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ABSTRACT

FINITE APPROXIMATIONS OF

A CLASS OF FROBENIUS-PERRON OPERATORS

By

Jiu Ding

In this paper we construct first order and second order piecewise polynomial finite

approximation schemes. These schemes are for the computation of invariant measures

of nonsingular measurable transformations on the unit interval, and fall into two

groups. The first one is based on the Galerkin projection method for Ll-spaces. The

second one uses the idea of Markov approximations of finite rank to the Frobenius-

Perron operator. These methods are proved to converge for a class of transformations

satisfying the condition of the Lasota-Yorke theorem. Moreover the computational

experiments show that these schemes converge faster than Ulam-Li’s method for most

problems.
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Chapter 1

Introduction

Let I be the unit interval [0,1] and S : I —+ I be a mapping. Given :co 6 I, we

recursively define a sequence {13,} by letting 93,,“ = S(:z:n) for n = 0, 1, 2,. . . .

Suppose for a particular sequence of iterates {an}, we happen to have 5(12000) =

$1000. Then eventually, the iterates will be in the set of finitely many elements

{31000, $1001, . . . , x2000}. Thus we have a predictable behavior for the iterates.

The study of chaotic dynamical systems has become very popular in sciences and

engineering. The term “chaos” was first introduced by Li and Yorke in their seminal

paper [6]. Various definitions have been given for “chaos” since then, but basically a

common fundamental feature of “chaos” is “unpredictability”. A typical example of

chaotic dynamical systems is given by the “logistic model” 5(3) = 4x(1 — :13). It is

well-known that for almost all 2:0 6 [0, 1], the iterates are dense in I . Thus we cannot

predict the limiting behavior of the iterates.

We may look at a dynamical system from a different point of view. Given a set

A, we determine the probability of the iterates entering A. For this purpose let XA

be the characteristic function of A:

1 if a: E A

XA($) =

0 otherwise.

Starting at 1:0, if the nth iterate S”(xo) is in A, then XA(S"(:ro)) = 1. Otherwise

XA(S'”(a:o)) = 0. Thus % 2,132? XA(S"($0)) gives the ratio of the points among the



first N iterates in A. In ergodic theory

1 N-l

131330 IV "2::0 XA(5"($0))

is called the time average. A classic theorem of ergodic theory basically says: The

time average coincides with the space average, that is

#(A) _ 1
m - m/IXACIII,

where p is a measure on I.

Now the question arises: Is the measure invariant with respect to time? A more

careful statement of the classic ergodic theorem should be: The time average equals

the space average which is invariant with respect to time. Using mathematical terms,

it simply says that the measure it is “invariant” with respect to S, or S “preserves”

the measure p. That is, for any measurable set A, p(S"1(A)) = p(A). In this case,

p is called an invariant measure. If in addition [1(1) = 1, we call it an invariant

probability measure.

Now the problem is: Is there any probability measure which is invariant with

respect to S"? This leads to the concept of the Frobenius-Perron operator. This

operator gives the way in which the probability distribution changes according to the

transformation 5'.

Now let m be Lebesgue measure and L1(m) the set of m-integrable functions.

Suppose a probability measure p is given by a nonnegative L1(m)-function f, that

is, [1(A) = [A fdm for every m-measurable subset A of I. Given a nonsingular

measurable transformation 3 : I —+ I, we examine how the probability distribution

is converted by S.

For any measurable set A we would like this set A to have the probability of the

set it comes from under 5'. Thus, A should have the probability fl(A) 2 L94”) fdm.

Since 5' is nonsingular, [1 is absolutely continuous with respect to m. Thus by

the Radon—Nikodym theorem, there exists a unique density f E L1(m) such that

L, fdm = fS-1(A) fdm for any measurable subset A. The correspondence between f



and f' defines the Frobenius-Perron operator P5 : L1(m) —r L1(m) associated with S:

[Apsfdm = [9_1(A)fdm (1.1)

It is apparent that if f 2 0 is a fixed point of P5, then the measure pf defined by

MA) = f, fdm

is invariant with respect to S. In this case we call f an invariant density. Thus to

find an invariant measure we may instead find a fixed point of the corresponding

Frobenius-Perron operator.

To calculate fixed points of the Frobenius-Perron operator numerically, it is im-

portant to make finite approximations of this operator. For this purpose divide I

into n subintervals 11,12, . . . , In. Suppose a piecewise constant density f gives I.- the

probability a.- for i = 1,2,. . . ,n. For 5 : I -+ I, it is easy to see that the probability

of I.- induced by S is n 1

b.‘ = Z m(1j2(51'j)(1e))aj

J=l

 

for i = 1,2,...,n. Let P" = [pg] With pa = W,0 = [a1302)"°9an]T, and

b = [b1, b2, . . . , bn]T. Then the relation

b=Pna

gives a finite approximation of the Frobenius-Perron operator.

Since Pn is an n x n nonnegative matrix and the sum of each column of Pn is

1, Pn is a stochastic matrix. It is well known that a stochastic matrix has 1 as an

eigenvalue with a nonnegative eigenvector. Therefore Pn has a fixed point which gives

a nonnegative piecewise constant function fn.

In 1960 S. Ulam conjectured [10]: The piecewise constant functions fn converge to

an invariant density f of the Frobenius-Perron operator P5 as n approaches infinity

under the stretching condition, i. e., infxg I S’(a:) [> 1. In 1976, Li proved this

conjecture [5].

Numerical experiments show that the Ulam-Li’s method converges very slowly for

most problems. This situation motivates the investigation of higher order approxima-

tions of the Frobenius-Perron operator. It seems difficult to generalize the previous

3



argument based on probability analysis. However, we may consider this problem from

a totally different point of view.

To solve Pf = g for f and g in a Banach space X, we may employ Galerkin’s

projection method [9]. That is, we project this equation into a finite dimensional

subspace of X and solve the resulting finite dimensional problem in this subspace. To

find the projection, we need an inner product between X and its adjoint space. For

our fixed point problem P5f — f = 0, we define the inner product of two functions

f E L1(m) and g E L°°(m)= L1(m)‘ to be

<f,g> = [01 f(x)g(x)dw. (1.2)

To construct a finite dimensional subspace, we divide the interval I into n subintervals

11,12,...,In. Fori: 1,2,...,n, let

. _ 1L1. _ m(I.-) (1.3)

and A" = {22:1 ail; : a.- 6 33,1' = 1, . . . ,n}. Then An is the n-dimensional subspace

of L1 which is made up of piecewise constant functions.

Using Galerkin’s projection method to solve the equation P3f — f = 0 in An, the

function

PA: 011:“) - Z 0111

i=1 i=1

should be orthogonal to each basis function, that is,

< P5(Zaj1,-) — Zajlj,1.- >= 0,

'=1

i=1

or,

Zaj<Pslj,lg> = Zaj<1j,1.->. (1.4)

j=1 j=1

From (1.1), (1.2), and (1.3),

< Pslj, l; > = [(lpsljflgdm = —-1—/1P51jdm

/ -d-m ——1—/ dm

min”) -1(I) , ‘m(1.-)m(I.-) s-xm’“)

mUj 3"(I1))

m(I.-)m(1j) '

 



On the other hand,

11 a

- 1-,1.-> = .-<1.-,1.->=——'—/ . .11

Z31“ ’ “ m(I.-)2 1““ m

a; a.-

’ mid” = m<I.-)‘
 

Thus (1.4) becomes

n m(I,-nS‘1(I.-)) __ a,-

Z m(I.-)m(I,-) a]- m(I.-)i=1

  

or,

" m(I,-nS“(I.-)) .

a-=a,-, t:1,...,n.

2 ma.) Ji=1

 

This gives exactly Ulam-Li’s method. Hence Ulam-Li method is essentially an appli-

cation of Galerkin’s method on the subspace of piecewise constant functions.

From this point of view, we may generalize the method by choosing higher order

basis functions to improve the convergence rate. In the following we introduce a

first order and a second order piecewise polynomial approximation scheme for the

computation of fixed points of the Frobenius-Perron operator, based on Galerkin’s

projection method. In [2] a general piecewise polynomial projection procedure is

proposed. But in order to prove the convergence of the method, it is assumed that

the invariant density of the Frobenius-Perron operator is bounded as well as unique.

This makes the analysis easier, because Hilbert space techniques may be used in this

case. Without the assumption of boundedness of invariant densities, we show that our

schemes are convergent for a general class of nonsingular measurable transformations.

Chapter II discusses the Frobenius-Perron operator, its basic properties, and the

general framework of Galerkin’s projection method. Chapter III and Chapter IV

are devoted to the piecewise linear and piecewise quadratic polynomial projection

approximation methods, respectively. In Chapter V, we develop the Markov finite

approximation schemes. Numerical results are presented in Chapter VI, and com-

pared with Li’s original method in [5]. The last chapter gives some comments and

conclusions.



Chapter 2

Frobenius-Perron Operators and

Projection Methods

The purpose of this chapter is to provide the background material for the sub-

sequent chapters. In Section 2.1, we define the Frobenius-Perron operator and list

those properties it has which are useful to us. Section 2.2 is a brief introduction to

the Galerkin projection method.

2.1 Frobenius-Perron Operators

Let I = [0,1] and S be a transformation from I into itself. For A C [0,1] we write

S’1(A) for {x : S(z) E A}. Lebesgue measure on [0,1] will be denoted by m and

the Borel-algebra of subsets of [0, 1], the minimal a-algebra of [0, 1] containing all the

open sets of [0, 1], will be denoted by B. For any measure it on B, the triple (I, B, p)

is called a Borel measure space. Let L1(0, 1) be the space of all Lebesgue integrable

functions defined on [0,1]. L1(0, 1) is a Banach space with norm [I f I]: fol |f(1:)| dz.

Definition 2.1.1. Let (I, B, p) be a Borel measure space.

(1) A transformation S : I -—» I is measurable if S‘1(A) E B for all A E B.

(2) A measurable transformation S : I —+ I is said to be nonsingular if p(S‘1 (A)) =

0 for all A E B satisfying p(A) = 0.



In the sequel we are interested only in nonsingular measurable transformations.

For the purpose of defining the Frobenius-Perron operator P3 : L1(0,1) —1 L1(0,1)

associated with a nonsingular measurable transformation S, we first state the Radon-

Nikodym Theorem. (For a proof, see [1].)

Theorem 2.1.1. ( Radon-Nikodym )

Let (X, A) be a measurable space, p be a (positive) measure, and V be a finite

signed measure. Suppose V is absolutely continuous with respect to p, i.e., V(A) = 0

whenever p(A) = 0 for any A E A. Then there exists a unique function f 6 L1(p)

such that

14A) = [A fdp.

For f E L1(0,1),

A = f du( ) MA); m

defines a finite signed measure. Since S : I ——i I is nonsingular, the measure u is

absolutely continuous with respect to m. By the Radon-Nikodym Theorem there

exists a unique Ll-function, which we denote by P5f, such that

jAPsfdm = u(A)=/S_1(A)fdm.

Definition 2.1.2. The operator Pg : L1(0, l) —> L1(0,1) defined by

/AP3f(x)d:r = [9_1(A)f(:r)dx (2.1)

is called the Frobenius-Perron operator associated with S. If there is no ambiguity,

we shall write P for PS.

Proposition 2.1.1. [ Properties of the Frobenius-Perron operator ]

(1) P is linear, i. e., for f1,f2 E L1(0, 1) and A1, A2 6 92

P(A1f1 + )0le = /\1Pf1+ A2Pf2o

(2) IffZO, then PfZO.



(3) In1 Pf($)d$ = fci f($)d$-

(4) For the nth power 5”, P5»: = (P3)”.

Proof. See [3].

It follows from (2) and (3) that the Frobenius-Perron operator P5 not only pre-

serves nonnegative functions, but also preserves their norms. Thus P3 is a Markov

operator. Hence [I PS I]: 1.

Definition 2.1.3. Let (I,B,p) be a Borel measure space and S : I —+ I be a

measurable transformation. We say that p is invariant under S, or S is measure-

preserving with respect to u, if p(S‘1(A)) = [1(A) for all A E [3.

Theorem 2.1.2. For f E L1(0,1) and f 2 O, the measure

MA) = f. f(w)da= (2.2)

is invariant under S if and only if P3f =: f.

Proof. Since

pas-«A» = /
s-2 (A)

f(x)da: = A P5f(:1:)d:c,

pf(A) = p;(S"1(A)) for any A implies Psf = f and vise verse. Q.E.D.

The function f in (2.2) is usually called the density function of the measure pf. It

is apparent that a measure can be calculated when its density is known. The density

of an invariant measure is characterized by Theorem 2.1.2 as a nonnegative fixed

point of the Frobenius-Perron operator. In this case it is called an invariant density.

Therefore to calculate invariant measures for S, we may calculate instead invariant

densities of the corresponding Frobenius-Perron operator.

However, to find a fixed point of the Frobenius-Perron operator is, unfortunately,

not so simple in general. First of all, the space L1(O, 1) is not reflexive. Moreover,

the operator P5 is not compact. Let A = [0,1]. Then from the definition of the



Frobenius-Perron operator,

f0. Pf(t)dt = / f(t)dt.
S-1(0,1:)

Differentiating it, we obtain the Frobenius-Perron operator explicitly:

Pf(x) = % Lam...) f(t)dt. (2.3)

For the logistic model 5(a) = 4:1:(1 — x), (2.3) becomes

Pf(w) = fill—3111a — ./—1— x)) + f1§u+ ./—1— as»).

For a class of stretching transformations from I into itself, Lasota and Yorke [3]

established the existence of invariant densities. In [7], Li and Yorke gave a sufficient

condition for the uniqueness of the invariant density and thus the ergodicity of the

mapping.

Definition 2.1.4. A mapping S : [0,1] —-> [0,1] is called piecewise 02, if there

exists a partition 0 = a0 < a1 < < a, = 1 of the unit interval such that for

each integer k = 1,. . . ,r, the restriction 5;. of S to the open interval (ak_1,ak) is a

02-function which can be extended to the closed interval [ak_1, ak] as a 02-function.

S need not be continuous at the points ak.

Theorem 2.1.3. ( Lasota-Yorke )

Let S : [0,1] —) [0,1] be a piecewise 02-mapping satisfying the stretching condi-

tion: there exists a constant A > 1 such that

I S'(:r) [Z A,x 7é a;(i = 0,1,...,r).

Then for any function f E L1(0,1),

1 "2::1 Pkf

'— s

n k=0

converges uniformly in L1(0, 1) to some f“ of bounded variation with Psf" = f‘.

Proof. See [4] .



Theorem 2.1.4. (Li-Yorke)

Under the condition of Theorem 2.1.3, if the mapping S has a single point of

discontinuity, then the invariant density f‘ of the Frobenius-Perron operator P3 as-

sociated with S is unique, and S is ergodic with respect to the measure [1" defined

by

MA) = f. f‘dm-

Proof. See [7].

A straightforward numerical way to calculate invariant measures can be obtained

from the classical Birkhoff Individual Ergodic Theorem which uses the Koopman

operator instead of the Frobenius-Perron operator. By Birkhoff’s theorem if p is an

ergodic invariant probability measure for S, then for any measurable set A C [0,1],

the limit

which measures the “average time” spent in A under iterations of S, exists and is p(A)

for p-almost all 2:. Hence, to obtain p(A) one might choose almost any a: in [0, 1] and

calculate the average time for iterates Sk (at) to be in A. However, computer round-off

error can completely dominate the calculation and make the implementation difficult.

A typical example is given in [5]. For the purpose of overcoming this difficulty,

Li proposed in [5] a rigorous numerical procedure which can be implemented on

a computer with negligible round-off error. Piecewise constant approximations are

used to reduce the original infinite-dimensional fixed point problem to a fixed point

problem of a stochastic matrix, thus solving a conjecture of Ulam’s [10].

The numerical procedure proposed by Li is actually a Galerkin projection

method with piecewise constant function approximations. We shall give a brief intro-

duction to Galerkin’s projection method in the next section.

10



2.2 Galerkin’s Projection Method

Let X be a Banach space. Suppose M and N are both closed subspaces of X. If

X = M+N and MON = {0}, then we say X is a direct sum of M and N, or M

and N are complementary to each other. In this case we may define a linear operator

Q : X —) X by

szu if x=u+v, uEM, vEN.

This operator is continuous and satisfies Q2 = Q [1]. We call Q the projection of X

onto M along N.

Now let X and Y be two Banach spaces, T : X ——> Y be a bounded linear operator,

and y E Y. We want to solve the operator equation

Ta: = y.

The general principle of projection methods is as follows. Choose two sequences

of finite-dimensional subspaces Xn and Y, of X and Y, respectively. Let {Qn} be a

sequence of projections of Y onto Y". We want to find 2:99 in X7, such that Qn(T:c(”) —

y) = 0, or

QnTrc(") = Qny-

If we choose a basis of Xn and a basis of Y", then the above approximate operator

equation of finite rank can be written as a system of linear algebraic equations. Thus

we can use the usual numerical algorithms to solve the algebraic system and obtain

approximate solutions to the original problem. This procedure is referred to as the

projection method. In particular, if X = Y and if we choose Xn = Y, and the same

basis in Yn as in X“, then the corresponding projection method is called Galerkin’s

method.
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Chapter 3

Piecewise Linear Projection

Approximations

Assume S : [0, 1] -—> [0, 1] is piecewise 02 satisfying inf IS’(:r)I > 1. In this chapter

we look for approximate solutions of the Frobenius-Perron operator equation P5f = f

in the space of piecewise linear functions. In Section 3.1 we define a sequence of pro-

jection operators from L1(0, 1) to subspaces consisting of piecewise linear functions.

Section 3.2 establishes the uniform boundedness of the variation of the projected

functions. The convergence theorem is proved in Section 3.3.

3.1 Projection Operators

Divide I = [0,1] into n subintervals II, 12,...,I,,. For i = 1,...,n, let I,- =

(xg_1,:c,-) and l,- = x1i/m(I,-). Denote by A" the 2n-dimensional subspace of L1(0, 1)

spanned by the basis {1,-, 9:13;]; i. e., An C L1(0, 1) is the set of all functions which

are linear on each subinterval 1;.

To define the projection Q" : L1(0, 1) —> An we require that, for 2' = 1,. . . ,n,

<f—an31i>=0

and

<f—an,$l.' >20.

12



Here for g E L1(0,l) and h E L°°(0,1) = [L1(O,1)]"', < g,h >= fol g(a:)h(:r)d;r. The

following lemma shows that these requirements uniquely define (2,, and make Qn a

projection from L1(0,1) to An along J"A" E {g E L1(0,l) : < g,h > = 0 for all

h E An}. Because of the similarity in the “orthogonality condition” with the L2-

space case, we may call Q" : L1(0, 1) —* An the orthogonal projection, even though

its norm may not be 1.

Lemma 3.1.1. Let 5:; = (25.1 + x,)/2, i: l,...,n. For any f E L1(0,l), w

 

 

 

have

an = 2(61' + d;.’1:)l

i=1

where for i = 1,...,n,

{a=t(an—mmnm¢2m)()h (m,

d=.W.M( xvma

Proof. Let an = 22;, (c,- + d,$)l,-. Then

1 '1'

< an,1:' > — Ci < 11,1; > +di < $11,1i> = mm) 61+m dz,

< an,$1.' > = C.‘ < 15,151; > + d; < $1,314; >

53; $3 + Inter—1 + xi]
= —— C; (1,.

From the condition of the orthogonal projection, we have

{finq+f‘7d'=—i—)II m... (3,,
in x2+z..1:._1+x2_ '

We Ci + 3mm ’ d" T111.) f1.- ”(’3)“

The equation (3.2) has a unique solution

{s=hme—:mdfl-avmm

th=fi%hw—Muflwa

Q.E.D.

The next Lemma establishes the uniform boundedness of the sequence Q".

Lemma 3.1.2. For all n, [I Q, I] _<_ 2.
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Proof. Given n and f E L1(0,1),

|| an || /‘I(Q.f)(x))dx= / Z 1(c.+d.-.-xx)1()Idx
i=1

= i/.——m(1—)|c,-+dx|dx

i=1

By (3.1), in the subinterval Ig, Qnf only depends on the values of f on 1,. Hence it

is enough to estimate a typical W11.) f1'. |c,- + d,-:L'| dz. Without loss of generality, we

may assume d,- 7’: 0. For simplicity, let I = I,- = [a, b], 5: = in, c = e., d = d,- and f

be defined on I. Let <p(a:) = (c + dx)/m(I).

First, assume f 2 0. If (p Z 0, then from the first equality of (2),

l1 |<p(a:)| dx :2 [I <p(a:)da: = 771%ij (c+ dx)d:r

l (c+ dre)2 b _ 1

m(1) 2d — 2dm(I)

l

= 2dm-———)I[2cdm(1)+d2m((1) 2i]=c+d:2

= /. f(a=)dx = /, |f(:v)| dz

[(6 + db)2 — (c + da)2] 

 

If (p Z 0, then from the fact that (p is the best approximation to f among all linear

functions on [a, b] under Lz-norm if f E L2(0, 1), we see that 90 cannot be non-positive.

Therefore 4p must have a zero 2 = —§- in (a,b). We assume 99(b) > 0 and (0(a) < 0.

The other case can be treated similarly. Thus we have

 

 

/, mm = 312—.) Ma) + (b—z) 10122))

= g [(b + 3M)» + (a + §)w(a)),

and,

_ "2(1)? f1f($)d$ fl

5+6d: 12f,(:1: — a:)f(:c)d:r + 2 ’

“+3 m(1)’f1fx()1 _fl
d 12f1(:r - 5:)f(:r)d:1: 2 ’

50(b)= 1—(c+db)=— {/11(——x)da=+6 ( —i‘)f(x)d:v]
m(I) m(()1 m(61) ,

1 l -

<p(a)=-m—-(,)(c+da) =m——(—),1/ f()1 ;%)/( —:v)f(:r)d:r]-

l4



Hence,

 

_ 1 "1(1)” f($)d$ "1(1)

/1 Mm“ “‘3 ‘ 2{(12f,(:c -15)f(x)da: + 2 )

1 6 ..

.RTIN/I f($)d-’B + WIT/z” — 1‘)f($)d1‘)

’"(Il2 f1 f($)d$ _ "1(0)

12 f,(:c — (i)f(:r)d:c 2

l 6

'm—(15(/If($)dl‘ —m [(93 — 1')f( )d

_ "2(1)[f1f(2=)akvl2 L 3-5 x :c
“ 1211(z-i)f(x)dIJ:+ m(1)/’( )f( )d

+(
 

m(1)[f “@4501:

S 12f,(:c—I—a:)f()d +2./1f(x$)d

Since 2 == —3 6 (a,b), we have

a ,_ murtfeWx
< 12 f,(:r — 51)f(x)dm < 1"

 

 

It follows that

m(I)J1,f1x)dx < 5, ma)
— a = —.

12 f,(:c — zit)f(a:)da: 2

 

Therefore

(1 I99(:1:)[ d2: < % [I f(x)da:+-:— fl f(:c)da: = 2 f1 f(:z:)d2:

For general f 6 EU), write f = f+ —f" where f+ = max{f,0} and f‘ =

max{—f, 0}, and we have

/,1¢(x)1dx = /,1m1a=/,1Qf+—Qr1dx

[Ile+ldx+ /. IQf‘Idr

g 2/If+dx+2/If’dx=2/l|f|dx

|
/
\

where Q : L1(I) ——> Span{1,:r} is the orthogonal projection mentioned above.

From the above estimate, we obtain

11 CM 11 -—- flaws))1dx=>_:/;n—(1,—0.1c.-+dx1d:c

s 22/.”(1:)1dw=2/ lf()1dx=211111
i=1
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i. e., for all n, 11 Q. IIS 2. Q.E.D.

Lemma 3.1.3. When meshAn '-_= max{m(I,-) : 1 S i S n} -—> 0, an —) f in L1

norm for all f E L1(0,1).

Proof. Given f E L1(0, l) and E > 0, there exists a continuous function g such

that M f — g ]]< 6. Now

11 any-911 = 22/ 1112.9)1y)— g1y)1dy

 

 

 

= :[km(1L)(ci+d1:)-g(y) dy

= 2],, —1—_m) [191x d—n:(2+33 [1 -—a)g1x)dx

+ (Ki—1235A” — i1)9($)dw)y — 9(y)[ dy

   

 

    

g 3,717)-fg1x)dx-g1y)[ dy

m(—,—,311[ 1x- x.)g1x)dx)1y —x.-) dy

3 Z/,—————( h1:1x)—g1y)1dx)dy

+2711»).- a)g1x)1dx- f1. 11—92111).

Since g is uniformly continuous on [0,1], when mesh An is sufficiently small, for any

3:, y E 1;, i = 1, . . . ,n, we have |g(:r) — g(y)| < 8. Applying Hblder’s inequality, we

get

11 Qua—all s 2E[gm—1”—.m(z.)§dy

.. —1'm(.-)3 if(” ”mil/2

[+/::($)2d$[1/: /I [31-513de

x- 1/2

(:1? - 51;)3 l

S §2( i=1m(112')3{l 3 ix,_1}

[[g1x)'~'dw]1/2- [mug/2r + 1m1I;)/2)J[
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= %+%§:m(1-)1/2{/Iig(x)2d:r]1/2.

i=1

. l/2 .

For n suffiaently large, ([1, g(:c)2da:) < 7‘5, 2 = 1,. . . ,n. Consequently,

32mm)” 5
5

Hag—9135+ +
i=1

=5.

[
\
D
l
m

From Lemma 3.1.2, M Q" ”S 2 for all n. Hence, for n sufficiently large,

“0.1—1” 3 llan—Qngll+llQng—g|l+llg—fll

s 2IIf—g||+€+ Ilf—glls4e-

This proves limnnoo an = f. QWED

3.2 An Inequality for Variation

The following result is essential for our convergence analysis.

Lemma 3.2.1. For any f E L1(0, 1) of bounded variation and for all n

Van_<_13Vf-

Proof. By definition an= 2,-=1(c,- + d;a:)1,-, where {c,-,d,-} are given by (3.1).

Since Qnf18 piecewise linear, its variation is given by

1 1

\o/an = ,2; "115(1) |(C.' + (11351) - (Ci + 61131—1”

C.+ d___-’B.' Ci+1 + di+1$i
+ _

:61m(—I—-) m(I.-+1)

_ _ 61 _ cm ‘1‘ _ d‘“ :c'
— Zld'l+zm(11') m(1i+1)+(m(1‘) nl(11+1)) 1|

1:1 i=1

: ildi|+ri—m(1))/1Wf m(Il.-+1) /11+1 f(1)d:1:i=1 {:1

 

 

  

  

 

 
 

125:;
1223; ~ ‘

W [1+1(x_ xi+l)f(3M1: _ m(11)3 /11($ — $1)f($)d1

121‘; 12.1);

 

+——m11)3 ,‘1x—w)1x1dx—m[Ho—mvowm
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f(fldm            

m(11_——i_—+1)
1+,

=112(
$,+1=

1_ 1:1)
...

m(1;+
1)31_

+1(x _
x1+l)f

($)dx

+12—(—"”(——‘,’“/111)df(x)

 

 

1

—m(11°+1) [6+1

6 ~ 6 -

m=1:1(:B- $1+1)f($)d$ + REF/11'“: - $1)f($)d$ -

From the definition of d,- we have

f(fldrv            

+

 

1

 

 
    

 

       
       

\o/Qf <§Id:m—i—I) [1112: 11...) f1... 111111

+":56:1d1+1 +%1‘(|—d

1=1rn(1_11+_1) /1~11 f(1)dx

+£2:ldil°

It is easy to see that the middle summation of the above inequality is not greater

than V}, f (for a proof, see [5]). Hence,

1 n 1

Van S 22W +Vf.

0 i=1 0

Now we estimate 2?:1.-|d I. Let F-(:13)=f,f_1 f(t )dt. Then the integration by parts

formula for the Stieljes-Lebesgue integral [8] gives

11.. = 111—2131)?£f“5‘)f($)d3=fibx'wp‘m

12
= Wiw($—:HW()—|:_1—/F.-(2:))d(:1:—:13-)]

 

 
___ 1113027,“,1') 11(1) 12/1'_ mun]

: mfI.)./If(t)dt—[Uf()M)

= 6l'nTII.)/zf(101—; f/m f(t)dtdx]
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where Q,- = {(a:,t) : :1:,-_1 S a: S 22,-, 21,--1 S t S :r} is a triangular region in the

(x,t)-plane and A,- = %m(I,-)2 is the area of 51,-. Using the same technique that was

used in [5], we obtain

2 |d,-| = 6 1

i=1

2 m/Lfaldt - 311/11 f(t)dtdx ssvf.
  

Therefore,

1 1

Van _<_ 13 V f-

o o

Q.E.D.

3.3 Convergence

Let Pa = Q,, o PSlAn' Then Pu : An —1 An is linear. We want to find the fixed

points of P,, in An. For this purpose we first investigate the representation of Pn

using the basis {1;,:1:1,-},'-‘=1.

Lemma 3.3.1. For i = 1,. . . ,n,

 
 

Pal; :2 iCj(1g)1j+i:dj(lg)$1j

Pn($1,') = i6j($lg)lj+i:dj($lg)$1j,

where

, _ _ m(5'1(11)011)_ 125131 —5:- . 1.“,c.11.) — mu.) 111111121.“ .11P1.>1)2,

12 ~

dj(1z') = YEW/11in: —$j)(Pli)(-T)d$1

c.1111) = /,1P1zl.-))1x)dx—n:(2:’,, 1.11-1.1110111111111111,

d,-(:1:1,-) = m(112j)2/1(x_jj)(P($1i))(x)dx'

j

 

 

Proof. By definition Pnl, = QnoPlg, Pn(x1,-) = QnoP(:rl,-). From the definition

of P, f,j(P1,~)($)d:1: =W. Using Lemma 3.1.1, we achieve the assertion.

Q.E.D.
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Lemma 3.3.2. P” has a nontrivial fixed point f,, in An.

PPOOfo Let 01 = (41) = (6101)) 02 = (C21) = (Cj($11))1 D, = ((#1) =

((1,-(15)), D2 = (11,-): (d (:1:1,- )), where cj(1,-,) d(1,- ), c,(:1:1,-) and (1,-(3:1,) are as

in Lemma 3.3.1. Then the function f,,(:1:) = L, 0,-1.- + 2;, d,:1:1,- is a fixed point

of P” if and only if the column vector (c1, . . . ,c,,,d1, . . . ,d,,)T is a fixed point of the

matrix

Pa = 0; C2

D] D;

  

We first prove that the row vector I = (1,...,1,:'1':1,...,:i,,) satisfies 1 = 1P”. In fact,

from the first equality of (3.2),

£31,0-)+:1:,-d,(1,)) = :[J(P1,(xdx_Z/l(1),dx

" m5(‘(IWIO

= 2 "1(11') :1’

j=l

i(cj((:1:1,-)+:1:J-d-,-(:1:1)) = 12:; IL(,-(Pa:1)) (:1::1:)d

= LES/4(1).) 1:1,(:1:)d:1: z/Ll:1:1,-(x)d:r

 

1'
1

711711 mu.) 2
 

Hence the matrix 13,, has an eigenvalue 1 and it follows that Pnp = 11 has a nontrivial

solution. Q.E.D.

In [4], Lasota and Yorke prove that, if S : [0, 1] —1 [0, 1] is a piecewise C2-function

satisfying M = inf [5’] > 2, then for any f E L1(0, 1) of bounded variation,

1 1

VPsf S 0H fll +flVf (3-3)
0 o

with a > 0 and fl = 737 < 1. With this result, we can prove the following:

Lemma 3.3.3. Suppose S : [0, 1] —+ [0, 1] is piecewise C'2 with M = inf |S’| > 26.

And for each 11 let fn be a fixed point of P,, such that I] fn H = 1. Then {V}, f,,} is

bounded.
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Proof. Since f,, is piecewise linear, it has bounded variation. From (3.3), Pfn

is a function of bounded variation. From the same inequality and the fact that

fn = Pnfn = Qn o Pf", using Lemma 3.2.1, we obtain

1

Vi.
0

1 1 1

VQnon. :13VPf. _<_ 13(a II f1 ll +flan)

0 0 0

1

W-
O

26

E
l

1

= 1311+ 13fl\/f,, = 1311+

0

By assumption M > 26. Therefore for all n

1 130
<—————- .

\o/f" ’1—26/M <+°°

Q.E.D.

Now we can prove our convergence theorem for the first order piecewise polynomial

Galerkin approximation scheme of the Frobenius-Perron operator equations.

Theorem 3.3.1. Suppose .S' : [0,1] —+ [0, 1] is piecewise 02 satisfying M =

ianS’I > 26. Then for any n, P“ has a fixed point fn with H fn II = 1 in An and

when mesh An —+ 0, there exists a subsequence {fm} C {fn} such that f,“ converges

to a fixed point of P3 in L1 norm.

Proof. By Lemma 3.3.3 and Helly’s theorem [8], there is a subsequence {fm} C

{fn} which converges in L1 norm to some f E L1(0,1). Now

llPSf—fll S llf’fnill + llfn1_Qn1°Pan1ll

+ llQn1°Psfn.~-Qn.-°Psfll + H Qmopsf-Psf ll-

Since U] Q", 0 P3 H} is uniformly bounded and Q", ong,,, = fm, lemma 3.1.3 implies

that the right hand side of the above inequality approaches zero as 2' —> 00. Thus

Psf = f. Q.E.D.

Corollary 3.3.1. Let S : [0,1] —> [0, 1] be piecewise 02 satisfying inflS’l > 1.

Then a sequence gn from the piecewise linear functions can be constructed which

converges to a fixed point of P3.
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Proof. Choose 11: > 0 such that for M = inflS’I, M" > 26. Let 1,9 = 5'". Then

Pn(1p) has a fixed point ff,“ of unit length in A“. Define

1 k—l .

91' = ; ZWSYLST),

i=0

where f”, is a convergent subsequence of {fn} obtained by applying above theorem.

Then g,- converges, by Theorem 3.3.1, to

1 11.1

g = F 2(P3)jf(¢)1

1:1

where f”) is a fixed point of P(, = PS1. This g is a fixed point of P5. In fact, since

(P5)"f(“’) = PSLfW) = owfio) = f(1p),

1
P59 = giPsfM + ' ° - + (Ps)"f(“’)} = 9-

Q.E.D.
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Chapter 4

Piecewise Quadratic Projection

Approximations

In this chapter we will generalize the piecewise linear approximations of the pre-

vious section to piecewise quadratic ones, that is, we look for approximate solutions of

the Frobenius—Perron operator equation in the space of piecewise quadratic functions.

As in the previous chapter, we divide the discussion into three sections.

4.1 Projection Operators

Let 2:0 = 0 < :131 < - -- < £13,,_1 < 3,, = 1 be a finite partition of the interval [0, 1] as

before. For i = 1, . . . ,n, I,- = (:1:,-1,:1:,-),:1':; = 1112-3. Let An = span{1,-,:1:1,,:1:"’1,-}?___1

where 1,- = RTIL-TXL’ and denote max,- m(I,-) by mesh (An). Then An C L1(0, 1) is a

subspace of dimension 3n.

Define the projection Qn : L1(0, 1) —> An by the orthogonal conditions for i =

1, . . . , n

(f—an1li) =01 (f_an1$11') =01 (f_an,$211') =0

for 2' = 1, . . . ,n. Let an = 23:1(9' + (1,-:1: + ejx2)1j. We show that {cj,dj,eJ-};-‘=1 are

uniquely determined by the above conditions.
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Forz=1,...,n,

 

  

  

1 5: $2 + $13314 + 39—1

Q1f11. = — d1+ ‘ ‘ 611f ) m(11q)m(h) 3m(11)

21 IE? +E1x1—1+$2_1 “(It +1312—1)

1, 1.- = —- ' d 1,(Q f a: ) 11111.)“ 3m11.) + 2111(1) ‘3
2 2 ~ 2 2

2 CC,- + 31931—1 + 171—1 $i($i + :1:,-_1)
n 1 1' = 1 di(Q f x 1) 3m(I,-) C 2m(11')

+5m1(11'?)($ +$$11+$1$11+$$11+$1l)e"

By the orthogonal condition we have

c,'+:'1'3,-d,1+—3,-(:1:2+:1:,-:1:,-_1+:1:,-_1)e,- =fo(a:)d:1:

5101' + %(1‘? + 1031-1 + $3.1)d1 +1110” + $1-1)61'=.f1 $f($)dx

flat? + 3313614 + x?_1)c1- + 12101:? + x?_1)d1+

%(x‘1‘+m.-x.-1x?+x.1+xx.1+x.1)e.=.xf111m)

Eliminating c,- from the above system yields

%m(1)2d,-+ %,-m(1)2:1:,e,-= f1..(:c — i;)f(:1:)d:1:

%m(Ig)2§:1d,- + 315m(I,-)2[4:1:? + 7:1:,-:1:,-_1 + 42:,?_1]e,- =

f1.- $2f(x)d$ - %($? + 90131-1 + 1312.1) f1.- f($)d$-

The solutions are given by

I c.- = 311.. 11111:» —,,::,f—;—. f1 111)dx —3,:',::,-1 f1. f(rv)drv+

;%2,—1[2i? + $1$1_1]f1,(-’B — 3731')f(17)dl‘

i d1 = m(1——)2 f1,- $f($)d$ + 1(1)2 f1.- f($)d$—

.1111.M 1.2-) 11211111

, 61' = fir f1.[(1' — 502 - 315m(11)2]f(x)dx

 

 
Lemma 4.1.1. I] Qn I] _<_ 62 for all n.

(4.1)

(4.2)

Proof. The values of Q“f on the subinterval I,- depends only on the values of

f on I,-. So we only need to estimate the integral fL|(Q,,f)(:1:)]d:1:. Let I = I,- =
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[a, b], 51': = 1% and let 90(3) 2 W175“ + d1: + 6122) be the orthogonal projection of f

onto Span{11,311, 2:211}. First of all assume f 2 0. We consider different cases.

(i) 90 Z 0. Then from the first equality of (4.1),

/I|99(x)|d:c = [f(ddx = —:—I)-/(c+ da: + 6:132)d$

= —1—)mI[ca:1}-dac(2 + §x3]b=c+dx+%(a2+ab+b2)e

= [1)f(x)d2: = [I ”(1)1111.

(ii) 1,0 2 0. Then 1p has two distinct zeros on the real axis. Without loss of generality,

assume (3 > 0. We will deal with the different distribution of the zeros. Let (1

and (2 be the zeros of 1,0 with (1 < (2.

First, assume (1 E (a, b) and (2 6 (a,b). Then (1 + C2 = —g, (1 ~(2 = 5.11; follows

that

£|¢P($)ld33 = 31%?) {/0416 + dx + 6x2)dx — [f(c + dx + 6x2)d;r

b

+/(c+dm+ex2)dar]

(2

_ 1 d 2 6 30 d 2 e 3 C2

— m(1){[cx+2:c +3$L -[cx+2:r +32: (1

b

+ C$+£1-222+E$3

2 3 (2

1 d 2 2 e 3 3
= m[c(b—a)+-2-(b —a)+§(b -—a)]

2 d 2 2 e ~3 3

+m [C(Cl -' C2) + 5&1 ‘ C2) + 3(91—Czl]

.—. [c+di‘+§-(a2+ab+b2)]

"—2“?"1(1)(1) [0+g((:1 + C2) + §(Cl + (2)2 — C143]

_ (C2 (I) d d 6’ d 2 c

- I111—11111-1113171 ~21
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_ C2—C1 d2—4cc

‘ Anna“ m(I) 3e

Since (1—— ’d{22—6——'4“ and C2 — -"——d+V2‘:“48° ,Cz — (1——. flit—TE S m(I). Hence

(d2 — 466); S 63m(1)3. So,

(2 — (1 d2 — 46c _ 1 (at2 —4ec)3/=2 < 1 e3m(1)3 _ 1

m(I) 3e _m(1) 362 —m(1) 3e, —§em(1)2.   

From the last equality of (4.3), it is easy to see that

éemU)2 = mfg—PrV/(H f()dx—5/f(x)d

5 m(I)2/4m(1)): “(x”34/“;

= 10/If(x)dx.

Therefore,

/1 |cp(:c)|d:z: s [I f(x)d:c+ 10 j] f(x)d:z: = 11 f1 f(x)dx = 11 f1 |f(:r)|d:z:.

Second, assume there is only one zero of (,0 in (a, b). Say (1 E (a, b) without loss

of generality. Now,

/I|89($)ld93 = 1()([/0C16+d$+6$2)dCI:+/C1 (c+dx+ea:2:z:)d]

= —:T:{[0((1—a)+§(C12—a2)+§((13—a3)]

c(1—b)+§(cf—b2)+ §(<?—b3)]}

3
:
l

3

 

  
= m3)[c2+d—+(C1a)+§(<f+Cla+02)]

:18) [Md-2—(<1 +b)+ §(cf+<1b+b2)]

  

 

 = ,) [c+§(cl+a)+§(cf+<1a+a2)]

 

d e 2 2

m(I) [64'5“] +b)+§(C1 +Clb+b )]
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2(1) - C1)

m(I)

 [c+ gm + b) + §(Cf +C1b + 112)]

= [c+5:d+;(a2+1112+b2)]

_2(b([(1)
 

)[:C+2-+(Cl+b)+§(C:+Clb+b2)]

= /f(m)d +2———”::(‘)c)[ + 9,312+ gm gem+—ebc +;eb2]

 

 

= ffmdz 8”) [3(ecc? +dC1 +c)+;(eb-d)C1

+§C+ gig—C1 +(:)b-)Cb2]

: /If(a:)d:c ———I—)b)[3eeb2+2db+6-dC1+ gebQ‘l-l-Zc]

= /f(:1:)da: +(C::13)[2eb2 +3db+d§1 +26bC1 +4c]

 = / f(w))dx + (if:)[2(e<1 +d<1 +c)+2e(b2 —<f)

+2d(b— C1)+d(b+C1)+2ebC1 +20]

= f f(m e<b2—<3)+d(b—c1)+21db+eb<1 +c)1

= /f(a:))da:+

 

 

  
C1—b

3m(1)

(1—

3m(1)

= /f(x)dx _(bm8; [2e(b+C1)+d+2(€C1+d)l

= /f)d _(bm(“,1)e[4(<1—b)+3(2eb+d>l

bel2(1)-€12) + (1(1) — (1) + 2(1) -C1)(6C1+ d)]
 

 

 

From (4.3) we have

2eb+d = -r:——f(53:2/(x 59mm 3:)"——),/fd(m)d

——(—2—m1),/m’(x [15:2fdm-:L—(z3:(/(x-é)2f(rv)dw

z 31%/1(x_fl):(thIni(_L1:2/Wnzl(811))2/()df(

+7nii?/W 1332/f
180 1 2 _ 9 .

= W[Io —:c) f(x)dx —Wflu—mocha — E175]: mo.
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Hence,

4 e_(———b(1)3 (5"Cll2

[Immune = /f()dm+— —(—m1) ————m(,)

[—15—7073 f(x-We —-—1(——§) /,(b- x)f(w)dx

11—15137]??de

_<_ / f(x)da: + -.m(1)2+/(b <1)f sodas +9 /, f(x)d:v

s [1+4.10+12+9]/If(a:)d:=62/If(()da:

= 62 /1 | f(x)|da:.

Therefore for f _>_ 0, H go H _<_ 62 [I f H. For general f E L1(0, 1) applying the above

to f+ and f“ we conclude || (,0 H S 62 [I f H. Q...ED

Lemma 4.1.2. For any f E L1(0,1), if mesh (An) —> 0, then an —> f in L1

norm.

Proof. First assume f E L2(0, 1) C L1(0,1). From the definition of an we see

that M f — an “2: min{|| f —- g ”2: g E An} where H - ”2 is the L2-norm. From

the theory of the finite element method we have I] f — an ||2—» 0. By the Cauchy

inequality || an - f H S H an - f ||2- Thus || an - f H —’ 0-

Now for f E L1(0,1) and e > 0, there exists g E L2(0, 1) such that [I f -— g H < 5.

From

“an—f“ S llan—Qngll+llQng—gll+llg—fll

S 52l|f~9|l+llQng-gll+||9-f||

and since || Qng—g||—>0, weobtain || an—f||—+0. Q.E.D.

4.2 An Inequality for Variation

We establish the uniform boundedness of the variation of the projected functions

as follows.
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Lemma 4.2.1. If f E L1(0,1) is of bounded variation, then for all n,

1 1

Vans 121Vf.

0 0

Proof. Since Qnf is piecewise quadratic, we have

  

  

   

 

 

 

 

0
3:1

:
d d

g Ii) A; I + 2C :13] (B

+ ":1 Ci + di$i + 6m}? _ Ci+1 + di+1$i+ (Bi-HIE?

: £17131) / Id +26 xlda:

_ Ci+1 di di+1 )

+ —
$3.

+2: (iii-IT) m(1i+
1)) (m(Ii) m(Im)

mf—H) )xzrn(i+l)

: _
Idi + 26.-:1: dz:

:2: (11.) )f, '

1m(1i+1)31
i+1 1+1 "H ' ' 2 3+1

+15%]f(x)d

3

1)

+ _—/I.
/I-3602?IL"

— 60 211::- + (I); :13; — 180$

m(1i+1)51.-+1 [ +1 ( +1 +1 ) :3]

(37 — 53i+1)2f(ar)dx

m1;

 

 

 

3 1
+5 m—_(I.))/Wf m(LH) /I.-+1f(x)d$)

= gfimid
+26ml + Z Trl'(——16-m_..+l)2zinc-10!:-

”hack?

6
3___0__ ~ 2 .

—H%5£.+1(:—$i+1)f
(3)61“gm] f(
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3 1

—§m(I.-+1) 1.41 f($)d$ .

(4.4)

 

Let Q.- = {(a:,t) : .1: E 1;, :c;..1 S t S :12}, V,- = {(x,t,s) : :L' E 1., 12,-_1 _<_ t S

x, 23-1 5 s _<_ t}. Again the integration by parts formula for functions of bounded

variation yields

Hill-2.175 n+1<x—x.~)i(m)dz = 1 f(x)dx 

m(IH-l) Ii-H

1

— 21462.41) '/ 9+1 f(t)dtdt,

film/[infigflzwx = _2—_A(19-)——// f(t)dtdx,

1 ~ 1
W Ii+l(:c—$i+1)2f(x)da: = m I”! “(5)5137

——2A(S12.-+1) / a... f(t)dtd:c

+ —3V(l/i+1)///V._1 f(s)d.sdtd:c,

mugs [1‘0” — i.)2f(x)da: = 172105], f(x)d:c — {Aim/fa. f(t)dtd:c

+3—1'7i'V'5/ffv f(s)dsdtd:c,

where A(fl;) = %m(I.-)2 is the area of Q.- and V(V.-) =

 

%m(I,-)3 is the volume of V;.

Substituting into (4.4) we have

1 n

Van = Z—11)] Id.- + 26:rldx

0 i=1m(1‘)

"-1 6 3 ._

+ ; mam) 1m f(x)d:r - A(Qi+1) / 9m f(t)dtdx

i—j/n. f(t)dtdx+—lL/f()$d$

‘41—qu—5_)//.- f(t)dtda:+———10m///f(s)dsdtdx

75355 1../(”“9” 2:77)] mmuf”‘1‘“

_V(i/(:+1)__/)/ V+1f(8)S)dsdtda
:+ ———(—mIi)/I‘f()d

xx

3

_ 2m(I£+1) Ii+1

 

f($)d$
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= Z (1)/Id +26xlda:

i=1

3
+ _—

Emm((91') [if 2m( 114-118) [1+1

t)dtd t)dtd

+——Tfol+1) / “.41 f(t x- A(Q0')8)] Q; f(t) x

+—///f(s)dsdtdx— V—_(12+1)///..1f(3)d3dtdx

d +2eg$d$

_1m(1I))./11-I I

+3}: m[1. f(x)d:v — 7n(Tl.-+_) [1m f(x)d:v

+62 ...—(11.: f1. f(zv)d:v- mi?) / nif(t)dtdx

+122 ATS—21:7”... f(t)dtd2= — A—(lm / Antwan

+10; V7117.) ff/v. f(s)dsdtdx

——1;—)///m f(s))dsdtda:

fl

Sin—.21.) flld +26:rldx

i—l

(2:)da: — f(x)dx

 

 

|
/
\

 

  

 

 

 

|
/
\

+3Vf+6Vf+12\/f+10\1/f

0 O 0 0

n

i=1

Now we estimate the first term of (4.5). For i —,.1_n, 71—1.)m f, ld + 26:rlda:

is the variation of Qnf on I'. For simplicity we omit thesubscript. Let 99(1:)—_

;3(—I-)(c+da: + 65122), I: [a, b]. Without loss of generality assume 6 > 0. Then C_— ——

is the minimal point of go and cp (— 59%) = #7) (c — {—2)IS the minimum value of «,9. If

a < C < b, then

1

\I/cp = WWW) + <p(b) - 2M0)

1

"1(1)

 (c+da+ea2 +c+db+eb2—2c+:2)

e
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= —-(—m1)d(a+b)+e(02+b2)+g;

= [—26((a + b) + e(a2 + b2) + 212(2] /m(I)

= el2C2 — 2C(a + b) + a2 + b2]/m(I)

= €1[(a — b)” + 2ab— 2((a + b) + 2C2]/m(1)

= —(———m1)[em(I)2 + 26(0 — C)(b - O] S em(I)

71.151) miiv I1” ’ “7(3)“ ' f: f(“dxl

30l-Th—%-I—5/If(a:)dx—ZgTfi-j/nflfldtdx+V—(Z-fl/jfiflsflsdtdz

_<_ 90Vf.

I

IfC ¢ (a, b), then

\I/so

 

|
/
\

 

1 1 2 2
WW) -<p(b)| = mldw— a) +e(b - a N

|d + 2.2.7:): l/(x:7:))f(:1:)da:

(ilk—if) /If(:1:)d:c-m[[9 f(t)dtd:c

g 6\/f<90Vf.

I I

 

|
/
\

 

Substituting into (4.5) we have

Van<902Vf+31Vf=121Vfi

i=1 I.-

Q.E.D.

4.3 Convergence

To prove the convergence of the method, we need the following lemma.

Lemma 4.3.1. Let Pn = Qn o PSI/3..., where P5 is the Frobenius-Perron operator

associated with S : [0,1] -1 [0,1]. Then Pn has a nontrivial fixed point in An.

Proof: Denote by 13" the matrix representation of Pn : An —> An using the basis

{1g,$1g,$21}_10fAn,i. e.,P{11,:1:11,:c211, - ,ln,;r1n,:r21n} = {11,x11,.1:211,~--,1n,
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xln,:c21n}13n. Let C = (1,i1,g}1,1,5:2,3]2,---,1,:T:,g,37,g) where 37.- = %($? + xgxg_1+

2:34). Then for i = 1,... ,n,

n

“Pam—n+1 = Z(c,-(1.~)+:I:,-d,-(1.-)+gJ-e,(1,-))

j=l

= 22/110031“:c)d:r:_/1(P51g)(:c)dx

= lo 1g(:v)d:c=1,

(CPn)3(i-1)+2 = 2(CJ(31) + deJ(~'81i)+ yJeJ(xli ))

j=1

= 123/! (P5(:1:1) :13)d$— /01(Ps(:c1.-))(x)dx

= [)1 xlg(a:)d:c = 53;,

(CPnl3i = 2(CJ(3211‘)+33de$2(1€)+ .7>/J"3J(5'32 11'»

j=l

= Z f(p.(.21.))(.)d. = [01(Ps(93211))(17)d$

That is, C is a left eigenvector of the matrix I)“ corresponding to the eigenvalue 1.

Therefore there is a nonzero c E .5123" such that 13,,c = c. Thus R, has a nonzero fixed

point in An. Q.E.D.

Theorem 4.3.1. Let S' : [0, 1] —+ [0, 1] be piecewise C2 with M 2 inf lS’I > 242.

For each 71 let fn be a fixed point of Pn in An with H fn ll = 1. Then there exists a

subsequence {fm} C {fa} convergent in L1 norm to a fixed point of P5.

Proof. By inequality (3.3) in the previous section, we have for any n

W
o

l l l

VPnfn =VQnOPan S 121VPan

0 0 0

1 1

g 121 (a ll f. H +%Vf.) = 121a+B\/f..

with 5 = 313-} < 1. Hence

\l/fnS 11210 < +00

0 -fl '
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From the Helly theorem there is a subsequence {fm} C {fn} which converges in L1

norm to some f E L1(0, 1). From

ll Psf-fll S Ilf—fni II + ”fn.‘ -Qn.-°Psfn.- II

+ llQniOPani_Qni°PSf“

+||Qn1°Psf—Psfl|

we immediately see that P5f = f. Q.E.D.

The proof of the following corollary is the same as that of Corollary 3.3.1.

Corollary 4.3.1. Suppose S : [0, 1] —) [0, 1] is piecewise 02 satisfying inf IS’I > 1.

Then a sequence gn from the piecewise quadratic functions can be constructed which

converges to a nontrivial fixed point of PS.
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Chapter 5

Markov Finite Approximations

In this chapter we take a different approach. Since the Frobenius—Perron operator

is also a Markov operator, it is natural to approximate it by Markov operators of

finite rank. The “orthogonal projections” of the Galerkin scheme used earlier are

not Markov operators in general except in the piecewise constant case in [5]. To

overcome this defect, we use continuous piecewise linear and piecewise quadratic

Markov approximation schemes to find an approximate fixed point of the Frobenius-

Perron operator. The convergence of these methods will be shown for a general class

of nonsingular measurable transformations.

In section 5.1 we discuss piecewise linear Markov approximations and section 5.2

is devoted to piecewise quadratic ones.

5.1 Piecewise Linear Markov Approximation

Assume S : [0, 1] —-) [0,1] is piecewise 02 satisfying inf | S" |> 1. In this section,

we look for approximate solutions of the Frobenius-Perron operator equation P3f = f

in the space of continuous piecewise linear functions.

For simplicity divide the interval [0, 1] into n equal parts. Let I,- = [33,-” 33,-], :22.- =

%,i = 0, . . . , n. Each subinterval I,- has length '3". Denote by An the space of contin-

uous, piecewise linear functions corresponding to the above partition. Then An is a

linear subspace of L1(0,1) with dimension n + 1. First of all, we choose a basis for
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An.Let

1+2: —15:1:SO

1M3): l—a: US$51

0 otherwise.

Then z/2(a:) is the so-called hat function. For i = O, . . . , 12, let

Nit) = W710? - $0)-

Then (p.- is a continuous piecewise linear function with <p;(:c,~) = 1 and cp;(xj) = 0 for

j ;£ 2'. It is easy to see that {900, . . . , son} is a basis of A". This basis has the following

properties:

1' ”995“=?1{f0ri=1r“vn -1, ”990“: ”$071“: 721;;

2. (p.- Z 0 for i = O,...,n and Z?=Oc,9,-(:c) E 1;

3. Suppose f E An. Then f = 22:0 qgcp; if and only if f((lig) 2: q,- for 2' = 0,. . . ,n.

Now we define Qn : L1(0, 1) —» An as follows

62.! = ("/1 mo. + gm], f + /, f)so.- + (n I. m... (5.1)

Then Qn is a bounded linear operator.

Lemma 5.1.1. For any n (2,, : L1(0,1) —-> An is a Markov operator and hence

llinl =1-

Proof. From (5.1) it is easy to see that f 2 0 implies an Z 0. To prove Q, is a

Markov operator, it remains to show that for f 2 0, IIan” = II fl] This can be done

by the following computation.

”on!“ = flail: [01an

= n[[If/Olsoo‘l'5::(jl‘f+/Ii+lf)/olioi+
Inf/0150"]

z %[/Ilf+:(/hf+/Imf)+/Infl

= Z/Iif=llfll.
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It follows that “Qn” = 1. Q.E.D.

Lemma 5.1.2. For all f E L1(0,1), limnnoo an = f.

Proof. We first assume f is a continuous function on [0, 1]. Notice that [LG 1,9,(x) E

1. Hence,

(n/ f)<po(a=)+-38/2“f+hum-(2:x)

+ ("j”)f)(sona= —Zf(~’v)
i=0

(n/f— f())(800)+2[——(ZR/Hfmn—f @1194)

+ (n/Inf—flx))cpn(:c).

an($) "' f(d!)

Since f is uniformly continuous on [0,1], for any 6 > 0, there exists 6 > 0 such that if

%< 5 and x,y E I;UI.-+1 for any i,|f(a:) — f(y)| < c. For i < 6, |nf,1 f — f(x)| < c

for a: E II, Inflnf— f(at)| < c for :1: E In and l%(fz.f +f1i+1f) —- f(x)| < c for

a: E I.-U I;+1,i=1,...,n — 1. Hence,

|an($) - f($)| S 6:80:19?) = evil: 6 [0,1]-
i=0

That is, for f E L1(0, 1) continuous, Qnf converges uniformly to f.

Now let f E L1 be arbitrary. Given 6 > 0, there is a continuous function g

satisfying ”f —g|| < 5;. Because ||Qn|| = 1, we have

llan—fll s llan—Qngll+||Qng-g||+l|9-fll

s 2||f - all + 1le — all < § +11% — all-

From what we proved above, there is an N > 0 such that for n 2 N, ||Qng — g“ < :3.

Therefore for n 2 N

11an — fll < g + ; = e.

Q.E.D.

We show now that Qnf will not increase the variation of a function f of bounded

variation.
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Lemma 5.1.3. If f 6 L1 is of bounded variation, then for any n,

Vansz.

Proof. Let an(:c) = 221:0 q,<p,~(:r). Then an(a:,-) = q;,z' = 0,... ,n. And

V an = 2": Mi - C11-1]

i=1

= |§((,,f+ 1,f))—n/1f|+2|§(/1.f+ 11+1f

_ /I._1f+/f|+|/f——,n,f+ f)!

= §{|n/sz-n/hfl+glnfh+lf—n/I._1fl

+ In] f-n 1,,_lf|}

s —{In/ f—n/ 11+Enn/ f—n/ 1|
i=2

+ '"/1.f_"/1._,f']+'”/1.f‘"/1._. 11}

11—1 1

= — < ,gln/Imf n/LJI ..\0/f

See [5] for the proof of the last inequality. QWED

Let P" = Qn oPslAn. Since both P5 : L1(0, 1) -) L1(0, 1) and Qn : L1(0, 1) —1 A"

are Markov operators, Pn : An —> An is a Markov operator of finite rank. Let

Pngo; = 2210 p;,-cp,~,i = 0,... ,n. Let 131: = (pij) be the corresponding (n+1) x (n+1)

matrix. Let fn = 213:0 0190;. Then Pnfn = fn if and only if CE, = c with the row

vector c = (c0, . . . , cn).

Lemma 5.1.4. For each n there exists a nontrivial nonnegative function fn E An

satisfying Pnfn = f...

Proof. Since

Paw; = QnOPs‘p.‘
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1 n-l

= n{(/ P5101)<po+§Z(/ Ps<101+f Ps<Pi)901'+(/ P59909911}:
I, j=0 11' I1+1 In

we have Pio = nil; PS‘PfiPij = 121(ij PS‘P‘ + [1,4,1 PSSOi)aj : 11° ' '1n .1: and pin z

nfln Pscp; for z' = O,...,n. The matrix 13,, is nonnegative. Let 5 = (50,. ..,§n) =

(11,...,1,%). Then
'2':

n n n"-1 n

1'"=— P1+— /Pi+/ P£+—/Pi219.76] 2],! S’Cp 2.7-=21( 11' 5‘10 11+] 599) 2 In 590

n 1 1

= P1: /P.= / .-.",2/1, scp no 599 nocp

Since ”‘Poll = ”9911” = i and Map,” = i for i = 1,. . . ,n — 1, we have 13,,5 = 6. Hence

there exists a nonnegative row vector c = (co, . . .,c,.) 75 0 such that an = c. Let

fn = 2L0 6190.. Then Pnfn = f... Q.E.D.

Lemma 5.1.5. Suppose S : [0, 1] —+ [0, 1] is piecewise C2 with M = inf |S’($)l >

2. Then for nonnegative fixed points fn E An of P", the sequence {V}, fn} is uniformly

bounded.

Proof. By Lemma 5.1.3 and inequality (3.3),

l l 1

an = VPnfn =VQnOPan S VPan

0 0 00

l I

S allfn“ +16an =a+flan°

Since ,8 = 734— < 1 by assumption, we have

C!

\:)/fn31_fl<00-
 

Q.E.D.

Now we can prove our main theorem.

Theorem 5.1.1. Suppose S : [0, 1] —1 [0, 1] is piecewise C2 and M = inf IS’(:I:)] >

2. If the corresponding Frobenius-Perron operator P5 has a unique invariant density

f, then the sequence {fn} of nonnegative piecewise linear fixed points of Pu in An

converges to f in L1(0,1).
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Proof. From Lemma 5.1.5, the sequence {fn} is bounded in variation. Helly’s

theorem [8] implies that {fn} is precompact. Let {fnk} C {fn} converge in L1 norm

to some 9 E L1(0,1). Then

”Psg —g” S ”g _ fnk” + “fflk — Q“): o Psfnk“

+ ”anOPank—anOP5g“+”anOPSg—Psg”.

Since Qn,‘ o Psfn,‘ = fnk and since “an 0 PS" 3 1, Psg = g. Obviously ”g“ = 1 and

g 2 0. By the uniqueness of the fixed density of P5 we assert that g = f and that

all the convergent subsequences of {fn} converge to f. This proves limn...)o fn = f.

Q.E.D.

By the following familiar trick we can ignore the condition M = inf IS"(:r)| > 2.

Corollary 5.1.1. If S : [0, 1] —+ [0, 1] is piecewise 02 satisfying inf IS'] > 1 and

P3 has only one invariant density, a sequence 9,, from the piecewise linear functions

can be constructed which converges to the fixed density of P3.

Proof. Choose 1:: such that Mk = (inf|5’(:r)|)" > 2. Let (15 = 5". Let fn(¢) be

the fixed density of Pn(¢) as in the above theorem. Define

1 k-l .

9n 2 7c" 2(P5)an(¢)°

i=0

Then 9.1 converges, by Theorem 2.1, to

1 k-l

g = r §(Ps)jf(¢),

where f((25) is a fixed point of <15 = S". This 9 is the fixed density of P5. In fact, since

(PS)'°f(¢) = P51f(¢) = P¢f(¢) = f(¢),

P59 = $93111) + ---+ (Ps)"f(¢)} = g.

Q.E.D.
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5.2 Piecewise Quadratic Markov Approximation

We generalize the method in the previous section to piecewise quadratic Markov

approximations. As above, let I.- = [2314,23,] with 2:.- = %,i = 0,... ,n. Each subin-

terval I.- has length :1“. Let 9,, be the corresponding space of continuous piecewise

quadratic functions on [0, 1] associated with that partition. Then 0,, is a (2n + 1)-

dimensional subspace of Ll(0,1). In order to construct a basis for (1,., we define

(2:+l)2, —1<$SO

7(3): (x—1)2, 0<x<1

0, otherwise

and

2x(1—:c), 0<:c<1

p($) — ,

0, otherwrse.

Let (1321(23) = T(n(a:—:c,-)),z' = 0,. . . ,n, and ¢2;_1(:c) = p(n(:r—x,-_1)),z' = 1, . . . ,n.

Then it is easy to see that {q50, . . . , Q5211} is a basis of flu. This basis has the following

properties:

1. ”452;” = 33"- for i = 1,...,n — 1,||¢2,-_1|| = 31; for i = 1,...,n, and ||¢o|| :

”4521:” = 51:;

2. 96;. _>_ 0 for all k and 2:20 45;.(23) _=_ l,

3. If f = 2,210 qk¢k, then f(x.) = Q2; for i = 0,... ,n.

Define Qn : L1(0,1) —+ 9,, as follows

62.1: (n/f)¢o+nZ(/1)¢2._1;-l+ 2/1+/1)¢2.-+(n/1)¢2..
i=1 I'

Lemma 5.2.1. Qn is a Markov operator and hence llQn” = 1 for any n.

Proof. It is obvious that f 2 0 implies an Z 0. By direct computation, for

f 2 0,

no.1” = [0‘ 10.1) = [0‘ GM
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= .111A‘1.+.<:/R1/;1._.
i=1

+ 3&1,“ 1...f)/01¢2‘+"/1.f/ol¢2"

= é.f+£§t.f+a'§</,.f+/..f>+%/.f

= [011:]: |f| = llfll-

Q.E.D.

Lemma 5.2.2. lim,,__.oo an = f for any f E L1(0,1).

Proof. We First assume f is continuous. Then,

it n 71-1

62.1 — 1 = (nfh1)1o + n;(/R 1112.-. + 5 Ex]! 1 + f, 1)12.

271

+ ("/1 f)¢2n — Ef¢j

= ("/1 1 — 1110 + 2301/, 1 - 1112.-.

+ 7231qu Hf,“ f) — flab.- + ("/1. f — 1).»...

i=1

For any 6 > 0, there is 6 > 0 such that for i < 6 we have |f(.r) — f(y)| < c for

any 9313/ E I;UI;+1,i=1,...,n -1- Hence inf!l f — leh < 511%(f1.f+ f1,+1 f) —

leL‘UIHq < 51i= 1, - - - ,n --1, and In f,” f— leIn < c, where XA is the characteristic

function of A. It follows that for n sufficiently large and a: E [0, 1]

2n

Ian(:c) — f(sv)! < 62 4510:) = 6,

i=0

i. e. , Qnf converges to f uniformly as n —+ 00. Therefore ”Q”f — f I] —> 0.

Now for arbitrary f E Ll(0,1), we can find a continuous function 9 such that

”f — g” < g for given 6 > 0. Since

”an — f” S “an — Qngll + ”621.9 — all + My - fl!

2

< 35+ ”Q39 — g“:

from the first part of the proof, we conclude that limnnoo Qnf = f in Ll-norm.

Q.E.D.
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The next lemma is crucial to our convergence theorem.

Lemma 5.2.3. If f E L1(0,1) is of bounded variation, then

Vanfs\;/1.

Proof. On the interval I,- = [ax--1, 33,-] we have

an($) = (121—24521-2(1‘) + (hi-115214“) + 421952433)

= q21—2(n($ “ $1-1)-1)2 + q2.-_1[2n($ - $1-1)(1- "(95 — 31—1))14" 921("(17 — 1‘1) + 1)2

= q2,-_2(n:c — i)2 + 2q2,-_1(n:c —(i—1))(i— nx) + q2.-(n:r — (i — 1))2

= (421—2 - 2421—1 + q21)(m‘)2 — 21(421-2 - 2421—1 + q21)i + (121—1 — q21]nx

+ [(q21—2 — 2q21—1 + (121)2'2 + 2((121—1 — (121)1' + (121]-

For simplicity, let a = q2;_2, b = q2.-_1,c = (12;. Then for a: E 1;,

an(x) = (a — 2b+ c)(n:1:)2 — 2[(a — 2b+ c)i + b — c]na: + [(a — 2b+ c)z'2 + 2(b — c)i + c].

Denote the right hand side of the above equality by ¢(n:c). Then the extreme point

of ¢(nx) is

i_—2[(a—2b+c)i+b—c]_i+ b—c

_ —2(a—2b+c)n — n (a—2b+c)n’

  

and the extreme value is

[(a—2b+c)i+b-—c]2
 ¢(n:i:) = [(a — 21) + c)i2 + 2(b — c)i + c] —

a—2b+c

_ 2

= [(a—2b+c)i2+2(b—c)i+c]—[(a—2b+c)i2+2(b—c)i+b%c_)|h—E]

__fl’il:
a—2b+c°

We consider all the possible cases as follows.

 05:615. Thenx;_—1<n+m<xg,so,0<a <1.
—2b+c

1. If a — 2b+ c > 0, i. e. , the graph of 45 opens upward, then c — b > 0. Hence

0 < ———(c—b)2 —b.

a—2b+c<C
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In this case, we have

(b - CV_ (b— 62)
Yan — [0 (C—mll‘tlc“C—(m”

= a—c+a2g)2—b2:<a—c+2(c—b)

= a—b+c—bSIa—b|+|c—b|.

2. If a — 2b + c < 0, i. e. , the graph of <6 opens downward, then c — b < 0.

Hence

(C-W
0>a—2b+c>c b

In this case, we have

_ (b—c)2 (b—c)2

Yan — (C—a—2b+c— )+(C_a—2b+c—C)

_ 2(b—c)2

_ c—a—a__2b+ <c—a—2(c-b)

: b—a+b-c< Ia—b|+lc—b|.

o :3: ¢ 1;. Then an is monotonic on 1;. So,

Van= la—cl S la-bl+lC-bl-

o a — 2b + c = 0. Then an is linear on 1;. We also have

Van= la-Cl S la-bl+lC-bl-

In any case, we obtain the following inequality

Van S |a - bl + l0 — bl = l921_2 - Q21—1l+ l‘hi- (hi—ll-

It follows that

i=1

= 1:1111.n-11+n"”1++1-1+)
+ :{1/111—[l1l+)§(/h1+ 1211/1111)
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+ n11/ 1+ ["1 11+) ["1— [11

:In/lmf—n1"5Yf'

Q.E.D.

Let Pn = Qn o Pslnn. Then Pu : (In —> {In is a Markov operator of finite rank. Let

Pngbk = 23201111,- for k = 0,... ,2n. Denote the (2n + 1) x (271 +1) matrix (ij) by

~

Pu.

Lemma 5.2.4. Pu has a nontrivial nonnegative fixed point in (In.

Proof. For k = 0,. . . ,2n, from

P111511 = Q71 0 P5451;

= n{(/Il P39150950 + Z:(/ PS¢k)¢2i-1

1. 1:3]! Ps¢k+/m Ps1.)12.-+”/1. P510111.)

we have pko = nf,1 P5¢k,pk,2.-_1 = "fl.- P5¢k,i = 1,...,n,pk,2,- = %(f1,PS¢k +

II,“ Ps¢k),i=1,...,n—l ,andpk,1n=nf1nPsqu;c fork=0,...,2n.

Let C = (C0,...,C2n) where Co = C2,, =%,C2.-= 32,- fori=1,...,n—1,C2,-_1 = % for

i=1,...,n. Then,

2n 1 1 n

5191143 = n{-/ PS¢k+§;£‘PS¢k

+ 2n—11/Ps¢k+/ Ps¢k)++§/ Ps¢kl

= nl-l-l Ps¢k+-/ Ps¢kl =n/ (151-
3 o 3 o 0

Note that “452,” = 3%; for i = l,...,n — 1,||¢2.-_1]| = 51; for i = l,...,n, and ”450“ =

”(15211” = 51;, we have PnC = C. Therefore we can find a nonnegative row vector c ;£ 0

such that an—— c. This implies that fn—_ -_0 Cj¢j is a nontrivial nonnegative fixed

point of Pn1n (1,.. Q.E.D.

The proofs of the following results follow exactly the same line of arguments as in

the previous section. So we omit the corresponding proofs.
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Lemma 5.2.5. If S : [0, 1] —+ [0, 1] is piecewise 0'2 with M = inf IS’(a:)| > 2,then

the sequence {V3 fn} is uniformly bounded, where fn E 9,, is a nonnegative fixed

point of P" for each 71.

Theorem 5.2.1. Suppose S : [0, 1] —> [0,1] is piecewise 0'2 and M = inf IS’(x)| >

2. If the corresponding Frobenius-Perron operator P5 has unique invariant density f,

then the sequence {fn} of nonnegative piecewise quadratic fixed points of Pa in 0,,

converges to f in L1.

Corollary 5.2.1. If S' : [0, 1] -—1 [0, 1] is piecewise 02 satisfying M = inf IS’(:1:)| >

1, and P5 has a unique fixed density, then a sequence gn from the piecewise quadratic

functions can be constructed that converges to the unique invariant density of P5.
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Chapter 6

Numerical Results

In this chapter we present numerical results for some mappings from [0, 1] into

itself with our new methods and compare them to Li’s original one. These calculations

were performed on the IBM 3090 180VF at Michigan State University, using double

precision. Section 6.1 gives the numerical results with the projection methods, while

Section 6.2 gives those using the Markov approximation schemes.

6.1 Numerical Results with Projection Methods

The test functions are as follows

 

 

S() 29: OSx_<_%

133 =

2(1—11) %S$_<_1,

1 1 1 1

52(1) = (g—le—5l3)5+§1

2:: < < _1

33(13) = l—x: 0_$_\/i

1;: fi—ISxSI,

The invariant densities ff of S; are given by

f1'(<v) E 1,
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f;($) : 12($-_)21

4 2

, _ 2

f4($) - (1+$)21

11(1) = 1 
n\/:c(1 — 2:) i

Let a,- be the nondifferentiable point of Sj. We divide the intervals [0,aj] and

[ab 1] into n/2 equal subintervals, respectively. On the i-th subinterval I,- = [rm--1, 2:1],

we choose (a: — 2:14)")(1, as the basis functions for k = 0,1, . . . ,m. Here, of course,

m = 0 for Li’s piecewise constant method, m = 1 and m = 2 for our piecewise linear

and piecewise quadratic methods, respectively. Gaussian quadrature formulas using

three nodes were used on each subinterval to evaluate the integrals for the matrix in

each scheme. The order of each matrix is kn x kn for k = 0,1, or 2, respectively.

The QR decomposition subroutine was used together with backward substitution to

solve the linear fixed point problem. In order to estimate the convergence of the

approximate density fn to f“, we used the Ll-norm “fn — f*]] 2 f01 If" — f“|d:r for

each method. Also we used the Gaussian quadrature formula on each subinterval to

calculate this norm. In the following we present numerical experiments in order from

example 1 to example 5.

Since the invariant density of 51 is constant, all the methods work very well even

for small n, and the largest error is less than 10-8. Table 6.1, Table 6.2, and Table

6.3 give the computational results with 32, 5'3, and S4, respectively. For these tables,

the first column is the number of subintervals, and errorO, errorl, and error2 in the

remaining columns give the corresponding errors for the piecewise constant, piecewise

linear, and piecewise quadratic projection methods in succession. The symbol * in

the tables indicates that the dimension of the matrix is out of the limited virtual

storage range.

From Tables 6.1, 6.2, and 6.3 it is clear that the rate of convergence for the

piecewise linear and piecewise quadratic schemes is much better than that of the

piecewise constant one. Also notice that when the mesh of the partition is reduced
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errorO errorl error2

 

0.4516118411 0.0555555556 0.0149254220

 

0.2292409861 0.0148102010 0.0027094962

 

16 0.1027134038 00035791431 00003887813

 

32 0.0525720871 0.0010220004 0.0000496560

 

64 0.0256408424 00002415574 00000066700

 

128 0.0133770827 0.0000693106 *

  256  0.0064525269  a:  *

 

Table 6.1: Error Estimates for 52

 

 

errorO errorl error2

 

0.0830968916 0.0123173042 0.0101762505

 

0.0406691860 0.0031483283 0.0025306884

 

16 0.0202492312 0.0007860024 0.0006211069

 

32 00097816838 00001869041 00001531915

 

64 00048954498 00000479155 0.0000380217

 

128 0.0024518719 0.0000117453 *

  256  0.0012361596  *  *

 

Table 6.2: Error Estimates for S3
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n errorO errorl error2

0.1195535492 00393188225 00370286858

8 0.0586617412 0.0118494476 00103420855

16 0.0279057298 0.0032289581 00027443529

32 0.0138824563 0.0008396322 0.0007082720

64 0.0067786733 0.0002162473 0.0001800303

128 0.0032945853 0.0000623525 =1:

256 0.0016371634 :1: :1:

Table 6.3: Error Estimates for S4

11 errorO errorl error2

4 0.3896329138 0.3075260533 0.2015446439

8 0.3101171199 0.2275786385 0.1739440930

16 02427747128 01688182194 01355681505

32 0.1932292835 0.1342031192 01048131049

64 0.1464393853 00969966808 00796186481

128 01121331945 00765348792 :1:

256 00828776585 =1: :1:   
 

Table 6.4: Error Estimates for 55
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in half, the error decreases with a factor about i— for the piecewise constant method,

a factor between i to % for the piecewise linear and piecewise quadratic ones. The

better the invariant density f‘ can be approximated by quadratic polynomials, the

faster the convergence rate is for the piecewise quadratic scheme comparing to the

piecewise linear scheme.

If the invariant density is unbounded, it appears that all the methods converge very

slowly. Table 6.4 demonstrates this defect. Here the density f; of S5 is unbounded,

though it belongs to L1.

Table 6.4 indicates that the convergence rate of projection methods depends not

only on the order of the polynomial approximation but also on the regularity of

the invariant density. To develop more efficient methods for transformations with

unbounded invariant densities is a problem for future research.

6.2 Numerical Results for Markov Finite Approx-

imations

In this section we present the numerical results for the invariant measures of the

mappings 5'1 through S5 from section 6.2, using our piecewise linear and piecewise

quadratic Markov approximations. For comparison we also include the results using

the piecewise constant method of the previous section.

Unlike the projection method, numerical integration is not required in our program

here because we can use the Koopman operator Us [3] instead of the Frobenius-Perron

operator P5 to calculate the matrix representation of the Markov operator P... This

property makes the new schemes much easier to implement than the projection ones.

Suppose the interval [0, 1] is divided into n subintervals. Then the algorithms for the

piecewise constant , piecewise linear, or piecewise quadratic Markov approximation

methods need to solve an n x n, (n + 1) x (n + 1), or (2n + 1) x (2n + 1) system

of linear equation an = c. The QR decomposition together with the backward

substitution were also used to solve this algebraic equation. Again the Ll-norm

llfn — fl] = fol Ifn — f’ldx is used to estimate the convergence of the approximate

51



 

 

 

 

 

 

 

 

     

n errorO errorl error2

04516118411 04641185272 03959913833

8 02292409861 0.1800796348 0.1462659757

16 0.1027134038 00626959897 00487315033

32 00525720871 00206618342 00157728634

64 00256408424 0.0069115342 00050447087

128 0.0133770827 00022033011 00015826892

256 00064525269 00006804461 *

 

 
Table 6.5: Error Estimates for 32

density fn to f“ for each method.

It is no surprise that our new methods also work very well for 51. Table 6.5, Table

6.6, and Table 6.7 give the computational results for $2, 53, and 54, respectively.

The last three columns, errorO, errorl, and error2, represent errors for the piece-

wise constant, piecewise linear, and piecewise quadratic Markov approximation schemes,

respectively. It is apparent from these tables that the piecewise linear and piecewise

quadratic methods are better than the piecewise constant one not only for the same

partition (that is, with the same 71), but also under the same dimension of the system

of linear equations involved.

Table 6.8 shows the unsatisfactory computation with S5. Thus it is necessary to

investigate new approaches in this case.

We may construct continuous piecewise cubic Markov approximation or even

higher order ones along the same lines. But in practice for the consideration of

stability, higher order polynomial approximations are rarely used . Our numerical

experiments show that, if the fixed density of P3 is smooth enough, the Markov ap-

proximations converge quickly. We believe that under some regularity condition for

the invariant density of the Frobenius-Perron operator, the convergence rate can be

obtained to explain our numerical phenomenon.
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errorO errorl error2

 

0.0830968916 00291096553 0.0209641927

 

00406691860 00101965728 00070473567

 

16 00202492312 0.0031790398 00021596521

 

32 00097816838 00009425484 00006358728
 

64 00048954498 00002723532 00001836483

 

128 00024518719 00000774104 00000521595
  256  00012361596  00000216967  *

 

Table 6.6: Error Estimates for S3

 

 

errorO errorl error2

 

0.1195535492 00492295286 00436642029

 

00586617412 00216968214 00192011196

 

16 00279057298 00104087996 00082975396

 

32 00138824563 00041061066 00031177980
 

64 00067786733 00014008562 00010345743

 

128 00032945853 00004428463 00003202538
  256  00016371634  00001335304  *

 

Table 6.7: Error Estimates for S4

53

 

 



 

 

errorO errorl error2

 

03896329138 03691582134 03681119076

 

03101171199 03181004411 03057295967

 

16 0.2427747128 02584324400 02453954228

 

32 0.1932292835 0.1884801640 01801104382

 

64 01464393853 01438197957 01346727768

 

128 01121331945 01021434498 00966334472

  256  0.0828776585  00754555981  *

 

Table 6.8: Error Estimates for $5
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Chapter 7

Conclusions

In this work piecewise linear and piecewise quadratic polynomial projection

methods and Markov finite approximations are found for the approximation of in-

variant densities of the Frobenius-Perron operator. Convergence of the methods is

proved for a general class of measurable nonsingular transformations of the unit in-

terval into itself . Our proof is based on the following observation: The operators

Q" : L1(0, 1) —) L1(0, 1) defined in the previous chapters satisfy

(1) II 62,, ”5 Cl, 01 is a constant.

(2) an —1 f uniformly for any f E L1(0,1).

(3)For any f E L1(0, 1) of bounded variation V}, an g 02 V}, f with 02 a constant.

(4) Qn o P has a nontrivial fixed point fn for each n.

In general a numerical scheme for the Frobenius-Perron operator equation P5f —

f = 0 is convergent if the “discretization” operators Qn satisfy the above four re-

quirements, as the following theorem shows.

Theorem 7.1.1. Suppose that the sequence of operators Qn of finite rank satisfy

the conditions (1) through (4) above. Then a sequence of functions can be constructed

which converge to a nontrivial fixed point of P3 if S is piecewise C2 satisfying inf IS’ I >

1.

Based on the convergence analysis for the piecewise linear and piecewise quadratic
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polynomial approximation methods, we believe that convergence can also be estab-

lished for general higher order piecewise polynomial approximation methods, though

it would not have much computational practicality due to instability.

It is important to estimate the rate of convergence for a convergent numerical

method. Further research will be focused on this aspect for our finite approximation

methods for Frobenius-Perron operator equations or more general Markov operator

equations.
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