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ABSTRACT

QUOTIENT POSETS AND THE CHARACTERISTIC POLYNOMIAL

By

Joshua William Hallam

In this dissertation we consider the generating function for the Möbius function of finite

partially ordered sets. This generating function is called the characteristic polynomial of

the partially ordered set. We are primarily interested in explaining why certain families of

partially ordered sets have characteristic polynomials where all the roots are nonnegative

integers. To this end we introduce the concept of a homogeneous quotient. These quotients

allow us to give new proofs of some well-known results in the literature as well as give

generalizations of them. We finish by showing how to use homogeneous quotients to give

unified proofs of some classic results about the Möbius function.
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Chapter 1

Introduction

1.1 Poset Basics

We will use the following standard notation for certain sets of numbers.

• The nonnegative integers will be denoted by N.

• The integers will be denoted by Z.

• The set {1, 2, . . . , n} will be denoted by [n].

Let us now review some background material on partially ordered sets. See [14, Chapter 3]

for a more complete overview.

Definition 1.1.1. A partially ordered set or poset is a set P and binary relation ≤ on P

such that the following three properties hold for all x, y, z ∈ P :

1. x ≤ x (reflexivity),

2. if x ≤ y and y ≤ x then x = y (antisymmetry),

3. if x ≤ y and y ≤ z then x ≤ z (transitivity).

It is common to represent the poset P with binary relation ≤ as either (P,≤) or just P

if the binary relation is clear from context. Additionally, it will sometimes be useful to write

≤ as ≤P , especially in the case when several posets are being considered.
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Figure 1.1: The Boolean algebra, B3

We now consider an example of a poset. Let Bn be the set of subsets of {1, 2, . . . , n}.

For S, T ∈ Bn, define a binary relation ≤ on Bn as S ≤ T if and only if S ⊆ T . It is easy to

verify that all three properties of a poset are satisfied and so (Bn,⊆) is a poset. It is called

the Boolean algebra.

It is often useful to consider a graphical representation of a poset. We do this by using

Hasse diagrams. Before we can define such a diagram, we will need to develop some more

terms associated with posets. If P is a poset and x, y ∈ P , we say y covers x, and write

xl y, if x < y and there is no z with x < z < y. We call a poset finite if the underlying set

is finite. Given a finite poset, P , the Hasse diagram of P is a directed graph such that the

vertices of the graph are the elements of P and there is a directed edge from x to y whenever

x l y in P . We typically do not write arrows on the directed edges, instead we draw the

graph so that the edges are directed upwards. Figure 1.1 depicts the Hasse diagram of B3.

Let P and Q be posets. We say a map ϕ : P → Q is order preserving if x ≤P y implies

that ϕ(x) ≤Q ϕ(y) for all x, y ∈ P . We say P and Q are isomorphic if there is a bijection

ϕ : P → Q such that ϕ and ϕ−1 are order preserving. In other words, we must have x ≤P y

2
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Figure 1.2: The poset of binary words, P3

if and only if ϕ(x) ≤Q ϕ(y) for all x, y ∈ P . If P and Q are isomorphic, then we write

P ∼= Q. If P and Q are finite posets, then checking if P and Q are isomorphic is equivalent

to checking that their Hasse diagrams are isomorphic as directed graphs.

We now give an example of a poset isomorphism. Let Pn be the set of all binary sequences

of length n ordered by saying a1a2 . . . an ≤ b1b2 . . . bn if and only if ai ≤ bi for all i. We

claim that Pn and Bn are isomorphic. To see why, define ϕ : Pn → Bn so that ϕ(a1a2 . . . an)

is the subset of {1, 2 . . . , n} obtained by including i if and only if ai = 1. So for example,

ϕ(10100) = {1, 3}. First, it is obvious that ϕ is a bijection. Now suppose that a1a2 . . . an ≤

b1b2 . . . bn, then bi = 0 implies that ai = 0. Therefore, ϕ(a1a2 . . . an) only contains elements

that are also in ϕ(b1b2 . . . bn) and so ϕ is order preserving. Finally, suppose that S ⊆ T

and let ϕ−1(S) = a1a2 . . . an and ϕ−1(T ) = b1b2 . . . bn. Since S ⊆ T it must be that bi = 0

implies that ai = 0 for all i. This implies that a1a2 . . . an ≤ b1b2 . . . bn. It follows that

Pn ∼= Bn. Figure 1.2 is the Hasse diagram of P3. Comparing this with Figure 1.1 gives a

graphical verification that the two posets are indeed isomorphic when n = 3.
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It will be useful to have names for some special elements of a poset. If a poset, P , has a

minimum element then we denote it by 0̂P or just 0̂ if P is clear from context. Similarly if

P has a maximum element we denote it by 1̂P or 1̂. In the example of Bn, 0̂ is ∅ since every

set contains the empty set. Also, the 1̂ of Bn is {1, 2, . . . , n} because every set is contained

in this set. For the rest of the paper, unless otherwise noted, we will assume that all of our

posets are finite and have a 0̂. We, however, do not assume that all of our posets have a 1̂.

Another set of important elements of a poset are the atoms. Let P be a poset, we say

a ∈ P is atom if a m 0̂. The atoms of Bn are exactly the singleton subsets of {1, 2, . . . , n}.

The set of atoms of a poset P will be denoted by A(P ).

Let P be a poset and let S be a subset of P . The lower order ideal generated by S is

L(S) = {x ∈ P | x ≤ s for some s ∈ S}.

Similarly, we have the upper order ideal generated by S which is defined by

U(S) = {x ∈ P | x ≥ s for some s ∈ S}.

We say a set, S, is totally ordered if x, y ∈ S implies that either x ≤ y or y ≤ x. A

totally ordered subset of a poset is called a chain of the poset. If C : x0 < x1 < · · · < xn is a

chain, we say C is saturated if xilxi+1 for all i = 0, 1, . . . , n−1. An example of a saturated

chain in Bn is ∅l {1}l {1, 2}l . . .l {1, 2, . . . , n− 1}l {1, 2, . . . , n− 1, n}. In terms of a

Hasse diagram, a saturated chain of a poset is a directed path. The length of a chain, C, is

|C| − 1 where | · | denotes cardinality. The previous example of the saturated chain in Bn

has length n. We will also need the notion of a multichain. A multichain of a poset is like

4



a chain where we allow repetition of the elements. We say a multichain is saturated if the

underlying set forms a saturated chain.

If P has a 0̂ then we say P is ranked if, for each x ∈ P , every saturated 0̂–x chain has

the same length. Given a ranked poset, we get a rank function ρ : P → N defined by setting

ρ(x) to be the length of a 0̂–x saturated chain. We then define

ρ(P ) = max
x∈P

ρ(x).

In the case when P has a 1̂, we have that ρ(P ) = ρ(1̂). Returning to our example of Bn,

one can see that ρ(S) = |S| for all S ∈ Bn and that ρ(Bn) = n.

If P and Q are posets, we define the product of P and Q written as P × Q as the set

P × Q with the binary relation ≤P×Q such that (p1, q1) ≤ (p2, q2) if and only if p1 ≤p p2

and q1 ≤Q q2. It is not hard to prove the following lemma.

Lemma 1.1.2. Let P and Q be posets, then P × Q is a poset. Moreover, if both P and Q

are ranked, then P ×Q is ranked as well. In this case, the rank function is given by

ρP×Q(p, q) = ρP (p) + ρQ(q).

Our running example, Bn, is in fact a product of smaller posets. To see why, define

Ck to be the poset whose elements are {0, 1, . . . , k} and whose order is the normal ordering

of the integers. We call Ck the chain of length k. For the Boolean algebra we have that

Bn ∼= C1 × C1 × · · · × C1︸ ︷︷ ︸
n times

. The isomorphism is essentially the isomorphism we gave before

between Bn and the binary sequences of length n.
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Given two elements x, y of a poset P , the meet or greatest lower bound of x and y (if it

exists) is the element z such that z ≤ x, y with the property that if w ≤ x, y, then w ≤ z. It

is denoted by x ∧ y. The join of x and y or least upper bound (if it exists) is the element z

such that z ≥ x, y with the property that if w ≥ x, y , then w ≥ z. It is denoted by x ∨ y.

A poset is called a lattice if every pair of elements has a meet and a join. Note that in the

case of finite posets this is equivalent to saying that every subset of elements has a meet and

a join. Moreover, note that every lattice has a 0̂ and a 1̂. The poset Bn is a lattice with

S ∧ T = S ∩ T and S ∨ T = S ∪ T .

Let L be a lattice. We say an element x ∈ L is atomic if there exists atoms a1, a2, . . . , an

where x = a1 ∨ a2 ∨ · · · ∨ an. As a convention, we will let 0̂ be the join of the empty set. We

say a lattice, L, is atomic if every element of L is atomic. The lattice Bn is atomic since the

empty set is the empty union and since every nonempty set is the union of singleton sets.

On the other hand, we claim that for k > 1, the chain Ck is not atomic. Recall, that there

is at most one atom in any Ck. It follows that there are at most 2 elements of Ck which are

atomic. Therefore if k > 1, then Ck is not atomic.

Let L be a ranked lattice. We say L is (upper) semimodular if for all x, y ∈ L we have

ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y).

Note that we will suppress the adjective “upper” and just call such lattices semimodular as

is commonly done in the literature. We claim that Bn is semimodular. To see why, let S

and T be elements of Bn. Then the Principle of Inclusion-Exclusion implies that

|S|+ |T | = |S ∪ T |+ |S ∩ T |.

6



Recall that if R ∈ Bn, then ρ(R) = |R|. Also recall that S ∪ T = S ∨ T and S ∩ T = S ∧ T .

The previous equation now implies that for all S, T ∈ Bn we have

ρ(S) + ρ(T ) ≥ ρ(S ∧ T ) + ρ(S ∨ T ).

We conclude that Bn is semimodular.

Let L be a lattice and let x ∈ L. We say x is left-modular if for all y, z ∈ L with y ≤ z

we have

y ∨ (x ∧ z) = (y ∨ x) ∧ z.

If C is a multichain of L, then we say C is left-modular if all the elements of C are left-

modular. It is not hard to see that every element of Bn is a left-modular element and so any

multichain of Bn is left-modular.

If L is semimodular and contains a saturated 0̂–1̂ left-modular multichain, then L is called

supersolvable. Note that it is typical to define supersolvable using saturated left-modular

chains as opposed to saturated left-modular multichains. Since saturated multichains always

contain an underlying saturated chain, this will not lead to any problems. Recalling that Bn

is semimodular and that every multichain is left-modular, we have that Bn is supersolvable.

1.2 The Möbius Function

One of the most important functions on a finite poset is its Möbius function, µ. It is a

far-reaching generalization of the Möbius function from number theory. While there is a

two-variable version of the Möbius function, we will only need the one-variable version.

Definition 1.2.1. The (one-variable) Möbius function of P is a map µ : P → Z defined

7



recursively so that ∑
x≤y

µ(x) = δ0̂,y. (1.1)

It is sometimes convenient to use the following equivalent formulation of µ.

µ(y) =


1 if y = 0̂,

−
∑
x<y

µ(x) otherwise.

(1.2)

If we are using more than one poset, we may also use the notation µP to denote the Möbius

function of P .

Let us consider the Möbius function of Bn. We claim that µ(S) = (−1)|S| for every

S ∈ Bn. This can be seen by inducting on |S|. The base case is true by definition of µ.

Using the inductive hypothesis, we know that if T ( S, then µ(T ) = (−1)|T |. Therefore,

equation (1.2) implies that

µ(S) = −
∑
T(S

(−1)|T |.

The number of subsets of S with size k is
(|S|
k

)
and so

µ(S) = −
|S|−1∑
k=0

(−1)k
(
|S|
k

)
.

The binomial theorem now implies that µ(S) = (−1)|S|.

One of the most important results about the Möbius function is the Möbius Inversion

Theorem (see [14, Proposition 3.7.1]). We do not discuss it here since we will not need

it, but rather just mention of few well-known corollaries of the theorem. The Principle

of Inclusion-Exclusion, the Fundamental Theorem of Difference Calculus and the Möbius

8



Inversion Theorem in number theory are all consequences of the poset Möbius Inversion

Theorem.

The Möbius function behaves nicely with respect to products of posets and isomorphisms.

More specifically, we have the next lemma. We will use these facts often in the next chapter

of the paper.

Lemma 1.2.2. Let P and Q be posets. Then we have the following.

1. If P ∼= Q, then µP = µQ.

2. The product P ×Q has Möbius function

µP×Q(p, q) = µP (p)µQ(q).

It is not hard to see that the Möbius function for the chain, Cn, is given by

µ(x) =



1 if x = 0,

−1 if x = 1,

0 otherwise.

Therefore the previous lemma and the fact that Bn ∼= C1 × C1 × · · · × C1︸ ︷︷ ︸
n times

implies that

µ(S) = (−1)|S| for any S ∈ Bn, giving a second and more conceptual proof of this result.

9



1.3 The Characteristic polynomial

We are primarily interested in the Möbius function because of its generating function. To

define it, let P be a poset and let ρ : P → N be any function. Given ρ, define

ρ(P ) = max
x∈P

ρ(x).

(The choice of ρ to denote this function is done because it replaces the rank function which is

typically used in the definition of the characteristic polynomial.) Additionally, let m be any

integer such that m ≥ ρ(P ). The generalized characteristic polynomial of P with respect to

ρ and m is

χ(P, t) =
∑
x∈P

µ(x)tm−ρ(x). (1.3)

In the case when ρ is the rank function of P and m = ρ(P ), then we call the polynomial

the characteristic polynomial to distinguish it from the more general definition. Most of the

literature on characteristic polynomials is about this case, however, many of the results we

prove in this dissertation do not need this assumption.

The main goal of the first half of this dissertation is to identify posets with generalized

characteristic polynomials having only nonnegative integer roots. Additionally, we wish to

explain this factorization in these cases. Before we continue, let us mention some previous

work done by others on the factorization of the characteristic polynomial. For a more

complete overview, we suggest reading the survey paper by Sagan [12]. In [15], Stanley

showed that the characteristic polynomial of a semimodular supersolvable lattice always

has nonnegative integer roots. Additionally, he showed these roots were given by the sizes

of blocks in a partition of the atom set of the lattice. Blass and Sagan [1] extended this

10



result to LL lattices. In [19], Zaslavsky generalized the concept of coloring of graphs to

coloring of signed graphs and showed how these colorings were related to the characteristic

polynomial of certain hyperplane arrangements. This permits one to factor characteristic

polynomials using techniques for chromatic polynomials of signed graphs. Saito [13] and

Terao [17] studied a module of derivations associated with a hyperplane arrangement. When

this module is free, the characteristic polynomial has roots which are the degrees of its basis

elements.

Let us return to our example of Bn. We have already shown that µ(S) = (−1)|S| and

the rank function is given by ρ(S) = |S|. Thus, if χ(Bn, t) is the characteristic polynomial

we have

χ(Bn, t) =
∑
S∈Bn

(−1)|S|tn−|S|.

Since there are
(n
k

)
subsets of {1, 2 . . . , n} with size k, we get

χ(Bn, t) =
n∑
k=0

(−1)k
(
n

k

)
tn−k.

The binomial theorem now implies that

χ(Bn, t) = (t− 1)n.

If we calculate the characteristic polynomial of the 1-chain, C1, we get

χ(C1, t) = t− 1.

The fact that Bn is isomorphic to the n-fold product of C1 suggests that the characteristic

11



polynomial of the product of posets is the product of the individual characteristic polynomi-

als. Indeed, this is true and is the basis for our approach to explaining factorization of the

characteristic polynomial. Consider the following well-known lemma which can be shown

using Lemma 1.1.2 and Lemma 1.2.2.

Lemma 1.3.1. Let P and Q be posets. If χ is the characteristic polynomial then we have

the following.

1. If P ∼= Q, then χ(P, t) = χ(Q, t).

2. χ(P ×Q, t) = χ(P, t)χ(Q, t).

This lemma explains the factorization of the characteristic polynomial of Bn. Let us now

consider a different family of lattices whose characteristic polynomials have only nonnega-

tive integer roots. We will often refer back to this example in the sequel. A set partition

of [n] is family of nonempty disjoint sets B1, B2, . . . , Bk whose union is [n]. The subsets

B1, B2, . . . , Bk are called the blocks of the partition. We will denote the partition with

blocks B1, B2, . . . , Bk by π = B1/B2/ . . . /Bk. The partition lattice, Πn, is the lattice whose

elements are the set partitions π = B1/B2/ . . . /Bk of [n] under the refinement ordering. In

other words, we say

B1/B2/ . . . /Bk ≤ C1/C2/ . . . /Cm

provided each Ci is a union of some of the Bj ’s. It is well-known that the characteristic

polynomial of Πn is given by

χ(Πn, t) = (t− 1)(t− 2) · · · (t− n+ 1).

All the roots of the characteristic polynomial of Bn are 1 which is reflected in the fact

12



a1 a2 · · · an

0̂

Figure 1.3: The claw with n atoms

that the characteristic polynomial of C1 is χ(C1, t) = t − 1. However, as we have seen in

the case of Πn we need to consider other posets whose characteristic polynomial are single

linear factors.

Definition 1.3.2. The claw with n atoms is the poset with a 0̂, n atoms and no other

elements. It will be denoted CLn and is the poset which has Hasse diagram depicted in

Figure 1.3.

Clearly,

χ(CLn, t) = t− n

where χ is the characteristic polynomial.

Now let us look at the special case of Π3. We wish to show that

χ(Π3, t) = (t− 1)(t− 2).

in a way which mimics the second proof for Bn. Since the roots of χ(Π3, t) are 1 and 2, we

consider CL1 × CL2 which, by the first part of Lemma 1.3.1, has the same characteristic

polynomial. Figure 1.4 contains the Hasse diagrams of Π3 and CL1 × CL2. Unfortunately,

these two posets are not isomorphic since one contains a maximum element and the other

does not. We now wish to modify CL1×CL2 without changing its characteristic polynomial

13
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(0̂, 0̂)

CL1 × CL2 after identifying (a, b) and (a, c)

Figure 1.4: Hasse diagrams for the partition lattice example

and in such a way that the resulting poset will be isomorphic to Π3. It will then follow from

the second part of Lemma 1.3.1 that

χ(Π3, t) = χ(CL1 × CL2) = (t− 1)(t− 2).

Let CL1 have its atom labeled by a and let CL2 have its two atoms labeled by b and c. Now

suppose that we identify (a, b) and (a, c) in CL1×CL2 and call this new element d. After this

collapse, we get a poset isomorphic to Π3 as can be seen in Figure 1.4. Note that performing

this collapse did not change the characteristic polynomial since µ(d) = µ((a, b)) + µ((a, c))

and ρ(d) = ρ((a, b)) = ρ((a, c)). Thus we have fulfilled our goal.

It turns out that we can use this technique of collapsing elements to find the roots of a

characteristic polynomial in a wide array of posets, P . The basic idea is that it is trivial

14



to calculate the characteristic polynomial of a product of claws. Moreover, under certain

conditions which we will see later, we are able to identify elements of the product and form

a new poset without changing the characteristic polynomial. If we can show the product

with identifications made is isomorphic to P , then we will have succeeded in showing that

χ(P, t) has only nonnegative integer roots.
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Chapter 2

Quotient Posets

In this chapter we consider how to use quotient posets to prove factorization theorems for

the characteristic polynomial. In Sections 2.1–2.4we will consider the case when our posets

are ranked and we are dealing with the characteristic polynomial. Unless otherwise noted, in

Sections 2.1–2.4 whenever we use ρ we mean the rank function of the poset. After considering

the ranked case, we will deal with the more general case where our posets need not be ranked.

This material is contained in Sections 2.5–2.8.

2.1 The Basics

We begin this section by defining, in a rigorous way, what we mean by collapsing elements

in a Hasse diagram of a poset. We do so by putting an equivalence relation on the poset and

then ordering the equivalence classes.

Definition 2.1.1. Let P be a poset and let ∼ be an equivalence relation on P . We define

the quotient P/ ∼ to be the set of equivalence classes with the binary relation ≤ defined by

X ≤ Y in P/ ∼ if and only if x ≤ y in P for some x ∈ X and some y ∈ Y .

Note that this binary relation on P/ ∼ is reflexive and transitive, but is not necessarily

antisymmetric. For example, let P be the chain with elements 0 < 1 < 2 and take X = {0, 2}

and Y = {1}. Then in P/ ∼ we have that X ≤ Y and Y ≤ X, but X 6= Y . Since we want
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the quotient to be a poset, it is necessary to require two more properties of our equivalence

relation.

Definition 2.1.2. Let P be a poset and let ∼ be an equivalence relation on P . Order the

equivalence classes as in the previous definition. We say the poset P/ ∼ is a homogeneous

quotient if

(1) 0̂ is in an equivalence class by itself, and

(2) if X ≤ Y in P/ ∼, then for all x ∈ X there is a y ∈ Y such that x ≤ y.

Lemma 2.1.3. If P is a poset and P/ ∼ is a homogeneous quotient, then P/ ∼ is a poset.

Proof. As previously mentioned, the fact that ≤ in P/ ∼ is reflexive and transitive is clear.

To see why it is antisymmetric, suppose that X ≤ Y and Y ≤ X. By definition, there is a

x ∈ X and y ∈ Y with x ≤ y. Since Y ≤ X there is a x′ ∈ X with x ≤ y ≤ x′. Since X ≤ Y

there is a y′ ∈ Y with x ≤ y ≤ x′ ≤ y′. Continuing, we get a chain

x ≤ y ≤ x′ ≤ y′ ≤ . . .

If any of the inequalities are equalities then we are done since the equivalence classes partition

P . If all are strict, then we would have an infinite chain in P , but this contradicts the fact

that P is finite. Therefore it must be that X = Y.

Since we would like to use quotient posets to find characteristic polynomials, it would be

quite helpful if the Möbius value of an equivalence class was the sum of the Möbius values of

the elements of the equivalence class. This is not always the case when using homogeneous

quotients, however we only need one simple requirement on the equivalence classes so that
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this does occur. Note the similarity of the hypothesis in the next result to the definition of

the Möbius function (equation (1.1)).

Lemma 2.1.4 ([6]). Let P/ ∼ be a homogeneous quotient poset. Suppose that for all nonzero

X ∈ P/ ∼, ∑
y∈L(X)

µ(y) = 0 (2.1)

where L(X) is the lower order ideal generated by X in P . Then, for all equivalence classes

X

µ(X) =
∑
x∈X

µ(x).

Proof. We induct on the length of the longest 0̂–X chain to prove the result. If the length

is zero, then X = 0̂. Since P/ ∼ is a homogeneous quotient, there is only one element in X

and it is 0̂. The Möbius value of the minimum of any poset is 1 and so the base case holds.

Now suppose that the length is positive. Then X 6= 0̂ and so by assumption,

∑
y∈L(X)

µ(y) = 0.

Breaking this sum into two parts and moving one to the other side of the equation gives

∑
x∈X

µ(x) = −
∑

y∈L(X)\X
µ(y). (2.2)

Using the definition of µ and the induction hypothesis, we have that

µ(X) = −
∑
Y <X

µ(Y ) = −
∑
Y <X

∑
y∈Y

µ(y)

 .

18



Since P/ ∼ is a homogeneous quotient poset, we have that if Y < X then for every y ∈ Y

there is an x ∈ X with y < x. Therefore the previous sum ranges over all y such that there

is an x ∈ X with y < x. Thus y ∈ L(X) \X. Conversely, for each y ∈ L(X) \X there is an

x ∈ X with y < x. By the definition of ≤ in P/ ∼, we have that this implies Y < X where

Y is the equivalence class of y. It follows that

µ(X) = −
∑

y∈L(X)\X
µ(y). (2.3)

Combining this equation with (2.2) completes the proof.

For the remainder of the paper, we shall refer to the condition given by equation (2.1)

as the summation condition. From the previous lemma, we know how the Möbius values

behave when taking quotients under certain circumstances. We also need to know how the

rank behaves under quotients.

Lemma 2.1.5. Let P be a ranked poset and let P/ ∼ be a homogeneous quotient poset.

Suppose that for all x, y ∈ P , x ∼ y implies ρ(x) = ρ(y). Then P/ ∼ is ranked and

ρ(X) = ρ(x) for all x ∈ P .

Proof. We actually prove a stronger result. We show that X l Y (where l denotes a

covering relation) implies there is a x ∈ X and a y ∈ Y such that x l y. To see why

this implies the lemma, suppose that there were two chains 0̂ = X1 l X2 l . . . l Xn and

0̂ = Y1lY2l. . .lYm with Xn = Ym. Then for the corresponding chains 0̂ = x1lx2l. . .lxn

and 0̂ = y1ly2l. . .lym we have that ρ(xn) = ρ(ym) since elements in the same equivalence

class have the same rank. This forces n = m and so P/ ∼ must be ranked. Additionally, it

is easy to see that this implies that ρ(X) = ρ(x) for all x ∈ X.
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By the definition of a homogeneous quotient, if X l Y then there is a x ∈ X and y ∈ Y

with x < y. Suppose that there was some z ∈ P with x < z < y. Then ρ(x) < ρ(z) < ρ(y)

and X ≤ Z ≤ Y where Z is the equivalence class of z. Since all elements in an equivalence

class have the same rank this implies that X < Z < Y in P/ ∼, which contradicts the fact

that Y covered X.

Applying Lemma 2.1.4, Lemma 2.1.5 and the definition of the characteristic polynomial

we immediately get the following corollary.

Corollary 2.1.6 ([6]). Let P be a ranked poset and let P/ ∼ be a homogeneous quotient.

If the summation condition (2.1) holds for all nonzero X ∈ P/ ∼, and x ∼ y implies

ρ(x) = ρ(y) and χ is the characteristic polynomial, then

χ(P/ ∼, t) = χ(P, t).

We now have conditions under which the characteristic polynomial does not change when

taking a quotient. However, the previous results do not tell us how to choose an appropriate

equivalence relation for a given poset. It turns out that when the poset is a lattice, there is

a canonical choice for ∼, as we will see in the next section.

2.2 The Standard Equivalence Relation

Let us look at the partition lattice example again and give new labelings to CL1 × CL2

which will be helpful in determining an equivalence relation. First, we set up some notation

for the atoms of the partition lattice. For i < j, let (i, j) denote the atom which has i and

j in one block and all other elements in singleton blocks. Let CL1 have its atom labeled by
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((1, 2), (1, 3)) ((1, 2), (2, 3))

(0̂, (1, 3)) ((1, 2), 0̂) (0̂, (2, 3))

(0̂, 0̂)

CL1 × CL2

123 123

13/2 12/3 1/23

1/2/3

CL1 × CL2

Figure 2.1: Hasse diagrams for partition lattice example with new labelings

(1, 2) and CL2 have its atoms labeled by (1, 3) and (2, 3). In both of the claws, label the

minimum element by 0̂. The poset on the left in Figure 2.1 shows the induced labeling on

CL1 × CL2.

Now relabel CL1 × CL2 by taking the join in Π3 of the two elements in each pair. The

poset on the right in Figure 2.1 shows this step. Finally, identify elements which have the

same label. In this case, this means identifying the top two elements as we did before. Upon

doing this, we get a poset which is isomorphic to Π3 and has the same labeling as Π3.

In order to generalize the previous example, we will be putting an equivalence relation

on the product of claws whose atom sets come from partitioning the atoms of the original

lattice. We need some terminology before we can define our equivalence relation.

An ordered partition of a set S is a set partition where we put an order on the blocks

of the partition. If B1, B2, . . . , Bn are the blocks of the partition where we order them so

B1 < B2 < · · · < Bn, then we write the ordered partition as (B1, B2, . . . , Bn).

Suppose that L is a lattice and (A1, A2, . . . , An) is an ordered partition of the atoms of

L. We will use CLAi to denote the claw whose atom set is Ai and whose minimum element

is labeled by 0̂L (or just 0̂ if L is clear from context). The elements of
∏n
i=1CLAi will be

called atomic transversals and written in boldface. (The reason for the adjective “atomic”
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is because we will be considering more general transversals in Section 2.3.) Since the rank

of an element in the product of claws is just the number of nonzero elements in the tuple,

it will be useful to have a name for the elements of a transversal which are nonzero. For

t ∈
∏n
i=1CLAi define the support of t as the set of nonzero elements in the tuple t. We

will denote it by supp t.

We will use the notation t(ei) to denote the ordered tuple obtained by replacing the ith

coordinate of t = (t1, t2, . . . , tn) with an element e. That is,

t(ei) = (t1, t2, . . . , ti−1, e, ti+1, . . . , tn).

We will also need a notation for the join of the elements of t which will be

∨
t = t1 ∨ t2 ∨ · · · ∨ tn.

With this new terminology we are now in a position to define a natural equivalence

relation on the product of the claws. Since we are trying to show that the characteristic

polynomial of a lattice has certain roots, we will need to show that the quotient of the product

of claws is isomorphic to the lattice. Therefore it is reasonable to define the equivalence

relation by identifying two elements of the product of claws if their joins are the same in L.

Definition 2.2.1. Let L be a lattice and let (A1, A2, . . . , An) be an ordered partition of the

atoms of L. The standard equivalence relation on
∏n
i=1CLAi is defined by

s ∼ t in
n∏
i=1

CLAi ⇐⇒
∨

s =
∨

t in L.

Note that in the previous definition, we did not assume that L is ranked. We will use the
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standard equivalence relation later when we will not make assumptions about if the lattice

ranked or not.

We will use the notation

T ax =

{
t ∈

n∏
i=1

CLAi :
∨

t = x

}

and call the elements of this set atomic transversals of x. Therefore, the equivalence classes

of the quotient
(∏n

i=1CLAi

)
/ ∼ are of the form T ax for some x ∈ L. It is obvious that

the standard equivalence relation is an equivalence relation. To be able to use any of the

theorems from the previous section, we need to make sure that taking the quotient with

respect to the standard equivalence relation gives us a homogeneous quotient. Moreover, we

will need a way to determine if the summation condition (2.1) holds for all nonzero elements

of the quotient. We do this in the next lemma. For the rest the paper we will use the

notation Ax for the set of atoms below x.

Lemma 2.2.2. Let L be a ranked lattice and let (A1, A2, . . . , An) be an ordered partition of

the atoms of L. Let ∼ be the standard equivalence relation on
∏n
i=1CLAi. Suppose that the

following hold.

(1) For all x ∈ L, T ax 6= ∅.

(2) If t ∈ T ax , then | supp t| = ρ(x).

Under these conditions,

(a) The lower order ideal generated by the set T ax in
∏n
i=1CLAi is given by

L(T ax ) = {t : ti ≤ x for all i}.
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(b) The quotient
(∏n

i=1CLAi

)
/ ∼ is homogeneous.

(c) For all nonzero T ax ∈
(∏n

i=1CLAi

)
/ ∼ the summation condition (2.1) holds if and

only if for each nonzero x ∈ L there is an i such that |Ai ∩ Ax| = 1.

Proof. First, we show (a). We claim that assumptions (1) and (2) imply that if a ∈ Ax then

there is an atomic transversal for x which contains a. To verify the claim, use assumption (1)

to pick t ∈ T ax and let r = t(ai). By construction and assumption (2), ρ(
∨
r) = | supp r| ≥

| supp t| = ρ(x). But also
∨

r ≤ x which forces
∨
r = x. Thus a is in the atomic transversal

r for x.

The definition of T ax gives us the inclusion L(T ax ) ⊆ {t : ti ≤ x for all i}. The reverse

inclusion holds by the previous claim.

Next, we verify (b). It is clear that t ∈ T a
0̂

if and only if t = (0̂, 0̂, . . . , 0̂) and so part (1)

of Definition 2.1.2 is satisfied. To show part (2), suppose that T ax ≤ T ay as in Definition 2.1.1.

Then there is some t ∈ T ax and s ∈ T ay with t ≤ s. It follows that
∨
t ≤

∨
s and so x ≤ y.

Let t ∈ T ax . Using the fact that ti ≤ x ≤ y and part (a), we have that t ∈ L(T ay ). It follows

that there is some s ∈ T ay with t ≤ s and so part (2) of Definition 2.1.2 holds.

Finally, we demonstrate (c). Fix x ∈ L and let Ni be the number of atoms below x in Ai.

Let I be the set of indices i such that Ni > 0. By relabeling, if necessary, we may assume that

I = {1, 2, . . . , k}. It follows from part (a) that the number of atomic transversals in L(T ax )

with support size i is ei(N1, N2, . . . , Nk) where ei is the ith elementary symmetric function.

For each atomic transversal t ∈ L(T ax ) we have that µ(t) = (−1)| supp t|. Therefore,

∑
t∈L(T ax )

µ(t) =
k∑
i=0

(−1)iei(N1, N2, . . . , Nk) =
k∏
i=1

(1−Ni).
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Thus the summation condition (2.1) holds for each nonzero element in the quotient if and

only if for each nonzero x ∈ L there is an index i such that |Ai ∩ Ax| = 1.

Combining the previous result with Corollary 2.1.6 gives conditions under which the

product of claws and its quotient have the same characteristic polynomial. We also need to

show that there is an isomorphism between L and this quotient. This will give us the desired

factorization.

Theorem 2.2.3 ([6]). Let L be a ranked lattice and let (A1, A2, . . . , An) be an ordered

partition of the atoms of L. Let ∼ be the standard equivalence relation on
∏n
i=1CLAi and

let χ(L, t) be the characteristic polynomial. Suppose the following hold.

(1) For all x ∈ L, T ax 6= ∅.

(2) If t ∈ T ax , then | supp t| = ρ(x).

(3) For each nonzero x ∈ L there is some i with |Ai ∩ Ax| = 1.

Then we can conclude the following.

(a) For all x ∈ L, µ(x) = (−1)ρ(x)|T ax |.

(b) χ(L, t) =
n∏
i=1

(t− |Ai|).

Proof. Let P =
∏n
i=1CLAi . First, we show that L ∼= P/ ∼. Define a map ϕ : (P/ ∼) → L

by ϕ(T ax ) = x. It is easy to see that ϕ is well-defined. Define ψ : L→ (P/ ∼) by ψ(x) = T ax .

By assumption T ax 6= ∅ and so ψ is well-defined. Moreover, it is clear that ϕ and ψ are

inverses of each other.

To show that ϕ is order preserving, suppose that T ax ≤ T ay . Then just as in the proof of

Lemma 2.2.2 part (b), we have that x ≤ y and so ϕ is order preserving.
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To show that ψ is order preserving, suppose that x ≤ y. Then applying the same

technique in the proof of Lemma 2.2.2 part (b) we get that there is a t ∈ T ax and s ∈ T ay

with t ≤ s. By the definition of ≤ in P/ ∼ we get that T ax ≤ T ay and so ψ is order preserving.

To obtain (a), note that the Möbius value of an element in the product of claws is

µ(t) = (−1)| supp t|. Therefore, using Lemma 2.1.4, we get

µ(T ax ) =
∑
t∈T ax

µ(t) =
∑
t∈T ax

(−1)| supp t|.

Using the isomorphism between L and the quotient as well as the fact that, by assumption

(2), all the atomic transversals for x have size ρ(x), we have

µ(x) = µ(T ax ) = (−1)ρ(x)|T ax |

as desired.

Finally, to verify (b) apply Corollary 2.1.6 and Lemma 2.2.2 to get that

n∏
i=1

(t− |Ai|) = χ(P, t) = χ(P/ ∼, t).

Now part (b) follows immediately since L ∼= P/ ∼.

Let us return to the partition lattice and see how we can apply Theorem 2.2.3 Label the

atoms (i, j) as before. Partition the atoms as (A1, A2, . . . , An−1) where

Aj = {(i, j + 1) | i < j + 1}

With each atomic transversal t we will associate a graph, Gt on n vertices such that there
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is an edge between vertex i and vertex j if and only if (i, j) is in t. We will use the graph to

verify the assumptions of Theorem 2.2.3 are satisfied for Πn.

First, let us show assumption (1) holds. In the case when there is a single block B = {b1 <

b2 < · · · < bm}, the elements (b1, b2), (b2, b3), . . . , (bm−1, bm) form an atomic transversal and

their join is B. Now to get the elements which have more than one nontrivial block, follow

the same procedure for each block and take the union of the atomic transversals. It follows

every element has an atomic transversal.

Next, we prove that assumption (2) holds. We claim that if t ∈ T aπ then Gt is a forest.

To see why, suppose that there was a cycle and let c be the largest vertex in the cycle. Then

c must be adjacent to two smaller vertices a and b which implies that both (a, c) and (b, c)

must be in t. This is impossible since both come from Ac−1.

Since Gt is forest, if Gt has k components then the number of edges in Gt is n − k. It

is not hard to see that i and j are in the same block in
∨
t if and only if i and j are in the

same component of Gt. Moreover, it is well known that if π ∈ Πn and π has k blocks then

ρ(π) = n−k. It follows that if t ∈ T aπ and π has k blocks then | supp t| = |E(Gt)| = n−k =

ρ(π). We conclude that assumption (2) holds.

Finally, to verify assumption (3), let π ∈ Πn with π 6= 0̂. Then π contains a nontrivial

block. Let i be the second smallest number in this block. We claim that there is only one

atom in Ai−1 below π. First note that there is some atom below π in Ai−1 namely (a, i)

where a is the smallest element of the block. Suppose there was more than one atom below

π in Ai−1 and let (a, i), (b, i) ∈ Ai−1 with (a, i), (b, i) ≤ π. Then (a, i) ∨ (b, i) ≤ π and so a,

b and i are all in the same block in π which is impossible since a, b < i but i was chosen to

be the second smallest in its block.
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Now applying the theorem we get that

χ(Πn, t) = (t− 1)(t− 2) · · · (t− n+ 1)

since |Ai| = i for 1 ≤ i ≤ n− 1.

More generally, Theorem 2.2.3 can be used to prove Terao’s result [16] about the charac-

teristic polynomial of a hyperplane arrangement with a nice partition. In fact the notion of

nice partition is the combination of assumptions (2) and (3) of Theorem 2.2.3 in the special

case of a central hyperplane arrangement.

2.3 Rooted Trees

One of the drawbacks of Theorem 2.2.3 is that assumption (1) requires that every element of

the lattice has an atomic transversal. This forces L to be atomic. However, by generalizing

the notion of a claw to that of a rooted tree, we will be able to remove this assumption and

derive Theorem 2.3.2 below which applies to a wider class of lattices.

Definition 2.3.1. Let P be a poset and S be a subset of P containing 0̂. Let C be the

collection of saturated chains of P which start at 0̂ and use only elements of S. The rooted

tree with respect to S is the poset obtained by ordering C by inclusion and will be denoted

by RTS.

It is easy to see that given any subset S of a poset containing 0̂, the Hasse diagram of

RTS always contains a 0̂ and has no cycles. This explains the choice of rooted tree for the

name of the poset.

Strictly speaking the elements of RTS are chains of L. However, it will be useful to think

28



123

12/3

1/2/3

RTS1

123 123

13/2 1/23

1/2/3

RTS2

Figure 2.2: Hasse diagrams for rooted trees

of the elements of RTS as elements of L where we associate a chain C with its top element.

One can still recover the full chain by considering the unique path from 0̂ to C in RTS .

Let us consider an example in Π3. As before, partition the atom set as A1 = {12/3} and

A2 = {13/2, 1/23}. Let S1, S2 be the upper order ideals generated by A1, A2, respectively,

together with 0̂. Then we we get RTS1 and RTS2 as in Figure 2.2. Note that we label the

chains 0̂ < 12/3 < 123, 0̂ < 13/2 < 123 and 0̂ < 1/23 < 123 in S1 and S2 all by 123 in RTS1

and RTS2 since each of these chains terminates at 123.

In the previous sections, we used a partition of the atom set to form claws. In this section,

we will use the partition of the atom set to form rooted trees. Given an ordered partition of

the atoms of a lattice (A1, A2, . . . , An), for each i we form the rooted tree RT
Û(Ai)

where

Û(Ai) is the upper order ideal generated by Ai together with 0̂. We will call rooted trees of

the form RT
Û(Ai)

complete rooted trees. We will study them in more detail in Section 2.6.

Note that since (A1, A2, . . . , An) is a partition of the atoms, every element of the lattice

appears in an RT
Û(Ai)

for some i.

Given (A1, A2, . . . , An), we call t ∈
∏n
i=1RTÛ(Ai)

a transversal. We will use the notation,

Tx =

{
t ∈

n∏
i=1

RT
Û(Ai)

:
∨

t = x

}
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and call such elements transversals of x. If t consists of only atoms of L or 0̂ then t is called

an atomic transversal. This agrees with the terminology we used for claws. The set of atomic

transversals for x will be denoted T ax as before.

There is very little change in the approach using rooted trees as opposed to claws. As

before, given a partition (A1, A2, . . . , An) of the atom set of L, we will put the standard

equivalence relation on
∏n
i=1RTÛ(Ai)

. Note that one can take the join using all the elements

of a chain or just the top element as the results will be equal. Since we are using rooted trees,

the natural map from
(∏n

i=1RTÛ(Ai)

)
/ ∼ to L is automatically surjective. In other words,

we can remove the condition that every element of L has an atomic transversal. Additionally,

since each Hasse diagram is a tree, when we take the product of the trees, the Möbius value

of any transversal which is not atomic is zero and so does not affect χ. Therefore, we get

the following improvement on Theorem 2.2.3.

Theorem 2.3.2 ([6]). Let L be a ranked lattice and let (A1, A2, . . . , An) be an ordered

partition of the atoms of L. Let ∼ be the standard equivalence relation on
∏n
i=1RTÛ(Ai)

and let χ be the characteristic polynomial. Suppose the following hold.

(1) If t ∈ T ax , then | supp t| = ρ(x).

(2) For each nonzero x ∈ L there is some i with |Ai ∩ Ax| = 1.

Then we can conclude the following.

(a) For all x ∈ L, µ(x) = (−1)ρ(x)|T ax |.

(b) χ(L, t) = tρ(L)−n
n∏
i=1

(t− |Ai|).

Proof. Let P =
∏n
i=1RTÛ(Ai)

. We need to show that P/ ∼ is homogeneous. The first

condition of the definition is obvious. For the second, suppose that Tx ≤ Ty and t ∈ Tx. It
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follows that x ≤ y. Let i be an index such that Ai ∩ Ay 6= ∅ so that y ∈ Û(Ai). If t ∈ Tx,

then tj ≤ x ≤ y for all j. Therefore, t(yi) ∈ Ty and t ≤ t(yi). It follows that P/ ∼ is

homogeneous.

In the proof of Theorem 2.2.3, we showed that the lattice and the quotient of the product

of claws were isomorphic. The proof that L and P/ ∼ are isomorphic is essentially the same.

If we define ϕ and ψ analogously, then the only difference is showing ψ is order preserving

in which case one can use the same ideas as in the previous paragraph to complete the

demonstration.

Now we verify that the summation condition (2.1) holds for all nonzero elements of P/ ∼.

We only need to modify the proof that we gave in Lemma 2.2.2 part (c) slightly. Analogously

to the proof of part (a) of that lemma, one sees that L(Tx) = {t : ti ≤ x for all i}. Using

this and the fact that only atomic transversals have nonzero Möbius values, the proof of

Lemma 2.2.2 part (c) goes through as before with T ax replaced by Tx.

Now applying Lemma 2.1.4 and the fact that µ(t) = 0 if t is not atomic, we get

µ(Tx) =
∑
t∈Tx

µ(t) =
∑
t∈T ax

µ(t). (2.4)

Then applying the same proof as in Theorem 2.2.3 gives us (a).

To finish the proof we define a modification of the characteristic polynomial for any

ranked poset P ,

χ̄(P, t) =
∑
x∈P

µ(x)t−ρ(x).

We claim that χ̄(P, t) = χ̄(P/ ∼, t). Applying assumption (1) and the isomorphism L ∼=
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P/ ∼, we get that for every t ∈ T ax we have

ρ(t) = | supp t| = ρ(x) = ρ(Tx).

This combined with equation (2.4), proves the claim.

Now if RT is a rooted tree with k atoms then χ̄(RT ) = t−1(t− k). It follows that

χ̄(P, t) = t−n
n∏
i=1

(t− |Ai|).

Since χ̄ is preserved by isomorphism,

χ̄(L, t) = χ̄(P/ ∼, t) = χ̄(P, t) = t−n
n∏
i=1

(t− |Ai|).

Multiplying by tρ(L) gives us part (b).

2.4 Partitions Induced by a Multichain

It turns out that under certain circumstances we can show that assumption (2) of Theo-

rem 2.3.2 and factorization of the characteristic polynomial are equivalent. To be able to

prove this equivalence, we will not be able to take an arbitrary partition of the atoms, but

rather we will need the partition to be induced by a multichain in the lattice.

If L is a lattice and C : 0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂ is a 0̂–1̂ multichain of L we get an

ordered partition (A1, A2, . . . , An) of the set A(L) of atoms of L by defining the set Ai as

Ai = {a ∈ A(L) | a ≤ xi and a � xi−1}.

32



In this case we say (A1, A2, . . . , An) is induced by the multichain C. Note that we do

not insist that our multichain be a chain nor does it need to be saturated as is usually done

in the literature. This also implies that some of the Ai’s can be empty. Partitions induced

by multichains have several nice properties. The first property will apply to any lattice

(Lemma 2.4.2), but for the second we will need the lattice to be semimodular (Lemma 2.4.5).

Before we get to these properties, we need a modification of Lemma 2.1.4.

Lemma 2.4.1. Suppose that P/ ∼ is a homogeneous quotient and that for all non-maximal,

nonzero X ∈ P/ ∼ we have that ∑
y∈L(X)

µ(y) = 0

Then for all X ∈ P/ ∼

µ(X) =



∑
x∈X

µ(x) if X is not maximal,

∑
x∈X

µ(x)−
∑

y∈L(X)

µ(y) if X is maximal.

Proof. If X is not maximal, then the proof of Lemma 2.1.4 goes through as before.

Now suppose that X is maximal. If X = 0̂ then the result holds because the quotient is

homogeneous. So suppose X 6= 0̂. In the proof of Lemma 2.1.4, we derived equation (2.3)

without using the summation condition (2.1) and so it still holds. Moreover, it is easy to see

that this equation is equivalent to the one for maximal X in the statement of the current

result.

Given a lattice and a partition of the atoms, it will be useful to know when elements
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of a lattice do not satisfy condition (2) of Theorem 2.3.2. This is possible to do when the

partition of the atoms is induced by a multichain.

Lemma 2.4.2. Let L be a lattice and let (A1, A2, . . . , An) be induced by a multichain C :

0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂. Let Ni be the number of atoms below an element x ∈ L in Ai.

If Ni 6= 1 for all i and x 6= 0̂ is minimal with respect to this property, then for all but one i,

Ni = 0.

Proof. Suppose that x is minimal, but that Ni > 1 for at least two i. Let k be the smallest

index with Nk 6= 0, and B ⊆ Ak be the atoms below x in Ak so |B| ≥ 2. Let y =
∨
B. So,

by the choice of B, y ≤ xk which implies that the atoms below y are in Ai for i ≤ k. So the

choice of Ak forces the set of atoms below y to be B which is a proper subset of the set of

atoms below x, and thus y < x. Since |B| ≥ 2, this contradicts the choice of x.

The next definition gives one of the conditions equivalent to factorization when the atom

partition is induced by a multichain.

Definition 2.4.3. Let L be a lattice and let C : 0̂ = x0 ≤ x1 ≤ · · · ≤ xn = 1̂ be a 0̂–1̂

multichain. For atomic x ∈ L, x neither 0̂ nor an atom, let i be the index such that x ≤ xi

but x 6≤ xi−1. We say that C satisfies the meet condition if, for each such x, we have

x ∧ xi−1 6= 0̂.

We are now in a position to give a list of equivalent conditions to factorization.

Theorem 2.4.4. Let L be a ranked lattice and let (A1, A2, . . . , An) be induced by a 0̂–1̂

multichain, C. Suppose that if t ∈ T ax , then

| supp t| = ρ(x).

34



Under these conditions the following are equivalent.

1. For every nonzero x ∈ L, there is an index i such that |Ai ∩ Ax| = 1.

2. For every element which is the join of two elements from the same Aj, there is an

index i such that |Ai ∩ Ax| = 1.

3. The multichain C satisfies the meet condition.

4. We have that

χ(L, t) = tρ(L)−n
n∏
i=1

(t− |Ai|)

where χ is the characteristic polynomial.

We note that it is possible to have n > ρ(L) in part 4 of the previous theorem. In this

case the exponent on the outside of the factorization will be negative. This is possible since

we are using multichains and so repeating elements in the chain will give rise to as many

empty blocks in the partition of the atom set as we wish. However, for each such block, we

get a corresponding factor (t−0). Thus χ(L, t) is still a polynomial since the negative power

of t on the outside of the product will be canceled by the positive powers of t on the inside

of the product.

Proof. (1)⇒ (4) This is Theorem 2.3.2.

(4)⇒ (2) We actually show that (4)⇒ (1) (the fact that (1)⇒ (2) is trivial). We do so

by proving the contrapositive. By assumption, there must be a nonzero x ∈ L such that for

each i the number of atoms below x in Ai is different from one. Let k be the smallest value

of ρ(x) for which elements of L have this property. We show that the coefficients of tρ(L)−k

in χ(L, t) and in χ(P, t) = tρ(L)−n
∏n
i=1(t − |Ai|) are different, where P =

∏n
i=1RTÛ(Ai)

.
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Using the same proof as we did in Theorem 2.3.2, we can show that L ∼= P/ ∼. So it suffices

to show that the coefficient of tρ(L)−k in χ(P/ ∼, t) is different from the coefficient in χ(P, t).

Let Q be the poset obtained by removing all the elements of P/ ∼ which have rank

more than k. Let x1, x2, . . . , xl be the elements of L at rank k such that the number of

atoms below xi in each block of the partition is different from one. Then by Lemma 2.4.2,

each xi has atoms above exactly one block. Now let S = {Tx1 , Tx2 , . . . , Txl} be the set

of the corresponding transversals. In Q, the elements of S are maximal and all the other

non-maximal elements in Q satisfy the hypothesis of Lemma 2.4.1 which can be verified as

in the proof of Theorem 2.3.2. Therefore we can calculate the Möbius values of the elements

of rank k in Q using Lemma 2.4.1. Once we know these values we can find the coefficient of

tρ(L)−k in χ(P/ ∼, t).

Each xi is above at least two atoms and is above only atoms in one block. Therefore

the only atomic transversals which are in L(Txi) are transversals with single atoms and the

transversal with only zeros. Since only atomic transversals have nonzero Möbius values we

get that for all elements of S,

ci
def
=

∑
t∈L(Txi)

µ(t) = 1− |Axi | < 0.

We know that ci < 0 since the number of atoms below each xi is at least two. Let Qk be

the set of elements of Q at rank k. Using Lemma 2.4.1, we see that the sum of the Möbius
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values of Qk is

∑
Tx∈Qk

µ(Tx) =
l∑

i=1

µ(Txi) +
∑

Tx∈Qk\S
µ(Tx)

=
l∑

i=1

 ∑
t∈Txi

µ(t)− ci

+
∑

Tx∈Qk\S

∑
t∈Tx

µ(t)

 .

As recently noted, only elements of L which have atomic transversals have nonzero Möbius

values. Using this and the assumption that | supp t| = ρ(x) = ρ(Tx), we get that the

coefficient of of tρ(L)−k in χ(P/ ∼, t) is

∑
| supp t|=k

µ(t)−
l∑

i=1

ci

where the first sum is over atomic t. As we saw before, each ci is negative and all are nonzero

and so the coefficient of tρ(L)−k is different from

∑
| supp t|=k

µ(t)

which is the coefficient of tρ(L)−k in χ(P, t). This completes the proof that (4)⇒ (2).

(2) ⇒ (3) We show the contrapositive holds. Suppose that C does not satisfy the meet

condition. Then there is some atomic x which is neither an atom nor 0̂ such that x ≤ xi,

x 6≤ xi−1, and x ∧ xi−1 = 0̂. It follows that x is only above atoms in Ai. Since x is atomic,

but not an atom, there are at least two atoms, a, b below x in Ai. Let y = a ∨ b. Since

y ≤ x, y can only be above atoms in Ai. Therefore, for all indices j, |Aj ∩ Ay| 6= 1 and y is

the join of two atoms.
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0̂

a b

c d

1̂

Figure 2.3: A lattice

(3)⇒ (1) First let us note that if x is an atom then the result is obvious. For x ∈ L let

i be the index such that x ≤ xi and x 6≤ xi−1. We now induct on i. If i = 1 then it suffices

to show that |A1| = 1 since then every nonzero x ≤ x1 is only above the unique element of

A1. However if a, b are distinct atoms in A1 then x = a ∨ b is atomic but not an atom or

zero. Further x ≤ x1 but x ∧ xi−1 = x ∧ 0̂ = 0̂ which contradicts the meet condition. This

finishes the i = 1 case.

Now suppose that i > 1 and x is not an atom. Let z =
∨
Ax. Then z is atomic and

Az = Ax. Let y = z ∧ xi−1. Since C satisfies the meet condition, y 6= 0̂. By construction

y < xi−1 and so by induction, there is some index j ≤ i− 1 with Aj ∩ Ay = {a}. Suppose

that there was some other atom b ∈ Aj ∩Az. Then y ∨ b is less than or equal to both z and

xi−1 and so y ∨ b ≤ z ∧ xi−1 = y. However, this is impossible since then Aj ∩ Ay ⊇ {a, b}.

It follows that 1 = |Aj ∩ Az| = |Aj ∩ Ax| and so (1) holds.

It would be nice if all atomic transversals had the correct support size when using a

partition induced by a multichain since then we could remove this assumption from the

previous theorem. Unfortunately this does not always occur. To see why, consider the

lattice in Figure 2.3. The left-most saturated 0̂–1̂ chain induces the ordered partition

({a}, {b}).
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It is easy to see that the support size of the transversal with both elements is not the rank

of their join. Note, however, that if we had the relation a < d, then the support size would

be the rank of the join. Moreover, note that this would also make the lattice semimodular.

We see in the next lemma that semimodularity always implies transversals induced by a

multichain have the correct support size.

Lemma 2.4.5. Let L be a semimodular lattice and let (A1, A2, . . . , An) be induced by the

multichain C : 0̂ = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = 1̂. If ∼ is the standard equivalence, then for

all x ∈ L we have that t ∈ T ax implies

| supp t| = ρ(x).

Proof. Given an atomic t ∈ T ax we induct on | supp t|. If | supp t| = 0 the result is obvious.

Now suppose that | supp t| = k > 0. Let i be the largest index in supp t. Let s = t(0̂i),

then | supp s| = k − 1. Suppose that s ∈ T ay , then ρ(y) = k − 1 by induction. Let j be the

largest index such that j ∈ supp s. Then y =
∨
s ≤ xj by definition of j and ti 6≤ xj since

i > j. Thus x =
∨

t = (
∨

s)∨ ti > y. Therefore ρ(x) > ρ(y) = k− 1 and so ρ(x) ≥ k. Since

| supp t| = k, ρ(x) ≤ k as L is semimodular. We conclude that ρ(x) = k = | supp t| and so

our result holds by induction.

Let us now consider supersolvable semimodular lattices. Recall that every supersolvable

semimodular lattice contains a saturated 0̂–1̂ left-modular chain. It turns out that saturated

0̂–1̂ left-modular chains satisfy the meet condition as we see in the next lemma.

Lemma 2.4.6. Let L be a lattice. If C : 0̂ = x0 ≤ x1 ≤ x2 < · · · ≤ xn = 1̂ is a left-modular

saturated 0̂–1̂ multichain then C satisfies the meet condition.
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Proof. We claim that it is without loss of generality to assume that C is a chain as opposed

to a multichain. To see why, suppose D is a multichain and that xj = xj+1 in D. Moreover,

suppose that there was some x which was atomic and not an atom with x ≤ xj+2, but

x 6≤ xj+1. Then x ∧ xj = x ∧ xj+1 and so x ∧ xj 6= 0̂ if and only if x ∧ xj+1 6= 0̂. It follows

that we can remove the repeated element without changing whether or not D satisfies the

meet condition.

Let x ∈ L be atomic and neither an atom nor 0̂. Let i be such that x ≤ xi and x 6≤ xi−1.

Then we claim that there is some atom a with a < x and a 6≤ xi−1. To verify the claim,

suppose that no such a existed. Since x is not an atom, it must be that all the atoms below

x are also below xi−1. However, x being atomic implies that x =
∨
Ax and so x ≤ xi−1

which is impossible.

By the claim, xi−1 < a ∨ xi−1 ≤ xi. Since xi−1 l xi we have that a ∨ xi−1 = xi. Now

(xi−1, x) is a modular pair and a < x so, by the definition of a modular pair,

a ∨ (xi−1 ∧ x) = (a ∨ xi−1) ∧ x = xi ∧ x = x.

But a < x so xi−1 ∧ x 6= 0̂ and thus C satisfies the meet condition.

We now get Stanley’s Supersolvability Theorem as a corollary of Theorem 2.4.4, Lemma 2.4.5,

and Lemma 2.4.6.

Theorem 2.4.7 (Stanley’s Supersolvability Theorem [15]). Let L be a semimodular lattice

with partition of the atoms (A1, A2, . . . , An) induced by a saturated 0̂–1̂ left-modular multi-

chain. Then

χ(L, t) = tρ(L)−n
n∏
i=1

(t− |Ai|).
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(((x1x2)x3)x4)

((x1x2)(x3x4))

((x1(x2x3))(x4)

(x1((x2x3)(x4))

(x1(x2(x3x4)))

Figure 2.4: The Tamari lattice T3

2.5 Transversal Functions

In the previous sections we had to make the assumption that our poset was a lattice and

that it was ranked. In this section we develop the tools to deal with the general case when

P is not necessarily a lattice nor ranked.

To start, let us do an example and calculate the generalized characteristic polynomial of

an unranked poset. We will consider the Tamari lattices [3, 8], which will be denoted by

Tn. One way to define Tn is as the set of parenthesizations of the word x1x2 · · ·xn+1 with

ordering given by saying π is covered by σ if there exists subwords A,B, and C such that

π = . . . ((AB)C) . . . and σ = . . . (A(BC)) . . .

Figure 2.4 displays the Hasse diagrams for T3.

As one can see from the Hasse diagram, T3 is not ranked. In order to calculate the

generalized characteristic polynomial for T3 we need a function, ρ. We will use generalized

rank which was introduced in [1]. To define generalized rank, let us set up some notation. As

done previously, let Ax be the set of atoms below x in P . If (A1, A2, . . . , An) is an ordered
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partition of the atoms of P , the generalized rank of an element x is given by

ρ(x) = |{i : Ai ∩ Ax 6= ∅}|. (2.5)

In other words, ρ(x) counts the number of blocks in the partition that x is above.

Returning to the T3 example, let us partition the atoms into

A1 = {((x1x2)(x3x4))}, A2 = {((x1(x2x3))(x4)}).

Given this partition, we see that the generalized rank of the bottom element is 0, the three

middle elements all have generalized rank 1 and the top element has generalized rank 2. We

take m = 3 which is the the length of the longest chain in T3. Using the definition of the

generalized characteristic polynomial (equation (1.3)), we get

χ(T3, t) = t3 − 2t2 + t = t(t− 1)2.

We see that χ(T3, t) factors with roots 0 and 1. One might ask if we can decompose T3

into the product of two smaller posets. Using this reasoning, we might guess that T3 is the

product of two chains since chains have characteristic polynomials with roots 0 and 1. Of

course, this cannot be the case since chains are ranked and so their products are too, but T3

is not ranked. However, it is possible to take the product of the chains, collapse elements

in the Hasse diagram without changing the characteristic polynomial and also get a poset

isomorphic to T3. However, unlike the method we explained when our posets were ranked,

we will need to collapse elements of different ranks. In order to accomplish, we introduce

the notion of a transversal function.

42



As we did in Section 2.3 we will be using rooted trees. When the poset we are interested

in is a lattice, the standard equivalence relation (Definition 2.2.1) is the canonical choice for

taking quotients. Since we are interested in posets which are not necessarily lattices we need

to generalize this idea. To do this, we quotient out by the kernel of a special type of map

from the product of rooted trees to the poset.

Definition 2.5.1. Let P be a poset and let (S1, S2, . . . , Sn) be an ordered collection of subsets

of P each containing 0̂. We say f :
∏n
i=1RTSi → P is a transversal function if it has the

following properties:

1. The function f is order preserving.

2. The function f is surjective.

3. If f(t) = 0̂, then ti = 0̂ for all i.

If f is a transversal function, the kernel of f , denoted ker f , is the equivalence relation

∼ given by s ∼ t if and only if f(s) = f(t). Since we will often be referring to equivalence

classes and the elements of these classes we need names for these objects. Some of the

names we use were defined in earlier sections, but we use the same names since they are

generalizations.

Definition 2.5.2. Let P be a poset and let (S1, S2, . . . , Sn) be an ordered collection of subsets

of P . Let f :
∏n
i=1RTSi → P be a transversal function. If t ∈

∏n
i=1RTSi then we say t

is a transversal for x if f(t) = x. We say t is atomic or an atomic transversal if all the

elements of t are atoms of RTSi or 0̂. The set of all transversals for x will be denoted by Tx

and the set of all atomic transversals will be denoted by T ax . We also define the support of

a transversal, t, as

supp t = {i : ti 6= 0̂}.
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From the definitions it is evident that the set of equivalence classes of
∏n
i=1RTSi/ ker f

is {Tx : x ∈ P}. Moreover, it is clear that the size of the support of an atomic transversal

for x is also its rank in the product of the rooted trees.

We are now in a position to give another factorization theorem. The factorization result

we provide in Section 2.6 will be a special case of this one. Recall that we are using the

notation A(P ) to denote the atom set of a poset P . In particular, A(RTS) denotes the atoms

in the rooted tree RTS .

Theorem 2.5.3. Let P be a poset with ρ : P → N and let m ∈ N such that ρ(P ) ≤ m.

Moreover, let (S1, S2, . . . , Sn) be an ordered collection of subsets of P which contain 0̂ and

let f be a transversal function. Suppose the following hold.

(1) If x ≤ y and s ∈ Tx, there exists t ∈ Ty with s ≤ t.

(2) If t ∈ T ax , then | supp t| = ρ(x).

(3) The summation condition (2.1) holds for all Tx.

We can conclude the following.

(a) We have an isomorphism

P ∼=

(
n∏
i=1

RTSi

)
/ ker f.

(b) For each x ∈ P ,

µ(x) = (−1)ρ(x)|T ax |.

(c) The generalized characteristic polynomial of P with respect to ρ and m (equation (1.3))

is given by

χ(P, t) = tm−n
n∏
i=1

(t− |A(RTSi)|).
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Proof. First, we need to show the quotient is a homogeneous quotient. Conditions (2)

and (3) in the definition of a transversal function (Definition 2.5.1) imply condition (1)

of a homogeneous quotient (Definition 2.1.2). To show condition (2) holds, suppose that

Tx ≤ Ty. Then there is a q ∈ Tx and a r ∈ Ty with q ≤ r. Since f is order preserving,

x = f(q) ≤ f(r) = y. By assumption (1) of the theorem, given a s ∈ Tx there is a t ∈ Ty

with s ≤ t and so condition (2) of a homogeneous quotient is satisfied.

Now we show (a). Let f̄ :
(∏n

i=1RTSi

)
/ ker f → P be the induced quotient map sending

Tx to x. Since f is surjective, it follows easily that f̄ is a bijection and so has an inverse say

g.

Next we show that f̄ is order preserving. Recall that the elements of the quotient,

(
∏n
i=1RTSi)/ ker f , are of the form Tx for some x ∈ P . Suppose that Tx ≤ Ty. Then again,

since f is order preserving, x ≤ y and so f̄ is order preserving.

To finish the proof of (a), we show g is order preserving. Suppose that x ≤ y. Since f is

surjective, Tx 6= ∅. Therefore, by assumption (1), there are s ∈ Tx and t ∈ Ty with s ≤ t.

Using the definition of a quotient poset, we get that that Tx ≤ Ty and so g(x) ≤ g(y).

Now we verify (b). By Lemma 2.1.4, assumption (3), and the fact that isomorphisms

preserve Möbius values, we have that

µ(x) =
∑
t∈Tx

µ(t).

Since only atomic transversals have nonzero Möbius value we have

µ(x) =
∑
t∈T ax

µ(t).
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By assumption (2), all the atomic transversals have the same support size which is the rank

of x. It follows that each atomic transversal for x has Möbius value (−1)ρ(x). Therefore we

have that

µ(x) = (−1)ρ(x)|T ax |.

Finally we show (c). By definition,

χ(P, t) =
∑
x∈P

µ(x)tm−ρ(x).

Using part (b), we get

χ(P, t) =
∑
x∈P

(−1)ρ(x)|T ax |tm−ρ(x).

We can break this sum into parts, depending on the rank of x. Note that by assumption (2)

and part (b), every element with rank larger than n has Möbius value zero. Thus we have,

χ(P, t) =
n∑
k=0

 ∑
ρ(x)=k

(−1)k|T ax |tm−k
 .

Neither (−1)k nor tm−k depend on x so we can pull them out to get,

χ(P, t) =
n∑
k=0

(−1)ktm−k

 ∑
ρ(x)=k

|T ax |

 .

Using assumption (2) and denoting the kth elementary symmetric function as ek, we have

the inner sum is exactly ek(|A(RTS1)|, |A(RTS2)|, . . . , |A(RTSn)|). It follows that,

χ(P, t) =
n∑
k=0

(−1)kek(|A(RTS1)|, |A(RTS2)|, . . . , |A(RTSn)|)tm−k.
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Pulling out a factor of tm−n permits us to rewrite the sum as a product

χ(P, t) = tm−n
n∏
i=1

(t− |A(RTSi)|)

completing the proof.

2.6 Complete Transversal Functions

By definition, a transversal function must be surjective. However, if we impose more struc-

ture on the choice of subsets used to build the rooted trees, we can remove this assumption.

In order to show this, we begin with a definition.

Definition 2.6.1. Let P be a poset and let A be a set of atoms. The complete tree (with

respect to A) is the rooted tree RT
Û(A)

where Û(A) is the upper order ideal generated by the

set A together with 0̂.

Along with this new definition, we have a new type of function.

Definition 2.6.2. Let P be a poset and let (A1, A2, . . . , An) be an ordered partition of A(P ).

We say f :
∏n
i=1RTÛ(Ai)

→ P is a complete transversal function if it is order preserving

and has the property that if in t we have ti = 0̂ or ti = x for all i, then f(t) = x.

Note that it may appear that complete transversal functions are not transversal functions

because we dropped the condition that they are surjective. However, we will see in the next

lemma that, among other nice properties, the surjectivity of the function is a consequence of

the definition. We also note that if we have a lattice, then f(t) = ∨t is a complete transversal

function where ∨t = t1 ∨ . . . · · · ∨ tn .
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Lemma 2.6.3. Let P be a poset and let (A1, A2, . . . , An) be an ordered partition of A(P ).

Let f be a complete transversal function. Then we can conclude the following.

(a) The function f is surjective and f is a transversal function.

(b) For all j, tj ≤ f(t1, t2, . . . , tn).

(c) If x ≤ y and s ∈ Tx, there exists t ∈ Ty with s ≤ t.

(d) For x ∈ P , let Ni be the number of atoms below x in Ai, then

∑
s∈L(Tx)

µ(s) =
n∏
i=1

(1−Ni). (2.6)

(e) The summation condition (2.1) holds for all Tx if and only if for all nonzero x ∈ P ,

there is an index i such that |Ai ∩ Ax| = 1.

Proof. First we show (a). Let 0̂ be the transversal having all components equal to 0̂. Since

we are using complete trees and a partition of the atom set, for every x ∈ P there exists some

i such that 0̂(xi) is a transversal. It follows from the definition of a complete transversal

function that f(0̂(xi)) = x and so f is surjective.

To show that the third condition for a transversal function holds, suppose that f(t) = 0̂.

By definition of a complete transversal function, f(0̂(tii)) = ti. Since f is order preserving

and 0̂(tii) ≤ t we get that ti = f(0̂(tii)) ≤ f(t) = 0̂. Therefore, if f(t) = 0̂, then t = 0̂. This

completes the proof that f is a transversal function.

For (b), we noted in the previous paragraph that

f(0̂(t
j
j)) = tj .

48



Using the fact that f is order preserving, we get that

tj = f(0̂(t
j
j)) ≤ f(t1, t2, . . . , tn).

Next we prove (c). This is trivial if x = 0̂ so assume x is nonzero. Let s ∈ Tx. Then by

by part (b), si ≤ x for all i. Let t be given by ti = y for all i with i ∈ supp s and ti = 0̂ for

all other i. Such a t is a valid transversal since si ≤ x ≤ y and we are using complete trees.

Note also that since x 6= 0̂ it must be that t has at least one nonzero coordinate. It follows

that t ∈ Ty and s ≤ t.

Next, let us show (d). We start by showing that

L(Tx) = {t a transversal : ti ≤ x for all i}. (2.7)

To see that L(Tx) is contained in the other set, let t ∈ L(Tx). Then for each i we have

0̂(tii) ∈ L(Tx). By definition of a complete transversal function, f(0̂(tii)) = ti. Since f is

order preserving, ti = f(0̂(tii)) ≤ f(t) = x.

For the reverse inclusion, suppose that t is a transversal with ti ≤ x for all i. Let s be

the transversal obtained from t by replacing all the nonzero ti with x. We know that s is

a valid transversal because we are using complete trees. Since f is a complete transversal

function, f(s) = x and so s ∈ L(Tx). By construction, t ≤ s and therefore t ∈ L(Tx).

Let I be the set of indices, i, such that there is an atom below x in Ai. By relabeling, if

necessary, we may assume that I = {1, 2, . . . , j}. Since Ni = 0 implies that 1−Ni = 1,

j∏
i=1

(1−Ni) =
n∏
i=1

(1−Ni).
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From equation (2.7) we can conclude that the number of atomic transversals in L(Tx)

with support size i is ei(N1, N2, . . . , Nj) where ei is the ith elementary symmetric function.

Now for each atomic transversal s ∈ L(Tx) we have that µ(s) = (−1)| supp(s)| and all other

transversals have Möbius value zero. Therefore,

∑
s∈L(Tx)

µ(s) =

j∑
i=0

(−1)iei(N1, N2, . . . , Nj) =

j∏
i=1

(1−Ni)

which completes part (d).

Finally, (e) follows immediately from (d) and the definition of the summation condition.

Given this lemma, we can use Theorem 2.5.3 to immediately obtain the following.

Theorem 2.6.4. Let P be a poset with ρ : P → N and let m ∈ N such that ρ(P ) ≤ m.

Moreover, let (A1, A2, . . . , An) be an ordered partition of A(P ) and let f be a complete

transversal function. Suppose the following hold.

(1) If t ∈ T ax , then | supp t| = ρ(x).

(2) For all nonzero x ∈ P , there is an index i such that |Ai ∩ Ax| = 1.

We can conclude the following.

(a) We have an isomorphism

P ∼=

(
n∏
i=1

RT
Û(Ai)

)
/ ker f.

(b) For each x ∈ P ,

µ(x) = (−1)ρ(x)|T ax |.
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10/20/30

120/30 130/20 10/230 121/30 131/30 10/231

1230 1231 1232

Figure 2.5: The weighted partition poset Πw3

(c) The generalized characteristic polynomial of P with respect to ρ and m is given by

χ(P, t) = tm−n
n∏
i=1

(t− |Ai|).

The reader may be wondering why we did not just assume from the start that we were

using complete transversal functions. By doing so, we reduce the number of things we need

to check and we still get the same conclusions as in Theorem 2.5.3. However, there are

situations where the first theorem applies but the second does not.

Let us give an example were the summation condition (2.1) for Tx needed in Theorem 2.5.3

holds, but the second condition of Theorem 2.6.4 does not. We will consider the weighted

partition poset, Πwn introduced in [2]. The elements of Πwn are set partitions of [n] where

each block Bi has one of the following weights {0, 1, . . . , |Bi| − 1}. The weighted partitions

will be denoted by B
w1
1 /B

w2
2 / . . . /Bwnn where wi is the weight of block Bi. The ordering is

given by

A
v1
1 /A

v2
2 / . . . /A

vk
k ≤ B

w1
1 /B

w2
2 / . . . /Bwnn

if and only if
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1. We have

A1/A2/ . . . /Ak ≤ B1/B2/ . . . /Bn

in the (unweighted) partition lattice Πn.

2. If Bl = Ai1 ∪ Ai2 ∪ · · · ∪ Aim , then

vl − (wi1 + wi2 + · · ·+ wim) ∈ {1, 2, . . . ,m− 1}.

The weighted partition poset Πw3 is shown in Figure 2.5. It is easy to check that the

characteristic polynomial of this poset factors as

χ(Πw3 , t) = (t− 3)2.

Consider the sets

A1 = {120/30, 130/20, 121/30, 0̂}

and

A2 = {10/230, 131/30, 10/231, 0̂}.

Additionally, consider the transversal function f :
∏2
i=1RTAi → Πw3 which sends any pair

which contains 0̂ to the other element in the pair and sends any pair with two non-zero ele-

ments to 123i where i is the sum of their exponents. It is easy to check that f is a transversal

function and that the summation condition (2.1) is satisfied. However, the element 1231 is

above every atom so it is impossible that it is above only one atom of either A1 or A2. One

can also check that all the conditions of Theorem 2.5.3 are satisfied and so we have verified

that the characteristic polynomial does factor using our method.
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We should also point out that, as was shown in [4], the characteristic polynomial of the

weighted partition poset Πwn factors as χ(Πwn , t) = (t−n)n−1. This was shown using different

methods than presented here. As of now, we do not have a transversal function which gives

us the factorization.

2.7 Crosscut-simplicial Lattices

As defined in [9], a crosscut-simplicial lattice is a lattice, L, such that if [x, y] is an interval

of L then any proper subset of the atoms of [x, y] has a join different from y. Examples of

crosscut-simplicial lattices include the Tamari lattices, the weak Bruhat order on Coxeter

groups and more generally the Cambrian lattices [10]. In this section we show that a lattice

is crosscut-simplicial if and only if the generalized characteristic polynomial, with respect to

a function we define below, of every interval only has roots 0 and 1.

In addition to using Theorem 2.6.4 to prove this result, we will also make use of a special

case of Rota’s Crosscut Theorem [11]. We will give a proof of the full theorem using quotient

posets in Chapter 3.

Theorem 2.7.1 (Rota’s Crosscut Theorem [11]). Let L be a lattice. For x ∈ L, let ai(x) be

the number of subsets of A(L) of size i whose join is x. Then

µ(x) =
∑
i≥0

(−1)iai(x).

Theorem 2.7.2. Let L be lattice and let I be any interval in L. Let ρI(x) be the number

of atoms below x in I and let m(I) be the length of the longest chain in I. Suppose that

χ(I, t) is the generalized characteristic polynomial with respect to ρI and m(I). The lattice
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L is crosscut-simplicial if and only if

χ(I, t) = tm(I)−|A(I)|(t− 1)|A(I)|

for every interval I of L.

Note that if we partition the atoms of an interval I into singleton blocks, then ρI is just

the generalized rank of I. However, since “generalized” is ambiguous without knowing the

partition of the atom set, we have decided to define it differently.

Proof. (⇒) Given an interval I, partition the atoms of I as (A1, A2, . . . , Ak) where each Ak

has exactly one atom. Let f be the complete transversal function defined as f(t) = ∨t. With

this partition we trivially get condition (2) of Theorem 2.6.4. By the definition of ρI , we

must show that the join of any j atoms is above exactly j atoms in order to show condition

(1).

Suppose there was some subset of j atoms of I whose join is above at least j + 1 atoms.

Let x be the meet of these j + 1 atoms and y be the join of the j + 1 atoms. Then L cannot

be crosscut-simplicial since there is a proper subset of atoms in [x, y] whose join is y. Thus

we have a contradiction and so condition (1) of Theorem 2.6.4 is satisfied.

Finally, we must show that m(I) ≥ ρI(I) where m(I) is the length of the longest chain in

I since this was required in the definition of the generalized characteristic polynomial. Let

x0 be the 0̂ element of I and for each 1 ≤ i ≤ k define

xi =
i∨
l=1

al

where ai is the unique element of Ai. Since the join of j atoms is above exactly those j

54



atoms, we know that all the xi’s are distinct. It follows that I contains a chain of length k,

namely the chain x0 < x1 < · · · < xk. Using the definition of ρI , we see that if m(I) is the

length of the longest chain in I then ρI(I) = k ≤ m(I). Applying Theorem 2.6.4 now yields

this direction.

(⇐) We prove the contrapositive. Suppose that L is not crosscut-simplicial. Then there

must be some interval I of L where there is a set of atoms whose join is above more than

just those atoms.

Let j be the minimum number of atoms needed to form a set whose join is above more

than just those j atoms. We claim that the coefficient of tm(I)−j in χ(I, t) cannot be the same

as the coefficient of tm(I)−j in tm(I)−|A(I)|(t−1)|A(I)|. Suppose that {a1, a2, . . . , al} ⊆ A(I)

with ρI(a1∨a2∨· · ·∨al) = j. By the definition of ρI , we have that l ≤ j since ai∨a2∨· · ·∨al

is above at least a1, a2, . . . , al. If l < j, then there would be a subset of A(I) with l < j

elements whose join was above more than l elements. This contradicts the definition of j.

It follows that if ρI(a1 ∨ a2 ∨ · · · ∨ al) = j, then l = j. In other words, any subset of A(I)

whose join has rank j has exactly j atoms in it. Applying Theorem 2.7.1, we get that the

coefficient of tm(I)−j in χ(I, t) is (−1)j multiplied by the number of j-element subsets of

A(I) which are above exactly those j atoms.

Since there is at least one j-element subset whose join is above more than j atoms, it must

be that the coefficient of tm(I)−j in χ(I, t) is not (−1)j
(|A(I)|

j

)
. However, (−1)j

(|A(I)|
j

)
is the

coefficient of tm(I)−j in tm(I)−|A(I)|(t−1)|A(I)| and so χ(I, t) 6= tm(I)−|A(I)|(t−1)|A(I)|.

While the Cambrian lattices provide a large family of crosscut-simplicial lattices, we now

discuss another way to find such lattices. To do so, we will consider the notion of an edge

labeling of a poset. Let P be a poset, let H be its Hasse diagram and let E(H) be the set
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(((x1x2)x3)x4)

((x1x2)(x3x4))

((x1(x2x3))(x4)

(x1((x2x3)(x4))

(x1(x2(x3x4)))

3

2

2

3

3

Figure 2.6: The Tamari lattice T3 with an SB-labeling

of edges of H. An edge labeling of P is a map λ : E(H)→ S, where S is some set. In other

words, we label the edges of the Hasse diagram of the poset. Introduced in [7, Definition

3.4], an SB-labeling of a lattice L is an edge labeling of L such that for all u, v, w ∈ L with

ul v, w then we have the following.

1. If λ(u, v) and λ(u,w) are the labels of the edges from u to v and u and w respectively,

then λ(u, v) 6= λ(u,w).

2. Every inclusion-maximal chain in the interval [u, v∨w] uses only the labels λ(u, v) and

λ(u,w) with each label occurring at least once.

An example of an SB-labeling of the Tamari Lattice T3 is given in Figure 2.6 where

the labels are in boldface. This labeling is the labeling explained in [7, Theorem 5.5]. The

authors in [7, Theorem 3.7] showed that if L has an SB-labeling, then it is crosscut-simplicial.

As pointed out in [9], the converse of this theorem is not true. One way to see this is to

let P be the poset formed by starting with B2 and and replacing one of its atoms with

copy of B3. Figure 2.7 contains the Hasse diagram of P . It is not hard to check that P is

crosscut-simplicial. Since P only has two atoms whose join is 1̂, only 2 labels are allowed to

be used to label the entire poset. However, the B3 that we inserted needs at least 3 different
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.
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. . .

. . .

.

.

Figure 2.7: A crosscut-simplicial lattice which does not have an SB-labeling

labels and so there is no SB-labeling of P . The author of [9] suggested a generalization

of an SB-labeling which avoids this type of problem. He then goes on to ask the question

if a lattice being crosscut-simplicial is equivalent to having one of these generalizations of

SB-labeling. It would interesting if one could use the equivalent formulation of crosscut-

simplicial we described earlier using generalized characteristic polynomials to investigate this

question.

2.8 LL lattices

Having shown what Theorem 2.6.4 can say about crosscut-simplicial lattices, we now turn

our attention to seeing how it implies a theorem of [1]. Earlier we showed how to use the

fact that partitions induced by saturated 0̂–1̂ left-modular multichains imply assumption

(2) of Theorem 2.6.4 to prove Stanley’s Supersolvability Theorem [15]. We will use this

fact to prove Blass and Sagan’s result about LL lattices [1] which is a generalization of the

supersolvability result.

In order to explain this result, we need to define the level condition. Let (A1, A2, . . . , An)
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be induced by C : 0̂ = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = 1̂ . This multichain also induces a partial

ordering on the atoms denoted by E. It is defined by saying aC b if a ∈ Ai and b ∈ Aj with

i < j. We say that a lattice L with multichain C satisfies the level condition if

aC b1 C b2 C · · ·C bk

implies that

a 6≤
k∨
i=1

bi.

The lattice L is called an LL lattice if it contains a left-modular multichain C and L

together with C satisfy the level condition. We are now in a position to state Blass and

Sagan’s result.

Theorem 2.8.1 ([1]). Let L be a lattice and let (A1, A2, . . . , An) be induced by a left-modular

saturated multichain such that L is an LL lattice. Let ρ be generalized rank and let m be the

length of the longest 0̂–1̂ chain. Then

χ(L, t) = tm−n
n∏
i=1

(t− |Ai|).

Proof. We wish to use Theorem 2.6.4. First, note that since we are using generalized rank

we have that ρ(P ) is at most the number of nonempty blocks in the partition. Since our

partition is induced by a multichain and since m is the length of the largest chain in the

lattice, we have that ρ(P ) ≤ m.

Define the complete transversal function to be f(t) = ∨t. Although it is not worded

in the same way, the authors in [1, Theorem 6.3 and Lemma 6.4] proved assumption (1)

of Theorem 2.6.4 holds. Finally, as noted before, it was shown in Lemma 2.4.6 that satu-
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rated left-modular multichains satisfy the meet condition and so satisfy assumption (2) of

Theorem 2.6.4.

The theorems presented so far have provided conditions which imply factorization. We

would like to finish this section with a theorem where we provide a condition which is

equivalent to factorization.

Theorem 2.8.2. Let P be a poset and let ρ : P → N with m ∈ N such that ρ(P ) ≤

m. Let χ(P, t) be the generalized characteristic polynomial with respect to ρ and m. Let

(A1, A2, . . . , An) be an ordered partition of A(P ) and let f :
∏n
i=1RTÛ(Ai)

→ P be a

complete transversal function. Finally, define

T = {x ∈ P \ 0̂ : |Ai ∩ Ax| 6= 1 for all i}.

Suppose that the following hold.

1. If t ∈ T ax then | supp(t)| = ρ(x).

2. If x, y ∈ P and x < y, then ρ(x) < ρ(y).

3. For all minimal elements x, y ∈ T , the cardinality of the sets

{i : |Ai ∩ Ax| 6= 0} and {i : |Ai ∩ Ay| 6= 0}

have the same parity.

Under these conditions,

χ(P, t) = tm−n
n∏
i=1

(t− |Ai|)
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if and only if for every nonzero x ∈ P there is an index i such that |Ai ∩ Ax| = 1.

This theorem is a generalization of Theorem 2.4.4. The two proofs are quite similar so

we only provide a sketch below.

Sketch of proof. First, note that the backwards direction is Theorem 2.6.4. For the forward

direction, we will prove the contrapositive. Note that the assumption in this direction implies

that T 6= ∅. Let k be the smallest value of ρ applied to the elements of T . We show that the

coefficient of tm−k in χ(P, t) and in tm−n
∏n
i=1(t− |Ai|) are different.

Define R =
(∏n

i=1RTÛ(Ai)

)
/ ker f . We claim that R is a homogeneous quotient and

that P ∼= R. Since f is a complete transversal function, Lemma 2.6.3 part (c) implies that

assumption (1) of Theorem 2.5.3 is satisfied. Note that the proof of part (a) of Theorem 2.5.3

only requires assumption (1). Therefore, R is homogeneous and P ∼= R. Since P ∼= R, it is

enough to show that the coefficient of tm−k in χ(R, t) and in tm−n
∏n
i=1(t − |Ai|) are not

the same.

Let x1, x2, . . . , xl be the set of elements of T with ρ(xi) = k for all i and let S =

{Tx1 , Tx2 , . . . , Txl} be the corresponding equivalence classes. Moreover, define Q to be the

poset obtained from R by removing all elements of R with ρ value larger than k. Using as-

sumption (2), we can see that the Möbius value of elements with ρ at most k in R and Q are

the same. In Q all elements with ρ value k are maximal. By assumption (2) and the assump-

tion on k any element of Q which is not maximal cannot be in the set T . Then Lemma 2.6.3

part (e) implies that every non-maximal element satisfies the summation condition (2.1).

Thus, we can apply Lemma 2.4.1 to conclude that

µ(Txi) =
∑
t∈Txi

µ(t)−
∑

s∈L(Txi)
µ(s).
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Let

ci =
∑

s∈L(Txi)
µ(s).

We claim that all the ci’s are either 0 or have the same sign. By equation (2.6), if ci 6= 0,

then the sign of ci is (−1)ki where ki is the number of blocks with atoms below xi. By

assumption (3), for the ci’s which are not equal to 0, the corresponding ki’s have the same

parity. Therefore, the signs of the nonzero ci’s are the same. Since there is at least one

element of T 6= ∅ in Q, there is at least one ci 6= 0.

Using the same argument as in the proof of Theorem 2.4.4, we get the coefficient of tm−k

in χ(R, t) is ∑
| supp t|=k

µ(t)−
l∑

i=1

ci

in which the first sum ranges over atomic transversals. Since there is at least one ci which

is nonzero and all the nonzero ci’s have the same sign, we see that this coefficient is not the

same as ∑
| supp t|=k

µ(t).

However, the previous expression is the coefficient of tm−k in tm−n
∏n
i=1(t−|Ai|). It follows

that

χ(P, t) 6= tm−n
n∏
i=1

(t− |Ai|)

which is what we wished to show.
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Chapter 3

Classic Results About the Möbius

Function

In this chapter, we will give a new method to prove an array of classic results about the

Möbius function. To explain the idea, we need a definition. Let P be a poset with a 1̂. A

coatom of L is an element c ∈ P such that c l 1̂. The idea of this new method is to use

induction on the size of the poset. In order to do this, we will collapse a coatom and the 1̂

of the poset.

We begin with a lemma that explains the simple nature of the values of µ for the original

poset and the poset obtained by collapsing a coatom and 1̂. In the lemma and throughout

the rest of the section, we will use [x] to denote the equivalence class which contains x.

Lemma 3.0.3 ([6]). Let P be a poset with a 0̂ and 1̂ and at least 3 elements. Suppose c is a

coatom and let ∼ be the equivalence relation identifying c and 1̂. Then P/ ∼ is homogeneous

and

µ([1̂]) = µ(c) + µ(1̂).

Moreover, if P is a lattice, then P/ ∼ is a lattice with [x]∨ [y] = [x∨ y] for all x, y ∈ P and

[x] ∧ [y] = [x ∧ y] provided [x], [y] 6= [1̂].

Proof. First, let us show that P/ ∼ is homogeneous. Since there are at least 3 elements

and we are collapsing a coatom and 1̂, we have that 0̂ is in its own equivalence class. Now
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suppose that [x] < [y]. It follows that [x] 6= {c, 1̂} since [x] < [y] and [c] = [1̂] is the 1̂ of the

quotient. Therefore, [x] = {x} and so it is obvious that P/ ∼ is a homogeneous quotient.

To show that µ([1̂]) = µ(c)+µ(1̂) note that since every element of P is below 1̂ and every

other equivalence class has only one element, we get

∑
y∈L([x])

µ(y) =
∑
y≤x

µ(y) = 0

for all nonzero x 6= c. By Lemma 2.1.4 this implies that

µ([1̂]) = µ(c) + µ(1̂)

which is what we wished to prove.

Now suppose that P is a lattice. It is not hard to see that (P/ ∼) ∼= (P \{c}). Therefore,

if x∨ y 6= c, we immediately get that [x]∨ [y] exists and [x]∨ [y] = [x∨ y]. If x∨ y = c, then

1̂ is the only element in P \ {c} which is an upper bound for both x and y. It follows that

[x] ∨ [y] = [1̂] = [c] = [x ∨ y]. Since P \ {c} clearly has a 0̂, we conclude P/ ∼ is a lattice.

Finally, if [x], [y] 6= [1̂] then [x] = {x} and [y] = {y} and so [x] ∧ [y] = [x ∧ y].

Let us now use Lemma 3.0.3 to prove some classic results.

Corollary 3.0.4 (Hall’s Theorem [5]). Let P be a finite poset, then

µ(x, y) =
∑
i≥0

(−1)ici

where ci is the number of chains of length i which start at x and terminate at y.

Proof. Without loss of generality we may assume that x = 0̂ and y = 1̂ since all chains which
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start at x and terminate at y are in the interval [x, y]. We prove the theorem by inducting

on |P |. If |P | = 1 or |P | = 2 then the result is obvious.

Now suppose that |P | > 2. Let P/ ∼ be obtained by identifying a coatom c and 1̂.

Consider the sum ∑
i≥0

(−1)ici

where ci is the number of 0̂–1̂ chains of length i in P . Let ai be the number chains of length

i which do not contain c and let bi be the number chains of length i containing c. Then

∑
i≥0

(−1)ici =
∑
i≥0

(−1)iai +
∑
i≥0

(−1)ibi.

There exists a bijection between 0̂–1̂ chains in P not containing c and [0̂]–[1̂] chains in P/ ∼

which preserves length. Moreover, there is a bijection between 0̂–1̂ chains in P containing c

and 0̂–c chains in [0, c]. Note that in this bijection, the chains decrease by one in length.

Since |P/ ∼ | < |P |, using induction we get that

µ([1̂]) =
∑
i≥0

(−1)iai.

Similarly since |[0, c]| < |P | we get that

µ(c) = −
∑
i≥0

(−1)ibi

where we have multiplied the sum by −1 since the chains have decreased by one in length.
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By Lemma 3.0.3, we have that

µ([1̂]) = µ(c) + µ(1̂)

or equivalently

µ(1̂) = µ([1̂])− µ(c).

Therefore,

µ(1̂) =
∑
i≥0

(−1)iai +
∑
i≥0

(−1)ibi =
∑
i≥0

(−1)ici

which is what we wished to prove.

Next, we prove a theorem of Weisner.

Corollary 3.0.5 (Weisner’s Theorem [18]). Let L be a lattice and let 0̂ 6= a ∈ L. If |L| ≥ 2,

then

µ(1̂) = −
∑

x 6=1̂,x∨a=1̂

µ(x).

Proof. Let us note that if a = 1̂, then the result is just restating the definition of µ, so we

assume that a 6= 1̂ for the rest of the proof. We prove the result by induction. We have

already covered the case |L| = 2, since then a must be 1̂.

Now suppose that |L| > 2. Let c be a coatom such that a ≤ c. Consider, the lattice

L/ ∼ obtained by identifying c and 1̂. Since |L/ ∼ | < |L|, we get that

µ([1̂]) = −
∑

[x]6=[1̂],[x]∨[a]=[1̂]

µ([x]).
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Using the facts that [1̂] = {c, 1}, [x]∨ [a] = [x∨a], and µ([x]) = µ(x) for [x] 6= [1̂], we obtain,

µ([1̂]) = −
∑

x 6=c,1̂,x∨a=c,1̂

µ(x).

Since joins are unique, we can break the sum into two parts as,

µ([1̂]) = −
∑

x 6=c,1̂,x∨a=c

µ(x)−
∑

x 6=c,1̂,x∨a=1̂

µ(x).

If x ∨ a = c, then it is clear that x ∈ [0, c]. Moreover, since a ≤ c, it is clear that c ∨ a 6= 1̂.

Thus, we can remove the x 6= 1̂ condition in the first sum and remove the x 6= c condition

in the second. This gives,

µ([1̂]) = −
∑

x 6=c,x∨a=c
µ(x)−

∑
x 6=1̂,x∨a=1̂

µ(x).

Now the first sum is only over [0, c] and |[0, c]| < |L| so by induction,

µ([1̂]) = µ(c)−
∑

x 6=1̂,x∨a=1̂

µ(x).

Using the fact that µ([1̂]) = µ(1̂) + µ(c), we immediately obtain the result.

Our next corollary will make use of crosscuts. We remind the reader of a few definitions

here. Let P be a poset, a subset C ∈ P is called an antichain if whenever x, y ∈ C, then

x 6≤ y and x 6≥ y.

Definition 3.0.6. Let L be a lattice. A crosscut of L is a set C with the following properties:

1. 0̂, 1̂ /∈ C.
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2. C is an antichain.

3. Every maximal 0̂–1̂ chain intersects C.

Although we will not need it to state the next theorem, we will need the notion of the

dual of a poset in the proof. Let P be a poset. The dual of P , written as P ∗, is the poset

with the same underlying set and binary relation given by saying x ≤P∗ y if and only if

y ≤P x.

Theorem 3.0.7 (Rota’s Crosscut Theorem [11]). Let L be a lattice and let C be a crosscut.

Then

µ(1̂) =
∑

∨B=1̂,∧B=0̂

(−1)|B|

where the sum ranges over all B ⊆ C such that ∨B = 1̂ and ∧B = 0̂.

Proof. We first consider the special case when every coatom is also an atom. In this case, the

crosscut must be the atom set. Moreover, a subset of the crosscut has meet 0̂ and join 1̂ if

and only if it has at least two elements. Therefore, if L has n atoms we obtain the following

∑
∨B=1̂,∧B=0̂

(−1)|B| =
∑
|B|≥2

(−1)|B| =
n∑
k=2

(−1)k
(
n

k

)
= n− 1.

This agrees with the value of µ(1̂) when L has n atoms and every coatom is an atom. Thus,

the result holds in this special case.

Recall that if L∗ is the dual lattice of L, then µL(1̂) = µL∗(1̂). Moreover, in L∗, joins

and meets reverse roles. Therefore, if we have a crosscut consisting of only coatoms, then

we can consider the dual lattice. As a result, we may now assume that there is always at

least one coatom in the lattice which is not in the crosscut. With this in mind we proceed
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by induction on |L|.

If |L| ≤ 3, then it must be that |L| = 3 since smaller lattices do not have crosscuts. We

have already done the case when |L| = 3. Suppose that |L| > 3 and let c be a coatom that

is not in the crosscut. Consider the lattice L/ ∼ where we collapse c and 1̂. Since c was not

in the crosscut we still have the same crosscut. By induction, we know that

µ([1̂]) =
∑

∨B=[1̂],∧B=[0̂]

(−1)|B|.

Lemma 3.0.3 implies that ∨B = [1̂] in L/ ∼ if and only if ∨B = c or ∨B = 1̂ in L.

Additionally, since C does not contain c nor 1̂, Lemma 3.0.3 also implies that ∧B = [0̂] in

L/ ∼ if and only if ∧B = 0̂ in L. Therefore, we can break the previous sum as follows

µ([1̂]) =
∑

∨B=c,∧B=0̂

(−1)|B| +
∑

∨B=1̂,∧B=0̂

(−1)|B|.

Note that if ∨B = c, then B must only have elements in [0̂, c]. Thus the first sum in the

previous equation is over B contained in [0̂, c] ∩ C such that ∨B = c and ∧B = 0̂. Since

|[0̂, c]| < |L|, induction implies that

µ([1̂]) = µ(c) +
∑

∨B=1̂,∧B=0̂

(−1)|B|.

Subtracting µ(c) from both sides and applying Lemma 3.0.3 we see that

µ(1̂) =
∑

∨B=1̂,∧B=0̂

(−1)|B|
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which completes the proof.
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