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ABSTRACT

EMISSION TEMPERATURES FROM THE DECAY OF PARTICLE

UNSTABLE COMPLEX NUCLEI

BY

Tapan Kumar Nayak

Q

Relative populations of particle-unstable states were measured for complex frag-

ments emitted in the reaction 14N+Ag at E/A = 35 MeV by using a position sensitive

high resolution hodoscope. The hodoscope consisted of 13 telescopes, four of these

telescopes were designed to isotopically resolve fragments with 3 S Z _<_ 10 and the

other nine to resolve hydrogen and helium isotopes. In order to optimize the excita-

tion energy resolution of the hodoscope, each telescope contained an :1: — 3/ position

sensitive gas proportional counter. A position resolution better than 0.5 mm was

obtained for 5.8 MeV a-particles. For the a-decay channels of the particle unstable

loB nucleus produced in the reaction, an excitation energy resolution of about 50 keV

(FWHM) was achieved.

Experimental population probabilities of particle-unstable states were extracted

by fitting the coincidence spectra of the decay products by an appropriate R-matrix

or Breit-Wigner formalism. According to thermal models, the populations of excited

states at freezeout are expected to follow a Boltzmann distribution weighted by the

emission temperature of the system. Tests of this freezeout assumption were made by



comparing the experimental population probabilities to the predictions of statistical

calculations.

Extensive statistical calculations which include the effect of sequential feeding from

heavier particle unstable nuclei were performed to estimate the population proba-

bilities of the states starting with a thermal distribution of primary fragments at

an initial temperature, Tem. A global comparison of the measured and calculated

population probabilities and the ratios of population probabilities indicate emission

temperatures of about 3—4 MeV. But a detailed comparison for individual fragments

for a calculation with Tam = 4 MeV reveals that about half of the measured popu-

lation probabilities and one third of the ratios of the population probabilities differ

significantly from the predictions of statistical calculations. Calculations which in-

clude rotational effects could not satisfactorily account for this discrepancy. These

results suggest a possible breakdown of the assumption of local thermal equilibrium

at freezeout.
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Chapter 1

Introduction

I Motivation

The emission of intermediatemass-fragments [IMF’s, 6 S A S 30] is an important

decay mode of highly excited nuclear systems. This decay mode has been observed in

proton-nucleus and nucleus-nucleus collisions for a broad range of incident energies

[Gelb 87a, Lync 87]. Dynamical [Bert 88] and statistical [Gelb 87b] models suggest

that a variety of mechanisms could be responsible for fragment production. For ex-

ample, IMF emission has been related to the occurrence of adiabatic instabilities

[Bert 83, Schl 87, Snep 88, Boal 89a] which may lead to the liquid-gas phase sepa-

ration of highly excited nuclear matter [Lope 84b, Finn 82, Jaqa 83]. Other models

which do not incorporate a phase transition have been equally successful at reproduc-

ing many features of the fragment data. To distinguish between the many models of

fragment emission for a given reaction, one must determine whether binary or multi-

fragment breakup configurations are predominant, whether thermal approximations

may be appropriate, and determine the density and excitation energy (or tempera-

ture) at breakup. It may be necessary to invoke different models to describe fragment

production for different reactions. For example, models which may be appropriate to

describe fragment production at low incident energies may be inappropriate for the



most violent nuclear collision and vice versa.

For nuclear reactions at low incident energies (E/A S 10 MeV), the dominant

reaction process occurs through the formation and decay of a fully equilibrated com-

pound nucleus. Fragment emission from such compound nuclei has been observed

[Soho 83, Soho 84] and can be described by the sequential decay mechanism that pro-

ceeds through binary decay configuration [Frie 83, More 75]. The excitation energy

or temperature of the compound nucleus required by these models can in principle be

deduced from the slope of inclusive kinetic energy spectra of evaporated light parti-

cles. As the incident energy increases to about E/A = 20 MeV, formation of a unique

compound nucleus becomes unlikely; and more importantly, faster fragment produc-

tion mechanisms become important. As an example, figure 1.1 shows the kinetic

energy spectra of 10B nucleus emitted in a reaction of 1“N on Ag at E/A = 35 MeV.

The data are presented for four angles as listed in the figure. The slopes of the exper-

imental energy spectra become steeper with the increase of the emission angle. The

feature of the data seems to be quite different from the solid curves which represent

a parameterization that assumes 10B nuclei are emitted from an equilibrated single

moving source formed by the fusion (mom,cc = can and T = TON) of 14N and Ag, and

characterized by a Maxwell Boltzmann distribution with a temperature comparable

to that expected for the compound nucleus. Indeed, the data can be better described

by a superposition [Fiel 89] of more than one moving sources [see chapter 3]. The

energy integrated cross sections are strongly forward peaked even in the center-of-

mass frame, further indicating that most of the fragments are emitted prior to the

attainment of statistical equilibrium of the full compound nucleus.

Statistical models for such non-equilibrium processes often assume the existence of

a local thermal equilibrium in the vicinity of the fragment at the time of its emission

[Fiel 84, Fai 82]. Information is needed to assess the validity of this approximation
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and to provide appropriate values for the excitation energy. Temperatures have been

estimated from fits to inclusive spectra which assume thermal emission from a sub-

system. Such fits usually provide higher source velocities and temperatures than

would be consistent with the compound nucleus [Fiel 84, Fiel 86]. Temperatures

extracted from such fits are likely to be misleading, however, because of their sen-

sitivity to the Coulomb barrier fluctuations [Ban 85], sequential feeding from higher

lying states, as well as strongly time dependent phenomena such as collective motion

[Siem 79, Tsan 84, Tsan 86], and equilibration [Frie 83, Fiel 84].

Information about the intrinsic excitation of the fragmenting system at breakup

may be obtained alternatively from the relative populations of ground and excited

states of emitted intermediate mass fragments. Statistical models frequently assume

that the intrinsic degrees of freedom are fully thermalized and the asymptotic excited

states of these fragments are populated statistically with weights determined by the

excitation energy or “temperature” of the emitting system [Gros 82, Gros 86, Frie 83,

Rand 81, Fai 82]. If the internal excitation energy of the system is large at freeze-

out, many of the fragments are emitted in excited states; if the internal excitation

energy is small, few fragments are excited. The relative populations of states of a

given fragment therefore provide a measure of the internal excitation energy of the

fragmenting system at freezeout. The ratio 721/712 of the populations of two relatively

narrow excited states of a fragment is given approximately by

fl_(_2_{i1_) (-95) (1.1)
n2 _ (2.12 + 1) ex Tem

Here AE = E; - 5, J,- and E; are the spin and excitation energy, respectively, of the

i-th state of the fragment, and Ten, is the “emission temperature” which characterizes

the internal excitation energy of the system at freezeout. If the excited states are

thermally populated and the feeding from sequential decay of heavier nuclei is not

significant, one may in principle, determine Tem from the population of two states of



a fragment via equation (1.1).

The method of measuring emission temperatures from the relative populations

of states have been applied to decays from particle stable excited states by 7-rays

[Morr 84, Morr 85, Xu 86, Xu 89] and to decays from particle-unstable states [Poch 85a,

Chit 86, Poch 87, Chen 87a, Chen 87b, Chen 87c, Fox 88, Deak 89]. Figure 1.2 sum-

marizes results obtained from the measurement of relative populations of particle

unstable states in Li and Be isotopes in three different reactions [Chen 88a]. Two

striking features are immediately evident from the figure. First of all, the emission

temperatures derived from the ratio of populations is about 4 — 5 MeV, which is

significantly smaller than the temperatures (T w 12 —— 18 MeV) one extracts by fit-

ting the kinetic energy spectra. This difference could be due to complications arising

from collective motion [Tsan 84, Tsan 86] which influences the slopes of kinetic en-

ergy spectra [Frie 89, Boal 89]. A more interesting aspect of the measurement is the

fact that the emission temperatures obtained in the three reactions are very similar,

even though the incident energies vary widely. If one takes the emission tempera-

ture in figure 1.2 to be the temperature of the system at freezeout and allows for an

adiabatic expansion dynamics, this implies that freezeout occurs at nearly constant

temperature rather than constant density as assumed by certain models.

One would like to know whether this is a general phenomenon which would find its

manifestation in the relative populations of excited states of heavier IMF’8. All previ-

ous measurements of the emission temperature derived from the relative populations

of states (with the exception of [Xu 89]) were based on comparison involving only

few states of a single fragment. Such comparisons do not test in detail the internal

consistency of the approach. More stringent tests of the freezeout assumption can be

performed by comparing the measured population probabilities of a large number of

states of a single isotope to statistical model predictions. This requires the study of
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Figure 1.2: Apparent emission temperatures extracted from the relative populations

of states of ‘He,5Li,5Li, and 8Be nuclei extracted for the three reactions indicated in

the figure [Chen 88a].



IMF’s which have many well resolved excited states.

This dissertation research was undertaken to investigate the relative populations

of the particle unstable excited states of intermediate mass fragments. For this pur-

pose a position sensitive detection array was designed and the population of particle

unstable excited states of intermediate mass fragments with 2 < Z < 9 were measured

for the 14N + Ag reaction at E/A = 35 MeV. Detailed sequential feeding calculations

were performed to assess the influence of sequential decay on the measured excited

state yields. The comparison between calculated and measured excited state popula-

tions revealed non-equilibrium effects inconsistent with the concept of local thermal

equilibrium.

II Organization

This thesis is organized as follows. An overall description of the position sensitive

high resolution hodoscope, the energy and position calibrations of its individual de-

tector telescopes, particle identification, and other experimental details are given in

chapter 2. In chapter 3, single particle inclusive spectra and two particle coincidence

cross sections are presented. Methods used for extracting the relative populations of

states of particle unstable nuclei are also described in this chapter.

Sequential feeding from high lying states has a significant effect on the observed

populations of excited states of fragments. Since it is not possible to accurately

determine the amount of feeding experimentally, it has to be calculated. We have

performed extensive calculations to determine the effect of feeding starting with a

thermal distribution of primary fragments. The details of the statistical calculations

which assess the influence of sequential feeding are presented in chapter 4.

In chapter 5, tests of the freezeout assumptions using particle-unstable states of



10B nuclei are discussed in detail. The measured populations of these states differ

significantly from those predicted by statistical models which include the sequential

decay of heavier particle unstable nuclei. Here it is also discussed whether angular

momentum effects due to rotation of the emitting system can account for the dis-

crepancy between experimental data and model predictions. Experimental results for

the decay angular distributions of the decays from 10B nucleus are presented in this

chapter. These angular correlations suggest that rotational effects do not significantly

influence the excited states populations.

In chapter 6, apparent temperatures for 40 groups of particle unstable states of

Li, Be, B, C, N, and O isotopes are extracted and compared to the predictions of

statistical feeding calculations. Using a least squares analysis, global comparisons

between experimental data and results from statistical calculations are obtained and

presented.

Finally, the thesis is summarized in chapter 7. Conclusions and suggestions are

provided. The electronics set up and details of the efficiency calculation for the

position sensitive high resolution hodoscope are given in the Appendices.



Chapter 2

Experimental Setup

A position sensitive high resolution hodoscope [Mura 89] was designed for measuring

the populations of particle unstable states of intermediate mass fragments. Since

the cross sections and the‘energies separating the excited states of these fragments

are often small, the detection apparatus must have both a high efficiency and a

high excitation energy resolution. Computer simulations revealed that the excitation

energy resolution of the hodoscopes is limited primarily by the angular resolution

of the detectors which detect the coincident daughter fragments from the particle

decay of the excited nucleus. To achieve both high efficiency and resolution, we have

constructed a position sensitive detection array which can be placed rather close to

the target. An overall description of the various components of the detection array

is given in the next section. Details of the construction and operation of the position

sensitive gas detector elements are presented in the second section. The choice of

filling gas and its importance for controlling aging eflects in the gas detectors are also

discussed in this section. The position calibrations of the proportional counters is

discussed in the third section, and the energy calibration is discussed in the fourth

section. In the last section of this chapter techniques used for particle identification

obtained are presented.
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I Description of the Detection Array

A schematic front view of the detection apparatus is shown in Figure 2.1. The ho-

doscope consists of nine light particle telescopes (LP) and four heavy fragment tele-

scopes (HF). One light particle telescope is situated at the center of the array. The

four heavy fragment telescopes are situated above, below and to the left and right of

the central light particle telescope. At the periphery of the array are situated eight

additional light particle telescopes. The light particle and heavy fragment telescopes

have solid angles of 4.5 msr and 5.7 msr, respectively. The angular separation between

adjacent telescopes is 8".

A cross sectional view of the array including the central light particle telescope

is shown in Figure 2.2. The light particle and heavy fragment telescopes are located

at different distances from the target. Expanded views of the two types of telescopes

are shown in Figure 2.3. Both light particle and heavy fragment telescopes consist

of two independent single wire proportional counters, providing position information

along two orthogonal coordinates (here denoted by .1: and y), followed by triple element

energy loss telescopes. The defining apertures for the telescopes were located between

the x-y position sensitive proportional counters and the triple element telescopes and

were situated at distances of 27.3 cm and 20.3 cm from the target for the light particle

and heavy fragment telescopes, respectively. The staggering of the light particle and

heavy fragment telescopes allowed a maximization of the detection efficiency because

it minimized the dead area between telescopes normally occupied by the detector

cases and mounts.

For the detection of light particles, a non-planar 200 um silicon surface barrier

detector of 450 mm2 surface area was used for the first element, a non-planar 5 mm

thick Si(Li) of 500 mm2 surface area was used for the second element and a 10 cm
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Figure 2.1: Front view of the hodoscope showing all the nine light particle(LP) and

four heavy fragment (HF) telescopes. The actual dimensions of heavy fragment de-

tectors are displayed. Since they are closer to the target, however, they cover larger

solid angles than suggested by this projection.
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Figure 2.2: Schematic cross sectional view of the hodoscope.
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Figure 2.3: Expanded drawing showing the LP (top) and HF (bottom) telescopes.
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thick NaI(Tl) scintillation detector was used for the third element. The 5 mm Si(Li)

detectors were fabricated with a total dead layer less than 15 pm [Walt 78]. The silicon

detectors for these telescopes were mounted on the front and the NaI(Tl) detectors

on the rear of a mounting plate consisting of a spherical section subtending a half

angle of 16°. For the detection of heavy fragments, planar 75 pm and 100 pm silicon

surface barrier detectors of 300 mm2 surface area and 1.5 ‘70 thickness uniformity were

used for the first and second elements; a 5 mm thick Si(Li) detector of 400 mm2 was

used for the third element. The heavy fragment telescopes were positioned in front

of the light particle telescopes by cylindrical rods which were bolted to the mounting

plate.

The experiment was performed at the National Superconducting Cyclotron Labo-

ratory of Michigan State University using 14N beam at E/A = 35 MeV from the K500

Cyclotron. The experiment was set up in the 60 inch diameter scattering chamber.

A natural silver target of 0.5 mg/cm2 areal density was placed in the target ladder

at the center of the chamber. The hodoscope was placed on the base table of the

chamber with the center at an angle of 35° with respect to the direction of the beam

and at an angle of 16° above the plane of the scattering chamber as shown in Figure

2.2. Consequently, the target was rotated by 35° to the beam axis and 16° in vertical

direction so that target plane is parallel to the vertical plane of the hodoscope. A

photograph of the assembled detection array is shown in Figure 2.4, and a photo-

graph of the actual setup in the scattering chamber is shown in Figure 2.5. Cables

connecting to the silicon and gas detectors and the urathane tubes supplying gas to

the proportional counters can be seen in these figures. The preamplifiers for the gas

detectors were placed in vacuum close to the detectors. The block diagram of the

electronics is given in appendix A.
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Figure 2.4: Photograph of the assembled hodoscope. The four HF telescopes are in

the foreground. Eight out of nine LP telescopes can be seen at a larger distance from

the target.
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Figure 2.5: Photograph the full experimental set up in the scattering chamber
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II Position Sensitive Gas Proportional Counters

Position information for each individual telescope was obtained with two single wire

gas proportional counters each providing one coordinate of a two-dimensional Carte-

sian readout. A photograph of the individual components of these counters is shown

in Figure 2.6. Each counter was cylindrical in shape with length of 1.2 cm and diam-

eters of 3 cm and 2.3 cm for LP and HF detectors, respectively. The anode wire was

situated in the middle of each counter along the circular diameter and insulated from

the detector case by G-10 feedthroughs. The position along each wire was obtained

by resistive charge division. This readout scheme appeared to be more linear and

more space efficient than a comparable drift chamber configuration. The front and

rear windows consisted of 6 pm Mylar ((C10H304)n) aluminized on the interior to

provide a cathode surface. A 1.5 pm Mylar foil, aluminized on both sides, separated

the a: and y position counters. The anode wire was made by 7.6 pm Nichrome wire

having total resistances of approximately 600 and 400 Q for the light particle and

heavy fragment telescopes, respectively.

Choice of Filling Gas and the Aging Rates of Gas Counters

The efficiency and long term stability of the gas counters were tested with a variety of

gas mixtures and pressures. Isobutane ((CH3)2CHCH3) offered both high efficiency

and high resolution, but the performance of the gas detectors with isobutane was

degraded seriously after about 4 x 108 counts, with the gas gain decreasing by at least

a factor of 2. Such deterioration in counter performance is caused by hydrocarbon

polymerization on the electrodes [Saul 77, Vavr 86].

Detector lifetimes can be improved by adding non-polymerizing quenchers, such

as isopropyl alcohol ((CH3)2CHOH) or methylal (CH2(OCH3)2), to the gas mixture.
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Figure 2.6: Photograph showing individual components of the HF position sensitive

gas detector. From left to right one sees the entrance window, front cylinder, middle

foil, back cylinder, and exit window which also serves as a mount for AE and E silicon

surface barrier detectors. A ruler provides the scale in inches.
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We tested our detectors with different mixtures of isobutane and methylal. For prac-

tically all mixing ratios, the counters had good efficiency - even for pure methylal.

Better resistance to aging effects appeared at higher methylal concentrations. Since

high methylal concentrations may adversely affect counter and gas handling system

components [Vavr 86], a mixture of 20% methylal, 80% isobutane was used in the

actual experiments.

During experiments, the heavy fragment telescope was operated at a pressure of

40 torr and a voltage of 900 V, while the light particle telescope was operated at

100 torr and 1250 V. At these pressures, the detection efficiencies for light particles

and heavy fragments were 100% over the energy range of interest (5 MeV S E/A

_<_ 40 MeV). These high operating voltages correspond to the upper portions of the

proportional regime approaching the domain of limited proportionality. A constant

gas flow rate was maintained for all telescopes such that 20 % of the counter gas was

replaced every minute.

III Position Calibrations of the Gas Counters

The position spectra of the gas counters were calibrated with the 5.805 and 5.763

MeV 0: particles from a 1 mm diameter 244Cm source which was placed at the tar-

get location. A calibration mask with holes of 1 mm diameter, separated by 1.5

mm, was placed in front of the hodoscope at a distance of 16.5 cm from the target

center. Because of the higher energy loss of low energy a—particles, the operating

voltage of the light particle telescopes was lowered to 1150 Volts during the calibra-

tion. Non—linearities of the 23-3; position spectrum were corrected by the empirical

transformations;

X = a0 + ale + agYm + ang, + a4Xm Ym + a5Y,,21
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+ anS, + 07X?" Ym + angYflf + 091/3, (2.1)

Y 2 b0 + I’I‘Xm + b2Ym 'I' bBszn + b4XmYm 'I' bSYr:

+ bGXf; + b-,X,3,Ym + bsmef, + b91153. (2.2)

Here, Xm and Ym denote positions directly obtained by the charge division method,

and X and Y represent the actual positions. Coefficients a,- and b,- were determined

via fitting the position spectrum measured with the mask. Figure 2.7 shows the two

dimensional calibration spectrum for a heavy fragment telescope after correction for

non-linearities. This spectrum and the spectra of other heavy fragment telescopes

are consistent with a position resolution of 0.33 i 0.02 mm FWHM. The spectra for

light particle telescopes are consistent with a slightly worse resolution of 0.50 :l: 0.01

mm FWHM. The position resolution was limited primarily by the preamplifier noise;

it scales inversely with the signal height and therefore inversely with the energy loss

in the detector gas. An image of the full calibration mask is shown in figure 2.8. The

missing points seen in the spectra correspond to holes that were blocked in the mask

in order to identify and establish the orientation of different telescopes.

The proportional counters proved to be rather sensitive to electrons and soft pho-

tons produced by the beam in the target. The corresponding background could be

reduced to a tolerable level by installing 5 mg/cm2 Au foils in front of the gas detec-

tors and adding a magnetic electron suppression system midway between the target

and the detector array.

IV Energy Calibrations

Computer simulations described in the Appendix B, indicate that accurate energy

calibrations of the detector telescopes are much more critical than good energy reso-

lutions to the achievement of optimal excitation energy resolution. Before and after



21

 

15:— Emé —

- a as;

,x assesses; ;

- isséeéeeé -

t eaéiéeéss 1

- ééfifiiii

T’ ii as .

- ass -

Y
(
m
m
)

   -o L l l l i L L L l l l I l l I 1 LL

. 0 5 10 15

X (mm)

Figure 2.7: Two dimensional position spectrum of the calibration mask for one of the

heavy fragment detectors. The missing points were used to identify and establish the

orientation of the different detectors.
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Figure 2.8: Image of the full calibration mask for all the telescopes. The missing

points seen in the spectra correspond to holes that were blocked in the mask in order

to identify and establish the orientation of difl'erent telescopes.
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the experiment the detectors were calibrated at low energies with 2’“Am and 21”Po (1

sources. These calibrations were extrapolated to energies of several hundred MeV by

injecting a signal from a precision BNC pulser into the input stage of the preampli-

fiers. In this fashion, relative calibrations of all the silicon detectors were established

to an estimated accuracy of about 0.5%. Dead layers of the silicon detectors were

measured with an 241Am source by rotating the detectors with respect to the direction

of the incident 0 particles.

Most light particles originating from the decay of nuclei with 10 S Z S 16 were

stopped in the second (5mm) element of the light particle telescope. Light particles

from the decay of lighter nuclei (A S 9) frequently penetrated the 5 mm detector and

stopped in the NaI(Tl) detector. The NaI(Tl) detectors have energy resolutions of

about 1-2%, adequate to resolve the states of the lighter nuclei. Calibrations for the

NaI(Tl) detectors were obtained by converting the AE information from the 5 mm

Si(Li) detectors to corresponding energies. To assess the accuracy of this conversion,

the thicknesses of the 5mm Si(Li) detectors were measured by the method of X—ray

attenuation. Calibrations were cross checked by the measurement of energies of recoil

protons backscattered from a polypropylene target by a 490 MeV l“N beam. The

energy calibrations of NaI(Tl) detectors are estimated to be accurate to within 5%.

Gain shifts of the NaI(Tl) detectors were stabilized by using the AE information

produced by Si(Li) detector [Poch 87].

V Particle Identification

For ions with E/A Z 5 MeV, the heavy fragment energy loss telescopes, constructed

with planar silicon surface barrier detectors, provided accurate charge and mass iden-
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tification via the empirical relationship [Goul 75],

R 0‘ Eb/[qufl], (23)

where E, R, [If and qeg denote the energy, range, mass and effective charge state of

the fragment, respectively, and b is an adjustable constant with a typical value of

about 1.7. For a planar AE detector of thickness T and a stopping E detector, one

obtains from Eq. (2.3)

Mr]:fir o< ( (E + AE)b — Eb ) /T. (2.4)

Following Shimoda et. al. [Shim 79] we have adopted a number of empirical im-

provements. Particle identification (PID) is obtained, instead, using

= ln(b AE) + (b — 1) ln(E + cAE) — b 1n(300), (2.5)

AE[MeV]
b = 1.825—0.18 ,

Tlflml

c = 0.5.

Figure 2.9 shows the particle identification achieved for particles which stop in the

second (100 ,um) element of the telescope. Isotopic resolution is achieved for all

elements displayed. Similarly, good resolution is obtained for heavy fragments which

stop in the third element (5 mm Si(Li)) of the telescope. The PID resolutions were

also adequate to separate Helium isotopes (not shown). Experimental data for the

decay of 5Li, 6Li, 7Li, 8Be were also obtained by analyzing helium ions stopped in the

heavy ion telescopes.

Because of cost-efficiency reasons, non planar fully depleted detectors of 200 mm

thickness were used as first elements of the light particle telescopes. The detec-

tors were fabricated by a technique producing convex shaped Si wafers with non-

uniformities of up to 25%. If the variation of detector thickness is a function only of
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Figure 2.9: Sample particle identification spectrum for a heavy fragment telescope.
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the radial distance from the center of detector p (mm), we can replace T in Eq. (2.4)

by

T(p) = Tof(p), (f(p) S 1) (2-6)

where To is the thickness of the detector at the center. Good particle identification

can still be achieved by correcting for the thickness variation using the position in-

formation provided by the gas detectors. Taking into account the dependence of the

PID on thickness, one obtains

PID = ln(bAE)+(b—1)1n(E+cAE)—bln(300)—ln(f(p)), (2.7)

AE[MeV]

b = 1825—018 ,

Talflml

c = 0.65.

Figure 2.10 shows the particle identification in the central region of a typical

detector as a function of p2, obtained with f(p) = 1. The PID values decrease

linearly with ,02 by 28% from the center to the periphery of the active area. All the

first elements of the nine light particle telescopes displayed similar thickness variations

ranging from 25% to 30%. We adopted the functional form

f(p) = exp(-Ap2) (2-8)

with A = 5.3 x 10'3 mm”. This improved the particle identification in Figure 2.11.

Moderately clean isotope resolution was obtained for helium isotopes.
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Figure 2.10: Particle identification in the central region of a light particle telescope

as a function of p’, where p is the radial distance from the center of the detector.
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Chapter 3

Data Analysis and Reduction

In this chapter, the data for single particle inclusive spectra and two particle coinci-

dence cross section will be presented. In the first section we discuss the data for single

particle kinetic energy spectra, and fits to the data using a “moving source” parame-

terization. The second section of this chapter deals with the two particle coincidence

cross section. The detection and resolution of the hodoscope will be described as

well as the details of fitting the resonance curves using compound nucleus R-matrix

theory. We next present the data for the particle decay of excited lithium, beryllium,

boron, carbon, nitrogen and oxygen isotopes. There we describe details relevant to

the extraction of the relative populations of particle unstable states in these nuclei.

29
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I Single Particle Inclusive Cross Sections

Single particle inclusive energy spectra for hydrogen and helium isotopes are shown in

figure 3.1. Kinetic energy spectra for selected isotopes of lithium, beryllium, boron,

carbon, nitrogen, and oxygen are given in figure 3.2.

All the spectra in figures 3.1 and 3.2 are Maxwellian in shape, display maximum at

energies close to the exit channel Coulomb barrier and then decrease exponentially at

higher energies. Single particle inclusive energy spectra have been measured for 1“N

induced reactions on Ag over a wide angular range and for a variety of incident energies

[Fiel 89]. These measurements demonstrate that the emission from the equilibrated

compound nucleus makes only a small contribution to the energy spectra measured at

forward angles. For the present data set, this can be illustrated‘by fitting the energy

spectra using a “moving source” parameterization given by

(1:122:13 = ; Nq/E - Uc exp{—[E — Uc + E, — 2(/E,-(E — Uc) cosO]/T,-} (3,1)

where, N,- is a normalization constant, U6 is the kinetic energy gained by the Coulomb

 

repulsion from the residue assumed for simplicity to be stationary in the laboratory

system, and T,- is the kinetic temperature parameter of the ith source. E,- = §mv§,

where m is the mass of the emitted particle and v, is the velocity of the ith source

in the laboratory system. Fits to the data are shown by the solid lines in figures 3.1

and 3.2, obtained with the use of three “moving sources”, and the parameter values

for the fits are listed in Table 3.1.

In calculations of the efficiency for detecting decay of the unstable fragments, the

angular distributions of the excited fragments are assumed to be the same as that for

the corresponding stable nucleus. Therefore, accurate fits to the single particle kinetic

energy spectra are required for the extraction of the relative populations of the excited

states of IMF’3. These fits have also been used in the simulations of the backgrounds
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Figure 3.2: Inclusive differential cross section for selected isotopes of Lithium, Beryl-

lium, Boron, Carbon, Nitrogen and Oxygen are shown for laboratory angles listed in

the figure. The solid lines represent “moving source fits”.
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Table 3.1: Source parameters of three moving-source fits. The Coulomb repulsion

energies UC and the temperature parameters T,- are given in units of MeV, and the

normalization constants N, are given in units of pb/(sr MeV3/2).

 

Uc T1 Ul/C N1 T2 UQ/C N2 T3 v3/c N3
 

m
e
a
t
:

  

6.23

8.56

8.33

13.08

12.82

15.54

16.00

15.81

20.66

20.24

30.41

29.86

40.97

40.67

40.15

46.15

45.87

50.74

50.25  

3.46

4.04

5.49

5.35

5.38

6.14

9.17

19.57

8.97

10.24

9.09

9.09

7.72

7.38

9.53

10.43

10.43

12.22

12.22  

0.036

0.03

0.035

0.04

0.045

0.043

0.064

0.023

0.06

0.055

0.053

0.053

0.054

0.053

0.051

0.061

0.061

0.057

0.057  

33490

4372

1421

530.5

11060

96.32

74.54

79.10

14.98

32.98

0.63

24.62

7.12

33.17

7.31

0.57

6.21

4.25

1.43  

9.27

12.07

12.24

12.80

12.91

14.49

16.73

4.64

18.77

17.97

18.90

18.90

16.82

16.28

14.97

16.69

16.69

3.42

3.42  

0.168

0.12

0.14

0.158

0.138

0.116

0.114

0.089

0.107

0.114

0.113

0.113

0.105

0.091

0.101

0.118

0.118

0.091

0.091  

618

164

892.7

411.1

2101

28.82

50.96

121.2

14.87

12.53

0.40

9.33

2.46

7.15

1.25

0.13

1.41

31.08

19.36  

3.98

7.30

6.11

4.96

6.43

9.56

11.22

12.17

11.08

10.89

11.33

11.33

12.02

13.75

16.11

9.88

9.88

12.34

12.34  

0.27

0.223

0.242

0.26

0.232

0.193

0.207

0.139

0.198

0.200

0.207

0.207

0.193

0.176

0.155

0.194

0.194

0.114

0.114  

4159

1862

804.5

1601

4289

32.16

106.2

83.81

57.83

41.32

2.54

55.98

13.62

12.57

0.84

2.06

11.93

1.24

0.06
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to the coincidence yields from particles which are emitted independently and are not

the decay products of a heavier particle unstable IMF. Details of the calculation of

the efficiency function and the coincidence background are given in the next section.

Although the fragment kinetic energy spectra are rather well described by the

superposition of the contributions from three sources, the range of angles covered

in this experiment was not sufficient to unambiguously establish the parameters of

these sources. Indeed, the representation of these spectra by the superposition of an

equilibrium plus two non equilibrium sources is an approximation which we justify

mainly by the accuracy of our fits. As an illustration of the decomposition into

equilibrium and non equilibrium sources imposed by our fits, we show the measured

energy spectrum for 10B fragments as the solid points in figure 3.3 along with the full

three moving source fit (solid line) and the best fit assumptions for the equilibrium fit

(dashed line). Consistent with [Fiel 89], these fits suggest that equilibrium emission

plays only a minor role in the emission of the more energetic fragments. The precise

magnitude of the equilibrium contribution, however, can not be established without

additional measurements at backward angles.
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II Two Particle Coincidence Cross Sections

A Detection Efficiency and Resolution

Products from the decay of particle unstable nuclei are detected as coincident par-

ticles. The energies of the coincident particles are combined to obtain the relative

energy and, by accumulating all the measured events, the relative energy spectrum

14°41'25”) is obtained, E“me, being the measured excitation energy. This total excita-

tion energy spectrum has contributions from the following two parts :

Kermit...) = chEr'La) + YbaCk(E:nea) (32)

where Yc is the yield from the decay of the particle unstable nucleus, and Yback is the

background yield due to coincidences which do not proceed through the decay of the

particle unstable nucleus being investigated.

The coincidence yield, YC can be related to the normalized excitation energy spec-

trum |dn(E‘) /dE" la in the rest frame of the unstable fragment for decay into channel 0

by the equation,

dn(E‘)
dE‘ (3.3) 

mea mea
YC(E‘ )=/dE“e(E‘,E‘ )

  C

where 6(E‘,E;m) is called the efficiency function, E‘ being the actual excitation

energy. The decay yield |dn(E‘)/dE“|c is normalized so that f°° dE"|dn(E")/dE"'|C is

the total yield into channel c divided by the total yield of the corresponding particle-

stable nucleus. A detailed description of the decay yield will be given in the next

subsection.

The efficiency function is calculated for the complete detector geometry of the

hodoscope by taking into account the position and energy resolutions of the tele-

scopes. It also includes the target beam spot size, multiple scattering and energy

loss in the target and the gas detector windows. This calculation assumes that the
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particle unstable nucleus decays isotropically in its rest frame, and the energy and

angular distributions of the excited nucleus are identical to those measured for the

corresponding particle—stable nucleus. Details of the efficiency calculation is given in

Appendix B.

As an example, let us consider calculations for the decay 14N —»13C+p for 14N

induced reactions on ““Ag at E/A = 35 MeV. In these calculations, the energy

spectra and angular distributions for particle unstable l4N nuclei are assumed to be

the same as those measured for stable l4N nuclei, shown in figure 3.2. The geometry

and resolution of the hodoscope elements, and target and detector foil thicknesses were

taken from conditions encountered during the experiment. Results of calculations for

the total efficiency

em) = / dE.:... 453213;...) (3.4)

and the root mean square resolution

tot e u a s- : 2 1/2

UE‘ = ( demea 6(El ’Emea) (Emea — E ) ) (3'5)

are shown in Figure 3.4. The total efficiency (shown in upper part of the figure) is

normalized to 1 at the relative kinetic energy of 0.42 MeV, which corresponds to the

2'(E" = 7.97 MeV) excited state in 1“N. The resolution shown in Figure 3.4 is mainly

limited by the position resolution of the individual telescopes.

The position resolutions of the gas counters for the LP and HF telescopes were

adjusted for getting optimum fits to the coincidence yields. We have used position

information from the gas detectors in the expression for PID (see equation 2.8) in

order to achieve good particle identification for H and He isotopes using the LP

telescopes. The regions close to the periphery of the silicon detectors, where only

poor isotopic resolution could be attained, were avoided by utilizing software gates

on position information. The efficiency function, turned out to be somewhat sensitive
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Figure 3.4: Calculated total efficiency (upper part) and rms resolution (lower part)

for the detection of p-“C pairs resulting from the decay of particle unstable 1“N. The

efficiency has been normalized to 1 at E“; = 0.42 MeV (E‘ = 7.97 MeV).
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to the position resolutions of the gas counters. The uncertainties in the efficiency

calculations due to the uncertainties in the position resolution of the gas counters

were therefore, estimated and included in establishing the uncertainties in the excited

state yields.

The background yield, mek(E' ) which appears in equation (3.2) can be written
men

in an approximate form as

Yback : C'12 0102“ + Rback(Erel)la (3'6)

where C12 is a normalization constant, 01 and 02 are the single particle inclusive cross

sections for particles 1,2 interpolated by moving source fits as discussed in the last

section, End is the relative energy of the two particles, and [1 + Rbuk(Ere1)] is the

background correlation function. The background correlation function is assumed to

vanish for Erel —> 0 and to go to unity at large E"; where final state interactions

can be neglected. To get an approximate description of the background, we have

parameterized the background correlation function as

1+ Rback(Erel) = 1— exp{—(E' — Eb)/Ab} . (3.7)

where Eb is the threshold energy for an excited nucleus to decay by a given decay

channel and the fit parameter Ab governs the width of the minimum at Eb.

The accuracy of the above approximation can be easily assessed by constructing

the total correlation function, [1 + Rtot(E,.el)], defined by

Kot(Erel) = C'12 0102 [1 'i' Rtot(Erel)] (38)

and investigating the correlation function at relative energies for which no particle

unstable states exist, and consequently at those energies R,0,(E,e1) = Rback(E,¢1). The

experimental correlation function [1 + R,0,(E,._.1)] is obtained by summing both sides

of the above equation over all values of energies of the two particles corresponding to
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a fixed relative energy Erel and choosing Cu such that the total correlation function

is unity at large relative energies.

As an example, Figure 3.5 shows the experimental total p-13C correlation func-

tion. Between 7.55 S E" S 10.27 MeV, 16 states decay only by proton emission. The

distinct structures observed at E“ = 7.97, 8.49, "~90, z9.4 and $810.1 MeV corre-

spond to groups of excited states with J 2 2; additional states in this region with

J = 0 are not strongly populated. Consistent with Equation (3.8) the correlation

function is very close to unity between the peaks and at large relative energies where

the background correlation is dominant. It also decreases to zero for small Era. The

shape of the background correlation function resulting from the above parameteri-

zation (equation 3.7) is shown by the dashed lines in the figure. From this shape,

Rback(Erel) may be determined and the background yield can be subtracted from the

total yield. The sensitivity of the excited state yield to uncertainties in the back-

ground subtraction may be explored by making different choices for the background.

One such choice is depicted by the dotted lines in the figure. Details of the calcula-

tions for the correlation functions and the backgrounds are provided in the appendix

B.
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Figure 3.5: p-“C correlation function. The excitation energy in the 1‘N nucleus is

indicated on the top. The dashed curve indicates an estimated background and solid

curve is a fit described in the text. The dotted curve shows an alternate description

of the background.
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B Fits to the Resonances : R-matrix theory

To describe the experimental yield for particle unstable nuclei resulting from two par-

ticle coincidence cross sections, one needs the excitation energy spectrum |dn(E')/dE‘ lc.

For this purpose, one needs to be able to describe the population of an excited state

which can have a total width that is comparable to the temperature of the ensemble

of such fragments.

To find this expression we must consider the modifications of the phase space

density of the decay products due to their mutual interactions. To illustrate these

modifications, we consider the interactions of two spinless non-identical particle. The

density of two particle states containing one of each of the decay products can be

written as

was) = mu?) - M) (3.9)

-o

where pT(P) is the density of states associated with the motion of the center-of-mass

of these particles, and p,((j’) is the density of states for the relative motion of the two

particles. Here 131, [9'2 are the momenta of the two detected particles, cf is the relative

momentum and P is the total momentum. The density of states for center of mass

motion pT(13) is not affected by the mutual interaction of the two decay products.

We need consider only modifications of the density of states for the relative motion

p,.(cj'). If one considers the number of states in a box of volume V about the center

of mass of the two particles and requires the relative wave function to vanish at the

boundaries of the box, one can obtain

ME) = pom + AM) (3.10)

where

pom = .5— (3.11)
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is the density of states for non-interacting spinless particles, and

Apm = $2321 + 1);!!- (3.12)

describes the modification of the phase density due to the interactions between the

two particles [Huan 63]. In this expression, 6; is the scattering phase shift for the

partial wave with orbital angular momentum 1. Additional quantum numbers are in

general associated with the phase shifts. Each of these phase shifts can contribute to

Ap. If one assigns an index i to each phase shift, one can generalize eq. (3.12) for

particles with non-zero spins :

06,-
2(2J;+1)5;. (3.13)

>
I
I
H

AIM) =

If the two particles are in contact with a thermal reservoir with a tempera-

ture T, the phase space will be populated in accordance with the Boltzmann fac-

tor exp(—E"/T). For the phase space of relative motion, one expects a probability

distribution which has the form [Land 80] :

.. q2 _, q? .. qz

pr(<1)exp( mil-Ii.- ) = po(q)exp( v2? ) +Ap(q)exp( -2#—T ), (3-14)

where p is the reduced mass of the two body decay channel. The latter term in

eq. (3.14) arises from the interactions between the two fragments. If one isolates

the portion 6,”, of the total phase shift 6,- which corresponds to the modifications of

the two particle phase space due to long lived resonant interactions between the two

fragments, one obtains an expression for the population of resonant excited states.

For a system with a single open channel, the expression for the decay spectrum of

the excited nucleus becomes

a6i,res

n- : 1

dnfE l = stable Zexp< —-1; ) ;r-(2J, -+- 1) 8E" , (3.15)

dE“

where Cstable is a constant fixed by the requirement that f°° dE"|dn(E"‘)/dE"‘|c is

 

 
 

 C

the total decay yield into channel c divided by the total yield for the corresponding
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particle-stable nucleus. Practical details of the evaluation of Gable are given in the

discussion of the relative populations later in this section. To proceed further, we

need an expression for 86,-,"8/613“. We must also consider the possibility that more

than one decay channel may be open for the excited states we encounter.

Most of the phase shifts for the formation of particle unstable light nuclei are

already experimentally known. Many are parameterized using the R-matrix theory

of nuclear reactions [Lane 58]. We now recapitulate the essential elements of this

theory. Central to this theory is the R-matrix, RW: which is the multichannel analog

to the logarithmic derivative of the radial wave function 112”. One can relate the

external solutions of the Schrodinger equation to the internal solutions using the

R-matrix via the equation.

(Myau)'1/2 z/2V(a,,) = Z(M,,:a,,:)‘1/2 Ru”! ay’%¢V’(r‘/’) J (3.16)

where My is the reduced mass of the decay channel, a, is the matching radius (channel

radius) which is usually channel dependent, and 212,, is the radial wave function for that

part of the total wave function which is in channel 11. The symbol V is a shorthand

which denotes the many quantum numbers (e.g., c, l, m, channel spins etc.) required

to completely specify the decay channel. The index c designates two specific daughter

isotopes produced by the decay of the particle unstable nucleus. Due to the existence

of particle unbound states in the fragment, RW: is often expressed as a sum of poles :

7M7»!

W: —— 3.17

. 2w < >

corresponding to resonances at E“ z E,\. The terms 7)”, are the reduced widths

which contain information about coupling of the resonance A to the decay channel

V. In principle, the locations of the poles EA correspond to the energy eigenvalues

of eigenstates z/i,\,,(r) which satisfy Schrodinger equation at r < a” in addition to a
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boundary condition

= BV¢»A,,(a,,), (3.18)
r=ay 

d

.3; [ W) 1

at the channel radius a,,, with the boundary value 3,.

Within the R-matrix theory, the scattering matrix S,,,,; is given by a matrix ex-

pression

s = (ka)1/20-1[1 — R(L — B)]‘1[1 — R(L" — 13)]1 (ka)‘1/2 (3.19)

(kafi = (mats...

0‘1 = 036...,

L = LAM,

B = BV6VU'3

and I = I,,6,,,,: (3.20)

are matrix representations for channel dependent quantities. Here, 16,, is the channel

wave number, 0,, and 1,, are the outgoing and incoming solutions of the radial equation

for channel V, and

 

_ fl _ UL)"
L,, — a,, 0,, — a,,(1u)* (3.21)

is the corresponding logarithmic derivative. Values for a,, and 8,, are not apriory

specified by the R-matrix theory. In practice, for charged particle decay channels, a,,

is often chosen sufficiently large that the outgoing and incoming radial wave functions

0,, and 1,, can be accurately approximated by

1,, = (Gu—iFu)exp(iw,,) (3.22)

~ 0,, = (Gu+iF,,)exp(—iw,,) (3.23)
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where F and G are the regular and irregular Coulomb wave functions and 02,, is

the reduced Coulomb phase shift. The choices for B,, and a,, are not by themselves

important, but they do define a convention which must be constantly followed because

8,, and a,, are coupled to the values of EA and 7;, obtained from fitting the equation

(3.19) to low energy scattering data. As a consequence, the parameters of a resonance

are not completely specified by EA and 7” alone, and one must consistently follow

the conventions for B,, and a,, when fitting R—matrix expression to the experimental

data.

Little can be gained by further discussing the R-matrix theory in its full generality.

One must now choose limiting cases which are relevant to this dissertation.

One-level approximation

When E" is near an isolated resonance at energy EA, the R-matrix is often approxi—

mated by

RVU’ : RSV“

”I'M; ° 7111'
= __ 3.24

E; - E“
( )

where the pole reflects the influence of the resonance at E" = EA. Substituting

equation (3.24) into (3.19), the one-level formula for the S-matrix becomes

i(I‘AuI‘/\u’)1/2

. 3.25

EA+A,\—E'—%I‘,\ ( )

 

8111/ = eXP[i(0~'u + wu’ _ (by _ 4512’“ 6qu ‘i'

where (b is the hard sphere phase shift. Here 6W: is the Kronecker delta function. The

width FM, and the energy shift A)“, can be expressed in terms of the reduced width

2
’7» as follows

1“,, = 2P,~,§,,, r, = 21“,, (3.26)

A, = = —— 2(5), — B,)7§,,. (3.27)
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Here I‘), is the total width of the resonance. P,, is called the penetration factor which

is related to the probability that the particles in the exit channel escape from the

interaction region. Mathematically P,, and 5,, can be expressed in terms of F and G,

the regular and irregular solutions of the radial wave equation in the external region

and their derivatives, all evaluated at channel radius a,,. One obtains

Pu = PAL-zirmzu and u = PA;1(8AV/apllr=au (3°28)

where A,, = F3 + 0,2,,

and p = kr.

The inclusion of the factor A, in equation (3.25) has the consequence that the level

energy EA is different from the resonance energy Em of the level /\ and is given by

[Bark 72] :

E) = Ere, + A). (3.29)

From equation (3.25) it is clear that the S-matrix has off-diagonal terms which

mix channels V and V’. To obtain the modifications of the phase space density due to

unbound resonances, the S-matrix must be diagonalized. In the diagonal representa-

tion, the S-matrix in the resonant channel becomes

EA+AA—E'+%FA
= . . 3.30

EA+Ai—E’—%I‘A ( )

 S = exp(2i6,\,res)

Using eq. (3.30) in eq. 3.15, one can obtain a thermal expression for the excitation

energy distribution of this isolated level :

 

   

dnA,tot(E.) _ E. (QJA +1)

(IE. — Cstable eXP( - T ) 71'

PA/2 [ CIA; EA-I-AA—E” (IPA
_ 3.31

X(EA+Ai—E')2+%I‘i dE‘+ I‘A dE‘ ( )

This state will decay to all available channels V. The branching ratio which governs the

decay to the original channel V is equal to the absolute value of the coefficient which
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describes the contribution to the resonant channel from the Vth original channel.

Using the S matrix of the eq. (3.30) we obtain the branching ratio BR,, for the Vth

channel

F 1.
BR, = A . (3.32)

FA

 

For the excited states considered in this dissertation, a given pair of final decay

products, 0, are emitted with a unique partial wave 1,, and channel spin zc. Thus the

index V becomes redundant and the decay spectrum for the channel c becomes

 

 

 
 

 

dn,(E-) = N. exp( _E" ) (2.11 +1)

dE“ c T 7"

FAc/2 [ LIA) EA+A,\—E' (IF),

X (EA + AA — E’)“ + iri 1— (113‘ + PA dE“ ”3.33)

where the constant Cmble has been replaced by another constant NA which depends

specifically on the level A. In the absence of sequential feeding from heavier particle

unstable nuclei, the value of NA should be equal Cmble for all states. Values for NA

for individual excited states can be assessed from fits to the experimental data, and

compared to the prediction of statistical model calculations. Further details of these

fitting procedures are given below in the discussion of the experimental extraction of

the relative populations of excited states.

In many cases the resonance parameters I", and A1 depend only weakly on the

energy, then a Breit-Wigner description of the S-matrix is frequently used. In this
 

case, F), and AA are constants, and |dn/dE"'|c becomes

dn)((E")

dE*

 (3.34) 

=N ex (_E") (2J,+1) r,/2 I};

A p T 7r (Em-E‘)2+§P§ r,‘ C

where Eres is the resonance energy for the level A.
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The Two-level approximation

The analysis of overlapping levels with the same spins and parities is more compli-

cated. For the purpose of this dissertation, however, it is only necessary to obtain

the appropriate expressions for the case of two overlapping levels and two open decay

channels. The R-matrix for this case is given by ([Lane 58] page 329) :

_ 71V71V’ 72V72V'

RW, _ _El_ E + —E2_ E' (3.35)

The relationship between R-matrix and S-matrix given in equation (3.19) can be

written in the form

S = 9W0 (3.36)

where

n = 11/1’0-1/2 (3.37)

and the components of the matrix W in the case of two levels with two open channels

are

W11 = 1 + 2iP,[R11— L3(R11R22 — Rf2)]d‘l, (3.38)

W22 2 1 + 2iP2[R22 — L?(R11R22 — Rf2)]d’1, (3.39)

W12 = W2, = 23P,‘/°R,,P,‘/°d-1, (3.40)

where

d = (1‘ RuLl’Xl — 322143) ‘ LiRing (3-41)

with L3 = L,, — 8,, = 5,, + iP,, — B,,. (3.42)

To find stationary wave solutions in both the channels, we need to solve the

eigenvalue equation

(a = we (3.43)
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for the eigenvectors 5' corresponding to the eigenvalues C. This yields the two possible

eigenvalues :

 

1

c1 = 5{ W.. + W22 — \/(W.. + W22)? — 4(W11W22 — W12W21) } (3.44)

 

1

C2 = -2—{ W11+ W22 + ,/(W.. + W22)? — 4(W11W22 — W12W21) } (3.45)

for the two levels considered. By substituting these eigenvalues in equation (3.43),

the eigenvectors ii are obtained. The branching ratios for the decay from one of the

levels A by a channel V(=l,2) are then

(BR), _ = _ W?“ (3.46)
““1 IQA — I’Vul2 + III/'12]2

 

ICA — I’Vul2

( ),\,u_2 I“ _ Wlliz + |W12|2 ( )
 

The two-level decay spectrum for the decay into channel V is given by

dn(E"‘) _ 13* (2J+1) 1dr, iii }
dE' — Nexp( — T ) _‘27ri { C1 dE‘ C2 dE*(BR)2”

. (3.48)

 

(BR)1V +
 

 

 V

where J is the spin of the levels considered. We use a single normalization constant

N for this case because the experimental data do not allow a separate determination

of the emission temperature T and two normalizations.

Evaluation of the Population Probability

In general, the decay spectrum consists of a sum of contributions from the various

levels :

dn(E") dnA(E"')

dE" dE’

By summing the decays from one of the levels in eq. (3.49) over the open decay

= Z (3.49)

C A
   C

channels, one obtains the excitation energy distribution of the level considered :

dTl,\(EI)dnA.tot(E*) _ Z:

dE“

. (3.50)
dE‘ C
 

  C
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If the branching ratios to the various channels are known, a measurement of a single

dnA,tot(E‘)

dE'

Following [Naya 89], one can define a “population probability”, n)1, for this level.

decay channel is sufficient to evaluate

By integrating over excitation energy

1 (In; tot(E*)

= —— dE“ —’————. .

"A (2.1, + 1) / dE‘ (3 51)

The spin degeneracy factor (2J1 + 1) in the denominator of the eq. (3.51) reflects

an unfortunate choice of notation adopted in [Naya 89] which must be kept in mind

during subsequent discussion of the measured and calculated population probabilities.

For the majority of the excitation energy spectra considered in this dissertation,

the excited states are relatively narrow and the Boltzmann factor exp(—E"/T) varies

little over the resonance line shape. Then the Boltzmann factor can be approximated

by exp(-E,es/T), and taken out of the integral. The population probability becomes

 

  

 

n), = N, exp(—E‘/T), (3.52)

. . . dn(E‘) . . .
and m the limit that E can be approx1mated by a set of Brett Wigner

resonances, one obtains,

dn(E") (2J1 +1) FA/Z PAC
__ = —, 3.53

dB“ . 2,: * r (E... - E')2 + m r. ( ) 

and n; can be evaluated directly.

Regardless of the form of the fitting expression, YC(E;;M) is obtained by folding

drift) against the efficiency function 6(E‘, Egg) according to eq. (3.3). Because

of the manner in which parameterization of the single particle inclusive spectra are

 

  

used to evaluate the efficiency function, the population probability n1 is equal to the

yield for the state A divided by the total yield of the particle stable nuclei for the

isotope being considered.
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III Excitation Energy Spectra for Particle Un-

stable Nuclei

Particle Unstable States of 5Li

Figure 3.6 shows the correlation function for the decay 5Li —+ a+p. The lower scale

in the figure gives the relative energy of the proton and a particle, and the excitation

energy of 5Li is given in the upper scale. At low relative energies, there is a narrow

peak [Poch 85b] at E,e1=0.19 MeV due to the two stage decay of 9B, where 9B“, -¥

p+8Be8,,. —>p+(a+a). To estimate the contamination due to the 9B3, decays, a Breit

Wigner resonance of width I‘ = 0.055 MeV was included in the fit. The broad peak

at 1 MeV S Ere; S 3 MeV is due to the decay of particle unbound ground state of

5Li (J1r = §-,I‘ = 1.5 MeV, I‘p/I‘ = 1.0) [Ajze 88]. Because the state is rather wide,

we explicitly included the Boltzmann factor in fitting this peak. A value of T = 3

MeV was assumed in the fit. The population probability was extracted according to

equation 3.51 and by using the Breit-Wigner formalism given by equation 3.34. The

value of nA extracted for this state are not very sensitive to the value of T used in this

fit. Because 5Li has no particle stable states, the efficiency was calculated using the

energy spectrum for particle stable 6Li. As a consequence the population probabilities

given in table 3.2 are defined relative to the particle stable yield of 6Li. The solid line

in the figure shows fits to the data assuming the background depicted by the dashed

line. The uncertainties in this yield were assessed by varying the background and also

by varying the position resolution assumed in the calculation of efficiency. One such

alternate background is shown by the dotted line in figure 3.6.
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Figure 3.6: Correlation function as a function of relative energy for a-p. The solid

curve is the fit to the data assuming the background designated by the dashed line.

The dotted line shows an alternate background.
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Table 3.2: Spectroscopic information for Lithium and Beryllium isotopes which was

used to extract excited state populations. Branching ratios Fc/I‘ are given in per-

centage. Except for 5Li, relative populations n ,\ are defined relative to the particle

stable yields for the same nucleus. The group structure is explained in the text.

 

] TGroup ] E‘(MeV) ] J1r ] I‘cm(MeV) I Pairs ] I‘c/I‘ I Relative population, m]
 

 

 

 

 

 

 

 

 

 

 

 

 
 

       

5Li 1 g.s. %— 1.5 a-p 100 a) 0.347 :l:0.03

2 16.66“ =3“ 0.20 3Hed 86") a>5.3><10-34 1.4><10--3

6Li 1 2.186 3+ 0.024 a-d 100 0.154001

2 4.31 2+ 1.7 a-d 97 0.0594002

5.65 1+ 1.5 a-d 74

7Li 1 4.63") g‘ 0.093” a-t 1005) 0.04742.5x10-3

2 6.68”) 3‘ 0.875”) a-t 1006) 0.034 7x10-3

7.466) 3' 0.089”) wt 18”)

3 11.24 3‘ 0.272 6He-p 59 4.8x10-341x10-3

7Be 1 457") g‘ 0.175“ a-3He 100 0.05245x10-3

2 6.73”) 3‘ 1.25) a—3He 1005) 0.0314001

7.21") 3‘ 0.5” a-3He 3b)

3 7.21 3’ 0.5 6Li-p 97 0.021435x10-3
 

 
“l Values of nA for 5Li are defined relative to the the particle stable yields of 6Li.

I” Analysis performed using R-matrix parameters given in the text.
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The d-3He correlation function is shown in figure 3.7. The relative energy of d-3He

is shown in the lower scale and the upper scale gives the excitation energy of 5Li. A

pronounced peak corresponding to the 16.66 MeV state in 5Li (J1r = %+,I‘ = 0.20

MeV) [Ajze 88] can be seen at Ere, 20.4 MeV. We used the R-matrix expression for

decay from a single level (equation 3.33) to describe this state which has two decay

channels : 5Li—>d+3He and 5Li—>p+a. The resonance parameters for this state are

E,\ = 129 keV, 72(d) = 780 keV, 1,, = 0, ad = 7 fm, 72(p) = 12 keV, [p = 2, ap = 7

fm [Ajze 79], with boundary conditions 8,, = Bp = 0. The resonance parameters

however, gave a peak in the excitation energy spectrum which occured at about 280

keV lower in relative energy than the peak observed experimentally. Because the d and

3He have different charge to mass ratios, distortions of the excitation energy spectra

can result from Coulomb final state interactions with the residual nucleus [Poch 86b],

but such effects have not been explored qualitatively for the d-3He system. Also

included in the fit are contributions from the wide state at E" = 20 MeV. The solid

curve in the figure shows fits to the data by assuming the background given by the

dashed line. One alternate background is shown by the dotted line. As in the case

of the 5Li ground state, the population probability n), of ”this state listed in table

3.2, is defined with respect to the yield of stable 6Li nuclei. The uncertainties in

the population probability reflect uncertainties due to background subtraction, and

uncertainties in the efficiency due to uncertainties in the position resolutions of the

gas counters.

Particle Unstable states of 6Li

The correlation function for the decay 6Li—>d+or is shown in figure 3.8. An iso-

lated peak corresponding to the 2.186 MeV state of 6Li (J1r = 3+,I‘ = 24 keV,

I‘a/I‘ = 1.0) [Ajze 88] is observed at Ere, z 0.71 MeV. Two overlapping peaks at 4.31



56

E*(5L1) (MeV)

18 20 22 24

3 "'I"r'l""1v*"1

. (3/2”) natAg(14N,d3He)X

 

' ¢,.. -+ .

4 . ., ¢¢ +

.....................
+4... 

 

Figure 3.7: Correlation function as a function of relative energy for 3He-d. The solid

curve is the fit to the data assuming the background designated by the dashed line.

The dotted line shows an alternate background.
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Figure 3.8: The d-a correlation as a function of the relative energy. The fits to the

resonances is shown by solid lines assuming the background shown by dashed line.

The dotted curve shows as an alternative form of the background.



58

MeV (J1r = 2+,F =1.7 MeV, I‘a/F = 0.97) and 5.65 MeV (J1r =1+,I‘ 21.5 MeV,

Fa/I‘ = 0.74) [Ajze 88] were associated with the second maximum in the 6Li spectra.

Both the states at 4.31 MeV and 5.65 MeV are sufficiently wide, and are affected

by line shape distortions coming from the Boltzmann factor. We therefore fitted the

full spectrum by using a fixed value for T = 4 MeV using one normalization value

for the state at 2.186 MeV and a second one for the states at 4.31 MeV and 5.65

MeV. The population probabilities were extracted according to equation 3.51 using

the Breit-Wigner formalism given by equation 3.34. The fit shown by solid curves

in the figure was obtained by assuming the background shown by the dashed line.

One alternate background, used for assessing the systematic error, is depicted by the

dotted line. Values for the extracted population probabilities ni, with respect to the

ground state yield of 6Li, are listed in table 3.2 for the two groups of states. The un-

certainties associated with these probabilities include uncertainties in the background

estimation, and also the uncertainties arising from the efficiency calculation because

of the uncertainties in the position resolutions in the gas detectors.

Particle Unstable states of 7Li

The correlation function for the decay TLi—r a+t is shown in figure 3.9. The peak

marked by 7/2‘ and located at Ere) = 2.1622 MeV, corresponds to the 4.630 MeV

excited state of 7'Li (J1r = §_,I‘ = 93 keV, I‘a/I‘ = 1.0) [Ajze 88]. This peak is

fitted by using the R-matrix theory for decay from a single level (equation 3.33). The

relevant parameters for the resonance are EA=2.80 MeV, 72 = 1.3 MeV, I = 3, a = 4

fm, B = —3 [Spig 67]. A broad structure can be seen in the a+t spectra of figure 3.9

corresponding to two overlapping states at E‘ = 6.68 MeV (J1r = g: F = 875 keV,

I‘a/I‘ = 1.0) and E“ = 7.46 MeV (J’r = %-,I‘ = 89 keV, I‘a/I‘ = 0.18) [Ajze 88]. The

state at 6.68 MeV has only the a+t channel open. The threshold for neutron decay
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Figure 3.9: t-a correlation function as a function of relative energy. Location and

spins of particle-unstable states in 7Li are indicated. The insert gives an expanded

view showing the second maximum. The solid curves are the fits to the data assuming

the background designated by the dashed line. The dotted line shows an alternate

background.
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is at E' = 7.25 MeV, and the state at 7.46 MeV decays by both a+t and 6Li+n

channels. Because these states are overlapping and have the same spins and parities,

the phase shift for these states were analysed by using the R-matrix formalism for

two overlapping levels, equation 3.48. For simplicity, we designate the levels at 6.68

MeV and 7.46 MeV as levels 1 and 2 respectively in equation 3.48, a and neutron

channels as channels 1 and 2, respectively. The R—matrix parameters are (E; = 5.730

MeV, 72(0) = 0.98 MeV, 10, = 3,00, = 4.4 fm) [Ivan 68] for the level at 6.68 MeV,

and (EA 2 5.188 MeV, 72(0) = 0.024 MeV, IO, = 3,aa = 4 fm, 72(n) = 1.2 MeV,

1,, = 1,a,, :2 4 fm) [Spig 67] for the level at 7.46 MeV. These resonance parameters

were obtained with the boundary conditions 8,, = —3 and Bn = —1. The excitation

energy spectrum was fitted with two normalization parameters, one for the state at

4.63 MeV and another for the doublet at 6.68 and 7.46 MeV. The solid curve in the

figure shows the fit to the data assuming the background designated by the dashed

line. The resonance at E“ = 9.67 MeV was included in the fit to better describe the

data. The dotted line shows an alternate choice for the background which was used

for the estimation of systematic errors. The population probabilities n,\ are listed

in table 3.2. The uncertainties in the population probability reflects uncertainties in

the background as well as uncertainties in the efficiency due to uncertainties in the

position resolution of the gas detectors.

Figure 3.10 gives the correlation function for 7Li—-+6He+p. The peak seen at

En.) = 8.77 MeV correspond to the proton decay of a state at E“ = 11.24 MeV

(J1r = g: F = 0.272 MeV, I‘p/I‘ = 0.59) [Pres 69, Ajze 88]. This peak is fitted using

the Breit-Wigner formalism (equation 3.53). The solid curve shows the fit to the

data assuming the background depicted by the dashed line. The dotted line shows an

alternate choice of the background used for the estimation of systematic errors. The

population probability n1 is listed in table 3.2. The uncertainty in m reflects both
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Figure 3.10: p-“He correlation function as a function of relative energy. The excitation

energy in 7Li is indicated on the top. Location and spin of a particle-unstable state

in 7Li is shown.
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the uncertainty in the background estimation and the uncertainty in the detection

efficiency as discussed earlier.

Particle Unstable states of 7Be

The correlation function resulting from the coincidence of 3He+a is. given in figure

3.11. Because of isospin symmetry, the analysis of the states in 7Be is similar to

the analysis of the 7Li states. The peak at E" = 4.57 MeV (J’r = §-,I‘ = 175

keV, Fa/l" = 1.0) [Ajze 88] was analysed by using the R-matrix formalism for decay

from a single level (equation 3.33). The corresponding R-matrix parameters are

(E; = 3.885 MeV, 72(0) = 1.595 MeV, 10:3, ac, = 4 fm, Bo, = —3) [Spig 67]. The

states at E“ = 6.73 MeV (J’r = g-J‘ = 1.2 MeV, Pa/I‘ = 1.0) and 7.21 MeV

(J’r = g-, F = 0.5 MeV, Fa/l‘ = 0.03) [Ajze 88] were analysed by using the R-matrix

formalism for decay from two nearby levels (equation 3.48). The relevant parameters

for the level at 6.73 MeV are (EA=9.007 MeV, 72(a)=3.1 MeV, 10, = 3,00, = 4

fm), and for the level at 7.21 MeV are (E; = 5.993 MeV, 72(0) = 0.023 MeV,

Io, = 3,010, = 4 fm, 72(p) = 1.2 MeV, [p = 1,ap = 4 fm) [Spig 67, Bark 72]. The

corresponding boundary conditions are of Ba, = —3 and BD = —1. Solid curve in the

figure shows the fit to the data assuming the background designated by the dashed

line. The dotted line shows an alternate choice of the background used to estimate

the systematic errors. The excitation energy spectrum was fit assuming one free

parameter for the normalization of the state at 4.57 MeV and another for the doublet

at 6.73 and 7.21 MeV. The relative populations In for the first state and the second

group of states are listed in table 3.2. The uncertainties in n) reflect the uncertainties

due to the background estimation and uncertainties in the efficiency calculations due

to the uncertainties in the position resolutions of the gas detectors.

The correlation function for 6Li+p is given in figure 3.12. A clear peak can be seen
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Figure 3.11: Correlation function as a function of relative energy for 3He-a. The solid

curves give a fit to the data with the background shown by the dashed lines. The

dotted line shows an alternate background.
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Figure 3.12: p-“Li correlation function as a function of relative energy. Location and

spins of a particle-unstable state in 7Be is indicated. The solid curve shows a fit to

the data with the background designated by the dashed line. The dotted line shows

an alternate background.
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corresponding to the state at E' = 7.21 MeV (.]’r = g-J‘ = 0.5 MeV,I‘p/I‘ = .97)

[Ajze 88] of 7Be. This peak was fitted with the Breit-Wigner formalism (equation

3.53). An additional state corresponding to E‘=9.27 MeV was included in the fit,

but the population probabilities was not extracted from this. The solid curve depicts

the fits to the data assuming the background given by the dashed line. The dotted

line shows an alternate background used for estimating the systematic error. The

population probabilities m are listed in table 3.2. The uncertainties in the population

probabilities include the uncertainties due to the background estimation and the

uncertainties in the efficiency calculation.

Particle Unstable states of 8B

The correlation function for 8B -+7Be+p is shown in Figure 3.13. The relative energy

of 7Be+p and the excitation energy in the 8B nucleus are indicated in the lower

and upper scales respectively. Two pronounced maxima corresponding to the excited

states of 8B at E" = 0.774 MeV (J = 1+,I‘ = 37 keV, I‘p/I‘ = 1.0) [Ajze 88] and

E” = 2.32 MeV (J’r = 3+,I‘ = 350 keV, I‘p/I‘ = 1.0) [Ajze 88] are clearly seen. The

spin of the 0.774 MeV state is taken to be same as the corresponding state in the

mirror nucleus 8Li. For the 2.32 MeV state, I‘ = 310 keV was used instead of 350 keV

in the fit which gave a better description of the data. These two peaks were analysed

by using Breit-Wigner formalism (equation 3.53). The solid curves show fits to the

data corresponding to the background depicted by the dashed line. An alternate

description of the background is shown by dotted lines. The population probabilities

nA are given in Table 3.3. The associated uncertainties reflect the uncertaintias in the

background estimation and also the uncertainties in the efficiency calculation as was

discussed earlier.
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Table 3.3: Spectroscopic information for 8B, 10B, and 11C isotopes which was used

to extract excited state populations. The branching ratios are given in percent, and

nA are defined relative to the particle stable yields for the same nucleus. The group

structure is explained in the text.

 

I IGroup IE‘(MeV) I J’r I I‘m(keV) I Pairs I Fc/I‘ I Relative population, n,\ I
 

 

 

 
 

 

 

8B 1 0.774 1 37 7Be—p 100 0.152i0.016

2 2.32 3+ 310 7Be—p 100 0.212i0.085

108 1 4.774 3+ 8.4x 10-3 6Li-a 100 001340.001

2 5.1103 2- 0.98 Gm: 100 9.6x10‘3i1.5x10‘3

5.1639 2+ 1.76x10‘3 6Li-az 13

5.180 1+ 110 6Li-a 100
 

 

 

 

 

3 5.9195 2+ 6 6Li-o: 100 0.0142h0.002

6.0250 4+ 0.05 6Li-a 100

6.1272 3’ 2.36 6Li-a 97

4 6.56 4’ 25.1 6Li-a 100 1.0X10'2zlz2JX10'3

5 7.430 2" 100 9Be-p 70 4.2x 1Wi8x 10'4

7.467 1* 65 9Be—p 100

7.478 2+ 74 gBe-p 65

7.5599 0+ 2.65 gBe-p 100 ~

6 7.67 1+ 250 gBe-p 30 6.1 x10'3:1: 2.1><10--3

7.819 1- 260 QBe-p 90

8.07 2"” 800 9Be-p 10

7 8.889 3- 84 gBe-p 95 3.2x 10'321: 4.6x10-4

8.895 2+ 40 9Be-p 19
 

 

w

I

11C 1 8.1045 0.011 7Be-a 92 5.80x10'321: 4.3x10“
 

          
5

8.420 3‘ 0.015 786.6 80 5.67x10'321: 4.3x10“

3 8.655 g“ 5 736-0 94 5.93x10'3zi: 3.4x10-4

8.701 3* 15 786-0 100
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Particle Unstable states of 10B

Relative populations 12; of particle-unstable states in 10B nuclei were measured by de-

tecting the coincident decay products for the channels 10B—76Li+a and 10B—>9Be+p.

The measured coincidence yields, Y(E‘) are shown Figure 3.14 as a function of the

excitation energy of 10B. A number of distinct peaks are identified. In spite of the

good excitation-energy resolution of the hodoscope some states couldnot be resolved

and were analysed as a group. Within a given group of unresolved states, the popula-

tion probability n1 is assumed to be same for all states. The upper part of the figure

shows the 6Li+a coincidence spectrum. The first peak corresponds to an excited state

at 4.774 MeV with (J1r = 3+,I‘ = 8.4 eV, I‘a/I‘ = 1.0) [Ajze 79, Ajze 88, Albu 66].

The second group consists of three states at 5.1103 MeV (J’r = 2',F = 0.98 keV,

Fa/I‘ = 1.0) [Ajze 79, Ajze 88, Fors 66, Meye 58], 5.1639 MeV (J1r = 2+,I‘ = 1.76

eV, Fa/I‘ = 0.13) [Ajze 79, Ajze 88, Fors 66, Meye 58, Albu 66, Spea 79] and 5.18

MeV (J1r = 1+,1" = 110 keV, I‘a/F = 1.0) [Ajze 79, Ajze 88, Dear 62]. The small

shoulder after this group could be explained by the decay of 8.889 MeV and 8.895

MeV states of 10B to the 3.563 MeV excited state of 6Li" and 0:. These two states

were included in the fits, but were not analyzed further. The third group is made

of states at 5.9195 MeV (J1r = 2+,l‘ = 6 keV, Fa/I‘ = 1.0) [Ajze 79, Ajze 88,

Dear 62, Fors 66, Youn 69], 6.0250 MeV (J’r = 4+,F = 0.05 keV, I‘a/F = 1.0)

[Ajze 79, Ajze 88, Fors 66, Youn 69], and 6.1272 MeV (J1r = 3‘,I‘ = 2.36 keV,

I‘a/l‘ = 0.97) [Ajze 79, Ajze 88, Fors 66, Youn 69, Meye 67, Blan 80]. The fourth

peak in this spectrum is an isolated state at 6.56 MeV (J'1r = 4‘,I‘ = 25.1 keV,

Fa/I‘ = 1.0) [Ajze 79, Ajze 88, Fors 66, Youn 69, Meye 67, Blan 80, Bala 71]. All the

groups of states were analysed by using the Breit-Wigner formalism (equation 3.53).

The solid lines in figure 3.14 depicts a fit using the background shown by the dashed

lines. An alternate background used for the estimation of systematic errors is shown
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Figure 3.14: 6Li-l-a (upper part) and °Be+p (lower part) excitation energy spectra.

Location and spins of particle-unstable states in 1“B are indicated. The solid curves

show the fits to the data assuming the background depicted by the dashed line. The

dotted lines indicate an alternate choice for the background.
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by the dotted line. The population probabilities are given in table 3.3. The uncer-

tainties in the population probabilities n1 reflect the uncertainties in the background

subtraction, and uncertainties in the efficiency for detecting products of the particle

unstable 10B nucleus due to uncertainties in the resolution of the position sensitive

detectors.

The lower part of Figure 3.14 gives the coincidence spectra of 9Be+p. The first

group indicated in the figure is a combination of four states at 7.43 MeV (J1r =

2", F = 100 keV, I‘p/F = 0.70) [Ajze 79, Ajze 88, Moze 56, Sier 73, Auwa 75, Mo 69],

7.467 MeV (J1r = 1+,F = 65 keV, I‘p/I‘ = 1.0) [Ajze 79, Ajze 88, Sier 73, Auwa 75,

Hara 80, Bala 71], 7.478 MeV (J1r = 2+,I‘ = 74 keV, I‘p/I‘ = 0.65) [Ajze 79, Ajze 88,

Auwa 75, Mo 69, Hara 80,.Horn 64, Elli 62, Rohr 73], and 7.5599 MeV (J" = 0*, F =

2.65 keV, I‘p/I‘ = 1.0) [Ajze 79, Ajze 88, Moze 56, Auwa 75, Mo 69, Rohr 73, Elli 62,

Horn 64, Hara 80]. The second group is made of three states at 7.67 MeV (J1r =

1+,I‘ = 250 keV, I‘p/I‘ = 0.30) [Ajze 79, Ajze 88, Mo 69], 7.819 MeV (J1r = 1",F =

260 keV, I‘p/I‘ = 0.90) [Ajze 79, Ajze 88, Mo 69, Rohr 73], and 8.07 MeV (.]’r =

2+,I‘ = 800 keV, I‘p/l" = 0.10) [Ajze 79, Ajze 88, Mo 69]. The last group in this

spectrum consists of two peaks at 8.889 MeV (J1r = 3",F = 84 keV, I‘p/F :2 0.95)

[Ajze 79, Ajze 88, Oele 79] and 8.895 MeV (J7r = 2+,I‘ = 40 keV, I‘p/I‘ = 0.19)

[Ajze 79, Ajze 88, Kiss 77]. In addition, there are two neighboring peaks near the

threshold at 6.873 MeV (J7r = 1‘, = 120 keV,) and 7.002 MeV (J1r = 2+,I‘ =

100 keV,). These states were not analyzed because the branching ratios are not

well known. All groups of states in this spectrum were analysed by using Breit-

Wigner formalism (equation 3.53). The solid line in figure 3.14 depict the fit to

the spectrum assuming the background indicated by the dotted line. An alternate

choice for the background is shown by the dotted line which was used to estimate

the systematic errors due to background subtraction. The population probabilities
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n,\ for the different groups of states are given in table 3.3. The uncertainties in

the population probabilities reflect the uncertainty in the background and from the

uncertainties associated with the efficiency calculation.

Particle Unstable states of 11C

The excitation energy spectra of 11C obtained from the coincidence cross section of

7Be +a is given in figure 3.15. The relative energy of 7Be and a, and the excitation

energy of 11C are indicated in the lower and upper parts of the figure respectively.

The positions of the first three groups of excited states in 11C and their spins and

parities are indicated in the figure. The first peak is at 8.1045 MeV and corresponds

to (.I"r = $3-, I‘ = 11 eV, I‘O/I‘ = 0.92) [Ajze 85, Hard 84]. The second peak shown in

the figure is at 8.420 MeV and corresponds to (J" = %-,I‘ = 15.2 eV, Fa/I‘ = 0.80)

[Ajze 85, Hard 84]. The third group consists of two peaks at 8.655 MeV (J1r =

$21“ = 5 keV, I‘a/I‘ = 0.94) [Ajze 85, Wies 83] and 8.701 MeV (J’ = gfir = 15

keV, Fa/F = 1.0) [Ajze 85, Wies 83]. Although the state at 8.701 MeV is slightly

proton unbound, it decays predominantly by a-particle emission [Wies 83]. Excited

states of 11C at E‘ = 9.20, 9.65, 9.78, 9.97, 10.083, 10.069, 11.03, 11.44 and 12.65

MeV were also included in fitting the experimental yield. But we did not extract

population probabilities from these because the spectroscopic information for some of

these states are uncertain. The fits to the data were obtained by using Breit Wigner

formalism (equation 3.53). The solid curve in the figure shows the fit corresponding

to the dashed background. An alternate background is shown by the dotted line.

The population probabilities m for the first three groups are listed in table 3.3. The

systematic uncertainties in these quantities reflect the uncertainties in the efficiency

calculation due to uncertainties associated with the position resolutions of the gas

detectors and by the uncertainties associated with the background determination.
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Figure 3.15: Excitation energy spectrum of 11C obtained from the coincidence} cross

section of 7Be+a. The excitation energy in 11C is indicated on the top. The solid line

is a fit to the data assuming the background depicted by the the dashed line. The

dotted line shows an alternate background.
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Particle Unstable states of 13N

The excitation energy spectrum of 13N obtained from the coincidence cross section of

12C and proton is given in Figure 3.16. The lower scale in the figure gives the relative

energy of 12C and proton and the upper scale gives the excitation energy of 13N

assuming the 12C is emitted in its ground state. Two groups of states were analysed

for extracting relative populations. One group consists of two overlapping states at

3.511 MeV (J" = 3‘, r = 62 keV, I‘po/I‘ = 1.0), and 3.547 MeV(J1r = gfir = 47

keV, PpO/F = 1.0) [Ajze 85] states of 13N. This group is indicated by the pair of spins

%‘ and %+. Here the subscript p0 refers to the decays to the ground state of 12C

and a proton, and p1 refers to the decays to the first excited state of 12C (E‘ = 4.44

MeV) and a proton. A second peak indicated by 7/2+ in the figure corresponds to

the decay of the 7.155 MeV(J1r = gfir = 9 keV, 1‘pl /r = 1.0) [Ajze 85, Bark 63]

state of 13N which decays to an excited ”C‘ in the 4.44 MeV excited state and a

proton. Additional excited states of 13N at E‘ = 2.3649, 6.364, 6.886, 7.376, 9.00,

and 9.476 MeV were included in the fit to the experimental data, but population

probabilities are not provided for these states either because they lack statistics or

because we lack the necessary spectroscopic information. The analysis was performed

by using Breit-Wigner formalism (equation 3.53). The solid lines in the figure shows

a fit obtained by assuming the background indicated by dashed line. An alternate

background shown by the dotted line was used to estimate the systematic error in

the background subtraction. Table 3.4 gives the population probabilities, ml. The

uncertainties in 77). include uncertainties in the background subtraction, and also the

uncertainties associated with the efliciency calculations caused by the uncertainties

in the position resolutions of the gas counters.
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Figure 3.16: Excitation energy spectrum of 13N obtained from the coincidence cross

section of 12C-p. The solid line is a fit to the data assuming the background depicted

by the dashed line. The dotted curve shows an alternate background.
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Table 3.4: Spectroscopic information for 13N and 1“N isotopes which was used to

extract excited state populations. Branching ratios Fc/F are given in percent, and

n; are defined relative to the particle stable yields for the same nucleus. The group

structure is explained in the text.

 

I IGroup I E“(MeV) I NI I‘cm(keV) I Pairs I I‘c/I‘ I Relative population, n; I

 

 

 

 

 

 

 

 

 

 

 

 

        

13N 1 3.511 3' 62 ”Op 100 0.1101002

3.547 3* 47 12Op 100

2 7.155 4+ 9 120p 0) 100 0.071002

MN 1 7.9669 2- 2.5x10-3 130p 99 7.3x10'3i1.4x10‘3

2 8.062 1- 30 ”Op 100 5.3x10-3 i 1.7x10-3

3 8.4899 4- 3.46x10‘5 13C-p 79 9.8x10'3zt1.1x10'3

8.6197 0+ 3.8 13C-p 100

8.776 0- 410 130p 100

4 8.9118 3- 16 130p 100 6.32x10-3 1: 7.9x10-4

8.9638 5+ 6.25x10-6 13Op 80

8.9804 2+ 8 130p 100

5 9.1289 3+ 18.9x10-6 130p 81 I5.7x10’3:l:1.2x10'3

9.1723 2+ 0.135 l3C-p 95

6 9.3893 2- 13 130;) 100 3.8x10-3 :1: 7.1x10-4

9.509 2- 41 13C-p 100

7 10.079 3+ 10 ”Op 100 5.4x10’3 1: 1.0x10-3

10.101 2+ 12 130;) 100

8 10.812 5+ 0.39x10-3 E0;) 96 6.2x10‘3:1:1.5x10‘3

9 11.05 3+ 1.2 13C-p 100 4.2x10-3 2: 1.3x10-3
 

“l Branching ratio for decay to an excited ”C“ nucleus (E‘ = 4.44 MeV) and proton.

 



Particle Unstable states of 1“N

The correlation function resulting from the decay l4N —+13C+p was presented in

figure 3.5. Here we show the the experimental yields for 1“N ~113C+p in Figure

3.17. The relative energy of 13C and proton and the excitation energy Corresponding

to the excited states of 1“N are indicated in the lower and upper part of the figures,

respectively. We have analysed nine groups of states which are identified in the figures.

The first group corresponds to an isolated state at 7.9669 MeV (J1r = 2‘,I‘ = 2.5

eV, I‘p/ 1‘ = 0.99) [Ajze 86a]. The second state is at an excitation energy of 8.062

MeV (J1r = 1‘,l‘ = 30 keV, I‘p/I‘ = 1.0) [Ajze 86a]. The third group is formed by

overlapping states at 8.4899 MeV (.1" = 4‘,I‘ = 3.46 x 10'5 keV, Fp/F = 0.79) and

8.6197 MeV (J"' = 0"“, 1‘ =‘3.8 keV, I‘p/I‘ = 1.0). The fourth group is made of three

overlapping states at 8.9118 MeV (J1r = 3',I‘ = 16 keV, I‘p/I‘ = 1.0) [Ajze 86a],

8.9638 MeV (.11r = 5+,I‘ = 6.25 x 10-6 keV, rp/r = 0.80) [Ajze 86a], and 8.9804

MeV (J’r = 2*, I‘ = 8 keV, I‘p/I‘ = 1.0) [Ajze 86a]. The fifth group consists of two

states at 9.1289 MeV (J1r = 3", = 18.9 x 10‘6 keV, I‘p/I‘ = 0.81) [Ajze 86a] and

9.1723 MeV (J7r = 2", F = 0.135 keV, I‘p/I‘ = 0.95) [Ajze 86a]. The sixth group is a

combination of two overlapping states at 9.3893 MeV (J1r = 2‘, F = 13 keV, I‘p/I‘ =

1.0) [Ajze 86a], and 9.509 MeV (J1r = 2‘,I‘ = 41 keV, Fp/I‘ = 1.0) [Ajze 86a]. The

seventh group is made of two peaks at 10.079 MeV (J1r = 3*, F = 10 keV, Fp/I‘ = 1.0)

[Ajze 86a], and 10.101 MeV (J1r = 2+,F = 12 keV, Fp/F = 1.0) [Ajze 86a]. The

eighth group is an isolated state at 10.812 MeV (J1r = 5"”,1‘ = 0.39 x 10'3 keV,

I‘p/F = 0.96) [Ajze 86a]. The ninth. and last group we have taken into consideration

is an isolated peak at 11.05 MeV (J1r = 3+,F = 1.2 keV, Fp/F = 1.0) [Ajze 86a].

The fits to the experimental data were performed by using Breit-Wigner formalism

(equation 3.53). Excited states of 1“N at E" = 9.703, 10.226, 10.432, 10.534, 11.761,

12.2, 12.408 were included in fitting the spectra, but population probabilities from
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Figure 3.17: Energy spectrum resulting from the decay of particle unstable l4N. Solid

curve is a fit described in the text assuming the background shown by dashed curve.

The dotted curve shows an alternate description of the background.



78

these were not extracted. Fits assuming the background depicted by the dashed line

in figure 3.17 are shown as solid curves in figures 3.5 and 3.17. The dotted curve shows

an alternate background used to estimate the uncertainty in background subtraction.

The extracted relative populations m and the associated uncertainties are listed in

table 3.4. The uncertainty in n; reflects both the uncertainty in the background

subtraction and the uncertainty due to the efficiency function.

Particle Unstable states of 160

We next consider the excitation energy spectrum for 160 resulting from the coinci-

dence spectrum of l2C+oz, shown in figure 3.18. The scale on the bottom gives the

relative energy of 12C and a, and the top scale gives the excitation energy for 160.

Four groups of states are identified in the figure. The first peak labelled by 2' in the

figure corresponds to the 12.53 MeV state (J1r = 2‘, F = 0.097 keV, Fol/F = 0.74)

[Leav 83] of 16O which decays to a 12C" nucleus in its 4.44 MeV excited state plus an

a particle. The subscripts 00 and al refer to the decays to the ground state and the

4.44 MeV state of 12C, respectively. The second group of peaks at about 9.9 MeV of

excitation energy, is a combination of four states. One of these corresponds to the

9.845 MeV (J1r = 2+,I‘ = 0.625 keV, Foo/F = 1.0) state of 160. In addition, there

are three states at 14.1 MeV (J’r = 3‘,F = 750 keV, Fol/F = 0.8), 14.399 MeV

(J1r = 5+,I‘ = 27 keV), and 14.302 MeV (J1r = 4‘,F = 34 keV) which decay to an

excited 12'C‘ nucleus (E' = 4.44 MeV) and an a particle. Since the branching ratios

for these latter two decays are not known, the sensitivity of our analysis to these

states is explored by varying the branching ratios for these states between 0% and

100%. These variation in the branching ratios causes variations in the population

probabilities for the states, and we use the range of such variations as an estimation

of the systematic uncertainties associated with the unknown branching ratios. The
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Figure 3.18: Excitation energy spectrum of 1°C obtained from the coincidence cross

section of 12C-+—a. The solid curve describes a fit obtained by assuming the dashed

line as one possible background. The dotted curve shows an alternate background.
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third group of states which is seen around 10.4 MeV is a combination of five peaks,

the 10.356 MeV state (J1r 2' 4+, 1‘ = 26 keV, Foo/1‘ = 1.0) of 16O, and the 14.620 MeV

state (J1r = 4*, F = 490 keV, Pal/1‘ = 0.2), the 14.660 MeV state (J’r = 5",F = 670

keV, Fol/1‘ '2 0.06) the 14.815 MeV state (J1r = 6+,I‘ = 70 keV, Fai/F = 0.65)

and the 14.926 MeV state (J" = 2+,l‘ = 54 keV, I‘m/l" = 0.58) [Ajze 86b] of 16O.

The last four states in the third group decay to an excited 12C" (E‘ = 4.44 MeV)

and an a particle. The fourth peak in 16O excitation energy spectrum is seen around

11 MeV in the figure and has contributions from four states of 16O at 10.957 MeV

(J" = 0‘,l" = 8.21 x 10'5 keV, Foo/1‘ = 1.0), 11.080 MeV (J1r = 3+,I‘ = 12 keV,

Poo/F = 1.0), and 11.097 MeV (J1r = 4+,I‘ = 0.28 keV, Poo/F = 1.0) [Ajze 86b].

The state at 15.408 MeV (J’r = 3‘,F = 132 keV) which could contribute to this

group has a very small (R1170) al branch [Ajze 86b]. 160 states corresponding to

E“ = 8.8719,9.585,11.52,11.6,12.049,12.440 MeV which decay to the ground state

of 12C and an a particle, and E“ = 12.796, 12.97, 13.02, 13.09, 13.129, 13.259, 13.664,

13.869, 13.98, 14.032, 15.196, 15.26, 15.785 and 15.828 MeV which decay to an ex-

cited 11’0“ (E‘ =4.44 MeV) and an a particle were also included in fitting the spectra,

but unanalyzable either because they lack statistics or because we lack the necessary

spectroscopic information. All the states were analysed by using the Breit-Wigner

formalism (equation 3.53). Fits assuming the background depicted by the dashed

line in figure 3.18 are shown by the solid curve. The dotted line shows an alternate

choice of background used to estimate the uncertainty in the background subtraction.

The relative populations n A and the associated uncertainties are listed in table 3.5.

The uncertainty in n A reflects the uncertainty in the background subtraction, the

uncertainty due to the efficiency function, and the uncertainties due to the unknown

branching ratios to the first excited state of 12C.
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Table 3.5: Spectroscopic information for 16O and 180 isotopes which was used to

extract excited state populations. Branching ratios I‘c/I‘ are given in percent, and

n ,\ are defined relative to the particle stable yields for the same nucleus. The group

structure is explained in the text.

 

I I Group I E‘(MeV) I J1r Tch(keV) IPairs I Fc/F I Relative population, n; I
 

 

 

 

 

 

 

 
 

 

       

160 1 12.530 2- 0.097 12Ca 0) 74 1.89><10‘3:i:7.2x10‘4

2 9.845 2+ 0.625 ”C-a 100 7.4x10'3i5.2x10’3

14.1 3- 750 120-0 a) 80

14.302 4- 32 120-5

14.399 5+ 27 12Ga

3 10.356 4+ 25 12Ga 100 4.5><IO"3i1.1x10‘3

14.62 4+ 490 120-0 a) 20

14.66 5- 670 12Ga 0) 6

14.815 6+ 70 120-6 a) 65

14.926 2+ 54 120-5 a) 58

4 10.957 0- 8.2x10-5 12Ga 100 3.4x10‘3:1:1.5x10’3

11.080 3+ 12 12Ga 100

11.097 4+ 0.28 ”Ga 100

15.408 3- 132 ”C-a ‘0 1

180 1 7.117 4+ 2.6x10-5 1406 53 4.1><10-3:1:1.0x10-3

2 7.864 5- 8 “Ga 100 6.1x10‘3i1.5x10"3

3 8.039 1- 2.5 14C-6 100 2.93x10‘3zl:6.7><10‘4

8.125 5- 1 ”Ga 100

8.213 2+ 1.6 “C-a 99

8.282 3- 8 ”C-a 89
 

“) Branching ratio for decay to excited l2C" nucleus (E‘ = 4.44 MeV) and an a

particle.
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Particle Unstable states of 18O

The excitation energy spectrum for 180 obtained from the coincidence cross section

of 1“C+a is shown in figure 3.19. The lower scale in the figure indicates the relative

energy of 14C and a, and the upper scale shows the excitation energy of 180. Three

groups of states are identified. The first peak is at 7.1169 MeV (J1r = 4+,F = 2.6 x

10'5 keV, I‘a/I‘ = 0.53) state of 18O [Ajze 87, Gai 87]. The second peak is identified

as the 7.864 MeV (J1r = 5",1‘ = 8 keV, Fa/I‘ = 1.0) [Ajze 87, Gai 87, Beck 73]

state of 18O. The third group consists of four states at 8.039 MeV (J1r = 1', I‘ = 2.5

keV, I‘a/I‘ = 1.0), 8.125 MeV (J’r = 5',I‘ = 1 keV, I‘a/I‘ = 1.0), 8.213 MeV

(J1r = 2+,I‘ =1.6 keV, I‘a/I‘ = 0.99) and 8.282 MeV (J1r = 3',F = 8 keV, I‘a/I‘ =

0.89) [Ajze 87, Gai 87, Beck 73]. These peaks are fitted by using the Breit-Wigner

formalism (equation 3.53). Fits assuming the background depicted by the dashed line

in figure 3.19 are shown by the solid curve. A zero background assumption is used

as an alternate choice to estimate the uncertainty in the background subtraction.

The relative populations n ,\ and the associated uncertainties are listed in table 3.5.

The uncertainty in m reflects the uncertainty in the background subtraction and the

uncertainty due to the efficiency function.
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Figure 3.19: Excitation energy spectrum of u'0 obtained from the 1“C-01 coincidence

cross section. The solid curve describes a fit obtained by assuming the dashed curve

as one possible background.



Chapter 4

Sequential Feeding from

Higher-lying States

Measurements of the relative populations of excited states of emitted fragments pro-

vide a measure of the intrinsic excitation energy of the emitting system at freezeout. If

the excitation energy is thermally distributed, then the population probabilities n for

excited states within a fragment would follow a Boltzmann distribution. However, the

observed populations of excited states are influenced by the sequential decay of heav-

ier particle unstable nuclei, [Poch 85a, Xu 86, Sobo 86, Hahn 87, Fiel 87, Come 88,

Xu 89, Deak 89] and the populations and decays of many of these unbound states are

not known experimentally. Since one does not usually know the feeding corrections

experimentally, they must be calculated. We have performed calculations to deter-

mine this effect of feeding on measured values of population probabilities n. In the

calculations, the states of primary fragments are assumed to be thermally populated

characterized by a temperature, Tm [Xu 86, Hahn 87, Fiel 87]. The primary elemen-

tal distributions were adjusted to ensure consistency between the calculated final and

experimental distributions.

In this chapter, we describe the essence of the sequential feeding calculation.

In the first section we discuss how various fragments and their excited states are
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included in the calculation. A method for choosing unknown spectroscopic factors of

low lying states is also discussed. In the second section we give the expressions for

primary populations of states. In the third section, details of decay calculations will

be discussed. We describe the results of calculations in the fourth section.

I Levels and Level Densities

To determine the feeding corrections to the measured relative probability, we per-

formed sequential decay calculations for an ensemble of nuclei with 35 Z 313. A

lookup table containing excitation energies, spectroscopic factors and different decay

channels with corresponding branching ratios for approximately 2600 known levels

for isotopes within this charge range [Ajze 84, Ajze 85, Ajze 86a, Ajze 86b, Ajze 87,

Ajze 88] was constructed.

Since the spins, isospins and parities of many low-lying particle bound and un-

bound levels of nuclei with Z311 are known, the information for these lighter nuclei

was used in the sequential decay calculations. For known levels with incomplete spec-

troscopic information, values for the spin, isospin, and parity were chosen randomly

according to primary distributions obtained from the non—interacting shell model.

The shell model program ‘OXBASH’ [Brow 88] was used to calculate the number

of states at a given spin, parity and isospin for energies up to 2hw. Single particle

energies, obtained from the Nilson diagram [Tabl 67] were combined to obtain the

final energies for a particular particle-hole configuration. The energy of the lowest

level with appropriate spin, parity and isospin was taken as the energy of the ground

state. The distributions were then smoothed out to obtain the level density distribu-

tion as a function of excitation energy above this ground state. For a level of a given

excitation energy but unknown spin, parities or isospin, we randomly selected the
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unknown values of spin, parity or isospin according to the level density distributions.

The calculations were repeated with diflerent initial values for the unknown spec-

troscopic information until the sensitivities of the calculations to these spectroscopic

uncertainties were assessed.

The low-lying discrete levels of heavier nuclei with Z212 are not as well known as

those of lighter nuclei. To calculate the decay of these heavier nuclei for low excitation

energies, E" S 60(A,, Zg), we used a continuum approximation to the discrete level

density [Chen 88], modifying the empirical interpolation formula of ref. [Gilb 65b] to

include a spin dependence:

 

. _ _ 1 ._ (2J.+1)exp1—(J.-+ 92/2031
p<E ,J.) — T1 exp{(E 129/7.1m, + 1 )exp1—(J. +2_%),/20,], (4.1)

for E‘ S 60,

where

a? = 0.0888[a,(eo — Bout/1? , (4.2)

and a.- = A,- / 8; J.-, A,, and Z.- are the spin, mass and charge numbers of the fragment,

and the values for £0 = 60(Ag, Z,),T1 = T1(A,, Z,‘), and E1 = E1(A.-,Z.-) were taken

from ref. [Gilb 65b]. For Z Z 12, E0 = E0(A.-, Z.) is determined by matching the level

density at 60 provided by Eq. (4.1) to that provided by Eq. (4.3) given below. [Note:

In Eq. (4.1) and also in Eq. (4.7) below, we match the density of levels rather than

the density of states because the spins of many of the discrete levels are not known]

For higher excitation energies in the continuum for all nuclei, we assumed the level

density of the form

P(E*,Ji) = PIIE‘)P2(J7,07), (4-3)

where

exp{2[a,(E‘ — Eo)]1/2}

12\/2[a.~(E‘ _ E0)5l1/‘0.' ’
(4.4) 

P1(E.)
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(2J1 + 1)€XP[-(Ji+ %)2/203]

20‘;2 ’

a? = 0.0888[a.-(E*—Eo))]‘/2A§/3. (4.6)

P2(Ji,0.') = (4.5)

For Z.- Z 12, E0 = E0(A,-, Z.) is determined by matching the level density provided by

Eq. (4.1) at so to that provided by Eq. (4.3). At smaller values of Z.-, E0 is adjusted

for each fragment to match the integral of the continuum level density to the total

number of tabulated levels according to the equation:

A: dE'l/d'] PIE.9J) = [:0 dE‘ZflE — E"),
(4.7)

where 60, for these lighter fragments, was chosen to be the maximum excitation energy

up to which the information concerning the number and locations of discrete states

appears to be complete. An example [Chen 88a] of determining so for the isotope

20Ne is given in figure 4.1.

To reduce the computer memory requirements, the populations of continuum

states were stored at discrete excitation energy intervals of 1 MeV for E“ S15 MeV,

2 MeV for 153 E" _<_30 MeV, and 3 MeV for E' 230 MeV. The results of these

calculations do not appear to be sensitive to these binning widths. In this way, the

total number of discrete energy bins including the discrete states came to be about

38,000. Parities of continuum states were chosen to be positive and negative with

equal probability. To save both space and time, the isospins of the continuum states

were taken to be equal to the isospin of the ground state of the same nucleus.

11 Primary Populations

For the ith level of spin J,- we assumed an initial population P, given by

P, O( P0(A,', Zg)(2J, + l)€Xp(-E‘/Tem), (4.8)
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where P0(A.-, Zg) denotes the population per spin degree of freedom of the ground

state of a fragment and Tem is the emission temperature which characterizes the

thermal population of states of a given isotope. (This temperature is associated

with the intrinsic excitation of the fragmenting system at breakup and is, in general,

different from the “kinetic” temperature which may be extracted from the kinetic

energy spectra of the emitted fragments.) The initial populations of states of a given

fragment were assumed to be thermal up to excitation energy of E‘ a = A- constant.
cuto

This cutoff was introduced to explore the sensitivity of the calculations to highly

excited and short-lived nuclei, some of which may be too short lived to survive the

evolution from breakup to freezeout. Calculations were performed for cutoff values

of Egmofi/A = 3 and 5 MeV corresponding to mean lifetimes of the continuum states

of 230 fm/c and 125 fm/c, respectively [Stok 77]. The calculations were qualitatively

similar for the two cutoff energies. All the results presented here were done with

Egutofl/A = 5 MeV.

For simplicity, we parameterized the initial relative populations, P0(A,-, Z.) by

P0(A, Z) oc exp(—fV(;/Tem + Q/Tem), (4.9)

where V0 is the Coulomb barrier for emission from a parent nucleus of mass and

atomic numbers AP and Zp and Q is the ground state Q-value

vc = 2,.(2, — z.)e2/{ro[A3’3 + (A. — [tr/31} (4.10)

and

Q = [B(Ap — 141,219 — Z.) + 8.] — B(A,, 2,). (4.11)

We used a radius parameter of ro=1.2 fm, Ap=122, Zp=54. The binding ener-

gies, B(A, Z), of heavy nuclei were calculated from the Weizsacker mass formula

[Marm 69].

Z2 _ 03M — 2.2)2
A1/3 ——A——, (4.12)B(A, Z) = COA — CIA?” — 02 
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with 00:14.1 MeV, C1=13.0 MeV, C2=0.595 MeV, and 03:19.0 MeV. For the emit-

ted light fragments we used the measured binding energies, Bg, of the respective

ground states [Waps 85]. At each temperature Tm, the parameter, f in Eq. (4.9)

was adjusted to provide optimal agreement between the calculated final fragment

distributions (obtained after the decay of particle unstable states) and the measured

fragment distributions. This constraint reduced the possibility of inaccuracies in the

predicted primary elemental distributions at high temperatures [Hahn 87, Fiel 87].

The values of f obtained for different Ten, are discussed in the last section of this

chapter.

III Details of the Decay Calculations

The branching ratio for a state to decay by different channels has to be known for

decay calculations. If known, tabulated branching ratios were used to describe the

decay of particle unstable states. If unknown, the branching ratios were calculated

from the Hauser-Feshbach formula, with additional constraints on isospins and pari-

ties. The branching ratio for a channel c in the original Hauser-Feshbach formula is

 

[Hans 52],

I} 0.;

F = 2' G- (4.13)

where

Z=IS+jI l=|J+Z|

Ge: 2 Z T,(E). (4.14)

Z=|S-jl lzlJ-Zl

Here, J and j are the spins of the parent and daughter nuclei, Z is the channel spin,

5 and I are the intrinsic spin and orbital angular momentum of the emitted particle,

and T1(E) is the transmission coefficient for the lth partial wave. By incorporating

the parity and isospin conservations, we can write Ge as
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CC = < T1,DTI.FT(3)1,DT(3)I.F|T1,PT(3)I,P >2

Z=|S+j| l=|J+Z|

X Z Z {l1 + WPWDWFf-llll/Z} Tz(El- (4-15)

Z:|S-j| l=|J—Z|

The factor, [1 + 1rp1rD7rp(—l)’]/2 enforces parity conservation and depends on the

parities 7r = i1 of the emitted fragment and the parent and daughter nuclei. The

Clebsch-Gordon coefficient involving T1,p,T['D, and TLF, the isospins of the parent

nucleus, daughter nucleus, and emitted particle, likewise allows one to take isospin

conservation into account.

For decays from states when the kinetic energy of the emitted particle is less than

20 MeV and I S 20, the transmission coefficients were interpolated from a set of

calculated optical model transmission coefficients. For decays from continuum states

when the kinetic energy of the emitted particle exceeds 20 MeV, the transmission

coefficients were approximated by the sharp cutoff approximation;

T1(E) = 1, for ($10

= 0, otherwise, (4.16)

with

 

10 = (27r/hl7‘0l/‘l.U3 + (Ap - Aill/3l\/2#(E - VC), (4-17)

where p is the reduced mass, and h is Plank’s constant.

The calculation was restricted for the decays via n, 2n, p, 2p, d, t, 3He, 0: channels.

The decays through 7 rays were taken into account directly to calculate the final

particle stable yields.
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IV Results

The calculation was performed for Tam: 2, 3, 4, 5, 6, and 8 MeV. The measured

fragment elemental and isotopic distributions and calculated final elemental distribu-

tions for Egumfl/A = 5 MeV are compared for different values of Tea, in figures 4.2, 4.3

and 4.4. The solid points correspond to the fragment yields at 0 = 38° summed over

all measured energies. The dashed lines in Figure 4.2 show the calculated isotopic

distributions of primary fragments assumed for each temperature. The fitted param-

eters, f, are indicated in the figure. The solid lines show the calculated final isotopic

distributions obtained after the statistical decay of particle unbound fragments. The

parameter, f, was adjusted at each temperature so that the calculated final isotopic

distribution closely follows the trend of the measured isotopic distribution. Since

these parameters, f, have been adjusted to reproduce the isotopic yields measured

in this experiment, one must be very cautious about applying the results of these

calculations to other reactions. The solid histograms in figure 4.3 and 4.4 represent

final isotopic distributions obtained for each temperature. In general, the trends of

the isotopic distributions are reproduced.

Calculated values for the relative population probabilities for excited states of

fragments were determined at each temperature Tcm from the calculation with full

feeding taken into account. These values are compared in chapter 5 to the experi-

mental data for a variety of emission temperatures and to determine whether these

calculations can explain the observed relative populations.
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Figure 4.2: Element yields at 0 = 38° summed over measured energies. The dashed

and solid histograms show the primary and final yields of particle stable fragments

produced by the feeding calculations. Results for Tm=2, 3, 4, 5, 6, and 8 MeV with

the corresponding parameters f are given in the figure.



94

1

4N+Ag, E/A=35MeV, 90=sa°
r .l . I I I I I I I I I I I
561.1 UL: 738 IOBeBB 118 138 12c 14C MN ION 160 1803

100 f- 7Li “Li ”Be 1188103 123 “C 13C 13N 15N 150 170 .1

10-1 T,m 2 MeV 1

= 0.85 5

 

    

 

 

Y
i
e
l
d

(
a
r
b
i
t
r
a
r
y

u
n
i
t
s
)

10‘4    
Isotopes

Figure 4.3: Comparisons of measured and calculated isotopic yields at 0 = 38°. The

solid histograms show final fragment distributions for feeding calculations at Tem=2,

3, and 4 MeV.
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Figure 4.4: Comparisons of measured and calculated isotopic yields at 0 = 38°. The

solid histograms show final fragment distributions for feeding calculations at Tm=5,

6, and 8 MeV.



Chapter 5

Nonstatistical Excited-State

Populations

Most models for fragmentation and emission of particle unstable complex nuclei in in-

termediate energy nuclear reactions use statistical concepts to explain the experimen-

tal observables such as the fragment mass distributions or the populations of ground

and excited states of the fragments. One stringent test of these statistical models can

be performed by measuring the population probabilities of a large number of states in

a single fragment and comparing those to the predictions of statistical calculations.

In this chapter, we present a series of comparisons involving the particle-unstable

states of 6Li and 10B nuclei. Additional results for other nuclei will be discussed in

chapter 6. We will compare yields of excited states of 10B to statistical calculations in

the first section of this chapter. In the second section, we consider effects of rotation

of the emitting system on the calculations of the population for high spin states. To

obtain an independent measure of rotational effects, we have investigated the spin

alignment of the emitted fragments by studying the angular distributions for the de-

cays of particle unstable states in 6Li and 10B nuclei. This will be given in the third

section. A short summary of the chapter will be given in the last section.

96
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I Non-statistical Populations of States in 10B

The data for particle unstable states of 10B nuclei were obtained from the coincident

measurements of 6Li+a and 9Be+p as discussed in chapter 3. The excitation energy

spectra of 10B which was given in Figure 3.14 showed the data from our measurement

and the fits to the coincidence yields. In total, seven groups of states are considered,

and within a given group of unresolved states, the population probability n is assumed

to be the same for all states. Figure 5.1 shows the final relative populations for the

different groups of states as functions of excitation energy. The solid points indicate

the relative populations which are normalized so that £42.11. + l)n;c = 1, if the

summation is restricted to the particle stable states of 1"B. The error bars reflect

uncertainties of the background subtraction which were estimated by making different

assumptions about the background coincidence yield and also the uncertainties in the

efficiency which arises from the uncertainties in the position resolution of the gas

proportional counters.

If the intrinsic degrees of freedom of the system are thermalized at low density,

the initial populations of the excited states of intermediate-mass fragments should be

proportional to the Boltzmann factor exp(—E"/Tem), where Tea, is the temperature

of the system at freezeout. The measured relative populations deviate significantly

from this monotonic behavior. Indeed, the group of states at 6.0 MeV even exhibits

a population inversion with respect to the lower-lying states at 5.2 and 4.8 MeV.

The observed populations for 10B excited states can be compared with the results

obtained from the sequential feeding calculations to determine whether it can account

for the discrepancy. Calculations discussed in chapter 4 were performed that included

the continuum states of fragments with Z S 13 for excitation energies up to E'=5A

MeV, where A is the mass of the fragment. The results of these calculations are



98

“N+Ag. E/A=35MeV, 00=3s°

11111

....... ZMeV

0.020 . ——4MeV«

---sMev

 

    

0.005 .
l

+
§
\
\

  0.002 111111111111111
f'411].11L111

4 5 6 7 8 9

E‘(‘°B) (MeV)

 

Figure 5.1: Relative populations, ng, of different groups of particle-unstable states in

10B are plotted as a function of excitation energy. The vertical scale is normalized

so that 2,,(2J1. + 1)n)¢ = 1, where the summation is restricted to the particle-stable

states of 10B.
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shown as the shaded bands in figure 5.1 for an initial temperature of 4 MeV. These

bands depict the range of values for n,- obtained for different assumptions for the spins

and parities of states with incomplete nuclear structure information. Clearly, these

calculations do not reproduce the non-monotonic dependence of n.- upon excitation

energy and the uncertainty due to unknown spectroscopic information is much less

than the observed enhancement of the experimental populations at E‘=6 MeV.

Thus the measured populations of particle-unbound states of 10B are inconsistent

with thermal fragment distributions at the instant the fragment separates from the

rest of the system. In the next two sections we consider if rotational effects on high

spin states of emitted fragment can account for such deviations.

II Angular Momentum Effects on Populations of

States

Angular momentum effects due to the rotation of the emitting system can cause the

populations of high spin states of emitted fragments to be selectively enhanced. Such

effects are not only relevant for compound nuclear emission; they can also influence

observables for multifragment breakup processes as well [Snep 88]. We have explored

this effect in the context of a compound nucleus model, and compared the prediction

to our measured values.

A Rotational Effects: StatisticalTheory of Compound Nu-

cleus Decay

Let us first discuss these issues within the contest of the statistical theory of compound

nucleus decay. In the statistical theory of the compound nucleus, the yield Y.- of an
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excited state of an emitted fragment can be written as [Lu 72]:

00 110'” Z+Ii

Y.- = 0.: z z: / 4E1. 41223.10) IKE; + 0.... - E: - Ea). (5.1)
1:0 Z=|Ip-I| ID=IZ-I.|

Here Co is a factor independent of the spin and excitation energy of the excited state

of the emitted fragment, I is the orbital angular momentum, Z is the ichannel spin,

I1, and E; are the spin and excitation energy of the parent nucleus, ID and E5 are

the spin and excitation energy of the daughter nucleus, 1, and E: are the spin and

excitation energy of the emitted fragment and Q8... is the ground state Q-value for the

decay. p(Eb, ID) is the level density of the daughter nucleus and T; is the transmission

coefficient for the emitted fragment.

For the purposes of these illustrative calculations, the level density of the daughter

nucleus can be written in an exponential form [Eric 60] which is approximately valid

for the range of temperatures considered here :

 

E‘ Er0

NEBJD) = C (210 +1) eXI)( D - -—t‘) (5-2)
TD TD

where C is a constant and TD is the temperature of the daughter nucleus :

_ /8Eb
TD_ A0 (5.3)

where we have taken the level density parameter a = 8 (MeV)“, and we approximate

 

E23 by

EI) = E; + Qgs _ E: — Vcoul(Ru)s
(5.4)

where ,u is the reduced mass of the fragment plus daughter nucleus system, and

Vcoul(Ru) is the Coulomb potential when the fragment and daughter nucleus are sep-

arated by a distance R“. Em, is the rotational energy associated with the daughter

nucleus and is approximated by,

2(ID + %)2

Erot = (hC) QIDC2
(5.5)
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where ID is the moment of inertia of the daughter nucleus. For simplicity, we assume

a rigid body moment of inertia ID = 2/5 mDRf) where my and RD = 1.2/1}),3 (fm)

are the mass and radius of the daughter nucleus. We also assumed a sharp cut-off

transmission coefficient T; given by

It I: It a In . h2(l + %)2

T1(Ep + Q54. ‘E.’ ‘E0) = 9(Ep + Q34. ‘5.- —ED - Vcoul(Ru) — W). (5-5)
u

The measured quantity in our experiment is the population probability n,- defined

by :

Y,-

2114-1, (5.7) 

11,:

which has to be calculated. Combining the information given above and integrating

over energy, an explicit expression for n.- in the limit of full spin coupling is :

e‘E'/TD oo Ip+I 2+1, (1+ '1')2h2 (10+'f'%)2h2

120 Z Z (2ID+1)CXP[_{—2#2Ri + 210 }/TDl

=oz:lip-Illa:12- II

 
 

"i:

(5.8)

where Bo is a constant which, like Co is independent of spin and excitation energy

of the fragment. Values for n,- were calculated for the excited states of 10B assuming

Ip = 25, 50, 75 and 100 and assuming a mass Ap = 118, charge Zp = 50, and

excitation energy E; = 200 MeV for the parent nucleus. The overall normalization

constant N(1,9) for the calculated values of n,- was determined at each value of I, by

minimizing the function xi

Np..."

x3= Z ("”‘P‘; "““V (5.9)
Npomt cxp{

 

where Npoim is the total number of data points, new, and n“)..- are the experimental

and calculated values of the population probabilities, respectively, and Gem,- is the ex-

perimental uncertainty. The results are shown in figure 5.2 along with the experimen-

tal values of 71,-. Values of x3 = 2.4,1.8,1.5,1.7 were obtained for 1,, = 25,50, 75,100
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Figure 5.2: Calculations for n,- in the limit of full spin coupling are shown as dotted,

dashed, dot-dashed and solid lines for parent nuclear spins 1,: 25, 50, 75 and 100

respectively. The experimental values are same as those shown in figure 5.1.
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respectively. Thus the agreement with experimental data is improved slightly for

larger Ip. We see that larger values of the parent nucleus 1,, lead to larger enhance-

ments in the populations of high spin states of the emitted 10B nuclei. 1, = 75 and

100 show enhanced populations of high spin states at E: z 6.0, 6.6, and 8.9 MeV,

but the effects are nevertheless small compared to the experimental variations in Tlg.

Larger rotational effects are predicted for larger values of Ip, but values of I, greater

than 1,, = 88 are inconsistent with the conditions of stability for a metastable equili-

brated compound nucleus calculated with the liquid drop model. These calculations

also suggest that it is not possible by rotational effects to enhance the populations of

the group of states at E: = 6.0 MeV without likewise enhancing the high spin state

at E: = 6.56 MeV or the high spin doublet at E: z 8.9 MeV. Therefore we conclude

that while rotational effects may play some role in the description of heavy fragment

production, inclusion of these effects appears insufficient to describe the population

probabilities experimentally observed.

B Rotational Effects : Sequential Feeding Calculations

In the last chapter, we have described a calculation to assess the effect of feeding on

primary populations of states. The primary population for a fragment of mass A,

charge Z, spin J, and excitation energy E“ was taken to be (equation 4.8)

P oc P0(A, Z) (2J + 1) exp(—E'/Tcm),

where Tam is the initial temperature, and the factor (2J + 1) signifies that the m-

substates of spin J are equally populated. To explore rotational effects we performed

calculations with enhanced populations of selected m substates. In these calculations,

we approximated the primary population by

J (m—fiz)2

PocPo(A,Z) ( Z exp{————-
2

20m
1) exp<—E‘/T.m). (5.10)

m=-J
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where m are the m-substates (—J S m S +J) of a given J. Here, fit and am describe

the centroid and width of the distribution, respectively. The centroid and width of

the m-substate distribution was chosen to be proportional to the rigid body moment

of inertia. For simplicity we express fn and 0m in terms of the corresponding values

for 12C fragments, i.e.,

 (5.11)
_ I

m = mrzc

Inc

I

Inc

 

and am = (0m)izc (5.12)

where I is the moment of inertia for the specific fragment being investigated, and

772(12C) and am(12C) are the centroid and width parameters for 12C fragment.

Rotational effects were explored for a variety of values for fimc and (0m)izc and by

using equation (5.10) to provide the primary distribution and following the sequential

decay process as outlined in chapter 4. As for the calculation outlined in chapter 4,

P0(A, Z) was adjusted so that the calculated and measured particle stable yields were

in agreement. Calculated values for the final population probabilities n, are obtained

from the complete feeding calculations which use these primary distributions. The

calculated values for n.- nearest to the experimental data were obtained for 172120 =

6 and (0m)nc = 2.5. These calculations were presented by the solid line in figure

5.3. The populations of high spin states are enhanced by this calculation, but the

enhancement for the high spin triplet of states (J = 2,3,4) at E: = 6 MeV can

not be reproduced without simultaneously overpredicting the population of the high

spin state (J = 4) at E; = 6.56 MeV and the spin doublet (J = 3,2) at E: = 9.0

MeV. In this respect, the results of these calculations are qualitatively similar to those

obtained for compound nucleus expression and presented in the last subsection.
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Figure 5.3: Calculations for n,- from the sequential feeding calculation Tm = 4 MeV,

771.120 2 6 and (Um)1zc = 2.5 are shown as the solid line in the figure. Experimental

values for n,- are depicted by the large solid points.
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III Decay Angular Distributions

Most fragmentation models assume isotropic spin distributions for the outgoing frag-

ments. When rotation becomes significant, enhanced populations of angular mo-

mentum substates parallel to the axis of rotation can be expected. This issue has

been explored via the measurements of the angular distribution and circular po-

larization of coincident y-rays which accompany the emission of non-equilibrium

intermediate-mass fragments [Tsan 88]. These experiments have shown that target-

like residues which accompany the emission of intermediate-mass fragments are both

strongly aligned and highly polarized with their spins parallel to the reaction normal,

7‘2 1. || (fibem x fins). Spin alignments of the non-equilibrium mass fragments cannot

be precluded. Such spin alignments can be explored by the measurement of their

decay angular distributions. Previous measurements have shown that the decay of

6Li-+ a+d in the reaction of 40Ar+197Au at E/A = 60 MeV is isotropic, consistent

with avanishing spin alignment of the excited 6Li [Poch 87]. In this dissertation,

the spin distributions of the heavier fragments have also been explored, and decay

angular distributions for particle unstable states of 6Li and 10B are presented.

A Experimental Angular Correlations for 6Li and 10B De-

cays

Figure 5.4 defines the angle convention used for investigating the angular correlations

for the decay 1°B—> a+6Li. The reaction normal f1 J_ is a unit vector which is perpen-

dicular to the reaction plane defined by the beam axis and the momentum of the 10B

fragment. A polar angle 0d is defined to be the angle between the reaction normal fl;

and the direction of the velocity v"; of the outgoing a-particle in the center of mass
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Figure 5.4: Coordinate system used to describe the a-decay of particle unstable

excited states of 1"B. 0.; and «A; are the decay angles as defined in the text.
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frame of the decaying particle unstable nucleus. Mathematically one has

_1 17a ' (Ebeam X 6cm.)

[170] lifbeam X 17c.m.|

 

0d = cos

—1‘f‘(‘7beamxp)

14116..me1’

 (5.13)=3 COS

where q" and I3 = 151 + p} are the relative and total momentum of the a particle and

6Li, designated as particles 1 and 2 in this case; and fibem is the beam velocity. An

azimuthal angle qbd is defined as the angle between the projection of the vector 6°,

on the reaction plane and the direction of the total momentum of the 10B nucleus.

Mathematically, one has

-o

1 Cf")

lq‘llPlsinfld

 

05d = cos’ if sin 0d # 0 (5.14)

Thus, 05d and 9d distributions correspond to correlations in the reaction plane and

correlations as a function of the angle with respect to the reaction normal, respectively.

We have analysed both 0.5 and 03,1 angular distributions for particle decays from the

excited states of 6Li and 10B.

For 1OB—+6Li+a, relative energy spectra are obtained for specific gates on 0.1.

Figure 5.5 shows the relative energy spectra for 10B —» 0+6Li for 0.; values ranging

from 0° — 180° in steps of 20°. The solid circular points with error bars show the

data points. The relative energy spectrum for 0d = 80° - 100° was fitted with the

Breit-Wigner resonance parameters as described in chapter 3. The solid curve shown

in the panel on figure 5.5 for this angular range shows a best fit to the data assuming

the dotted curve for the background. Using the fitted parameters such as the relative

population 12,, C12 and Ag, obtained from the angular range 0.3 = 80°—100°, calculated

energy spectra were obtained for the other values of 9.1 using the appropriate efficiency

function calculated for these angles. The solid and dotted curvas in the other panels

show these calculations for the relative energy spectra and backgrounds, respectively.
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Figure 5.5: Relative energy spectra for the decay 1°B—4 a+°Li at different values of

the decay angle, 04 .
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The data are reasonably well reproduced for all cases as shown in the figure, indicating

that the same values of the relative populations can account for the relative energy

spectra at all values of 0d. This suggests that anisotropies in the decay angular

distribution for 10B are small.

Figure 5.6 shows the relative energy spectra of l0B-—)‘5Li-+-cr for different gates

in the angle m. The solid and dotted curves in the figure show the relative energy

spectra obtained by using the appropriate efficiency function assuming isotropic decay

and the parameter 72;, 012, Ag, obtained in the fit shown in fig 5.5 at the polar angles

0d = 80° — 100°. The data are reasonably well reproduced for all values of 45d,

suggesting again that the anisotropies in the decay angular distributions are small.

The decay angular distribution for 6Li—> a+d was also investigated. Figures 5.7

and 5.8 show the relative energy spectra of a and deuteron obtained for different

gates on 0d and 03d by using parameters 71,-, C12 and Ag, obtained by fitting the relative

energy spectrum for gate 0.1 = 80° —100° shown in the center panel of figure 5.7. These

fitted parameters have been used for other ranges of angles and provided the solid

and dashed curves for the relative energy and background spectra respectively. It

can be seen from this comparison that the anisotropies in the angular distribution

for the decay 6Li —+ a+d are also small. Similar comparison have been performed

for other nucleus and no significant anisotropies with the decay angular distributions

were observed.

B Comparison with Statistical Calculations

More detailed and precise measurements of the decay angular distributions for 10B

were determined by fitting each of the relative energy spectra in figures 5.5 and 5.6

to obtain 11,- as a function of 9d and (25d. Uncertainties in the extracted population

probabilities n,- were estimated using different assumptions for the background and
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Phi Angular Distribution for 10B"-v01+5L_i
 

 

 
 

 

300-
+

<.

1' L
'zoo =0-20° . _ _ : ‘ _ _ . :M 300 — “’21 40° 300 _- WP“ 60 ‘.200 I . l ,

150 *
200:—

200} 9
-:

100 0 t
i100 L— o 100 .—

"so
i

'
d

0 * r 4 i

<

:
’

t
300 El

:

200:- l .

100 :— i ‘

O : f _ i 3'. -a.

250 (11,,=121-140o 250E- ¢¢=141-160° m; f 4.4—101 180°
200

200 C- l i

150
150:-

100}

100 i moi—lL
:

50 1—

50 :

.kj’u- Ada—‘__ db... ....... . . 1°. 1.; A L .

 

 
E£7103) (MeV)

 

 

 

 

  

Figure 5.6: Relative energy spectra for the decay 1°B—» a+°Li for different values of

the decay angle (#4.
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Theta Angular Distribution for 6I.i"->oz+d
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Phi Angular Distribution for 6I_.i"->01+d
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by considering possible uncertainties in the efficiency function. Angular correlations

are extracted for the first three groups of a-unstable states of 10B corresponding to

excitation energies of 4.66 — 4.92 MeV, 5.0 — 5.26 MeV, 5.66 - 6.36 MeV respectively.

In figures 5.9 and 5.10, we present the decay angular correlation as a function of 0d

and 45.; respectively. These angular correlations were normalized to average values of

unity. The excitation energy ranges and the spins of the states which contribute to

a group are indicated in the figures. The anisotropies in these angular correlations

are small for the first state and negligible for the second and third groups of states.

The decay angular distributions were calculated using the statistical theory of the

compound nuclear decay as discussed in section (IIA). In general, anisotropic decay

angular correlations require non-uniform m-substate populations of the fragment ex-

cited states. To explore this issue, m-substate populations were calculated. Within

the statistical theory of compound nuclear decay, the population for each m-substate

is given by

n,(m,~) = Z e'Ei/TD < I,m,-IDmD|Zu >2< lmzZullpIp >2

l,m(.Z,u.ID,mD

(1+1)°h2 + (ID +1)“2

2pr‘ 21'

The various quantities are as defined before. Next we calculate the decay probability

X910 + 1) eXPl-f }/TD] (5.15)

from the fragment nucleus 10B by two coincident particles 01 and 6Li. This is given

by

Eli : Z < [1m112m2IZfl/f >2< lfmfol/fllgmg >2

d“ I;,m,.Zf.l/f.m1

Tzii z
114,...(12112—1—Tg 1P.(m.->1 (5.16)

z 4727

where the subscript 1 refers to the values for 10B fragment, and the subscripts l and

2 refer to the relevant values for the emitted particles 0 and 6Li respectively. If and
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decay.
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mI are the orbital angular momentum and corresponding m-substate value for the

decay of 10B by a and 6Li; ZI and u; are the channel spins and the corresponding

m-substate values for this decay. P,(m,~) is calculated according to equation (5.15).

The transmission coefficients T" are obtained from the optical potential calculations

as discussed in chapter 4. The decay angular distributions for loB—r a+°Li using

the parent spins Ip=25, 50, 75, 100 were calculated by assuming all the m-substates

of the fragment spin to be populated according to equation 5.15. The results for

0d-angular correlations for the first group of states are shown in figure 5.11. The

small anisotropy seen for the first group is consistent with the prediction for 1,, to

be between 50 and 75. The data from other group of states are consistent with the

prediction of isotropic population of m-substates. The constraint 1,, < 75 suggests

that the rotational enhancement of n.- should be small, and cannot account for the

large deviations of experimental relative populations from statistical calculations in

which rotational effects have been neglected.

IV Discussion

We find that the populations of particle-unbound states of 10B cannot be reconciled

with the thermal excited state populations. The measurement of decay angular distri—

butions reveal the anisotropies in the angular correlations to be small, and rotational

effects cannot be accounted for the magnitude of the observed discrepancy. Since

the mass of the 10B is relatively close to that of projectile, simpler non-statistical

production mechanisms cannot be excluded with certainty.
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Figure 5.11: The 0.; dependence of the decay angular distributions is shown for the

first excited state of 10B. The vertical scale is normalized to the average value. The

predictions from statistical calculations with I, = 25, 50,75, 100 are shown by dotted,

dashed, dot-dashed and solid lines respectively.



Chapter 6

Emission Temperatures

In chapter 3, we have presented experimental data for the population probabilities

of particle unstable states of intermediate mass fragments. In chapter 4, we have

described sequential feeding calculations to determine theoretical estimates of the

population probabilities of states starting with a thermal distribution of primary

fragments at an initial temperature, Tam. Information about the emission tempera-

ture can be obtained by direct comparison of the measured and calculated population

probabilities. Because the particle stable states of the fragments are strongly pop-

ulated by sequential feeding, the sensitivity of these comparison to sequential decay

correction may be somewhat reduced by comparing ratios of population probabili-

ties of states within the same fragment. In this chapter, we present the results of

such comparisons between the experimental and theoretical population probabilities

calculated for a range of emission temperatures.

Experimental population probabilities for 40 groups of particle unstable states of

intermediate mass fragments are presented in Tables 3.2, 3.3, 3.4 and 3.5 of chapter 3.

Before comparing these results individually to feeding calculations, it is instructive

to make overall comparisons between the measured and calculated population prob-

abilities and ratios of population probabilities. To provide a global test for statistical

119
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calculations, we have performed a least-squares analysis by computing

2 _ if: (31¢pr — ycaln') .
(61)

1:1 012

for each initial temperature in the calculation. Here gem.- and yeah,- are the experi-

mental and calculated values of the populations or ratios of populations and u is the

number of data points. In the case of the ratios of population probabilities, these data

points are not completely independent. This form of comparison was chosen in order

to provide a measure of the agreement between measured and calculated quantities.

Restricting the summation to only the mathematically independent quantities, such

as the population probabilities would have made the x3, function unduly sensitive to

the feeding correction to the population of particle stable states. The uncertainty

0,- in equation 6.1 is given by a? = ‘73pr + 0'3,” where (rem,- is the experimental

uncertainty, and acm- reflects the range of calculated values obtained for different

assumptions for the spins, isospins, and parities of low-lying states where these infor-

mations are incomplete. The range of calculated values was determined by repeating

the calculation with different spectroscopic assumptions until the sensitivity of the

calculation to those uncertainties could be assessed.

Values of xi according to equation (6.1), were computed for combinations of

population probabilities and the ratios of population probabilities. The results are

presented for four groups : Z = 3,4; Z = 5,6; Z = 7; and Z = 8, according to

the fragment charge. Figure 6.1 shows values for X: as functions of temperature

(Tem = 2 — 8 MeV) of the primary distribution in the feeding calculation. The solid

lines depict values for X3 where both the independent population probabilities and

all the ratios of populations have been included, and the dash-dotted lines show X:

where just the ratios of population probabilities are included. Results for lithium and

beryllium isotopes are shown in the upper left hand window of the figure. The x3

functions for these isotopes display a minimum at about Tm z 3 MeV for only the
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Figure 6.1: Results of the least-squares analysis for four groups of fragments. The

solid lines depict X5 calculated for a combination of population probabilities and the

ratios of population probabilities. The dashed lines show X3. when just the ratios of

population probabilities are included.
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ratios of population probabilities and Tem z 4 MeV for all the quantities combined.

Similar calculations for Boron and Carbon isotopes are shown in the upper right hand

window. Minimum value of xi occur in the neighborhood of Tenn 2: 3 MeV for both

cases. In the lower left hand window, the results for nitrogen isotopes are presented.

For this case, a minimum in the neighbourhood of Ten. = 3 MeV is obtained for xi

when both the population probabilities and the ratios of population probabilities are

included. This minimum shifts to Tem z 4 MeV when xi is restricted tojust the ratios

of population probabilities. In the lower right hand window, the results for oxygen

isotopes are given. Here very few groups of states are detected, and the location of

the minimum in the xi functions are not well determined.

Comparisons of the temperature dependence of xi for different elements do not

reveal any unambiguous trends. The values of Ten, that correspond to the minimum

value of xi do not appear to be strongly dependent on the charge of the fragment.

To get an improved measure for Tcm, we have combined the results for all fragments.

Figure 6.2 shows the corresponding values of xi. The solid curve in the figure depicts

the values of xi where both the independent population probabilities and the ratios

of population probabilities have been included. In addition, the dashed line in the

figure indicates the values for xi where the sum in equation 6.1 runs over only the

independent population probabilities, and the dash-dotted line shows the correspond-

ing values where the sum includes all the ratios of population probabilities which may

be constructed. Minimum value of xi in these comparisons occur for emission tem-

peratures of Tem z 3 — 4 MeV. Also shown as the dotted line in the figure is the

xi value for the single comparison involving the 5Li ground state and 16.66 MeV

excited state. Calculations indicate that the relative populations of 5Li excited states

are rather insensitive to the sequential feeding from heavier particle unstable nuclei

[Chen 88]. For the 5Li states, the minimum value of xi occurs at Ten, = 4 MeV,



123

14N+Ag, E/A=35MeV, so=ss°
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consistent with the emission temperature extracted from the 1“N+197Au system at

E/A = 35 MeV (see figure 1.2). Thus the emission temperatures of Tem = 3 - 4 MeV

obtained from heavier particle unstable nuclei are in average slightly lower than those

extracted from 5Li.

Even for Tem z 3 — 4 MeV, the values of xi shown in figures 6.1 and 6.2 are rather

large indicating significant discrepancies between measurement and calculation. This

issue was investigated in greater detail for states of 10B in chapter 5. To explore this

issue for other nuclei, we now present detailed comparisons between the experimental

and calculated population probabilities and the ratios of population probabilities at

Tem = 4 MeV. For these comparisons, we adopt the conventions in figure 1.2, in which

an apparent temperature Twp is defined by the relation

11" = exp1—1E:— £714.41. (62)
"j

where fiapp = 1/Tapp. If j denotes the ground state, from equation (6.2) and the

definition of population probability, we obtain

(213.5. + 1),“ = €Xp(—E: ((39131))9 (6’3)

where 1105- is the spin of the ground state. Equations 6.2 and 6.3 define Tam, in terms

of ratios on measured or calculated values of n,- and n,-. Sometimes the values for

Tapp provided by equations 6.2 and 6.3 are negative or infinite. To avoid this singular

behavior of the apparent temperature, we will extract and assign an uncertainty to

3.,” rather than Tapp.

In figures 6.3, 6.4, 6.5, and 6.6, we present values for flaw (on the lower axis)

and Tam, = ”6,,pp (on the upper axis) for population probabilities and ratios of

population probabilities for isotopes with Z = 3,4; Z = 5,6; Z = 7; and Z = 8,

respectively. The solid points represent the values for flaw obtained for experimental

population probabilities or the ratios of population probabilities. The histograms
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represent corresponding values for (3991) obtained from sequential feeding calculations

starting with an initial temperature Tem = 4 MeV. The uncertainties in the calculation

are designated by the spread of the histogram which is shaded in the figure. In this

figure, only those cases are plotted for which both the calculated or experimental

uncertainties are smaller than the dynamic range of the figure.

Values for (32:99 and Tapp obtained from the population probabilities of two groups

of states in 5Li and 6Li, and three groups of states in 7Li and 7Be are shown in figure

6.3. (The relevant populations were given in table 3.2 of chapter 3). The experimental

data in figure 6.3 for the population of states in 5Li, °Li, and 7Li are comparable to

the results shown in figure 1.2 obtained in previous measurements at similar energies

(see figure 1.2 and [Poch 87, Chen 88]). The effect of sequential feeding is minimal

on the widely separated ground state and 16.66 MeV state of 5Li [AB = 16.66 MeV].

From these two states, an apparent temperature of 4.0 :I: 0.26 MeV can be obtained

from the ratio of population probabilities. This value for Tapp is identical to the value

of Tcm = 4 MeV which was used to compute the corresponding quantities in the

sequential feeding calculation. In general, the calculated apparent temperatures are

similar to the measured ones for most other transitions. Notable exceptions are the

ratios involving the 6.64+7.47 and 11.24 MeV excited states of 7Li.

The values for Ba”, and Tapp obtained from measured and calculated population

probabilities for two groups of states in 8B, seven groups of states in 10B and three

groups of states in 11C are presented in figure 6.5. For convenience of presentation, the

ratios are labelled in the figure in terms of the groups of states discussed in chapter 3.

Compared to the first group of excited states of 8B, the measured populations for

the second group of excited states of 8B were larger than one would expect from

the sequential feeding calculation. Much larger discrepancies are observed for the

excited states of 10B. Measured ratios involving the second group of excited states at
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excited states of Li and Be isotopes. The histograms represent the results of sequential

feeding calculation with an initial temperature Tem = 4 MeV.
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Figure 6.4: Experimental values for (6.1,, and T.” are shown as the solid points for the

groups of excited states of B and C isotopes described in table 3.3. The histograms

represent the results of sequential feeding calculation with an initial temperature

Tm = 4 MeV.
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Figure 6.5: Experimental values for H.” and T.” are shown as the solid points for

the groups of excited states of 13N and 1‘N described in table 3.4. The histograms

represent the results of sequential feeding calculation with an initial temperature

Te... = 4 MeV.
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Figure 6.6: Experimental values for ,3.” and T..pp are shown as the solid points for

the groups of excited states of 16O and 180 described in table 3.5. The histograms

represent the results of sequential feeding calculation with an initial temperature

Tem = 4 MeV.
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E" z 5.1 MeV and the third group of excited states at E“ as 6 MeV are very strongly

in disagreement with the calculations. In fact the ratios between the third and second

groups give large negative apparent temperatures in contrast to the predictions from

the calculation. The groups of states for 11C on the other hand, are well described by

the calculations. Because of the large uncertainties in the calculation for the ratios

between excited states of 11C, however, these ratios are not plotted.

In figure 6.5, we present Em, and Tapp for two groups of states of 13N and nine

groups of states of 1“N. The structure and the population probabilities of these groups

were listed in table 3.4. The experimental populations for the first group of 13N are

in agreement with the calculations. The deviation for the second group is large. The

population probabilities which are defined with respect to particle stable yield in case

of 1“N deviate significantly from the calculation for Tem = 4 MeV. For these cases,

the calculation predicts somewhat more feeding to the particle stable states than

observed. Slightly better agreement for the population probabilities are obtained for

Tem = 3 MeV. For the ratios of population probabilities, however, the agreement is

actually better for Tem = 4 MeV, and with the exception of the ratio of group 6 to

group 3, the overall agreement is rather good.

In figure 6.6, we have plotted 3,”, and Tam, for the populations of four groups of

states in 160 and three groups of states in 180. The structure of the groups and the

corresponding population probabilities are given in table 3.5. The overall agreement

between the data and calculation in case of 180 states is somewhat better than that

of the states of 16O. The second and third groups in 160 are combinations of states

that are far apart in excitation energy. The median energies obtained for the groups

are rather close to each other which make the discrepancy large.

To summarize, it is observed that about half of all the experimental population

probabilities and and one-third of the ratios of population probabilities showed signif-

._ *3
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icant deviations from the predictions of statistical calculations. The largest discrep-

ancies in the ratios of excited state population probabilities are observed for 10B, and

for the population probabilities, the largest discrepancies were observed l“N. Whether

these discrepancies would be less in experiments with heavier or lighter beam where

simple fragment production modes are suppressed is an open question which should

be addressed by future investigations.



Chapter 7

Summary and Conclusion

In this dissertation, we have presented a detailed study of the relative populations of

particle unstable states of intermediate mass fragments for the reaction 1"N on m“Ag

at E/A = 35 MeV. In many thermal models, the populations of excited states at

freezeout are expected to follow a Boltzmann distribution weighted by the emission

temperature of the system, Tm. Tests of this freezeout assumption were made by

comparing relative populations of a large number of particle unstable states to the

predictions of statistical calculations.

Experimentally, the populations of particle unstable states were obtained by mea-

suring the decay products in coincidence using a new high resolution position sensitive

hodoscope. Numerical techniques were developed to model the detection efficiency of

the hodoscope. Experimental population probabilities were extracted by fitting the

spectra for the true coincidence yield to an appropriate R-matrix or Breit-Wigner

formalism. Even with good energy resolution of the hodoscope (50 keV for 4.774

MeV state of 10B), it was not possible to isolate each of the excited states in the

experiment, and some neighboring states were grouped together statistically. In this

fashion, relative populations with respect to the corresponding particle stable yields

were obtained for 40 groups of states in Li, Be, B, C, N and O isotopes.

132
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Extensive calculations were performed to predict the relative populations of these

states while taking into account the sequential feeding effect from heavier particle

unstable nuclei. In these calculations, discrete and continuum states of nuclei with

Z < 13 were thermally populated and allowed to decay sequentially. Unknown spins,

parities and isospins of lower lying discrete states were assigned according to pri-

mary distributions obtained from the non-interacting shell model. Calculations were

repeated with varying assumptions until their sensitivity to unknown spectroscopic

information could be assessed.

Comparisons were made between the measured relative populations of particle

unstable states and the corresponding calculated values for different initial temper-

atures, Tem. To allow a global comparison between the experimental data and the

calculated results, xi functions were computed for the population probabilities and

for the ratios of population probabilities between states of the same fragment. By

examining the temperature dependence of these x2 functions, the best agreement

between calculated and measured quantities occured at Ten, = 3 — 4 MeV.

Even for emission temperature Te", 2 3—4 MeV, the magnitude of the x2 functions

were rather large suggesting that many of the excited states of intermediate mass

fragments may not be thermally populated. The relative populations of the excited

states were studied in detail for excited 10B nuclei. Large discrepancies between

the calculated and measured population probabilities were observed. Calculations

were performed to see if rotational effects when imbedded in a statistical description

can account for this deviation. These calculations indicate that rotational effects

can make the population probabilities deviate significantly from calculations which

neglect rotational effects. The trends induced by rotation however, still differed from

the the trends observed experimentally. Rotational effects were further explored by

measurements of the decay angular distributions of 10B fragments. The anisotropies
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of these decay angular distributions were observed to be small. When this information

was used to construct the calculated values of the population probabilities, it could

be considered that rotational enhancements of high spin states are also likely to be

small. All this evidence indicates that rotational effects are not likely to be the sole

explanation for the discrepancies between the measured population probabilities and

statistical calculations which neglect rotational effects.

Assuming an emission temperature Ten, 2 4 MeV, comparisons were made be-

tween the measured and calculated population probabilities and the ratios of popu-

lation probabilities for states of other fragments. For roughly half of the population

probabilities and one third of the ratios of population probabilities, the disagreement

between calculated and measured quantities were substantial. This observation is not

presently understood. Several explanations can be offered.

1) Since the masses of the fragments considered in our analysis are close to the mass

of the projectile, simple non-thermal production. mechanisms cannot be excluded.

These mechanisms may not thermally populate the fragment excited states. This

possibility should be explored via additional measurements with heavier or lighter

projectile nuclei.

2) There is a possibility that the spins or branching ratios of some of the states ana-

lyzed in this dissertation may be incorrectly assigned in the literature. The extracted

populations are sensitive to this spectroscopic information. Incorrect spectroscopic

information will result in incorrect extraction of the corresponding population prob-

abilities. For the states of 10B where large discrepancies were observed, however, the

relevant spectroscopic information appears well established and the discrepancies ap-

pear to be real.

3) Some of the measured peaks could contain background peaks from three body

decays or from the decays to daughter fragments in particle stable excited states.
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Additional measurements with improved excitation energy resolutions would help to

clarify this issue.

4) Some heavier particle unstable nuclei could decay to nuclei we observed with

branching ratios which differ significantly from those predicted by the Hauser-Feshbach

model of statistical decay. This could lead to an enhancement or a depletion of the

populations of selected excited states.

5) It is conceivable that the excited states of the fragments could be thermally popu-

lated at a high density where the energies of the levels differ significantly from their

asymptotic values. If the evolution of the system to zero density is adiabatic, the

level population could be preserved while the ordering of the levels could be changed

leading to the appearance of non-thermal populations of the isolated fragments.

It is not presently clear how to best address questions 4 and 5, and therefore the

question remains open.

The best overall agreement between the measured and calculated population prob-

abilities occurred for emission temperatures of about Tem % 3 — 4 MeV. The emission

temperature extracted for 5Li fragments is slightly higher (Tem a: 4 MeV), and is

consistent with the systematic incident energy dependence of emission temperatures

extracted from 5Li fragments previously reported.



Appendix A

Electronics

The block diagram of the electronics set up for a pair of Light particle and Heavy

fragment telescopes is shown in figure A.1. The analog signals from the :1: - 3; position

sensitive detectors, silicon detectors and NaI detectors were preamplified, shaped and

amplified, and then were sent to the peak sensing ADC’s. Logic signals were extracted

from fast signals derived from the second element of the Si telescopes. These logic

signals were split into a two-way splitter. One signal from the splitter was sent to a

discriminator with high threshold which provided the energy threshold for different

particles. The other signal was sent to a constant fraction discriminator with low

threshold, which was used to obtain the timing information. The output signals of

both discriminators were sent to a coincidence unit and the output from this unit

was fanned out to generate telescope logic signals. One of the signals was sent to a

downscale unit to get particle inclusive data. The second signal was used to generate

input signals for TDC stops and bit registers. The third output from the fanout

was sent to a 32 channel majority logic unit which provided a coincidence output for

coincidence between any two pair of light particle or heavy fragment telescopes. The

fourth signal from the fanout was sent to a logic OR unit whose output was sent to a

coincidence module, which generated an output for coincidence between light particle

and heavy fragment telescopes. In this way the trigger levels could be adjusted for
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Figure A.1: The electronics diagram for a pair of Light particle and Heavy fragment

telescopes.
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individual signals if the rates of different types of signals are different. In practice,

the rates turn out to be not so different in our experiment and a majority logic

unit was used for all triggers. The trigger for the experiment consisted of downscale

telescope events, coincidence between light particle detectors, coincidence between

heavy fragment detectors, and coincidence between light particle and heavy fragment

detectors. A dead time circuit (not shown in the figure) was used to inhibit the

CAMAC data acquisitions system while the computer was busy.



Appendix B

Details of the Efficiency

Calculations

The efficiency functions €(E‘, E51”) are usually obtained by performing Monte Carlo

simulations for the emissioh and decay of the respective particle unstable nuclei. For

most detection geometries, such simulations are very time consuming because of low

detection efficiencies.

We have avoided the inherent inefficiencies of such Monte Carlo simulations by

calculating the efficiency function through direct integration of the two particle co-

incidence cross section over the detector geometry. For simplicity we assume the

decay to be isotropic in the rest frame of the particle unstable nucleus and the lab-

oratory production cross section of the particle unstable nucleus to be independent

of the excitation energy E‘. The laboratory two particle coincidence cross section

can then be given in terms of the center of mass excitation energy spectrum and

the “common” laboratory production cross section for the particle unstable nucleus

da(Etot1 Qtot)/dEtotthot by

d0'(EH, 0“, EL, 9L) = 6(Erela ”cm, Etot, ntot) d0'(Etoty fltot)LM (B 1)

dEHdnl-l, EL, dQL) C(EH, {2“, EL, 0L) dEtotdntot 411' (IE: 1 .
 

 

where 6(Eml, flan, Em, 0.01/MEWS)“, ELQL) is the Jacobian for the transformation

from the center of mass coordinates Em, 9cm and the laboratory coordinates EM, 0.0.
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of the parent particle unstable nucleus to the laboratory coordinates for the detected

heavy (H) and light (L) decay products. This Jacobian is given by

  

a(Erela 0cm» Etots ntot) = prl-I(EL ‘I' mL)(El-I + mH)

3(EH, 9H. EL. QL) PimptodEfim + WILKES" + ms)

x [1-{{(Pf.+13'L'I3'H)(EH+mH)

0221+ 151-50113. + m.) 1’ }

x { (EL +13“ +mL+mH)2(EL+mH)

>< (EH +mH)(Erel+mL+mH)2 }-1

— { (paw-5141112.. +7744)?

+ (p11 +141. 713101121. +m1.)2 }

x {(EL+EH+mL+mI-I)2

X (EL + mL)(EH + mg) }-l J. (3.2)

Here mL and mu are the masses and EL and EH are the kinetic energies of the light

particle and the heavy fragment, respectively. To convert the two particle cross section

into the measured two particle distribution function dN/dEHmdQHdeLmdflLm at the

measured laboratory angles, Slum and fle, and the deduced laboratory energies,

EH,“ and ELm, which include a correction for energy loss in target and detector

foil, one must consider the distribution of interaction points, h(fi8t), in the target

beam spot which causes the actual emission angles (IL and {In to differ from the

values, QLC and Que, deduced by assuming the reaction to occur at the center of

the target. In addition, one must account for the difference between the corrected

energies, EL and E3, of the particles after the entrance foil of the detector telescopes

(calculated by assuming the reaction to occur at the center of the target) and the

original energies, EL and EH, inside the target. These differences are represented by

the distributions, AL(EL, EL, tm) and AME“, Emily), of energies losses (including

energy loss straggling) in the target and entrance foil of the telescope, where ttg,
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is the position inside the of the target. Likewise, the angles, (IL and (In, of the

particles at the entrance foil of the detector telescopes differ from the angles inside

the target according to the distributions, 6L(QLC,S~IL,t,g,) and 6H(QHC,OH),ttg,, for

multiple scattering in the target. Finally, one must consider the detector angular

resolution functions, Again, 0“,“, E3) and AL(f2L, QLm, EL) (which include the effects

of multiple scattering in the entrance foil of the telescope and the energy dependence

of the position resolution), the detector energy resolution functions, RH(EH,EH,,,)

and RH(EH,EH,,,), and the detector efficiencies DL(EL,I~IL) and DH(E'H,fZH) which

account for the loss of efficiency in the telescope due to multiple scattering in the

telescope stack. In terms of these quantities, one obtains

dN ._

dEHmdQHdeLmdQLm -

 QN,,, / da,.dt.,.dEHdELdoHCdnLCdEHdELdQHdQL

>< Damn. QL)DL(EL, fiL)RH(EHa EHm)

X RL(EL, ELmlAHmH. 011m. EnlALmL, 9L1... EL)

x AME“, EH,t,8,)AL(EL, EL,1.,,)5H(0H.,0H,1.,.)

X5L(QLC. (IL. ttgt)j(QH1 an)j(QL. 91.12)

d0'(EH, 9H7 EL, QL)

dEHdQHddELdQL ’ (B3)

 

(this)

where Q is the number of beam particles which traverse the target during the experi-

ment, th, is the number of target nuclei per unit area and J(flu, Duo) and J(91,, QLC)

are the Jacobians of the transformation from the spatial coordinate system centered

at point of interaction in the target and the coordinate system whose origin is at the

center of the target.

To obtain the yield Y,,(E;m) experimentally, one bins the data with respect to the

measured energies and angles, calculates the mean excitation energy E3,“ correspond-

ing the energies and angles of these bins and stores the data in the correct element

of the array YC(E"
mea

) corresponding to calculated value of Er‘nea. We designate this
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operation as

dN

E“ — dE de md mdfl m m . B.4

Y( "165)-; bin.- H L Q” H dQL dEHmdQHdeLmdQLm ( )

(E;=E

 

mea)

Finally, to simplify the calculation further, we approximate Eq. (3.3) by

 

 

 

dn( E;+A/2

E. = a: It I-

Y.( m...) 21:4 dEE;”L51.4]-412 dE(E E...)

EA “(Bil é(E; Es...) (3.5)
j dE. E.=E.

I

Here E3?“ — E; = A, and A is chosen sufficiently small that this approximation is

accurate. Then, the averaged efficiency E becomes

1
as; 3;“) = QN,,, 2L dELdeHmdflHmdQLm—A-

(E:=Emea) '

E;+A/2

x / dE"

s;—A/2

x { /d2f}gtdEHdELdflHchLchHELdQHdQL

XDH(EH1(2H)DL(EL1S~2L)RH(EH1 E11m)

X RL(ELa ELM/111mm 911m, EH)AL(QL1 QLma EL)

>< A11(511. EHchclALIEL, ELattgt)6H(QHcafiH1ttgt)

><611(fcha (2L1 ttgt)j(nf‘la QHC)'j(QL, QLC)

X h(7.‘. )a(Erela 9cm, Etot, 9,0,) d0(Etota ntot) _1_

wt 8(EH, QH, EL, QL) (“51“”det 47r .
 (B.6)

This expression is relatively straightforward to evaluate. For the efficiency calcu-

lations given here, the integrations over E', 77131. E3, EL, QHC, QLC, EH, EL, OH, {IL are

performed by a Monte Carlo sampling algorithm. The cross section,

da(E,o,,9,0,)/dE,o,dQ,o,, used in Eq. 17, was determined by fitting the inclusive
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data for particle stable nuclei of the same mass. The detector resolution and depen-

dence of this resolution on the particle energy and mass were determined from the

experimental and calibration runs.

Since no time is spent calculating the trajectories of particles which pass between

detectors, direct integration proves to be considerably more efficient than Monte Carlo

event simulation for calculating the efficiency. Direct comparisons between the two

techniques have been made using calculations for an 18 element hodoscope used in

measurements of 160 induced reactions on 197Au at E/A = 94 MeV. The Monte Carlo

event simulation was performed with the simulation program of Ref. 2. To better

than 1% accuracy the present efficiency calculation agrees with calculations using the

event simulation program. For this case, however, direct integration is about a factor

of 20 faster than Monte Carlo event simulation.

For determination of the background yield, mek( 13;“), it is necessary to perform

an identical event binning for the product, our“, of single cross sections (see Eq. 13)

as was performed in Eq. 17 for the coincidence yield. For position sensitive detectors,

it is considerably easier to fit the singles cross sections 0L and on with a moving source

parameterization and integrate the parameterized cross sections than to perform a

mixed single-particle event analysis. Since the excitation energy E" is rather trivially

related to the relative momentum Ap, it is equivalent and actually easier to define a

correlation function [1 + Rbuk(E‘)] = [1 + Rback(Ap)], which satisfies the equation

Ybuk(§H,5Ll = CUL(5L)0H(5H)(1+ Rback(E'))- (B-7)

Summing both sides of equation for a fixed excitation energy E11,“ provides
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Yback(E;e.) = Cl1+Rb8Ck(thea)l

X Z / ‘ dEHdeLmdQHmdQLm

(E:15 i
me.)

E; +A/2d

XAif1;E;-—A/2

X { [d2figtdEHdELdQHCdQLCdEHdELdQHdQL

XDH(EHa QH)DL(EL, fiL)RH(EHsEHm)

XRL(ELa ELm)AH(QHa QHm, EHMLmL, QLm, EL)

X AH(EHa EH, ttgt)AL(ELa EL, ttgt)6H(QHca (2H, ttgt)

X 6L(QLca QL) ttgt)j(nH9 QHc)j(nL, QLC)

dO’H(EH, QH) dO’L(EL, 9L)

dEHdQH dELdflL °

 

>< hm...) (B.8)

Away from the peaks corresponding to the decay of excited states, where Yc is small,

Kot(E )mea : 1 .
B.9

Yback( Em...) ( )

Using this relationship [1 + Rbuk(E‘mg] is determined empirically.
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