235]). This system of equations must be solved numerically to
account for the variation in time. Several procedures can be implemented for
the numerical solution of [3.235). The finite difference method is the most
commonly used method to approximate d{®(¢)}/dr and &(r) at successive points
in the time domain (Segerlind, 1984).

The mean value theorem for differentiation can be applied to the solution
of [3.235] as discussed by Segerlind (1984). Given any function ¢(t) and the
interval [a,b] as shown in Figure 5, the mean value theorem states that there
is a £ between a and b such that
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o(r)

a § b t

Figure 5. Plot of ¢(r) as a function of time (Segerlind, 1984).
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#0)-4a) =6 -0 ® [3.236)

or

dé .. _o0b)-e@a)
dt ®= At [3-237)
where Ar=a -b.
The value of ¢(a) can be approximated as
doé
¥a)=¢@®) - @'“)E@ [3.238]
or
do
€ =d@a)+ (§-a);7(§) [3.239]
Substituting [3.237] in [3.239] results in
40 =0a)+ X0 e ) [3240)
or
¢ = &(a) + [¢(b) - ¢(a)10
=(1-0)d(a)+0¢(b) [3.241)

where 0 =(§-a)/Ar.

The results of Equations [3.237] and [3.241] can be generalized for column
vectors (Segerlind, 1984). The resultant two equations at ¢t =& will be

do®) 4. (O} -{0),
{ - }—m- = [3:242]
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{®}=(1-6){0}, +6{D},

[3.243]

where {®}, and {®}, are two column vectors containing the nodal values at

times a and b, respectively.

A similar approach can be followed to develop an equation for {F} at ¢t =&.

The resultant equation is

{Fg}=(1-0){Fs} ,+0{Fs},

[3.244]

where {F}, and {F}, are the force vectors at times a and b, respectively.

Equations [3.242], [3.243], and [3.244] can now be replaced in [3.235].

The result is

®}, - {®],
[Ca]({ -9}

~(1-8){F;},-8{F,}, = {0}

)+ [Ko1((1-6){®}, +6{®},)

or

([Cql +0Ar[K;]) {®}, = (ICo] - (1-0)A1[Kg)) {®],
+A((1-6){Fg}, +6{Fg},)

or
[Ac) {®}, =[Pc) {®}, +{Fg}
where

[Ac] = (ICo] +0A1[K,)),

[Pel=(Cs]l - (1 -0)A1[K)), and
{Fg}=At((1-0){Fg},+6{Fs},).

[3.245]

[3.246]

[3.247)
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Equation [3.246] represents a general two-level-time scheme that gives
the nodal values, {®},, in terms of a set of known values, {®},, and the force
vectors at times a and b. The parameter 6 should be specified to obtain a
solution to [3.246]. The range of values of 0 is in the interval [0, 1]. Selecting 6
would in turn determine the location of § at which the mean value theorem is
applied.

There are four popular methods that result from four choices of 6
(Segerlind, 1984). These methods include the following :

i. Forward Difference Method : This method is obtained by specifying
£=a. The resultant 6 will be 6 =0. Equation [3.246] reduces to

[Cel{®}, = (Cq) - At[Kg]) {®), +At{Fg}, [3.248]

ii. Central Difference Method : This method is obtained by specifying
E=A12+a. The resultant 6 will be 8=0.5. Equation [3.246] reduces to

(ca+ima)ion=(ico-Sma o+ Sir, +51F, ) B2

iii. Galerkin Method : This method is obtained by specifying & =2As/3 +a.
The resultant 0 will be 6 =2/3. Equation [3.246] reduces to

([cal+-2gﬂlxal){¢},=(tcal-%‘—[Kd){«b}.+(%{Fa},+%{ra}.) [3250]

iv. Backward Difference Method : This method is obtained by specifying
€ =b. The resultant 6 will be 6.=1. Equation [3.246] reduces to

(Col + At[K;)) { @}, = [Col {D}), +At{Fg}, [3.251]

The global matrices [C;] and [K;] and the global vector {F;} which result
from applying the direct stiffness procedure should be modified before the
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initiation of the solution process. This modification is necessary to include the
known nodal boundary conditions without which the problem is undefined.
The resultant system of equations is solved then for every time step using a
direct approach such as Gaussian elimination.

8. Implementing the Solution Procedure

In order to implement the finite element Galerkin formulation of the
motion equations as was described earlier in this section, many relationships
should be established to reduce the number of dependent variables in the
solution process. These include establishing relationships among flow
geometry parameters. Also, such relationships should be implemented in
order to reduce the number of dependent parameters in the uniform flow
equations which are utilized to establish the friction slope. Moreover, the
infiltration function that will be used in the solution process should be
selected.

In order to apply the finite element Galerkin formulation to the numerical
solution of the complete or simplified forms of the hydrodynamic equations in
furrows or borders, some mathematical relationships ought to be established
among flow geometry parameters. These relationships are to reduce the
number of dependent variables in the finite element formulations that were
discussed in the Theoretical Development section of this chapter. The number
of dependent variables can be reduced by relating the depth of flow, y, and the
cross-sectional area of flow, A, in furrows. One approach is to select the
following power curve (Elliott et al., 1982; Walker and Skogerboe, 1987):

y=0A" [3.252]
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where 0, and o, are empirical fitting constants. These constants reduce to

unity in borders given a unit width of flow. The next step is to establish a
mathematical relationship between the top width of flow, T, and the
cross-sectional area of flow, A. Assuming a parabolic cross sectional area in
furrows, the top width can be represented as (Chow, 1959)

T==— [3.253]

—yA® [3.254]

where ¥, and y, are empirical fitting constants with y, =320, and 3,=1-0,.

Equation [3.254] is only applicable to furrows with parabolic cross sections.
These parameters are considered constants for any given furrow given the
assumption of a prismatic channel. The parameters ¥y, and 7y, in [3.254] will
reduce to 1 and 1.5, respectively, when the case of borders is considered
(T =1, given a unit width of flow). Equation [3.262] is utilized in the finite
element formulations of the zero-inertia and the steady and unsteady
hydrodynamic models.
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b. Uniform Flow Equations

The uniform flow equations (Equations [2.11], [2.12], and [2.13]) that
were reviewed in the previous chapter can be written in this general form

Q2
LAR"

S,=

[3.255]

where the parameters k, and k, are shown in Table 1, A is the cross-sectional

area of flow, R is the hydraulic radius, P is the wetted perimeter, Q is the flow
rate, and S, is the friction slope. The number of dependent variables in [3.255]
can be reduced by mathematically relating the wetted perimeter, P, and the
cross-sectional area of flow, A, in furrows. Again, if a power curve is selected,
the following relationship can be established

P=pA” [3.256]

where B, and B, are empirical fitting constants. Substituting Equation [3.256]
in [3.255] results in

5 2pra
/= 2+k,
kA

= [3.257]
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Table 1. Summary of the parameters k, and k, in the uniform flow equations.

n is Manning’s roughness coefficient,

C is Chezy’s roughness coefficient,

f is Darcy-Weisbach’s roughness coefficient, and
g is the acceleration due to gravity.
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where p, and p, are empirical fitting constants that are controlled by the

hydraulic section of the furrow or border. The parameters p, and p, will vary
based on the selected uniform flow equation. The above parameters are held
constant for any given irrigation event. The parameters B, and B, reduce to 1
and 0, respectively, when the case of borders is considered given a unit width
of flow. This reduces the parameters p, and p, to 1 and 2 +k,, respectively.

c. Infiltration Functions

Any of the empirical infiltration functions that were reviewed in the
previous chapter can be utilized to estimate infiltration in the finite element
development of the motion equations as applied to surface irrigation problems.
However, many scientists preferred to use the Kostiakov-Lewis infiltration
equation in their developments. Although this infiltration function neglects to
account for the effect of wetted perimeter changes on infiltration, it was
reported in many studies that the Kostiakov-Lewis function produces good
results especially when the definition of the parameters a, k, and f, was based
on flow rates typical of the normal irrigating conditions. The Kostiakov-Lewis
function has the form

Z=kt+fg [3.258]
or

1=%%=aln‘"+fo [3.259]

where a, k, and f; are fitting constants, Z is the cumulative infiltration, / is the

infiltration rate, and t is the opportunity time, to be differentiated from the
time ¢.



IV. RESULTS AND ANALYSIS

The Galerkin formulation of the finite element method was used to solve
the complete and simplified forms of the hydrodynamic model using both
linear and quadratic one-dimensional elements. The Galerkin formulation
was first applied to both the continuity and momentum (in its complete or
simplified forms) equations with respect to the space coordinate for a fixed
instant of time. This results in a system of first-order ordinary differential
equations in the time domain. Then, a finite difference approximation in the
time domain was applied to the final system of equations to generate a
numerical solution. The direct stiffness procedure was utilized in building the
global systems of equations at various time steps. The final system of
equations were then modified to incorporate the boundary conditions of the
#dvance, ponding, depletion, and recession phases. The dimensions of the total
system of equations remain unchanged after the application of these boundary
conditions at any given time step. The finite element Galerkin formulation
was then utilized in building a general computer model. The latter model can
be used in the analysis of water flow conditions in surface irrigation systems.
Currently, only the kinematic wave finite element analysis is fully operational

in the present version of the computer model.

The finite element Galerkin formulation that was applied in the
development of the computer model will be discussed in this chapter, together
with the analysis of the results from applying this model to the simulation of
flow conditions in surface irrigation systems.

138
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A. Finite Element Model Formulation

The finite element Galerkin formulation of the complete and simplified
forms of the Hydrodynamic model was developed in the Chapter III using both
linear and quadratic elements. This development produced a general system
of equations for each of the latter elements (refer to Equations [3.218] and
[3.233]). The generalized system of equations reduces to either the complete
hydrodynamic model, the steady hydrodynamic model (where the time
dependent term in the momentum equation is assumed negligible), the
zero-inertia model, or the kinematic wave model through the selection of the
appropriate coefficients which result in the respective model. The system of
equations for the various elements are then assembled into a global system of
equations using the direct stiffness procedure. This latter represents a system
of nonlinear ordinary differential equations. The mean value theorem for
differentiation is then applied to change this ordinary system of equation into
a system of nonlinear algebraic equations. The next step includes the
modification of this system of equations to incorporate the various boundary
conditions. Then, the resultant system of equations is solved numerically
using the Gauss elimination. These steps will be described in further detail in
the following sub-sections using the linear element. It is important at this
point to remember that the procedure that is followed in accomplishing the
various tasks that were highlighted in this paragraph is similar for both linear
and quadratic elements. The only difference between the two is reflected in
the original equations of each element.

1. Assembling System of Equations

The finite element solution starts with one two-nodal element during the
first time step (Figure 6). This element has two nodes: an upper node at the
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flow inlet boundary and a lower node at the tip of the advancing front. Since
the lower node is selected at the tip of the advancing front, both the flow rate
(Q) and the cross-sectional area of flow (A) are zero at that node. The only
unknowns during the first time step are the length of the element, which
represents the distance that the moving front has advanced during the time
step A1, and the cross-sectional area of flow (A) at the upper boundary. This is
true for all models except the kinematic wave model where the cross-sectional
area of flow (A) at the upper boundary of the first element is determined from
the uniform flow relationship depicted in Equation [3.254]. As time
progresses, an element is added to the system of equations during each
subsequent time step (Figure 7). The advance phase (Figure 8a) is concluded
once the advancing front reaches the end of the furrow or border. After the
completion of the advance phase, the number of elements remains the same
after subsequent time steps during the ponding (Figure 8b) and depletion
(Figure 9a) phases. After the cutoff time of water inflow the number of
elements is reduced starting from the upstream end of the furrow or border as
the cross-sectional area of flow approaches zero at various nodes. The solution
process is concluded once the receding front reaches the end of the furrow or
border at the end of the recession phase (Figure 9b).

In order to demonstrate the direct stiffness procedure which is
implemented in assembling the global system of equations, four examples will
be presented in this section using linear elements. These examples will
pertain to the full hydrodynamic, steady hydrodynamic (hydrodynamic II),
zero-inertia, and kinematic wave models, respectively. These examples are
based on the discussion that was presented in Section B-5 of Chapter III. The
number of elements that will be used in each of these examples is 3 which
results in four nodes. The global capacitance matrix ([C;)), stiffness matrix
([K;)), and force vector ({Fg}) in Equation [3.232] which has the form
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{Rg} =[Col{d} + K] {®} - {F}

will have the form

Example 1: Full Hvdrodvnamic Model
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L, 0 0 0 T
00 0 0
0 0L+L, 0 0 0O
110 O 0 0 0 0
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Example 3: Zero-Inertia Model
L, 0 0 0 .
0 0 0 0
0 0L+L, 0O 0 0
110 O 0 0 0 0
[Cal=3 0 0 L+L 0 0 0 [4.11]
0 0 0 0 0 O
0 0L 0
I 0 00 0
Vq‘h
LS,
-LL, -ILL,
1| LxSe, +L,S,,
[Fol =3 aL -1 [4.12)
LS, +LyS,,
=1L,
{ L;so.J
[0 -1+a 0 1+a
-1+a Ln%Q, 1-a 0
i pAf T
0 -1-a 0 20 0 1-a
-1-a 2a n’0, 1-a
K=y T M T T B 0
172 0 -l-a 0 2a 0 1-a
-1-a 20 n’Qy 1-a
T 0 T, (L‘H")P:Af T, 0
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-1-a 0 1+a Ly’Q,
i I T pAf

[4.13]



Example 4: Kinematic Wave Model
L, 0 0 O 7
0 0 0 0
0 0L+L, 0 0 O
110 O 0 0 0 0
[Col=3 0 O0 L+L, 0 0 0O [4.14]
0 0 0 0 0O
0 0L, O
I 0 0 0 O
ro A
0
0 +0
0 +0
[Fgl=+ 0 +0 > [4.15]
0 +0
0
. Od
0 -l1+a 0 1+a T
1 -
;p,A,'"s.. -1 0 0
0 -1-a 0 2a 0 1-a
loatss -
o ()} 0 -pA7S, 1 ()} 0
K"'z 0 -1-a 0 2a 0 1-a
1 -
0 0 ;,A,""s,, -1 0 0
0 ~-l1-a 0 1+a
1 w2 _
. 0 0 ~pAlS, 14

[4.16]
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2. Incorporating Boundary Conditions

Most of the boundary conditions in the one-dimensional surface irrigation
problem involve boundaries with known-values. These are referred to as
boundary conditions of the first kind or Dirichlet boundary conditions.
Generally, there are five of these boundary conditions in sloping border and
furrow irrigation systems. The first is the upstream boundary during the
advance phase (Figure 8a) where the inlet flow to the furrow, or the unit inlet
flow to the border, is known. This represents the case where the flow rate at
node 1 (Q,) is known. During the advance phase, another known boundary
exists at the tip of the advancing front. At this boundary, both the flow rate
and the cross-sectional area of flow at that node are zero. Once the advancing
front reaches the end of the furrow or border, two boundary conditions may
occur. The first involves the case when tail water is draining from the end of
the field. At this instance, a flow is assumed to be uniform at the downstream
node of the last element. The other boundary could involve the case where a
barrier at the downstream node of the last element stops the forward flow of
water. This boundary translates to a flow rate of zero at the downstream node
of the last element while the cross-sectional area of flow increases as the water
ponding phase (Figure 8b) starts. The last boundary represents the upstream
boundary as the receding edge moves downstream during the recession phase
(Figure 9b) of flow. Both the flow rate and cross-sectional area of flow at the
upper node of the upstream element of the receding front are zero.

As for the recession phase, the upstream node that has a cross-sectional
area of flow approaching zero dictates that the receding front has reached that
node which would mean that the last boundary that was described in the last
paragraph is applicable. Then, the receding front moves to the upper node of
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the next downstream element if the same conditions occurs. This process
continues on until the receding front reaches the upper node of the last
downstream element.

The various boundary conditions are implemented in the solution process
of the finite element Galerkin formulation so as to result in a well posed
problem. These known boundary conditions are implemented after the global
system of equations is assembled using the direct stiffness procedure of fhe
finite element method as was discussed in the previous section. The global
system of equations at each time step is modified to incorporate the various
known boundary conditions starting with the initial conditions where the
global system of equations contains the contribution of only one element. The
same procedure is then repeated at subsequent time steps until the solution

process of the various phases of flow is concluded.

The genéral form of the global system of equations was developed in
Section B-7 of Chapter III after implementing the mean value theorem for
differentiation. This resulted in Equation [3.246] which has the form

([Cel +0A2[K;]) {D), = (ICg] - (1 -0)AI[K,]) { @}, +Ar((1-0){F;}, +0{F},)
[4.16]

In order to implement known boundary conditions, the system of equations
above ([4.16]) should be modified at each time step. However, the modification

should not be done before determining the matrices [A;] and [P;] and the vector
{F3} in the equation

[Ag]{®}, = [Pl {®}, +{F5} = {S5} [4.18]

where
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[46] = (ICq] +6Ar[K,]),

[Pg] = ([C5] - (1-6)Ar[K,]), and
{Fg}=A1((1-0){F5}, +8{Fc},).

If the number of equations is » and ®, is the known value (k is 1,2,3,..., or a),
the modification of the system of equations in [4.18] is accomplished using the
following steps:

1. Subtract the product A, ,®,, with i=1,2,....,n from the corresponding

coefficient in the vector {Fg}.
2. Replace the coefficients in row k and column k of the matrix [A;] by zeros.
3. Replace the coefficient A, , in the [A;] matrix by one.
4. Add the product P;,®,, with i=1,2,....,n to the corresponding coefficient
in the vector {Fg}.
5. Replace the coefficients in row k and column k of the matrix [P;] by zeros.
6. Replace the coefficient in row & of the {Fg} vector by ®,,.

The nodal values ®,, and ®,, represent ®, at times b and a, respectively. This

would allow the known boundary conditions to be specified as inflow or outflow
hydrograph.

3. Numerical Solution

After assembling the system of equations using the direct stiffness
procedure as was discussed in Section A-1 of this chapter, the system of
equations is solved iteratively at each time step. The iterative solution
procedure is a necessity since the algebraic equations that make up the global
system of equations, which resulted from implementing the mean value
theorem for differentiation, is nonlinear.
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The general finite element Galerkin formulation of the complete and
simplified forms of the hydrodynamic model which were developed in Chapter
III using both linear and quadratic elements has some particular
characteristics that are specific to the selected model. The difference is
primarily between the full hydrodynamic model on the one hand and the three
simplified forms of the hydrodynamic model (namely the steady
hydrodynamic, zero-inertia, and kinematic wave models) on the other hand.
The complete hydrodynamic model is based on two unsteady nonlinear partial
differential equations. The simplified hydrodynamic models are based on one
unsteady partial differential equation (continuity equation) and one steady
partial differential equation (simplified momentum equation). Therefore, the
mean value theorem of differentiation applies to both system of equations in
the case of full hydrodynamic model while it applies only to the continuity
equation in the case of the simplified hydrodynamic models. This would then
translate into the fact that the ordinary differential equations with odd
numbers in equation [3.235], which represent the contribution of the
continuity equation to the final global system of equations, should be
transformed to algebraic equations using the mean value theorem of
differentiation. However, the equations with even numbers in [3.235] would
need the same procedure only for the case of the complete hydrodynamic
model. In other words, the mean value theorem for differentiation is not
needed in the latter case when considering the simplified hydrodynamic
models. Instead, these equations should have the form

Kol {®}, = {F,}, [4.19]

In order to satisfy both [4.16] and [4.19] for the complete and simplified
hydrodynamic models, the following equation is developed:

(Cel +¢i[K)) {®}, = (Col - 6 [Ks)) {®L, + c,{F(), +c,{Fq}, [4.20]
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where the parameters c, and c, are defined in Tables 2 and 3.

The Gauss elimination routine was used in this development for the
solution of the non-linear system of simultaneous algebraic equations which
emerged from the global system of ordinary differential equations based on the
discussion earlier in this section. @ The Gauss elimination routine
(GAUSSBND) implements the solution of the system of equations in two steps.
The first involves the forward elimination which reduces the set of algebraic
equations to an upper triangular system. The next phase utilizes the
backward substitution to produce a solution to the unknowns in the system of
equations. GAUSSBND imple;nents partial pivoting, a step that involves the
switching of rows to make the largest element the pivot element. This step is
accomplished without exchanging the rows physically, but by keeping track of
the order of equations in an array. The partial pivoting makes the routine
applicable to the solution of sparse and ill-conditioned system of equations.

The developed Gauss elimination routine was modified to solve the final
system of equations in a banded form since the resultant system of equations
is banded with bandwidths of 4 and 6 for the linear and quadratic elements
(refer to Section B-6 of chapter III), respectively. For this reason, the system
of equations is assembled in banded form using the direct stiffness procedure.
This step reduces the computer storage requirements of the [As], [P;], [Csl, and
[K;] matrices in Equations [4.17] and [4.19]. The dimensions of these matrices
are defined in Table 6 when these matrices are stored in full and banded forms.
The advantages of this approach are demonstrated in Figures 10, 11, 12, and
13 for both linear and quadratic elements.
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Table 2. Definition of the parameters ¢, and ¢, in Equation [4.20] for
equations with odd numbers in the global system of equations.

Complete Hydrodynamic Model
(Hydrodynamic Model I)

Steady Hydrodynamic Model
(Hydrodynamic Model II)

Zero-Inertia Model

Kinematic wave Model
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Table 3. Definition of the parameters ¢, and ¢, in Equation [4.20] for
equations with even numbers in the global system of equations.
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Table 4. Dimensions of the matrices [Cg], [Kg), [Ag), [Pgl, and [Xg) in full and
banded forms. '

Number of Columns, ¢

Linear Element Quadratic Element
(n,=2 and n=e+1)

number of rows = 2n

number of columns
number of elements
number of nodes = (n,—1)e +1

number of nodes per element

: the matrix that corresponds to [A;] in Equation [4.18] once the
GAUSSBND subprogram is called
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In order to demonstrate the assembling of the global system of equations

in a banded format, the four examples that were presented earlier will be

presented in this section in a banded form. The global capacitance ([C;]) and

stiffness ([K;]) matrices of Equation [3.232] will have the form

Example 1: Full Hvdrodvnamic Model

[ *
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[4.21]
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[4.22]
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(% * = L, 0 0 O
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[C]—l 000 O 00O
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Example 3: Zero-Inertia Model
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B. Finite Element Computer Model

A general one-dimensional surface irrigation computer model
(FE-SURFDSGN) was developed based on the finite element Galerkin
formulation of the complete and simplified hydrodynamic equations. The
model was developed based on the methodology of Chapter III. It utilizes the
finite element Galerkin formulation for performing the analysis of the surface
irrigation problem using either linear or quadratic elements. The model was
developed to run on any IBM-compatible microcomputer with a Random
Access Memory (RAM) of 512 Kbytes or more and an MS-DOS version 2.00 or
higher.

1. Model Components

FE-SURFDSGN was developed in a modular format. It has a main
program that addresses a series of routines. These routines vary in size and
complexity. Some of these routines are devoted solely to input and output
while others deal with the setting up of the global systems of equations using
the direct stiffness procedure of the finite element method and the numerical
solution of the developed system of equations at each time step. The program
allows the user to produce data files that include the data for both the advance
and recession curves of flow in surface irrigation. FE-SURFDSGN has various
levels of tabular output which is also controlled by the user. It has a
companion graphics routine which, if selected, produces a graphical output of
the advance and recession curves in addition to the plot of actual field
measurements. FE-SURFDSGN was developed and compiled in Power Basic
which is the product of Spectra Publishing Company. The size of the program
is very small compared to the number of various functions and options that it
has. The size of the listing of FE-SURFDSGN doesn’t exceed 90 Kbytes which
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also includes the listing of the graphics routine. The listing of both the
FE-SURFDSGN program and the graphics routine are presented in
Appendices A and B, respectively.

The model can simulate the various phases of flow in furrows and borders.
These include the advance, ponding, depletion, and recession phases. This
analysis is performed based on either the standard or nonstandard finite
element Galerkin formulation and using either linear or quadratic elements.
The analysis can be carried out based on any combination of the above options
and using the finite element formulation of the complete hydrodynamic
(hydrodynamic model I), steady hydrodynamic (hydrodynamic model II),
zero-inertia, or kinematic wave model.

2. Data Input

There are three screens of data input to FE-SURFDSGN. The first input
screen (Figure 14) has the following entries:

Irrigation Method: This input allows the user to select the irrigation
method which could either be furrow () or border ((®)).

Method of Solution: This entry allows FE-SURFDSGN to perform the
analysis based on the finite element formulation of the complete
hydrodynamic (@), steady hydrodynamic (&), zero-inertia (@), or
kinematic wave model (®)).

Type of Element: The user has to select the type of element which could
either be linear ((L)) or quadratic (®)).

Level of Printing: The level of printing can be selected by entering an
integer in the range of 0 to 3. By selecting (0), the model would only print
a general summary of the simulation process. On the other hand,
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extensive output is produced when the level of printing is selected at (3).
This output would include a printout of the intermediate steps of
computation which might amount to pages and pages of printout. This
level of printing is only needed for debugging FE-SURFDSGN.

Output Device: The last entry on the first screen would allow the user to
choose the output device which could be the screen (&), a temporary file
SURFDSGN.OUT ((®), or the printer ((®).

The second screen (Figure 15) allows the user to select many specific
parameters which affect the speed and accuracy of the solution. These
parameters include the following:

Time Step: The time step (&) should be entered in minutes.

FE-SURFDSGN utilizes constant time steps to solve the time-dependent
surface irrigation problem. However, the model can be modified to use
variable time steps if the user sees an advantage in implementing such a
change.

Maximum Number of Iterations: This entry represents the maximum
number of iterations that the model is allowed to perform before
convergence is reached at various time steps. If the maximum number of
time steps has been reached and the solution did not converge to the
desired accuracy that is specified by the user, the program proceeds to the
analysis of the subsequent time step.

Allowable error: This error represents the maximum allowable error for
the accumulated deviation between the results of the previous and
current iteration at all nodes.

Time Weighting Coefficient: The time weighting coefficient (0) is a
number in the range of 0 to 1 (refer to Section B-7 of Chapter III).
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Figure 14. First screen of input data into FE-SURFDSGN.
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Figure 15. Second screen of input data into FE-SURFDSGN.
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Space Weighting Coefficient: The space weighting coefficient (c) is a
number in the range of 0 to I (refer to Section B-4 of Chapter III).
Selecting o at 0 would result in the standard finite element Galerkin

formulation. However, if 0<a<1 is selected, the nonstandard finite
element Galerkin formulation results.

Top Width Coefficient: The coefficient 3/2 in Equation [3.264] is
included sometimes in the coefficient o,. If this was the case, a value of 1
should be selected. Otherwise, a value of 1.5 should be keyed in as an
input to this entry.

Consistent or Lumped: This allows the user to select either the
consistent (1) or the lumped formulation (0) (refer to Section B-5 of
Chapter III).

The last screen (Figure 16) allows the user to enter the hydraulic
parameters of the furrow or border. These parameters include the following:

Furrow Length: This entry represents the length of the border or furrow
in meters.
Time of Cutoff: The cutoff time in minutes represents the time when

water flow into the upstream boundary of the furrow or border is turned
off.

Inlet Flow Rate: The inlet flow rate into the furrow or the unit inlet flow
rate into the border should be entered in liters/minute. This entry is
currently considered as the average inflow rate at the upper boundary of
the furrow or border. However, the model can be modified to handle an
inflow hydrograph. This step could be accomplished through the
definition of inlet flow rates at various time steps starting with time zero
until water inflow is turned off.
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Slope of Channel Bed: This entry represents the slope of channel bed
which should be entered as a fraction. The program currently defines the
slope at all nodes to be the same. However, this could also be changed in
FE-SURFDSGN to allow for the set up of an array that contains the slope
of channel bed at various nodes.

Manning’s Roughness Coefficient: This entry pertains to the
roughness coefficient in the Manning’s equation. The program currently
uses the Manning equation as the sole uniform flow equation. However,
various uniform flow equations may be incorporated into the model based
on the discussion in Section B-8 of Chapter III.

Flow Geometry Parameter, o,: This hydraulic parameter represents

the coefficient in Equations [3.252] and [3.254] that were presented in
Section B-8 of Chapter III. These equations are power functions that
correlate the flow rate and top width of flow, respectively, to the
cross-sectional area of flow. The parameter o, reduces to 1.5 when
borders are considered.

Flow Geometry Parameter, ¢, This hydraulic parameter represents

the exponent in the same equations above (i.e, Equations [3.252] and
[3.264]). Again, this parameter reduces to I when the user chooses to
analyze borders.

Hydraulic Section Parameters, p, and p,; These parameters are

empirical fitting constants which are controlled by the hydraulic section
of the furrow as shown in Equation [3.257] (refer to Section B-8 of Chapter
III). These parameters reduce to I and 3.333, respectively, when the case
of borders is considered.
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Infiltration Function Coefficient, k: This is the first coefficient in the
Kostiakov-Lewis equation (see Equation [3.258] in Section B-8 of Chapter
III). This input should be entered in m*m/min®. The Kostiakov-Lewis
function is currently the only available infiltration function in the
developed computer model. However, other infiltration functions can be
easily incorporated into FE-SURFDSGN.

Infiltration Function Exponent, a. This parameter represents the
exponent in the Kostiakov-Lewis equation.

Infiltration Function Coefficient, f: This is the second coefficient in
the Kostiakov-Lewis equation. This input should be entered in m*m/min.

3. Model Output

The developed finite element surface irrigation model displays a
summary output which represent both the flow rate and the cross-sectional
area of flow at all nodes at various time steps starting from initial conditions
until the conclusion of the recession phase. Also, FE-SURFDSGN produces
two data files which can subsequently be used to plot the simulated advance
and recession curves of flow in surface irrigation. The program reports to the
user the execution time of the computer after the completion of the simulation
run for all phases of flow.

As was discussed earlier, FE-SURFDSGN has a companion graphics
routine which produces a graphical output of the advance and recession curves
in addition to the plot of actual field measurements for those curves. The
utility of the graphics routine of FE-SURFDSGN is demonstrated in the
following section where comparisons between simulated model data and actual

field measurements are made.
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FE-SURFDSGN has various levels of tabular output which is also
controlled by the user. The level of printing can be selected by entering an
integer in the range of 0 to 3. By selecting 0, the model would only print a
general summary of the simulation process. However, extensive outputs are
possible by selecting numbers in the range of 1 to 3 (refer to the Data Input
section). The level of data output becomes more and more extensive when
numbers closer to the upper range are selected. The latter outputs would
include printouts of the intermediate steps of computation which amount to
pages and pages of printout.

C. Results and Comparison

A computer model (FE-SURFDSGN) was developed based on the finite
element Galerkin formulation of the complete and simplified forms of the
hydrodynamic model. The model was originally developed to simulate the
advance phase of water in border and furrow irrigation systems. The model
was then extended to simulate the ponding, depletion, and recession phases of
flow conditions in border and furrow irrigation systems. This was
accomplished through incorporating the proper boundary conditions that
correspond to these phases of flow into the finite element Galerkin formulation
as discussed in Section A-2 of this chapter.

This section includes a summary of the comparisons that were made
between the simulated model data and actual field measurements. A
summary of the actual field measurements will be presented first, together
with the input parameters that were utilized in running FE-SURFDSGN as
well as the sources of these data. Then, plots of actual field data and predicted
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data using the developed computer model will be presented. Finally, a
sensitivity analysis will be presented to show the model’s sensitivity to various
input parameters.

1. Actual Field Data

In order to validate any surface irrigation model, actual field
measurements are a necessity. The input data used for running
FE-SURFDSGN which was based on the Galerkin formulation of the complete
and simplified forms of the hydrodynamic model are presented in Table 5.
These data were reported by Elliott et al. (1982b). The data were originally
collected from furrow irrigation evaluations at three Colorado locations during
the Summer of 1979 by Colora'do State University researchers (Elliott, 1980).
The three sites belonged to three farms that were privately owned. Walker
and Skogerboe (1987) reported that this study involved six furrows (three
groups of two furrows each) at each site during the 1979 irrigation season. The
reader is referred to the publications by Elliott (1980) and Elliott et al. (1982b)
for a detailed description of the Colorado study. Additional input data for
model testing were used from four different Utah and Idaho tests. These data
were collected by the researchers in the Department of Agricultural and
Irrigation Engineering at Utah State University from two locations in Utah
and Idaho. These data are described in Table 6 and were taken from Walker
and Humpherys (1983) and Walker and Skogerboe (1987).

The observed advance data for the Colorado study were taken from the
journal article by Elliott et al. (1982b) where those of the Utah and Idaho
studies were taken from the text by Walker and Skogerboe (1987). The
observed recession data for the Colorado study data were taken from the
research study by Oweis (1983).
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Table 5. General information and furrow evaluation data for the Colorado
study sites that were used in model testing (source: Elliott et al.,

1982bh).

Benson Farm Matchett Farm Printz Farm
Soil Type Clay loam Loam to clay loam Loamy sand
Crop Corn Corn Corn
Furrow Length (m) 625 425 350
Spacing Between 1.524 0.762 1.524

Wetted Furrows (m)
Irrigation Event, Group | 1,1,56 521 2,35 1,4,5 8,23 1,11
#, Furrow #
Time of Cutoff (min) 690 619 1364 1478.5 171 248
Inlet Flow, Q, (Ips) 2.78 117 0.92 0.85 2.77 4.81
Slope, S, (m /m) 0.0044 | 0.0044 | 0.0095 | 0.0092 | 0.0025 | 0.0023
Manning’s Roughness, n] .03 .02 .02 .03 .02 .03
Furrow Geometry 0.92 0.72 2.18 .87 113 1.78
Parameter, o,
Furrow Geometry 0.65 0.64 0.79 0.56 0.75 0.72
Parameter, o,
Hydraulic Section 0.46 0.34 1.36 0.30 0.73 0.92
Parameter, p,
Hydraulic Section 2.86 2.84 3.00 2.73 2.98 291
Parameter, p,
Infiltration Function
Coefficient, k£ 0.0252 | 0.0173 | 0.0033 | 0.0011 | 0.0161 | 0.0078
(m®m/min®)
Infiltration Function
Exponent, a 0.02 0.01 0.40 0.48 0.02 0.40
Infiltration Function
Coefficient, f, 0.00023 | 0.00008 | 0.00003 | 0.00003 | 0.00040 | 0.0014
3
(m*mimin) ‘
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Table 6. Additional data for model testing (source: Walker and Skogerboe,
1987).

Flowell Kimberly
Nonwheel Nonwheel

Soil Type

Furrow Length (m)
Time of Cutoff (min)

Inlet Flow, Q, (ips)

Slope, S, (m/m)

Manning’s Roughness, »

Furrow Geometry
Parameter, o,

Furrow Geometry
Parameter, o,

Hydraulic Section
Parameter, p,

Hydraulic Section
Parameter, p,

Infiltration Function
Coefficient, &
(m¥ m/min®)

Infiltration Function
Exponent, a
Infiltration Function

Coefficient, f,
(m®m/min)
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2. Model Runs

FE-SURFDSGN was developed as a general computer model for
simulating the flow conditions in borders and furrows based on the
methodology that was discussed in the previous chapter. The various models
that are available include the hydrodynamic and kinematic-wave models as
well as the zero-inertia model. Currently, only the kinematic wave finite
element analysis is fully operational in the present version of FE-SURFDSGN.
There are still some problems in predicting the rate of advance in both the
hydrodynamic and zero-inertia models. More work is being done to complete
the development of these options in the computer model so that the general
finite element development is operational for the complete and simplified
forms of the hydrodynamic equations.

In order to demonstrate the effectiveness of the finite element formulation
in the numerical solution of the hydrodynamic equations, various simulation
runs were conducted using the kinematic-wave model. Comparing model
results to actual field measurements demonstrate the effectiveness of the
presented methodology and the utility of the nonstandard Galerkin
formulation of the complete and simplified forms of the hydrodynamic
equations as applied to the analysis of furrow and border irrigation systems.

The finite element model generated an advance curve for each column of
the input data in Tables 4 and 5. These curves are shown in Figures 17
through 25 together with the plot of the measured advance data as reported by
Elliott et al. (1982b) and Walker and Skogerboe (1987). The parameters o and
0 were selected at 0.25 and 0.5, respectively, for all these runs. The selection
of these parameters was based on the sensitivity analysis that will be
presented in the following subsection. The time step, Az, was selected at §

minutes for all these runs.
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In general, it is obvious from these runs (Figures 17 through 25) that
model predictions are very reasonable. This is apparent where the simulated
rate of advance is very consistent with actual field measurements in almost all
cases. The model predictions are good indicators of the effectiveness of the
presented methodology in this research study.

As to the speed of the developed model, the latter prediction runs took
approximately 50 seconds on average on a 386 IBM compatible machine.
However, the average execution time could be cut at least in half if the length
of the time step, Ar, is doubled. The accuracy of the simulated model results
will not be affected even if Ar was doubled or quadrupled as will be
demonstrated again in the subsequent subsection on sensitivity analysis.

FE-SURFDSGN was also utilized in simulating the complete irrigation
cycle for the furrow tests from the Colorado study that were presented in Table
4. The irrigation cycle includes the advance, ponding, depletion, and recession
phases of flow. The results of these simulation runs are presented in Figures
26 through 31. The plot of the measured advance and recession data were
taken from Elliott et al. (1982b) and Oweis (1983), respectively. These runs
were conducted using a Ar of 10 minutes. The parameters o and 6 were
selected at 0.25 and 0.5, respectively.

Again, it is apparent from Figures 26 through 31 that the simulated rates
of advance and recession are very consistent with actual field measurements.
This shows that FE-SURFDSGN can be used as an effective tool for simulating
the irrigation cycle in furrows and borders including the advance, ponding,
depletion, and recession phases of flow.
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8. Sensitivity Analysis

FE-SURFDSGN was utilized to carry out simulation runs for
investigating the sensitivity of the model to various physical input parameters.
The sensitivity of the model to the selected time step (Ar), time weighting
coefficient (0), and the parameter o (a parameter that dictates if the standard
or nonstandard Galerkin finite element formulations are utilized) were also
studied. The linear finite element formulation of the kinematic-wave model
was used for this purpose. The expected trends should be representative of the
complete and simplified forms of the hydrodynamic equations. This is
especially true when considering the sensitivity of the model to various
physical input parameters.

The first phase was to study the effect of the selected time step, Az, on

model predictions as related to accuracy and numerical oscillations. The
various time steps selected in this sensitivity analysis were 2.5, §, 10, 15, 20,
30, 40, and 50 minutes. On the other hand, the selected physical input data
were those that correspond to irrigation 5, group 2, and furrow 1 of the Benson
farm (refer to Table 5). The results that reveal the sensitivity of the model to
the selected time steps are presented in Table 7. These results indicate that
selecting a Ar as high as 20 or 30 minutes would produce results that are
reasonably accurate. This would certainly shorten the execution time which is

as low as 5 seconds on a 386 IBM compatible microcomputer.

The sensitivity of the model to the selection of various values of the
weighting coefficient 6 and o was studied next. The results from these runs
are presented in Table 8 and 9 for 6 and «, respectively. A conservative time
step was used in all these runs. The Ar was chosen at 10 minutes even though
values as high as 20 or 30 minutes could have been selected.
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Table 7. Rate of advance predictions for several time steps using the
kinematic wave model of FE-SURFDSGN.

Time Step
Advance Time (min)
(min) 2.5 5 10 15 20 30 40 50

10 26.76 | 25.91 | 23.93

20 52.61 | 52.66 | 50.92 46.40

30 77.83 | 7741 | 77.72 | 75.21 67.65

40 102.40 | 102.29 | 102.44 98.82 87.80

50 126.34 | 126.04 | 125.57 106.94
60 149.65 | 149.49 | 148.66 | 149.77 | 149.65 | 144.19

70 172.37 | 172.12 | 171.87

80 194.49 | 194.31 | 194.18 194.80 187.28

90 216.03 | 215.81 | 215.42 | 214.53 216.67

100 237.00 | 236.81 | 236.31 235.41 228.27
110 257.42 | 257.22 | 256.99

120 277.29 | 277.09 | 276.91 | 276.94 | 275.36 | 278.44 | 279.24

130 296.62 | 296.43 | 296.07

140 315.43 | 315.23 | 314.90 314.89

150 333.72 | 333.54 | 333.35 | 332.76 331.56 337.75
160 351.50 | 351.31 | 351.11 351.32 354.17

170 368.79 | 368.62 | 368.30

180 385.59 | 385.41 | 385.19 | 385.15 | 384.61 | 383.00

190 401.91 | 401.75 | 401.60
200 417.77 | 417.61 | 417.39 416.80 414.85 | 422.66
210 433.17 | 433.01 | 432.79 | 432.62 433.27
220 448.12 | 447.98 | 447.85 | 447.94
230 462.64 | 462.49 | 462.37
240 476.72 | 476.60 | 476.41 | 476.27 | 476.41 | 477.15 | 473.66
250 490.39 | 490.26 | 490.14 487.21
260 503.65 | 503.53 | 503.47 502.91
270 516.50 | 516.40 | 516.28 | 516.28 515.31
280 528.97 | 528.87 | 528.77 528.67 530.39

290 541.05 | 540.97 | 540.94

300 552.76 | 552.68 | 552.64 | 552.41 | 552.81 | 552.14 549.87
310 564.11 | 564.04 | 563.97

320 575.10 | 575.04 | 575.05 574.81 576.68

# of Elements 128 64 32 22 16 11 8 7
Exec. Time (sec)| 415.8 | 104.7 28.1 15.3 8.7 44 2.5 2.0
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Table 8. Rate of advance predictions for several time weighting coefficients
using the kinematic wave model of FE-SURFDSGN.

Time Weighting
Advance Time Coefficient, 6
(min) 0.40 0.45 0.50 0.56 0.60 0.65 0.70
10 . 21.91 22.99 23.93 24.76 25.50 26.16 26.75
20 51.40 51.21 50.92 49.83 48.63 47.38 46.11
30 82.82 80.11 77.72 74.94 72.64 70.35 68.47
40 110.63 | 105.77 | 102.44 | 99.00 96.14 93.40 90.88
50 133.90 | 128.34 | 125.57 | 122.00 | 118.78 | 11543 | 112.25
60 155.66 | 151.50 | 148.66 | 144.58 | 140.80 | 136.89 | 133.20
70 182.69 176.42 | 171.87 166.82 162.43 157.99 153.77
80 212.90 | 199.99 | 194.18 | 188.44 | 183.53 | 178.54 | 173.79
90 238.92 | 220.77 | 215.42 | 209.39 | 204.02 | 198.53 | 193.31
100 260.60 | 241.48 | 236.31 | 229.81 | 223.99 | 218.05 | 212.37
110 278.37 | 263.78 | 256.99 | 249.77 | 243.560 | 237.09 | 230.98
120 309.78 | 284.91 | 276.91 | 269.19 | 262.47 | 255.66 | 249.13
130 354.04 | 303.34 | 296.07 | 288.08 | 280.95 | 273.76 | 266.84
140 398.02 | 322.03 | 314.90 | 306.47 | 298.96 | 291.40 | 284.11
150 435.98 | 342.37 | 333.35 | 324.39 | 316.51 | 308.60 | 300.96
160 468.43 | 360.95 | 351.11 | 341.82 | 333.569 | 325.36 | 317.39
170 495.91 | 376.97 | 368.30 . 358.77 | 350.23 | 341.69 | 333.41
180 518.84 | 394.54 | 385.19 | 375.26 | 366.42 | 357.60 | 349.03
190 537.71 | 413.46 | 401.60 | 391.31 | 382.19 | 373.10 | 364.25
200 553.03 | 428.93 | 417.39 | 406.91 | 397.53 | 388.19 | 379.09
210 599.93 | 442.81 | 432.79 | 422.07 | 412.45 | 402.89 | 393.56
220 674.94 | 461.38 | 447.85 | 436.81 | 426.98 | 417.20 | 407.65
230 479.59 | 462.37 | 451.13 | 441.10 | 431.13 | 421.38
240 491.66 | 476.41 | 465.06 | 454.83 | 444.68 | 434.75
250 506.62 | 490.14 | 478.57 | 468.19 | 457.88 | 447.77
260 531.563 ;, 503.47 | 491.70 | 481.17 | 470.71 | 460.46
270 5654.35 | 516.28 | 504.44 | 493.79 | 483.20 | 472.81
280 568.63 | 528.77 | 516.82 | 506.056 | 495.34 | 484.83
290 576.67 | 540.94 | 528.83 | 517.96 | 507.16 | 496.53
300 587.92 | 5562.64 | 540.49 | 529.53 | 518.64 | 507.92
310 616.11 | 563.97 | 551.80 | 540.77 | 529.80 | 519.01
320 643.11 | 575.06 | 562.77 | 551.68 | 540.65 | 529.79
Execution 45.6 51.0 28.1 20.9 21.6 27.6 27.6
Time (sec)
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Table 9. Rate of advance predictions for several a weighting coefficients
using the kinematic wave model of FE-SURFDSGN.

Advance Time Weighting%oeﬂicient
(min) 0 0.10 0.20 0.25 0.30 0.40 0.50
10 23.93 23.93 23.93 23.93 23.93 23.93 23.93
20 47.86 49.24 50.40 50.92 51.40 52.27 53.02
30 75.21 76.24 77.24 7172 | 178.19 79.11 80.01
40 100.83 101.55 102.15 102.44 | 102.73 103.32 | 103.98
50 122.84 | 124.39 | 125.25 | 125.567 | 125.86 | 126.37 | 126.82
60 144.66 146.77 148.16 148.66 149.09 149.83 150.40
70 169.11 170.30 | 171.38 171.87 172.32 173.15 173.81
80 192.97 193.22 193.83 194.18 | 194.54 195.256 195.90
90 213.56 | 214.26 | 215.06 | 215.42 | 215.78 | 216.43 | 217.07
100 232.82 | 234.62 | 235.83 | 236.31 | 236.73 | 237.46 | 238.10
110 253.43 | 256.38 | 256.53 | 256.99 | 257.40 | 258.14 | 258.80
120 274.30 | 276.61 | 276.51 | 276.91 | 277.28 | 277.98 | 278.66
130 293.95 | 294.67 | 295.62 | 296.07 | 296.46 | 297.17 | 297.87
140 312.89 | 313.33 | 314.41 | 314.90 | 315.32 | 316.06 | 316.74
150 331.07 | 331.91 | 332.90 | 333.35 | 333.75 | 334.46 | 335.15
160 347.78 | 349.69 | 350.68 | 351.11 | 351.50 | 352.21 | 352.92
170 364.567 | 366.68 | 367.82 | 368.30 | 368.73 | 369.45 | 370.18
180 382.95 | 383.60 | 384.70 ' 385.19 | 385.63 | 386.33 | 387.05
190 400.40 | 400.20 | 401.15 | 401.60 | 402.02 | 402.70 | 403.43
200 41493 | 415.89 | 416.93 | 417.39 | 417.82 | 418.53 | 419.28
210 429.01 | 431.10 | 432.28 | 432.79 | 433.24 | 433.94 | 434.70
220 44488 | 446.28 | 447.36 | 447.85 | 448.29 | 448.96 | 449.72
230 | 460.16 | 460.88 | 461.91 | 462.37 | 462.81 | 463.48 | 464.26
240 473.87 | 474.75 | 47591 | 476.41 | 476.87 | 477.656 | 478.35
250 487.88 | 488.48 | 489.64 | 490.14 | 490.61 | 491.28 | 492.07
260 501.46 | 501.95 | 503.00 | 503.47 | 503.92 | 504.57 | 505.36
270 513.06 | 514.66 | 515.77 | 516.28 | 516.75 | 517.43 | 518.24
280 6525.13 | 527.03 | 528.23 | 528.77 | 529.25 | 529.92 | 530.74
290 538.94 | 539.35 | 540.43 | 540.94 | 541.40 | 542.05 | 542.87
300 661.13 | 551.06 | 552.14 | 562.64 | 553.11 | 553.77 | 554.60
310 561.26 | 562.23 | 563.44 | 563.97 | 564.44 | 565.14 | 565.98
320 572.08 | 573.37 | 574.63 | 575.056 | 6756.61 | 576.17 | 577.01
Execution 45.7 33.9 29.4 28.1 28.5 33.9 34.2
Time (sec)
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The results in Table 8 show that an optimum value of 0.5 should be
chosen for the time weighting coefficient, 6. This would result in the highest
accuracy and the least numerical oscillations. The numerical oscillations have
shown to be substantial for 8 < 0.5 while the accuracy is also lower. Selecting 6
at values in the range of 0.5 to 0.7 produced results as stable as 6 =0.5 but not
necessarily as accurate. This was observed in the runs that were presented in

Table 8 and in other simulation runs with different input parameters.

On the other hand, it was observed that selecting o at 0.25 would produce

optimum results both in terms of numerical accuracy and stability. Even
though the results in Table 9 show similar results using the various levels of a
that were selected (i.e. 0, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50), high levels of
numerical oscillations were observed in other simulation runs when a was set
at 0 which corresponds to the standard Galerkin formulation of the finite
element method. Numerical oscillations were never observed in any of the
simulation runs when a was selected within the range of 0.1 to 0.4. These
conclusions are consistent with those established by Lapidus and Pinder
(1982) and Allen et al. (1988).

The next step was to investigate the sensitivity of FE-SURFDSGN to
physical input parameters. The data of irrigation 5, group 2, and furrow 1 of
the Benson farm were again used for this purpose (Table 5). These input
parameters were designated as the reference data. Variations of these
parameters were then established on both sides of the latter data. The
reference and formulated input data are summarized in Table 10. These data
were used to investigate the sensitivity of the model to variations in physical
parameters. The runs were conducted by selecting all of the reference input
data except for the input parameter that was varied during the respective run.
The results of these simulation runs are presented in Figures 32 through 39.



201

Table 10. Input data to investigate the sensitivity of the model to the change
of various physical parameters.

Slope, S, (m/m)

Manning’s Roughness, n
Hydraulic Section
Parameter, p,

Hydraulic Section
Parameter, p,

Infiltration Function
Coefficient, £
(m*m/min®)

Infiltration Function
Exponent, a

Infiltration Function
Coefficient, f,

(m*/m/min)
Furrow Length :
Time of Cutoff :
Time Step, Ar :
Time Weighting Coefficient, 0 :
Weighting Coefficient, o :
Type of Element :
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The sensitivity of the model to the inflow rate at field inlet, Q,, is very

clear in Figure 32. By comparing the predicted advance and recession curves
of the reference data (the curve that is represented by a solid line in Figure 32
as well as Figures 33 through 39) to the other curves, it is clear that as the
inflow rate increases the predicted advance curve becomes more linear while
the predicted recession curve is not affected to any extent. It is also obvious
from these curves that as the inflow rate increases from 0.6 to 1.75 I/sec, f.he
advance rate becomes more sensitive to Q,, When the average inflow rate for a
selected run is low, the rate of advance diminishes.

The sensitivity of the model to the slope of the furrow is illustrated in
Figure 33. Even though the variation in the slope between various runs was
not considerable, it is obvious that there are some variations in both the
advance and the recession trajectories. The trend seems to be comparable to
that observed in the case of the inflow rate shown in Figure 32. One can also
observe that as the slope, S,, increases the predicted rates of advance and
recession become less sensitive to the change in slope. This trend becomes
clear when a comparison is done among the advance and recession curves of
0.0044, 0.0066, and 0.0088 m/m runs. The sensitivity of the model to the
variation in the slope should not be of any concern since accurate field slope
measurements could be easily obtained.

Figure 33 illustrates the sensitivity of the model to the Manning’s
roughness coefficient, n. By examining the advance and recession curves in
this figure, it is clear that these curves are sensitive to the variations in the
Manning’s coefficient. This could be of some concern since it is not easy to
assess the Manning’s coefficient very accurately in the field. The curves in
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Figure 33 depict that there is an inverse relationship between the rates of
advance and recession, on the one hand, and the Manning’s roughness

coefficient on the other.

The sensitivity of the model to the hydraulic section parameters, p, and

Py, i8 shown in Figures 35 and 36. While the predicted advance and recession
curves appear not sensitive to p,, these curves are sensitive to the variations in
the hydraulic section parameter, p,. The curves in Figure 36 reveal a similar
trend as that depicted in Figure 34 where the sensitivity of the model to the
Manning’s coefficient is presented. However, it seems that the predicted
advance and recession curves become less sensitive to the change in p, when

the latter parameter increases.

The sensitivity of the model to the three infiltration parameters &, a, and

f, is illustrated in Figures 37, 38, and 39, respectively. The predicted rate of
advance curve seems to be very sensitive to the infiltration function
coefficients, £ and f;,, but less sensitive to the infiltration function exponent, a.
The predicted recession curve, however, shows moderate sensitivity only to the
infiltration function coefficient, f,, with no sensitivity to either the infiltration
coefficient, k, or the exponent, a. The curves in Figures 37, 38, and 39 show the
inverse relationship between the rate of advance and the infiltration
paramefers. These figures also depict that as the infiltration function
parameters decrease the predicted rate of advance becomes less sensitive to
the changes in these parameters.
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D. Discussion

From the results presented in this chapter, it can be concluded that the
finite element formulation of the hydrodynamic equations can be successfully
used in the hydraulic analysis of flow conditions in sloping furrows and
borders. It was demonstrated that the one-dimensional linear finite element
formulation produced excellent predictions of the advance and recession
trajectories for almost all the simulation runs conducted under the available
field tests. Besides, the computer execution times of the developed computer
model (FE-SURFDSGN) were very reasonable even when very small time
steps were selected. Although the kinematic wave model applications were the
only runs that were presented in this manuscript, similar results are expected
from the other models that are not complete in FE-SURFDSGN at the present
time. These analyses should be undertaken some time in the future to confirm
this claim.

As to the type of element used, it was observed that the quadratic finite
element formulations of the complete and simplified forms of the
hydrodynamic equations did not produce the expected results. Because of the
higher order of the quadratic element, it seems that whatever was gained from
the more appropriate approximation of the element to both surface and
subsurface profiles of flow was lost due to the unstable behavior of the

problem. This was partially expected since higher order elements were known
to exhibit this kind of behavior in time-dependent problems.

The development of the nonstandard finite element Galerkin formulation
was prepared after realizing that the standard Galerkin formulation of the
complete and simplified forms of the hydrodynamic equations had many
problems of numerical instabilities. These problems were avoided in the linear
finite element developments through the application of the principle of
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upstream weighting, a step that was accomplished using non-linear shape
functions instead of the usual linear functions. On the other hand, it was
observed that the standard finite element formulation in time, or the so-called
consistent formulation, was highly unstable. This necessitated the application
of yet another nonstandard finite element Galerkin formulation in time for
both linear and quadratic finite element formulations. The latter nonstandard
Galerkin formulation was referred to in the literature as the lumped
formulation.

The problems of numerical instability of the standard finite element
Galerkin formulation could be attributed to the nature of the hydrodynamic
equations. These two first-order partial differential equations which represent
the equations of continuity and momentum are both hyperbolic. Numerical
solutions of hyperbolic differential equations are known to exhibit more
numerical instabilities compared to parabolic and elliptic partial differential
equations (Allen et al., 1975).

The goals of this research have been realized by accomplishing the
following five fundamental objectives. The approaches utilized to achieve
these objectives are delineated below.

Objective 1. Develop a finite element solution procedure of the
Saint-Venant equations for the hydraulic analysis of
surface irrigation systems.

The approach that was followed under Objective 1 was to develop a finite
element Galerkin formulation of the hydrodynamic equations using linear
one-dimensional elements. The finite element development resulted in a
general system of first-order differential equations for each individual element
in the space domain. The system of ordinary differential equations included
the derivatives of the unknowns (cross-sectional area of flow, A, and flow rate,
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Q) with respect to time. This system incorporated the contributions of both the
continuity and momentum equations which constitute the hydrodynamic or
so-called Saint-Venant equations. Each of the hydrodynamic equations
resulted in a system of ordinary differential equations, and the resultant two
systems were combined into one general system of elemental equations. The
mean value theorem for differentiation was then applied to transform the
global system of ordinary differential equations into a system of algebraic
equations. The global system of algebraic equations should be solved
iteratively over time. The elemental equations should be assembled into a
global system of equations at various time steps using the direct stiffness
procedure. After deriving the standard finite element Galerkin formulation of
the hydrodynamic equations using linear elements, the same development was
repeated using quadratic one-dimensional elements. The latter development
was an attempt to investigate if such an approach would yield faster and more
accurate results. By examining the shape of both the advance and recession
fronts, it was felt that quadratic elements would model both fronts more
adequately compared to linear elements. The final step under Objective 1 was
to repeat the previous developments using nonstandard finite element
Galerkin formulations of the hydrodynamic equations. The one-dimensional
linear and quadratic element developments were repeated under this step.
This action was deemed necessary after realizing that the standard Galerkin
formulations produced numerical oscillations. The latter problem could be
attributed to the unsteady nature of the problem and the presence of sharp
advancing fronts during the advance phase.

Objective 2. Create a general solution approach that accommodates the
available mathematical models of the Saint-Venant
equations in the analysis of surface irrigation systems.
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The approach that was followed under Objective 2 was to repeat all the
developments of Objective 1 for the simplified forms of the hydrodynamic
equations. These models included the hydrodynamic II (the model with a
steady momentum equation), zero-inertia, and kinematic wave models. The
next step was to derive a general finite element representation that would
accommodate the complete as well as the simplified forms of the hydrodynamic
model. The general model has different coefficients which vary based on the
selected model. By choosing the coefficients of the desired model, the solution
process would accomplish the analysis of flow conditions in surface irrigation
based on the corresponding model of the hydrodynamic equations. The general
development was repeated using quadratic elements. The general linear and
quadratic finite element developments could be implemented in developing
computer models that simulate the flow conditions in surface irrigation
systems. Such models would be independent of the selected form of the
hydrodynamic equations. The general finite element formulations using linear
and quadratic elements are distinct when considering the elemental
equations. However, the numerical solution of the resultant system of
equations is independent of the selected type of element after the elemental
equations are assembled into a global system of equations using the direct
stiffness procedure.

Objective 3. Develop an approach to easily incorporate the varying
boundary conditions of the advance, ponding, depletion,
and recession phases of surface irrigation into the solution
process with minimal arbitrary or experimental
parameters.

The approach that was followed under Objective 3 was to develop a

procedure for incorporating the appropriate boundary conditions under
varying physical phases of flow in an irrigation cycle into the final system of
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equations. Prior to the application of this step, the global system of equations
would have been assembled using the direct stiffness procedure. Also, the
mean value theorem for differentiation would have been applied to transfer
the system of ordinary differential equations into a system of algebraic
equations. Since most of the boundary conditions in the one-dimensional
surface irrigation problem involve boundaries with known-values, a six-step
process was devised to incorporate the different boundary conditions. The
developed procedure allows the known boundary conditions to be specified as
inflow and outflow hydrographs. The global system of equations would be
modified at each time step to incorporate the various known boundary
conditions starting with the initial conditions where the global system of
equations incorporates the contribution of only one element. The same
procedure would then be repeated at subsequent time steps until the solution
process of the various phases of flow is concluded. The dimensions of the total
system of equations would be kept the same at any instance in time.

Objective 4. Develop a finite element computer model for the hydraulic
analysis of flow conditions in border and furrow irrigation
systems.

The approach that was followed under Objective 4 was to implement the
finite element mathematical development of the motion equations in building
a computer model that can be utilized in simulating the advance, ponding,
depletion, and recession phases of flow in both furrow and border irrigation
systems. The analysis could be performed based on either the standard or
nonstandard finite element Galerkin formulations and using either linear or
quadratic elements. Any combination of the above options could be selected
and the finite element analysis could be performed using the complete
hydrodynamic (hydrodynamic model I), steady hydrodynamic (hydrodynamic
model II), zero-inertia, or kinematic wave models. Currently, the kinematic
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wave model is the only model that is fully operational in the present version of
the program. The developed computer model has a companion graphics
routine which produces a graphical output of the advance and recession curves
in addition to the plot of actual field measurements. The computer model was
prepared in a modular format and was developed to run on any
IBM-compatible microcomputer with a Random Access Memory (RAM) of 512
Kbytes or more and an MS-DOS version 2.00 or higher. The program is very
concise in size compared to the number of functions and options that it
embodies. It makes use of the banded form of the global matrices that result
from the finite element solution. It directly stores the non-symmetrical square
matrices in a banded form. The program has a routine that solves the global
system of algebraic equations based on the method of Gaussian elimination.
The latter routine was developed to solve matrices that are stored in a banded
form. This drastically reduces the execution time of the program and makes
the simulation run time highly efficient.

Objective 5. Evaluate the predications of the finite element model using
actual field measurements from some existing surface

irrigation systems.

The approach that was followed under Objective 5§ was to compare the
results obtained from running the developed finite element computer model to
those reported from actual field measurements for some existing surface
irrigation systems. Actual field measurements were taken from furrow
irrigation evaluations at three Colorado locations and two different locations
in Utah and Idaho. The data were originally collected by Colorado State
University researchers and the researchers in the Department of Agricultural
and Irrigation Engineering at Utah State University, respectively. The actual
data were taken from Elliott et al. (1982b), Walker and Humpherys (1983),
Walker and Skogerboe (1987), and Oweis (1983). These data included the
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physical input parameters as well as the actual measurements of both the
advance and recession phases of flow. The developed graphics routine was
used to display both simulated and actual data of the various flow phases of
irrigation on the same graph. The graphical display included plots of actual
and predicted advance and recession trajectories of flow. The results indicated
that the developed finite element model simulates the hydraulic analysis of

flow conditions in surface irrigation systems fairly well, under the investigated
conditions.



V. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

Based on the results and discussion presented in this study, the following

conclusions can be made:

1. A general finite element formulation was successfully developed for the
numerical solution of the complete and simplified forms of the
hydrodynamic equations as applied to the hydraulic analysis of surface
irrigation systems. This formulation allows for the implementation of the
various forms of the Saint-Venant equations without the need for
modifying the solution process.

2. The developed computer model (FE-SURFDSGN) based on the finite
element formulation of the hydrodynamic equations has proven to be an
effective tool in the hydraulic analysis of flow conditions in furrow and
border irrigation systems. Even though not all the forms of the
hydrodynamic equations are fully operational in FE-SURFDSGN at the
present time, it was shown that the model produces excellent results when
compared to actual field measurements for existing systems in Colorado,
Idaho, and Utah. These results were obtained by using the finite element
kinematic wave model with linear elements. Other models are expected to

produce results at least as good as those presented using the kinematic
wave model, if not better.

3. FE-SURFDSGN model predictions appear to be very consistent with
actual field measurements for all phases of flow under the studied cases.
The varying boundary conditions of the advance, ponding, depletion, and

219



220

recession phases of surface irrigation were easily implemented into the
solution process by modifying the system of equations after it had been
assembled at various time steps.

. The standard finite element Galerkin formulation using linear elements

was shown to have some problems with respect to numerical instabilities.
However, the nonstandard Galerkin formulation resulted in stable

solutions for the various simulation runs conducted.

. Even though the model was developed to run on any IBM compatible

microcomputer, the average time for completing a simulation run was still
approximately 50 seconds on a 386 machine. The selected time steps
under those runs were very conservative in almost all cases. It was shown
that good accuracy could be achieved by using larger time steps (20 or 30
minutes), resulting in execution times as low as 5 seconds. Time steps as

high as 20 minutes were very feasible for all the simulation runs
conducted.

. Due to the banded form of the global square matrices, it was possible to

analyze systems with as much as 200 elements on any IBM compatible
microcomputer with 6§12 Kbytes or more of memory. This system of
equations would contain around 400 equations to be solved simultaneously
at various time steps starting from initial conditions. Since the system
was assembled without storing any zeros outside the bandwidth and was
solved using a modified form of the Gauss elimination method, the
execution time for solving these systems of simultaneous equations was a
fraction of the time that would have otherwise been needed.

. The input data necessary for running the model was kept to a bare

minimum. All the input parameters required by the model are consistent
with those needed with any other numerical surface irrigation model.
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B. Recommendations

. Further work should be devoted towards completing the finite element

formulation of the remaining forms of the hydrodynamic equations using

linear elements.

. More simulation runs should be conducted using the various models of the

hydrodynamic equations to compare the accuracy of these models using
actual field observations. These runs would make it feasible to assess the
accuracy of the various models and to estimate the trade offs in using any
of the forms of the hydrodynamic equations.

. The speed and accuracy of FE-SURFDSGN should be compared to existing
finite difference surface irrigation models to establish the advantages and
disadvantages of numerical methods as applied to the solution of flow
conditions in surface irrigation systems.

. FE-SURFDSGN should be modified to allow for the simulation of surge
irrigations. Such a modification could be easily accomplished in
FE-SURFDSGN since the finite element development allows for the
incorporation of various kinds of boundary conditions including an inflow
hydrograph at field inlet.

. Devote more time to investigate the finite element formulation of the

simplified and complete forms of the hydrodynamic equations using
quadratic elements. Since the amount of time that was devoted to
developing and debugging the options of FE-SURFDSGN that correspond
to quadratic elements was not extensive by any means, further work is
needed to investigate whether these elements would work and produce
results comparable to, or even better than, those observed with linear

element solutions.
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APPENDIX A
FE-SURFDSGN Computer Model Listing

REM A AR AR AR R R AR AR AR AR R AR R AR AR AR AN A A AR AR AR R ARRRRARARRARRARR AR AN AR AR AR

REM * *
REM * FINITE ELEMENT SURFACE IRRIGATION *
REM * DESIGN PROGRAM *
REM* *
REM ® *
REM * Program SURFDSGN.BAS *
REM I 2222222222222 2222222222222 2222 2222222222222 222222222222 22 2 2
REM * *
REM * Developed By *
REM * *
REM * Walid H. Shayya *
REM * Department of Agricultural Engineering *
REM * Michigan State University *
REM * *
REM * July 30, 1991 *
REM ® *
REM (2SR S R RRRRRRRRRRAR2R2R2R222 222222222 2R2RRZRRRR2R222R2R2 222 2]

COMMON NGphFil$

$DimAry = 302
$DimCol = 7
$DimCo2 = 11
$DimAryh = 151

DIM C(%DimAry,1),S (3DimAry)

dim x(SDimAry, $DimCo2),y (SDimAry,SDimCol), z (SDimAry, SDimCol)

dim phi(sDimAry, 1) ,Kmatrx(SDimAry,SDimCol),Cmatrx(SDimAry, $DimCol)
dim templ (SDimAry, $DimCol) ,Force (SDimAry, 1), ForceP (SsDimAry, 1)

dim Fstar(sDimAry,1),phil (SDimAry,1),pfx(SDimAry,1)

dim Amatrx ($DimAry,$DimCo2),Pmatrx (SDimAry,$DimCol)

dim PrevPhi ($DimAry, 1)
dim PFplusFs(SDimAry, 1)
dim tempF1 (%DimAry,1),tempF2 (SDimAry, 1)

dim Length(sDimAryh,1),Infil (sDimAryh, 1), TofOpp (sDimAryh,1)
dim SO (SDimAryh,1),TopWidth(sDimAryh,1), InfilP (8DimAryh, 1)
dim Fsubi (sDimAryh,1),Fsubj(%DimAryh,1),Fsubk ($DimAryh, 1)
dim Coefl (sDimAryh,3),Coef2 (SDimAryh, 3),Coef3 (SDimAryh, 3)
dim Coef4 (SDimAryh,3),Coef5 (SDimAryh, 3)

dim Czi(SDimAryh,1),Czj($DimAryh,1),Czk ($DimAryh,1)

dim ElmtKmtx(6,6),ElmtCmtx(6,6), TempK(6,6),TempC(6,6),NofPhi ($DimAryh,1)
dim ATmp$(11)

DIM GrphXpnt (4), XX%(10), YY%$(10), CC$(10), AAS(10)
GOSUB InitialScrn

I+ +
' DEFINITION OF VARIABLES

’

’ NumElem% : Total number of elements

’ NumNode% : Total number of nodes

’

[4

NP% ¢ Total number of unknowns (2 * NumNode$%)
NumElmNode$ : Number of nodes per element (2 for Linear Element and
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NumBandw$ :

NumofPhi$%
phi(i,1)
phil(i,1)
Force(i,1)
ForceP (i,1)
Fstar(i,1)
Kmatrx(i,1i)
Cmatrx (i, i)
Amatrx(i,1)
Pmatrx(i,1) :
ElmtKmtx (6,6)
ElmtCmtx (6, 6)
NofPhi (10,1):
Coef (1,5) :
VARTheta :

@ ¢ o0 oo oo oo o oo e oo

o
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3 for Quadratic Element)
Band width of the global stiffness and capacitace
matrices
Number of known Phi values
Vector of unkowns Q and A
Vector of unkowns Q and A at time t - 8T
Force vector
Force vector of the previous time step
Combination of the vectors Force(i,1l) and ForceP(i,1)
Global stiffness matrix (K]
Global capacitance matrix (C]
(C] + ©.8T.[K] = [A)
{c] - (1 - ©.8T.(K) = [P]
Element stiffness matrix
Element capacitance matrix
Number representing known Phis as boundary conditions
Coefficients in the element [C] and (K] matrices
Is the parameters that determines the model for the
finite difference solution in time where
® = 0 for forward difference
©® = 1/2 for central difference
©® = 1 for backward difference
® = 2/3 for Galerkin

ALPHA : A coefficient that determines if the formulation is
either a finite element Galerkin formulation or non-
Galerkin formulation. If Alpha = 0 then the solution
is Galerkin. Otherwise, the solution is asymetric.
Qin : Inlet flow rate
Rhol & Rho2 : Characteristics of the hydraulic section of the furrow
or border where
2 1.33 n2
A R =ul A
Rhol = ul
Rho2 = u2
For the case of the border irrigation, the values of
Rhol and Rho2 are 1 and 3.33, respectively.
Sigmal and
Sigma2 : Empirical fitting constants controlled by the
characteristics of the hydraulic section of the furrow
or border where
62
Yy =0l A
Sigmal = ©1
Sigma2 = ©2
For the case of the border irrigation, the values of
Sigmal and Sigma2 are 1.5 and 1.0, respectively.
Gravity ¢ Gravitational acceleration (9.81 m/sec”2)
IrrMethod$ : Irrigation method withsolving the surface irrigation
"F" for Furrow irrigation
"B" for ,Border Irrigation
Method$ ¢ Numerical method for solving the surface irrigation
problem where the variable Method$ equals
"H" for Hydrodynamic Model I (Continuity and
Unsteady momentum equations)
"S" for Hydrodynamic Model II (Continuity and
steady momentum equations)
"Z" for Zero Inertia Model
"K" for Kinematic Wave Model
Phase% : An integer that represents the phase of flow where
"1" - Advance
"2" - Ponding
PhaseRec$% : An Integer to denote if the recession phase has

started (1) or not yet (0)
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i 3 k
in the force vector at nodes i, j, and k, respectively.

- +

! FDorFES ¢ Determines if Al & Qi to be used in matrices for

4 calculating coefficients cl, c2, ¢3, c4, and c5 (FD)
! instead of Ai, Aj, Ak, Qi, Q3j, and Qk (FE) where

’ "1" selects the finite difference and

' "0" selects the finite element approach

! CONSISorLUMP%: Determines if the consistent or the lumped finite

’ element formulations for the change of Phi with respect
' to time ought to be used where

’ "1l" selects the consistent formulation and

’ "0" selects the lumped formulation

! TypElem$ : Specifies the type of element where the variable

’ TypElem$ equals

’ "L" for linear element

! "Q" for quadratic element

! FGNam$ ¢ Represents the name of the configuration file

! LevPrt$ ¢ Specifies the level of print out which varies from

4 0 to 2. Specifying 0 produces no print out and 2

' extensive print out.

’ SelPrtOpt$ : A variable to select the output device. In order to
' select the output device, you ought to enter the

’ following for the variable SelPrtOpt$

’ "s" for screen

4 "P" for printer

4 "F" for the data file "“FESIDP.OUT"

' DeltaT : Time step, 8T

* TotalTime ¢ Total elapsed time since time 0

! TotalLength : Accumulated length of flow for the advance phase

4 and constant thereafter

’ NumStep$ ¢ Number of elapsed time steps

* Length(i,1) : Length of element i

* Infil(i,1) : Infiltration depth at individual nodes (I). The

4 Kostiakov - Lewis relation will be used for

’ determining I (m3/sec/m) where

’ (a=1)

4 I=ak+¢* + f

’ 0

* InfilP(i,1) : Infiltration depth at previous time step.

! kofInf ¢ The coefficient k in the infiltration equation

¢ fsub0 ¢ The coefficient £ in the infiltration equation

’ 0

! aofinf : The exponent a in the infiltration function

! TofOpp(i,1) : Time of opportunity T in the infiltration function

’ at individual nodes

* S0(i,1) Slope of furrow or border at the individual node (So)
! ManngN : Manning’s roughness coefficient (n)

! CoefTW : Top width coefficient which could either be 1.5 or 1
’ Fsubi(i,1), Fsubj(i,1), and Fsubk(i,1) : Coefficients £, f , and f
14

’

’

GOSUB HEADING
GOSUB INITIAL

+

FGNam$ = "SURFDSGN.CFG"

FilIsIns = FNExists$ (FGNam$)
IF FilIsIn% = True$ THEN

OPEN "I, #2,FGNam$

INPUT #2,IrrMethod$

INPUT #2,MethodS$S

INPUT #2,TypElem$

INPUT #2,SelPrtOpt$

INPUT #2,iprint%
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INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
CLOSE
END IF

IrrMethod$ = UCASES (IrrMethod$)
Method$ = UCASES (MethodS$)
TypElem$ = UCASES (TypElem$)
SelPrtOpt$ = UCASES (SelPrtOpt$)

LOCATE 8,8

PRINT "Irrigation Method
LOCATE 10,8

PRINT "Method of Solution .
LOCATE 12,8

PRINT "Type of Element
LOCATE 14,8

PRINT "Level of Printing
LOCATE 16,8

PRINT "Output Device (’S’,
PRINT SelPrtOpt$

Reiteratel:

SelStrg$ = "YyNn"

Strg$ = "Modify the above ('Y’, yes, ’N’, no)
RowStrgs = 20

ColStrgs = 8

call SelStrgEntry

Ansl$ = SelOpt$

Ansl$ = UCASES (Ansl$)

IF Ansl$ = "Y" THEN
GOSUB HEADING
SelStrg$ = "FfBb"
Strg$ = "Irrigation Method
RowStrgs = 8
ColStrgs = 8
call SelStrgEntry
IrrMethod$ = SelOpt$

SelStrg$ = "HSZKhszk"

Strg$ = "Method of Solution
RowStrgs = 10

ColStrgs = 8

call SelStrgEntry

Method$ = SelOpt$

#2,VARTheta
#2,ALPHA

#2,DeltaT
#2,numiters%
#2,Al1Error
#2,TotNumStep$
#2,CONSISorLUMPS
#2,CoefTW

#2,FurLlength
#2,TimCut
#2,Q0in
#2,koflInf
$2, fsub0
#2,Slope
#2,a0flnf
#2,ManngN

#2,Rhol
#2,Rho2
#2,Sigmal
#2,Sigma2
#2

('F’, furrow, ’'B’,

(H, s,

('L’, linear,

(select 0, 1,

screen, 'F’, file,

('F’', furrow,

(select H,

'Q’, quadratic)

'P’, printer)

border) ";IrrMethod$

Z, or K) : ";Method$

: ";TypElem$

2, or 3) ";iprints

LK}
’

'B’, border) "

S, Z, or K)
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SelStrg$ = "LQlq"

Strg$ = "Type of Element . . . ('L‘,
RowStrg% = 12

ColStrg% = 8

call SelStrgEntry

TypElem$ = SelOpt$

SelStrg$ = "0123"

Strg$ = "Level of Printing . . . . . .
RowStrg% = 14

ColStrgs = 8

call SelStrgEntry

LevPrt$ = SelOpt$

iprints = VAL(LevPrt$)

SelStrg$ = "PpSsFf"

Strg$ = "Output Device (’S’, screen, 'F’,

RowStrg% = 16
ColStrgs = 8

call SelStrgEntry
SelPrtOpt$ = SelOpt$

GOTO Reiteratel
end if

IrrMethod$ = UCASES (IrrMethod$)
Method$ = UCASES (Method$)
TypElem$ = UCASES (TypElem$)
SelPrtOpt$ = UCASES (SelPrtOptS$)

IF SelPrtOpt$ = "S"™ THEN
OPEN "SCRN:"™ FOR OUTPUT AS #1
ELSEIF SelPrtOpt$ = "P" THEN
OPEN "LPT1:"™ FOR OUTPUT AS #1
ELSEIF SelPrtOpt$ = "F" THEN
OPEN "SURFDSGN.OUT"™ FOR OUTPUT AS #1
END IF

GOSUB HEADING

LOCATE 9,14

PRINT "Time Step, 8T . . . . . . . (min)
LOCATE 10,14

PRINT "Maximum Number of Iterations . .
LOCATE 11,14

PRINT "Allowable Error . . . . . . . . .
PRINT USING "#.######3";AllError

LOCATE 12,14

PRINT "Maximum Number of time Steps . .
LOCATE 13,14

PRINT "Time Weighting Coefficient, © .
LOCATE 14,14

PRINT "a (Select a=0 for Galerkin) . .
LOCATE 15,14

PRINT "Top Width Coefficient (1 or 1.5)
LOCATE 16,14

PRINT "Consistent (1) or Lumped (0) . .

Reiterate2:
SelStrg$ = "YyNn"

linear, ’Q’, quadratic)

(select 0, 1, 2, or 3)

file, 'P’, printer)

";DeltaT

";numiter$

LY
12

" ;TotNumStep$%
":;VARTheta
";ALPHA
";CoefTW

" ;CONSISorLUMP%

Strg$ = "Modify the above (’‘Y’, yes, 'N’, no) : "

RowStrg$ = 21
ColStrgs = 14
call SelStrgEntry
Ans2$ = SelOpt$

Ans2$ = UCASES (Ans2$)



IF Ans2$ = "Y" THEN
GOSUB HEADING
LOCATE 9,14
PRINT "Time Step, 6T . . . . . . .
INPUT *"*,DeltaT
LOCATE 10,14
PRINT "Maximum Number of Iterations
INPUT "",numiter$
LOCATE 11,14
PRINT "Allowable Error .
INPUT "",AllError
LOCATE 12,14
PRINT "Maximum Number of Time Steps
INPUT "",TotNumStep$%
LOCATE 13,14

(min) =

PRINT "Time Weighting Coefficient, ® . . =

INPUT "",VARTheta
LOCATE 14,14
PRINT "a (Select a=0 for Galerkin)
INPUT "",ALPHA
LOCATE 15,14
PRINT "Top Width Coefficient (1 or
INPUT "",CoefTW
LOCATE 16,14
PRINT "Consistent (1) or Lumped (0)
INPUT "",CONSISorLUMP%
GOTO Reiterate2
END IF

freqprinty = 1
Gravity = 9.81

GOSUB HEADING

LOCATE 8,8

PRINT "Furrow Length . . . . . . . .
LOCATE 9,8

PRINT *"Time of Cutoff . . . . . . . .
LOCATE 10,8

PRINT "Inlet Flow Rate . . . . . . .
LOCATE 11,8

PRINT "Slope of Channel Bed .

LOCATE 12,8

PRINT "Manning Roughness Coefficient,
LOCATE 13,8

PRINT "Flow Geometry Parameter, 61 .
LOCATE 14,8

PRINT "Flow Geometry Parameter, 62 .
LOCATE 15,8

1.5) =

(m)

(min)

(liters/sec)

(fraction)

n .

PRINT "Hydraulic Section Param., Rho 1

LOCATE 16,8

PRINT "Hydraulic Section Param., Rho 2 . . .

LOCATE 17,8

PRINT "Infiltration Function Coeff., k (m"3/m/min~a)=

LOCATE 18,8

PRINT "Infiltration Func. Exponent, a .

LOCATE 19,8
PRINT "Infiltration Function Coeff.,

Reiterate3:

SelStrg$ = "YyNn"

Strg$ = "Modify the above (’'Y’, yes,
RowStrgs = 21

ColStrgs = 8

call SelStrgEntry

Ans3$ = SelOpt$

£

‘N’, no)

(m*3/m/min) =

";FurLength
";TimCut
";Qin
";Slope
" ;ManngN
";Sigmal
";Sigma2
";Rhol
";Rho2
";kofInf
";aoflInf

"; fsub0
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Ans3$ = UCASES (Ans3$)

IF Ans3$ = "Y" THEN
GOSUB HEADING
LOCATE 8,8
PRINT "Furrow Length . . . . . . . .
INPUT "",Furlength
LOCATE 9,8
PRINT "Time of Cutoff . . . . . . . .
INPUT "",TimCut
LOCATE 10,8
PRINT "Inlet Flow Rate . . . . . . .
INPUT "",Qin
LOCATE 11,8
PRINT "Slope of Channel Bed . . . . .
INPUT "",Slope
LOCATE 12,8
PRINT "Manning Roughness Coefficient,
INPUT "",ManngN
LOCATE 13,8
PRINT "Flow Geometry Parameter, Gl .
INPUT "",Sigmal
LOCATE 14,8
PRINT "Flow Geometry Parameter, 62 .
INPUT "",Sigma2
LOCATE 15,8
PRINT "Hydraulic Section Param., Rho 1
INPUT "",Rhol
LOCATE 16,8
PRINT "Hydraulic Section Param., Rho 2
INPUT "",Rho2
LOCATE 17,8
PRINT "Infiltration Function Coeff., k
INPUT "",kofInf
LOCATE 18,8
PRINT "Infiltration Func. Exponent, a
INPUT "",aoflInf
LOCATE 19,8
PRINT "Infiltration Function Coeff., f
INPUT ", fsub0
GOTO Reiterate3

END IF

OPEN "O", #2,FGNam$
WRITE #2,IrrMethod$
WRITE #2,Method$
WRITE #2,TypElem$
WRITE #2,SelPrtOpt$
WRITE #2,iprints

WRITE #2,VARTheta
WRITE #2,ALPHA

WRITE #2,DeltaT

WRITE #2,numiter$
WRITE #2,AllError
WRITE #2,TotNumStep$%
WRITE #2,CONSISorLUMPS%
WRITE #2,CoefTW

WRITE #2,Furlength
WRITE $#2,TimCut
WRITE #2,Qin

WRITE #2,kofInf
WRITE #2, fsub0

e e s e . (m) =

e« « « « (min) =

(liters/sec) =

. (fraction) =

¢ o o o e e

e o o o o e

(m*3/m/min”a)=

(m*3/m/min) =



242

WRITE #2,Slope
WRITE #2,aofInf
WRITE #2,ManngN

WRITE #2,Rhol
WRITE #2,Rho2
WRITE #2,Sigmal
WRITE #2,Sigma2
CLOSE #2

Qin = Qin / 1000
NumStep$ = 0

GOSUB HEADING
LOCATE 10,8

PRINT "Enter File Name of Advance and Recession Data (No extension) : ";
INPUT "",NGphFil$

XXX = TIMER
if iprint% >= 0 AND SelPrtOpt$ <> "S" THEN
ATmpS (1) =STRINGS (5," ")+DATES
ATmpS (1) =ATmp$S (1) +STRINGS (41," ")+TIMES
ATmpS (2) =STRINGS (69,"*")
ATmpS (3) ="*"+STRINGS (67,"™ ™)+"*"
ATmp$ (4) ="*"+STRINGS (25," ")+" Output from "+STRINGS (25," ")+n"=*"
ATmp$ (5)="*"+STRINGS (3," ")
ATmp$S (5) =ATmpS (5) +"FINITE ELEMENT SURFACE IRRIGATION DESIGN PROGRAM"
ATmpS (5) =ATmp$ (5) +", FE-SURFDSGN"+STRINGS (3,"™ "™)+%#®
ATmpS (6) =ATmpS$ (3)
ATmpS (7) =ATmp$ (2)
ATmpS$ (8) ="*"+STRINGS (6," ")
ATmp$ (8) =ATmp$ (8) +"Developed By : Walid H. Shayya"+STRINGS (31,"™ %) +n#"
ATmpS (9) ="*"+STRINGS (21," ")
ATmpS$ (9) =ATmp$ (9) +"Department of Agricultural Engineering *w
ATmp$ (10)="*"+STRINGS (21," ")
ATmpS (10) =ATmpS (10) +"Michigan State University ko
ATmp$ (11)=ATmp$ (2)
for icnts = 1 to 11
print #1, ATmp$ (icnts)
next icnt$
print #1,""
print #1,""
print #1,""

end if
if iprints >= 0 AND SelPrtOpt$ <> "S™ THEN
PRINT #1,"Output File for Recession and Advance Data . . . . . : ";NGphFils$;

PRINT #1,".PRG"

PRINT #1,"Irrigation Method . . . ('F’, furrow, ’B’, border) : ";IrrMethod$
PRINT #1,"Method of Solution . . . . . . . . . (H, S, 2, or K) : ";Method$
PRINT #1,"Type of Element . . . ('L’, linear, ’'Q’, quadratic) : ";TypElem$
PRINT #1,"Level of Printing . . . . . (select 0, 1, 2, or 3) : ";iprints
PRINT #1,"Output Device (’S’, screen, 'F’, file, 'P’, printer) : ";

PRINT #1, SelPrtOpt$ '

PRINT #1,

PRINT #1,"Time Step, 8T . . . . . . . (min) = ";DeltaT

PRINT #1,"Maximum Number of Iterations . = ";numiter$s

PRINT #1,"Allowable Error . . . . . . . =";

PRINT #1, USING "#.#####34";AllError

PRINT #1,"Maximum Number of Time Steps = ";TotNumStep%

PRINT #1,"Time Weighting Coefficient, ® . . = ";VARTheta

PRINT #1,"a (Select a=0 for Galerkin) . . . = ";ALPHA

PRINT #1,"Top Width Coefficient (1 or 1.5) = ";CoefTW

PRINT #1,"Consistent (1) or Lumped (0) = ";CONSISorLUMP%

PRINT #1,

PRINT #1,"Furrow lLength . . . . . . . « +« « « + +» (m) = ";FurlLength

PRINT #1,"Time of Cutoff . . . . . ¢« ¢« ¢« ¢« « + . (min) = ";TimCut
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PRINT #1,"Inlet Flow Rate . . . . (liters/sec) =
PRINT #1,"Slope of Channel Bed . . . . . . (fraction)
PRINT #1,"Manning Roughness Coefficient, n . . . . .

PRINT #1,"Hydraulic Section Param., 61 . . . . . . . .
PRINT #1,"“Hydraulic Section Param., 62 . . . . . . . .
PRINT #1,"Hydraulic Section Param +Rhol . . .. ..
PRINT #1,"Hydraulic Section Param., Rho 2 . . .
PRINT #1,"Infiltration Function Coeff., k (m‘3/m/mi ~a)
PRINT #1,"Infiltration Func. Exponent, a . . . o o o
PRINT #1,"Infiltration Function Coeff., £ (m‘3/m/min) =
PRINT #1, *"
end if

IF TypElem$ = "L" THEN
NumElmNode% = 2
ELSE
NumElmNode$% = 3
END IF
NumBandW$ = NumElmNode$% * 2
NClm$ = 2*NumBandwW$-1

cls

GraphFill$ = NGphFil$ + ".PRG"
GraphFil2$ = NGphFil$ + ".REC"
open "O",#2,GraphFills$

open "O", #3,GraphFil2$
TotalTime = 0

TotalLength = 0
write #2, TotalTime,TotalLength

GOSUB GetBasicElmntMtx

if iprints >= 2 then
call matrixprt (ElmtCmtx (), NumElmNode2%, NumElmNode2%,". .

")
call matrixprt (ElmtKmtx(), NumElmNode2%, NumElmNode2%, ™. .

")

end if

if iprints >= 0 then
print #1,STRINGS (78, "*")
end if

IF SelPrtOpt$ = "F" or SelPrtOpt$ = "P" THEN
GOSUB HEADING

END IF
NumElem§ = 1
Phases = 1

PhaseRec% = 0
STPExc% = 0 ' A flag that stops program execution

DO
IF SelPrtOpt$ = "F" or SelPrtOpt$ = "P" THEN
locate 10,14
print "Completed Time Steps . . . . « « « « « &
locate 12,14
print "Completed Time of Current Simulation Run (min):
END IF

IF PhaseS = 1 AND PhaseRecS = 0 THEN
IF Method$ = "K" OR NumElem$% = 1 THEN
NumofPhi% = 4

":;Qin*1000
":;Slope

" ;ManngN
":;Sigmal
";Sigma2
":Rhol

" ;Rho2
":kofInf
";aofInf

" ; £sub0

. o« [c(e)]

. o [k(e)]

" ;NumStep%

":;TotalTime

NofPhi(1,1) = 0.5

NofPhi(2,1) =1

NofPhi(3,1) = 2 + (NumElmNode%-2) + (NumElem$-1) * (NumElmNode$%-1)
NofPhi(4,1) = NofPhi(3,1)-0.5

ELSE

.



NumofPhig§ =

3
NofPhi(1,1) = 1
NofPhi(2,1) = 2 + (NumElmNode%-2) + (NumElem$-1)* (NumElmNode%-1)
NofPhi (3,1) = NofPhi(2,1)-0.5
END IF

ELSEIF Phase% = 2 AND PhaseRec% = 0 THEN
IF Method$ = "K" THEN
NumofPhis% = 2
NofPhi(1,1)
NofPhi(2,1)
ELSE
NumofPhi§ =
NofPhi(1,1)
END IF
END IF

IF PhaseRect% = 1 THEN
PrPhis = 0
IF Phases = 1 THEN
PrPhis = 2
NofPhi(1,1) = 2 + (NumElmNode%-2) + (NumElem%-1)* (NumElmNode%-1)
NofPhi (2,1) = NofPhi(1,1)-0.5
END IF
NumofPhi% = NumNodRec%*2 + PrPhis
FOR jjts = 1 to NumNodRec%
NofPhi (Jjt%*2-1+PrPhi%,1) = jijts-.5
NofPhi (§jt8*2+PrPhis, 1) = 3Jjt%
NEXT 3jjts
END IF

IF NumElmNode$% = 3 THEN
NumNode$ = NumElem$*2+1
ELSEIF NumElmNode% = 2 THEN

NumNode$% = NumElem%+1
END IF

NP% = NumNode§& * 2

IF PhaseS = 1 THEN
FOR SPcts = 1 TO NumNode$%
SO (SPct%,1) = Slope
NEXT SPct%
END IF

IF NumElmNode% = 3 THEN
LocL% = NumElem$*4+1
LocQ% = NumElem$*4-2

ELSEIF NumElmNodes = 2 THEN
LocLS = NumElem$*2+1
LocQS = NumElem§*2

END IF

IF Phases = 1 AND PhaseRecS = 0 THEN
IF NumElem$ = 1 THEN
Phi(2,1) = Qin
Phi(1,1) = ( (Phi(2,1)”~2*ManngN”~2) / (Rhol*S0(1,1)) )~ (1/Rho2)
PhiSet = 0.02*Phi(1,1)
IF NumElmNode% = 3 THEN
Phi(4,1) = Qin*VARTheta
Phi(3,1) = ( (Phi(4,1)~2*ManngN~2) / (Rhol*S0(1,1)) )~ (1/Rho2)
END IF
ELSE
IF NumElmNode$ = 3 THEN
Phi (LocL%$-4,1) = Phi (LocL%-8,1)

0.5
1

n -
=)

Phi (LocL%-3,1) Phi (LocL%-7,1)

Phi (LocL%-2,1) Phi (LocL$-6,1)

Phi (LocL%-1,1) Phi (LocL$%-5,1)
ELSE
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Phi(LocL%-2,1) = Phi(LoclL%-4,1)
Phi (LocL$-1,1) = Phi(LocL%-3,1)
END IF
END IF
ELSEIF Phase% = 1 AND PhaseRec% = 1 THEN
IF NumElmNode% = 3 THEN
Phi(LocL%-4,1) = Phi(LocL%-8,1)
Phi(LocL%-3,1) = Phi(LoclL%-7,1)
Phi(LocL%-2,1) = Phi(LocL%-6,1)
Phi (LocL%-1,1) = Phi (LocL%-5,1)
ELSE
Phi(LocL%-2,1) Phi (LocL%-4,1)
Phi (LocL$-1,1) = Phi(LocL%$-3,1)
END IF
END IF

IF Phase$= 1 AND PhaseRec% = 0 THEN
FOR ICTS = 1 TO NumNode% -~ 1
IF NumElmNode% = 3 AND ICT% = NumNode%-1 THEN
TofOpp (ICT%,1) = DeltaT*VARTheta
ELSE
TofOpp (ICTS,1) = DeltaT + TofOpp (ICT%,1)
END IF
NEXT ICTS
ELSEIF Phase% = 2 AND PhaseRegS = 0 THEN
FOR ICT$ = 1 TO NumNode%
TofOpp (ICT%,1) = DeltaT + TofOpp (ICT%,1)
NEXT ICTS
ELSEIF PhaseRects = 1 THEN
FOR ICT$ = NumNodRec$%+1 TO NumNode%
TofOpp (ICTS,1) = DeltaT + TofOpp (ICT%,1)

NEXT ICTS

END IF

if iprints >= 2 then
PRINT #1, "Number of elements : ";NumElem%
PRINT #1, "Number of nodes/element : ";NumElmNode$
PRINT #1, "Band Width : ";NumBandWw$
PRINT #1, "Total number of nodes : ";NumNode$%

end if

iloops = 0

FOR JTmp% = 1 TO NP$%
PrevPhi (JTmp%,1) = 0
NEXT JTmp$%

DO
iloop% = iloops + 1
IF SelPrtOpt$ = "F" or SelPrtOpt$ = "P" THEN
locate 14,14
print "Completed Iterations Within Current Time Step : ";iloop%-1
END IF

IF Phase% = 1 THEN
IF NumElmNodeS=3 then
TmpIl = kofInf*TofOpp (NumElem$*2-1,1) “aofInf

Tmpl = TmpI+ fsub0*TofOpp(NumElem$*2-1,1)
TmpJ = kofInf*TofOpp (NumElem%*2,1) “aofInf
TmpJ = TmpIl+ f£subO*TofOpp(NumElem$*2,1)
TmpJd = TmpJd + Phi(LocQ%+1,1)

ELSE

TmpI = kofInf*TofOpp (NumElem%, 1) “aofInf
Tmpl = TmpI + fsubO*TofOpp (NumElem§,1)
TmpI = VarTheta * TmpI + Phi(LocQ%-1,1)
END IF
IF NumElmNode$=3 then
Length (NumElem$, 1) = (VARTheta*Phi (LocQ%,1) *60*DeltaT) /Tmpl
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Length (NumElems§, 1) = (VARTheta*Phi (LocQ%, 1) *60*DeltaT* (1-APLHA)) /Tmpl

END IF

IF Length(NumElem%,1)<0 THEN Length(NumElem$%,1)=0

PRINT
PRINT
PRINT
PRINT
ELSE
PRINT
PRINT

#1,"Iter #™;

#1, USING "###";iloop%;

#1,SPACES (57);

#1,USING"#####.##% m";Length(NumElems, 1)

#1,"Iter #";
#1, USING "###";1iloops

END IF

FOR ICTS = 1 TO NP%

FOR JCTS = 1 TO NClm$%
Kmatrx (ICT%,JCTS) = 0
Cmatrx (ICTS,JCTS) = 0
Amatrx (ICTS,JCTS) = 0

NEXT JCT%

FOR JCT$ = 1 TO NClm$+NumBandw$
Amatrx (ICT%,JCT$) = 0

NEXT JCT%

Force(ICT%,1) = 0

NEXT ICT%

for icts = 1 to NP%
Pfx(icts,1) = Phi(icts, 1)

if Pfx(ict%,1) < O THEN Pfx(ict%,1)=0

next ict$

IF NumElmNode$ = 3 THEN
LocL% = NumElem$*4+1

ELSEIF NumElmNode% = 2 THEN
LocL% = NumElem$*2+1

END IF

IF PhaseSd = 1 THEN
Pfx(LocL%,1) = 0
Pfx(LocLs+1,1) = 0

END IF

if iprints >= 3 then
call matrixprt (Length(),NumElem$,1,".
call matrixprt (TofOpp(),NumNode%,1,".
call matrixprt (SO(),NumNode$,1,". . .
call matrixprt (Phi(),NP%,1,". . .
call matrixprt (ForceP(),NP%,1,".

end if

CALL GetElmntMtxCoef

if iprint% >= 3 then
call matrixprt (Fsubi(),NumElem%,1,"™.
call matrixprt (Fsubj(),NumElem%,1,".
call matrixprt (Fsubk () ,NumElem%,1,".
call matrixprt (TopWidth(),NumNode%,1,
end if

CALL BuildGlobalMtx

if iprints% >= 3 then
call matrixprt (Cmatrx(),NP%,NClmg,".
call matrixprt (Kmatrx(),NP%,NClms, ™.
call matrixprt (Force(),NP%,1,". . .
call matrixprt (Phi(),NPS,1,". . .
end if

GOSUB SolveTimeStepl
CALL ModfyGlobMtx

e e

{Phi)

{Fa}

" {F)
(Phi)

{L}
(%}

{so}y .

{Fsubi}

{Fsubj}

{Fsubk}
(T}

(c1 .
(K]

.
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if iprint% >= 3 then
call matrixprt (Amatrx(),NP§,NClm&,"™. . . . [A) . . . . ™
call matrixprt (Pmatrx(),NP§,NClm§,". . . . [P] . . . . ™)
call matrixprt (Fstar(),NPS,1,". . . . (F*}) ., . . . ")

end if

call matrixVectmult (Pmatrx(),NP%,NumBandW$,phil (), Templ())
call matrixadd(templ(),NP%,1,Fstar(),NP%,1,PFplusFs(),NP%,1)
call GAUSSBND (Amatrx(),NP%,NumBandWs,PFplusFs(),Phi())

if iprints >= 0 then
IF iloop% = 1 then

print #1," Al Q1 A2 Q2 A3";
IF PhaseS = 1 THEN
print #1,USING * Q3 A4 Q4 Elem### Length ";NumElem$
ELSE
print #1," Q3 A4 Q4"
END IF
if NumNodes>4 then
print #1," A5 Q5 A6 Q6 AT";
print #1," Q7 A8 Q8 ,.etc.”
end if
end if
call VectorTprt (Phi(),NP%,1)
end if

DiffError = 0

FOR JTmp% = 1 TO NP% STEP 1
DiffError = DiffError + ABS(PrevPhi (JTmp$%,1)-Phi (JTmp%,1))
PrevPhi (JTmp%,1) = Phi (JTmps,1)
NEXT JTmp$%
AllowErr = AllError+numiterS*AllError/10
LOOP UNTIL (iloop%>2 AND DiffError<=AllowErr) OR (iloop$>numiter$)

TotalTime = TotalTime + DeltaT

NumStep% = NumStep$% + 1

IF Phase$% = 1 THEN
TotallLength = TotalLength + Length(NumElem$, 1)
write #2, TotalTime, Totallength

END IF

for j =1 to NP%
Phil(j,1) = Phi(J,1)
ForceP(j,1) = Force(j,1)
next jJ

FOR ICTS = 1 TO NumNode$
InfilP(ICT%,1) = Infil(ICT%,1)

NEXT ICT%

if iprint% >= 0 then
print #1," Al Q1 A2 Q2 ";
print #1,"A3 Q3 A4 Q4 ==>Time Step:";

print #1, USING "###";NumStep%
if NumNodes$>4 then

print #1," AS Q5 A6 Q6 ";
print #1,"A7 Q7 A8 Q8 "
end if

print #1,STRINGS (78, "+"™)
PRINT #1,SPACES$(25);"Simulated Time :";TotalTime;"min"
print #1,STRINGS (78, "*")

end if
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IF Phase% = 1 THEN
IF TotallLength<FurLength THEN
NumElem$ = NumElem% + 1

ELSE

Phases = 2
CLOSE #2
END IF

END IF

IF PhaseRect = 0 THEN

IF TotalTime>=TimCut THEN
PhaseRec% = 1
NumNodRec% = NumNodRec% + 1
Phi(1,1) = 0
Phi(2,1) = 0
write #3, TotalTime, TotalRec

END IF

END IF

IF PhaseRecS = 1 THEN
TotalRec = 0
NumNodRecS = 1

j=2

WHILE j <= NumElem$
IF Phi(3j*2-1,1) <=PhiSet THEN

Phi(3j*2-1,1) = 0

Phi(3j*2,1) = 0

NumNodRec% = NumNodRec% + 1

TotalRec = TotalRec + Length(3j-1,1)
ELSE

3

= NumElem$

END IF
j=3+1

WEND

IF TotalRec <> 0 THEN
write #3, TotalTime, TotalRec
END IF
IF NumNodRec% >= NumElem% THEN STPExc% = 1

END IF

IF NumStep$>=TotNumStep$ THEN
STPExc% = 1

END IF

LOOP UNTIL STPExc% = 1

YYY = TIMER

IF SelPrtOpt$ = "F" or SelPrtOpt$ = "P" THEN
locate 10,14
print "Completed Time Steps . . . . . . .
locate 12,14
print "Completed Time of Current Simulation Run (min): ";TotalTime
locate 16,14
PRINT USING "Time of Execution for this Run :#####.## ";YYY-XXX;
PRINT "sec"
LOCATE 21,1

PRINT
END IF
PRINT 41,
PRINT #1,
PRINT #1,
PRINT #1,
PRINT #1,
CLOSE

LOCATE 23,

nn

USING "Time of Execution for this Run
"sec”

USING "

"min®

40

PRINT "Press any key to see next screen ..."
WHILE INKEYS =""

. ¢ ";NumStep%

FHERRE 48 " YYY-XXX;

H42048 .88 "; (YYY-XXX)/60;
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WEND

GOSUB HEADING

LOCATE 10,8

SelStrg$ = "YyNn"

Strg$ = "Would you like to run the graphics routine (’Y’, yes, ’'N’, no)

RowStrg% = 10

ColStrgs = 8

call SelStrgEntry

AnsG$ = SelOpt$

AnsG$ = UCASES (AnsG$)

IF AnsG$ = "Y" THEN
CHAIN "SURFGRPH.EXE"

END IF ’

CLS

END

InitialScrn:

NNy AR AR AR Rt i il ittt i 2 22 2 2 2222 22 222 2]

REM * A subroutine to display the first screen.

REM * A A A AR A A A A AR AR AR AR AR AR AR R A AN AR A AR N R AR A AN AR NN AN RN NN AR R AR R AR AN ARk

KEY OFF

XX%(1) = 5: XX%(2) = 23: XX%(3) = 23: XX%(4) = 22: XX%(5) = 10
YYS$(1) = 2: YYS$(2) = 4: YY$(3) = 8: YY§(4) = 10: YYSN(5) = 12
XX$(6) = 17: YYS(6) = 14

CCS$(1) = CHRS(201): CCS(2) = CHRS(205): CC$(3) = CHRS(187)
CCS$(4) = CHR$(186): CCS(5) = CHR$(204): CC$(6) = CHRS (185)

CCS$(7) = CHRS(200): CC$(8) = CHR$(188)

Al$ = CCS(1) + STRINGS (54, CCS$(2)) + CC$(3)

A2S = CCS$(5) + STRINGS (54, CCS$(2)) + CC$(6)

A3$ = CC$(7) + STRINGS (54, CC$(2)) + CC$(8)

AAS (1) " FINITE ELEMENT SURFACE IRRIGATION DESIGN MODEL "
AAS (2) = "VERSION 1.00"

AAS (3) = "Developed by"
AAS (4) = "Walid H. Shayya"
AAS (5) = "Department of Agricultural Engineering"
AAS (6) = "Michigan State University"
CLS
. LOCATE 4, 1

PRINT SPACES$ (12); AlS$
FOR Iloop% =1 TO §
PRINT SPACES$ (12); CCS$(4); SPACES (54); CC$(4)
NEXT Iloop$
PRINT SPACES$ (12); A2$
FOR Iloop% = 1 TO 9
PRINT SPACES (12); CCS(4); SPACES(54); CCS(4)
NEXT Iloop%
PRINT SPACES$ (12); A3$
FOR Iloop% = 1 TO 6
LOCATE YY%(Iloop%) + 4, XX%(Iloop$) + 12
PRINT AAS (Iloop%)
NEXT Iloop$%

LOCATE 23, 48

COLOR 15, 0

PRINT "Press any key to continue."
COILOR 7, O

WHILE INKEYS$ = "": WEND
RETURN

HEADING:

Yem RN AR R R AR AR AR AR R R AR R RN RN R AR AN AR AR AR AR AR AN R AN ANAN AR RRNN R RN AR A AN AN AR

rem * A subroutine to print page heading.

TEM NA R AR R AR AR AR AR AR AR RN AR R R AR N RN R R RN R AR AR AR AR R RRAN AR RAANN AR RNNN AR NN AN AR

cls
LOCATE 2,24

Y
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PRINT "FINITE ELEMENT SURFACE IRRIGATION"
LOCATE 3,24

PRINT " DESIGN PROGRAM"

LOCATE 4,23

PRINT STRINGS (35,196)

return

SUB SelStrgEntry
rem 2222222222222 2222222222 2222222 22 3222222 2222222232222 22222382222 21
rem * A subprogram for entering one charcter input to a selected *
rem * string variable. *
rem iR ERRRR 2222222222222 22222222222 222222222223 32222 22}
SHARED SelOpt$,SelStrg$,Strg$,RowStrg$,ColStrgs
LOCAL BCount$

0

BCount$
SelOpt$
WHILE INSTR(1,SelOpt$,ANY SelStrg$) = 0

locate RowStrg$,ColStrgs

IF BCount% <> 0 THEN BEEP

PRINT Strg$;

SelOpt$ = INPUTS (1)

PRINT SelOpt$

BCount% = 1

WEND
END SUB

SolveTimeStepl:
Yem AR AR AR R R AR AR A A AR AR AR AR AR AR R AR A AR RN R AR R AR AR AR RN RN AR R R RRRAN AR R AN AN
rem * A subroutine to build the ordinary differential equation in *
rem * time. It will construct the following system of equations: *
rem * *
rem * (A {@} = [P] {9} + (F*} *
rem * b a *
rem * where, *
rem * [A] = [C] + ©.,8T. K] *
rem * [P] = [C] - (1 - ©).38T. [K] *
rem * {F*} = &8T.(1 - ©)({F)} + 8T.O.(F} *
rem * a b *
rem IE 2R SRR R 2222 2R a2 22222 22222222 2222222222222 222 22 %3

Paraml = VARTheta * DeltaT * 60
Param2 = (VARTheta - 1) * DeltaT * 60
Param3 = - Param2

ParamlM = 1

Param2M = 0

Param3M = 0

IF Method$ = "H" THEN

call matrixNumult (Kmatrx(),NP$,NClm$,Paraml,templ())
else

call matrixNumultMod (Kmatrx(),NP%,NClm%,Paraml,ParamlM, templ ())
end if

if iprint$ >= 3 then
call matrixprt (templ(),NP%,NClm%,". . . . . O.8T.[K] .. ... "™
end if

call matrixadd(templ () ,NP%,NClm$,Cmatrx(),NP%,NClm$,Amatrx(),NP%,NClm%)
if iprints% >= 3 then

call matrixprt (Amatrx(),NP%,NClms,". . [A) = [C] + ©.8T.[K] . ."™)
end if
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IF Method$ = "H" THEN
call matrixNumult (Kmatrx() ,NP&,NClm&,Param2,templ())
else
call matrixNumultMod (Kmatrx(),NP%,NClm§, Param2,Param2M,templ ())
end if
if iprints >= 3 then
call matrixprt (templ(),NP$,NClm&,". . . . - (1 - @).8T.[K] . . . . ")
end if

call matrixadd(templ () ,NP%,NClm%,Cmatrx(),NP%,NClm$,Pmatrx(),NP%,NClm$)
if iprints >= 3 then

call matrixprt (Pmatrx(),NP%,NClms,™. . ([P) = [C] - (1 - ©@).8T.[K) . .")
end if

IF Method$ = “H" THEN

call matrixNumult (ForceP () ,NP%,1,Param3, TempF1l ())
else

call matrixNumultMod (ForceP(),NP%,1,Param3,Param3M, TempF1())
end if

if iprints% >= 3 then
call matrixprt (TempF1l(),NP%,1,". . . . (1 -©).8T.{Fla .. . . ")
end if

IF Method$ = "H"™ THEN
call matrixNumult (Force(),NP%,1,Paraml, TempF2())
else !
call matrixNumultMod (Force(),NP%,1,Paraml,ParamlM, TempF2())
end {if

if iprints% >= 3 then
call matrixprt (TempF2(),NP%,1,". . . . O.8T.{F)b . . . . ")
end if

call matrixadd(TempFl(),NP%,1, TempF2(),NP%,1,Fstar(),NP%,1)
if iprint% >= 3 then

call matrixprt (Fstar(),NP%,1,". {F*} = 8T.(1-O@) (Fa} + 8T.®.(Fb)} .")
end if

return

GetBasicElmntMtx:
rem ARR AR R R AR N AR AN RNR AN AR AR R RRNNRRNN RN R AR RN A RARARRNARNRNANRRRRAARNR R AR R RNk hh
rem * A subroutine for getting the constant coefficients of the *
rem * element stiffness and the capacitance matrices. This *
rem * subroutine works for both linear and quadratic elements. *

< A AEA R AR ERRRRElRRRR RlRssiss R R SRR 2

NumElmNode2% = NumElmNode$ * 2

IF NumElmNode2% = 6 THEN
IF CONSISorLUMPS = 1 THEN
RESTORE 100
FOR Icount$% = 1 TO NumElmNode2$%
FOR Jcount% = 1 TO NumElmNode2$%
READ ElmtCmtx(Icount$,Jcount$)
NEXT Jcount$
NEXT Icount$
ELSE
RESTORE 125
FOR Icount$ = 1 TO NumElmNode2$%
FOR Jcount% = 1 TO NumElmNode2$%
READ ElmtCmtx(Icount$%,Jcount$)
NEXT Jcount$
NEXT Icount$
END IF
RESTORE 150
FOR Icount$ = 1 TO NumElmNode2%
FOR Jcount$% = 1 TO NumElmNode2%
READ ElmtKmtx(Icount%,Jcount$)
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ElmtKmtx (Icount%,Jcount%) = ElmtKmtx(Icount%,Jcount$) / 24
NEXT Jcount$
NEXT Icount$
ELSEIF NumElmNode2% = 4 THEN
IF CONSISorLUMPS = 1 THEN
RESTORE 200
FOR Icount$% = 1 TO NumElmNode2$
FOR Jcount$ = 1 TO NumElmNode2$%
READ ElmtCmtx (Icount$, Jcounth)
NEXT Jcount$
NEXT Icount$%
ELSE
RESTORE 225
FOR Icount$ = 1 TO NumElmNode2%
FOR Jcount$ = 1 TO NumElmNode2$%
READ ElmtCmtx(Icount$%,Jcount$)
NEXT Jcount$
NEXT Icount$
END IF
RESTORE 250
FOR Icount% = 1 TO NumElmNode2$%
FOR Jcount$ = 1 TO NumElmNode2$%
READ ElmtKmtx(Icount$%,Jcount$)
NEXT Jcount$
NEXT Icount$
REM ** Non-Galerkin Finite Element Formulation except if ALPHA=0

ElmtKmtx(1,2) = ElmtKmtx(1,2) + ALPHA / 2

ElmtKmtx(1,4) = ElmtKmtx(1,4) - ALPHA / 2

ElmtKmtx(3,2) = ElmtKmtx(3,2) - ALPHA / 2

ElmtKmtx(3,4) = ElmtKmtx(3,4) + ALPHA / 2
END IF

100 DATA 4, 0, 2, 0,-1,
DATA 0, 0, 0, 0, O,
DATA 2, 0,16, 0, 2,
DATA 0, 0, 0, 0, O,
DATA -1, 0, 2, 0, 4,
DATA 0, 0, 0, 0, O,

125 DATA 5, 0, 0, 0, O,
DATA O, O, O, O, O,
DATA 0, 0,20, 0, O,
DATA 0, 0, 0, 0, O,
DATA ©0, 0, 0, O, 5,
DATA 0, 0, O, 0, O,

150 DATA 0,-12, O, 16, O, -4
paTfa o, o, 0, O O, O
DATA O0,-16, O, O, O, 16
paATA o0, o0, O O O, O
DATA O, 4, O0,-16, 0, 12
pata o, o0, O ©O0 O O

200 DATA 2, 0, 1,
DATA 0, 0, O,
DATA 1, 0, 2,
DATA 0, 0, O,

225 DATA 3, 0, O,
DATA 0, 0, O,
DATA 0, 0, 3,
DATA 0, 0, O,

250 DATA 0,-.5,
DATA 0, O,
DATA 0,-.5,
DATA 0, O,

RETURN

[eNeoNoNoNoNeolNeNoNoNeoNoNe]

OO0OO0OO0 OO0OO0OO

[eNeNoNo)
~ 8 s =

. .
ouwnwowm
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sub GetElmntMtxCoef
rem (AR R 2R 2R R 2R R 22 R R R R R R R R R R R R P R R R R R R R R R 222D
rem * A subroutine for determining the coefficients C, C2, C3, and*
rem * C4 of the element stiffness and the capacitance matrices. Also,*
rem * the coefficients fi, fj, and fk for the force vector are *
rem * determined. This subroutine works for both linear and *
rem * quadratic elements. *
rem AR RARA R R R R R AN R R R R AR RN AR AN AN R RN N AR ANRNRRRARRRNRRAARNRNARR R RN RN RR AR AR AR AR AR
SHARED NumElem$,Gravity,Phi (), NumElmNode%,Method$,Sigmal,Sigma2
SHARED NumNode$%, Fsubi () ,Fsubj(),Fsubk(),ManngN,S0(),Rhol,Rho2,Length ()
SHARED TopWidth(),Coefl(),Coef2(),Coef3(),Coefd(),Coef5(),CONSISorLUMPS%
SHARED Pfx(),Czi(),Czj(),Czk(),CoefTW

LOCAL Count%,AreacCs,FlowCs, TempVl, TempV2, TempV3, Sfi,Sfj, Sfk,NodeCs, itr%
LOCAL ct§, Expnt
IF NumElmNode% = 2 THEN
TempV1l = 2
TempV2 = 2
TempV3 = 2
ELSEIF NumElmNode% = 3 THEN
TempV1 6
TempV2 2
TempV3 4
END IF

IF Method$ = "Z" THEN
Expnt = 1

ELSE
Expnt = 2

END IF

FOR Count$% = 1 TO NumElem$%
REM LA A2 SRR R R 2R R R R R R R R RS R R R R R S R R R R R AR R R
REM * Determine the coefficientsc , c, c,c,c, £, £, & £ *
REM * 1 2 3 4 5 i 3 k*
REM * of the individual element matrices for all the methods. *
REM RARARRRARARRRRRRRRNANRRRARNNRNRRARNRRRRRRRRRARNRRRANANRARNRAR AR AR AR kR
IF NumElmNode$% = 2 THEN
AreaC% = Count$*2-1
FlowCs = Count$*2
NodeC% = Count$
ELSEIF NumElmNode$ = 3 THEN
AreaCs = Count$*4-3
FlowCs% = Count$*4-2
NodeC% = Count$*2-1
END IF
IF Method$ <> "K" THEN
REM i A 22 2R 2 R R 2 R R R R R R R R R R R R R R R R R R R AR R R R S
REM * If kinematic wave, the force vector of the 2nd, 4th, & *
rem * 6th equations is placed in the stiffness matrix. *
rem I Z 2R 2R R R R 2R S R Y R 2222222222222
FOR itrs = 1 TO NumElmNode$%
cty = (itrs-1)*2
IF Method$ = "H"™ AND Pfx(AreaCs+ct$,1)<>0 THEN
Coefl (Counts,itrs) = 1 / (Gravity * Pfx(AreaC%+ct%,1))
ELSE
Coefl (Count%,itrs) = 0
END IF
IF (Method$ = "H"™ OR Method$ = "S") AND (Pfx(AreaC%+ct$%,1)<>0) THEN
Coef3 (Count¥, itrs)=Pfx (FlowCs+cts, 1) “2/ (Gravity*Pfx (AreaCs+cts, 1) ~3)
ELSE
Coef3 (Count%,itrs) = 0
END IF
IF Pfx(AreaCs+ct%,1)<>0 THEN
TopWidth (NodeCSs+itr%-1,1)=(CoefTW*Pfx (AreaCS+ct%,1)~ (1-Sigma2))/Sigmal
Coef2(Count%,itrs) = 1 / TopWidth(NodeCs+itrs-1,1)
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ELSE
TopWidth (NodeC%+itr$-1,1) = 0
Coef2(Count%,itrs) = 0
END IF
IF Pfx(AreaCs+ct%,1)<>0 AND Method$S <> "Z" THEN
Coef4 (Count%, itr%)=2*Pfx (FlowCs+ct%,1l)/(Gravity*Pfx (AreaCs+ct%,1)"2)
ELSE
Coef4 (Count§, itrs) = 0
END IF
Coef5(Count%, itr%)=Coef2 (Count%, itr%)-Coef3 (Count%,itr¥)
NEXT itr%
IF Pfx(AreaC%,1) <> 0 THEN
Sfi = (Pfx(FlowC%,1) “Expnt*ManngN*2)/(Rhol* (Pfx(AreaC%,1)) “Rho2)
ELSE
Sfi =0
END IF

IF Pfx(AreaC%+2,1) <> 0 THEN
Sfj = (Pfx(FlowC%+2,1) “Expnt*ManngN~2)/(Rhol* (Pfx(AreaC%+2,1)) “Rho2)
ELSE
Sfj =0
END IF
IF Method$ = "2" THEN
Czi(Count%,1l) = Sfi * Length(Count%,1)/TempV1
Czj(Counts,1) = Sfj * Length(Count%,1l)/TempV3
Sfi = 0
sf§J =0
END IF
Fsubi (Count%,1) = Length(Count%,1)* (SO (NodeC$%,1)-Sfi)/TempV1
Fsubj(Count%,1l) = Length(Count%, 1) * (SO (NodeC%+1,1)-Sfj)/TempV1l
IF NumElmNode$ = 3 THEN
IF Pfx(AreaC%+4,1) <> O THEN
Sfk = (Pfx(FlowC%+4,1)“Expnt*ManngN~2)/(Rhol*(Pfx(AreaC%+4,1)) “Rho2)
ELSE
Sfk = 0
END IF
IF Method$ = "Z" THEN
Czk (Count%,1) = Sfk * Length(Count%,1)/TempV1
Sfk = 0
END IF
Fsubk (Count%,1) = Length(Count%, 1) * (SO (NodeC%+2,1)-Sfk)/TempV1
END IF
ELSE
Sfi = Rhol*(Pfx(AreaC%,1)) ~(Rho2-2)*S0 (NodeCs%, 1)
Sfj = Rhol*(Pfx(AreaC%+2,1)) ~ (Rho2-2) *SO (NodeC%+1,1)
Fsubi (Count%,1) = (Sfi~.5)/(ManngN*TempV2)
Fsubj(Count%,1) = (Sfj~.5)/(ManngN*TempV3)
IF NumElmNode$ = 3 THEN
Sfk = Rhol* (Pfx(AreaC%+4,1)) ~(Rho2-2) *SO (NodeC%+2, 1)
Fsubk (Count%,1) = (Sfk*,5)/(ManngN*TempV2)
END IF
END IF
NEXT Count$
END SUB

sub BuildGlobalMtx

rem I E2 22X 2222222222 2222222222222 22222222222 2222222222222 222222222 |
rem * A subroutine for building the global stiffness and *
rem * capacitance matrices, and the global force vector. *
rem [ E X RSS2 2Z22 2222222222222 22222 222222222222 202222 2R 2 8 21
SHARED NumElem%, Coef () ,NumElmNode$,Kmatrx(),Cmatrx(),ElmtCmtx(),Force()
SHARED Length(),ElmtKmtx(), TempK(), TempC () ,Method$,ManngN, Infil()

SHARED kofInf, fsub0,aofInf,TofOpp(),Fsubi(),Fsubj(),Fsubk(),CONSISorLUMP%
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SHARED Coefl(),Coef2(),Coef3(),Coefd(),Coef5(),DeltaT,FDorFE%, InfilP ()
SHARED Czi(),Czj(),Czk(),NumBandWs
SHARED ALPHA,Phase$

LOCAL NumElmNode2%,Count$%,Count2%,LocatCs%, LocatN%, Icts,Jcts, TempV1
LOCAL TempV2, TempV3, TempV4, TempV5

NumElmNode2% = NumElmNode$ * 2

IF NumElmNode% = 2 THEN
TempVl = 2

ELSEIF NumElmNode% = 3 THEN
TempVl = 6

END IF

IF NumElem§& = 1 OR Phase$<>1 THEN
UpLmt$ = NumElem$

ELSE
UpLmt$% = NumElem$% - 1

END IF

FOR Count$ = 1 TO UpLmt$%
REM 222 s R 2R R 22 R R R R 2R R R R R R R R R R R R 2 R 22 22222222222
REM * Construct the individual element matrices for all the *
REM * different models. *
REM L2222 222222222222 2 R 22 222 R R R SRS R R R 2 2222222222222
IF NumElmNode2% = 6 THEN
LocatC8% = Count%*4-4
LocatN$% = Count&*2-2
ELSEIF NumElmNode2% = 4 THEN
LocatC% = Count§*2-2
LocatN$ = Count%-1
END IF
FOR Ict% = 1 TO NumElmNode2%
FOR Jcts = 1 TO NumElmNode2$%
TempK (Ict%,Jcts) = ElmtKmtx(Ict$,Jcts)
TempC(Ict$,Jcty) = ElmtCmtx(Ict%,Jcts)
NEXT Jct$
NEXT Icts
IF Method$ = "H"™ THEN
IF CONSISorLUMPS = 1 THEN
IF FDorFES=1 THEN
IF NumElmNode2% = 6 THEN
TempC(2,2) = 4 * Coefl(Counts, 1)

TempC(2,4) = 2 * Coefl(Count}, 2)
TempC(2,6) = - Coefl (Countk, 3)
TempC(4,2) = 2 * Coefl (Count%, 1)
TempC(4,4) = 16 * Coefl (Counts,2)
TempC(4,6) = 2 * Coefl (Count$, 3)
TempC(6,2) = - Coefl(Count%,1)
TempC(6,4) = 2 * Coefl (Count§, 2)
TempC(6,6) = 4 * Coefl (Count, 3)

ELSEIF NumElmNode2% = 4 THEN
TempC(2,2) = 2 * Coefl (Countk,1)
TempC(2,4) = Coefl(Counts, 2)
TempC(4,2) = Coefl (Count%,l)
TempC(4,4) = 2 * Coefl (Counts, 2)

END IF

ELSE

IF NumElmNode2% = 6 THEN
TempC(2,2) = 4 * Coefl (Count%,1)
TempC(2,4) = 2 * Coefl (Count%,1)

TempC(2,6) = - Coefl(Count%,1)

TempC(4,2) = 2 * Coefl (County,l)
TempC(4,4) = 16 * Coefl(Counts,1)
TempC(4,6) = 2 * Coefl(Counts, 1)

TempC (6, 2) - Coefl (Count%, 1)
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TempC(6,4) = 2 * Coefl (Count§, )
TempC(6,6) = 4 * Coefl (Count%,1)
ELSEIF NumElmNode2% = 4 THEN

TempC(2,2) = 2 * Coefl (Count%,1)
TempC(2,4) = Coefl (Count%,1l)
TempC(4,2) = Coefl (Count,l)
TempC(4,4) = 2 * Coefl (Count,1)
END IF
END IF

ELSE
IF FDorFE$=1 THEN
IF NumElmNode2% = 6 THEN
TempC(2,2) = 5 * Coefl (Count%,1)
TempC(4,4) = 20 * Coefl(Countk,2)
TempC(6,6) = 5 * Coefl (Count$, 3)
ELSEIF NumElmNode2% = ‘4 THEN
TempC(2,2) = 3 * Coefl (Count$,1)
TempC(4,4) = 3 * Coefl (Counts, 2)
END IF
ELSE
IF NumElmNode2% = 6 THEN
TempC(2,2) = 5 * Coefl(Counts,1)
TempC(4,4) = 20 * Coefl(Count%,l)
TempC(6,6) = 5 * Coefl (Count%,1)
ELSEIF NumElmNode2% = 4 THEN
TempC(2,2) = 3 * Coefl (Count§%,1)
TempC(4,4) = 3 * Coefl (Counts,l)
END IF
END IF
END IF
END IF
IF Method$ = "K" THEN
IF NumElmNode2% = 6 THEN
REM AARR AN AR RN R RRAR AR R RNAANRA R RN RN N AR RN RNRNRAANRARNRN AR R NRRANNAA RN AR
REM * If kinematic wave, the force vector of the 2nd, 4th, & *

rem * 6th equations is placed in the stiffness matrix. *
rem ARRAN R R R R R AR AR AR R RN RN R AR R AR R RRAANNRRARNRAR R RN R AR AR AR AR AR AR Rk

TempK(2,2) = .5

TempK(2,1) = -Fsubi (COUNTS,1)
TempK(4,4) = 1

TempK(4,3) = -4*Fsubj(COUNTS,1)
TempK(6,6) = .5

TempK(6,5) = -Fsubk (COUNTS, 1)

ELSEIF NumElmNode2& = 4 THEN
TempK(2,2) = .5
TempK(2,1) = -Fsubi (COUNTS%,1)
TempK(4,4) = .5
TempK(4,3) = -Fsubj(COUNTS,1)
END IF
ELSEIF Method$ = "2"
IF FDorFES=1 THEN
IF NumElmNode2% = 6 THEN

THEN

TempK(2,1) = - Coef2(Count%,l) / 2
TempK(2,3) = 2 * Coef2(Count%,2) / 3
TempK(2,5) = - Coef2(Count%,3) / 6
TempK(4,1) = - 2 * Coef2(Count%,1) / 3
TempK(4,5) = 2 * Coef2(Count%,2) / 3
TempK(6,1) = Coef2(Count%,1) / 6
TempK(6,3) = - 2 * Coef2(Count%,2) / 3
TempK(6,5) = Coef2(Count%,3) / 2

ELSEIF NumElmNode2% = 4 THEN
TempK(2,1) = Coef2(Count%,1) *
TempK(2,3) = Coef2(Count$, 2)
TempK(4,1) = Coef2(Counts,1)

(-=.5 + ALPHA/2)
(.5 - ALPHA/2)
(-.5 = ALPHA/2)

* »



TempK(4,3) = Coef2(Countk, 2)

END IF
ELSE

IF NumElmNode2% = 6 THEN
- Coef2(Count%,1) / 2

2 * Coef2(Count%,1) / 3

- Coef2(Count%,1) / 6

- 2 * Coef2(Counts,1) / 3
2 * Coef2(Count%,1) / 3
Coef2 (Count%,1) / 6

- 2 * Coef2(Counts,1l) / 3

TempK (2,1)
TempK (2, 3)
TempK (2, 5)
TempK(4,1)
TempK(4,5)
TempK(6,1)
TempK (6, 3)
TempK (6, 5)

Coef2 (Counts, 1)

ELSEIF NumElmNode2% = 4 THEN

TempK(2,1)
TempK (2, 3)
TempK (4, 1)
TempK (4, 3)
END IF
END IF

IF NumElmNode2$%
TempK(2,2) =

END IF

ELSE
IF FDorFE%$=1 THEN

Coef2 (Counts, 1)
Coef2 (Count%, 1)
Coef2 (Count%, 1)
Coef2 (Count%, 1)

6 THEN

Czi (COUNTS%, 1)
TempK(4,4) = 4*Czj(COUNTS%,1)
TempK(6,6) = Czk (COUNT%, 1)

ELSEIF NumElmNode2% = 4 THEN
TempK(2,2) = Czi (COUNTS, 1)
TempK(4,4) = CzJj(COUNTS, 1)

IF NumElmNode2% = 6 THEN

TempK(2,1)
TempK (2, 2)
TempK (2, 3)
TempK (2, 4)
TempK (2, 5)
TempK (2, 6)
TempK (4, 1)
TempK (4, 2)
TempK (4, 5)
TempK (4, 6)
TempK (6, 1)
TempK (6, 2)
TempK (6, 3)
TemPK(sy q)
TempK (6, 5)
TempK (6, 6)

*

/

*» % % »
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(.5 + ALPHA/2)

- Coef5(Counts,1) / 2

11 DON

Coef4 (Count%,1) / 2
* Coef5(Counts,2) /
* Coef4 (Count%,2) /
Coef5 (Count%,3) / 6
Coef4 (Counts,3) / 6
2 * Coef5(Counth, 1)
2 * Coef4 (Count§, 1)
2 * Coef5(Count%,2) /
2 * Coef4 (Counts,2) /

Coef5(Count%,1) / 6
Coef4 (Count%,1l) / 6

- 2 * Coef5(Count}, 2)
- 2 * Coef4 (Countk, 2)

Coef5 (Counts, 3)
Coef4 (Counts, 3)

ELSEIF NumElmNode2% = 4 THEN
TempK(2,1) = Coef5(Count%,1)
TempK(2,2) = Coef4 (Counts,1)

TempK (2, 3)
TempK(2, 4)
TempK(4,1)
TempK (4, 2)
TempK (4, 3)
TempK (4, 4)
END IF
ELSE

Coef5(County, 2)
Coef4 (Counts, 2)
Coef5 (Counts, 1)
Coef4 (Count§, 1)
Coef5 (Count, 2)
Coef4 (Counts, 2)

IF NumElmNode2% = 6 THEN
TempK(2,1) = - Coef5(Count%,1) / 2

TempK (2, 2)
TempK (2, 3)
TempK (2, 4)
TempK (2, 5)
TempK (2, 6)

[ S |

NN

*» % % % ¥ % ¥ »

2
(-.5 + ALPHA/2)
( .5 = ALPHA/2)
(-.5 - ALPHA/2)
( .5 + ALPHA/2)
3
3
/ 3
/3
3
3
/3
/3
2
2

(-.5 + ALPHA/2)
(-.5 + ALPHA/2)
(.5 - ALPHA/2)
(.5 - ALPHA/2)
(-.5 - ALPHA/2)
(-.5 - ALPHA/2)
(.5 + ALPHA/2)
(.5 + ALPHA/2)

Coef4 (Count%,1) / 2
* Coef5(Count%,1) / 3
* Coef4 (Count%,1) / 3
CoefS5 (Count%,1) / 6
Coef4 (Count%,1) / 6



TempK(4,1)
TempK (4, 2)
TempK(4,5)
TempK (4, 6)
TempK (6, 1)
TempK (6, 2)
TempK (6, 3)
TempK (6, 4)
TempK (6, 5)
TempK (6, 6)
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- 2 * Coef5(Counts, 1)
- 2 * Coef4(Countk,l)
2 * Coef5(Counts,1l) /
2 * Coef4 (Counts,1) /
Coef5 (Counts,1) / 6
Coef4 (Counts,1) / 6
- 2 * Coef5(Count§, )
- 2 * Coef4(Counts,l)

Coef5 (Count%, 1)
Coef4 (Count%, 1)

ELSEIF NumElmNode2% = 4 THEN

EN
END
END IF

TempK(2,1)
TempK (2, 2)
TempK (2, 3)
TempK (2, 4)
TempK(4,1)
TempK (4, 2)
TempK (4, 3)
TempK (4, 4)
D IF

IF

Coef5 (Counts, 1)
Coef4 (Count%, 1)
Coef5 (Countg, 1)
Coef4 (Counts, 1)
Coef5 (Count%, 1)
Coef4 (Counts, 1)
Coef5 (Counts, 1)
Coef4 (Counts, 1)

/
/

* % % % % % * »

2

2

(-.5
(-.5
(.5
(.5
(-.5
(-.5
(.5
(.5

W Ww NN\

NN

ALPHA/2)
ALPHA/2)
ALPHA/2)
ALPHA/2)
ALPHA/2)
ALPHA/2)
ALPHA/2)
ALPHA/2)

REM A XAk A A R A A A AN AR AR AR AR R AR AR R AR AR AR R R AR AR RN AN AN ARARRRRRR R AR AR AR AR

REM * Construct the global stiffness and capacitance matrices, and *
REM * build the global force vector.
REM KRR R R R RN R R AR AR R R AR R AN R AR R AR R AN R A RN AR AR RR N AR R AN RN RN R RRNRR A AR AAR AN
FOR Ict$ = 1 TO NumElmNode2$%
FOR Jct$ = 1 TO NumElmNode2$%
IRowS = IctS+LocatCs
JCols = Jct¥+LocatCs+NumBandW$-IRowS

Kmatrx (IRow$,JCols) = TempK(Ict$%,Jcts) + Kmatrx(IRow$,JCols)

IF TempC(Ict%,Jct%) <> Q THEN
IF NumElmNode2% = 6 THEN

EN
NEXT
NEXT I

TempV2 = TempC(Ict%,Jct%) * Length(Count%,1l) / 30
ELSEIF NumElmNode2% = 4 THEN
TempV2 = TempC(Ict%,Jct§) * Length(Count%,1l) / 6

END IF

Cmatrx (IRows,JCols) = TempV2 + Cmatrx(IRow$,JCols)

D IF
Jcts
cts

FOR COUNT2% = 1 TO NumElmNode%
TempV3=kofInf*TofOpp (LocatN$+COUNT2%,1) “aofInf
TempV3=(TempV3+TofOpp (LocatN$+COUNT2%, 1) *£sub0)
Infil (LocatN$+COUNT2%,1) = TempV3

TempV4=(TempV3-InfilP (LocatN$+COUNT2%,1))/ (DeltaT*60)
TempV5 = - Length(Count$, 1) *TempV4/TempV1

If COUNT2% = 2 AND NumElmNodes = 3 THEN
TempVS = TempVS5 * 4

END

Force (LocatC%+Count2%*2-1, 1) =TempV5+Force (LocatC%+Count2%*2-1,1)

NEXT C

If

OUNT2%

IF Method$ <> "K" THEN

Force (LocatC%+2,1) = Force (LocatC%+2,1)+Fsubi (COUNTS, 1)

IF NumElmNode$ = 2 THEN

Force(LocatC%+4,1) = Force(LocatC%+4,1)+Fsubj(COUNTS, 1)

ELSEIF NumElmNode% = 3 THEN

Force(LocatC%+4,1) = Force(LocatC%+4,1)+4*Fsubj(COUNTS,1)
Force (LocatC%+6,1) = Force (LocatC%+6,1)+Fsubk (COUNTS, 1)

END

END IF
NEXT Cou
END SUB

IF

nt%

*
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sub ModfyGlobMtx

i 2222222222222 2222222222222 2222222222222 2222222222222 22222223

rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem
rem

w

* % * % ¥ % ¥ ¥ *» »

*

A subroutine for modifying the global system of equations *
for known Phi boundary conditions. This subroutine modifies *
the (A] and [P] matrices by deleting rows and columns. It is *
always assumed that the unknown to be modified is the flow Q *
which represents the second unknown at each node. *
However, if the Area of flow at the node has a fixed value as *
a boundary condition, then this can still be incorporated into *
the final system of equations using this subroutine. This step*

is accomplished by entering the number of node minus 0.5 *
as the node number to be modified. In other words, the *
first value in the array NofPhi(i,1) will be *

NofPhi (1,1) = Node Number of 1lst boundary - .5 *

L 2R RE 222222 2222222222 2222222222222 222 2222222222222 2R 2R 2

SHARED NumElem$, Amatrx(),Pmatrx(),Method$, NumNode%,Phi () ,Phil ()
SHARED NumofPhi%,NumBandW$,Fstar () ,NP%,NofPhi()
LOCAL Ict%,Jct%,PrvNs,KPhiNs,TT1%, TT2%, TT3%, TT4%

FOR Ict$ = 1 TO NumofPhis
KPhiNs = NofPhi(Ict%,1) * 2
PrvNs = KPhiN§% - 1
FOR Jct$% = KPhiN$+1 TO NumBandW$+PrvN$

TT1% = NumBandW$ - Jct$ + KPhiN%
TT2% = NumBandW$% + Jct$ - KPhiN$
TT3% = NumBandW§ - PrvN% + KPhiN$

TT4% = NumBandW& + PrvN% - KPhiN$%
IF Jct% <= NP% THEN

Fstar(Jct%,1l) = Fstar(Jct%,1)-Amatrx(Jcts, TT18) *Phi (KPhiN%,1)
Fstar(Jct%,1) = Fstar(Jct%,1)+Pmatrx(Jct%, TT1%)*Phil (KPhiN%,1)
Amatrx (KPhiN§, TT2%) = 0.

Amatrx(Jcts, TT1s) = O,

Pmatrx (KPhiN%, TT2%) = 0.

Pmatrx (Jct%, TT1S) = 0.

END IF
IF PrvN$ > O THEN

Fstar(PrvN%,1) = Fstar(PrvN§,1l)-Amatrx (PrvNs,TT3%) *Phi (KPhiN%, 1)
Fstar(PrvNs,1l) = Fstar (PrvN§, 1) +Pmatrx (PrvNs, TT3%) *Phil (KPhiNsg,1)
Amatrx (PrvN§,TT3%) = 0.

Amatrx (KPhiN%, TT4%) = O,

Pmatrx (PrvNs,TT3%) = 0.

Pmatrx (KPhiN$%, TT4%) = 0.

PrvN$ = PrvN% - 1

END IF
NEXT Jct$s
Amatrx (KPhiN%, NumBandWg) = 1.
Pmatrx (KPhiN&, NumBandWs) = 0.
Fstar(KPhiN%,1) = Phi(KPhiN%,1)
NEXT Ict$%
end sub

sub matrixNumult (x(2), rx%, cx%,varl,z(2))
rem (2222222222222 X232 2222222 2222222222222 X222 222222228 B}

rem * A subroutine for matrix multiplication by a constant. *
rem i3 222222222222 2R 2222222 2222222222222 222222222222 222 R 2 2]

local ii%, jis

for ii%s = 1 to rx%
for jij% = 1 to cx%

z(1is,33J8) =0
next Jj%

next 1iis%
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for 1i%8 = 1 to rx%
for jj% = 1 to cx%
z(1i%,33%) = varl * x(iis%, jj%)
next Jji%
next iis
end sub

sub matrixNumultMod(x(2),rx%,cx%,varl,var2,z(2))
rem (2222222222222 2222222222222 22222222 2222222222222 222222222 222222223
rem * A subroutine for matrix multiplication by two constants. The *
rem * for the unsteady part of the problem while the second is for *
rem * the steady part of the problem when other than full dynamic *

rem * equations are used. *
rem (A X2 222 2E22 2222222222 2222222222 2222222222222 22222t 2 22 22 2 2R 8}

local 1iis, jis

for ii% = 1 to rx%s
for jj% = 1 to cx%
z(11%,33%) = 0
next Jj%
next ii%

for 1i% = 1 to rx%
for jj% = 1 to cx%
if int(iis/2)*2 = ii% then
z(11i%,33%) = var2 * x(iis, ji%)
else
z(11%,33%) = varl * x(iis, 33%)
end if
next Jjji%
next 1i%
end sub

sub matrixprt(x(2),rx%,cx%,vars)
rem I 22222222 R22 2222222222 X222 22222222 2222222222223 222 2222222222222 % 2]

rem * A subroutine for printing matrices. *
rem RARAR AR AR AR AR R RA AR R R AN AR AR KRR RN AR R R R AR A AR AR RRRA R AR AR AN R AR R R R AR AR

local iis, jis

PRINT #1,
PRINT #1,
PRINT #1, space$ (20);var$
PRINT #1,
for 1is8 = 1 to rx%
for jj% =1 to cx%
PRINT #1, using "##.#### ";x(ii%,j3%);
next 3ji%
PRINT #1,
next 1i%
PRINT #1,
PRINT #1,
end sub

sub VectorTprt (x(2), rx%, cx¥)

rem (222 2222222222222 222222222222 2222222222 822222222222 222222222222 R 81
rem * A subroutine for printing matrices transposes. *
rem (2222222222222 2222222222222 2222022222222 2222222222222 2 2]

local 1i%, jjis

for 1i% = 1 to cx%
for jj% =1 to rx%
PRINT #1, using "##.#%##3% ";x(J3%,11%);
if int(jjs/8)*8 = jj% then PRINT #1,
next 33%
PRINT #1,
next 1ii%
end sub
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sub matrixadd(x(2),rx%,cx%,y(2),ry$,cys,2z(2),rz%,cz%)

YeMm XX AR AR AR R R R AR A AN AR AR R RN R RA AR AR AR R A RN AN AN AR R R AR AR RN R NR AR AR R AR AS

rem * A subroutine for matrix addition.

*

Yem XA R A AR A A R R R A AR AR AR AR AR AR R A AR AR AR AR AT R AR AR A AR AR AR AR AR AR AR R R RN A N

local iis, jJj%,kks

1f cx8%<>cy% or rx%<>ry% then
PRINT #1, "Matrices can’t be added !!!!"
goto quitadd

end if

rz% = rxs
cz% = cy$

for ii% = 1 to rx%
for jj% = 1 to cx%
z(iis,33%) =0
next 3ji%
next 1i%

for iis8 = 1 to rx%
for jj% = 1 to cx%
z(11%,33%) = x(1i%,33%) + y(iis, ji%)
next 33j%
next 1ii%

quitadd:
end sub

SUB GAUSSBND (X (2) ,NEQU%, BndWdths,C(2),Z(2))

REM * Atttk kA AR AR AR AR R A AR AR AR AR AR R R AR AR R R AN AR AR R R AR AR AR AR AR AR A bd

REM * A subprogram that implements the Gaussian Elimination

REM * procedure to the solution of a system of equations.

REM * subprogram takes the bandwidth into account when solving the
REM * system of equations. However, if your system is not banded,
REM * you should use the total dimension of the matrix as the

REM * bandwidth,

REM * %At At AR A AR AR AR AR R R AR AR AR AR AR RN R AN AR RR R AR AR AR I AR RNk

LOCAL UPLMT%,MXMUM,PVTS%, K, 1I%,J%,DUM,DUMS, 118, Factor, SumOfX

SHARED S ()

for 1ii% = 1 to NEQU%
Z2(iis,1) =0
next 1is

UPLMT2GS$ = 3 * BndWdth% - 1
FOR I% = 1 TO NEQU$
S(I%) = ABS(X(I%,1))
FOR J% = 2 TO 2 * BndWdth% - 1
IF ABS(X(IS,J%)) > S(IS) THEN
S(I%) = ABS(X(I%,J%))
END IF
NEXT J%
NEXT I%

FOR K§ = 1
PVTS% = K%
MXMUM = ABS (X (K%,BndWdth$) /S (K%))
UPLMT% = K% + BndWdth% - 1

IF UPLMTS > NEQUS THEN UPLMT% = NEQU%

FOR II% = K% + 1 TO UPLMT% |
IF BndWdth$+KS-II% > O THEN
DUM = ABS(X(II%,BndWdth$+K$-II%)/S(II%))
IF DUM > MXMUM THEN
MXMUM = DUM
PVTS = II%

TO NEQUS-1

*
*®
*
*
*
*
*
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END IF
END IF
NEXT II%

IF PVTS <> K% THEN
FOR III% = BndWdth% TO UPLMT2G%
DUM = X(PVT%, III$-PVTS+KS%)
X(PVT%, III%-PVT$+KS%) = X (K%, III%)
X(K%,III$) = DUM
NEXT III%
DUM = C(PVT%,1)
C(PVT%,1) = C(K%,1)
C(K$,1) = DUM
DUM = S(PVT%)
S(PVT%) = S(K%)
S(K%) = DUM
END IF

UPLMT2% = 3*BndWdth$-1

IF UPLMT2% > NEQUS$ THEN UPLMT2% = NEQU%

FOR I% = K% + 1 TO UPLMT%
Factor = X(I%,BndWdth$-I%+K%)/X(K%,BndWdths)
FOR J% = BndWdth%+1 TO UPLMT2G%

X(I%,J%-I%+KS) =X (I%,TJ¥-IS+KS) - Factor*X(Ks,Js)

NEXT J%
C(I%,1) = C(I%,1) - Factor * C(Ks,1)

NEXT I%

NEXT K%

Z (NEQUS, 1) = C(NEQUS,1) / X(NEQUS,BndWdths)
FOR IS = NEQUS-1 TO 1 STEP -1
SumOfX = 0
FOR J% = I% + 1 TO NEQU%N
IF BndWdth%+J%-I% <= UPLMT2G% THEN
SumOfX = SumOfX + X(I%,BndWdth&+J%-I%) * Z(J%,1)
END IF
NEXT J%
2(I%,1) = (C(I%,1) - SumOfX)/ X(I%,BndWdths)
NEXT IS
END SUB

sub matrixVectmult (X(2) ,NEQUS,BndWdths,C(2),2(2))
rem L R R R R R R R R R R R R R Y R R R R R 2 R 2222222222

rem * A subroutine for matrix multiplication. This routine would
rem * only be usable to mutiply a matrix (X] by a vector {C}. The

* % % ¥ »

rem * matrix should be banded and the band width should be given.

rem * Moreover, the the matrix should be based in a banded form with

rem * the dimensions of [X] as follows: NEQUS rows and 2*BndWdth$-1

rem * columns. If the data is not passed as such, errors will occur.*

rem * The subroutine doesn’t have any error checks. *
*

rem AR RR AR R AR AR AR AR R AR AR R R R R R AR R R RN R R AR AR AR RN AR AR RARRRRRRRRRANN RN AR RN

LOCAL I%,J%,II%

for ii% = 1 to NEQUS
2(iis,1) =0
next iis

FOR I% = 1 TO NEQU%
FOR J% = 1 TO 2*BndWdths-1
IF -BndWdth%+J%+I% > 0 AND -BndWdth%+J%+I%<=NEQUS& THEN
Z(I%,1) = 2(I%,1) + X(I%,J%) * C(-BndWdth$+J%+I%,1)
END IF
NEXT J%
NEXT I%
END SUB
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INITIAL:
REM 1222222222222 22 R 2 8 22222 R 2222 R 2 R R R R R R R R R R R R R 22222}
REM * A Subroutine to initialize parameters. *
REM (222222 R R R R R 2 R R 22222 R R R R R R R SR R R 2222222222222
FDOrFES = 1 '<====] {s finite difference, 0 is finite element==
Falses= 0
Trues = 1

IrrMethod$ = "F"
Method$ = "K"
TypElem$ = "L"
SelPrtOpt$ = "F"

iprints = 0

VARTheta = .50 Y <

ALPHA = ,25

DeltaT =5 4 ==minutes
numiter$ = 10 ' <=
AllError = 0.0005

TotNumStep%= 20
CONSISorLUMPS = 0 '<====] is consistent, 0 lumped====
CoefTW = 1.0 !<====== Coefficient of Top Width (possible values are 1 & 1.5)

Furlength = 625

TimCut = 300 ‘min

Qin = 2,78 ’'liters/sec
kofInf = 0.0252

fsub0 = 0.00023

Slope = 0.0044

aofInf = 0.02

ManngN = 0.03

IF IrrMethod$ = "B" THEN

Rhol = ]
Rho2 = 3,3333333
Sigmal = 1.5
Sigma2 = 1
ELSE
Rhol = 0.46
Rho2 = 2.86
Sigmal = 0.92
Sigma2 = 0.65
END IF
RETURN

DEF FNExists%(FilNam$)
REM ARARARRARARNRRARRRRNRRRNRRRRANRRRRRRNRRRRARRNRNRRARA R AR AR AR AN AR ARk Ak
REM * The function Exists% returns a non zero integer value if the *
REM * file specified by FilNam$ is on the current disk drive. b

REM Attt kA A AR A AR A AR R AR R AR R RN R AR AR AR R R AR RN AR RN AR RRR AR R RN AR AR RN AR AR AR

Shared False%, True$
LOCAL ExistF$%

ON ERROR GOTO FileError
ExistF$ = True$ 'initial

OPEN FilNam$ FOR INPUT AS #9
IF ERR=0 THEN CLOSE #9
GOTO Finish

FileError:
ExistFS% = FALSES ' File doesn’t exist
RESUME NEXT

Finish:

ON ERROR GOTO 0

FNExists$=ExistF$
END DEF



APPENDIX B
FE-SURFDSGN Graphics Routine Listing

AR R 2R R R Rl il s R R R SRR S22 2R )
* *
* Program SURFGRPH.BAS *
* *
AR AR AR AR R RN AR R AN AR R AR R RN R R R AR R AR R AR AR AR RN R RN RRA A AR RN AR R R AR AR ARk
* *
* Developed By *
* *
* Walid H. Shayya *
* *
* Michigan State University *
* *
* July 30, 1990 *
* ®
KRR AR RN R AR NN R R R AN R AN KRR R RN R AR AR R R AR AR AR AR RN AN AR AR AR AR AR AN R RR AR AR RN AR

COMMON NGphFil$
SMaxNpts = 200

DIM Varbll (SMaxNpts), Varbl2(SMaxNpts)

DIM XPOS%(6), YPOS%(1ll), XPnts(SMaxNpts), YPnts(SMaxNpts)
DIM Length (SMaxNpts,3), Time (SMaxNpts, 3)

DIM GrphXpnt (4), XX%(10), YY%$(10), CC$(10), AAS(10)

SCREEN 0

IF NGphFil$ ="" THEN
GOSUB InitialScrn

END
CLS

IF

‘ON ERROR GOTO Trap
NumOfPrb% = 1
GOSUB HEADING

LOCATE 8, 10
IF NGphFil$ ="" THEN
INPUT "Enter the name of file to plot (no extension) : "™, NGphFil$
END IF
FilPrgl$ = NGphFil$ + ".PRG"
FilPrg2$ = NGphFil$ + ".REC"

FilIn$ = NGphFil$ + ".OUT"

CheckEnt$ = ""
GOSUB GetFilNam

GOSUB LdScrnFl

IF CheckEnt$ = "R" OR CheckEnt$ = "B"™ THEN
NumOfPrb$ = NumOfPrb% + 1
GOSUB LdScrnFll 'open file for data output

END

IF

IF CheckEnt$ = "A"™ OR CheckEnt$ = "B" THEN
NumOfPrb% = NumOfPrb% + 1
GOSUB OpnFil ‘open file for data output

END

IF

GOSUB Initial
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GOSUB HEADING
GOSUB GetScren

REM * stk ek kA AR A A AR AR AR R A R A R A AR AN AR AR AR AR AR AR RN NN R RN RN R R AR R R AR RN R ARk AR

REM * Prepare Screen for output.
REM LA 2R AR A A R R R R R R R R R R R LR R R R R R R P R R R AR R 222222

CALL PrntScrn
GOSUB PrepDGrph
CALL FindRange2(MaxLength / 10)

CALL FindRangel (MaxTime / 10)

CALL LabelAxis
GOSUB GetDat
a$ = INPUTS(1)

SCREEN 0
END

InitialScrn:
REM L e 2 R R R A2 22222 2222222222 R R R 2 R R R 2222323222223 2222222222 Y]]

REM * A subroutine to display the first screen.
REM LA R R R R R R A R R R R R R R R R Y 22 2222232222222 2211 Y

KEY OFF

XX%(1)
YY$ (1)
XX%(6)
CCS (1)
CC$ (4)
CCs(T)
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5: XX%(2) = 23: XX8%(3) = 23: XX%(4) = 22: XX8(5) = 10
2: YY$(2) = 4: YY8(3) = 8: YYN(4) = 10: YYS(5) = 12

17: YYN(6) = 14

CHR$ (201) : CC$(2)
CHR$ (186) : CCS$(5)
CHRS$ (200) : CC$(8)

Al$ = CCS$ (1) + STRINGS (54,
A2$ = CCS$(5) + STRINGS (54,
A3$ = CC$(7) + STRINGS (54,

AAS (1)
AAS (2)
AAS (3)
AAS (4)
AAS (5)
AAS (6)

CLS
LOCATE

4,

= CHR$(205): CC$(3) = CHR$(187)
= CHR$ (204) : CC$(6) = CHRS$(185)
= CHRS (188)

CC$(2)) + €C$(3)

CCS(2)) + CCs(6)

CCS(2)) + CC$(8)

" FINITE ELEMENT SURFACE IRRIGATION DESIGN MODEL "

"VERSION 1.00"
"Developed by"

"Walid H. Shayya"

"Department of Agricultural Engineering"®
"Michigan State University"

1

PRINT SPACES$ (12); AlS

FOR Iloops = 1 TO 5
PRINT SPACES (12); CCS$(4); SPACES (54); CCS(4)

NEXT Iloop$

PRINT SPACES(12):; A2S

FOR Iloop% = 1 TO 9

PRINT SPACES$ (12); CC$S(4);

NEXT Iloop$%

PRINT SPACES (12); A3S

FOR Iloop% = 1 TO 6
LOCATE YY$(Iloop$%) + 4, XX%(Iloopt) + 12
PRINT AAS (Iloop$%)

NEXT Iloop$%

LOCATE 23, 48

COLOR 15,

0

SPACES (54); CC$(4)

PRINT "Press any key to continue."
COLOR 7, ©

WHILE INKEY$ = "": WEND

RETURN
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HEADING:
REM LA R 2R 2R RS SR R R R R R 2R 2R R R R 222222 R S 2 R 2 R 2R 22222 Y
REM * Heading Number 1

REM oAkt A A ke AR e AR Rk A R AR R R AR R R AR R AR R AR AR AN R R AR R AN R AR AR AN AR AN R R AR AR AR RN h &
CLS

LOCATE 2, 16

PRINT ®" FINITE ELEMENT SURFACE IRRIGATION DESIGN MODEL "

LOCATE 3, 16

PRINT " GRAPHICS ROUTINE"

LOCATE 4, 16

PRINT STRINGS (48, 196)

RETURN

GetScren:
REM LA 2R 2R R 2R R 2 2R R R 2 R R R R R R R R R R R R P R 2 R 2 2 222 222222 )
REM * Check the screen number. *

REM (2RSSR R 22 2 R 22 2228222 2R 2R R 22 R R R R R R S R R R R R R R R R AR 22222 R
LOCATE 8, 10
PRINT "Please select the number of the graphics screen from the following :"
LOCATE 11, 10: PRINT "Press "; : COLOR O, 7: PRINT " 2 ™; : COLOR 7, 0
PRINT " for a high resolution ,graphics screen (640x200 pixels),"
LOCATE 13, 16: COLOR 0, 7: PRINT " 9 "; : COLOR 7, O
PRINT " for an enhanced resolution graphics screen (640x350 *;
LOCATE 14, 20
PRINT "pixels), or"
LOCATE 16, 16: COLOR O, 7: PRINT " S "; : COLOR 7, 0O
PRINT " for special screen number 10 (640x200 pixels) : ";
WHILE ScnNum$ = "%: ScnNum$ = INKEYS: WEND
ScnNum$ = UCASES (ScnNum$) : PRINT ScnNum$
IF ScnNum$ <> "2" AND ScnNum$ <> "9" AND ScnNum$ <> "S"™ THEN
BEEP: ScnNum$ = "": LOCATE 23, 42: PRINT "Press either "; : COLOR 0, 7
PRINT "2"; : COLOR 7, O: PRINT ", "; : COLOR 0, 7:
PRINT "9"; : COLOR 7, O: PRINT " or "; : COLOR 0, 7:
PRINT "S"; : COLOR 7, O
PRINT ™ to proceed."
GOTO GetScren
END IF
RETURN

GetFilNam:

REM AR R R AR AR AN AR R AN R AR R A RN RN AR R R AR AR AR AR R A AR R AR RN RN RARARRRRARAN R RN AN NN R AR
REM * A subroutine to check if to plot any additional data files.
REM L2 R 2 R R R R R 2 R s R R R R R R R R R R R R R R R R R R R R R R R R R 2 2222222222222
LOCATE 11, 10
PRINT "Would you like to plot any additional data files ?";
LOCATE 14, 10: PRINT "Press "; : COLOR O, 7: PRINT " R ™; : COLOR 7, O
PRINT " for simulated recession curve,"
LOCATE 16, 16: COLOR O, 7: PRINT " A "; : COLOR 7, O
PRINT " for a plot of actual advance data curve, or"
LOCATE 18, 16: COLOR O, 7: PRINT " B ™; : COLOR 7, 0
PRINT " for a plot of both curves, or"
LOCATE 20, 16: COLOR O, 7: PRINT " N "; : COLOR 7, 0
PRINT " for a plot of neither curve : %;
WHILE CheckEnt$ = "": CheckEnt$ = INKEYS: WEND
CheckEnt$ = UCASES (CheckEnt$): PRINT CheckEnt$
IF CheckEnt$ <> "R" AND CheckEnt$ <> "A"™ AND CheckEnt$ <> "B" _
AND CheckEnt$ <> "N" THEN
BEEP: CheckEnt$ = "": LOCATE 23, 40: PRINT "Press either "; : COLOR 0, 7
PRINT "R"; : COLOR 7, O: PRINT ", ™; : COLOR O, 7: PRINT “A";
COLOR 7, 0: PRINT ", "; : COLOR O, 7: PRINT "B";
COLOR 7, O0: PRINT ", or ™; : COLOR 0O, 7: PRINT "N";
COLOR 7, O
PRINT " to proceed.”
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GOTO GetFilNam
END IF
RETURN

OpnFil:

REM L2 22222 2 R 22 R R R R R R 2 R R R R R R R R R 2 R 2 R R R 2222 22222222222
REM * Open file and initialize numbers.
REM LA R R s R R 2 2R 2 2 R R R R 2 2R R R R R 2 R 2 2 R RS R R R R Y RS2 22222222222
OPEN "I", #1, Filln$
NumOfPts$ (NumOfPrbs) = 0
IILPS = 1
WHILE NOT EOF (1)
INPUT #1, Time (IILP%,NumOfPrb%), Length(IILP%,NumOfPrbs)
IILPS = IILPS + 1
NumOfPts$% (NumOfPrb%) = NumOfPts$ (NumOfPrb%) + 1
WEND
CLOSE #1
RETURN

PrepDGrph:
REM * Ak d d k h A AR A AN R AR AR A A AR A AR AR R R R AN AR AR AR AN RN R ANR AR AN A AN AN AR AR R AR AR AR ARk Rk
REM * Subroutine to prepare for doing graph.
REM L3R SRR R R R s R s R R R R R R R R S R R 2222222222222 23
MaxLength = 0
MaxTime = 0

FOR J = 1 TO NumOfPrb%
FOR I = 1 TO NumOfPts% (J)
IF Length(I,J) > MaxLength THEN MaxLength = Length(I,J)
IF Time(I,J) > MaxTime THEN MaxTime = Time(I,J)
NEXT I
NEXT J
RETURN

GetDat:
REM LR R R R R R 2R R R 2 R R R R R R R R N R R R R R R R 2 2222222222222

REM * A subroutine initialize the array.
REM AR AR R RN AR R AR AR R AR AR RN AR R RN RN AN NN N RN AR R RNNNANRNRRARN R AR RANRNRRRRARNARAR
FOR Jlop$ = 1 TO NumOfPrb%
FOR Ilop% = 1 TO NumOfPts$% (Jlop$%)
Varbl2 (Ilop%) = Length(Ilop%,Jlop$%)
Varbll (Ilop%) = Time (Ilop%,Jlop%)
IF Varbl2(Ilop%) < 0 THEN Varbl2(Ilop%) = 0
IF Varbll(Ilop%) < 0 THEN Varbll(Ilop%) = 0
NEXT Ilop%
CALL PrepPoints(Varbl2(), Varbll(), Jlop%)
NEXT Jlop$%
RETURN

LdScrnFl:

REM ® A Ak Ak Ak A R A AR AR R AR AN AR R R R R AR AR AR R R RN RN AR AN AR AR RRNRNRNRNAN RN RARRR R AR AR

REM * Subroutine to load file containing saved screen for file 1.
REM ARRAR AR R R AR AR R R A RN R AN AR AR AR AR AN AN R RRARR NN AR RN RN RN R RRR RN NN R R AR AR NNk kR
OPEN "I", #1, FilPrgl$
NumOfPtss (1) = 0
IILPS = 1
WHILE NOT EOF(1)
INPUT #1, Time(IILP%,1), Length(IILPS%,1)
IILPS = IILPS + 1
NumOfPts% (1) = NumOfPts%(l) + 1
WEND
CLOSE #1
RETURN
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LdScrnFl1:

REM e e Ak A A AR RN A AR AR AR R R RN AR NN AR AR RN A AR AR R AR R R R AR AR RN RNk

REM * Subroutine to load file containing saved screen for file 2.
REM #x skttt d ke kA AR A AR AR AR R R A AR AR AN AR AR AR R R AR AR AR R AN AR R AR RN AR AR RN RR R AR
OPEN "I", #1, FilPrg2$
NumOfPts%(2) = 0
IILPY = 1
WHILE NOT EOF(1)
INPUT #1, Time(IILP%,2), Length(IILPS,2)
IILPS = IILP% + 1
NumOfPts%(2) = NumOfPts%(2) + 1
WEND
CLOSE #1
RETURN

Initial: :
REM 2232222222 s R 2 R 2R 2 R 2 R R R R R R R R R R R R R R 2 R 2 R 2 2222 2222222222

REM * Subroutine to Initialize.
REM LA R 22222 R 2R R 2R R R 222 SRR R R R R R R R R R S P R R R R R R R R AR 2R R}

XPos$ (1) = 21: YPos%(l) = 13

XPoss$(2) = 17: YPos%(2) = 25
XPos%(3) = 13: YPos%(3) = 38
XPos%(4) = 10: YPos%$(4) = 50
XPoss(5) = 7: YPos%(S5) = 63
XPos%(6) = 3: YPos&(6) = 75

GrphXpnt (1) = 4.0
GrphXpnt (2) = 8.0
GrphXpnt (3) = 12.0
GrphXpnt (4) = 16.0
RETURN

Tr;gé L2222 s R R R 2R 2 R 2 R 2 R 22 R R R R R R R R S R R R R R 2 R AR 2222 R
REM * A subroutine to handle error.
REM L2222 R R R R R R R 2 2R R 2R 22 2 R 2R R SR R R R R R R R R R R R R R 2R R R
LOCATE 24, 1
PRINT SPC(79);
LOCATE 23, 35
PRINT "Error Number ®; ERR; " has occurred !™;
LOCATE 24, 35
PRINT " Press any key to continue.";
RESUME Qtrap
RETURN

Qtrap:
WHILE INKEYS = "": WEND
SCREEN 0
CLS
END

SUB DoGrph (X1, Y1, X2, Y2)
REM RRRRN AR R R AR AR RN AN R R R R AR R R RN AN R R R AR AR A RN R RRNRNRRNRR RN RN RRRARRRNRNNRANRAR
REM * This subprogram recieves 2 points (x1l,yl) and (x2,y2) and
REM * connects the line between these two points.
REM AN R AR KRR R RN R R R R R R R R R AR R AR R AR AR R R AN AR N R AR A AR AR R RN AN RN AR RN AR AR AN AR
LINE (X1, Y1)-(X2, Y2)

END SUB

SUB DoGrph2 (X1, Y1, X2, Y2)
REM RRARAR AR AR RRAARN AN AR R R RN ARNAANR AR R AR AR RRAANRRNRRARNANRN AR RN RARRRARANRANRRARNAR
REM * This subprogram recieves 2 points (x1l,yl) and (x2,y2) and
REM * connects the line between these two points.
REM ARRN AR AR RN AR RN RN RN R TR R AR R AAN RN R R AN RN N AARNARARARNARARRNRN AR ARANNA R A RR AR
SHARED Numbr$%
IF Numbr$& = 2 THEN
LINE (X1, Yl1)-(X2, Y2), , , 8888
ELSEIF Numbrs% = 3 THEN
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LINE (X1, Y1)-(X2, Y2), , , 1111
ELSE
LINE (X1, Y1)-(X2, Y2)
END IF
END SUB

SUB DoGrphl (X1, Y1)

REM 2ttt Atk Ak A A A A A A AR R R R R AR AR AN AR AR AR R R AR AR RN R NN N N AR AR R AR AR R R R RNk kk

REM * This subprogram draws a point (x1l,yl).
REM XAtttk A A A A AR A A AR AN AR AR AR AR AR AN A NN AR R AR AN A AN A NN R A NN R R AN RN AR AR ARk Ak
Circle (X1, Y1),.5

END SUB

SUB FindRange2 (Var2)

I3ACER AR R SRSl st 2222222222}

REM * A subroutine to find the Range 1.
REM AR R AR R AR R R AR AR AR RN R R N R AR AR R R AR RN R R AN AR RN AR AN RN R R R AR AR R AR RN A
SHARED Rangel, Forml$
LOCAL II
FOR II = 90 TO 10 STEP -5
IF Var2 > II THEN
Rangel = II + §
Forml$ = “####"
GOTO QSB
END IF
NEXT II
IF Var2 > 8 THEN
Rangel = 10
Forml$ = "###i"
GOTO QSB
END IF
FOR II = 10 TO 2 STEP -2
IF Var2 > II THEN
Rangel = II + 2
Forml$ = "##.4"
GOTO QSB
END IF
NEXT II
FOR II = 2 TO 1 STEP -1
IF Var2 > II THEN
Rangel = II + 1
Forml$ = "##.3"
GOTO QSB
END IF
NEXT II
FOR II = 1 TO O STEP -.5
IF Var2 > II THEN
Rangel = II + .5
Forml$ = "##.#"
GOTO QSB
END IF
NEXT II
Rangel = .5
Forml$ = "##.3"
QSB:
END SUB

SUB FindRangel (Varl)

REM AR AR Ak AR R AR R AR AN R R AR R R AR AN AR NN RRA AN R AN RRARRRAARRRRRRRRRRR AR kA

REM * A subroutine to find the Range 2.
REM ANAR R R R R AR AR N R R AR AR R AR RRARRARNRRRRAR AR RRARRNRARNRRRRRARRNARRNARRNRARNRANNAAN AR
SHARED Range2, Form2$, CheckEnt$
LOCAL II
FOR II = 190 TO 10 STEP -5
IF CheckEnt$="A" THEN
IF Varl > II THEN
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Range2 = II + 5
Form2$ = "###4"
GOTO QSB2
END IF
ELSE
IF Varl > II - 5 THEN
Range2 = II + 5
Form2$ = "###4"
GOTO QSB2
END IF
END IF
NEXT II
IF Varl > 8 THEN
Range2 = 10
Form2$ = “###4"
GOTO QSB2
END IF
FOR II = 10 TO 2 STEP -2
IF Varl > II THEN
Range2 = II + 2
Form2$ = “#4.4"
GOTO QSB2
END IF
NEXT II
FOR II = 2 TO 1 STEP -1
IF Varl > II THEN
Range2 = II + 1
Form2$ = "##.4"
GOTO QSB2
END IF
NEXT II
FOR II = 1 TO O STEP -.5
IF Varl > II THEN
Range2 = II + .5
Form2$ = "##.4"
GOTO QSB2
END IF
NEXT II
Range2 = .5
Form2$ = "##.4"
QSB2:
END SUB

SUB LabelAxis

REM AR AR AR R RN R AR AR R AR R AR R RN RN AR RN R R AR AR RN RARRRRRRNRAAR AR AR R AR AR AR kN

REM * A subroutine to label X and Y axis.

REM 2R RE RS R 2R 2R 2 R RS X SRR R R R R R R R R R RS R 2R 22222220
SHARED Rangel, Forml$, Direct$, XPOS%(), YPOS%(), Bound$, Range2, Form2$
‘LOCAL VertPos%, TLabell%, TLabel2%, HorizPos%, f1$, £2$, Varbls

£2$ = Forml$
f1$ = Form2$
FOR TLabell% = 0 TO 5

LOCATE XPos$% (TLabell% + 1), 9

PRINT USING f1$; Range2 * (TLabell$% * 2);
NEXT TLabell$%
FOR TLabel2% = 0 TO 5

LOCATE 22, YPos% (TLabel2s + 1)

PRINT USING £2$; Rangel * (TLabel2% * 2);
NEXT TLabel2%

END SUB
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SUB PrepPoints (XPnts(), YPnts(), NumOflIter$%)

REM * Atk kst ks A A A A AR R A AR AR AR R R R RN A N R R A RN AR AR AR R R R R AR RN R AR R AR R R AR Ak

REM * A subroutine to draw points.
REM (222222 2R R R R R 2 R R R R R R Y R S 2 2 222 2 2 2 2 2R YIS
SHARED Rangel, Range2, NumOfPts%(), NumOfPrbs, CheckEnt$
'LOCAL Pont%, rl, r2
rl = Rangel
r2 = Range2
FOR Pont% = 1 TO NumOfPts$ (NumOflIter$)
XPnts (Pont§) = XPnts(Pont§) / rl * 10
YPnts (Pont%) = YPnts(Pont%) / r2 * 10
NEXT Pont%
IF NumOfIter$ = 1 THEN
FOR Pont$ = 2 TO NumOfPts$% (NumOflter$)
CALL DoGrph(XPnts(Pont% - 1), YPnts(Pont$% - 1), XPnts(Ponts),
YPnts (Pont#$))
NEXT Pont%
ELSEIF NumOfIter$ = 2 AND (CheckEnt$S = "R™ OR CheckEnt$ = "B") THEN
FOR Pont$ = 2 TO NumOfPts% (NumOfIters)
CALL DoGrph(XPnts(Pont% - 1), YPnts(Pont% - 1), XPnts(Pont}),
YPnts (Pont§))
NEXT Pont$
ELSE
FOR Pont$% = 1 TO NumOfPts% (NumOflter$)
CALL DoGrphl (XPnts (Pont%), YPnts(Pont%))
NEXT Pont$
IF CheckEnt$S = "A"™ THEN
FOR ILP = 2 to 6 step 2
Circle (ILP, 83),.5
NEXT ILP
LOCATE 6, 22
PRINT “"Actual Data"
ELSEIF CheckEnt$ = "B"™ THEN
FOR ILP = 2 to 6 step 2
Circle (ILP-20, -20),.5
NEXT ILP
LOCATE 24, 9
PRINT ®“Actual Data"™;
END IF
END IF
END SUB

SUB PrntScrn

REM A XA At Ak A A AR AR AR AR AN RN AR AR R R RN AR AR AR R RNNAARRRARN AR ARRNR AN R R RN AR AR AR

REM * A subroutine to plot the X and Y axis.

REM AR R R R R R R R R 2R 22 R R R E R 2 R 2 R R R R R S R S R R R 2 R 2 222222222222
SHARED GrphXpnt (), ScnNum$, CheckEnt$

LOCAL VertPos%, TLabell§, TLabel2%, HorizPoss, f1$, £2$, Varbls

IF ScnNum$ = "2" THEN
SCREEN 2

ELSEIF ScnNum$ = "9" THEN
SCREEN 9

ELSE
SCREEN 10

END IF

WINDOW (-24, -28)-(105, 115)

LINE (-24, -28)-(105, 115), , B
LINE (-23.75, -28)-(104.75, 115), , B

LINE (O, O0)-(100, 100), , B

FOR VertPos% = 0 TO 100 STEP 20
LINE (0, VertPos%)-(-2.5, VertPos$)
LINE (100, VertPos%)-(97.5, VertPos$%)
NEXT VertPos$
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FOR ICycles = 1 TO 5
FOR JCycles = 1 TO 4
LOCAT2 = GrphXpnt (JCycle$) + (ICycle% - 1) * 20
LINE (0, LOCAT2)-(-1.5, LOCAT2)
LINE (100, LOCAT2)-(98.5, LOCAT2)
NEXT JCycle$
NEXT ICycle$%

FOR HorizPoss = 0 TO 100 STEP 20
LINE (HorizPos%, 0)-(HorizPoss, -4)
LINE (HorizPos§&, 100)-(HorizPoss, 96)
NEXT HorizPoss
FOR ICycles = 1 TO S
FOR JCycle% = 1 TO 4
LOCAT2 = GrphXpnt (JCycle%) + (ICycle% - 1) * 20
LINE (LOCAT2, 0)-(LOCAT2, -2)
LINE (LOCAT2, 100)-(LOCAT2, 98)
NEXT JCycle$%
NEXT ICycle%

LOCATE 24, 41

PRINT "Distance (m)";
LOCATE 12, 3

PRINT "Time"™

LOCATE 13, 3

PRINT " (min)*"™;

LOCATE 2, 18
PRINT "Finite Element Surface Irrigation Design model™;

IF CheckEnt$="A" OR CheckEnt$="N" THEN
LINE (2, 90)-(8, 92)
LOCATE 5, 22
PRINT "Simulated Data"

ELSEIF CheckEnt$ = "B"™ THEN
LINE (71, -20)-(77, -19)
LOCATE 24, 65
PRINT "Simulated Data":

ELSEIF CheckEnt$ = ®"R"™ THEN
LINE (-22, -20)-(-16, -19)
LOCATE 24, 7
PRINT "Simulated Data"™;

END IF

END SUB



