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ABSTRACT

ALGORITHM IMPLEMENTATION AND DESIGN OF RECONFIGURABLE

MIXED SYSTOLIC ARRAYS

By

Anwar Khurshid

One drawback of systolic architectures is their fixed-flow structure

for data streams, which limits the type of algorithms or applications

that can effectively be supported by such architectures. This thesis

presents a methodology for algorithm implementation and design of a class

of reconfigurable multiprocessor architectures called the mixed systolic

array (MSA). In the MSA architecture. switching cells are mixed with

computation cells to achieve flexibility in the data-flay patterns. This

architecture broadens the scape of systolic arrays by achieving

reconfigurability, algorithmic flexibility and fault tolerance. The

level sensitive scan design (LSSD) technique is employed to load and

implement the distributed control structure required to establish a

desired interconnection pattern on the MSA. The control structure for a

particular configuration is loaded into the array as a binary vector in a

bit serial fashion. This approach enhances testability and incorporates

fault tolerance in the MSA structures.



Efficient implementation of algorithms on VLSI structures requires

exploitation of parallelism in the algorithm and mapping of the algorithm

communication structure into

This thesis presents a

representing reconfigurable

procedure for implementing

generating the control code required to

the processor interconnection structure.

general mathematical model for formally

MSA architectures and a step-by-step

a given algorithm into the MSA structure by

reconfigure the array. The

mapping procedure is based on time and space transformations of the data

dependence vectors of the algorithm. These transformations provide a

description of the data-flow and timing, and dictate the interconnection

structure therequired to implement algorithm on the array. The

procedure presented in this work, will provide a useful tool in the

design automation of reconfigurable MSAs. To illustrate the methodology

and explain the reconfiguration procedure, two sample algorithms, the

finite impulse response (FIR) filtering algorithm and the priority queue

algorithm, are mapped into a linear reconfigurable systolic array. A

computer-aided design (CAD) facility is also presented, for modeling and

simulating mixed systolic arrays. This CAD facility serves as a

high-level design tool which supports the design of MBA architectures,

and provides the designer of MSAs with a facility to interactively

deve10p an MSA structure for a given set of user-specified attributes and

simulate the execution of algorithms on MSA processors at the

register-transfer level.
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CHAPTER 1

INTRODUCTION

Rapid advancements in VLSI technology demand innovative

computational algorithms and hardware structures which fully exploit the

technology to achieve high throughput rates and efficient resource

utilization. Efficient implementation of algorithms on VLSI structures

requires exploitation of parallelism in the algorithm and mapping of the

algorithm communication structure into pipeline, vector or array

processor interconnection structures. The main issues in VLSI design are

those of modularity, simplicity of communication and control, and

extensibility. A modular design with a large number of identical modules

organized in a simple regular fashion is an ideal structure for VLSI.

In recent years, systolic arrays have been at the focus of attention

of many researchers as pipelined multiprocessor structures suitable for

solving a variety of computation-intensive and real-time problems

requiring high throughput [2,4,31,32,41]. In the systolic concept, VLSI

devices consist of arrays of interconnected primitive processors with

distributed control and a high degree of modularity. Each processor

operates on a string of data that flows regularly and rhythmically

through the array. Systolic arrays feature the important preperties of

modularity, regularity, locality of interconnection and highly pipelined



multiprocessing. However, one drawback of systolic architectures is

their fixed-flow structure for data streams, which limits the type of

algorithms or applications that can effectively be supported by such

architectures. Therefore, it is desirable to have reconfigurability in

the data-flow structure and flexibility in the algorithm implementation

to make more general purpose arrays.

The mixed systolic array (MSA) is a class of reconfigurable

multiprocessor architectures, introduced by Chang and Fisher [6-8]. In

this architecture, control elements are mixed with computing elements

according to a certain mixing profile and the data-flow patterns are

determined by the distributed control structure stored in the control

elements. Classes of algorithms with similar data requirements may be

executed on the same array by merely presetting the control elements at

load time. MSA architectures broaden the scape of systolic arrays and at

the same time preserve VLSI design attributes such as locality of

communication, modularity, extensibility and simplicity of control.

While Chang and Fisher developed, characterized, and evaluated the basic

computing model for MSA: [6], they did not present procedures for loading

and implementing the distributed control structure required to establish

a desired interconnection pattern on the MSA. Also, no formal

methodology was presented for implementing a given algorithm into the MSA

structure by systematically generating the control code required for its

reconfiguration.

The goal of this research is to investigate structured methodologies

for mapping parallel algorithms into reconfigurable MSA architectures,



and implementing the distributed control structure required for the

algorithm implementation. Another goal is to exploit the emerging VLSI

and Wafer-Scale Integration (WSI) technologies by designing computer

architectures, which employ modularity in structure, simplicity and

regularity in communication and control paths, and extensibility in

design. From a more general standpoint, this research broadens the scope

and enhances the applicability of special-purpose VLSI array processors,

and at the same time contributes to the understanding of the problems and

nature of a parallel processing approach to computation. The specific

tasks are outlined as follows:

1. Investigate the procedures for loading and implementing the

distributed control structure required to establish a desired

interconnection pattern on the MSA structure.

2. Relate the MSA's architectural model with the parallel

algorithms implemented on the array and investigate the

procedures for implementing algorithms into MSA structures by

systematically generating the required control code for

reconfiguration.

This research investigates structured methodologies for designing

and implementing mixed systolic arrays. The Level Sensitive Scan Design

(LSSD) technique [12,25,57] is employed to load and implement the

distributed control structure required to establish a desired

interconnection pattern on the MBA. The control structure for a

particular configuration is loaded into the array as a binary vector in a

bit-serial fashion. This approach enhances testability and incorporates



fault tolerance in the MSA structure. This thesis presents a general

mathematical model for formally representing reconfigurable MSA

architectures and a step-by-step procedure for implementing a given

' algorithm into the MSA structure by generating the control code required

to reconfigure the array. The mapping procedure is based on time and

space transformations of data dependence vectors of the algorithm. These

transformations provide a description of the data-flow and timing, and

dictate the interconnection structure required to implement an algorithm

on the array. A computer-aided design facility for modeling and

simulating MSAs is designed and partially implemented. This facility

helps the designer of MSAs to interactively deve10p an MSA structure for

a given set of user-specified attributes, such as mixing density and

array geometry, and to simulate the execution of algorithms on MSA

processors at the register-transfer level.

The procedures presented in this thesis, for mapping algorithms onto

MSAs and for implementing the control structure necessary for

reconfiguration, provide a useful tool in the automated design of

reconfigurable MSAs. For instance, in order to design an MSA to

implement a set of algorithms, one can start with a high-level language

description of algorithms and use the approach presented in this thesis

to find a suitable MSA which can implement these algorithms. Usually,

many valid time and space transformations are generated in the procedure,

providing the designer flexibility to choose the ones which map easily on

the array. The procedures are especially useful during the application

of an MBA processor. Whenever a new configuration of the MSA is desired



for a new algorithm, the host computer can use the procedure to generate

the reconfiguration control vector for the algorithm to be implemented.

This control vector can be loaded into the MSA processor to reconfigure

the array on-the-fly. The procedure can also be used to determine

whether or not an algorithm can be implemented on a given mixed systolic

array.

Throughout, we use symbols I and Z to denote the set of all natural

numbers and the set of all integers, respectively. An denotes the nth

cartesian power of a given set A, i.e., the set of all possible n-tuples

of elements of A. Chapter 2 reviews some background information and

related research work regarding systolic architectures, parallel

algorithms, and LSSD techniques. In Chapter 3, design of a

one-dimensional MSA architecture, called the Linear Reconfigurable

Systolic Array (LRSA), is presented which employs LSSD techniques to

achieve reconfigurability and multifunctionality. This approach is

extended to two-dimensional arrays in Chapter 4, which describes a

Multipurpose Reconfigurable Array Processor (MRAP) architecture for

implementing various systolic and semisystolic algorithms. Also,

performance of the MRAP is analyzed in Chapter 4. for various

matrix-multiplication algorithms based on their Space-Time-Bandwidth

complexity. Chapter 5 presents a mathematical formalism for modeling

reconfigurable MSA architectures and a methodology for reconfiguring the

array by mapping the communication structure of an algorithm into the

interconnection structure of the array. The sample algorithms, the

finite impulse reSponse (FIR) filtering algorithm and the priority queue



algorithm, are mapped into a linear reconfigurable systolic array in

order to illustrate the reconfiguration procedure. Chapter 6 contains a

summary of this research work and some thoughts for future research

possibilities. Finally, a computer-aided design facility for modeling

and simulating MSAs is described in Appendix A.



CHAPTER 2

BACKGROUND

2.1 SYSTOLIC ARRAYS

Several types of VLSI architectures have been proposed in recent

years, such as the systolic arrays [31-35], the Wavefront Array

Processor [39], mixed systolic arrays [6-8] and the Configurable Highly

Parallel (CHiP) computer [53,54]. Most of these parallel architectures

attempt to match the underlying hardware to specific algorithms for fast

and efficient execution. Systolic array architectures are particularly

attractive for VLSI implementation because of their regular, short and

simple communication geometry [44,45]. This section discusses the

characteristics of systolic array architectures, systolic algorithms,

and semisystolic design.

2.1.1 SYSTOLIC ARRAY ARCHITECTURES AND ALGORITHMS

Systolic array architectures are multiprocessing systems in which

data is pipelined among processors by using next-neighbor communication.

Systolic algorithms are defined as mathematical algorithms which are

implementable with systolic architectures. A number of special purpose

systolic arrays, suitable for VLSI and wafer-scale integration (WSI),

have been proposed for solving various computationrintensive problems



[4,18,35,38]. Their applications range from numerical problems, such as

signal and image processing and matrix arithmetic, to non-numerical

tasks, such as searching and sorting, graph algorithms and relational

databases.

A sytolic array comprises a network of interconnected cells, where

each cell is capable of performing a small set of operations and has

some local memory and control logic. Strictly next-neighbor type of

connections constitute the interprocessor communication structure and

data moves through the architecture in a synchronous pipelined manner.

Communication with the outside world takes place only at the array

boundary, possibly through some special I/O processors. The following

design criteria for systolic arrays have been suggested: First, the

design should use only a small number of different types of simple

cells. Second, these cells should be interconnected by a network with

short, regular connections. Third, multiple use of each input data item

should be made in order to achieve high computation rate and throughput

without requiring high memory to array bandwidth. And, finally,

computational algorithms should be employed which exploit both data

pipelining and parallel execution.

The principles of systolic array design are illustrated here by

considering two examples of systolic arrays. A linearly connected

systolic array, shown in Figure 2.1 [31], uses W processing elements to

multiply an NxN band-matrix, with bandwidth W by a vector of N elements.

The basic processing element is called the inner-product step processor

(see Figure 2.2), and consists of three internal registers RA, RB and

RC. This processing element performs the inner-product operation





C <--— C + A * B; where A, B and C are the contents of the registers RA,

RB and RC, respectively. The time to compute the entire multiplication

is 2N+W time units. The input and output vector elements march in

opposite directions, so that each input vector element meets all the

output vector elements before it leaves the array. The same

inner-product step processor is used in a hexagonal systolic array to

implement band-matrix multiplication. Figure 2.3 illustrates the

multiplication algorithm for two NxN band-matrices with bandwidths W1

and W2, respectively [31]. This algorithm requires Wlxwz inner-product

step processors and takes 3N+min(W1’w2) units of time for the

computation. Several other computation-intensive algorithms can be

solved on systolic arrays such as LU decomposition, triangular linear

systems, convolution, filter, and discrete Fourier transforms.

Many implementation alternatives exist for systolic array

processors providing different interconnection tapologies and degrees of

flexibility. According to their degree of flexibility, systolic array

processors can be classified as follows [34]:

l. Single-purpose systolic arrays [2.4.38]. In this approach, a

systolic array is built to implement only one algorithm and a

different array needs to be designed for each new algorithm.

This approach is reasonable if the performance of the processor

is of ultimate importance and the processor is to be used in

large quantities despite the fact that it is single-purpose.

2. Multi-purpose systolic arrays [58]. A systolic array processor
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ll

 

C «I-I-v *I—C

B——-— ‘——-.-B

   

C +—- A x B + C

Figure 2.2. Two geometries for the inner-product step processor.
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Hex-connected systolic array for computing the product

matrix C, of matrices A and B [44].

Figure 2.3.
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of this type can implement a predefined set of algorithms. The

control overhead for providing necessary flexibility should be

kept small and the VLSI attributes, such as modularity and

locality of communication, should be preserved in the design.

Non-programmable building blocks [29]. Building-block

processors are constructed which can execute a few predefined

commonly used functions. These blocks are connected to form a

variety of systolic array processors of different sizes and

shapes.

Pregrammable building blocks [14]. The building block is a

programmable processor which can be programmed to implement a

large family of systolic cells. This approach is not very

efficient because of the overhead for supporting the

programmability. However some systolic algorithms involving

complicated data dependencies, such as greatest common divisor

computation [2], can be effectively implemented on this type of

arrays.

Pragrammable systolic arrays [3,7]. In this approach,

programmable processing elements are mixed with other control

units in a certain manner. These arrays are more flexible than

the multi-purpose systolic arrays in the sense that the

processing elements are programmable and their interconnections

can be configured by software control before a computation
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starts.

Various interconnection topologies for systolic arrays can be

defined according to the number of computations performed for each

input/output operation. First, for two-dimensional systolic arrays

shown in Figure 2.4(a), 0(a) processing elements perform computations in

each cycle, whereas 0(/;I) 'boundary cells perform input/output

operations. Thus the computation over input/output ratio is OQEE.).

Systolic arrays for matrix arithmetic algorithms are included in this

class [37]. Second interconnection topology can be defined as

degenerate two-dimensional systolic arrays shown in Figure 2.4(b), in

which 0(n) processing elements perform computations and 0(n) elements

perform input/output operations. So the computation over input/output

ratio is 0(1) in this case. Systolic arrays for solution of triangular

linear systems and orthogonal transformations are examples of

degenerated two-dimensional arrays [19,37]. Finally, linear or

one-dimensional systolic arrays shown in Figure 2.4(c). perform the

input/output via the two processing elements at the ends of the array,

and thus the computation over input/output ratio is 0(a) for an array of

size n. Systolic arrays for filtering or pattern matching come under

this category [32,37]. Linear arrays may be preferred over

two-dimensional arrays in situations where the input/output bandwidth,

between the host system and the systolic array, is a major limiting

factor for achieving high performance.
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Figure 2.4. Some common interconnection schemes for systolic arrays:

(a) two-dimensional systolic arrays,

(b) degenerate two-dimensional systolic array,

(0) one-dimensional systolic array.



16

2.1.2 SYSTOLIC AND SEMISYSTOLIC DESIGN

Systolic array architectures do not allow any global data

communication and all communication between processing elements is

clocked through a register. Semisystolic array architectures, on the

other hand, allow global data communication and a data item may be

broadcast to many processing elements simultaneously. Mathematically,

the structure of a systolic system S(n) is given by a machine graph

G = (V,E) of n interconnected Moore machines, where the vertices in V

represent the machines and the directed edges in E represent

interconnections between the machines [41]. The machines operate

synchronously by means of a common clock, and time in the system is

measured as the number of clock cycles. A semisystolic system is

similar to a systolic system except that some of the machines may be

Mealy machines with the condition that the output edges from Mealy

machines may not form a cycle in the machine graph [41]. Mealy machines

can implement data broadcasting, whereas Moore machines can not. Figure

2.5 shows an example of a semisystolic array which can implement data

broadcasting. In this example, the combinational logic for Mealy

machines is a simple wire from input to output. The exclusion of Mealy

machines in systolic systems makes the clock period independent of the

system size.

Semisystolic systems do not meet the design criterion of

extensibility as systolic systems do. That is, many semisystolic arrays

can not be cascaded together to form an arbitrarily large array, because

the clock cycle time, which depends upon the delay due to broadcasting

or rippling of logic, may asymptotically become arbitrarily large. In



17

Mealy Machines

I

3

Host 7 :

  

   

        

Moore Machines

Figure 2.5. A semisystolic system can implement broadcasting by

Mealy machines [41].
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general, there are two main disadvantages associated with data

broadcasting. First, large broadcasts can not be implemented in a

single communication cycle, because the broadcast delay can dominate the

execution time of an algorithm. Second, large drivers are required for

broadcasting in order to drive flhe combined load of all the cells

connected to the broadcasting bus. Two techniques, retiming and

slowdown, are described in [41] and [42] for converting a semisystolic

design into a systolic one by eliminating broadcasting. For many

systolic algorithms, some fraction of the processors are always idle at

a given time. For example, in FIR filtering, half of the processors are

idle at each clock tick and in band-matrix multiplication, two third of

the processors are idle at each clock tick [44]. Leiserson proposed

coalescing and interlacing techniques for improving processor

utilization [41]. For specific algorithms, introduction of data

broadcast concept results in more efficient parallel algorithms and

better processor utilization [9,10,21]. Huang and Abraham [21] have

compared the efficiencies of systolic and semisystolic arrays for matrix

multiplication algorithms. They concluded that, for specific

computations, semisystolic arrays perform better than systolic arrays

according to the Space-Time-Bandwidth complexity criterion.

2.2 RECONFIGURABLE MIXED SYSTOLIC ARRAIS

The mixed systolic array (MSA) is a class of reconfigurable

multiprocessor architectures, first introduced by Chang and Fisher

[6-8]. In this architecture, control elements are mixed with computing
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elements according to a certain mixing profile and the data-flow

patterns are determined by the distributed control structure stored in

the control elements. The cmmputing elements are pragrammable

multifunctional arithmetic and logic processors, whereas the control

elements are programmable interconnection networhs which establish flhe

communication structure of the array. Classes of algorithms with

similar data requirements may be executed on the same array by merely

presetting the control elements at load time. In this thesis, we refer

the computing element and the control element as the computation cell

and the switching cell, respectively.

The mixed systolic array provides programmable interconnection

structure by way of mixing switching cells with computation cells in a

systolic fashion. Its main objective is to broaden the scope of

systolic arrays by achieving reconfigurability, algorithmic flexibility

and fault tolerance. Another objective is to preserve the design

attributes of modularity, uniformity, locality of communication and

simplicity of control, in order to exploit the very large scale

integration (VLSI) and wafer scale integration (WSI) technologies. The

computation cells, in the MSA, are programmable multifunctional

arithmetic and logic processors, which process the incoming data

according to the control codes stored in their control registers. The

switching cells are programmable interconnection networks which

establish the interprocessor communication structure in the array to

meet the communication requirements of the algorithms implemented. A

switching cell directs the data-flow among its neighboring computation

cells according to the interconnection configuration defined by its
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control code register. An MSA executes a specific algorithm according

to the control codes stored in individual cells. The control code

registers of computation cells determine the computational structure of

the MSA and their contents are determined by the basic computational

requirements of the algorithm. The control code registers of switching

cells establish the communication structure of the MSA, and their

contents are determined by the communication requirements of the

algorithm. In order to configure an MSA to implement a specific

algorithm, the control code corresponding to that particular algorithm

is loaded into the array, and the array performs the execution in a

synchronous manner. Whenever a new application of the same MSA is

needed, a new control code can be loaded into the array for its

reconfiguration.

Basically, the structure of an MSA is determined by its mixing

profile, which establishes the possible frames of data-flow patterns

within the array. An MSA structure is called a regular structure, when

there is a basis or a subarray from which the MSA can be constructed.

Figure 2.6 shows an MSA constructed from a diamond-like basis. Other

possible MSA structures with irregular and partially regular mixing, are

discussed in [6]. In this thesis, we are concerned only, with the

regular MSA structures, mainly because programming and mapping

algorithms into irregular arrays are too complex, and most of the

existing synchronous parallel algorithms map into regular array

structures [4,35].

The mixing profile of an MSA is determined by its mixing density

and boundary conditions. The mixing density, p, is defined as
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N56

p = (2.1)

N

 

so + Ncc

where Nsc and Nee are the number of switching cells and the number of

computation cells, respectively. An MSA with high mixing density is

suitable for implementation of algorithms which require more complex

data routing and less computing. 0n the other hand, an array with low

mixing density can be applied to algorithms which have simple data

routing but require large amount of computing. When p=0, the MSA

reduces to a fixed structure single-purpose systolic array, and when

p=1, the MSA reduces to a reconfigurable interconnection network with no

computing power. The boundary conditions in an MSA are represented by a

boundary condition function, 0, which is defined as

 p = (2.2)

where Nsc' is the number of control buffers placed on the MSA boundary.

Various other general purpose reconfigurable VLSI architectures

have been prOposed such as Configurable Highly Parallel (CHiP) computer

by Snyder [53], and the Programmable Systolic Chip by Fisher and Kung

[14]. In the CHiP architecture, a lattice structure of programmable

switches is incorporated, into which processing elements are placed at

regular intervals. This architecture can implement various special

purpose parallel architectures such as mesh structures and tree

structures, under the supervision of a master controller. The

controller broadcasts .commands to all the switches to invoke a



Z3

particular configuration setting. This master controller may be

undesirable for failure critical applications. In LEA architecture,

neither a broadcasting of command signals nor a master controller is

required; instead, the control structure is distributed among the

switching cells and the computation cells of the array. While Chang and

Fisher developed, characterized, and evaluated the basic computing model

for MSAs [6], they did not present procedures for loading and

implementing the distributed control structure required to establish a

desired interconnection pattern on the MSA structure. Also, no formal

methodology was presented for implementing a given algorithm into the

MSA structure by systematically generating the control code required to

reconfigure the array. The main motivation for this research work came

from the above mentioned issues regarding algorithm design and

implementation of MSAs.

2.3 ALGORITHM TRANSFORMATION AND MAPPING INTO VLSI STRUCTURES

Efficient implementation of algorithms on VLSI structures requires

exploitation of parallelism in the algorithm and mapping of the

algorithm communication structure into the array processor

interconnection structure. An approach to design VLSI algorithms based

on recurrences was first suggested by Cohen in [11] and later expanded

by Iohnnson and Cohen in [22], and Weiser and Davis in [56]. This

approach is adopted from z-transforms in signal processing and uses

delay Operators (Z-Operators) for specifying and representing sets of

data as wavefront entities in the mathematical expressions.
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Mathematical formulas are manipulated to obtain different expressions

that correspond to different computational networks. The drawback with

this approach is that the notation gets difficult to manage for complex

computations. Leiserson and Saxe presented a general theory for

optimizing a synchronous circuit by adjusting the number of register

delays in the data paths _ [43]. This theory justifies some

transformations used to eliminate broadcasting from semisystolic

designs, but does not offer a methodology for systematically designing

systolic arrays starting from a high—level language description of an

algorithm.

Kuhn introduced the idea of exploiting parallelism in 100ps with

multiple levels of nesting by reindexing the loop computations [30]. He

used the concept of program dependence for detection and exploitation of

parallelism in programs. He defined dependence as an arc in the

dependence graph directed from the source occurrence of a variable to

the destination occurrence of the same variable. Both the source and

destination nodes are labeled by the values of the loop indices at which

the generation and use of a variable occur, and the dependence arc is

labeled by the difference vector of the source and destination labels.

He mapped several specific algorithms into SIMD computers with

single-stage interconnection networks and illustrated how the design of

certain VLSI systolic arrays could be done automatically by reindexing

algorithms. Moldovan [45-47] and Fortes [15] extended the approach of

Kuhn, and formalized the procedure for mapping algorithms into VLSI

architectures by transforming dependencies of the original algorithm by

a reindexing transformation. Algorithm transformations comprise a time
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transformation which dictates the order of execution of computations and

a space transformation which determines the data movement, and the array

size and geometry. Necessary and sufficient conditions for the

existence of a certain type of transformation are given in [45]. This

approach is best suited to algorithms described by pragrams with loops

or by recurrence equations.

Some other related work on formalizing the design process of

algorithmieally specialized devices has been reported by Cappello and

Steiglitz [5]. Quinton [49], and Lam and Mostcw [40]. Cappello's

method010gy is based on geometric transformations for mapping

nested-loop algorithms into systolic arrays. The computation is modeled

as a lattice in which nodes represent Operations and edges represent

data dependencies. Different systolic designs can be derived by

applying geometric transformations to the lattice. Quinton's approach

finds a uniform recurrent system of equations that is equivalent to the

problem to be solved and maps this system of equations into a finite

architecture. The methods given in [5] and [49], regarding the

formalizing of systolic array design, are suitable for algorithms

described by recurrence equations. Lam and Mostow described a design

model, in which software transformations are first applied to put the

algorithm to be implemented into a regular form conducive to systolic

implementation. The algorithm is then mapped into a systolic design

described by a structure and a driver. The structure describes the

hardware cells and the driver defines data streams in terms of the

original variables in the algorithm. This approach can process

algorithms with simple FOeroops and BEGIN-END blocks, but cannot deal
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with conditional execution, computed iteration bounds and array indices.

A survey of systematic approaches to the design of algorithmically

specified systolic arrays can be found in [16].

2.4 FAULT TOLERANCE IN SYSTOLIC ARRAYS

Fault-tolerant systems are capable of performing correctly even in

the presence of one or more faulty components. Fault-tolerant systems

require some form of redundancy incorporated in their design. This

redundancy could be either physical or temporal, or a combination of the

two [51]. Physical redundancy is provided by replicating resources and

may involve the use of extra gates, memory cells or functional modules.

A taxonomy of fault-tolerance techniques and various stages of response

to a system-failure in a fault-tolerant system are described in [51].

Fault tolerance in a pipeline architecture is very critical because

a single fault in any segment would cause a total failure of the

pipeline. Physical redundancy can be incorporated in pipeline

architecture either at the pipeline level or at the segment (module)

level. Reconfigurable parallel pipelines can be utilized to implement

fault tolerance and achieve better performance in terms of average

throughput, mean time to failure (MTTF), and mean computation before

failure (MCBF)[24]. Initially the system utilizes all the pipelines in

parallel, but as soon as one segment in a pipeline fails, the pipeline

containing the failed segment ceases operation resulting in a

degradation in performance. The other segments in the ceased pipeline

become available as spares to mask subsequent faults in adjacent
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pipelines. In this way, whenever the system fails, it does it with

graceful degradation.

Although systolic array processing is a very efficient method of

gaining increased system performance, this architecture is highly

susceptible to faults. As a systolic array consists of many parallel

pipelines, a single fault in any processing cell will propagate down the

pipeline causing the system to fail. In two-dimensional systolic

arrays, a single processing cell is shared by more than one pipelines,

so the fault can propagate in multiple directions which makes the

situation even worse. The above makes clear that the application of

fault tolerance to a systolic array-based architecture is very critical.

A fault-tolerant design of systolic arrays should enable an array to

withstand one or more faults without total failure. This extends the

life of the system and increases the mean time to failure (MTTF) and

mean computation before failure (MCBF) for the system. Fault tolerance,

of course, will require that redundancy be incorporated in the design of

systolic arrays [20]. Temporal redundancy is not suitable because it

adversely affects the system speed and throughput, which is not

desirable if high performance is required. Physical redundancy can be

introduced in the systolic array designs at the processing cell level or

at the pipeline level. In response to a fault, the faulty cell or

pipeline is discarded and replaced by another working one.

One method of designing fault-tolerant systolic arrays uses modular

redundancy at the processing cell level. Triple modular redundancy

(TMR) and N-modular redundancy will mask out the faulty outputs from a

bad processing cell, but these are very costly techniques and their
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application is limited to only critical short term uses [50]. Another

fault-tolerant scheme, proposed in [36], enhances the yield of

wafer-scale integration implementation of systolic arrays by replacing

defective cells with clocked delays. This allows data to flow through

the array with faulty cells at the original clock speed. Reconfigurable

parallel pipelines for fault tolerance can be utilized in systolic

arrays in order to achieve graceful degradation property. In case of no

fault, all the pipelines are utilized and contribute to increased system

performance. In case of faults, however, some pipes will [shut down

degrading the system performance. This makes many processing cells

available to be used to mask out any further faults.

2.5 LEVEL SENSITIVE SCAN DESIGN (LSSD) THIHNIQUES

LSSD is IBM's discipline for structural design for testability

[12]. In this concept, the memory elements or latches in an IC can be

threaded together to form a serial-in, serial-out shift register. This

provides an efficient means for "controlling" and "observing" the

internal states of a machine with only three or four additional pinouts.

A key element in this design is the "shift register latch" (SRL) as

shown in Figure 2.7 [57]. Since IBM has used the LSSD technique

extensively, considerable attention has been given to the efficient

implementation of LSSD latches such that the overhead due to complexity

of SRLs is substantially reduced [13]. The lines D and C form the

normal mode memory function while lines I, A, B and L2 comprise

circuitry for the shift register function. The shift registers are
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Figure 2.7. Block diagram representation of a shift register latch.
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threaded by connecting I to L2 and operated by clock lines A and B in

two phase fashion. Figure 2.8 illustrates how four SRLs can be threaded

together for shift register action, and Figure 2.9 shows general

structure of an LSSD subsystem with two clocks. Specific design rules

and constraints concerning gating of clocks, etc., are given in [12].

LSSD techniques are _employed in reconfigurable systolic

architectures for loading and implementing the control structure

required for reconfiguration [25]. The main advantage of using the LSSD

technique is that overhead due to additional pinouts does not exceed

three or four pins regardless of the size of the array. Shift register

latches (SRLs) hold the control information. All SRLs are threaded

together in a chain of shift registers in a manner such that a control

vector entered in a bit-serial fashion sets up the array configuration

for a particular algorithm.
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CHAPTER.3

A LINEAR RECONFIGURABLE SYSTOLIC ARRAY (LRSA) ARCHITECTURE

The Level Sensitive Scan Design (LSSD) technique is employed in

mixed systolic arrays to load and implement the distributed control

structure required to configure the array for a desired algorithm

implementation. To illustrate the concepts, this chapter presents the

design of a one-dimensional linear reconfigurable systolic array (LRSA).

This array structure is statically reconfigurable to realize any of the

following: a filtering array, an FIR filtering array, a pattern matching

array, and a Discrete Fourier Transform (DFT) array. What's more, the

array structure is partitionable and can be divided into two or more

independent subarrays, each capable of executing a preprogrammed

algorithm. Shift register latches (SRLs) hold the control information

for setting up the interconnections configuration and selecting the

functional mapping of computation cells. Both the data flow through the

array and the functions executed in the computational cells are

established by inputting a control vector in a bit-serial fashion, using

a two-phase clock. The next section describes the structure of the LRSA,

and Section 3.2 characterizes four systolic algorithms which can be

implemented on this structure.

33
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3.1 STRUCTURE OF THE LINEAR RECONFIGURABLE SYSTOLIC ARRAY

The linear reconfigurable systolic array can be configured to

implement one or more of the following types of systolic arrays: 1) a

general filtering array, 2) a FIR filtering array, which has better

resource utilization than the general filtering array, 3) a pattern

matching array, and 4) a Discrete Fourier Transform (DFT) array. The

systolic algorithms for the above mentioned arrays are described in

Section 3.2. The LRSA architecture is configured, by simply loading a

binary control vector through the LSSD scan input line, such that the

computational and the data-flow structures of the algorithm are

implemented on the array architecture. Once the array is configured, the

architecture matches the algorithm structure exactly. Structure of the

LRSA can be divided into three parts, the computation cells array, the

function-select array and the data flow control array. Figure 3.1

illustrates a system block diagram of this structure, and each part is

described in the remainder of this section.

3.1.1 THE COMPUTATION CELLS ARRAY

All computation cells are identical so the modularity is preserved

in the design. This, of course, is an important factor in the efficient

design and implementation of systolic arrays [22]. Each computation cell

has three input data ports and three output data ports. These are all

local ports except for the cells at the extreme ends of the array, where

global I/O ports are used. Due to the local I/O ports the

interconnections are regular, simple and short. Three control bits

select the functionality of the computation cell. Figure 3.2 shows a
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computation cell at K'th position in the array. The control input lines

will be referred to as function-select lines. For a computation cell

CC(K), the input ports are referred to as I(l.K), I(2,K) and I(3,K),

whereas the output ports are O(1,K), O(2,K) and 0(3,K). Each cell

contains two operand register buffers A(K) and B(K). which hold the

filter coefficients loaded by the host, prior to start of computation.

Let set of functionrselect lines for cell CC(K) be called S(K).

Then, functions of the computation cell can be described as follows:

Begin

if S(K) = 001 then

0(1.K) <-- I(1,K)

0(2.K) <-- I(2.K)

O(3,K) <-- A(K)*I(2,K)+B(K)‘I(1,K)+I(3,K)

elseif S(K) 010 then

0(1.K) <-- B(K)

0(2.K) <-- A(K)‘I(1.K)+I(2.K)

B(K) <--— I(l,K)

elseif S(K) 011 then

elseif S(K) 100 then

0(1.K) <--— I(l.K)

0(3 .K) <--- I(3.K)

R(K) (-- R(K).AND.(I(1,K).EQ.I(3,K))

elseif S(K) = 101 then
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O(2.K) <--— I(l.K)‘I(2.K)+A(K)

end if

end

R(K) is a flip flop in each computation cell which is used in the pattern

matching algorithm. A(K) and 8(K) are two registers in each CC(K) which

hold the coefficients loaded from the host or main memory.

3.1.2 FUNCTION-SELECT ARRAY

The functionrselect array contains a three-bit element for each

computation cell; the contents of this array select the function

performed by the computation cell. Each computation cell can be

programmed to perform a selected primitive arithmetic or logic operation

by setting its functionrselect array element. All elements of the

function-select array consist of SRLs which are all threaded together to

form a shift register. The control information can be entered in a

bit-serial fashion using two phase clock via Scan In input line, as shown

in Figure 3.3.

3 .1.3 DATA FLOW CONTROL ARRAY

The data flow control array contains the control information for the

interconnection network configuration. Data flow control is achieved by

employing interchange boxes which are devices with two inputs and two

outputs. Figure 3.4 shows the four legitimate states of an interchange

box. Two-bit control is required for each box and the control bits for

each box are stored in an SRL. All SRLs are threaded together as in case

of the function-select array. Figure 3.5 shows a hardware implementation
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of an interchange box.

Figure 3.6 illustrates how two adjacent cells in the LRSA are

connected together with interchange boxes and function-select elements.

Although the computation cells are multifunctional, yet various functions

are computationally not much different from each other. By employing

some data selection logic in an inner product step processor, computation

cells for LRSA could be obtained. So, the overhead because of

introducing complexity in the computation cell by making it

multifunctional should be small. All the control information is entered

through one pin in a bit-serial fashion, so overhead because of

additional pinouts is minimal.

3.2 SYSTOLIC ALGORITHMS IMPLEMENTED ON THE LRSA

This section describes four systolic algorithms implemented on the

LRSA. These algorithms include general filtering, Finite Impulse

Response (FIR) filtering, pattern matching and Discrete Fourier Transform

(DFT).

3.2.1 SYSTOLIC FILTERING ARRAY

The general filtering problem is defined as follows [49]:

Given the weighting coefficients {'0' '1' , . , wh]. {r1, r2, . .

. rk}' the initial values [y.k, y;k+1. . . . y;1). and the input

sequence {x_h, 1—h+1» , , , 10» x1, . . , xn].

semis. the output sequence (yo, y1, . . , yn] defined by
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Yi = 2? w- x'_- + 2? r- y°-'. (3.1)
Jgo J 1 J 1:1 J 1 J

A systolic array to implement the above filtering problem is shown in

Figure 3.7 [49]. This array computes a new output yi every two cycles,

where a cycle is the time to perform two multiplications and two

additions. The weighting coefficients '1's and fi" are preloaded into

the array. The filtering computation starts by loading the xiv, from the

host to the systolic array. When the array has received all the xi's for

'h 1 i ( 0, it starts outputting the computed yi's at the rate of one

every two cycles.

The two types of basic cells used are shown in Figure 3.7(a). The

systolic array for filtering is a linear array and consists of m type-l

cells and one type-2 cell, where m = max(h+l,k). Each yi is initialized

as zero as entering the array from the right-most cell. It accumulates

terms as it travels along the array towards left and eventually achieves

its final value Yi when reaching the left-most cell. The output yi is

fed back into the array for use in other computations.

In order to implement the above filtering algorithm on an LRSA

consisting of (n+1) computation cells, the function-select elements

should be as follows:

S(K) 001,11K‘m;

S(K) 011, K = m+1

The switching cells in the array should be used in straight

configuration. It can be easily seen from Figure 3.6, that exchange and

broadcast configurations of the switching cell can be used to partition
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Figure 3.7. One-dimensional systolic array for filtering:

(a) basic cells used in the array,

(b) the systolic filtering array.
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the LRSA into subarrays, or to bypass faulty computation cells.

3.2.2 SYSTOLIC FIR FILTERING ARRAY

The general filtering problem described in the previous subsection

realizes systems having Infinite-duration Impulse Response (IIR). Such

systems involve a recursive computational algorithm. In the case of

Finite-duration Impulse Response (FIR) systems [49], realization

generally takes the form of a nonrecursive computational algorithm. An

FIR filtering problem is a special case of the general filtering problem

given in Subsection 3.2.1 where ri=0 for all 1 i i i k. The dedicated

throughput of the systolic array for filtering described in the previous

subsection is one half, i.e. only one half the cells in the array are

active at any given time. Figure 3.8 shows a systolic array for FIR

filtering algorithm [24]. Data streams move in the same direction at two

different speeds in the systolic array and all the cells are used all the

time. The basic cell used in the design is shown in Figure 3.8(a). The

'i's are preloaded in the array during the initialization phase. Both

th° 11's and yi's travel towards right but yi's travel twice as fast as

xi's. Each yi accumulates terms as travelling towards right and achieves

its final value as it leaves the right-most cell. The FIR filtering

problem is mathematically identical to the convolution problem, so the

systolic array described here also applies to conyolution computations.

In order to implement the FIR filtering algorithm on the LRSA, the

function-select elements for all the computation cells in the array,

should contain 010. i.e..
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s<x> = 010, 1 r x 1 h,

3.2.3 PATTERN MATCHING SYSTOLIC ARRAY

A systolic array design for pattern matching problem is shown in

Figure 3.9 [24]. The pattern matching problem can be defined as follows:

.QiZSE a t91t string ($1, $2, . . . , an) and a pattern string

(P1, p2, . . , pm), with n much larger than m,

compute positions of all occurrences of the pattern within the text

string.

For example, if the text string is DBABBFBABABB and the pattern is BAB,

then the result is 010000101000, where each '1' indicates the beginning

position of an occurrence of the pattern inside the text string. Let the

resulting Boolean string be {r1, r2, . . , rn-m+l}: such that 31:1 if

and only if (si, 31+1, . , , 3i+n-l) = (p1, p2, . . , pm). Then the

systolic array shown in Figure 3.9, using the basic cell as shown, can

compute th° ri's by comparing the characters of the pattern with the

characters of the text string. Each ri is initialized to be a '1'. A

pattern character Pk and a text string character sj are compared at the

cell where they meet and the cell updates the value of ri such that

‘1 <-- r1 AND'(pk§sj). In case of a mismatch, the value of ri is reset

to '0'. The pattern string travels towards right and the text string

travels towards left, such that each pattern character meets each text

character. Th9 value 0f ti at a cell finalizes when the last character

in the pattern string passes through that cell. This systolic array with

m cells can solve the pattern matching problem in time n, whereas a

sequential software solution takes time proportional to m‘n.
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In order to implement the pattern matching algorithm on an LRSA

consisting of m computation cells, the function-select elements for all

the computation cells in the array should contain 100, i.e.,

S(K) = 100. 1 1 x a m,

3.2.4 DISCRETE FOURIER TRANSFORM (DFT) SYSTOLIC ARRAY

An n-point Discrete Fourier Transform (DFT) is defined as follows:

.QiZEB {30, a1, . . . , an.1] be u samples of a time function,

compute (yo, yl, . . . , Yn—l} defined by

'1

5'1 = 2:0 aj ‘ Wij» (3.2)

where w = e27‘k/n and k = -l .

The straightforward method for computation of n-point DFT requires

0(n2) operations and the Fast Fourier Transform (FFT) algorithm requires

0(n10gn) operations for the same computation. The linear systolic array

shown in Figure 3.10 [48] with (nrl) basic cells can compute an n point

DFT in 0(n) time. However, the communication scheme for the systolic

array is much simpler compared to the complicated data communication

requirements for the FFT algorithm. The basic cell used in the DFT

systolic array is essentially a multiplier-accumulator cell and is shown

in Figure 3.10(a). The array consists of (nrl) basic cells and the input

samples an_2 to ac are preloaded in the array cells. The inputs Yin and

xin to the left-most cell are “url and some power of w, respectively.

Th9 output xout from the right-most cell is always ignored. Each yi,
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initialized “3 “n.1, accumulates its terms as travelling towards right,

and reaches its final value as it leaves the right-most cell.

In order to implement an nrpoint discrete Fourier transform

algorithm on the LRSA, the function-select elements for all the

computation cells in the array, should contain 101, i.e.,

S(K) = 101, 1 1 K i n-l.

3.3 SUMMARY AND DISCUSSION

This chapter presented the architecture and design of a

one-dimensional Linear Reconfigurable Systolic Array. This design

approach illustrates how the level sensitive scan design technique can be

employed in mixed systolic arrays, to load and implement the distributed

control structure required to configure the array for a desired algorithm

implementation. The control structure for a particular configuration is

loaded into the array through the LSSD scan path as a binary vector in a

bit-serial fashion. This approach has the advantage that overhead in

terms of additional pinouts is limited to only three or four pins. Also,

serial loading of the control structure reduces the overhead in terms of

additional interconnections on the chip due to the control hardware.

The major incentive for employing the LSSD technique in the design

of the LRSA is to load the configuration control code in the array. This

approach, in addition, enhances testability, incorporates fault

tolerance, and provides capability for initializing the internal data

registers of individual cells. In order to achieve testability and data
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register initialization capability, the LSSD scan path must pass through

the data registers and the input/output ports of each cell. Figure 3.11

shows one possible arrangement for a scan path within a computation cell.

Registers X, Y and Z are the local output ports; S is the control

register which selects the function performed by the computation cell; A

and B are the data registers for holding the preloaded coefficients and R

is a flip-flop used to save the result of a Boolean Operation in pattern

matching algorithm. This arrangement provides capability for testing the

functionality of the individual cells, initializing the registers and

preloading the coefficients. During test mode, a desired bit-vector is

loaded into the array through LSSD scan path. This vector contains the

control information required for each cell as well as the test data for

data registers. After the vector has been loaded, one system clock is

applied so that each cell can perform its required function. The results

in the local output ports are scanned out using LSSD shift clock. This

vector contains results Of the Operations performed by all the cells. A

comparison of this vector with the expected results helps identify the

faulty cells which may be bypassed by reconfiguring the chip. Fault

tolerance in mixed systolic arrays employing LSSD techniques is discussed

in more detail in Chapter 4, where this approach is extended to

two-dimensional mixed systolic arrays.



CHAPTER 4

DESIGN OF A MULTIPURPOSE RECONFIGURABLE ARRAY PROCESSOR (MRAP)

Chapter 3 presented a design approach for mixed systolic arrays,

which employs the level sensitive scan design technique for configuring

the array architecture to match the structure of the algorithm to be

implemented. This chapter extends the same approach to two-dimensional

mixed systolic array architectures, and discusses the issues of fault

tolerance, performance analysis and algorithm implementation. We present

the design of an MSA-based processor, called the multipurpose

reconfigurable array processor (MRAP). This architecture implements both

systolic and semisystolic algorithms, and incorporates fault tolerance in

its design. The performance of MRAP, taking into account the total

computation time and the data-transfer bandwidth, is analyzed for

specific algorithms. Also, it is demonstrated, by way of examples, how

the MRAP can efficiently implement different systolic and semisystolic

algorithms. Structure of the MRAP is a two-dimensional array type, which

can be configured to implement a number of systolic and semisystolic

algorithms involving two-dimensional linear recurrences such as matrix

manipulations. This two-dimensional array could also be partitioned into

many independent linear arrays to implement independent algorithms

involving one-dimensional linear recurrences such as finite impulse

response (FIR) filtering.

55
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The next section describes the structure of the MRAP, the design of

basic functional cells and the data flow in the array at

register-transfer level. Section 4.2 illustrates, by way of examples,

how the MRAP can be configured to implement different parallel

algorithms. In Section 4.3, performance of the MRAP is analyzed and

compared with other existing systolic structures. Section 4.4

investigates fault tolerance capabilities inherent in the MRAP design.

Finally, a summary and discussion is presented in Section 4.5.

4.1 STRUCTURE OF THE MULTIPURPOSE RECONFIGURABLE ARRAY PROCESSOR

The multipurpose reconfigurable array processor (MRAP) employs two

types of basic elements, computation cells and switching cells, as shown

in Figure 4.1. In general, the computation cells and the switching cells

are mixed according to a certain mixing profile which determines the

possible frames of data-flow patterns within the array. Mixing profile

is specified by the mixing density and the basis of the array [6]. The

MRAP designed here, is constructed from a diamond-like basis with a

mixing density of 1/2, i.e., switching cells and computation cells are

equally represented in the basis. The control structure for

communication and computation is embedded in both types of cells in form

of control registers. We employ the LSSD technique to realize this

control structure. All the control registers are threaded together

through a Scaann line as shown in Figure 4.2. For a particular

configuration the control structure is realized by loading a binary

vector through the Scan-In line in a bit-serial fashion. In the next
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section, we provide some examples of how the control vectors can be

generated for implementing different algorithms. Figure 4.3 shows the

system block diagram of the array and each part of the structure is

described later in this section. The array can be configured in various

topologies depending upon the application, such that a variety of

algorithms can be efficiently implemented. Various configurations

obtained from this structure are discussed in Section 4.2. In the

remainder of this section, we describe the design of the computation cell

and the switching cell. Also, a register-transfer level data-flow

description and a timing diagram for the computation cell are given.

4.1.1 THE COMPUTATION CELL

The computation cell is basically an inner product step processor

with some extra control logic added into it. All computation cells are

identical so the modularity is preserved in the design. This, of course,

is an important factor in the efficient design and implementation of

structures for VLSI computation. Each computation cell has six data

‘ports, which are all local ports except for the cells at the boundary of

the array, where global I/O ports are used [6.8]. Due to local I/O ports

the interconnections are simple, regular and short. Three control bits

are used to select the functionality Of the computation cell. There are

three dedicated data registers DRA, DRB and DRR which can be used to hold

the preloaded coefficients or the results of a local computation. There

is a three-bit control register, comprising of shift-register latches and

threaded into the Scan-In line. We shall refer to this control register

as RC and the three latches in it as RCO, RC1 and RC2. The input-output
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functional mapping of a cell is determined by the contents of RC. Figure

4.4 shows a computation cell and describes some of its functions for

different control vectors. A register-transfer level description of

various Operations is given later in this section.

4.1.2 THE SWITCHING CELL

The switching cell used in this array is an extension Of the

two-by-two interchange box [52] and is shown in Figure 4.5. When the R/W

control line is low, this switching cell acts as a single-stage,

nonblocking SIMD interconnection network which requires three-bit control

to realize all possible connections from input lines A1, A2 to the output

lines BO, El and B2, without resulting in a conflict. When R/W line is

high, A2 acts as an output line which is connected to the input A0. R/W

is a local I/O control provided by the neighboring computation cell at

line A2. The control bits are held in the three-bit control register RS

associated with each switching cell. Figure 4.5 shows a logic

implementation of the switching cell. A function table for the switching

cell is given in Table 4.1, where R80, R51 and R82 are the bits in the

control register RS.

4.1.3 DATA-FLOW AND TIMING

This section describes a register-transfer level description of

data-flow in the array. Figure 4.6 shows a timing diagram for the

instruction cycle of the computation cell, when a two-phase system clock

is used. There are three phases in the instruction cycle, as shown in

Figure 4.6. Ph35°3 t0 and t1 are used to latch input data from the
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Figure 4.4. The Computation Cell.
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asz RSI R80 32 31 BO

0 o 0 Al Al Al

0 o 1 Al A1 A2

0 1 0 Al A2 Al

0 1 1 I Al A2 A2

1 o 0 A2 Al Al

1 o 1 A2 A1 A2

1 1 0 A2 A2 A1

1 1 1 A2 A2 A2   
 

Table 4.1. Truth Table for the Switching Cell (R/W =- Low)
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neighboring cells. We need two phases for this purpose due to the

bidirectional nature of the interconnections. The third phase, t2, is

used for computing and storing the results in the output registers.

Figure 4.7 shows a computation cell CCi,j along with its neighboring

cells. A register-transfer level description of data-flow for a

computation 0°11 CCi,j, in terms of its neighboring cells. is given as

 

 

 

 

follows:

.gg 223g; Register Transfer Qperations

001 to DRAi’J- <-——-— Azidfl = DRAM-14-

t1 DRBLJ' * BZi’j

t2 DRRi,j <-—-— DRRi,j + DRAi,j ‘ DRBi,j

01° to DRAi,j <---- A2i,j+1 = DRAi-Lj

t1 DRBLJ- < Bzid

t2 DRRi'j <---- DRRi,j+1 + DEALJ- ' D1181“,-

011 to DRAi,j *--- A21,j+1 = DRAi_1,j

DRBi,j ‘ DRBi.j+1

t1 DRRi,j 4 BOi+1,j = DRRi+1,j-1

t2 DRRi,j ‘-- DRRi,j + DRAi’j ‘ DRBi,j

10° t0 DRBi,j ‘“"‘ 321.j

t1 idle; DRA contains a preloaded coefficient

1:2 DRRi,j ...._.. DRR1,3+1 + DRAi,j " DRBi,j

4.1.4 PROGRAMMING DAThrFLOW CONTROL

Each switching cell is individually programmable to achieve a

particular connection scheme; in this way the computation cells can be
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interconnected in a number of possible configurations. Each switching

cell contains a control registers, and contents of the control register

determine the switching cell configuration. The flip-flops used in the

control registers are shift-register latches. The control register

flip-flops of all the switching cells are threaded together to form a

serial-in serial-out shift register. The control information pertaining

to a particular array configuration is entered through the Scan-In input

line in form of a binary control vector in a bit-serial fashion. The

array can be used for that implementation for as long as desired and when

a new application of the chip is needed, it can be reconfigured by

programming the switching cells by entering another control vector

through Scan-In input line. In this fashion static reconfigurability is

achieved in this architecture for implementing a variety of

interconnection patterns.

Multifunctionality in the array is achieved by introducing

function-select control registers (RC registers) in the computation cells

(CCs). Input/output functional mapping of a CC is determined by the

contents of its function-select control register which comprises of

shift-register latches. All the RC registers are threaded together along

with the control registers of switching cells in a long chain of shift

registers. The control vector entered through the Scan-In input line

consists of the desired bit pattern which determines the interconnection

scheme as well as the functions performed by each computing element.
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4.2 IMPLEMENTATION OF ALGORITHMS ON THE MRAP

Multiple data streams flow in statically reconfigurable

multifunctional pipelines in the multipurpose reconfigurable array

processor (MRAP) described here. Data-flow patterns are controlled by

the control vector which is fed into the control registers through the

Scaann line during the preprocessing phase. For each array

configuration and algorithm implementation, a binary control vector is

generated containing control bits for the switching cells as well as the

computation cells. The control bits for switching cells correspond to

the communication structure of the implemented algorithm, and determine

the inter-processor interconnection scheme. The control bits for

computation cells correspond to the computational structure of the

algorithm, and determine the functions performed by the computation cells

on incoming data.

The length of the control vector is fixed for one chip regardless of

the configuration and this length is equal to the total number of shift

register latches threaded into the scan line in the system. In general

the size of the vector can be written as:

S = p * NC + q * NS , (4.1)

where

S = size of the binary control vector;

NC = number of computation cells in the array;
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NS = number of switching cells in the array;

p number of bits in the computation cell control register;

q number of bits in the switching cell control register.

Inclusion of data registers in the scan path to provide testability

for the functional cells will, however, make the input scan vector longer

than that given in the above equation. In this case the control vector

is mixed with initialization data for data registers of functional cells.

In the following discussion, only the control vector generation is

considered and the initialization bits for data registers are not

included.

For the array shown in Figure 4.1, the size of the control vector

can be computed from the above equation. Here, p=3, qe3, NS=5*4=20 and

NC=l6. So the size of the control vector is 108 bits. This binary

vector is loaded into all of the RS and RC control registers through the

Scan-In line in a bit-serial fashion at the time of configuring the array

for a certain implementation. The time required for configuring depends

on the length of the control vector and the system clock frequency. So.

for example, about 4.3 micro-seconds are required to configure the above

array with a 25 MHz system clock. Scan-Out line could be used to cascade

more than one chip together or it could also be used to verify the

control structure by Shifting out the complete control vector and

matching with the desired vector. This feature introduces, also, some

degree of testability in the structure.

In the remainder of this section, various algorithms are implemented

on the MRAP architecture, and in each case the array is configured to

realize an efficient computational structure for algorithm
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implementation. We consider an example to illustrate this point. Kung's

systolic array [31] for band-matrix multiplication is quite efficient

when multiplying matrices with narrow bandwidths, but it can not perform

efficiently in the case of dense-matrix multiplication. A broadcast

two-dimensional array as prOposed by Huang and Abraham in [21], can

perform dense-matrix multiplication very efficiently, but suffers from

the problem of being considerably inefficient for narrow band~matrix

multiplication. The MRAP can be configured to realize thg's array

structure for efficient narrow band-matrix multiplication, and Huang's

2-dimensional array for efficient dense-matrix multiplication.

4 .2 .l DENSE-MATRIX/DENSE-MATRIX MULTIPLICATION

Dense-matrix multiplication is performed on the MRAP by configuring

it as a broadcast two-dimensional array, as proposed by Huang and Abraham

in [21]. Figure 4.8(a) shows the data streams for processing a

dense-matrix multiplication on a broadcast two-dimensional array, which

multiplies matrices A and B to get the product matrix C. As matrix B is

broadcast from the bottom edge of the array and A is fed into the array

from the left side, each computation cell in the array accumulates the

partial product terms for an element of the matrix C. After the

computation is done, the elements of the resulting matrix C which reside

in the computation cells can be shifted out. This is an efficient

algorithm for dense-matrix multiplication.

Control vector for realizing the above mentioned array is determined

from the states of the computation cells and the switching cells needed

to implement the above algorithm. The switching cells must be used in a
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broadcast type of configuration and should "have the following

interconnections:

Bl:A1;Bz=A1.
(4.2)

This implies, from Table 4.1, that the control bits for switching

cells can be 000 or 001. We arbitrarily choose 001 here. The

computation cell should perform the following functions:

DRA (-- G ; E <-- DRA ; DRR <-- DRR.+ DRA‘B .

The control bits for the above functions are 001 from Figure 4.4.

So, the control vector for the MRAP, in order to implement a broadcast

two-dimensional array for efficient dense-matrix multiplication, is given

as follows:

Control Vector (in HEX digits):

249249249249249249249249249

The above vector is loaded through the Scan-In line using a two

phase clock with the right most digit entering first. After all the 108

bits are shifted into the array in a bit-serial manner, each control

register in the array contains appropriate control bits.

4 .2 .2 BAND-MATRIX/DENSE-MATRIX MULTIPLICATION

Let A be an NxN band-matrix with a bandwidth W (W(N), and B be an

NxW dense-matrix. The matrix C = A*B can be computed by using an array

configuration as shown in Figure 4.8(b). This algorithm is similar to

that described in [9], except that broadcasting is used only in one
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direction in our case while in '[9] broadcasting is used in both

directions. The array configuration described in Subsection 4.2.1, for

dense-matrix/dense-matrix .multiplication, requires NxN processors to

solve the above problem, whereas the array described here needs only wxw

processors to solve the same problem.

The control vector for realizing the array, shown in Figure 4.8(b).

is determined as follows. The switching cells are still used in

broadcast configuration, connecting A1 to both Bl and BZ. From Table

4.1, control bits 001 are chosen. The computation cells perform the

following functions:

DRA (-- G ; E <-- DRA ; C <--— F + DRA‘B .

The control bits for realizing the above functions are 010, as seen

from Figure 4.4. So, in order to realize the configuration for efficient

band-matrix/dense-matrix multiplication, the control vector for the MRAP

is as follows:

Control Vector (in HEX digits):

28A28A25145144A28A289451451

4 .2 .3 BAND-MATRIX/BAND—MATRIX MULTIPLICATION

Let A and B be two band matrices with bandwidths W1 and W2, and the

product matrix C = A‘B is to be computed. The array configuration for

this computation is shown in Figure 4.8(c), for W1=W2=4. This algorithm

is the same as proposed by Kung in [31] for efficient band-matrix

multiplication. It can be noted that the data-flow is in three

dimensions in this case. This array can be realized by setting switches



Figure 4.8.(c) Band Matrix/ Band Matrix Multiplication.
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to support diagonal data-flow. Control bits for the switching cells are

chosen to be 011 (from Table 4.1), and the control vector for computation

cells is 011 (from Figure 4.4). The computation cells realize the

following functions.

DRA <-- G ; E <-- DRA ; G <-- D + DRA‘F ; C <-- F .

The following control vector configures the MRAP to realize Knng’s

hexagonal systolic array for narrow band-matrix multiplication:

Control Vector (in HEX digits):

6DB6DB6DBGDBGDBGDBGDBGDBGDB

4 .2 .4 RFCURSIVE FILTERING

An MRAP containing nxn computation cells can be partitioned into n

independent, one-dimensional, linear systolic arrays. A one-dimensional

linear array consisting of n processors can be used to solve an n'th

order recurrence problem. Recursive digital filtering in signal

processing is an example where a recurrence equation is used. An n'th

order recurrence problem is defined as follows:

Given x0, 1-1, . . . , x-n+1, compute x1, x2, . . . , defined by

xi = Fi(xi-1, . . . , xi-n): for i > O; (4.3)

where Fi is a given recurrence function.

For a large class of recurrence functions, an n'th order recurrence

problem can be solved in real time on n linearly connected processors,

such that 8 n°' xi can be obtained at the output at regular time
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intervals [31]. A linearly connected broadcast array with n processors

and one buffer can solve the n'th order recurrence problem [21]. Figure

4.8(d) shows the array configuration for implementing recursive filtering

algorithm. This algorithm is given in detail in [21], where it is shown

that this algorithm is Optimal in the limit. The coefficients of the

recursive equation are preloaded into the computation cells. The control

vector for this configuration is as follows:

Control Vector (in HEX digits):

30C30C26186184C30C309861861

4.3 PERFORMANCE ANALYSIS AND COMPARISON

Performance of an array processor can be measured by the efficiency

of parallel algorithms executed on it. Huang and Abraham have developed

a criteria for measuring the efficiency for parallel algorithms, based on

the Space-Time-Bandwidth complexity [21]. Bandwidth, here, refers to the

data transfer bandwidth and is defined as the maximum. number of words

which have to be transferred through the I/O ports of the boundary cells

in a time unit (a time unit is the period of time a processing element

performs an operation). Let

P number of required processing elements;

T turnaround time of the computation;

B = data transfer bandwidth;

0

ll number of operations in the computation task;

I = number of input and output operands transferred.
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It can be seen from the above, that for any computation task,

T 2 C/P, (4.4)

and

T 2 I/B. (4.5)

Thus,

PBTz 2 CI. (4.6)

The product of P, B, and T’ is the Space-Time-Bandwidth complexity

of an algorithm executed in a processor array, and the product CI is the

lower bound of this complexity. A measure of the efficiency of an

algorithm is then defined as

R = PBT’lCI.
(4-7)

A lower value of R means a better performance and R=l means an

optimally implemented algorithm.

In the performance analysis of any semisystolic system, we must

consider the time delays associated with the rippling of logic when

deriving performance parameters such as throughput and response time.

This is important because semisystolic systems do not meet the design

criterion of extensibility as systolic systems do. We can not cascade

many semisystolic arrays together to form an arbitrarily large array

because the clock cycle time, which depends upon the delay due to

rippling, may asymptotically become arbitrarily large. In the MRAP

structure, data ripples through the switching cells (SCs) whenever global
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computations are required, as in case of semisystolic algorithms. We

take into account the time delay due to this rippling in our analysis by

defining the clock cycle time of the MRAP as follows:

where,

T = clock cycle time for the MRAP ,

Tc = computing time for a computation cell (CC) ,

Tr = prOpagation delay of a switching cell (SC) .

m = maximum number of SCs in a ripple path .

In pure systolic systems, throughput and response time are derived

in terms of the computing time of a computation cell (To). For most of

the matrix arithmetic algorithms, the computation cell is a multiplier

accumulator 3° To approximately equals the time required for one

multiplication and one addition. Data transfer bandwidth of the array is

defined as the maximum number of words transferred through the I/O ports

of the array boundary in one time unit Tc. We can 'ritg the clock cycle

time for the MRAP in terms of To time units as follows:

T = l + m‘k, where k = Tr/Tc- (4.9)

In the remainder of this section, we analyze the performance of the

MRAP for implementing various matrix multiplication algorithms and

compare this performance with other existing systolic computing

structures. This analysis also gives us the upper bounds on the size of
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specific semisystolic arrays, beyond which they do not remain efficient

because of extremely long clock periods. Space-Time-Bandwidth complexity

of an algorithm is used as a criterion for evaluating the performance of

an array proce 880T.

4.3.1 DENSE-MATRIX/DENSE-MATRIH MULTIPLICATION

For dense-matrix multiplication, as described in Subsection 4.2.1.

the total number of operations in the computation task is N' and the

number of operands is 3N3. So the lower bound on the complexity of this

algorithm is

CI = 3N‘. (4.10)

The cmplexity of the algorithm when implemented on the MRAP, as

shown in Figure 4.8(a), is derived as follows:

P = N2 ,

B = 2N .

T = 3N*(1 + kN) .

and

PBT‘ = 18N‘*(l + no“. (4.11)

Therefore,

R.= 6‘(1 + kN)’. (4.12)
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The same computation, when executed on the systolic array in [31],

gives the following complexity and performance:

P = 3N3 ,

and

PM”3 = lSO‘N‘ . (4.13)

Therefore,

R = 50. (4.14)

Comparing Equations (4.12) and (4.14), we get

6‘(1 + kN)2 < 50 ,

01'

kN ( 1.9. (4.15)

For a value of k = 0.05, the MRAP algorithm performs better for N < 38.

4.3.2 BAND-MATRIX/DENSE-MATRIX MULTIPLICATION

For band-matrix/dense-matrix multiplication, as described in

Subsection 4.2.2, the number of computations, C, approaches N'W’W and the

number of the input and output operands, I, approaches 3‘W‘N. So the

lower bound on this algorithm is
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CI = sN’w3 . (4.16)

The algorithm, as implemented on the MRAP, is shown in Figure

4.8(b). The Space-Time-Bandwidth (PBT‘) complexity of this algorithm can

be derived as follows:

P = W“ ,

B = 3W ,

T = (N + 2W)'(1 + kW).

and

PBT‘ = 3113.01 + 2W)"(1 + kW)“. (4.17)

Therefore, from Equations (4.7). (4.16) and (4.17).

R = (N + 2W)‘*(1 + HIP/N“.

and,

R = (1 + km“, when N >> II. (4.18)

The performance of the systolic algorithm, given in [31] for solving

the same problem, can be derived as follows:

P = (N + W)‘W 8 NOW when N >> W ,

B = (2/3)'(N + 2*W) a 2N/3
P

ram,

and
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PBT‘ = 32N‘W/3. (4.19)

Therefore,

R.= 32N1/9W’. - (4.20)

Performance of the MRAP can be compared with Kung's systolic array

by looking at Equations (4.18) and (4.20). It can be observed that the

performance of the MRAP is not affected by the size N of the matrix,

whereas the performance of systolic array degrades with the size N of the

input matrix. The MRAP performs better as long as the result from

Equation (4.18) is less than that from Equation (4.20). Comparing

Equations (4.18) and (4.20), we get the following condition when the MRAP

performs better:

(1 + H1)2 < (32/9)‘N’/W’.

and,

kW ( 1.9‘N/W, when N >> W. (4.21)

Since typically k << 1 and W << N, the above condition is easily

met. For an array involving 16-bit integer multiplier-accumulator (MAC)

cells, if a 16 x 16 multiplier array and an accumulator are used in the

MAC cell, the multiply-accumulate time is approximately equal to 60

gate-delays (assuming that a full-adder has a propagation time equal to

three gate-delays) [55]. The propagation delay in the switching cell is

equal to three gate-delays (see Figure 4.5). So, the value of k is

approximately 0.05, which means that the condition when the MRAP performs
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better is W < 38‘N.

4 .3 .3 BAND-MATRIX/BAND-MATRIX MULTIPLICATION

For band-matrix multiplication, as described in Subsection 4.2.3.

the MRAP is configured as a pure systolic array and the algorithm given

in [31] is implemented on it. .The performance of the MRAP, for this

computation, is analyzed as follows:

"
U ll

WI . WI:

w

I

- 2. (W1+W3) /3 a

T‘=3N‘(l + k).

So,

PBT’ = 6‘(W1+wz)ew1sw3sN3‘(1 + k)’, (4.22)

and

CI = 2‘(W1+W2)awlswthz. (4.23)

Therefore,

R = 3*(1 + k)“. (4.24)

For the systolic array in [31], the value of R is 3. So, the

performance of the MRAP nearly equals that of Kung's systolic array,

which is very efficient for narrow band-matrix multiplication. The MRAP

performance is degraded by a factor of (1 + k)“, due to the prOpagation

delay in the switching cells. Since the value of k<<1, this degradation

in performance is insignificant.
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4.4 FAULT TOLERANCE

The MRAP architecture incorporates fault tolerance in its design due

to its prOperties of reconfigurability and programmability at individual

cell level. In MRAP, switch settings are used for data routing among

computation cells. An MRAP architecture can be viewed as many

reconfigurable pipelines working together. If a cell in the array fails,

the array might be able to be reconfigured to bypass the faulty cell with

data now flowing through the properly functioning cells. The performance

of the array may be degraded, but the entire system does not fail. It is

assumed here that the fault detection is done by the host and faulty

cells can be identified. This is possible in MRAP structure due to the

presence of LSSD latches and Scan-In and Scan-Out lines which provide

both observability and controllability in the system. Inclusion of data

registers in the scan path provides testability for the functional cells

and also facilitates the initialization of data registers within the

cells at the time of preprocessing the chip.

Some examples shown below demonstrate fault tolerance capability of

the MRAP. Figure 4.9 shows computation cells of the MRAP, configured to

implement linear arrays to solve recursive filtering problems of fourth

order. 'F' indicates a faulty cell, '8' shows a spare cell and ’U'

denotes a used cell. If a fault occurs in a computation cell, the column

containing that computation cell shuts down and other working cells in

this column become spares, as shown in Figure 4.9(a). Figure 4.9(b)

shows how spare cells can be used to mask out two other faulty cells A

and B such that the array has the same performance as with only one
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fault. More faults may cause more columns to be shut down, but that will

provide even more spare cells to mask out further faults. So the system

can fail eventually but with graceful degradation.

When two-dimensional algorithms are implemented on the MRAP, the

fault tolerance becomes more difficult and degradation occurs at a higher

rate. This is so because data. flows in multiple directions and the

output from a faulty cell will be propagated in multiple pipelines which

share that computation cell. In this case, a single faulty cell will

cause the shut down of all the pipelines which share that cell. All the

working cells in the shut down pipelines become available as spares.

Figure 4.10 illustrates how data-flow can be reconfigured to mask out

faults due to failed cells A and B.

4.5 SUMMARY AND DISCUSSION

In this chapter, we presented the design and analyzed the

performance of a VLSI compatible two-dimensional mixed systolic array

architecture called multipurpose reconfigurable array processor (MRAP).

This array processor can implement efficiently various systolic and

semisystolic algorithms. Level-sensitive scan design is employed to

achieve reconfigurability and multifunctionality. This design approach

provides fault tolerance capabilities in the mixed systolic array

architecture.

In general, the MRAP performs better than systolic arrays for

specific semisystolic algorithms. We develOped expressions for

performance of the MRAP when executing various algorithms. These
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Figure 4.10. Fault Telerance in the MRAP for 2-Dimensional Algorithms
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expressions determine the conditions under which a certain algorithm can

be efficiently implemented on the MRAP according to a specific

performance criterion. The performance of MRAP degrades with the array

size for semisystolic algorithms because the propagation delay due to the

switching cells becomes more significant in large arrays and tend to

dominate the execution time. . However, when systolic algorithms are

implemented on the MRAP, the array performance is not affected by the

size. It can be seen from the expression deve10ped for the performance

of band-matrix multiplication algorithm in Section 4.3, that the

degradation occurs by a factor of (1+k)’. This degradation is quite

insignificant because the degradation factor is a constant, and k<<1.

This is a relatively small penalty on the performance in view of the

reconfigurability and algorithmic flexibility that we achieve with this

architecture.

Since amplitude levels are regenerated in passing through the

switching cells, no broadcasting bus or large bus drivers are required in

the implementation of the MRAP. In general, there are two main

disadvantages associated with data broadcasting. First, large broadcasts

can not be implemented in a single communication cycle, because the

broadcast delay can dominate the execution time of an algorithm. Second,

large drivers are required for broadcasting in order to drive the

combined load of all the cells connected to the broadcasting bus. In

MRAP, broadcasting is implemented through switching cells and each

switching cell output has to drive a load of only one gate input. As

switching cells are used for reconfigurability purposes, the elimination

of broadcasting bus or drivers come as an additional benefit in the MRAP
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design.

In the next chapter, we present a mathematical model for

reconfigurable mixed systolic array processors and a step-by-step

procedure to automatically generate control vectors required for

configuring the array to implement a specific algorithm. The procedure

is illustrated by mapping the finite impulse response filtering algorithm

and the priority queue algorithm into the linear reconfigurable systolic

array.



CHAPTER.5

ALGORITHM IMPLEMENTATION ON MIXED SYSTOLIC ARRAYS

In the previous chapters, we presented a methodology for loading and

implementing the configuration control structure in mixed systolic array

processors, to establish a desired interconnection pattern required for

algorithm, implementation. This methodology employs LSSD techniques, and

the control structure for a particular configuration is loaded into the

array as a binary control vector in a bit-serial fashion. Efficient

implementation of algorithms on MSA processors requires exploitation of

parallelism in the algorithm and mapping of the algorithm communication

structure into the MSA processor interconnection structure. This chapter

deals with the issues of relating MSA's architectural model with parallel

algorithms, and investigating procedures for generation of control code

required for implementing algorithms on MSA architectures. In this

chapter, we present a mathematical formalism for modeling reconfigurable

mixed systolic array architectures and a methodology for reconfiguring

the array, by mapping the communication structure of an algorithm into

the interconnection structure of the array. A step-by-step procedure is

presented to map a given algorithm into the mixed systolic array

architecture and then generate the control code required to implement the

corresponding interconnection structure. The mapping procedure is based

on the time and space transformations of data dependence vectors of the

algorithm. These transformations describe the data-flow and timing of

93
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the algorithm and dictate the interconnection structure required for its

implementation.

Sections 5.1 and 5.2 present mathematical models for reconfigurable

MSA processors and parallel algorithms, respectively. A procedure for

mapping algorithms with MSA processors is given in Section 5.3. And,

this procedure is used in Section 5.4 to map two sample algorithms, the

finite impulse response (FIR) filtering algorithm and the priority queue

algorithm, into the linear reconfigurable systolic array.

5.1 A MODEL FOR RECONFIGURABLE MIXED SYSTOLIC ARRAYS

A reconfigurable mixed systolic array processor is a S-tuple

(9n, D: Fc, F5, R), where

Qn<: Zn is the index set of the array processor;

D is a transformation on On to B = (0. 1}. i.e., D: On --9 B

describes if an index corresponds to a switching cell or a

computation cell;

Fe is a set of the functions a computation cell can perform;

F5 is a set of interconnection configurations of a switching cell;

and

R e znxr, r e I, is a matrix of cell-to-cell interconnection

primitives.

This mathematical model is general enough to represent conventional

systolic arrays with fixed structures as well as multipurpose

reconfigurable arrays containing programmable interconnection cells and

multifunctional arithmetic and logic units.
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The index set an refers to an n-dimensional array structure. Most

of the practical arrays are either linear (n = 1) or two-dimensional

(n = 2). Each cell in the array is represented by its index a a Zn, such

that for all a a On,

q=lqo.q1.. . . ,an;qiez,o$i$n.

D is a mapping on the index set gm to a set of binary digits {0.1}

such that D specifies every cell in the array to be either a computation

cell (CC) or a switching cell (SC). So, for all 5 e an

D(§) 0 if 3 corresponds to a SC,

1 if 3 corresponds to a CC.

Fe is a set of computations (arithmetic or 10gical) performed by the

computation cells.

F3 is a set of all interconnection configurations of a switching

cell.

For VLSI structures, we can assume that all CCs and SCs are

identical in order to preserve modularity and extensibility. In a case

where cells are not identical, a surjective mapping fc can be defined

from Q9 t0 Fe such that fczan "> Fe, where fc associates a subset

f°(a)§; Fc for index '3 a Q“. R is a matrix of cell-torcell

interconnection primitives such that R = [ ?i :2 :3 . . , 'Ep], where

ij, 1 $ j $ p, is a column vector indicating directed communication link.

If E} e R, then for ‘ny E s on,'a is connected to a' = q +‘?j if 3' a On

and is connected to an I/O port if E' i QR.

VLSI arrays with fixed structures, such as in [4,32,35], can be

represented by the above model with D(§) = 1 for all a a On and Fs being

an empty set. In the remainder of this section, we present two examples
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to illustrate how the above model represents reconfigurable array

structures.

EXAMPLE 531.1

The Linear Reconfigurable Systolic Array (LRSA): described in

Chapter 3 and shown in Figure 5.1, is represented as (02, D, F0, F5, R)

where

QZ={‘«i=(q1,q3)T:Oicn<N,o-<q2<2);
(5.1)

D(§) = q2 mod 2 ;

(5.2)

Pa = {(01<"' 11. 02 <-- 12. 03 <--A * Iz + B ‘ 11 + 13>,

(01 (—- B, 02 (-- A t 11 + 12, B <-- 11).

<01 <-- Is. 03 <-- Is).

(01 <_.. 11, 03 <-- 13, R <-- R AND (11 HQ 13).

‘01 <-- Ii. 02 <-- Ii ’ 12 + A)); (5.3)

Fs = {(33 = 51. S4 = $2), ($3 = 82. S4 = 31)}: (5-4)

R = (5.5)

For an LRSA with N=4, the 02 and D are as follows:

02 = {00. 1o, 20, 30, 01, 11, 21, 31. 02, 12. 22. 32};
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Figure 5.1. The Linear Reconfigurable Systolic Array (LRSA) Architecture.
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91 O 1 2 3

q2

o o o o o

D<q1. qz) = 1 1 1 1 1

2 o o o o 
EXAMPLE 5.1.2

The Multipurpose Reconfigurtable Array Processor (MRAP), described

in Chapter 4 and shown in Figure 5.2, is represented as (02, D, Fc, F
S!

R) where

92 = [{Er(21.2j)} U {3%(21+1.23+1)}. OiiiN—1. oijin—i}; (5.6)

NE) 3 (‘11 + 1) mod 2;
(5.7)

R = (5.8)

Fe and F5 can be written, in a fashion similar to Example 5.1.1, as

the set of computations performed in the computation cell and the set of

interconnection configurations in the switching cell, respectively.

5.2 A ADDEL FOR ALGORITHMS

It is important to describe a mathematical model for algorithms in

order to map them into the mixed systolic arrays. We consider the

algorithm model defined in [47], which contains information about the

algorithm index set, the computations performed at each index point, the
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data dependencies which dictate the algorithm communication requirements

and the algorithm input and output variables.

An algorithm A is a 5-tuple

A = (In, C, G, X, Y) (5.9)

where,

Jn<: Zn is an index set;

C is the set of computations of A;

G is the set of dependencies, i.e. a relation from Zn to the set of

all pairs (v, '3) where I e In and v is a variable such that

v <-- CO"), 3' e I“.

X is the set of input variables of A;

Y is the set of output variables of A such that if a variable v a Y

then v e X or v (-- C(3) for some I e In.

The set of output variables is a subset of the union of the sets of input

variables and the generated variables as a result of some computation

C(T). G is a znxq matrix whose columns are dependence vectors. A

dependence vector ‘3 is defined as‘d =‘3 - 3' if a variable v is used by

C(3) and generated by C(T'), i.e. 3 is the index point at which v is

~'

used and J is the index point at which v is generated. The dependency

matrix G is then written as

G 3 [Ki 3; . . . 'Eq]. (5.10)
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The conditions for the validity of the above model are given in

[15]. This model can conveniently represent the numerical algorithms

normally written in the form of nested loops in conventional high-level

language. A distinct class of algorithms are those for which data

dependencies are constant, i.e. the Computations repeat at different

index points over the entire index set. Algorithms belonging to this

class are easier to map into VLSI arrays [30]. We present two examples

to illustrate how the dependence vectors are generated for the algorithm

model. Sometimes, a reindexing of variables is required to get constant

dependence vectors. This will be demonstrated in Example 5.2.2, for the

finite impulse response filtering algorithm.

EXAMPLE 5 .2 ,1

Consider the algorithm described as follows:

FOR i = 0 TO N

FOR k = 0 TO N

a(i,k) = a(i-1,k-1) ‘ b(i-1,k)

b(i,k) = a(i-1,k) + b(i,k+1)

END k:

END 1 5

The model for the above algorithm is as follows:

12 = ((11.j2): 0 i j1.j2 4 N};

C = {C(51,j2) : a(j1,j2) = a(j1-1:32-1) ' b(31-1.j2).

b(11.j2) = 4(31-1.52) + b<31»12+1)}3
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In this example, at every point in the index space an addition and a

multiplication are performed. The dependencies which dictate the

algorithm communication requirements can be described as difference

vectors of index points where a variable is used and where it is

generated. The dependence vectors are as follows:

31 = (1 1)T , between variables a(i,k) and a(i-1,k-l);

32 a (1 0)T , between variables a(i,k) and b(i-1,k);

33 = (1 o)T , between variables b(i,k) and a(i-1,k);

34 a (o -1)T , between variables b(i,k) and b(i,k+1).

The dependency matrix G is given below. A label below each column

points out the generated variable pertaining to the dependence vector

comprising that column.

G = 131 32 33 E4] =

M

II

{<a(-1.12-1), b(-1.j2)): 0 4 12 6 N11}

*
4 I

- 13(51.j2).b(j1.j2)= o $ 11.12 ‘ N1.

EXAMPLEpggggg

In this example, we illustrate how a Finite Impulse Response (FIR)

filtering algorithm can be represented by the above model and in Section

5.4, we shall use this model to map the algorithm into a linear

reconfigurable systolic array.

A Finite Impulse Response (FIR) Filter can be defined as
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M

yi 3 E. 3j ‘ Xi-j . 0 i i. (5.11)

where X = [1,“, , , x0, x1, . .}, is the input to the filter and

(aj; j=0, 1, . . , M}, are filter coefficients. Y = {yil is the outPut

of the filter. We can write the following algorithm for the above

problem.

FOR.i = 0 TO N

FOR j = 0 TO M

Y(i.j) = y(i.j-1) + a(j) ' 1(1‘1)

END j:

END i:

In order to get dependencies, we first complete all the missing

indices in all the variables. It can be noticed in the above algorithm

that x(i-j) may be taken from the calculation of y(i-1,j-l) as

y(i-1,j-l) = y(i-1,j-2) + a(j-l) ‘ x(i-1-j+1).

Similarly for (i-1,j) calculation, a(j) is used. So, we can write

the algorithm as follows:

FOR i = 0 TO N

FOR j = 0 TO M

y(i,j) = y(i,j-1)+a(i-1,j)‘x(i-l,j-l)

a(i,j) = a(i-l,j)

x(i.j) = x(i-1,j-l)

END j;
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END i;

For the above algorithm, data dependencies can be found to be (0,1)T

for y, (1,0)T for a and (1 l)T for x. The dependency matrix can be

written as

G = (5.12)

So, the model for FIR filtering algorithm is ( 12, C, G, X, Y), where

12 = {(j1,j2); oi jl in, o i j2 L M}; (5.13)

C = [C(j1,j2);y(j1,j2)=y(j1,j2-1)+a(j1—1,j2)’1(j1‘1:j2‘1)}3 (5.14)

0 1 1

G :3
(5.15)

1 0 1

X = [x(j1-1,j2—1); OijliN, oi j2 i M}; (5.16)

Y = {y(j1,M); o i jl L N}. (5.17)

5.3 MAPPING ALGORITHMS INTO MIXED SYSTOLIC ARRAYS

Mapping an algorithm into a reconfigurable array processor, such as

a mixed systolic array, requires the following three tasks. The first
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task is to find all the dependence vectors in the algorithm and a time

transformation on the index set of the algorithm such as to determine a

valid execution ordering on the algorithm for VLSI implementation. The

second task is to select a space transformation 8 whose interconnection

structure can be implemented on the reconfigurable MSA by pr0gramming the

switching cells. Finally, the control code is assigned to all the cells

in the array and the control vectors are generated to be loaded into the

array through LSSD scan-in line. This procedure provides the capability

of automatically generating the configuration control vectors for

implementing an algorithm on a mixed systolic array processor. Various

candidate valid space and time transformations are considered and the one

that is suitable for the given array processor, is selected.

Definitionlgggél:

.M is a set of control codes for the switching cells in the array.

Assuming that a switching cell can have m different interconnection

configurations, then we write

M = {31. m2, . . . , mm] where mi 8 I, l 5 i 4 m.

mi is the control code for the ith interconnection configuration of the

switching cell, in the set F5. Elements of sets M and F3 have one-to-one

correspondence. A possible set M for the switching cell shown in

Figure 1(b) can be M= [0,1], where a 0 implies a straight configuration

(83 3 S1. S4 = $2) and a 1 implies an exchange configuration

(33 8 82. S4 = $1).
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Definition ggggg:

‘N is a set of control codes for the computation cells in the array.

Assuming that a computation cell can perform n different functions, then

N = {31, n2, . . . . an} where ni a I, l i i 1 n.

Elements Of sets N and Fe have a one-to-one correspondence.

Definition 5,3.3:

.E is a set of unit vectors in the n-dimensional vector space of the

index set SHCh that E = {01: 0<i<p}, where p is the number of

communication links associated with a CC and ei is the direction of the

communication link. A bGSiS {31, u2, . . , an} for the vector space can

be selected such that every communication link can be represented by the

linear combination

ei = ali*u1 + azi‘uz + . . . + ani'un.

For a 2-dimensional array in a mesh connected network, one possible basis

is u1 = (1,0) and u2 = (0,1). For example, for Figure 5.3. we can define

r «T

l 1 e1

0 1 C2

-1 .1 e4

0 :1 05

h 1 1.1 e6  

Definition.§4§;4:

.E is a matrix of direction vectors for all communication links of a

computation cell to its neighboring computation cells.

H 3 [h1 h2 . . hr].

where hi: 1 i i 1 r, is a direction vector of a communication link and r
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Figure 5.3. A Computation Cell with Communication Links.
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is the total number of communication links connecting a computation cell

to its neighboring computation cells.

Definition‘ghgéiz

An LSSD scan path is defined as a seguence W from set A into the

index set 0“ of the array. A is a finite set of positive integers, A =

{1,2, . . ,N}, where N is the total number of cells in the array

processor. So,

W=1W1"2"3' . o . 'wN}"i8Qnand18A.

W is determined by the physical implementation of the LSSD scan path on

the chip layout. The control code for wN is entered first and that for

'1 is entered the last.

5.3.1 PROCEDURE FOR MAPPING ALGORITHM INTO MIXED SYSTOLIC ARRAYS

We present a step-by-step procedure for generating the

reconfiguration control vector for a given MSA structure, starting from a

highrlevel language representation of an algorithm. An explanation of

the procedural steps follows the procedure.

1. Find the set of data dependence vectors for all variables

after pipelining the variables in the algorithm. Form the

dependency matrix G, where each column in G corresponds to a

data dependence vector.

2. Find all time transformations T which can map the index set of

the algorithm In into the unidimensional time space. An optimal

transformation is that which minimizes the execution time.
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Select the Optimal transformation for the first iteration and

select a different transformation in each iteration. Conditions

required to find valid transformations and the optimal

transformation are given in the explanation following the

procedure.

Find a space transformation, S, by solving the set of

diOphantine equations

S . G = H . K. (5.18)

K is a matrix which indicates the utilization of the

interprocessor communication links. H = [kji]: such that

kji )0 (5.19)

and

Z kji 1 T°3i. (5.20)

If an S can be found, proceed to step 4;

otherwise go to step 2 to select another time transformation.

Form the transformation matrix A =[j],

If A is a nonsingular matrix, proceed to step 5;

otherwise, go to step 3.

The product AoG contains the information about the data-flow and

timing of the algorithm implemented on the array processor.
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5. Map every computation cell in the array to Fc and every

switching cell to F5,

6. Find the control vector, from the LSSD sequence W and the

control codes defined for each cell. This binary vector is

serially loaded into the array through the LSSD scanrin line to

reconfigure the array for implementing a specific algorithm.

EXPLANATION 0F.I§§ PROCEDURE

Step 1 finds the data dependence vectors of the algorithm and forms

the dependency’ matrix G. This can be done in an automatic manner for a

large class of algorithms as shown in [30,45].

Step 2 determines an execution ordering by mapping the index set of

an algorithm by a linear transformation T such that T:.J’n --) 1'1, where

1'1 is a one-dimensional array consisting of positive integers. So, a

valid execution ordering should satisfy the condition

12211 > o for all 31 a G. (5.21)

T is a (1xn) vector which maps the index set of the algorithm into the

unidimensional time space. Total execution time Of the algorithm is

given by

t a max[T°(31‘32)+11 _1 q
2

° , e In and d. . .min [T . Hi] for J J 18G (5 22)

An Optimal transformation is the one which minimizes t in the above

equation. Optimal transformation is tried in the first pass, but if it
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~ cannot be mapped then other suboptimal transformations are tried.

Step 3 is probably the most computationally intensive since a system

of diOphantine equations has to be solved. Existence of a valid

transformation 8 indicates that the algorithm can be mapped on the mixed

373t°1i° array model (Qn’ D» F0, F3, R). 8 contains the information

about the communication structure of the algorithm. Dimensions of the

utilization matrix K are rxq, where r is the number of communication

links from one CC to its neighboring CCs in different directions and q is

the number of dependence vectors in the matrix G. Directions of

data-flow correspond to those unit vectors in H, for which the rows Of K

has at least one nonzero element. Rows of K with all zero elements

correspond to the directions in which the communication will not take

place. Matrix K can be generated by combining the patterns satisfying

Constraints (5.19) and (5.20), as columns of X.

Step 4 gives the information about the timing and data-flow of the

algorithm. Product T.G gives the speed at which different variables

travel and the product S-G describes their directions of travel.

Step 5 determines the configuration of each switching cell and the

computation performed by each computation cell. This gives the control

code to be stored in each cell. Sets M and N are used in conjunction

With F5 and Fc to determine the appropriate control codes.

Step 6 generates the final reconfiguration control vector by

concatenating the control codes for the cells in the sequence such that

the binary vector loaded through the LSSD scan path will put the

appropriate codes in all the cells.
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5.4 EXAMPLES

In this section, we illustrate how the above procedure is used for

generating configuration control vectors for implementing two algorithms,

the finite impulse response filtering and the priority queue, on the

linear reconfigurable systolic array (LRSA) described in Chapter 3. The

structure of the LRSA is shown in Figure 5.1, and the mathematical model

of this array is given in Example 5.1.1. We assume that the computation

cell of the LRSA can perform a compare and exchange Operation, in

addition to the functions described in Equation (5.3). Compare and

exchange is the basic Operation needed in a priority queue algorithm.

This operation, fol, is described as follows, with reference to Figure

5.1(b):

fc1 = (01 <-- Maximum(11. 12. I3)»

02 <-- Medium(11. 12. I3).

03 <-- Minimum(I1. 12. 13)). (5.23)

The set of control codes for the computation cells, N, consists of

six elements;

N = {1,2,3,4.5.6].

where codes 1 through 5 imply the same computations as described in

Chapter 3, and code '6' implies the compare and exchange Operation

described above. The set of control codes, M, for the switching cell

consists of only two elements, since we assume flhat only two

configurations of a switching cell are implementable; straight and
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exchange. Assume M'= [0.1]. where a 0 implies a straight configuration

(83:31, 84:83) and a 1 implies an exchange configuration (S;=S;, S.=S;)

(see Figure 5.1(b)). The control codes for all the cells are eventually

loaded in their binary form into the corresponding registers. Each

switching cell has a one-bit control code register and each computation

cell has a 3-bit control code register. For the LSSD scan path, as shown

in Figure 5.4, the sequence W can be written as

W = [30,31,32,22,21,20,10,1l,12,02,01,00]. (5.24)

5.4.1 FINITE IMPULSE RESPONSE (FIR) FILTERING ALGORITHM

We demonstrate how an FIR filtering algorithm is mapped on the

Linear Reconfigurable Systolic Array shown in Figure l. The high-level

language description Of the FIR filtering algorithm and derivation Of its

dependency matrix G are given in the Example 5.2.2.

Now we follow the above procedure step by step, for generating the

configuration control vector required to implement the FIR filtering

algorithm on the LRSA.

£222 1:

From Section 5.2, the dependency matrix for FIR filtering algorithm

is

G = (5.12)

1 0 1

y a x
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Steplgz

Many time transformations T exist which give a valid execution

ordering. We choose T== [1 l]. which satisfies the condition T31 ) o for

any Hi 3 G and minimizes the execution time of the algorithm.

Steppi:

Solve the set of diOphantine equations

S . G = H . K . (5.18)

H is a set of direction vectors, which indicates the CC-to—CC

communication links. For the case of a linear array, like the LRSA,

H = [1 0 ~11. (5.25)

A 1 in H implies that the data flows towards right, a -1 implies the

Opposite direction for data-flow and a 0 implies that data stays at its

location for later use. The utilization matrix chosen to solve the above

equations is

  

P1 0 17

x = o 1 o (5.26)

o o o .
I. .1

K is selected such that

kji )0 (5.19)
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and

E], kji 4 1‘31. (5.20)

The only solution for S, with matrix K as in Equation (5.26), is

[0 l]. A row consisting of all zero elements indicates that

communication link in the corresponding direction is not required. In

the matrix K described above, the last row is a zero row. This row

corresponds to the column of H containing the direction vector -1. SO no

data-flow occurs in this direction.

§£en.i=

The transformation matrix is

A = =
(5.27)

As A is a nonsingular matrix, we have a valid transformation. New

the data-flow and timing Of the algorithm can be determined by looking at

th° product A.G. First row Of A-G corresponds to the timing and the

other rows correspond to the directions in which different variables will

travel.

AoG = = = (5.28)
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The first row indicates that variable x travels twice as slow as

variable y and both x and y travel in the same direction as seen from the

second row of the above matrix. The element of the. second row

corresponding to variable a is 0, which indicates that variable a does

not travel, but stays at the same location. Since x travels half as fast

as y, a delay equal to one time step is introduced in the path of x at

each computation cell. The algorithm implementation for this

transformation is shown in Figure 5.5. This is the same algorithm as

proposed by Hang in [32].

.§£sns.i aae.§=

The function performed by a computation cell is given as (see Figure

5.1(c))

(01 <-- B, 02 <--A . 11 + 12, B <_- 11):

and the switching cells are in straight configuration. The control code

for 98°h computation 6011 is 210 = (010);, and for each switching cell,

the control code is (0). The LSSD sequence W is given as

W = [30,31,32,22,21,20,10,11,12,02,01,00}. (5.24)

So the configuration control vector, V, is

.
4 ll [0, 010,0,0,010,0,0,010,0,0,010,0};

(00100001000010000100)3;

(21084)1‘, (5.29)
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V is loaded serially with the right most bit first, through the LSSD

scan-in line shown in Figure 5.4.

5 .4 .2 PRIORITY m:

A priority queue is an abstract data type based on the set model

with the Operations INSERT and DELETEMIN, as well as the operation for

initialization of the data structures [1]. The elements of the set A

have a priority function defined on them; for each element a, the

priority of a, p(a), is a real number from some linearly ordered set.

Operation INSERT(a,A) replaces the set A with the set A U [a] and the

operation DELETEMIN returns some element of the smallest priority and

deletes it from the set.

Let A be the sorted list of elements in the queue, A =

{31,a2, . . . ,an}, such that al contains the smallest priority element

and an contains the highest priority elements. Another array B =

{P1,b2, . . . bn} contains the elements which are being sorted. We

define two constants 'max' and 'min’, such that 'max' is higher than the

highest possible priority and 'min' is lower than the least priority that

can exist. Variables 30 and b0 are input variables.

The sequential algorithm can be described by the following

procedure:

Procedure INSERT(x)

begin
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for j = 0 to n

for i = 0 to n

“ii: = med(b:, a1, ai+1)

a1” = mad. 31 a...)

1:1 = max(bI. 81» a1+1)

end i

end j

end (INSERT);

Now we show how this algorithm is implemented by following the

procedure given in Section 5.3.

Stepgl:

There are nine data dependence vectors between the generated and the

used variables. The data dependence matrix is then formed by combining

these vectors as follows:

   

a1+1 1314-1 ‘1

la1 ai+1 hi] [“1 ai+l b11 [91 a1+1 b11

1 1 1 1 1 1 1 1 1 J

G = ------------------------- -. (5 030)

l 0 1 1 0 1 0 -1 0 1

Step‘;

Find a time transformation T satisfying the Constraint (5.21). One

T which satisfies this constraint is T‘= (l 0). The execution time for

this value of T is found from Equation (5.22), to be N+l time steps for

inserting a number in the queue of size N. This indicates that the

inserted element moves at a rate of one position per time step. This
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transformation also minimizes the execution time, hence is an optimal

transformation. This can be verified by solving for the minima of

Equation (5.22) with respect to variables t1 and t2, where 1': (t1 t2).

51222:

Solve the diOphantine equations S . G = H . K to find a suitable S.

Matrix H is the same as in the previous example, i.e., H = [1 0 -1].

Size Of the utilization matrix K will be 3x9 because there are 9 data

dependence vectors in the matrix G and there are three possible

directions of data flow. 8 = [0 1] satisfies the above equation, for the

following utilization matrix K

1 0 1 l 0 l O 0 0—

K = 0 0 O O O 0 0 l 0 (5.31)

  
010010101

I.

So, the space transformation is S = [0 l].

§tep‘i:

The transformation matrix is

A is a nonsingular matrix, so it is a valid transformation.

T-G 1 1 1 1 l 1 1 1 1

A-G = = (5.32)

8-6 1 O 1 1 0 1 0 -1 0 .
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The row correSponding to S-G implies that variable a1 should travel

in the direction of the unit vector (-l), i.e., towards left, and the

variables 81+1 and bi+1 should travel towards right. The systolic array

formed by this transformation is shown in Figure 5.6. This array is

similar to the systolic priority queue given in [41].

§£222 a 229.2:

The control code for each computation cell, to perform the compare

and exchange operation, is (6)1° = (110),. The control code for each

switching cell is 0. From the LSSD sequence W, we can write the

configuration control vector, V, as

.
< ll [O,110,0,0,110,0,0,110,0,0,110,0];

(01100011000110001100)2

(6318C)1‘, (5.33)

5.5 SUMMARY AND DISCUSSION

We presented a mathematical formalism for modeling reconfigurable

mixed systolic arrays and a step-by-step procedure for generating the

control code required for implementing algorithms into mixed systolic

array structures. The procedure presented in this chapter provides a

facility for automating the reconfiguration process and the design of

mixed systolic array architectures. Starting from a high-level language

description of an algorithm, this procedure generates the final

configuration control vectors required to be loaded into the array

through the LSSD scan path in a bit-serial manner. One might argue that
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X' = min (X,Y,Z) ; Y' = med (X,Y,Z) ; Z' = max (X,Y,Z)

Figure 5.6. A Systolic Priority Queue.
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data dependency matrix cannot be easily derived; but research in

optimizing compilers has shown that it can be done in an automatic manner

for a large class of algorithms [30].

The basic idea of this chapter is to relate the mixed systolic

array's architectural model with the parallel algorithms implemented on

the array to facilitate their implementation. Data dependencies in an

algorithm determine the communication structure required for its

implementation. Linear time and space transformations of the algorithm

are selected from the data dependency matrix of the algorithm and the

interconnection structure of the mixed systolic array. For a given mixed

systolic array structure, the optimal time transformation is first chosen

in order to minimize flhe total execution time. If a valid space

transformation does not exist to implement the optimal time schedule, a

suboptimal time transformation is chosen for which a valid space

transformation exists. Algorithms with constant data dependence vectors

are easier to map on array structures and result in simple data-flow

patterns. For some algorithms, such as the fast Fourier transform (FFT)

and the bitonic sort, a remapping transformation is required in order to

increase the efficiency Of the algorithms [30]. Transformations for

algorithms with tree communication geometry, such as searching algorithm,

are not known.

The concepts presented in this chapter are not restricted only to

mixed systolic arrays; they can also be used for formalizing the

reconfiguration processes for some other polymorphic multiprocessor

architectures. Several research issues emanate from this work and need

further investigations. Procedures should be developed which allow the
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user to obtain sets of valid transformations for other classes of

algorithms with arbitrary index sets and nonconstant data dependencies.

Second, this approach should be extended to silicon compilation of

reconfigurable arrays to generate masks for an Optimal or near-Optimal

array which can implement algorithms in a given set. Finally, further

research is needed to define a unifying performance index for

reconfigurable arrays to measure the overall array performance taking

into consideration the speed, the reconfiguration process complexity, the

cell's complexity and applicability Of the array.



CHAPTER 6

CONCLUSIONS

6.1 SUMMARY

This research work investigated structured methodologies for

designing and mapping parallel algorithms into a class of reconfigurable

multiprocessor architectures called the mixed systolic array (MSA). The

primary objective of this research was to investigate procedures for

loading and implementing the configuration control structure in MSAs, and

relate the architectural model of the MSA with parallel algorithms

implemented on these architectures. The following specific tasks were

addressed in this work:

1. Investigate the procedures for loading and implementing the

distributed control structure required to establish a desired

interconnection pattern on the MSA structure.

2. Relate the MSA's architectural model with the parallel

algorithms implemented on the array and investigate the

procedures for implementing algorithms into MSA structures by

systematically generating the required control code for

reconfiguration.

The work completed under each of the above tasks is summarized below.

, 126
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In Chapter 3, we presented a serial loading procedure for

implementing the distributed control structure required for

reconfiguration in MSAs. This procedure employs LSSD techniques, and

loads the control structure for a particular configuration into the array

through the LSSD scan path, as a binary vector, in a bit-serial fashion.

The main advantage of this aproach is that the overhead due to additional

pinouts is limited to only three or four pins. Also, serial loading of

the control structure reduces the overhead in terms of additional

interconnections on the chip due to the control hardware. Chapter 3

presented the design of a linear reconfigurable systolic array

architecture, which is statically reconfigurable to realize any of the

following: a filtering array, an FIR filtering array, a pattern matching

array, and a Discrete Fourier Transform (DFT) array. Shift register

latches (SRLs) are used to hold the control information for setting up

the interconnections configuration and selecting the functional mapping

of computation cells. Both the data flow through the array and the

functions executed in the computational cells are established by serially

loaded cOnfiguration control vector.

In Chapter 4, we extended the approach presented in Chapter 3, for

loading the MSA configuration control structure, to two-dimensional MSA

structures. Design of an MSA based processor, called the multipurpose

reconfigurable array processor was presented. This arhitecture

implements both systolic and semisystolic algorithms, and incorporates

fault tolerance in its design. The performance of MRAP, taking into

account the total computation time and the data-transfer bandwidth, is

analyzed for specific algorithms, and it is demonstrated, by way of
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examples, how MRAP can efficiently implement different systolic and

semisystolic algorithms. This two-dimensional array could also be

configured as many independent linear arrays to implement independent

algorithms involving one-dimensional linear recurrences such as finite

impulse response (FIR) filtering.

The preperties of reconfigurability and programmability at

individual cell level, lead to fault tolerance capabilities in the MSA

architectures. This was discussed in Section 4.4. A two-dimensional MSA

architecture can be viewed as many reconfigurable pipelines working

together. If a cell in the array fails, the array might be able to be

reconfigured to bypass the faulty cell with data now flowing through the

prOperly functioning cells. Performance of the array may be degraded,

but the entire system does not fail, and the system achieves a graceful

degradation prOperty.

Efficient implementation of algorithms on VLSI structures requires

exploitation of parallelism in the algorithm and mapping of the algorithm

communication structure into the processor interconnection structure.

Chapter 5 presented a step-by-step procedure for implementing a given

algorithm into the MSA structure by generating the control code required

to reconfigure the array. The mapping procedure is based on time and

space transformations of the data dependence vectors of the algorithm.

These transformations provide a description of the data-flow and timing,

and dictate the interconnection structure required to implement the

algorithm on the array. Starting from a highrlevel language description

of an algorithm, this procedure generates the final configuration control

vectors required to be loaded into the array through the LSSD scan path
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in a bit-serial manner. The basic idea of Chapter 5 is to relate the

mixed systolic array's architectural model with the parallel algorithms

implemented on the array to facilitate their implementation. Data

dependencies in an algorithm determine the communication structure

required for its implementation. Linear time and space transformations

of the algorithm are selected from the data dependency matrix of the

algorithm and the interconnection structure of the mixed systolic array.

For a given mixed systolic array structure, the optimal time

transformation is first chosen in order to minimize the total execution

time. If a valid space transformation does not exist to implement the

Optimal time schedule, a suboptimal time transformation is chosen for

which a valid space transformation exists. Algorithms with constant data

dependence vectors are easier to map on array structures and result in

simple data~flow patterns. To illustrate the methodology and explain the

reconfiguration procedure, two sample algorithms, the finite impulse

response (FIR) filtering algorithm and the priority queue algorithm, are

mapped into a linear reconfigurable systolic array.

The design methodologies investigated in this research broaden the

scope of systolic architectures by achieving reconfigurability,

algorithmic flexibility, partitionability and fault tolerance in MSAs.

In addition, these methodologies preserve VLSI design attributes, such as

locality of communication in order to -avoid long and irregular

interconnections, modularity in order to reduce the design time and cost,

extensibility in order to enhance the computing power and simplicity of

control. The LSSD technique is employed for loading and implementing the

control structure required for reconfiguration of MSAs. This scheme
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offers low overhead in terms of additional pinouts and extra hardware

needed for implementing the MSA control structure. The procedure

presented in this research, for mapping algorithms onto MSA

architectures, presents a formalism for algorithm implementation and

design of reconfigurable MSAs. This procedure can be used for designing

MSA processors to implement a pre-defined set of algorithms, and it can

also be used for implementing a new algorithm on a given MSA processor by

generating the control vector required for its reconfiguration.

6.2 FUTURE RESEARCH

The concepts presented in this thesis are not restricted only to

mixed systolic arrays; they can also be used for formalizing the

reconfiguration processes for some other polymorphic multiprocessor

architectures. Several research issues emanate from this work and need

further investigations. First, procedures should be developed which

allow the user to obtain sets of valid transformations for other classes

of algorithms with arbitrary index sets and nonconstant data

dependencies. Second, the approach, presented in Chapter 5, should be

extended to silicon compilation of reconfigurable arrays to generate

masks for an optimal or near-optimal array which can implement algorithms

in a given set. Third, further research is needed to define a unifying

performance index for reconfigurable arrays to measure the overall array

performance taking into consideration the speed, the reconfiguration

process complexity, the cell's complexity and applicability of the array.

Finally, research should be done to develop CAD tools for MSAs at the
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architectural description level, and integrate these tools with other CAD

systems supporting circuit diagram and physical layout levels of design,

to create an integrated system design environment where masks can be

generated for optimal or near-optimal MSA processors.



APPENDIX



APPENDIX A

A COMPUTER-AIDED DESIGN FACILITY FOR MIXED SYSTOLIC ARRAYS

The rapidly growing complexity of digital systems and the

ever-increasing scale of integration on silicon chips provide a challenge

to deve10pers of computer-aided design (CAD) systems, to create an

integrated system design environment with high-level CAD tools. More

complex systems require a greater need for CAD tools to do the design

task in a cost effective way. In a tap-down hierarchical design

approach, it is common practice to structure the design process of a

computer system into the following steps [17]:

1. Design and description of architecture,

2. General circuit diagram,

3. Design of boards and integrated circuits,

4. Techn010gy process and production.

Although commercially available computer-aided engineering workstations

provide a sound environment with integrated tools for the logical and

physical design levels, they are not suited to support the high-level

design of hardware and functional system architectures. High-level CAD

tools are, therefore, needed to support the system designer at higher

levels in the design hierarchy, such as design of functional system

architecture from system behavior specifications.

132
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The main motivation behind this work is to provide the designer of

MSAs with a facility to interactively develop an MSA structure for a

given set of user-specified attributes, such as mixing density and array

geometry, and to simulate the execution of algorithms on MSA processors

at the register-transfer level. This appendix describes a computer-aided

design facility for modeling and simulating mixed systolic arrays. The

CAD facility serves as a high-level design tool which supports the design

of MSA architectures. This facility deve10ps the structural model of an

MSA by interactively interrOgating the user about various attributes of

the MSA structure, such as mixing density and array geometry. In

accordance with the user-specified attributes, the system generates a

model for the MSA structure and displays it on the user's graphics

terminal showing the relative positions of all functional cells in the

array. Defining of the desired communication structure is then done

interactively. The system also performs register-transfer level MBA

simulation of the algorithms, observes the data-flow patterns in the

array and helps evaluate the throughput of the system.

The CAD facility, described here, is a useful tool for designing and

programming MSA architectures. It provides a design environment that

facilitates mapping of parallel algorithms into the reconfigurable MSA

architecture and automatic generation of reconfiguration control code

required for algorithm implementation. The register-transfer level

simulation is used to validate the MSA architecture and the

reconfiguration control structure during the design phase. This work is

a step forward in the direction of automated design of reconfigurable

multiprocessor architectures involving multiple pipelines. The next
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section presents a system description of the CAD facility for modeling

and simulating MSA architectures.

A.1 DESCRIPTION OF THE SYSTEM

In this section, we describe a CAD facility that supports the design

of MSA architectures through interactive modeling and simulation. This

facility serves as a high-level CAD tool, which develops a structural

model of the MSA from user-defined architectural attributes of the array,

such as mixing density and array geometry. In addition, this facility

performs register-transfer level MSA simulation of algorithms, observes

the data-flow patterns and helps evaluate the throughput of the system.

This system provides the following facilities to the designer of the

MSA architecture.

1. Generation and graphic display of the structural model of a

regular MSA when the array attributes, such as mixing density

and array geometry, are user-specified.

2. Storage of interconnection specifications, in form of a list of

records, which are interactively specified by the user on the

graphics terminal.

3. Options to interactively modify or delete selected array cells.

4. Reconfiguration of the MSA by entering reconfiguration control
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information.

5. Register-transfer level simulation of algorithms.

Figure A.1 shows a diagrammatic representation of the basic

structure of this facility. As can be seen, the system consists of four

sets of data files and seven programs. A brief description of each

system block is given below.

STRUCTURE GENERATOR.

This program generates the structural model of the MSA for a

specified mixing density and array size, and maps the index points of the

array’s index set into the set of available functional cells. The output

of the structure generator program is used by the plotting program and

the simulator.

STRUCTURE EDITOR.

This prOgrmn is used to edit the MSA structure displayed at the

user's graphics terminal. Two routines, namely PRUNE and MODIFY, are

used for this purpose. PRUNE eliminates any extra boundary cells not

required in the MSA implementation. User can move the cursor and select

the cell to be eliminated. MODIFY selects a cell position within the

array and changes the cell type at that location. This program is robust

in the sense that it can sense an improper selection made by the user,

i.e., a location where no cell is present, and prompt the user about the

mistake. This program provides a facility for designing irregular

architectures, as well as for including special I/O processors at the
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array boundary.

PLOTTING PROGRAM.

This program plots the representation of the MSA structure as

defined by the user-specified attributes and developed by the structure

generator program. The plot is produced on a graphics terminal, where

the user can interactively edit the MSA structure or specify the

interconnections. A hard copy of the plot can be obtained at any stage

in the design.

INTCON.

This set of files contains list of records of interconnections

specified for specific MSA structures. The simulator uses these

specifications to determine the data-flow for the array. One record

specifies one interconnection link and contains information about the

input and output cell coordinates and their respective local ports. A

detailed discussion of the storage schemes for interconnection links is

given later in this section.

INTERCONNECTION EDITOR.

This program modifies and specifies the interconnections among the

array cells via a graphics terminal. This program decodes the screen

coordinates of the graphics terminal into the array's index set points

and generates a record for each specified interconnection to be stored in

the INTCON. This program can be extended to check the legality of an

interconnection link specified by the user.
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CELLS' GRAPHIC DESCRIPTION.

This set of files contains the graphic representation of all the

cells of which a specific MSA is composed. Each file contains sequence

of graphics commands which define the shape and size of a cell.

Different symbols are used to represent different types of cells.

CELLS' FUNCTIONAL DESCRIPTION.

This set of files contains the functional description of computation

cells and switching cells. A file pertaining to a specific type of

computation cell contains the data-transfer statements for processing

incoming data at the local ports of the cells. In case of a switching

cell, a file contains information regarding the one-to-one correspondence

of the set of control codes for switching cells with various

interconnection configurations. The simulator program uses the

functional description while performing the execution of an algorithm.

RECONFIGURATION CONTROL VECTORS.

This set of files contains various control vectors, each capable of

reconfiguring an MSA structure to implement a specific algorithm. The

configurations Of a specific MSA, and the algorithms implemented on it,

are determined by its reconfiguration control vectors. User can add new

control vectors in this set of files, which when loaded into the array,

establish the computation and communication structure of the array.
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SIMULATOR.

This program evaluates the execution behavior of the MSA

architecture by determining the state of the machine after each time step

when simulating execution of algorithms. Once the MSA architecture and

the communication structure are defined by using the structure generator

and the interconnection editor, a particular MSA configuration can be

achieved by loading' the corresponding control vector. The simulator

merely calls two routines to simulate the processor Operations and

interprocessor communication at each time step. One routine is called

CMPCEL, which simulates the input to output functional mapping for all

ports of each computation cell as defined by the control code bits in

each cell. The second routine is called SWTCEL, which transfers the data

available at the output ports of the computation cells to the input ports

of appropriate cells as determined by the control code stored in the

switching cells. So, at each time step the two routines, CMPCEL and

SWTCEL, are called and executed to simulate the MSA behavior.

In the remainder of this section, we describe how the MSA Structure

Generator generates and displays the MSA structures with regular

hexagonal geometry when the basis mixing density is specified. Although

there exists a large number of mixing profiles which yield a regular

array structure, only a few of them are practical for real algorithm

applications. The hexagonal array geometry, first used for band-matrix

multiplication algorithm [31], is an important structure because of its

utilization of planar communication and its high packing density. The

smallest hexagonal array comprises seven cells and serves as a basis for

hexagonal MSAs, as larger array structures can be grown from this basis.



140

The mixing density 0f the basis, Pb, is called the basis mixing density

and can be one of the following:

Pb = i/7 , i = l, 2, 3, . . , 7.

Figure A.2 shows the bases corresponding to three different mixing

profiles. MSAs grown from the bases are intended for computation use.

The density of a regular hexagonal MSA is a function of the basis mixing

density, and these relations are given in [6]. The structure generator

program determines the index set 9“ of the MSA and the transformation

matrix D, which is a mapping on the index set tO the set {0, l}, where a

0 indicates a SC and a 1 indicates a CC.

In order to get a hexagonal geometric pattern on the display a

screen coordinate transformation is performed which, of course, is

transparent to the user. Each cell (CC or SC) in the array is labelled

by an ordered pair (x,y) where x and y are the values of the X and Y

coordinates of that cell position. In order to convert the rectangular

coordinate system, where X-axis and Y-axis are at an angle of 90 degrees,

into a hexagonal coordinate system, where both axis are at an angle of

120 degrees, the following transformation matrix is calculated:

     

r_ _ r- "1' -- -

l.732 -l.732 X Xnew

. :3

L1 1 _. bYd _Tnm

 

Xna' and Ynew are the new screen coordinates for hexagonally patterned

display.



and (C) pb = 3/7.

With (a) Pb = 1/7, (b) pb = 3/7:

(b) (C)
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Interprocessor communication structure is defined by specifying all

interconnections among desired MSA cells. The problem of specifying

these interconnections is synonymous. to the problem of defining and

representing a directed graph (or a digraph). One approach which could

be considered here, is to represent the digraph by an adjacency matrix.

For a graph with p points there is defined an adjacency matrix A=[ai'j]

in which ai,j=1 if there is an arc from vertex vi to vertex Vj and ai,j=0

otherwise. This approach, although quite comprehensive, is not chosen in

our system mainly because of the following reasons. In certain

implementations, all of the available cells may not be used, and hence

the indegrees and outdegrees of some vertices in the digraph will be

zero. This results in rows and columns containing all 0’s, which will

slow down the simulation because the whole adjacency matrix needs to be

exhaustively scanned after each clock cycle to simulate the communication

structure. Another reason is that MSA structures employ short and

regular communication geometry, so a vertex in its digraph is only

connected to a few of its neighbors, whereas adjacency matrix takes. into

account all possible arcs from any vertex to every other vertex in the

vertex set. Hence the adjacency matrix approach does not match well with

the class of digraphs we are considering here. Other approaches of

representing digraphs such as Reachability matrix and Distance matrix are

also not suitable for MSA communication graph representation and

simulator implementation.

The scheme we have employed here to represent the digraph and hence

the communication structure of the array, is to store in a data file a

list of all the arcs (or edges) in the graph. Each arc is specified in
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the list as a record which contains the originating cell's coordinates

and its output port as well as the terminating cell's coordinates and its

input port. For example in case of a hexagonal array, the are shown in

Figure A.3 will be stored as the following record

( 3 m n 6 k l ),

where first and fourth entries refer to the input and output ports

respectively such that AIN=l, BIN=2, CIN=3, A0154, BOThS and COT56. The

remaining four entries in the record refer to the coordinates of the

incident vertices of the arc.

Defining of the desired communication structure is done

interactively using a CAD graphics terminal. Two possible modes are

available to the user at this stage. In the 'Cursor' mode, a cell can be

selected by moving the cursor anywhere inside the cell and pressing any

key. In this fashion user can enter the desired interconnections on the

terminals, which are converted into the record format and saved in the

data file containing the list of arcs. In the 'Text' mode, user types in

the coordinates of the incident cells and specifies the input and output

ports of the cells. It can be possible in future, to make provision in

the program for checking the legality of the specified connections and

prompt the user in case of an illegal specification.
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neighboring cells.
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A.2 DISCUSSION

We described a CAD tool, which supports the design of MSA processOrs

at the architectural design and description level. The register-transfer

level simulator is used to validate the MSA architecture and the

reconfiguration control structure during the design phase. The system

was implemented on a PRIME-750 computer, for hexagonal array geometry,

and the simulation was performed, for the band-matrix multiplication

algorithm, as given in [31], on a hexagonal MSA with a basis mixing

density of 1/7. A more general implementation of the system can include

other array geometries, such as rectangular or triangular, in the array

structure generator program. In order to implement the band-matrix

multiplication algorithm, the switching cells and selected computation

cells should be in straight and bypass configurations, respectively.

That is, for these cells,

A0T = AIN:

BOT = BIN:

COT = CIN-

The active computation cells in the MSA, perform the inner product step

function, given by

A0T = AIN:

BOT = Em:

C
CT = AIN " BIN + CIN-

The data communication with the outside world takes place at the MSA

boundary only. The input and output is controlled by the simulator

program. Since the timing for data input and output depends heavily on
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the algorithm to be simulated, a separate I/O routine is required for

each algorithm. In case of the band-matrix multiplication algorithm,

considered here, each cell performs active computation at every third

time step. The simulator output gives the timing for the data input and

output at the MSA boundary cells. The simulation results provide the

status of each cell after each time step. This feature helps observe the

data-flow and find throughput of the MSA.

The work, presented here, is a step forward in the direction of

automated design of reconfigurable multiprocessor architectures involving

multiple pipelines. For further research, this high-level CAD tool can

be integrated with other CAD systems supporting circuit diagram and

physical layout levels of design, to create an integrated system design

environment for generating masks for MSA processors.
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