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ABSTRACT

THE MODELING AND SYNTHESIS OF
ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

By

Jun-Woo Kang

The modeling and synthesis procedure described efficiently generates asynchronous
sequential logic circuits (ASLCs). From the high-level design specification, the functional
behavior of inputs is analyzed to simplify the overall synthesis process. The analytical
model developed delineates the inputs into three classes: mode inputs, level inputs, and
edge inputs. By introducing transition variables for edge inputs, a set of equations referred
to as dynamic output equations (DOE:s) is generated, which describes the functional
behavior of ASLCs in more compact form than the traditional one. The state grouping
process based on the functional behavior of level inputs and edge inputs generates a state
table without any difficulties from topological complexities inherent in the traditional
procedure. The functionality of mode inputs facilitates the process of decomposing
complex logic functions into smaller ones which can be more easily synthesized. Based on
the characteristics of the state table, a race-free state assignment problem is formulated as

a mapping of a bipartite graph into an n-cube. The race-free state assignment algorithm



developed features a pattern matching technique which predicts races and eliminates
enumerative searches to get the near minimum number of state variables. The described
procedure is well suited for the synthesis of large-scale ASLCs that have many data inputs
but only a small number of control inputs. Moreover, it provides an efficient
implementation with ASLCs for the sequential logic function which has been used with
clocked sequential logic circuits. Therefore, circuit designers will have more choices to
obtain better circuits using ASLCs than they could achieve using their clocked counterparts

in certain sequential logic applications.
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Chapter 1

Introduction

Sequential logic functions may be implemented in either clocked sequential logic
circuits (CSLCs) or asynchronous sequential logic circuits (ASLCs). The former uses
system-level clocks, and the latter solely uses sequences of input changes to initiate internal
state transitions. Each of these classes of sequential circuits has advantages over its
counterpart. ASLCs may be faster for certain applications since they do not have to wait for
the arrival of a clock pulse before effecting a state transition. Moreover, they may require
fewer logic gates since they do not use memory elements to store state information.
However, CSLCs have been preferred by the designers because they have been simpler to
design since there is no need to consider critical-races in the state assignments and hazards
in the logic implementations, which are inherent in their ASLC counterparts [1-6].

On the other hand, as the integration scales and circuit complexity increase in high-
speed digital system, the global clock signal in the CSLC may have a clock skew problem
[7], which is a phase difference of the clock signal at different locations due to the

capacitive load in the interconnection line. Multi-phase clocks can be used to absorb the
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clock skew, but a dead time between clock phases degrades the performance by reducing
the time available for computation. The proper clock distribution in the circuit layout is an
alternative to reduce the clock skew problem. However, in the design automation tools
available nowadays, the routing of clock wires as well as the load on the clock signal are
globally considered, and it is difficult to extract from local connectivity [8, 9].
Asynchronous circuit design is a realistic approach to circumvent the clock skew
problem. At the chip level, layout and simulation effort is greatly reduced since there is no
global timing, and systems can be easily extended without problems in global
synchronization by using pipeline architecture, where computation can be extended and

sped up without any global constraint on the overall system throughput [10, 11].

1.1 Motivation

The functional behavior of an ASLC is traditionally described with a flow table [1-6,
12]. So, the synthesis procedure begins by generating a primitive flow table (PFT) which
describes the functional design specification, and then states are merged and encoded to
avoid critical races. Finally, a static hazard-free circuit is realized from a set of state
equations and output equations. The PFT reveals difficulties to design large-scale
asynchronous networks because the size of the PFT increases drastically. In general, the
number of internal states increases with the number of inputs and outputs [13]. Since there
are many ways to merge the rows of a PFT, it is hard to predict and obtain an optimum
merged result without exhaustively searching the combinations. Once the state merging
process is completed, the states are encoded in accordance with the merged flow table
(MFT). An adjacency diagram which describes the relationship between any two nodes is
generally employed for state encoding [2]. The complexity of the encoding process is



-3-

determined by the complexity of the adjacency diagram. Thus, the complexity of both state
merging and encoding processes increases with the circuit complexity.

Merging rules are generally employed to dcvelop‘a state merging algorithm. Those
rules are generated in accordance with a merger diagram [2] but not with the functional
behaviors of the input variables. In other words, the algorithms were developed to solve the
graphical problems without taking the functional behavior into account. This is one reason
why both state merging and encoding processes become so complicated.

The fact is that the input variables in the conventional PFT approach are treated
equally. In practice, however, the input variables can be classified as either control inputs
or data inputs from a design specification. The control inputs can be used as transition
variables to simplify the synthesis procedure. This has motivated to the development of an

analytical model for an alternative synthesis procedure in this study.

1.2 Problem Statement and Research Tasks

With a priori information given in a design specification, the input variables can be
classified as either control inputs or data inputs. In this thesis, an analytical synthesis model
is developed in which some control inputs are used as the transition variables. The
transition variables are used to generate a set of dynamic output equations (DOEs). Based
on the DOEs, an efficient state merging method is developed. With the merged state table,
an efficient and effective state assignment method is also presented.

State merging methods have been studied significantly in the last few decades.
Basically, states are merged if they are compatible, i.e., they have the same next state with
the same input. Since the primitive flow table inherently has many “don't care” entries, a

state can be compatible to any other states in many different ways. As a result, there are
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many ways to merge the states. In this thesis, based on the analytical model, the transition
variables are used to guide the derivation of the merged flow table. In other words, the
merge strategy is based on the functional behavior of the circuit, but not only on the
graphical relationship of the states in the merger diagram.

States are conventionally encoded based on an adjacency diagram which is derived
from the merged flow table. Since the merged flow table were only based on the graphical
relationship of the states in the merger diagram, the states in the adjacency diagram may
not represent the functional behavior of the circuit very well. As a result, the state encoding
problem becomes a very complicated graph problem as the number of states increases.
However, based on the merged flow table presented in this thesis, the states in the
adjacency diagram represent the functional behavior. The adjacency diagram drawn from
the merged flow table can be represented as a bipartite graph. A state encoding problem can
then be formatted as the embedding of a bipartite graph in an n-cube. In general, an n-cube
can be also represented as a bipartite graph. Thus, the problem becomes to embed a
bipartite graph from the adjacency diagram to another bipartite graph derived from the n-
cube. This thesis presents a rule-based graph matching algorithm to encode states.

The tasks of this research are: (1) develop an analytical model for ASLC synthesis
procedure; and (2) develop an efficient algorithm for state merging and encoding. The
developed analytical synthesis model, state merging method, and state assignment
algorithm can then be adopted to the ASLC synthesis system, MSUASLC [14], for the
synthesis of larger scale circuits.

This research leads to the development of an efficient synthesis procedure which will
be utilized to synthesize large-scale ASLCs or sequential logic functions which have been
implemented with CSLCs.



1.3 Organization

This thesis is organized as follows: Chapter 2 briefly reviews the development of
MSUASLC design automation system and discusses the major algorithms developed in
[14]. Chapter 3 presents an analytical model for ASLC synthesis. A set of equations,
referred to as dynamic output equations (DOEs), is developed first from a generalized
model by introducing transition variables. Rules and examples for state grouping from the
DOE:s are described. Chapter 4 describes an efficient state assignment algorithm based on
the bipartite characteristics of the adjacency diagram and an n-cube. Several rules and
procedures are developed to map a bipartite adjacency table (BAT) to a bipartite
representation table (BRT) of an n-cube. In order to demonstrate the effectiveness of the
synthesis procedure developed in this study, several examples are presented in Chapter S.

Finally, a summary of this research work and future research are given in Chapter 6.



Chapter 2

MSUASLC Design Automation System

After Huffman [15] devised a general model for ASLCs and introduced the primitive
flow table (PFT) as a design tool, many researchers [16-20] contributed to the development
of a well-established ASLC design procedure which is described in many advanced logic
design text books [1-6, 12]. The ASLC synthesis procedure generally consists of the
following five steps: (1) generate the PFT from a design specification; (2) generate merged
flow table (MFT) by merging the compatible states in the PFT; (3) encode the internal
states for avoiding critical races; (4) generate the state excitation table and output table;
and, (5) eliminate static hazards and implement the circuit using two-level logic or PLA-
based architectures. Numerous synthesis systems have been developed to reduce the human
effort dealing with the complexities of the procedure by automating parts of this procedure.
An ASLC design automation system, MSUASLC, has been developed to produce design
equations from a design specification. In this chapter, the features of MSUASLC are briefly

described, and the state merging and encoding strategies developed in [14] discussed.



2.1 Features of MSUASLC

Based on Huffman’s design procedure, an ASLC design system was first developed
by Smith, et al. [21]. It receives input in the form of reduced primitive flow table, executes
state assignment using Tracey’s algorithms [22], and generates next-state equations and
output equations which are realized by two-level logic.

The construction of a primitive flow table (PFT) requires the designer’s intuitions and
design experiences. Apparently, it becomes more difficult to handle as inputs and outputs
increase. Since there exists no analytic approach to obtain the PFT directly from the verbal
design specification, timing diagrams or state transition graphs are commonly used by
designers.

Recently, Wu and Fisher [14, 23] developed a fully automated ASLC design system,
MSUASLC, on SUN workstations in the C programming language. A block diagram of the
MSUASLC Design System, as shown in Fig. 2-1, consists of the following five modules:

(1) Behavioral Descriptor (BD): It receives inputs with “IF... THEN...” format of
design specifications, and generates a primitive state table and primitive output
table which describe the circuit’s functional behavior.

(2) Merger: It receives a primitive state table and primitive output table, and
generates the merged state table and merged output table which contains a
minimum number of states.

(3) Connector: It receives a merged state table and a merged output table, and
converts it into an adjacency table which provides the relation between each state.
It generates modified state table and modified output table which has race-free
states relationships by adding states and generating cycles as needed.

(4) Assigner: It generates the excitation table and output table from the race-free state
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Figure 2-1. Block diagram of the MSUASLC design automation system. [14]



table and the output table.

(5) Equation Generator (EG): It generates state equations and output equations in
sum-of-products forms from the excitation table and output table. They are static
hazard-free.

Each output of the previous module can be directly sent to the next module or can be
modified by the designer and then sent to the next module. This modularity of MSUASLC
provides a convenient way to investigate alternative implementations of an ASLC. In the
following sections, the modules, Merger and Assigner, are discussed in detail, which

provide methods for alternative implementations of an ASLC.

2.2 State Merging Methods

The Merger in the MSUASLC design system generates first a merger diagram (MD)
which is an undirected connected graph with nodes and edges. The nodes represent the
primitive states in the PFT and the edges represent the compatibilities between the states in
the rows. According to the compatibilities with other rows, each node has a degree of links,
which is utilized to decide the priorities of merging sequence. The MSUASLC provides four
different merging methods to merge rows. Method I starts from the first row to the last row
for those have the same output. Method II starts from the rows with the minimum link
degree and the least strongly connected subset is selected first. Method III is similar to
Method II except the same outputs are not considered. Finally, Method IV starts from the
rows with the same output, then extends to those with different outputs, if possible. These
four different merge methods are used to find the minimum number of merged rows.

The classical method to find the minimum number of merged row is to find the largest

strongly connected subsets of the rows which can be merged into a single row [2].
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However, finding the largest strongly connected subsets of rows may require the
comparison between states in each row. Such an exhaustive search may take an exponential
time regarding to the number of rows. Since the Merger gets output by choosing the
minimum from the outputs from several different methods, which require a polynomial
computing time.

To illustrate these merging methods, the following design example, a positive edge-
triggered J-K bistable element with postponed output (Petjk-FF) is considered. Fig. 2-2(a)
shows the graphic symbol of the circuit. Its design specification is given as follows:

(1) There are three inputs, which are labeled J, K, and C.

(2) There are two outputs, which are labeled Q and Q-

(3) 'When C changes value from 0 to 1, the next states of the external output Qis Q,

=J Q.+ K’ Q, where Q; is the current value of Q.
(4) The output Q; is a postponed output of Q, and the transition of Qy, is postponed
until C changes value from 1 to 0.

Conventionally, based on the timing diagram of Fig. 2-2(b), the PFT can be generated
with tedious works. However, the PFT is easily generated by converting this design
specification into “IF... THEN...” format [24]. For example,

IFC=2

THENQ=JQ +K'Q,P=P
IFC=3

THENQ=Q,P=Q

Note that the P represents the output Qp,. Based on the Behavioral Descriptor (BD) of
MSUASLC, the generated PFT is shown in Table 2-1. With four different merge methods,
Tables 2-2, 2-3, 2-4, and 2-§ illustrate various Merged State Tables (MSTs). The relabeled
MSTs and their adjacency diagrams are respectively shown in Figs. 2-3, 2-4, 2-5, and 2-6
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Figure 2-2. Edge-triggered J-K bistable element with postponed output: (a) graphic
symbol, (b) timing diagram, and (c) primitive flow table (PFT).
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Table 2-1. Primitive State Table of the Petjk-FF sequential logic function.

*+++ MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (BD) ***
*++ Primitive State Table: "petjkwpo_PFT_PRN_]1" ***

jke 0 1 3 2 6 1 5 4 g

(INPUT) (OUTPUT)
0Y 4N - 8N - - - 16NN 0
ON 4Y 12N - - - 20N - 0
ON - I2N 8Y 24N - - - 0
ON - - - 24N - 22N 16Y 0
- 4N 12Y 8N - 28N - - 0
- 4N - - - 28N 20Y 16N 0
- - - 8N 24Y 30N - 16N 0
- - I2N - 24N 28Y 20N - 0
- - I3N - 24N 29Y 21N - 1
- SN - - - 29N 21Y 16N 1
- SN 13Y 8N - 29N - - 1
ON S5Y 13N - - - 21N - 1
3N - - - 27N - 23N 19Y 3
- 7N - - - 3IN 23Y I9N 3
- - - II1N 27Y 29N - I9N 3
3Y 7N - IIN - - - I9N 3
- - I5SN - 27N 31Y 23N - 3
3N 7Y 1I5N - - - 23N - 3
3N - I3N 11Y 27N - - - 3
- 7N 15Y 1IN - 3IN - - 3
- 6N - - - 30N 22Y I9N 2
- - 14N - 27N 30Y 22N - 2
3N 6Y 14N - - - 22N - 2
- 6N 14Y 1IN - 30N - - 2



-13-

Table 2-2. MST of the Petjk-FF with Method L

**+* MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***
*+* Merged State Table: "petjkwpo_ALTO_MFT_PRN_]1" ***

*** Merged same output (row by row) ***

jke O 1 3 2 6 1 5 4 qp
(INPUT) (OUTPUT)

0Y 4Y 12Y 8Y 24N 28Y 20Y 16N
ON - - 8N 24Y 30N 22N 16Y
ON S5Y 13Y 8N 24N 29Y 21Y 16N
3Y 7Y 1S5Y 1IN 27N 31Y 23Y 19Y
3N - I3N 11Y 27Y 29N - I9N
3N 6Y 14Y 1IN 27N 30Y 22Y I9N

Input JKC)
000 001 011 010 110 111 101 100
OO 2

1
2 [1]-
3111006
4 @I@l@l
5 3
6 (6)

4] -

1:(0,4,12,8,28,20) 4:(3,7,15,31,23,19)
2:(24,16) 5:(11,27)
3:(5,13,29,21) 6: (6, 14,30, 22)

(a) (b)

Figure 2-3. Method I: (a) relabeled MST and (b) adjacency diagram.
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Table 2-3. MST of the Petjk-FF with Method II.
***+ MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***
*** Merged State Table: "petikwpo_ALT1_MFT_PRN_1" ***
** Merged same output (min. link degree first) **

ke 0 1 3 2 6 1 5 4 gp
(INPUT) (OUTPUT)

ON S5Y 13Y 8N 24N 29Y 21Y 16N
3N 6Y 14Y 11N 27N 30Y 22Y I9N
0Y 4N 12Y 8Y 24N 28N 22N 16Y
ON 4Y 12N 8N 24Y 30N 20N 16N
- 4N 12N - 24N 28Y 20Y 16N
3Y 7Y 1SN 1IN 27Y 29N 23N 19Y
3N 7N 13N 11Y 27N 3IN 23Y 19N
- 7N 15Y 1IN 27N 31Y 23N -

Input JKC)
000 001 011 010 110 111 101 100

WHWI AW

R NN N S W N -
'

(b)

Figure 2-4. Method II: (a) relabeled MST and (b) adjacency diagram.



-15-

Table 2-4. MST of the Petjk-FF with Method III.

*+* MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***
*** Merged State Table: "petjkwpo_ ALT2_MFT_PRN_1" ***

** Min. link degree first (no care if output same or not) **

ke 0 1 3 2 6 1 5 4 g
(INPUT) (OUTPUT)

0Y 4N 13N 8N 24N 29Y 2IN 16N

ON SN 12N 8Y 24N 29N 21Y 16N

ON SN 13Y 8N 24N 20N 22N 16Y

ON 5Y 13N 8N 24Y 30N 2IN 16N

ON 4Y 12Y 8N 24N 28Y 20Y 16N

3N 6N 13N 11Y 27N 30N 22Y 19N

3Y 7N 14N 1IN 27N 30Y 22N 19N

3N 6Y 14N 1IN 27Y 29N 22N 19N

3N 6N 14Y 1IN 27N 30N 23N 19Y

3N 7Y 15Y 11N 27N 31Y 23Y 19N

Input JKC)
000 001 011 010 110 111 101 100 1:(0,29) 6:(11.22)
2:(8,21) 7:(3,30)

1 @IS 3[2 4q_2 3 3:(13,16) 8:(6,27)
2 (1]4 1@4 112)3 4:(5.24) 9:(14,19)
3 11413)121411]6I|3B) 5§:(4,12,28,20) 10:(7,15,31,23)
4 |1|@)3 2»@{_7_2 3
5 (10O 2]4|10(0) 3
s 71813 ®[s8]71®]9
7 @10 968l 6|9
s [11®[s]s[®1]6]9]
9 |718l0)6|8]7 10@
0 7 6 | 8 [(01d0] 9

=
~

Figure 2-5. Method III: (a) relabeled MST and (b) adjacency diagram.
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Table 2-5. MST of the Petjk-FF with Method IV

*#* MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (MERGER) ***
*#+ Merged State Table: "petjkwpo_ALT3_MFT_PRN_1" ***

** Merged same output (extend to different output) **

jkc 0 1 3 2 6 7 5 4 qp
(INPUT) (OUTPUT)

0Y 4Y 12Y 8Y 24N 28Y 20Y 16N

ON - - 8N 24Y 30N 22N 16Y

ON S5Y 13Y 8N 24N 29Y 21Y 16N

3Y 7Y 15Y 1IN 27N 31Y 23Y 19Y

3N - I3N 11Y 27Y 29N - 19N

3N 6Y 14Y 11N 27N 30Y 22Y 19N

Input JKC)
000 001 011 010 110 111 101 100

©.000F 0/
1[-1-[1

1O 1210
B SoaHaS
4|- 313 -
4 5

OI©)

A NN & W N -

1:(0,4,12,8,28,20) 4:(3,7,15,31,23,19)
2:(24,16) 5:(11,27)
3:(5,13,29,21) 6: (6, 14,30, 22)

(a) (b)

Figure 2-6. Method IV: (a) relabeled MST and (b) adjacency diagram.
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for the comparison purpose.

Method I and Method IV have the same result with 6 rows, which is the minimum
number of rows. They also have the least complex adjacency diagram. However, the
adjacency diagrams of Method I and Method IV show that there are hidden intrinsic races
(HIR)[14] in this MST because it has loops with 3 nodes. This implies that these six internal
states may not be the minimum number of states because some more states may be added
later for race-free state assignments.

It is clear that the results of merging depend not only on the merging method but also
on the merging sequence [14]. Also, additional states may be required to eliminate the
races. Therefore, obtaining a minimum number of states in the merging step does not
guarantee the optimal circuit realization. Chapter 3 will describe an efficient merging
method which utilizes the information from the design specification and leads to an

efficient circuit realization.

2.3 State Assignment Methods

Before the Assigner in MSUASLC assigns a binary vector to each state, the Connector
generates a race-free state table by utilizing a Node Weight Diagram (NWD) [25]. The
NWD is a binary n-cube connection diagram which provides a geometric representation of
binary numbers for race-free state assignments. Fig. 2-7(b) shows a 4-NWD, where the
circled numbers represent the states to be assigned to an n-cube, while the boldfaced
numbers represent the decimal number of the binary vectors assigned for those nodes. The
Assigner provides alternative state assignments by allowing the designer to assign a
specific binary vector to a specific state.

Table 2-6 illustrates the modified state table generated by the Connector for the Petjk-

FF example, where there are seven internal states and eight modified unstable states.
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Table 2-6. Modified state table of Petjk-FF sequential logic function

*+% MSU (WF) -- ASLC DESIGN AUTOMATION SYSTEM (CONNECTOR) ***
*** Modified (ADJ) State Table: "petjkwpo_ADJ_MFT_PRN_1" ***

jkc¢ 0 1 3 2 6 7 5 4 qp
(INPUT) (OUTPUT)

1 1Y 1Y 1Y 1Y 2N 1Y 1Y 2N

2 1IN - - IN 2Y 6N 6N 2Y

3o N -3 Y. 3Y SUN: 1IN+ 3 930 JIN,

4 4Y 4Y 4Y 6N 6N 4Y 4Y 4Y

5 6N - 7N SY 5Y 7N - 6N

6 4N 6Y 6Y SN 5N 6Y 6Y 4N

= - 3N - - 3N - -

Input JKC)
1 (OOO®] 2 (DD 2
2 (1]-]-[1[@]6]6]|@
3 1@ 11 [®E1
4 (D@6 | 6 DD@
s5(6[-[70®|7]-]6
6 [4|©©]5]5]/©©)] 4
71-1-13]-[-13]-|-

(@)

Figure 2-7. State encoding of the Petjk-FF sequential logic function:
(a) modified state table and (b) state assignments with 4-NWD.
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The table is retabulated in Fig. 2-7(a), where the boldfaced numbers are the modified
unstable states. Fig. 2-7(b) shows the state assignment with 4-NWD for this example.

Table 2-7 shows the unique state assignments generated from the Assigner for this
modified state table. For seven internal states and eight possible encoded binary vectors, it
is possible to generate 56 distinctive combinations which exclude the permutation of these
assignments. However, the Assigner provides 16 distinct state assignments as shown in

Table 2-7. The circuit designer must choose the "best" among these assignments for an

Table 2-7. Unique state assignments in the Assigner of MSUASLC
for the Petjk-FF sequential logic function design.

State Number| 1[2[3]4]5[6][7
Assign#1 Jo[1][2]7]11]3]10
Assign # 2 1[013]6]10]2|11
Assign#3 [ 213]0|5]9]1]8
Assign#4 §716|5]|0(12]4113
Assign#5 |111|10{9|12{0| 8| 1
Assign#6 §3[12|1(14|8|0]9
Assign#7 [10(11| 8 (13| 1]9]0
Assign#8 9| 8(11|14|2(10]3
Assign#9 | 81 9(10|15|13|11]2
Assign#10 | 4| S| 6| 3157 |14
Assign#11 §15[14]13| 8 |4 ]12|5
Assign#12 J14(15/12]1 9| 5|13

Assign#13 1 5| 4|7 | 2|14| 6|15
Assign#14 1 6| 7|4 1|13| 5|12
Assign# 15 [|13(12|15]10| 6 {14 7
Assign#16 |12|13(14|11| 7 |15| 6




o
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optimum realization. However, the optimum one may not be included in these assignments.
In addition, those state assignments require 4 state variables provided by the Connector.

It should be mentioned that, with an alternative modification of the state table, the
same example can be realized using only three state variables, as shown in Figs 2-8 and 2-
9. Instead of using 8 modified unstable states in Fig. 2-7(a), Figs. 2-8 and 2-9 employ 10
and 4 modified unstable states, respectively. In other words, the state table in Fig. 2-9 is
better than that in Fig. 2-7 generated by MSUASLC in the numbers of state variables and
modified unstable states.
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Input JKC)
1 (DO 2 O[] 2
2 [1]-]-11[@]6]6]@
311 11|01
4 @@@7[71|[O@®
s(7]-[7[0[7]-]7
6 [4|©[©®]4]4]@[®] 4
7(4]-[3]5]5]3]-]4

(@)

Figure 2-8. Alternative state assignment 1 of the Petjk-FF sequential logic
function: (a) modified state table and (b) state assignments with 3-NWD.

Input JKC)

000 001 011 010 110 111 101 100
1 (OO 2 [O[D] 2
2 [1]-]-T1|@6[6|®
s O [1 O]
4 Q@@ 5]5 Q@@
s|4]-[3]G®3]-]4
6 [4]©©]4]4]|®®) 4

(@

Figure 2-9. Alternative state assignment 2 of the Petjk-FF sequential logic
function: (a) modified state table and (b) state assignments with 3-NWD.



Chapter 3

Synthesis Model

The primitive flow table (PFT) has traditionally been used in the synthesis procedure
to capture the functional behavior of ASLCs. However, its size increases exponentially
according to the number of input and output. This chapter presents an analytical model
which efficiently captures the functional behavior of an ASLC. The model is represented
with a set of equations named Dynamic Output Equations (DOEs). These equations are
functionally equivalent to PFT, but they don’t have exponential increase of the entries. In
addition, the DOEs provides an efficient way to identify the compatible states so that the

number of states can be reduced considerably with a reasonably low computation time.
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3.1 Analytical Model for an ASLC

The input variables in the conventional PFT approach are treated equally. In practice,
however, the input variables can be classified as either control inputs or data inputs from
the design specification.

A generalized ASLC model is introduced in which three distinct classes of inputs are
delineated, i.c., mode inputs, level inputs, and edge inputs. The transition variables are
defined to model the dynamic behavior of the edge inputs. Using transition variables, a set
of equations, referred to as dynamic output equations (DOEs), is developed to
characterize the functional behavior of an ASLC. As the transition variables are defined
from the edge inputs which may cause state transitions to occur, the states can be grouped
according to the values of the transition variables. This state grouping leads to simpler

states encoding procedure.

3.1.1 Generalized Model

A generalized ASLC model is illustrated in Fig. 3-1. The external input data word is
decomposed into three parts; namely, M, L, and E. M is a p-bit input and is referred to as
the mode input. L is a g-bit input and is referred to as the level input. And E is an r-bit input
and is referred to as the edge input. The ASLC has one external output, which is labeled Z
and is an n-bit data word. Internally, the ASLC contains two combinational logic elements,
NSG and POG. NSG and POG are the next-state generator and present-output generator,
respectively. The present state and next state of the ASLC are represented by the m-bit data
words y and Y, respectively.
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The M, L, and E inputs are distinguished as follows: Mode inputs (M) do not cause
internal state transitions to occur nor do they effect the internal state of the ASLC. Hence,
the next state Y is not a function of M. Level inputs (L) do not cause state transitions to
occur but may effect the state of the ASLC; so, the next state Y is a function of L. Edge
inputs (E) may cause state transitions to occur, and, moreover, the next state Y may be a
function of E. The present output Z will depend upon M, provided p 2 1 (see Fig. 3-1). In
this generalized model, the output Z may also be dependent upon the present values of the
L and E inputs. With reference to Fig. 3-1, q, and r,, represent the number of bits in the
current values of level input and edge input data words, respectively, that effect the present
value of the output Z, where 0 < q, <q, and 0 <1, <r. And, finally, a subset of the bits in

the present state y may effect the present output, where 0 < m,, < m (see Fig. 3-1).

P
M +
q"l ASLC
: >
q
L +
E—

Figure 3-1. A generalized model for an asynchronous sequential logic circuit (ASLC).
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The special case where m,, = 0 implies that the external outputs are not a function of
the internal state of the ASLC, which means that the logic element is a combinational logic
element and not a sequential logic element. Thus, combinational logic elements represent
a limiting case for the ASLC modeling for synthesis methodology presented here.

The mode inputs (M) may be viewed as a subset of the level inputs (L), which are in
turn a subset of the edge inputs (E). If all inputs for a particular ASLC are viewed as edge
inputs, then the modeling approach presented here would reduce to the traditional approach
for describing the functional behavior of an ASLC for purposes of synthesis. This is so
because each input would be treated equally. Hence, this limiting case could lead to
expressing the functional behavior of the ASLC in the form of the traditional primitive flow
table.

In this ASLC model, only transitions in edge inputs may cause internal state
transitions to occur. McCluskey [4] describes a convenient notation, which he terms
transition variables, for specifying the transitions of a signal and shows how transition
variables associated with external outputs can be represented in terms of the transition
variables of external inputs. To facilitate the process of synthesizing ASLCs, the concept is
used to relate transitions in the edge inputs to transitions in the internal state of ASLCs.

These transition variables are defined as follows.

Definition 3.1 (Transition Variable)

The transition variable X is equal to 1 at time t if and only if the variable X makes a
transition from 0 to 1 at time t. The transition variable X¢ is equal to 1 at time t if and only
if the variable X makes a transition from 1 to 0 at time t. X ; and Xy are known as the rising-

edge and falling-edge transition variables, respectively.
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They possess both a physical and logical significance. From a physical perspective,
X ; and X¢ equate to the time rate of change of the electrical signal observed for X(t); the
width of the X ; and X pulses relate directly to the rise time and fall time of X(t),
respectively. From a logical perspective, X ; and Xy indicate the occurrence of a transition
of the signal X. And, from a mixed-mode (i.e., physical and logical) perspective these

transition variables can be defined as follows (see Fig. 3-2):

X, =X'(1) - X(t+4) 3.1
X, =X(1 ‘X' (t+A) (3.2)

The transition variables X, and Xy describe the dynamic behavior of the external
inputs that lead to changes in the ASLC’s internal state. The functional behavior of the
ASLC is captured with a set of sequential logic functions, or DOEs. For the generalized

t t+A

t t+A

X, = X(t) e X(t+4) Xg = X(t) e X(t+A)

() (b)

Figure 3-2. Mixed-mode representation of the signal X(t)’s (a) rising edge transition
variable X, and (b) falling edge transition variable Xj.
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ASLC model, the set of DOEs express the functional dependence of the ASLC’s next
output Z,, on the current output Z; the current values of the input variables D and E; and
the current values of the transition variables E, and Es. This functional relationship can be

expressed as follows:

Z,=f(Z,M,LEE,LE) (3.3)

This generalized model can be used to implement Finite State Machines (FSMs) as
cither a Mealy type or a Moore type machines. When the output Z is a function of current
states, mode inputs, level inputs, and edge inputs, or Z = f(y, M, L, E), and the next state Y
is a function of current states, level inputs, and edge inputs, or Y = h(y, L, E), then the
ASLC can be viewed as a Mealy machine. When there is no mode control input, the output
is a function of current states only or Z = g(y), and the next state Y is a function of current
states, level inputs, and edge inputs, or Y = h(y, L, E), then the ASLC can be viewed as a
Moore machine.

Through the generalized ASLC model, a relationship between inputs and outputs are
derived as Z, = f(Z;, M, L, E, E,, E¢), where Z,, is the next output and Z_ is the present
output. This relationship, or DOE, represents the circuit’s functional behavior, and which
can be obtained by considering the relationship between each type of input and present

output independently.

3.1.2 Rules for Generating DOEs

Consider an ASLC with a single edge input E;, referred to as the present value of input
E;. Let E;; and E;¢ denote rising-edge and falling-edge transition variables, respectively.

From the definition of these transition variables, it follows that
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Using these relationships, it can be shown that following relationships among E;, E;,,
and Ej¢ are true:

E’-E,=E, E E;=E; E,E/=E, (3.5)

E;-E, =E Ei"Eif' = E/ Eir"Eif = E;

Equations (3.4) and (3.5) lead to the following rules for developing the set of DOEs

Rule 3.1.1 A sum-of-products (SOP) term in a DOE never contains more than one

uncomplemented transition variable.

Rule 3.1.2 If the transition variable for an edge input is present in a SOP term, then that
term is vacuous in the edge-input switching variable(s) associated with that

transition variable.

These two rules deal with SOP terms which contain a literal, a transition variable E;
or its complement E;". Consider a SOP term that does not contain literals E;, E;’, E;, or Ej¢

but does contain the literals E;;” and E;¢’. From the definitions for these transition variables,

it can be shown that
E, - E,-f' =E/(t)-E/(t+A) +E; (1) -E;(t+4) (3.6)
IfE;"Ej = 1, the ASLC is in a steady state condition since no transitions in the edge inputs

occur at that instant of time. Hence the next ASLC output is not due to an internal state

change caused by transitions in the edge input E;.
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This property of the ASLC can then be stated in terms of the following rule for

constructing DOEs:

Rule 3.1.3 If an SOP term only contains complements of the transition variables, then the

ASLC is in steady state with respect to internal state transitions when

E/ Ef =1

The above rules were developed by only considering the existence of a single edge
input E;. When more than one edge input is present, the fundamental-mode constraint can
be applied to produce additional rules to guide the development of the DOEs. The
fundamental-mode constraint only allows one transition variable to be asserted at any
instant in time. For the case of two edge variables, E; and Ej, the fundamental-mode

constraint implies that

Using these relationships, it can be shown that following relationships among the transition

variables of E; and E; and the complements of the transition variables are valid:

ir jr jr jr jr

Equations (3.7) and (3.8) lead to the following rule for developing the set of DOEs:

Rule 3.1.4 If transition variable E; is present in an SOP term of the DOE, then the term

is vacuous in all other transition variables, as well as their complements.
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This is a generalization of Rules 3.1.1 and 3.1.2 when the number of edge inputs E is
equal to p; p 2 1. Rule 3.1.3 can also be extended to the general case when one or more
than one edge inputs are present. Let p denote the number of edge inputs; let p; and pg
represent the number of rising edges and falling edges of the edge inputs that cause internal

state transitions, respectively.

Rule 3.1.5 If an SOP term contains the complements of the p, rising-edge transition
variables and p¢ falling-edge transition variables that cause internal state

transitions to occur, then the ASLC is in steady state if

p, p[

ITI1E. &/ =1 (3.9)

i=1j=1

By steady state we mean that the next external output Z;, does not result from a change

in the ASLC’s internal state even though one of the external inputs may have changed and
thereby will cause a change in the external output.

Rules 3.1.4 and 3.1.5 lead directly to a more refined model for the set of DOEs than
that presented in Equation (3.3). The DOEs are a set of switching functions which describe

the next ASLC output state Z, in terms of the current values of the mode (M) inputs, the
level (L) inputs, and the edge (E) inputs; and the rising-edge (E;,) and falling-edge (Ejf)
transition variables. Each DOE can be expressed in a standard sum-of-products form as

follows:

P, py

P' p[
Z,= Y F, E,+ Y FE~+F.[ITIE. Ef (3.10)
i=1 j=1 i=1j=1
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Because of Rules 3.1.4 and 3.1.5, the sum-of-products terms are linearly independent in the
transition variables. The coefficients F, Fjs, and F have the following interpretation in the
context of the functional behavior of the ASLC: F; and Fj¢ are the next external outputs
when E;; =1 and Ejf = 1, respectively. F;; and ij may be a function of Z_, M, and L, as well
as any of the edge input switching variables except E; or E;, respectively. F; is the next
output when no internal state transition occurs. Fg represents the steady-state output and
may be a function of Z;, M, L, and E.

Equation (3.10) provides the framework for developing an analytical model to
describe the functional behavior of ASLC for purposes of implementing this sequential

function in an ASLC. The utility of this modeling methodology is demonstrated in Chapter

5 with synthesis examples.

3.2 Traditional State Merging Methods

The traditional synthesis procedure of ASLCs begins with the development of the
primitive flow table (PFT), and follows with the state reduction of the PFT to generate the
merged flow table (MFT). The major purpose of the state reduction is to get a MFT with
the fewest number of internal states. Many researchers contributed to the development of
an efficient method to obtain a minimum-state flow table [26-34]. Since the PFT is
constructed with a fundamental-mode assumption, it always has many entries unspecified,
and there is no unique minimum-state flow table for an incompletely specified flow table.
Accordingly, there are many possible ways to merge the primitive states which may lead to
different circuits. However, no general rule which allows the designer to choose a merger

leading to an efficient circuit has existed.
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To illustrate above procedures, the design specification of a sequential logic function
for Petjk-FF, in Fig. 2-2(a) is considered.

Table 2.1 shows the developed PFT. When the PFT is generated, the state reduction
is possible by finding compatible sets of rows and the largest strongly connected sets in the
PFT [4]. To find compatible sets of rows, the comparisons between rows are needed, which
requires considerable amounts of computation time, and the identification of the largest
strongly connected set also requires considerable amounts of computation time when the
number of internal states is large. A merger diagram is commonly used in the traditional
procedure to identify the largest strongly connected sets. Fig. 3-3(a) shows the merger
diagram of this example.

The resulting merged flow table (MFT) is shown in Fig. 3-3(b), and its adjacency
diagram for state assignments is shown in Fig. 3-3(c). One of the most important parts in
the ASLC synthesis procedure is to get race-free state assignments for encoding the internal
states. The race-free state assignment procedures are generally divided into two parts: first
one is to identify and eliminate an intrinsic races, and second one is to assign binary codes
to the states without generating races [14]. The flow table may have races if its m states
cannot be encoded by n state variables without adding states or cycles, where n = rlog2 ml.
This case is easily identified when the number of states in each loop of the adjacency
diagram is odd. So the adjacency diagram in Fig. 3-3(c) has races. When there exist races,
generating cycles with or without additional states is required to remove them. If the state
table has no intrinsic races, a race-free state assignment can be easily obtained in the

synthesis procedure.
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diagram, (b) merged flow table, and (c¢) adjacency diagram for state assignments.
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3.3 State Grouping

Two states are said to be compatible in the traditional synthesis procedure if and only
if whose outputs and next states agree whenever either or both are specified [4]. But, the
compatibility is defined slightly differently in this state grouping process. A set of DOEs
can be used to calculate the allowed output values. Since the concatenation of input
variables and output variables produces the primitive states, the primitive states which are
compatible can be easily recognized and grouped together by applying the following two

rules:

Rule 3.3.1 Identify and make groups with compatible primitive states; i.e., they are

compatible if they have the same outputs and transition variables.

Rule 3.3.2 Generate a state table with stable state groups and unstable states in each value

of transition variable.

The unstable states in a state table can be calculated from the DOEs with the stable
states and input values of transition variables. To illustrate the application of above rules,
the Petjk-FF example is again considered. From the design specification in Section 2.2, two
transition variables may be defined, namely, C; and C;. Moreover, the following additional
information can be extracted and applied to Equation (3.10) for each output Q and Qp: For
Q pr=1pr=L E; =G Ef=Cg Fi, =J Q"+ K’ Q; Fi¢=0; and Fg = Q.. For Qp, pr =
1; pr=1; Eyr = G By = Cg; Fiy = Qe Fip = Qcs and Fg = Q.

Hence, the DOE:s for the Petjk-FF are
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= (JQ/+K'Q)C,+Q.C, (3.11)

Q.
Qpn = Qccr + Qccf+ QPCCI’Cf’ (3.12)

By Equations (3.7) and (3.8), the allowed outputs are 00 and 11, whenC =0 (Cs =1
Cf=0,G/’=0,and C/ = 1), and 00, 01, 10, and 11, whenC=1 (C,=1,C/ =0, C; =0,
and C¢’ = 1). So the states are grouped into 2 groups when C = 0 such as (CJKQQ,) = (0--
00) and (0--11), and 4 groups when C =1 such as (CJKQQp) =(1--00), (1--01), (1--10), and
(1--11) as shown in Fig. 3-4(c).

The number in each group are primitive states which are decimal representations of
the input-output combinations. The state table is derived as Fig. 3-4(d) by applying above
rules. In this table, state transitions only occur on the rising edge (0 — 1) of the edge input
C, and the adjacency diagram of this state table is a bipartite graph as shown in Fig. 3-4(e).

This state table has the following characteristics [35]:

(1) The stable states can be grouped into sets according to the values of the edge

input variables.

(2) There are no internal state transitions among the states in the same set. In other

words, there is no adjacencies between states which belong to the same group.

(3) Cycles may be generated by adding unstable states instead of modifying the

existing unstable states.

These special characteristics are the basis of developing an efficient state assignment

algorithm which will be discussed in the next chapter.
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Figure 3-4. Edge-triggered J-K bistable element with postponed output: (a) graphic
symbol, (b) dynamic output equations, (c) state groups, (d) state table, and (e) adjacen-
cy diagram.
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3.4 Circuit Decomposition

As mentioned in the previous sections, the edge inputs are used as transition variables
to generate a set of DOEs to simplify the state merging process. Synthesis process can be
further simplified if a circuit can be decomposed into many smaller sub-circuits. In CSLCs,
a circuit is decomposed based on the topological connection of the graph representing the
circuit, but not on the functional behavior. In this section, the mode inputs are used to
achieve the circuit decomposition.

The mode inputs (M), as shown in Fig.3-1, do not cause internal state transitions to
occur nor do they effect the internal state of the ASLC. Hence, the next state Y is not a
function of M. If the output Z is a function of the mode inputs (M), the generalized ASLC
model in Fig. 3-1 can be refined as shown in Fig. 3-5, referred to as a refined model, where
the output Z is also a function of the present values of the L and E inputs. q;, and qgo
represent the number of bits in the current values of level input data words of NSG#1 and
NSG#hn, respectively, and r), and r,,, represent the number of bits in the current values of
edge input data words of NSG#1 and NSG#n, respectively. The p-bit mode inputs may be
regarded as control signals for multiplexing the outputs of the NSGs. The selected next
states from many NSGs may become the present output Z.

Note that the complexity of the synthesis process increases nearly exponentially with
the circuit size. Thus, the complexity of synthesizing many smaller NSG circuits in total
should be much lower than that of synthesizing a large NSG. It is clear that the use of mode

inputs for circuit decomposition will make the ASLC synthesis process much simpler.
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Figure 3-5. A refined model of an ASLC for mode inputs.



Chapter 4

State Assignments with Bipartite Graphs

Encoding the internal states of an ASLC has been a research topic since Huffman first
introduced a flow table as a design tool. A race-free state encoding of an ASLC is a problem
of finding a mapping of states onto an n-cube, and an adjacency diagram which describes
the relationship between any two states is generally employed for state encoding. Since the
complexity of the encoding process is determined by the complexity of the adjacency
diagram, for an arbitrary connected graph, the traditional methods utilize enumerative
searches or backtracking, which requires a combinatorial computation time.

Based on the salient features of bipartite graphical representations of both adjacency
diagram and n-cube, this chapter presents an efficient state assignment algorithm using
pattern matching techniques. First, the previous works on state assignments are briefly
discussed. The bipartite representations of graphs are described in the following section,
and the developed algorithm is presented in Section 4.3 with examples. Finally,

comparisons with other algorithms are discussed in Section 4.4.

-39.
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4.1 Background

Many techniques are developed to assign the states without races, but there always
exist trade-offs between the goal of minimizing the number of state variables, and reducing
the enumerative efforts. The classical state encoding methods are based on the enumerative
way to assign the states to an n-cube which has the smallest dimension as possible, and to
generate cycles to make them a race-free state encoding. Since the complexity of the circuit
is dependent on the binary codes chosen in the state assignment step, this method may
generate the most compact circuit realization.

More recent developments are based on the partition theory [36] associated with
inputs. The Single Transition Time (STT) state assignment is the result of this approach.
The column partition method is utilized to generate a Boolean matrix in the STT state
assignment [22, 37]. It contributes to the reduction of the enumerative efforts to assign the
states to an n-cube, but it requires additional efforts to find the minimum cover for the
matrix to obtain the minimum number of state variables. Moreover, it requires more state
variables than the classical ones. The multicode Single Transition Time (MSTT) state
assignment [38, 39] is developed to reduce the dimension of an n-cube by allowing the
doubly assigned codes for the different column partitions, but it still generally requires
more state variables than the classical ones. Universal state assignments [39-44] which
consider only the dimension of an n-cube according to the number of states to be assigned
help reduce the enumeration efforts, but it is far from the compact circuit implementations.
The one-hot code state assignment [45] requires the least efforts with the largest number of
state variables to implement an ASLC. For compact circuit realization, the classical
techniques may generate the best results, but they are difficult to apply to the large number

of states because of their enumerative search requirements.
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While recent techniques adopt the partition theory associated with inputs, the
classical ones utilize an adjacency diagram [2], which visualizes the adjacency
relationships between the states to be assigned. This adjacency diagram approach was
regarded as impractical because it becomes more complex as the number of states
increases, and enumerative efforts are required to find a race-free state encoding. However,
with the development of graph theory it becomes more feasible to analyze the adjacency
diagram using CAD tools.

Saucier [46] employed a partition method to get a maximal spanning tree, and devised
an embedding algorithm to fit it onto an n-cube by employing backtracking techniques to
find one possible embedding. The results are better than the covering method in terms of
the dimension of the internal variable. Recently, Wu [14] utilized an adjacency diagram,
and developed rules to predict races from a Node Weight Diagram (NWD) which is a
binary n-cube connection diagram, but it requires an enumerative search to assign the states

and to find the shortest path for generating cycles in an n-cube.

4.2 Bipartite Representation of Graphs

An adjacency diagram can be represented by a graph G, = (S,, L,), where S, is a set
of nodes or states and a link (4, v) € L, denotes that the states u and v(e Sy) have an
adjacency relationship. The adjacency graph G, may be considered as a set of states S, and
a function Gg: S, X Sg = {0, 1}, such that G, (u, v) = G, (v, u) and Gy (4, u) = 0 for all ,
v € S,. Gy (4, v) = 1 means that there is an adjacency relationship between u and v, i.e., the
pair (u, v) € L,.

The graph of an n-cube can be denoted by G, = (V;, E,), where V,, is the set of

vertices and E,, the edges, represent the interconnection pattern of the nodes. The graph of
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an n-cube G,, may be considered as a set of vertices V, and a function G,: V, x V, = {0,
1). Without loss of generality, we may assume that |S, < |V, |.

A bipartite graph is a graph whose vertex set V can be partitioned into two subsets V,
and V. such that no edge in the graph joins two vertices in the same subset. Thus, each edge
in the bipartite graph has one end in V, and the other end in V.. Every cycle in a bipartite
graph contains an even number of edges. This follows since each edge joins vertices in
different subsets and the cycle must return to its subset in which it originated [47].

Two graphs G, and G, are isomorphic to each other if there is a one-to-one
correspondence between their vertices and between their edges such that the number of
edges joining any swo vertices in Gy is equal to the number of edges joining the
corresponding two vertices in G,. This may be stated more formally: Two graphs G;: V x
Vi = {0, 1} and G,: V5 x V5 = {0, 1} with IVl = IV, are isomorphic if there exists a
function e: V| — V3 such that G, (4, v) = G, (e(u), e(v)) forallu, v € V;.

The problem of determining whether two graphs are isomorphic is one of the classical
unsolved combinatorial problems [48]. The state assignment problem, finding a mapping
function f;;: S; — V,, is computationally equivalent to the graph isomorphic problem. No
exact polynomial time algorithm exists for the problem and they are solved approximately

using heuristic algorithms.

4.2.1 Bipartite Adjacency Table (BAT)

A bipartite adjacency diagram is a connected graph whose states are partitioned into
two subsets X and X, such that no link in the graph joins two states in the same subset. For
simplicity, the states in X; and X are denoted as S;'s and s's, respectively, i.e., X;={S},

$2,..., 81} and X, ={s;, $3,..., S;u}, where [ and m are the numbers of states in X, and X,
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respectively. Without loss of generality, we assume that / < m. Let L be the set of all links
between X and Xp, i.e., L=((S;, 5))| S; € X; and s; € X}

Based on the characteristics of the state table, the links in a bipartite adjacency table
(BAT) can be classified as adjacency links and bipartite links as follows:

(1) Adjacency link: It represents state transitions in the state table. A pair of states

related to each link respectively belong to the distinct state groups.

(2) Bipartite link: It represents the state transition between a pair of states according

to the values of edge inputs regardless of other input changes.

Note that a bipartite link may also be considered as an adjacency link, but the bipartite
link cannot be a break to generate cycles. Let’s consider the edge-triggered J-K bistable
clement with postponed output discussed in Section 3.3. Since the adjacency diagram of the
state table is a bipartite graph, it can be represented with the table as shown in Fig. 4-1(c).
In this table, (1, 3), (1, 5), (2, 4), and (2, 6) are the adjacency links, and (1, 3), (1, 4), (2, 5),
and (2, 6) are the bipartite links. The links (1, 3) and (2, 6) are bipartite links as well as

adjacency links.

4.2.2 Bipartite Representation Table (BRT)

An n-cube is a subset of a hypercube and its interconnection structure is difficult to
visualize when n 2 4. Since an n-cube is always bipartite [49], the interconnection structure
of an n-cube can be represented by a table as described below. For simplicity, we first
consider when n = 3. Fig. 4-2(a) illustrates a 3-cube structure. A 3-cube is comprised of two
2-cubes and the links between them. There exist three sets of separated 2-cubes: (a, c | b, d)
and (f,hle, g); (a,fle,b)and (h,cld, g); and (a, h | d, e) and (c, | b, g). Consider the first
representation. In addition to the two cubes, there exists four links between these two 2-

cubes. They are (a, ¢), (c, g), (f, b), and (h, d). The 3-cube structure can be represented by
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the leftmost bipartite table in Fig. 4-2(b), referred to as a bipartite representation table
(BRT), where the shaded block represents the existence of a link between two nodes and
the blank block indicates no link. Similarly, the BRTs for the 3-cube with the remaining
two 2-cube representations are also shown in Fig. 4-2(b). In general, an n-cube is comprised
of two (n-1)-cubes and the links between them. Fig. 4-3 illustrates various BRTs. The bold
typed numbers are decimal numbers of binary vectors assigned to the states in the row and
column of the BRT. The BRT for an n-cube, referred to as n-BRT, is constructed by the

following recursive algorithm.

Procedure 4.2.2 (n-BRT Generation)

Input: Dimension of n-cube. (n)
Output: Ordered lists of column nodes (X,) and row nodes (X,).

Gen_BRT(n) {
Ifn>1

Gen_BRT(n-1)
If nis odd
Add complement of each element in X to X;
Add complement of each element in X to X;
Else
Add complement of each element in X, to X;
Add complement of each element in X to X;
Ascending ordering of X and X, according to the decimal value.
Else

0-X.;1-X;
Return (X, X,)

}
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Note that each node in X, (or X,) of (n-1)-BRT is represented in (n-1) bits, and the
expanded bit for the n-BRT is considered as "0". The memory size for such a representation
requires 2" for an n-BRT. For simplicity of discussion, the links in an n-BRT are classified
as follows: bipartite links, adjacency links, boundary links, and forbidden links.

(1) Bipartite link: It represents an isolated edge in an n-cube, which does not share

nodes between them. It appears in the diagonal of an n-BRT.

(2) Adjacency link: It represents an edge which connects the nodes which are

included in the two separated edges.

(3) Boundary link: It is an edge in an n-cube which connects the nodes of two

separated (n-1)-cubes included in the n-cube.

(4) Forbidden link: 1t is an imaginary link between the nodes which have no edges.

This link is generally preserved for any bipartite representations of n-cubes.

For simplicity, the first three links are referred to as non-forbidden links. For example,
in the leftmost BRT in Fig. 4-2(b), the bipartite links are (a, b), (c, d), (f, €), and (h, g), the
adjacency links are (a, d), (c, b), (f, g), and (h, e), the boundary links are (a, ¢), (c, g), (f, b),
and (h, d), and the forbidden links are (a, g), (c, e), (f, d), and (h, b). The unshaded blocks
in the BRT represent the forbidden links, while the shaded blocks are for the non-forbidden
links.

4.3 State Assignments Using Bipartite Graph Techniques

Based on the construction of an n-BRT, where n 2 2, each node in X (or X;) has n
non-forbidden links, i.e., one bipartite link, (n-2) adjacency links, one boundary link, and
(21 _p) forbidden links. Thus, an n-BRT contains 2(""1) bipartite links. An n-BRT can be
partitioned into four quadrants: Quadrant I (Upper-left), Quadrant II (Upper-right),
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Quadrant III (Lower-right), and Quadrant IV (Lower-left). Quadrant I (III) contains an (n-
1)-BRT, while Quadrant II (IV) consists of boundary links.

Note that an n-BRT contains two (n-1)-BRTs. If we recursively bisect the BRT, the
final component will be a 2-BRT. Thus, the basic component of an n-BRT is a 2-BRT for
the 2-cube. It should be mentioned that the states in X, (or X,) can be partitioned into two
state groups and that the number of states in one group which share links with one state in
the other group is exactly (n-1) and they share exactly two non-forbidden links. In the
following three properties of an n-BRT, we consider a state pair (5, S;) in X, and a state

pair (SI, Sz) in X,.

Property 4.1  Suppose that both state pairs form a 2-cube. Then,
(1) S;and S, are in the same state group in X, if and only if s; and s, are in the same
state group in X; or
(2) S; and S, are in different state groups in X if and only if s; and s, are in

different state groups in X

Consider the 4-BRT in Fig. 4-3(c), there are two 3-BRTs, and the states are grouped
as (0, 3, 5, 6) and (9, 10, 12, 15) for X, and (1, 2, 4, 7) and (8, 11, 13, 14) for X,. The links
(3,1),(3,11),(9,1),and (9, 11) form a 2-cube with (3,91 1, 11). The states 3 and 9 belong

to the different state groups, so do the states 1 and 11.

Property 4.2 If (S;, s7) and (S5, s;) are two boundary links located in Quadrants II and
IV, respectively, then (S}, s;) and (S5, 57) are the same type of links located in Quadrants I
and II1, respectively.
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For example, consider the 4-BRT in Fig. 4-3(c). Since the links (5, 13) and (10, 2) are
two boundary links located in Quadrants II and IV, respectively, both (5, 2) and (10, 13)
are forbidden links. Similarly, the boundary links (10, 2) and (6, 14) result that both (10,
14) and (6, 2) are adjacency links. Finally, both (0, 1) and (9, 8) are bipartite links because
both (0, 8) and (9, 1) are boundary links.

Property 4.3  If both (S;, s;) and (S, s5;) are bipartite links, then both (S}, 57) and (S,
s7) have the same type of links.

In the 4-BRT in Fig. 4-3(c), since (0, 1) and (6, 7) are bipartite links, both (6, 1) and
(0, 7) are forbidden links. On the other hand, since (0, 1) and (5, 4) are bipartite links, both
(0, 4) and (S, 1) are adjacency links.

4.3.1 Problem Statement

The race-free state assignment problem can be formulated as the problem of
embedding a bipartite connected graph in an n-cube. In this implementation, the problem
can be formulated as a mapping of the adjacency diagram, represented with a bipartite
graph, to an n-cube also represented with a bipartite graph, i.e., embedding of a BAT in a
BRT. A BAT is generally comprised of / rows and m columns, where ! < m. Since we
always can expand the BAT by adding some dummy states to increase the number of rows,
without loss of generality, we consider the case that m = l. Thus, we consider the BAT

having 2m states, referred to as a m-BAT, for simplicity.

Definition 4.1 A m-BAT is mappable if it can be embedded in an n-BRT, where n =

rIogz m] + 1. Otherwise, it is unmappable.
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Definition 4.2 The m-BAT is m-bisectable if
(1) The states in X and X; can be partitioned into two pairs of state groups, (X,
X2 and (X[, Xpp), respectively;
(2) For every state in X}, there exists at most one link to a state in X5, where no
states in X, have linked the same state in X;; and
(3) For every state in X5, there exists at most one link to a state in X, where no

states in X;; have linked the same state in X .

Note that the m-BAT is partitioned into four blocks. For simplicity, both (X;, X;1)
and (X5, Xp,) are referred to as diagonal blocks, while both (X9, X;1) and (X1, Xp) are
called as off-diagonal blocks. By Definition 4.2, the states in each diagonal block form a /-
BAT, where ! =[log, m). Again, if the I-BAT satisfies the conditions in Definition 4.2, then
it is I-bisectable. Therefore, if the states in both X and X are properly partitioned so that
the conditions in Definition 4.2 can be satisfied by a newly generated k-BAT, k < m, then
the k-BAT is k-bisectable.

Definition 4.3 A m-BAT is bisectable if the states in X and X can be partitioned in such
a way that all the corresponding k-BATs, k = 1...., 2, are k-bisectable.

Theorem4.1 A bisectable m-BAT is mappable.

Proof: Since the m-BAT is bisectable, it is also m-bisectable. By Definition 2, both X and
X can be partitioned into two pairs of state groups, (X, X¢2) and (X1, Xpp), respectively,
where the links in each off-diagonal block can be treated as the boundary links of an n-
BRT, where n = I'10g2 m| + 1. Since the diagonal blocks are /-BAT, they are /-bisectable,
where [ = flogz m]. Similarly, the links in each corresponding off-diagonal block are the
boundary links of a (n-1)-BRT. The BAT formed by the states in each diagonal block can
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be further partitioned until all the diagonal blocks are 2-BATs each of which can be mapped

to a 2-BRT. This concludes that a bisectable m-BAT is mappable to an n-BRT.
QED.

Corollary 4.1 A m-BAT is mappable if it consists of bipartite links only.

Proof: A m-BAT with bipartite links only shows that, for every state in X, there exists
exactly one link to a state in X[, and vice versa. Thus, the states in X and X; can be
permuted so that the links are all on the diagonal entries of the BAT. This implies that the
m-BAT is bisectable. By Theorem 4.1, the m-BAT is mappable. Q.ED.

Consider the 7-BAT in Fig. 4-4(a), for example, where X, and X, are partitioned into
two ordered pairs of state groups, {(1,7, 5, 6), (3, 4, 2)} and {(10, 11, 13, 9), (8, 14, 12)},
respectively. Based on Definitions 4.2 and 4.3, the 7-BAT is bisectable and thus is

1 24 7 8111314
8 9 10 11 1213 14 1011 13 9 8 14 12 -

Figure 4-4. An example illustrating Theorem 4.1: (a) mappable 7-BAT and (b) depiction
of a mapping to 4-BRT. (The shaded blocks in (b) represent links in 4-BRT, and the darker
blocks indicate the mapped links of 7-BAT)
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mappable. Fig. 4-4(b) depicts the mapping results and the corresponding state encoding.

Theoremd4.2 A m-BAT is unmappable if either
(1) Each row or column of the m-BAT contains more than n links, or
(2) 'The link set of the m-BAT includes {(S;, 5;) | i=1, 2, 3 and j=1, 2} or {(S;, 5;) I
i=1, 2 and j=1, 2, 3}.
Proof: Since each node, or state, in X, and X, of n-BRT has only n links, it follows that the
m-BAT is unmappable. On the other hand, since any two rows or columns in a n-BRT share
at most two links, the m-BAT containing more than three common links is thus

unmappable. Q.ED.

An ummapable m-BAT cannot be mapped to an n-BRT, where n = rlogz ml+1,ie.,
the 2m states in the m-BAT cannot be encoded with n state variables. In other words,
encoding the 2m states with n state variables will definitely create critical races when the
BAT is unmappable. Therefore, it is necessary to add cycles by adding some intermediate
states to avoid critical races [1-6].

A race condition occurs when two or more state variables are to change at the same
time. Race conditions can naturally be classified as being either an intrinsic race (IR), or a
generated race (GR) [14, 25]. A GR is caused by a careless encoding of the states, while an
IR results when the minimum possible Hamming distance is greater than 1. A GR can be
either critical or non-critical. Two types of intrinsic races have been identified: visible
intrinsic race (VIR) and hidden intrinsic race (HIR). A VIR occurs when the maximum link
degree exceeds the number of state variables or the corresponding adjacency diagram has
at least one loop of odd number of states. Otherwise, it is a HIR. In [14], race conditions
are avoided by first identifying and eliminating IRs and then making race-free state

assignments to guarantee that no GRs are produced. This can be achieved by encoding the
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adjacent states to have a Hamming distance equal to 1. This state assignment is referred to
as unit-distance code (UDC) state assignments. To facilitate the UDC state assignments,
the NWD is implemented. Note that some intermediate states may be added or some
unstable states may be modified to generate cycles for avoiding races. Results in [14] have
demonstrated that the algorithm provides better results than any others. However, the
algorithm uses an enumerative search approach to assign the states and to generate cycles
by exhaustively trying all possible encodings.

In this study, based on the special bipartite characteristics of an adjacency diagram,
the conditions in Theorems 4.1 and 4.2 identify the mappability of a BAT under
consideration. If a BAT is identified as mappable, the resultant mapping is the assignment
of the states. On the other hand, if it is not mappable, some cycles are generated. The
following theorem provides an alternative rule to identify the mappability of the modified

BAT.

Definition 4.4 For the link (S;, s,) in a BAT, we define
(1) adj(S;) ={(S;, sp) | (S;, sp) € L, sp € X, and s # 5,},
(2) adj(s) =((Sg, s) | (Sg. s) € L, S, € X, and S # §;}, and
()  (adj(Sy), adj(s)) = (S, 5P | Sk, 5) € L, S € X, 51 € X, and adj(adj(S))) =
adj(adj(sy)}.

In the BAT shown in Fig. 4-5(a), L = {(1, 6), (1,9), (1, 10), (2, ), (2, 8), (2, 10), (3,
7, (3,8),3,9), 4, 8),(4,9), (5,9), (5, 10)}. For the link (2, 7), adj(2) = {(2, 8), (2, 10)},
and adj(7) = ((3, 7}, and (adj(2), adj(7)) = {3, 8)}.
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Figure 4-5. An example illustrating Theorem 4.3 and Corollary 4.3: (a) 5-BAT which has
a pattern defined in Theorem 4.3, (b) expanded BAT of (a), (c) 7-BAT which has a pattern
defined in Corollary 4.3, and (d) expanded BAT of (c).
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Theorem 4.3  Suppose that a BAT contains the following adjacency links: (S;, s,), (S;,
50 (Sjs Sp)s (Sj 59s (S $1)» (Spo 59, and (S, s,,). The BAT is unmappable if there exists more
than one link such as (adj(S;), adj(s,)) or (adj(Sy), adj(s,)).

Proof: The states S;, S, S and s, s;, 5, can be mapped to the 3-cube domain, and they
generate two 2-cubes which are interconnected with the link (S;, s,). They also have two
forbidden links such as (S;, s,,) and (S, s,). By Property 4.2, the states belonging to the 3-
cube have only one adjacency link and one boundary link, so only one link is allowed,
which is a boundary link such as either (adj(S;), adj(s,)) or (adj(Sj), adj(s,)), but not both.
When considering a mapping of the BAT to an n-BRT, where n > 3, by Property 4.2, the
links in {adj(S;), adj(s,)) should be a forbidden link when adj(S;) exists outside of the 3-
cube. The same condition can be applied to (adj(S,), adj(s,)). Therefore, other links except
one which is either (adj(S;), adj(s,)) or (adj(S;), adj(s,)) should be forbidden links.

Q.ED.

Corollary 4.3 Suppose that a BAT does not satisfy Theorem 4.1 and 4.2, and the link (S;,
sj) is a bipartite link. The BAT is unmappable if there exist links such as (adj(S;), adj(s))),

which are not a bipartite link.
Proof: By Property 4.3, the links in (adj(S;), adj(sj)) should be a bipartite link, if they
exist. Q.ED.

Consider a BAT in Fig. 4-5(a) which satisfies the condition in Theorem 4.3. There is
a pattern between the column state group (2, 3, 4) and row state group (7, 8, 9). The links
(1, 9) and (5, 9) are adj(9), and the link (2, 10) is adj(2). Since there exist two links such as
(1, 10) and (5, 10), which are (adj(2), adj(9)), this BAT is unmappable. The expanded BAT
is shown in Fig. 4-5(b) by breaking the link (3, 9) and eliminating the pattern defined in
Theorem 4.3.
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The BAT in Fig. 4-5(c) shows the pattern defined in Corollary 4.3. The link (7, 8) is
adj(8), and the link (1, 13) is adj(1). The link (7, 13) should be a bipartite link for a
mappable BAT because the link (1, 8) is a bipartite link and the link (7, 13) is the link
(adj(1), adj(8)). The expanded BAT in Fig. 4-5(d) is generated by eliminating this link, and

it becomes a mappable BAT.

4.3.2 State Assignment Algorithm

The developed race-free state assignment algorithm is divided into three major
procedures: The first procedure examines if the given BAT is mappable. If it is not
mappable to an n-cube, the second procedure eliminates the races by expanding the table
with additional states and generating cycles. The third procedure maps a mappable BAT: to
an n-cube. The first procedure applies a sequence of rules to predict the races which make
the BAT to be unmappable. When the BAT is identified as unmappable, rules are applied
to determine a break which should be eliminated to generate a mappable BAT. An
unmappable BAT is expanded according to the characteristics of the BAT by two different
procedures: symmetric expansion and non-symmetric expansion. Since the n-BRT is
symmetric on the basis of bipartite links in nature, a symmetric unmappable BAT needs a
special expansion, which makes the expanded BAT to be symmetric again. The third
procedure applies constraints to the states in the BAT to find a mapping of an n-cube. To
find a mapping is to find two independent sets of states recursively. Detailed description of

cach procedure is as follows.
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4.3.2.1. Procedure to identify a mappable BAT

The procedure for identifying a mappable BAT is divided into two parts. The first part
is to identifying an unmappable BAT. It begins by counting the link degrees in the column
or row of a given BAT and all 2-cubes in the BAT are searched to generate a list. The
unmappable condition (1) and (2) in Theorem 4.2 and Theorem 4.3 are examined next. All
required breaks between the separated and intersected 2-cubes are examined in the second
part to determine breaks for expanding the unmappable BAT. All links are weighted when
they should be breaks, and two of the most heaviest links are selected as breaks which
should be eliminated by generating cycles. The links and required breaks between the
separated and intersected 2-cubes are shown in Fig. 4-6. The procedures to identify an
unmappable BAT and to generate a mappable BAT by determining breaks are described as

follows.

Procedure 4.3.2.1.1 (Unmappable BAT Identification)
Input:  BAT matrix. (mg by m)

Outputs: Ordered list of link degrees of states in X and X.
2-cubes list

Identify_Unmappable_BAT (BAT) {

1. Count the link degree of states in X, and X.
Search all 2-cubes to generate 2-cubes list.

3. IF the maximum link degree is greater than n, THEN go to Step 8,
where n =[logymy| + 1.

4.  Search the pattern defined in Theorem 4.2(2) from the 2-cubes list.
4.1 IFitis found, THEN go to Step 8.

5.  Search the pattern defined in Theorem 4.3 from the 2-cubes list.
5.1 Count the number of links in (adj(i), adj(j)) for each forbidden

link (i, j) in the defined blocks.

5.2 [IFitis more than 1, THEN go to Step 8.
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Figure 4-6. Links and breaks in two separated 2-cubes and two interconnected 2-cubes.

6.  Find the (adj(i), adj(j)) for each bipartite link (i, j).

6.1 IF they are not bipartite links, THEN go to Step 8.
7. End. Next is to map the BAT to an n-BRT (See Procedure 4.3.2.3).
8. Generate a mappable BAT (See Procedure 4.3.2.1.2).

Procedure 4.3.2.1.2 (Break Determination)

Input: BAT matrix. (mg by mg)
2-cubes List

Outputs: 2-cubes List (modified)
Breaks List

Break_Determination (BAT) {

1.  Find the breaks in the separated 2-cubes:
1.1 Find the maximum number of separated 2-cubes in the 2-cubes

list.

1.2 IF there are no separated 2-cubes, THEN go to Step 2.

1.3 Mark all required breaks for the separated 2-cubes.

1.4 Eliminate all 2-cubes in the 2-cubes list which have required
breaks.

2.  Find the breaks in the intersected 2-cubes:
2.1 Find all interconnected 2-cubes in the list.
2.2 [IF there are no intersected 2-cubes, THEN go to Step 3.
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2.3 Mark all required breaks for the interconnected 2-cubes.
2.4 Eliminate all 2-cubes in the 2-cubes list which have required
breaks.

3.  IF the break is a bipartite link in the BAT, THEN remove it from the
break list.

4.  Arrange the breaks in descending order according to their weights.

5.  Select first two breaks from the list. Next is to expand the BAT by
adding additional states to the BAT. (See Section 4.3.2.2)

4.3.2.2. Procedure for BAT expansion

The cycles can be easily generated by adding states and by adding links between the
states which have breaks. However, the expansion of the BAT should be symmetric if the
original BAT is symmetric. The symmetric BAT is recognized from the order of the link
degrees in the X and X. If the order of link degrees of X_ is the same as the order of link
degrees of X, after arranging the link degrees, the BAT is symmetric. The symmetric
expansion is by counting the number of forbidden links in the BAT. If non-symmetric
expansion is applied to the symmetric BAT, the BAT cannot be mapped onto an n-cube or

results in having a larger dimension of an n-cube.

For example, consider BATs in Fig. 4-7(b) and (c). Both BATs are symmetric on the
basis of bipartite links for m < 3. Both BATs are expanded from the BAT in Fig. 4-7(a),
which is symmetric on the basis of bipartite links for m < 4. Since the BAT in Fig. 4-7(c)
has a symmetric expansion, it is also symmetric on the basis of bipartite links. However,
the BAT in Fig. 4-7(b) is not symmetric because it has an non-symmetric expansion. The
BAT in Fig. 4-7(c) is mappable to 4-BRT as depicted in Fig. 4-7(d), but the BAT in Fig. 4-
7(b) is unmappable because it has a pattern defined in Theorem 4.3 with states groups (3,
4,9) and (7, 8, 10), and the link (1, 5) is {(adj(9), adj(7)).
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Figure 4-7. An example of BAT expansions: (a) 4-BAT, (b) non-symmetric expansion
of (a), (c) symmetric expansion of (a), and (d) depiction of a mapping of (c) to 4-BRT.
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The non-symmetric and symmetric BAT expansion procedures are as follows:

Procedure 4.3.2.2.1 (Non-symmetric Expansion)

Inputs: BAT matrix. (k by k)
Breaks List.

Outputs: BAT matrix. (k+1 by k+1)
Cycles List.

Non-symmetric_Expansion(BAT) {

1. Generate a cycles by adding links in X and X for two breaks whose
one state in each pair is the same:
1.1 IF two breaks are (S;, sj) and (S;, s)), THEN add one bipartite link
(Sk+1» Sk+1) and adjacency links (S;, Sg41), (Sg+1. 5;), and
(Sk+1: SD)-
1.2 IF two breaks are (S, ;) and (Sp, 5;), THEN add one bipartite
link (S, ;. Sk+1), and adjacency links (S, Sg41)» (Sp, Sk47), and
(Sk+ 1> 5))-
2.  IF there is only one break such as (S;, sj), THEN add one bipartite link
(Sk+1» Sk+ 1) and adjacency links (S;, sg4.7), and (Sg41, 5))-
3. Listcycles as (S, Sg41, Sk+15 S;) and (Sj, Sg41, Sk41, 5)) for the breaks
S; sj) and (S;, s;), respectively.
Return (BAT)

For example, consider the 4-BAT in Fig. 4-8(a). The BAT is not symmetric. Since it
has a pattern defined in Theorem 4.2, it has races. In this example, the break (2, 8) is
selected as a break for BAT expansion. The expanded BAT with a cycle (2, 10, 9, 8) is
shown in Fig. 4-8(b), and the resulting mapping to 4-BRT is depicted in Fig. 4-8(c).
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Figure 4-8. An example of non-symmetric BAT expansion: (a) non-symmetric
4-BAT, (b) 5-BAT with non-symmetric expansion, and (c) depiction of a map-
ping to 4-BRT.
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Figure 4-9. An example of symmetric BAT expansion: (a) symmetric 3-BAT,
(b)4-BAT with symmetric expansion,and (c) depiction of amappingto3-BRT.
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Procedure 4.3.2.2.2 (Symmetric Expansion)

Inputs: BAT matrix. (k by k, where m 2 k 2 mg))
Breaks List.

Outputs: BAT matrix. (k+1 by k+1, where m > k 2 mg)
Cycles List.

Symmetric_Expansion(BAT){

1.  Find two breaks which are symmetric to each other:

1.1 IF there is one break (S, sj), THEN the symmetric break (Sp, s)
is such that the order of state S, in the X, is the same as the order
of the state s; in the X, and the order of state s; in the X_: is the
same as the order of the state Sy in X.

1.2 IF there is no symmetric break for (S,, sj) in the breaks list,
THEN add the symmetric break (S, s;) to the breaks list.

2.  Generate cycles for two symmetric breaks:

2.1 IF two symmetric breaks are (S, 5;) and (S, s;), THEN add one
bipartite link (S, ;, S¢4 ), and four adjacency links such as (S,
Sk+1)» k10 5)s Spr Sg41), and (S 1, 5p).

2.2 Listcycles as (Sg, Sg41> Ska1» Sj) and (Sp, Sg415 Sk+10 S

Return (BAT)

For example, consider a BAT in Fig. 4-9(a). This BAT is symmetric, but it is
unmappable because it has the pattern defined in the Theorem 4.2. It requires two breaks
such as (1, 6) and (3, 4), which are symmetric to each other. The expanded BAT is shown
in Fig. 4-9(b) with cycles (1, 7, 3, 6) and (3, 7, 8, 4). The resultant mapping to 3-BRT is
depicted in Fig. 4-9(c).
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4.3.2.3. Procedure to map a mappable BAT to an n-BRT

Once a BAT is identified as mappable with or without BAT expansions, there is no
race in the BAT, and it is bisectable from Theorem 1. Since the bisecting procedure requires
not only to partition the states into two pairs of state groups recursively, but also to satisfy
the condition that each state in one group of X (or X;) has at most one boundary link to the
state in the other group of X, (or X), the mapping procedure begins first by partitioning the
states in X (or X;) into 2 subsets recursively until it becomes a 2-cube with applying the

following two constraints. They are derived from the properties of an n-BRT.

Constraint 4.3.1 Suppose that there is a 2-cube such as (S}, S5 |s;, 57) in amappable BAT
and that states in X_ is partitioned into X.; and X, and states in X is partitioned
into Xy and Xy4. Then,

(1) IFS; S € X.1, THEN s}, 57 € X}3.
(2) IFSI, Sz € Xck, THEN §1,82€ er.
(3) IFS;e X1, S2€ Xk and s;€ X1, THEN 57 € X.
(4) IFSI € Xcl, Sz € Xck, and S1€ er, THEN $2 € X,l.

Constraint 4.3.2 Suppose that states in X is partitioned into X.; and X, and states in
X, is partitioned into X;; and X;y.. The state Sy (or s) in X y(or Xy ) should have at

most one link with at most one state in X (or X().

Whenever there exist multiple choices, the selection refers to above constraints. The
second part of the procedure arranges the order of states in each subset according the
constraints of the boundary links, and merges the ordered subsets to expand the state space

to an n-cube.
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The partition process can be executed by moving some states in the original state set
to the new subset by applying some selection constraints. The link degree of each state is
the selection criterion in this procedure. Let one state Sy is first selected from X, which has
the maximum link degree with the states in X[, then the state s; separated from the states in
X, should be a state which has a link with S, but it has the minimum link degree with the
states in X.. When the state 5; is moved to the new subset of X[, then the states in X, except
S, which have links with s should be moved to the new subset of X, because of Constraint
4.3.2. By repeating this process, the states which satisfy the bisectable condition is moved
from the original set to the new subset, and it results in partitioning the original states into
2 subsets. This partition process continues until the number of states in the original set
becomes 2, in which boundary links cannot be applied. Once the states in X and X, form
a 2-cube, the state space is now expanded from a 2-cube to an n-cube by arranging the order
of states in each subset and merging those ordered subsets. The ordering of the states in
each subset is executed by considering the boundary links between (n-1)-BRTs. The
detailed mapping procedure is described as follows:

Procedure 4.3.2.3 (Mapping a mappable BAT to an n-BRT)

Inputs: BAT matrix. (m by m)
2-cubes List.

Outputs: List of assigned numbers for column states
List of assigned numbers for row states

BAT_to_ BRT_mapping (BAT) {

1. Assign the column (or row) states set to X1, which has the maximum
link degree, and assign the other states set to X;;. Seti=1and k = 1.

2. Select Sy, among the unmarked states in X such that ladj(Sp)l is the
maximum, where p = 2029 4],

3. Select 55, among the unmarked states in X such that adj(sy) €
{adj(Spr)} and ladj(spp)l is the minimum.
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4. Xp=Xp+ 51 Xn= X1 - Sp1» Xep = Xp + {8 1 Se Xy, adj(S)=
adj(sp1), S # Sp;), and Xy =X¢; - (S| Se Xy, adj(S)= adj(s,)), S #
Sp1}-

5. IF the states in Xp, and Xy (Xcp and X;) cannot satisfy Constraint
4.3.1, THEN
5.1 Mark the state S;.

5.2 Move all states in X, and X, to Xy and X, respectively.
5.3 Goto Step 2.

6. Repeat Step 2 to 5 with increasing k until | X ;! and | X,;I <21,

7. IF the states in X, and X (or X¢p and X)) cannot satisfy Constraint
4.3.2, THEN
7.1 Mark the states in X and Xpp, which violate Constraint 4.3.2.
7.2 Move all states in X, and X, to Xy and X, respectively.

7.3 Go to Step 2.

8.  Repeat Step 2 to 7 with increasing i by 1 until it becomes (n-2).

9. Seti=1.

10.  Arrange the order of states in the subsets {XcG41)s--3 Xcx} (or
{Xr+1)s---s Xrk}) by examining links with the states of {Xpy;...;
Xy} (or {Xcps--; X)), where j = 20-D apd k = 21

11.  Repeat Step 10 with increasing i by 1 until it becomes (n-2).

12.  Assign the binary vectors of n-BRT to the states of {X_y;...; X;}and
{X;15...s X7} in the order as they appear, where [ = 2(n-2),

For example, consider a mappable 7-BAT in Fig. 10-(a). It is identified as mappable
to 4-BRT. The states in X.; = (1, 2, 3,4, 5,6,7) and X;; = (8, 9, 10, 11, 12, 13, 14). From
the states in X, the state 1 is selected as S3; in Step 2, and the state 8 is selected as s3; in
Step 3. So X3 =(8) and X; = (9, 10, 11, 12, 13, 14), X .3 =(3),and X1 = (1, 2,4, 5, 6, 7).
This state partition satisfy the Constraint 4.3.1 because there exist a 2-cube (1, 3 18, 10)
and the state 1 and state 3 is separated as the state 8 and state 10 is separated. Next, S3; is
the state 5 and s3; is the state 12. So X3 = (8, 12) and X[y = (9, 10, 11, 13, 14), X 3 = (3,
2), and Xy = (1, 4, 5, 6, 7). This partition does not violate the Constraint 4.3.1. Next, S33
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Figure 4-10. An ple of the Procedure 4.3.2.3: (a) mappable BAT with a 2-cubes
list, (b) steps to find a mapping, (c) results from the procedure, and (d) depiction of a
mapping to 4-BRT.
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is the state 7 and 533 is the state 14. So X3 = (8, 12, 14) and X; = (9, 10, 11, 13), X .3 = (3,
2, 4), and X1 = (1, 5, 6, 7). This partition does not violate Constraint 4.3.1. Since the
number of X} and X, becomes 4, apply Constraint 4.3.2. Since there is no state which has
more than one link with the corresponding state group, go to Step 8. From the states in X,
the state 1 is selected as S,; in Step 2, and state 13 is selected as s in Step 3. So X, =(13)
and X1 = (9, 10, 11), X5 = (5, 6), and X_; = (1, 7). Next, S, is state 9. So X;» = (13, 9)
and X,y = (10, 11), X5 = (5, 6), and X_; = (1, 7). Since the number of X and X;; becomes
2, apply Constraint 4.3.2. Since there is no violation, go to Step 8. Now the states in each
subset are as follows: X1 = (1, 7), X2 = (5, 6), X3 = (3, 2, 4), X = (10, 11), X;p = (13,
9), and X3 = (8, 12, 14). Each state in these subsets does not violate the Constraint 4.3.1
and 3.2. In Step 10, by searching links of the states in X.;, the order of states in X,
becomes (13, 9), and by searching links with the states in X, the order of states in X .o
becomes (5, 6). By searching links of the states in {X_1; X2}, {X;3; X4 )}becomes (8, 14,
12, -), and by searching links with the states in {X,}; Xp}, {X.3; X4} becomes (3, 4, -, 2).
The final results from this procedure is {X;; Xc2; Xc3: X4} =(1,7,5,6, 3,4, -, 2), and
{X11s X5 Xi3: X4} = (10, 11, 13,9, 8, 14, 12, -). Each assigned state number with 4-BRT
is shown in Fig. 10-(c), and it is depicted in Fig. 10-(d).

4.3.3 State Assignment Examples

The developed algorithm accepts inputs with adjacency matrix of state table and
generates outputs as an assigned binary number for each state. Two examples are selected
to illustrate the procedure to identify a mappable BAT, to expand the BAT to generate
cycles, and to map the mappable BAT to an n-BRT.
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Example 4.1: The example illustrated in Fig. 4-11 has a hidden intrinsic race (HIR)
because it has a pattern defined in Theorem 4.2(b). From the given BAT, all 2-cubes are
secarched and listed as shown in Fig. 4-11(c) by Procedure 4.3.2.1.1. By Procedure
4.3.2.1.2, all interconnected 2-cubes are searched to find a break. However, all links have
the same weights. So the link (1, 6) is arbitrary selected as a break. Since the BAT is
symmetric, the link (1, 6) and its symmetric link (3, 4) are removed and by Procedure
4.3.2.2.2. New links such as (1, 7), (3, 7), (8, 4), (8, 6), and (8, 7) are added as depicted in
Fig. 4-11(d). All 2-cubes are searched in the new BAT by Procedure 4.3.2.1.1 again.

L L 456 2-cubes
1 ] (1,2 14,50 @,214,6) (1,215,6)
214 a,314,5 @1,314,6) (1,315,6)
3 2,314,5 @3146 @3156)
(@) (b) (c)

2-cubes

1,214,5 (2,315,6)
1,3157 ©,814,6)
1,814,717 3,816,7

A 0 WO

@ (€)

Figure 4-11. Example 4.1: (a) reduced state table, (b) 3-BAT, (c) 2-cubes list, (d) expanded
BAT with a 2-cubes list, and (e) depiction of a mapping to 3-BRT.



71-

Separated 2-cubes such as (1, 315, 7) and (2, 8 | 4, 6) are found by Procedure 4.3.2.1.2.
From the interconnection of these separated 2-cubes, there is no required breaks. Hence,
this BAT is mappable. This mappable 4-BAT is mapped to 3-BRT by Procedure 4.3.2.3,
which is depicted in Fig. 4-11(e).

Example 4.2: The next example has intrinsic races including a visible intrinsic race (VIR)
because the maximum number of links in the BAT exceeds the number of state variable.
From Procedure 4.3.2.1.1, a 2-cubes list of the BAT is generated as shown in Fig. 4-12(c).
Two interconnected 2-cubes are selected, and required breaks are marked accordingly in
Procedure 4.3.2.1.2. Two links such as (2, 6) and (2, 8) have equal weights to be a break.
Since the link (2, 6) is a bipartite link, the link (2, 8) is selected as a break and eliminated.
The BAT is expanded with Procedure 4.3.2.2.1. The new BAT is examined by Procedure
4.3.2.1.1 again, and it is identified as mappable. The mapping of this S-BAT to 4-BRT is
performed by Procedure 4.3.2.3, and the outputs are shown as Fig. 4-12(e). This result can
be depicted as Fig. 4-12(f). From this assignment we can get the modified state table with
cycles as shown in Fig. 4-12(g).

4.4 Discussion

The algorithm is tested with several examples. Some examples generate less number
of state variables than the results from Wu’s and Saucier’s algorithm. The computation time
is not easy to compare because the computing device is much different from the time when
those results were obtained. However, the elimination of an exhaustive search apparently

gives benefits to the performance of our algorithm.
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Figure 4-12. Example 4.2: (a) reduced state table, (b) 4-BAT, (c) 2-cubes list and breaks
list, (d) expanded BAT with a 2-cubes list, (€) results of the Procedure 4.3.2.3, (f) depiction
of a mapping to 4-BRT, and (g) modified state table.
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The example which has better results than the algorithm by Wu is shown in Fig. 4-13.
The reduced state table and BAT are shown in Fig. 4-13(a) and (b), respectively. According
to our algorithm, the BAT has one 2-cube such as (1, 2 | 6, 7), and it is identified as
mappable. The BAT mapping to 4-BRT is depicted in Fig. 4-14(c). However, Wu’s
algorithm requires two additional states to generate cycles and § state variables to represent
the states by generating a cycle for the link (1, 7), though there is no VIR or HIR.

This is because of a bad selection process for the first state to be assigned to the Node
Weight Diagram (NWD). It assigns the first state to the node in level 0, which has the
maximum number of links, and increases the level by filling the nodes with the states which
are adjacent to the nodes which already have been assigned. If no vacant node is found for
the state to be assigned, the shortest path is searched, and it generates a cycle by adding
states. Since there is no a priori information about the structure of an n-cube, this algorithm
adds the levels of the NWD as much as it satisfies the adjacencies for specific states.

Consider the BAT in Fig. 4-14(b). According to our algorithm, the BAT is
unmappable and symmetric. So a symmetric expansion is needed. The expanded BAT is
shown in Fig. 4-14(c). A mapping of this 7-BAT to 4-BRT is depicted in Fig. 4-14(d). The
Saucier’s algorithm is mainly divided into two parts. The first part extracts a maximal
spanning tree from the partition information of the state table as shown in Fig. 4-14(e).
Next, an embedding is obtained by completing the spanning tree. This is achieved by
adding edges and supplementary vertices and expanding the dimension of the cube, as
necessary. Here difficulties occur in trying to find the maximal spanning tree because all
weights of the edges are the same. Suppose that the edges for the spanning tree are chosen
arbitrarily as indicated in Fig. 4-14(g). This algorithm searches with this spanning tree for
finding an embedding for an 3-cube. Since there is no way to map the adjacency diagram
to a 3-cube, it should be expanded to 4-cube after an exhaustive search. Therefore, the

computation time of Saucier’s algorithm is proportional to the number of states and the



-75-

L I3

NESE

[T R C R
%
3
NI
S

() (b)

©)

Figure 4-13. An example for the comparison with Wu’s algorithm: (a) reduced state
table, (b) 5-BAT, and (c) depiction of a mapping to 4-BRT.
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edges. Furthermore, it will be very complex when the adjacency diagram is a complete
graph, in which every state in S has edges to every state in S;. Our algorithm searches the
pattern of the BAT, modifies the pattern to be a mappable BAT before finding an
embedding of n-cube from the properties of an n-BRT. Hence, the computation time will

be much less than Saucier’s algorithm.



Chapter 5

Synthesis Examples

In order to demonstrate the synthesis procedure presented in the previous chapters,
several synthesis examples for sequential logic elements and finite state machines (FSMs)
are given, where the FSMs are from the MCNC benchmark examples.

The synthesis procedure can be summarized as follows:

(1) Generate DOEs using transition variables.

(2) Derive state groups.

(3) Encode state variables.

(4) Generate hazard-free state equations and output equations.

-79-
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5.1 Sequential Logic Elements

Synthesis procedures of three sequential logic elements such as FKW-1, FKW-2,

and FKW-3 are discussed in this section.

5.1.1 FKW-1 Sequential Logic Function

Consider the following design specification of a sequential logic function named
as FKW-1.

(1) There are two inputs, which are labeled A and B.

(2) There are two outputs, which are labeled D and E.

(3) The outputs D and E may change values on the falling edge of B. At this time
D,=AE and E = A + D, where E_ and D, are the current outputs, and D,
and E, are the next outputs.

Based on the design specification, B¢ can be defined as the transition variable.
According to Equation (3.10), we obtain p, = 0; pf=1; E{¢=Bg Fijg= AE_; and F{=D,
for output D, and p, = 0; ps =1; Ej¢ = Bg; Fy¢ = (A + D,); and F = E; for output E.

Therefore, by applying above information to Equation (3.10), we can obtain the

following set of DOEs:

D, = AEB,;+D B/ (5.1)

E,= (A+D,)B;+EB/ (5.2)

From the above DOEs, the states groups can be made by determining the allowed
outputs and values of B. The allowed outputs calculated from above DOEs are 00, 01,
and 10 when B=0 or B=1, so there are three state groups when B =0, which are (BADE)
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FKW-1
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Figure §-1. FKW-1 sequential logic function: (a) graphic symbol, (b) DOEs, (c) state
groups, (d) state table, (¢) 3-BAT, (f) depiction of a mapping to 4-BRT, (g) state excitation
table, (h) present output table for D, and (i) present output table for E.
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=(0-00), (0-01), and (0-10), and three state groups when B = 1, which are (BADE) = (1-
00), (1-01), and (1-10). The state table is generated from these state grouping as shown
in Fig. 5-1(d).

A 3-BAT, as shown in Fig. 5-1(e), is generated based on the adjacency diagram
of the state table. The race-free state assignment algorithm is applied and the 3-BAT is
mappable to a 4-BRT as depicted in Fig. 5-1(f), which shows that state 1 is encoded as
0, or a 3-bit binary value 000, state 2 as 3 (or 011), state 3 as 6 (or 110), state 4 as 1 (or
001), state 5 as 2 (or 010), and state 6 as 7 (or 111). Finally, the hazard-free next state
equations and present output equations are generated as follows from the state

excitation table and present output tables in Fig. 5-1(g), (h), and (i):

Yo=y1B+y2B+y2y1%0A+y150BA+yay1¥0 A
+Y¥2¥0BA+y2y15 B

Yi=y2+y1A+y1 B+y1y0+yoBA

Yo=y2A+y,B+ysy¥o+y1¥0BA

D=y,

E=y,

5.1.2 FKW-2 Sequential Logic Function

Consider the following I/O functional design specification of a sequential logic
element. (See Fig. 5-2)
(1) There are three external inputs, which are labeled A, B and M, where A is a
level input, B is an edge input, and M is a mode input.
(2) There are two external outputs. They are labeled D and Ey,, where E; is the
postponed output of E.
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(3) The outputs D and E may change values on the rising edge of B. At this time
D,=AE,andE,=A+D_,ifM=0,and D,=AE'andE, = A"+ D if M
= 1, where E_ and D, are the current outputs, and D, and E, are the next
outputs.

(4) The output E,, is a postponed output of E, and the transition of E;, is postponed
until B changes value from 1 to 0 (falling edge).

To obtain a set of DOE:s for this design specification, a pseudo output E must be

introduced. This pseudo output represents a temporary variable of the ASLC needed to
generate the required state equations and output equations. By applying Equation

(3.10), one can obtain the following set of DOEs:

D, = (M’AE.+MAE_)B,+D_B,’ (5.3)
E,= (MA+MA’+D_)B,+E_B, (5.4)
E,, = EB,+EB+E,B B} (5.5)

These DOEs can be used to generate other support documentation, such as the
timing diagram illustrated in Fig. 5-2(d).

The state groupings can be made by determining the output states and considering
the values of B. This example has 4 allowed outputs (000, 011, 100, and 111) when B
=0, and 7 allowed outputs (000, 001, 010, 011, 100, 110, and 111) when B = 1. So the
state table has 11 state groups, and we can come up with a state table shown in Fig. 5-
2(f).

This example needs dummy states to generate a BAT because two states have
bipartite relationships with one state such as (1, 5) and (1, 6), (2, 7) and (2, 8), and (4,
10) and (4, 11). The dummy states are used only to avoid the breaks in the bipartite links

when generating cycles. The BAT with dummy states 1, 2’, and 4’ are shown in Fig. 5-
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FKW-2

When M =0,

A 1A D D
D,=AE_,E;=A+D,

M——-d1M
When M =1,

B Fl—-

>Bl E Ep Dn=AEC’,En=A’+Dc
(a) (b)

D, =M’ AE.+MAE/)B,+D.B/
E,=(M’A+MA’+D)B+E.B,

Epn =Ec (B, + Bp) + Ep¢ B, By

(©

Figure 5-2. FKW-2 sequential logic function; (a) graphic symbol, (b) output definitions,
(c) DOEs, (d) timing diagram, (e) state groups, (f) state table, (g) 7-BAT, (h) depiction of
a mapping to 4-BRT, (i) state excitation table, (j) present output table for (DEp), (k) circuit
decomposition, (1) SUB-1 state table, (m) SUB-2 state table, and (n) state table generated
from state tables of (1) and (m).
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1:(0,8,16,24) 5:(32, 40, 48, 56)
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BAM
001 011 010 110 111 101 100
70917
111 6

11

©

8

7

88
©©)
PE®
0]
PRI®

CER@ =[~]]

XTI AN E W N

®
0O

—
>

o000 §

[00)©]
@0
©©OEHIN
@O
111
MR
2[2]2
2[2]2
333
444
444

©)
@@
@@

-
=

=
2

Figure 5-2. (Continued)

000
011
100;;?
1118
000 E
0013
010 §
oug
100
110
111



_88-

1 2 47 8 111314

5 6 789

10 11

5 6 7 8 91011

vt NN

15 4

1

2. 3-°3. 1

1

(h)

(@)

000 001 011010 110 111 101 100

000 001 011 010 110 111 101 100

R e e R G L
e f=]e~]|a]a|n
e le =[x |m
] e~ le]=|a]a|m
Ol=IN|n]l o] ] o] ]l
(=1 E= Ko I Kso0 IRUEN BNURN BAURN BN BRUTN BRI B
Sf=|afen| [ ] ]
Sf—|afen| [ ] f ]|
—~ |t ~]= |||~ (2|2
R Ll A Ko B PN RO [N P ool
R E ool SN RO E A [ 0 el o
<EFEFRRFE=]2E
olo|f2]|c|cfe|e|]nfn
olo|Q|2|o|o|e|e(|nfn
olo|f2|c|ofe]|e|N|aln
olo|Q|2(o|efefe(dfafn
R R I

@

@

Figure 5-2. (Continued)



-89-

W N AN & WN-

M POG
SUB-1
A —— D
B >
SUB-2
— B
>
(k)
BA BA
00 01 11 10 00 01 11 10
@[®|26]16| 000 1 [0|(®]28]18
Q|@|31]17 ollufx? 2 [®|@]2s]19
@@B|31|19[111 8 3 |@®|@|30]18
0| 8]3|@3| 000 Z a |@|@]27]19)
0] 8[®3|@)| 00138 5|0 s|BO
3[ul@|@| o010 § 6|3[11)09/@
3[1|@)®)| 011 £ 7311@'@
75| 111 8| 4[12|¢3(¢9
9 [7]15]@|@)

0) (m)

Figure 5-2. (Continued)



O 0 N A N AW N e

e
L)

-90-

BAM

000 001 011 010 110 111 101100

Q| 7

9

7

5

6

6

OB

10

@
@@
3
[©

[S—

8

o0 | | oo

PO

NN&—‘.—-@

@|1
1
1
2
2

@R

@RI =]

HlwiniN |-
H Wl ]| —

@ .

 PPEPRE|
RO

e

(n)

Figure §-2. (Continued)

000
011
100
111 f
000
=
001
010 -
011
100
110
111

Present Output



91-

2(g). A mapping of the 7-BAT to 4-BRT is depicted in Fig. 5-2(h).The state excitation
table and present output table for outputs are derived from the encoded states as shown
in Fig. 5-2(i) and (j), respectively. Note that the present output table for E is not
necessary because it is a pseudo output which will not be realized.

The circuit decomposition according to the model in Section 3.4 is shown in Fig.
5-2(k). The NSG is divided into SUB-1 and SUB-2. And, the primitive states of each
sub-circuit are grouped separately to generate state tables. The number of states groups
of SUB-1 is 3 when B =0, and 5 when B=1. The number of states group of SUB-2 is 4
when B = 0, and 5§ when B=1. Each sub-circuit can be synthesized easily from this
simpler state table, and the POG can be easily constructed with few gates. The
combined state table is shown in Fig. 5-2(n), in which more “don’t cares” exist than the
state table in Fig. 5-2(f). These don’t care states are unallowed states in the operation

of the circuits which may be utilized to minimize the logic when realizing the circuits.

5.1.3 FKW-3 Sequential Logic Function

Consider another sequential logic element that would traditionally be
implemented with a clocked sequential logic circuits but whose speed could be
increased and chip area reduced by implementing it using an asynchronous circuits. The
circuit divides the frequency of the input signal by three and has the following 1/O
functional specification: (see Fig. 5-3)

(1) There is one external input C.

(2) There is one external output Q.

(3) Q changes state every third transition of C. The timing diagram of this

element is illustrated in Fig. 5-3(b).
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To generate the DOE for this design specification, pseudo outputs are needed to
store the first and the second transitions of the external input C. These pseudo outputs
represent temporary variables and are used to store the transition count.

Let G be a pseudo output which makes a transition according to the first transition
of C, and H as a pseudo output which makes a transition according to the second
transition of C. Then p, = 1 and pg = 1 for each output, and the output Q can be

represented by transition variables and pseudo outputs according to Equation (3.10) as

follows:
G,=0/C,+Q/C+G.C C/ (5.6)
H,=G/C,+G.C+HC,/'C/ (5.7)
Q,=HC,+HC+Q.C C/ (5.8)

The state groups are generated by considering the output states and the values of
C. This example has 3 allowed outputs when C=0, and accordingly it has 3 state groups,
which are (CGHQ) = (0000), (0011), and (0110), and 3 allowed outputs and state
groups when C = 1, which are (CGHQ) = (1001), (1111), and (1100). So the state table
has 6 rows, which is shown in Fig. 5-3(¢). From the state table, a 3-BAT is derived as
shown in Fig. 5-3(f). The encoded state number for each state is depicted in Fig. 5-3(g).
The state excitation table is generated from the encoded states as shown in Fig. 5-3(h).
The output tables for pseudo outputs are not needed because they will not be

implemented in the circuit. The output table for Q is derived as shown in Fig. 5-3(i).
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Figure §-3. FKW-3 sequential logic function: (a) graphic symbol, (b) timing diagram,
(c) DOEs, (d) state groups, (e) state table, (f) 3-BAT, (g) depiction of a mapping to 3-
BRT, (h) state excitation table, and (i) present output table for Q.
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5.2 Finite State Machines

Due to high complexity of synthesizing finite state machines (FSMs) in
asynchronous way, the FSMs have been implemented with CSLCs. With an external
clock that synchronizes the circuit operation, both hazards and races can be avoided. In
addition, the circuit is generally simpler to design than the ASLC counterpart. As
mentioned, the ASLC implementation may offer the advantage of speed performance
over the CSLC implementation. This subsection describes the implementation of the
developed synthesis procedure to asynchronous FSMs.

Since the clock signal C can be employed to simplify the FSM design in the CSLC
implementation, the signal can also be used as a transition variable [4]. Consider the
state transition diagram of a FSM, as shown in Fig. 5-4(a). The corresponding state
transition table is shown in Fig. 5-4(b). For asynchronous implementation, the state
table is expanded based on the transition variable C, as shown in Fig. 5-4(c). States are
changed only when the signal C is changed. More specifically, suppose the circuit is
stabilized at the state 1, the change of C from 0 to 1 causes a state transition to either
state 1’ or 2" depending upon the values of inputs, and the circuit will stabilize at that
state, say, state 2. Once the signal C is changed from 1 to 0, the other transition occurs
again to change the state from 2’ to 2.

If the state table in Fig. 5-4(c) is partitioned into four sub-tables in terms of edge
input C and the present states, the sub-tables have the following special characteristics:

(1) The states of the sub-tables in the upper left hand and in the lower right hand

are all stable, when C = 0 and C = 1, respectively, regardless of the changes
of the inputs.

(2) The sub-table in the upper right hand is exactly the same as the truth table in

Fig. 5-4(b), except that state "a" is renamed as state "a”".
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Figure 5-4. A FSM description: (a) state transition diagram, (b) state transition table,
(c) expanded state table, and (d) bipartite adjacency diagram.

(3) The sub-table in lower left hand is to map a state "a’™ back to state "a"

regardless of the changes of the inputs.

Moreover, the adjacencies among the states can be represented with a bipartite

graph as shown Fig. 5-4(d). This ASLC implementation needs neither the generation of

the primitive flow table nor the merging process of the primitive states. In addition,

according to the adjacency diagram of the state table, the race-free state assignment

problem is a mapping a bipartite graph into an n-cube which can be solved by the race-

free state assignment algorithm developed in Chapter 4.
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