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ABSTRACT

STABILITY OF SYMMETRIZED PROBABILITIES AND
COMPACT EQUIVARIANT COMPOUND DECISIONS

By

Mostafa Mashayekhi

Extensions of Hannan and Huang (1972) results on the stability of
symmetrization of product probability measures to the compact case and
their applications in extensions of some of the results of Gilliland and
Hannan (1974), on equivariance in a compound decision problem are
obtained.

Let # be a compact, in the total variation norm, class of pairwise
mutually absolutely continuous probability distributions. We show that the
total variation norm of the symmetrization of two products of probabilities
in # with differences in one factor, converges to zero uniformly as the
number of factors approaches ». Rates of convergence are obtained for the
case where 2 is an exponential family with its parameter space in the
interior of the natural parameter space.

The above convergences translate into the convergence to zero of the
excess of the simple envelope over the equivariant envelope, for a restricted
component risk compound decision problem, as the number of problems

approaches o.



For compound estimation of continuous functions under squared error
loss, and finite action problems with continuous loss functions, the problem
of treating the asymptotic excess compound risk of equivariant "delete
bootstrap" rules is reduced, under an identifiability condition, to the
question of Ll— consistency of certain mixtures. Examples of estimates

satisfying the above consistency condition are included.
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CHAPTER 1
INTRODUCTION

1. The set compound problem.

In the set version of the compound decision problem, pioneered by
Robbins (1951), simultaneous decisions are to be made in n problems of the
same generic structure, with this structure being possessed by what is called
the component problem. Ordinarily in the component problem, there is a
family of probability distributions # on some common measurable space
(%9, an observable #valued random element X with distribution P,
where P € 2 an action space £ a loss function L: 4 2 — [0,0), a class
9 of (randomized) decision rules t, on % x <, where ¢ is a o-field of
subsets of € such that for each x € & t(x,-) is a probability measure on
< and for each A € < t(-,A) is 2 measurable. The decision procedure t
has risk

(1) R(t,P) = [[L(a,P)t(x,da)dP(x).

In the compound problem, we have the state space .9“, the action

space .6 ", observations X = (X, .., X ) with distribution P, where

n
P =a;1 P, ,P= (Pl' vy Pn) € &, compound rules t = (tl, . tn) ,

where for each 1 ¢ a < n, t, has domain 2 x < with ta(-,A) F
measurable for each A and t a(x,-) a probability measure on < for each x

The compound risk is given by
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2) R(t.P) = 1 BffL(a;P,)t(x,da)dP(x).

Sometimes it is preferable (see Hannan and Huang (1972a)) to consider
loss functions that may depend on x itself. A more general setting (cf.
Gilliland and Hannan (1974-)) is to bypass the consideration of a loss
function and identify each decision rule in 2 by its risk point in [O,m)'g.’
Then a compound rule t is identified with 8 = (s,, ..., sn) where for each i,
5 is a #1 measurable mapping into [O,m)‘? The a-th component risk at

P, is then 8 (P ) and the compound risk is given by

R(LP) = g & 8,(P,).

Let &’ be the class of all simple procedures
(ie. &= {t: t,(x) = #(x,) ¥V 1 < a ¢ n, for some component rule t}), and
let & be the class of compound rules that are equivariant under the

permutation group. As functions of P, inf R(t,P), inf R(t,P) are called the
4 g

simple envelope and the equivariant envelope respectively. It is clear from

the definition that the latter is the infimum over a larger class and well

known that the former coincides with R(G ), where R(w) is the component

Bayes risk at w, and GIl denotes the empirical distribution of Pl’ very Pn.
Traditionally, a compound rule is called asymptotically optimal if, with

the modified regret at P defined by

(3) D,(tP) = R(tP) - R(G)),

s;p DI(Q,P;) — 0 as n — o

However, since almost all of the compound rules in the literature are

equivalent to equivariant procedures, the equivariant envelope (cf. Hannan
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and Huang (1972 a), p 104) is considered a more appropriate yardstick of

performance than the simple one.

2. History review and a summary of the present work.

Hannan and Robbins (1955) introduced the class of equivariant
procedures for the 2x2 %A .6 compound problem and showed (Theorem 5)
that the difference between the simple and equivariant envelopes converges
to zero uniformly in P. Hannan and Huang (1972a) considered the compound
problem for finite 2 under a certain class of loss functions and provided an
upper bound on the difference of the simple and equivariant envelopes which
is O(n~'/2). Gilliland and Hannan (1974-) (Theorems 1 and 2) extended
those results to arbitrary bounded risk components for finite , 2 They also
showed (Theorems 3 and 4) that for equivariant "delete bootstrap"
procedures, the excess compound risk over the simple envelope is bounded in
terms of the L, error of estimation and thus established a large class of
asymptotic solutions to the compound decision problem with restricted risk
and finite state component. Their proof depended heavily on the Hannan and
Huang (1972b) results on the stability of symmetrization of product measures
(Theorem 3) which was a strengthened generalization of Theorem II.1 of
Hannan (1953).

In this thesis we consider the compound decision problem in which the
set of component distributions & is compact in the topology induced by the
total variation norm and has pairwise mutually absolutely continuous
elements. The risk set of the compoment problem is assumed to be a

bounded subset of [0,0)%



4

In Chapter 2 we consider some extensions of Hannan and Huang (1972
b) results on symmetrization of product measures to the compact case and
prove two measure theoretic theorems analogous to Theorem 1 of Hannan
and Huang (1972b). Theorem 1 shows convergence to zero , as the number
of factors approaches o , of the total variation norm of the symmetrization
of the difference of two product probability measures with differences in one
factor. Theorem 2 specializes to compact k—dimensional exponential families
and obtains rates of convergence for the case where the parameter space is a
compact subset of the interior of the natural parameter space.

Chapter 3 considers some extensions of Gilliland and Hannan (1974-)
results on equivariance and the compound decision problem. In Remark 4 we
observe that the method of proof of their Theorem 1 bounds the difference
of the simple and equivariant envelopes by a constant multiple of the norm
of two product probability measures considered in our Theorem 1.

Our envelope results strengthen, inter alia, the results of Datta (1988)
who obtained admissible asymptotically optimal solutions to the compound
estimation problem for a large subclass of the real one parameter exponential
family under squared error loss.

Theorem 3 provides sufficient conditions for asymptotic optimality of
"delete bootstrap" rules. Examples 3 and 4 show that for squared error loss
estimation of continuous functions and for finite .6 problems with continuous
loss functions Theorem 3 reduces the problem of treating the asymptotic
excess8 compound risk of Bayes compound rules to the question of
L, —consistency of certain mixtures. The reduction is analogous to Theorem 3
of Gilliland and Hannan (1974-), and immediately extends the results of
Datta (1990) for the empirical Bayes decision problem, to the corresponding

compound decision problem, under appropriate loss functions.
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Examples of estimates satisfying the above consistency condition are

provided in Section 3 of Chapter 3.
3. Notations and conventions.

Let n be a positive integer. If Pl’ ey PIl are probability measures, P
denotes the product probability measure P1 x ... 0x Pn’ We use P! to

n
denote a;lp and P,P, to demote P; x P, An n-tuple (x;, .., x)) is
denoted by x and in denotes the average of the components of x (the

subscript n will not be exhibited if it is clear from the context). The
empirical distribution of P , where P a is a probability measure for each g,
is denoted by Gn.

We use u(f) or 4f to denote the integral of a function f with respect
to (wrt hereafter) a signed measure y. We sometimes use expressions such as
Jf(x)du(x) to exhibit dummy variables. The same notation is used for a set
and its indicator function when the distinction is clear from the context.

A function f defined on a set Finto a set J is sometimes denoted by
x € &~ f(x) or x ~v+ f(x). Sometimes we abuse notation and denote
functions by their values. If ¥ and J are metric spaces with metrics r and
p respectively, we sometimes denote f by x € (Zr) ~v f(x) € (Kp) . If f is
a function of two arguments, f(-, y) denotes the function (section) that is
obtained by fixing the second argument at the point y.

If 7 is a signed measure, then |7| will denote the total variation
measure corresponding to 7 (i.e. |7| = o+ ) and ||7]| will denote the

total variation norm of 7. We denote the Euclidian norm and inner product
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by | | and juxtaposition respectively. The supremum of a real function f is
denoted by [If]| whatever be its domain.

All incompletely described limits are a8 n — o through positive
integers. All sums will be on i from 1 to n unless otherwise indicated. The

symbol o denotes end of proof.



CHAPTER 2

ON SYMMETRIZATION OF PRODUCT MEASURES

1. Introduction

In this chapter we consider some extensions of Hannan and Huang
(1972b) results, on the stability of symmetrization of product measures, to
the compact case. Our main results (Theorems 1 and 2) are analogous to
their Theorem 1.

In Section 1 we reproduce some of the general properties of signed
measures and their symmetrization with respect to general groups from their
Section 2, with the minor improvement that we consider total, instead of
their maximum, variation norm. The substitution of this equivalent norm
gimplifies some relations and proofs.

Section 2 considers a contraction effect of probability factors in product
signed measures that was noted in their Section 3 , and presents an
extension of their Lemma 1 with a simpler proof.

In Section 3, specializing to permutation groups, we consider product
probability measures with factors in a set which is compact under the
topology induced by the total variation norm, and has pairwise mutually
absolutely continuous elements. Theorem 1 and Theorem 2 deal with the
effect of symmetrization on the difference of two product probability
measures with differences in one factor. Theorem 1 shows uniform
convergence to zero of the total variation norms, and Theorem 3 specializes

to k-dimensional exponential families and obtains rates of convergence.



2. Preliminaries
Let # be a finite group of measurable transformations g on ( 4 ¥). For
a signed measure 7 on ( % ¥), the symmetrization 7 of 7 is defined by

(1) r(C) =N 15 rg(C)), Ce ¢
gEY

where N is the number of elements in % Thus symmetrization (*, hereafter)
is an expectation operator. We will abbreviate affixes on * by omission.

For any real valued function f on ¥, its symmetrization f* is defined
by
) f=N‘1§f.g.

7 and f are said to be symmetric if 7 = 'r* and f = f*, respectively.
The properties, (r.g)* = 7 and (f.g)* =1y g € % will be used

later without comment.

The following two facts are taken from Section 2 (Relations (6) and
(8)) of Hannan and Huang (1972b).

Let 7 be a signed measure, and let 4 be a measure such that dr/du
exists. If y = p*, then

(3) (dr/du)" = (dr /du).

Let 4 be a measure. If f is p*—integrable, then
* * % Xk
(4) p)=p()=uf)
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The following two relations ((5) and (6)) are simpler analogs of their
relations (9), (11) and (12).
If (3) holds,
|dr fau] < |dr/dul”
by subadditivity of | |. Applying this with 4 = p*, by (4), integration wrt
p and the isotonicity of p—integral give
(5) I ¢ el

If 70 is a product signed measure, then
|ra| = (t*0* + 7°0°) + (T*0~ + 770*) = |7| |0]
and therefore by the Fubini Theorem,

(6) lIrell = 1=l lloll.

If P and Q are product probability measures, subadditivity of norm
and applications of (6) give

(7) IP - QI <« PP; - Q) « Q) = B I - Q.

ij<i 31 >i

3. Contraction effect of probability factors.

Let (.£.9) be a measurable space. For each n let ¥ be a measurable
group of transformations on (.%.9" such that %, is a subgroup of # +1
Consider the symmetrization of a measure on (.%.9" relative to ¥, The
following lemma is a strengthened generalization of Lemma 1 of Hannan and
Huang (1972b), with a simple proof eliminating the need for developing their
(13) and (14). It also serves for the extension of Remark 2 of their
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Addendum. Their Lemma 1 was already sufficient for the proof of our

theorems in this chapter.

Lemma 1. If 7 is a signed measure and P is a probability measure
then

(8) L) 1<l

Proof. Observe that (-rP)* = (r*P)*, since they agree on
symmetric functions. Therefore (8) follows from the application of (5) and
the probability case of (6) to r P. o

Henceforth we specialize % to be the group of transformations on
(&D" induced by the group of permutations on n objects. We also let %
denote the permutation group itself. Thus a generic element g € ¥ will be

used both as a permutation and the transformation g(x) = (xgl, xgn)'

4. Two product probability measures with differences in one factor.

Throughout the rest of the thesis
& is a non-empty norm-compact class of pairwise mutually absolutely
continuous probability measures.

Part (i) of Lemma 2, to follow, proves uniform convergence to zero of
I(7Q™)’|| where 7 = R - § with (Q,R, S) € 2 3. The result is used to
prove a stronger assertion in Theorem 1 where Qn is replaced by a product
of n elements of # . Part (ii) of Lemma 2 obtains rates of convergence
under an additional assumption and is used in the proof of Theorem 2 in

Section 5.
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Lemma 2. For (Q,R,S) € 23 let t be a density of 7 wrt Q and let
T, = [I(rQ®)"|l. Then, with t, denoting x - t(x;),
(9) T, = Q"|],

(i) IT,ll, = o(1), and for each r € (1,2]

oy I-1 X 2

(i) 2" YT IE ¢ aliQltl, with o = 227,

Proof. Since t is a density of 7 wrt Q, t, is a density of -rQn_l
wrt Q" and t is a density of (rQn-l)* wrt Q™. The latter implies (9).

(i) We show that (Tn) is a monotone sequence of continuous functions
decreasing to zero on compact 2 3 and therefore by Dini’s Theorem (cf. e.g.
Proposition 9.11 of Royden (1968)) it converges to zero uniformly. By

Lemma 1 Tn > T Since sum and product are, by the norm properties

n+l’
and (6), continuous operations on finite signed measures and * is linear, the
composition Tn inherits continuity on £ 3 By the L, Law of Large
Numbers the rhs(9) converges to zero.

(ii) By the independent case of a von Bahr and Esseen inequality (cf.

von Bahr and Esseen (1965))
(10) Q"] ¢ o, 2Q"|t,|" = na Q|t|".
From (9) and the moment inequality, an; < 1hs(10). Weakening this by

(10), dividing by n and taking supremum over (Q,R,S), gives the inequality

in (ii). o
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Remark 1 In the proof of Lemma 2 we used Lemma 1 to obtain the
monotonicity of T, Only later did we note that Lemma 1 can be used to
show the monotonicity of El)-(nl when X,, .., X are iid with EX, finite,
a fact seldom noted in texts, but presumable well known to the authors who
discuss the associated reverse martingale.

Any hope that this application of Lemma 1 would be a worthy simpler
proof were short lived. My colleague Liu, Zhihui noted non-increasing
monotonicity for |X || with r € [1,0] and X;, .., X only exchangeable,

DI E X <E X =2l . X
n-1)| £ X.|. < X|. =] £ X|.,
i=1 1T Tjoqigg 0T jop

as this immediate consequence of the homogeneity and subadditivity

properties of the Lr(P) norm appropriately applied.

Remark 2. Pairwise mutﬁal absolute continuity of the elements of
#is a necessary condition for the conclusion of Lemma 2 to hold. For, if B
is such that P(B) = 0, then
(12 IE" - QR (2" - QP (5B)") = QB)
so that 1hs(12) = o(1) only if Q(B) = 0.

n
Theorem 1. Let P = xPi,whereforeachi Pie &, and let
i=1

T=R -S with R and S € #. Then

(13) sup{ll(7P)’]l : (RSP) € P12 = o(1).
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Proof. Let Q be a product of N factors of P. By Lemma 1
* %
(14) I(7P) || < I(Q) II-

If Q is a probability measure, by the triangle inequality, (5), (6), and
(7),

(15) rha(14) < 17| BIQ; - Qll + (@™l

Let ¢ > 0, and use Lemma 2 to choose N such that "TN+1"m <
€/3. By total boundedness there is a finite covering of £ by m balls of
radius 31%— If n > (N-1)m, then some ball contains at least N factors of P.
Let Q be the center of such ball and the Qi be factors of P therein. Then
by (14) and (15) and the choice of N

IR)'l < e. :

Example 1: Location family. Let P be a probability measure
equivalent to Lebesgue measure on Rk. Let 8 be a compact subset of Rk
and, V 0 € 0, let P ) be the translate of P by 6. Observe that

||P0+6— Pjl = "PJ— P| = P|dP6/dP -1 —-0a §—0
by Lebesgue’s theorem ( cf. Royden pp 90-91 for the proof in the one
dimensional case). Compactness of # = {P, : 0 € 8} then follows by
compactness of 8, and pairwise mutual absolute continuity of its elements
follows by the equivalence of P and the Lebesgue measure together with the

translation invariance of the latter.
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5. Exponential families.
Let u4 be a measure on % = Rk such that
(16) #={0¢€RE: (0) = mfe®du(x) < o} # 4.

For 0 € A let P ) be the probability measure with u—density
(17) pgx) = ef¥0),

It has long been known (cf. e.g. Theorem 1.13 of Brown (1986)) that,
on /4 ¢ is convex by the Holder inequality and lower semicontinuous by
the Fatou Lemma. If § € 4 °, then (cf. e.g. Theorem 2.2 of Brown (1986))
all derivatives of ¢ exist at § and can be obtained by differentiating under
the integral sign.

In Example 2 and Remark 3, to follow, #= {Py 0 € 8 } for various
8c A&

Example 2: 8 polytope. By a Gale—Klee-Rockafellar theorem
(Theorem 10.2 of Rockafellar (1970), convex ¢ is upper semi—continuous on
locally simplicial 8. Since a polytope is a finite union of simplices, it then
follows that each x-section of p is continuous . Therefore, by the Scheffé

Theorem, P 9 is8 norm continuous so that # inherits compactness of 8.

Remark 3: Compact 8 ¢ #°. Then each x-section of p is
continuous so that £ inherits the compactness of 8 as in Example 2.
Consider a finite covering of 8 by open cubes with their closures in 4 °.
Then the convex hull of the vertices v of these cubes is a polytope in A
with 8 in its interior. Lemma 2.1 of Brown (1986) then applies and gives a
number K1 such that
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(18) lef e | < 10 -0k %7 v (8,0) € 82

o -

By triangulation about e~ it follows that

eADpy - pp ¢ ¥ — ¥ 4 1A _ADp,,
whence properties of integration wrt to pux and (18) bound

lpg - Pgll by B8 - 6] with B = 9| 2 K,ZeAY).

Theorem 2. Let 2 be an exponential family with compact 8 ¢ 4 °.
If r € (1,2] and, for every 4, and 6, in 8, the external convex combination
6. =16 + (1-1)4, € #°, then with 7 = R - S

(19) sup{|("P)’]| : R, S € Pand P € #} = O(nP)
where f = (r-1)/(r+(2r-1)k).

Proofl. LetneZ', (R, S)e & and P e & Let (0, ..., 6) €
1
8" such that P, = P,. Choose N € Z% such that with m = ([N(z_ ?)]+1)k
1

and g(N) = (N-1)m +1,

g(N) < n < g(N+1).
Consider a cube containing 8 and divide it into m equal size subcubes. Since
n > g(N) there exist N factors of P , say Ql’ vy QN, with their indices in
the intersection of one of the cubes with 8. By (15)
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.« N N
(20) B € 22 1Q; - Qi + 1)l

Since the diameter of each cube is less than or equal to a constant multiple
1
of N(f ~2) , where the constant depends on k and the size of the cube

containing 8, by the uniform bound, on [Py — Py, || /|0 — 6’|, considered
in Remark 3 there is a constant B, such that the first term on the rhs(20)

1
is less than or equal to BIN(? —1). Since
Py (B /0g )" = expi-rlty) - (1-)eldy) + W8,
it is continuous on compact 02 and therefore is bounded. Thus if t is a

density of 7 wrt to Q, ||Q|t|r||m < 2%(above bound) by Minkowski’s

inequality in L (Q) . Therefore (20) and Lemma 2(ii) imply that

(21) 12l ¢ BNG = D

where B is a constant independent of R, S, P. Observe that by definition of

g and S

(22) gf(N+1)rhs(21) = 0(1).
By choice of N and (21),

(23) nPins(19) ¢ Ims(22).

The conclusion of the theorem follows by (22) and (23). !



CHAPTER 3
EQUIVARIANCE AND THE COMPOUND DECISION PROBLEM

1. Introduction

Consider a compound problem involving n independent repetitions of a
component problem with states P € 2 Let 2 be a bounded risk class of
decision rules for the component problem and let M < o» be such that
Vte 9,and VP e 2, R(tP) < M. For an n-tuple x = (x1 yeees xn)
let x- denote x with the a-th component deleted, and let P, denote P
with the a-th factor deleted. Consider the class & of compound rules t =
(tl, .y t,) where each x-—section of t €

When 9 is the largest class of decision rules for the component
problem, the above compound problem is the usual compound problem with
9 the largest class of compound decision rules. The compound problem with
restricted component risk was considered by Gilliland and Hannan (1974-)
for finite £, because of the genmerality it provided for their envelope results
and the fact that it is the natural setting in which to study "delete
bootstrap" procedures. Moreover , as they noted, it allows for choice of &
to control component risk behavior and the construction of asymptotically
best equivariant procedures in Z

Let 8 be the function on & x {1, ..., n} x Px 271 such that
8(t, a, P, X-) is the conditional on X~ risk incurred by ¢ in the component
a when the distribution of X o 8P

It is well known (see Section 2 of Hannan and Huang (1972a) or
Section 1 of Gilliland and Hannan (1974-)) that the compound problem is

invariant under the group of n! permutations of coordinates, and that a

17
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compound rule t is equivariant if and only if there exists a function 7 on &
« &1 o /6 symmetric on .,%n'l, such that t a(:_:) = 9(x a’ 55) for all a.
The latter implies that if { is equivariant then 8 is constant in its second
argument and symmetric in its fourth argument. The implied property for s
will be used as a definition of equivariance when we bypass the
congideration of a loss function. For equivariant procedures we will
abbreviate s(t, a, P, -) by using the affixes on t and P. For example
8(, 1, P, -) will be abbreviated to s .

Let & and o denote the class of all equivariant rules in & and the
class of all simple symmetric rules in 9 respectively. The equivariant

envelope corresponding to & is defined by

(1) WP) = inf R(L,P),
te &

and the simple envelope corresponding to & is defined by

(2) ¥P) = inf R(,P).
te o

In this chapter we use the results of Chapter 2 and properties of
equivariant rules to show the asymptotic equivalence of the simple and
equivariant envelopes and establish asymptotic optimality of certain
equivariant "delete bootstrap" rules.

Section 2 deals with the difference of the two envelopes and asymptotic
optimality. In Remark 4 we observe that the method of proof of Theorem 1
of Gilliland and Hannan (1974-) can be applied to translate the results of

our Theorems 1 and 2 into convergence to zero of the excess of the simple
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envelope over the equivariant envelope. Theorem 3 introduces sufficient
conditions for asymptotic optimality of equivariant "delete bootstrap" rules.
Examples 3 and 4 consider important cases in which, by assuming an
identifiability condition, Theorem 3 reduces the problem of treating the
asymptotic excess compound risk of "delete bootstrap" rules to the question
of L,— consistency of certain mixtures.

Section 3 provides, as examples, two classes of mixtures that satisfy
the required consistency condition. The first example is the class of mixtures
based on hyperpriors obtained in Datta (1990), thus showing that his results
for empirical Bayes problems are extended to the corresponding compound
problems. A mixture in the second class is obtained by minimizing an

L2-dista.nce.

2. Asymptotically optimal "delete bootstrap” rules.

The following remark shows that the excess of the simple envelope
over the equivariant envelope has a uniform upper bound for which we have
shown convergence to zero in Theorem 1 and obtained rates of convergence,
in a case of exponential families, in Theorem 2. The result which is the first
proof in the non-finite case, strengthens all the previous results in compound

estimation under squared error loss.

Remark 4.
(3) (¥~ 9) < M sup sup (P - ;)

This follows by the method of proof of Theorem 1 of Gilliland and
Hannan (1974-) : Let t € & By non-negativity and symmetry of s o
*
(4) |(P; - Po)s,|< M ||(P;, - P;) |
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which implies
-1
(5) P n s a” R(t,P) < rhs(3)

Since P- (7l s o) — WP) = P; G (s - 8), where t is Bayes versus G in

the component problem, by isotonicity of Pi

P: (0758 2 WP).

Therefore (5) implies

(6) ¥(P) - R(LP) ¢ rha(3).

Since t is arbitrary € &, we obtain (3).

Consider # with the topology induced by the total variation norm

and let 2 be the set of all probability measures on Borels of £ For each w
€ Q the mixture P w is the measure on .3 defined by
PU(B) = «(P(B)), Be 2.

For each w € 11, let t w be a Bayes solution versus w in the component
problem. Considered as a function on Q into & (cf. Hannan 1957 p 101), t
is called a Bayes response.

Let t be a Bayes response, @ a symmetric mapping on .2"'1 into 1.
Let £ be the compound rule with

't‘a(g) = t’a‘i({&)(xa)
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Then by symmetry of w, t is equivariant. The next theorem gives sufficient

conditions for asymptotic optimality of t.

Theorem 3. t is asymptotically optimal if
(i) For each ¢ > 0, 3 55 > 0 such that V n,
(IPg, - PGn" < §,) = ((G,-w)(8 - 5) < ¢),

where T an equivariant rule with its components Bayes versus G,
(i) sup{P; || Py~ Pg Il B € F} = o(1)

Proof. By (4)

(1) R(L,P) - WP) ¢ P: G_(8 - §) + rhs(3).
Weakening (7) by subtracting the non—positive function &8 — 8) from its
right hand side integrand and triangulation about ¢(P) together with (3)
give
(8) REP) - WP) < Py (G- O)(E - §) + 2(rhs(3))
The rhs(3) converges to zero by Theorem 1. In order to show uniform
convergence to zero of the first term on the rhs(8), let ¢ > 0. Choose § ¢
with the property assumed in (i). The first term on the rhs(8) is less than
or equal to

e + MP;[|| Pp - P(;nll > 6]
which is less than or equal to
(9) ¢ + M P Po - P,

by the Markov inequality. Since ¢ is arbitrary, the conclusion follows by

(ii).
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Observe that since #is a compact metric space, by Theorem II 6.4 of
Parthasarathy (1967), @ with the topology of weak convergence is a compact
metric space.

Lemma 3 Let ¢ be a continuous function on £ For each w let v W be
the signed measure defined by

v w(B) = [¢(P)P(B)duw(P), Be 2.
Let d be a metric of weak convergence. Then w € (Q,d) ~~o v, » with the

norm-topology on the range, is uniformly continuous.

Proof. Let w be a sequence in ) converging to w. Since Pis a
compact metric space, it is complete and separable. By the Skorohod
representation theorem (Theorem 3.3 of Billingsley (1971)) there exist 2
valued random elements 7 and 5 on the Lebesgue unit interval with
respective distributions Wy and w such that n, converges to n pointwise.

Since v, is the w-mixture of the vp = ¢(P)P,
-— —3 - —3 1 -
(10) an v, = (v, -y, Io (V”n VT))°
Triangulation about f(nn)r; and simple norm properties give
(11) Yn, " n <ligll, llny — wll + 16(n,) — é(n)].

Since variations of a positive mixture are bounded by the mixture of the
variations, continuity of v at w follows from (10) and (11) by two
applications of the Bounded Convergence Theorem for the ]; . Uniform

continuity follows by compactness of Q. D
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In the rest of this chapter we assume

(12) Q1 is identifiable: w ~— P i8 1-1,
and let p denote the metric on 0 thereby induced by | || on the range
(13) Aww) = IP, = P,

Remark 5. If d metrizes weak convergence in ), then d is

equivalent to p :

By choosing ¢ = 1 in Lemma 3, it follows that w € (02,d) ~~- P W 18
continuous on 1. The same conclusion follows directly with d replaced by p.
By the identifiability assumption and compactness of @ and metric range,
((cf. Proposition 9.5 of Royden 1968)) both are homeomorphisms. Thus d

and p are equivalent.

Example 3. Let ¢ be a continuous function on £ and consider the
compound decision problem whose component problem is estimation of ¢(P)
under squared error loss. Let & be a symmetric mapping on 2! into 0,
and let T be an equivariant rule which is Bayes versus &(X:) in the a-th

component. Then % satisfies assumption (i) of Theorem 3.

Proof. Let B = ||4(P)||_. Since (3 - 5)(P) = P(R? - %) - 24(P)P(
- {),
(14) (G, - D) - 5) = (g - P )52 - 12) - 2 - )
< B2||PGn- Pyl + 4Blivg vz

since ¥ and t inherit the bound on ¢. The conclusion now follows by the
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uniform p continuity of Lemma 3 with the choice d = p justified by
Remark 5. o]

Example 4: Finite .€ and continuous loss functions Such decision
problems satisfy a much stronger property than (i). Note that, for arbitrary
8:P ~a P fta L,(P),

(15) (G, - &)s = %G, - B)(Pt )L, (P) = Mg - vty < Blvg - vl

But by Lemma 3 and Remark 5,V ¢ > 0 3 § > 0 such that p(G_,w) > §

or ||VGn— vall < e

Theorem 3 of Gilliland and Hannan (1974-) reduced the problem of
treating the asymptotic excess compound risk of equivariant "delete
bootstrap rules" to the question of L,—consistency of ll'u‘zn—Gn" for finite 2
Datta (1988) considered the compound estimation problem under squared
error loss for real one parameter exponential families with compact
parameter space and reduced the problem to the question of Ll—consistency

of || Po - Pgq [, under a domination assumption on translates of u that
n n

implies our identifiability assumption. His proof however, depended heavily
on the particular shape of the densities for that family and the functional

form of the Bayes estimator under squared error loss.
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3. Examples of L,—consistent posterior mixtures

In Theorem 3 we listed two conditions under which "delete bootstrap"
rules are asymptotically optimal. In Examples 3 and 4 we considered
gituations where one of the conditions was satisfied and the problem of
finding asymptotically optimal solutions was reduced to the problem of
obtaining estimates of Gn that satisfy the L,- consistency requirement of
Theorem 3. Below we consider two classes of estimates of G, that satisfy

that requirement.

A. Consistent posterior mixtures based on a hyperprior.

Consistent mixtures based on a hyperprior were introduced in Section
14 of Datta (1988), for a subclass of one dimensional real exponential
families and were extended to a much larger class of probability
distributions in Theorem 3.1 of Datta (1990).

More specifically; let 4 be a measure and let £ be the class of
probability distributions with densities {p g: O€ 8} wrt u, where 0 is a

compact metric space. Suppose p(x) is continuous for each x and, with

h=suplopp,suph—-M+p — 0 a8 M — o
» Mls(glo»)l ml(g ) pAu ®

Observe that as pointed out in Remark 3.2 of Datta (1990), the second
part of the above assumption forces P g8 to be pairwise mutually absolutely
continuous. By the Scheffé theorem, continuity of p(x) for each x implies
the norm-continuity of P ¢ The latter implies that £ inherits the
compactness of 8.

Consider 2 with the topology of weak convergence and let A be a
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probability measure on the Borel subsets of . Let A be the posterior

distribution of w given X = x. Then A is the probability measure on
n

with density proportional to II p (x;) with respect to A. Let ":’n denote the
i=1

A-mix of u’s. Then Theorem 3.1 of Datta (1990) asserts that if A has full

support

(16) sup{P IIP":’n - PGnll :Pe P} =o(1)

Since (n+l)(PG -P; ) =Py, - P, ,its norm does not exceed 2.
n n-1 n n+l

Thus, by triangulation about P , (16) is equivalent to (16) with G
n+1

replaced by G|, or, equivalently, with ":’n replaced by Qn_l.

Observe that & _, is symmetric on 2L, Therefore w, _, provides an
example of estimates that satisfy assumption (ii) of Theorem 3.

The importance of Datta’s estimates is due to the fact that compound
Bayes rules against a prior not depending on X turn out to be Bayes
versus w _,(X;), in the o-th componment (cf. Datta (1988), Section 1.2.1).
Therefore if the Bayes rules versus a given prior have unique risk, the
compound rule that is obtained by playing Bayes versus ’u‘:n_l(ga') in the
a-th component, will be admissible for each n. The uniqueness of the
compound risk of Bayes rules versus a prior ( in an estimation problem
under squared error loss was shown in Section 4 of the appendix in Datta

(1988), under the condition that P g i8 dominated by P ¢ for every 4.
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B. Ll-— consistent mixtures based on a minimum distance

L,—consistent estimators of the mixing distribution for a normal mean
were obtained, in Edelman (1988), by minimizing an L,())-distance where A
denotes Lebesgue measure on R. His proof depended heavily on the
properties of the normal distribution , especially the functional form of the
normal characteristic function.

Instead of Ly(A) we consider minimum distance in Lo(7) with 7 a
probability with support Rk and obtain estimators for the case where 2is a
class of distributions on Rk. Theorem 4, to follow, proves Ll— consistency of

minimum L, (n)-distance estimators of Po . In what follows we will use F,
n

with or without affixes, to denote the distribution function of a probability

distribution P and || to denote the norm on L(7).

I
Observe that if n is a probability measure on Rk, any distribution

function H is in L,(n) and d: P ~~ ||[F~ — HJ|, satisfies
2 = Gn n

17) d(P) - d(P")| < IFa - Frull. € IPn - Pp, |
|d(P) - d(B’)| < || G, Gnl" I G, Gnl

so that d is continuous on compact # and therefore attains a minimum.

Lemma 4. Let % be Rk and let n be a probability measure with
support Rk. Let r be the pseudo-metric on 2 induced by the L2(1;) norm on
the range of w ~wv- F w - Then r is a metric equivalent to p and
w € (Q,0) v~ w € (Q,r) is uniformly bicontinuous.

Proof. If (ww’) = 0, then F w=F a.e.(n) and therefore, by

wl
continuity from above, everywhere. Thus P w = P and by identifiability
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w = w’. Since r < p, the identity function on (f2,0) to (Q,r) is continuous.

Therefore by compactness, as in Remark (5), it is uniformly bicontinuous.o

Theorem 4. Let % be Rk and let n be a probability measure with
support RE . Let Gn be the empirical distribution of P a measurable
minimizer of d : P ~~- ||FGn- H | " with H the empirical distribution of

X. Then
(18) sup{P|Ps - Pg || : P e 2" } = o1).
n-1 n

Proof. Since F = P(H ), H as average of P-independent
n

Bernoulli processes, has variance

(19) P(Fg - ) =1 G (FO-F) ¢ & .

2
n

triangulation about H and use of the minimizing property of Gn ,

By the Fubini Theorem P||[F, - H | has the same bound. By
n

2
(20) Gy Gy) = IFg - Fcnll?, <2lFg - Hyl2

Let ¢ > 0. By Lemma 4, take § > 0 such that p < ¢ or r > 4. Then

(21) P|Px -Pn |l <€+ PJ|Pa-Pq|ln(G.,G)2 6]
¢~ Fe I G, Gnlll( pCn) 2 6]
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By the Markov inequality, the last term in (21) is bounded by
(22) 1 P(lhs(20)) < -
222 7

by (20)and the bound (19) for its P expectation.
The resulting bound for the 1hs(21) proves (18) for the equivalent (as
for (16) in A.) form with G, replaced by G, _;. o

Observe that G can be taken to depend on X only through H_ and

therefore is an example of @ of Theorem 3.
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