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ABSTRACT

THEORETICAL AND NUMERICAL STUDIES ON
A PENALTY-PERTURBATION FINITE ELEMENT
METHOD FOR THE BIHARMONIC PLATE PROBLEMS

By

Fuh-Gwo Frank Wang

A penalty-perturbation finite element method
for the biharmonic plate problems is analyzed. The
penalty-perturbation theory leads to a new system of partial
differential equations which is singularly perturbed with

respect to a small parameter ¢ Finite element solutions

of the perturbed problems, for small ¢ provide
approximations to solutions of the original problems. The
role of the small parameter ¢ in the Reissner-Mindlin plate
theory is clarified. It is also shown that the present method
covers a previous nonconforming finite element method of
Nitsche as a special case. Efforts are taken to derive error
estimates of the finite element solutions in various Sobolev
norms. Numerical experiments for square and circular
plates, under both axisymmetric and nonsymmetric loadings,
are conducted. Results obtained using quadratic and
isoparametric elements are presented and discussed in
detail.
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Chapter | Introduction

Section 1.1: Motivation and objectives of the dissertation

This dissertation concerns a penalty-perturbation method for a
clamped plate of uniform thickness and constant material properties
occupying an open bounded region in the xy-plane. In [34] Westbrook
proposed to approximate the plate deflection and its first partial
derivatives separately and used a penalty parameter 1/¢ to control the
closeness of the first partial derivatives of the plate deflection and the
new dependent variables in the perturbed energy integral. This perturbed
problem was studied by T. C. Assiff and D. H. Y. Yen in [1, 2], where a proof
of the existence of the weak solution of this perturbed problem by using
the Lax-Milgram theorem was given and error estimates for the difference
between the solution of the classical plate problem P, and those of the

perturbed problem Pg were derived in the || |l, norm. Also in [1, 2] finite
element approximate solutions for the perturbed problem P, were studied

and error estimates for the difference between them and the classical
solutions in || |, were derived in terms of the mesh size h and the

parameter €. One primary objective in this dissertation is to extend the
above results by deriving new sharper error estimates in various Sobolev
norms. In [24) a so-called nonconforming finite element method was
introduced by Nitsche. That one version of this nonconforming method for
the biharmonic plate problem is in fact related to the works [1, 2]
mentioned above is established here. In particular, it will be shown that
the perturbed energy integral in [24] corresponds to that in [1, 2] when
Poisson's ratio in the latter is takentobe p = -1.

Finite element implementations of this penalty-perturbation method
are carried out. Extensive numerical studies for both square and circular
plates under various loading conditions and using different approximating
finite element spaces are obtained to substantiate the theoretical error
estimates derived.
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Section 1.2 : Organization of the dissertation

Chapter 1 contains the introduction. Notations and nomenclature for
various function spaces are given there.

In Chapter 2 the boundary value problems P, for the classical plate
theory and P, for the improved plate theory are introduced as formulated

in (1, 2). The coercivity of the bilinear functional BV, V) in Pe will be

shown to hold for -1 sp< 1 and O<e< 1. This gives the existence of the
weak solution of the problem Pe when p=-1, which is the case Nitsche

considered. As etends to zero, the solutions of the problem Pg converge in

Il 1, to those of the problem P, and this was shown in [1, 2] in the

presence of €72 in the error bounds. Some improvements of the error
estimates will be given in this chapter. New error bounds containing € in
[l 1, and Il 1}, will be derived.

Chapter 3 establishes the convergence of the finite element
approximations to the solutions of the problems Pg and P,. For piecewise

linear elements we may allow ¢ to be proportional to the mesh size h. The
error bounds then contain h instead of h'/2 as in [1, 2] For piecewise
quadratic elements we may allow € to be proportional to h2 and have the
factor h? in the error bounds. This means that quadratic finite elements
solutions converge much faster to the solutions of the problems Pg and P,

An example of this comparison is given in Chapter 4.

Chapter 4 presents the construction of the finite element stiffness
matrix associated with piecewise quadratic elements. The global stiffness
matrix is assembled by the element stifness matrices. The element
stiffness matrices for piecewise linear elements are only 9 x 9 matrices,
but the element stiffness matrices for piecewise quadratic elements are
18 x18 matrices. Although the construction of the quadratic case is much
more complicated, numerical results show that we have more superior
approximations. Numerical results for the clamped unit plate under
polynomial loads with different Poisson's ratios p=-1, 0 , and 1/2 are
given with mesh sizes h=1/4, 1/8, 1/16, and 1/32.



in Chapter S finite element solutions for the clamped circular plate
under a constant load and a non-axisymmetric load are obtained. The
elements with one curved side will be mapped into a unit triangle under an
isoparametric transformation. The area coordinates and the basis
functions of the quadratic maps are chosen to illustrate the isoparametric
transformations. The element stiffness matrix is constructed by
computing the perturbed energy integral under the isoparametric
transformations. The global stiffness matrix is then assembled. Numerical
results show that we have excellent approximations for the constant load
with mesh sizes h=1/4 ,and h=1/8. For the non-symmetric load the
approximations are also very good when mesh sizes h=1/8, and h=1/16.

Chapter 6 contains discussions and conclusions of the dissertation
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Section 1.3: Notations and function spaces

Let 0 be an open bounded connected region in the xy-plane with a
Lipschitz boundary aQ.Let Ly(0) be the space of integrable functions on Q,
with the inner product |

(u,v)o-”uvdA,
Q
and the norm || 1l ; defined by

lu IR -(u,u)o-”usz.

Q
The partial derivatives of u are denoted by
°—“-ﬂ--u' and N-N =u,,
x o ¥y X, '

the Laplacian A is denoted by

Au -v2u = ﬁ + ﬁu ’
oy

and bitharmonic operator A? s denoted by

A2y = vy = ﬂ+2£ﬂ+i‘2 .
NP VP

Let a=(a; , ap) be an ordered pair of non-negative integers. Let lal=
ag +ay and let D*u be the ath derivatives of u defined by

0y = %y

« [
ax‘ay’

Let m be a positive integer and H" (0) be the standard Sobolev spaces
with the norms

it = ¢ % ] 10tur a2,

O<lalsm g



dand the seminorms

lul = ¢ 2 H I0%u 2 aa )2,

|a|'m Q

It is well known that H(Q) = L,(q).

Let C"(o) be the linear space of functions infinitely differentiable on

nand C; () be the linear subspace of C (n), consisting of those functions
that have compact support in Q.

Let H: (R).be the closure of the C; () in H™(Q) and define the

negative spaces H () as duals of the spaces H:(n) with the norm

(v, u) |
vl =sup —2
" llullm
ueH':(o)
u=0

Let ( H:(Q))‘,’ = H'; (Q) x H: (Q) x H‘:(o) be the product space with
the norm

HUIR = 1lu IR+ llu,IR + Ilusllfn
and the seminorm
IUR = [u,R + [uR + luP,

where U = (u' » Uy, u3) isin ( H:(n))s.

Similar definitions will hold for ¢ K@), (K@), and ( Ha))”



6
For U in( I-l:)(()))3 and€>0, define

ou ou
punze S el [ 2y (Mg 2 o
e o Ve g ! Iy 2

V] oy
iz L (oS eu o
e g ! ay 2

It was shown in[1,2] that Il |l; and || | are equivalent on

( H;(o))s . See Lemma 2.4.

Throughout this dissertation ¢ will denote a generic constant, not
necessary the same in any two places.



Chapter 2 Solutions of the perturbed boundary value
problems and their error estimates

Section 2.1 : Weak formulations of the problems P, and Pg .

Let Q be an open bounded and connected region in the xy-plane with its
boundary aQ sufficiently smooth or polygonal. According to the classical
plate theory, the plate deflection wy is governed by

X 4w =
Po. \' Wo f inQ,
(2.1)
ow
w=—=L=0 onan,
° an
p

wheref = 5 , P being the transverse load and D the plate bending stiffness.

f {s assumed in HX(Q). If f is in H™'(N), then the above problem will be
assumed in the sense of distributions..

The weak formulation of this problem is to find W, € Hz(n) such that

”v"’wo v2v dA =”fv dA
) o
forallve H:(n). (22)

1, W3
Let U (u', u,, "3)' v (vi,vz, vs)be ln(Ho(n)) and let F = (0, 0, -1).
Define the rollowing bilinear functionals
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au a v v
=l ep (=L« —2)(—L .
Py, =1 [[raem = =L e 2)

o X oy X ay
ou au ov o
(-p(— - 2)(L-=2)+
X dy x 9y
’ ou ou ov o
(-p(—L +—=2)(=L -=2)] dA,
X Iy i
(23)

ou v
| (T DAV Y S PUVRN
P, = [l =2eup(=ev)

and

Q
d ov
(—"1+u2)(—1+v2)ldA. (24)
3y 3y
PL(F,U)s-”FOU dA-”fus dA, (25)
Q Q
B (U,V)=P (U,V)+L P (U, V), (26)
where e> 0.
Letting U = (- —2 - 20 v ) and integrat! art
=( - - S, we Can
etting U, ax.ay,woannegrangbvp
show that
Pa(Uo,V)-y(Wwo)(v?v)dA. (27)

wherev-(-ﬂ, -ﬂ, v) and veHz(n).
x oy 0



The problem in (2.2) can be expressed as the following problem P'o for
Uo.

. ow ow
Py:  Find U =(-—2,-—2, w ) w e HAQ) such that
X ay 0 0 0
Pg Uy, V) = P(F, V) (28)

for all V,(_a_v'_gv_’ v)andveHz(o).
ax ay 0

The solution to the problem (2.1) may be characterized as the function
that minimizes the energy integral

|(w)-”(v2w)2dA-2”fwdA (29)
[+ aQ
=P, (U,W)-2P (F, 1), (210)

where w € Hi(n) andU=(- %—‘3 , - %‘;i , W ). The Euler-Lagrange equation

of this variational problem leads to (2.2). Thus it follows that

min [(w) = l(wo) . (2.11)
wE Hz(n)

Consider the problem of minimizing the perturbed energy integral

Je(U) =B (U, U)-2P (F, 1), (212)

where U is in(H;(o) )°. The Euler-Lagrange equations of the variational
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problem in (2.12) above lead to the problem P, below.

) - 1,13
Pe' Find Uc (v'. L wt)e(Ho(O)) such that
Be(Ug, VI=P (F, V) (213)

1 3
for all v=(v|,v2,v3)e(l-lo(n)) .

Equations (2.13) are the weak form of the following system of second
order partial differential equations.

oy ) | ow

1 1

-—_ ]1 v2' + ]«5" D (—x + X -=(y + =t =0
2[( ) x ( ) Bx( X )] C( X X )

y )
1 oy oy | ow
L((11)V2y +(1+p) L (—% + —x )]-2L +—£ )=0 ingQ,
2[ VY, C1p) ay(ax dy )] e('Y oy

l(vzw +£& +2¥)s-f'
£ € ay

andv'-yyswt-o on a0

(2.14)

Section 2.2 : Existence of solutions to Pgfor -1<p<1 and O<e<l.

We establish in this section the existence of the problem Pg for the
Poisson ratio in therange -1 sp< 1.

Lemma 2.1: ( Poincare's inequality )
Foranyue H;(o) .
Nulp sc lul,.
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Proof :
A proof may be found in [18] and is omitted here.

Remark :
Infact forany u e H:)(n),
Hull, sc lul,. (2.15)

The following Lemma, proved in [1, 2], will be needed in the proof of
Theorem 2.3 .

Lemma 2.2: For u, € H'(n), u,€ H'(n) and u, € H:,(n), andforallO<p<¢1,

UL W2 (1-p) IugR - Clu R+ Tuf) (216)

where U = (u uz,u)

Theorem 2.3 :
For an sufficiently smooth or polygonali and fe H!(Q), the

problem Pc has a unique solution Uc e( H;(n) y ,forO<e<tand-1sp<!.

Proof:
Wwe shall apply the Lax-Milgram theorem [18] to show that the

existence of a unique solution Uc € ( H;(n) )3. It is sufficient to show that

BelU, V) is continuous in U and V and B(V, V) is coercive.

The proof for continuity of Bg(U, V):

IB W, v>|=lp w,v+Lp w,wl

¢ S
sc”.“ MM, M,
X oy X oy
My N
X oy X ay
i‘il. _u2||_L —zIdA
oy X oy ax
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au Y
...l Ill._;+u||_;.¢v]¢
¢ g rooax !

ou v
| =+u ]| +v,| dA
y 2 9y 2

1/2

1 172
p: clUI,IVIl + c-t-[Ps(U.U)l [PS(V.V)l

scliull vl
€ €

c is independent of eand u, as wellasof Uand V.

The proof of coercivity of BV, V) is given below:

al had § _z ...I. _z
8.V, V) 2£]l(1+¢)( +w) LR ay)

+(|-p)(——+—2) ]dA*—P(V V)
ay €
av v
Ao | Zap (X D2y
2 a X ¥ y o

oL Ps(V V) (217)
€

== (1| . _Z . ._L —2
2(-.;)‘]:[[( SRR gD
v v, o v
212 4+21_21)4dA
X dy 3y o
o1
Lev, v
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( By integration by parts )
v v v Y
Lo [P (2P (2227 0
2 P dy L) ox
!
+o PV, V)

=1 1
2( 1) Clv B+ Ivzﬁ)*tps(V.V)
(Let0<8<1, 8<1-p, and0<p<1) ,
=1l 1.
2(1-p)(|v,ﬁ+|v2P,)*(t 8)IPV,V)

+ 8 PS(V V)
( From Lemma 2.2 we have )

] ' * * _|.- l
’E(H‘)('Vtﬁ |V2ﬁ) (c GD)CCPS(V,V)

+ 8 ( l"p)lv3

R -2CIvB 1vE)
-l -
L8 v B v, e (1) vy
(1-gp) L PV, V)
€

|
2 MUIv,Belv,Belv,R *< PV, Wl
where M= min { (172X 1--8), 8p(1-p), 1-¢8p ). Clearly M> 0. Thus

B(V,V)2aMIIVIR
€ €

and BV, V) is coercive.
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Remark :

(a) A result similar to that in Theorem 2.3 was proved in[1, 2] for 0
< < 1/2. Here the range of p Is extended to -1 <p < 1. Note thatp=1 is
not included since it is questionable whether B{V , V) is coercive for p=1.

An example in Chapter 5 shows that a classical solution for P, need not
exist for p=1.

(b) Taking p=-1In BV, V), we have equality hold in ( 2.17 ). Then

oV v v v
BV, V= [(=L e (2220 (L0 (=27 A
€ o) ax ax 3y

ov ov
+.'.ll (v +—§.)2+(v *—1)2 dA.
ey ! o 2 3y

The above perturbed energy integral was introduced by Nitsche in[24] in a
rather unnatural manner.

Lemma 2.4 and Theorem 2.5 below were obtained in [1, 2]. They give
error estimates for Ug - U, in the norms|| Il ; and [l Il ¢

Lemma 2.4: The norms || II' and || Ilt on ( H;(o) )° are equivalent. Infact,

for a domain 0 with largest dimension unity one has for any U & ( H;(n) y p

A1UIR < HUIR < C1+2) JIUIR . (2.18)
S ! € € !

Remark : When the domains above are not normalized, only the constants
in (2.18 ) need be changed.
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ow W
Theorem 2.5: Let an(--J,-—Q,w ), W eHz(o)an(n), be the

solution of the problem Po , and let Uc- (v‘. vy. wt) be the solution of Pt,
0 <e< 1. Then as e-»0 we have
- 2 2
Ilut Uy ”:‘ c, ¢ llv(v wo)llo, (219)

- 2
lluc Uy IIl sc, d2lv(viw) Il (220)

where the constants c, and c, are independent of ¢ and the functions
involved.

Remark :
(a) Theorem 2.5 gives the error estimates of wyand win |l |I, . The

error estimates of wy and wg in Il 1, will be given in Theorem 2.6.

(b) If f L (0), wehave W, € Hz(n) n HY0), when a0 is
sufficiently smooth.

In the next several sections we present some new error estimates
between the solutions of Py and Pg.

Section 2.3 : Error estimates for wy - we In Il |14

Theorem 2.6 :
Hwg - we llp < cellwglly . (221)

Proof:
Let e = w, - wg and consider the following problem :

A2¢=e 1InQ,
¢=24-0 onan, (222)
n

for §.
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‘Since e € L(Q), from the regularity property of solutions of elliptic
partial differential equations [21, 26] we have

de Ho(0) nH'(D),
el <c llell (223)

LetE=(0,0,-e) Then for the same ¢ there exists a unique E¢ in

( H;(n) )° such that
B(E ,V)=P(E,V)
€ € L‘ 3
for all Ve ( Ho(n) ) - (224)

LetE = (-2 - o) From (28)and (2.13) we have
X oy

pB(Uo R Eo) = pL(F R Eo) and Bt(ut , Eo) = pL(F R Eo)

Since Pg(U, Eg) =0, we have

- oL
Bt(Uo ) Eo) Py E) * =P (, ,E)

B0’ e S 0°°0
= PB(U0 . Eo)
= PL(F , Eo)
it follows that

From(25)and e=wy- wWe we have

llell'-’o =P (E, ut- u,)
= Bt(EC'Ut. Uo)
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(from (2.25))
= BelEe, UgmUp) = BelEo , Ug=Uyp)
= Be(Ec-Eo , UgUp)
( from continuity of BJ(U, V), there exists a constant M > O such that )
sM 11 Eg - Eg llg 11 Ug ~Ug Il
sMc, a2 ||Vl c, e [v(v2w)ll,
scellolly Hwpllg

(from (2.23))
scellelly HHwlly.

If both sides above are divided by || ell,, we then have
llellgsce Hwglls.

Corollary 2.7: Let ch (uf, ug, ug ) be the solution of the problem Pt, then for

i,j=1,2

W
(- —=2) -2 (") |}, < coi® [lwlly (226)
axj ax, axj o o
Proof:
ow
|2 (-—2)- (5l
X, axi ox, 1 0
w
- ||2(- -uf
”ax,( —2-u)) Il
ow
sll-=2-u" ]
Oxi
‘”UO-Ut”I
( from Theorem 2.5 )
sce@ [lwylly

Thus ( 2.26 ) holds.
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Section 2.4 : Error estimate for wy - we in || || ,.

Theorem 2.8: IfU -U -(ee, et, e‘ ), then
¢ 0 | R . |

£
lle3 ll,sllwo wcll|sc1:||wol|3. ‘ (227)
Proof :
Since A e§ € H"(n), let us consider the rollowing problem
A2¢=A e§ inQ,
¢=%:0 onen.

on 4

in the sense of distributions, with the solution ¢ such that

0e Hﬁ(o)nus(o), and [l9ll ¢ Ile§|l,. (228)

From (2.15), there exists a constant ¢ > 0 such that
£ £
lleslﬁ £C Iesl'f
£ 3
-c‘UVesoVes an (229)

( Since e§ = 0 on 3N, then )

[ £
-cll(-Aes)es an. (230)

LetE=(0,0, -A eg). Then for the same ¢ there exists a unique Ec in( H; Q) )3
such that
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BE ,V)=P(E,V) (231)
for all Ve (H (@)’

LetEo-(-ﬁ,-i’-,Q). From (2.8 ) and( 2.13 ) we have
' ay

BlUgUp, Eg) = 0. (232)

From(2.29),(230),and ( 2.31), it follows that

£ €, ¢
Ileslﬁ’s c y('“s e, da
=C pL(E'U{Uo)
=cB(E ,U-U)
ee €0
(from(232))
=C Bc(Et- E0 , U:-Uo)
(for someM>0)
sM llEt- Eo Ilt llUt- Uo”:
( by Theorem 2.5)
<Me, o2 11| c e llw, L
(from(228))

€
scellell, Nwylly .
If both sides above are divided by |l €I, , then we have

€
ll¢23IIo SCE ||w°||3 )
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Section 2.5 : Error estimate for U, - Uginll |l

Theorem 29: IfU -U_= (et, et, et) , then
£ 0 1" 72" 73

€
Hei II0 $CE¢ Ilwoll3 (233)
foralli=1,2

Proof:
€

€
e oe
Hefll < =211+ 1=2 +e° |l
i 0 ax O axi i'o0
£ 172
< Ileslll *[PS(UC-UO.UC-UO)I
( by Theorem 2.8 we have )
1/2
<C¢ Ilwoll3 +cel? [B¢(U¢.Uo , ”{Uo’]

sccllwoll3 *cc‘”llut-uollt
( from Theorem 25 )

< cc||w°||3 + ccllwoll3

< ccl|w°l|3 .
Thus

€
Ileillo s ce Ilwolls, fori=1,2

Theorem 2.10:
HUg-Uy Il < cellwglly . (234)

Proof:
It is clear that from Theorems 2.6 and 2.9, (2.34) holds.
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Remark:

Theorem 2.9 give the error estimate

w
el
1 ax v, IIo s c¢ Ilwall3 (235)
and
",
I- > -, II° P Ilwoll3 ) (236)

From Theorem 2.8 we have
Ilwo-wcll, < C¢ ||w°l|3.

One might guess that the following inequalities are true fora = 1.

ow
ll-;‘1 -y I, s celiwgll (237)
and
w
-=2 -y Il <« cellwlly. (2.38)
dy y 1| 0

However, as discussed in [1, 2], ( 2.37 ) and ( 2.38 ) are not true fora = 1.
In fact, an example given in the above references showed that a cannot be
greater than 3/4



Chapter 3 Finite element approximations

Section 3.1: Error estimates between Ug and its finite element
approximations U, in Il I,

In this section we consider finite element approximations U, for Ug.

Let 5:"‘ be a linear system of functions as defined in [7] with the
following properties: Fort,k20,

(i) S:' k(n) is contained in Hk(n).

(i1) For any ue H™(Q), m 2 0 and 0 < s < min (m, k), there exists €
5" "(0) such that

- L4
Hu QIIs sch lIuIIm. (3.1)

where p = min ( t-s, m-s ). The constant c is independent of u and h.

The above system will be considered a subspace of H;(n) in the

following theorems. For t = 2 and t = 3 this system corresponds to
piecewise linear and plecewise quadratic elements respectively. Let

t, k t, k t.k
Sn Sh xSh xSh

so that Sh is a subspace of ( H;(o) )"'.

We wish to find an approximation for the solution Ug of the problem P
over S, by the finite element method. The following problem is denoted by
P, -

P, : Find U, € S, such that
BelU,,, Vi) =P (F, V) (32)
for all V, €5,

22
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Theorem 3.1 : There is a unique solution U, € S,, of the problem P,

Theorem 3.2 : The solution U, of the problem P, has the projection
property :

-U ,U-uU B(U-V ,U-V .
Bt(uc he Yo h)s e(c he Y h) (3.3)

for all Vh € Sh.

The proofs of Theorems 3.1 and 3.2 were given in (1, 2].

The following lemma will be used in proving error estimates
involving Uy, Ug, and U,

Lemma 3.3:If V= (v‘, Vo v3) €( H;(o) ) , then

ov
i: s: 2 1 i: 1) =
B(V. Vs cl ||axi<vl)||§ ey LA '2 llaxi I2)

j=1 j=1

where ¢ is a constant independent of € and V.
(3.4)
Proof:

B(v,V)=
€

ov ov o v
c(1p)(=L-—22 gq + ]](—hv 2 +(2eyv R dn
y X g & ? 2

1
€ y
( by integration by parts )

v v v ov
L[ 227 e e (27
20 ox dy X

o v L] oV
+ —qu _22 Ql _l', ’l *
(ay) (ay) ] dn c” ™ v‘Hg ‘:ll-—;i')y vzllg
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(smcelz” an | < Il—lllg + Il—llF and -1 sp< 1, we have )

M¥

> ¥

2‘2 |—L(V)”2 += 2“V“2 2‘ II%II%I
e i

€ =1
The Lemma is thus proved.

By the approximate properties of 5:' %(0) there exists - @, 2, 23)

€ Sn satisfying the following inequalities.

(a) For t = 2, the piecewise linear elements case,

(i) Ilwo-23 ”'s chllwoll3, (35)

ow ow
-0 _ 219 2 =
(i) | axi Zillosch I ™ Il2 <ch ||w°||3,forl 1,2, (36)

ow aw
-0 _ -0 =
(111) |1 > 4 II, sch |l > Il2 sch llwoll5 ,fori=1,2 (3.7)

(b) For t = 3, the piecewise quadratic element case,
2
(iv) llwo z, I, < ch Ilw°||3, (38)

ow ow
W ===z 1l s ch’ II=LIL, s ch lIwgll, , for i=1,2, (39)
* 10 U8 0

w w
vi) l-—2-2 |l <ch ll—‘lll2 sch llwll, fori=1,2(3.10)
ax' i ax‘ 0
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With the aid of the above inequalities error estimates between Up and
Z, can be derived using Lemma 3.3. Let

ow
Uy=Z = (- —Q- , -—ayﬂ-zz,wo-zs)
-(e',ez,es). (3.11)

Then
Ny, - 7,11,

172
<C Bt(Uo-Zh »Up~g)

( from Lemma 2.3 )

‘c[ﬁ:ﬁlli(e)ln+-ﬁ:||e|rz L3 %
=1 jo1 € o O
sc(ﬁﬁni—mu ven S el + cwﬁu—lul

Y =

sc[2ﬁ:llell +cin ﬁllell s2c12 ||e,ll, )

12

<c 2|I,eill'+r"’2llelllo* e |le,ll, )
Y =

Thus we have

i ) i
Uy - 2,11 sct gne,u,n— 2 llelle e2liegll ), (312)

We distinguish between the following cases :

(1) For t =2, from ( 3.12 ) and ( 3.5 )-( 3.7 ) we have
1y -2, sc glle,||,+cm§||e,llo+ c1a el )

s clheean’s cuan) flw i,



(for O<h«¢1)
sc(h +ci2n) llwoll3 . (3.13)

(i)Fort=3,from(3.12)and (3.8 )-(3.10 ) we have
IIUo-ZhIIcsc[ glleill, + g2 ;.2, e lly+ e llegll,
s clheotah’ « ctan’) [lw I
< c(hegt2p?) Hwylly . (3.14)
Combining (3.13)and ( 3.14) for t = 2 and t = 3 respectively, we have
1U,- 2,1l < clhecta b Hwg Ly (3.15)

Now error estimates between Ug and Z, can be derived as follows:

-2l < U - Uil » lyy-z,11
( from Theorem 25 )

n i -1
sC ¢ ||w°||3*c[hoc:' h ]Ilwoll3

sclemensctmnt™')lwll .
Hence we have
HU =21l scle®+ heg ™'} |lw I, . (3.16)
e he 0

From ( 3.16 ) we can obtain error estimates between Ug and U,
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U -Ull scBU-U ,U-U)
e he ce b ¢ b
( by Theorem 3.2)
<C Bt(Uc- Z, Uc- Zh)
(by(3.16))

sclemsnect2 ™) flwll; .

The following theorem has been proved.

Theorem 3.4 : For t =2 and t = 3 the following inequalities hold
corresponding to piecewise linear and piecewise quadratic elements

respectively,
- 2 1z pt-!
IlUt Uh“; sCc{eB + hegB | lllwoll3,
and

- n 1n pt!
IlUc Uhll1 sC(e@+ hegtp ]Ilwoll3.

Theorem 3.5:
0y= U, Il < clet e neetan'™" ) llwgll

and

lon-UhII1 sclem@+ hegrpt™') Ilwoll3 .

Proof:
We have

U, -yl s 1y, - dl o+ o -yl
and
Iluo-uhllls Iluo-u‘:lll + llut-uhlli.

From Theorems 2.5 and 3.4, Theorem 3.5 now follows.

(3.17)

(3.18)

(3.19)

(3.20)
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Remark : If || woll 5 is replaced by |l Uplly in the Theorems 3.4 and 3.5,
thenfort =2 and 0 <e < | we have following results:

- 172
U -U Il < cle? « e2h) LIl

- 2 12
I|Uc Ur.”, s c(d + g2) ||U°||2 .
and
- 2 172
IIUo Uhllc s c(gR + gin)h) ||U°||2 .

- + ¢172
1Y, =G l1 s <+ c1mn) Ny, .

These results were obtained in [2, 4].

) P - s hoh .
Corollary 3.6 : IfUc (”1"’2' ua)anduh (u',uz, u3), then for i, j=1,2,

3, Ex_ 3 .M b t-1
Ilaxj(u') axj(u|)||° sc(ei?+ hega ]llwolls, (3.21)
and

ow_ - -
(- —2)-d (gl < clerme hect®h ™ ) llwgll . (322)
(R R

Proof:

2 (.E_.h e€_.h
llaxj(ui udlly < Hu-u'll,
s Ilut-uhll|
(by(3.18))
scleenecmnt™ ) llwll .

Thus ( 3.21 ) holds. For (3.22) we have
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aw oW
H&(-—2)-L (ML <ll-—2 -
X X X | 0 X P
J i | i

slon-U“lll
(by(3.20))

m m t""
scle®+ hegt3 p ]IIwoll3.

Thus ( 3.22 ) holds.

Section 3.2 : Error estimates for Uy - Uy, inll [l

) “af & € bbb
Theorem 3.7: |If Ut (”1'“2'“3) and Un (u‘,uz,us), then

N - W1l ccle®s heen' ) llwll ,  (3.23)

and

llwy- Wl scleenectht™ ) llwll . (324)

Proof:

£ h
Let e ug - U,

A2¢=¢ InQ,

and consider the following problem

. sn =0 on an,
on
for ¢. we have
se @ nHY@) and 1141l = c llell (325)
Let E = (0, 0, -e). For the same eand h, there exist unique Ete(H;(o))s
and EheShsuchthat

B(E ,V)=P (E,V), forall Ve (H(), (326)
cec L 0

and
B(E ,V)=P (E,V), forallVe S.
e h L h
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From (213 )- and ( 3.2 ) we have
BelUe , E)) = P(F,E) and BgU,,E) =P(F, E).

And then
B(U-U,E) =0 (3.27)
e g b h

From (2S5)and e = u§ - u: , we have
IIeIPo - P (E, ua- u)
(by(3.26))
=B(E, U-U)
ceeg ¢ b
(by(3.27))
=B(E-E,U-U
c(c h™ ¢ %
clHE -E Uu-u
<cllE_~E/Il 1lu -yl
( From Theorem 3.4)
scleenectan' ™ Jllgll (e e neetn'™ ) llwll,
(by ( 3.25))

t-1,2
12 112
sc(e@+ hegt2 ™ '} Ilello Ilwolls.

If both sides above are divided by llell,, then we have
llell0 sC{e®+ hegiz ') llwolls,
that is,
€ _ h n i w112
Ilu3 “3“0 sc(e@+ hegt2 ') llwoll._,‘.

Thus ( 3.23 ) is proved. For (3.24) we have

h ¢ € h
Ilwo u, Ilos Ilw0 “3”0 + Ilu3 u:‘llo
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(from(221)and(3.23))
t-1,2
sc'tllwoll_,, *c, (et2 + hegt2 h ') Ilwoll3
scleenecnt™" 2 flw L

Thus ( 3.24 ) is true.

, T 11 w(ef oF oF T
Theorem 3.8: If Uc Uh (e‘,ez, es). Ue Uo (e',ez. es), and Uo Uh

A h h
(e', e, e3), then we have

1 . . 12 t-1 2
||e3||| scle hegt2h ) Ilwoll3 (3.28)
and
h t-1,2 |
Ilesll' s Cle®s+ negapn ) llwolls (3.29)

Proof:
Consider the followlng problem

INTE se, ing,
o=%-0 onan,
an

in the sense of distributions, for ¢ such that

'Y= H:(n)nH3(o) and IIQII3 £C Ilesll' (3.30)
LetE=(0,0,-4 e, ). For the same ¢ and h, there exist unique Ec €l H;(o))s

and Eh € Sn such that

B(E ,V)=P (E,V), forall Ve (K@), (3.31)
€t L 0

and
Bt(Eh, V)-PL(E, V), forallVe Sh.



32

From (2.13 ) and ( 3.2 ) we have
BlUg, E,) = P(F,E) and BgU,,E,)=P(F, E),

and then
B(U-U,E) =0. (3.32)
g g b h

From ( 2.15), there exists a constant ¢ > 0 such that
llele' <C lesl'?’

-cyVeSOVe3 dn

( since e = 0 on a0, then )

=c”(-Ae3)e3 dn
[+]
=C pL(E'U[Un)
(by(331))
=cB(E ,U-U)
gee ¢bh
(by(3.32))
= -E ,U-U
CBe(Ec En A n)
sclle-€, 1l -yl
( from Theorem 3.4 we have )
sclem s hecta ™" ) llgll (e hectz 0™ ) lwglly
(by(3.30))
t-1,2
sc(ei®+ hegtB3 ') lle3|||llw°|l3 .

I both sides above are divided by Ile,ll, , then we have

t-1.2
in 12
||e3||1 scle®s+ hegt2 ™) ||w°||3.

Thus ( 3.28 ) is proved. For (3.29) we have



33

h h
Ile3ll,- llwo uBII'

£ € h
sllwo-usll‘* llu‘.,-u3 II‘
(from(227)and(3.28))

t-1.,2
12 . 113
sc,tllwoll._,*czic + h+giB h ') "wolls

scleenocmnt ™' flwll,
Thus ( 3.29 ) holds.

. T 11 oo oF oF T
Theorem 3.9: |If Ue Uh (ei,ez, e3), Uc Uo (ei, e, es), and Uo Un

h h h
(e', e, es), then we have
t-1,2

||ei Ilos c(eW@+ hegih ') llwolls. (3.33)
and

Ile:‘ llysc (€42 + hegta nt !y lw L. (3.34)
fori=1,2
Proof:

oe de
— -3
lellys H=21l+ 112 e Il

72
< llesll, * Pg ‘”{Un' U{“u’
(from(3.28))

sc(eenect it P flwll
172
+ce?2B(U -U,U-V)
eec h ¢ b
sc (e neent™ ) |l

sce@|lu -ull
e he
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sclemsneennt ™2 Il
0
scel2 (g2 + hegl h"'l.llwoll3

sc e+ hogmrpt ') ||w°||3.

Hence we have ( 3.33 ). For (3.34) we have

h £
Ilei llo < lleillo + IIei Ilo
(from(3.33)and(3.30))

t-1,2
12 12
sCtllwolls+c[c + hegW2 ™ ') Ilw°|I3

sc (e nee ™ 7 flwll, .
Thus ( 3.34 ) is proved.

Theorem 3.10:
t-1,2
Iluo-uhllo scle®+ hegt2 '} llwolls. (3.35)

Proof:
The result in ( 3.35 ) follows from ( 3.24) and ( 3.34).

Section 3.3: Error estimates for linear and quadratic elements with
e=chandel@ =ch.

Remark:

€ € ¢ h h b
Let Ut-(u',uz, "3) and Uh-(u',uz, "3)'

(a) In the linear elements case ( i.e. t = 2 ) if we let €= ch, then we have
the following results:

h
(0 llwy= il s cnllwlly, by ( 3.24).
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h
(1) Ilwo- Uy IIo sCh Ilwolls. by ( 3.29).

Iw
-0 ) =
ain 1 ax‘ u I.Io £ch Ilwol|3 ,fori=1,2, by (3.34).

aw
i 2 (- -2 12 -
(iv) ”ax (-—) ™ CudIly = ch™ llwlL, for i, j=1,2,by (3.22).

o j
1/2

W) 1Y -U Il < ch™ llwll, by (3.18).

vid Hlu =y lly < ch llwlly by ( 3.35).

(b) In quadratic elements case ( i.e. t = 3 ) if we let ¢#2 = ¢ h, then we have
following resuits:

h 2
(1 Ilwo- U, Ilos ch Ilwolls. by ( 3.24).
h 2
(i) lwy- uglly s e b llwglly, by (3.29).
(1i1) ll-—ﬂ‘xl -ull, s eh” llwglly , fori=1,2, by (3.34).

w "
(Iv) Il‘-:(-(-—‘l)--’-(ui My < en lw,ll, fort, §=1,2, by(3.22).

] c)xi axj

W) Hyy-ull <ch Hwlk, by ( 3.18).
2

(v1) Iluo-uhlloscn llwoll3 . by ( 3.35).

(c) In(3.8) - (3.10 ) we can choose quadratic elements for w, and linear

elements for its first derivatives and have the same error estimates
listed in the above part (b).



Chapter 4  Piecewise quadratic finite elements
for the square plate

Section 4.1 : Construction of the element stiffness matrix

If the domain is subdivided into 1sosceles right triangles of two types
(type 1 and type 2 as given by Figure 4.1 and F igure 4.2, respectively), the
construction of the stiffness matrix of the quadratic finite elements for
the clamped plate 1s similar to the construction of the linear elements in
[2]. However, each quadratic element now contains six nodes.

Type 1 elements are as shown below :

(x1,y2)

(x5 ¥5) b (xq,Y4)

el -9

(x3,y3) (x6 , Y6) (xy.,yy)

Figure 4.1

where

=h D
(x|, y') (3, 3), (x

il
Ve (3,

o=
~

- 2h « (2
) (3, 3). (xs,ys) (6’

o=
~

(x2, Y, (4.1)

(x

-(2h -
SRALIC M R AN

uL&

36
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Replacing h by -h, we have the following type 2 elements.

(xy,y1) (x6 , Y6) (x3,y3)
r . g
(Xq,Ya) lr (x5, ys)
(x2  y2)
Figure 4.2
where
(b =(h
(x,y,) (3. 3). (X, ¥,) (3. 6
= :.h_ _'2_“ ’ = ﬂ i
(x,, ¥,) (3, 3 ), (X, ¥g) (6' 6)'
-(2h h b h
(xa, Ys) ( 3 3), ("5' Ye) (6’ 3).

(42)
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For the type | elements, let
;
[ 2

X
[ (.). p 9
u
1 3 3,2, 2, 3, 3,||9
2
(o) (o)
UT=fu, =2 3 3 3, 3, 2, Y (43)
X
VO[S 2% 3 2, 35 3y
L3 y
1

-

and let ¢y, &, ..., and ¢g be the quadratic functions which are equal to
unity at (xq, y1). (x2, y2). (x3, ¥3), (X4, Yg). (X5, ¥5), and (xg. Yg).
respectively and zero at other nodes. Let qj, G, 93, .. , Qg be the
corresponding coefficients and

’l

@] : %

1 9, 9, 9; 9 95 9 .

(o) (o) 3
UT=tu"[=]9 9% 9 9, 9, 9, . . (44)

4

JO1 19% % 9% 9, 945 9y )

3 L/

|

b,“

From (4.1), (4.3), and (4.4) we have
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AX=Q, (4.5)
where
3 3, 3 3, 35 3,
A= 3 3 3, 3, 3, 2,1,
35 3, 35 3, 35 A,
"~ 2 2 2 2 2 2
Xp X Xy X X X
XY, XYy Xg¥s XY 4 %s¥s %6Ys
2 2 2 2 2 .2
y = Y, Yy Y3 Yo Vs Vs
X, X X3 X X5 Xg
Yy Yo Y3 Y4 Ys Vs
| | ] 1 | 1
L
and




By inverting the second matrix of the equation (45) we have

A=QH, (46)
(2 4 2 1 o o
h2  p2 2 3h 3 9
2 -1
0 0O = 0 = -
K2 3h 9
2 -1 =1
= 0 0O — 0 —
h2 3h 9
Helo 42 34 0 ¢
W2 o2 9
-4 -4 4 4
0 h2 0 3h 3h 9
-4 4 -4 4
2 4 9 0o =2 =
K2 p2 3h 9
_ .

which can be expressed as
a=Pq. @7
where
T
a:[ 3' 32 33 aw] ,

q:[q, qQ - qta]r,
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%I 0 %I 0 0 1;!
h h h
4 o o -431 e %l
h h2 h?
2, 2, o A2 0 o
h2 h2 h2

P=
o0 Ly A4 M4y o
3h 3n 3n 3h
-1 1 4, -4
it I R o 4, M4,
3h 3h 3h 3h

where

(48)
The element stiffness matrix K(e) is introduced through

B¢ U®). 1)) qT K(®) q . (49)
In terms of matrix a, we define a matrix N by

B U®), u®))-al Na . (410)
Then

aTNa=qTK(°)q : (411)
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From (4.7)
qTPTNquqTKq, (412)
thus

Ke)=pTNP. (4.13)

We need the following integrals
'n’” X y* dxdy . (4.14)
)

From [19] Holland and Bell the integrals above are easily computed.
6 6 6

| =l.. | 3_!1_ | = h
0 270° 04 270° 31 540°
| :lo. | :i | :-h_s
137540° 2 S40°' 3 270 °
S S S
h -h h
T L Tt A R .
03°270° 21 540° 12 540 (413)
| :h_4. | sh_4 | :i
20 3’ 02 36’ n 72’
2
= = SL.
'01 o, lw o, |00 5

Using the above results and (4.3) we can derive (4.10)
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Bl ule) ’ ule))

-'_;!y(a_:;(l. .;yZ) dA ,_?L](:_t:(]__%_uyz)? dA

U ou
+‘_‘E”(_l.+_2) qA+l I(_}.+u)2 *(—ﬁwu)z dA
2 dy g & ! ¥y 2

4
<Jah 2 2 2 2
> 38 [(43' ulaI as+a5)+(4a°¢daaa‘¢a4)

w

0(431 aa¢2aaa5*2aI a4¢asa4)}

2
1D (2 05 2 422)

2 2 %0 1014 “14
4
1l h 2_ +32 )+(a%- +42°
+ 2 3 [(4a' 4a 3,+3; )+(a, -43,3, 43, )

«2a 3, -2, -4223,+22.3,))
‘l_}h (fo-ZawaM 3?4)
AR L (2 vag,2,+42] )+ (42] 42,243 )
*(22,2 +43,2, +2,3,+22,3,)]

2
2 %3 *22,32,,+2), )

6
| 2 .2 1.2
‘;[2_5 [a) +a, ‘3% +3,3,+3,3,]

-2a(a 4233)0237(2 *a, ) a(a +2as)




oa‘(asoaw)*a7(a‘o «233)-3'(36%‘3)]

4
h 2 2
*36[(3100233) 02a'(a,6¢a'2)*(a6¢a|3) ’237(315 a,

+a4(aw*alz)*(awOZas)(as*aw)]
2

N2 vg P
0—2(a‘° a'z)]
(—ola at+l3? ‘aaoaa]
: 270 % 2 ‘4%
hS
02—7-[-23 (a ‘3, )*23 (2a ‘a, )- -3, (2a ‘3, )
-35(3643”)035(23903“)‘ aa(asoa")l
4
h 2 2
'l 3,) *(23,+3,,) +23,(35+3,,)

*232(315*317)*220(a‘s*a")

+(as+a“)(239¢au)*as(a )]

L
s '3

2
h 2
’—2(3‘5*317) ).

Then
B.(U®,ue))=aT N a,
where

N=N1+N2+N3+N4+N5, 416)

and
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The element stiffness matrix K(€) is then obtained from( 413 ),
(4.16),and( 48 ).

Each type | element stiffness matrix is the same as the above
stiffness matrix K{€).

Replacing h by -h in K(€) of the type | elements, we have the
stiffness matrix of each type 2 elements. Similarly, the formulas
derived for type | elements will be true for type 2 elements by
negating h.
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Section 4.2 : Construction of the element load vector

The element 1oad vector £(®) win pe computed in the following
ways.

P (F,U®)
(e)
[[rePen
2
Xy
2
’[as 3% 3 3, g aw] ” (x,y) | Y dA
¢ X
y
[ 1]
( from (4.6) )
2
Xy
2
-[Q3 qﬁ qo qu qgs qw] H JJ“X, Y) Y dA. (4.17)
X
y
1]

Let ( xc , Yc ) be the centroid of the other elemental triangle relative to
the global coordinates ( X, Y ). Then

(X, Y)=1(x+xc, y+yc ).



S0

T
£, s fm] '
then
( x+x )2
(4
(x+xc)(y*yc)

2
. (y+y )

r H U fx +x, y4y ) c dA

X+X

-H “ fOxex, y4y ) dA (4.18)

(o)

for m=3,6,9, 12, 15, and 18 and

f =0, otherwise.

The numerical integrations for f,, may be carried out by the standard
Gaussian quadrature.
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Section 4.3 : Finite element solutions
The energy integral

JU)=Be(U,U)-2P (F,U),

will be summed over the individual elements.

JWy = I

e
= 2 18,(u™,u®r-2p (F, U]

=Z [qTK(e)q - 2 qT f(e)l

=qTKq-2 qT f,

where
K is the global stiffness matrix,

A
q is the global nodal matrix,

A

and f 1s the global load vector.

The finite element solutions are determined by finding the g's
which minimize the energy integral J(U). This gives

A A

Kq=f. (4.19)



52

Section 4.4:Examples
Example 4.1 :
Consider a clamped square plate in -1/2 < x < 1/2, -1/2<y < 1/2
under the polynomial load
fx,y) =24 (x* « 122 y% +y*)-36 (K2 +y?)+5.

The exact solution for wy(x, y) Is

1 2_ 2 2_ 2
w(x,y) 256(4x 1) (4y"-1),

from which we have

Wy (0, 0) = 1/256 = 0.00390625,

y= 8L 200012359,

1 1 27
=, =)= —=— =0.0065918.
4 4) 4096 ®

Since the load function is symmetric in x and y the problem can be
solved over the first quadrant. The boundary conditions uj=uy =uz =0 at x

=1/2 and y =1/2 should be imposed. Because u; must be odd in x and even
in y, the boundary condition at x = 0 is uy= 0. Similarly the boundary
condition at y=0 is up=0.

Numerical results are given in Tables 4.1-4.6. We mention that the
same example was also considered in [2] using piecewise linear finite
elements with mesh sizes of h = 1/4, 1/8, 1/16, and 1/32. In Tables
4.13A, 413B, and 4.13C numerical results are added for h = 1/64 in the
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linear element case. In the quadratic element case, due to the limitation of
computer memories, numerical results are not obtained for h = 1/64. The
results in Tables 4.13A, 4.13B, and 4.13C show that the quadratic element
solutions yield much better approximations than the linear element
solutions. It has been indicated in Chapter 3 the error bounds contain the
factor ¢¥2ht1, This implies that accuracy for small ¢ may require
excessive fine mesh. In the linear element case when ¢ is less than 2710,
numerical results are not reliable even for h = 1/64. Numerical values of ¢
= 2-15 and h = 1/32 in the quadratic element case are, however, acceptable.
In references [1-4] Poisson's ratio g was taken in the range of [0, 0.5) p =
0.3 was used in the present numerical computations. As we mentioned
before Nitsche's method corresponds to the particular case p = -1. Tables
4.1-4.6 list numerical results for g = 0.3, 0.0, and -1, showing that the
solutions are insensitive to p.

The convergence to the solution w, and its first derivatives occurs

only when € and h both tend to zero. in Chapter 3, letting € = ch and €12 = ch
in linear and quadratic element cases respectively, we have the
convergences in terms of h discussed at the end of Chapter 3. Figures 4.3
and 44 are approximations of w,(0, 0) with constantsc=1/8andc =1 in
linear and quadratic element cases, respectively. For small ¢ both graphs
tend to be linear. The choice of the value for ¢ suffers no particular
restriction. Figure 45 shows the appproximations of wy(0, 0) for h = 1/32
of linear and quadratic elements. In the linear element case the
approximations for ¢ = 27, 28, and 29 are reliable. We can use
extrapolations to find better approximations of w,(0, 0). The points for ¢
larger than 29 are not reliable. Because h is fixed (h = 1/32), these points
tend to the origin ( See [2] ). The points of quadratic approximations in
Figere 45 are all reliable and all are almost on a straight line. This
suggests that wg tends to be linear when ¢ approaches to zero. Thus in

the quadratic element case we can use extrapolation to obtain better
approximations of wy(0, 0). For example, when ¢ = 2710 one has the

approximation w, = 0.00414588 and when € = 2°'2 one has the
approximation w, = 0.00396578. By extrapolation one obtains
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2 w_-
—Z——l = 0.003905736.

22-1
which is very close to the exact value of wy(0, 0) = 0.00390625.

Extrapolations are commonly used to obtain improved results in penalty
methods (2, 16, 17, 34].

Example 4.2 :
For the same clamped square plate we now consider the cosine load
f(x,y)= 4C0S 28X COS 2Ry + COS 2%X *+ COS 2RY.
The exact solution is

Wo(X, y) = (1/ 16 x4 ) cos 2xx + 1) (cos 2xy + 1),

from which we have

W, (0, 0) = 1/ (4n4) = 0.0025665,

w(l Ly=_1_ 200006416,

04" 4" 6x4

ow ow

ol 1y, ol 1y._1 .00040314
x 4’ 4 oy 4 4 gxd

Numerical results are given in tables 47-4.12. These results are
similar to those in Example 4.1.
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Linear finite element approximations of wq(0, 0) of the square
plate with polynomial load functfon. '

h

174
1/8
1716
1/32

1/4
1/8
1716
1732

174
1/8
1716
1732

1/74
1/8
1716
1732

1/4
1/8
1716
1/32

1/74
1/8
1716
1/32

p=03

0.11311639
0.11337059
0.11228648
0.11170684

0.05785581
0.05858934
0.05819833
0.05793962

0.03018412
0.03117510
0.03114190
0.03104707

0.01627208
0.01742362
0.01759112
0.01758495

0.00918538
0.01046832
0.01077701
0.01082831

0.00544297
0.00685689
0.00730850
0.00741368

p=00

0.11305337

~ 0.11332004

0.11224184
0.11166374

0.05779472
0.05854034
0.05815520
0.05789801

0.03012659
0.03112893
0.03110152
0.03100818

0.01622063
0.01738224
0.01755536
0.01755068

0.00914313
0.01043401
0.01074809
0.01080085

0.00541229
0.00683113
0.00728779
0.00739445

Table 4.1A

p=-10

0.11288071
0.11320171
0.11215120
0.11158058

0.05762614
0.05842447
0.05806679
0.05781707

0.02996569
0.03101769
0.03101729
0.03093139

0.01607344
0.01727916
0.01747847
0.01748114

0.00901814
0.01034393
0.01068270
0.01074270

0.00531803
0.00675869
0.00723754
0.00735129
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Linear finite element approximations of wy(0, O) of the square
plate with polynomial load function.

h £ p=03 p=00 p=-1.0
174 0.00331845 0.00329941  0.00323919
1/8 0.00484342 0.00482581  0.00477284
27 1716 0.00548202 0.00546893  0.00543429
1732 0.00566086 0.00564930  0.00562156
174 0.0020044!1 0.00199461 0.00196314
1/8 0.0035454!1 0.00353424  0.00349906
ya 1716 0.00443066 0.00442284  0.00440064
1732 0.00472872 0.00472260  0.00470683
174 0.00116201 0.00115790  0.00114458
1/8 0.00254705 0.00254059 0.00251979
29 1716 0.00368543 0.00369083  0.00367654
1/32 0.00418499 0.00418189  0.00417325
174 0.00064098 0.00063955  0.00063488
1/8 0.00171520 0.00171197 0.00170147
2710 1716 0.00302782 0.00302497 0.00301576
1/32 0.00378846 0.00378677 0.00378169
174 0.00033961 0.00033918  0.00033775
1/8 0.00106125 0.00105990  0.00105548
N 1716 0.00232820 0.00232649  0.00232088
1732 0.00338670 0.00338565 0.00338230
174 0.00017527 0.0001751S  0.00017476
1/8 0.00060747 0.00060699  0.00060543
12 1716 0.00162880 0.00162789  0.00162489
1732 0.00288510 0.00288440  0.00288209

Table 4.1B



Linear finite element approximations of wy(1/4, 1/4) of the

square plate with polynomial load function.

£

2!

2-2

-3

h

174
1/8
1716
1/32

1/4
1/8
1716
1732

1/4
1/8
1716
1/32

174
1/8
1716

1732

174
1/8
1716
1732

174
1/8
1716
1/32

p=03

0.05034891
0.0505603 1
0.05062559
0.05064272

0.02557536
0.02587203
0.02596130
0.02598450

0.01317655
0.01352108
0.01362528
0.01365235

0.00695484
0.00733278
0.00745020
0.00748106

0.00380525
0.00421556
0.00435059
0.00438689

0.00217040
0.0026 1802
0.00278186
0.00282780

Table 42A

p=00

0.05033349
0.05054344
0.05060917
0.05062641

0.02556030
0.02585565
0.02584542
0.02596868

0.01316217
0.01350561
0.01361037
0.01363756

0.00694162
0.00731888
0.00743694
0.00746790

0.00379390
0.00420403
0.00433981
0.00437623

0.00216162
0.00260944
0.00277415
0.00282023

p=-1.0

0.05028546
0.05050684
0.05057759
0.05059611

0.02551326
0.02581981
0.02591459
0.02593914

0.01311701
0.01347119
0.01358097
0.01360945

0.00689987
0.00728698
0.00741006
0.00744232

0.00375777
0.00417619
0.00431693
0.00435466

0.00213353
0.00258721
0.00275663
0.00280402



Linear finite element approximations of wq(1/4, 1/4) of the

S8

square plate with polynomial 10ad function.

h

2-10

-1

2712

€

1/74
1/8
1716
1/32

1/4
1/8
1716
1732

174
1/8
1716
1/32

174
1/8
1716
1/32

174
1/8
1716
1/32

174
1/8
1716
1732

p=03

0.00127494
0.00175838
0.00196969
0.00203347

0.00074811
0.00124210
0.00152286
0.00161895

0.00042559
0.00087763
0.00123804
0.00138865

0.00023221
0.00059008
0.00100626
0.00123736

0.00012231
0.00036725
0.00077751
0.00110235

0.00006293
0.00021169
0.00055028
0.00094487

p=00

0.00126909
0.00175270
0.00196491
0.00202888

0.00074491
0.00123870
0.00152021
0.00161654

0.00042420
0.00087575
0.00123601
0.00138749

0.00023172
0.00058914
0.00100544
0.00123680

0.00012216
0.00036684
0.00077704
0.00110204

0.00006289
0.00021154
0.00055004
0.00094468

Table 4.28

p=-1.0

0.00125041
0.00173676
0.00195307
0.00201835

0.00073474
0.00122841
0.00151297
0.00161060

0.00041975
0.00086976
0.00123232
0.00138441

0.00023012
0.00058610
0.00100285
0.00123517

0.00012167
0.00036552
0.00077552
0.00110108

0.00006275
0.00021106
0.00054923
0.00094407



Linear finite element approximations of -dwq/dx (1/4, 1/4) of

the square plate with polynomial 1oad function.

2‘1

22

2'3‘

)

h

174
1/8
1716
1/32

174
1/8
1716
1732

1/4
1/8
1716
1732

1/4
1/8
1716
1732

174
1/8
1716
1/32

1/4
1/8
1716
1/32

p=03

0.00722320
0.00812437
0.00839584
0.00846726

0.00711314
0.00805113
0.00833993
0.00841660

0.0063041 1
0.00791251
0.00823542
0.00832249

0.00652510
0.00766242
0.00805123
0.00815870

0.00589104
0.00724537
0.00775662
0.00790308

0.00495551
0.00662210
0.00734488
0.00756304

=00

0.00682630
0.00781862
0.00812028
0.00820024

0.00673471
0.00776098
0.00807884
0.00816372

0.00655921
0.00765030
0.00800025
0.00809490

0.00623600
0.00744653
0.00785805
0.00797184

0.00568137
0.00708338
0.00762058
0.00777166

0.00483390
0.00653739
0.00726777
0.00748859

Table 43A

p=-1.0

0.00606333
0.00722232
0.00758315
0.00768079

0.00599743
0.00718552
0.00756127
0.00766354

0.00586981
0.00711368
0.00751879
0.00763028

0.00563015
0.00697654
0.00743860
0.00756827

0.00520494
0.00672517
0.00729444
0.00745956

0.00452149
0.00629457
0.00705463
0.00728722



Linear finite element approximations of -dw,/dx (1/4, 1/4) of

the square plate with polynomial load function.

€

2-7

2-10

-1

2-12

h

1/74
1/8
1716
1732

174
1/8
1716
1/32

174
1/8
1716
1732

174
178
1716
1732

1/74
1/8
1716
1/32

174
1/8
1716
1/32

p=0J3

0.00379147
0.00579340
0.00684277
0.00718722

0.00260376

0.00478691

0.00626554
0.00682426

0.00161207
0.00365688
0.00556740
0.00646659

0.00091833
0.00253240
0.00467917
0.00604466

0.00049422
0.00158522
0.00361203
0.00545852

0.00025703
0.00091172
0.00251190
0.00463212

p=0.0
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