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ABSTRACT

CAPTURE CROSS SECTIONS FOR THE ASTROPHYSICAL P PROCESS

By

Stephen J. Quinn

This dissertation includes the design and development of the Summing NaI (SuN) 4π

γ-ray detector at the National Superconducting Cyclotron Laboratory to measure proton

and α radiative capture reactions relevant in the astrophysical p process. Discussions of

p-process nucleosynthesis, the relevant nuclear reaction theory, experimental details, and

analysis procedures are included. All reaction measurements were performed at the Nuclear

Science Laboratory of the University of Notre Dame. The commissioning experiments in

both regular and inverse kinematics were done using known resonances in the 27Al(p,γ)28Si

and 58Ni(p,γ)59Cu reactions, and the results agree well with previous literature values. The

success of these proof-of-principle measurements marks the first time that the γ-summing

technique has been implemented in inverse kinematics. Furthermore, in an effort to inves-

tigate the synthesis of the light p-process nuclei, the 74Ge(p,γ)75As, 74Ge(α,γ)78Se, and

90,92Zr(α,γ)94,96Mo reactions were measured and compared to theoretical calculations using

the nuclear statistical model. It was found that the new 74Ge(p,γ)75As measurements cause

an enhancement in the overproduction of 74Se in p-process models, and that the updated

90Zr(α,γ)94Mo reaction rate seems to confirms the p-process branching point at 94Mo. Fi-

nally, the 58Ni(α,γ)62Zn reaction was measured for its role in nucleosynthesis in type Ia

supernovae. The measurements here lower the reaction rate used in astrophysical models,

which leads to a 5% reduction in the calculated abundances of several isotopes. All of the

measurements in this dissertation greatly reduce the uncertainty in the reaction cross section.



When the Yankees beat the Red Sox all is right in the world.
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Chapter 1

Introduction

It is fascinating to think that the chemical elements that make up our bodies and the world

around us have extraterrestrial origins. The lightest elements, hydrogen and helium (along

with trace amounts of lithium), can be traced as far back as a few seconds to a few minutes

after the Big Bang approximately 13.8 billion years ago, when the universe first cooled. If it

were not for the creation of stars around 100 million years after the Big Bang, there would

be no heavier elements. Instead, stars act as enormous nuclear reactors that combine the

hydrogen and helium building blocks into all of the elements that exist today. Not only do

stars generate the elements, but they may also spew them out into the neighboring universe

during their lifetimes. The ejected material can then be used in the formation of the next

generation of stars. It is through this cycle of stellar birth and death that the elements of

the universe are continually produced and mixed together and, ultimately, have contributed

to the existence of life as we know it today.

The motivation of this thesis work is one of origin, specifically improving the understand-

ing of the origin of the elements. This is a fundamental question, but one that is complex

in nature and involves the interplay of several diverse research fields. The present disserta-

tion represents a small contribution to the ongoing effort at a complete description of the

synthesis of the elements.
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1.1 Elements

In total, there are less than 100 naturally occurring chemical elements. Each element is

comprised of small units known as atoms, and atoms are in turn comprised of a dense

nuclear core of positive protons and chargeless neutrons surrounded by a negative cloud

of electrons. An element is defined by the number of protons in its nucleus, and there are

different versions, called isotopes, that differ in the number of neutrons. Approximately 3000

isotopes have been discovered and it is thought that there may be over 7000 total possible

combinations of protons and neutrons that could make up a nucleus [17]. Remarkably, out

of these 7000 possible nuclei, less than 300 are known to be stable. The other nuclei, if given

enough time, eventually decay into a stable nucleus. Thus, the complex world that we live

in is made up of less that 300 nuclear building blocks along with their electrons. Nuclei

can be conveniently displayed in a chart as in Fig. 1.1, with each nucleus plotted according

to its unique number of protons and neutrons. The stable nuclei are commonly referred to

as the valley of stability. The notation for labeling each isotope is A
ZXN, where X is the

chemical symbol of the element, Z is the number of protons, N is the number of neutrons,

and A=Z+N is the atomic mass number. Each isotope can be uniquely identified in the

form AX, for example the carbon isotope with six protons and six neutrons is labeled 12C.

The nuclei of 1H and 4He often receive special nicknames with 1H being labeled p because it

consists of only one proton, and 4He being labeled an α-particle for historical classification

reasons.

Experimental observations indicate that isotopes with certain “magic numbers” of pro-

tons and neutrons exist in an especially stable configuration compared to their neighboring

isotopes [18]. For example, magic nuclei are more tightly bound and therefore require larger
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Figure 1.1: Nuclear chart with proton number along the y-axis and neutron number along
the x-axis. Stable nuclei are indicated with black boxes and the observed radioactive isotopes
are indicated with shaded boxes. There are also thousands of nuclei beyond what is plotted
here that are expected to exist and are yet to be discovered. The lines on the chart indicate
nuclear magic numbers.

amounts of energy to excite or completely remove a proton or neutron from the nucleus.

The experimentally observed magic numbers at 8, 20, 28, 50, 82, and 126 were successfully

predicted by the nuclear shell model in 1949 [19, 20]. In the same way that electrons fill

atomic shells with closed shells correspond to the noble gases, in the nuclear shell model

protons and neutrons fill nuclear shells with magic numbers appearing at the closed shells.

The location of the magic numbers on the nuclear chart is indicated in Fig. 1.1.
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1.2 Abundances

In order to understand the synthesis of the elements, it is necessary to know what elements

exist in the universe and their relative quantity compared to each other. Any potential

description of the production of the elements must match the observed abundance pattern,

and any feature present in the abundance pattern is a clue to the stellar processes that are

taking place.

The most complete and accurate elemental abundances are from our solar system and

are known as the solar abundances. The solar abundances are similar to other sites in

the universe, but many differences exist due to different evolutionary histories. The solar

abundances serve as the standard to which all abundance patterns are compared. Since

the solar system formed from the collapse of a gaseous nebula of approximately uniform

composition, all objects are expected to have approximately the same elemental abundance

pattern. However, planets like the Earth have undergone many chemical separation processes

since their formation [21] and solar abundances are instead derived from two main sources;

observations of the Sun by astronomers and analysis of meteorites by cosmochemists.

Astronomers deduce abundances from stars by identifying and analyzing the electromag-

netic waves emitted at unique frequencies by the elements near the stellar surface. From

these spectral lines, models of the stellar atmosphere and interior are used to calculate

abundances [22]. For the Sun these observations are primarily taken from the photosphere

because this is the deepest layer of the Sun that can be observed directly, but additional

information on a few elements can be deduced from events like solar winds, solar flares, solar

energetic particles, and through helioseismology (see Ref. [1] and references therein). On

the other hand, cosmochemists measure elemental abundances directly by chemical analysis
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of meteorites. Many of the meteorites that have been recovered on the Earth have under-

gone significant changes since their formation 4.5 billion years ago, but there have been 5

meteorites discovered, known as CI carbonaceous chondrites, which are expected to have

maintained the majority of their initial chemical composition [23].

Having two separate and complementary sources of solar abundances is important because

more information is available than just using one source alone. For example, meteorites are

expected to be lacking some of their initial composition of elements like hydrogen, oxygen,

and the noble gases as they form gases which escape from the meteorite, and the Sun

is expected to be lacking in elements like lithium which get processed by the Sun. For

the elements which can be compared in both meteorites and the Sun, their abundances

typically agree remarkably well to within 10%. The comparison is done by normalizing

the abundances from both meteorites and the Sun to 106 silicon atoms. Additionally, solar

isotopic abundances are usually derived from the elemental abundances by using the isotopic

ratios found on the Earth, for example using data from Ref. [24]. However, there have been

small variations in isotopic composition observed between the Earth and other parts of the

solar system due to mass fractionation, and care must be taken when assigning solar isotopic

abundances [25].

There are several compilations of solar abundances from the first detailed work [26] to

more recent works [25, 1] (along with subsequent updates), and a plot based on the data

from Lodders [1] is displayed in Fig. 1.2. The lightest elements, hydrogen and helium, are

by far the most abundant elements in the solar system, while the next lightest elements,

lithium, beryllium, and boron, have relatively low abundances. The elements from carbon

to scandium have a general trend of decreasing abundance with increasing mass, and then

there is a spike in the abundances around iron which is known as the iron peak. The elements
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Figure 1.2: Abundances of the nuclides in the solar system based on the data from Lod-
ders [1]. The abundances are normalized to 106 silicon atoms.

beyond the iron peak have very low abundances and show maxima in the ranges of mass

110-150 and 180-210.

1.3 Nucleosynthesis

The creation of the chemical elements in the universe is called nucleosynthesis. The modern

view of nucleosynthesis began with two seminal papers by Burbidge, Burbidge, Fowler, and

Hoyle (B2FH) [27] and Cameron [28] in 1957, which were based on existing ideas and the

available abundance patterns of the time. In the nearly 60 years since, the interplay of the

diverse research fields of astronomy, cosmochemistry, theoretical astrophysics, and nuclear

physics have advanced our understanding of the origin of the elements. There are many

astrophysical processes, thousands of nuclear reactions, and countless details that will be
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glossed over in this section in favor of generality. In the following Section 1.4, more details

will be given on the specific nucleosynthesis process that is most directly related to this

dissertation.

1.3.1 Big Bang Nucleosynthesis

The first second of the universe was a period of remarkable expansion and change with

extreme energies causing particles to pop into and out of existence. After a few seconds,

the universe had cooled enough for quarks to form free protons and neutrons, and a few

minutes later the universe had cooled enough to allow protons and neutrons to combine

into heavier nuclei. The free neutrons were quickly scooped up into nuclei (mostly helium)

creating abundances of roughly 75% hydrogen and 25% helium, which are approximately

what is observed in the universe today. Trace amounts of lithium and beryllium were also

produced, but no heavy elements could be built up at this point because of the lack of stable

isotopes with mass numbers 5 and 8 and the insufficient densities preventing much nuclear

fusion from taking place [29]. This is contrary to an earlier proposal that all the elements

were produced as a result of the Big Bang [30].

1.3.2 Quiescent Stellar Burning

Over the course of 100 million years after the Big Bang, gas clouds in the universe began to

collapse to form the first stars, a process that still takes place today. As material collects, the

gravitational pressure leads to increased temperature and density at the core and eventually

nuclear fusion begins. The energy released as a result of the nuclear fusion opposes the

gravitational pressure of the star in hydrostatic equilibrium. This is known as quiescent

7



stellar burning. At first, hydrogen is converted into helium in the core of the star via the

pp chain or the CNO cycle. Stars spend the majority of their lifetime in this main sequence

stage, but eventually the hydrogen fuel runs low and the gravitational pressure causes the

star to collapse and the core to increase in temperature. The mass of the star determines its

evolution and if the star is massive enough, high enough temperatures will be reached that

the next stage of stellar burning in the core occurs, which converts helium into carbon via

the triple-α reaction in the red giant stage. Depending on the mass of the star, the sequence

of burning stages in the core at increasingly higher temperatures and shorter timescales

continues with carbon burning, neon burning, oxygen burning, and silicon burning. The

previous burning stages do not stop but continue in outer shells of the star in an onion-like

structure as shown in Fig. 1.3. The quiescent burning stages of stars can produce elements

up to those around iron where the sequence stops because the nuclei in the iron region are

energetically the most tightly bound (see Sec. 2.5). Additional fusion reactions beyond the

iron region are mostly endothermic and do not release energy to withstand the gravitational

pressure of the star [31].

1.3.3 Supernovae

A supernova is the explosion of a star, which causes the release of huge amounts of energy

and particles into the universe. Supernovae are classified into two groups based on the

presence of hydrogen absorption lines in their spectra, with type I having no hydrogen

lines and type II having hydrogen lines. There are several subcategories of these two main

classification groups, and this thesis focuses on nucleosynthesis in supernovae type Ia (SNIa)

and supernovae type II (SNII).

SNII occur at the end of quiescent stellar burning of a massive star. At first the inert
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Figure 1.3: Simplified picture of a massive star that has undergone all of the burning stages
in the core. The burning layers are not drawn to scale.

iron core is supported by the pressure of the degenerate electrons. However, once the core

reaches approximately 1.4 times the mass of the Sun, electron degeneracy pressure can no

longer support the star and the gravitational pressure causes the core to collapse under its

own weight (the Chandrasekhar limit). For this reason SNII are also referred to as core

collapse supernovae. The collapsing core causes the outer layers of the star to fall inwards.

Once the infalling material strikes the collapsed core it rebounds outward in a shock wave.

The outward propagating shock wave disrupts the star into a supernova and causes explosive

nucleosynthesis to occur. Most of the outer layers get blown off in the explosion, leaving

behind a neutron star or a black hole [32].

Whereas SNII involve only a single star, SNIa are thought to occur in a binary star

system, where at least one of the stars is a white dwarf made out of carbon and oxygen.

Carbon-oxygen white dwarves are formed from stars which are not massive enough to ignite

carbon burning in their cores, and therefore end their quiescent stellar burning lifetimes

after helium burning. Because there is limited energy released from nuclear reactions to
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counteract the gravitational pressure, white dwarves are incredibly dense objects supported

by electron degeneracy pressure. White dwarves by themselves do not become supernovae,

but if they have a nearby star as a companion they may accrete mass from the neighboring

star until they reach the Chandrasekhar limit of approximately 1.4 times the mass of the

Sun. At this point, the carbon ignites and the burning quickly spreads throughout the star

causing it to explode as a supernova and leave no remnant behind. It is not yet known

whether SNIa consist of a white dwarf and a different type of star (single degenerate), two

white dwarfs that collide (double degenerate), or possibly some other scenario. As with all

types of supernovae, SNIa involve several explosive nucleosynthesis processes [33].

1.3.4 Nuclear Statistical Equilibrium

At high enough temperatures, the material inside a star can quickly reach a point where all

forward and reverse reactions are in equilibrium, except for the reactions involving neutrinos,

which are chargeless subatomic particles that typically escape from the star. For example,

in equilibrium the rate that species A captures a proton to form species B is exactly equal

to the rate that species B is photodissociated into species A plus a free proton. These type

of reactions, which will be used throughout the remainder of this thesis, can be denoted as

follows:

A + p −→ B + γ A(p, γ)B (1.1)

B + γ −→ A + p B(γ, p)A (1.2)

When all species are in equilibrium with each other, this is known as nuclear statistical

equilibrium (NSE). Typical temperatures to achieve NSE in stellar environments are larger

than 5 GK and such extreme temperatures are reached in the innermost layers of stars when
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they explode as supernovae. While in NSE the abundance of each isotope can be determined

from a relatively small number of parameters, including nuclear properties like mass and

spin, and stellar properties like temperature, density, and neutron-to-proton ratio of the

material [34]. In NSE, the highest temperatures favor free nucleons and lower temperatures

favor isotopes that are energetically the most bound (have the highest binding energy).

Therefore, in a supernovae the material that reaches NSE first breaks down into free protons,

neutrons, and α particles due to the initial high temperatures. As the material expands and

cools, the free nucleons combine to form mostly iron-peak nuclei due to their high binding

energy. The neutron-to-proton ratio of the stellar material determines which isotopes in the

iron region are the most abundantly produced [31]. Because supernovae spew the majority

of their mass into the universe, the iron-peak nuclei existing in our solar system are nearly

all a result of NSE.

If the expansion of the material undergoing NSE in the supernova occurs very rapidly,

then the triple-α reaction can drop out of equilibrium before all the free α particles can

combine into heavier nuclei. Such a scenario is known as α-rich freeze-out of NSE, and it

leaves a quasi-equilibrium group of heavier nuclei [35]. The final composition of the material

is iron-peak nuclei and free α particles. Further discussion of α-rich freeze-out of NSE is

contained in Chapter 9.

1.3.5 Nucleosynthesis of the Heavy Elements

The elements beyond the iron peak cannot all be produced through nuclear fusion reactions

and must be produced in some other fashion. Since neutrons are chargeless and not repelled

by the positive nucleus, the majority of these heavy nuclei are produced by neutron captures

on existing nuclei inside of stellar environments. There are two main neutron capture pro-
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cesses that contribute: the slow (s) neutron capture process [36] and the rapid (r) neutron

capture process [37]. As their names indicate, the two processes are distinguished by the

speed of neutron capture. For a lower abundance of neutrons, the capture reactions occur

slowly enough that any unstable nucleus that is produced has time to decay back into a

stable nucleus before the next neutron capture. This is known as the s process and is ex-

pected to occur in the helium-shell burning, red giant phase of a star’s life. For a large flux

of neutrons, as is expected in a supernova explosion or the collision of two neutron stars, the

neutron capture reactions occur very rapidly and produce very neutron-rich radioactive nu-

clei before decaying back into stable nuclei. This is known as the r process. Fig. 1.4 includes

the nucleosynthesis pathway of the s and r processes. The spikes in the abundance pattern

in Fig. 1.2 around mass 110− 150 and 180− 210 are signatures of the s and r processes.

While the s and r processes synthesize the majority of the heavy isotopes, there exists a

group of stable isotopes that cannot be produced by either neutron capture process. These

“p nuclei” lie on the neutron-deficient side of the valley of stability ranging from 74Se up to

196Hg (see Fig. 1.4). There are 35 p nuclei in total, but several of the isotopes are expected

to have contributions from the s and r processes and are not always classified as p nuclei.

With the exception of 92,94Mo and 96,98Ru, the isotopic abundances of the p nuclei are very

low compared to their more neutron-rich neighbors, typically contributing less than 1% to

the total elemental abundance. Several potential astrophysical sites have been proposed for

the creation of the p nuclei and a discussion of these scenarios follows in Sec. 1.4.
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Figure 1.4: Nuclear chart showing the pathways for the s and r neutron capture processes,
with a zoomed in view on the bottom. The s and r processes produce the majority of the
stable isotopes heavier than iron, except for the 35 p nuclei which are shielded from β−

decay by the valley of stability.

13



1.4 Production of the p Nuclei

In the influential B2FH paper [27], the authors first noticed the need for an alternative

astrophysical process to explain the production of the p nuclei. They termed it the “p

process” and proposed the scenario of proton capture reactions on preexisting s- and r-

process nuclei at high temperatures inside the hydrogen shell of a massive star when it

explodes as a type II supernova. However, it was later shown that the high temperatures

and densities required to produce the p nuclei in this fashion are not reached in the hydrogen

shell [38]. More recently, two alternative explosive processes involving proton captures were

identified as likely candidates for synthesizing some of the less massive p nuclei; the νp

process [39, 40, 41] and the rp process [42].

1.4.1 νp process

The νp process is expected to occur in a type II supernova, when a massive star explodes

ejecting its outer layers and leaving behind a neutron star [39]. The innermost layers of

the ejecta are proton rich and undergo a series of proton captures as the material expands.

The material expands very rapidly, however, and this provides only a short timescale for

reactions to occur. Thus, the creation of elements with heavier mass gets inhibited by

waiting point nuclei, for which proton capture is inhibited and the reaction flow has to wait

for the relatively long decay time before continuing. However, in the process of forming the

neutron star, neutrinos are radiated outward and can be captured by the large number of

free protons to create neutrons. It is the capture of these newly produced neutrons on the

waiting point nuclei which allows the flow of nucleosynthesis to bypass the long decays and

produce elements with heavier mass. It has been shown that the νp process may produce
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nuclei up to mass 152 under certain supernova conditions [43]

1.4.2 rp process

The rp process requires a hydrogen-rich environment at high temperatures to lead to rapid

proton captures that synthesize higher mass nuclei. Such conditions can be reached in a

binary star system with a donor star accreting hydrogen and helium from its atmosphere

onto its neutron star partner. As the material builds up on the neutron star’s surface,

instabilities can cause an X-ray burst, which leads to high enough temperatures for the rp

process to occur [44]. The rp process can reach up to mass 110 at the endpoint in the proton-

rich isotopes of tellurium [45], but it is not clear whether the material in the X-ray burst

escapes the gravitational field of the neutron star to contribute to the changing chemical

history of the universe [46].

1.4.3 p process

While the νp process and rp process can synthesize some of the less massive p nuclei, there is

an astrophysical scenario that can produce the p nuclei across the entire mass range. Instead

of proton captures creating more massive nuclei, the dominant reactions are photodisinte-

grations that knock out nucleons from existing nuclei and produce the p nuclei as a result.

The preexisting nuclei in the star, referred to as seed nuclei, can originate from the s- and r-

process material expelled from other stars or can be freshly produced through the s process

in the star of interest. All objects emit radiation depending on their temperature through

blackbody radiation, and for temperatures higher than about 1.8 GK the blackbody radia-

tion from the star is at high enough energies to knock out protons, neutrons, and α-particles
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Figure 1.5: Figure from Ref. [2] showing the temperature and density of the O/Ne layer as
the shockwave passes through. The curves represent different depths of the O/Ne layer.

in (γ,p), (γ,n), and (γ,α) reactions, respectively. It is important that the temperatures do

not reach higher than about 3.3 GK, however, so that the heavier nuclei are not completely

photodissociated into iron peak nuclei.

The conditions of having existing seed nuclei and temperatures between 1.8 and 3.3

GK are reached naturally in the oxygen and neon (O/Ne) layers of a massive star (see

Fig. 1.3). For the more massive stars the temperatures may be already high enough for

photodissociations to occur in the presupernova phase [47, 48], but the largest effect is

expected to occur in the type II supernova when the shockwave passes through the O/Ne

layers [49]. The term “p process” from the original B2FH publication has stuck, although

(perhaps more appropriately) it is also referred to as the γ process in literature because of

the prevalence of photodisintegration reactions. Nice reviews of the p process can be found

in Ref. [3] and Ref. [50].

Fig. 1.5 shows the temperature and density of the O/Ne layer as the shock wave propa-

gates through. There is a very rapid rise followed by an exponential decrease in temperature

and density. A maximum temperature between 1.8 and 3.3 GK is reached for various depths
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Figure 1.6: Section of the nuclear chart showing an example reaction flow for the p process.

in the O/Ne layer. Fig. 1.6 shows a simplified reaction flow of the p process for only one seed

nucleus. In reality the flow proceeds through a complex network of reactions that compete

at different temperatures. As mentioned, the seed nuclei have already been produced by

a previous s- or r- process event. At first, the most probable reactions are (γ,n) reactions

which cause the flow of mass from the stable seed nuclei into unstable nuclei. For each (γ,n)

reaction that occurs, the nuclei become increasingly neutron deficient and eventually the

(γ,p) or (γ,α) reactions will occur at a higher rate. (γ,α) reactions are typically more sig-

nificant for the heavier elements while (γ,p) reactions are key contributors to the formation

of the lighter p nuclei [3]. There are also proton capture reactions that play a role for the

lighter masses. The isotope in each elemental chain where the (γ,p) or (γ,α) reaction rate

is comparable to the (γ,n) rate is called the branching point, and its location is critical for

understanding the flow of mass in the p process [14]. The branching point shifts the reaction

flow to a new elemental chain where the photodisintegration reactions continue. Once the

temperature cools and the photodisintegration reactions slow, the competition of the β+ de-

cays of unstable nuclei also become important. Eventually all unstable nuclei will β+ decay

back to stability.
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It should be emphasized that Fig. 1.6 represents the initial reaction flow from only one

seed nucleus. Inside of the supernova, all preexisting s and r nuclei are taking part in the

photodisintegrations. In total, the p process includes over 20,000 reactions on approximately

2000 nuclei. These include (γ,p), (γ,n), and (γ,α) reactions, their inverse capture reactions,

and β+ decays. It is also important to note that the majority of the reactions involve

radioactive isotopes.

Reaction network calculations of the p process have been performed by various authors

for a range of stellar masses and compositions [51, 6, 3, 2, 52]. The stellar parameters used in

these reaction networks are determined from hydrodynamical simulations of the environment

of massive stars (see Ref. [6] and references therein). In these p-process models, the massive

star is divided into mass layers and reaction network calculations are performed in each

layer. For example, Ref. [2] divided the O/Ne of the star into 14 layers. It is also necessary

to use accurate initial seed abundances, stellar parameters such as temperature and density,

and nuclear properties such as reaction rates, masses, and decay rates. Any uncertainty in

the input physics contributes to the uncertainty in the production of the p nuclei in the

models. A discussion of these uncertainties is presented in Sec. 1.4.4. After performing the

calculation, it is desirable to compare the abundances of the p nuclei produced in the model

to the solar abundances. However, this comparison cannot be done directly because the

solar abundances contain a mixture of many nucleosynthesis processes and the models are

focused only on the p process. Instead, what is typically done is to check whether or not the

models produce the p nuclei in the correct ratios [6]. First, the total mass of each p nucleus

produced in the calculation is compared to what its total mass would be if it was present in
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the correct solar abundance. This ratio is known as the overproduction factor

〈Fi〉 =
mi

MmodelXi⊙
(1.3)

where mi is the produced mass of a p nucleus over all the mass layers the model, Mmodel

is the total mass of all the mass layers in the model, and Xi⊙ is the solar abundance mass

fraction of the p nucleus. Then, the average overproduction factor for the 35 p nuclei is

calculated by

F0 =
1

35

35
∑

i=1

< Fi > . (1.4)

Comparing the overproduction factor of each p nucleus to the average overproduction factor is

a convenient way to check if the model reproduces the p nuclei in the correct solar abundance

ratios. This quantity < Fi > /F0 is called the normalized overproduction factor, and if all

the p nuclei were produced in the correct ratio, the normalized overproduction factor for

each p nucleus would be equal to 1. The p nuclei with values above 1 are overproduced

by the calculation compared to the other p nuclei, and p nuclei with values below 1 are

underproduced.

Fig. 1.7 shows a typical result of the normalized overproduction factor for each p nucleus

from a calculation by Ref. [2], and all other models show a similar pattern. Overall, the

majority of the calculated p-nuclei abundances agree to within a factor of 2-3 of the observa-

tions. The most notable discrepancy is the underproduction of 92,94Mo and 96,98Ru, which

is a problem because they are the most abundant of the p nuclei and make up to 14% of the

total elemental abundance. If the p process scenario is correct it should be able to predict

the correct abundances for the most abundant isotopes. However, as previously mentioned

the νp process (Sec. 1.4.1) and rp process (Sec. 1.4.2) may be able to contribute to the pro-
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Figure 1.7: Normalized overproduction factor for the calculated abundance of each p nucleus
plotted against mass number. Plot is taken from Ref. [2]

duction of the lighter p nuclei and may help explain this discrepancy. Also underproduced

by the p process calculation are 113In, 115Sn, and 138La. Possible explanations are that

113In and 115Sn may have contributions from the s and r processes [53, 54], and 138La can

be produced through neutrino reactions [55, 56]. While the majority of the light p nuclei are

underproduced, 74Se is surprisingly overproduced. Thus far the overproduction of 74Se has

remained a mystery and a nuclear physics measurement related to the 74Se abundance can

be found in Chapter 8.

In addition to type II supernovae, the p process is expected to occur in type Ia super-

novae [57]. In this scenario, material enriched in s nuclei is accreted from a companion star

onto a white dwarf star. Once the white dwarf reaches its maximum mass, known as the

Chandrasekhar mass, it explodes as a type Ia supernova and some of the material reaches

the correct temperatures for the p process to occur. Earlier models of this scenario saw

the same underproduction in light p-process nuclei as in the O/Ne layer of type II super-
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novae [58, 59]. However, a more recent attempt using a two-dimensional model matches the

solar abundances of the light p-process nuclei by using large enhancements of the s nuclei

prior to the explosion [60].

1.4.4 Uncertainties

There are several sources of uncertainty in the production of the p nuclei via the p process,

including uncertainties in the stellar environment and nuclear physics data both before and

during the p process. Even before the supernova occurs, it is necessary to understand the

development of the pre-supernova star, especially the abundances of the seed nuclei. These

abundances depend on the initial composition of the star, the nuclear reactions contributing

to the s process, and how the seed nuclei get mixed and transformed prior to the explo-

sion. Fig. 1.8 shows the spread in abundances of the s nuclei as a result of some of these

uncertainties. Both varying the initial composition of the star (left panel) and the reaction

rates (right panel) in a s-process simulation lead to different distributions of the seed nuclei.

Additionally, it has been shown that the uncertainties in the 22Ne(α,n)25Mg [61, 62] and

12C(α,γ)16O [6] reactions have a significant impact on the result of p-process calculations

due to their effect on the initial composition of the p-process layers of massive stars. The

important contributions of both reactions take place during the helium burning stage. The

22Ne(α,n)25Mg reaction is the main source of neutrons for the s process during helium burn-

ing, while the 12C(α,γ)16O reaction determines the composition of the carbon-oxygen core

and its later evolution. Reducing the uncertainty on both of these reactions will lead to more

accurate p-process calculations.

In addition to the uncertainty in the abundances of seed nuclei, the stellar environ-

ment during the supernova also contributes uncertainties to the p process. For example,
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Figure 1.8: Figures from Ref. [3] showing the abundances of the s nuclei at the end of the
helium burning stage and how they depend on (a) the intial metallicity of the star (b) the
reaction rates used in the s-process calculations. The intial metallicities used were solar and
10% solar, and the different rates used were from Ref. [4] and Ref. [5].

the temperature and density profile of the stellar layers during the explosion are critical

for determining which p nuclei are produced. This can be seen in Fig. 1.9 from Ref. [2],

which shows how sensitive the p process is to the maximum temperature that a stellar layer

reaches during the explosion. Shifting the maximum temperature of a layer by a tenth of a

GK can have a huge effect on which p nuclei get produced due to the change in rate of pho-

todisintegration reactions. Because the mass of the star and its composition are key factors

in determining the properties of the supernova explosion, the uncertainty in initial stellar

masses and metallicities are also important considerations. Fig 1.10 from Ref. [6] shows how

stellar masses ranging between 13-25 times the mass of the Sun lead to very different results

for the p process. In the universe, there is a distribution of massive stars with different

masses and metallicities which undergo the p process and mix different quantities and ratios

of the p nuclei into the interstellar medium. Because the solar abundances are a mixture of

all these different sources of p nuclei, another uncertainty in the production of the p nuclei

is the distribution of the various massive stars [6].
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Figure 1.9: Figure from Ref. [2] showing the overproduction factor of selected p nuclei as a
function of the peak temperature of the stellar layer reached during the supernova explosion.

Figure 1.10: Figure from Ref. [6] showing the normalized overproduction factor of the p
nuclei for supernova explosions of stars with mass in the range between 13-25 times the mass
of the Sun. The vertical bar for each nucleus indicates the spread in p-nuclei abundances as
a result of the various stellar masses.

23



(a) (b)

Figure 1.11: Figure from Ref. [2] showing the ratio of p-nuclei abundances calculated with
rates modified by a factor of three up and down compared to the standard rate. (a) Modified
proton-induced reactions and their inverse reactions. (b) Modified α-induced reactions and
their inverse reactions.

A final crucial uncertainty in the p proccess is the nuclear physics reaction rates used in

the p process models. As previously mentioned, the p process involves over 20,000 reactions

on 2000 nuclei with the majority of the reactions involving radioactive isotopes. Thus far,

very little experimental data exists for reactions relevant to the p process [50] and instead

all astrophysical models rely heavily on theoretical calculations of reaction rates. These

theoretical rates can have uncertainties of up to a factor of three. Fig. 1.11 shows the effect

of varying all proton-induced (left panel) and α-induced (right panel) reaction rates and

their inverse rates up and down by a factor of three. The uncertainties in reaction rates

for reactions involving protons have the largest impact on the production of the lighter p

nuclei, and the uncertainties in reactions involving α particles have the largest impact on

the production of the heavier p nuclei.

Reducing the uncertainty in the nuclear physics reaction rates to improve p-process cal-

culations is the main focus of this dissertation. Since it is not realistic to measure all 20,000

reactions, an interested experimentalist has two goals. The first goal is to measure as many
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p process reactions as possible at the relevant astrophysical energies to put constraints on

the theoretical calculations. Ideally the constraints would allow the theoretical calculations

to predict the other unknown reactions more accurately. The second goal is to identify

which reactions are the most critical for the production of the p nuclei. While there are

many reactions occurring, only a few have a large impact on the final result. There have

been two publications which have identified some of the most important reactions in the p

process. Rapp et al. [2] performed a sensitivity study which varied reactions up and down by

a factor of 3 (approximately equal to the theoretical uncertainty) and investigated which re-

actions led to the largest change in the abundances of the p nuclei. The other publication by

Rauscher [14] contains a model independent study identifying the location of the p-process

branching points which are critical to know for accurately understanding the flow of the p

process to lighter mass. This dissertation contains the development of a new detector and

expansion of an existing experimental technique in an effort to measure some of these critical

reactions and improve the accuracy of p-process calculations.

1.5 Looking Ahead

The remainder of this dissertation contains the story of the development of a new detector to

measure reactions relevant to the production of the p nuclei as well as results from the first

experiments with the detector. In Chapter 2 important quantities in nuclear physics and

astrophysics will be introduced. In Chapter 3 the most relevant nuclear reaction theories for

this work will be presented. In Chapter 4 an overview of available experimental techniques

and the methods used for this project will be provided. In Chapter 5 the design and testing

of the primary detector will be discussed. In Chapter 6 the steps which were taken in the
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analysis of the data will be demonstrated. In Chapters 7, 8, 9, 10, and 11 the results for the

measurements of individual nuclear reactions will be presented, including the extension of

the experimental technique to measurements in inverse kinematics. Finally, in Chapter 12 a

summary and outlook for this dissertation will be provided.
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Chapter 2

Nuclear and Astrophysical Quantities

2.1 Cross Section

This dissertation contains the measurement of the reaction cross section for several different

nuclear reactions. To introduce this important nuclear physics quantity let’s start with the

classical treatment using the carnival game of throwing a dart at a wall of balloons as our

example. If you hit a balloon, it will hopefully pop and you will win the prize of your

choosing. Let’s assume that all balloons are spheres of the same size and that you have

decent aim so that your throws are always within the wall of balloons. We will say that your

throws hit the wall within a circle of area A which is less than the total area of the wall (see

Fig. 2.1). The probability that a balloon is hit is given by the ratio of the area covered by

Figure 2.1: Front view of uniformly placed circular targets. The large grey circle represents
the area in which projectiles strike the targets.

27



the balloons to the area A:

Psuccess =
area covered by balloons

area covered by darts
=

Nb πr
2

A
=

Nb

A
σ (2.1)

where Nb is the number of balloons within your throwing accuracy, Nb/A is the areal density,

and σ = πr2 is the cross-sectional area covered by one balloon. If you throw a large number

of darts (Nd) then the number of prizes you can expect to win is

Nprizes = Nd Psuccess = Nd
Nb

A
σ . (2.2)

Thus, the cross section of the balloons can be calculated by

σ =
Nprizes

Nd Nb/A
=

Nreactions

Nprojectiles Ntargets/A
(2.3)

where we made the change in variables from darts to projectiles, balloons to targets, and

prizes to reactions. This same equation will be used throughout the dissertation to calculate

the nuclear cross sections. Before moving on there are two important things to notice from

Eq. 2.1; the cross section is directly related to the probability of an interaction occurring,

and the cross section quantity has units of area.

In this example, the cross section is simply equal to the physical area that a balloon

takes up σ = πr2. Thus in the classical mechanics understanding, the cross section of a

nuclear reaction would be given by the cross-sectional area of the nucleus, which for uranium

is approximately equal to 10−24 cm2. Scientists have designated this value of 10−24 cm2 as

1 barn (b). However, at the small nuclear scale there are quantum mechanical effects and
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instead of the simple value of πr2 the cross section has an energy dependence

σ ∝ πλ̄2 = π
h̄2

2µE
(2.4)

where λ̄ is the reduced de Broglie wavelength, h̄ is the reduced Planck constant, µ is the

reduced mass equal to m1m2/(m1+m2), and E is the center of mass energy of the projectile

and target system. In addition to the expected 1/E energy dependence of the cross section,

there are several other factors that may inhibit the nuclear reaction from taking place. For

example, the Coulomb barrier related to the nuclear charge and the centrifugal barrier related

to the nuclear angular momentum are important factors in determining the cross section. In

conclusion, the reaction cross section may be thought of as the effective area of the nucleus

in a reaction. Typical cross sections measured in this thesis range from 10−6 b (1 µb) to

10−3 b (1 mb).

2.2 Stellar Reaction Rate

In order to understand the energy generation and synthesis of the elements inside of stellar

environments, it is necessary to know the rate at which nuclear reactions are taking place.

The stellar reaction rate depends on the abundance of each type of nuclei inside of the star,

the reaction cross section between them, and their relative energy. If we consider a stellar

gas of particles in a volume (say it has area A and depth x), along with a flux of particles

with relative speed v (see Fig. 2.2) then we can derive an expression for the reaction rate

per unit volume per time starting from Eq. 2.2:

NR = N1
N2

A
σ −→ NR

V t
=

N1

V

N2

A x
σ
x

t
(2.5)
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Figure 2.2: A number of particles N1 and velocity v impinging on a number of particles N2

within a volume that has area A and depth x.

where we first divided by the volume V and the time t and then multiplied by a convenient

factor of x/x = 1. The quantity Nx/V is the number density of the interacting particles

with units of number of particles per unit volume, and can be written simply as nx. Since

the cross section depends on energy and therefore on velocity, it immediately follows that

the reaction rate is equal to

r12 = n1 n2 σ(v) v . (2.6)

Inside of stellar environments the nuclei do not all have the same relative velocities but

instead have a distribution of velocities, described by the probability function φ(v). Folding

in this distribution as well as taking into account reactions involving identical particles, the

reaction rate can be written

r12 =
n1 n2
1 + δ12

∫ ∞

0
φ(v) σ(v) v dv (2.7)

where the Kronecker symbol δ12 is 0 for reactions between different nuclei and 1 for reactions

between identical nuclei. The number density of reaction pairs is given by n1n2/(1 + δ12)
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and the reaction rate per particle pair is given by

〈σv〉 =

∫ ∞

0
φ(v) σ(v) v dv . (2.8)

In a stellar plasma, nuclei are nondegenerate and nonrelativistic particles and thus move

with velocities given by the Maxwell-Boltzmann distribution

φ(v) = 4πv2
( µ

2πkT

)3/2
exp

(−µv2

2kT

)

(2.9)

where k is the Boltzmann constant and T is the temperature of the stellar plasma. Combining

the Maxwell-Boltzmann distribution with Eq. 2.8 and making the change of variables from

relative velocity to center of mass energy E = µv2/2, the reaction rate per particle pair can

be written

〈σv〉 =

√

8

πµ(kT )3

∫ ∞

0
σ(E) E exp

(−E

kT

)

dE . (2.10)

2.3 Astrophysical S factor

The nuclear reactions in stellar environments take place at energies which are typically too

low for charged particles to get close enough for the attractive nuclear strong force to fuse the

particles together. Instead the electric repulsion of the two positive nuclei create a Coulomb

barrier

VC =
Z1Z2e

2

r
(2.11)

with Zxe equal to the charge of the nuclei. For relative energies below the Coulomb barrier,

charged particle reactions would not occur except for the quantum mechanical tunneling
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effect. At energies well below the Coulomb barrier the probability of tunneling through the

barrier is given by

Ptunnel = exp(−2πη) with η =
Z1Z2e

2

h̄v
(2.12)

where η is called the Sommerfeld parameter.

The effect of the Coulomb barrier and the expected 1/E dependence of the cross section

as introduced in Eq. 2.4 motivate the writing of the nuclear reaction cross section as

σ(E) =
1

E
exp(−2πη) S(E) (2.13)

where S(E) is the astrophysical S factor. Because much of the energy dependence of the

cross section has been factored out, S(E) represents all of the nuclear effects in the cross

section and is a smoothly varying function of energy. Due to the reduced energy dependence

of S(E) compared to the cross section it is much more useful to use S(E) to extrapolate

to lower energies. Nuclear reactions taking place in stellar environments typically occur at

low energies, where the cross section for charged particle capture is very low due to the low

probability of tunneling through the Coulomb barrier. Experimental data is often obtained

at higher energies where the higher cross section makes the measurement more feasible, and

then the data is extrapolated down to the lower astrophysical energies. It is more useful to

extrapolate using S(E) than σ(E).
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2.4 Gamow Window

Plugging the S factor (Eq. 2.13) into the reaction rate (Eq. 2.10) gives

< σv > =

√

8

πµ(kT )3

∫ ∞

0
exp(−2πη) S(E) exp

(−E

kT

)

dE . (2.14)

Changing the Sommerfeld parameter to a function of energy via E = µv2/2 and introducing

the constant term EG = 2µ(πZ1Z2e
2/h̄)2 the integral becomes

< σv > =

√

8

πµ(kT )3

∫ ∞

0
exp

(

−
√

EG

E

)

S(E) exp

(−E

kT

)

dE . (2.15)

Since S(E) is a smoothly varying function of energy, the energy dependence of the integrand

is dominated by the two exponential terms. The term arising from the probability to pene-

trate through the Coulomb barrier approaches zero as the energy approaches zero, and the

term arising from the tail of the Maxwell-Boltzmann distribution approaches zero for large

energies. Thus, when multiplying the two terms together there is a sweet spot in the middle

which creates a peak in the integrand. This is known as the Gamow peak and it gives rise

to the range of energies, known as the Gamow window, over which the majority of nuclear

reactions take place inside of stellar environments. The Gamow peak can be seen in Fig. 2.3.

The energy at the maximum of the Gamow peak can be found by solving for the point at

which the derivative of the integrand of Eq. 2.15 equals zero. Before taking the derivative,

S(E) is taken to be constant and factored outside of the integral. This leads to a value of

Emax =

(

EG(kT )
2

4

)1/3

. (2.16)
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Figure 2.3: The tail of the Maxwell-Boltzmann distribution of particle energies exp(−E/kT )
combined with the probability of charged particles to penetrate through the Coulomb barrier
exp(−2πη) gives rise to the Gamow peak (not drawn to scale). The Gamow peak defines
the energy window over which the majority of nuclear reactions take place inside of stellar
environments.

The width of the Gamow peak can be estimated by approximating the shape as a Gaussian

function. The 1/e width of the Gaussian is found to be [31]:

∆ = 4

√

EmaxkT

3
. (2.17)

It has been pointed out by Ref. [63], that the energy and width of the Gamow window in

the two previous equations rely on the cross section being dominated by the probability to

penetrate through the Coulomb barrier. However, this is not always the case and a more

accurate Gamow window can be determined by evaluating the integrand of Eq. 2.10.
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Figure 2.4: Binding energies per nucleon based on the data from [7]. The maximum occurs
around the iron region.

2.5 Q value

The mass of a nucleus is one of its most fundamental properties. Since the 1920’s [64, 65]

it has been known that the measured mass of an atomic nucleus is less than the sum of

its building blocks. From Einstein’s mass-energy equivalence [66], the missing mass of a

nucleus is equivalent to the energy released when building up the nucleus from free nucleons.

Alternatively the missing mass is equal to the energy required to break a nucleus into free

nucleons, thus it is referred to as the binding energy. The binding energy of a nucleus is

given by

B.E./c2 = Zmp +Nmn −mx (2.18)

where mp, mn, and mx are the masses of the protons, neutrons, and nucleus, respectively.

The plot of binding energy per nucleon in Fig. 2.4 shows that the maximum binding occurs

around the iron region. Energy can be released by combining nuclei lighter than the iron
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region in fusion or breaking up nuclei heavier than the iron region in fission.

For a nuclear reaction 1 + 2 → 3 + 4, the energetics can be quantified by the reaction Q

value

Q = (minitial −mfinal)c
2 = (m1 +m2)c

2 − (m3 +m4)c
2 . (2.19)

Reactions with Q > 0 are exothermic and release energy, while reactions with Q < 0 are

endothermic and require an input of energy to occur.
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Chapter 3

Theoretical Considerations

3.1 Resonant Reactions

Nuclei live in the quantum world and therefore have discrete physical states at discrete

energies with a lowest energy ground state and higher lying excited states. The excited states

typically live for less than 10−12 seconds before releasing their energy through the emission

a γ ray or nucleons from the nucleus. Excited states that live longer before deexciting are

called metastable or isomeric states. Due to the Heisenberg uncertainty principle in quantum

mechanics, the excited states have energy fluctuations about their mean energy with a certain

width (Γ), and this width is related to the lifetime (τ) of the state by Γ = h̄/τ

In a nuclear reaction, two nuclei collide to form a new nucleus often in an excited state.

The state is populated through the entrance channel and deexcites through the exit channel.

The notation that will be used in the remainder of this chapter is

A+ a −→ B + b (3.1)

where A+ a is the entrance channel and B + b is the exit channel. Like the state itself, the

entrance and exit channel of a reaction have widths, which are related to the energy range

over which the reaction can occur. These widths are called partial widths Γi and they are

related to the total width by Γ = Γ1 + Γ2 + Γ3 + .... The probability that the state decays
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through a particular reaction channel is given by the branching ratio Γi/Γ.

If the energetics of a nuclear collision match the energy of an excited state of the new

nucleus, then the reaction probability is enhanced in a resonance. The presence of a resonance

in the reaction is also influenced by the angular momentum of the excited state. The shape

of the resonance in the reaction cross section is given by the Breit-Wigner lineshape (see the

top panel of Fig. 3.1):

σ(E) =
λ2

4π
ω

Γ1Γ2
(E − Er)2 + (Γ/2)2

. (3.2)

The variable λ is the de Broglie wavelength, Er and Γ are the energy and width of the

resonance, Γ1 and Γ2 are the partial widths of the entrance and exit channel, and ω is the

statistical factor of the entrance channel for total nuclear angular momentum (J) given by

ω =
2Jr + 1

(2JA + 1)(2Ja + 1)
. (3.3)

3.1.1 In Stars

We can see how a resonance influences the stellar reaction rate by plugging Eq. 3.2 into

Eq. 2.10 to obtain

< σv > =

√

8

πµ(kT )3

∫ ∞

0

λ2

4π
ω

Γ1Γ2
(E −Er)2 + (Γ/2)2

E exp

(−E

kT

)

dE . (3.4)

Noting that λ2/(4π) = πh̄2/(2µE), ignoring any energy dependence of Γi, and noticing that

the narrow Breit-Wigner resonance will be like a delta function so that we can replace the
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energy term in the exponential with the resonance energy Er, the reaction rate becomes

< σv > =

√

2π

(µkT )3
h̄2 ω Γ1Γ2 exp

(−Er

kT

)
∫ ∞

0

1

(E − Er)2 + (Γ/2)2
dE . (3.5)

The integral is equal to

∫ ∞

0

1

(E −Er)2 + (Γ/2)2
dE =

2π

Γ
(3.6)

so that the final reaction rate is given by

< σv > =

(

2π

µkT

)3/2

h̄2 ωγ exp

(−Er

kT

)

(3.7)

with the resonance strength ωγ defined as

ωγ =
2Jr + 1

(2J1 + 1)(2J2 + 1)

Γ1Γ2
Γ

. (3.8)

Thus the reaction rate due to a resonance in a stellar environment depends on the res-

onance strength, the resonance energy, and the temperature of the stellar material. This

dissertation contains the experimental measurement of several resonance strengths. The

method used to obtain this quantity will be introduced in the following section.

3.1.2 In the Laboratory

In the laboratory, we cannot reproduce the conditions inside of a stellar environment and

instead experiments are done by impinging a nuclear beam of particles onto target nuclei.
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The yield of the reaction is determined by

Y =
number of reactions

number of beam particles
. (3.9)

For a thin target with thickness dx, the yield can be calculated as a simple extension of

Eq. 2.3:

Y = σ
Nt

A
= σ nt dx (3.10)

where Nt/A is the areal target density and nt is the volume target density in nuclei per unit

volume. As the nuclear beam travels through the target, the charged projectiles interact

with the target nuclei and electrons and slow down due to a loss in energy. The amount of

energy loss depends on the initial energy of the beam as well as the abundance and Z of the

target nuclei. Thus, a convenient way to quantify the energy loss is through the definition

of the stopping power

ζ(E) =
1

nt

dE

dx
. (3.11)

For a thick target, the yield can be found by integrating the expression for a thin target

of Eq. 3.10 over each slice dx. If the initial energy of the beam is E0 and the energy loss

through the target is ∆E, then the yield of a thick target is given by

Y =

∫

σ nt dx =

∫ E0

E0−∆E
σ(E)

1

ζ(E)
dE . (3.12)

For a Breit-Wigner resonance (Eq. 3.2) the expression for the yield is

Y =

∫ E0

E0−∆E

λ2

4π
ω

Γ1Γ2
(E −Er)2 + (Γ/2)2

1

ζ(E)
dE . (3.13)
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In our consideration of a narrow resonance, the de Broglie wavelength, partial widths, and

stopping power can be taken as their resonance values and factored out of the integral. Thus,

the integral has an analytic solution

Y =
λ2r
2π

ωγ

ζr

[

arctan

(

E0 − Er

Γ/2

)

− arctan

(

E0 −Er −∆E

Γ/2

)]

. (3.14)

In the case of an infinitely thick target (∆E → ∞), the maximum yield for the resonance is

reached

Ymax =
λ2r
2

ωγ

ζr
. (3.15)

The bottom panel of Fig. 3.1 shows the resulting excitation function for different target

thicknesses using Eq. 3.14. In an experiment, the excitation function is created by changing

the beam energy between different experimental runs and plotting yield against energy. This

dissertation contains experiments measuring resonances with both thin targets (Chap. 7) and

thick targets (Chap. 11). Typically it is easiest to extract resonance strengths using a target

whose energy loss is much larger than the width of the resonance so that the thickness

appears infinite. In this way, the resonance strength can be calculated by determining the

maximum yield of the excitation function and using Eq. 3.15.

There is an additional way to extract the resonance strength using the area under the

excitation function. Here I will follow the derivation of Iliadis [31]. First we need to introduce

two normalized functions to take into account some experimental factors. The first function

g(E0−Ei) is to account for the beam energy resolution and it is the probability that a particle

has energy Ei when the mean beam energy is E0. The second function f(Ei − E,E′) is to

account for beam energy straggling inside of the target and it is the probability that when a

particle hits the target with energy Ei it will have an energy E at a depth E′. Folding these
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Figure 3.1: A Breit-Wigner lineshape with resonance energy Er and width Γ (top panel).
Expected excitation functions for the measurement of the resonance with different target
thicknesses (bottom panel).

42



functions into Eq. 3.12, we get the general yield equation

Y (E0) =

∫ E0

E0−∆E
dE′

∫ ∞

0
dEi

∫ Ei

0
dE

[

σ(E)
1

ζ(E)
g(E0 − Ei)f(Ei − E,E′)

]

. (3.16)

To calculate the area underneath the excitation curve we put this entire expression inside of

another integral:

AY =

∫ ∞

0
Y (E0) dE0 . (3.17)

First, we factor out the stopping power assuming it is constant over the resonance. Second,

the integral over E0 is unity because from g(E0 − Ei), the probability of finding a beam

particle with energy between 0 and ∞ is 1. Third, the integral over Ei is unity because

from f(Ei − E,E′), the probability that a beam particle with initial energy Ei has energy

between 0 and ∞ in the target is 1. This leaves

AY =
1

ζr

∫ E0

E0−∆E
dE′

∫ ∞

0
dE [σ(E)] =

1

ζr
∆E

λ2r
2

ωγ . (3.18)

Thus, the area underneath the excitation function due to a resonance is independent of

beam energy resolution and straggling. In fact, by substituting that the areal target density

is equal to nt = ∆E/ζ , it is not necessary to know the stopping power directly. The final

result is

AY = nt
λ2r
2

ωγ . (3.19)
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3.2 Nuclear Statistical Model

At low excitation energies the levels of a nucleus are well spaced and their properties may

be experimentally known. However, for capture reactions the states that are populated are

typically at high excitation energies where there are many levels that overlap. Thus, instead

of treating each level separately it becomes advantageous to take a statistical average over

the resonances. Averaging over an energy region ∆E that contains many Breit-Wigner

resonances, an energy averaged cross section can be calculated by

〈σ12(E)〉 =
1

∆E

∫ E

E−∆E

∑

i

λ2

4π
ω

Γ1Γ2
(E′ −Er)2 + (Γ/2)2

dE′ (3.20)

where the sum is over the number of Breit-Wigner resonances (nres) of a specific total angular

momentum J and parity Π. The sum over all J and Π will be put in at the end for the full

solution. Manipulating this equation a little gives

〈σ12(E)〉 =
λ2

4π
ω
nres
∆E

∫ E

E−∆E

Γ1Γ2
(E′ −Er)2 + (Γ/2)2

dE′ . (3.21)

First we can make note that the average level spacing is equal to the energy region divided

by the number of resonances (D = ∆E/nres). Also, because the width of the resonances is

much narrower than the energy region we are safe to take the limits of integration from 0 to

∞ and use the result of Eq. 3.6 to obtain

〈σ12(E)〉 =
λ2

4π
ω
2π

D

〈

Γ1Γ2
Γ

〉

. (3.22)
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It is important that the energy averaged cross section does not depend on the average

of the individual widths 〈Γi〉 but depends on the average quantity 〈Γ1Γ2/Γ〉. Because of

correlation between the widths of the entrance and exit channel it is necessary to introduce

a width fluctuation correction defined by

〈

Γ1Γ2
Γ

〉

= W12
〈Γ1〉 〈Γ2〉

〈Γ〉 (3.23)

with 〈Γ〉 = Σi 〈Γi〉. This leaves an energy averaged cross section

〈σ12(E)〉 =
λ2

4π
ω
2π

D
W12

〈Γ1〉 〈Γ2〉
〈Γ〉 . (3.24)

We are headed towards making a connection between the total reaction cross section

obtained from averaging over many Breit-Wigner resonances to the cross section obtained

from solving the nuclear scattering problem. To do this we need to first sum Eq. 3.2 over all

exit channels ΣiΓi = Γ and take the energy average. The result is the total reaction cross

section
〈

σtot1 (E)
〉

=
λ2

4π
ω
2π 〈Γ1〉

D
. (3.25)

Next, for the sake of comparison we take the projectile and target to have J = 0 so that the

statistical factor is simply related to the orbital angular momentum of the resulting state

ω = 2ℓ+ 1. This gives
〈

σtot1 (E)
〉

=
λ2

4π
(2ℓ+ 1)

2π 〈Γ1〉
D

. (3.26)

As mentioned, the total reaction cross section can also be obtained by solving the Schrödinger

equation describing the interaction of the projectile nucleus and target. Much like light can be
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refracted or absorbed upon a striking a medium, the projectile can be scattered or absorbed

by the target. This motivates the writing of the nuclear potential in the form of an optical

model with a Coulomb term, a real term for elastic scattering, and an imaginary term for all

other reaction channels. Solving the Schrödinger equation with this nuclear optical model

potential gives the total reaction cross section as

〈

σtot1 (E)
〉

=
λ2

4π
(2ℓ+ 1) Tℓ (3.27)

where T is the transmission coefficient specifying the probability that the projectile will

penetrate the potential barrier. Comparing the two equations we see that the relationship

between the transmission coefficient and average partial width is given by

Ti =
2π 〈Γi〉

D
. (3.28)

Thus we can rewrite the average cross section of Eq. 3.24 to obtain the Hauser-Feshbach [67]

formula with width fluctuation corrections:

〈σ12(E)〉 =
λ2

4π
ω W12

T1T2
ΣiTi

. (3.29)

The Hauser-Feshbach reaction model is based on the independence hypothesis of Bohr [68],

in which he proposed that the entrance channel and the exit channel are completely separate

from each other. The idea is that the projectile and the target form a compound nucleus

in an excited state and the nucleons of the compound nucleus share the energy. Due to

the sharing of energy amongst the nucleons, compound nucleus reactions take place over a

longer timescale than direct reactions and the nucleus “forgets” how it was formed. The
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deexcitation of the nuclear state is therefore independent of the entrance channel and only

depends on the exit channel branching ratios. However, this independence hypothesis is only

true when the width fluctuation factor is equal to 1. There are several different models that

estimate values of W12 and usually W12 differs from 1 only at low energies where only a few

reaction channels are open [69]. At high excitation energies where many reaction channels

are open, the cross section of Eq. 3.29 is safely factored into a production cross section and

a decay probability given by the Hauser-Feshbach branching ratio T2/ΣiTi.

As mentioned, nuclei have discrete experimentally known states at lower excitation en-

ergies and a continuum of states at higher energy. For a reaction channel to a discrete level

the transmission coefficient simply equals T , but for a reaction channel in the continuum

there is an effective transmission coefficient about a region ∆E given by

〈T 〉 =

∫ E+∆E/2

E−∆E/2
T (E′) ρ(E′) dE′ (3.30)

where ρ is the density of levels within the energy region with a specific J and Π. Thus to

account for all energetically available states, the total transmission coefficient is given by

T =

ν
∑

i

Ti +
∑

j

∫ Emax

Eν
Tj(E′) ρ(E′) dE′ (3.31)

where ν is the level up to which the experimental knowledge is complete and the integral

goes up to the maximum state allowed. The reaction channels include the emission of

particles and γ rays and their transmission coefficients are found using different methods.

The transmission coefficients for particles are calculated by solving the Schrödinger equation

with the proper nuclear optical model potential, and the transmission coefficients for emission
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of γ rays are calculated using a radiative strength function fXλ(Eγ):

TXλ(Eγ) = 2π fXλ(Eγ) E
2λ+1
γ . (3.32)

The variable X describes the type of transition and is labelled E for an electric transition

and M for a magnetic transition, and λ is the transition multipolarity equal to the amount of

angular momentum that the γ ray carries away. There are various models for the radiative

strength function and the models relevant to this thesis are described in Chapter 10.

So far we have limited ourselves to resonances with only a specific total angular momen-

tum and parity. The result of Eq. 3.29 should include a sum over all possible resonances in

the reaction to get the full cross section in the nuclear statistical model. Also, we will now

introduce the explicit sums over angular momentum ℓ and spin s states available using the

selection rules of angular momentum coupling. This gives the final Hauser-Feshbach formula

with width fluctuation corrections:

〈σ12(E)〉 =
λ2

4π

∑

Jπ

ω W12
[ΣℓsT1]

[

Σℓ′s′T2
]

Σi Σℓ′′s′′ Ti
. (3.33)

There are many inputs that go into the Hauser-Feshbach formulism, including nuclear

properties such as masses, radii, and level densities, as well as the additional inputs of the

optical model parameters and the radiative strength functions. Three of the most critical

inputs for the production of the p nuclei in this thesis are the optical model potentials,

nuclear level densities, and radiative strength functions, which all have an influence on the

calculation of transmission coefficients. Further discussion of these three key quantities can

be found in the chapters presenting the results of individual nuclear reactions.
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3.3 Reciprocity Theorem

As mentioned in Sec. 1.4, the majority of reactions relevant for the production of the p

nuclei are (γ,n), (γ,p), and (γ,α) reactions. While there are scientists who measure the

photodisintegration reactions directly using photon beams [70], it is often simpler and more

advantageous to experimentally measure the inverse capture reactions (n,γ), (p,γ),and (α,γ).

The cross sections of the forward and reverse reactions are related through the energy and

number of states available in each channel. If we consider an arbitrary nuclear reaction

A + a → B + b, the relationship is given by the reciprocity theorem [71] also known as

detailed balance:

(2JA + 1) (2Ja + 1)

1 + δAa
k2Aa σAa→Bb =

(2JB + 1) (2Jb + 1)

1 + δBb
k2Bb σBb→Aa (3.34)

where k is the wave number related to the de Broglie wavelength by k = 2π/λ. For a γ ray,

the factor (2Jγ + 1) is equal to 2 because there are two polarization states for photons.

In a typical experiment the target and projectile are both in their ground states, meaning

that only the ground state cross section and the ground state reaction rate (Eq. 2.10) are

measured. However, in the stellar environment particles may also be found in any of their

low-lying excited states. The probability of finding a nucleus in an excited state i is given

by the Boltzmann distribution

Pi =
(2Ji + 1) e−Ei/kT

∑

j

(

2Jj + 1
)

e
−Ej/kT

=
(2Ji + 1) e−Ei/kT

G
(3.35)

where G is the partition function. Using this Boltzmann distribution, the stellar reaction

rate 〈σv〉∗ can be calculated from the experimentally measured ground state reaction rate
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〈σv〉g.s. using theoretical models such as the nuclear statistical model (Sec. 3.2) [72]. The

ratio is given by the stellar enhancement factor

f∗ =
〈σv〉∗
〈σv〉g.s. . (3.36)

After using the stellar enhancement factor to turn the experimentally measured ground

state reaction rate into the stellar reaction rate, detailed balance can be used to calculate

the desired inverse reaction rate. The result is [31, 72]:

〈σv〉∗Bb→Aa

〈σv〉∗Aa→Bb
=

(2JA + 1) (2Ja + 1) (1 + δBb)

(2JB + 1) (2Jb + 1) (1 + δAa)

Gn
AG

n
a

Gn
BG

n
b

(

MAMa

MBMb

)3/2

e−Q/kT (3.37)

where Mi is the mass, Q is the reaction Q-value, and Gn
i is the partition function normalized

to the ground state spin Gn
i = Gi/(2J

g.s.
i + 1). For reactions where one of the particles is a

photon, the decay constant λγ for the photodisintegration reaction is related to the inverse

capture reaction by

λ∗Bγ→Aa

〈σv〉∗Aa→Bγ
=

(2JA + 1) (2Ja + 1)

(2JB + 1) (1 + δAa)

Gn
AG

n
a

Gn
B

(

MAMa

MB

)3/2(µAakT

2πh̄2

)3/2

e−Q/kT (3.38)

where µAa is the reduced mass of channel A+ a.

A general level scheme of a capture reaction is shown in Fig. 3.2. The nuclei consist of

discrete energy levels at low excitation energy and many levels in the continuum at high

excitation energy. The ground state of the nuclei in the entrance and exit channel are offset

by the Q value of the reaction. As previously mentioned, in the stellar environment nuclei

can be present in any of their excited states. However due to the Q value of the reaction,

more excited states are energetically accessible to the nuclei in the B + b channel than the
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Figure 3.2: General level scheme for a forward and reverse reaction with a certain reaction Q
value. The nuclei have discrete states at lower excitation energy and a continuum of states
and higher excitation energy.

nuclei in the A+a channel. This means that the stellar enhancement factor (Eqn. 3.36) will

be larger for reactions in the direction of negative Q value. Since experimental measurements

are done on nuclei on the ground state, it is more advantageous to measure reactions in the

direction of postive Q value where the ground state contribution to the stellar reaction rate

is largest. For reactions in the p process, the capture reactions typically have positive Q

values and the photodisintegration reactions have negative Q values. Therefore, measuring

the p process capture reactions provide a closer representation of the stellar rate, and then

the inverse photodisintegration rate can be determined by Eqn. 3.38.

Another factor contributing to the stellar enhancement factor being closer to 1 in the

direction of postive Q value is the relative energy of the particles after photodisintegration.

The lower the relative energy of the particles, the higher the excitation energy of the level in

the daughter nucleus that is populated. However for (γ,p) and (γ,α) reactions, there must

be a high enough relative energy to penetrate through the Coulomb barrier. This means that
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the proton or α particle carries away most of the energy, and the ground state of nucleus

A is populated more often than any of the excited states. By measuring (p,γ) and (α,γ)

reactions from this ground state of nucleus A, an accurate representation of the stellar rate

can be obtained in laboratory.
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Chapter 4

Experimental Techniques

Although the production of the p nuclei has remained a major open question in the field

of nuclear astrophysics for nearly 60 years, very little experimental data exists for reactions

relevant to the p process. Less than 40 (p,γ) and 20 (α,γ) reaction cross sections have been

measured to date, and all of these measurements have been performed on stable nuclei [50].

For an improved understanding of the p process, additional data on (p,γ) and (α,γ) reactions

and their inverse photodisintegration reactions is required, especially for reactions involving

radioactive nuclei. This chapter contains a discussion of existing methods for measuring

capture cross sections followed by the experimental techniques and procedures used in this

thesis work.

4.1 Measuring the Cross Section

As discussed in Sec. 2.1, the cross section of a reaction is calculated by

σ =
Nreactions

Nprojectiles ntargets
. (4.1)

Methods of determining both the number of projectiles impinging on the target and the

areal target density will be discussed later in this chapter, and for now we will focus on the

various techniques for measuring the number of reactions that occurred.

53



4.1.1 Activation

The vast majority of the measured (p,γ) and (α,γ) reaction cross sections relevant for the

p process have been performed using the activation technique (for example Ref. [73]). In

activation, determining the number of reactions that occurred is done through the offline

detection of the γ rays or X rays [74] emitted when the reaction products decay. This

means that the target material is first irradiated with a beam of protons or α particles to

create radioactive reaction products and then moved to a separate setup to detect the decay

radiation. As evident by its popular use, there are many benefits to using the activation

technique to measure a capture cross section. First, because the detection is done outside

of the irradiation there is no beam induced background or complicated deexcitation level

schemes to consider. Also, the detectors can be placed in a closely packed geometry around

the target material to maximize detection efficiency and shielded by lead walls to reduce

the background radiation. Finally, each reaction product decays with radiation at unique

energies, so it is possible to do several cross section measurements in one irradiation [75, 76].

Although the activation technique has been very successful, it is limited in its application

to reactions that meet a certain set of requirements. First of all, it is necessary to use target

nuclei that are stable or long-lived so that they can be properly irradiated. This constraint

alone is enough to rule out measuring many of the important reactions relevant for the p

process. It is also required that the reaction products are radioactive and that their decay

radiation is well-known with intense enough γ rays or X-rays to allow for detection. In addi-

tion, the half-lives of the reaction products must be long enough to allow for the transition

from irradiation to detection but short enough that decays occur within the timescale of

the experiment. If the half-life of the reaction products is too long for traditional detec-
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tion methods, the number of reaction products can still be determined by combining the

activation technique with accelerator mass spectrometry (AMS), for example Ref. [77].

4.1.2 γ-Induced Reactions

Experimental measurements of reaction cross sections relevant to the p process can also

be performed using γ-ray beams to measure the photodisintegrations directly. The γ rays

may be produced by Compton scattering laser light off of an electron beam to create an

approximately monoenergetic beam of γ rays [78] or by decelerating an electron beam in

a target to create Bremsstrahlung radiation. [79]. Due to the difficulty of measuring the

protons or α particles freed by photodissociation, the number of reactions that occurred is

typically determined by offline counting as is done in the activation technique [80].

The photodissociations that take place in the laboratory occur on nuclei in their ground

state, which may be only a small contribution to the stellar environment where nuclei may

photodissociate from any of their low lying excited states. As mentioned in Sec. 3.3, the

ground state contribution to the stellar rate is much higher in the direction of positive Q

value and therefore it is oftentimes more advantageous to measure the capture reactions

instead of the photodisintegration reaction in laboratory. However, measuring reactions

with γ beams still provides constraints for theoretical models.

4.1.3 In-Beam Methods

The number of capture reactions that occurred can also be measured by surrounding the

target with γ-ray detectors to detect the prompt γ rays emitted in the reaction. Hence

the term in-beam methods. When the capture occurs, the projectile and target form a new

55



B

A + a

Q

Ec.m.

Figure 4.1: In a capture reaction, the projectile and target form an excited state in the
produced nucleus equal to the Q value of the reaction plus the center of mass energy of the
projectile and target system. The populated state is often at high excitation energies where
many resonances overlap.

nucleus in an excited state with energy Ex = Ec.m.+Q, where Ec.m. is the center of mass of

the projectile and target system and Q is the reaction Q value (Eqn. 2.19). As discussed in

Chap. 3, the excited state will deexcite in less than 10−12 seconds through the emission of

γ rays and possibly particles if it is at an energy above the particle emission threshold. The

deexcitation will continue until the final nucleus is in its ground state or long-lived isomeric

state. By surrounding the target position with γ-ray detectors, it is possible to deduce how

many times the reaction product of interest was produced.

For (p,γ) and (α,γ) reactions relevant to the p process, the populated excited state is

typically at high energies where many resonances overlap (see Fig. 4.1). The deexcitation

of the populated excited state occurs through any of the available γ-ray cascades, and the

energy and intensity of all the γ rays are typically not known beforehand. If there is one
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particular transition that all the γ-ray cascades pass through or if the percentage of cascades

that pass through a particular transition is known, then simply detecting and analyzing

this dominant transition will provide how many times the reaction product of interest was

produced [81]. However, this is most often not the case and instead it is necessary to detect

all of the transitions to deduce the number of reactions.

4.1.3.1 Angular Distributions Method

One in-beam method of calculating the (p,γ) and (α,γ) reaction cross section is by determin-

ing the number of transitions originating from the entry state, or alternatively determining

the number of transitions populating the ground state. Because of incomplete knowledge

of the γ-ray cascades before performing the experiment, it may be necessary to analyze all

of the γ-ray transitions to build up a level scheme of nuclear exctied states. This analysis

can be quite complex as a typical spectrum often has a few hundred transitions to consider,

including room background and beam-induced γ rays [10]. Once all ground-state transi-

tions are identified, the angular distribution of each transition is fit with a sum of Legendre

polynomials given by

A0

∑

l

clPl(cosθ) (4.2)

where Pl are the Legendre polynomials and cl are their coefficients. The A0 term is unique

for each transition to the ground state and is used to scale the fitting function to match the

data. Once all scaling factors are determined, the reaction yield is calculated by

Y =
Nreactions

Nprojectiles
=

N
∑

i=1

Ai
0 (4.3)
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where the sum i corresponds to the transition from excited state i to the ground state. The

angular distribution method has been successfully used in several measurements [81, 10, 82]

but it relies on the detection and correct assignment of each γ-ray transition. Any transition

that is not detected or misidentified may lead to an incorrect value of the cross section. This

may be especially problematic for high energy γ rays emitted from the entry state which

have low efficiency for being detected.

4.1.3.2 γ-Summing Technique

In this dissertation, the reaction yield was experimentally determined by an in-beam method

known as the γ-summing technique [83, 9]. As opposed to using several smaller detectors

that can distinguish individual γ-ray transitions, the γ-summing technique implements a

large volume γ-ray detector that covers as much of the 4π solid angle around the target as

possible. The large size and angular coverage of the detector provide a high efficiency for

detecting γ rays so that when the populated state deexcites (see Fig. 4.1), any γ ray that

is emitted has a high probability of being detected. The goal of the γ-summing technique

is to detect each γ ray regardless of the deexcitation cascade and angular distribution, and

sum them up to the full energy of the populated state. This creates a “sum peak” at an

energy EΣ = Ec.m. + Q. Fig. 4.2 shows the difference between using a small-sized detector

(top panel) and a large 4π detector (bottom panel) for a simplified level scheme. By using

a large volume detector, the individual transitions are summed into a single sum peak that

can be analyzed. The number of counts in the sum peak is directly related to the number

of reactions that occurred through the detector’s γ-summing efficiency. A discussion of the

γ-summing efficiency can be found in Chap. 6.
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Figure 4.2: Difference in γ-ray spectra between a (a) small-sized detector and (b) large
4π detector for a simplified level scheme. The result of using a large 4π detector is the
summation of all γ rays into a single sum peak whose intensity is directly related to the
number of reactions that occurred.
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4.1.4 Techniques in Inverse Kinematics

Techniques using proton, α, and γ beams are limited to reactions involving long-lived isotopes

that have chemical properties favorable for creating a target. To overcome this limitation,

reactions can be performed in inverse kinematics with heavy isotope beams impinging onto

targets containing protons, α particles, or virtual γ rays in the field of a heavy target nu-

cleus (Coulomb dissociation [84]). With the advancement of accelerator technologies and

the development of radioactive isotope beams, measurements in inverse kinematics are now

feasible and crucial for extending the experimental scope of capture reaction measurements.

Whereas in regular kinematics the low energy protons or α particles lead to a negligible

recoil velocity of the produced nucleus after capture, in inverse kinematics the momentum

of the heavy projectile leads to a significant recoil velocity.

Thus far, the majority of proton and α capture reactions measured in inverse kinematics

have been measured using recoil mass separators [85, 86, 87, 88, 89]. In this technique,

the heavy isotope beam passes through a target, typically a hydrogen or helium gas, and a

recoil separator comprised of a series of magnets and electric fields is used to separate the

reaction products from the incoming beam. Successful (p,γ) and (α,γ) measurements using

recoil separators have been performed for lighter masses where mass separation is easier to

achieve. Only recently have efforts been made to expand the capability to measurements on

heavier nuclei [90].

Additionally, storage rings have been used to measure (p,γ) and (α,γ) relevant to the p

process in inverse kinematics [91]. This technique involves injecting the heavy isotope beam

into a ring that maintains the nuclei in a large orbit. Somewhere along the storage ring there

is a proton or α target where the capture reaction may occur. Since the reaction products
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have a different charge and mass than the incoming beam they are not suited for orbiting

the ring and can be detected with the proper placement of a detector.

The in-beam γ-ray detection methods discussed in Sec. 4.1.3 can also be used to measure

(p,γ) and (α,γ) reactions in inverse kinematics. As in regular kinematics, the reaction

product will be formed at the position of the target and the deexcitation γ rays promptly

emitted. However, due to the recoil velocity of the produced nucleus in inverse kinematics,

the γ rays are emitted from a moving source. As with any waves emitted from a moving

source, the detected γ ray frequencies, and hence their energies, are subject to the Doppler

effect. A γ ray detected in the forward direction has a higher energy than if emitted at rest,

and a γ ray detected in the backward direction has a lower energy than if emitted at rest.

The difference in energies is given by the Doppler shift

E0 =
1− β cos θ
√

1− β2
E (4.4)

where E0 is the energy of the emitted γ ray, E is the detected energy in the laboratory,

β = v/c is the velocity of the recoil compared to the speed of light, and θ is the angle

between the direction of the recoil velocity and the detector. Taking the velocity of the

recoil and the position of the detector into account, it is possible to convert the detected

energy into the actual emitted γ-ray energy.
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4.2 Target Production and Characterization

4.2.1 Evaporation

This dissertation contains measurements of (p,γ) and (α,γ) reactions on 11 different targets.

Most of the targets used were borrowed from previous nuclear science experiments and did

not have to be fabricated. However, the 27Al targets and isotopically enriched 74Ge target

did not exist beforehand and were produced through the process of evaporation. The general

procedure of evaporation involves the heating of material until it evaporates and travels in

gaseous form to a surface where it cools and condenses into a thin film. Before performing

the procedure it is necessary to put the evaporation chamber under vacuum by pumping out

the gas molecules to obtain a low pressure. This allows the evaporated material to travel

without interaction to the deposition surface. Typical pressures used in this dissertation

were 10−6 Torr.

When performing the evaporation, it is advantageous to track the amount of material

that is being deposited to control the thickness of the target being created. To do this,

evaporators are typically equipped with thickness monitors that deduce the thickness of

deposited material based on the oscillation frequency of a quartz crystal. The general idea

is that as evaporated material builds up on the quartz crystal, the oscillation frequency of

the crystal decreases. The exact mathematical relationship between the change in frequency

and change in mass depends on the properties of quartz and the area of the crystal, as well

as the density and acoustic impedance of the evaporated material [92, 93]. The acoustic

impedance is a property of the material itself and quantifies the opposition of the material

to wave propagation. If the acoustic impedance of the material is different from the quartz

crystal, there will be reflection of the wave which will impact the oscillation frequency. Thus,
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for accurate target thickness measurements the user should input the density of the material

and the ratio of the acoustic impedances between the material and quartz to the thickness

monitor. There are useful tables of density and acoustic impedance ratios (Z-ratios), for

example in Ref. [94].

The oscillation frequency of the quartz crystal provides a measure of the amount of mate-

rial deposited on the crystal, but this may be different than the thickness of the evaporated

target. To obtain the correct target thickness, the quartz crystal may be placed the same

distance from the evaporation source as the target, or a calibration “tooling” factor can be

used to make the correction. The tooling factor can be calculated by assuming the evapo-

ration is occurring at a point source and estimating the ratio in solid angle covered by the

quartz crystal and the target.

The evaporation of the 27Al targets was performed at the NSCL’s detector lab. The

evaporation was done onto 3” by 2” glass microscope slides coated with a mixture of 50%

water and 50% Teepol. Aluminum pellets were placed in the evaporator crucible and heated

with an electron gun until they melted and evaporated. Passing electric current through a

tungsten filament causes the filament to heat and emit electrons. The electrons are then

accelerated and directed in an arc onto the aluminum material through the use of electric

and magnetic fields. Water cooling was used outside of the crucible to carry away excess

heat. As mentioned in the preceding paragraphs, the target thickness was monitored with

an oscillating quartz crystal taking into account the properties for aluminum with a density

of 2.7 g/cm3 and Z-ratio of 1.08. The evaporation was done at an approximately steady rate

of 8 Å/s until the desired thickness of 3 kÅ was reached, at which point the current to the

filament was turned off.

After venting the evaporation chamber with nitrogen air and removing the glass slides,
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it was necessary to transfer the thin layer of aluminum from the glass slides to the target

frames. The target frames used in this thesis were aluminum rectangles, approximately

20mm by 17mm in size with a 12mm diameter hole in the center. Transferring the thin

evaporated aluminum layer onto the target frames was done by floating the aluminum layer

onto the surface of distilled water and then “fishing” them out with the target frames. First,

a sharp blade is used to divide the evaporated aluminum into the desired size rectangles

while still on the glass microscope slides. Then, slowly inserting the glass slide at an angle

into a container of distilled water, the aluminum gradually peels back from the glass slide

and floats on the water’s surface. The reason the aluminum does not stick to the glass slide

is because of the thin layer of Teepol underneath coating the slide. While performing the

floatation, it is helpful to be patient and use a stand to hold the glass slide in place and a

lab jack to slowly raise the water level. Once the aluminum square breaks free along the cut

lines and is floating on the surface of the water, it can be guided to a target frame, mounted,

and removed from the water. In order to avoid ripping the aluminum, it is helpful to remove

it at an approximately 90 degree angle from the water’s surface. It is also important to try

to avoid wrinkling the aluminum as it is mounted on the target frame to maintain a layer of

uniform thickness. Upon drying, the aluminum will cling to the target frame and the result

is a self-supporting aluminum target for use in experiments. Ref. [95] contains more details

and pictures of the use of an electron gun evaporator and the floatation of targets.

On the other hand, the 74Ge target was produced from 97.55% enriched germanium

powder using the University of Notre Dame’s evaporator. Due to the limited supply of

enriched powder, the procedure was first performed multiple times with natural germanium

powder to test the setup. Approximately 100 mg of the germanium powder was placed in

a tungsten boat and heated by passing electric current through the tungsten material. The
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germanium was simultaneously evaporated onto aluminum, carbon, and tantalum backings.

The evaporation was carried out until all of the germanium powder was evaporated and based

on the change in oscillation frequency of the quartz crystal, the thickness was estimated to be

approximately 470 µg/cm2. A more accurate and detailed analysis of the target thicknesses

is discussed in the following section.

4.2.2 Thickness Measurements

It is necessary to know the number of target nuclei per unit area in order to determine a

reaction cross section. This quantity can be determined by impinging an ion beam onto the

target. As ions travel through the target material, they will lose energy through interactions

with electrons in the target as well as by scattering off of target nuclei. By measuring the

outgoing energy of the incident ions or scattered particles at a well-defined scattering angle,

it is possible to deduce what elements are present in the target, how many atoms of each

element there is, and how the elemental abundances change with depth.

The energy loss due to electrons depends on the initial ion energy as well as the number

of electrons in the target. Since the number of electrons depends on a combination of the

Z and abundance of nuclei in the target, a measurement of the energy loss of the incident

ion or scattered particle provides information on how many target nuclei are present. On

the other hand when scattering off of a target nucleus, the incident ion will impart some of

its momentum to the nucleus, and both nuclei will recoil at an angle. After the collision,

the energy of both particles is related to the two masses of the colliding nuclei and the

scattering angle. As expected, a head-on collision will result in a larger transfer of momentum

than a more glancing collision. Thus, the energy of each particle after a collision provides

information on the mass of the target nucleus. Finally, the scattering cross section is different
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Figure 4.3: Schematic drawing of the RBS technique with (a) an ion beam backscattering
off of target nuclei and (b) the energy spectrum of backscattered particles detected by the
detector.

for each element, so the number of scatters off of each element provides information on the

relative abundance of various components in the target.

The most widely used technique of ion beam analysis is Rutherford Backscattering Spec-

trometry (RBS) [96], named for the famous experiments by Ernest Rutherford and collab-

orators in which they deduced the presence of the positively charged nucleus by measuring

the backscattering of α particles off of metal foils [97]. In the same way, RBS consists of

bombarding a target with an ion beam with MeV energy and measuring the energy of the

backscattered ions. As mentioned, the backscattered ions have an energy related to the

energy immediately before the collision multiplied by a kinematical factor determined by

the masses of the two nuclei participating in the collision and the scattering angle. Ions

that backscatter off of the front surface of the target will be detected at the maximum

backscattered energy, but ions that backscatter off of nuclei in the interior of the target will

be detected at lower energy because the ions lose energy both on the way in and out of the

target, mostly through interactions with target electrons. Therefore, there will be a spread

in detected energies from the maximum corresponding to backscattering off of nuclei at the
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front of the target to a minimum corresponding to backscattering off of nuclei at the rear of

the target. The width of the energy spread is the energy loss of the ion through the target

and provides the thickness of the target. See Fig. 4.3 for a schematic drawing of the RBS

technique.

One drawback of the RBS technique is that it is not very sensitive to light elements in

the target. This is due to the kinematics of the collision, in which heavier incident ions do

not backscatter off of light nuclei. Instead of using backwards angles, light target nuclei can

be characterized by measuring the incident ions and scattered particles at forward scattering

angles in the elastic recoil detection (ERD) technique [98]. By rotating the target so that the

ion beam has a small incident angle to the surface of the target (see Fig. 4.4), the greatest

depth sensitivity can be achieved with scatterings at the front of the target having maximum

detected energy and scatterings at the rear of the target having minimum detected energy.

4.2.2.1 Experimental Details

The target thickness measurements were carried out at the Hope College Ion Beam Analysis

Laboratory (HIBAL) on five separate days over the course of two years. Both RBS and ERD

methods were used, and the general layout of the two methods can be seen in Fig. 4.4. A

4He ion beam with current between 1.5 and 20 enA was accelerated to energies between 2.9

and 5.4 MeV using the Pelletron accelerator and impinged onto the surface of the target at

the center of the HIBAL scattering chamber. The scattered particles were detected by two

50 mm2 silicon surface barrier detectors, one fixed at a backwards angle of θ = 168.20◦ a

distance of 4” from the target, and one that was rotated to a forward angle of θ = 30.0◦ a

distance of 2.75” from the target. Collimators 0.2” in diameter were placed in front of both

detectors to reduce the solid angle coverage as well as to shield the edge of the silicon detectors
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Figure 4.4: General layout of the HIBAL scattering chamber. (a) The RBS detector is
located at θ = 168.20◦, a distance 4.0” from the target, with a 0.2” diameter collimator in
front of it. (b) The rotating detector was placed at a scattering angle of θ = 30.0◦, a distance
2.75” from the target, with a 0.2” diameter collimator in front of it. The target was then
rotated 75.0◦ and a 15.0 µ aluminum foil placed in front of the detector.

where the response may be irregular. The RBS detector had a resolution of approximately

30 keV and the ERD detector had a resolution of approximately 40 keV in the energy region

of interest.

The RBS technique was used to characterize all of the targets, whereas the ERD technique

was only used for the titanium hydride foil. For the RBS measurements only scattered helium

nuclei are detected as all other scatterings are kinematically prohibited. However, for the

ERD measurements of the titanium hydride foil, forward scattering of helium, titanium, and

hydrogen into the detector is possible. Therefore, a 15 µm thick aluminum foil was placed in

front of the silicon detector to completely stop the helium and titanium nuclei, only allowing

hydrogen nuclei knocked out of the titanium hydride foil to be detected. In order to provide

a profile of how the H concentration in the foil was changing with depth, the foil was rotated

75◦ so that the beam was incident at 15◦ to the surface.

The analysis of the data was performed using SIMNRA software [99]. SIMNRA was
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Table 4.1: 4He beam energies and silicon surface barrier detector energy calibrations used
at HIBAL over the course of five different experiments.

Experiment Beam Energies (keV) Detector Slope (keV/ch) Offset (keV)
I 2946 RBS 5.889 6.854
II 2977, 3484, 5195 RBS 5.930 8.881
III 2969 RBS 5.928 -0.301
IV 3486, 5282 RBS 5.930 3.837
V 3465, 4059, 3804 RBS 5.892 -0.576
V 3465, 4059, 3804 ERD 6.612 0.245

specifically developed for ion beam analysis of thin foils and contains the necessary kine-

matics, energy loss, energy straggling, and scattering cross sections to fit the data. The

user simply needs to input the experimental information such as the scattering geometry,

beam properties, detector response, and a best guess of the composition and thickness of the

target. Then SIMNRA can be used to fit the simulated composition and thickness to the

experimental data using a chi-square minimization routine.

4.2.2.2 Calibrations

The energy calibration of the silicon detectors was done with a quadruple α source consisting

of α particles emitted from the decay of 148Gd, 239Pu, 241Am, and 244Cm, with energies of

3.183, 5.157, 5.486, 5.805 MeV, respectively. The α calibration measurements were typically

performed the morning before and evening after the RBS and ERD measurements. The

slope and offset of the calibrations used in the analysis can be found in Table 4.1.

After performing the detector energy calibration, the 4He beam energy was precisely

determined by measuring the scattering off of a heavy target with known composition. The

majority of the time the beam energy determination was performed with a layer of gold on

glass, but for convenience it was once performed with a thick piece of tantalum. By using a
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Figure 4.5: Comparison of the SIMNRA fit to an experimental gold-on-glass measurement.
The precise beam energy of Eα = 3804 keV was determined by fitting the front edge of the
gold peak in the spectrum.

known heavy nucleus, the maximum energy of the scattered ions off of the front surface is

well known and can be used to deduce the beam energy. This method is more precise than

reading off the terminal voltage of the electrostatic accelerator. An example SIMNRA fit for

a gold-on-glass run is shown in Fig. 4.5, where the beam energy was determined by fitting

the front edge of the gold peak in the spectrum. The beam energies used in the various

experiments are contained in Table 4.1.

4.2.2.3 RBS Analysis

After obtaining the beam energy, the RBS spectra can be fit to obtain the target thickness

and composition. Spectra for nine of the targets can be seen in Fig. 4.6. The spectra

are dominated by a large plateau corresponding to the target layer of interest, and the

width of the plateau determines the thickness of the target. Some of the spectra also have

contributions from other layers or impurities in the target. It was determined that many of
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Figure 4.6: SIMNRA fits to RBS spectra of nine of the targets used in this dissertation. The
resulting thicknesses are given in Table 4.2.

the targets have a very thin layer of oxygen and carbon on their surface, for example the

spike at lower energies in the 62Ni spectrum corresponds to 4He scattering off of 16O on the

front surface of the target. Other contaminants seen were 27Al and 181Ta, for example in

the 58Ni, 92Zr, and 93Nb spectra.

One of the more difficult spectra to fit was the RBS measurement taken with the enriched

74Ge layer evaporated onto a tantalum backing. The thickness of the germanium layer caused

the germanium plateau to overlap with the contribution from tantalum in the spectrum. Also

there was an unexpected plateau corresponding to tungsten, which was attributed to the

accidental evaporation of some of the tungsten boat during the evaporation of the enriched

74Ge powder. The best fit to the spectrum can be seen in Fig. 4.7 and was obtained with
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Figure 4.7: SIMNRA fit to the RBS spectrum of enriched 74Ge on a tantalum backing.

a tantalum backing, a layer of germanium, and thin layer of germanium and tungsten on

the surface. This indicates that the evaporation of the tungsten boat occurred towards the

end of the evaporation procedure. The final values for all the target thicknesses used in this

thesis can be found in Table 4.2.

4.2.2.4 ERD Analysis

The composition and thickness of the titanium hydride foil was determined by using both

RBS and ERD techniques. The RBS measurements are more sensitive to the number of

titanium nuclei in the target and the ERD measurements are more sensitive to the number of

hydrogen nuclei in the target, so combining the two techniques provides the full composition

of the target. The measurements were taken at three different locations on the foil and

then added together for maximum statistics. By taking into account the difference in solid

angle of the two detectors, the same target thickness and composition should be able to

describe both the RBS and ERD spectra. The solid angle coverage of one of the detectors is

approximately Ω ≈ A/d2, where A is the active area of the detector and d is the distance of
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Table 4.2: Target thickness values.

Isotope Number of Nuclei in Target Total Target Thickness

(×1018 nuclei/cm2) (µg/cm2)
27Al 1.574 ± 0.079 70.5 ± 3.5
58Ni 9.665 ± 0.483 930 ± 47
60Ni 6.693 ± 0.335 666 ± 33
61Ni 5.060 ± 0.253 512 ± 26
62Ni 15.748 ± 0.787 1619 ± 81
64Ni 5.260 ± 0.263 558 ± 28
74Ge 2.703 ± 0.135 340 ± 17
90Zr 6.472 ± 0.324 966 ± 48
92Zr 6.199 ± 0.310 946 ± 47
93Nb 21.485 ± 1.074 3315 ± 166
1H 3.581 ± 0.358 232 ± 23

the detector from the target. Since the detectors have identically sized collimators in front of

them, they have identical active areas and the difference in solid angles of the two detectors

is approximately

ΩERD ≈
d2RBS

d2ERD

ΩRBS (4.5)

where the experimental distances of dRBS = 4” and dERD = 2.75” provide a scaling factor

of 2.1157.

Fig. 4.8 shows the resulting fit for both the RBS and ERD spectra. To achieve this fit,

the target was broken down into 4 layers with different ratios of titanium and hydrogen. The

outside layers have a hydrogen concentration down to 49.5% and the inner layers have a hy-

drogen concentration up to 64%, indicating that there is more H in the interior of the target.

The total hydrogen thickness from the fit is 3.581×1018 nuclei/cm2. To determine an un-

certainty in the number density of hydrogen nuclei, the standard uncertainty from SIMNRA

of 5% was combined with the uncertainty from the experimental beam current between the
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Figure 4.8: SIMNRA calculations compared to experimental data for (a) RBS and (b) ERD
spectra of the titanium hydride foil.

RBS and ERD measurements. This extra uncertainty arises because the experimental setup

at Hope College at the time of the measurements could only record one detector at a time,

so the RBS and ERD measurements had to be taken at separate times. This in itself is not a

problem, but there was no direct measure of the beam current so comparison of the RBS and

ERD measurements could have been difficult if there were large fluctuations in the beam.

However, there was multiple signs of beam current stability during the measurements. One

indication of beam stability was that two gold-on-glass runs at Eα = 3804 keV taken approx-

imately 40 minutes apart show only a 2.5% difference in the beam current. Also, there was

charge collection and integration performed at the back of the scattering chamber which had

a maximum difference of 3.0% for the RBS measurements. Therefore, even though the first

RBS and last ERD measurements were taken approximately 40 minutes apart, we do not

expect the beam current to change by more than 5%. Fitting the spectra for the expected

beam current ± 5% led to a hydrogen thickness of 3.580 ± 0.360 ×1018 nuclei/cm2.

As seen in Fig. 4.8, the fit of the ERD spectrum matches the height and shape of the

experimental data well, but does not match the data at lower energies at all. As previously
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(a) RBS

(b) Forward Scattering

Figure 4.9: Diagram dipicting how wrinkles in the titanium hydride foil may lead to a
seemingly larger thickness in the ERD spectra than in the RBS spectra.

mentioned, the width of the spectrum is determined by the energy loss through the target,

which in this case is dominated by the energy loss due to the titanium. Due to the fit of

the RBS spectrum, the amount of titanium in the target is well known and thus the width

of the spectrum in the ERD spectrum is well constrained. Therefore, the difference between

simulation and experimental data for the ERD spectrum is expected to be due to another

hydrogen source.

A possible explanation for the extra hydrogen contribution in the ERD spectrum is that

the many wrinkles in the foil, which are clearly visible to the naked eye, and the small incident

angle of the beam combine to make an effectively thicker target. Instead of scattering off

of a smooth target and producing the expected result, the beam scatters off a target with

many creases that has a larger effective thickness. Figure 4.9 shows how the wrinkles and

small scattering angle of ERD measurements may add extra contributions to the spectrum.

Because the RBS data is taken with the beam at 90◦ to the target, the wrinkles in the

target do not change the RBS spectrum. Simply by adding a titanium hydride layer that

is less than the deduced thickness of the foil, the result in Figure 4.10 is obtained. Adding
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Figure 4.10: Same as Fig. 4.8 with the minimum additional titanium hydride material needed
to match the ERD spectrum.

additional titanium hydride does not change the result.

4.3 Experimental Setup

Since the goal of this dissertation was the measurement of (p,γ) and (α,γ) reactions at

astrophysical energies, it was necessary to use a facility that provides ion beams at astro-

physical energies. Although Michigan State University has recently developed the capability

to provide lower energy beams, at the time of these measurements the only beams available

traveled at approximately 40% the speed of light and would be far too energetic for capture

reactions in astrophysics. The idea of slowing these fast beams down with a series of de-

graders was considered, but the spread in both beam position and energy as a result of using

the degraders was deemed too large for a measurement. Therefore, the experiments were

performed at the Nuclear Science Laboratory of the University of Notre Dame instead. A

layout of the laboratory at Notre Dame can be seen in Fig. 4.11 with the beams originating

from the ion sources (labels 1 and 2), accelerated by the Tandem Van de Graaff accelerator
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Figure 4.11: Layout of the Nuclear Science Laboratory at the University of Notre Dame.

(label 3), and sent into the experimental area where the capture reactions were measured

(label 6). The important operating principles of these main experimental components will

be discussed in the rest of this chapter.

4.3.1 Beam Production

Two different ion sources were used at the University of Notre Dame. One is exclusively

used to produce beams of helium nuclei, while the second ion source is used for all other

available beams. For injection into the FN Tandem accelerator, the nuclei must initially be

negatively charged in order to be accelerated towards the positive terminal. The two sources

achieve these negative ion beams through different methods.

The Helium Ion Source (HIS) consists of a cavity known as the duoplasmatron and a

charge exchange canal filled with lithium. First, neutral helium atoms are fed into the
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duoplasmatron from a gas cylinder. Also inside of the duoplasmatron is a tungsten filament

that emits electrons when heated as a result of passing electric current through it. The

electrons emitted from the filament ionize the helium into positive ions, 3He+ and 4He+,

which are extracted and sent into the lithium charge exchange region. The lithium exchange

region is filled with a lithium reservoir which is heated to produce lithium vapor. Since

lithium has a low ionization energy and gives up its valence electron easily, some of the

3He+ and 4He+ ions that pass through the lithium vapor pick up two electrons to become

negative ions 3He− and 4He−. These negative ions can then be injected and accelerated by

the FN Tandem accelerator.

On the other hand, the Multi-Cathode Source of Negative Ions by Cesium Sputtering

(MC-SNICS) [100] is used for all other nuclear beams. The desired material is first packed

into a small disk cavity known as the cathode. In principle, any material that can be packed

into a cathode can be accelerated and hence the wide variety of beams that originate from

this source. As many as 40 cathodes can be loaded at one time and rotated into place when

needed. As the source’s name indicates, the negative ions are produced by cesium sputtering.

This is accomplished by heating a reservoir of cesium to produce cesium vapor in the same

region as the cathode. Like lithium, cesium has a low ionization energy and loses its valence

electron easily to form a positive ion. These positive cesium ions are accelerated towards

the cathode and cause some of the cathode material to sputter upon striking it. A thin

layer of cesium condenses and builds up on the cathode so that when the cathode material is

sputtered it passes through the cesium layer and can pick up an electron to become negatively

charged. The negatively charged ions can then be injected into the FN Tandem accelerator.

The beams produced with this ion source in this dissertation were 1H, 27Al, and 58Ni.
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4.3.2 Acceleration

Once the ions of interest leave the source, they are accelerated to the desired energies using

the FN Tandem accelerator. The accelerator consists of a metal electrode called the terminal

at its center which can be charged up to a maximum of +10 MV, surrounded by a large

tank of gas which helps to insulate the terminal to prevent electrical sparking. The initial

acceleration is from the negatively charged ions being attracted to the large positive terminal

voltage and accelerating towards it. Once inside of the terminal, the ions pass through a

thin carbon foil which strips some of the electrons and leaves a positively charged ion beam.

The positively charged ion beam is repelled by the large positive voltage of the terminal and

this creates the secondary acceleration. The dual acceleration towards and away from the

terminal is why it is referred to as a “tandem” accelerator. Initially the ion has a charge of

−1 and it leaves the accelerator in some charge +q so that the total energy after the FN

Tandem accelerator is

E = Esource + 1V + qV (4.6)

where Esource is the small injection energy from the ion source and V is the terminal voltage.

The charge +q can take on a range of values from a charge state distribution as the ion beam

passes through the carbon stripper foil.

The charging of the terminal is done with Pelletron chains that move electrically isolated

metal pellets in a loop from a terminal pulley to a grounded drive pulley located near the

outer part of the accelerator. By charging the metal pellets by induction both at the terminal

pulley and at the drive pulley, it is possible to create a system where the metal pellets are

positively charged as they enter the terminal and negatively charged when they leave the

terminal. This allows for more efficient charging of the terminal. The FN Tandem accelerator
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uses two Pelletron chains on either side of the terminal to create a large positive voltage. A

more detailed description of the Pelletron charging system is found in Ref. [101].

The large voltage drop from the positively charged terminal to the grounded outer tank

is broken down into steps through the use of resistors with large resistances of 300 MΩ that

are evenly spaced. Because they are evenly spaced, there is a uniform voltage drop and the

ions experience a uniform acceleration as they move along the acceleration tubes. During

the experiment, it is necessary to maintain a constant terminal voltage so that there are no

fluctuations in beam energy. This is done with the use of metal needles called corona points

that can be brought closer or farther from the terminal to control the amount of charge

on the terminal. The distance of the corona points to the terminal can be automatically

adjusted to maintain constant terminal voltage. More details can be found in Ref. [102].

4.3.3 Ion Selection

After leaving the FN Tandem accelerator, the beam consists of a mixture of ions due to

the various materials originating from the ion source, as well as different charge states due

to the effect of passing through the carbon stripper foil. The selection of the ion beam of

interest is done through the use of an analyzing magnet. For any charged particle moving

perpendicular to a uniform magnetic field, the Lorentz force deflects the particle into a

circular arc. Combining the Lorentz force (F = qvB) and centripetal force (F = pv/r), the

radius of the circular arc is given by

r =
p

qB
(4.7)

where r is the radius, p is the momentum of the ion, q is the charge of the ion, and B is

the strength of the magnetic field. To make it to the experimental endstation, the ion must
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travel the radius defined by the geometry of the beam pipe passing through the analyzing

magnet. Since the momentum of the ion is given by the desired beam energy, and the charge

state is typically selected to maximize the number of ions, the strength of the magnetic field

must be adjusted so that the ion can make it to the experimental endstation. Once the

field of the analyzing magnet is set, ions with the correct momentum to charge ratio make

it through, while ions with too low or too high of a ratio get bent in a circular arc that is

too small or too large, respectively. Slits at the end of the analyzing magnet can be open

and closed to help select the ion of interest as well as to control the total number of beam

particles making it to the experimental endstation.

At the University of Notre Dame, the magnetic field strength of the analyzing magnet is

measured with Nuclear Magnetic Resonance (NMR) [103]. NMR works on the principle that

when particles with magnetic moments and angular momentum are placed in a magnetic

field, their magnetic moment precesses around the applied magnetic field with a frequency

called the Larmor frequency given by

f = γB (4.8)

where f is the precession frequency, γ is the gyromagnetic ratio, and B is the magnetic field.

With a gyromagnetic ratio of 42.576 MHz/T, protons are ideal for measuring magnetic field

strengths up to 2.0 T (for example Ref. [104]), and that is what was used for this dissertation.

Measuring the proton NMR frequency in the field of the analyzing magnet provides the very

precise beam energy equal to (assuming c = 1 units)

KE =

√

p2 +m2 −m and p =
f r q

γ
(4.9)

where Eqn. 4.7 and Eqn. 4.8 were combined to determine the momentum p, and m is the
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Figure 4.12: Experimental seup for the cross section measurements performed in this disser-
tation. The dimensions are not to scale.

rest mass of the ion beam. Typical uncertainties in this beam energy with the FN Tandem

accelerator and analyzing magnet are around 2 keV.

4.3.4 Experimental Endstation

Upon leaving the analyzing magnet, the ion beam is directed into the experimental hall

along any one of the experimental beam lines. For all of the measurements contained in this

thesis, the ion beam was sent to the beam line where the “R2-D2” scattering chamber is

housed (label 6 of Fig. 4.11 ). The experimental setup can be seen in Fig. 4.12 with the ion

beam moving through the various components from left to right. For beam tuning purposes,

two circular collimators were used. The collimator at the center of the R2-D2 scattering

chamber was on an adjustable drive with options for a collimation to a beam diameter of 3,

6, or 10 mm. Further downstream was the second collimator with options for diameters of

3 or 10 mm. By reading the beam current deposited on the collimators it was possible to

steer the beam until the minimum amount of current was deposited on both collimators. In
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this scenario, the beam would be passing through the center of both collimators and thus

would also hit the center of the target.

Besides measuring the beam current on the collimators, the beam current was also mea-

sured with two Faraday cups. The first Faraday cup was located immediately after the

second collimator and could be inserted and removed from the beam line to both stop the

ion beam if necessary as well as measure the current. The second Faraday cup was the entire

last 1.2 m of the beam line, and therefore was electrically isolated with an insulating flange

from the rest of the beam line. When the ion beam impinged on the target, electrons were

emitted from the target position so that any charge collected only from the target frame

was not equal to the charge carried in the beam. However, by using a long Faraday cup,

all of the charge including the secondary electrons was collected to ensure an accurate beam

current reading. The collected charge from the second Faraday cup was sent to the input of

a digital current integrator that emitted an output pulse every time that 10−10 C in charge

was deposited by the beam. Using the output of the digital current integrator and knowing

the charge state of the ion beam, it is possible to calculate the total number of beam nuclei

by

Nprojectiles = Npulses
10−10 C

1 pulse

1 projectile

q ∗ e (4.10)

where q is the charge state of the beam and e is the elementary charge.

As previously mentioned, the reaction yield was determined by surrounding the target

with a large 4π detector to implement the γ-summing technique. More details on this

detector will be discussed in Chap. 5. To shield the detector from beam induced γ rays

emitted from the beam striking an upstream collimator or the downstream beam stop, two

lead walls were constructed on either side of the detector.
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Chapter 5

The SuN Detector

5.1 Design

The major goal of this dissertation was the development of a new experimental program

to measure (p,γ) and (α,γ) reactions using the γ-summing technique (Sec. 4.1.3.2) at the

National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. Al-

though there were already several existing γ-ray detectors at the NSCL, through GEANT4

simulations (see Sec. 5.5) it was determined that no configuration of the existing detectors

was ideal for implementing the γ-summing technique. Thus, it was decided to design a new

detector to meet the requirements.

When designing the detector, several important factors needed to be considered. First,

the γ-summing technique relies on having a high γ-ray detection efficiency. This means

having a large volume of material that can be used to detect γ rays while covering as much

of the 4π solid angle as possible. Also, because many of the reactions of interest involve

radioactive nuclei, it was necessary to have the capability of performing the measurements

in inverse kinematics where the γ rays are emitted in-flight due to the velocity of the produced

nucleus. As mentioned in Sec. 4.1.4, this creates a Doppler shift in the γ-ray energy with the

energy of the γ rays emitted in the forward direction getting enhanced by the Doppler factor

and the energy of the γ rays emitted in the backward direction getting reduced. Therefore,

the second constraint on the detector was that it was necessary to introduce segmentation
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Figure 5.1: The Summing NaI (SuN) detector.

in the design to identify which direction a γ ray was emitted to perform a successful Doppler

reconstruction of the energy. The third constraint was simply to stay within the project’s

budget.

Although other materials have better energy resolution, higher intrinsic efficiency, and

better timing properties, sodium iodide with trace amounts of thallium is a highly-efficiency,

cost-effective material for the detection of γ-rays and it can be built into unique shapes

and sizes [105]. Cesium iodide has similar efficiency at a similar cost, however there is not

much experience in making large volume crystals of CsI. Therefore, the final design was

built with NaI(Tl), which is similar to other 4π detectors that have been used in nuclear

physics experiments before (for example Ref. [106]). Balancing segmentation with detection

efficiency, it was decided to have a total of eight segments with four on the top and four

on the bottom. The detector was named the Summing N aI (SuN ) detector, constructed by

SCIONIX, and arrived at the NSCL in February 2011.
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As seen in Fig. 5.1, SuN is a cylindrical detector with 16 inches of NaI(Tl) in length

and 16 inches in diameter. There is a 4.5cm borehole along the axis so that the beam

can enter and impinge on a target mounted at the center of the detector. It is comprised

of eight large semicylindrical crystals that are each completely surrounded by a reflective

layer of polytetrafluoroethylene 0.25 mm in thickness. Each crystal is also encased in an

aluminum frame with the verticle plates having a thickness of 0.5 mm and the horizontal

plates having a thickness of 0.75 mm. These dimensions mean that the four crystals in each

half of the detector are separated by a total distance of 1 mm, and the flat surfaces of the

crystals in the top and bottom halves of the detector are separated by a total distance of 2

mm. Therefore, each of the eight segments is optically isolated from its neighbor and can

operate as an individual detector. The crystals are read out by three photomultiplier tubes

to maximize light collection, which creates a total of 24 photomultiplier tubes in the design.

As mentioned, the detector consists of a top half and a bottom half, which allows for easier

mounting onto the beam line for experiments.

5.2 Detection

The nearly 4π angular coverage of SuN allows the vast majority of γ rays emitted from the

target to interact with one or more of the eight crystals. Upon interacting with a crystal,

the γ-ray energy is turned into electron energy in the NaI(Tl) in one of three ways: the

photoelectric effect, pair production, or Compton scattering. At low energies, it is most

probable that photoelectric absorption will occur, where the γ-ray energy is completely used

to free a bound electron from an atom and give the electron some kinetic energy. The

empty orbital left by the free electron is quickly filled, and an X-ray or Auger electron is
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emitted. At energies larger than twice the rest mass of an electron, it is most probable that

pair production will occur, where all of the γ-ray energy is used to create an electron and

positron pair plus their kinetic energy in the electric field of the nucleus. The positron will

quickly annihilate with an electron and emit two 511 keV γ rays which may or may not also

interact with the crystals. Lastly, at intermediate energies, it is most probable that Compton

scattering will occur, where the γ ray scatters off an electron at a random angle and imparts

some of its energy to the electron. Both the electron and scattered γ ray can continue to

interact with the crystal. In any case, the end result of all three important interactions is

the transfer of γ-ray energy to the kinetic energy of free electrons. Ideally, all of the γ-ray

energy will be deposited in SuN’s crystals but sometimes energy is lost, for example if an

annihilation or Compton scattered γ ray leaves SuN undetected, or if a γ ray interacts with

the inactive reflector and aluminum layers.

As the free electrons move around the crystal, their negative charge causes them to

interact with the atoms in the crystal and lose kinetic energy. Additional electrons are

excited from their bound sites in the lattice (valence band) to an energy high enough to

freely move about the crystal (conduction band). This process is known as exciting electrons

across the band gap and it leaves a positively charged hole in the lattice. By doping the

sodium iodide crystal with thallium, impurities are introduced to the crystal that have

lower ionization energies than the other sites in the lattice. Because these impurities lose

their valence electrons more easily, any hole in the lattice drifts to the site of the impurity.

When an electron in the conduction band recombines with the hole in the valence band in

a neutral configuration, visible light is emitted. In NaI(Tl) the visible light is emitted with

a distribution in wavelengths centered at 415nm. Because the states in the impurity are at

a lower energy than the other sites in the lattice, the light is at a wavelength that passes
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through the crystal mostly without interaction.

Because NaI(Tl) turns radiation into visible light, it is classified as a scintillator. This

important property was discovered in 1948 [107] and since that time it has remained an

important material in the detection of radiation. As with many other scintillators, there is an

interesting feature of NaI(Tl) detectors known as phosphorescence. This feature arises when

instead of immediately emitting light upon recombination, the electron and hole recombine

into an excited electronic state which cannot immediately transition to the ground state.

Instead, these states rely on thermal excitations to move the electron up to a higher state

that can transition to the ground state. Thus, phosphorescence increases the total detection

time and it can be a problem in high count rate experiments.

By surrounding the NaI(Tl) crystals with a reflective layer, the light travels about the

crystal until it impinges upon one of the three photomultiplier tubes (PMTs). The PMTs

are capped with a thin material called the photocathode that emits electrons when hit by the

light via the photoelectric effect. By applying a voltage to create an electric field inside of

the PMT, the newly freed electrons can be accelerated to hit a dynode which emits several

more secondary electrons. Using a series of dynodes allows a few electrons produced in

the photocathode to be multiplied to a large number of electrons. The SuN detector uses

Photonis’ XP6342 PMTs which have 10 stages of electron multiplication. For the average

voltage applied to the XP6342 PMT a gain of 2.4×105 is achieved. Thus, by collecting the

electrons after the last multiplication stage, there is a significant electrical current that can

be processed by the acquisition system.
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Figure 5.2: Typical signal from one of SuN’s PMTs.

5.3 Data Acquisition

The main goal of any data acquisition system is to extract and record the important in-

formation carried in each detector signal, most notably the time and deposited energy of

an event in the detector. A data acquisition system should also provide the capability to

group information that corresponds to the same physical event together, and may include

the possibility to reject information that does not meet a user-defined requirement. As with

all detectors, the electric signal from each of SuN’s PMTs is a continuous distribution of

voltage as a function of time. When there is no energy deposited in SuN the signal is at

its baseline value. However, there are always some fluctuations from the baseline value,

referred to as noise. Noise can have a number of sources, for example from random thermal

emission of electrons inside of the PMT. When some form of radiation deposits energy in

SuN, scintillation light will be produced that is collected by the PMT and converted into a

large number of electrons. The current of electrons causes the voltage of the signal to rise
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Figure 5.3: Diagram of SuN’s data acquistion system.

in a “pulse” (see Fig. 5.2). The signal pulse has a characteristic rise time followed by an

exponential decay back to the baseline value. In SuN the pulse rise time is approximately

80ns and the decay constant of the exponential decay is approximately 230ns. Both the

height and area underneath the pulse depend on the amount of energy deposited in SuN,

and the front edge of the pulse contains important timing information. A general schematic

for SuN’s data acquisition system is shown in Fig. 5.3, and the processing of SuN’s signals

with this data acquistion system will now be discussed in more detail.

5.3.1 PMT signals

First of all, the voltage to each of the 24 photomultiplier tubes is applied through a WIENER

MPOD crate with two ISEG high voltage modules. The crate is connected to an ethernet

cable with a unique IP address so that it can be controlled through a webpage using SNMP

commands. Communicating to the crate through a webpage is user friendly and provides
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detailed information on each channel. The use of the webpage is also advantageous because

it provides a convenient way for the user to power the crate on and off, change the voltage

of individual PMTs, and control the voltage ramping speed. The use of SNMP commands

allows for the use of automatic procedures to control the voltages applied to the PMTs, for

example an automatic gain matching procedure. Although SuN’s PMTs can withstand a

maximum voltage of +1200V, typical experimental values for this thesis were approximately

+800V.

The signals from each PMT get sent to an amplifier built by Pico Systems. However,

before reaching the amplifier the 24 individual cables pass through a feedthrough panel with

the purpose of sending the signals into two ribbon cables. It is most convenient to arrange

the setup so that signals from the top half of SuN pass through one ribbon cable and signals

from the bottom half of SuN pass through the other. These ribbon cables are plugged into

the input of the amplifier and the signals get split into three different outputs. One of the

outputs provides prompt unattenuated signals, while the remaining two outputs provide

signals that are delayed and attenuated. In this thesis, one of the outputs was fed directly

into the NSCL Digital Data Acquisition System (DDAS), while another output was used to

create an external trigger signal.

5.3.2 NSCL DDAS

As mentioned, signals from the amplifier get fed directly into the NSCL Digital Data Acqui-

sition System (DDAS). In this thesis, both the attenuated and unattenuated outputs were

used at different times for this purpose. A nice description of the NSCL DDAS can be found

in Ref. [108] and the most relevant information will be repeated here. The DDAS setup for

SuN consists of three PIXIE-16 modules that are housed in an XIA crate. Each module
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has 16 channels that take the continuous signal coming from a PMT and converts it into its

digital representation through the use of an analog-to-digital convertor (ADC). The ADCs

in SuN’s setup are Analog Devices AD9432 12-bit 100 MSPS ADCs. The acronym MSPS

stands for mega-samples per second and it means that the voltage of the signal gets converted

to a digital number 100 million times every second, or equivalently that the conversion takes

place every 10×10−9 seconds (10ns). The ADCs have two gain settings that allow for a

maximum voltage height of 0.50V and 2.22V [109]. Since the ADC has 12-bits, the digital

voltage value can take on any one of 212 = 4096 different possible values between 0V and

0.50V or 2.22V depending on the gain setting. For maximum resolution, it is best to have

the signal pulses take up as much of the ADC range as possible, which is why SuN uses the

0.50V full-scale gain setting. NSCL DDAS requires positive signals for processing, so the

original negative polarity signal from SuN first gets inverted.

Signal triggering and energy extraction in NSCL DDAS is done using digital trapezoidal

filters. The general idea of extracting the energy carried in a signal pulse using a trapezoidal

filter is shown in Fig. 5.4 using a signal step function. Because the height of the voltage

step is directly related to the energy deposited in the detector, the goal is simply to find

the height of the pulse. However, due to random fluctuations in the signal, better energy

resolution is achieved by averaging over many digitized points on the top of the voltage step

and subtracting an average over many digitized points at the bottom of the voltage step.

Thus, there are three time windows to consider; the time range to average over on the top

of the voltage step, the time range to average over at the bottom of the voltage step, and

the time gap between the two regions. In NSCL DDAS, the user can define two timing

parameters tpeak and tgap, so that the averaging over the top and bottom of the voltage step

take place in a time window tpeak and they are separated by the time tgap. For any digitized
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Figure 5.4: Illustrating the use of a digital trapezoidal filter using a signal step function. For
every digitized point, the average value of points in the “−” tpeak region get subtracted from
the average value of points in the “+” tpeak region. The two tpeak regions are separated by
a time tgap. For a step function, the response is a trapezoidal shape and the height of the
trapezoidal filter contains the energy information of the signal.

point i, the difference in average voltage in the two tpeak regions is calculated as

∆Vi =





i
∑

j=i−P

Vj −
i−P−G
∑

j=i−2P−G

Vj



 /P (5.1)

where P is the number of digitized points in time window tpeak and G is the number of

digitized points in time window tgap. This calculation gets implemented for every point in

the detector signal and for a step function the result is the trapezoidal shape in Fig. 5.4,

hence the name trapezoidal filter. The energy extraction is done by recording the value of

the trapezoidal filter at some point on the flat top.

The signal pulses from SuN are not a step function; instead they exponentially decay

with time constant τ = 230ns. Thus, even though the digital filters implement the same

algorithm as Eq. 5.1, they are not trapezoidal in shape. Fig. 5.5 shows the response of SuN’s

trapezoidal filters to a typical pulse. The filter parameters used for the experiments in this
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thesis were tpeak = 100ns and tgap = 30ns for the trigger filter, and tpeak = 600ns and

tgap = 200ns for the energy filter.

The arrival time of each pulse is determined by the trigger filter. When the value of the

trigger filter is above a user-defined threshold the time is recorded. The energy extraction

from the energy filter occurs at a time tpeak + tgap = 800ns later based on the value of the

energy filter at that time. By setting the user-defined τ parameter for the decay constant

of the pulse, NSCL DDAS corrects for the exponential decay to obtain a corrected value of

the energy using the algorithm of Ref. [8] (see Appendix A). Additionally, if another pulse

satisfies the trigger filter threshold within tpeak + tgap = 800ns of the first pulse, both are

rejected as pile-up. NSCL DDAS monitors the number of pulses accepted and number of

pulses rejected due to pile-up to return a value for the data acquisition dead-time. In this

thesis, typical values of the dead-time were less than 2% of the total acquisition time, but

this small factor was taken into consideration in the analysis nonetheless.

Obtaining the time when a certain threshold level is reached is known as leading-edge

triggering and it leads to time variation that depends on the height of the pulse. Larger pulses

reach the threshold level sooner than smaller pulses, even though they occur at the same

time. Thus, NSCL DDAS also implements more accurate timing using a constant fraction

discrimination (CFD) algorithm. The general idea is that even though pulses have various

heights, all pulses reach a certain fraction of their maximum height at the same time. Thus,

by recording the time at which a pulse reaches a set fraction of its maximum height, more

accurate timing information can be obtained. Since timing resolution was not critical to the

experiments in this thesis, no further discussion will be included here. More information on

the CFD algorithm implemented in NSCL DDAS can be found in Ref. [109, 110].

The end result of using NSCL DDAS is a raw experimental file which contains a time-
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Figure 5.5: (a) Digitized representation of a signal from SuN’s PMT after passing through
100 MSPS ADC. (b) Response of SuN’s trigger filter. The arrival time of the pulse is obtained
when the trigger filter passes above a user-defined threshold. (c) Response of SuN’s energy
filter. The energy extraction is performed at a time tpeak + tgap = 800ns after the arrival of
the pulse, with a correction to the decay constant applied as in Ref. [8].
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ordered list of events with the energy, time, PIXIE-16 module number, and channel number

that was triggered. Through the use of C++ computer coding, the events are extracted from

this raw experimental file one-by-one and grouped according to their time. In this thesis a

300ns time window was used to put events into a group. This means that the first event opens

a 300ns time window and every other detector that fired in that time window corresponds to

the same physical event. In the case of measuring a reaction using the γ-summing technique,

the physical event was a γ-ray cascade. The first detector that fired outside of the 300ns

time window starts a new 300ns grouping, and so on and so forth. When studying the arrival

time of pulses from SuN’s PMTs, pulses originating from the same γ-ray cascade typically

arrive within 10ns of each other, so the 300ns is a very conservative number for grouping the

PMTs together. However if a γ-ray cascade populates a isomeric state that is longer lived

than 300ns, its deexcitation will occur outside of the 300ns time window and it will not be

grouped with the other γ rays of the cascade. More details on the impact of isomeric states

for the γ-summing technique will be discussed in Chap. 6.

5.3.3 External Triggering

While one output from the amplifier gets processed by NSCL DDAS, another gets used to

create an external trigger signal (see Fig. 5.3). The goal of an external trigger is to cut down

on some of the data that gets saved to disk by checking to see if it satisfies a user-defined

requirement first. Because SuN uses the γ-summing technique, this requirement is simply

that a sum of the signals is above a threshold, which cuts down on the amount of data at

lower energies that has no impact on the sum peak region. If the sum of the signals is large

enough, then the information of all NSCL DDAS channels that fired in coincidence with the

valid external trigger signal is recorded. The use of the external trigger signal allows the
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threshold of individual PMTs to be lowered to ensure that all γ rays are recorded.

To implement external triggering into SuN’s acquisition system, multiple electronics mod-

ules were needed. First, the ribbon cables from the amplifier pass into a splitter where their

signals are divided into 24 individual channels. Taking only the eight channels which cor-

respond to the eight central PMTs of SuN’s segments, the signals are sent into a summing

module. The reason for choosing the central PMT of each segment is that it typically has

the best light collection of the three PMTs and is therefore representative of the total energy

deposited in a segment. As its name indicates, the summing module takes the eight signals

and sums them together into one output signal which is fed into CAEN V812 CFD module.

From the previous section, CFDs determine the arrival time of a pulse when the height

is a certain fraction of its maximum height. The CAEN V812 module takes this value to be

20% of the pulse height at which time a logic signal is emitted. The advantage of using the

CAEN CFD module is that it can be controlled through a computer graphical user interface

to define a reproducible threshold from -1mV to -255mV in 1mV steps. The pulse height

must be above the user-defined threshold level for a logic signal to be emitted. Therefore,

if the height of the signal from the summing module is larger than the threshold, a valid

external trigger signal is sent into NSCL DDAS and the data is recorded to disk.

Sending the signals through a splitter, a summing module, and a CFD takes a finite time,

which causes a time delay between the arrival of SuN’s signals and the potential arrival of

the external trigger signal (if the CFD threshold is satisfied). This time delay must be taken

into account when setting up a successful external trigger system. Conveniently, NSCL

DDAS includes a “fast-trigger delay” variable which is user-defined so that the arrival of

the detector signals is delayed to overlap with the external trigger signal. For this thesis a

fast-trigger delay of 100ns was used.
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Figure 5.6: Simplified decay scheme showing the dominant decay radiation for the radioactive
sources 137Cs (left) and 60Co (right).

5.4 Radiation Source Testing

Once the SuN detector arrived at the NSCL and the data acquisition system was set up,

the initial testing of the detector was done using standard radioactive sources. The majority

of the tests were done with two γ-ray sources; 137Cs which β−decays into 137Ba with the

emission of a single γ ray at 661.7 keV 94.7% of the time, and 60Co which β−decays into

60Ni and then emits two sequential γ rays at 1173.2 keV and 1332.5 keV over 99% of the

time. The general decay scheme of these two sources can be seen in Fig. 5.6.

The first feature of SuN to test was the energy resolution of the NaI(Tl) crystals. In any

detector, the energy resolution quantifies the spread in detected energies for monoenergetic

radiation. The distribution in detected energies is typically a Gaussian shape of the form

G(E) = A exp

(

−(E − E0)
2

2σ2

)

(5.2)

where A is the height, E0 is the centroid, and σ is the standard deviation related to the

width of the Gaussian. The energy resolution is defined as the full width at half maximum
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Figure 5.7: Experimental spectrum for a segment of SuN taken with a 137Cs source with
room background subtracted. Also shown is the result of a Gaussian fit to the 661.7 keV
γ-ray line.

divided by the centroid energy, which for a Gaussian is

Resolution =
FWHM

E0
=

2
√
2ln2 σ

E0
≈ 2.3548 σ

E0
. (5.3)

Fig. 5.7 shows the energy spectrum and Gaussian fit to the 661.7 keV line of a 137Cs source

for one of SuN’s segments. The creation of the experimental spectrum will be discussed in

Chap. 6. The standard deviation of the 661.7 keV line was determined to be 17.2 keV, which

gives an energy resolution of 6.1% [9]. This is typical for a NaI(Tl) crystal and was the first

proof that the SuN detector worked and met expectations. The energy resolution of SuN

for the 1173.2 keV and 1332.5 keV 60Co γ-ray lines was determined in a similar manner

with standard deviations of 33.2 keV and 34.8 keV giving resolutions of 6.7% and 6.1%,

respectively.
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Figure 5.8: Experimental spectrum of SuN taken with a 60Co source with room background
subtracted. The result for (a) a segment of SuN and (b) all eight segments are in excellent
agreement with GEANT4 simulations. When including the entire volume of SuN, the two
sequential γ rays get summed together and the sum peak dominates the spectrum.

Since the decay of 60Co emits two sequential γ-rays, it offers a nice test of the γ-summing

technique. The energy spectrum obtained with a 60Co placed at the center of SuN is shown in

Fig. 5.8. For an individual segment of SuN, the spectrum is dominated by the two individual

γ-ray lines with a smaller sum peak from when both γ rays simultaneously deposit their

energy in the segment. However, when including the full volume of the detector the sum

peak increases in intensity and dominates the spectrum. There are still two smaller peaks

at 1173.2 keV and 1332.5 keV corresponding to when only one of the sequential γ rays is

detected and the other one does not deposit any energy. By integrating the number of counts

in the sum peak, the γ-summing efficiency for 60Co was determined to be 62.4(1.2)% with

no beam pipe and 51.5(1.0)% with a 1.5 mm thick stainless steel beam pipe.

The effect of the source position on the γ-summing efficiency was also investigated by
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Figure 5.9: Figure from Ref. [9] showing the effect of the location of a 60Co source inside of
SuN on the γ-summing efficiency.

moving a 60Co source to various locations along SuN’s borehole, and the result is shown in

Fig. 5.9. Although a small dip in the efficiency at the very center of SuN was discovered

due to the thin layer of aluminum and reflector between the central segments, overall the

efficiency was fairly constant at the center of the detector. This was encouraging because it

showed that the position of the target in the center of SuN when performing experiments was

not so crucial. As the source was moved further from the center, the γ-summing efficiency

decreased as expected due to the decreased angular coverage and amount of NaI(Tl) near

the source. See Ref. [9] for more details.

5.5 GEANT4 Simulation

In order to analyze the data in this thesis and make predictions of how the SuN detector will

behave under various experimental conditions, it was necessary to develop a working and

reliable computer simulation of the detector. As with many applications that involve the

101



Figure 5.10: Visualization of the GEANT4 SuN detector simulation. The lines inside of SuN
are several γ-ray tracks. The one track that scatters outside of SuN does not deposit all of
its energy inside of the detector.

detection of radiation, the GEANT4 software package was used which implements Monte

Carlo methods to simulate how particles interact with matter [111]. In the case of SuN, this

means repeatedly sampling how a cascade of γ rays interacts with SuN to obtain the detector

response. GEANT4 is an ideal tool for this purpose because it already has the physics of

how γ rays interact with matter built in to its physics libraries, and the implementation has

been shown to be reliable for many other applications.

The successful adaptation of GEANT4 for use with the SuN detector involved a few

important steps. First, SuN was constructed in the simulation by inputting each compo-

nent with the correct dimensions, composition, and location within SuN’s geometry. The

construction of the SuN detector can be found in Appendix B. It was also important to

include experimental equipment such as the beam pipe and target holder in the design for

maximum accuracy. Second, the capability to specify the location, energy, and direction

for the emission of γ rays was introduced. In most cases the γ rays are simply emitted in

a random direction from the center of SuN with an input file listing the γ-ray cascades to
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Table 5.1: Standard deviation (σ) of a Gaussian function fit to various experimental γ-ray
peaks, along with the corresponding energy resolution.

E σ Res. Source E σ Res. Source
(keV) (keV) (%) (keV) (keV) (%)

511 24.4 11.2 6129 92.7 3.56 19F(p,αγ)16O

1173 33.2 6.66 60Co 9394 119 2.98 27Al(p,γ)28Si

1332 34.8 6.15 60Co 10509 126 2.82 27Al(p,γ)28Si

1779 42.1 5.57 27Al(p,γ)28Si 12420 138 2.62 27Al(p,γ)28Si

2839 54.8 4.55 27Al(p,γ)28Si

simulate. An optional Doppler shift in energy was introduced for γ rays emitted in flight

for comparison to experiments performed in inverse kinematics. Third, the simulation was

set up so that for each simulated γ-ray cascade the energy deposited in each segment, the

total energy deposited in the detector, and the number of segments that detected energy

were extracted and saved. A visualization of the GEANT4 SuN detector simulation can be

seen in Fig. 5.10.

Additionally, the resolution of SuN’s NaI(Tl) crystals had to be input into the simulation.

This resolution was experimentally determined by fitting the peak of several individual γ-ray

lines, including measurements taken with a γ-ray sources as well as γ rays emitted from the

deexcitation of well-known resonances in the 27Al(p,γ)28Si reaction. Table 5.1 lists the γ-ray

energies and the standard deviation of a Gaussian fit to the peak in the spectrum, which

was used for the resolution function of SuN. This information is also plotted in Fig. 5.11

along with the best fit function that was implemented in the GEANT4 simulation. The

GEANT4 simulation of SuN agrees excellently with the experimental data contained in this

thesis. Validation of the code can be found in comparison to γ-ray sources (Fig. 5.8 and

5.9) and well-known resonances in the 27Al(p,γ)28Si and 58Ni(p,γ)59Cu reactions (Chap. 7

and 11). Although the resolution function worked well for this thesis and described the
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Figure 5.11: Standard deviation in the detected energy of the SuN detector as a function of
the γ-ray energy. The points correspond to experimental data and the curve is the best fit
function that was implemented in the GEANT4 simulation.

experimental data up to γ-ray energies above 12 MeV, it has been seen in more recent SuN

experiments that the extrapolation of σ to low energies of a few hundred keV does not match

experimental values. Thus, future scientists should take note that the resolution function

of SuN was based on the available experimental data at the time and may be altered and

improved with additional γ-ray lines.

As mentioned in Sec. 5.1, GEANT4 simulations were used to aide in creating the fi-

nal design of SuN. By simulating well-known γ-ray cascades, the γ-summing efficiency was

determined for various possible geometries by taking the ratio of the number of counts in

the sum peak to the total number of cascades simulated. Fig. 5.12 shows sample efficiency

results for the SuN detector, a solid cylindrical detector of the same dimensions, and the

existing CAESAR detector at the NSCL [112]. CAESAR consists of 192 CsI crystals and the

standard configuration of the crystals is shown in the inset of Fig. 5.12. By arranging the 192

crystals of CAESAR into different configurations it was possible to improve the efficiency,
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however it was still too low for the ideal implementation of the γ-summing technique. It was

decided that it was best to go with a cylindrical detector and that eight segments was the

best compromise between segmentation and efficiency. The simulated efficiency of SuN for

the detection of a single γ ray up to 15 MeV is shown in Fig. 5.13. The efficiency decreases

from 82% for a 1 MeV γ ray to 45% for a 15 MeV γ ray. When using the stainless steel

beam pipe and aluminum target holder in experiments, the efficiencies drop to 71% for a 1

MeV γ ray to 42% for a 15 MeV γ ray.
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Figure 5.12: γ-summing efficiencies for various configurations of the CAESAR detector (stan-
dard configuration inset), a solid cylindrical detector, and the SuN detector for the resonance
at a proton energy of Ep = 1118keV in the 27Al(p,γ)28Si reaction. This resonance deexcites
through the emission of 3.2 γ rays on average.
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Figure 5.13: SuN’s efficiency for the detection of a single γ ray as a function of energy both
with and without the beam pipe and target holder used in experiments.
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Chapter 6

Analysis

The raw output of the experimental measurements with the SuN detector included in this

thesis were files containing a time-ordered list of entries. Each entry contained the PIXIE-16

module number and channel number that fired, along with the time and energy information

extracted from the signal pulse that caused the entry. As discussed in Sec. 5.3.2, the time

and energy were calculated with digital filter algorithms, and entries occurring within the

same 300ns time window were grouped together as originating from a single γ-ray cascade.

This chapter contains the procedures to analyze the data, the bulk of which was performed

using the C++ programming language and the ROOT software package.

6.1 Gain Matching and Calibration

The first step in the analysis procedure is to make sure that SuN’s PMTs have the same

response when collecting the scintillation light originating from γ-rays of the same energy.

This procedure is called gain matching and it can be done in two separate ways. One

method is to adjust the amount of high voltage applied to a PMT to alter the number of

electrons produced in the different electron multiplication stages. In this way, the PMTs

themselves are adjusted to create similar output signals so that the energy extracted by the

data acquisition system is consistent for every PMT. The 1460.8 keV γ-ray line from the

room background decay of 40K is well suited for this purpose. Therefore, the voltage on
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Figure 6.1: (a) Room background and (b) 137Cs source spectra from the three PMT’s in
a single segment of SuN after gain matching the voltages applied to each PMT. Since the
137Cs source emits γ rays from the center of SuN, the outer two PMTs show a double peak
in their spectrum.

each PMT was adjusted so that the energy extracted from the 1460.8 keV γ-ray line was

approximately the same for each PMT before performing the measurements of this thesis.

Fig. 6.1 shows the result after altering the PMT voltages in one of SuN’s segments for

both a room background measurement and a measurement taken with a 137Cs source. In

the room background spectra there is a single peak from the 40K line for each PMT, and

the peaks are aligned to the same channel number as expected. However, the 137Cs spectra

shows a single peak for the 661.7 keV transition only for the central PMT. Instead of single

peaks as one might expect, the outer two PMTs show a double peak in their energy spectra.

It was concluded that the double peak for γ rays emitted from the center of SuN is due

to the geometry of the segments, where the semicylindrical shape of the crystal and the

placement of the three PMTs causes a position dependence on the light collection of the

outer two PMTs. This position dependence is further illustrated in Fig. 6.2, which contains

a plot of the left PMT against the right PMT for a 60Co source. The two γ-ray transitions

in the decay of 60Co show up as the two strong bands around channel 1000 in each PMT.
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Figure 6.2: Two-dimensional plot showing the response of the left PMT against the response
of the right PMT for a 60Co source. The two bands in the spectrum around channel 1000
in each PMT correspond to the two γ-ray transitions in the decay of 60Co. The slope of
these bands indicates that the response of the outer two PMTs is affected by where the γ
ray deposits energy in the crystal.

Depending on where the γ ray interacts with the crystal, the light collection of the outer

two PMTs is affected. For instance, if the γ ray deposits energy near the left PMT, the left

PMT collects more light than the right PMT, and vice versa. This creates a spread in the

amount of light collected by the outer two PMTs for a single energy, which corresponds to

a poor energy resolution. However when adding the two outer PMTs together, good energy

resolution is achieved. Contrary to the outer PMTs, the location of the central PMT allows

for uniform light collection regardless of where the emitted γ ray interacts with the crystal,

and hence the single peak in the spectrum and why is was used to create the external trigger

signal (see Sec. 5.3.3). Since the 40K γ-ray line originates outside of the detector and deposits

its energy near the outside of the NaI(Tl) crystals, all PMTs receive uniform light collection

and there is a single peak in all PMTs.
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As mentioned, there is also an additional method of gain matching SuN’s PMTs. The

second method of gain matching is to apply a correction to the PMT energies in software

after the data is taken. By multiplying the energy extracted from a PMT by a numerical

multiplication factor it is possible to more precisely align the energy spectra for every PMT.

In this thesis, different methods of aligning the energy spectra from the three PMTs in a

segment were investigated to see which method provides the best energy resolution when

summing the PMTs together to create a total energy spectrum for the segment. During a

reaction measurement, the γ rays are emitted from the center of SuN so the energy spectra

of the outer two PMTs have a double peak for each γ ray. Three different gain matchings

were considered; aligning the γ-ray peak to the left of the double peaks, to the right of the

double peaks, and in the center of the double peaks. The results are shown in Fig. 6.3 for

a 137Cs source, a 60Co source, and the 40K background line. In this figure, the top row of

three panels are aligning the spectra to the left, the second row is aligning to the center,

and the third row is aligning to the right. The three PMTs in each alignment are summed

together to create a total energy spectrum for the segment, and the result is then calibrated.

The result of calibrating the total segment spectrum is shown in the bottom row of three

panels in the figure. Surprisingly, there is no noticeable difference in resolution between the

three methods. Therefore, it is often easiest to gain match to the center, so that the single

peak in the energy spectrum from the central PMT is aligned at the center of the double

peaks in the energy spectra of the outer two PMTs. This can be done by fitting the 1460.8

keV γ-ray line from the room background decay of 40K in each PMT with a Gaussian to

determine the centroid, and then calculating the multiplication factor necessary for precise

alignment.

After gain matching the three PMTs in each segment, their energies can be added for each
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Figure 6.3: Result of applying gain matching multiplication factors in software to align the
central PMT in a segment to the left (first row), center (second row), and right (third row)
of the double peaks in spectra of the outer two PMTs. This was done for a 137Cs source
(left column), a 60Co source (central column), and the 40K background line (right column).
After summing the three PMTs in a segment together, the end result is that there is no
noticeable difference in the method of gain matching.
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Figure 6.4: The result of gain matching SuN’s segments using a 60Co source. The label T
is for the top of the detector and B is for the bottom of the detector. Based on the spectra
it can be deduced that the source was place off-center under the third segment of SuN and
closer to the top than the bottom.

γ-ray cascade to create an energy spectrum for the entire segment. As with the individual

PMTs, it is necessary that SuN’s segments have the same response when detecting γ rays

of the same energy. This can be assured by fitting peaks in the energy spectrum of each

segment with a Gaussian function to determine the centroid and then aligning each centroid.

For creating source spectra like Fig. 5.7 and Fig. 5.8, the alignment of each segment was

done using the γ-ray lines from the sources themselves. For example when creating the 60Co

spectrum, multiplication factors to align the 1173.2 keV and 1332.5 keV γ-ray lines were

calculated for each segment and the average of the two values was used. A typical result of

gain matching all of SuN’s segments for 60Co is shown in Fig. 6.4. After gain matching each

segment, the energies can be added together to create the total γ-summed spectrum. This

spectrum can then be calibrated so that each γ-ray line shows up at the correct energy in

the spectrum. For source spectra, a linear calibration of the form E = Ax+B is sufficient,

where A is the slope and B is the intercept of the calibration.
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Table 6.1: Energy and source of γ-ray transitions used to calibrate SuN’s segments.

E (keV) Source E (keV) Source

511 6129 19F(p,αγ)16O, 16O(α,α’)16O

596 74Ge(α,α’)74Ge 6668 27Al(p,γ)28Si

1173 60Co decay 8938 27Al(p,γ)28Si

1332 60Co decay 9394 27Al(p,γ)28Si

1779 27Al(p,γ)28Si 10509 27Al(p,γ)28Si

2839 27Al(p,γ)28Si 10762 p(27Al,γ)28Si

4438 12C(α,α’)12C 12420 27Al(p,γ)28Si

Initially when analyzing the (p,γ) and (α,γ) measurements, it was thought that the same

procedure as used to create the source spectra could be used to create the reaction γ-summed

spectra. However, because the reactions measured in this thesis produced compound nuclei

at high excitation energy, it turns out that this method was not satisfactory. A multiplication

factor that gain matched SuN’s segments using γ rays with energies between 1 and 2 MeV

misaligned γ-ray lines at energies above 5 MeV, and vice versa. For the proper summation of

all eight segments in this thesis, the response of each segment needed to be gain matched up to

γ-ray energies of approximately 15 MeV. Therefore, it was decided to calibrate each segment

individually before summing them all together. The calibration points for each segment came

from single γ-ray transitions from standard radioactive sources, the 27Al(p,γ)28Si reaction,

and various beam induced reactions. Due to the large energy range, it was necessary to use a

quadratic function of the form E = Ax2+Bx+C to achieve the best calibration. Table 6.1

lists the γ-ray energies used to calibrate SuN’s segments in this thesis.

In an experiment, it is possible that the PMT responses may drift over time, which causes

a shift in the energy spectrum from a PMT despite the maintaining of a constant applied

voltage. This would lead to different gain matching and calibration values over the course

of an experiment. The drift may be due to factors such as shifting high voltages, fluctuating
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Table 6.2: Gain matching multiplication factors for each PMT in the three different experi-
ments at the University of Notre Dame.

PMT Exp. I Exp. II Exp. III PMT Exp. I Exp. II Exp. III
T11 1.00453 0.99467 1.02591 B11 1.00014 1.00689 1.04008
T12 1.00000 1.00000 1.00000 B12 1.00000 0.97160 1.00000
T13 0.99230 1.00715 1.05147 B13 1.00245 1.00000 1.04778
T21 1.00607 1.00764 1.04427 B21 0.98698 1.00078 1.00872
T22 1.00000 0.96076 1.00000 B22 1.00000 0.99070 1.00000
T23 0.98970 1.00000 1.03669 B23 0.98800 1.00000 0.97929
T31 0.99193 0.97883 1.02639 B31 1.01521 1.03585 1.01702
T32 1.00000 1.00000 1.00000 B32 1.00000 1.00000 1.00000
T33 0.99233 1.01458 1.05110 B33 1.00682 0.98628 0.97929
T41 0.98590 0.99266 0.98726 B41 1.00403 0.98217 0.95456
T42 1.00000 1.00797 1.00000 B42 1.00000 1.01543 1.00000
T43 0.99113 1.00000 0.99374 B43 0.99396 1.00000 0.98351

temperatures or magnetic fields in the experimental area, or perhaps the ageing of a PMT

with use. During the (p,γ) and (α,γ) measurements at the University of Notre Dame, room

background runs were taken at least a few times a day and oftentimes many more. By mon-

itoring the location of the 1460.8 keV γ-ray line in the room background spectrum for each

PMT, it was possible to determine whether or not the response of the PMTs were changing

with time. Over the course of the three separate, week-long experiments, no significant drift

in the PMTs was discovered. Therefore, it was possible to perform a single gain matching

and calibration procedure for each experiment. The values used for the analysis of the data

in this thesis can be found in Table 6.2 and Table 6.3.

6.2 Thresholds

As will be described later in this chapter, the complete analysis of SuN’s experimental data

requires an accurate simulation of the detector that matches existing experimental data
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Table 6.3: Energy calibrations of the form E = Ax2+Bx+C for each segment in the three
different experiments at the University of Notre Dame.

Segment A B C

Exp. I

T1 1.08547×10−06 0.47770 -38.8211

T2 1.06741×10−06 0.48932 -45.3902

T3 1.39848×10−06 0.47533 -23.1084

T4 1.17564×10−06 0.48355 -28.8541

B1 2.18739×10−06 0.46264 -2.88832

B2 1.41779×10−06 0.48360 -43.1425

B3 1.11948×10−06 0.46897 -46.4133

B4 1.51094×10−06 0.46840 -23.2460

Exp. II

T1 5.64057×10−06 1.09818 -21.0829

T2 7.00597×10−06 1.14240 -21.6076

T3 6.44751×10−06 1.12545 -35.0943

T4 7.40063×10−06 1.12614 -5.59329

B1 7.86493×10−06 1.11152 -6.65785

B2 7.15952×10−06 1.13639 -43.1837

B3 7.17831×10−06 1.10718 -37.0146

B4 8.35966×10−06 1.09061 -11.0828

Exp III

T1 3.08654×10−06 1.04165 -42.4995

T2 1.16270×10−06 1.08097 -54.4708

T3 5.40427×10−06 1.04891 -27.7781

T4 5.40296×10−06 1.09220 -30.9802

B1 3.65558×10−06 1.06209 -44.4285

B2 3.29566×10−06 1.12088 -49.5915

B3 4.40908×10−06 1.05076 -38.5224

B4 7.81034×10−06 1.07178 -25.6977
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Figure 6.5: Experimental data and GEANT4 simulation for one of SuN’s central segments
for a 60Co source. In the analysis, a hard cut at 160 keV was applied for each segment in
order to use the same threshold in both experiment and simulation.

and makes accurate predictions. The simulation should match the experimental data for

all energies, including the low energy part of SuN’s spectra which is directly affected by

the experimental threshold. As discussed in Sec. 5.3.2, NSCL DDAS applies a threshold

based on the trigger filter response to SuNs PMT signals. After applying the energy filter to

signals satisfying the threshold requirement, the result is not a sharp cut in the PMT energy

spectrum but instead the low energy part of the spectrum has a positive slope.

The GEANT4 simulation of the SuN detector developed in this thesis does not include

the response of individual PMTs, but instead calculates the response of all eight of SuN’s

segments. Therefore it is necessary to compare an experimental spectrum of a segment to

a simulated spectrum of the segment to view the effect of the threshold. Fig. 6.5 shows

the difference between simulation and experimental data for one of SuN’s central segments

for a 60Co source. Overall the simulated spectrum matches the experimental data well for

116



the energies shown. However for the energies below a few hundred keV, there are some

discrepancies between the two spectra due to the experimental threshold. Because of the

difficulty in correctly implementing the effect of NSCL DDAS’s threshold in simulation, it

was decided to apply a hard cut in both experimental and simulated spectra. A conservative

value of 160 keV was chosen based on the energy spectra of SuN’s 24 PMTs. If the total

energy deposited in a segment was below the hard cut at 160 keV, it was ignored in the

analysis.

6.3 Sum Peak Analysis

After performing the gain matching, calibration, and threshold steps described in the pre-

vious sections, the energy deposited in each of SuN’s eight segments was added together to

create a total γ-summed energy. In this way, the detected energy of all the γ-rays emitted

in deexcitation of the produced nuclei in the (p,γ) and (α,γ) reactions were summed to-

gether to create a sum peak at EΣ = Ec.m. + Q. At this point in the analysis, the effects

of detection dead time (less than 2% for all measurements) and room background were also

taken into account. Both the total γ-summed reaction spectrum and total γ-summed room-

background spectrum were scaled by their corresponding live-time ratios. After this scaling,

the room background spectrum was further scaled by normalizing to the same run time as

the reaction spectrum. By subtracting the normalized room background spectrum from the

reaction spectrum, the final result was achieved. Fig. 6.6 shows a typical sum peak after the

dead-time corrections and room-background subtraction, in this case for the 60Ni(α,γ)64Zn

reaction.

As discussed in the γ-summing technique in Sec. 4.1.3.2, the cross section of a reaction
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Figure 6.6: Zoomed in view of a typical sum peak from the γ-summing technique with the
SuN detector, in this case for the 60Ni(α,γ)64Zn reaction. A Gaussian fitting function is used
to define a sum-peak region of (EΣ-3σ,EΣ+3σ) and then a linear background is determined
from an average of the region’s boundary values. The sum peak integral is taken to be the
number of counts above the linear background.

is directly related to the number of counts in the sum peak. Because this thesis contains the

first ever implementation of the γ-summing technique with the SuN detector, the method

of integrating the number of counts in the sum peak was not yet determined and several

methods were initially considered. When deciding which method to use, it was desirable

to find a technique that was reproducible and provided a reasonable estimate of the back-

ground underneath the sum peak. The sum peaks contained in this thesis were typically

fairly large and it was possible to describe the background with a polynomial function if

necessary, although some of the (α,γ) sum peaks did have low statistics. In addition, future

measurements with the SuN detector are expected to utilize low intensity radioactive beams

and low cross sections with a corresponding low count rate in the sum peak. Therefore, it

was decided that a linear background would be easiest to implement for sum peaks of all

shapes and sizes.
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The γ-summing technique tends to produce sum peaks that are asymmetric with the

low energy side of the peak extending outwards in a “tail”. This low energy tail is a result

of incomplete summation of the γ-ray energy when not all of the energy is deposited into

the detection crystal. Instead, some of the energy may be deposited in an inactive layer of

the detector or scattered outside of the detector. Therefore, the total γ-summed energy for

these events is less than the energy of the sum peak, creating the asymmetric shape. Because

the size and shape of the low energy tail may be different for each sum peak depending on

the number and energy of the γ rays being summed together, it was necessary to use a

technique independent of the low energy side of the sum peak when determining the bounds

of integration. Therefore, only the high energy side of the sum peak was fit with a Gaussian

fitting function (Eq. 5.2) to determine the centroid (EΣ) and standard deviation (σ) of the

peak. Using the values of EΣ and σ, the sum-peak region was defined from an energy of EΣ-

3σ on the left to an energy of EΣ+3σ on the right. To create a linear background beneath

the sum peak an average of the number of counts on both the left and right boundaries of

the sum-peak region was taken. A line was then drawn between the average values. The

number of counts in the sum peak was calculated as the total number of counts in the sum-

peak region subtracted by the number of counts in in the linear background spectrum within

the sum-peak region. Fig. 6.6 shows a typical Gaussian fit as well as the linear background

determination from a typical sum peak in the 60Ni(α,γ)64Zn reaction. The vertical lines in

the spectrum denote the location of the sum-peak region.

6.3.1 Isomeric states

An important consideration to take into account when performing the sum-peak analysis

is whether or not there are any isomeric states in the produced nuclei. The presence of
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an isomeric state that has a lifetime close to or longer than the data acquisition system’s

event window requires additional analysis. In this thesis an event window of 300ns was used.

Therefore, if any excited state produced in the (p,γ) and (α,γ) reactions lived longer than

300ns before deexciting, the γ rays emitted from this longer lived state would be outside

of the event window and not grouped with the other γ rays from the same cascade. When

populating an isomeric state, this separate grouping of the γ rays creates a total γ-summed

energy that is less than the total energy of the reaction. Thus, multiple sum peaks would be

observed in the γ-summed spectrum. One peak would correspond to the full energy of the

reaction when the isomeric state is not populated in a γ-ray cascade. A second peak would

also be present, corresponding to when the isomeric state is populated. This second peak

would be found at an energy equal to the full energy of the reaction minus the energy of the

isomeric state.

Since the total radiative capture cross section depends on the total number of γ-ray

cascades, including ones that populate and ones that do not populate the isomeric state,

it is necessary to integrate both peaks in the spectrum. For example, the 74Ge(p,γ)75As

reaction discussed in Chap. 8 includes a 304 keV isomeric state in 75As with a half-life of

17.62 ms [113], which is much longer than the 300ns event window. The 304 keV energy

is small compared to the full energy of the reaction of approximately 10 MeV studied in

Chap. 8, and the integral of events populating the isomeric state was included in the analysis

by expanding the sum-peak region to (EΣ-3σ-304keV,EΣ+3σ). As mentioned, for isomeric

states at higher energies, it may be necessary to completely analyze separate peaks in the

total γ-summed spectrum.
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6.3.2 Doppler reconstruction

An additional consideration to take into account is that reactions measured in inverse kine-

matics have deexcitation γ rays emitted from a moving source, which creates a shift in the

detected energy by the Doppler factor (Eq. 4.4). Therefore, the analysis of measurements in

inverse kinematics require the additional step of Doppler reconstruction of the γ-ray energy.

The Doppler reconstruction is done separately for each of SuN’s segments before summing

the energy of the segments together. Since the shift in γ-ray energy depends on the angle of

emission, it is important to choose the correct angle to use for the Doppler reconstruction

for each segment. For the analysis in this thesis, three different angles were investigated for

each segment. The first angle was simply the angle from the center of the target position to

the geometrical center of the NaI crystal. However, it is possible that this angle is incorrect

because it does not take into account that there are different thicknesses of NaI crystal avail-

able at different angles in a segment. The greater the thickness of the NaI crystal, the more

likely it is that γ rays emitted at the corresponding angle will interact and deposit energy.

Therefore, the second angle was calculated by weighing each emission angle by the path-

length through the NaI crystal. Lastly, SuN’s GEANT4 simulation was used to determine

the average emission angle for the γ rays that deposit energy in each crystal.

The calculated angles for each segment using the three different methods are listed in

Table 6.4 and drawn in Fig. 6.7. Overall, the three methods return approximately the same

angle to use in the Doppler reconstruction. It was also found that the GEANT4 angles are

closer to the geometrical center of the crystals for the central two segments, but closer to

the weighted center for the outer two crystals. Because the GEANT4 simulation has been

shown to provide reliable results for the SuN detector, it was decided to use the GEANT4
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Table 6.4: Average emission angle in radians for the different segments of the SuN detector
calculated from the geometrical center of the NaI crystals, by weighting the angles by the
path-length through the crystals, and from SuN’s GEANT4 simulation.

Segment Crystal Center Weighted Center GEANT4 Center
1 2.510 2.559 2.550
2 1.999 2.082 2.024
3 1.142 1.059 1.118
4 0.632 0.582 0.592

Table 6.5: Doppler correction factors used for each segment in this thesis.

Segment 27Al (β =0.0459) 58Ni (β =0.0550)
1 1.0395 1.0476
2 1.0212 1.0256
3 0.9800 0.9762
4 0.9629 0.9558

angles in the analysis. However, it should be mentioned the angles provided by the three

methods are close enough that they do not demonstrate any significant differences in the

sum-peak resolution.

In this thesis, it was necessary to perform Doppler corrections for the p(27Al,γ)28Si and

p(58Ni,γ)59Cu reactions measured in inverse kinematics (see Chap. 11). The p(27Al,γ)28Si

reaction was measured at a resonance energy of Ec.m. = 956 keV, which corresponds to a

27Al projectile velocity of β = 0.0459. On the other hand, the p(58Ni,γ)59Cu reaction was

measured at a resonance energy of Ec.m. = 1400 keV, which corresponds to a 58Ni projectile

velocity of β = 0.0550. Using these values of β and the GEANT4 angles listed in Table 6.4,

the Doppler correction factors were obtained. The final values are listed in Table 6.5.
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Figure 6.7: Cross-sectional view of the SuN detector showing the different angles used in
the Doppler reconstruction. The different angles are to the geometrical center of the NaI
crystals, to the weighted center based on the path-length through the crystals, and from
SuN’s GEANT4 simulation.

6.4 γ-Summing Efficiency

SuN’s γ-summing efficiency depends not only on the total energy of the deexcitation γ

rays, but also on the number of γ rays in the deexcitation cascade. SuN’s efficiency of

detecting a single γ ray from the entry state to the ground state is very different than the

efficiency of detecting multiple γ rays whose total energy is equal to the entry state. In

fact, the efficiency even varies depending on how those multiple γ rays split up the total

energy. During an experiment, the capture reaction and subsequent deexcitation of the

produced nucleus is happening many times through many different possible γ-ray cascades.

Therefore, the average γ-ray multiplicity, or the average number of γ-rays that are emitted

in the deexcitation of the entry state, is considered in the analysis. For the majority of

(p,γ) and (α,γ) reactions measured with the SuN detector, the average γ-ray multiplicity is

not known beforehand and correspondingly, the γ-summing efficiency is not known before
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performing the experiment. Therefore, it is necessary to use the information obtained during

the measurement of a reaction to determine the average γ-ray multiplicity.

In previous applications of the γ-summing technique, the authors made use of the “in/out

ratio” method to determine the average γ-ray multiplicity. This method relies on comparing

the number of sum-peak counts for the full 4π solid angle coverage of the detector (“in”) to

those with only half of the full solid angle coverage (“out”). For a single γ ray, the ratio of

detected counts for half the solid angle compared to the full solid angle is expected to be

1/2. This means that a sum peak with average multiplicity <M> is expected to have an

in/out ratio of (1/2)<M>. While successful, this method can be difficult in low count rate

experiments because a small number of counts in the sum peak becomes even tinier when

considering only half of the solid angle coverage.

Fortunately, the unique design of the SuN detector provides a new method of determining

the average γ-ray multiplicity during an experiment by making use of SuN’s eight segments.

This new method is based on the expectation that the higher the γ-ray multiplicity of a

cascade, the larger the number of SuN’s segments that will detect γ-ray energy on average.

Fig. 6.8 illustrates this concept using GEANT4 simulations of a 10 MeV sum peak for γ-ray

multiplicities of two and three. For these calculations, the total 10 MeV excitation energy is

divided equally among the emitted γ rays. By selecting the events in the sum-peak region, a

histogram of the number of SuN’s segments that detected energy is drawn. This histogram

is known as the “hit pattern” of the sum peak. By fitting the hit pattern plots in Fig. 6.8

with a Gaussian, it is clear that the GEANT4 simulation with a multiplicity of three has a

higher centroid value than the GEANT4 simulation with a multiplicity two. This means that

the average number of SuN’s segments that detected energy for multiplicity three is larger

than the average number of SuN’s segments that detected energy with multiplicity two, as
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Figure 6.8: Histogram of the number of SuN’s segments that detect energy for events in
the sum peak (the “hit pattern”). The spectra are from simulations of the deexcitation of
a 10 MeV state with γ-ray multiplicities of <M>= 2 and <M>= 3 with the emitted γ
rays having equal energy. The spectra are fit with a Gaussian function to determine the
hit pattern centroid, and it is shown that the higher the γ-ray multiplicity the higher the
average number of SuN’s segments that detect energy.

expected. Through GEANT4 simulations of the SuN detector, the relationship between

hit pattern centroids and the average multiplicity is well known. This was verified using

resonances of known strength and average multiplicity (see Chap. 7).

When analyzing a reaction, the total γ-summed spectrum is created and the sum-peak

region is identified as described in the previous section. For each event within the sum-peak

region, the number of segments that detected energy is calculated and used to create the

hit pattern spectrum. In cases when the sum peak is sitting on top of a beam-induced

background, it is necessary to subtract this background out of the hit pattern spectrum.

In certain situations, it may also be advantageous to narrow the bounds of the sum-peak

region when creating the hit pattern. Overall, the main goal is to obtain a hit pattern for

SuN that is representative of the events in the sum peak of the reaction of interest. Once

the desired spectrum is obtained, a Gaussian fitting function is used to determine the hit
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Figure 6.9: Method of determining the experimental γ-summing efficiency for the
60Ni(α,γ)64Zn sum peak shown in Fig. 6.6. Panel (a) shows the hit pattern spectrum for
events in the sum peak region and the corresponding Gaussian fit to determine the hit
pattern centroid. Panel (b) shows the efficiency and hit pattern centroids from GEANT4
simulations with various γ-ray multiplicities and transitions. The best fit line is also shown,
which is used to determine the experimental efficiency.

pattern centroid. The left panel of Fig. 6.9 shows the hit pattern spectrum and its Gaussian

fit for the 60Ni(α,γ)64Zn sum peak in Fig. 6.6.

The next step in determining the γ-summing efficiency is to run a series of GEANT4

simulations with the total deexcitation energy equal to the experimental sum-peak energy.

The simulations should be performed for a variety of γ-ray multiplicities and transitions to

provide a good basis for comparison to the experimental data. The γ-summing efficiency

of each simulation is determined by the ratio of number of counts in the sum peak to total

number of γ-ray cascades simulated. In addition, the hit pattern centroid is determined using

the events in the simulated sum-peak region. After determining the γ-summing efficiency

and hit pattern centroid for each simulation, a plot of the results is made. The right panel

of Fig. 6.9 contains a plot of γ-summing efficiency versus hit pattern centroid based on the

results of 30 simulations with the same total energy as the sum peak of Fig. 6.6. On this plot,

the simulations are grouped in order according to their γ-ray multiplicity, with multiplicity 1
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Figure 6.10: Values of (a) hit pattern centroid and (b) γ-summing efficiency plotted against
sum-peak energy for the 60Ni(α,γ)64Zn reaction. For the reactions measured in this thesis,
the hit pattern centroid and therefore the average γ-ray multiplicity increase with energy,
and the γ-summing efficiency decreases with energy.

having a much higher efficiency than multiplicity 5. The various data points in the multiplic-

ity groupings correspond to different possible γ-ray cascades with the same total energy but

different transitions between excited states. Next, all of the GEANT4 simulations are used

to create a linear fit describing the relationship between hit pattern centroid and γ-summing

efficiency. Using the best-fit line and the experimental value of the hit pattern centroid, the

experimental γ-summing efficiency and its uncertainty are immediately obtained. Typical

uncertainties of the γ-summing efficiency using the hit pattern technique are approximately

10%.

Because the majority of (p,γ) and (α,γ) reactions studied in this thesis produce nuclei

in high-lying excited states where many resonances overlap, it can be interesting to look at

systematic trends in the hit pattern centroid (and therefore average γ-ray multiplicity) as well

as the γ-summing efficiency. Typically as the excitation energy increases in a nucleus, the

average γ-ray multiplicity increases and the corresponding γ-summing efficiency decreases.

Results for the 60Ni(α,γ)64Zn reaction are shown in Fig. 6.10.
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Chapter 7

27Al(p,γ)28Si

The first measurements with the SuN detector at the University of Notre Dame were of the

27Al(p,γ)28Si reaction. This reaction was chosen because it has been measured many times

previously and was therefore a well-understood benchmark for comparison of SuN’s results.

The measurements of the 27Al(p,γ)28Si reaction served as an excellent proof-of-principle of

the γ-summing technique with the SuN detector, as well as a check on the analysis procedures

of the data.

As discussed in Sec. 4.2, the aluminum target was produced by evaporation at the NSCL

and its thickness of 74.7(3.7) µg/cm2 was measured with the RBS technique at Hope College.

The target was mounted at the center of the SuN detector, and the energy of the proton

beam was changed in small steps, typically 1-2 keV, to scan well-known resonances within

Ep = 2−4 MeV of the 27Al(p,γ)28Si reaction. Fig. 7.1 shows a typical γ-summed spectrum,

in this case for the resonance at Ep = 2517.7 keV. The spectrum is dominated by the sum

peak at 14.012 MeV with additional peaks in the spectrum corresponding to incomplete

summation of the γ rays. From previous measurements of the Ep = 2517.7 keV resonance,

the corresponding entry state in 28Si is known to deexcite to the ground state with the

emission of three γ rays of energy 9394, 2839, and 1779 keV 88.2% of the time [114] (see

Fig. 7.2 for a simplified level scheme). Therefore, the smaller peaks observed in Fig. 7.1 are

found at energies 4.618, 11.173, and 12.233 MeV from when two of the γ rays are detected but

the third γ ray escapes undetected. Additionally, a GEANT4 simulation of the Ep = 2517.7
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Figure 7.1: Total γ-summed spectrum for the Ep = 2517.7 keV resonance in the 27Al(p,γ)28Si
reaction. Plotted are the experimental spectrum taken with the SuN detector and the result
of GEANT4 simulations.

keV resonance was performed using the known deexcitation γ-ray cascades of 28Si. Fig. 7.1

demonstrates that the GEANT4 simulation accurately matches the experimental data for

the SuN detector all the way up to a total energy of above 14 MeV. Excellent agreement

between GEANT4 simulations and experimental data was obtained for all of the measured

resonances, with subtle differences for some of the higher-energy resonances which could be

attributed to incorrect deexcitatation cascades in the literature.

In addition to creating a total γ-summed spectrum, the SuN detector also provides insight

into the deexcitation cascades through the energy spectra of the eight segments. By drawing

the energy spectrum of individual segments for events that have the full sum-peak energy

in the γ-summed spectrum, the individual γ-ray transitions can be identified. For example,

Fig. 7.3 shows the spectrum of a central segment for the Ep = 2517.7 keV resonance for

events that lie in the sum-peak region. The dominant γ-ray transitions at 9394, 2839, and

1779 keV are clearly visible, along with an intense peak at 511 keV from an electron-positron
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Figure 7.2: Level scheme of 28Si for the Ep = 2517.7 keV resonance in the 27Al(p,γ)28Si re-
action. For simplicity, only the energy levels and intensities for the primary γ-ray transitions
are labeled. The unlabeled levels also participate in the cascades based on their transition
probabilities. The most dominant cascade is highlighted and consists of the emission of γ
rays with energy 9394, 2839, and 1779 keV.
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Figure 7.3: Spectrum from one segment of the SuN detector for events in the sum-peak
region of the Ep = 2517.7 keV resonance in the 27Al(p,γ)28Si reaction. Plotted are the
experimental spectrum taken with the SuN detector and the result of GEANT4 simulations.

annihilation occurring in a different segment. Similarly, sometimes a 511 keV γ ray escapes

from the plotted segment, which creates the peaks visible 511 keV below the energy of the

γ-ray transitions at 8883, 2328, and 1268 keV. The experimental spectrum is matched well

by GEANT4 simulation, indicating that the detector response in simulation is correct and

that the intensities of all the γ-ray transitions in literature are accurate.

For each measurement, the sum peak was integrated and the γ-summing efficiency deter-

mined by the techniques discussed in Chap. 6. The yield of each measurement was determined

as the ratio of number of times the 27Al(p,γ)28Si reaction occurred to the number of incom-

ing protons. Fig. 7.4 shows the measured excitation function for all of the data included in

the analysis. Additionally, the inset of the figure shows a zoomed-in view of the resonance

at Ep = 3674.9 keV and its comparison to the theoretical yield of a Breit-Wigner resonance

of Eq. 3.14. For each resonance in the excitation function, the area was determined and the

resonance strength calculated using Eq. 3.19. Due to lack of experimental data scanning the
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Figure 7.4: Measured excitation function in the region Ep = 2− 4 MeV of the 27Al(p,γ)28Si
reaction. The inset shows a zoomed in view around the resonance at Ep = 3674.9 keV and
a comparison to the theoretical Breit-Wigner yield.

full resonance or the overlap of many resonances, not all of the data could be used to extract

a resonance strength. In total, 11 resonances were completely scanned and their resonance

strengths compared to previous measurements. The literature values for comparison came

from Ref. [15] and Ref. [5, 115], which contain compilations and evaluations of all previous

data sets for the 27Al(p,γ)28Si reaction.

The final results for the measurement of the 27Al(p,γ)28Si reaction with the SuN detector

are listed in Table 7.1 and plotted in Fig. 7.5. The values of Sp shown are calculated by

Sp = ωγ
(

2Jp + 1
)

(2Jt + 1) (7.1)

where Jp = 1/2 is the spin of the proton and Jp = 5/2 is the ground-state spin of the 27Al

target nuclei. Overall, there is good agreement between the SuN results and the previous

measurements. In the case of the Ep = 2374 keV resonance, there was a discrepancy between
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Table 7.1: Measured resonance strengths for the 27Al(p,γ)28Si reaction for the SuN detector
and previous results.

Ep (keV) SuN Endt [15] NACRE [5, 115]
2303.1 3.3 (0.6) 1.6 (0.48) 2.6 (1.3)
2311.9 10.1 (1.8) 6.7 (1.3) 6.72 (0.84)
2359.9 2.8 (0.5) 5.4 (1.62) 1.32 (0.48)
2373.8 3.9 (0.7) 26 (7.8) 4.2 (1.2)
2517.7 14.6 (2.1) 16 (3) 17.2 (1.9)
2675.5 4.7 (1.0) 7.2 (1.4) 7.32 (0.84)
2711.7 16.1 (2.2) 14 (3) 15.5 (3)
3338.4 3.6 (0.7) 4.3 (0.9) 4.2 (8)
3674.9 32.3 (4.5) 35 (7) 33.5 (6.7)
3791.7 11.9 (1.6) 7.3 (1.5) 7.1 (1.7)
3960.8 5.4 (0.8) 3.3 (0.7) 3.2 (0.6)
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Figure 7.5: Resonance strengths of the 27Al(p,γ)28Si reaction measured with the SuN de-
tector compared to previous results. Overall good agreement is achieved.
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the resonance strength values listed in Ref. [15] and Ref. [115] and the SuN results agree nicely

with the value given in Ref. [115]. The agreement of the 27Al(p,γ)28Si resonance strengths

between SuN results and previous measurements demonstrated the validity of measurements

with the SuN detector. The same techniques that gave these results are also used in the

more astrophysically interesting measurements contained in the following chapters.
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Chapter 8

74Ge(p,γ)75As

One of the significant results obtained during the SuN experimental campaign at the Uni-

versity of Notre Dame was the measurement of the 74Ge(p,γ)75As reaction and its role in

p-process nucleosynthesis. The motivation for measuring the 74Ge(p,γ)75As reaction was

that it was previously identified in a p-process sensitivity study by Rapp et al. [2] as play-

ing an important role in the production of the lightest of the p nuclei, 74Se. The authors

found that varying the 74Ge(p,γ)75As reaction rate within its theoretical uncertainty had

a direct impact on the production of 74Se and therefore deemed this reaction “particularly

important” to experimentally measure.

74Se is produced in the high-temperature layers of type II supernovae (SNII) which are

undergoing p-process nucleosynthesis. The higher temperatures of the stellar environment

allow for charged particle capture reactions on less massive seed nuclei, and (p,γ) and (p,n)

reactions can dominate over the typical photodisintegration scenario. The dominant reac-

tion chain for the production of 74Se is 74Ge(p,γ)75As(p,n)75Se(γ,n)74Se, which is shown in

Fig. 8.1. The main destruction reaction is 74Se(γ,α)70Ge with smaller contributions from

74Se(γ,p)73As. Prior to the measurement, most of the other reaction rates had been well con-

strained by previous experiments. The 74Se(n,γ)75Se reaction rate was well known through

several measurements and in particular by the measurement of Dillmann et al. [116] focus-

ing on p-process relevant energies. Similarly, the cross section of the 75As(p,n)75Se reaction

had been measured down to the reaction threshold (Q = -1.646 MeV) [117, 118], and the
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Figure 8.1: A zoomed in section of the nuclear chart showing the dominant reaction flow
producing 74Se in the p process.

70Ge(α,γ)74Se reaction had been measured at p-process energies covering the majority of

the Gamow window [119]. Therefore, the 74Ge(p,γ)75As reaction was the remaining reaction

to measure in the production chain of 74Se.

Investigating the production of 74Se is significant because, unlike the majority of the

light p nuclei, 74Se is surprisingly overproduced by approximately a factor of 3 (see Fig. 1.7).

A similar, but not as pronounced, behavior is observed for the second lightest p nucleus,

78Kr. As mentioned, the lighter p nuclei are the only ones influenced by the (p,γ) and

(p,n) reactions taking place at high temperatures, and it is therefore crucial to constrain

the involved nuclear reaction rates and reduce the relevant nuclear physics uncertainties to

provide deeper insight into this alternative reaction mechanism. Since the 74Ge(p,γ)75As

reaction was the last unconstrained reaction in the production chain of 74Se, it could perhaps

explain the overproduction of 74Se and be an important step towards understanding the

discrepancy in the overall production of the puzzling light p nuclei.

The measurements were performed with proton energies in the range Ep = 1.6 - 4.2 MeV
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Figure 8.2: Sum peak spectra for three different proton energies Ep normalized to the same
number of incoming protons. The location of the sum peak and the metastable peak are
indicated for Ep = 3400 keV.

and an enriched 74Ge target. As discussed in Sec. 4.2, the target was made by evaporating

97.55% enriched 74Ge powder onto a thick tantalum backing, and the thickness of 340(17)

µg/cm2 was determined through RBS analysis. For the measurement of the 74Ge(p,γ)75As

reaction, the beam intensity was maintained below 10 enA to ensure minimal dead time in

the SuN detector. The resulting total γ-summed spectra from the SuN detector are shown

in Fig. 8.2 for three different energies. Above 3 MeV the spectra are dominated by the sum

peak of the 74Ge(p,γ)75As reaction. The shift in location of the sum peak is due to the

changing center of mass energy, and the different intensities of the sum peaks give indication

that the cross section is increasing with energy. Small signatures of the contaminants in the

target can be observed around 7 MeV coming from the 19F(p,αγ)16O reaction, and around

5.3 MeV from the 18O(p,αγ)15N reaction caused by a small amount of oxygen present in the

target.
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Figure 8.3: Total γ-summed spectrum for the 74Ge(p,γ)75As measurement at Ep = 3400
keV. Also plotted is the linear background with and without including the 304 keV isomer.

When determining the number of counts in the sum peak, it was necessary to take into

account the 304 keV isomeric state in 75As with a half-life of 17.62 ms [113]. As this half-life

was much longer than the 300 ns event window used in the analysis, any deexcitation to the

isomeric state does not get summed into the sum peak. Instead, these events are found 304

keV below the sum peak energy (EΣ). To include the events populating the isomeric state in

the analysis, it was decided to expand the sum-peak region to (EΣ - 3σ - 304 keV , EΣ + 3σ).

Once the sum-peak region was defined, a linear background was subtracted and the total

number of counts above the linear background was determined as discussed in Sec. 6.3.

Fig. 8.3 shows the difference in linear backgrounds with and without including the 304 keV

isomeric state. The γ-summing efficiencies (Sec. 6.4) ranged from 28.1(2.3)% at Ep = 1.6

MeV to 21.8(1.7)% at Ep = 4.2 MeV. Using the number of sum-peak counts and SuN’s

summing efficiency, the total number of reaction products was determined and the total

(p,γ) cross sections and astrophysical S-factors were calculated using Eq. 2.3 and Eq. 2.13.

The results are listed in Table 8.1.
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Table 8.1: Cross sections and astrophysical S-factors for the 74Ge(p,γ)75As reaction.

Ec.m. σ S-factor Ec.m. σ S-factor
(MeV) (mb) (GeV b) (MeV) (mb) (GeV b)

1.554 0.045 ± 0.005 6251 ± 708 3.246 15.5 ± 1.7 2005 ± 218
1.763 0.19 ± 0.02 6464 ± 714 3.345 17.5 ± 1.9 1799 ± 196
1.961 0.51 ± 0.06 5796 ± 637 3.444 15.5 ± 1.7 1279 ± 139
2.159 1.11 ± 0.12 4910 ± 540 3.543 13.0 ± 1.4 875 ± 95
2.357 2.17 ± 0.24 4196 ± 463 3.642 6.08 ± 0.66 334 ± 36
2.554 3.78 ± 0.41 3534 ± 387 3.741 5.46 ± 0.59 247 ± 27
2.752 6.23 ± 0.68 3062 ± 333 3.839 3.68 ± 0.40 138 ± 15
2.950 10.5 ± 1.1 2914 ± 317 3.938 2.96 ± 0.32 94 ± 10
3.049 11.6 ± 1.3 2468 ± 268 4.037 2.93 ± 0.32 78 ± 9
3.148 13.2 ± 1.4 2177 ± 237 4.136 3.13 ± 0.34 71 ± 8

The uncertainties reported in Table 8.1 include both statistical and systematic errors. The

primary sources of error are the 5% uncertainty in target thickness, 5% uncertainty in beam

charge collection, and the 8% uncertainty in summing efficiency. There is also an uncertainty

in the integral of the sum peak due to a possible contribution from the 73Ge(p,γ)74As reaction

with a Q-value of 6852 keV, only 49 keV below the Q-value of the 74Ge(p,γ)75As reaction.

However, the cross section of the 73Ge(p,γ)74As reaction is predicted to be lower by a factor

of 1.5 to 25 throughout the energy range measured [120], and the isotopic composition of

73Ge in the target was only 1.9%. Thus, an upper bound contribution of 1.5% to the sum

peak from the 73Ge(p,γ)74As reaction was estimated.

As the analysis of the 74Ge(p,γ)75As reaction cross section measurement was nearing

completion, a research group in Köln, Germany published their results on the same reac-

tion [10]. A comparison of values in this dissertation to the Köln data set is shown in

Fig. 8.4. The two separate measurements agree within the uncertainty, with the Köln data

giving systematically slightly lower cross sections, 6% to 21% below the present results. This

systematic effect could be attributed to the two different measurement techniques. The Köln
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Figure 8.4: Cross section vs. center of mass energy plot for the 74Ge(p,γ)75As reaction.
The measurements of this dissertation (solid circles) and previous data of Ref. [10] (open
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nuclear reaction codes. The most accurate reproduction of the data is the TALYS back-
shifted Fermi gas model (BSFG).
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group performed the measurement using the in-beam method (Sec. 4.1.3), where four high-

purity germanium detectors were used to detect the individual 75As deexcitation γ-rays and

their angular distribution. This method may underestimate the total cross section if there

are low intensity γ-rays that are below the detectable limits or high energy γ-rays that have a

low efficiency for being detected. In Fig. 8.4 both data sets show an increase in cross section

values until an energy around Ec.m. = 3.3 MeV where the (p,n) reaction channel opens. The

SuN measurements extend to both higher and lower energies than the Köln data. At the

lower energies this allows for a better characterization of the energy dependence of the cross

section. At the higher energies, above the energy where the (p,n) channel opens, the larger

energy coverage allows for a more sensitive selection of the appropriate nuclear level density

model.

The theoretical calculations of the Köln group. [10] were done using the statistical model

code SMARAGD [121]. The authors conclude that the best description of the data was

one which used the standard microscopic optical model potential of Jeukenne, Lejeune, and

Mahaux (JLM) [122] with the proton width multiplied by two. In Fig. 8.4, the solid black

curve represents standard NON-SMOKER [120] statistical model calculations, which is the

predecessor code to SMARAGD and is therefore representative of the Köln calculations. The

NON-SMOKER calculations do not reproduce the energy dependence of the cross section,

as an incorrect slope in the curve leads to an underestimation of the cross section at higher

energies and an overestimation of the cross section at lower energies. Scaling the proton

widths by two, as done in Ref. [10], would better match the data at higher energies, but

then further overestimate the cross section at lower energies. This large difference at lower

energies, up to 70% at 1.55 MeV, is only noticeable with the new data presented here.

Therefore, aiming at an improved description of the data, additional theoretical calcu-
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lations were performed using the TALYS 1.4 nuclear reaction code [123]. The remaining

three curves in Fig. 8.4 are TALYS calculations for different nuclear level densities. All were

performed using the semimicroscopic optical model of Bauge, Delaroche, and Girod [124],

which is a reparametrization of the JLM optical model to cover a wider energy range of

scattering data. TALYS calculations were performed using level densities from the con-

stant temperature and Fermi gas model (CTFG) [125, 126], back-shifted Fermi gas model

(BSFG) [127], generalized superfluid model (GSM) [128, 129], and the microscopic level den-

sities from Goriely’s table (GT) [130] and Hilaire’s table (HT) [131]. The calculations using

level densities from GSM and HT are left off of Fig. 8.4, as they produce results similar to

CTFG for the present reaction. Default parameter values were used in TALYS 1.4 except

for options for the JLM potential and different nuclear level densities. As seen in Fig. 8.4

the best description of the 74Ge(p,γ)75As reaction is achieved when using the back-shifted

Fermi gas model (BSFG). The BSFG model uses the Fermi gas model down to zero energy

with a shift in energy to account for nucleon pairing. This shift attempts to correct for the

fact that the Fermi gas model is based on non-interacting fermions. In TALYS, the BSFG

model uses the modification of Ref. [132] to fix the divergence of the nuclear level density at

zero energy.

Using the BSFG nuclear level density and JLM optical model potential, new astrophysical

reaction rates were calculated with TALYS 1.4 and their values are shown in Table 8.2.

Furthermore, in Fig. 8.5 the ratio of the new reaction rate calculations compared to the

reaction rates presented in the Köln paper [10] and to the standard REACLIB [11] rates

used in astrophysical calculations is shown. Within the relevant temperature window for

the p process, 1.8 - 3.3 GK, the new rates are higher than the standard REACLIB rates

with a maximum increase of 27%, but below the rates proposed by the Köln group with a
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Table 8.2: Reaction rates for the 74Ge(p,γ)75As reaction from TALYS 1.4 calculations with
the JLM optical model potential and BSFG nuclear level density which provide the most
accurate reproduction of experimental data.

T Rate T Rate

(GK) (cm3 mol−1 s−1) (GK) (cm3 mol−1 s−1)

0.10 4.629 × 10−31 1.50 6.228 × 100

0.15 4.310 × 10−21 2.00 1.369 × 102

0.20 4.173 × 10−16 2.50 1.101 × 103

0.25 4.429 × 10−13 3.00 4.742 × 103

0.30 5.130 × 10−11 3.50 1.345 × 104

0.40 2.638 × 10−8 4.00 2.845 × 104

0.50 1.556 × 10−6 5.00 6.961 × 104

0.60 3.055 × 10−5 6.00 9.787 × 104

0.70 3.146 × 10−4 7.00 9.502 × 104

0.80 2.130 × 10−3 8.00 7.379 × 104

0.90 1.073 × 10−2 9.00 5.182 × 104

1.00 4.338 × 10−2 10.00 3.600 × 104

Figure 8.5: Ratio of reaction rates in Table 8.2 to those presented in Ref. [10] and to the stan-
dard REACLIB [11] rates. The shaded area indicates the p-process relevant temperatures
of 1.8 - 3.3 GK.
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maximum decrease of 20%. The large change in the new reaction rates at low T compared

to the other two data sets can be attributed to the different description of cross section at

low energies. Because the TALYS model gives a more accurate reproduction of the energy

dependence of the experimental data, the reaction rates in Table 8.2 are new recommended

rates for the 74Ge(p,γ)75As reaction.

The impact of the experimental cross sections on the final abundance of the p nuclei

was investigated using the post-processing code NucNet Tools [133] to follow the reaction

network of a 25M⊙ SNII when the shock front passes through the O/Ne layer. In this

model, the initial seed abundances and temperature and density profiles were taken to be

the same as Rapp et al. [2]. The p process was then followed through 11 different mass

layers and the final abundances of the p nuclei were summed for all the included layers.

This reaction network uses reactions that are all based on theoretical cross sections from

REACLIB [11], whose uncertainty arises from uncertainties in the optical model potential

and nuclear level density models used. The theoretical uncertainty of the 74Ge(p,γ)75As

reaction cross section was investigated using TALYS 1.4, and the spread in predicted cross

sections can be seen in Fig. 8.4. An uncertainty up to a factor of three was determined

based on the difference between the constant temperature Fermi gas model (CTFG) and

the microscopic level densities taken from Goriely’s Table (GT). In Fig. 8.6, the impact of

the 74Ge(p,γ)75As reaction on the final abundance of the lightest p nucleus, 74Se, is shown

for the 25M⊙ SNII model. The cumulative mass fraction for 74Se is plotted against the

maximum temperature of the mass layer. The maximum temperature of the mass layer

decreases along the abscissa, corresponding to integrating the mass fraction from the inside

layer to the outside layer of the supernova. The majority of 74Se is produced in the inner

(hotter) layers, as the mass fraction does not increase when including layers with a maximum
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Figure 8.6: Cumulative mass fraction of 74Se from a model of the p process in a type II
supernova, plotted as a function of the maximum temperature of the mass layer included.
See text for details.

temperature below 2.6 GK. The solid black line and shaded grey area represent the results

for 74Se using the standard REACLIB 74Ge(p,γ)75As reaction rate and a factor of three

increase and decrease, respectively. Increasing the reaction rate by 3 leads to a 25% increase

in the production of 74Se, while decreasing the reaction rate by 3 leads to a 23% decrease

in the production of 74Se. The overall spread in the final cumulative mass fraction of 74Se

when relying on the theoretical predictions and uncertainties of the 74Ge(p,γ)75As reaction

spans from 4.94×10−7 to 8.03×10−7, which is a factor of 1.6.

Also in Fig. 8.6, the impact of the new experimental reaction rates on the final mass

fraction of 74Se is shown. The dashed black line and shaded hatched area show the 74Se

mass fraction when performing the network calculation with experimental values and un-
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certainties for the 74Ge(p,γ)75As reaction. The uncertainty in the production of 74Se from

the 74Ge(p,γ)75As reaction is reduced to a factor of 1.05 with the reaction rates presented

here, with an overall increase in the mean mass fraction from 6.4×10−7 to 7.5×10−7. As

mentioned previously, 74Se is strongly overproduced in p-process models, and this overpro-

duction is further enhanced with the experimental results reported here. Thus, the end

result of the 74Ge(p,γ)75As measurement contained in this chapter is that the uncertainty

in the production of 74Se in the p process is greatly reduced, but the general overproduction

of 74Se compared to its observed abundance remains.
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Chapter 9

58Ni(α,γ)62Zn

The story of the 58Ni(α,γ)62Zn reaction is unique to this thesis in that the astrophysical

motivation for its measurement is different from the other reactions contained here. Rather

than playing an important role in the p process of type II supernovae, the 58Ni(α,γ)62Zn

reaction instead contributes to the nucleosynthesis inside of a type Ia supernovae (SNIa).

Its importance was first discovered by Bravo and Mart́ınez-Pinedo [134] when performing a

sensitivity study quantifying the influence of individual reaction rates on the nucleosynthesis

in SNIa. For the study, the authors used a one-dimensional model of a Chandrasekhar-mass

white dwarf and varied the reaction rates up and down by a factor of 10. Overall, the authors

concluded that nucleosynthesis was relatively insensitive to the change of individual reaction

rates, but many reactions were identified as relevant for having a direct impact on the final

abundance of particular isotopes. One such reaction was the 58Ni(α,γ)62Zn reaction, which

was selected for its impact on the production of 62Ni, 63Cu, and 64Zn. The relation of the

58Ni(α,γ)62Zn reaction to these isotopes is shown in the nuclear chart of Fig. 9.1.

The astrophysical scenario in which the 58Ni(α,γ)62Zn reaction is expected to play an

important role is during the α-rich freeze-out from nuclear statistical equilibrium (NSE) (see

Sec. 1.3.4). In the innermost layers of SNIa, temperatures and densities are sufficiently high

to reach NSE, and a large portion of the material in NSE is expected to undergo α-rich

freeze-out. For the Chandrasekhar-mass white dwarf studied in Ref. [134] it was noticed

that the inner 0.4M⊙ reached NSE, of which 0.24M⊙ underwent α-rich freeze-out. After
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Figure 9.1: A zoomed in section of the nuclear chart showing the 58Ni(α,γ)62Zn reaction
and the isotopes most influenced by its reaction rate in SNIa (62Ni, 63Cu, 64Zn).

α-rich freeze-out, the composition of the layer is dominated by isotopes in the iron region

and α-particles that did not reassemble into heavier nuclei. Thus it is expected that α-

induced reactions on nuclei in the iron region are important for the final abundance pattern,

including the 58Ni(α,γ)62Zn reaction.

The 58Ni(α,γ)62Zn reaction has been measured three times previously, all over 50 years

ago. Morinaga [135] and Ball et al. [136] performed cross section measurements using the

activation technique (Sec. 4.1.1) with energies Eα = 10.6 - 31.0 MeV. After irradiation, both

measurements included an additional step of chemically separating zinc from other elements

before counting the decay of 62Zn with Geiger counters. McGowan and collaborators [12]

extended the measurements to lower energies by using thick-target yields from enriched

58Ni targets. The yield was determined every 100 keV within the beam energy range of

Eα = 4.9 - 6.1 MeV and the cross section determined by differentiating the yield curve.

The measurement of the 58Ni(α,γ)62Zn reaction cross section was performed using the

SuN detector and the γ-summing technique. The FN Tandem Van de Graaff Accelerator at
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Figure 9.2: Experimental spectra from the SuN detector for measurements at Eα = 7.7
MeV. The spectra correspond to 58Ni (solid black), thick tantalum backing (dotted blue),
and normalized room background (dot-dashed red). The inset shows a zoom around the
sum-peak region of the 58Ni(α,γ)62Zn reaction.

the University of Notre Dame was used to accelerate 4He2+ nuclei to energies Eα = 5.5−9.5

MeV. The beam current was varied between 4− 60 enA in order to balance count rate with

minimal detection dead time. For the present work the dead time was kept below 1.2%. For

each data run the total charge collected from the 4He2+ beam was between 7 − 159 µC.

The 58Ni target was isotopically enriched to 95(5)% and its thickness of 930 ± 46 µg/cm2

was measured using the RBS technique. Trace amounts of carbon and oxygen on the front

and back surfaces of the target were revealed during the RBS measurements. The target

thickness corresponded to a beam energy loss of 0.42 MeV and 0.30 MeV at Eα = 5.5 MeV

and Eα = 9.5 MeV, respectively [137].

A total γ-summed spectrum from the SuN detector for the 58Ni(α,γ)62Zn reaction with

Ec.m. = 7039 keV and Q = 3364.27 keV is shown in Fig. 11.3 (solid black line). At
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Table 9.1: Cross sections for the 58Ni(α,γ)62Zn reaction.

Emax
c.m. (MeV) Emin

c.m. (MeV) Eeff
c.m. (MeV) σ (µb)

5.143 4.750 4.988 3.13 ± 0.44
5.330 4.946 5.171 4.70 ± 0.60
5.517 5.143 5.360 6.69 ± 1.04
5.704 5.337 5.548 9.65 ± 1.34
6.078 5.723 5.922 15.3 ± 2.4
6.452 6.112 6.298 22.2 ± 3.5
6.826 6.496 6.673 34.0 ± 6.1
7.201 6.883 7.051 52.4 ± 7.1
7.574 7.268 7.428 66.9 ± 9.7
7.949 7.649 7.805 92.8 ± 15.1
8.415 8.129 8.277 138.8 ± 22.1
8.884 8.606 8.749 158.9 ± 25.2

higher energies, both room background and beam-induced background contributions to the

spectrum are reduced allowing the sum peak to be clearly visible at 10.4 MeV. The source

of room background in the region of the sum peak comes from cosmic rays. During the

experiment the 58Ni target was mounted in front of a thick tantalum backing. Thus, the

beam induced background was determined by taking data without the 58Ni target in place

so that the beam was impinging solely onto the tantalum backing. Additional peaks were

visible in the low energy region of the 58Ni spectrum that originate from the 58Ni(α,pγ)61Cu

reaction which has a higher cross section than the 58Ni(α,γ)62Zn reaction at this energy by

approximately two orders of magnitude [12, 138]. The additional nickel isotopes have (α,γ)

Q values larger than the 58Ni(α,γ)62Zn reaction, and thus do not contribute in the sum-peak

region. Also, these additional nickel isotopes are present in very low amounts in the target

and there was no indication of their (α,γ) reactions in the summed spectra.

The number of counts in the sum peak and the γ-summing efficiency were determined at

each energy step, and then the reaction cross section was calculated using Eq. 2.3. SuN’s γ-
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summing efficiency ranged from 26.7(2.8)% at Ec.m. = 4.943 MeV to 17.4(2.3)% at Ec.m. =

8.742 MeV. The results of the cross section calculations are displayed in Table 9.1. In the

table, the first two columns contain the maximum and minimum energies of the beam due

to the thickness of the target. The third column contains the effective energy for each data

point taking into account the variation of the cross section in the target. The last column lists

the calculated cross sections. Of the uncertainty reported, roughly 3% comes from statistical

uncertainties, 5% from the beam charge collection, 5% from the target thickness, 5% from

the target enrichment, and 10% - 15% from the detection efficiency. The uncertainty in

energy from the accelerator is 4 keV at all energies.

A plot of the 58Ni(α,γ)62Zn reaction cross section is shown in Fig. 9.3. The present

work is in agreement with the previous results of Ref. [12] and extends the measurements to

higher energies. The increased energy coverage of the experimental cross section allows for

a more sensitive study of the energy dependence of the cross section and provides a better

test for theoretical models. The theoretical calculations of the 58Ni(α,γ)62Zn reaction were

performed using the code SMARAGD [13, 139] which is based on the nuclear statistical

model (see Sec. 3.2). According to Ref. [140], the nuclear statistical model is expected to be

valid down to 0.12 GK for the 58Ni(α,γ)62Zn reaction. Since this is well below the relevant

temperature range of 2-5 GK for which the 58Ni(α,γ)62Zn reaction is expected to play a role

in the nucleosynthesis of SNIa, the use of the nuclear statistical model is well founded. The

Gamow window (see Sec. 2.4) for the 58Ni(α,γ)62Zn reaction at 2 GK is from approximately

3 to 5 MeV with a maximum contribution to the rate at 4 MeV, and at 5 GK the Gamow

window is from 4 to 7 MeV with a maximum contribution at 5.25 MeV [63]. As shown

in Fig. 9.3, the experimental values cover only the upper part of this energy window, and

theoretical predictions are required for the lower energies.
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Figure 9.3: Cross section of the 58Ni(α,γ)62Zn reaction for the present work (black circles),
previous data of Ref. [12] (red triangles), and theoretical calculations from the SMARAGD
code [13]. A good description of the data was obtained by modifying the α width and the
γ-to-proton width ratio (dashed line).

The initial SMARAGD calculation systematically overestimated the cross section values

by approximately a factor of 2, as shown with the solid line of Fig. 9.3. Since this theoretical

value is representative of the standard value that gets used in nucleosynthesis calculations,

the previously accepted reaction rate for the 58Ni(α,γ)62Zn reaction was overestimated by

approximately a factor of 2. The investigation of how to modify the theoretical calculation

to best describe the data is summarized in Fig. 9.4, which shows the sensitivity of the

58Ni(α,γ)62Zn cross section to variations in partial widths. For the energy range here, the

emission of γ rays, neutrons, protons, and α particles was considered and therefore their

partial widths were varied. The sensitivity is defined as [141]

ΩSq =
υΩ − 1

υq − 1
(9.1)
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Figure 9.4: Absolute values of the sensitivity of the 58Ni(α,γ)62Zn cross section as function
of energy, when separately varying γ, neutron, proton, and α widths.

where q is the quantity being changed and Ω is the resulting quantity. A change in q is

given by the factor υq = qnew/qold and the subsequent change in Ω is given by the factor

υΩ = Ωnew/Ωold. In the current context, the quantity q is an averaged width used in

the reaction model and the resulting quantity Ω is the reaction cross section. Using these

definitions, the sensitivity ΩSq = 0 when there is no change in the cross section after changing

the partial width and ΩSq = 1 when the cross section changes by the same factor as the

change in the partial width.

Below 4 MeV the 58Ni(α,γ)62Zn reaction cross section is exclusively sensitive to the α

width with the sensitivity to the α width persisting throughout the energy region plotted.

This low-energy region is also important for the calculation of the astrophysical reaction rate

and reactivity [140]. Conversely, there is very little sensitivity to the neutron width even

for energies above the neutron emission threshold at Ec.m. = 9.526 MeV. The remaining

two parameters, the proton and γ widths, show an increasing effect on the cross section
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with increasing energy in the region between 4 and 10 MeV. As mentioned, the default

SMARAGD calculation overestimated the experimental data but accurately reproduced the

energy dependence of the cross section. Because the energy dependence was reproduced

well and the sensitivity to the α width was present for all energies, it was expected that

rescaling the alpha width could provide a good description of the data. It was determined

that the α width obtained with the optical potential of [142] has to be scaled by a factor

0.45 to match the low energy data below 6 MeV. However, at higher energies where the

cross section sensitivity to the α width is reduced, there were still small deviations between

the SMARAGD calculation and the experimental data. By increasing the γ-to-proton width

ratio by 10%, an improved agreement with the data at the upper end of the measured energy

range was achieved. The γ- and proton widths cannot be constrained separately with data

from only this reaction and only the increase in ratio can be determined.

The SMARAGD calculation with the rescaled widths is shown as dashed line in Fig. 9.3,

which matches the experimental data very well. Although the scaling factors for the α- width

and γ-to-proton width ratio provide an excellent description of the 58Ni(α,γ)62Zn cross sec-

tion, calculations using these scaling factors underproduce the 58Ni(α,p)61Cu experimental

data [12, 138] by a factor of three. Further theoretical work is required to obtain a full

understanding of α-induced reaction cross sections on 58Ni, which was beyond the scope of

this thesis.

Since there is no indication from the data that the energy dependence of the cross sec-

tion changes towards even lower energies, the modified widths were used to calculate new

stellar reactivities, which are shown in Table 9.2. These stellar reactivities are dominated

by the ground-state cross sections with only small influence from thermally excited states

in 58Ni. The ground-state contributions are 100% at 2 GK and 95% at 5 GK and thus the
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Table 9.2: Stellar reactivities for the 58Ni(α,γ)62Zn reaction.

T Reactivity T Reactivity

(GK) (cm3 mol−1 s−1) (GK) (cm3 mol−1 s−1)

0.10 6.623 × 10−62 2.00 2.268 × 10−7

0.15 1.971 × 10−50 2.50 2.045 × 10−5

0.20 2.068 × 10−43 3.00 5.000 × 10−4

0.30 1.171 × 10−34 3.50 5.407 × 10−3

0.40 3.546 × 10−29 4.00 3.399 × 10−2

0.50 2.649 × 10−25 4.50 1.461 × 10−1

0.60 2.293 × 10−22 5.00 4.755 × 10−1

0.70 4.941 × 10−20 6.00 2.812 × 100

0.80 4.070 × 10−18 7.00 9.844 × 100

0.90 1.666 × 10−16 8.00 2.443 × 101

1.00 4.020 × 10−15 9.00 4.755 × 101

1.50 2.679 × 10−10 10.00 7.688 × 101

reactivities are well constrained by experimental data. Table 9.3 contains a fit to the stellar

reactivities using the standard 7 parameter REACLIB format [72], which is commonly used

in astrophysical calculations.

After calculating new reactivities, their effect on the nucleosynthesis of SNIa was in-

vestigated. The reduction in the rate of 58Ni(α,γ)62Zn is expected to translate into a de-

crease in the abundance of 62Zn and other nuclei linked by subsequent reaction chains,

Table 9.3: REACLIB parameters for the 58Ni(α,γ)62Zn reaction.

Parameter Value

a0 5.194217 × 101

a1 − 2.314329 × 100

a2 − 2.528868 × 101

a3 − 5.651307 × 101

a4 − 1.088296 × 100

a5 1.763373 × 10−1

a6 3.858753 × 101
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Table 9.4: Changes to the nucleosynthesis in SNIa models. (1) Chandrasekhar-mass delayed
detonation model with ρDDT = 3.9 × 107 g/cm3. (2) Explosion of a sub-Chandrasekhar
white dwarf of 1.025 M⊙ C-O core surrounded by a 0.055 M⊙ He envelope.

υΩ − 1 Delayed detonation Sub-Chandrasekhar

-0.05 64Zn 62Ni

-0.04 62Ni

-0.02 63Cu, 66Zn 63Cu, 66Zn, 69Ga

-0.01 64Zn, 65Zn, 73Ge

e.g. 62Zn(α,γ)66Ge, 62Zn(p,γ)63Ga(p,γ)64Ge, and so on. After the decay of the radioactive

isotopes, the result is a decrease of the ejected abundances of 62Ni, 66Zn, 63Cu, 64Zn, and

others. In the temperature range in which α-rich freeze-out takes place, namely from 2-5 GK,

the new reaction rates given by Table 9.3 are smaller than the standard REACLIB [11] rates

by a factor of 0.45. From Ref. [134], these lower rates correspond to an expected decrease in

the ejected abundance of 62Ni by approximately 6-7%.

Simulations of SNIa were performed with both the standard REACLIB [11] rates and

the new rates following the same methodology and codes as described in Ref. [134]. Cal-

culations were done for both a delayed detonation of a Chandrasekhar-mass white dwarf

and a thermonuclear explosion of a sub-Chandrasekhar white dwarf. The relative change

in the ejected abundances of the most sensitive species is listed in Table 9.4. The results

agree with the prior estimate and have a maximum sensitivity of approximately 5% for the

abundances of 62Ni and 64Zn. Additional calculations were performed with different sets

of deflagration-to-detonation transition densities, ρDDT, and initial metallicities, but their

effect is small and the maximum sensitivities never exceed the values reported in Table 9.4.

It was found that in general, the sensitivities increase with metallicity and with ρDDT.

In summary, the 58Ni(α,γ)62Zn reaction cross section results contained in this chapter
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agree well with previous measurements and expand to energies not covered by prior ex-

periments. The standard theoretical calculation by the SMARAGD code overproduced the

measured cross section, but multiplying the α width by a factor of 0.45 accurately reproduced

the data. New reactivities were reported, and the new reaction rates used in nucleosynthesis

calculations for SNIa. It was determined that the new rates have at most a 5% effect on the

ejected abundances of several isotopes, all in cases where a significant portion of the mass

participates in α-rich freeze-out.
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Chapter 10

Additional (α,γ) Measurements

This chapter contains the first ever measurements of the 90Zr(α,γ)94Mo, 92Zr(α,γ)96Mo, and

74Ge(α,γ)78Se reaction cross sections, which are relevant for the production of the lightest

p nuclei. As discussed in Sec. 1.4, this region is especially interesting to study due to the

large discrepancies between astrophysical calculations and the observed abundances. Models

of the p process predict a notable underproduction of the 92,94Mo and 96,98Ru isotopes of

greater than a factor of 10, while simultaneously predicting a significant overproduction in

the amount of 74Se by approximately a factor of 3 [2].

In general, there is limited existing experimental data for (α,γ) reactions in the p process,

with less than 20 of the relevant (α,γ) reactions being measured to date [50]. Due to this

lack of experimental data, reaction networks of the p process rely heavily on theoretical

reaction rates which typically have large uncertainties. The 90Zr(α,γ)94Mo, 92Zr(α,γ)96Mo,

and 74Ge(α,γ)78Se measurements in this chapter expand the existing experimental database

for (α,γ) reactions and fit into the larger effort aimed at constraining the reaction theory

relevant to the p process through systematic measurements across a large mass and energy

range.

In addition to the global systematic studies, efforts have been made to identify a smaller

list of reactions which have the largest impact on the final abundances of the p nuclei. Such

sensitivity studies are valuable because they inform experimentalists which reactions are the

most crucial to measure. One such sensitivity study by Rauscher [14] took the approach of

158



identifying the isotope of each element where the (γ,p) or (γ,α) photodisintegration rates

are comparable to the (γ,n) rates. As discussed in Sec. 1.4, near stability the (γ,n) reactions

dominate, but as the isotopes become more neutron-deficient, the (γ,p) or (γ,α) reactions

may proceed with a higher rate. Accurately constraining the reaction rates at these “branch-

ing points” is critical for correctly modeling the mass flow of the p process. Because the

locations of the branching points at a given temperature rely solely on the nuclear proper-

ties, it is possible to identify potentially critical reactions independently of the astrophysical

model.

In Rauscher’s study [14], the branching point in the molybdenum isotopes was determined

to be at 94Mo, at which point the (γ,α) reaction is expected to proceed at a higher rate

than the (γ,n) reaction for p-process temperatures. However, the two reaction channels

have reaction rates that are within the theoretical uncertainty of each other, which makes

the identification of 94Mo as a branching point highly sensitive to the individual reaction

rates. This is illustrated in Fig. 10.1, which shows REACLIB reaction rates [11] for the

photodissociation of 94Mo through the (γ,n), (γ,p), and (γ,α) channels as a function of

temperature. The uncertainty in the rates was taken to be a factor of 10 for the (γ,α)

reaction and a factor of 5 for the (γ,n) and (γ,p) reactions. Within the p-process window

of 1.8− 3.3 GK, the 94Mo(γ,α)90Zr and 94Mo(γ,n)93Mo reactions are within the theoretical

uncertainty of each other. If the actual 94Mo(γ,α)90Zr reaction rate is towards the lower

end of its uncertainty band, then the (γ,n) reaction would proceed with a higher rate, and

the branching point in molybdenum would be shifted to more neutron deficient isotopes,

potentially increasing the production of the isotope 92Mo. Therefore, the 90Zr(α,γ)94Mo

was identified as one of the critical reactions to investigate experimentally to improve the

understanding of the p-process mass flow in this mass region [14].
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Figure 10.1: REACLIB reaction rates [11] as a function of temperature for the photodis-
sociation of 94Mo through the (γ,n), (γ,p), and (γ,α) channels. The width of the curves
corresponds to a factor of 10 uncertainty in the (γ,α) reaction rate and a factor of 5 un-
certainty in the (γ,n) and (γ,p) rates. Within the p-process window of 1.8 − 3.3 GK, the
94Mo(γ,α)90Zr reaction may have a higher rate than the 94Mo(γ,n)93Mo reaction and could
therefore be a branching point in the p process [14].

The measurements were performed at the University of Notre Dame and consisted of

impinging α particles onto isotopically-enriched targets. The FN Tandem Van de Graaff

accelerator was used to accelerate the 4He2+ beam to energies between 9.5 to 12.0 MeV in

0.5 MeV steps. The beam intensity was set between 4.3×109 and 2.5×1010 pps as needed to

maximize the count rate and minimize detection dead time. The dead time was below 1.8%

for all measurements reported here. The 90Zr and 92Zr targets were self-supporting foils with

thicknesses of 966(48) and 946(47) µg/cm2, respectively, and both were isotopically enriched

to 98(1)%. In order to eliminate scattered α particles from hitting the beam pipe after

passing through the Zr foils, a tantalum backing was placed directly behind each foil during

the measurements. In the 74Ge(α,γ)78Se case, the 74Ge was made through the evaporation

of 97.55% enriched 74Ge powder onto tantalum backing and had a thickness of 340(17)
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µg/cm2. Additional details on the fabrication of the 74Ge target and the RBS thickness

measurements can be found in Sec. 4.2.

The (α,γ) reactions on 90Zr, 92Zr, and 74Ge reported here have Q values of 2064.2, 2758.9,

and 6028.4 keV, respectively. When combined with the beam energy of Eα = 9.5−12.0 MeV,

these Q values produce sum peaks in SuN’s total γ-summed spectrum from approximately

11 to 17 MeV. The sum peaks for these (α,γ) reactions had low intensities, and the statistical

error associated with the sum-peak integral was 6− 14%. The largest source of uncertainty

in the measurements was the γ-summing efficiency, with uncertainty values of up to ±17%.

10.1 90Zr(α,γ)94Mo Results

The 90Zr(α,γ)94Mo reaction was measured in the energy range of Ec.m. = 9.0 − 11.4 MeV.

The total γ-summed spectrum for an energy of Ec.m. = 9.94 MeV is shown in Fig. 10.2

along with the normalized room-background spectrum. The majority of low energy peaks

in the spectrum can be attributed to contaminants in the tantalum backing used during the

measurements. At an energy of approximately 12 MeV, the sum peak of the 90Zr(α,γ)94Mo

reaction is indicated. Also indicated is the peak around 9 MeV, which originates from

neutrons released in the 90Zr(α,n)93Mo reaction.

The cross section values (see Eq. 2.3) and corresponding S-factors (see Eq. 2.13) for the

90Zr(α,γ)94Mo reaction are listed in Table 10.1. The effective energy of each data point

was calculated by taking into account the variation in cross section through the 90Zr target.

In this calculation, the slope of the cross section was taken from the best-fit theoretical

calculation to the data (see Sec. 10.4). The energy loss through the target was between 0.22

and 0.26 MeV for the measurements here.
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Figure 10.2: Total γ-summed spectrum for an α beam impinging onto the enriched 90Zr
target at Ec.m. = 9.94 MeV, with the 90Zr(α,γ)94Mo sum peak at 12 MeV. The peak around
9 MeV in the spectrum comes from neutrons released in the 90Zr(α,n)93Mo reaction. Also
plotted is the normalized room background.

Table 10.1: Cross sections and S-factors for the 90Zr(α,γ)94Mo reaction.

Ec.m. (MeV) σ (mb) S (1015 eV b)

8.98 ± 0.03 0.060 ± 0.018 15500 ± 4600
9.46 ± 0.02 0.093 ± 0.024 6690 ± 1730
9.94 ± 0.02 0.155 ± 0.028 3420 ± 620
10.42 ± 0.02 0.171 ± 0.028 1260 ± 210
10.90 ± 0.02 0.207 ± 0.034 547 ± 60
11.39 ± 0.02 0.307 ± 0.051 306 ± 51
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10.2 92Zr(α,γ)96Mo Results

The 92Zr(α,γ)96Mo reaction was measured at energies Ec.m. = 10.0 − 11.4 MeV. Fig. 10.3

contains the experimental γ-summed spectrum for the measurement taken at Ec.m. = 11.4

MeV. The sum peak at 14.2 MeV is indicated on the plot, and is at an energy where the

room background and beam-induced background are greatly reduced. In this case, the

beam-induced background was determined by removing the 92Zr target so that the α beam

impinged soley onto the tantalum backing. The neutron-induced signature around 12 MeV is

also indicated on the plot and comes from neutrons released in the 92Zr(α,n)95Mo reaction.

The inset of Fig. 10.3 shows a zoomed-in view of the sum-peak region, along with the linear

background used to calculate the integral of the peak. The sum peaks for the 92Zr(α,γ)96Mo

reaction had the lowest intensity of the three measured reactions, and therefore carry the

largest statistical uncertainty of up to 14%.

The energy loss through the 92Zr target was 0.22 − 0.24 MeV, and the small change in

cross section through the target was taken into account in calculating the final energy value.

To perform this effective energy calculation, the slope of the cross section was taken from

the best-fit theoretical calculation (see Sec. 10.4). The final values for the center of mass

energy, the cross sections, and the astrophysical S-factors are reported in Table 10.2.

Table 10.2: Cross sections and S-factors for the 92Zr(α,γ)96Mo reaction.

Ec.m. (MeV) σ (mb) S (1015 eV b)

9.96 ± 0.03 0.034 ± 0.008 732 ± 172
10.44 ± 0.03 0.057 ± 0.012 410 ± 86
10.92 ± 0.03 0.090 ± 0.018 233 ± 47
11.40 ± 0.03 0.116 ± 0.024 116 ± 24
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Figure 10.3: Total γ-summed spectrum for an α beam impinging onto the enriched 92Zr
target at Ec.m. = 11.4 MeV, with the 92Zr(α,γ)96Mo sum peak at 14.2 MeV. The peak
around 12 MeV originates from neutrons emitted in the 92Zr(α,n)95Mo reaction. Also plotted
are the normalized room background and the beam-induced background from the tantalum
backing. The inset shows a zoomed in view of the sum peak and the linear background used
when integrating the sum peak.
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10.3 74Ge(α,γ)78Se Results

The measurements of the 74Ge(α,γ)78Se reaction were carried out for energies Ec.m. =

8.5−10.9 MeV. The γ-summed spectrum for the measurement at Ec.m. = 8.5 MeV is shown

in Fig. 10.4. The sum peak at 14.5 MeV is clearly visible above the normalized room back-

ground, and the peak around 10.5 MeV comes from the effect of neutrons released in the

74Ge(α,n)77Se reaction. After integrating the sum peak and determining the γ-summing

efficiency, the cross sections and the astrophysical S-factors were calculated. The final values

are reported in Table 10.3 along with the center of mass energy of the measurement. The

energy loss through the target was 0.08− 0.10 MeV for the measured energies.
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Figure 10.4: Total γ-summed spectrum for an α beam impinging onto the enriched 74Ge
target at Ec.m. = 8.5 MeV, with the 74Ge(α,γ)78Se sum peak at 14.5 MeV. The neutron-
induced peak around 10.5 MeV comes from neutrons emitted in the 74Ge(α,n)77Se reaction.
Also plotted is the normalized room background spectrum.
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Table 10.3: Cross sections for the 74Ge(α,γ)78Se reaction.

Ec.m. (MeV) σ (mb) S (1012 eV b)

8.49 ± 0.01 0.048 ± 0.008 1010 ± 170
8.97 ± 0.01 0.075 ± 0.012 528 ± 84
9.44 ± 0.01 0.080 ± 0.014 210 ± 37
9.92 ± 0.01 0.113 ± 0.021 116 ± 22
10.39 ± 0.01 0.124 ± 0.026 55 ± 11
10.87 ± 0.01 0.169 ± 0.039 33 ± 8

10.4 Discussion

The experimental (α,γ) reaction cross sections contained in this chapter were compared

to theoretical calculations using the TALYS 1.6 nuclear reaction software package [123].

Because the states populated in the α capture were at high excitation energy where there

are many levels that overlap, the theoretical cross sections were calculated using the nuclear

statistical model. TALYS 1.6 implements Hauser-Feshbach formalism for this purpose [67],

which relies on the calculation of the transmission coefficients in the entrance channel and

all exit channels. A discussion of the nuclear statistical model is contained in Sec. 3.2.

For the reactions considered here there are three ingredients that dominate the uncer-

tainties in the theoretical cross sections; the nuclear optical model potential (OMP), the

γ-ray strength function (GSF), and the nuclear level density (NLD). TALYS 1.6 has multi-

ple options on its menu to choose from, including two OMPs for protons and neutrons, five

OMPs for α particles, five GSFs for the dominant E1 transitions, and six NLDs. For details

on all the models, the reader is directed to the TALYS 1.6 manual [143]. In the following

paragraphs, only a brief description of the models with references to the original publications

will be provided.

The two proton and neutron optical model potentials in TALYS are the phenomenolog-
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ical OMP of Koning and Delaroche [144] constrained by experimental data across a large

energy and mass range (KD OMP), and the semi-microscopic OMP of Jeukenne-Lejeune-

Mahaux [122] reparametrized by Bauge, Delaroche, and Girod [124] (JLM OMP). For the α

optical model potentials, the default option in TALYS is to take the KD OMP for protons

and neutrons and combine them appropriately for the α particle. This concept of applying

OMP for single nucleons to describe interactions of more complex nuclei was first done by

Watanabe for deuterons [145]. TALYS also includes the α potential of McFadden and Satch-

ler [142], as well as the three potentials provided by Demetriou, Grama, and Goriely [146]

which differ in their description of the imaginary part of the OMP. The first α potential

of Demetriou et al. used experimental data to constrain the imaginary part consisting of

only a volume component, the second used a surface and volume component, and the third

potential was determined using the dispersion relation to relate the imaginary part of the

OMP to the real part.

The six nuclear level densities in TALYS are: the constant temperature and Fermi

gas model [125, 126], the back-shifted Fermi gas model [127], the generalized superfluid

model [128, 129], the microscopic level densities from Goriely’s tables calculated with a

Skyrme force [130], the microscopic level densities from Hilaires’s table calculated with a

Skyrme force [131], and the microscopic level density from Hilaire’s table calculated with the

Gogny interaction [147].

In TALYS, the γ-ray strength function for all transition types besides E1 are calculated

with the Brink-Axel Lorentzian [148, 149]. However for the dominant E1 transitions, five dif-

ferent models can be used. These models are: the Kopecky-Uhl generalized Lorentzian [150],

the Brink-Axel Lorentzian [148, 149], the microscopic option calculated from the Hartree-

Fock BCS model [143], the microscopic option calculated from the Hartree-Fock-Bogolyubov
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model [143], and Goriely’s hybrid model [151, 152].

In total, 300 TALYS calculations were performed for each reaction in an attempt to de-

termine which combination of parameters best describes the data. In addition to the TALYS

calculations, the cross section data was also compared to Hauser-Feshbach calculations from

the NON-SMOKER code obtained through the NON-SMOKER web interface [120, 153].

Since the NON-SMOKER reaction rates are used in the REACLIB database [11], they are

the reaction rates that are often used in astrophysical calculations.

10.4.1 90Zr(α,γ)94Mo

A plot of the 90Zr(α,γ)94Mo reaction cross sections as a function of center of mass energy is

shown in Fig. 10.5. The relevant Gamow window is from 4.2 to 9.6 MeV for p-process tem-

peratures of 1.8−3.3 GK [154]. Therefore, the data reaches the higher energies of the astro-

physically relevant region and extrapolation is required for the lower energies. In addition to

the data points, the result of four different theoretical calculations are shown. The upper and

lower lines correspond to maximum and minimum of the TALYS calculations in this energy

region, which represent the total theoretical uncertainty of up to a factor of 35. The upper

TALYS limit was calculated using the JLM OMP [122], the first Demetriou α potential [146],

the nuclear level density from Hilaire’s tables calculated with a Skyrme force [131], and the

Brink-Axel Lorentzian γ-ray strength function [148, 149]. On the other hand, the minimum

TALYS limit was calculated using the KD OMP [144], the third Demetriou α potential [146],

the nuclear level density from the constant temperature plus Fermi gas model [125, 126], and

the Kopecky-Uhl generalized Lorentzian γ-ray strength function [150]. The data presented

here significantly reduces the uncertainty in the 90Zr(α,γ)94Mo reaction cross section.

Also plotted in Fig. 10.5 is the NON-SMOKER theoretical cross section. In the en-
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Figure 10.5: Experimental cross sections for the 90Zr(α,γ)94Mo reaction compared to TALYS
1.6 and NON-SMOKER calculations. The three TALYS curves correspond to the upper
limit, lower limit, and best-fit calculations (see text for details).

ergy region plotted, the NON-SMOKER calculation overestimates the 90Zr(α,γ)94Mo cross

section by a factor of 1.6 − 2.3, with a larger discrepancy at the lower energies. Because

NON-SMOKER calculations are used in the REACLIB database, it can be concluded that

the standard REACLIB reaction rate for the 90Zr(α,γ)94Mo reaction is too high as well. In

order to extract a new reaction rate, the TALYS calculation that most accurately described

the data was used. In this case, the best fit was achieved with the JLM OMP [122], the

second Demetriou α potential [146], the microscopic level densities from Hilaire’s tables cal-

culated with the Gogny force [147], and the microscopic γ-ray strength function from the

Hartree-Fock BCS model [143]. The calculated reaction rates are listed in Table 10.4. As

expected, these new rates are lower than the REACLIB rate by approximately a factor of

1.9− 2.2 for p-process temperatures.

In order to investigate whether the reduction in the 90Zr(α,γ)94Mo reaction rate has

169



Table 10.4: Reaction rates for the 90Zr(α,γ)94Mo reaction.

T Rate T Rate

(GK) (cm3 mol−1 s−1) (GK) (cm3 mol−1 s−1)

0.4 6.385 × 10−42 3.0 2.577 × 10−7

0.5 2.962 × 10−36 3.5 8.368 × 10−6

0.6 2.955 × 10−32 4.0 1.235 × 10−4

0.7 3.762 × 10−29 5.0 5.527 × 10−3

0.8 1.374 × 10−26 6.0 5.880 × 10−2

0.9 2.189 × 10−24 7.0 2.429 × 10−1

1.0 1.867 × 10−22 8.0 6.254 × 10−1

1.5 8.485 × 10−16 9.0 1.359 × 100

2.0 5.908 × 10−12 10.0 2.760 × 100

2.5 2.662 × 10−9

an impact on the 94Mo branching point in the p process, it is necessary to compare the

inverse 94Mo(γ,α)90Zr reaction rate to the 94Mo(γ,n)93Mo rate. The reaction rates for both

reactions were taken from the REACLIB database [11] and the 94Mo(γ,α)90Zr rate reduced

by a factor of 2 as indicated by the experimental results here. Even with this reduction,

the rate of photodissociating 94Mo through the (γ,α) channel is still larger than the (γ,n)

channel for temperatures below 2.5 GK. Therefore, 94Mo appears to be the branching point

in the molybdenum isotopic chain. However, this could change if a future measurement of the

93Mo(n,γ)94Mo reaction indicates that the rate is much higher than the current theoretical

predictions.

10.4.2 92Zr(α,γ)96Mo

The cross sections of the 92Zr(α,γ)96Mo reaction are plotted in Fig. 10.6. The Gamow

window is from 4.2 to 9.6 MeV for p-process temperatures [154], so the data reaches to

just above the astrophysically relevant region. Also plotted in Fig. 10.6 are the results
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Figure 10.6: Experimental cross sections for the 92Zr(α,γ)96Mo reaction compared to TALYS
1.6 and NON-SMOKER calculations. The three TALYS curves correspond to the upper
limit, lower limit, and best-fit calculations (see text for details).

from theoretical calculations with the TALYS and NON-SMOKER codes. In the energy

region plotted, NON-SMOKER describes the energy dependence of the cross section well,

but overestimates the values by a factor of 1.5− 1.7.

The three TALYS calculations that are plotted represent the upper limit, lower limit,

and best description of the experimental results. The large spread between the maximum

and minimum TALYS calculations show the total theoretical uncertainty of a factor of 6 at

the highest energies and a factor of 29 at the lowest energies plotted. To achieve the upper

limit, TALYS calculations were performed with the JLM OMP [122], the first Demetriou α

potential [146], the nuclear level density from Hilaire’s tables calculated with a Skyrme

force [131], and the Brink-Axel Lorentzian γ-ray strength function [148, 149]. On the

other hand, the lower TALYS limit was calculated using the KD OMP [144], the second

Demetriou α potential [146], the nuclear level density from the constant temperature plus
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Fermi gas model [125, 126], and the Kopecky-Uhl generalized Lorentzian γ-ray strength func-

tion [150]. The experimental data greatly reduces the uncertainty in the cross section of the

92Zr(α,γ)96Mo reaction to approximately 20%. Lastly, the TALYS calculation which most

accurately describes the data was performed with the JLM OMP [122], the first Demetriou

α potential [146], the generalized superfluid level density model [128, 129], and Goriely’s

hybrid γ-ray strength function [151].

10.4.3 74Ge(α,γ)78Se

A plot of the 74Ge(α,γ)78Se cross section results compared to the TALYS and NON-SMOKER

theoretical calculations is shown in Fig. 10.7. As in the case of the 90,92Zr(α,γ)94,96Mo re-

actions, the experimental data is lower than the NON-SMOKER calculations. Here, NON-

SMOKER is a factor of 1.6−2.3 larger. The Gamow window for the 74Ge(α,γ)78Se reaction

is 3.5 − 8.4 MeV [154] for p-process temperatures, so the data reaches to just above the

astrophysically relevant region.

The upper TALYS limit corresponds to calculations with the JLM OMP [122], the default

α potential [143], the nuclear level density from Hilaire’s tables calculated with a Skyrme

force [131], and the Brink-Axel Lorentzian γ-ray strength function [148, 149]. The lower

TALYS limit corresponds to calculations with the KD OMP [144], the second Demetriou

α potential [146], the nuclear level density from Hilaire’s tables calculated with the Gogny

force [147], and the Kopecky-Uhl generalized Lorentzian γ-ray strength function [150]. The

total theoretical uncertainty between the upper and lower bounds is a factor of 11 at the

higher energies and a factor of 21 at the lower energies plotted. The experimental uncertainty

of 16− 23% greatly constrains the cross section values in this energy region.

The experimental data was compared to the 300 TALYS calculations to determine what
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Figure 10.7: Experimental cross sections for the 74Ge(α,γ)78Se reaction compared to TALYS
1.6 and NON-SMOKER calculations. The three TALYS curves correspond to the upper
limit, lower limit, and best-fit calculations (see text for details).

combination of input parameters provided the best match. The best fit to the data was

achieved with TALYS calculations performed with the KD OMP [144], the default α poten-

tial [143], the nuclear level densities from Goriely’s tables [130], and the microscopic γ-ray

strength function calculated from the Hartree-Fock-Bogolyubov model [143].

10.5 Conclusions

In an effort to expand the very limited quantity of existing experimental data for (α,γ) reac-

tions relevant in the astrophysical p process, the first ever measurements of the 90Zr(α,γ)94Mo,

92Zr(α,γ)96Mo, and 74Ge(α,γ)78Se reaction cross sections were performed by implementing

the γ-summing technique with the SuN detector at the University of Notre Dame. The

measurements greatly reduce the uncertainty of the cross section values between energies of

Eα = 9.5−12.0 MeV from a theoretical uncertainty of larger than a factor of 10 to an exper-
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imental uncertainty of approximately 20%. The nuclear reaction code TALYS was used to

calculate theoretical cross sections to determine which input parameters provided the most

accurate description of the data. The results of the 90Zr(α,γ)94Mo reaction seem to confirm

that 94Mo is a branching point in the p process.
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Chapter 11

Measurements in Inverse Kinematics

In this chapter, an alternative method to measure (p,γ) and (α,γ) reactions in inverse kine-

matics by utilizing the γ-summing technique is presented. The aim of this new experimental

technique is to measure reaction cross sections at or near astrophysically relevant energies

involving nuclei that cannot be studied in regular kinematics. The data obtained with this

method, especially for reactions on radioactive nuclei, can help advance the field of nuclear as-

trophysics by expanding the nuclear physics input used in astrophysical models, particularly

models of the p process. The feasibility of the γ-summing technique in inverse kinematics

was demonstrated through the measurement of well-known resonances in the p(27Al,γ)28Si

and p(58Ni,γ)59Cu reactions.

The experiments in inverse kinematics were performed at the University of Notre Dame

using beams of 27Al5+ and 58Ni10+ with intensities of 2 − 5 × 1010 pps. The beam en-

ergies were changed in small energy steps in order to scan well-known resonances in the

p(27Al,γ)28Si and p(58Ni,γ)59Cu reactions. The target used during the measurements was

a titanium hydride foil produced at Argonne National Laboratory using the method of

Ref. [155]. The characterization of the target using RBS and ERD methods is described

in detail in Sec. 4.2.2.4. The total measured thickness of the titanium hydride foil was

232(14) µg/cm2 with 3.58(36)× 1018 cm−2 hydrogen nuclei.
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Using the SuN detector, the yield of each experimental run was determined as

Y =
NΣ

NbεΣ
(11.1)

where NΣ is the number of counts in the sum peak, Nb is the number of beam particles,

and εΣ is the γ-summing efficiency. Because the measurements were performed in inverse

kinematics, the recoil velocity caused the γ rays to be emitted in-flight and led to an energy

broadening of the sum peak. Doppler corrections were applied using the segmentation of

SuN and Eq. 4.4. After applying the Doppler corrections, the standard analysis procedures

of this thesis were followed. Specifically, a Gaussian fitting function was used to define a

sum-peak region of 3σ below to 3σ above the sum peak centroid, and then NΣ was taken as

the number of counts above a linear background in the sum-peak region and εΣ was taken

based on the hit pattern analysis of the sum peak region.

A resonance yield curve was created for each reaction by changing the beam energies in

small increments and determining the yield at each energy. By determining the integral under

the resonance yield curve, the resonance strength can be determined from (see Sec. 3.1.2)

AY = nH
λ2r
2
ωγ . (11.2)

Here AY is the integral under the resonance yield curve, nH is the number of hydrogen nuclei

in the target per unit area, λr is the center-of-mass de Broglie wavelength of the resonance,

and ωγ is the resonance strength.

The first reaction measured was the p(27Al,γ)28Si reaction (Q = 11585 keV) at the

resonance energy of Ec.m. = 956 keV. A typical example of the Doppler corrected γ-summed
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Figure 11.1: Doppler corrected γ-summed spectra for the p(27Al,γ)28Si reaction plotted with
the normalized room background. The inset shows a zoomed in view of the sum peak at
EΣ = 12541 keV. Additionally, the improvement due to applying the Doppler correction is
demonstrated and the excellent agreement with GEANT4 simulations is shown.

spectrum is shown in Fig. 11.1. The sum peak at EΣ = 12541 keV is clearly visible above the

normalized room background. Additional peaks in the spectrum at 1461 keV and 2614 keV

come from the room background decay of 40K and the decay series of 232Th, respectively.

The inset of the figure is a comparison of the sum peak with and without Doppler corrections

with the room background subtracted. By correcting for the velocity of the 28Si recoil, the

resolution of the sum peak is significantly improved. The inset of the figure also contains the

result of GEANT4 simulations based on the known decay scheme of the resonance. Excellent

agreement between the experimental data and simulation is obtained. For this p(27Al,γ)28Si

resonance, the summing efficiency was determined to be approximately 31(2)%.

The resonance yield curve from the p(27Al,γ)28Si reaction is displayed in Fig. 11.2. In

this plot, the experimental data is compared to estimated contributions from known reso-
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Figure 11.2: Yield curve for the p(27Al,γ)28Si reaction with the experimental data shown in
solid circles. The spectrum is dominated by the Ec.m. = 956 keV resonance, with other large
contributions from the Ec.m. = 988 keV and Ec.m. = 1078 keV resonances. In this energy
region there are additional contributions from the Ec.m. = 856, 890, 904, 966, 1051, and 1058
keV resonances [15]. The solid line shows the total yield from all resonances.

nances [15]. Due to the thickness of the target, many resonances can contribute at a given

beam energy. The yield in this energy region is dominated by the Ec.m. = 956 keV reso-

nance that was completely mapped out in this experiment. The integral underneath this

resonance was determined by fitting the height and width on the resonance yield curve. The

uncertainty in the integral of approximately 5% was calculated from the uncertainty in the

fit. Using Eq. 11.2, the resulting resonance strength was determined to be ωγ = 2.05(23) eV.

A comparison between the present work and values in literature is shown in Table 11.1.

The Ec.m. = 956 keV resonance of the p(27Al,γ)28Si reaction has been measured many times

previously. Compilations and evaluations of earlier work by Endt [15] and Angulo et al. [5]

provide adopted values of ωγ = 2.00(17) eV and 1.90(10) eV, respectively. In addition,
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Table 11.1: Resonance strength measurements

Reaction Ec.m. Present work Other values
(keV) ωγ (eV) ωγ (eV) Ref.

27Al(p,γ)28Si 956 2.05 ± 0.23 1.93 ± 0.16 [15]a

1.90 ± 0.10 [5]
1.94 ± 0.07 [156]
2.00 ± 0.15 [157]

58Ni(p,γ)59Cu 1400 0.58 ± 0.07 0.61 [16]a

0.62 ± 0.10 [158]a

0.687 ± 0.096 [90]

a converted to center of mass frame for comparison

the resonance was measured more recently by Chronidou et al. [156] and Harissopulos et

al. [157] using 4π NaI detectors in regular kinematics finding values of ωγ = 1.94(7) eV and

2.00(15) eV, respectively. The present value of ωγ = 2.05(23) eV agrees well with all values.

The second measurement was of the Ec.m. = 1400 keV resonance in the p(58Ni,γ)59Cu

reaction. A Doppler corrected γ-summed spectrum is shown in Fig. 11.3. This reaction

has Q = 3419keV which leads to the sum peak found at EΣ = 4819 keV. A zoomed in

view of the sum peak is shown in the inset of the figure. The inset also demonstrates the

improvement in sum-peak resolution after the Doppler corrections were applied, and shows

the excellent agreement between experimental data and GEANT4 simulations. A summing

efficiency of approximately 44(3)% was calculated for each energy and the yield determined

with Eq. 11.1. The resulting experimental resonance yield curve is shown in Fig. 11.4 along

with estimated contributions from known resonances in this energy region [16]. By fitting

the height and width of the Ec.m. = 1400 keV resonance in the yield plot, the integral

underneath the resonance was determined and the resonance strength was calculated using

Eq. 11.2 to be ωγ = 0.58(7) eV.
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Figure 11.3: Doppler corrected γ-summed spectra for the p(58Ni,γ)59Cu reaction with a
comparison to the normalized room background. The inset shows a zoomed in view of the
sum peak at EΣ = 4819 keV as well as the summed spectrum without Doppler corrections.
An excellent agreement with GEANT4 simulation is also observed.
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Figure 11.4: Yield curve for the p(58Ni,γ)59Cu reaction. The spectrum is dominated by the
Ec.m. = 1400 keV resonance, with an additional large contribution from the Ec.m. = 1352
keV resonance. In this energy region there are additional contributions from the Ec.m. = 1496
and 1514 keV resonances [16]. The solid line shows the total yield from all resonances.
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The resonance strength of the Ec.m. = 1400 keV resonance of the p(58Ni,γ)59Cu reaction

was published three times previously and the results are shown in Table 11.1. Carver and

Jones [16] used the work of Butler and Gossett [159] to deduce ωγ = 0.62 eV, although no

uncertainty was given. The measurement by Tingwell et al. [158] reported a nearly identical

value of ωγ = 0.63(10) eV. More recently Simon et al. [90] measured the resonance in inverse

kinematics with the DRAGON recoil separator and determined ωγ = 0.687(96) eV. Overall,

there is excellent agreement between the measurements of this thesis and the previous values

since the present results are consistent with all literature values within the experimental

uncertainty.

In summary, the first ever measurements utilizing the γ-summing technique in inverse

kinematics were performed using the SuN detector at the University of Notre Dame. As a

proof of principle, well-known resonances in the p(27Al,γ)28Si and p(58Ni,γ)59Cu reactions

were measured with 27Al and 58Ni beams impinging onto a titanium hydride target. The

deduced resonance strengths are in excellent agreement with previous values, illustrating

the feasibility of the technique. The new method expands the experimental possibilities

for measuring (p,γ) and (α,γ) reactions to additional nuclei, such as radioactive isotopes

and stable isotopes that exist in a liquid or gas state. Future measurements with the γ-

summing technique in inverse kinematics will contribute to an improved understanding of

stellar nucleosynthesis.
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Chapter 12

Summary and Outlook

Throughout history, humankind has searched for an explanation of the origin the world and

of ourselves. Today we are closer to a full understanding than ever before. We know that

our complex world is made up of less than 100 elements whose abundances in the universe

are evolving due to various nucleosynthesis processes. Hydrogen and the majority of helium

were produced immediately after the Big Bang, and the heavier elements are continually

synthesized in various stellar environments. The bulk of isotopes beyond iron are synthesized

via two neutron capture processes, although there is a group of 35 stable neutron-deficient

p nuclei which must be produced by an alternative “p-process” nucleosynthesis scenario.

Overall, the synthesis of the p nuclei remains a major open question in the field of nuclear

astrophysics, with current state of the art p-process models failing to reproduce the observed

solar abundance pattern.

The most studied scenario of synthesizing the p nuclei is from existing seed nuclei in the

O/Ne layers of a type II supernovae, but this environment suffers from large uncertainties

in the nuclear physics (in addition to the astrophysical uncertainties). A severe lack of

experimental data means that models of this p-process scenario rely heavily on theoretical

reaction rates and their corresponding large uncertainties. To reduce these nuclear physics

uncertainties it is crucial to expand and develop new experimental techniques to measure the

relevant reactions. It is especially important to develop experimental capabilities in inverse

kinematics which allow for the investigation of reactions involving radioactive nuclei which
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currently have the largest uncertainties of all.

To this end, this dissertation focused on the development of a new experimental program

at the National Superconducting Cyclotron Laboratory (NSCL) to measure proton and α

radiative capture reactions which are relevant for the astrophysical p process. To detect the

radiation released in these reactions, a new γ-ray detector was designed which combines a

large active volume and a nearly 4π angular coverage for the ideal implementation of the

γ-summing technique. The Summing NaI (SuN) detector also was designed to include eight

segments to allow for the Doppler reconstruction of γ-ray energy when performing measure-

ments in inverse kinematics. After SuN’s arrival to the NSCL, a digital data acquisition

system was installed and testing and optimization was performed using standard radioactive

γ-ray sources.

All (p,γ) and (α,γ) reaction measurements in this dissertation were performed at the

University of Notre Dame using the FN Tandem Van de Graaff accelerator. Two of the

targets had to be produced through evaporation, and all of the targets had their thicknesses

measured with the RBS technique. The commissioning of the SuN detector was performed

by measuring 11 known resonances in the 27Al(p,γ)28Si reaction. The measured resonance

strengths were in good agreement with previously published values, demonstrating the valid-

ity of the experimental techniques and the analysis procedures. A new method of extracting

the γ-summing efficiency was developed, which makes use of the segmentation of the SuN

detector and requires comparison to a well-tested GEANT4 simulation.

Four reactions were measured to investigate the region of the light p nuclei, namely

the 74Ge(p,γ)75As, 90Zr(α,γ)94Mo, 92Zr(α,γ)96Mo, and 74Ge(α,γ)78Se reactions. The mea-

sured cross sections were compared to theoretical calculations using the TALYS and NON-

SMOKER nuclear reaction codes, and the TALYS parameters that most accurately described
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the data were determined. New reaction rates were extracted for the 74Ge(p,γ)75As reaction

which were approximately 20% higher than the standard REACLIB rates for p-process tem-

peratures. The increase in reaction rates was found to enhance the production of 74Se in the

p process by 17% when performing calculations with a reaction network of a type II super-

nova. Additionally, the nuclear physics uncertainty in the production of 74Se was reduced

from 63% to 5% with the new measurements here. In the case of the 90Zr(α,γ)94Mo reaction,

the new reaction rates were lower than the standard REACLIB rates by approximately a

factor of 2 for p-process temperatures. Even with the reduction in reaction rate, the inverse

94Mo(γ,α)90Zr reaction was found to have a higher rate than the 94Mo(γ,n)93Mo reaction

for temperatures below 2.5 GK, which tentatively confirms that 94Mo is the branching point

in the p process for the molybdenum isotopic chain. The results of the 92Zr(α,γ)96Mo and

74Ge(α,γ)78Se reactions greatly reduces the uncertainty in the reaction cross sections from

larger than a factor of 10 to an uncertainty of less than 20%. These measurements expand

the experimental database for (α,γ) reactions relevant for the p process, and can be used to

place contsraints on the nuclear reaction theory.

The 58Ni(α,γ)62Zn reaction was measured for its role in the nucleosynthesis in the in-

nermost layers of type Ia supernovae, in which α-rich freeze-out from nuclear statistical

equilibrium is expected to occur. The measurements were approximately a factor of 2 be-

low the default calculations of the SMARAGD code, but good agreement to the data was

achieved by multiplying the α width by a factor of 0.45. The new reaction rates were found

to have up to a 5% effect on the ejected abundances of several isotopes, including 64Zn and

62Ni.

The last measurements of this dissertation, the p(27Al,γ)28Si and p(58Ni,γ)59Cu reac-

tions, were performed in inverse kinematics with 27Al and 58Ni beams impinging onto a
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titanium hydride target. Well-known resonances in both reactions were measured, and the

deduced resonance strengths were found to be in excellent agreement with previous litera-

ture values. The success of these measurements served as a proof of principle of using the

γ-summing technique in inverse kinematics. This opens the door to studying (p,γ) and (α,γ)

reactions on radioactive nuclei and other nuclei which are difficult to make targets out of.

Looking ahead, this dissertation is just the beginning of what should be a bright future

of measuring (p,γ) and (α,γ) reactions with the SuN detector and the γ-summing technique.

In the time since the initial measurements were performed with the SuN detector at the

University of Notre Dame, the reaccelerator facility (ReA3) at the NSCL has been completed

and commissioned. The ReA3 facility is just starting to provide radioactive beams with the

intensities necessary to successfully perform cross section measurements. Combining the

SuN detector with ReA3 beams will allow for the measurement of (p,γ) and (α,γ) reactions

on radioactive nuclei at astrophysical energies which were previously not possible. These

future experiments will be the pioneering experiments involving radioactive nuclei in the p

process, and it will be fascinating to see what the findings will be and the impact that these

findings will have on our understanding of the nucleosynthesis of the p nuclei.

Before performing experiments with the SuN detector and ReA3, however, the current

experimental setup should be updated to increase the measurement sensitivity. The increase

in sensitivity is necessary due to the fact that the best-case radioactive beam intensities

provided by ReA3 facility are expected to be at least 3 orders of magnitude below the

beam intensities utilized at the University of Notre Dame. The lower beam intensities

will contribute to a significant decrease in the experimental count rate. To counteract this

reduction, it is possible to increase the number of target nuclei by moving towards a gas

cell. For example, a hydrogen gas cell with a pressure of 1 atm would have proton thickness
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larger than 10 times that of the titanium hydride foils used in this dissertation.

In addition, most of the background in the total γ-summed spectrum in the region of the

sum peak comes from cosmic rays depositing their energy in the SuN detector. An increase

in the sum-peak signal can be achieved if this cosmic-ray background is somehow reduced.

One solution is to develop an active volume to surround the SuN detector and detect cosmic

rays so that their contribution is removed from SuN’s spectra. Therefore, SuN’s Scintillating

Cosmic Ray Eliminating Ensemble (SuNSCREEN) was recently developed in collaboration

with Hope College. SuNSCREEN consists of 9 plastic scintillator bars arranged in a roof-like

configuration above SuN. It was shown that a reduction of the cosmic-ray background by up

to a factor of 2 in SuN’s total γ-summed spectrum was achieved when using SuNSCREEN.

An additional way to reduce the cosmic-ray background is to remove events in the data

when the beam is not impinging onto the target. The ReA3 facility has the capability to

provide bunched radioactive beams so that there are regular time intervals of no particles

impinging on the target followed by a short burst of beam. By selecting only the small time

intervals when the (p,γ) and (α,γ) reactions of interest might be occurring, the cosmic-ray

background can be significantly reduced. It is recommended that the initial measurements

with the SuN detector and ReA3 should start with the most sensible candidates to check the

sensitivity of the experimental setup before moving onto even challenging measurements.

The best candidates are reactions where the theoretical models predict a relatively large

reaction cross section, as well as reactions with large Q-values that produce sum peaks at

high energies where the background is reduced.
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Appendix A

Energy Filter Algorithm

This appendix contains the algorithm that NSCL DDAS implements to extract the energy of

a pulse. This algorithm was introduced in Ref. [8] and it takes into account the exponential

decay of the signal. Its implementation was not part of this thesis, but it may be useful for

future experimenters who want to understand how the energy spectrum of the SuN detector

is obtained. Also, Ref. [8] does not include the value of all the coefficients needed.

First of all, Fig. A.1 shows a typical digitized pulse from the SuN detector. Both the

signal and its baseline are drawn. As discussed in Sec. 5.3.2, NSCL DDAS implements digital

trapezoidal filter algorithms, which make use of a user-defined “peaking” time and “gap”

time. In the figure, SuN’s energy filter peaking time of 600ns is equal to L0 and L1, and

SuN’s energy filter gap time of 200ns is equal to LG. For each digitized point, the following

sum is first calculated:

Filter Sum = a0 (S0 − B0) + aG (SG − BG) + a1 (S1 − B1) (A.1)

where Si is the integral of the signal in region i and Bi is the integral of the baseline in

region i. This sum is straightforward to calculate with the only complication coming from

the value of the coefficients. The coefficients depend on the decay constant τ of the signal
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Figure A.1: A digitized signal from the SuN detector plotted along with its baseline. The
lengths of the peaking time (L0 and L1) and gap time (LG) are also drawn.

and the length Li of each region. Their values are

a0 =
exp (−2L0/τ)

exp (−2L0/τ)− 1
aG = 1 a1 =

1

exp (−2L1/τ)− 1
. (A.2)

It should be mentioned that these coefficients are for an NSCL DDAS energy filter range of

1, and the value of the exponentials change slightly for energy filter ranges larger than 1.

After calculating the sum, the value is multiplied by a factor that depends on the decay

constant τ . This factor is equal to

1

1− exp (−1/τ)
. (A.3)

A plot of the tau corrected energy filter using algorithm described here is plotted in Fig. A.2

compared to the uncorrected energy filter. It is shown that by using the coefficients in

Eq. A.2, the energy filter successfully accounts for the exponential decay of the signal and
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Figure A.2: The response of SuN’s tau-corrected energy filter compared to the uncorrected
energy filter. By correcting for the exponential decay of the signal, the tau-corrected energy
filter does not take on any negative values.

therefore does not take on negative values. The only additional step that NSCL DDAS takes

is to multiply the result by a normalization factor to ensure that the extracted energy falls

within the desired channel range of 0 to approximately 32000.
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Appendix B

GEANT4 Detector Construction

Below is the code used to build the SuN detector in GEANT4:

/////////////////////////////////////////////////////////////////////////////////////

// Author: Steve Quinn //

// //

// Description: This is the file where you build the detector. For now it consits //

// of the experimental setup for the SuN detector, but it can be modified by //

// following the syntax to build and place new materials. There is also many //

// useful examples online. //

// //

// Steps: 1. Define the elements that you need //

// 2. Use these elements to define the materials for the experimental setup //

// 3. Create an experimental room of air, vacuum, etc. //

// 4. Create your experimental setup and place it in the experimental room //

// 5. Apply the color scheme you want for the optional visualization //

// //

// Important: The way the code is currently set up, you are required to fill the //

// array called detectorName[i] with the name of the detectors you want to save //

// in your ROOT file. In this example the names are "T1", "B1", etc. //

// (see syntax below). //

/////////////////////////////////////////////////////////////////////////////////////

#include "DetectorConstruction.hh"

#include "G4SDManager.hh"

#include "G4Element.hh"

#include "G4Material.hh"

#include "G4Box.hh"

#include "G4Tubs.hh"

#include "G4Cons.hh"

#include "G4Trd.hh"

#include "G4LogicalVolume.hh"

#include "G4ThreeVector.hh"

#include "G4PVPlacement.hh"

#include "G4SubtractionSolid.hh"

#include "G4UnitsTable.hh"

#include "globals.hh"

#include "G4VisAttributes.hh"

#include "G4Colour.hh"

#include <iostream>

#include <sstream>

#include "G4String.hh"

#include "G4ios.hh"

#include <stdio.h>
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DetectorConstruction::DetectorConstruction()

: NaI(0), Al(0), N78O21Ar1(0), Cr20Ni8Fe76(0), C2F4(0), C5O2H8(0)

{}

DetectorConstruction::~DetectorConstruction()

{}

G4VPhysicalVolume* DetectorConstruction::Construct()

{ DefineMaterials();

return ConstructDetector();

}

void DetectorConstruction::DefineMaterials()

{

// define Parameters

G4String name, symbol;

G4double a, z, density;

G4int ncomponents, natoms;

// define Elements

a = 22.99*g/mole;

G4Element* Na = new G4Element(name="Sodium" ,symbol="Na" , z= 11., a);

a = 126.90*g/mole;

G4Element* I = new G4Element(name="Iodine" ,symbol="I" , z= 53., a);

a = 204.38*g/mole;

G4Element* Tl = new G4Element(name="Thalium" ,symbol="Tl" , z= 81., a);

a = 26.982*g/mole;

G4Element* elAl = new G4Element(name="element_Aluminum",symbol="elAl",

z= 13., a);

a = 14.00*g/mole;

G4Element* N = new G4Element(name="Nitrogen",symbol="N" , z= 7., a);

a = 16.00*g/mole;

G4Element* O = new G4Element(name="Oxygen",symbol="O" , z= 8., a);

a = 39.95*g/mole;

G4Element* Ar = new G4Element(name="Argon",symbol="Ar" , z= 18., a);

a = 51.996*g/mole;

G4Element* Cr = new G4Element(name="Chromium" ,symbol="Cr" , z= 24., a);

a = 58.69*g/mole;

G4Element* Ni = new G4Element(name="Nickel" ,symbol="Ni" , z= 28., a);

a = 55.847*g/mole;

G4Element* Fe = new G4Element(name="Iron" ,symbol="Fe" , z= 26., a);

a = 12.011*g/mole;

G4Element* C = new G4Element(name="Carbon" ,symbol="C" , z= 6., a);
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a = 18.998*g/mole;

G4Element* F = new G4Element(name="Fluorine" ,symbol="F" , z= 9., a);

a = 1.008*g/mole;

G4Element* H = new G4Element(name="Hydrogen" ,symbol="H" , z= 1., a);

// define Materials

//..........Stainless Steel..........

density = 8.0*g/cm3;

Cr20Ni8Fe76 = new G4Material(name="Stainless_Steel", density, ncomponents=3);

Cr20Ni8Fe76->AddElement(Cr, natoms=20);

Cr20Ni8Fe76->AddElement(Fe, natoms=76);

Cr20Ni8Fe76->AddElement(Ni, natoms=8);

//..........Polytetrafluorine (PTFE)............

density = 2.20*g/cm3;

C2F4 = new G4Material(name="PTFE", density, ncomponents=2);

C2F4->AddElement(C, natoms=2);

C2F4->AddElement(F, natoms=4);

//..........NaI......................

density = 3.67*g/cm3;

NaI = new G4Material(name="Sodium Iodine", density, ncomponents=3);

NaI->AddElement(Na, natoms=1000);

NaI->AddElement(I, natoms=1000);

NaI->AddElement(Tl, natoms=1);

//..........Al.......................

density = 2.698*g/cm3;

Al = new G4Material (name="Aluminum", density, ncomponents=1);

Al->AddElement(elAl, natoms=1);

//..........Air.....................

density = 1.2927*mg/cm3;

N78O21Ar1 = new G4Material (name="Air", density, ncomponents=3);

N78O21Ar1->AddElement(N, natoms=78);

N78O21Ar1->AddElement(O, natoms=21);

N78O21Ar1->AddElement(Ar, natoms=1);

//..........Acrylic.....................

density = 1.18*g/cm3;

C5O2H8 = new G4Material (name="Acrylic", density, ncomponents=3);

C5O2H8->AddElement(C, natoms=5);

C5O2H8->AddElement(O, natoms=2);

C5O2H8->AddElement(H, natoms=8);

// Print out Elements and Materials

G4cout << "\n\n ####----------------------------------------------------#### \n";

G4cout << "\n\n\n\n\t\t #### List of elements used #### \n";

G4cout << *(G4Element::GetElementTable());

G4cout << "\n\n\n\n\t\t #### List of materials used #### \n";

G4cout << *(G4Material::GetMaterialTable());

}
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G4VPhysicalVolume* DetectorConstruction::ConstructDetector()

{

// EXPERIMENTAL ROOM

G4Tubs* room_tube = new G4Tubs("room",0.0*cm,100.0*cm,300.0*cm,0.0*deg,360.0*deg);

G4LogicalVolume* room_log = new G4LogicalVolume(room_tube,N78O21Ar1,"room",0,0,0);

G4VPhysicalVolume* room_phys = new G4PVPlacement(0,G4ThreeVector(0.0*cm,0.0*cm,

0.0*cm),"room",room_log,NULL,false,0);

// BEAM PIPE

G4double outerR_beam = 19.0*mm; //radius of the beam pipe

G4double innerR_beam = outerR_beam - 1.5*mm; //thickness of the beam pipe

G4double halflength_beam = 720.0*mm; //length of the beam pipe

G4double startAngle_beam = 0.*deg;

G4double spanAngle_beam = 360.*deg;

G4Tubs* beam_tube = new G4Tubs("beam_tube",innerR_beam,outerR_beam,halflength_beam,

startAngle_beam, spanAngle_beam);

G4LogicalVolume* beam_log = new G4LogicalVolume(beam_tube,Cr20Ni8Fe76,"beam_log",

0,0,0);

G4VPhysicalVolume* beam_phys = new G4PVPlacement(0,

G4ThreeVector(0.0*mm,0.0*mm,100.0*mm),beam_log,"beam_phys",room_log,false,0);

// DIMENSIONS OF SuN **(changing these will scale the whole simulation)**

G4double innerR_scint = 22.5*mm; // 45mm borehole

G4double outerR_scint = 203.0*mm; // total of 406mm in diameter

G4double length_scint = 101.5*mm; // total of 406mm in length

G4double width_Refl = 0.25*mm; // width of reflector

G4double width_Al_vert = 0.50*mm; // width of Al between each segment

G4double width_Al_horiz = 0.75*mm; // width of Al between top and bot

G4double innerR_Al = 21.5*mm; // 43mm in center

G4double outerR_Al = 222.5*mm; // thick outer casing

// NaI SCINTILLATOR

G4double halflength_scint = 0.5*length_scint;

G4double startAngle_scint = 0.0*deg;

G4double spanAngle_scint = 180.0*deg;

G4Tubs* scint_tube = new G4Tubs("scint_tube",innerR_scint,outerR_scint,

halflength_scint,startAngle_scint,spanAngle_scint);

G4LogicalVolume* scint_log = new G4LogicalVolume(scint_tube,NaI,"scint_log",0,0,0);

// REFLECTOR

G4double innerR_Refl = innerR_scint - width_Refl;

G4double outerR_Refl = outerR_scint + 2.0*width_Refl;

G4double length_Refl = length_scint + 2.0*width_Refl;

G4double halflength_Refl = 0.5*length_Refl;

G4Tubs* refl_tube = new G4Tubs("refl_tube",innerR_Refl,outerR_Refl,

halflength_Refl,startAngle_scint,spanAngle_scint);

G4SubtractionSolid* refl_sub = new G4SubtractionSolid("refl_sub",refl_tube,

scint_tube,0,G4ThreeVector(0.0*mm,width_Refl,0.0*mm));

G4LogicalVolume* refl_log = new G4LogicalVolume(refl_sub,C2F4,"refl_log",0,0,0);
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// ALUMINUM

G4double length_Al = length_Refl + width_Al_vert;

G4double halflength_Al = 0.5*length_Al;

G4Tubs* al_tube = new G4Tubs("al_tube",innerR_Al,outerR_Al,halflength_Al,

startAngle_scint,spanAngle_scint);

G4SubtractionSolid* al_sub = new G4SubtractionSolid("al_sub",al_tube,refl_tube,0,

G4ThreeVector(0.0*mm,width_Al_horiz,0.0*mm));

G4LogicalVolume* al_log = new G4LogicalVolume(al_sub,Al,"al_log",0,0,0);

G4double length_Al_side = 13.0*mm;

G4double halflength_Al_side = 0.5*length_Al_side;

G4Tubs* al_tube_side = new G4Tubs("al_tube_side",innerR_Al,outerR_Al,

halflength_Al_side,0.0*deg,360.0*deg);

G4LogicalVolume* al_log_side = new G4LogicalVolume(al_tube_side,Al,

"al_log_side",0,0,0);

// ====================== Placing the volumes ==============================//

G4RotationMatrix* rot_180 = new G4RotationMatrix();

rot_180->rotateZ(180*deg);

G4double Pos_x = 0.0*mm;

G4double Pos_y_Al = 0.0*mm;

G4double Pos_y_Refl = width_Al_horiz;

G4double Pos_y_Scint = Pos_y_Refl + width_Refl;

G4double Pos_z = -1.5*width_Al_vert - 3.0*width_Refl - 3.0*halflength_scint;

G4String topName;

G4String botName;

for (int i=1; i<=4; i++)

{ if(i==1)

{ topName = "T1";

botName = "B1"; }

if(i==2)

{ topName = "T2";

botName = "B2"; }

if(i==3)

{ topName = "T3";

botName = "B3"; }

if(i==4)

{ topName = "T4";

botName = "B4"; }

// TOP OF SUN

Pos_y_Al = 0.0*mm;

Pos_y_Refl = width_Al_horiz;

Pos_y_Scint = Pos_y_Refl + width_Refl;
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//aluminum

G4VPhysicalVolume* al_top = new G4PVPlacement(0,

G4ThreeVector(Pos_x,Pos_y_Al,Pos_z),al_log,"al_top",room_log,false,0);

//reflector

G4VPhysicalVolume* refl_top = new G4PVPlacement(0,

G4ThreeVector(Pos_x,Pos_y_Refl,Pos_z),refl_log,"refl_top",room_log,false,0);

//scintillator

G4VPhysicalVolume* scint_top = new G4PVPlacement(0,

G4ThreeVector(Pos_x,Pos_y_Scint,Pos_z),scint_log,topName,room_log,false,0);

// BOTTOM OF SUN

Pos_y_Al = 0.0*mm;

Pos_y_Refl = -width_Al_horiz;

Pos_y_Scint = Pos_y_Refl - width_Refl;

//aluminum

G4VPhysicalVolume* al_bottom = new G4PVPlacement(rot_180,

G4ThreeVector(Pos_x,Pos_y_Al,Pos_z),al_log,"al_bottom",room_log,false,0);

//reflector

G4VPhysicalVolume* refl_bottom = new G4PVPlacement(rot_180,

G4ThreeVector(Pos_x,Pos_y_Refl,Pos_z),refl_log,"refl_bottom",room_log,false,0);

//scintillator

G4VPhysicalVolume* scint_bottom = new G4PVPlacement(rot_180,

G4ThreeVector(Pos_x,Pos_y_Scint,Pos_z),scint_log,botName,room_log,false,0);

Pos_z = Pos_z + width_Al_vert + 2.0*width_Refl + length_scint;

}

// SIDES OF SUN

Pos_x = 0.0*mm;

Pos_y_Al = 0.0*mm;

Pos_z = 2.0*length_scint + 2.0*width_Al_vert + 4.0*width_Refl + halflength_Al_side;

G4VPhysicalVolume* al_sideA = new G4PVPlacement(0,

G4ThreeVector(Pos_x,Pos_y_Al,Pos_z),al_log_side,"al_sideA",room_log,false,0);

G4VPhysicalVolume* al_sideB = new G4PVPlacement(0,

G4ThreeVector(Pos_x,Pos_y_Al,-Pos_z),al_log_side,"al_sideB",room_log,false,0);

// **********************************************************************************

// TO PROPERLY SAVE THINGS TO ROOT, YOU NEED TO SPECIFY WHAT YOU NAMED THE DETECTORS

// **********************************************************************************

// The name of the detectors is in the G4VPhysicalVolume command

detectorName[0] = "T1";

detectorName[1] = "T2";

detectorName[2] = "T3";

detectorName[3] = "T4";

detectorName[4] = "B1";

detectorName[5] = "B2";

detectorName[6] = "B3";

detectorName[7] = "B4";

// **********************************************************************************
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// VISUALIZATION STUFF

room_log->SetVisAttributes (G4VisAttributes::Invisible);

//visualization for scintillators = GREEN

G4VisAttributes *GreenAttr = new G4VisAttributes(G4Colour(0.,1.,0.));

GreenAttr->SetVisibility(true);

GreenAttr->SetForceSolid(true);

//visualization for reflector = PURPLE

G4VisAttributes *PurpleAttr = new G4VisAttributes(G4Colour(1.,0.,1.));

PurpleAttr->SetVisibility(true);

PurpleAttr->SetForceSolid(true);

//visualization for aluminum = GREY

G4VisAttributes *GreyAttr = new G4VisAttributes(G4Colour(0.5,0.5,0.5));

GreyAttr->SetVisibility(true);

GreyAttr->SetForceSolid(true);

//visualization for BLUE

G4VisAttributes *BlueAttr = new G4VisAttributes(G4Colour(0.,0.,1.));

BlueAttr->SetVisibility(true);

BlueAttr->SetForceSolid(true);

//visualization for RED

G4VisAttributes *RedAttr = new G4VisAttributes(G4Colour(1.,0.,0.));

RedAttr->SetVisibility(true);

RedAttr->SetForceSolid(true);

// applying the color scheme

scint_log->SetVisAttributes(GreenAttr);

refl_log->SetVisAttributes(PurpleAttr);

al_log->SetVisAttributes(GreyAttr);

al_log_side->SetVisAttributes(GreyAttr);

beam_log->SetVisAttributes(BlueAttr);

return room_phys;

}
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Appendix C

Creating SuN’s ROOT files

In the SuN group, the initial experimental data is saved in the .EVT file format. Converting

the initial data into a format suitable for analysis with the ROOT software package currently

involves two steps. First, the “ddasdumper” program written by members of the current

NSCL data acquisition (DAQ) committee is used to create a raw output .ROOT file from

the .EVT file. This raw .ROOT file consists of a time-ordered list of detectors that triggered

above their threshold. The list contains the module number and channel number of the

detector that fired, along with the corresponding timestamp and extracted energy. In the

second step, the raw .ROOT file is used to create a new .ROOT file which hopefully contains

events grouped together properly with the SuN detector. The code for the second step of

the process is listed below:

/////////////////////////////////////////////////////////////////////////////////////////

// Steve Quinn October 2013 //

/////////////////////////////////////////////////////////////////////////////////////////

// PURPOSE: Take the output ROOT file from ddasdumper and turn it into another ROOT //

// file with a pretty SuN tree. //

// //

// OPTIONS: Change the variable "timewindow" to the amount of time that you want to //

// consider for coincidences. For example a time window of 30 clock ticks means //

// that you group everything up to 300ns after the trigger as a single event. //

// (This is assuming you are using the 100MSPS modules) //

// //

// HOW TO RUN: //

// 1. To uncompile <terminal> make clean //

// 2. To compile <terminal> make //

// 3. Before compiling, make sure that the timewindow, input file, and output file //

// are what you want them to be. //

/////////////////////////////////////////////////////////////////////////////////////////
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#include "ddaschannel.h"

#include "DDASEvent.h"

#include <iostream>

#include <cmath>

#include <TFile.h>

#include <TTree.h>

#include <TBranch.h>

int main()

{

// **********************************************************************************

// THE COINCIDENCE WINDOW (1 tick = 10ns for 100MSPS module)

// **********************************************************************************

int timewindow = 30; //the coincidence window is set to 300ns

//Filenames

TFile *fIn = new TFile("/pathway/to/the/ddasdumper/files/yourInputFile.root");

TFile *fOut = new TFile("/pathway/to/wherevers/best/yourOutputFile.root","RECREATE");

//Variables for input file

int crate; //event crate number

int slot; //event slot number

int chan; //event channel number

int energy; //event energy

double time; //event time

double refT=0.; //placeholder for time of previous trigger

double deltaT; //difference in time between events

int nEntries; //number of entries

int nEvents; //number of events per entry

//Variables for output file

int eSuN[2][5][4]={0}; //energy of SuNs PMTs

int eExt=0; //energy of raw external trigger signal

int eExtG=0; //energy of external trigger signal, after applying it

int multi=0; //multiplicity of SuNs segments

int nPMT=0; //multiplicity of SuNs PMTs

int numPMT[8]={0}; //keeps track of the number of pmts fired in each segment

double tSuN[2][5][4]={0}; //time of SuNs PMTs

double tExt=0.; //time of raw external trigger signal

double tExtG=0.; //time of raw external trigger signal, after applying it

double tTrigger=0.; //trigger time

int counter=10; //counter for status bar

//Create tree and branches for output file

TTree *tOut = new TTree("t","SuN Tree");

tOut->Branch("energy",&eSuN,"E[2][5][4]/I");

tOut->Branch("time",&tSuN,"t[2][5][4]/D");

tOut->Branch("energy_ext",&eExt,"E_ext/I");

tOut->Branch("time_ext",&tExt,"t_ext/D");

tOut->Branch("energy_ext_G",&eExtG,"E_ext_G/I");

tOut->Branch("time_ext_G",&tExtG,"t_ext_G/D");

tOut->Branch("trigger",&tTrigger,"time/D:pos/I:segm:pmt");

tOut->Branch("multiplicity",&multi,"multiplicity/I");
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//Get DDAS tree from input file

fIn->cd();

TTree *tIn = (TTree*)fIn->Get("dchan");

DDASEvent *dEvent = new DDASEvent();

tIn->SetBranchAddress("ddasevent",&dEvent);

nEntries = tIn->GetEntries();

//Read in data, entry-by-entry

for(int i=0; i<nEntries; i=i+1)

{

tIn->GetEntry(i);

//status bar

if (i % (int)(0.1*nEntries) == 0)

{std::cerr << counter << " ";

if (counter==0) std::cerr << std::endl;

counter--;

}

//Readout now has correlations, so entries may have multiple events

nEvents = dEvent->GetNEvents();

//Read in data event-by-event

for(int j=0; j<nEvents; j++)

{

//Get all the input variables we need

ddaschannel *dchan = dEvent->GetData()[j];

crate = dchan->GetCrateID();

slot = dchan->GetSlotID();

chan = dchan->GetChannelID();

energy = dchan->GetEnergy();

time = dchan->GetTime();

deltaT = time - refT;

//If the new time is outside of the timewindow, calculate the multiplicities,

// fill the tree, save the new timestamp, and set everything back to zero

if (deltaT > timewindow)

{

for(int a=0;a<8;a++)

{ nPMT=nPMT+numPMT[a];

if (numPMT[a]>0) {multi++;}

}

tOut->Fill();

refT = time;

for (int a=0;a<2;a++){

for (int b=0;b<5;b++){

for (int c=0;c<4;c++){

eSuN[a][b][c]=0;

tSuN[a][b][c]=0.0;}}}

for (int a=0;a<8;a++){

numPMT[a]=0; }

200



eExt=0;

tExt=0.0;

eExtG=0;

tExtG=0.0;

multi = 0;

nPMT=0;

tTrigger = 0.0;

}

//..................Set SuN tree variables to correct values..................//

//Top of SuN

if (crate==0 && slot==2 && chan<12)

{ int seg = (chan / 3) + 1;

int pmt = (chan % 3) + 1;

eSuN[1][seg][pmt] = eSuN[1][seg][pmt] + energy;

tSuN[1][seg][pmt] = time;

numPMT[seg-1]++;

}

//Bottom of SuN

if (crate==0 && slot==3 && chan<12)

{ int seg = (chan / 3) + 1;

int pmt = (chan % 3) + 1;

eSuN[0][seg][pmt] = eSuN[0][seg][pmt] + energy;

tSuN[0][seg][pmt] = time;

numPMT[seg+3]++;

}

//External trigger stuff

if (crate==0 && slot==4 && chan==0)

{ eExt = eExt + energy;

tExt = time;

}

if (crate==0 && slot==3 && chan==15)

{ eExtG = eExtG + energy;

tExtG = time;

}

//Trigger time

tTrigger = refT;

} //finish loop over j=events

} //finish loop over i=entries

//Write to output file

fOut->cd();

tOut->Write();

fOut->Close();

return 0;

}
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[74] G. G. Kiss, T. Rauscher, T. Szücs, et al. Physics Letters B, 695:419, 2011.
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