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ABSTRACT

SOME NEW MODELS FOR SMALL AREA ESTIMATION

By

Hao Ren

This dissertation includes some new models for small area estimation. There are four parts

in total. The first part studied the selection of fixed effects covariates in linear mixed models.

A modified bootstrap selection procedure for linear model from literature was extended to

linear mixed effects models. Both theoretical work and simulations showed the effectiveness

of this procedure for linear mixed effects models.

In the second part, a new approach by shrinking both means and variances of small areas

was introducted. This method modeled the small area means and variances in a unified

framework. The smoothed variance estimators used information of direct point estimators

and their sampling variances, and consequently, for the smoothed small area estimators.

Conditional mean squared error of prediction was also studied in this part to evaluate the

performance of predictors.

The third part studied the confidence intervals of small area estimators introduced in the

second part. The literature of small area estimation is dominated by point estimation and

their standard errors. The standard normal or student-t confidence intervals do not produce

accurate intervals. The confidence intervals produced in this part are from a decision theory

perspective.

The fourth part estimated the small areas means with clustering of the small areas. In the

realistic application, the estimation may not be appropriate to “borrow strength” from all

other small areas universally, if cluster effects exist between clusters of small areas. A model



based on clustering was studied in this part, which included an additional cluster effect to

the basic area level model. Since the partition of clusters was not known, a stochastic search

procedure from literature was adapted first to find the clustering partition.
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Chapter 1

Introduction

1.1 Small Area Estimation

The term small area is commonly used to denote a small geographical area, such as a district.

It can also be used to denote a small demographic group, such as a small group with certain

social economic status or a sex/race/ethnicity group. Usually, a small area is defined when

the domain specific sample is not large enough to support direct estimates with an adequate

level of statistical precision.

The history of small area statistics is very long and can be traced back at least to eleventh

century England and seventeenth century Canada. However, those are based on either census

or administrative records targeting a complete enumeration (Brackstone, 1987) and sampling

is usually not involved in those studies.

In recent years, sample surveys have become more and more popular because they are

cost-effective and can help solve the issue that occurs when the population is dynamic and

the individuals making up the population are moving constantly. Some basic sample survey
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methods can be simple random sampling, systematic or stratified sampling. From the col-

lected sample, the direct measures, such as the mean and standard error, can be calculated

as the estimates for the population or each domain. However, if a small area exists, that

is, if the sample for some domain is not large enough, it may result in unacceptably large

standard errors if it is only based on direct survey estimators and only from the sample

area data. Thus, it is important to research small area statistics to develop more reliable

measures.

Small area estimation has gained more attention in recent years because of greatly in-

creasing demand from both public and private sectors. For public sectors, from countries

like the U.S. and Canada, they have a growing demand for small area statistics for the

purpose of formulating policies and programs, in cases like government funding allocation

and local regional planning. In order to identify areas that are in need of funding, such as

certain school districts or some subpopulation, the reliable estimates from the small area

are required. The increasing demand for small area statistics also comes from private sec-

tors, like small businesses. Often, the business decisions rely on the local social-economic

environment and other regional conditions. Therefore, estimates with adequate precision are

needed from small areas. Since direct estimates from sample surveys sometimes cannot meet

such requirements for small areas, the research on small area statistics has become more and

more important.

What is more, when central and eastern European countries and the former Soviet Union

countries moved away from a centralized decision making system, they also demand survey

results not only for large areas but also small areas. Again, this created an increasing demand

for the small area statistics.
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With high power computers, the processing of large and complex data become feasible

and it helps with the development of the small area statistics. Powerful statistical methods

with a sound theoretical foundation have been developed for the analysis of small area data.

Such methods “borrow strength” from related or similar small areas through implicit or

explicit models which provide a link between related small areas. These types of “borrow

strength” models will be the main focus of this dissertation. For review on small area

estimation, papers include Ghosh and Rao (1994), Rao(1999), Marker(1999), Rao (2001)

and Pfeffermann (2002), etc.

1.2 Classical Approach for Sample Survey

Direct Estimators

The variables of interest in a sample survey are usually the total measures or mean of the

area or domain. Direct estimators are commonly used to provide estimate of such variables

in a domain and use the sample data only in that domain. The typical direct estimators

are design-based. A more extensive reference of direct estimation in sampling theory can

be found in Lohr (1999). Direct estimators will sometimes suffice, such as domains with

sufficiently large sample size and particularly after addressing survey design issues. But, it is

well known that direct estimators for small areas are usually unreliable for the unacceptable

large standard errors due to unduly sample sizes of small areas.

Model-based methods for direct estimators are also developed. They provide valid con-

ditional inferences about the particular sample drawn, regardless of the sampling design.

However, model-based methods depend heavily on the correct specification of models. The

methods can perform poorly under misspecification even if the sample size is large.

3



Demographic Methods

The most powerful demographic method is census. Censuses are usually conducted at 10-

year or 5-year intervals to provide population counts for specific geographical areas or sub-

populations defined by age, sex, marital status and other demographic variables. But the

information from a census becomes outdated due to changes in the size and composition

of the resident population over time. Therefore, various demographic methods, other than

census, are developed to provide population estimation in the noncensal years.

The changes of demographic variables are strongly related to changes of local population.

Administrative registers contain current data of local population on various demographic

variables. Such variables are called symptomatic indicators, such as number of births and

deaths and net emigration during the period since the last census. Traditional demographic

methods employ indirect estimators based on implicit linking models, which related the pop-

ulation estimates and symptomatic variables. These methods may be categorized as either

symptomatic accounting techniques or regression symptomatic procedures. Symptomatic

accounting techniques provide indirect estimators under some implicit linking models with

the symptomatic variables. Regression symptomatic procedures use multiple linear regres-

sion to estimate local area populations. The symptomatic variables are used as independent

variables. For detailed description of these methods, one can see Rao (2003).

Typically, demographic indirect estimators use only administrative and census data and

sampling is not involved in these methods.

Indirect Estimators

As introduced previously, the unacceptably large standard errors of direct estimators are due
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to unduly sample size of the small areas. Therefore, it is necessary to find indirect estimators

that increase the effective sample size and thus decrease the standard error.

Traditional indirect estimation methods are based on implicit models that provide a

link to related small areas through supplementary data. Such estimators include synthetic

estimators, composite estimators, and James-Stein (or shrinkage) estimators. If a large area

covers several small areas and the small areas are assumed to have the same characteristics as

the large area, a reliable direct estimator for the large area can be used to derive an indirect

estimator for a small area. Such an estimator is called synthetic estimator (Gonzalez 1973).

The global measures (averaged over small areas) are often used with synthetic estimates. If

an estimator is a weighted average of a synthetic estimator and a direct estimator, it is called

a composite estimator. Actually, any estimator that has the composite form can be called

a composite estimator, both design-based and model-based. For a composite estimator, a

suitable weight needs to be chosen. The common weight approach uses a common weight

for the composite estimators for all small areas, then the total MSE is minimized with

respect to the common weight. The James-Stein estimator (James and Stein, 1961) is similar

to the common weight estimator and attracted a lot of attention in mainstream statistics

literature. It achieves large gains in efficiency in the traditional design-based framework

without assuming a model on the small area parameters. A detailed introduction of these

estimators can be found in Rao (2003).

1.3 Model Based Estimation

The traditional indirect estimators are briefly introduced in the previous section. Reduction

in MSE is the main reason for using indirect estimators. Indirect estimators are largely
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based on sample survey data in conjunction with auxiliary population data. However, the

traditional indirect estimators only provide an implicit link between the small areas. The

model based estimators which provide an explicit link between the small areas are introduced

in this section.

Model based estimators are indirect estimators based on small area models. Small area

models take the random area-specific effects into account and include additional auxiliary

variables in the model to explain the effects, which make specific allowance for between

area variation. Such models define the way how the related data are incorporated in the

estimation process. The use of explicit models makes model diagnostics possible which can

be used to find suitable models that fit the data well. For example, a selection of auxiliary

variables is conducted later in this dissertation. Area-specific measures of precision also can

be associated with each small area estimate. For complex data structures, more complex

model structures can be adopted, such as mixed models and generalized linear models. And

the existing methodologies for these models can be utilized directly to achieve accurate small

area estimation.

In general, small area models can be classified into two broad types: (i) area level model:

modeling the small area direct estimators with area-specific covariates. When unit level data

are not available, such area level models are necessary. (ii) unit level model: modeling the

unit direct estimators with unit-specific covariates.

1.3.1 Area Level Model

Let Ȳi be the small area means and g(·) be a specified function that link the model based

estimator θi and Ȳi, θi = g(Ȳi). The use of g(·) makes the model more robust. But in our
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study, we choose g(·) as the identical function, i.e. Ȳi = θi. The area level model relates the

θi and the area-specific auxiliary data zi = (z1i, . . . , zpi)
T in the following way,

θi = zTi β + bivi, i = 1, . . . ,m (1.1)

where β = (β1, . . . , βp) is the p× 1 vector of regression parameters, bi’s are known positive

constants, and vi’s are area-specific random effects that are iid with E(vi) = 0 and V ar(vi) =

σ2v . In this dissertation, a normal distribution is always adopted for vi. However, it is possible

to choose other distributions which makes the model robust. m is the total number of areas.

For making inferences about the θi’s under model (1.1), we assume that direct estimators,

θ̂i, are available and

θ̂i = θi + ei, i = 1, . . . ,m (1.2)

where the ei’s are sampling errors, E(ei) = 0 and V ar(ei) = σ2ei
. That is, the estimators θ̂i

are design-unbiased. And we always assume that the sampling variances, σ2ei
, are known.

The area level models have various extensions. A famous example is the Fay-Herriot

model. The model was developed by Fay and Herriot in 1979 to estimate per-capita income

for a small area (population less than 1,000). The Fay-Herriot model is adapted in this

dissertation and the details will be introducted later.

1.3.2 Unit Level Model

When unit-specific auxiliary data for each population element in each small area is avail-

able, the unit level model is adapted. Let yij be the variable of interest and Xij =
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(xij1, . . . , xijp)
T be the available element-specific auxiliary data. Then a one-fold nested

error linear regression model is given

yij = XTijβ + νi + eij (1.3)

j = 1, . . . , ni; i = 1, . . . ,m.

Here νi are the area-specific effects and are assumed to be iid random variables with E(vi) =

0 and V ar(vi) = σ2v . eij = kij ẽij and the ẽij ’s are iid random variables, independent of

the νi’s, with E(ẽij) = 0 and V ar(ẽij) = σ2e , the kij ’s are known constants, and ni are

the number of elements in the ith area. In addition, normality of the νi’s and ẽij ’s is often

assumed. The parameters of inferential interest are the small area totals Yi =
∑ni
i=1 yij or

the means Ȳi = Yi/ni.

The unit level model does not include sample selection bias in the model; that is, the

sample values are assumed to obey the model. Simple random sampling is satisfied for this

condition. But for more complex sampling designs, it may not be appropriate. For example,

in stratified multistage sampling, the design features are not incorporated in the model.

However, there are various extensions to account for such features.

1.4 Mixed Model

The small area models introducted in the previous section may be regarded as special cases of

the mixed models. The research of Mixed Models has gained much attention in recent years.

It has many names in in a wide variety of disciplines in the physical, biological and social

sciences. The mixed model is particularly useful in settings where repeated measurements
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are made on the same statistical units (longitudinal data), or where measurements are made

on clusters of related statistical units (clustered or panel data). Therefore, it can be called

the model for repeated measurements, or a hierarchical model.

The most important difference of the mixed model from classical statistics is that ob-

servations are not necessary from the same population, where independent and identically

distributed is a typical assumption. Mixed model data may have a more complex, multilevel,

hierarchical structure. The general assumption of mixed model data is that observations

from one cluster can be correlated, but independent between different clusters; and the sub-

populations of clusters can be different. Therefore, a random effect at each cluster level is

introduced into the model. The forms of a mixed model can be linear, generalized linear

(such Logistic and Poisson), and nonlinear. In this dissertation, we focus on the linear mixed

models only.

A general linear mixed model can be written as

y = Xβ +Zv + e (1.4)

where y is the vector of sample observations, X and Z are known matrices, and v and e

are distributed independently with means 0 and covariance matrices G and R, respectively,

depending on some variance components parameters.

One approach to this model can be obtained by using the general theory of Henderson

(1975) for a mixed linear model. If the parameters of variance components are known, the

best linear unbiased estimator of θ = lTβ +mT v is given by

θ̂ = lT β̂ +mTGZTV −1(y −Xβ̂) (1.5)
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where V = R+ZGZT is the variance-covariance matrix of y and

β̂ = (XTV −1X)−1(XTV −1Y )

is the generalized least squares estimator of β.

There are a lot of other approaches available, such as empirical best linear unbiased

prediction, empirical Bayes method, and hierarchical Bayes method. Some of these methods

will be involved in our studies later. The details of these methods can be found in literatures,

such as Ghosh and Rao (1994) and Rao (2003).

1.5 Study Topics

As I introduced in previous sections, small area estimation and the statistical techniques

therein have become a topic of growing importance in recent years and this is the reason

why I chose small area estimation as the topic of my dissertation. To be more specific, the

works in this dissertation includes the following aspects.

Model Selection for Linear Mixed Effects Models

The need for reliable small area estimates is felt by many agencies, both public and private,

for making useful policy decisions. For example, the small area statistics being used to

monitor socio-economic and health conditions for different stratum defined by age, sex,

racial groups over small geographical areas.

It is now widely recognized that the direct survey estimates for small areas are usually

unreliable, being accompanied with large standard errors and coefficients of variation. This
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makes it necessary to use models, either explicit or implicit, to connect the small areas and

obtain estimates of improved precision by borrowing strength across areas.

In the previous sections, some basic models for small area estimation is presented. Before

we start working on more complex approach methods, it is important to note the influence

on the choice of models, particularly on the choice of auxiliary variables. The success of any

model-based method depends on the availability of good auxiliary data. Therefore, more

attention should be given to the selection of auxiliary variables that are good predictors of

the study variables.

The model selection study here arises from potential choices of the fixed effects covariates

in linear mixed effects models. A bootstrap model selection method is adapted in this

dissertation. The procedure based on the bootstrap has some important features: first, the

bootstrap method can provide more accurate inference (Adkins and Hill, 1990; Hall,1989)

at the same time when the model selection is undergoing. In other words, the bootstrap

based inference on regression parameters takes into account the model selection procedure.

Second and most importantly, the bootstrap selection procedure does not depend on a specific

probability distribution.

However, a straightforward application of the bootstrap does not yield a consistent model

selection procedure (Shao, 1996). A simple modification was applied to the straightforward

bootstrap procedure: generate m (instead of n, and m < n, n is the size of all available

data) iid bootstrap observations from the empirical distribution which puts equal mass on

each pair of available data. After the modification, it will result with consistency if and only

if m/n→ 0 and m→ ∞.

11



However, only the linear model is studied in the literature. In this dissertation, the

modified bootstrap selection procedure is extended to linear mixed effects models, including

the Fay-Herriot Model and the Nested-Error Regression Model, that are commonly used in

small area estimation.

Small Area Predictors by Shrinking both Mean and Variances

The basic area level model is introducted in section 1.3.1. The survey based direct small area

estimates and their variance estimates are the main ingredient to build area level small area

models. Typical modeling strategies assume that the sampling variances are known while

a suitable linear regression model is assumed for the means. For detailed developments,

one can see Ghosh and Rao (1994), Pfeffermann (2002) and Rao (2003). The typical area-

level models are subject to two main criticisms: (i) in practice, the sampling variances are

estimated quantities and these are subject to substantial errors due to the fact that they are

often based on equivalent sample sizes as the direct estimates are being calculated and (ii)

assumption of known and fixed sampling variances does not take into account the uncertainty

of estimation into the overall small area estimation strategy.

Previous attempts have been made to model only the sampling variances by Maples et al.

(2009), Gershunskaya and Lahiri (2005), Huff et al. (2002), Cho et al. (2002), Valliant (1987),

and Otto and Bell (1995). Wang and Fuller (2003) and Rivest and Vandal (2003) extended

the asymptotic mean squared error (MSE) estimation of Prasad and Rao (1990) when the

sampling variances are modeled with few additional parameters. You and Chapman (2006)

considered sampling variance modeling. However, they adopted full Bayesian estimation

techniques.
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The issues have been recently raised by the practitioners. For example, Herrador et al.

(2008) investigated estimates of design variances of model based and model-assisted small

area estimators. The latest developments are nicely summarized in a recent article by

William Bell of the United States Census Bureau (Bell, 2008). He carefully examined the

effect of the above two issues in the context of MSE estimation for model based small area

estimators. He also provided numerical evidence of the effect of assuming known sampling

variances in the estimation of MSE in the context of the Fay-Herriot model. The develop-

ments so far made to this issue can be “loosely” viewed as (i) smoothing the direct sampling

error variances to obtain stable variance estimates with low bias and (ii) (partial) account

of sampling variance uncertainty by extending the Fay-Herriot model.

Much less or no attention has been given to accounting the sampling variances effec-

tively while modeling the mean compared to the volume of research that has been devoted

for modeling the means and their inferential issues. Thus, there is a lack of systematic de-

velopment in small area estimation which includes shrinking both means and variances. In

other words, we would like to exploit the technique of “borrowing strength” from other small

areas to “improve” the variance estimates as we do to improve the small area mean esti-

mates. The methodology introduced here develops a dual “shrinkage” estimation for both

the small area means and variances in a unified framework. In this process, the smoothed

variance estimators use information of direct point estimators and their sampling variances,

and consequently, for the smoothed small area estimators.

The modeling perspective is closely related to Wang and Fuller (2003), Rivest and Van-

dal (2003), You and Chapman (2006) and Hwang et al. (2009). An EM-based estimation

approach is developed. Numerical evidences are provided to show effectiveness of the dual
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shrinkage estimation.

One statistic reported is conditional mean squared error of prediction (CMSEP) which is

more akin to Booth and Hobert (1998). Booth and Hobert argued strongly for CMSEP as

opposed to unconditional mean squared error of prediction (UMSEP). Recently, this tech-

nique has again been emphasized by Lohr and Rao (2009) in the context of nonlinear mixed

effect models. These authors favor CMSEP particularly for non-normal models when the

posterior variance of small area parameters depends on the area specific responses. Although

they were interested only in generalized linear mixed models where the posterior variance

depends on area specific responses, this property of posterior variance is perhaps true for

situations with posterior non-linearity.

Another inference adopted is confidence intervals of small area means. The small area

estimation literature is dominated by point estimation and their standard errors. It is well

known that the standard practice of (pt. est.± qs.e.), q is a Z (standard normal) or a t cut-

off point, does not produce accurate intervals. See, Hall and Maiti (2006) and Chatterjee

et al. (2008) for more details. The previous works are based on the bootstrap procedure and

has limited use due to repeated estimation of model parameters. The confidence intervals

produced in this dissertation are from a decision theory perspective.

Clustering Based Small Area Estimation

For the introduced small area models, both the area level model and the unit level model

assumed iid random area effects. That is, when we make inference of each small area, we

“borrow strength” from all other small areas universally. But the realistic geographical

(spatial) and socio-economic status of small areas in a large region may be quite different

from each other. For example, the demographic composition of a small area might be close
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to the adjacent small areas, but might not be all the adjacent areas; a similar thing exists

for house-hold incomes, poverty levels and many other types of information. When we

“borrow strength” from other small areas under such conditions, the inference may even be

misleading. Therefore, it is more appropriate to divide all small areas into groups (clusters)

if diversities exist between groups of small areas.

In this dissertation, a data set from the Michigan Educational Assessment Program

(MEAP) is analyzed. The numbers of students for each school district is diverse. The

standard deviations of students’ math scores for each school district are also quite different

from each other. A detailed description of the data set is given the later chapters. These

information show that small area models are appropriate to be adopted to analyze the data

set; and the comparisons of mean scores based on model-based estimate results are more

meaningful than the direct comparison of mean score. In addition, the poverty levels of

school districts suggest that small area models with clustering the school districts is more

appropriate.

There are a lot of clustering methods available. However, it usually happens that we do

not have partition information for clustering, or even the number of clusters. A stochastic

search procedure from Booth et al. (2008) is adopted to solve the problem. The partition

of clustering is involved in the model as a parameter. A cluster-specific random effect is

also included in the model, which allows the cluster means departure from the assumed

base model. The objective function is constructed based on the posterior distribution of

the undergoing partition. The partition maximizes the objective function is chosen as the

“optimal” clustering partition.
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In Booth et al. (2008), they assumed the variances of objects were unknown but iid within

a cluster. The main difference between our model and the model in Booth et al. (2008) is

that different variances are assigned to each school district and assumed as known since they

are reported in the MEAP data set. The posterior distribution based on different variances

for each school district does not have a close form and only can be calculated by numerical

method.
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Chapter 2

Bootstrap Model Selection for Linear

Mixed Effects Models: Application to

Small Area Estimation

2.1 Introduction

Let {(xi, yi), i = 1, . . . , n} be the available data set. Some models always need to be fitted if

the objective is to discover the relationship between x and y. Often, all the components of x

may not be related or important to y. An optimal model contains the necessary components

of x. The procedure of selecting the variables is a model selection problem in which each

model corresponds to a particular set of the components of x.

Among the many existing variable/model selection procedures, such as AIC, BIC, Mel-

low’s Cp, R
2 etc., the procedure based on the bootstrap has some important features: first,

the bootstrap method can provide more accurate inference (Adkins and Hill, 1990; Hall,
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1989) at the same time when the model selection is undergoing. In other words, the boot-

strap based inference on regression parameters takes into account the model selection pro-

cedure. Second and most importantly, the bootstrap selection procedure does not depend

on a specific probability distribution.

A very important theoretical study of a bootstrap selection procedure is its consistency.

Shao (1996) discovered that a straightforward application of the bootstrap does not yield a

consistent model selection procedure. A simple modification was applied to the straightfor-

ward bootstrap procedure: generate m (instead of n, and m < n) independent and identical

(iid) bootstrap observations from the empirical distribution F̂ , which puts mass n−1 on each

pair (xi, yi), i = 1, . . . , n. After the modification, it will result in consistency if and only if

m/n→ 0 and m→ ∞.

However, only the linear model is studied in the literature. In this chapter, the modified

bootstrap selection procedure is extended to different aspects of the mixed model, including

the Fay-Herriot Model and Nested-Error Regression Model, that are commonly used in

small area estimation. The model selection study here arises from potential choices of the

fixed effects covariates. In the following sections, we first start with a replication of Shao’s

algorithm in the linear model. Then the modified algorithms of model selection procedures

for linear mixed models is provided. After that, the simulation studies were carried out with

respect to the previous algorithms. The results are listed in the final section.

2.2 Linear Model

The model is given by

yi = xTi β + ei, i = 1, . . . , n (2.1)
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where xi is the ith value of a p× 1 vector of explanatory variables and yi is the response at

xi, β is a p×1 vector of unknown parameters. In our study, p is fixed, and does not increase

as n increases. We assume that ei, i = 1, . . . , n, are iid Normal(0, σ2e ) and

µi = E(yi|xi) = xTi β var(yi|xi) = σ2e i = 1, . . . , n

The unknown parameters are estimated by the least squares estimator (LSE)

β̂ = (XTX)−1XTY (2.2)

For the variable/model selection procedures, let α be a subset of 1, . . . , p of size pα and let

xiα (or βα) be the subvector of xi (or β) containing the components of xi (or β) indexed

by the integers in α. Then a candidate model, say model α, is

yi = xTiαβα + ei, i = 1, . . . , n

µiα = E(yi|xi) = xTiαβα var(yi|xi) = σ2e

and the parameter is estimated using equation (2.2)

β̂α = (XTαXα)
−1XTα Y

Then an average conditional expected loss is defined to measure the efficiency of model α

Γn(α) = E

 1
n

n∑
i=1

(yi − xTiαβ̂α)
2|Y,X

 (2.3)
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The model α ∈ A which minimizes Γn(α) will be chosen as the estimate of the optimal

model, where A is the collection of some subsets of 1, . . . , p. The largest possible A is the

one containing all nonempty subsets of 1, . . . , p. For practice, we will consider a smaller

collection of subsets. The optimal model, called α0, in this sense is the correct model with

the smallest size and the smallest Γn(α). As Γn(α) involves the unknown parameter β, α0

must be estimated by α̂.

The model selection procedure is consistent if

lim
n→∞P (α̂ = α0) = 1

With the modified bootstrapping pairs method, generate m (< n) iid pairs (x∗i , y
∗
i ) from the

empirical distribution F̂ putting mass n−1 on (xi, yi), i = 1, . . . , n.

Then a bootstrap estimator of E[Γm(α)], for m < n, is

Γ̂n,m(α) = E∗
∥Y −Xαβ̃

∗
α,m∥2

n
(2.4)

where ∥a∥ =
√
aT a for any vector a, β̃∗α,m is the bootstrap analog of β̂α based on the

generated m iid bootstrapping observations,

β̃∗α,m =

 m∑
i=1

x∗iαx
∗′
iα

−1 m∑
i=1

x∗iαy
∗
i

and E∗ represents expectation approximated by Monte Carlo with size B,

Γ̂
(B)
n,m(α) =

1

B

B∑
b=1

∥Y −Xαβ̃
∗b
α,m∥2

n
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The objective of the selection procedure is to select a model α̂n,m ∈ A that minimizes

Γ̂n,m(α). From the literature (Shao, 1996), this bootstrap selection procedure is consistent;

that is

lim
n→∞P (α̂n,m = α0) = 1

provided that m satisfies m/n→ 0 and m→ ∞.

2.3 Linear Mixed Model

In this section, the modified bootstrapping selection procedure will be applied to the Linear

Mixed Model (LMM). The general mixed linear model is

y = Xβ + Zν + e

Where y is the vector of sample observations, X and Z are known matrices, β is the unknown

parameters, and ν and e are distributed independently with mean 0 and covariance matrices

G and R. Here two special cases of LMM, the Fay-Herriot model and Nested-Error regression

model, will be used to illustrate the modified bootstrap selection procedure.

2.3.1 Fay-Herriot Model

If the character of interest is the sample mean ȳ of each group, ȳ = (ȳ1, . . . , ȳn), Fay and

Herriot (1979) developed this model to estimate per-capita income for small areas (population
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less than 1,000). The model can be stated as

ȳi = µi + ei

µi = xTi β + νi i = 1, . . . , n

(2.5)

where xi = (xi1, . . . , xip)
T is available for each area i, β is the unknown parameters, and

e = (e1, . . . , en)
T and ν = (ν1, . . . , νn)

T are distributed independently as Normal(0,D) and

Normal(0,AI) respectively, where D = diag(D1, . . . , Dn) and Di is known. Therefore, µi is

Normal(xTi β,A) and ȳ is Normal(µ,D) if µ is given.

For the Fay-Herriot model, the best linear unbiased estimator of µi is

µ̂i = xTi β̂ + A
A+Di

(ȳi − xTi β̂), i = 1, . . . , n

β̂ = (XTV−1X)−1XTV−1ȳ

(2.6)

where V = diag(A+D1, . . . , A+Dn) and X = col1≤i≤n(xTi ).

The model selection procedure in the Fay-Herriot model is similar to that in the linear

model. Consider bootstrapping pairs, let (x∗i , ȳ
∗
i ), i = 1, . . . ,m, be iid sample from the

empirical distribution putting mass n−1 to each (xi, ȳi), i = 1, . . . , n. And D∗
i , i = 1, . . . ,m,

are the corresponding known variance components. Then the bootstrap analogs of β and µ̂i

under model α with bootstrap sample size m are

β̃∗α,m =

 m∑
i=1

x∗iαx
∗′
iα

Âm +D∗
i

−1 m∑
i=1

x∗iαȳ
∗
i

Âm +D∗
i

x∗iαȳ
∗
i

µ̃iα = xTiαβ̃
∗
α,m +

Âm

Âm +D∗
i

(ȳi − xTiαβ̃
∗
α,m)
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where Âm is the analog of Â with bootstrap sizem and Â is an unbiased quadratic estimator

of A, where

Ã =
1

n− p

 m∑
i=1

µ̂2i −
m∑
i=1

Di

(
1− xTi (X

TX)−1xi

)
Â = max(Ã, 1/n) (2.7)

where µ̂i = ȳi − xTi β̂ and β̂ = (XTX)−1XT ȳ.

Define

Γ̂n,m(α) = E∗
1

n

m∑
i=1

(ȳi − xTiαβ̃
∗
α,m)2 (2.8)

Or define the loss function with the random effect estimated by the bootstrap sample data

Γ̂n,m(α) = E∗

 1

m

∑
i∈IB

(
ȳi − xTiαβ̃

∗
α,m − Âm

Âm +Di
(ȳi − xTiαβ̃

∗
α,m)

)2
+

1

n−m

∑
i/∈IB

(ȳi − xTiαβ̃
∗
α,m)2

 (2.9)

where IB is the set of indexes of which groups are chosen as bootstrap sample. The model

selected by this bootstrap procedure is α̂n,m ∈ A that minimizes Γ̂n,m(α).
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2.3.2 Nested-Error Regression Model

This model was proposed by Battese et al. (1988) to estimate mean acreage under a crop

for counties (small area) in Iowa. Their model is given by

yij = xTijβ + νi + eij i = 1, . . . , t, j = 1, . . . , ni,
t∑
i=1

ni = n (2.10)

νi ∼ N(0, σ2ν), eij ∼ N(0, σ2e)

where yij is the character of interest for the jth sampled unit in the ith sample area,

xij = (xij1, . . . , xijp)
T , β is the unknown parameters, and ni is the number of sampled

units in the ith small area. The random errors νi and eij are independent of each other.

The variance-covariance matrix of y is V = diag(V1, . . . , Vt) with Vi = σ2eIni + σ2ν1ni1
T
ni

.

The generalized least squares estimator of β is the same as (2.6)

β̂ = (XTV−1X)−1XTV−1Y (2.11)

The corresponding estimator of νi is

ν̂i = γi(ȳi − x̄Ti β̂)

where γi = σ2ν(σ
2
ν + σ2en

−1
i )−1, and ȳi and x̄i are the sample mean of yij and xij in the

ith group.

If variance components are unknown in LMM, variance components are estimated by
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Henderson’s method 3 (for nested error model):

σ̂2e = (n− t− k + λ)−1∑∑
ê2ij

σ̃2ν = n−1
∗
[∑∑

û2ij − (n− k)σ̂2e

] (2.12)

where n∗ = n−tr
[
(X̄T X̄)−1∑t

j=1 n
2
j x̄j x̄

T
j

]
. λ = 0 if the model has no intercept term and

λ = 1 otherwise. {ê2ij} are the residuals from the ordinary least squares regression of yij− ȳi

on {xij1− x̄i·1, · · · , xijk− x̄i·k} and {ûij} are the residuals from the ordinary least squares

regression of yij on {xij1, · · · , xijk}. To avoid negative σ̃2ν , we define σ̂2ν = max(σ̃2ν, 1/n).

The model selection procedure in the nested-error regression model is a little different

from previous models. First, the bootstrap will be done with the group level, instead of

elements in each group. Let (x∗i , y
∗
i ), i = 1, . . . ,m, be iid sample groups from the empirical

distribution putting mass t−1 to each group (xi, yi), i = 1, . . . , t, where xi = (xTi1, . . . , x
T
in)

T

and yi = (yi1, . . . , yin)
T . Then the bootstrap analogs of β̂ under model α with bootstrap

sample size m is

β̃∗α,m = (X̂∗T
α V ∗−1X̂∗

α)
−1X̂∗T

α V ∗−1Ŷ ∗ (2.13)

where X̂∗
α and Ŷ ∗ are the bootstrap sample data with the corresponding estimated variance

components.

Define

Γ̂n,m(α) = E∗
1

n

n∑
i=1

(yij − xijβ̃
∗
α,m)2 (2.14)

Or define the loss function by considering the random effect estimated by the bootstrap
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sample data:

Γ̂n,m(α) = E∗

 1

m

∑
i∈IB

(
yij − xTij,αβ̃

∗
α,m − γ̃i(ȳi − x̄Tiαβ̃

∗
α,m)

)2
+

1

n−m

∑
i/∈IB

(yij − xTij,αβ̃
∗
α,m)2

 (2.15)

where γ̃i = σ̃2ν(σ̃
2
ν + σ̃2en

−1
i )−1, and σ̃2ν and σ̃2e are estimated variance components under

model α with bootstrap sample size m, IB is the set of indexes of which groups are chosen

as the bootstrap sample.

The alternative algorithm is to bootstrap with the element level. Since the data are

correlated within a group, the transformation is needed first to reduce the correlation:

ŷij = yij − αiȳi• x̂ij = xij − αix̄i•

ν̂i = νi − αiνi êij = eij − αiēi•
(2.16)

where

αi = 1−
[
σ2e/(σ

2
e + niσ

2
ν)
]1/2

After the transformation, the new model is a “Linear Model”:

ŷij = x̂Tijβ + uij where uij ∼ Normal(0, σ2e ) (2.17)

Then β is estimated by

β̂ = (X̂T X̂)−1X̂T Ŷ

where X̂ = col1≤i≤tcol1≤j≤ni(x̂
T
ij) and Ŷ = col1≤i≤tcol1≤j≤ni(ŷij). After the trans-
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formation of the data, the bootstrap procedure of the linear model can be used to the

nested-error regression model.

2.4 The Theoretical Framework

Recently, Das et al. (2004) presented a general linear mixed model

Y = X0β0 + Zv + en (2.18)

where Y ∈ Rn is a vector of observed responses, X0, n × p0, Zn×q are known matrices

and v and en are independent random variables with dispersion matrices D(ψ) and Rn(ψ)

respectively. Here β0 ∈ Rp0 and ψ ∈ Rk are fixed parameters. The mixed ANOVA model,

longitudinal models including the Fay-Herriot model and the nested error regression model

are special cases of the above framework.

The model selection issue here arises from potential choices of the fixed effects covariates,

which are reported in the columns of the matrix X0. In particular, the true value of p0 is

not known. We have a collection of vectors Xi ∈ Rn, i = 1, . . . , p, and any candidate X has

a sub-collection of these vectors as columns.

Let S = {1, . . . , p} denote the set of indices of the columns of covariates, and a typical

subset of S is given by α = {j1, . . . , jpα} ⊆ S, and has pα ∈ {0, 1, . . . , p} elements.

Xα = [Xj1
: . . . : Xjpα

] ∈ Rn × Rpα , that is, the columns of Xα are those vectors

whose indices match with those of α. In a slight abuse of notation, we write that the model
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α is given by

Y = Xαβα + Zv + en. (2.19)

The number and choice of candidate models may be restricted by imposing conditions on

the subset α = {j1, . . . , jpα} ⊆ S. For example, nested models may be considered as

a restrictive choice of candidate models α. It can be seen that the true data generating

process, given by (2.18), is one of the candidate models. The goal of model selection is to

consistently identify the true model.

We start with a random vector w = (w1, . . . , wn) which is a realization from a Rn

dimensional random variable, sometimes referred to as bootstrap weights. We impose the

restriction that wi ≥ 0, which also reinforces the notion that these are weights. For con-

venience, we define the diagonal matrix W , whose diagonal entires are given by w, that is,

the ith entry is wi. When w has the Multinomial (m; 1/n, . . . , 1/n) distribution for some

m ≤ n, this method is identical to the m-out-of-n bootstrap. In particular, when m = n, we

get the classical botstrap of Efron (1979). Other weights may be used as well, for example

to obtain the Bayesian bootstrap.

We use these bootstrap weights in a most interesting way. We define the following inner

product between two vectors x and y in Rn:

< x, y >W= xTWy =
n∑
i=1

wixiyi.

Thus, this inner product is a weighted Euclidean inner product, where the weights are the

bootstrap weights. Notice that we recover the usual Euclidean inner product when all the
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weights are equal to 1. In general, however, < ·, · >W is a semi-inner product, as some of the

weights can be zero. Suppose PW ,α is the projection matrix for a projection on the column

space of Xα in terms of this randomly weighted semi-inner product < ·, · >W . Thus, for

any vector v ∈ Rn, its projection on the column space of Xα is given by vW ,α = PW ,αv.

Let In denote the identity matrix in Rn. For each model α, we obtain the following

number:

Tα = EB||(In −PW ,α)Y||2,

where EB stands for the bootstrap expectation, that is, expectation conditional on the

observed data. Thus, in terms of our framework, EB stands for integration with respect to

the random matrix W conditional on all other random terms.

We now develop some conditions for the bootstrap weights {w1, . . . , wn}. First, we

assume that all the weights are semi-exchangeable up to order 4, that is, all marginal dis-

tributions involving subsets of size 4 or below from {w1, . . . , wn} have an exchangeability

property. In particular, we assume that the univariate marginals of wi for various i = 1, . . . , n

are all identical, and the two-dimensional marginal of any pair (wi, wj) for i ̸= j = 1 . . . , n

also have the same distribution.

We assume several lower order moments of w. In particular, we reserve the notation

Ew1 = µw and Vw1 = σ2w, and define the centered and scaled weights Wi = σ−1
w (wi−µw)

for i = 1, . . . , n. Our technical assumptions will involve conditions on various cross-moments,

which we state later.

In terms of the centered and scaled bootstrap weights W = (W1, . . . ,Wn), we now write

the randommatrix of bootstrap weights asW = µwIn+σwW , whereW = diag(W1, . . . ,Wn),
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the diagonal matrix with centered and scaled weights. For use in our technical proofs, we

define the matrix U = σwµ
−1
w W . In the m-out-of-n bootstrap (moon-bootstrap) case, we

have σ2w = n−1m(1− n−1), µw = n−1m and cw11 = −n−2m.

We also define the notation n−1XTαXα = Dn,α. The inverse of Dn,α exists if and only

if Xα has full column rank, and we assume that this is the case. Our technical methodology

applies to cases where Dn,α does not have an inverse. However, this scenario results in a

problem of identifiability of models, and we assume that Xα has full column rank to avoid

any issue of unique identification of models.

We also define

Aα = n−1D
−1/2
α XTαUXαD

−1/2
α

Pα = Xα

(
XTαXα

)−1
XTα

= n−1XαD
−1/2
α XTα

Bα = UXαD
−1/2
α (In +Aα)−1D

−1/2
α XTαU

P̃α = Pα

[
In − U + n−1Bα

]
Pα

Eα = Pα − P̃α [In + U ]

In terms of these, we have

PW ,α = Xα

(
XTαWXα

)−1
XTαW

= Xα

(
XTα [µwIn + σwW ]Xα

)−1
XTα [µwIn + σwW ]
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= n−1µwXα

(
n−1µwX

T
α [In + U ]Xα

)−1
XTα [In + U ]

= n−1Xα

(
n−1XTα [In + U ]Xα

)−1
XTα [In + U ]

= n−1Xα

(
Dα + n−1XTαUXα

)−1
XTα [In + U ]

= n−1Xα

[
D
1/2
α

{
In + n−1D

−1/2
α XTαUXαD

−1/2
α

}
D
1/2
α

]−1
XTα [In + U ]

= n−1Xα

[
D
1/2
α {In +Aα}D1/2

α

]−1
XTα [In + U ]

= n−1XαD
−1/2
α [In +Aα]−1D

−1/2
α XTα [In + U ]

= n−1XαD
−1/2
α

(
In −Aα +Aα [In +Aα]−1Aα

)
D
−1/2
α XTα [In + U ]

= n−1Xα

[
D−1
α −D

−1/2
α AαD

−1/2
α

+D
−1/2
α Aα (In +Aα)−1AαD

−1/2
α

]
XTα [In + U ]

=

[
Pα −PαUPα + n−1PαUXαD

−1/2
α (In +Aα)−1

D
−1/2
α XTαUPα

]
[In + U ]

= Pα

[
In − U + n−1Bα

]
Pα [In + U ]

= P̃α [In + U ] .

Using this, we have

In −PW ,α = In −Pα +Pα −PW ,α

= In −Pα +Pα − P̃α [In + U ]

= In −Pα + Eα.
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We now analyze the last term in greater detail. We have

Eα = Pα − P̃α [In + U ]

= Pα −Pα

[
In − U + n−1Bα

]
Pα [In + U ]

= Pα −Pα

[
In − U + n−1Bα

]
Pα − P̃αU

= PαUPα − n−1PαBαPα − P̃αU

= PαUPα − n−1PαBαPα −Pα

[
In − U + n−1Bα

]
PαU

= PαUPα −PαU +PαUPαU − n−1PαBαPα − n−1PαBαPαU

= PαUPα −Pα(In − U)PαU − n−1PαBαPα(In + U)

= −PαU(In −Pα) +PαUPαU − n−1PαBαPα(In + U).

Since Eα is Pα times another matrix, we have (In −Pα)Eα = 0. Using this, we have

Tα = EB||(In −PW ,α)Y||2

= EBY
T (In −Pα + Eα)T (In −Pα + Eα)Y

= Y T (In −Pα)Y + EBY
TETαEαY.

Thus, we have a very neat decomposition of Tα, with the first term capturing the squared

residuals in model α, and the other term containing all the bootstrap related quantities.

Our next task is to compute EB(E
T
αEα). Note that all the bootstrap weights are in the

matrix U . We have

ETαEα = (In −Pα)UPαU(In −Pα) + ER,α,

32



where ER,α is a symmetric matrix, which is entirely negligible. The algebra for showing

the different components of ER,α is long and tedious, and it also is the source of much of

our technical assumptions, so we skip the details here.

Consequently, we now need to evaluate

Vα = EBUPαU

= ((EBUiUjPα,ij))

=


σ2wµ

−2
w Pα,ii if i = j

cw11σ
2
wµ

−2
w Pα,ij if i ̸= j

For use later on, we define the diagonal matrix

Gα = (1− cw11)σ
2
wµ

−2
w diag(Pα,ii).

In terms of the subsequent analysis, the difference between Vα and Gα is negligible. Thus,

the properties of Tα are governed by

Zα = YT (In −Pα) [In +Gα] (In −Pα)Y.

The difference between Tα and Zα is negligible, although showing this involves a lot of

algebra.

There is a Zα value corresponding to each model α. Also note that, at least in large

samples, Zα is positive, which is very consistent with the fact that Tα is always positive. We

compare the various Tα’s, and establish that with probability tending towards one the true

model has the smallest value. This is again a lot of algebra, but the main scheme for proving
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this uses the moment-generating function for Tα. The results follow from a calculation based

on derivatives of determinants of matrices like A+ tB.

2.5 Simulation Study

To examine the finite-sample performance of the selection procedures, a simulation study

was carried out based on bootstrapping pairs with different bootstrap sampling size m and

various model settings. First, the similar results of the linear model from Shao’s paper were

replicated. The same data set used by Shao from the solid waste data example of Gunst

and Mason (1980) was used again; and the same value of β, (2, 9, 6, 4, 8), is chosen. Then

the Fay-Herriot model was tested with the same data set. After that, two different selection

procedures of the nested-error model based on the same data set were carried out.

2.5.1 Algorithms and Settings for Different Models

For the linear model, the size of the data set, n, is 40 and ei, i = 1, . . . , n, is iid standard

normal errors. The algorithm is:

1. Generate data, Y, according to the defined linear model (2.1).

2. Bootstrap one sample with size m = 15 from the original data.

3. For each candidate model: (1) estimate the unknown parameters by (2.2); (2) calculate

the loss function in (2.3).

4. Repeat step 2&3 B = 100 times. Choose the candidate model with the minimized

mean of loss functions as the optimal model. Get the 95% confidence interval of fixed

effect parameters from the 2.5% and 97.5% quantiles of B bootstrap samples.
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5. Repeat steps 2, 3 & 4 with different bootstrap samples of size m = 20, 25, 30, 40.

6. Record the optimal model and corresponding confidence intervals. Repeat steps 1-5

1000 times.

7. Repeat the whole process with different true model settings.

For the Fay-Herriot model, the same x is used as the linear model and n = 40; for the

variance components, chose A = 1 and D = diag(0.7I8, 0.6I8, 0.5I8, 0.4I8, 0.3I8), I8 means

an 8× 8 identical matrix. The algorithm is:

1. Generate data, Y, based on the model (2.5).

2. Bootstrap one sample with size m = 15 from the original data.

3. For each candidate model: (1) estimate variance components A using (2.7); (2) estimate

the fixed effect parameters with Â using (2.6); (3) calculate the loss function using (2.8)

and (2.9).

4. Repeat step 2&3 B = 100 times. Choose the candidate model with the minimized

mean of loss functions as the optimal model. Get the 95% confidence interval of fixed

effect parameters from the 2.5% and 97.5% quantiles of B bootstrap samples.

5. Repeat steps 2, 3 & 4 with different bootstrap samples of size m = 20, 25, 30, 40.

6. Record the optimal model and corresponding confidence intervals. Repeat steps 1-5

1000 times.

7. Repeat the whole process with different true model settings.
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For the nested-error regression model, we use the same data set with size n = 40, divided

into t = 10 groups with ni = (5, 6, 4, 5, 3, 2, 5, 3, 3, 4); choose the variance components as

σ2ν = 1 and σ2e = 1. The algorithm of the bootstrap with group level is:

1. Generate data, Y, based on model (2.10).

2. Bootstrap one sample of m = 4 groups from the original 10 groups of the data.

3. For each candidate model: (1) estimate variance components by Henderson’s method

3 in (2.12); (2) estimate the fixed effect parameters based on σ̂2ν and σ̂2e using (2.11)

or (2.13); (3) calculate the loss function using (2.14) and (2.15).

4. Repeat steps 2&3 B = 100 times. Choose the candidate model with the minimized

mean of loss functions as the optimal model. Get the 95% confidence interval of fixed

effect parameters from the 2.5% and 97.5% quantiles of B bootstrap samples.

5. Repeat steps 2, 3 & 4 with different bootstrap samples of size m = 5, 6, 8, 10.

6. Record the optimal model and corresponding confidence intervals. Repeat steps 1-5

1000 times.

7. Repeat the whole process with different true model settings.

The algorithm of the bootstrap with element level of Nested-Error Regression Model:

1. Generate data, Y, based on model (2.10).

2. Estimate variance components with the whole data by Henderson’s method 3 in (2.12).

3. Transfer the original data to linearized data which can be fitted by a linear model using

the tranformation in (2.16).
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4. Bootstrap one sample with size m = 15 from the new data.

5. For each candidate model: estimate the fixed effect parameters like a linear model and

calculate the corresponding loss function.

6. Repeat steps 4&5 B = 100 times. Choose the candidate model with the minimized

mean of loss functions as the optimal model. Get the 95% confidence interval of fixed

effect parameters from the 2.5% and 97.5% quantiles of B bootstrap samples.

7. Repeat steps 4, 5 & 6 with different bootstrap samples of size m = 20, 25, 30, 40.

8. Record the optimal model and corresponding confidence intervals. Repeat steps 1-7

1000 times.

9. Repeat the whole process with different true model settings.

The bootstrap estimators Γ̂n,m(α) were computed with size B = 100. The empirical

probabilities of selecting each model and the coverage probabilities of the true parameter

value were based on 1,000 simulations. The lengths of the confidence interval were means

of the 1,000 replications. For comparison, the results of empirical selection methods using

AIC, BIC and adjusted R2 were also reported. The whole procedure was programmed in R.

2.5.2 Results

At first the results of the Linear Model are reported. Table 2.1 is the selection probabilities

of the optimal model; Table 2.2 is the coverage probabilities of each parameter and the

lengths of the corresponding confidence intervals. From the results, the similar characters of

this bootstrap selection procedure as Shao’s results are supported. The consistency of the
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modified bootstrap selection procedure is supported clearly. Also, the modified bootstrap

selection procedure can be substantially better than other selection methods in most cases.

After that the results of the Fay-Herriot model are reported in Table 2.3 ∼ 2.6. From the

results in the Tables 2.3 and 2.4, the application of this bootstrap selection procedure working

with the Fay-Herriot model is supported. In Tables 2.5 and 2.6, the different loss functions

with or without considering the random effects are compared. The selection probabilities

of the loss function adding the random effects are higher than that of the loss function

without the random effects in some cases with higher bootstrap sample size. The coverage

probabilities do not have a significant difference.

Tables 2.7 and 2.8 report the empirical selecting probabilities of the Nested-Error regres-

sion model working on the group level. Tables 2.9 and 2.10 report the results of working

on the element level. From the results, the selection probabilities of working on the element

level are higher in most cases, as the process of bootstrapping with the element level after

the transformation is applied is closer to the process of the Linear model. But the data size

is only 40 in these cases and especially the number of groups is only 10, maybe this is part of

the reason why the bootstrapping with group level is not as good as the work with element

level. After that, the two different definitions of loss functions are compared in Tables 2.11

and 2.12 with a bigger data size n = 160 to test the effect of increasing data size. Similar to

the case of the Fay-Herriot model, the probabilities of the function with random effect are

higher when the bootstrap sample size is bigger.

In addition, except the case when the full model is the optimal model, the modified

bootstrap model selection procedure with smaller bootstrap size m works better than the

unmodified bootstrap model selection procedure, when bootstrap with size 40. From the
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trend of probability changing, the optimal choice of m clearly depends on the parameter β.

When the size of parameters of the optimal model is small, the modified bootstrap selection

procedure with smaller bootstrap size is better than the procedure with bigger bootstrap

size. If the size of parameters of the optimal model increases, the optimal choice of bootstrap

size m will increase. This changing trend is tested in more detail by more bootstraps of sizes

m = 11, 12, 13, 14, 15, 20, 25, 30, 40. The result is not listed here.

The empirical probabilities of the coverage of the confidence interval are the probabilities

of the bootstrap confidence interval covering the true parameter values. From the results, the

95% confidence interval from the modified bootstrap selection procedure will cover the true

parameter values with more than probability 0.9 in most cases. The coverage probabilities

with smaller bootstrap sample size are higher, but the lengths of the confidence intervals

with bigger bootstrap sample size are shorter.

In conclusion, the modified bootstrap model selection procedure can be applied to non-

linear model cases, like linear mixed models. Bootstrapping pairs with size m works well in

these models, where m/n→ 0 and m→ ∞.

39



Table 2.1: Selection probabilities for linear model

Bootstrap

True βT Model m=15 m=20 m=25 m=30 m=40 AIC BIC R2

(2,0,0,4,0) 1,4* 0.957 0.851 0.747 0.654 0.491 0.576 0.818 0.315
1,2,4 0.016 0.046 0.079 0.101 0.134 0.094 0.050 0.116
1,3,4 0.018 0.066 0.097 0.128 0.192 0.086 0.040 0.105
1,4,5 0.008 0.027 0.055 0.072 0.091 0.122 0.062 0.163
1,2,3,4 0.001 0.007 0.006 0.018 0.034 0.051 0.017 0.114
1,2,4,5 0.000 0.001 0.005 0.008 0.019 0.027 0.005 0.076
1,3,4,5 0.000 0.002 0.011 0.013 0.023 0.024 0.004 0.053
1,2,3,4,5 0.000 0.000 0.000 0.006 0.016 0.020 0.004 0.058

(2,0,0,4,8) 1,4,5* 0.958 0.897 0.828 0.770 0.575 0.732 0.893 0.515
1,2,4,5 0.021 0.047 0.067 0.100 0.153 0.098 0.051 0.163
1,3,4,5 0.020 0.054 0.096 0.103 0.201 0.098 0.042 0.161
1,2,3,4,5 0.001 0.002 0.009 0.027 0.071 0.072 0.014 0.161

(2,9,0,4,8) 1,4,5 0.012 0.003 0.000 0.001 0.000 0.000 0.000 0.000
1,2,4,5* 0.973 0.961 0.904 0.863 0.741 0.811 0.931 0.673
1,3,4,5 0.002 0.002 0.001 0.000 0.000 0.001 0.001 0.001
1,2,3,4,5 0.013 0.034 0.095 0.136 0.259 0.188 0.068 0.326

(2,9,6,4,8) 1,2,3,5 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1,3,4,5 0.069 0.023 0.009 0.001 0.000 0.000 0.003 0.000
1,2,3,4,5* 0.914 0.976 0.991 0.999 1.000 1.000 0.997 1.000
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Table 2.2: The coverage probabilities and lengths of confidence intervals for linear model

True βT Para m=15 m=20 m=25 m=30 m=40 Non Bootstrap

(2,0,0,4,0) σ2e 0.974(1.320) 0.935(1.135) 0.922(0.989) 0.883(0.905) 0.810(0.759) 0.920(0.902)
β1 0.995(1.427) 0.983(1.201) 0.968(1.060) 0.957(0.958) 0.905(0.819) 0.948(0.855)
β4 0.999(2.106) 0.974(1.751) 0.945(1.579) 0.924(1.481) 0.841(1.397) 0.948(0.966)

(2,0,0,4,8) σ2e 0.980(1.372) 0.950(1.167) 0.918(1.012) 0.884(0.912) 0.840(0.779) 0.933(0.918)
β1 0.996(1.500) 0.990(1.252) 0.970(1.089) 0.952(0.983) 0.927(0.838) 0.955(0.864)
β4 0.996(4.348) 0.985(3.431) 0.980(2.909) 0.944(2.556) 0.912(2.108) 0.944(1.700)
β5 0.998(4.799) 0.994(3.769) 0.978(3.164) 0.962(2.768) 0.915(2.269) 0.964(2.119)

(2,9,0,4,8) σ2e 0.972(1.403) 0.940(1.178) 0.914(1.023) 0.885(0.922) 0.831(0.786) 0.927(0.927)
β1 0.994(1.576) 0.989(1.300) 0.971(1.116) 0.959(1.005) 0.932(0.852) 0.937(0.863)
β2 0.996(14.015) 0.990(10.255) 0.974(8.075) 0.958(6.867) 0.914(5.353) 0.951(4.108)
β4 0.999(6.292) 0.993(4.799) 0.986(3.890) 0.975(3.384) 0.937(2.632) 0.936(2.153)
β5 0.999(5.416) 0.993(4.072) 0.973(3.351) 0.971(2.945) 0.919(2.367) 0.946(2.151)

(2,9,6,4,8) σ2e 0.971(1.555) 0.920(1.187) 0.907(1.050) 0.873(0.916) 0.814(0.791) 0.927(0.939)
β1 0.999(1.738) 0.988(1.365) 0.967(1.175) 0.959(1.029) 0.935(0.865) 0.940(0.873)
β2 0.909(17.204) 0.986(13.43) 0.973(10.983) 0.962(9.297) 0.931(7.400) 0.944(7.022)
β3 0.982(10.175) 0.988(7.186) 0.976(5.656) 0.971(4.735) 0.940(3.661) 0.957(3.277)
β4 0.978(6.962) 0.997(5.174) 0.983(4.196) 0.980(3.531) 0.939(2.750) 0.944(2.286)
β5 0.997(5.958) 0.995(4.365) 0.982(3.588) 0.970(3.061) 0.931(2.448) 0.945(2.203)
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Table 2.3: Selection probabilities for Fay-Herriot model, loss function without random effect

Bootstrap

True βT Model m=15 m=20 m=25 m=30 m=40 AIC BIC R2

(2,0,0,4,0) 1,4* 0.966 0.902 0.812 0.673 0.487 0.558 0.806 0.326
1,2,4 0.006 0.033 0.057 0.088 0.126 0.107 0.061 0.141
1,3,4 0.003 0.013 0.025 0.057 0.084 0.092 0.057 0.108
1,4,5 0.025 0.049 0.090 0.123 0.145 0.118 0.051 0.148
1,2,3,4 0.000 0.001 0.009 0.025 0.072 0.063 0.012 0.108
1,2,4,5 0.000 0.001 0.006 0.020 0.038 0.022 0.006 0.048
1,3,4,5 0.000 0.001 0.001 0.010 0.031 0.019 0.005 0.059
1,2,3,4,5 0.000 0.000 0.000 0.004 0.017 0.021 0.002 0.062

(2,0,0,4,8) 1,4,5* 0.995 0.966 0.901 0.822 0.660 0.688 0.857 0.498
1,2,4,5 0.003 0.026 0.060 0.090 0.147 0.138 0.073 0.188
1,3,4,5 0.002 0.008 0.032 0.063 0.117 0.111 0.060 0.174
1,2,3,4,5 0.000 0.000 0.007 0.025 0.076 0.063 0.010 0.140

(2,9,0,4,8) 1,4,5 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5* 0.981 0.968 0.949 0.888 0.802 0.848 0.931 0.710
1,3,4,5 0.015 0.008 0.007 0.003 0.002 0.004 0.009 0.003
1,2,3,4,5 0.002 0.024 0.044 0.109 0.196 0.148 0.060 0.287

(2,9,6,4,8) 1,2,3,5 0.065 0.017 0.003 0.000 0.000 0.000 0.000 0.000
1,2,4,5 0.042 0.007 0.001 0.000 0.000 0.000 0.000 0.000
1,3,4,5 0.203 0.069 0.029 0.013 0.002 0.000 0.009 0.000
1,2,3,4,5* 0.690 0.907 0.967 0.987 0.998 1.000 0.991 1.000
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Table 2.4: The coverage probabilities and lengths of confidence intervals for the Fay-Herriot model, loss function without
random effect

True βT Para m=15 m=20 m=25 m=30 m=40 Non Bootstrap

(2,0,0,4,0) σ2e 0.967(1.927) 0.934(1.666) 0.919(1.476) 0.876(1.333) 0.820(1.145) 0.641(0.656)
β1 0.997(1.748) 0.988(1.473) 0.970(1.293) 0.960(1.160) 0.927(0.994) 0.944(1.042)
β4 0.992(2.570) 0.973(2.089) 0.956(1.878) 0.926(1.838) 0.853(1.719) 0.939(1.199)

(2,0,0,4,8) σ2e 0.972(1.960) 0.940(1.696) 0.917(1.490) 0.876(1.349) 0.816(1.149) 0.625(0.658)
β1 0.996(1.837) 0.990(1.526) 0.976(1.332) 0.963(1.192) 0.926(1.014) 0.939(1.048)
β4 0.997(5.288) 0.991(4.232) 0.973(3.622) 0.959(3.197) 0.920(2.634) 0.946(2.140)
β5 0.998(5.861) 0.991(4.607) 0.979(3.890) 0.970(3.411) 0.934(2.788) 0.946(2.582)

(2,9,0,4,8) σ2e 0.965(1.990) 0.930(1.711) 0.909(1.506) 0.871(1.356) 0.817(1.162) 0.656(0.667)
β1 0.997(1.936) 0.991(1.583) 0.980(1.364) 0.963(1.220) 0.927(1.028) 0.947(1.057)
β2 0.983(16.619) 0.984(12.204) 0.967(9.712) 0.954(8.265) 0.895(6.491) 0.950(5.209)
β4 0.998(7.626) 0.998(5.829) 0.983(4.755) 0.979(4.095) 0.948(3.208) 0.954(2.738)
β5 0.998(6.525) 0.991(4.982) 0.981(4.136) 0.967(3.574) 0.932(2.882) 0.950(2.639)

(2,9,6,4,8) σ2e 0.968(2.219) 0.927(1.757) 0.891(1.519) 0.858(1.367) 0.788(1.164) 0.615(0.652)
β1 0.997(2.084) 0.992(1.657) 0.985(1.416) 0.969(1.251) 0.936(1.047) 0.938(1.054)
β2 0.787(17.268) 0.919(15.283) 0.957(12.815) 0.963(11.158) 0.926(8.877) 0.938(8.329)
β3 0.935(11.206) 0.961(8.563) 0.968(6.800) 0.959(5.696) 0.924(4.379) 0.927(3.847)
β4 0.924(7.675) 0.968(6.094) 0.974(5.038) 0.978(4.275) 0.947(3.332) 0.936(2.819)
β5 0.999(7.121) 0.995(5.327) 0.982(4.348) 0.974(3.719) 0.938(2.949) 0.942(2.650)
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Table 2.5: Selection probabilities for Fay-Herriot model, loss function with random effect

True βT Model m=15 m=20 m=25 m=30 m=40
(2,0,0,4,0) 1,4* 0.976 0.951 0.910 0.872 0.806

1,2,4 0.002 0.009 0.022 0.038 0.054
1,3,4 0.002 0.007 0.018 0.021 0.039
1,4,5 0.020 0.033 0.048 0.066 0.087
1,2,3,4 0.000 0.000 0.001 0.002 0.005
1,2,4,5 0.000 0.000 0.001 0.001 0.007
1,3,4,5 0.000 0.000 0.000 0.000 0.001
1,2,3,4,5 0.000 0.000 0.000 0.000 0.001

(2,0,0,4,8) 1,4,5* 0.993 0.988 0.964 0.940 0.898
1,2,4,5 0.005 0.008 0.025 0.032 0.051
1,3,4,5 0.002 0.003 0.011 0.025 0.045
1,2,3,4,5 0.000 0.001 0.000 0.003 0.006

(2,9,0,4,8) 1,4,5 0.010 0.001 0.001 0.000 0.000
1,2,4,5* 0.972 0.972 0.954 0.940 0.912
1,3,4,5 0.017 0.011 0.017 0.012 0.008
1,2,3,4,5 0.001 0.016 0.028 0.048 0.080

(2,9,6,4,8) 1,2,3,5 0.080 0.031 0.009 0.005 0.001
1,2,4,5 0.051 0.016 0.007 0.002 0.003
1,3,4,5 0.246 0.120 0.064 0.057 0.035
1,2,3,4,5* 0.623 0.833 0.920 0.936 0.961
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Table 2.6: The coverage probabilities and lengths of confidence intervals for the Fay-Herriot model, loss function with random
effect

True βT Para m=15 m=20 m=25 m=30 m=40

(2,0,0,4,0) σ2e 0.966(1.891) 0.940(1.637) 0.917(1.458) 0.888(1.331) 0.834(1.134)
β1 0.996(1.738) 0.983(1.463) 0.969(1.284) 0.960(1.162) 0.910(0.991)
β4 0.993(2.517) 0.978(1.979) 0.952(1.716) 0.919(1.570) 0.862(1.331)

(2,0,0,4,8) σ2e 0.976(1.926) 0.943(1.665) 0.914(1.476) 0.884(1.337) 0.817(1.141)
β1 0.994(1.835) 0.990(1.518) 0.978(1.326) 0.963(1.199) 0.934(1.015)
β4 0.998(5.279) 0.983(4.182) 0.965(3.511) 0.948(3.105) 0.900(2.515)
β5 0.998(5.775) 0.985(4.586) 0.972(3.858) 0.957(3.385) 0.924(2.777)

(2,9,0,4,8) σ2e 0.970(2.021) 0.944(1.725) 0.910(1.529) 0.890(1.378) 0.829(1.171)
β1 0.998(1.938) 0.983(1.567) 0.972(1.369) 0.948(1.215) 0.910(1.032)
β2 0.973(16.438) 0.983(12.087) 0.965(9.504) 0.941(8.000) 0.884(6.120)
β4 0.995(7.678) 0.989(5.802) 0.976(4.762) 0.950(4.070) 0.913(3.189)
β5 0.998(6.587) 0.995(5.021) 0.985(4.143) 0.962(3.586) 0.921(2.886)

(2,9,6,4,8) σ2e 0.963(2.267) 0.939(1.802) 0.901(1.546) 0.862(1.384) 0.790(1.172)
β1 0.994(2.099) 0.986(1.676) 0.974(1.422) 0.968(1.262) 0.928(1.054)
β2 0.729(16.369) 0.863(14.225) 0.918(12.238) 0.911(10.559) 0.892(8.551)
β3 0.929(11.030) 0.927(8.344) 0.942(6.633) 0.924(5.612) 0.903(4.316)
β4 0.908(7.533) 0.943(5.982) 0.968(4.967) 0.950(4.235) 0.916(3.312)
β5 0.994(7.162) 0.983(5.330) 0.979(4.347) 0.960(3.731) 0.934(2.976)
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Table 2.7: Selection probabilities for Nested-Error regression model with group level

Bootstrap

True βT Model m=4 m=5 m=6 m=8 m=10 AIC BIC R2

(2,0,0,4,0) 1,4* 0.933 0.870 0.788 0.621 0.498 0.471 0.724 0.315
1,2,4 0.017 0.032 0.049 0.090 0.103 0.124 0.072 0.129
1,3,4 0.022 0.038 0.052 0.079 0.089 0.096 0.055 0.102
1,4,5 0.026 0.048 0.072 0.122 0.146 0.142 0.090 0.152
1,2,3,4 0.002 0.006 0.021 0.040 0.074 0.074 0.033 0.117
1,2,4,5 0.000 0.001 0.008 0.021 0.029 0.022 0.006 0.046
1,3,4,5 0.000 0.005 0.008 0.021 0.036 0.037 0.010 0.061
1,2,3,4,5 0.000 0.000 0.002 0.006 0.025 0.034 0.010 0.078

(2,0,0,4,8) 1,4,5* 0.895 0.881 0.838 0.745 0.627 0.634 0.825 0.468
1,2,4,5 0.054 0.053 0.071 0.096 0.141 0.126 0.073 0.164
1,3,4,5 0.043 0.057 0.070 0.110 0.141 0.114 0.066 0.164
1,2,3,4,5 0.009 0.010 0.022 0.049 0.090 0.126 0.036 0.204

(2,9,0,4,8) 1,4,5 0.021 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5* 0.782 0.811 0.822 0.800 0.730 0.746 0.888 0.655
1,3,4,5 0.152 0.104 0.062 0.027 0.014 0.005 0.010 0.001
1,2,3,4,5 0.044 0.084 0.116 0.173 0.256 0.249 0.102 0.344

(2,9,6,4,8) 1,2,3,5 0.102 0.022 0.006 0.000 0.000 0.000 0.000 0.000
1,2,4,5 0.066 0.031 0.011 0.001 0.000 0.000 0.002 0.000
1,3,4,5 0.509 0.291 0.131 0.029 0.005 0.005 0.015 0.003
1,2,3,4,5* 0.323 0.656 0.852 0.970 0.995 0.995 0.983 0.997
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Table 2.8: The coverage probabilities and lengths of confidence intervals for for Nested-Error regression model with group level

True βT Para m=4 m=5 m=6 m=8 m=10 Non Bootstrap

(2,0,0,4,0) σ2v 0.914(2.673) 0.883(2.326) 0.855(2.105) 0.804(1.810) 0.768(1.597) 0.943(5.833)

σ2e 0.964(1.408) 0.935(1.228) 0.917(1.116) 0.871(0.942) 0.826(0.841) 0.919(1.035)
β1 0.983(2.338) 0.971(2.044) 0.952(1.842) 0.928(1.570) 0.890(1.398) 0.918(1.515)
β4 0.982(3.145) 0.958(2.473) 0.930(2.112) 0.885(1.795) 0.824(1.661) 0.938(1.070)

(2,0,0,4,8) σ2v 0.926(2.757) 0.881(2.345) 0.851(2.100) 0.794(1.790) 0.760(1.570) 0.934(5.781)

σ2e 0.946(1.476) 0.917(1.279) 0.886(1.144) 0.838(0.957) 0.797(0.844) 0.908(1.044)
β1 0.981(2.535) 0.968(2.172) 0.951(1.918) 0.913(1.618) 0.879(1.426) 0.916(1.522)
β4 0.983(5.079) 0.973(4.255) 0.961(3.742) 0.919(3.037) 0.891(2.593) 0.934(1.814)
β5 0.992(6.799) 0.985(5.003) 0.974(4.080) 0.939(3.197) 0.921(2.722) 0.949(2.421)

(2,9,0,4,8) σ2v 0.953(2.896) 0.903(2.406) 0.863(2.118) 0.814(1.794) 0.767(1.566) 0.929(5.598)

σ2e 0.952(1.743) 0.924(1.402) 0.896(1.210) 0.843(1.002) 0.794(0.875) 0.921(1.081)
β1 0.989(2.822) 0.979(2.277) 0.953(2.012) 0.923(1.664) 0.895(1.454) 0.920(1.511)
β2 0.820(13.957) 0.885(11.292) 0.912(9.585) 0.897(7.139) 0.852(5.980) 0.943(4.417)
β4 0.950(6.866) 0.971(5.705) 0.962(4.929) 0.945(3.850) 0.911(3.242) 0.943(2.336)
β5 0.993(7.922) 0.984(5.554) 0.976(4.452) 0.937(3.304) 0.894(2.830) 0.928(2.474)

(2,9,6,4,8) σ2v 0.968(3.220) 0.917(2.499) 0.862(2.123) 0.785(1.728) 0.736(1.514) 0.936(5.835)

σ2e 0.964(2.110) 0.907(1.580) 0.879(1.283) 0.824(1.012) 0.793(0.874) 0.914(1.086)
β1 0.994(2.964) 0.972(2.378) 0.963(2.051) 0.924(1.678) 0.889(1.457) 0.928(1.527)
β2 0.438(11.579) 0.680(12.512) 0.847(12.343) 0.926(10.322) 0.915(8.705) 0.932(8.088)
β3 0.813(9.159) 0.835(7.749) 0.889(6.808) 0.928(5.367) 0.919(4.514) 0.929(3.951)
β4 0.794(6.134) 0.889(5.724) 0.918(5.057) 0.945(4.041) 0.922(3.367) 0.940(2.530)
β5 0.982(9.033) 0.987(6.423) 0.972(4.956) 0.944(3.642) 0.915(3.025) 0.937(2.660)
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Table 2.9: Selection probabilities for Nested-Error regression model with element level

Bootstrap

True βT Model m=15 m=20 m=25 m=30 m=40 AIC BIC R2

(2,0,0,4,0) 1,4* 0.964 0.860 0.741 0.630 0.443 0.552 0.825 0.306
1,2,4 0.010 0.023 0.049 0.066 0.090 0.100 0.051 0.114
1,3,4 0.006 0.029 0.048 0.069 0.097 0.080 0.036 0.097
1,4,5 0.020 0.077 0.118 0.148 0.183 0.125 0.056 0.170
1,2,3,4 0.000 0.007 0.027 0.048 0.093 0.069 0.016 0.118
1,2,4,5 0.000 0.002 0.007 0.011 0.024 0.023 0.007 0.050
1,3,4,5 0.000 0.001 0.008 0.020 0.045 0.029 0.007 0.071
1,2,3,4,5 0.000 0.001 0.002 0.008 0.025 0.022 0.002 0.074

(2,0,0,4,8) 1,4,5* 0.990 0.961 0.891 0.814 0.631 0.690 0.879 0.478
1,2,4,5 0.010 0.022 0.044 0.072 0.131 0.104 0.043 0.160
1,3,4,5 0.000 0.013 0.052 0.079 0.137 0.104 0.050 0.153
1,2,3,4,5 0.000 0.004 0.013 0.035 0.101 0.102 0.028 0.209

(2,9,0,4,8) 1,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5* 0.968 0.943 0.909 0.852 0.750 0.813 0.908 0.688
1,3,4,5 0.024 0.014 0.011 0.007 0.002 0.001 0.006 0.000
1,2,3,4,5 0.008 0.043 0.080 0.141 0.248 0.186 0.086 0.312

(2,9,6,4,8) 1,2,3,5 0.018 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5 0.010 0.004 0.000 0.001 0.000 0.000 0.001 0.000
1,3,4,5 0.140 0.036 0.017 0.009 0.002 0.002 0.011 0.000
1,2,3,4,5* 0.832 0.959 0.983 0.990 0.998 0.998 0.988 1.000
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Table 2.10: The coverage probabilities and lengths of confidence intervals for Nested-Error regression model with element level

True βT Para m=15 m=20 m=25 m=30 m=40 Non Bootstrap
(2,0,0,4,0) β1 0.990(2.390) 0.974(2.036) 0.953(1.815) 0.933(1.652) 0.898(1.417) 0.931(1.519)

β4 0.989(2.175) 0.966(1.852) 0.927(1.709) 0.891(1.635) 0.823(1.528) 0.941(1.065)

(2,0,0,4,8) β1 0.989(2.479) 0.977(2.090) 0.954(1.854) 0.932(1.681) 0.891(1.440) 0.928(1.519)
β4 0.999(4.363) 0.989(3.467) 0.961(2.943) 0.931(2.637) 0.876(2.203) 0.943(1.807)
β5 0.997(5.526) 0.983(4.264) 0.966(3.577) 0.947(3.129) 0.894(2.565) 0.931(2.412)

(2,9,0,4,8) β1 0.992(2.628) 0.983(2.164) 0.957(1.897) 0.935(1.709) 0.898(1.453) 0.918(1.527)
β2 0.975(13.728) 0.976(10.271) 0.959(8.354) 0.943(7.216) 0.885(5.945) 0.941(4.401)
β4 0.998(6.272) 0.993(4.752) 0.976(3.968) 0.960(3.428) 0.914(2.750) 0.939(2.328)
β5 0.999(6.294) 0.986(4.687) 0.974(3.837) 0.955(3.329) 0.904(2.663) 0.939(2.467)

(2,9,6,4,8) β1 0.997(2.814) 0.985(2.260) 0.960(1.946) 0.947(1.744) 0.905(1.475) 0.922(1.516)
β2 0.849(17.305) 0.955(14.590) 0.966(12.200) 0.951(10.542) 0.919(8.559) 0.918(8.039)
β3 0.944(10.208) 0.969(7.838) 0.970(6.359) 0.958(5.478) 0.922(4.368) 0.925(3.925)
β4 0.968(6.498) 0.990(5.052) 0.976(4.200) 0.965(3.614) 0.930(2.888) 0.929(2.516)
β5 1.000(7.140) 0.988(5.209) 0.976(4.223) 0.960(3.618) 0.916(2.868) 0.928(2.643)
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Table 2.11: Compare of loss functions without and with random effect for Nested-Error model, data size n = 160.

m=15 m=20 m=25 m=30 m=40

True βT Model w/o w w/o w w/o w w/o w w/o w
(2,0,0,4,0) 1,4* 0.735 0.654 0.593 0.562 0.494 0.535 0.447 0.485 0.339 0.461

1,2,4 0.065 0.083 0.094 0.092 0.079 0.081 0.094 0.097 0.099 0.092
1,3,4 0.058 0.079 0.081 0.106 0.108 0.106 0.094 0.112 0.130 0.119
1,4,5 0.081 0.097 0.112 0.106 0.148 0.119 0.146 0.121 0.160 0.128
1,2,3,4 0.029 0.052 0.063 0.076 0.076 0.083 0.094 0.088 0.097 0.094
1,2,4,5 0.002 0.011 0.013 0.020 0.020 0.025 0.034 0.031 0.047 0.036
1,3,4,5 0.013 0.009 0.016 0.020 0.034 0.027 0.043 0.040 0.056 0.040
1,2,3,4,5 0.016 0.016 0.027 0.018 0.040 0.025 0.047 0.025 0.072 0.029

(2,0,0,4,8) 1,4,5* 0.820 0.781 0.724 0.719 0.642 0.654 0.583 0.637 0.489 0.596
1,2,4,5 0.066 0.101 0.115 0.122 0.138 0.146 0.152 0.150 0.178 0.168
1,3,4,5 0.074 0.078 0.090 0.094 0.109 0.120 0.127 0.128 0.153 0.134
1,2,3,4,5 0.041 0.040 0.071 0.066 0.111 0.079 0.138 0.085 0.180 0.102

(2,9,0,4,8) 1,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5* 0.870 0.881 0.807 0.842 0.752 0.798 0.717 0.789 0.664 0.769
1,3,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,3,4,5 0.130 0.119 0.193 0.158 0.248 0.202 0.283 0.211 0.336 0.231

(2,9,6,4,8) 1,2,3,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,3,4,5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1,2,3,4,5* 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.12: The coverage probabilities and lengths of confidence intervals for Nested-Error regression model with different loss
functions, data size n = 160.

m=15 m=20 m=25

True βT Para w/o w w/o w w/o w

(2,0,0,4,0) σ2v 0.982(1.635) 0.982(1.638) 0.951(1.406) 0.951(1.409) 0.942(1.251) 0.946(1.255)

σ2e 0.996(0.775) 0.996(0.773) 0.980(0.659) 0.975(0.658) 0.957(0.597) 0.957(0.595)
β1 0.996(1.200) 0.996(1.200) 0.987(1.030) 0.987(1.031) 0.969(0.922) 0.971(0.922)
β4 0.984(1.155) 0.982(1.215) 0.957(1.038) 0.955(1.051) 0.930(0.948) 0.928(0.922)

(2,0,0,4,8) σ2v 0.977(1.658) 0.977(1.659) 0.954(1.424) 0.952(1.426) 0.939(1.262) 0.941(1.264)

σ2e 0.984(0.776) 0.984(0.775) 0.977(0.668) 0.977(0.667) 0.959(0.595) 0.959(0.594)
β1 0.993(1.207) 0.993(1.208) 0.986(1.047) 0.986(1.046) 0.974(0.932) 0.974(0.933)
β4 0.992(1.894) 0.993(1.903) 0.974(1.539) 0.973(1.536) 0.952(1.331) 0.951(1.321)
β5 0.996(2.174) 0.996(2.175) 0.990(1.797) 0.989(1.794) 0.978(1.575) 0.978(1.568)

(2,9,0,4,8) σ2v 0.979(1.644) 0.979(1.646) 0.953(1.407) 0.953(1.410) 0.936(1.245) 0.936(1.247)

σ2e 0.981(0.787) 0.981(0.785) 0.966(0.673) 0.966(0.672) 0.949(0.596) 0.949(0.595)
β1 0.994(1.216) 0.994(1.217) 0.988(1.042) 0.987(1.042) 0.970(0.933) 0.969(0.934)
β2 0.992(4.316) 0.990(4.286) 0.981(3.725) 0.981(3.634) 0.958(3.339) 0.958(3.231)
β4 0.996(2.325) 0.997(2.323) 0.986(1.891) 0.988(1.886) 0.973(1.601) 0.971(1.595)
β5 0.997(2.205) 0.997(2.203) 0.991(1.853) 0.991(1.845) 0.976(1.602) 0.977(1.597)

(2,9,6,4,8) σ2v 0.972(1.685) 0.972(1.685) 0.940(1.438) 0.940(1.438) 0.915(1.273) 0.915(1.273)

σ2e 0.978(0.800) 0.978(0.800) 0.958(0.687) 0.958(0.687) 0.946(0.604) 0.946(0.604)
β1 0.994(1.229) 0.994(1.229) 0.981(1.050) 0.981(1.050) 0.968(0.932) 0.968(0.932)
β2 0.999(7.032) 0.999(7.032) 0.996(5.862) 0.996(5.862) 0.978(5.130) 0.978(5.130)
β3 0.997(3.531) 0.997(3.531) 0.987(2.926) 0.987(2.926) 0.965(2.542) 0.965(2.542)
β4 0.997(2.470) 0.997(2.470) 0.990(1.989) 0.990(1.989) 0.988(1.705) 0.988(1.705)
β5 0.991(2.376) 0.991(2.376) 0.984(1.950) 0.984(1.950) 0.977(1.718) 0.977(1.718)
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Continued from Table 2.12

m=30 m=40

True βT Para w/o w w/o w

(2,0,0,4,0) σ2v 0.933(1.133) 0.935(1.138) 0.876(0.982) 0.883(0.986)

σ2e 0.948(0.542) 0.944(0.540) 0.924(0.466) 0.924(0.465)
β1 0.962(0.833) 0.962(0.831) 0.924(0.726) 0.919(0.726)
β4 0.903(0.876) 0.892(0.845) 0.840(0.790) 0.834(0.728)

(2,0,0,4,8) σ2v 0.907(1.142) 0.913(1.144) 0.857(0.982) 0.866(0.986)

σ2e 0.933(0.540) 0.934(0.539) 0.891(0.464) 0.895(0.464)
β1 0.956(0.848) 0.956(0.847) 0.928(0.728) 0.929(0.727)
β4 0.936(1.178) 0.934(1.153) 0.893(1.002) 0.888(0.971)
β5 0.959(1.420) 0.956(1.412) 0.929(1.207) 0.922(1.194)

(2,9,0,4,8) σ2v 0.913(1.133) 0.920(1.135) 0.866(0.978) 0.869(0.980)

σ2e 0.927(0.539) 0.927(0.538) 0.882(0.469) 0.882(0.468)
β1 0.960(0.847) 0.960(0.847) 0.916(0.730) 0.916(0.730)
β2 0.942(3.076) 0.941(2.918) 0.898(2.693) 0.890(2.513)
β4 0.959(1.415) 0.958(1.405) 0.922(1.176) 0.923(1.167)
β5 0.961(1.450) 0.961(1.441) 0.927(1.229) 0.927(1.219)

(2,9,6,4,8) σ2v 0.914(1.152) 0.914(1.152) 0.860(0.994) 0.860(0.994)

σ2e 0.934(0.547) 0.934(0.547) 0.902(0.471) 0.902(0.471)
β1 0.947(0.852) 0.947(0.852) 0.918(0.732) 0.918(0.732)
β2 0.965(4.684) 0.965(4.684) 0.924(3.961) 0.924(3.961)
β3 0.950(2.314) 0.950(2.314) 0.926(1.947) 0.926(1.947)
β4 0.955(1.508) 0.955(1.508) 0.914(1.254) 0.914(1.254)
β5 0.947(1.536) 0.947(1.536) 0.896(1.305) 0.896(1.305)
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Chapter 3

Prediction Error of Small Area

Predictors Shrinking both Mean and

Variances

3.1 Introduction

The goal of this chapter is to introduce a methodology which develops a dual “shrinkage”

estimation for both the small area means and variances in a unified framework. In this

process, the smoothed variance estimators use information from direct point estimators and

their sampling variances and consequently for the smoothed small area estimators. The

modeling perspective is closely related to Wang and Fuller (2003), Rivest et al. (2003), You

and Chapman (2006) and Hwang and Zhao (2009).

The conditional mean squared error of prediction (CMSEP) is used to evaluate the pre-

diction error, which is more akin to Booth and Hobert (1998). Booth and Hobert argued
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strongly for CMSEP as opposed to unconditional mean squared error of prediction (UM-

SEP). Recently, this technique has again been emphasized by Lohr and Rao (2009) in the

context of nonlinear mixed effect models. These authors favor CMSEP particularly for non-

normal models when the posterior variance of small area parameters depends on the area

specific responses. Although they were interested only in generalized linear mixed models

where the posterior variance depends on area specific responses, this property of posterior

variance is perhaps true for a situation with posterior non-linearity.

A brief outline of the rest of the chapter is as follows. Section 3.2 contains the proposed

model and estimation method of small area parameters and the structural parameters. In

Section 3.3, we provide an estimation of prediction error in terms of the conditional mean

squared error of prediction. Simulation is performed in Section 3.4. And the detailed forms

of some matrix calculations are given in appendix 3.5 of this chapter.

3.2 Model and Estimation Method

3.2.1 Model with Assumption

As noted by Bell (2008), the previous researchers Wang and Fuller (2003) and Rivest and

Vandal (2003) essentially used the direct survey estimates to estimate the parameters related

to sampling variance modeling and did not use the direct survey variance estimates though

they were available. We propose a hierarchical model that uses both the direct survey

estimates and sampling variance estimates to estimate all the parameters that determines

the stochastic system. In this process we exploit the mean-variance joint modelling via a

hierarchical model so that the final estimator is based on shrinking both mean and variance.
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We like to mention that Hwang et al. (2009) considered shrinking means and variances in the

context of microarray data analysis and prescribed an important solution where they plugged

in a shrinkage estimator of variance into the mean estimator. Thereby the inference regarding

the mean does not take into account the variance estimation completely. Furthermore, their

model does not include any covariate information.

Let (Xi, S
2
i ) be the pair of direct survey estimates and their sampling variances for the

ith area, i = 1, · · · , n. Let Zi = (Zi1, · · · , Zip)T be the set of covariates available at

the estimation stage and β = (β1, · · · , βp)T be the associated regression coefficients. We

propose the following hierarchical model:

Xi|θi, σ2i ∼ Normal(θi, σ
2
i )

θi ∼ Normal(ZTi β, τ
2); i = 1, · · · , n,

 (3.1)

(ni − 1)S2i /σ
2
i ∼ χ2ni−1

σ−2
i ∼ Gamma{α, γ}; i = 1, · · · , n,

 (3.2)

where B = (α, γ,βT , τ2)T , referred to as the structural parameters, are unknown and ni

represents the sample size for a simple random sample (SRS) from the ith area. For a com-

plex survey design the degrees of freedom of the chi-square distribution need to be determined

carefully (e.g., Maples and Huang 2009). Note that the chi-square distribution for the sample

variance is valid for only a random sample. Note that σ2i are the sampling variances of the

Xi’s and are usually estimated by S2i ’s. You and Chapman (2006) did not consider the second

level of sampling variance modelling. Thus their model can be treated as the Bayesian version
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of the models considered in Rivest and Vandal (2003) and Wang and Fuller (2003). The sec-

ond level of (3.2) might be further extended as Gamma{γ, exp(ZTi β2)/γ} to accommodate

covaraite information in the variance modeling. The inference can be made from the condi-

tional distribution of θi (the parameter of interest) given the data (Xi, S
2
i ,Zi), i = 1, · · · , n.

However, this does not have a closed form expression. We adopted rejection sampling to

overcome the situation.

3.2.2 Estimation of the Small Area Parameters

If the parameters B are known, the joint distribution of {Xi, S2i , θi, σ
2
i } is

π(Xi, S
2
i , θi, σ

2
i |B) =

1√
2πσ2i

exp{−
(Xi − θi)

2

2σ2i

} 1

Γ{(ni − 1)/2}2(ni−1)/2

[
(ni − 1)

S2i

σ2i

](ni−1)/2−1

exp{−
(ni − 1)S2i

2σ2i

}

(
ni − 1

σ2i

)
1√
2πτ2

exp{−
(θi − ZTi β)

2

2τ2
} 1

Γ(α)γα

(
1

σ2i

)α+1

exp{− 1

γσ2i

}

≈ exp

{
−
(Xi − θi)

2

2σ2i

−
(ni − 1)S2i

2σ2i

−
(θi − ZTi β)

2

2τ2
− 1

γσ2i

}

×

(
1

σ2i

)ni
2 +α+1(

1

τ2

)1
2 1

Γ(α)γα

= exp

[
−
(θi − ZTi β)

2

2τ2
−

{
(Xi − θi)

2

2
+

(ni − 1)S2i
2

+
1

γ

}
1

σ2i

]

×

(
1

σ2i

)ni
2 +α+1

1√
τ2Γ(α)γα

. (3.3)
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Therefore the conditional distribution of σ2i and θi given the data (Xi, S
2
i ), i = 1, · · · , n and

B are

π(σ2i |Xi, S
2
i ,B) ∝

exp

[
−
(Xi−ZTi β)

2

2(σ2i +τ
2)

−
{
(ni−1)

2 S2i + 1
γ

}
1
σ2i

]
(σ2i )

(ni−1)/2+α+1(σ2i + τ2)1/2
, (3.4)

π(θi|Xi, S
2
i ,B) ∝ exp

{
−
(θi − ZTi β)

2

2τ2

}
ψ
−(ni/2+α)
i , (3.5)

where

ψi ≡
{
0.5(Xi − θi)

2 + 0.5(ni − 1)S2i +
1

b

}
. (3.6)

Note that the above conditionals are obtained by integrating out θi and σ
2
i respectively from

the joint distribution (3.3).

From now on we will borrow the notations from Booth and Hobert (1998) for determining

all related stochastic distributions. In this context, a meaningful point estimator for θi is its

conditional mean,

θi(B;Xi, S
2
i ) = EB(θi|Xi, S

2
i ), (3.7)

where EB represents the expection with respect to the conditional distribution of θi with

known B. A sensible prediction error can be measured by the posterior variance

νi(B;Xi, S
2
i ) = varB(θi|Xi, S

2
i ). (3.8)
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Neither (3.7) nor (3.8) has any closed form expression. Therefore, we have numerically

computed using the following approach.

1. Generate R random numbers from π(θi|Xi, S2i ,B) with rejection sampling method:

1a. Generate a candidate random sample θ
(c)
i from a Normal(ZTi β, τ

2);

1b. Generate a uniform random number U ;

1c. If

U <

1 +
(
θi−Xi
Gx

)2

ni + 2α− 1


−(ni/2+α)

where G2x = {(ni − 1)S2i + 2/γ}/(ni + 2α+ 1), then accept the candiate random

sample as θ
(r)
i ; otherwise go back to 1a;

1d. Repeat 1a to 1c R times.

2. Approximate θi and νi by

θ̃i =
1

R

R∑
r=1

θ
(r)
i

and

ν̃i =
1

R

R∑
r=1

(θ
(r)
i − θ̃i)

2

In pratice B is unknown. We estimate them by maximizing the marginal likelihood and the

details are given in the next section. Let B̂ denote the corresponding estimator. Substituting

B by B̂ in formulas (3.7) and (3.8) will produce the estimates of θi and νi:

θ̂i = θi(B̂;Xi, S
2
i ) = E

B̂
(θi|Xi, S

2
i ) (3.9)

ν̂i = νi(B̂;Xi, S
2
i ) = var

B̂
(θi|Xi, S

2
i ). (3.10)
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The estimator (3.9) is popularly known as the empirical Bayes estimator and (3.10) is the

estimated Bayes risks. It is well known that the νi only consider the variability in the

prediction procedure, but not the variability due to the parameter estimation (B̂). We

accounted this additional variability by adapting the technique of Booth and Hobert (1998)

in this set up. The details are discussed in Section 3.3.

3.2.3 Estimation of the Stuctural Parameters

In pracice, B is unknown. We obtain the maximum likelihood estimate of B by maximizing

the marginal likelihood LM =
∏n
i=1 L

M
i of {(Xi, S2i ,Zi)

n
i=1;B}, where

LMi ∝ Constanti ·
Γ(
ni
2 + α)√

τ2Γ(α)γα

∫
exp

{
−
(θi −ZTi β)

2

2τ2

}
ψ
−
(ni
2 +α

)
i dθi. (3.11)

Therefore, the log-likelihood is

log(LM ) =
n∑
i=1

[
logConstanti + log{Γ(

ni
2

+ α)} − log{Γ(α)} − 1

2
logτ2−

αlog(γ) + log

∫ exp

{
−
(θi − ZTi β)

2

2τ2

}
ψ
−
(ni
2 +α

)
i dθi


The maximizing marginal likelihood equation is

∂log(LM )

∂B
= 0

where LM is the complete data likelihood and LM =
∏n
i=1 L

M
i .
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The detailed expression of the partial derivative corresponding to β is:

∂log(LM )

∂β
=

n∑
i=1

∫
Z
θi−ZTi β

τ2
exp

{
−
(θi−ZTi β)

2

2τ2

}
ψ
−
(ni
2 +α

)
i dθi

∫
exp

{
−
(θi−ZTi β)

2

2τ2

}
ψ
−
(ni
2 +α

)
i dθi

=
n∑
i=1

E

(
Z
θi − ZTi β

τ2

)
(3.12)

where the expectation corresponds to conditional distribution of θi, π(θi|Xi, S2i ,B). The

estimate of β is obtained by solving ∂log(LM )/∂β = 0, and we obtain

β̂ = (
n∑
i=1

ZiZ
T
i )

−1{
n∑
i=1

ZiE(θi)}. (3.13)

The expression of the partial derivative corresponding to τ2 is:

∂log(LM )

∂τ2
= − n

2τ2
+

n∑
i=1

∫ (θi−ZTi β)
2

2(τ2)2
exp

{
−
(θi−ZTi β)

2

2τ2

}
ψ
−
(ni
2 +α

)
i dθi

∫
exp

{
−
(θi−ZTi β)

2

2τ2

}
ψ
−
(ni
2 +α

)
i dθi

= − n

2τ2
+

n∑
i=1

E

(
(θi − ZTi β)

2

2(τ2)2

)
(3.14)

Then the estimate of τ2 is obtained by solving ∂log(LM )/∂τ2 = 0, and we obtain

τ̂2 =
n∑
i=1

E(θi −ZTi β)
2/n. (3.15)
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Similarly, we estimate α and γ by solving Sα = 0 and Sγ = 0 where

Sα =
∂Elog(LM )

∂α

=
n∑
i=1

log′{Γ(
ni
2

+ α)} − nlog′{Γ(α)} − nlog(γ)−
n∑
i=1

E{log(ψi)} (3.16)

Sγ =
∂Elog(LM )

∂γ

= −nα
γ

+
1

γ2

n∑
i=1

(
ni
2

+ α)E

(
1

ψi

)
(3.17)

To solve equations (3.13), (3.15), (3.16) and (3.17), we use the EM algorithm. At the

E-step of the tth iteration, we calculate the expectation with respect to the conditional

density of θi, π(θi|Xi, S2i , B
(t−1)), i = 1, . . . , n, with B(t−1) denoting the estimate of B

at the (t− 1)th iteration. The rejection sampling method is used to generate samples from

the conditional distribution of θi’s. At the M-step of the tth iteration, we maximize LM by

solving equations (3.13), (3.15), (3.16) and (3.17) conditional on the values of expectations

obtained in the E-step. To solve these equations, we also need

Sαα =
∑n
i=1

[
log′′{Γ(ni2 + α)} − log′′{Γ(α)}+ V ar{log(ψi)}

]
Sαγ =

∑n
i=1

[
−1
γ + 1

γ2
E

(
1
ψi

)
− (

ni
2 + α) 1

γ2
Cov

{
1
ψi
, log(ψi)

}]
Sγα = Sαγ

Sγγ =
∑n
i=1

{
α
γ2

− (ni + 2α) 1
γ3
E

(
1
ψi

)
+ (

ni
2 + α) 1

γ4
E

(
1
ψ2i

)
+(
ni
2 + α)2 1

γ4
V ar

(
1
ψi

)}
(3.18)
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Then α and γ can be estimated by iterative Newton-Raphson method:

α
γ


l

=

α
γ


(l−1)

−

Sαα Sαγ

Sγα Sγγ


−1 Sα

Sγ



3.3 Prediction Error Calculation

3.3.1 Mean Squared Error of Prediction

Following the definition of conditional mean squared prediction error (CMSEP) of Booth

and Hobert (1998), the prediction error variance is,

CMSEP (B;Xi, S
2
i ) = EB [{θ̂i − θi(B;Xi, S

2
i )}

2|Xi, S
2
i ]

where θ̂i and θi(B;Xi, S
2
i ) are as defined in (3.9) and (3.7). Since θi(B;Xi, S

2
i ) − θi and

θ̂i − θi(B;Xi, S
2
i ) are conditionally independent given Xi and S

2
i ,

CMSEP (B;Xi, S
2
i ) = varB(θi|Xi, S2i ) + EB [{θ̂i − θi(B;Xi, S

2
i )}

2|Xi, S2i ]

= νi(B;Xi, S
2
i ) + ci(B;Xi, S

2
i )

(3.19)

where ci(B;Xi, S
2
i ) is the correction term due to the estimation of unknown parameters B.

The correction contribution is of order Op(n
−1). Note that the above measure is still not

usable because it involved the unknown structural parameters B. It’s natural to plug-in the
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estimate B̂ of B and get a usable measure of mean squared prediction error

̂CMSEPi = MSE(B̂;Xi, S
2
i ) = νi(B̂;Xi, S

2
i ) + ci(B̂;Xi, S

2
i ) = ν̂i + ĉi

As it will be clear in the next section (as well as from small area estimation literature)

the estimator (3.19) has considerable bias. Typically the order of bias is Op(n
−1) due to

estimation of νi by ν̂i.

3.3.2 Bias Correction for νi(B̂;Xi, S
2
i )

For the bias correction of the estimated conditional variance νi(B̂;Xi, S
2
i ) we expand this

about B:

ν̂i = νi(B̂;Xi, S
2
i ) = νi(B;Xi, S

2
i ) + (B̂ −B)T

∂νi(B;Xi, S
2
i )

∂B

+
1

2
(B̂ −B)T

∂νi(B;Xi, S
2
i )

∂B∂BT
(B̂ −B) +Op(n

−2). (3.20)

Then the approximated bias involved in νi(B̂;Xi, S
2
i ) is

E(B̂ −B)
∂νi(B;Xi, S

2
i )

∂B
+

1

2
tr{

∂νi(B;Xi, S
2
i )

∂B∂BT
I−1(B)},

where I(B) is the Fisher’s information matrix obtained from the marginal likelihood LM ,

Isr = −E

[
∂2

∂Bs∂Br
log − likelihood(Xi, S

2
i )

]

63



The second order derivative of the log-likelihood is given in section 3.2.3 (3.18) and appendix

3.5.1 and can be used to compute the information matrix.

Handling the bias analytically is difficult. Booth and Hobert (1998) adopted bootstrap

bias correction instead. This is due to the fact that there is no closed form expressions

available for this bias terms. The bootstrap method requires repeated estimation of model

parameters based on re-sampled data. This often pauses practical and computational diffi-

culties in this hierarchical model. As we will see in the next subsection handling the second

term in (3.19) is also difficult due to the same difficulty of not having any closed form ex-

pression. Thus, if we have to do the bootstrap for the bias correction of νi, the estimation

of ci can also be done in the same run. It is not necessary to obtain any analytical approx-

imations. The resampling techniques has been used in Jiang et al. (2002), Hall and Maiti

(2006). We will be applying the rejection sampling method instead where there is no need

of estimating model parameters repeatedly.

Let B̂ be the maximum likelihood estimator of B as proposed in the previous section.

Following Cox & Snell (1968, Equation 20), we approximate E
(
B̂ −B

)
up to O(n−1).

Define I−1 = (Irs) with as the inverse of I = (Irs), where Irs = E(−V (·)
rs ) and V

(i)
rs =

∂2logLMi /∂Br∂Bs. The bias in the sth element of B̂ is

E(B̂s −Bs) ≈
1

2

∑
r

∑
t

∑
u
IrsItu(Krtu + 2Jt,ru) (3.21)

Krst = E(W
(·)
rst), W

(i)
rst =

∂3logLMi
∂Br∂Bs∂Bt

,

Jr,st = E{
∑
U
(i)
r V

(i)
st }, U

(i)
r =

∂logLMi
∂Br

where the LMi is the marginal likelihood of (Xi, S
2
i ) defined in the previous section. The
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detailed formulas are given in appendix.

With (
∂νi
∂B

)T
=

{
∂νi
∂α

,
∂νi
∂γ

,
∂νi
∂β

,
∂νi
∂τ2

}
(3.22)

and νi(B;Xi, S
2
i ) = varB(θi|Xi, S2i ), we have

∂νi
∂α

= −Cov∗{θ2i , log(ψi)}+ 2E∗θiCov
∗{θi, log(ψi)}

∂νi
∂γ

= (
ni
2

+ α)
1

γ2

{
Cov∗(θ2i ,

1

ψi
)− 2E∗θiCov

∗(θi,
1

ψi
)

}
∂νi
∂β

=
1

τ2

{
Cov∗(θ2i , θi)− 2E∗θiCov

∗(θi, θi)
}

∂νi
∂τ2

=
1

2(τ2)2

{
Cov∗{θ2i , (θi − β)2} − 2E∗θiCov

∗{θi, (θi − β)2}
}

where the ∗ means that the expection, varirance and covariance that are calculated with

respect to the conditional distribution of θi at the estimated parameters’ value. The ap-

proximated expression of ∂νi(B;Xi, S
2
i )/∂B∂B

T is given in the appendix. The expection,

variance and covariance are computed based on the Monte Carlo approximation. For exam-

ples, Ê∗(θi) =
∑R
r=1 θ

(r)
i /R, where (θ

(1)
i , · · · , θ(R)i ) are random numbers generated from

the conditional distribution of θi. Therefore,

ν̂i ≈ νi(B̂;Xi, S
2
i )− (B̂ −B)

∂νi
∂B

− 1

2
tr{

∂νi(B;Xi, S
2
i )

∂B∂BT
I−1(B)}.

This expression is second order correct meaning the bias is of order op(n
−1).
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3.3.3 Approximation of ci(B;Xi, S
2
i )

The definition of ci(B;Xi, S
2
i ) is given in the previous section by ci(B;Xi, S

2
i ) = EB [{θ̂i−

θi(B;Xi, S
2
i )}

2|Xi, S2i ] where θ̂i − θi(B;Xi, S
2
i ) = θi(B̂;Xi, S

2
i ) − θi(B;Xi, S

2
i ). Using

the Taylor series expansion and ignoring the term Op(|B̂ −B|2) we write

θi(B̂;Xi, S
2
i )− θi(B;Xi, S

2
i ) = ATi (B;Xi, S

2
i )(B̂ −B) (3.23)

where

ATi (B;Xi, S
2
i ) =

∂θi(B;Xi, S
2
i )

∂B

=

(
∂θi(B;Xi, S

2
i )

∂α
,
∂θi(B;Xi, S

2
i )

∂γ
,
∂θi(B;Xi, S

2
i )

∂β
,
∂θi(B;Xi, S

2
i )

∂τ2

)

Since θi(B;Xi, S
2
i ) = EB(θi|Xi, S2i ), the components of Ai are

∂θi(B;Xi, S
2
i )

∂α
= E∗(θi)E

∗{log(ψi)} − E∗{θilog(ψi)} = −Cov∗{θi, log(ψi)}

∂θi(B;Xi, S
2
i )

∂γ
= (

ni
2

+ α)
1

γ2

{
E∗
(
θi
ψi

)
− E∗(θi)E

∗
(

1

ψi

)}
= (

ni
2

+ α)
1

γ2
Cov∗(θi,

1

ψi
)

∂θi(B;Xi, S
2
i )

∂β
=

1

τ2

[
E∗(θ2i )− {E∗(θi)}

2
]
=

1

τ2
var∗(θi)

∂θi(B;Xi, S
2
i )

∂τ2
=

1

2(τ2)2

[
E∗{θi(θi − β)2} − E∗(θi)E

∗(θi − β)2
]
=

1

2τ2
Cov∗{θi, (θi − β)2}

As a consequence of (3.23)

ci(B;Xi, S
2
i ) ≈ ATi (B;Xi, S

2
i )I

−1(B)Ai(B;Xi, S
2
i ) (3.24)
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and the approximation is correct up to Op(n
−1). Substituting B̂ into formula (3.24) will

yield an estimate of the correction term,

ci(B̂;Xi, S
2
i ) ≈ ATi (B̂;Xi, S

2
i )I

−1(B̂)Ai(B̂;Xi, S
2
i ).

As the estimated information matrix is {I(B̂)}−1 = Op(n
−1), the error in the approxima-

tion is op(n
−1). Similar to the case of νi, the items in Ai(B̂;Xi, S

2
i ) do not have closed

forms. They can be approximated by the samples generated in the estimation procedure.

Summing up all the derivations and approximations we obtain the following result.

Theorem. The estimated conditional mean squared of prediction error for θ̂i is

̂CMSPE = νi(B̂;Xi, S
2
i )− (B̂ −B)

∂νi
∂B

− 1

2
tr{

∂νi(B;Xi, S
2
i )

∂B∂BT
I−1(B)}

+ATi (B̂;Xi, S
2
i )I(B̂)−1Ai(B̂;Xi, S

2
i ). (3.25)

The formula is second order correct in the sense that it has a bias of Op(n
−2).

3.4 Simulation Study

Simulation design To check the finite sample performance of the proposed estimators, a

simulation set up closely related to Wang and Fuller (2003) was considered. To simplify the

simulation, we do not choose any covariate Z, only (Xi, S
2
i ) are generated. First, generate

observations for each small area using the model

Xij = β + ui + eij, j = 1, . . . , ni, i = 1, . . . , n,
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where ui ∼ Normal(0, τ2) and eij ∼ Normal(0, niσ
2
i ). Then the random effects model for

the small area mean is

Xi = β + ui + ei, i = 1, . . . , n, (3.26)

whereXi = X̄i· = n−1
i
∑ni
j=1Xij , ei = ēi· = n−1

i
∑ni
j=1 eij . Therefore,Xi ∼ Normal(θi, σ

2
i ),

where θi = β+ui and θi ∼ Normal(β, τ2), and ei ∼ Normal(0, σ2i ). We estimated the mean

for each small area, θi, i = 1, . . . , n. We estimated σ2i with the unbiased estimator

S2i =
1

ni − 1

1

ni

ni∑
j=1

(Xij − X̄i·)
2 (3.27)

It is to be noted that (ni − 1)S2i /σ
2
i ∼ χ2

(ni−1)
. Like Wang and Fuller (2003), we set all

ni equal to m that eased our programming efforts. However, the sampling variances were

still unequal by choosing one-third of the σ2i equal to 1, one-third equal to 4, and one-third

equal to 16. In the simulation, we set β = 10 and took three different values of τ2, 0.5, 1,

4. For each of τ2, we generated 1,000 samples for each of the combinations (m,n) = (9, 36),

(18, 180). In table 3.1 we present the mean, empirical standard deviation and the estimated

standard deviation of estimates of β and τ2. The results are consistent with the large sample

theory of maximum likelihood estimation.

Method of analysis We also compute the estimates based on the Wang and Fuller

approach. Table 3.2 and Table 3.3 provide the numerical results for comparing two methods:

(I) the proposed method and (II) Wang and Fuller (2003). All the results are averaged over

areas within the group having the same sampling variances. We calculated the bias and

prediction mean squared error of θ̂i based on 1,000 replications. We used empirical measures
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Table 3.1: Results of the simulation study, and here we present estimate (Est.), empirical

standard deviation (SD) for β and τ2. We set β = 10.
For β

Proposed Method Wang and Fuller (2003)

τ2 Est. SD Est. SD
n = 36, m = 9 0.5 9.9989 0.3715 10.0031 0.3355

1 10.0053 0.3772 10.0079 0.3684
4 9.9978 0.4950 9.9992 0.4967

n = 180, m = 18 0.5 9.9978 0.1676 10.0015 0.1387
1 9.9987 0.1660 10.0013 0.1532
4 9.9993 0.2134 9.9996 0.2127

For τ2

Proposed Method Wang and Fuller (2003)

τ2 Est. SD Est. SD
n = 36, m = 9 0.5 0.5978 0.3156 1.2227 0.9973

1 1.1190 0.4983 1.6468 1.1591
4 4.0449 1.5113 4.5154 2.0121

n = 180, m = 18 0.5 0.5211 0.0381 0.7767 0.3783
1 1.0451 0.1190 1.2757 0.4618
4 4.1092 0.5812 4.2707 0.8718

of relative bias and coefficient of variation to quantify the performaces of different MSE

estimators. Relative bias of the MSE estimator was defined by

RBi =

∣∣∣∣∣E{M̂SEi} −MSEi
MSEi

∣∣∣∣∣ (3.28)

for i = 1, ..., 3, where E{M̂SEi} was estimated empirically as the average of values of M̂SEi

over replications. MSEi was defined as the average value of
(
θ̂i − θi

)2
. The coefficient of

variation of the MSE estimator was taken to be

CVi =
[E{M̂SEi −MSEi}2]

1
2

MSEi
(3.29)

for i = 1, ..., 3.
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Table 3.2: Results of MSE estimator, n = 36, m = 9

τ2 = 0.5 τ2 = 1 τ2 = 4

σ2i I II I II I II

Bias 1 0.0018 -0.0024 0.0098 0.0157 0.0032 0.0070
4 -0.0061 -0.0001 0.0001 -0.0011 0.0066 0.0056
16 -0.0208 -0.0235 0.0173 0.0198 0.0365 0.0361

MSE 1 0.4281 0.6532 0.5588 0.6352 0.8786 0.8583
4 0.6658 1.0389 0.9718 1.1982 2.2183 2.3032
16 0.6785 1.0215 1.1576 1.4069 3.6549 3.8209

RB 1 0.2561 0.6044 0.2364 0.2885 0.2922 0.0009
4 0.0016 1.1227 -0.0544 0.4850 -0.0557 0.0363
16 0.0508 1.7802 -0.1246 0.6538 -0.1120 0.0450

CV 1 0.6327 0.9124 0.5246 0.5963 0.4925 0.4293
4 0.6908 1.4339 0.4382 0.7895 0.3309 0.3697
16 0.9411 2.2498 0.5212 1.0594 0.3272 0.3721

Table 3.3: Results of MSE estimator, n = 180, m = 18

τ2 = 0.5 τ2 = 1 τ2 = 4

σ2i I II I II I II

Bias 1 0.0009 0.0001 -0.0017 -0.0000 -0.0007 -0.0005
4 -0.0034 -0.0053 0.0016 0.0040 0.0049 0.0053
16 0.0004 -0.0014 0.0034 0.0053 0.0048 0.0045

MSE 1 0.3524 0.3931 0.5146 0.5383 0.8121 0.8119
4 0.4742 0.5226 0.8434 0.8897 2.0940 2.1194
16 0.5110 0.5292 0.9612 0.9866 3.2698 3.3052

RB 1 0.0696 0.3926 0.1237 0.1529 0.1847 0.0245
4 -0.0216 0.5509 0.0044 0.2046 -0.0190 0.0231
16 -0.0324 0.6202 0.0295 0.2717 -0.0043 0.0639

CV 1 0.1791 0.5482 0.2228 0.3309 0.3128 0.2939
4 0.1142 0.7653 0.1323 0.3987 0.1833 0.2150
16 0.1045 0.8875 0.1263 0.5028 0.1389 0.2006
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Simulation results The proposed method has considerable lower prediction mean squared

errors. The gain is a maximum when the ratio of sampling variance to model variance is

the largest. The reduction is almost half when the number of small areas is 36. The relative

bias is always less than Wang and Fuller (2003) except the case τ2 = 4, σi = 1 (high model

variance, low sampling variance). The proposed method might have low underestimation

(about 5%) in case of n = 36. On the other hand, the Wang Fuller method can have very

large overestimation. In terms of coefficient of variation the proposed method outperforms

Wang and Fuller (2003).

3.5 Appendix: Matrix Calculation Results

3.5.1 Computation of B̂ −B

In this section of the appendix, the detailed expression of equations (3.21) are given. The

log-likelihood is already given in the section 3.2.3. The first order derivative terms, U
(i)
r , are

given in the formulas (3.16), (3.17), (3.12) and (3.14) in section 3.2.3.

For the second order derivative, V
(i)
αα , V

(i)
γγ , and V

(i)
αγ are given in equation (3.18) as Sαα,

Sγγ , and Sαγ . The other terms are

V
(i)
ββ

= − 1

τ2
+

1

(τ2)2
V ar(θi − β)

V
(i)

τ2τ2
=

1

2(τ2)2
− 1

(τ2)3
E(θi − β)2 +

1

4(τ2)4
V ar((θi − β)2)
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The other cross terms of the second order derivative are

V
(i)
αβ

= − 1

τ2
Cov(log(ψi), θi − β)

V
(i)

ατ2
= − 1

2(τ2)2
Cov(log(ψi), (θi − β)2)

V
(i)
γβ

= (
ni
2

+ α)
1

γ2τ2
Cov(

1

ψi
, θi − β)

V
(i)

γτ2
= (

ni
2

+ α)
1

2γ2(τ2)2
Cov(

1

ψi
, (θi − β)2)

V
(i)

βτ2
= − 1

(τ2)2
E(θi − β) +

1

2(τ2)3
Cov(θi − β, (θi − β)2)

The third derivative terms are:

W
(i)
ααα = logΓ′′′(

ni
2

+ α)− logΓ′′′(α)− Cov{log(ψi), log
2(ψi)}

−2Elog(ψi)V ar{log(ψi)}

W
(i)
γγγ = −2α

γ3
+ (

ni
2

+ α)

(
6

γ4
E

1

ψi
− 6

γ5
E

1

ψ2i

+
2

γ6
E

1

ψ3i

)

−(
ni
2

+ α)2

{
6

γ5
V ar(

1

ψi
) +

1

γ6
Cov(

1

ψi
,
1

ψ2i

)

}

−(
ni
2

+ α)3
1

γ6

{
Cov(

1

ψi
,
1

ψ2i

)− 2E
1

ψi
V ar(

1

ψi
)

}

W
(i)
βββ

=
1

(τ2)3

[
Cov{θi − β, (θi − β)2} − 2E(θi − β)V ar(θi − β)

]
W

(i)

τ2τ2τ2
= − 1

(τ2)3
+

3

(τ2)4
E(θi − β)2 − 3

2(τ2)5
V ar{(θi − β)2}+ 1

8(τ2)6
·[

Cov{(θi − β)4, (θi − β)2} − 2E(θi − β)2V ar{(θi − β)2}
]
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The other cross terms of the third order derivative are

W
(i)
ααγ = (

ni
2

+ α)
1

γ2

[
Cov{log2(ψi),

1

ψi
} − 2Elog(ψi)Cov{log(ψi),

1

ψi
}
]

− 2

γ2
Cov{log(ψi),

1

ψi
}

W
(i)
ααβ

=
1

τ2

[
Cov{log2(ψi), θi − β} − 2Elog(ψi)Cov{log(ψi), θi − β}

]
W

(i)

αατ2
=

1

2(τ2)2

[
Cov{log2(ψi), (θi − β)2} − 2Elog(ψi)Cov{log(ψi), (θi − β)2}

]
W

(i)
αγγ =

1

γ2
− 2

γ3
E

1

ψi
− 1

γ4
E

1

ψ2i

+ (
ni
2

+ α)
1

γ4

[
2V ar(

1

ψi
)− Cov{log(ψi),

1

ψ2i

}

]

−(
ni
2

+ α)2
1

γ4

[
Cov{log(ψi) ·

1

ψi
,
1

ψi
} − Cov{log(ψi),

1

ψi
}E 1

ψi

−Elog(ψi)V ar(
1

ψi
)

]
W

(i)
αγβ

=
1

γ2τ2
Cov(

1

ψi
, θi − β)− (

ni
2

+ α)
1

γ2τ2

[
Cov{log(ψi) ·

1

ψi
, θi − β}−

Cov{log(ψi), θi − β}E 1

ψi
− Elog(ψi)Cov(

1

ψi
, θi − β)

]
W

(i)

αγτ2
=

1

2γ2(τ2)2
Cov{ 1

ψi
, (θi − β)2} −

(
ni
2 + α)

2γ2(τ2)2

[
Cov{log(ψi) ·

1

ψi
, (θi − β)2}

−Cov{log(ψi), (θi − β)2}E 1

ψi
− Elog(ψi)Cov{

1

ψi
, (θi − β)2}

]
W

(i)
αββ

= − 1

(τ2)2

[
Cov{log(ψi), (θi − β)2} − 2E(θi − β)Cov{log(ψi), θi − β}

]
W

(i)

αβτ2
=

1

(τ2)2
Cov{log(ψi), θi − β} − 1

2(τ2)3

[
Cov{log(ψi) · (θi − β), (θi − β)2}−

Cov{log(ψi), (θi − β)2}E(θi − β)− Elog(ψi)Cov{θi − β, (θi − β)2}
]

W
(i)

ατ2τ2
=

1

4(τ2)3
Cov{log(ψi), (θi − β)2} − 1

4(τ2)4

[
Cov{log(ψi) · (θi − β)2, (θi − β)2}

−Cov{log(ψi), (θi − β)2}E(θi − β)2 − Elog(ψi)V ar{(θi − β)2}
]

73



W
(i)
γγβ

= −(
ni
2

+ α)
2

γ3τ2
Cov(θi − β,

1

ψi
) + (

ni
2

+ α)
1

γ4τ2
Cov(θi − β,

1

ψ2i

)

+(
ni
2

+ α)2
1

γ4τ2

{
Cov(θi − β,

1

ψ2i

)− 2E
1

ψi
Cov(θi − β,

1

ψi
)

}

W
(i)

γγτ2
= −

(
ni
2 + α)

γ3(τ2)2
Cov{(θi − β)2,

1

ψi
}+

(
ni
2 + α)

2γ4(τ2)2
Cov{(θi − β)2,

1

ψ2i

}

+
(
ni
2 + α)2

2γ4(τ2)2

[
Cov{(θi − β)2,

1

ψ2i

} − 2E
1

ψi
Cov{(θi − β)2,

1

ψi
}

]

W
(i)
γββ

= (
ni
2

+ α)
1

γ2(τ2)2

[
Cov{ 1

ψi
· (θi − β), θi − β} − Cov(

1

ψi
, θi − β)E(θi − β)

−E 1

ψi
V ar(θi − β)

]
W

(i)

γβτ2
= −

(
ni
2 + α)

γ2(τ2)2
Cov(

1

ψi
, θi − β) +

(
ni
2 + α)

2γ2(τ2)3

[
Cov{ 1

ψi
· (θi − β), (θi − β)2}

−Cov{ 1

ψi
, (θi − β)2}E(θi − β)− E

1

ψi
Cov{θi − β, (θi − β)2}

]
W

(i)

γτ2τ2
= −

(
ni
2 + α)

γ2(τ2)3
Cov{ 1

ψi
, (θi − β)2}+

(
ni
2 + α)

4γ2(τ2)4

[
Cov{ 1

ψi
· (θi − β)2, (θi − β)2}

−Cov{ 1

ψi
, (θi − β)2}E(θi − β)2 − E

1

ψi
V ar{(θi − β)2}

]
W

(i)

ββτ2
=

1

(τ2)2
− 2

(τ2)3
V ar(θi − β) +

1

2(τ2)4

[
V ar{(θi − β)2}

−2E(θi − β)Cov{(θi − β)2, θi − β}
]

W
(i)

βτ2τ2
=

2

(τ2)3
E(θi − β)− 2

(τ2)4
Cov{(θi − β)2, θi − β}

+
1

4(τ2)5

[
Cov{(θi − β)3, (θi − β)2} − V ar{(θi − β)2}E(θi − β)

]

All the other terms are equal to the above values according to symmetry.
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3.5.2 Second Order Correction of νi

In the equation (3.20), the second order derivative of νi is included. The detailed formula is

given in the following:

∂2νi
∂α2

= − ∂
∂α

Cov(θ2i , logψi) + 2 ∂
∂α

Eθi · Cov(θi, logψi) + 2Eθi
∂
∂α

Cov(θi, logψi)

∂
∂α

Cov(θ2i , logψi) = −Cov(θ2i logψi, logψi) + Cov(θ2i , logψi)Elogψi + Eθ2i Cov(logψi, logψi)

∂
∂α

Eθi = −Cov(θi, logψi)

∂
∂α

Cov(θi, logψi) = −Cov(θilogψi, logψi) + Cov(θi, logψi)Elogψi + EθiCov(logψi, logψi)

∂2νi
∂α∂γ

= − ∂
∂γ
Cov(θ2i , logψi) + 2 ∂

∂γ
Eθi · Cov(θi, logψi) + 2Eθi

∂
∂γ
Cov(θi, logψi)

∂
∂γ
Cov(θ2i , logψi) = (ni/2 + α) 1

γ2

{
Cov(θ2i logψi,

1
ψi

)− Cov(θ2i ,
1
ψi

)Elogψi

−Eθ2i Cov(logψi,
1
ψi

)

}
− 1
γ2
Cov(θ2i ,

1
ψi

)

∂
∂γ
Eθi = (ni/2 + α) 1

γ2
Cov(θi,

1
ψi

)

∂
∂γ
Cov(θi, logψi) = (ni/2 + α) 1

γ2

{
Cov(θilogψi,

1
ψi

)− Cov(θi,
1
ψi

)Elogψi

−EθiCov(logψi,
1
ψi

)

}
− 1
γ2
Cov(θi,

1
ψi

)

∂2νi
∂α∂β

= − ∂
∂β

Cov(θ2i , logψi) + 2 ∂
∂β

Eθi · Cov(θi, logψi) + 2Eθi
∂
∂β

Cov(θi, logψi)

∂
∂β

Cov(θ2i , logψi) =
1
τ2

{
Cov(θ2i logψi, θi − β)− Cov(θ2i , θi − β)Elogψi

−Eθ2i Cov(logψi, θi − β)
}

∂
∂β

Eθi =
1
τ2
V ar(θi)

∂
∂β

Cov(θi, logψi) =
1
τ2

{
Cov(θilogψi, θi − β)− Cov(θi, θi − β)Elogψi

−EθiCov(logψi, θi − β)
}
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∂2νi
∂α∂τ2

= − ∂
∂τ2

Cov(θ2i , logψi) + 2 ∂
∂τ2

Eθi · Cov(θi, logψi) + 2Eθi
∂
∂τ2

Cov(θi, logψi)

∂
∂τ2

Cov(θ2i , logψi) =
1

2(τ2)2

[
Cov{θ2i logψi, (θi − β)2} − Cov{θ2i , (θi − β)2}Elogψi

−Eθ2i Cov{logψi, (θi − β)2}
]

∂
∂τ2

Eθi =
1

2(τ2)2
Cov{θi, (θi − β)2}

∂
∂τ2

Cov(θi, logψi) =
1

2(τ2)2

[
Cov{θilogψi, (θi − β)2} − Cov{θi, (θi − β)2}Elogψi

−EθiCov{logψi, (θi − β)2}
]

∂2νi
∂γ2

= −(
ni
2 + α) 2

γ3

{
Cov(θ2i ,

1
ψi

)− 2EθiCov(θi,
1
ψi

)

}
+ (

ni
2 + α) 1

γ2
·{

∂
∂γ
Cov(θ2i ,

1
ψi

)− 2 ∂
∂γ
Eθi · Cov(θi,

1
ψi

)− 2Eθi
∂
∂γ
Cov(θi,

1
ψi

)

}
∂
∂γ
Cov(θ2i ,

1
ψi

) = (
ni
2 + α) 1

γ2

{
Cov(θ2i

1
ψi
, 1
ψi

)− Cov(θ2i ,
1
ψi

)E 1
ψi

− Eθ2i V ar(
1
ψi

)

}
+ 1
γ2
Cov(θ2i ,

1
ψ2i

)

∂
∂γ
Eθi = (ni/2 + α) 1

γ2
Cov(θi,

1
ψi

)

∂
∂γ
Cov(θi,

1
ψi

) = (
ni
2 + α) 1

γ2

{
Cov(θi

1
ψi
, 1
ψi

)− Cov(θi,
1
ψi

)E 1
ψi

− EθiV ar(
1
ψi

)

}
+ 1
γ2
Cov(θi,

1
ψ2i

)

∂2νi
∂γ∂β

= (
ni
2 + α) 1

γ2

{
∂
∂β

Cov(θ2i ,
1
ψi

)− 2 ∂
∂β

Eθi · Cov(θi,
1
ψi

)− 2Eθi
∂
∂β

Cov(θi,
1
ψi

)

}
∂
∂β

Cov(θ2i ,
1
ψi

) = 1
τ2

{
Cov(θ2i

1
ψi
, θi − β)− Cov(θ2i , θi − β)E 1

ψi
− Eθ2i Cov(

1
ψi
, θi − β)

}
∂
∂β

Eθi =
1
τ2
V ar(θi)

∂
∂β

Cov(θi,
1
ψi

) = 1
τ2

{
Cov(θi

1
ψi
, θi − β)− Cov(θi, θi − β)E 1

ψi
− EθiCov(

1
ψi
, θi − β)

}
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∂2νi
∂γ∂τ2

= (
ni
2 + α) 1

γ2

{
∂
∂τ2

Cov(θ2i ,
1
ψi

)− 2 ∂
∂τ2

Eθi · Cov(θi,
1
ψi

)− 2Eθi
∂
∂τ2

Cov(θi,
1
ψi

)

}
∂
∂τ2

Cov(θ2i ,
1
ψi

) = 1
2(τ2)2

[
Cov{θ2i

1
ψi
, (θi − β)2} − Cov{θ2i , (θi − β)2}E 1

ψi
−

Eθ2i Cov{
1
ψi
, (θi − β)2}

]
∂
∂τ2

Eθi =
1

2(τ2)2
Cov{θi, (θi − β)2}

∂
∂τ2

Cov(θi,
1
ψi

) = 1
2(τ2)2

[
Cov{θi

1
ψi
, (θi − β)2} − Cov{θi, (θi − β)2}E 1

ψi
−

EθiCov{
1
ψi
, (θi − β)2}

]

∂2νi
∂β2

= 1
τ2

{
∂
∂β

Cov(θ2i , θi − β)− 2 ∂
∂β

Eθi · Cov(θi, θi − β)− 2Eθi ·
∂
∂β

Cov(θi, θi − β)
}

∂
∂β

Cov(θ2i , θi − β) = 1
τ2

[
Cov{θ2i (θi − β), θi − β} − Cov(θ2i , θi − β)E(θi − β)−

Eθ2i V ar(θi − β)
]

∂
∂β

Eθi = Cov(θi, θi − β)

∂
∂β

Cov(θi, θi − β) = 1
τ2

[
Cov{θi(θi − β), θi − β} − Cov(θi, θi − β)E(θi − β)−

EθiV ar(θi − β)
]

∂2νi
∂β∂τ2

= − 1
(τ2)2

{
Cov(θ2i , θi − β)− 2Eθi · Cov(θi, θi − β)

}
+ 1
τ2

{
∂
∂τ2

Cov(θ2i , θi − β)−

2 ∂
∂τ2

Eθi · Cov(θi, θi − β)− 2Eθi ·
∂
∂τ2

Cov(θi, θi − β)
}

∂
∂τ2

Cov(θ2i , θi − β) = 1
2(τ2)2

[
Cov{θ2i (θi − β), (θi − β)2} − Cov{θ2i , (θi − β)2}E(θi − β)

−Eθ2i Cov{θi − β, (θi − β)2}
]

∂
∂τ2

Eθi =
1

2(τ2)2
Cov{θi, (θi − β)2}

∂
∂τ2

Cov(θi, θi − β) = 1
2(τ2)2

[
Cov{θi(θi − β), (θi − β)2} − Cov{θi, (θi − β)2}E(θi − β)

−EθiCov{θi − β, (θi − β)2}
]
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∂2νi

∂τ2
2 = − 1

(τ2)3

[
Cov{θ2i , (θi − β)2} − 2EθiCov{θi, (θi − β)2}

]
+

1
2(τ2)2

·
[
∂
∂τ2

Cov{θ2i , (θi − β)2} − 2 ∂
∂τ2

Eθi · Cov{θi, (θi − β)2}

−2Eθi ·
∂
∂τ2

Cov{θi, (θi − β)2}
]

∂
∂τ2

Cov{θ2i , (θi − β)2} = 1
2(τ2)2

[
Cov{θ2i (θi − β)2, (θi − β)2} − Eθ2i V ar{(θi − β)2}

−Cov{θ2i , (θi − β)2}E(θi − β)2
]

∂
∂τ2

Eθi =
1

2(τ2)2
Cov{θi, (θi − β)2}

∂
∂τ2

Cov{θi, (θi − β)2} = 1
2(τ2)2

[
Cov{θi(θi − β)2, (θi − β)2} − EθiV ar{(θi − β)2}

−Cov{θi, (θi − β)2}E(θi − β)2
]

The other terms are equal to the symetric terms.
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Chapter 4

Confidence Interval Estimation of

Small Area Parameters Shrinking

both Mean and Variances

4.1 Introduction

The new approach to small area estimation based on joint modeling of mean and variances

is given in the previous chapter. The conditional mean squared error of prediction is also

estimated to evaluate the prediction error. In this chapter, we will obtain confidence intervals

of small area means. The small area estimation literature is dominated by point estimation

and their standard errors. It is well known that the standard practice of (pt. est.± qs.e.), q

is Z (standard normal) or t cut-off point, does not produce accurate intervals. See, Hall and

Maiti (2006) and Chatterjee et al. (2008) for more details. The previous works are based on

the bootsrap procedure and has limited use due to repeated estimation of model parameters.

79



The confidence intervals produced in this chapter are from a decision theory perspective.

The rest of the chapter is organized as follows. In section 4.2, the proposed model is

repeated. Section 4.3 gives the definition of the confidence intervals. Theoretical justification

and an alternative model are given in section 4.4 and 4.5. Section 4.6 contains a simulation

study. A real data analysis is included in Section 4.7.

4.2 Proposed Model

The hierarchical model adopted here is already introduced in section 3.2. We want to point

out again that this model used both the direct survey estimates and sampling variance

estimates to estimate all the parameters that determines the stochastic system. From the

simulation study, this mean-variance joint modelling performed better than Hwang et al.

(2009), which does not take into account the variance estimation completely.

Let Xi be the direct survey estimates and S2i be their sampling variances for the ith area,

i = 1, · · · , n. Let Zi = (Zi1, · · · , Zip)T be the set of covariates available at the estimation

stage and β = (β1, · · · , βp)T be the associated regression coefficients. We propose the

following hierarchical model:

Xi|θi, σ2i ∼ Normal(θi, σ
2
i )

θi ∼ Normal(ZTi β, τ
2); i = 1, · · · , n,

 (4.1)

(ni − 1)S2i /σ
2
i ∼ χ2ni−1

σ−2
i ∼ Gamma{α, γ}; i = 1, · · · , n,

 (4.2)

80



where B = (α, γ,βT , τ2)T , referred to as the structural parameters, are unknown and

ni represents the sample size for a simple random sample (SRS) from the ith area. Note

that σ2i are the sampling variances of Xi’s and are usually estimated by S2i ’s. Note that

the chi-square distribution for the sample variance is valid for only a random sample. For

a complex survey design the degrees of freedom of the chi-square distribution need to be

determined carefully (e.g., Maples and Huang 2009). The second level of (3.2) might be

further extended as Gamma{γ, exp(ZTi β2)/γ} to accommodate covaraite information in

the variance modeling. The inference can be made from the conditional distribution of θi

(the parameter of interest) given the data (Xi, S
2
i ,Zi), i = 1, · · · , n. Under our model

set up the conditional distribution of θi does not have a closed form, and for handling a

non-standard distribution we use Monte Carlo methods.

4.3 Confidence Interval

4.3.1 Definition

Following Joshi (1969), Casella and Hwang (1991), Hwang et al. (2009), consider the loss

function

(k/σ)L(C)− IC(θ)

where k is a tuning parameter, independent of the model parameters and L(C) is the length

of a confidence interval C and IC(θ) is 1 or 0 depending on θ ∈ C or not. Then the decision

Bayes confidence interval for θi is obtained by minimizing E
{
[(k/σ)L(C)− IC(θ)]|Xi, S2i )

}
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and is given by

Ci(B) = {θ : kE(σ−1
i |Xi, S

2
i ,B) < π(θi|Xi, S

2
i ,B)}. (4.3)

When k and B are known we follow the following steps to calculate the above CI. Note that

the conditional distribution of σ2i and θi given the data and B in equation (3.4) and (3.5)

are

π(σ2i |Xi, S
2
i ,B) ∝

exp[−0.5(Xi −ZTi β)
2/(σ2i + τ2)− {0.5(ni − 1)S2i + 1/b}(1/σ2i )]

(σ2i )
(ni−1)/2+a+1(σ2i + τ2)1/2

π(θi|Xi, S
2
i ,B) ∝ exp{−0.5(θi −ZTi β)

2/τ2}ψ−(ni/2+a)
i

where ψi = 0.5(Xi − θi)
2 + 0.5(ni − 1)S2i + 1/γ.

Therefore, we calculate E(σ−1
i |Xi, S2i ,B) using the Monte Carlo method. Suppose that

σ2ik, k = 1, · · · , N are N observations from π(σ2i |Xi, S
2
i ,B). Then E(σ−1

i |Xi, S2i ,B) will

be calculated by

1

N

N∑
k=1

1

σik
.

For drawing random numbers from π(σ2i |Xi, S
2
i ,B) we use the rejection sampling method

(Robert and Casella, 2004). Next we determine the values of θi by solving kE(σ−1
i |Xi, S2i ,B)−

π(θi|Xi, S2i ,B) = 0. Note that for solving the above equation we require the normalizing

constant of the conditional density π(θi|Xi, S2i ,B), and that is calculated by a numerical

method.

In practice, B is unknown. We propose to estimate it by maximizing the marginal

likelihood LM =
∏n
i=1 L

M
i of {(Xi, S2i ,Zi)

n
i=1;B}. The detailed prodecure is described
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in section 3.2.3.

4.3.2 Choice of the Tuning Parameter

We discuss in this section the choice of the tuning parameter k in (4.3). As a first step when

a is known, consider

k = k(B) = u0 ϕ

(
tα/2

√
ni + 2a+ 2

ni − 1

)
(4.4)

where ϕ is the standard normal distribution, tα/2 is (1−α/2)-th percentile of t distribution

with (ni − 1) degrees of freedom, and

u0 =

√
1 +

σ2i
τ2
. (4.5)

This choice of k involves components of B which will be assumed to be known for the

moment. In the case when B is unknown, as is in most practical situations, B will be

replaced by its corresponding estimate B̂ derived using the estimation method described in

Section 3.2.3. The definition of u0 in (4.5) further involves σ2i which is not a component

of B. Thus, u0 is replaced by û0 obtained by replacing σ2i with its maximum a posteriori

estimate

σ̂2i = σ̂2i (B) = arg max
σ2i

π(σ2i |Xi, S
2
i ,B), (4.6)

the value of σ2i that maximizes the posterior density of σ2i given Xi, S
2
i and B.

We demonstrate that the coverage probability of Ci(B) with this choice of k is close to

1− α. Theoretical justifications are provided in Section 4.4.

In Hwang et al. (2009) the choice of k is ad-hoc where they equate the Bayes interval to

the t-interval and solve for k.
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Note that without any hierarchical model Si and Xi are independent as S2i and Xi are

ancillary and complete sufficient statistics for θi, respectively. However, under models (3.1)

and (3.2) the conditional distribution of σ2i and θi involve both Xi and S2i which is seen

from (3.4) and (3.5).

We would like to mention that in Hwang et al. (2009) the shrinkage estimators for σ2i was

based only on the information on S2i , but not using both Xi and S
2
i . They then plugged-in

the Bayes estimator of σi into the Bayes estimators of small area parameters. Thus if σ̂2B,i

is the Bayes estimator of σ2i , then Hwang et al.’s small area estimator can be written as

E(θi|Xi, σ2i )|σ2i =σ̂
2
B,i

.

Remark 1. As it is mentioned previously the d.f. associated with the χ2 distribution for

sampling variance modeling need not be simply ni − 1, ni being the sample size for i-th

area. There is no sound theoretical result for determining the d.f. in the case of complex

survey design. Wang and Fuller (2003) approximated the χ2 to the normal based on the

Wilson-Hilferty approximation. If one knows the exact sampling design then the simulation

based guideline of Maples et al. (2009) could be useful. In the case for county level estimation

from the American Community Survey, they suggested the estimated d.f. = 0.36×√
ni.

4.4 Theoretical Justification of Tuning Parameter

We present some theoretical justification for the choice of k according to equations (4.4),

(4.5) and (4.6). Assume B is fixed and known for the moment. The conditional distribution
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of θi can be approximated as

π(θi|Xi, S2i ,B) =
∫∞
0 π(θi |Xi, S2i ,B, σ

2
i )π(σ

2
i |Xi, S

2
i ,B) dσ2i

≈ π(θi |Xi, S2i ,B, σ̂
2
i )

(4.7)

where σ̂2i as defined in (4.6). In a similar way, approximate E(σ−1
i |Xi, S2i ,B) by

E(σ−1
i |Xi, S

2
i ,B) ≈ σ̂−1

i . (4.8)

Based on (4.7) and (4.8), we have Ci(B) ≈ C̃i(B) where C̃i(B) is the confidence interval

for θi given by

C̃i(B) =
{
θi : π(θi |Xi, S

2
i ,B, σ̂

2
i ) ≥ k σ̂−1

i

}
, (4.9)

with σ2i replaced by σ̂2i . From (3.1), it follows that the conditional density π(θi |Xi, S2i ,B, σ
2
i )

is normal with mean µi and variance vi, where µi and vi are given by the expressions

µi = wi Xi + (1− wi)Z
T
i β and vi =

(
1

σ2i

+
1

τ2

)−1

= σ2i

(
1 +

σ2i
τ2

)−1

, (4.10)

and wi =
1/σ2i

(1/σ2i +1/τ2)
. Now, choosing k = û0 ϕ

(
tα/2

√
ni+2a+2
ni−1

)
as discussed, the

confidence interval C̃i(B) becomes

C̃i(B) =

{
θi : û0

|θi − µ̂i|
σ̂i

≤ tα/2

√
ni + 2a+ 2

ni − 1

}
, (4.11)
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where µ̂i is the expression for µi in (4.10) with σ2i replaced by σ̂2i . Now consider the behavior

of σ̂2i ≡ σ̂2i (B) as τ2 ranges between 0 and ∞. When τ2 → ∞, σ̂2i converges to

σ̂2(∞) ≡ σ̂2i (a, b,β,∞) =

(ni−1)
2 S2i + 1

b
ni−1
2 + a+ 1

=
(ni − 1)S2i + 2

b
ni + 2a+ 1

.

Similarly, when τ2 → 0, σ̂2i converges to

σ̂2(0) ≡ σ̂2i (a, b,β, 0) =
(Xi −ZTi β)

2 + (ni − 1)S2i + 2
b

ni + 2a+ 2
.

For all intermediate values of τ2, we have min{σ̂2(0), σ̂2(∞)} ≤ σ̂2i ≤ max{σ̂2(0), σ̂2(∞)}.

Therefore, it is sufficient to consider the following two cases: (i) σ̂2i ≥ σ̂2(∞), where it follows

that (ni + 2a+ 2)σ̂2i = (ni + 2a+ 1)σ̂2i + σ̂2i ≥ (ni − 1)S2i + 2
b
+ σ̂2i ≥ (ni − 1)S2i , and (ii)

σ̂2i ≥ σ̂2(0), where it follows that (ni+2a+2)σ̂2i = (Xi−ZTi β)
2+(ni−1)S2i +

2
b
≥ (ni−1)S2i .

So, in both cases (i) and (ii),

(ni + 2a+ 2) σ̂2i ≥ (ni − 1)S2i . (4.12)

Since θi − µi ∼ N
(
0, σ2i τ

2/(σ2i + τ2)
)

and (ni − 1)S2i /σ
2
i ∼ χ2ni−1, the confidence

interval

Di =

{
θi : u0

|θi − µi|
Si

≤ tα/2

}
(4.13)

has coverage probability 1− α. Thus, if u0 and µi are replaced by û0 and µ̂i, it is expected

that the resulting confidence interval D̃i, say, will have coverage probability of approximately

1− α. From (4.12), we have
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P (C̃(B)) ≥ P (D̃i) ≈ 1− α, (4.14)

establishing an approximate lower bound of 1− α for the confidence level of C̃(B).

In (4.14), B was assumed fixed and known. In the case when B is unknown, we replace

B by its marginal maximum likelihood estimate B̂. Since (4.14) holds regardless of the true

value of B, substituting B̂ for B in (4.14) will involve an order O(1/
√
N) of error where

N =
∑n
i=1 ni. Compared to each single ni, this pooling of nis is expected to reduce the

error significantly so that C̃(B̂) is sufficiently close to C̃(B) to satisfy the lower bound of

1− α in (4.14).

4.5 Alternative Model for Confidence Interval

It is possible to reduce the width of the confidence interval C̃(B) based on an alternative

hierarchical model for small area estimation. The constant term ni + 2a+ 2 in (4.12) in the

alternative model becomes ni + 2a. The model is

Xi | θi, σ
2
i ∼ N(θi, σ

2
i ), (4.15)

θi | σ
2
i ∼ N(Ziβ, λ σ

2
i ), (4.16)

(ni − 1)(S2i /σ
2
i ) ∼ χ2ni−1, (4.17)

σ2i ∼ Inverse-Gamma(a, b), (4.18)

for i = 1, 2, · · · , n. Note that in the above alternative formulation, it is assumed that the

variability of θi is proportional to σ
2
i while in the previous model, the variance of θi was τ

2
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independent of σ2i ; in other words the model variance was constant. The set of all unknown

parameters in the current hierarchical model is B = (a, b,β, λ). By re-parametrizing the

variance in (4.16), some simplications can be obtained in the derivation of the posteriors of

θi and σi given Xi, S
2
i and B. We have

π(σ2i |Xi, S
2
i ,B) = IG

ni
2

+ a,

[
(ni − 1)S2i

2
+

(Xi −Ziβ)
2

2(1 + λ)
+

1

b

]−1
 .

Given B and σ2i , the conditional distribution of θi is normal with mean µi and variance vi

as in (4.10) with τ2 replaced by λσ2i : π(θi|Xi, σ
2
i ,B) = N(µi,

λσ2i
1+λ

). By integrating out

σ2i , it follows that the conditional distribution of θi given Xi, S
2
i and B is

π(θi|Xi, S
2
i ,B) =

∫ ∞

0
π(θi|Xi, σ

2
i , B)π(σ2i |Xi, S

2
i ,B)dσ2i

∝

[
(1 + λ)

2λ
(θi − µi)

2 +
δ2

2

]−(ni+2a+1)/2

, (4.19)

where δ2 = (ni − 1)S2i + (Xi −Ziβ)
2/(1 + λ) + 2/b. We can rewrite (4.19) as

π(θi|Xi, S
2
i ,B) =

Γ((ni + 1)/2 + a)
√
1 + λ

δ∗ Γ(ni/2 + a)
√
(ni + 2a)λπ

{
1 +

(θi − µi)
2

(ni + 2a)δ∗2 λ/(1 + λ)

}−(ni+2a+1)
2

which can be seen to be a scaled t-distribution with ni + 2a degrees of freedom and scale

parameter δ∗
√

λ
1+λ

where δ∗2 = δ2

(ni+2a)
. Also
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E(σ−1
i |Xi, Si,B) =

Γ((ni + 1)/2 + a)(δ2/2)−{(ni+1)/2+a}

Γ(ni/2 + a)(δ2/2)−(ni/2+a)

=
Γ((ni + 1)/2 + a)

Γ(ni/2 + a)

√
2

δ∗
√
ni + 2a

.

In this context, choosing k = k(B) as

k =

1 +
t2
α/2

ni − 1


−(ni+2a+1)/2

·
√

1 + λ

λ
· 1√

2π
,

the confidence interval in (4.3) simplifies to

Ci(B) ≡

θi :
| θi − µi |√
λ

1+λ
(ni+2a)δ∗2

ni−1

≤ tα/2

 . (4.20)

Using similar arguments as before and noting that (ni + 2a)δ∗2 ≥ (ni − 1)S2i , we have

P (Ci(B) ≥ Di) = 1 − α where Di is the confidence interval in (4.13). Again here, B was

assumed fixed and known. In the case when B is unknown, we replace B by its marginal

maximum likelihood estimate B̂. It is expected that the pooling technique will result in an

error small enough so that P (Ci(B̂)) ≈ P (Ci(B)), and thus, enable the confidence level of

Ci(B̂) to be greater than 1− α.
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4.6 Simulation Study

Simulation design We considered a simulation setting similar to Wang and Fuller (2003),

which is the same as the set up in section 3.4. Each sample in the simulation study was

generated through the same steps as the section 3.4. To simplify the simulation, we still do

not choose any covariate Z, only (Xi, S
2
i ) are generated. The observations for each small

area is first generated as

Xij = β + ui + eij, j = 1, . . . , ni, i = 1, . . . , n,

where ui ∼ Normal(0, τ2) and eij ∼ Normal(0, niσ
2
i ). Then, the model for (Xi, S

2
i ) is the

same as equations (3.26) and (3.27):

Xi = β + ui + ei, i = 1, . . . , n,

S2i =
1

ni − 1

1

ni

ni∑
j=1

(Xij − X̄i·)
2

whereXi = X̄i· = n−1
i
∑ni
j=1Xij , ei = ēi· = n−1

i
∑ni
j=1 eij . Therefore,Xi ∼ Normal(θi, σ

2
i ),

where θi = β + ui and θi ∼ Normal(β, τ2), and ei ∼ Normal(0, σ2i ). It is to be noted that

(ni− 1)S2i /σ
2
i ∼ χ2

(ni−1)
. Then the quantities to be predicted are the mean for each small

area, θi, i = 1, . . . , n.

Like Wang and Fuller (2003), we set all ni equal to m which eased our programming

efforts. However, the sampling variances were still unequal by choosing one-third of the σ2i

equal to 1, one-third equal to 4, and one-third equal to 16. In the simulation, we set β = 10

and took three different values of τ2, 0.25, 1, 4. For each τ2, we generated 200 samples for
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each of the combinations (m,n) = (9, 36), (18, 180).

In this simulation study we compare the proposed method with the method of Wang and

Fuller (2003), Hwang et al. (2009) and Qiu and Hwang (2007) which are referred to as I, II,

III, and IV, respectively. Note that the estimator proposed in Qiu and Hwang (2007) was

adjusted for the Fay-Herriot model (1979).

The methods are judged based on bias, mean squared error (MSE), asymptotic coverage

probability (ACP) of the confidence intervals and the length of the confidence intervals

(ALCI).

Simulation results In Table 4.1 we present the mean and empirical standard deviation

of estimates of β and τ2. The numerical results indicate good performance of the EM

algorithm based maximum likelihood estimate of the model parameters.

Table 4.1: Estimation of model parameter. The left panel is for β and the right panel is for
τ2

β = 10 τ2 = 0.25, 1, 4
n = 36, m = 9 n = 180, m = 18 n = 36, m = 9 n = 180, m = 18

τ2 Mean SD Mean SD τ2 Mean SD Mean SD
0.25 10.0071 0.3618 9.9951 0.1853 0.25 0.2558 0.0605 0.2575 0.0097
1 10.0142 0.3311 9.9970 0.1743 1 0.9418 0.3333 1.0426 0.1264
4 10.0282 0.4639 10.0048 0.2254 4 3.5592 1.3316 4.0817 0.5551
SD: standard deviation over 200 replicates

The following Tables 4.2, 4.3 and 4.4 provide the numerical results averaged over areas

within the group (having the same sampling variances). We calculated the relative bias, mean

squared error, coverage rate and average confidence intervals of the small area estimators

based on 200 replications.

In most cases, the bias of the four methods are comparable. In the case of high sampling

variance, the method IV outperformed other methods. High sampling variance gives more
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Table 4.2: Simulation results for prediction when τ2 = 0.25
n = 36, m = 9 n = 180, m = 18

σ2i I II III IV I II III IV

Bias 1 0.0048 0.0198 0.0272 0.0018 -0.0051 -0.0086 -0.0112 -0.0111
4 -0.0033 -0.0061 -0.0145 -0.0158 -0.0130 -0.0109 -0.0065 -0.0116
16 0.0126 0.0370 0.0369 0.0096 -0.0046 -0.0045 -0.0080 -0.0061

MSE 1 0.3066 0.3955 0.6861 0.3805 0.2258 0.2757 0.4470 0.2922
4 0.3281 0.5119 1.3778 0.7285 0.2595 0.3010 0.5805 0.3748
16 0.3715 0.4623 1.6749 1.9316 0.2815 0.2856 0.4856 0.6383

ALCI 1 2.1393 2.5485 4.4906 3.0528 1.9220 1.6006 3.6466 2.4811
4 2.2632 3.9574 6.8887 5.6842 2.0557 2.1524 5.2472 4.2160
16 2.3221 4.5619 9.3335 11.1363 2.1046 2.3308 6.5273 7.8492

ACP 1 0.9468 0.8958 0.9771 0.9708 0.9564 0.8160 0.9851 0.9631
4 0.9468 0.9433 0.9829 0.9917 0.9555 0.8478 0.9967 0.9967
16 0.9365 0.9375 0.9933 0.9975 0.9529 0.8472 0.9998 0.9999

Table 4.3: Simulation results for prediction when τ2 = 1
n = 36, m = 9 n = 180, m = 18

σ2i I II III IV I II III IV

Bias 1 -0.0152 0.0205 0.0255 0.0051 -0.0064 -0.0085 -0.0111 -0.0101
4 -0.0167 -0.0164 -0.0151 -0.0219 -0.0151 -0.0121 -0.0133 -0.0164
16 -0.0323 0.0508 0.0515 0.0216 -0.0028 -0.0017 -0.0073 -0.0039

MSE 1 0.5645 0.6300 0.7238 0.6260 0.5288 0.5555 0.5673 0.6336
4 0.8566 1.0746 1.5396 1.0992 0.8159 0.8707 0.9415 0.8948
16 1.0482 1.2406 2.1059 2.3156 0.9786 1.0043 1.1024 1.1878

ALCI 1 3.4550 3.1822 4.4938 3.2117 3.1088 2.5094 3.6763 2.8676
4 4.0321 5.8733 6.8984 5.7909 3.7844 4.2908 5.3323 4.5543
16 4.4082 7.4286 9.3555 11.1555 4.1187 5.1590 6.6785 7.8937

ACP 1 0.9704 0.8800 0.9762 0.9275 0.9660 0.8771 0.9786 0.8879
4 0.9633 0.9308 0.9812 0.9808 0.9627 0.9464 0.9918 0.9740
16 0.9533 0.9325 0.9912 0.9938 0.9613 0.9560 0.9974 0.9979
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Table 4.4: Simulation results for prediction when τ2 = 4

n = 36, m = 9 n = 180, m = 18

σ2i I II III IV I II III IV

Bias 1 -0.0024 0.0248 0.0229 0.0180 -0.0084 -0.0098 -0.0122 -0.0106
4 -0.0343 -0.0310 -0.0210 -0.0340 -0.0110 -0.0092 -0.0174 -0.0132
16 -0.0147 0.0702 0.0767 0.0467 0.0016 0.0024 -0.0059 0.0012

MSE 1 0.8822 0.8786 0.8579 1.0559 0.8359 0.8334 0.8541 0.8605
4 2.0577 2.2315 2.1818 2.2422 2.0424 2.0735 2.0935 2.1130
16 3.4516 3.7401 3.9267 3.8981 3.3153 3.3516 3.3939 3.3631

ALCI 1 4.6318 4.1936 4.5369 3.7677 4.0256 3.5346 3.9626 3.7499
4 6.2015 10.9093 7.0376 6.4314 5.9000 9.0913 6.2217 6.1540
16 7.7221 18.0039 9.6718 11.3341 7.4430 14.6665 8.3908 8.7537

ACP 1 0.9791 0.9067 0.9733 0.9029 0.9674 0.9135 0.9600 0.9468
4 0.9556 0.9850 0.9725 0.9496 0.9592 0.9919 0.9633 0.9573
16 0.9510 0.9958 0.9796 0.9858 0.9573 0.9990 0.9718 0.9776

weight to the population mean by a construction that makes the estimator closer to the

mean at the second level. On the other hand, methods I-III use shrinkage estimators of

the sampling variances which would be less than the maximum of all sampling variances.

This would tend to have a little more bias. However, due to shrinkage in sampling variance,

method I would expect gain in the variance of the estimators meaning the mean squared

error (MSE) would tend to smaller. Among the methods I-III, method I performed better

than method II and method III, method II and III are much closer to each other. The

maximum gain in method I compared to method II is 99%.

In terms of the mean squared error (MSE), method I performed consistently better than

the other three methods in most cases, except the case when the ratio of sampling variance to

model variance is lowest: (σ2i = 1)/(τ2 = 4) = 0.25. In this case, the variance between small

areas (model variance) is much higher than the variance within each small area(sampling

variance). When using our method to estimate the mean of each small area, the information
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“borrowed” from other areas will misdirect the estimation. The maximum and minimum

gain compared to methods II and III are 30%, -9% and 77%, -11% respectively.

ACP: We calculated 95% confidence intervals. Methods I and III do not have any under

coverage. This is expected by their optimal interval construction. Method I meets the

nominal coverage rate more frequently than any other method. Method II has some under

coverage. This could go as low as 82%.

ALCI: Method I produced considerably shorter confidence intervals in general. Method

IV produced comparable lengths as in other methods, but the length was considerably higher

in case of high sampling variance. The reason is the method IV truncatesM = τ2/(τ2+σ2i )

with a positive number M1 = 1−Qα/(N − 2), where Qα is the α-quantile of a chi-squared

distribution with N degrees freedom. When the ratio of sampling variance to model variance,

σ2i /τ
2, is high,M1 is much greater thanM . For example, in the case of (σ2i , τ

2) = (16, 0.25),

the average length is 11.13 in method IV whereas this is only 2.78 in method I and 4.56 in

method II.

4.7 A Real Data Analysis

We illustrate our methodology with a widely studied example. The data set is from the U.S.

Department of Agriculture and was first analyzed by Battese, Harter and Fuller (1988). The

data set is about crop and soybeans in 12 Iowa counties. The sample sizes for these areas

are small, ranging from 1 to 5. We shall consider corn only to save space. For the proposed

model, the sample size of each area requires ni > 1. Therefore the same modified data

from You and Chapman (2006) is used, which only includes the areas with sample size 2 or

greater. The mean reported crop hectares for corn (xi) comprise the direct survey estimates.
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Table 4.5: Crop data from You and Chapman(2006)
Corn

County ni xi z1 z2

√
S2i

Franklin 3 158.623 318.21 188.06 5.704
Pocahontas 3 102.523 257.17 247.13 43.406
Winnebago 3 112.773 291.77 185.37 30.547
Wright 3 144.297 301.26 221.36 53.999
Webster 4 117.595 262.17 247.09 21.298
Hancock 5 109.382 314.28 198.66 15.661
Kossuth 5 110.252 298.65 204.61 12.112
Hardin 5 120.054 325.99 177.05 36.807

Table 4.6: Estimation results of corn
I: Proposed method II: Wang and Fuller(2003)

County θ̂i Confidence Interval θ̂i Confidence Interval
Franklin 131.8106 104.085, 159.372(55.287) 155.4338 124.151, 193.094( 68.943)
Pocahontas 108.7305 80.900, 136.436(55.536) 102.3682 -38.973, 244.019(282.993)
Winnebago 109.0559 81.430, 136.646(55.216) 115.9093 -53.768, 279.314(333.083)
Wright 131.6113 103.736, 159.564(55.828) 131.0674 8.330, 280.263(271.932)
Webster 113.1484 92.805, 133.348(40.543) 109.4795 32.514, 202.675(170.161)
Hancock 129.4279 111.781, 147.193(35.412) 124.1028 56.750, 162.013(105.262)
Kossuth 121.0071 103.451, 138.626(35.175) 116.7147 68.049, 152.454( 84.405)
Hardin 130.2520 112.373, 148.114(35.741) 137.7983 51.734, 188.373(136.638)

III: Hwang et al.(2009) IV: Qiu and Hwang(2007)

County θ̂i Confidence Interval θ̂i Confidence Interval
Franklin 158.4677 128.564, 188.370( 59.805) 157.7383 146.999, 168.477( 21.478)
Pocahontas 100.1276 -44.039, 244.295(288.334) 101.1661 19.444, 182.887(163.442)
Winnebago 114.1473 0.065, 228.228(228.163) 113.7746 56.263, 171.286(115.022)
Wright 140.3717 -24.119, 304.862(328.982) 143.2244 41.559, 244.889(203.330)
Webster 115.7865 50.297, 181.275(130.978) 115.2224 75.124, 155.320( 80.196)
Hancock 111.3087 66.213, 156.403( 90.189) 113.1766 83.691, 142.661( 58.970)
Kossuth 110.9585 74.366, 147.550( 73.184) 112.3239 89.520, 135.127( 45.607)
Hardin 126.6093 40.040, 213.178(173.137) 123.9049 54.607, 193.202(138.594)
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Figure 4.1: Corn hectares estimation. The vertical line for each county displays the confi-
dence interval of θ̂i, with θ̂i marked by the circle, for (I) Proposed method, (II)Wang and
Fuller (2003), (III)Hwang et al. (2009) and (IV)Qiu and Hwang (2007).

The sample variances are calculated based on the original data assuming a simple random

sampling. The sample s.d. varies widely from 5.704 to 53.999 (coefficient of variation varies

from 0.036 to 0.423). The means of number of pixels from LANDSAT satellite data (zi) are

the covariates in the estimation procedure. z1 is the mean of pixels of corn and z2 is the

mean of pixels of soybean. These covariates are used to fit the model (4.1) and (4.2). The

detail of the modified data can be found in You and Chapman (2006)and tabulated in the

Table 4.5.

The small area estimates and their confidence intervals are summarized in Fig 4.1. The
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Figure 4.2: Boxplot of estimates of corn hectares for each county. (I) to (IV) are the 4
methods corresponding to Figure 4.1.

numerical figures are also provided in Table 4.6. The point estimates in all 4 methods are

comparable. The summary measures, mean, median, and range of the parameter estimates

for the methods (I,II,II,IV) are respectively (121.9, 124.1, 122.2, 122.6), (125.2, 120.4, 115.0, 114.5)

and (23.1, 53.0, 58.4, 56.6). The distributions are summarized in Fig 4.2. The central loca-

tions are similar under all the methods but there is a significant difference in their variability.

If the assumption of constant model variance is true and when sample size varies from only

from 3 to 5, then under simple random sampling, one would expect relatively low variation

among the small area estimates. Method I is superior in this sense.

Further, smoothing sampling variances has strong implications in measuring uncertainty

and hence in the interval estimation. The proposed method has the shortest confidence

interval on average compared to all other methods. Methods II and III provide intervals with

negative lower limit. This seems unrealistic because the direct average of area under corn is
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high positive for all the counties. Moreover, the crude confidence intervals (xi ± t0.025Si),

the widest, do not contain zero for any of the areas. Note that method II does not have

any theoretical support on its confidence intervals. Method II and method III produce wider

confidence intervals when the sampling variance is high. For example, the sample size for

both Franklin county and Pocahontas county is three, but the sampling standard deviations

are 5.704 and 43.406. Although the confidence interval under method I is comparable, they

are wide apart for methods II and III. This is because, although these methods consider

the uncertainty in sampling variance estimates, the smoothing did not use the information

from direct survey estimates, resulted in the underlying sampling variance estimates remain

highly variable (due to small sample size). In effect, the variance of the variance estimator

(of the point estimates) is bigger compared to that in method I. This is further confirmed by

the fact that the intuitive standard deviations of the ”smoothed” small area estimates (one

fourth of the interval) are smaller and less variable under method I compared to others.

In addition to the confidence interval, we also calculated the BIC for the proposed method

and method III (Hwang et al.(2009)) as these two methods have the same numbers of pa-

rameters and their model structure are very similar to each other. The difference is in the

level-2 model for the variance part. The BIC of proposed method is 210.025, method III’s is

227.372. The BIC of the proposed method is lower. We could not compare Wang and Fuller

(2003) since the explicit likelihood has not been used. The BIC criteria support our data

analysis.
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Chapter 5

Clustering Based Small Area

Estimation: An Application to MEAP

Data

5.1 Introduction

As we mentioned in the previous chapters, small area estimation problems exist in many

application fields. In this chapter, we examine small area estimation in educational assess-

ment. In particular, we analyze data from the Michigan Educational Assessment Program

(MEAP).

For educational accountability purpose, the results of high stakes tests are used as an

indicator of school districtperformance. Often times the average test scores across grade are

reported for each school district. However, the number of students in each school distric are

quite different from each other. Table 5.1 summarizes the number of school districts with a
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Table 5.1: Number of public school 4th graders in some school districts in Michigan state
Range of Numbers of Students Number of School Districts

1 ∼ 100 210
100 ∼ 200 124
200 ∼ 300 62
300 ∼ 500 39
500 ∼ 1000 30
1000 ∼ 11

Figure 5.1: Standard deviation of public school students’ assessment scores in available school
districts in Michigan state.

given size for Grade 4 in Michigan. We can see that a large school district in a large city

might have thousands of students in a grade, while a small school district in a rural area

might have less than 100 students in a grade. Figure 5.1 gives the standard deviation of the

assessment scores of students in each school district. From the map, it can be seen that there

is a large amount of variation in the standard deviations of the school districts. Therefore,

the direct comparison of average scores between large and small school districts may not be

appropriate. A comparison of model based “smoothed” results is more appropriate.
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The general approach for this type of analysis is to use the Fay-Herriot model. Let Yi

be the average score reported, Xi be the available covariate information for the regression

stage, and β be the regression parameter, i = 1, . . . , n for the total number of districts n.

Then the model is given by (1.1) or (2.5),

Yi = XTi β + vi + ei (5.1)

where vi is the random effect for each school district, which follows an independent and iden-

tical distribution, usually a normal distribution; ei is the sampling error; and the variances

of ei are known.

When we use the model based approach in equation (5.1), we “borrow strength” from

all other school districts universally since all school districts sharing the same regression

parameter β and the random effects vi are iid. However, the actual geographical and socioe-

conomic characteristics of school districts in a large region are quite diverse. Poverty levels

for the school districts in Figure 5.1 are given in Figure 5.2. From the map, it can be seen

that the school districts in upper Michigan have higher poverty levels. Although the school

districts in lower Michigan have lower poverty levels in general, some school districts have

higher poverty levels than others.

Therefore, it is more appropriate to divide the school districts into several groups (clus-

ters). In each group, the school districts are similar in some meaningful ways, namely they

are from the same cluster. Then the estimation for a school district only borrows strength

from similar school districts and avoids the misleading information from other school dis-

tricts. Since we do not have any restriction on the spatial characteristic of school districts

in our study, we only focus on the clustering based small area estimation. However, the
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Figure 5.2: Poverty level of available school districts in Michigan state.

partition of clusters was not known. Cluster analysis had to be conducted before we can

estimate the small areas.

There are many methods for cluster analysis (clustering). In one widely used class of

methods in cluster analysis, two clusters are chosen to be merged based on the optimiza-

tion of some criterion. Popular criteria include the sum of within-group sums of squares

(Ward, 1963) and the shortest distance between groups. Iterative relocation (partitioning)

is another common class of methods. In each iteration, data points are moved from one

cluster to another depending on whether improvement is achieved with respect to some cri-

terion. K-means clustering (MacQueen, 1967) is a method of iterative relocation with the

sum of squares criterion. K-means clustering is used to generate an initial partition in this

dissertation.

Clustering algorithms can also be based on probability models. Literature shows that
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some of the heuristic methods, such as K-means clustering, can also be treated as approx-

imate estimation methods of certain probability models. In the context of model-based

clustering, finite mixture models are often proposed. Each component probability distribu-

tion in finite mixture models corresponds to a cluster. It has been shown that finite mixture

models can be used to solve the practical questions that arise when applying clustering

methods. A review of model-based clustering can be found in Fraley and Raftery (2002).

However, the finite mixture model approach of clustering does not explicitly include the

partition as a parameter and involves independent and identically distributed structures.

In addition, there is usually no restriction on the mean structure in this class of models.

Information from covariates in the mean profile is often necessary in many applications.

Therefore, the idea of modeling the mean via regression and keeping the ability to detect

clusters at the same time has gained more attention recently. Booth et al. (2008) proposed

a new clustering methodology based on a multilevel linear mixed model. A cluster-specific

random effect is included in the model, which allows the departure of the cluster means

from the assumed base model. An objective function is constructed based on the posterior

distribution of the undergoing partition. The partition that maximizes the objective function

is chosen as the “optimal” clustering partition. A stochastic search algorithm is also proposed

to find such a posterior probability.

A similar model from Booth, Casella and Hobert (2008) is used to describe the relation-

ship between the assessment performance and other covariate information in this study. The

actual undergoing partition of districts is used as a parameter in the model. An objective

function is defined as the posterior distribution of the partition parameter based on the given

data. The posterior distribution is known up to a normalizing constant. The partitions with
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Figure 5.3: Math scores of 4th graders in public schools in available school districts in
Michigan state.

the highest posterior probability will be the final result. The stochastic search procedure

is such an algorithm constructed by a mixture of two Metropolis-Hastings algorithms: one

makes small scale changes to individual objects and another performs large scale moves

involving entire clusters. The details are given in the following sections.

The data set is introduced in Section 5.2, and the proposed model is given in Section 5.3.

The stochastic search algorithm is described in Section 5.4. In the Section 5.5, the results of

the data analysis are presented.

5.2 Data Set

The data used is from the Michigan Educational Assessment Program (MEAP). MEAP is

a standardized test that was started by the State Board of Education. The test is taken by

all public school students in the state of Michigan from elementary school to middle/junior
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high school. The results at the district level are public accessible and can be downloaded

at http://www.michigan.gov/mde/. Our study considered the 4th grade math score in Fall

2009. There are about 700 districts in the MEAP’s data set. We wanted to analyze the

cluster partition of districts with respect to the poverty level in each district, the data

reported by Small Area Income and Poverty Estimates (SAIPE) program. SAIPE is un-

der the U.S. Census Bureau and reports model-based estimation results of sample surveys

in noncensal years. A more detailed description of SAIPE can be found at its website

http://www.census.gov//did/www/saipe/. There are about 550 school districts in SAIPE’s

data set. Since MEAP and SAIPE use different codes to represent the same school districts,

we only had 476 districts left after merging these two data sets by matching the names of

school districts, that is, some school districts with data were not included in our merged

data set due to non-uniform data coding. No statistical methods were used in this study

to manipulate the data sets. In the future, if other information can be accessed so that

all the schools districts’ data can be matched, there would be no missing data and a more

complete analysis could be conducted. There is a lot of information reported in the original

data set, but we only kept the average math score, standard deviation, number of students,

and poverty level in our data set.

The map in Figure 5.3 shows the distribution of math scores of public school 4th graders

in available districts in Michigan state. Comparing the maps in Figures 5.1, 5.2 and 5.3, we

can see there are some patterns between the math score and the poverty level, but there is

not a simple linear relationship.
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5.3 Proposed Model

We used w to represent a partition of the districts, and c = c(w) clusters in this partition,

which are denoted by C1, . . . , Cc. Let (Yi, S
2
i ) be the observed score and the variances

for the i-th district, i = 1, · · · , n, where n is the total number of available districts. Let

Xi = (Xi1, · · · , Xip)T be the set of available covariates and βk = (βk1, · · · , βkp)
T be the

associated regression coefficients if the district i belongs to cluster k. For a fixed partition

w, we consider the following hierarchical model:

Yi = XT
i βk + uk + vi + εi, i ∈ Ck (5.2)

uk ∼ N(0, λσ2k), λ > 0

vi ∼ N(0, σ2k)

εi ∼ N(0, S2i )

where XT
i βk is the linear part of the mean specification for each cluster, uk are the random

effects at the cluster level, vi are the random effects from the districts within each cluster,

and S2i , i = 1, . . . , n are treated as known and reported by MEAP. The data-driven tuning

parameter λ can be determined by analysis of variance.

5.3.1 Prior Information

The priors of the model are set as

βk ∼ uniform on Rp (5.3)

σ2k ∼ IG(a, b) (5.4)
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where Rp is the p-dimensional real space. We choose an improper prior for βk, and no

specific prior information is given to βk. IG(a, b) is the inverse gamma distribution with

parameters a and b.

The prior for w is chosen as

πn(w) =
Γ(m)mc(w)

Γ(n+m)

c(w)∏
k=1

Γ(nk) (5.5)

where nk = #(Ck) and m is a parameter, m > 0. This prior distribution was used in

Crowley (1997) and Booth et al. (2008). From this prior, more weight is put on the partition

with smaller numbers of clusters when m is decreased. If w follows the density function in

(5.5), then

Pr{c(w) = k} =
Γ(m)mk

Γ(n+m)

∑
w:c(w)=k

k∏
j=1

Γ(nj) (5.6)

and

E{c(w)} = m

n−1∑
i=0

1

m+ i
(5.7)

If m→ 0, E{c(w)} → 1. If m→ ∞, E{c(w)} → n.

5.3.2 Model-Based Objective Functions

Based on the model and prior information described previously, we can determine the model-

based objective functions, which mimics the procedure in Booth et al. (2008). For a fixed

w, let θk denote the parameters of each cluster and θ = (θk)
c(w)
k=1

. Then the joint density
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function of Y = (Y1, . . . , Yn) is given by

f(Y |θ, w) =
c(w)∏
k=1

∫  ∏
i∈Ck

∫
f(Yi|uk, vi, θk)f(vi|θk)dvi

 f(uk|θk)duk (5.8)

If we use Y ∗
k, an nk × 1 vector, to represent the Yis in cluster k, then Y ∗

k follows a

normal distribution with mean X∗
kβk and variance V k. X

∗
k = {XTi , i ∈ Ck} and

V k =



(1 + λ)σ2k + S2i1
λσ2k · · · λσ2k

λσ2k (1 + λ)σ2k + S2i2
λσ2k

· · · . . .
...

λσ2k λσ2k · · · (1 + λ)σ2k + S2ink


(5.9)

Then the density function of Y ∗
k is

f(Y ∗
k|θ, w) = (2π)

−nk2 |V k|
−1
2 exp{−1

2
(Y ∗

k −X∗
kβk)

TV −1
k

(Y ∗
k −X∗

kβk)} (5.10)

and

f(Y |θ, w) =
c(w)∏
k=1

f(Y ∗
k|θ, w) (5.11)

Integrating the product of the joint density function of Y and the prior of βk, σ
2
k, and

multiplying by the prior πn(w) yields the objective function π(w|y),

π(w|y) ∝ πn(w) ·
c(w)∏
k=1

∫
f(Y ∗

k|θ, w)π(σ
2
k)π(β)dσ

2
kdβk (5.12)
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where π(·) represents the prior distributions of σ2k and βk. Since we include individual

district variance S2i for each district, the objective function does not have a closed form for

the final integrating result, and we compute the integral numerically.

5.3.3 Estimation of Mean Scores

For a fixed partition w, the model (5.2) for cluster k, k = 1, . . . , c(w) can be rewritten in the

form of a general linear mixed model as (1.4),

Y ∗
k = X∗

kβk +Zkvk + ek

where Y ∗
k = (Yi, i ∈ Ck)

T , X∗
k = (XTi , i ∈ Ck)

T , ek = (εi, i ∈ Ck)
T , and

Zk =



1 1 0 · · · 0

1 0 1 0

...
...

. . .
...

1 0 · · · 1


nk×(nk+1)

vk =



uk

vi1
...

vink


(nk+1)×1

(5.13)

Then the variance matrices of vk and ek are Gk = diag(λσ2k, σ
2
k, . . . , σ

2
k) and Rk =

diag(S2i1
, . . . , S2ink

). Therefore, the variance matrix is V k = Rk +ZkGkZ
T
k .

Using the general theory of Henderson (1975) for a mixed linear model and equation

(1.5), the best linear unbiased estimator (BLUE) of Ŷi = XT
i β̂k + ûk + v̂i is given by

Ŷi = XT
i β̂k +mT

i GkZ
T
k V̂

−1
k (Y ∗

k −X∗
kβ̂k) (5.14)
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where β̂k is the general least squared estimator,

β̂k = (X∗T
k V̂

−1
k X∗

k)
−1(X∗T

k V̂
−1
k Y ∗

k) (5.15)

where V̂ k is the variance matrix with estimator of σ2k, σ̂
2
k. Then mi = (1, 0, . . . , 1, . . . , 0)T

is a (nk + 1)× 1 vector with 1 at the first and i+ 1 positions for ith district and 0 for other

positions, and σ̂2k is obtained by maximizing the log of the marginal likelihood of σ2k,

logf(σ2k|Y
∗
k,X

∗
k, θ) = log

∫
f(y∗k|θ, w)dβ

= (1−
nk
2
)log(2π)− 1

2
log|V k|+

1

2
log|(X∗T

k V −1
k

X∗
k)
−1|

−1

2
Y ∗T
k V −1

k
Y ∗
k

+
1

2
Y ∗T
k V −1

k
X∗T
k (X∗T

k V −1
k

X∗
k)
−1X∗T

k V −1
k

Y ∗
k (5.16)

The maximization is found by numeric methods.

5.3.4 MSE of Estimator

A MSE estimator from (6.2.37) in Rao (2003) for the BLUE given in the previous section is

given as

MSE(Ŷi) = g1(σ̂
2
k)− bT

σ̂2
k

▽ g1(σ̂
2
k) + g2(σ̂

2
k) + 2g3(σ̂

2
k)

g1(σ̂
2
k) = mT

i (Gk −GkZ
T V̂

−1
K ZGk)m

T
i

g2(σ̂
2
k) = dT (X∗T

k V̂
−1
k X∗

k)
−1d

g3(σ̂
2
k) = tr

(∂bT
∂σ2
k

)
V̂

(
∂bT

∂σ2
k

)T
V̄ (σ̂2k)


(5.17)
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where dT = xTi −mT
i GkZ

T V̂
−1
K X∗T

k , and mT
i , Gk, Z

T , V̂ K and X∗
k are given in the

previous section. bT
σ̂2
k

▽ g1(σ̂
2
k) is the bias correction of g1(σ̂

2
k) and calculated by bootstrap.

5.4 Stochastic Search

The estimator of mean score and the corresponding MSE can be calculated if the cluster

partition is given, but the partition of the school districts is not known. The optimal cluster

partition can be found by maximizing the objective function through the following stochastic

search procedure.

Similar to Booth et al. (2008), the stochastic search procedure included two different

behaviors: a small scale change as a biased random walk of one district and a large scale

change as a split-merge of clusters. The two different scale moves are combined together with

different probabilities. Let w′ be the current partition and c is the number of clusters. At

each iteration, if c = 1, a split move is proposed automatically. If c > 1, the biased random

walk is proposed with probability pb, and the split-merge move is proposed with probability

1− pb.

5.4.1 Biased Random Walk

As with the nearest neighbor random walk, one district is moved each time, and the move

w′ → w has a positive probability if and only if w′ and w share the same partition but only

have one district in different clusters.

In Booth et al. (2008), the algorithm was applied to genetic data. A cluster may contain

a single gene only because the observed data are replicated measurements of genes. However,

we only have one piece of observed data for each school district. If the cluster contains one
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school district only, the model (5.2) can not be estimated or determined for that cluster.

Therefore, each cluster must contain at least two school districts. The detailed moving

rules are described as follows. First, one district is chosen uniformly and randomly from the

districts inside the clusters with nk >= 2. Then it will move to one of the other c−1 clusters

with probability 1/(c− 1). The acceptance probability of w′ → w is min{1, π(w)/π(w′)}.

5.4.2 Split-Merge Moves

Splitting or merging of clusters are large scale moves. In the biased random walk, only one

district is moved at a time. A large scale change would require a lot of steps of the biased

random walk and is very unlikely to occur. Therefore, it is necessary to add the large scale

change to the algorithm.

At each iteration, a merge move or split move will be proposed randomly. A merge move

is proposed with probability pm ∈ (0, 1). Two clusters are chosen uniformly at random

from the current partition and form a new cluster together. A split move is proposed with

probability 1 − pm. Since each cluster includes by at least two school districts, one cluster

with at least four school districts in the current partition is chosen and then split into two

clusters with each cluster containing at least two school districts.

Suppose the current partition is w′, and w is the partition after merging two clusters in

w′. Then

P (w′ → w) =
pm

c(w′)(c(w′)−1)
2

P (w → w′) = 1−pm
(2n

∗−1−n∗−1)
∑c(w)
k=1

I[#{Ck(w)}≥4]

(5.18)
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where n∗ is the number of districts of the cluster in w which is formed by merging two

clusters in w′. The acceptance probability of move w′ → w is min{1, R} where

R =
π(w)P (w → w′)
π(w′)P (w′ → w)

(5.19)

and the acceptance probability of move w → w′ is min{1, 1/R}.

5.5 Data Analysis

In the analysis of our data set, we chose settings similar to those of Booth et al. (2008) for

the proposed probabilities of different moves: pb = 0.9 and pm = 0.5. For the prior, we

chose a = 3, b = 40 and kept the range of cluster-level variation to a smaller range to the

variance between school districts in the model (5.1).

First, we applied the K-means cluster algorithm in R to the data without any covariates.

We chose the initial number of clusters as 10 and used the numbers 1, . . . , 10 to denote the

clusters. Then we started the stochastic search procedure with this initial partition. In

each iteration, the biased random walk or split-merge moves is proposed and accepted with

respect to the acceptance probability. The numbers 1, . . . , c(w) were used to denote the

clusters in the new partition. The total number of iterations was 105.

Figure 5.4 gives the trace plot of the number of clusters vs. iterations. Four lines are

drawn with respect to different m values: 0.5, 0.1, 0.0001, 0.00001. From Figure 5.4, we can

see that the final number of clusters decreases as the value of m decreases. This follows the

property of the prior of the partition parameter and resembles the results of Booth et al.

(2008). We chose the m value as 0.00001 so that the expected number of clusters would be
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Figure 5.4: Trace plot of different m values.

close to 1. We ran the whole procedure again with double the number of iterations 2 · 105

and used the first 105 iterations as a burn-in period. The cluster index of each district was

recorded.

The average number of clusters in the last 105 iterations was 9.4. When the stochastic

search procedure converged, all the clustering results had closed posterior probability. One

clustering result with 7 clusters is shown in Figure 5.5. Scatter plots of mean scores vs.

poverty levels of the school districts in the 7 clusters are given in Figure 5.6. The reason

for choosing this partition is that all the sizes of the clusters are greater than 10 in this

clustering result, which is more similar to the real world since there are a total of 476 school
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Figure 5.5: Map of clusters.

districts.

From the map of clusters in Figure 5.5, we can see that all the available school districts

are divided into 7 clusters, and each cluster is formed from several geographically separated

small groups. However, most districts in each small group are neighbors of each other. This

agrees with our intuitive image of school districts in that adjacent school districts with similar

poverty levels may perform similarly on the state assessment, but all the school districts in

a county/city maybe not be placed in one performance level category.

The scatter plots in Figure 5.6 indicate that the relationship between the mean scores of

school districts and their poverty levels are close to linearity. However, the R2 is only 0.3 if we

fit all the data with a simple linear regression. TheR2s are (0.26, 0.37, 0.26, 0.89, 0.58, 0.42, 0.74)

if we fit the data within each cluster with simple linear regression. But if we fit the data

with model (5.2), the R2s are greater than 0.9 for all the clusters. This indicates the neces-

115



Figure 5.6: Mean scores vs. poverty levels for school districts in the 7 clusters and all the
districts.

sity of fitting with a more complex model that accounts for clustering. The mixed model is

appropriate since it allows the departure of mean structures for each school district. We also

analyzed the data set with model (5.1). The BIC of model (5.1) is 3197, and model (5.2) is

2857. The BIC of the model with clustering is lower.

Based on model (5.1) and (5.2), the estimates of the mean scores can be obtained. The

results show that 90% of the model based (with clustering) estimates are within 2 points

of the observed scores. However, there are 10 school districts that have more than 4-point

differences. The mean scores for all school districts range from 403.6 to 456.8 and 4 points

is 7.5 % of this score range. Therefore, it is necessary to make adjustments if we want to
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Figure 5.7: Coefficient of variation for the model-based estimates and observed mean scores.

Figure 5.8: MSE of estimators for models with clustering (5.2) or no clustering (5.1).
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compare the mean scores of these school districts directly, and we need to include more

information to make the comparison more comprehensive.

Boxplots of coefficient of variation for the proposed model, the Fay-Herriot model, and

observed data are given in Figure 5.7. The MSE’s boxplots for estimators based on model

(5.1) and (5.2) are given in Figure 5.8. From the comparisons of coefficient of variation and

MSE, the model with clustering is more stable and can provide more accurate estimates.

From the results, we can see that cluster based small area estimation works very well

for our study purpose and reaches a reasonable and stable clustering partition of school

districts. In this study, the common prior was used and no specific background information

was emphasized. Only the poverty level was included as covariate. If more information is

available, then meaningful inferences for policymaking can be obtained easily using small

area estimation methods similar to those used in the study. Additional information that

could be used includes meaningful prior information such as spacial characteristic about

school districts, or socioeconomic inferences such as population percentages of speficic races.
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Chapter 6

Discussion

In this dissertation, we studied several topics of small area estimation. Small area estimation

research has become popular in recent years because of increasing demand of small area

statistics from both public and private sectors. Small area estimation uses small area models

to link the direct estimators and covariates explicitly.

It is important to note that the quality of model based estimator for small area depends

on the availability of good covariates. That is the reason we conducted the study of model

selection in Chapter 2 of this dissertation. Bootstrap method was adopted since it has

several advantages compared to other competitive methods. As indicated in (Shao, 1996),

a modification with smaller bootstrap sample size is needed to result in a consistent model

selection. This modified bootstrap selection procedure was extended to linear mixed effects

models, which is the backbone of small area models. In this dissertation, we have established

that the modified bootstrap selection procedure worked very well for linear mixed effects

models.

For small area models, the typical modeling strategy in area level model is to assume
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the sampling variances as known. However, the assumption of known and fixed sampling

variances does not take into account the uncertainty of estimation into the overall small area

estimation strategy. In Chapter 3, a new approach of small area estimation is introduced,

which is a dual “shrinkage” estimation for both small area means and variances in a unified

framework. Conditional mean squared error of prediction (CMSEP) was used to evaluate

the performance of the proposed estimator. Since the model parameters are not known in

practice, and they have to be estimated, the estimator of CMSEP was derived which is

second order correct.

It is well known that the standard practice of confidence interval does not produce ac-

curate intervals in case of small area estimation. Therefore, a confidence interval from a

decision theory perspective was derived in Chapter 4. Both the theoretical justification and

the simulation study were presented. In conclusion, the proposed estimator of small area pa-

rameters and corresponding estimator of CMSEP and confidence intervals outperform other

methods from literatures under most cases.

In the Chapter 5, we applied small area estimation to 4th grade math score from Michigan

Educational Assessment Program (MEAP). We wanted to conduct comparisons between

different school districts. Because of the diverse standard deviations and varying sample

sizes, school districts were identified as small areas in this study. When we used small area

models to “borrow strength” from other school districts, we first conducted a cluster analysis

to decide which school districts we should “borrow strength” from. The final estimate results

were calculated based on the “optimal” partition of clusters. And the results outperformed

those of the Fay-Herriot model.

All the computing in this dissertation was carried out in R and FORTRAN. The structure

120



of the programming was under R and the heavily computing part was executed by calling

FORTRAN from R. The data analyzed in Chapter 4 and 5 are open access to public. The

code for simulation illustrations and data analysis is available from the author upon request.

Issues Needed to be addresses for Practical Applications

Small area estimation can play an very important role in many applications, such as

public health and education. In practice, there are many issues needed to pay attention

to when we apply small area estimation to the real applications. The first issue is about

the availability of covariates. It may happen that the good covariates are only available for

some small areas, not for others. For example, in the MEAP study, Chapter 5, the data

set contained more than 700 school districts, but the data set from Small Area Income &

Poverty Estimates (SAIPE) program only contained around 550 school districts and used a

different code system to represent the same school districts. After combined the two data

sets by the names of school districts, only 476 school districts left. In our study, we did not

adapt any imputation method to recover the missing data. But in practice, it is probably

necessary to do so. There are many methods available for imputation of missing data, such as

nearest-neighbor imputation, hot deck imputation, regression imputation, or using experts’

judgments etc. Sometimes another model can also be fitted for missing values. For more

detailed description of missing data and small area estimation, one can found in Longford

(2005).

Another issue could be the estimates of sampling variances. Our study showed the

advantages of modeling small area means and variances simultaneously. However in practice,

one might still choose to model only the basic area level model, which is a simpler model and

assume the sampling variances as known. In that case, the estimation methods of sampling
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variance are very important for the accuracy of final estimation. The sampling variances are

usually estimated quantities and those are subject to substantial errors due to the fact that

they are often based on equivalent sample sizes as the direct estimates are being calculated.

There are many literatures on different estimate methods of sampling variance. The detail

variance estimation can be found in Wolter (1985).

There might be other issues in the application of small area estimation. However, by

using a explicit model to link the direct estimators and covariants, diagnostics for Small area

models is possible. Important results from other fields can also be applied to small area

models directly. Therefore, small area estimation can be very useful to provide more stable

and accurate estimation results in many applications. Extension of small area estimation to

other related areas is of further interest.
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