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ABSTRACT

GENERALIZATION OF GRAD'S THIRTEEN-MOMENT
METHOD TO MAGNETOGASDYNAMICS

By

Lawrence Tsi-kong Wong

The present work is primarily concerned with the general-
ization of thirteen-moment method developed by Grad valid in
neutral gases to one-component charged gases.

A distribution function is defined as the mass density
of particles in a one-component, homogeneous, uniformly charged
gas. Several moments of distribution function are defined as
symmetrical tensors. The Boltzmann equation is multiplied by a
summational invariant and integrated over the velocity space.

By setting the summational invariant to equal to unity, velocity
and velocity square, the Boltzmann equation yields the continuity,
momentum and energy equations respectively. Using Hermite poly-
nomial approximation, the equations of time, physical and velocity
space variation of the second and third order tensors are obtained
from the Boltzmann equation. These equations, along with the con-
servation equations constitute the system of thirteen-moment equa-
tions. By considering a one-dimensional heat flow in a gas at
rest and a plane Couette flow, the thermal conductivity and the
coefficient of viscosity are deduced from the system of thirteen-

moment equations.
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NOMENCLATURE

afn) Hermite coefficients
Bi Magnetic induction
El Geometric collision parameter
c Intrinsic velocity = E -u
d Intrinsic velocity = €1 -u
e Electric charge
Ei Electric field
f Distribution function (mass density)
f«)) Maxwellian distribution
F Distribution function (number density)
G Mass ratio = 2 Tg
H Magnetic flux density
an) Hermite polynomials
J Electric current density
g® Collision integral
k Boltzmann's constant
L Characteristic dimension
38,
Li Particle acceleration = SE-
m Mass of charged particle
mg Mass of electron
m Mass of neutral particle
NN Number density of neutral particles
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INTRODUCTION

In neutral gases, the methods of approximate solution of
the Boltzmann equation had been developed by many authors, namely,
Maxwell [35], Enskog [12], Hilbert [19], Chapman [9], Wang Chang
and Uhlenbeck [8]. Grad [13] developed the thirteen-moment method
with the aim of obtaining phenomenological equations. He derived
the equations for the successive moments of the distribution
function expressed as a series of Hermitean tensors.

In the present work, we extend the use of the thirteen-
moment method to an one-component charged gas (i.e., all particles
are either electrons or identical ions). Two transport coefficients
are obtained from the thirteen-moment equations.

Chapter I gives a brief review of approximate solution of
Boltzmann's equation in both neutral and ionized gases. 1In Chapter
II, various distribution functions which include continuous dis-
tributions, discrete distributions and some distribution functions
in plasma dynamics have been collected. Chapter III contains the
derivation of the system of twenty-moment equations. With the use
of the distribution function expressed in terms of Hermitean tensors,
we reduce the system of twenty-moment equations to the system of
thirteen-moment equations. In Chapter IV, the thermal conductivity
and coefficient of viscosity of the gas are obtained by considering
a one-dimensional heat flow and a plane Couette flow respectively.

In addition, the transport coefficients are calculated and plotted

for an electron gas.



CHAPTER I

BRIEF REVIEW OF BOLTZMANN'S EQUATION

In most gases, where the departures from the local thermo-
dynamic equilibrium are not too large and the flow speed does not
exceed Mach number three approximately, the Navier-Stokes equations
prove to be valid, according to our present knowledge in gas-
dynamics. The Navier-Stokes equations are derivable from the
Boltzmann equation, although they are generally derived by con-
sidering the elastic deformation in continuum mechanics. 1In
many cases, the Navier-Stokes equations are no longer valid and
one must return to the Boltzmann equation to obtain a general

solution for the distribution function.

1.1 Solutions to Boltzmann's Equation in Neutral Gases:

Before Boltzmann established his integro-differential
equation satisfied by the particle velocity distribution function,
Maxwell [35] established transport equations with the assumption
of Maxwellian molecules. He obtained approximate solutions to
his equations by means of a method of successive iterations. It
was Boltzmann's [2] merit to establish an integro-differential
equation which describes the variation with time of the distribution
function £, the state of gas, the molecular interactions and the
external force. However, Boltzmann did not find a general solution

to his equation. Lorentz [33] associated a nonhomogeneous gas



with the theory of electrons in a metal and sought a solution of
the form f = fo + vx¢(v) to Boltzmann's equation. This method
also failed to reach the general solution of the integro-differ-
ential equation. Hilbert [19] proposed a solution of Boltzmann's
equation by solving a linear integral equation of second kind.

His approximate method was obtained purely from mathematical view-
point. Chapman [9] calculated the coefficient of viscosity and
thermal conductivity by means of second apéroximation to f.

Enskog [12] modified Hilbert's method and obtained general formulas
for the viscosity and thermal conductivity in gases. The Enskog-
Chapman method is valid only if the mean free paths \ are small
with respect to the characteristic dimension L. Distribution
function f was expanded in the form of a power series of L.
Burnett [5] expressed the distribution function in the form of
expansions with respect to the product of Sonine polynomials and
spherical tensors. He successfully calcluated the complete second-
order approximation.

Grad [13] obtained the celebrated thirteen-moment equations
for the successive moments of the distribution function which was
expressed as a series in Hermitian tensors. It is a very effective
method and probably more general than Enskog-Chapman method. Wang
Chang and Uhlenbeck [8] treated the case of rarefied gases
(% =~ 1) by means of a linearization of Boltzmann's equation.

Jaffé [26], Ikenberry and Truesdell [25] developed the theory for
highly rarefied gases (% >> 1) by the method of linearizing the

Boltzmann's equation.



1.2 Solutions to Boltzmann's Equation in Ionized Gases:

Spitzer and H¥rm [43] solved the Boltzmann equation by
direct numerical solution in the absence of magnetic field. Gross
[17] considered the problem of plasma oscillations in a static
magnetic field. He linearized the Boltzmann equation by neglecting
the collision term and assuming f = fo + f1 with f1 << fo.

Howard [24] attacked the problem of hydrodynamic properties
in electron gas. He obtained two coefficients of viscosity for
both shearing and normal stresses by assuming Lorentz forces existed
between individual particles. Unfortunately, there are no known
experimental method to verify his results. Krzywoblocki [31]
applied Howard's results to the problem of boundary layer in
electron gas.

A different approach to the ionized gases is provided by
the Fokker-Planck equation which is derived from the Boltzmann
equation. Chandrasekhar (7], Rosenbluth, MacDonald and Judd [39]
employed this equation to obtain the transport coefficients.
Krzywoblocki and Wadhwa [32] proposed to extend Grad's method to
magnetogasdynamics. Kolodner [30], Burgers [4], Herdan and Liley
(18], and Yen [48] applied Grad's method for the Boltzmann equation
to ionized gases. Kelleher and Everett [29] extended the Grad-
Everett method to partially ionized gases. Hochstim [21] expressed
the distribution function in the form of Laguerre polynomial
expansion.

Meador and Staton [36] applied the concept of simultaneous

many-body interactions in solving the Boltzmann equation. Shkarofsky



(41] used a different approach to solve the Boltzmann collision
integral. He employed the concept of the supposition of many
successive binary encounters. The results from both models proved
to be in good agreement.

Marshall [34] used the variational principle for ionized
gases. He considered the trial function of two polynomials.
Robinson and Bernstein [38] employed a different variational

method with a trial function of six polynomials.



CHAPTER 1I

SOME DISTRIBUTION FUNCTIONS

2.1 General Remarks on Distribution Function:

A random variable (denoted by r.v.) is defined in the usual
manner. Namely, a r.v. X 1is a real valued function whose domain
is S, and whose range is a set of real numbers. For every real
number x, the set of elementary events s for which X(s8) < x
is an event [11]. The event s belongs to a probability set §
(i.e., 8 1is an element of §S).

The distribution function (denoted by d.f.) of a r.v. X

is defined by [47]
F ) = P(X 5 x] , (2.1.1)

for every real number x. This d.f. Fx(x) satisfies the follow-

ing conditions:

(1) Fypx)) < Foxp), if x; <X, ; (2.1.2)
(i1) lim F (x) = 1 ; (2.1.3)
X0
and
(iii) iiTan(X) =0 . (2.1.4)

There are two kinds of distributions known as the discrete
and continuous kinds. For the discrete kind, the total mass of the
distribution is concentrated in discrete mass points. Thus, the

discrete d.f. is given by



Fx(x) = ix Py . (2.1.5)

X
Fx(x4h)-Fx(x)
If the distribution is continuous, the ratio n

represents the mean density within the interval (x, x+h). The
derivative

Fx(x,x+h)-Fx(h)
h 9

Fi(x) = f(x) = lim
h-0

(2.1.6)

if it exist, gives the probability density or frequency function

f (x), and the continuous d.f. is given by
X
Fex) = [~ f(t)dt . (2.1.7)

Absolutely continuous Fx(x) is a necessary and sufficient con-
dition for the existence of the frequency function £(x). Since
Fx(x) is monotone non-decreasing, the frequency function is non-

negative and

Ifm f(x)dx = 1 . (2.1.8)

We may also be interested in studying simultaneously several
r.v.'s xl,xz,...,xn of the distribution. In such a circumstance,
we can choose points of the n-dimensional space to represent all
possible values of the r.v.'s. The definitions of distribution

and frequency functions are defined in the same manner.
2.2 Discrete Distribution Functions:

The Binomial Distribution. A trial of a random experiment
with the outcome either '"success" or '"failure'" is called a Bernoulli
trial. Let us consider a sequence of n Bernoulli trials, where

the probability of S (success) in each trial is p, and 0 < p < 1.



There are (;) ways of selecting k trials at which S occurs.

Thus the discrete distribution Fx(x) is written as

x
Fy = Ez] Grefa-mt (2.2.1)
k=0
for every real number k.
The Poisson Distribution. The Poisson distribution may
be obtained as a limit of the binomial distribution. Let Xh

denote the number of successes that occur in the n Bernoulli

trials, and let pn be the probability of success. Then the

d.f. is
[x] =A%
Fy (x) = % £, x=0,1,2,..., (2.2.2)
n x=0

where )\ = np .

2.3 Continuous Distribution Functions:

The Gamma Function. Its density function has the follow-
ing property

1 xae-x/s

f(x) =
I (@+1)g* !

for x >0 ;
(2.3.1)

0 for x =0,

provided o > -1 and g > 0.
The Normal Distribution. Many references cite this dis-

tribution as the Gaussian, Laplace or bell-shaped distribution.

The d.f. is defined by the relation:

F_(x) = L‘[‘x exp (- ﬁ)dt (2.3.2)
X ‘/-'2; - 2



The corresponding normal frequency function is

2
£,(x) = L .2, (2.3.3)
V2n
2 , 2
The x~ Distribution. The ¥~ frequency is
n ps
2-1 -2
f 2(x) = x e for x>0 ;
X n
2’ @) (2.3.4)
0 for x=0.

The corresponding xz d.f. is

n, _t
F 2(x) = 1 Ix t2 e 2 dt for x >0 ;
n o
X 2.n
2 F(EO (2.3.5)
0 for x 80 .

The parameter n 1is often denoted as the number of degrees of
freedom in the distribution.

Fisher's z-Distribution. Two independent r.v.'s X and
Y have a xz-distribution with m and n degrees of freedom,

respectively. The z-distribution with (m,n) degrees of freedom

is
rEn
x t d .
- = o prmy t for x >0 ;
(TR R 2
Fy Y (x) = (t+1) (2.3.6)
0 for x =0 .

\.

Student's Distribution. Again we consider two independent

r.v.'s. X and Y. The distribution of X being N(0,1) and
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2
the distribution of Y being x -distribution with n degrees of
freedom. Thus the Student's d.f. with n degrees of freedom is

expressed as

r(n+1)
- 1 2 >'q dt
FX’Y(x) =y j_m s oil . (2.3.7)
o 9 .2
(1+=)

for all x.
2.4 Distribution Functions in Neutral Gases:

Maxwell [35] proposed that the d.f. f be expressed as
£ = £ (14) , (2.4.1)

where fo is the solution of equilibrium state and F 1is a
rational function of particle velocity.
Hilbert [19] and Enskog [12] used an asymptotic expansion

in a power series of a small parameter ¢ for d.f. f

£(0) 1 2
f = ¢ + f( ) + ef( ) +oo..o (20402)
where f(o) is locally Maxwellian, and f(l),f(z),... are

obtained by solving a series of integral equations derived from
the Boltzmann equation.
Burnett [5] introduced the d.f. f expanded in an in-

finite sum of Sonine polynomials S's. The d.f. f takes the

form
Em g {TASTE) 4L ¥ S LED) (2.4.3)
P i
where Y are general spherical functions.

4p
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11

2,5 Distribution Functions in Ionized Gases:

Considering the forces acting on electrons by electric

and magnetic fields, the Boltzmann equation is

af af e af | af

3t + §i 3%, + (Ei + eijkngk)agi (at)coll. . (2.5.1)
The d.f. £ could be expressed as

£ =50 4 8 , (2.5.2)

where f(o) is an isotropic distribution, and ¢(§i) is a small
perturbation which causes f to be anisotropic.

The Maxwellian Distribution. For a weakly ionized plasma,
the d.f. f(o) is often assumed as Maxwellian:

2

(o) D c
f = exp(- — . (2.5.3)
(2nRT)3/2 2RT

The Margenau Distribution. For a plasma in an alternating

electric field, the d.f. f(o) is known as the Margenau distribu-

tion [23]:

£©) = ¢ exp -ji 2 i (2.5.4)
7 2
3Gm(r 4w )

The Druyvesteyn Distribution. For a plasma with a constant

cross section under the influence of a strong direct current or

f(0)

low frequency electric field, the d.f. is known as the

Druyvesteyn Distribution [23]:

£ o ¢ exp(-3Gm2N§Q204/4e2A2) . (2.5.5)
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The approach to the distribution function in terms of
Hermite polynomials, used by Grad, will be thoroughly discussed

and used in the present work.



CHAPTER III

THE THIRTEEN-MOMENT EQUATIONS FOR
ONE-COMPONENT, CHARGED GASES

3.1 Moments of Distribution Function and Boltzmann's Equation:

In a one-component, homogeneous, uniformly charged gas,
the d.f. F which is defined as the number density of charged
particle, is a function of seven variables, namely, velocity §i,
position x and time t. The d.f. f 1is defined as the mass

i
density

£E,x,t) = oF €,X,t) , (3.1.1)

where m is the constant mass of charged particle. The moments
of d.f. f with respect to velocity gi and the intrinsic velocity

are defined as follows:

Zeroth moment: p(;,t) = If(f,;,t)dg . (3.1.2)
Mean velocity: G(Q,C) = %’Iaf dg . (3.1.3)
Intrinsic velocity: c(E,X,t) =€ - u(X,t). (3.1.4)
First moment: j’E £dg =0 . (3.1.5)
Second moment: Pij(;’t) = Icicjf dg . (3.1.6)
Third moment : sijk&’,c) = jcicjckf dg . (3.1.7)
Fourth moment : Qijn(;c.,t) = J‘cicjckch dg . (3.1.8)

13
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The second, third and fourth moments are symmetrical tensors.

Contraction of tensors by using a dummy index and summing over

all yields

Pii = 3p H 3.1.9)

Sijj = Si H (3.1.10)

Qijkk = Q1j H (3.1.11)
and

Q; =34 . (3.1.12)
The divergenceless tensors @an be formed as

pij = Pij - péij H (3.1.13)
together with

Py “9y ° 0 ’ (3.1.15)
where éij is the Kronecker delta.

The Boltzmann equation is taken to be

%, F}
(s. t) - af L af Ti 3 1. @f ,(3.1.16)

dt  3x, at ag At 3t collision
axi a :
where SE_ is the particle velocity §i and gzl is the particle

acceleration. Equation (3.1.6) can be written as (B.1l)

af 2f | af
at §1 ax1+ 1 38, (at)c . (3.1.17)

The symbol L, denotes the sum of all electromagnetic forces:

Pbe

-i E+2xB) |, (3.1.18)

X
L}
%P
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where E and B are independent of E.
Since the gas is assumed to consist of only one kind of
particle, it is fully justified that the governing Maxwell's equa-

tions are taken in their simplest forms:

v xB=3+0ek

3t H (3.1.19)

= = _ 2B )

vV XE 3t H (3.1.20)

VXxB=v - pul=0 ; (3.1.21)
and

Ve = p, . (3.1.22)
The equation of conservation of electric charge is

Pe 45T =0 3.1.23

'aT-"l'V J . (3.1.23)
The Ohm's law gives the equation of electric current as

T =olE+u @xB)] + p U . (3.1.24)

3.2 The Maxwell Transport Equation:

Let U denote the relative velocity of the two colliding
identical particles. Here €, €' represent the velocities of the
first particle before and after the collision, respectively, and
El’ Ei the velocities of the second particle. The symbol duw
is given as the element of area in the plane passed through the
fixed first particle and perpendicular to the relative velocity
U [Appendix A]. The notations f = £®), £' = £E&"), £, = f(g’l),
fi = f(Ei) are used here. The collision term [Appendix B] is

taken as
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af. gl ver _ .
Goe = Juce'e) - £ )dwde . (3.2.1)
Thus, equation (3.1.17) becomes

af = 1 J‘U(f'f'
m

at gi ax iag; - ffl)dwdgl . (3.2.2)

1

Multiplying (3.2.2) by a summational invariant ¢(§) [Appendix
A] and integrating over the entire velocity space with the

integration limit from -= to +w, we have
[o 3; de +-Iq§i dg + gL, a—- dg =0 |, (3.2.3)

where the collision integral vanishes [Appendix B].

The first term of equation (3.2.3) could be written as
a_ - 2P
= J3r@ds EEvl (3.2.4)
Similarly, the second term of equation (3.2.3) is
h__ = [ — - a__
[y S jaxi«pgif)dé J‘faxi«pgi)dg. (3.2.5)

Since ¢(§) and §i are independent of X, equation (3.2.5)

becomes
a__ = [ —
f¢§1 dg Iaxi (¢ £)dE . (3.2.6)
The third term of equation (3.2.3) could also be written as
- - a__
j¢Li 351 dg j (¢Lif)d§ jf agi(chi)dg . (3.2.7)
The first term of the right hand side of (3.2.7) is

a__ = o
jagi (9L, £)dE ¢Lif\_w . (3.2.8)
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As the velocity tends to infinity, d.f. £ tends to zero faster
than any velocity-dependent function, because of the exponential

character of d.f. f. Hence
¢L1f|f: =0 . (3.2.9)

The second term of the right hand side of (3.2.7) could be split

into two terms:

aL
2 1
-\ £ L.)d§ = -[fL dg - | f 3.2.10
jagiccpps i 38, & Jto S 68 . ( )
dL,
The gradient SEL could be written in vector form as 65 - T..

i
We recall equation (3.1.18), where E and B are independent of

E. Thus

'v’g -1=2 . E@xB . (3.2.11)
Since

Gg - €xB) =0 , (3.2.12)
we get

Gg .IT=0 (3.2.13)
or

aL,

Sg— =0 . (3.2.14)

Then, equation (3.2.10) gives

Q__ QP .
-[f (oL,)dE = -[fL e (3.2.15)
i o€, Phi 138,
or

[l gE- dg = -[f1, 22 22— ag . (3.2.16)
i
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Using the relations (3.2.4), (3.2.6) and (3.2.16), equation (3.2.3)

yields

jg;(cpf)dg - [£ g% dg + Ig—x—;(cpgif)dg - j‘fLiagt dE = 0. (3.2.17)

If the functions (pf) and (¢§if) are uniformly convergent,

we can write (3.2.17) as
a_ : o 2@ Q - ae =
- J‘q;fdg, j‘f Y: dg + - jcpgifdg J‘fLi %, df =0 . (3.2.18)
This is the Maxwell transport equation.

3.3 Conservation Equations:
Letting ¢(€) = 1, equation (3.2.18) becomes
- a__ =
- j'fdg + - j‘gifdg 0o . (3.3.1)

By use of (3.1.2) and (3.1.3), equation (3.3.1) yields the equa-

tion of conservation of mass

g% g.x_ Gu) =0 . (3.3.2)

Choosing ¢(§) = €, equation (3.2.18) gives
a fd-fag—id +2— (g € fd £L dE = 0 3.3.3
- fg 98 - [ 5 axjj‘isj § - [fL dg . (3.3.3)

Using the identity § c, +cu, +c,u, +u,u, and (3.1.18),

155 % €185 T oguy F ey tugy

we get
a;JEifdé +§§'j'.r(°1°j + e u; + cyuy +uu )fdg - 2J‘fL d€ = 0. (3.3.4)

Use of relations (3.1.3), (3.1.5) and (3.1.6) yields

(pu ) + a_j(Pij +puguy) - 2ffLAE =0 . (3.3.5)
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Recalling equations (3.1.4) and (3.1.18), we may write

e

Li = m(Ei + eiyzusz + eiyzcsz) ’ (3.3.6)
where €iyz is the alternating unit tensor. Substituting (3.3.6)
for Li in (3.3.5), we get

8 a__ =
at:(pui) + axj (Pi + pu, uj) 2 £ (E + ¢, yzusz) .(3.3.7)

Eliminating g% by the use of equation of conservation of mass

(3.3.2), we obtain

1 3%
2t T iaxy T b ax,

e
=2 € +euB) . (3.3.8)

This is the equation of conservation of momentum.

Taking @(E) = §2, and using the identity §i§i = uu, +
2uici + ciCys equation (3.2.18) becomes
2
3E€))
a_ i
T J'(uiui + 2uici + cici)fdg - If 3t dg
a'——.f(u,ui + Zuici + cici)(cj + uj)fd§
3§ =0 3.3.9
Iij —gj R 3.3.9)
3ED) 35, 3
h =2 —te=26 —L 3.3.10
where " € e §j 3 ( )
and
a(gi) 2 3.3.11
®, % (3.3.11)

Hence, equation (3.3.9) can be written as

2 a__
at Jwp, +2ue, +ee )fdg + 2%, Jpu, +2uec

i + cici)(cj + uj)fdg

= 4 fL4€ ae - (3.3.12)
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By use of relations (3.1.2), (3.1.4), (3.1.5), (3.1.6), (3.1.7),

(3.1.9), (3.1.10) and (3.3.6), equation (3.3.12) becomes

a'—(pu + 3p) + a——(2u P, +S, + puzu + 3u,p)
X ij ] 3 3

e .
=4 SlowEy + ey B, (pujus + Py )Y (3.3.13)

or

—1i ap 1
uy at(pu ) + (pu, ) +350+2 a—j(ui i) +axj
a_ a_ - 4o
be
+== ejysz(pujuy + R ) . (3.3.14)

Ju
Eliminating gz(pui) and SEL by use of (3.3.7) and (3.3.8)

respectively, we have

Ju s
P 43 (uop) +2p L, 11,4 P . 3.3.15
dt  dx j( Jp) 3 ij X T3 % m_ejysz Jy ( )

This is the equation of conservation of energy. By use of (3.1.13),

we get
du as
3.2 a._ +_ —i+l—t=
5t ¥ i (ujp) (p, i + pbd j)ax 3 >
j j h|
de (., +95,) (3.3.16)
m Jyz z Yy Jy
where
JQu Ju
halh SR |
1j = P = . (3.3.17)
] ]
Hénce,
Ju Ju S
aP . 3 ci 2 23 1°74
st T P 3Py 3P T
] ] ] J
b4e
— ejysz(pjy péjy) . (3.3.18)
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3.4 Generalized n'th Moment Equation:

Let us define

, (3.4.1)

*C, *C, eeeeeC, = C,C,CneessC
i 17273 n

and

£ o [Prag . (3.4.2)

Multiplying the Boltzmann equation (3.2.2) by " and integrating,
we get
af af = ()
j‘c( +8, -y 12’gi)dg, J . (3.4.3)

From (B.5), we write
R iIEnE(G,U)(f'fi - ££ )dededgde . (3.4.4)

Evaluating the first term of the left hand side of (3.4.3),

we have
-n
J““ af g = P—(E“f)dg - [£ g%— € . (3.4.5)

If the function (Enf) is uniformly convergent, equation (3.4.5)

takes the form

-n
-n df 4o .2 ron _ ac_
fe T g y: [c"E ag [£ y: g . (3.4.6)
En
The term gz— could be written as
En n En ac
= 5 c__8 ; 3.4.7)

at s=1 cs Jt

or



=y S (=828 | (3.4.8)

—_—= ] =SE
m

e

Also from (3.3.8), we have

Ju Ju JP
5., —8.Ll_sl 2y 2 5 . (3.4.10)
Jt i Xy P 3, m 8 m 8yzyz

13
Using the values obtained from (3.4.9), (3.4.10) for SEQ and

Ju
SEE respectively, equation (3.4.8) gives
-n n -n 3u P
2 = 7 _(:_{ui—s+l_.§.l-gE -E—s uB
) s=1 s X, P ¥, m 8 m 8yzy 2
+-e- B s 3.4.11
m esyzgy z} ’ (3.4.11)
or
En n -n aus 1 aPsi e e
= T —fu + = -=—E -=¢_ _uB
at s=1 s i axi p axi m 8 m 8yzZ y z
. ,
+— ¢ B}l . (3.4.12)

c
m Ssyzy z

By use of (3.4.2) and (3.4.12), equation (3.4.6) becomes

- (n) n -n Ju 3P
J‘cna%dg-L._ ZI'C_{U _8+l sj‘_EE
) at g=1" 8 i X, P X, m 8
_ & u B + & B }fdg . (3.4.13)
m esyz yz m eayzcy z ’ °Te

or
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f(n) n Ju

3P
J--na_dgaa___z{u +pl§x_u_§g

dt ?t s=1 i axi s
e
" m Ceyz'y z}.r_ fdg - 3 m Ssyz J o & fd6.  (3.4.14)
Let
=-n
f@/s) _ 2— £dE ; (3.4.15)
8
and
() /s - & gae (3.4.16)
y c y

8

Hence, equation (3.4.14) can be written as

(n) n au 1 dP O7si

-n a_ - af ) _e _e (n/s)
I dg 321{ i 3x p ax1 m Es m esyz sz]f
N Wiucll (3.4.17)
g=] @ 8YZ ZY T

The second term of the left hand side of (3.4.3) is

e, gx— dg = a}q Jete, fag - [t sti(E“gi)dg . (3.4.18)

Use of (3.1.4) gives

3, -n
je ne af 4 = LJ‘zn(ci + u )fdg - [ee" a_xi dg - [fg, g:—idg i (3.4.19)
Ky i

iaxy
or
af a__ =n g
J gi dg = jc (c; +u )fdg - jf 5—
- [f(cq +ui)ﬁ— e . (3.4.20)
i

S e

Since € 1is independent of x, thus 3% = 0. We denote
i

f?‘"’l) = [c"c fag . (3.4.21)
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Equation (3.4.20) becomes

n
J.-ngi a_ de = ar{féxﬁl) + u]Lf(n)} - [, + ui)g:—i dg . (3.4.22)

Following (3.4.8), we can write

—_(— - — H 3.4.23
3%y SEI Cs(axi oy ( ‘
or
-n n =n au
as- = - z c_ —s . (3.4024)
o¥y s=1 % i
cn
Replacing g;— with the right hand side of (3.4.24), equation
i
(3.4.22) gives
(ntl) (n) n
§a—§-a—{f 1+ ¢ {—cfdg
I 13 s=1 axi I
En
+ uij‘ :s- £dg ) ; (3.4.25)

or

n au
(n+l) /s (n/s)

3-1 Bxi{f + uif 1.

(3.4.26)

%, B g = e 46 4

The third term of the left hand side of (3.4.3) gives

ML, & gt = o _Pe B _oon )
[&°y agi s =[5 (° L,£)dg - [f 5, L )9 (3.4.27)
or
J&y aE S f‘ ok 28, (L chyag . (3.4.28)

Following (3.2.9), we write
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CL el =0 : (3.4.29)
i Ve

We can also write

a3, 3.4.3
jf (L cMydg = [t L, dg + [f c" a%i E . (3.4.30)
Using (3.2.14), we have

8 _( on =

J'f agi(Lic )dE -J"f L aé dg . (3.4.31)
Equation (3.4.28) becomes

= - ac” 4 , .4.32

J‘Liagig jfLiag g (3.4.32)

with the use of (3.4.29) and (3.4.31). Following (3.4.8), we have

-n n -n B§ du
a¢_ -y £ (8. _s , (3.4.33)
agi s=1 cS B§1 Bgi

where
n ag n
sEI SEI = 321 6 si (3.4.34)
Since u is independent of E, thus
iﬂg =0 . (3.4.35)
38

Using (3.4.33), (3.4.34) and (3.4.35), equation (3.4.32) takes
the form:
on
‘f L, aéi AL g = -8;;15 JEL c — dg . (3.4.36)
Substituting the value of Li obtained from (3.3.6), equation

(3.4.36) gives
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jE L, g 81l g = - z 5sijf{ E,

-n
e e S 4e.
eiyzusz + = eiyzcsz}cs dg; (3.4.37)

i
or
- e e (n/s)
I Ly 351 8Elasi{m Ei* o ei.yz!’tsz}f
n
e (n+1)/s
-321681 o eiyz 2ty , (3.4.38)
where
b ifiyz = Cayz (3.4.39)
and
6 E, = E, . (3.4.40)
Thus,
-n - . + & (n/s)
[y a§1 3¢ 321{ m Ssyz%yPs it
n
+
.p ¢ p O/ . (3.4.41)
g1 @ B8YZ 2y

Using (3.4.17), (3.4.26) and (3.4.41) and changing the sub-

script from i to r, equation (3.4.3) gives the n'th moment

equation:
g™ n Ju n
af + a {f(n+1) +u f(n)} R f(n+1)/s -5 1 f(n/s)
at r s=1 *p T s=1 P ax
n

2e c B f(n+1)/s - J(n)

o Sayzzfy (3.4.42)
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3.5 The Second and Third Moment Equations:

For n = 2, equation (3.4.42) gives

(2) 2 3u 2 P__
3) (2) (3/s) 1 (2/9)
£ £ 2
+3—{ +u }+$§1 ax_ T SEIpax

2
e LGl @

gml @ 8YZ ZY

° (3.5.1)
Recalling the definitions (3.4.1), (3.4.2) and (3.4.4) we have

(2) .
f = (¢ ¢, fd§ H (3.5.2)

or
) o [e e, £ : (3.5.3)

and

= fc [ B(Q,U)(f f' - ffl)dededgdgl = in) . (3.5.4)

Similarly, we write

3 c.c.¢c
fr( /8) = Lc;LE £dE ; (3.5.5)
2/s) _ ¢ Sie ,
fr J‘ T fdg 3 (3.5.6)
and
3/ c cc
f; 8) et (3.5.7)

By use of (3.1.5), (3.1.6) and (3.1.7), equation (3.5.1) furnishes

JP du au
i3 .23 ¢ -1
at + % ( ijr + urpij) + Pit A%, +F ir ax

) - @

- 25 2 C1y2Fyy * ey Pry) T iy

(3.5.8)
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For n = 3, equation (3.4.42) yields

a'g——— + a—{f(a) + u f(3)} + I —8 f(l&/s) - T !-_ sSr f(3/8)
ot X - r r g=] %X, T s=1 P X,
z 2 /sy _ . 3)
" Too Syl =J . (3.5.9)
s=1

Using definitions (3.4.1) and (3.4.2) and also the relations

(3.4.4),(3.1.5), (3.1.6), (3.1.7) and (3.1.8), equation (3.5.9)

gives
aS, ou ou Qu.
__111.S+L_{Q_ +usS . }+S —k,g +S L
at ¥x ijkr r ijk ijr X, irk axr rjk axr
Lep Pher + P ie + P ir
- - . )
p 1] X, ik X, jk X,
Ze B ( S + S + S
“m Cz‘%iyzlyjk T €jyz iyk = Ckyz ijy)
= 3
= Jijk . (3.5.10)

3.6 Third-Order Approximation in Hermite Polynomials:

We assume that the d.f. f 1is not too far from the state
of equilibrium. We can express the d.f. f in the neighborhood
of Maxwellian distribution f(o) by use of Hermite polynomials.

Thus, the d.f. f 1is taken in the form

@®

f = f(o) z 1
n!

af“) (i’,t)yf‘) o (3.6.1)
n=0

From (C.13), we have

2
) c
f = _'973 exp(- ZRT) . (3.6.2)

(2nRT)
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(n)
i

with n subscripts, i = 11,i2,...,in, as well as a polynomial of

The Hermite polynomial % is introduced as a tensor

n'th degree

@ o [2/2] (-1)°n! J0-28

5 , (3.6.3)
s=0 2 (n-28)!s!
where v 1is the dimensionless velocity
e (3.6.4)
/RT
The first few polynomials are
N(O) =1 ;
ay _
N& v, H
2) _ - .
%ij vivj 6ij 5 (3.6.5)
~(3) =y vv - (v,5,, +v, 6, +v.6,.,) : and
ijk iy k i’k © T3°%ik © koij’ *
ﬂ‘a) =y vvv - (vw,b, K6 +vvbd +vvesd +vvsd
ijke, ijka i 3°kL ikojq 143k §kig
+ + + .
vijbik + vkvaij) (6ij6kL + éikajL 61L6jk)
The formula for the coefficients ain) is
(M) _ 1,0
a; p‘ff%{i dg . (3.6.6)

These are dimensionless polynomials. The first few coefficients are

a® -4 :

afl) = 0 ;

aii) = pij/p ; (3.6.7)
aiii = Sijk/p/i¥ : and
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a® = 1
31kt jkL/pRT p(PijakL + PikajL + Picéjk + ijéiL
+ PjLé + PkLG j) + (6136kL éjL + 51L5jk).

Taking only three terms in Hermite polynomial expansion,

we have
= 0 a(?) @ a® (3) .
f=f a + 2 jkf 6 ijlyijk 3 (3.6.8)
or
f=f(0)1+p—u—cc +§—iik— cc-Lc) (3.6.9)
G+ 2t 1 6pr2r2 1“5k " 2prT 1’7 V°C

The variables which define the state of gas are twenty in number,

namely, p(1), u(3), pij(6) and sijk(lo).

Following Grad [13], we use the contracted Hermite coef-

ficients instead of the full set agii. We write

o) = Lren®) ag

1jj 113 . (3.6.10)

Using Grad's derivation, the corresponding contracted Hermite

polynomials are introduced as

®

9 . vi(vz -5y . (3.6.11)

The contraction is obtained by letting j = k and summing over

' 3) 3)
all j§'s in wijk to obtain L’i . We write

-t@q +3 1 (j)wij) +b ~&3) i (3.6.12)

Multiplying (3.6.12) by N§3) and integrating, we find

b, =75 a . (3.6.13)
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Hence, (3.6.10) becomes

(1)) a@g () (3) 3, .
f=£"(@1+ p w'j 10 a =W (3.6.14)

or

P S
£=£00 *'E%%i ce - -idlg (3.6.15)

i j  2pRT SRT)} *

The number of variables in the expansion of d.f. f is reduced

to thirteen - namely, p(1), 3(3), (6) and 81(3). Integrating

Pij
(3.6.14) and taking account of (3.6.8), we obtain

a3 GO (3) a3

a5k S(a St Ay byt e (3.6.16)
i.e.,

s -

St 5(s Byt S0 TS (3.6.17)

3.7 The Twenty-Moment Equations:

letting

a® =
25 ikt = O , (3.7.1)

equation (3.6.7) gives

= RT(Pi ) + P

Qijkr J ke jr 1r6jk + Pjksir + Pjr6ik

+ Pkréij) pR.T(Gijékr + aikajr + airajk) . (3.7.2)

Use of (3.1.13) yields
= R + +

Vigkr = BP0 * Puadye ¥ Py P Pudir F P50
CESURIE. - JOR NI S S I (3.7.3)

Substituting the value of Qijkr obtained from (3.7.3), equation
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(3.5.10) gives

—-L- {us +RT(p, .6 _+p

at X,

+ p, 06

381 k+pkr ij) + pRT (S + 6

du Ju

dQu . 13
+s,,  —k —1 —i-l(P —kr 4 p

+S +S
ijr axr irk X rjk axr ij X,

aPir 2e

B (e

jk L3 ) - m z iyzsyjk + ejyzsiyk + ekyzsijy

= 33) .
I ik ;

or

itk +38—(@u s )+(is + 20 * kg

at ax r ijk L3 rjk axr irk = ax
(pj R+ 5 2—(p,,RT) + ﬁ“’ij“)

TPy F RSy P 11)3— RT ngr(pirf’jk e

+p8y) + pAE 5jk+g§6 ?;i—:&iﬁ

hL 2P _ ap_ -1
+RT( 6jk+a 61k+axk61j) ;{(pij*'pﬁ

*3
P 3P
3 ir ir
+ (P t péik)axr +(pyy t péjk)axr }
J2 . ) m3®

S +
m Bz eiyz yjk + ejyzsiyk ekyzsijy ijk

Rearranging it, we have

£ ijk 13%r ¥ Pudye t Pidyk T Ppdir

138 ¥ 81y * 04x0yi0}

(3.7.4)

(3.7.5)
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S u u
a__i_il(..fa—( k)+(—1- +a_18 +a_ks )

at X ij rjk L irk X ijr
+ gg(pijT) + g-i(pikRT) + gx—k(pinT)
+ (pirajk + Py 5+ Py ij)a_ + RT{B(Pira:rNir) 6jk
. a(Pjra: ATY ; a(pkra: P r) o) - %{pij :_:l(_r ‘o :_:E
- r r r r
+ Py a:ir } - RT{a— b3y * —1- 841 ::l:r 84
(;q S ¥ Lj- S ¥ Si—f; 83
B iﬁ Bz(eiyzsyjk + ejyzsiyk + ekyzsijy) :;i ; (3.7.6)
or
:_i_L + gx_(“ iy * (a:i Sejk ¥ %: Sirk ¥ ::—: Siye)
+ a'—(pijT) + = 2—(p, RT) + gx—k(pinT)
+ (Pipby + Pypbyy * pkr5ij)g§_:_ ) % by B(Pkra:rp5kr) . a(py *e8,)
. a(vira:rpalr)} +p (Li b1 :%:— 8+ 2% byy)
- i—e B, CeiyaSyik T Cyy2Siyk t CiyaSigy) © 311 3.7.7)

By use of (3.1.13), we can write (3.5.8) in the following

form:
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+pb..)
3(pyy * P84y +3—s . +u (p, +9513)}+(p1 po )_i

at L ijr r 1ij ir ax
+ +p )a—u-i. - 2e 4 (p, +ps, ) + (.. +p5, )]}
Pye + PO 305w Balenys (Pyy ¥ POyy) + ey, (Pyy + P8y,
(2) .
ij b (30708)
or
oP; opP, du_ 3u aSi r
—i1 4 24y gy, X4y, AR 4y L4 L
at ij at r 3x ij ax rij ax 1 ax X
r r r r r
du ju au, du
21 21 2i i _ 2e
Pir aX + péir X + pjr X + p6jr X m Bz{eiyzpjy
r r r r
+ 5.+ + 5, ) =3P (3.7.9)
CiyzPOyy T C5yzPiy T €3y2POiy) = Jyy . e

Substituting the value of g% obtained from (3.3.16) and using
the following tensor notations:

aul oYy
P.. .~ " P .

ir 3x . rs 3xg

6, —— - — 5 and (3.7.10)

3Py 3545 1 3s du du

ci ET( Piy) xi = - 3 944 _x1 Pir _xi Psr Ti
o} ¥, X, oX. 9 oX,

ou au ou ou
j rs ax dx ¥x 3 771 x
| i r

4Le 2e

+ m 61j rysz(pry psry) " m B (eiyz jy iyz" jy

©yyzPiy * €yzP04y) = Jg') : (3.7.11)
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We add the conservation equations (3.3.2), (3.3.8) and
(3.3.16) to (3.7.11) and (3.7.7), and obtain the system of twenty-

moment equations:

2 +23—(pu ) =0

at X,
auy au, alpy . + 98, )
—+— -
: + u_ > o 3% _ 2 =(E iy u Bz) H
Ju d

aP LA 2 —i,17x b4, B(_ +ps_);
Jt  ax (urp) + 3(pir + p61r)axr 3 3x m eryz z er )
dP 38 1 s du Auy
__11-|-L(up ) ir_-é el P ._1.+p o
at X ij X 3 7ij xx ir 3x jroax_

2, ¥ AWy g M e

3 6ijprs JX P ij tp 3%y 3 p61j X m 6ijerysz(pry péry
. L (e € e 6,.) (3.7.12)

m oz ciyzPiy T CiyeP gy T CjyePiy T Sjy2Puy S
= Jij) 5 and

at ax_ - r ijk x,. rik 3 - irk 3 , 1ir
a_ - a__
+ axi(ijRT) axj(p WKRT) + (p 13%D)
B(Pk + pd, )
aRT _ X kr
Py Py P S ij) 0 pij % _
alpy,. + P65, ) Aalp, +p8, ) a__ + aRL
+ Pix ir i’ + pjk ir ir ) + p( ij o aik
X ?x,. 3
+2RL o 4 _2e y =33 .

137 " m BzCe1ySyik t eyyaSiyi T Cig2Sigy) T Tijk
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3.8 The Thirteen-Moment Equations:

Replacing Si with its value obtained from (3.6.17),

jr

the second order tensor equation of (3.7.12) gives

Pii,a_ 125 2%y i 1, %
t + X (urp' )+ 5( X 8 * 6ir + 3% 61 ) - 3 6ij X
Ju du. au du Ju Qu
+ Pir _;1 + pjr -;l - % 61jprs xr tp axi tp xi'- % 6ijp S;E
Xy oXy o%g 3 3%y r
be 2e
+ m 61jerysz(pry + péry) " m Bz{eiyzpjy + siyzpéjy
= 1(2)
+ ejyzpiy + ejyzpéiy] Jij . (3.8.1)
From (B.34), the collision integral in) is taken to be
6B
2 1
Jij) =-—=0 pij . (3.8.2)
Hence, equation (3.8.1) can be written as
P S S S
Jt x. r iy’ 5 axy ¥y 3 71} X,
., i 2 O e, % 2,
Pir X pjr X 3 ijprs g P axj P 3%y 3 7ij X
be 2e .
+ m 6ijerysz(pry + p6ry) " m 'Bz{eiyzpjy + eiyzpsjy
+ . + -_— - = L] . .
€4yzPiy ejyzpbiy} + o P Py 0 (3.8.3)

Similarly, we replace Sijk with its value obtained from

(3.6.17), the third order tensor equation of (3.7.12) yields



® ” ®

r N A~—

S S S r
1% 1 2k la_ IR
S(Bt 6_1k at 8k t 61'._1) *s axr(ursibjk + ursjbi + ursk6ij)

x i“jr jo1

+8—(p, RT) + (p, 6,, +Pp, 6., +p, 0 )a— {p Prer k)
Xy ij ir j jriik kr ij X, P ij 3%,
" —
3(p,  + ps. ) 3(py,. + P&, ) r
ir ir ir af_l_
+ Py = + Pk e } + p( 6 A LN
r r @
—_
2RT , ) _2e
+ Xy 6ij) 5m Bz{€iyz( yéjk + Sjayk 6 j) + ejy (siayk + Syéik
R\ (3)

+5.6. +S5..)]=

+ . L]
SiCiy) * Cuyz Gibyy + 5485y * S84 (-8.4)

Jijk 3

The terms are numbered here, so reader may follow through easily.

Taking @,@,@,@ and @ of (3.8.4), we have
(us)
@+@+@+@+@.l{as ° ::ri +5_ :%}5

+l{581 3 8.) s ﬁl}a 1,.3% . 3 S,) s auk}
Stat X r ax,.” ik 5%t X r ax.” ij

9
i k Y1 j

+ —)S,  + S . 3.8.5
5 %y axj i S(axk axi) j S(Bx:I %, ) ( )

Contraction of tensors is performed by letting j = k. Equation

(3.8.5) yields
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aS (u S.) au
O+@+@+@+@- 3+ 22, 2y

ds 3(u_s)) Ju 3s, 3(“ S,) Ju
s5t = es, Shey rait e s,

Stat X L r3x,
2 . %Y 2. 0% 2 Yy
+35 8 +3 Sj >, +3 Sj o, . (3.8.6)

Now we replace dummy subscript j with r and get

S a(u S ) duy

O+ D+ @+ @+ @S+ 20 1, 2

r

+2s 2xy2g

—_— 4+ =85, — (3.8.7)
5 'r %y 5 i axr

Similarly, we let j = k and obtain

O& @O+® ®+@®+ 0 + @) - ("ijT)+gx_(pinT)

]

& (p. RT) + aRT
+ ij(pij Y+ (P byt Ry byt Pir 1j)ax
) l{p' a(pjr + péjr) . a(pjr + p6jr)

prij 3%, ij % _

a(p ir + péir)
aRT a—- + oRL
* Py s TG oyt oy bt tp) (3.8.8)
From (3.1.15), we write
=0 . (3.8.9)

P33
Summing the Kronecker delta with repeated subscripts and re-

arranging, we have

@D+ @D+ @+ @ -z v, 3
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- 2pir a(prs + p6rs) + 5p aRT

p 3% ¥,

letting j = k, we also have

2 e
DERE + B leiyaGybyy + 8585 + 558,

(Sibyj + Sy6ij + sjéiy)

(515jy + sjsiy + Sybij)} ;

or

2 e
<:> 5w Baleny, 05y B0y ) * 26y By,

Using the following relations of alternating unit tensor:

€iyzsyj " Cige ;

€13z = €jiz ;
and

f332 = ° ’

equation (3.8.12) furnishes

2e
@ " m Bzeiyzsy )

Again, letting j = k, (::) takes the form

3) . ,03
Jiyy =94 .

From (B.33), the collision integral is given as

(3.8.10)

(3.8.11)

(3.8.12)

(3.8.13)

(3.8.14)

(3.8.15)

(3.8.16)

(3.8.17)
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4B

G, .21
3 — 08, (3.8.18)

Using relations (3.8.7), (3.8.10), (3.8.12), (3.8.16) and (3.8.18),

equation (3.8.4) gives

aS . 3(_s,) JQu au du P
L, —rd %s ——l+§sr—‘=”-+-52-sjL x"+2RT—£-
° axr r axr axi ° r r
+7 ART 2pi a(prs + pérs) aRT
pir X * 5
X, P Xg *y
4B
2e 1
- m Bzeiyzsy + = p Si 0 . (3.8.19)

Adding the conservation equations (3.3.2), (3.3.8) and
(3.3.16) to (3.8.3) and (3.8.19), we obtain the system of thirteen-

moment equations:

ap 43 = .
3t T 3w (pu) =0 ;
r
du du dalp,_ +p5, )
A i,l ir ir’ _ gg(E +c¢ uB) 3
at rax. p . m i iyz y 2z

5€ x T ir’ax 3 ¥ m ryz z'ry ry
TN R P SO
at ¥x. 1 ij 5 ¥y ¥y 3 7i) ¥x, ir %
Qu ou d u au
jr_i-% ij"rs_x£ pTi+p_xl'%5ijp—_r' (3.8.20)
+ 4e e B (p_+ps_)-="B{e p €. P
m 1j ryz z 'ry ry m z- iyz jy iyz" iy
6B
teypPiy t ejyzpéiy} t PPyy=0 ;  and
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3S d(u 8 ) du du Qu JP
ti+ LA +-§-s —l-t-%s -—r+%si-x—r+2RTﬁ
3 Xy T %, T %y ¥ r
ART Zpir a(prs + p6rs) aRT
+7p4, 3x_ "~ p = + 5p <
r s 3 i
4B
-z_e- €. S +_lps,=0 .
m ziyzy m i

This system of thirteen differential equations governs the thirteen
state variables - namely the velocity ;(3), stress tensor pij(6)’

heat flow vector % 81(3)’ density p or pressure p(l). The

equation of state:

RT = E (3.8.21)

is also used to describe temperature of the gas.



CHAPTER IV

TRANSPORT COEFFICIENTS

4.1 Thermal Conductivity:

Let us consider a one-dimensional heat flow in a gas

2 = S3 = 0; u = 0). The second order

tensor equation of (3.8.20) gives

at rest (i.e., g; =0; S

2 6B

e 1
- — + + o+ — = .1.
m Bz{elyz (p2y 1:)62y) + €2yz (ply paly)} m P p12 0, 4 b

with 1 # j; i =1; and j = 2. Having y =2, z = 3 and using

(3.8.15), equation (4.1.1) reduces to

6B

2e 1 -
By(py, +P) +—p P, =0 . (4.1.2)

m

Neglecting p,, 3as defined in (3.1.15), equation (4.1.2) becomes

2e 6B1
" a B3p + PP, = 0 . 4.1.3)

Using the equation of state (3.8.21), equation (4.1.3) yields

6B

- ?Z‘Te_ 33p RT + Tl P Py = 0 H (4.1.4)
or
eB3RT
P19 = = 4.1.5)
1
Applying the conditions g; =0; S, =85, =0; and u=0

to the third order tensor equation of (3.8.20), we obtain
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2p1r a(prs + l:'61'5:)

ap
2RT xlr +7p; 351 - . + 5p 351
4B
2e 1 _
- a ey B S, v Sy =0 .

Letting r = 2; y = 2; and 2z = 3, equation (4.1.6) gives

2p,, 3(p, + PS5, ) 4B
- L2 28 2s +5pa§l+——lps =0 .
P dxXg %, m 1

Having s = 1, equation (4.1.7) yields

2p., 3P 4B
B i N I I
P 3%, 3%, m 1

Due to the symmetry of second order tensor, we have

P12 ® P1 -

By use of (4.1.5), equation (4.1.8) takes the form

eBRT eB, RT 4B
2 3 a3y 4spRL 41, s, =0 .
P 38, o%y 3B, >, ®

For uniform B3 and El’ we can write

2.2 2 -
e B,RT 4B
p 9]-3-1 3%, 3%, m 1

The equation of state (3.8.21) is used. Thus, we have

2.2 2

2 € BRT 4B
- = al_ 4 s p2pal_ , 1 .
-7 PR'T + pS; =0 3
P %, 3%, %y m 1
or
2.2 2
2
SoR°T me B3R T AT
81 -C— " =3
4, 18 Bp 0%y

(4.1.6)

4.1.7)

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

(4.1.12)

(4.1.13)
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2
y = 2R , (4.1.14)
8 B1
we obtain
ZeZBg T
5, = -2 - e , (%.1.15)

- 2
45 B “p~ %1
1
where )\ 1is the thermal conductivity for a hypothetical gas in
the absence of electric and magnetic fields but having identical
geometric collision properties as the charged electron gas.

*
We may introduce an "apparent'" thermal conductivity

by writing
s, = -23" alL , (%.1.16)
1 3%y
where
* ZeZBg
L = (1 - —_—Tf))‘ ° (4.1.17)
45 Byp

The equation (4.1.16) can be generalized as

*
= - aT_
Si 2\ %, ’ (4.1.18)
i
where
2
* 2e Bk
A = (]_ - —_—2-—2))\ . (4.1.19)
45 B1 P

4.2 Coefficient of Viscosity:

Considering a plane Couette flow under the conditions

u, ¥ 0; u, =u, = 0;
1 2 3 3%, 3%,

and
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L-B_ss =0
3t 3%y 1

the second order tensor equation in (3.8.20) gives

au ou

+ +
Por X 3%, m z{elyzp2y e1yzp62y e2yzp

ly

6B

1
+ ezyzps ]+ —p P, =0 , 4.2.1)

ly

with i # j; i=1; and j = 2. Letting r=2, y =2 and z =3,
equation (4.2.1) reduces to

+ L 2e +p)} + ®1 0 4.2.2
oy T OIS " Balerna(Pyp ¥ PI+ ey, s (6.2:2)
or
Uy 2 6B
(Pyp + P) (372' -m B3 tT e P, =0 . 4.2.3)

Omitting Py, as defined in (3.1.15), we have

6B1

AU
1 _ 2e +—=Lop,=0 ) 4.2.4)

p(g “ @ B3)

Using equation of state (3.8.21), we obtain

1 2e e 0 4.2.5
PRT(S;; - By - PP =0 (4.2.5)
After rearranging, we may write
du
p.. = - DRI -1 _ 2y, ) (4.2.6)
12 X m 3
6B1 2
letting
mRT
o= — , (4.2.7)
631

we get
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%1 2
Pip = -u(gx—z- - T Bj) > (4.2.8)

where u 1is the coefficient of viscosity for a hypothetical gas
in the absence of electric and magnetic fields but having identical
geometric collision properties as the charged electron gas.

*
The "apparent" coefficient of viscosity yu  is introduced

2e
m B3
i |

0%,

*
w o =p@ - ) . (4.2.9)
Hence, equation (4.2.8) is written as

* Oy
P12 -“ E . (4.2.10)

Equation (4.2.10) can be generalized as

% oY

e 04 , 4.2.11
Py " %, ( )
where
e o

. .
b= - “‘—aﬁ-kL‘S) . (4.2.12)

i

¥y

4.3 Tables and Graphs of Transport Coefficients:

Coefficient of Viscosity: We can rewrite (4.2.9) as

* Z_GB
5_= 1 _%2 , (4.3.1)
1

0%,
where ﬁ = 1.76 X 10" coul/kg for electron. The table of ratios

between the'apparent’ coefficient of viscosity and the coefficient

of viscosity for electron gas is listed as follows:
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We can write (4.2.11) in the following ways:

*
du,
(a). Py = -u(=D) , (4.3.2)
ij L
where
* -—
u, u; - u1 ; 4.3.3)
and
= 2
u, = eijkkaj . (4.3.4)

*
The symbol u

i denotes a new velocity coordinate due to the

magnetic induction effect.

u,

= oy (—y*
). pij p'(axj) ’ (4.3.5)
where
u JQu
—H* L (4.3.6)
axj g(xj) axj
and
e € B
= - EL--LIE-E) . %.3.7)
8(xj) duy
¥y

The function may be considered as a coordinate shift due

1
xj)

to the magnetic induction effect.

Thermal Conductivity: We can write (4.1.17) as

Ai ZeZB§
\ =1 - —Q3 . (4.3.8)
45 Byp

Using (4.2.7), we have
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2.2
* 2e B
L—: _——3 &—2
1 2 (mRT) . (4.3.9)
45 p

We define the kinematic viscosity v as
v = % . (4.3.10)

Thus, equation (4.3.9) becomes

*
72 °B3

=] - —<(—
45( m

dd

2.v .2
) G . (4.3.11)

The table of ratios between the'apparent’'thermal conductivity

and thermal conductivity for electron gas is listed as follows:
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We may also rewrite (4.1.18) in the following ways:

*
(a) Si = -2)\ BI_

, (46.3.12)
%,

where

2e2B2

*
TV = (1 - ——5)T i %.3.13)
45 Blp

The symbol T* may be treated as a new temperature scale which
is caused by the magnetic induction effect.
*
®) s, =-2@h , (%.3.14)
i dx%y

where

@Ly* o 1 _al

(4.3.15)
3% h(B,) ax;
and
2 2
L 2e By (4.3.16)
= (1 - —_—-) ° . ]
ey "¢

L may be considered as the effect of magnetic
h(,)

The function

induction on the temperature gradient of the gas.
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APPENDIX A

SUMMATIONAL INVARIANT

By the conservation of momentum and energy, one gets

E +-§1 =T' + §i ; and

(A.1)
el gl =gt eg’.

Grad [15] stated that a collisional invariant is a point function

¢ defined in the six-dimensional space (E,El) as
9€"ED =0@E) . (A.2)

A collisional invariant which split into & sum of functions of

§ and of El is called a summational invariant. Thus we have
9D =¥®) +¥YED - 4.3)
If a continuous function satisfies the relation
o€ +E 80 +E) =¥ D +¥YED (a.4)
then it follows that

YE) =a'e? +B'F 4+ . (A.5)
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APPENDIX B

COLLISION INTEGRALS

The rate of change of d.f. f(E,;,t) is given as

j—f-g§+§i§§i+Li§§f—i=<§-f-)c , @®.1)
where (gf)c is the rate of change of f(g,;,t) due to forces
between particles.

The evaluation of the Boltzmann collision term is taken
from Grad's paper [15]. The following assumptions are used in
evaluating the collision term (gf)c:

(a) Point Particles: This assumption provides the
justification in writing equation (B.l).

(b) Complete Collision: This assumption states that the
time of collision is small. Hence, the energy of the gas is al-
most entirely translational kinetic energy.

(c) Slowly Varying f£f: This assumption reveals that
£E,x,t + dt), £(E,x + dx,t) and f( + dE,x,t) do not differ
appreciably from f(g,;,t).

(d) Molecular Chaos: This assumption reduces to the fact
that the joint distribution function of two particles which are
exerting forces on each other is equal to the product of the two

individual distribution functions.
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We can also write

d—Fg (LF)

dt dt’c ’ (8.2)

where F = f/m is the number density of particles. The symbols

8,e and r are polar angle, azimuthal angle and radius respectively
in a spherical coordinate system with axis along the relative velocity
U between the two particles (0) and (l1). Let dw = rdrde as

the element of area. We use symbols df and dx to denote
d§1d§2d§3 and dxldxzdx3 respectively. The probability that
particle (1) approaching dyw collides with particle (0) in the

time dt is the probability that particle (1) lies in a cylinder

of volume dwUdt. By the assumption (d), this probability is

(F (€)dgdx](F E,)ds [Udwdt], where U = - E’l. The probability

that in time dt particles E' and Ei will collide and become

£ and §, respectively, is [F @')dg'dx][r(*g‘i)dgiu'dwdt]. The
notations (§,€1) and (E',Ei) designate the velocities of
particles before and after collision respectively. The Jacobian

of transformation from (E,El) to (E',Ei) is proved to be unity,
i.e. a(E',Ei)/a(§,€1) = 1. Thus dg§'dg} = dgdf, and U' =U.

For fixed dw, the net increase due to collisions of the number

of particles (0) in the product space dxd§ during the time dt

is (F 'Fi - FFl)Udmdgldxdgdt. Here the notations F',Fi,F, and

F1 imply F(E'), F(fi), F(§) and F(El) respectively. Integrating
over all orientation, dw, and over all colliding particles d§1,

we obtain the rate of change of the particle density F due to

collision,
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dF _ v )

it jU(F'Fl FF |)dwd€ : (B8.3)
or

af . 1 et _

il jU(f £ ffl)dwd!;;l . (B.4)

Equating (B.l) and (B.4), we get

(§§)c - éIU(f'fi - ££)dede, B.5)
or

Co, = 5 [P0 (E's) - £ )d0deds ®.6)
where

B(g, 1) =U r(e,V)gg . B.7)

We define

(n) 1 \- et
Jo =@ Je@UEE] - £E)dudg dE (8.8)

where ¢(§) is an arbitrary function of velocity. A change of

variables from (§,§1) to (§',§i) has Jacobian unity, implies

that (€',€i) becomes (5,21), so

(n) _l [ ter .
Io =a Je@"Uce'ey - ££)dwdgdE, (8.9)
or
3 o Lre@nuesy - £f yawdgag (8.10)
® m J P51 1 1 ¥

From these relations, we write

(n)
¢

;™ . -zl—u-“[‘(qJ - @' UE'E] - £f)dudEdE, (B.11)
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or

(n) = _1__ - v ' v
J(P 4mj‘(<.p+cp1 ® cpl)U(f'fl ££)dwdgd . (B.12)

The term Jén) =0, if ¢ is a summational invariant, since by
definition ¢ + 9 = ' + ¢i. Applying the same transformation

of variables, equation (B.12) gives

(n) . ' v - .
To m J @'+ ] - ¢ - ¢ )UEf dudgdE, (B.13)
or
m) o1
Jo = om [LEE 88, (8.14)
where
I, =J@' +e]-9-¢PBe,dede . (8.15)
. . - - =2 - =2
Using notations cicj =c c and cic =cc, we obtain

from (B.1l4)

a3 _ 1 .
370 = 2m.f1iff1d§d§1 ; and
(B.16)
(2) oL
Jij = J‘Iijffldgdgl ,
where
1, = [lce,¢41B (0, d0de 5 and
(B.17)

L =j‘[c1cj]n‘(e,0)dede .

The symbols [c ¢] and [¢ 22] represent c'c' +d'd' - -dd
and 2'3'2 + 3'3'2 -c 22 - 232 respectively. The following

notations are introduced
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+ 2 (« a-ﬁ) (o G'U) v+ (&'-if)V

|

> (B.18)

; and

2 a0 - @a)l - @ a0 ; (8.19)

. (B.20)

Rl

Figure B.1l Unit Vector o in Spherical Coordinates

Defining the unit vector @

(Fig. B.1l) with respect to

the polar direction U as o+U = U Cos @, we obtain
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2 _.-.2

Ion(q-U) de = 2m UZCosze H (B.21)
20 - 2 .

Io (@ a-U)de = 2m Cos“p [ij H (B.22)

and

2-0—0—0 — - — 2
jon(a o*'U) (@ o¢+U)de = 7 UZCosze sin 9 6i

3

2
+n Cosze(Z Cos @ - sinze)UiU . (B.23)

3

Using relations (B.19), (B.20), (B.2l), (B.22) and (B.23), we

obtain
2n 2 L2 2 .
Io [cicj]de = 211 Cos § sin §(U 6ij - 3Uin) H (B.24)
and
2 -2 2 2 2
fon[cic J]de = 2w Cos @ s8in (U 61j - 3Uin)VJ (B.25)
Let
- = 2 2
BI(U) = ﬂIB(e,U)Cos @ sin" 9 do . (B.26)
Equations (B.l7) can be written as
- 2
I, =28,()(U 61j - 3U1Uj)vj ; (B.27)
and
- 2
Iij = ZBI(U)(U 611 - 3U1Uj) . (B.28)

Assuming that all particles are Maxwellian (i.e. the potential
energy function varies as lz , also the cross section for

r
momentum transfer varies as 23 where g 1is the gravitational

acceleration, and the collision frequency for momentum transfer

is independent of the particle energy.) and using the universe
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fifth power law, we retain only the highest order terms in P

and d in the following expansions:

2 -2 =2
U 6ij - 3U1Uj c éij 3cicj +d 6ij - 3didj
+ terms linear in c; or di : (B.29)
and
(Uzb - 3U,U)V, = -2¢ 32 - 2d 32 + terms linear in
ij i37"3 i i

c; or di . (B.30)

Using relations (B.27), (B.28), (B.29) and (B.30), equations

(B.16) become:

B

Ji(s) = uTI j(-zci?:'z - 2d1'd'2)ff1dgd§1 ; (8.31)
and
B
@ _21,-2 2,
Iy T a [(c 8 3cicj +d 85 3didj)ff1d§d§1. (8.32)

Integrating df and d§1 separately and using definitions

3.1.6), (3.1.7), (3.1.9) and (3.1.10), we obtain

4B
3 _ 4 ,
Ji " o S1 H (B.33)
and
6B
@ _



APPENDIX C

THE EQUILIBRIUM SOLUTION OF THE BOLTZMANN BQUATION

Following Grad [15], we define that state of equilibrium

is a state in which f is independent of X and t, and L1 = 0.

Thus, the Boltzmann equation reduces to

afy - )
(at)c 0 ; (c.1)
or
IU(f'fi - £f,)dwdg, =0 , (C.2)

where f 1is a function of 3 only. We can also write

Jo UCE'E] - ££))dwdEdg, = 0 ; (c.3)
or
[ +o, -9 - @ IU(E'E] - £f)dwdEdg, =0 . (c.s)

Letting ¢ = log f and inserting this in (C.4), we get

I(log f + log £, - log £' - log fi)U(f'fi - ffl)dwdgdgl = 0; (C.5)

1
or

££
[U log Friv(E'e] - £f))dudgdE, =0 . (C.6)
1

The integrand of (C.6) is never positive, since U = 0 and
ff

log 'TLT has the opposite sign as (f'f! - f£.). If f is
f f1 1 1
continuous, the integrand must vanish identically. Hence

66
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ffl
log FTET =0 5 (C.7)
1
or
log f + log f; = log f' + log fi . (c.8)

We see that 1log £ 1is a summational invariant. By (A.5), it
follows that
' 2 g [

log f = a'€” +b'-€ + ¢ ; (c.9)

or
— - 2

f =aexp{-bE - u)} . (c.10)

The parameters a, b, and u are introduced instead of a', b',

and c'. 1Integrating (C.10) and using relations (3.1.2), (3.1.3)

and (3.1.6), we obtain

m.3/2

p=a() 5

U=u R and (c.11)
a 3/2

P =@ :

After rearranging and using the equation of state (3.8.21), we get

@ = 5T ;

3
(2TRT)
u=7g ; and (C.12)
b= EEE .

Hence, equation (C.10) can be written as

£ . —Lrs exp{ -c2/2RT} . (c.13)

(2TRT)
This is the well known Maxwellian distribution.
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