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ABSTRACT

ALGORITHM IMPLEMENTATION AND DESIGN OF RECONFIGURABLE

MIXED SYSTOLIC ARRBAYS

By

Anwar Khurshid

One drawback of systolic architectures is their fixed-flow structure
for data streams, vwhich 1limits the type of algorithms or applications
that can effectively be supported by such architectures. This thesis
presents a methodology for algorithm implementation and design of a class
of reconfigurable multiprocessor architectures called the mixed systolic
array (MSA). In the MSA architecture, switching cells are mixed with
computation cells to achieve flexibility in the data—flow patterms. This
architecture broadens the scope of systolic arrays by achieving
reconfigurability, algorithmic flexibility and fault tolerance. The
level sensitive scan design (LSSD) technique is employed to load and
implement the distributed control structure required to establish a
desired interconnection pattern on the MSA. The control structure for a
particular configuration is loaded into the array as a binary vector im a
bit serial fashion. This approach enhances testability and incorporates

fault tolerance in the MSA structures.



Efficient implementation of algorithms om VLSI structures requires
exploitation of parallelism in the algorithm and mapping of the algorithm
communication structure into the processor intercomnection structure.
This thesis presents a general mathematical model for formally
representing reconfignrable MSA architectures and a step—by-step
procedure for implementing a given algorithm into the MSA structure by
generating the control code required to reconfigure the array. The
mapping procedure is based on time and space transformations of the data
dependence vectors of the algorithm. These transformations provide a
description of the data—flow and timing, and dictate the interconnection
structure required to implement the algorithm on the array. The
procedure presented in this work, will provide a useful tool in the
design automation of reconfigurable MSAs., To illustrate the methodology
and explain the reconfiguration procedure, two sample algorithms, the
finite impulse response (FIR) filtering algorithm and the priority queue
algorithm, are mapped into a linear reconfigurable systolic array. A
computer—aided design (CAD) facility is also presented, for modeling and
simunlating mixed systolic arrays. This CAD facility serves as s
high—-level design tool which supports the design of MSA architectures,
and provides the designer of MSAs with a facility to interactively
develop an MSA structure for a given set of nser-specified attributes aand
simulate the execution of algorithms om MSA processors at the

register—transfer level.
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CHAPTER 1

INTRODUCTION

Rapid advancements in  VLSI technology demand innovative
computational algorithms and hardware structures which fully exploit the
technology to achieve high throughput rates and efficient resource
utilization, Efficient implementation of algorithms om VLSI structures
requires exploitation of parallelism in the algorithm and mapping of the
algorithm communication structure into pipeline, vector or array
processor interconnection structures, The main issues in VLSI design are
those of modularity, simplicity of communication and control, and
extensibility. A modular design with a large number of identical modules
organized in a simple regular fashion is an ideal structure for VLSI.

In recent years, systolic arrays have been at the focus of attention
of many researchers as pipelined multiprocessor structures suitable for
solving a variety of computationintensive and real-time problems
requiring high throughput [2,4,31,32,41]. In the systolic concept, YLSI
devices consist of arrays of intercomnected primitive processors with
distributed control and a high degree of modularity. Each processor
operates on a string of data that flows regularly and rhythmically
through the array. Systolic arrays feature the important properties of

modularity, regularity, locality of interconmection and highly pipelined



mul tiprocessing. However, one drawback of systolic architectures is
their fixed-flow structure for data streams, which 1limits the type of
algorithms or applications that can effectively be supported by such
architectures. Therefore, it is desirable to have reconfigurability in
the data—~flow structure and flexibility in the algorithm implementation
to make more general purpose arrays.

The mixed systolic array (MSA) is a class of reconfigurable
multiprocessor architectures, introduced by Chang and Fisher [6-8]. 1In
this architecture, control elements are mixed with computing elements
according to & certain mixing profile and the data—flow patterns are
determined by the distributed control structure stored in the control
elements. Classes of algorithms with similar data requirements may be
executed on the same array by merely presetting the control elements at
load time. MSA architectures broaden the scope of systolic arrays and at
the same time preserve VLSI design attributes such as locality of
communication, modularity, extensibility and simplicity of control.
While Chang and Fisher developed, characterized, and evaluated the basic
computing model for MSAs [6], they did not present procedures for loading
and implementing the distributed control structure required to establish
a desired interconnection pattern on the MSA. Also, no formal
methodology was presented for implementing a given algorithm into the MSA
structure by systematically gemerating the control code required for its
reconfiguration,

The goal of this research is to investigate structured methodologies

for mapping parallel algorithms into reconfigurable MSA architectures,



and implementing the distributed control structure required for the
algorithm implementation. Another goal is to exploit the emerging VLSI
and Wafer—Scale Integratiom (WSI) techmologies by designing computer
architectures, which employ modularity in structure, simplicity and
regularity in communication and control paths, and extensibility in
design. From a more genmeral standpoint, this research broadens the scope
and enhances the applicability of special-purpose VLSI array processors,
and at the same time contributes to the understanding of the problems and
nature of a parallel processing approach to computation. The specific
tasks are outlined as follows:

1. Investigate the procedures for 1loading and implementing the
distributed control structure required to establish a desired
interconnection pattern on the MSA structure.

2. Relate the MSA’s architectural model with the parallel
algorithms implemented on the array and investigate the
procedures for implementing algorithms into MSA structures by
systematically generating the required control code for

reconfiguration.

This research investigates structured methodologies for designing
and implementing mixed systolic arrays. The Level Sensitive Scan Design
(LSSD) technique [12,25,57] is employed to 1load and implement the
distributed control structure required to establish a desired
interconnection pattern on the MSA. The control structure for a
particular configuration is loaded into the array as a binary vector in a

bit-serial fashion., This approach eahances testability amd incorporates



fault tolerance in the MSA structure. This thesis presents a general
mathematical model for formally representing reconfigurable MSA
architectures and a step-by-step procedure for implementing a given
" algorithm into the MSA structure by generating the comtrol code required
to reconfigure the array. The mapping procedure is based on time and
space transformations of data 4ependence vectors of the algorithm. These
transformations provide a description of the data-flow and timing, and
dictate the interconmection structure required to implement an algorithm
on the array. A computer—aided design facility for modeling and
simulating MSAs is designed and partially implemented. This facility
helps the designer of MSAs to interactively develop an MSA structure for
a given set of user-specified attributes, such as mixing density and
array geometry, and to simulate the executionm of algorithms om MSA
processors at the register—transfer level.

The procedures presented in this thesis, for mapping algorithms onto
MSAs and for implementing the control structure mnecessary for
reconfiguration, provide a nuseful tool in the automated design of
reconfigurable MSAs, For instance, in order to design an MSA to
implement a set of algorithms, one can start with a high—level language
description of algorithms and use the approach presented in this thesis
to find a suitable MSA which can implement these algorithms. Usually,
many valid time and space transformations are gemerated in the procedure,
providing the designer flexibility to choose the ones which map easily on
the array. The procedures are especially useful during the application

of an MSA processor. VWhenever a new configuration of the MSA is desired



for a new algorithm, the host computer can use the procedure to generate
the reconfiguration control vector for the algorithm to be implemented.
This control vector can be loaded into the MSA processor to reconfigure
the array on—the—fly. The procedure can also be wused to determine
whether or not an algorithm can be implemented on a given mixed systolic
array.

Throughout, we use symbols I and Z to denote the set of all natural
numbers and the set of all integers, respectively. AD denotes the nth
cartesian power of a.given set A, i.e.,, the set of all possible ntuples
of elements of A. Chapter 2 reviews some background information and
related research work regarding systolic architectures, parallel
algorithms, and LSSD techniques. In Chapter 3, design of a
one—dimensional MSA architecture, called the Linear Reconfigurable
Systolic Array (LRSA), is presented which employs LSSD techmniques to
achieve reconfigurability and multifunctionality. This approach is
extended to two-dimensional arrays in Chapter 4, which describes a
Multipurpose Reconfigurable Array Processor (MRAP) architecture for
implementing various systolic and semisystolic algorithms. Also,
performance of the MRAP is analyzed in Chapter 4, for various
matrix-multiplication algorithms based on their Space-Time—Bandwidth
complexity. Chapter 5 presents a mathematical formalism for modeling
reconfigurable MSA architectures and a methodology for reconfiguring the
array by mapping the communication structure of an algorithm into the
interconnection structure of the array. Two sample algorithms, the

finite impulse response (FIR) filtering algorithm and the priority queue



algorithm, are mapped into a linear reconfigurable systolic array in
order to illustrate the reconfiguration procedure. Chapter 6 contains a
summary of this research work and some thoughts for future research
possibilities, Finally, a computer—aided design facility for modeling

and simulating MSAs is described in Appendix A.



CHAPTER 2

BACKGROUND

2.1 SYSTOLIC ARRAYS

Several types of VLSI architectures have been proposed in recent
years, such as the systolic arrays [31-35], the VWavefront Array
Processor [39], mixed systolic arrays [6-8] and the Configurable Highly
Parallel (CHiP) computer [53,54]. Most of these parallel architectures
attempt to match the underlying hardware to specific algorithms for fast
and efficient execution. Systolic array architectures are particularly
attractive for VLSI implementation because of their regular, short and
simple communication geometry [44,45]. This section discusses the
characteristics of systolic array architectures, systolic algorithms,

and semisystolic design.

2.1.1 SYSTOLIC ARRAY ARCHITECIURES AND ALGORITHMS

Systolic array architectures are multiprocessing systems in which
data is pipelined among processors by using next—neighbor communication.
Systolic algorithms are defined as mathematical algorithms which are
implementable with systolic architectures, A number of special purpose
systolic arrays, suitable for VLSI and wafer-scale integration (WSI),

have been proposed for solving various computation—intensive problems



[4,18,35,38]. Their applications range from numerical problems, such as
signal and image processing and matrix arithmetic, to nonnumerical
tasks, such as searching and sorting, graph algorithms and relational
databases.

A sytolic array comprises a network of intercomnected cells, where
each cell is capable of pqrforming a small set of operations and has
some local memory and control logic. Strictly mnext-neighbor type of
connections constitute the interprocessor communication structure and
data moves through the architecture in a synchronous pipelined manner.
Communication with the outside world takes place only at the array
boundary, possibly through some special I/0 processors. The following
design criteria for systolic arrays have been suggested: First, the
design should use only a small number of different types of simple
cells. Second, these cells should be interconnected by a network with
short, regular connections, Third, multiple use of each input data item
should be made in order to achieve high computation rate and throughput
without requiring high memory to array bandwidth. And, finally,
computational algorithms should be employed which exploit both data
pipelining and parallel execution.

The principles of systolic array design are illustrated here by
considering two examples of systolic arrays. A linearly connected
systolic array, shown in Figure 2.1 [31], uses W processing elements to
multiply an NxN band-matrix, with bandwidth W by a vector of N slements.
The basic processing element is called the inner—product step processor
(see Figure 2.2), and consists of three internal registers RA, RB and

RC. This processing element performs the inner-product operation






C(~— C+ A *B; where A, B and C are the contents of the registers RA,
RB and RC, respectively. The time to compute the entire multiplication
is 2N+¥W time  nunits. The input and output vector elements march in
opposite directions, so that each input vector element meets all the
output vector elements before it 1leaves the array. The same
inner-product step processor ;s used in a hexagonal systolic array to
implement band-matrix multiplication. Figure 2.3 illustrates the
multiplication algorithm for two NxN band-matrices with bandwidths Wl
and W), respectively [31]. This algorithm requires WqxW7 inner-product
step processors and takes 3N+min(wl,w2) units of time for the
computation. Several other computation—intensive algorithms can be
solved on systolic arrays such as LU decomposition, triangular linear
systems, convolution, filter, and discrete Fourier transforms.

Many implementation altermatives exist for systolic array
processors providing different interconnection topologies and degrees of
flexibility., According to their degree of flexibility, systolic array

processors can be classified as follows [34]:

1. Single-purpose systolic arrays [2,4,38]. In this approach, a
systolic array is built to implement only one algorithm and a
different array needs to be designed for each new algorithm.
This approach is reasonable if the performance of the processor

is of ultimate importance and the processor is to be used in

large quantities despite the fact that it is single—purpose.

2. Multi-purpose systolic arrays [58]. A systolic array processor
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of this type can implement a predefined set of algorithms. The
control overhead for providing necessary flexibility should be
kept small and the VLSI attributes, such as modularity and

locality of communication, should be preserved in the design.

Non—-programmable building blocks [29]. Building-block
processors are constructed which can execute a few predefined
commonly used functions. These blocks are connected to form a
variety of systolié array processors of different sizes and

shapes.

Programmable building blocks [14]. The building block is a
programmable processor which can be programmed to implement a
large family of systolic cells. This approach 1is not very
efficient  because of the overhead for supporting the
programmability. However some systolic algorithms involving
complicated data dependencies, such as greatest common divisor
computation [2], can be effectively implemented on this type of

arrays.

Programmable systolic arrays {3,71. In this approach,
programmable processing elements are mixed with other control
units in a certain manner. These arrays are more flexible than
the multi-purpose systolic arrays in the sense that the
processing elements are programmable and their interconnections

can be configured by software control before a computation
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starts,

Various interconnection topologies for systolic arrays can be
defined according to the number of computations performed for each
input/output operation. First, for two-dimensional systolic arrays
shown in Figure 2.4(a), O(n) processing elements perform computations in
each cycle, whereas 0(]:7) " boundary cells perform input/output
operations. Thus the computation over input/output ratio is OQ[;.).
Systolic arrays for matrix arithmetic algorithms are included inm this
class [37]. Second interconnection topology can be defined as
degenerate two—dimensional systolic arrays shown in Figure 2.4(b), in
which O(n) processing elements perform computations and O(n) elements
perform input/output operations. So the computation over input/output
ratio is 0(1) in this case. Systolic arrays for solution of triangular
linear systems and orthogonal transformations are examples of
degenerated two—dimensional arrays [19,37]. Finally, 1linear or
one—-dimensional systolic arrays shown in Figure 2.4(c), perform the
input/output via the two processing elements at the ends of the array,
and thus the computation over input/output ratio is O(n) for am array of
size n. Systolic arrays for filtering or pattern matching come under
this category 1[32,37]. Linear arrays may be preferred over
two-dimensional arrays in situations where the input/output bandwidth,
between the host system and the systolic array, is a major 1limitimg

factor for achieving high performance.
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Figure 2.4. Some common interconnection schemes for systolic arrays:
(a) two-dimensioral systolic arrays,
(b) degenerate two—dimensional systolic array,
(¢c) one-dimensional systolic array.
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2.1.2 SYSTOLIC AND SEMISYSTOLIC DESIGN

Systolic array architectures do not allow any global data
communication and all communication between processing elements is
clocked through a register. Semisystolic array architectures, on the
other hand, allow global data communication and a data item may be
broadcast to many processing elements simultaneously. Mathematically,
the structure of a systolic system S(n) is given by a machine graph
G = (V,E) of n interconnected Moore machines, where the vertices in V
represent the machines and the directed edges in E represent
interconnections between the machines [41]. The machines operate
synchronously by means of a common clock, and time in the system is
measured as the number of clock cycles. A semisystolic system is
similar to a systolic system except that some of the machines may be
Mealy machines with the condition that the output edges from Mealy
machines may not form a cycle in the machine graph [41]. Mealy machines
can implement data broadcasting, whereas Moore machines can not, Figure
2.5 shows an example of a semisystolic array which can implement data
btoadcastiﬁg. In this example, the combinational 1logic for Mealy
machines is a simple wire from input to output. The exclusion of Mealy
machines in systolic systems makes the clock period independent of the
system size,

Semisystolic systems dc not meet the design criterion of
extensibility as systolic systems do. That is, many semisystolic arrays
can not be cascaded together to form an arbitrarily large array, because
the clock cycle time, which depends upon the delay due to broadcasting

or rippling of logic, may asymptotically become arbitrarily 1large. In
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Figure 2.5. A semisystolic system can implement broadcasting by
Mealy machines [41].
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general, there are two main disadvantages associated with data
broadcasting., First, large broadcasts can not be implemented in a
single communication cycle, because the broadcast delay can dominate the
execution time of an algorithm. Second, large drivers are required for
broadcasting in order to drive the combined 1load of all the cells
connected to the broadcastipg bus. Two techniques, retiming and
slowdown, are described in [41] and [42] for converting a semisystolic
design into a systolic ome by eliminating broadcasting. For many
systolic algorithms, some fraction of the processors are always idle at
a given time. For example, in FIR filtering, half of the processors are
idle at each clock tick and in band-matrix multiplication, two third of
the processors are idle at each clock tick [44]. Leiserson proposed
coalescing and interlacing techniques for improving processor
utilization [41]. ©For specific algorithms, introduction of data
broadcast concept results in more efficient parallel algorithms and
better processor untilization [9,10,21]. Huang and Abraham [21] have
compared the efficiencies of systolic and semisystolic arrays for matrix
multiplication algorithms. They concluded that, for specific
computations, semisystolic arrays perform better than systolic arrays

according to the Space—Time—-Bandwidth complexity criterion,

2.2 RECONFIGURABLE MIXED SYSTOLIC ARRAYS

The mixed systolic array (MSA) is a class of reconfigurable
multiprocessor architectures, first introduced by Chang and Fisher

[6-8]. In this architecture, control elements are mixed with computing
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elements according to a certain mixing profile and the data—flow
patterns are determined by the distributed comntrol structure stored in
the control elements. The computing elements are programmable
multifunctional arithmetic and logic processors, whereas the control
elements are programmable interconnection networgs which establish the
communication structure of tpe array. Classes of algorithms with
similar data requirements may be executed on the same array by merely
presetting the control elements at load time. In this thesis, we refer
the computing element and the control element as the computation cell
and the switching cell, respectively.

The mixed systolic array provides programmable interconnection
structure by way of mixing switching cells with computation cells in a
systolic fashion, Its main objective is to broaden the scope of
systolic arrays by achieving reconfigurability, algorithmic flexibility
and fault tolerance. Another objective is to preserve the design
attributes of modularity, uniformity, locality of communication and
simplicity of control, in order to exploit the very large scale
integration (VLSI) and wafer scale integration (WSI) technologies. The
computation cells, in the MSA, are programmable multifunctional
arithmetic and 1logic processors, which process the incoming data
according to the control codes stored in their control registers. The
switching cells are programmable interconmection mnetworks which
establish the interprocessor communication structure in the array to
meet the communication requirements of the algorithms implemented. A
switching cell directs the data—flow among its mneighboring computation

cells according to the interconnection configuration defined by its
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control code register. An MSA executes a specific algorithm according
to the control codes stored in individual cells, The control code
registers of computation cells dctetmine'the computational structure of
the MSA and their contents are determined by the basic computational
requirements of the algorithm. The control code registers of switching
cells establish the commun?cation structure of the MSA, and their
contents are determined by the communication requirements of the
algorithm. In order to configure an MSA to implement a specific
algorithm, the control code corresponding to that particular algorithm
is 1loaded into the array, and the array performs the executiom in a
synchronous manner, Whenever a new application of the same MSA is
needed, a mDpew control <code <can be loaded into the array for its
reconfiguration.

Basically, the structure of an MSA is determined by its mixing
profile, which establishes the possible frames of data—flow patterns
within the array. An MSA structure is called a regular structure, when
there is a basis or a subarray from which the ﬁSA can be constructed.
Figure 2.6 shows an MSA constructed from a diamond-like basis. Other
possible MSA structures with irregular and partially regular mixing, are
discussed in [6]. In this thesis, we are concerned only with the
regular MSA structures, mainly because programming and mapping
algorithms into irregular arrays are too complex, and most of the
existing synchronous parallel algorithms map into regular array
structures [4,35].

The mixing profile of an MSA is determined by its mixing density

and boundary conditions. The mixing density, p, is defined as
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N

p = :° (2.1)
N

se¢ t Nec

where N.. and N;. are the number of switching cells and the number of

computation cells, respectively. An MSA with high mixing density is
suitable for implementation of algorithms which require more complex
data routing and less computing. On the other hand, an array with low
mixing density can be applied to algorithms which have simple data
routing but require large amount of computing. When p=0, the MSA
reduces to a fixed structure single—purpose systolic array, and when
p=1, the MSA reduces to a reconfigurable intercomnection network with no
computing power., The boundary conditions in an MSA are represented by a

boundary condition function, 2, which is defined as

p = (2.2)

where Nior is the number of control buffers placed on the MSA boundary.
Various other gengral purpose reconfigurable VLSI architectures
have been proposed such as Configurable Highly Parallel (CHiP) computer
by Snyder [53], and the Programmable Systolic Chip by Fisher and Kung
[14]. In the C(HiP architecture, a lattice structure of programmable
switches is incorporated, into which processing elements are placed at
regular intervals, This architecture can implement various special
purpose parallel architectures such as mesh structures and tree

structures, underxr the supervision of a master controller. The

controller broadcasts commands to all the switches to invoke 8
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particular configuration setting. This master controller may be
undesirable for failure critical applications. In MSA architecture,
neither a broadcasting of command signals nor a master controller is
required; instead, the control structure is distributed among the
switching cells and the computation cells of the array. While Chang and
Fisher developed, charactetize@, and evaluated the basic computing model
for MSAs [6], they did not present procedures for loading and
implementing the distributed comtrol structure required to establish a
desired interconnection pattern on the MSA structure. Also, no formal
methodology was presented for implementing a given algorithm into the
MSA structure by systematically generating the control code required to
reconfigure the array., The main motivation for this research work came
from the above mentioned issues regarding algorithm design and

implementation of MSAs.

2.3 ALGORITHM TRANSFORMATION AND MAPPING INTO VLSI STRUCIURES

Efficient implementation of algorithms om VLSI structures requires
exploitation of parallelism in the algorithm and mapping of the
algorithm communication structure into the array processor
interconnection structure., An approach to design VLSI algorithms based
on recurrences was first suggested by Cohen in [11] and 1later expanded
by Johnnson and Cohem in [22], and Weiser and Davis in [56]. This
approach is adopted from z-transforms in signal processing and uses
delay operators (Z-operators) for specifying and representing sets of

data as wavefront entities in the mathematical expressions,
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Mathematical formulas are manipulated to obtain different expressions
that correspond to different computational networks. The drawback with
this approach is that the notation gets difficult to manage for complex
computations. Leiserson and Saxe presented a genmeral theory for
optimizing a synchronous c¢ircuit by adjusting the number of register
delays in the data paths [43]. This theory  justifies  some
transformations used to eliminate broadcasting from semisystolic
designs, but does not of fer a methodology for systematically designing
systolic arrays starting from a high-level language description of an
algorithm.

Kubhn introduced the idea of exploiting parallelism in 1loops with
multiple levels of nesting by reindexing the loop computations [30]. He
used the concept of program dependence for detection and exploitation of
parallelism in programs, He defined dependence as an arc in the
dependence graph directed from the source occurrence of a variable to
the destination occurrence of the same variable., Both the source and
destination nodes are labeled by the values of the loop indices at which
the generation and use of a variable occur, and the dependence arc is
labeled by the difference vector of the source and destination labels.
He mapped several specific algorithms into SIMD computers with
single—stage interconnection networks and illustrated how the design of
certain VLSI systolic arrays could be done automatically by reindexing
algorithms. Moldovan [45-47] and Fortes [15] extended the approach of
Kohn, and formalized the procedure for mapping algorithms into VLSI
architectures by transforming dependencies of the original algorithm by

a reindexing transformation. Algorithm transformations comprise a time
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transformation which dictates the order of execution of computations and
a space transformation which determines the data movement, and the array
size and geometry. Necessary and sufficient conditions for the
existence of a certain type of transformation are given in [45]. This
approach is best suited to algorithms described by programs with 1loops
or by recurrence equations,

Some other related work on formalizing the design process of
algorithmically specialized devices has been reported by Cappello and
Steiglitz [5], Quinton [49], and Lam and Mostow [40]. Cappello’s
methodology is based on geometric transformations for mapping
nested—loop algorithms into systolic arrays. The computation is modeled
as a lattice in which nodes represent operations and edges represent
data dependencies. Different systolic designs can be derived by
applying geometric transformations to the lattice. Quinton’s approach
finds a uniform recurrent system of equations that is equivalent to the
problem to be solved and maps this system of equations into a finite
architecture, The methods given in [S] and [49], regarding the
formalizing of systolic array design, are suitable for algorithms
described by recurremnce equations. Lam and Mostow described a design
model, in which software transformations are first applied to put the
algorithm to be implemented into a regular form conducive to systolic
implementation. The algorithm is then mapped into a systolic design
described by a structure and a driver, The structure describes the
hardware cells and the driver defines data streams in terms of the
original variables in the algorithm, This approach can process

algorifhms with simple FOR-loops and BEGIN-END blocks, but cannot deal
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with conditional execution, computed iteration bounds and array indices.
A survey of systematic approaches to the design of algorithmically

specified systolic arrays can be found in [16].

2.4 FAULT TOLERANCE IN SYSTOLIC ARRAYS

Fault-tolerant systems are capable of performing correctly evem in
the presence of one or more faulty components., Fault-tolerant systems
require some form of redundancy incorporated in their design. This
redundancy could be either physical or temporal, or a combination of the
two [51]. Physical redundancy is provided by replicating resources and
may involve the use of extra gates, memory cells or functional modules.
A taxonomy of fault-tolerance techniques and various stages of response
to a system—failure in a fault-tolerant system are described in [51].

Fault tolerance in a pipeline architecture is very critical because
a single fault in any segment would cause & total failure of the
pipeline. Physical redundancy camn be incorporated in pipeline
architecture either at the pipeline level or at the segment (module)
level. Reconfigurable parallel pipelines can be utilized to implement
fault tolerance and achieve better performance in terms of average
throughput, mean time to failure (MTIF), and mean computation before
failure (M@BF)[24]. Initially the system utilizes all the pipelines in
parallel, but as soon as one segment in a pipeline fails, the pipeline
containing the failed segment ceases operation resulting in a
degradation in performance. The other segments in the ceased pipeline

become available as spares to mask subsequent faults in adjacent
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pipelines. Imn this way, whenever the system fails, it does it with
graceful degradation.

Although systolic array processing is a very efficient method of
gaining increased system performance, this architecture is highly
susceptible to faults. As a systolic array consists of many parallel
pipelines, a single fault in any processing cell will propagate down the
pipeline causing the system to fail. In two-dimensional systolic
arrays, a single processing cell is shared by more than one pipelines,
so the fault can propagate in multiple directions which makes the
situation even worse. The above makes clear that the application of
fault tolerance to a systolic array-based architecture is very critical.
A fault-tolerant design of systolic arrays should emable an array to
withﬁtand one or more faults without total failure. This extends the
life of the system and increases the mean time to failure (MTTF) and
mean computation before failure (MCBF) for the system. Fault tolerance,
of course, will require that redundancy be incorporated in the design of
systolic arrays [20]. Temporal redundancy is not suitable because it
adversely affects the system speed and throughput, which is not
desirable if high performance is required. Physical redundancy can be
introduced in the systolic array designs at the processing cell level or
at the pipeline level. In response to a fault, the faulty cell or
pipeline is discarded and replaced by another working onme.

One method of designing faunlt-tolerant systolic arrays uses modular
redundancy at the processing cell 1level. Triple modular redundancy
(TMR) and N-modular redundancy will mask out the faulty outputs from a

bad processing cell, but these are very costly techaiques and their
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application is limited to only critical short term uses [50]. Another
fault-tolerant scheme, ©proposed in [36], enhances the yield of
wafer—scale integration implementation of systolic arrays by replacing
defective cells with clocked delays. This allows data to flow through
the array with faulty cells at the original clock speed. Reconfigurable
parallel pipelines for fault tolerance can be utilized in systolic
arrays in order to achieve graceful degradation property. In case of no
fault, all the pipelines are utilized and contribute to increased system
performance. In case of faults, however, some pipes will shut down
degrading the system performance. This makes many processing cells

available to be used to mask out any further faults.

2.5 LEVEL SENSITIVE SCAN DESIGN (LSSD) TECHNIQUES

LSSD is IBM’s discipline for structural design for testability
[12]. In this concept, the memory elements or latches in an IC can be
threaded together to form a serial—-in, serial-out shift register. This
provides an efficient means for "controlling” and "observing” the
internal states of a machine with only three or four additional pinouts,

A key element in this design is the "shift register latch” (SRL) as
shown in Figure 2.7 [57]. Since IBM has used the LSSD techmique
extensively, considerable atteantion has been given to the efficient
implementation of LSSD latches such that the overhead due to complexity
of SRLs is substantially reduced [13]. The 1lines D and C form the
normal mode memory function while 1lines I, A, B and L2 comprise

circuitry for the shift register function, The shift registers are
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threaded by connecting I to L2 and operated by clock lines A and B in
two phase fashion, Figure 2.8 illustrates how four SRLs can be threaded
together for shift register action, and Figure 2.9 shows general
structure of an LSSD subsystem with two clocks. Specific design rules
and constraints concerming gating of clocks, etc., are given in [12].
LSSD techniques are employed in reconfigurable systolic
architectures for 1loading and implementing the control structure
required for reconfiguration [25]. The main advantage of using the LSSD
technique is that overhead dune to additional pinouts does not exceed
three or four pins regardless of the size of the array. Shift register
latches (SRLs) hold the control information. All SRLs are threaded
together in a chain of shift registers in a manner such that a control
vector entered in a bit—-serial fashion sets up the array configuration

for a particular algorithm,.
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CHAPTER 3
A LINEAR RECONFIGURABLE SYSTOLIC ARRAY (LRSA) ARCHITECTURE

The Level Sensitive Scan Design (LSSD) technique 1is employed in
mixed systolic arrays to load and implement the distributed comntrol
structure required to configure the array for a desired algorithm
implementation. To illustrate the concepts, this chapter presents the
design of a one—dimensional linear reconfigurable systolic array (LRSA).
This array structure is statically reconfigurable to realize any of the
following: a filtering array, an FIR filtering array, a pattern matching
array, and a Discrete Fourier Transform (DFI) array. What's more, the
array structure is partitionable and can be divided into two or more
independent subarrays, each capable of executing a preprogrammed
algorithm. Shift register latches (SRLs) hold the control information
for setting up the interconnmections configuration and selecting the
functional mapping of computation cells. Both the data flow through the
array and the functions executed in the computational <cells are
established by inputting a control vector in a bit-serial fashion, using
a two-phase clock. The next section describes the structure of the LRSA,
and Section 3.2 characterizes four systolic algorithms which can be

implemented on this structure.

33
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3.1 STRUCTURE OF THE LINEAR RECONFIGURABLE SYSTOLIC ARRAY

The linear reconfigurable systolic array can be configured to
implement one or more of the following types of systolic arrays: 1) a
general filtering array, 2) a FIR filtering array, which has better
resource utilization than the gemeral filtering array, 3) a pattern
matching array, and 4) a Discrete Fourier Transform (DFT) array. The
systolic algorithms for the above mentioned arrays are described in
Section 3.2. The LRSA architecture is configured, by simply loading a
binary control vector through the LSSD scan input line, such that the
computational and the data—flow structures of the algorithm are
implemented on the array architecture. Once the array is configured, the
architecture matches the algorithm structure exactly. Structure of the
LRSA can be divided into three parts, the computation cells array, the
function-select array and the data flow control array. Figure 3.1
illustrates a system block diagram of this structure, and each part is

described in the remainder of this section.

3.1.1 THE COMPUTATION CELLS ARRAY

All computation cells are identical so the modularity is preserved
in the design. This, of course, is an important factor in the efficient
design and implementation of systolic arrays [22]. Each computation cell
has three input data ports and three output data ports. These are all
local ports except for the cells at the extreme ends of the array, where
global I/0 ports are used. Due to the 1local I/O ports the
interconnections are regular, simple and short. Three control bits

select the functionality of the computation cell. Figure 3.2 shows a



T R ———————————————————————.0 R

35
= -
Function-Select Array Scan Out
—_— . ~.
In;::“'j:’ Array of Computation Cells "-—--—-—jBG;put
Data Data

Control Vector

Reconfigurable Interconnection | ggem————
Network Scan In

Figure 3.1. General system diagram of the Linear Reconfigurable
Systolic Array.




36

I(1,K) S - 0(1,K)
0(3,K) ] CC(X) [—— I1(3,K)
I(Z,K) e — 0(2,1()

BB

Function-Select Lines

Figure 3.2. Block diagram representation of a Computation Cell,



37

computation cell at K'th position in the array. The control input lines
will be referred to as functiomselect lines. For a computation cell
CC(K), the input ports are referred to as I(1,K), I(2,K) amd I(3,X),
whereas the output ports are O(1,K), O0(2,K) and 0(3,K). Each cell
contains two operand register buffers A(K) and B(K), which hold the
filter coefficients loaded by the host, prior to start of computation.
Let set of functiomselect lines for cell CC(K) be called S(K).

Then, functions of the computation cell can be described as follows:

Begin
if S(K) = 001 then
0(1,K) <-— I(1,K)
0(2,K) <(~— I(2,K)
0(3,K) <=— A(K)*I(2,K)+B(K)*I(1,K)+I(3,K)

elseif S(K)

010 then

0(1,K) <-— B(K)

0(2,K) <(-— A(K)*I(1,K)+I(2,K)
B(K) <-— I(1,K)

elseif S(K)

011 then
0(1,K) <—— I(3,K)

elseif S(K)

100 then

0(1,K) <—— I(1,K)

0(3,K) <~— I(3,K)

R(K) <~— R(K).AND. (I(1,K).EQ.I(3,K))
elseif S(K) = 101 then
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0(2,K) ¢(—— I(1,K)*I(2,K)+A(K)
end if

end

R(K) is a flip flop in each computation cell which is used in the pattern
matching algorithm. A(K) and B(K) are two registers in each CC(K) which

hold the coefficients loaded from the host or main memory.

3.1.2 FUNCTION-SELECT ARRAY

The function—select array contains a three-bit element for each
computation cell; the contents of this array select the function
performed by the computation cell. Each computation <cell can be
programmed to perform a selected primitive arithmetic or logic operation
by setting its function—select array element. All elements of the
function—select array consist of SRLs which are all threaded together to
form a shift register. The control information can be entered in a
bit-serial fashion using two phase clock via Scan In input line, as shown

in Figure 3.3.

3.1.3 DATA FLOW CONTROL ARRAY

The data flow control array contains the control information for the
interconnection network configuration, Data flow control is achieved by
employing interchange boxes which are devices with two inputs and two
outputs. Figure 3.4 shows the four legitimate states of an interchange
box. Two-bit control is required for each box and the control bits for
each box are stored in an SRL. All SRLs are threaded together as in case

of the functiom—select array. Figure 3.5 shows a hardware implementation
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of an interchange box.

Figure 3.6 illustrates how two adjacent cells in the LRSA are
connected together with interchange boxes and functionm—select elements.
Although the computation cells are multifunctional, yet various functions
are computationally not much different from each other. By employing
some data selection logic in an inner product step processor, computation
cells for LRSA could be obtained. So, the overhead because of
introducing complexity in the computation cell by making it
multifunctional should be small. All the control informatiom is entered
through one pin in a bit-serial fashion, so overhead because of

additional pinouts is minimal.
3.2 SYSTOLIC ALGORITHMS IMPLEMENTED ON THE LRSA

This section describes four systolic algorithms implemented omn the
LRSA, These algorithms include gemeral filtering, Finite Impulse
Response (FIR) filtering, pattern matching and Discrete Fourier Transform

(DFT) .

3.2.1 SYSTOLIC FILTERING ARRAY
The general filtering problem is defined as follows [49]:

Given the weighting coefficients {wy, w;, . ., , wy}, (r1, 12, . .

+ Ty}, the initial values {y-x, Y-x+1, . . ., y-1}, and the input
sequence {x_, x yiy, . . , X0, X1, . . , Xn},

compute the output sequence {y5, y;, . . , yp)} defined by
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k

Yi = 2%_0 Wi Xj-j + 2

i= =1 rj ¥i-j- (3.1)

A systolic array to implement the above filtering problem is shown in
Figure 3.7 [49]. This array computes a new output Y; every two cycles,
where a cycle is the time to perform two multiplications and two
additions, The weighting coefficients w;'s and r;'s are preloaded into
the array. The filtering computation starts by loading the X;'s from the

host to the systolic array. When the array has received all the x;'s for

-h < § ¢ 0, it starts outputting the computed yj’s at the rate of one

every two cycles.

The two types of basic cells used are shown in Figure 3.7(a). The
systolic array for filtering is a linear array and comsists of m type-1
cells and one type-2 cell, where m = max(h+l,k). Each y; js initialized
as zero as entering the array from the right-most cell. It accumulates
terms as it travels along the array towards left and eventually achieves
its final value ¥, when reaching the left-most cell. The output y;j is
fed back into the array for use in other computations.

In order to implement the above filtering algorithm on an LRSA
consisting of (m+l) computation cells, the function—select elements

should be as follows:

S(K)

001,1$x£m;

S(K)

011, K = m+l

The switching cells in the array should be used in straight
configuration, It can be easily seen from Figure 3.6, that exchange and

broadcast configurations of the switching cell can be used to partition
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Figure 3.7.

One-dimensional systolic array for filtering:
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the LRSA into subarrays, or to bypass faulty computation cells.

3.2.2 SYSTOLIC FIR FILTERING ARRAY

The general filtering problem described in the previous subsection
realizes systems having Infinite—duration Impulse Response (IIR). Such
systems involve a recursive computational algorithm, In the case of
Finite—duration Impulse Response (FIR) systems [49], realization
generally takes the form of a nonrecursive computational algorithm. An
FIR filtering problem is a special case of the general filtering problem
given in Subsection 3.2.1 where r;=0 for all 1 < i £ k. The dedicated
throughput of the systolic array for filtering described in the previous
subsection is one half, i.e. only one half the cells in the array are
active at any given time, Figure 3.8 shows a systolic array for FIR
filtering algorithm [24]. Data streams move in the same direction at two
different speeds in the systolic array and all the cells are used all the
time. The basic cell used in the design is shown in Figure 3.8(a). The
Wi's are preloaded in the array during the initialization phase. Both
the x;'s and y;’s travel towards right but yj’s travel twice as fast as

Xj's, Each yj accumulates terms as travelling towards right and achieves

its final value as it leaves the right-most cell. The FIR filtering
problem is mathematically identical to the comnvolution problem, so the
systolic array described here also applies to convolution computations.
In order to implement the FIR filtering algorithm on the LRSA, the
function-select elements for all the computation cells in the array,

should contain 010, i.e.,
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S(K) =010, 1 < g < n,

3.2.3 PATTERN MATCHING SYSTOLIC ARRAY
A systolic array design for pattern matching problem is shown in
Figure 3.9 [24]. The pattern matching problem can be defined as follows:

Given a text string (sy, s5, . . . , s;) and a pattern string

(P4, p2. . . , pp), with n much larger than m,

compute positions of all occurrences of the pattern within the text

string.
For example, if the text string is DBABBFBABABB and the pattern is BAB,
then the result is 010000101000, where each 'l’ indicates the beginming
position of amn occurrence of the patterm inside the text string. Let the
resulting Boolean string be {r;, ry, . . , rpp+1), such that rij=1 if

‘nd only if (sip si+1, . - » Si+n—1) = (P]_; P2p . . » pm)o Then the

systolic array shown in Figure 3.9, using the basic cell as shown, can

compute the T;'s by comparing the characters of the pattern with the

characters of the text string. Each r; is initialized to be a '1', A

pattern character Py and a text string character sj are compared at the

cell where they meet and the cell updates the value of T; such that
Ty (--rj AND ' (px=sj). In case of a mismatch, the value of rj is reset
to '0’. The pattern string travels towards right and the text string
travels towards left, such that each pattern character meets each text
character. The value of r; at a cell finalizes when the last character
in the pattern string passes through that cell., This systolic array with
m cells can solve the pattern matching problem in time n, whereas a

sequential software solution takes time proportional to m*n.
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Figure 3.9. One-dimensional systolic array
(a) basic cells used in the array,
(b) the systolic pattern matching array.

for pattern matching:
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In order to implement the pattern matching algorithm on an LRSA
consisting of m computation cells, the functionm—select elements for all

the computation cells in the array should contain 100, i.e.,

S(K) =100, 1 < g < m.

3.2.4 DISCRETE FOURIER TRANSFORM (DFT) SYSTOLIC ARRAY
An mrpoint Discrete Fourier Transform (DFT) is defined as follows:

Given [30, a3, « . . , 8p-1) be n samples of a time function,

compute (Y5, y7, . . . , yp—1)} defined by

-1
Vi = §?=0 aj * wij, (3.2)
where w = e27k/n gnd ¥ = -1 .

The straightforward method for computation of mpoint DFT requires
0(n2) operations and the Fast Fourier Transform (FFT) algorithm requires
O(nlogn) operations for the same computation, The linear systolic array
shown in Figure 3.10 [48] with (n—1) basic cells can compute an n point
DFT in O(n) time., However, the communication scheme for the systolic
array is much simpler compared to the complicated data communication
requirements for the FFT algorithm. The basic cell used in the DFT
systolic array is essentially a multiplier—accumulator cell and is shown
in Figure 3.10(a). The array consists of (n-1) basic cells and the input
samples a _, to ap are preloaded in the array cells. The inputs Yjp and
Xin to the left—most cell are ap—7 and some power of w, respectively.

The output =x,,. from the right-most cell is always ignored. Each yj,
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initialized as 8,-1, accumulates its terms as travelling towards right,

and reaches its final value as it leaves the right-most cell.
In order to implement an n-point discrete Fourier transform
algorithm on the LRSA, the functiomselect elements for all the

computation cells in the array, should contain 101, i.e.,

S(K) =101, 1 < g £ n-1.

3.3 SUMMARY AND DISCUSSION

This chapter presented the architecture and design of a
one—dimensional Linear Reconfigurable Systolic Array. This design
approach illustrates how the level sensitive scan design technique can be
employed in mixed systolic arrays, to load and implement the distributed
control structure required to configure the array for a desired algorithm
implementation. The control structure for a particular configuratiom is
loaded into the array through the LSSD scan path as a binary vector in a
bit—-serial fashion,. This approach has the advantage that overhead in
terms of additional pinouts is limited to only three or four pims, Also,
serial loading of the control structure reduces the overhead in terms of
additional interconnections on the chip due to the comtrol hardware,

The major incentive for employing the LSSD technique in the design
of the LRSA is to load the configuration comtrol code in the array. This
approach, in addition, enhances testability, incorporates fault
tolerance, and provides capability for initializing the internal data

registers of individual cells. In order to achieve testability and data
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register initialization capability, the LSSD scan path must pass through
the data registers and the input/output ports of each cell., Figure 3.11
shows one possible arrangement for a scan path within a computation cell.
Registers X, Y and Z are the 1local output ports; S is the control
register which selects the function performed by the computatiom cell; A
and B are the data registers for holding the preloaded coefficients and R
is a flip—flop used to save the result of a Boolean operation in pattern
matching algorithm., This arrangement provides capability for testing the
functionality of the individual cells, initializing the registers and
preloading the coefficients., During test mode, a desired bit-vector is
loaded into the array through LSSD scan path. This vector contains the
control information required for each cell as well as the test data for
data registers. After the vector has been loaded, one system clock is
applied so that each cell can perform its required function. The results
in the 1local output ports are scanned out using LSSD shift clock. This
vector contains results of the operations performed by all the cells. A
comparison of this vector with the expected results helps identify the
faulty cells which may be bypassed by reconfiguring the chip. Fault
tolerance in mixed systolic arrays employing LSSD techniques is discussed
in more detail in Chapter 4, where this approach is extemded to

two—dimensional mixed systolic arrays.



CHAPTER 4

DESIGN OF A MULTIPURPOSE RECONFIGURABLE ARRAY PROCESSOR (MRAP)

Chapter 3 presented a design approach for mixed systolic arrays,
which employs the level senmsitive scan design technique for configuring
the array architecture to match the structure of the algorithm to be
implemented. This chapter extends the same approach to two—dimensional
mixed systolic array architectures, and discusses the issues of fault
tolerance, performance analysis and algorithm implementation. We present
the design of an MSA-based processor, called the mul tipurpose
reconfigurable array processor (MRAP). This architecture implements both
systolic and semisystolic algorithms, and incorporates fault tolerance in
its design. The performance of MRAP, taking into account the total
computation time and the data—-transfer bandwidth, is analyzed for
specific algorithms. Also, it is demonstrated, by way of examples, how
the MRAP can efficiently implement different systolic and semisystolic
algorithms. Structure of the MRAP is a two—dimensional array type, which
can be configured to implement a number of systolic and semisystolic
algorithms involving two-dimensional 1linear recurrences such as matrix
manipulations., This two—dimensional array could also be partitiomed into
many independent 1linear arrays to implement independent algorithms
involving one~dimensional 1linear recurrences such as finite impulse

response (FIR) filtering.
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The next section describes the structure of the MRAP, the design of
basic functional cells and the data flow in the array at
register—transfer level. Section 4.2 illustrates, by way of examples,
how the MRAP can be <configured to implement different parallel
algorithms., In Section 4.3, performance of the MRAP is analyzed and
compared with other existing systolic structures. Section 4.4
investigates fault tolerance capabilities inhereant in the MRAP design.

Finally, a summary and discussion is presented in Section 4.5.

4.1 STRUCTURE OF THE MULTIPURPOSE RECONFIGURABLE ARRAY PROCESSOR

The multipurpose reconfigurable array processor (MRAP) employs two
types of basic elements, computation cells and switching cells, as shown
in Figure 4.1. In gemneral, the computation cells and the switching cells
are mixed according to a certain mixing profile which determines the
possible frames of data—flow patterns within the array. Mixing profile
is specified by the mixing density and the basis of the array [6]. The
MRAP designed here, is constructed from a diamond-like basis with a
mixing density of 1/2, i.e., switching cells and computation cells are
equally represented in the basis. The control structure for
communication and computation is embedded in both types of cells in form
of control registers. VWe employ the LSSD technique to realize this
control structure. All the control registers are threaded together
through a Scan—-In line as shown in Figure 4.2. For a particular
configuration the control structure is realized by loading a binary

vector through the Scan-In line in a bit-serial fashion. In the next
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section, we provide some examples of how the control vectors can be
generated for implementing different algorithms. Figure 4.3 shows the
system block diagram of the array and each part of the structure is
described later in this section. The array can be configured in various
topologies depending upon the application, such that a variety of
algorithms can be efficiently implemented. Various configurations
obtained from this structure are discussed in Section 4.2, In the
remainder of this section, we describe the design of the computation cell
and the switching cell, Also, a register—transfer 1level data—-flow

description and a timing diagram for the computation cell are given.

4.1.1 THE COMPUTATION CELL

The computation cell is basically an inner product step processor
with some extra comtrol logic added into it. All computation cells are
identical so the modunlarity is preserved in the design., This, of course,
is an important factor imn the efficient design and implementation of
structures for VLSI computation. Each computation c¢ell has six data
‘pOtts, which are all local ports except for the cells at the boundary of
the array, where global I/O ports are used [6,8]. Due to local I/O ports
the interconnections are simple, regular and short. Three control bits
are used to select the functionality of the computation cell. There are
three dedicated data registers DRA, DRB and DRR which can be used to hold
the preloaded coefficients or the results of a local computation. There
is a three-bit control register, comprising of shift—-register latches and
threaded into the Scan—-In line. We shall refer to this control register

as RC and the three latches in it as RCO, RCl1 and RC2. The input-output
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functional mapping of a cell is determined by the contents of RC. Figure
4.4 shows a computation cell and describes some of its functions for
different control vectors. A register-transfe; level description of

various operations is given later in this section.

4.1.2 THE SWITCHING CELL

The switching cell used in this array is an extension of the
two-by—two interchange box [52] and is shown in Figure 4.5. When the R/VW
control line is 1low, this switching <cell acts as a single—-stage,
nonblocking SIMD interconnection network which requires three-bit control
to realize all possible connections from input lines Al, A2 to the output
lines BO, Bl and B2, without resulting in a conflict. When R/W line is
high, A2 acts as an output line which is connected to the input A0. R/W
is a 1local I/0 control provided by the neighboring computatiom cell at
line A2, The control bits are held in the three-bit control register RS
associated with each switching cell. Figure 4.5 shows a logic
implementation of the switching cell. A function table for the switching
cell is givem in Table 4.1, where RSO, RS1 and RS2 are the bits in the

control register RS.

4.1.3 DATA-FLOW AND TIMING

This section describes a register—transfer 1level description of
data—flow in the array. Figure 4.6 shows a timing diagram for the
instruction cycle of the computation cell, when a two—phase system clock

is used. There are three phases in the instruction cycle, as shown in

Figure 4.6. Phases t; and t; are used to latch input data from the
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RS2 RSl RSO 32 Bl BO
0 0 0 Al Al Al
0 0 1 Al Al A2
0 1 0 Al A2 Al
0 1 1 Al A2 A2
1 0 0 A2 Al Al
1 0 1 A2 Al A2
1 1 0 A2 A2 Al
1 1 1 A2 A2 A2

Table 4.1.

Truth Table for the Switching Cell (R/W = Low)
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neighboring cells. We need two phases for this purpose due to the
bidirectional nature of the interconnections. The third phase, t,, ;s
used for computing and storing the results in the output registers.
Figure 4.7 shows a computation cell cci,j along with its neighboring

cells. A register—transfer level description of data—flow for a

computation cell CC; . in terms of its neighboring cells, is given as

follows:

RC Phase Register Transfer Operations
001 to DRAj,j <—— A2;,ji+1 = DRAj1,;

t DRB;,j < B2j, j

ty DRRj,j <—-— DRRj,j + DRAj,j * DRBj, j
010 ¢ DRAj, j <———— A2j,j+1 = DRAi-1,j

Y DRB;  ; < B2, j

t,y DRR; ; <——= DRR;, j+1 *+ DRA;, j * DRBj j
011 to DRA;,j <« A2; j+1 = DRAj-1,j

PRBj,j +=——= DRBj,j+1

Y1 DRRj, j + BOji+1,j = DRRj+1, -1

) DRR;, j <—— DRR; j + DRAj,j * DRBj,j
100 %o DRBj, j <—— B2 ;

ty idle; DRA contains a preloaded coefficient

t2 DRRj,j <——= DRRj, j+1 + DRAji,; * DRBj,j

4.1.4 PROGRAMMING DATA-FLOW CONTROL
Each switching cell is individually programmable to achieve a

particular connection scheme; in this way the computation cells can be
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interconnected in a number of possible configurations. Each switching
cell contains a control registers, and contents of the control register
determine the switching cell configuration. The flip—flops used in the
control registers are shift-register 1latches. The control register
flip—flops of all the switching cells are threaded together to form a
serial-in serial-out shift register. The control information pertaining
to a particular array configuration is entered through the Scan—In input
line in form of a binary control vector in a bit-serial fashion. The
array can be used for that implementation for as long as desired and when
a new application of the <chip is needed, it can be reconfigured by
programming the switching cells by entering another control vector
through Scan-In input line, In this fashion static reconfigurability is
achieved in this architecture for implementing a variety of
interconnection patterns.

Multifunctionality in the array is achieved by introducing
function—select control registers (RC registers) in the computation cells
(CCs). Input/output functional mapping of a CC is determined by the
contents of its function—select control register which comprises of
shift-register latches. All the RC registers are threaded together along
with the control registers of switching cells in a lomg chain of shift
registers. The control vector entered through the Scan-In input 1line
consists of the desired bit pattern which determines the interconnection

scheme as well as the functions performed by each computing element.
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4.2 IMPLEMENTATION OF ALGORITHMS ON THE MRAP

Multiple data streams flow in statically reconfigurable
multifunctional pipelines in the multipurpose reconfigurable array
processor (MRAP) described here., Data—flow patterns are controlled by
the control vector which is fed into the control registers through the
Scan—-In 1line during the preprocessing phase. For each array
configuration and algorithm implementation, a binary control vector is
generated containing control bits for the switching cells as well as the
computation cells. The control bits for switching cells correspond to
the communication structure of the implemented algorithm, and determine
the inter-processor interconnection scheme. The control bits for
computation cells correspond to the computational structure of the
algorithm, and determine the functions performed by the computation cells
on incoming data.

The length of the control vector is fixed for ome chip regardless of
the configuration and this length is eqﬁal to the total number of shift
register latches threaded into the scan line in the system. In general

the size of the vector can be writtem as:
S=p *NC+ q* NS, (4.1)

where

S = size of the binary control vector;

NC = number of computation cells in the array;
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NS = number of switching cells in the array;

P = number of bits in the computation cell control register;

q = number of bits in the switching cell control register.

Inclusion of data registers in the scan path to provide testability
for the functional cells will, however, make the input scan vector longer
than that given in the above equation. In this case the control vector
is mixed with initialization data for data registers of functiomnal cells.
In the following discussion, only the control vector gemeration is
considered and the initialization bits for data registers are not
included.

For the array shown in Figure 4.1, the size of the control vector
can be computed from the above equation., Here, p=3, ¢3, NS=5#%4=20 and
NC=16. So the size of the control vector is 108 bits. This binary
vector 1is loaded into all of the RS and RC control registers through the
Scan—In line in a bit—-serial fashion at the time of configuring the array
for a certain implementation. The time required for configuring depends
on the length of the control vector and the system clock frequency. So,
for example, about 4.3 micro—seconds are required to configure the above
array with a 25 MHz system clock., Scan—Out line could be used to cascade
more than omne chip together or it could also be used to verify the
control structure by shifting out the complete control vector and
matching with the desired vector. This feature introduces, also, same
degree of testability in the structure.

In the remainder of this section, various algorithms are implemented
on the MRAP architecture, and in each case the array is coanfigured to

realize an efficient computational structure for algorithm
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implementation. We consider an example to illustrate this point. Kung'’s
systolic array [31] for band-matrix multiplication is quite efficient
when multiplying matrices with narrow bandwidths, but it can not perform
efficiently in the case of dense-matrix multiplication. A broadcast
two-dimensional array as proposed by Huang and Abraham in [21], can
perform dense-matrix multiplicgtion very efficiently, but suffers from
the problem of being considerably inefficient for narrow band-matrix
multiplication. The MRAP can be configured to realize Kung's array
structure for efficient mnarrow band-matrix multiplication. and Huang's

2-dimensional array for efficient dense-matrix multiplication,

4.2.,1 DENSE-MATRIX/DENSE-MATRIX MULTIPLICATION

Dense~matrix multiplication is performed on the MRAP by configuring
it as a broadcast two-dimensional array, as proposed by Huang and Abraham
in [21]. Figure 4.8(a) shows the data streams for processing a
dense-matrix multiplication on a broadcast two-dimensional array, which
multiplies matrices A and B to get the product matrix C. As matrix B is
broadcast from the bottom edge of the array and A is fed into the array
from the left side, each computation cell in the array accumulates the
partial product terms for an element of the matrix C. After the
computation is done, the elements of the resulting matrix C which reside
in the computation cells can be shifted out. This is an efficient
algorithm for dense—matrix multiplication.

Control vector for realizing the above mentioned array is determined
from the states of the computation cells and the switching cells needed

to implement the above algorithm. The switching cells must be used in a
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broadcast type of configuration and should have the following

interconnections:

Bl = Al ; B2 = Al. (4.2)

This implies, from Table 4.1, that the control bits for switching
cells can be 000 or 001. We arbitrarily choose 001 here. The
computation cell should perform the following functions:

DRA (=— G ; E <-— DRA ; DRR {(-— DRR + DRA*B .

The control bits for the above functions are 001 from Figure 4.4.
So, the control vector for the MRAP, in order to implement a broadcast
two-dimensional array for efficient dense-matrix multiplication, is given

as follows:

Control Vector (in HEX digits):
249249249249249249249249249
The above vector is loaded through the Scan-In 1line wusing a two
phase clock with the right most digit entering first. After all the 108
bits are shifted into the array in a bit-serial manner, each control

register in the array contains appropriate control bits,

4.2.2 BAND-MATRIX/DENSE-MATRIX MULTIPLICATION

Let A be an NxN band-matrix with a bandwidth W (W<N), and B be an
NxW dense-matrix. The matrix C = A*B can be computed by using an array
configuration as shown in Figure 4.8(b). This algorithm is similar to

that described in [9], except that broadcasting is used only in one
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direction in our «case while in '[9] ©broadcasting is wused in both
directions. The array configuration described in Subsection 4.2.1, for
dense-matrix/dense-matrix .mnltiplication. requires NxN processors to
solve the above problem, whereas the array described here needs only WxW
processors to solve the same problem.

The control vector for realizing the array, shown in Figure 4.8(b),
is determined as follows. The switching cells are still used in
broadcast configuration, connecting Al to both Bl and B2. From Table
4.1, control bits 001 are chosen. The computation cells perform the
following functions:

DRA (-— G ; E (-—— DRA ; C <—— F + DRA*B .

The control bits for realizing the above functions are 010, as seen
from Figure 4.4, So, in order to realize the configuration for efficient
band-matrix/dense-matrix multiplication, the control vector for the MRAP

is as follows:

Control Vector (in HEX digits):

28A28A25145144A28A289451451

4.2.3 BAND-MATRIX/BAND-MATRIX MULTIPLICATION

Let A and B be two band matrices with bandwidths W1 and W2, and the
product matrix C = A®B is to be computed. The array configuration for
this computation is shown in Figure 4.8(c), for W1=W2=4. This algorithm
is the same as proposed by EKung in [31] for efficient band-matrix
multiplication. It can be mnoted that the data—flow is in three

dimensions in this case. This array can be realized by setting switches



Figure 4.8.(c) Band Matrix/ Band Matrix Multiplicatiom.
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to support diagonal data—-flow. Control bits for the switching cells are
chosen to be 011 (from Table 4.1), and the control vector for computation
cells i§ 011 (from Figure 4.4). The computation cells realize the
following functions.
DRA (-=— G ; E<(~— DRA ; G<—— D + DRA®*F ; C <(—— F .
The following control vector configures the MRAP to realize Kung's

hexagonal systolic array for narrow band-matrix multiplication:

Control Vector (in HEX digits):

6DB6DB6DB6DB6DB6DB6DB6DB6DB

4.2 .4 RECURSIVE FILTERING

An MRAP containing nxn computation cells can be partitioned into n
independent, one—dimensional, linear systolic arrays. A ome-dimensional
linear array consisting of n processors can be used to solve an n’th
order recurrence problem. Recursive digital filtering in signal
processing is an ;xample where a recurrence equation is wused. An n'th

order recurrence problem is defined as follows:

Given x4, x4, . . . , x—p41, compute x3, X3, . . . , defined by
X; = Fij(xj~1, « « « » Xj—q), for i > 0; (4.3)

where F; js g given recurrence function.

For a large class of recurrence functions, an n'th order recurrence
problem can be solved in real time on n linearly comnnected processors,

such that a new X; can be obtained at the output at regular time
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intervals [31]. A linearly connected broadcast array with n processors
and one buffer can solve the n’th order recurrence problem [21]. Figure
4 .8(d) shows the array configuration for implementing recursive filtering
algorithm. This algorithm is given in detail in [21], where it is shown
that this algorithm is optimal in the limit. The coefficients of the
recursive equation are preloade@ into the computation cells. The control

vector for this configuration is as follows:

Control Vector (in HEX digits):

30C30C26186184C30C309861861

4.3 PERFORMANCE ANALYSIS AND COMPARISON

Performance of an array processor can be measured by the efficiency
of parallel algorithms executed on it., Huang and Abraham have developed
a criteria for measuring the efficiency for parallel algorithms, based on
the Space-Time-Bandwidth complexity [21]. Bandwidth, here, refers to the
data transfer bandwidth and is defined as the maximum number of words
which have to be transferred through the I/O ports of the boundary cells
in a time unit (a time unit is the period of time a processing element
performs an operation). Let

P = number of required processing elements;
T = turnaround time of the computation;

B

[]

data transfer bandwidth;
C = number of operatioms in the computation task;

I = number of input and output operands transferred.
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It can be seen from the above, that for any computation task,

T 2 ¢c/p, (4.4)
and

T2 1/8B. (4.5)
Thus,

PBT? 2 cI. (4.6)

The product of P, B, and T? is the Space—-Time-Bandwidth complexity
of an algorithm executed in a processor array, and the product CI is the
lower bound of this complexity. A measure of the efficiency of an

algorithm is then defined as
R = PBT?/CI. (4.7)

A lower value of R means a better performance and R=1 means an
optimally implemented algorithm.

In the performance analysis of any semisystolic system, we must
consider the time delays associated with the rippling of logic when
deriving performance parameters such as throughput and response time,
This is important because semisystolic systems do not meet the design
criterion of extensibility as systolic systems do. VWe can mnot cascade
many semisystolic arrays together to form an arbitrarily large array
because the clock cycle time, which depends upon the delay due to
rippling, may asymptotically become arbitrarily large. In the MRAP

structure, data ripples through the switching cells (SCs) whenever global
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computations are required, as in case of semisystolic algorithms. We
take into account the time delay due to this rippling in our analysis by

defining the clock cycle time of the MRAP as follows:

T=T, + n*T,, (4.8)

where,

T = clock cycle time for the MRAP ,

!
]

computing time for a computationm cell (CC) ,

Tr = propagation delay of a switching cell (SC) ,

maximum number of SCs in a ripple path .

In pure systolic systems, throughput and response time are derived
in terms of the computing time of a computation cell (T.), For most of
the matrix arithmetic algorithms, the computation cell is a multiplier
accumulator so T, approximately equals the time required for onme
multiplication and one addition. Data transfer bandwidth of the array is
defined as the maximum number of words transferred through the I/0 ports
of the array boundary in one time wumit T.. We can write the clock cycle

time for the MRAP in terms of Tc time units as follows:

T=1 + m*, where k = T /7., (4.9)

In the remainder of this section, we analyze the performance of the
MRAP for implementing various matrix multiplication algorithms and
compare this performance with other existing systolic computing

structures. This analysi§ also gives us the upper bounds on the size of
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specific semisystolic arrays, beyond which they do not remain efficient
because of extremely long clock periods. Space—-Time—Bandwidth complexity
of an algorithm is used as a criterion for evaluating the performance of

an array processor,

4.3.1 DENSE—MATRIX/DENSEPMATRI; MULTIPLICATION

For dense—matrix multiplication, as described in Subsection 4.2.1,
the total number of operations in the computation task is N? and the
number of operands is 3N?, So the lower bound on the complexity of this

algorithm is

CI = 3N%, (4.10)

The cmplexity of the algorithm when implemented on the MRAP, as

shown in Figure 4.8(2), is derived as follows:

P= N2,

B=2N,

T = 3N*(1 + kN) ,
and

PBT? = 18N*#*(1 + kN) 2. (4.11)
Therefore,

R = 6*(1 + kN) 2, (4.12)
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The same computation, when executed on the systolic array in [31],

gives the following complexity and performance:

P = 3N2 ,

B=2N,

T= 5N,
and

PBT? = 150*N°. (4.13)

Therefore,

R = 50. (4.14)

Comparing Equations (4.12) and (4.14), we get

6*(1 + xN)* < 50 ,
or

KN ¢ 1.9. (4.15)

For a value of k = 0.05, the MRAP algorithm performs better for N ¢ 38.

4.3 .2 BAND-MATRIX/DENSE-MATRIX MULTIPLICATION

For band-matrix/dense-matrix multiplication, as described in
Subsection 4.2.2, the number of computations, C, approaches N*W*W and the
number of the input and output operands, I, approaches 3*W*N, So the

lower bound on this algorithm is
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CI = 3N?y3, (4.16)

The algorithm, as implemented on the MRAP, is shown in Figure

4.8(b). The Space-Time-Bandwidth (PBT?) complexity of this algorithm can

be derived as follows:

P= W2,

B = 3W,

-
[

(N + 2W)*(1 + kW),
and

PBT? = 3W3s(N + 2W)%*(1 + kW) 2. (4.17)

Therefore, from Equations (4.7), (4.16) and (4.17),

R= (N + 2W)2*(1 + k%) %/N?,

and,

R= (1 +xW?*, when N >> W. (4.18)

The performance of the systolic algorithm, given in [31] for solving

the same problem, can be derived as follows:

P= (N + W)*W ~ Neoy when N >)> W ,
B = (2/3)%(N + 2*W) ~ 2N/3 ,
T = 4N ,

and
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PBT? = 32N*W/3. (4.19)
Therefore,
R = 32N3/9w32, (4.20)

Performance of the MRAP can be compared with Kung’s systolic array
by 1looking at Equations (4.18) and (4.20). It can be observed that the
performance of the MRAP is not affected by the size N of the matrix,
whereas the performance of systolic array degrades with the size N of the
input matrix., The MRAP performs better as 1long as the result from
Equation (4.18) is 1less than that from Equation (4.20). Comparing
Equations (4.18) and (4.20), we get the following condition when the MRAP

performs better:

(1 + kW) 2 < (32/9)*N3/w?3,
and,

XW < 1.9*N/W, when N >> W. (4.21)

Since typically k < 1 and W ({ N, the above condition is easily
met. For an array involving 16-bit integer multiplier—accumulator (MAC)
cells, if a 16 x 16 multiplier array and an accumulator are used in the
MAC cell, the multiply-accumulate time is approximately equal to 60
gate—delays (assuming that a full-adder has a propagation time equal to
three gate—delays) [55]. The propagation delay in the switching cell is
equal to three gate—delays (see Figure 4.5). So, the value of k is

approximately 0.05, which means that the condition when the MRAP performs
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better is W ¢ 38*N.

4 .3 .3 BAND-MATRIX/BAND-MATRIX MULTIPLICATION

For band-matrix multiplication, as described in Subsection 4.2.3,
the MRAP is configured as a pure systolic array and the algorithm given
in [31] is implemented on it. ‘The performance of the MRAP, for this

computation, is analyzed as follows:

P=W1tw“
B = 2*%(VW,+w,)/3,

T =3N*(1 + k),

So,

PBT? = 6% (W, +¥,)*W,*W,*N2*(1 + k)2, (4.22)
and

CI = 2% (W, +W,) W, W, eN>. (4.23)
Therefore,

R=3*%(1+k)?*, (4.24)

For the systolic array in [31], the value of R is 3. So, the
performance of the MRAP nearly equals that of Kung’s systolic array,
which is very efficient for narrow band-matrix multiplication. The MRAP
performance is degraded by a factor of (1 + k)2, due to the propagation
delay in the switching cells, Since the valme of k<(<1, this degradation

in performance is insignificant.
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4.4 FAULT TOLERANCE

The MRAP architecture incorporates fault tolerance in its design due
to its properties of reconfigurability and programmability at individual
cell level. In MRAP, switch settings are used for data rénting among
computation cells, An MRAP architecture can be viewed as many
reconfigurable pipelines wdrking together., If a cell in the array fails,
the array might be able to be reconfigured to bypass the faulty cell with
data now flowing through the properly functioning cells. The performance
of the array may be degraded, but the entire system does not fail, It is
assumed here that the fault detection is done by the host and faulty
cells can be identified. This is possible in MRAP structure due to the
presence of LSSD latches and Scan—In and Scan-Out 1lines which provide
both observability and controllability in the system. Inclusion of data
registers in the scan path provides testability for the functional <cells
and also facilitates the initialization of data registers within the
cells at the time of preprocessing the chip.

Some examples shown below demonstrate fault toleramce capability of
the MRAP. Figure 4.9 shows computation cells of the MRAP, configured to
implement linear arrays to solve recursive filtering problems of fourth
order. 'F' indicates a faulty cell, 'S’ shows a spare cell and 'U’
denotes a used cell. If a fault occurs in a computation cell, the column
containing that computation cell shuts down and other working cells in
this column become spares, as shown in Figure 4.9(a). Figure 4.9(b)
shows how spare cells can be used to mask out two other faulty cells A

and B such that the array has the same performance as with only omne
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Figure 4.9.(b) Spare Cells are used for Fault Masking.
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fault. More faults may cause more columns to be shut down, but that will
provide even more spare cells to mask out further faults. So the system
can fail eventually but with graceful degradation.

When two—dimensional algorithms are implemented on the MRAP, the
fault tolerance becomes more difficult and degradatiom occurs at a higher
rate. This is so because data. flows in multiple directions and the
output from a faulty cell will be propagated in multiple pipelines which
share that computation cell. In this case, a single faulty cell will
cause the shut down of all the pipelines which share that cell. All the
working cells in the shut down pipelines become available as spares.
Figure 4.10 illustrates how data—flow can be reconfigured to mask out

faults due to failed cells A and B.

4.5 SUMMARY AND DISCUSSION

Ia this chapter, we presented the design and analyzed the
performance of a VLSI compatible two—dimensional mixed systolic array
architecture called multipurpose reconfigurable array processor (MRAP).
This array processor can implement efficiently various systolic and
semisystolic algorithms. Level-sensitive scan design is employed to
achieve reconfigurability and multifunctionmality. This design approach
provides fault tolerance capabilities in the mixed systolic array
architocture,

In general, the MRAP performs better than systolic arrays for
specific semisystolic algorithms. We developed expressions for

performance of the MRAP when executing varioas algorithms. These
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Figure 4.10. Fault Tolerance in the MRAP for 2-Dimensional Algorithms.
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expressions determine the conditions under which a certain algorithm can
be efficiently implemented on the MRAP according to a specific
performance criterion. The performance of MRAP degrades with the array
size for semisystolic algorithms because the propagation delay due to the
switching cells becomes more significant in large arrays and tend to
dominate the execution time. _ However, when systolic algorithms are
implemented on the MRAP, the array performance is not affected by the
size, It can be seen from the expression developed for the performance
of band-matrix multiplication algorithm in Sectiom 4.3, that the
degradation occurs by a factor of (1+k)2, This degradation is quite
insignificant because the degradation factor is a constant, and k<<1.
This is a relatively small penalty on the performance in view of the
reconfigurability and algorithmic flexibility that we achieve with this
architecture,

Since amplitude 1levels are regemerated in passing through the
switching cells, no broadcasting bus or large bus drivers are required in
the implementation of the MRAP. In general, there are two main
disadvantages associated with data broadcasting., First, large broadcasts
can not be implemented in a single communication cycle, because the
broadcast delay can dominate the execution time of an algorithm. Second,
large drivers are required for ©broadcasting in order to drive the
combined 1load of all the cells connected to the broadcasting bus. In
MRAP, broadcasting is implemented through switching cells and each
switching cell output has to drive a load of only one gate input. As
switching cells are used for reconfigurability purposes, the elimination

of broadcasting bus or drivers come as an additional benefit in the MRAP
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design,

In the mnext chapter, we present a mathematical model for
reconfigurable mixed systolic array processors and a step-by—-step
procedure to automatically gemnerate control vectors required for
configuring the array to implement a specific algorithm. The procedure
is illustrated by mapping the finite impulse response filtering algorithm

and the priority queue algorithm into the linear reconfigurable systolic

array.



CHAPTER §

ALGORITHM IMPLEMENTATION ON MIXED SYSTOLIC ARRAYS

In the previous chapters, we presented a methodology for loading and
implementing the configuration control structure in mixed systolic array
processors, to establish a desired interconnection pattern required for
algorithm implementation. This methodology employs LSSD techniques, and
the control structure for a particular configuration is loaded into the
array as a binary control vector in a bit-serial fashion, Efficient
implementation of algorithms on MSA processors requires exploitation of
parallelism in the algorithm and mapping of the algorithm communication
structure into the MSA processor interconmection structure. This chapter
deals with the issues of relating MSA’s architectural model with parallel
algorithms, and investigating procedures for gemeration of control code
required for implementing algorithms omn MSA architectures. In this
chapter, we present a mathematical formalism for modeling reconfigurable
mixed systolic array architectures and a methodology for reconfiguring
the array, by mapping the communication structure of an algorithm into
the interconnection structure of the array. A step—by-step procedure is
presented to map a given algorithm into the mixed systolic array
architecture and then generate the control code required to implement the
corresponding intercomnection structure. The mapping procedure is based
on the time and space transformations of data depemdence vectors of the

algorithm., These transformations describe the data—flow and timing of
93
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the algorithm and dictate the intercommection structure required for its
implementation.

Sections 5.1 and 5.2 present mathematical models for reconfigurable
MSA processors and parallel algorithms, respectively. A procedure for
mapping algorithms with MSA processors is given in Section 5.3. And,
this procedure is used in Section 5.4 to map two sample algorithms, the
finite impulse response (FIR) filtering algorithm and the priority queue

algorithm, into the linear reconfigurable systolic array.
5.1 A MODEL FOR RECONFIGURABLE MIXED SYSTOLIC ARRAYS

A reconfigurable mixed systolic array processor is a 5-tuple
(am, D, F,, Fg, R), where
QR C Z1 jis the index set of the array processor;
D is a transformation on Q® to B = {0, 1}, i.e., D: Q2 -— B
describes if an index corresponds to a switching cell or a

computation cell;

Fc is a set of the functions a computation cell can perform;

Fg is a set of interconmection configuratioms of a switching cell;

and

ReZnxr, r g I, is a matrix of cell-to-cell interconnection

primitives.
This mathematical model is gemneral enough to represent conventional
systolic arrays with fixed structures as well as multipurpose
reconfigurable arrays containing programmable interconnection cells and

multifunctional arithmetic and logic units.
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The index set QR refers to an n—dimensional array structure. Most
of the practical arrays are either linear (n = 1) or two—dimensional
(n = 2). Each cell in the array is represented by its index q & ZB, such
that for all q & Qn,

a=1Ilq, g, . . . ,q); q3 ¢2,0< i £,

D is a mapping on the index set QR to a set of binary digits {0,1}
such that D specifies every cell in the array to be either a computation
cell (CC) or a switching cell (SC). So, for all @ e QR

0 if @ corresponds to a SC,

D(q)

1 if § corresponds to a CC,

F. is a set of computations (arithmetic or logical) performed by the

computation cells,

Fs is a set of all interconnection configurations of a switching
cell,

For VLSI structures, we can assume that all CCs and SCs are
identical in order to preserve modularity and extemsibility. In a case
where cells are not identical, a surjective mapping fc can be defined
from Q® to F, such that £,:Q® —=> F;, where f. associates a subset
f.(Q S F; for index q ¢ @®. R is a  matrix of cell-to-cell
interconnection primitives such that R=[T; 7y 3 . . . ;bj, where
?j, 1 £ j £p, is a column vector indicating directed communication link.
If 15 e R, then for any q &8 Q%, q is connected to q’ = q + ?j if ¢ e Qu
and is connected to an I/0 port if G’ £ Qn,

VLSI arrays with fixed structures, such as in [4,32,35], can be
represented by the above model with D(Q) = 1 for all § ¢ QR and Fg peing

an empty set. In the remainder of this section, we present two examples
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to illustrate how the above model represents reconfigurable array

structures.

EXAMPLE 5,1.1
The Linear Reconfigurable Systolic Array (LRSA), described in
Chapter 3 and shown in Figurq 5.1, is represented as (Q2, D, F., Fg, R)

where
@ = (q3=1(q, ¢)T: 0<q <N, 0<q <2); (5.1)
D(Q) = q2 mod 2 ; (5.2)
Fo = {(01 ¢-— 11, 09 <—= I3, 03 <—— A * Iy +B* I + I3),
(0 ¢<-=- B, 00 <(—— A *1I; + I, B<—1p),
(0 ¢-- 13, 03 <-—- I3),
(0 ¢<-- 13, 03 <-- I3, R <— R AND (I EQ I3),

(0 <—=— 17, 05 <== I3 * I3 + A)}; (5.3)

Fg = ((S3 = S1, S4 = S2), (S3 = S2, S4 = S1)}; (5.4)

R = (5.5)

For an LRSA with N=4, the Q2 and D are as follows:

Q2 = {00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32};
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(a) Structure of the LRSA.

(b) A Switching Cell (SC). (¢) A Computation Cell (CC).

Figure 5.1. The Linear Reconfigurable Systolic Array (LRSA) Architecture.
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491 0 1 2 3
12
0 0 0 0 O
D(gqy, q9) = 1 1 1 1 1
2 0o 0 0 o0

EXAMPLE 5.1.2

The Multipurpose Reconfigurtable Array Processor (MRAP), described

in Chapter 4 and shown in Figure 5.2, is represented as (Q2, D, F., Fg,
R) where
Q2 = ({=(2i,2j)} U {q=(2i+1,2§+1)}, 0<i{N-1, 0<j<M-1}; (5.6)
D(Q) = (g + 1) mod 2; (5.7)

R = (5.8)

F, and Fg can be written, in a fashion similar to Example 5.1.1, as

the set of computations performed in the computation cell and the set of

interconnection configurations in the switching cell, respectively.

5.2 A MODEL FOR ALGORITHMS

It is important to describe a mathematical model for algorithms in
order to map them into the mixed systolic arrays. We consider the
algorithm model defined in [47], which contains information about the

algorithm index set, the computations performed at each index point, the
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Figure 5.2, Structure of the Multipurpose Reconfigurable Array Processor.
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data dependencies which dictate the algorithm communication requirements
and the algorithm input and output variables.

An algorithm A is a 5-tuple

A= (1, C G X, V) (5.9)

where,
JoC Zn is an index set;
C is the set of computations of A;
G is the set of dependencies, i.e. a relation from ZD to the set of
all pairs (v, J) where J e JB and v is a variable such that
v {(——C(3'), 7' eI,
X is the set of input variables of A;
Y is the set of output variables of A such that if a variable v e Y
then v ¢ X or v {(—— C(3) for some J e JO,
The set of output variables is a subset of the union of the sets of input
variables and the generated variables as a result of some computation
C(7). G is a ZnXd matrix whose columns are dependence vectors. A
dependence vector d is defined as d = 7 - J’ if a variable v is used by
C(7) and generated by C(3J'), i.e. 7J is the index point at which v is

>4

used and J’' is the index point at which v is generated. The dependency

matrix G is then written as

G=10d 4 . . . dql. (5.10)
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The conditions for the validity of the above model are givem in
[15]. This model <can conveniently represent the numerical algorithms
normally written in the form of nested loops in conventional high—-level
language. A distinct class of algorithms are those for which data
dependencies are constant, i.e. the ;omputations repeat at different
index points over the entire index set. Algorithms belonging to this
class are easier to map into VLSI arrays [30]. VWe present two examples
to illustrate how the dependence vectors are generated for the algorithm
model. Sometimes, a reindexing of variables is required to get constant
dependence vectors. This will be demonstrated in Example 5.2.2, for the

finite impulse response filtering algorithm,

EXAMPLE §5.2.1

Consider the algorithm described as follows:

FOR i = 0 TO N
FOR k = 0 TO N
a(i,k) = a(i-1,k-1) * b(i-1,k)
b(i,k) = a(i-1,k) + b(i,k+1)
END k;

END i ;

The model for the above algorithm is as follows:
T2 = (Gg,j): 0 £ j1.j2 4 N
C= (C(ig,j9) : a(j1.J2) = a(j1-1,j2-1) * b(j1-1.j2),

a(j1-1,j2) + b(j1.,j2+1)};
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In this example, at every point in the index space an addition and a
multiplication are performed. The dependencies which dictate the
algorithm communication reqﬁirements can be described as difference
vectors of index points where a variable is used and where it is

generated. The dependence vectors are as follows:

Y = (1 1)T, between variables a(i,k) and a(i-1,k-1);
4 = (1 0)T , between variables a(i,k) and b(i-1,k);

S
]

(1 o)T , between variables b(i,k) and a(i-1,k);

34 = (0 -1)T , between variables b(i,k) and b(i,k+1).

The dependency matrix G is given below. A label below each column
points out the generated variable pertaining to the dependence vector

comprising that column.

G = [dy dy d3 d4] =

o]
[l

((a(-1,45-1), b(-1,j2)): 0 < jp < N+1)

]
|

= (a(j1,j2),0(i1,32): 0 £ j1,j2 < N},

EXAMPLE 5.2.2

In this example, we illustrate how a Finite Impulse Response (FIR)
filtering algorithm can be represented by the above model and in Section
5.4, we shall use this model to map the algorithm into a linear
reconfigurable systolic array.

A Finite Impulse Response (FIR) Filter can be defined as
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M
Vi = §j=0 aj * xj-j , 0 £ i, (5.11)

where X = {x_y, . ., zx09, x1, . .}, is the input to the filter and

{‘j: j=0, 1, . . , M}, are filter coefficients, Y = {y;} is the output
of the filter. We can write the following algorithm for the above

problem.

FOR i = 0 TON
FOR j = 0 TO X
y(i,j) = y(i,j=1) + a(j) * x(i-j)
END j;

END i;

In order to get dependencies, we first complete all the missing
indices in all the variables. It can be noticed in the above algorithm
that x(i-j) may be taken from the calculation of y(i-1,j-1) as

y(i-1,j-1) = y(i-1,j-2) + a(j-1) * x(i-1-j+1).

Similarly for (i-1,j) calculation, a(j) is used. So, we <can write

the algorithm as follows:

FOR i = 0 TON
FOR j = 0 TO M
y(i,j) = y(i,j-1)+a(i-1,j)*x(i-1,j-1)

a(ioj) = a(i-loj)

x(i,j) x(i-1,j-1)

END j;
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END i;

For the above algorithm, data dependencies can be found to be (0,1)T

for y, (1,00T for a and (1 1)T for x. The dependency matrix canm be

written as

0 1 1

G = (5.12)
1 0 1 -
y a x

So, the model for FIR filtering algorithm is ( J2, C, G, X, Y), where

32 = ((g,jp): 0 jp <N, 0 £ jp < M); (5.13)

C = {C(iy,49) :y(i1.32)=y(i1.i2-1) +a(1-1,§2)*x(j1-1,i=1)}; (5.14)
0 1 1

G = (5.15)
1 0 1

X = {x(j1-1,jp-1): 0£j1<N, 0< jg £ M); (5.16)

Y = {y(j;,M: 0 < j; < N}, (5.17)

5.3 MAPPING ALGORITHMS INTO MIXED SYSTOLIC ARRAYS

Mapping an algorithm into a reconfigurable array processor, such as

a mixed systolic array, requires the following three tasks. The first
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task is to find all the dependence vectors in the algorithm and a time
transformation on the index set of the algorithm such as to determine a
valid execution ordering on the algorithm for VLSI implementation. The
second task 1is to select a space transformation S whose interconmection
structure can be implemented on the reconfigurable MSA by programming the
switching cells. Finally, the control code is assigned to all the cells
in the array and the control vectors are generated to be loaded into the
array through LSSD scan-in line. This procedure provides the capability
of automatically gemerating the configuration control vectors for
implementing an algorithm on a mixed systolic array processor. Various
candidate valid space and time transformations are considered and the one

that is suitable for the given array processor, is selected.

Definition 5,3.1:

M is a set of control codes for the switching cells in the array.
Assuming that a switching cell can bhave m different interconmnection
configurations, then we write

M= (mj, m, . . . , og) wheremj e I, 1 £ i < m,
m; is the control code for the ith interconmection configuration of the

switching cell, in the set F,, Elements of sets M and F; have ome-to-omne

correspondence. A possible set M for the switching cell shown in
Figure 1(b) can be M= {0,1}, where a 0 implies a straight configuration

(83 = 84, S4 = S2) and a 1 implies an exchange configuration

(83 = 85, 84 = 59).
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Definition §.3.2:
N is 8 set of control codes for the computation cells in the array.
Assuming that a computation cell can perform n different functions, then
N=1{ny, 0, . . . , np) wheren; ¢ I, 1 £ i < n.

Elements of sets N and F, have a one-to-ome correspondence.

Definition 5,3 .3:
E is a set of unit vectors in the n—dimensional vector space of the

index set such that E = ({e;: (0(i¢p}, where p is the number of

communication links associated with a CC and e; js the direction of the
communication link. A basis (nl‘ V2, o . nn} for the vector space can
be selected such that every communication link can be represented by the

linear combination

e; = ali*nl + azi‘uz ... + ani‘un.

For a 2-dimensional array in a mesh connected network, one possible basis

is vy = (1,0) and uy = (0,1). For example, for Figure 5.3, we can define

- -T
1 1 ey
0 1 e2
E=|-1 1 e
-1 -1 34
0 _1 es
i 1 -1‘ 36

Definition 5.3 .4:
H is a matrix of direction vectors for all communication links of a
computation cell to its neighboring computation cells,
H = [h1 hy . . hel,

wvhere h;, 1 £ i £ r, is a direction vector of a communication link and r
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Figure §.3. A Computation Cell with Communication Links.
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is the total number of communication links conmnecting a computation cell

to its neighboring computation cells.

Definition 5§.3.5:

An LSSD scan path is defined as a sequence W from set A into the
index set QP of the array. A is a finite set of positive integers, A =
{1,2, . . ,N}, where N is the total number of «cells in the array
processor, So,

W=1{¥%, w, w, ... ,wyl, wj e Q® and i e A.
W is determined by the physical implementation of the LSSD scan path on
the <chip 1layout. The control code for Wy is entered first and that for

W1 is entered the last.

5.3.1 PROCEDURE FOR MAPPING ALGORITHM INTO MIXED SYSTOLIC ARRAYS

We present a step—by-step procedure for generating the
reconfiguration control vector for a given MSA structure, starting from a
high—-level langnage representation of an algorithm. An explanation of

the procedural steps follows the procedure.

1. Find the set of data dependence vectors for all variables
after pipelining the variables in the algorithm. Form the
dependency matrix G, where each column in G corresponds to a
data dependence vector.

2. Find all time transformations T which can map the index set of
the algorithm J@ into the unidimensional time space. An optimal

transformation is that which minimizes the execution time.
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Select the optimal transformation for the first iteration and
select a different transformation in each iteration. Conditions
required to find valid transformatiosms and the optimal
transformation are given in the explanation following the
procedure.

Find a space transforpation. S, by solving the set of

diophantine equations
S.6=H.K. (5.18)

K is a matrix which indicates the utilization of the

interprocessor communication links. K = [kji]: such that

k20 (5.19)

and

}j kji < T-dj. (5.20)
If an S can be found, proceed to step 4;

otherwise go to step 2 to select another time transformation.
Form the transformation matrix A =[§],
If A is a nonsingular matrix, proceed to step 5;

otherwise, go to step 3.

The product A.G contains the information about the data—flow and

timing of the algorithm implemented on the array processor.
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5. Map every computation cell in the array to F, and every
switching cell to Fe.

6. Find the control vector, from the LSSD sequence W and the
control codes defined for each cell. This binary vector is
serially 1loaded into the array through the LSSD scan—in line to

reconfigure the array»for implementing a specific algorithm.

EXPLANATION OF THE PROCEDURE

Step 1 finds the data dependence vectors of the algorithm and forms
the dependency matrix G. This can be done in an automatic manner for a
large class of algorithms as shown in [30,45].

Step 2 determines an execution ordering by mapping the index set of
an algorithm by a linear transformation T such that T:JR --) J'1, where
J'1 js a one-dimensional array consisting of positive integers. So, a

valid execution ordering should satisfy the condition

T.d; > 0 for all d; e G. (5.21)

T is a (1xn) vector which maps the index set of the algorithm into the
unidimensional time space. Total execution time of the algorithm is
given by

¢ = max[T'(Tl'32)+1] -1 -

2
i, e J0 and d..G, .22
min [T . 4y for j »J ieG (5.22)

An optimal transformation is the ome which minimizes t in the above

equation, Optimal transformation is tried in the first pass, but if it
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- cannot be mapped them other suboptimal transformations are tried.

Step 3 is probably the most computationally intensive since a system
of diophantine equations has to be solved. Existence of a valid
transformation S indicates that the algorithm can be mapped on the mixed
systolic array model (Q%, D, F.,, Fg, R). S contains the informatiom
about the communication structure of the algorithm. Dimensions of the
utilization matrix K are =rxq, where r is the number of communication
links from one CC to its neighboring CCs in different directions and q is
the number of dependence vectors in the matrix G. Directions of
data—-flow correspond to those unit vectors in H, for which the rows of K
has at 1least one nonzero element, Rows of K with all zero elements
correspond to the directions in which the communication will not take
place. Matrix K can be generated by combining the patterns satisfying
Constraints (5.19) and (5.20), as columns of K.

Step 4 gives the information about the timing and data-flow of the
algorithm, Product T.G gives the speed at which different variables
travel and the product S.G describes their directions of travel.

Step 5 determines the configuration of each switching cell and the
computation performed by each computation cell. This gives the control
code to be stored in each cell. Sets M and N are used in conjunction
with F, and F; to determine the appropriate control codes.

Step 6 generates the final reconfiguration comtrol vector by
concatenating the control codes for the cells in the sequence such that

the binary vector loaded through the LSSD scan path will put the

appropriate codes in all the cells.
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5.4 EXAMPLES

In this section, we illustrate how the above procedure is used for
generating configuration control vectors for implementing two algorithms,
the finite impulse response filtering and the priority queume, on the
linear reconfigurable systolic array (LRSA) described in Chapter 3. The
structure of the LRSA is shown in Figure 5.1, and the mathematical model
of this array is given in Example 5.1.1. We assume that the computation
cell of the LRSA can perform a compare and exchange operation, in
addition to the <fuactions described in Equation (5.3). Compare and

exchange is the basic operation needed in a priority queue algorithm,

This operation, f. , is described as follows, with reference to Figure

5.1(b):

fo1 = (01 (~- Maximum(I;, Iy, I3),

03 (== Minimum(I;, Iy, I3)). (5.23)

The set of control codes for the computation cells, N, consists of

six elements;

N={1,2,3,4,5,6},
where codes 1 through 5 imply the same computations as described in
Chapter 3, and code ‘6’ implies the compare and exchange operation
described above. The set of control codes, M, for the switching cell
consists  of only two elements, since we assume that only two

configurations of a switching cell are implementable; straight and
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exchange. Assume M = {0,1}, where a 0 implies a straight configuration
(8,=8,, S4=S;) and a 1 implies an exchange configuration (S;=Ss, S¢=S;)
(see Figure 5.1(b)). The control codes for all the cells are eventually
loaded in their binary form into the corresponding registers. Each
switching cell has a ome-bit control code register and each computation
cell has a 3-bit control code register. For the LSSD scan path, as shown

in Figure 5.4, the sequence W can be written as

¥ = {30,31,32,22,21,20,10,11,12,02,01,00}. (5.24)

5.4.1 FINITE IMPULSE RESPONSE (FIR) FILTERING ALGORITHM

We demonstrate how an FIR filtering algorithm is mapped om the
Linear Reconfigurable Systolic Array shown in Figure 1. The high—level
language description of the FIR filtering algorithm and derivation of its
dependency matrix G are given in the Example 5.2.2.

Now we follow the above procedure step by step, for gemerating the
configuration control vector required to implement the FIR filtering

\

algorithm on the LRSA.
Step 1:
From Section 5.2, the dependency matrix for FIR filtering algorithm

is

G = (5.12)
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Step 2:
Many time transformations T exist which give a valid execution
ordering. We choose T = [1 1], which satisfies the condition Tai > 0 for

any d; ¢ G and minimizes the execution time of the algorithm.
Step 3:

Solve the set of diophantine equations
S.6=H.K. (5.18)

H is a set of direction vectors, which indicates the CC-to—-CC

communication links. For the case of a linear array, like the LRSA,

H=[10-1]. (5.25)
Al in H implies that the data flows towards right, a -1 implies the
opposite direction for data—flow and a 0 implies that data stays at its

location for later use. The utilization matrix chosen to solve the above

equations is

1 0 1
K=|10 1 0 (5.26)
0 0 0.

K is selected such that

ji (5.19)
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and
EJ_' xji ¢ Tdi. (5.20)
The only solution for S, with matrix K as in Equation (5.26), is
[0 1]. A row consisting of all zero elements indicates that

communication link in the corresponding directiom is mnot required. In
the matrix K described above, the 1last row is a zero row., This row
corresponds to the column of H containing the directiom vector -1. So no
data—flow occurs in this direction.

Step 4:

The transformation matrix is

A = = (5.27)

As A is a nonsingular matrix, we have a valid transformation. Now
the data—flow and timing of the algorithm can be determined by looking at
the product A.G. First row of A-G corresponds to the timing and the
other rows correspond to the directions in which different variables will

travel.

A.G = = = (5.28)
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The first row indicates that variable x travels twice as slow as
variable y and both x and y travel in the same direction as seen from the
second row of the above matrix, The element of the- second row
corresponding to variable a is O, which indicates that variable a does
not travel, but stays at the same location. Since x travels half as fast
as y, a delay equal to ome time step is introduced in the path of x at
each computation cell. The algorithm implementation for this
transformation is shown in Figure §.5. This is the same algorithm as
proposed by Kung in [32].

Steps 5 and 6:

The function performed by a computation cell is given as (see Figure

5.1(¢))

(0 ¢<== B, 09 <—— A * I + I3, B (— I1),

and the switching cells are in straight configuration. The control code
for each computation cell is 2,, = (010),, and for each switching cell,
the control code is (0). The LSSD sequence W is given as

¥ = {30,31,32,22,21,20,10,11,12,02,01,00}. (5.24)

So the configuratiom control vector, V, is

<
]

{o, 010,0,0,010,0,0,010,0,0,010,0};

(00100001000010000100) , ;

(21084) ,, . (5.29)
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V is loaded serially with the right most bit first, through the LSSD

scan—in line shown in Figure 5.4.

5.4.2 PRIORITY QUEUE:

A priority queue is an abstract data type based on the set model
with the operations INSERT gnd DELETEMIN, as well as the operation for
initialization of the data structures [1]. The elements of the set A
have a priority function defined on them; for each element a, the
priority of a, p(a), is a real number from some linearly ordered set.
Operation INSERT(a,A) replaces the set A with the set A U {a} and the
operation DELETEMIN returns some element of the smallest priority and
deletes it from the set.

Let A be the sorted 1list of -elements in the queue, A =
{31,32, « « « a5}, such that aj contains the smallest priority element
and a_ contains the highest priority elements. Another array B =

{b1.b2. « « » bpa} contains the elements which are being sorted. We

define two constants ‘max’ and 'min’, such that 'max’ is higher than the
highest possible priority and 'min’ is lower than the least priority that
can exist. Variables a; and by are input variables.

The sequential algorithm can be described by the following

procedure:

Procedure INSERT(x)
begin
by :=x

8y := min
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for j =0 ton

for i =0 ton

ai:i = med(bi' 3.::.» ai+1)

oI - pinee], al, adep)

bi:i = max(bi. ai. ai+1)
end i

end j

end (INSERT);

Now we show how this algorithm is implemented by following the

procedure given in Section §.3.
Step 1:
There are nine data dependence vectors between the generated and the

used variables. The data dependence matrix is then formed by combining

these vectors as follows:

3:41 bi+l ot
"8; aj41 by fay  aje1 by' May  aj41 by
1 1 1 1 1 1 1 1 1 J
G = | e e e e e e e e e e e e wm e e e e e e e e e = e - - (5.30)
1 0 1 1 0 1 0 -1 0 i
Step 2:

Find a time transformation T satisfying the Coamstraint (5.21). One

T which satisfies this constraint is T = (1 0). The execution time for
this value of T is found from Equation (5.22), to be N+1 time steps for

inserting a number in the queue of size N. This indicates that the

inserted element moves at a rate of one position per time step. This
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transformation also minimizes the execution time, hence is an optimal
transformation. This can be verified by solving for the minima of
Equation (5.22) with respect to variables t; angd t2, where T = (t1 t3).

Step 3:

Solve the diophantine equations S . G=H . K to find a suitable S.
Matrix H is the same as in the previous example, i.e., H= [1 0 -1].
Size of the utilization matrix K will be 3x9 because there are 9 data
dependence vectors in the matrix G and there are three possible

directions of data flow. S = [0 1] satisfies the above equation, for the

following utilization matrix K

K=}j0 0 0 0 0 0 0 1 0 (5.31)

So, the space transformation is S = [0 1].
Step 4:

The transformation matrix is

A is a nonsingnlar matrix, so it is a valid transformation,

T.G 111111111

A.G = = (5.32)
S.G 1 0 11 0 1 0-1 Of.
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The row corresponding to S.G implies that variable a; should travel
in the direction of the unit vector (-1), i.e., towards left, and the
variables a;. 4 and bj+1 should travel towards right. The systolic array
formed by this transformation is shown in Figure 5.6. This array is
similar to the systolic priority queue given in [41].

Steps 5 and 6:

The control code for each computation cell, to perform the compare
and exchange operation, is (6),, = (110),. The control code for each
switching cell is 0. From the LSSD sequence VW, we can write the

configuration control vector, V, as

<
n

{0,110,0,0,110,0,0,110,0,0,110,0};

(01100011000110001100) ,

(63180) ,, . (5.33)

5.5 SUMMARY AND DISCUSSION

We presented a mathematical formalism for modeling reconfigurable
mixed systolic arrays and a step—by—step procedure for gemnerating the
control code required for implementing algorithms into mixed systolic
array structures. The procedure presented in this chapter provides a
facility for automating the reconfiguration process and the design of
mixed systolic array architectures. Starting from a high—level language
description of an algorithm, this procedure generates the final
configuration control vectors required to be 1loaded into the array

through the LSSD scan path in a bit—serial manner. One might argue that
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Figure 5.6.
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data dependency matrix cannot be easily derived; but research in
optimizing compilers has shown that it can be done in an automatic manner
for a large class of algorithms [30].

The basic idea of this chapter is to relate the mixed systolic
array’'s architectural model with the parallel algorithms implemented on
the array to facilitate their ;mplementation. Data dependencies in an
algorithm determine the communication structure required for its
implementation. Linear time and space transformations of the algorithm
are selected from the dﬁta dependency matrix of the algorithm and the
interconnection structure of the mixed systolic array. For a given mixed
systolic array structure, the optimal time transformation is first chosen
in order to minimize the total execution time, If a valid space
transformation does not exist to implement the optimal time schedule, a
suboptimal time transformation is chosen for which a valid space
transformation exists, Algorithms with constant data dependence vectors
are easier to map on array structures and result in simple data-flow
patterns. For some algorithms, such as the fast Fourier transform (FFT)
and the bitomnic sort, a remapping transformation is required in order to
increase the efficiency of the algorithms [30]. Transformations for
algorithms with tree communication geometry, such as searching algorithm,
are not known.

The concepts presented in this chapter are not restricted only to
mixed systolic arrays; they can also be used for formalizing the
reconfiguration processes for some other polymorphic multiprocessor
architectures. Several research issues emanate from this work and need

further investigations. Procedures should be developed which allow the
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user to obtain sets of valid transformations for other classes of
algorithms with arbitrary index sets and nonconstant data dependencies.
Second, this approach should be extended to silicon compilation of
reconfigurable arrays to genmerate masks for an optimal or near-optimal
array which can implement algorithms in a given set. Finally, further
research is needed to define a unifying performance index for
reconfigurable arrays to measure the overall array performance taking
into consideration the speed, the reconfiguration process complexity, the

cell’s complexity and applicability of the array.



CHAPTER 6

CONCLUSIONS

6.1 SUMMARY

This research work investigated structured me thodologies for
designing and mapping parallel algorithms into a class of reconfigurable
multiprocessor architectures called the mixed systolic array (MSA). The
primary objective of this research was to investigate procedures for
loading and implementing the configuration control structure in MSAs, and
relate the architectural model of the MSA with parallel algorithms
implemented on these architectures. The following specific tasks were
addressed in this work:

1. Investigate the procedures for 1loading and implementing the
distributed control structure required to establish a desired
interconnection pattern on the MSA structure.

2. Relate the MSA's architectural model with the parallel
algorithms implemented on the array and investigate the
procedures for implementing algorithms into MSA structures by
systematically generating the required control code for

reconfiguration,

The work completed under each of the above tasks is summarized below.

126
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In Chapter 3, we preseated a serial loading procedure for
implementing the distributed control structure required for
reconfiguration in MSAs. This procedure employs LSSD techniques, and
loads the control structure for a particular configuration into the array
through the LSSD scan path, as a binary vector, in a bit—-serial fashion.
The main advantage of this aproach is that the overhead due to additional
pinouts is limited to omnly three or four pins. Also, serial 1loading of
the control structure reduces the overhead in terms of additional
interconnections on the chip due to the control hardware, Chapter 3
presented the design of a linear reconfigurable systolic array
architecture, which is statically reconfigurable to realize any of the
following: a filtering array, an FIR filtering array, a pattern matching
array, and a Discrete Fourier Transform (DFT) array. Shift register
latches (SBLs) are used to hold the control information for setting up
the interconmections configuration and selecting the functional mapping
of computation cells. Both the data flow through the array and the
functions executed in the computational cells are established by serially
loaded cénfignration control vector.

In Chapter 4, we extended the approach presented in Chapter 3, for
loading the MSA configuration comtrol structure, to two—dimensional MSA
structures. Design of an MSA based processor, called the multipurpose
reconfigurable array processor  was presented. This arhitecture
implements both systolic and semisystolic algorithms, and incorporates
fault tolerance in its design. The performance of MRAP, taking into
account the total computation time and the data—-transfer bandwidth, is

analyzed for specific algorithms, and it is demonstrated, by way of
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examples, how MRAP can efficiently implement differemt systolic and
semisystolic algorithms. This two~dimensional array could also be
conf?gnred as many independent linear arrays to implement independent
algorithms involving one-dimensional linear recurrences such as finite
impulse response (FIR) filtering.

The properties of recqnfigurability and programmability at
individoal cell 1level, 1lead to fault tolerance capabilities in the MSA
architectures. This was discussed in Section 4.4. A two-dimensiomal MSA
architecture can be viewed as many reconfigurable pipelines working
together. If a cell in the array fails, the array might be able to be
reconfigured to bypass the faulty cell with data now flowing through the
properly functioning cells. Performance of the array may be degraded,
but the entire system does not fail, and the system achieves a graceful
degradation property.

Efficient implementation of algorithms om VLSI structures requires
exploitation of parallelism in the algorithm and mapping of the algorithm
communication structure into the processor interconnection structure.
Chapter 5 presented a step—by—-step procedure for implement}ng a given
algorithm into the MSA structure by generating the control code required
to reconfigure the array. The mapping procedure is based on time and
space transformations of the data dependence vectors of the algorithm.
These transformations provide a description of the data-flow and timing,
and dictate the interconmnection structure required to implement the
algorithm on the array. Starting from a2 high—-level language description
of an algorithm, this procedure generates the final configuration control

vectors required to be loaded into the array through the LSSD scan path
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in a bit-serial manner., The basic idea of Chapter 5§ is to relate the
mixed systolic array’s architectural model with the parallel algorithms
implemented on the array to facilitate their implementation. Data
dependencies in an algorithm determine the communication structure
required for its implementation. Linear time and space transformations
of the algorithm are selected from the data dependency matrix of the
algorithm and the interconmection structure of the mixed systolic array.
For a given mixed systolic array structure, the optimal time
transformation is first chosen in order to minimize the total execution
time, If a valid space transformation does not exist to implement the
optimal time schedule, a suboptimal time transformatiom is chosen for
which a valid space transformation exists, Algorithms with constant data
dependence vectors are easier to map on array structures and result in
simple data-flow patterns. To illustrate the methodology and explain the
reconfiguration procedure, two sample algorithms, the finite impulse
response (FIR) filtering algorithm and the priority queue algorithm, are
mapped into a linear reconfigurable systolic array.

The design methodologies investigated in this research broaden the
scope of systolic architectures by achieving reconfigurability,
algorithmic flexibility, partitiomability and fault tolerance in MSAs,
In addition, these methodologies preserve VLSI design attributes, such as
locality of communication in order to -avoid 1long and irregular
interconnections, modularity in order to reduce the design time and cost,
extensibility in order to enhance the computing power and simplicity of
control. The LSSD technique is employed for loading and implementing the

control structure required for reconfiguration of MSAs. This scheme






130

offers 1low overhead in terms of additional pinouts and extra hardware
needed for implementing the MSA control structure. The procedure
presented in this research, for mapping algorithms onto MSA
architectures, presents a formalism for algorithm implementation and
design of reconfigurable MSAs. This procedure ;an be used for designing
MSA processors to implement a pre—defined set of algorithms, and it can
also be used for implementing a new algorithm om a given MSA processor by

generating the control vector required for its reconfiguration.
6 .2 FUTURE RESEARCH

The concepts presented in this thesis are not restricted only to
mixed systolic arrays; they can also be used for formalizing the
reconfiguration processes for some other polymorphic multiprocessor
architectures, Several research issues emanate from this work and need
further investigations, First, procedures should be developed which
allow the user to obtain sets of valid transformations for other classes
of algorithms with arbitrary index sets and nonconstant data
dependencies. Second, the approach, presented in Chapter 5, should be
extended to silicon compilation of reconfigurable arrays to generate
masks for an optimal or near-optimal array which can implement algorithms
in a given set. Third, further research is needed to define a nunifying
performance index for reconfigurable arrays to measure the overall array
performance taking into consideration the speed, the reconfiguration
process complexity, the cell’s complexity and applicability of the array.

Finally, research should be done to develop CAD tools for MSAs at the
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architectural description level, and integrate these tools with other CAD
systems supporting circuit diagram and physical layout levels of design,
to create an integrated system design enviromment where masks can be

generated for optimal or near-optimal MSA processors.
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APPENDIX A

A COMPUTER-AIDED DESIGN FACILITY FOR MIXED SYSTOLIC ARRAYS

The rapidly growing complexity of digital systems and the
ever—increasing scale of integration om silicon chips provide a challenge
to developers of computer-aided design (CAD) systems, to create an
integrated system design enviromment with high—level CAD tools. More
complex systems require a greater need for CAD tools to do the design
task in a cost effective way. In a top-down hierarchical design
approach, it is common practice to structure the design process of a

computer system into the following steps [17]:

1. Design and description of architecture,

2. General circuit diagram,

3. Design of boards and integrated circuits,

4. Technology process and production.
Although commercially available computer—aided engineering workstations
provide a sound enviromment with integrated tools for the logical and
physical design levels, they are not suited to support the high-level
design of hardware and functional system architectures. High~level CAD
tools are, therefore, needed to support the system designer at higher
levels in the design hierarchy, such as design of functional system

architecture from system behavior specificationms,

132
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The main motivation behind this work is tp provide the designer of
MSAs with a facility to interactively develop an MSA structure for a
given set of user-specified attributes, such as mixing density and array
geometry, and to simulate the execution of algorithms on MSA processors
at the register—transfer level. This appendix describes a computer—aided
design facility for modeling and simulating mixed systolic arrays. The
CAD facility serves as a high—-level design tool which supports the design
of MSA architectures. This facility develops the structural model of an
MSA by interactively interrogating the user about various attributes of
the MSA structure, such as mixing density and array geometry. In
accordance with the user—specified attributes, the system generates a
model for the MSA structure and displays it on the user’s graphics
terminal showing the relative positions of all functional cells in the
array. Defining of the desired communication structure is then done
interactively. The system also performs register—transfer level MSA
simulation of the algorithms, observes the data—flow patterns in the
array and helps evaluate the throughput of the system.

The CAD facility, described here, is a useful tool for designing and
programming MSA architectures. It provides a design enviromment that
facilitates mapping of parallel algorithms into the reconfigurable MSA
architecture and automatic generation of reconfiguration comtrol code
required for algorithm implementation. The register—transfer level
simulation is used to validate the MSA architecture and the
reconfiguration control structure during the design phase. This work is
a step forward in the direction of automated design of reconfigurable

multiprocessor architectures involving multiple pipelines. The next
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section presents a system description of the CAD facility for modeling

and simulating MSA architectures.
A.1 DESCRIPTION OF THE SYSTEM

In this section, we describe a CAD facility that supports the design
of MSA architectures through interactive modeling and simulation. This
facility serves as a high—level CAD tool, which develops a structural
model of the MSA from user—-defined architectural attributes of the array,
such as mixing density and array geometry. In addition, this facility
performs register—transfer 1level MSA simulation of algorithms, observes
the data—flow patterns and helps evaluate the throughput of the system.

This system provides the following facilities to the designer of the

MSA architecture.

1. Generation and graphic display of the structural model of a
regular MSA when the array attributes, such as mixing demsity

and array geometry, are user—specified.
2. Storage of interconmection specifications, in form of a list of

records, which are interactively specified by the user on the

graphics terminal.

3. Options to interactively modify or delete selected array cells.

4. Reconfiguration of the MSA by entering reconfiguration control
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information.

5. Register—transfer level simulation of algorithms.

Figure A.1 shows a diagrammatic representation of the basic
structure of this facility. As can be seen, the system coansists of four
sets of data files and seven programs. A brief description of each

system block is given below.

STRUCTURE GENERATOR.

This program generates the structural model of the MSA for a
specified mixing density and array size, and maps the index points of the
array’s index set into the set of available functional cells. The output

of the structure generator program is used by the plotting program and

the simulator.

STRUCTURE EDITOR.

This program is used to edit the MSA structure displayed at the
user’s graphics terminal. Two routines, namely PRUNE and MODIFY, are
used for this purpose. PRUNE eliminates any extra boundary cells not
required in the MSA implementation. User can move the cursor and select
the cell to be eliminated. MODIFY selects a cell position within the
array and changes the cell type at that location. This program is robust
in the sense that it can sense an improper selection made by the wuser,
i.e., a location where no cell is present, and prompt the user about the
mistake. This program provides a facility for designing irregular

architectures, as well as for including special I/0 processors at the
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USER’S TERMINAL
INTERFACE

STRUCTURE |- — STRUCTURE
EDITOR GENERATOR
‘ 1
PRUNE
PLOTTING
PROGRAM
MODIFY
= INTERCONNECTION
EDITOR
CONTROL
VECTORS = SIMULATOR

Figure A.1. The system diagram
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array boundary.

PLOTTING PROGRAM.

This program plots the representation of the MSA structure as
defined by the user-specified attributes and developed by the structure
generator program. The plot is produced on a graphics terminal, where
the user can interactively edit the MSA structure or specify the
interconnections. A hard copy of the plot can be obtained at any stage

in the design.

INTCON.

This set of files contains 1ist of records of interconnections
specified for specific MSA structures. The simulator nuses these
specifications to determine the data—flow for the array. One record
specifies one interconmection 1link and contains information about the
input and output cell coordinates and their respective 1local ports. A
detailed discussion of the storage schemes for interconnection links is

given later in this section,

INTERCONNECTION EDITOR.

This program modifies and specifies the intercomnmnections among the
array cells via a graphics terminal. This program decodes the screen
coordinates of the graphics terminal into the array’s index set points
and generates a record for each specified interconnection to be stored in
the INTCON. This program can be extended to check the 1legality of an

interconnection link specified by the user.
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CELLS' GRAPHIC DESCRIPTION.

This set of files contains the graphic representation of all the
cells of which a specific MSA is composed. Each file contains sequence
of graphics commands which define the shape and size of a cell.

Different symbols are used to represent different types of cells.

CELLS' FUNCTIONAL DESCRIPTION.

This set of files contains the functiomal description of computation
cells and switching cells. A file pertaining to a specific type of
computation cell contains the data—transfer statements for processing
incoming data at the local ports of the cells. In case of a switching
cell, a file contains information regarding the one—to—ome correspondence
of the set of control codes for switching c¢ells with various
interconnection configurations, The simulator program uses the

functional description while performing the execution of an algorithm.

RECONFIGURATION CONTROL VECTORS.

This set of files contains various control vectors, each capable of
reconfiguring an MSA structure to implement a specific algorithm. The
configurations of a specific MSA, and the algorithms implemented om it,
are determined by its reconfiguration control vectors. User can add new
control vectors in this set of files, which when loaded into the array,

establish the computation and communication structure of the array.
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SIMULATOR.

This program evaluates the executiomn  behavior of the MSA
architecture by determining the state of the machine after each time step
when simulating execution of algorithms. Once the MSA architecture and
the communication structure are defined by using the structure generator
and the interconnection editor, a particular MSA configuration can be
achieved by 1loading the corresponding control vector. The simulator
merely calls two routines to simulate the processor operations and
interprocessor communication at each time step. One routine is called
CMPCEL, which simulates the input to output functional mapping for all
ports of each computation cell as defined by the control code bits in
each cell. The second routine is called SWICEL, which transfers the data
available at the output ports of the computation cells to the input ports
of appropriate cells as determined by the control code stored in the
switching cells. So, at each time step the two routines, CMPCEL and
SWTCEL, are called and executed to simulate the MSA behavior.

In the remainder of this section, we describe how the MSA Structure
Generator generates and displays the MSA structures with regular
hexagonal geometry when the basis mixing density is specified. Although
there exists a large number of mixing profiles which yield a regular
array structure, only a few of them are practical for real algorithm
applications. The hexagonal array geometry, first used for band-matrix
multiplication algorithm [31], is an important structure because of its
utilization of planar communication and its high packing demsity. The
smallest hexagonal array comprises seven cells and serves as a basis for

hexagonal MSAs, as larger array structures can be grown from this basis.
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The mixing density of the basis, py, is called the basis mixing density

and can be one of the following:
Pp =1i/7 ,i=1,2,3, ..,1.

Figure A.2 shows the bases corresponding to three differemt mixing
profiles. MSAs grown from the bases are intended for computation use.
The density of a regular hexagonal MSA is a function of the basis mixing
density, and these relations are given in [6]. The structure gemerator
program determines the index set QR of the MSA and the transformation
matrix D, which is a mapping on the index set to the set {0, 1}, where a
0 indicates a SC and a 1 indicates a CC.

In order to get a hexagonal geometric pattern on the display a
screen coordinate transformation is performed which, of course, is
transparent to the user., Each cell (CC or SC) in the array is labelled
by an ordered pair (x,y) where z and y are the values of the X and Y
coordinates of that cell position. In order to convert the rectangular
coordinate system, where X—axis and Y-axis are at an angle of 90 degrees,
into a hexagonal coordinate system, where both axis are at an angle of

120 degrees, the following transformation matrix is calculated:

F 1 — - — -
1.732 -1.732 X X ow
E 1| LY | Vo]

X ew and Ypew are the new screen coordinates for hexagonally patterned

display.
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(c)

(®)

with (a) py = 1/7, (b) pp = 3/7,

ay bases

gonal arr

Hexa

Figure A.2.

and (c) py, = 3/7.
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Interprocessor communication structure is defined by specifying all
interconnections among desired MSA cells. The problem of specifying
these interconnections is synonymous to the problem of defining and
representing a directed graph (or a digraph). One approach which could
be considered here, is to represent the digraph by an adjacency matrix.
For a graph with p points there is defined an adjacency matrix &'[‘i,j]
in which 8j,j=1 if there is an arc from vertex vj to vertex vj and aj, =0
otherwise. This approach, although quite comprehemsive, is not chosen in
our Ssystem mainly because of the following reasons. In certain
implementations, all of the available cells may not be used, and hence
the indegrees and outdegrees of some vertices in the digraph will be
zero, This results in rows and columns containing all 0’s, which will
slow down the simulation because the whole adjacency matrix needs to be
exhaustively scanned after each clock cycle to simulate the communication
structure. Another reason is that MSA structures employ short and
regular communication geometry, so a vertex in its digraph is omnly
connected to a few of its neighbors, whereas adjacency matrix takes. into
account all possible arcs from any vertex to every other vertex in the
vertex set. Hence the adjacency matrix approach does not match well with
the class of digraphs we are considering here. Other approaches of
representing digraphs such as Reachability matrix and Distance matrix are
also not suitable for MSA communication graph representation and
simulator implementation.

The scheme we have employed here to represent the digraph and hence
the communication structure of the array, is to store in a data file a

list of all the arcs (or edges) in the graph. Each arc is specified in
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the 1list as a record which contains the originating cell’s coordinates
and its output port as well as the terminating cell’s coordinates and its
input port. For example in case of a hexagonal array, the arc shown in

Figure A.3 will be stored as the following record
(3mn6kl),

where first and fourth entries refer to the input and output ports
respectively such that AIN=1, BIN=2, CIN=3, AOT=4, BOT=5 and COT=6. The
remaining four entries in the record refer to the coordinates of the
incident vertices of the arc.

Defining of the desired communication structure is done
interactively using a CAD graphics terminal. Two possible modes are
available to the user at this stage. In the ’'Cursor’ mode, a cell can be
selected by moving the cursor anywhere inside the cell and pressing any
key. In this fashion user can enter the desired interconnections on the
terminals, which are converted into the record format and saved in the
data file containing the list of arcs. In the ’'Text’ mode, user types in
the coordinates of the incident cells and specifies the input and output
ports of the cells. It can be possible in future, to make provision in
the program for checking the legality of the specified connections and

prompt the user in case of an illegal specification.
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Figure A.3. An arc indicating a connection between two
neighboring cells.
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A.2 DISCUSSION

We described a CAD tool, which supports the design of MSA processors
at the architectural design and description level. The register—transfer
level simulator is wused to validate the MSA architecture and the
reconfiguration control structure during the design phase. The system
was implemented on a PRIME-750 computer, for hexagonal array geometry,
and the simulation was performed, for the band-matrix multiplication
algorithm, as given in [31], on a hexagonal MSA with a basis mixing
density of 1/7. A more general implementation of the system can include
other array geometries, such as rectangular or triangular, in the array
structure gemerator program. In order to implement the band-matrix
multiplication algorithm, the switching cells and selected computation
cells should be in straight and bypass configurations, respectively.

That is, for these cells,

Aot = Amn;
Bor = Bin:

Cor = CIN.

The active computation cells in the MSA, perform the inner product step

function, given by

Aot = Amn;
Bor = Bn;
Cor = Ay * BN + CIN-

The data communication with the outside world takes place at the MSA

boundary only. The input and output is controlled by the simulator

program. Since the timing for data input and output depends heavily on
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the algorithm to be simulated, a separate I/0 routine is required for
each algorithm. In case of the band-matrix multiplication algorithm,
considered here, each <cell performs active computation at every third
time step. The simulator output gives the timing for the data input and
output at the MSA boundary cells. The simulation results provide the
status of each cell after each time step. This feature helps observe the
data—flow and find throughput of the MSA.

The work, presented here, is a step forward in the direction of
automated design of reconfigurable multiprocessor architectures involving
multiple pipelines. For further research, this high—level CAD tool can
be integrated with other CAD systems supporting circuit diagram and
physical layout levels of design, to create an integrated system design

enviromment for generating masks for MSA processors.
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