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ABSTRACT

STABILITY OF SYMMETRIZED PROBABILITIES AND

COMPACT EQUIVARJANT COMPOUND DECISIONS

By

Mostafa Mashayekhi

Extensions of Hannan and Huang (1972) results on the stability of

symmetrization of product probability measures to the compact case and

their applications in extensions of some of the results of Gilliland and

Harman (1974), on equivariance in a compound decision problem are

obtained.

Let 5’ be a compact, in the total variation norm, class of pairwise

mutually absolutely continuous probability distributions. We show that the

total variation norm of the symmetrization of two products of probabilities

in .9: with differences in one factor, converges to zero uniformly as the

number of factors approaches an. Rates of convergence are obtained for the

case where 3’ is an exponential family with its parameter space in the

interior of the natural parameter space.

The above convergences translate into the convergence to zero of the

excess of the simple enve10pe over the equivariant enve10pe, for a restricted

component risk compound decision problem, as the number of problems

approaches an.



For compound estimation of continuous functions under squared error

loss, and finite action problems with continuous loss functions, the problem

of treating the asymptotic excess compound risk of equivariant "delete

bootstrap" rules is reduced, under an identifiability condition, to the

question of LI— consistency of certain mixtures. Examples of estimates

satisfying the above consistency condition are included.
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CHAPTER 1

INTRODUCTION

1. The set compound problem.

In the set version of the compound decision problem, pioneered by

Robbins (1951), simultaneous decisions are to be made in 11 problems of the

same generic structure, with this structure being possessed by what is called

the component problem. Ordinarily in the component problem, there is a

family of probability distributions 9 on some common measurable space

(.33), an observable .$-valued random element X with distribution P,

where P E .9; an action space .4 a loss function L: say—i [0,m), a class

.9 of (randomized) decision rules t, on .3 x a , where a is a a—field of

subsets of .4 such that for each x e .3 t(x,-) is a probability measure on

a and for each A e a t(-,A) is .3 measurable. The decision procedure t

has risk

(1) R(t.P) = llL(a.P)t(x.da)dP(X)-

In the compound problem, we have the state space .99, the action

space .1 n, observations E = (X1, ..., Xn) with distribution P , where

n

P =a;1 Pa , P = (P1, ..., Pn) e 59, compound rules t = (t1, ..., tn) :

where for each 1 g a g n, ta has domain .a“ x a with ta(-,A) .é‘

measurable for each A and t a(x,-) a probability measure on a for each x.

The compound risk is given by
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(2) sea) = izuuaimptedahdrw.

Sometimes it is preferable (see Hannan and Huang (1972a)) to consider

loss functions that may depend on x itself. A more general setting (cf.

Gilliland and Hannan (1974—)) is to bypass the consideration of a loss

function and identify each decision rule in g by its risk point in [0,...)5.’

Then a compound rule t is identified with g = (81, ..., sn) where for each i,

si is a 31-1 measurable mapping into [0,m) 9 The a—th component risk at

Pa is then sa(Pa) and the compound risk is given by

has) = %2 sum).

Let o’ be the class of all simple procedures

(i.e. of: {_t-: t“(g = t(xa) V l 5 a 5 n, for some component rule t}), and

let 3 be the class of compound rules that are equivariant under the

permutation group. As functions of 1:, inf REP), inf R(LP) are called the

o’ 8

simple enve10pe and the equivariant enve10pe respectively. It is clear from

the definition that the latter is the infimum over a larger class and well

known that the former coincides with R(Gn), where R(w) is the component

Bayes risk at w, and GH denotes the empirical distribution of PI’ ..., Pn.

Traditionally, a compound rule is called asymptotically optimal if, with

the modified regret at I: defined by

(3) 13,1042) = BEE) - R(Gn).

83p DIED —-0 0 as n —» m.

However, since almost all of the compound rules in the literature are

equivalent to equivariant procedures, the equivariant enve10pe (cf. Hannan
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and Huang (1972 a), p 104) is considered a more apprOpriate yardstick of

performance than the simple one.

2.Historyreviewandasummaryofthepresentwork.

Hannan and Robbins (1955) introduced the class of equivariant

procedures for the 2x2 .9: .1 compound problem and showed (Theorem 5)

that the difference between the simple and equivariant envelopes converges

to zero uniformly in P. Hannan and Huang (1972a) considered the compound

problem for finite .9 under a certain class of loss functions and provided an

upper bound on the difference of the simple and equivariant enve10pes which

is 0(n'1/2). Gilliland and Barnum (197+) (Theorems 1 and 2) extended

those results to arbitrary bounded risk components for finite , .9! They also

showed (Theorems 3 and 4) that for equivariant "delete bootstrap"

procedures, the excess compound risk over the simple enve10pe is bounded in

terms of the L1 error of estimation and thus established a large class of

asymptotic solutions to the compound decision problem with restricted risk

and finite state component. Their proof depended heavily on the Harman and

Huang (1972b) results on the stability of symmetrization of product measures

(Theorem 3) which was a strengthened generalization of Theorem 11.1 of

Hannan (1953).

In this thesis we consider the compound decision problem in which the

set of component distributions .9 is compact in the t0pology induced by the

total variation norm and has pairwise mutually absolutely continuous

elements. The risk set of the component problem is assumed to be a

bounded subset of [0,...)91
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In Chapter 2 we consider some extensions of Hannan and Huang (1972

b) results on symmetrization of product measures to the compact case and

prove two measure theoretic theorems analogous to Theorem 1 of Hannan

and Huang (1972b). Theorem 1 shows convergence to zero , as the number

of factors approaches to , of the total variation norm of the symmetrization

of the difi‘erence of two product probability measures with differences in one

factor. Theorem 2 specializes to compact k—dimensional exponential families

and obtains rates of convergence for the case where the parameter space is a

compact subset of the interior of the natural parameter space.

Chapter 3 considers some extensions of Gilliland and Hannan (1974-)

results on equivariance and the compound decision problem. In Remark 4 we

observe that the method of proof of their Theorem 1 bounds the difference

of the simple and equivariant enve10pes by a constant multiple of the norm

of two product probability measures considered in our Theorem 1.

Our enve10pe results strengthen, inter alia, the results of Datta (1988)

who obtained admissible asymptotically Optimal solutions to the compound

estimation problem for a large subclass of the real one parameter exponential

family under squared error loss.

Theorem 3 provides sufficient conditions for asymptotic Optimality of

"delete bootstrap" rules. Examples 3 and 4 show that for squared error loss

estimation of continuous functions and for finite .1 problems with continuous

loss functions Theorem 3 reduces the problem of treating the asymptotic

excess compound risk of Bayes compound rules to the question of

Ll-consistency of certain mixtures. The reduction is analogous to Theorem 3

of Gilliland and Hannan (1974—), and immediately extends the results of

Datta (1990) for the empirical Bayes decision problem, to the corresponding

compound decision problem, under appropriate loss functions.
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Examples of estimates satisfying the above consistency condition are

provided in Section 3 of Chapter 3.

3. Notations and conventions.

Let n be a positive integer. If Pl’ ..., Pn are probability measures, P

denotes the product probability measure Pl x x Pn. We use P11 to

n

denote (1:11) and P1P2 to denote P1 x P2. An n—tuple (x1, ..., xn) is

denoted by 5n and in denotes the average of the components of 5n (the

subscript n will not be exhibited if it is clear from the context). The

empirical distribution of I_’_ , where Pa is a probability measure for each a,

is denoted by Gn'

We use u(f) or uf to denote the integral of a function f with respect

to (wrt hereafter) a signed measure it. We sometimes use expressions such as

jf(x)dp(x) to exhibit dummy variables. The same notation is used for a set

and its indicator function when the distinction is clear from the context.

A function f defined on a set .3 into a set y is sometimes denoted by

x E .3 ~~-. f(x) or x ~~-» f(x). Sometimes we abuse notation and denote

functions by their values. If .3 and y are metric spaces with metrics r and

p respectively, we sometimes denote f by x 6 (3r) ~-o f(x) 6 ( flp) . If f is

a function of two arguments, f(-, y) denotes the function (section) that is

obtained by fixing the second argument at the point y.

If r is a signed measure, then |r| will denote the total variation

measure corresponding to r (i.e. |r| = r+ + r- ) and "T" will denote the

total variation norm of r. We denote the Euclidian norm and inner product
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by | | and juxtaposition respectively. The supremum of a real function f is

denoted by ||f||m whatever be its domain.

All incompletely described limits are as n -+ so through positive

integers. All sums will be on i from 1 to 11 unless otherwise indicated. The

symbol n denotes end of proof.



CHAPTER 2

ON SYMMETRIZATION OF PRODUCT MEASURES

1. Introduction

In this chapter we consider some extensions of Hannan and Huang

(1972b) results, on the stability of symmetrization of product measures, to

the compact case. Our main results (Theorems 1 and 2) are analogous to

their Theorem 1.

In Section 1 we reproduce some of the general prOperties of signed

measures and their symmetrization with respect to general groups from their

Section 2, with the minor improvement that we consider total, instead of

their maximum, variation norm. The substitution of this equivalent norm

simplifies some relations and proofs.

Section 2 considers a contraction effect of probability factors in product

signed measures that was noted in their Section 3 , and presents an

extension of their Lemma 1 with a simpler proof.

In Section 3, specializing to permutation groups, we consider product

probability measures with factors in a set which is compact under the

t0pology induced by the total variation norm, and has pairwise mutually

absolutely continuous elements. Theorem 1 and Theorem 2 deal with the

effect of symmetrization on the difference of two product probability

measures with differences in one factor. Theorem 1 shows uniform

convergence to zero of the total variation norms, and Theorem 3 specializes

to k—dimensional exponential families and obtains rates of convergence.



2. Preliminarim

Let 7 be a finite group of measurable transformations g on ( fl 6). For

*

a signed measure 1 on ( fl 3), the symmetrization r of r is defined by

m im=rhdwn0es
36?

where N is the number of elements in y Thus symmetrization (*, hereafter)

is an expectation Operator. We will abbreviate affixes on * by omission.

For any real valued function f on y , its symmetrization f* is defined

by

(2) f=N-12f.g.

1' and f are said to be symmetric if r = 7* and f = f*, respectively.

at: It at: at:

The prOperties, (r. g) = r and (fig) = f V g 6 fl will be used

later without comment.

The following two facts are taken from Section 2 (Relations (6) and

(8)) of Hannan and Huang (1972b).

Let r be a signed measure, and let p be a measure such that dr/dp

exists. If p = if, then

(a) (dT/dfl)* = when).

Let p be a measure. If f is pat—integrable, then

III Ii! It It!

(4) #(f)=u(f)=u(f)-
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The following two relations ((5) and (6)) are simpler analogs Of their

relations (9), (11) and (12).

If (3) holds,

who: 3 Idr/dul"

by subadditivity of | |. Applying this with it = if, by (4), integration wrt

p and the isotonicity of p—integral give

(5) "in 5 Hr".

If 70 is a product signed measure, then

|ra| = (r‘a‘ + 717’) + (1"0' + 777*) = |r| |a|

and therefore by the Fubini Theorem,

(6) "Tall = IITII "all-

If P and Q are product probability measures, subadditivity of norm

and applications of (6) give

7 P- (2 xP.P.— .x .=2P.—.() || ‘2" - i "Ki ,( , Q,)j>iQJII i ll , Q,"

3. Contraction efiect of probability factors.

Let (3 .3) be a measurable space. For each n let fin be a measurable

group of transformations on (.3 3)" such that in is a subgroup Of in+1.

Consider the symmetrization of a measure on (3.3)11 relative to fin. The

following lemma is a strengthened generalization of Lemma 1 of Hannan and

Huang (1972b), with a simple proof eliminating the need for developing their

(13) and (14). It also serves for the extension of Remark 2 of their
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Addendum. Their Lemma 1 was already sufficient for the proof of our

theorems in this chapter.

Lemma 1. If r is a signed measure and P is a probability measure

then

(8) II up)“ ll 5 u?"-

* * It

Proof. Observe that ('rP) = (r P) , since they agree on

symmetric functions. Therefore (8) follows from the application of (5) and

a:

the probability case of (6) to r P. n

Henceforth we specialize fin to be the group of transformations on

(3.3)n induced by the group of permutations On 11 objects. We also let n

denote the permutation group itself. Thus a generic element g E in will be

used both as a permutation and the transformation g(i_r) = (x81, xgn).

4. Two product probability measures with diflerences in one factor.

Throughout the rest of the thesis

.9 is a non-empty norm-compact class of pairwise mutually absolutely

continuous probability measures.

Part (i) of Lemma 2, to follow, proves uniform convergence to zero of

ll(TQn)*Il where r = R — S with (Q,R, S) e .9 3. The result is used to

prove a stronger assertion in Theorem 1 where Qn is replaced by a product

of n elements of 9 . Part (ii) of Lemma 2 obtains rates of convergence

under an additional assumption and is used in the proof of Theorem 2 in

Section 5.
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Lemma 2. For (Q,R,S) e .93 let t be a density of r wrt Q and let

Tn = "(fin—If". Then, with ti denoting 5 ~-+ t(xi),

(9) T, = infl.

(i) "Ta"... = 0(1), and for each I 6 (1,21

.. r-l r r . _ 2-r

(n) n "Tun, < anew u, web a, - 2 .

Proof. Since t is a density Of T wrt Q, t1 is a density Of rQn-l

— _ at

wrt Qn and t is a density of (Q11 1) wrt Qn. The latter implies (9).

(i) We show that (Tn) is a monotone sequence of continuous functions

3 and therefore by Dini’s Theorem (cf. e.g.decreasing to zero on compact 9

Proposition 9.11 of Royden (1968)) it converges to zero uniformly. By

Lemma 1 Tu 2 T Since sum and product are, by the norm properties
n+1'

and (6), continuous Operations on finite signed measures and * is linear, the

composition Tn inherits continuity on .9 3. By the L1 Law of Large

Numbers the rhs(9) converges to zero.

(ii) By the independent case of a von Bahr and Esseen inequality (cf.

von Bahr and Esseen (1965))

(10) infitilrs a, 2Q“It,l‘ = narQltlr-

From (9) and the moment inequality, an; g lhs(10). Weakening this by

(10), dividing by n and taking supremum over (Q,R,S), gives the inequality

in (ii). a
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Remark 1 In the proof Of Lemma 2 we used Lemma 1 to Obtain the

monotonicity of Tn. Only later did we note that Lemma 1 can be used to

show the monotonicity of EIXnI when X1, ..., Xn are i.i.d with EX1 finite,

a fact seldom noted in texts, but presumable well known to the authors who

discuss the associated reverse martingale.

Any hope that this application Of Lemma 1 would be a worthy simpler

proof were short lived. My colleague Liu, Zhihui noted non—increasing

monotonicity for "in"r with r E [1,m] and X1, ..., Xn only exchangeable,

( m? n 15 II» n ""331 nn—l X. g X. = n X. ,
i=1 1 r j=1i¢j l r i=1 1 r

as this immediate consequence Of the homogeneity and subadditivity

properties of the Lr(P) norm appropriately applied.

Remark 2. Pairwise mutual absolute continuity of the elements Of

.9 is a necessary condition for the conclusion of Lemma 2 to hold. For, if B

is such that P(B) = 0, then

(12) ||(P“ - QPn‘lfu 2 (P11 - 29-57(93)”) = Q(B)

so that lhs(12) = 0(1) only if Q(B) = 0.

n

Theoreml. LetP= xPi,whereforeachi Pie .9,andlet

i=1

T=R—SwithRandS€.9. Then

(13) suptntrrfn = (ass) e 9+2} = 0(1).
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Proof. Let Q be a product Of N factors Of P. By Lemma 1

It *

(14) ||('rP) || 3 ||(TQ) II-

If Q is a probability measure, by the triangle inequality, (5), (6), and

(7).

(15) rhs(14) s urn 2nd, - on + "WWII.

Let c > 0 , and use Lemma 2 to choose N such that "TN-i-lllm <

5/3. By total boundedness there is a finite covering Of .9 by m balls of

radius 513—. If n > (N-1)m, then some ball contains at least N factors of P.

Let Q be the center of such ball and the Qi be factors Of I_’ therein. Then

by (14) and (15) and the choice of N

||(TP)*|| < .. n

Example 1: Location family. Let P be a probability measure

equivalent to Lebesgue measure on Rk. Let 8 be a compact subset of R1‘

and, V 0 e 8, let P 0 be the translate of P by 0. Observe that

IIP0+6 — P0" = ||P6- P" = PldPo/dP — 1| —» 0 as 6—+ 0

by Lebesgue’s theorem ( cf. Royden pp 90—91 for the proof in the one

dimensional case). Compactness of .9 = {P0 : 0 e ii} then follows by

compactness Of 8, and pairwise mutual absolute continuity Of its elements

follows by the equivalence of P and the Lebesgue measure together with the

translation invariance of the latter.
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5. Exponential families.

Let p be a measure on .3 = Rk such that

(16) I: {a e R“ : «(0) = Injeaxdttbt) < a} a i.

For 9 e J,’ let P 0 be the probability measure with p—density

(17) p0(x) = e990).

It has long been known (cf. e.g. Theorem 1.13 Of Brown (1986)) that,

on J,’ «p is convex by the Holder inequality and lower semicontinuous by

the Fatou Lemma. If 0 E 1°, then (cf. e.g. Theorem 2.2 of Brown (1986))

all derivatives Of cp exist at 0 and can be obtained by differentiating under

the integral sign.

In Example 2 and Remark 3, to follow, 9 = {P 0° 0 e 8 } for various

8 c J.’

Example 2: I polytOpe. By a Gale—Klee—Rockafellar theorem

(Theorem 10.2 Of Rockafellar (1970), convex p is upper semi-continuous on

locally simplicial 8. Since a polytOpe is a finite union of simplices, it then

follows that each x-section of p is continuous . Therefore, by the Scheffé

Theorem, P0 is norm continuous so that 9 inherits compactness of 8.

Remark 3: Compact 8 C .1 °. Then each x-section of p is

continuous so that 9 inherits the compactness Of 8 as in Example 2.

Consider a finite covering Of 8 by Open cubes with their closures in 1°.

Then the convex hull of the vertices v Of these cubes is a polytOpe in I

with 8 in its interior. Lemma 2.1 Of Brown (1986) then applies and gives a

number K1 such that
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(18) |e0° - e”"| 5 w -9'|K12ev' v (0,0,) 6 92.

0’-
By triangulation about c it follows that

whence properties of integration wrt to p and (18) bound

Ilpo - P9." by B|0 — m with B = ne‘V’nm 2 leefiv).

Theorem 2. Let 9be an exponential family with compact 8 C 1°.

If r 6 (1,2] and, for every 00 and 01 in 8, the external convex combination

or = r 01 +(1—r)00 6 1°, then with r = R — s

(19) sup{||('rP)*|| : R, s e 9and g e 9} = O(n-fi)

where 5 = (r—1)/(r+(2r—1)k).

Proof. Let n 6 2*, (R, S) e 5? and g e .99. Let (0, on) e

n + (2— l) k
ii such that Pi = P0! Choose N e Z such that with m = ([N r ]+1)

1

and g(N) = (N—1)m +1,

g(N) S n .<. g(N+1)-

Consider a cube containing 8 and divide it into m equal size subcubes. Since

11 z g(N) there exist N factors Of P , say Q1, ..., QN, with their indices in

the intersection of one of the cubes with 0. By (15)
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t N N t
(20) "((1’) II S 2:2 HQ, - Qlll + "(7%) Il-

Since the diameter of each cube is less than or equal to a constant multiple

1

of N('r' ’2) , where the constant depends on k and the size of the cube

containing 8, by the uniform bound, on "P0 — P0," /|0 - 0’I, considered

in Remark 3 there is a constant B1 such that the first term on the rhs(20)

1

is less than or equal to B1N(? '1). Since

P90(Pgl/P90)r = exp{-w(01) - (l-r)w(0o) + Mp}.

it is continuous on compact 82 and therefore is bounded. Thus if t is a

density of r wrt to Q, ||Q|t|r||m < 2r(above bound) by Minkowski’s

inequality in Lr(Q) . Therefore (20) and Lemma 2(ii) imply that

(21) "or?" 5 But} ‘ 1)

where B is a constant independent of R, S, _P_. Observe that by definition of

s and fi

(22) gfi(N+l)rhs(21) = 0(1).

By choice of N and (21),

(23) nfilhs(19) g lhs(22).

The conclusion Of the theorem follows by (22) and (23). u



CHAPTER 3

EQUIVARIANCE AND THE COMPOUND DECISION PROBLEM

I. Introduction

Consider a compound problem involving 11 independent repetitions of a

component problem with states P e 9 Let .9 be a bounded risk class of

decision rules for the component problem and let M < m be such that

V t e .9, and V P E 9, R(t,P) g M. For an n—tuple x = (x1 ,..., xn)

let 55: denote g with the a—th component deleted, and let PO denote P

with the a—th factor deleted. Consider the class _.9 of compound rules 1 =

(t1, ..., tn) where each git-section of ta 6 .9

When 9 is the largest class Of decision rules for the component

problem, the above compound problem is the usual compound problem with

g the largest class of compound decision rules. The compound problem with

restricted component risk was considered by Gilliland and Hannan (1974-)

for finite 9 , because Of the generality it provided for their enve10pe results

and the fact that it is the natural setting in which to study "delete

bootstrap" procedures. Moreover , as they noted, it allows for choice of 9

to control component risk behavior and the construction of asymptotically

best equivariant procedures in .2

Let s be the function on g): {1, ..., n} a: 9x 31-1 such that

s(_t_, a, P, $6) is the conditional on 2% risk incurred by g in the component

a when the distribution of Xa is P.

It is well known (see Section 2 of Hannan and Huang (1972a) or

Section 1 of Gilliland and Hannan (1974—)) that the compound problem is

invariant under the group of n! permutations Of coordinates, and that a

17
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compound rule 3 is equivariant if and only if there exists a function 7 on .3

x 31—1 to .1 symmetric on Jan-1, such that t a(x_) = 7(xa , £5) for all a.

The latter implies that if g is equivariant then s is constant in its second

argument and symmetric in its fourth argument. The implied prOperty for s

will be used as a definition of equivariance when we bypass the

consideration of a loss function. For equivariant procedures we will

abbreviate 3(3, 0:, P, -) by using the affixes on t and P. For example

s(_t_, 1, P a, -) will be abbreviated to 30,.

Let 3 and d’ denote the class of all equivariant rules in g and the

class of all simple symmetric rules in g respectively. The equivariant

enve10pe corresponding to g is defined by

(1) M) = inf Ross).
tea-

and the simple enve10pe corresponding to g is defined by

(2) (is) = ingress).
ts

In this chapter we use the results Of Chapter 2 and prOperties of

equivariant rules to show the asymptotic equivalence Of the simple and

equivariant enve10pes and establish asymptotic optimality of certain

equivariant "delete bootstrap" rules.

Section 2 deals with the difierence of the two envelopes and asymptotic

Optimality. In Remark 4 we observe that the method of proof Of Theorem 1

of Gilliland and Hannan (1974-) can be applied to translate the results of

our Theorems 1 and 2 into convergence to zero of the excess of the simple
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enve10pe over the equivariant enve10pe. Theorem 3 introduces sufficient

conditions for asymptotic Optimality of equivariant "delete bootstrap" rules.

Examples 3 and 4 consider important cases in which, by assuming an

identifiability condition, Theorem 3 reduces the problem Of treating the

asymptotic excess compound risk Of "delete bootstrap" rules to the question

of LI- consistency Of certain mixtures.

Section 3 provides, as examples, two classes of mixtures that satisfy

the required consistency condition. The first example is the class of mixtures

based on hyperpriors Obtained in Datta (1990), thus showing that his results

for empirical Bayes problems are extended to the corresponding compound

problems. A mixture in the second class is obtained by minimizing an

L2—distance.

2. Asymptotically optimal "delete bootstrap" rules.

The following remark shows that the excess of the simple enve10pe

over the equivariant envelope has a uniform upper bound for which we have

shown convergence to zero in Theorem 1 and obtained rates Of convergence,

in a case Of exponential families, in Theorem 2. The result which is the first

proof in the non-finite case, strengthens all the previous results in compound

estimation under squared error loss.

Remark 4.

(a) (i - ii) 3 M s31» slgp "(P5, - Pfifn.

This follows by the method Of proof of Theorem 1 of Gilliland and

Hannan (l974—) : Let t E a By non—negativity and symmetry Of 30

*

(4) |(P,'l - Ppsals M "(Pg - P5) ll
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which implies

. -l
(5) Pn n 2 8a - R(t,P) g rhs(3)

Since Pi (n-IE sa) — (KP) = P1] Gn(s - 5), where t is Bayes versus GH in

the component problem, by isotonicity of Pi

Pr”. (n‘lr s0) 2 ((2).

Therefore (5) implies

(6) (is) - has) 3 rhs(3).

Since t_ is arbitrary E 8 , we Obtain (3).

Consider 9 with the tOpology induced by the total variation norm

and let (1 be the set of all probability measures on Borels of 9 For each w

6 11 the mixture Pw is the measure on .3 defined by

P“(13) = ..(P(B)). B e s.

For each u e 0, let tu be a Bayes solution versus (1) in the component

problem. Considered as a function on 1'1 into 9 (cf. Hannan 1957 p 101), t

is called a Bayes response.

Let t be a Bayes response, 3: a symmetric mapping on 31-1 into (I.

Let E be the compound rule with

10(5) = than“)
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Then by symmetry of i2), ft: is equivariant. The next theorem gives sufficient

conditions for asymptotic Optimality of 3.

Theorem 3. g is asymptotically Optimal if

(i) For each 5 > 0, 3 iiE > 0 such that V 11,

("Pg - PGmll < 55) = ((9,;ng - 5) < 6).

where i an equivariant rule with its components Bayes versus Gn.

(ii) sup{PI~l u p3) — PGnll : g e 9} = 0(1).

Proof. By (4)

(7) sea) - 11(2) 3 P, Gn(3 - 6) + rhs(3).

Weakening (7) by subtracting the non—positive function 8(3 — 5) from its

right hand side integrand and triangulation about 171(2) together with (3)

give

(8) 11.6.2) - «7(2) 1 P, (6,; 01(3- 5) + 2cm».

The rhs(3) converges to zero by Theorem 1. In order to show uniform

convergence to zero of the first term on the rhs(8), let 5 > 0. Choose 66

with the prOperty assumed in (i). The first term on the rhs(8) is less than

or equal to

6 + MPfilll P3, - Pen" 2 6,]

which is less than or equal to

(9) e + M5;1 Pi" p2, — PGn"

by the Markov inequality. Since 5 is arbitrary, the conclusion follows by

(ii).
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Observe that since 9 is a compact metric space, by Theorem II 6.4 of

Parthasarathy (1967), {I with the tOpology of weak convergence is a compact

metric space.

Lemma 3 Let p be a continuous function on 9 For each w let ”u be

the signed measure defined by

uw(B) = “(P)P(B)dw(P), B e .9.

Let d be a metric of weak convergence. Then «I e (fl,d) ~~_. "w , with the

norm-tOpOlogy on the range, is uniformly continuous.

Proof. Let “n be a sequence in II converging to is). Since 9 is a

compact metric space, it is complete and separable. By the SkorOhOd

representation theorem (Theorem 3.3 of Billingsley (1971)) there exist 9

valued random elements "11 and 17 on the Lebesgue unit interval with

respective distributions w and 1.2 such that "n converges to 1) pointwise.
11

Since ”w is the w—mixture Of the VP = p(P)P,

— = — == 1 -— ,(10) an ”w (wn w)u. Io (””n u”)

Triangulation about flan)” and simple norm properties give

(u) ”2.. - 4,5 "in, "(7,, - all + Man) - «rm.

Since variations of a positive mixture are bounded by the mixture of the

variations, continuity of u at (.2 follows from (10) and (11) by two

applications of the Bounded Convergence Theorem for the I g . Uniform

continuity follows by compactness of {1. u
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In the rest Of this chapter we assume

(12) fl is identifiable: w ~-v Pw is 1—1,

and let p denote the metric on {1 thereby induced by || II on the range

(13) p(w.w’) = up, - PM".

Remark 5. If (1 metrizes weak convergence in I), then d is

equivalent to p :

By choosing d a 1 in Lemma 3, it follows that w e (0,d) ~~-o Pw is

continuous on I). The same conclusion follows directly with d replaced by p.

By the identifiability assumption and compactness Of 0 and metric range,

((cf. PrOposition 9.5 of Royden 1968)) both are homeomorphisms. Thus d

and p are equivalent.

Example 3. Let i be a continuous function on 9, and consider the

compound decision problem whose component problem is estimation of KP)

under squared error loss. Let i.) be a symmetric mapping on 3‘4 into n,

and let i be an equivariant rule which is Bayes versus C(Xa) in the a—th

component. Then i satisfies assumption (i) Of Theorem 3.

Proof. Let B = |l¢(P)ll,,. Since (3 — Exp) = we2 — i2) — 2¢(P)p(’t‘

_ I),

(14) (till — 3x3 - s) = (PGn— pg, )(t‘2 — i2) — 2(an- u3)(’t‘ - t)

s B2||PGn- pa," + 4B||an-V8||

since ’t‘ and f inherit the bound on d. The conclusion now follows by the
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uniform p continuity of Lemma 3 with the choice d = p justified by

Remark 5. 0

Example 4: finite .1 and continuous loss functions Such decision

problems satisfy a much stronger property than (i). Note that, for arbitrary

s : P ~-+ P Eta La(P)’

(15) (GH — w)s = :KGn — w)(Pta)La(P) = f(VGn— Vilma g )aJHVGn— 112,".

But by Lemma 3 and Remark 5, V c > 0 3 6 > 0 such that p(Gn,'u)) 2 6

or "VGn— we," 5 5.

Theorem 3 of Gilliland and Hannan (1974—) reduced the problem of

treating the asymptotic excess compound risk Of equivariant "delete

bootstrap rules" to the question of Ll-consistency of "On—Gnu for finite 9

Datta (1988) considered the compound estimation problem under squared

error loss for real one parameter exponential families with compact

parameter space and reduced the problem to the question Of Ll—consistency

of II PC: — PG II» under a domination assumption on translates of u that

n 11

implies our identifiability assumption. His proof however, depended heavily

on the particular shape of the densities for that family and the functional

form Of the Bayes estimator under squared error loss.
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3. Examples Of Ll-consistent posterior mixtures

In Theorem 3 we listed two conditions under which "delete bootstrap"

rules are asymptotically Optimal. In Examples 3 and 4 we considered

situations where one of the conditions was satisfied and the problem of

finding asymptotically Optimal solutions was reduced to the problem of

Obtaining estimates of GH that satisfy the L1— consistency requirement of

Theorem 3. Below we consider two classes of estimates of On that satisfy

that requirement.

A. Consistent posterior mixtures based on a hyperprior.

Consistent mixtures based on a hyperprior were introduced in Section

1.4 of Datta (1988), for a subclass of one dimensional real exponential

families and were extended to a much larger class of probability

distributions in Theorem 3.1 Of Datta (1990).

More specifically; let it be a measure and let 9 be the class Of

probability distributions with densities {p0 : 0 E 0} wrt it, where B is a

compact metric space. Suppose p(x) is continuous for each x and, with

h=suplOpp,su h-M+p —10 asM—o.g, 060l8(9/91)l 0631(0 )9“ 0

Observe that as pointed out in Remark 3.2 Of Datta (1990), the second

part of the above assumption forces Pa’s to be pairwise mutually absolutely

continuous. By the Scheffé theorem, continuity of p(x) for each x implies

the norm-continuity of P0 The latter implies that 9 inherits the

compactness of 8.

Consider n with the tOpOlogy of weak convergence and let A be a
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probability measure on the Borel subsets Of (I. Let A be the posterior

distribution Of w given x = 5. Then A is the probability measure on 0

n

with density prOportional to II pw(xi) with respect to A. Let On denote the

i=1

A—mix Of w’s. Then Theorem 3.1 Of Datta (1990) asserts that if A has full

support

(16) sup{P "an - PGn" : g e 9 } = .)(1).

Since (n+l)(PG — PG ) = P0 - P0 , its norm does not exceed 2.

n n-l n n+1

Thus, by triangulation about PG , (16) is equivalent to (16) with Gn

n+1

replaced by Gn or, equivalently, with an replaced by 22114.
+1

Observe that 3:114 is symmetric on 3‘4. Therefore an—l provides an

example Of estimates that satisfy assumption (ii) Of Theorem 3.

The importance of Datta’s estimates is due to the fact that compound

Bayes rules against a prior not depending on _)_I_ turn out to be Bayes

versus On_l(.)_(_&), in the cr-th component (cf. Datta (1988), Section 1.2.1).

Therefore if the Bayes rules versus a given prior have unique risk, the

compound rule that is obtained by playing Bayes versus an-IQK-O) in the

a—th component, will be admissible for each n. The uniqueness of the

compound risk of Bayes rules versus a prior ( in an estimation problem

under squared error loss was shown in Section 4 of the appendix in Datta

(1988), under the condition that P0 is dominated by P C for every 0.
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B. Ll- consistent mixtures based on a minimum distance

Ll-consistent estimators of the mixing distribution for a normal mean

were Obtained, in Edelman (1988), by minimizing an L2(A)-distance where A

denotes Lebesgue measure on R. His proof depended heavily on the

prOperties Of the normal distribution , especially the functional form Of the

normal characteristic function.

Instead of L20) we consider minimum distance in L207) with r; a

probability with support Rk and Obtain estimators for the case where 9 is a

k
class Of distributions on R . Theorem 4, to follow, proves Ll- consistency Of

minimum L2(r))—distance estimators of PG . In what follows we will use F,

n

with or without affixes, to denote the distribution function Of a probability

distribution P and II tO denote the norm on L2(n).1,,

Observe that if r) is a probability measure on Rk, any distribution

function H is in L (n) and d: P ~~-+ ||F - H|| satisfies
2 — Gn n

(17) WP -d(£’)| S "F 'F ,Il SllP -P ,il—) on Gnu on on

so that d is continuous on compact 91 and therefore attains a minimum.

Lemma 4. Let .3 be Rk and let 1) be a probability measure with

support Rk. Let r be the pseudo-metric on (1 induced by the L207) norm on

the range of w ~-t Fat . Then r is a metric equivalent to p and

w 6 (i1,p) ~-i w E (fl,r) is uniformly bicontinuous.

Proof. If r(w,w’) = 0, then Fu = F a.e.(r)) and therefore, by
w!

continuity from above, everywhere. Thus Pw = P and by identifiability
w!
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w = (11’. Since r 5 p, the identity function on (fl,p) to (I1,r) is continuous.

Therefore by compactness, as in Remark (5), it is uniformly bicontinuousn

k
Theorem 4. Let .3 be R and let 7) be a probability measure with

support Rk . Let On be the empirical distribution of I: a measurable

minimizer of dn: 2 ~~-+ ||FGn- Hull" with Hn the empirical distribution of

X. Then

(18) sup{P||PG — PG || : g e 9" } = 0(1).

n—l 11

Proof. Since FG = P(Hn), Hn as average Of P-independent

n

Bernoulli processes, has variance

(19) P(FGn - Hn)2 = % Gn(F(l-F)) _<_ 1}; .

2

7]

triangulation about Hu and use of the minimizing property of On ,

By the Fubini Theorem P F — H has the same bound. By
G11 11

2 2 2
(20) r (Gwen) = "Fén— 1er",7 g 2HFGn - Hull 17'

Let 6 >0. ByLemma4,take6>Osuchthatp$ corrzd. Then

(21) P||P~-P IlSe+PP~-P rG,G 26.Gn Gn ll Gn GnllH ,, n) l
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By the Markov inequality, the last term in (21) is bounded by

(22) 1 P(lhs(20)) g 1

{a a;

by (20)and the bound (19) for its P expectation.

The resulting bound for the lhs(2l) proves (18) for the equivalent (as

for (16) in A.) form with GH replaced by Gn—l' :1

Observe that On can be taken to depend on 2; only through H11 and

therefore is an example of ill of Theorem 3.
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