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ABSTRACT 

    INVESTIGATION OF TRANSLAMINAR FRACTURE IN FIBRE-

REINFORCED COMPOSITE LAMINATES—APPLICABILITY OF LINEAR 

ELASTIC FRACTURE MECHANICS AND COHESIVE-ZONE MODEL 

By 

Fang Hou 

    With the extensive application of fiber-reinforced composite laminates in industry, research on 

the fracture mechanisms of this type of materials have drawn more and more attentions. A 

variety of fracture theories and models have been developed. Among them, the linear elastic 

fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture 

models, which have already shown applicability in the fracture analysis of fiber-reinforced 

composite laminates. However, there remain challenges which prevent further applications of the 

two fracture models, such as the experimental measurement of fracture resistance. 

    This dissertation primarily focused on the study of the applicability of LEFM and CZM for the 

fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research 

for each fracture model consisted of two sections: the analytical characterization of crack-tip 

fields and the experimental measurement of fracture resistance parameters.  

    In the study of LEFM, an experimental investigation based on full-field crack-tip displacement 

measurements was carried out as a way to characterize the subcritical and steady-state crack 

advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-

reinforced composite laminates were approximated as anisotropic solids. The experimental 

investigation relied on the LEFM theory with a modification with respect to the material 

anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image 

Correlation (DIC). Then two methods, separately based on the stress intensity approach and the 



 

energy approach, were developed to measure the crack-tip field parameters from crack-tip 

displacement fields. The studied crack-tip field parameters included the stress intensity factor, 

energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-

curves) were constructed with the measured crack-tip field parameters. In addition, an error 

analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen.  

    In the study of CZM, two analytical inverse methods, namely the field projection method 

(FPM) and the separable nonlinear least-squares method, were developed for the extraction of 

cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical 

characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables 

within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the 

inverse methods were developed based on the analytical characterization. With the analytical 

inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely 

computed from the cohesive-crack-tip displacement fields. In the study, comprehensive 

numerical tests were carried out to investigate the applicability and robustness of two inverse 

methods. From the numerical tests, it was found that the field projection method was very 

sensitive to noise and thus had limited applicability in practice. On the other hand, the separable 

nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. 

Subsequently, the applicability of separable nonlinear least-squares method was validated with 

the same translaminar fracture experiment for the study of LEFM.  

Eventually, it was found that the experimental measurements of R-curves and CZL showed a 

great agreement, in both of the fracture energy and the predicted load carrying capability. It thus 

demonstrated the validity of present research for the translaminar fracture of fiber-reinforced 

composite laminates. 
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Chapter 1 

Introduction 

1.1 Overview of fracture models for fiber-reinforced composite 

laminates 

    Fiber-reinforced composite laminates have already emerged as an important category of 

structural materials, which have been widely applied in automotive industry, aerospace, 

transportation, infrastructure and civil engineering. Like other structural materials, the fracture 

analysis and safe-operating life prediction of fiber-reinforced composite laminates are critical in 

its industrial applications, particularly when there are crack-like defects in the structures (from 

where the fracture processes usually emanate). It thus necessitates the research efforts to 

understand the fracture mechanisms of this type of materials. In the past decades, plenty of 

research attempts have been made in this field. However, the overall progress in the development 

of fracture models and experimental techniques for the study of fracture mechanisms of fiber-

reinforced composite laminates is still in a relatively early stage. 

   The lag in the research progress of the fracture mechanisms is mainly due to the complexity of 

material characteristics of fiber-reinforced composite laminates, as compared to conventional 

industrial materials (e.g. metallic materials). Most conventional industrial materials can be 

approximated to be homogeneous or even isotropic. Hence the fracture behaviors of these 

materials can be characterized through the linear elastic fracture mechanics or elastic plastic 

fracture mechanics, both of which have considerably simple theoretical frames and fracture 

criteria. Conversely, the heterogeneous structures of fiber-reinforced composite laminates 
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introduce a variety of mechanisms into their fracture processes, which cannot be easily 

characterized with simple fracture models. A schematic diagram of the micro-scale fracture 

mechanisms around the crack-tip in fiber-reinforced composite is shown in Figure 1.1. Various 

micro-scale fracture mechanisms can be seen, including fiber bridging and pullout, micro-cracks 

in the matrix and fiber/matrix debonding. Moreover, the ply-level fracture characteristics of 

fiber-reinforced composites laminates can be classified as interlaminar, intralaminar and 

translaminar, each of which involves one or several micro-scale fracture mechanisms. 

 

 

Figure 1.1 Micro-scale fracture mechanisms of fiber-reinforced composites 

 

   Various fracture mechanisms of fiber-reinforced composites laminates present a fracture 

mechanics researcher with a very complicated situation. Instead of a widely-accepted fracture 

theory, numerous fracture models have been proposed for fiber-reinforced composite laminates 

since the 1970s. From the multi-scale point of view, these fracture models can be categorized 
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into three groups: the micromechanical models [1]–[7], the cohesive-zone model (CZM) [8]–[10] 

and the linear elastic fracture mechanics (LEFM) theory with anisotropic modification [11]–[13]. 

Each group of fracture models will be briefly introduced below, with their advanteges and 

disadvanteges. 

   Firstly, it is known that the micro-scale fracture mechanisms within a crack-tip fracture process 

zone can cause local load redistributions and stress concentrations. The micromechanical fracture 

models incorporate these effects into the fracture analysis. In the past several decades, a variety 

of studies with different types of micromechanical models have been carried out for fiber-

reinforced composite laminates [1]. Recently, a comprehensive review paper regarding these 

work has been published [14]. Generally, the micromechanical models are attractive for their 

capability to predict the micro-scale fracture behaviours of fiber-reinforced composite laminates 

based on the properties of fibres and matrix. However, the lag in the development of 

computationally-efficient multi-scale modeling techniques prevents the micromechanical 

fracture models from being used in the fracture analysis of macro-scale structures.  

   In recent years, the cohesive zone model (CZM) [8]–[10] has drawn more and more attentions. 

It has been widely applied for the fracture analysis of fiber-reinforced composite laminates, as 

well as other quasi-brittle materials such as concrete. Compared to the micromechanical fracture 

models, the CZM does not consider the separate behaviour of fibre and matrix during the fracture 

process. Instead, the bulk material is assumed to be homogeneous, while the crack-tip fracture 

process zone is simplified as a cohesive zone. The local fracture process within the cohesive 

zone is characterized by the relationship between the cohesive-zone traction, which is in 

equilibrium with the surrounding stress fields, and the cohesive-zone separation, which is 

compatible with the surrounding deformation fields. This relationship constitutes the cohesive-
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zone law (CZL). One important advantage of the CZM is that it is especially suitable for the 

numerical modeling of fracture due to its balanced conceptual simplicity against fracture 

predictive capability, as well as the computational efficiency. A feature of fracture simulation 

with CZM is that the functional shape of the CZL can significantly influence the numerical 

simulation results. Therefore, a good estimation of the CZL is critical to achieve truly predictive 

simulations. However, although a variety of methods have been developed, the identification of 

the details of CZL remains a challenge.  

   Both of the micromechanical models and cohesive-zone model are based on the consideration 

of local failure mechanisms within a small area around the crack-tip (i.e. fracture process zone). 

On the other hand, the linear elastic fracture mechanics (LEFM), which analyzes sharp-tip macro 

cracks, has also been applied to fiber-reinforced composite laminates. The LEFM treats the fiber-

reinforced composite laminates as homogeneous materials, instead of considering heterogeneous 

micro-structures. Thus, it has higher conceptual simplicity and computational efficiency 

compared to the cohesive zone models and micromechanical models. However, the limit of 

LEFM is also significant. In the classical LEFM, the fracture toughness of cracked body is 

measured by a single parameter--the critical stress intensity factor, which is assumed to be a 

material property that is independent of structural size and geometry. This single-parameter 

fracture toughness is valid for most brittle materials, in which the size of crack-tip fracture 

process zone is negligible compared to the characteristic structural dimensions (e.g. the original 

crack length). However, usually the crack-tip fracture process zone in fiber-reinforced composite 

laminates and other quasi-brittle materials is relatively large. Consequently, the fracture 

toughness of cracked structures made of fiber-reinforced composite laminates cannot be 

represented by a single size-independent constant. Instead, the crack growth resistance curve, i.e. 
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R-curve, is considered as an appropriate alternative to represent the fracture toughness of 

materials. Moreover, when the crack-tip fracture process zone becomes too large to satisfy the 

“small-scale yielding” condition, even the R-curve depends on the structure geometry and size. 

For this “large-scale yielding” case, the LEFM cannot be used for the fracture analysis any more 

[15]. The interlaminar fracture of some fiber-reinforce composite laminates falls into this 

category of fracture problems. 

   Besides of the above fracture models, it is worth mentioning that a variety of fracture models 

were developed as modifications to the LEFM by compensating the size effect caused by the 

relatively large crack-tip fracture process zone in fiber-reinforced composite laminates. These 

fracture models were developed in terms of empirical equations mainly for engineering purposes. 

For instance, Waddoups et al [16] employed an empirical extension of LEFM to predict the 

notched strength of composite panels. They argued that the damage zone adjacent to the crack-

tip effectively increases the crack length, similar to Irwin’s plastic zone correction in metals. The 

fracture then occurs when the applied stress intensity factor determined by the load and the 

modified crack length reaches a critical value. This fracture model is denoted as the Inherent 

Flaw Model. Whitney and Nuismer [17], [18] proposed two stress-based criteria which are 

similar to the Inherent Flaw Model, namely the Point Stress Criteria and Average Stress Criteria 

respectively. The Point Stress Criteria assumes that fracture occurs when the stress at a 

characteristic distance ahead of the notch tip reaches the un-notched tensile strength, whereas the 

Average Stress Criteria assumes that fracture occurs when the average stress over a characteristic 

distance ahead of the notch tip equals the un-notched tensile strength. Subsequent modifications 

to the Whitney and Nuismer model include the work of Karlak [19] and Pipes et al [20]–[22], 

which introduced more fitting parameters into the fracture criteria in addition to the un-notched 
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tensile strength and the characteristic distance. An comprehensive review of these models has 

been published [23]. Even though these models worked well for specific materials, a basic 

problem is that the characteristic distance or other parameters are empirically determined, so that 

the universal applicability of these models to other materials or other cracked body 

configurations with the same material cannot be guaranteed.  

 

1.2 Objectives and scopes 

    As stated above, the heterogeneous microstructures in fiber-reinforced composite laminates 

introduce various ply-level failure modes into their fracture processes, including interlaminar 

fracture, intralaminar fracture and translaminar fracture. While a great number of published 

studies have been dedicated to the investigation of interlaminar fracture of fiber-reinforced 

composite laminates, their translaminar fracture mechanisms have received relatively little 

attention from the fracture mechanics community. However, with the increasing use of large 

composite primary structures in industry, it is envisaged that a comprehensive understanding of 

the translaminar fracture of fiber-reinforced composite laminates will play an increasingly 

important role over the coming years [24]. 

   In this thesis, the mode I translaminar fracture behavior of a cross-ply glass fiber reinforced 

composite laminates is investigated, in the framework of linear elastic fracture mechanics 

(LEFM) and cohesive-zone model (CZM). The objective of this study is to investigate the 

applicability of these two fracture models for the translaminar fracture analysis of any fibre-

reinforced composite laminates which can be approximated as anisotropic solids and show self-

similar crack growth. Specifically, two sets of analytical characterizations of the elastic fields 
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near crack-tip in anisotropic solids are separately derived within the frameworks of LEFM and 

CZM. Then two experimental methods are separately developed to measure the R-curve of 

LEFM and the cohesive-zone law of CZM, based on the analytical characterization of crack-tip 

fields and full-field crack-tip displacement measured with Digital Image Correlation (DIC) 

technique. Eventually, the applicability of LEFM and CZM for the translaminar fracture analysis 

of fibre-reinforced composite laminates are investigated.  

 

1.3 Structure of dissertation 

    The remaining part of dissertation is organized as follows. In Chapter 2, the literature review 

regarding the up-to-date progress of fracture mechanics studies with LEFM and CZM for fiber-

reinforced composite laminates is provided. Besides, the full-field optical measurement 

technique in the study-Digital Image Correlation (DIC) is briefly introduced.  

   In Chapter 3, the translaminar fracture problem is studied in the context of LEFM. In this study, 

the fiber-reinforced composite laminates are approximated as homogeneous anisotropic solids. 

Firstly, an asymptotic expansion of crack-tip field in anisotropic solids is derived with the 

anisotropic plane elasticity theory. Based on the asymptotic expansion, two methods are 

developed to estimate important crack-tip field parameters from crack-tip displacement fields. 

One method employs the nonlinear least-squares fitting algorithm, while the other method makes 

use of the conservation integrals of fracture mechanics. The two methods respectively 

correspond to the two major analysis approaches in LEFM, i.e. the stress intensity approach and 

the energy approach. The investigated crack-tip field parameters include stress intensity factor, 

energy release rate and effective crack length. An experimental validation of mode I translaminar 

fracture test with a cross-ply glass fiber-reinforce composite laminates and the extended compact 
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tension (ECT) specimen geometry is also conducted. The crack-tip field parameters and R-

curves are obtained from full-field crack-tip displacement fields measured by 2-D Digital Image 

Correlation. Special considerations are made to investigate the errors and limitations of the 

methods. Then the R-curve behaviors for the translaminar fracture of fiber-reinforced composite 

laminates are discussed. 

   In Chapter 4, the translaminar fracture problem of fiber-reinforced composite laminates is 

investigated in the framework of cohesive-zone model (CZM). The homogeneous anisotropic 

approximation of fiber-reinforced composite laminates retains in this chapter. Firstly, an 

eigenfunction expansion of the planar elastic field around the crack-tip cohesive zone is derived 

for anisotropic solids. Two analytical inverse methods, namely field projection method and least-

squares method, are developed based on the eigenfunction expansion to extract the details of 

cohesive-zone law (CZL) from the anisotropic elastic fields around the crack-tip cohesive zone. 

A sequence of numerical tests are carried out to assess and compare the accuracy and stability of 

the two methods, through the extraction of cohesive-zone laws from synthetic displacement 

fields that are generated with predefined analytical solutions. In the numerical tests, several 

factors that can influence the accuracy of inverse solutions are investigated, including the shape 

of cohesive-zone law, the noise level of inputs, the inverse distance of the data field and the 

number of data points. Then some guidelines for the implementation of inverse methods in 

practice are provided based on the results of numerical tests. In Chapter 5, the inverse methods 

are applied to the same translaminar fracture test for the study in the context of LEFM. To verify 

the accuracy of extracted CZLs, finite element simulation results which use the extracted CZLs 

are compared with the experimental outputs. Finally, some concluding remarks and expectations 

for the future work are provided in Chapter 6. 
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Chapter 2 

Literature Review 

    In this chapter, a comprehensive literature review regarding to the backgrounds of this 

dissertation is provided. The whole chapter is divided in to three sections. In Section 2.1 and 

Section 2.2, the research advance of linear elastic fracture mechanics (LEFM) and cohesive-zone 

model (CZM) in the fracture analysis of fibre-reinforced composite laminates are introduced, 

respectively.To keep consistent with the research objective of this thesis, the emphasis of this 

literature review is laid on the translaminar fracture of fibre-reinforced composite laminates.At 

the end of Section 2.1 and Section 2.2, the advantages and disadvantages of LEFM and CZM are 

respectively summarized to illustrate the motivations of the study. In Section 2.3, the principle 

and current development of the optical measurement technique used in this study—Digital Image 

Correlation (DIC) are briefly introduced.  

 

2.1 Application of linear elastic fracture mechanics in fiber-

reinforced composite laminates 

    Historically, the great success of LEFM in analyzing the fracture behavior of homogeneous 

isotropic materials has motivated researchers to explore its applicability in the fracture analysis 

of fiber-reinforced composite laminates. It is well known that the macroscopic elastic properties 

of fiber-reinforced composite laminates can be considered as anisotropic. Thus, the application 

of LEFM in fiber-reinforced composite laminates requires additional considerations of the 
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material anisotropy. In 1965, Sih et al. [11] first demonstrated the feasibility of extending LEFM 

analysis methods for isotropic materials to anisotropic solids. In their study, a complex variable 

approach was used to obtain a mathematical understanding of the stress fields and displacement 

fields around a sharp-crack tip in anisotropic elastic solids. Mathematical expressions of the 

crack-tip fields were derived in the form of asymptotic expansions, which is similar to the 

Williams expansions for isotropic materials. More importantly, they concluded that the concepts 

of stress intensity factor and fracture toughness can be extended into cracked anisotropic solids, 

whereas the relationship between the energy release rate and stress intensity factors should be 

modified to involve the effect of anisotropic material property. 

    Based on the pioneering work of Sih et al, many attempts were made to apply the LEFM 

analytical solutions or formulas which were originally derived for isotropic materials to study the 

fracture problems of fiber-reinforced composite laminates. In these studies, the fiber-reinforced 

composite laminates are approximated to be anisotropic materials. Many researchers have 

studied the influence of the anisotropic material properties on the accuracy of stress intensity 

factors estimated with the formulas of isotropic materials. Mandell etal. [25] used hybrid finite 

element analysis to find that the degree of material anisotropy has a varying effect on the 

calculation of stress intensity factors for different specimen configurations, whereas this effect of 

anisotropy is relatively constant for varying crack lengths in a given configuration. As an 

advanced study, Sweeney [26], [27] calculated the finite-width correction factors for single-

edge-notched tension test of orthotropic materials, through a finite element analysis with fracture 

mechanics J-integral. Later on, Bao et al. [12], [13] developed a rescaling technique to quantify 

the effect of material orthotropy on the stress intensity factor formulas of notched bars, 

delaminated beams, and hybrid sandwiches. All the studies demonstrated that the elastic 
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anisotropy may introduce a considerable effect into the measurement of stress intensity factor 

and fracture toughness of fiber-reinforced composite laminates with analytical stress intensity 

factor formulas. 

    The material anisotropy is not the only concern in the application of LEFM for fiber-

reinforced composite laminates. Many direct applications of LEFM to this type of materials have 

suffered as a consequence of violating the “small-scale yielding” condition. As a prerequisite of 

the validity of LEFM theories, the “small-scale yielding” condition requires that the nonlinear 

deformation zone (which is also referred to as fracture process zone in some publications) 

surrounding the crack tip must be small compared to the other characteristic lengths (e.g. crack 

length) in the cracked geometry. As the size of crack-tip nonlinear deformation zone grows, the 

fracture analysis with LEFM becomes increasingly inaccurate. Indeed, the fracture behaviors of 

materials can be categorized based on the size of crack-tip nonlinear deformation zone. 

Appropriate fracture models should be chosen accordingly. Firstly, when the crack-tip nonlinear 

deformation zone is negligible compared to the crack length (this is the case for most brittle 

materials such as glass), the instant of fracture can be predicted by a single-parameter fracture 

toughness, i.e. the critical stress intensity factor Kc or the critical energy release rate Gc. The Kc 

and Gc for brittle fracture are independent on the structure configurations and hence are material 

constants. Secondly, for the fracture of quasi-brittle materials such as fiber-reinforced composite 

laminates, the crack-tip nonlinear deformation is moderate. In this case, the stress intensity factor 

and energy release rate keep increasing at the starting stage of crack extension, which is caused 

by the increase of crack-tip nonlinear deformation zone. Consequently, a single-parameter 

fracture toughness such as Kc or Gc is no longer suitable for fracture prediction. Nevertheless, the 

validity of LEFM can be retained by introducing an alternative fracture resistance measure—the 
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crack resistance curve (R-curve), in which the material fracture resistance is plotted with respect 

to the crack extension. The material fracture resistance corresponding to a certain crack 

extension is usually equivalent to the stress intensity factor or energy release rate which can 

cause stable crack growth at the same instant. For the quasi-brittle fracture problems, it has been 

found that the R-curve is independent of structure configurations and hence is a material property 

[15]. Moreover, for more extensive yielding cases which totally violate the “small-scale yielding” 

condition (fracture of ductile materials such as steel), the R-curve becomes dependent on the 

shape and dimension of cracked solids. In this case, ductile fracture models must be applied to 

take into account the considerable nonlinear material behavior. Some two-parameter fracture 

theories were developed to provide size-dependent fracture criteria, such as the J-Q theory [28], 

[29] and the cleavage scaling model [30], [31]. The cohesive-zone model, which will be 

introduced in the next section, can also be used to analyze the ductile fracture problems. The 

cohesive-zone law has been proved to be a size-independent fracture criterion even under large-

scale yielding condition [15]. 

    Besides the development of theoretical models to describe the complicated fracture 

mechanisms of fiber-reinforced composite laminates, research efforts to understand such 

complex fracture processes also heavily rely on experimental observations and measurements. 

Up until recently, most of the experimental measurements of the single-parameter fracture 

toughness are based on measuring far-field loads and overall deformations during the mechanical 

test. Then, the crack-tip field parameters, i.e. the stress intensity factor or strain energy release 

rate, are inferred through analytical formula or numerical calibrations. The fracture toughness, i.e. 

the critical stress intensity factor or critical energy release rate, is estimated with the maximum 

far-field load and original crack length. However, this method has two significant drawbacks. 
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Firstly, as stated above, the single-parameter fracture toughness has limited applicability for the 

fracture analysis of fiber-reinforced composite laminates because the stress intensity factor or the 

energy release rate keeps varying at the starting stage of crack extension. Secondly, even though 

the "critical" moment is defined as that with the maximum far-field load, the original crack 

should not be used in the estimation of fracture toughness. The crack can increase for a 

considerable length through the growth of crack-tip nonlinear deformation zone before reaching 

the instant with maximum far-field load.  

    Instead of the single-parameter fracture toughness, the translaminar fracture behavior of fiber-

reinforced composite laminates was found to be best described by R-curves [24]. However, the 

experimental measurement methods of R-curve for translaminar fracture of fiber-reinforced 

composite laminates have not been standardized yet even for mode I tensile failure. Recently, a 

extensive review of the state-of-the-art experimental measurement methods of translaminar 

fracture toughness and R-curve was provided by Laffan et al. [24], [32] . They investigated the 

commonly-used specimen configurations used for the fracture toughness and R-curve 

measurements, including compact tension, three or four point bending, double edge notched 

tension, extended compact tension, center notched tension and single edge notched tension. 

Among these specimen configurations, only compact tension, three/four point bend and extended 

compact tension specimens could exhibit stable crack growth and are applicable for measuring 

the R-curves. In addition, several data reduction methods for the R-curve measurements were 

compared. The methods under investigation included the area method, compliance calibration 

method, modified compliance calibration method, and finite element analysis using the J-integral 

computation or virtual crack closure technique. Among these methods, the “Modified 

Compliance Calibration method” (MCC) was found to provide the most reliable measurements. 
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Because this method did not rely on the optical measurement of the crack length in which the 

measurement accuracy is highly dependent on the experience and cautiousness of the 

experimenter. However, the MCC method still requires much experimental work by measuring 

the elastic compliances for various specimens with machined cracks of different lengths [32] . 

    On the other hand, owing to the advances in full-field optical measurement techniques, the 

crack-tip field parameters can be directly determined from the deformation fields around the 

crack-tip which can be measured by the optical techniques. The applications of optical 

techniques to characterize the fracture toughness of engineering materials have already become 

routine tasks at least for isotropic materials [34]–[38]. In one commonly used data reduction 

scheme, the crack-tip field parameters such as the stress intensity factors and effective crack 

length were inversely extracted by fitting the Williams’ expansion of isotropic crack-tip elastic 

fields [39] to the measurement data [34], [37] in a least-squares sense. Some other methods were 

developed based on the conservational integrals, such as the J-integral [40] and interaction 

integrals [33]. The conservational integrals were calculated from the deformation data around the 

crack-tip. The energy release rate can be directly obtained by calculating the J-integral, and the 

mode I and mode II stress intensity factors can be determined by using the interactional integral 

[36]. 

    In contrast to the fruitful application of optical techniques for the measurement of fracture 

resistances of isotropic materials, a relatively fewer number of investigations based on optical 

techniques were reported for fiber-reinforced composite laminates [42]–[45]. The major reason is 

that the extraction and interpretation of the crack-tip field parameters in composite laminates 

require special considerations on the material heterogeneity and elastic anisotropy. Among the 

published literature, most of the studies only measured the stress intensity factors, which implied 
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that the critical stress intensity factor is used as the fracture toughness. As stated above, this 

single-parameter fracture toughness is not suitable for the fracture prediction of most fiber-

reinforced composite laminates. Recently, an attempt has been made to measure the R-curve of 

translaminar fracture of composite laminates based on the energy release rate consideration. The 

energy release rate was obtained by the calculation of J-integral [44]. However, the accuracy of 

the measured R-curve in this work is somewhat questionable because the crack-tip position was 

identified by searching the displacement discontinuity in the crack-tip displacement fields. 

Generally, the optical measurement of the displacement fields very close to the crack-tip is 

unreliable due to the high displacement gradients within this area.  

    Moreover, a significant drawback in most of the above studies based on the crack-tip full-field 

optical measurement is that the small-scale yielding condition, which is the prerequisite for the 

validity of linear elastic fracture mechanics, were not validated. Therefore, there was lack of 

sufficient evidence that the applicability of the measured single fracture toughness or R-curve in 

these works was a geometry-independent material property. 

    To sum up, currently there are two major challenges in the application of LEFM to fiber-

reinforced composite laminates. The first challenge is the accurate measure of R-curve without 

much experimental complexity. The second challenge is the verification of the geometry-

independence of R-curve, which is, equivalently, the verification of small-scale yielding so that 

this LEFM fracture resistances is still valid. 
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2.2 Cohesive-zone model 

    Recently, a nonlinear fracture model named cohesive-zone model (CZM) has become more 

and more popular in the analysis of quasi-brittle and ductile fracture behaviors. Particularly, it 

has been widely used to study the nonlinear fracture behaviors of fiber-reinforced composite 

laminates. In the CZM, a cohesive zone is used to simplify the nonlinear fracture process zone 

around the crack-tip. Instead of considering the complicated micron-mechanical fracture 

mechanisms within the crack-tip fracture process zone, the CZM characterizes the crack-tip 

fracture process and the energy dissipation during crack propagation with the relationship 

between the cohesive tractions and separations. This relationship constitutes the cohesive-zone 

law (CZL), a material-dependent constitutive law. The illustrations of the CZM and cohesive-

zone law are shown in Figure 2.1 and Figure 2.2, respectively.  

 

 

Figure 2.1 Cohesive-zone model 
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Figure 2.2 Cohesive-zone law 

 

    The concept of CZM was first introduced by Barenblatt [8]. He originally postulated the 

existence of cohesive forces in the vicinity of crack tip to eliminate the unphysical stress 

singularity integrated in the linear elastic fracture mechanics (LEFM). Next, Dugdale [9] used a 

CZM to represent the fracture in perfectly plastic materials. In his model, the cohesive tractions 

within the crack-tip plastic zone were assumed to be equal to the yielding strength. Hillerborg et 

al. [10]  also analyzed the crack growth in quasi-brittle concrete using the CZM (the model was 

named as “fictitious crack model”). Since then the CZM has gained great success in analyzing a 

variety of nonlinear fracture processes, such as the interface decohesion between dissimilar 

materials [46], the void-growth in ductile metals [47], the crazing in glassy polymers 

(Tijssens et al. 2000), the void nucleation at an interface between a particle and matrix [49], and 

the fracture mechanisms of quasi-brittle materials like fiber-reinforced composite laminates [50]. 

    Compared to other fracture models, the CZM has significant advantages, especially in the 

analysis of nonlinear fracture problems. Firstly, unlike the fracture resistance measures in the 
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context of LEFM (such as critical stress intensity factor and R-curves), the CZL is an inherent 

material property that is valid even under the large-scale yielding condition. Thus the CZM can 

be applied to not only brittle and quasi-brittle, but also ductile fracture problems. Secondly, the 

CZM is particularly well-suited for the finite element simulation of nonlinear fracture behaviors, 

since it not only predicts the fracture initiation but also the crack propagation process. The 

cohesive-zone modeling algorithms have already been integrated into some of the commercial 

FEA software such as ABAQUS and ANSYS. 

    For the finite element simulation with CZM, it has been found that some global fracture 

behaviours of solid structures can be approximately predicted by the CZLs with simple 

functional shapes. For instance, the linear CZL in which the cohesive strength and fracture 

energy are the sole important factors to define its shape, were widely used in simulations. 

However, some recent investigations have shown that the functional shape of CZL could 

influence the simulation results considerably. Gu [51] showed that, under the large-scale 

bridging condition, the shape of the CZL influenced the load carrying capacity of a plate with an 

elliptical hole. Suo et al. [52] and Rice et al. [53]  found that the stability of elastic solids with 

interfaces, including not only the bifurcation of de-cohesion processes but also frictional slip 

instability, was sensitive to the details of CZLs. Chandra et al. [54] investigated the fracture 

processes in diverse material systems by utilizing several CZLs and showed that the shape of the 

CZL played a critical role in determining the macroscopic response of a composite system. 

Volokh [55] compared the bilinear, parabolic, sinusoidal and exponential CZLs using a block-

peel test. They showed that the shape of CZL significantly affected the result. Alfano [56] 

reported the differences caused by the use of different CZLs such as bilinear, linear-parabolic, 

exponential and trapezoidal laws. They concluded that the effect of the shape of CZL on 
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numerical results depended on the boundary conditions of the problem and the ratio between 

interface toughness and stiffness of the bulk material. Song et al. [57]  also studied the influence 

of the shape of CZLs on the fracture modeling of asphalt concrete. A nonlinearly decaying CZL 

was found to be more appropriate for simulation than a linear CZL. In general, the influence of 

the shape of CZL became considerable when the size of crack-tip fracture process zone was 

relatively large compared to other structure dimensions, which was relevant to most of the quasi-

brittle and ductile materials. 

    Therefore, an accurate estimate of CZL is essential to achieve truly predictive simulations for 

quasi-brittle materials such as fiber-reinforced composite materials. Several experimental 

approaches have already been developed to extract cohesive-zone properties. Among them, the 

uniaxial tension test is considered to be the most direct method to determine the mode I CZL. In 

this experimental method, the curve which represents the relationship between the cohesive 

traction and separation, i.e. the CZL, was directly measured [58]–[60]. However, some 

theoretical and experimental issues prevented the wide application of this method. Firstly, the 

measured cohesive traction was approximated with the far-field tensile stress, which was against 

the basis of fracture mechanics that the tensile stress is highly concentrated around the crack-tip. 

Furthermore, the CZL was assumed to be of simple functional shape, either because the number 

of measurable outputs was limited [58] or because the significant noise made the details of 

measurement unreliable so that the measured CZL had to be fitted to a simple functional shape 

[60]. In addition, there were also a lot of difficulties in the setup of experiments [59]. 

    There are several other “direct methods” which try to directly measure the characteristic 

parameters that describe the shape of CZL. In these methods, the shape of CZL is usually 

presumed to be linear or bilinear, which can be characterized with a few characteristic 
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parameters such as the tensile strength, fracture energy and critical crack opening displacement. 

Then the characteristic parameters can be determined through experiments. For instance, Park et 

al. [61], [62] assumed that the kink point in a bilinear CZL corresponded to the instant when the 

critical crack-tip opening displacement was reached. Then the bilinear CZL could be determined 

based on a single fracture test. The defects of these “direct methods” are obvious. Firstly, the 

estimated CZL is dependent on the assumption of its shape. Secondly, these methods cannot 

obtain the details of CZL.  

    It is worth mentioning that there is another method which utilizes the mathematical fact that 

the relationship between the cohesive-zone traction and separation, i.e. the CZL, is a 

differentiation of the energy release rate (J) with respect to the crack-tip opening displacement 

(CTOD) [63]–[65]. The theoretical design of this method is valuable, but the application of this 

method suffers from the difficulty in the experiment setups. The noise in the measurement of 

crack-tip opening displacement is significant, since the crack-tip cohesive zone is small and 

difficult to recognize. Moreover, the numerical error of differentiation is considerable because of 

the noisy measurement data of J and CTOD. Thus the measured CZLs in these studies were 

scattered. In addition, this method is only applicable for mode I problems.  

    Besides the “direct methods”, inverse methods have also been developed based on the 

parametric fitting of experimental data with optimization algorithms. The common procedure of 

these methods was summarized by Elices et al. [66]. Firstly, a functional form of CZL with a few 

characteristic parameters was assumed, depending on the material system and corresponding 

fracture processes. Then the characteristic parameters in the functional form were computed by 

iterative optimization procedure, i.e. the parameters were adjusted at each iteration by comparing 

the computational and experimental results. The most important advantage of these inverse 
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methods is that the details of CZL are obtainable by assuming flexible functional forms. 

However, these methods are also accompanied with defects. In most of the studies, only the 

global responses of the experimental data, i.e., load-displacement or load-crack mouth opening 

displacement (CMOD), were used as the basis of the parametric fitting procedure. This was due 

to the fact that the global responses were the only obtainable experimental outputs in most of the 

studies. The usage of global response would exacerbate the non-uniqueness problem of the 

inverse solution, i.e. the CZL, which is a highly localized material property.  

    Recently, the application of full-field optical techniques like Digital Image Correlation (DIC) 

in the studies of material fracture behaviors has become more and more popular. The full-field 

optical technique can provide rich measurement data within a small area surrounding the crack 

tip. Thus it is suitable for the investigation of the localized material fracture properties. In 

Section 2.1, the application of full-field optical techniques within the framework of linear elastic 

fracture mechanics has been reviewed. The application of these techniques in the estimate of 

CZL is also fruitful. 

    The methods of measuring CZLs with the full-field optical techniques can be categorized as 

direct methods and inverse methods, too. One representative direct method is to directly measure 

the cohesive tractions from the deformation fields of bulk material surrounding the cohesive 

zone. The method assumed that the cohesive tractions were in equilibrium with the surrounding 

stress fields in the bulk material which could be obtained with the stress-strain relationship and 

bulk material properties. Then the CZL could be determined by correlating the directly measured 

crack opening displacement with the cohesive traction [67], [68]. Obviously, the accuracy of the 

measured CZL is dependent on the definition of cohesive zone within the deformation fields, 

which is highly subjective. Another work used part of the whole-field displacement field, i.e. the 
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displacement profiles along edges of the specimen, to solve for the characteristic parameters in a 

simple functional form of CZL [69]. However, the result was found to be sensitive to the location 

of the measurement and the measurement errors. 

    As for the inverse method, Guo et al. [70] determined a linear CZL by iteratively fitting the 

finite element simulation result of crack opening displacement to the experimental result. As a 

further step, a hybrid inverse technique combining finite element simulation and full-field 

measurement has been developed to determine CZLs with flexible functional forms [71]–[73] . 

First, a flexible shape parameterization of the CZL was used without making any assumption 

about its shape. Then the parameters used to characterize the shape of CZL were determined 

through the unconstrained, derivative-free Nelder-Mead optimization method. The objective 

function used in the optimization procedure was the norm of the difference between the 

measured whole-field displacement data and the computed whole-field displacement field from 

FEM. Several successful applications of this methods have already been reported [74]–[76]. 

However, this method still has drawbacks. The first one is its high computation cost, since a 

complete numerical simulation must be carried out at each iteration in the optimization 

procedure. Furthermore, the accuracy of the extracted CZL is reduced by using the displacement 

data within the crack-tip high-displacement-gradient field in the finite element computation.   

    Recently, an analytical inverse method named the “field projection method” was developed by 

Hong and Kim [75]. With this method, the CZLs can be inversely extracted from the elastic far-

fields from the crack tip. Therefore, it can reduce the error caused by the usage of unreliable 

displacement data very close to the crack-tip. In their original work, a general form of cohesive-

crack-tip fields was first expressed in terms of an eigenfunction expansion of the plane elastic 

field using a complex variable representation. The coefficients of the eigenfunction expansion 
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within the cohesive zone were extracted by applying interaction J-integrals between the auxiliary 

probing fields and the elastic far-fields from the crack-tip. Then the cohesive-zone variables, i.e. 

the cohesive-zone tractions and separations, and thus the CZLs were separately determined by 

using the coefficients of the eigenfunction expansion. An iterative method to determine the 

position and size of a cohesive zone was also proposed in the paper. The applicability of the field 

projection method for isotropic materials has been verified experimentally and numerically 

[76], [77]. Furthermore, the field projection method has been extended to extract the CZLs of  an 

interface between two anisotropic solids at the nano scale [78]. The theoretical derivation of this 

field projection method enhances the mathematical understanding of the CZM. Since this method 

is developed based on the analytical representation of cohesive-crack-tip fields, it provides more 

confidence to the accuracy of inverse solutions than the method with flexible shape 

parameterization of CZL [74]–[76]. Moreover, the CZLs determined by the analytical methods 

have nearly no restriction on their functional shapes, because the order of polynomial that is used 

to describe the functional shape of CZL is flexible. Therefore, this analytical method has the 

potential to overcome the defects of numerical inverse methods. However, the considerable ill-

conditioning [75] and the high sensitivity to experimental noise [78], [79] are the two major 

defects of this method. 

    In sum, the major challenge in the application of CZM for the fracture analysis of fiber-

reinforced composite laminates is the accurate measurement of the CZLs.  
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2.3 Digital Image Correlation (DIC) 

    In the present study, the crack-tip displacement fields on the surface of cracked specimen is 

measured by Digital image correlation (DIC), a non-contacting full-field optical technique that is 

originally developed in the 1980s [79]–[81]. Through 30 years' development, now DIC is one of 

the most commonly-used full-field optical techniques, which is capable of measuring not only 

the two-dimensional but also the three-dimensional surface deformations [82]. Countless 

applications with DIC have been obtained in a vast variety of academic and industrial fields. In 

the present study, the two-dimensional DIC is used for the measurement of displacements. A 

brief introduction of this technique is provided in this section. 

    Compared to other optical measurement techniques such as the interferometry-based optical 

techniques (e.g. Electric Speckle Pattern Interferometry (ESPI)), DIC has several special 

advantages. First of all, the experimental setup and specimen preparation of DIC are simple. The 

core of the experimental setup is an image acquisition system, which includes a light source for 

illumination, a CCD (charge-coupled device) camera and an image storage device. In addition, 

the only requirement of specimen is that the specimen surface in captured images must have a 

random gray intensity distribution. It is easy to fulfill this requirement either by directly using the 

natural texture of the specimen surface or by spraying black and white paints onto the surface to 

generate speckle patterns. A typical image with speckle patterns is shown in Figure 2.3. 

Secondly, the measurement environment of DIC has low limitation so that it is appropriate for 

not only laboratory but also field applications. Here the "measurement environment" mainly 

refers to the illumination conditions while capturing images with CCD camera. The laser source 

is not required for DIC [83]. A while light source or natural light is good enough. Thirdly, the 

range of measurement resolution of DIC is adjustable depending on the resolution of digital 
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image. For instance, with high-spatial-resolution image acquisition equipments such as optical 

microscope, scanning electron microscope (SEM) and atomic force microscope (AFM), micro-

scale and even nano-scale deformation can be measured with DIC [84]–[91]. 

 

 

Figure 2.3 A typical image used in DIC with random gray intensity distribution. The speckle 

patterns are generated by spraying black and white paints on the specimen surface. 

 

    Essentially, DIC measures the surface displacement fields of specimen by tracking the 

movements of points in the two images captured before and after deformation, which are referred 

to as the reference image and the deformed image, respectively. The measurement procedure 

consists of three successive steps. Firstly, the region of interest in the reference image is divided 

into evenly spaced virtual grid. Then the displacement of each node in the grid is measured 

separately. Eventually the full-field surface deformation can be obtained by measuring the 

displacements for all the nodes. 

    The basic principles of DIC in measuring the displacements of each node are schematically 

illustrated in Figure 2.4. To measure the displacement of node P in the reference image, a square 
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subset centered at P is used to determine the corresponding position of P in the deformed image, 

i.e. the position of P'. A subset is used because it has a unique gray intensity distribution which 

can distinguish itself from other subsets, so that it can be identified in the reference and 

deformed images. 

 

 

Figure 2.4 A schematic illustration of the basic principles of DIC 

 

    To identify the subset in the reference and deformed images, a criterion is needed to evaluate 

the degree of similarity between two subsets. In DIC, the similarity between two subsets is 

measured by a parameter named "correlation coefficient", which compares the gray level 

distributions within two subsets. In other words, a combination of the grey values of all the 

pixels in a subset is used as the comparable parameter in the correlation coefficient. There are 

plenty of correlation coefficients in the literature, which can be categorized into two groups: the 
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cross correlation coefficients and the sum of squared differences coefficients [92], [93]. 

Although the formats of the coefficients within two groups seem different, it has been 

mathematically proved that there are one-to-one correspondences between the coefficients within 

two groups. Moreover, the zero-normalized cross-correlation coefficient or the zero-normalized 

sum of squared differences coefficient is believed to be the most robust coefficient because of 

their capabilities to offset the influence of linear variation of lighting [94].  

    Another important feature that should be considered in the identification of the deformed 

subset is the shape change of subset during deformation. As shown in Figure 2.4, the shape of 

subset in the reference image is a square, while the shape of corresponding subset in the 

deformed image is distorted. This shape change can be represented mathematically. If the 

coordinates of node   is ( , ), the coordinates of a random point   within the subset can be 

represented as  

 
       

       
    .    (2.1) 

After deformation, the point   moves to   , whose coordinates can be represented as 

 
          

          
   , (2.2) 

where   and   are named shape functions [95] or displacement mapping functions [96].  

    Actually, the shape functions are derived based on the Taylor-series expansion of the 

displacement fields in the vicinity of node  . The form of shape functions is determined by the 

type of shape change of subset. Firstly, if there is no shape change between the subsets before 

and after deformation, i.e. there is only pure rigid body translation, the zero-order shape 

functions are sufficient to describe the movement of square subset: 

 
    
     

 .   (2.3) 
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However, when there is a shape change in the deformed subset, the zero-order shape functions 

are insufficient. In this case, the first-order shape functions can be used: 

 
       

  

  
   

  

  

       
  

  
   

  

  
 
    (2.4) 

It can be seen that the translation, rotation, normal and shear strains of subsets are involved in the 

first-order shape functions. Besides, the second-order shape functions which can represent more 

complicated deformation situations are also available in the literature [96]: 
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However, advanced studies already showed that the first-order shape functions was a good 

approximation to the shape change of subset in most cases. The application of second-order 

shape functions is unnecessary, considering the much higher computational complexity and 

limited improvement in the measurement accuracy [95]. 

    Since the shape of deformed subset is changed and the point    may be located between 

integer pixels, the grey values at the sub-pixel locations of deformed image are required to 

compute the correlation coefficient. The sub-pixel grey values can be obtained by interpolation 

methods, including the bilinear interpolation [81] and other higher-order interpolations such as 

the bicubic spline interpolation [97] and biquintic spline interpolation [98]. The higher-order 

interpolations can provide higher measurement accuracy compared to the bilinear interpolation. 

    The core of DIC implementation procedure is to search the position of the extreme of 

correlation coefficient. In details, the procedure to determine the displacements of one node 

includes two consecutive steps. Firstly, the integer-pixel-level displacements of the node are 

obtained. Next, the sub-pixel-level displacements are computed starting from the integer-pixel-
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level displacements. In the first step, usually the shape of subset is assumed to retain during 

deformation, since only a rough estimate of displacement is needed. The integer-pixel-level 

displacements can be obtained by simply applying a pixel-by-pixel searching scheme or the 

coarse-to-fine searching scheme [99]. An alternative method is to calculate the correlation 

between two subsets in Fourier's domain [100]. The computational speed of this method is 

extremely fast, in spite of the fact that its measurement accuracy is sensitive to the displacement 

gradients. In the second step, the measurement accuracy of displacements is enhanced to sub-

pixel level, using the integer-pixel-level displacements as the initial guess. In the literature, there 

are plenty of sub-pixel registration algorithms which can achieve sub-pixel measurement 

accuracy as small as 0.01 pixels, such as the coarse-fine search method [101], curve fitting of the 

correlation coefficient method [102], and Newton-Raphson iteration method [81], [97]. Among 

all the algorithms, the Newton-Raphson iteration method is the most widely used one due to its 

balanced measurement accuracy and computational cost.  

In this thesis, a 2D-DIC software was custom-built for the measurement of crack-tip 

displacements. As for the algorithms used in the DIC software, the zero-normalized sum of 

squared differences coefficient and the first-order shape function shown in (2.4) are chosen; the 

sub-pixel grey distribution of the digital image is obtained by the bicubic spline interpolation; the 

measurement of integer-pixel-level displacements is implemented in Fourier's domain; the sub-

pixel measurement is computed iteratively with the Levenberg-Marquardt algorithm [95]. The 

measurement accuracy of the software is estimated to be 0.02 pixels, through a sequence of 

numerical tests with synthetic speckle patterns. The DIC software was coded in MATLAB. The 

source code is provided in Appendix A. 
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Chapter 3  

R-curve Characterization of Translaminar Crack Growth in 

Cross-ply Composite Laminates using Digital Image 

Correlation 

3.1 Introduction 

    This chapter presents experimental methods to estimate crack-tip field parameters and 

characterize R-curve behaviors of translaminar fracture in cross-ply composite laminates, using 

the experimental outputs of Digital Image Correlation (DIC). The investigated crack-tip field 

parameters include stress intensity factor, energy release rate and effective crack length. The 

nonlinear least-squares method and conservation integrals are used to determine these parameters 

from elastic far-field displacements, based on the homogeneous approximation of anisotropic 

solids for fiber-reinforced composite laminates. The sources of error of the two parameter-

estimation methods are investigated. Eventually, R-curves are constructed using the estimated 

crack-tip field parameters. 

    The remainder of this chapter is organized as follows. In Section 3.2, firstly, the description of 

asymptotic crack-tip fields in general anisotropic elastic solids is presented following the Stroh's 

representation of anisotropic elasticity [103]–[106]. Then two methods, which are respectively 

based on the stress intensity factor method and energy release rate consideration, are applied to 

investigate this quasi-brittle fracture problem. A nonlinear least-squares method is proposed to 



 

31 

 

estimate the stress intensity factor and effective crack length from crack-tip deformation fields, 

similar to the method proposed by Yoneyama et al [37]. In parallel, conservation integrals [40], 

[107], [108] are also introduced to estimate the energy release rate and effective crack length. In 

Section 3.3, both the nonlinear least-squares method and conservation integrals are applied to 

process the experimental crack-tip displacement fields measured by Digital Image Correlation. 

Special considerations are made to investigate the errors and limitations of two methods. Then 

the results of estimated crack-tip field parameters and the R-curve behaviors are analyzed. In 

Section 3.4, more extensive applications of these parameter-estimation methods are discussed. 

Finally, some conclusion remarks are provided in Section 3.5.  

 

3.2 Estimation of the crack-tip field parameters in anisotropic solids 

3.2.1 Asymptotic expansion of crack-tip fields in anisotropic solids 

    In this section, a general form of crack-tip elastic fields in anisotropic solids is expressed in 

terms of an asymptotic expansion of the complex functions in the Stroh formalism [104], [106]. 

    In order to describe the present study in a self-contained manner, we firstly describe 

anisotropic elasticity theory that has been well-documented in the work of Stroh and Suo [104], 

[106]. To avoid confusion, no summation convention is assumed for repeated indices. 

    The generalized Hooke’s law relating stresses ij  to strains 
kl for an anisotropic material can 

be written as   

  
3

1,





lk

klijklij C  (3.1) 
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where ijklC  is the elastic stiffness tensor. Using the symmetry of the stiffness tensor and the 

definition of infinitesimal strain tensor, the equilibrium equation can be written as 

 .0
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1,,
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
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lkj jl

k
ijkl

xx

u
C  (3.2) 

A general solution for the displacement 
ku  in the two-dimensional plane ),( yx is given 

[103], [105]  as 
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where  )(  zf are analytic functions of the complex arguments, ypxz   , and 
kA  is a 33  

matrix depending on elastic constants. Each column of the matrix 
kA  and each of the 

characteristic roots
p  are the eigenvector and the corresponding eigenvalue with positive 

imaginary part of the following eigenvalue problem, respectively: 

 0])([
3

1

22

2

122111 




k

kkikikiki ACpCCpC . (3.4) 

Then, the stresses ij  are expressed as 
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where the matrix iL  is given by  
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3

1

2212
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For a two-dimensional problem, i.e. with geometry and external loading invariant in the direction 

normal to the plane ),( yx , any solution of anisotropic elasticity problems can be represented with 

an analytic function vector )(zf which is defined as 

  (3.7) 
 T

zfzfzfz )(),(),()( 321f
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with the argument  pyxz  in the generic form. Once the analytic solution of )(zf is determined 

for a boundary value problem, the argument z should be replaced with
z for each component 

function to compute the field quantities from the equations (3.3) and (3.5). 

    Consider a semi-infinite traction-free crack problem in an anisotropic solid, as shown in 

Figure 3.1, the crack tip is located at the origin, and the traction-free crack lies along the negative 

x -axis (i.e. axis 1). 

 

Figure 3.1 Crack-tip coordinate system of a semi-infinite crack problem 

 

    The boundary conditions consist of the continuity condition of traction along the entire x -axis 

and the traction-free condition on the semi-infinite crack, which leads to a homogeneous Hilbert 

arc problem [109]. Solving the problem, an asymptotic expansion of the crack-tip elastic fields 

can be obtained as 
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where 
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nzz

0

)( bh  as N ,and both 
na and 

nb  are column vectors with 

three real-number elements. The detailed derivation of this asymptotic expansion is presented in 

Appendix B. The expression in (3.8) can be rewritten in a compact form as  
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where 
nnnn bcac  122  and , .The first term of coefficient series

0c  is related to stress intensity 

factors as 

 ,2 0ck   (3.10) 

where the stress intensity vector k is defined as T

IIIIII KKK },,{k and 
IK IIK IIIK respectively 

represents the mode-I, mode-II and mode-III stress intensity factor. Under small-scale 

yield/bridging condition, the stress intensity vector k is related to strain energy release rate G

[106] as 

 Hkk
TG

4

1
 , (3.11) 

where the matrix H  is defined with a positive-definite hermitian matrix 
1 ALB i as  

 BBH  . (3.12) 

    In the present study, the case of orthotropic solids under plane-stress condition is investigated. 

Consider only in-plane deformation fields, the stress-strain relationship can be written as 
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using the Voigt notation of elastic stiffness tensor ijc . Then, the eigenvalue problem in (3.4) is 

reduced to [110] 

   0ATRRQ  2)( pp T , (3.14) 

where the 2x2 matrices Q, R and T are 
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Now the matrices A, L, B and H are 2x2 matrices, and the field quantities in (3.3) and (3.5) can 

be determined by two analytic functions )( 11 zf  and )( 22 zf . By integrating (3.9), the analytic 

functions of an asymptotic crack-tip field can be expressed as 
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where 2)or  1,( 1  L are the elements of 1
L , 2)or  1( )( 

nc are the elements of nc . 

Eventually, the in-plane displacement components near a crack tip in general anisotropic solids 

can be written as 
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 (3.16) 

In (3.16), the crack-tip displacement fields including higher order terms are expressed in an 

asymptotic expansion similar to the Williams-type expansion for isotropic cases. 

    In the present study, the fracture problem can be simplified as an orthotropic material under 

plane-stress condition, with the crack surface lying on one plane of symmetry. In this case, 

explicit expressions of matrices A, L, B and H are derivable and presented in Appendix C. 

 

3.2.2 Least-squares method 

Given a set of displacement data )~,~( ii vu  measured at points ),( ii yx with Mi ,,2,1  , the 

coefficients )(

1

nc and )(

2

nc in the asymptotic expansion in (3.16) can be determined using least-

squares methods [34], [37] . In linear least-squares method, the crack-tip location must be known 

a priori [34]. However, for fiber-reinforced composites, identification of the crack-tip location is 
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extremely difficult due to the generation of relatively large crack-tip damage zone during 

fracture process. Therefore, in the present study, the nonlinear least-squares method is used to 

simultaneously determine not only stress intensity factors but also crack-tip location, higher-

order terms in the asymptotic expansion of displacement fields and rigid-body displacement 

components [37]. 

    The computational procedure is briefly described below. Firstly, for convenience, the general 

form of displacement components in (3.16) is rewritten in linear combinations as 
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. Then, the sum of squared residuals for M data 

points( Mi ,,2,1  ) is expressed using matrix notation as 

 , (3.19) 

where the elements of matrices ][ inP and ][ inQ are defined as 

 , . (3.20) 

To minimize the sum of the squared residuals, let 
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Then a set of linear equations can be obtained as  
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As long as the number of the data points is greater than that of the unknown coefficients, the 

coefficients can be determined by solving (3.22) in a least-squares sense. 
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    In nonlinear least-squares method, the determination of crack-tip position ),( 00 yx , which is 

relevant to an arbitrary Cartesian coordinate system of x and y  , as shown in Figure 3.2, is 

included in the computational procedure as additional unknown parameters.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 An arbitrary Cartesian coordinate system x and y with the crack-tip location ),( 00 yx  

 

    Since the coordinate variables  x and y  are relevant to a coordinate system with its origin 

being at the crack-tip, then a coordinate transformation is made in (3.17) and (3.18) as 

 00, yyyxxx  . (3.23) 

As a result, the equations (3.17) and (3.18) can be represented as: 
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where ndyx  and , 00 are unknowns. This is a nonlinear least-squares problem that can be solved 

iteratively with a nonlinear optimization algorithm. In this paper, the problem is solved by a 

separable nonlinear least-squares method, which separates the determinations of crack-tip 

location and coefficient series. In details, the crack-tip location ),( 00 yx is updated iteratively 

using a nonlinear optimization algorithm, while at each iteration the coefficient series are 

obtained by solving the linear equations in (3.22) in a linear least-squares sense with the 

estimated crack-tip location. The flowchart of the separable nonlinear least-squares method is 

shown in Figure 3.3. The nonlinear optimization method used to set new trial values of crack-tip 

location ),( 00 yx is Levenberg-Marquardt algorithm [111], [112]. Finally, the determined crack-tip 

location is interpreted as the location of LEFM effective crack tip to which the analytic 

continuation of elastic far field converges. This effective crack-tip position is equal to the 

effective crack length in the case of self-similar crack growth if the coordinate origin is located at 

the notch mouth. 
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Figure 3.3 Flowchart of the separable nonlinear least-squares method for the determination of 

coefficients of asymptotic expansion and effective crack-tip position. 

 

    In the study, the crack-tip displacement fields are measured by a 2-D optical method—Digital 

Image Correlation. The rigid body motions of specimen during the fracture test may influence 

the accuracy of in-plane displacement measurement, and hence influence the estimated crack-tip 

field parameters. Therefore, the terms representing the effects of rigid body motions must be 
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added to the analytical expressions of displacement fields in (3.24) and (3.25). The rigid body 

motions can be categorized as in-plane and out-of-plane motions.  

    Schematic diagrams for in-plane rigid body translation and rotation of specimen are shown in 

Figure 3.4 (a) and (b), respectively.  

 

 

 

 

 

 

                                              (a)                                                         (b) 

Figure 3.4 Schematic diagrams of the in-plane rigid body motions of specimen: (a) in-plane rigid 

body translation (b) in-plane rigid body rotation 

 

    Firstly, the in-plane rigid body translations xT and 
yT must be added to the expressions of 

displacement fields for least-squares method. On the other hand, the in-plane rigid body rotation 

Rot can cause additional in-plane displacements as follows: 

 
Rotu y Rot    (3.26) 

 
Rotv x Rot   (3.27) 

In the previous studies [37], these two additional displacements were added to the analytical 

displacement fields. However, it is found that the term representing the effect of in-plane rigid 

body rotation is already included in the asymptotic expansions of displacement fields in the 

equation (3.16) as follows, 
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Therefore, no additional terms corresponding to the in-plane rigid body rotation need to be added 

to the expressions of displacement fields. 

    Schematic diagrams for the out-of-plane motions of specimen are shown in Figure 3.5 (a)-(c), 

including out-of-plane translation, out-of-plane rotation with respect to x axis and rotation with 

respect to y axis.  

 

 

 

 

 

 

                      (a)                                                   (b)                                                (c) 

Figure 3.5 Schematic diagrams of the out-of-plane rigid body motions of specimen: (a) out-of-

plane translation (b) out-of-plane rotation with respect to y axis (c) out-of-plane rotation with 

respect to x axis. The original position of specimen is represented by solid lines, while the out-

of-plane motion is represented by dashed lines. 

 

    The effect of out-of-plane translation is negligible when the distance between the specimen 

surface and the image-capturing device is large. Besides, it is found that the term which 

represents the out-of-plane rotation with respect to y axis is also included in the asymptotic 

expansions of displacement fields in the equation (3.16), similar to the case of in-plane rigid 

body rotation. On the other hand, the effect of the out-of-plane rotation with respect to x axis 

cannot be represented by any terms in the asymptotic expansions of displacements. Thus an 

additional term must be added to the displacement fields. Eventually, the analytical expressions 

of displacement fields used in the least-squares method are represented as follows, 
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where  denotes the out-of-plane rotation angle with respect to x axis, xT and 
yT respectively 

represent the in-plane rigid body translations in x and y directions. 

 

3.2.3 Conservation integrals 

In parallel to the least-squares method, the stress intensity factors, energy release rate and crack-

tip location can also be extracted using conservation integrals. The conservation integrals are 

path-independent, i.e. the integrals yield the same value even if different integral paths are used. 

Figure 3.6 shows an arbitrary integral path of the conservation integrals. The integral path 

always starts from the lower side of crack faces and ends at the upper side of crack surface. The 

conservation integrals used in this study are the J-integral and M-integral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Integral paths of conservation integrals 
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    The J-integral [40] in linear elastic solids is expressed as  
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where  ,u  is  xu  / , n  is the outward normal to  and 2or  1,  .Here the summation 

convention is assumed for repeated indices. The J-integral is equal to the strain energy release 

rate in elastic materials, i.e. 
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For a pure mode-I case, the stress intensity factor can be determined by assuming  T

IK,0k . 

    To determine the effective crack-tip position, the 2-dimensional M-integral [107], [108] is 

introduced as follows 
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where 2or  1 ,,  . When evaluate M based on a coordinate system with the origin arbitrarily 

chosen on the crack plane, i.e., let the y-directional location of the crack tip be zero, the position 

of the crack tip 0x can be determined by  

 



J

M
x0 , (3.34) 

with M and J  being evaluated from far-field experimental data.  

    The conservation integrals can also be implemented by domain integral formulation [113]. 

Compared to the line integral, domain integral can reduce the random errors in the results by 

using more data in the computation. Nevertheless, in this study the line integral is used because it 

is able to provide accurate results with relatively simpler computational procedure. 
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3.3 Experimental investigation 

3.3.1 Experimental procedure 

The composite material investigated in this study was Cyply 1002 (formerly known as Scotchply 

1002), a glass-fiber reinforced epoxy laminate, manufactured by Cytec Engineered Materials. A 

total of six specimens with same geometries but different lay-up sequences were tested. All the 

specimens are 3.3 mm-thick cured panels of laminates. The information about all the tested 

specimens is provided in Appendix D. For the purpose of illustration, only the result of a cross-

ply laminate [ 90/)0/90( 3 ]s was presented in this chapter. The orthotropic elastic properties of 

the composite laminates are measured [114]–[116] and summarized in Table 3.1,which are 

comparable to those available in literature [117]. 

 

Table 3.1 Elastic properties of the composite laminate, Cyply 1002 

 E1 [GPa] E2 [GPa] E45º [GPa] 12 [GPa] 12 

Measured in this study 22.39 22.14 10.23 3.17 0.127 

 Ref. [117] 24.1 23.4 10.3 - - 

 

    The translaminar fracture tests were conducted using the extended compact tension (ECT) 

specimen geometry [118], also known as eccentrically loaded single-edge-notch tension (ESET) 

specimen, following ASTM E1922 [119]. The ECT specimen is the only specimen configuration 

that has become standardized for translaminar testing of composite laminates. Furthermore, the 

ECT specimen exhibits stable crack growth, which is critical in the measurement of R-curves 
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[33]. The specimen was machined using an abrasive water jet cutter. The dimensions of the 

specimen are shown in Figure 3.7 (a). The measured width of the specimen is 25.44 mm. The 

width of initial notch is 0.20mm, narrow enough to be considered as a slim crack. The measured 

original crack length is 12.93 mm.  

    To conduct full-field displacement measurements using DIC technique, a random speckle 

pattern was spray-painted on the specimen. A monochrome CCD camera (1280 x 960 pixels) 

was used to capture digital images of the speckle pattern. The size of the field-of-view was 28.8 

mm x 21.6 mm (22.5 m/pixel) centered at the initial notch tip. An image of the speckle pattern 

in un-deformed configuration is shown in Figure 3.7 (b). 

    The fracture test was conducted at a loading rate of 0.01 mm/sec using MTS servo-hydraulic 

test frame. The extension rate is slow enough to cause a quasi-static crack growth, which is the 

prerequisite of fracture toughness measurement. The loading direction lies along the y-axis (or 

axis 2). The applied load and load-point displacement were recorded with a 10-Hz sampling rate. 

A picture of the unpainted side of the specimen after the test is shown in Figure 3.7(c). The 

picture confirms that the translaminar crack propagated in a self-similar manner. Moreover, no 

extensive delamination or longitudinal splitting was found through the observation of fracture 

surface.  
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Figure 3.7 (a) Configuration of ECT (ESET) specimen (b) Speckle patterns for DIC 

measurement (c) Unpainted side of the specimen after test. In (a), W=25.44mm. The width of 

notch is 0.20mm.The measured original crack length is 12.93 mm. In (b), the area surrounded by 

the outer rectangle is the region of interest in which the displacements are measured by DIC, the 

area within the polygon is the region from which data points used in least-squares methods are 

sampled. In (c), it shows self-similar crack growth. 

 

    During the fracture test, a series of digital images of the speckle pattern was acquired with a 

frame rate of 1 Hz. A total of 105 images were analyzed by using 2-D DIC software. The DIC 

software was custom-built by implementing the Newton–Raphson iteration 2-D DIC algorithm  

[97]. The quasi-Newton optimization method in the original paper was replaced by a more robust 

optimization method--Levenberg-Marquardt method. The precision of the software was 

estimated to be 0.02 pixels, through a numerical test using synthetic speckle patterns. A subset-

size of 41 x 41 pixels was used in the DIC analysis, and the spacing between two neighboring 

subsets was 10 pixels.  
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3.3.2 Experimental results 

3.3.2.1 Load-CMOD curve and full-field displacements 

    A load-crack mouth opening displacement (CMOD) curve obtained during the fracture test is 

shown in Figure 3.8. The crack mouth opening displacement is measured by DIC. The load-

CMOD relationship is linear up to approximate 70% of the peak load, and subsequently shows a 

gradual deviation from the linear trend which represents the generation of a damage zone around 

the crack tip. The deviation from the linear trend satisfies the requirement 3.0/ 0  nn dd , thus 

the fracture toughness ICK can be obtained using the stress intensity factor formula provided in 

ASTM standard E1922. After reaching the peak load 1185N, the applied load decreases 

smoothly without discrete jumps, which means that the translaminar crack growth took place in a 

macroscopically stable manner.  
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Figure 3.8 Load versus Crack Mouth Opening Displacement (CMOD) Plot 

 

    In this study, the frame of DIC measurement region was depicted by the outer white rectangle 

in Figure 3.7(b). An example of the measured crack-tip displacement contour maps is shown in 

Figure 3.9. This example set of displacement data corresponds to the moment when the CMOD 

equals 0.30 mm. It can be seen that the symmetric U field and anti-symmetric V field with 

respect to the crack plane are consistent with the nature of mode I fracture. Besides, because the 

DIC subset near the crack surface contains displacement discontinuity so that the fundamental 

assumption of DIC is violated, the displacement data near the crack surface was considered to be 

invalid and discarded. In the estimation of the crack-tip field parameters, the displacement data 

was used without additional smoothing.  
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(a)  

 

(b)  

Figure 3.9 An example set of displacement fields measured by DIC: (a) U field (b) V field. It 

was measured at the moment when the CMOD equals 0.30 mm. The unit of displacements is the 

millimeter (mm). 
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3.3.2.2 Results of least-squares method 

    For least-squares method, the accuracy of estimated crack-tip field parameters is influenced by 

several factors, including the number of terms in asymptotic expansion, the domain from which 

the displacement data are sampled, and the out-of-plane rotation of the specimen. Before 

analyzing the whole fracture test, two displacement data sets, measured at the moments when the 

CMOD equals 0.30mm and 0.75 mm, were chosen to investigate the influence of these factors. 

As was previously mentioned, the displacement data measured near the crack face and around 

the crack tip is unreliable because of the displacement discontinuity and the large deformation 

within the area, respectively. Therefore, the data points used in the estimation of crack-tip field 

parameters were sampled from a square domain centered at the crack tip with an interior square 

area being deleted, as shown in Figure 3.7 (b). 

    Firstly, the influence of the number of terms in asymptotic expansion on the determination of 

stress intensity factor and effective crack length was investigated. For the data domain used in 

the investigation, the half width of outer square domain was set to 350 pixels (7.88 mm), and the 

half width of interior deleted square area was set to 100 pixels (2.25 mm) to avoid three-

dimensional effects [42]. The variations of determined stress intensity factor and effective crack 

length with respect to the number of terms are respectively shown in Figure 3.10 (a) and (b). It is 

observed that, the determined KI and effective crack length first fluctuate with increasing number 

of terms and then stabilize after 4 terms. Therefore, in all the following investigations, 10 terms 

of asymptotic expansion are used to ensure stable results.  
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(a) 

 
(b) 

Figure 3.10 Variation of the (a) stress intensity factor and (b) effective crack length obtained by 

the least-squares method with respect to the number of terms in crack-tip asymptotic expansion.  
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Secondly, the influence of the data domain used in the parameter estimation was investigated. 

The investigation was conducted with the half width of outer square domain being fixed to 350 

pixels, while the half width of interior deleted area was varied from 100 pixels to 300 pixels. 

Figure 3.11(a) and (b) respectively shows the variations of stress intensity factor and effective 

crack length with respect to W—the half width of interior deleted area. It is seen that the results 

of KI and crack length remains stable before W gets close to 300 pixels. It means that the result is 

not sensitive to the choice of data domain. Therefore, W is set to be 100 pixels for all the 

following investigations to ensure that enough data points are used. 

 

 
(a) 

Figure 3.11 Variation of the (a) stress intensity factors and (b) effective crack length obtained by 

the least-squares method with respect to the half length of interior deleted area in the data 

domain, which is represented by W. 
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Figure 3.11 (cont’d) 

 
(b) 

    As a confirmation of the least-squares fitting, Figure 3.12 (a) compares the experimental 

displacement field in the tension direction with the displacement field that is regenerated with the 

results of least-squares method. The data set is measured when CMOD equals 0.30 mm. It is 

clearly observed that the regenerated displacement contours match very well with the 

experimental data. 
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(a) 

 
(b) 

Figure 3.12 Comparison of the V-field contours measured by DIC and regenerated from least-

squares method at the moment when CMOD is 0.30 mm. The results of least-squares methods 

are obtained (a) without the out-of-plane rotation term and (b) with the out-of-plane rotation term. 

The DIC measurement is represented by solid lines, while the reconstructed field is represented 

by dashed lines.  
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    As previously stated in Section 3.2.1, the out-of-plane rotation of the specimen will influence 

the accuracy of in-plane displacement measurement and thus influence the accuracy of crack-tip 

field parameters. As an illustration, Figure 3.12 (b) shows the comparison of experimental and 

regenerated displacement fields when the out-of-plane rotation is not considered, i.e., the term 

containing in the equation (3.30) is not used in the computation. In this case, it can be seen that 

the regenerated field does not match well with the experimental field. Therefore, the inclusion of 

out-of-plane rotation term in the least-squares fitting process improves the fitting results. 

    Then, the least-squares method was applied to process all the displacement data obtained 

during fracture test. Figure 3.13 (a) and (b) respectively shows the evolution of stress intensity 

factor KI and effective crack length as a function of CMOD. In Figure 3.13 (a), it is observed that 

KI increases monotonically to a steady-state value of about 20 mMPa . As a confirmation, KI 

estimated from the least-squares method was compared with that determined from the applied 

load and specimen geometry. In isotropic cases, the stress intensity factor (SIF) formula for 

extended compact tension (ECT) specimen [118], [119] is given as  

 )(
2/1

F
BW

P
KI  , (3.35) 

 ]27.915.309.3825.2688.1097.3[
]1[

]4.1[
)(    ,/ 5432

2/3

2/1 



 




 FWa  

where P is the applied load, B is the specimen thickness, W is the width of the specimen, and a is 

the crack length. Based on the work of Bao et al. [12], [13], the influence of material orthotropy 

on KI is found to be negligible for this type of composite laminates. From Figure 3.13 (a), an 

excellent agreement is found between the KI values estimated by least-squares method and SIF 

formula with original crack length at the beginning stage of the fracture test, which validate the 
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applicability of least-squares method. However, during the steady-state crack propagation, the 

fracture toughness KIC estimated by the equation (3.35) using the original crack length is about 

16 mMPa , only 80 percent of the KI value estimated by least-squares method. The inconsistency 

between two methods is due to the increase of effective crack length, which makes the SIF 

formula with original crack length invalid. In Figure 3.13 (b), it is observed that the increase of 

effective crack length can be divided into 3 different stages with different slopes, which are 

caused by different fracture damage mechanisms. These fracture damage mechanisms will be 

discussed in details in the characterization of R-curve behaviors. 

    Figure 3.13 (a) and (b) also shows the influence of out-of-plane rotation on the estimation of 

stress intensity factor and effective crack length by the least-squares method. When the out-of-

plane rotation is not considered, the discrepancy between KI obtained by SIF formula and KI 

obtained by least-squares method becomes larger than the discrepancy when the out-of-plane 

rotation is considered. Meanwhile, the effective crack length is significantly underestimated from 

the original crack length at the beginning stage of the fracture test. Actually, the maximum of 

out-of-plane rotation angle  estimated by least-squares method is as small as 1 degree. 

Therefore, it can be seen that the least-squares method is very sensitive to the out-of-plane 

rotation. Since it is very difficult, if not impossible, to eliminate the small out-of-plane rotation 

experimentally, inclusion of the out-of-plane rotation term in the computational process is a 

better choice. 
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(a) 

 
(b) 

Figure 3.13 Variation of the (a) Mode I stress intensity factor KI and (b) effective crack length 

estimated by the least-squares method with respect to CMOD. The effect of out-of-plane rotation 

is shown as well. 
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3.3.2.3 Results of conservation integrals 

    For the computation of conservation integrals, the displacement gradients were obtained from 

the displacement data using a numerical differentiation method [120] with the computational 

window size being 5 by 5. A circular contour containing a total of 600 data points was used as 

the integral path. The data points on the integral path were obtained using the spline interpolation. 

Path integral was calculated following the Simpson’s rule. In the computation, the displacement 

gradients near the crack face were eliminated because the displacement data within this area are 

unreliable. The error caused by the elimination of data is negligible because in mode I fracture 

problems the displacement gradients near the crack-face are very close to zero.  

    The in-plane rigid body translation and rotation won’t cause any changes in the results of 

conservation integrals. On the other hand, as same as for the least-squares method, the out-of-

plane rotation of the specimen can influence the results of conservation integrals. However, the 

effect of the out-of-plane rotation cannot be eliminated within the computational process of 

conservation integrals. In this study, the effect of out-of-plane rotation is eliminated from the 

experimental displacement data prior to the computation of conservation integrals, using the out-

of-plane rotation angle   estimated by least-squares method. 

    To validate the applicability of conservation integrals, the path-independency of integrals was 

investigated before analyzing the whole fracture test. The two displacement data sets chosen for 

least-squares method, which were obtained at the moments when the CMOD equals 0.30 mm 

and 0.75 mm, were also chosen for the investigation of conservation integrals. For each data set, 

the conservation integrals were computed with the radius of integral path varying from 100 to 

300 pixels. Figure 3.14 (a) and (b) show the variations of J-integral value which equals energy 

release rate and effective crack length with respect to the radius of integral path. In Figure 3.14 
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(a), when the CMOD equals 0.30 mm, J-integrals are stable in spite of the fluctuations which are 

caused by the noise in displacement data. However, when the CMOD equals 0.75 mm, J-integral 

first increases and then converges when the radius is larger than 200 pixels. The underestimation 

of J-integral with small radii may be due to the relatively larger influence of the crack-tip 

fracture damage zone. In Figure 3.14 (b), the estimated crack lengths are found to be stable with 

respect to different radii. Based on the above investigation, the conservation integrals in the 

following studies are first computed with 10 different radiuses from 200 to 300 pixels. Then the 

average is used as the representative result.  

    The influence of the out-of-plane rotation on the computation of conservation integrals was 

also shown in Figure 3.14 (a) and (b).When the effect of out-of-plane rotation is not eliminated, 

the J-integral is overestimated by about 20 percent for the data set when the CMOD equals 0.30 

mm. The overestimation is 5 percent when the CMOD equals 0.75 mm. Moreover, the estimated 

crack length becomes path-dependent when the CMOD equals 0.75 mm. It can be seen that the 

elimination of out-of-plane rotation effect before computation is necessary. 
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(a) 

 
(b) 

Figure 3.14 Effect of radius of integral path on the estimation of the (a) J-integral and (b) 

effective crack length obtained by conservation integrals. 
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    Analyzing all the experimental data for the fracture test, the variations of J-integral and 

effective crack length were plotted as functions of CMOD in Figure 3.15 (a) and (b). In Figure 

3.15 (a), it is observed that the J-integral is parabolic at the beginning stage of fracture test, 

which is consistent with the relationship between J and K in the equation (3.32) since K varies 

linearly at this stage. The J-integral increases to a steady-state value of about 25 KJ/m
2
, which is 

close to 26 KJ/m
2
, the value predicted by using the steady-state value of KI—20 mMPa and the 

equation (3.32). In Figure 3.15 (b), it can be seen that the effective crack growth also share the 

same general trend of 3 stages as that was obtained by the least-squares method. 

    Figure 3.15 also shows the estimated J-integral and effective crack length when the effect of 

out-of-plane rotation is not eliminated. In this case, the J-integral is significantly overestimated at 

the early stage before reaching the steady state. The effective crack length is underestimated at 

the beginning stage of fracture test, and is overestimated during the steady-state crack growth. 
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(a) 

 
(b) 

Figure 3.15 Variation of the (a) J-integral and (b) effective crack length obtained by conservation 

integrals with respect to CMOD. The effect of out-of-plane rotation is shown as well. 
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3.3.2.4 Comparison of the results of least-squares and conservation integrals 

Now the results of the least-squares method and conservation integrals were compared to 

validate the small-scale yielding condition. The variations of stress intensity factor and effective 

crack length as functions of CMOD were plotted together in Figure 3.16 (a) and (b). The term “J-

Integral” in Figure 3.16 (a) denotes KI obtained by using the equation (3.32) while assuming the 

mode II stress intensity factor KII equals zero.  

 

 

(a) 

Figure 3.16 Comparison of the (a) mode I stress intensity factor and (b) effective crack length 

estimated by different methods. 
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Figure 3.16 (cont’d) 

 
(b) 

 

    First of all, it is observed that the KI obtained by the least-squares method and that by the 

conservation integrals show a good agreement when load increases linearly proportional to 

CMOD. Then the difference between the two results becomes slightly larger. However, the 

maximal relative difference between the results of two methods during the steady state is still 

less than 3 percent. Furthermore, the effective crack lengths obtained by using the least-squares 

method and conservation integrals are consistent only except at the early stage of the fracture test 

when the signal-to-noise ratio is too low to get reliable results. The consistency of the estimated 

crack-tip field parameters by the least-squares method and conservation integrals represents the 

equivalence of the stress intensity factor approach and the energy release rate consideration. 

Thus, the small-scale yielding condition and the applicability of LEFM are validated.  
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    As an additional confirmation, KI was calculated by using the SIF formula in the equation 

(3.35), with the original crack length a being replaced by the effective crack length obtained by 

least-squares method. The result is shown as the dotted line in Figure 3.16 (a). In this case, the KI 

estimated by using the equation (3.35) can obtain a good estimation of KI for the steady-state 

crack propagation, if the fluctuation of the result is neglected. Therefore, it means that the SIF 

formula provided in ASTM standard E1922 can be extended to estimate the toughness of steady-

state crack propagation if the effective crack length is used instead of the original crack length. 

 

3.3.2.5 R-curve behaviors 

    Since the small-scale yielding condition has been validated, the crack-growth resistance curves 

(R-curves) can be applied to characterize the fracture behaviors of the composites. Based on the 

variation history of stress intensity factor and effective crack length, the R-curves was 

constructed in terms of stress intensity factors (KR) and shown in Figure 3.17. In engineering 

design, the R-curves are usually used to predict load-carrying capability of the structure. For the 

ECT specimen, a sequence of driving force curves (in terms of KI versus crack length) were 

constructed corresponding to different loads by using the SIF formula in the equation (3.35). The 

driving force curve that is tangent to the KR-curve was plotted together with the R-curve in 

Figure 3.17. It is found that the load corresponding to this curve is 1160 N. This predicted 

maximal load is very close to the experimental maximal load—1185 N. It is a proof of the 

accuracy of estimated R-curves.  
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Figure 3.17 R-curves in terms of stress intensity factor, determined by the least-squares method 

and conservation integrals. 

 

    R-curve was also plotted in terms of energy release rate in Figure 3.18 (JR). While KR curve 

shows good promise for materials where small-scale yielding occurs in front of the crack tip, the 

JR curve can be applied for more general cases, including the large-scale yielding conditions. The 

obtained KR and JR curves demonstrate two distinct stages of rising R-curves with two different 

slopes before they reaches a steady state. The effective crack length increases by 2 mm before 

reaching the steady-state, which means that the length of fracture damage zone is larger than 2 

mm.  
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Figure 3.18 R-curves in terms of strain energy release rate, determined by the least-squares 

method and conservation integrals. 

 

    This experimental observation is consistent with the reported R-curve behaviors of 

translaminar crack growth in composite laminates [121], [122]. It is believed that two stages of 

rising R-curves before reaching the steady state correspond to different fracture mechanisms. In 

the rapidly rising stage, the fracture process starts by forming a small diffuse damage zone that 

consists of multiple micro-cracks due to matrix cracking and fiber/matrix debonding. In the 

relatively slowly rising stage, the fracture process creates a macroscopic fracture damage zone 

due to the fiber bridging and fiber pull-out. A schematic diagram of these fracture mechanisms is 

shown in Figure 3.19. Moreover, for the quasi-static fracture problem, the steady-state crack 

propagation can be considered as the steady-state propagation of fully-generated fracture damage 

zone. 
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Figure 3.19 Fracture mechanisms in the translaminar fracture of fiber-reinforced composites 

 

 

3.4 Discussion 

    In this study, only the mode-I problem was investigated. However, it is noteworthy that both 

of the least-squares method and conservation integrals have the potential to be extended to study 

the mode-II or mixed mode problems. In the least-squares method, the mode-I and mode-II stress 

intensity factors are obtained simultaneously. In parallel, the interaction J-integral of 

conservation integral can be used to separately determine the mode-I and mode-II stress intensity 

factors [41]. The interaction J-integral of two elastic fields S and Ŝ is defined as  
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From the equation (3.32), the interaction J-integral of two linear elastic crack-tip fields with 

stress intensity vectors  TIII KK ,k and  TIII KK ˆ,ˆˆ k  can be expressed as  

 kHk
T ˆ

2

1
]ˆ[int SS,J  (3.37) 

If the two auxiliary crack-tip fields IŜ and IIŜ  are analytically constructed with  T

I 1,0ˆ k and

 T

II 0,1ˆ k respectively, the stress intensity vector of a measured crack-tip field S can be 

determined by  
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Hk  (3.38) 

The experimental validation of conservation integrals has been carried out for isotropic materials 

[36], [123]. For fiber-reinforce composite laminates, the only difference is that the auxiliary 

crack-tip fields IŜ and IIŜ need to be analytically constructed using the asymptotic expansion of 

crack-tip fields in anisotropic solids. 

    Figure 3.20 shows the mode I and mode II stress intensity factors of this problem estimated by 

least-squares method and interaction J-integral. It can be seen that the two methods have 

obtained nearly identical results, which also demonstrates the equivalence of stress intensity 

factor approach and energy release rate approach, and hence the validity of small-scale yielding 

condition. The mode II stress intensity factor is negligible compared to the mode I stress 

intensity factor, which is consistent with the nature of pure mode-I problem. 
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(a) 

 
(b) 

Figure 3.20 Comparison of (a) mode I and (b) mode II stress intensity factors estimated by least-

squares method and interaction J-integral. 
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3.5 Summary 

    In this chapter, an experimental investigation based on full-field optical displacement 

measurements was presented as a way to characterize the subcritical and steady-state crack 

advances in translaminar fracture of cross-ply composite laminates. Under the assumption of 

homogeneous approximation, the experimental investigation relied on the linear elastic fracture 

mechanics theory in anisotropic solids. Two methods of least-squares method and conservation 

integrals were proposed to measure the crack-tip field parameters (i.e. stress intensity factor, 

energy release rate and effective crack length) and R-curves from the crack-tip displacement 

fields measured by digital image correlation. The sources of error of two methods were analyzed, 

with an emphasis on the influence of out-of-plane rotation of specimen. Eventually, accurate R-

curve measurement of translaminar fracture of composite laminates was achieved with 

experimental convenience. This study provides a foundation for the top-down approach to multi-

scale analysis of translaminar fracture in fiber-reinforced composite laminates. 
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Chapter 4  

Inverse Extraction of Cohesive-zone Law for Fiber-

reinforced Composite Laminates Part I: Numerical Analysis 

4.1 Introduction 

    In this chapter, two analytical inverse methods are developed to extract the cohesive-zone laws 

(CZLs) from elastic far-field displacements surrounding a crack-tip cohesive zone, for the 

translaminar fracture of fiber-reinforced composite laminates. In the study, the bulk material 

property of fiber-reinforced composite laminates is approximated as elastic anisotropy.  

    The chapter is organized as follows. In Section 4.2, all the analytical derivations for the 

establishment of inverse methods are provided. Firstly, an eigenfunction expansion of the planar 

elastic field around the crack-tip cohesive zone for anisotropic solids is developed. The 

displacements, displacement gradients and stresses around and within the cohesive zone can be 

represented in terms of the eigenfunction expansion. Thus, the CZL which represents the 

relationship between cohesive traction and separation can also be represented with the 

eigenfunction expansion. Next, two analytical inverse methods are developed. The first method 

is named “field projection method (FPM)”, in which the coefficients of eigenfunction expansion 

are extracted using the interaction J-integrals between experimental fields and auxiliary probing 

fields. As stated in Chapter 2, the basis of this FPM method was proposed in the work of Hong 

and Kim [75] for isotropic materials. In this study, the method is extended to the anisotropic 

materials. In parallel, another method based on the nonlinear least-squares method is developed 



 

73 

 

to determine the coefficients, by fitting the analytical expressions of crack-tip displacements to 

the experimental data in a least-squares sense.  

    After establishing the scheme of analytical inverse methods, a set of numerical tests are 

conducted to assess the applicability and error sensitivity of the two inverse methods, as well as 

to provide guidelines for experiments. In Section 4.3, the procedure of the numerical tests and 

the meanings of the studied parameters are introduced. In the numerical tests, synthetic 

displacement fields are firstly constructed with predefined eigenfunction expansions. Then the 

two analytical inverse methods are applied to extract the CZL from synthetic displacement fields. 

Several factors which can influence the accuracy of the inverse solutions are investigated, 

including the shape of CZL, the noise level of inputs, the inverse distance of the data field and 

the number of data points. Results of the numerical tests and further discussions about the results 

are presented in Section 4.4. Finally, some concluding remarks are provided in Section 4.5. 

 

4.2 An eigenfunction expansion of the cohesive crack-tip fields in 

anisotropic solids 

    The derivation of the eigenfunction expansion of cohesive crack-tip fields in anisotropic solids 

is also based on the anisotropic plane elasticity theory in terms of Stroh's formalism that was 

described from the equation (3.1) to (3.7). However, a different boundary value problem is 

solved in this chapter, which leads to an analytical solutions of )(zf  that is different from the 

equation (3.8). 

    The boundary value problem considered in this chapter is a traction-free semi-infinite crack 

with a cohesive zone of size 2c, where the center of cohesive zone is located at the origin, and 
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the crack plane is located on the negative x -axis. The schematic diagram of this problem is 

shown in Figure 4.1. 

 

Figure 4.1 Schematic diagram of semi-infinite crack with a cohesive zone of size 2c 

 

    Using traction-continuity conditions on the entire x -axis and a superposition of two stress-

bounded sharp-crack-tip elastic fields with respect to cx  and cx  , an eigenfunction 

expansion of the elastic field around a cohesive zone can be derived from the solution of a 

homogeneous Hilbert arc problem  [109] as follows 

  )()()(
2

1
)( zizczzczz srqfL   (4.1) 

where 



N

n

nn zQz
0

)()( qq , 



N

n

nn zRz
0

)()( rr and 



N

n

nn zSz
0

)()( ss as N , nq , nr and ns are 

column vectors with real-number elements, and )(zQn , )(zRn and )(zSn are entire functions. 
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Then the cohesive-zone variables can be expressed in terms of eigenfunction expansions. The 

closing-traction distribution )(xt within the cohesive zone ( cxc  ), is described as 

 )()( xcxx qt   (4.2) 

The jump of separation-gradients in the cohesive zone )(xb which indicates the difference of the 

separation-gradients between the upper and lower faces of the cohesive zone is expressed as: 

   )()(')()( xxcxx'x rHuub    (4.3) 

where H is a Stroh’s matrix defined in the equation (3.12). 

Thus, the separation in the cohesive zone )(xδ can be obtained by integrating (4.3), 

  
C

x

c

x
cbx  d)(d)()( rHδ . (4.4) 

When the closing traction )(xt and the separation )(xδ are determined, the cohesive-zone law 

(CZL) )(δt can be obtained by correlating the two parameters within the whole cohesive zone. In 

addition, it is noteworthy that ns  in the equation (4.1) does not contribute to the cohesive-zone 

variables. 

The detailed derivation of eigenfunction expansions of cohesive-crack-tip elastic fields and 

cohesive-zone variables are provided in Appendix E. 

 

4.3 Extraction of CZLs in anisotropic elastic solids 

Based on the eigenfunction expansions of cohesive-crack-tip fields, two inverse methods, 

namely field projection method and least-squares method, are developed to extract the CZLs 

from elastic far-field displacements surrounding a crack-tip cohesive zone. More specifically, the 
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inverse methods are developed to extract the column-vector coefficients nq and
nr in ( )zq and

( )zr . Then the cohesive traction and separation within the cohesive zone can be obtained with 

the equation (4.2) and (4.4), respectively. Eventually, the CZL can be constructed by correlating 

the cohesive traction with separation. 

 

4.3.1 Field projection method 

    In 2003, Hong and Kim developed an inverse method named “field projection method (FPM)” 

to extract the CZLs for isotropic materials [75]. The method was developed based on the J-

orthogonal representation of an eigenfunction expansion of cohesive-crack-tip elastic fields, 

using the far-field interaction J-integral [41] between the physical field of interest and a set of 

auxiliary probing fields. This method is then extended to a nano-scale planar field projection of a 

cohesive crack-tip on an interface between two anisotropic solids by Choi and Kim [78].  In the 

present study, the FPM is extended to a macro-scale planar cohesive-zone problem of an 

anisotropic solid. 

 

4.3.1.1 Interaction J-integral 

    The FPM makes use of the interaction J-integral, which is also introduced in Section 3.4 for 

the separate determination of the mode-I and mode-II stress intensity factor in mixed-mode 

fracture problems. Compared to its application in the framework of LEFM, the application of 

interaction J-integral in the FPM is more advanced. 
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    Figure 4.2 shows the coordinate system for a cohesive crack-tip field, with S and Ŝ respectively 

denoting the physical field of interest and auxiliary probing field, and  and 0 respectively 

denoting the integral contour in the far field and along the cohesive-zone surface. The path-

independence of the interaction J-integral leads to the relationship: 

 ]ˆ,[]ˆ,[ intint

0
SSJSSJ  

.
 (4.5) 

From the equation (3.44), the interaction J-integral along the contour 
0 can be represented as 

    
0

int 2 2ˆ ˆ ˆ ˆ ˆ[ , ] ( ) ( ) ( ) ( ) d ( ) ( ) ( ) ( )T T
c

c

c

c
J S S x x x x x c x x x x x dx

 
     

T T T
t b b t q Hr r H q

.
 (4.6) 

 

Figure 4.2 Interaction J-integral paths surrounding a cohesive zone at the far field  , and along 

the cohesive zone surface 0 . 

 

4.3.1.2 Expansions of the elastic-fields in terms of orthogonal polynomial series 

    The FPM makes use of the orthogonality of polynominals to determine the coefficients in 

( )zq and ( )zr . In the equation (4.6), it can be seen the interaction J-integral is expressed in terms 
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of the inner product of )(xq and )(xr with a weight function of 22 xc  in cxc  . Thus, it 

is convenient to expand )(xq
 
and )(xr with Chebyshev polynomials of the second kind, a 

complete set of orthogonal polynomials generated by the Schmidt orthogonalization of inner 

product. 

    The Chebyshev polynomials of the second kind, denoted as )(xUn
, are orthogonal in the 

interval ]1,1[ with a weight function of 21 x , i.e. 

 
mnnm

xxUxUx 


2
d)()(1

1

1

2   (4.7) 

where
mn

 is the Kronecker delta. 

    Now, The functions )(xq
 
and )(xr

 
are rewritten in terms of the Chebyshev polynomials of 

the second kind as 
n

0

( ) ( )
N

n

n
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

q t

 

and 
n

0

( ) ( )
N

n

n

x U x


r b

 

for cxx /~  and N , where 
nt  

and 
nb  are column vectors with real-number elements. Thus the eigenfunction expansion of the 

crack-tip elastic fields in (4.1) can be rewritten as: 

 
n

0 0

1
( ) 1 ( ) 1 ( ) ( )
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 

 
      

 
 Lf t b s  (4.8) 

for czz /~  and N . 

    Then, the distributions of the traction, separation-gradient and separation within the cohesive 

zone are rewritten as: 

 
0
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n

x x U x


  t t  (4.9) 
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1

0

( ) ( )d 1 ( )d
N

n n

n

c

x x
x b c U    



    δ H b  (4.11) 

for 1~ x and N . 

    In terms of the orthogonal polynomials’ expansion, once
nt and

nb (n 0, 1,2,...,N) are 

determined, the cohesive-zone variables )(xt , )(xb and )(xδ , and hence the CZL )(δt can be 

determined.  

 

4.3.1.3 Traction probing and separation probing 

    In order to determine
nt and

nb ( 0, 1,2,...,N)n  , we will use far-field interaction J-integrals 

]ˆ,[int SSJ
between a physical cohesive-crack field S and a series of auxiliary probing fields )(ˆ nS

N)1,2,..., ,0( n . The field S and auxiliary probing fields
)(ˆ nS are represented by the analytical 

functions  )(zfL  and  )(

)(ˆ
n

zfL  , respectively.  

    Firstly, the traction-probing method, i.e. the method to determine
nt , is introduced as follows. 

If we choose   )(

)(ˆ
n

zfL  such that the tractions of the auxiliary field vanish on the cohesive zone, 

i.e. Tn x ]0,0[)(ˆ )( t for cxc  , then from the equation (4.6) it can be seen that the interaction 

J-integral has contributions only from the cohesive tractions of the physical cohesive-crack-tip 

field. Furthermore, the contributions to the interaction J-integral from the cohesive-zone tractions 

of the physical field S can be limited to that from a single component of the traction along x or y 

direction, i.e. )(1 xt or )(2 xt , by changing the analytical auxiliary function. Then the coefficients 
nt

can be determined from the interaction J-integrals which can be calculated from the elastic far-

fields due to its path-independence. 
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    The mathematical derivation of the traction-probing method can be described as follows. The 

analytical function defining the auxiliary fields for probing the cohesive-zone tractions of the 

physical cohesive-crack field S in the α-direction is denoted as   )(

)(ˆ
n

tz


fL  . If such functions are 

chosen as  

   T

n

n

zUzz t ],)[~(1~
4

1
)(ˆ

21

)(


fL  (4.12) 

where N1,2,..., ,0n , and α= 1 or 2, then the tractions and separation-gradients of the auxiliary 

field 
)(ˆ n

tS


within the cohesive zone cxc  become 

 
Tn xt ]0,0[)(ˆ )( 


t , T

n

n xUxxt ],)[~(~1
2

1
)(ˆ

21

)(


 Hb  .      )( cxc   (4.13) 

In this case, the interaction J-integral is evaluated from the equation (4.6) as 

 
0

int ( ) ( ) ( )

1 1 2 2
ˆ[ , ] ( )

2

n n n

t

c
J S S H t H t 


    (4.14) 

where N1,2,..., ,0n , and α equals 1 or 2. 
)(nt

 ( 1 or 2)   represents the th element of the 

column vector 
n

t N)1,2,..., ,0( n . H represents the element of Stroh’s matrix H. 

    Because the interaction J-integral is path-independent, we can replace the integration contour 

0 with a far-field contour  . Rearrange the equation (4.14), the column-vector coefficients
T

n
t can 

be represented as follows, 

    TnnnnT

n tt SSJSSJ
c

tt ]ˆ,[],ˆ,[
2

, )(

2

int)(

1

int1)(

2

)(

1 

 Ht


. (4.15) 

It is noteworthy that H is a symmetric matrix. 
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    Similarly,
nb can be determined with the separation-probing method. If we choose   )(

)(ˆ
n

zfL 

such that the separation-gradient of the auxiliary field vanishes in the cohesive zone, i.e. 

for cxc  , then the interaction J-integral has contributions only from the 

cohesive zone separation-gradients of the physical cohesive-crack field. Denoting the auxiliary 

fields for probing the cohesive zone separation-gradients of the physical cohesive-crack field in 

the α-direction as   )(

)(ˆ
n

b
z


fL  ,  we choose such functions as  

   T

n

n

b
zUzz ],)[~(1~
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)(ˆ
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
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where N1,2,..., ,0n , and α=1 or 2, then the tractions and separation-gradients of the auxiliary 

field 
)(ˆ n

b
S


within the cohesive zone cxc  become 
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Then the interaction J-integral is evaluated as 

 
0
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c
J S S H b H b 


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where N1,2,..., ,0n , and α equals 1 or 2.  
)(nb

 (β=1 or 2) represents the th element of the 

column vector 
n

b N)1,2,..., ,0( n . 
H

 
represents the element of Stroh’s matrix H.                                                                            

    Based on the path-independence of the interaction J-integral, the integration contour 0 can be 

replaced with a far-field contour  . The equation (4.18) can be rearranged to represent the 

determination method of 
n

b as follows, 

    Tn
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n

b
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Tn x ]0,0[)(ˆ )( b
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After the determination of nt and nb ( 0, 1,2,...,N)n  , the cohesive-zone law can be obtained 

through the use of the equations (4.9), (4.10) and (4.11). 

 

4.3.2 Least-squares method 

    Based on the eigenfunction expansion of the cohesive crack-tip fields that was given in 

Section 4.2, the coefficients nt and nb ( 0, 1,2,...,N)n   can also be determined using linear least-

squares method. Similar to the procedure described in Section 3.2.2, the least-squares method 

extracts the coefficients from the full-field cohesive crack-tip displacements. However, in this 

problem, it is difficult to represent the crack-tip displacement fields in a compact form as the 

equation (3.16). Nevertheless, the computational implementation ( i.e. the computer 

programming) of the data reduction scheme of linear least-squares method is still simple. The 

matrix of the normal equation of least-squares method can be generated from the eigenfunction 

expansion in the equation (4.8). Each element in the matrix of least-squares' normal equation 

equals to the analytical displacement of one data point which is obtained with the corresponding 

unknown coefficient in the eigenfunction expansion equaling unity and other coefficients 

vanishing. 

 

4.3.3 Determination of cohesive-zone size and position 

    In the field projection method and linear least-squares method, the size and the position of the 

crack-tip cohesive zone, i.e. c and ),(
00

yx ,are assumed to be known a priori. However, 

identification of the cohesive-zone size and location in practical experiments is an extremely 
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hard task. Even though the orientation and the y-directional location of the cohesive zone
0

y are 

visually obtainable from the images of cracked structures, determination of the x-directional 

central location of cohesive zone
0

x cannot rely on the visual inspection. In this study, the 

determination of the size and x-directional central location of cohesive zone, i.e. c and x0, is also 

involved in the procedures of inverse methods.  

    An iterative process to estimate c and 
0

x  was developed by Hong and Kim [75]. The initial 

guess of cohesive zone size for the iterative process was sufficiently large to ensure that the true 

cohesive zone is involved in the estimated one. Then the process was iteratively updated by 

searching the zero-cross-over points of the traction and separation-gradient distributions within 

the estimated cohesive zone. Finally, the iterative process stopped when the traction and 

separation-gradient distributions did not make zero-cross-over points any more. In their paper, 

the initial guess of 
0

x was made to be the LEFM effective crack-tip location, which always lay 

within the cohesive zone [124]. As stated in Chapter 3 of this dissertation, the LEFM effective 

crack-tip location can be obtained by the conservation integrals and the nonlinear least-squares 

method.  

An alternative way to determine the size c and x-directional centre of the cohesive zone x0 is 

the separable nonlinear least-squares method, which is similar to the method described in Section 

3.2.1 for the determination of the x-directional and y-directional coordinates of the LEFM 

effective crack-tip ),(
00

yx . For the determination of cohesive zone size and positions, the x-

directional centre of the cohesive zone 0x and cohesive-zone size c are treated as two unknown 

parameters in addition to the coefficients of eigenfunction expansion. Then, the corresponding 

linear least-squares problem is solved iteratively to obtain the coefficients of eigenfunction 
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expansion while updating the size c and the x-directional central position of cohesive zone 
0x , 

The iteration keeps going until the sum of residuals converges to a minimum. The flowchart of 

separable nonlinear least squares method is shown in Figure 4.3. 

 

     

Figure 4.3 Flowchart of the separable nonlinear least-squares method for the determination of 

cohesive-zone law, cohesive-zone size and position. 
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    In the nonlinear separable least-squares method, the nonlinear optimization algorithm used to 

set new trial values of 
0x and c is Nelder-Mead method, an unconstrained and derivative-free 

optimization method [125], [126]. Compared to Newton-Raphson or other Newton-like 

algorithms, Nelder-Mead method does not require the computation of the gradient or Hessian of 

the objective function, which makes it a more robust optimization method when the solution 

space is not convex or when it is hard to obtain the explicit form of the gradient of objective 

function [73]. The initial guess of the x-directional central position of the cohesive zone 0x
 
is also 

set to be the x-directional LEFM effective crack-tip location, which can be determined by the 

conservation integrals and the nonlinear least-squares method.  

    The initial guess of cohesive-zone size c for the separable nonlinear least-squares method is 

relatively flexible. However, a rough estimate is still necessary since the nonlinear optimization 

process may become unreliable if the starting position is far away from the true solution. To get a 

rough estimate for the cohesive-zone size c, it is assumed that the full-field displacements around 

the crack-tip cohesive zone can be represented with only one-term eigenfunction expansion as 

follows, 

   0
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)(  (4.20) 

where 
0t  and 

0P  are column vectors with real-number constants. The first-term eigenfunction 

expansion can be further expanded into a new series of polynomial functions with respect to 

large z ( 1/  ,  zccz ) which represents the elastic far-fields, 
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Dividing the coefficient of term 2

5


z  by the coefficient of term 2

1


z , the initial guess of the 

cohesive-zone size c can be obtained. Similar to the nonlinear least-squares method in Chapter 3, 

the coefficients in the above series of polynomial functions are obtainable with nonlinear least-

squares method, by fitting the analytical fields constructed with the equation (4.21) to the 

experimental far-fields. 

 

4.4 Numerical test with synthetic data 

    To assess the accuracy and stability of two inverse methods, a sequence of numerical tests 

were carried out with synthetic cohesive crack-tip fields. Firstly, the synthetic crack-tip fields 

were constructed with predefined eigenfunction expansions. Then, both of the field projection 

method (FPM) and least-squares method (LSM) were applied to extract the cohesive tractions 

and separations from the synthetic displacement fields. Finally, the inverse solutions were 

compared with the predefined values. The details about the procedure of numerical tests were 

introduced in Section 4.4.1. 

    In this study, only the mode-I problem was investigated. In other words, only the second 

components of the cohesive traction )(xt , separation-gradient )(xb and separation )(xδ were 

investigated. However, it is noteworthy that the eigenfunction expansion of the cohesive-crack-

tip fields developed in Section 4.2 provides a platform for the present work to be extended to 

study the mode-II or mixed mode problems. 
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4.4.1 Description of numerical test 

4.4.1.1 Cohesive-zone laws and material property  

    To validate the generality of the inverse methods, the influence of the shape of cohesive-zone 

law (CZL) on the accuracy of inverse solutions was studied. Figure 4.4 shows three 

representative CZLs with different shapes which were investigated in the numerical test: convex 

upward softening law, linear softening law and concave upward softening law. The convex 

upwards softening law (CZL I) was used to simulate the fracture behaviors of PMMA [74] or 

HIPS [76] , the linear softening law (CZL II) was used to simulate the fracture process of high 

explosives [67], while the concave upward softening law (CZL III) was used for some quasi-

brittle materials such as concrete, rocks or wood [66], [127], [128]. In the test, the CZLs were 

normalized to extend the generality of test results. Consequently, widely-applicable guidelines 

for experiments can be obtained from the numerical test results. 

 

Figure 4.4 Three representative CZLs used in the numerical test 
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    Each cohesive-zone law was constructed with predefined coefficients 
nt and

nb in the 

eigenfunction expansion (4.8). In addition, )~(zs vanishes because it does not contribute to the 

cohesive-zone variables. Thus, the eigenfunction expansion used in the numerical test was in the 

form of 

 
0 0

1
( ) 1 ( ) 1 ( )

2

N N

n n n n

n n

z z U z z U z
 

 
     

 
 Lf t b . (4.22) 

In this study, only the first three sets of coefficients 
nt and

nb ( 0,1,2)n   were predefined to 

construct the synthetic displacement fields around crack-tip cohesive zone. The limit was set for 

the reason that a three-term representation is accurate enough to depict most of the common 

functional curves. Hence the details of CZL curves can be well captured. Table 4.1 shows the 

values of coefficients 
nt and

nb ( 0,1,2)n  corresponding to each of the CZLs in Figure 4.4. 

Here,
1 ,

2 and 3 are the incipient stresses of decohesion for the three CZLs. The relationship 

among them is set to be 83.6:64.4:66.3:: 321  to ensure that the cohesive fracture 

energies of the three CZLs are identical.  
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Table 4.1 Coefficients 
nt and

nb ( 0,1,2)n  for the construction of different CZLs 

Coefficients Convex upward law (I) Linear law (II) Concave upward law(III) 

0
t  σ1[0, 0.9871]

T
 σ2 [0, 0.5626]

T
 σ3 [0, 0.2405]

T
 

0
b  σ1[0, 0.6856]

T
 σ2 [0, 0.7571]

T
 σ3 [0, 0.6560]

T
 

1
t  σ1[0, -0.1756]

T
 σ2 [0, 0.1450]

T
 σ3 [0, 0.1664]

T
 

1
b  σ1[0, -0.1258]

T
 σ2 [0, 0.0495]

T
 σ3 [0, 0.2492]

T
 

2
t  σ1[0, 0.0249]

T
 σ2 [0, -0.0478]

T
 σ3 [0, 0.0414]

T
 

2
b  σ1[0, 0.0249]

T
 σ2 [0, -0.0478]

T
 σ3 [0, 0.0414]

T
 

 

    With the coefficients 
nt and

nb ( 0,1,2)n 
 
specified, the analytical solutions of cohesive 

tractions, separation-gradients, and separations can be obtained using the equations (4.9), (4.10) 

and (4.11), while the synthetic cohesive crack-tip displacement fields can be obtained using the 

equation (3.3). Besides, the material properties are also required in the generation of analytical 

cohesive-zone variables and cohesive-crack-tip fields. The bulk material was assumed to be the 

same as the fiber-reinforced composite laminates studied in Chapter 3. The orthotropic elastic 

properties of the material are shown in Table 3.1. 

    Then the two inverse methods, namely field projection method and separable nonlinear least-

squares method, were employed to extract CZLs from the synthetic cohesive crack-tip 

displacement fields. Moreover, to directly compare the robustness of two methods, the 

interaction J-integral in the field projection method was implemented by domain integral 

formulation [113], with the same input data points for separable nonlinear least-squares method. 
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4.4.1.2 Procedure of numerical test 

    The computational implementations of both field projection method and separable nonlinear 

least-squares method can be divided into two sections: (1) the determination of the coefficients 

nt and
nb ( 0,1,2)n 

 
in the eigenfunction expansion (shown in the equation (4.22)) with known 

cohesive-zone size and location; (2) the estimate of cohesive-zone size and location. Therefore, 

numerical tests need to be separately carried out for each section to accomplish a comprehensive 

investigation of the inverse methods. Moreover, for the estimate of cohesive-zone size and 

location, both of the two methods introduced in Section 4.3.3, i.e. the method of searching zero-

cross-over points on the cohesive traction and separation-gradient distributions and separable 

nonlinear least-squares method, are iterative method. At each iteration step, the estimation 

process of cohesive-zone size and location requires the implementation of field projection 

method or linear least-squares method to determine the coefficients 
nt and

nb ( 0,1,2)n 
 
with the 

estimated cohesive-zone size and location. Therefore, the accuracy of estimated cohesive zone 

size and location is governed by the accuracy of extracted coefficients in the eigenfunction 

expansion. In other words, the first section of numerical test is the foundation of the second one. 

    In the first section of numerical test, several factors which may influence the accuracy of 

inverse solutions were investigated, including the shape of CZL (as shown in Figure 4.4), the 

inverse distance of input data field, the number of the data points and the noise level of input 

data. 

    As shown in Figure 4.5 (a), the inverse distance of the displacement data field is a normalized 

parameter, defined as the ratio between the half width of inner deleted area IW and the size of 

cohesive zoneC . The inverse distance represents the distance between the data field used in the 

computation and the crack-tip cohesive zone. The reason why the inverse distance is used and 
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how it is defined are explained as follows. On one hand, it is difficult to experimentally obtain 

reliable displacement data close to the cohesive crack-tip because of the large deformation 

gradients within this region. Hence, the displacement fields near the crack-tip need to be 

eliminated from the inverse computation. On the other hand, the numerical errors in the inverse 

computation process increase significantly when the distance between input data fields and 

crack-tip cohesive zone increases. This issue was investigated in the original paper of field 

projection method [75], which demonstrated that the inverse solutions of cohesive-zone variables 

showed instability while using the data at a considerable distance away from the cohesive zone. 

Therefore, there exists a maximum limit of the inverse distance, within which the CZL can be 

extracted accurately. To determine the limit, the accuracy of inverse solutions according to 

different inverse distance should be tested. In the numerical tests, the range of inverse distance 

was varied from 2 to 10. Without loss of generality, the value of inverse distance was changed by 

only changingCwhile fixing IW . 

    While the inverse distance represents one important feature of input data field for inverse 

computation, the number of data points is another important feature. The influence of the number 

of data points on the accuracy of inverse solutions was investigated. In the test, the number of 

data points was changed with the size of data field fixed while changing the interval between 

neighbouring data points. 

    The noise sensitivity is a very important concern in evaluating the robustness of inverse 

methods because noise in the input data is inevitable in practice. To extend the generality of 

numerical test results, the noise level was measured by a normalized standard deviation (NSTD), 

which was defined as the standard deviation (STD) normalized with respect to the difference 

between the maximum and minimum of displacement component along loading direction, i.e.
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 min(V)max(V)noise/ of STDNSTD  . The order of magnitude of NSTD in the 

numerical test was 310 , which was chosen due to the fact that it is obtainable in practice. For 

instance, if Digital Image Correlation (DIC) method is used, the standard deviation of 

displacement measurement can easily reach 2103  pixels or even smaller [71]. In such case, 

the NSTD can be made to be smaller than 3101  by adjusting the resolution of camera or the 

input data field to make sure that pixels 30min(V)max(V)  . In the numerical test, random 

noise which was generated from a standard normal distribution with the mean value of noise 

being zero was added to the synthetic displacement data. Illustrations of the noise in synthetic 

displacement fields are shown in Figure 4.5 (c) and (d). Numerical tests for each noise level were 

repeated 20 times with different sets of randomly-generated noise. The average of results was 

then used as the representative result. 
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(a)                                                                        (b) 

 
(c)                                                                      (d) 

Figure 4.5 Characteristic parameters of input data fields and displacement measurement noise for 

the convex upward CZL (Law I): (a) Horizontal analytical displacement field U (perpendicular 

to the loading direction) (b) Vertical analytical displacement field V (along the loading direction) 

(c) Horizontal analytical displacement field U with the NSTD of noise being 3101   (d) Vertical 

analytical displacement field V with the NSTD of noise being 3101  . 

 

    After the inverse extraction of coefficients 
nt and

nb ( 0,1,2)n   in eigenfunction expansion, a 

relative error defined as ( ) ( ) ( )

2 20 20

n n nt t t was used to investigate the accuracy of inverse solutions. 

Here ( )

2

nt denotes the second component of
nt , (n)

20t represents the exact value. Besides, relative 
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errors were computed through comparisons between the exact values and the inverse solutions of 

non-dimensionalized traction /)~()~(
~

xx tt  , non-dimensionalized separation-gradient 

  )~(/)~(
~ 1 xx bHb   ( is the incipient stress of decohesion which is used in the construction of 

synthetic fields) and non-dimensionalized separation ))~(max(/)~()~(
~ 0 xxx δδδ   ( )~(0 xδ  denotes 

the exact value of separation). Moreover, the normalized root-mean-square (NRMS) error was 

used to quantify the difference between the inversely-extracted CZL and its exact value, 

    2/1
)

~
,

~
max(

0

2
000

maxmax

0
maxmax ~

)
~

(
~

)
~

(
~

))
~

,
~

max(/1(NRMS  


 dtt  (4.23) 

where )
~

(
~
t represents the extracted non-dimentionalized CZL, while )

~
(

~ 00 t  denotes the exact 

value.  

As stated previously, the second section of numerical test was carried out based on the result 

of the first section. Because the iterative computational procedure determines that it is possible to 

obtain accurate cohesive-zone size and position only when the coefficients in the eigenfunction 

expansion can be extracted with acceptable accuracy at each iteration step. The same factors 

which can influence the accuracy of the extracted coefficients were also investigated in the 

second section, including the shape of the CZL, the inverse distance of the data field, the noise of 

data field, etc. The ranges of tested factors in the second section were the subsets of those in the 

first section. In addition, to verify the robustness of iterative methods for the determination of 

cohesive-zone size and position, different initial guesses were tested.  
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4.4.2 Results of test 

4.4.2.1 Determination of CZLs with known cohesive-zone size and position 

    In this section, numerical tests were conducted to determine the coefficients 
nt and

nb

( 0,1,2)n  and hence the CZLs with known cohesive-zone size and location. The results are 

presented as follows. 

    First of all, a baseline test was conducted to verify the theoretical correctness of two inverse 

methods—the field projection method (FPM) and the linear least-squares method (LSM). The 

synthetic displacement data without noise was used. The two characteristic lengths used to define 

the range of data field were the inverse distance and the half width of outer square, as shown in 

Figure 4.5 (a). In this baseline test,  2/ CWI
, and 6/ CWO . 

The total number of input data 

points was 18816. Figure 4.6 (a)-(d) respectively shows the comparison between the inverse 

solutions and the predefined values (i.e. exact values) of tractions, separation-gradients, 

separations and CZLs. It can be seen that the inverse solutions of 3 different CZLs all converge 

to the exact values, which verifies the theoretical derivations and computational implementations 

of two inverse methods. 
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Figure 4.6 Comparison between the inverse solutions and exact values of the cohesive-zone 

variables and cohesive-zone laws: (a) traction (b) separation gradient (c) separation (d) cohesive-

zone law. 

 

    Starting from the baseline test, a sequence of numerical tests were carried out to study the 

influence of inverse distance, number of the data points and noise on the accuracy of inverse 

solutions. Due to limited space, only the results of linear softening law (CZL II) are shown here. 

The results of concave upward softening law (CZL III) and convex upward softening law (CZL 

I) are analogous to that of linear softening law. 

    Firstly, the influence of inverse distance  CWI / on the inverse solutions was investigated. As 

mentioned above, the value of  CWI / was changed from 2 to 10, by changing the cohesive-zone 
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sizeCwhile fixing the half width of inner square IW . The other factors which define the input 

data fields are the same as that of the baseline test. Figure 4.7 (a) and (b) respectively exhibits the 

CZLs extracted by the field projection method (FPM) and the linear least-squares method 

(LSM), with respect to different inverse distances. It can be seen that the errors of CZLs 

extracted by both methods increase when the inverse distance CWI / increases. For FPM, it has 

been found that the increasing error of CZLs with respect to the inverse distance was due to the 

singular behaviour of the inversion scheme, which was caused by the term 2/1)/(2 NN cr  in the 

integrand of interaction J-integral [75]. For LSM, the increase of inverse distance makes the 

matrix in the normal equation more ill-conditioned, so that the computational error becomes 

larger. 

 
(a)                                                                              (b) 

Figure 4.7 Influence of inverse distance on the accuracy of inverse solutions: (a) the CZLs 

extracted by the field projection method (FPM) (b) the CZLs extracted by the linear least-squares 

method (LSM). 
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Figure 4.8 shows the relative errors of extracted coefficients corresponding to different-order 

terms in the eigenfunction expansion. The relative errors are plotted with respect to the inverse 

distances. The term ( )

2t n in the legend represents the second component of eigenfunction 

expansion coefficients 
nt ( 0,1,2)n   (the first component is zero due to the mode-I problem). 

The result of coefficients 
nb is similar to that of 

nt and hence is not presented. It can be seen that 

the errors of higher-order-term coefficients are always larger than the errors of low-order-term 

coefficients. In addition, the variation trends of errors with respect to the inverse distance for 

both inverse methods are different. For FPM, when inverse distance CWI / increases, the relative 

errors of the coefficients in higher-order terms increase faster than the coefficients in lower-order 

terms. For LSM, the relative errors of all the coefficients increase dramatically at the first stage, 

and reach plateaus when CWI /  is larger than 6.  

 
Figure 4.8 Relative errors of the eigenfunction expansion coefficients with respect to the inverse 

distance. 
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    In addition, when
 10/ CWI

, the relative errors of the 3
rd

-term coefficients 
(2)

2t  for both 

inverse methods are around 100 percents. From Figure 4.7, it can be seen that the extracted CZLs 

at this moment can barely represent the shapes of CZLs. So the value 100 percent in the relative 

error of the 3
rd

-term coefficients (2)

2t  is set as a limit to judge if the accuracy of extracted CZL is 

acceptable or not. In other words, the inverse solution of CZL is considered as a reliable result 

only when the relative error of the 3
rd

 term is smaller than 100 percent.  

    Another important observation which can be obtained from Figure 4.8 is the comparison of 

accuracy between two methods. The relative errors in the coefficients extracted by FPM are 

smaller than those obtained by FPM when the inverse distance is smaller than 4. In contrast, the 

FPM can get more accurate result when the inverse distance increases from 5 to 9. These 

observations are helpful for the selection of appropriate method, based on the inverse distance of 

input data. 

  
  In all the above analyses, the number of data points was arbitrarily chosen. However, the 

obtainable number of data points in practice relies on the experimental measurement techniques. 

In this chapter, it is assumed that the displacement data used for the inverse computation is 

measured by Digital Image Correlation (DIC). Thus, the domain of displacement data and the 

interval between neighbouring data points were quantified in pixels. In all the numerical tests, 

the data domain was fixed with the sizes
O 360 pixels  W  and

 I 120 pixelsW  ,
 

which are 

obtainable in practice.
 

     
The influence of the number of data points on the inverse solutions was investigated. In this 

test, the inverse distance was set to be the same as the baseline test,  2/ CWI
and 6/ CWO

.
 

The number of data points was modified by changing the interval between neighbouring points. 
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For the baseline test, the interval between neighbouring data points was 5 pixels. In the new 

tests, different input data sets were generated by setting the intervals between neighbouring data 

points to be 5 pixels, 10 pixels, 15 pixels, 20 pixels and 30 pixels. The relative errors of the 

extracted eigenfunction expansion coefficients ( )

2t n are shown in Figure 4.9.  

 

Figure 4.9 Relative errors of the eigenfunction expansion coefficients extracted from various 

data sets with different intervals between neighbouring data points.  2/ CWI
and 6/ CWO . 

 

 For LSM, it can be seen that the relative errors of the extracted coefficients ( )

2t n

 
decrease 

slightly as the interval between neighbouring data points increases (i.e. the number of data points 

decreases). It is due to the fact that the matrix of normal equation in LSM becomes less ill-

conditioned with less number of input data points. Contrarily, the increase of interval between 

neighbouring data points reduces the accuracy of FPM results. The relative error of the 3
rd

-



 

101 

 

coefficient (2)

2t
 
becomes larger than 100 percent when the interval increases to 30 pixels. The 

low accuracy of the FPM results under large intervals is attributed to the large numerical errors 

in the calculated displacement gradients, which is required in the computation of interaction J-

integral. Specifically, the raw input data from DIC is the displacement. The displacement 

gradients are determined by numerical differentiation of the displacements. For the test results 

shown in Figure 4.9, there is no noise in the input data. Thus, the source of error in the calculated 

displacement gradients is numerical truncation error, which can be illustrated as follows.  

    Assume that the numerical differentiation algorithm used to estimate the displacement 

gradient is central difference method, the truncation error 
TE can be represented as:  

 
( ) ( )' '( ) ( )

2
T

u u x x u x x
E u x u x

x x

   
   
 

 (4.24) 

where u represents the displacement, x represents the position or coordinate of data point. From 

Taylor series expansion, the equation can be re-written as:.  

 2 41 '''( )( ) (( ) )
6

TE u x x O x     (4.25) 

It can be seen that the truncation error will increase when the interval between neighbouring data 

points x  increases.  

    There is no noise in the synthetic input data for all the previous numerical tests. However, 

noise is inevitable in the practical data sets which are measured by experimental techniques. It 

may significantly reduce the accuracy of inverse solutions for both methods. Take FPM as an 

example, if noisy input data is used, there will be an additional term in the total error of 

numerical differentiation of displacement. Denoting the error that is caused by the noise of input 

data as 
NE , the total error of numerical differentiation can be represented as 
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* *

2 41' ' '''( ) ( ) ( ( )) ( )( ) (( ) )
6

N T

u u u u
E E E u x u x u x x O x

x x x x x

   
            

    
(4.26) 

where )(u(x))(* xxu  , and  denotes the noise, i.e. the measurement error. It can be 

concluded that the error caused by noise will increase as the interval between neighbouring data 

points x decreases. It is opposite to the variation trend of numerical truncation error. 

Furthermore, the equation (4.26) suggests that there exists an optimal interval x , with which the 

displacement gradients and hence the inverse solutions of FPM calculated from noisy data will 

be the most accurate.  

    A set of numerical tests were then conducted to investigate the influence of noise on the 

accuracy of inverse solutions. In the tests, the inverse distance of the input data was  2/ CWI
, 

as same as the baseline test. Various data sets were used as inputs, with the intervals between 

neighboring data point equaling to 5, 10, 15 and 20 pixels. The maximal interval for the test, 20 

pixels, was set according to the results in Figure 4.9, which shows that it is possible to get 

inverse solutions with acceptable accuracy (i.e. the relative error of the 3
rd

-coefficient (2)

2t is 

smaller than 100 percent) only when the interval is smaller than 20 pixels, In addition, the 

numerical tests for each noise level were repeated 20 times. Then the medians of all the 20 sets 

of test results were used as the representative result. Limited by the space, only the results with 

interval equaling to 5 pixels and 20 pixels were presented. Figure 4.10 (a)-(b) show the relative 

errors of the eigenfunction expansion coefficients extracted from various data sets with different 

noise levels. 
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(a) 

 
(b) 

Figure 4.10 Relative errors of the eigenfunction expansion coefficients extracted from various 

data sets with different noise levels: (a) interval between two neighbouring points is 5 pixels (b) 

interval between two neighbouring points is 20 pixels. 
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    Figure 4.10 reveals several important features regarding the accuracy of inverse solutions. 

Firstly, significant increases in the errors of the extracted coefficients can be observed for both 

inverse methods when there is noise in the input data. When the noise level is 0.5e-3 (NSTD), 

only barely visible effect can be seen in the displacement field. However, errors in the extracted 

coefficients are several orders of magnitude larger than the errors obtained with no-noise inputs. 

In addition, it can be seen that the increase of errors becomes slow after the first leap between the 

test with no-noise input data and that with noisy input data.  

    As for the comparison of two methods, it can be seen that the errors of coefficients obtained 

by LSM are always smaller than those obtained by FPM, with the same noise level and interval 

in the input data. A more important observation is that the relative errors of the 3
rd

-term 

coefficient extracted by FPM are always larger than 100 percent, even with the smallest noise 

level, NSTD 0.5e-3, which generates nearly invisible fluctuations in the input data fields. It is 

highly possible that the noise level in the experimental data is larger than 0.5e-3 (NSTD). 

Therefore, it can be concluded that the FPM is not reliable to extract CZLs which requires at 

least three terms in the eigenfunction expansion to depict their functional shapes. On the other 

hand, the largest error of the 3
rd

-term coefficient extracted by LSM is always less than 50 percent 

with all the noise levels. Therefore, the LSM is preferable for practical use if the input data has 

considerable noise level.  

    In all the previous numerical tests, the cohesive-zone size and central position were assumed 

to be known a priori, for the purpose of isolating the sources of error in the inverse solutions. 

Generally, it is expected that the error in the final inverse solutions of CZL will become larger if 

the determination of cohesive-zone size and position is also involved in the inverse scheme. 
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Therefore, it can be concluded that the FPM will never get inverse solutions that is accurate 

enough to depict the details of CZLs (i.e., the 3rd term coefficient should be smaller than 100 

percent) if noisy inputs are used. So the LSM is the only method that will be studied in the 

following numerical tests, which involves the accuracy estimate of the simultaneously 

determined cohesive-zone size, central position and CZL.  

 

4.4.2.2 Determination of CZLs with unknown cohesive-zone size and position 

    In this section, the inverse extraction of CZL was implemented without pre-known cohesive-

zone size and position. The numerical tests in Section 4.4.2.1 were the bases for the design of 

numerical tests in this section. Firstly, the FPM was eliminated from the tests because of its high 

noise sensitivity. In addition, the same factors which can influence the accuracy of inverse 

solutions in Section 4.4.2.1 were also investigated in this section, including the shape of the 

CZL, the inverse distance of the data field, the noise in the data field, etc. The tested ranges of 

these factors were the subsets of the ranges in the previous tests.  

    In Section 4.3.3, two methods were introduced for the estimate of cohesive-zone size and 

central position (i.e., c and 
0

x ). In this section, the applicability of two methods were examined 

with a set of baseline tests. Firstly, tests were conducted for the method developed by Hong and 

Kim [75], which determines c and 
0

x by iteratively searching for the zero-cross-over points of the 

traction and separation-gradient distributions within the estimated cohesive zone. The iterative 

process is supposed to stop when the estimated traction and separation-gradient distributions do 

not make zero-cross-over points any more. The estimates of c and 
0

x at the stopping moment are 

the final solutions. In the test, the traction and separation-gradient distributions within the 

estimated cohesive zone at each iteration step were obtained using linear least-squares method. 
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Although the theoretical design of this method seems reasonable, it was found that this method is 

not robust in the numerical implementation. In most of the test cases, the solutions of c and 
0

x

were different from the exact values, even with un-noisy synthetic data. In addition, different 

initial guesses of c and 
0

x  were tested, but could not improve the accuracy of solutions. 

Moreover, it has been found that the decrease of inverse distance in the input data could reduce 

the error in the solutions. Therefore, the inaccurate solutions of c and 
0

x  should be due to the 

errors in the extracted eigenfunction expansion coefficients during the iterative process. 

Nevertheless, the overall performance of this method in the numerical tests did not demonstrate 

its applicability, especially for the data with considerable noise level and inverse distance. 

    Numerical tests were then conducted to demonstrate the applicability of separable nonlinear 

least-squares method, whose flowchart is shown in Figure 4.3. Essentially, the inverse 

computation procedure of separable nonlinear least-squares method can be divided into two 

coupled parts. One is the nonlinear optimization process for the estimate of cohesive-zone size 

and position, while the other is the linear least-squares method for the extraction of eigenfunction 

expansion coefficients. The accuracy of linear least-squares method with exact cohesive-zone 

size and position have been investigated in the previous section. Therefore, the tests in this 

section focused on the accuracy of cohesive-zone size and position estimated with the nonlinear 

optimization process. 

    Firstly, tests with no-noise input data were conducted as the baseline. Here, the inverse 

distance was chosen to be 2/ CWI
, and the interval between neighbouring points was 10 

pixels. The initial guess of cohesive-zone size and position was obtained from the method 

introduced in the equations (4.20) and (4.21). Figure 4.8(a)-(c) show the searching paths of 

separable nonlinear least-squares method on the contour of objective function. The x and y axis 
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respectively represents the cohesive-zone central position and cohesive-zone size which are 

normalized with respect to the exact value. The objective function is defined as the square of 

difference between the analytical displacement fields and the displacement fields regenerated 

from the inverse solutions of eigenfunction expansion coefficients that are extracted with specific 

c and 
0

x
.
Therefore, the minimum of objective function corresponds to the accurate inverse 

solutions of eigenfunction expansion coefficients as well as the cohesive zone size and position. 

Obviously, the minimum is at the origin. 
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                                      (a)                                                                              (b) 

 
                                      (c) 

Figure 4.11 Searching paths of the separable nonlinear least-square method on the contour of 

objective function: (a) for convex upward CZL (Law I) (b) for linear CZL (Law II) (c) for 

concave upward CZL (Law III).  Inverse distance 2/ CWI
. 

 

    First of all, high computation efficiency was observed in the test. Usually, the iterative process 

took less than 10 steps to get the convergent solution. Secondly, it can be seen that the nonlinear 

optimization processes for different CZLs all successfully converged to the correct solution. It 

demonstrates the applicability of the nonlinear separable least-squares method, as well as the 
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method for the determination of initial guess. However, a nonlinear optimization method cannot 

be considered as a robust method if it can only get correct solution from one specific initial guess. 

In addition, it can be expected that the method for the determination of initial guess may not 

work for the data with considerable noise level. Therefore, in the following tests, influence of 

different initial guesses on the accuracy of inverse solutions were also studied, while using the 

initial guess obtained from the equations (4.20) and (4.21) as a reference.  

    Next, the influence of noise and inverse distance on the accuracy of estimated CZL, cohesive-

zone size and position were investigated. The interval between neighbouring data points was set 

to be 10 pixels. The numerical tests started from small inverse distance 1.5)/( CWI
and small 

noise level (NSTD of noise is 0.5e-3). Then, either the inverse distance or the noise level was 

increased with the increasing interval 0.5 ( CWI / ) or 0.5e-3 (NSTD of noise), respectively. One 

parameter is changed while keeping the other parameter fixed. For each CZL, numerical tests 

were repeated 20 times for each combination of inverse distance and noise level. The initial 

guess of cohesive-zone size and position was obtained from the method introduced in the 

equations (4.20) and (4.21). The test stopped when the inverse distance or the noise level was 

large enough to generate significant differences between the extracted CZLs and the exact values.  

    Figure 4.12 summarizes the estimated cohesive-zone sizes and positions, as well as the 

extracted CZLs for different noise levels and different types of CZLs, with the inverse distance 

/ =2IW C . In the first row, the estimated cohesive-zone sizes and positions are marked on the 

contours of objective function. For each CZL, the green line with squares represents the 

searching path of nonlinear optimization scheme when there is no noise; the red star marks (total 

20 marks) represent the convergent location for each optimization process when the NSTD of 

noise is 0.5e-3; the yellow circles represent the results when the NSTD of noise is 1e-3. The 
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corresponding inverse solutions of CZLs are also presented. Each set of results include 20 

extracted CZL curves, which are represented by 20 curves with different colors and types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Estimated cohesive-zone sizes and positions, and extracted CZLs with different 

noise levels. The inverse distance 2/ CWI
. 
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    In addition, it is worth mentioning that the influence of initial guess of cohesive-zone size and 

position on the estimated values was also investigated. Two different initial guesses have been 

used. One initial guess was obtained from the method introduced in the equations (4.20) and 

(4.21), while the other one was the origin of objective function contour which represents the 

exact values of cohesive-zone size and position. In most cases, it has been found that the 

nonlinear optimization process converged to the same solution, no matter which initial guess was 

used. This observation demonstrated the applicability and robustness of the nonlinear 

optimization searching process. 

    Several important findings were obtained from Figure 4.12. Firstly, it is found that the 

accuracy of estimated cohesive-zone size and position is highly sensitive to noise. When there is 

no noise in the input data, the determination of cohesive-zone size and position is very accurate, 

which leads to an accurate inverse solution of CZL. However, the estimated cohesive-zone sizes 

and positions become very scattered on the contours of objective function, even when the NSTD 

of noise is as small as 0.5e-3. Furthermore, the error of extracted CZLs is found to be governed 

by the error of estimated cohesive-zone size and position. The inverse solutions of CZLs 

becomes more scattered when the noise level increases, which is due to the increasing error in 

the determination of cohesive-zone size and position. 

    In this test, the normalized root-mean-square (NRMS) error was used to provide a quantified 

measure for the accuracy of extracted CZLs. The expression of NRMS error was given in the 

equation (4.23). As stated above, numerical tests were repeated 20 times for each combination of 

noise level, inverse distance and type of CZL. Then the average (arithmetic mean) and median of 

NRMS errors for the total 20 tests was used as the representative result. In addition, through a 
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visual inspection of extracted CZLs, the 5% of NRMS errors was set as the limit to judge if the 

accuracy of extracted CZLs is acceptable or not. Because the shape of CZL can be barely 

maintained with this amount of error. The results are summarized in Table 4.2.  

 

Table 4.2 Normalized root-mean-square (NRMS) errors of the extracted CZLs for different 

inverse distances and noise levels. 

Inverse 

Distance 

WI/C 

NSTD of noise 
Average of NRMS 

error 
Median of NRMS error 

Number of failed tests 

(NRMS error>0.05) 

out of 20 tests 

 
CZL I CZL II CZL III CZL I CZL II CZL III CZL I CZL II CZL III 

1.5 

0.5e-3 0.0114 0.0063 0.0047 0.0095 0.0045 0.0031 0 0 0 

1e-3 0.0259 0.0145 0.0082 0.0229 0.0069 0.0057 3 1 0 

1.5e-3 0.0428 0.0286 0.0133 0.037 0.0155 0.0076 5 6 0 

2e-3 0.0513 0.0363 0.0298 0.0427 0.0145 0.0175 6 4 4 

2 
0.5e-3 0.0315 0.0185 0.0129 0.0338 0.0087 0.0059 3 2 1 

1e-3 0.0646 0.0343 0.0397 0.0474 0.0243 0.017 8 4 5 

2.5 0.5e-3 0.0609 0.023 0.0268 0.0405 0.0098 0.0178 6 3 3 

3 0.5e-3 0.1055 0.0758 0.0357 0.0531 0.0412 0.0270 12 9 4 

 

    Generally, it can be seen that the errors of extracted CZLs increase following the increase of 

inverse distance and noise level. In other words, the combination of inverse distance and noise 

level determines the accuracy of inverse solution. Another important testing item is the 

difference in the accuracy of inverse solutions with different types of CZLs. The influence of 

noise level on the accuracy of inverse solutions is found to be highly dependent on the types of 
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CZLs. With the same noise level and inverse distance, the error of inverse solutions for CZL I is 

always the largest, while the inverse solutions of CZL III is the most accurate. Correlating this 

observation to the estimated cohesive-zone sizes and positions shown in Figure 4.12, it is found 

that the accuracy of estimated cohesive-zone size and position for different types of CZL has 

different amount of influence on the accuracy of extracted CZLs. For instance, with the same 

inverse distance and noise level, even though the error of estimated cohesive-zone size and 

position for CZL III is the largest among the three CZLs, the error in the extracted CZL for CZL 

III is the smallest.  

    The results presented in Figure 4.9 and Table 4.2 can provide guidelines for experimental 

studies. Indeed, this is the most important goal of numerical tests.  

 

4.4.3 Guidelines for experiments 

From Figure 4.9 and Table 4.2, it is realized that the combination of the inverse distance and the 

noise level of input data governs the accuracy of inverse solutions. The inverse distance and 

noise should be modified accordingly to ensure that inverse solutions with acceptable accuracy 

can be obtained. For instance, when the inverse distance CWI / is 1.5, it is possible to extract the 

CZLs only when the NSTD of noise is equal to or smaller than 2e-3.  On the other hand, when 

the NSTD of noise is 2e-3, the inverse distance CWI / should be less than 1.5 to ensure that the 

accuracy of extract CZLs is acceptable.  

    Moreover, since the shape of CZL usually cannot be known a priori in practice, the safest 

combination of inverse distance and noise level should be followed as the guideline. From Figure 

4.9 and Table 4.2, it can be realized that the CZL I is usually the most difficult one to achieve 
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accurate inverse solutions. Thus the setup of inverse distance and noise level need to be modified 

based on the results of CZL I. Specifically, the inverse distance CWI / should be respectively set 

to be less than 2.5, 2 and 1.5, when the NSTD of noise are 0.5e-3, 1e-3 and 2e-3, and vice versa.  

    Some additional guidelines are worth mentioning here if the displacement data are measured 

by Digital Image Correlation (DIC). Recall that the parameter used to measure the noise level 

NSTD is defined as  )min()max(/noise of VVSTDNSTD  . Since the measurement accuracy 

of DIC, i.e. the STD of noise, is fixed and measured in pixels, the NSTD can be modified by 

changing the range of displacements which is easily achieved by modifying the resolution of 

captured images (physical length/pixel). However, it is noteworthy that the inverse distance will 

be changed automatically while changing the resolution of image. Therefore, several factors need 

to be considered simultaneously for the experimental setup. 

    At last, it should be pointed out that an important simplification was made in the numerical 

tests, which is different from reality. For the numerical analysis, it was assumed that the elastic 

fields around cohesive zone can be represented with a 3-term eigenfunction expansion. It is a 

reasonable assumption when the region of interest is close to the crack-tip cohesive zone. 

However, the higher-order terms in the eigenfunction expansion may contribute considerably to 

the representation of cohesive crack-tip fields some distance away from the cohesive zone. 

Moreover, it was found that the difference between the elastic fields defined with the cohesive-

zone eigenfunction expansion and the LEFM Williams expansion with identical J-integral values 

become very small at the elastic far-fields. Thus, the accuracy and uniqueness of inverse solution 

could be reduced if using the data fields far away from the cohesive zone in the inverse 

computation. A data field that is as close as possible to the crack-tip cohesive-zone is preferable 

in getting accurate inverse solutions. 
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4.5 Summary 

In this chapter, two analytical inverse methods were proposed for the extraction of cohesive 

fracture properties from full-field displacement data around the crack-tip, namely the field 

projection method (FPM) and the separable nonlinear least-squares method. Both methods were 

developed based on an eigenfunction expansion of the elastic fields around a crack-tip cohesive 

zone. The coefficients of eigenfunction expansion, the cohesive-zone size and position can be 

determined with the two inverse methods. Then the traction and separation distributions within 

the cohesive zone can obtained with the extracted eigenfunction expansion coefficients, the 

cohesive-zone size and position. Finally the cohesive-zone law can be generated as the 

relationship between cohesive-zone traction and separation. 

    A set of numerical tests were carried out to investigate the applicability and robustness of the 

two inverse methods. Several factors that can influence the accuracy of inverse solutions were 

investigated. The tested factors involved the noise of input data, the number of data points, the 

inverse distance of data field, and the shape of the cohesive-zone law. It has been found that the 

field projection method had high noise sensitivity, and hence had limited applicability in 

practice. On the other hand, the separable nonlinear least-squares method, which consists of the 

extraction of eigenfunction expansion coefficients in a linear least-squares sense and the 

nonlinear iterative searching process of cohesive-zone size and position, has been proven to be a 

robust inverse method. It was reliable to extract accurate CZLs with practically obtainable noise 

levels and inverse distances. Therefore, this method is recommended for experimental studies. 

    Guidelines for the experiment setup and data processing were provided based on the results of 

numerical test. It was found that the noise level and the inverse distance worked together to 
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determine the accuracy of  inverse solution. The detailed guidelines can be found in Table 4.2. 

As a sequel of the analytical and numerical studies presented in this chapter, experimental 

validation with DIC will be presented in Chapter 5. 
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Chapter 5   

Inverse Extraction of Cohesive-zone Laws for Fiber-

reinforced Composite Laminates Part II: Experimental 

Validation 

5.1 Introduction 

    In Chapter 4, two analytical inverse methods, namely field projection method and separable 

nonlinear least-squares method, have been developed to measure the cohesive-zone law (CZL) of 

fiber-reinforced composite laminates. The methods were developed based on the eigenfunction 

expansion of cohesive crack-tip fields for anisotropic solids. Numerical tests were conducted to 

assess the applicability and robustness of the two methods. It was found that the separable 

nonlinear least-squares method had the potential to be used in practice. Some guidelines for 

experimental setup and data processing were provided.  

    In this chapter, an experimental validation of the separable nonlinear least-squares method is 

presented. The inverse method is applied to measure the CZL for the translaminar fracture of a 

laminated composite. In the experiment, the crack-tip displacement fields measured by 2-D 

digital image correlation (DIC) are used for the inverse extraction of CZLs. The experimental 

setups are based on the guidelines provided in Chapter 4.  

    The remainder of the chapter is organized as follows. In Section 5.2, the experimental setups 

and data reduction scheme are introduced in details. Section 5.3 shows the experimental results, 
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including the experimental displacement fields, inverse solutions of CZLs, cohesive-zone size 

and position. The accuracy of inverse solutions are discussed in Section 5.4, through the 

computation of fracture energies and the finite element simulation with ABAQUS. Finally, the 

research achievements are summarized in Section 5.5. 

 

5.2 Experimental procedure 

5.2.1 Experimental setups 

    The composite material and specimen geometry in the experimental study presented in 

Chapter 3 are also used in this chapter for the experimental validation of inverse method. The 

material properties are provided in Table 3.1. The specimen configurations are shown in Figure 

3.7 (a).  

    The CZL of the fiber-reinforced laminated composite was measured based on a mode I 

translaminar fracture test which was conducted using the extended compact tension (ECT) 

specimen geometry [118] , following ASTM E1922 [119]. The ECT specimen can exhibit stable 

crack growth, which is critical in the inverse extraction of CZLs. The experimental 

displacements measured in Chapter 3 for the estimate of LEFM crack-tip field parameters and R-

curves were also used in this chapter for the inverse extraction of CZLs. However, only those 

displacement measurements during the steady-state crack propagation were chosen for the 

measurement of cohesive-zone laws. The reason will be explained in Section 5.2.2. 
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5.2.2 Data reduction scheme 

    The full-field crack-tip displacements measured by DIC which had been used in Chapter 3 

were also used in this chapter. Instead of using the whole data from the beginning of fracture test, 

it is noteworthy that only the displacements measured during the steady-state crack growth can 

be used for the inverse extraction of cohesive-zone laws. It is due to the fact that the analytical 

inverse method was developed based on an eigenfunction expansion of crack-tip fields 

surrounding a complete cohesive zone. Essentially, the cohesive zone is completely generated at 

the start of steady-state crack growth, and remains complete during the steady-state crack growth. 

Figure 5.1 shows the evolutions of cohesive traction and separation distributions (solid curves) 

and the corresponding equivalent LEFM crack-tip opening profile and stress distribution (dashed 

curves) at different stages during the cohesive fracture process. In the first three figures, the red 

curves represent the separation and crack-tip opening profile δ(x), while the blue curves 

represent the cohesive traction and crack-tip stress distribution σ(x). The solid triangle and 

hollow triangle in each figure denotes the equivalent LEFM crack-tip and the tip of cohesive-

zone, respectively. δcr and σcr denote the critical cohesive traction and separation, respectively. 

The stages of fracture process corresponding to the first three figures are marked as A, B and C 

with solid triangles on the LEFM R-curve plot. It can be seen that the cohesive zone is firstly 

growing (Stage A) to the complete size (Stage B) when the R-curve reaches its plateau, i.e. at the 

beginning of steady-state crack propagation, and thereafter propagates in a self-similar steady-

state way (Stage C). The steady-state propagation of cohesive zone requires that the size of the 

cohesive zone and the cohesive traction and separation distributions over the cohesive zone 

remain constant [124]. Besides, another consequence of the steady-state regime is the 
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equivalence between the plateau value of R-curve, i.e. GRc, and the value of cohesive fracture 

energy which is equivalent to the area under the curve of cohesive-zone law. 

 

Figure 5.1 Sketch of the cohesive zone behavior during fracture process: the cohesive traction 

and separation distribution profiles, the corresponding equivalent LEFM crack-tip opening 

profile and stress distribution; and the different stages of crack growth.  
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    The accuracy of extracted CZLs can be verified by examining the maximum traction and 

cohesive fracture energy, which should be equal to the uniaxial tensile strength and the LEFM 

energy release rate during steady-state crack propagation, respectively. Another verification 

method is to compare the experimental global response with the results of finite element 

simulation which uses the extracted CZLs. Since the CZLs are inversely extracted from the 

experimental displacements, the "direct" finite element simulation with the CZLs should be able 

to duplicate the experimental outcomes.  

 

5.3 Experimental results 

5.3.1 Displacement fields 

    The full-field displacements which had been obtained in Chapter 3 for the measurement of 

LEFM R-curve were also used in this chapter for the measurement of cohesive-zone laws. As 

stated above, only the data during steady-state crack growth were used. 

    Figure 5.2 and Figure 5.3 shows the Load-CMOD plot and the R-curves in terms of stress 

intensity factor, respectively. The black dots on the curves in the two figures represent the 

moments when the displacement data are chosen. It can be seen that there are total 11 data sets 

used for the inverse computation. The corresponding time of data acquisition is from 90
th

 second 

to 100
th

 second after the start of experiment. These moments are at the decreasing stage of Load-

CMOD curve, in the meantime the crack is propagating in a steady-state manner.  

    In Figure 5.4, the measured displacement fields (U and V) at three moments (I, II and III) 

during the steady-state crack propagation are presented. The evolution of displacement fields 
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shows a pure mode I stable crack growth. The choice of input data field for the inverse 

computation follows the guideline provided by the numerical test results in Chapter 4. Generally, 

for a fixed noise level, the inverse solutions were more accurate with smaller inverse distance. In 

other words, the inclusion of data close to the crack-tip cohesive zone can help reduce the error 

of inverse solution. Through an examination of the continuity and smoothness of experimental 

displacements, it was found that the region within which the displacement measurement was 

unreliable was very close to the crack free surface and crack tip. Therefore, a rectangular region 

near the crack free surface and crack tip was eliminated from the input data fields, as shown in 

Figure 5.4. In addition, a square data field is used, with the outer half width of the data field 

equaling 360 pixels, the same as the numerical tests. More than 3000 data points were used in the 

inverse computation. 
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Figure 5.2 Load versus Crack Mouth Opening Displacement (CMOD) 

 

 

Figure 5.3 R-curves in terms of stress intensity factor, determined by the nonlinear least-squares 

method 
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(a) 

 

(b) 

 

(c) 

Figure 5.4 Displacement fields measured at different moments shown in Figure 5.2 and 5.3 

during the steady-state crack growth: (a) at the moment I (b) at the moment II (c) at the moment 

III.  V is the displacement component along the loading direction. 
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5.3.2 Cohesive-zone variables and cohesive-zone laws 

    The experimental results of cohesive-zone properties are shown in this section. First of all, the 

inverse solutions for one displacement data set are presented. The data set was obtained at the 

moment II, as shown in Figure 5.2 and Figure 5.3. The corresponding displacement fields at this 

moment are presented in Figure 5.4 (b). For the inverse computation, the LEFM equivalent 

crack-tip was used as the initial guess of cohesive-zone central position. On the other hand, 

several different initial guesses of cohesive-zone sizes were used. The consistency of inverse 

solutions with different initial guesses was checked to examine if the nonlinear optimization 

process successfully converged to the global minimum of objective function. The extracted 

cohesive-zone traction t, separation gradient b, separation δ, and CZL are shown in Figure 5.5. 

The estimates of cohesive-zone sizes and positions are shown in Figure 5.6. In both figures, the 

cohesive-zone sizes and positions are presented in the unit of pixels, while the resolution of 

image is 22.5 m/pixel. 

    From Figure 5.5 and Figure 5.6, it is found that there are only two different sets of inverse 

solutions for total seven different initial guesses. Through a visual inspection of the extracted 

cohesive-zone variables, it can be easily concluded that the set of inverse solutions 

corresponding to a longer cohesive zone is incorrect. For instance, it is noticeable that the 

extracted separation distribution vanishes in the middle of cohesive zone, which contradicts the 

basis of CZM. The other set of inverse solution which has a shorter cohesive zone is more 

reasonable. A further verification for the accuracy of inverse solutions will be presented in 

Section 5.4. 
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Figure 5.5 Cohesive-zone traction t, separation gradient b, separation δ, and CZL (relationship 

between the cohesive-zone traction and separation) extracted from the data set obtained at the 

moment II. Different initial estimations of cohesive-zone size were used in the inverse 

computations. 

 

Figure 5.6 Cohesive-zone sizes and positions extracted from the data set obtained at the moment 

II. Different initial estimations of cohesive-zone size were used in the inverse computations. 
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    Following the above procedure, inverse computation was conducted for each input data set 

Different initial guesses were used to ensure an accurate inverse solution. However, reasonable 

results cannot be obtained for three cases among the total eleven cases, no matter what initial 

guesses were used. The results of the other eight cases which were measured at different time are 

presented in Figure 5.7 and Figure 5.8. The average of CZLs is also presented, which will be 

used as the representative result in the following studies. Some of the CZLs in Figure 5.7 

originally had small negative tails. These artificial features were trimmed away since they 

violated the basis of CZM. Firstly, it can be seen that the eight sets of extracted CZLs are close 

to each other, even when the estimates of cohesive-zone sizes and positions are scattering from 

1.2 mm to 1.7 mm. Actually, this observation is consistent with the numerical test results in 

Figure 4.12 and Table 4.2, which shows that the relative errors of the estimated cohesive-zone 

size and position are not proportional to the relative error of extracted CZL. Secondly, all the 

CZLs share a similar two-stage functional shape, including an initial increasing part and a 

subsequent softening part. Another important observation is that the maximum of cohesive 

tractions ranges from 365 MPa to 425 MPa, smaller than the manufacturer-provided uniaxial 

tensile strength, 483 MPa. It may be due to the stress multi-axiality near the crack tip [76].  
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Figure 5.7 Cohesive-zone laws extracted at different time 

 

Figure 5.8 Cohesive-zone sizes and positions estimated at different time 
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5.4 Verification of the experimental inverse solutions 

    In this section, the accuracy of experimental measurement of CZLs is verified. Here, the 

average of the total eight inverse solutions of CZLs is considered as the representative result. 

   Firstly, the accuracy of extracted CZL was verified by comparing the fracture energies within 

the frameworks of LEFM and cohesive-zone model (CZM). In LEFM, the energy release rate is 

a critical parameter which drives the fracture process. As stated in Chapter 3, the energy release 

rate can be computed with J-integral, or from the area under the load versus load-line 

displacement curves [129]. In CZM, the fracture process is driven by the CZL. The cohesive 

fracture energy is equivalent to the area under the CZL curve. An important connection between 

the LEFM and CZM is the equivalence between the LEFM energy release rate and the cohesive 

fracture energy [63]–[65] during steady-state crack propagation. In Chapter 3, the steady-state 

value of energy release rate estimated by J-integral is about 25 KJ/m
2
. In this chapter, the 

cohesive fracture energy is estimated to be 25.4 KJ/m
2
. As expected, the two fracture energies 

are consistent. 

    Moreover, another verification procedure was carried out through a finite element simulation. 

Using the cohesive-zone modeling capability in ABAQUS [130], the mode I translaminar 

fracture experiment with an ECT specimen was replicated with the extracted CZL. Then the 

finite element solution of load versus crack mouth opening displacement (CMOD) was compared 

to the experimental outcomes. The simulation procedure can be considered as a "direct" problem. 

Since the CZL was inversely extracted from the same experiment, the solutions of "direct" 

problem which uses the extracted CZL as the input should be consistent with the experimental 

results. The finite element mesh and applied boundary conditions for the finite element 
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simulation are shown in Figure 5.9, while the comparison between finite element solution and 

experimental result is shown in Figure 5.10.  

     From Figure 5.9, it can be seen that a set of cohesive elements was inserted into the specimen, 

along the extension line of crack. This setup was consistent with the self-similar crack extension 

which was shown in Figure 3.7 (c). The simulation was under the plane stress condition, with the 

bulk material properties provided in Table 3.1. The loading condition applied on the model also 

replicated the experiment: the upper loading point was fixed, while the lower one was loaded at a 

constant rate of 0.01 mm/sec. In addition, the mesh dependence of the finite element simulation 

results was investigated. The result shown in Figure 5.10 is the convergent result with fine mesh. 
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Figure 5.9 Finite element model of ECT specimen with inserted cohesive elements  

 

Figure 5.10 Comparison of the load versus crack mouth opening displacement (CMOD) curves 

between the experiment and finite element simulation. 
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From Figure 5.10, a good agreement can be seen between the experimental data and finite 

element simulation result. The maximum load estimated by the finite element simulation is 1258 

N, which is only 6 percent higher than the experimental maximum load, 1185 N. Moreover, the 

increasing and decreasing parts in load-CMOD curves of the experiment and simulation are very 

close. The consistency between the two sets of results provides a strong evidence for the 

accuracy of extracted CZL.  

It is noteworthy that the cohesive-zone size in the finite element simulation is estimated to be 

1.04 mm, which is smaller than the inverse solutions shown in Figure 5.8. The discrepancy is 

mainly due to the measurement noise in the inverse solutions. From Figure 4.12 and Figure 5.8, 

it has been found that the inverse solution of cohesive-zone size is sensitive to the noise in input 

data. Nevertheless, it was also found that the scattered values of estimated cohesive-zone size 

and position did not cause significantly scattering of the extracted CZLs. Therefore, even though 

the accuracy of estimated cohesive-zone size and position is unsatisfying, this analytical inverse 

method is still considered to be reliable in the extraction of CZLs, which is the most important 

feature of CZM.  

Finally, recall that the maximum load predicted by the R-curves is 1160 N, as presented in 

Section 3.3.2.5. It can be seen that the prediction of load carrying capability using LEFM R-

curve show a great agreement with that using finite element simulation with extracted CZL. 
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5.5 Summary 

    In this chapter, an experiment validation was conducted for the applicability of nonlinear 

separable least-squares method, an analytical inverse method which had been developed and 

numerically tested in Chapter 4. Following the guidelines provided by numerical tests, this 

analytical inverse method was applied to measure the CZL for a translaminar fracture test of 

cross-ply composite laminates. In the experiments, the crack-tip displacement fields measured by 

2-D digital image correlation (DIC) were used as the inputs for the inverse extraction of CZLs. 

Eleven displacement data sets which had been measured during the steady-state crack 

propagation were chosen for the inverse computation. For each data set, different initial guesses 

of cohesive-zone size and position were used to check the consistency of inverse solutions. 

    Consequently, eight of total eleven cases have successfully obtained reasonable and consistent 

inverse solutions of CZLs, while the estimates of cohesive-zone sizes and positions show some 

fluctuations. Then the accuracy of inverse solutions was discussed. Firstly, it was demonstrated 

that the energy release rate measured in Chapter 3 was equivalent to the cohesive fracture energy 

during steady-state crack propagation. Then an advanced verification work was carried out 

through the comparison between the experimental load-CMOD curves with the finite element 

simulation results which used the extracted CZL as input. A good agreement was found between 

the two results, which verified the accuracy of extracted CZL. Therefore, the applicability of 

separable nonlinear least-squares method is validated. 
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Chapter 6 

Conclusions and Future Work 

6.1 Significance and contributions 

    The primary focus of this dissertation is the investigation of translaminar fracture mechanisms 

of fiber-reinforced composite laminates. The investigations were carried out within the 

frameworks of linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM), 

through the development of experimental methods which can provide accurate and convenience 

measurements of R-curves and cohesive-zone law (CZL), respectively. Based on the bases of  

LEFM and CZM, the fiber-reinforced composite laminates were approximated as anisotropic 

solids. Generally, the studies for each fracture theory can be divided into two subsequent 

sections. Firstly, the experimental methods were developed. Their applicability were 

experimentally validated. Secondly, the applicability of LEFM and CZM for the fracture analysis 

and fracture prediction of fibre-reinforced composite laminates were investigated based on the 

experimental measurements. 

    The researches in this dissertation were motivated by the current challenges in the studies of 

translaminar fracture of fiber-reinforced composite laminates within the frameworks of LEFM 

and CZM. The challenges were explicitly indicated in Chapter 2. For each fracture theory, the 

thrusts of research are separately denoted as follows. 

    The thrusts of the research within the context of LEFM can be summarized into two aspects. 

Firstly, two experimental methods based on stress intensity approach and energy approach were 

developed to measure the crack-tip field parameters from the crack-tip displacement fields of 
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anisotropic solids. The crack-tip displacement fields were experimentally measured with a full-

field optical method-Digital Image Correlation (DIC). The studied crack-tip field parameters 

included the stress intensity factors, the energy release rate and the effective crack length. R-

curves can be generated with these crack-tip field parameters. Secondly, the geometry-

independence of R-curve was verified by comparing the crack-tip field parameters separately 

estimated by the stress intensity approach and energy approach. 

    Moreover, the intellectual merits of research with LEFM can be clarified as follows.   

(1) This research is the first attempt to verify the geometry-independence of R-curve and 

hence the applicability of LEFM for the fracture study of fiber-reinforced composite 

laminates, with a measurement of crack-tip full-field displacements. 

(2) The developed experimental methods which provide accurate and convenient R-curve 

measurements can considerably enhance the fracture predictive capability of LEFM for 

fiber-reinforced composite laminates.  

(3) This study is expected to provide a foundation for top-down method, thus is helpful for 

the development of multi-scale fracture models for fiber-reinforced composite laminates. 

    For the research within the framework of CZM, two analytical inverse methods were 

developed to measure the cohesive-zone law with detailed functional shape for the translaminar 

fracture of fiber-reinforced composite laminates. The inverse methods were developed based on 

an analytical description of the elastic fields around a crack-tip cohesive zone in anisotropic 

solids. With the inverse methods, the cohesive-zone properties such as the cohesive traction, 

separation and cohesive-zone law can be inversely extracted from the crack-tip displacement 

fields. The accuracy and reliability of two methods were studied with a sequence of numerical 

tests, and a noise-resistant inverse method was identified between the two. Based on the 
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guidelines provided by numerical tests, the applicability of the chosen method was demonstrated 

through an experimental validation study with DIC. 

    The intellectual merits of the research about CZM can be summarized as follows.  

(1) This study is the first attempt to extract CZLs with analytical inverse methods from the 

cohesive-crack-tip displacement fields in macro-scale anisotropic solids. 

(2) As denoted in the dissertation, the analytical inverse methods can be used not only for 

mode-I fracture problem, but also for mode-II and mixed mode fracture problems. 

(3)  Since the analytical inverse method can provide accurate measurement of CZLs, it opens 

up an avenue for the improvement of micro-mechanical fracture models with the 

extracted CZLs. 

    Furthermore, it was found that the experimental LEFM R-curves and CZL showed a great 

agreement in terms of fracture energies and maximum load predictions. It is consistent with the 

understanding that quasi-brittle fracture problems such as the case in this dissertation can be 

successfully analyzed with both the LEFM and CZM, which also demonstrates the validity of the 

research in this dissertation. 

 

6.2 Recommendations for future work 

    The breadth and depth of the research in this dissertation were limited by time and resource. 

There are several more potential research topics that can be conducted in the future, based on the 

fundamental theories and ideas provided in the dissertation. In this section, these possibilities are 

listed, for the purpose of inspiring any other researchers who would like to make use of this 

dissertation.  
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    Firstly, in this dissertation, only the mode I translaminar fracture problem has been 

investigated. It is mainly because of the simplicity of mode I fracture problem, which is 

convenience for the illustration and verification of ideas and methods. However, as separately 

stated in Chapter 3 and Chapter 4, both of the experimental methods for the measurement of 

LEFM crack-tip field parameters and CZLs have the potentials to be extended to study mode II 

and even mixed-mode fracture problems. Moreover, it is also noteworthy that all the theoretical 

derivations for mode II and mixed-mode fracture problems have been given in this dissertation. 

Therefore, any future work about the experimental validation of current methods for mode II and 

mixed-mode fracture problems can be easily guided. 

    Secondly, the material that has been studied in this dissertation is a cross-ply glass-fiber 

reinforced epoxy laminate. This material was chosen due to the fact that its quasi-brittle fracture 

behavior during self-similar translaminar crack growth was well-suited for the experimental 

validation of the methods for the measurement of R-curve and CZL. However, it is noteworthy 

that the developed methods are applicable for the translaminar fracture analysis of any fiber-

reinforced composite materials which can be approximated as anisotropic solids and show self-

similar crack growth. 

    Thirdly, the separable nonlinear least-squares method for the inverse extraction of CZL should 

not only be applicable for anisotropic materials like fiber-reinforced composite laminates, but 

may also be applicable for isotropic materials. Essentially, the prerequisite of separable nonlinear 

least-squares method is a analytical characterization (i.e., mathematical expression) of the 

interested object. For isotropic materials, the eigenfunction expansion for the characterization of 

crack-tip fields around a cohesive zone has already been derived [75] with the Muskhelishvili 

formalism of isotropic plane elasticity [109] [131]. Although the eigenfunction expansions for 
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isotropic materials and anisotropic materials are significantly different in terms of appearance, 

they have been derived from the same boundary value problem. Therefore, it is reasonable to 

assume that the separable nonlinear least-squares method can also be used for isotropic materials. 

As represented in this dissertation, the applicability of this inverse method for isotropic materials 

can be verified with a sequence of numerical tests and experimental validations. 

    Finally, the analytical inverse methods for the measurement of CZL can be used as an 

powerful tool to study the fracture predictive capability of CZM. Generally, in CZM, the CZL is 

considered as a material constant. The material dependence of CZL can be interpreted with two 

different ways. On one hand, for a specific material, the CZL extracted from one specimen 

configuration and loading condition should be able to predict the fracture behaviours of other 

specimen geometries and loading conditions. On the other hand, the CZLs extracted from 

different experiments with various specimens and loading conditions should be identical. 

Although the geometry-independent fracture predictive capability of CZM has been analytically 

verified, there is little experimental evidences since the experimental measurement of CZL 

remains challenging. With the analytical inverse methods developed in this dissertation, the 

fracture predictive capability of CZM for different structural geometries and loading conditions 

can be experimentally validated with a sequence of well-designed experiments. Based on the 

experimental results, topics such as the improvement of analytical inverse methods or the 

enhancement of the cohesive-zone modeling technique can be investigated as a further step. 
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Appendix A 

Source Code of 2D Digital Image Correlation (DIC) Software 

 

% This DIC code can measure large deformation by accumulating successive deformations in a 

sequence of images (Number of images>=2). 

% All the images are captured successively during a deformation process. The format of image is 

256 grey-scale bmp file. 

% The sequence of images used for DIC measurement should be kept in the same folder. 

% All the deformed images which are captured successively should be named in order (e.g. 

imag000, imag001, imag002,...).  

% The first image must be the reference image.  

% This DIC code exports a sequence of comma-separated values (csv) files. 

% Each csv file contains the coordinates of data points (x, y) and displacement results (u, v), 

corresponding to one deformed image. 

% The csv files are automatically ordered in terms of three-digit file names (e.g. 000.csv, 

001.csv, ...).  

% The 000.csv is to compare reference image with itself, so displacements are all zeros. 

 

% This function is the main function that is used to load images and export displacement result 

of DIC.  

 

clear  

close all 

b=dir('*.bmp');         

global a  

global fx 

global fy 

global fxy 

 

% Users' inputs. Define the region of interest, spacing between neighbouring data points and 

sizes of subsets in DIC algorithm 

m0start_x=220;        % lower limit of x-coordinate to define the region of interest (in the 

coordinate system of image) 

m0start_y=180;        % lower limit of y-coordinate to define the region of interest (in the 

coordinate system of image)  

m0end_x=1070;         % upper limit of x-coordinate to define the region of interest (in the 

coordinate system of image) 

m0end_y=780;          % upper limit of y-coordinate to define the region of interest (in the 

coordinate system of image) 

stepsize=10;           % spacing between neighbouring data points 

w1=100;                       % even number,size of the subset used in obtaining integer displacements  

w2=41;                 % odd number,size of the subset used in obtaining the sub-pixel displacements 
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m0=double(imread(b(1).name));  

[M N]=size(m0); 

y_start=M+1-m0start_y; 

y_end=M+1-m0end_y; 

[x0,y0]=meshgrid(m0start_x:stepsize:m0end_x,y_start:-stepsize:y_end); 

[x1,y1]=meshgrid(m0start_x:stepsize:m0end_x,y_start:-stepsize:y_end);   

 

d=dir('*.csv'); 

for i=(length(d)+1):length(b), 

    tic; 

m1=double(imread(b(i).name)); 

a=zeros(M-1,N-1,16)*nan;                    % interpolation coefficients matrix 

[fx,fy,fxy] = calderivative(m1);            % determine the gradient of the grey value 

k=floor(i-1); 

 

if k>=1 

dd=dir('*.csv'); 

data1=csvread(dd(k).name,1,0); 

ui=data1(:,3); 

vi=data1(:,4); 

kkk=1; 

for jjj=1:((m0end_x-m0start_x)/stepsize+1) 

    for iii=1:((m0end_y-m0start_y)/stepsize+1) 

        ui1(iii,jjj)=ui(kkk); 

        vi1(iii,jjj)=vi(kkk); 

        kkk=kkk+1; 

    end 

end 

x1=x0+round(ui1); 

y1=y0+round(vi1); 

end 

 

[u(:,:,i),v(:,:,i)]=dic_full_lm(m0,m1,x0,y0,x1,y1,w1,w2);  % measure displacement fields u and v. 

 

% To export the DIC result into .csv files 

un=u(:,:,i); 

vn=v(:,:,i); 

x00=x0(:); 

y00=y0(:); 

unn=un(:); 

vnn=vn(:);     

result=[x00 y00 unn vnn]; 

kk=int2str(k); 

str0=num2str(0); 

colnames={'x','y','u','v'}; 

if k<10 
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    cellwrite(strcat(str0,str0,kk,'.csv'),colnames); 

    cellwrite(strcat(str0,str0,kk,'.csv'),num2cell(result)); 

  figure;mesh(x0,y0,un); 

filename=strcat(str0,str0,kk,'_u.eps'); 

print('-depsc2',filename); 

close; 

figure;mesh(x0,y0,vn); 

filename=strcat(str0,str0,kk,'_v.eps'); 

print('-depsc2',filename); 

close; 

elseif k>=10&&k<=99 

    cellwrite(strcat(str0,kk,'.csv'),colnames); 

    cellwrite(strcat(str0,kk,'.csv'),num2cell(result)); 

figure;mesh(x0,y0,un); 

filename=strcat(str0,kk,'_u.eps'); 

print('-depsc2',filename); 

close; 

figure;mesh(x0,y0,vn); 

filename=strcat(str0,kk,'_v.eps'); 

print('-depsc2',filename); 

close; 

else  

    cellwrite(strcat(kk,'.csv'),colnames); 

    cellwrite(strcat(kk,'.csv'),num2cell(result)); 

figure;mesh(x0,y0,un); 

filename=strcat(kk,'_u.eps'); 

print('-depsc2',filename); 

close; 

figure;mesh(x0,y0,vn); 

filename=strcat(kk,'_v.eps'); 

print('-depsc2',filename); 

close; 

end 

i                           % output the order of image that has just been processed 

toc;                     % output the computation time 

end 

 

 

function [fx,fy,fxy] = calderivative (m1)    

% This function is used to determine the gradient of the grey values for the whole image   

fx=(circshift(m1,[0 -1])-circshift(m1,[0 1]))/2; 

fy=(circshift(m1,1)-circshift(m1,-1))/2; 

fxy=(circshift(m1,[1 -1])-circshift(m1,[-1 -1])-circshift(m1,[1 1])+circshift(m1,[-1 1]))/4; 

end 
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function [u,v]=dic_full_lm(m0,m1,x0,y0,x1,y1,w1,w2) 

% This function is used to measure the displacements with DIC algorithm 

[up,vp]=dic_full_pixel(m0,m1,x0,y0,x1,y1,w1); % measure the integer-pixel-level displacements 

[m n]=size(x0);  

 

%Incomplete compensatory program to redefine the "nan" value in the integer displacements. 

if find(isnan(up))~=0 

   [ni,nj]=find(isnan(up)); 

   for i=1:length(ni) 

       if ni(i)~=1 && ni(i)~=m 

          up(ni(i),nj(i))=(up(ni(i)-1,nj(i))+up(ni(i)+1,nj(i)))/2; 

          vp(ni(i),nj(i))=(vp(ni(i)-1,nj(i))+vp(ni(i)+1,nj(i)))/2; 

       else 

          up(ni(i),nj(i))=(up(ni(i),nj(i)-1)+up(ni(i),nj(i)+1))/2; 

          vp(ni(i),nj(i))=(vp(ni(i),nj(i)+1)+vp(ni(i),nj(i)+1))/2; 

       end 

   end 

end           

 

u=zeros(m,n)*nan; 

v=zeros(m,n)*nan; 

h=waitbar(0,'Please wait...'); 

j=1; 

for i=1:m, 

    waitbar(i/m,h); 

    if j==1, 

        for j=1:n, 

            if i==1&&j==1 

                P=[up(i),vp(j),0,0,0,0]'; 

            end 

            [P,C]=LM(x0(i,j),y0(i,j),P,w2,m0,m1); % calculate the deformation vector P and 

correlation coefficient C 

                 u(i,j)=P(1); 

                 v(i,j)=P(2); 

         end 

     else  

          for j=n:-1:1, 

              [P,C]=LM(x0(i,j),y0(i,j),P,w2,m0,m1); % calculate the deformation vector P and 

correlation coefficient C 

                 u(i,j)=P(1); 

                 v(i,j)=P(2); 

          end      

    end 

end 

close(h); 

end     
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function [u,v]=dic_full_pixel(m0,m1,x0,y0,x1,y1,w) 

% This function is used to measure the integer-pixel-level displacements 

[M N]=size(m0);[m n]=size(x0);  

u=zeros(m,n)*nan; 

v=zeros(m,n)*nan; 

h=waitbar(0,'Please wait...'); 

for i=1:m, 

    waitbar(i/m,h); 

    for j=1:n, 

       i0=(M+1-y0(i,j)-w/2); i1=M+1-y0(i,j)+w/2-1; 

        j0=(x0(i,j)-w/2); j1=x0(i,j)+w/2-1; 

        p0=(M+1-y1(i,j)-w/2); p1=M+1-y1(i,j)+w/2-1; 

        q0=(x1(i,j)-w/2); q1=x1(i,j)+w/2-1; 

        if i0>=1 & i0<=M & j0>=1 & j0<=N & i1>=1 & i1<=M & j1>=1 & j1<=N &...  

           p0>=1 & p0<=M & q0>=1 & q0<=N & p1>=1 & p1<=M & q1>=1 & q1<=N, 

            dm0=m0(i0:i1,j0:j1); 

            dm1=m1(p0:p1,q0:q1);         

            [du,dv]=decorr(dm0,dm1);         % Measure the displacements in Fourier's domain 

            if (length(du)*length(dv)==1) 

                u(i,j)=du+x1(i,j)-x0(i,j); 

                v(i,j)=dv+y1(i,j)-y0(i,j); 

            else 

                disp('temp=0'); 

            end 

        end 

    end 

end 

close(h); 

end 

 

 

function [du,dv]=decorr(dm0,dm1) 

% This function is used to measure the integer-pixel-level displacements in Fourier's domain 

[M,N]=size(dm0); 

dm0=double(dm0); dm1=double(dm1); 

c=abs(fftshift(ifft2(conj(fft2(dm0)).*fft2(dm1)))); 

cc=sum(sum((dm0-dm1).*(dm0-dm1))); 

if cc==0 

    du=0; 

    dv=0; 

else 

    [di,dj]=find(c==max(c(:))); 

    du=dj-(N/2+1); 

    dv=-(di-(M/2+1)); 
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end 

end 

 

function [P,C]=LM(X0,Y0,P0,w,m0,m1) 

% This function is used to calculate the deformation vector P and correlation coefficient C for 

one point using Levenberg-Marquardt algorithm. 

eps1=double(1e-6); % convergent limit 1 

eps2=double(1e-6); % convergent limit 2 

lamda=0.01;    % set an initial value of the damping factor for the Levenberg-Marquardt 

algorithm 

update=1;   % to judge if we should wait until lamda changes to a suitable value 

cnt=0;  

MAXCNT=500; % maximal cycle index 

while cnt<MAXCNT                   % prevent infinite cycle  

   if update==1             % lamda is suitable 

       if cnt==0   

[GC,H,C0]=grhessianZNSSD(P0,X0,Y0,m0,m1,w); % calculate correlation coefficient C0, 

Hessian matrix H and coefficient gradient GC for next iterative step 

       else 

       [GC,H]=grhessianZNSSD1(P0,X0,Y0,m0,m1,w); % calculate Hessian matrix H and 

coefficient gradient GC  

       end 

   end  

Him=H+(lamda*diag(diag(H))); 

P=P0-Him\GC;                    % the iterative formula to calculate deformation vector 

[C]=grhessianZNSSD2(P,X0,Y0,m0,m1,w);  % calculate correlation coefficient C 

if norm(GC)<=eps1 || norm(P-P0)<=eps2*(norm(P0)+eps2)    

break;  

end  

if C<C0  

P0=P; 

C0=C; 

lamda=lamda/10; 

update=1; 

else 

    lamda=lamda*10; 

    update=0; 

end 

cnt=cnt+1;  

end 

if cnt==MAXCNT  

disp('divergence') 

end  

end 
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function [GC,H,C]=grhessianZNSSD(P,X0,Y0,m0,m1,w)  

% This function is used to calculate Hessian matrix H, correlation coefficient C and coefficient 

gradients GC of the subset with 

% the center of (X0,Y0)---under x-y coordinate system 

% The zero-normalized sum of squared differences (ZNSSD) is used 

global a          

H=zeros(6,6); 

GC=[0 0 0 0 0 0]'; 

[M,N]=size(m0); 

qq=1; 

for ii=-(w-1)/2:(w-1)/2,     

    pp=1;     

    for jj=-(w-1)/2:(w-1)/2, 

        X=X0+ii+P(1)+P(3)*ii+P(5)*jj; 

        Y=Y0+jj+P(2)+P(4)*ii+P(6)*jj; %X0 and Y0 are the x-y coordinates of the center point of 

this subset 

i=floor(M+1-Y); 

j=floor(X);          % to judge in which unit square the point is----unit(i,j)   

         if isnan(a(i,j,1))==1, 

            a(i,j,:)=bispcoeff(i,j,m1); 

         end 

         aa=[a(i,j,1) a(i,j,2) a(i,j,3) a(i,j,4)... 

             a(i,j,5) a(i,j,6) a(i,j,7) a(i,j,8)... 

             a(i,j,9) a(i,j,10) a(i,j,11) a(i,j,12)... 

             a(i,j,13) a(i,j,14) a(i,j,15) a(i,j,16)]; 

         xx=X-j; yy=Y+i-M; 

xx2=xx^2;xx3=xx^3;yy2=yy^2;yy3=yy^3; 

g(w+1-pp,qq)=aa*[1 xx xx2 xx3 yy xx*yy yy*xx2 yy*xx3 yy2 xx*yy2 xx2*yy2 xx3*yy2 yy3 

xx*yy3 xx2*yy3 xx3*yy3]';  

gx(w+1-pp,qq)=aa*[0 1 2*xx 3*xx2 0 yy 2*xx*yy 3*xx2*yy 0 yy2 2*xx*yy2 3*xx2*yy2 0 yy3 

2*xx*yy3 3*xx2*yy3]'; 

gy(w+1-pp,qq)=aa*[0 0 0 0 1 xx xx2 xx3 2*yy 2*xx*yy 2*xx2*yy 2*xx3*yy 3*yy2 3*xx*yy2 

3*xx2*yy2 3*xx3*yy2]'; 

gp(w+1-pp,qq,1)=gx(w+1-pp,qq); 

gp(w+1-pp,qq,2)=gy(w+1-pp,qq); 

gp(w+1-pp,qq,3)=gx(w+1-pp,qq)*ii; 

gp(w+1-pp,qq,4)=gy(w+1-pp,qq)*ii; 

gp(w+1-pp,qq,5)=gx(w+1-pp,qq)*jj; 

gp(w+1-pp,qq,6)=gy(w+1-pp,qq)*jj; 

pp=pp+1; 

    end 

qq=qq+1; 

end 

F=sum(sum(m0(M+1-Y0-(w-1)/2:M+1-Y0+(w-1)/2,X0-(w-1)/2:X0+(w-1)/2)));%scalar 

Fm=F/w^2;       %scalar 

F1=m0(M+1-Y0-(w-1)/2:M+1-Y0+(w-1)/2,X0-(w-1)/2:X0+(w-1)/2)-Fm; %%matrix 
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FF1=sum(sum(F1.^2));  %scalar 

FF=sqrt(FF1); %scalar 

gm=mean(g(:));            %scalar 

g1=g-gm;     %%matrix 

gg1=sum(sum(g1.^2)); %scalar 

gg=sqrt(gg1);      %scalar 

        Fs=F1/FF-g1/gg;   %matrix   

        Fss=Fs/gg;          %matrix 

        for mm=1:6, 

        GC(mm)=-2*sum(sum(Fss.*gp(:,:,mm))); 

        end 

        gg2=2/gg1;     %scalar 

        for mm=1:6, 

             for nn=1:6, 

             H(mm,nn)=gg2*sum(sum(gp(:,:,mm).*gp(:,:,nn))); 

             end 

        end 

C=sum(sum(Fs.^2)); 

end 

 

 

function [GC,H]=grhessianZNSSD1(P,X0,Y0,m0,m1,w)  

% This funciton is used to calculate Hessian matrix H and coefficient gradients GC of the subset 

with 

% the center of (X0,Y0)---under x-y coordinate system 

% The zero-normalized sum of squared differences (ZNSSD) is used 

global a          

H=zeros(6,6); 

GC=[0 0 0 0 0 0]'; 

[M,N]=size(m0); 

qq=1; 

for ii=-(w-1)/2:(w-1)/2,     

    pp=1;     

    for jj=-(w-1)/2:(w-1)/2, 

        X=X0+ii+P(1)+P(3)*ii+P(5)*jj; 

        Y=Y0+jj+P(2)+P(4)*ii+P(6)*jj;%X0 and Y0 are the x-y coordinates of the center point of 

this subset 

i=floor(M+1-Y); 

j=floor(X);          % to judge in which unit square the point is----unit(i,j) 

         if isnan(a(i,j,1))==1, 

            a(i,j,:)=bispcoeff(i,j,m1); 

         end 

         aa=[a(i,j,1) a(i,j,2) a(i,j,3) a(i,j,4)... 

             a(i,j,5) a(i,j,6) a(i,j,7) a(i,j,8)... 

             a(i,j,9) a(i,j,10) a(i,j,11) a(i,j,12)... 

             a(i,j,13) a(i,j,14) a(i,j,15) a(i,j,16)]; 



 

148 

 

         xx=X-j; yy=Y+i-M; 

xx2=xx^2;xx3=xx^3;yy2=yy^2;yy3=yy^3; 

g(w+1-pp,qq)=aa*[1 xx xx2 xx3 yy xx*yy yy*xx2 yy*xx3 yy2 xx*yy2 xx2*yy2 xx3*yy2 yy3 

xx*yy3 xx2*yy3 xx3*yy3]';  

gx(w+1-pp,qq)=aa*[0 1 2*xx 3*xx2 0 yy 2*xx*yy 3*xx2*yy 0 yy2 2*xx*yy2 3*xx2*yy2 0 yy3 

2*xx*yy3 3*xx2*yy3]'; 

gy(w+1-pp,qq)=aa*[0 0 0 0 1 xx xx2 xx3 2*yy 2*xx*yy 2*xx2*yy 2*xx3*yy 3*yy2 3*xx*yy2 

3*xx2*yy2 3*xx3*yy2]'; 

gp(w+1-pp,qq,1)=gx(w+1-pp,qq); 

gp(w+1-pp,qq,2)=gy(w+1-pp,qq); 

gp(w+1-pp,qq,3)=gx(w+1-pp,qq)*ii; 

gp(w+1-pp,qq,4)=gy(w+1-pp,qq)*ii; 

gp(w+1-pp,qq,5)=gx(w+1-pp,qq)*jj; 

gp(w+1-pp,qq,6)=gy(w+1-pp,qq)*jj; 

pp=pp+1; 

    end 

qq=qq+1; 

end 

F=sum(sum(m0(M+1-Y0-(w-1)/2:M+1-Y0+(w-1)/2,X0-(w-1)/2:X0+(w-1)/2)));%scalar 

Fm=F/w^2;       %scalar 

F1=m0(M+1-Y0-(w-1)/2:M+1-Y0+(w-1)/2,X0-(w-1)/2:X0+(w-1)/2)-Fm;  %matrix 

FF1=sum(sum(F1.^2));  %scalar 

FF=sqrt(FF1); %scalar 

gm=mean(g(:));            %scalar 

g1=g-gm;     %%matrix 

gg1=sum(sum(g1.^2)); %scalar 

gg=sqrt(gg1);      %scalar 

        Fs=F1/FF-g1/gg;   %matrix   

        Fss=Fs/gg;          %matrix 

        for mm=1:6, 

        GC(mm)=-2*sum(sum(Fss.*gp(:,:,mm))); 

        end 

        gg2=2/gg1;     %scalar 

        for mm=1:6, 

             for nn=1:6, 

             H(mm,nn)=gg2*sum(sum(gp(:,:,mm).*gp(:,:,nn))); 

             end 

        end 

end 

 

 

function [C]=grhessianZNSSD2(P,X0,Y0,m0,m1,w)  

% To calculate the correlation coefficient C of the subset with 

% the center of (X0,Y0)---under x-y coordinate system 

% The zero-normalized sum of squared differences (ZNSSD) is used 

global a          
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[M,N]=size(m0); 

qq=1; 

for ii=-(w-1)/2:(w-1)/2,     

    pp=1;     

    for jj=-(w-1)/2:(w-1)/2, 

        X=X0+ii+P(1)+P(3)*ii+P(5)*jj; 

        Y=Y0+jj+P(2)+P(4)*ii+P(6)*jj;%X0 and Y0 are the x-y coordinates of the center point of 

this subset 

i=floor(M+1-Y); 

j=floor(X);% to judge in which unit square the point is----unit(i,j) 

         if isnan(a(i,j,1))==1, 

            a(i,j,:)=bispcoeff(i,j,m1); 

         end 

         aa=[a(i,j,1) a(i,j,2) a(i,j,3) a(i,j,4)... 

             a(i,j,5) a(i,j,6) a(i,j,7) a(i,j,8)... 

             a(i,j,9) a(i,j,10) a(i,j,11) a(i,j,12)... 

             a(i,j,13) a(i,j,14) a(i,j,15) a(i,j,16)]; 

         xx=X-j; yy=Y+i-M; 

xx2=xx^2;xx3=xx^3;yy2=yy^2;yy3=yy^3; 

g(w+1-pp,qq)=aa*[1 xx xx2 xx3 yy xx*yy yy*xx2 yy*xx3 yy2 xx*yy2 xx2*yy2 xx3*yy2 yy3 

xx*yy3 xx2*yy3 xx3*yy3]';  

pp=pp+1; 

    end 

qq=qq+1; 

end 

F=sum(sum(m0(M+1-Y0-(w-1)/2:M+1-Y0+(w-1)/2,X0-(w-1)/2:X0+(w-1)/2)));%scalar 

Fm=F/w^2;       %scalar 

F1=m0(M+1-Y0-(w-1)/2:M+1-Y0+(w-1)/2,X0-(w-1)/2:X0+(w-1)/2)-Fm; %%matrix 

FF1=sum(sum(F1.^2));  %scalar 

FF=sqrt(FF1); %scalar 

gm=mean(g(:));            %scalar 

g1=g-gm;     %matrix 

gg1=sum(sum(g1.^2)); %scalar 

gg=sqrt(gg1);      %scalar 

Fs=F1/FF-g1/gg;   %matrix   

C=sum(sum(Fs.^2)); 

end 
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Appendix B 

Derivation of the Asymptotic Expansion of Semi-infinite Crack Problem in 

Anisotropic Solids 

 

    Consider a semi-infinite traction-free crack problem in an anisotropic solid, as shown in 

Figure 3.1. An asymptotic expansion of the crack-tip elastic fields can be solved from the 

boundary conditions as follows. 

    For the derivation, let 

                                                             


 )('

2 zfLt iii
,                                            (B.1) 

which can be rewritten in the matrix notation as 

)()()( '' zzz fLLft  .                                              (B.2) 

    Firstly, the continuity condition of traction along the entire x -axis can be expressed as 

0 
)t()t( xx    )(  x                                            (B.3) 

where the superscript plus ( ) and minus () signs denote the evaluation of the function value 

at ix as  is positive and approaches to zero, 
)t(x and 

)t(x can be represented as follows, 

  )()( '' xxx fLLf)t(                                            (B.4) 

  )()( '' xxx fLLf)t(                                            (B.5) 

Substitute the equation (B.4) and (B.5) into (B.2), we can get 

                                  0))()(()()(   xxxxxx ''''
fLLffLLf)t()t( .                  (B.6) 

The above equation can be rearranged as 

                                         0)()()()( '''' 


xxxx fLLffLLf .                                  (B.7) 
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From the equation (B.7), a general solution can be derived as [109]  

g(z)fLLf izz  )()( ''
,                                            (B.8) 

where g(z) is an entire function. 

    Secondly, the traction-free condition on the semi-infinite crack leads to a homogeneous 

Hilbert arc problem [109] with a straight cut along the negative x -axis, which can be represented 

as follows, 

0)()(   xx tt    )0(  x                                            (B.9) 

Substitute the equation (B.4) and (B.5) into (B.9), then we can get 

                                         0)()()()( '''' 


xxxx fLLffLLf .                                  (B.10) 

A general solution in terms of eigenfunction expansion can be represented as [109] 

)(X

)(
)()( ''

z

z
zz

h
fLLf                                                 (B.11) 

where zz )(X  for semi-infinite sharp crack with the crack-tip at z=0 )0(  x . 

Therefore, an asymptotic expansion of the crack-tip elastic fields can be obtained as 









 )(

)(

2

1
)( zi

z

z
z h

g
fL                                             (B.12) 

where 



N

n

n
nzz

0

)( ag  and 



N

n

n
nzz

0

)( bh  as N , and both na and nb  are column vectors with 

three real-number elements.  
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Appendix C 

Elastic Matrices for Orthotropic Solids under Plane Stress Condition 

 

    The characteristic equation for an orthotropic material under plane stress condition, of which 

the principal axes align with the coordinate axes, is 

 01λρ2λ 22

1

4  pp  (C.1) 

where the two non-dimensional parameters λ and ρ are expressed in terms of the Engineering 

constants as 

 
1

2λ
E

E
 , )

2

1
(ρ

2

21

12

21
E

EE



 . (C.2) 

The characteristic roots with positive imaginary parts 1p and 2p  are explicitly given [106] as 

 )1ρρ1(
2

4

1

1 



i
p , )1ρρ1(

2

4

1

2 



i
p ,    for  ρ1  (C.3) 

 )ρ1ρ1(
2

4

1

1 



ip


, )ρ1ρ1(
2

4

1

2 



ip


,    for 1ρ1   (C.4) 

The elements of the matrices A , L , B and H  are then given by 
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
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 






 
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

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Appendix D 

Additional Results of Translaminar Fracture Tests with Fiber-reinforced 

Composite Laminates 

 

The composite material studied in this dissertation was Cyply 1002 (formerly known as 

Scotchply 1002), a glass-fiber reinforced epoxy laminate, manufactured by Cytec Engineered 

Materials. In the translaminar fracture tests following ASTM E1922 [119], a total of six 

specimens with same geometries but different lay-up sequences were tested. The material 

properties of the six different specimens are shown in the following table. 

 

Table D.1 Elastic properties of composite laminates used in the translaminar fracture tests 

Specimen Lay-up E1 [GPa] E2 [GPa] 12 [GPa] 12 

UD00 [90/0/909/0/90]T 13.2 31.2 3 0.096 

UD45 [45/-45/459/45/45]T 9.38 9.38 8.18 0.563 

UD90 [0/90/09/90/0]T 31.2 13.2 3 0.226 

CP00 [(90/0)6/90]T 22.14 22.39 3.17 0.126 

CP45 [(45/-45)6/45]T 10.23 10.16 9.88 0.601 

CP90 [ 90/)0/90( 3 ]T 22.39 22.14 3.17 0.127 

 

In the above table, “UD” stands for “unidirectional”, and “CP” stands for “cross-ply”. The 

loading direction is along the axis 2. The experimental setups and procedures for all the 

specimens were the same. Figure A.1 shows the images of specimens which were captured at the 

end of fracture tests. It can be seen that only UD90, CP00 and CP90 show self-similar crack 
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growth. Nevertheless, a significant delamination (i.e. interlaminar fracture) was observed at the 

back surface of specimen CP00. Therefore, only UD90 and CP90 can be used for the study of 

this dissertation, which requires translaminar fracture and self-similar crack propagation. The 

results of CP90 were presented in Chapter 3. 

Figure D.2 shows the R-curves of UD90 which was measured with the experimental methods 

developed in this dissertation. It can be seen that the R-curves measured by the nonlinear least-

squares method and conservation integrals are consistent, in spite of the fluctuations at the 

beginning stage of R-curve measured by the conservation integrals. These fluctuations were 

caused by the low signal-to-noise ratio in the displacements. The conservation integrals are more 

sensitive to noise because line integrals with limited data points were used in the computation. 

 

   
                         (a)                                                (b)                                             (c) 

   
                          (d)                                                (e)                                             (f) 

Figure D.1 Images of specimens captured at the end of translaminar fracture tests: (a) UD00 (b) 

UD45 (c) UD90 (d) CP00 (e) CP45 (f) CP90. 
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Figure D.2 R-curves in terms of stress intensity factor, for specimen UD90. 
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Appendix E 

Derivation of the Eigenfunction Expansion of Cohesive Crack-tip fields in 

Anisotropic Solids 

 

    Consider a traction-free semi-infinite crack with a cohesive zone in an anisotropic solid, as 

shown in Figure 5.1. An eigenfunction expansion of the elastic fields around crack-tip cohesive 

zone can be solved from the boundary conditions as follows. 

 

For the derivation, let 

                                                             


 )('

2 zfLt iii
,                                            (E.1) 

which can be rewritten in the matrix notation as 

)()()( '' zzz fLLft  .                                              (E.2) 

    Firstly, the continuity condition of traction along the entire x -axis can be expressed as 

0 
)t()t( xx    )(  x                                            (E.3) 

where the superscript plus ( ) and minus () signs denote the evaluation of the function value 

at ix as  is positive and approaches to zero, 
)t(x and 

)t(x can be represented as follows, 

  )()( '' xxx fLLf)t(                                            (E.4) 

  )()( '' xxx fLLf)t(                                            (E.5) 

    Substitute the equation (E.4) and (E.5) into (E.2), we can get 

                                  0))()(()()(   xxxxxx ''''
fLLffLLf)t()t( .                  (E.6) 

The above equation can be rearranged as 
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                                         0)(')(')(')(' 


xxxx fLLffLLf .                          (E.7) 

From the equation (B.7), a general solution can be derived as [109]  

)()(')(' zizz sfLLf  ,                                            (E.8) 

where )(zs is an entire function. 

    Secondly, the elastic fields around the cohesive zone can be described by the superposition of 

two stress-bounded sharp-crack-tip elastic fields with respect to cx  and cx  , as stated by 

Hong and Kim [75].  Here the stress-bounded means that there is no singular term in the 

eigenfunctions. The eigenfunction expansion is, then, expressed as, 

)()()(')(' zczzczzz rqfLLf                             (E.9) 

where )(zq and )(zr are entire functions. 

    Therefore, the eigenfunction expansion of the crack-tip elastic fields are derived from (B.8) 

and (B.9) as 

       )()()(
2

1
)( zizczzczz srqfL                                 (E.10) 

where 



N

n

nn zQz
0

)()( qq , 



N

n

nn zRz
0

)()( rr  and 



N

n

nn zSz
0

)()( ss  as N , nq , nr and ns are 

column vectors with real-number elements, and )(zQn , )(zRn and )(zSn  are entire functions.  

    From (E.2) to (E.5), the closing-traction distribution )(xt within the cohesive zone (

cxc  ), can be expressed in terms of eigenfunction expansions as 

 )()(')(')( xcxxxxxx qfLLf)t()t(t   . (E.11)         

It is noteworthy that the above derivation makes use of the fact that the line segment cxc  is 

the branch cut for the function )(zcz r , but not the branch cut for the function )(zcz q .   

    In addition, the jump of separation-gradient in the cohesive zone ( cxc  ) is defined as 
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    )(')()( xx'x uub .                                              (E.12) 

From the equation (3.3), the displacement gradients is expressed as 

)(')(')( zzz' fAΑfu   .                                             (E.13) 

Therefore, the jump of separation-gradient in the cohesive zone )(xb  can be derived as 

)()])(')('())(')('[()( xxcxxxxx rHfAAffAAfb              (E.14) 

where H is a Stroh’s matrix defined in the equation (3.12). 

Finally, the separation in the cohesive zone )(xδ can be obtained by integrating (E.14) as 

follows, 

  
C

x

c

x
cbx  d)(d)()( rHδ                                        (E.15) 
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