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ABSTRACT

FINITE APPROXIMATIONS OF
A CLASS OF FROBENIUS-PERRON OPERATORS

By

Jiu Ding

In this paper we construct first order and second order piecewise polynomial finite
approximation schemes. These schemes are for the computation of invariant measures
of nonsingular measurable transformations on the unit interval, and fall into two
groups. The first one is based on the Galerkin projection method for L!-spaces. The
second one uses the idea of Markov approximations of finite rank to the Frobenius-
Perron operator. These methods are proved to converge for a class of transformations
satisfying the condition of the Lasota-Yorke theorem. Moreover the computational
experiments show that these schemes converge faster than Ulam-Li’s method for most

problems.
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Chapter 1

Introduction

Let I be the unit interval [0,1] and S : I — I be a mapping. Given z¢ € I, we
recursively define a sequence {z,} by letting z,4; = S(z,) forn =0,1,2,....

Suppose for a particular sequence of iterates {z,}, we happen to have S(z000) =
Zio00- Then eventually, the iterates will be in the set of finitely many elements
{1000, Z10015 - - - ; T2000}. Thus we have a predictable behavior for the iterates.

The study of chaotic dynamical systems has become very popular in sciences and
engineering. The term “chaos” was first introduced by Li and Yorke in their seminal
paper [6]. Various definitions have been given for “chaos” since then, but basically a
common fundamental feature of “chaos” is “unpredictability”. A typical example of
chaotic dynamical systems is given by the “logistic model” S(z) = 4z(1 — z). It is
well-known that for almost all zo € [0, 1], the iterates are dense in I. Thus we cannot
predict the limiting behavior of the iterates.

We may look at a dynamical system from a different point of view. Given a set
A, we determine the probability of the iterates entering A. For this purpose let x4

be the characteristic function of A:

1 fze A
XA(1)={

0 otherwise.

Starting at zo, if the nth iterate S™(z¢) is in A, then x4(S™(zo)) = 1. Otherwise
Xa(S™(z0)) = 0. Thus & TN x4(S™(z0)) gives the ratio of the points among the



first N iterates in A. In ergodic theory
1 N-1
i S )

is called the time average. A classic theorem of ergodic theory basically says: The

time average coincides with the space average, that is

p4) 1
L0y =y Jyxads

where y is a measure on I.

Now the question arises: Is the measure invariant with respect to time? A more
careful statement of the classic ergodic theorem should be: The time average equals
the space average which is invariant with respect to time. Using mathematical terms,
it simply says that the measure u is “invariant” with respect to S, or S “preserves”
the measure . That is, for any measurable set A, u(S=1(A)) = u(A). In this case,
p is called an invariant measure. If in addition u(/) = 1, we call it an invariant
probability measure.

Now the problem is: Is there any probability measure which is invariant with
respect to S?7 This leads to the concept of the Frobenius-Perron operator. This
operator gives the way in which the probability distribution changes according to the
transformation S.

Now let m be Lebesgue measure and L!(m) the set of m-integrable functions.
Suppose a probability measure g is given by a nonnegative L!(m)-function f, that
is, u(A) = [, fdm for every m-measurable subset A of I. Given a nonsingular
measurable transformation S : I — I, we examine how the probability distribution
is converted by S.

For any measurable set A we would like this set A to have the probability of the
set it comes from under S. Thus, A should have the probability i(4) = [s-i a) fdm.
Since S is nonsingular, i is absolutely continuous with respect to m. Thus by
the Radon-Nikodym theorem, there exists a unique density f € L!(m) such that

[y fdm = Js-1(a) fdm for any measurable subset A. The correspondence between f



and f defines the Frobenius-Perron operator Ps : L'(m) — L(m) associated with S:

/APsfdm - /S_I(A)fdm (1.1)

It is apparent that if f > 0 is a fixed point of Ps, then the measure pu; defined by

ui(4) = [ fdm

is invariant with respect to S. In this case we call f an invariant density. Thus to
find an invariant measure we may instead find a fixed point of the corresponding
Frobenius-Perron operator.

To calculate fixed points of the Frobenius-Perron operator numerically, it is im-
portant to make finite approximations of this operator. For this purpose divide [/
into n subintervals I, I5, ..., I,. Suppose a piecewise constant density f gives I; the
probability a; for t = 1,2,...,n. For S: I — I, it is easy to see that the probability
of I; induced by S is

T

i=1

fori = 1,2,...,n. Let P, = [p;;] with p;; = ﬂ%ﬁn,a = [a1,a2,...,a,)7, and
b= [b1,bs,...,b,]7. Then the relation

b= P,a

gives a finite approximation of the Frobenius-Perron operator.

Since P, is an n X n nonnegative matrix and the sum of each column of P, is
1, P, is a stochastic matrix. It is well known that a stochastic matrix has 1 as an
eigenvalue with a nonnegative eigenvector. Therefore P, has a fixed point which gives
a nonnegative piecewise constant function f,.

In 1960 S. Ulam conjectured [10]: The piecewise constant functions f, converge to
an invariant density f of the Frobenius-Perron operator Ps as n approaches infinity
under the stretching condition, i. e., infzey | S'(z) |> 1. In 1976, Li proved this
conjecture [5].

Numerical experiments show that the Ulam-Li’s method converges very slowly for
most problems. This situation motivates the investigation of higher order approxima-

tions of the Frobenius-Perron operator. It seems difficult to generalize the previous
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argument based on probability analysis. However, we may consider this problem from
a totally different point of view.

To solve Pf = g for f and g in a Banach space X, we may employ Galerkin’s
projection method [9]. That is, we project this equation into a finite dimensional
subspace of X and solve the resulting finite dimensional problem in this subspace. To
find the projection, we need an inner product between X and its adjoint space. For
our fixed point problem Psf — f = 0, we define the inner product of two functions

f € LY(m) and g € L*°(m) = L'(m)* to be

1
<fi9> = [ f@)g(a)ds. (1.2)

To construct a finite dimensional subspace, we divide the interval I into n subintervals

L,I,...,I,. Fori =1,2,...,n, let

D ¢
L= s (1.3)

and A, = {1, 4ail;:a; € R, =1,...,n}. Then A, is the n-dimensional subspace
of L! which is made up of piecewise constant functions.
Using Galerkin’s projection method to solve the equation Psf — f = 0 in A,, the

function
Ps(d_a;1;) = ) a5l;
J=1 J=1
should be orthogonal to each basis function, that is,
< PS(Zajlj)— a,-lj,l.- >= 0,
=1 1=1
or,
Zaj<Pslj,1,‘> = Eaj<lj,1;>. (1.4)
j=1 1=1
From (1.1), (1.2), and (1.3),

1
< Pslj,l,' > = /I(Pslj)l,'dm = T—Tl—(f)/l. Psljdm

1 1

- m §=1(L) ljdm - m(I,)m(IJ) ,/5-1(1') Xl’d7n
m(Ij n S'I(I,-))
m(Lym(l;)




On the other hand,

n a..
doa;j<1;1;> = a; <11 >= m_(I.?./I Xrxrdm

J=1 l
a; a;
R )
Thus (1.4) becomes
" m(LNSYL) e .
jz=; m(I')m(IJ) %= m(I;)’ v= 1’ REENLP

or,
n m(I,-nS“(I;)) .
a;=a; t=1,...,n.
LT oy ¢

J=1

This gives exactly Ulam-Li’s method. Hence Ulam-Li method is essentially an appli-
cation of Galerkin’s method on the subspace of piecewise constant functions.

From this point of view, we may generalize the method by choosing higher order
basis functions to improve the convergence rate. In the following we introduce a
first order and a second order piecewise polynomial approximation scheme for the
computation of fixed points of the Frobenius-Perron operator, based on Galerkin’s
projection method. In [2] a general piecewise polynomial projection procedure is
proposed. But in order to prove the convergence of the method, it is assumed that
the invariant density of the Frobenius-Perron operator is bounded as well as unique.
This makes the analysis easier, because Hilbert space techniques may be used in this
case. Without the assumption of boundedness of invariant densities, we show that our
schemes are convergent for a general class of nonsingular measurable transformations.

Chapter II discusses the Frobenius-Perron operator, its basic properties, and the
general framework of Galerkin’s projection method. Chapter III and Chapter IV
are devoted to the piecewise linear and piecewise quadratic polynomial projection
approximation methods, respectively. In Chapter V, we develop the Markov finite
approximation schemes. Numerical results are presented in Chapter VI, and com-
pared with Li’s original method in [5]. The last chapter gives some comments and

conclusions.



Chapter 2

Frobenius-Perron Operators and

Projection Methods

The purpose of this chapter is to provide the background material for the sub-
sequent chapters. In Section 2.1, we define the Frobenius-Perron operator and list
those properties it has which are useful to us. Section 2.2 is a brief introduction to

the Galerkin projection method.

2.1 Frobenius-Perron Operators

Let I = [0,1] and S be a transformation from I into itself. For A C [0, 1] we write
S-1(A) for {z : S(z) € A}. Lebesgue measure on [0,1] will be denoted by m and
the Borel-algebra of subsets of [0, 1], the minimal o-algebra of [0, 1] containing all the
open sets of [0, 1], will be denoted by B. For any measure p on B, the triple (I, B, u)
is called a Borel measure space. Let L'(0,1) be the space of all Lebesgue integrable
functions defined on [0,1]. L!(0,1) is a Banach space with norm || f ||= ) |f(z)| dz.

Definition 2.1.1. Let (I, B, 1) be a Borel measure space.
(1) A transformation S : I — I is measurable if S~1(A) € B for all A € B.
(2) A measurable transformation S : I — I is said to be nonsingular if u(S-1(A)) =

0 for all A € B satisfying u(A) = 0.



In the sequel we are interested only in nonsingular measurable transformations.
For the purpose of defining the Frobenius-Perron operator Ps : L'(0,1) — L(0,1)
associated with a nonsingular measurable transformation S, we first state the Radon-

Nikodym Theorem. (For a proof, see [1].)

Theorem 2.1.1. ( Radon-Nikodym )

Let (X,.A) be a measurable space, u be a (positive) measure, and v be a finite
signed measure. Suppose v is absolutely continuous with respect to y, i.e., v(A) =0
whenever p(A) = 0 for any A € A. Then there exists a unique function f € L(u)
such that

V(A) = /A fdu.

For f € L'(0,1),
Ay=[_ fd
v(A)= | (A)f m
defines a finite signed measure. Since S : I — [ is nonsingular, the measure v is

absolutely continuous with respect to m. By the Radon-Nikodym Theorem there

exists a unique L!-function, which we denote by Psf, such that

/APsfdm — V(A) = /S_I(A) fdm.

Definition 2.1.2. The operator Ps : L'(0,1) — L!(0,1) defined by

/A Psf(z)ds = /s iy @) (2.1)

is called the Frobenius-Perron operator associated with S. If there is no ambiguity,

we shall write P for Ps.

Proposition 2.1.1. [ Properties of the Frobenius-Perron operator |

(1) P is linear, i. e., for fy, f € L'(0,1) and A, A; € R

P(Mfi+ A f2) = MPfi+ A Pf,.

(2) If f >0, then Pf > 0.



(3) o Pf(z)dz = [5 f(z)dz.
(4) For the nth power S™, Psa = (Ps)".
Proof. See [3].

It follows from (2) and (3) that the Frobenius-Perron operator Ps not only pre-
serves nonnegative functions, but also preserves their norms. Thus Ps is a Markov

operator. Hence || Ps ||=1.

Definition 2.1.3. Let (I,B,u) be a Borel measure space and S : I — I be a
measurable transformation. We say that p is invariant under S, or S is measure-

preserving with respect to u, if u(S=1(A)) = u(A) for all A € B.

Theorem 2.1.2. For f € L'(0,1) and f > 0, the measure

p(4) = [ fa)de (22)
is invariant under S if and only if Psf = f.

Proof. Since

p(S7A) = [ S(@)de = [ Poj(z)ds,
ps(A) = pg(S~1(A)) for any A implies Psf = f and vise verse. Q.E.D.

The function f in (2.2) is usually called the density function of the measure py. It
is apparent that a measure can be calculated when its density is known. The density
of an invariant measure is characterized by Theorem 2.1.2 as a nonnegative fixed
point of the Frobenius-Perron operator. In this case it is called an invariant density.
Therefore to calculate invariant measures for S, we may calculate instead invariant
densities of the corresponding Frobenius-Perron operator.

However, to find a fixed point of the Frobenius-Perron operator is, unfortunately,
not so simple in general. First of all, the space L!(0,1) is not reflexive. Moreover,

the operator Ps is not compact. Let A = [0,z]. Then from the definition of the



Frobenius-Perron operator,

/o “Pf(t)dt = /S o T

Differentiating it, we obtain the Frobenius-Perron operator explicitly:

Pfz) = < /S o fOE (2.3)

dzx

For the logistic model S(z) = 4z(1 — z), (2.3) becomes

Pf(s) = 7= G0~ VT=2) + S50 + VI D)

For a class of stretching transformations from I into itself, Lasota and Yorke [3]
established the existence of invariant densities. In [7], Li and Yorke gave a sufficient

condition for the uniqueness of the invariant density and thus the ergodicity of the

mapping.

Definition 2.1.4. A mapping S : [0,1] — [0,1] is called piecewise C?, if there
exists a partition 0 = @9 < a@; < -+ < a, = 1 of the unit interval such that for
each integer k = 1,...,r, the restriction S of S to the open interval (ax_1,ax) is a
C2?-function which can be extended to the closed interval [ax_1,as] as a C%-function.

S need not be continuous at the points ay.

Theorem 2.1.3. ( Lasota-Yorke )
Let S : [0,1] — [0,1] be a piecewise C2-mapping satisfying the stretching condi-

tion: there exists a constant A > 1 such that
| S'(z) |> Az #ai(t =0,1,...,7).

Then for any function f € L'(0,1),

1 'i‘ Pkf
- s

n k=0

converges uniformly in L'(0,1) to some f* of bounded variation with Psf* = f*.

Proof. See [4].



Theorem 2.1.4. (Li-Yorke)

Under the condition of Theorem 2.1.3, if the mapping S has a single point of
discontinuity, then the invariant density f* of the Frobenius-Perron operator Ps as-
sociated with S is unique, and S is ergodic with respect to the measure u* defined
by

w(4) = [ fdm.

Proof. See [7].

A straightforward numerical way to calculate invariant measures can be obtained
from the classical Birkhoff Individual Ergodic Theorem which uses the Koopman
operator instead of the Frobenius-Perron operator. By Birkhoff’s theorem if x4 is an

ergodic invariant probability measure for S, then for any measurable set A C [0,1],

the limit
n-1
lim =3 7 x4(5%(2)),
n k=0

which measures the “average time” spent in A under iterations of S, exists and is u(A)
for p-almost all z. Hence, to obtain u(A) one might choose almost any z in [0, 1] and
calculate the average time for iterates S¥(z) to be in A. However, computer round-off
error can completely dominate the calculation and make the implementation difficult.
A typical example is given in [5]. For the purpose of overcoming this difficulty,
Li proposed in [5] a rigorous numerical procedure which can be implemented on
a computer with negligible round-off error. Piecewise constant approximations are
used to reduce the original infinite-dimensional fixed point problem to a fixed point
problem of a stochastic matrix, thus solving a conjecture of Ulam’s [10].

The numerical procedure proposed by Li is actually a Galerkin projection
method with piecewise constant function approximations. We shall give a brief intro-

duction to Galerkin’s projection method in the next section.

10



2.2 Galerkin’s Projection Method

Let X be a Banach space. Suppose M and N are both closed subspaces of X. If
X =M+ N and M NN = {0}, then we say X is a direct sum of M and N, or M
and N are complementary to each other. In this case we may define a linear operator
Q: X - Xby
Qr=u if c=u+v, ueM, veN.

This operator is continuous and satisfies @Q? = @ [1]. We call @ the projection of X
onto M along N.
Now let X and Y be two Banach spaces, T : X — Y be a bounded linear operator,

and y € Y. We want to solve the operator equation
Tz =y.

The general principle of projection methods is as follows. Choose two sequences
of finite-dimensional subspaces X, and Y, of X and Y, respectively. Let {@,.} be a
sequence of projections of Y onto Y,,. We want to find z(*) in X,, such that Q,(Tz™ —
y) =0, or

QnTz™ = Qny.

If we choose a basis of X, and a basis of Y,, then the above approximate operator
equation of finite rank can be written as a system of linear algebraic equations. Thus
we can use the usual numerical algorithms to solve the algebraic system and obtain
approximate solutions to the original problem. This procedure is referred to as the
projection method. In particular, if X = Y and if we choose X,, = Y;, and the same
basis in Y, as in X,,, then the corresponding projection method is called Galerkin’s

method.

11



Chapter 3

Piecewise Linear Projection

Approximations

Assume S : [0,1] — [0, 1] is piecewise C? satisfying inf |S’(z)| > 1. In this chapter
we look for approximate solutions of the Frobenius-Perron operator equation Psf = f
in the space of piecewise linear functions. In Section 3.1 we define a sequence of pro-
jection operators from L!(0,1) to subspaces consisting of piecewise linear functions.
Section 3.2 establishes the uniform boundedness of the variation of the projected

functions. The convergence theorem is proved in Section 3.3.

3.1 Projection Operators

Divide I = [0,1] into n subintervals I;, I,,...,I,. Fori = 1,...,n, let [; =
(zi-1,%;) and 1; = x1,/m(I;). Denote by A, the 2n-dimensional subspace of L'(0,1)
spanned by the basis {1;,z1;}" ;1. e., A, C L(0,1) is the set of all functions which
are linear on each subinterval I;.

To define the projection @, : L*(0,1) — A, we require that, for i = 1,...,n,

<f—ana1t'>=0

and

< f-Q.f,zl; >=0.

12



Here for g € L*(0,1) and h € L>(0,1) = [L!(0,1)]*, < g,h >= [y g(z)h(z)dz. The
following lemma shows that these requirements uniquely define ), and make @, a
projection from L(0,1) to A, along *A, = {g € L'(0,1) : < g,h > = 0 for all
h € A,}. Because of the similarity in the “orthogonality condition” with the L2-
space case, we may call @, : L'(0,1) — A, the orthogonal projection, even though

its norm may not be 1.

Lemma 3.1.1. Let & = (z;-1 + 2;)/2, i =1,...,n. For any f € L'(0,1), we

have
Qnf =) (i + diz)l
=1
where fori =1,...,n,
G = fl f(:z:)da: ,,,1(211)2 fl,(z ) ( )dz (3 l)
d; = m(_]‘f Ji(z = %) f(z)dz.
Proof. Let Q.f =Y, (ci + diz)1;. Then
1 z;
<@nf,li> = ¢ <1;,1i> +d; <zl;,1; > = () ¢+ (0 d;,
<Qnf,zl;> = ¢ <l;,zl;> +d; <zl;,zl; >
i' :1: +I$|-—l+$'1
= : di.
m) ¢ T T 3m)
From the condition of the orthogonal projection, we have
{ W o+ & =l fy (@) 52
Y 22 4ziz;_ +:|: _ -
mi &t S di = iy i of(2)dz

The equation (3.2) has a unique solution

{ & = fy, fla)de — 2o [ (2 —2)f(a)de
b = 25 [ (= - #)f(z)ds.
Q.E.D.

The next Lemma establishes the uniform boundedness of the sequence Q..

Lemma 3.1.2. Foralln, || Q.| < 2.

13



Proof. Given n and f € L'(0,1),

1Qaf 1l = /ll(an)(rc)ld:v— [ I+ da@)] da

=1
= Z/ |c,+dx|d:c

By (3.1), in the subinterval I;, Q.f only depends on the values of f on I;. Hence it
is enough to estimate a typical ﬁ 1, lci + diz| dz. Without loss of generality, we
may assume d; # 0. For simplicity, let I = I; = [a,b], 2 = &, c=¢;, d = d; and f
be defined on I. Let ¢(z) = (¢ + dz)/m(I).

First, assume f > 0. If ¢ > 0, then from the first equality of (2),

1
/Ilcp(a:)|da: = /I dx_m([) A (c+d:1:
1 (c+dz)? ’ 1 2 2
= 54 =W[(C+db) — (c+ da)?]
1

= 5 a )[2cdm(1)+d2m( )-2%) = c+ dz

J f@)iz = [ 15(@) d.

If o 20, then from the fact that ¢ is the best approximation to f among all linear
functions on [a, b] under L?-norm if f € L?(0,1), we see that ¢ cannot be non-positive.
Therefore ¢ must have a zero z = —§ in (a,b). We assume ¢(b) > 0 and ¢(a) < 0.

The other case can be treated similarly. Thus we have

J le@)l dz =

[(z = a) [p(a)] + (b—2) |e(b)]]

[(b+ Z)e() + (a+ 2)e(a)l,

DN = DN —

and,
¢ mUPffz)z _m(l)
St TRl T 2

a+ S = m(1)? J; f(z)dz _m(I)
d 12f1($—-’5) (z)dz 2’

1 -~
olb) = (e +db) = o [ flo)de + o (,) J(@ = 2)f(@)dal,

1 1 .
ola) = (et d) = — [ f(@)ds = — [ (2 = 9)f(e)e)

I

14



Hence,

[ lo@)d = %{(12"}582_"5(1,”&“'); et
a%(/, fle)da + — /(x £)f(z)dz)
%/f(zdz (1)/ #)f(z)dz))
~ e+ iy e -
gy
Since z = —£ € (a,b), we have

a<

It follows that

m(1)* [ f(z)dz

. _m(IP [ f(2)d
2= 2)f@)d "

<i—a="U)

12 [i(z — %) f(z)dz

Therefore

a=—2—.

[ lot@)l da < %/If(z)dz +-g—/1f(z)d:c =2 [ f(z)de

For general f € L!(I), write f = f*

max{—f,0}, and we have

[ le(@)da

Jefidz = [10f* - Qf |dx
J1estde + [ 1057 dz
2/If+dx+2/1f‘dz=2/1|f|d:c

IA

<

where @ : L!(I) — Span{1l,z} is the orthogonal projection mentioned above.

From the above estimate, we obtain

I Qaf |l

<

1 n 1
[ 1Qui@lde =3 [ e+ diale
2 f Ifelde =2 [ 1@z =21 11,

15

— f~ where f* = max{f,0} and f~ =



i.e,foralln, | Q.| <2 Q.E.D.

Lemma 3.1.3. When meshA, = max{m(;):1<i<n} >0, Q.f — fin L!
norm for all f € L!(0,1).

Proof. Given f € L!'(0,1) and £ > 0, there exists a continuous function g such

that | f — g ||< e. Now

| Qg —gll = Z/ 1(Qn9)(¥) — 9(v)ldy

i=1

= .-1/| (11. (i +diy) — g(y)|d
1 12%; .
= E/ () I. z—m/b(z—z;)g(x)dx
(i [ o= asteddals - ato)|

< [ = /_g(z)dz—g(y)[ dy
+3 /,. Tl (e = B)a(@)da)(y - 2. dy
< 3 [ i (] to@) - stwles) ay

=1

" 12 ) ~
+ 2 —m(I;)3 /._ l(z — %)g(z)|dz - /li ly — &:|dy.

Since g is uniformly continuous on [0,1], when mesh A,, is sufficiently small, for any
x,y € I;,;i=1,...,n, we have |g(z) — g(y)| < €. Applying Holder’s inequality, we
get

1Qu-gll < 3 [ s mlTdy

1=1

:lm(I [/'a:—:c. dx]1/2
[/ de]lz /|y—:z:.(ly

< Stmi+ 5t {[(1_35,.)11.- }m

Tio)

[f steras]” [(mu;)/z)ﬂ s (m(!;)/zv]

16



For n sufficiently large, (f,._ g(:r:)zd:z:)ll2 <Zi=1...,n Consequently,

E € E €
. < — —_ -1/2<_ Z — €.
| @ng — g |I< 53 E_:m(I.) Sztg=¢

=1

From Lemma 3.1.2, || @, ||< 2 for all n. Hence, for n sufficiently large,

| Quf—fll € |@nf—Qugll +|Q@ng—gll +llg—1fIl
< 2 f-gll +te+ | f-gll<4e.

This proves lim, . Qnf = f. Q.E.D.

3.2 An Inequality for Variation
The following result is essential for our convergence analysis.

Lemma 3.2.1. For any f € L'(0,1) of bounded variation and for all n

1 1
Ve.f<13\f.
0 0

Proof. By definition Q.f = Y%, (ci + diz)1;, where {c;,d;} are given by (3.1).

Since Q.. f is piecewise linear, its variation is given by
n

\O/an = E (I)I(C-+d$«) (ci + diziny)]

¢ +dizi  ciy1 +dipaz;
+
,Z; m(I m(lis1)

Ci+1 dl dl+l )
+ —
" m(li) (m(m m(lin)) *

1
) T m(I£+l) ‘/IH»I f(l')dl’

1=1

: zwuz

=1

1217, . 125, . i
+ (I"+1)3 Lip (23 - ${+l)f($)d$ - m(],-)3 /i(:r - l';)f(:l:)dl
12z 12z, )
+ — m([ )3 I.(x ) (l’)dl’— m/l‘”l(l‘ —-Ti+1)f(.’l?)d12

17




1 1
_ Z|d|+§ (1)/ f@)a = [ j(@)de
12(&;41 — )
+ﬂ)— IRV O

12(311 TAE / (z — &) f(z)de

X:IIdI+Z

_6
m(Ii41)? Jp

1
(I)/ flz)de (It+1) liya f(z)dz

(¢ ~ &) (@) + s [ (@ = 20/ (a)d

+

From the definition of d; we have

1

z)dzx
\0/ 1=1 ‘+1 ‘/I*” f( )
n-1 1
+ Z diy1 + d’
1
i=1 m(I,'+1) /1-+1 fz)dz
+ E |di].
i=1

It is easy to see that the middle summation of the above inequality is not greater

than Vg f (for a proof, see [5]). Hence,

1 n 1
V@af<2Y |dl+Vf
0 =1 0

Now we estimate 3_7._, |d;|. Let Fi(z) = [ _ f(t)dt. Then the integration by parts

formula for the Stieljes-Lebesgue integral [8] gives

di = %ﬁ_)z/’i(z i) f (x)dz—m—:f—)z/h(x_i,.)dﬂ(z)
12
= m(I) [( |’_1 /F d(z — ;) ]

- mziy ['"21')1?.-(35.-)_ / F}(:c)da:]
= i ot = s [ ([ roar) a
_ e[ﬁ/hf t)dt-E//m f(t)dtdx}

18



where ; = {(z,t) : ;o < z < z;,z;-1 <t < z} is a triangular region in the
(z,t)-plane and A; = jm(I;)? is the area of ;. Using the same technique that was

used in [5], we obtain

LA
=1

1
6\/ /.
0

(1)/ s@dt - [ [ fo)ds| <

1 1
V@.f <13V f.
0 0

t—l

Therefore,

Q.E.D.

3.3 Convergence

Let P, = Q. 0 Ps|a,. Then P, : A, — A, is linear. We want to find the fixed
points of P, in A,. For this purpose we first investigate the representation of P,

using the basis {1;,z1;}",.

Lemma 3.3.1. For:=1,...,n,

P.1; = Zc,(l )1; +Zd(1

J-— J—l

Pn(:tl,') = ZCj(:Bl,')lj-f-Zdj(xl.')Il

where
o L mSTINL) 12 N
() = S - /,J_(x—z,)(m.)(x)dx,
12 )
di(1;) = m/(z—xj)(l’l.')(z)d:c

(@) = [ (Plet)e)ie -~ [ (2= &) (Pl1))(e)de

di(zl) = %Z)Q/I(z—zj (P(21,))(z)dz.

Proof. By definition P,1; = Q,0P1;, P.(z1l;) = Q0 P(zl;). From the definition
of P, f,J,(Pl,')( z)dr = ﬂq%m Using Lemma 3.1.1, we achieve the assertion.
Q.E.D.
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Lemma 3.3.2. P, has a nontrivial fixed point f, in A,.

Proof. Let Ci = (c};) = (c¢i(Ly), C: =

(dj(li)), D; = ( ji) =

of P, if and only if the column vector (cy,...,

matrix

Cy
D,

B =

We first prove that the row vector | = (1,
from the first equality of (3.2),

Z(CJ

)+&,4,(1)) = 3

i=1

(d;(z1;)), where c¢;(1;), d;(1;), ¢j(z1;) and d;(z1
in Lemma 3.3.1. Then the function fa(z) =

E/I,(Pl

~m(S7H () N )

(Cfi) = (¢j(z1i), D1 = (d}i) =

;) are as

Yiiali+ YL, dizl; is a fixed point

Cn,di,... ,dn)T is a fixed point of the
C;
D,

.y 1,%4,...,%,) satisfies | = IP,. In fact,

d:c-Z/ li(z)dz

S-1(1,)

= X
3 (e(zLi) + £,d;(21)) =

1=1 1=1

m(I;)

=1,

S [ (Pa1)(a)ds

= Z/s ) xl;(:c)d:z::/:zlg(:r)d:z:

1 1 z?2-22

= m/ﬁd“m(n) 2

= I;.

Hence the matrix P, has an eigenvalue 1 and it follows that P, = p has a nontrivial

Q.E.D.

solution.

In [4], Lasota and Yorke prove that, if S: [0,1] —
= inf |S’| > 2, then for any f € L!(0,1) of bounded variation,

[0,1] is a piecewise C2-function

satisfying M

1 1
VPsf < allfll+8Vf (3:3)
0 0
with a > 0 and 8 = % < 1. With this result, we can prove the following:
Lemma 3.3.3. Suppose S : [0,1] — [0,1] is piecewise C? with M = inf |S’| > 26.

And for each n let f, be a fixed point of P, such that || f, || = 1. Then {V; f.} is
bounded.
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Proof. Since f, is piecewise linear, it has bounded variation. From (3.3), Pf,
is a function of bounded variation. From the same inequality and the fact that

fn = Pnfn = Qno Pf,, using Lemma 3.2.1, we obtain
1 1 1
Vi = VQuoPf BB\ P <13(a| fall 48V f2)
0 0 0

0
26 !
V fa.
0

1
= 13a+138\/ fu=13a +
0

|

By assumption M > 26. Therefore for all n

1 13a
< —_— .
VIS Toemg <+

Q.E.D.
Now we can prove our convergence theorem for the first order piecewise polynomial

Galerkin approximation scheme of the Frobenius-Perron operator equations.

Theorem 3.3.1. Suppose S : [0,1] — [0,1] is piecewise C? satisfying M =
inf |S’| > 26. Then for any n, P, has a fixed point f, with | fn || = 1 in A, and
when mesh A, — 0, there exists a subsequence {f,,} C {f.} such that f,, converges

to a fixed point of Ps in L! norm.

Proof. By Lemma 3.3.3 and Helly’s theorem [8], there is a subsequence {f,,} C
{f»} which converges in L! norm to some f € L!(0,1). Now

| Psf=fIl < I f=Juill + || fai — Qnio Psfu |
+ “Qn.—oPan.-—Qn.-OPSf” + " Qn.OPSf_PSf”'

Since {|| @n, © Ps ||} is uniformly bounded and @y, o Ps f,, = f,,, lemma 3.1.3 implies

that the right hand side of the above inequality approaches zero as i — oco. Thus

Psf = f. Q.E.D.

Corollary 3.3.1. Let S : [0,1] — [0,1] be piecewise C? satisfying inf |S’| > 1.
Then a sequence g, from the piecewise linear functions can be constructed which

converges to a fixed point of Ps.
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Proof. Choose k > 0 such that for M = inf |S’|, M*¥ > 26. Let ¢ = S*. Then
P.(y) has a fixed point f{*) of unit length in A,. Define
1 k-1 )
gi = % E(PS)Jf,(f),
Jj=0
where f,; is a convergent subsequence of {f,} obtained by applying above theorem.
Then g; converges, by Theorem 3.3.1, to
1 k-1 ]
= ; Z(PS)Jf(«’)a
=1
where f(¥) is a fixed point of P, = Pg. This g is a fixed point of Ps. In fact, since
(Ps)* f©) = Pg () = P, flo) = flo),

1
Psg = E{Psf(“’) +oo 4 (Ps)f@)} = 4.

Q.E.D.
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Chapter 4

Piecewise Quadratic Projection

Approximations

In this chapter we will generalize the piecewise linear approximations of the pre-
vious section to piecewise quadratic ones, that is, we look for approximate solutions of
the Frobenius-Perron operator equation in the space of piecewise quadratic functions.

As in the previous chapter, we divide the discussion into three sections.

4.1 Projection Operators

Let 2o =0< 2y < -+ < Tp_1 < Z, = 1 be a finite partition of the interval [0,1] as
before. Fori =1,...,n, I; = (zi_1,%:), & = Z=1t%. Let A, = span{l;,z1;,2%1;}%,
where 1; = m—(lmxk and denote max; m(I;) by mesh (A;). Then A, C L'(0,1) is a
subspace of dimension 3n.

Define the projection @, : L'(0,1) — A, by the orthogonal conditions for ¢ =
1,...,n

(f_an’li) =0v (f—an,:L‘l,') =O’ (f—an,1'21i) =0

fori=1,...,n. Let Qnf = Xj_,(c; + djz + ¢;z%)1;. We show that {c;,d;,e;}7_, are

uniquely determined by the above conditions.
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Forz:=1,...,n,

1 Z; ? + ziziq + 12,

(@afi1i) = m(Ii)q+m(1i)di+ 3m(I;) °

Z; ? + 7z + 2, Zi(z? +22,)
nJty 1;' = { = d : : 1)
(@nfiel) = et =t T Tam@m
2 2 -4 2 2
29\ _ T +z;Ti1+ ;4 . IL‘,‘(JJ; + zi—l)dA
(@nfy2L) = 3m(l) 2m(L)
1
t 5m(I-)(z? +zizig +zlzl 4zl + 3l )e

By the orthogonal condition we have

(

¢+ &idi + 3(2? + zizioa + 2 ))ei = [, f(z)dz
jt.ci 3($ +x xi 1 +xg_l)d + _L(I +mg l) fl :rf( )
%(mf +zizio1 + 72 ) + %‘(z? +z? )i+

%(131'{"13 z,_1+x, i— 1+$.’E‘ l+xt—- ) ,'=f1..$2f(.’lf)d$

Eliminating ¢; from the above system yields

-11—2m(1,')2d,' + ém(],-)%,—e,- = fl',(:l! — i,)f(l‘)d:t
ém([,-)zi':,-d,- + zlgm(l,)z[4:1:? + 7.’1?.'-'13,'_1 + 41:?_1]6,' =

i 7 f(2)dz — 3(a} + mizioy + 21y) [j, f(2)dz

The solutions are given by

Lemma

(

¢ =3 1 f(e)de — Sz J1, <f(e)de — gt Ji, f(a)de+

=202 [282 + zizina) fi (o — 3:) f(2)dx

\ = m(1 w2 Ji, zf(z)dz + 1(1 )2 Ji. f(z)dz—

0.5, [ (¢ — 20 (2)d
| & = ml(i?y fl.[( ) %m(Ii)Z]f(z)dx

4.1.1. || Q. || £ 62 for all n.

(4.1)

(4.2)

Proof. The values of Q),f on the subinterval I; depends only on the values of

f on I;. So we only need to estimate the integral [} |(Qnf)(z)|dz. Let I = I; =
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[a,8], & = %£ and let p(z) = wn (¢ + dz + ez?) be the orthogonal projection of f

onto Span{1y,z1;,z%1;}. First of all assume f > 0. We consider different cases.

(i) ¢ > 0. Then from the first equality of (4.1),

= _ 1 2
/I|<,o(:c)|da: = /Icp(z)dz = D) /I(c+ dz + ex®)dz
= —1—[cz+c—lx2+fz3]b =c+d§:+l(a2+ab+ b%)e
m([I) 2 3 ™ 3

= [ f@)a = [1f(2)lde.

(ii) ¢ 2 0. Then ¢ has two distinct zeros on the real axis. Without loss of generality,
assume e > 0. We will deal with the different distribution of the zeros. Let (;
and (; be the zeros of ¢ with {; < (5.

First, assume (; € (a,b) and (; € (a,b). Then (; + (2 = —4:, G- G2 = £. It follows
that

/1 lp(z)ldz = ﬁ [/:'(c + dz + ex?)dz — /:(c + dz + ex?)dz

b
+/(c+d:z:+e:c2)d:c}
¢!
1 d, e, d , e ,]°
= m(I){[ca:+2x +3x]a —[cm-{»zx +3:1: .
b
+ ca:+g:1:2+ia:3
2 31,

1 d 2 2 € 13 3
- m[c(b—a)+§(b ~a®)+ 5 (b -a)]

2 d
* o [C(Cx - () + 5((12 -+ g(Cf - Cf)]
= [c + dz + g(a2 +ab+ b’)]

- g.(%l_(:I_)Q_Z [c + ;—l(gl + () + g(Cl + ()% - C1<2]

- frow- S 45
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= [ f(e)da+ D)3

Since ¢ = =4=¥FAec apq ¢ = =#Fodec o ¢ = YT < p(]). Hence

2e

(d? — dec)? < em(I)3. So,

G—Gdi—dec 1 (d% —4ec)’/? 1 &m(I)? 1
) 3 —m) 32 Sm@ e 30"

From the last equality of (4.3), it is easy to see that
bt _— - dz —
3em(I) (172 /(:c z)* f(z)dz 5/[ (z)dz

1)2/4 f(mdz_‘r’/f
. IO/If z)dz.

IA

Therefore,

[1e(@)ldz < [ f(z)dz +10 [ f(z)dz = 11 [ f(e)de = 11 [ |7(2)lde.

Second, assume there is only one zero of ¢ in (a,b). Say (; € (a,b) without loss

of generality. Now,
/Ilcp(z)ldx = [/ (c+ dz + ex? da:-i—/ (c+dz +ex )d]
= {la-a+ g -+ e -

+ec- b+ G-+ (cl-bs)]}

- & (_I) [ + (C1+a) §(Cf+Cla+a2)]
_(-4)
m(I)
C,’n(',;' [c+ §<<1 +a)+5(Cf+Gat aﬂ)]
b-G
m(1) °

[c+ 5(41 +b)+ §(Cf + b+ b2)l

+

+ g(CI +b) + g(@z + Gb+ b2)]
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_ %zl_gl) [c+ g«x +b) + g(cf + Gb+ b2)]
= [c+ #d+ Z(a* +ab+ b’)]

_ 2 ZI?) [c 5(@ +b)+ f(cf +Gb+ bz)]
- /f(m b)[ + b+ cl e<1+ eb(1+1eb2]
- /1 f(z)dz + —(ec1 +dG+c)+ %(eb— d)

2 d, d, 1
+3c+ §b +3G+ —eb2]

= /f [3 b + db+ d<1+ ebCl+2c]

=/f

= /If z dz-{- 3m(1) [2(6(1 +d¢ + ) + 2e(b* - ¢})
+2d(b— (1) + d(b + (1) + 2ebly + 2¢]

= /fa: dz+§lzl;[2 e(b® — ¢2) +d(b— (1) + 2(db + eb(; + c)]

_ < o ) e(B — ¢2) +d(b— (1) + 2(b— C1)(eC: + d)]
= /1 f(z)dz — (’;mf]‘)) [2e(b+ (1) +d + 2(ely +d)]

(b-¢)?
= /1 f(@)dz = Zo—or-le(G = ) + 3(2eb + )],

From (4.3) we have

2eb+d = :f(igb /(m —Lb/fmdm
_?1')3 / 18”” / @ 36(“}; / — #)2f(z)dz
_ 180 /(x 22 f(z 12b /f ml(SIb /f
1)2/ 2f( 181: /f(x

180 9
= m(I)3 /I(x — ) f(z)dz - m/{(b—x)f(:c)dw - T—nm/lf(x)dx.
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Hence,

_ 4 (=GP (b-¢)

180 . 12
: [5(17 /I(z — )?f(z)dz — T

9
——nT(T)/;f(:z)d:t]
< /If(:c)dx + %cm(l)z + %/I(b— (1) f(z)dz + Q/If(:v)dz
< [1+4-10+12+9]/If(x)dx=62/,f(x)dz

— 62 /I If (z)|dz.

/1 (b— z)f(z)dz

Therefore for f > 0, || ¢ || £ 62 || f ||. For general f € L'(0,1) applying the above
to f* and f~ we conclude || ¢ || < 62 f || Q.E.D.

Lemma 4.1.2. For any f € L!(0,1), if mesh(A,) — 0, then Q,.f — f in L!

norm.

Proof. First assume f € L?(0,1) C L*(0,1). From the definition of @, f we see
that || f — Qaf |l2= min{|| f — g |l2: ¢ € A,} where || - ||2 is the L?-norm. From
the theory of the finite element method we have || f — @Qnf ||2— 0. By the Cauchy

inequality || @uf — f | < || @nf = f |l2. Thus || @uf — f || — 0.
Now for f € L'(0,1) and € > 0, there exists g € L?(0,1) such that || f—g | < e.

From
1Quf=F11 < 11@uf~Qugll + I Quo—gll + g1
S 62 f—gll+ 1 Qug—gll +1lg—7ll
and since | @ng — g || = 0, we obtain || Q.f — f || — 0. Q.E.D.

4.2 An Inequality for Variation

We establish the uniform boundedness of the variation of the projected functions

as follows.
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Lemma 4.2.1. If f € L!(0,1) is of bounded variation, then for all n,

1 1
VQ.f <121V f.
0 0

Proof. Since @, f is piecewise quadratic, we have

1 1 n
V@nf = VY (a+diz+ ez
0 0 i=1

= 'L-/ Id, + 26,’.’13!(1.'17
i=1 ‘

+Z

¢ +d; -’L'. + ez} ciy1 +dip1Ti + e 7?

(L) - m(fi+1)
= ——— [ |di + 2¢e;z|dz
¥ / |
= Cit1 d; dis1 )
+ - z;
E: ( (I-'+1)) (m(fi) m(liy1)
+( et+l )xg
t+l) '
L |
= ml )/ |d; + 2e;z|dz
i=1
+'§; [125:- T+ 3z 12x-(z+§i~ )
p m(1.~+1)3 Liss 1+1 t+1Ly [ 2 1+1

+1522| f(z)dz

— ;lTII—Ja— / [12;%,-2 + 3z;x;_1 — 12zx; (a: + gi,-) + 15:1:?] f(z)dzx
+ m_(IiT '/1-+1 [360:c Ziy1 —60(2%2, + ziga7i) — 180.1:?]
(2 = Zi41)* f(z)dz
— ( : / 3602, — 60(2E2 + z:z:_,) — 1802%](z — )% (z)dz
3 1
-2- m(I. / fle .+1) /1.-+l f(z)d:r)
=1 6 .
; (i > |ty L (- )
30 .
/ (= = 2f(=)de + s /1..(’ — £)"f(a)dz

3
——(,m) /,__“< — &) (= )dx+2m(,) f(z)dz
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(4.4)

3 1 /
—_—— z)dz|.
2m(I;+1) Liya f( )
Let @; = {(z,t) :z € L, 2,1 <t <z}, V; ={(z,t,s) :z €I, zisy <t <
z, z,-1 < s < t}. Again the integration by parts formula for functions of bounded

variation yields

L[ e-z)f@ds = —— [ f)s

777-(1:'+1)2 Iy m(Ii+l) Iiyy

- Ao / - £(t)dtdt,

1 1
— s e m e =~ [ [ (s,
1 . o
T o, & 7 EV @ = ey L, SO

YT A(SII;H) / [ Ity
+—3V(1f.-+1) / / /V  fls)dsddz,

m(I;)3 Ai(x—ig)2f($)dx = ‘%(I:)/I. f(z)dz — m//‘;l f(t)dtdz

where A(Q;) = 1m(I;)? is the area of ; and V(V;) = im(I)? is the volume of V..
Substituting into (4.4) we have

1 n 1 . J
Vans = gm(h)/ \d; + 2e;z|dz
n-1 6
+ ; m(1'+1) /14.1 f(m) .+l / Q+1 f dtd(lf

A(Q //f (t)dtdz + 575 15 /f
A(Q / / f(t)deds + oo 10 / / / f(s)dsdtdz
‘?n?lls._ﬁ I+1f(:tc)dac+A(QHLI / L, J(Ddid

) // [ J(s)sdeds + (L_)/Ilfx .

3
- 2m(liy,) /Ii-H f(z)dz
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= Z (I)/ld + 2e;z|dz

=1

s

=1

3
1)  (@)de 2m(1.+1)/r.+,f(””)d””

FComy WARICCES A(ﬂ xwy ], oz
+—./ [ [, sedsatae - o [ [ [ sts)dsateas

n

Z / |di + 2e;z|dz

1m'

+3E
=1
+si

1= l

IN

i @iz = s [ @i

_I—-/ fla)dz - ,‘4‘%‘// f(t)dtdz
Qis1) / n“f t)dtdz — (;i)/[)i F(t)dbds

V(_V///v f(s)dsdtdz

.H)///'“ f(s)dsdtdz

Z (I /|d + 2¢;z|dz
+3Vf+6\/f+12\/f+10\1/f

IN

=3 (I)/Id +2e:r[d:v+31\/f (4.5)

Now we estimate the first term of (4.5). For: = 1,...,n, o )f, |di + 2e;z|dz
is the variation of @,f on I;. For simplicity we omit the subscrlpt Let o(z ) =
m—b—)(c-{-dm +ex?), I = [a,b]. Without loss of generality assume e > 0. Then { = — £
is the minimal point of ¢ and ¢ (— %) = F}T) (c - %) is the minimum value of ¢. If
a < (<b,then

1
\I/so = (#(a) +¢(b) = 20()

= m:I) (c+da+ea +c+db+eb2—2c+(2[l)
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= (I) d(a + b) + e(a® +b’)+g:

= [-2e{(a+b) + e(a® + b%) + 2e(?] /m(I)
= €[2¢* —2{(a +b) + a® + b*]/m(])

= e[( — b)% + 2ab — 2{(a + b) + 2¢*|/m(I)

= ——[em(I)?* +2¢(a — ¢)(b— ()] < em(])

(1)
15 [ 12
-~ m() [m(z)zf (- d””‘/ f(z ]
2
< 30,m—(15 /1 f(z)dz—m / /9 J(t)dtde + G / / /V F(s)dsdtdz
< 9V f.
I
If ¢ & (a,b), then
1 1 .
\I/so = -n,‘—(ﬂlw(a)ﬂp(b)l = ;(I—)Id(b—a)+e(b —a®)|
= |d+2ez| = l/(a: z)f(z)dz
<

6‘—m—tl—)/lf(z)dz:— m//ﬂf(t)dtdx

< 6Vf<90\/f.
I I

Substituting into (4.5) we have

\/Q,,f<9OZVf+31\/f 121/ f.

=1 I;

Q.E.D.

4.3 Convergence

To prove the convergence of the method, we need the following lemma.

Lemma 4.3.1. Let P, = Q, 0 Ps|a,, where Ps is the Frobenius-Perron operator

associated with S : [0,1] — [0,1]. Then P, has a nontrivial fixed point in A,,.

Proof: Denote by P, the matrix representation of P, : A, — A, using the basis
{1.‘,21{,3211‘}?:1 OfAna i €., Pn{117z11a$2111 Y lmxlnazzln} = {11,1'11,17211» Tty lna

32



xln,zzl,.}f’,,. Let ¢ = (1,%1,%1,1,%2,92,-*,1,%n,Jn) where §; = %(:c:" + T;Ti +
z?_,). Thenfori=1,...,n,

((Pa)ai-1y41 = i(c,~(1,—)+i,-dj(1,-)+g,-e,-(1,-))

=1

_ g/lj(Psl.-)(z)dx =/01(Psl,')(:c)dx
= /01 L;i(z)dz =1,

n

(CPr)aii-1)42 = Z ci(zL;) + %;d;(z1;) + gie;(z1y))

S [ (Ps(a10)(e)dz = /‘(Ps(xh))(z)dx

= L .’D].( )dz::z”:;,
(CPn)ai = E(CJ(:" L)+ &;d ( )+y_,e]($ 1))

_ Z / (Ps(z1))(@)dz = [ (Ps(a1)(z)ds

That is,  is a left eigenvector of the matrix P, corresponding to the eigenvalue 1.
Therefore there is a nonzero ¢ € R2" such that P,c = ¢. Thus P, has a nonzero fixed

point in A,,. Q.E.D.

Theorem 4.3.1. Let S : [0,1] — [0, 1] be piecewise C? with M = inf |S’| > 242.
For each n let f, be a fixed point of P, in A, with || f, ||= 1. Then there exists a

subsequence {f,,} C {f.} convergent in L! norm to a fixed point of Ps.

Proof. By inequality (3.3) in the previous section, we have for any n

1
V fa
0

1 1 1
VPnfn=VQn0Pan < 121VPan
0 0 0

1 1
< 121 (a A +%\/fn)=121a+ﬂ\/fn

with g = 222 < 1. Hence

\1/ 121a < 400
0 -B '
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From the Helly theorem there is a subsequence {fn,} C {f.} which converges in L’

norm to some f € L'(0,1). From

| Psf—=fIl < I f=faill + Il fai = @nio Psfa, |l
+ || @n; © Psfa, — Qn, 0 Psf ||
+ || @n, 0o Psf — Psf ||

we immediately see that Psf = f. Q.E.D.
The proof of the following corollary is the same as that of Corollary 3.3.1.

Corollary 4.3.1. Suppose S : [0,1] — [0, 1] is piecewise C? satisfying inf |S’| > 1.
Then a sequence g, from the piecewise quadratic functions can be constructed which

converges to a nontrivial fixed point of Ps.
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Chapter 5

Markov Finite Approximations

In this chapter we take a different approach. Since the Frobenius-Perron operator
is also a Markov operator, it is natural to approximate it by Markov operators of
finite rank. The “orthogonal projections” of the Galerkin scheme used earlier are
not Markov operators in general except in the piecewise constant case in [5]. To
overcome this defect, we use continuous piecewise linear and piecewise quadratic
Markov approximation schemes to find an approximate fixed point of the Frobenius-
Perron operator. The convergence of these methods will be shown for a general class
of nonsingular measurable transformations.

In section 5.1 we discuss piecewise linear Markov approximations and section 5.2

is devoted to piecewise quadratic ones.

5.1 Piecewise Linear Markov Approximation

Assume S : [0,1] — [0,1] is piecewise C? satisfying inf | S’ |> 1. In this section,
we look for approximate solutions of the Frobenius-Perron operator equation Psf = f
in the space of continuous piecewise linear functions.

For simplicity divide the interval [0,1] into n equal parts. Let I; = [z;_y,z;],2; =
£,1=0,...,n. Each subinterval I; has length 1. Denote by A, the space of contin-
uous, piecewise linear functions corresponding to the above partition. Then A, is a

linear subspace of L'(0,1) with dimension n + 1. First of all, we choose a basis for
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A,. Let

Y(z)=91-z 0<z<1
0 otherwise.

Then ¥(z) is the so-called hat function. For: = 0,...,n, let

pi(z) = P(n(z — zi)).
Then ¢; is a continuous piecewise linear function with ¢;(z;) =1 and ¢;(z;) = 0 for
J # 1. It is easy to see that {o,...,®.} is a basis of A,. This basis has the following

properties:
Lflpill = L for i = 1,..,n—1, ligoll = lpall = 2;
2. pi>20fori=0,...,nand Y" pi(z) = 1;
3. Suppose f € A,. Then f = ¥ qipi if and only if f(z;) = ¢ for i =0,...,n
Now we define Q,, : L'(0,1) — A, as follows

Quf =(n [ fivo+ gg( J I+ [ Deitn [ Do (5.1)

Then @, is a bounded linear operator.

Lemma 5.1.1. For any n @, : L'(0,1) — A, is a Markov operator and hence

1@nll = 1.

Proof. From (5.1) it is easy to see that f > 0 implies Q,f > 0. To prove Q, is a
Markov operator, it remains to show that for f > 0, ||@.f|| = ||f]]- This can be done

by the following computation.

10nfIl = [ 1Qnfl= [ Quf

= /f/¢o+1"_

2t )/olsp.-+/1"f/01%]

- 3 f+:g(/kf+/h“ N+ [0

= Z =110

=1
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It follows that ||@Q,]| = 1. Q.E.D.
Lemma 5.1.2. For all f € L!(0,1), lim,—.co @uf = f.

Proof. We first assume f is a continuous function on [0, 1]. Notice that 3", @i(z) =

1. Hence,

Qnf(z) - f()

Il

o f Do+ X[ 1+ [ Do)

Iy

+ (0 [ Niea(@) = Y- f)ei)

1=0

(v [, = 1Neoe)+ TG+ [ 9= F@loo
+ (0] £ 1@)enle).

Since f is uniformly continuous on [0, 1], for any € > 0, there exists § > 0 such that if
1< éand z,y € ;U Iy, for any ¢,|f(z) — f(y)| <€ For 2 <é,|nf; f— f(z)| <e
for o € I Infy, f — f(@)| < € for z € In and [3(J;, f + fu,, /) — J(@)| < ¢ for
ze€L;Ul,1=1,...,n—1. Hence,

|Qaf(z) = f(z)] < €)_wi(z) =&, Vz €[0,1].
1=0
That is, for f € L'(0,1) continuous, @, f converges uniformly to f.

Now let f € L! be arbitrary. Given € > 0, there is a continuous function g

satisfying || f — g|| < §. Because ||Qn|| = 1, we have

Quf = Il < 1QuS = Qugll + @ng — gl + llg — /1
< 20f = gl +1Qng ol < 2 +1Qug — gl

From what we proved above, there is an N > 0 such that for n > N, ||Qng — ¢|| < §.
Therefore for n > N

€.

Qnf ~ 7l < 3e+ £
Q.E.D.

We show now that @, f will not increase the variation of a function f of bounded

variation.
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Lemma 5.1.3. If f € L! is of bounded variation, then for any n,

1 1
Ve.f<Vr
0 0

Proof. Let Q. f(z) = " qivi(z). Then Q. f(z:i) = ¢i,2 =0,...,n. And
1 n
Veuf = D lgi— gl
0 =1

= |%(/Ilf+ ,2f)‘"/,,f|+§|g(/z.-f+/1,.+,f)
_ g(/,,._l”/,..f)'+'"/znf_%(/ln-xf+ Inf)l
- %{|n/hf—n/hf|+:§|n/h+1f—n/h_]fI

tdnf f-nf 1)

< glnfr-nfn4Zinf r-nf s
tdnff=nf fltinf f=nf 1)
= gln/h“f—n/hfls\;/f.

See [5] for the proof of the last inequality. Q.E.D.

Let P, = @, 0 Ps|a,. Since both Ps: L'(0,1) — L'(0,1) and @, : L'(0,1) — A,
are Markov operators, P, : A, — A, is a Markov operator of finite rank. Let
Papi = Y00 pijpj,i = 0,...,n. Let P, = (pi;) be the corresponding (n+1) x (n+ 1)
matrix. Let f, = Y cipi. Then P,f, = f, if and only if cP, = ¢ with the row

vector ¢ = (cg,...,Cpn).

Lemma 5.1.4. For each n there exists a nontrivial nonnegative function f, € A,

satisfying P, f, = fa.
Proof. Since

Popi = Qno Psyp;
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1 n-1
= nl(f, Poedeo+ 3 ([ Povit [ Psgdes+ ([, Powon),

we have pio = n [}, Pspi,pi; = 3(f;, Pspi + [1,, Pswi);j = 1,...,n = 1, and pin =
n [; Psp; for i = 0,...,n. The matrix P, is nonnegative. Let £ = (,...,&) =
L,1,...,1,1). Then

29

- n n 1 n
i = 5| Pspi+ 3 /P i / Psop; —/P i
Jgopjég 2/11 5P +2§;( L Poeit | spi) + 5 |, Pse
n 1 1
- Pspi=n [ Pogi=n [ o
n§/{ sei=n [ Pspi=n [ ¢

Since [l@ol| = [lonll = & and |l@il| = L for i =1,...,n — 1, we have P,£ = £. Hence
there exists a nonnegative row vector ¢ = (co,...,¢,) # 0 such that cP, = c. Let

f'l = E?:O Cipi. Then Pnfn = fn- Q.E.D.

Lemma 5.1.5. Suppose S : [0,1] — [0,1] is piecewise C? with M = inf |S'(z)| >
2. Then for nonnegative fixed points f,, € A, of P,, the sequence {\/} f.} is uniformly
bounded.

Proof. By Lemma 5.1.3 and inequality (3.3),

V fa

0

1 1 1
VPufn =VQn°Pan SVPan
0 0 0

1 1
< a”fn“ +,B\/fn:a+ﬂ\/fn-

0 0

Since 8 = —1?7 < 1 by assumption, we have

[0

\:/fnsl_ﬂ<00.

Q.E.D.

Now we can prove our main theorem.

Theorem 5.1.1. Suppose S : [0, 1] — [0,1] is piecewise C? and M = inf |S'(z)| >
2. If the corresponding Frobenius-Perron operator Ps has a unique invariant density
f, then the sequence {f,} of nonnegative piecewise linear fixed points of P, in A,

converges to f in L'(0,1).

39



Proof. From Lemma 5.1.5, the sequence {f,} is bounded in variation. Helly’s
theorem [8] implies that {f,} is precompact. Let {f,,} C {fa} converge in L! norm
to some g € L!(0,1). Then

”Psg _g” < ”g - f"k“ + “fﬂk - Q”k OPSfﬁk”
+ ”anopsf,,k—anOPsg”+”anOP5g—Psg”.

Since Qn, © Psf,, = fa, and since |@n, o Ps|| < 1, Psg = g. Obviously ||g|| = 1 and
g > 0. By the uniqueness of the fixed density of Ps we assert that ¢ = f and that

all the convergent subsequences of {f,} converge to f. This proves lim,_ fn = f.

Q.E.D.

By the following familiar trick we can ignore the condition M = inf |S'(z)| > 2.

Corollary 5.1.1. If S : [0,1] — [0,1] is piecewise C? satisfying inf |S’| > 1 and
Ps has only one invariant density, a sequence g, from the piecewise linear functions

can be constructed which converges to the fixed density of Ps.

Proof. Choose k such that M* = (inf |S'(z)|)* > 2. Let ¢ = S*. Let f.(4) be
the fixed density of P,(¢) as in the above theorem. Define
1 k-1 )
9n = T Z(PS)an(¢)'
ki
Then g, converges, by Theorem 2.1, to
1 k-1

=0
where f(¢) is a fixed point of ¢ = S*. This g is the fixed density of Ps. In fact, since
(Ps)*f(¢) = Psx f(¢) = Psf(¢) = £(9),

Psg = 1{Psf(¢) + -+ (P f(8)} = o.

Q.E.D.
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5.2 Piecewise Quadratic Markov Approximation

We generalize the method in the previous section to piecewise quadratic Markov
approximations. As above, let I; = [z;_;,z;] with z; = %,i =0,...,n. Each subin-
terval I; has length % Let Q, be the corresponding space of continuous piecewise
quadratic functions on [0, 1] associated with that partition. Then £, is a (2n + 1)-

dimensional subspace of L!(0,1). In order to construct a basis for 2, we define
(z+1), -1<z<0
T(z)=9 (z-1)?2, 0<z<l
0, otherwise

and

p(x)={ 22(1—z), 0<z<1l

0, otherwise.
Let ¢2i(z) = 7(n(z—1i)),: =0,...,n, and ¢2i_1(z) = p(n(z —zi-1)),2 =1,...,n.
Then it is easy to see that {¢o, ..., ¢2,} is a basis of Q,. This basis has the following

properties:
L ||gaill = & fori =1,...,n — 1,[|¢2i1]| = 3; for i = 1,...,n, and ||¢o|| =
[ f2nll = 353

2. ¢x > 0 for all k and 327 d(z) = 1;
3. If f = T30 qkéx, then f(z;) = gz for i =0,...,n.

Define Q, : L'(0,1) — 0, as follows

Quf =0 [ Dtotn 3] Noun + B 4 [ Dout [ N

i=1 J =1

Lemma 5.2.1. @), is a Markov operator and hence ||@Q,|| = 1 for any n.

Proof. It is obvious that f > 0 implies @,.f > 0. By direct computation, for
f20,

10nfll = [ 1Qufl= [ @uf
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= n/;lf/()l¢o+ng/l‘_f/01¢2i—1
e IS e a1 b

=1

S E LR,

i=1

= [s=[1n=11
Q.E.D.

Lemma 5.2.2. lim,_o Q. f = f for any f € L'(0,1).

Proof. We First assume f is continuous. Then,

Quf =1 = (o f Déo+n3(f Newcs 4 3 14 [ Do

i=1 '

2n
+ (o[ Dém=3 14,
= (0 f, S~ Do+ 3n [ £~ o

n-1 n
+ X+ [ D= Aentnf F= D

For any € > 0, there is § > 0 such that for 2 < é we have |f(z) — f(y)| < € for

any z,y € I; UIt'+lai =1,...,n—1. Hence Infll f_ f|X11 < C,|%(f1.~f+ fl.-“ f) -
flxrory, <6i=1,...,n—1,and |n [; f— f|x1. <€, where x4 is the characteristic

function of A. It follows that for n sufficiently large and z € [0, 1]
2n
|Qnf(z) = f(2) < €3 di(z) =¢,
J=0

i. e. , @Qnf converges to f uniformly as n — oco. Therefore ||Q.f — f|| — 0.
Now for arbitrary f € L'(0,1), we can find a continuous function g such that

|f — gll < § for given € > 0. Since
N@nf = fll < ||Qnf — Qngll + 1|1@ng — gl + llg — f]
2
< 2et1Qur-all,

from the first part of the proof, we conclude that lim, ... Q.f = f in L'-norm.
Q.E.D.
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The next lemma is crucial to our convergence theorem.

Lemma 5.2.3. If f € L(0,1) is of bounded variation, then

VQn s\;/

Proof. On the interval I; = [z;_;, z;] we have

Qnf(z) = qri-202i-2(2) + Q2i-162i-1(T) + q2i2i(z)
= qu-2(n(z = zin1) = 1)* + gaia[2n(z = zi21)(1 = n(z = 2i21))] + qiln(z — z:) +1)°
= qoi_2(nz —1)? 4+ 2q2i_1(nz — (1 — 1))(¢ — nT) + gai(nz — (i — 1))?
= (g2i-2 — 2q2i-1 + 92:)(n2)* — 2((g2i-2 — 22i—1 + g2i)i + Q2i-1 — qai]nz
+ [(g2i-2 — 2q2i-1 + ¢2)8% + 2(q2i1 — ¢2:)i + gai-

For simplicity, let a = ¢2;_2,b = ¢2;_1,¢ = ¢2;. Then for = € I,
Qnf(z) = (a—2b+c)(nz)? —2[(a—2b+c)i+b—clnz+[(a —2b+c)i* +2(b—c)i + ).

Denote the right hand side of the above equality by ¢(nz). Then the extreme point

of ¢(nz) is
) —2[(a—2b+c)i+b— (|

2 — I
T= —2(a—2b+c)n “n (a=2b+o)n

and the extreme value is

[(a—=2b+c)i+b—(]?

¢(nz) = [(a—2b+c)i*+2(b—c)i+c]—

a—2b+c
_ _ 2 _ . _ _ -2 _ . (b—C)2
= [(a=2b+ )" +2(b=cli+c = [(a = 2b+c)i’ +2b— )i + —— ]
 (b-op
a—2b+c

We consider all the possible cases as follows.

ezt€l, Thenz;_1 <<t +(a- <1.

W<$"SO’0<

2b+c
1. fa—2b+¢> 0,i. e., the graph of ¢ opens upward, then c—b > 0. Hence

0< (c=b®

a—2b+c<c_b'
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In this case, we have

(b—cy (b=c)?

V@S = e (e-Tglt e (o= T5p)
—¢)?
= a—c+az(_b2—b+)c<a—c+2(c—b)

= a—-bt+c—b<|a-bl+]|c-}.

2. f a—2b+c¢<0,i.e., the graph of ¢ opens downward, then ¢ — b < 0.

Hence
(c—b)?
0>a—2b+c>c b

In this case, we have

b= (b= ¢y

\I'/Q"f - (c_a—2b+c_a)+(c—a—2b+c_c)
_ 2(b - c)?
= c-a— o <c—a-—2(c-0b)

= b—a+b-—c<|a-b+|c—1b|

o ¢ I;. Then @, f is monotonic on I;. So,
\/an= la —c| < la—b]+|c— b

e a—2b+c¢=0. Then Q,f is linear on I;. We also have
Yan= la —c| < la—b]+[c— b

In any case, we obtain the following inequality

\/an <la—=b+|c =8| = |g2i—2 — qai-1| + 920 — g2i-1]-
It follows that

\O/an = iVan < i:{lq:u'—z — qai-1| + |92i — q2i-1|}

i=1 I;
n-1 1 n-1 1
VAR MR HIESINT VR SR

w ([ s=[ vz s+ [ - [ m
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+nllg [ s+ [ o= [ n+if £- [ n

= S f-nffisVE

=1
Q.E.D.
Let P, = Qn0 Ps|q,. Then P, : Q, — (1, is a Markov operator of finite rank. Let
Pudr = X220 prjd;j for k=0,...,2n. Denote the (2n + 1) X (2n 4+ 1) matrix (px;) by
P,.

Lemma 5.2.4. P, has a nontrivial nonnegative fixed point in ,,.
Proof. For k =0,...,2n, from

Podr = QnoPsés
= n{(/ Ps¢i)do + E(/ Ps¢i)d2i-

+ 1"— (/ ps¢k+/ Pséi)éai + / Pséi)¢an},

we have pyo = nfl, PS¢k,Pk.2i-1 = nfz,- Psor,t = 1,...,n,pe2i = %(fl,- Ps¢i +
flm Ps¢i),i=1,...,n—1,and pran =n[; Ps¢yfor k=0,...,2n.

Let ¢ = ((o,---,(2n) where (o =(an =3, Gai=2fori=1,...,n—1,(_1 =} for
t=1,...,n. Then,

2n 1 1 n
j;opkj(j = n{—/ Ps¢>k+§‘§/;‘Ps¢k

+ 2"-11(/ Pstut [ Poti)+ 3 [ Po)

- n[§/0 Ps¢k+§/0 Psezsk]=n/0 b

Note that ||¢sif| = £ fori =1,...,n = 1,||d2ica|| = & for i = 1,...,n, and ||| =
l|$2n]l = 5, we have P,¢ = (. Therefore we can find a nonnegative row vector ¢ # 0

such that cP, = c. This implies that f, = 21, ¢;$; is a nontrivial nonnegative fixed

point of P, in Q,. Q.E.D.

The proofs of the following results follow exactly the same line of arguments as in

the previous section. So we omit the corresponding proofs.
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Lemma 5.2.5. If S: [0,1] — [0, 1] is piecewise C? with M = inf |S’(z)| > 2,then
the sequence {Vg fn} is uniformly bounded, where f, € Q, is a nonnegative fixed

point of P, for each n.

Theorem 5.2.1. Suppose S : [0,1] — [0, 1] is piecewise C? and M = inf |S'(z)| >
2. If the corresponding Frobenius-Perron operator Ps has unique invariant density f,
then the sequence {f,} of nonnegative piecewise quadratic fixed points of P, in §,

converges to f in L!.

Corollary 5.2.1. If $: [0,1] — [0, 1] is piecewise C? satisfying M = inf |S’(z)| >
1, and Ps has a unique fixed density, then a sequence g, from the piecewise quadratic

functions can be constructed that converges to the unique invariant density of Ps.
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Chapter 6

Numerical Results

In this chapter we present numerical results for some mappings from [0, 1] into
itself with our new methods and compare them to Li’s original one. These calculations
were performed on the IBM 3090 180VF at Michigan State University, using double
precision. Section 6.1 gives the numerical results with the projection methods, while

Section 6.2 gives those using the Markov approximation schemes.

6.1 Numerical Results with Projection Methods

The test functions are as follows

2z OS.'ES%
SI(I) =

2(1-z) }<z<1,

1 1 1
Sa(z) = (§—2|$—’2"|3)§+-2-,
540 {13; 0<z<VE-1
3\r) = g2

12: ﬁ_l_zsl)

2 0<z<l!
Sa(z) = {:_z i

Ss(r) = 4z(1-2z).
The invariant densities f; of S; are given by
filz) = 1,
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filz) = 12(z - 3)%,

. 2
fi(z) = m,
. _ 2
fi(z) = m,
1

@) = ———.
(<) m\/z(1 — z)

Let a; be the nondifferentiable point of S;. We divide the intervals [0,a;] and
[a;,1] into n/2 equal subintervals, respectively. On the i-th subinterval I; = [z;_;, zi],
we choose (z — z;_1)*xy, as the basis functions for k = 0,1,...,m. Here, of course,
m = 0 for Li’s piecewise constant method, m = 1 and m = 2 for our piecewise linear
and piecewise quadratic methods, respectively. Gaussian quadrature formulas using
three nodes were used on each subinterval to evaluate the integrals for the matrix in
each scheme. The order of each matrix is kn x kn for £k = 0,1, or 2, respectively.
The QR decomposition subroutine was used together with backward substitution to
solve the linear fixed point problem. In order to estimate the convergence of the
approximate density f,, to f*, we used the L'-norm ||f, — f*|| = fo |fa — f*|dz for
each method. Also we used the Gaussian quadrature formula on each subinterval to
calculate this norm. In the following we present numerical experiments in order from
example 1 to example 5.

Since the invariant density of S; is constant, all the methods work very well even
for small n, and the largest error is less than 10-8. Table 6.1, Table 6.2, and Table
6.3 give the computational results with S;, S3, and Sy, respectively. For these tables,
the first column is the number of subintervals, and error0, errorl, and error2 in the
remaining columns give the corresponding errors for the piecewise constant, piecewise
linear, and piecewise quadratic projection methods in succession. The symbol * in
the tables indicates that the dimension of the matrix is out of the limited virtual
storage range.

From Tables 6.1, 6.2, and 6.3 it is clear that the rate of convergence for the
piecewise linear and piecewise quadratic schemes is much better than that of the

piecewise constant one. Also notice that when the mesh of the partition is reduced
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error0

errorl

error2

0.4516118411

0.0555555556

0.0149254220

0.2292409861

0.0148102010

0.0027094962

16

0.1027134038

0.0035791431

0.0003887813

32

0.0525720871

0.0010220004

0.0000496560

64

0.0256408424

0.0002415574

0.0000066700

128

0.0133770827

0.0000693106

*

256

0.0064525269

*

*

Table 6.1: Error Estimates for S;

error0

errorl

error2

0.0830968916

0.0123173042

0.0101762505

0.0406691860

0.0031483283

0.0025306884

16

0.0202492312

0.0007860024

0.0006211069

32

0.0097816838

0.0001869041

0.0001531915

64

0.0048954498

0.0000479155

0.0000380217

128

0.0024518719

0.0000117453

%

256

0.0012361596

*

*

Table 6.2: Error Estimates for S3
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n error0 errorl error2
0.1195535492 | 0.0393188225 | 0.0370286858
8 |0.0586617412 | 0.0118494476 | 0.0103420855
16 | 0.0279057298 | 0.0032289581 | 0.0027443529
32 | 0.0138824563 | 0.0008396322 | 0.0007082720
64 | 0.0067786733 | 0.0002162473 | 0.0001800303
128 | 0.0032945853 | 0.0000623525 *
256 | 0.0016371634 * *
Table 6.3: Error Estimates for Sy
n error(0 errorl error2
0.3896329138 | 0.3075260533 | 0.2015446439
8 |0.3101171199 | 0.2275786385 | 0.1739440930
16 | 0.2427747128 | 0.1688182194 | 0.1355681505
32 | 0.1932292835 | 0.1342031192 | 0.1048131049
64 | 0.1464393853 | 0.0969966808 | 0.0796186481
128 | 0.1121331945 | 0.0765348792 *
256 | 0.0828776585 * *

Table 6.4: Error Estimates for Ss
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in half, the error decreases with a factor about } for the piecewise constant method,
a factor between 1 to 1 for the piecewise linear and piecewise quadratic ones. The
better the invariant density f* can be approximated by quadratic polynomials, the
faster the convergence rate is for the piecewise quadratic scheme comparing to the
piecewise linear scheme.

If the invariant density is unbounded, it appears that all the methods converge very
slowly. Table 6.4 demonstrates this defect. Here the density fS of S5 is unbounded,
though it belongs to L!.

Table 6.4 indicates that the convergence rate of projection methods depends not
only on the order of the polynomial approximation but also on the regularity of
the invariant density. To develop more efficient methods for transformations with

unbounded invariant densities is a problem for future research.

6.2 Numerical Results for Markov Finite Approx-
imations

In this section we present the numerical results for the invariant measures of the
mappings S; through S5 from section 6.2, using our piecewise linear and piecewise
quadratic Markov approximations. For comparison we also include the results using
the piecewise constant method of the previous section.

Unlike the projection method, numerical integration is not required in our program
here because we can use the Koopman operator Us [3] instead of the Frobenius-Perron
operator Ps to calculate the matrix representation of the Markov operator P,. This
property makes the new schemes much easier to implement than the projection ones.
Suppose the interval [0, 1] is divided into n subintervals. Then the algorithms for the
piecewise constant , piecewise linear, or piecewise quadratic Markov approximation
methods need to solve an n x n, (n + 1) x (n + 1), or (2n 4+ 1) x (2n + 1) system
of linear equation cP, = ¢. The QR decomposition together with the backward
substitution were also used to solve this algebraic equation. Again the L!-norm

lfa = f*ll = Jo |fa — f*|dz is used to estimate the convergence of the approximate
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n error0 errorl error2
0.4516118411 | 0.4641185272 | 0.3959913833
8 | 0.2292409861 | 0.1800796348 | 0.1462659757
16 | 0.1027134038 | 0.0626959897 | 0.0487315033
32 | 0.0525720871 | 0.0206618342 | 0.0157728634
64 | 0.0256408424 | 0.0069115342 | 0.0050447087
128 | 0.0133770827 | 0.0022033011 | 0.0015826892
256 | 0.0064525269 | 0.0006804461 *

Table 6.5: Error Estimates for S,

density f, to f* for each method.

It is no surprise that our new methods also work very well for S;. Table 6.5, Table
6.6, and Table 6.7 give the computational results for S,, S3, and S, respectively.

The last three columns, error0, errorl, and error2, represent errors for the piece-
wise constant, piecewise linear, and piecewise quadratic Markov approximation schemes,
respectively. It is apparent from these tables that the piecewise linear and piecewise
quadratic methods are better than the piecewise constant one not only for the same
partition (that is, with the same n), but also under the same dimension of the system
of linear equations involved.

Table 6.8 shows the unsatisfactory computation with Ss. Thus it is necessary to
investigate new approaches in this case.

We may construct continuous piecewise cubic Markov approximation or even
higher order ones along the same lines. But in practice for the consideration of
stability, higher order polynomial approximations are rarely used . Our numerical
experiments show that, if the fixed density of Ps is smooth enough, the Markov ap-
proximations converge quickly. We believe that under some regularity condition for
the invariant density of the Frobenius-Perron operator, the convergence rate can be

obtained to explain our numerical phenomenon.
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error(

errorl

error2

0.0830968916

0.0291096553

0.0209641927

0.0406691860

0.0101965728

0.0070473567

16

0.0202492312

0.0031790398

0.0021596521

32

0.0097816838

0.0009425484

0.0006358728

64

0.0048954498

0.0002723532

0.0001836483

128

0.0024518719

0.0000774104

0.0000521595

256

0.0012361596

0.0000216967

*

Table 6.6: Error Estimates for S;

error(0

errorl

error2

0.1195535492

0.0492295286

0.0436642029

0.0586617412

0.0216968214

0.0192011196

16

0.0279057298

0.0104087996

0.0082975396

32

0.0138824563

0.0041061066

0.0031177980

64

0.0067786733

0.0014008562

0.0010345743

128

0.0032945853

0.0004428463

0.0003202538

256

0.0016371634

0.0001335304

*

Table 6.7: Error Estimates for S,
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error0

errorl

error2

0.3896329138

0.3691582134

0.3681119076

0.3101171199

0.3181004411

0.3057295967

16

0.2427747128

0.2584324400

0.2453954228

32

0.1932292835

0.1884801640

0.1801104382

64

0.1464393853

0.1438197957

0.1346727768

128

0.1121331945

0.1021434498

0.0966334472

256

0.0828776585

0.0754555981

*

Table 6.8: Error Estimates for Ss
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Chapter 7

Conclusions

In this work piecewise linear and piecewise quadratic polynomial projection
methods and Markov finite approximations are found for the approximation of in-
variant densities of the Frobenius-Perron operator. Convergence of the methods is
proved for a general class of measurable nonsingular transformations of the unit in-
terval into itself . Our proof is based on the following observation: The operators

Q@n : L1(0,1) — L(0,1) defined in the previous chapters satisfy
(1) || @ I Ch, C: is a constant.
(2) @nf — f uniformly for any f € L'(0,1).
(3)For any f € L'(0,1) of bounded variation V§ @.f < C, V¢ f with C; a constant.
(4) @n o P has a nontrivial fixed point f, for each n.

In general a numerical scheme for the Frobenius-Perron operator equation Psf —
f = 0 is convergent if the “discretization” operators @), satisfy the above four re-
quirements, as the following theorem shows.

Theorem 7.1.1. Suppose that the sequence of operators @, of finite rank satisfy
the conditions (1) through (4) above. Then a sequence of functions can be constructed
which converge to a nontrivial fixed point of Ps if S is piecewise C? satisfying inf |S’| >
1.

Based on the convergence analysis for the piecewise linear and piecewise quadratic
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polynomial approximation methods, we believe that convergence can also be estab-
lished for general higher order piecewise polynomial approximation methods, though
it would not have much computational practicality due to instability.

It is important to estimate the rate of convergence for a convergent numerical
method. Further research will be focused on this aspect for our finite approximation
methods for Frobenius-Perron operator equations or more general Markov operator

equations.
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