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ABSTRACT

THE MODELING AND SYNTHESIS OF

ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

By

Jun-Woo Kang

The modeling and synthesis procedure described efficiently generates asynchronous

sequential logic circuits (ASLCs). From the high-level design specification, the functional

behavior of inputs is analyzed to simplify the overall synthesis process. The analytical

model developed delineates the inputs into three classes: mode inputs, level inputs, and

edge inputs. By introducing transition variables for edge inputs, a set of equations referred

to as dynamic output equations (DOES) is generated, which describes the functional

behavior of ASLCs in more compact form than the traditional one. The state grouping

process based on the functional behavior of level inputs and edge inputs generates a state

table without any difficulties from topological complexities inherent in the traditional

procedure. The functionality of mode inputs facilitates the process of decomposing

complex logic functions into smaller ones which can be more easily synthesized. Based on

the characteristics of the state table, a race-free state assignment problem is formulated as

a mapping of a bipartite graph into an n-cube. The race-free state assignment algorithm



developed features a pattern matching technique which predicts races and eliminates

enumerative searches to get the near minimum number of state variables. The described

procedure is well suited for the synthesis of large-scale ASLCs that have many data inputs

but only a small number of control inputs. Moreover, it provides an efficient

implementation with ASLCs for the sequential logic function which has been used with

clocked sequential logic circuits. Therefore, circuit designers will have more choices to

obtain better circuits using ASLCs than they could achieve using their clocked counterparts

in certain sequential logic applications.
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Chapter 1

Introduction

 

Sequential logic functions may be implemented in either clocked sequential logic

circuits (CSLCs) or asynchronous sequential logic circuits (ASLCS). The former uses

system-level clocks, and the latter solely uses sequences of input changes to initiate internal

state transitions. Each of these classes of sequential circuits has advantages over its

counterpart. ASLCs may be faster for certain applications since they do not have to wait for

the arrival of a clock pulse before effecting a state transition. Moreover, they may require

fewer logic gates since they do not use memory elements to store state information.

However, CSLCs have been preferred by the designers because they have been simpler to

design since there is no need to consider critical-races in the state assignments and hazards

in the logic implementations, which are inherent in their ASLC counterparts [1-6].

On the other hand, as the integration scales and circuit complexity increase in high-

speed digital system, the global clock Signal in the CSLC may have a clock skew problem

[7], which is a phase difference of the clock signal at different locations due to the

capacitive load in the interconnection line. Multi-phase clocks can be used to absorb the

-1-
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clock skew, but a dead time between clock phases degrades the performance by reducing

the time available for computation. The proper clock disuibution in the circuit layout is an

alternative to reduce the clock skew problem. However, in the design automation tools

available nowadays, the routing of clock wires as well as the load on the clock signal are

globally considered, and it is difficult to extract from local connectivity [8, 9].

Asynchronous circuit design is a realistic approach to circumvent the clock Skew

problem. At the chip level, layout and simulation effort is greatly reduced since there is no

global timing, and systems can be easily extended without problems in global

synchronization by using pipeline architecture, where computation can be extended and

sped up without any global constraint on the overall system throughput [10, 11].

1.1 Motivation

The functional behavior of an ASLC is traditionally described with a flow table [1-6,

12]. So, the synthesis procedure begins by generating a primitive flow table (PF'I') which

describes the functional design specification, and then states are merged and encoded to

avoid critical races. Finally, a static hazard-free circuit is realized from a set of State

equations and output equations. The PFI' reveals difficulties to design large-scale

asynchronous networks because the size of the PET increases drastically. In general, the

number of internal states increases with the number of inputs and outputs [13]. Since there

are many ways to merge the rows of a PFT, it is hard to predict and obtain an optimum

merged result without exhaustively searching the combinations. Once the state merging

process is completed, the states are encoded in accordance with the merged flow table

(MFI'). An adjacency diagram which describes the relationship between any two nodes is

generally employed for state encoding [2]. The complexity of the encoding process is
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determined by the complexity of the adjacency diagram. Thus, the complexity of both state

merging and encoding processes increases with the circuit complexity.

Merging rules are generally employed to develop 'a state merging algorithm. Those

rules are generated in accordance with a merger diagram [2] but not with the functional

behaviors of the input variables. In other words, the algorithms were developed to solve the

graphical problems without taking the functional behavior into account. This is one reason

why both state merging and encoding processes become so complicated.

The fact is that the input variables in the conventional PFI‘ approach are treated

equally. In practice, however, the input variables can be classified as either control inputs

or data inputs from a design specification. The control inputs can be used as transition

variables to simplify the synthesis procedure. This has motivated to the development of an

analytical model for an alternative synthesis procedure in this study.

1.2 Problem Statement and Research Tasks

With a priori information given in a design specification, the input variables can be

classified as either control inputs or data inputs. In this thesis, an analytical synthesis model

is developed in which some control inputs are used as the transition variables. The

transition variables are used to generate a set of dynamic output equations (DOES). Based

on the DOES, an efficient state merging method is developed. With the merged state table,

an efficient and effective state assignment method is also presented.

State merging methods have been studied significantly in the last few decades.

Basically, states are merged if they are compatible, i.e., they have the same next state with

the same input. Since the primitive flow table inherently has many “don't care” entries, a

state can be compatible to any other states in many different ways. As a result, there are
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many ways to merge the states. In this thesis, based on the analytical model, the transition

variables are used to guide the derivation of the merged flow table. In other words, the

merge strategy is based on the functional behavior of the circuit, but not only on the

graphical relationship of the states in the merger diagram

States are conventionally encoded based on an adjacency diagram which is derived

from the merged flow table. Since the merged flow table were only based on the graphical

relationship of the states in the merger diagram, the states in the adjacency diagram may

not represent the functional behavior of the circuit very well. As a result, the state encoding

problem becomes a very complicated graph problem as the number of states increases.

However, based on the merged flow table presented in this thesis, the states in the

adjacency diagram represent the functional behavior. The adjacency diagram drawn from

the merged flow table can be represented as a bipartite graph. A state encoding problem can

then be formatted as the embedding of a bipartite graph in an n-cube. In general, an n-cube

can be also represented as a bipartite graph. Thus, the problem becomes to embed a

bipartite graph from the adjacency diagram to another bipartite graph derived from the n-

cube. This thesis presents a rule-based graph matching algorithm to encode states.

The tasks of this research are: (1) develop an analytical model for ASLC synthesis

procedure; and (2) develop an efficient algorithm for state merging and encoding. The

developed analytical synthesis model, state merging method, and state assignment

algorithm can then be adopted to the ASLC synthesis system, MSUASLC [14], for the

synthesis of larger scale circuits.

This research leads to the development of an efficient synthesis procedure which will

be utilized to synthesize large-scale ASLCs or sequential logic functions which have been

implemented with CSLCS.



1.3 Organization

This thesis is organized as follows: Chapter 2 briefly reviews the development of

MSUASLC design automation system and discusses the major algorithms developed in

[14]. Chapter 3 presents an analytical model for ASLC synthesis. A set of equations,

referred to as dynamic output equations (DOES), is developed first from a generalized

model by introducing transition variables. Rules and examples for state grouping from the

DOES are described. Chapter 4 describes an efficient state assignment algorithm based on

the bipartite characteristics of the adjacency diagram and an n-cube. Several rules and

procedures are developed to map a bipartite adjacency table (BAT) to a bipartite

representation table (BRT) of an n-cube. In order to demonstrate the effectiveness of the

synthesis procedure developed in this study, several examples are presented in Chapter 5.

Finally, a summary of this research work and future research are given in Chapter 6.



Chapter 2

MSUASLC Design Automation System

 

After Huffman [15] devised a general model for ASLCS and introduced the primitive

flow table (PFI‘) as a design tool, many researchers [16-20] contributed to the development

of a well-established ASLC design procedure which is described in many advanced logic

design text books [1-6, 12]. The ASLC synthesis procedure generally consists of the

following five Steps: (I) generate the PFI‘ from a design specification; (2) generate merged

flow table (MFI') by merging the compatible states in the PFI‘; (3) encode the internal

states for avoiding critical races; (4) generate the state excitation table and output table;

and, (5) eliminate static hazards and implement the circuit using two-level logic or PLA-

based architectures. Numerous synthesis systems have been developed to reduce the human

effort dealing with the complexities of the procedure by automating parts of this procedure.

An ASLC design automation system, MSUASLC, has been developed to produce design

equations from a design Specification. In this chapter, the features ofMSUASLC are briefly

described, and the state merging and encoding strategies developed in [14] discussed.



2.1 Features of MSUASLC

Based on Huffman’s design procedure, an ASLC design system was first developed

by Smith, et a1. [21]. It receives input in the form of reduced primitive flow table, executes

state assignment using Tracey’s algorithms [22], and generates next-state equations and

output equations which are realized by two-level logic.

The construction of a primitive flow table (PFI') requires the designer’s intuitions and

design experiences. Apparently, it becomes more difficult to handle as inputs and outputs

increase. Since there exists no analytic approach to obtain the PFI‘ directly from the verbal

design specification, timing diagrams or state transition graphs are commonly used by

designers.

Recently, Wu and Fisher [14, 23] deve10ped a fully automated ASLC design system,

MSUASLC, on SUN workstations in the C programming language. A block diagram of the

MSUASLC Design System, as shown in Fig. 2-1, consists of the following five modules:

(1) Behavioral Descriptor (BD): It receives inputs with “IF... THEN...” format of

design specifications, and generates a primitive state table and primitive output

table which describe the Circuit’s functional behavior.

(2) Merger: It receives a primitive state table and primitive output table, and

generates the merged state table and merged output table which contains a

minimum number of states.

(3) Connector: It receives a merged state table and a merged output table, and

converts it into an adjacency table which provides the relation between each state.

It generates modified State table and modified output table which has race-free

states relationships by adding states and generating cycles as needed.

(4) Assigner: It generates the excitation table and output table from the race-free state
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table and the output table.

(5) Equation Generator (EG): It generates state equations and output equations in

sum-of-products forms from the excitation table and output table. They are Static

hazard-free.

Each output of the previous module can be directly sent to the next module or can be

modified by the designer and then sent to the next module. This modularity ofMSUASLC

provides a convenient way to investigate alternative implementations of an ASLC. In the

following sections, the modules, Merger and Assigner, are discussed in detail, which

provide methods for alternative implementations of an ASLC.

2.2 State Merging Methods

The Merger in the MSUASLC design system generates first a merger diagram (MD)

which is an undirected connected graph with nodes and edges. The nodes represent the

primitive states in the PET and the edges represent the compatibilities between the states in

the rows. According to the compatibilities with other rows, each node has a degree of links,

which is utilized to decide the priorities of merging sequence. TheMSUASLC provides four

different merging methods to merge rows. Method I starts from the first row to the last row

for those have the same output. Method II starts from the rows with the minimum link

degree and the least strongly connected subset is selected first. Method 111 is similar to

Method 11 except the same outputs are not considered. Finally, Method IV starts from the

rows with the same output, then extends to those with different outputs, if possible. These

four different merge methods are used to find the minimum number of merged rows.

The classical method to find the minimum number ofmerged row is to find the largest

strongly connected subsets of the rows which can be merged into a single row [2].
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However, finding the largest strongly connected subsets of rows may require the

comparison between states in each row. Such an exhaustive search may take an exponential

time regarding to the number of rows. Since the Merger gets output by choosing the

minimum from the outputs from several different methods, which require a polynomial

computing time.

To illustrate these merging methods, the following design example, a positive edge-

triggered J—K bistable element with postponed output (Petjk-FF) is considered. Fig. 2-2(a)

shows the graphic symbol of the circuit. Its design specification is given as follows:

(1) There are three inputs, which are labeled J, K, and C.

(2) There are two outputs, which are labeled Q and Op.

(3) When C changes value from 0 to 1, the next states of the external output Q is Qn

= I Q’ + K’ QC, where Qc is the current value of Q.

(4) The output Qp is a postponed output of Q, and the transition ofQD is postponed

until C changes value from 1 to 0.

Conventionally, based on the timing diagram of Fig. 2-2(b), the PFT can be generated

with tedious works. However, the PFT is easily generated by converting this design

specification into “IF... THEN...” format [24]. For example,

IF C = 2

THENQ=JQ’+K’Q,P=P

IF C = 3

THEN Q = Q. P = Q

Note that the P represents the output Qp. Based on the Behavioral Descriptor (30) of

MSUASLC, the generated PFT is shown in Table 2-1. With four different merge methods,

Tables 2-2, 2-3, 2-4, and 2-5 illustrate various Merged State Tables (MSTS). The relabeled

MSTS and their adjacency diagrams are respectively shown in Figs. 2-3, 2-4, 2-5, and 2-6
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Table 2-1. Primitive State Table of the Petjk-FF sequential logic function.

*** MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (BD) ***

*** Primitive State Table: "petjkwpo_PFT_PRN_1" ***

jkc o 1 3 2 6 7 5 4 qp

 

(INPUT) (OUTPUT)

OY 4N — 8N - - - 16N 0

ON 4Y 12N - - - 20N - 0

ON - 12N 8Y 24N - - - 0

ON - - - 24N — 22N 16Y 0

- 4N 12Y 8N - 28N - - O

- 4N - - - 28N 20Y 16N 0

- - - 8N 24Y 3ON - 16N 0

- - 12N - 24N 28Y 2ON - O

- - l3N - 24N 29Y 21N - l

- 5N - - - 29N 21Y 16N 1

- 5N l3Y 8N - 29N - - 1

ON 5Y l3N - - - 21N - 1

3N - - - 27N - 23N 19Y 3

- 7N - - - 31N 23Y 19N 3

- - - 11N 27Y 29N - 19N 3

3Y 7N - llN - - - 19N 3

- - 15N - 27N 31Y 23N - 3

3N 7Y 15N - - - 23N - 3

3N - l3N 11Y 27N - - - 3

- 7N 15Y llN - 31N - - 3

- 6N - - - 3ON 22Y 19N 2

- — 14N - 27N 3OY 22N - 2

3N 6Y 14N - — - 22N - 2

- 6N 14Y llN - 30N - - 2
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Table 2-2. MST of the Petjk-FF with Method 1.

*** MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***

*** Merged State Table: "petjkwpo__ALTO_MFI‘_PRN__1 " ***

*** Merged same output (row by row) ***

jkc o 1 3 2 6 7 5 4 qp

(INPUT) (ourrur)

 

OY 4Y 12Y 8Y 24N 28Y 20Y 16N

0N - - 8N 24Y 30N 22N 16Y

0N 5Y l3Y 8N 24N 29Y 21Y 16N

3Y 7Y 15Y 11N 27N 31Y 23Y 19Y

3N - l3N llY 27Y 29N - 19N

3N 6Y 14Y 11N 27N 30Y 22Y 19N

 

Input (JKC)

000 001 011 010 no 111 101 100

l l I

@9995?ch
31®®1i®®2
4 @@®5 565969

s[4 - 3|©1@3 - 4

6L4 6l©l5 5©l©4

(o, 4, 12, 8, 28, 20) 4 : (3, 7, 15, 31, 23, 19)

(24.16) s : (11, 27)

(5, 13.29.21) 6 : (6, 14, 30, 22)

(a) (b)

 

 

 

  

 

  
   
 

     

 
l:

2:

3:

Figure 2-3. Method 1: (a) relabeled MST and (b) adjacency diagram.
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Table 2-3. MST of the Petjk-FF with Method II.

*** MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***

*** Merged State Table: "petjkwpo_ALT1_MFI‘_PRN_1" ***

** Merged same output (min. link degree first) **

jkc o 1 3 2 6 7 5 4 qp

(INPUT) (OUTPUT)

 

0N 5Y l3Y 8N 24N 29Y 21Y 16N

3N 6Y 14Y 11N 27N 30Y 22Y 19N

OY 4N 12Y 8Y 24N 28N 22N 16Y

ON 4Y 12N 8N 24Y 30N ZON 16N

- 4N 12N - 24N 28Y 20Y 16N

3Y 7Y 15N 11N 27Y 29N 23N 19Y

3N 7N l3N llY 27N 31N 23Y 19N

- 7N 15Y 11N 27N 31Y 23N -

 

Input (JKC)

000 001 011 010 110 111 101 100

1 3 4

W
Q
G
‘
M
b
U
N
t
-
I

 
(b) 

Figure 24. Method 11: (a) relabeled MST and (b) adjacency diagram.
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Table 2-4. MST of the Petjk-FF with Method III.

*** MSU (WF) - ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***

*** Merged State Table: "petjkwpo_ALT2_MFI‘_PRN_1 " ***

** Min. link degree first (no care if output same or not) **

 

 

   

 

 

  
 

   

 

 
 

 
  
 

 

 

   

 

jkc o 1 3 2 6 7 5 4 qp

(INPUT) (ourpur)

OY 4N l3N 8N 24N 29Y 21N 16N

0N 5N 12N 8Y 24N 29N 21Y 16N

0N 5N l3Y 8N 24N 29N 22N 16Y

0N 5Y l3N 8N 24Y 30N 21N 16N

ON 4Y 12Y 8N 24N 28Y 20Y 16N

3N 6N l3N llY 27N 30N 22Y 19N

3Y 7N 14N 11N 27N 30Y 22N 19N

3N 6Y 14N 11N 27Y 29N 22N 19N

3N 6N 14Y 11N 27N 30N 23N 19Y

3N 7Y 15Y 11N 27N 31Y 23Y 19N

Input(JKC)

000001011010110 111 101100 l:(0,29) 6:01.22)

* * ‘ 2:(8,21) 7:(3,30)

l 4 1 2 3 3:03.16) 8:(6,27)

2 4 ® 3 4:(5.24) 9:04, 19)

3 w 1 (3) 2 4 6 3 5:(4,12,28,20) ro:(7,15,31,23)

4 1 3 2 0 2 3

s 1 9 2 4 @ri

. 7 3@8 652.9.
7 710 9 6 8 7T6 9

8 7 8 9 6 8 1 6 9

9 7 8 9 6 3 710g

10 7 6 8 9

(a) (b)

Figure 2-5. Method III: (a) relabeled MST and (b) adjacency diagram.
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Table 2-5. MST of the Petjk-FF with Method IV

*** MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***

"* Merged State Table: "petjkwpo_ALT3_MFI‘__PRN_1" ***

** Merged same output (extend to different output) **

jkc o 1 3 2 6 7 5 4 qp

(INPUT) (OUTPUT)

 

OY 4Y 12Y 8Y 24N 28Y 20Y 16N

0N - - 8N 24Y 30N 22N 16Y

0N 5Y l3Y 8N 24N 29Y 21Y 16N

3Y 7Y 15Y 11N 27N 31Y 23Y 19Y

3N - l3N llY 27Y 29N - 19N

3N 6Y 14Y 11N 27N 30Y 22Y 19N

 

Input(JKC)

000001011010110 111 101100

1 1 1 2 1 1

- 1 2 6

1 2 3

5 5 4

l

l

l

4

4

4

a
u
b
u
N
l
-
t

5 5

 

(0,4, 12, 8,28, 20) 4 : (3, 7, 15, 31, 23, 19)

(24.16) 5:01.27)

(5, 13, 29, 21) 6 : (6, 14, 30,22)
 

l :

2 :

3 :

(a) (b)

Figure 2-6. Method IV: (a) relabeled MST and (b) adjacency diagram.
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for the comparison purpose.

Method I and Method IV have the same result with 6 rows, which is the minimum

number of rows. They also have the least complex adjacency diagram. However, the

adjacency diagrams of Method I and Method IV Show that there are hidden intrinsic races

(HIR)[14] in this MST because it has loops with 3 nodes. This implies that these six internal

states may not be the minimum number of states because some more states may be added

later for race-free state assignments.

It is clear that the results of merging depend not only on the merging method but also

on the merging sequence [14]. Also, additional states may be required to eliminate the

races. Therefore, obtaining a minimum number of states in the merging step does not

guarantee the optimal circuit realization. Chapter 3 will describe an efficient merging

method which utilizes the information from the design specification and leads to an

efficient circuit realization.

2.3 State Assignment Methods

Before the Assigner in MSUASLC assigns a binary vector to each state, the Connector

generates a race-free state table by utilizing a Node Weight Diagram (NWD) [25]. The

NWD is a binary n-cube connection diagram which provides a geometric representation of

binary numbers for race-free state assignments. Fig. 2-7(b) shows a 4-NWD, where the

circled numbers represent the states to be assigned to an n-cube, while the boldfaced

numbers represent the decimal number of the binary vectors assigned for those nodes. The

Assigner provides alternative state assignments by allowing the designer to assign a

specific binary vector to a Specific State.

Table 2-6 illustrates the modified State table generated by the Connector for the Petjk-

FF example, where there are seven internal states and eight modified unstable states.
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Table 2-6. Modified state table of Petjk-FF sequential logic function

*** MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (CONNECTOR) ***

*** Modified (ADJ) State Table: "petjkwpo_ADJ_MFI’_PRN__1" ***

jkc 0 l 3 2 6 7 5 4 qp

 

(INPUT) (OUTPUT)

l lY lY lY lY 2N lY lY 2N

2 IN - - 1N 2Y 6N 6N 2Y

3 IN 3Y 3Y IN IN 3Y 3Y 1N

4 4Y 4Y 4Y 6N 6N 4Y 4Y 4Y

5 6N - 7N 5Y 5Y 7N - 6N

6 4N 6Y 6Y 5N 5N 6Y 6Y 4N

7 - - 3N - - 3N — -

 

Input (JKC)

000 001 011 010 110 111 101 100

 

Q
O
‘
U
I
A
M
N
I
—

(a)  
Figure 2-7. State encoding of the Petjk-FF sequential logic function:

(a) modified state table and (b) state assignments with 4-NWD.
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The table is retabulated in Fig. 2-7(a), where the boldfaced numbers are the modified

unstable states. Fig. 2-7(b) shows the state assignment with 4-NWD for this example.

Table 2-7 shows the unique state assignments generated from the Assigner for this

modified state table. For seven internal states and eight possible encoded binary vectors, it

is possible to generate 56 distinctive combinations which exclude the permutation of these

assignments. However, the Assigner provides 16 distinct state assignments as shown in

Table 2-7. The circuit designer must choose the "best" among these assignments for an

 

Table 2-7. Unique state assignments in the Assigner of MSUASLC

for the Petjk-FF sequential logic function design.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

State Numberlll 2 3 4 5 6 7

Assign#l lo 1 2 711310

Assign#2 1 0 3 6 10 2 11

Assign#3 2 3 0 5 9 1 8

Assign#4 7 6 5 0 12 4 13

Assign#S 11 10 9 12 0 8 1

Assign#6 3 2 1 4 8 0 9

Assign#7 1011 8 13 1 9 0

Assign#8 9 8 11 14 2 10 3

Assign#9 8 9 1015 3 11 2

Assign#IO 4 5 6 3 15 7 14

Assign#ll 15 1413 8 4 12 5

Assign#12 1415 12 9 5 13 4

Assign#l3 5 4 7 2 14 6 15

Assign#l4 6 7 4 1 13 5 12

Assign#15 13 12 15 10 6 14 7

Assign#l6 12 13 14 11 7 15 6  
 



0P
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optimum realization. However, the optimum one may not be included in these assignments.

In addition, those state assignments require 4 state variables provided by the Connector.

It should be mentioned that, with an alternative modification of the state table, the

same example can be realized using only three state variables, as shown in Figs 2-8 and 2-

9. Instead of using 8 modified unstable states in Fig. 2-7(a), Figs. 2-8 and 2-9 employ 10

and 4 modified unstable states, respectively. In other words, the state table in Fig. 2-9 is

better than that in Fig. 2-7 generated by MSUASLC in the numbers of state variables and

modified unstable states.
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Input (JKC)

000 001 011 010 no 111 101 100

 

\
I
G
U
I
A
U
N
I
-
I

(a)

 

Figure 2-8. Alternative state assignment 1 of the Petjk-FF sequential logic

function: (a) modified state table and (b) state assignments with 3—NWD.

Input (JKC)

000 001 on 010 110 111 101 100

 

Q
U
I
J
K
U
N
H

(a)

 

Figure 2-9. Alternative state assignment 2 of the Petjk-FF sequential logic

function: (a) modified state table and (b) state assignments with 3-NWD.



Chapter 3

Synthesis Model

   

The primitive flow table (PFT) has traditionally been used in the synthesis procedure

to capture the functional behavior of ASLCS. However, its size increases exponentially

according to the number of input and output. This chapter presents an analytical model

which efficiently captures the functional behavior of an ASLC. The model is represented

with a set of equations named Dynamic Output Equations (DOES). These equations are

functionally equivalent to PFT, but they don’t have exponential increase of the entries. In

addition, the DOES provides an efficient way to identify the compatible states so that the

number of states can be reduced considerably with a reasonably low computation time.

-22-
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3.1 Analytical Model for an ASLC

The input variables in the conventional PFT approach are treated equally. In practice,

however, the input variables can be classified as either control inputs or data inputs from

the design Specification.

A generalized ASLC model is introduced in which three distinct classes of inputs are

delineated, i.e., mode inputs, level inputs, and edge inputs. The transition variables are

defined to model the dynamic behavior of the edge inputs. Using transition variables, a set

of equations, referred to as dynamic output equations (DOES), is developed to

characterize the functional behavior of an ASLC. As the transition variables are defined

from the edge inputs which may cause state transitions to occur, the states can be grouped

according to the values of the transition variables. This State grouping leads to simpler

states encoding procedure.

3.1.1 Generalized Model

A generalized ASLC model is illustrated in Fig. 3-1. The external input data word is

decomposed into three parts; namely, M, L, and E. M is a p—bit input and is referred to as

the mode input. L is a q-bit input and is referred to as the level input. AndE is an r-bit input

and is referred to as the edge input. The ASLC has one external output, which is labeled Z

and is an n-bit data word. Internally, the ASLC contains two combinational logic elements,

NSG and POG. NSG and POG are the next—state generator and present-output generator,

respectively. The present state and next state of the ASLC are represented by the m-bit data

words y and Y, respectively.



V3

lill
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The M, L, and E inputs are distinguished as follows: Mode inputs (M) do not cause

internal state transitions to occur nor do they effect the internal state of the ASLC. Hence,

the next state Y is not a function of M. Level inputs (L) do not cause state transitions to

occur but may effect the state of the ASLC; so, the next state Y is a function of L. Edge

inputs (B) may cause state transitions to occur, and, moreover, the next state Y may be a

function of E. The present output Z will depend upon M, provided p 2 1 (see Fig. 3-1). In

this generalized model, the output Z may also be dependent upon the present values of the

L and E inputs. With reference to Fig. 3-1, q0 and r0 represent the number of bits in the

current values of level input and edge input data words, respectively, that effect the present

value of the output Z, where 0 S qo S q, and 0 s ro S r. And, finally, a subset of the bits in

the present state y may effect the present output, where 0 5 m0 s to (see Fig. 3-1).

 

 

 

 

  
 

  

  

 

  
 

Figure 3-1. A generalized model for an asynchronous sequential logic circuit (ASLC).
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The special case where m0 = 0 implies that the external outputs are not a function of

the internal state of the ASLC, which means that the logic element is a combinational logic

element and not a sequential logic element. Thus, combinational logic elements represent

a limiting case for the ASLC modeling for synthesis methodology presented here.

The mode inputs (M) may be viewed as a subset of the level inputs (L), which are in

turn a subset of the edge inputs (E). If all inputs for a particular ASLC are viewed as edge

inputs, then the modeling approach presented here would reduce to the traditional approach

for describing the functional behavior of an ASLC for purposes of synthesis. This is so

because each input would be treated equally. Hence, this limiting case could lead to

expressing the functional behavior of the ASLC in the form of the traditional primitive flow

table.

In this ASLC model, only transitions in edge inputs may cause internal state

transitions to occur. McCluskey [4] describes a convenient notation, which he terms

transition variables, for Specifying the transitions of a signal and shows how transition

variables associated with external outputs can be represented in terms of the transition

variables of external inputs. To facilitate the process of synthesizing ASLCs, the concept is

used to relate transitions in the edge inputs to transitions in the internal state of ASLCS.

These transition variables are defined as follows.

Definition 3.1 (Transition Variable)

The transition variable Xr is equal to l at time t if and only if the variable X makes a

transition from 0 to 1 at time t. The transition variable Xf is equal to l at time t if and only

if the variable X makes a transition from 1 to 0 at time t. X r and Xf are known as the rising-

edge and falling-edge transition variables, respectively.
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They possess both a physical and logical significance. From a physical perspective,

X , and Xf equate to the time rate of change of the electrical signal observed for X(t); the

width of the X , and Xf pulses relate directly to the rise time and fall time of X(t),

respectively. From a logical perspective, X , and Xf indicate the occurrence of a transition

of the signal X. And, from a mixed-mode (i.e., physical and logical) perspective these

transition variables can be defined as follows (see Fig. 3-2):

X, = X’(t) 'X(t+A) (3.1)

X, = X(t) -X’(t+A) (3.2)

The transition variables X, and Xf describe the dynamic behavior of the external

inputs that lead to changes in the ASLC’S internal State. The functional behavior of the

ASLC is captured with a set of sequential logic functions, or DOES. For the generalized

  

 

t t+A

t t+A

xr = x0) ~x<1+a1 xf = x0) -x'(t+A)

(a) (b)

Figure 3-2. Mixed-mode representation of the signal X(t)’s (a) rising edge transition

variable X, and (b) falling edge transition variable Xf.
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ASLC model, the set of DOES express the functional dependence of the ASLC’S next

outputh on the current output 2,; the current values of the input variables D and E; and

the current values of the transition variables E, and Bf. This functional relationship can be

expressed as follows:

2,, = f(Zc, M, L, E, 5,, Ef) (3.3)

This generalized model can be used to implement Finite State Machines (FSMS) as

either a Mealy type or a Moore type machines. When the output Z is a function of current

states, mode inputs, level inputs, and edge inputs, or Z = f(y, M, L, E), and the next State Y

is a function of current States, level inputs, and edge inputs, or Y = h(y, L, B), then the

ASLC can be viewed as a Mealy machine. When there is no mode control input, the output

is a function of current states only or Z = g(y), and the next state Y is a function of current

states, level inputs, and edge inputs, or Y = h(y, L, E), then the ASLC can be viewed as a

Moore machine.

Through the generalized ASLC model, a relationship between inputs and outputs are

derived as Zn = f(Zc, M, L, E, E,, Bf), where Zn is the next output and Zc is the present

output. This relationship, or DOE, represents the Circuit’s functional behavior, and which

can be obtained by considering the relationship between each type of input and present

output independently.

3.1.2 Rules for Generating DOES

Consider an ASLC with a single edge input Ei, referred to as the present value of input

Ei. Let E, and Eif denote rising-edge and falling-edge transition variables, respectively.

From the definition of these transition variables, it follows that
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Ei'Eir = O Ei’oEif = 0 Bit. Eif = O (3.4)

Using these relationships, it can be Shown that following relationships among E, E,,,

and Eifare true:

51"Eir = 5' Ei'Eif = Eif Eir'Eif’ = EirIf

Ei°Eir’ = 5' Ei"Eif' = 5:, EirI'Eif = EifI

(3.5)

Equations (3.4) and (3.5) lead to the following rules for developing the set of DOEs:

Rule 3.1.1 A sum-of-products (SOP) term in a DOE never contains more than one

uncomplemented transition variable.

Rule 3.1.2 If the transition variable for an edge input is present in a SOP term, then that

term is vacuous in the edge-input switching variable(s) associated with that

transition variable.

These two rules deal with SOP terms which contain a literal, a transition variable E,

or its complement E,’. Consider a SOP term that does not contain literals E,, E,’, Ei,, or Bif

but does contain the literals Bi,’ and Eif’. From the definitions for these transition variables,

it can be shown that

If Ei,’-Eif’ = 1, the ASLC is in a steady state condition since no transitions in the edge inputs

occur at that instant of time. Hence the next ASLC output is not due to an internal state

change caused by transitions in the edge input Bi.
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This property of the ASLC can then be stated in terms of the following rule for

constructing DOEs:

Rule 3.1.3 If an SOP term only contains complements of the transition variables, then the

ASLC is in steady state with respect to internal state transitions when

Ei,’- Eif' = 1.

The above rules were developed by only considering the existence of a single edge

input 13,. When more than one edge input is present, the fundamental-mode constraint can

be applied to produce additional rules to guide the development of the DOES. The

fundamental-mode constraint only allows one transition variable to be asserted at any

instant in time. For the case of two edge variables, E, and Ej, the fundamental-mode

constraint implies that

Using these relationships, it can be shown that following relationships among the transition

variables of E, and E, and the complements of the transition variables are valid:

E"'E' = E' Eir’°Ejf= Ejf EifI'E = E Eif’.Ejf= if (3.8)
tr 1r 1r jr 1r

Equations (3.7) and (3.8) lead to the following rule for developing the set of DOEs:

Rule 3.1.4 If transition variable E, is present in an SOP term of the DOE, then the term

is vacuous in all other transition variables, as well as their complements.
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This is a generalization of Rules 3.1.1 and 3.1.2 when the number of edge inputs E is

equal to p; p 2 1. Rule 3.1.3 can also be extended to the general case when one or more

than one edge inputs are present. Let p denote the number of edge inputs; let p, and pf

represent the number of rising edges and falling edges of the edge inputs that cause internal

state transitions, respectively.

Rule 3.1.5 If an SOP term contains the complements of the p, rising-edge transition

variables and pf falling-edge transition variables that cause internal state

transitions to occur, then the ASLC is in steady state if

pr F]

H H517" Ejfl = 1 (3’9)
i=1j=l

By steady state we mean that the next external output Zn does not result from a change

in the ASLC’S internal state even though one of the external inputs may have changed and

thereby will cause a change in the external output

Rules 3.1.4 and 3.1.5 lead directly to a more refined model for the set of DOES titan

that presented in Equation (3.3). The DOES are a set of switching functions which describe

the next ASLC output state Zn in terms of the current values of the mode (M) inputs, the

level (L) inputs, and the edge (E) inputs; and the rising-edge (Eh) and falling-edge (Ejf)

transition variables. Each DOE can be expressed in a standard sum-of—products form as

follows:

pr p]pr p]

z” = 2F,,-E,,+ 2 13,- Ejf+Fs- 1'1 Hag-15].; (3.10)

i=1 j=1 i=1j=1
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Because ofRules 3.1.4 and 3.1.5, the sum-of-products terms are linearly independent in the

transition variables. The coefficients Fi,, fir, and FS have the following interpretation in the

context of the functional behavior of the ASLC: Pi, and ij are the next external outputs

when E,, = l and Ejf = 1, respectively. F,, and Fjf may be a function of Zc, M, and L, as well

as any of the edge input switching variables except E, or Ej, respectively. Fs is the next

output when no internal State transition occurs. Fs represents the steady-state output and

may be a function of 2,, M, L, and E.

Equation (3.10) provides the framework for developing an analytical model to

describe the functional behavior of ASLC for purposes of implementing this sequential

function in an ASIC. The utility of this modeling methodology is demonstrated in Chapter

5 with synthesis examples.

3.2 Traditional State Merging Methods

The traditional synthesis procedure of ASLCS begins with the development of the

primitive flow table (PFT), and follows with the state reduction of the PFT to generate the

merged flow table (MF'I'). The major purpose of the state reduction is to get a MFI‘ with

the fewest number of internal states. Many researchers contributed to the development of

an efficient method to obtain a minimum-State flow table [26-34]. Since the PFI‘ is

constructed with a fundamental-mode assumption, it always has many entries unspecified,

and there is no unique minimum-state flow table for an incompletely specified flow table.

Accordingly, there are many possible ways to merge the primitive States which may lead to

different circuits. However, no general rule which allows the designer to choose a merger

leading to an efficient circuit has existed.
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To illustrate above procedures, the design specification of a sequential logic function

for Petjk-FF, in Fig. 2-2(a) is considered.

Table 2.1 shows the developed PFT. When the PFT is generated, the state reduction

is possible by finding compatible sets of rows and the largest Strongly connected sets in the

PFI‘ [4]. To find compatible sets of rows, the comparisons between rows are needed, which

requires considerable amounts of computation time, and the identification of the largest

strongly connected set also requires considerable amounts of computation time when the

number of internal states is large. A merger diagram is commonly used in the traditional

procedure to identify the largest strongly connected sets. Fig. 3-3(a) shows the merger

diagram of this example.

The resulting merged flow table (MFI‘) is shown in Fig. 3-3(b), and its adjacency

diagram for state assignments is shown in Fig. 3-3(c). One of the most important parts in

the ASLC synthesis procedure is to get race-free state assignments for encoding the internal

states. The race-free state assignment procedures are generally divided into two parts: first

one is to identify and eliminate an intrinsic races, and second one is to assign binary codes

to the states without generating races [14]. The flow table may have races if its m States

cannot be encoded by n state variables without adding States or cycles, where n = [log ml.

This case is easily identified when the number of states in each loop of the adjacency

diagram is odd. So the adjacency diagram in Fig. 3-3(c) has races. When there exist races,

generating cycles with or without additional states is required to remove them. If the state

table has no intrinsic races, a race-free state assignment can be easily obtained in the

synthesis procedure.
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3.3 State Grouping

Two states are said to be compatible in the traditional synthesis procedure if and only

if whose outputs and next states agree whenever either or both are specified [4]. But, the

compatibility is defined slightly differently in this State grouping process. A set of DOES

can be used to calculate the allowed output values. Since the concatenation of input

variables and output variables produces the primitive States, the primitive states which are

compatible can be easily recognized and grouped together by applying the following two

rules:

Rule 3.3.1 Identify and make groups with compatible primitive states; i.e., they are

compatible if they have the same outputs and transition variables.

Rule 3.3.2 Generate a state table with stable state groups and unstable states in each value

of transition variable.

The unstable states in a state table can be calculated from the DOES with the stable

states and input values of transition variables. To illustrate the application of above rules,

the Petjk-FF example is again considered. From the design specification in Section 2.2, two

transition variables may be defined, namely, C, and Cf. Moreover, the following additional

information can be extracted and applied to Equation (3.10) for each output Q and Qp: For

Q. Pr =1;Pf=1;Err = Cr; Err= Cr; F1r =1 Qc'+ K'Qc; F1r=0; and PS =Qc- FOI‘Qp, Pr =

1: Pr =1; Err = Cr;E1r = Cr:F1r = Qc.;F1r = Qci and Fs = Qpc-

Hence, the DOES for the Petjk-FF are
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= (JQc'i-K’Qc) C,+QCC,' (3.11)Q.

Q... = Q,C,+ Q.C,+ Q C 'C,’ (3.12)per

By Equations (3.7) and (3.8), the allowed outputs are 00 and 11, when C = 0 (Cf = 1

Cf'=0,C,’=0,andC,’= 1), and00,01.10,and11,whenC=1(C,=1,C,’=0,Cf=0,

and C" = 1). So the states are grouped into 2 groups when C = 0 such as (CJKQQP) = (0»

00) and (0—-ll), and 4 groups when C = 1 such as (CJKQQp) = (1--00), (1—-01), (l—-10), and

(1—-11) as shown in Fig. 3-4(c).

The number in each group are primitive States which are decimal representations of

the input-output combinations. The state table is derived as Fig. 3-4(d) by applying above

rules. In this table. state transitions only occur on the rising edge (0 -) l) of the edge input

C. and the adjacency diagram of this State table is a bipartite graph as shown in Fig. 3-4(e).

This state table has the following characteristics [35]:

(1) The stable states can be grouped into sets according to the values of the edge

input variables.

(2) There are no internal state transitions among the states in the same set. In other

words, there is no adjacencies between states which belong to the same group.

(3) Cycles may be generated by adding unstable states instead of modifying the

existing unstable states.

These special characteristics are the basis of developing an efficient state assignment

algorithm which will be discussed in the next chapter.
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Figure 3-4. Edge-triggered J-K bistable element with postponed output: (a) graphic

symbol, (b) dynamic output equations, (c) state groups, (d) state table, and (e) adjacen-

cy diagram.
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3.4 Circuit Decomposition

As mentioned in the previous sections, the edge inputs are used as transition variables

to generate a set of DOES to simplify the state merging process. Synthesis process can be

further simplified if a circuit can be decomposed into many smaller sub-circuits. In CSLCS.

a circuit is decomposed based on the topological connection of the graph representing the

circuit, but not on the functional behavior. In this section, the mode inputs are used to

achieve the circuit decomposition.

The mode inputs (M), as Shown in Fig.3-1, do not cause internal state transitions to

occur nor do they effect the internal State of the ASLC. Hence, the next state Y is not a

function of M. If the output Z is a function of the mode inputs (M), the generalized ASLC

model in Fig. 3-1 can be refined as shown in Fig. 3-5, referred to as a refined model, where

the output Z is also a function of the present values of the L and E inputs. (116 and qno

represent the number of bits in the current values of level input data words of NSG#l and

NSG#n. respectively, and rm and rno represent the number of bits in the current values of

edge input data words of NSG#l and NSG#n. respectively. The p-bit mode inputs may be

regarded as control signals for multiplexing the outputs of the NSGS. The selected next

states from many NSGS may become the present output Z.

Note that the complexity of the synthesis process increases nearly exponentially with

the circuit size. Thus. the complexity of synthesizing many smaller NSG circuits in total

should be much lower than that of synthesizing a large NSG. It is clear that the use of mode

inputs for circuit decomposition will make the ASLC synthesis process much simpler.
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Chapter 4

State Assignments with Bipartite Graphs

 

Encoding the internal states of an ASLC has been a research t0pic since Huffman first

introduced a flow table as a design tool. A race-free state encoding of an ASLC is a problem

of finding a mapping of states onto an n-cube. and an adjacency diagram which describes

the relationship between any two states is generally employed for state encoding. Since the

complexity of the encoding process is determined by the complexity of the adjacency

diagram, for an arbitrary connected graph, the traditional methods utilize enumerative

searches or backtracking. which requires a combinatorial computation time.

Based on the salient features of bipartite graphical representations of both adjacency

diagram and n-cube, this chapter presents an efficient state assignment algorithm using

pattern matching techniques. First, the previous works on state assignments are briefly

discussed. The bipartite representations of graphs are described in the following section,

and the developed algorithm is presented in Section 4.3 with examples. Finally,

comparisons with other algorithms are discussed in Section 4.4.

-39-
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4.1 Background

Many techniques are developed to assign the states without races, but there always

exist trade-offs between the goal of minimizing the number of state variables, and reducing

the enumerative efforts. The classical state encoding methods are based on the enumerative

way to assign the states to an n-cube which has the smallest dimension as possible, and to

generate cycles to make them a race-free state encoding. Since the complexity of the circuit

is dependent on the binary codes chosen in the State assignment step, this method may

generate the most compact circuit realization.

More recent developments are based on the partition theory [36] associated with

inputs. The Single Transition Time (ST'I') state assignment is the result of this approach.

The column partition method is utilized to generate a Boolean matrix in the STT‘ state

assignment [22, 37]. It contributes to the reduction of the enumerative efforts to assign the

states to an n-cube, but it requires additional efforts to find the minimum cover for the

matrix to obtain the minimum number of state variables. Moreover. it requires more state

variables than the classical ones. The multicode Single Transition Time (MSTT) State

assignment [38. 39] is developed to reduce the dimension of an n-cube by allowing the

doubly assigned codes for the different column partitions, but it still generally requires

more state variables than the classical ones. Universal state assignments [39-44] which

consider only the dimension of an n-cube according to the number of States to be assigned

help reduce the enumeration efforts, but it is far from the compact circuit implementations.

The one-hot code state assignment [45] requires, the least efforts with the largest number of

state variables to implement an ASLC. For compact circuit realization, the classical

techniques may generate the best results, but they are difficult to apply to the large number

of states because of their enumerative search requirements.
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While recent techniques adopt the partition theory associated with inputs. the

classical ones utilize an adjacency diagram [2]. which visualizes the adjacency

relationships between the states to be assigned. This adjacency diagram approach was

regarded as impractical because it becomes more complex as the number of states

increases, and enumerative efforts are required to find a race-fiee state encoding. However,

with the development of graph theory it becomes more feasible to analyze the adjacency

diagram using CAD tools.

Saucier [46] employed a partition method to get a maximal spanning tree. and devised

an embedding algorithm to fit it onto an n-cube by employing backtracking techniques to

find one possible embedding. The results are better than the covering method in terms of

the dimension of the internal variable. Recently, Wu [14] utilized an adjacency diagram,

and developed rules to predict races from a Node Weight Diagram (NWD) which is a

binary n-cube connection diagram, but it requires an enumerative search to assign the states

and to find the Shortest path for generating cycles in an n-cube.

4.2 Bipartite Representation of Graphs

An adjacency diagram can be represented by a graph Ga = (83, La), where 8a is a set

of nodes or states and a link (u, v) e L,| denotes that the States it and v(e 8,) have an

adjacency relationship. The adjacency graph Ga may be considered as a set of states Sa and

a function Ga: 81, x 81, —) {0, 1}. such that Ga (u, v) = Ga (v, u) and G3 (u. u) = 0 for all u,

v e 8,. G,, (u. v) = 1 means that there is an adjacency relationship between it and v. i.e., the

pair (u. v) 6 La.

The graph of an n-cube can be denoted by Gn = (V,,, E“). where Vn is the set of

vertices and E“, the edges. represent the interconnection pattern of the nodes. The graph of
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an n-cube Gu may be considered as a set of vertices VI, and a function G“: Vn x Vn -) [0,

1}. Without loss of generality. we may assume that l Sa l S l Vn i.

A bipartite graph is a graph whose vertex set V can be partitioned into two subsets V,

and V3 such that no edge in the graph joins two vertices in the same subset. Thus, each edge

in the bipartite graph has one end in Vc and the other end in V,. Every cycle in a bipartite

graph contains an even number of edges. This follows since each edge joins vertices in

different subsets and the cycle must return to its subset in which it originated [47].

Two graphs 6, and 62 are isomorphic to each other if there is a one-to—one

correspondence between their vertices and between their edges such that the number of

edges joining any mo vertices in G1 is equal to the number of edges joining the

corresponding two vertices in G2. This may be Stated more formally: Two graphs G1: V, x

V1 —) [0. l} and 62: V2 x V2 -—) {0, 1} with lVll = IVZI are isomorphic if there exists a

function e: V1 —) V2 such that Cl (u, v) = G2 (e(u), e(v)) for all u, v 6 V1.

The problem ofdetermining whether two graphs are isomorphic is one of the classical

unsolved combinatorial problems [48]. The state assignment problem, finding a mapping

function fm: Sa —> V", is computationally equivalent to the graph isomorphic problem. No

exact polynomial time algorithm exists for the problem and they are solved approximately

using heuristic algorithms.

4.2.1 Bipartite Adjacency Table (BAT)

A bipartite adjacency diagram is a connected graph whose states are partitioned into

two subsets Xc and X, such that no link in the graph joins two states in the same subset. For

simplicity, the states in Xc and X, are denoted as Si's and sj's, respectively, i.e., Xc=[S1.

Sz,..., 8,} and X,=[s1. s2..... sm}, where l and m are the numbers of states in Xc and X,,
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respectively. Without loss of generality. we assume that I S m. Let L be the set of all links

between Xc and X,, i.e., I;{(S,-. sj)| S,- e Xc and sf 6 X,}.

Based on the characteristics of the State table, the links in a bipartite adjacency table

(BAT) can be classified as adjacency links and bipartite links as follows:

(1) Adjacency link: It represents state transitions in the state table. A pair of states

related to each link respectively belong to the distinct state groups.

(2) Bipartite link: It represents the state transition between a pair of states according

to the values of edge inputs regardless of other input changes.

Note that a bipartite link may also be considered as an adjacency link, but the bipartite

link cannot be a break to generate cycles. Let’s consider the edge-triggered J-K bistable

element with postponed output discussed in Section 3.3. Since the adjacency diagram of the

state table is a bipartite graph. it can be represented with the table as shown in Fig. 4-1(c).

In this table, (1, 3). (l, 5). (2. 4), and (2, 6) are the adjacency links, and (1, 3). (l, 4), (2, 5),

and (2, 6) are the bipartite links. The links (1, 3) and (2, 6) are bipartite links as well as

adjacency links.

4.2.2 Bipartite Representation Table (BRT)

An n-cube is a subset of a hypercube and its interconnection structure is difficult to

visualize when n 2 4. Since an n-cube is always bipartite [49]. the interconnection structure

of an n-cube can be represented by a table as described below. For simplicity, we first

consider when n = 3. Fig. 4-2(a) illustrates a 3~cube structure. A 3-cube is comprised of two

2-cubes and the links between them. There exist three sets of separated 2-cubes: (a, c l b, d)

and (f, h l e, g); (a, f I e. b) and (h, c l d, g); and (a, h l d. e) and (c, f l b, g). Consider the that

representation. In addition to the two cubes, there exists four links between these two 2-

cubes. They are (a, e), (c, g). (f, b), and (h, d). The 3-cube structure can be represented by
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(b) adjacency diagram, and (c) bipartite adjacency table (BAT).

 

Figure 4-2. Illustration of bipartite representations of 3-cube: (a) geometric symbol, and

(b) three different representations of 3-BRT.
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the leftmost bipartite table in Fig. 4-2(b). referred to as a bipartite representation table

(BRT), where the Shaded block represents the existence of a link between two nodes and

the blank block indicates no link. Similarly, the BRTS for the 3-cube with the remaining

two 2—cube representations are also Shown in Fig. 4-2(b). In general, an n-cube is comprised

of two (n-1)-cubes and the links between them. Fig. 4-3 illustrates various BRTS. The bold

typed numbers are decimal numbers of binary vectors assigned to the states in the row and

column of the BRT. The BRT for an n-cube, referred to as n-BRT, is constructed by the

following recursive algorithm.

Procedure 4.2.2 (n-BRT Generation)

Input: Dimension of n-cube. (11)

Output: Ordered lists of column nodes (X,,) and row nodes (X,).

Gen_BRT(n) {

If n > 1

Gen_BRT(n- 1)

If n is odd

Add complement of each element in Xc to X,;

Add complement of each element in X, to X,,;

Else

Add complement of each element in Xc to X,;;

Add complement of each element in X, to X,;

Ascending ordering of Xc and X, according to the decimal value.

Else

0—-)Xc;l—>X,

Return(Xc,X,)

l
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Note that each node in Xc (or X,) of (n-1)-BRT is represented in (n-l) bits, and the

expanded bit for the n-BRT is considered as "0". The memory size for such a representation

requires 2n for an n-BRT. For simplicity of discussion, the links in an n-BRT are classified

as follows: bipartite links, adjacency links, boundary links, and forbidden links.

(1) Bipartite link: It represents an isolated edge in an n-cube. which does not share

nodes between them. It appears in the diagonal of an n-BRT.

(2) Adjacency link: It represents an edge which connects the nodes which are

included in the two separated edges.

(3) Boundary link: It is an edge in an n-cube which connects the nodes of two

separated (n-1)-cubes included in the n-cube.

(4) Forbidden link: It is an imaginary link between the nodes which have no edges.

This link is generally preserved for any bipartite representations of n-cubes.

For simplicity. the first three links are referred to as non-forbidden links. For example.

in the leftmost BRT in Fig. 4—2(b), the bipartite links are (a, b), (c. d), (f. e), and (h. g). the

adjacency links are (a, d). (c. b), (f, g), and (h, e), the boundary links are (a. e), (c. g), (f, b).

and (h. d). and the forbidden links are (a, g), (c, e). (f, d), and (h, b). The unshaded blocks

in the BRT represent the forbidden links, while the shaded blocks are for the non-forbidden

links.

4.3 State Assignments Using Bipartite Graph Techniques

Based on the construction of an n-BRT, where n 2 2. each node in Xc (or X,) has n

non-forbidden links, i.e., one bipartite link, (n-2) adjacency links. one boundary link. and

(20”) -n) forbidden links. Thus, an n—BRT contains 20"” bipartite links. An n-BRT can be

partitioned into four quadrants: Quadrant I (Upper-left), Quadrant H (Upper-right),
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Quadrant III (Lower-right). and Quadrant IV (Lower-left). Quadrant I (III) contains an (n-

1)-BRT, while Quadrant 11 (IV) consists of boundary links.

Note that an n-BRT contains two (n-1)-BRTs. If we recursively bisect the BRT, the

final component will be a 2-BRT. Thus, the basic component of an n-BRT is a 2-BRT for

the 2-cube. It should be mentioned that the states in Xc (or X,) can be partitioned into two

state groups and that the number of States in one group which Share links with one state in

the other group is exactly (n-1) and they share exactly two non-forbidden links. In the

following three properties of an n-BRT, we consider a State pair (S1, $2) in Xc and a state

pair (81, 32) in X,.

Property 4.1 Suppose that both state pairs form a 2-cube. Then,

(1) SI and S2 are in the same State group in Xc ifand only ifs] and s2 are in the same

state group in X,; or

(2) SI and S; are in different state groups in Xc if and only if s, and S; are in

different state groups in X,.

Consider the 4-BRT in Fig. 4-3(c), there are two 3-BRTS, and the states are grouped

as (0, 3. 5. 6) and (9, 10, 12, 15) for X,,, and (1, 2, 4, 7) and (8. 11, 13, 14) for X,. The links

(3. l), (3. 11). (9. 1), and (9, 11) form a 2-cube with (3, 9| 1. 11). The states 3 and 9 belong

to the different state groups. so do the states 1 and l 1.

Property 4.2 If (S1. s2) and ($2, s1) are two boundary links located in Quadrants II and

IV. respectively, then (S1. s1) and (S2, s2) are the same type of links located in Quadrants I

and II], respectively.
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For example, consider the 4-BRT in Fig. 4-3(c). Since the links (5, 13) and (10, 2) are

two boundary links located in Quadrants II and IV, respectively, both (5, 2) and (10, 13)

are forbidden links. Similarly. the boundary links (10. 2) and (6, 14) result that both (10,

14) and (6, 2) are adjacency links. Finally, both (0, 1) and (9, 8) are bipartite links because

both (0, 8) and (9, l) are boundary links.

Property 4.3 If both (51, SI) and ($2, 32) are bipartite links, then both (5}, 82) and (52,

s,) have the same type of links.

In the 4-BRT in Fig. 4-3(c), Since (0, 1) and (6, 7) are bipartite links, both (6, l) and

(0. 7) are forbidden links. On the other hand, since (0, 1) and (5, 4) are bipartite links, both

(0, 4) and (5, l) are adjacency links.

4.3.1 Problem Statement

The race-free State assignment problem can be formulated as the problem of

embedding a bipartite connected graph in an n-cube. In this implementation, the problem

can be formulated as a mapping of the adjacency diagram, represented with a bipartite

graph. to an n-cube also represented with a bipartite graph, i.e., embedding of a BAT in a

BRT. A BAT is generally comprised of 1 rows and m columns, where l S m. Since we

always can expand the BAT by adding some dummy states to increase the number ofrows.

without loss of generality. we consider the case that m = 1. Thus, we consider the BAT

having 2m states, referred to as a m-BAT, for simplicity.

Definition 4.1 A m-BAT is mappable if it can be embedded in an n-BRT, where n =

[log ml + 1. Otherwise, it is unmappable.
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Definition 4.2 The m-BAT is 111-bisectable if

(1) The states in Xc and X, can be partitioned into two pairs of state groups. (Xcl,

Xe?) and (X,,. Xfl). respectively;

(2) For every state in Xcl. there exists at most one link to a state in Xa. where no

states in X0 have linked the same state in Xcl; and

(3) For every state in Xe2» there exists at most one link to a state in X,,, where no

states in X,1 have linked the same state in Xc2-

Note that the m-BAT is partitioned into four blocks. For simplicity, both (Xcl. X,1)

and (Xcz, Xa) are referred to as diagonal blocks, while both (X62, X,,) and (Xcl, X,;) are

called as off-diagonal blocks. By Definition 4.2, the states in each diagonal block form a l-

BAT. where I = llogz ml. Again. if the l-BAT satisfies the conditions in Definition 4.2. then

it is l-bisectable. Therefore, if the states in both Xc and X, are properly partitioned so that

the conditions in Definition 4.2 can be satisfied by a newly generated k—BAT, k S m, then

the k—BAT is k-bisectable.

Definition 4.3 A m-BAT is bisectable if the states in X, and Xc can be partitioned in such

a way that all the corresponding k-BATS, k = l,..., 2, are k-bisectable.

Theorem 4.1 A bisectable m-BAT is mappable.

Proof: Since the m-BAT is bisectable, it is also m—bisectable. By Definition 2, both Xc and

X, can be partitioned into two pairs of State groups, (Xcl. Xcz) and (X,,. Xa). respectively,

where the links in each off—diagonal block can be treated as the boundary links of an n-

BRT. where n = [log ml + 1. Since the diagonal blocks are l-BAT, they are l-bisectable,

where l = [log ml. Similarly. the links in each corresponding off-diagonal block are the

boundary links of a (n-l)-BRT. The BAT formed by the states in each diagonal block can
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be further partitioned until all the diagonal blocks are 2-BATs each of which can be mapped

to a 2-BRT. This concludes that a bisectable m-BAT is mappable to an n-BRT.

Q.E.D.

Corollary 4.1 A m-BAT is mappable if it consists of bipartite links only.

Proof: A m-BAT with bipartite links only shows that, for every state in X,,, there exists

exactly one link to a state in X,, and vice versa. Thus, the states in Xc and X, can be

permuted so that the links are all on the diagonal entries of the BAT. This implies that the

m-BAT is bisectable. By Theorem 4.1, the m-BAT is mappable. QED.

Consider the 7-BAT in Fig. 4-4(a), for example, where Xc and X, are partitioned into

two ordered pairs of state groups, {(1, 7, 5, 6), (3, 4. 2)} and {(10,11, 13, 9),(8,14, 12)},

respectively. Based on Definitions 4.2 and 4.3, the 7-BAT is bisectable and thus is

l 2 4 7 8111314
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Figure 4-4. An example illustrating Theorem 4.1: (a) mappable 7-BAT and (b) depiction

of a mapping to 4-BRT. (The shaded blocks in (b) represent links in 4-BRT, and the darker

blocks indicate the mapped links of 7-BAT)
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mappable. Fig. 4-4(b) depicts the mapping results and the corresponding state encoding.

Theorem 4.2 A m-BAT is unmappable if either

(1) Each row or column of the m-BAT contains more than 11 links, or

(2) The link set of the m-BAT includes {(Si, sj) l i=1, 2. 3 and j=1, 2] or {(Si. S!) I

i=1. 2 andj=1, 2, 3}.

Proof: Since each node, or state, in Xc and X, of n-BRT has only 11 links, it follows that the

m-BAT is unmappable. On the other hand, Since any two rows or columns in a n-BRT share

at most two links, the m-BAT containing more than three common links is thus

unmappable. QED.

An ummapable m-BAT cannot be mapped to an n-BRT, where n = Ilogz ml + 1, i.e.,

the 2m states in the m-BAT cannot be encoded with 11 state variables. In other words,

encoding the 2m states with 11 state variables will definitely create critical races when the

BAT is unmappable. Therefore. it is necessary to add cycles by adding some intermediate

states to avoid critical races [1-6].

A race condition occurs when two or more state variables are to change at the same

time. Race conditions can naturally be classified as being either an intrinsic race (IR), or a

generated race (GR) [14, 25]. A GR is caused by a careless encoding of the states, while an

IR results when the minimum possible Hamming distance is greater than 1. A GR can be

either critical or non-critical. Two types of intrinsic races have been identified: visible

intrinsic race (VIR) and hidden intrinsic race (HIR). A VIR occurs when the maximum link

degree exceeds the number of state variables or the corresponding adjacency diagram has

at least one loop of odd number of states. Otherwise, it is a HIR. In [14], race conditions

are avoided by first identifying and eliminating IRS and then making race-free state

assignments to guarantee that no GRS are produced. This can be achieved by encoding the
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adjacent states to have a Hamming distance equal to 1. This State assignment is referred to

as unit-distance code (UDC) state assignments. To facilitate the UDC State assignments.

the NWD is implemented. Note that some intermediate states may be added or some

unstable states may be modified to generate cycles for avoiding races. Results in [14] have

demonstrated that the algorithm provides better results than any others. However, the

algorithm uses an enumerative search approach to assign the States and to generate cycles

by exhaustively trying all possible encodings.

In this study. based on the Special bipartite characteristics of an adjacency diagram.

the conditions in Theorems 4.1 and 4.2 identify the mappability of a BAT under

consideration. If a BAT is identified as mappable, the resultant mapping is the assignment

of the states. On the other hand, if it is not mappable, some cycles are generated. The

following theorem provides an alternative rule to identify the mappability of the modified

BAT.

Definition 4.4 For the link (S,-, 3,) in a BAT, we define

(1) adj(S,-) ={(S,-, sk) | (S,. sk) e L, s], e X,, and sk ¢ s,},

(2) adj(s,) ={(S,,. s,) l (5),. s,) e L, S], e Xc, and S), at St]: and

(3) (adj(S,-), adj(s,)) = ((Sk: St) I (Sic! St) E L. 5k ‘5 Xc’ 516 X,, and a(MIMI-K590) =

adJ'(adJ'(-Vr))l-

In the BAT shown in Fig. 4-5(a), L = {(1, 6), (1. 9). (1, 10), (2, 7), (2, 8). (2, 10). (3,

7). (3. 8). (3. 9). (4. 8). (4. 9). (5. 9). (5. 10)}. For the link (2. 7). adj(2) = {(2. 8). (2. 10)}.

and ad1(7) = ((3. 7)}. and (ad-1(2). “10» = {(3. 8)}.
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Figure 4-5. An example illustrating Theorem 4.3 and Corollary 4.3: (a) 5-BAT which has

a pattern defined in Theorem 4.3, (b) expanded BAT of (a), (c) 7-BAT which has a pattern

defined in Corollary 4.3, and (d) expanded BAT of (c).



-56-

Theorem 4.3 Suppose that a BAT contains the following adjacency links: (Si. s,), (5,.

s,). (Sj. s,). (51" s,), (Sj. S“). (Sk, s,), and (Sk: S“). The BAT is unmappable if there exists more

than one link such as (adj(Si). adj(s,)) or (adj(Sk). adj(s,)).

Proof: The states Si, S}, S], and s,, s,, 5,, can be mapped to the 3-cube domain, and they

generate two 2-cubes which are interconnected with the link (Sj, s,). They also have two

forbidden links such as (5,, s.) and (s), s,). By Property 4.2, the states belonging to the 3-

cube have only one adjacency link and one boundary link, so only one link is allowed,

which is a boundary link such as either (adj (S,-), adj(s,)) or (adj(Sk), adj(s,)), but not both.

When considering a mapping of the BAT to an n-BRT, where n > 3, by Property 4.2, the

links in (adj(Si). adj(s,)) should be a forbidden link when adj(Si) exists outside of the 3-

cube. The same condition can be applied to (adj (Sk), adj(s,)). Therefore. other links except

one which is either (adj(Si), adj(s,)) or (adj (Sk), adj(s,)) should be forbidden links.

QED.

Corollary 4.3 Suppose that a BAT does not satisfy Theorem 4.1 and 4.2, and the link (S,-,

Si) is a bipartite link. The BAT is unmappable if there exist links such as (adj(Si), adj(s,)),

which are not a bipartite link.

Proof: By Property 4.3, the links in (adj(Si), adj(s,)) should be a bipartite link, if they

exist. QED.

Consider a BAT in Fig. 4-5(a) which satisfies the condition in Theorem 4.3. There is

a pattern between the column state group (2, 3, 4) and row State group (7, 8, 9). The links

(1, 9) and (5, 9) are adj(9). and the link (2, 10) is adj(2). Since there exist two links such as

(1, 10) and (5, 10), which are (adj(2). adj(9)), this BAT is unmappable. The expanded BAT

is shown in Fig. 4-5(b) by breaking the link (3, 9) and eliminating the pattern defined in

Theorem 4.3.
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The BAT in Fig. 4-5(c) shows the pattern defined in Corollary 4.3. The link (7. 8) is

adj(8), and the link (1, 13) is adj(l). The link (7, 13) should be a bipartite link for a

mappable BAT because the link (1. 8) is a bipartite link and the link (7. 13) is the link

(adj(l). adj(8)). The expanded BAT in Fig. 4-5(d) is generated by eliminating this link, and

it becomes a mappable BAT.

4.3.2 State Assignment Algorithm

The developed race-free state assignment algorithm is divided into three major

procedures: The first procedure examines if the given BAT is mappable. If it is not

mappable to an n-cube. the second procedure eliminates the races by expanding the table

with additional states and generating cycles. The third procedure maps a mappable BAT— to

an n-cube. The first procedure applies a sequence of rules to predict the races which make

the BAT to be unmappable. When the BAT is identified as unmappable. rules are applied

to determine a break which should be eliminated to generate a mappable BAT. An

unmappable BAT is expanded according to the characteristics of the BAT by two different

procedures: symmetric expansion and non-symmetric expansion. Since the n-BRT is

symmetric on the basis of bipartite links in nature, a symmetric unmappable BAT needs a

special expansion. which makes the expanded BAT to be symmetric again. The third

procedure applies constraints to the states in the BAT to find a mapping of an n-cube. To

find a mapping is to find two independent sets of states recursively. Detailed description of

each procedure is as follows.
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4.3.2.1. Procedure to identify a mappable BAT

The procedure for identifying a mappable BAT is divided into two parts. The first part

is to identifying an unmappable BAT. It begins by counting the link degrees in the column

or row of a given BAT and all 2-cubes in the BAT are searched to generate a list. The

unmappable condition (1) and (2) in Theorem 4.2 and Theorem 4.3 are examined next. All

required breaks between the separated and intersected 2-cubes are examined in the second

part to determine breaks for expanding the unmappable BAT. All links are weighted when

they should be breaks, and two of the most heaviest links are selected as breaks which

should be eliminated by generating cycles. The links and required breaks between the

separated and intersected 2-cubes are shown in Fig. 4-6. The procedures to identify an

unmappable BAT and to generate a mappable BAT by determining breaks are described as

follows.

Procedure 4.3.2.1.] (Unmappable BAT Identification)

Input: BAT matrix. (mg by m)

Outputs: Ordered list of link degrees of states in Xc and X,.

2-cubes list

Identify_Unmappable_BAT (BAT) {

1. Count the link degree of States in Xc and X,.

Search all 2-cubes to generate 2—cubes list.

3. IF the maximum link degree is greater than n, THEN go to Step 8,

where n = flogzmol + I.

4. Search the pattern defined in Theorem 4.2(2) from the 2-cubes list.

4.1 IF it is found, THEN go to Step 8.

5. Search the pattern defined in Theorem 4.3 from the 2-cubes list.

5.1 Count the number of links in (adj(i), ade)) for each forbidden

link (i, j) in the defined blocks.

5.2 IF it is more than 1, THEN go to Step 8.
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Figure 4-6. Links and breaks in two separated 2-cubes and two interconnected 2-cubes.

6. Find the (adj(i), adj(j)) for each bipartite link (i. j).

6.1 IF they are not bipartite links, THEN go to Step 8.

7. End. Next is to map the BAT to an n-BRT (See Procedure 4.3.2.3).

8. Generate a mappable BAT (See Procedure 4.3.2.1.2).

Procedure 4.3.2.1.2 (Break Determination)

Input: BAT matrix. (m0 by m0)

2-cubes List

Outputs: 2-cubes List (modified)

Breaks List

Break_Determination (BAT) {

1. Find the breaks in the separated 2-cubes:

1.1 Find the maximum number of separated 2-cubes in the 2-cubes

list.

1.2 IF there are no separated 2-cubes, THEN go to Step 2.

1.3 Mark all required breaks for the separated 2-cubes.

1.4 Eliminate all 2-cubes in the 2—cubes list which have required

breaks.

2. Find the breaks in the intersected 2-cubes:

2.1 Find all interconnected 2-cubes in the list.

2.2 IF there are no intersected 2-cubes. THEN go to Step 3.
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2.3 Mark all required breaks for the interconnected 2-cubes.

2.4 Eliminate all 2-cubes in the 2-cubes list which have required

breaks.

3. IF the break is a bipartite link in the BAT, THEN remove it from the

break list.

4. Arrange the breaks in descending order according to their weights.

5. Select first two breaks from the list. Next is to expand the BAT by

adding additional states to the BAT. (See Section 4.3.2.2)

4.3.2.2. Procedure for BAT expansion

The cycles can be easily generated by adding states and by adding links between the

states which have breaks. However, the expansion of the BAT Should be symmetric if the

original BAT is symmetric. The symmetric BAT is recognized from the order of the link

degrees in the Xc and X,. If the order of link degrees of Xc is the same as the order of link

degrees of X, after arranging the link degrees, the BAT is symmetric. The symmetric

expansion is by counting the number of forbidden links in the BAT. If non-symmetric

expansion is applied to the symmetric BAT. the BAT cannot be mapped onto an n-cube or

results in having a larger dimension of an n-cube.

For example, consider BATS in Fig. 4-7(b) and (c). Both BATS are symmetric on the

basis of bipartite links for m S 3. Both BATS are expanded from the BAT in Fig. 4-7(a).

which is symmetric on the basis of bipartite links for m S 4. Since the BAT in Fig. 4-7(c)

has a symmetric expansion, it is also symmetric on the basis of bipartite links. However,

the BAT in Fig. 4-7(b) is not symmetric because it has an non-symmetric expansion. The

BAT in Fig. 4-7(c) is mappable to 4-BRT as depicted in Fig. 4-7(d), but the BAT in Fig. 4-

7(b) is unmappable because it has a pattern defined in Theorem 4.3 with states groups (3,

4, 9) and (7, 8. 10), and the link (1, 5) is (adj(9). adj(7)).
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(d)

Figure 4-7. An example of BAT expansions: (a) 4-BAT, (b) non-symmetric expansion

of (a), (c) symmetric expansion of (a), and (d) depiction of a mapping of (c) to 4—BRT.
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The non-symmetric and symmetric BAT expansion procedures are as follows:

Procedure 4.3.2.2.1 (Non-symmetric Expansion)

Inputs: BAT matrix. (k by k)

Breaks List.

Outputs: BAT matrix. (k+1 by k+1)

Cycles List.

Non-symmetric_ExpanSion(BAT) {

1. Generate a cycles by adding links in Xc and XI for two breaks whose

one state in each pair is the same:

1.1 IF two breaks are (Si: S!) and (Si, s1), THEN add one bipartite link

(Sk+1, sk+1) and adjacency links (Si, SI“,1), (Sk+1, Si), and

(51m, 51)-

1.2 IF two breaks are (Sa, 3]) and (Sb, sj), THEN add one bipartite

link (Sh1, Sk+1), and adjacency links (50, s,”1), (Sb, 3,”1), and

(Sh-1» Sf)-

2. IF there is only one break such as (Si, 3]), THEN add one bipartite link

(Sk+I' Sb”) and adjacency links (Si, Sk+1)’ and (51“.), Si).

3. List cycles as (Si, 3k+1: S,”1, Sj) and (Si, 5,“1, S,”1, SI) for the breaks

(Si, 5'") and (Si» 5,), respectively.

Return (BAT)

For example, consider the 4-BAT in Fig. 4-8(a). The BAT is not symmetric. Since it

has a pattern defined in Theorem 4.2, it has races. In this example, the break (2, 8) is

selected as a break for BAT expansion. The expanded BAT with a cycle (2, 10, 9, 8) is

shown in Fig. 4-8(b), and the resulting mapping to 4—BRT is depicted in Fig. 4-8(c).



 

 

 
Figure 4-8. An example of non-symmetric BAT expansion: (a) non-symmetric

4-BAT, (b) S—BAT with non-symmetric expansion, and (c) depiction of a map—

ping to 4-BRT.
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Figure 4-9. An example of symmetric BAT expansion: (a) symmetric 3-BAT,

(b)4-BATwith.., , ' m ,and (c)depictionofamappingto3--BRT. 
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Procedure 4.3.2.2.2 (Symmetric Expansion)

Inputs: BAT matrix. (k by k, where m 2 k 2 m0)

Breaks List.

Outputs: BAT matrix. (k+l by k+l, where m 2 k 2 m0)

Cycles List.

Symmetric_Expansion(BAT) {

1. Find two breaks which are symmetric to each other:

1.1 IF there is one break (50, sj), THEN the symmetric break (Sb, 3,)

is such that the order of state S0 in the Xc is the same as the order

of the state S, in the X,, and the order of state Si in the Xc is the

same as the order of the state Sb in X,.

1.2 IF there is no symmetric break for (S0, sj) in the breaks list,

THEN add the symmetric break (Sb, 3,) to the breaks list.

2. Generate cycles for two symmetric breaks:

2.1 IF two symmetric breaks are ($0, Si) and (Sb» 5,), THEN add one

bipartite link (S,H1, sh”), and four adjacency links such as (50,

5hr)» (Star: 31), (5b: 51m), and (Ski-1,51)-

2.2 List cycles as (Sa, Sk+1» Sh1, sj) and (Sb, sk+1, SH1, 5,).

Return (BAT)

For example, consider a BAT in Fig. 4-9(a). This BAT is symmetric, but it is

unmappable because it has the pattern defined in the Theorem 4.2. It requires two breaks

such as (l, 6) and (3, 4), which are symmetric to each other. The expanded BAT is shown

in Fig. 4-9(b) with cycles (1, 7, 3, 6) and (3, 7, 8, 4). The resultant mapping to 3-BRT is

depicted in Fig. 4—9(c).
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4.3.2.3. Procedure to map a mappable BAT to an n-BRT

Once a BAT is identified as mappable with or without BAT expansions, there is no

race in the BAT, and it iS bisectable from Theorem 1. Since the bisecting procedure requires

not only to partition the States into two pairs of State groups recursively, but also to satisfy

the condition that each state in one group of Xc (or X,) has at most one boundary link to the

state in the other group ofX, (or X,), the mapping procedure begins first by partitioning the

states in X0 (or X,) into 2 subsets recursively until it becomes a 2-cube with applying the

following two constraints. They are derived from the properties of an n-BRT.

Constraint 4.3.1 Suppose that there is a 2-cube such as (S1, S2 I s1, s2) in a mappable BAT

and that states in Xc is partitioned into Xcl and Xck, and states in X, is partitioned

into X,1 and X,k. Then,

(1) IFS], 52 E XCI’ THEN S], 32 E X,.].

(2) IF SI, 52 e Xck’ THEN s1, 52 e X,,,.

(3) IF S] e X91, 52 e Xck, and SIG X,1, THEN sz e X,;,.

(4) IFS] e Xcl, 52 e Xck, and s16 X,k, THEN sz 6 X,}.

Constraint 4.3.2 Suppose that states in Xc is partitioned into Xcl and Xck: and states in

X, is partitioned into X,1 and X,;,. The State Sk (or sk) in X,,,(or X,k) Should have at

most one link with at most one state in X,1 (or Xc1)-

Whenever there exist multiple choices, the selection refers to above constraints. The

second part of the procedure arranges the order of states in each subset according the

constraints of the boundary links, and merges the ordered subsets to expand the State space

to an n-cube.
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The partition process can be executed by moving some states in the original state set

to the new subset by applying some selection constraints. The link degree of each state iS

the selection criterion in this procedure. Let one state Sk is first selected from X,, which has

the maximum link degree with the States in X,, then the state s], separated from the states in

X, Should be a state which has a link with Sk, but it has the minimum link degree with the

States in X,. When the state 3,, is moved to the new subset ofX,, then the States in X,, except

Sb which have links with 3,, should be moved to the new subset ofX, because of Constraint

4.3.2. By repeating this process, the states which satisfy the bisectable condition is moved

from the original set to the new subset, and it results in partitioning the original states into

2 subsets. This partition process continues until the number of states in the original set

becomes 2, in which boundary links cannot be applied. Once the states in Xc and X, form

a 2—cube, the state space is now expanded from a 2-cube to an n-cube by arranging the order

of States in each subset and merging those ordered subsets. The ordering of the States in

each subset is executed by considering the boundary links between (n-l)-BRTS. The

detailed mapping procedure is described as follows:

Procedure 4.3.2.3 (Mapping a mappable BAT to an n-BRT)

Inputs: BAT matrix. (m by m)

2-cubes List.

Outputs: List of assigned numbers for column states

List of assigned numbers for row states

BAT_to_ BRT_mapping (BAT) [

l. Assign the column (or row) states set to Xcl, which has the maximum

link degree, and assign the other States set to X,,. Set i = 1 and k = 1.

2. Select Sp], among the unmarked states in X,;] such that ladj(Sp,,)l is the

maximum, where p = 2(“’2'i) +1.

3. Select Sp], among the unmarked states in X,1 such that adj(spk) e

{adj(spk)} and Iadj(spk)l is the minimum.



-67-

4. X,p = X,,, + SP1, X,,: X,, - Sp], X,,, = X,,, + {S l Se X,,, adj(S)=

adj(spl), S at SP1}, and X61 = Xcl - [S l Se X,,, adj(S)= adj(spl), S at

Sp1}°

5. IF the states in X,p and X,1 (X,,, and X61) cannot satisfy Constraint

4.3.1, THEN

5.1 Mark the State Sk.

5.2 Move all States in Xrp and ch to X,1 and Xcl, respectively.

5.3 Go to Step 2.

6. Repeat Step 2 to 5 with increasing k until I Xcll and l X,1| s 20"“).

7. IF the states in X,p and X,1 (or ch and Xcl) cannot satisfy Constraint

4.3.2, THEN

7.1 Mark the states in X,,, and X,p which violate Constraint 4.3.2.

7.2 Move all States in X,p and X,,, to X,, and Xcl, respectively.

7.3 Go to Step 2.

8. Repeat Step 2 to 7 with increasing i by 1 until it becomes (n-2).

9 Sai=1.

10. Arrange the order of states in the subsets {Xc0+1);...; Xck} (or

{X,O+1);....; X,k}) by examining links with the States of {X,l;...;

X,,-)(or {Xc1;...; X,,-l), wherej = 20'” and k = 2‘.

11. Repeat Step 10 with increasing i by 1 until it becomes (n-2).

12. Assign the binary vectors of n-BRT to the states of {Xc1;...; X,,}and

[X,1;...; X,,} in the order as they appear, where I = 20”).

For example, consider a mappable 7-BAT in Fig. 10-(a). It is identified as mappable

to 4—BRT. The states in Xcl = (1, 2, 3, 4, 5, 6, 7) and X,1 = (8, 9, 10, 11, 12, 13, 14). From

the states in X,,, the state 1 is selected as S3, in Step 2, and the State 8 is selected as S3] in

Step 3. So X,3 = (8) and X,1 = (9, 10, 11, 12, 13, 14), Xc3 =(3), and Xcl = (1, 2, 4, 5, 6, 7).

This State partition satisfy the Constraint 4.3.1 because there exist a 2-cube (1, 3 I 8, 10)

and the state 1 and state 3 is separated as the state 8 and state 10 is separated. Next, S32 iS

the state 5 and S32 is the state 12. So X,3 = (8, 12) and X,, = (9, 10, 11, 13, 14), Xc3 = (3,

2), and Xcl = (1, 4, 5, 6, 7). This partition does not violate the Constraint 4.3.1. Next, S33
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Step 2 and 3: Xc3 : (3) Xcl : (l, 2, 4, 5, 6, 7)

x,3 :(8) X,1:(9,10,11,12,13,14)

Step 4 to 7: Xc3 : (3, 2, 4) Xc1:(1, 5, 6, 7)

’93 : (8, 12. 14) x,1 : (9, 10, 11, 13)

Step 8: X02 : (5, 6) Xcl :(l, 7)

Xa:(10,11) x,1 : (13, 9)

Step 10: Xc3 : (3, 4) X04 : (-, 2)

X3 : (8, 14) X,., : (12. -)

(b)
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12 -

(c) 15 2    

 

Figure 4-10. An example of the Procedure 4.3.2.3: (a) mappable BAT with a 2-cubes

list, (b) Steps to find a mapping, (c) results from the procedure, and (d) depiction of a

mapping to 4-BRT.
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is the state 7 and S33 is the state 14. So X,3 = (8, 12, 14) and X,1 = (9, 10, ll, 13), Xc3 = (3,

2, 4), and Xcl = (l, 5, 6, 7). This partition does not violate Constraint 4.3.1. Since the

number ofX,, and X,1 becomes 4, apply Constraint 4.3.2. Since there is no state which has

more than one link with the corresponding state group, go to Step 8. From the states in X,,,

the state 1 is selected as S21 in Step 2, and state 13 is selected as 5'21 in Step 3. So X,; = (13)

and X,, = (9, 10, 11), Kg = (5, 6), and Xcl = (1, 7). Next, 522 is state 9. So X,2 = (13, 9)

and X,, = (10, 11), Xcz = (5, 6), and Xcl = (1, 7). Since the numberochl and X,, becomes

2, apply Constraint 4.3.2. Since there is no violation, go to Step 8. Now the states in each

subset are as follows: Xcl = (1, 7), Xcz = (5, 6), Xc3 = (3, 2, 4), X,, = (10, 11), Xe = (13,

9), and X,3 = (8, 12, 14). Each state in these subsets does not violate the Constraint 4.3.1

and 3.2. In Step 10, by searching links of the states in Xcl, the order of states in X,;

becomes (13, 9), and by searching links with the States in X,l, the order of states in Xcz

becomes (5, 6). By searching links of the states in [X,,]; XCZ}, (X, ; X,4]becomes (8, 14,

12, -), and by searching links with the states in {X,l; Xa}, {Xc3; X04} becomes (3, 4, -, 2).

The final results from this procedure iS (X,,; Xcz; Xc3; X04} = (l, 7, 5, 6, 3, 4, -, 2), and

{Xr1;Xa; X,3; X,4} = (10, 11, 13, 9, 8, 14, 12, -). Each assigned state number with 4-BRT

is shown in Fig. lO-(c), and it is depicted in Fig. lO-(d).

4.3.3 State Assignment Examples

The developed algorithm accepts inputs with adjacency matrix of state table and

generates outputs as an assigned binary number for each state. Two examples are selected

to illustrate the procedure to identify a mappable BAT, to expand the BAT to generate

cycles, and to map the mappable BAT to an n-BRT.
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Example 4.1: The example illustrated in Fig. 4-11 has a hidden intrinsic race (HIR)

because it has a pattern defined in Theorem 4.2(b). From the given BAT, all 2-cubes are

searched and listed as shown in Fig. 4-11(c) by Procedure 4.3.2.1.1. By Procedure

4.3.2.1.2, all interconnected 2-cubes are searched to find a break. However, all links have

the same weights. So the link (1, 6) is arbitrary selected as a break. Since the BAT is

symmetric, the link (1, 6) and its symmetric link (3, 4) are removed and by Procedure

4.3.2.2.2. New links such as (1, 7), (3, 7), (8, 4), (8, 6), and (8, 7) are added as depicted in

Fig. 4-11(d). All 2-cubes are searched in the new BAT by Procedure 4.3.2.1.1 again.

 

 

  

       

 

11 12 Lube:

1_S__6 (1,2 I4. 5) (1.2 l4.6) (1,215.6)
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3 .1; (23 I4, 5) (2,3 I4, 6) (2.3 I5. 6)

(a) (b) (C)

 

2114122.:

(1,2 I4, 5) (2,3 l5, 6)

(1,3 l5.7) (2,8 l4, 6)

(1,8 |4,7) (3,8 l6,7)

 

 

 

 

     

 

(d) (6)

Figure 4-11. Example 4.1: (a) reduced State table, (b) 3-BAT, (c) 2-cubes list, (d) expanded

BAT with a 2-cubes list, and (e) depiction of a mapping to 3-BRT.
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Separated 2-cubes such as (1, 3 | 5, 7) and (2, 8 | 4, 6) are found by Procedure 4.3.2.1.2.

From the interconnection of these separated 2-cubes, there is no required breaks. Hence,

this BAT is mappable. This mappable 4-BAT is mapped to 3-BRT by Procedure 4.3.2.3,

which is depicted in Fig. 4-11(e).

Example 4.2: The next example has intrinsic races including a visible intrinsic race (VIR)

because the maximum number of links in the BAT exceeds the number of State variable.

From Procedure 4.3.2.1.1, a 2-cubes list of the BAT is generated as Shown in Fig. 4-12(c).

Two interconnected 2-cubes are selected, and required breaks are marked accordingly in

Procedure 4.3.2.1.2. Two links such as (2, 6) and (2, 8) have equal weights to be a break.

Since the link (2, 6) is a bipartite link, the link (2, 8) is selected as a break and eliminated.

The BAT is expanded with Procedure 4.3.2.2.1. The new BAT is examined by Procedure

4.3.2.1.1 again, and it is identified as mappable. The mapping of this 5-BAT to 4-BRT is

performed by Procedure 4.3.2.3, and the outputs are shown as Fig. 4-12(e). This result can

be depicted as Fig. 4-12(f). From this assignment we can get the modified state table with

cycles as shown in Fig. 4-12(g).

4.4 Discussion

The algorithm is tested with several examples. Some examples generate less number

of State variables than the results from Wu’s and Saucier’s algorithm. The computation time

is not easy to compare because the computing device is much different from the time when

those results were obtained. However, the elimination of an exhaustive search apparently

gives benefits to the performance of our algorithm.
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Figure 4-12. Example 4.2: (a) reduced state table, (b) 4—BAT, (c) 2-cubes list and breaks

list, (d) expanded BAT with a 2-cubes list, (6) results of the Procedure 4.3.2.3, (f) depiction

of a mapping to 4-BRT, and (g) modified state table.
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Figure 4-12. (Continued)
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The example which has better results than the algorithm by Wu is Shown in Fig. 4- 13.

The reduced state table and BAT are shown in Fig. 4- 13(a) and (b), respectively. According

to our algorithm, the BAT has one 2-cube such as (1, 2 l 6, 7), and it is identified as

mappable. The BAT mapping to 4-BRT is depicted in Fig. 4-14(c). However, Wu’s

algorithm requires two additional states to generate cycles and 5 state variables to represent

the states by generating a cycle for the link (1, 7), though there is no VIR or HIR.

This is because of a bad selection process for the first State to be assigned to the Node

Weight Diagram (NWD). It assigns the first state to the node in level 0, which has the

maximum number of links, and increases the level by filling the nodes with the states which

are adjacent to the nodes which already have been assigned. If no vacant node is found for

the state to be assigned, the Shortest path is searched, and it generates a cycle by adding

states. Since there is no a priori information about the structure of an n-cube, this algorithm

adds the levels of the NWD as much as it satisfies the adjacencies for specific states.

Consider the BAT in Fig. 4-14(b). According to our algorithm, the BAT is

unmappable and symmetric. So a symmetric expansion is needed. The expanded BAT is

Shown in Fig. 4-14(c). A mapping of this 7-BAT to 4-BRT is depicted in Fig. 4-l4(d). The

Saucier’s algorithm is mainly divided into two parts. The first part extracts a maximal

spanning tree from the partition information of the state table as shown in Fig. 4-14(e).

Next, an embedding is obtained by completing the Spanning tree. This is achieved by

adding edges and supplementary vertices and expanding the dimension of the cube, as

necessary. Here difficulties occur in trying to find the maximal spanning tree because all

weights of the edges are the same. Suppose that the edges for the spanning tree are chosen

arbitrarily as indicated in Fig. 4-14(g). This algorithm searches with this Spanning tree for

finding an embedding for an 3-cube. Since there is no way to map the adjacency diagram

to a 3-cube, it Should be expanded to 4-cube after an exhaustive search. Therefore, the

computation time of Saucier’s algorithm is proportional to the number of States and the
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Figure 4-13. An example for the comparison with Wu’s algorithm: (a) reduced State

table, (b) 5-BAT, and (c) depiction of a mapping to 4-BRT.
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Figure 4-14. An example for the comparison with Saucier’s algorithm: (a) reduced state

table, (b) 4-BAT, (c) expanded BAT, (d) depiction of a mapping to 4-BRT, and Saucier’s

(e) partitions, (1) weighted directed transition graph, and (g) spanning tree which requires

an exhaustive search to find an embedding before expanding the dimension of the cube.
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edges. Furthermore, it will be very complex when the adjacency diagram is a complete

graph, in which every state in Sc has edges to every State in 8,. Our algorithm searches the

pattern of the BAT, modifies the pattern to be a mappable BAT before finding an

embedding of n-cube from the properties of an n-BRT. Hence, the computation time will

be much less than Saucier’s algorithm.



Chapter 5

Synthesis Examples

 

In order to demonstrate the synthesis procedure presented in the previous chapters,

several synthesis examples for sequential logic elements and finite state machines (FSMS)

are given, where the FSMS are from the MCNC benchmark examples.

The synthesis procedure can be summarized as follows:

(1) Generate DOES using transition variables.

(2) Derive state groups.

(3) Encode state variables.

(4) Generate hazard-free state equations and output equations.
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5.1 Sequential Logic Elements

Synthesis procedures of three sequential logic elements such as FKW-l, FKW-2,

and FKW-3 are discussed in this section.

5.1.1 FKW-I Sequential Logic Function

Consider the following design Specification of a sequential logic function named

as FKW- l .

(1) There are two inputs, which are labeled A and B.

(2) There are two outputs, which are labeled D and E.

(3) The outputs D and E may change values on the falling edge of B. At this time

D,I = A Ec and E, = A + Dc, where Ec and D6 are the current outputs, and Du

and E, are the next outputs.

Based on the design specification, Bf can be defined as the transition variable.

According to Equation (3.10), we obtain p, = 0; pf =1; E1,- = Bf; FIf = ABC; and Fs = Dc

for output D, and p, = O; pf =1; Elf = Bf; F1, = (A + Dc); and Fs = Ec for output E.

Therefore, by applying above information to Equation (3.10), we can obtain the

following set of DOEs:

D = AEch+Dch’ (5.1)

E = (A +0.) Bf+ Ech’ (5.2)

From the above DOES, the states groups can be made by determining the allowed

outputs and values of B. The allowed outputs calculated from above DOES are 00, 01,

and 10 when B=0 or B=l , so there are three State groups when B = O, which are (BADE)
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Figure 5-1. FKW-l sequential logic function: (a) graphic symbol, (b) DOES, (c) state

groups, (d) State table, (e) 3-BAT, (f) depiction of a mapping to 4-BRT, (g) state excitation

table, (h) present output table for D, and (i) present output table for E.
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=(O—OO), (O-Ol), and (0—10), and three State groups when B = l, which are (BADE) = (1-

00), (1-01), and (1-10). The State table is generated from these state grouping as shown

in Fig. 5-1(d).

A 3-BAT, as Shown in Fig. 5-1(e), is generated based on the adjacency diagram

of the state table. The race-free state assignment algorithm is applied and the 3-BAT is

mappable to a 4-BRT as depicted in Fig. 5-1(f), which Shows that State 1 is encoded as

O, or a 3-bit binary value 000, state 2 as 3 (or 011), state 3 as 6 (or 110), state 4 as 1 (or

001), state 5 as 2 (or 010), and state 6 as 7 (or 111). Finally, the hazard—free next state

equations and present output equations are generated as follows from the state

excitation table and present output tables in Fig. 5-1(g), (h), and (i):

Yo=§iB+Y2B+y2yi YoX+Y1Yo§X+§2§i YoA

+§2y6§A+§2yty6§

Y1=y2+yiA+yiB+ino+yo§A

Y2=Y2A+yzB+y2§o+yt§o§A

D=Y2

E=Y1

5.1.2 FKW—Z Sequential Logic Function

Consider the following I/O functional design Specification of a sequential logic

element. (See Fig. 5-2)

(1) There are three external inputs, which are labeled A, B and M, where A is a

level input, B is an edge input, and M is a mode input.

(2) There are two external outputs. They are labeled D and Ep, where BI) is the

postponed output of E.
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(3) The outputs D and E may change values on the rising edge of B. At this time

Dn=AEcandEn=A+DvifM=0,anan=AEc’andEn=A’+Dc,ifM

= 1, where E, and Dc are the current outputs, and D1, and En are the next

outputs.

(4) The output 13,, is a postponed output of E, and the transition ofEp is postponed

until B changes value from 1 to 0 (falling edge).

To obtain a set of DOES for this design specification, a pseudo output E must be

introduced. This pseudo output represents a temporary variable of the ASLC needed to

generate the required state equations and output equations. By applying Equation

(3.10), one can obtain the following set of DOEs:

D" = (M’AEC + MAEC’) 8, + DCB,’ (5.3)

En = (M’A + MA’ + DC) B, + ECB,’ (5.4)

E” = E68, + ECBf+ EPCB,’3f' (5.5)

These DOES can be used to generate other support documentation, such as the

timing diagram illustrated in Fig. 5-2(d).

The state groupings can be made by determining the output States and considering

the values of B. This example has 4 allowed outputs (000, 011, 100, and 111) when B

= O, and 7 allowed outputs (000, 001, 010, 011,100, 110, and 111) when B =1. So the

state table has 11 state groups, and we can come up with a State table shown in Fig. 5-

2(f).

This example needs dummy states to generate a BAT because two states have

bipartite relationships with one state such as (1, 5) and (1, 6), (2, 7) and (2, 8), and (4,

10) and (4, 11). The dummy states are used only to avoid the breaks in the bipartite links

when generating cycles. The BAT with dummy states 1’, 2’, and 4’ are shown in Fig. 5-
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Figure 5-2. FKW-2 sequential logic function; (a) graphic symbol, (b) output definitions,

(0) DOES, (d) tinting diagram, (e) State groups, (0 state table, (g) 7-BAT, (h) depiction of

a mapping to 4-BRT, (i) State excitation table, 0) present output table for (DEp), (k) circuit

decomposition, (l) SUB-l State table, (m) SUB-2 state table, and (11) State table generated

from state tables of (1) and (m).
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2(g). A mapping of the 7-BAT to 4-BRT is depicted in Fig. 5-2(h).'Ihe State excitation

table and present output table for outputs are derived from the encoded States as Shown

in Fig. 5-2(i) and (j), respectively. Note that the present output table for E is not

necessary because it is a pseudo output which will not be realized.

The circuit decomposition according to the model in Section 3.4 is Shown in Fig.

5-2(k). The NSG is divided into SUB-1 and SUB-2. And, the primitive States of each

sub-circuit are grouped separately to generate state tables. The number of states groups

of SUB-1 is 3 when B = 0, and 5 when B=1. The number of states group of SUB-2 is 4

when B = 0, and 5 when B=l. Each sub-circuit can be synthesized easily from this

simpler state table, and the POG can be easily constructed with few gates. The

combined state table is shown in Fig. 5-2(n), in which more “don’t cares” exist than the

state table in Fig. 5-2(f). These don’t care states are unallowed States in the operation

of the circuits which may be utilized to minimize the logic when realizing the circuits.

5.1.3 FKW-3 Sequential Logic Function

Consider another sequential logic element that would traditionally be

implemented with a clocked sequential logic circuits but whose speed could be

increased and chip area reduced by irnplementing it using an asynchronous circuits. The

circuit divides the frequency of the input Signal by three and has the following I/O

functional specification: (see Fig. 5-3)

(1) There is one external input C.

(2) There is one external output Q.

(3) Q changes state every third transition of C. The timing diagram of this

element is illustrated in Fig. 5-3(b).
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To generate the DOE for this design specification, pseudo outputs are needed to

store the first and the second transitions of the external input C. These pseudo outputs

represent temporary variables and are used to Store the transition count.

Let G be a pseudo output which makes a transition according to the first transition

of C, and H as a pseudo output which makes a transition according to the second

transition of C. Then p, = 1 and pf = 1 for each output, and the output Q can be

represented by transition variables and pseudo outputs according to Equation (3.10) as

follows:

G" = QC’CV + QC,Cf+ GcCr’Cf’ (5.6)

H” = GCC, + Gch+ HCC,’Cf’ (5.7)

Qt! = HcCr + Hch+ QcCr’Cf, (5-8)

The state groups are generated by considering the output states and the values of

C. This example has 3 allowed outputs when C=0, and accordingly it has 3 state groups,

which are (CGHQ) = (0000), (0011), and (0110), and 3 allowed outputs and state

groups when C = l, which are (CGHQ) = (1001), (1111), and (1100). So the state table

has 6 rows, which is shown in Fig. 5-3(e). From the state table, a 3-BAT is derived as

shown in Fig. 5-3(f). The encoded State number for each state is depicted in Fig. 5-3(g).

The state excitation table is generated from the encoded states as Shown in Fig. 5-3(h).

The output tables for pseudo outputs are not needed because they will not be

implemented in the circuit. The output table for Q is derived as shown in Fig. 5-3(i).
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Figure 5-3. FKW-3 sequential logic function: (a) graphic symbol, (b) timing diagram,

(c) DOEs, (d) state groups, (e) state table, (f) 3-BAT, (g) depiction of a mapping to 3-

BRT, (h) state excitation table, and (i) present output table for Q.
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5.2 Finite State Machines

Due to high complexity of synthesizing finite State machines (FSMS) in

asynchronous way, the FSMS have been implemented with CSLCS. With an external

clock that synchronizes the circuit operation, both hazards and races can be avoided. In

addition, the circuit is generally simpler to design than the ASLC counterpart. As

mentioned, the ASLC implementation may offer the advantage of speed performance

over the CSLC implementation. This subsection describes the implementation of the

developed synthesis procedure to asynchronous FSMS.

Since the clock Signal C can be employed to simplify the FSM design in the CSLC

implementation, the signal can also be used as a transition variable [4]. Consider the

State transition diagram of a FSM, as shown in Fig. 5-4(a). The corresponding state

transition table is shown in Fig. 5-4(b). For asynchronous implementation, the State

table is expanded based on the transition variable C, as Shown in Fig. 5-4(c). States are

changed only when the signal C is changed. More specifically, suppose the circuit is

stabilized at the state 1, the change of C from 0 to 1 causes a State transition to either

state 1’ or 2’ depending upon the values of inputs, and the circuit will stabilize at that

State, say, state 2’. Once the signal C is changed from 1 to O, the other transition occurs

again to change the state from 2’ to 2.

If the state table in Fig. 5-4(c) is partitioned into four sub-tables in terms of edge

input C and the present states, the sub-tables have the following special characteristics:

(1) The states of the sub-tables in the upper left hand and in the lower right hand

are all Stable, when C = 0 and C = 1, respectively, regardless of the changes

of the inputs.

(2) The sub-table in the upper right hand is exactly the same as the truth table in

I"

Fig. 5-4(b), except that state "a" is renamed as state "a .
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Figure 5-4. A FSM description: (a) state transition diagram, (b) state transition table,

(c) expanded State table, and (d) bipartite adjacency diagram.

(3) The sub-table in lower left hand is to map a state "a’" back to state "a"

regardless of the changes of the inputs.

Moreover, the adjacencies among the States can be represented with a bipartite

graph as shown Fig. 5-4(d). This ASLC implementation needs neither the generation of

the primitive flow table nor the merging process of the primitive states. In addition,

according to the adjacency diagram of the state table, the race-free state assignment

problem is a mapping a bipartite graph into an n-cube which can be solved by the race-

free state assignment algorithm developed in Chapter 4.
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In order to demonstrate the synthesis procedure for asynchronous FSMS, some

FSMS in the MCNC benchmarks have been tested. Table 5-1 listed the simulation

results.

Consider the SS FSM, which has 4 inputs, 5 States, and one output. The State

transition table is listed in Fig. 5-5(a), while the expanded state table is shown in Fig.

5-5(c). Based on the adjacency diagram generated from the table in Fig. 5-5(c), a 5-

 

Table 5-2. Synthesis results of the FSM in the MCNC benchmark

 

 

           

Name Inputs States Outputs BAT" Links" “R22“ 4484;?" n-BRT

bbara 4 10 2 (10, 10) (9, 4) Yes 12 6

dkl4 3 7 5 (7, 7) (7, 6) Yes 10 5

<1le 3 4 5 (4, 4) (4, 4) Yes 4 4

de7 2 8 3 (8, 8) (6, 5) Yes 10 5

dk27 1 7 2 (7, 7) (4, 3) Yes 2 4

dk512 l 15 3 (15, 15) (7, 3) Yes 8 6

ex3 2 10 2 (10, 10) (9, 5) Yes 12 6

ex4 6 l4 9 (14, 14) (4, 3) No 0 5

ex6 5 8 8 (8, 8) (8, 5) Yes 14 5

lion 2 4 1 (4, 4) (3, 3) No 0 3

lion9 2 9 1 (9, 9) (3, 3) No 0 5

markl 5 15 16 (15, 15) (7, 8) Yes 12 7

me 3 4 5 (4, 4) (2, 2) No 0 3

modulolZ 1 12 1 (12, 12) (2, 2) No 0 5

s8 4 5 1 (5, 5) (3, 3) No 0 4

° BAT Size (Column, Row)

“ Maximum link degree in the BAT (Column, Row)
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Figure 5-5. S8 FSM example: (a) state transition table, (b) expanded state table, (c) reduced

state table, (d) S-BAT, (e) state assignments to 4-BRT, (f) depiction of a mapping to 4-

BRT, and (g) resultant encoded State table.
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BAT is derived as shown in Fig. 5-5(d). The race-free state assignment algorithm maps

the 5—BAT to a 4-BRT, as shown in Figure 5-5(e). Finally, the resultant state encoding

is given in Fig. 5-5(g).

In this FSM, the BAT consists of 5 columns and 5 rows. Both rows and columns

have the maximum link degree of 3. It has been checked that the BAT contains no

intrinsic races and no additional states are added.

Similarly, consider the dle FSM, as shown in Fig. 5-6, which has 3 inputs, 4

States, and 5 outputs. The maximum link degrees in both columns and rows are 4. Based

on the 4-BAT in Fig. 5-6(c), it has been found that there exist some intrinsic races in

the table. The race-free state assignment algorithm maps the 4-BAT to a 4-BRT with

four additional sates, as shown in Fig. 5-6(f).
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Figure 5-6. Dk15 FSM example: (a) state transition table, (b) reduced state table,

(c) 4-BAT, (d) expanded BAT, (e) depiction of a mapping to 4-BRT, and (f) result-

ant encoded state table.
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Chapter 6

Summary and Conclusions

 

6.1 Summary

The traditional ASLC synthesis procedure with the Huffman model begins with the

generation of a primitive flow table (PFI'). Though this table generally contains sparse

entries, the size of the PFI‘ is of O(221+N), where I and N are the total number of inputs and

outputs, respectively. Note that the table size grows nearly exponentially with the number

of inputs and outputs. For any but the most Simple cases, this makes generating the PFI‘ a

very complex task. Once the PFT iS generated, states are merged and encoded. State

merging is generally achieved by examining the corresponding merger diagram. Due to the

high complexity of a merger diagram, the state merging problem was generally formulated

and resolved by a graph theory. This is followed by state encoding process. It is clear that

both State merging and encoding processes were developed based on the topological

Structures, but not on the functional behavior.
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In this thesis, an analytical model for synthesizing ASLCS is presented. While the

inputs are treated equally in the flow table with the traditional synthesis procedure, a

priori information about the behavior of a Specific sequential logic circuit is utilized to

delineate its inputs into three distinct classes: mode inputs, level inputs, and edge

inputs. The transition variables are defined to model the dynamic behavior of the edge

inputs. Using transition variables, a set of equations to characterize the functional

behavior of an ASLC has developed, which is known as the dynamic output equations

(DOES).

The DOES are more compact than the traditional primitive flow table (PFT) in

terms of representing the state transitions because they are only a set of equations

according to the number of outputs. Moreover, the functional behavior of mode inputs

facilitates to decompose a large circuit into smaller ones which may be easily

synthesized.

As the transition variables are defined from the edge inputs which may cause state

transitions to occur, the States can be grouped according to the values of the transition

variables. This state grouping does not need to generate a complex merger diagram or

merger table which was conventionally utilized to reduce the number of internal states.

Moreover, this State grouping leads to simpler States encoding procedures.

A race-free State assignment of an ASLC is formulated to find an embedding of

an n-cube. For an arbitrary connected adjacency diagram, to map the states to an n-cube

which has the minimum dimension requires a combinatorial computation time with

enumerative efforts. The race-free state assignment algorithm presented here features

two improvements over existing methods. First, a pattern matching technique to map

the states onto an n-cube results in better performance compared with an enumerative

search approach. Secondly, the bipartite representation of an n-cube simplifies the

procedure for the race-free state assignment for large number of States.
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The bipartite representation table (BRT) developed provides a geometric

visualization of an n-cube. From the n-BRT, we can easily draw out the characteristics

of the adjacency diagram which can be mapped onto an n-cube. The characteristics are

further utilized to develope rules for a race-free State assignment algorithm. Moreover,

the bipartite characteristics of an n-BRT efficiently reduce the computation time with

bisecting the total state space recursively. Therefore, this algorithm is useful for the

synthesis of complex ASLCS which requires encoding of large number of states.

The synthesis procedure developed is summarized as follows:

(1) Generate DOES for behavioral modeling using transition variables.

(2) Derive state groups according to the values of allowed outputs and values of

transition variables to get a state table.

(3) Assign the states in the bipartite adjacency table (BAT) to an n-BRT.

(4) Generate hazard-free state equations and output equations.

The analytical modeling plays an important role in simplifying the process of Step

(1) to (3) described above. In Step (1), the generation of a large primitive flow table

which is an essential step to begin the traditional synthesis procedure is eliminated by

the generation of simple equations. In Step (2), a simple State grouping process reduces

the computation time compared with the conventional way to find the Strongly

connected states sets from a complex merger diagram. In Step (3), the bipartite

characteristics of the adjacency diagram of the State table eliminates enumerative

efforts to map the adjacency diagram to an n-cube, or to find the Shortest path to the

nearest states for generating cycles to avoid races.

This synthesis procedure is well suited for the integration into CAD tools.

Moreover, this simplified synthesis procedure can be applied to the synthesis of large

asynchronous digital networks which contain many ASLCS. It works best when it is

used to synthesize an asynchronous sequential logic element (ASLE) which has many

data inputs but only a small number of control inputs.
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6.2 Contributions

This research presents an analytical model for efficiently synthesizing ASLCS.

With a priori information about the input signals, three different types of input Signals,

mode inputs, level inputs, and edge inputs, are identified. The edge inputs are used as

the transition variables for generating a set of DOES which simplifies the State merging

and encoding processes significantly. In addition, the mode inputs can be used to

decompose a large ASLC to many smaller ones. As mentioned, the complexity of

synthesizing an ASLC grows nearly exponentially with the size of the circuit. Thus, the

identification of the mode input Signals facilitates to synthesize large-scale ASLCS

efficiently in practical applications.

With the identification of edge inputs, or transition variables, primitive states in

the conventional primitive flow table approach can be merged to a compact and regular

Structure as discussed in Chapter 3. In addition, the structure reveals the special

characteristics of bipartite relationship among the states. As a result, the characteristics

are implemented to develop an efficient state assignment algorithm presented in

Chapter 4. As the experimental results illustrated in Chapter 5, the developed state

assignment algorithm can handle those “very large” finite state machines which cannot

be handled by MSUASLC.

In the practical applications of developed synthesis procedure, the finite state

machines as well as sequential logic elements which have large number of inputs and

outputs may be implemented with ASLCS with much less design complexities, which

previously have been mainly implemented with clocked sequential logic circuits.
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6.3 Future Research

A research issue related to the developed synthesis model is an investigation of

alternative architectures of ASLCS. In the synthesis model developed, three different

classes of inputs are delineated. However, each input defined in the design specification

may not be unique. In other words, the input labelled A in the design specification can

be classified as an edge input for one architecture, but it may be classified as a data

input, which results in another architecture. These two different architectures

apparently satisfy different design constraints and one will be more efficient than the

other in some design criterions such as to minimize the chip area, to maximize the

speed, or to have special functions. One possible approach to investigate alternative

architectures is to Start its synthesis by assuming that each input in the given design

Specification be the same class of input. Then enumerate possible classifications ofeach

input to implement the circuits. The developed synthesis procedure in this research and

our synthesis system, MSUASLC, will be powerful tools for this research work because

the simplified synthesis procedure reduces the researcher’s design efforts, and the

synthesis system allows researcher’s intervention between each design module to

generate logic implementations.

This thesis has presented an efficient state assignment algorithm which maps a

bipartite adjacency table (BAT) to a bipartite representation table (BRT) of an n-cube.

The resultant mapping is the state assignment. This Study has generated several rules to

determine the mappability. Both Theorems 4.1 and 4.2 provide the sufficient, but not

necessary, conditions for determining if a given BAT is mappable and unmappable,

respectively. In other words, if a BAT satisfies the conditions in Theorem 4.1, it is

definitely mappable. However, Theorem 4.1 does not imply that the BAT is not
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mappable if the conditions are not satisfied. Similarly, Theorem 4.2 only determines if

the BAT is definitely not mappable. The question is how to determine the mappability

and unmappability if a given BAT does not satisfy the conditions in Theorem 4.1, nor

those in Theorem 4.2. Theorem 4.3 provides some rules to determine the unmappability

in this case. In addition, it also provides the information to determine how to generate

cycles in an unmappable BAT so that the modified BAT becomes mappable. As shown

in Chapter 4, the developed algorithm can efficiently determine the mapping results if

the BAT is mappable. On the other hand, if the BAT is definitely unmappable, the

developed algorithm can efficiently generate the necessary cycles. However, if the

BAT does not satisfy Theorem 4.1, it is assumed to be unmappable and required to

modify the BAT by generating cycles. Apparently, the efficiency of mapping is highly

determined by identifying the mappbility of a given BAT. When an efficient method

exists to identify all mappable BATS, there requires no additional processing to

generate a mappble BAT from an unmappable BAT by generating cycles. This leads to

deve10ping a more efficient race-free state assignment algorithm for future Study.

In this Study, the hazard-free state equations and output equations are realized by

two-level sum-of-product (SOP) logic implementations. Multi-level logic

implementation has been commonly used in CSLCS to reduce chip area and delay.

Technology mapping algorithms have developed for CSLCS to map the resultant

optimal multi-level logic network to the available standard cells or gate arrays in cell

library. It is desirable to develop a logic synthesis procedure for decomposing the two-

level logic to multi-level logic and to map the network to standard cells or gate arrays.

In ASLCS, the hazard-free state equations and output equations are all realized by two-

level logic. No multi-level logic implementation has been attempted. It seems very

trivial to decompose a two-level logic to a multi-level logic. For example, when the OR

gates available in the cell library are either 2-input or 3-input, a 5-input OR function can
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be realized by a 3-input OR gate and a 2-input OR gate, where both OR gates outputs

are fed to a 2-input OR gate at the second stage. For ASLC implementation, gate delay

acts a very important role in the logic synthesis. Due to the different gate delays, the

inputs to the 2-input OR gate at the second stage may result in a delay hazard at the

output of that OR gate. Thus, how to resolve the delay hazard so that the synthesized

ASLCS can be implemented with multi-level logic is a very interesting and practical

problem for future Study.

The synthesis system, MSUASLC, provides an automated tool for effectively

synthesizing ASLCS. With the successful development of the analytical model and

synthesis procedure, it is readily to adopt the developed algorithm and to upgrade the

system to handle the practically large ASLCS. This is also a desirable development for

future work.
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