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ABSTRACT

AN ANALYTICAL STUDY OF THE CONVECTION STAGE

OF A CRYOMICROSCOPE SYSTEM

BY

Hasmukhbhai K. Patel

The present study describes a numerical analysis of

the hydrodynamic and thermal characteristics of a heat

transfer system designed to produce thermal control of a

small sample placed on a light microscope.

A simplified model of an actual system has been

developed. The model consists of a laminar flow in a rec-

tangular duct of aspect ratio 0.3. The velocity field in

the hydrodynamically fully deve10ped region is solved.

This solution is used in the thermally developing region

where the duct experiences uniform heat flux at the top

(heater) surface and is insulated on the other three sides.

The numerical solutions have been obtained using

the finite difference technique with the Gauss-Siedel

method (using successive over relaxation) and the Alter-

native Direction Implicit Method.

The temperature field on the surface of the heater

(the site of the biological specimen) is presented and it

reveals unacceptably severe temperature gradients in both

the axial and lateral directions (280°C/CM and 320°C/CM
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respectively). These results are in qualitative agreement

with experimental data obtained from the actual system.

Results for the velocity field indicate that the

solution yields accurate results based on mean velocity

criteria (Um n) but may be inaccurate by as much as 20%
ea

based on local velocity gradient criteria (Cf). Thus the

results for the temperature field on the heater surface

may be in error by a comparable magnitude even though an

energy balance based on mean temperatures is accurate to

less than 1%.

Modifications in the computer program required for

model improvement and further recommendations for thermal

design studies are discussed.
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INTRODUCTION



1 . 1 BACKGROUND

The cryomicroscope is a research tool which allows

a researcher to directly observe freezing and thawing pro-

cesses. The better systems of this type are computer-

controlled and allow precise and virtually independent

control over temperature and its rate of change.

The desirable characteristics of such a system

include the capability to subject a specimen to a uniform

temperature process T(x,y,z,t) = T(t) over a rather wide

dynamic range of temperature rates of change. These char—

acteristics make it possible to identify particular events

of interest with specific temperatures and/or temperature

histories. For small samples, this has been possible and

a single temperature measurement provides a reasonable

basis for feedback control.

The present work considers a heat transfer system

which has been used to study freezing damage in the micro-

circulation of a hamster cheek pouch--a macroscopic speci-

men that was viewed through the cryomicroscope. There is

experimental evidence showing that temperature gradients of

approximately lOOOC/cm may exist in the immediate vicinity

of the specimen for this type of system.

The research presented here is a first step at im-

proving the thermal design of such systems. A simplified

model of the actual system is developed and numerical solu-

tions of the velocity and temperature fields are presented.

The computer model developed here and modifications of it
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can be used to optimize the thermal design of such sys-

tems in the sense of reducing temperature gradients at

the site of the specimen.

The remainder of the introduction describes the

actual system more completely and presents the simplifi-

cations made in modelling the system.

1.2 THE ACTUAL CRYOMICROSCOPE SYSTEM

The cryomicroscope, developed by Diller and Cra-

valho at the M.I.T. Cryogenic Engineering Laboratory (1), was

the primary investigative tool used by Thomas Hrjcaj (2)

for his experimental investigation of the freezing damage

in the microcirculation of a hamster cheek pouch. The

cryomicroscope consists of a Zeiss Universal light micro-

SCOPe (see Figure 1) that incorporates a specially

designed convection stage. This convection stage is

placed in the optical path of the microscope between the

objective and a long working distance (7 mm) condenser.

The convection stage consists of a closed rectangular chan-

nel (0.118)(0.375)<2.69 inch) fitted with circular quartz

windows (0.9" diameter, 0.010" thick) on the top and on

the bottom of the channel. These windows are located at

that point along the channel which intersects the micro-

scope objective. In this case, biological specimens are

placed on the top heater window for cooling. The cheek-

pouch of a sedated hamster could be everted and mounted

flatly over the top window. For the convection stage

used by Hrjcaj (2) in his research, pre-cooled gaseous
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nitrogen was convected through the closed channel. The gas

stream supplied the necessary cooling capacity to freeze the

cheek pouch.

The top quartz window of this system was manufac—

tured with a thin transparent resistant film on its bottom

surface. This film was therefore between the biological

sample and the refrigerant fluid so that dissipation of

electrical energy in the film provided thermal energy when

desired to offset cooling by the refrigerant.

An analog thermal control system measured one tem-

perature in the specimen and used this single measurement

to control "the" specimen temperature by varying the heat

generation in the film heater.

As shown in Figure 2, the temperature gradients in

the original system could be severe. A quantitatively

accurate model of this system is desired.

1.3 FLUID MECHANICS AND HEAT TRANSFER ASPECTS OF THE

ACTUAL SYSTEM COMPARED TO THE MODEL SYSTEM

The actual cryomicroscope heat transfer system used

by Hrjcaj is characterized by several important complexi-

ties that were beyond the scope of this initial study. The

following factors are included in the actual system:

1) flow separation at the entrance of the rec-

tangular duct due to sudden expansion from

an upstream circular tube

2) turbulent flow

3) both hydrodynamically and thermally developing

flow
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4) heat dissipation over circular boundary re-

gions of the rectangular duct system

5) ill-defined natural convection boundary con-

ditions over the remaining three duct surfaces

Since the present research focuses primarily on the

thermal aspects of the problem, a simplified flow field was

employed. Hence the flow is taken to be: (1) laminar;

(2) fully developed hydrodynamically; (3) steady flow.

In addition, the thermal model primarily considers

the development of the thermal boundary layer in the rec-

tangular channel in the heater window region in order to

predict quantitatively the thermal gradients on this sur-

face. The following assumptions are made for the heat

transfer calculations:

1) uniform heat flux from the heater window into

the refrigerant fluid

2) adiabatic walls on the other three duct sur—

faces

3) constant fluid properties.

1.4 PREVIOUS SOLUTIONS AVAILABLE

Hornbeck (12) provides a solution to the heat transfer

problem described above. However, this solution does not in-

clude the non-dimensional axial length, aspect ratio, or

Reynolds number of interest here. Details of the Hornbeck

technique are given later.
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1.5 SPECIFICATION OF MODEL DUCT AND HEATER BASED UPON

A PROPOSED EXPERIMENTAL SYSTEM

Since the model to be analyzed is not completely

comparable to the actual system, the conditions to be mod—

elled are defined in terms of a proposed experimental system

which could be used to verify the numerical results ob-

tained from the current simplified model. The conceptual

experimental system serves the useful purpose of providing

a specific illustration of the fluid mechanics and heat

transfer concepts involved and does so on a scale that

would be easily realizable in an experimental laboratory.

The model fluid assumed here is compressed air since it

would be readily available in most laboratories.

1.6 THE MODEL DUCT/HEATER SYSTEM

The model duct is taken to have the same cross-

sectional dimensions as the original Hrycaj system (1.0

cm width by 0.3 cm height). The model heating length is

arbitrarily chosen to be 5.0 cm compared to an actual

length of 2.9 cm. This increased length allows predic-

tion of temperatures for longer heaters of interest.

The simplified model assumes a completely devel-

oped hydrodynamic boundary layer in the window region

with the laminar flow assumption. In order to assure

the fully developed condition, the behavior of the flow

was examined for a range of Reynolds numbers less than

2300, and a developing length was defined. This criteria

places the model heater far enough downstream of the duct
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entrance such that full development of the hydrodynamic

boundary layer occurs. It has been assumed that a uniform

velocity distribution would be present at the entrance of

the duct.

The Reynolds number will be based upon the hydraul-

ic diameter since this approach is found to describe flow

through non-circular ducts very well (8,9). The hydraulic

diameter is defined as:

4 x cross-sectional area

Dh = perimeter of the cross-section

 

In the present case for a duct of dimensions

(0.3 cm x 1.0 cm):

D = 0.4615 cm

h

The criteria for the criticalhydrodynamicdevelopment

inside the duct is given by Kays and Crawford (8) in terms of

the hydraulic diameter approach:

N
I
?
)

D
I
DX—D; _

Since the fluid in the duct is assumed to be air,

the following prOperty values have been used:

1.1766 kg/m39 =

u = 18.53 x 10'6 kg/m-sec

K = 26.14 x 10-3 w/mok

Cp= 1.005 kJ/kgok

These values are taken at 23°C and are assumed

constant.

A Reynolds number of Re = 1827 is arbitrarily
DH

chosen to have laminar flow and the corresponding develop-

ment length is X = 0.4215 m. Thus the model heater will be
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placed downstream at X = 0.475 m and the solution

will be for ReDH = 1827 with a total duct length of 1.0

m (see Figure 3).

Although the total pressure drop in the Hrycaj

system was estimated as 10-20 psig, the pressure drOp

required to maintain laminar flow will be considerably

less than this. The pressure drop mechanism

and expressions quantifying the pressure drop are different in

the undeveloped and developed regions. Knowing the criti-

cal development length, we consider the two pressure drops

separately and calculate the total pressure drop for the

entire tube.

Let AP = AP + AP1 2 = total pressure drop where:

AP 1 - pressure drop in the developing region

AP2 = pressure drop in the fully developed region

Shah and London (9) present graphical data for

C 'Re as a function of the duct aspect ratio and:
f DH

._17.51
_ 853; (1.1)

Cf fully developed

where the aspect ratio is 0.3 here.

Shah and London (9) discuss the developing nature

of the flow in which the friction factor is a function of

axial position in the tube. The same authors point out

that the more useful quantity is the apparent average

friction factor over the development length C This
f app'

quantity is a function of aspect ratio where the aspect

ratio is defined as:

Aspect ratio = (%%)
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(2a = height of channel; 2b = width of channel)

For the present case, the aspect ratio has a

value:

Aspect ratio == 0.3

For this value, the apparent friction factor is:

Cf app - ReDH = 22.25 (9) (1.2)

Therefore:

sz }(

AP1 = 4 Cf app (76;) 51} (1'3)

2

= 0V L-x

AP2 4 Cf fully developed (29c)(l%i) (1.4)

where L = length of duct = 1.0 m

Results of the calculation of AP for various

Reynolds numbers are given in Figure 4. These values are

considerably lower than the estimated maximum figures for

the flow rate: 1.3 x 10-3 kg/sec, and pressure drop: 9.0 x

3
10 NT/mz, for the turbulent flow in the actual system.

To complete the fluid mechanics description of

this model duct flow, we note that the mean velocity of

the fluid calculated for ReDH = 1827 is V'= 6.237 m/sec.

The pressure drop per unit length in the fully developed

region will be:

dP 0V2 1 _ 3

d? - 4(Cf fully developed) fag'fig” 190'012 N/m (1'5)

for this case. This information will be used in the

solution of the energy equation.
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Finally, we consider the nature of the thermal

boundary layer development in the model system developed

here. The non-dimensional thermal length is defined by

Shah and London (9) as follows:

+ _ Lth

th DHPe
L

where Lth = duct length from the point of duct heating to

the point at which the temperature profile becomes fully

developed.

No value of L+ was found for the particular case
th

of interest here. However, an estimate of the behavior

is obtained by considering laminar flow in a duct with

aspect ratio = 0.3 when one wall is maintained at a con-

stant heat flux and the other three walls are maintained

at a constant temperature (9). The thermal development

length Lzh obtained ushxrthis criteria is 41.5 cm, which

is much greater than the heater length of interest. Thus

the thermal boundary layer will be deve10ping along the

heater window surface.



CHAPTER 2

HYDRODYNAMIC CONSIDERATIONS



2.1 NON-DIMENSIONALIZED (FINITE DIFFERENCE) MOMENTUM

EQUATION WITH SPECIFIC BOUNDARY CONDITIONS

2.1.1 NON-DIMENSIONALIZED MOMENTUM EQUATION

The velocity field in the fully deve10ped laminar

flow (directly beneath the heater surface) is obtained

by solving the Navier-Stokes momentum equation in the

x-direction (see Figure 3). The solution is developed in

non-dimensional form in order to be general and the deri-

vation of the non-dimensional equations from the dimen-

sional form is given in Appendix F.

The non-dimensional momentum equation is given as:

 a2U++3—2[.'J.«:=—l

3y+2 az+2

where

U+=9—;

U

* 1 dp 2

U — F dx)a

+

y = y/a

2+ = z/a

and 2a is the height of the channel shown in Figure 3.

The boundary conditions applied to this equation

are:

i) U+ = 0 at y+ = 0

ii) 0+ = 0 at 2+ = 0

iii) §;;-= 0 at 2+ = b/a

2.1.2 FINITE DIFFERENCE APPROACH

A finite difference numerical method of solving

14
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this equation has been applied using the finite difference

technique. The finite difference nodal representation of

the control volume is given in Figure 5.

In the case where

 

 

 

+ _ + _ + _ + _ + = +

(Ay )n - (Az )e — (Ay )S — (Ay )w — Ay Az

we get

2 + U+ U+ U+ U+

8, 3

32" ((Jl—ahn--—U—:> S)/Ay=(————P-- -P——U-S-)/Ay
3y 3y+ 3y (Ay)n (Ay)S

therefore:

+ +

+
3y 2 (Ay+)2

Similarly:

+

+ - ZU +a2U+ = UW p + UE

az+2 (Az+)2

Substituting these expressions into the governing equa-

tion and simplifying, we get:

+ + + + + _ _ + 2
Un - 4Up + US + Ue + Uw — (Ay ) (2.1)

2.1.3 METHODS OF SOLUTION

We can solve equation (2.1) by the following methods

methods:

i) Jacobi Method

ii) Gauss-Seidel Method

iii) Gauss-Seidel with S.O.R. Method

These three methods are discussed in Appendix (A). The

methods are iterative methods which are used when the

problem is two-dimensional and there are large numbers of

equations to solve simultaneously. It is very difficult
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to handle two-dimensional equations with large numbers,

so iterative methods are used with an initial estimated

solution:hiorder to get new values. The rate of con-

vergence of such methods depends on the type of iterative

method used. Such iterative methods may not converge at

all due to aspects discussed in Appendix (A). Other

iterative methods,such as the Alternative Direction

Implicit (ADI) Method, can also be used. This method has

been used for a solution of the thermal problem (discussed

in Appendix (B)). Patankar (3) suggests using the Gauss-

Seidel technique with the line-by-line method or the

successive overrelaxation method. We will discuss the

methods used here and the conditions for convergence will

be considered in Appendices (A) and (B).

2.2 HYDRODYNAMIC SOLUTION OF THE PROBLEM

2.2.1 NODAL CONVERSION OF THE FINITE DIFFERENCE

EQUATION INTO NODAL FORM

In the previous chapter, we have developed an appro-

priate non-dimensional finite difference equation for the

equation of motion in the 'X' direction:

+ + .+ + + _ _ + 2
Un - 4Up + Us + Ue + Uw — (Ay )

+ + + + . . . .

s’ Ue' Uw' Up are non-d1mens1onal veloc1t1eswhere U+, U
n

defined previously and Ay+ is the non-dimensional distance

between nodes.

Due to symmetry about the center line, we only

need to take into account one quarter of the rectangular
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cross section and determine the velocities at other points

within the rectangular cross section. Non-dimensional hy-

drodynamic boundary conditions are shown in Figure 6 and

for our solutions, we define four rows and eleven columns

so that

Ay+ = Az+ = 0.333

These node arrangements on one quarter of the rectangular

cross section in terms of non-dimensional distances are

shown in Figure 6.

In this case, equation (2.1) from the previous

section will be reduced to

U+ - 4U+ + U+ + U+ + U+ = -0.1111 (2.2)
n p s e w

Now defining i and j as follows:

I + I 0

row number in z d1rectioni

j = column number in y+direction

we can write this equation in terms of (i,j) as follows:

4U+(i,j) =tfki,j+1)-+U+(i,j-1) +tfiki+1,j)

+ U+(i-l,j) + 0.1111

with the following boundary conditions

i) U+(l,j) = 0, j = 1 to 11

 

ii) U+(i,l) = o, i = 1 to 4

iii) at i = 4:

au+ = 0 so U+(5,j) - U+(3,j) 0

+ ' +
By 2(Ay )

Thus U+(5,j) = U+(3,j), j=l to 11

iv) at j = 11:
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+ +. +.
30+ = 0, so U (1,12) - U (1,10)

32 2<Az+)

 

Thus, U+(i,12) = U+(i,10) for i = 1 to 4.

2.2.2 APPROACHES CONSIDERED FOR SOLUTION OF THE

MOMENTUM EQUATION

Both the Jacobi and Gauss-Seidel methods of iter—

ative solution were attempted but these techniques failed

to yield a convergent solution. However, the successive

overrelaxation method was applied in conjunction with the

Gauss-Seidel Method and a convergent solution was obtained.

The Gauss-Seidel method uses the current value of the

unknown obtained in the present iteration stage while the

Jacobi method uses the values of the unknown obtained in

the previous iteration. The difference between the S.O.R.

method and the Gauss-Seidel method is that the S.O.R.

method uses an overrelaxation factor (w) for fast con-

vergence of the solution. This factor has a value between

one and two while the Gauss-Seidel method could be con-

sidered a subset of this method where w = 1. The chosen

value of the overrelaxation factor between one and two

places a variable amount of stress on the importance of

the present value of the unknown compared to the previous

iteration value. Thus, faster convergence of complex

systems of equations is possible as compared to the Gauss-

Seidel method. By using the S.O.R. method, a convergent

solution was obtained after fifty iterations. The solution

is shown in Tables 1 and 2.

The successive overrelaxation factor 'w' is found
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using the formulae discussed in Appendix A. The Jacobi,

Gauss—Seidel, and S.O.R. methods are discussed in Appendix

A along with the respective criteria of convergence.

Using equations (a) and (b) in Appendix A:

6(B) = S (cos n/p + cos n/9)

for a unit square mesh of dimension 'h' and a total rec-

tangular cross section of dimensions ph by qh, we get in

our case,

ph=l

qh = 3.333

where h = Ay+ = Az+ = 0.333

p = 3 and q = 10

Substituting the values of p and q above, we get

6(B) = % (cos n/3 + cos n/lO) = k (0.5 + 0.951) = 0.725

Substituting the calculated value of 6(B) as discussed in

the appendix:

2

w = = 1.185

b 1 + /1 - (0.725)2

 

 

The computer program used to solve the hydro-

dynamic problem, using the successive overrelaxation method

along with the Gauss-Seidel method, is given in Appendix

D under the name 'HEAT.‘

2.2.3 NON-DIMENSIONAL VELOCITIES AT DIFFERENT

NON-DIMENSIONAL POSITIONS OBTAINED BY THE

PROGRAM 'HEAT'

The results obtained from the computer program after

fifty iterations are given in Figure 7.
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2.2.4 CALCULATION OF VELOCITY AT DIFFERENT POSITIONS

IN THE DUCT

To convert the non—dimensional velocities to

dimensional velocities at different positions in the y and

2 directions, we have to first determine the value of (u*)

which is used to non-dimensionalize the x-direction momentum

equation. The quantity (u*) is defined in the previous

chapter as follows:

it: 3.92.2u u(dx)d (m/seC)

where a = 0.15 cm. We have calculated the pressure drop

dp . .

(3;) 1n the prev1ous chapter.

Calculation of the velocity at any position in

the fully developed region can now be made from the non-

dimensional velocity results obtained from the program:

(m/sec)

Substituting the value of g3 and a from the previous

chapter,

.519 _N_ e
di 190.012 m3 and a 0.15 cm

 

 

u* = 1 x 190.012 (N) x (0.45 x 10’2)2(m2)

U(lg see) 33

m

. l 190 012 o 15 0 15 10"“) ( / )‘l8.53x10"5x . x . x . x 10 sec

23.07 m/sec
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Thus u* = 23.07 m/sec for the fully developed flow.

Calculating the velocities now using the appropriate non-

dimensional velocity result and substituting into the

following,

u(y.2)_r__.
u = u+(y.2)

where u+(y,z) is the non-dimensional velocity obtained at

 

a given position.

For example, we are interested in evaluating the

velocity at the center of the duct which is the maximum

velocity,

€¥ = 0.4937 (from Figure 7)

ucenter = 23.07 x 0.4937 = 11.39 m/sec

2 . 2 . 5 CALCULATION OF FRICTION FACTOR

The friction factor is now calculated from the

results in order to compare with the assumption that

Cf = %¥4§l-for fully developed flow.
e

DH

We defined the following earlier:

* _ l d 2
u — E(3)2961 (2.3)

dp 0v2 1
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Substituting (2.4) into (2.3), we get

 

2 2

* _ P_V__ 3..

uDh

so, C = 12

f 2 D(%?) a2

2

UDh

C = 5—
 

f 20V+VDh 8.2

where V+ = um/u* and 11m = the mean velocity = V and

considering the definition of the Reynolds number,

2

h

2v+ (Re) (a2)

D

Cf = 

Now to calculate V+ from the results obtained, the trap-

ezoidal rule is applied which is in final form below.

A
. C + * 1k .

S1nce um : iL- I udAc and U = u/u where u is constant

c
0

we derive:

V+ = A5' [%((U+) in corners of the duct) +

c

%(sum of all U+ on the surface of the duct

excluding corners) + (sum of all U+ inside the

duct):]

4.

In our case, V = 0.346 and the computer program calculated

friction factor is: Cf==l4/Re We believe that the dif—
DH'

ference between this value and Cf = 17. Sl/ReDH is due to the

finite difference approximations in the solution. The ap-

proximation in the integral above is another sourcecnferror.

No calculations were performed to isolate the difference. This

friction factor calculated from the non-dimensional velocity

results is less than the Shah and London value by approx-

imately 20%.
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2.3 CONCLUSIONS AND COMMENTS ON THE HYDRODYNAMIC SOLU-

TION

2.3.1 CONCLUSIONS ON APPROACH USED TO SOLVE

THE PROBLEM

The hydrodynamic solution for a rectangular duct

flow is achieved numerically by the finite difference

numerical approach. We observe from the output of the

computer program (which is given under the name 'HEAT' in

Appendix D) that after forty-eight iterations using the

S.O.R. method with the Gauss-Seidel method, convergence is

achieved.

The first attempt to solve the problem was using

the Jacobi method. A convergent solution was not achieved.

This is due to constraints for convergence which are stated

in Appendix A. These constraints state that the solution

converges only when the coefficient of diagonal element ex-

ceeds the sum of the off-diagonal elements.

Another method, which can be used for solution of

the finite difference equation, is the Alternative Direc-

tion Implicit Method (ADI), which is discussed in Appendix

B. Taking large numbers of odd and even steps, in the 'X'

direction, after a certain number of steps the solution

will be constant for all steps in the 'X' direction, which

will reflect the fully developed velocity profile.

Successive overrelaxation is also used for this

type of problem and it is a very good alternative to the

ADI method, using an optimum overrelaxation factor (w). In

the present study, the successive overrelaxation method
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is used to solve the hydrodynamic finite difference

equation.

2.3.2 CONCLUSIONS AND COMMENTS ON THE SOLUTION

ACHIEVED BY THE S.O.R. METHOD

(1) The solution converged after forty-eight

iterations.

(2) From Figure 7, we can conclude that at the

centerline in the z direction (i.e., z = 0.5 cm), the

velocity at y+ = 1.0 (y = 0.15 cm) is a maximum and the

 

ratio:

Ucenter:(23.07)x(computer non-dimensional)

U 6.237 velocity at center
mean

so Ucenter = 23.07 x 0.4937 = 1 826

U 6.237 ’
mean

h U - ( *)( + t ) d * - 23 07 /w ere center — u u cen er an u - . m sec.

Shah and London (9) and Knudson (10) also gave experi-

mental results for rectangular cross sections for the same

problem as follows:

 

IJ _ _ y n _ z m
U — (1 (6) )(1 ‘4’ ) (2.5)
max

where m = 1.7 + 0.5 (0L*)-1'4

and n = 2 for 0* E 1/3

= 2 + 0.3(o*-l/3) for 0* 1 1/3

*= . =E=0015=where a aspect ratio b THE? 0.3

Shah and London (9) also gave the final result of the

ratio of maximum velocity to mean velocity as follows:
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U
max _ m+l n+1

U - (——In>(-—n) <2-6>
m

_ -1.4 _
so, m - 1.7 + 0.5 (0.3) — 5.395.

Substituting in equation (2.6), we get

 

Umax _ 5.395+1 2+1 _ 6.395 x 3

U ‘ ( 5.395 )( 2 ) ‘ 5.395 x 2 = 1'77
 

  

Comparing the results of the present computer model with

the Shah and London value yields a three percent differ-

ence :

1.826 - 1.77

1.77 = 3%
 

This agreement indicates good agreement between

the present computer results and previous work. However,

these values may agree without good agreement at the wall

(and therefore Cf factors) since Um and Um are less

ax

sensitive to the approximations made at the boundary than

the actual boundary values themselves would be.

(3) If we consider Figures 8 and 9, the wall

gradient of velocity in the 2+ direction is smaller than

the gradient of velocity in the y+ direction. This is
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due to the fact that the viscous stress in the z+ direction

is less than the viscous stress in the y.'. direction (i.e.,

Bu Bu

EVA—2"



CHAPTER 3

THERMAL CONSIDERATIONS



3.1 DIMENSIONAL APPROACH FOR THE THERMAL SOLUTION

OF THE PROBLEM

Although a non-dimensional solution to the energy

equation could be developed as was the case for the velo-

city field, only a dimensional solution is presented at

this time for the specific model system presented here.

3.1.1 INTRODUCTION

As described in Chapter 2, the present problem is

assumed to consist of boundary conditions on each side of

the cross section as follows:

(1) three sides of the rectangular cross section

are insulated, i.e. q" = 0

(2) on one side of the rectangular cross section,

q" = constant (axially and laterally)

The boundary conditions are shown in Figure 10.

The sole thermocouple used in the cryomicroscope system is

placed on the center of the window heater typically and

this is shown in Figure 10, where the position is

denoted by "B."

The energy equation for hydrodynamically fully

developed flow and thermally developing flow is derived

by the control volume approach and is discussed by Keys

and Crawford (8):

2 2 2

3T 3 T 3 T 3 T

U-—— = a ( + ———-+ ) (3.1)

3 8x2 By 322

82T
where a 5—7 is the axial conduction term.

X
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Analyzing the energy equation by an order-of—magnitude

analysis, and defining the magnitudes of order:

x (I (L)

y a (a)

z 9 (a)

u a (Um)

3T UmT
so, U 52 ( L )

32T T

—2'°‘ {—5)

3x L

3% T
'7“ (7)

By a

321* T
——2'°‘ ('7)

82 a

Now, comparing the magnitude of the axial conduction terms

with the lateral conduction terms since a = 0.15 cm and L =

5 cm (i.e., 0.05 m), the lateral conduction terms are

dominating terms compared to the axial conduction term. So

the axial conduction term is neglected. The axial conduc—

tion term is only important within the short length

from the leading edge of the heater where the temperature

gradients are significant. This is a standard procedure.

Robert Hornbeck (12) neglected the axial conduction term

when the flow is developing both hydrodynamically and

thermally. Vera Preingingerova (12, 13) also neglected

the axial conduction term for rectangular ducts with various

aspect ratios. V. Gastri (15) also supports the argument of

neglecting the axial conduction term while solving
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numerically the problem for the square duct with various

boundary conditions. Therefore:

(3.2)

This is a three-dimensional problem where

U # f(x) because the velocity profile is fully

developed, but

C

II

f(y.z). and

T = f(x,y,z) as the temperature profile is

developing

Boundary Conditions:
 

(i) at x = 0, i.e., at the leading edge of the

window, the temperature of the fluid in the

duct is 23°C

 

' ' " — — .32. = = "

(11) q lz=0 — kaz 0 q lz=b

' ' ° = " = -— fl =(111) for y 0, q ly=0 3y 0

- 3T

(1V) at Y = 0.3 CH1, quI = = - _

y 0.3 cm 3y y=0.3 cm

= 5 w 2 = 1 .37

5 x 1 cm cm

3.1.2 FINITE DIFFERENCE APPROACH

Converting equation (3.1) into the finite dif-

ference form similar to the conversion of the momentum

equation:

TN - 2Tp + TS + TE + TW - ZTP = UP T

(Ay)2 (Az)2 0‘ x
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where TP* is the value of the temperature at the previous

iteration. This equation is solved by the Alternative

Direction Implicit (ADI) method which is described in

Appendix B.

The finite difference network for this system is

shown in Figure 11.

Boundary Conditions:
 

(i) at x = 0, i.e., first step in the ADI method,

T(I,J,l) = 23.0

(ii) for given step J = l (i.e., on boundary 2 = 0)

n _ 3T _ _

z-O Bz _
z-O

. . _ 3T _ _ u
and simllarly at z — b k3; — 0 - q

z=b z=b

Considering the finite difference cross section

as in Figure 11 where A2 = Ay = 0.05 cm and

Ax = 0.2 cm

(iii) for y = 0, q" = -k——- = 0, so

y=0

T (2,J,J') =CP(0,J,J') in our approach

(iv) For y = 0.3 cm, q" = -k——

y=0.3 cm  

1 w/cmz, so T(8,J,Jl) - T(6,J,Jl)

2

2(Ay)cm x E-w/ wécmx In = 382.55°K

me Ell-Il-

 

According to the ADI method described in Appendix B, for

even steps,
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32T + BZTI = u (Tx+Ax - Tc)

822 x+Ax 3y2 x a AX

and in finite difference form,

0 o o 0
TN 2Tp-l-TE + TN --2Tp -+TS = U(I,J) (Tp-Tp )

(Az)2 (Ay)2 a Ax

In our program

(U(I.J) (yz)
a Ax ) = R(I,J) = constant at given position

So our finite difference equation for even steps will be

° = (R(I,J) + 2) + T
P

O o
TN+TE+TN +TS +(R(I,J) 2)Tp

(3.3)

For odd steps,

 

  

and similarly as described in even steps, the finite dif—

ference form of the energy equation will be as follows:

T °+T °+T +T +(R(I,J)-2)TPO= (R(I,J)+2)TP
w E N S

(3.4)

The thermal entry length problem was solved by

digital computer using the finite difference equations by

the ADI method. The only difficulty which was encountered

was that on the sides of the rectangular cross section,

the velocity is actually zero but the finite difference



-
v
—
-
'
-
(
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equations must account for the convection properly near

the wall. Therefore, due to the linearity considered in

the finite difference equation while formulating the

problem, the velocity at the wall at a given point is

assumed to be:

I
UP+UE+US+US

U(se) = 4

 (see Figure 12)

A s1m11ar procedure 15 used for U(ne)’ U(nw)’ and U(sw)’

After calculating all the velocities above, UP is calculated:

U = U(se) +U(SW) +U(nW) +U(ne)

P 4

 

This linear approach is assumed because throughout the

study, (Ay = A2) is considered.

3.2 THERMAL PROBLEM SOLUTION BY THE FINITE DIFFERENCE

APPROACH

3 . 2 . 1 INTRODUCTION

We have discussed the assumptions and the dimen-

sional approach to the thermal problem of interest in the

previous section. We have applied the Alternative Direc-

tion Implicit (ADI) method for this three-dimensional

problem which is discussed in Appendix B, along with the

TDMA method which is discussed in Appendix C. The governing

equation is formulated in finite difference form along

with the boundary conditions in the previous chapter.

The computer program which is designed to solve this problem

is given in Appendix E under the name "Convection Program."
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N (UN)

'w'-n

(U )

w 4 :2 E

(0W)

Use

S'- O

O

s (Us) Us,

FIGURE 12. VELOCITY ASSUMPTION IN CALCULATING

VELOCITY ON BOUNDARY FOR THERMAL SOLUTION.
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In solving the problem by the convection program,

the R(I,J) values which are defined in the previous chapter

U(I.J) (Ay)2

a A):

Figure 13 and used in the program. The computer results

 as R(I,J) = ( ) are calculated and shown in

are shown in Table 3 at different y and 2 positions as a

function of the x direction. The thermocouple is placed

along the centerline of the window. The predicted variation

of temperature at the centerline location of the thermo-

couple is shown in Table 4 with respect to the x direction

(i.e., distance from the leading edge).

3.2.3 CALCULATION OF MEAN FLUID TEMPERATURE AT EXIT

OF WINDOW REGION

The mean temperature of the fluid at x = 5 cm is

calculated in order to perform an energy balance on the

system for examining the validity of the calculated solution.

The trapezoidal rule in two dimensions is used as given

below. We can use the Simpson rule also by modifying it

for two dimensions according to Hornbeck (12). It is quite

accurate to use the Simpson rule for hydrodynamically and

thermally developing flow in the rectangular duct (12).

The mean temperature is defined in the general case by Rays

and Crawford (8) which is as follows:

 

 

_ 1
TM — AcUm I UTdAc

A
C

1 b a

TM = A U I I UT-dY-dz

C m
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TABLE 4. TEMPERATURE OF THE HEATER CENTERLINE AS A

FUNCTION OF DISTANCE FROM THE LEADING EDGE

OF THE HEATER.

 

 

x cm TherfiggguPI: (0C)

0 23.00

0.2 58.10

0.6 116.12

1.0 154.57

1.4 181.19

1.8 200.63

2.2 215.63

2.6 227.85

3.0 238.28

3.4 247.52

3.8 255.94

4.2 263.76

4.6 271.12

5.0 278.12
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According to the trapezoidal rule for one direction (ref.

18) for:

a A
(IU-Tdy) =71 (f0+2f1+2f + +2f

O

2 n-l

+ fn)

f f f are

0’ l’ 2' "' n

values of (UT) at y = 0, Ay, 2Ay, 3Ay, ... nAy. Now

where f = f(i,j) and in our case f

integrating again with respect to the z direction:

_ l y, z
Tm‘A‘EIE‘z" 7— [:f(0,0)+2f(0,Az)...+2f(0,(m—l)Az)+f(0,mAz)

+2(f(Ay,0)+2(Ay,Az) ... +2f(Ay,(m-l)Az)+f(Ay,mAz)

+2(f(n-1)Ay,0)+2f(n-1)Ay,Az) ... +f(n-l)Ay,mAz))

+f(nAy,O)+2f(nAy,A2) + f(mAy,mAz):I

The product (UT) at different locations is given in Figure

14.

Because of the symmetry about the center line in

the z direction of our problem, using the trapezoidal rule,

where

C
: II V = 6.237 m/sec

0.3 x 1 x 10"4 m21
1
’

ll

Ay = A2 = 0.05 m

we can calculate 'Tm' from the half cross section as

follows:

= ZAy-Az

m A U [%(UT(7IO)+UT(1:0
))+%(Sum of product

C m
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(UT) at all nodes on boundary y=0, z=0, y=0.3

cm) + (sum of product (UT) at all nodes inside

the cross section[]

Calculating the mean temperature from Figure 14 using the

above approach, we get:

_ o
Tm — 48.1 C

This value will be compared to that computed from a first law

energy balance. The lateral variation (in the z direction)

of temperature on the window at given distances from the

leading edge of the heater is shown in Figure 15.

In Figure 16, the variation of the centerline

temperature at different distances from the leading edge

of the heater is shown.

3.3 CONCLUSIONS AND COMMENTS ON THE THERMAL SOLUTION

3.3.1 GENERAL COMMENTS ON THE RESULTS

The solution to the energy equation with the

specified thermal boundary conditions is discussed and pre—

sented in the previous chapter. This solution was obtained

by using the finite difference method with the ADI approach.

Figure 15 shows the variation of temperature at different

lateral positions on the window surface at given distances

from the leading edge. Figure 16 shows the centerline tem-

perature variation (of the thermocouple) from the leading

edge of the window. The following conclusions are derived

from the results obtained from the computer program:



 

T
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4 .
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180-

% O

120-
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6o-

30' x = 0 CM

0 0.2 0.3 0.4 0.5

Z (CM) 5

FIGURE 15. PREDICTED VARIATION OF TEMPERATURE

AT WINDOW HEATER SURFACE IN 'Z' DIRECTION AT A GIVEN 'X'
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1) On the window surface, the temperature varies

both laterally and axially. The lateral variation is shown

in Figure 15. The lateral temperature gradient (g?)

depends on the position in the rectangular cross-section.

To illustrate the magnitude of these gradients we calculate

the approximate gradient at x = 1 cm:

3T é T(0.3,0.l) - T(0.3,0.0)

Az

 

_ 195.68 — 252.22 _ -56.54 _ _ 0
— 0.1 — T—i— - 565.4 C/cm
 

Examining the results of Table 3 indicates that the

largest lateral thermal gradients appear closest to the

beginning of the heated length. This region warrants a

closer examination in future work.

The maximum temperature gradients in the x direc-

tion are also a function of distance from the leading edge

of the heater because of the developing temperature profile.

The maximum axial temperature gradient also occurs at the

leading edge of the heater and is approximately:

8T ; T(0.4,0.3,0.5) - T(0.0,0.3,0.5)

.3? - —0.4
max

é 58.100-223.00 = 175.50C/Cm
 

The temperature gradients in the x direction (i.e.,

axial direction) decrease with distance from the leading edge

of the heater.

2) The temperature at the leading edge is 230C
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while temperature at the trailing edge of the window is

different for different locations on the window surface.

However, the maximum temperature is always at the corners

of the duct near the heater window.

3) The temperature at the centerline increases

rapidly within one centimeter from the leading edge, then

the gradient decreases considerably. As shown in Figure 16

the mean temperature of the fluid increases linearly, a

consequence of the first law for uniform heat flux. The

3Tmean

3x

the length of the heater (5 cm) indicates that the flow is

fact that the slopes of and HTS/8x do not match over

still thermally developing at x = 5 cm which confirms our

earlier estimate predicting that this would be the case.

4) The temperature along the line '8' where the

thermocouple is typically placed is the minimum temperature

on the surface of the window at a given distance from the

leading edge of the window.

5) We have neglected the axial conduction term

while solving numerically the thermal problem, which is

justified on an order of magnitude basis. The Peclet number

in our case is equal to 1827 x 0.72 (=Re'Pr) = 1315 which

is much higher than five (5). The axial conduction term can

be neglected for cases having Peclet numbers more than '5'

as discussed in Keys and Crawford (9).

3.3.2 ENERGY BALANCE CHECK OF THE RESULTS

Checking our solution with the help of the

energy balance by the first law of thermodynamics which
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states that for the steady state

energy in = energy stored + energy out

i.e., IECPAT = Q (3.5)

where AT = sz - Tbl

sz = mean bulk fluid temperature at trailing edge of

window surface

Tbl = mean bulk fluid temperature at the leading edge

of the window. (kg/m3) (m2)

In our case, fi1== p x A x V (m/sec) (kg/sec)

= 1.1766 (kg/m3) x 0.3 x 10"4 (m2)

x 6.237 (m/sec)

2.207 x 10'4 (kg/sec)

cp = 1.005 x 103 joule/kgok

Q = 5 watts

Substituting into equation (3.5), we get

5 (w)

 

P -4 3 w.sec

2.207 x 10 (kg/sec) x 1.005 x 10 (E65E-)

_ _ = 0
AT — sz Tbl 22.70 c

T = 22.70 + 23.0 = 45.70°c
b2

In the previous chapter, the solution technique for mean

temperature was discussed. We can use either the trape-

zoidal rule or Simpson rule in two dimensions to calculate

the mean temperature at the trailing edge (i.e., x = 5

cm). Using an approximate method, i.e., trapezoidal

method, the mean bulk temperature at the trailing edge
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is calculated in the previous chapter and it is equal to

48.1°c, i.e., = 48.1°c.
T52

Comparing the mean bulk temperature obtained by

the energy balance and by the finite difference method,

they are quite close and the error of the finite differ-

ence solution is:

48.1 - 45.70 _ Tb2(finite diff.)'.Tb2(energy bal.)

45.70 ‘
 

Tb2(energy balance)

5.3%

This error is due in part to the velocity approximation on

the surfaces of the duct and the approximate solution tech-

nique (i.e., alternative direction implicit) to solve the

thermal problem with specified boundary conditions. The

trapezoidal method of solving the mean temperature at the

trailing edge of the window is also approximate. Though

the error in the velocity solution is multiplied by the

error in the temperature solution, i.e.,

error in (UT) = (error in u)(error in T)

the error as a whole is 5.3% which is acceptable for our

present purposes.

6) This problem for a variety of boundary conditions

is also solved by V. Preingerova and P. H. G. allen (14) by adimen-

sionless approach for both thermally and hydrodynamically

develOping flow. However, the problem was solved for
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quite a small magnitude of length in developing and de-

veloped (hydrodynamically) region.

3.3.3 COMMENT ON PARALLEL PLATE APPROXIMATIONS

Comparing the actual rectangular duct solution

with a parallel plate approximation solution which is

discussed below, we can examine the conclusion given by

Hornbeck (12) which states that if the aspect ratio is

less than '5', a parallel plate approximation is rejected

in order to avoid misleading results for a rectangular

duct flow. There are two methods of solving the parallel

plate problem which are considered here and discussed by

Kays and Crawford (9), who give an hydraulic diameter

approach tabular form to solve the flow behavior through

the parallel plate. Cess and Shaffer (16)

used the analytical approach in which the parallel plates

are heated equally axially but at different levels of

heat flux on each plate. For our approach Um should be

calculated for Reynolds number = 1827 according to the

parallel plate approximation,

4 x a (m) x Um (m/sec)

 Re = 1827 = 2

V(m /sec)

where Dn = 4a (for parallel plate)

Um = 4.8 m/seC'

Now defining the Peclet number:

4Uma (m/sec)m
 

a mZ/sec
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where a = 22.106 x 10.6 mz/sec (in our case)

Then Pe = 1315

Now using the graph which is derived analytically for

]_ x Twi - Tb

'PE'E)’ as a function of' (q,a) for q2 = 0 (i.e.,(

one side heated and one side insulated), we get the

following results:

TABLE 5. RESULTS BY CESS AND SHAFFER METHOD.

 

 

x cm Twi-Tb(ot) Tb(oc) Twi(oC)

0 0 23.0 23.0

0.5 116.68 28.37 144.85

1.0 146.32 33.74 180.06

2.0 188.2 44.78 232.68

3.0 220.36 55.25 275.60

4.0 245.6 65.95 311.55

5.0 263.98 74.54 338.50

 

Kays and Crawford also obtain results for the same

problem using the hydraulic diameter approach and obtain very

similar results. Comparing our solution for the flow in the

rectangular duct which is given for point 'B' in Table 4 and

the parallel plate solution by Cess anui Shaffer which is

given in Table 5, we conclude that the results are

quite different for a given aspect ratio if we were

to simplify the problem using a parallel plate assumption
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and the solution will be misleading in all respects.

So for an aspect ratio less than five, the effect of

corners are significant and cannot be neglected.



CHAPTER 4

DISCUSSION AND CONCLUSIONS

 



63

4.1 DISCUSSION AND CONCLUSIONS

A preliminary quantitative understanding of the

temperature gradients on the heater surface of a convec-

tive cryomicroscope heat transfer system has been realized

by developing a simplified model of the actual complex

situation.

The primary aim of the present study was to con-

sider the effects of the develOping thermal boundary layer

with respect to the thermal gradients on the window heater

surface. The numerical solution to this simplified problem,

to the best of our knowledge, represents the first solu-

tion to a thermally developing,laminar boundary layer in a

rectangular duct of aspect ratio 0.3 with constant heat

flux on one wall and with the other three walls insulated.

The solution is in qualitative agreement with experimental

results obtained by Hrycaj on the actual complex system

indicating very large thermal gradients in the axial di—

rection. (See Figure 2.) Furthermore, the present model

predicts severe thermal gradient problems in the lateral

direction as well as the axial direction. (See Figures

15 and 16.)

The velocity field solution has been checked by

calculating the friction factor, Cf, in the hydrodynam-

ically fully developed region and the ratio (Umax/Umean) and

comparing these values with those available in Shah and

London(9). We find that there is excellent agreement with

the values of (U /U ) (<l% difference), but that the
max mean

present computed values of Cf-ReDH differ by approximately



64

20% as compared to the published values of Cf-ReDH for this case.

We feel that this difference is due to the finite differ-

ence approximations made near the wall of the duct.

These approximations are likely to affect the wall velocity

gradients, wall shear,and thus Cf to a larger degree than

the effects on the ratio of (Umax/Umean). No attempt was

made to vary the number of nodes near the wall or to make

variations of the finite difference approximations to

test this assertion. This should be done in future re-

search extending this work.

The energy equation was checked by calculating

an enthalpy-mean temperature (or bulk temperature) dif—

ference across the heated section of the duct. The dif-

ference in enthalpy convected across the heated section

matches the heat transfer into the duct to within 1%.

This indicates satisfaction of the first law. However,

judging by the results obtained in the solution of the

velocity field we might expect that the mean temperature

effects may be well matched without necessarily obtaining

acceptable accuracy locally. Thus the heater surface

temperature which is affected by the local velocity

gradients may be in error by a magnitude comparable to

that estimated for the friction factor (20%). This

should be checked in future work.

4.2 SUGGESTIONS FOR FUTURE WORK

There are several relevant modifications of the

current computer program that are needed in order to make

the model more representative of the actual convection type
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of cryomicroscope stage used by Hrycaj. The computer

program can also be used for thermal design purposes,

given any particular model.

In the latter category there are several relatively

minor program changes that would allow parameter studies

of the effect of a non-uniform heat flux from the heater

window. It would also be straightforward to change the

present rectangular heater configuration to a circular

geometry to match the actual system. Finally, the adia-

batic boundary conditions on the two sides and the bottom

of the duct could be relaxed to include natural convection

boundary conditions as more realistic conditions for the

actual stage. Along these same lines we should change the

heater boundary condition from one of uniform heat flux

into the refrigerant fluid to heat generation in

the thin film with convection into the refrigerant fluid

as well as conduction and/or convection from the heater

into the sample placed on top of it. Variable fluid

properties are easily incorporated into the present

computer model to check for the effects of this factor.

In the former category we can mention three

factors which should be taken into account in order to make

the computer model more accurately match the actual system.

These factors will be more difficult to achieve than those

already mentioned.

Firstly it will be necessary to incorporate the

effects of simultaneously developing flow in order to
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make it possible to consider thermal designs which place

the heater in a hydrodynamically developing region.

Secondly we should include those flow geometries which

may induce separation, and lastly we would like to under-

stand quantitatively what the effects of turbulent flow

will be on the temperature field on the top heater

surface.

In the actual operation of the convection heat

transfer stage the transient characteristics of the system

play an important role and these effects should be con-

sidered in future work.
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APPENDIX A. METHODS OF ITERATION

(A.l) Jacobi Method of Iteration (ref. 4)

(1)
If we denote first approximation to xi by x.

1

(2)
and second by xi , etc., I assume that 'n' iterations

are to be carried out. Then Jacobi iterative method ex-

th
presses the (n+1) iterative values exclusively in

th
terms of n iterative values and they are as follows:

If the equations are

allxl + alzx2 + al3x3 + ... + amxm = bl (A.1)

a21xl + a22x2 + a23x3 + ... + aZme = b2 (A.2)

a3lx1 + a32x2 + a33x3 + ... + a3mxm.= b3 (A.3)

etc. and there are 'n' equations like A.l, A.2 and A.3.

In general, applying the Jacobi method,

(n+1) _ l _ (n)_ (n) __ (n)

x1 ' EEE'(b1 a12x2 a13x3 "° almxm )

(n)
(n+1) _ l _ (n)_ (n)...-a x )

x2 7 35; (b2 a21X1 a23": 2‘“ m

(n+1) _ 1 _ (n)_ (n) _ (n)

X3 ' 5;; (b3 a31x1 a32X2 °'° a3mxm )

So in general case for 'm' equations,

i-l m

ii j=l 3 3 j=i+1 3 3

The condition for the convergence of Jacobi iterative

th
method if the 1 equation of AX = B is,

67
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ailx1 + aizx2 + ... + aiixi + ... + aimxm = bi

Then Jacobi iteration will converge if,

la[a + laiz| + .0. + Iai'i_1' + o + Iai’i+ll imlii)

< [311)

This states that the Jacobi method applies to equation

AX = B will converge if 'A' is diagonally dominant

matrix, i.e., if in each row of 'A', the modulus of the

diagonal element exceeds the sum of the moduli of the

off-diagonal elements.
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(A.2) GAUSS-SEIDEL METHOD

Jacobi method uses the previous iteration value

to calculate the present iterative value. Unlike Jacobi

method, Gauss Seidel method uses the (n+l)m iterative

values as soon as they are available and the iteration

corresponding to the equation

allxl + alzx2 + al3x3 + al4x4 ... + almxm = bl

a21x1 + a22x2 + a23x3 + a24x4 °°° + a2mxm = b2

and so on up to

am1X1+ amzxz + am3x3 + amx4 + "' ammxm = bm

are defined by

(MD ___ l _ (n)_ (n)_ (n) _ (n)

X1 31: (b1 alZXZ a13x3 a14x4 '°° amxm )

(n+1) _ l _ (n+l)_ (n) (n) _ (11)

x2 ‘ 3;; (b2 a21X1 a23x3 a24x4 '°° a2mxm )

(n+1) _ l _ (n+l)_ (n+l)_ (n)

X3 “E§§ (b3 a31X1 a32x2 a34x4 °°'

_ (n)

a3mxm )

and so on up to

(n+1) _ l _ (n+l)_ (n+l)_ (n+1)

xm ‘ EI‘Abm amlxl amzxz am3x3 °'°
mm

-a X(n+l))

m(m-l) (m-l)

In general case for m equations,

(n+1) 1 1'1 (n+1) m (n)
xi = E——(bi- 2 i.x. - 2 ai.x. ), i=l(l)m.

ii j=l 3 3 j=i+l 3 3
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THE CONDITION FOR CONVERGENCE OF GAUSS-SEIDEL ITERATIVE

MODEL:

The condition for convergence of Gauss-Seidel

method is given by the Scarborough Criterion which in-

dicates that a sufficient condition for the convergence

of the Gauss Seidel method is

ZIaimbl

la. 0|

11

i for all equations

< for at least one equation (m # i)

This condition is described by Patanker (ref. 3, pp. 64).

This is the similar condition which is used for conver—

gence of Jacobi iterative method.
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A.3 GAUSS SEIDEL WITH S.O.R. METHOD

(SUCCESSIVE OVERRELAXATION)

This method of iteration is suggested for use

in comparison to the previous page, we have discussed

Gauss Seidel equations which can be written as follows

also:

(n+l)_ (n) 1 (n) (n) (n)

X1 ‘X1 +(5I;(blallxl 'a12X2 ‘a13x3

-al4x4(n) - ... -aimxm(n)))

(n+l)__ (n) ]. (n+1) (n) (n)

X2 ‘X2 +(5334b2‘a21X1 'azzxz “a23x3

...-a2mxm(n)))

and so on up to

(n+1) __ (n) 1. __ (n+1)__ (n+1)

m — xm +(E——*bm amixi am2X2

-a x (n-l)-a x
m(m-l) m mm m

(n)))

If successive corrections are all one signed as they

usually are for the approximating difference equations

of elliptic problems. It would be reasonable to expect

convergence to be accelerated if each above equation

was given larger correction term than is defined by

above equations. This is called successive overrelaxa-

tion or S.O.R. iteration which is defined by equations

as follows:



(n+1) _ (n) w _ (n)_ (n)_ (n)

x1 ’ X1 +311(b1 a11x1 a12x2 a13x3 °°°

(n)

almxm )

and so on up to

(n+1)= x (n)m m (n+l)_a x (n+1)W

+'a‘“(bm’a11x1 12 2 '°'

(n)

-almxm )

In general, for m equations, S.O.R. Iteration is defined

as follows:

1-1

(n+1) = x.(n>+_w_(b,_ z a, .x,<n+1>_
X0 1 at. l o_ I

1 11 3—1 3

aijxj(n)), i=l(l)m

"
M
a

i

The above equation can be simplified and written as fol-

lows:

1"]. m

i ii j=1 3 3 j=i+1 3 3

The factor w' in above equations is called ac-

celeration parameter or relaxation factor. It generally

lies in the range 1 < w < 2. The determination of the

Optimum value of 'w' for maximum rate of convergence

will be discussed in the next tOpic. The value w=l

gives Gauss Seidel Iteration.

This method is also suggested by Robert Hornbeck

(ref. 5) at National Aeronautical Research Center for

developing flow hydrodynamically in rectangle duct which

is quite complicated problem compared to fully developed

flow (hydronamically) in solving large number of two-

dimensional equations simultaneously.
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Patankar (ref. 3) suggests on page 66 that to

solve the two—dimensional conduction problem of similar

formulation as above formulations, S.O.R. method with

line-by—line method which is described in the same book

by the author.

TO CALCULATE THE OPTIMUM RELAXATION FACTOR 'w'

Smith (ref. 4) gives the following criteria to

decide optimum overrelaxation factor for S.O.R. method

(page 252):

0(8) = % (cos % + cos 3)
(A)

for square mesh of side 'h' and for rectangular cross

section of sides 'ph' and 'qh' using five point differ-

ence approximation and

wb = optimum relaxation factor =

2 (B) 

 

l + /Ql-02(B))

where p(B) is the spectral radius of the Jacobi method

iteration matrix.

This condition is discussed by Smith in detail on pp.

243-50.

Roache in his book Computational Fluid Dynamics also
 

suggested above approach by Smith for calculating suc-

cessive overrelaxation factor (w) which is given on

pp. 118 in the same book.
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APPENDIX B: ADI METHOD

The equation we used in thermal solution of the

problem in general is three-dimensional equation and it

is as follows:

N

2 2

M + 3% = R(I,J) g};

32 By

For the lst, 3rd, ... (odd) steps in x direction,

 

2 2

3—%-I + §_% I = R(I,J) ¢x+AxA - ¢x

32 X By x+Ax AX

where R(I,J) is constant and it is either dependent on

position or not according to the problem to be solved.

In finite difference form, taking Figure 5 into account,

  

o o o 0

¢ - 2¢ + ¢ ¢ - 2¢ + ¢ ¢ -¢

w 92 e + N E 2 S = R(I,J) —E-——Sp

(62) (6y) X

In our case if Az = Ay, then the above equation is re-

sulted in the following final form for odd steps in x

direction:

2
_ = R(I,J)(Ay) _ o

+ 4n 2¢p + ¢S Ax (¢p 4p )

o o o

w - 2dip + ¢e

 

¢

(A)

For the 2nd, 4th (even) steps in x direction:

¢x+Ax -¢x)

Ax

I
}
.

 

2

1% + I = R(I,J) (

Bz x+Ax 3y x

N

and simplifying into finite difference form,
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¢w-2¢p+¢e

(<82)2

+
  

o o o

¢n 2q’p +¢s = R(I,J) (¢ _ o)

2 6x P P
(6y)

and if Sz = Sy, we get the final finite difference equa-

tion for even space steps in x direction as follows:

_ o _ o o = 2

¢w 2¢p + 0e + ¢n 2¢p + 93 R(I.i;(4y) (¢p‘¢p°)

(B)

In above equations (A) and (B), we used 0 superscript

which denotes the present time and no superscript means

future time for the unknown property (¢)- This is called

Alterative direction implicit method due to the fact

that for odd steps to solve the equations, previous step

iteration value which are available are used for the

present step as the known value at points 'w' and 'e'

and the ¢ value for point p, n and s are unknown value

so solving one dimensional problem with TDMA method

which is discussed in Appendix C, we get the unknown

value of 0 at 'p', 'n' and '5' points. Similarly,

for even steps to convert the equation into one dimen-

sional, previous step 0 values at 'n', 's' and 'p' are

used and ¢ values at w,p and s which are unknown at

given step are found by solving one-dimensional prob-

lems with the help of TDMA method.

Another alternating direction method is dis-

cussed by Yarenko (ref. 7) which is called method of

fractional steps.
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Step 1,3 . . . (odd)

2
a _ 29¢
3:; _ R(I,J) .5;

Steps 2, 4 . . . (even)

2

1%: R(I,J) 39.

By 3X

But this method cannot be used for the problem concern-

ing developing nature of '0' in 'y' and 'z' direction

and also in 'x' direction. This method can be used for

solving fully developed velocity profile or fully de-

veloped temperature profile.



77

APPENDIX C: TRIDIAGONAL MATRIX ALGORITHM

This method is used to solve one-dimensional

(Patankar, ref. 3) discretization equations. This is

also called Gaussian elimination method. The designa-

tion of TDMA refers to the fact that when the matrix of

the coefficients of these equations is written, all the

non-zero coefficients align themselves along three diag-

onals of the matrix.

If we do note equations in general,

Bi¢i = Ci¢i+l + Ai¢i-1 + Di (C1)

for i = l,2,3,... Thus the quantity '¢i' is related to

the neighboring '0' quantities ¢i+l and ¢i-l' To account

for the special form of the boundary point equations,

let us set

A1 = 0 and CN = 0 (C2)

so that the 00 and ¢n+l will not have any meaningful

role to play. These conditions imply that '01' is known

in terms of '02'. The equation for i=2 is a relation

between 01, ¢2, and ¢3. Since ¢1 can be expressed in

terms of ¢2, ¢2 can be expressed in terms of ¢3. This

process of substitution can be continued until ¢n is

expressed in terms of ¢n+l' But because (¢n+l) has no

meaningful existence, we actually obtain the numerical

value of '¢n' at this stage. This enables us to begin

the 'back substitution' process in which '¢n-l. is ob-

tained from ¢n’ ¢n-2 from ¢n-l' ¢2 from ¢3 and ¢1 from
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'02.' This is called TDNA. Let us describe forward

substitution process as follows:

  

¢i = Pi¢i+1 + Qi ¢i-1 = Pi-1¢i + Qi-l (C°2°a)

3131 = Ci¢i+1 + C1 (Pi-l¢i + 91-1) + Di

where P = C1 Q _ Di+AiQi-l (C 3)

i B. - A. P. ' i ’ B.-A.P. °
1 1 1-1 1 1 1-1

for i=1,

Ci Di
Pi '-'-' E— and Qi = fi— (C.4)

l 1

At the other end of Pi' Qi sequence, we note that Cn=0

so P = 0.
n

So we can write

SUMMARY OF TDNA

(1) Calculate Pi and Qi from equation (C.4)

(2) Use the recurrence relations (C.3) to obtain Pi and

Qi for i=2,3,...n

(3) Set ¢n = Qn

(4) Use equation

¢i-I= Pi-l¢i + Q1-1

for i=n-l, n-2, ... 3,2,1 to obtain ¢n-l’ ¢n-2' ...

¢3I¢21 ¢lo

This technique is very powerful means to solve one dimen-

sional equations and it requires computer storage and

computer time proportional only to 'N'.
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APPENDIX D: PROGRAM 'HEAT'

DIMENSION U(50,5,12),A(50,5,12)

CALL SRCH$$(2,'0UTPUT',6,1,N1,N2)

DO 10 K=l.50

DO 11 J=1,ll

U(K,1,J)=0.0

DO 12 I=l,4

U(K,I,1)=0.0

CONTINUE

D0 13 J=l,ll

DO 14 I=l,4

U(1,I,J)=0.0

CONTINUE

CONTINUE

WRITE(5,30)

FORMAT(' K I J U')

DO 15 K=1,49

D0 16 I=2,4

U(K,I,12)=U(K,I,10)

D0 17 J=2,1l

FORMAT(I3,SX,13,SX,I3)

U(K,5,J)=U(K,3,J)

A(K,I,J)=U(K+l,I-1,J)+U(K,I+l,J)+U(K,I,J+l)+U(K+l,I,J-l)+0.

$1111

U(K+l,I,J)=—OO.185*U(K,I,J)+l.185*A(K,I,J)/4.0

WRITE(5,50) K,I,J,U(K+1,I,J)

FORMAT(I3,5X,13,5X,I3,5X,E15.6)

CONTINUE

CONTINUE

CONTINUE

CALL SRCH$$(4,'OUTFUT',6,1,NI,N2)

CALL EXIT

END
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APPENDIX E: CONVECTION PROGRAM

PROGRAM THERMAL(INPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT)

COMMON A(7,21,26),8(7,21,26),C(7,21,26),D(7,21,26),T(7,21,26),R(

$7,21),J1

READ(2 :* ) ((R(1 :3) ”3:151”, 1:154)

D0 5 J=1.11

D0 10 I=1,4

10 R(8-I,J)=R(I,J)

DO 15 I=1,7

15 R(I,22-J)=R(I,J)

5 CONTINUE

WRITE(3,78) ((I,J,R(I,J),I=l,7),J=l,21)

78 FORMAT(212,E15.6)

DO 20 I=1,7

DO 25 J=1,21

25 T(I,J,1)=23.0

20 CONTINUE

WRITE(3,30)

30 FORMAT<20X, * CONVECTION PROGRAM *)

J1=1

lOO J1=Jl+l

CALL EVEN

CALL TDMAEV

CALL PRINTT

IF(J1.EQ.26)GOTO 110

J1=Jl+1

CALL ODD

CALL TDMAODD

CALL PRINTT

IF(J1.LT.26)GOTO 100

110 STOP

END
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SUBROUTINE EVEN

COMMON A(7,21,26),B(7,21,26),C(7,21,26),D(7,21,26),T(7,21,

$26),R(7,21),J1

DO 45 I=2,5

DO 50 J=1,21

B(I,J,Jl)=R(I,J)+2.0

A(I,J,Jl)=-1.0

C(I,J,Jl)=-l.0

CONTINUE

CONTINUE

DO 33 J=1,21

B(6,J,J1)=R(6,J)+2.0-2.0/(R(7,J)+2.0)

B(1,J,J1)=R(1,J)+2.0

A(1,J,J1)=0.0

C(6,J,J1)=0.0

C(1,J,Jl)=-2.0

A(6,J,Jl)=-l.0

DO 36 I=1,7

DO 37 J=2,20

D(I,J,J1)=T(I,J—l,Jl-l)+T(I,J+l,J1-1)+(R(I,J)-2.0)*T(I,J,J

$1-l)

D(I,1,Jl)=2.0*T(I,2,Jl-l)+R(I,l)-2.0)*T(I,l,Jl-1)

D(I,21,Jl)=2.*T(I,20,J1-l)+(R(I,21)-2.0)*T(I,21,J1-l)

DO 48 J=1,21

D(6,J,Jl)=D(6,J,J1)+(D(7,J,Jl)+382.55)/(R(7,J)+2.0)

RETURN

END
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SUBROUTINE TDMAEV

COMMON A(7,21,26),B(7,21,26),C(7,21,26),D(7,21,26),T(7,21,

$26),R(7,21),J1

DO 23 J=1,21

C(1,J,Jl)=C(1,J,Jl)/B(l,J,Jl)

D(l,J,Jl)=D(l,J,J1)/B(1,J,Jl)

D0 3 I=2,6

E=l./(B(I,J,Jl)-A(I,J,Jl)*C(I-1,J,Jl))

D(I,J,Jl)=E*(D(I,J,J1)-A(I,J,Jl)*D(I—l,J,Jl))

C(I,J,Jl)=E*C(I,J,Jl)

T(6,J,Jl)=D(6,J,Jl)

DO 4 I=2,6

MI=7-I

T(MI,J,J1)=D(MI,J,Jl)-C(MI,J,J1)*T(MI+1,J,J1)

T(7,J,Jl)=(2.*T(6,J,Jl)+382.55+D(7,J,J1))/(R(7,J)+2.0)

CONTINUE

RETURN

END
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SUBROUTINE PRINTT

COMMON A(7,21,26),B(7,21,26),C(7,21,26),D(7,21,26),T(7,21,

$26),R(7,21),J1

WRITE(3,11)J1

FORMAT(2X,2HK=,I2)

D0 21 I=1,7

WRITE(3,12)I

F0RMAT(2x,2HMe,12)

D0 13 J=1,21,6

WRITE(3,14)T(I,J,J1),T(I,J+1,J1),T(I,J+2,J1),T(I,J+3,JI),T

$(I,J+4,Jl),T(I,J+S,J1)

FORMAT(5X,6E15.7)

CONTINUE

CONTINUE

RETURN

END



17

11

84

SUBROUTINE ODD

COMMON A(7,21,26),B(7,21,26),C(7,21,26),D(7,21,26),T(7,21,

$26),R(7,21),J1

Do 7 I=1,7

DO 8 J=2,l9

B(I,J,Jl)=R(I,J)+2.0

A(I,J,Jl)=-l.0

C(I,J,J1)=-1.0

CONTINUE

B(I,1,J1)=R(I,1)+2.0

B(I,20,Jl)=R(I,20)+2.0-2.0/(R(I,21)+2.0)

A(I,20,J1)=-1.0

A(I,l,Jl)=-0.0

C(I,l,Jl)=-2.0

C(I,20,Jl)=0.0

DO 17 J=1,21

D0 9 I=2,6

D(I,J,Jl)=T(I-l,J,Jl-1)+T(I+1,J,J1-l)+(R(I,J)-2.0)*T(I,J,Jl-l)

D(1,J,Jl)=2.*T(2,J,Jl-l)+(Rl,J)—2.)*T(1,J,Jl-1)

D(7,J,J1)=2.*T(6,J,J1-l)+(R(7,J)-2.0)*T(7,J,Jl-1)+382.55

DO 11 I=1,7

D(I,20,J1)=D(I,20,J1)+D(I,21,J1)/(R(I,21)+2.)

RETURN

END
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SUBROUTINE TDMAODD

COMMON A(7,21,26),B(7,21,26),C(7,21,26),D(7,21,26),T(7,21,

$26),R(7,21),J1

DO 65 I=1,7

C(I,l,J1)=C(i,l,Jl)/B(I,1,Jl)

D(I,l,Jl)=D(I,1,Jl)/B(I,1,J1)

Do 66 J=2,20

E=l.0/(B(I,J,Jl)-A(I,J,Jl)*C(I,J-1,Jl))

C(I,J,Jl)=E*C(I,J,J1)

D(I,J,Jl)=E*(D(I,J,Jl)-A(I,J,J1)*D(I,J—1,Jl))

T(I,20,Jl)=D(I,20,Jl)

DO 67 J=2,2o

NJ=21 -J

T(I,NJ,J1)=D(I,NJ,J1)-C(I,NJ,J1)*T(I,NJ+1,J1)

T(I,21,J1)=(2.*T(I,20,J1)+D(I,21,JI))/(R(I,21)+2.0)

CONTINUE

RETURN

END
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APPENDIX F: NONfDIMENSIONALIZATION OF MOMENTUM

EQUATION FOR FULLY DEVELOPED FLOW

We are concerned with the solution of the convec-

tion problem through a rectangular duct having dimensions

stated in the previous chapter. The flow through the

rectangular duct is partially developing hydrodynamically

and partially developed after a certain length of the

tube. These aspects have been discussed in the previous

chapter. We are interested in examining the thermal

conditions on the quartz window heater of the convec-

tion cryomicroscope system. In the present study, the

actual complex system has been simplified in order to

develop a preliminary understanding of the problem. The

window is situated at a distance beyond the critical

length for the flow being fully developed so the flow

in the region of our interest is hydrodynamically developed.

In order to achieve the temperature profile along the

surface of the heater window, we must determine the hydro-

dynamic characteristics of the channel flow velocity pro-

file. After obtaining the velocity profile, we can use

the hydrodynamic velocity information in the energy equa-

tion which will be discussed in the next chapter. To

achieve the hydrodynamic solution, we begin by stating

the Navier Stokes equations which are:
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2 2 2
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In the above equations, we have made the following

assumptions:

(1) the flow is steady (2% 0 where 0 = velocity

in given direction)

(ii) three dimensional flow

(iii) incompressible flow (0 = CODSt-)

(iv) constant property flow

We are interested in finding the fully developed velo-

city profile, so

an O O 0

v = 0, w = 0 and §§'= 0 in each direction

in (F1, F2, F3)

So

2 2

i.l;.+§_‘21_l22

By 32 )1 ax

. 3
X dir : SE = 0

BY

. 3
z dir : AB = 0

az

So from equations F4, F5

4
6

= constant (

. n .

, x dir momentum equation becomes

(F4)

(F5)

(F6)

and F6, we get

U = f(y,z) but u 75 f(x))
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So p = f(x) only.

Rewriting the equation (4) we get

2 2
3 + 3 =

By 32

C
1

(F7)

N ..
I.

t
I
H

c
a
n
.

9)
::

The x direction momentum equation is non-dimensionalized

by defining U+ = 9+ where
U

_ :1_dp 2 l n 2 =
U* — u ax a (_N/MZX N——/M3 x m ) (m/sec)

+ = Z. Ty a (m)

+ — E. E
z — a (m)

where a = width of the rectangular cross section as

shown in Figure 3. The x direction equation is non-

dimensionalized in order to generalize the solution

which we obtain for various aspect ratios and various

pressure drop magnitudes. The non-dimensionalized solu-

tion can be used to get various information about the

effects of pressure drops and dimensions of the duct on

the velocity magnitude at given locations in the duct.

So converting the coordinate system Y and Z into

non-dimensionalized coordinates y+ and 2+, the width of

the duct equals unity (the length of rectangular duct

equals (b/a). Now converting equation F7 into a non-

dimensionalized form,

2: 82U+ + (U*) 32U+ % QE

2) 3‘y+z g3. ay-l-Z - dx

 

a
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2 + 2 + 2
3 U 3 U _ l_dp a

3'72” ___—ay+2 ‘ u UHF" (F3)

0 I * _ 1 d 2 0

Substituting the value of U — - 313% a on the right

hand side of the above equation (8), we get

2 + 2
8 U + 8 U

ay+2 32+2 — (F9)
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