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ABSTRACT

HYDRAULIC ANALYSIS OF SURFACE IRRIGATION

SYSTEMS USING THE FINITE

ELEMENT METHOD

By

Walid Hani Shayya

A mathematical formulation for the hydraulic analysis offlow conditions

in furrow and border irrigation systems is presented in this research study.

The methodology is based on applying the one-dimensional Galerkin

formulation of the finite element method to the numerical solution of the

hydrodynamic or the so-called Saint-Venant equations. Numerical

developments of the complete and simplified forms of the hydrodynamic

equations were prepared using both linear and quadratic one—dimensional

finite element forms of these equations. The studied models include the

hydrodynamic, zero-inertia, and kinematic wave models. A general

one-dimensional surface irrigation computer model (FE-SURFDSGN) was

developed based on this formulation. This computer model simulates the

various phases of flow in border and furrow irrigation systems using the

hydrodynamic, zero-inertia, and kinematic wave models. Currently, only the

kinematic wave finite element analysis is fully operational for a complete

irrigation cycle in the present version of the computer model. The



Kostiakov-Lewis equation was used as the infiltration function in this

development even though both the mathematical development and the

developed finite element model allow for utilization of any other infiltration

function. Actual field measurements were utilized to validate

FESURFDSGN. These data were taken from previous studies that were

conducted in Colorado and Idaho. Although the computer model is still in the

developmental stage, its application to the simulation of the various phases of

flow in surface irrigation systems is very reasonable as demonstrated through

the various runs that were conducted. The results of this research work

indicate that the finite element method provides accurate simulation of the

flow conditions in both border and furrow irrigation systems. These results

also suggest that the method developed through this research can be used as

an efi'ective tool for the hydraulic analysis of flow conditions in surface

irrigation systems.
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I. INTRODUCTION

Surface irrigation is the most important method ofirrigation in the world.

Kay (1986) reported that surface irrigation still covers more than 95% of all

irrigated land worldwide in spite of the popularity of sprinkler and trickle

irrigation systems. In the United States, around 62% of irrigated land is

currently under surface irrigation (Bajwa et al., 1987). These figures reflect

the importance of this type of irrigation practice and the need for additional

improvements in both the design and operation of surface irrigation systems.

As Bassett et al. (1980) described it, this process may be accomplished through

the ”skillful combination of experience and thorough understanding of the

processes involved". Recent theoretical developments in the area of surface

irrigation system design should serve as an excellent means for better

understanding the physical processes involved in the hydraulic design and

field evaluation ofsurface irrigation systems. These developments involve the

application ofnumerical analyses to the modeling ofsurface irrigation systems

which will in turn increase the accuracy of the design and improve the

performance of the system with the least incurred cost.

The earliest models of surface irrigation systems dealt only with water

advance down the border or furrow. Among the many early works that were

based on this approach are the developments by Lewis and Milne (1938), Hall

(1956), Philip and Farrell (1964), and Hart et a1. (1968). These approaches

were based on the principle ofconservation ofmass together with assumptions

regarding average depth of surface flow. These have resulted in assumptions

that water at the upper end of the border is at normal depth and that both

1



surface and subsurface water profiles are ofa monomial power law ofa fixed or

assumed degree. The application of these assumptions produced acceptable

results at times and fundamental errors at other times (Strelkofl' and

Katopodes, 1977a).

An alternative approach is to numerically solve the two partial

difl'erential equations that govern the unsteady water flow conditions in open

channels. These partial differential equations, or the so-called Saint-Venant

equations, consist ofan equation ofcontinuity and an equation ofmotion. The

latter equations can be developed based on applying the principles of

conservation ofmass and momentum or energy to a controlled volume of flow

in a channel. The hydrodynamic equations, which have been studied since the

turn ofcentury, describe the unsteady spatially varied flow ofwater across the

soil surface. With the recent rapid advancement in numerical techniques and

the computing potentials of computers in general and microcomputers in

particular, the possibilities and alternatives of solving surface irrigation

problems based on the numerical approximations of the hydrodynamic

equations look increasingly promising. In recent years, the hydrodynamic

equations were applied to the analysis of overland flow in watershed

hydrology, open channel flow, and surface irrigation. These equations were

utilized either in complete form or after implementing some simplifying

assumptions which would result in the zero-inertia and the kinematic wave

models.

A. Scope and Objectives

The general scape of this research work was to develop finite element

Galerldn formulations of the complete and simplified forms of the

hydrodynamic equations (equations that were developed based on the



application of the conservation of mass and momentum principles) as applied

to the simulation offlow conditions in surface irrigation systems. The physical

flow conditions in border and furrow irrigation systems were represented by a

mathematical model that could incorporate the aforementioned complete and

simplified forms of the hydrodynamic equations with a finite element

numerical solution procedure, initial and boundary conditions, and other

necessary physical parameters. The specific objectives of this research were

1. To develop a finite element solution procedure of the Saint-Venant

equations for the hydraulic analysis of surface irrigation systems.

To create a general solution approach that will accommodate the available

mathematical models of the Saint-Venant equations in the analysis of

surface irrigation systems.

To develop an approach to easily incorporate the varying boundary

conditions of the advance, pending, depletion, and recession phases of

surface irrigation into the solution process with minimal arbitrary or

experimental parameters.

To develop a computer model that will utilize the above mathematical

concepts for the hydraulic analysis offlow conditions in border and furrow

irrigation systems.

To numerically evaluate and compare the results of the finite element

model to actual field measurements from existing surface irrigation

systems.



II. REVIEW OF THEORYAND LITERATURE

The analysis of surface irrigation systems is a process that involves many

parameters. One approach. for the design is to establish analytical

relationships among the various factors afi'ecting the flow conditions in surface

irrigation problems. These factors include length of the field, inflow time,

inflow rate, surface rtmofl‘, deep percolation, application depth, soil intake

characteristics, and land slope. This approach has been utilized in the design

of surface irrigation systems for many years. However, it is incapable of

defining or estimating the spatially distributed flow conditions in surface

irrigation systems.

The process of overland flow across a soil surface is both spatially varied

and unsteady. The principles of continuity of mass and continuity of

momentum or energy can be applied to describe overland flow conchtions in

irrigation systems. Applying these concepts will result in the so-called

hydrodynamic equations that are commonly known as the Saint-Venant

Equations. These equations, which have been studied since the turn of

century, describe the unsteady spatially varied flow of water across soil

surface. Originally, graphical solutions were utilized for the solution of the

above equations. However, the application of these equations was limited to

restrimd, simplified cases (Strelkofi', 1970). With the advent of high speed

digital computers, numerical approximations of the Saint-Venant equations

Mcame feasible.

This review expounds the basic background of surface irrigation as

related to surface flow description and infiltration. Also, it elucidates the

4



theory in the literature on the numerical solution procedures of the

Saint-Venant equations, particularly those utilizing the finite difference and

finite element methods as well the method of characteristics to describe the

spatially distributed flow conditions in surface irrigation systems.

A. Basic Background of Surface Irrigation

The basic modeling of surface irrigation systems involves many factors

that are generally common to the available types of systems. These types

include borders, furrows, and basins (Walker and Skogerboe, 1986). The

hydraulic flow characteristics of basins is a special case of the border flow

(Bassett et al., 1980). For this reason, only the hydraulics of borders and

furrows will be discussed in this section. The geometry offlow in both furrow

and border irrigation systems are generally similar. The major difference

arises from the width of the channel which is narrow for furrows and usually

wide for borders. The width of the border strip is generally wide enough to

ignore the contribution ofchannel walls to both flow retardate and infiltration,

an assumption which is not applicable to irrigation furrows (Bassett et al.,

1980).

The different types of surface irrigation systems involve numerous

physical characteristics that may be defined by common terminology. This

terminology, together with the basic concepts of surface irrigation systems, is

well documented in the literature. This section will review the basic concepts

of surface irrigation systems without much detail. The reader is referred to

Walker and Skogerboe (1986), Bassett et a1. (1980), and Kay (1988) for more

in-depth description ofthe difl‘erent types of surface irrigation systems.



1. Flow Description

The flow of free water in surface irrigation systems is gradually varied

and unsteady. The infiltration of water into the soil seems to dominate this

hydraulic characteristic offlow. Bassett et a1. (1980) reported that the state of

water flow in surface irrigation systems is mostly turbulent er transitional, a

flow regime that is characterized by a Reynold’s number around or above 1000

even though numbers well below 1000 are frequently encountered. The

Reynold’s number is a dimensionless ratio of the inertial te viscous forces

(Binder, 1973).

The flow regime of water in surface irrigation systems is usually

sub-critical. This is characterized by Froude numbers well below unity. The

Froude number is a dimensionless ratio of the inertial to the gravitational

forces. Bassett et al. (1980) reported that critical and super-critical flow

regimes might occurjust behind the wetting fi'ent in the advance phase ofboth

sloping borders and furrows, and just ahead of the drying front during the

recession phase.

2. Flow Phases

There are four phases of flow in a typical surface irrigation cycle. These

include the advance, pending, depletion, and recession phases. The advance

phase represents the first portion of irrigation time during which water

advances down the furrow or border. The pending phase starts at the end of

the advance phase when the advancing front reaches the end of the furrow or

border. This phase extends till water is shut-efl' at the inlet boundary. The

duration of this phase is zero if the inlet water is turned efi‘ before water

reaches the end of the furrow or border. The next phase of irrigation

represents the portion of the total irrigation time between inlet flow shut-eff



and the beginning ofwater recession at the inlet boundary. The final phase of

flow is the recession phase which represents the portion of the total irrigation

time between the beginning of water recession at the inlet boundary and the

complete disappearance ofwater hour the furrow or border.

B. Surface Irrigation Infiltration

The simulation of flow in surface irrigation systems relies on the

knowledge of the hydraulic characteristics and infiltration (Walker and

Humpherys, 1983, and Strelkefi‘and Seuza, 1984). However, the most critical

step in studying the hydraulics and distribution of water in surface irrigation

systems is to establish a reasonable estimate of the infiltration function.

Clemmens (1981) described the. determination of the infiltration

characteristics of the soil as "the biggest stumbling block in accurately

describing or predicting the irrigation process". Infiltration has always been

referred to as the impeding factor to improving both the design and

performance of surface irrigation systems (Elliott at al., 1982a, and Elliott et

al., 1983b).

1. Infiltration Equations

There are many infiltration equations that have been developed

throughout the years. Walker and Skegerbee (1987) classified these equations

into thme general categories. These include theoretically, physically, and

empirically based equations. A good example of an infiltration equation that

was developed based on the single-phase flew solution of the one-dimensional

Darcy equation is the Richard’s equation (Walker and Skegerbee, 1987). This

equation has the form



a[K(e)(§-- 1)]
39

5'"- az [2.1]
 

where 8 is the soil moisture content on volume basis, It is the total pressure

head, K is the hydraulic conductivity, 2 is the vertical distance downward from

the soil surface, and t is the infiltration opportunity time.

The Green and Ampt equation is a good example of the physically based

equations. It was developed based on the assumption that soil could be

modeled as a bundle of capillary tubes (Hillel, 1980). The Green and Ampt

equation has the form (Walker and Skogerboe, 1987)

_ (er-0.)",
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where I is the infiltration rate, 0, is the saturated soil moisture content, 0,- is

 

the initial soil moisture content, 11’ is the suction at the wetting front in the

soil, K is the hydraulic conductivity in the wetted zone, andZ is the cumulative

infiltration depth at any specific point in the space dimension.

Infiltration is a complex physical process that is very dificult to

characterize in irrigated fields where anistropic and heterogeneous conditions

usually prevail. This leads to the conclusion that an empirical approach to

assess this process is more practical than a purely theoretical approach (Blair

and Smerdon, 1987).

There are many empirical infiltration equations that were developed in

the literature. These empirical infiltration equations have always been

expressed in either exponential or power form. However, the infiltration

equations in power forms have been widely adopted to estimate infiltration in

surface irrigation problems because of the simplicity and practicality of these

e(minions (Fok. 1967).



Empirical infiltration equations are the result of fitting observed

infiltration data to explicit time-dependent equations. Many infiltration

equations fall under this category. A good example ofthese equations are the

Kostiakov and the Kostiakov-Lewis equations. The Kostiakov equation is one

of the earliest equations of infiltration (Hillel, 1980). This equation has the

form

I = alct("” [2.3]

where t is the infiltration opportunity time and a and k are two empirical

parameters obtained from infiltration tests in the field. The major draw back

of this equation is that the infiltration rate approaches zero at long times.

Hence, it is more applicable to horizontal rather than vertical infiltration. The

Kostiakov-Lewis equation has the same form as the Kostiakov equation with

an added term to correct the latter problem of the Kostiakov equation (James,

1988). This results in

I = akt“"’+fi, [2.4]

where 15, is an empirical parameter that represents the infiltration rate as the

infiltration opportunity time, t, becomes considerably large. Elliott and

Walker (1980 and 1982) used the Kostiakov-Lewis function which has the

additional term for the asymptotic long-time infiltration. Their results

suggested that the Kostiakov-Lewis infiltration equation is highly efi'ective in

pmdicting infiltration if a steady state infiltration rate can be assessed.

Clemmens (1981) suggested using a two-branch frmction ofthe Kostiakov

equation where the cumulative infiltration depth, Z, is represented by two

equations. The first equation applies before the steady state infiltration is

reached while the second applies after. Clemmens’ proposed equations for the

cumulative infiltration have the form
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Z=kt‘ for 25:,

= kr,‘ + i,(t — t,) for t > t, [2.5]

where i, is the final infiltration rate and t, is the time at which the final

infiltration rate is reached.

Philip (1957a and 1957b) developed an equation similar to the

Kostiakov-Lewis equation but with more physical significance. His equation

has the form

2 =s:°-“+A: [2.6]

where S is the sorptivity. The parameter A was defined by Philip as

A =K, + I =K,+[§Ko-K,] [2.7]

8

where K, and K, are soil parameters. Kunze and Ker-Keri (1983) and Kunze

and Shayya (1990) defined the parameter A as the hydraulic conductivity of

the soil and suggested the adjustment of the sorptivity term by a factor to

implement this denotation. Fangmeier and Ramsey (1978) made a comparison

between the Philip equation and the Kostiakov-Lewis equation. They

concluded that the Philip equation provided better estimates of infiltration

compared to the Kostiakov-Lewis equation. However, the ceeficients in the

Philip equation are more dificult to obtain.

The US. Soil Conservation Service (1974 and 1984) developed an

equation that relates the cumulative infiltration and the opportunity time as

z=eH+g [in

where e, f, and g are empirical parameters.
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2. Parameter Estimation of Infiltration Equations

Determining infiltration parameters in the various empirical infiltration

equations previously discussed is a very critical step in the design and

operation of surface irrigation systems. One approach for the estimation of

these parameters can be accomplished through the utilization of direct field

measurements of infiltration using ring infiltrometers. However, such

measurements do not reflect the actual hydraulic characteristics at the time of

irrigation (Beuwer, 1957, and Blair and Trout, 1989). They can also be very

time consuming and costly. Many scientists attempted to assess the

variability of infiltration parameters and infiltration along furrows using

infiltrometers and moisture measurements (Bautista and Wallender, 1985;

Izadi and Wallender, 1985; and Bali and Wallender 1986). Brakensiek et al.

(1979) discussed the application of a new infiltremeter system and its

utilization in the estimation ofinfiltration parameters in the Green and Ampt

function. Blair and Trout (1989) presented a field guide for the construction

and operation ofa recirculating infiltrometer, a device that can be used in the

measurement of infiltration and the estimation of infiltration parameters in

various infiltration functions.

Another approach for the parameter estimation of infiltration equations

is to implement a numerical solution procedure of surface flow equations in

conjunction with advance, storage, and inflow-outflow field measurements.

Christiansen et al. (1966) and Fangmeier and Ramsey (1978) implemented the

volume balance method in the estimation of infiltration parameters in the

Kostiakov equation. Elliott at al. (1983a) simulated advance trajectories of

water in furrows using assumed infiltration frmctions and the zero-inertia

model. They then estimawd the actual field infiltration using actual field

advance trajectories and simulated advance trajectories by the zero-inertia
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model. Katopodes et al. (1991) presented a procedure for estimating both

infiltration parameters and soil roughness in surface irrigation systems using

a linearized zero-inertia model.

In 1987, Kaytal et al. developed an infiltration equation that accounts for

the two-dimensional infiltration flow conditions in furrows. Their approach

was an attempt to develop infiltration functions that are applicable throughout

the growing season instead of one irrigation only. The approach that they

followed included the numerical solution ofthe Richard’s infiltration equation

in furrows using the finite element method. The Richard’s equation was

utilized in conjunction with basic soil data and furrow shape parameters in

order to estimate the parameters of a power infiltration function. The latter

function had two independent variables which include the top width offlow as

well as the cultivation depth.

More mcently, Walker and Busman (1990) discussed an approach to use a

kinematic wave simulation model in conjunction with the simplex method to

determine the infiltration parameters fi'em early stages of furrow advance.

Their approach was based on minimizing the difi‘erences between predicted

and measured advance rates. They concluded that this procedure will provide

estimates ofthe infiltration parameters with sufiicient accuracy.

The Kostiakov and Kostiakov-Lewis infiltration equations are the most

widely used infiltration equations in surface irrigation problems. The

parameter-estimation of these equations was the subject of many

investigations. Norum and Gray (1970) presenwd a method for deriving the

values of the parameters in the modified Kostiakov function. Smith (1972)

used surface irrigation data and a kinematic wave model to characterize the

infiltration parameters in the Kostiakov-Lewis equation. Elliott at al. (1982a

and 1983b) presented a method for deriving the values ofthe parameters in the
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modified Kostiakov function using dimensionless advance curves and furrow

irrigation field data. Elliott and Walker (1980 and 1982) reported on the use .

of two-point volume balance methodology to establish the parameters of the

Kostiakov-Lewis function based on advance data measurements. Sirjani and

Wallender (1989) attempted to approximate the mean and variance of the

parameters in the Kostiakov-Lewis infiltration equation using the first order

analysis.

One last method for estimating the infiltration parameters in various

infiltration functions is to analyze the inflow-outflow measurements. The

infiltration is calculated as the difference between measured water inflow and

outflow from a border or furrow section. However the major disadvantage of

this method is the sensitivity of the infiltration estimates to the accuracy of

flow measurements (Trout and Mackey, 1988b). The accuracy of these

measurements depend on many factors. These factors are afi'ected by the flow

characteristics and the geometry of furrows and borders. Bautista and

Wallender (1985) reported that infiltration rate is usually greater in blocked

furrows with flowing water compared to stagnant tests.

Strelkofi‘ and Souza (1984) considered six difi‘erent schemes for

incorporating the variable depth efi'ect into the computations ofinfiltration in

furrows. They concluded that the "wetted perimeterbased on local depth is the

best choice of traverse length to characterize furrow intake in mathematical

models of furrow irrigation". Izadi and Wallender (1985) statistically

examined furrow hydraulic characteristics in space and time and related these

characteristics to infiltration. Trout (1986) conducted a study to measure the

efl‘ect of both overland flow velocity and furrow hydraulic parameters on

infiltration. His conclusion was that furrow infiltration increases by

increasing the wetted perimeter offlow. He also reported that flow velocity is

inversely related to furrow infiltration rate.



14

To summarize, there are various methods for obtaining infiltration data

of surface irrigation systems. These include the ring infiltrometer, pending,

two—point, blocked furrow, inflow/outflow, and recirculating infiltrometer

methods. As outlined in this section, these procedures were utilized directly

and indirectly by many scientists in the parameter estimation of the

infiltration functions for surface irrigation systems. The reader is referred to

the texts by James (1988) and Walker and Skegerbee (1987) for a detailed

description ofthe various infiltration measurement devices and the procedures

followed in their implementation in the field.

3. Effect of Infiltration on System Performance

Improving the eficiency of furrow irrigation systems can be attained by

accurate assessment of infiltration (Elliott and Walker, 1980, and Elliott and

Walker, 1982). On the other hand, accounting for the spatial variability in

infiltration is very essential in evaluating the performance ofsurface irrigation

systems (Bautista and Wallender, 1985, and Davis and Fry, 1963). Trout and

Mackey (1985 and 1988a) attempted to quantify the efi'ect of both inflow and

infiltration variability on the uniformity of water application and runoff in

furrows. They concluded that the consequences of inflow and infiltration

variability are excessive deep percolation as well as runofl’lesses in some areas

ofthe field while other areas receive inadequate amounts ofwater. Sirjani and

Wallender (1989) conducted a study to assess the efl‘ect oftemporal and spatial

variability of infiltration on the performance of furrow irrigation systems.

Fonteh and Pedmore (1989) developed a kinematic wave furrow irrigation

model using a physically based infiltration function. Their model could

simulate spatially varied infiltration along furrows using geostatistics and

their results seemed to be most accurate under fine textured soil conditions.
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The spatial and temporal variability in infiltration seems to affect crop

yield. Kemper et al. (1982) rede that yield decreases substantially by low

uniformity of water distribution throughout the length of the run. They

presented several treatments which can increase or decrease infiltration in

order to improve uniformity. One approach for reducing infiltration rate

involves the practice of surge irrigation. Surge irrigation is defined as "the

intermittent application of irrigation water to furrows or borders" (Bishop et

al., 1981). Surge flow creates a series of on and ofi‘ inflow conditions at the

inlet (Izuno and Pedmore, 1986). The characterization of infiltration under

surge irrigation systems was studied by many scientists (Bishop et al., 1981;

Izuno et al., 1985; Kemper et al., 1988; and Samani et al., 1985). The reader is

referred to these references for more details.

C. Surface Flow Equations

The principles of mass, and momentum (or energy) can be utilized to

describe the flow of water over soil surface. These principles result in two

first-order, nonlinear partial difi‘erential equations. The resultant differential

equations approximate the spatially varied and unsteady flow conditions in

open channels and surface hydrology. These same equations can also be

applied to the hydraulic analysis ofwater flow conditions in surface irrigation

systems.

1. Saint-Variant Equations

The two equations that result fiem applying the above principles are

known as the Saint-Venant equations. The first equation results from
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applying the conservation of mass principle to a control volume of flow in

surface irrigation systems. It is usually referred to as the continuity equation

and has the form

8A 39 _
ar+ax+"° [2.9]

where A is the cross sectional area of flow, Q is the flow rate, I is the

infiltration rate per unit length, r is time, and x is the distance along the

direction of flow. The second equation is referred to as the momentum

equation and results from applying the conservation ofmomentum principle to

the same fluid element. This equation has the form (Strelkofi', 1969)

.. .29. 33.2 -2: 91 _1- 12S°‘Sl+[A2g)ax+[1 Angax+[Ag)at [2.10]

where y is the flow depth, 3 is the acceleration due to gravity, T is the top

width of flow cross section, So is the slope of the channel bed, and S, is the

friction slope. Equation [2.10] describes unsteady non-uniform flow

conditions. The last term in the above equation cancels out if steady

non-uniform flow conditions are presumed. Ofnote, with steady uniform flow

assumptions, the last three terms of [2. 10] mutually cancel.

Another approach can be followed to develop an equation which can

replace [2.10]. This development can be based on the principle ofconservation

of energy. However, both the approach and the resultant equation will be

inherently difl'erent from the equation developed based on the momentum

approach (Martin and Wiggert, 1975; Yen, 1973; and Strelkofl', 1969).

Brutsaert (1971) verified the Saint-Venant equations experimentally for

open channel flow conditions. His approach included the comparison of the

results from the numerical solution of these equations to the flow
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measurements of a physical model. The solution procedure encompassed the

implementation of a finite difi‘erence computational algorithm with implicit

and explicit difi‘erences at interior cells and boundaries, respectively. He

concluded that the Saint-Venant equations represented the physical flow

system reasonably well. However, these positive results are only attainable

under proper mathematical conditions and appropriate description of

boundary conditions, hydraulic resistance to flow, - and channel parameters.

The formulation and verification of the Saint-Venant equations for other

related problems were the concern of many scientists. These analyses were

reported in many references including Morgali and Linsley (1965), Kruger and

Bassett (1965), Weeding (1965b). Brakensiek (1966), Chen and Hansen (1966),

Ram(1966), Liggett and Woolhiser (1967), Strelkofl'(1969), Brutsaert (1971).

and Katopodes and Schamber (1983). These references concluded basically

that the application of the Saint-Venant equations to surface flow problems

produwd good results when the various assumptions implemented in the

development ofthese equations were not violated. Many ofthese assumptions

were discussed in details in the journal articles by Strelkofl‘ (1969) and Yen

(1973).

2. Uniform Flow Equations

There are three popular equations for establishing relationships among

flow rate, slope of channel bed, and channel geometry. These equations are

essential for defining the friction slope in the momentum equation, [2. 10].

Originally, these equations were deve10ped for the analysis of uniform flow

conditions in open channels. Thus, these equations are frequently referred to

as uniform flow equations. However, these equations may be used to

approximate the friction slope for nonuniform, unsteady, turbulent flow

conditions at a given instant (Morgali and Linsley, 1965). The first equation is
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known as the Chezy equation after it was introduced by a French engineer of

that name in 1768 (Henderson, 1966). The development ofthe Chezy equation

was based on the dimensional analysis of the resistance equation with the

assumption that flow conditions are uniform. The Chezy equation has the

form

Q = CAR"’1',"2 [2.11]

where C is the Chezy coemcient and R is the hydraulic radius which

represents the ratio ofthe area offlow to the wetted perimeter.

A more practical formula was developed in 1889 by an Irish engineer by

the name of Robert Manning (Chow, 1959). The Manning equation is widely

used for steady flow conditions of incompressible fluids in prismatic open

channels (Streeter and Wylie, 1979). The Manning equation is an empirical

equation with the form

-4 .1. .1.
Q - n R S, [2.12]

where n is Manning’s roughness coeficient. The Manning equation is very

popular in many Western countries (Henderson, 1966). Besides, it has well

documented roughness coeficients that were developed over the years.

The third equation is the Darcy-Weisbach equation that was originally

developed for pipe-flow. This equation can be expressed as (Brater and King,

1976)

Q = ifs-AR ”’5,“ [2.13]

wheref is Darcy-Weisbach’s roughness coeficient.
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The relationships between C, n , andf can be summarized by

 

C =%R"‘ [2.14]

and

8 2

f= if}, [2.15]

These roughness coeficients change with varying conditions (Walker and

Skogerboe, 1987). A complete discussion ofthese flow equations can be found

in Chow (1959), Henderson (1966), Streeter and Wylie (1979), White (1979).

and Bassett et al. (1980).

D. Surface Irrigation Models

There are several mchniques that have been developed over the years to

model surface irrigation processes mathematically. Most of these techniques

are based on the application of the principles of conservation of mass and

momentum which are referred to as the Saint-Venant equations. The

Saint-Venant equations are applied either in complete or simplified forms.

This results in four general models, one complete form and three simplified

forms. The application of the simplified forms of the Saint-Venant equations

to the analysis of surface irrigation systems ofl‘er simpler and faster surface

irrigation modeling approaches. However, the accuracy of the results is

reduced either slightly or appreciably depending on the level ofsimplifications.

Strelkofi‘ (1970) classified the numerical procedures that may be

implemented in the solution ofthe complete or simplified first-order nonlinear

equations ofhydrodynamic models into two categories. The first approach is to

convert theoriginal system of partial difl‘erential equations into an equivalent
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system of ordinary differential equations. This transformation is

accomplished by changing the independent variables through the introduction

of an alternate coordinate system that is inclined at an angle to the original

space-time system (Strelkofi’, 1970). The resulting ordinary system of

difl‘erential equations is then solved numerically using methods such as the

finite difi‘erence method. The resultant equations are algebraic instead of

being ordinary differential equations. This approach is referred to as the

method of characteristics. The theoretical basis for the method of

characteristics is reviewed in details by Stmeter and Wylie (1967), Strelkofi‘

(1970), Liggett and Cunge (1975), and Wylie and Streeter (1983). The second

approach involves the implementation of one of many available numerical

solution schemes which directly replace the first-order nonlinear partial

difi‘erential equations by difi'erence quotients. This approach results in a

system of algebraic equations instead of the original partial difl'erential

equations.

1. Hydrodynamic Models

Mathematical models that result from applying the Saint-Venant

equations to the analysis of surface flow problems without any simplifications

are refemd to as hydrodynamic models. These models have high potential to

be very accurate in predicting flow conditions in surface flow problems and

surface irrigation systems in particular. However, these models depend

heavily on the accuracy of the provided input information (Strelkofl‘ and

Katopodes, 1977a). Bassett et al. (1980) described the roughness and

infiltration parameters as the two main sources ofinput error which affect the

precision of such models. Besides, the complex, delicate nature of the
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hydrodynamic models represents their major drawback. This results in

lengthy computation times and makes such models expensive to operate when

it comes to computer cost (Bassett, 1980, and James, 1988).

Over the years, hydrodynamic models were developed by many scientists

based on the method of characteristics and applied to the analysis of flow

conditions in open channels and surface irrigation systems. Bassett (1972)

developed a model of water advance in border irrigation by solving both the

continuity and momentum equations in their complete form for unsteady

spatially varied flow conditions using the method of characteristics as

described by Streeter and Wylie (1967). In his development, Bassett utilized a

fixed mctangular grid in the space-time plane. He used the Kostiakov

infiltration function and applied the Chezy equation to the evaluation of

fiiction slope. He concluded that the developed model predicts flow conditions

in borders with acceptable accuracy. This conclusion was based on the

comparison of model results to actual laboratory and field measurements.

Kincaid et al. (1972) and Sakkas and Strelkofl‘ (1974) also applied the method

of characteristics to the solution of the complete hydrodynamic equations for

border irrigation advance. They reported that their developed models

predicted the flow conditions in borders reasonably well. However, their

developments covemd only the advance phase of irrigation instead of the

complete phases of surface irrigation. However, they claimed that their

approaches can be extended to the simulation of the recession phase with

proper boundary conditions.

Bassett and Fitzsimmons (1976) extended the work of Bassett (1972) by

presenting a mathematical model for the analysis ofthe complete phases ofthe

irrigation process in borders. Their model was based on the same approach,

i.e, the application of the equations of continuity and momentum in their

complete forms using the method of characteristics. They reported good
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results in general. However, they have also reported some problems of

instability and the high execution costs which were associated with the

mquired extensive computer time. Katopodes and Strelkofl' (1977a) applied

also the method of characteristics to the approximation of the hydrodynamic

equations in borders. In their study, a comparison of the results from their

developed model and actual field measurements were made and the associated

accuracy and costs ofmodel execution were assessed. They concluded that the

solution results were correct to second order accuracy.

The major disadvantage of the method of characteristics usually lies in

the total number of unknowns. By implementing this method, the two

nonlinear partial difi‘erential equations represented by equations [2.9] and

[2.10] are transformed into four ordinary difi‘erential equations (Katopodes

and Strelkofl‘, 1977a). These equations are

 

dour-(e); _ I(v-c)
—dt— g[.S'o S,+ Ag ] [2.16]

along

dx
3_ v + c

[2.17]

and

d(v-co)_ _ I(v+c)

_dt-g[So S,+ Ag ] [2.18]

along

dx

E- v - c [2.19]
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where v is the flow velocity, to is the Escofier stage variable (Escoflier and

Boyd, 1962), and c is the celerity wave. The celerity and Escofier stage

variables are defined as

c = £14- [2.20]

and

(0: F” [221]
o C

where y is the flow depth. The Escofier stage variable, re, reduces to 2c when

the above method is applied to the hydraulic analysis ofborders.

The ordinary difl‘erential equations ([2.16] to [2.19]) that were the result

ofapplying the method ofcharacteristics to the complete first order, nonlinear

hydrodynamic equations were never applied successfully to the simulation of

flow conditions in furrow irrigation systems (Walker and Skogerboe, 1987).

The finite difl‘erence schemes for the direct solution of the Saint-Venant

equations are preferred by many scientists. Using these techniques, the

hydrodynamic equations are solved at a finite number of grid points in the

space-time plane (Liggett and Cunge, 1975). Two basic types of

finite-difi‘erence schemes are usually used in the literature (Strelkofl‘, 1970,

and Liggett and Cunge, 1975). The first represents the explicit schemes where

the algebraic equations are arranged to be solved for one unknown at a time.

These numerical schemes, although simple, are unstable and usually require

excessive computation times due to the need for the selection of small time

steps (Liggett and Woolhiser, 1967, and Strelkofi', 1970). This prompted many

investigators to avoid using these schemes, a trend which is especially true in

recent developments. On the other hand, the implicit schemes solve for a
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group of unknowns simultaneously rather than one at a time. These

numerical schemes permit larger time steps but require the solution of a

system of nonlinear simultaneous equations at each time stop. They are

usually more desirable in the direct solution of the Saint-Venant equations

because oftheir stability and high accuracy. Various analyses of stability and

accuracy of both explicit and implicit finite difi‘erence schemes, as applied to

the direct solution ofthe complete continuity and momentum equations, can be

found in Liggett and Woolhiser (1967), Strelkofi' (1970), Price (1974), and

Liggett and Cunge (1975).

A number of scientists have reported on the successful application of

implicit finite difi‘erence numerical schemes to the direct solution of the

Saint-Venant equations in open channels. The latest development was

reported by Swain and Chin (1990) for modeling unsteady flow in regulated

open channels. Their development would also allow for the simulation of

hydraulic structures, an option that is not available in many current open

channel models.

Walker and Skegerbee (1987) presented an implicit finite difi‘erence

scheme for the direct solution of the continuity and momentum equations in

furrows. Their scheme was based on the Eulerian integration approach, a

numerical procedure which approximates the hydrodynamic equations using

the concept of multi-cell deforming control volume. Using this approach, the

continuity and momentum equations as represented by [2.9] and [2. 10],

respectively, become

[0(QL " QR) + (1 - 9) (Q1 " Qflla‘ " [¢(AL 'l' Zr. "A1 "Zr)l8‘

"" [(1 "’ if) (A): +Zn -Au"2.015! = 0 [2.22]

and
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l[¢(QL-QJ)+(1’¢)(QR-QM)] +a[ (P +Q’IAg)r-(P +Q'IA8)L]

g 8: 5x

 +(1-0)[ 5x

‘Soeer. + (1 - Win] -So(1 - 9) [M1 + (1 - (Mal

+9[¢Dt + (1 -¢)D.l + (1 - 9) [$01 + (1 -¢)Dul = 0 [2.23]

(P +Q2/A8)u-(P +Q2/Ag),]

where A is the cross sectional area of flow, Q is the flow rate across the

respective cell boundaries, Z is the infiltrated volume per unit length, fit is the

time step, 5: is the length of the cell, 0 is the time-averaging coeficient to

account for the nonlinear variation in the flow profile over time, o is the

space-averaging coeficient to account for the nonlinear variation in the flow

profile over the cell length, D is the drag (AS,), and P is the pressure force. The

subscripts J and M in [2.23] represent the left and right cell boundaries,

respectively, at time t,- -, while the subscripts L and R represent the left and

right cell boundaries, respectively, at time t,. Walker and Skegerbee (1987)

presented a detailed description of their mathematical development from its

inception to the final form as represented by the nonlinear algebraic equations

in [2.22] and [2.23]. They discussed the implementation and applications of

this implicit finite difl'erence scheme to furrow and border irrigation systems.

Also, they discussed the basic advantages ofthis procedure over the method of

characteristics approach. The primary advantage relates to the number of

computational unknowns which is half as much in the former method

compared to the latter method.

As to the application of the finite element method to the numerical

solution ofhydrodynamic equations, Katopodes (1984) developed a dissipative

Galerkin scheme for the solution of these equations as applied to open

channels with discontinuous flow. All the energy difi‘using terms were
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neglected in the hydrodynamic equations and his development was restricted

to one-dimensional flow in a prismatic channel with a rectangular cross

section. Katopodes reported excellent results using the dissipative Galerkin

scheme and was very optimistic about the utility of the finite element method

in computing surges and shocks in open channels. Akanbi and Katopodes

(1988) extended the work of Katopodes (1984) to two-dimensional overland

flow problems. Their development was for the solution of flood wave

propagation on initially dry land. They were very successful in solving the two

dimensional shallow-water equations with a dissipative Galerkin scheme

which involved a deforming and moving computational grid.

To conclude this section, it is clear that the one-dimensional gradually

varied hydrodynamic equations together with appropriate initial and

boundary conditions are capable of high accuracy. However, the numerical

solution of either the two partial differential motion equations or the four

ordinary difi‘erential equations developed from applying the method of

characteristics is costly due to excessive requirement of computations which

can be time-consuming. This makes the solution of the simplified forms ofthe

Saint-Venant equations more desirable especially when such models produce

acceptable results (Miller and Cunge, 1975). The models that are based on the

complete hydrodynamic equations are not usually intended for the design or

specific applications because of the high operational costs. However, such

models can be used as standards ofcomparison for the simplified models which

have the potential to produce good results at minimal cost.

2. Zero-Inertia Models

The zero-inertia model is a simplified form of the hydrodynamic model.

The continuity equation ([2.9]) is kept unchanged while the acceleration and
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inertial terms in the momentum equation ([2.10]) are ignored based on the

assumption that such terms are negligible in most flow conditions of surface

irrigation systems (Strelkofl‘ and Katopodes, 1977a). This assumption results

in the following simplified momentum equation

The zero-inertia model was first proposed by Brakensiek et al. (1966) in

the context of flood routing where he described the process of propagation of

flood hydrographs through the watershed channel system. Brakensiek (1966)

discussed the appropriateness of the assumptions of the zero-inertia model.

His results revealed that the zero-inertia model produwd excellent results

compared to the full hydrodynamic model in the regions of slowly accelerating

flow conditions in watershed channel systems. More recently, the accuracy of

the zero-inertia model in channel routing was the center of attention ofmany

investigations including those ofPonce et al. (1978), Ponce and Theurer (1982),

and Ponce (1987).

Strelkofi' (1972) and Katopodes (1974) were the first to apply the

zero-inertia model to surface irrigation. Their applications were prepared for

borders. The solution technique that they followed was similar to the

nonlinear shooting technique which was utilized by Brakensiek et al. (1966).

However, the latter solution approach had some convergence problems

towards the end of the depletion phase. Strelkofi' and Katopodes (1977a)

presented a new numerical approach for the solution ofthe zero-inertia model.

The numerical approach they developed precluded the problems that were

encountered in their previous work. Their model examined the process of

irrigation as a deforming control volume with upper and lower boundaries.

This numerical approach included the solution of a system of nonlinear
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equations for each time step by first linearizing and solving the system using

the double-sweep technique as described by Liggett and Cunge (1975). The

selected time step was constant. Their linearization technique produced very

realistic results for the prediction of both advance and recession phases in

border irrigation systems.

The zero-inertia model developed by Strelkofl‘and Katopodes (1977a) was

the center of attention for many scientists. Several investigations were

conducted to refine and verify the model against field measurements. Strelkofi'

and Katopodes (1977b) discussed establishing appropriate boundary

conditions for the zero-inertia model when a free over-fall downstream

boundary occurs. Clemmens and Fangmeier (1978) discussed the ways to

improve the numerical solution of the model when diked-end conditions occur

at the downstream boundary following the completion of the advance phase.

Clemmens (1979) verified the zero-inertia model for advance and recession in

blocked-end borders with actual field measurements. He concluded that the

agreement was generally good. However, he reiterated the notion that

successful application of the zero-inertia, or any other mathematical model of

surface irrigation, is dependent on the accuracy of infiltration and soil

roughness measurements. Elliott et al. (1982b) developed a mathematical

model to simulate the advance phase offlow in furrow irrigation based on the

zero-inertia assumptions. The approach they followed in their development

was similar to that of Strelkofl‘ and Katopodes (1977a) which included the

integration ofthe governing equations over finite cells in the space-time plane.

The cross sectional area of flow and wetted perimeter were related to flow

depth through the implementation ofpower curve relationships. Their results

revealed that the zero-inertia model simulated the hydraulics of advance

phase of furrow irrigation very effectively. Jaynes (1986) presented a

numerical procedure for the solution of sloping and level berders based on the
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zero-inertia model. His model utilized a finite difl'erence scheme to model both

advance and recession phases of flow conditions. The depth gradient term in

the simplified momentum equation was expressed explicitly and averaged over

the entire border. The author reported that this simplification made the model

simpler to program and the required computer code less cumbersome.

The zero-inertia approximation of the full hydrodynamic model was

utilized by many investigators for different applications in surface irrigation.

Fangmeier and Strelkofi‘ (1979) evaluated the U. S. Soil Conservation design

criteria for sloping borders without runofi' using a mathematical procedure

which was based on the zero-inertia model. They concluded that the design

charts ofthe U. S. Soil Conservation Service (1974) were reasonable for graded

borders. However, they suggeswd that these charts be supplemented by a

mathematical model, similar to their developed model. This would provide

those designing irrigation systems with specific guidelines on the range of

applicability of the charts for various irrigation flow parameters. Rayej and

Wallender (1985) develowd a nonlinear zero-inertia model for furrow

irrigation. Later, they developed a zero-inertia model for surge flow irrigation

bawd on their previous work (Wallender and Rayej, 1985). The non-linearity

of the governing equations allowed for simultaneous modeling of wet and dry

sections offurrows. Their model provided adequate simulations ofthe advance

and recession phases of flow when compared to three sets of field data that

utilized for comparison. Schwankl and Wallender (1988) studied the effect of

the spatially-varying infiltration and wetted perimeter on furrow advance and

infiltrated water distribution using a similar zero-inertia model developed by

Rayej and Wallender (1985). More recently, Schmitz and Seus (1990)

presenmd an analytical solution of the zero-inertia model as applied to the
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advance phase in sloping and level borders. Their development was based on

the assumption of a "moving momentum representative cross section in the

water body".

The zero-inertia model was analyzed by many investigators to study its

general response. This was accomplished through the process of

non-dimensionalizing the solution to produce families of dimensionless

advance curves in borders, level basins, and furrows (Katopodes and Strelkofl',

1977b; Clemmens and Strelkofl‘, 1981; Strelkofl' and Clemmens, 1981; and

Elliott at al., 1983a). These curves were restricted solely to the advance phase.

Hence, they cannot be utilized to predict the entire irrigation process.

However, these evaluations have produced very important design

methodologies for level and sloping basins and borders (Clemmens and

Strelkofl‘, 1979, and Strelkofi' and Clemmens, 1981).

In short, the zero-inertia model represents a simplified hydrodynamic

model that is intermediate in computational approach between the fully

hydrodynamic model represented by [2.9] and [2.10] and the kinematic wave

model which will be discussed in the following section. The zero-inertia model

was utilized in various areas ofopen channels and surface hydrology as well as

flood-routing and surface irrigation. The zero-inertia approximation

transforms the system ofpartial differential equations in [2.9] and [2. 10] from

hyperbolic to parabolic form. This reduces the computer time requirements for

the execution of this group of models. Many studies revealed that the

zero-inertia model produces excellent results in the simulation ofthe hydraulic

behavior of basin, border, and furrow irrigation systems as long as the

assumptions of the model are not violated. The zero-inertia model appears to

be very applicable to the above areas of irrigation since the assumption of

neglecting the inertial terms in the momentum equation is realistic given the

low values of Froude numbers prevailing under actual field conditions
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(Strelkofi' and Katopodes, 1977b, and Clemmens, 1978). The computational

cost of the zero-inertia model is certainly cheaper than that of the complete

hydrodynamic model.

3. Kinematic Wave Models

The Kinematic wave model is the most simplified form of the

hydrodynamic model. This model is based on the assumption that the inertial

terms in the momentum equation together with the term that describes the

pressure variation in the direction of flow are negligible ([2.10]). The

continuity equation ([2.9]) is kept unchanged. The simplified momentum

equation has the form

s,=s, [225]

This above equation implies that flow is at normal depth throughout the

domain of solution (Bassett et al., 1980). The kinematic wave approximation

is only applicable when the slepe of the channel bed is steep. Given the

relation that is depimd in [2.25], a uniform flow equation such as Chezy

([2.11]), Manning ((2.121), or Darcy-Weisbach ([2.13]) may be used to relate

flow rate (Q) to flow depth (y) or cross-sectional area (A).

The kinematic wave model was named after identifying the fact that the

method projects the movement of a ln'nematic shock wave. Since every

kinematic wave model utilizes a uniform equation to establish flow-depth

relationship, these models are fiequently referred to in the literature as

"uniform depth" or "uniform flow" models (Walker and Skogerboe, 1987).

The kinematic wave method as a technique was first proposed by

Lighthill and Whitham (1955) for modeling overland flow. Later, it was

utilized in . the solution of watershed problems and in predicting flood
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movements in rivers (Henderson and Weeding, 1964; Weeding, 1965a; and

Weeding, 1965b). Woolhiser and Liggett (1967) examined the errors

introduced by the application of the kinematic wave model to overland flow

problems. Their work showed that the simplified hydrodynamic model based

on the kinematic wave assumptions is applicable to these problems within a

certain range ofinput parameters. Following their application, the kinematic

wave theory was heavily utilized in many investigations on surface runoff in

watershed hydrology (Brakensiek, 1967; Woolhiser, 1969; and Singh, 1975).

Singh (1976) conducted a study to assess the discretization error of four

difl'erent finite difference numerical schemes frequently used in solving the

kinematic wave equations. He examined the problems of convergence and

stability of these schemes. Since then, many other investigations were

conducted in difi'erent areas of surface hydrology and open channel flow using

kinematic wave models. The most recent is a study by Hromadka and DeVries

(1988) where they examined the use of the kinematic wave method in open

channel flow routing of runoff hydrographs. Their work concentrated on the

significance of the computational errors in the application of numerical

prewdures of the kinematic wave models. They were also interested in

assessing the efi‘ect of the various assumptions implemented with the

kinematic wave model as opposed to the complete hydrodynamic model.

The utilization of the kinematic wave theory in hydrologic applications

was extended to sloping, free draining borders by Chen (1970) and Smith

(1972). In his development, Chen based the solution of the kinematic wave

model on the method of characteristics with the help of initially prescribed

initial and boundary conditions. Chen indicated that the depth or discharge of

flow at any time and distance from the inlet can "be determined from the

family of characteristic curves in the x, t-plane". In his conclusions, he stated

that "the kinematic wave method may only be valid for super-critical flow. For
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other than super-critical flow, the more general hydrodynamic approach

should be adop ". Smith (1972) discussed two methods for solving the

kinematic wave model in flood wave movement and attenuation in dry alluvial

channels. The first included the application of the method of characteristics

outlined by Chen (1970). This approach reduces the partial differential

equation as represented by the continuity equation in [2.9] to

two-characteristic ordinary difi'erential equations in the x, t-plane combined

with a third equation for shock movement. The second included the solution of

the same partial difi’erential equation using finite difference approximation

and a rectangular grid. After comparing the results of both numerical

approaches to available field data, Smith reported that the kinematic wave

assumption was very reasonable for the particular cases ofunsteady wave flew

addressed. These cases included sloping border irrigation and ephemeral flood

routing. He cited both the work of Woolhiser and Liggett (1967) and Tinney

and Bassett (1961) as the proper indication for the appropriateness of the

kinematic wave assumption under the conditions of his study. Once again,

Smith reported that the results of the kinematic wave models were more

sensitive to the infiltration frmction.

The formulation of free boundary problems in surface irrigation using

both complete hydrodynamic and kinematic wave models was investigated by

Shaman and Singh (1978 and 1982). In their work, Sherman and Singh

presenmd explicit formulations of the free boundary problems in surface

irrigation. Their approach was also based on the method of characteristics.

As was the case with other models, the kinematic wave model was first

developed for border irrigation, and later applied to furrow irrigation systems.

Walker and Humpherys (1983) highlighted three essential modifications in the

mathematical prewdures utilized in the analysis ofborder irrigation systems

before these analyses are implemented in the simulation of furrow irrigation
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systems. These include the description of the geometry of flow cross section,

implementation of an infiltration function that accounts for both steady and

time dependent infiltration rates, and assessing the efl‘ect of the wetted

perimeter on the infiltration function. Walker and Humpherys accounted for

the first two modifications in their study which included the development ofan

implicit finite difi‘erence scheme to the direct solution of the kinematic wave

furrow inigatien model. Their scheme was based on the Eulerian integration

approach which represents the numerical approximation of the continuity

equation based on the concept of multi-cell deforming control volume. Using

this approach the continuity equation became

{[993 + (1 - 9)Qul - [GQL + (1 - 9)Q:]}5t

+ {[Mz. + (1 ~¢Mul - [M1 + (1 -¢)Aul}5x

+ {(4)21 + (1 -¢)Zrl - Nil: + (1 - ¢)Zul}5x = 0 [2.26]

The subscripts J and M represent the left and right cell boundaries,

respectively, at time t, _ , while the subscripts L and R represent the lefi: and

right cell boundaries, respectively, at time t,. Walker and Humpherys gave a

detailed description of their mathematical development. In their conclusions,

they reported that the kinematic wave analysis is "a satisfactory tool to predict

water advance, intake, and runofi' fi-om sloped furrow irrigated systems".

After comparing the characteristic furrow model to the integral model, they

reported that "the integral model was superior on the basis of its adaptability

to both surged and continuous flows, less sensitivity to the size of the time

step, and the numerical stability of the solution". This was supported by the

work of Walker and Lee (1981). Izuno and Pedmore (1985) developed yet

another ln'nematic wave model for surge and continuous irrigation offurrows.

The surge infiltration function utilized in their study was based on the
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two-branch function of the Kostiakov equation as suggested by Clemmens

(1981). They reported acceptable model predictions of advance under surged

and continuous furrow irrigation applications.

The kinematic wave assumption simplifies the analysis of surface

irrigation systems immensely. However, this same assumption limits the use

ofkinematic wave models to the he draining graded borders and furrows with

relatively smep slopes (James, 1988). Hence, the model is inapplicable to

dead-level fields and diked borders or furrows. The limitations can be

attributed to the facts that the normal depth is infinite in the first case while

the kinematic wave solution would be only influenced by the upstream

boundary conditions (no downstream boundary conditions could be imposed on

the flow) in the second case (Bassett et al., 1980).

4. Volume Balance Models

Volume balance models are the most simplified form ofthe fully dynamic

equations. These models neglect the entire momentum equation and

implement some approximations to the continuity equation. The continuity

equation ([2.9]) is applied to the entire flow profile at once (Bassett et al.,

1980). The continuity equation is integrated over space, which represents the

length of the advancing stream, to produce (Hart et al., 1968, and Bassett et

al., 1980)

_dV,(t) dV,(t)

Q" dt + d:

 

[2.27]

where Q, is the inlet flow rate, V,(t) is the surface volume of water, and V,(t) is

the infiltrated volume ofwater. Equation [2.27] can be further integrated over

time to yield
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Qot = V,(‘) + V,(t) [2.28]

The surface and infiltrated volumes ofwater can be determined by integrating

V,(t) and V,(r) over the advance distance and substituting the results in [2.28].

This results in (Walker and Skogerboe, 1987)

Q,,r= JA(S,t)d3 + flows [2.29]

0 0

where s is the integrand ofx and Z is the infiltrated volume per unit length.

Since the momentum equation which describes the temporal and spatial

variation is completely ignored, the volume balance model is based on the

assumption that the average area offlow is a constant, A-. Ifthe infiltration is

considered to be a function ofintake-opportunity time, [2.29] reduces to

Q0! =Xx + Ila - t,)ds [2,30]

0

where t - t, is the intake-opportunity time and t, is the time at which the

advancing fi-ont ofthe stream reaches distance 3 .

The various volume balance models presented in the literature can be

classified into four difi'erent categories. The first category is based on the

recursive approach. The work by Hall (1956) and Strelkofl' (1977) represent

two good examples of this category of volume balance models. While Hall

(1956) solved the border advance problem, Strelkofi‘ modeled all phases of

irrigation in borders including the depletion and recession phases. The second

category of the volume balance models is based on the Kernel function

approach. The work by Hart et al. (1968) was based on this approach. Their

work was also applied to border irrigation systems using the Kostiakov

infiltration equation. The third category ofvolume balance models utilizes the
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Laplace transform approach. In this approach the Laplace transform of [2.30]

is established. A good example of such an approach is the research work by

Philip and Farrell (1964). The last group ofvolume balance models is based on

the power advance approach. Among the many researchers that followed this

approach were Fok and Bishop (1965), Wilke and Smerdon (1965), Chen

(1966), and Singh and Chauhan (1972).

Since the volume balance model has the basic approximations of the

kinematic wave model together with many other assumptions, it must at least

have the same limitations that were highlighted in the previous section. As a

matter of fact, the volume balance models have additional inaccuracies since

the shape frmctions are presumed arbitrarily (Bassett et al., 1980). However,

the volume balance models have the cheapest execution costs among the

various models covered to this point. This makes this approach good for quick,

rough initial calculations.

E. Numerical Solution of the Hydrodynamic Equations

The solution of the full hydrodynamic equations or a simplified form of

these equations requires the implementation of a numerical solution

procedure. The partial difi‘erential equations that are represented by the

Saint-Venant equations could be transformed to ordinary differential

equations after utilizing the method of characteristics. Then, the resultant

ordinary difl‘erential equations are usually solved numerically. Another

alternative implements the transformation of the above partial differential

equations to a system of algebraic equations amenable to solution.

There are various numerical techniques for solving difi‘erential equations.

The finite difi'erence and finite element methods represent the two most widely

used procedures for obtaining numerical solutions to both ordinary and partial
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difi‘erential equations. These numerical procedures are utilized in many

problems especially overland flow problems which cover various areas of

hydraulics and hydrology including flood routing and open channel flow.

1. Finite Diflerence

The finite difi'erence method approximates ordinary or partial difi'erential

equations with difi'erence equations. Using this numerical method, a

continuum is replaced by a series of discrete points between which the

difi'erentials are approximated. The finite difi'erence method has been the

most widely used procedure for approximating difi'erential equations

numerically. It was heavily utilized repeatedly in the solution of

shallow-water equations which describe flow conditions in both open channels

and overland flow (Liggett and Woolhiser, 1967). Over the last several years,

many scientists utilized the finite difi‘erence method in the direct or indirect

solution of the simplified or complete hydrodynamic equations as applied to

surface irrigation problems. The review of such work was briefly outlined in

the previous section on surface irrigation models and therefore will not be

repeated in this section.

2. Finite Element

The finite element method utilizes an integral formulation to generate a

system of algebraic equations after approximating a continuum with a

continuous piecewise smooth functions (Segerlind, 1984). This method was

initially developed for the analysis ofproblems in structural mechanics. Later,

the finite element method was applied to the numerical solution of various
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classes ofproblems. The application ofthe finite element method to many fluid

mechanics problems serves as a good evidence for the wide spread use of this

numerical technique.

The application of the finite element method to overland flow problems

was the subject of many investigations. Among the many early publications

are the studies by Guymon (1972), Taylor et al. (1974), Judah et al. (1975),

Desai (1979), Ross et al. (1977; 1979; and 1980), and Heatwole et al. (1982). All

ofthese researchers have reported some success in utilizing the finite element

method for modelling the various physical processes in overland flow problems

which are governed by the shallow-water equations. The most recent

developments in this area were the studies by Katopodes (1984), Akanbi and

Katopodes (1988), Hu et al. (1989), Kaneko (1989), Kashiyama and Kawahara

(1989), and Vieux (1989).

On the other hand, the application of the finite element method to

irrigation problems has Men very limimd. Much ofthe prior work focused on

utilizing the finite element formulation in the analysis of both pressure and

flow conditions in sprinkler and drip irrigation systems as well as

pipe-network analyses. The application of the finite element method in these

areas was unique in the sense that the solution processes didn’t start from the

partial or ordinary difi‘erential equations but rather from utilizing the direct

stifi‘ness procedure ofthe finite element method. The reader is referred to the

work by Bralts (1981) and Bralts and Segerlind (1985) for a detailed

description ofthis approach.

F. Synopsis

After reviewing the theory and literature that is pertinent to this research

work, it was clear that an extensive amount ofwork has been done in the area
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ofnumerical analysis ofsurface irrigation systems based on the hydrodynamic

equations. However, what seems to be lacking is a general numerical

formulation of the complete and simplified forms of the hydrodynamic

equations in one model. Even though many comparison were made in the

literature among the various forms of the hydrodynamic equations as applied

to surface irrigation systems, these comparisons were not done on the same

basis. On the other hand, it was observed that the finite element method was

not exploited in the area of numerical analysis of surface irrigation systems.

The application of the finite element method to many fluid mechanics

problems serves as a good evidence for the wide spread use of this numerical

technique. This also serves as an indication that the method could successfully

be used for the hydraulic analysis of surface irrigation systems.

Based on the above, it was felt that there is a need to develop a

mathematical formulation of the Saint-Venant equations for the analysis of

surface irrigation systems using the finite element method. The numerous

features of this numerical technique makes it attractive to the solution of

initial and boundary value problems that can be described by first or second

order partial difi'erential equations. The simplicity in handling boundary

conditions and the ability ofthe method to accurately handle complex solution

domains are two ofthe many important features ofthe finite element method.



III. METHODOLOGY

The flow ofwater across the soil surface in any surface irrigation systems

is spatially varied. Moreover, the hydraulic design and analysis of surface

irrigation systems is a time dependent process. The hydraulics offlow in both

sloping furrow and border irrigation systems is governed by two first-order

partial difl‘erential equations. These unsteady flow equations were developed

originally by A.J.C. Barre De Saint-Venant in 1871 (Miller and Yevjevich,

1975). The development of the Saint-Venant equations was based on the

application of the conservation of mass and momentum principles to the

analysis of surface flow conditions in open channels. Since their development,

the Saint-Venant equations have been used in many areas of hydrology

including the study of river floods and propagation of tides in river channels.

These equations were later used in the analysis of flow conditions in surface

irrigation systems.

There are four general mathematical schemes that result from applying

the Saint-Venant equations to the hydraulic analysis of surface flow problems

in general and surface irrigation problems in particular. These mathematical

approaches result in one of the following models: hydrodynamic, zero-inertia,

kinematic wave, and volume balance models. The primary difference among

the above list of models lies in the number of assumptions that are

implemented in the Saint-Venant equations.

In order to analyze various surface flow problems in any of the above

models, a numerical procedure needs to be implemented. Historically, these

numerical procedures have been based on the finite difi‘erence method, the

41
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method of characteristics, or a combination of both. Such models were

developed over the years by many scientists as was discussed in the previous

chapter. More recently, the finite element numerical procedure was

implemented in the solution of surface flow problems. However such

developments were limited to the areas of surface hydrology and open

channels.

The sole purpose of this research study is to develop a methodology for

implementing the Galean formulation of the finite element numerical

prowdure to the hydraulic analysis of flow conditions in surface irrigation

systems. A general finite element model will be developed to perform the

hydraulic analysis of surface irrigation problems using the hydrodynamic,

zero-inertia, and ln'nematic wave models.

A. Research Approach

Five fundamental objectives are presented as the goals of this research.

The approaches utilized to achieve these objectives are delineated below.

Objective 1. To develop a finite element solution procedure of the

Saint-Venant equations for the hydraulic analysis of

surface irrigation systems.

The approach to be followed under Objective 1 will be to apply the

Galean formulation of the finite element method to the solution of the

Saint-Venant equations using both linear and quadratic one-dimensional

elements. The Galean formulation will be applied to both the continuity and

momentum equations with respect to the space coordinate for a fixed instant of

time. Each will result in a system of first-order differential equations in the

time domain. The resultant two systems ofordinary differential equations will

be combined into one general system. Then, a finite difi‘erence approximation
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in the time domain will be applied to the final general system of equations to

generate a system of algebraic equations which will then be solved iteratively

over time. The direct stifi‘ness procedure will be utilized in building global

systems ofequations at various time steps.

Objective 2. To create a general solution approach that will

accommodate the available mathematical models of the

Saint-Venant equations in the analysis of surface

irrigation systems.

The approach to be followed under Objective 2 will be to establish the

coeficients that will implement the various assumptions utilized in

establishing the hydrodynamic, zero-inertia, and kinematic wave

mathematical models from the Saint-Venant equations. By choosing these

coeficients, the solution process would be performed based on the selected

model. The general development would apply to the selected model and the

solution process will never be altered by the choice ofthe mathematical model.

Objective 3. To develop an approach to easily incorporate the varying

boundary conditions of the advance, pending, depletion,

and recession phases of surface irrigation into the solution

process with minimal arbitrary or experimental

parameters.

The approach to be followed under Objective 3 will include the

modification of the final system of equations to incorporate given boundary

conditions under varying physical phases ofan irrigation cycle. The possibility

of implementing this approach should be straight forward since including

boundary conditions at a later stage of the solution process is one of the

primary features of the finite element method. The dimensions of the total

system of equations will remain unchanged at any instance in time.
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Objective 4. To develop a computer model that will utilize the above

mathematical concepts for the hydraulic analysis of flow

conditions in border and furrow irrigation systems.

The approach to be followed under Objective 4 will be to implement the

finite element mathematical development ofthe motion equations in building

a computer model that will simulate the advance, pending, depletion, and

recession phases ofboth furrow and border irrigation systems. The computer

model will be developed to run on any IBM-compatible microcomputer with a

Random Access Memory (RAM) of512 Kbytes or more and an MS-DOS version

2.00 or higher.

Objective 5. To numerically evaluate and compare the results of the

finite element model to actual field measurements from

existing surface irrigation systems.

The approach to be followed under Objective 5 will be to compare the

results to be obtained from running the developed finite element computer

model to those reported from actual field measurements for existing surface

irrigation systems. A graphics routine will be developed to display both

simulated and actual data ofthe various flow phases ofirrigation on the same

graph. The graphical display will include plots of actual and predicted

advance and recession trajectories of flow and will be revealed after the

conclusion of any surface irrigation simulation run. This will be utilized to

evaluate the utility of the developed finite element model and its ability to

accurately simulate the hydraulic conditions of flow in surface irrigation

systems.
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B. Theoretical Development

There are two basic equations that can be utilized in the hydraulic

analysis of flow conditions in open channels and surface irrigation systems.

The two equations, or the so-called Saint-Venant equations, were developed

based on applying the conservation ofmass and momentum principles to flow

conditions. This research will utilize these equations as the basis for the

hydraulic analysis of various surface irrigation systems. The finite element

method will be used then to solve these equations numerically. The resultant

numerical model will then be applied to the analysis ofhydraulic conditions in

furrow and border irrigation systems. This general development may also be

applied to the analysis of flow conditions in open channels with or without

infiltration. However, the assumption that the slope of channel bed is mild

will be utilized in the development, an assumption which is very reasonable in

surface irrigation systems but not necessarily true in many open channels.

1. Development ofthe Saint-Venant Equations

The development of the Saint-Venant equations will be repeated in this

section to delineate the important principles of these two equations as related

to surface irrigation.

ammonium

The volume ofwater stored in a fluid element (Figure 1) within a spatially

varied furrow is represented by the following relationship

dvc=Vis-V~-Vl
[3-1]



 
Figure 1. An enlarged fluid element within a furrow with a spatially varied

unsteady flow.
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where W, is the change in the stored volume within the element during time

dt, V... is the total inflow during dt, V... is the total outflow during tit, and V,

is the total infiltration during dt. The total inflow during a time step dt is

described as ‘

_ Qio)+Qr(r+a)

.1 . 1
«Mm—11
_13th
'Qd‘+2ard’z

~er [3.2]

 

where Q,(,, and Q10“, are the inflow rates at times t and t+dt, respectively.

The total outflow during the time step dt is

V _(Qza)+Q2(:+a)}l

“" 2

elm-2% 1+11e+sdx1+3§"71“‘

 

 

 

ao

_ 12 IHQ 4'3de 2
—th+ ax dxdr + 2 at (It

~ th +g—g-dxdt [3.3]

where Q”, and Q20...) are the outflow rates at times t and t+dt, respectively.

The total infiltration volume during the time step dt is

V +V ,
V:=( «e 210 do)!”
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where Vm and Vum.) are the average infiltration rates at times t and t+dt,

respectively. These two terms can be developed separately as

I +1 )
VIO)=[ 1(02 2t!)

I+idx
=[I+( ; )yx

181 2
=Idx+2axdx

~Idx

I :+ +1 +

Vuufl=-[ 1( ”2 at: ")1:

=Idx +gdtdx 4-;Xl :dtlitdx

and

 

 

where ’10) and Inc“) are the left boundary infiltration rates per unit length at

times t and t+dt, respectively, and In, and In...) are the right boundary

infiltration rates per unit length at times t and t+dt, respectively. After

substituting the above two terms, V, becomes

Vz=%[(1dx)+{mxgt+—dtdx+;(”swatand:

=Idxdt+§gt£dt2dx+4130+:a?d”its

~ Idxdt [3.4]

 

 

Substituting [3.2]. [3.3], and [3.4], in [3.1] results in



49

av, = [94:] -[th 4-838-dxdt] - [Idxdt] [3.5]

01‘

4V: - 99. _75m.- 8:: dx Idx [3.6]

The storages in the element at times t and t+dt can be defined by the

following two terms

_ 18A 3

“Mk-+231“

~Adx [3.7]

= [ A1041)+A2(:+&)]dx

2

.§[(..%.).[(A.g..).iflf_d‘l.]]..

v00“)

an

_ 13A 2 18A 39%“)
-Adx+2axdx+zatdxdt+ 23‘ dxdt

13A

~Adx+2(-2--$dxdt)

3A

‘=Adx +-a—t-dxdt [3.8]
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where Am, and Au...) are the left boundary areas offlow at times t and t+dt,

respectively; A”, and Aw“, are the right boundary areas offlow at times t and

t+dt, respectively; and V4,, and V4,...) are the storages at times t and t+dt,

respectively. Substituting [3.7] and [3.8] in [3.6], the continuity equation

would result as follows

39 dx -Idx = V.(.+a)- V4.)

 

d:

_[(Adx +§dxd:)-(Adx)]

' dt

aA
=$dx

01'

%+%+I = o [3.9]

kW

There are three forces which act upon the fluid element in Figure 2.

These include the force due to the weight of the fluid element, the pressure

force which represents the resultant of two pressure forces acting on the

upstream and downstream boundaries of the fluid element, and the friction

force which results from the resistance to water flow due to the viscous force

along the weMd perimeter of the element. These forces can be assessed as

discussed below.

i.WThe weight ofthe fluid element can be expressed as

 

F” =[Fpo)+:w(t+l)] [310]
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TV /\

i

x ‘F.
0

I 0

dx

 

 

Figure 2. Acting forces on an enlarged fluid element within a furrow with a

spatially varied unsteady flow.
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where Fm and FIKH") are the forces due to the weight ofwater at times t and

t+dt, respectively. The first component of [3.10] can be written as

A +A ,

F..(:)""Y[ __n(:)2 a {'41

___+[ (A)+(A2+§:-dx)]dx

.. 12A; 2
—7Adx+2axdx

~ yAdx [3.11]

where yis the specific weight ofwater and Am, and Aw, are the cross sectional

areas offlow at the upstream and downstream boundaries ofthe fluid element,

respectively, at time t. The second component of [3.10] can be defined as

 

A +A
Fw+‘)=7[ I(H-t) 2(1+l)]dx

2

_1 .3_A;_ 3A 3(A +£2dx)

-2[[A + at dt)+[[A +$dIJ+Tdt dx

M

= 1.31 1% . L“W“){Adz-+23, dtdx+2axdx + 23‘ dtdx

13A 13A

—7[Adx +5-3de +§$dtdx:l

=yAdx magnum [3-121

where Am“, and An“, are the cross sectional areas offlow at the upstream

and downstream boundaries of the fluid element, respectively, at time t+dt.

Substituting [3.11] and [3.12] in [3.10] results
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F = [yAdx]+[-{Adx+y%dtdx]

" 2

78A

=1Adx +55“: [3.13]

 

The component of the weight of the fluid element with the direction of

flow, F”, is obtained from

F,,=sina-F,

where a is the angle between the lower boundary, or the bottom of the

channel, ofthe fluid element and the horizontal plane. Ifthe slope ofthe lower

boundary (SQisassumedtobesmall,thesineoftheanglecanbe

approximated by the tangent. This results in

F" 2Tan(1 - F,

= Sol”.

where So is the slope ofthe furrow or border. Substituting [3.13] in the above

equation results in

F,,=yAs.,dx +-;%dxdxso [3.14]

The second term in the equation above is negligible compared to the first term

which contains the cross sectional area of flow. Therefore, Equation [3.14]

reduces to

F,,=7Asodx [3.15]

ii.W:The pressure force, 1",, which represents the resultant

of the pressure forces acting on the upstream and downstream boundaries of

the fluid element can be written as
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F, :17, -F, [3-161

where F, and F, are the pressure force acting on left and right boundaries,

respectively. The pressure force acting on the left boundary of the fluid

element can be determined as follows

F, =[ F1(:)+F1(¢+a)]
 

2

=-[(yhA)+y(Ah +9-glldt)]

1824—}:

=1hA+2a: [3.17]

where Pm and F10“, are the pressure forces acting on the left boundary at

times t and t+dt, respectively; 7 is the specific weight of water; and h is the

distance fi'om the water surface to the centroid of the left and right areas of

flow. The pressure force acting on the right side boundary ofthe fluid element

canbewrittenas

Fz___[pz(o+:w+a)]

=%[(7Ah +1?dx)+[YA]!+Y—d"Hi“;+—‘1‘) (1‘)]

-7“, +73§x_hdx+1;3(__vh)dt+xa(1a: “)d,

 

2 a: 2 a:

~7Ah+ya§x—'ldx+;i—gth)dt [3.18]

where Fate and Fm...) represent the pressure forces which act on the right

boundary of the fluid element at times t and t+dt, respectively. Substituting

[3.17] and [3.18] in [3.16] produces
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_ 19511 _ 2L" 114.3.)
F—(yhA+ ) (yhA-t-yaxduwz at d1)

=‘7——dx
[3.19]

Potter and Wiggert (1991) developed the following relationship using the

Leibnitz rule from calculus (refer to page 463 of their text):

M-8h .4 [320]

Substituting [3.20] in [3.19] results in

1:54.423! [3.21]
31

iii. W: The friction force, F, , which results from the

resistance to water flow can be expressed as

F,= 1,194: [322]

where t, is the shear stress at and P is the wetted parameter. The slope ofthe

fiction slope can be defined as (Potter and Wiggert, 1991)

55% [3.23]

Equation [3.22] can be rearranged as

1.,“de

47

M741

R}

 Fl:

 

[324]
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where R =AIP. Substituting Equation [3.23] in [3.24] results in

«mm

The conservation of momentum in Figure 2 follows Newton’s second law

of motion (Walker and Skogerboe, 1987). It states that the resultant force

which acts on the fluid element in motion is equal to the rate of momentum

change within the element and the momentum flux across the element

boundaries. This can be represented by the following relationship ‘

£(Force3) = (PQV)... - (PQV)...+1? [326]

where m is the mass of the fluid element, Q is the flow rate, v is the flow

velocity, p is the density of the fluid, 2 (Forces) is the summation of forces

(F... +F, -F,), (va),, is the average momentum flux into the element, (va),.,

is the average momentum flux out of the element, and (d(mv)/dt) is the

average momentum change during the time increment, dt. The first two right

side terms ofEquation [3.26] can be evaluated individually as follows :

(va),, =§[(va)+(va +§§fldtfl

=va +%[v%%+g3;] [3.27]
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m.-atMa]

+2[0(Q +de)[v +gdx)+pa[(g +34va +3610] dt]
3:

 

3v

=va+pv§dx+anxdx+p§axdx

+P%[(v+3«]*9*=2+(a+e)wa: a:

=va+pv§dx+pdix

22: ac a’_a_ ( 9.9. )2. iv.
+ 2 [(v +axd‘][‘5.'axaah)“ max“ ar+axaxd"

=PQV+PV%%41+Pandx+pd[vaaQ+v:—gtdxm]

+pd: £9an 23va 2 32v

2[7a;a.“*tat—a.“ mamma]

_p_d_t[393vdxBQ a’v_dx]

ax a: axaxe: [328]

Ifthe second and third order differential products are assumed negligible, then

[3.28] mduces to

39 pvdtaQ +dexav
 

av

va--va+pv§x-dx+pQ$dx-+ 2 3t+ 2 a: [3.29]

The change ofmomentum, d(mv), can be determm'ed as

d(mv) = ORV)“. - (mv), [3.30]

where (mv),,.,, and (mv), are the average momentums at times t and t+dt,

respectively. The first term of the right side expression of [3.30] can be

expressed as
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(mv), = pAuhvuhdx [3.31]

where A...' and v.,..,b are the average cross sectional area of flow and average

flow velocity, respectively, at time t. These two terms can be evaluated

separately as shown below

Alm+A2m
A..." ——2

wees
‘ 2

1 3A

—A +2-de [332]

 

V +Vv = no) 20)

“k . 2

=(v)-]- v+§dx)

2

18v
= V +5;”

[3.33]

 

Substituting the above two terms in [3.31] results in

13A lav

(0W), = 0(A +5-311va +§$dxjdl

.. 32v. 22.9: 21939: .
-p(Av+2axdx +2axdx +4axdxdx)

= pAvdx [3.34]

where both second and third order differential products are assumed

negligible. The second term of the right hand side expression of Equation

[3.30] can be evaluated as
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(mv),“, = M*t+av“h+adx [3.35]

where 4...“, and v are is the average cross sectional area of flow and
”ho-d:

the average flow velocity, respectively, at time t + dt. These two terms can be

evaluated individually as

_Akt+a)+A7(1+a)

“5+4: - 2

=;[(..§.).[(..%.).§i§flmll
13A 13A 13A 1 32A

—A +5-37dt+§$a +5511!4.5%“

31] 1M 132A
-A +Edt 4-53-11! +555“

V _ v1(:+dt)+A2(t+&)

“5+4: 2

-;[(..g.).[[..g.].ig%fl.]]

13v 13v 13v 1 32v

—V +§§dt4-5ng +E'a—tdt +5753?“

3v 13v 1 8’v

— v +§dt+§$dx +§fidxdt

 

Substituting the above two terms in [3.35] produces
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_ 3A 13A 1321‘]

(MV),+a-D[A +—at-—+dt+2ax—dx +5733“)

3v 18v 132v
(v+atdt+§axdx +§axatdxdtyl

av. 32». am .
=O(Avdx+Aatdtdx+2ax:+deatdxdt)

3-..». --——w)

4333323W$333.03]

4:33am13.-.3322)

When the second, third, and fourth order differentials are assumed negligible,

[3.36] reduces to

Gav)”, = p(Avdx +A gaudy: + v 95¢]:de [3.37]

Substituting [3.34] and [3.37] in [3.30] results in

d(mv)= (Mvdx+pA gtv-dtdx+pv%dtdx)--(pAvdx)

01'

d(mv)_ 91d: Q11

d‘ =pA a: dx+pv 3: dz [3.38] 

The individual relationships that were developed to this point as

presented by [3.27], [3.29], and [3.38] are substituted in [3.26] to yield
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3_Q_ pvdtaQ Qthav
2(Forces)= (va+pvaxdr+anxdx+ 2 81+ 2 at)

pvdtBQ detav

""("Q+—2 5+—2—ar)

+[pAgtvdx+pv%dx)

dx+anxdx+pA——dx+pvaAdx

3:

av av 3A

an”a?”v.37)“

3
4
:
8

pv

9(v $
4
8

01'

_ _ 39 av av 3A
F,,+F, F,—p(v—-+Q-5x-+Aat+v3——)dx [3.39]

Substituting the expressions for F", 1",, and F, (i.e., Equations [3.15], [3.21],

and [325]) in [3.39] results in

yAsodx—Hugh-=yAS,dx-p(v-a-Q+an+A%"-HM}: [3.40]

The specific weight, 7, may then be replaced by pg where g is the acceleration

due to gravity. The next step will be to divide [3.40] by pgAdx to produce

8y 3Q av av 8A

50-a:-=S,—1X(v—+an+Aa—t+vvat] [3.41]

or

S°_sf=8y an Qav 13v vaA [3.42]
  

.$+gA ax +gAdx+g a: +gA 3t
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Since the discharge rate of flow, Q, is a preferable term over the flow

velocity, v, Equation [3.42] can be rewritten as a function of Q instead of v

based on the expression

 

=A—+v— [3.43]

where §is the independent variable of difi'erentiation which represents either

1 or t. Equation [3.43] can be rearranged into

4,322.- e) .3...

Substituting Equation [3.44] in [3.42] results in

By+(Q/A)aQ er

3°"Sf=ax gA dx+gALA_’(A%g—anD

*;[‘=(‘ar39 Ml](Mai

 

Q3: gA a:

HayEgaQ 023A 139

”a:ngaxgA’ax+gA 3:

Since both the cross sectional are of flow, A, and the flow depth, y, are

exclusively independent variables, one of these variables can be used instead

ofboth. Ifthe channel is assumed to be prismatic, the term aA/ax in the above

equation can be replaced with Tay/ax. The resultant equation is
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- _fl 2?. 32% 3.92
So-S,—[l gA3Jax+gA23x+gAat [3.45]

Equation [3.45] can be rewritten exclusively in terms ofA instead ofbothA and

y. This step results in

- 1-2.“. 9: £29. 1.22
So-S,—[T gA’)8x+gA’8x+gA at [3.46]

4W

If a steady momentum is assumed, the change in momentum within the

fluid element with respect to the time domain is assumed negligible. This

reduces Equation [3.26] to

24F01'6“) = WV)“- 039V):- [3‘47]

Substituting the results that were obtained earlier as represented by

Equations [3.27] and [3.29] in Equation [3.47] leads to

_ 92 2: 1:22:29. _PQd‘.3l
2(Forces)—[va+pvaxdx+anxdx+ 2 at+ 2 at)

_ pvdtaQ detav

(”9” 2 31+ 2 at)

_ 29. 2V._pvaxdx+pgaxdx

_ .32. 2". ’_p(v ax +an}! [3.48]

The expressions that correspond to the various forces that are acting on

the fluid element as represented Equations [3.15], [3.21], and [3.25] are then

substituted in the equation above to produce
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yASudx -7A 24:: -yAs,dx = p[v%%+g%]dx [3.49]

Following the same step as discussed in the previous section which include the

replacement ofthe specific weight, 7, by pg and the division of [3.49] by pgAdx

gives

3y -L Q .231
So-E-SI—gA (v ax +an)

01'

 50-35%3”if:Q: [3.50]

The change in flow velocity with respect to x, av/ax, in the above equation is

then replaced by the expression of[3.44] to produce

50-3.9.2 92.14299. .Q.[_1.[A§_Q. «MD

+-———-—— [3.51]

Since the channel is assumed to be prismatic, the term aA/ax can be

exchanged by Tay/ax. Equation [3.51] reduces to

so-s,=[ _Q’T]ay+293—9- [3.52]
311’ a! +gA2ax

Equation [3.52] can be rewritten in terms of A instead of y. The resultant

equation is

2

f-gi'mg—A3 ax+g—A2ax
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2. Finite Element Formulation Using Linear Elements

The numerical solution ofthe Saint-Venant equations will be presented in

this section. This analysis is accomplished using the Galean formulation of

the finite element method. The space dimension is discretized using linear

elements. This development is prepared for the solution of furrow irrigation

systems, bearing in mind that the border is a special case of the furrow

irrigation problem.

LEW

Elements

A system of linear equations is generated by evaluating the weighted

residual integral

R<x>= fwm(%+aQ+I [3541

which is the result ofintegrating the product ofthe continuity equation ([3.9])

and a weighting function, W(x), over the length of the element. The Galean

formulation of [3.54] is based on considering the shape functions N,- and N,- as

the weighting functions at nodes i andj, respectively (Segerlind, 1984). Since

the element selected in Figure 3 is linear, there will be two linear equations

(shape functions) for each element.

The finite element formulation is applied after representing the

unknowns by linear approximations ofthe form

4".) =Ni¢i +Nj¢j [3.55]

01'
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Section F-F

.—p s

O + O 9 4 fl ‘

_. x i j
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(B)

Figure 3. Finite element discretization. (A) Furrow flow. (B) Generic

one-dimensional linear element.
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¢
¢(0) = [NI Ni] {¢i}

I

= [N]{¢} [356]

where o is the unknown; N,- and Ni are the shape functions at nodes i and 1',

respectively; and $.- and 45- are the values of the unknowns at nodes i and j,

respectively. The convention that { } and [] represent a vector and matrix

quantities, respectively, will be followed throughout this development.

Based on [3.56], the cross sectional area of flow, A, and the flow rate, Q,

can be represented by

A<x.:)=N.A.(r)+N,A,(:)

= [N‘- ”fl {2‘}

l

= [Nl {A(0} [3.57]

and

Q<x.t)=N.Q.(t)+N,Q,(r)

Q

=‘”‘ Moi}

=[N]{Q(t)} [353]

The shape functions for the one-dimensional linear element are expressed

 N.- = I [3.59]

 [3.60]



where L is the length ofthe element.

The shape functions are written in the local system of coordinates which

allows for easier integration over the element. The shape functions for a

coordinate system locamd at node i are obtained from [3.59] and [3.60] by

replacingx with X5+s and resulting in

”i ='—L——”F

= 1 -i- [3.61]

and

N1 ___ (X.- +2) -X.-

=% [3.62]

Equations [3.61] and [3.62] can be rewritten in the matrix form

[N1=[N.- Ni]

=[1_% 1%] [3.63]

The partial derivative of [3.58] with respect to x is computed by

evaluating the partial derivatives ofNi and N, since the nodal values Q30) and

91(2) are constants with respect to the x - or 3 -space dimension. The partial

derivative of[3.58] becomes
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=[B]{Q} [3.64]

dimensionare

95:25:...1. [365]

31 as L '

and

3N, 3N, 1

ii??? [3'66]

Equations [3.66] and [3.66] then rewritten in the matrix form

_ 51".: '1”; ~[B]-[ 8x ax]

l 1

=[-Z z] [3.67]

Substituting [3.67] in [3.64] produces

19... .. _.1. l 9‘

The partial derivative of [3.57] with respect to time is compuwd by taking

the partial derivatives of A. and Aj with respect to time and multiplying the

results by the shape functions. This assumption is true since the latter are

considered to be constant with respect to time. The resultant equation is
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+37%
'3!

[3A,:

= l-i i <5.»

911i.

L31 .

= [N] {A} [3-69]

  

Substituting the shape functions in [3.54] results in the system of

equations

8’

35% fM(%+%€-+I}tx [3.70]

x. .

and

12]": IN —+%€-+I}t [3.71]

Rewriting Equations [3.70] and [3.71] in matrix form results in

‘9’}.[N];._.,).

a.[N _._.,).

’1

3A 29.
=IIN][——+ ax H}: [3.72]

where [N]’ is the transpose ofmatrix [N].

‘

  

Substituting [3.68] and [3169] in [3.72] yields
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XI

{Rf’} = [INJ'([N1{A}+[BJ{Q}+I)dx
8‘

or

"I ’1 ’1 '

{RP} = ftm’uv]{de + I[NI’ [3] {Q }dx + fm’ldx [3.73]
‘l ‘1 ‘1

The individual terms of[3.73] are integrated separately over the length of

the element in the local system of coordinates to result in

’1 L

fin/1’ [N] {A }dx = [W(~14:{A}
0

‘1

  

  

L 1-% s s
=1 2. [l-Z 71am}

L

' s s s

41-] [1+]
=f L fLmA}

o 1_£ f. ‘—

Ll LJL L2

".1; E]

3 6
= 5 _ {A}

.5 34

4.]: :14}
=[C.]{A} [3.74]
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‘1 l- .

flm’wnmdx = [[Nl’wmo}
03‘

r

[
h

1...

ll

0
%
9

'
—
‘
7

b
l

'
—

l
‘
l
H

l
_
_
_
.
l

a
”
A
.

D w
e

  

(4+1) (Li)2 L 2
L L L (“{9}

II

a a

  

l
l

y
—
s

N
l
t
—

M
I

m D b
o
a

  

= [KJ {Q} [3.75]

The infiltration from the element can be expressed in various forms.

These forms result in several equations that were discussed in the previous

chapter. Many of these equations are expressed as a function of infiltration

opportunity time only. The infiltration term is then constant with respect to

the x - or .7 -space dimension and can be moved outside the integral. This

  

    

resultsin

.

a L 1. 1-5

[[mex =1JlN]’dw =1]. as

x‘ 0 0 i

L L .

11:: r-éj

=I<Z>=-I<-:>

[2. L 2

=-I{F.} [3.76]



73

Substituting [3.74]. [3.75]. and [3.76] in [3.73] results in

    

' 1 1‘ L‘

(‘ __l: 2 1 A5 -5 —§ Qi _ -5

{NHL 2]{A.}* 1 1 {2,} "-1; [3'7"
.. 2 2 . L 2]

or

{R.‘"} = [C.1{A}+IK.1{Q}-‘I{F.} [3.781

 

A system of equations is generamd by evaluating the following weighted

residual integral for the linear element

R(x)= IW(x)[(%—EQT:)%+%%+E%§§-(So-S,)]d.x [3.79]

which is the result of integrating the product of the unsteady momentum

equation, [3.46], and a weighting function, W(x), over the length ofthe element.

Based on the previous discussion, the Galean formulation of [3.79] utilizes

the shape functions N,- and Ni as the weighting functions at nodes i and j,

respectively.

Substituting the shape functions in [3.79] and rewriting the results in a

matrix form produces
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“I N 1 Q2 314 | 2Q 8Q l 1 89 S S l

{I(a ={R(¢)}= I {[1 8 3Jax g‘va 8A 81 (o 1)]

"(a x,“ 1 Q2 aAIZQaQI IBQ S S l}

3!: {(1 gASJax gAza 3A 3' (o 1)] J

or

{R‘.:’}=f[N1[f—ngufim’fi—fidx

’1 l 3Q ’1

T__ _ T _

+1911“ 3: dx {[N] (50 s,)dx [3.81]

The partial derivative wax is determined by evaluating the derivative of

[3.57] with respect to the space dimension. This is accomplished by evaluating

the partial derivatives ofN,- and N, with respect to x since the nodal values AU)

and Aja) are constant with respect to the x — or s -space dimension. This

results in

i”;a+aa

BN

.1{2:}
= [B] {A} [3.82]

a’
la
’

$4
.5
5

._
"_
.

a
’
I
fi

The partial derivative BQ/ax was developed earlier as expressed by

Equation [3.68].
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The partial derivative 89/31 is determined by evaluating the derivative of

[3.58] with respect to time. This is accomplished by evaluating the partial

derivatives ofQ,- and Q,- with respect to time and multiplying the results by the

shape functions N,- and N, that are constant with respect to time. This results

in

”‘29:.”
”a: 3

4
8

g

a:

=[N‘ N]<

 3
4
8
3
L
8

 

=[N]{Q} [3.83]

Using [3.68], [3.82], and [3.83], the individual terms ofEquation [3.81] are

integrated individually as follows :

81

r Lg: _ 1 a2
{[NJL. 34’]:a=fim[1‘373)w”“d3

{A}

II

/
—
\

'
~
l
l
*
-
‘

I

fi
l
e

U
N

\
.
=
;
/

l
l

.
—
N
I

N
'
H
N
I
:

  L5-
2

=[%-E%-,)[KJ{A} [3341
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[thfoanx= [lb/17:?—[B]{Q}ds

L V1-5

3] H am
0 _

[ L  

-l

-39. 2

1
{Q}

.
N
l
r
—

N
i
t
-
j

.

  

-—,[KJ {Q}

]INI’E‘E?—dx= fin/ff;—[N1{Q}ds
.

-_1_ 1'

S

'34 L [1‘3 H‘MQ}

c
h
a
t
-

b
-
l
h

_._1.

a
x
l
l
‘
u
l
h

b
o
l
t
“

c
a
l
l
“

1

=g—AICJ {Q}

[3.85]

[3.86]
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‘1 L

fin/1’ (S.-sad: = (S.— S,) [IA/I’d:
x‘ 0

r

  

S‘

L l-Z

=(so-s,)f« s as

o L E J

L1
2

=(So—Sf)<£>

  2

=(So-3,){F.}

Substituting [3.84], [3.85], [3.86], and [3.87] in [3.81] produces

{33)}: (T'fi3)[m{“+[3w)[K.]{Q}

{2%)[C.]{Q}-(So-Sy){l'.}

=[£X)[c.]{a}+[%-gQ—:,]IK.]{A}

:QH][K1{Q}—-<soSlum

or

{RS’}=IC..1{Q}+[K..1{A}+[K..l{Q}-{F.}

 

[3.87]

[3.88]

[3.89]

The residual vector of the linear element for the steady momentum

equation, [3.53], is developed in the similar way as the unsteady momentum

equation. The result is



  

r8,
1

1.9.“. 24 32.22- ..(0}: RM {N‘IIT 8 3]&X 4.818231 (so Sfildt

{R.. { *
R30}:3’ l 2 8A

l”[[f'§‘=]s'*§%%“i""]“
[3t

‘1 2

= ].~.r[[.;.-§fi]%.§%§-(s.-s,.].. [3.901

01‘

{R‘.?}- [IN](73921587573)a+lwf§f¢§¢

I!

- ftNl’(S.—S,>dx [3.91]
x.

Substituting [3.84], [3.85], and [3.87] in [3.91] yields

2

{RS’}=[-11-.-£-3)[K.]{A}+[:Q'—.)[K.]{Q}—.(S -S,){F.} [3.921

or

{£9} = [K..1{A}+[K..1 {Q} -{F..} [3.93]

 

A smcial case of the momentum equation is the zero-inertia equation

which is based on the assumption that the change in momentum is negligible.

This assumption drastically reduces the momentum equation and greatly

simplifies the process of numerical analysis. Based on the above assumption,

[3.26] reduces to
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XForces) = 0 [3.94]

Substituting the forces in [3.94] results in

F,,,-—+F-=F,—0 [3.95]

Substituting [3.15]. [3.21], and [3.25] in [3.95] produces

yASodx -1A §dx -yAS,dx = 0 i [3.96]

01'

3.45%:- [3.97]

or

13‘-(s-=s,)-o [3.98]

The residual vector of the linear element for the zero-inertia momentum

equation, [3.98], can be developed in a similar way as discussed in the previous

section. The result is

  

R0)

{R“’}= { (.,}=f »

R1 ’ 13A
IN.(———(so-s,)}zw

[a

=fl~1[——-(S.-S,))4r

01'
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., 8:

{RS’}= [INF-111%dx-IIN1W80-Sfldx [3.991

I. I.

The first term of [3.99] is developed based on Equation [3.82]. This

results in

I" 1 as " 1r _ r_
[IN] i371: - {IN} Tm{Am
‘1

{A}

  

a
l
t
-

p
—
s

l
M
I
M
-
N
I

1

= [K14] {A} [34ml

The second term of [3.99] was developed earlier in [3.87]. However, the

friction slope, 5,, can be expressed as a function of flow rate, Q, and

cross-sectional area of flow, A , using any of the uniform flow equations that

were reviewed in Chapter II. If the Manning equation is selected, Equation

[3.87] becomes



8’

II”11' (So "' Sfldx = (so "' sf)

1,

81

£1

2

E

2

_£ (50.31),-

"2 (so-s,»

. "Q; .

-2 5“”[W’I
24 an >

ssw-[Ajkan]:

' "Qi ‘

(WT
"Q1 >

AM” J

 

 

  

 

NH2 5,, 2
 

  

[3.101]

Substituting [3.100] and [3.101] in [3.99] yields the system ofequations

{RS’} r;-

 

 

 

' 1 1‘ '1; "20:”

"2' 5 {14.};(4 “mower?

-1 l A]. L029} 2 so

. 2 2. _§A}Rffl   

[3.102]

Equation [3.102] is rewritten in a form similar to that ofthe steady momentum

formulation which is expressed by [3.93]. This results in

01'

u¢2=%

 

 

"-1 1] "E "’9‘ o ’
2 2 {141+ 2A.’R.-"’

_.l. .1. A1 0 E "2Q!

» 2 2- . 2AM”.   

=%[Kc]{A}+[K.g]{Q}'So{Fe}

{3:} -%{i::.}
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{RS’}=[K..1{A}+IK..1{Q}-{F.} [3.1031

 

Surface irrigation analysis can be performed based on both the continuity

and momentum equations, or the so-called the Saint-Venant equations ([3.9]

and [3.46]). Various assumptions are implemented to simplify the momentum

equation ([3.46]) to the so-called kinematic wave approximation. This

approximation is based on the assumption that the inertial terms together

with the term that describes the pressure variation of flow in the momentum

equation are negligible. The simplified momentum equation then has the form

So-S,= 0 [3.104]

while the continuity equation ([3.9]) is kept unchanged. These assumptions

imply that surface flow is at normal depth throughout the domain of solution.

Based on the above assumptions, Equation [3.104] is utilized in [2.11], [2.12],

or [2.13] to calculate the flow rate, Q, at nodes i and j. Ifthe Manning equation

([2.12]) is selected, the following equations result

2.- =fiAfif’St"

and

91‘ =i“???

01'

(lkf’sryi—Qfio [3.105]
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and

1
(;R,?”sgf)a,-Q,=o [3.106]

where R, and R, are the hydraulic radii at nodes 1' and j, respectively. Since we

are primarily interested in the contribution of nodes 1' and j to the element,

only halfofthe flow terms in [3.105] and [3.106] will be utilized as the element

contribution to the final system of equations. Equations [3.105] and [3.106]

can be combined together in a matrix form to yield

ii -- 0
RS' 0 A' .-i .. .. {.‘}+ 2' lgHg} [3,107]

0 RES; 1 0 "
  

[King] {A } 4" [Km] {Q} "' {F2} = {0} [3-108]

where {17,} = {g}.

 

The linear one-dimensional finite element formulation of the continuity

equation, [3.78], can be rewritten as

A [-1 1‘ 'J;
(,__21 22Q._‘2

““1 6L 2]{A}* -1 .1_{Q.-} Ce ””91
   

On the other hand, [3.89], [3.93], [3.103], and [3.108] can be expressed in the

general form
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(02‘93)+5 (Cz‘cs) ‘

(0 =9, 201 C: 01} — 2 2 2 {A3}
{R3,} 6[ C1 201]{Qj +1 -(Cz"'C3) (Oz-€94.51 A1

L 2 2 2.

 

  

’-c,+co c, '

2 2 Q1 fi

* c. we {OJ-{13} [3'1”]
2 2

 

  

where co, cl, c2, c,, c,, c,, c,, f}, and f,- are coeficients that vary based on the

selmd model.

There are four difi‘erent models that will result based on the previous

discussion. These include

i.W:This model is the result ofcombining both the

continuity equation and the unsteady momentum equation. The various

coeficients in [3.110] may be expressed as

l l 2

., «=1.» 0].], we} 4%)
L L

c, = 0, c,- 0, f} =E-(So-Sf)‘, and j} =-2-(So-S,)j -

co

ii.W: This model is the result of combining both

the continuity equation and the steady momentum equation. The various

coeficients in [3.110] may be expressed as

1 2

90:09 61‘0’ 'c’=(T} cfihgfi} c‘=[§z}

L L
c,=o, cj=o, 1:.=-2-(s,-s,),, and f,=§(s,-s,)j.
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iii.W: Thismodelisthe resultofcombiningboththe

continuity equation and the zero-inertia assumptions that result in [3.98]. The

various coeficients in [3.110] may be expressed as

L n2 1
Co=§A—2-RQ—m-, c,=0, Cz=(7) 63-40, C4=0,

c, = 0, c. = 0, f, =§Sw and fj-=%So,-

iv.WW: This model is the result of combining both

the continuity equation and the kinematic wave or the uniform flow

assumptions that result in [3.108]. The various coeficients in [3.110] may be

expressedas

Co =-1, C1 = O, 02 = 0, C3 = 0, C4 = 0,

c,=%-R,”S&”, affirm, f..=o, and 1;=o-

Equations [3.109] and [3.110] are solved simultaneously for every

element to determine both the flow rate, Q, and the cross sectional area offlow,

A , at each node. These equations are combined together to produce one system

of equations for every element. The resultant system of equations has the

general form



      

    

.. 2 o 1 0' A.-

R. Lo 2c 0 c Q.
(. _‘ II: =_ l l 1

{R5 R,,*610 2 o‘A,’

.Rui. .0 cl 0 2“. .Qi.

' o -1 o 1 ' FA.‘

+1 -Cz+C3+C,- -C4+c° €2-03 C4 Q;

o -1 o 1 ‘A,’

-0244}, -C4 €2-C3+Cj 044130. Q”

r’IiL‘

2

f.

“4],; [3.111]

2

bf]. J  
01'

{R”1=1€1{¢1+1K1{¢}-{F1 13.1121
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3. Finite Element Formulation Using Quadratic Elements

The numerical solution of the Saint-Venant equations is repeated in this

section. However, the analysis this time is accomplished based on the c sub

Galerkin formulation of the finite element method and using quadratic

element.

 

A system of equations is generated by evaluating the weighted residual

integral

’2

R(x)= IWQ)[2£—+%+I)dx [3.113]

x,

which is the result ofintegrating the product ofthe continuity equation ([3.9])

and weighting function, W(x), over the length of the quadratic element. The

Galean formulation of [3.113] is based on considering the shape functions M,

"iv and N, as the weighting functions at nodes i, j, and h, respectively. Since

the elementinFigure 4 is quadratic, there will be a system ofthme equations

for every element.

The finite element formulation is applied after representing the

unknowns by linear approximations ofthe form

9‘.) =Ni¢i +Nj¢j +Nk¢h [3.114]

01'



“7
 

   

 

 

 

(A) F‘—

...
F‘s

_,x 1 j flk a .

P—L—4

I(B)|

  

 

Figure 4. Finite element discretization. (A) Fur-row flow. (13) Generic

quadratic element in the system oflocal coordinates. (C) Generic

quadratic element in the system ofnatural coordinates.
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4».

¢m=lNi N1 N2] ¢i

4%

=[N]{¢} [3.115]

whereo is the unknown; N,,N,, andN, are the shape functions at nodes 1,}, and

k, respectively; and Q, 41,, and d», are the values ofthe unknowns at nodes i, j,

andk, respectively.

Based on [3.115], the cross sectional area offlow, A, and the flow rate, Q,

are expressed as

AW) =N1A.(t)+N,-A,-(t)+N.'A.(t)

A10)

= [Ni Ni NJ A10)

A2“)

= [N] {Am} [3.116]

and

Qua‘)=N5Qi(t)+Nij(‘)+NtQA:(‘)

Q10)

=[N5 N} NJ 20)

Qt“)

= [N] {Cm} [1117}

The shape functions for the one-dimensional quadratic element are

expressed by the following equations (Segerlind, 1984)

N.=22;(x-X,)<x-X.> 13.1181

N,=—-E;(x-X.)(x-X.) 13.1191



N.=%(x-X.-)(x-X,) 13.1201

whereL isthelength ofthe element.

The shape functions can be written in the system of local coordinates

which allow [for easier integration over the element. The shape functions for a

system of coordinates located at node 1' are obtained from [3.118], [3.119], and

[3.120] by replacing x with X, +s (Figure 4a). This results in the following

equations:

2

N.=z;o:.+s—X,)or.+s-X.)

=22;(s-%)(s-L) 13.1211

4

Nj=“i'5(xi+3-Xi)(xi+s“xi)

=-£3(s)(s -L) [3.122]

N.=i%0t.+s-X.>a(.-+s-X,-)

2 L=17“)(’ -5) [3.123]

The shape functions are then rewritten in the system of natural

coordinates which consist of a pair of length ratios as shown in Figure 4b.

These ratios are defined as (Segerlind, 1984)

L -s s
It =(T) and [2.-.(2) [3.124]
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where s is the distance from node i. The shape functions which are expressed

by [3.121], [3.122], and [3.123] can be rewritten in the system of natural

coordinates and the results are

1129-12—3

132.51%)
= (12" 11) ('11)

= I:— 1112 [3.125]

~j=1%)(%:—‘—J
= 112 [3.126]

s ] {2.1 -L

~t=(z.-.—)
_ 2‘ [13.29.
" L AL L

=lz(lr11)

=13-I1l. [3.127]

  

The system ofnatural coordinates is very essential for directly evaluating

various integrals that contain the shape functions directly as will be

highlighted in the subsequent discussion.

The partial derivative ofEquation [3.117] with respect to x is computed by

evaluating the partial derivatives of N,, N,, and N, with respect to 1: since the

nodal values Q,(t), Q,-(t), and Q,(t) are assumed constant with respect to the x -

or 3 -space dimension. The partial derivative of [3.117] becomes
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= [B] [9] [3.128]

The derivatives of the shape functions with respect to the x - or .1 -space

dimension are as follows:

 

4 3L
=34 -7) [3.129]

3N a~._

ax): as: 22((3 -L)+s)

s L=_;(, -5) [3.130]

5’.”_e_2”_.2-_2_ -2 .,
:1: as L2 2 S

4 L74"?) [3.131]

The derivatives of the shape fimctions which are expressed by [3.129],

[3.130], and [3.131] is expreswd in the system ofnatural coordinates as

§N_.__1_ 4s-3L

as L L

 

=i—(31,-1,-2) [3.132]
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a
’
l
fi

I

t
‘
l
-
h

P
I
A

h
l
h '2: —L)

‘3+_..s_-£.
[L L

((2-11) [3.133]

.1.)
{2.1; s-L

[L L

 
a
?

1L

8
1
:
5

ll

l
‘
l
r
—

(
"
I
t
-

 

1
7912-1!) [3.134]

The partial derivative of Equation [3.116] with respect to time is

computed by evaluating the partial derivatives of the cross sectional are of

flow, A, at nodes i,j, and k. The products of the resulting functions and the

respective shape functions which are considered constant with respect to time

produce

We at
””3:

8A

31“" "arm's:

raAi}

= [N,. N, 111,11

3
L
?

9"
I

DA,

  3|

= [N] {A} [3.135]

Substituting the shape functions in [3.135] results in the system of

equations



‘1

R,‘"= IN,(%‘3—+%+I)¢x [3.136]

x,

" 3A
11]": JN,(-$+%%+I [3.137]

‘1

Rf"=f1v —+%%+I}1x [3.138]

Equations [3.137], [3.137], and [3.138] can be rewritten in the matrix form

‘

IN%(—+—+I}h

my}: 2:: =‘i"i[w+é§*’)“

[N _._.,)..
J

’1

= f11111135933“ ' 13.1391
8‘

V

  

where [N]’ is the transpose ofmatrix [N].

Substituting [3.128] and [3.135] in [3.139] results in

3!

{Rf’} = [[N1’11N11A1+131{Q}+ndx
x,
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‘0 ‘1 ‘1

{RP} = [1N1’1N11A1dx + [1N1’1311Q1dx + [1N1’Idx 13.1401
81 81 *1

The individual terms of Equation [3.140] are then integrated over the

length of the quadratic element in either system of local or natural

coordinates. However, the system of natural coordinates is used in the

development of this section since such a system simplifies the integration

process immensely. The first right side term of Equation [3.140] is evaluamd

88

‘3 L

[1N1’1N11A1dx = [[N1’ 11111411111
2, 0

1

= [[1,1me
0

1 ’12 ‘11,:

=L [ 41.1. [If-1.1. 41.1. é-WMA}

0 £22 “1112

. I.‘ - 2131. +131.” 4131. - 4131’ 1:1:— 131. - 1.1: +1.21.

=L 4131-4131: 16133 4113-41313 dam

° 133-131271113 +1313 41113-41313 1; ~21312+1313

[3.141]

where s= (L1,), 312:1. and I.=(1-I.>~

The various integrals in [3.141] are reduced to the form

[1;1(1- 19""’d1,=11:((—:—):$)) [3.142]
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where l‘(n + l) = n! (Abramowitz and Stegun, 1964). The integrals ofthe matrix

in [3.141] are then evaluated separately as follows:

[a1-211.+z:z:>az.= [11131-2 [21,122+ [211.21.
0 0 0 o

 

 

_ 4101 _ 3111 + 2121

'(4+0+1)1 (3+1+1)1 (2+2+1)1

=1——1260 [3.143]

, 2, 3111 2121

[(4%411%{(3+1+1)! (24-244)!)

=é5 [3.144]

2, , ,2 _ 2121 _ 3111 _ 1131

[“12"Ihllhufi‘u’ (2+2+1)1 (3+1+1)1 (1+3+1)1

1 2121 _—4

T(2+2+1)1" 120 [1145]

‘ 212122 _

[(la‘lzm‘l (2+2+1)1)

=% [3.146]

1

3 ,2 _ 1131 _ 2121

[(4A12-41112M1r“((1+3+1)1
(2+2+1)1)

=38E [3.147]
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1

, ,, _ 0141 _ 1131 2121

[(4'2""+"l’)dl"(0+4+1)1 (1+3+1)1)+(2+2+1)1

16
=12?) [3.148]

Substituting [3.143] through [3.148] in [3.1411 results in

=- L 4 2 -1 4.-

[1N]’[N]{A}dx=3-5[ 2 16 2 J A,

‘1 -1 2 4 A;

=[C.]{A} [3.149]

The second integral of [3.140] is evaluated using the same procedure.

This results in

H L

[111/1’13] 1914: = [1111713121191
3, 0

l

= [1111]" 181Ld1.{Q1
0

1 g-hh 1 l 1

=1, [ 41,1, [3(34-11-2) Z(-4I,+4I.) Z(3lz-lt)]dlz{Q}

o g’hk

, -1,’+4z,’1,-31,z,’—21,’+ 21,1, -111,’1,+4z,1,’+41,3 Mfg-31,134,

= 121113-4li'lz-81112 ~161113+161312 121113 -411’12

° 313-4I1I§+11’12-213+21112 -4l§+8l113-411’12 313-41113H1’lz

41219} [3.150]

where s=(Lt.1. $151.. and lx=(1-la)-

The integrals of the matrix in [3.150] can be evaluated separately as

follows:



1

fH.’+4t.’4-31.I:-21?+2I.Iodl.=
0

 

-212.

’24

1

2 2 _ 1121 __ 2111

{(121,5-41,1,-81,1,)d1,_1 (1+2+1)1) (2+1+1)1)

1111

(l+1+1)!

-212
'24

_ 2 0131 1121

11312“MIR”29+”‘le" 3((04-3211») (1+2+1)1

J 2111 _ 0121 + 1111

T(2+1+1)1 (0+2+1)1 (1+1+1)1

-_4_

“'24

1
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310! 211!
 

(3+0+1)!+

_ 112! _ 210!

(1+2+1)! (2+-0+1)!

z 2 3 _ 211!

{(4554-4142 +4I,)clI,—-8(———(2+1 + 1)! )4-

310!

(3+0-1-l)!

-1_6
'24

112!

l

I(—lél,l,’+ 1611219111, = -1

o

(1+2+l)!

J“

(2+-1+1)!

+ 111!

(1+1-1-1)!

 

1!2!

(1+2+1)!

211!

(2+1 + l)!

 

J

].-.o

J

J

J

[3.151]

[3.152]

[3.153]

[3.154]

[3.155]
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0.3! 112!

I941”+8“:411W12=4((0+3+_—)+8((11)! +2+ 1)!)

2!!!

(2+ 1+1)!

2 2111 1121

[(4%3%I‘W’A((2+-1+1») 3((1+2-1-1)!]

3!0!

(3 +04» 1)!

 

E
l
l
i
s

1

2 2 _ 1121 _ 2111

{(121,12-412191112-1 (”2+1”) (2+1+1)1)

1

M
S
:

0.31 1121

1‘31“4"“1‘9‘19: 3((0+3+1_—)1]4((1+2+1)1)

2 2111

T(2+ 1+ n1

_1_2
'24

 

Substituting [3.151] through [3.159] in [3.150] results in

1 -12 16 - Q.-

[[111] [B]{Q}dx=fi[—16 0 16] Q,-

4 -16 12 Q,

= [K2] {Q}

[3.156]

[3.157]

[3.158]

[3.159]

[3.160]
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The third integral of [3.140] is evaluated using a similar procedure as

shown above. This results in

8. L

r _ r
{[N] Id: -I {[N] d:

1

_ r
-1 {[N] 1.1112

1 112'112

=1Lf 41,12 12 [3.161]

0 122‘“:

where s=(LI2), :—:=L: and 11=(1'12)'

The integrals ofthe vector in [3.161] are evaluated separately as follows:

1

2 _ 2101 _ 1111

[0"1‘94972-10411» (1+1+1)1

 

 

 

1
=3 [3.162]

' 1111

{mwlfi‘huoatm}

4
=6

[3.163]

1

2 _ 0121 _ 1111

{(B'I‘W’rmnn)! (1+1+1)1

1
-3 [3.164]

Substituting [3.162]. [3.163], and [3.164] in [3.161] produces
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.2 l

[[Nfldx =53+}

1

=—I{F.1 [34651

Substituting [3.149]. [3.160], and [3.165] in [3.140] results in

L 4 2 -1 A.-

{Rf’}=-3-6[ 2 16 2 HA2}

-1 2 4 2

+%[ :1126 1: 16Hg,}-%{j} [3.166]

4 —16 12 Q, -1

or

{RP}=10.1{A1+1K.1{Q}-I1F.1 13.1671

 

A system of equations is generated by evaluating the following weighted

residual integral

 

a

_ LE. 24;. 2939 139- _Raylwmflr 3.43]ax+g,12ax+gA3, (s2 s,)]dx [3.168]

which is the result of integrating the product of the unsteady momentum

equation, [3.46], and a weighting function, W(x), over the length of the
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quadratic element. As discussed in the previous section, the Galean

formulation of[3.168] is based on considering the shape functions N2, N11 and N,

as the weighting functions at nodes LL and 1:, respectively.

Substituting the shape functions in [3.169] and rewriting the results in a

matrix form yields the system ofequations

1 Q2 3’1 M39139

IN‘KTgA’)ax++gA23x+gA8:--(SoS,)]dx

R."

.. _ 2.2”” 0’ 34 2030130

{R3}- Rj f~'{(TgT3J3x++gA’&+gAat”(SoS,)]dx

Rf"

r

  2.: a. 2—Aza.+-Aa.--<soS1]
J

[1-Q__’_]3_A_+ZQBQ 180

T

’2

_ 1' 1 Q2 3A _2_Q_aQ __3_Q__

-1... 1.-31m7. .2]

Or

(a _ T:Qanx

+f1~1’g—A—anx-‘ [IN](S.— spar [3.1691

The partial derivative 311/811 is determined by evaluating the derivative of

[3.116] with respect to the space dimension. This is accomplished through the

evaluation of the partial derivatives of the shape functions with respect to :1

since the nodal values A2“), Am, and A2“, are assumed constant with respect to

thex-ors-space dimension . This results in
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M13A awA 3111,.

27Ta?it"s-‘1

_ fl 3111,. an. 2‘

’[ax 3x" 317] "
A1

=[B]{A} [3.170]

The partial derivative aQ/ax was evaluated earlier as expressed by

Equation [3.128].

The partial derivative ofanat is determined by evaluating the derivative

of[3.117] with respect to time. This is accomplished through the evaluation of

the partial derivative of flow rate, Q , at nodes i, j, and h, respectively, with

reswct to time and multiplying the results with the respective shape functions

which are assumed constant with respect to time. This results in

9g 391392-39.
at=11I,.-(.J,—t-‘+11I.at41112—37

= [N2 N1. N211

  

:32.
a:

92
a:

g

a:

Q.-

=[Ni N} ”1] Q

Q.

= [M {Q} [3.171]

The various terms of Equation [3.169] are integrated individually afier

utilizing the results ofEquations [3.170], [3.128], and [3.171]. The first term is

determined as
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1 Q2

[IN1’[;-%—;)—dx= [IN]’[;-7[IBMIA}

[=--—[:[IN1’ IBILdtIA} [3.172]
T A3

The right side integral of [3.172] is evaluated separately as

112- 112

[INI’IB1Ldz2=L[{41.12 [[fi-(slz-Irz) 541341.) %(3£2"1)]d12

13-1112

2 -12’+412’12-31212’-2122 +21212 -1112’12+41212’+4123 41312—31213-12

= 121213-41312-81212 -161212’+1612’1~2 121213-41312 412

° 313-41113+I?12-213+21112 -4I§+81113-4l?lz 313-41112’+11’12

[3.173]

where s= (L1,), -—ZZ=L, and I2=(1- £2)

The integrals of the matrix in [3.173] were evaluated previously.

Substituting [3.151] through [3.159] in [3.173] yields

-12 16 -

[[N]’[B]Ld12=2—14-|:-16 0 16] [3.174]

4 -16 12

Substituting [3.174] in [3.172] yields

171.’J’--(%£21013}? 30; inEJ
2

=[%—EQZ-5)[Kc]{A} [3.175]



105

The second integral of[3.169] is evaluated using the same prowdure. The

result is

39d, _. .22[[M’(2.12]: - [IN1’[gA2)[Blds{Q}

20 [ ‘ 1'
= — [N] IBJLdAIQ} [3.1761

[1121’ I

The right side integral of [3.176] was evaluated previously ([3.174]).

Substituting [3.174] in [3.176] results in

-12 16 - Q;

212 22. = 22; (1) _
1m(.7sz (.A2J24[16 .1. 12M

Q1

=[f—f;)1x.1 1121 [3.177]

The third integral of [3.169] is evaluated using a similar prowdure as

discussed in the earlier discussion. The result is

[[Nl'g-l-[)—dx= [IN1’£—[)[Nlds{Q}

1

=(EIZJJM 111112111210} 13.1781
0

The right side integral of [3.178] was evaluated previously ([3.1491). The

results are summarized as

1 L 4 2 -l

[[Nl’INJLdI2=-33 2 16 2 [3.179]

o -1 2 4

Subsfitufing.[3.179] in [3.178] results in
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1t~1’(.’J%7=(.‘:J(’J[§2 1} é‘HégJ

{310.110} 13.1801

0
0

The last integral of [3.169] is evaluated using the same procedure as

discussed above

’3 L

[IN]’ (S.- S,)dx = (S.- S,)[We
3‘ 0

1

= (so-3,) [[1111’th
0

l g'hh

=L(S.-S,)[ 41112 12 13.1811

0 (22",112

The integrals ofthe vector in [3.181] were evaluated earlier in [3.162] through

[3.164]. Substituting these equations in [3.181] produces

a l

flWTtk-SMR=kafi(%)[%

a 1

=(So-S,){F.} [3.182]

Substituting [3.175]. [3.177], [3.180], and [3.182] in [3.169] produces the

system ofequations
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Q.-

{11: =(2%J(%J[.’2 1:6 éngi}

{21.-2%[2‘4-[322 3233]}k

l

{4} [3.183]

1

01'

IR“’}=[i)ICIIQ}+ l—Q: [K]{A}a 8A 1: T 8A3 c

.22

842

= [(3.] {Q} + [KM] {A} + [K229] {Q} - (So-Sf) {F.} [1184]

)[K.] {Q}- (So-Sf) {Fe}

 

The residual vector of the thme-nodal quadratic element for the steady

momentum equation, [3.53], is developed by following the same procedure of

the unsteady momentum equation. The result is
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"a

1 Q2 811

f"{["mJ7’%%“’°"f’J’x2 1

RI“ *1

(c 2.. (C) -2 l-.Q_2 9.4. 31.232- -

{Rm-{:16 - {NMT sA’J3x+gA’3x (3° S’)]dx>
k

‘0

1 9’ a4

111—1—1
1" J

" r 1 0’ 64 2080
= [[N] [[i-‘g—Aj]$+m$-(so-Sl)]dx

[3185]

‘1

or

7 ’1

-[IN1’IS.-S,)dx [3.186]
‘1

Substituting [3.175]. [3.177], and [3.182] in [3.186] results in

-12 16 -4 A.-

{RS’}=[l-£ [i] -16 0 16 A.

T 3‘3 24 4 -16 12 1
A1

-12, 16 — Q.-

-2%[(%)[-16 0 16 0,-

3 4 -16 12 Q,

L 1

—(s2-s,)[3){4} 13.1871
1
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1. - 1-2.2. 29
IRA-[T 8A2)[K.]{A}+(g2)[K.]{Q}--(S. -S,)IF.}

= [KM] {Al-t [K229] {Q}-{F..} [3.188]

 

The residual vector of the quadratic element for the zero-inertia

momentum equation, [3.177], is developed based on the same prowdure that

was followed in the previous section. The result is

[NE‘M3;”(so5,)[0

R.“

{112’} = R.” =1[N[Ta‘-—-<S.-S,)]4x

Rf"

Y

  

‘1 ‘1

IRS’} = [IN1’[-;—)%dx - [INJ’18.—Spa 13.1891

81 :1

Substituting [3.175] and [3.182] in [3.189] results in the system of equations

«71-1-1011? if. 2H2}-..7121:}
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where (NT) is the new coeficient in [3.98] instead of(1/1' - Q2/3113). The friction

slope, S,, is expressed as a function of flow rate, Q, and cross sectional area of

flow, A , using any ofthe uniform flow equations that were reviewed in Chapter

H. Ifthe Manning equation is selected, [3.190] becomes

1 1 ' -12 16 - Ai L (SO—SI)I

_ 4 - 16 12 At (50-5,).

1 '-12 16 —4 A13. L So.-

'24] —16 0 16[A, +% 462 7 4.32,.

_ 4 -16 12 A, s,, so,

1 -12 16 —4 A.-

=(7J( [-1. o .2],
4 -16 12

i

24

1 A.

"Q5

AR.-

L {Aan213]] L 45-
+_ __ o,-

+6291?!“ 6 so.

"Qt

.4er

The system ofequations above can be rewritten in a similar form as that ofthe

steady momentum formulation ([3.1881). This results in
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{RS’}=(-11.-)[;14-)[::126 :3; ['qu

 

 

 

  

A1

. 2 .

" Q}, 0 0
AR, Q

L "2Q; i

+-6- 0 :4ij” 0 {Qj}

2 0.

0 0 " Q‘

L 43313”.

S...
'17; 430’, [3.191]

so:

01'

IRS’} =%IK.1 {A}+[K.g] 101-3.111.}

= [K22] {A} + [Kg] {Q} - {FJ [3.192]

 

As was discussed previously, various assumptions are implemented to

simplify [3.46] to the so-called kinematic wave approximation. Under these

assumptions, the momentum equation reduces to

82-3,: 0 [3.193]

Equation [3.193] is utilized in the Manning equation ([2.12]) to calculate

the flow rate, Q , at individual nodes. This results in

1

Q: =741an51:?
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1

0.- =mm

and

1

Q; =:Athm31:2

where R2, 11,-, and R2 are the hydraulic radii at nodes 1', j, and k, respectively.

The above equations can be rewritten as

(ikf’sgz’y’gw [3.194]

(inf’so’fyrgfio [3.195]

and

(£1222351:2”)3: - Qt = 0 [3-196]

Since we are primarily interested in the contribution ofnodes i , j, and k to the

individual element, only half of the flow terms in Equations [3.194] through

[3.196] will be utilized as the element contribution to the final system of

equations. Thus, Equations [3.194], [3.195], and [3.196] can be rewritten in

the matrix form

1 Rims? 0 0 AI [-2 0 0 91 0

3 0 211%,}? 0 A, +‘ 0 -1 0 Q, =[0} [3.197]

0 0 11335;,” A. [0 0 '1' Q. 0

 

01’

[Kn] [4 } + [Km] {Q} - {F1} = {0}
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The one-dimensional quadratic element formulation of the continuity

equation, [3.167], is rewritten as

L 4 2 -1 A.-

{Rf’}=§[2 16 2[A,-

LE .13 "4.. Pi}

24 24 24 Qi 6

16 16 -4I-
+ -24 0 54- {Qj}-<—6’£> [3.198]

1 _1_6 1.2 9* .12
_ 24 24 24 . ‘7‘    

On the other hand, Equations [3.183], [3.187], [3.191], and [3.197] are

expressedin the general form
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4C1 2‘1 ‘c1 Q

{R:)}='3£0'[ 2‘1 16‘'1 2‘1]{Q}}

 

 

   

'- C1 201 401 Q‘

"-(cz-ca)+c.- 16(c2-ca) -4(c2-ca)]

2 24 24 A.

+ ‘16“: '" 93) Ci 16(02' Cs) A;

24 24 A

4(02‘03) ”16(02'03) (oz-ca)“. "

L 24 24 2 .

"-c2-1-co2 16c, -4c2 '

2 24 24

Q.- I?
-l6c 16c

‘ ——‘ 0. - 4,;
24 ”W 24

404 -l&‘ C4 '7' Cu Q‘ 1;

2'47 24 2 _

 

[3.199] 

 

 
  

where 02,-, co}, 02,, c2, c2, c2, c2, (:2, 1:2, (:2, fl, f}, and j; are coeficients that vary based

on the selected model.

There are four difl'erent models that will result based on the previous

discussion. These include

i.W: This model is the result ofcombining both the

continuity equation and the unsteady momentum equation. The various

coeficients in [3.199] may be expressed as

co,- = 0, co, = 0, co, = 0, ,- ,-

c1=e1 we} (—-—-J $12271
L L

f2=%(So-S,)i, f}=E(So-S,)j, and 125360-89,-
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ii.W:This model is the result ofcombining both

the continuity equation and the steady momentum equation. The various

coeficients in [3.199] may be expressed as

c22=0, coj=0, c22=0, 02:0, c-=0, c2=0,

2

we we) we}
L L

£=E(So-Sj)p 15=3(So-S,)j. and ft=%(so'sr)1'

iii.W: This model is the result of combining both the

continuity equation and the zero-inertia assumptions that produced [3.98].

The various coeficients in [3.199] may be expressed as

Ln’Q, 4Lanj Ln’Q,

3112’an °’ 611,211,?” °‘ 311312;"

 

co, =

L L L

.0 ='6'Sw fj =3’Soj’ and fl =35}: °

iv.W:This model is the result of combining both

the continuity equation and the kinematic wave or the uniform flow

assumptions that produced [3.193]. The various coemcients in [3.199] may be

expressed as
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Equations [3.198] and [3.199] should be solved simultaneously for every

element to determine both the flow rate, Q, and the cross sectional area offlow,

A, at each node. However, these systems of equations are combined together

to produce one system ofequations for every element. The resultant system of

      

   

 

  
  

    

equations will have the form

V (.r

11:2) ' 4 0 2 0 —1 0 ‘ '49

R77) 0 4c, 0 2c, 0 -c2 Q,

R‘.“225:4 "mi 2 0 16 0 2 0 [11,»

R53 30 0 2c, 0 16¢, 0 21:, Q,

Rf? -1 0 2 0 4 0 11',

[R22 - O -61 0 201 0 461‘ [an

' 12 16 4 '

° "22 0 a 0 "2: .4,

.2... 7+7» .193 .122 :13 ~46 6
2 2 24 24 24 A.[ f

16 16 Q. '
+ 0 -'2—4 0 0 0 '2: [A] '4:}L

.16c, -16c, 16c, 16c2 Q,’ ‘ 4f ’

24 24 Ci c0) 24 24 A; i

-I.L

0 i 0 -16. o 2 Qt _

24 24 24 ‘ ‘ 5

325. 1C: '1605 -16C4 C5+Ck C4+Cu t I; J

_ 24 24 24 24 2 2 .

[3200]

or

{R"’}=IC]{¢}+IK1{¢}-IF} [32011

Where Cs = C:- Cg.
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4. Finite Element Development Using Nonstandard Galerkin

Formulation

An oscillation free solution can be generamd using the nonstandard

Galerkin formulation of the linear finite element problem. The formulation

utilizes asymmetric weighting functions for approximating the space

derivatives. These asymmetric weighting functions have the form (Allen et al.,

1988; Lapidus and Pinder, 1982)

X.—x (1' i)(x-xj)
 

  

=;_
N,- L + 311 L2 [3.202]

x "X1 (1 ”X00 ‘X")

where L is the length of the element (refer to Figure 3). The shape functions

are then substituted as the weighting functions in Equations [3.72], [3.80],

[3.90], and [3.99] for the continuity, unsteady momentum, steady momumtum,

and simplified momentum (with zero-inertia assumption) equations,

respectively. Then the entire integration process is repeated. After completing

this step, the resultant element stifi‘ness matrix, [Kg], will have the form

1" N 1v. N-

flu]?-—-=-dx f[N][snows—102{N}[%x-' aaxjdsm

'-_1.+2 1-2‘

2 2 2

= __1._2 1+2 {¢}=[K.]{¢} 132041

1 2 2 2.  

where d> represents either A or Q .
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On the other hand, the time derivatives in the above equations may be

approximated using yet another nonstandard Galerkin procedure. This

procedure involves the lumping of the coeficients of the time derivative. In

order to accomplish this step, the variation of 8.4/3: and anat with respect to x

are assumed constant within the midpoints of adjacent linear elements

(Segerlind, 1984). This step is discussed in the following section for both linear

and quadratic elements.

5. Finite Element Development Using Lumped Formulation

The finite element development ofthe variation ofthe 321/81 and 39/8:

terms ofthe Saint-Venant equations with respect to the space dimension was

perfomd in the previous two sections based on the so-called consistent or

standard finite element Galerkin formulation. This formulation was utilized

in establishing the weighting functions together with approximating the

variation oftime derivatives ofarea offlow and flow rate with respect to x for

both the continuity, [3.9], and momentum, [3.46], equations. This

development was based on the assumption that the variations in the time

derivative are linear and quadratic for the linear and quadratic finite

elements, respectively (Segerlind, 1984). The linear and quadratic shape

functions were then used as a weighting coeficients for the linear and the

quadratic element formulations, respectively. The resultant element

capacitance matrix for the linear element in both the continuity and

momentum equations had the form

L 2 1

[C‘]='6[1 2] [3205]

On the other hand, applying the consistent finite element formulation to the

quadratic element resulted in the capacitance matrix
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L 4 2 -1

[c,]=§ 2 16 2 [3.206]

-1 2 4

An alternative to the above approach for defining the variation of 34/3:

and age: with respect to x is to assume that these are constant within the

midpoints of adjacent linear elements (Segerlind, 1984). This concept is

referred to as the lumped or nonstandard finite element Galerkin formulation.

Under this assumption, the variation ofboth 3AId: and anat with respect to x

are written explicitly using the step fimction. This concept is applied to both

linear and quadratic element formulations.

8.an

As discussed by Segerlind (1984), the variation of both BA/at and 39/81

within the element can be written using the step functions

3A _ L 3A5 L aAJ'

Emil-("53:44 7)]? ”m"

and

24414-21211 21%
L '0 for s<§

where h(s-§)=+' L} [3209]

L1 for s>§

  

The selection ofthe step fimction in [3.209] is based on the assumption that the

variations of am: and 39/3: with respect to x are constant within the

midpoints ofadjacent elements.
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The quantities multiplying 21,-, Aj, Q,, and Q, are the new shape functions,

N,’ and N}, where

N;=1-h( -92.) ' [3210]

. . L

N; = ’{S '3) [3211]

Substituting [3.210] and [3.211] in [3.207] and [3.208] results in

.394, .34,

at“):4"—a: ”'1”.Ta?

=[N‘]{A} [32121

and

gob44%”!33-1

=[N‘1{Q} [32131

Substituting the same shape functions (Equations [3.210] and [3.211]) as the

weighting functions in the first right side term of[3.73] and the third right side

term of[3.81] results in

‘1 L

ftN'l’IN‘l {A 14:: = [[N’I’IN‘JMA}
3‘ 0

= [Q] {A} [3214]

I, z.

fuv‘l’uv‘l {12147: = I[W141141121

=[C.]{Q} [3215]
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L

where [6;] = fw‘fmjds [3.216]

0

The element capacitance matrix, [Q]. can be readily evaluawd since mm= l,

NIN,‘ = 0, and N,-'N,-‘ = 1. These terms are the result of the characteristics of the

shape functions. Each shape function has a value of one at its own node and

zero at the other nodes (Segerlind, 1984). Substituting these terms in [3.216]

results in

=£[l 0] [3.217]

The resultant new capacitance matrix in [3.217] together with the new

stifiiess matrix in [3.204] are then utilized in establishing a general linear

element system of equations for the nonstandard finite element Galerkin

formulation. This is accomplished by following the same approach that

resulted in [3.111] which represents the general linear element system of

equations developed based on the consistent finite element formulation. The

resultant general system of equations will have the form
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'RS’“ '1 o o 0‘ A]

R“? 0 c 0 0 Q-
(. _‘ In =_ l 4 r

{R)}— R3); 0 0 l 0 A1»

#5:}, _0 o o c,_ g,

' 0 -1+a 0 1-01 ' ME

+1 (‘l+a)cs+c£ ('1+a)c4+co (l'aks (l-G)C4 Qt>

2 o -1-a o l-a ‘4,

(—l-a)c, (-l-a)c, (l+a)c,+cj (1+ak‘+c°.(QL

3w
2

21:13 [3.218]

T

J:- .

01'

{R“’}=ICI{¢}+1K1{¢}-{F} [3219]

where co, c,, c,, c,, c,, c,, cj, fl, and f; are as defined previously.

b-Quadratiamemaut

In this action, the same approach is followed as shown above. The

resulting variations of both 824/31 and age: within a quadratic element are

written using the step functions

%a)=[1'h["%)]%+[h( '13]

{141-2214212134
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%«>=[l-h(s-%J]%+[h(s-%)]

  

5L 89,- 51. BQ.
{1-h(s— 6 II a‘ +[h[s- 6 )] a: [3.221]

L 0 for s<l—6'

where h[s-—)=< > [3.222]

6 L

l for S)-

. 51

' W

5L 0 for 615—:-

and h[ -—)=< > [3.223]

6 5L

1 for S)?

  

It is important at this point to emphasize the fact that the selection ofthe step

functions in [3.222] and [3.223] is bawd on the assumption that the variations

ofaAlat and anat with respect to x are limited to three constant values within

the length ofthe quadratic element. These values are constant in the intervals

0 to L/6, LI6 to 5L/6, and 5L/6 to L.

The quantities multiplying A,, A,, A.” Q,, Q, and Q, are the new shape

functions (N,', N}, and NI) where

~;=1-h(s—%) [3224]

H1 6114-2)] 225

N; =h( -%} [3.226]

Substituting [3.224]. [3.225], and [3.226] in Equations [3.220] and [3.221]

results in .
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.BA .aA_, .aA,
—(x)=Ni—at +jN.J-aT+N:—at

= [N‘] {A} [3227]

and

w OiaQ ean+ oan

'37“):N‘a:+";'_a: ”‘3‘?

=[N’]{Q} [3.228]

After implementing the same shape functions (Equations [3.224], [3.225], and

[3.226]) as the weighting functions in the first right side term of Equation

[3.140] and the third right side term of Equation [3.169], the following

equations result

‘1 L

fiN‘l’ [N‘] {A 14: = f[N‘I’ [M14141
0x‘

= [Ce] {4} [3229]

‘1 1.

[INT[N‘] {214: = [[N‘l’mm}
x. 0

= [Cc] {Q} [3230]

L

where [cc] = fpv‘fuv’ws [3231]

0

The element capacitance matrix, [Cc], can be readily evaluated since MN: = 1,

MN; = 0, MN; = 0, Mn; = 1, Nj‘N; = o, and NIN: = 1. Substituting these terms in

[3.231] results in
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MN; MN,

MN; NM 4:

MN; MN;

0 i-ooo

0ds+ 010

o 4000

00 0

4L

+0-6—0-t-

00 0

0

0

1

L000

ds+ 000d:

-001
C

00

00

00

0

o

.1:

6

[3.232]

The resultant capacitance matrix in [3.232] is utilized in establishing a

new general system of equations for the quadratic element. This is

accomplished by following the same approach that resulted in [3.200] which

represents the general system of equations based on the consistent finite

element formulation. The resultant system of equations has the form



{R“’}=<

01'
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o o 0" 'A.‘

0 0 0 Q,

o 0 o A,
4

4c, 0 0 Q1.

0 1 o A',

0 0 c,‘ £ng

16

° ‘22

16c, 16c,

24 24

0 0

Ci 901'

16

° '52

-16CS -1604

24 24

{Rm}= [C]{¢}+[K]{¢}-{F}

2

 

 

 
 

6

1?

46L
6 .

4f;

411-

6

  111.

[3.233]

[3.234]

where ca, coj, cu, c,, c,, c,, 0., 0,, c,-, c,, f}, and f,- are as defined previously and

C5 = 02- C3.

The lumping of the coeficients of the time derivative usually produces

smoother numerical solutions compared to the standard finite element

Galerkin formulation (Allen et al., 1988).

formulation has fewer constraints on the time step compared to the consistent

finite element formulation. The consistent formulation will violate physical

reality and produce numerical oscillations if the selected value of the 0

The lumped finite element
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parameter is less than2I3 in the two-level time scheme (Segerlind, 1984). The

latter scheme will result from implementing the finite difi‘erence solution in

time as will be demonstrated in the next two sections.

6. DirectStiffnessMethod

Segerlind (1984) defined the direct stiflness method as "the procedure for

incorporating the element matrices into the final system of equations".

Equations [3.219] and [3.233] represent the general finite element system of

equations for the linear and quadratic elements, respectively. These element

matrices can be incorporated into the final system of equations in a

straightforward manner. The element matrices will be assembled into a

banded system of equations as discussed in the text by Segerlind (1984). The

zero coeficients outside the bandwidth will not to be stomd. The bandwidth is

defined as one plus the greatest distance between the last non-zero coeficient

and the diagonal coeficient in a row (Segerlind, 1984). Since both the linear

and quadratic elements of the finite element grid of the surface irrigation

problems will be numbered successively from left to right as shown in Figures

3 and 4, the bandwidths of these problems will be four and six, respectively.

The reason the bandwidths are ofvalues oftwice as much as the classic linear

and quadratic one-dimensional grids is due to the number of unknowns per

node. As discussed earlier, there are two unknowns per node for the surface

irrigation problems which include the area of flow, A , and the flow rate, Q ,

compared to only one unknown per node for the classic one-dimensional finite

element grids.

By applying the direct stimress procedure, the following global system of

equations result

{R0} = [Ca] {‘1’} + [K0] {¢} - {F0} [3235]
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where {R0} is the global residual vector, {1b} is the global vector ofunknowns

A and Q, {<5} is the global vector of the unknown derivatives with respect to

time, [C0] is the global capacitance matrix, [K0] is the global stifiress matrix,

and {F6} is the global force vector.

The system of equations in [3.235] represents a system of nonlinear

first-order difi'erential equations in the time domain. The boundary conditions

should be incorporated into this system before it can be worked out further as

will be shown in the next section.

7. Finite Diflerence Solution in Time

After applying the direct stiflness procedure as discussed in the previous

section, the finite element solution of both the continuity and the unsteady

momentum equations for both linear and quadratic elements results in a

general system of linear-ordinary differential equations in the time domain

(Equation [3.235]). This system of equations must be solved numerically to

account for the variation in time. Several procedures can be implemented for

the numerical solution of [3.235]. The finite difi'erence method is the most

commonly used method to approximate d{d>(t)}/dt and d>(t) at successive points

in the time domain (Segerlind,,1984).

The mean value theorem for difi‘erentiation can be applied to the solution

of [3.235] as discussed by Segerlind (1984). Given any function 41(1) and the

interval [a,b] as shown in Figure 5, the mean value theorem states that there

isa§betweena andb suchthat
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W)

 

 
 

a g b t

Figure 5. Plot of ¢(t) as a function oftime (Segerlind, 1984).
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6(6)-¢(a)= (b «@349 [3.236]

01‘

511 _ Nb) -¢(a)

d: (§) - A: [3237]

where At = a -b.

The value ofMa) can be approximated as

dt
Ma)=¢(§)-(§-a);;(§) [3238]

01'

dd»
¢(§)=¢(a)+(§-a)3;(§) [3239]

Substituting [3.237] in [3.239] results in

¢(§)=¢(a)+wgf“a—)(§-a) 132401

or

«5.) =«0+[MM-Mano

= (1 -e) ¢(a)+9 ¢(b) [3241]

where 9 = (§-a)/At.

The results ofEquations [3.237] and [3.241] can be generalized for column

vectors (Segerlind, 1984). The resultant two equations at t = g will be

4’ - <5{1%)}: {¢}={ }.~{ 1. [3242]
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{4’} = (1 - 9) {4’}. + 9 {4’}; [3.243]

where {tb}, and {d>}, are two column vectors containing the nodal values at

times a and b , respectively.

A similar approach can be followed to develop an equation for {F} at t = §.

The resultant equation is

{Fa} =0 ‘9) {Fa}.+o {Fa}, [3.244]

where {F}, and {F}, are the force vectors at times a and b, respectively.

Equations [3.242], [3.243], and [3.244] can now be replamd in [3.235].

The result is

{‘1’}. - {4?}.

At

-(1-9){Fo}, -9{Fo}, =10}

 

[Ca] ( )+ [Kc] «1 " 9) {¢}. + 0{¢}6)

01'

([Ca] + ONIKal) {4’}. = ([Ca] - (1 - GWIKal) {4’}.

+At((1 - 0) {Fa}, + 9{Fa},)

or

[110]er = [P6] {4’}. + {F5}

where

[Ac] = ([Ca] + GNIKal).

[Pa] = ([Ca] ’ (1 'GWIKGD. and

{F5} = At((1 - 9) {Fa}. + 9{Fa},)-

[3.245]

[3246]

[3.247]
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Equation [3.246] represents a general two-level-time scheme that gives

the nodal values, {d>},, in terms of a set of known values, {tb},, and the force

vectors at times a and b . The parameter 9 should be specified to obtain a

solution to [3.246]. The range ofvalues of9 is in the interval [0,1]. Selecting 9

would in turn determine the location of g at which the mean value theorem is

applied.

There are four popular methods that result from four choices of 9

(Segerlind, 1984). These methods include the following :

i.W:This method is obtained by owdfi'ins

§=a. The resultant 9 will be 6 =0. Equation [3.246] reduces to

[Ca] {4’}. = ([Ca] - NlKol) {<5}. +NW6}. [3248]

iiW:This method is obtained by specifying

§= At/2 +11. The resultant 6 will be 9 = 0.5. Equation [3.246] mduces to

([Ca] 4.923161) {‘5}; = [We] "%[K0]) {4’}. +[%{Fa}. '4'?{F0:1.) [3249]

iii.W:This methodis obtained by specifying§=2Atf3+a.

The resultant 9 will be 6 = 213. Equation [3.246] reduces to

[Ical+-2§-1K.1){o}.=(tcal-%‘-1K.1){o}.+[%{Fa},+%‘-{Fa},] 132501

iv.BMW: This method is obtained by specifying

§= b. The resultant 0 will be 9.: 1. Equation [3.246] reduces to

([Ca] +NIK6D {4’}; = [Ca] {4’}. +44%}, [3251]

The global matrices [Ca] and [K0] and the global vector {Fa} which result

fi'om applying the direct stifi‘ness procedure should be modified before the
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initiation ofthe solution process. This modification is necessary to include the

known nodal boundary conditions without which the problem is undefined.

The resultant system of equations is solved then for every time step using a

direct approach such as Gaussian elimination.

8. Implementing the Solution Procedure

In order to implement the finite element Galerkin formulation of the

motion equations as was described earlier in this section, many relationships

should be established to reduce the number of dependent variables in the

solution process. These include establishing relationships among flow

geometry parameters. Also, such relationships should be implemenmd in

order to mduce the number of dependent parameters in the uniform flow

equations which are utilized to establish the friction slope. Moreover, the

infiltration function that will be used in the solution process should be

selected.

 

In order to apply the finite element Galerkin formulation to the numerical

solution ofthe complete or simplified forms of the hydrodynamic equations in

furrows or borders, some mathematical relationships ought to be established

among flow geometry parameters. These relationships are to reduce the

number of dependent variables in the finite element formulations that were

discussed in the Theoretical Development section ofthis chapter. The number

ofdependent variables can be mduced by relating the depth offlow, y , and the

cross-sectional area of flow, A , in furrows. One approach is to select the

following power curve (Elliott at al., 1982; Walker and Skogerboe, 1987):

y = 6,11" [3252]
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where o, and o, are empirical fitting constants. These constants reduce to

unity in borders given a unit width of flow. The next step is to establish a

mathematical relationship between the top width of flow, T, and the

cross-sectional area of flow, A. Assuming a parabolic cross sectional area in

furrows, the top width can be represented as (Chow, 1959)

T =5; [3.253]

= 71A [3254]

where 7, and 72 are empirical fitting constants with y, = 3120, and 7, =1- 0,.

Equation [3.254] is only applicable to furrows with parabolic cross sections.

These parameters are considered constants for any given furrow given the

assumption of a prismatic channel. The parameters 7, and y, in [3.254] will

reduce to 1 and 1.5, respectively, when the case of borders is considered

(T =1, given a unit width of flow). Equation [3.252] is utilized in the finite

element formulations of the zero-inertia and the steady and unsteady

hydrodynamic models.
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kW

The uniform flow equations (Equations [2.11], [2.12], and [2.13]) that

were reviewed in the previous chapter can be written in this general form

 

 

 

[3.255]

where the parameters It, and k, are shown in Table l, A is the cross-sectional

area offlow, R is the hydraulic radius, P is the wetted perimeter, Q is the flow

rate, and S, is the friction slope. The number ofdependent variables in [3.255]

can be reduced by mathematically relating the wetted perimeter, P, and the

cross-sectional area offlow, A, in furrows. Again, if a power curve is selected,

the following relationship can be established

P=B.A” 132561

where B, and B, are empirical fitting constants. Substituting Equation [3.256]

in [3.255] results in

2’53“"
= k‘AZ‘rb‘

 

3!

 = [3257]
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Table 1. Summary ofthe parameters It, and k, in the uniform flow equations.

 

 

 

n is Manning's roughness coeficient,

C is Chezy’s roughness coeficient,

f is Darcy-Weisbach’s roughness coeficient, and

g is the acceleration due to gravity. 
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where p, and p, are empirical fitting constants that are controlled by the

hydraulic section of the furrow or border. The parameters p, and p, will vary

based on the selected uniform flow equation. The above parameters are held

constant for any given irrigation event. The parameters [3, and 6, reduce to 1

and 0, respectively, when the case ofborders is considered given a unit width

offlow. This reduces the parameters p, and p2 to 1 and 2 +b,, respectively.

cmmtiQLEuncflons

Any of the empirical infiltration functions that were reviewed in the

previous chapter can be utilized to estimate infiltration in the finite element

development ofthe motion equations as applied to surface irrigation problems.

However, many scientists preferred to use the Kostiakov-Lewis infiltration

equation in their developments. Although this infiltration function neglects to

account for the efi'ect of wetted perimeter changes on infiltration, it was

reported in many studies that the Kostiakov-Lewis function produces good

results especially when the definition ofthe parameters a, k, and 13 was based

on flow rates typical ofthe normal irrigating conditions. The Kostiakov-Lewis

function has the form

2:21“ +f,z [3.258]

01'

I=g=akr"+yg [3259]

where a, k, andfl, are fitting constants, Z is the cumulative infiltration, I is the

infiltration rate, and t is the opportunity time, to be difi‘erentiated from the

time t.



IV. RESULTS AND ANALYSIS

The Galerkin formulation of the finite element method was used to solve

the complete and simplified forms of the hydrodynamic model using both

linear and quadratic one-dimensional elements. The Galerkin formulation

was first applied to both the continuity and momentum (in its complete or

simplified forms) equations with respect to the space coordinate for a fixed

instant of time. This results in a system of first-order ordinary difl'erential

equations in the time domain. Then, a finite difl‘erence approximation in the

time domain was applied to the final system of equations to generate a

numerical solution. The direct stifl‘ness procedure was utilized in building the

global systems of equations at various time steps. The final system of

equations were then modified to incorporate the boundary conditions of the

advance, ponding, depletion, and mcession phases. The dimensions ofthe total

system ofequations remain unchanged after the application ofthese boundary

conditions at any given time step. The finite element Galerkin formulation

was then utilized in building a general computer model. The latter model can

be used in the analysis of water flow conditions in surface irrigation systems.

Currently, only the kinematic wave finite element analysis is fully operational

in the present version of the computer model.

The finite element Galerkin formulation that was applied in the

development ofthe computer model will be discussed in this chapter, together

with the analysis of the results from applying this model to the simulation of

flow conditions in surface irrigation systems.

138
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A. Finite Element Model Formulation

The finite element Galerkin formulation of the complete and simplified

forms ofthe Hydrodynamic model was developed in the Chapter 111 using both

linear and quadratic elements. This development produced a general system

of equations for each of the latter elements (refer to Equations [3.218] and

[3.233]). The generalized system of equations reduces to either the complete

hydrodynamic model, the steady hydrodynamic model (where the time

dependent term in the momentum equation is assumed negligible), the

zero-inertia model, or the kinematic wave model through the selection of the

appropriate coeficients which result in the respective model. The system of

equations for the various elements are then assembled into a global system of

equations using the direct stiffness procedure. This latter represents a system

of nonlinear ordinary difl'erential equations. The mean value theorem for

difi'erentiation is then applied to change this ordinary system ofequation into

a system of nonlinear algebraic equations. The next step includes the

modification of this system of equations to incorporate the various boundary

conditions. Then, the resultant system of equations is solved numerically

using the Gauss elimination. These steps will be described in further detail in

the following sub-sections using the linear element. It is important at this

point to remember that the procedure that is followed in accomplishing the

various tasks that were highlighted in this paragraph is similar for both linear

and quadratic elements. The only difference between the two is reflected in

the original equations ofeach element.

1. Assembling System ofEquations

The finite element solution starts with one two-nodal element during the

first time step (Figure 6). This element has two nodes: an upper node at the
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flow inlet boundary and a lower node at the tip of the advancing fiont. Since

the lower node is selected at the tip of the advancing front, both the flow rate

(Q) and the cross-sectional area of flow (A) are zero at that node. The only

unknowns during the first time step are the length of the element, which

represents the distance that the moving front has advanced during the time

step At,, and the cross-sectional area offlow (A) at the upper boundary. This is

true for all models except the kinematic wave model where the cross-sectional

area offlow (A) at the upper boundary ofthe first element is determined from

the uniform flow relationship depicwd in Equation [3.254]. As time

progresses, an element is added to the system of equations during each

subsequent time step (Figure 7). The advance phase (Figure 8a) is concluded

once the advancing front reaches the end of the furrow or border. After the

completion of the advance phase, the number of elements remains the same

alter subsequent time steps during the pending (Figure 8b) and depletion

(Figure 9a) phases. After the cutofi' time of water inflow the number of

elements is reduced starting from the upstream end ofthe furrow or border as

the cross-sectional area offlow approaches zero at various nodes. The solution

process is concluded once the receding front reaches the end of the furrow or

border at the end ofthe recession phase (Figure 9b).

In order to demonstrate the direct stiffness procedure which is

implemented in assembling the global system ofequations, four examples will

be presented in this section using linear elements. These examples will

pertain to the full hydrodynamic, steady hydrodynamic (hydrodynamic II),

zero-inertia, and kinematic wave models, respectively. These examples are

based on the discussion that was presented in Section B-5 of Chapter III. The

number of elements that will be used in each of these examples is 3 which

results in four nodes. The global capacitance matrix ([CGD, stifiress matrix

(Hail). and force vector ({Fa}) in Equation [3.232] which has the form
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{Ra} = [C0] {4’} + [KG] {‘1’} - {Fa}

will have the form

ExamplekW
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2. Incorporating Boundary Conditions

Most ofthe boundary conditions in the one-dimensional surface irrigation

problem involve boundaries with known-values. These are referred to as

boundary conditions of the first kind or Dirichlet boundary conditions.

Generally, there are five of these boundary conditions in sloping border and

furrow irrigation systems. The first is the upstream boundary during the

advance phase (Figure 8a) where the inlet flow to the furrow, or the unit inlet

flow to the border, is known. This represents the case where the flow rate at

node 1 (Q,) is known. During the advance phase, another known boundary

exists at the tip of the advancing front. At this boundary, both the flow rate

and the cross-sectional area offlow at that node are zero. Once the advancing

front reaches the end of the furrow or border, two boundary conditions may

occur. The first involves the case when tail water is draining from the end of

the field. At this instance, a flow is assumed to be uniform at the downstream

node of the last element. The other boundary could involve the case where a

barrier at the downstream node of the last element stops the forward flow of

water. This boundary translates to a flow rate of zero at the downstream node

ofthe last element while the cross-sectional area offlow increases as the water

ponding phase (Figure 8b) starts. The last boundary represents the upstream

boundary as the receding edge moves downstream during the recession phase

(Figure 9b) of flow. Both the flow rate and cross-sectional area of flow at the

upper node ofthe upstream element of the receding front are zero.

As for the mcession phase, the upstream node that has a cross-sectional

area offlow approaching zero dictates that the receding front has reached that

node which would mean that the last boundary that was described in the last

paragraph is applicable. Then, the receding front moves to the upper node of
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the next downstream element if the same conditions occurs. This process

continues on until the receding front reaches the upper node of the last

downstream element.

The various boundary conditions are implemented in the solution process

of the finite element Galerkin formulation so as to result in a well posed

problem. These known boundary conditions are implemented after the global

system of equations is assembled using the direct stifiress prowdure of the

finite element method as was discussed in the previous section. The global

system of equations at each time step is modified to incorporate the various

known boundary conditions starting with the initial conditions where the

global system of equations contains the contribution of only one element. The

same procedure is then repeated at subsequent time steps until the solution

process ofthe various phases offlow is concluded.

The general form of the global system of equations was developed in

Section B-7 of Chapter III after implementing the mean value theorem for

differentiation. This resulted in Equation [3.246] which has the form

(1%] + GAIIKal) {‘3}. = ([C0] - (1 - 9)At[Kol) {4’}. + At((1 - 9) {Fa}, + 9{Fa},)

[4.16]

In order to implement known boundary conditions, the system of equations

above ([4.16]) should be modified at each time step. However, the modification

should notbe done before determining the matrices [Ag] and [Pa] and the vector

{F5} in the equation

[do] {‘1’}. = [Pa] {‘1’}. + {F6} = {So} [418}

where
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[A0] = ([Ca] + OAthal).

[Pa] = ([Ca] - (1 - OWIKal). and

{F5} = At((1- 9) {Fa}. + 9{Fa},)-

Ifthe number of equations is n and O, is the known value (I: is 1,2,3,..., or n),

the modification ofthe system ofequations in [4.18] is accomplished using the

following steps:

1. Subtract the product A,,,¢,, with 1‘: l,2,....,n fiom the corresponding

coeficient in the vector {F5}.

2. Replace the coeficients in row I: and column I: ofthe matrix [Ag] by zeros.

3. Replace the coeficient A,,, in the [Ag] matrix by one.

4. Add the product P,,,d>,, with 1' = 1,2, ....,n to the corresponding coeficient

in the vector {F5}.

5. Replace the coemcients in row It and column I: ofthe matrix [Pa] by zeros.

6. Replace the coeficient in row I: ofthe {F5} vector by 45,.

The nodal values tin, and 41., represent <b, at times b and a , respectively. This

would allow the known boundary conditions to be specified as inflow or outflow

hydrograph.

3. Numerical Solution

After assembling the system of equations using the direct stifl'ness

procedure as was discussed in Section A-1 of this chapter, the system of

equations is solved iteratively at each time step. The iterative solution

procedure is a necessity since the algebraic equations that make up the global

system of equations, which resulted from implementing the mean value

theorem for difi'erentiation, is nonlinear.
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The general finite element Galerkin formulation of the complete and

simplified forms ofthe hydrodynamic model which were developed in Chapter

111 using both linear and quadratic elements has some particular

characteristics that are specific to the selected model. The difi'erence is

primarily between the full hydrodynamic model on the one hand and the thme

simplified forms of the hydrodynamic model (namely the steady

hydrodynamic, zero-inertia, and kinematic wave models) on the other hand.

The complete hydrodynamic model is based on two unsteady nonlinear partial

difi'erential equations. The simplified hydrodynamic models are based on one

unsteady partial difi‘erential equation (continuity equation) and one steady

partial difi'erential equation (simplified momentum equation). Therefore, the

mean value theorem of difi‘ereirtiation applies to both system of equations in

the case of full hydrodynamic model while it applies only to the continuity

equation in the case ofthe simplified hydrodynamic models. This would then

translate into the fact that the ordinary difi‘erential equations with odd

numbers in equation [3.235], which represent the contribution of the

continuity equation to the final global system of equations, should be

transformed to algebraic equations using the mean value theorem of

difi'erentiation. However, the equations with even numbers in [3.235] would

need the same procedure only for the case of the complete hydrodynamic

model. In other words, the mean value theorem for difi'erentiation is not

needed in the latter case when considering the simplified hydrodynamic

models. Instead, these equations should have the form

1K.1{o}.={F.}, 14.19]

In order to satisfy both [4.16] and [4.19] for the complete and simplified

hydrodynamic models, the following equation is developed:

([Co] + Clea]) {<11}. = (1%] - Cleal) {‘1’}. + €2{Fa}, + 010%}, [420]
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where the parameters c, and c, are defined in Tables 2 and 3.

The Gauss elimination routine was used in this deve10pment for the

solution of the non-linear system of simultaneous algebraic equations which

ememd from the global system ofordinary differential equations based on the

discussion earlier in this section. The Gauss elimination routine

(GAUSSBND) implements the solution ofthe system ofequations in two steps.

The first involves the forward elimination which reduces the set of algebraic

equations to an upper triangular system. The next phase utilizes the

backward substitution to produce a solution to the unknowns in the system of

equations. GAUSSBND implements partial pivoting, a step that involves the

switching of rows to make the largest element the pivot element. This step is

accomplished without exchanging the rows physically, but by keeping track of

the order of equations in an array. The partial pivoting makes the routine

applicable to the solution of sparse and ill-conditioned system ofequations.

The developed Gauss elimination routine was modified to solve the final

system of equations in a banded form since the resultant system of equations

is banded with bandwidths of 4 and 6 for the linear and quadratic elements

(refer to Section B-6 of chapter III), respectively. For this reason, the system

ofequations is assembled in banded form using the direct stifl‘ness procedure.

This step reduces the computer storage requirements ofthe [AG], [Pa], [Co], and

[K9] matrices in Equations [4.17] and [4.19]. The dimensions ofthese matrices

are defined in Table 5 when these matrices are stored in full and banded forms.

The advantages of this approach are demonstrated in Figures 10, 11, 12, and

13 for bothlinear and quadratic elements.
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Table 2. Definition of the parameters c, and c2 in Equation [4.20] for

equations with odd numbers in the global system of equations.

Complete Hydrotbrnamic Model ,

(Hydrodynamic Model I)

 

Steady Hydrodynamic Model

‘ (Hydrodynamic Model 11)

Zero-Inertia Model

 

 

Kinematic wave Model  
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Table 3. Definition of the parameters c, and c, in Equation [4.20] for

equations with even numbers in the global system of equations.

Complete Hydrohnamic Model

(Hydrodynamic Model I)

Stearbr Hydrodynamic Model

(Hydrotbrnamic Model 11)

Zero-Inertia Model

 

 

  I Kinematic wave Model 
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Table 4. Dimensions of the matrices [Co], [KG], [Ag], [Pa]. and [KO] in full and

banded forms. '

 
Number ofColumns, c

Matrix Linear Element Quadratic Element

(n,=2 and n=e+1) (n,=3 and n=2¢+l)

 

 

 

 

     

number ofnodes per element

a]: the matrix that corresponds to [A0] in Equation [4.18] once the

GAUSSBND subprogram is called

[Ca]

[Kc]

| 6.1

| 6.]

[Xa]

r: number ofrows = 2n

c : number ofcolumns

e : number of elements

n: number ofnodes = (n,-1)e +1
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In order to demonstrate the assembling ofthe global system of equations

in a banded format, the four examples that were presented earlier will be

presented in this section in a banded form. The global capacitance ([Co]) and

stifi‘ness ([Kal) matrices ofEquation [3.232] will have the form

ExampleBMW
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B. Finite Element Computer Model

A general one-dimensional surface irrigation computer model

(FE-SURFDSGN) was developed based on the finite element Galerkin

formulation of the complete and simplified hydrodynamic equations. The

model was developed based on the methodology of Chapter III. It utilizes the

finite element Galerkin formulation for performing the analysis ofthe surface

irrigation problem using either linear or quadratic elements. The model was

develomd to run on any IBM-compatible microcomputer with a Random

Access Memory (RAM) of512 Kbytes or more and an MS-DOS version 2.00 or

higher.

1. Model Components

FE-SURFDSGN was developed in a modular format. It has a main

program that addresses a series of routines. These routines vary in size and

complexity. Some of these routines are devoted solely to input and output

while others deal with the setting up of the global systems of equations using

the direct stimress procedure of the finite element method and the numerical

solution ofthe deve10ped system of equations at each time step. The program

allows the user to produce data files that include the data for both the advance

and recession curves offlow in surface irrigation. FE-SURFDSGN has various

levels of tabular output which is also controlled by the user. It has a

companion graphics routine which, if selected, produces a graphical output of

the advance and recession curves in addition to the plot of actual field

measurements. FE-SURFDSGN was developed and compiled in Power Basic

which is the product ofSpectra Publishing Company. The size of the program

is very small compared to the number ofvarious functions and options that it

has. The size ofthe listing ofFE-SURFDSGN doesn’t exceed 90 Kbytes which
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also includes the listing of the graphics routine. The listing of both the

FE-SURFDSGN program and the graphics routine are presented in

Appendices A and B, respectively.

The model can simulate the various phases offlow in furrows and borders.

These include the advance, ponding, depletion, and recession phases. This

analysis is performed based on either the standard or nonstandard finite

element Galerkin formulation and using either linear or quadratic elements.

The analysis can be carried out based on any combination ofthe above options

and using the finite element formulation of the complete hydrodynamic

(hydrodynamic model I), steady hydrodynamic (hydrodynamic model II).

zero-inertia, or kinematic wave model.

2. Data Input

There are three screens of data input to FE-SURFDSGN. The first input

screen (Figure 14) has the following entries:

Irrigation Method: This input allows the user to select the irrigation

method which could either be furrow ((3) or border (.).

Method ofSolution: This entry allows FE-SURFDSGN to perform the

analysis based on the finite element formulation of the complete

hydrodynamic (.). steady hydrodynamic (.). zero-inertia ([2), or

kinematic wave model (.).

Type ofElement: The user has to select the type ofelement which could

either be linear ($3) or quadratic (@3).

Level ofPrinting: The level of printing can be selected by entering an

integer in the range of0 to 3. By selecting E), the model would only print

a general summary of the simulation process. On the other hand,



168

extensive output is produced when the level of printing is selected at I.

This output would include a printout of the intermediate steps of

computation which might amount to pages and pages of printout. This

level ofprinting is only needed for debugging FE-SURFDSGN.

OutputDevice: The last entry on the first screen would allow the user to

choose the output device which could be the screen (.). a temporary file

SURFDSGN.OUT (.), or the printer (C2)).

The second screen (Figure 15) allows the user to select many specific

parameters which afi'ect the speed and accuracy of the solution. These

parameters include the following:

Time Step: The time step (8!) should be entered in minutes.

FE-SURFDSGN utilizes constant time steps to solve the time-dependent

surface irrigation problem. However, the model can be modified to use

variable time steps ifthe user sees an advantage in implementing such a

change.

MaximumNumber ofIteratione: This entry represents the maximum

number of iterations that the model is allowed to perform before

convergence is reached at various time steps. If the maximum number of

time steps has Men reached and the solution did not converge to the

desimd accuracy that is specified by the user, the program proceeds to the

analysis ofthe subsequent time step.

Allowable error: This error represents the maximum allowable error for

the accumulated deviation between the results of the previous and

current iteration at all nodes.

Time Weighting Coefficient: The time weighting coeficient (0) is a

number in the range of0 to 1 (refer to Section B-7 of Chapter III).
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Figure 14. First screen ofinput data into FE-SURFDSGN.



170

 

 

   
 

Figure 15. Second screen ofinput data into FE-SURFDSGN.
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Space Weighting Coefficient: The space weighting coeficient (a) is a

number in the range of 0 to I (refer to Section B4 of Chapter III).

Selecting a at 0 would result in the standard finite element Galerkin

formulation. However, if 0 < a 51 is selected, the nonstandard finite

element Galerkin formulation results.

Top Width Coefficient: The coeficient 3/2 in Equation [3.254] is

included sometimes in the coeficient 0,. Ifthis was the case, a value of 1

should be selected. Otherwise, a value of 1.5 should be keyed in as an

input to this entry.

Consistent or Lumped: This allows the user to select either the

consistent (1) or the lumped formulation (0) (refer to Section B-5 of

Chapter III).

The last screen (Figure 16) allows the user to enter the hydraulic

parameters ofthe furrow or border. These parameters include the following:

Fur-row Length: This entry represents the length ofthe border or furrow

in meters.

Time of Cutofl! The cutofi‘ time in minutes represents the time when

water flow into the upstream boundary of the furrow or border is turned

off.

InletFlow Rate: The inlet flow rate into the furrow or the unit inlet flow

rate into the border should be entered in liters/minute. This entry is

currently considered as the average inflow rate at the upper boundary of

the furrow or border. However, the model can be modified to handle an

inflow hydrograph. This step could be accomplished through the

definition ofinlet flow rates at various time steps starting with time zero

until water inflow is turned ofl‘.
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Figure 16. Third screen ofinput data into FE-SURFDSGN.
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Slope ofChannel Bed: This entry represents the slope of channel bed

which should be entered as a fraction. The program currently defines the

slope at all nodes to be the same. However, this could also be changed in

FE-SURFDSGN to allow for the set up ofan array that contains the slope

ofchannel bed at various nodes.

Manning’s Roughness Coefiicient: This entry pertains to the

roughness coeficient in the Manning’s equation. The program currently

uses the Manning equation as the sole uniform flow equation. However,

various uniform flow equations may be incorporated into the model based

on the discussion in Section B-8 ofChapter III.

F'low Geometry Parameter, 0,: This hydraulic parameter represents

the coeficient in Equations [3.252] and [3.254] that were presenmd in

Mon B-8 of Chapter III. These equations are power functions that

correlate the flow rate and top width of flow, respectively, to the

cross-sectional area of flow. The parameter 0, reduces to 1.5 when

borders are considered.

Flow Geometry Parameter, 0,: This hydraulic parameter represents

the exponent in the same equations above (i.e, Equations [3.252] and

[3.254]). Again, this parameter reduces to 1 when the user chooses to

analyze borders.

Hydraulic Section Parameters, p1 and p2: These parameters are

empirical fitting constants which are controlled by the hydraulic section

ofthe furrow as shown in Equation [3.257] (refer to Section B-8 ofChapter

111). These parameters reduce to 1 and 3.333, respectively, when the case

ofborders is considered.
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Infiltration Function Coefficient, h: This is the first coeficient in the

Kostiakov-Lewis equation (see Equation [3.258] in Section B-8 ofChapter

III). This input should be entered in m’Im/min‘. The Kostiakov-Lewis

function is currently the only available infiltration function in the

developed computer model. However, other infiltration functions can be

easily incorporated into FE-SURFDSGN.

Infiltration Function Exponent, a: This parameter represents the

exponent in the Kostiakov-Lewis equation.

Infiltration Function Coefficient, f. This is the second coeficient in

the Kostiakov-Lewis equation. This input should be entered in malts/min .

3. Model Output

The developed finite element surface irrigation model displays a

summary output which represent both the flow rate and the cross-sectional

area of flow at all nodes at various time steps starting from initial conditions

until the conclusion of the recession phase. Also, FE-SURFDSGN produces

two data files which can subsequently be used to plot the simulated advance

and recession curves offlow in surface irrigation. The program reports to the

user the execution time ofthe computer after the completion ofthe simulation

run for all phases offlow.

As was discussed earlier, FE-SURFDSGN has a companion graphics

routine which produces a graphical output ofthe advance and recession curves

in addition to the plot of actual field measurements for those curves. The

utility of the graphics routine of FE-SURFDSGN is demonstrated in the

following section where comparisons between simulated model data and actual

field measurements are made.
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FE-SURFDSGN has various levels of tabular output which is also

controlled by the user. The level of printing can be selected by entering an

integer in the range of 0 to 3. By selecting O, the model would only print a

general summary of the simulation process. However, extensive outputs are

possible by selecting numbers in the range of 1 to 3 (refer to the Data Input

section). The level of data output becomes more and more extensive when

numbers closer to the upper range are selected. The latter outputs would

include printouts of the intermediate steps of computation which amount to

pages and pages ofprintout.

C. Results and Comparison

A computer model (FE-SURFDSGN) was developed based on the finite

element Galean formulation of the complete and simplified forms of the

hydrodynamic model. The model was originally developed to simulate the

advance phase of water in border and furrow irrigation systems. The model

was then extended to simulate the ponding, depletion, and recession phases of

flow conditions in border and furrow irrigation systems. This was

accomplished through incorporating the proper boundary conditions that

correspond to these phases offlow into the finite element Galerkin formulation

as discussed in Section A-2 ofthis chapter.

This section includes a summary of the comparisons that were made

between the simulated model data and actual field measurements. A

summary of the actual field measurements will be presented first, together

with the input parameters that were utilized in running FE-SURFDSGN as

well as the sources ofthese data. Then, plots ofactual field data and predicted
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data using the developed computer model will be presented. Finally, a

sensitivity analysis will be presented to show the model’s sensitivity to various

input parameters.

1. Actual Field Data

In order to validate any surface irrigation model, actual field

measurements are a necessity. The input data used for nmning

FE-SURFDSGN which was based on the Galerkin formulation ofthe complete

and simplified forms of the hydrodynamic model are presented in Table 5.

These data were repon by Elliott et al. (1982b). The data were originally

collected fi'om furrow irrigation evaluations at three Colorado locations during

the Summer of 1979 by Colorado State University researchers (Elliott, 1980).

The three sites belonged to tbme farms that were privately owned. Walker

and Skogerboe (1987) repomd that this study involved six furrows (three

groups oftwo furrows each) at each site during the 1979 irrigation season. The

reader is referred to the publications by Elliott (1980) and Elliott et al. (1982b)

for a detailed description of the Colorado study. Additional input data for

model testing were used from four different Utah and Idaho tests. These data

were collemd by the researchers in the Department of Agricultural and

Irrigation Engineering at Utah State University from two locations in Utah

and Idaho. These data are described in Table 6 and were taken fi-om Walker

and Humpherys (1983) and Walker and Skogerboe (1987).

The observed advance data for the Colorado study were taken from the

journal article by Elliott at al. (1982b) where those of the Utah and Idaho

studies were taken from the text by Walker and Skogerboe (1987). The

observed mcession data for the Colorado study data were taken from the

research study by Oweis (1983).
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Table 5. General information and furrow evaluation data for the Colorado

study sites that were used in model testing (source: Elliott et al.,

1982b).

---

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clay loam Loam to clay loam Loamy sand

CropTwe Corn Corn Corn

Fun-row Length (m) 625 425 350

Spacing Between 1.524 0.762 1.524

Wetted Furrows (m)

Irrigation Event, Group 1, 1, 5 5, 2, 1 2, 3, 5 1, 4, 5 8, 2, 3 1, 1, 1

#, Furrow #

Time ofCutofl‘(min) 690 619 1364 1478.5 171 248

Inlet Flow, Q. (lps) 2.78 1.17 0.92 0.85 2.77 4.81

81090. So (m Im) 0.0044 0.0044 0.0095 0.0092 0.0025 0.0023

Manning’s Roughness, n .03 .02 .02 .03 .02 .03

Furrow Geometry 0.92 0.72 2.18 .87 1.13 1.78

Parameter, o,

Furrow Geometry 0.65 0.64 0.79 0.56 0.75 0.72

Parameter, a,

Hydraulic Section 0.46 0.34 1.35 0.30 0.73 0.92

Parameter, p1

Hydraulic Mon 2.86 2.84 3.00 2.73 2.98 2.91

Parameter, p,

Infiltration Function {

Coeficient, k 0.0252 0.0173 0.0033 0.0011 0.0161 0.0078

(m’Im/min‘)

Infiltration Function

Exponent, a 0.02 0.01 0.40 0.48 0.02 0.40

Infiltration Function

Coeficient, f. 0.00023 0.00008 0.00003 0.00003 0.00040 0.0014

(m’lmlmin)      
 



Table 6. Additional data for model testing (source: Walker and Skogerboe,

1987).

Parameter

   

 

Soil Type

Flowell

Nonwheel
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Kimberly

Nonwheel

 

 

  FurrowLength (m)

 

   Time ofCutofl‘(min)

 

   Inlet Flow, Q0 (1178)

 

 

  
Slope, s, (m Im)

 

    Manning's Roughness, n

 

Furrow Geometry

Parameter, o,

 

    
 

Fur-row Geometry

Parameter, o,

 

   
 

  
   

Hydraulic Section

Parameter, p1

 

  
   

Hydraulic Section

Parameter, p,

 

     

 

  

Infiltration Function

Coeficient, k

(m’lmlmin‘)

 

    

  

Infiltration Function

Exponent, a

 

     

 

   

Infiltration Function

Coeficient, f.

(m’Im/mtn)    
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2. Model Runs

FE-SURFDSGN was developed as a general computer model for

simulating the flow conditions in borders and furrows based on the

methodology that was discussed in the previous chapter. The various models

that are available include the hydrodynamic and kinematic-wave models as

well as the zero-inertia model. Currently, only the kinematic wave finite

element analysis is fully operational in the present version ofFE-SURFDSGN.

There are still some problems in predicting the rate of advance in both the

hydrodynamic and zero-inertia models. More work is being done to complete

the development of these options in the computer model so that the general

finite element deve10pment is operational for the complete and simplified

forms ofthe hydrodynamic equations.

In order to demonstrate the effectiveness ofthe finite element formulation

in the numerical solution of the hydrodynamic equations, various simulation

runs were conducted using the kinematic-wave model. Comparing model

results to actual field measurements demonstrate the effectiveness of the

presented methodology and the utility of the nonstandard Galerkin

formulation of the complete and simplified forms of the hydrodynamic

equations as applied to the analysis offurrow and border irrigation systems.

The finite element model generated an advance curve for each column of

the input data in Tables 4 and 5. These curves are shown in Figures 17

through 25 together with the plot ofthe measured advance data as redeby

Elliott et al. (1982b) and Walker and Skogerboe (1987). The parameters a and

6 were selected at 0.25 and 0.5, respectively, for all these runs. The selection

of these parameters was based on the sensitivity analysis that will be

presented in the following subsection. The time step, At, was selected at 5

minutes for all these runs.
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In general, it is obvious from these runs (Figures 17 through 25) that

model predictions are very reasonable. This is apparent where the simulated

rate ofadvance is very consistent with actual field measurements in almost all

cases. The model predictions are good indicators of the effectiveness of the

presented methodology in this research study.

As to the speed of the developed model, the latter prediction runs took

approximately 50 seconds on average on a 386 IBM compatible machine.

However, the average execution time could be cut at least in halfifthe length

of the time step, At, is doubled. The accuracy of the simulated model results

will not be afi‘ected even if At was doubled or quadrupled as will be

demonstrated again in the subsequent subsection on sensitivity analysis.

FE-SURFDSGN was also utilized in simulating the complete irrigation

cycle for the furrow tests hour the Colorado study that were presenwd in Table

4. The irrigation cycle includes the advance, ponding, depletion, and recession

phases of flow. The results of these simulation runs are presented in Figures

26 through 31. The plot of the measured advance and recession data were

taken fi-om Elliott at al. (1982b) and Oweis (1983), respectively. These ms

were conducted using a At of 10 minutes. The parameters a and 6 were

selected at 0.25 and 0.5, respectively.

Again, it is apparent from Figures 26 through 31 that the simulated rates

of advance and recession are very consistent with actual field measurements.

This shows that FE-SURFDSGN can be used as an efl'ective tool for simulating

the irrigation cycle in furrows and borders including the advance, ponding,

depletion, and recession phases offlow.
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3. Sensitivity Analysis

FE-SURFDSGN was utilized to carry out simulation runs for

investigating the sensitivity ofthe model to various physical input parameters.

The sensitivity of the model to the selected time step (At), time weighting

coefficient (6), and the parameter a (a parameter that dictates if the standard

or nonstandard Galerkin finite element formulations are utilized) were also

studied. The linear finite element formulation of the kinematic-wave model

was used for this purpose. The expected trends should be representative ofthe

complete and simplified forms of the hydrodynamic equations. This is

especially true when considering the sensitivity of the model to various

physical input parameters.

The first phase was to study the efi'ect of the selected time step, At, on

model predictions as related to accuracy and numerical oscillations. The

various time steps selected in this sensitivity analysis were 2.5, 5, 10, 15, 20,

30, 40, and 50 minutes. On the other hand, the selected physical input data

were those that correspond to irrigation 5, group 2, and furrow 1 ofthe Benson

farm (refer to Table 5). The results that reveal the sensitivity ofthe model to

the selected time steps are presented in Table 7. These results indicate that

selecting a At as high as 20 or 30 minutes would produce results that are

reasonably accurate. This would certainly shorten the execution time which is

as low as 5 seconds on a 386 IBM compatible microcomputer.

The sensitivity of the model to the selection of various values of the

weighting coeficient 6 and a was studied next. The results from these runs

are presented in Table 8 and 9 for 6 and a, respectively. A conservative time

step was used in all these runs; The At was chosen at 10 minutes even thou@

values as high as 20 or 30 minutes could have been selected.
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Table 7. Rate of advance predictions for several time steps using the

kinematic wave model ofFE-SURFDSGN.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

Time Step

Advance Time (min)

(min) 2.5 5 10 _15 20 30 49— 50

10 26.76 25.91 23.93

20 52.61 52.66 50.92 46.40

30 77.83 77.41 77.72 75.21 67.65

40 102.40 102.29 102.44 98.82 87.80

50 126.34 126.04 125.57 106.94

60 149.65 149.49 148.66 149.77 149.65 144. 19

70 172.37 172.12 171.87

80 194.49 194.31 194.18 194.80 187.28

90 216.03 215.81 215.42 214.53 216.67

100 237.00 236.81 236.31 235.41 228.27

110 257.42 257.22 256.99

120 277.29 277.09 276.91 276.94 275.36 278.44 279.24

130 296.62 296.43 296.07

140 315.43 315.23 314.90 314.89

150 333.72 333.54 333.35 332.76 331.56 337.75

160 351.50 351.31 351.11 351.32 354.17

170 368.79 368.62 368.30

180 385.59 385.41 385.19 385.15 384.61 383.00

190 401.91 401.75 401.60

200 417.77 417.61 417.39 416.80 414.85 422.66

210 433.17 433.01 432.79 432.62 433.27

220 448.12 447.98 447.85 ‘ 447.94

230 462.64 462.49 462.37

240 476.72 476.60 476.41 476.27 476.41 477.15 473.66

250 490.39 490.26 490. 14 487.21

260 503.65 503.53 503.47 502.91

270 516.50 516.40 516.28 516.28 515.31

280 528.97 528.87 528.77 528.67 530.39

290 541.05 540.97 540.94

300 552.76 552.68 552.64 552.41 552.81 552.14 549.87

310 564.11 564.04 563.97

320 575.10 575.04 575.05 574.81 576.68

# of Elements 128 64 32 22 16 11 8 7

Exec. Time (sec) . 415.8 104.7 28.1 15.3 8.7 4.4 2.5 2.0
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Table 8. Rate of advance predictions for several time weighting coeficients

using the kinematic wave model ofFE-SURFDSGN.

Time Weighting

Advance Time Coefficient, 6

(min) urn-mammal“—

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
   

10 21.91 22.99 23.93 24.76 25.50 26.16 26.75

20 51.40 51.21 50.92 49.83 48.63 47.38 46.11

30 82.82 80.11 77.72 74.94 72.54 70.35 68.47

40 110.63 105.77 102.44 99.00 96.14 93.40 90.88

50 133.90 128.34 125.57 122.00 118.78 115.43 112.25

60 155.66 151.50 148.66 144.58 140.80 136.89 133.20

70 182.69 176.42 171.87 166.82 162.43 157.99 153.77

80 212.90 199.99 194.18 188.44 183.53 178.54 173.79

90 238.92 220.77 215.42 209.39 204.02 198.53 193.31

100 260.60 241.48 236.31 229.81 223.99 218.05 212.37

110 278.37 263.78 256.99 249.77 243.50 237.09 230.98

120 309.78 284.91 276.91 269.19 262.47 255.66 249.13

130 354.04 ' 303.34 296.07 288.08 280.95 273.76 266.84

140 398.02 322.03 314.90 306.47 298.96 291.40 284.11

150 435.98 342.37 333.35 324.39 316.51 308.60 300.96

160 468.43 360.95 351.11 341.82 333.59 325.36 317.39

170 495.91 376.97 368.30 358.77 350.23 341.69 333.41

180 518.84 394.54 385.19 ' 375.26 366.42 357.60 349.03

190 537.71 413.46 401.60 391.31 382.19 373.10 364.25

200 553.03 428.93 417.39 406.91 397.53 388.19 379.09

210 599.93 442.81 432.79 422.07 412.45 402.89 393.56

220 ‘ 674.94 461.38 447.85 436.81 426.98 417.20 407.65

230 479.59 462.37 451.13 441.10 431.13 421.38

240 491.66 476.41 465.05 454.83 444.68 434.75

250 506.62 490.14 478.57 468.19 457.88 447.77

260 531.53 503.47 491.70 481.17 470.71 460.46

270 554.35 516.28 504.44 493.79 483.20 472.81

280 568.53 528.77 516.82 506.05 495.34 484.83

290 576.67 540.94 528.83 ‘ 517.96 507.15 496.53

300 587.92 552.64 540.49 529.53 518.64 507.92

310 616.11 563.97 551.80 540.77 529.80 519.01

643.11 575.05 562.77 551.68 540.65 529.79

Tune(sec)
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Table 9. Rate of advance predictions for several a weighting coeficients

using the kinematic wave model ofFE-SURFDSGN.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Advance Time WeightingaCoefficient

(min) 0 0.10 0.20 0.25 0.30 0.40 0.50

10 23.93 23.93 23.93 23.93 23.93 23.93 23.93

20 47.86 49.24 50.40 50.92 51.40 52.27 53.02

30 75.21 76.24 77.24 77.72 ' 78.19 79.11 80.01

40 100.83 101.55 102.15 102.44 102.73 103.32 103.98

50 122.84 124.39 125.25 125.57 125.86 126.37 126.82

60 144.66 146.77 148.16 148.66 149.09 149.83 150.40

70 169.11 170.30 171.38 171.87 172.32 173.15 173.81

80 192.97 193.22 193.83 194.18 194.54 195.25 195.90

90 213.56 214.26 215.06 215.42 215.78 216.43 217.07

100 232.82 234.62 235.83 236.31 236.73 237.46 238.10

110 253.43 255.38 256.53 256.99 257.40 258.14 258.80

120 274.30 275.61 276.51 276.91 277.28 277.98 278.66

130 293.95 294.67 295.62 296.07 296.46 297.17 297.87

140 312.89 313.33 314.41 314.90 315.32 316.05 316.74

150 331.07 331.91 332.90 333.35 333.75 334.46 335.15

160 347.78 ' 349.69 350.68 351.11 351.50 352.21 352.92

170 364.57 366.68 367.82 368.30 368.73 369.45 370.18

180 382.95 383.60 384.70 385.19 385.63 386.33 387.05

190 400.40 400.20 401.15 ‘ 401.60 402.02 402.70 403.43

200 414.93 415.89 416.93 417.39 417.82 418.53 419.28

210 429.01 431.10 432.28 432.79 433.24 433.94 434.70

220 444.88 446.28 447.36 447.85 448.29 448.96 449.72

230 460.16 460.88 461.91 462.37 462.81 463.48 464.26

240 473.87 474.75 475.91 476.41 476.87 477.56 478.35

250 487.88 488.48 489.64 490.14 490.61 491.28 492.07

260 501.46 501.95 503.00 503.47 503.92 504.57 505.36

270 513.06 514.66 515.77 516.28 516.75 517.43 518.24

280 525.13 527.03 528.23 528.77 529.25 529.92 530.74

290 538.94 539.35 540.43 540.94 541.40 542.05 542.87

300 551.13 551.06 552.14 552.64 553.11 553.77 554.60

310 561.25 562.23 563.44 563.97 564.44 565.14 565.98

320 572.08 573.37 574.53 575.05 575.51 576.17 577.01

Execution 45.7 33.9 29.4 28.1 28.5 33.9 34.2

Time (sec)
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The results in Table 8 show that an optimum value of 0.5 should be

chosen for the time weighting coeficient, 6. This would result in the highest

accuracy and the least numerical oscillations. The numerical oscillations have

shown to be substantial for 6 < 0.5 while the accuracy is also lower. Selecting 6

at values in the range of0.5 to 0.7 produwd results as stable as 6 = 0.5 but not

necessarily as accurate. This was observed in the runs that were presented in

Table 8 and in other simulation runs with different input parameters.

On the other hand, it was observed that selecting a at 0.25 would produce

optimum results both in terms of numerical accuracy and stability. Even

though the results in Table 9 show similar results using the various levels of oz

that were selected (i.e. 0, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50), high levels of

numerical oscillations were observed in other simulation runs when a was set

at 0 which corresponds to the standard Galerln'n formulation of the finite

element method. Numerical oscillations were never observed in any of the

simulation runs when a was selected within the range of 0.1 to 0.4. These

conclusions are consistent with those established by Lapidus and Pinder

(1982) and Allen et al. (1988).

The next step was to investigate the sensitivity of FE-SURFDSGN to

physical input parameters. The data ofirrigation 5, group 2, and furrow 1 of

the Benson farm were again used for this purpose (Table 5). These input

parameters were designated as the reference data. Variations of these

parameters were then established on both sides of the latter data. The

reference and formulated input data are summarized in Table 10. These data

were used to investigate the sensitivity of the model to variations in physical

parameters. The runs were conducted by selecting all of the reference input

data except for the input parameter that was varied during the respective run.

The results of these simulation runs are presented in Figures 32 through 39.
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Table 10. Input data to investigate the sensitivity ofthe model to the change

ofvarious physical parameters.

Parameter Reference Med:

High

Inlet Flow, Q, (lps)

 

Slope, Setmlm)

Manning’s Roughness, a

Hydraulic Section

Parameter, p1

 

 

 

Hydraulic Section

Parameter, p2

 

Infiltration Function

Coefficient, k

(rn’lm/min‘)

Infiltration Function

Exponent, a

Infiltration Function

Coefficient, fo

(rn’lm/min)

Furrow Length :

Time ofCutofi' :

Time Step, At

Time Weighting Coefficient, 6 :

Weighting Coeficient, a :

Type ofElement :
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The sensitivity of the model to the inflow rate at field inlet, Q0, is very

clear in Figure 32. By comparing the predicted advance and recession curves

ofthe reference data (the curve that is represented by a solid line in Figure 32

as well as Figures 33 through 39) to the other curves, it is clear that as the

inflow rate increases the pmdicmd advance curve becomes more linear while

the predicted recession curve is not afl'ected to any extent. It is also obvious

from these curves that as the inflow rate increases from 0.6 to 1.75 ([820, the

advance rate becomes more sensitive to Q. When the average inflow rate for a

selected run is low, the rate ofadvance diminishes.

The sensitivity of the model to the slope of the furrow is illustrated in

Figure 33. Even though the variation in the slope between various runs was

not considerable, it is obvious that there are some variations in both the

advance and the recession trajectories. The trend seems to be comparable to

that observed in the case of the inflow rate shown in Figure 32. One can also

observe that as the slope, So, increases the predicted rates of advance and

recession become less sensitive to the change in slope. This trend becomes

clear when a comparison is done among the advance and recession curves of

0.0044, 0.0066, and 0.0088 mlm runs. The sensitivity of the model to the

variation in the slope should not be of any concern since accurate field slope

measurements could be easily obtained.

Figure 33 illustrates the sensitivity of the model to the Manning's

roughness coeficient, n. By examining the advance and recession curves in

this figure, it is clear that these curves are sensitive to the variations in the

Manning‘s coeficient. This could be of some concern since it is not easy to

assess the Manning’s coeficient very accurately in the field. The curves in
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Figure 33 depict that there is an inverse relationship between the rates of

advance and recession, on the one hand, and the Manning’s roughness

coeficient on the other.

The sensitivity of the model to the hydraulic section parameters, 0, and

0,, is shown in Figures 35 and 36. While the predicted advance and recession

curves appear not sensitive to p,, these curves are sensitive to the variations in

the hydraulic section parameter, p,. The curves in Figure 36 reveal a similar

trend as that depicted in Figure 34 where the sensitivity of the model to the

Manning's coeficient is presenmd. However, it seems that the predicted

advance and recession curves become less sensitive to the change in p, when

the latter parameter increases.

The sensitivity of the model to the three infiltration parameters It, a , and

j}, is illustrated in Figures 37, 38, and 39, respectively. The predicted rate of

advance curve seems to be very sensitive to the infiltration function

coeficients, k and 11,, but less sensitive to the infiltration function exponent, a .

The predicted recession curve, however, shows moderate sensitivity only to the

infiltration function coeficient, )3, with no sensitivity to either the infiltration

coeficient, k, or the exponent, a. The curves in Figures 37, 38, and 39 show the

inverse relationship between the rate of advance and the infiltration

parameters. These figures also depict that as the infiltration function

parameters decrease the predicted rate of advance becomes less sensitive to

the changes in these parameters.
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D. Discussion

From the results presented in this chapter, it can be concluded that the

finite element formulation of the hydrodynamic equations can be successfully

used in the hydraulic analysis of flow conditions in sloping furrows and

borders. It was demonstrated that the one-dimensional linear finite element

formulation produced excellent predictions of the advance and recession

trajectories for almost all the simulation runs conducted under the available

field tests. Besides, the computer execution times of the developed computer

model (FE-SURFDSGN) were very reasonable even when very small time

steps were selected. Although the kinematic wave model applications were the

only runs that were presented in this manuscript, similar results are expected

from the other models that are not complete in FE-SURFDSGN at the present

time. These analyses should be undertaken some time in the future to confirm

this claim.

As to the type of element used, it was observed that the quadratic finite

element formulations of the complete and simplified forms of the

hydrodynamic equations did not produce the expected results. Because of the

higher order ofthe quadratic element, it seems that whatever was gained from

the more appropriate approximation of the element to both surface and

subsurface profiles of flow was lost due to the unstable behavior of the

problem. This was partially expected since higher order elements were known

to exhibit this kind ofbehavior in time-dependent problems.

The development ofthe nonstandard finite element Galerkin formulation

was prepared after realizing that the standard Galerkin formulation of the

complete and simplified forms of the hydrodynamic equations had many

problems ofnumerical instabilities. These problems were avoided in the linear

finite element developments through the application of the principle of
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upstream weighting, a step that was accomplished using non-linear shape

functions instead of the usual linear functions. On the other hand, it was

observed that the standard finite element formulation in time, or the so-called

consistent formulation, was highly unstable. This necessitated the application

of yet another nonstandard finite element Galean formulation in time for

both linear and quadratic finite element formulations. The latter nonstandard

Galerkin formulation was referred to in the literature as the lumped

formulation.

The problems of numerical instability of the standard finite element

Galerkin formulation could be attributed to the nature of the hydrodynamic

equations. These two first-order partial difl‘erential equations which represent

the equations of continuity and momentum are both hyperbolic. Numerical

solutions of hyperbolic difi’erential equations are known to exhibit more

numerical instabilities compared to parabolic and elliptic partial differential

equations (Allen et al., 1975).

The goals of this research have been realized by accomplishing the

following five fundamental objectives. The approaches utilized to achieve

these objectives are delineated below.

Objective 1. Develop a finite element solution procedure of the

Saint-Venant equations for the hydraulic analysis of

surface irrigation systems.

The approach that was followed under Objective 1 was to develop a finite

element Galean formulation of the hydrodynamic equations using linear

one-dimensional elements. The finite element development resulted in a

general system offirst-order difl‘erential equations for each individual element

in the space domain. The system of ordinary difl‘erential equations included

the derivatives ofthe unknowns (cross-sectional area offlow, A , and flow rate,
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Q) with respect to time. This system incorporated the contributions ofboth the

continuity and momentum equations which constitute the hydrodynamic or

so-called Saint-Venant equations. Each of the hydrodynamic equations

resulted in a system of ordinary differential equations, and the resultant two

systems were combined into one general system of elemental equations. The

mean value theorem for difl’erentiation was then applied to transform the

global system of ordinary difl‘erential equations into a system of algebraic

equations. The global system of algebraic equations should be solved

iteratively over time. The elemental equations should be assembled into a

global system of equations at various time steps using the direct stifi'ness

procedure. After deriving the standard finite element Galerkin formulation of

the hydrodynamic equations using linear elements, the same development was

repeated using quadratic one—dimensional elements. The latter development

was an attempt to investigate if such an approach would yield faster and more

accurate results. By examining the shape of both the advance and recession

fronts, it was felt that quadratic elements would model both fronts more

adequately compared to linear elements. The final step under Objective 1 was

to repeat the previous developments using nonstandard finite element

Galerkin formulations of the hydrodynamic equations. The one-dimensional

linear and quadratic element developments were repeated under this step.

This action was deemed necessary after realizing that the standard Galerkin

formulations produced numerical oscillations. The latter problem could be

attributed to the unsteady nature of the problem and the presence of sharp

advancing fronts during the advance phase.

Objective 2. Create a general solution approach that accommodates the

available mathematical models of the Saint-Venant

equations in the analysis of surface irrigation systems.
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The approach that was followed under Objective 2 was to repeat all the

developments of Objective 1 for the simplified forms of the hydrodynamic

equations. These models included the hydrodynamic II (the model with a

steady momentum equation), zero-inertia, and kinematic wave models. The

next step was to derive a general finite element representation that would

accommodate the complete as well as the simplified forms ofthe hydrodynamic

model. The general model has difl‘erent coeficients which vary based on the

selected model. By choosing the coeficients ofthe desired model, the solution

process would accomplish the analysis offlow conditions in surface irrigation

based on the corresponding model ofthe hydrodynamic equations. The general

development was repeated using quadratic elements. The general linear and

quadratic finite element developments could be implemented in developing

computer models that simulate the flow conditions in surface irrigation

systems. Such models would be independent of the selected form of the

hydrodynamic equations. The general finite element formulations using linear

and quadratic elements are distinct when considering the elemental

equations. However, the numerical solution of the resultant system of

equations is independent of the selected type of element after the elemental

equations are assembled into a global system of equations using the direct

stimiess procedure.

Objective 3. Develop an approach to easily incorporate the varying

boundary conditions of the advance, ponding, depletion,

and recession phases of surface irrigation into the solution

process with minimal arbitrary or experimental

parameters.

The approach that was followed under Objective 3 was to develop a

procedure for incorporating the appropriate boundary conditions under

varying physical phases of flow in an irrigation cycle into the final system of
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equations. Prior to the application ofthis step, the global system ofequations

would have been assembled using the direct stifi'ness procedure. Also, the

mean value theorem for difi'erentiation would have been applied to transfer

the system of ordinary difl‘erential equations into a system of algebraic

equations. Since most of the boundary conditions in the one-dimensional

surface irrigation problem involve boundaries with known-values, a six-step

process was devised to incorporate the difi'erent boundary conditions. The

developed procedure allows the known boundary conditions to be specified as

inflow and outflow hydrographs. The global system of equations would be

modified at each time step to incorporate the various known boundary

conditions starting with the initial conditions where the global system of

equations incorporates the contribution of only one element. The same

procedure would then be repeated at subsequent time steps until the solution

process ofthe various phases offlow is concluded. The dimensions ofthe total

system of equations would be kept the same at any instance in time.

Objective 4. Develop a finite element computer model for the hydraulic

analysis offlow conditions in border and furrow irrigation

systems.

The approach that was followed under Objective 4 was to implement the

finite element mathematical development of the motion equations in building

a computer model that can be utilized in simulating the advance, ponding,

depletion, and recession phases of flow in both furrow and border irrigation

systems. The analysis could be performed based on either the standard or

nonstandard finite element Galerkin formulations and using either linear or

quadratic elements. Any combination of the above options could be selected

and the finite element analysis could be performed using the complete

hydrodynamic (hydrodynamic model I), steady hydrodynamic (hydrodynamic

model 11), zero-inertia, or kinematic wave models. Currently, the kinematic
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wave model is the only model that is fully operational in the present version of

the program. The developed computer model has a companion graphics

routine which produces a graphical output ofthe advance and recession curves

in addition to the plot of actual field measurements. The computer model was

prepared in a modular format and was developed to run on any

IBM-compatible microcomputer with a Random Access Memory (RAM) of 512

Kbytes or more and an MS-DOS version 2.00 or higher. The program is very

concise in size compared to the number of functions and options that it

embodies. It makes use of the banded form of the global matrices that result

from the finite element solution. It directly stores the non-symmetrical square

matrices in a banded form. The program has a routine that solves the global

system of algebraic equations based on the method of Gaussian elimination.

The latter routine was developed to solve matrices that are stored in a banded

form. This drastically mduces the execution time of the program and makes

the simulation run time highly eficient.

Objective 5. Evaluate the predications ofthe finite element model using

actual field measurements from some existing surface

irrigation systems.

The approach that was followed under Objective 5 was to compare the

results obtained from running the developed finite element computer model to

those reported from actual field measurements for some existing surface

irrigation systems. Actual field measurements were taken from furrow

irrigation evaluations at three Colorado locations and two different locations

in Utah and Idaho. The data were originally collected by Colorado State

University researchers and the researchers in the Department ofAgricultural

and Irrigation Engineering at Utah State University, respectively. The actual

data were taken from Elliott et al. (1982b), Walker and Humpherys (1983),

Walker and Skogerboe (1987), and Oweis (1983). These data included the
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physical input parameters as well as the actual measurements of both the

advance and recession phases of flow. The developed graphics routine was

used to display both simulated and actual data of the various flow phases of

irrigation on the same graph. The graphical display included plots of actual

and predicted advance and recession trajectories offlow. The results indicated

that the developed finite element model simulates the hydraulic analysis of

flow conditions in surface irrigation systems fairly well, under the investigated

conditions.



V. CONCLUSIONS AND RECOMIMENDATIONS

A. Conclusions

Based on the results and discussion presented in this study, the following

conclusions can be made:

1. A general finite element formulation was successfully developed for the

numerical solution of the complete and simplified forms of the

hydrodynamic equations as applied to the hydraulic analysis of surface

irrigation systems. This formulation allows for the implementation ofthe

various forms of the Saint-Venant equations without the need for

modifying the solution process.

2. The developed computer model (FE-SURFDSGN) based on the finite

element formulation of the hydrodynamic equations has proven to be an

efi'ective tool in the hydraulic analysis of flow conditions in furrow and

border irrigation systems. Even though not all the forms of the

hydrodynamic equations are fully operational in FE-SURFDSGN at the

present time, it was shown that the model produces excellent results when

compared to actual field measurements for existing systems in Colorado,

Idaho, and Utah. These results were obtained by using the finite element

kinematic wave model with linear elements. Other models are expected to

produce results at least as good as those presented using the kinematic

wave model, ifnot better.

3. FE-SURFDSGN model predictions appear to be very consistent with

actual field measurements for all phases of flow under the studied cases.

The varying boundary conditions of the advance, ponding, depletion, and

219
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recession phases of surface irrigation were easily implemented into the

solution process by modifying the system of equations after it had been

assembled at various time steps.

. The standard finite element Galerkin formulation using linear elements

was shown to have some problems with respect to numerical instabilities.

However, the nonstandard Galerkin formulation resulted in stable

solutions for the various simulation runs conducted.

. Even though the model was developed to run on any IBM compatible

microcomputer, the average time for completing a simulation run was still

approximately 50 seconds on a 386 machine. The selected time steps

under those runs were very conservative in almost all cases. It was shown

that good accuracy could be achieved by using larger time steps (20 or 30

minutes), resulting in execution times as low as 5 seconds. Time steps as

high as 20 minutes were very feasible for all the simulation runs

conducted.

. Due to the banded form of the global square matrices, it was possible to

analyze systems with as much as 200 elements on any IBM compatible

microcomputer with 512 Kbytes or more of memory. This system of

equations would contain around 400 equations to be solved simultaneously

at various time steps starting from initial conditions. Since the system

was assembled without storing any zeros outside the bandwidth and was

solved using a modified form of the Gauss elimination method, the

execution time for solving these systems of simultaneous equations was a

fraction ofthe time that would have otherwise been needed.

. The input data necessary for running the model was kept to a bare

minimum. All the input parameters required by the model are consistent

with those needed with any other numerical surface irrigation model.
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B. Recommendations

. Further work should be devoted towards completing the finite element

formulation of the remaining forms of the hydrodynamic equations using

linear elements.

. More simulation runs should be conducted using the various models ofthe

hydrodynamic equations to compare the accuracy of these models using

actual field observations. These runs would make it feasible to assess the

accuracy of the various models and to estimate the trade ofi's in using any

ofthe forms ofthe hydrodynamic equations.

. The speed and accuracy ofFE-SURFDSGN should be compared to existing

finite difl‘erence surface irrigation models to establish the advantages and

disadvantages of numerical methods as applied to the solution of flow

conditions in surface irrigation systems.

. FE-SURFDSGN should be modified to allow for the simulation of surge

irrigations. Such a modification could be easily accomplished in

FE—SURFDSGN since the finite element development allows for the

incorporation of various kinds of boundary conditions including an inflow

hydrograph at field inlet.

. Devote more time to investigate the finite element formulation of the

simplified and complete forms of the hydrodynamic equations using

quadratic elements. Since the amount of time that was devoted to

developing and debugging the options ofFE-SURFDSGN that correspond

to quadratic elements was not extensive by any means, further work is

needed to investigate whether these elements would work and produce

results comparable to, or even better than, those observed with linear

element solutions.
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APPENDIXA

FE-SURFDSGN Computer Model Listing

REM *tti*ttt*‘k*******kttti’*******************t‘ktfitttittt*fittttttfl'tti'titt

 

REM* *

REM * FINITE ELEMENT SURFACE IRRIGATION *

REM * DESIGN PROGRAM *

REMt *

REMt *

REM * Program SURFDSGN.BAS *

REM *ttitiiiittt*tttit*tittitttitfiiitiii*itiiifiiiiii*ttitiitittttitfit‘ktt

*

REM : Developed By

RE: : Walid H. Shayya

Egg * Michigan State University

REM :

*

July 30, 1991

REM

REM *iiititiiiiitti’fitiittitifiiititfliiiifiitit‘kitt**t**t********fifi*****ti

COMMON NGphFilS

%DimAry = 302

%DimCol = 7

%DimC02 = 11

$DimAryh = 151

DIM C(tDimAry,1),S(%DimAry)

dim x(tDimAry,%DimCoZ),y(%DimAry,%DimCol),z(%DimAry,§DimCol)

dim phi(§DimAry,1),Kmatrx(%DimAry,§DimCol),Cmatrxt‘DimAry,%DimCol)

dim temp1(%DimAry,%DimCol),ForcettDimAry,1),ForceP(%DimAry,1)

dim Fstar(%DimAry.1),philttDimAry,1),pfxttDimAry,1)

dim Amatrxt§DimAry,&DimCoZ),Pmatrx(%DimAry,%DimCol)

dim PrevPhi(%DimAry,1)

dim PFplustt§DimAry,1)

dim tempFl(tDimAry,1),tempP2(%DimAry,1)

dim Length(%DimAryh,1),Infil(%DimAryh,1).TofOpp(§DimAryh,1)

dim SO(%DimAryh,1),TopWidth(%DimAryh,1),InfilP(%DimAryh,1)

dim FsubittDimAryh,1),Fsubj(§DimAryh,1),FsubkttDimAryh,1)

dim CoeflttDimAryh,3),Coef2(§DimAryh,3).Coef3(%DimAryh,3)

dim Coefd(iDimAryh,3),Coef5tiDimAryh,3)

dim CzittDimAryh,1),Czj(%DimAryh,1),CzkttDimAryh,1)

dim Elthmtx(6,6),Elthmtx(6,6),TempKt6,6),TempC(6,6),NofPhi(%DimAryh,1)

dim ATmp$(11)

DIM Grpthnt(4), XX%(10), YY%(10), CCSth), AASth)

GOSUB InitialScrn

*

t

t

*

Department of Agricultural Engineering *
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DEFINITION OF VARIABLES

 

“
“
“
‘

NumElem% : Total number of elements

NumNodet : Total number of nodes

NP% : Total number of unknowns (2 * NumNode%)

NumElmNode§ : Number of nodes per element (2 for Linear Element and

SE35
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‘
NumBandW% :

NumofPhi%

phi(i,1)

phi1(1,1)

Force(i,1)

ForcePti,1)

Fstarti,1)

Kmatrxti,i)

Cmatrxti,i)

Amatrx(i,i)

Pmatrxti,i) .

Elthmtx(6,6)

Elthmtx(6,6)

NofPhi(10,1):

Coef(i,5) :

VARTheta :

O
.

O
.

O
.

O
.

ALPHA
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3 for Quadratic Element)

Band width of the global stiffness and capacitace

matrices

Number of known Phi values

Vector of unkowns Q and A

Vector of unkowns Q and A at time t - 8T

Force vector

Force vector of the previous time step

Combination of the vectors Force(i,1) and ForceP(i,1)

Global stiffness matrix [K]

Global capacitance matrix [C]

[C] + 6.5T.[K] = [A]

[C] - (1 - 9).5T.[K] = [P]

Element stiffness matrix

Element capacitance matrix

Number representing known Phis as boundary conditions

Coefficients in the element [C] and [K] matrices

Is the parameters that determines the model for the

finite difference solution in time where

9 - 0 for forward difference

9 = 1/2 for central difference

8 - 1 for backward difference

8 = 2/3 for Galerkin

A coefficient that determines if the formulation is

either a finite element Galerkin formulation or non-

Galerkin formulation. If Alpha - 0 then the solution

is Galerkin. Otherwise, the solution is asymetric.

 

Qin :

Rhol & RhoZ :

Sigmal and

Sigma2 :

Gravity :

IrrMethodS

MethodS

Phase% :

PhaseRec% :

Inlet flow rate

Characteristics of the hydraulic section of the furrow

or border where

2 1.33 u2

A R = ul A

Rhol - ul

RhoZ - u2

For the case of the border irrigation, the values of

Rhol and RhoZ are 1 and 3.33, respectively.

Empirical fitting constants controlled by the

characteristics of the hydraulic section of the furrow

or border where

62

y = 01 A

Sigmal = 01

Sigma2 = 02

For the case of the border irrigation, the values of

Sigmal and Sigma2 are 1.5 and 1.0, respectively.

Gravitational acceleration (9.81 m/sec“2)

Irrigation method withsolving the surface irrigation

“F" for Purrow irrigation

"B" for.Border Irrigation

Numerical method for solving the surface irrigation

problem where the variable Methods equals

"H“ for Hydrodynamic Model I (Continuity and

Unsteady momentum equations)

"5" for Hydrodynamic Model II (Continuity and

steady momentum equations)

"2" for Zero Inertia Model

"K" for Kinematic Wave Model

An integer that represents the phase of flow where

"1' - Advance

"2' - Ponding

An Integer to denote if the recession phase has

started (1) or not yet (0)
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+

FDorPE%

CONSISOILUMP‘:

TypElemS

FGNamS

LevPrt$

SelPrtOptS

DeltaT

TotalTime

TotalLength

NumStept

Length(i,1)

Infil(i,1)

InfilP(i,1)

kofInf

fsubO

aofInf

TofOppli,l)

SO(i,1)

ManngN

CoefTW

Psubi(i,1),

GOSUB READING

GOSUB INITIAL

FGNamS ' "SURFDSGN.CFG“

FilIsInt = FNExists%(FGNam$)

IF FilIsInt - True% THEN

OPEN 'I',t2,FGNam$

INPUT t2,IrrMethod$

INPUT #2,Method$

INPUT i2,TypElem$

INPUT #2,SelPrtOpt$

INPUT #2,iprint%

5E37

Determines if Ai & 01 to be used in matrices for

calculating coefficients c1, c2, c3, c4, and c5 (FD)

instead of A1, Aj, Ak, Qi, Qj, and Qk (FE) where

"1" selects the finite difference and

"0" selects the finite element approach

Determines if the consistent or the lumped finite

element formulations for the change of Phi with respect

to time ought to be used where

”1" selects the consistent formulation and

"0' selects the lumped formulation

Specifies the type of element where the variable

TypElemS equals

"L" for linear element

”Q" for quadratic element

Represents the name of the configuration file

Specifies the level of print out which varies from

O to 2. Specifying 0 produces no print out and 2

extensive print out.

A variable to select the output device. In order to

select the output device, you ought to enter the

following for the variable SelPrtOptS

"S" for screen

”P" for printer

"F" for the data file “FESIDP.OUT"

Time step, 5T

Total elapsed time since time 0

Accumulated length of flow for the advance phase

and constant thereafter

Number of elapsed time steps

Length of element 1

Infiltration depth at individual nodes (I). The

Kostiakov - Lewis relation will be used for

determining I (m3/sec/m) where

(a-l)

I a a k t + f

0

Infiltration depth at previous time step.

The coefficient k in the infiltration equation

The coefficient f in the infiltration equation

0

The exponent a in the infiltration function

Time of opportunity 1 in the infiltration function

at individual nodes

Slope of furrow or border at the individual node (So)

Manning's roughness coefficient (n)

Top width coefficient which could either be 1.5 or 1

subj(i,1), and Fsubk(i,1) : Coefficients f , f , and f

i j k

in the force vector at nodes i, j, and k, respectively.

A

T



INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT
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#2,VARTheta

82,ALPHA

#2,DeltaT

#2,numiter%

t2,AllError

#2,TotNumStep%

#2,CONSISorLUMP%

#2,CoefTW

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

CLOSE

END IF

IrrMethodS = UCASE$(IrrMethod$)

Methods - UCASE$(Method$)

TypElemS 8 UCASE$(TypElem$)

SelPrtOptS = UCASE$(SelPrtOpt$)

LOCATE 8,8

PRINT "Irrigation Method

LOCATE 10,8

PRINT "Method of Solution . . . . . . . . .

LOCATE 12,8

PRINT "Type of Element

LOCATE 14,8

PRINT "Level of Printing . . . . .

LOCATE 16,8

PRINT "Output Device (’S',

PRINT SelPrtOptS

Reiteratel:

SelStrg$ - 'YyNn"

Strg$ = "Modify the above ('Y', yes,

RowStrgt a 20

ColStrgt = 8

call SelStrgEntry

AnslS = SelOptS

Ansl$ = UCASE$(An31$)

IF AnslS = "Y" THEN

GOSUB READING

SelStrgS - "PfBb'

StrgS = "Irrigation Method . . .

RowStrgt = 8

ColStrg% = 8

call SelStrgEntry

IrrMethodS a SelOptS

SelStrgS = 'HSZKhszk"

Strg$ - "Method of Solution

RowStrg‘ = 10

ColStrg% = 8

call SelStrgEntry

Methods = SelOptS

#2,FurLength

#2,TimCut

#2,Qin

#2,kofInf

#2,fsub0

#2,Slope

#2,aofInf

#2,ManngN

#2,Rhol

t2,Rh02

t2,Sigma1

t2,Sigma2

#2

('F', furrow, '8', border)

(H, S, 2, or K)

('L', linear, 'Q', quadratic)

(select 0, 1, 2, or 3)

screen, 'F', file, 'P', printer)

’N', no) : "

(’F’, furrow, 'B',

O
.

":IrrMethodS

';Method$

';TypE1em$

":iprintt

"a

I

border) :

(select H, S, Z, or K) :
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SelStrg$ = ”Lqu"

Strg$ = “Type of Element . . . ('L’, linear, 'Q', quadratic) :

RowStrg% = 12

ColStrg% = 8

call SelStrgEntry

TypElemS = SelOpt$

SelStrg$ - ”0123"

Strg$ - ”Level of Printing . . . . . . (select 0, l, 2, or 3) :

RowStrgt - 14

ColStrg% - 8

call SelStrgEntry

LevPrt$ - SelOpt$

iprintt = VALtLevPrtS)

SelStrg$ = "PpSst"

Strg$ = ”Output Device ('8’, screen, 'F', file, 'P', printer) :

RowStrg% = 16

ColStrg% = 8

call SelStrgEntry

SelPrtOptS 8 SelOpt$

GOTO Reiteratel

end if

IrrMethodS = UCASE$(IrrMethod$)

Methods 8 UCASE$(Method$)

TypElem$ = UCASE$(TypE1em$)

SelPrtOptS - UCASE$(SelPrtOpt$)

1P SelPrtOptS - "s" THEN

OPEN 'SCRN:' FOR OUTPUT as #1

ELSEIP SelPrtOptS - 'P' THEN

OPEN 'LPT1:' FOR OUTPUT AS #1

ELSEIF SelPrtOptS - "F“ THEN

OPEN “SURFDSGN.OUT” FOR OUTPUT AS #1

END IF

GOSUB READING

LOCATE 9,14

PRINT "Time Step, 8T . . . . . . . (min) = ';DeltaT

LOCATE 10,14

PRINT “Maximum Number of Iterations . . = “:numiter%

LOCATE 11,14

PRINT "Allowable Error . . . . . . . . . = ";

PRINT USING 't.t#t##t#";AllError

LOCATE 12,14

PRINT "Maximum Number of time Steps

LOCATE 13,14

PRINT "Time Weighting Coefficient, 9 . . = ":VARTheta

LOCATE 14,14

PRINT “a (Select a-O for Galerkin)

LOCATE 15,14

PRINT "Top Width Coefficient (1 or 1.5) = ":CoefTW

LOCATE 16,14

PRINT "Consistent (1) or Lumped (0) . . = ":CONSISorLUMP%

ReiterateZ:

SelStrg$ - "YyNn'

Strg$ - "Modify the above ('Y', yes, 'N', no) : "

RowStrg% = 21

ColStrgt - 14

call SelStrgEntry

Ans2$ 8 SelOpt$

AnsZ$ = UCASEstAnsZS)

":TotNumStept

“:ALPHA
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IF An32$ ' "Y" THEN

GOSUB HEADING

LOCATE 9,14

PRINT "Time Step, 8T . . . . . . . (min) = ";

INPUT ",DeltaT

LOCATE 10,14

PRINT "Maximum Number of Iterations . . ,

INPUT ",numiter%

LOCATE 11,14

PRINT "Allowable Error . . . . . . . . . = ”;

INPUT ",A11Error

LOCATE 12,14

PRINT "Maximum Number of Time Steps . . ";

INPUT ",TotNumStep%

LOCATE 13,14

PRINT “Time Weighting Coefficient, 9 . . = ";

INPUT '",VARTheta

LOCATE 14,14

PRINT "a (Select a=0 for Galerkin) . . . ;

INPUT '“,ALPHA

LOCATE 15,14

PRINT "Top Width Coefficient (1 or 1.5) ,

INPUT '",CoefTW

LOCATE 16,14

PRINT "Consistent (1) or Lumped (0) . . = ";

INPUT ",CONSISorLUMP%

GOTO Reiterate2

END IF

freqprintt x 1

Gravity = 9.81

GOSUB READING

LOCATE 8,8

PRINT "Furrow Length . . . . . . . . . . . . . (m) = ":PurLength

LOCATE 9,8

PRINT “Time of Cutoff . . . . . . . . . . . . (min)

LOCATE 10,8

PRINT "Inlet Flow Rate . . . . . . . (liters/sec) - ';Qin

LOCATE 11,8

“:TimCut

PRINT "Slope of Channel Bed . . . . . . (fraction) 3 ":Slope

LOCATE 12,8

PRINT "Manning Roughness Coefficient, n . . . . . . = “:ManngN

LOCATE 13,8

PRINT "Flow Geometry Parameter, 01 . . . . . . . . = ';Sigma1

LOCATE 14,8

PRINT "Flow Geometry Parameter, 02 . . . . . . . . = ';Sigma2

LOCATE 15,8

PRINT "Hydraulic Section Param., Rho 1 . . . . . . = ":Rhol

LOCATE 16,8

PRINT "Hydraulic Section Param., Rho 2 . . . . . . = “:RhoZ

LOCATE 17,8

PRINT "Infiltration Function Coeff., k (m‘3/m/min‘a)= ';kofInf

LOCATE 18,8

PRINT "Infiltration Func. Exponent, a . . . . . . . = '3aof1nf

LOCATE 19,8

PRINT "Infiltration Function Coeff., f (m‘3/m/min) = ":fsubo

Reiterate3:

SelStrg$ = 'YyNn“

Strg$ - “Modify the above ('Y', yes, 'N', no) : "

RowStrgi = 21

ColStrgt = 8

call SelStrgEntry

Ans3$ - SelOpt$



An33$ = UCASE$(Ans3$)

IF Ans3$ = ”Y" THEN

GOSUB READING

LOCATE 8,8

PRINT 'Furrow Length

INPUT '”,FurLength

LOCATE 9,8

PRINT “Time of Cutoff .

INPUT “",TimCut

LOCATE 10,8

PRINT "Inlet Flow Rate

INPUT ",Qin

LOCATE 11,8

PRINT "Slope of Channel Bed .

INPUT '",Slope

LOCATE 12,8

PRINT “Manning Roughness Coefficient,

INPUT "",ManngN

LOCATE 13,8

PRINT "Flow Geometry Parameter, 01

INPUT "",Sigma1

LOCATE 14,8

PRINT “Flow Geometry Parameter, 02

INPUT '",SigmaZ

LOCATE 15,8

PRINT "Hydraulic Section Param., Rho 1

INPUT ",Rh01

LOCATE 16,8

PRINT "Hydraulic Section Param., Rho 2

INPUT '",Rh02

LOCATE 17,8

PRINT "Infiltration Function Coeff., k (m‘3/m/min“a)

INPUT ",kofInf

LOCATE 18,8

PRINT ”Infiltration Func. Exponent, a .

INPUT "”,aofInf

LOCATE 19,8

PRINT "Infiltration Function Coeff., f

INPUT '",fsub0

GOTO Reiterate3

END IF

OPEN "O“,82,FGNam$

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

#2,IrrMethod$

#2,Method$

#2,TypE1em$

#2,SelPrtOpt$

#2,iprint%

#2,VARTheta

#2,ALPRA

#2,DeltaT

#2,numitert

#2,A11Error

#2,TotNumStep§

#2,CONSISorLUMP%

i2,CoefTW

02,FurLength

#2,TimCut

#2,Qin

t2,kof1nf

i2,fsub0

ikll

. . . . . (m)

. . . . (min)

(liters/sec)

. (fraction)

0 O O O O O

(m‘3/m/min)



WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

CLOSE 82

Qin = Qin / 1000

NumStep§ = 0

GOSUB READING

LOCATE 10,8

t2,Slope

#2,aofInf

#2,ManngN

t2,Rhol

#2,Rh02

l2,Sigma1

#2,Sigma2

5&42

PRINT "Enter File Name of Advance and Recession Data (No extension) : "3

INPUT "",NGphFil$

xxx = TIMER

if iprint% >= 0 AND SelPrtOpt$ <> "S" THEN

ATmp$(1)=STRING$ (5," ")+DATE$

ATmp$(1)-ATmp$(1)+STRING$ (41,- ")+TIME$

ATmp$(2)=STRING$ (69,"*")

ATmp$(3)="*"+STRING$ (67," ")+w*~

ATmp$(4)-"*“+STRING$ (25," r)+n

ATmp$(5)="*“+STRING$ (3," ")

Output from "+STRINGS (25," ")+"*"

ATmp$(5)=ATmp$(5)+"FINITE ELEMENT SURFACE IRRIGATION DESIGN PROGRAM"

ATmp$(5)=ATmp$(5)+", FE-SURFDSGN“+STRING$ (3," -)+«*«

ATmp$(6)-ATmp$(3)

ATmp$(7)-ATmp$(2)

ATmp$(8)="*"+STRING$ (6," ")

ATmp$(8)=ATmp$(8)+"Developed By : Walid H. Shayya"+STRING$ (31," ")+"*"

ATmp$(9)-'*”+STRING$ (21," ~)

ATmp$(9)=ATmp$(9)+"Department of Agricultural Engineering

ATmp$(10)=“*"+STRING$ (21," ")

ATmp$(10)=ATmp$(10)+"Michigan State University

ATmp$(1l)=ATmp$(2)

for icntt = 1 to 11

print #1, ATmp$(icnt%)

next icntt

print #1,"

print #1,"

print t1,"“

end if

if iprintt >= 0 AND SelPrtOpt$ <> "8"

in

THEN

PRINT #1,"Output File for Recession and Advance Data . . . . . : ":NGphFilS;

PRINT #1,".PRG"

PRINT t1,"Irrigation Method . . . ('F', furrow, '3', border) : ":IrrMethodS

PRINT O1,"Method of Solution . . . . . . . (H, S, 2, or K) : ":MethodS

PRINT #1,"Type of Element ('L', linear, 'Q', quadratic) : “:TypElemS

PRINT #1,“Level of Printing . . (select 0, 1, 2, or 3) : ":iprint%

PRINT #1,"Output Device ('8', screen, 'F', file, 'P', printer) : ";

PRINT #1, SelPrtOpt$ '

PRINT 91,

PRINT {1,"Time Step, 5T . . . (min) = ';DeltaT

PRINT #1,'Maximum Number of Iterations = ":numiter%

PRINT #1,"Allowable Error . . . . . . . . . = ";

PRINT #1, USING "t.tt#tt##";AllError

PRINT #1,'Maximum Number of Time Steps . . = ":TotNumStep%

PRINT t1,”Time Weighting Coefficient, 9 . . - ",‘VARTheta

PRINT tl,'a (Select a=0 for Galerkin) . . . = ":ALPHA

PRINT t1,'Top Width Coefficient (1 or 1.5) = ":CoefTW

PRINT #1,"Consistent (1) or Lumped (0) = ":CONSISorLUMP%

PRINT O1,

PRINT {1,'Furrow Length . . . . . . . . . (m) = ":FurLength

PRINT t1,"Time of Cutoff . . . . . . (min) = ":TimCut
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PRINT t1,"Inlet Flow Rate . . . . . . . (liters/sec)

PRINT #1,“Slope of Channel Bed . .‘. . . . (fraction)

PRINT #1,"Manning Roughness Coefficient, n . . . . . .

PRINT t1,'Hydraulic Section Param., 01 . . . . . . . .

PRINT #1,”Hydraulic Section Param., 02 . . . . . . . .

PRINT #1,"Hydraulic Section Param., Rho 1 . . . . . . -

PRINT #1,"Hydraulic Section Param. , Rho 2 . . . a

PRINT #1, "Infiltration Function Coeff., k (m‘3/m/mina)-

PRINT #1,'Infiltration Func. Exponent, a . . . . -

PRINT #1,"Infiltration Function Coeff., f (m‘3/m/min) -

PRINT #1, '"

end if

IF TypElem$ 8 "L" THEN

NumElmNode% = 2

ELSE

NumElmNode% = 3

END IF

NumBandW% = NumElmNode% * 2

NClm% = 2*NumBanth-1

cls

GraphFill$ = NGphFilS + ".PRG"

GraphFilZS = NGphFil$ + ".REC"

open "O",t2,GraphFi11$

open 'O",#3,GraphFilZ$

TotalTime = 0

TotalLength = 0

write 02, TotalTime,TotalLength

GOSUB GetBasicElmntMtx

if iprintt >- 2 then

call matrixprt(Elthmtx(),NumElmNodeZS,NumElmNodeZt,". .

I ) .

call matrixprt(Elthmtx(),NumElmNodeZt,NumElmNode2%,". .

end if

if iprint% >= 0 then

print #1,STRING$(78,"*")

end if

IF SelPrtOpt$ = "F" or SelPrtOpt$ = "P" THEN

GOSUB READING

END IF

NumElem% 8 1

Phaset = 1

PhaseRec% a 0

STPExc% = 0 ' A flag that stops program execution

DO

IF SelPrtOpt$ = "F" or SelPrtOpt$ = "P" THEN

locate 10,14

print "Completed Time Steps . . . . . . . . . . . . :

locate 12,14

print "Completed Time of Current Simulation Run (min):

END IF

IF Phaset = 1 AND PhaseRec% - 0 THEN

IF Methods = "K" OR NumElem% = 1 THEN

”:Qin*1000

":Slope

":ManngN

';Sigma1

":SigmaZ

":Rhol

“:RhoZ

":kofInf

';aof1nf

';fsub0

. . [C(e)l

. . [k(e)]

":NumStep%

":TotalTime

NumofPhi% = 4

NofPhi(1,1) = 0.5

NofPhi(2,1) = 1

NofPhi(3,1) = 2 + (NumElmNode%-2) + (NumElem%-1)*(NumElmNode%-1)

NofPhi(4,l) = NofPhi(3,1)-0.5

ELSE



NumofPhit - 3

NofPhi(1.1) - 1

NofPhi(2,1) = 2 + (NumElmNodet-Z) + (NumElemt-l)*(NumElmNodet-l)

NofPhi(3,1) = NofPhi(2,1)-0.5

END IF

ELSEIF Phase% = 2 AND PhaseRec% = 0 THEN

IF Methods = "K” THEN

NumofPhi% a 2

NofPhi(1,1)

NofPhi(2,1)

ELSE

NumofPhit =

NofPhi(1,1)

END IF

END IF

IF PhaseRec% 8 1 THEN

PrPhi% - 0

IF Phaset - 1 THEN

PrPhi% 8 2

NofPhi(1,1) - 2 + (NumElmNodet-Z) + (NumElem5-1)*(NumElmNode%-1)

NofPhi(2,1) = NofPhi(1,1)-0.5

END IF

NumofPhit = NumNodRect*2 + PrPhi%

FOR jjtt - 1 to NumNodRec§

NofPhi(jjt§*2-1+PrPhi§,1) = jjt%-.5

NofPhi(jjt§*2+PrPhi%,1) - jjts

NEXT jjtt

END IF

IF NumElmNode% = 3 THEN

NumNodet - NumElem%*2+1

ELSEIF NumElmNode% = 2 THEN

NumNodet = NumElemt+1

END IF

NP% = NumNode% * 2

IF Phaset s 1 THEN

FOR SPctt - 1 TO NumNode%

SO(SPct%,1) I Slope

NEXT SPctt

END IF

IF NumElmNode§ a 3 THEN

Loth 2 NumElem%*4+1

Loco! = NumElem%*4-2

ELSEIF NumElmNodet = 2 THEN

Loth - NumElem%*2+1

LocQt - NumElem§*2

END IF

IF Phase% 8 1 AND PhaseRec% = 0 THEN

IF NumElem% = 1 THEN

Phi(2,1) = Qin

Phi(1,1) s ( (Phi(2,1)“2*ManngN“2) / (Rhol*SO(1,1)) )“(l/RhOZ)

PhiSet - 0.02*Phi(1,1)

IF NumElmNode% - 3 THEN

Phi(4,1) s Qin*VARTheta

Phi(3,1) - ( (Phi(4,1)‘2*ManngN“2) / (Rhol*SO(1,1)) )“(1/Rh02)

END IF

ELSE

IF NumElmNodet =

Phi(LocL%-4,1)

Phi(LocL%-3,1)

Phi(LocL%-2,1)

Phi(Loth-1,1)

ELSE

0.5

I

l
i
t
—
-

H

THEN

Phi(Loth-8,1)

Phi(LocL%-7,1)

Phi(LocL%-6,1)

Phi(LocL%—5,1)l
l
l
l
l
l
l
l
w
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Phi(Loth-2,1) = Phi(LocL%-4,1)

Phi(Loth-1,1) = Phi(Loth-3,1)

END IF

END IF

ELSEIF Phaset = 1 AND PhaseRec§ = 1 THEN

IF NumElmNode§ = 3 THEN

Phi(Loth-4,1) - Phi(LocL%-8,1)

Phi(Loth-3,1) - Phi(LocL%-7,1)

Phi(LocL%-2,1) = Phi(LocL%-6,1)

Phi(LocL%-1,1) a Phi(Loth-5,1)

ELSE

Phi(Loth-2,1)

Phi(LocL%-1,1)

END IF

END IF

IF Phase%- 1 AND PhaseRec% - 0 THEN

FOR ICTt 8 1 TO NumNode% - 1

IF NumElmNode§ = 3 AND ICT% - NumNode%-1 THEN

TofOpp(ICT%,1) - DeltaT*VARTheta

ELSE

TofOpp(ICT%,1) = DeltaT + TofOPP(ICT%,1)

END IF

NEXT ICT%

ELSEIF Phase% 3 2 AND PhaseRect a 0 THEN

FOR ICT% = 1 TO NumNode%

TofOpp(ICT§,1) - DeltaT + TofOpp(ICT§,1)

NEXT ICT%

ELSEIF PhaseRect - 1 THEN

FOR ICTt a NumNodRec%+1 TO NumNode%

TofOpp(ICT%,1) s DeltaT + TofOPP(ICT%,1)

NEXT ICT%

END IF

if iprintt >= 2 then

Phi(LocL%-4,1)

Phi(LocL%-3,1)

PRINT #1, "Number of elements : ":NumElem%

PRINT #1, "Number of nodes/element : ":NumElmNodet

PRINT #1, "Band Width : ":NumBandW%

PRINT #1, "Total number of nodes : ":NumNode%

end if

iloop% - 0

FOR JTmpt a 1 TO NP%

PrevPhi(JTmp%,1) = 0

NEXT JTmpt

DO

iloopt = iloopt + 1

IF SelPrtOpt$ 3 "F" or SelPrtOpt$ 8 "P" THEN

locate 14,14

print "Completed Iterations Within Current Time Step : “:iloopt-l

END IF

IF Phase% = 1 THEN

IF NumElmNode§=3 then

TmpI - kofInf*TofOpp(NumElem%*2-1,1)“aofInf

TmpI = TmpI+ fsub0*TofOpp(NumElem%*2-1,1)

TmpJ a kofInf*TofOpp(NumElem%*2,1)“aofInf

TmpJ - TmpI+ fsubO*TofOpp(NumElem%*2,1)

TmpJ a TmpJ + Phi(LocQ%+1,1)

ELSE

TmpI = kofInf*TofOpp(NumE1em%,1)“aofInf

TmpI = TmpI + fsub0*TofOpp(NumElem§,1)

TmpI = VarTheta * TmpI + Phi(LocQ%-1,1)

END IF

IF NumElmNode§=3 then

Length(NumElem%,1)=(VARTheta*Phi(LocQ%,1)*60*DeltaT)/TmpI
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ELSE

Length(NumElem%,1)-(VARTheta*Phi(LocQ%,1)*60*DeltaT*(l-APLHA))/TmpI

END IF

IF Length(NumElem%,1)<0 THEN Length(NumElem%,l)=0

PRINT #1,"Iter #";

PRINT #1, USING "###";iloop%;

PRINT #1,SPACE$(57);

PRINT #1,USING"#####.### m";Length(NumElem%,1)

ELSE

PRINT #1,"Iter #";

PRINT #1, USING "###";iloop§

END IF

FOR ICT% - 1 TO NPt

FOR JCTt - 1 TO NClm%

Kmatrx(ICT%,JCT%) = 0

Cmatrx(ICT%,JCT%) = 0

Amatrx(ICTt,JCT%) = 0

NEXT JCT%

FOR JCTt = 1 TO NClmt+NumBandW$

Amatrx(ICT%,JCT%) = 0

NEXT JCT%

Force(ICT%,1) = 0

NEXT ICT%

for ictt = 1 to NPt

Pfx(ict%,1) = Phi(ict%,1)

if Pfx(ict%,1) < 0 THEN Pfx(ict%,1)=0

next ict%

IF NumElmNode% = 3 THEN

LocL% = NumElem%*4+1

ELSEIF NumElmNode% s 2 THEN

LocL% = NumElem%*2+1

END IF

IF Phaset = 1 THEN

Pfx(LocL%,l) = 0

Pfx(LocL§+1,1) = 0

END IF

if iprintt >= 3 then

call matrixprt(Length(),NumElem%,1,". . . . {L} . . . . ")

call matrixprt(TofOpp(),NumNode%,1,". . . . {1} . . . . ")

call matrixprt(SO(),NumNode%,1,". . . . {SO} . . . . ")

call matrixprt(Phi(),NP§,1,". . . . {Phi} . . . . ")

call matrixprt(ForceP(),NP%,l,". . . . (Fa) . . . . “)

end if

CALL GetElmntMthoef

if iprint% >= 3 then

call matrixprt(Fsubi(),NumElem%,1,". . . . (Fsubi) . . . . ")

call matrixprt(Fsubj(),NumElem%,1,". . . . {Fsubj} . . . . ")

call matrixprt(Fsubk(),NumElem§,1,”. . . . (Fsubk) . . . . ")

call matrixprt(TopWidth(),NumNode%,1,". . . . {T} . . . . ")

end if

CALL BuildGlobalMtx

if iprintt >= 3 then

call matrixprt(Cmatrx(),NP§,NClm%,". . . . [C] . . . . ")

call matrixprt(Kmatrx(),NP%,NC1m%,". . . . [K] . . . . “)

call matrixprt(Force(),NP%,1,". . . . {F} . . . . ")

call matrixprttPhi(),NP%,1,". . . . [Phi] . . . . ")

end if

GOSUB SolveTimeStepl

CALL ModfyGlobMtx
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if iprintt >= 3 then

call matrixprt(Amatrx(),NPt,NClm%,". . . . [A] . . . . ")

call matrixprt(Pmatrx().NP%,NClm#,". . . . [P] . . . . ")

call matrixprt(Fstar(),NP§,1,". . . . (F*) . . . . “)

end if

call matrixVectmult(Pmatrx(),NP%,NumBandW%,phil(),Temp1())

call matrixadd(temp1(),NP%,1,Fstar(),NP%,1,PFplust(),NP%,1)

call GAUSSBND(Amatrx(),NP#,NumBandW%,PFplust(l.Phi())

if iprintt >2 0 then

IF iloopt = 1 then

print #1,” A1 Q1 A2 02 A3";

IF Phaset - 1 THEN

print #1,USING ' Q3 A4 Q4 Elem### Length ":NumElem%

ELSE

print #1," Q3 A4 Q4"

END IF

if NumNodet>4 then

print #1," A5 QS A6 06 A7";

print #1,“ Q7 A8 QB ..etc."

end if

end if

call Vectoerrt(Phi(),NP%,l)

end if

DiffError a 0

FOR JTmp% = 1 TO NPt STEP 1

DiffError = DiffError + ABS(PrevPhi(JTmp%,1)-Phi(JTmp%,1))

PrevPhi(JTmp%,1) = Phi(JTmp%,1)

NEXT JTmpt

AllowErr = AllError+numiter§*AllError/IO

LOOP UNTIL (iloop%>2 AND DiffError<=AllowErr) OR (iloop%>numiter%)

TotalTime = TotalTime + DeltaT

NumStept - NumStept + 1

IF Phase! = 1 THEN

TotalLength - TotalLength + Length(NumElem%,1)

write #2, TotalTime,TotalLength

END IF

for j II=1 to NPS

Phil(j,1) = Phi(3,1)

ForceP(j,1) = Force(j,1)

next 3

FOR ICT% = 1 TO NumNode%

InfilP(ICT%,1) = Infil(ICT%,1)

NEXT ICTt

if iprint% >= 0 then

print #1," A1 01 A2 Q2 ";

print #1,”A3 Q3 A4 Q4 ==>Time Step:“;

print #1, USING ”###";NumStep%

if NumNode§>4 then

print #1," A5 05 A6 06 ":

print #1,'A7 Q7 A8 QB "

end if

print #1,STRING$(78,"+")

PRINT #1,SPACE$(25);'Simulated Time :";TotalTime;"min“

print #1,STRING$(78,'*')

end if
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IF Phaset - 1 THEN

IF TotalLength<FurLength THEN

NumElemt = NumElem% + 1

ELSE

Phase} - 2

CLOSE #2

END IF

END IF

IF PhaseRect - 0 THEN

IF TotalTime>=TimCut THEN

PhaseRec% = 1

NumNodRec% = NumNodRect + 1

Phi(1,1) n 0

Phi(2,1) = 0

write #3, TotalTime,TotalRec

END IF

END IF

IF PhaseRect s 1 THEN

TotalRec = 0

NumNodRect = 1

1'2

WHILE j <- NumElem§

IF Phi(j'2-1,1) <-Phi$et THEN

Phi(j*2-1,1) = 0

Phi(j*2,1) = 0

NumNodRec% = NumNodRec% + 1

TotalRec = TotalRec + Length(j-1,1)

ELSE

j = NumElem%

END IF

i=i+1

WEND

IF TotalRec <> 0 THEN

write #3, TotalTime,TotalRec

END IF

IF NumNodRect >- NumElemt THEN STPExc% = 1

END IF

IF NumStep§>=TotNumStep§ THEN

STPExcs - 1

END IF

LOOP UNTIL STPExc§ = 1

YYY = TIMER

IF SelPrtOpt$ = "F” or SelPrtOpt$ = "P" THEN

locate 10,14

print "Completed Time Steps . . . . . . . . . . . . : ":NumStep%

locate 12,14

print “Completed Time of Current Simulation Run (min): ":TotalTime

locate 16,14

PRINT USING ”Time of Execution for this Run :#####.## ":YYY-XXX:

PRINT "sec"

LOCATE 21,1

PRINT

END IF

PRINT #1, '"

PRINT #1, USING "Time of Execution for this Run : ######.## ":YYY-XXX;

PRINT #1, I'sec"

PRINT #1, USING ' : ######.## ":(YYY-XXX)/60;

PRINT #1, "min"

CLOSE

LOCATE 23,40

PRINT "Press any key to see next screen ..."

WHILE INKEYS =”'
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WEND

GOSUB READING

LOCATE 10,8

SelStrg$ = 'YyNn"

Strg$ - "Would you like to run the graphics routine ('Y', yes, 'N’, no) ? “

RowStrg§ = 10

ColStrg% = 8

call SelStrgEntry

AnsGS = SelOpt$

AnsGS = UCASE$(AnsG$)

IF AnsGS = "Y" THEN

CHAIN "SURFGRPH.EXE"

END IF '

CLS

END

InitialScrn:

REM titttttwti*ttttiit*ittwtittitwttttit**it*tittttttittitttttttttt*ti

REM * A subroutine to display the first screen. *

REM tittti*titiitttwitit*tttit*tttiittttttitfiitt******t*******t*******

KEY OFF

XX%(1) = 5: XX%(2) = 23: XX%(3) ' 23: XX§(4) 8 22: XX§(5) ' 10

YY%(1) = 2: YY%(2) = 4: YY%(3) = 8: YY%(4) 3 10: YY§(5) 8 12

XX%(6) = 17: YY%(6) = 14

CC$(1) = CRR$(201): CC$(2) = CRR$(205): CC$(3) = CHR$(187)

CC$(4) = CHR$(186): CC$(5) I CHR$(204): CC$(6) = CHR$(185)

CC$(7) 8 CRR$(200): CC$(8) = CHR$(188)

A1$ - CC$(1) + STRING$(54, CC$(2)) + CC$(3)

A25 - CC$(5) + STRING$(54, CC$(2ll + CC$(6)

A3$ I CC$(7) + STRING$(54, CC$(2ll + CC$(8)

AA$(1) - ' FINITE ELEMENT SURFACE IRRIGATION DESIGN MODEL "

AA$(2) 8 ”VERSION 1.00"

AA$(3) ' ”Developed by”

AA$(4) a "Walid H. Shayya"

AA$(5) = "Dapartment of Agricultural Engineering"

AA$(6) r ”Michigan State University"

CLS

. LOCATE 4, 1

PRINT SPACE$(12); A1$

FOR Iloopt = 1 TO 5

PRINT SPACE$(12): CC$(4); SPACE$(54); CC$(4)

NEXT Iloopt

PRINT SPACE$(12): A25

FOR Iloopt a 1 TO 9

PRINT SPACE$(12); CC$(4): SPACE$(54); CC$(4)

NEXT Iloopt

PRINT SPACE$(12): A3$

FOR Iloopt = 1 TO 6

LOCATE YY%(Iloop%) + 4, XX%(Iloopt) + 12

PRINT AA$(Iloop%)

NEXT Iloopt

LOCATE 23, 48

COLOR 15, 0

PRINT “Press any key to continue."

COLOR 7, 0

WHILE INKEY$ = "“t WEND

RETURN

READING:

rem *wwwtwttwttwttwtttwwttttwfittttiwttwwtiintuitwtwwtttttttttttttwuttw

rem * A subroutine to print page heading. *

rem itiiitttttit*ttttttw*tttttwtw***t****t*ttttt*iiittifi****t***t*ttt*

cls

LOCATE 2,24
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PRINT ”FINITE ELEMENT SURFACE IRRIGATION"

LOCATE 3,24

PRINT " DESIGN PROGRAM”

LOCATE 4,23

PRINT STRING$(35,196)

return

SUB SelStrgEntry

rem *****t*******t***t*********t**t**t*******t************************

rem * A subprogram for entering one charcter input to a selected *

rem * string variable. *

rem *****tww******t**********ttttitttw************t*******i*t*********

SHARED SelOpt$,SeIStrgS,Strg$,RowStrg%,ColStrg%

LOCAL BCount%

BCount% 0

SelOpt$ = ””

WHILE INSTR(1,SelOpt$,ANY SelStrg$) = 0

locate RowStrg%,ColStrg%

IF BCount% <> 0 THEN BEEP

PRINT Strg$;

SelOpt$ = INPUT$(1)

PRINT SelOpt$

BCount% = 1

WEND

END SUB

SolveTimeStepl:

rem ****w********t*ttttt*iitttttttttii*ttttwtttt**t********t***t******

rem * A subroutine to build the ordinary differential equation in *

rem * time. It will construct the following system of equations: *

rem *
*

rem * [A] {Q} ‘ [P] {O} + {F*) *

rem * b a *

rem * where, *

rem * [A] = [C] + 9.5T.[K] *

rem * [P] = [C] - (1 - 9).5T.[K] *

rem * {F*} - 5T.(1 — GHF} + 8T.9.(F} *

rem * a b *

rem *iifi******************************************fi*************ii*it*

Paraml = VARTheta * DeltaT * 60

Param2 - (VARTheta - 1) * DeltaT * 60

Param3 - - Param2

ParamlM = 1

ParamZM - 0

Param3M - 0

IF MethodS = "R” THEN

call matrixNumult(Kmatrx(),NP%,NClm%,Param1,temp1())

else

call matrixNumultMod(Kmatrx(),NP%,NClm%,Param1,Param1M,temp1())

end if

if iprint% >= 3 then

call matrixprt(temp1(),NP%,NClm%,". . . . . 9.5T.[K] . . . . . ")

end if

call matrixadd(temp1(),NP%,NC1m%,Cmatrx(),NP%,NC1m%,AmatIX(),NP%,NClm%)

if iprint% >8 3 then

call matrixprt(Amatrx(),NP%,NClm%,". . [A] = [C] + 6.5T.[K] . .")

end if
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IF Methods 8 "H" THEN

call matrixNumult(Kmatrx(),NP8,NClm%,Param2,temp1())

else

call matrixNumultMod(Kmatrx(),NP§,NClm§,Param2,Param2M,temp1())

end if

if iprintt >8 3 then

call matrixprt(temp1(),NP%,NClm%,". . . . - (1 - 9).5T.[K] . . . . ")

end if

call matrixadd(temp1(),NP§,NC1mt,Cmatrx(),NP%,NC1m%,Pmatrx(),NP§,NClm%)

if iprintt >= 3 then

call matrixprt(Pmatrx(),NP%,NC1m%,". . [P] 8 [C] - (1 - 8).5T.[K] . .")

end if

IF Methods 8 "H" THEN

call matrixNumult(ForceP(),NP%,1,Param3,TempF1())

else

call matrixNumultMod(ForceP(),NPt,1,Param3,Param3M,TempF1())

end if

if iprintt >8 3 then

call matrixprt(TempFl(),NP%,1,". . . . (1 - 9).5T.{F}a . . . . ")

end if

IF MethodS = "R” THEN

call matrixNumult(Force(),NP%,l,Param1,TempF2())

else '

call matrixNumultMod(Force(),NPS,1,Param1,Param1M,TempF2())

end if

if iprintt )- 3 then

call matrixprt(TempF2(),NP%,1,". . . . 9.5T.{F)b . . . . ")

end if

call matrixadd(TempF1(),NP§,1,TempF2(),NP%,1,Fstar(),NP§,1)

if iprint% >8 3 then

call matrixprt(Fstar(),NP%,1,". [F*} = 5T.(1-9){Fa) + 6T.9.{Fb} .")

end if

return

GetBasicElmntMtx:

rem *ttttttttttttwitwiit*****t*fi*****tttttti*tti*itititttttittttittwtt

rem * A subroutine for getting the constant coefficients of the *

rem * element stiffness and the capacitance matrices. This *

rem * subroutine works for both linear and quadratic elements. *

rem fi****it**titiifit*t****t*ttt**t*i*iiiiitttiififiitiiitfltitttfiitiititi

NumElmNode2§ 8 NumElmNodet * 2

IF NumElmNode2% 8 6 THEN

IF CONSISorLUMPt 8 1 THEN

RESTORE 100

FOR Icountt 8 1 TO NumElmNodeZt

FOR Jcountt 8 1 TO NumElmNode2%

READ E1thmtx(Icount¥,Jcountt)

NEXT Jcountt

NEXT Icount%

ELSE

RESTORE 125

FOR Icountt 8 1 TO NumElmNode2%

FOR Jcountt 8 1 TO NumElmNode2%

READ Elthmtx(Icount§,Jcountt)

NEXT Jcount%

NEXT Icountt

END IF

RESTORE 150

FOR Icounti 8 1 TO NumElmNode2§

FOR Jcountt 8 1 TO NumElmNodeZt

READ Elthmtx(Icount%,Jcount§)
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Elthmtx(Icount%,Jcountt)

NEXT Jcount%

NEXT Icount%

Elthmtx(Icount%,Jcount%) / 24

ELSEIF NumElmNodeZi 8 4 THEN

IF CONSISorLUMPt 8 1 THEN

RESTORE 200

FOR Icountt 8 1 TO NumElmNode2%

FOR Jcountt 8 1 TO NumElmNodeZi

READ Elthmtx(Icount§,Jcount‘)

NEXT Jcountt

NEXT Icount%

ELSE

RESTORE 225

FOR Icounti 8 1 TO NumElmNodeZt

FOR Jcountt 8 1 TO NumElmNode2§

READ E1thmtx(Icount%,Jcountt)

NEXT Jcount%

NEXT Icountt

END IF

RESTORE 250

FOR Icount§ 8 1 TO NumElmNodeZt

FOR Jcount% 8 1 TO NumElmNode2%

READ Elthmtx(Icount%,Jcount%)

NEXT Jcount%

NEXT Icountt

REM ** Non-Galerkin Finite Element Formulation except if ALPHA=O

Elthmtx(l,2) = Elthmtx(1,2) + ALPHA / 2

E1thmtx(1,4) = Elthmtx(1,4) - ALPHA / 2

E1thmtx(3,2) a Elthmtx(3,2) - ALPHA / 2

Elthmtx(3,4) = Elthmtx(3,4) + ALPHA / 2

END IF

100 DATA 4, o, 2, 0,-1, 0

DATA 0, o, o, o, o, 0

DATA 2, 0,16, 0, 2, 0

DATA 0, o, o, o, o, 0

DATA -1, o, 2, o, 4, 0

DATA 0, o, o, o, o, o

125 DATA 5, o, o, o, o, 0

DATA 0, o, o, o, o, 0

DATA 0, 0,20, 0, o, 0

DATA 0, o, o, o, o, 0

DATA 0, o, o, o, 5, 0

DATA 0, o, o, o, o, o

150 DATA 0,-12, o, 16, o, -4

DATA 0, o, o, o, o, 0

DATA 0,-16, o, o, o, 16

DATA 0, o, o, o, o, 0

DATA 0, 4, 0,—16, o, 12

DATA 0, o, o, o, o, o

200 DATA 2, o, 1, 0

DATA 0, o, o, 0

DATA 1, o, 2, 0

DATA 0, o, o, o

225 DATA 3, o, o, 0

DATA 0, o, o, 0

DATA 0, o, 3, 0

DATA 0, o, o, o

250 DATA 0, .5, o, .5

DATA 0, o, o, 0

DATA 0, .5, o, .5

DATA 0, o, o, o

RETURN
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sub GetElmntMthoef

rem *ttittttttiittittitttt*ti***itt**ifi*tttiit*ttiittiitfitiiitttttittt

rem * A subroutine for determining the coefficients C, C2, C3, and*

rem C4 of the element stiffness and the capacitance matrices. Also,*

rem the coefficients fi, fj, and fk for the force vector are *

rem determined. This subroutine works for both linear and *

rem quadratic elements. *

rem *tttwtttwtititititit*ittttttwttitttt*tWitt*tttiittttittttttitititt

SHARED NumElem%,Gravity,Phi(),NumElmNode%,Method$,Sigma1,Sigma2

SHARED NumNode§,Fsubi(),Fsubj(),Fsubk(),ManngN,SO(),Rhol,Rh02,Length()

SHARED TopWidth(),Coef1().Coef2()'Coef3().Coef4().Coef5(),CONSISorLUMP%

SHARED Pfx(),Czi(),Czj(),Czk(),CoefTW

LOCAL Count%,AreaC§,FlowC%,TempV1,TempV2,TempV3,Sfi,Sfj,ka,NodeC%,itr%

LOCAL ct§,Expnt

IF NumElmNode% 8 2 THEN

&
i

i
8

Temle 8 2

TempV2 8 2

TempV3 8 2

ELSEIF NumElmNode% 8 3 THEN

Temle 8 6

TempVZ = 2

TempV3 8 4

END IF

IF Methods 8 "Z" THEN

Expnt 8 1

ELSE

Expnt 8 2

END IF

FOR Count% 8 1 TO NumElem%

REM *wttwfitt*********************t*************w****t*************

REM * Determine the coefficients c , c , c , c , c , f , f , e f *

REM * 1 2 3 4 5 i j k*

REM * of the individual element matrices for all the methods. *

REM ********************i*****************************************

IF NumElmNode% 8 2 THEN

AreaCt 8 Count§*2-1

Floth 8 Count%*2

NodeC% 8 Counti

ELSEIF NumElmNode§ 8 3 THEN

AreaCt 8 Count%*4-3

Floth 8 Count%*4-2

NodeC% 8 Count§*2-1

END IF

IF Methods <> "K“ THEN

REM itflirtit*******wwttttttwttttttttttit*tttttttttttttttttwttttt

REM * If kinematic wave, the force vector of the 2nd, 4th, 5 *

rem * 6th equations is placed in the stiffness matrix. *

rem *titttttitit*wtitt*twwwwttt**************t*ttttttiitttwtwttt

FOR itrt 8 1 TO NumElmNode%

ctt 8 (itr%-1)*2

IF Methods 8 "H" AND Pfx(AreaCt+ct%,1)<>o THEN

Coef1(Count%,itr%) 8 1 / (Gravity * Pfx(AreaC%+ct%,1))

ELSE

Coef1(Count%,itr%) 8 0

END IF

IF (Methods 8 "H" OR Methods 8 ”8“) AND (Pfx(AreaC%+ct§,1)<>0) THEN

Coef3(Countt,itr§)8Pfx(FlowC§+ctt,1)‘2/(Gravity*Pfx(AreaC%+ctt,1)‘3)

ELSE

Coef3(Count%,itr%) 8 0

END IF

IF Pfx(AreaC%+ct%,1)<>O THEN

TopWidth(NodeC%+itrt-1,1)8(CoefTW*Pfx(AreaC§+ct§,1)“(l-SigmaZ))/Sigma1

Coef2(Count%,itr§) 8 1 / TopWidth(NodeC§+itr§-1,1)
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ELSE

TopWidth(NodeC%+itr%-1,1) 8 0

Coef2(Count%,itr%) 8 0

END IF

IF Pfx(AreaCt+ct%,1)<>0 AND Methods <> "2" THEN

Coef4(Countt,itr%)82*Pfx(Floth+ct§,1)/(Gravity*Pfx(AreaC%+ct§,1)“2)

ELSE

Coef4(Count%,itr%) 8 0

END IF

Coef5(Count§,itr%)8Coef2(Count%,itr%)-Coef3(Count§,itr%)

NEXT itrt

IF Pfx(AreaC§,1) <> 0 THEN

Sfi 8 (Pfx(FlowC§,1)‘Expnt*ManngN‘2)/(Rhol*(Pfx(AreaC%,1))‘Rh02)

ELSE

Sfi 8 0

END IF

IF Pfx(AreaC%+2,1) <> 0 THEN

Sfj 8 (Pfx(FlowC%+2,1)“Expnt*ManngN“2)/(Rhol*(Pfx(AreaC%+2,1))‘Rh02)

ELSE

Sfj 8 0

END IF

IF MethodS 8 '2" THEN

Czi(Count%,1) 8 Sfi * Length(Count§,1)/Temle

Czj(Count%,l) 8 Sfj * Length(Count§,1)/Tempv3

Sfi 8 0

Sfj 8 0

END IF

Fsubi(Count%,1) 8 Length(Count%,1)*(SO(NodeC%,1)-Sfi)/TempV1

Fsubj(Countt,1) 8 Length(Count%,1)*(SO(NodeC%+1,1)-Sfj)/TempV1

IF NumElmNode% 8 3 THEN

IF Pfx(AreaC%+4,1) <> 0 THEN

ka 8 (Pfx(Floth+4,1)‘Expnt*ManngN‘2)/(Rhol*(Pfx(AreaC%+4,1))“Rh02)

ELSE

ka 8 0

END IF

IF Methods 8 "2" THEN

Czk(Count%,1) 8 ka * Length(Count%,1)/TempV1

ka 8 0

END IF

Fsubk(Count%,1) 8 Length(Count%,l)*(SO(NodeC%+2,1)-ka)/TempV1

END IF

ELSE

Sfi 8 Rhol*(Pfx(AreaC%,1))‘(Rh02-2)*SO(NodeC%,1)

Sfj 8 Rhol*(Pfx(AreaC%+2,1))“(Rh02-2)*SO(NodeC§+1,1)

Fsubi(Count§,l) 8 (Sfi“.5)/(ManngN*TempV2)

Fsubj(Count%,1) 8 (Sfj“.5)/(ManngN*TempV3)

IF NumElmNode% 8 3 THEN

ka 8 Rhol*(Pfx(AreaC%+4,1))‘(Rh02—2)*SO(NodeC%+2,1)

Fsubk(Count%,1) 8 (ka“,5)/(ManngN*TempV2)

END IF

END IF

NEXT Count%

END SUB

sub BuildGlobalMtx

rem titttttttttitifit*fittitifittttiiitti*iiiitiiifiitititwitttttt*ttfimitt

rem * A subroutine for building the global stiffness and *

rem * capacitance matrices, and the global force vector. *

rem tittit*itttttitttttwiw*tfittttttttttittttittwtt*iitfitttttttwttttwwi

SHARED NumElem§,Coef(),NumElmNode%,Kmatrx(),Cmatrx(),Elthmtx(),Force()

SHARED Length(),Elthmtx(),TempK(),TempC(),Method$,ManngN,Infil()

SHARED kofInf,fsub0,aofInf,Tof0PP(),Fsubit),Fsubj(l,Fsubk(),CONSISorLUMP%
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SHARED Coef1(),Coef2(),Coef3(),Coef4(),Coef5(),DeltaT,FDorFE%,InfilP()

SHARED C21():Czj(),Czk(),NumBandW%

SHARED ALPHA,Phase$

LOCAL NumElmNode2%,Countt,Count2%,LocatC%,LocatN%,Ict%,Jct%,TempV1

LOCAL TempV2,TempV3,TempV4,TempV5

NumElmNode2% 8 NumElmNode% * 2

IF NumElmNodet 8 2 THEN

Temle 8 2

ELSEIF NumElmNodet 8 3 THEN

Temle 8 6

END IF

IF NumElem% 8 1 OR Phase$<>1 THEN

Umet% 8 NumElemt

ELSE

Umet% 8 NumElemt - 1

END IF

FOR Count% 8 1 TO Umet%

REM *tttttti***********ttiiittwtiitttwtt*tt’kit*iittttifiifittttiiititt

REM * Construct the individual element matrices for all the *

REM * different models. *

REM titfittttwttt*tifiti*fitttiitwttifiiittitttiittittttwttittittttttwtw

IF NumElmNode2% 8 6 THEN

LocatCt 8 Count%*4-4

LocatNt 8 Count%*2-2

ELSEIF NumElmNode2% 8 4 THEN

LocatC% 8 Count%*2-2

LocatNt 8 Countfi-l

END IF

FOR Ictt 8 1 TO NumElmNode2%

FOR Jctt 8 1 TO NumElmNode2%

TempK(Ictt,Jct%) 8 Elthmtx(Ict%,Jct%)

TempC(Ict%,Jct%) = E1thmtx(Ict§,Jct%)

NEXT Jctt

NEXT Ict%

IF Methods 8 "H" THEN

IF CONSISorLUMPt 8 1 THEN

IF FDorFEt-l THEN

IF NumElmNode2% 8 6 THEN

TempC(2,2) 8 4 * Coef1(Count%,1)

TempC(2,4) 8 2 * Coef1(Count§,2)

TempC(2,6) 8 - Coef1(Count§,3)

TempC(4,2) 8 2 * Coef1(Count%,1)

TempC(4,4) 8 16 * Coef1(Count§,2)

TempC(4,6) 8 2 * Coef1(Count%,3)

TempC(6,2) 8 - Coef1(Count%,1)

TempC(6,4) 8 2 * Coef1(Count%,2)

TempC(6,6) 8 4 * Coef1(Count%,3)

ELSEIF NumElmNode2§ 8 4 THEN

TempC(2,2) 8 2 * Coef1(Count§,1)

TempC(2,4) 8 Coef1(Count%,2)

TempC(4,2) 8 Coef1(Count§,1)

TempC(4,4) 8 2 * Coef1(Count%,2)

END IF

ELSE

IF NumElmNode2% 8 6 THEN

TempC(2,2) 8 4 * Coef1(Count8,1)

TempC(2,4) 8 2 * CoefltCount§,1)

TempC(2,6) 8 - Coef1(Count%,1)

TempC(4,2) 8 2 * Coef1(Count%,1)

TempC(4,4) 8 16 * Coef1(Countt,1)

TempC(4,6) 8 2 * Coef1(Count§,1)

TempC(6,2) - Coefl(Count%,1)
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TempC(6,4) 8 2 * Coef1(Count%,1)

TempC(6,6) 8 4 * Coef1(Count%,1)

ELSEIF NumElmNode2% 8 4 THEN

TempC(2,2) 8 2 * Coef1(Count§,1)

TempC(2,4) 8 Coef1(Count%,1)

TempC(4,2) 8 Coef1(Count§,1)

TempC(4,4) 8 2 * Coef1(Count§,1)

END IF

END IF

ELSE

IF FDorFE%81 THEN

IF NumElmNode2% 8 6 THEN

TempC(2,2) 8 5 * Coef1(Count§,l)

TempC(4,4) 8 20 * Coef1(Count%,2)

TempC(6,6) 8 5 * Coef1(Count§,3)

ELSEIF NumElmNode2% 8'4 THEN

TempC(2,2) 8 3 * Coef1(Count%,1)

TempC(4,4) 8 3 * Coef1(Countt,2)

END IF

ELSE

IF NumElmNode2% 8 6 THEN

TempC(2,2) 8 5 * Coef1(Count%,1)

TempC(4,4) 8 20 * Coef1(Count§,1)

TempC(6,6) 8 5 * Coef1(Count%,1)

ELSEIF NumElmNodeZt 8 4 THEN

TempC(2,2) 8 3 * Coef1(Count%,1)

TempC(4,4) 8 3 * CoefltCount%,l)

END IF

END IF

END IF

END IF

IF MethodS 8 ”K" THEN

IF NumElmNode2% 8 6 THEN

REM ititmitt*******twtifl*ttttittttttit*tttttttttttttttttttttti

REM * If kinematic wave, the force vector of the 2nd, 4th, & *

rem * 6th equations is placed in the stiffness matrix. *

rem ittitttttttiittwttwttitttttttt*ttt*ttttttttttttttttittttit

TempIHZp 2’ .

TGU'IPK(20 1)

TemPK(4p4l

TempKMo 3)

TemPFHG, 6)

.5

-Fsubi(COUNTt,1)

1

-4*Fsubj(COUNT%,1)

.5

TempK(6,5) -Fsubk(COUNT§,1)

ELSEIF NumElmNodeZt 8 4 THEN

TempK(2,2) 8 .5

TempK(2,1) 8 -Fsubi(COUNT%,1)

TemPKHHl) ' .5

TempK(4,3) 8 -Fsubj(COUNT%,1)

END IF

ELSEIF Methods 8 "2"

IF FDorFE%81 THEN

IF NumElmNode2% 8

THEN

6 THEN

TempK(2,1) 8 - Coef2(Count%,1) / 2

TempK(2,3) 8 2 * Coef2(Count%,2) / 3

TempK(2,5) 8 - Coef2(Countt,3) / 6

TempK(4,1) 8 - 2 * Coef2(Count%,l) / 3

TempK(4,5) 8 2 * Coef2(Count%,2) / 3

TempK(6,1) 8 Coef2(Count§,1) / 6

TempK(6,3) 8 - 2 * Coef2(Count%,2) / 3

TempK(6,5) 8 Coef2(Count%,3) / 2

ELSEIF NumElmNode2% 8 4 THEN

TempK(2,1) 8 Coef2(Count%,1) *

TempK(2,3) 8 Coef2(Count%,2)

TempK(4,1) 8 Coef2(Count%,1)

(-.5 + ALPHA/2)

(.5 - ALPHA/2)

(-.5 - ALPHA/2)

D
I



TempK(4,3) 8 Coef2(Count%,2)

END IF

ELSE

IF NumElmNodeZ! 8 6 THEN

TempK(2,1) 8 - Coef2(Count%,l) / 2

2 * Coef2(Count%,1) / 3TempK(2,3)

TempK(Zr 5)

TempK(4.1)

TempK(40 5)

TempK(6,1)

TempK(Gr 3)

TempK(Gr 5)

i
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(.5 + ALPHA/2)

Coef2(Count%,1) / 6

- 2 * Coef2(Count§,1) / 3

2 * Coef2(Count%,1) / 3

Coef2(Count%,1) / 6

- 2 * Coef2(Count%,1) / 3

Coef2(Count§,1)

ELSEIF NumElmNodeZ§ 8 4 THEN

TempK(2,1)

TempK(2,3)

TempK(4,1)

TempK(4,3)

END IF

END

IF NumElmNode2%

TempK(2,2)

TempK(‘lp 4)

END

ELSE

IF FDorFE§=1 THEN

IF

IF

Coef2(Count%,1)

Coef2(Count%,1)

Coef2(Count%,1)

Coef2(Count%,1)

6 THEN

Czi(COUNT%,1)

4*Czj(COUNT%,1)

TempK(6,6) 8 Czk(COUNT%,1)

ELSEIF NumElmNode2% 8 4 THEN

TempK(2,2) 8 Czi(COUNT§,1)

TempK(4,4) 8 Czj(COUNT§,1)

IF NumElmNodeZ‘ 8 6 THEN

TempK(Z, 1)

TempK(2,2)

TempK(2,3)

TemPK (20 4)

TempK(2p5)

TempK(2p6)

TempK(‘l, 1)

TempK(4,2)

TempK(‘lp 5)

TempK(4,6)

TempK(G, 1)

TempK(6, 2)

TempK(6( 3)

TempK(6p4)

TempK(6,5)

TempK(6,6)

/

fi
fi
’
i

- CoefS(Count%,1) / 2

I
I
N
N
I

Coef4(Count§,1) / 2

* Coef5(Count%,2) /

* Coef4(Count§,2) /

Coef5(Count%,3) / 6

Coef4(Count§,3) / 6

2 * Coef5(Count%,1)

2 * Coef4(Count%,1)

2 * Coef5(Count%,2) /

2 * Coef4(Count§,2) /

Coef5(Count%,1) / 6

Coef4(Count%,1) / 6

- 2 * Coef5(Count%,2)

- 2 * Coef4(Count§,2)

Coef5(Count§,3)

Coef4(Count%,3)

ELSEIF NumElmNode2% 8 4 THEN

TempK(2,1) 8 Coef5(Count%,1)

EN

ELSE

TempK(2,2)

TempK(2,3)

TempK(Zr 4)

TempK(‘lp 1)

TemPKHpZ)

TernpK(4r3)

TempK(‘lp‘U

D IF

Coef4(Countt,1)

Coef5(Count%,2)

Coef4(Count%,2)

Coef5(Countt,1)

Coef4(Count%,1)

Coef5(Count%,2)

Coef4(Count§,2)

IF NumElmNodeZt 8 6 THEN

TempK(2,1) 8 - Coef5(Count§,1) / 2

8 - Coef4(Count%,1) / 2

2 * Coef5(Count%,1) / 3

2 * Coef4(Count%,1) / 3

- Coef5(Count%,1) / 6

TempK(Z, 2)

TempK(Zr 3)

TempK(2p4)

TempK(2r5)

TempK(2p6)

\
\

I
i
t
i
i
fi
fi
fi

2

(-.5 + ALPHA/2)

( .5 - ALPHA/2)

(-.5 - ALPHA/2)

( .5 + ALPHA/2)

3

3

/ 3

/ 3

3

3

/ 3

/ 3

2

2

(-.5 + ALPHA/2)

(-.5 + ALPHA/2)

(.5 - ALPHA/2)

(.5 - ALPHA/2)

(-.5 - ALPHA/2)

(-.5 - ALPHA/2)

(.5 + ALPHA/2)

(.5 + ALPHA/2)

Coef4(Count%,1) / 6



TempK(4,1)

TempK(4p2)

TemPKH' 5)

TempK(dr 6)

TempK(6,1)

TempK(6,2)

TempK(6'3)

TempK(6,4)

TempK(6,5)

TEMPK(616)
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- 2 * Coef5(Count%,1)

- 2 * Coef4(Count%,1)

2 * Coef5(Count§,1) /

2 * Coef4(Count§,1) /

Coef5(Count%,l) / 6

Coef4(Count§,1) / 6

- 2 * Coef5(Count%,1)

- 2 * Coef4(Count%,1)

/ 2

/ 2

Coef5(Count%,1)

Coef4(Count%,1)

ELSEIF NumElmNode2% 8 4 THEN

EN

TempK(2,1)

TempK(Z: 2)

TempK(Zr 3)

TempK(ZI 4)

TempK(4,1)

TempK(4p2)

TempK(4,3)

TemPKHp 4)

D IF

END IF

END

REM

REM

REM

REM

FOR

IF

Coef5(Count%,1)

Coef4(Count%,1)

Coef5(Count%,1)

Coef4(Count§,1)

Coef5(Count%,1)

Coef4(Count%,1)

Coef5(Count§,1)

Coef4(Count§,1)

‘
i

M
O

O
G

t
i

h
i
h
i
\
~
\
.

\
C
\

ALPHA/2)

ALPHA/2)

ALPHA/2)

ALPHA/2)

ALPHA/2)

ALPHA/2)

ALPHA/2)

ALPHA/2)

*ititfiitti*************ttt*t*i*******i**************tt*i***ttiit

* Construct the global stiffness and capacitance matrices, and *

* build the global force vector.

it*t*t*********t***tttttttittittwttttwttttttttittttttitt****t*it

Ict% 8 1 TO NumElmNode2§

FOR Jctt 8 1 TO NumElmNodeZt

IRowt 8 Ictt+LocatC§

JCol% 8 Jctt+LocatC§+NumBanth-IRowt

IF TempC(Ict%,Jct%) <> 0 THEN

IF NumElmNodeZt 8 6 THEN

TempV2 8 TempC(Ict%,Jct%) * Length(Count%,1) / 30

ELSEIF NumElmNode2# 8 4 THEN

TempV2 8 TempC(Ict%,Jctt) * Length(Count%,l) / 6

END IF

Cmatrx(IRow%,JCol%) 8 TempV2 + Cmatrx(IRow%,JCol%)

END IF

NEXT Jctt

NEXT Ictt

FOR COUNT2§ 8 1 TO NumElmNodet

TempV38kofInf*TofOpp(LocatN%+COUNT2%,1)“aofInf

TempV38(TempV3+Tof0PP(LocatN§+COUNT2§,1)*fsubO)

Infil(LocatN%+COUNT2§,1) 8 TempV3

Tempv48(TempV3-InfilP(LocatN%+COUNT2§,1))/(DeltaT*60)

TempVS 8 - Length(Count%,1)*TempV4/TempV1

If COUNT2§ 8 2 AND NumElmNode% 8 3 THEN

TempVS 8 TempVS * 4

END If

Force(LocatC%+Count2%*2-l,1)8TempV5+Force(LocatC%+Count2%*2-1,1)

NEXT COUNT2%

IF MethodS <> “K" THEN

Force(LocatCt+2,1) 8 Force(LocatC%+2,1)+Fsubi(COUNT%,1)

IF NumElmNodet 8 2 THEN

Force(LocatC§+4,1) 8 Force(LocatC%+4,1)+Fsubj(COUNT§,1)

ELSEIF NumElmNode‘ 8 3 THEN

Force(LocatC%+4,1) 8 Force(LocatC%+4,1)+4*Fsubj(COUNT%,1)

Force(LocatCt+6,1) 8 Force(LocatCt+6,1)+Fsubk(COUNT§,1)

END IF

END IF

NEXT Countt

END SUB

Kmatrx(IRow§,JCol%) 8 TempK(Ict%,Jct§) + Kmatrx(IRow%,JCol%)

*
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sub ModfyGlobMtx

*fiiitttittt****ifiitfitifitiiiiiiti*t**t************tifiiititittttfitit
rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

rem

t

t
I

I
I

t
i

i
I

I
I

t

A subroutine for modifying the global system of equations *

for known Phi boundary conditions. This subroutine modifies *

the [A] and [P] matrices by deleting rows and columns. It is *

always assumed that the unknown to be modified is the flow Q *

which represents the second unknown at each node. *

However, if the Area of flow at the node has a fixed value as *

a boundary condition, then this can still be incorporated into *

the final system of equations using this subroutine. This step*

is accomplished by entering the number of node minus 0.5 *

as the node number to be modified. In other words, the *

first value in the array NofPhi(i,1) will be *

NofPhi(1,1) 8 Node Number of let boundary - .5 *

titiii*tttitfifiittttttfliiitti*tfiittitfitti**fitfi*fi**t******it**fi*t***

SHARED NumElemt,Amatrx(),Pmatrx(),Method$,NumNode§,Phi()'Phil()

SHARED NumofPhi%,NumBandW%,Fstar(),NPt,NofPhi()

LOCAL Ict§,Jct§,PrvN§,KPhiN%,TT1%,TT2%,TT3%,TT4%

FOR Ictt 8 1 TO NumofPhii

KPhiNt 8 NofPhi(Ict%,1) * 2

Prth 8 KPhiNt - 1

FOR Jctt 8 KPhiN§+1 TO NumBanth+PrvN§

TT1% 8 NumBandW% - Jctt + KPhiN%

TTZ‘

TT3%

NumBandW% + Jctt - KPhiNt

NumBandWi - PrvN% + KPhiNt

TT4% 8 NumBandW% + PrvN% - KPhiN%

IF Jctt <= NPt THEN

Fstar(Jct%,1) 8 Fstar(Jct%,1)-Amatrx(Jct§,TT1%)*Phi(KPhiN§,1)

Fstar(Jct%,1) 8 Fstar(Jct%,1)+Pmatrx(Jct%,TT1%)*Phil(KPhiN%,1)

Amatrx(KPhiN%,TT2§) 8 O.

Amatrx(Jct%,TT1%) 8 0.

Pmatrx(KPhiN%,TT2§) 8 0.

Pmatrx(Jct§,TT1§) 8 0.

END IF

IF PrvN% > 0 THEN

Fstar(PrvN%,1) 8 Fstar(PrvN%,1)-Amatrx(PrvN%,TT3%)*Phi(KPhiN§,1)

Fstar(Prth,1) 8 Fstar(Prth,1)+Pmatrx(PrvN%,TT3%)*Phil(KPhiN%,1)

Amatrx(PrvN%,TT3§) 8 0.

Amatrx(KPhiN%,TT4%) 8 0.

Pmatrx(PrvN%,TT3%) 8 0.

Pmatrx(KPhiN%,TT4%) 8 0.

PrvN% 8 PrvN% - 1

END IF

NEXT Jctt

Amatrx(KPhiN%,NumBandW§) 8 1.

Pmatrx(KPhiN%,NumBandW%) 8 0.

Fstar(KPhiN%,1) 8 Phi(KPhiN%,1)

NEXT Ictt

end sub

sub matrixNumu1t(x(2),rx%,cx%,var1,z(2))

rem twwttwtttwttwtwtttttit*t***t*t****w*twtt*******wwtwtttttttttttttwt

rem * A subroutine for matrix multiplication by a constant. *

rem *ttittittwtttttttt*ttwtttwtitttttttttttttittttwiwwttitttittttttt*t

local 11%,jjt

for 11% 8 1 to rxt

for jj% 8 1 to cxt

z(ii%,jj%) 8 0

next jjt

next 11%
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for 11% 8 1 to rx%

for jj% 8 1 to cx%

z(1i§,jj%) 8 varl * x(11%,jj%)

next jj%

next 11%

end sub

sub matrixNumultMod(x(2),rx%,cx%,var1,var2,z(2))

rem titttitfittttttitttttttti**tt*tiitttt*t***ttitittttittfittttittitttt

rem * A subroutine for matrix multiplication by two constants. The *

rem * for the unsteady part of the problem while the second is for *

rem * the steady part of the problem when other than full dynamic *

rem * equations are used. *

rem ii*****tti*ttt*fi*****fi*tfitii*tit*iitti*tfitttti**t*******fi***i*****

local ii%,jj%

for ii% 8 1 to rxt

for jj% 8 l to cx%

z(ii%,jj%) 8 0

next jj%

next 11%

for 11% 8 1 to rx%

for jj% 8 1 to cx%

if int(1i%/2)*2 8 11% then

z(ii%,jj%) 8 var2 * x(ii%,jj%)

else

z(1i%,jj%) 8 varl * x(11%,jj%)

end if

next jj%

next 11%

end sub

sub matrixprt(x(2),rx%,cx%,var$)

rem *ttttt************itititit***********itt*ttttttt*tttititttitiitiit

rem * A subroutine for printing matrices. *

rem *tttttittttttttttt*tttitwithitttttfitttttttti*ttttttttittitttttttit

local 11%,jj%

PRINT #1,

PRINT #1,

PRINT #1, space$(20);var$

PRINT #1,

for 11% 8 1 to rx%

for jj% 81 to cxt

PRINT #1, using "##.###t ";x(ii%,jj%):

next jjt

PRINT #1,

next 11%

PRINT #1,

PRINT #1,

end sub

sub Vectoerrt(x(2),rx%,cx%)

rem fifitfi**t*i**i*t*******i*ttt*t***********i**tittfi***fi**fi********ittt

rem * A subroutine for printing matrices transposes. *

rem *ttttttwit*ttitwtttttttttt*ttwtwiti*tt***wtw*tttt*fi*tt**t***t*t***

local ii%,jj%

for 11% 8 1 to cx%

for jjt 81 to rx%

PRINT #1, using "##.#### ";x(jj%,11%);

if int(jj%/8)*8 = jjt then PRINT #1,

next jj%

PRINT #1,

next 11%

end sub
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sub matrixadd(x(2),rx%,cx%,y(2),ry%,cy%,z(2),rz%,cz%)

rem itit*ttttttitttfltttiiiflittiiiitttfititttittitflittitititttiittitttii

rem * A subroutine for matrix addition.
*

rem it*iti*tittttitttttittttitfitititit*i*i***************************t

local ii%,jj%,kk%

if cxt<>cy% or rx§<>ryt then

PRINT #1, "Matrices can't be added l!!!"

goto quitadd

end if

r2% 8 rx%

c2% 8 cy%_

for 11% 8 1 to rx%

for jj% 8 1 to cx%

z(ii%,jj%) 8 0

next jj%

next 11%

for 11% 8 1 to rx%

for jj% 8 1 to cx%

z(11%,jj%) 8 x(1i%,jj%) + y(ii%,jj%)

next jj%

next 11%

quitadd:

end sub

SUB GAUSSBND(X(2),NEQU%,Bndeth%,C(2),Z(2))

REM fittiit**************ii**t**tittt**tt*t**titifitfifitiitfifiitttifiti*tit

REM * A subprogram that implements the Gaussian Elimination

REM * procedure to the solution of a system of equations.

REM * subprogram takes the bandwidth into account when solving the

REM * system of equations. However, if your system is not banded,

REM * you should use the total dimension of the matrix as the

REM * bandwidth.

i
i

t
M

I
M

REM **tt***t*fifii*itfiti****tt***ttt*fifi**tflttt**fi**t**t**t*tfi****ifit*tti

LOCAL UPLMT%,MXMUM,PVT%,K§,1%,J§,DUM,DUM§,II‘,Factor,SumOfX

SHARED 5‘)

for 11% 8 1 to NEQU%

2(11%,1) 8 0

next 11%

UPLMTZG% 8 3 * Bndeth% - 1

FOR 1% 8 1 TO NEQU%

S(I8) 8 ABS(X(I%,1))

FOR J‘ 8 2 TO 2 * Bndeth% - 1

IF ABS(X(I%,J%)) > S(I%) THEN

S(I§) 8 ABS(X(I%,J%))

END IF

NEXT J%

NEXT 1%

FOR K% 1 TO NEQU%-1

PVT% K%

MXMUM 8 ABS(X(K§,Bndeth*)/S(K%))

UPLMT% 8 K% + Bndeth% - 1

IF UPLMT% > NEQU% THEN UPLMT% 8 NEQU%

FOR II‘ 8 K% + 1 TO UPLMT% '

IF Bndeth%+K§-II% > 0 THEN

DUM 8 ABS(X(II%,Bndeth%+K%-II%)/S(II%))

IF DUM > MXMUM THEN

MXMUM 8 DUM

PVT% 8 II%
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END IF

END IF

NEXT II‘

IF PVT% <> K‘ THEN

FOR III% 8 Bndeth% TO UPLMTZG§

DUM 8 X(PVT§,III%-PVT%+K§)

X(PVT§,III%-PVT%+K%) 8 X(K%,III%)

X(K%,III§) 8 DUM

NEXT III%

DUM 8 C(PVT%,1)

C(PVT%,1) 8 C(K%,1)

C(K%,1) 8 DUM

DUM 8 S(PVT§)

S(PVT%) = S(K%)

S(K§) 8 DUM

END IF

UPLMT2% 8 3*Bndeth%-1

IF UPLMT2% > NEQU§ THEN UPLMT2% 8 NEOU§

FOR 1% 8 K% + 1 TO UPLMT‘

Factor 8 X(I§,Bndeth%-I%+K%)/X(K§,Bndeth§)

FOR J% 8 BndethE+l TO UPLMTZG‘

X(I‘,J%-I%+K§)8X(I%,J%-I%+K%) - Factor*X(K§,J§)

NEXT J‘

C(I%,1) 8 C(I%,1) - Factor * C(K%,l)

NEXT I%

NEXT K%

2(NEQU§,1) 8 C(NEQU§,1) / X(NEQU§,Bndeth%)

FOR 1% 8 NEQU%-1 TO 1 STEP -1

SumOfX 8 0

FOR J% 8 I% + 1 TO NEQU%

IF Bndeth%+J$-I% <8 UPLMTZG‘ THEN

SumOfX 8 SumOfX + X(I%,Bndeth%+J%—I%) * Z(J%,1)

END IF

NEXT Ji

Z(I§,1) 8 (C(I§,1) - SumOfX)/ X(I§,Bndeth%)

NEXT It

END SUB

sub matrixVectmult(X(2),NEQU§,Bndeth%,C(2),Z(2))

rem *ittttttitwitt*tiitfifit*iittitttttttwttit*ttttittwtittt*tiitiiiittt

rem * A subroutine for matrix multiplication. This routine would

rem * only be usable to mutiply a matrix [X] by a vector {C}. The

rem matrix should be banded and the band width should be given.

rem Moreover, the the matrix should be based in a banded form with

rem the dimensions of [X] as follows: NEQU% rows and 2*Bndetht-1

rem columns. If the data is not passed as such, errors will occur.*

rem The subroutine doesn't have any error checks. *

rem itttttttitttitit*ttt*tttittiittfitt*ttwttittttttttttttiittttttttttt

}
l

i
i

I

i
I

t
i

*

LOCAL I%,J%,II§

for 11‘ 8 1 to NEQU%

Z(1i§,1) 8 0

next 11%

FOR I‘ 8 1 TO NEQU%

FOR J% 8 1 TO 2*Bndeth%-1

IF -Bndeth%+J%+I% > 0 AND -Bndeth%+J%+I%<=NEQU% THEN

Z(I%,1) 8 Z(I§,1) + X(I%,J%) * C(-Bndeth%+J%+I%,1)

END IF

NEXT J‘

NEXT I‘

END SUB
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INITIAL:

REM it*ttttttti**tt***ttttt*tiflirt*tttfittttittttttttttititfltttititfitit

REM * A Subroutine to initialize parameters. *

REM ititttwttifittt*itttt*tfitttttifiittttttfittititittttttitfifittttfittttti

FDorFEt 8 1 '<88881 is finite difference, 0 is finite element88

False§= 0

True‘ 8 1

IrrMethodS 8 ”F"

Methods 8 "K"

TypElem$ 8 "L“

SelPrtOpt$ 8 "F"

 

 

 

iprintt 8 0

VARTheta 8 .50 ' <

ALPHA 8 .25

DeltaT 8 5 ' <==m1nute3

numiter% 8 10 ' <

AllError 8 0.0005

TotNumStep§8 20

CONSISorLUMP% 8 0 '<88881 is consistent, 0 lumped-888

CoefTW 8 1.0 '<888888 Coefficient of Top Width (possible values are 1 a 1.5)

FurLength 8 625

TimCut 8 300 'min

Qin 8 2.78 'liters/sec

kofInf 8 0.0252

fsub0 8 0.00023

Slope 8 0.0044

aofInf 8 0.02

ManngN 8 0.03

IF IrrMethodS 8 "B" THEN

Rhol 8 1

Rhoz 8 3.3333333

Sigmal 8 1.5

Sigma2 8 1

ELSE

Rhol 8 0.46

Rhoz 8 2.86

Sigmal 8 0.92

Sigma2 8 0.65

END IF

RETURN

DEF FNExists%(FilNam$)

REM *iii*tttttittttttitwtittitfittfittttttttttiitt*tittttttttttttitiitti

REM * The function Exists‘ returns a non zero integer value if the *

REM * file specified by FilNamS is on the current disk drive. *

REM *ififi*itiiitfiitfiiififititt**t**************fii*t****fit*ttttfliiiiiiittt

Shared False%,True§

LOCAL ExistF§

ON ERROR GOTO FileError

ExistF% 8 True% 'initial

OPEN FilNamS FOR INPUT AS #9

IF ERR80 THEN CLOSE #9

GOTO Finish

FileError:

ExistFt 8 FALSE% ' File doesn't exist

RESUME NEXT

Finish:

ON ERROR GOTO 0

FNExists§8ExistF%

END DEF



APPENDIX B

FE-SURFDSGN Graphics Routine Listing

REM ********t*****tt**tiit*tiiittifitiiit*iti***********tfi**************fi

REM" *

REM * Program SURFGRPH.BAS *

REM* t

REM itit******xiii*tttttttttwtiitwtttttitttttwiitwttiittttitt*tfiit*ttttt

REM" t

REM * Developed By *

REM * *

REM * Walid H. Shayya *

REM * *

REM * Michigan State University *

REM * *

REM * July 30, 1990 *

REM‘ *

REM *itttti**ti**t*twt******itittwtttttt**tt***t*t*ttwiwttttwtttwttttwtt

COMMON NGphFilS

$Maprts 8 200

DIM Varbll(%Maprts), Varb12(%Maprts)

DIM XPOS§(6), YPOS§(11), XPnts(§Maprts), YPnts(%Maprts)

DIM Length(§Maprts,3), Time(§Maprts,3)

DIM Grpthnt(4), XX%(10), YY§(10), CC$(10), AA$(10)

SCREEN 0

IF NGphFilS 8'" THEN

GOSUB InitialScrn

END

CLS

IF

'ON ERROR GOTO Trap

NumOfPrb% 8 l

GOSUB HEADING

LOCATE 8, 10

IF NGphFilS 8" THEN

INPUT "Enter the name of file to plot (no extension) : “, NGphFilS

END IF

FilPrng 8 NGphFilS + ".PRG"

FilPrg2$ - NGphFilS + ".REC"

FilInS - NGphFil$ + ".ouru

CheckEntS 8 “"

GOSUB GetFilNam

GOSUB LdScrnFl

IF CheckEnt$ 8 "R“ OR CheckEntS 8 "B“ THEN

NumOfPrb% 8 NumOfPrb% + 1

GOSUB LdScrnFll 'open file for data output

END IF

IF CheckEntS 8 ”A” OR CheckEnt$ 8 "B” THEN

NumOfPrbi 8 NumOfPrbt + 1

GOSUB OpnFil 'open file for data output

END IF

GOSUB Initial

5M54
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GOSUB HEADING

GOSUB GetScren

REM ********t***************fi****************ttti*t******fit*******t**tit

REM * Prepare Screen for output.

REM *fitttttttttttttttttttttitttttttttttitit.titttttttt*twtttttfltitttitit

CALL PrntScrn

GOSUB PrepDGrph

CALL FindRange2(MaxLength / 10)

CALL FindRange1(MaxTime / 10)

CALL Labeleis

GOSUB GetDat

as 8 INPUT$(1)

SCREEN 0

END

InitialScrn:

REM tttiit*ittitttttti*************fi*t*ittittitiititiititttttt*tt**tt*

REM * A subroutine to display the first screen.

REM fittitiittittttttttitfit*tttttttfit*t*ttittttttfii*tttittiiitttitttttt

KEY OFF

XX%(1) 8 5: XX%(2) 8 23: XX%(3) 8 23: XX%(4) 8 22: XX§(5) 8 10

YY%(1) 8 2: YY%(2) 8 4: YY%(3) 8 8: YY%(4) 8 10: YY§(5) 8 12

XX%(6) 8 17: YY%(6) 8 14

CC$(1) 8 CHR$(201): CC$(2) 8 CHR$(205): CC$(3) 8 CHR$(187)

CC$(4) 8 CHR$(186): CC$(5) 8 CHR$(204): CC$(6) 8 CHR$(185)

CC$(7) 8 CHR$(200): CC$(8) 8 CHR$(188)

A15 8 CC$(1) + STRING$(54, CC$(2)) + CC$(3)

A25 8 CC$(5) + STRING$(54, CC$(2)) + CC$(6)

A35 8 CC$(7) + STRING$(54, CC$(2)) + CC$(8)

AA$(1) 8 " FINITE ELEMENT SURFACE IRRIGATION DESIGN MODEL “

AA$(2) 8 “VERSION 1.00”

AA$(3) 8 "Developed by"

AA$(4) 8 "Walid H. Shayya"

AA$(5) 8 "Department of Agricultural Engineering"

AA$(6) 8 "Michigan State University"

CLS

LOCATE 4, l

PRINT SPACE$(12): Al$

FOR Iloop§ 8 1 TO 5

PRINT SPACE$(12); CC$(4); SPACE$(54); CC$(4)

NEXT Iloopt

PRINT SPACE$(12): A2$

FOR Iloopfi 8 1 TO 9

PRINT SPACE$(12); CC$(4); SPACE$(54); CC$(4)

NEXT Iloop§

PRINT SPACE$(12); A3$

FOR Iloopi 8 1 TO 6

LOCATE YY§(Iloop%) + 4, XX%(Iloop%) + 12

PRINT AA$(Iloop%)

NEXT Iloop%

LOCATE 23, 48

COLOR 15, 0

PRINT "Press any key to continue."

COLOR 7, 0

WHILE INKEYS 8 "“: WEND

RETURN
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HEADING:

REM ititittitttfitttttttittttitttttttttitit*tttitittittttttfi****ttt*ttt*fitit

REM * Heading Number 1

REM titttt*tittttttttttttttttttitttttititttttintittittttttttttttttttwtitttt

CLS

LOCATE 2, 16

PRINT " FINITE ELEMENT SURFACE IRRIGATION DESIGN MODEL "

LOCATE 3, 16

PRINT " GRAPHICS ROUTINE”

LOCATE 4, 16

PRINT STRING$(48, 196)

RETURN

GetScren:

REM *ttttttttttttttitttittitttnttwttittiitintwin*tttttttttttttttitttttttttt

REM * Check the screen number. *

REM *wtttttiit*tifi*ttttit.tttittfitttttititttitttittitttittttttflfiitttttitttt

LOCATE 8, 10

PRINT "Please select the number of the graphics screen from the following :”

LOCATE 11, 10: PRINT "Press "; : COLOR 0, 7: PRINT ' 2 ”3 : COLOR 7, 0

PRINT ' for a high resolution,graphics screen (640x200 pixels),'

LOCATE 13, 16: COLOR 0, 7: PRINT ' 9 "; : COLOR 7, 0

PRINT ' for an enhanced resolution graphics screen (640x350 “;

LOCATE 14, 20

PRINT "p1xels), or“

LOCATE 16, 16: COLOR 0, 7: PRINT ' S "; : COLOR 7, 0

PRINT ' for special screen number 10 (640x200 pixels) : ";

WHILE SanumS 8 ": Sanum$ 8 INKEYS: WEND

SanumS 8 UCASE$(Sanum$): PRINT SanumS

IF SanumS <> '2" AND SanumS <> '9' AND SanumS <> 'S' THEN

BEEP: SanumS 8 "“: LOCATE 23, 42: PRINT "Press either ': : COLOR 0, 7

PRINT "2"; : COLOR 7, 0: PRINT ", '; : COLOR 0, 7:

PRINT "9"; : COLOR 7, 0: PRINT ' or “; : COLOR 0, 7:

PRINT 'S'; : COLOR 7, 0

PRINT ' to proceed."

GOTO GetScren

END IF

RETURN

GetFilNam:

REM itit****fififit*it***********tt*******ififiti******t**i*i***t*****fi*********

REM * A subroutine to check if to plot any additional data files.

REM *tiifitttiiittiii*ttttitittttiiitfiiittfiitttittit!*ttittifitttfitttfiifiiitti

LOCATE 11, 10

PRINT "Would you like to plot any additional data files ?”;

LOCATE 14, 10: PRINT ”Press "3 : COLOR 0, 7: PRINT " R "; : COLOR 7, 0

PRINT " for simulated recession curve,"

LOCATE 16, 16: COLOR 0, 7: PRINT " A '; : COLOR 7, 0

PRINT " for a plot of actual advance data curve, or"

LOCATE 18, 16: COLOR 0, 7: PRINT ” B “: : COLOR 7, 0

PRINT " for a plot of both curves, or"

LOCATE 20, 16: COLOR 0, 7: PRINT " N "; : COLOR 7, 0

PRINT ' for a plot of neither curve : “;

WHILE CheckEntS 8 "": CheckEntS 8 INKEYs: WEND

CheckEntS 8 UCASE$(CheckEnt$): PRINT CheckEntS

IF CheckEntS <> "R" AND CheckEntS <> "A" AND CheckEntS <> "B" _

AND CheckEntS <> "N" THEN

BEEP: CheckEntS 8 ”": LOCATE 23, 40: PRINT "Press either ": : COLOR 0, 7

PRINT "R"; : COLOR 7, 0: PRINT ", “; : COLOR 0, 7: PRINT "A";

COLOR 7, 0: PRINT ", "; : COLOR 0, 7: PRINT "B":

COLOR 7, 0: PRINT ”, or ": : COLOR 0, 7: PRINT "N";

COLOR 7, 0

PRINT " to proceed."
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GOTO GetFilNam

END IF

RETURN

OpnFil:

REM i***********ti**********t*t**fi*********iit*********t**************

REM * Open file and initialize numbers.

REM tit.*fititt*itiitfittttttttttttttttttitfitttttttttttittttittttttttktt

OPEN "I", ll, FilIn$

NumOfPts§(NumOfPrb%) 8 0

IILPS 8 1

WHILE NOT EOF(1)

INPUT #1, Time(IILP%,NumOfPrb%), Length(IILP§,NumOfPrb%)

IILP't 8 IILP% + 1

NumOfPts%(NumOfPrb%) 8 NumOfPts%(NumOfPrb§) + 1

WEND

CLOSE #1

RETURN

PrepDGrph:

REM ttti*fititt*tiittttttittttt*******ttttttttttitttfitiittfiitittttttttttttit

REM * Subroutine to prepare for doing graph.

REM *******it**tttitttttitittt************it***t*****tttttfittttitfiitttttttt

MaxLength 8 0

MaxTime 8 0

FOR J 8 1 TO NumOfPrb%

FOR I 8 1 TO NumOfPts%(J)

IF Length(I,J) > MaxLength THEN MaxLength 8 Length(I,J)

IF Time(I,J) > MaxTime THEN MaxTime 8 Time(I,J)

NEXT I

NEXT J

RETURN

GetDat:

REM *ttt*fi***********************i****************i**fitittitifitittttti

REM * A subroutine initialize the array.

REM *****ttittitttti*tittititt*tttttittititttitttttt*tttttititttitittt

FOR Jlopt 8 1 TO NumOfPrb%

FOR Ilop§ 8 1 TO NumOfPts§(Jlop%)

Varb12(Ilop%) 8 Length(Ilop§,Jlop%)

Varb11(Ilop%) 8 Time(Ilop%,Jlop§)

IF Varb12(Ilop%) < 0 THEN Varb12(Ilop§) 8 0

IF Varbll(Ilop%) < 0 THEN Varb11(Ilop%) 8 0

NEXT Ilop‘

CALL PrepPoints(Varb12(), Varb11(). Jlopi)

NEXT Jlop%

RETURN

LdScrnFl:

REM *ittfitti********ititit*fitfiitfittiitti*******t*****itfittttfitttiitit*

REM * Subroutine to load file containing saved screen for file 1.

REM tittiiittttttttiiiit*titfitttfiititttfitt********fittitttiittttittittt

OPEN "I", #1, FilPrng

NumOfPts%(1) 8 0

IILPt 8 1

WHILE NOT EOF(1)

INPUT #1, Time(IILP§,1), Length(IILP%,1)

IILP‘ 8 IILP‘ + 1

NumOfPts%(1) 8 NumOfPts%(1) + 1

WEND

CLOSE #1

RETURN
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LdScrnFll:

REM *iittiiiiiittttitttfi*tfittiii*******tfiii*fi**tiififiitifiitfifiitttitttti

REM * Subroutine to load file containing saved screen for file 2.

REM *ittitiiittttt*tttttttttitii*tttttttttittittittitittitttttittitttt

OPEN "I”, {1, FilPrgZS

NumOfPts%(2) 8 0

IILP% 8 1

WHILE NOT EOF(1)

INPUT #1, Time(IILP§,2), Length(IILP%,2)

IILP% 8 IILP% + 1

NumOfPts%(2) 8 NumOfPts%(2) + l

WEND

CLOSE #1

RETURN

Initial:

REM it*tit*tttittfiflit.******tifiittti*ttiiitfi*ttfii*****i*fi******fi*****t

REM * Subroutine to Initialize.

REM *ttttt*tttit*itttiittttitttfitttttttttttttttttiittfitttttttttttitttt

XPos%(1) 8 21: YPos%(l) 8 13

XPos%(2) 8 17: YPos%(2) 8 25

XPos%(3) 8 13: YPos%(3) 8 38

XPos%(4) 8 10: YPos%(4) 8 50

XPos$(5) 8 7: YPos%(5) 8 63

XPos§(6) 8 3: YPos%(6) 8 75

Grpthnt(1) 8 4.0

Grpthnt(2) 8 8.0

Grpthnt(3) 8 12.0

Grpthnt(4) 8 16.0

RETURN

Trap:

REM ***t*******ttttt**t**iit*fitiflfitt*t***tifi**********fifl***fi*****fi*t

REM * A subroutine to handle error.

REM t*tttt*i*t***t***t*tiiititititfittiitfittt*ifitt******t*t****t*i**t

LOCATE 24, 1

PRINT SPC(79):

LOCATE 23, 35

PRINT "Error Number ”; ERR; " has occurred 1";

LOCATE 24, 35

PRINT " Press any key to continue.";

RESUME Qtrap

RETURN

Qtrap:

WHILE INKEYS = "": WEND

SCREEN 0

CLS

END

SUB DoGrph (X1, Y1, X2, Y2)

REM *tttttttti*tttit*********tt*tt********i**tttit*ttiititttitittttfltt

REM * This subprogram recieves 2 points (x1,y1) and (x2,y2) and

REM * connects the line between these two points.

REM fittfitt*ttttttitttttt*tti*ttitttttitttttttt*tiiitttttiittttti*tt*t*

LINE (X1, Y1)-(X2, Y2)

END SUB

SUB DoGrph2 (X1, Y1, X2, Y2)

REM ittitttttiitttttititittttiit*ttitittttttttttitt**ttttt*tittttt*ttt

REM * This subprogram recieves 2 points (x1,y1) and (x2,y2) and

REM ' connects the line between these two points.

REM ittttt*fitt*titt*t**t*t*itttititttflifiittt*tttttittttttttttfitfitfitttt

SHARED Numbrt

IF Numbrt 8 2 THEN

LINE (X1, Y1)-(X2, Y2). I . 8888

ELSEIF Numbr! 8 3 THEN
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LINE (X1, Y1)-(X2, Y2). , , 1111

ELSE

LINE (X1, Y1)-(X2, Y2)

END IF

END SUB

SUB DoGrphl (X1, Y1)

REM *tittiiitt*ifitittttitttttittitiitttifitfitit*****************tt*t***

REM * This subprogram draws a point (x1,y1).

REM titttttifiiflittttttit*ttttttfiit*****t*t**tt***********tttttttittitt

Circle (X1, Y1),.5

END SUB

SUB FindRangeZ (Var2)

REM itfiitttttt*tttiti**********tti*fi*********t*****i****t*********ti

REM * A subroutine to find the Range 1.

REM tttt*****t*t*****t**ititttttttitttit*tti*itttflttitttitittttitiit

SHARED Rangel, Form1$

'LOCAL II

FOR II 8 90 TO 10 STEP -5

IF Var2 > II THEN

Rangel 8 II + 5

FormlS 8 “tit!”

GOTO QSB

END IF

NEXT II

IF Var2 > 8 THEN

Rangel 8 10

Forml$ 8 "90%!"

GOTO QSB

END IF

FOR II 8 10 TO 2 STEP -2

IF Var2 > II THEN

Rangel 8 II + 2

FormlS 8 “ti.#"

GOTO QSB

END IF

NEXT II

FOR II 8 2 TO 1 STEP -1

IF Var2 > II THEN

Rangel 8 II + 1

Form1$ 8 "##.9"

GOTO QSB

END IF

NEXT II

FOR II 8 1 TO 0 STEP -.5

IF Var2 > II THEN

Rangel 8 II + .5

Forml$ 8 "##.O”

GOTO QSB

END IF

NEXT II

Rangel 8 .5

Form1$ 8 "##.#"

QSB:

END SUB

SUB FindRangel (Varl)

REM ****i*t*t******t*it*ititiiitfit*ttittttttiitttiifitttiitiiflttitttt

REM * A subroutine to find the Range 2.

REM *iittttttt********************************it***************t****

SHARED Range2, Form2$, CheckEntS

'LOCAL II

FOR II 8 190 TO 10 STEP -5

IF CheckEnt$8”A” THEN

IF Varl > II THEN
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Range2 8 II + 5

Form2$ 8 ”####”

GOTO 0882

END IF

ELSE

IF Varl > II - 5 THEN

Range2 8 II + 5

Form2$ 8 "it?!”

GOTO 0882

END IF

END IF

NEXT II

IF Varl > 8 THEN

Range2 8 10

Form2$ 8 "##t!"

GOTO 0882

END IF

FOR II 8 10 TO 2 STEP -2

IF Varl > II THEN

Range2 8 II + 2

Form2$ 8 "##.O'

GOTO 0882

END IF

NEXT II

FOR II 8 2 TO 1 STEP -1

IF Varl > II THEN

Range2 8 II + 1

Form2$ 8 “9%.!"

GOTO 0882

END IF

NEXT II

FOR II 8 1 TO 0 STEP -.5

IF Varl > II THEN

Range2 8 II + .5

Form2$ 8 "#9.!"

GOTO 0882

END IF

NEXT II

Range2 8 .5

Form2$ 8 "##.#"

QSBZ:

END SUB

SUB Labeleis

REM *tttttiitittti**t***ti*************tititfittitttttitttttttifii*ttt

REM * A subroutine to label X and Y axis.

REM *ttttiiitttititttt*ttt*tttitittt*titttifitttt*titiiiittfiiittititt

SHARED Rangel, FormIS, Directs, XPOS§(), YPOS%(), BoundS, Range2, Form2$

'LOCAL VertPost, TLabe11%, TLabeth, HorizPost, f1$, £25, Varblfi

£25 8 Form1$

£15 8 Form2$

FOR TLabe11% 8 0 TO 5

LOCATE XPOS%(TLabell% + 1), 9

PRINT USING f1$; Range2 * (TLabell% * 2);

NEXT TLabe11§

FOR TLabe12% 8 0 TO 5

LOCATE 22, YPos§(TLabe12% + 1)

PRINT USING f2$; Rangel * (TLabe12% * 2);

NEXT TLabelZ$

END SUB
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SUB PrepPoints (XPnts(), YPnts(). NumOfItert)

REM **************i*****ti*****titittttitt*********t**t******t******

REM * A subroutine to draw points.

REM *tttttttfittttittttttitttififitiiittttiit*tittttttt*ttiiiittitttttt

SHARED Rangel, Range2, NumOfPts%(), NumOfPrb%, CheckEntS

'LOCAL Pont‘, r1, r2

r1 8 Rangel

r2 8 Range2

FOR Pontt 8 1 TO NumOfPts%(NumOfIter%)

XPnts(Pont%) 8 XPnts(Pont§) / r1 * 10

YPnts(Pont%) 8 YPnts(Pont%) / r2 * 10

NEXT Pont%

IF NumOfItert 8 1 THEN

FOR Pont% 8 2 TO NumOfPts%(NumOfIter§)

CALL DoGrph(XPnts(Pont% - 1), YPnts(Pont% - 1), XPnts(Pont%),

YPnts(Pont%))

NEXT Pont%

ELSEIF NumOfIter% 8 2 AND (CheckEntS 8 “R“ OR CheckEntS 8 "8”) THEN

FOR Pont§ 8 2 TO NumOfPts§(NumOfIter%)

CALL DoGrph(XPnts(Pont% - 1), YPnts(Pont§ - 1), XPnts(Pont§),

YPnts(Pont§))

NEXT Pontt

ELSE

FOR Pont§ 8 1 TO NumOfPts§(NumOfIter§)

CALL DoGrph1(XPnts(Pont%), YPnts(Pont%))

NEXT Pontt

IF CheckEntS 8 “A” THEN

FOR ILP 8 2 to 6 step 2

Circle (ILP, 83),.5

NEXT ILP

LOCATE 6, 22

PRINT ”Actual Data"

ELSEIF CheckEntS 8 'B' THEN

FOR ILP 8 2 to 6 step 2

Circle (ILP-20, -20),.S

NEXT ILP

LOCATE 24, 9

PRINT "Actual Data";

END IF

END IF

END SUB

SUB PrntScrn

REM *itttflflitt****t*****it*****i**t****fi*tiitiiifitfifififittittittttitti

REM * A subroutine to plot the X and Y axis.

REM tiifiitfltitfittfi*tit**i**i***tttfittittit********fittifififiittfltittiii

SHARED Grpthnt(), SanumS, CheckEntS

'LOCAL VertPos‘, TLabe11§, TLabeth, HorizPos%, £15, £25, Varbli

IF SanumS 8 '2' THEN

SCREEN 2

ELSEIF SanumS 8 "9" THEN

SCREEN 9

ELSE

SCREEN 10

END IF

WINDOW (-24, -28)-(105, 115)

LINE (824, -28)-(105, 115), p B

LINE (823.75, -28)-(104.75, 115): r B

LINE (0, O)-(100, 100): r B

FOR VertPos% 8 0 TO 100 STEP 20

LINE (0, VertPos%)-(-2.5, VertPos%)

LINE (100, VertPos§)-(97.5, VertPosi)

NEXT VertPos§
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FOR ICyclet 8 1 TO 5

FOR JCyclet 8 1 TO 4

LOCAT2 8 Grpthnt(JCycle%) + (ICycle% - 1) * 20

LINE (0, LOCAT2)-(-1.5, LOCAT2)

LINE (100, LOCAT2)-(98.5, LOCAT2)

NEXT JCycle§

NEXT ICyclet

FOR HorizPos§ 8 0 T0 100 STEP 20

LINE (HorizPost, 0)-(HorizPos§, -4)

LINE (HorizPos‘, 100)-(HorizPos§, 96)

NEXT HorizPos%

FOR ICycle§ 8 1 TO 5

FOR JCycle§ 8 1 TO 4

LOCAT2 8 Grpthnt(JCycle§) + (ICycle% - 1) * 20

LINE (LOCAT2, 0)-(LOCAT2, 82)

LINE (LOCAT2, 100)-(LOCAT2, 98)

NEXT JCyc1e§

NEXT ICyclet

LOCATE 24, 41

PRINT "Distance (m)";

LOCATE 12, 3

PRINT “Time"

LOCATE 13, 3

PRINT ”(min)";

LOCATE 2, 18

PRINT “Finite Element Surface Irrigation Design model";

IF CheckEnt$8"A” OR CheckEntS8'N" THEN

LINE (2, 90)-(8, 92)

LOCATE 5, 22

PRINT "Simulated Data"

ELSEIF CheckEntS 8 '8' THEN

LINE (71, -20)-(77, -19)

LOCATE 24, 65

PRINT “Simulated Data“:

ELSEIF CheckEntS 8 "R" THEN

LINE ('22, -20)-(-16, -19)

LOCATE 24, 7

PRINT "Simulated Data“;

END IF

END SUB


