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ABSTRACT

ENERGY DECAY ESTIMATES FOR THE VON KARMAN

PLATE EQUATIONS IN NONLINEAR ELASTICITY

By

Peter Vafeades

This dissertation is concerned with the analysis of Saint-Venant edge

effects for nonlinear elastic plates. The model used is based on the von

Karman plate equations: a coupled system of two nonlinear elliptic partial

diflerential equations with the biharmonic operator as the principal part.

Energy methods are used to establish a nonlinear integro—diflerential ine~

quality for a quadratic functional. Arguments based on comparison

theorems are then used to establish exponential decay of end effects. The

results constitute a version of Saint-Venant’s principle for nonlinear elastic

plates.
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CHAPTER 1

INTRODUCTION

Saint-Venant’s principle in elasticity theory has had a long history. For long

prismatic bars with traction-free lateral surface and subjected to end loads only,

SAINT-VENANT suggested that the detailed mode of application and distribu-

tion of forces over the end of the cylinder is immaterial so that it is always possi-

ble, to some degree of approximation, to replace the applied system of forces by a

statically equivalent one having the same resultant force and moment.

Much work has been done to justify this engineering principle, which lies at

the foundations of elasticity theory and strength of materials. For an account of

the major developments, up to 1972, concerning this issue for the linear theory of

elasticity, see GURTIN [1].

In 1965 renewed eflorts began on establishing a principle of Saint-Venant

type for the original cylinder as well as for thin elastic bodies. In the framework

of the linear theory of elasticity, the problem of comparing two statically

equivalent systems of traction is reduced, by applying superposition, to the study

of the stresses in the same body subject to arbitrary sclf-cquilibrated tractions on

part of the boundary with the remainder of the boundary traction-free. TOUPIN

[2] and KNOWLES [3] made use of the connection between Saint-Venant’s princi-

ple and the decay of strain-energy away from the loaded end of the body to pro-

vide estimates of the rate of stress decay. For a comprehensive review of work on

Saint-Venant’s principle up to 1983 see the survey by HORGAN and KNOWLES



[4]-

As is discussed in [4], and also is clear from earlier work, the issues underly-

ing the validity of a Saint-Venant principle are mathematical questions for the

elliptic partial differential equations involved. Thus the exponential stress decay

established in [2], [3], for example, demonstrate clearly the boundary-layer charac-

ter of the solutions corresponding to a self-equilibrated load.

Compared to the amount of research carried out on the analysis of Saint-

Venant’s principle for linear elasticity, very little has been done to examine such

questions for nonlinear elasticity. Clearly the issues are much more complicated

here. A major difliculty arises since superposition no longer holds and so consider-

ing self-equilibrated loads is not sufficient. Furthermore, instabilities might have

to be taken into account. Also the decay rate for end effects, even if exponential,

might depend on the overall loading as well as on geometry. Early work on the

nonlinear elasticity problem was carried out by ROSEMAN [5] and BREUER and

ROSEMAN [6]. A review of this research and of other work up to 1983 on

second-order nonlinear partial differential equations is given in [4]. HORGAN and

KNOWLES [7] considered a Saint-Venant principle for finite anti-plane shear and

obtained exponential decay rates depending on loading and on material. Since

then BREUER and ROSEMAN [8] have considered the plane problem and

KNOPS and PAYNE [9] the three-dimensional cylinder problem. See also [10] for

results on small deformations superimposed on large for plane incompressible elas-

ticity. Results for second-order quasilinear partial difierential equations in two

and three dimensions have been obtained recently in [11 - 14].

In this thesis, we are concerned with a nonlinear elasticity problem for plates

modeled by the v. KARMAN [15] equations. The exponential decay of an

energy-like quadratic functional involving the stresses and second derivatives of



the deflections due to self-equilibrated tractions and prescribed deflections on part

of its boundary can be regarded] as a Saint-Venant principle type of result. The

only previous work on questions like this for the von Karman equations is that of

KALANTAROV [16]. He established an upper bound for such an energy func-

tional which is inversely proportional to the square of the distance from the

loaded end for sufficiently large distances. We obtain stronger results involving

an exponential decay of energy here.

Here in Chapter 2 we formulate the boundary value problem to be studied.

The stresses and deflections in a semi-infinite thin elastic plate are described by

the von Karman system. The plate is clamped and is rendered traction-free along

its long sides while self-equilibrated tractions and prescribed displacements are

assigned to its left end. In Chapter 3 we discuss the linearized version of the

problem posed, the biharmonic problem for a semi-infinite strip with traction-free

lateral sides and self-equilibrated end loads. We review the technique of

KNOWLES [3] to derive exponentially decaying upper bounds for an energy func-

tional. These results are used by us in Chapter 4. In Chapter 4 we present the

main results of this thesis. We establish an integro—diflerential inequality for an

energy-like quadratic functional for the von Karman system. By means of a com-

parison theorem for such inequalities a series of upper bounds demonstrating

exponential decay of this energy functional are established. In Chapter 5 these

results are compared to one another and discussed.



CHAPTER 2

STATENIENT OF THE

BOUNDARY VALUE PROBLEM

Consider the rectangular semi-infinite isotropic elastic plate of Figure 2.1.

The plate has thickness 2h, width 2H and extends to infinity in the positive 6

direction. The two semi-infinite lateral sides described by the planes n = -H and

n = H, are clamped, that is, no displacement is allowed along these sides and the

plate’s slope there is equal to zero. An arbitrary self-equilibrated traction is

applied at the end 5 = 0, while the stresses are assumed to vanish as E-voo .

In 1910, v. KARMAN [15] introduced a coupled system of two fourth-order

quasilinear elliptic partial differential equations to describe the large deflections

and stresses in a thin elastic plate. We use v. KARMAN’S model for a geometri-

cally nonlinear elastic plate here.

Let c} be the Airy stress function, whose second derivatives yield the stresses

in the plate. Then for fixed g in [-h,h] 346,17) satisfies the following inhomogene—

ous boundary conditions

  

ire—H) = 91(8). axe—H) = 92(6). l

346.”) = 93(5). MU!) = 94(6), 0<E<°°.

l&(0’n) = [11(71): @409”) = h2(fl), -H<T]<H, ’ (2'1)

and

@5460), (35,4617), $,,,,(€,n) ->0 (uniformly in 17) as E-+ 00,)

where the subscript on it indicates partial differentiation and 91, 92, 93, 9,, 12,, I12
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FIGURE 2.1 SEMI-INFINITE ISOTROI’IC ELASTIC PLATE



are prescribed functions. Let <73 be the Airy stress function associated with the

stresses necessary to cancel out any deformation of the plate (d is the Airy stress

function for the so-called bending stresses, see STOKER [17] and KNIGHTLY

[18]); then it satisfies the same inhomogeneous boundary conditions as 6 along the

clamped sides and homogeneous boundary conditions elsewhere. Thus

‘

'Re-H) = ale—H) = 91(5).

ire—H) = ale-H) = 92(5),

‘ 345,11) = 345,”) = 93(5),

  

area) = Merl) = yrs), o<e<oo. ’ (2'2)

340.72) = 0. $40.71) = 0. —H <n<H.

[5555(6”) ,agnGJI) Fenlan) #0 (uniformly in U) as €—+OOJ

We now define

¢ = R-a, (2.3)

the Airy stress function for the so-called membrane stresses. Note that o satisfies

the original inhomogeneous boundary conditions on 6 =0, and homogeneous

boundary conditions on the lateral clamped sides

¢(O,fl) = h1(fl), ¢€(Oin) = h2(’l)r —H<17<H,

(“5"”) = ¢n(€:-H) = 02 (2'4)

¢(£,H) = ¢,,(E,H) = O, 0<E<oo,

and that the corresponding stress field tends to zero as E-voo , that is,

45546.17). «46.71), ¢.,.,(€.n) -+0 (uniformly in n) as E—voo. (2-5)

The von Karman system of equations for the midplane reads [15]:

A(2£.n)¢ = E(wtzn-wtfwnn)

Aliar“ = (h /D )(wace‘2¢£nw£n+¢eewnn) (2-6)

where A62”) is the biharmonic operator in terms of the (5,17) variables, w(€,17) is the

midplane deflection, E is Young’s modulus, D=Eh3/12(1—1/2) is the plate’s modulus

and u is Poisson’s ratio. The functions ¢(E,r7) and (46,77) are assumed to be four

times continuously diflerentiable on the open semi-infinite strip and twice



continuously differentiable on its boundary.

The boundary conditions on 41 are given in (2.4), (2.5). The functions h, and

112 must satisfy some additional conditions in view of the fact that the tractions

on the 5 =0 face are self-equilibrated. If the tractions on the 6 =0 face are T

«-

=(T‘, T"), where the superscript indicates the corresponding component, we have

I!

den=o, (2.7a)

-H

H

7' Mid" = o. (2.7b)

-H

In view of the fact that on the 6=0 face the unit outward normal is n =

(-1,0) we have

T5 = —¢,,,, and T" = —¢.,, on 5:0. (2.8)

On integration by parts, using the boundary conditions and the assumed smooth-

ness of (11 we deduce that

th)=h7—H)=o, as)

and

hl(—H)=hl(H)=h,’(-H)=h1’(H)=0. (2.10)

By virtue of the smoothness assumptions on ¢ and the boundary condition (2.4),

the boundary condition (2.5) may be integrated to yield

“51’”. 0545,”), $45.17) ->0 (uniformly in 17) as 6—»00. (2.11)

The boundary conditions on w are:

lie—H) = wn(€.-H) = 0.

  

w(€,H) = w,,(E,H) = 0, 0<€<Oo,

* * (2.12)
045.17). 0045.77), wn(€.n)-*0

(uniformly in 17) as E-roo for any 3‘ in [-I1,h],)

and

«(0.12) = 1.01) w.(o,n) = 1m) ' (2.13)

on the {=0 face where the prescribed functions j1(17), jg(17)are such that



1.1(iH) = jl’ (iH) = jeliH) = 0- (2-14)

We now introduce dimensionless spatial variables by setting

 
 

= .5- = 17. 2 15
I H) y H . ( ' )

We also introduce a dimensionless midplane deflection

w
= — 2.16z 1. _ ( )

In terms of these dimensionless quantities (2.6) becomes:

45

Alamlfiz' = 4211-213 Zr»!

¢ ¢ ¢
Agmyz = 12(1—u2)( Eli; z” -2 E22 2,, + E12112 2,”), (2.17)

where Ag”) is the biharmonic operator in terms of the (2,3)) variables. Hen-

ceforth, we drop the subscript notation on the biharmonic operator and so

A2=A(2z.r)'

We now introduce the dimensionless Airy stress function 2,0(z,y) by

1R2.y)= 91% (2.18)

and employ the following scale change in z and t0:

1

z = u,

Van—u")

12(1—12')

Thus we obtain

A212 = 2(u13—u” 11””) = —[u,u],

Agu = (an on -2u,y v," +uW v”) = [u,v] on R, (2.20)

where the bilinear form [..,] is defined as

[1.9] = [saw-211,9.y-rfwgu (2.21)

and R is the semi-infinite strip 0<x <00, -1<y <1.



The boundary conditions on v, the dimensionless Airy stress function, are

”(01y)=’;l(y)1 ”1(01y)=£2(y)1 _l<y<11

v(:r,:l;l) = vy(z,j:l)=0, 0<:1: <00, (2.22)

um). v.(z.y). vy(z.y) -»0 (uniformly .-.. y) as 2 —+oo.

where the functions 51, 52 are such that

Mil) =iil'(;1:1) = 52cm) = o. (2.23)

The boundary conditions on u, the dimensionless displacement out of the

plane, are

u(0.11)=J~'1(y), "3(01y) =iz(y). -1<y<1.

u(z,:hl)=uy(z,:l:l)=0, 0<z<oo, (2.24)

u(:1:,y), u,(:1:,y), uy(z,y) ->0 (uniformly in y) as :1: -+oo.

The functions 31. 5'2 satisfy

31(i1)=31’(i1) =32(:1:1) = 0. (225)

By a classical solution to the boundary value problem posed above we mean

a pair of functions (u, u) that are four times continuously differentiable in the

interior of R and twice continuously diflerentiable on its boundary, that are solu-

tions to the system (2.20) and satisfy the boundary conditions (2.22) and (2.24)

for prescribed functions III, 112, 5'1, 5'2, assumed to be sufliciently smooth.



CHAPTER 3

THE LINEARIZED PROBLEM:

THE BIHARMONIC PROBLEM

In 1966, J. K. KNOWLES [3] formulated and proved a version of Saint-

Venant’s principle appropriate to the plane strain and generalized plane stress

solutions of the equations of the linear theory of isotropic elastic equilibrium in

bounded simply-connected plane domains of general shape. In [3] an explicit esti—

mate (lower bound) is obtained for the rate of exponential decay of the energy

with distance from a portion of the domain boundary carrying a self-equilibrated

load. This result for biharmonic functions was established in [3] using difl'erential

inequality arguments. The special case of the biharmonic equation in a semi-

infinite strip subject to self-equilibrated loads on the near end only constitutes a

linearized version of the problem described in Chapter 2 here. In the present

chapter we provide a brief description of the methods and results of [3] for the

semi-infinite strip (see also KNOWLES [19]). Subsequent improvements on these

results obtained by other authors will also be summarized.‘] Our treatment in

Chapter 4 of the nonlinear problem described in Chapter 2 will be seen to make

use of energy decay estimates of the type used in [3].

Thus we consider a semi-infinite strip R of width 2 in the (2,31) plane whose

 

T A comprehensive review of work on Saint-Venant’s principle wu given in 1983

by HORGAN and KNOWLES [4).

10



11

t

   
 

  
 

SEMI-INFINI'I‘I‘. STRIP RFIGUR t 3.!



long sides are traction free and whose end :r=0 carries a self-equilibrated load (see

Fig. 3.1). The stress field is assumed to vanish at infinity. \Ne are concerned with

solutions (23 of the biharmonic equation

A243 =0 on R, (3.1)

( 45 is the Airy stress function), subject to the boundary conditions:

¢(0.y)=k(y). ¢.(O.y)=l(y), -1<y<l.

¢(z,;l;1) = ¢,(z,;1:1)=0, 0<z<oo, (3.2)

¢n(z,y), ¢w(z,y), ¢yy(x,y)->0 (uniformly in y) as z-+oo,

where k and l are prescribed functions such that

k(:l:l) = H (i1) = ((4:1) = o. (3.3)

We introduce the notation:

Rz={(z,y)inR I122},

L,={(z,y)inR Ix=z}, (3.4)

so that z is a running variable along the z-axis. Clearly, R0512.

Following [3], [19] we define the function e(¢5) by

e(¢) = ¢§+2¢fy+¢fy (3.5)

so that the energy stored in R, is given byi

E(z) = {emu/1. (3.6)

Thus, the total energy is:

E(O) = [mad/1. (3.7)

By repeatedly applying Green’s theorem and using the boundary conditions (3.2)

it is shown in [3] that

E(z) = _f(¢z¢zz —¢¢nz +2¢y ¢zyldy- (3'8)

L:

 

1 It is shown in [19] that E(z) is finite.



13

We recall from [3] the following difierentiation formula for functions f continuous

on the closure of R,

.31. f 71.1 = 41.3. (3.9)
21?, L, .

Thus we may write

E(z) -_- §;J(¢,¢n—¢¢m +2¢,¢,,)dA (3.10)

which implies that

fE(s)ds = —f(¢,¢,,—¢¢m+2¢,¢,,)dA. (3.11a)

3.

It is convenient for subsequent purposes in Chapter 4 to introduce the Volterra

integral operator

FU E jU(s)ds, (3.11b)

0

on continuous scalar valued functions. Thus the left-hand side of (3.11a) can be

on

written as fE(s)ds -FE. Applying Green’s theorem and the boundary condi-

0 V

tions (3.2) we can now write

[E(s)ds = fE(s)ds -FE = f(¢3+¢3—¢¢,,)dy, 0<z<oo. (3.12)

z 0 L,

\Ne can now construct as in [3] the integro—diflerential functional

f(z,E’ ,FE) a E' (z)+41c‘-’(fE(s)ds — FE)= E’ (z) + 4k2fE(s)ds, (3.13)

0 z

for any real constant k. The result (3.12) and the expression for E’ (2) given by

(3.5),(3.6), (3.9) may be combined to yield

f (z,E’ ,FE) = —f[¢f,+¢;-’,+2¢3,—4k‘-’(¢3+¢3—¢¢n)1dy, 0<z <00. (3.14)

L:

We now seek, as in [4], to find a positive value of k for which



14

f(z,E' ,FE) g 0, 0 g z<oo. (3.15)

In [3] Knowles made use of VVirtinger-type inequalities (see Appendix A here) to

establish (3.15) with the value of k given by

k = 0.70. (3.16)

In 1974, FLAVIN [20], by using a sharper \Nirtinger‘ inequality, established (3.15)

with the larger value of k given by

k = 1.11. (3.17)

Using arguments based on first-order difierential inequalities Knowles esta-

blished in [3] that (3.15) yields the exponential decay estimate

E(z) _<_ 2E(0)e'2’“, 0 g z<oo, (3.18)

with the value of k given by (3.16). Such a value of k, which provides a lower

bound for the actual decay rate we shall call an "estimated decay rate". FLAVIN

[20] employed the same arguments as Knowles to proceed from (3.15) to (3.18)

and so obtained (3.18) with the improved value given by (3.17) for the estimated

decay rate.

We shall show in Chapter 4 (see Section 4.3) that direct employment of a

comparison theorem for integro-diflerential inequalities (see Section 4.2) applied to

(3.15) yields the result

E(z) g E(0)e‘2’“, z 2 0, (3.19)

for any value of k for which (3.15) holds. Thus we obtain an improvement on

(3.18) by eliminating the multiplicative factor of two in that estimate.

By using a diflerent argument, OLEINIK and YOSIFIAN [21], [22] esta-

blished in 1978 that

E(z) < _LEIQL =M (3.20)

-’ coslz(2kz) 1.1.3-“: '

with the value of k given by (3.17). Earlier, in 1975, MIETH [23] had obtained

(3.20) with the value of k given by (3.16). Observe that (3.19) is a sharper result
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than (3.20).

Recently, KNOWLES [19] has used arguments based on higher-order energies

to obtain exponential decay estimates of a more elaborate nature than (3.18). His

results do yield an exponential decay of the energy E (z) with estimated decay rate

given by

k = 1.35. (3.21)

As is discussed in [4], (see also [19]) all of the preceding results underestimate

the exact decay rate which is given by

k = 2.10. (3.22)

This result may by arrrived at through consideration of eigenfunction expansions

for biharmonic functions in the semi-infinite strip ([4],[19]), the completeness of

which has been established by GREGORY [24].

In the sequel, we shall invoke directly the inequality (3.15) for the integro—

differential functional (3.13), with the best constant k obtained to date, namely

(3.17).



CHAPTER 4

ENERGY DECAY ESTIL/IATES

4.1 DERIVATION OF AN INTEGRO-DIFFERENTIAL INEQUALITY

FOR THE ENERGY FOR THE VON KARMAN EQUATIONS

On the semi-infinite strip R we have the system of partial differential equa-

tions (2.20):

A21) = 2(ué—uuu = —[u,u],
w)

Azu = (un v” —2u,y v,,+uw v3) = [u,v], (4.1)

subject to the boundary conditions (2.22) and (2.24). It is convenient to rewrite

the system (4.1) in divergence form (BERGER [25], p. 692) and so

Ago = ("12)1111 —2(u, uy )W+(uy2)n, (4.2)

Agu = (“1m v),,-2(u,y 12),, -l-(u:I v)W on R. (4.3)

We now introduce an energy for the von Karman system. Observing that the

principal part of the von Karman system of equations is the biharmonic Operator,

we define, for solutions (11, v) of (4.1),

é(u,v) = e(u) + e(v) (4.4)

where

e(u) = u; + 2 11,: + “vii: (4.5)

We note that the quadratic function (4.5) has exactly the same form as the energy

density for the biharmonic problem (see (3.5)).

Using the same notation as that introduced in Chapter 3, we define the

16
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energy functional E(z) by

E(z) = jé(u,v)dA, 052 <00. (4.6)

R1

Adopting the arguments of [19] it can be shown that E(z) is finite for z in [0,00).

The total energy then is

E(O) = fé(u,v)dA. (4.7)

R

Clearly, E(z) can be decomposed into two parts

E(z) = fé(u,v)dA =hfe(u)dA +kfe(v)dA =E,,(z) +E,,(z). (4.8)

I

We now seek to establish an integro-diflerential inequality for E (2). First, we

multiply (4.3) by u and integrate over R, to get

gquudA = Jaw, v]dA. (4.9)

Applying Green’s theorem to the left-hand side of (4.9) and using the boundary

conditions (2.24) we obtain

IquudA = —fuum dy + f(u,un+2uy ufl)dy + Eu(z). _ (4.10)

R L. L.I

Applying Green’s theorem to the right-hand side of (4.9) using the boundary con-

ditions (2.22), (2.24) and equation (4.2) we get

I!“ [11, v]dA = {[-(uwv),+u,uwv-2uy unv]dy

+ [(vvm—v, 1133—212y v”)dy

L.

— E,(z). (4.11)

On equating (4.10) and (4.11), combining terms and integrating by parts, making

use of the boundary conditions (2.22), (2.24) we get
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E(Z) = j_l(uz2+uy2_uuu)+(vz2+vy2_wu )lz dy.

+ [(1521), +2u, "w v +uuy 11,” +11, u, v, +uu,y v” )dy. (4.12)

L
I

We are now ready to construct the functional

E ’(z) + 4k2fE(s)ds. (4.13)

Using the differentiation result (3.9), and the boundary conditions (2.22), (2.24) we

obtain, for any constant k, the identity

on

E ’(z) + 4k2fE(s)ds

1

={—[[u,2, +11]: +2uz§-4k2(ug2+uy2—uuzz)ldy}

+ {—f [123+vy3 +2'Uzg-4k2(v¢2+vy2—sz )]dy}

L

+ 4k2].(uy212, +2u, "1w v-i-uuy v,y +u, uy v” +uuzy vy )dA. (4.14)

R.

The first two integrals in (4.14) have exactly the same form as their counterparts

for solutions of the biharmonic equation (see equation (3.14)). ‘ Thus, if we choose

1: =1.11 (4.15)

it follows from (4.14) and the results of Chapter 3 that

E '(z) + 4k27E(s)ds

S4k2k['(u,2v, +2u, “w v +uuy v,” +u, u” 1),, +uuzy v” )dA

54k2[11+ 12 + I3 + I, + 15]. (4.16)

It is shown in Appendix A that

I, + 12 + 13 + I, + 15 g 71E3/2(z) (4.17)

where the constant a has the value

p = 0.619. (4.18)

Thus, on using (4.17) and (4.16) we obtain the integro-diflerential inequality
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E '(z) — 4k2pE3/2(z) + 41:2fE(s)ds g 0, (4.19)

where k and u are given by (4.15) and (4.18) respectively. The inequality (4.19)

allows us to establish several difl'erent exponential decay estimates for the energy

E(z) defined in (4.8). These results follow from a comparison theorem for

integro-difierential inequalities which we now describe.
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4.2 A CONIPARISON THEOREM FOR

INTEGRO-DIFFERENTIAL INEQUALITIES

We state here a comparison theorem for integro-difierential inequalities of

which we will make repeated use in the sequel. For a complete discussion and

proof see LAKSHMIKANTHAM and LEELA [26], pp. 350-1, and WALTER [27]

p. 122.

THEOREM 1

Let F.‘CfLRj—vC/LR] be an integral operator mapping continuous scalar valued

functions on J, a subset of R, into continuous scalar valued functions on J.

Assume that

(i) f (2, U', UFU) maps continuously C(JxRa) into R and that f is nondecreasing

in U’ for fixed (2, U ,FU) and nonincreasing in FU for fixed (2, U’ ,;U) (4.20)

(ii) For any 111, 112, in C(JR)

111(2) S u2(z) implies that Ful S F112, for all z in J = (0,00); (4.21)

(iii) 1‘ (z,V' ,V,FV) g 0 and (4.22)

f(z,W’,W,FW) 20, for all z in (0,00),whereV, W are 01(J,R). (4.23)

Then

V(0) _<_ W(0) implies that (4.24)

V(z) _<_ W(z), 220. (4.25)

We introduce the notation

oo

f(z,E’ ,E,FE) at" (z) — 4121113229) + 4k2(fE(s)ds — FE)

o

= E’ (z)- 4k2uE3/2(z) + 4k27E(s)ds (4.26)

for the left-hand side of our inequality (4.19), where the Volterra integral operator
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F has been defined in (3.11b). It may be readily verified that f satisfies the

hypotheses (4.20), (4.21), and (4.22) of Theorem 1. Thus it remains for us to

determine a comparison function H(3)2 0, such that

f (2.}!’ 1HJ71) .>_ 0. ' (4.27)

and

11(0) 2 E(0). (4.28)

in order to conclude from (4.25) that

E(z) S H(z), z _>_ 0. (4.29)

In what follows we show that several such choices of H(2) lead to exponentially

decaying estimates for E (z).
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4.3 AN INIPROVED ESTIIVIATE FOR THE

BIHARMONIC PROBLEM

First we consider the application of Theorem 1 to the integro-difierential ine-

quality (3.15) obtained for the biharmonic problem discussed in Chapter 3. We

recall that (3.15) reads:

f(z,E’ ,FE) = E' (z) + 4k2(7E(s)ds — FE) = E' (z) + 4k27E(s)ds S 0. (4.30)

Since E does not appear explicitly on the left-hand sides ’of (4.30), we have used

the notation f (z,E’ ,FE) instead of f (z,E' ,E,FE). It may again be readily

verified that f satisfies the hypotheses (4.20), (4.21) of Theorem 1. Furthermore,

the hypothesis (4.22) is satisfied by virtue of (4.30) if the constant k is chosen as

in (3.17). Now the function H(2) defined by

11(2) = E(0)e"2"‘ (4.31)

is such that

f (z,H’ ,FH) = H' (z) + 41sz119)“ = 0. (4.32)

Furthermore, E(O) = H(0) and so Theorem 1 yields the result

5(2) S E(0)e'2"‘, .220, (4-33)

where k is given by (3.17). This provides a sharper estimate than (3.18) or (3.20).
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4.4 A FIRST RESULT FOR THE

VON KARMAN EQUATIONS

Returning to the nonlinear problem, we seek a comparison function Hl(z)

satisfying (4.27), (4.28), where f is given by (4.26). Our first choice is to consider

a function similar to (4.31), which was employed for the biharmonic problem.

Thus we consider

Hl(z) = E(0)e”“ (4.34)

where K is a positive constant, as yet undetermined. Clearly,

H1(0) = E(O) (4.35)

and so (4.28) is satisfied. We now seek the largest value of R. such that (4.27)

holds. We have

H1' (2:) = —1cE(0)e-“ = —IcHl(z), (4.36)

and

i;H1(s)ds —- FH, = jH,(s)ds = 59%;: = gig-51, (4.37)

and so recalling the definition of f in (4.26) we obtain

“ 1 _ 2 3/2 4k2
f(Z:H11H1,FHI)—-’°H1(Z)—4kflH1 (Z)+TH1(Z)

2

= H,(z)[—1c — 4k2uH11/2(z) + %}. (4.38)

Since 0 S [ill/2(2) g [ill/2(0) for all z in (0,00), and fill/2(0) = E1/2(0) by virtue of

(4.34) it follows that f (2,111' ,H1,FH1) is non-negative for all z in (0,00) if n>0 is

such that

2

—x — 4k2uE1/2(O) + % 2 0. (4.39)

The largest value of 1c is obtained by taking the equality sign in (4.39) and so we

find
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1c = 2k(VM2+l—M) (4.40)

where

M = ka173'(0_) (4°41)

and k, p are given by (4.15) and (4.18) respectively. Thus (4.27), (4.28) are

satisfied and so from (4.29) and (4.34) we obtain the exponential decay estimate

E(z) S E(0)e"", 220. (4.42)

A decay estimate similar in form to (4.40), (4.41), (4.42) was obtained by HOR-

GAN [28] in his investigation of plane entry flows for the Navier-Stokes equations.

We observe that the decay rate It given by (4.40) is a monotonically decreas-

ing function of M for 0<M<0o and so 1c<2k. Thus the estimated decay rate for

the von Karman equations is slower than that predicted by (4.33) for the bihar-

monic problem. Moreover, as the total energy E(O) increases, M increases and so 11:

decreases. The dependence of It on E(O) is shown graphically in Figure 4.1. In the

sequel, we shall refer to the estimate (4.42) as result I.

We should also note that in deducing the condition (4.39) from (4.38), we

used the inequality H11/2(z) _<_E1/2(0) for OSz<oo. Recalling the definition of

H1(z) in (4.34), we see that this bound deteriorates as 3 increases. In the next sec-

tion, we present an argument which does not haye this shortcoming and which

leads to a sharper decay estimate than (4.42) for sufliciently large values of z.



42/,1

2
;

9
?
.

P
T

0
.
?

0
.
?

o
u
t

o
r
.

o
n
.
.
.

o
n
:

o
;

..

o
b
 

 

”F

_
d

—
_

q
q

_

N
u

s
m

m
d

m
m

3

4
.
0
.
5
3
:
m
2
m
m
®
<

M
A
O
V

n
o
i

s
h
:

<
m
.
3
E
.
m
z
m
e



26

4.5 AN IMPROVEMENT ON THE RESULT (4.42)

FOR E(O) > 0.209

In Section 4.4 we have established the decay estimate (4.40)-(4.42). On using

the result (4.42) in our basic integro-difierential inequality (4.19), we obtain the

weaker integro—diflerential inequality

—3x1 00

E’ (z) —4k2pE3/2(0)e 2 +41:2[15(3)

3

-3x1

= E’ (z) — 4k2uE3/2(0)e 2 + 4k2(_[E(9)ds — FE) g 0. (4.43)

o

Denoting the middle term of (4.43) by §(z,E' ,FE) it may be readily verified that

6 satisfies the hypotheses (4.20), (4.21) and (4.22) of Theorem 1. Thus, it remains

for us to determine a comparison function H2(2) such that

9(21H2'1FH2) Z 0 and H2(0) Z E(0). (4-44)

in order to conclude that

E(z) _<_ H2(z), z_>_0. (4.45)

Consider the function

:12

112(2) = 0,33/2(0)pe 2 — or?” (4.46)

where C, and D are constants to be determined. We have

-3x2

112' (z) = —§2-’EC,E3/2(0)peT + acne-2'“, (4.47)

and
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{H22(s )ds —FH2= IH2(s)ds

  

-3xz

__ atEtmuvue 2 .oe-uv_ _. (4.48)

3_s 2*

2

Thus,

1—3“ 31:C +8k20

To ensure that g(z,H2’ ,FHQZO, the constant 01 is chosen to satisfy

01(— - —)_> 4k2 (4.50)

where 1:, k are given by (4.40), (4.15) respectively. The smallest constant 01 is

obtained by taking the equality sign in (4.50), and so we get

24k2n

161112—9102,

provided that l6k2—9K2 > 0. On using (4.40), (4.41) we see that this condition is

, = (4.51)

satisfied if

4
E0 >—, 4.52(o) 45112 ( )

that is, if

E(O) > 0.209. (4.53)

It remains to satisfy the second inequality in (4.44). Thus we set

0,E3/2(0)u — D = E(0), (4.54)

thereby satisfying the second of (4.44) with equality, and so

D = o,E3/2(0)p — E(0). (4.55)

By virtue of (4.51) and (4.55), the result (4.45) reads:
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—31cz

E(z) g E(0)e’2‘” + 0,)1E(3/2)(0)[e 2 44'“), z_>_0, (4.56)

provided that E(O) > 0.209, where

24k2n=
4.57

’ 16k2—9n2’ . ( )

n = 21WM2+1—M), (4-58)

M = kin/E(0), (4.59)

where k=1.11 and u=0.619.

Note that the estimate is made up of two terms: the first is the estimate for

the linear problem, i.e. the biharmonic problem, while the second is an exponen-

tially decreasing correction which depends on the magnitude of E(0). In the

sequel, we shall refer to (4.56) as result II.

The result is not valid for E(0)<0.209 but for such E(O) the estimated decay

rate 1: as given by (4.40) is quite close to the estimated decay rate 2k for the

biharmonic problem. In fact for E(0)=0.209 we get It: 0.734(2k). Moreover, I: is

even closer to 2k for smaller energies (see Figure 4.1).

The result II provides a sharper estimate than I for values of z greater than

2, where 2 depends on the total energy E(O) as indicated in Table 4.1 (see also

Fig. 4.2).



Table 4.1: Values of E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

153(0) 2

0.25 0.54

0.50 0.63

1.00 0.77

1.50 0.89

2.00 0.98

2.50 1.06

3.00 1.14

3.50 1.21

4.00 1.27

4.50 1.33

5.00 1.39

6.00 1.49

7.00 1.59

8.00 1.68

9.00 1.76

10.0 1.84   
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4.6 AN IMPROVEMENT ON RESULT (4.42)

FOR E(O) < 0.529

The approach we used in- the previous section was to simplify our basic

integro—diflerential inequality

00

f(z,E’ ,E,FE) = E' (z) - 41.211E3/9(z) + 41:2jE(s)ds g 0, (4.60)

z

by using the estimate (4.42) for the nonlinear term E3/2(z). Here we consider a

difl'erent method which also involves simplification of (4.60).

Recall from the end of Section 4.2 that the estimate

150) 3 He) (4.61)

holds for comparison functions H(2) such that

f(z.H' ,H,FH) 2 o, o _<_z < oo, (4.62)

and

11(0) 2 E(0). f (4.63)

We seek a comparison function H3(z)>0 which satisfies

H3’ (2) — 4k2pH3/2(2) = —2kH3(z), z 2 O, (4.64)

so that f(z,H3' ,H3.FH3) reduces to

f(z,H3’ ,H3,FH3) = —2kH3(z) + 411-2jH3(s)ds

oo

= —2kH3(z) + 4k2({H3(s)ds — FH3) a f(z,H3,FH3). (4.65)

The first order ordinary differential equation (4.64) has the solution

173(2) = (0.21:5 + 2kp)-2, (4.66)

where 02>0 is a constant yet to be determined. It remains to establish that the

choice H(z) = H3(z) satisfies (4.62) and (4.63).



TO show that (4.62) is satisfied, it suffices, by virtue Of (4.65), to show that

f (2,113,171,) 2 0, 0 g z <00. (4.67)

A direct verification of (4.67) is diflicult due to the complexity in integration Of

the function H3(z) defined in (4.66). We will establish (4.67) by using a contradic-

tion argument. Thus, suppose that

f(z,H3,FH3) < 0, 0 g z <00. (4,68)

Consider the function H4(z) defined by

mm = [(02+2kp)e"‘]"2. (4.69)

It may by readily verified that

f (z,H,,FH,) = 0, z 2 0, (4.70)

and that

H3(0+) < H,(0+). (4.71)

We now employ a stricter version of Theorem 1 (WALTER [27] p. 122)

wherein (4.22) is strict and (4.24) is replaced by V(0+)< W(0+). Now the operator

f defined in (4.65) satisfies the hypotheses (4.20), (4.21) of Theorem 1. Further-

more, in view of (4.68), (4.70) and (4.71) the remaining hypotheses of the stricter

version of Theorem 1 are satisfied for the choices V = H3, W = H4. Thus, we con-

clude that

173(2) < 114(2), 2 Z 0, (4.72)

which is a contradiction by virtue Of the definitions Of H3, H4 in (4.66), (4.69)

respectively. Thus, (4.68) cannot hold and we deduce that (4.67) holds.

It remains for us to choose the constant 02 > 0 such that (4.63) is satisfied

with H 5 H3. The largest such constant is Obtained by taking the equality sign

in (4.63) and so

0, = E(0)-1/'-’ — 21c 11. . (4.73)

TO ensure that 02 is positive, we require that
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q

C

E(O) < i, as 0.529. (4.74)

4km

Thus for sufiiciently small total energies E(O) satisfying (4.74), we conclude from

(4.61), (4.66), and (4.73) the decay estimate

 E12): 1 1 . ‘ (4.75)

l E(O) c 11(e )l

where k, p are given by (4.15) and (4.18) respectively. In what follows we refer to

(4.75) as result III.

The result 111 is an improvement over the estimate I of Section 4.4 for z 220

(see Fig. 4.3). The value of 20 depends on the total energy E(O) as indicated in

Table 4.2 below.

Table 4.2: Values of 20

 

 

 

 

 

 

E(O) z,

0.10 2.41

0.20 3.13

0.30 3.99

0.40 5.28

0.50 8.58   
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4.7 AN ESTIMATE WITH Z-DEPENDENT

DECAY RATE

We now describe an argument which is more elaborate than the preceding

and which leads to a decay estimate with a z-dependent decay rate. We seek

comparison functions H(z) of the form

175(2) -.- mop-411%, (4.76)

where x(z)20 is a function to be determined. The function x(z) must be such that

175(2) satisfies (4.27), (4.28). The particular form of the right-hand side Of (4.76)

has been chosen so that H5(2) may be readily integrated. This integration is

necessary in the evaluation of f (2,1-15' ,H5,FH5). Furthermore, the results Obtained

already suggest that we seek a decay estimate with decay rate 1: (given by (4.40))

for small values Of z and decay rate 2k (k is the decay rate for the biharmonic

problem) for large values Of 2. Thus, the function x(z) appearing in (4.76) will

be required to satisfy

X(0) = 0. X’ (0) = K. (4.77)

x(z)-+<>0. x’ (z)-+2k as z-roo, (4.78)

and

X' ' (2) Z 0. z _>_ 0. (4.79)

Observe that the first Of (4.77) ensures that H5(0) = E(O) and so (4.28) holds.

By direct calculation from (4.76) we obtain

1‘ (2,11; ,H5,FH5) =

-2)

 

E 0 54—2)[X"(2) — X'2(z) " 4kg” E(:)e 2 X' 3”(3) + 4’52]. (4'80)

We now seek to find a x(z) satisfying conditions (4.77)2-(4.79) and which renders

the right-hand side Of (4.80) nonnegative.
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Consider the choice

XIV) = It + (ilk—”)2 (4.81)

Z+C3 ’

where C3>0 is a constant tO be determined. It is readily verified that (4.77)2,

(4.78); and (4.79) are satisfied by x’ (z) for arbitrary Values Of 03. Upon integra-

tion and use of (4.77)l we obtain

 x(2) = £x’(s)ds = 2k[z — 03(1 — A)ln( 2 +303”, (4.82)

where

x=fiu<1 um)
21:

Clearly x satisfies (4.78), for arbitrary values of 03. It remains to satisfy (4.27),

that is fZO, in order to conclude that

 

E(z) S H5(z), z 2 0. (4.84)

Thus by virtue Of (4.80), we choose the constant 03 in (4.81) such that

.2 (/—- ——)-""l’

gun—mflpy-“JQPWR 2X”Wd+4H2fi, 220 (4%)
K .

The largest such value Of 03, depending on the value of E(0), is determined

numerically and the results are shown in Table 4.3.

Thus we have established the estimate

 

I x-IZ + C

.E <E0-W_———i. >0 .6(0. He 2+C3, z_, M8)

where

Z + 03 K _y

4"."I = Z — 03(1— A)ln( C3 ), A = E—k- < I. (4.81)

This result will be called result IV.

The result IV is sharper than estimate I for sufliciently large z(see Fig. 4.4).

The values of 2 beyond which (4.86) provides the sharper estimate, 2 2 .7. are

shown in Table 4.3.
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Table 4.3: Values of C3 and E

 

E(O) C3 3'

 

0.05 1 .00 0.85

 

0.10 1.13 0.90

 

0.15 1.25 0.94

 

0.20 1.35 0.97

 

0.25 1.45 1 .00

 

0.30 1 .55 1.03

 

0.35 1 .64 1 .06

 

0.40 1.73 1 .08

 

0.45 1.82 1.11

 

0.50 1.91 1.13

 

1.00 2.75 1.33

 

1 .50 3.59 1.50

 

2.00 4.43 1.65

 

2.50 5.26 1.78

 

3.00 6.10 1.90

 

3.50 6.95 2.02

 

4.00 7.81 2.13

 

5.00 9.54 2.33

 

6.00 11.27 2.51

 

7.00 13.03 2.69

 

8.00 14.81 2.85

 

10.00 18.38 3.15     
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CHAPTER 5

DISCUSSION OF RESULTS

5.1 A SUNIMARY OF THE RESULTS OF CHAPTER 4

FOR THE VON KARMAN EQUATIONS

In Chapter 4 we have established four upper bound results on the energy E(z)

associated with the the von Karman system for our problem. Of these, result I Of

Section 4.4 and result IV of Section 4.7 hold for all total energies E(0), whereas

result 11 of Section 4.5 holds for sufficiently large total energies (E(O) > 0.209) and

result 111 of Section 4.6 holds for sufliciently small total energies (E(O) < 0.529).

We now present a summary of these results:

Result 1: For any total energy E(O):

E(z) S E(0)e"", z 2 0, (5.1)

where

11: = 210/1142 + l-M), (5-2)

M = kuVE(0), (5.3)

and

k = 1.11, p = 0.619. (5.4)

Result 11: For sufliciently large energies, E(0) > 0.209:

-3xz

E(z) g E(0).-2" + o,pE3/2(o)(. 2 — e'2h ), z _>_ 0, (5.5)

where

24131:
a—— > 0, 5.6

1 161:2 - 91:2 ( )

39
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and 1:, k are still given by (5.2)-(5.4).

Result III: For sufiiciently small total energies, E(O) < 0.529:

 15(2) s 1 1 . z 2 0.
bl _ 2k 88-1 2

[We #(6 )l

where k, p are given by (5.4).

Result N: For any total energy E(O):

1 >142 "l" C

< '2’“ —_——3 >E(z)_E(0)e 2+03 , z_0,

where

0

Z, = Z — 03(1 — X)In(z_+—3),

03

X = .5... 1’

2]: <

(5.7)

(5.8)

(5.0)

(5.10)

where 1:, k are given by (5.2)-(5.4) and 03 is a constant that depends on E(O) (see

Table 4.3).
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5.2 A CONIPARISON OF ALL RESULTS

In Chapter 4 after establishing result I of Section 4.4 we proceeded to estab-

lish a series of improvements on this first result. Once presented, all new results

were compared to result I. We now compare all results to one another and con-

struct the best upper bound for E(z) for difierent total energies E(0). Due to the

fact that results H and III are not valid for all energies we break up the discussion

into three parts:

A. For E(O) < 0.209 where results I, III and IV are valid.

B. For 0.209 < E(O) < 0.529 where all results are valid.

C. For E(O) > 0.529 where the results I, II, and IV are valid.

A. E(O) < 0.209:

As can be seen from Figures 5.1-5.4 the best upper bound for E(z) is provided by

the function:

E(0)e"“, for 0 S 2 < F

)5“: + 03 (5'11)

, forF<z<oo

2+C3

UIIZ) =

E(0)e"2""

where z' is as defined in (5.9) and ‘2' depends on the total energy E(O) (see Table

4.3).

Note that the estimate III does not enter into the composition of U1(z), and

that for this range of total energies result I is the sharpest available for small 2,

whereas IV is the sharpest for larger 2.

B. 0.209 < E(O) < 0.529:

As can be seen from Figures 5.5-5.8 the best upper bound for E(z) is provided by
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the function:

E(0)e"“, {010 < z < E

U2(Z) = -3x: (5'12)

E(0)e'2’" + CluE3/2(0)(eT - e'zb), for z > 2

where 2 depends on the total energy E(O) (see Table 4.1).

Note that results III and N do not enter into the composition of U2(z), and

that for this range of energies result I is the sharpest available for small 2,

whereas II is the sharpest for larger z.

C. E(O) > 0.529:

As can be seen from Figures 5.9-5.12 the best upper bound for E(z) is provided by

the function U2(z) defined in (5.12). Qualitatively, for this range of E(O) we have

exactly what held for the range of energies in B with the only exception being that

the estimate III is not valid here.

Another way to compare the bounds Obtained is to determine the distance 295

from the left end of the plate 2 = 0, at which 95% of the total energy E(O) has

dissipated (see Table 5.1) and the distance 299 from the end, at which 99% of the

total energy E(0) has dissipated (see Table 5.2). These distances are called

"characteristic decay lengths". Note that a characteristic decay length of 2.00

corresponds to one width of the plate.
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Table 5.1: :95 values

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

E(0) I 11 III Iv

0.05 1.58 - 1.62 1.53

0.10 1.68 - 1.78 1.61

0.15 1.76 - 1.92 1.67

0.20 1.83 - 2.08 1. 73

0.25 1.90 1.70 2.25 1.78

0.30 1.95 1.74 2.45 1.82

0.40 2.06 1.82 2.99 1.91

0.50 2.16 1.88 4.35 1.98

1.00 2.57 2.16 - 2.30

2.00 3.20 2.60 - 2.79

3.00 3.71 2.96 - 3.20

4.00 4.15 3.28 - 3.55

5.00 4.55 3.57 - 3.87

6.00 4.92 3.84 - 4.16

7.00 5.26 4.09 - 4.44

10.00 6.16 4.76 - 5.17    
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Table 5.2: 29,, values

 

 

 

 

 

 

 

 

 

 

 

  

E(0) I II 111

0.05 2.42 - 2.38 2.32

0.10 2.58 - 2.55 2.40

0.15 2.70 - 2.71 2.48

0.20 2.81 - 2.88 2. 55

0.25 2.91 2.52 3.06 2.61

0.30 3.00 2.57 3.27 2.67

0.40 3.17 2.67 3.83 2.77

0.50 3.32 2.76 4.35 2.87

1.00 3.95 3.17 - 3.28

5.00 6.99 5. 20 - 5.33

10.00 9.47 6. 96 - 7.04    
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5.3 REMARKS ON THE CONSTANTS k, 11 AND

THE TOTAL ENERGY E(0)

As already discussed in Chapter 3, we have used. the largest available value of

k for which (3.15) holds, k = 1.11, which underestimates the exact decay rate, R

= 2.10. If one could establish (3.15) with a value of k larger than 1.11, the

results Of Chapter 4 would still hold and would become sharper. One would only

need to re-evaluate the values of 2, E, 20 and the constant 03.

The constant 11 in (4.17) is probably greatly overestimated because of the

repeated use of some weak inequalities in its derivation (see Appendix A). Any

improvement in the value of u would result in an immediate imprOvement of all

results in Chapter 4.

All results presented in Chapter 4 involve the total energy E(0) which

depends on the geometry and the boundary data at the z = 0 end. In [3] Knowles

established an upper bound for the total energy E(0) of the biharmonic problem in

terms of the applied traction for a certain class of finite domains with the help of

variational arguments (see also [4]). The results of Chapter 3 remain valid when

E(0) is replaced by an upper bound. It is reasonable to anticipate that by using

variational arguments an upper bound for the total energy E(0) of our problem

can be established in terms _of the traction applied at the end and the displace-

ment there. We shall not pursue this issue here.
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5.4 QUESTIONS FOR FURTHER INVESTIGATION

We can now raise a number of interesting questions for further investigation.

Firstly, in the context of the semi-infinite strip, one could ask how our decay esti-

mates depend On the particular boundary conditions used. Secondly, one could

introduce a distributed lateral load on the plate and investigate its efi‘ect.

Thirdly, interesting bifurcation and associated stability questions arise when non

self-equilibrated compressive loads are introduced. Such stability questions have

already been investigated by many authors for specific sets of boundary condi-

tions. It would be very interesting to attempt to extend these already existing

results by admitting wider classes of boundary conditions through the application

of a Saint-Venant principle type of argument. Finally, our problem as well as any

of the above mentioned Open questions can be posed for a "long" thin plate of

finite Size.



APPENDIX A

VERIFICATION OF (4.17)

TO verify (4.17) we follow an approach used by HORGAN [28]. In this

development we make use of the following Wirtinger—type inequalities for

sufficiently smooth functions w(y) defined on the interval (-1,1) of length 2:

(i)If w(y) is Cl(-1,1) and w(—l) = 10(1) = 0, then1

1 ”2 1

f 91,243, 2 ?[162.131. (A.1)

-1 -1

(ii) If w(y) is C’(-1,1) and w(—l) = w’ (-1) = 19(1) = w'(1) = 0, then

4112
1110,: dy > -2-— wzdy, . (A.2)

1

and

fury“; dy > —_{w2dy, (A.3)
\

where #0 is the smallest positive root of the transcendental equation cospcoshu = 1

and so 110 = 4.73 which is slightly larger than 31r/2. For convenience, we use the

latter value in (A.3) and thus we Obtain

 

l 4 , 1

I wédy > 32: Iwzdy. (AA)

-1 -1

For a more detailed discussion of the inequalities (A.l) - (A.3), see [28] and the

 

I The multiplicative constant is written in a manner displaying the interval

length explicitly.
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references cited therein.

We also make use of the following one-dimensional Sobolev inequality:

1 1 1

.1,my 5. 911““"11””) (A5)

for sufficiently smooth functions w(y) such that w(-‘—l) = w(l) = 0. Inequalities of

the form (A.5) in two and three dimensions have been widely used in investiga-

tions of uniqueness and stability for the Navier-Stokes equations. A direct proof

of (A.5) is given by HORGAN [28], where it is shown that (A.5) holds with o=4.

A modification of the argument given in [28] may be. used to show that (A.5)

holds with a=l. This value of a is taken in (A25). below.

Finally here, we state the following simple algebraic inequality

(0 + (2)3/2 2 Vain/F for a, b > o, (A.6)

which we also use in the sequel.

We now employ some of the above inequalities to establish a series of inter-

mediate results:

A. We first establish an upper bound for

_[m‘(z,y)dA (AJ)

3.

where m(z,y) is a function that vanishes along the semi-infinite clamped sides of

the plate and that tends uniformly to zero as z—voo. In view of (2.22) and (2.24)

v u can be sub-the functions 11, v as well as their first partial derivatives 11,, 11,, ,, ,

stituted for In. On applying the Sobolev inequality (A.5) we get

co

IM‘(=.y)dA S %I[Im2(s.yldylllm.2(s.y)dylds- (A3)
R, x L, L,

Green’s theorem, the regularity conditions and the Cauchy-Schwarz inequality

allow us to write, for such .922,
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Imiswy = —2Im(s.y)m.(s.y)dA

Imm 1"”(Im3dA)

.<_ 2(Iman)(Imm‘2.’ (A91

On combining (A.8) and (A.9) we get

ImwA _<_ 0Umid/4 )"iImm )"”(I mid/1). (A10)
R, R, R, R.

B. Suppose now that the function m in (A.10) is chosen to be u (or equivalently

v). Then we have

‘dA < ”M ”2 2dA ”2 24A A11I" _dI" ) (In: ) (In, )- (- )

We now apply inequality (A.3) with w = u , in an obvious way in (A.11) to get

W 2

Iu‘dA <3°37<IuidA) (—I2u34A)”(—,;IuILdA)

9 2
0’2 / 2

< —— E, . A.I2- 9.5 [ (2)1 ( )

Note that (A.12) is also valid when we write v in place of u.

C. Now suppose that the function In in (AJO) is chosen to be 11’ (or equivalently

v”). Wehave

Iu‘dA <0(Iu2M)1/2(Iu2dA)I/2(Iu2dA) (A13)
R v — R v R 3v R w ' '

We now apply inequality (A.2) with w=u to the first integral on the right-hand

side of (A.l3) to get

 Iu‘dA <—(Iu,334.4)”(In$414)”? _<_21/2 E2(z). (A.14)

Again, we note that (A.l4)Is also valid when we write v in place of u.

D. Now, suppose that the function In in (A.10) is chosen to be u, (or equivalently

v, ). We have

Iu:dA g 0(fufdA )1/2(Iu,§dA)‘/2(Iu,§dA). (A.15)
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Now apply inequality (A.1) with w=u, to the first integral on the right-hand side

of (A.15) to get

2 3/2 1/2

[um g—I—(jugu) (Inga)

R, R: R!

0 2
S mE. (Z). , , .- (A.16)

Again, we note that (A.16) is also valid when we write v in place of u.

E. In view of inequality (A.2) we have

.,.“!sz S -l—-Iu;‘;dA

8. "2 8.

Ed?)
fl ’

which is also valid when we write v in place of u.

 

5 (AN)

F. In view of inequality (A.1) we have

11131111 5 ifuéd/i

a, #2 a,

2Eu(z)

<
-— "2 i

which is also valid when we write v in place of u.

 (A.18)

We now proceed to obtain upper bounds for the five integrals I1 — 15 defined

in (4.16) and thereby establish (4.17). The Cauchy-Schwarz inequality, (A.14),

(A.18) for v, and (A.6) yield:

I1 = I u,2v3dA

R.

S (Iuy‘dA )1/2(1.!”22M )1/2

01/221/4 32

_WE / (Zl- (A.19)

The Cauchy-Schwarz inequality, (A.16), (A.12) for v and (A.6) yield:
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I2 = 2111,11W vdA

3.

s 2(I "32y“ )””(Ium )"‘(I v‘dA )"‘
R, R, R,

g 2(%%317/:-)E3/2(z). (A20)

Similarly, the Cauchy-Schwarz inequality, (A.12), (A.14) for v and (A.6)

yield:

13: qu’vxydA

3.

1/2 1/4 1/4

s<Iv.idA) (IuidA) (IuIdA)

01/221/2

- an”?

The Cauchy Schwarz inequality, (A.17), (A.16), (A.14) for v and (A.6) yield:

E3/2(z). (A21)

I4 = 111,11,va

’ 1/2 1/4 1/4

SqudA) (fuz‘dA) (HIM)
R, R, R,

01/2

3 2
g 21/431/219/2E / (2). (A22) 

The Cauchy-Schwarz inequality, (A.12), (A.14) for v and (A.16) yield:

15 = fun,” v, M

R’

o 1/2 1/4 1/4

SUuzidA) (find/1) livid/4)
R, R R

———E3/2(z). (A23)

Combining the estimates (A.19)-(A.23) we obtain

 

I, + 12 + [3 + 1, + 15 s pE3/2(z) (A.24)

where

- 21/4 4 21/2 1 21/2 01/2 ~

" ‘ (3172' + 3' + T .+W+ T) ,3): "’ ”‘9' (”5)
and the numerical value for u in (A25) has been obtained on taking 0:1. This



establishes (4.17) as desired.

64



REFERENCES

[1] GURTIN, M. E., The linear theory of elasticity, Handbuch der Physik, C.

TRUESDELL ed., Vol. VIa/2, pp. 1-295. Springer-Verlag, Berlin, 1972.

[2] TOUPIN, R. A., Saint-Venant’s principle. Arch. Rational Mech. Anal. 18,

83-96 (1965).

[3] KNOWLES, J. K., On Saint-Venant’s principle in the two-dimensional theory

of elasticity. Arch. Rational Mech. Anal. 21, 1-22 (1966).

[4] HORGAN, C. O., & KNOWLES, J. K., Recent developments concerning

Saint-Venant’s principle, Advances in Applied Mechanics, J. W. HUTCHINSON

ed., Vol 23, pp. 179-269. Academic Press, New York, 1983.

[5] ROSEMAN, J. J., The principle of Saint-Venant in linear and nonlinear plane

elasticity. Arch. Rational Mech. Anal. 26, 142-162 (1967).

[6] BREUER, S., & ROSEMAN, J. J., On Saint-Venant’s principle in three

dimensional nonlinear elasticity. Arch. Rational Mech. Anal. 63, 191-203 (1977).

[7] HORGAN, C. O., & KNOWLES, J. K., The effect of nonlinearity on a princi-

ple of Saint-Venant type. Journal of Elasticity 11, 271-291 (1981).

[8] BREUER, S., & ROSEMAN, J. J., Saint-Venant’s principle in nonlinear plane

elasticity with sufliciently small strains. Arch. Rational Mech. Anal. 80, 19-37

65

 



66

(1982).

[9] KNOPS, R. J. & PAYNE, L. E., A Saint-Venant principle for nonlinear elasti-

city. Arch. Rational Mech. Anal. _81, 1-12 (1983).

[10] ABEYARATNE, R., HORGAN, C. 0., & CHUNG, D.-T., Saint-Venant end

efi'ects for incremental plane deformations of incompressible nonlinearly elastic

materials. J. Appl. Mech. 52, 847-852 (1985).

[11] HORGAN, C. 0., & PAYNE, L. E., Decay estimates for second order quasil-

inear partial difierential equations. Advances in Appl. Math. 5, 309-332 (1984).

[12] HORGAN, C. O., & PAYNE, L. E., Decay estimates for a class of second-

order quasilinear equations in three dimensions. Arch. Rational Mech. Anal. 86,

279-289 (1984).

[13] BREUER, S., & ROSEMAN, J. J., Phragmen-Lindelgf decay theorems for

classes of nonlinear Dirichlet problems in a circular cylinder. J. Math. Anal. Appl.

113, 59-77 (1986).

[14'] BREUER, S., & ROSEMAN, J. J., Decay theorems for nonlinear Dirichlet

problems in semi-infinite cylinders. Arch. Rational Mech. Anal. 94, 363-371

(1986).

[15] KARMAN, T. von, Festigkeitsprobleme im maschinbau, Encyl. der Math.

Wissenschaften, Vol. IV-4, pp. 348-352, Leipzig, 1907-1914.

[16] KALANTAROV, V., Determination of the solutions of the first boundary

value problem for a system of Karman equations having an unbounded energy

integral. J. Soviet Math. 21, 711-714 (1983).

 



67

[17] STOKER, J. J., Nonlinear Elasticity, Gordon and Breach, New York, 1968.

[18] KNIGHTLY, G. H., An existence theorem for the von KArman equations.

Arch. Rational Mech. Anal. 27, 233-242 (1967).

[19] KNOWLES, J. K., An energy estimate for the biharmonic equation and its

application to Saint-Venant’s principle in plane elastostatics. Indian J. Pure

Appl. Math. 14, 791-805 (1983).

[20] FLAVIN, J. N., On Knowles’ version of Saint-Venant’s principle in two-

dimensional elastostatics. Arch. Rational Mech. Anal. 53, 366-375 (1974).

[21] OLEINIK, O. A., & YOSIFIAN, G. A., On Saint-Venant’s principle in plane

elasticity theory. Soviet Math. Dokl. 19, 364-368 (1978).

[22] OLEINIK, O. A., & YOSIFIAN, G. A., The Saint- Venant principle in the

two-dimensional theory of elasticity and boundary problems for a biharmonic

equation in unbounded domains. Siberian Math. J. 19, 813-822 (1978).

[23] MIETH, H. J., Uber abklingende L35ungen elliptischer Randwertprobleme

(Prinzip von Saint-Venant). Dissertation, Technische Hochschule Darmstadt

(1975).

[24] GREGORY, R. D., The traction boundary-value problem for the elastostatic

semi-infinite strip; existence of solution and completeness of the Papkovich-Fadle

eigenfunctions. J. Elasticity 10, 295-327 (1980).

[25] BERGER, M. 8., On von Karman’s equations and the buckling of a thin elas-

tic plate I. Comm. Pure Appl. Math. 20, 687-719 (1967).

[26] LAKSHMIKANTHAM, V., & LEELA, 5., Differential and Integral Inequali-

 



68

ties, Vol. 1, Academic Press, New York, 1969.

[27] WALTER, W., Difl‘erential and Integral Inequalities, Springer-Verlag, New

York, 1970.

[28] HORGAN, C. O., Plane entry flows and energy estimates for the Navier-

Stokes equations. Arch. Rational Mech. Anal. 68, 359-381 (1978).

 



HICHIan STATE UNIV. LIBRnRIEs

[lllllllllllllll[l[llllllllllllllllllllllllllllll
31293009639851

 


