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ABSTRACT

INTEGRAL-OPERATOR ANALYSIS FOR SCATTERING AND
COUPLING IN OPEN-BOUNDARY DIELECTRIC WAVEGUIDES
By

Shuhui Victor Hsu

Integral-operator analysis is employed to study two
classes of commonly encountered problems in open-boundary
dielectric waveguides. They are the scattering by obstacles
along the waveguide and the coupling between waveguides in a
multi-guide system., First, in the scattering treatment, an
equivalent polarization current is identified from the
contrast of refractive indices between the discontinuity
region and the unperturbed background. Exploitation of this
current establishes an electric-field integral equation
(EFIE) describing the unknown discontinuity field, which,
leads to the formulation of scattering coefficients.

Various solutions to the EFIE are discussed, including the
Fourier transform method, Method of Moments, and iterative
sloutions etc. In the treatment of waveguide coupling, a
similar procedure yields a system of simultaneous EFIEs
describing the coupled system-mode field for each waveguide.

Subsequent coupled-mode perturbation approximation yields



modal amplitude coefficients and the coupling coefficients.
Applications of the above analysis and solutions are
demonstrated via one-dimensional slab waveguides. Merits of
various solution approaches are evaluated. Moreover, the
correctness of the obtained results are verified; this
consequently confirms that the integral-operator analysis
provides an alternative to the conventional boundary-

value analysis.
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CHAPTER I
INTRODUCTION

Open-boundary dielectric waveguides, as opposed to the
conventional closed-boundary metallic waveguides, are
dielectric structures capable of guiding propagating
discrete TE, TM or hybrid modes and radiation modes having a
continuous eigenspectrum. In its most elementary form, it
consists of a dielectric guiding core which provides a
positive contrast of refractive index relative to that of
the surrounding medium (cladding) within which the core is
immersed. Confined electromagnetic (EM) fields possess the
usual complex-exponential propagation dependence along the
waveguiding axis, but are characterized by a real
exponential decay along the direction normal to and away
from the guiding structure. Field confinment in the core is
essentially a consequence of the phenomenon of total
internal reflection at the core-cladding interface. Such
structures therefore also geneally known as "surface
waveguides”.

Interest in EM propagation along open-boundary
dielectric stuctures has existed since the early part of
this century [1] and has progressed with a varying degree of

intensity from that time [2]. Recent development and
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applications of semiconductor lasers in the communication
area has stimulated widespread interest in certain classes
of dielectric waveguide for guiding light waves, e.g., the
"optical fiber" [3]. Together with the expansion of
activities from the microwave épectrum into the millimeter
wavelength region in the past decade these studies have
culminated in a large store of information characterizing
such surface waveguides as transmission and circuit system.
Yet, according to Kogelnik [4], integrated optics though
intriguing, remains in its infancy at the research stage; a
similar review for the dielectric waveguide microwave
integrated circuits was given by Knox [5].

Taylor and Yariv [6] point out in their review paper
that virtually all integrated-optics decvices, i.e.,
couplers, modulators, switches and filters, depend
critically for their operation upon the characteristics of
low order surface-wave eigenmodes supported by isolated or
coupled systems of integrated dielectric waveguides. Among
the class of uniformly-clad, isolated waveguides, exact
solutions exist [7,8] only for planar-slab structures or
fibers having circular or elliptical cross-section shape,
while the only coupled system which permits an exact
solution is composed of parallel slabs. Since boundary
conditions at the core/surround interface are inseparable
for more general core geometries, conventional differential-
operator based methods [9,10,11] become ineffective for

such guides. They have, however, provided approximate
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solutions to these problems as demonstrated by Marcatile
[12] and Goell [13]. The integral-operator description [14-
16], related to Katsenelenbaum's [17] polarization integral
equation, for uniformly-clad, open-boundary dielectric
waveguides, provides a conceptually-exact formulation for
propagation modes supported by the waveguiding system having
any number of graded-index cores with arbitrary cross-
section shape.

This dissertation;, consisting of two parts, describes
the integral equation formulation as an alternative to the
conventional boundary-value analyses in the areas of surface
wave research where knowledge of basic phenomena and
accurate solutions remain relatively incomplete. This
research includes the scattering of surface waves by
obstacles along the cladded dielectric waveguide [18,19] in
Part I, and the modal coupling phenomena in a multi-
waveguide system [15] in Part II.

The most comprehensive available treatments for
discontinuities along open dielectric waveguides are those
by Marcuse [20] which deal with the abrupt junction between
two dissimilar guides and the interaction of surface waves
"with small, distributed surface irregularities. Among all
discontinuities which have been studied, approximate
analyses [20-23] of the abrupt junction between dissimiliar
(primarily planar slab) waveguide sections have
predominated. Rigorous treatments [24,25] of output

coupling from a planar, solid state hetero-junction laser
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have been advanced, as well as a Green's function approach
to scattering from periodic discontinuities in a planar DFB
laser [26]. The only rigorous analysis for ensembles of
step discontinuities along planar-slab waveguides is
evidently Rozzi's [27,28] investigation based on a two-
dimensional integral-equation formulation for the fields in
transverse discontinuity planes. Vassalo [29] has‘provided
a large-scale, scattering-coefficient, circuit formulation
for discontinuities along open waveguides. Mode conversion
as a result of scattering was investigated by Lewin [24] for
a heterojunction laser.

Sur face-wave-mode coupling between adjacent, uniformly-
clad dielectric waveguides has been studied by a number of
investigators [31-33]. The most complete study of coupled
mode theory was given by Miller [34] for conduéting
waveguides and, for integrated configurations, Marcatili's
[12] approximate analysis of coupling between rectangular
waveguides remains the primary work. Most conventional
differential-operator based treatments [31,35,36] are
approximate in nature. Their application is limited to
weakly guided or degenerately coupléd systems where accurate
solutions are possible. To obtain more accurate results for
non-degenerate coupling, Kuester and Chang [33] presented a
variational approach [38], assuming that coupled guides are
well separated. The only exact treatment was given by Jones
[39] for coupling of parallel fibers. There, a surface

dyadic Green's function including contributions by the
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continuous spectrum was considered. However, subsequent
treatment was based upon a set of coupled differential
equations converted from integral equations initially
formulated for the transverse cross-sectional plane of a
coupled waveguide configuration.

In Chapter II of Part I, the discussion on scattering
of surface waves along dielectric waveguides begins with the
recognition of index contrast between the discontinuity
region (or obstacle) and the waveguiding region. This leads
to the identification of equivalent induced polarization
current in the discontinuity region. The fundamental
electric-field integral equation (EFIE) for the unknown
electric field in the discontinuity region is developed in
terms of the electric dyadic Green's function. The nature
of the imbedded source point singularity in this EFIE is
pointed out as well as the effects of the depolarizing dyad
which results from the associated principal-value
integration. Scattering coefficients (both reflection and
transmissions) are subsequently formulated in terms of the
solution for that unknown discontinuity field. Mode conver-
sion from an incident principal mode to higher propagation
modes in the scattering process are discussed. Applications
of the above EFIE are presented in Chapter III with
specialization to a slice gap discontinuity along a one-
dimensional slab waveguide. Several solution technigues are
discussed, including: i) approximate closed-form

radiationless solution, ii) approximate solution including
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the radiation contribution, iii) Moment-Method numerical
solution and iv) iterative solution in the spatial domain.

Part II discusses the coupling between multiple
dielectric waveguide systems. In Chapter 1V, following the
identification of an equivalent polarization current which
arises due to the index contrast between the guiding core
and its surround cladding, the formulation of an integral-
operator description for a single dielectric waveguide is
first presented. This EFIE is subsequently generalized to
describe the EM field supported by a coupled system of N
waveguides. These EFIEs are subsequently specialized to
describe the natural, guided, axially-propagating, coupled
sur face-wave modes supported by the systems. A perturba-
tion analysis based upon the isolated guide's modal field,
and the EFIE which it satisfies, is developed and
subsequently applied to a system of two coupled waveguides.
The system mode propagation constant, which depends upon the
degree of coupled-guide interaction, is obtained for a
weakly coupled system. Furthermore, this conceptually-exact
formulation with perturbation aﬁproximation is shown to
recover the results of the standard differential-operator
based coupled mode theory. Application of this integral-
operator-based coupled mode theory is demonstrated in
Chapter V. When a coupled slab-waveguide system is
considered, Fourier transform solution to the coupled EFIE's
are shown to recover the well known characteristic equation

for a two guide system. This confirms the correctness of
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the integral-operator approach. Numerical calculations for
phase constant shift AB, due to coupling, are studied using
the perturbation approximation for two coupled slab
waveguides, both degenerate and non-degenerate cases.
Results are compared with the exact solutions obtained by

other researchers.



CHAPTER II

INTEGRAL-EQUATION FORMULATION FOR SCATTERING BY DIELECTRIC

DISCONTINUITIES ALONG OPEN-BOUNDARY WAVEGUIDE

In practice, a surface waveguide is only the intercon-
necting component of a complex network which consists of
both active and passive wave processing devices such as
modulator, amplifier, and directional coupler etc. It is
therefore commonplace to encounter some kind of discontinui-
ties at these device interfaces in addition to any imperfec-
tions which arise from wall irregularities, inadverdent
bends, etc. of the guide sturcture itself. And, when a
surfacé wave is incident upon these discontinuities, it is
subsequently scattered, i.e., reflected, transmitted and
radiated.

There have been several treatments on the subject of
the scattering of surface-wave modes in a dielectric
waveguide by obstacles such as step discontinuity [21,28],
or the losses due to waveguide tapers and random wall
perturbations [44]. Most of the approaches are either
variation method or mode matching technique. This chapter
presents an analytical formulation [18,19] to calculate the
amplitude of scattered waves through the application of a

polarization integral equation [45,46]. Such that, the



9
advantage of digital computation could then be utilized for
any arbitrarily-shaped discontinuity as often the case of
pratical concern.

Consider an arbitrarily-shaped discontinuity region V4
of permittivity €(r) along an open-boundary dielectric
waveguide of permittivity €g imbedded in a surrounding
cladding medium of permittivity e, (Figure 2.1). We can
immediately identify a contrast of permittivity between the
discontinuity region and the unperturbed waveguide system.
This contrast gives rise to an equivalent polarization
current, which in turn maintains the scattered field. An
integral equation is formulated for the unknown electric
field, which is proportional to the equivalent polarization
current within the discontinuity region. By solving for
this unknown field, the aﬁplitudes of the reflected, trans-
mitted and radiated fields are readily calculated. Also to
be discussed in this chapter is the conversion of modal
fields due to scattering by the discontinuity in a dielec-

tric waveguide capable of supporting multi-mode propagation.

2.1 Equivalent Current Description for the Discontinuity

Region
Referring to Figure 2.1, let g,(p) be the permittivity

profile of the unperturbed, axially-uniform (p= Xx + 2z =
2-d position vector) dielectric waveguide with the following

decomposition
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Figure 2.1 Scattering (reflection and radiation) of
an incident surface-wave mode by a hetero-
geneous device-discontinuity region along
an open-boundary dielectric waveguide of
arbitrary cross-section shape.
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eg(E), at points in the graded-index
waveguide core
eulp) =

ec(p)s at points in the surround.

Note that in general the surround need not be homogeneous;
in the case of integrated-optics system, it could be a
layered dielectric system with substrate covered by film and
overlay dielectric regions. The discontinuity region V4 has
a complex permittivity of €(r), where ¢(r) differs from
eg(B). Incident wave Ei induces an equivalent polarization
distribution in V3, and the latter polarization excites the
scattered field ES. It is the sum of the impressed field
Ei, due to remote sources with the discontinuity absent, and
ES, the scattered field excited by the discontinuity,
results in the total field E anywhere inside the disconti-

nuity region as

(2.1.1)

We can identify the equivalent polarization current

from the Amphere's Law of the Maxwell equations by adding
and substracting to it the displacement current of the

unperturbed waveguide juwe, (P)E (harmonic time dependence

eJjut implied but suppressed throughout) to obtain
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VAE) = 35E) + Jule@ - e (B E@]+ jue, (HIEE)
= 3%(0) + T () + Fue, (IE(D)

= J () + Jue (P)E(T)

(2.1.2)
where _
J® = impressed electric current which maintains
impressed incident field El,
Joq = JWPeq (2.1.3)

= equivalent induced polarization current which
describes discontinuity region V3 and

maintains scattered field ES, with

Peq = [s}r) -eu(r)] E(xr)
2,- 2,=1x%,=
=€, [n (r) - nu(r)]E(r)
= cotn’ (DEE) (2.1.4)
= a polarization density in terms of the
contrast of refractive index 6n2(r), and
J, =3 +73 (2.1.5)
t eq L] L]

= the total effective current
The induced current Eeq' which is proportional to the con-
trast of refractive index nonvanishing only in discontinui-
ty region V3, is now expressed in terms of total field

in that region as
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Tl = jweocnz(f)ﬁ(f) )

(2.1.6)

2.2 Formulation of EFIE for the Unknown Field in the

Discontinuity Region

Since the scattered field ES(r) is induced by polariza-
tion current jeq of (2.1.6), which is proportional to the

unknown field E(r), equation (2.1.1) is rearranged to

E(r) - B2 = E* (D .

(2.2.1)
Such that both terms on the left-hand side of the above
equation depend upon unknown total field E(r). When ES is
expressed as an integral operation on E(?), equation (2.2.1)
subsequently leads to the fundamental integral equation
which describes unknown discontinuity field E(I).

We proceed to expand scattered field ES in the
complete set of eigenfunctions (both discrete and
continuous) of the unperturbed dielectric waveguide.
Solving for the amplitude spectrum of these spectral
components (eigenfunctions) will then yield a complete
description of the scattered field. Let Eni(?) be the
n'th discrete surface-wave mode and Eci(F,E) be a
spectral component of the continuous eigen-spectrum having
a two-dimensional spectral frequency £ = §Ex + §Ey. The

upper and lower signs of the superscrip '+' represent the
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wave travelling in +z and -z directions respectively. Then

[~ -]

=S =\ _ t =t - | t ==t = = 2
ES(T) -Zn:an 63 +ff A* (D)E (T, D)a’e

- 0O

for z 2 z' (2.2.2)
where z' locates an element of polarization current with
§=‘,g§+g§ while aﬁ and A% (p) are, respectively, the
amplitude coefficients of the discrete eigenmodes and conti-
nuous eigen-spectrum. The modal eigenfields propagating in
the 2z directions are

738,z [_ N FiB, 2z

St (p)e = [6,,(7) ¢ ze,, (7)) e

-—
all
]

B (E,D) = 82 (5, DeF B2 S [3.(5,0) ¢ ze,(5,0)] FIB1D)2

(2.2.3)
where B, is the phase constant of the discrete n'th surface-
wave mode while B(E) = [kg-gz]l/z is the phase constant
of the continuous spectral component with spatial frequency
E.

Amplitudes of discrete surface-wave modes and their
orthogonality properties are well known [9,41,42]. Through
the application of Lorentz Reciprocity Theorem, these
properties have also been established in a general manner
for the continuous radiation-mode spectral components [43].

These normalization and orthogonality relations for the

transverse field components €.(p) and hy(p), which apply
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over the infinite transverse cross-sectional plane of the
dielectric waveguide, are

Gmn

z - e, (p)xh__(P)|ds = ——
./;S [ tm tn ] 2
(2.2.4)

for discrete surface-wave modes, and

| & [5G o 5 an)as - 2EED
Cs

t
(2.2.5)

for spectral components of continuous

radiation mode.

With the above normalizations, the amplitude coefficients are

then obtained [42,43] as

=F = . = -
= -./; En(r) Jeq(r)dv , and

(2.2.6)

(2.2.7)
Substitution of'a;r and A*(E) into (2.2.2) for

scattered field ES leads to
B8 (7) = =¥ (T « J ! | 5t (2
(%) = -;[fv B (F') - T gE )dV]En(r)

=% =1 e J ' | 8t (2. E)a?
-ff [fv BL(21,0) - 3, (Fnav] EL(E, Da%
d

- Q0
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=¥, Fyvs¥ (2 7 2 « T ! '
il]n E (r +E)E_(x,E)d E] Jeq(r )av:'.

(2.2.8)
Scattered field ES can therefore be represented by the

following integral operator

ES(T) =j; g(z|z") - Seq(E-)dv' ,
(2.2.9)
i.e., ES(Tr) maintained by equivalent volume polarization
current Eeq is expressed in terms of electric dyadic Green's
function G(r|r'). This Green's function has been

constructed from (2.2.8) as

G(r|r") = Ed(EIE') + G_(r|r') - with

(2.2.10)
= contribution by discrete surface-wave modes,

and

(-]
T - -___;'__ = - -
G_(r|zr') = -PYly. z(r,E)Ec(r',E)dzi + Lé(r - r')
(2.2.11)
= contribution by continuous radiation-mode

spectrum,
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To obtain the component forms of Ed(flf') and G (T|T'), we

substitute expressions (2.2.3) into (2.2.10) and (2.2.11)

such that
= o - Ne _ . -1 - - R _ $3jB_ (z-2")
Gd(rlr') =-Z[etn(p) t zezn(p)] [etn(p') > zezn(p')] e P .
n .
(2.2.12)

It is noted that exp [§]jB,(2-2')]= exp [-jenlz—z'll
because, for an element of polarization current at z', z > 2z'
for forward scattered waves and z £2z' for backward scattered

waves, resulting in

N

Ga(FIF") ==Y [5pn (B t e, (5] [3,,(5") 7 2e (5]
n

'j3n|z‘2'|.

(2.2.13)

Similarly

(2L

(T[T) =-p\ff [ét(B,E) $ iez(E.E)] [at(a',a 7 2e, (5',8)]

« e~3BE) =242, L T 5z - F1) .
(2.2.14)

The ptincipal-valué notation PV in ar(?lfﬂ indicates
that the integration over the discontinuity region V4 should
be taken in a manner which excludes the source-point
singularity when r' passes through field point r, i.e.,
r-r'=0. Furthermore, a depolarizing dyadic quantity
is found necessary in Gr(?lfﬂ to evaluate the contribution
from this source-point singularity [40,47,48]. Depolarizing

dyad L is identified and evaluated in the following section
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as appropriate for the case of dielectric waveguides.
From equation (2.2.9), the scattered field ES can be
written in terms of its source polarization current

Jeq=iwey6n2(T) E(T) as

(21]]

(r|z') - Seq(f')dv'

ES(T) =J[
v

= jweof sn?(£')G(E|E') - E(Eav' .
Va

d

(2.2.15)
With the above integral operator for ES(r), relation (2.2.1)
becomes an electric field integral equation (EFIE) for the
unknown total field E(r) within \Z|
ik,

-—f sn2(£')G(F|T') - E(E')av' = ELX (%)
v

E(r) -
Z

0
d

for all T e vy
(2.2.16)

Where kg=wy upegis the free-space wave number and Zy=fug/€g
is the associated intrinsic impedance. EFIE '(2.2.16) con-
stitutes the fundamental mathematical model which charaete-
rizes the fields of discontinuity region in a dielectric

waveguide. It is normally assumed in the following discus-
sions that a remote source J® which maintains an iméressed

field El consisting of single surface-wave mode in the
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region of interest, such that solutions to the EFIE for gl
excited in V4 by El lead subsequently to the scattered

field interior to V4 through expression (2.2.15).

2.3 Depolarizing Dyad for Electric Dyadic Green's Function

The dyadic Green's function Er(?|?') of (2.2.14),

which is the contribution due to the continuous radiation
1

E - &'

point. Therefore, expression (2.2.11) for the scattered

spectrum, has a singularity at r = ?', the source
field ES possesses a non-integrtable singularity and the
integral does not exist unless an infinitesmal volume 8V,
the principal volume, surrounding r = r' is excluded as
shown in Figure'z.z. Mathematically, the integral of
Er(F |£') is carried out in this principal value sense such
that the spatial frequency integral in Er is rendered
convergent; however, physically the exclusion of 8§V inter-
rupts the equivalent current (proportional to electric
field) of the discontinuity region. As a result, a non-
physical polarization charge layer is created on the surface
of 6V. Consequently, the effect of the surface charge due
to the exclusion of 6V, which is built into the principal-
value integral, should be substracted in order to obtain a
correct result [49]. It is the purpose of this section to
demonstrate that the charge density on the principal volume
does maintain a finite value of electric field at its center
as 8§V approaches zero in the limit.

Consider a principal volume 6V which is cylindrical

in shape with height 2a and radius 2b such that a/b<<l as
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DISCONTINUITY ES

REGION )®(
“ N VAN
/ -
/ \

CLADDING

Figure 2.2 Surface charge layer created by the inter-
ruption of equivalent polarization current
due to the exclusion of principal volume §V
around the source-point singularity at r=r'.
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shown in Figure 2.3. A coordinate system is chosen so that
its origin coincides with the field point; 8V is oriented
with its axis parallel with the principal axis of propaga-
tion z. Since 8V is a small volume, with quasi-static
approximation, the electric field E at the center of §V

can be expressed in terms of scalar and vector potentials

as
E=-V¢ - jwA
- 1 ~ nds
4re Jps R3 (2.3.1)

where € is the local value of permittivity and R is the
distance between the source point and field point. Although
not shown in (2.3.1), the volume integral involving vector
potential A vanishes in the limit as §V approaches zero.
n ,the surface charge density over AS, is equal to
-(ﬁ-3)/jm from the equation of continuity, n is the surface
normal of AS as shown in Figure 2.3.

In the limit as §V approaches zero, the surface
integral (2.3.1) over AS=AS; +AS; + AS3, sum of top, side

and bottom surfaces of 6§V, is reduced to

Jwe sV+0 2
(a/b)® + 1
_z(z - J)
- Jwe :

(2.3.2)
It is observed from the above expression that, as long as

a/b<<l, the contribution to the electric field at center of



Figure 2.3 Cylindrical principal volume 6V with a<<b,

centered at field point (the origin), having

its axis parallel with the principal axis
of propagation z.
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8V is insensitive to the shape of its cylindrical cross
section.

To further enhence the above observation, a rectangular
pillbox of sides a, b and ¢, centered at origin, is shown in
Figure 2.4. Assume that c/a<<1l and c/b<<1l, then given the
same procedures as before, electric field at the center of

8§V can be obtained as

E = lim - —#EE 1:an-'1 [ ab ]
6V-+0 cJa,i2 + b2 + Cz
_z(z - J)
Jwe )

(2.3.3)
Note that in (2.3.3), if a=b=c, i.e., a rectangular cube was

given instead, then a well known result is obtained:

3Jue (2.3.4)
Hence, the induced charges on the surface of §V,
although artificially created, do produce a finite electric
field at the singular source point. However, the magnitude
of this electric field thch is essentially the value of the
depolarizing integral involving the depolarizing dyad
z2

L(r|r') = Jue

(2.3.5)
will vary, depending upon the shape of 6V [48,49] which is

chosen to best suit the geometry of the source region.
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+ 4+ 2
eq _
M+++ T
+HE 4+ =
+t + + Y
+ o+ 4 T+ 4+

Figure 2.4

Rectangular pillbox as principal volume with
c<<a, c<<b, centered at field point (the
origin), having it axis parallel with the
principal axis of propagation z.
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2.4 Scattering Coefficients and Mode Conversion

Consider a multi-mode waveguide which has a transverse
dimension large enough to support the propagation of more
than a single surface-wave mode. Scattering of an incident
surface—yave mode by discontinuities along such a guide
results in the excitation of additional discrete and radia-
tion modes in the sca;tered field. This mode conversion
phenomerion is usually undesirable, since energy is radiated
through coupling to the continuous spectrum or just simply
carried away by non-principal guiding modes. It is there-
fore of practical interest to calculate these scattering
coefficients.

Using the configuration as indicated in Figure 2.5, let
the region of discontinuity be bounded by two reference
planes, i.e., 2=zZ;, the input terminal plane and z=2,,
the output terminal plane. Assuming that a single surface-
wave mode of m'th order propagates down the open boundary
waveguide and is subsequently scattered by the discontinui-
ty. We define the reflection coefficient at 2=z, as the
amplitude ratio of the back-scattered n'th surface-wave mode
to the incident m'th surface-wave mode

a-e+Janl
=—n——
Rmn -ijzl
Eoe
(2.4.1)
where a; is the surface-wave mode amplitude of the
normalized backward scattered n'th mode while Eg is the

normalized amplitude for the incident wave. Similarly the
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PRIMARY SOURCE DISCONTINUITY

) REGION
Je | |
| |

Figure 2.5 Locations of input ans output terminal
planes at z, and z, for the definition of
reflection and transmission coefficients
appropriate for the incident m'th surface-
wave mode and the scattered n'th surface-
wave mode.
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transmission coefficient T, at z=2z, is defined as
amplitude ratio of total transmitted n'th surface-wave mode,
i.e., including both incident and scattered wave, to the

incident m'th surface-wave mode at z=z,,

-jB_z
+ n-2
. ) (EOGmn + an)e
mn -ijz1

Ege (2.4.2)

where a; is the surface-wave amplitude of the normalized

forward scattered n'th mode; Eosmn represents the contribu-
tion of the incident field at the exit plane, it is nonzero
only if n=m, as would be the case in mono-mode waveguide.

Both a; and a; can be obtained from ES of (2.2.9)
which, in mono-mode waveguide, has the discrete component

ik - = a- - -
=0 §n2(£')G,(T|T') - E(XM)av'.
2 d

0 JV4
(2.4.3)

The finite sum in the discrete Green's dyad is specialized
to extract the contribution by the n'th surface-wave mode,
Eﬁn. When Edn is expressed in terms of its tranverse and

longitudinal components as

Gg (EIT) = - EL(DIEL(ED

- [3en® t 2oy (][54 (B 7 22, (1]

-j8, lz-z" |
X e

... for all re vy,
(2.4.4)
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it is clear that the transverse component field in the

reflection coefficient Ry, is produced by

_ - _ R _ +jBn(z-Z')
etn(p)[etn(p') + zezn(p')]e

(2.4.5)
Notice that the lower sign of superscript 'F'in equation
(2.4.4) is selected for the backward travelling wave, this
is because z is to the left of the input terminal plane,
such that z< z,< 2'. By substituting (2.4.5) into (2.4.3),
the discrete portion of the scattered field, we then obtain

the backward scattered wave for the n'th mode as

- - - +j8nz
ay etn(p)e =
jk, +3iB z_  _ o ) TR
-(7z§)e ? etn(p[/; an(r')[etn(p')+zezn(p')]-E(r.)e n® gy
: (2.4.6)

Following the same procedure, the total field for the n'th
mode to the right of exit plane 2=z, is expressed as the sum

of the transmitted and forward scattered waves as

. _  _ =jB =z
(E06mn + a;)etn(p)e n
. -iB,z
= EOSmnetn(p)e
jk, -JB.z2_  _ _ore _ A _ _ _ +jB_z'
-(zo°)e n etn(o)fvsnz(r')[etn(p')-zezn(p')]-E(r-)e n" v,

d (2.4.7)
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By substituting the transverse field amplitudes obtained
from equations (2.4.6), (2.4.7) and the transverse component
amplitude of incident m'th surface-wave mode from
-ijz

EL_ (D) = g2, (Rle

into definitions of scattering coefficients given by (2.4.1)
and (2.4.2), we obtain Rp, and Ty, at the corresponding

input and output planes as

j(Bm+Bn)z1

-Jkge f 2 miimtmr =
R = Sn“(r')E_(r') * E(r')av'
mn Eozo Vd n
(2.4.8)
and
-j(B'zz-B zl) jko 2,2y =3 poi '
I [6mn-f:_0_z; , o (r)En(r)-E(r)dV].
a
(2.4.9)

Use was made of the normalization relation (2.2.5) for atn'
the transverse wave component, over the infnite cross sec-
tion of the waveguide.

For the case of a mono-mode dielectric waveguide, i.e.,
a waveguide that supports only single dominant-mode propaga-
tion, there is no excitation of higher-order discrete
surface-wave modes in the scattering process. However, mode
energy is lost through backscattering, radiation coupling to
the continuous radiation mode spectrum and increased dielec-
tric loss due to the existence of standing wave, etc. Equa-

tions (2.4.8) and (2.4.9) can be specialized for the mono-
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mode dielectric waveguide by letting m=n to obtain

. 2jBmzl
~Jkge 2, =, =t = = =
Rm = E 2 Sn (r')Em(r') - E(r')dav'
00 Vd
(2.4.189)
and
-jB_(z,-2,) jk _ o - -
r=e ™ 2 V-0 | en?E0E(E) - EE@nav | .
070 Vd
(2.4.11)

Finally, it follows from the conservation of energy, the

relative radiation loss as a result of scattering is

Power radiated _ , _ |le2 - |t

2
Incident power mI

(2.4.12)

2.5 Solutions to Electric Field Integral Equation

This section describes various closed-form and numeri-
cal approaches to approximate solutions of EFIE (2.2.16).
Without loss of any generality, the dielectric waveguide
considered here is assumed to support only dominant mode
propagation and the incident field consists of a single
surface-wave mode.

First to be discussed is the case of a small discon-

tinuity such that contributions from radiation spectrum can
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be neglected; solution for the total electric field which
has a longitudinal dependence of exp (théz), is then
obtained by the Fourier Transform Method. This longitudinal
dependence with phase constant 86 is again assumed for
with unknown amplitude coefficients to implement an appoxi-
mate radiating solution. Subsequent exploitation of this
total field E(r) in (2.2.16), complete with the continuous
radiation component in the Green's function, yields these
unknown coefficients after enforcing the EFIE at interior
points of the discontiniuty region. Hence, radiated power,
though negligible for small perturbations, can be quantified
to confirm the results obtained otherwise.

Numerical approaches, involving manageable matrix
sizes, are often utilized in solving integral equations to
obtain solutions of higher accuracy. Therefore, it is
appropriate to describe the Method of Moments in the case
where discontinuity is of resonant size or smaller.
Alternative solution based upon iterative process is then

pursued for discontinuities of larger dimensions.

2.5.1 Approximate Radiationless Solution to EFIE

For a small axially-invariant discontinuity (described
by 6n2(6), i.e., not necessarily uniform) extending from z =
-2 tog , an approximate closed-form solution can be obtained
for the field in the discontinuity region if radiation is
neglected. This result provides limiting reflection and

transmission coefficients which can be used to confirm more
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accurate MoM numerical solutions, as well as the zeroth-
order discontinuity field required to initiate an iterative
solution.

Neglecting radiation from the discontinuity §n2(p) in
region |z| <2 along a monomode (single 0'th surface-wave mode
with phase constant BO) dielectric waveguide leads to the
approximate electric Green's dyadic

o e e =3Bolz-2
(rlr') = - eg(o)eo(p')e 0 .

Qll

(2.5.1)

If reduced dyadic (2.5.1) is exploited in EFIE (2.2.16), an
approximate IE for unknown E is obtained as
jkg [* -iBylz-2'] - - T -

0 770 dz' sn(5 1eX(p)ef (5') - E(F')as’
ZO 0 0

-2 CSd

-jBoz

E(r) +

z EOEO(E)e ... for |z| < &, p e CSy ,
(2.5.2)
where CS4q denotes the transverse cross section of the
discontinuity region. in the case of a principal mode well
above cutoff, the transverse components predominate over
longitudinal components [12]; consequently, only satisfica-
tion of the transverse components of IE (2.5.2) is enforced

to obtain
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- - jko - - ! 'jsolz"z'l 2 - T - - -
Et(r)+-z—-et0(p) e dz' csdn (p')eo(p')-E(r')dS'

0 2 a
- - "iB,z -
= Ege q(ple ... for |z| < 2, p e CSy,
(2.5.3)
The preceding expression leads to
E(r) = E (r) = e, (P)V¥(2)
(2.5.4)

where longitudinal wave function y(z) satisfies the 1-d IE

from (2.5.3)

~384 122" | -1842
V(z) + jkOC Y(z')e dz' = Eoe

-2

... for |z]| < &,

(2.5.5)
where C is defined as
sn (518, (7) - &, ,(p)ds
cs t0 t0
d
C= 2; ’
2 e .(p) + e, (p)ds
fzw(pi t0 t0
(2.5.6)

with Zy(p), the wave impedance of the surface-wave mode
§t0(5)° It is observed that C is independent of normaliza-

tion chosen for eyg .
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A closed-form solution to approximate IE (2.5.5) can be

obtained by exploiting a Fourier-Exponential transform for

y(z) as

Y(z) = -il;f J(mednZan .

o

(2.5.7)
Substitute (2.5.7) into (2.5.5) to obtain
® el . '
. v =3Byl2z=2"|
1 ~ jnz _ . -jnz' 0 dz .] dn
o= | vmfe +jk0C[e e
—w_jeoz -2:

= Eoe

By selecting the field point z , such that -2<2z<¢,
the above integration over z' can be carried out and terms
of common functional dependence are collected as follows:

-+

2
258.k5C. .
~ 070 jnz _
f w(n)[l -3 2]e dn =0,

— n" -8
0 (2.5.8)
-jsoz O?,,_ e-jn‘q'
- jkgCe ¥(n) ETH—;—gaT dn = 21E, ,
- (2.5.9)
v =gy 4N = 0
- (2.5.10)

Since J)(n);e 0, expression (2.5.8) leads (after invoking the

Fourier Transform theorem) to discrete values of allowable

spectral frequency
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= Vo= 2
(2.5.11)

The transform solution therefore consist of the

discrete spectrum

-~

y(n) = 21AS(n + 86) + 2mBS(n - 86)
(2.5.12)

with the corresponding wave function
-jBAZ jBAZ
v(z) = Ae 0" 4 B e 0
(2.5.13)

Substituting (2.5.13) into (2.5.9) and (2.5.10) results in

A = (Bo - Bo)Eoe
koC(1 - 02)
(2.5.14)
o .B_fo " B 2!
A Bo + Bo
(2.5.15)

where p is defined as the reflection coefficient for the
longitudinal wave function ¥ (z).

Since E(r)= e g(p) ¥(2z), if input and output terminal
planes are defined at z=3%, scattering coefficients ROO and
Too of (2.4.8) and (2.4.9) become

e o*
> [sin (86+60)9.+e

sin (86 - Bo) 2] P

Rhg = =320
00 1-o
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1]

L
- 0
TOO = e

-328,8 o BoRo) # , 238
1 - 4 5 [sin (66-60)2+pe
1l -p

x sin (86 + 80)2]] . (2.5.16)

2.5.2 Approximate Solution to EFIE for Radiating
Discontinuity
The preceding approximate radiationless solution was
based upon the assumption that the radiation contribution
to the Green's dyadic is negligible. When it is desired to
consider such effects, the following Green's function should
be employed
- o 4 -z - —iBglz-z'|
G(r|r') = - eg(Pleglot)e

J e e e _ _ =3B(E) |2z-2"|
- Pvff eg(p,E)eg(p'.a)e dzs

(2.5.17)
Again, in a simplified situation as described in Section
2.5.1, with only a principal mode supported (negligible
axial field components) the field in the discontinuity
region can be approximated as
-3R! 1R!
T éto(E)[ale I8y . azeJqu ]

(2.5.18)



37
where 36 is that obtained in (2.5.11) and a,;, aj, are the
associated unknown amplitude coefficients when radiation
effects are considered.
Recall the integral equation (2.2.16) as
jk

- - J - = e - - - i =
E(F) - =2 | on2(3")G(E|E") - E(E)av' = EX(T)

20 Jv,

(2.5.19)
where E(r) is now approximated by (2.5.18). Then, the IE
above has two unknown constants a; and aj, therefore in
order to reduce it into two algebrac equations to solve for
these amplitude coefficients, an integral-operator with
weighting function Gp is used to pre-dot multiplying into

above IE and integrate over the discontinuity region V4 as

oW e v, p=1,2 .
f P { } ’
Va

For the purpose of simplicity, if delta-function is chosen

(2.5.20)

for wp such that
w_=1u_6(r - 1)
P P P (2.5.21)
where Gp is a unit vector, subsequent operation of (2.5.20)
upon (2.5.19) with the above delta-function weighting yields

a matrix equation with p=1 and 2 as

2
2: c ,a, =Db
=1 PAL P (2.5.22)
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where the matrix elements Cp and bp are

L

-jBéz

- .= pos p
Cpl = up eto(rp)e
jk _ A = _ _ _ _ -jRrz!
-0 an(p')u *G(r_|r') - e _,(xr")e 0 av* ,
Zo v P P to
d
+jBlz
PN . - Op
sz up eto(rp)e
Ikg 2, - a == = = =, TIBpZ’
- - Sn“(p')u_ - G(r_|r') -e_ (r')e av',
zo P P t0
Va
b_=u_-E L) .
p = Up " E(ry)
(2.5.23)

2.5.3 Moment-Method Numerical Solution for Discontinuity
Field

The integral-operator method described above for scat-
tering by a discontinuity along a dielectric waveguide is
particularly suitable for numerical solution, especially
when the region of discontinuity is heterogeneous in nature,
i.e. §n2= §n2(f), and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>