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ABSTRACT

INTEGRAL-OPERATOR ANALYSIS FOR SCATTERING AND

COUPLING IN OPEN-BOUNDARY DIELECTRIC WAVEGUIDES

BY

Shuhui Victor Hsu

Integral-operator analysis is employed to study two

classes of commonly encountered problems in Open-boundary

dielectric waveguides. They are the scattering by obstacles

along the waveguide and the coupling between waveguides in a

multi-guide system. First, in the scattering treatment, an

equivalent polarization current is identified from the

contrast of refractive indices between the discontinuity

region and the unperturbed background. Exploitation of this

current establishes an electric-field integral equation

(EPIE) describing the unknown discontinuity field, which,

leads to the formulation of scattering coefficients.

various solutions to the EFIE are discussed, including the

Fourier transform method, Method of Moments, and iterative

sloutions etc. In the treatment of waveguide coupling, a

similar procedure yields a system of simultaneous EFIEs

describing the coupled system-mode field for each waveguide.

Subsequent coupled-mode perturbation approximation yields



modal amplitude coefficients and the coupling coefficients.

Applications of the above analysis and solutions are

demonstrated via one-dimensional slab waveguides. Merits of

various solution approaches are evaluated. Moreover, the

correctness of the obtained results are verified; this

consequently confirms that the integral-operator analysis

provides an alternative to the conventional boundary-

value analysis.
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CHAPTER I

INTRODUCTION

Open-boundary dielectric waveguides, as Opposed to the

conventional closed-boundary metallic wavegbides, are

dielectric structures capable of guiding prOpagating

discrete TE, TM or hybrid modes and radiation modes having a

continuous eigenSpectrum. In its most elementary form, it

consists of a dielectric guiding core which provides a

positive contrast of refractive index relative to that of

the surrounding medium (cladding) within which the core is

immersed. Confined electromagnetic (EM) fields possess the

usual complex-exponential propagation dependence along the

waveguiding axis, but are characterized by a real

exponential decay along the direction normal to and away

from the guiding structure. Field confinment in the core is

essentially a consequence of the phenomenon of total

internal reflection at the core-cladding interface. Such

structures therefore also geneally known as ”surface

waveguides”.

Interest in EM propagation along open-boundary

dielectric stuctures has existed since the early part of

this century [1] and has progressed with a varying degree of

intensity from that time [2]. Recent develOpment and
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applications of semiconductor lasers in the communication

area has stimulated widespread interest in certain classes

of dielectric waveguide for guiding light waves, e4L, the

”optical fiber” [3]. Together with the expansion of

activities from the microwave spectrum into the millimeter

wavelength region in the past decade these studies have

culminated in a large store of information characterizing

such surface waveguides as transmission and circuit system.

Yet, according to Kogelnik [4], integrated optics though

intriguing, remains in its infancy at the research stage; a

similar review for the dielectric waveguide microwave

integrated circuits was given by Knox [5].

Taylor and Yar iv [6] point out in their review paper

that virtually all integrated-optics decvices, iue.,

couplers, modulators, switches and filters, depend

critically for their operation upon the characteristics of

low order surface-wave eigenmodes supported by isolated or

coupled systems of integrated dielectric waveguides. Among

the class of uniformly-clad, isolated waveguides, exact

solutions exist [7,8] only for planar-slab structures or

fibers having circular or elliptical cross-section shape,

while the only coupled system which permits an exact

solution is composed of parallel slabs. Since boundary

conditions at the core/surround interface are inseparable

for more general core geometries, conventional differential-

operator based methods [9,10,11] become ineffective for

such guides. They have, however, provided approximate
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solutions to these problems as demonstrated by Marcatile

[12] and Goell [13]. The integral-operator description [14-

16], related to Katsenelenbaum's [l7] polarization integral

equation, for uniformly-clad, open-boundary dielectric

waveguides, provides a conceptually-exact formulation for

propagation modes supported by the waveguiding system having

any number of graded-index cores with arbitrary cross-

section shape.

This dissertation, consisting of two parts, describes

the integral equation formulation as an alternative to the

conventional boundary-value analyses in the areas of surface

wave research where knowledge of basic phenomena and

accurate solutions remain relatively incomplete. 'This

research includes the scattering of surface waves by

obstacles along the cladded dielectric waveguide [18,19] in

Part I, and the modal coupling phenomena in a multi-

waveguide system [15] in Part II.

The most comprehensive available treatments for

discontinuities along open dielectric waveguides are those

by Marcuse [20] which deal with the abrupt junction between

two dissimilar guides and the interaction of surface waves

'with small, distributed surface irregularities. .Among all

discontinuities which have been studied, approximate

analyses [20-23] of the abrupt junction between dissimiliar

(primarily planar slab) waveguide sections have

predominated. Rigorous treatments [24,25] of output

coupling from a planar, solid state hetero-junction laser
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have been advanced, as well as a Greenfs function approach

to scattering from periodic discontinuities in a planar DFB

laser [26]. The only rigorous analysis for ensembles of

step discontinuities along planar-slab waveguides is

evidently Rozzi‘s [27,28] investigation based on a two-

dimensional integral-equation formulation for the fields in

transverse discontinuity planes. Vassalo [29] has provided

a large-scale, scattering-coefficient, circuit formulation

for discontinuities along open waveguides. Mode conversion

as a result of scattering was investigated by Lewin [24] for

a heterojunction laser.

Surface-wave-mode coupling between adjacent, uniformly-

clad dielectric waveguides has been studied by a number of

investigators [31-33]. The most complete study of coupled

mode theory was given by Miller [34] for conducting

waveguides and, for integrated configurations, Marcatili's

[12] approximate analysis of coupling between rectangular

waveguides remains the primary work. Most conventional

differential-operator based treatments [31.35.36] are

approximate in nature. 'Their application is limited to

weakly guided or degenerately coupled systems where accurate

solutions are possible. To obtain more accurate results for

non-degenerate coupling, Kuester and Chang [33] presented a

variational approach [38], assuming that coupled guides are

well separated. The only exact treatment was given by Jones

[39] for coupling of parallel fibers. There, a surface

dyadic Green's function including contributions by the
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continuous spectrum was considered. iHowever, subsequent

treatment was based upon a set of coupled differential

equations converted from integral equations initially

formulated for the transverse cross-sectional plane of a

coupled waveguide configuration.

In Chapter II of Part I, the discussion on scattering

of surface waves along dielectric waveguides begins with the

recognition of index contrast between the discontinuity

region (or obstacle) and the waveguiding region. This leads

to the identification of equivalent induced polarization

current in the discontinuity region. The fundamental

electric-field integral equation (EFIE) for the unknown

electric field in the discontinuity region is developed in

terms of the electric dyadic Green's function. The nature

of the imbedded source point singularity in this EFIE is

pointed out as well as the effects of the depolarizing dyad

which results from the associated principal-value

integration. Scattering coefficients (both reflection and

transmissions) are subsequently formulated in terms of the

solution for that unknown discontinuity field. Mode conver-

sion from an incident principal mode to higher propagation

modes in the scattering process are discussed. Applications

of the above EFIE are presented in Chapter III with

specialization to a slice gap discontinuity along a one-

dimensional slab waveguide» Several solution technigues are

discussed, including: i) approximate closed-form

radiationless solution, ii) approximate solution including



6

the radiation contribution, iii) Moment-Method numerical

solution and iv) iterative solution in the spatial domain.

Part II discusses the coupling between multiple

dielectric waveguide systems. In Chapter IV, following the

identification of an equivalent polarization current which

arises due to the index contrast between the guiding core

and its surround cladding, the formulation of an integral-

operator description for a single dielectric waveguide is

first presented. This EFIE is subsequently generalized to

describe the EM field supported by a coupled system of N

waveguides. These EFIEs are subsequently specialized to

describe the natural, guided, axially-propagating, coupled

surface-wave modes supported by the systems. A perturba-

tion analysis based upon the isolated guide‘s modal field,

and the EFIE which it satisfies, is developed and

subsequently applied to a system of two coupled waveguides.

The system mode propagation constant, which depends upon the

degree of coupled-guide interaction, is obtained for a

weakly coupled system. ZFurthermore, this conceptually-exact

formulation with perturbation approximation is shown to

recover the results of the standard differential-operator

based coupled mode theory. Application of this integral-

Operator-based coupled mode theory is demonstrated in

Chapter V. When a coupled slab-waveguide system is

considered, Fourier transform solution to the coupled EFIEHs

are shown to recover the well known characteristic equation.

for a two guide system. This confirms the correctness of
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the integral-operator approach. Numerical calculations for

phase constant shift AB, due to coupling, are studied using

the perturbation approximation for two coupled slab

waveguides, both degenerate and non-degenerate cases.

Results are compared with the exact solutions obtained by

other researchers.



CHAPTER II

p INTEGRAL-EQUATION FORMULATION FOR SCATTERING BY DIELECTRIC

DISCONTINUITIES ALONG OPEN-BOUNDARY WAVEGUIDE

In practice, a surface waveguide is only the intercon-

' necting component of a complex network which consists of

both active and passive wave processing devices such as

modulator, amplifier, and directional coupler etc. It is

therefore commonplace to encounter some kind of discontinui-

ties at these device interfaces in addition to any imperfec-

tions which arise from wall irregularities, inadverdent

bends, etc. of the guide sturcture itself. And, when a

surface wave is incident upon these discontinuities, it is

subsequently scattered, iae., reflected, transmitted and

radiated.

There have been several treatments on the subject of

the scattering of surface-wave modes in a dielectric

waveguide by obstacles such as step discontinuity [21,28],

or the losses due to waveguide tapers and random wall

perturbations [44]. Most of the approaches are either

variation method or mode matching technique. This chapter

presents an analytical formulation [18,19] to calculate the

amplitude of scattered waves through the application of a

polarization integral equation [45,46]. Such that, the
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advantage of digital computation could then be utilized for

any arbitrarily-shaped discontinuity as often the case of

pratical concern.

Consider an arbitrarily-shaped discontinuity region Vd

of permittivity 6(E) along an open-boundary dielectric

waveguide of permittivity 5g imbedded in a surrounding

cladding medium of permittivity 5c (Figure ZJJ. We can

immediately identify a contrast of permittivity between the

discontinuity region and the unperturbed waveguide system.

This contrast gives rise to an equivalent polarization

current, which in turn maintains the scattered field. An

integral equation is formulated for the unknown electric

field, which is proportional to the equivalent polarization

current within the discontinuity region. By solving for

this unknown field, the amplitudes of the reflected, trans-

mitted and radiated fields are readily calculated. Also to

be discussed in this chapter is the conversion of modal

fields due to scattering by the discontinuity in a dielec-

tric waveguide capable of supporting multi-mode propagation.

2.1 Equivalent Current Description for the Discontinuity
 

Region

Referring to Figure 2.1, let eu(E) be the permittivity

profile of the unperturbed, axially-uniform (5= fix + 22 =

2-d position vector) dielectric waveguide with the following

decomposition
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89(5), at points in the graded-index

waveguide core

cum) =

€c(5)' at points in the surround.

Note that in general the surround need not be homogeneous;

in the case of integrated-optics system, it could be a

layered dielectric system with substrate covered by film and

overlay dielectric regions. The discontinuity region Vd has

a complex permittivity of €(f), where e(?) differs from

59(5). Incident wave E1 induces an equivalent polarization

distribution in Vd, and the latter polarization excites the

scattered field ES. It is the sum of the impressed field

E1, due to remote sources with the discontinuity absent, and

E5, the scattered field excited by the discontinuity,

results in the total field E anywhere inside the disconti-

nuity region as

(2.1.1)

We can identify the equivalent polarization current

from the Ampherefls Law of the Maxwell equations by adding

and substracting to it the displacement current of the

unperturbed waveguide jweuh(5)E (harmonic time dependence

ejmt implied but suppressed throughout) to obtain



where'

L
i
l

eq

eq

31:

The induced current 3

12

3e<£> + jw[e(E) - eu(5) §(E)]+»jweu(6)fi(f)

-e _ _ _ , _ - _
J (r) + Jeq(r) + jweu(p)E(r)

3t(E) + jweu(E)E(E)

(2.1.2)

impressed electric current which maintains

impressed incident field Ei,

ijeq (2.1.3)

equivalent induced polarization current which

describes discontinuity region Vd and

maintains scattered field Es, with

[e(E) -eu(E)] E(E)

so [n2(E) - n:(E)]E(E)

e 5n2(E)§(E)
0 (2.1.4)

a polarization density in terms of the

contrast of refractive index 6n2(?), and

-e —

J + Je (2.1.5)

9

= the total effective current

eq' which is proportional to the con-

trast of refractive index nonvanishing only in discontinui—

ty region Va, is now expressed in terms of total field

in that region as



l3

3eq(E) = jweoan2(E)E(E) .

(2.1.6)

2.2 Formulation of EFIE for the Unknown Field in the

Discontinuity Region
 

Since the scattered field ES(E) is induced by polariza-

tion current Seq of (2.1.6), which is proportional to the

unknown field 6(2), equation (ZJLJ) is rearranged to

(2.2.1)

Such that both terms on the left-hand side of the above

equation depend upon unknown total field E(?). When E5 is

expressed as an integral operation on EG), equation (2.2.1)

subsequently leads to the fundamental integral equation

which describes unknown discontinuity field E(?).

We proceed to expand scattered field E3 in the

complete set of eigenfunctions (both discrete and

continuous) of the unperturbed dielectric waveguide.

Solving for the amplitude spectrum of these spectral

components (eigenfunctions) will then yield a complete

description of the scattered field. Let En1(?) be the

n'th discrete surface-wave mode and Ecifij) be a

spectral component of the continuous eigen-spectrum having

a two-dimensional spectral frequency E = §£x + 95y. The

upper and lower signs of the superscrip 33 represent the
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wave traVelling in +2 and -z directions respectively. Then

on

ESE) =23: if: (E) +1] A(fifiiéfémza
n

--m

for z .2 2' (2.2.2)

where z' locates an element of polarization current with

g=‘/g§+g§ while afi and A¢(p) are, respectively, the

amplitude coefficients of the discrete eigenmodes and conti-

nuous eigen-spectrum. The modal eigenfields propagating in

the :2 directions are

Ijan

that) = aim3.538%”- [ét(5.§) . 2ez(5,:)]e¥i8<€>z

(2.2.3)

where 3n is the phase constant of the discrete n'th surface-

wave mode while 3(E) = [kg-521112 is the phase constant

of the continuous spectral component with spatial frequency

'5.

Amplitudes of discrete surface-wave modes and their

orthogonality properties are well known [9,41,42]. Through

the application of Lorentz Reciprocity Theorem, these

properties have also been established in a general manner

for the continuous radiation—mode spectral components [43].

These normalization and orthogonality relations for the

transverse field components Et(5) and ht(5), which apply



15

over the infinite transverse cross—sectional plane of the

dielectric waveguide, are

6

- 5 (5H5 (6) ds = —m-5‘-
.ICS [ tm. tn ] 2

N
)

(2.2.4)

for discrete surface-wave modes, and

N
)

r
—
-
fi

C
D
]

A “
O
I

‘ m
l

V

X 5
’
!

r
.
- A ‘
O
I

‘ m
l

.
3

t
_
_
J

D
;

(
D II

N
I

1..
(2.2.5)

for spectral components of continuous

radiation mode.

With the above normalizations, the amplitude coefficients are

then obtained [42,43] as

(2.2.6)

(2.2.7)

Substitution of'a: and AWE) into (2.2.2) for

scattered field Es leads to

-¥-.-.- -- ,-¢_-2..ff [L Ec(r ,g) Jeq(r )dV]Ec(r.€)d E

d—00
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(2.2.8)

Scattered field E5 can therefore be represented by the

following integral operator

-3— - “-‘. .- -I U

E (r) —.l; G(r|r ) Jeq(r )dV ,

d (2.2.9)

iae., Es(?) maintained by equivalent volume polarization

current seq is expressed in terms of electric dyadic Green's

function 6(EIE'). This Green's function has been

constructed from (2.2.8) as

5(EIE') = Ed(E|E') + E (EIE') ' with

(2.2.18)

3 contribution by discrete surface—wave modes,

and

=-- -t---*‘-.-2 =- -.
G (rIr') = -pv Ec(r,€)EC(r ,g)a g + L6(r - r )

r

(2.2.11)

= contribution by continuous radiation-mode

spectrum.



17

To obtain the component forms of Gd(E|F') and Gr(?|?'). we

substitute expressions (2.2.3) into (2.2.18) and (2.2.11)

such that

-- _ .

Edtflf') =-ZN:[5tn(B) .+. Eeznm] [5tn('5') $282.15") e+JBn(Z z ).

n I (2.2.12)

It is noted that exp [ern(z-z')]= exp [-j3n|z-z'|]

because, for an element of polarization current at 22.2.22'

for forward scattered waves and z 32' for backward scattered

waves, resulting in

-' .. '

EdGlE') =-i[étn(5) 1 2e2n(5)] [5131wa 2e2n(5,)] e JBnlz z I.

n (2.2.13)

Similarly

G
i
l
l

rm?) “FY/:1. [Std/é) : £ez(6.'é)] [ét(6'.E) ; 2ez(6'.2)]

x e'jB‘E’Iz‘z'laZg + i 6(E - E')

(2.2.14)

The principal-value notation PV in Gr(?|?U indicates

that the integration over the discontinuity region Vd should

be taken in a manner which excludes the source-point

singularity when F' passes through field point E, i.e.,

F-E'aO. Furthermore, a depolarizing dyadic quantity

is found necessary in Gr(?IFU to evaluate the contribution

from this source-point singularity [40,47,48]. Depolarizing

dyad I is identified and evaluated in the following section
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as appropriate for the case of dielectric waveguides.

From equation (2.2.9), the scattered field E5 can be

written in terms of its source polarization current

Jequmeoan2(f)fi(f) as

= jwe0.].6n2(r' )G(r|r' ) ° E(r' )dV' -

Vd

(2.2.15)

With the above integral operator for E55), relation (21.2.1)

becomes an electric field integral equation (EFIE) for the

unknown total field E(E) within Vd

172(5) - —z—f 6n2(E')c=;(E|i-') ~E:(E')dv' = aim
V
d

for all I EVd

(2.2.15)

Where kosw poeois the free-space wave number and 20: 0/50

is the associated intrinsic impedance. EFIE (2.2.16) con-

stitutes the fundamental mathematical model which charaete-

rizes the fields of discontinuity region in a dielectric

waveguide. It is normally assumed in the following discus-

sions that a remote source 3e which maintains an impressed

field E1 consisting of single surface-wave mode in the
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region of interest, such that solutions to the EFIE for E1

excited in Vd by E1 lead subsequently to the scattered

field interior to Vd through expression (2.2.15).

2.3 Depolarizing Dyad for Electric Dyadic Green's Function

The dyadic Greends function Er(?|ff) of (2.2.14),

which is the contribution due to the continuous radiation

spectrum, has a ———£———— singularity at E = E', the source

E - 5'

point. ThereforL, exprLssion (ZJLll) for the scattered

field E3 possesses a non-integrtable singularity and the

integral does not exist unless an infinitesmal volume 6V,

the principal volume, surrounding F = f' is excluded as

shown in Figure 2.2. Mathematically, the integral of

5r(? [EU is carried out in this principal value sense such

that the spatial frequency integral in Er is rendered

convergent; however, physically the exclusion of 6V inter-

rupts the equivalent current (proportional to electric

field) of the discontinuity region. As a result, a non-

physical polarization charge layer is created on the surface

of 6V. Consequently, the effect of the surface charge due

to the exclusion of 6V, which is built into the principal-

value integral, should be substracted in order to obtain a

correct result [49]. It is the purpose of this section to

demonstrate that the charge density on the principal volume

does maintain a finite value of electric field at its center

as 6V approaches zero in the limit.

Consider a principal volume 6V which is cylindrical

in shape with height 2a and radius 2b such that a/b<<1 as
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Figure 2.2 Surface charge layer created by the inter-

ruption of equivalent polarization current

due to the exclusion of principal volume QV

around the source-point singularity at r=r'.



21

shown in Figure 2.3. A coordinate system is chosen so that

its origin coincides with the field point; 6V is oriented

with its axis parallel with the principal axis of propaga-

tion 2. Since 6V is a small volume, with quasi-static

approximation, the electric field E at the center of 6V

can be expressed in terms of scalar and vector potentials

as

E = - V¢ - ij

.__~_ _1_ 13 ESE

4“ As R3 (2.3.1)

where e is the local value of permittivity and R is the

distance between the source point and field point. Although

not shown in (2.3JJ, the volume integral involving vector

potential A vanishes in the limit as 6V approaches zero.

n ,the surface charge density over AS, is equal to

-(fi-3)/jm from the equation of continuity, n is the surface

normal of AS as shown in Figure 2.3.

In the limit as 6V approaches zero, the surface

integral (2.3JJ over AS=ASI +ASz + A83, sum of top, side

and bottom surfaces of 5V, is reduced to

 

 

E = __(__zzjuie 3) 11m 1 - a/b ]

5V+o J(a/b)2 + 1

_ 2(2 - J)

- jwe '

(2.3.2)

It is observed from the above expression that, as long as

a/b<<1, the contribution to the electric field at center of



 

 

 
 

  

 

 
 

Figure 2.3 Cylindrical principal volume 6V with a<<b,

centered at field point (the origin), having

its axis parallel with the principal axis

of propagation z.
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5V is insensitive to the shape of its cylindrical cross

section.

To further enhence the above observation, a rectangular

pillbox of sides a, b and c, centered at origin, is shown in

Figure 2.4. Assume that c/a<<1 and c/b<<l, then given the

same procedures as before, electric field at the center of

5V can be obtained as

 

 
E = 11m - fig- tan"l [ ab ]

5V+O cqu + b2 + c2

- 2(2 - 3)

- we °

3 (2.3.3)

Note that in (2.3.3), if a==b=c, i.e., a rectangular cube was

given instead, then a well known result is obtained:

33mg . (2.3.4)

Hence, the induced charges on the surface of 6V,

although artificially created, do produce a finite electric

field at the singular source point. However, the magnitude

of this electric field which is essentially the value of the

depolarizing integral involving the depolarizing dyad

1
7
'
"

H
I

H
I l)=.__

(2.3.5)

will vary, depending upon the shape of 6V [48,49] which is

chosen to best suit the geometry of the source region.
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Figure 2.4 Rectangular pillbox as principal volume with

c<<a, c<<b, centered at field point (the

origin), having it axis parallel with the

principal axis of propagation z.
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2.4 Scattering Coefficients and Mode Conversion
 

Consider a multi-mode waveguide which has a transverse

dimension large enough to support the propagation of more

than a single surface-wave mode. Scattering of an incident

surface—wave mode by discontinuities along such a guide

results in the excitation of additional discrete and radia-

tion modes in the scattered field. This mode conversion

phenomenon is usually undesirable, since energy is radiated

through coupling to the continuous spectrum or just simply

carried away by non-principal guiding modes. It is there-

fore of practical interest to calculate these scattering

coefficients.

Using the configuration as indicated in Figure 2.5, let

the region of discontinuity be bounded by two reference

planes, ime., 2221, the input terminal plane and z=22,

the output terminal plane. Assuming that a single surface-

wave mode of m'th order propagates down the open boundary

waveguide and is subsequently scattered by the discontinui-

ty. We define the reflection coefficient at z=zl as the

amplitude ratio of the back-scattered n'th surface-wave mode

to the incident m'th surface-wave mode

- +jBnzl

ane

 

mn = -j8mz1

Eoe

(2.4.1)

where a; is the surface-wave mode amplitude of the

normalized backward scattered nlth mode while E0 is the

normalized amplitude for the incident wave. .Similarly the
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Figure 2.5 Locations of input ans output terminal

planes at 21 and 22 for the definition of

reflection and transmission coefficients

appropriate for the incident m'th surface-

wave mode and the scattered n'th surface-

wave mode.
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transmission coefficient Tmn at z=22 is defined as

amplitude ratio of total transmitted n'th surface-wave mode,

i.e., including both incident and scattered wave, to the

incident m'th surface-wave mode at z=zl,

T = (Eodmn + a;)e Janz

mn -ijzl

Eoe (2.4.2)

where a; is the surface-wave amplitude of the normalized

forward scattered nlth mode; 305mn represents the contribu-

tion of the incident field at the exit plane, it is nonzero

only if n=m, as would be the case in mono-mode waveguide.

Both a}: and a; can be obtained from E5 of (2.2.9)

which, in mono-mode waveguide, has the discrete component

jk - = .. _ _ ..

-—JQ 6n2(r')G (rlr') - E(r')dV'.
20 V’ d

d

(2.4.3)

The finite sum in the discrete Green's dyad is specialized

to extract the contribution by the n'th surface-wave mode,

Edn° When Edn is expressed in terms of its tranverse and

longitudinal components as

Edn(E|E') = - fi§(f)§;(5')

- [atn(6) 1 2e2n(5)][etn(5') ; gezn(5.)]

-jBn|z-2'|
Xe

be. for all EEVdI

(2.4.4)
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it is clear that the transverse component field in the

reflection coefficient Rmn is produced by

_ - _ _ A _ +jBn(z-z')

etn‘°’(etn‘p" + zezn(p')]e .

(2.4.5)

Notice that the lower sign of superscript 'z'in equation

(2.4.4) is selected for the backward travelling wave, this

is because z is to the left of the input terminal plane,

such that zg 215 2'. By substituting (2.4.5) into (2.4.3),

the discrete portion of the scattered field, we then obtain

the backward scattered wave for the n'th mode as

_ _ _ +jsnz

an etn(p)e =

jk +jB z_ _ _ _ _ A _ _ _ -j8 z'

-(-z-:.-)e 1" etnmfv 6n2(r')[etn(p')+zezn(p')]'E(r')e " dv'.

d (2.4.6)

Following the same procedure, the total field for the n'th

mode to the right of exit plane z=zz, is expressed as the sum

of the transmitted and forward scattered waves as

-jan

(a a + a )étn(6)e

-jB z

(p)e “
= E05mnetn

jk ’38 Z_, _ _ _ _ A _ _ _ +j8 z'

—-2)e n etn(p)j;,6n2ir')[etn(p')-zezn(
p')]'E(r')e n dv'.

-(
20 a

(2.4.7)
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By substituting the transverse field amplitudes obtained

from equations (2.4.6), (2.4.7) and the transverse component

amplitude of incident m'th surface-wave mode from

-jB z

Etm(f) = Eoétm(5)e

into definitions of scattering coefficients given by (2.4.1)

and (2.4.2), we obtain Rmn and Tmn at the corresponding

input and output planes as

j(Bm+Bn)z1

 

'jkoe f 2 - -.- - -
R = 6n (r')E (r') ' E(r')dV'

mn E020 Vd n

(2.4.8)

and

'j‘anz'Bmzl) jko 2 -. -- -. - -. .
Tmn=e [Um-ET (Sn (r )En(r) ° E(r )dV].

0 0 Va '

(2.4.9)

Use was made of the normalization relation (2.2.5) for étn'

the transverse wave component, over the infnite cross sec-

tion of the waveguide.

For the case of a mono-mode dielectric waveguide, ime.,

a waveguide that supports only single dominant-mode propaga-

tion, there is no excitation of higher-order discrete

surface-wave modes in the scattering process. However, mode

energy is lost through backscattering, radiation coupling to

the continuous radiation mode spectrum and increased dielec-

tric loss due to the existence of standing wave, etc. Equa—

tions (2.4.8) and (2.4.9) can be specialized for the mono-
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mode dielectric waveguide by letting m=n to obtain

. 2jBmzl

R = 6n (r')E (r') ' E(r')dV'

m E Z m

0 0 Vd

 

(2.4.10)

and

T ==e

-ij(z2-21)

m

jko 2 - -- - - -
1"E'—z (Sn (r')Em(r') °E(r')dV' .

o 0 Va

(2.4.11)

Finally, it follows from the conservation of energy, the

relative radiation loss as'a result of scattering is

Power radiated _ 1 _ IR 2

Incident power - mI
-l'r|2-

m

(2.4.12)

2.5 Solutions to Electric Field Integral Equation
 

This section describes various closed-form and numeri-

cal approaches to approximate solutions of EFIE (2.2.16).

Without loss of any generality, the dielectric waveguide

considered here is assumed to support only dominant mode

propagation and the incident field consists of a single

surface-wave mode.

First to be discussed is the case of a small discon-

tinuity such that contributions from radiation spectrum can



31

be neglected; solution for the total electric field which

has a longitudinal dependence of exp (iijz), is then

obtained by the Fourier Transform Method. This longitudinal

dependence with phase constant 86 is again assumed for

with unknown amplitude coefficients to implement an appoxi-

mate radiating solution. Subsequent exploitation of this

total field E(E) in (2.2.16), complete with the continuous

radiation component in the Greenis function, yields these

unknown coefficients after enforcing the EFIE at interior

points of the discontiniuty region. Hence, radiated power,

though negligible for small perturbations, can be quantified

to confirm the results obtained otherwise.

Numerical approaches, involving manageable matrix

sizes, are often utilized in solving integral equations to

obtain solutions of higher accuracy. Therefore, it is

appropriate to describe the Method of Moments in the case

where discontinuity is of resonant size or smaller.

Alternative solution based upon iterative process is then

pursued for discontinuities of larger dimensions.

2.5.1 Approximate Radiationless Solution to EFIE

For a small axially-invariant discontinuity (described

by 5n2(5), i4», not necessarily uniform) extending from z =

-2 tot , an approximate closed-form solution can be obtained

for the field in the discontinuity region if radiation is

neglected. This result provides limiting reflection and

transmission coefficients which can be used to confirm more
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accurate MoM numerical solutions, as well as the zeroth—

order discontinuity field required to initiate an iterative

solution.

Neglecting radiation from the discontinuity 5n2(5) in

region |z|<.2 along a monomode (single O'th surface-wave mode

with phase constant 80) dielectric waveguide leads to the

approximate electric Green's dyadic

-j8 lz-z'l
_ -: - -; -. 0

e0(o)e0(o )e -

I
R

E(Elf')

(2.5.1)

If reduced dyadic (2.5.1) is exploited in EFIE (2.2.16), an

approximate IE for unknown E is obtained as

_ _ jk l -jB Iz-z'l _ _ _ - -
E(r) + 2‘0 e 0 dz' an2(p')e§(p)e3(p') °E(r')dS'

- _ "3.802 ..

E Eoeo(p)e ... for Izl g 2, o e CSd ,

(2.5.2)

where CSd denotes the transverse cross section of the

discontinuity region. In the case of a principal mode well

above cutoff, the transverse components predominate over

longitudinal components [12]; consequently, only satisfica—

tion of the transverse components of IE (ZJLZ) is enforced

to obtain
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_ _ jko _ _ 2 'jBOIZ‘Z'I 2 - ; L _ -

E (r)-+-——-e (p) e dz' 6n (p')e (p')-E(r')dS'

t 20 't0 CS 0

d
-l

- - -jBoz -

z Eoeto(p)e ... for |z| g 1, p e csd ,

(2.5.3)

The preceding expression leads to

E(r) Btu) eto(o)w(z)

(2.5.4)

where longitudinal wave function w(z) satisfies the 1-d IE

from (2.5.3)

-jBOIz-z'l -jBoz

W(z) + jkOC w(z')e dz' 2 Eoe

-2

... for [2] 5 l,

 

(2.5.5)

where C is defined as

“2(3); (Bi-é (Bids
CS t0 to

d
C = zro

I

2 E (B)-é (ENS
jrzw(p) t0 to

(2.5.6)

with zw(3), the wave impedance of the surface-wave mode

éto(5). It is observed that C is independent of normaliza-

tion chosen for 5to°
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A closed—form solution to approximate IE (ZJLS) can be

obtained by exploiting a Fourier-Exponential transform for

w(z) as

(2(2) = 5%] i(3(niejnzdn .

CD

(2.5.7)

Substitute (2.5.7) into (2.5.5) to obtain

m , l - I

. - -JB Iz-z |
_1_. ” 3'12 ° ’3“. 0 dz'] dn
2," W(n)[e +jk0Cfe e

-m - -Q

-38 z

= E e 0

0

By selecting the field point z , such that -5L,<_ zSIL,

the above integration over 2' can be carried out and terms

of common functional dependence are collected as follows:

co 2
2jB k c .

~ 0 0 an _

fw(n)[1—————22]e dn-o.

 

 

-m n - B

0 (2.5.8)

-j802 , Q~ e-jn£

— jkoce W(n) j(n + so) an = ZWEO ,

-
(2.5.9)

m~ ejnl - 0

w(n) j(n _ Bo) dn — .

-m
(2.5.10)

Since (Emmi 0, expression (2.5.8) leads (after invoking the

Fourier Transform theorem) to discrete values of allowable

spectral frequency
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_ . _ 2n - i 80 _ iNIBO + ZBOkOC

(2.5.11)

The transform solution therefore consist of the

discrete spectrum

~

¢(n) = 2fiA6(n + 85) + Zanin - 86)

(2.5.12)

with the corresponding wave function

-j862 jBéz

W(z) = Ae + B e

(2.5.13)

Substituting (2.5.13) into (2.5.9) and (2.5.18) results in

 

. -j(86—Bo)£

A = (80 - Bo)Eoe

koC(l - 92)

(2.5.14)

0 = E = 86 - BO e-ZjBéfi

A 80 + 80

(2.5.15)

where p is defined as the reflection coefficient for the

longitudinal wave function ¢(z).

Since E(P)= Eto(5) w(z), if input and output terminal

planes are defined at 28:2, scattering coefficients R00 and

T00 of (2.4.8) and (2.4.9) become

ej‘Bo'Bo’2 . -2j86£

R00=-j29 2 [$111 (86+Bo)l+e

1 - 9

sin (85-so)2].
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I

2

_ 0

Too — e
 

_ jZe . ,_

l [Sln (8o BO)£-+p e

_- -j(B'-B )2 .
32802{ . o o 2 238

2
l - o

x sin ‘36 + 30"]] . (2.5.16)

ZJLZ Approximate Solution to EFIE for Radiating

Discontinuity

The preceding approximate radiationless solution was

based upon the assumption that the radiation contribution

to the Greenls dyadic is negligible. When it is desired to

consider such effects, the following Greenis function should

be employed

'jBOIZ'Z'l

C
H
I

'
1
]

H
I

ll - 53(6)50(6')e

.‘ _ _ _ _ _ _ -jB(€)lz-z'|

- PVJ[I. e3(o.€)eg(o'.€)e d2€

(2.5.17)

Again, in a simplified situation as described in Section

2.5.1, with only a principal mode supported (negligible

axial field components) the field in the discontinuity

region can be approximated as

_ - _ _ 'jB'z jB'z

E(r) s eto(p)[a1e 0 + aze 9

]
(2.5.18)
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where 88 is that obtained in (ZJLll) and a1, a2, are the

associated unknown amplitude coefficients when radiation

effects are considered.

Recall the integral equation (2.2.16) as

am - 3Z3 5.1260355» -§(E')dv' = rim
0 V3

(2.5.19)

where E(?) is now approximated by (2JL18). Then, the IE

above has two unknown constants a1 and a2, therefore in

order to reduce it into two algebrac equations to solve for

these amplitude coefficients, an integral-operator with

weighting function 6p is used to pre-dot multiplying into

above IE and integrate over the discontinuity region Vd as

‘ G ..{ } av, p = 1,2 .

.lv' P

d (2.5.28)

For the purpose of simplicity, if delta-function is chosen

for a? such that

‘ = G 6(E - E )
P P P

(2.5.21)

where BP is a unit vector, subsequent operation of (2JL28)

upon (2JL19) with the above delta-function weighting yields

a matrix equation with pal and 2 as

2

2: (2 a = b

l=1 9“ 2 9 (2.5.22)
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where the matrix elements Cp and b are

2 P .

-j862

_ A .' ‘ P
Cp1 - up eto(rp)e

jko 2 _ A = _ _ _ _ 'ijZ'

- -——- 6n (p')u. °G(r Ir“) -e (r')e dV' ,
20 p p to

Va

+jB'z

.. ,. . - - 0 p
sz — up et0(rp)e

jkO 2 - A = — — _ _. +j862'

- -——- 6n (p')u °G(r |r') -e (r')e dV',
20 p p to

Va

b = " ~Ei .
9 up ”13’

(2.5.23)

ZJLB Moment-Method Numerical Solution for Discontinuity

Field

The integral-operator method described above for scat-

tering by a discontinuity along a dielectric waveguide is

particularly suitable for numerical solution, especially

when the region of discontinuity is heterogeneous in nature,

i.e. 5n2- 6n2(f), and arbitrary in shape. In this scetion,

EFIE (2.2.16) is reduced to a matrix equation by Method of

Moments (MoM) technique [50]. In this method, the unknown

field E(F) is first expanded in an appropriate basis set

(expansion functions); then, subsequent to taking the term-

by-term inner product with an appropriate set of weighting

functions (testing functions), the EFIE is discretized to a

matrix equation.
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To begin, a volumetric pulse—function basis set is

selected because the resulting MoM matrix-element computa-

tion is simplified (numerical matrix fill-time minimized);

the pulse function expansion for E, the unknow field, is

therefore

3 N,

E(r) = él (12:1 xvquPqUr)

(2.5.24)

with

l ... for r 5 AV

8 ... for r t Avq

= volumetric pulse function spanning

q'th volume element AVq for q= 1,2, ..., N

where Vd is partitioned into N volume elements Avq. Use of

this expression in EFIE (2.2.16) leads to

jk

-

U

Elqu[q(r) ' 20 AV 6n (r )G(r|r ) xvdV ] E (r)

q

... for all ? Eva.

(2.5.25)

Expression (2.5.25) is discretized, to obtain an MoM matrix

equation for the an' by operating term-by-term with the

d-function integral testing operator (?p at the center of

AVP)

3 N

uz=1 :41 L ME-EP) 52“ .{ }dv

d (2.5.26)

which provides
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N .

(A) a =El(E)
v1; uquvq )1 P

. . for u 1,2,3 and

p = 1,2, ...; N,

      

(2.5.27)

a 3N by 3N matrix equation for unknown avg, or

r i ' 1
I i i -

| l axq Ex(rP)

I | i -

= E r

3N.l I(A11V)PQI am y( p)

I l i ..

a E (r )
z z

_ ' ' . L q . L p .
h—..——u

3N

(2.5.28)

where the MoM matrix elements are

(A ) =6 5 -ik—°f anZG'n? -G(1-:|1-:')-de' .
)1qu 11qu 20 AV )1 p v

. q

(2.5.29)

By applying standard matrix methods, the numerical solution

of MoM matrix equation (2.5.28) for avq leads to field E in

the discontinuity region through expansion (2.5.24).
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2.5.4. Iterative Solution to EFIE

Since the polarization EFIE

.. _ _i _ jko 2 _ = - .. - _

E(r) = E (r) + 7?—- 6n (r')G(rIr')'-E(r')dV'

0 V6

(2.2.16)

is essentially a linear Fredholm integral equation of the

second kind, it leads naturally to iterative solutions [51]

for the total electric field E(F). This approach provides

an alternative to the MoM solution, which remains feasible

when the discontinuity region exceeds resonant size. If E

is the field of the 2th iteration, then EFIE (2.2.16)

provides

E - = 331(3) + 72f 6n2(f')(=;(fli") -E2(E')dv' .
O va

(2.5.38)

The iteration series provided by the above relation

converges if IIE£+l - EII+ 0 for large I. Convergent rate

depends strongly upon the initial selection for E the
0!

field of the O'th iteration, which might be estimated as

~Ei(?) .ufor small discontinuities, or

80(3): approximate ”radiationless" solution for

“Simple” discontinuities where (in2 s 6n2(5).

(2.5.31)

Choice of E = E1 leads to the classical Neumann series and
0

the associated resolvent kernel [51]. Due to the complexity
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of Green's function G, a practical iterative field solution

will require adequate convergence after only serveral itera-

tions; an accurate choice for the (Nth-order field of the

first iteration E0 is consequently important.



CHAPTER III

APPLICATION TO SCATTERING BY SLICE GAP DISCONTINUITY IN A

DIELECTRIC SLAB WAVEGUIDE

3.1 Introduction
 

The one-dimensional slab waveguide considered in this

chapter for the applications is shown in Figure 3.1. The

slab extends infinitely in both directions of y and z with a

width of 2d. A discontinuity region Vdv being both y and z

invariant, occupies the longitudinal cross section of Va; it

is centered at origin and consists of a dielectric material

of refractive index of n3(x,z) which provides a contrast

with those of the slab and the surround which are n1 and n2

respectively. Single dominant TE surface-wave mode

incidence from z<<0 with amplitude E0 is assumed. The

infinite dimension along y insures the y-invariance for all

the field quantities, iue., 3 /BY - 0. Scattering by the

discontinuity is interpreted as arising from the equivalent

polarization current induced within the discontinuity and

prOportional to the index contrast 5n2

For a planar, step-index symmetric slab waveguide, the

well known characteristic equation [42] for eigenvalues of

natural TE surface-wave modes is

43
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DIELECTRIC n2

SLICE

  
 

Figure 3.1 Slice discontinuity region Vd of length 220,

width 2d along an one-dimensional slab wave-

guide having refractive index n3(x,z).
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ZYK

2_Y2)
tan (Kt) =
 

(K

where t is the thickness of the slab. The characteristic

transverse phase constants K and Y are related to

longitudinal phase constant by the definitions K2=k%‘82 and

Y2=32-k%, where kl, k2 are wavenumbers of the slab and

surround respectively with k1=n1ko and k2=n2ko. A graphical

solution to that eigenvalue equation is shown in Figure 3.2

for a slab waveguide with n1=l.6, n2=l.0. As illustrated in

Figure 3.2a for TE even modes and Figure 3.2b for TE odd

modes, the later exhibits a lower cutoff frequency while the

principal TE even mode does not. It is evident that only a

finite number of discrete modes are allowed as contrast with

the‘infinite number of eigenmodes in conventional closed-

boundary metallic waveguides. This particular characteris-

tic allows us to vary the waveguide dimensions such that

either mono-mode or multimode fields are excited in the

scattering process. It is the purpose of this chapter to

demonstrate the use of various solutions discussed in the

last chapter. Relative merits of each technique are

evaluated and qualitative conclusions are drawn regarding

scattering phenomena associated with discontinuities along a

dielectric slab waveguide.
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(a). TE even modes.

Yd -chotxd

2174

d/l=2.0

(yd)2 (xd)2=6k2d2

n-

d/A=.5 2d/A=1-'

‘ A ' f d

o «'12 ‘ 3n): "

(b). TE odd modes.

Figure 3.2 Graphical solutions to eigenvalue equation

for even and odd symmetric-slab surface-wave

modes for case of n1=1.6, n2=1.0, thickness

of slab t=2d.
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3.1JL TE Propagation Mode for Slab Waveguide and Their

Normalization

DISCRETE SURFACE-WAVE MODES

Since the TE surface-wave mode fields are of the form

Fjan

n(x)eYey

(where subscript "n" in ey(x) and Bdenote the n'th discrete

mode) i.e., a travelling wave in the axial direction 12

with phase constant 80, its corresponding transverse

electric and magnetic fields are

étn(E) = yeyn(X)

.. .. 1 ,. .. _-,.

htn(r) = ET; (2 X etn) - xeyn(x)/ZTE

= xhxn‘x’ (3.1.1)

where ZTE=muo/Bn=zoko/Bo,zo= uo/eo, the wave impedance

with wavenumber Mam/”080' From (2.2.4) of Chapter 2, the

assumed normalization for eyn(x) is

” 1 w 2 1
-f eyn(X)hxn(x)dx = Z3]. eynhddx = 3

(3.1.2)

It is well known that the tranverse electric field eyn(x)

for the slab waveguide can be written as [28]
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[rA cos (KX) ... |x| 3 d

e (x) =

Yn -

AeY(d le) cos (Kd) ... w 3 [XI 3 d

(3.1.3)

where it shows, in the transverse plane, there exists a.

standing wave inside the waveguide and a rapidly decaying

wave outside. The amplitude coefficient A is obtained by

exploiting (3.1.3) into (3.1.2),

1/2

A _ koz-o

" 2
sin 2Kd cos Kd

.ZBnd‘l + “—2731— + T)

(3.1.4)

CONTINUOUS RADIATION MODES

From (2.2.5) of Chapter 2, the normalization for con-

tinuous radiation modes in slab waveguide is given by

f 65'] 2' [éy(xt€) X Ex(X'I€')] dx

61: " 5.1 l _ 4=. f . ..., -_
-.... zTEu; ) 2mm

with zTgszoko/Eflf). Similary, the continuous radiation

 

(3.1.5)

fields inside and outside the slab can be written as [28]
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,/%-% cos (ox) ... [XI

(12[ [cos £(x -d) + a] |°°|

Amplitude coefficient c is obtained by exploiting (3.1.6)

|
/
\

D
.
)

ey(X.E;)

lxl 2 d

(3.1.6)

I
V

into (3.1.5)

1/2

c = [1 + (E)2 sinzod]

(3.1.7)

where o,cxand u are defined by the following relations:

a = tan-1[-% tan (od)]

3JL2 Scalar EFIE for TE Mode Scattering along Slab

Waveguide

For the one-dimensional slab waveguide in Figure 3.1,

equation (2.2.16) of Chapter 2 can be expressed as

- jko 2 = -

E(x,z)-1r—» 6n (x')G(x,z|x',z') -E(x',z')dx'dz'

0 LCS '

= yEoeyn(x)exp(-j6nz)

(3.1.8)

where LCS denotes the longitudinal cross section of the

arbitrarily-shaped discontinuity region along the slab

waveguide. By carrying out the dyadic dot product of G-E

in the integral above, we obtain the following component
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form scalar equations for (3.1.8).

x component:

2
E (x,z) - -——;/~ 6n (x')[G (x,z|x',z')E (x',z')
x z LCS xx x

+ ny(x,z|x',z')Ey(x',z')

+ ze(x,z|x',z')Ez(x',z')]dx'dz'

= 0

(3.1.9)

y component:

B (x z) -J—]:9-f 6n2(x')[G (x zlx' z')E (x' z')
y I zo LCS. yx I I x I

+ ny(x,z|x',z')Ey(x',z')

+ Gyz(x,z|x',z')Ez(x',z')]dx'dz'

= Eoeyn(x)exp(-j6n2)

(3.1.10)

2 compgnent:

E (x,z) - 33] dn2(x')[G (x,z|x',z')E (x' z')
z 20 LCS zx x '

+ Gzy(x,zlx',z')Ey(x',z')

+ Gzz(x,z|x',z')Ez(x',z')]dx'dz'

= 0

(3.1.11)
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It is observed that due to the y—invariant property of

the slab waveguide, its Greenfs function, specifically, the

dyadic elements ny(x,z|x',z'), ny(x,z|x',z'), Gyz

(x,z|x',z') and Gzy(x,zlx',z') are equal to zero aided by

the fact that =G=(x,z|x',z') is constructed from electric

field eigenfunctions (both discrete and continuous)

consisting of TE modes with only y component or TM modes

with only x and z components, and the TE and TM modes are

orthogonal. Therefore, (3.1.9), (3.1.10) and (3.1.11) can

be reduced to

0 2
E (x,z) - ——— 6n (x') G (x,z|x',z')E (x',z')
x 20 LCS [ xx x

+ ze(x,z|x',z')Ez(x',z')]dx'dz'

= 0 (3.1.12)

jko 2 I I I I I I U

Ey(x,z) - 7%; LCSGn (x )ny(x,z|x ,z )Ey(x ,2 )dx dz

(-jan)

= Eoeyn(x)e

(3.1.13)

E (x z) - 159] 6n2(x')[G (x zlx' z')E (x' z')
2 z0 LCS zx x

+ Gzz(x,z|x',z')Ez(x',z'k]dx'dz'

= 0

(3.1.14)
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A study of the above expressions reveal that the x and

z component equations (3.2.12) and (3.2.14) couple ii:x and E2

but are uncoupled from Ey; furthermore, zero forcing

function in both implies there exists only trivial solution

such that ExsEz=0. The y component-equation (3.1.13) is

independent in Ey with a non-zero forcing term in the right

hand side, therefore Eyfo. The TE mode only problem is then

reduced to that of solving the y-component integral

equation:

jko 20 d 2
Ey(x,z)-1;; 5n (x')ny(x,zIx',z')Ey(x',z')dx'dz'

-20 -d

-j an

= Eoeyn(x)e

... for all (x,z)e Vd

(3.1.15)

This is a specialized EFIE for unknown Ey(x,z) in the

discontinuity region due to scattering of incident TEn

surface-wave mode. In this IE, electric Greenhs function

G consists of both the discrete and continuous radiation
YY

component fields:

-jBnlz-.-z'|
ny(x,zlx ,z ) = Z - eyn(x)eyn(x )e

n

1 '” ' -je(a)lz-2'|

- I 0 ZTE(£)ey(X.€)ey(x .Eie d6

(3.1.16)

The absence of principal value evaluation in (34Ll6) above

is evident from the fact that TE mode propagation in this
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slab waveguide does not support any currents in the z direc-

tion. Hence, there is no contribution to the correction

term I for the otherwise would be present source point

singularity in the continuous spectrum integral of

Gr(x,z |x',z') of ny.

3.2 Approximate Treatment for Scattering along Slab
 

Waveguide
 

3.2.1 Analytical Solution without Radiation Contribution

A closed-form solution was obtained for E(E), the field

inside the discontinuity region, from Section 2.5.1, by

neglecting the continuous radiation in a mono-mode

waveguide, as

I
l
l

E(E) 5t0(3)w(z) = ey0(x)w(z)§

_jB'z

O +

pejséz]

= §Aeyo(x)[e (3.2.1)

where A and p are given by (2.5.14) and (2.5.15). The

constant C given by (2JL6) is evaluated here for TEO mode

field under the assumption that the discontinuity region is

of homogeneous nature, i.e., n3(x,z)-n3, a constant, such

that

 

0 ll

d

3(“3 ' ni)ko 2
z e o(x')dx'

0 . _ Y

d

. 2 2 2

3“‘3 ' n1’ko

$ cos2 Kd + (Kd +

sin 2Kd)

2

sin 2Kd)

2

(Kd + 

 

(3.2.2)
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Then, 88' the phase constant of E(E), has the following

eigenvalue

. _ . 2

which depends upon the values of 6n2=n§-n§, the dielectric

 

contrast, through the definition of C above.

Shown in Figure 3.3 is BUt' the normalized propagation

constant, as a function of the value of 6n2=n§-n§. Figure

3.4 displays the relationship between.65t and the values of

refractive indicies of the discontinuity region, n3.

Amplitudes of the reflection and transmission coeffi-

cients [RI and |T| thus calculated from (2.5.16) are shown

separately in Figure 3.5 and 3.6. These coefficients are

plotted as a function of n3 with parameter zo/d(iJL, length

of the discontinuity region is normalized w.r.t. the width

of slab) having the values of 0.1, 0.5 and 1.0. It is noted

from these results that as the contrast of refractive index

increses, the discontinuity presents itself as a better and

better reflector. Furthermore, oscillatory nature in the

obtained values of IR] and |T| shown in these figures due to

larger value of zo/d certainly agrees with the intuition

that the ”strength” of the discontinuity is becoming

”stronger“, this can also be verified from the axial field

distribution in the MoM.solution to be presented in the

following section.
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Figure 3.3

6.0

Normalized phase constant as a function of

index contrast for the axial propagation

in the slice-discontinuity region of a slab

waveguide.
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6.0—

4.0-4

2.0—

0 o 2T0 410 610 8.10

“3

Figure 3.4 Normalized phase constant as a function of

refractive index n3 of the slice region for

the axial propagation in the slice discon-

tinuity region.
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Figure 3.5 Magnitude of reflection coefficient as a

function of its refractive index n3 for

three values of the normalized lengths of

the slice-discontinuity region.
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Figure 3.6 Magnitude of transmission coefficient as

a function of its refractive index n3 for

three values of the normalized lengths of

the slice-discontinuity region.
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3.2.2 Approximate Solution for Radiating Discontinuity

When radiation coupling in the scattering process is

considered, an of (2.5.18) assumes that the discontinuity

field maintains the eigenfield distribution and yet pos-

sesses axial propagation constant from the analytical radia-

tionless solution. IFrom the resulting matrix equation of

(2.5.22) and (2.5.23)

2

= = 1,2géi Cp£a£ bp p

where the matrix elements, when specialized for a mono-mode

slab waveguide, becomes (p=l,2)

-jB(')z jk f =
- P _ __9, 2 I I |

cp1 — ey0(xp)e zo Lcsén (x )G(xp,zp|x ,z )

I I U

x ey0(x )e dx dz

+j80zp jk0 6n2(x')8(x ,z |x',z')

c 2 = e 0‘x ’9 ’ T P p
P Y 9 o LCS

+j862'

x (x')e ‘ dx'dz'eyo

bp = Eoeyo(xp)e JBOZP

(3.2.3)

Two matching points for the delta-function at EP =(xp,zp) =

(0,-20) and (0,20) are selected for the calculation of two

unknown.coefficients a1 and a2. The results are shown in

Figure 3.7 for the subsequently obtained values of [RI and

|T|; in the Figure, zo/d = 0.5 is chosen in order to compare

with results of analytical solution of the last section.
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1.0-,

.9-

z /

|T| n°___

.8J 1-
n2-

D : analytical solution

(w/o radiation)

.71 o : approximate solution

(w/ radiation)

.4“

.3‘

lRl

.2-

.1‘  
 

1.0 2.0 3.0

Figure 3.7 Comparison of reflection and transmission

coefficients obtained for slice-discontin-

uity in a slab waveguide with 2d/l0= 0.3.



61

Although the comparison shows no significant change in

reflection coefficient between the two solutions, there is

substantial increase of radiation when n3 is greater than 2

(as can be seen from the sharp increase of transmission

coefficient). Similar phenomenon exists in Figure 3.8 for

discontinuity of smaller size (zo/d = 0.1), there appear to

have less amount of coupling to the radiation when n3

increases from 2 to 3; this should be expected since discon-

tinuity‘s size is now only'1.5% of the scattered wavelength

3.3 Moment Method Numerical Solution

3.3.1 Discretization of scalar 2-d EFIE to MoM Matrix

Equation

Refer to Figure 3.9, in which the region of discon-

tinuity Vd is uniformly partitioned in both the x and z

directions. 'The two-dimensional pulse-function expansion of

unknown field Ey(x,z) is defined as

N

P

Ey(x,z) = Z: Enpn(x,z) with

“‘1 (3.3.1)

1 ... for (x,z) e (AS)n

pn(xrz) =

0 ... for otherwise

(3.3.2)

where NP is the total number of partitioning with NP:

NxXN23 Nx is the number of partitions of length Ax = 2d/Nx

along x; N2 is the number of partitions of length Az=Zzo/Nz
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2 /d = 0.1
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.8 J, n2=l.0

: D : analytical solution

I (w/o radiation)

5 .' O : approximate solution

. (w/ radiation)
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1.0 2.0 3.0

Figure 3.8 Comparison of reflection and transmission

coefficients obtained for slice—discontin-

uity in a slab waveguide with 2d/l0= 0.3.
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Figure 3.9 Partitions of slice-discontinuity region

Vd for the application of Method of Moment

solution.



64

along 2. (AS)n is the surface element centered at 5: En

xxk+zz£ where xk = - d+(k-0.5)Ax and z£= -zo+(£-O.5)Az;

n is the running index covering all partitions, ime., n =

k+(£-1)Nx. From equation (ZJLZS) the three-dimensional

integral equation is then reduced to the following two-

dimensional form for the slab waveguide

N 2
P jcSn k0 d

_ _ ' I, I d I I

2 En Pn(x,z) 20 (As) ny(x zlx z ) x 2

n=1 n ,

-jBoz

= Eoeyo(x)e

(3.3.3)

. Multiply (3.3.3) by the delta-funtion operator

N

p .

Z: LAB) 5(x-xi,z-zj){ }dxdz ,

n=1 n

(3.3.4)

this essentially forces IE (3.4.3) to be satisfied at

discrete matching points (xi,zj) or at Sm=§xi+zzj where

m=i+(j-1)Nx, 15 i 511),, and 1 _<_ j 5N2; thus completing the

discretization of the EFIE to yield NP linear algebrac

equations in En as

N 2
p _ j6n k0 ' '

2 En pn(pm) - T— ny(xi,zj|x',z')dx dz

0 (As)
n=1 n

-'B 2.

= E e (x.)e 3 0 3 ... for 1 < i < N

0 yO 1 - - x

1 g j 3 NZ .

(3.3.5)
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With pn(5m)=6mn from (3JL2), above expression can be

written in the more concise form

N

P

2 AmnEn= Bm for m= 1,2, ..., Np

“‘1 (3.3.6)

or in matrix representation

- W [- ‘4 r' _

Amn En = Bm

      L I" b - - -I (3.307)

where the elements Amn of the Nx by Nz coefficient matrix

are defined as

. 2

Jk05n f ( I I l)d Id I
A = 6 -— G X-,Z- x ,Z X Z

mn mm 20 (As)n YY 1 3

(3.3.8)

and

- J
Bm - Eoeyo(xl)e .

(3.3.9)

The unknown expansion coefficients En can therefore be

obtained as the non-trivial solutions from matrix equation

(3.3.7).

To facilitate the numerical calculation, we can further

decompose (3JL8) into the sum of AS“, the contributidn from

r

discrete modes and Amn' that of continuous modes

.. d r
Amn - Amn + Amn .

(3.3.10)
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By re-defining the integration limits to be the center of

its respective cells

X

w
I
+

o
n
-

d
Amn can

area dx

H
-

Ax/2

I

Az/2 ,H
-

(3.3.11)

be evaluated over the longitudinal cross section

'dz' as follows

. 2 z x...

d jkodn k d ' ' ' .

Amn — Smn - -—§—_— 2. x- ny(xi,zjlx ,2 )dx dz

where e

+ +
X

jkosn2 p.22 I ' -jBo|zj-z'| ' '

amn + ——§3__ ,z; .x; eyo(xi)eyo(x )e dx dz

kod 2 cos(dei)cos(dek)sin(KdAx/2)

€03) Kd 2
(73) os (Kd)4-[Kd4-

2 2
Gmn+2(n3-nl)(
 

sin(2Kd)]

2

. ‘jBodlzj‘ézl . ~ .
{3e Sin (BodAz/Z) ... for 2 ¢ 3

'jBodAz/Z

(l - e ) ... for l = j

(3.3.12)

igenfunction eY0(x) is expressed as (34L3) in the

above derivation. It is noted that the final form of Ag"

above is expressed in terms of normalized quantities, ine.,

§i=xi/d, zj=zj/d,Ax =Ax/d and Az=Az/d as well as Kd and Yd,
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for the convenience of numerical calculation. Following the

same procedure, Ag“ can be reduced to

r

Amn

+ +
jk05n2./.m 21 xk ' 'jB(€)IZj'Z'I

= —-4—-— 0 ZTE(€)d€ - - ey(xi’g)ey(x Ig)e

22 xk

dx'dz'

 

 

2(n2 - n2)(k d)2 w ~ cos(5x.)cos(5x )sin(5A§/2)

= 3 1 o dégz 1 k

w 0 (E2 + 02s1n25)§25

~3§|5--5 | - -
je J i sin(BAz/2) ... for j # 2

x -j§A5/2 .

_(1 - e ) ... for j = 1

(3.3.13)

with normalized variables 5=od, §=€/d and B=Bd. Also

noted that the integrand in the above expression for Afin has

a singularity at Eakzd, i.e., when B=0 since §2=(k2d)2 -§2

by definition. In order to evaluate this improper integral,

let the integration be divided into three subintervals

w ~ kzd-E k2d+€

1H...) J0 0 kZd-e

jsin(§Az/2) ... for j ¢ 1

+f .R(§) 5%! ,- ..

k d+€ B (1,_e‘JBAZ/2)
2 for j = 2

:1 +1 +I
3

1 2 (3.3.14)



68

where

~ Ezcos(5xi)cos(5xk)sin(55x/2)

Rm= 2 ~2 .. 

l ... for j = 1

(3.3.15)

In the limit as (3+0, R(E) is regarded as a constant, taking

its value at Ea kzd. Furthermore,

lim j sin<éA§/2) = jéAE/z and

8+0

lbm (1 - e'jBAZ/Z) = jéAE/z .

8+0

12 of (3.3.14) then becomes

. ~ k d+e
jAzR(k d) 2 ~

lim :2 2 19$

k'B+0 2 2d-s B

  

 

. ~ -k d ~
jAzR(k2d) [ 2 d5

2
kzd-e yfikZd)2 _ g2

 

 

(3.3.16)
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Both integrations in (3JL16) above can be evaluated by

changing the variables: E= kzdsint in the

E =k2dcosht in the second to yield

jA£R(k2d)

lim I =
0 ‘2 2

1 E

-—)
kzd

 - sin- (1 -

B
”
:

+ j COSh-1(1 4’ FEE) .

2

Finally Ag“ has the form

2(n§ — n§)(kod)2
Amn = 1T (11 + 12 + I3) 

(3.3.14) and (3.3.15) as

kzd-e ~ jsin(éA£/2)

I1 9-] g—g R(g)[ .~ ~

0 B (1 _ e-jBAz/Z)

first and

(3.3.17)

(3.3.18)

and I3 can be written from

for j ¢ l

for j = 2

(3.3.19)

for j # l

for j = 1

(3.3.20)
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where the infinite upper limit of I3 integral is replaced by

a finite value in the numerical process as long as suffi—

cient convergence of end result is obtained.

3.3.2 Numerical Results

MONO-MODE SLAB WAVEGUIDE

First to be studied is a slab waveguide with refractive

indices n1 =- 1.6 for the core region, n2 = 1.0 for the

cladding and n3 = 3.0 for the slice discontinuity. With

1 other guide parameters also indicated, Figure 3.10 shows the

distribution of Ey(x,z), the field inside the dielectric

slice discontinuity region, in the transverse cross section

at various axial locations. It is evident that the almost

uniform distribution of FY near the entrance plane at z/zo =

-0.875 as compared with those toward the exit plane which

possess a cosine type distribution leads to a prediction

that strong radiation is expected at the slab-discontinuity

interface. This is verified from Table 3.1 that indeed a

relative radiated power of 24% is obtained. Listed in Table

3.1 are values of reflection and transmission coefficients

and its relative powers including the radiated powers for

various value of parameters; Of all the cases calculated,

shown here are primarily the cases of n3 =- 1 and 3, each

with two axial discontinuity lengthes, 0.1 and 0.5. Results

obtained from approximate solutions of Section 3.2 (both

radiationless, G§y=0, and radiating, G§y¥0) are also

included for comparison.
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E;(x.z) = Eoeyo(x)exp(-jeoz)

 

  

~ ... 30(x)=cos(xx)

 

  

 

 

 

  
' l 1 T

.125 .375 .625 .875

normalized location (x/d) along x :11 = 1.6

'
n2 = 1.0

n3 = .

2d/Ao= .3

zo/d - 0.5

Figure 3.10 Distribution of field E (x,z) excited in

the slice-discontinuity region of slab

waveguide by TEO incident mode wave.



Table 3.1

CONFIGURATION

AND TYPE OF

SOLUTIONS

n3=l.0

z /d=0.l

analytical

(G =0)

approximate

(G 0)

:6: (G =0)
r

MoM (ero)

n =3.0

z /d=0.l

analytical

(G =0)

approximate

(Grfo)

MoM (Gr=0)

MOM (613m)

n3=l.0

z /d=0.5

analytical

(G =0)

approximate

(G #0)

M (G 80)

MoM (630)

n3:3.0

z /d=0.5

analytical

(G =0)

approximate

(Gr#0)

MOM (Gr=0)

MoM (GrfO)
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Reflection and transmission coefficients

for TEO slab-waveguide mode incident upon

dielectric-slice discontinuity of various

configurations, as calculated by several

methods; resulting reflected, transmitted,

and radiated powers included. (2d/AO=O.3,

nl=1.6,n2=l.0)

2 2 2 2
R0 TO RO T0 l-Ro-T0

.08050 .9968 .00648 .9936 -.000090

.0782 .9956 .0061 .9912 .0027

.08072 .9967 .00651 .9934 .000073

.07871 .9956 .00620 .9912 .002585

.3063 .9519 .0936 .9061‘ .000067

.3459 .9029 .1196 .8152 .0651

.3071 .9518 .0943 .9059 -.000234

.3288 .9203 .1081 .8470 .044938

.3445 .9388 .1187 .8813 -.000026

.2972 .9319 .0883 .8684 .0432

.3465 .9385 .1201 .8808 -.000845

.3047 .9247 .0928 .8551 .052088

.4137 .9104 .1711 .8288 .000024

.3698 .7459 .1367 .5564 .3069

.4186 .9098 .1752 .8277 -.000296

.4482 .7482 .2009 .5598 .239313
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Note that the results of the radiationless analytical

and MoM.solutions agree perfectly (as they should), thus

confirming the correctness of both; the small (positive and

negative) radiated powers are due here totally to numerical

truncation errors. Discrepancies between the accurate

radiating and approximate radiationless results increase

with the I'strength" of the discontinuity; radiation increase

for ”stronger“ discontinuities with progression downward in

Table 3.1. These results indicate those paramaters which

constitute a “strong“ discontinuity as well as conditions

for a ”small“ discontinuity where either the closed-form

radiationless solution or the approximate solution with

radiation might be adequate.

DUAL-MODE SLAB WAVEGUIDE

Here the MoM solutions is implemented to study the mode

conversion process discussed in Section 2.4, several

waveguide parameters are chosen to allow the excitation of

two principal modes, the T130 and TE2 modes. Assuming a T130

mode incidence, the results are shown in Figure 3.11 through

3.13. The plot of axial variations of Ey(x,z) in Figure

3.11 for the low contrast case of (6n = 0.15) shows the

increase of standing wave pattern as well as rapid phase

change in longitudinal direction when the length of the

discontinuity zo/d is extended from a value of 0.1 to 0.5.

As a comparison, the cases of higher contrast (5n = 1,4) is

shown in Figure 3.12 with zo/d = 0.2 and 0.4. While holding
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function of normalized axial locations.

The slab supports dual modes with a TEo

mode incident.
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mode incident.
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Figure 3.13 Relative amplitudes and phases in the

slice-discontinuity region with various

indices for the slice region, as a func-

tion of normalized axial lications. The

slab supports dual-mode propagation.
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zo/d constant and varying n3, Figure 3.13 shows the

existence of a stronger axial standing wave for n3 = 3.0 and

is also evident from Table 3.2, there it shows a 32¢4% of

radiated power. A study of Table 3.2 reveals that when zo/d

is changed from 0.2 to 0h4, there is a increase of mode

conversion from TEO to TEZ mode, as evident from the almost

equal percentage content of reflected and transmitted power

in TE2 mode; in fact, more power is converted to T82 mode

and transmitted than TEO mode, at the same time, radiated

power is decreased by nearly 79%. Different phenomenon is

seen in changing n3 from the value of 1.0 to 2.0, in that

the reflected power of T32 mode is greatly reduced when

compared to that of TEO mode as well as the transmitted

power is dominated by incident TEO mode; accompanied with

slight increase in radiated power.

As a final observation, despite the infinite upper

limit involved in the continuous spectrum integral I3 of

CL3.20), no difficulty was encountered in obtaining

adequate convergence in all the above MoM results.

Moreover, various partitioning for the discontinuity region

ranging from 4 by 8 to 8 by 16 (leads to a 128 by 128 matrix

elements) rectangular cells were used and less than 60

seconds of computing time on the MSU CDC Cyber 750 system

was consumed for each case.(source listing and sample out-

put attached as Appendix A and B).



78

Table 3.2 Mode conversion coefficients (reflection

and transmission) for TE0 slab-waveguide

mode incident upon dielectric-slice dis-

continuity of various configurations;

slab width is such that it supports the

propagation of TEO and TE2 modes.

    

% power

CONFIGURATIONS zO/d RO/R2 TO/T2 radiated

n1= 1.6 .025 .297/.Ol9 .953/.019 .2

n2= 1.0 .075 .556/.068 .815/.O74 1.65

n3= 3.0 .2 .259/.251 .608/.42 32.4

d/XO= 0.5 .4 .42 /.39 .51 /.58 6.96

n3

n1= 1.6 1.0 .197/.123 .899/.145 11.76

n2= 1.0 2.0 .136/.0226 .920/.092 12.6

d/Xoa 0.5 3.0 .259/.251 .608/.42 32.4

zo/d= 0.2
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3.4 Iterative Solution

The 2+l'th iterative solution 814,1(2) to EFIE (2.2.16)

has the form

= E1 (r) + gig] 0n2(r'')G(r|r' ) ~E2 (r)dV' .

Vd

(2.5.30)

when the longitudinal cross sectional discontinuity is again

partitioned as indicated in Figure 3.9, the above IE can be

discretized for the field at (xm,zn) as

j Nz Nx

_ -i 2

2.+'zl(xmn - E (xm'zn) +1202: 2 6n (xi’zj)

j=1 i=1

X E(xm,znlxi,zj) °E£(xi,zj)AxAz

for (xm,zn) eLCS.

(3.4.1)

By substituting Green's function (3.1.16) appropriate for

the mono-mode slab waveguide, (3.1.3) and (3.1.6) for

ey0(x), and ey(x,£) respectively, into (3.4.1), it yields

_ i

E£+1(xm’zn) - E (xm’zn)

jk Nz Nx

O 2 2
- .2? A cosn<xm Z 2: 6n (xi,zj)E£(xi,zj)

j=l i=1

-:180|zn-2|
x cosucxi e zj AxAz
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NzR2

‘53?”
2

0n (xi,zj)E£(xi,zj)

"P
6
s
z

-jB(€)|zn-z.l

 

k -s w 3
2 coscx.coscx

(H J 1 12 “‘e ’. 0 7k _€J mm (6)

2

+ mg = k2) 121- sin-1(l - f) + j cosh-1(1 + xi)

2 2

- 2j|zn - szsJ }AxAz

for m = 1,2,

n = 1,2, ...

(3.4.2)

where

COSOX. COSOX

Ru: = k2) = 3 m

c (E) g=k2

With incident field Ei, chosen as the initial O'th

order solution as discussed in Section 2.5, such that

-jBoz.

2 o(x ,z.) = EOA costi e 3 ,

(3.4.3)

31(xm,zn) can then be obtained from (3.4.2) and (3 4.3)

Subsequent iteration will yield E2(xm,zn) and E3(xm,zn) etc.

until convergent results are obtained.
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NUMERICAL RESULTS
 

Several cases which were included in Table 362 (n1:

1.6, n281.0, n3=3.0) are calculated. Listed below are

number of iterations required for the total unknown field

E£+1 to converge to within 1% of En, using the incident

field as the O'th iteration field.

no. of iterations

I. d/1080.15 zo/d=0.2 5

0.3 6

11. d/lo=0.5 zo/d=0.025 5

0.075 6

0.1 7

Worth noting from above results are that cases II

support dual mode propagation yet the number of iteration

required are not significantly increased due tet'small'

discontinuity. Since most of the time is consumed in the

calculation of Greenls functions for all the partitions

(average 30 seconds on Cyber 750), the time required for

iterative process is far less in comparison. However, for

larger discontinuities, a gobd initial estimate for the O'th

iteration field in addition to sufficient partitions are

necessary for the correct converged results (when compared

with that obtained by MoM). (source listing and sample out-

put attached as Appendix C and D).



CHAPTER IV

INTEGRAL-OPERATOR FORMULATION OF COUPLED

DIELECTRIC WAVEGUIDE SYSTEM

In open-boundary waveguide circuits, dispersion

characteristics of the guided-wave modes are required to

determine bandwidth and signal distortion, while the field

distributions of these modes must be quantified to predict

their interaction with other devices and excitation through

coupling to other waveguides. Particularly, in Optical

communication, it is desirable to bunch many optical fibers

into one cable; because of their proximity, the individual

waveguides can exchange power, so that some part of signal

that is being transmitted in one guide can enter a neigh-

boring guide and interfere with the signal that is being

transmitted there. In other applications, such as the direc-

tional coupler, waveguide coupling offers the possibility to

feed power from one guide into another in a controlled

manner.

In this chapter, a coupled multi-waveguide system is

studied. The description of a single isolated waveguide,

based upon an electric field integral-equation formulation

for its unknown core field is first presented based upon an

induced equivalent polarization current [14] and an electric

82



83

Green's dyadic as its kernel. This is followed by the

generalization of that formulation to a system of N coupled

waveguides. Polarization sources which radiate into the

unbounded region and maintain the total field in the coupled

system are identified. Homogeneous EFIE's for natural

surface-wave modes supported by the coupled system are

obtained. When the coupling is weak, assuming that field

distributions in each individual guide do not change signi-

ficantly from those of the isolate guide, a perturbation

formulation is developed to obtain an approximate solution

for the system-mode prOpagation constants and coupling

coefficients.

4.1 Equivalent Polarization Description of Heterogeneous

Waveguide Core

The Maxwellls equations appropriate for the description

of electromagnetic fields E(E) and H(;) maintained in the

heterogeneous waveguiding system by Pe, the impressed

polarization source density are

V°(€E) =-\7-;‘>e

V XE = jwuofi

- . _e _ -

V><H = ij + waE

(4.1.1)

where the nature of low-loss dielectric media (graded-index
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core and surround) is represented through the complex

permittivity s(T:)=e'(E)-j 6"(E) with e"(E)=0(E)/we' where

0(2) is the conductivity of the material. An equivalent

polarization density, which is induced due to the permit-

tivity contrast between the graded-index core and its

background surround cladding, can be identified from equa-

Ition (4JL1).. If terms involving the permittivity:c of the

{surround are added and substracted in Maxwellls equations,

they can be placed in the form

v- [ecfi + (s- ec)§]= -v-f>e

VXE = - jquP—I

VXfi = jwf’e + j(0(s - Ec)§ + jwscfio

7 -fi = 0 .

The equivalent polarization is consequently identified as

Peq = 66(r)E = [E(r) - 8C]E

(4.1.2)

Thus when the system (44LJJ is rearranged to emphasize the

total effective source densities, the Maxwellfs equations

become

. ' _ - , -e '
V (ECE) - V (P + Peq)

VXE=- jwuoI-i

VXf-i= jm(Pe+Pe ) +jw€E

7 -fi = 0

(4.1.3)
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Applying a curl Operation to Faraday‘s law in equations

(4.1.3) followed by the substitution of Ampere's Law, leads

to the well known-wave equation for the electric field E(r)

2
.. 2- - ..e .-

V x V X E - kCE - w u0(P + Pe ) .

q

(4.1.4)

where kc=w\/TIo—ec = ncko, is the wavenumber of the surround

cladding of refractive index nc. Expression (4.1.4)

indicates that total field E along the waveguiding system is

maintained by primary source 5e augumented by equivalent,

induced ieq both radiating into a uniform, unbounded region

with wavenumber kc- It is through this interpretation of

equation (4JLA) that the original problem involving a

bounded, graded-index dielectric waveguiding structure has

been replaced by an equivalent polarization density fieq

radiating into an unbounded surround medium. Equivalent

induced polarization seq =606n2(f)fi is prOportional to

total field E in the waveguide core region V; it is non-zero

only in that core region where index contrast 6n2(f) =

n2(1':)-n,23 is non-vanishing, i.e., for points E e V where

6n2¥0.

4.2 Electric Field Integral Equation Description for Guided

Waves Supported by Open-Boundary Dielectric Waveguide

System

The electric type Hertzian potential if, which is

maintained by the total effective polarization density

fitot'§e+§eq embedded in a uniform medium of permittivity
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8c satisfies the vector Helmholtz equation

 

(4.2.1)

It is therefore appropriate to express the EM fields in the

unbound region of homogeneous surround as [52]

V(V -fi) +k§IIM
I

ll

jwecv X H .:
m

ll

(4.2.2)

The solution for Hertzian potential in the above three-

dimensional Helmholtz equation is

P (5')

fi =f t°t G(E|E')dv'
s

V

 

C

(4.2.3)

with the well-known scalar, 3-d Greenfls function for an

unbounded medium

GIEIE') = e __ _

4nR(r,r')

(4.2.4)

where Ralf -Eq is the distance between a source point at E'

and the field point at E. Therefore (4.2.2) can be written

in the form of linear lntegral Operator as
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p (E')

= 077- + k:)f t°t G(E|E')dv' .
 

E

C

V (4.2.5)

The fact that primary, impressed polarization 5e

maintains an incident field Ei(E) while secondary, induced

polarization Eeq excites the scattered field ES(E) due to the

non-uniform waveguiding region motivates the following field

decomposition [53]

E(E) = Fain?) + 83(2)

6453(5)} + e£{1'>eq(§)}

(4.2.6)

which leads.to the 37d, linear integral-operator equation

_ - - _ _ -i _

E(r) -dC{Peq(r)} — E (r)

(4.2.7)

Substitution of ti from definition (4.2.5) and 5eq 8 66E into

operator equation (4.2.7) leads to

E(E) - (vv- + tbfiié—rll E(E')G(E|E')dv' = 816:)

V C

(4.2.8)

where refractive indices satisfy's=n260, scangeo and
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53=eo(n2-n§) =600n2. In terms of spatially dependent

wavenumber quantities defined as k2=n2kg, kg=ngkg and

5k2=k2-kg, integral equation (4.2.8) becomes

2 -' - = - - -. -

E(E) - (k: + vv-) I $5—%§—1 E(r')G(r|r')dV' = 81(r)
k ,

‘V c

... for Ee:V

. (4.2.9)

where V is that waveguiding region where 0n2#0 and 6k2¥0.

Expression (4.2.9) is a 3-d, volume, electric-field integral

equation (EFIE) for unknown field E(E) excited in that

waveguiding region by the impressed field E1 due to 5e.

EFIE (4.2.9) can be expressed in terms of electric

dyadic Green's function by carrying the differential

Operator (k?: + VV-) through the integral operator over V;

the resulting integral must be evaluated in an apprOpriate

principal-value sense. This leads to the conventional

relation between the electric type dyadic Greenfis function

69(2):!) and scalar Green's function E(Elf') [54] as

= _ _ _ 2 = _ _

Ge(rlr') — (kc I + VV)G(rIr')

where 1 is the unit dyadic 52x + yy + 22, and Ge(rlr') is the

solution to

(4.2.11)
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in the unbounded medium of wavenumber kc. We may rewrite

EFIE (4.2.9) compactly in terms of Ger taking into the

consideration that the volume integral be evaluated in a

principal value sense, such that a correction term from the

excluded principal volume is required [48] as

_ _ 2 -3 = _ _ _ _ 2 = _ _ _‘ _

E(r) -pv [El—(2L3- Ge(rlr') - E(r')dV' +-5—k-2— L'E(r) =El(r)

\I kc kc

(4.2.12)

where

= A.“

L = lim 11;] 9—213 dS

56+0 s R

6 (4.2.13)

represents a three-dimensional depolarizing dyadic; S6

encloses principal volume V6 with outward normal as

indicated in Figure 4.1. The contribution of this carrec-

tion term is discussed in detail in Section 2.3 of Chapter

2.

Equation (4.2.12) is then the basic 3-d volume

electric-field integral equation (EFIE) which describes the

open-boundary dielectric waveguide systems. *This vector

EFIE is an in homogeneous Fredholm integral equation of the

second kind [51] for unknown field E(E) excited in the

heterogeneous waveguide core region V (where 6n2#0) by

impressed field_Ei(E) due to excitatory polarization P3.

All following develoPments are based upon this fundamental

EFIE.
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Y

Figure 4.1 Three-dimensional configuration of principal

volume which contributes to the depolarizing

dyad of the 3-d EFIE for a open-boundary

waveguide.
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4.3 Homogeneous EFIE's for Natural Surface-Wave Modes along
 

Coupled Waveguide System

A natural, surface-wave-mode field is that field which

can exist on the open-boundary waveguide system in the

absence of excitation, ime., the non-trivial solution for

E120. EFIE (4.2.12) then become the homogeneous equation

(4.3.1)

In the case where the waveguide has a transversly graded

dielectric profile with longitudinal-invariant dielectric

properties, 6k(?) becomes 0k(5), where B=x§ + yy is a two-

dimensional position vector. Eigenfield solutions having an_

axially-travelling-wave nature with phase constant 3

(4.3.2)

are supported by such a system, as demonstrated below.

The principal-value integral in EFIE (4.3.1) can be

evaluated by exploiting E(E) and 58(EIE') based upon

expressions (4.3.2) and (4.2.10), reSpectively, as



92

(4.3.3)

Making the change of variables u=(z-z') for the component

z'-integra1 of result (4.3.3) above, leads to [55]

' m -jch
' '

[.5382 e—mr’ 62'

co. "jkcfl-‘6'I27'u2

__ 1 :sz ijBu e

-m JIE-p'l +11

-—oo

 

du 
 

isz _ _

Ejfir— KO(YID"O'|)

(4.304)

where K0 is the modified Bessel Function of second kind and

Y is an eigenvalue parameter defined as

_ 2_2H);

The asymptotic exponential decay of K0 for large real

 

(4.3.5)

arguments leads to the expected surface-wave-mode field

confinement. A condition for real Y is therefore identified
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as 3> kc. This condition is consistent with the well known

result [9,11]; it permits the phenomenon of total internal

reflection at the core-cladding interface and, as a result,

the existence of confined, guided surface-wave modes. .Each

term in EFIE (4.3.1) is therefore proportional to exPfisz),

and expression (4JL2) is therefore indeed an eigenmode

solution.

Depolarizing dyad i is defined as [48]

5
"
)

AI

9755'
R

SO '

=-4lTr-f dl‘fi' f 32-d2'

c 00R
0

I
.
"

II

II _1_

4n

(4.3.6)

where C6 is the principal contour as shown in Figure 4.2.

The integration over 2' in (4.3.6) can be carried out by

changing of variable from 2' to u:(z-zF) such that

ii I .. (IFS-E.) +211

-ao .. [MD-”DU + u ]

 

I k
)

L'
C) |

D .
5

Let 235-5", then the depolarizing, or Green's-correction,

dyad becomes



94

 

 

Figure 4.2 Two-dimensional configuration of principal

volume shown as enclosed by principal

contour CG‘
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I
T
'
I
I

=lfmrd..=:
20 r

C6

(4.3.7)

for the two—dimensional, open-boundary wave guide geometry.

With results (4.3.2), (4.3.3), (4.3.4) and (4.3.7), the

three-dimensional volume EFIE (4JL1) then reduces to the

desired vector two-dimensional form

= 2 - = _ _ 2 -| = .. - _ _

kc CS kc

for all SECS,

(4.3.8)

51%)5la) represents the corresponding(B-dependent two--

dimensional Green's dyadic function and is defined as

EQE’IBIB') = [1.5+ (Vt$382)(Vt¥382)]K0W15-5'I)

(4.3.9)

where Pi is the unit dyad and the V operator has been

decomposed into the transverse Operator Vt and its longitu-

dinal component.

In a multi-waveguiding system as indicated in Figure

4.3, EFIE (4.3.7) can be generalized to describe surface-

wave modes supported by the coupled system of N waveguides.

Since the system-mode field propagates with common phase
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Figure 4.3 Configuration of N-coupled, open-boundary

dielectric waveguides.

 

 



97

constant B and scattered field as is maintained by polariza-

tion density fieq which exists wherever 6k2(5)#0, then it is

only necessary to extend the integration over each guide of

cross section CSn, n=1, 2, ..., N, to obtain

N

= 2 " = _ _ I 2 -l = ... - _ _

[1+5LL9). 2]“e(p) -Z PVf 6k (2 ) 9:2)(plp') - e(p')dS'

k

CS

=0 for all EEICSm

m8 1,2, ..., N.

(4.3.10)

Equations (4.3.10) are a system of N simultaneous EFIE's for

eigenmode fields 5m in each waveguide core. Non-trivial

solutions are obtained only for discrete phase-constant

eigenmodes 8 88m corresponding to the m'th surface-wave

mode. The coupled system of 2-d EFIE's (4.3.10) can be

expressed alternatively as

N .

[iii-(ii 7] -é(6) - Z pvj gigg- 338m?) -E(6')ds'

CSn nc

for?5 ECSm, m=1,2, ..., N,

(4.3.11)

where wavenumber k is replaced by refractive index n from

the relation k=nk0, '1' for fies is dropped but implied.

A similar result, yet provides better formats for
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physical interpretation and the convenience in actual

computation (without the source point singularity of 5e) can

be obtained by first carrying out the divergence Operator in

(4.2.9) followed by the use of the symmetric property of the

scalar Greenfls-function VVG=-VV'G[59]. Subsequent applica-

tion of the same divergent identity leads to

N -

+ Z vflv' .[_613_<§;'_)_ E(E')G(E|E')]

n=1 V kc

.. [W
2 —. _ _

~§5—é§—L E(E')]c(r|r')}dv'

5k2(E')E(E')G(E|E')dV' = fii(i)

1
M
2

£
T
‘
-
fi
a

for 'feVm, Ill-1,2, ..., N.

(4.3.12)

It is observed that the second term in the above expression

is the scattered field due to the scalar potential main-

tained by the surface charges and volume charges in the core

regions. Since V..[6_k_1(,£_)§(r )1 = w-u—i—Lnnu )1 =
k

-V'-§(r') due to V'-(e§$=o in a source freecregion,

together with V'-E=-V's-E/ec , and the invoking of

eigenfield (4.3.2), (4.3.12) above then yields [57]

5(6) +2 51-; E‘s—($119-5(6')(vtxjefimowIE-E'Imz'

C
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M
2

_ - 2 -
l . Ck I _ ' A _ .. '

2%] em 1:22. (p) WU 382%er p'“ds
cs 0)

1 n
:
1 II

N

— Z 71;] 5k2(5')é(6')K0(yIB-B'|)ds' = o

“=1 05,1 for'p'e csm, m=1,2, N.

(4.3.13)

The effects of equivalent-induced charge and current are

readily seen in (4JL13); the contribution from the surface

charge due to the jump discontinuity in index contrast

between each core and its surround is evident from the

contour integral along I'Cn of the n'th guide; while the

volume polarization charge which is proportional to the

gradient of the continuous index profile (interior to each

core) is given by the second integral and the last integral

in (4JL13) represents the scattered field maintained by

equivalent-induced polarization current.

4.4 lntegral-Operator-Based Coupled-Mode Perturbation

Approximation

Guided-wave field §=é(§)exp(-jgz) supported by a

system of N dielectric waveguides (Figure 4.3) described by

refractive-index contrast 6n2(3) satisfies the coupled

EFIE's i

2 - N -

[I+—§§— £]°e(o)-Z PVf —-—2——geB(o|o')°e(p')dS'

CS c
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for all Secsm,

m=1,2, ..., N.

(4.4.1)

The eigenfield En(6) for the n'th guide when isolated

satisfies EFIE

H
l
l

1
3

6n:(5) = _ _ 6n:(3') = _ _ _ _
+-———2—— 2 - enm) -PV T gen(plo')°en(o')d8' = 0

cc S C

n

for a115€ csn

(4.4.2)

where 8:8“, the eigenvalue associate with isolated

eigenfield én(6), is implied in letting EeB = gen-

To obtain a system of scalar equations, Operate term by

term on eq. (4.4.1) with the integral operator

m ‘00. for 111:1,2, .00, No

(4.4.3)

where 5m is the isolated m'th guide eigenfield, to Obtain
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... for m=l,2, ..., N.

(4.4.4)

Use was made of the well-known reciprocal property of the

electric Green's dyad [58] to Obtain (4.4.4); that prOperty

allows

(
D

D
I

t
h
l

gem?) .am') =‘é(B') 388$ IE) -5 (5)

(4.4.5)

when it appears within the integrand of EFIE (4JL2)

subsequent to application of operator (4.4.3).

In a system with coupled—mode propagation, the system

mode phase constant B is embedded in Green's dyadic ZeB' TO

extract 8 in this approximate coupled-mode theory, the 2-d

Greenfs dyadic is expanded, retaining only the leading terms

Of a Taylor's expansion for 368 about its value at B=Bm for

the m'th isolated guide; this approximation will be adequate

given the condition that weak coupling prevails. Therefore,

(4.4.6)
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Inserting (4.4.6) into the second term of (4.4.4) leads to

the following expansions

n=1 n
n m

N ' 6n (p') 6n£(p) - _
I o_ 2: A81“ as n2 e(p) pv n2 agem em(p)dS

n=1 CSn C 'CSm C

(4.4.7)

Applying the defining EFIE for eigenmode field Emu-3') from

eq. (4.4.2)

= anim') = _ _ 4131(5) = - -
1+ 2 2 °em(o')=PV 2 gem'm'lo) °em(p)ds

n n

c CS c

in the first term of the R.H.S. of expression (4.4.7)

provides

N 5n:(5') _ _ . 6n (5) = - _ - -

- Z dS' -——-2—-f e(o') °PV ——2—— gem(p'lo)-em(o)ds

cs cs C

B
r
o

:
3

n C m
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N an§(6') _ _ = Sniai') = - _
= - Z (15' ———2—— e(p') - I+———2—— 2. - em(p')

n
n=1 CSn

(4.4.8)

Since 6n:(5')ao for 5' eCSn, then the system (4.4.4)

leads, subsequent to use of results (4.4.7),(4.4.8), and the

use of f-Em(5')=em(5'), to

:
1

N 6n§(5) _ _ _ _

Z -—-2—e(p) -em(o)dS

cs C

N Gnih-D') - - - (311:1(0) = _' _ ._ _ d

+ ZABm ds —§—— e(o)-Pv ngemm Io) emm) 5

CS c CS

... for m=l,2, ..., N.

(4.4.9)

Equation (4.4.9) represents a system of N simultaneous .

equations, one associated with each of the N weakly coupled

dielectric waveguides; it involves N unknown fields, i.e.,

the é’(6)'s, one for each guide. Further approximation can

be made based upon the assumption that the field of each

guide in the coupled system will not differ significantly

from its isolated eigenmode field distribution as long as
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the coupling is weak; i.e., the assumption can be made that

5(5) 3 an5n(5) for all 5 a CS“.

(4.4.10)

where an is an unknown amplitude coefficient that depends

upon the coupling. Moreover, the second term in (4.4.9) can

only have significant cOntribution when n=m since 6§em(5'|5)

is small when 5' {-ZCSi.1 while 5 E CSm when n¥m. With this

weak-coupling approximation, terms n#m in the second sum of

expression (4.4.9) are drOpped leading to

suits) _ _ _ _

2: an —72— en(p)-em(p)ds

CS

. 2 - - 2 -

+ AB (3.11—“fl; (-')'PV ' m 5- (‘IIE).§ (Skis

mam 2 m p a 2 gem 9, m

cs nc csIn 1“c
m

... for m=l,2, ..., N.

(4.4.11)

where subscript 'n' and 'm' are-used for index contrast 5n2

to indicate the summation index. Expression (4.4.11) can be

written in the form of matrix equation as

N

Z Cmn(8)an = 0

n=1

... for m=l,2, ..., N.

(4.4.12)
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where matrix element Cmn is defined as

 

[(B"Bm)cmm ... for n=m

cmu = * 2 _

6nn(o) _ _ _ _

. 7— 611(0) 'em(p)dS ... for 11¢!!!

CSn c

(4.4.13)

and Cmmm a normalization constant depending upon eigenfield

am and aEem/as evaluated at isolated eigenvalueB-Bm is

defined as

~ an§(6)_ _ amid)» = __' _ _' '
Cmm= dS—T-em(p)-PV —-2-—Ggem(plp )-em(p )dS .

cs n cs -

(4.4.14)

The system mode eigenvalues are those 3's which lead to

a non-trivial solution to system (4.4.12) when det [Cmn(3)]

= 0. Relative modal amplitudes an are subsequently obtained

from the resulting homogeneous matrix equation of order (N-

1) obtained from system (4.4.12) after setting an=1 and

discarding one of the equations.

SPECIALIZATION TO COUPLED TWO GUIDE SYSTEM

When a coupled system consist of only two waveguides,

eq. (4.4.12) is reduced to
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)- - ~ ‘1 " - )— 1

(B 81)C11 C12 a1 0

      21 (8-82)c22..<1.a2. ..0 1

(4.4.15)

where the vanishing determinant for the coefficient matrix

leads to non-trivial solutions when

C C
12 21 _

~ ~

C11C22

82

By solving the above quadratic equation for system mode

phase constants B, we obtain

8 = E 1 68

(4.4.16)

where

m
l

II

N

m :
3

O
.
)

as = (A2 + 52)5 with

B — B c c
A = 1 2 ' 52 = 12 21 ’

C11C22

The amplitude ratio of the coupled surface modes on each

guide can be found from eq. (4.4.15) as
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C

 

m
l
m

A
)

H 12

(4.4.17)

Since Cmms' are the self-coupling terms, it is convenient to

choose the normalization of Emfi)‘ in expression (4.4.14)

such that

(4.4.18)

subsequently, for degenerate or nearly degenerate coupling

81 g 82 3 Bo, and from (4.4.16),

(58 = VCIZCZI .

(4.4.19)

The ratio of coupled modal amplitudes then becomes

(4.4.20)

where superscripts '+' and '-' denote the coupled-mode

amplitudes associated with system modes having phase

constants 8’80 + 68 and Ba 30 - 68. The corresponding

longitudinal wave functions An(z), assuming the coupled-

surface-wave modes are well above cut off, can be written as

a linear combination of these fields as
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aIe-j(8+68)z + a-e-j(B-68)z

A1”) = 1

A2(Z) age-j(8+68)z + age-j(B-68)z .

(4.4.21)

The initial values of An(z) at z=0 can be chosen

arbitrarily. Taking for simplicity|A1(0H2=0 and IA2(0)I2=1,

iuet, the initial power of the surface-wave mode in guide 2

being unity, susbsequent substitution of these initial

conditions into (4.4.21), and the use of relation (4.4.20)

yields

a+=—a-=l .C_1_2

1 l 2 . C21

(4.4.22)

C.12 -sz
A1(Z) = - j -E—-sin(682)e

21

A2(Z) = cos(<SBz)e-sz .

(4.4.23)

Expressions for 111(2) and 112(2) in (4.4.23) are the

solutions to the standard coupled mode equation with

constant coupling coefficients for a general (single mode)

coupled system [56]. It is noted from the expression for

A1(z) above that total transfer of power from.guide 2 to

guide 1 will occur at
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This is the well known definition for 'coupling length';

furthermore, eq. (4.4.23) also indicates that power is

periodically exchanged between the two coupled parallel

-guides.

It is therefore concluded that the above results agree

with those from the more familiar, approximate differential-

operator coupled mode theory; ‘This serves to confirm the

validity of the integral-Operator analysis when applied to a

coupled waveguiding system. 'The later theory has a

conceptually-exact foundation prior to the coupled-mode

approximation, and leads to explicit expressions for the

coupling coefficients.



CHAPTER V

APPLICATION OF INTEGRAL-OPERATOR ANALYSIS TO

COUPLED SLAB WAVEGUIDE SYSTEM

5.1 Introduction

Applications using integral-operator based coupled mode

theory are sought for a uniformly-clad slab waveguide system

[15]. Physically, when modal fields become coupled, a phase

constant shift from.the B's of the isolated guides to that

of system modes occurs. In the degenerate coupling of the

uflth mode along two identical guides with isolated phase

constants er the system modes have phase constants

Bm'BOm 1 A8,

To begin, the general coupled system of EFIE is

specialized to a slab waveguide system. .A characteristic

equation for unknown system-mode phase constant 8 of a two-

guide system is Obtained using Fourier-exponential transform

method; parameters include slab refractive indices, dimen-

sions and spacings. Either exact or approximate solutions

can then be Obtained for phase-constant shift AB. Perturba-

tion solutions, which approximate the coupled fields in the

integral equations by the eigenfields of each individual

isolated guide as described in the last chapter, are

specialized for one-dimensional coupled TE modes. The

110
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resulting coupling coefficients are obtained to implement

an approximate solution of the N coupled, simultaneous

EFIE's, resulting in a matrix equation for coupled-mode

amplitudes. Phase-constant shifts due to the degenerate TE

mode coupling of a weakly coupled two-guide system are

finally obtained.

Subsequently, numerical results are Obtained, using

both solution approaches, for several cases of degenerate'

and non-degenerate coupling in a two guide system. There,

the effect of coupling is demonstrated through the variation

of index contrasts in the system as well as the widths and

spacings of individual waveguides.

5.2 Specialization of EFIE for Coupled Slab-Waveguide System

The slab-waveguide system considered here has infinite

dimensions in both the y and z directions. It is assumed

that all waveguide parameters are both longitudinally and y

invariant. It follows that in (4JL13) using Vt 2 § a/ax,

5(6) = E(x) and assuming the transversely-graded index

profile n(5) - n(x), the integral of the y-dependent .

modified Bessel function K0 can be carried out to obtain a

one-dimensional Green's function g(x|x') as

m -y|x-x'l

1 - - , _ e ,

fif KO[Y|D’Q'I]dY " ZY =g(x|x) °

-ao

 

(5.2.1)

Also, the contour integral enclosing the transverse cross

section is reduced to contributions from surface charges at
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both the upper and lower boundaries Of each guide as shown

in Figure 5.1. These specializations of (4.3.13) subse-

quently lead to the one-dimensional coupled EFIE's: .

 

 

 

' N 6k (x'= 2;) A d A

e(x) + Z 2 [ex(x2n) (x a; - sz)g(x|x2n)]

=1 kC

2 +
5k (x'=x )

n 1n A d , A

k2 [ex(x1n)(x a - sz)g(xlx1n)]

c

x2n dk:(x')/dx' A d A

- ex(x') 2 (x a; - sz)g(x|x')dx'

k (x')
x1n n

x
2n 2 _

-f 6kn(x')e(x')g(xlx')dx'} = 0

x

m=l,2, ..., N,

(5.2.2)

where the 5143, are evaluated at the boundaries x'stn and

x'arxin as the result of one-dimensional contour integration;

superscript '+' and '-' denote the interior side of the

slab/cladding boundaries. Decomposition of (5.2.2) into its

component equations leads to:

x-component:
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Figure 5.1 Contributions of surface charges which

arise from the index discontinuity between

each slab and its surround cladding.
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N 2 -

5k (x'=x )

n=1 C

2 +

6k (x'=x ) ‘
- n k2 1n ex(xln)[‘Ysgn(x'xln)]9(xlx1n)

C

 

x2n dk§(x')/dx'

- ex(x')[-Ysgn(x-x')]g(x|x')dx'

x .

 

2

k (x')

1n n

x2n 2

- 6kn(x')ex(x')g(x|x')dx' .= 0 ,

x1“ (5.2.3)

y component:

N *2. 2
ey(x) - Z . 6kn(x )ey(x )g(xlx )dx = 0 ,

n=1 x1n ~

(5.2.4)

2 component:

N 2 I...
[ -jB 6kn(x —x2n)

 

 

 

ez (X) + Z 2 ex(x2n)g(x|x2n)

n=1 RC

2 +
6k (x'=x )

. n In

+38 . 2 ex(x1n)g(x|xln)

k
c

x2n dk§(x')/dx'

+18 2 ex(x')g(x|x')dx'

x kn‘x )
' 1n
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-[xzn 6k2(x')e (x')g(x|x')dx' = o .
n 2

"1n (5.2.5)

The sgn function in eq. (5.2.3) has a value of l with

positive argument and -1 for negative argument.

A study of the above component equations reveals that

as a result of the one-dimensional slab system discussed

here, i.e., for natural coupled TE modes, ex(x)= ez(x)= 0,

and the only remaining y component equations are independent

in ey(x). In the case Of coupled TM eigenmodes, ey(x)=0,

therefore E(x) = xex(x)+ §ez(x) while ez(x) is coupled to

ex(x) in (5.2.5). Also noted that TM-mode coupling is

stronger due to the fact that there exist surface charges

from the normal component of the field, i.e., e(x). This

observation [57] parallels the discussion of scattering in

the one-dimensional slab waveguide in Section 3JL2. The

following discussions on various solution techniques will

concentrate on coupled TE mode systems; this is mainly due

to the simplicity of the component equation involved as

described above and the dominant nature of TE modes in

dielectric waveguides. These solutions will enable us to

understand the coupling phenomena in other more complex

systems.
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5.3 Fourier-Expontial Transform Solution for Step-Index

slabs

5.3.1 Coupled TE Modes

Application of the coupled EFIE system (5.2.2) is

demonstrated by studying the coupled non-degenerate TE

surface-wave modes supported by the step-index slab--

waveguide system as shown in Figure 5.2. In this system,

the planar, slab waveguides have thickness (t1, t2),

constant refractive indices (n1, n2), wavenumbers (k1, k2)

and separation s. EFIE (5.2.4) appropriate for the TE modes,

having only y-component of electric field can be written for

guide fields ey1(x) and eY2(x) of slab 1 and 2 as

 

2 2 0
k -k

ey1(x) J{ ey1(x )e dx

 

 

 

2Y

t1

2 2 s '

k -k

_ 2 C v 'Yix-x'l ' =
2Y jr ey2(x )e dx 0

(5.3.1)

2 2 S
k -k

_ 2 c , -y|x-x'| ,
ey2(x) ZY ey2(x )e dx

s-t2

2 2 0

k -k .

_ 1 C I "le-X I I =
2Y I ey1(x )e dx 0

—t1 ... for s-tzg x5_s

(5.3.2)
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-tl

     -..)
Figure 5.2 Configuration appropriate for study of non-

degenerate TE surface-wave mode coupling

between two slab waveguides.
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where kc is the wavenumber of the surrounding cladding with

refractive index nc.

Physically, it is noted that the third terms of both

the above expressions represent the coupling from the

neighboring guide. .As the separation between waveguides

increases, the effect of these coupling terms becomes

neglibible because Of the rapid decay of exp(-y|x-x%) (with

x' as source point in one slab and x as field point in the

other) since Y is positive real for the coupled surface-wave

modes. This coupled system then reduces to two independent

EFIE's for individual isolated slab waveguides.

For the purpose of simplicity, let k1 = k2, ime., both

slabs have the same refractive index; such a configuration

has common applications in practice such as symmetric direc-

tional coupler. With ki-kgskg-kga Akz, apply the following

inverse Fourier-exponential transform to represent unknown

fields in both (5.3.1) and (5.3.2)

- _L jnx
ei(x) - Zflfzime dn

-m i=l,2 for slab 1 and 2.

 

(5.3.3)

After integration over x', we have

slab l:

m . m jnx -(jn+y)t1-yx
21 jnx _ [e -e . ]

AszE1(n)e dn [E1(n)dn Jn+Y

m yx jnx
~ e -e

f E1(n)dn [ jn-Y ]
co
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m (fin-y)s (jn-Y)(s-t2) '

_ e -e yx =

.l. E2(n)dn[ jn-Y ] e 0

'°° (5.3.4)

slab 2:

 

. - < ” jnx (jn+Y)(S-t2)-YX
2 JnX _ [e -e . ]

411.2 f 52mm dn f 32mm) an”

ac

 

m e(jn-Y)S+YX_ejnx]

- E2(n)dn [ jn-Y

m ' -(jn+Y)t1 .

-] E1(n)dn [l-e ]e-Yx = 0 . 

jn+Y

(5.3.5)

By collecting ejnx terms of either (5.3.4) or (5.3.5)

above and exploiting the linear independence,of ejnx, er,

and e’Yx, it is concluded that

——Y—2 -—1 +-—.1 ] jnxd =0 .

f E1(n) [Akz jn+Y Jn-Y e n

This is essentially an inverse transform, and its vanishing

requires the bracketed quantity to vanish since E1(n)#0.

This then leads to the discrete allowable eigenvalues for

this nondegenerate coupled system

(5.3.6)

such that the transformed solution for Ei(n) associated with
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ei(x) in (5.3.3) becomes

E1(n) = A6(n-K) + B5(n+K)

(5.3.7)

for slab l and

E2(n) = C6(n-K) + Dé(n+K)

(5.3.8)

for slab 2, where A, B, C and D are unknown amplitude

coefficients. The remaining terms from eq. (5.3.4) provide

°° ’(jn+Y)t1-Yx YX

E (n)dn[ e . - .e -

1 JU+Y 30+Y

 

 

m . (jn-Y)(s-t )

(3n-v)s 2
e -e YX =

.J{ E2(n)d" [ in-Y ] e 0
 

 

 

 

(5.3.9)

while from eq. (5.3.5)

m (jn+Y)(s-t )-Yx - -
d e 2 _ e(1n Y)S+YX]_

E2(n) n [ jn+Y jn-Y

m 1 ‘(jn+Y)t1

-e ‘YX = .

f E1(n)dn[ jfl+Y ]e. 0

(5.3.10)

If the transform solutions (5.3.7) and (5.3.8) are utilized

in eqs. (5.3.9) and (5.3.10) above, and linear independence

of the ein is exploited we then have a homogeneous system

of four simultaneous equations as
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-(jK+Y)t1 (jK-Y)t1

e e _

A jK+Y B jK-Y ' 0

(5.3.11)

- _ (jK-Y)(s-t )

A + B + C e(JK Y)s-e 2

Y-jK Y+jK Y-jK

_(.Y+jK)s -(Y+JK) (s-tz)

+ D e '8 . = O

Y+JK

(5.3.12)

C _‘3:11: ., D e‘”"3"’: ... o
Y‘jK Y+jK

(5.3.13)

-(Y+jK)t (jK'Y)t (Y+jK)(8-t )
1 1 2

A e . ’1 + B e . ’1 + C e .
Y+jK Y-JK Y+JK

(Y-jK)(s-t2)

+ D e . = 0 .

Y'JK

(5.3.14)

To obtain a non-trivial solution for coefficients A, B,

C and D from (5.3.11) through (5.3.14), it is necessary that

their determinant be made to vanish. As a result, it yields

the characteristic equation for eigenvalue Y'Of the coupled

system as
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jKt -jKt

(y+jK)2e 2‘(Y:jK)ze 2

jKt -jKt jKt -jKt
(e l_e 1) (e 2_e 2)

-2Y(s-t )

e 2 =

x (xth)2e -(Y-jK) e

(Y-jK)2(Y+jK)2 -

(5.3.15)

The same result can be confirmed by conventional differ-

ential-Operator and boundary condition technique; also, in

the limiting case where the separation between slabs is such

that coupling no longer exists, i.e., s+oo, (5.3.15) reduces

to the well known [42] characteristic equation of an

isolated slab,

" '1 (5.3.16)

Moreover, when tlstzat, a practical special case where both

slabs are identical (having same isolated eigenmodes),

characteristic eq. (SJLJS) can be shown to reduce for these

degenerate coupled TE modes, to

2 'Y(8-t)
= ZYKCOSKt4-(y2-K2) sinKt .

(5.3.17)

1 (y +K2) sinKte

The '1” signs should be properly chosen to correspond to

symmetric and asymmetric modal fields which exist on either

slab for this degenerate coupling.
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AB FOR WEAK DEGENERATE COUPLING

In the case of weak coupling, an approximate solution,

utilizing the above characteristic equation, can be obtained

for A8, i.e., the shift of system mode phase constant

8= 30 +AB from the corresponding phase constant 30 of the

isolated guide. The approximation is that AB is small enough

such that (AB)2=0; this also enables us to express the

transverse wavenumbers K and Y in terms of (BO,AB) in

(5.3.17) as K=I<o 4» AK , and Y: Yo + AY. The latter follow

from definitions Kzski- 82, y2= 82-kg, where k1, kc are

wavenumbers for the slab and cladding regions, respectively.

Therefore,

K2 = (K0 + AK)2 = R; - (80 + AB)2

= K3 - 23018 - A82

which leads to

AK 2 - BOAB/Ko -
(5.3.18)

Similarly from Y2=(YO+AY)2, we Obtain

AY 2 B AB/Y .

° 0 (5.3.19)

Substitution of above approximations to K and Y in

terms of K0, Yo, AK and AY into eq. (5.3.17), as well as

expanding both the Sine and Cosine function into their

corresponsing power series, yields

-Y (s-t)

i sinK0t(Y§+Kg)e 0

F(S.Bo)

 

AB 2

(5.3.20)
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where

 

2(K2—y2) (KZ‘Y2)t

B - B COSK t 0 0 + -—9——9——

E(S’ 0) - 0 0 YOKO K0

2 2 “Yo‘s't)
+ Bo SinK0t(4+Zyot)1:BO(YO+KO)e

 X +

t COSKot' (s-t)sinK0t]

Ko Yo

(5.3.21)

5.3.2 Coupled TM Modes

Further demonstration of the Fourier transfrom method

is shown below for the case of degenerate‘TM mode coupling

between a pair of identical slab waveguides such that

2- 2 2- 2 , a - -
Akza k1 kc: k2 kc and t t1 t2. Since both symmetric and

asymmetric modes exist in a degenerate coupled system,

therefore

e2x("’ = * elx('x+s’t) ' (5.3.22)

From the independent x-component equation of (5.2.3)

Ak _ -Y(X+t) YX ]
e1x(x) + ——§-[e1x( t)e + e1x(0)e

2R2

Akz 0 -y|x-x'| .
_ __ I

2Y e1x(x )e dx

-t

2 _ -

+ AE— [e (s)eY(x S)-e (s-t)eY(x S+t)]
2 2x 2x

2k2

Ak2 s 7(x-x') .
- 7-y— e2x(x -)e dx - 0

s-t

-t < x 5 0.

(5.3.23)
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Subsequent to application of the inverse Fourier-exponential

transform for elx(x) and e2x(x) as described in eq. (5.3.3)

followed by procedures similar to the TE-mode case above, we

obtain the allowable discrete eigenvalues for the transform

variable:

(5.3.24)

and the characteristic equation

2 2 2
. k k k

e 1 + Y(Y-jK) [1 + Y(Y-JK) t 1 Y(Y+JK)

[e-jKt-Ys_eY(t-s)'] }___

2 " 2 2

e-jKt [1 + —]:2-r-—] 1 + —-]:2.—— i [——k-2-.-—']

Y(Y-JK) Y(Y-JK) Y(YfJK)

x [ ejKt-Ys_eY(t-s)] I

(5.3.25)

Once more, when separation between slabs increases such that

s-vm, we recover the familiar characteristic equation of the

isolated TM mode slab waveguide as [42]

 

2 .

k1
, -2- (I) . . . symmetric mode

K

k1

tanKt/2 =3

L:E: ‘5 asymmetric mode

k2 Y "' ° (5.3.26)

1
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It is therefore evident from above results that

Fourier-exponential transform method yields exact solution

to the coupled EFIEfls which describe a system of parallel

slab waveguides. These correct solutions offer evidence to

confirm the validity of the integral-operator formulation

and provide confidence for its application to more complex

problems.

5.4 Perturbation Approximation

5.4.1 Specialization for Coupled TE Modes

An appropriate perturbation solution was obtained in

Section.4.4 to the simultaneous EFIEfls describing a system

of N coupled dielectric waveguides having propagating modes

with exp (:sz) axial dependence. The result was a

homogeneous matrix equation for the coupled modal amplitudes

involving coupling coefficients Cmrr Recall system (5.2.4),

the EFIE's for the coupled TE modes supported by a slab

system,

N x2n 2

ey(x) - 21 6k (x')ey(x')g(xlx')dx' = 0

n=

x1n

m=l,2, ..., N.

(5.4.1)

The corresponding matrix equation for the one-dimensional

system can be written as



with

O H (B-B )C

0
2 I

1m

x2n 2

Cum = 6kn(x)emy

_ x1n

x2m

—-J{ 6k2(x)e
mm m my

x
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... for m=l,2, ..., N.

(5.4.2)

... for an

x
2m

(x)dxj{ 6ki(x')emy(x') %%

x
B=B

1m .m

(5.4.3)

(x)eny(x)dx

... for n¥m

(5.4.4)

where emy(x) is the eigenfield of the m'th isolated guide

and is related to the coupled field eY(x) through the

assumption

I
l
l

ey(X) n my
a e (x)

no. for le SX SXZm'

m=l, 2, ..., N.

(5.4.5)

The eigenfields, supported by each individual isolated

guide, have the functional forms as discribed in Section

3.1:

emybc) =[

Am COSKmX for x1 gxgxz
m m

-Ym(x-tm/2)

A.m COSKm(tm/2)e

coo >x x<xfor x._ 2m' __ 1m

(5.4.6)
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where individual transverse wavenumbers Km and Ym are

defined by K%=K%-82 and Y£=B%-kg. Figure 5.3 shows the

configuration of two slabs, the nflth and nfth of a coupled

system of N slab waveguides, separated by a distance of sum

with widths of de and 2dn respectively. By exploiting

fields (5.4.6) in definition (5.4.4) we obtain

 

d
n -y (Ix-s I-d )

_ 2 m mn m
Cmn — AknAmAn Jr COSKnCOSKmdm e . dx

-d
n

= ZAmAnCOSKmdm(YmcosKndDSinhYmdn+KnSinKndncoshYmdn) x

2 2 2

1 + (em erg/2mm

e-Ym(smn-dm)

(5.4.7)

where Akiakifkgg similarly, for the diagonal matrix

elements, i.e., m=n

Cmm =

  

2 2 .
AkmBmdmAm [1 + 2 SinZKmdm

2
- cosZK d ] .

2Kmdm m m

Ym

(5.4.8)

In deriving (5.4.8), we utilized the following differential

operation

 

JL -Y|x-x'| _ _ _ l 3 -Y|x-x'|

BY e ‘ Ix x'l ysgn(x-x') ax' e

= - (x-x') %'§%T e—Y|X_x I.

(5.4.9)
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de T J, Z SLAB um"

‘
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n

X =

n dn
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2_ 2

dkn—Akn¢ 0

x =-d

n n

6k2= 0 x = x + S

n m mm

Figure 5.3 Configuration appropriate for study of non-

degenerate TE surface-wave mode coupling

between the m'th and the n'th guides in a

N-coupled slab waveguide system.
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EL4.2 Degenerately Coupled TE Modes between Two Slab

Waveguides

For a pair of identical slab waveguide, the matrix

equation reduces to a 2x2 system (Section 4.4), such that

a2 stal, for even and odd surface-wave-mode coupling;

furthermore e1y(x) = e2y(x) a ey(x), and 81:82880. From eq.

(4.4.15)

C11 C12 a1T

= o

C C a

L 21 22._ L 2_    
(5.4.10)

Since C12=C21, and Cll'CZZI the requirement of det [Cmn] a 0

for non-trivial solution of (5.4.10) leads to

O

(B-Bo)=AB=i-}'2'

11

0
:

(5.4.11)

This is the shift of propagation constant from that of the

isolated slab in the presence of loose coupling to the

decaying field of the other slab waveguide. Substituting

(5.4.7) and (5.4.8) into (5.4.10) yields

AB =

-Yo(3'd)

2cosKod(YOCOSKodsinhYod+KOSinKodcoshYod)e

H
-

 

2 2K d

Aszod 2in2K0d

1 + 2 - COSZKod

Y0 0

(5.4.12)
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where 2d is the width of each slab waveguide. Relative

amplitude for the coupled-mode fields, a2/a1=:tl, can then

be deduced from (5.4.10) corresponding to the system-mode

prOpagation constant.8= 80: A8 for the symmetric and

asymmetric system modes.

5.5 Numerical Results
 

DEGENERATE TE MODE SOLUTIONS
 

Refer to Figure 5.4, which indicates two identical,

parallel slabs having normalized wavenumber k2t=32, and the

ratio of refractive index between slab and surrounding

cladding (index contrast) as nl/n2 a 1.01. These are the

parameters used in Marcuse‘s paper [31]. There are three

allowable prOpagating TE modes with Bot-432.06, 32.248 and

32.32. The normalized phase shifts (ABt), as calculated

from result of weak coupling approximation to the exact

eigenvalue equation (5.3.20), are shown in Figure 5.5 as a

- function of normalized separation s/t between guides. The

results agree very well with those solutions to the exact

eigenvalue equation.

Perturbation solutions, using both the delta-function

(in effect, a point matching technique) and the eigenfun-

ction field of (4.5.2) of the isolated slab (which weights

the solution across the width of the slab) testing operators

yield (ABt) as a function of s/t are shown in Figure 5.6.

It is as expected that more accurate results are obtained in

the simple point matching method from the solution
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kzt = 32.0

nl/n2 = 1.01

Figure 5.4 Configuration appropriate for study of

degenerate TE surface-wave mode coupling

between two identical slabs.
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10-13_.

10-17_.

10'21“

 
 10'25 r I l *T r l 1

1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0

s/t

Figure 5.5 Normalized phase constant shift for two

propagating modes of a degenerately coupled

two-slab system. (n1=1.6, n2=1.0)



 

Bot= 32.248
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C) : perturbation solution

(point matching).

[a : perturbation solution

(IE formulation w/

eigenfield weighted)

   

  

A.: exact solution from

eigenvalue equation.

   

 

10'3 -

10‘5 -

4.1

1310'7 ‘

10‘9 "'

Figure 5.6

s/t

Comparison of resulting values for normalized

phase constant shifts from various solutions

in a degenerately coupled two-slab system.

(n1=1.6, n2=l.0
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corresponding to a matching point at x/t=-0.5; this result

confirms the intuitive expectation that a matching point at

the guide center is most appropriate.

Perturbation solutions leading to A8 as derived in

expression (5.4.12) are shown in Figures 5.7 through 5.10

for another slab configurations. There, perturbation

results are compared with numerical solutions obtained from

the exact eigenvalue equation by Wilson and Reinhart [32].

In Figure 5.7, the small core/ surround index contrast

(ng/nc=1.05) results in a slowly decaying field outside of

each slab; consequently a stronger coupling is evident as

comparison are made with those corresponding results of

Figure 5.8 (ng/nc=l.6) and 5.9 (ng/ncsl.2). It is also

observed from Figures 5.8 and 5.9 that the perturbation

solutions converge to the exact solutions much faster in the

later case due to weaker coupling arising from larger value

of itfs decay coefficient‘y. The width of guide 2 is

increased by a factor of 5 in Figures 5.10 from that of

Figure 5.7 to study degenerate coupling between differing

guides. The refractive index of guide 2 is reduced to

ng/nc-l.02 as its width is increased to maintain an isolated

phase constant 802-601 equal to that of guide 1. Degenerate

coupling between dissimilar guides is consequently

implemented. .Although the decay constants of the isolated

surfce-wave modes are identical for such degenerate

coupling, the coupling coefficients are modified due to the

differing field distributions of the coupled modes.
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based, coupled-mode perturbation solution

with numerical solutions to the exact eigen-

value equation for phase constant shift (A8)d

due to degenerate-mode coupling between iden-

tical slab waveguides with variable spacing s/d.
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slab waveguides with variable spacing s/d.
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equation for phase-constant shift (AB)d due to

degenerate-mode coupling between identical

slab waveguides with variable spacing s/d.
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Excellent agreement with numerical solutions to the exact

eigenvalue equation are again obtained.

NON-DEGENERATE TE MODE SOLUTIONS
 

Figure 5.11 through 5.15 demonstrate the coupling

between two non-degenerately coupled slab waveguides. Shown

in these figures are results for both system modes, i.e.,

3=§tt68. Once more, good agreement is obtained for phase

constant shift when compare the perturbation solution with

those from the exact eigenvalue equation (Figure 5.11).

Figure 5.13 shows the normalized coupled-modal amplitudes as

a function of normalized slab spacings, using the ratio of

the slab widthes as parameter. It is observed that when

both guides are in proximity of each other, strong coupling

results in almost equal modal amplitudes as expected

intuitively. Also, when dz/dl =- 1.0, i.e., the coupling

becomes degenerate, symmetric and asymmetric modes (having

equal amplitudes) are obtained on both guides (Figure 5.15)

as discussed in the last section.
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CHAPTER VI

CONCLUSION

An integral-operator technique, representing an alter-

native to conventional boundary-value analysis, has been

applied to two classes of problems for EM wave prOpagation

along open-boundary dielectric waveguides. First, the

scattering of surface-wave modes by’a discontinuity along

the waveguide» Second, the coupling of surface-wave modes

in a multi-waveguide system.

In the construction of a volume electric field integral

equation, equivalent polarization current is essential to

its formulation. Identification of this current for the

device discontinuity region results from the index contrast

between the discontinuity and the unperturbed background

waveguide; it is this current which maintains the scattered

field. Using this scattered field in conjunction with the

incident field, the unknown total field is cast into an

integral equation and numerical solutions are subsequently

sought. For the coupling problem, a system of N coupled

waveguides is replaced by equivalent polarization sources

which arise from the index contrast between each core and

its surround cladding. This current then radiates into

unbounded space in the presence of other sources. Coupling
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phenomena are the consequence of the total contributions of

all the fields maintained by these N coupled polarization

sources. -

Solutions to the resulting EFIEs' are demonstrated

through the application to slab waveguides. In the treat-

ment of scattering by dielectric-slice obstacles, neglecting

the contribution from radiation spectrum for small discon-

tinuies, a Fourier transform method yields the limiting

reflection and transmission coefficients which are further

confirmed by the Moment Method numerical calculation. Other

results, including the contributions from the radiation

spectrum, are also computed by MoM.solution and an approx-

imate solution assuming fields in the slice region have the

axial propagation constant obtained in the radiationless

case. In the coupling treatment, again, a Fourier transform

approach recovers the familiar eigenvalue equation for a

two-slab system. Together with the above treatment for

scattering, this demonstrates the versatility of the

transform.techniquec Subsequent coupled-mode perturbation

analysis yields the exact results which can be obtained from

the conventional differential-Operator approximation. This

new coupled-mode theory is applicable to relatively general

waveguide systems, since it requires approximation of only

the waveguide core fields.

In short, the contributions of this dissertation

research are that the applicability of Integral-Operator

analysis is clearly demonstrated and the correctness of the
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obtained results are verified. This method, when

considering the abundance of unsolved problems associated

with the open-boundary waveguide structures in both the

Optical and millimeter regions, provides an invaluable tool

for future research in these areas. To further emphasize

this point, it was recently pointed out by Oliner, et al.

[30,37] that the approximate treatments [12,60] of surface-

wave modes supported by integrated dielectric waveguides

-neglect, due to an inadequate account for coupling between

TE and TM components of the hybrid modes, important physical

phenomena. Those new physical effects include both leakage

and sharp resonance phenomena not predicted by the conven-

tional approximate methods. It is clear that the integral-

operator analysis described in this research provides an

exact description of the hybrid propagation modes; it will

therefore expose the same new effects for a more general

class of graded-index dielectric waveguide systems having

cores of any cross-section shape.

Future research in the extention and application of

this powerful analysis should consider the complex configu-

rations of practical integrated waveguide systems i.e.,

isolated, or coupled systems of integrated guides as

indicated in Figure 6.1. In that Figure, waveguide cores

are deposited upon a uniform thin-film layer of index nf and

the waveguides are covered by a uniform cladding overlay of

index nc while the film layer is deposited upon a uniform

substrate of index ns. Recommended investigations of the
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resulting rib or strip structures from such a configuration

include: i) surface-wave propagation modes supported by the

graded-index rib waveguide, by approximate perturbation, and

numerical methods, ii) study of system-mode surface waves

supported by coupled systems (both parallel and non-

parallel) of graded strip, channel and rib waveguides using

quasi-closed-form exact and approximate coupled-mode

approaches, iii) description of propagation modes supported

by electrOOptic integrated dielectric waveguides, iv)

analysis on the coupling of radiation to and from integrated

dielectric waveguide systems, including quantification of

continuous-spectrum radiation modes on rib-related waveguide

structures as forced solutions to the appropriate EFIEfls and

v) experimental confirmation of selected analytical predic-

tions.
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APPENDIX A

SLABZ SOURCE LISTING

FTN4

0
0
0
1
'
)

0
0
0
0

0
0
0
0

G
O
O
D

PROCRAH SLAB?

REAL N1,N2,N3,KOD,KPND,KPD

CONFLEx RN,TN,DUHHY ,

COHFLEx BOPD,C,BHB,BPB,RF,C4,AP,AH,R0,T0,HE,DIAG,DET,EY

DIMENSION XN(323,ZN(32),HE(32,33),EY(35)

DIHENSION GHND(2),KPND(2),BND(2),RN(2),TN<2)

COHHON/NATELIXN,ZN,KPD,BOD,N1,N2,N3,KOD,GHD,DXN,C2,DZN,E0,PI,NP,NX

1,N2,NRF1

COHHON/SCATO/zo,zoOD

COHHON/SHODE/RN,TN,GMND,KPND,BND,HHOD

COHHON HE

PI-3.141892653b

20-120.08PI

DPR-180.0/PI

311888!Itttttttttlitttlttt188831318881!tIttittttltttttttttttltttliltlttltxlt

READ FIRST DATA CARD FOR REFRACTIvE INDICES <N1,N2,N3> OF CORE, CLADDINC, AN

DISCONTINUITY RECIONS, RESPECTIVELY.

tittIIIIlttltltttttlltllttltt#183818883338tt¥¥¥ttt¥¥tttlttttttttt84833888#1!

URITE<1,61)

61 FORHAT<on,13HREAD N1,N2,N3)

READ(1,I> N1,N2,N3

1 FORHAT(3F10.3)

xttxtxxtxRx:xttx3:31:33xtxxxxxxxtxtxxxttxxxttxtxttRatttxxttxxtttttxxxxxxtxxx

READ SECOND DATA CARD FOR NORNALIZED SLAB THICKNESS DOLo AND NORHALIZED

EICENvALUE FARAHETERS (GHD,KPD,BOD) OF THE UNPERTURBED SLAB UAUEGUIDE.

txxtttxRxttxtxttttttrstttxxttttxtxttttxtxxxxxtxxxaxxxtttxxxttxtxxxttxttxxxxx

URITE(1,62)

52 FORHATt10X,21HREAD DOL0,GHD,KPD,BOD)

READ(1,x) DOL0,GHD,KPD,BOD

2 FORHAT<FIS.2,3EIS.O)

Ron-2.0xFIIDOLO

thttxxtIt:xxxxxttttuxtxxaxttxxntxxxxx:txxxtttttxtxxxttxtxxxxxxxtxxxxtxxxtx:

READ THIRD DATA CARD FOR NORHALIZED LENCTH 200D OF DISCONTINUITY RECION AND

AHFLITUDE Eo OF INCIDENT HAvE.

tttxtxxttxxxxtxxtxxttxtxxxRDSRSRRRRRRtxxtttttxtxxxxttxxxxxxxtxxtxxtxx:Sttxx:

HRITE(1,63)

53 FORHAT<IDx,17HREAD zoOD,Eo,HHOD)

READ<1,t> zoon,Eo,HHOD

3 FORHAT<F10.2,F10.1,II)

Rttxxxxxxxxxtxxxtxaxxtsxxxxxtttxttxxxxxxxxxxxxxtxxxtxtxxttxxxx:xsxxxxnxtxxtt

READ FOURTH DATA CARD FOR NUMBERS OF FARTITIONS (Nx,Nz) ALONG x AND 2

DIRECTIONS, RESPECTIVELY.

81881::tlttxtttttttttttltttttttttttxlttlttltllttltttxttxtttxlltxtittlttllttx

URITE(1,64)

64 FORHAT<on,IoHREAD NX,NZ)

READI1,I) Nx,Nz

4 FORHAT<I2,3x,Ia)

NF-NxxNz

NFFI-NF+:

DO 44 N-1,HHOD

URITE(1,6S)

65 FORHATton,27HREAD GHND(N),KPND(N),HND(N))

READII,S> GHND(N),KPND(N),HND(N)

41 FORHAT<3E:S.S)
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44 CONTINUE

C xx:tun::xtxtxxttxxtxtxxxxxtxxx99:11:11:xxxxxxtItRt:RIBS:tttxtxxxxxtxxxxxtxt:

C PRINT ESSENTIAL INPUT DATA.

C xxRxRRRRRBRRRIRRRRRRRBBB111::x111::xxxxxxxthxxxxx::xxxxxtxxxtxtxx:1:111:11:

URITE(6,S)

S FORHAT<1H1,//,10X,21HESSENTIAL INPUT DATA.,//)

URITE(6,6) N1,N2,N3

6 FORHAT<1H0,///,10X,4HN1= ,F4.1,2x,23H<SLAB REFRACTIUE INDEX),/,1ox

1,4HN2= ,F4.1,2x,27H<CLADDINc REFRACTIVE INDEX),/,10X,4HN3= ,F4.1,2

2X,32H(DISCONTINUITY REFRACTIUE INDEX))

URITE(6,7) DOLo,CHD,xPD,BoD

7 FORHAT<1Ho,/,1ox,bHD/Lo= ,FS.2,2X,32H<NORHALI2ED SLAB HALF THICKNE

188),//,10X,SHGHD- ,E14.8,2X,38H(NORHALIZED CLADDINC DECAY EICENvAL

2UE),/,1ox,SHKFD- ,E14.s,2x,ssH(NORHALIZED SLAB EIGENUALUE),/,10X,S

3HBoD- ,E14.8,2X,38H(NORHALIZED PHASE-CONSTANT EIGENVALUE))

URITE(6,8) 200D,E0,HHOD

s FORHAT<1H0,/,10X,6HZO/D- ,FS.2,2X,31H(RELATIUE DISCONTINUITY LENCT

1H),//,10X,4HEO= ,F4.1,2x,SH(v/H),2x,25H(INCIDENT HAvE AHFLITUDE)//

,,1ox,SHHHOD=,II,2x,23H<NUHBER OF HODES EXIST))

URITE(6,9) Nx,Nz

9 FORHAT<1H0,/,10X,4HNX= ,13,2x,2oH(FARTITIONs ALONC X),/,1ox,4HNz=

1,13,2x,20H<FARTITIONS ALONG 2))

DO 99 N-1,HHOD

URITE(6,91) N,CHND<N),RRND<N),BND<N)

91 FORHAT<1Ho,/,10x,2HN=,II,2x,SHCHND=,F1S.s,2x,SHKPND=,F15.s,2x,4HBN

DD-,FIS.B)

99 CONTINUE

C xxxan:9:993:19:txxxxtxtxxtxxxxxxxtxxxxt99:13:99:Rtxtnxxxxxxxxxxxxxxxxxxxxtxx

C CALCULATE AND PRINT THE AFFROXIHATE, RADIATIONLESS SLAB FIELD AND REFLECTION

C AND TRANSHISSION COEFFICIENTS.

c xxx11:1:a:RIB:xxxxxxxtxxtxtxxxtxxxxxtxxxtxxtxxxxtxxxtxxxxxxxxxxxxtxxx21::Bx:

CI-RPD+o.SBSIN(2.OBxFD)

C2=<KFD/CHD)R<COS(RFD))t:2+c1

C3=BDDBBOD+<N39N3-N12N1)xRoDBRoDxCI/Cz

IF<C3) 10,11,11

10 BOFD=CHFLx<o.o,-SQRT<-C3))

GO TO 12

11 BDFD-CHFLXISORT1C3),D.D)

12 C=o.St<N39N3-N1BN1)xCHFLx10.o,KoDxKoD/B0D)BC1/C2

BHBaBoFD-BDD

BPB-BDPD+BOD

RF-BHB/BFB

04-1.0-RFtRFtCEXP(CHPLX(0.0,-4.0)tBOPD*ZOOD)

AF-CHFLXTD.0,1.0)RBHBRonCEXF<CHPLx<o.0,-1.0)RBHBBZOOD)/<CRC4)

AH-AFSRFBCEXFTCHFLx10.o,-2.o)xBoPszoOD)

Ro-CHPLx10.o,-2.o)tRFtCEXP(CHFLX(o.o,-1.o)BBPszoOD)B(CSIN1BPszoO

1D)+CEXF<CHFLX(D.0,-2.o)xBoPszoOD)BCSIN<BHBtzoOD))/C4

To-<1.o-CHFLXTD.o,2.O)BCEx91CHFLx<o.o,-1.o)RBHBRZOOD)B(CSIN<BHszo

10D)+RFBRFBCEXF(CHFLX(D.0,-2.o)tBoPDRzoOD)xCSIN(BFBtzoOD))/CA)#CEXP

2<CHFLx<o.o,-2.o)tBoDRzoOD)

HRITE(6,13)

13 FORHAT<1H1,/////,10x,B9HRESULTS OF APFROXIHATE RADIATIONLESS SOLUT

1ION FOR SLAB FIELD AND SCATTERING COEFFICIENTS.)

URITE(6,14) Born

14 FORHAT(1H0,/////,20X,6HBOPD=(,E10.4,1H,,E10.4,1H))
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APH=CABS<AP>

APP=DPRSATAN2<AIHAG(AP),REALIAP))

AHH=CABS<AH)

AHP=DPR¥ATAN2(AIMAG(AH),REAl(AH))

URITE(6,IS) APH,APP,AHH,AHP

IS FORHAT(1H0,///,20X,3HAP=,E10.4,6HEXP(J¥,E10.4,1H),//,20X,3HAH=,E10

1.4,6HEXP(JI,E10.4,1H))

RDH=CABS<R0)

ROP=DPR¥ATAN2(AIHAG(R0),REAL(R0))

T0H=CABS<T0)

TOP=DPR*ATAN?(AIHAG(T0),REAL(TO))

URITE(6,16) R0H,R0P,ToH,T0P

16 FORHAT<1Ho,///,20x,3HRo=,E1o.4,SHEXF(JR,E10.4,1H),//,20x,3HTo=,E1o

1.4,6HEXP(J¥,510.4,1H))

xxxxxxxtxxxrtttx991991991119:xxxxxxxxxxx:xxxxxxxxxxxxxxxxxxxxxxxxxtxxxxxxx

PARTITION THE DISCONTINUITY REGION USING NORHALIZED COORDINATE vARIABLES.

BBBBBRSBBBItxtxxxxtxttxxtttxxxxxxxxxxxxxtxxxtxxxxxxxtxxxxxxxxxxxtxxxxxxxtx

DXN-1.o/Nx

DZN-2.oxzoOD/Nz

DO 17 I=1,Nx,1

XNII)-(I-o.S)BDXN

17 CONTINUE

DO 18 J=1,NZ,1

ZN(J)--ZOOD+(J-0.S)¥DZN

18 CONTINUE

ttttttlttttttttltttttitttltttttltttlttltttltltltittltlttttttxtttttttttlxxx

GENERATE THE ELEHENTS OF HOH HATRIx HE(H,N).

xxxtxxxtxxxxxxxttxxttxtrxxtxxttxxxxtxtxxxxxxxrxxxxtxxxRxxtxxxxxxxtxtxxxx:x

CALL HATEL<HE>

HRITE (6,68) HE

68 FORHAT(1H1,1X,7HHE(H,N),/,1b3(13E10.3,/))

DO 19 H-1,NP,1

DIAGxHE<H,H)

URITE(6,71) H,H,DIAG

71 FORHAT<1X,3HHE(,Is,1H,,Iz,2H)=,2E1S.A)

DO 19 N-1,NPP1,1

URITE(6,77) H,N,HE<H,N),H,H,DIAG

77 FORHAT<1x,3HHE(,12,1H,,I2,2H)=,2E15.4,Sx,SHDIAC<,Is,1H,,Ie,2H)=,

-c2E1s.4,/)

DUHHY=HE(H,N)

HE(H,N>=DUHHY/DIAG

URITE(6,78) HE(H,N)

7s FORHAT<1x, BHHE/DIAG=,2EIS.4,//)

19 CONTINUE

HRITE(6,69) HE

69 FORMAT<1H1,1X,7HHE/DIAG,/,163(13E10.3,/))

xttxxxttttttxttxtxxtttxxxtttuxtxxxtxxxxxxxxtxtxxtxxxxxxxxxxtxxxxxtttxxtxx:

SOLVE THE HATRIx EQUATION FOR THE EY(N) AND PRINT THE RESULTS.

BBBBBBRR:Baxtnxxxttttxxxxthxxxtxxttttx99:19:ttxxxtxxxxxxxxxtxxxtxxxx:txx»

CALL CHATP(-1,HE,NP,1,DET,1.0E-35)

HRITE(6,70) HE

7o FORMAT(1H1,1X,7HHE(INV),/,163(13E10.3,/))

DO 20 N-1,NP,1

EY(N)-HE(N,NPP1)

20 CONTINUE '
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EYHAX=CABS(EY(1))

DO 202 N=1,NP,1

IF(CABS(EY(N))-EYHAX) 202,202,201

201 EYHAX=CABS<EY(N))

202 CONTINUE

URITE(6,21)

21 FORHAT(1H1,/////,10X,77HRESULTS OF NUMERICAL MOM SOLUTION FOR SLAB

1 FIELD AND SCATTERING COEFFICIENTS.)

HRITE(6,211)

211 FORMAT(1H0, 9X,46HPROGRAH UITH SYHHETRY AND HULTIHODE SCATTERING)

URITE(6,22)

22 FORHAT11H0,////,10x,SDHINDUCED FIELD EY(X,Z) IN THE DISCONTINUITY

1REGION.,/////,6X,1HI,6X,1HJ,6X,SHXN(I),6X,SHZN(J),6X,1HN,17X,SHEY(

1N),19X,6H£YA(N),7X,6HEYP(N),//)

DO 24 L-1,Nz,1

DO 24 K-1,NX,1

N=K+(L-1)¥NX

EYA-CABS(EY(N))/EYHAX

REY-REAL(EY(N))

AEY-AIHAG(EY(N))

EYP-DPRBATAN21AEY,RET)

URITE(6,23) K,L,XN(K),ZN(L),N,EY(N),EYA,EYP

23 FORHAT<Sx,I2,Sx,12,Sx,FS.3,Sx,FA.3,Sx,13,Sx,1H<,E11.S,1x,1H,,1x,E1

11.S,1H),SX,E11.5,SX,F6.1)

CONTINUE

C #818813fill8808883833388888littflltttt$3831!03018!IIIXIIUSIRINIIIXIRSIIIIIt!

C CALCULATE AND PRINT THE SCATTERING COEFFICIENTS RN AND TN.

C 8083*!IItIfittttllttltttiltIt*ltllltIllttltltttlHttttlttt#1840!!!4418004484

URITE(6,25)

25 FORHAT(1H1,/////,10X,86HSCATTERING (REFLECTION AND TRANSHISSION) C

1OEFFICIENTS DESCRIBING DISCONTINUITY REGION.)

CALL SCATC<EY,RN,TN)

Do 999 N=1,HHOD

RNHICABS(RN(N))

ARN-AIHAC(RN(N))

RRN-REAL(RN(N))

RNP-DPRRATAN21ARN,RRN)

TNH=CABS<TN(N))

RTN-REAL(TN(N))

ATN=AIHAG<TN(N))

TNP-DPRRATANztATN,RTN)

URITE(6,26) N,RNH,RNP,TNH,TNP

26 FORHAT11H0,////,2ox,2HN-,11,2x,3HRN=,E10.4,6HEXP(Ix,E10.4,1H),//,

XZSX,3HTN=,E10.4,6HEXP(J¥,EIO.4,1H))

999 CONTINUE

STOP

END

FTN4 COHPILER: HP92060-16092 REV. 1901 (781201)
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SUBROUTINE HATEL<HE)

REAL N1,N2,N3,KOD,KPND,K2D,K20HE,K20PE,KEDSQ,KPD

COHPLEx HE,Cb,C7,HED,HER,XCEXP,XHED,XHER

DIHENSION HE(32,33),XN(32),ZN(32)

COHHON/NATEL/XN,ZN,KPD,BoD,N1,N2,N3,K00,GHD,DXN,C2,DZN,E0,PI,NP,Nx

1,NZ,NPP1

COHHON/NER/K2D,vN,EPS,CB,K2DHE,K20PE,RHONH

COHHON/FHATL/HDXN,HDZN,K2050,UNSQ

K20=N2¥K00

UN=SORT1N1RN1-N24N2)4Koo

DZH=2N<NZ)-2N(1)

EPS=K20/1o.o

K2DHE-R2D-EPS

K2DPE=KED+EPS

RHONH-1o.oxK2D

CB-4.04(N3BN3—N13N1)RRDDSKOD/PI

HDXN=DXN/2.0

HDZNaDZN/2.0

KBDSOIKEDIKEI

vNSO-vavN

DO 1 H-1,NP,1

DO 1 N-1,NPP1,1

HE(H,N)-CHPLX(0.0,0.0)

1 CONTINUE

DO 4 J-1,NZ,1

DO 4 I-1,Nx,1

H-I+(J-1)¥NX

XNI-XN(I)

ZNJ-ZN(J)

XEYO=EYO(XNI,1)

XCEXPSCEXP(CHPLX(0.0,-BOD¥ZNJ))

HEIH,NPP1)~E0:XEYDBXCEXP

DO 4 L-1,Nz,1

DO 4 K-1,NX,1

N-R+(L-1)4Nx

XHED-HED(I,J,K,L)

XHER-HER(I,J,K,L)

GO TO 3

IF(H-N) 3,2,3

HE(H,N)-1.0+XHED+XHER

GO TO 4

3 HE<H,N)=XHED+XHER

4 CONTINUE

RETURN

END

FTN4 COHPILER: HP92060-16092 REV. 1901 (781201)
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COHPLEx FUNCTION HED(I,J,K,L)

REAL N1,N2,N3,KPND,KPD,KOD

COHPLEx RN,TN,C6,C7 ,

DIHENSION GHND(2),KPND(2),BND(2),RN(2),TN(2)

DIHENSION XN(32),ZN(32)

COHHON/NATEL/XN,2N,KPD,BOD,N1,N2,N3,K0D,CHD,DXN,C2,D2N,E0,PI,NP,Nx

1,Nz,NPP1

COHHON/SHODE/RN,TN,GHND,KPND,BND,HHOD

HEDcCHPLx<o.0,0.o)

DO 99 N=1,HHOD

XX=KPND(N)

c1-xx+o.SRSIN(2.OBXX)

c2=<xX/GHND<N))R(COS(XX))492 +C1

C5=4.0*(N38N3-N18N1)I(KODIKOD/(BND(N)IBND(N)))lSIN(XXtDXN/2.0

C)/C2

C6ICHPLX(0.0,SIN(8ND(N)#DZN/2.0))

C731.0-CEXP(CHPLX(0.0,-8ND(N)#DZN/2.0))

XNI-XN(I)

XNK-XN(K)

ZNJ-ZN(J)

ZNLIZN(L)

IF(J-L) 2,1,2

HED'HED+C5¥COS(XXIXNI)ICOS(XX¥XNK)IC7

GO TO 99

2 HEDSHED+C5¥COS(XX¥XNI)ICOS(XXIXNK)0C6XCEXP(CHPLX(0.0

t,-BND(N)#ABS(ZNJ-ZNL)))

99 CONTINUE

RETURN

END

FTN4 COHPILER: HP92060-16092 REV. 1901 (781201)

#3 NO UARNINGS 80 NO ERRORS it PROGRAM I 00380 COHHON = 00000



0287

0288

0289

0290

0291

0292

0293

0294

0295

0296

0297

0298

0299

0300

0301

0302

0303

0304

0305

0306

0307

0308

0309

0310

0311

0312

0313

0314

1652

COHPLEx FUNCTION HER<I,J,K,L)

REAL N1,N2,N3,RDD,KPD,R2D,K20HE,K20PE,Keoso

COHPLEx C10,I1,12,I3

DIHENSION XN(32),ZN(32)

COHHON/NATEL/XN,2N,KPD,BOD,N1,N2,N3,K00,GHD,DXN,C2,DZN,Eu,PT,NP,Nx

1,NZ,NPP1

COMMON/FMATL/HDXN,HDZN,KBDSQ,VNSQ

COMMON/NER/K2D,VN,EPS,C8,K20HE,KRDPE,RHONM

COHHON/FHER/DZNJL,II,JJ,KK,LL

HER=CHPLx<0.0,0.0)

GO TO 10

12 II'I

JJ‘J

KK-K

LL=L

RHONIK2D

SIGN'SORT(VNtVN+RHONlRHON)

C9=COS<SIGN¥XN(I))3COS(SIGNIXN(K))ISIN(SIGN3HDXN)/((1.0+(VNSO/(RHO

1N¥RHON))USIN(SIGN)tl2)*SIGN)

C9XI<K20~EPS>I<SQRT<(K20)xta-(KZD-EPS)I¥2))

CIOBPI/Z.o-ATAN(C9X)+CMPLX(0.0,ACOSH(1.0+EPS/K2D))

I2-CHPLx10.o,HDZN)xC9xC10

DZNJLsABS<2N(J)-2N<L))

CALL CSIHC<1,o.0,K20HE,0.1o,20,I1,NOI1,R1)

CALL CSIHC(1,K20PE,RHDNM,0.10,20,13,N012,R2)

HER-CORII1+12+13)

10 RETURN

END

FTN4 COMPILER: MP92060-16092 REV. 1901 (781201)
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0315 rOHPLFx FUNCTION r<1NDIx,RH0N)

0315 REAL KPD,K20,KPDSU

0317 COMPLEX BTN,C11

310 DIMENSION XN<32),7N<32)

0319 COHHON/NATEL/XN,2N,RPD,BOD

0390 COHHON/NrR/KPD,VN

0321 CUMMUN/FMATL/HDXN,HDZN,KPDSO,UNSO

0329 CUMMON/FMER/DZNJL,II,JJ,KK,LI

0323 IF(INDEX-1) 7,1,7 .

0324 1 RHUNSQ=RHON¥RHON

0325 SIGN=SORT<UNSO+RHONSO>

0390 IF(RHON-K2n) 2,3,3

0327 2 BTN=CHPLX<SORT(K2DSO-RHONSO),0.0)

0328 GO TO 4

0329 3 BTN=CHPLx<0.0,-SQRT<RHONSO—K2DSO))

0330 4 C11=RHONSOICOS(SIGN¥XN(II))lCOS(S]GN¥XN(KK))*SIN(SIGNRHDXN)/((RHUN

0331 1SQ+vNSOBSIN<SICN)::2)IBTNIBTNISICN)

0332 IF(JJ-LL) 6,5,6

0333 S F=011¥(1.0-CEXP(CMPLX(0.0,-1.0)#BTN#HDZN))

0334 GO TO 7

0335 6 F=C11¥CHPLX<0.0,1.0)4CEXP<CHPLx<o.o,-1.0)RBTN107NJL)4CSTN<BTN1HDZN

033A 1)

0337 7 RETURN

0338 END

FTN4 COMPILER: HP92060-16092 REV. 1901 (781201)
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SHUVHUIINF SLATL([T.RN,TN)

RTAT N1,N2,N3,000,RFND,TPD

LUMPIIX II,RN,1N,FTSB,LYSr,xCax0,YLIxP

LUHFLIx RR 11

runPLTx kx,Tx

01n1N010N R)(2),Tx<2)

DIHENSION F](3H),XN(3P),ZN(32)

DTHTNSJON CHND<2),KPND<2),0ND<P),RN<2),TNTP)

FOMMON/NATEL/'XN,ZN,kPD,B00,N1,NJ’,N3,P 00 (iral),v>.N.t .-’.D/N,[ 0,01 ,NP,N).

,N7,NPP1

LOHHON/SCATO/20,20O0

COHHON/SHODE/Rx,Tx,CHND,KPN0,BND,HHOD

DSN=DXN¥DZN

DO 99 J=1,MHOD

xx=KPND<J)

C01=xx+.S»STN<2.OBXX)

CC2=<xx/GHND<J))41COS<XX)):424CCI

BBwBND<J)

AJLSQRT(K004201XX/(2.0¥BH¥CC2))

llfJ.NE.1) GO TO 300

A1=AJ

CONTINUE

EYSB=CMPLX(0.0,0.0)

EYSF=CMPLX(0.0,0.0)

DO 1 L=1,NZ,1

DO 1 K=1,Nx,1

N=K+(L-1)INX

XEYO=FYO<XN(K),J)

XCEXP=CEXP<CHPLx10.0,—BND(J)47N(L)))

FYSB=FYSB+EY<N)RXEYORXCEXPRDSN

YCEXP=CEXP<CMPLX(0.0,BND(J)*7N(L)))

EYSF=EYSF+EY(N)XXEYOXYCEXPIDSN

CONTINUE

EYSB=EYSB*2.0

EYSF=EYSF#2.0

CR=<N3RN3-N1RN1)tKOD/(zoxFO)

RR=CHPLX(0.0,-1.0)tC34CEXP(CHPLx<0.0,-1.0:<BOD+BND<J))*2000))xFYSB

RN(J)=RR*AJ/Ai

IF(J.NE.1) GO TO 100

TT=CEXP<CMPLX(0.0,-1.0#(BOD4BND(J))#7000))*(1.0-CMPLX(0.0,1.0)¥C8#

#EYSF)

GO TO 200

T1=CEXP(CMPLX(0.0,-1.0#(BOD+BND(J))*ZOOD))4(0.0-CMPlX(0.0,1.0)NC8!

*EYSF)

CONTINUE

TN(J)=TT*AJ/A1

99 CONTINUE

REIURN

END

FTN4 COMPILER: HP92060-16092 RFV. 1901 (781201)
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FUNCTION EYO(X,N)

REAL N1,N2,N3,KPND,KPD,KOD,KBD,KZDHE,KBDPE,K2DSO

COMPLEX RN,TN

DIHENSION GHND(2),KPND(2),BND(2),RN(2),TN(2),XN(32),ZN(32)

COHHON/SHODE/RN,TN,GHND,KPND,BND,HHOD

COHHON/NATEL/XN,ZN,KPD,BOD,N1,N2,N3,KOD,GHD,DXN,CC,DZN,E0,PI,NP,NX

1,NZ,NPP1

COHHON/SCATO/ZO,ZOOD

XX=KPND(N)

c1=xx+o.sxSIN<2.oxXXI

CB=(XX/GHND(N))¥(COS(XX))*#2+Ci

B=BND(N)

AssnRT(KonxzoxXX/(2.oxaxc2>)

EYO-AKCOS(XX¥X)

RETURN

END

FUNCTION ACOSH(X)

ACOSH-ALOG(X+SQRT(X¥X-1))

RETURN

END

COHPILER: HP92060-16092 REV. 1901 (781201)
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0408 SUBROUTINE CHATPtIJOB,A,N,H,DFT,EP)

0409 COHPLFX A,R,DET,CONST,S,CN81,Z,U,x

0410 DINENSION 4(32,33>

0411 30 FORN4T<1x,42NTNE DETERMINAN1 OF THE SYSTFH EQUALS ZERO./

0412 11x,36NTHE PROGRAM CANNOT HANDLE THIS CASE.//)

0413 : 0ET=1.

0414 NP1=N+1

0415 NPH=N+H

0416 NN1sN-1

0417 IF(IJOB) 2,1,2

0418 1 00 3 I=1,N

0419 . NPI=N+I

0420 A<I,NPI>=1.

0421 f IP1=I+1

0422 no 3 J=IP1,N

0423 NRJ=N+J

0424 4(I,NPJ>-0.

0425 3 4(J,NPI>-0.

0426 2 DO 4 J=1,NN1

0427 C=CABS(A(J,J))

0428 JP1=J+1

0429 00 5 IaJR1,N

0430 D-CABS(A(I,J))

0431 IF(C-D) 6,5,5

0432 6 DET--0ET

0433 00 7 K-J,NPH

0434 8=A(I,x)

0435 A<I,K)s4(J,K>

0436 7 4<J,K>-a

0437 c=o

0438 5 CONTINUE

0439 IF(CABS(A(J,J))-EP) 14,15,15

0440 15 DO 4 I=JP1,N

0441 CONST-A(I,J>/4<J,J>

0442 no 4 K-JP1,NRN

0443 CNST=CONST$A(J,K)

0444 4 A(I,K)-4(I,x)-CNST

0445 IF<CABS(A(N,N))-EP) 14,18,18

0446 14 DETao.

0447 IF(IJOB) 16,16,17

0448 16 URITE<6,30)

0449 17 RETURN

0450 18 DO 11 I=1,N

0451 11 DET-DET#A(I,I)

0452 IF<IJOB) 10,10,17

0453 10 no 12 1-1,N

0454 x-N-I+1

0455 KP1-x41

0456 no 12 L-NP1,NPH

0457 s-o.

0458 IF(N-KP1) 22,19,19

0459 19 no 13 J-KP1,N

0460 2-8

0461 13 8-z+A(K,J)RA<J,L)

0462 c 22 U=A(K,L)-S

0463 C x-U/4(K,K)

0464 C A(K,L)=X

0465 22 U=4(K,L)

0466 A(K,L)=(U-S)/A(K,K)

0467 12 CONTINUE

0468 RETURN

0469 END

FTN4 COHPILER: HP92060-16092 REU. 1901 (78120.1)
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0471

0472

0473

0474

0475

0476

0477

0478

0479

0480

0481

0482

04133

0484

0485

0486

0487

0488

0489

0490

0491

0492

0493

0494

0495

0496

0497

0498

0499

0500

0501

0502

0503

0504

0505

0506

0507

0508

0509

0510

F
0

31

32
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SOHROUTINL CSIHC(1NDFX,X1,XFND,1FST,L]H,ARFA,NH1,R)

COMPLLx ODD rvLN,Aan1,ENDs,F,nREA

NOJ=0

ODD=CMPLX<U.U,0.0)

INT=1

U=1.o -

EUEN=CHPLX(0.0,0.0)

AREA1=CMPLX(0.0,0.0)

END5=F<INDEx,x1)+F<INDFX,XEND>

Hr<XENDwx1)/U

ODD=EVEN+ODD

x=x1+H/2.

EVEN=CHPLX(0.0,0.0)

D0 3 1:1,INT

EUEN=EVEN+F<INDEX,X)

x=x+H

CONTINUE

AREA=(ENDS+4.0REUEN+2.0xODD>#H/6.o

NOI=NOI+1

R=CA851(AREA1-AREA)/AREA)

IF(N01—LIH) 31,32,32

IF(R—TEST) 32,32,

RETURN

AREA1=AREA

INT=°¥INT

U=2.0¥V

GO TO 2

END

BLOCK DATA NATEL,SCATO,SHODE,NER,FHAT1,FMFR

REAL N1,N2,N3,KPND,RPD,K0D,K20,K2DNE,K2DPE,K2050

COMPLEX RN,TN

DIHENSION XN<32),2N<32)

DIHENSION GHND(2),KPND(2),BND(2),RN(P),TN(2)

COMHON/NATEL/XN,ZN,KPD,BOD,N1,N2,N3,KOD,GHD,DXN,C?,DZN,E0,PI,NP,NX

,N2,NPP1

COHHON/SCATO/20,700D

COMMON/SHODE/RN,TN,GHND,KPND,BND,HHOD

COHHON/NER/KBD,UN,EPS,C8,KBDHE,KZDPE,RHONH

COHHON/FHATL/HDXN,HDZN,KBDSQ,VNSQ

COHHON/FHER/DZNJL,II,JJ,KK,LL

END

6
.
-

F1N4 COHPILER: HP92060-16092 REV. 1901 (781901)

XX NO WARNINGS it NO ERRORS **

BLOCK COHHON NATEL SIZE = 00156

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

COMMON SCATO SIZE = 00004

COMMON SHODE SIZE 8 00029

COHHON NER SIZE = 00014

COHHON FHATL SIZE = 00008

COHHON FHER SIZE = 00006
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FTNU,L

SUHRUUTINE PLOT(DATx.~S,4uRVS.XSTARI.xSTEP.XMAY.ISYM.MAN,XOATA.Mv,

ANPTbolNCRmTI

CitttiitttttfiAAAAAIAAAAAOAAAIAOAAAOAAAflitti‘fifilitttiiiilifittittitfitiitifl

CtttttttttfitfiAttitifitifitttlIA.Altfitttitt.flit.it!tfifiifiififititfifiiitfitttfitit

CA A

CA x-Y PLOT SURRUUTINL A

C. A

CARA...AtttlttttttttitittttitfiAOAAAAA...A...tittttfitfifitiitttfiitttfiiii...

CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAIt...AAAAAI.Atlfilttttitttttttfit

CA A

CA A

CA A

C* A

CA A

CA SOURCE: SPL12 A

CA pELUCATARLE: RPLTZ A

CA A

CA THIS IS A STANDARD FORTRAN x-Y PLOTTING SUOROUTINE. IT CAN A

CA SIMULTANEOUSLY PLOT I? nTFFERENT CURVES (ONE IS A ULANK). THE A

CA x-AXIS CAN BE STARTED UR STOPPED AT ANY VALUE A INCREMENTED A

CA dY ANY AMOUNT. THE USER CAN ALSO SPECIFY WHAT INCREMENT THE A

CA x-AXIS VALuES ARE TO BE PRINTED. THE x-AxIs CAN BE SCALED BY A

CA ANY FUNCTION THE USER UESIRES. SUCH AS A LOG FUNCTION. x-AxIS A

CA SCALING IS DETERMINED BY THE MINIMUM AND MAXIMUM DATA VALUES OF A

CA THE FIRST CURVE TO BE PLOTTED. TUE Y-Axls CAN BE SCALEO LARGER A

CA THAN THE MAXIMUM VALUE RY FILLING THE FIRST ARRAY wTTH LARGE A

CA VALUES & PRINTING IT NITH BLANKS. IF THE x VALUE EOUALS THE Y A

CA VALUE THEN A s SYMSDL ls PRINTED. A

I

A

CA

CAA.AAAAAttttattttfitttttttttitttQtttttiiiAttttttfitttttttttitfitttttttttt

CA
A A A

CA A PRINTnuT A INTEGER A

CA ARGUMENT DEFINITION A SYMOOL A DESIG. A

CA A A A

CtttttAttttttttttttttfittA...Atttttititttttttttttt‘ttttiitttttittttittil.

CA
A A A

CA ARGI: ARRAY NAME UHERE CURVE DATA IS A 0 A I A

CA STORED A A A

CA ARGE: M DIMENSION UF ARQAY A A A 2 A

CA ARGS: NUMBER OF CURVES TO BE PLOTTED A X A 3 A

CA A984: STARTING POINT OF THE x-AXIS A A A a A

CA ARES: AMOUNT X SHOULD BE INCREMENTED A , A S A

CA ARGA: FINAL VALUE OF x A A A 6 A

CA ARGT: ARRAY NAME IN NHICH SYMBOL DATA A D A 7 A

CA 18 STORED IN A A A

CA ARGR: INTEGER INOTCATOR--0 TELLS PROGRAM A a A 8 A

CA TD GENERATE LINEAR x-AXIS. I TELLS A A A

CA PROGRAM THAT USER IS GENERATING A A A

CA THE AXIS A A A

CA ARGR: ARRAY NAME NHERE USERS X-AKIS A 0 A 9 A

CA IS STORED (USE 0 IF ARGB:0) A A A

CA ARGIO:VALUE TD RMICH ARGR IS DIMENSIONED A I A IO A

CA (USE I TF ARGO:0) A A A

C4 ARGIlzNO. DATA POINTS TO BE PLOTTEO IF A s A II A

c. AR58=T. 0THFRNISE U A ' ‘
CA AR512:1NCREMENT IN NHICH x-AXIS VALUES A BLANK A 12 A

CA ARE TO BE PRINTED A A A

CA A A A

CAOIAAOAOAAAQAOIAAAAAAAAAAAAAAAAAA!AA’AAAAQAIAAAAAOAOAAAAAQIOAAQ4.0.0...
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CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

DIMENSION LINEA(TOI)oLTNE%(IOI)00ATX(eel)oISMoL(Ie).ISYM(IBIoIY(IZ

A).XOATA11)

DATA IRLNK/IH laIDT/IHI/.]SMRL/1HupIHA.IHx,1H+,1H,,1HA,1NU,1Hq,

ATHO.1NA,TH$.IN /.IA8AR/IN:/

OATA CENTRI/l.S/ottNTREISI.S/pLINEUIIOIAIH-I

KOUNszb

WRITE(6.9)

CALL EXEC(3.IIDEH.651

TAXIS=0

AMAX = 0.0

AMIN = 0.0

YVAL = xSTART

N0 = I

IN = INCRMT + I

00 b N=I.I2

6 TYTN) = 0

LINEB(T) = IAoAR

LINERIBOI = IABAR

LINER(51) = IARAR

LINER(76) = IABAR

LINEB(TOI) = IABAR

DO 10 T=I.IOI

Tu LINEA(II = IBLNK

NSTEPS = 1.0 A ((XMAX - XSTART) / XSTEP)

IFTMAN.E0.I) NSTEPS : NPTS

00 20 K:I.NSTEPS

IFTOATY(1.K).GT.AMAx) AMAx

IF(OATX(I.K).LT.AMTN) AMIN

20 CONTINUE

TF(AMIN.LT.0.0) GO TO 30

SCALE = IOO./AMAX

CENTR = CENTRI

DATX(10K)

DATX110K)

T1 : AMAX

Ta = 0.75 A AMAx

T3 = u.5 A AMAX

Ta = 0.25 A AMAX

T5 = 0.0

GO TO 60

30 AIMIN = -AMIN

IF(AMAX.GT.AIMIN) GO T0 40

IF(AMAX.E0.0.0) GO TO 35

SCALE : 50./AIMIN

TI = AIMIN

T2 = 0.5 A AIMTN

T3 = 0.0

T4 = 0.5 A AMIN

T5 = AMIN

GO T0 50

35 SCALE = 100./AIMIN

CENTR = IOI.5

TI = 0.0

T2 = 0.25 A AMIN

13 = 0.5 A AMIN

T4 = 0.75 A AMIN

T5 = AMIN

GO TO 60

do SCALE 8 50./AMAx

TI : AMA!

T? = 0.5 A AHAX
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T3 = 0.0

To = 0.5 A (-AMAX)

T5 = -AMAX

SO CENTR = CENTRE

60 VARA = ISTART

ICNTR : CENTR

DO 110 J=I.NSTEPS

KOUNT=KOUNTAI

IAX=0

IF(MAN.EO.I)VARx=xDATA(J)

LINEAtlcNTR) = IDT

Y = -XSTEP

IF(KOUNT.NE.66)GO TD 80

75 IAX=I

IF(KOUNT.EG.66)KOUNT=0

IAX=I

5 FORMAT(“A'oflonIO.2.A(ISXoFIO.2))

DO 70 N:I.IOI

70 LINEAtM) z LINEDtN)

80 00 BI L=IpKURVS

TY(L) = (DATxthJIASCALEIACENTR

LINEA(IY(L)) = ISNBL(ISYN(L))

BI CONTINUE

DO 83 H=IAKURVS

Do 82 N=I.KuRvs

82 IF(((IYtN).ED.IY(N)).AND.(M.NE.N)).AND.( .NOT.((ISYM(NI.EU.12)

A.QR.(ISYM(M).E0.12)))) LINEA(IY(N)) 8 ISNBL(II)

83 CONTINUE

IF(N0.E0.II so To 95

NRITEtboTI LINEA

IF(IAx.En.IINRITE(6.S)TS.TA.T3.T2.TI

7 FORMATtIOXoIOIAI)"

0 FORMATtlox.IOIAI.SX.F15.¢)

95 IF(HAN.E0.I)XVAL=XDATA(J)

IFTNAN.NE.I) VARx : VARx + XSTEP

IF(NO.NE.II Go To 105

NRITE(6.A) LINEAoXVAL

IF(IAX.ER.I)NRITE(6.S)TS.TA.T3.T2.TI

I05 NO 8 N0 A I

IF((VARx.GT.(xSTEPAo.25)).0R.(VARx.LT.(YA.25)))GO To 106

106 IFINO.EO.IN)ND=I

IFIMAN.NE.I) XVAL = XVAL A XSTEP

00 90 N:I.I01

90 LINEAIN) 8 IBLNK

IIo CONTINUE

00 IOT MsIoIOI

101 LINEA(N)=LINEB(N)

NRITE(6.4)LINEA

WRITE(605)TSAT‘0T3¢TEDTI

120 HRITE(609)

9 FORMATI'I'I

CALL EXEC(3.IIOSB.64)

130 RETURN

END

ENDS
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APPENDIX B

SLABZ OUTPUT SAMPLE

ESSENTIAL INPUT DATA.

N1 1.6 (SLAB REFRACTIUE INDEX)

N2: 1.0 (CLADDING REFRACTIVE INDEX)

N3: 3.0 (DISCONTINUITY REFRACTIUE INDEX)

D/LDA .50 (NORHALIZED SLAB HALF THICKNESS)

GHD: .37203240E+01 (NORHALIZED CLRDDING DECAY EIGENVRLUE)

XPD= .12473061EADI (NORMALIZED SLAB EIGENUALUE)

80D= .48693342£+91 (NORMALIZED PHASE-CONSTANT EIGENVALUE)

ZI/D: .08 (RELATIVE DISCONTINUITY LENGTH)

E0: 1.0 (U/H) (INCIDENT HAVE AMPLITUDE)

HHOD=2 (NUMBER OF HDDES EXIST)

NX= 4 (PARTITIONS ALONG X)

IZ= 8 (PARTITIONS ALONG 2)

N51 GHND= 3.72032400 KPND= - 1.24730610 BND= 4.86933420

N=u GHND= 1.62902900 XPND= 3.56971310 BND= 3.53883310
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RESULTS OF APPROXIHATE RADIATIONLESS SOLUTION FOR SLAB FIELD AND SCATTERING COEFFICIENTS.

BOPD=( .9269E+01, .0000E+00)

AP= .6313E+00EXP(It-.2070E+02)

AH= .1964E+00EXP(It-.1004E+03)

R0= .SbIIE+00EXP(JI-.1715£+03)

T0= .8277E100EXP(J¥-.8146E+02)
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1.713

RESULTS OF NUNERICAL HON SOLUTION FOR SLAB FIELD AND SCATTERING COEFFICIENTS.

PROCRAN HITH SYHNETRY AND HULTIHODE SCATTERING

INDUCED FIELD EY(X,Z) IN THE DISCONTINUITY REGION.

m
W
Q
Q
V
V
V
V
O
‘
O
‘
O
‘
O
‘
W
W
W
M
‘
b
L
L
w
U
M
L
-
I
N
N
N
P
O
F
‘
W
H
»

XN(I)

.125

.375

.625

.875

.125

.375

.625

.875

.125

.375

.625

.875

.125

.375

.625

.875

.125

.375

.625

.875

.125

.375

.625

.875

.125

.375

.625

.875

.125

.375

.625

.875

ZN(J)

-.066

-.066

-.066

-.066

-.047

-.047

-.047

-.047

-.028

-.028

-.028

-.028

-.009

-.009

-.009

-.009

.009

.009

.009

.009

.028

.028

.028

.028

.047

.047

.047

.047

.066

.066

.066

.066

m
u
o
m
o
u
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»

0
4
0
4
0
4
0
1
)
N
N
N
N
N

m
m
w
m
u
m
n
m
w
w
w
w

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

EY(N)

.55812E+0i

.30470E+01

.21479E+01

.299S7E+01

.60585E+01

.33614E+01

.23911E+01

.32602E+01

.63681E+01

35512801

.25461E+oi

.34382E+01

.6S7ISE+01

.36328E+01

.26078E+01

.36511E+01

.65197E+01

.35867E+01

.25728£+01

.36289E+01

.62106E+01

.34143E+01

.24422E+0i

.33644E+01

.SBUSSE+01

.31390E+01

.22213E+01

.3147SE+01

.52403E+01

.27464E+01

.19173E+01

.28481E+li

y
.
.
.
-
-
-
-
-
-
-
-
-
~
9
-
-
-
-
v
s
.

.147S4E+01)

-.12984E+01)

-.11598E+01)

.18170E+01)

.30208E+00)

-.25116E+01)

-.21229E+01)

.13477E+01)

-.85719E+00)

-.36653E+01)

-.30431E+01)

.84815E+0|)

-.20382E+01)

-.47465E+01)

-.38931E+01)

.19691E+0')

-.30952E+01)

-.S7USIE+01)

-.46482E+ai)

-.30868E+00)

-.40789E+0i)

-.65113E+01)

-.52854E+01)

-.81147E+00)

-.48630E+01)

-.713$6E+01)

-.S7864E+01)

-.1204oE+01)

-.S4785E+01)

-.7S474E+01)

-.61364E+01)

-.15337E+01)

EYA(N)

.7187BE+00

.41239E+lo

.30392E+00

.43623E+Io

.75527E+00

.5224SE+II

.39812E+00

.43924E+l0

.80003E+00

.63543E+00

.49402E+00

.44092E+l0

.85667E+00

.74421E+|0

.58342E+00

.45526E+|0

.89860E+00

.83904E+|o

.66148E+00

.45346E+09

.92513E+00

.91541E+00

.72494E+00

.43091E+00

.9429ZE+00

.9706IE+00

.77172E+00

.41958E+00

.94393E+00

.10000E+0I

.80046E+00

.40277E+00

EYP(N)
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SCATTERING (REFLECTION AND TRANSMISSION) COEFFICIENTS DESCRIBING DISCONTINUITY REGION.

n=1 RN: .sssze+oo£xp(J:¥.1723E+03)

TN= .8149E+00EXP(J0-.8109E+02)

N=2 RN= .6860E-01EXP(Jl-.ISS9E+03)

TN: .7356E-01EXP(10-.IS40E+03)
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APPENDIX C

OSWDSC SOURCE LISTING

1=CMWWWW

2=Ci THIS PROGRAI CALCULATE DISCONTINUITY FIELD BY ITERATIVE SOLUTION 0

3=CHWWRWW

4: PROGRAI OSUDSCITAPEI,INPUT,0UTPUT,TAPE5=INPUT,TAPE2=OUTPUI)

5: REAL N1,N2,N3,KOD,KPB,K2D,K2DSO,K20IE,KZDPE

a: conRLEx A1,C,D,Il,IZ,IS,EL,£Ll,El,6£L

7: nxnsuszon C(4096),0!4096),ELI(8,0),ELIB,8),E118,8)

s: DIHENSION £RR18,81

9: nxnsnsxou XIIB),2N(8),XI(8),ZJ(8)

1o: connou1r1c1x2,vusn,xrn,xzn,xznsa,xn,zu,x1,21,u,u,1,1

11:

12:: i1111i11+i11111111111i1i111111111111R1i1111111111111111111111111111111

13:: READ FIRST para LINE FOR REFRACTIVE 1unxcss (NI,I2,N3) or cons, CLAIDI

14=c DISCONTINUITY REGIONS, RESPECTIVELY.

15=c 111111111111i11111i1R11i1i1111111i1111111111i1111111111111111111111111

16 READ 11,1) u1,u2,u3

17: 1 F0RRAIL:F10.31

1e=c 111111111111111111i111111111i1111i111111i11111111111111111111111111111

19:: READ sscoun 1111 LINE FOR IORIALIZED SLA! tuxcxnzss IOLO Run NORIALIZE

zo=c EISENVALUE PARAMETERS 1snn,xpn,nonn or THE OIPERTURIEI SLAB UAVESUIIE.

21=c I111111111111111i11111111111111111111i1i1i111a111111111111111111111111

22 READ 11,21 DOLO,6ID,KPD,BOD

23 2 FDRIAT1F15.2,3EIS.8)

24:: {iiiiifiiiiiiiiiffiiifiiiiiiiiiiiiiii0iiiiiiii{filiiiiiiiiiiiiiiiiiiii

25:c READ THIRD DATA LINE FOR IRRRALIZEI Lsustu 2001 or DISCONTINUITY REGIO

21=c AlPLITUDE so or INCIIEII HAVE.

27=c 111111111111111i111i111i111111111111111i11i111111111111111111111111111

28= READ 11.31 2001.50

29: 3 F0RRAI¢F10.2,F10.11

so=c 11111111i111111111i11111i111iii111i111i1111111111111111111111111111111

31=c READ rouRIR aura LINE FOR uuunsRs 0F RRRIIIIous th,IZ) RLoRs x All 2

32:: DIRECTIONS, RESPECTIVELY.

33=c 11111111R111111111111i111111111111i11111i1111i111111111111111111111111

34: READ 11,41 Rx,uz

35 4 FDRIATIIZ,3X,121

36=C 11111111ii11111111i1111i11i111iiii1i1i111111i1111111111111111111111111

37st ram ESSENTIAL mm mm.

33=c iiii§iiiiiiiiiiiiiifiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiifiii

39: URITET2,5)

‘40: s FORIATTlHl,II,10X,21HESSElTIAL INPUT DATA.,II)

41: 0R11512,e1 Il,l2,l3

42: a FORIATTIHO,III,IOX,4HII= ,F4.l,2X,23NISLAI REFRACTIVE 1Rm£x1,1,1ox

43: 1,4NI2= ,F4.l,2X,27H1CLAIlIIG REFRRcIIRE 1u9£x1,1,1ox,4uu3= ,r4.1,2

44: 2X,32HTDISCOITINUIIY REFRACIIVE 1u1£x11

45: URII£12,71 IOLO,6I0,KPD,IOD

41: 7 FORIA111N0,I,10X,6HDILO= ,r5.2,2x,32R1uoRRAL12£n s11) HALF qucxus

47. ossy,ll,1ox,susnn= ,E14.8,2X,38HTIORIALIZEI annnxus DECAY EISEIVAL



48=

49=

50:

51=

52=

53:

54:

55=
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20E),I,10X,5NKPD= ,El4.8,2X,28H1NORIALIZED sLRI EIGENVALUEI,I,IOX,5

38300: ,EI4.8,ZX,38HINORNALIZED PHASE-CONSTANT EIBENVALUET)

URII£I2,81 zoon,£o

a FORNATIIHO,I,IOX,6HZOID= ,r5.2,2x,31R1R£LAIIVE DISCONTINUITY LEIBT

lH),II,lOX,4NEO= ,F4.I,ZX,SHIVINI,2X,25NTINCIIENT HAVE ANPLIIUDE)!

0R11512,91 IX,NZ

9 FDRIATIIHO,I,IOX,4HNX= .13,2X,20H(PARTITIONS RLnRs X),I,10X,4NN2=

1,13,21,20H1mnnous ALONG 1n

56=C ii000iiiiii0iiiiiiiiiiiil0fii00i0iiiiiiii0iiiiiiiiliiiiiiiiiiiiiiiiifi

57=C PARTITION THE DISCONTINUITY REGION USING NORNALIZEI COORDINATE VARIABL

58=C Efffifiiiii0i0iiiiiii0i0f0iiiiii00i00i0iiii0iiiiiiiiiiiifiiiiiiiiiif§i

59:16

60=

6I=

62=

63:

73:

74:

7s:

CONTINUE

PI=3.1415926536

20=12o.oIRI

R0n=2.onRIIn0Lo

NXH=KXIZ

nxn=2.01ux

nzu=2.onzoon/Rz

no 17 R=I,Rx,1

XNTN)=-l.0+(l-0.5)!DXI

Ian

x1111=xn1u1

17 courqus

no 18 N=1,NZ,1

zunnn=~zoon+1u-o.snnnzu

J=I

21111=zu1u1

1a CONTINUE

76=C liiiiiiiiiiiiiiiiiiiiiiiiiliiiiiiiiiffiiiiiiiiiii§0i0i00+§

77=C DEFINE FREQUENTLY USED CONSTANTS 0

78=C 0iii0i0i0iiifiii0iiiiiifiiiiiiiiiiiiiiiiff}iiiiiiii00000§l

79: DNSO=N1002-N2002

K20=N2§KOD

KZDSS=KZDfi2

VNSE=DNSO§K00§§2

SGNN=SDRTIVNSOAKZDSOI

RHONN=I0.0§K20

EPS=KZDII0.0

KZDNE=K20-EPS

KZDPE=K20+EPS

TER=0.0

[=0

90=C iFiIOFi0iii000iii0i00fii0iA00iiiiiiiiiifiiiiiiiiiiiii§iiii

918C DEFINE CONSTANT COEFFICIENTS !

92=C 0*iiififiiiiifiifif0000{iii}!!!fiifi§§f§§*§!§i§i§§}i{90*}!

93:

94:

95:

96:

97:

A=COS€KPDTICOSTKPDIISNDASINIZEKPDIII2!KPDI*I

A=A!2!DOD '

A=SORTTNODEZOIAT

AI=CN°LXI0.0,'I.OTIIKODIZOF§A§!2§CNSRIBXN}IZN

CIK2=IAIVNSGIKZDSOIIISIN(SGRN:){42
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98::WW

99:1: CALCULATE mars mum m ALI. CELLS n

Ioo=cWM

101: no so 11:1,»:

1oz= no no H.112

103: no so I=1.Ix

164: no so mm

105: L=L+I

I06=Ciii-WW

IW’C CICMTE IISCIETE CONTRIIUTI !

1088CWWW

I09= NLT=AIlCO$INPIIXITIIHCEXHC'LXI0.0,-I.01millll)-

IIO= -ZJIIIH

III=CWW

112:0 CALCULATE CONTINUOUS CONTRIIUTIONS 0

113=Cmm

1143 CALL CSINCONTI,0.0,NM.0.10,20,II,NII,RII

IIS= CALL csmcouu.m.m,o.10.20.13.013331

1168 INOSIMXIIIII‘ICOSIMNNINHICINZ

II7=I IZ'IZNPIIZJ-ASINII'EPSIHI*C'LXIOJJJHACNHOEPSII-

III. *Z‘ICILXI0.0,I.0HAISIZNINI-ZJIJIHE'S)

119' C (“801“ I0.0,-I.0)NNO0I (20"!) HMIIIOIZAIIIMIMOI

120850 MINE

1218 EITNJIIEOIA'ICOSINPHNNIN)IiCEXPICmIO.0,-I.OI§NHZNIIH

122a El.IN,N)8CULX(.657,-.46MCEXHC'LXI.0,-2.423‘IZNINIH

1233 ELIN,N)*EUN.NT*CNPLXI-J,.MIKEXPIC'LXIJJJZIHNIN)H

1243CWWW

1258C! USE APPROXIMTEI FIELI ELIN,N) AS 0TH ITEIATIVE TOTAL FIELD

IMWWWWWW

1278C ELIN,N)*EIIN,NI

128860 comm

129: PRINT i.‘ '

130: PRINT i.’ '

131: PRINT I.‘ STTCCESSIVE ITERATIII moons: '

132: 11:0

18:70 n=m

134: TER=o.o

1358 TELMJ

136: BO

137: 00 110 III,“

138= I! 110 NII,NZ

139a EEL'CDLXIOJJ.”

1408 N I” 181,”

141* II 100 I'I,NZ

142= L'UI

143: GEL'GELHIILH'CILHIELII,”

I448

“#100 CWT“

1468 ELI 111.1018 II.NHEL

147s m1u.m-1ms1a11u.mIm-ImSIELInmImz

ms mmmanummmn

149- mmunssmnmmmn

150: mommomun



171=122

172:12‘

I78=128

178

TELNN=TELNN4IAIST£LTN,NTI

TER=T£R4£RRTN,N1

Pch=T£RIIooTTELNN

£LTN,N1=£LITN,N:

CONTINUE

IF TR.ST.21 GO TO 115

PRINT 4, ' '

PRINT n.' '.K.' TN IT£R4TIoN ERROR = -,T£R

PRINT i.’ PERCENTNsE ERROR Is: '.PCH6

coNTINUE

IF TPcus -1.C) 120,120.70

PRINT I. ' '

PRINT 2, ' CONVERSE To .01 ERRoR AFTER -,N.- ITERATTONS.‘

PRINT 1.' '

PRINT 4.' coNVERsEn nIscoNTINoITT TIELns: -

PRINT 1.- -

EYIAX=CABSTEL(1.1)T

no :24 N=1.NxN

no 124 N=1.Nz

IF TcNISTELTN,NTT-ETNNNT 124,124,122

£TNRN=CR25I£LTN,NTT

coNTINUE

no 128 N=1.NXN

no 128 N=1.Nz

EY=CABSTELTN.N))IEYNAX

NRIT£12.22T N.N.EY

FURNATTTHO.10X.3NEYT,11.1H,.11.3H)= .F7.4)

CONTINUE

179:CTiff}fifiiiiiii§§§§§0¥§111§0§0iiiiiIiii1ii0iiiiiiiiiiiifiiiiiiiiiiii

180=C§ INTERACTIVE ITERATION INPUTS 0

181=C111*!!!0f10{1iIii*iiiiiiiEEONEiiiiiiiiiifliiiiiiiiiiiiiiiiiiiiiiiiii

182=

183=

184=

105=

186=

187:

188=

189=

190=

191=

192=

193=

194=130

195=

196=

197:

198:

199=200

PRINT 1,' '

PRINT 4,-noLo=2.zoon:2.2oIT=o oR CONTINUE=1.... '

READ 15.11 noL.zoon.NN

IP1NN.£R.oT so To 200

IFTDOL.EO.DDLO) so To 130

noLo=noL

PRINT 4, -snn:2.NPn=?.Ion=?'

PRINT I.' -

READ 15.21 sun.NPI.non

PRINT 4.' enn2'.sun

PRINT I.' NPn=-.NPI

PRINT 1.' Ions-,non

CONTINUE

PRINT I.- -

PRINT 2.' IOLO='.DOL0

PRINT 2.' zoon='.zoon

so To 11

ENn



2018

2028

2038

2048

205-

2068

2078

2098

2108

2118

2128

2138

2148

21584

2168

2178

2108

2198

2208

2218

2248

2268

2288

2308

2318

2328

2338

2348

2358

2368

2378

2388

2398

2408

2418

2428

2438

2448

2458

246-

2478

2488

2498

2508

2518

2538

coma: mum PTInsx.RmN1

Twsnuxnguwum 179

TIPS CONPLEX oTN

nINENsIoN xNTsT.zNTaT.xITcn.ZIIoT

CDNNONIFICIKZ.VISI.KPI,KZD.KZDSO.XN.ZN.X1.ZJ,N.N.1,1

IFIINDEX-l) 7.1.7

1 RNoNsnsRNoNIRNoN

SIGN8SGRTTVNSOPRN0NSOT

c1=RnoNsaszoITsINTsIeNnm

C1=RHONSIICI

IPIRnoN-Nznn 2.3.3

2 ITN-cNPLszINTTN2252~RNoNsNT.o.RT

mTo4

3 ITNscNPLxTo.o.-sRRTTonoNsR-NzlsooT

P=cosTsIsN1NITITIncosTSIRNanTNTT

TsPIcEXPIcNPLxTo.o.-1.oTnnTNINIsTZNTNT-ZITITTT/TnTNT

P=P2c1 a

7 RETURN '

Ell

FUNCTION ACOSNIX)

ACOSNBALOGINOSIRTLNIN-IIT

RETURN

END

SUIPOUTIIE CSIICOIIIIIEX.XI.xEII,TEST.LIN.AIEA.IDI.RT

TYPE COIPLEX DII,EVEN.AREAI.EIIS,F,AIEA

lolso

ell-CIPLXI0.0.0.0T

IITSI

081.0

EVEN-CIPLXT0.0.0.0T

AREAI=CIPLXT0.0.0.0I

EllSsFTIllEX.XITOFTIIIEX.XEIIT

2 H=IXEll-XIIIV

OIIsEVElooDI

x=x11N12.

£VEN=CIPLX¢0.0.0.0T

no 3 I=I.IIT

EVEI!EVEIPPTIIIEX.XT

x=x4N

3 CONTINUE

AIEAPTEIISO4.OTEVEIPZ.Dialliifllb.o

I01=IOITI

PsCAISTIAREAI-AIEATINPENT

IFTNOI-LINT 31.32.32

31 IPTR-TssTT 32.32.4

32 RETURN

4 AREA18AREA

INT82§INT

V82.0!U

GO TO 2

END
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ESSENTIAL INPUT DATA.

' APPENDIX D OSWDSC SAMPLE OUTPUT

N1 1.6 (SLAD REFRACTIUE mm

N2 1.0 1CLADDINS REFRACTIUE INDEX)

N38 3.0 IDISCONTIIIITY REFRACTIVE INDEX)

DIL08 .15 (MALIZED SLAD HALF THICNESSI

SNDI .853499M+00 (MALIZED CLADDII KCAY EISENVKLE)

NPD8 .8106980E000 (MALI- SLAD EISENUflIE)

80118 .12715050901 (WHEN PHASE-CONSTANT EISENUALUE)

10108 .10 IRELATIUE DISCIITINUITY LENGTH)

E08 1.0 WIN) (IKIDENT NAUE A'LITUKT

NN8 4 IPARTITIMS MM N1

N28 0 (PARTITIIIS ALM 21

SUCCESSIUE ITERATIN ERM:

1 TN ITERATIII ER“ 8 231.7218972309

PERCENTAGE ERRII IS: 130633504294

2 TN ITERATIM ERRN 8 20.75023329532

PERCENTAGE ERROR IS: 12.37396650678

CONVERSE TO .01 ER" AFTER 4 ITERATIMS.

CONVERSED DISCONTINUITY FIELDS:

£111.11: .2021

2111.21: .2077

2111.31: .2124

2411.41: .2124

2111.51: .2193

2411.11: .2212

2211.71: .2223

2111.21: .2222

2112.11: .9775

2112.21: .9224

2212.31: .9224

2112.41: .9921

2112.51: .9929

2112.41: .9921

2112.71: .9995

£212.21: 1.2022

00L0=?.20008?.IUIT80 oR coNTINu£-1....o.,o..o


