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ABSTRACT

MODELING THERMODYNAMIC AND DIFFUSION PROPERTIES
IN CONCENTRATED POLYMER SOLUTIONS

By

Michael John Misovich

A methodology for evaluating solvent activities in concentrated polymer
solutions is proposed and demonstrated. This method allows the use of
any expression for the residual (enthalpic) interaction between polymer
and solvent, in conjunction with a Flory-Huggins expression for the
combinatorial entropy, and an empirical free volume correction. The new
method is applied using several choices for the residual term, including
the Analytical Solution of Groups (ASOG) group contribution equations.
When adjustable parameters are determined by best fit to data, results
predicted by the method generally agree with observed data from 21
isothermal binary polymer-solvent systems better than results given by
the Flory-Huggins model. When parameters are determined from a single
data point at low solvent concentration and extrapolated to higher
concentrations, a version of the new method agrees better with observed
data than the Flory-Huggins model and better than the UNIFAC-FV model
which uses no binary data.

Transformations of equations used by group contribution models to
calculate the residual contribution to the activity coefficient are
demonstrated. Using these transformations to allow more convenient
analysis of the mathematical properties of the equations, bounds on the
range of activity coefficients can be derived from incomplete data
without knowledge of the interaction parameter values. The predicted
values of activity coefficients are shown to depend on a normalization
step implicit in the definition of functional group size.

Three alternative models for prediction of binary diffusivities in
concentrated polymer solutions are compared: a complete free volume
model, a linearized form of this model, and a constant diffusivity
model. A method is presented for determining when the simpler models
are appropriate for calculations. The linear model is convenient to use
for determining the effects of the solvent activity coefficient on the
diffusivity.

A new statistical technique is proposed and demonstrated for determining



vhether a nonlinear data fit is systematically in error with
observation. Unlike many statistical techniques, the new method is
valid regardless of the distribution of the observed variables. It is

capable of detecting complex patterns of systematic error not found
significant by other statistical methods.
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CHAPTER 1

INTRODUCTION

An understanding of the properties of polymer solutions is important for
rational process design. Basic physical properties, such as densities
and heat capacities, may often be estimated with reasonable accuracy
from pure component properties. This is generally untrue for
thermodynamic equilibrium properties, such as activities, and mass
transfer properties, such as binary diffusivities. 1In addition,
thermodynamic and diffusion properties of polymer solutions often show a
strong dependence on composition in a nonlinear manner. An
understanding of these properties is important in analysis of polymer
processing and use, in such topics as devolatization, plasticization,

permeability, and adhesion, to name a few.

This dissertation deals with four general topics applicable to
thermodynamic equilibria and mass transfer properties in binary
solutions. A variable size parameter approach to polymer solution
thermodynamics used a single adjustable parameter in the entropy of
mixing and could be used with any functional expression for the residual
enthalpy of mixing to predict solvent activities in polymer solutions
with good accuracy. Normalization and bounding properties of the

residual interaction term in solution of groups models for prediction of



activity coefficients were studied. The variable size parameter
thermodynamic model was combined with a free volume description of
diffusion in concentrated polymer solutions to generate a single model
for scaling of binary mutual diffusivities with temperature and
concentration above the glass transition temperature. A nonparametric
statistical method was developed to test for systematic error in data

fitting involving nonlinear parameter estimation.

VARIABLE SIZE PARAMETER METHOD FOR POLYMER SOLUTION THERMODYNAMICS

Polymer solution thermodynamics is characterized by low values of the
entropy of mixing. This necessitated a different approach to modeling
polymer solution behavior as compared to that of mixtures of similarly
sized small molecules. The standard approach was that taken by Flory
and Huggins (Flory, 1953) which relied on a statistical approach to
model entropy of mixing and used a single interaction parameter to
incorporate enthalpy of mixing. Subsequent work has shown the
theoretical basis of this model to be incorrect: solutions having little
or no enthalpy of mixing typically have positive nonzero values of the
interaction parameter. By framing the interaction parameter as a free
energy rather than enthalpy parameter, theoretical objection to the

model can be avoided.

Recent models for solution thermodynamics of small molecules have
incorporated many enhancements to calculation of molecular interactions.

These include modeling of molecular segregation (Wilson, 1964), use of a



3
quasi-chemical approach (Abrams and Prausnitz, 1975), and use of
functional group interactions to predict overall solution behavior (Derr
and Deal, 1969). Conginued use of the Flory-Huggins approach ignores
these advances in the modeling of solution interactions: its single
interaction parameter makes it more similar to the one-suffix Margules

equation.

Nonideal effects in polymer solutions due to changes in solution free
volume have also been proposed and studied. Equation of state
approaches have been used for this purpose (Flory, 1970; Lacombe and
Sanchez, 1976; Liu and Prausnitz, 1979; Scholte, 1982). Such
approaches, combined with mixing rules, could make solution behavior
predictable from pure component data and a small number of adjustable
system parameters. At present, agreement is lacking in fundamental
details such as what constitutes a pure component critical pressure or
temperature. It is definitely agreed that free volume relationships
affect polymer solution thermodynamics and should be included in models.
When the Flory-Huggins interaction parameter is interpreted as a free
energy parameter, the entropy part may be considered to arise from free

volume changes in solution.

Despite its shortcomings, the Flory-Huggins approach is commonly used in
practical calculations, mainly due to its simplicity and historical
acceptance. One goal of this work was to propose a novel approach to
solution thermodynamics, referred to as VSP (Variable Size Parameter).

Like Flory-Huggins, VSP contained a single adjustable parameter. This



4
parameter had a fundamental significance: it was the infinite dilution
limit of the solvent activity coefficient taken on a weight fraction
basis. The mathematical form of the VSP model relied on an adjustment
of the concentration variable in the statistical entropy of mixing
expression. The Flory-Huggins model adds an extra term to that
expression. The VSP model also allowed any functional form to be used
as an added term to incorporate enthalpy of mixing effects, if desired.
Comparisons with available binary polymer-solvent data were made. These
indicated that the VSP approach, even without an additional enthalpy
term, was approximately as accurate as the Flory-Huggins approach in
athermal solutions, and generally more accurate in more nonideal
(enthalpic) solutions. Comparison with the UNIFAC-FV model (Oishi and
Prausnitz, 1978) which incorporates a free volume approach, showed VSP
to be more accurate. This may have been due, in part, to the fact that

UNIFAC-FV generates predictions without use of binary activity data.

RESIDUAL INTERACTIONS IN GROUP CONTRIBUTION MODELS

A recent trend in solution thermodynamics has been the modeling of
molecular interactions by summing the interactions of the various
functional groups which compose the molecule in solution. This allows
predictions of solution behavior to be made for compounds for which no
binary data are available. All that is necessary is binary data for the
functional groups which constitute the compounds, which can be derived
from known data for other compounds containing the same functional

groups.



This concept has been successfully applied in the UNIFAC model
(Fredenslund, Jones, and Prausnitz, 1975) and the ASOG model (Derr and
Deal, 1969). Both methods predict activity coefficients by summing a
size interaction (combinatorial or entropic) contribution and a group
interaction (residual or enthalpic) contribution. Databases for
functional group interaction parameters have been constructed and
updated for both of these models (Kojima and Tochigi, 1979; Gmehling,

Rasmussen, and Fredenslund, 1982) and both show good predictive ability.

In these models, residual contributions to the activity coefficient of a
given molecular component are calculated by summing activity
coefficients of the functional groups which constitute the molecule.
Functional group activity coefficients are given by a form of the Wilson
equation (Wilson, 1964) written over functional groups in solution
rather than molecular species. Another goal of this work was to study
some basic properties of the equations as applied by these models.
Normalization refers to the effects of choosing a particular size basis
for measuring the number of functional groups in a molecule. Such a
normalization directly affects the predictions of the model because of
the nonlinearity of the Wilson equation. In addition, functional group
composition provides additional constraint within a solution which can
be used to bound the possible range of activity coefficients from an

incomplete set of experimental data.
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DIFFUSION IN POLYMER SOLUTIONS ABOVE TG
The study of diffusion in polymer solutions is complicated by several
factors. There exists no single theory capable of describing the
phenomena which occur under various conditions: viscoelastic and
relaxation-controlled processes, anomalies such as swelling and solvent
crazing, and diffusion coefficients which are non-Fickian in a classical
sense inasmuch as they are strong functions of penetrant concentration
(Vrentas and Duda, 1979). Characterization and modeling of polymer
solution diffusion is possible within limits of temperature and
concentration where abrupt changes in polymer morphology and physical

properties do not occur.

It is possible to scale binary mutual diffusion coefficients in
concentrated polymer solutions with temperature and concentration.
Models have been developed which assume that solution free volume is the
primary factor determining mobility and thus mass transfer in solution
(Fujita, 1968; Vrentas and Duda, 1977). This assumption is true above
the glass transition temperature Tg' but not so far above T that
solution free volume becomes large, and activation energy effects become
important. It is true from zero solvent concentration up to
approximately 80 weight percent solvent, above which the gross mobility

of polymer molecules becomes important.

Since the driving force for diffusion is the chemical potential gradient

rather than the concentration gradient, nonideal thermodynamic effects
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must be considered in modeling binary mutual diffusivities. Another
goal of this work was to combine the VSP solution thermodynamics model
with the free volume diffusion model to generate a single model for
scaling of diffusivity with temperature and concentration in
concentrated polymer solutions above Tg' A simplified form of the
general free volume model was also derived for use in certain practical
calculations, e.g., devolatilization of polymer melts. The process of
fitting experimental viscosity data to evaluate free volume parameters

was also discussed.
STATISTICS OF NONLINEAR DATA FITTING

In the process of fitting experimental data to an empirical equation or
model, it is necessary to choose values of the adjustable parameters
which are "best" according to some criterion. Normally, this is
accomplished by use of statistical results or procedures designed for
this purpose, such as least squares analysis and regression. The
criterion typically applied is that the sum of the squared deviations
between the actual and predicted values of the dependent variable be
minimized over all the points in the data set. Equations for this
purpose are commonly used when the model is linear in the parameters to

be fit.

When the model is nonlinear in the adjustable parameters, the equations
of linear least squares no longer apply to the situation. In this case,

it may be possible to linearize the model around a certain point to
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permit the approximate use of linear least squares techniques. However,
such an approach may be inaccurate, particularly when there are several

adjustable parameters which are strongly dependent upon one another.

Even in the case where the model is linear in the adjustable parameters,
least squares analysis is optimal only when the error or deviation
between actual and predicted values is distributed normally with zero
mean. The presence of outlier values in a data set can strongly affect
least squares estimation of parameters, making them inaccurate. This is
because outliers result from a distribution of error that does not

follow a normal law.

In this work, some statistical techniques to overcome these problems
have been successfully applied. Nonlinear parameter estimation was done
by directly applying the least squares criteria and solving them
numerically rather than using the standard linear least squares
equations which are algebraic. To test whether a nonlinear model fit
data with systematic rather than random error, a novel approach applying
nonparametric statistics was used. Test statistics were generated which
combined the best properties of both the runs test for randomness and

the rank correlation coefficient.



CHAPTER 2

VARIABLE SIZE PARAMETER APPROACH TO THERMODYNAMICS OF CONCENTRATED

POLYMER SOLUTIONS

In modeling the behavior of solutions containing both large molecules
(polymers) and small molecules (solvents), two types of interaction
occur to cause solution nonideality. Energetic (enthalpic or residual)
interactions between different types of molecules occur because of
changes in secondary bonding within solution as compared to within pure
solvent or pure polymer. This type of interaction is not unique to
polymer solutions, but occurs in mixtures of ordinary sized molecules as
well., Size (entropic or combinatorial) interactions between different
molecules occur on statistical grounds as determined by the number of
possible configurations that the solution can exhibit. This number
decreases substantially when large molecules are present. Size effects

are ordinarily not important in mixtures of similarly sized molecules.

In addition to residual and combinatorial interactions, additional
interactions may take place, particularly in polymer solutions. These
interactions are generally considered to be the cause of
noncombinatorial entropy in solution. Three distinct methods of
handling noncombinatorial entropy have been used historically in the

study of polymer solutions.
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The earliest method was given by the Flory-Huggins approach (Flory,
1942; Flory, 1953), which assumed a standard combinatorial entropy of
mixing and empirically adjusted an interaction parameter to fit
experimental data. The original definition of the interaction parameter
term was an enthalpic or residual interaction. Later interpretation of
this term (Flory and Krigbaum, 1950) allowed it to take on entropic
significance, i.e., noncombinatorial entropy. For this reason, the
Flory-Huggins model effectively treats noncombinatorial entropy as if it
were an additional enthalpy interaction, since the same term is used for

both types of interaction.

A second approach, which has been quite popular recently, is to model
solution behavior with an equation of state derived empirically or from
statistical thermodynamics. A variety of techniques have been proposed
(Flory, 1970; Lacombe and Sanchez, 1976; Oishi and Prausnitz, 1978; Liu
and Prausnitz, 1979; Scholte, 1982). 1In some, the equation of state
embodies both entropy and enthalpy effects in such a way that separate
terms for these are not used. In others, the equation of state is used
to generate an additional correction term to be applied in addition to
standard entropy and enthalpy interaction terms. There is presently no
single equation of state technique which is predominantly accepted in
the same way, for example, that the Flory-Huggins model is accepted for
prediction of combinatorial entropy. The general approach used for
liquid phase equations of state is corresponding states, but liquid

phase equations of state suffer from a lack of consensus on what should
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constitute a critical value of temperature and pressure. These
parameters are typically derived from a data fit with little physical

significance.

The final approach, which is developed in this chapter, is to assume a
standard enthalpy or residual interaction term while empirically
adjusting a parameter within the combinatorial entropy term to account
for the noncombinatorial entropy. This method originally was derived
from an analysis of the Analytical Solution of Groups (ASOG) group
contribution model for prediction of activity coefficients in solution
(Derr and Deal, 1969). 1In actuality, the ASOG model itself was of
significance only in that a form of the athermal Flory-Huggins equation
was used within ASOG to generate a size interaction term. However, the
ASOG model did yield insight into the modification of this size term,
and also suggested the terminology "Variable Size Parameter" which was
associated with the new approach. (In 1973, Derr and Deal, the original
authors of ASOG, found that their equations were less accurate‘when
applied to polymer solutions than they had been for solutions of
similarly sized molecules. By choosing an "effective" value for the
size ratio of the molecules, rather than using the actual size ratio,
they were able to predict solvent activities in polymer solutions with
accuracy comparable to their results for solutions of similarly sized

molecules.)

The approach taken here is the converse of the the Flory-Huggins

interaction term in which noncombinatorial entropy effects were used to
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adjust a residual enthalpy term. In this work, noncombinatorial entropy
effects are used to adjust a combinatorial entropy term. Any expression
for residual interaction may be used in conjunction with this corrected

entropy term.
ORIGINAL VSP SINGLE PARAMETER METHOD

The reprint article which follows describes the derivation of the
original VSP method from the ASOG model. This is a simplified version
of the complete VSP method in that no residual interaction term is used.
Comparisons are made between the new method (referred to as "ASOG-VSP"),
the Flory-Huggins equation, and the UNIFAC-FV model by extrapolating
data from low solvent concentration to make predictions at higher
solvent concentration. Further details of the experimental data and
results are given in Appendices A, B, and D. Detailed derivations for

the equations proposed in the article are given in Appendix F.

There is one typographical error in the reprint which is significant.
In eq 27, the last term in the denominator of the argument of the
natural logarithm function should contain v, in its numerator, not in
its denominator as given. The grouping should equal (e/Olm) multiplied

by Wy, not divided by w, as is shown.
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enthalpy of mixing effects. Caiculated activity coefficients of the new model are found 10 agree within the 10%

10 experimentally observed values for 120 of 130 data points. This agr opr

d a better pert

Whan either the Flory-Huggine or the UNIFAC-FV model.

An understanding of the thermodynamics of polymer—
solvent systems is important in many practical applica-
tions; processing steps such as polymerization, devolati-
lization, plasticization, and addition of other additives all
require a knowledge of polymer solution thermodyamics.
Diffusion phenomena in polymer melts and solutions are
often strongly affected by nonideal solution behavior.
Proper design of many polymer processes depends greatly
upon accurate modeling of thermodynamic parameters
such as solvent activities.

This work presenta a thermodynamic correlation method
for solvent activities in polymer solutions as a function of
concentration. The method is developed theoretically from
consideration of athermal solutions; however, it shows good

agreement with experimental data available for some
polymer-solvent systems which have enthalpic interac-
tions. The model is based upon an athermal form of the
ASOG (Analytical Solution of Groups) group-contribution
model (or calculation of activity coefficients in solution and
uses weight fractions to describe concentrations. A cor-
rection is made to account for the difference in the free
volume between the solvent and polymer, as evidenced by
their dcffefenl densities. Since only nlhermul terms are
idered in the model devel t, group-interaction
parameters used in calculuun‘ enth.lpy effects are not
included and the final model reduces (o a single equation.
The model shows good ag t with experiment over
the entire range of concentrations reported in the literature

0196-4305/85/1124-1038801.50/0 © 1985 American Chemical Soclety



for slvent activitien. In nearly all cases connidered, per-
frrmance of the muudel in approximately equal W the hetter
of cither the Fluey-Hugging model or the UINIFAC-FV
grons cvuntriliition muadel progused by Owchi and Prawsanitz
(1978). The Flory Huggins model contains a single ad-
Amtable parametor, the interaction parameter, and requires
density data for the julymer and solvent if the weight
fraction is the concenteation variabde. UNIFAC-FV re-
q«mss inu-k«lge of the densities for calculation of the free
ion. A cunstant value (ur a fitting param-
eter, the degrees of (reedom for a sulvent molecule, has
been determined by madeling a her of data sets. The
adjuuhle p-nmeter m lhe maodel proposed here is an
ight (raction sol activity

cvelMicient at infi nite dilution.

Group-Ceatribution Models
Group onntribution concepta have heen successfully used
in mudeling various physical and chemical phenomens. By
reducing & chemical compound to e set of functional
Kroups, it is pasaible Lo greatly reduce the amount of in-
furmation which needs Le stored. Thousands of chemical
pounds can be reg d by a set of unly a hundred
or so functional groups which make them up. Storing the
needed functional group properties of compounds from the
known functional group properties provides a more effi-
cient means, in many cases, of delermmung the desired
properbs. This is especially true in cases whele few ex-

al data are available (or the d in ques-
tion. There are often little equilibrium data for poly-
mer yst over the ration and [

ature ranges for devolatilization. [n addition, polymers
are distributed in size but basically identical in their
functional group composition.

The (irst group-contribution model for prediction of
activity coefficients in solution was the Analytical Sol
of Groups (ASOG) model by Derr and Deal (1969). Itis
capable of separately modeling the effects of molecular size
diffe with an pic term from Flory-Huggins
theory and the effects of functional group i ions with
an onth.lpue term from Wilson (1964). Agreement with
experiment is found to be good. Variations and extensions
of the original ASOG model have been recently elaborated,
particularly for hydrocarbon systems (Kojima and Tochigi,
1979; Vera and Vidal, 1984).
Rmmlmplmequm&nmh-mdudmam

1 formulation of the fund ol aduts

concept. This is the UNll"ACnodel(Frdoﬂund etal,
1975). In qlplmuon. this model is similar to ASOG, but
the theoreti k is quite distinct. UNIFAC is
based upon UNIQUAC, the Universal Quasi-Chemical
model devdopod by Abrams u\d Puu.mu (1975). This
model is based upon h particu-
larly the work of Guggenheim (1952) on h-qm-d:emml
theory of nluuom. Like ASOG UNIFAC/UNIQUAC
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called UNIFAC-FV, was prigumed by Oishi and Pesusnitz
(1978). By adding an extrs term to the combinatarial and
residunl terms already given by UNIFAC, the effects of
free volume differences between the polymer and salvent
were madeled. Results were found to agree with experi-
ment within 10%.

Although the bulk of recent work in the group-concen-
tration thermadynamic moxdels hax centered on the
UNIFAC model, a comparison of the predictive abnlity of
ASOG and UNIFAC shows that they are approximately
eyual in accuracy, and lath are substantially better than
the group-contribution Non-Random-T'wa-Liquid-Group
(NRTLG) and Enthalpic-Wilson-Group (EWG) models
(Rizzi and Huber, 1981). The thearetical advantage of
UNIFAC is a basis in statistical mechanics, but the ASOG
model has the advantage of a sunpler mathematical form,
particularly for the entrupic (combinatorial) activity term.
The Flory-Huggins form of the combinatarial term used
by ASOG is also preferred over the Staverman form used
by UNIFAC because the Staverman potential may lead
to physically unrealizable positive combinatorial contri-
butions (Thomas and Eckert, 1984). Although the Flo-
ry-Huggins model (Flory, 1953) uses an entropy term
similar to that proposed in ASOG, there are no separate
terms for enthalpy or free volume effecta on activity  Both
effects are lumped into the entropy term by the use of the
interaction parameter.

Since UNIFAC-FV was successful at extending the
UNIFAC model to polymer solutions, the extension of
ASOG 1o polymer solutions was attempted in this work.
In the theoretical development propoud here, we consid-
ered only sy of chemically ilar polymers and
solvents, where the group interaction (enthalpic) effects
were shown to be negligible. This allowed the derivation
of a closed-form solution for the entropic activity coeffi-
cient.

ASOG Model

In the ASOG model, the two contributions to the activity
coefficient are 7,5, the entropic part, and v, the enthalpic
part. The entropic activity coefTicient is given by

ny®=1-R, +InR, [{})

where R, is the size term for component 1 (solvent). The
size term is in turn given by
R S
17 Sz, + Spxy

where the S, and S, terms are the number of size groups
found in the solvent and polymer molecules, respectively,
and the z, and x, terms are the mole fractions of compo-
nents 1 or 2 within the solution. The definition of the size
group used in the original ASOG model (Derr and Denl,
1969) was adopted here: the number of size groups ina
molecule is equal to the number of carbon atoms in the
le. When this definition is used, the ratio of size

()

umn, vh.ch are derived

Pure P t dau are used to generate

molecular size and surface area terms for each molecule,

based upon the number and type of functional groups it

Imn‘. These values, along with parameters for the

ions b different (unctional groups,

have been updated frequently and presently constitute a

d;s!; base of 76 basic functional groups (Gmehling et al.,
1982).

Both the ASOG and UNIFAC models must be modified
to mudel solution .ctmty in polymer solutions, because
of I.he large dnﬂcunm in the free volume between the
polymer and ol Aa extension to the UNIFAC madel,

groups S,/ S, for the chemically similar polymer and sol-
wvent is the same as the ratio of molecular weights M,/M,,
where M, is the molecular weight of the solvent and M,
was the number-average molecular weight of the polymer.
‘The reason for using the number-average molecular weight
is shown by Misovich (1984) as following mathematically
from the mole fraction composition variables used by
ASOG combined with the directly proportional depen-
dence of the polymer size term S, on the degree of po-
lymerization of the polymer molecule.

The enthalpic activity coefficient is given by ASOG as

Inyf = ToIn-Lr, In (1))
I} .
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Table . Eatrepic and Eathalpic Activity Ceefficients for
the Toluene-Foly(styrene) System Civea by ASOG

Table I1. Typical Infinite Ditution Weight Fraction
Activity Coellicients for Chemically Similar Systems

wt (ract taduene  entegue In 3 S enthalpec In 3 6 madv guolvm temp, °C ", ref

0 m -8 72 [IXEY XTr toluene gridyistyveene) 124 A9 5 a

['XC ] -512 D s0E 148 2196-4 95 a

wa -351 00608 150 sn c

wi gE oM a7 173 A2 e

05 o oo e 175 LX) «

0y -0.008 46 00217 20 54 ¢

(X -0 0 00 X0 T AN] henzene  (ndy{styrene) 124 293518 r

148 IN-486  a

where ¢, is the number of functional groups of type k in 150 4725 % b
the solvent malecule, I, is the group activity cuefficient it " \ :;’:‘ :;" % e
for group k in solution, and ,* is the standard group ethythenzeme-puly(atyrene 175 s.47 :
activity cuefficient for group k in pure solvent. Both 7, 20 567 <

and 1°,* are defined as

“

s
Inf, = -In gx,A., +1- }l:):.l-A,.

where x, is the mole (raction of group [ and A, is a group
interaction parameter for group k with group 1 (enthalpic
interaction). A, values have been tabulated for various
functional groups (Palmer, 1975; Rizzi and Huber, 1984).

‘The group mole fractions, 1, used for calculating I, are
defined on the functional group compoasition of the entire
solution, whereas those used for calculating I7,* are defined
only upon the functional group composition of the solvent.
For systems of chemically similar polymers and solvents,
the group mole (ractions were approximately equal
whether defined on the entire solution or only upon the
solvent molecule. This resulted in ly equal
values of [, and T,°, giving In v, equal w0ineq3. On
the other hand, the entropic contribution was expected to
be large, due to the size differences between the polymer
and solvent molecules.

A comparison was made between the entropic and en-
thnlpuc .ctmty coemaenu calculated by the ASOG model
for g a typical sy
mthouthmmﬂulpw lntena.mn. The results are shown
in Table L The logarithms of entropic activity coefficients
were from 2 to 4 orders of magnitude larger than the
logarithms of enthalpic activity coefficients at nearly all
concentrations of solvent. These results provide ju.uﬁ-
cation for neglecting the enthalpic activity coel'ﬁcnmt in

*Cuvitz end King, 1972, pulymer molecular weight 3600-
17800000. *Galin and Rupprecht, 1978, lmeut and bunched
pulymer. ‘N and Pr 1972, poly
weight 97 0U0.

At infinite dilution of the solvent in pure polymer, the
mole fraction and weight fraction activity coefficients are
related by

M,
Q" =" M (&)}
Substituting eq 6 into eq 7 gives the desired result.
o= e M )
. m et
v TS, M, ¢

Since for chemically similar polymer-solvent systems
ASOG gives S,/S, equal to My/M,, the size group ratio
and molecular weight ratio cancel, leaving the result

0, = @

This result is in mlnumnl duuroemem. -mh much data,
since for most chemi
the experimentally observed acuvuy coefficient i u much
larger than e, as shown in Table II. When the ASOG
model was applied directly to polymer solutions by Derr
and Deal (1973), they also noted that the predictions of
solvent activity were generally too low. They chose an
eﬂ‘ecuvo' S, for the polymer molecule but proposed no
for making such a choi

modelln‘ polymer-solvent .yweml \vl’uch are

lly. In the sub Q 1
pmonud’ln this paper, on!y lh. .m.ropic ‘cuvny coefli-
cient will be ing solvent activities.

Modification of ASOG for Polymer Solutions

The size group concept in ASOG applied to polymer
solutions assumes that the free volume of polymer and
solvent are equal. This is generally not true; if it were, the
denaities of chemically similar poly tvent pairs would
be equal. To show that this assumption results in sub-
stantial error, the infinite dilution weight fraction solvent
activity coefficient 1,” was calculated according to the
ASOG model. Equations 1 and 2 above, combined with
the assumption

S« S, 5)
resulted in an infinite dilution mole fraction activity
coefficient (the value of v,% as x, goes to zero)

- s.
n"= ¢§

| logarithm, approximately

(6)

where e is the base of the
2.718.

mpropoudcomcuontotheASOandel referred
to as ASOG-variable size parameter (ASOG-VSP), ss-
sumes that the form of eq 8 is correct but that the as-
sumption of equal free volumes of solvent and polymer

S; M,

El"—‘; (10)
i8 incorrect. Toptod\mnmndnhnfmdunms,/s..
eq 8is ng! mu.a. dasak pa-

for the poly t sy The resulting

equation allows the size parameter ratio to vary in a
standard way (or solvent-polymer systems.

sl e Ml
- 1
5T H, an

The ind dent position variable used in the
ASOG model is the mole fraction. The mole fraction is
gmully M a useful variable for lnodelm; polymer-

e ight of the
differs by | orders of magnitude in most

cases. To make the ASOG-VSP results more practical for
modeling polymer solutions, a transformation from mole




fraction to weight fractim wes made. The identities

L v —— “2)

3
= M, a3
;‘—lw, + w,

were applied to eq 2 for the ASOG size term R, along with
ey 11, giving R, as & function of sulvent weight fraction
wy.

M,
w0, + AT,“ -w)
R = — (14)
w+ —(1 - uy)
" u,- uy

Since the weight (raction was being used as the concen-
tration variable, the sctivity coefficient was put on the
same basis. This was done by transforming from the mole
fraction activity coefTicient, vy,, to the weight (raction ac-
tivity coefficient, Q,.

0, = +— (15)
w, + ‘7"(! -w)

The final step involved using the size term from eq 14 to
compute the entropic activity coefficient in eq 1 and then
finding Q, from eq 15
e
—(1 - w,)
g
exp -
-, + F" -wy)
Q= - : (16)
-, + ;(l -w)

In deriving this result, the sssumption
£ M
ﬂ,' “.
was made, allowing the molecular weight ratio term to be
ignored. This result is thus restricted to polymers of high
molecular weight compared to the solvent and to solutions
where 0,° is not very large.

The result (eq 16) is a closed-form solution, giving the
weight fraction solvent activity coefficient, {1, as a function
of the solvent weight fraction w,. The only adjustable
par ter which app in the equation is the infinite
dilution weight fraction solvent activity coefficient, @,.
This par ter can be obtained from a single physical
measurement of equilibrium solubility of a trace of solvent
in pure polymer.

It was also possible, of course, to correlate 2, as a
function of w, based upon a single messurement of solvent
activity at conditions other than infinite dilution of solvent
in pure polymer. This can be done by solving eq 16 for
0,°, given values of 2,"* and w,"*. Due to the nonlin-
earity of the right-hand side of eq 16, a closed-form solu-
tion of 2, in terms of 2,"*** and w,**" was not possible.
A solution is possible by trial and error, or by the following

1)
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iteration procedure. Define

.
Y =w e —(1 ) (15)
u,°

and submtitute Y into eq 16.

( Y - w,""')
ew| ——

Qs —— (1M

Y

Rearranyging this gives

u.',""l
Y=exp{ |- ol In g2, 2m

Take an initial approximation

Y, = exp(l - In Q) (21)

and define

wluﬂl
Y, =exp|l- -In Q™ (22)
Y--l

When a convergent value is found for Y, calculate 2,~ by
rearrangement of eq 18.

L el -wm)

(23)
! Y - w, ™

This procedure converges quickly and allows eq 16 to be

used even when an infinite dilution activity coefficient is

not known.

Comparison To Flory-Huggins Model

The Flory-Huggins model for polymer solution activity
coefficients in concentrated solutions (Flory, 1953) relates
solvent activity, a,, to solvent volume fraction, ¢,. polymer
volume fraction, ¢y, and the interaction parameter x by
the equation

Ing; = In ¢, + ¢; + xéy° (2¢)

As mentioned previously, the ASOG entropy term (eq
1) is similar in form to eq 24. If the size fraction R, given
by eq 2 is equated with the volume fraction ¢, in eq 24,
oq 1 and 24 become identical when x is taken as 0. The
interaction parameter x derived from experimental data
in the athermal systems is generally small and positive.
Since enthalpy effects do not play a role in athermal
systems, x represents the contribution of the free volume
efTects on the activity predicted by eq 24.

Since the enthalpy term in ASOG was neglected in the
ASOG-VSP model, the difference between the Flory-
Huggins model and the ASOG-VSP model lies in the
treatment of the free volume contribution to activity.
ASOG-VSP corrects the molecular size ratio for free vol-
ume effects so that the ASOG entropy term correctly
predicts infinite dilution behavior. Flory-Huggins uses the
interaction parameter to modify the entropic sctivity term
which wholly constitutes eq 24. Both models do lump
enthalpy effects with free volume effects: Flory-Huggins
via the x parameter and ASOG-VSP via the size ratio
parameter, since ASOG group interactions were neglected.

It is generally accepted that the interaction parameter
can be a strong function of concentration, especially in
systems with large enthalpic interactions. The ASOG-VSP
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Figure I. Concentration dependence of the interection perameter.
(a. top) Henzene-poly(isubutylene) at 28 °C, (b, bottom) benzene—
puly(ethylene oxide) at 70 °C. Data points are denoted by closed
circles and the solid line gives eq 77.

model could be applied Lo predicting the variation of x
with concentration. To do this, the transformations

<]
"
o= (25)
—w, + wy
Y (26)
—w, +
""l L ]

were made within eq 24, and eq 16 and 24 were combined
to express x in terms of the independent variable w,, the
ASOG-VSP parameter 0,°, and the ratio of polymer

density to solveat density s,/s,.

e

—wy

Q,° *
x=— ('—"ﬂu) -('—'ﬂ+|)¢

w, + —-w, Py Wy , Wy
,°
- ‘_h”’
? LI
('-’—-'n) In 2 )@
st 0, + ——
Q) wy

Strict applications of Flory-Huggine nqmm X lo be
constant, yet the temp e and
of x can be wh-unml even in nthermd systems (Scholte.
1971). Equation 27 gives a functional form for the de-
pendence of x upon the weight fraction predicted by the
ASOG-VSP model at constant temperature. Figure 1
pares the tration d d of x based upon
eq 27 o x values generated (rom experimental activity

ements (e benzene-poly(isobutylene) and henz-
ene-puly(ethylene oxide).

The behavior of the interaction paramcter as a function
of concentration predicted by eq 27 depends strongly upon
the particular value of 1,°. Athermal polymer-solvent
systems typically have (1,° values in the range 4-6, and the
curve curresponding to such a system shows that y remains
fairly constant, decreasing slightly with increasing cun-
centration. The experimental data for benzene-poly(iso-
butylene) show a general decrease, a hit more steeply than
predicted but still very small in magnitude. On the other
hand, the curve correspunding to a system with enthalpic
interaction, with 1, equal to 8.5, decreases rather sharply
with increasing concentration. The experimental data for
benzene-poly(isobutylene) follow the same pattern, al-
though not quite as sharply as predicted.

The results in Figure 1 indicate that the Flory-Huggins
model and ASOG-VSP model agree fairly closely in their
predictions for low weight fractions in athermal systems,
since x is roughly constant. For systems with enthalpic
interactions, the ASOG-VSP and Flory-Huggins maodels
predict different behavior, and ASOG-VSP correctly
predicts the downward trend of the experimental data.
ASOG-VSP predicts that x decreases with concentration
for a range of physically reasonable values of ¢/Q," and
pe/o,. The rate of decrease is least for athermal systems
and becomes larger as 2, increases or decreases, i.e., in
systems with either positive or negative enthalpy effects.

Experimental data do exist which do not show a decrease
in x with concentration, possibly because of scatter in the
data. x values are particularly sensitive to activity mea-
surements at higher solvent concentrations. This is be-
cause eq 24, when rearranged to solve for x, requires di-
vision by ¢;!. For this reason, the relative accuracy of the
Flory-Huggins and ASOG-VSP models can be better as-
sessed by comparing their predicted activity coefficients
(eq 16 and 24).

Both the ASOG-VSP and Flory-Huggins models have
a fairly simple mathematical form, with a single adjustable
parameter. However, the calculation of this parameter
requires only the meesurement of one activity for ASOG-
VSP, whereas the Flory-Huggins x perameter is derived
from an activity and two densities. The sparseness and
uncertainty of much of the experimental data relating to
polymer solutions under devolatilization conditions in-
creases the utility of a model with a more easily obtained
adjustable parameter. Since it is also necessary to vary
x a8 a function of concentration to correctly model many
systems, the ASOG-VSP model is also superior in that its
adjustable parameter is a function of only the system
components and temperature, not of concentration.

Comparison To UNIFAC-FV Model
The ASOG-VSP model, in the form presented here, is
less general in its theoretical basis than the UNIFAC-FV
model. The enthalpic or group interaction terms included
in the original UNIFAC model, and hence incorporated
into UNIFAC-FV, are analogous to the terms which were
ignored during the derivation of ASOG-VSP. The free
volume correction made in ASOG-VSP is more empirical
in nature than the free volume correction in UNIFAC-FV,
based upon the equation-of-state theory proposed by Flory
(1970).
‘The UNIFAC-FV model contains .d)mhbh parameters
reprenenung a proportionality factor used in defining the
and a ber of external degrees of
fnodom per solvent molecule. Constant values are rec-
ommended (or these parameters in most cases (Oishi and
Prausnitz,1978; Prausnitz, 1982). It is difficult to deter-
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Table [1l. Comparinan of ASOG-VSI®, Flory-Huggine, and INIFAC-FV Medels for Nelveat-Ielymer Systems
av % erre
wt fract A\(K-‘ Flory - UNIFAC.
aols geadvm temp, *C Coree tat v S1° range e of s Vst Huggins rv refl
el pnl\l»l\lruo ' 250 (LN} I | 1m0 176G O9R 1 28 LS 41 a
&0 (ORI 157 01ty axml 2 s 06 19 a
) 024 R N Y | 2 1 02 4 a
methyl ethul ketene polyistyrene) 2% 0y LYSO T FA TR i 21 LX) 94 -
henzene -peols tisoshiatviene) 10 w2 1004 o T Q1L 2 22 1?2 29 )
25 VU4l 847 UMl Gl 1 29 112 23 b
cyclohesane palylisobutylene) b33 o1 491 0165 06y 7 2.1 17 19 c
o peataie polytisobutylene) 2% 0oy 858 007204 ] 20 52 IR d
trusopropyllenzene pulvistyrene) 165 ou29 12,41 00RS 008K 2 29 157 21Th -
175 020 11.52 0ul7 00RS 2 163 205 n4 e
carbon disulfide-poly (styrene) 1ns 0014 A5 -0 040 2 on 13 0.7 [
190 0 9% oo -0 3 183 188 wY L4
methanut -poly(methyl inethacrylate) 120 002 16.56  0.X%-0.009 2 1.3 26 316 e
130 0.w2 11.85  0.005-0.008 2 99 86 66.6 e
Uduene -poly(methyl methacrylate) 130 0016 1206 0059-0.112 2 303 9.2 ) e
160 0.s 13.46 0014-0036 4 46 36 298 e
toluene-paly(vinyl scetate) 3 0084 929 O0.117-019 3 33 80 248 /
40 0051 88% 00760171 6 33 55 257 /
475 0052 831 007190.107 2 6.5 03 6.9 /
chlorofurm-poly(vinyl acetate) 35 0.163 1.65 0231-0.464 6 79 92 16.1 /
45 0.093 149 0.121-0.499 15 34 46 147 /
henzene-poly(ethylene ntide) 70 0.061 506 0067-0388 6 27 4“1 10.1 ri
70 0050 4.61  00A9-0.265 4 07 1.0 81 I
5.1 0052 4.48 0081 -0.145 3 0.7 03 8.9 I
881 0026 4.50 0.0.0-0.090 3 07 it 103 i
102 0020 451 00210118 10 19 21 120 ¥}
1254 0010 435 00170032 3 1.3 14 12.4 I
125.7 0.0l 4.25 0017-0.033 3 18 19 10.1 r'}
150.4 0007 438 00110022 3 39 40 131 I3

*Hawn et al. (1950). *Fichinger and Flory (1968a). *Eichinger and Flory (1968h). ¢ Eichinger and Flory (1968¢c). * Liu (1980). /Ju (1981).
¢Chang and Bonner (1975) *Indicates some experimental points were deleted as vutliers. * Puint used to determine Q,° (ASOG-VSP) and

x (Flory-Huggins).

mine whether these parameters, particularly the external
degrees of freedom parameter, are correct for a particular
polymer-solvent system without checking the predictions
of UNIFAC-FV against experimental data for that system.

If such activity data are available, the ASOG VSP model

teractions (Q,° <2.0), 14 showed roughly athermal behavior

(3.5 < 2, < 5.5) and 13 showed positive enthalpic inter-

actions (2,° >8.0). Table [II gives the details of the sets
studied.

For each set, the lowest concentration data point was

h for correlation of @, by eq 18-23. This 0," was

is much simpler from a tati st int. In
particular, infinite dilution ncuvxty coefficient data are
typically available for many polymer—solvent systems even
in the absence of other thermodynamic data for the sys-
tem, and it is such data which can directly provide a value
for the one adjustable parameter, Q,°, in ASOG-VSP. For
example, inverse-phase gas chromatography has been used
by Newman and Prausnitz (1972), Galin and Rupprecht
(1978), Ganduz and Dincer (1980), and DiPaola-Baranyi
(1981) to measure infinite dilution sctivity coefTicients for
many solvents in poly(styrene), various methacrylate
polymers, and some copolymers. Other methods for
measuring this coefficient are head space analysis and
qQuartz spring or microbalance sorption experiments.
One major advantage of the UNIFAC-FV model is that
it does not require activity coefficient data for polymer-
solvent systems. In this sense, UNIFAC-FV is predictive
while ASOG-VSP is correlative, using a single binary da-
tum to generate activity as a function of concentration. On
the other hand, UNIFAC-FV does require pure component
density data for both the solvent and polymer. The same
comments which were made in regard to the need for such
data in using the Flory-Huggins model also apply to
UNIFAC-FV.
Comparison of ASOG-VSP, {INIFAC-FV, aad
Flory-Huggins Models with Experimental Data
Experimental data for 130 points in 29 sets of isothermal
polymer—solvent activities were uned Lo test the predictions
of the ASOG-VSP, UNIFAC-FV, and Flory-Huggins
models. Of the 29 sets, 2 showed negative enthalpic in-

then used to predict the activity using the ASOG-VSP
model. The Flory-Huggins x was calculated from 2, and
used as a constant value in the Flory-Huggins equation.
The UNIFAC-FV model was applied according to Oishi
and Prausnitz (1978), using their recommended values for
the free volume parameters and the Gmehling et al. (1982)
values for the group interaction and size parameters.
Denaity data for solvents and polymers were obtained from
Timmermans (1950), Brandup and Immergut (1975), and
Mark et al. (1972). In some cases, liquid density data below
the normal boiling point were extrapolated to estimate
liquid densities at higher temperatures.

The ability of any of the models to fit the data depends
on the value of 1,~. Tables IV-VI give typical results for
three data sets: one each exhibiting negative, positive, and
athermal behavior. Table VII summarizes the accuracy
of the three models on the given data sets. The perform-
ance of the Flory-Huggins model and ASOG-VSP model
was roughly equal on athermal systems, with both models
accurate within 5% of the experimental activity for about
90% of the data points. In systems showing marked
positive or negative deviations from athermal behavior, the
ASOG-VSP model predicted activity within 5% of ex-
periment for over 70% of the data, while the Flory-Hug-
gins mode! was as accurate less than 30% of the time. The
UNIFAC-FV model generally performed more poorly than
ASOG-VSP and Flory-Huggins, as might be expected
since it utilizes no binary data in its predictions. It is
possible that performance of UNIFAC-FV could have been
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Table IV. (Comparison of Calculated and Experimental
Activities for Chloreform-PPoly(vinyl scetate) at 48 °C. U~
= 149 and \ * -0.192 Determined at w, = 0.49)

v activ cieff and R croe
Flaey -

WOt ASOGUSE Hugmies UNIFACHY
0 L 1470 46 Lamw 5K 1207 A
o1 (I T I R I £ * R X R B LTS
0164 T U T X I RO IR T COR B T IRCT T RO
[INE ] P 138 RS LaMr A HEun 12
0.206 145 14830 00 144 I8 1198 178
0227 [IRTL (N T Y L I S I S 1 (KR}
0.247 LN 1443 36 14T 6& Liwy 137
0.276 1082 143 A8 1464 59 LIAT 18
0.295 1280 1429 A6 1459 KT 1M -l
0.32% F DTG Y R S T I (O I 1Y I T B B £ R P )
Q0.288 1351 1410 44 1L 44 a7 1181 -126
0.427 109 138 04 1415 19 LITT -Is
0.461 1378 1W9 06 1400 1R 1178 -14A
0.478 1395 1362 -23 Lyl Al 1174 -158
0.499 1416 1351 -48 1082 24 1172 -172
av % errar 14 16 147

Table V. Comparisea of Calculated and Experimental
Activities fer Renzene-Poly(ethylene oxide) at 75.1 °C. ,°
= 448 and x = 0.210 Determined at w, = 0.052

solv activ coefl and % error

wt fract X Flory- UN!F'AC
wolv exptl ANOG-VSP Hoggins F\
0.081 4755 1749 02 131764 02 3416 -90
0.108 3561 3541 05 1559 00 131247 -R8
0.145% A332 3289 -13 307 07 1018 -A48
Av % erre 0.5 03 89

'l'-bk Vl. Comparison of Calculated and Elpenmcnul
§ for B. Pely(isobutyleae) at 28 °C. 1,
8.47 and x = 1.09 Determined at w, = 0.043

solv activ coefl and % error

ASOG- Flon-- UNIFAC-

",:,':“ exptl vsp Huggins FV
0.063 6409 6.27¢ -21 6871 72 6016 -6.1
0.094 S468 5520 10 6224 138 5452 03
0.150 4608 4506 -2.2 5251 140 4620 03
0.152 4636 4484 -33 5229 128 4601 08
0.184 6127 4032 -23 4752 IS1 4199 18
0.243 3484 3370 -33 4001 148 3572 25
0.254 3452 3294 -46 3911 133 3497 13
0.297 3070 2946 -40 3485 135 i 24
o3 2873 2779 -33 3275 140 2970 34
03713 2541 2472 -27 2881 134 2642 40
av % error 29 132 23

Table VII. Accuracy of the ASOG-VSP, Flery-Huggins,
asd UNIFAC-FV Models oa the Data Tested

model 2,°<2?2 35<0,°<55 Q,°>8 alldata

% of Data Points for Which Model Was Accurate Within 5%
ASOG-VSP n 90 n 80
Flory-Huggine 29 89 2 54
UNIFAC-FV [] 28 25 2

% of Deta Points for Which Mudel Was Accurate Within 10%
ASOG-VSP 100 97 81 92
Flory-Huggine 86 95 56 9
UNIFAC-FV o 59 50 “

improved if the value of the parameter used in calculating
the free volume correction had been .d,usud however, no
definitive guidelines for doing so are given by the authors
of UNIFAC-FV.
Conclusions

The ASOG-VSP model was successful in predicting
solvent activities in the polymer—solvent systems reviewed.
Performance was equal to the Flory-Huggins model. su-
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petioe to the UNIFAC-FV maordel in athermal svatconm, and
wuperior to leth of these madels in syxtems with significant
enthalpic interactions. ASOG-VSE uls hal wn advintage
over these medels in not requiring density data (or ap-
phcations of the model and is much simpler thun UNI-
FAC-FV fram a computational standpoint. However,
ASOG-VSP does require n single value of activity or sn
infinite dilution activity coefficient ax a parameter, which
UNIFAC-FV does not.

The rexults presented here can be extended to multi-
component polymer-solvent systems. A theoretical de-
rivation for systems with enthalpic interactions between
polymer and solvent molecules by including the ASOG
group-interaction parameters is alw possible, as is exten-
sion to modeling of temperature dependence of activity.
We are continuing work on these topics and on the ap-
plication of the results presented here to di(fusion in
polvmer melts.
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VSP METHOD USED WITH RESIDUAL INTERACTION TERMS

The manuscript which follows describes the derivation of the complete
VSP method which includes an additional residual interaction term.
Comparisons are made between the new method and the Flory-Huggins
equation by fitting complete data sets to the adjustable parameters in
each model. The new method is applied with three residual terms: one
which describes no residual interaction (equivalent to the original VSP
single parameter method); one which uses a term similar to the Flory-
Huggins interaction term; and one which uses the ASOG-KT group
contribution model to generate an interaction term from a parameter
database without use of any adjustable parameters for residual
interaction. Further details of the experimental data and results are
given in Appendices A, C, and E. Detailed derivations for the equations

proposed in the article are given in Appendix G.
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Prediction of Solvent Activities in Polymer Solutions Using an

Empirical Free Volume Correction

ABSTRACT

A recent correlation for solvent activities in polymer solutions is
extended in scope to provide a methodology for modeling nonideal effects
in polymer solutions. This new method allows the use of any expression
for the residual (enthalpic) interaction between polymer and solvent in
conjunction with a standard (Flory-Huggins) expression for the
combinatorial entropy. An empirical free volume correction uses the
infinite dilution weight fraction activity coefficient of the solvent as
an adjustable parameter. The new method is applied using one residual
term given by the Analytical Solution of Groups (ASOG) technique, one
similar to the Flory-Huggins interaction term, and one which yields no
residual interaction. The results of these three models are compared to
one another and to the Flory-Huggins model for 21 isothermal binary
polymer-solvent systems. When adjustable parameters are determined by
best fit to the data, each of the models applying the new method results
in a standard error of less than five percent for at least 16 of the
systems studied. This represented a better performance than the Flory-

Huggins model.
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INTRODUCTION

An understanding of the thermodynamics of polymer solutions is important
in practical applications such as polymerization, devolatilization, and
the incorporation of plasticizers and other additives. Diffusion
phenomena in polymer melts and solutions are strongly affected by
nonideal solution behavior, since chemical potential rather than
concentration provides the driving force for diffusion. Proper design
and engineering of many polymer processes depend greatly upon accurate

modeling of thermodynamic parameters such as solvent activities.

This work was an extension of previous work by the authors for
correlating solvent activities in polymer solutions (Misovich et al,
1985). In that paper, an empirical free volume correction is derived
from an athermal form of the Flory-Huggins combinatorial entropy (Flory,
1953) suggested by the Analytical Solution of Groups (ASOG) group
contribution model for calculation of activity coefficients in solution
(Derr and Deal, 1969). The technique generally performs better than the
classical Flory-Huggins equation in extrapolating solvent activity data
from low solvent concentrations to higher concentrations. One
deficiency of the approach is that phase separation cannot be predicted,

i.e., dal/dw1 > 0 is always the case.

In this paper, the empirical free volume correction was modified to
allow the explicit inclusion of an expression for residual (enthalpic)

interaction between polymer and solvent. A general scheme was given to
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accomplish this, and three specific cases were analyzed and compared.
One case used the ASOG expression for residual interaction, while a
second used an interaction parameter approach similar to the Flory-
Huggins equation. The third case assumed that there was no residual
interaction term, and reduced to the generalized correlation previously

cited (Misovich et al, 1985).

The results in this paper were based upon a best fit of the adjustable
parameters in each model using a least squares evaluation of all the
data, not by extrapolation from a single data point. In each of the
three cases, the infinite dilution weight fraction solvent activity
coefficient 01° is an adjustable binary parameter. A residual
interaction parameter is a second adjustable binary parameter in the
second case. The classical Flory-Huggins equation was also fit to the
data for comparison. In general, regardless of which residual
interaction expression was used, the new method fits the data with less

error than the Flory-Huggins equation.
GENERALIZED THERMODYNAMIC MODELING

Nonideal interactions between molecules in solution are generally
classified in one of two categories. Interactions resulting from
differences in the size or shape of molecules are classified as
entropic, while interactions resulting from differences in energy are
classified as enthalpic. The complete expression for solvent activity

a; is typically derived by multiplying concentration (mole fraction) Xy,
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a size or entropy activity coefficient, 118, and a enthalpy or group
interaction activity coefficient, 116. or by adding their logarithms as
shown in eq la. It is also common to lump the concentration with one of

the activity coefficients (usually the entropic coefficient) to give eq

1b.
ln a, = ln x, + 1ln ¥ $ 4+ 1n v G (la)
1 1 1 1
S G
In a, = 1n a,” + i1n 2 (1b)

A statistical approach allows entropic interactions to be handled
combinatorially, as is done by the athermal Flory-Huggins equation

(Flory, 1953), giving for the entropic contribution to activity, als

S S
1n a, = 1n (xl‘y1 ) -1 - ¢1 + 1n ¢l (2)

where x1 is the mole fraction, 118 is the entropic activity coefficient,
and ¢1 is the volume or segment fraction of component 1 (solvent).
Staverman (1950) has also given an expression for combinatorial entropy

which includes surface area variables as well as volume variables.

The modeling of enthalpic interactions generally involves the use of
some type of binary interaction parameters. For similarly sized
molecules, the entropic term is often considered small and the activity
coefficient model consists wholly of the enthalpic term. In cases where
both effects must be considered, the enthalpic or group interaction
contribution to the activity coefficient, 116, is taken as the residual

remaining after the combinatorial entropic term is removed from the
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total activity coefficient. In the Flory-Huggins equation, this term is

given by
G 2
T, = X4, (3)

where x is the adjustable interaction parameter.

Several models for solution thermodynamics incorporate both types of
effects. Analytical Solution of Groups, or ASOG, (Derr and Deal, 1969)
uses a Flory-Huggins combinatorial entropy along with a residual
enthalpy similar to Wilson (1964). Universal Quasi-Chemical, or UNIQUAC
(Abrams and Prausnitz, 1975) and UNIFAC (Fredenslund et al, 1975) are
similar, but use a Staverman combinatorial entropy, and use surface area

fraction rather than mole fraction as the independent variable.

ASOG and UNIFAC also differ from UNIQUAC in that a group-contribution
concept is used to analyze a solution in terms of interactions between
functional groups rather than molecules. In both models, a database of
functional group interaction parameters has been built. This allows
prediction of residual interactions without use of binary data for the
molecular components. All necessary binary data for functional groups

is available from the database.

Group-contribution models can be particularly useful in describing
polymer solutions. Although polymer molecules are distributed in
molecular weight, they are identical in their functional group

composition regardless of their size.
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Predictions of classical Flory-Huggins theory and the group-contribution
models show deficiencies when compared to actual data for concentrated
polymer solutions. The interaction parameter in the Flory-Huggins
equation, x, does not correlate directly to the enthalpic interaction
between molecules. This is evidenced by the fact that significantly
nonzero values of x are required for accurate fit of data for systems
with little enthalpic interaction, like polystyrene-toluene. The
presently accepted interpretation of x is that of a free energy
interaction parameter incorporating both entropic and enthalpic effects.
When functional group interaction parameters (which are derived from
small molecules in ASOG and UNIFAC databases) are used to predict
solvent activities in polymer solutions, the results are significantly
poorer than those found for solutions of small molecules. Again, this

seems to be due to the existence of a noncombinatorial entropy effect.

Free volume differences contribute to such nonideal interactions.
Chemically similar polymers and solvents still differ in their free
volume, as evidenced by the difference in densities between polystyrene
and toluene. To account for such effects, Flory (1970) proposes an
equation of state approach for analysis of polymer solution properties
in terms of pure component properties. This is adapted to the UNIFAC
model by Oishi and Prausnitz (1978); the resulting UNIFAC-FV model is
more accurate than UNIFAC in fitting activity data from polymer
solutions. Other equations of state for polymer solutions have also

been proposed (Lacombe and Sanchez, 1976; Liu and Prausnitz, 1979;
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Scholte, 1982).

Derr and Deal (1973) note that the ASOG model is not accurate when
applied to polymer solutions. By choosing an "effective" size parameter
for the polymer molecule, they are able to improve predictions. A
technique for choosing size parameters, referred to as Variable Size
Parameter (VSP), results in a correlation for solvent activities in
polymer solutions which shows good accuracy (Misovich et al, 1985).
However, it is deficient in that residual interactions are not properly

modeled. That drawback was eliminated in this paper.

VARIABLE SIZE PARAMETER

The following discussion reviews the development of the VSP technique.
An expression similar to the combinatorial entropy given by eq 2 is used
in the ASOG model, shown in eq 4, with the volume fraction ¢1 replaced

by the size ratio R, defined in eq 5.

1

Inv,5=1-R, +1nR (%)
N1 1t

Ry =) / (5,% + 5,%)) (5)

where Si is the size parameter of component i, and xg is the mole

fraction of component i. The size parameter is intended to correlate
with the molar volume of a component, and is calculated by counting the
number of atoms other than hydrogen in the molecule, with a few

exceptional cases such as H,O.

2
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At infinite dilution of component 1 (pure polymer limit), and taking S1
<< 82 because of the size disparity of the molecules, eqs 4 and 5 yield

a mole fraction activity coefficient
73 —e 2 (6)

Mole fraction concentration variables are seldom used for polymer
solutions because the difference in component molecular weights makes
them impractical. Weight fraction v, is typically used, and weight

fraction activity coefficients O, are defined by

1

a; = 0w 7

If the ratio of polymer size parameter to solvent size parameter, 82/81’
is assumed equal to the ratio of molecular weights, eq 6 can be

rewritten in terms of weight fraction activity coefficient at infinite

dilution.
01 - e (8)

Experimental values of Olw range from 1.5 for chloroform in poly(vinyl
acetate) (Ju, 1981) to over 100 for water in polystyrene (Gunduz and
Dincer, 1980). Much of the discrepancy can be attributed to residual
interactions which are not accounted for in eq 4. However, data for
toluene in polystyrene yield Olw values between 3.7 and 5.5 (Covitz and
King, 1972; Newman and Prausnitz, 1972), yet little residual interaction
is expected for this system. The discrepancy in this case can be

explained only in terms of the noncombinatorial entropy. The data for
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other chemically similar systems show a similar pattern.

Originally (Misovich et al, 1985), an empirical correction was proposed
for the size ratio R1 in eq 5.
Y1

R, = - (9
wl + (e/ﬂ1 )w2

This results in a correct value of weight fraction activity coefficient
at infinite dilution when used in eqs 4 and 7. Reasonably accurate
results are obtained for the variation of activity coefficient with
‘concentration for most systems for which data are available. However,
the approach lacks theoretical correctness for systems with residual
interactions since a term like the one given by eq 3 is not employed in
addition to eq 4. Also, the parameter 010 describes the complete
activity coefficient containing residual effects as well as
combinatorial and noncombinatorial entropy effects. Hence, including
01c° in the size ratio R1 incorrectly places residual effects in an

entropic factor.
REVISED VARIABLE SIZE PARAMETER APPROACH

A more correct treatment of the size ratio given by eq 9 was made by
canceling the effect of residual interactions from Olm. This was
accomplished by placing the infinite dilution value of the residual

activity coefficient, 716w, in the numerator of the ratio e/ﬂla.
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!
R. = (10)
1 Go @©
vy + (e‘y1 /01 )w2

Eq 1 can then be used in an appropriate manner to calculate solvent
activity. The first term on the right side of eq 1 will account for
size and free volume interactions between molecules according to eqs 4,
5, and 10. The second term on the right side of eq 1b will account for
residual interactions. Any functional expression may be used to
generate the term 11G, e.g., the Flory-Huggins interaction parameter
term (eq 2) could be used. The factor 11GQ in eq 10 has the value given

by the expression for 116 with vy taken as zero, i.e.,
G
7, = £ (11)

implies that

7" = £(0) (12)

The set of eqs 1, 4, 10, 11, and 12 constitute a method for correlating
solvent activities in polymer solutions as a function of concentration.
The order in which the steps are applied is crucial. First, choose an
expression for residual interaction (eq 11) and solve for its infinite
dilution value (eq 12). Then determine the empirical size ratio, Rl’
for the chosen concentration using a known value of Qlw (eq 10) and use
it to calculate the size and free volume component of solvent activity,
als (eq 4). Determine the residual activity coefficient, 11G (eq 11),

for the chosen concentration, and sum the entropic and residual terms in

eq 1 to produce solvent activity.
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This approach includes free volume effects with the entropy term als; a
separate term is not written for these effects. Other approaches have
variously modeled these effects as part of the entropy term as done
here, or with a term separate from entropy and enthalpy, or as part of
both entropy and enthalpy terms. These variations make direct
comparison of various free volume terms difficult except in the context

of overall activity predictions.

APPLICATION WITH VARIOUS RESIDUAL TERMS

Three examples using various residual terms will be presented here. We
believe the technique should be useable with other choices for the
residual term. In all cases, the general procedure outlined above was

followed. The first residual term to be considered was no residual

interaction.
G G
or
In 110 - 1n 11G° -0 (13b)

The second residual term was given by a Flory-Huggins type expression

analogous to eq 3, replacing ¢2 by RZ'

*
In 11G -x R22 (14a)

1160 - exp (x) (14b)
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*
where x is an interaction parameter based on size ratio rather than

volume fraction. The third residual term was given by the ASOG model

equations.
Inv.% =3 InT, - InT, " (15a)
“”1'k"k1(“k' n )

XA
1nrk--1nleak1+1-z—-1-—1—k— (15b)

1 1ZXA

m lm

m
Inr.*=1nrT 1 (15¢)
nk-nk(xl-) ¢
-Zxwv,, /22 xyv (154)
% ™ %1k 71

G G

1n 7 = 1n 1 (x1 = 0) (15e)

In these equations, Xy is the mole fraction of molecular component i,
Vied is the number of functional groups of type k in component 1, X1 is
the group mole fraction for group type 1, Pk is the group activity
coefficient for group type k in solution, and Pk* is the group activity
coefficient for group type k in pure component 1. Indices i and j
represent molecular components, while indices k, 1, and m represent
functional groups. The set of eqs 15a-15d are analogous to the Wilson
equation (Wilson, 1964) taken over functional groups rather than
molecular components, weighted over the functional group composition of

a molecule, and normalized for the relative occurrence of different

functional groups in the solution as compared to a pure component.

When eqs 13 were used, no residual interaction was modeled. The result

reduced to the previously described expression (Misovich et al, 1985)
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for 01 as a function of concentration with 01o as a single parameter.

exp ( (e/Q, dw, / [w, + (e/Q, )w,] )
o, - ) 1‘” 1’72 16)
wl + (e/ﬂ1 )w2

This expression contained a single adjustable parameter, 010, which was
selected to minimize the residual error in 1n 01 compared to experiment.

A numerical minimization technique was necessary.

The residual interaction given by eq 14 also allowed an expression to be
*
written for 01. In this expression, 116@ was used in place of exp(x ),

which gave

G G
(ev,  /8,")w, (ev, /8, )w, .
exp 1+ 1n 01
w

G ) Go )
0 - 1 + (e—y1 /01 )w2 wl + (e-y1 /ﬂ1 )w2 17y
1 G ©
wl + (e-y1 /01 )w2

Both 11G° and 01°° were taken as adjustable parameters. They were chosen

in the same way as described for eq 16.

When the ASOG model given by eqs 15 was used for residual interaction,
constants from Kojima and Tochigi (1§79) were used. (This version of
ASOG is called ASOG-KT.) Only le was taken as an adjustable parameter,
because 7100 is given by eq 15e as a function of the ASOG-KT constants
only; hence, 11Gm is itself a constant for a given polymer-solvent

system and temperature.
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FITTING OF MODEL PARAMETERS

Experimental data for 116 points in 21 sets of isothermal polymer-
solvent activities were used to test the VSP approach with each of the
three residual expressions. The classical Flory-Huggins model, eqs 1-3,
was also applied for comparison. For each data set and each equation,
the best fit of adjustable parameters was made to minimize the sum of
squares residual of 1ln al, i.e., to minimize the relative error in al.
An example of the technique is given as Appendix A. The parameters
adjusted were 01@ (VSP with eq 13 and VSP with eqs 15), 01° and 11G°
(VSP with eqs 14), and x (Flory-Huggins). Table 1 contains all values
of the adjustable parameters which were derived from experimental data.
In addition, the value of 11G° given by eq 15e from the ASOG-KT

parameter database is given for comparison.

Table 1 shows a remarkable consistency in 01Q values in the VSP results
using different residual expressions. This indicates the physical
significance of the parameter, as distinguished from a mere data fit.
As long as there is a reasonable model for the enthalpic term, the VSP
method yields similar values for Oln. In Figure 1, the values of an
given using eqs 13 have been arbitrarily taken as x-coordinates, and the
values given using eqs 14 and 15 are plotted as y-coordinates. The plot
shows little scatter from the line x = y. Values of 010 given using eq
13 exceeded those given using the other equations when 11G° was greater

than unity (positive enthalpic deviations from Raoult’s Law); the

opposite was true when 11G° was less than unity.
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Comparison of the value of 11G° between eqs 14 and 15 showed that some
data sets agreed well, while others had no apparent correlation, as
Figure 2 indicates. In particular, there were three data sets where eq
14 predicted a best fit value of 1lcw of unity or less while eq 15
predicted a value substantially larger than unity. The apparent
disagreement was due to the nature of the calculation of 11G° in the VSP
model with eqs 14 and 15. In eq 14, 11Gm was an adjustable parameter,
while in eq 15, it was not adjustable but was given as a function of the
ASOG-KT constants. Noting this distinction, the results from eq 15
would generally have been considered preferable as they had a more
fundamental basis in a solution model than the parameter fitting results
from eq 14. The general agreement between parameters derived from
numerical fit and those estimated from the ASOG-KT database was

encouraging in many cases.

In Figure 3, the size factors defined as (e/ﬂlw) in eq 13, and as
(eylco/ﬂlo) in eqs 14 and 15 were compared. Again, there is a sizable
amount of scatter in the plot. Of the total of 63 data fits (21 sets
with three models), only in eight cases was a size factor greater than
unity predicted by any model. In no case did all three models predict a
size factor greater than unity for a given data set. These results are
consistent with the observation of Derr and Deal (1973) that the
"effective size factor" must be less than the actual size ratio of the
molecules; in our models, size factors less than unity indicated they

were less than the actual weight ratio.
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Table 1. Parameter Values Determined by Data Fit.

a
Solvent- wt no.

Q
Polymeg frac of VSP wi%h eqs
Temp, C range pts 13 14 15

toluene-poly(styrene)a

25 0.111-0.918 11 4.95 4.56 4.
60 0.102-0.261 3 4.85 4.63 4.
80 0.246-0.671 3 5.17 4.72 5.

methyl ethyl ketone-poly(styrene)a
25 0.091-0.298 4 8.93 8.23 7.

benzene-poly(1sobuty1ene)b
10 0.225-0.454 3 10.66 7.96 6.
25 0.044-0.373 11 8.79 8.18 7.

cyclohexane-poly(isobutylene)c
25 0.128-0.569 8 4.97 4.90 4.

n-pentane-poly(1sobuty1ene)d
25 0.029-0.584 9 8.76 8.33 8.

triisopropylbenzene-poly(styrene)e
165 0.030-0.086 3 12.34 12.25 12.
175 0.020-0.066 3 10.61 9.84 10.

carbon disulfide-poly(styrene)e
115 0.014-0.041 3 3.73 3.73 3.
140 0.008-0.029 4 3.48 3.48 3

methanol-poly(methyl methacrylat:e)e
120 0.003-0.009 3 16.65 16.33 16.
130 0.003-0.008 3 12.73 10.79 12

toluene-poly(methyl methacrylate)e
130 0.017-0.112 3 9.68 9.68 9
160 0.006-0.037 5 10.95 10.95 11.

toluene-poly(vinyl acet:at:e)f
35 0.084-0.195 4 9.71 8.41 8.
40 0.051-0.171 7 9.26 8.35 8.
47 0.052-0.107 3 8.87 7.63 8

chloroform-poly(vinyl acetate)f
35 0.163-0.464 7 1.49 1.49
45 0.093-0.499 16 1.44 1.40

-

References: 2Bawn ea al (1950). bEichinger and Flory (1968a).
and Flory (1968b). Eichinger and Flory (1968c).
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Disagreement among the models on the parameter values did not appear to
be random. Rather, certain systems seemed prone to good agreement or
poor agreement on certain parameters, as can be seen from examination of
Table 1. The systems benzene-poly(isobutylene), methyl ethyl ketone-
poly(styrene), and toluene-poly(vinyl acetate) had large relative
deviations among 01°° values; the first two also had small relative
deviations among 11Gw values. The opposite was true for the system
carbon disulfide-poly(styrene). Finally, the systems toluene-
poly(methyl methacrylate) and cyclohexane-poly(isobutylene) showed small
relative deviations in both parameter values. The other systems showed

either intermediate levels of deviation among parameters or showed

different trends at different temperatures.
COMPARISON WITH SOLVENT ACTIVITIES IN POLYMER SOLUTIONS

Some specific results which illustrate the accuracy and flexibility of
the method are given in Figures 4 through 6. Solvent weight fraction
activity coefficient 01 was plotted versus solvent weight fraction for a
given polymer-solvent system at a given temperature. Experimental
points were shown along with lines or curves representing the best fit

results of certain models.

In Figure 4, data for benzene-poly(isobutylene) at 25°%C is shown, along
with the VSP model using eq 13 and the Flory-Huggins model. (Both of
these models contain one adjustable parameter.) The VSP predictions

were more accurate in this case, particularly at the extremes of
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VSP (Eq. 13)
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Figure 4. Solvent Activity Coefficient as a Function of Concentration,

Benzene-Poly(isobutylene) at 25°C. Curves, equations; squares,

experiment.
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concentration that were used. Some investigators prefer to express
activity results as a variation of the interaction parameter x with
concentration, often referred to as "reduced residual chemical
potential." The curve in Figure 4 labeled "Flory-Huggins" would
represent a constant y value. The experimental data would show x
decreasing with concentration because the slope of the data is more
steeply negative than the "Flory-Huggins" curve. The curve representing

VSP with eq 13 also correctly showed this decrease.

Figure 5 compares VSP using eq 15 with Flory-Huggins for the system
toluene-poly(methyl methacrylate) at 160°C. Neither model performed
well on this data set, although VSP with eq 15 did correctly model the
fact that x decreases with concentration, although not the magnitude of
decrease. In Figure 6, data for the system toluene-poly(styrene) at
60°C showed a very slight increase in x with concentration, and this was
correctly modeled by VSP with eq 14, since it predicted a less steeply
negative slope than the Flory-Huggins model. The examples in Figures 4
through 6 show that the VSP method is capable of modeling systems in

which x either decreases or increases with solvent concentration.

For each data set and equation, a standard error was defined by

pred _ 1n a exptl,2

T (lIn a )
.| 1 1 172

(n - d)

(18)

where the sum was over all n points in the data set, and where d was the

number of adjustable parameters (degrees of freedom) in the model used.
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Figure 5. Solvent Activity Coefficient as a Function of Concentration,
Toluene-Poly(methyl methacrylate) at 160°c. Lines, equations; squares,

experiment.
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Figure 6. Solvent Activity Coefficient as a Function of Concentration,

Toluene-Poly(styrene) at 60°C. Lines, equations; squares, experiment.
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For the VSP model with eqs 14, d = 2; for all the other models, d = 1.
Hence, in cases where the VSP model with eqs 14 produced the same
standard error as the other models, it must have resulted in a smaller
deviation from experiment on the average. The standard error defined by
eq 18 in effect penalizes eq 14 because it has more adjustable

parameters.

The standard error results are given as Table 2, and were generally
quite good for all the models. Even the Flory-Huggins model, when fit
to the data, had a standard error of less than five percent in 14 of 21
data sets. The VSP models were somewhat more accurate, with standard
errors less than five percent for 16 of 21 data sets using eqs 13 and 15
for the residual term, and 17 of 21 data sets using eq 14. Previous
work (Misovich et al, 1985) has shown that the VSP model using eqs 13 is
superior to the Flory-Huggins model when data from low concentration is
extrapolated to higher concentrations. The same results were found here
in a best fit of all data, for all the models using the VSP method

regardless of the residual expression used.

Because of the generally good performance of all the models, it was not
clear that any given model was significantly better or poorer than the
others for a particular system in many cases, outside of the general

trend noted in the previous paragraph.

(VSP, eq 14) > (VSP, eq 13) = (VSP, eq 15) > (Flory-Huggins)



46
Table 2. Comparison of Models with Experiment.

Solvent- wt no. Std & error
Polyneg frac of VSP with eqs Flory-
Temp, C range pts 13 14 15 Huggins

toluene-poly(styrene)

25 0.111-0.918 11 2.1 1.1
60 0.102-0.261 3 1.3 0.4
80 0.246-0.671 3 1.0 0.1

=N
o wo
o o
o ™ o

methyl ethyl ketone-poly(styrene)
25 0.091-0.298 4 1.9 0.6 1.6 2.4

benzene-poly(isobutylene)
10 0.225-0.454 3 2.1 0.8 2.3
25 0.044-0.373 11 2.6 1.2 4.4 5.2

cyclohexane-poly(isobutylene)
25 0.128-0.569 8 2.4 2.6 2.4 2.4

n-pentane-poly(isobutylene)
25 0.029-0.584 9 2.2 0.9 2.2 2.2

triisopropylbenzene-poly(styrene)
165 0.030-0.086 3 2.9 4.1 2.9 5.4
175 0.020-0.066 3 15.4 21.4 15.4 15.1

carbon disulfide-poly(styrene)
115 0.014-0.041 3 0.5 0.6 0.7 0.7
140 0.008-0.029 4 13.8 16.9 13.8 13.9

methanol-poly(methyl methacrylate)
120 0.003-0.009 3 1.4 1.4 1.0 1
130 0.003-0.008 3 6.9 0.6 6.2 6.

toluene-poly(methyl methacrylate)
130 0.017-0.112 3 20.2 28.6 20.2 24.1
160 0.006-0.037 5 12.4 14.3 11.9 14.3

toluene-poly(vinyl acetate)

35 0.084-0.195 4 2.8 0.3 0.5
40 0.051-0.171 7 2.9 1.4 1.4
47 0.052-0.107 3 4.6 2.4 2.7

N = O
N S oum

chloroform-poly(vinyl acetate)
35 0.163-0.464 7 3.9 4.3 3.
45 0.093-0.499 16 2.7 2.6 3

N &
o
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It was also difficult to define an average error over all the systems
tested because the presence of large errors in a few data sets tended to
obscure the behavior in the majority of data sets in which standard
errors were relatively small. The average error, defined by the
arithmetic mean over all 21 data sets, was greatly affected by this. At
the same time, the average defined by the geometric mean over all data
sets was affected most strongly by the presence of very small errors in
a few data sets. Both these averages, as well as the median standard
error for the 21 data sets, are given for each model as part of Table 3.
VSP with eqs 14 and 15 performed best according to these measurements;
VSP with eqs 13 and Flory-Huggins performed worst, but still showed

small standard errors on many sets.

Also included in Table 3 are the number of times each model had the
lowest (or highest) standard error for a single data set. (The numbers
total more than 21 because of ties.) VSP with eqs 14 and 15 again
outperformed the other two models. Finally, for each data set in which
a given model had the lowest (or highest) standard error, an average
amount by which the error in the other models exceeded that of the best
model (or the error in the worst model exceeded that of the other
models) was calculated. Both absolute (differences in standard errors)
and relative (ratios of standard errors) amounts are listed in Table

3. As was the case with arithmetic and geometric means above, the
absolute amounts gave greater weight to data sets in which all models
had large standard errors, while the relative amounts gave greater

weight to data sets in which standard errors were small. On an absolute
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Table 3. Comparison of Errors.

Model
VsP VSP VSP Flory-
eq 13 eq 14 eq 15 Huggins
Average standard error:
arithmetic mean 5.0 5.1 4.7 5.2
geometric mean 3.2 1.8 2.8 2.9
median 2.7 1.4 2.4 2.6
Number of data sets
where standard error was
lowest 5 12 8 5
highest 9 6 5 8
In sets with lowest
standard error, average
amount by which error was
larger in other models
absolute 0.3 0.8 0.5 0.2
relative 1.2 2.7 1.2 1.1
In sets with highest
standard error, average
amount by which error was
smaller in other models
absolute 0.5 0.9 0.1 0.4
relative 2.0 1.2 1.5 1.5
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basis, VSP with eqs 15 was the only model which outperformed the other
models by a wider margin when having the lowest error than the other
models outperformed it when it had the highest error. On a relative

basis, the same was true of only VSP with eqs 14.

By most measurements of average performance, the VSP model using eqs 14
or 15 produced a lower standard error than the VSP model using eq 13 or
the Flory-Huggins model. This was attributed to the fact that the
Flory-Huggins equation does not correctly model nonideal solution
interactions due to free volume differences, while the VSP model using
eq 13 does not include a term for nonideal residual interactions.
However, due to their simplicity, they were more convenient to use than
the more accurate models. Table 2 indicates that their performance was
generally in the same order of magnitude of standard error as the more

complicated, more accurate VSP models using eqs 14 or 15.

There are, however, certain situations in which behavior in the infinite
dilution limit of zero solvent is important, e.g., thermodynamic
modeling for polymer devolatilization. In such cases, as Table 1 shows,
the choice of model may produce a large difference in the predicted
value of infinite dilution parameters. This can be true even when all
models perform relatively equally over a larger concentration range as
shown by the standard errors in Table 2. For modeling behavior near

the pure polymer limit, the VSP models using eqs 14 or 15 would be

preferable to the other models tested.
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CONCLUSIONS

The VSP method using various residual terms allowed accurate prediction
of solvent activities in most of the polymer-solvent systems reviewed.
Choosing terms which modeled nonideal residual interactions in solution
gave the best results. When all the points in a given experimental data
set were fit to determine adjustable parameters, the VSP method

generally performed better than the Flory-Huggins model.

Use of the VSP method with residual interaction given by the ASOG-KT
equations produced accurate results with only one adjustable parameter
representing the infinite dilution solvent activity coefficient on a
weight fraction basis. Even better results were sometimes obtained by

using a residual term containing an additional adjustable parameter.
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APPENDIX A. EXAMPLE OF VSP METHOD.

The following experimental data are given for toluene(l)-

poly(styrene) (2) at 80°C.

vy a,

0.246 0.706
0.458 0.914
0.671 0.984

To fit the Flory-Huggins parameter x in eqs 1-3, weight fraction data
must be converted to volume fraction data. Density data can be used

for this transformation.

w./p
i/°1
¢ - (A-1)
v /Pyt W, /0,
Densities:
p, = 0.8075
Py = 1.068
vy a4 %1
0.246 0.706 0.301
0.458 0.914 0.528
0.671 0.984 0.730

The least squares condition results in the following equation which can

be directly solved for x. Subscripts 1i and 2i refer to components 1

and 2, data point {i.

x =% (¢, % In (a,,/8,.) - 6,.°) /E (6,,*) (a-2)
1 2i 117714 2i i 2i

x = 0.319
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Applying eqs 1-3 gives these results.

pred
vy a, a,
0.246 0.706 0.708
0.458 0.914 0.909
0.671 0.984 0.979

To apply VSP using eq 13, it is necessary to minimize the error between
the activity calculated using eqs 1, 2, 4, 10, and 13, and the measured
activity. 01°° is an adjustable parameter, but the least squares

condition cannot be solved directly for it. The simplest way to proceed
is to assume a value for Olc, generate R1 values from eq 10 (using 11Gm
= 1 as given by eq 13), and calculate the sum of squares residual given

pred, .2

by adding [ln(al/a1 )]~ for each data point. A good initial choice

for Oln comes from the Flory-Huggins model
@
0," = (p/p)) exp (1 + x) (A-3)

using the known density values and x. The two tables below illustrate

° and the best fit value of Q Q.

the results using this initial 01 1

0,” = 4.948 e/Q," = 0.549

1 1

red red, .2
v a, R alp [1n(a1/a1p 5
0.246  0.706  0.373  0.698 1.36x107,
0.458  0.914  0.606  0.899 2.87x107,
0.671  0.984  0.788  0.974 1.04x107%

sum of squared residuals 5.26x10

-] [ -]
Q" = 5.166  e/0," = 0.526
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pred pred, .2
v, a, R, a, (1n(a,/a, )]
0.246 0.706 0.383 0.710 2.45x10:2
0.458 0.914 0.616 0.905 1.09x10_5
0.671 0.984 0.795 0.976 6'91XI°-Q

sum of squared residuals 2.03x10

To apply VSP using eq 14, two adjustable parameters must be fit to the
data, 01° and 11G°. As in the previous case, the simplest way to
proceed is to assume values for these parameters, generate R1 values
from eq 10, and calculate the sum of squares residual given by adding

pred)]2 for each data point. Initial choices for the

[ln(al/a1
parameters can be made using the results from the previous case (or eqs
A-2 and A-3) for 01°° and setting 11G° equal to unity. The table below
illustrates the results using the best fit values. The initial values

are identical to the best fit results from the previous case.

© Go Go ®

0,° = 4.719 4% -1.580 e,% /0, - 0.52

S G pred
v R 4 71 4
0.246  0.264  0.551  1.281  0.706
0.458  0.481  0.809  1.131  0.914
0.671  0.691  0.941  1.044  0.983

red d, .2
vy a, alp [ln(al/alpre )]
0.246  0.706  0.706 1.69x1075
0.458  0.914  0.914 2.64x10" 7
0.671  0.98  0.983 5.53x1077

sum of squared residuals 8.34x10

To apply VSP using eq 15, only Olw must be fit to the data because 71G
is given a priori from the ASOG equations. The necessary parameters for
use of these equations for the example are given by Kojima and Tochigi

(1979). Molecular components toluene and poly(styrene) are defined in
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terms of functional groups CH2 and ArCH as follows.

Vig ™ number of functional groups k occuring in molecule or repeat
unit {

MW = molecular weight of molecule or repeat unit i

V.

ki
CH2 ArCH MW
toluene 1.0 6.0 92.0
PS 1.8 6.0 104.0

ASOG-KT gives functional group interaction parameters Akl used in eqs 15
as the sum of a temperature-independent and a temperature-dependent term
given by eq A-4. Values of these constants are listed for the groups in

this example.

Akl = exp (akl + bkl / T (A-4)
a1 D1
CH2 ArCH CH2 ArCH
CH2 0 -0.7457 0 146.0
ArCH 0.7297 O -176.8 0

In the example, the temperature is 80°C or 353.16 K, giving interaction

parameter values of

A1

CH2 ArCH
CH2 1.000 0.717
ArCH 1.257 1.000

which are used in eqs 15. Consider the calculation of 1ln Fk* in eq 15c.
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Since X equals one in this calculation, eq 15d gives this result for

group mole fractions.

Xl = 1.0/ (1.0 + 6.0) = 0.143

X2 =1 - 0.143 = 0.857

Applying these group mole fractions in eq 15b gives

InT,* = - In (0.143-1 + 0.857:0.717) + 1
0.143-1 0.857-1.257

" 0.143-1 + 0.857-0.717  0.143-1.257 + 0.857-1
In r,* = 0.037
InT," = - In (0.163-1.257 + 0.857-1) + 1

0.143-0.717 0.857-1

© 0.143-1 + 0.857-0.717  0.143-1.257 + 0.857-1

In T," = 0.005

The same procedure is used to calculate ln Pk at any concentration. The
only additional step needed is the conversion of component or repeat

unit weight fraction to mole fraction.

F
]

1 0.246/92 / (0.246/92 + (1-0.246)/104) = 0.269

1 -0.269 = 0.731

el
]

Xl - (0.269-1.0 + 0.731-1.8) / (0.269:7.0 + 0.731-7.8) = 0.209

el
1

1 - 0.209 - 0.791
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In, = - 1In (0.209:1 + 0.791:0.717) + 1

0.209-1 0.791-1.257

0.209:1 + 0.791:0.717 0.209-1.257 + 0.791-1
In T, = 0.040
InT, = - In (0.209-1.257 + 0.791-1) + 1

0.209-0.717 0.791-1

0.209:1 + 0.791:0.717 0.209-1.257 + 0.791-1

1In P2 = 0.004

The activity coefficient 11G for this concentration is given by eq 15a.

716 - exp ( 1.0-(0.040-0.037) + 6.0-(0.004-0.005) ) = 1.003

Results for all data points as well as pure components 1 and 2 are given

in the table.

G
v, X Xl X2 In Pl In F2 T
1 1.000 0.143 0.857 0.049 0.002 pure toluene
0 0 0.231 0.769 0.037 0.005 1.005 pure polymer

0.246 0.269 0.209 0.791 0.040 0.004 1.003
0.458 0.489 0.190 0.810 0.043 0.003 1.001
0.671 0.697 0.172 0.828 0.045 0.003 1.000

The adjustable parameter Q ® can now be fit to the data. A good initial

1
choice for this parameter is the result from VSP using eq 13 or from egs
A-2 and A-3. The tables below give results for the initial value and

best fit value.
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-1.005 e 11G° / 8,° = 0.529

S G a pred
% "1 1
0.708 1.003 0.710
0.904 1.001 0.905
0.976 1.000 0.976

pred pred, .2
a8 (1n(a,/a, )]
0.710 3.38x107)
0.905 9.52x10 ¢
0.976 6.40x10",
sum of squared residuals 1.93x10

- 1.005 e 116” / 8,° = 0.530
a S G a pred

1 N 1
0.708 1.003 0.709
0.904 1.001 0.905
0.976 1.000 0.976

pred pred, ,2
a1 [ln(al/a1 )]
0.709 2.3ax10:2
0.905 1.03x10 ",
0.976 6.58x10

sum of squared residuals

1.92x10



CHAPTER 3
ANALYSIS OF RESIDUAL TERMS USED IN GROUP CONTRIBUTION MODELS

One of the important advances in modeling of solution behavior has been
the isolation of residual (enthalpic or energetic) effects and
combinatorial (entropic) effects. The recent approach to both types of
interaction has become fairly standardized. In the case of
combinatorial effects, some form of combinatorial entropy (such as
Flory, 1953 or Staverman, 1950) is used. For residual effects, a local
composigion model similar to Wilson (1964) is applied. The synthesis of
both types of interaction in a single model is typified by UNIQUAC

(Abrams and Prausnitz, 1975).

The use of distinct combinatorial and residual terms is commonplace in
group contribution models; in fact, the original development of the ASOG
model (Derr and Deal, 1969) predates UNIQUAC by several years. The
unique feature of group contribution models such as ASOG and UNIFAC
(Fredenslund, Jones, and Prausnitz, 1975) is the treatment of summed
functional group interactions rather than individual molecular
interactions. This makes data reduction possible in terms of functional
groups, so that binary molecular data is not required once a functional

group interaction database has been tabulated.

59
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The concept of deriving molecular solution properties, e.g., activity
coefficients, by summing properly weighted and normalized functional
group properties is the basis of the residual interaction terms in ASOG
and UNIFAC. The summations used make sense from an intuitive
standpoint, and the residual interaction given by a Wilson-like equation
has a theoretical basis in local composition and like-unlike pair
interaction. However, a careful study of the mathematical properties
inherent in the residual terms of group contribution models shows an
implicit dependence of the model predictions on the choice of unit used
to describe functional group size. This dependence arises from the fact
that the summation of functional group activity coefficients is done in
a linear fashion, but the Wilson-like equation used to derive these
coefficients is nonlinear in all its parameters and variables. In this
chapter, this idea is developed and studied in depth for the simplest
possible non-trivial case of a binary solution containing at most two

distinct functional groups.

One consequence of the detailed study of such systems is that the group
contribution model equations for residual interaction can be transformed
to make their behavior more explicit in some fashion. Doing so allows
the additional constraint of molecular composition (in terms of the
different ratios of functional groups present in different molecules) to
modify the rather weak constraint on activity coefficients given by a
Wilson-like equation. A framework is thus given for determining bounds
on activity coefficients without sufficient knowledge to actually fit

all the interaction parameters for functional groups in solution.
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Derivation of such bounds can also assist in the design of experiments

to take the necessary data for fitting interaction parameters.

ANALYSIS OF RESIDUAL TERM IN SOLUTION OF GROUPS MODEL

The manuscript which follows contains the analysis of bounding and
normalization properties inherent in typical solution of groups model
residual expressions. Transformations of the model which allow more
convenient analysis are developed and some typical results are shown for
a binary solution containing at most two distinct functional groups.
Extension of the technique to multicomponent, multifunctional group
solutions should be possible, but is not described here. Details of the
derivation of new equations which are presented in this manuscript are

given in Appendix H.
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Normalization and Bounding Properties Inherent in

Solution of Groups Activity Coefficient Models

ABSTRACT

Recent thermodynamic models for activity coefficients such as UNIFAC and
ASOG use a form of Wilson’s equation to calculate the residual
contribution to the activity coefficient. These equations can be
transformed to allow more convenient.analysis of their mathematical
properties. Two important results have been obtained from such an
analysis. Bounds on the range of activity coefficients can be derived
without knowledge of the interaction parameter values. The predicted
values of activity coefficients are shown to depend on a normalization

step implicit in the definition of functional group size.



63

INTRODUCTION

The equation proposed by Wilson [1] for modeling nonideal liquid
solutions is a popular and useful tool in the design of chemical
processes. Comparisons of the Wilson equation to other activity
coefficient correlations such as the Margules and Van Laar equations
have shown the Wilson equation to have superior predictive ability for
binary systems and particularly for multicomponent systems [2].
Furthermore, the Wilson equation embodies the concept of local
composition as distinct from overall solution composition, thus

modeling the molecular segregation which occurs in nonideal solutions.

The success of the original Wilson equation has led to its adoption as a
basis or component of more sophisticated solution models. Among these
are the Nonrandom, Two-liquid (NRTL) equation [3], the Analytical
Solution of Groups (ASOG) model [4], the Universal Quasi-chemical
(UNIQUAC) model (5], and the UNIQUAC Functional Group Activity
Coefficient (UNIFAC) model [6]. These models utilize the form of the
Wilson equation because of its theoretical basis and good predictive
ability, but allow prediction of anomalous behavior such as phase

separation which the original Wilson equation is incapable of modeling.

Of these models, ASOG and UNIFAC include the concept of functional group
contribution. This concept allows a solution to be treated as if it
were composed not of interacting molecules, but rather of interacting

functional groups, and considers the interaction of a molecule to be the
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sum of its functional group interactions. By correlating available
equilibrium data, a database of functional group interaction parameters
can be derived and used to make predictions about substances for which
no equilibrium data are available, but which contain only functional
groups with parameters in the database. Progress has been made toward
constructing such databases for both UNIFAC [6,7] and ASOG [8-11].
Comparison of these two models shows both to have approximately equal
predictive ability and accuracy, and to be superior to other models

applying the group contribution concept [12].

Both UNIFAC and ASOG consider the activity of a component in solution to
be composed of two parts: a size interaction (entropic or combinatorial)
and a group interaction (enthalpic or residual). In both models, the
group or residual interaction term is given by a form of the
ﬁulticomponent Wilson equation. The ASOG model uses group mole fraction
as the independent variable for residual interaction while the UNIFAC
model uses group surface area fraction. The unit of surface area in the
UNIFAC model was originally chosen as the surface area of a single
methylene (CH2) group in an infinitely large polymethylene molecule.
Skjold-Jorgensen, Rasmussen, and Fredenslund [13] showed that the
predictions made by UNIFAC are quite sensitive to the selection of
surface area unit size, and indicated that the database could more
accurately model solution behavior if the interaction parameters were
derived again based on a different normalization of the surface area and

segment size parameters.
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The ASOG model, since it employs mole fractions rather than surface area
fractions, contains a natural normalization of its independent variable
in the entity of a single functional group of any type. However, this
may be somewhat misleading since functional groups themselves vary in
mass and size: for example, is it consistent to assign the same
importance to the interaction of a large carboxylic acid (COOH) group as
a small methylene (CHZ) group? It is exactly this problem which UNIFAC
addresses by using functional group segment size and surface area
parameters. Recent revisions of ASOG, such as ASOG-KT [9], have also
attempted to address this problem in a somewhat systematic way by
assigning to each functional group a weighting factor equal to the
number of non-hydrogen atoms it contains, and including some special

cases as well. In doing so, ASOG makes explicit the normalization of

functional group size.

There are several methodological ideas which are useful in describing
and analyzing normalization effects in the calculation of residual
contributions to the activity coefficient within the solution of groups
framework. The ASOG model is used throughout to illustrate these
proposals and comments; however, they are applicable in the most part to
UNIFAC and other similar models. The standard equations for residual
activity coefficient in the ASOG model are reduced to simpler forms
applicable to binary systems containing at most two distinct functional
groups. This simple case can be representative of many binary
solutions, and was chosen to enable discussion and graphical

representation of the effects of changes in system parameters. The



66
approach taken can be extended to multicomponent solutions containing
multiple distinct functional groups.
In addition to facilitating the discussion of size normalization, the
approach also allows the behavior of the ASOG model to be analyzed for
cases in which insufficient data are available to specify complete sets
of interaction parameters for the functional groups. In such cases,
conclusions about residual activity coefficients can be derived as
bounds rather than single values. These bounds can be made on the
concentration dependence of activity for either component of a binary

system based on a single measurement.

EFFECTS OF NORMALIZATION ON RESIDUAL ACTIVITY

Consider a binary solution whose molecules contain two distinct
functional groups, e.g., ethanol and methanol contain the functional
groups CH3 (or CHZ) and OH. Denote the component mole fractions by Xy
and X,. In order to apply the ASOG model, it is necessary to define
group mole fractions X1 and x2 according to

X - Me1¥1 * ka2 L

(n)1#4059)%) + (n),4n55)%,

where nkj is proportional to some measure of the number of functional
groups of type k found in molecule j. Derr and Deal [4,8] consider this
measure to be the number of functional groups, whereas others [9-11]

consider it to be the number of functional groups multiplied by an
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appropriate weighting factor accounting for relative group sizes.

The use of a size-weighting factor to model group size in ASOG makes the
method equivalent to UNIFAC in its definition of the functional group
concentration variables denoted here by Xl and X2. As studied by
Skjold-Jorgensen et al [13], there is an implicit normalization step in
the definition of group size. UNIFAC applies this normalization by
choosing the methylene (CH2) group to have unit volume and unit surface
area. ASOG does essentially the same thing in a less precise manner by
considering the number of non-hydrogen atoms in a group to be its size

measurement, with a few explicit exceptions such as water and multiple-

substituted carbon atoms (>CH- or >(C<).

ASOG gives the residual part of component i activity coefficient for a

binary system containing two distinct functional groups by the following

equations.
mvS=n_(nT, -nf.Y +n,.(nr, - In1. D) (2)
i 14 1 1 21 2 2
XA XA
In T, = -In(XA L + XA ) + 1 - 11k 2 2k (3)
k 1kl © 7272 X A, +X.A X A +X.A
18111580 X185, +K0A),
1
1n Pk = 1n Pk (xi =1) %)

In these equations, 11G is the residual (or group interaction, hence the

letter G) part of component i activity coefficient, and I', is the

k

functional group activity coefficient for group type k. I‘k1 is the

functional group activity coefficient for group type k, evaluated at the

functional group composition of pure component i, and Akl are group
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interaction parameters, with Akk = 1. Eq 3 is the Wilson equation,
applied to functional groups in solution rather than the actual
molecular components. Eq 2 gives the logarithm of component i activity
coefficient as the sum of its functional group activity coefficients,
1n Fl - 1ln Fli and 1ln Fz - 1In Pzi, relative to a pure component basis.
The functional group activity coefficients in pure component i are
subtracted from the functional group activity coefficients in solution;
if this were not done, activity coefficients would not approach unity in

the pure component limit for molecules containing more than one distinct

functional group type.

The effect of group size normalization is to change the absolute values
of the factors ny and n21 in eq 2, although not their ratio. (ASOG
would give a different ratio than UNIFAC, since each measures a
different type of size, but once a method is selected, the unit of size
will not affect the ratio.) If eq 3, the Wilson equation for group
activity coefficients, were linear in the group interaction parameters

Akl' the magnitudes of n,, and n,, would not affect overall predictions

11
of the equation set. The Wilson equations are obviously nonlinear in
the group interaction parameters (as well as the composition variables),
therefore an activity coefficient result in eq 2 cannot be associated,

independent of normalization, with any single set of group interaction

parameters A12 and A21 in eqs 3 and 4.

Since the technique used by both ASOG and UNIFAC is to construct a

database of group interaction parameters based upon reduction of
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experimental activity data, it is apparent that such a database must
depend on the normalization of group size in a nonlinear way. This is
the underlying cause behind the discovery by Skjold-Jorgensen et al [13]
that varying the group size normalization within UNIFAC results in
changes in the group interaction parameter database. Some
normalizations produce a database which gives more accurate prediction
of concentration and temperature dependence of activity coefficients
than other normalizations. The relative merit of different
normalization schemes will not be discussed here; the relevant issue in

this paper is means of analyzing such effects.

A NORMALIZATION INDEPENDENT EXPRESSION FOR RESIDUAL ACTIVITY

COEFFICIENTS

It is possible to derive an expression related to residual activity
coefficient which contains no implicit or explicit dependence on the
unit of functional group size. The complexity of this expression can be
minimized by introduction of a conveniently weighted composition
variable, ci, for the molecular species in a binary solution, defined as
follows.

() 4¥0)4)%

e, = (5)
(n)y#ny9)%) + (ny54n95)%,

Such composition variables represent size-weighted fractions in that H

equals the total size (as measured by number of functional groups) of

all molecules of component i in solution divided by the total size of
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all molecules in solution. Although Sy depends explicitly on the nkj
values, it does not depend on the unit of functional group size. Since
eq 5 contains one occurrence on an “kj in each term of the numerator and

denominator, size effects will cancel in the overall expression.

Following through the calculations for a binary solution containing two
distinct functional groups, but using composition variables 1 and <,y
rather than the actual mole fractions Xy and Xy, simplified results for

group mole fraction can be found. Define group ratios
L TR (6)

giving the size-weighted ratio of group 2 to group 1 in each component
molecule, then
¢ <,

x1 - + (7)
1+ g, 1+ g,

defines the group mole fraction, x1 in eq 1, in terms of component

size-weighted fractions c, and c,.

1 2

Group ratios are particularly useful in polymer solutions, because
polymer molecules are typically distributed in their molecular weight,
hence in their absolute size. This fact can make eqs 1-4 difficult to
apply to a solvent molecule in polymer solution since there is no single
X, Characterization in terms of group ratios is size-independent, thus

all polymer molecules of a given type have the same group ratios

regardless of their molecular weights. Eq 5 can also be rewritten for
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polymer solutions by using weight fraction w, rather than mole fraction

i
x; on the right side and adding average molecular weight factors to the

equation.

The definition of group ratios also allows eq 2 to be rewritten as

In "1G i i
- 1n Pl ) + gi(ln F2 - 1n F2 ) (8)

- = (1ln Fl
11

The left side of eq 8 is the normalized residual activity coefficient of
component i. (It is termed "normalized" because it contains the term
Ny inversely proportional to the unit chosen for functional group
size, in its denominator.) The right side contains no explicit
dependence on the nkj’ since the group ratio 8y has been substituted.
The implicit dependence of Pl, Fli, P2, and 1‘21 on nkJ can be removed by
substituting eq 7 into eqs 3 and 4, and using the property that both

component size-weighted fractions and group mole fractions sum to unity.

The resulting lengthy equation is
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In v,° . (1 +8)(1L+A8)
nli 1+ 8])(1 + AlZgi) + (gj - 81)(A12 - l)cj
(L +g)(Ay) + gy)
+ 8 In

. (1 + SJ)(AZI + gi) + (Sj - gi)(l - A21)CJ
+ (1 + 81)(8j < gi)cj

412

(1 + gj)(l + AlZgi) + (BJ - 51)(A12 - l)c

(

3

A
. 2 ) 9
(1 + gj)(AZI + gi) + (Sj = 81)(1 = A21)cj

The result for component 1, (ln 11G)/n11, is given by setting i = 1 and
j = 2, while the result for component 2, (ln 12G)/n12, is given by
setting {1 = 2 and j = 1. In eq 9, the normalized residual activity
coefficient (1ln -yic)/n11 depends upon three distinct sets of variables.
The first of these, group ratios 8y and gy describe the functional
group composition of the molecular components. These two ratios replace
the four functional group variables nkj in the original form of the ASOG
model. The second set of variables, A12 and A21, are the Wilson
parameters for the functional groups. The third variables are size-

weighted fractions c, or o which describe molecular component

1

composition in the solution.

None of these three sets of variables depends on the functional group
size unit. The Wilson parameters are constants for given functional
groups, while g, and g, are ratios of two nkj values which depend on the

size unit in the same linear way. The discussion following eq 5 showed
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that ¢ and c, are independent of the functional group size unit for
similar reasons. Hence, the right side of eq 9 will describe the same
function of composition for a given set of Wilson parameters regardless
of the size unit chosen for normalization. All of the normalization
dependence of this equation is given explicitly by the denominator of

the left side.

This result applies to any solution of functional groups methods which
treat component activities as the sum of functional group activities
given by the Wilson equation. The only distinction will be in the
definition of size-weighted fraction in eq 5. For example, in UNIFAC,
the size-weighted fraction will actually represent a molecular surface
area fraction, whereas in ASOG-KT, it will essentially represent a
molecular fraction of atoms other than hydrogen (as mentioned above,
there are a few special cases in ASOG-KT which do not follow the general

rule for determining group and molecule size).

The result given by eq 9 can also be extended to multicomponent
solutions containing several distinct functional groups. This is done
by defining additional group ratios so that the right side of the
equation contains only group ratios, Wilson parameters, and component
size-weighted composition variables. Such a generalized result will not
be attempted in this paper. Instead, the dependence of eq 9 upon its

existing parameters and variables will be interpreted.

In the remainder of this paper, the variables i and j in eq 9 will
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arbitrarily be taken as 1 and 2. Hence, the results given will apply to
the activity coefficient of component 1. Equivalent equations for
component 2 can be obtained by interchanging 8, with 8y» and ¢y with <,

on the right side, giving (1ln 720)/n12 on the left side.
TRANSFORMATION OF WILSON PARAMETERS

The expression for normalized residual activity coefficient (1ln -ylc)/n11
given by eq 9 is rather complicated; however, by appropriate
transformations of the Wilson parameters, simpler forms of the
expression can be written. Begin by defining transformed parameters

(8, - 8)(A, - 1)
312 - (12+ 17712 (10)

8,) (1 + A ,E))
(8, - 8))(1 - Ay))

By, - (11)
(1 + g))(Ay + 8))

Each parameter B1j is a function of the group ratios and only one of the
Wilson parameters, so that B1j can be regarded as the transformation of

Aij' When eq 9 is written in terms of these parameters, it simplifies

to
In 11G
= - 1n (1 + 812c2) - B In (1 + 321c2)
n
11
c (g,-8,) + (1+g,)B (8,-8,) - (1+g,)g,B
2 2 °1 27712 2 °1 2751721
+ ( - ) (12)
1+g2 1+ B12c2 1+ 321c2



75
At infinite dilution of component 1 in component 2, <, approaches unity,

and eq 12 can be further simplified to

In 116 o
( ) = -1n(1+B,) -g ln(l+B,)
M1
1 (g,-g,) + (1+g,)B (g,-8,) - (1+g,)g,B
. ( 2751 27712 *%27°1 2781 21) (13)
1+g2 1+ Bi) 1+ By1

A further transformation of parameters 812 and 521 provides additional

simplification.

(1 + g))(1 + A ,8))
C.,=-1+B,, = 1 1272 (14)

12 12
(1 +g))(1 +A,,8)

(1 +g,)(A,, +8g,)
G,y =1+B, = 1721 72 (15)
(1 + 52)(A21 + 31)

Application of these parameters to eq 13 gives

1n 11G © 1+gl 1 g2
( --1nc,-g InG, - (— + =) + (L+g)) (16)

ny +g, Cj, Cn

Eq 16 is the simplest possible form of the infinite dilution normalized
residual activity coefficient in a binary solution. The only parameters
required for calculation of this quantity are the group ratios g1 and
gy which measure the functional group composition of the molecular
components, and C12 and C21, transformations of the Wilson parameters
A12 and A21. This equation is simple enough so that its properties can

be thoroughly investigated.
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BASIC PROPERTIES OF INFINITE DILUTION NORMALIZED RESIDUAL ACTIVITY

COEFFICIENTS AND BOUNDS ON THEIR PARAMETERS

The quantity calculated by eq 16 classifies solution behavior into
positive or negative deviation (from Raoult’s Law) or athermality,

depending upon its sign. By inspection of eq 16, the condition

C,p=Cyo =1 (17)

12 21

is seen to be sufficient for prediction of athermal behavior, since it
forces the expression to zero. Three distinct types of athermal
behavior can be described, dependent upon the group ratios and Wilson

parameters.

The first type is true athermality due to identical functional group
composition of components, occuring when &1 equals gy An example of
this would be the binary system methanol-ethylene glycol, in which the
ratio of hydroxyl to hydrocarbon groups is unity in both molecules.
(ASOG-KT counts -CH,-, -CH3, and -OH all as a having a size of one; this
would not be true in UNIFAC.) Eqs 14 and 15 are seen to reduce to eq 17

when g1 and g, are equal.

A second type is true athermality due to non-interaction of functional
groups, occuring when A12 and A21 both equal unity, the standard value
of Wilson parameters in an ideal solution. Again, eqs 14 and 15 reduce

to satisfy the condition given by eq 17 when this is the case.
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The final type of athermality is accidental athermality, occuring when
the value given by eq 16 is zero, but the sufficient condition given by

eq 17 is not met. Examples of this behavior will be given later.

It is possible for the group ratios 81 and g, to take on any nonnegative
values, including zero and infinity. A group ratio will equal zero (or
infinity) when the molecular component it describes contains only a
single functional group, while the other molecular component contains
both functional groups, e.g., water and ethanol. If each of the two
molecular components in a binary solution contain a single different
functional group, one group ratio will equal zero while the other
becomes infinite, e.g., hexane and water. This case represents the most
nonideal extreme of functional group composition, with increasing
ideality occuring in order for the following cases: one group ratio zero
(or infinite), the other finite and nonzero; both group ratios finite

and nonzero (e.g., l-hexanol and ethanol); group ratios equal.

For each case where at least one of the group ratios becomes zero or

infinite, special forms of eq 16 are possible. When 8, is zero, eq 16

reduces to

)"lnCu' ( + ) +1 (18)

when 52 is zero, it reduces to
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G
in " e 1
( ) = -1n C12 - 8 1n C21 + (1+gl)(1 - E_—) (19)
M 12

and when g, is zero and g,y is infinite, eq 16 becomes

In 11G - 1
) = -1ln Cip - — + 1 (20)
n, Cn

(

There is no need to consider the situation when only one group ratio is
infinite and the other is nonzero. By relabeling the groups, this

becomes a situation where one group ratio is zero.

Interaction parameters A12 and A21 are physically interpreted as

resulting from energy differences between like-like and like-unlike

pairs in solution. Quantitatively, this is given by [14] as

v (A = ALL)
Aij -1 exp [ - 4] 417 ] (21)
v1 RT

where v, is the molar volume of component i and A is the interaction

i 1]
energy of an i-j pair (Aij - Aji). When applied to functional groups
rather than molecules, the preexponential factor vj/vi is of magnitude

unity. The argument of the exponential factor varies from negative
values when like-like interactions are favored to positive values when
like-unlike interactions are favored. The magnitude of this argument
depends on the exact strength of secondary bonds, and can probably be
bounded by the maximum bond energy of a hydrogen bond, about 50 kJ/mole

[15]. Division by R gives a bound of approximately 6000/T, where T is
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in K. Interestingly, this is similar to the maximum values assigned to
the argument in several versions of the UNIFAC parameter tables (3000/T

in [6] and 10000/T in [7]).

At normal temperatures, then, the interaction parameters Akl can
probably be bounded by the values exp(-20) and exp(+20). This
essentially allows them to take on any positive values. However, the

transformed parameters, are generally more restricted in their

Cr1

domain. If eqs 14 and 15 are differentiated with respect to A12 and

A21, respectively, several properties follow for unequal values of the

group ratios. First, C12 and C21 are either monotone increasing or

monotone decreasing functions of A,, and A,,. Second, if C is an

12 21 12

increasing function of A12, C21 will be a decreasing function of A21 and
vice versa. Third, the direction of variation is given in all cases by
either 8,-8) Or g,-8,, as Table 1 indicates. Taking limits on eqs 14

and 15 for these cases results in a general set of bounds on C,, and

12
021.
1+g1 1+g1 g,
— < C12 . C21 < — when gy > - (22)
1l+g l+g, g
2 2 1
1+gl 52 1+g1
— < C » Chy < when g, < g (23)
12 21 2 1
1+g2 g, 1+g2

Equality of 8, and 2% results in athermal behavior as discussed above,

with the condition of eq 17 holding.
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Table 1. Sign of dckl/dAk1 as a Function of gy and g,-

<8 &

81 -
acl2yalz 0
21 21

g, & >8

+

CONSTANT INFINITE DILUTION NORMALIZED RESIDUAL ACTIVITY RELATIONSHIPS

In the presence of a large amount of experimental data, optimal values
of the parameters C12 and C21 can be derived. The interaction parameter
databases of UNIFAC and ASOG are derived in such a way from many sets of
multicomponent, multifunctional group experimental data. For the
simplified binary component-binary group case presented here, two
experimental data points (e.g., two infinite dilution activity
coefficients) suffice to determine the interaction parameters C12 and
021. There are cases, however, where only one data point can be
determined at infinite dilution. An example would be the case of a
concentrated polymer solution for which only an infinite dilution
solvent activity coefficient was available. An analogous situation
arises in the multifunctional group case even when several experimental
values are available, because the number of interaction parameters
required for a system containing n distinct functional groups is

n(n+l)/2.

Given a constant value of the infinite dilution normalized residual
activity coefficient, as might be derived from experimental data using
suitable choices for the non-residual part of component activity and the

unit size normalization, a relationship between the parameters C12 and
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021 can be defined. Such a relationship would be given by eq 16 (or eq
18, 19, or 20 for special cases of group ratios). In addition, eq 22 or

23 would place bounds on C,, and C,,. It is possible to solve eqs 18-20

12 21

for an explicit function of one parameter in terms of the other at
constant [(ln 11G)/n11]”; such a solution is not possible for the
general case of eq 16 where the relationship remains implicit. In that

general case, a numerical solution for the (C12,C21) relation can be

made.

Bounds on the maximum and minimum possible values of [(1ln 71G)/n11]°° for
a given set of group ratios are also possible. Eq 16 can be

differentiated with respect to each interaction parameter C., or C

12 21
with the other held constant. This allows necessary and sufficient

conditions for [(1ln 71G)/n11]° to be an increasing function of each

interaction parameter to be written.

1+g1

_ 012 (24)
l+32

l+g. g

122, Cy (25)
1+g2 gl

Combining these results with those given in Table 1, the maximum value

of [(1In 'ylc)/nll]°° (as a function of 012 and 021) will always occur when
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1+g1
Cip = —= (26)
12
1+g2
l+g, 8
C.. m—122 (27)
21
1+g2 81

and the minimum value of [(ln 11G)/n11]u° will always occur when

l+g. g
C - —]-' _2 (28)
12
1+g2 81
1+g1
C -— (29)
21
1+g2

These maxima and minima are given by

G
1n " 1+g2 g1
( ) = (1+gl) 1n + g1 ln — (30)
n11 max 1+g1 g,
1n 11G o 1+g g, 1
( )" = (L+g)) In —= + 1n — + (g,-8))(— - 1) (31)
nll min 1+g1 52 gz

If eq 30 is differentiated with respect to either group ratio with the
other held constant, it can be shown that the expression takes on a
minimum value when 8, and g, are equal. Since the normalized residual
activity coefficient equals zero under that condition, eq 30 necessarily
predicts that the maximum normalized residual activity coefficient for
distinct values of g1 and g, must be positive. Similar arguments using
eq 31 show that the minimum normalized residual activity coefficient for

distinct values of g1 and g, must be negative.
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Maximum and minimum values of [(ln ‘ylc)/nn]°° are listed in Table 2 for
various finite values of g1 and g, Some trends are apparent. Wider
ranges of normalized residual activity coefficients result when g, and
g, differ considerably from each other. The physical interpretation of
this result is that greater nonideality is expected when the functional
group similarity between two components decreases. When g, or both of
the group ratios are zero or infinite, the range of normalized residual
activity coefficients is unbounded both positively and negatively. This

represents an even more nonideal case of functional group dissimilarity.

In all cases of finite group ratios, the minimum value of

[(In 11G)/n11]° is larger in magnitude than the maximum. This has no
physical significance; in fact, most nonideal systems exhibit positive
deviations from Raoult’s Law. It appears to be an artifact of Wilson's
equation, indicating a mathematical tendency to predict negative values
of the residual activity. Large values of % lead to wider ranges of
[(1n 11G)/n11]° since the component activity coefficient is resulting
from a sum of a larger number of functional group activity coefficients.
The values in Table 2 may not be indicative of the magnitude of actual
residual activity coefficients 1ln 11G because of the normalization
effect of dividing by the measurement n, of functional groups of type 1

in component 1.
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Table 2. Extrema of Normalized Residual Activity Coefficient of
Component 1 as a Function of Component Group Ratios.

Group Ratios [(ln 71G)/n ]
8 & minimum max}mum
1 2 -0.382 0.118
1 5 -2.612 0.588
1 10 -6.993 1.107
2 4 -0.661 0.146
5 10 -1.556 0.171
2 1 -0.523 0.170
51 -4.982 1.456
1 0.5 -0.382 0.118
1 0.2 -2.612 0.588
1 0.1 -6.993 1.107
01 - @ 0.693
0 2 - ® 1.099
0 5 - 1.792
0 10 - @ 2.398
0 0.5 - 0.405
0 0.2 - ® 0.182
0 0.1 - ® 0.095

For a given set of group ratios, eq 16 can be solved numerically for the

set of parameters (Clz, 621) that result in a given [(1ln 116)/n

@
11] ’
Figures 1 and 2 show this representation as a set of constant

[(1In -ylc)/nlllO curves in (C12, 021) space for two sets of group ratios.

Figure 1 illustrates constant [(ln 116)/n11]w curves for a case when
both group ratios are finite and nonzero. The case g = 1, gy = 2
(e.g., methanol-ethanol) is relatively close to ideality. Parameters
012 and C21 are restricted to the domain between 2/3 and 4/3, and
normalized residual activity coefficients between -0.382 and 0.118 can
be predicted. Because g, > g, @ decrease in [(1n 116)/n11]¢ is seen as
the curves are crossed in a clockwise direction from the 021 axis to the

012 axis. Clockwise rotation in this quadrant means an increase in 012
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at constant 021 or a decrease in C21 at constant C12.
Figure 2 represents a case where 5% equals zero, meaning that component
2 contains only a single functional group (e.g., water). Parameters C

12
and 021 are restricted to the domain between zero and two by eqs 22 and
23, but the range of [(1ln 'ylc)/nu]°° that can be predicted is unbounded.
In this case, 5% < g resulting in an increase in activity coefficient
with clockwise rotation about the axes. The set of curves collapses

into the 012 axis as C

between C12 and C21 seems to exist for this case.

12 approaches zero; no asymptotic relationship

The presence of a curve for [(1ln 116)/n11]°° = 0 in Figures 1 and 2
illustrates the situation termed accidental athermality. Although eq 16
predicts [(1n -ylc)/nll]Q = 0 for all points on this curve, only the
point (1,1) represents true athermality due to either identical
functional group composition of molecular components or non-interaction
of functional groups. All other points on this curve result from
cancelling effects of positive deviations from ideality by one

functional group and negative deviations by the other.

Figures 1 and 2 illustrate the wide range of behavior which can be
predicted by eq 16. This is true both in terms of the possible values
of the normalized residual activity coefficient which can be predicted |
as well as the (012, 021) relationship which can generate a single

activity value. In the absence of additional experimental data beyond a

single point, it is not possible to determine which (012, 021) point on
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a constant [(ln 11G)/n11]m curve to use in predicting the variation of
activity coefficient with concentration. However, the restriction of
interaction parameter values to a single curve can still provide useful
information regarding bounds on the activity coefficient, as shall be

seen.

BOUNDING THE CONCENTRATION DEPENDENCE OF NORMALIZED RESIDUAL ACTIVITY

COEFFICIENTS

Since the results of the previous section indicated that a wide range of
(012, 021) points defined a given value of [(ln 11G)/n11]“, it is
enlightening to consider the concentration dependence of normalized
residual activity as a function of the interaction parameters for a
fixed value of [(1ln 116)/n11]m. This can be investigated by taking the
numerical results from eq 16 discussed above, applying eqs 14-15 to
transform from interaction parameters (Clz, C21) to interaction
parameters (312, 321). Eq 12 can then be used to give the concentration
dependence of [(ln 11G)/n11].

Consideration of this point is useful in two regards. First, the
concentration dependence of normalized residual activity for a given set
of group ratios and infinite dilution value can be bounded over the
entire concentration range. This helps in estimation of the
concentration dependence when only a single infinite dilution property

is known.
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Second, this point leads directly into consideration of the
normalization of ny,- For a given infinite dilution residual activity
[(1In 11G)]Q, the value of the normalized infinite dilution residual
activity [(1ln 11G)/n11]co will depend upon the normalization of Ny - If
the concentration dependence of [(1ln 11G)/n11] changes markedly with
changes in [(1n 71G)/n11]°, then normalization of N, will have a
noticeable change on the concentration dependence of residual activity
coefficients. This will be true even when a large body of experimental
data is used to find the optimal values of interaction parameters, as in
the databases of UNIFAC and ASOG. The interaction parameters databases

must then be considered size-dependent or normalization-dependent as

shown in [13].

The technique described above was applied to produce Figures 3 and 4.
These plots illustrate bounds on the normalized residual activity
coefficien; as a function of concentration for various fixed values of
the infinite dilution normalized residual activity coefficient. For
positive fixed values of [(1n 116)/n11]m, the bounds could always be
derived assuming 012 and 021 values at the endpoints of a specific curve
in Figures 1 and 2. Such endpoints can be found from numerical solution
of eq 16, or by algebraic solution of eq 18, 19, or 20 in special cases.
This is not necessarily the case for negative values of [(ln 11G)/n11]°,

which are not shown in Figures 3 and 4.

Figure 3 is based upon the same group ratios as Figure 1, representing a

solution not far from ideality. In this case, the bounding curves shown
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are quite tight. Knowledge of the infinite dilution value allows
estimation of the activity at any concentration with little uncertainty.
Also, infinite dilution values near zero and near the maximum possible
(0.118 for this case) result in the narrowest bounds on concentration
dependence. The fact that there is some uncertainty for the case of
zero infinite dilution value provides another example of accidental

athermality, as discussed above.

Figure 4, corresponding to the same group ratios as in Figure 2,
illustrates a case which is more nonideal than shown in Figure 3. As a
consequence of 8y equaling zero, a lower bounding curve could not be

derived for this case, and only upper bounding curves are shown.

In general, molecular components which are more dissimilar in their
functional group composition result in more uncertainty in the
concentration dependence of residual activity. That is why Figure 3
illustrates narrow bounding curves while Figure 4 illustrates a
situation which is unbounded in one direction. However, functional
groups which are more dissimilar in terms of their secondary
interactions result in less uncertainty in concentration dependence.
The uppermost set of bounding curves in Figure 3 represent the greatest
deviation from ideality by functional groups, yet show less uncertainty
than the bounding curves for an infinite dilution value of 0.05.
Combining these results, it seems that the tightest bounds occur for
systems in which the functional groups themselves interact strongly, but

the molecules are not too different in their functional group makeup,
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e.g., methanol-ethanol.

The relevance of this type of analysis is that it allows bounds on the
concentration dependence of normalized residual activity to be
accurately made by some analytical means. Such bounds are important in
themselves, as they allow estimation of concentration dependence from a
single data point without recourse to a group interaction database.
They are also useful in providing bounds on the effect of normalizatioﬁ

of n,, upon residual activity, as discussed later.
BOUNDING THE UNKNOWN ACTIVITY OF A SECOND COMPONENT

An approach similar to that of the previous section can be used to
provide bounds for estimation of the activity of the second molecular
component. Again, only a single value of the activity of the first
component at infinite dilution is needed. The procedure for this
calculation is similar to that for bounding the concentration dependence
shown previously. An additional step is required because eqs 10-31 are

specific to component 1 activity calculation.

The first step consists of finding the (Clz, 021) endpoints of the
constant infinite dilution residual activity curve for component 1 as
described in the previous section. Since the transformed parameters C1j
are component-specific, it is necessary to invert eqs 14 and 15 to

generate Aij interaction parameters. The inverted equations are
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(1 + 82)012 - (1 + gl)
Ay, = (32)
82(1 + 51) - gl(l + z2)012

g, (1 +g,)C,, - g, (1 + g,)
Ay - 1 27721 2 1 (33)

At this point, cij values specific to component 2 can be generated by
interchanging 8, with gy in eq 14. Eq 12, with ¢y replacing cy in
addition to interchanging g1 with 8y then gives the concentration
dependence of component 2 activity, namely, (ln 12G)/n12. Bounding
curves like Figures 3 and 4 can be generated for component 2. The only
qualitative difference between these curves and those for component 1
will be that the infinite dilution value for component 2 will not be a
single point, i.e., the upper and lower bounding curves for component 2
will not merge at ¢, = 0.

Since a single infinite dilution value for component 1 can be used to
generate bounds for the concentration dependence of component 2
activity, it can be used in particular to bound the infinite dilution
activity coefficient of component 2. This provides another graphical
relationship, shown in Figures 5 and 6. Values of [(ln 72G)/n12]° are
plotted versus values of [(1n 11G)/n11]wAranging from zero to the
maximum allowable. The bounding curves show the allowable range of
component 2 activity at infinite dilution corresponding to a known
component 1 activity at infinite dilution. Figure 5 corresponds to the
fairly ideal case used for Figures 1 and 3; both upper and lower bounds

are available. In Figure 6, corresponding to the less ideal case of



95

.20

.15 4

3

Ly
)

(2mn

.10

.05 4

Figure 5. Bounding the Infinite Dilution Normalized Residual Activity
Coefficient of the Second Component for g - 1, g - 2. Curves are

upper and lower bounds.




P S



96

o)

ln l','
Ny
F-3
1

=)

Figure 6. Bounding the Infinite Dilution Normalized Residual Activity
Coefficient of the Second Component for g - 1, g - 0. Curve is upper

bound.



97

Figures 2 and 4, only an upper bounding curve is possible.

This approach provides a more powerful tool than the Gibbs-Duhem
relationship between activity coefficients of different components.
Since the Gibbs-Duhem equation relates differential changes in the
activity coefficients, it cannot be used to derive the activity of one
component from that of a second component. The added power of this
technique results from the assumption of a particular activity
coefficient relationship given by the solution of groups model.
However, the accuracy of the estimates depends on the validity of the

solution of groups model, whereas the Gibbs-Duhem relationship is always

thermodynamically correct.

Such a bounding approach is most useful for systems in which limited
data are available, where interaction parameters themselves cannot be
fit. 1In such cases, the bounding result can be used to help design an

experiment to take additional data.
NORMALIZATION DEPENDENCE OF RESIDUAL ACTIVITY COEFFICIENTS

Previously, a technique for bounding the concentration dependence of

[(In 11G)/n11] was developed. In the reduction of experimental data to

interaction parameter databases, a given normalization for n

11 is

assumed, and interaction parameters are chosen to best fit
[(1n 11G)/n11] as a function of concentration. (In UNIFAC and ASOG,

data points from various concentrations are used, not merely from
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infinite dilution.) Using the bounding technique of the previous
section, the effect of varying normalization of n,, can be
quantitatively illustrated.

This will be done within the framework of fitting concentration
dependence curves to an infinite dilution residual activity coefficient.
Taking (1n 11G)° as a fixed value, but allowing nll to vary, values of

[(1n 11G)/n11]° corresponding to different normalizations of n,, are

11
produced. Each of these infinite dilution normalized residual activity
coefficients has associated bounds as shown previously. If the bounds

upon [(1ln 710)/n11] given by these curves are multiplied by n 1* @ set

1

of bounds for (1ln 71G) is produced for each normalization of n, which

is considered.

Figures 7 and 8 illustrate the results of this procedure for the same
group ratios shown previously, with a sample value of (ln -ylc)co chosen
for each. Bounds derived from n, values of 1 and 4 are compared. It
is evident from this plot that increases in N, which are equivalent to
decreases in the size of the unit of normalization, result in a wider
possible variation in the concentration dependence of residual activity.
This shows in Figure 7 as increases in the upper bound and decreases in
the lower bound. In Figure 8, only an upper bound can be derived, and
it increases with increasing nyy-
It is not necessarily true that wider bounds on the concentration

dependence of residual activity result in a more inaccurate fit of
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Figure 7. Bounding the Concentration Dependence of Residual Activity
Coefficients for g - 1, g - 2. (1n 716)co = 0.1. Solid curves are

upper and lower bounds for n,. = 1; dashed curves are upper and lower
11

bounds for n11 -4,
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experimental data. As shown in [13], the average accuracy of UNIFAC was
increased when the unit of surface area was decreased in size. When
attempting to use the results given here to make predictions for systems
for which no interaction parameters are available, narrower bounds are
preferable, which seems to imply that larger functional group size units

would work best.

The results given here do not imply that normalization unit can be
varied indiscriminately in applying the residual activity equations
within solution of functional groups models. Such a procedure would
produce chaotic and meaningless results. What is illustrated here is
the effect of changes of normalization unit upon some aspects of
residual activity coefficient prediction, specifically, the bounds upon
concentration dependence given a fixed infinite dilution value. Such an
approach may prove useful in determining a proper value for the

normalization unit in solution of functional groups models.

CONCLUSIONS

The residual activity coefficient given by solution of groups models
using forms analogous to Wilson’s equation can be conveniently analyzed
by the transformations presented here. Transformation of interaction
parameters allows simple expressions for component activity coefficient
to be written. The transformed parameters also are restricted to a
narrow range of values in many cases. In the case of a binary solution

with two functional groups, the concentration dependence of both
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residual activity coefficients can be bounded using only a single
infinite dilution activity value. Group contribution models measure
functional groups present in a component molecule in various ways.
Regardless of the measurement used, the size of the unit chosen for
normalization has an effect on the predicted concentration dependence of
activity coefficients given by such a model.
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CHAPTER 4

MODELING DIFFUSION COEFFICIENTS FOR CONCENTRATED POLYMER SOLUTIONS
ABOVE TG
Diffusion phenomena in polymer solutions have been difficult to study
and interpret, due to the variety of effects observed. Differences in
behavior occur dependent upon the state of the system, e.g., glassy,
melt, dilute solution. In most cases, the behavior is non-Fickian,
since the diffusion coefficient varies with composition and, under

some conditions, relaxation occurs on the same time scale as diffusion.

At temperatures sufficiently above Tg' relaxation occurs more quickly
than diffusion and may be ignored. 1In concentrated polymer solutions or
melts, the mobility of polymer molecules can be neglected in comparison
to solvent molecules. The remaining problems in determining binary
mutual diffusivities are to model the self-diffusion coefficient (some
authors refer to this as the tracer diffusion coefficient) of solvent in
the system and to model the nonideal thermodynamic effects which cause
the chemical potential gradient to differ from the concentration
gradient. Both these effects must be considered as functions of
temperature and of solvent concentration. Typically, an increase of
solvent concentration results in an increase in solution free volume

which tends to increase the diffusivity, while it simultaneously results

103
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in a decrease in solvent activity coefficient which tends to decrease

the diffusivity.

The major quantitative analysis of this phenomenon has been made by two
sets of investigators over the last 25 years. Fujita (1961,1968)
originally proposed a model for the dependence of diffusion coefficients
upon free volume. Vrentas and Duda (1977) extended the model and
relaxed many of its original assumptions. The complexity of their model
and its use of different independent variables for the free volume term
and for the chemical potential term somewhat obscured its
interpretation. As an example of this, Fujita was unable to show that
water, unlike organic solvents, seemed to show very little increase in
diffusivity with increasing concentration in polymer. Vrentas and Duda
were able to show the correct concentration dependence with their model.
They apparently attributed this behavior to free volume effects. In
this chapter, a reprint describing the prediction of diffusion
coefficients in polymer solution is presented. The model given here
shows clearly that it is thermodynamic (chemical potential) effects

which cause the seemingly anomalous diffusion behavior of water.

A DIFFUSION COEFFICIENT MODEL FOR POLYMER DEVOLATILIZATION

The following reprint article develops a model for the prediction of
binary mutual diffusivities in concentrated polymer solutions and melts.
A general form of the model is based upon the work of Vrentas and Duda,

but applies a version of the new thermodynamic results given in Chapter
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2. A linearized version of this model is also described. In certain
cases, e.g., polymer devolatilization, the linearized model or a
constant diffusivity model is shown to be accurate for describing
diffusion phenomena. Details of the derivation of new equations

proposed in the article are given in Appendix I.

Reprinted with permission from Polymer Engineering and Science, 27, 303
(1987). Copyright (c) 1987.
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A Diffusion Coefficient Model for Polymer Devolatilization®
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and
ROBERT F. BLANKS
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Polymer devolatilizers are (n widespread usc in the poly-
mer Industry for remaoving solvents and mnonomers from
polymer meits prior to product {abrication. Desyin equa-
tions for describing the solvent (lux usually inciude both
the diffusion cocfficient of the solvent in the polymer melt
and the cqullibrium concentration of the solvent at the
polymicr-vapor interface. Scveral models make the as-
sumption that the solvent diffusivity Is constant over the
ranges of solvent concentrations and temperatures in the
devolatilizer. This is a critical assumption that may be
difficult to check without obtaining diffusivity data at the
operating temperatures and concentrations of the process
equipment. There are three models that can be used for
diffusion coefficients tn devolatilizer design: the free vol-
ume model developed by Duda. Vrentas. and coworkers: a
new lincar model proposed In this study: and a constant
diffustvity model. The lincar model Is obtained by combin-
ing a new correlation for solvent activity coeffictents in
moliten polymers with free volume theory and lincarizing
the resulting equation. The error between using the com-
plete free volume theory and using the lincar model, or
akernatively, using a constant diffusion coefficient. is
calculated for several solvent-polymer systems. The linear
model is convenient to use for determining the effects of
the solvent activity coefficient on the diffusion coeffictent.
A method is presented for determining whether the com-
plete model, the linear model. or the constant diffusivity
model is appropriate for a given devolatilizer design.

INTRODUCTION

Dlﬂ’uslon processes play an important role in
the manufacture and processing of com-
mercial polymers. Processing steps such as
polymerization, devolatilization. plasticization,
and addition of additives require a knowledge
of diffusion within polymer solutions and melts.
Accurate modeling of diffusion coefficients of
solutes In polymer systems above their glass
transition temperatures is necessary for proper
design of these
Molten polymer

1914, Son Franciese.

devolatilization (s often done

POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1987, Vol. 27, Me. ¢

in either rotating equipment. such as a vented
extruder or a thin (ilm evaporator, or in equip-
ment which foams the polymer. Models for pre-
dicting the solvent flux In this equipment (1)
often need diffusion coefficients of the solvent
through the polymer at operating condittons.
Some models, such as that of Newman and
Simon (2) for foam devolatilization. are imple-
mented with constant solvent diffusion coeffi-
cients even though the calculations are per-
formed over a temperature range in which the
temperature dependence of the diffusivity is
significant. Devolatilization Is frequently car-
ried oul with less than 5 weight percent solvent
in the polymer. Over the temperature and con-
centration ranges In most commercial equip-
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ment, there can be a concentration-dependence
of the diffusion cocfficient.
While it is stmple from a computational point

of view (o assamne a constant value for the
diftusion cocfficient, there can be stgntflicant
errors In dolng so. Duda et al. (3) have predicted
that the diffuston cocfficteat can vary signifi-

cantly with temperature and concentration for
the system, toluenc-polystyrene. Thetr modcl
shows pood agreement with diffusivity data tn
somie athermal polymer solutions above the
glass transition temperature. Unfortunately.
none of their comparisons are in the tempera-
ture and concentration rangcs of actual devol-
atilization processes. There seem to be discrep-
ancics between diffustvities dctermined (rom
data taken In commerical devolatilizers (2) and
diffusivitics estimated by model extrapolation
using paramcters found at lower temperaturcs
(3).

In this work. we use the free volume diffusion
madcl and employ an improved correlation (or
the thermodynamic factor (4) to analyze the
diffusion cocfficicnt predictions at conditions
typical of devolatilization for polystyrene. Al
tempcratures well above T,. solvent diffusion
coefficients can be modcled by an equation lin-
car in solvent weight fraction. For small solvent
concentrations. the diffusion coefficient can be
taken as a constant.

FREE VOLUME MODELS FOR DIFFUSIVITY

Free volume diffusion models (or transport of
solvent in polymers are based on previous de-
scriptions of transport properties in liquid sys-
tems. Cohen and Tumbull (5. 6) derived an
expression for self -diffusion cocfficients as a
function of free volume. Fujita (7. 8) used their
work for describing solvent-polymer dif(usion.
Fujita’s model s qualitatively correct but does
dn:t give quantitative agreement with avallable

ta.

Several assumptions of the Fujita model were
relaxced by Vrentas and Duda (9. 10) to derive a
free volume model showing good agreement
with data. Modifications and improvements
have been made to this model in a series of
papers since 1977. The most recent version
gives excellent agreement with data for the sys-
tems, toluene-polystyrene and cthylbenzene-
polystyrene, over the temperature range of 110
to 178°C and concentration ranges up to 70
weight percent solvent (3).

The binary mutual diffusion coefficient is

given by (3):

()

D=D, #Va0, (@)
TP,

RT \dp\

D, on the right hand sidc of Eq | computes the
effcct of frec volume changes ou the diffusion
cocfficicnt: and the second group. the chemical
potential derivative, computes the effect of

thermadynamic changes. The selfl diffusion
cocfticient of solvent. 1), Is given by:

=3 \"1. + “'l(“"l.l

= (), exp| —

D, = 1), exp Vi (2)
where the average hole free volume, \},,,_ Is
given by:

Veu K
AL AL} w(Ka + T =T,
Y Y 3)

K
+ 2 WKy + T - T,)
h ]

The preexponcntial factor describing the en-
ergy needed to overconic neyghboring attractive
forces. Dy,. Is given by:

Doy = Dy cxp{—FE/RT) (4)
Equations I through 4 dcfine the binary mutual
diffuston cocfficicnt as a function of thermo-
dynamic parametcrs. frce-volume parameters,
and an activation cnergy for diffusion. using
solvent weight fraction as a basis. The free-
volume parameters can be obtatned from WLF
equation data (3).

CHEMICAL POTENTIAL DERIVATIVE

In their solution for Eq 1. Duda and coworkers
(3) used the Flory-Huggins theory and obtained
the following equation for the thermodynamic
factor:

hozm Iu, 2
220 (TRt - - 1 - 3
RT (h-)y, (1 — &% 2xe)) (S)

For systems that are athermal (the enthalpy
change on mixing is zero). the Interaction pa-
rameter, x. can be taken as a constant. The
athermal assumption is good for a system such
as toluene-polystyrene. However, for a number
of solvent-polymer pairs, enthalpic interactions
occur and x is expected to vary with solvent
concentration. In these cases. the variation of
x with concentration should be included In the
model equations. This could be done by writing
the chemical potential in terms of a concentra-
tion-dependent x. taking the derivative with re-
spect to mass concentration. and substituting
the result for Eq 5. There is now no generally
accepted model for describing the concentration
dependence of x.

Misovich and coworkers (4) have recently de-
veloped a correlation for solvent activity coef(l-
cients in concentrated polymer solutions which
fits data for systems with enthalpic interactions
at lcast as well as the Flory-Huggins equation.
The correlation gives an improved result for the
concentration dependence of the chemical po-
tential and can be used to determine the value
of the derivative in Eq I. The resull Is:

POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1987, Vel. 27, No. 4
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1,7 1s the welght fraction activity cocfficient of
solvent in polymer at infinite dilution of solvent
and can be determined by a varicty of methods.
For values of 1, between 2 and 20, the new
corrclation predicts the concentration depend-
cnee of activity cocfficicnts in binary solvent-
polymer systeins. Since 2,° in this corrclation
is a truc constant at a given temperature, this
cquation can be used without revision for poly-
mer solutions that are athermal and for some
solutions with enthalpic interactions.

An additional advantage of Eq 6 is that the
wcight fraction s used as the independent con-
centration variable. whereas the Flory-Huggins
cquation uses volume fraction. Applying Eq 5
requires equilibrium and density data for the
solvent and polymer at the temperature of in-
terest. while Eq 6 only requires equilibrium
data. Blanks. et al. (1 1) show that the assump-
tion of a constant density ratio between solvent
and polymer is not a good one for devolatiliza-
tion problems.

The chemical potential derivative could be
obtained by differentiating expressions for the
chemical potential. There are methods for ob-
taining the chemical potential based on equa-
tion-of-state approaches (12). lattice fluid the-
ory (13). and UNIFAC-FV (14). UNIFAC-FV s
based upon statistical mechanics and contains
separate entropic (combinatorial) and enthalpic
(residual) terms. One of its advantages is that
many polymer-solvent systems can be de-
scribed by the database butlt for UNIFAC (15.
16). Van den Berg (17) has recently proposed a
method for generating UNIFAC-FV activity coef-
ficients using a UNIFAC program. The disad-
vantage of using any of these methods to get
the chemical potential dertvative is that their
differentials are complicated expressions which
are difficult to analyze except by numerical
means.

Eqs 1 to 4 and 6 can be combined to get an
equation for the diffusion coefficient:

e 3
D = Doy & e
wy + o, Wy

pWCLATELAR @
ol Y

Do and Vpy/y are dependent on temperature.
Viv/v Is also dependent on concentration. Even
though Eq 7 includes concentration and tem-

POLYMER ENGINEERING AND SCIENCE, PESRUARY, 1907, Vel. 27, Ne. 4

perature dependence, fC Is not a convenent
form (o use for modeling and design. In the next
section, we will show how to modifly Eq 7 to get
a torm that is casy to applv to devolatilizer
design.

LINEARIZED DIFFUSIVITY MODEL

Polymer devolatilization often takes place at
solvent concentrations of less than 5 weight
percent and temperatures well above T, Be-
causc the solvent diffusivity is required at low
salvent welght (ractions, we choosc to lincarize
Eq 7 with wetght fraction at the point. v, =
0.The value of the diffusion cocfficient at zero
weight fraction of solvent is casy to determine
and the differential of D with w, is casy to
evaluatc. Linearized maodcls have been proposed
for describing the concentration dependence of
the solute diffusivity both for polymer diffusion
in dilute solutions (18) and for solvent dif fusion
in concentrated solutions (19).

The free volumc terms in Eq 3 vary with
temperature. Thesc terms are grouped as shown
below and inserted in Eq 7:

A - KT (Ka + T=T,) (®)
and
Kia
A = > Kaa+ T-T,) 9)
giving
e 2
e W2
D = D, L] P
U Kt
(10)

.u,[_\'f_-'w_-m-z

Aw; + Aw, RT.

for the diffusion coefficlent. Equation 10 as-
sumes that the solvent and the polymer are In
thermodynamic equilibrium at the vapor-poly-
mer interface. This would scem to be met for
most polymer-solvent systems. Even (or those
systems in which anomalous polymer behavior
is claimed (such as the Ty, transition {n polysty-
rene) (20). the equilibrium requirement should
be met If the temperature is greater than 1.2
T,- An tmplicit condition on the application of
the thermodynamic model s that the solvent
molecular weight should be much smaller than
the polymer molecular weight (4).

Free volume parameters based on the WLF
equation are usually assumed valid up to 100°C
above T,. Some commercial devolatilization
conditions may exceed this temperature. There
is no generally accepted method for estimating
the polymer frec-volume parameters for tem-
peratures greater than T, + 100°C. It is not clear
that the WLF equation is a good model for cx-
trapolating solvent-free volume parameters.
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Dw,) = D)1 + (K, - Koy (12)
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K, = Anfvz "szn “2“,
2
c
= — 124
K, =2 - (12b)
- £ f‘-/f)
0) = D, exp{ (RT + _A, J (12¢)

The term, K,. is the free volume factor, and
the term, K. Is the thermodynamic factor. The
exponential term In Eq 12c includes a term
describing the attractive forces between neigh-
boring molccules and a term describing the ratio
of critical molar Jumpling units for the solvent
and polymer.

COMPARISON OF LINEAR AND COMPLETE
MODELS

The three levels of model complexity for de-
scribing the effects of solvent concentration on
diffusivity in polymer devolatilizers: the com-
plete model (Eq 10). the linear model proposcd
here (Eq 12). and the constant diffustvity
model. provide a good range of choices for the
design engineer. An advantage of the lincarized
model Is that. at a given temperature, the dif-
ference between two constants describes the
concentration dependence of D. The errors as-
sociated with using the simpler models depend
on both the temperature and concentration
ranges over which devolatilization is taking
place. As shown In Fig. 1. there can be a signif-

18 nwe'c
compiote —mm
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Fig. 1. Comparison of the concentration of
Alftusion cocfficients calculated by the complcte and lin-
e fren: volume models. Toluenc and polysiyrenc.

Icant effect of concentreation. but (s magnitude
depends on the temperature.

Equation 12 should only be used for modeling
after its accuracy has been evaluated. We have
compared these models for the system. polysty-
renc-toluene, at a temperature Just above T,
(110°C) and 2 temperature typtcal of commer-
clal devolattlizers (240°C). The ratio between
the diffusion coclficient at the specificd wetght
fraction and that at zera solvent welght fraction
Is used to deterimine the difference between the
two modcls.

Figure | shows the error assaclated with a
lincar modcl at the two temperatures. At 110°C,
the calculations shiow that, below 100 ppm sol-
vent. the diffusion cocfficicnt can be considered
constant. There is less than 2.4 percent error
In the valuc of the diffusivity by this assumnp-
ton. Up to 1000 ppm sotvent. the linear model
diffusivity is within 2 percent of the complcte
model diffusivity. The accuracy of the linear
modcl decreases rapidly at greater solvent
weight fractions and. In this casc, underpre-
dicts the diffusivity. It s not clcar whether the
condition of thermodynamic equilibrium at the
interface is met for this system at 1 10°C. Anom-
alous transitions in the polymer melt might
make the polymer relaxation time the same or-
der of magnitude as the solvent diffusion time.

Figure I shows calculations for the same sys-
tem at 240°C. a temperature in the range of
typical devolatilization temperatures for poly-
styrene. At the higher temperature. dif| fusivity
can be considered constant at solvent weight
fractions less than 1000 ppm. In this case, the
linear model value is within 1 percent of the
value for the complete model up to 100.000 ppm
or 10 weight percent solvent. The diff; usivity of
toluene In polystyrene at 5 weight percent (a
typical concentration of solvent in polymer at
the start of a devolatilization process) would be
2.21 times the value at zero welght fraction
solvent. suggesting that a model using a con-
stant diffusion coefficient could be in error.

Flgure 1 does not show the temperature de-
pendence of the diffusivity, which can be sig-
nificant. We have caiculated the infinite dilu-
tion solvent diffusion coefficients at two tem-
peratures based on Eq 12c and using the con-
stants suggested by Duda. et al. (3) for toluene/
polystyrene. At 110°C. the diffusion coef(licient
186.1 X 10”'* cm?¥/s; and at 240°C. the diff, usion
cocflicient 1s 5.5 x 10~ cm?¥/s. In changing the
temperature from near T, to 1.4 T,. the diffu-
slon coefficient has increased by about S orders
of magnitude. Since the free volume parametcers
of Eqs 1 to 3 arc temperature-dependent. the
scaling of diffusivity with temperature does not
follow a simplc Arrhentus equation.

There are practical problems associated with
determining the free volume parameters and
thermodynamic parameters for Eqs 10and 12.
The concentration dependence of the solution
free volume parincters Is taken to be lincar (Eq

mmmmmm 1997, Vot. 27, Mo, 4
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3). The polymer and solvent free volume parciam-
clers are deterimined by (itting viscosity data
with the WLF equation. For polymers, the vis-
cosity can usaally be determimed over the tem-
perature range of interest. For solvents, the
WLF parauncters are usually determined below
the normal solvent boiling potnt (at atmospheric
pressure). The thermodynamic terms in Egs 7
and 12 describe the concentration-dependence
of the activity coefficients. Howcever, 11,°
changes with temperature. as docs the lnterac-
tion paramcter. Typical crrors associated with
these estimation techniques are discussed in
the next section.

EFFECTS OF SOLVENT WLF
PARAMETERS ON THE LINEAR MODEL

The WLF cquation (3) may not describe the
free volume changes of the solvent well. partic-
ularly If it is extrapolated to temperature well
above T, + 100°C.

7V1./K1|

—_— 3
K:."'T‘T,. (13

lnygy, =InA, +

Furthermore. the fits of some solvent viscos-
ity data by the WLF equation seem (o show
systematic deviations rather than random er-
ror. Such deviations suggest that this modcl
may not correctly predict the changces in solvent
free volume with temperature. If the WLF model
is used. it is preferable to determinc its param-
eter values as close to the devolatilization tem-
perature as possible. The comparisons below
show typical differences In the linear diffusion
model parameters caused by differences in the
WLF parameters.

Table 1 lists solvent free volume constants
and the values of K, for acetone and methyl
acetate obtained from two different WLF fits of
viscosity data. Liu (21) apparently combined
two data scts (22) and (23). while only one set
was used in this work (22). The two data sets
covered similar temperature ranges. The WLF
parameters appear to be sensitive to small
changes in viscosity data. Poly{methyl methac-
rylate) is the polymer considered and has a T
of about 303 K. Both scts of WLF parameters
generate viscosity models which average 1 per-
cent relative error with the data.

The K, values. which describe the concentra-
tion-dependence of the diffusion coef(ficient. are
compared in the lower portion of Table 1. We
computed K, values at 378 K(1.25 T,,) and 453
K(1.5 T,a) since this might be the range of tem-
peratures used in devolatilizing such polymer
solutions. The K, values calculated (or acetone
in PMMA are similar for both sets of WLF pa-
rameters. However. the K, values for methyl-
acetate differ by factors of 3 to 4. Since both
sets of WLF parameters describe the viscosity
data about the same. it is not clear which set of
K, values is the better description of the free
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Toble 1. Comperison of K, Velues Determined from Ditferert
Velues of WLF Constants.

Constants
Wl
Solvent na K. Ky Toe Source
Aceione -323 S$08 -833 (r3)]
-3 1 468 -599 tvs study
Methyl-Acstate -] 64 682 -385 @
-2.26 165 -165 thes study
System 1.°K  K.(21) K, (this study)
Acetone-PMMA e 6 61
453 28 N
Methyl Acstate-PMMA 378 3% nr
453 18 68

volume term. These calculations merely illus-
trate the sensitivity of K, to the values choscn
for the solvent’'s WLF parametcrs.

Vrentas ct al. (24) (Eq. 5) suggest that defi-
nition of K,,/y pcrmits a bound to be placed on
this paramctcr. which results in a lower bound
for the group. yV,*/K,,. For acctone. both val-
ues of yV,*/K,, are above the lower bound of
450. For mcthylacetate, the value for yV,*/K,,
determined in this study is below the lower
bound (380). Presumably. different WLF con-
stants could be obtained by forcing this group
to equal the lower bound and varying the other
constants to fit the viscosity data with similar
precision. The bounding of this group depends
on the assumption that the WLF equation cor-
rectly describes free volume changes of the sol-
vent.

We calculated the K, parameters for toluene,
methanol. and water with polystyrene over the
temperature range. 1.02 T, t0 1.42 T,. The WLF
parameters for the polymer were taken from
Liu (21). Figure 2 compares the results for tol-
uene and methanol. For both solvents, the dif-
ferences between the K, parameters are large
near T, and become smaller at high tempera-
tures. Figure 3 compares K, values based on
WLF parameters from water viscositics below
the normal boiling point (50 to 100°C) (20) with
those based on WLF parameters for water vis-
cosities taken between 110 and 160°C (23). The
viscosity data between S50 and 100°C lead to
negative values of K,. Negative values of K,
imply that the polymer expands with tempera-
ture more than the solvent, which iIs not ex-
pected.

These resulits suggest that it would be pref-
erable to determine the solvent WLF parame-
ters as close to the devolatilization temperature
range as possible. For many cases. this would
mean determining solvent viscosities at high
pressures. An alternative approach might be to
detcrmine solvent free volume parameters from
viscosity data of polymer melts containing sol-
vent concentrations in the range of interest. A
capillary rhcometer might be used to lake such
data. '

»7
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EFFECTS OF K, AND K, ON THE
LINEAR MODEL

Equation 12 provides a convenient method
for determining the effects of the thermody-
namic and free volume terms on the concentra-
tion dependence of the diffusion coefficient.
The difference between K, and K, gives the
slope of diffusivity versus solvent weight frac-
tion curve (as long as the linear model is valid).
Toble 2 compares values of K, and K; for an
athermal system (toluene/polystyrene). a sys-
tem with moderate enthalpic (nteractions
(methanol/polystyrene). and a system with
strong enthalpic interactions (water/polysty-
rene). The WLF parameters for the solvents
were determined by (itting viscosity data taken
below the normal bolling point. The thermody-
namic data were obtatned by Gandaz and Din-
gcr (26). who measured weight fraction activity
coefficicnts for 42 solvents In polystyrene as a
function of temperature. Although their data
scems internally consistent. the activity coeffi-
cients they report are factors of 1.5 to 2.0 higher
than coefficients reported by other rescarchers

Polystyrene Systems.
System
Toluene/PS  MeOH/PS  Water/PS
Tempersture  K° i.‘ ;.’ [ A SR A
162°C % 58 3 X 3 10
172°C 0 54 28 2 27 10
220°C 15 48 17 2 " S7
230°C 9 36 ° 16 W 6
‘Us @)
Uy

* &, Setornined saing viesocfly dots bum 110 & WIC XN
* Dotormningd om B,° date tshen ot given tomperstwe (30

(27. 28). We use their values because they seem
to be the only values available for our solvents.

For toluene-polystyrene. the difference be-
tween K, and K, is always positive, and. while
the lincar model applics. the diffustvity will
increase as the weight fraction of solvent in-
creases. The difference between K, and K, for
the methanol-polystyrene system is much less.
The solvent diffusivity for this system should
show very littie concentration dependence. It
should be noted that the ASOG-VSP model has
success(ully represented the dependence of the
activity cocfficient on solvent concentration for
methanol in poly{methyl methacrylate) (4). It is
not known whether this model adequately de-
scribes the solubllity of methano! in polysty-
rene. We consider the calculations for the
waler-polystyrenc system (o be speculative.
since the ASOG-VSP modcl has not been used
on data with such large infinite dilution weight
fraction activity cocfficicnts. The ncgative dif-
ference between the free volume and thermo-
dynamic terms suggiests that there may be a
range of water weight fractions for which the
diffusion cocfficient decrcascs with Increasing
water concentration. Performing mcasure-
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ments on systems in which the concentration
dependence of the solvent diffusivity was near
zero, or negative. would constitute an Intecrest-
tng test of the (ree volume theory.

Figure 4 shows the slope of the diffusivity
versus welght fraction curve tor the three sol-
veots from 110 1o 260°C. 11, ° values were ex-
trapolated using a madel incar  temperature,
Over this temperature ringe. the diffusivity of
tolucnie should always Increase as its wefght
fraction Increases (untl the lincar model is no
longer valid). On the other hand. mcthanol
shows very little concentration dependence of
the diffusivity above 160°C. The modcl predicts
that water should have the unusual property of
a decreasing diffusivity through polystyrenc as
its weight fraction Is Increasced. Again, this re-
sult should be considered speculative since the
ASOG-VSP model has not been verified for sys-
tems with such large enthalpic interactions.

Using the linear model (0 analyzc the effects
of thermodynamic and free volumce lerins is
valid as long as the lincar modcl providces a good
approximation to the complcte modcl. The error
associated with the linear model depends on the
solvent-polymer systemn and the temperature.
For the tolucne-polystyrcne system, the free
volume term dominates the concentration-dc-
pendence of the diffusivity. Since diffusivity in
the methanol-polystyrene system Is much less
dependent on solvent concentration. the linear
model should approximate the complete model
over larger concentration ranges than for the
toluene-polystyrene system.

Figures 5 and 6 show this effect for two
different sets of solvent free volume parame-
ters. For most temperatures. the linear model
will describe the complete model up to 10.000
ppm. The improved range of (it to the complete
model is due to the lower concentration depend-
ence of this system. The linear model will either
predict a positive or negative (rarely zero) con-
centration dependence to the diffusivity and
will not predict maxima or minima in D versus
w, curves. Comparisons of Figs. 5b and 5d with
Figs. 6b and 6d illustrate the sensitivity of the
diffusion coefficient to the solvent-free volume
parameters. For both Figs. 6b and 6d. K, — K,
is slightly above zero and the complete model
should go through a maximum value.

Flgures 4 to 6 show how the thermodynamic
and free volume term affect the linear model
and over what concentration ranges the lincar
model is valid. Figure 7 illustrates the efflect of
the thermodynamic term on the diffusivity of
the complete model for methanol-polystyrenc at
155°C. For a 25 percent change In the value of
12,". the diffusivity can change from monotoni-
cally decreasing to going through a small max-
fmum.

While there Is good agreement between mea-
sured solvent diffusivities and the free volume
madel in the papers of Duda and Vrentas., sol-
vent diffusivitics measured In actual devoladl-
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Fig. 4. K,-K, versus temperature for three solvents (n
polystyrene. (a) toluene-polystyrene. (bl methanol polysty-
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lizers do not agree well with predicted values.
For cxamplec. In the foaming devolatilizer work
of Newman and Simon (2). the estimated value
far the diffusivity of styrene in polystyrcene is |
x 10~* cm?/s. This valuc was assumed constant
for fitting data between 200 and 250°C. At
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240°C. the free volume madcel ‘m:dlcls that the
ffusivity should be 4.2 x 107 cm?/s. There is
obviously a significant crror assoctated with
assunung a constant ditfusivity over this tem-
perasture rangc.

There are also discrepancics between diftu-
sivitics measured (n commercial equipment and
those mcasurcd In rescarch cquipment. In an
extruder devolatilizer, Bicsenberger and Kessi-
dis (29) report a diffusivity of styrene in poly-
styrenc of 1.5 x 107* cm?/s at 177°C. Duda et
al. (3) mecasure a valuc of 3 x 1077 cm?/s at
178°C for ethylbenzene (which should be simi-
lar to styrenc).

The linear diffusion cocfficient modcl pro-
poscd in this work has the potential to be a
convenient (ool for designing and controlling
the operation of commercial devolatilizers. The
destgner can determine by calculation whether
to use the camnplete diffusion model. the linear
diffusion modecl. or a constant diffusivity for his
cquipment conditions. The concentration-de-
pendence of the solvent diffusivity is scnsitive
to extrapolations with the solvent-frce volume
parameters. Because of this sensitivity, it is
preferable either to use solvent viscosities ob-
tained at devolatilization temperatures or to de-
visc another mcthod for obtaining them. Fi-
nally. the effects of thermodynamics on the
concentration-dependence of solvent diffusivity
may be thc same order of magnitude as the free-
volume effects for some solvent-polymer sys-
tems.

NOMENCLATURE
a, = activity of the solvent.
A,.A; = groups ol parameters defined by
Eqs8and 9.
D = binary mutual diffusion coefficient.
D, = self-diffusion coefficient of solvent.
Do = defined by Eq 4.
Do, = defined by Eq 3.
e = base of the natural logarithm.
E = critical energy per mole nceded to
overcome attractive forces.
K, = free volume coefficient in the line-

arized model. Eq 12a.
K, = thermodynamic coefficient in the
Nnearized model. Eq 12b.
K. Kia = free-volume parameters of solvent.
Kis. K22 = free-volume parameters of the poly-
mer.
pressure.
ideal gas constant.
temperature.
glass transition temperature of
component (.
partial specific volume of compo-
nent (.

2
LI

=
'

Fig. 5. Log D/IN0) versus log (ppm solvent) for methanol-
polystyrene. Solvent free volume purameters of this
study. fal 1 10°C. () 155°C. ic) 200°C. ) 245°C. Solid line—
Eq 12, dashed linc—bq 10.
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183%¢ / v, = specific critical hole free volume of
- 3 componcnt { required for a jump.
Ven = avcrage hole free volume per gram
of mixturc.
w, = wecight fraction of component (.
X, = molc [raction of component {.

leg 0/0(0)
°

Greek Letters

vy = overlap factor for (ree volume.
w1 = chemical potential of solvent.
° ' 2 3 « s £ ratio of critical molar volume of solvent
to9 pomMeOw jumping unit to critical molar volume of
Jumping unit of polymer.
mass concentration of component (.
volume fraction of component (.
X Flory-Huggins interaction parameter.
Q, solvent weight fraction activity coeffl-
-o8p 200°c < clent.

\ 2,° = solvent weight fraction activity coeffi-

cient at infinite dilution of solvent.

Subscripts
« = solvent.
s = polymer.

P — ‘
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CHAPTER 5

STATISTICAL DETERMINATION OF SYSTEMATIC ERROR

IN NONLINEAR PARAMETER ESTIMATION

Statistical parameter estimation involves the determination of the
value or values of some unknown quantity based upon data which may be
inconsistent or contain error. Normally, the quantity or quantities to
be estimated are in some ways characteristic of the sample from which
the data were taken. The determination of an equation or model for some
physical phenomenon normally involves the selection of an expression on
theoretical (or empirical) grounds followed by a parameter estimation

step to determine the unknown parameters of the model.

A set of estimated parameters is usually considered good if the
predicted values of the dependent variable generated from the model do
not deviate substantially from the observed values. A global criterion,
such as the sum of the squared deviations of the predicted values from
the observed values, is typically applied for this purpose. Use of a
global criterion of this type may mask conditions which cause the model
to be inadequate in other ways. One such problem is the existence of
systematic error within the model, causing overprediction and
underprediction of the dependent variable to be correlated to the

independent variable rather than random.
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Systematic error may indicate an underlying lack of agreement between
the model and the physics of the problem. It is a particularly crucial
type of error when results from a parameter estimation must be
extrapolated outside the domain of the independent variable over which
parameters were found. For this reason, testing for systematic error in
a parameter estimation may be important in certain situations, even when

the global fit of the model seems acceptable.

In order to do statistical testing, it is necessary to have a
hypothesis, usually in the assumption of a particular random
distribution of the variable or variables being studied. The standard
approach is to evaluate the distribution of the test statistic under
this random (or null) hypothesis. If the value of the test statistic
calculated from the observed variables is unlikely to have occurred with
random variables chosen under the null hypothesis, the null hypothesis
can be rejected. A good test statistic will be able to discriminate
between values taken under the null hypothesis and those taken under
some alternative hypothesis; the ability to discriminate in this manner

defines the power of the statistical test.

LINEAR AND NONLINEAR PARAMETER ESTIMATION

When the expression is linear in the unknown parameters, linear

parameter estimation techniques based upon least squares can be applied
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(Mendenhall, 1968; Graybill, 1961). Least squares means that values of
the unknown parameters are chosen such that the sum of the squared
deviation between each observed variable and predicted variable is
minimized. It is possible for the expression to be linear in the
unknown parameters even though it is nonlinear in the independent
variables. For example, if y is the dependent variable, and x is the

independent variable, the equation
2
y = ax” + bx + c (1)

is 1linear in the parameters a, b, and ¢ even though it is nonlinear in
the independent variable x (since it contains a term in x2). If x and y
are variables which can be measured, linear least squares can be used to

determine the best values of a, b, and ¢ from measured data.

Least squares provides an optimal solution to the parameter estimation
problem when the distribution of error is normal. 1If Xy and y; are the

observed or measured values, the error € is defined by

red
-yp -

which becomes, in the case of eq 1.

2
€, = ax

i 1 + bxi +c - yi 3

When the error distribution is not normal, the equations of least
squares do not necessarily provide an optimal solution to the parameter

estimation problem. Such a situation may occur when the data contains
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outlier values due to measurement error or some other problem, or when
the equation used to model the physical situation is systematically in

error.

In cases where the expression is nonlinear in the unknown parameters,
least squares analysis still provides a solution to the parameter
estimation problem. However, the classical equations used for the
linear case are not applicable, and often the sum of squared error must
be minimized by a numerical method. Two examples of nonlinear parameter
estimation are given by equations used in Chapters 2 and 4.

exp ( (e/0,)w, / [w) + (e/B;)w,] )

Q, - = (%)
vy + (e/ﬂ1 )w2

o
SSTAST

In n - 1n A1 + (5)
Ky + T - Ty

In eq 4, the dependent variable is 01, and vy is the independent

variable, with vy = 1 - vy - The parameter to be estimated is Olw. In

eq 5, the dependent variable is 1 and T is the independent variable.
Three parameters to be estimated are: Al, the grouping fVl*/Kll, and the
grouping (K21 - Tgl)' In deriving the results in Chapters 2 and 4, eq 2
was applied numerically to data used with eqs 4 and 5, allowing "best

fit" values to be determined for the necessary parameters.
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DEFICIENCIES OF LINEAR LEAST SQUARES TEST IN DETERMINING ERROR

DISTRIBUTION

One means of estimating the accuracy of a parameter fit is the
calculation of a confidence interval for each parameter, or a confidence
ellipsoid in parameter space. The Student’s t statistic (Mendenhall,
1968) provides a means of generating a confidence interval for a linear
least squares parameter, but is not applicable to the nonlinear case.
One technique recommended for overcoming this problem is to linearize
the equation using one term of a Taylor expansion. This technique is
not useful if the domain and range of the measured variables fall
partially outside the region in which the linearization is accurate.
Confidence intervals estimated in this way may also be inaccurate if the

parameters are not independent.

The amount of information available to determine the "goodness of fit"
in parameter estimation may be limited in nonlinear cases. Taking this
to be true, other, possibly simpler statistical procedures can be
employed. As an example, consider the use of eq 5, with parameters
estimated from data taken with the independent variable T in the range:
0<T< 100. Eq 5 is then to be used for prediction with values of T in
the range: 140 < T < 240. Extrapolation beyond the domain of the
independent variable in the observed data is not always avoidable. A
predominant consideration for the modeler is whether the distribution of

error in the equation is a random function of the independent variable
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T, or whether the equation has a tendency to systematically give

inaccurate predictions.

Distribution of error can be analyzed statistically by using linear
regression to examine the correlation between the variables ¢, the
error, and T, the independent variable. The correlation coefficient for

these variables is defined by eq 6.

n n n
n 2 T.e, -XT, X ¢
i1 f=1 11_1 i

i+l ] I e (3] )

If the variables ¢ and T are not correlated, meaning that ¢ is not a
function of T, the correlation coefficient, r, will be zero or near
zero. When that is true, the null hypothesis that ¢ is not related to T
can be accepted, and systematic error in the equation used for fitting
data, eq 5, is assumed not to exist over the domain of T values

observed.

Two problems arise in such an analysis. First, the test for correlation
between two variables assumes both are normally distributed. If this is
not true, eq 6 does not give an accurate test of correlation. Even if
error is normally distributed, most physical data are taken at uniform

intervals, resulting in a nonnormal distribution.
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Second, nonlinear functions like eq 5, because of their curvature, have
a tendency to exhibit an unusual pattern of systematic error in cases
where systematic error is present. A typical example is overprediction
of the dependent variable near either end of the domain of the
independent variable, and underprediction in the middle of the domain of
the independent variable. Since correlation examines the linear
relationship between two variables, the effects will cancel and no
correlation between ¢ and T will be observed. Yet, systematic error is
present despite the lack of correlation, and extrapolation in this case

would be greatly in error.

NONPARAMETRIC STATISTICAL TECHNIQUES

It is possible to devise statistical tests which do not assume a
particular distribution (e.g., normal) for the random variables. Such
techniques are termed nonparametric or distribution-free. Many
nonparametric techniques are similar to standard parametric techniques,
but with the actual data values replaced by their rank statistics, i.e.,
their position among the data values when the data is ordered. Since
the distribution of ranks is known (from 1 to N, where N is the number
of data items), it is possible to determine the distribution of various

statistics which are functions of ranks (Kendall and Stuart, 1961).

Nonparametric tests are generally less powerful than parametric tests

because less information is used. Information is lost when the actual
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data values are replaced by their ranks. However, parametric tests are
valid only when the distributions of the random variables being studied
are the same as assumed by the test. Generally, this means normal
distributions. If the distribution is not normal, parametric tests may
be invalid, and even if valid, may become less powerful than

nonparametric tests.

Another advantage of nonparametric statistics arises in the calculation
of the distribution of a test statistic. Without knowledge of the
distribution of a test statistic, inferences regarding statistical
hypotheses cannot be made. The distribution provides a basis for
deciding that a particular value of the test statistic observed in the
data would be unlikely to occur by chance. The known discrete
distribution of rank statistics can make it possible to derive the
distribution of statistics in the nonparametric case which would be
difficult to derive for a continuous normal distribution, or which might

have to be estimated, or derived under impractical assumptions.

Two nonparametric statistical procedures relevant to this discussion are
the runs test for randomness (Wald and Wolfowitz, 1940) and the rank
correlation coefficient (Spearman, 1904). Both of these can be applied
to the problem posed in the previous section: to determine whether the
relationship between error, ¢, and an independent variable, T, indicates

systematic error within the equation being used.
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The runs test for randomness consists of ordering the individual errors,
€4 in order of the corresponding Ti values. Each error is then
assigned a symbol, +, if it is positive and a symbol, -, if it is
negative, producing a ordered sequence of the symbols, + and -. Each
subsequence of successive symbols of the same type is termed a run. The
underlying principle of the runs test is that a small number of runs
indicates that similar ¢ values occur for values of T near one another,
while a large number of runs indicates that ¢ values have little
relationship to T values. Hence, the former situation describes a pattern of
correlation between ¢ and T, or systematic deviation in the predictions

of the model when compared to observation.

For the case where there are n occurences of the symbol + and m
occurences of the symbol -, the probability of an even number of runs,
2k, or an odd number of runs, 2k+l, is given by eqs 7 and 8 for a random
(null) distribution of ¢. A table of the distribution of the number of
runs, R, as a function of m and n can be compiled using these equations.
2 n-1) (m-1
k-1) k-1
P(R = 2k) = ————— (7)
n+m
n
n-1)] (m-1 + n-1} (m-1
k J (k-1 k-1 k
P(R = 2k+l) = (8

[

For large values of m and n, a normal approximation, z, to the distibution
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of the random variable R can be used. This approximation is given by
eqs 9, 10, and 11. The distribution of Z will be approximately N(O0,1)
(normal with zero mean and unit variance) so that a table of the normal
distribution can be used to determine the probability that Z < z.

Figure 1 illustrates the approximation for typical values of m and n.

The additional term 0.5 arises in the numerator of eq 11 because a
continuous distribution of z is being used to approximate a discrete
distribution of R. The best approximation to the probability of a given
discrete value of R is given by the probability that the normal Z

calculated by eq 11 lies between Z(R - 0.5) and Z(R + 0.5).

2mn

Bg = E(R) = +1 (9)
m+n
2mn(2mn- m - n)

Var(R) = 5 (10)

(m+n)'(m+n-1)
R+ 0.5 -u
Z - R (11)

[Var(R)]1/?

To apply the runs test for randomness, the number of runs R is counted,
and the probability of observing R runs or fewer is calculated from eqs
7 and 8, or eqs 9, 10, and 11. If this probability is less than some
small number, a, the hypothesis that the error diétribution is random

with respect to T is rejected with probability 1l-a.

The strength of the runs test lies in its flexibility, ease of
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p(R<=r)

Figure 1. Normal Approximation to the Runs Statistic R.

normal distribution; points denote distribution of R.)

25

(Line denotes
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application, and lack of assumptions about the underlying distributions
of ¢ and T. However, the test is not very powerful, because it uses
only a small amount of the available information: namely, whether each
individual ¢ value is positive or negative. The magnitude of deviation

from zero is ignored.

The rank correlation coefficient proposed by Spearman (1904), rs, is
analogous to the correlation coefficient used in linear regression. The
difference is that the ranks of the data are correlated (as integers
from 1 to n), rather than the actual data values. The Spearman rank
correlation for the problem posed here would consist of replacing each

error value, ¢ by its rank when the € values were ordered, and

1’

replacing each independent variable T, by its rank when the T, values

i i
were ordered. Once this is done, the rank correlation coefficient is
computed by eqs 12 and 13, which are a simplified case of eq 6 when the

variables being correlated each contain an arrangement of the integers

from 1 to n.

d1 - rank(ei) - rank(Ti) (12)

n
62612
i=1
Y =1 - —— (13)
s n(n2 -1

To apply the rank correlation, the values of ¢ and T are ranked, rank
differences for each data point are calculated by eq 12, and the rank

correlation coefficient is calculated by eq 13. Critical values of r,
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are available in statistics references (Mendenhall and Scheaffer, 1973;
Bradley, 1967) as a function of these parameters: n, the number of data
points, and a, the probability that a value as large or larger than r,
would be observed in correlating two random distributions of ranks. If
the absolute value of rs exceeds the critical value for a particular a,
the hypothesis that the error distribution is random with respect to t
is rejected with probability 1-2a. (Since either positive or negative
correlation indicates systematic error, the test described is two-sided,

rejecting the randomness hypothesis if r, is either too large or too

small.)

Like the runs test, the rank correlation is flexible, easily applied,
and makes no assumptions about the underlying distributions of ¢ and T.
The rank correlation is generally more powerful than the runs test,
although not quite as powerful as the ordinary correlation of linear
regression, eq 6, when the underlying distributions are normal. This is
because the information about the actual deviations of the ¢ values from

one another is not used; only the relative ranks are.

The rank correlation satisfies one of the objections to the correlation
coefficient from ordinary linear regression: the possibly erroneous
assumption of normal distribution of the variables being correlated.
However, the second problem discussed earlier still exists. 1If the
equation used to model the data is nonlinear, predicted values may

systematically overshoot and undershoot the actual observations over
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ranges of the independent variable. Like the correlation coefficient
from linear regression of the actual observations, the rank correlation
coefficient will tend to cancel these effects, producing a "false
negative" conclusion of no correlation. For this reason, it may also be

a poor statistical test of the accuracy of extrapolation.

A PROPOSED NONPARAMETRIC STATISTIC FOR DETERMINATION OF SYSTEMATIC ERROR

The strengths of both the runs test and rank correlation test lie in
their nonparametric, distribution-free nature. This allows application
to any data, regardless of the form assumed for its underlying
distribution or even the knowledge of its distribution. Furthermore,
the distribution of the runs statistic, R, and the rank correlation
statistic, r,, and their critical values are relatively easy to
calculate, because the distributions are discrete and involve only

functions of positive integers.

Besides their general character as nonparametric procedures, the runs
test and rank correlation have strengths and weaknesses that complement
one another. The runs test lacks power because it reduces each data
value to a simple binary value, indicated above by the symbols, + and -.
Yet it is flexible in that it measures the deviation from randomness in
gradations from complete monotonicity (e.g., all + symbols precede all -
symbols; there are two runs), through randomness, to complete

periodicity (the sequence of + and - symbols alternate; there are n
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runs). The rank correlation retains a considerable amount of
information contained in the original data within the ranks. However,

it detects only a monotonic deviation from randomness.

A new statistical procedure, referred to as the Sum Square Rank
Difference (SSRD), combines the strong points of runs test and rank
correlation. The procedure begins by ordering the data values of the
independent variable, T, in either increasing or decreasing order, just

as the runs test did. The ranks of the € values corresponding to each

Ti value are used in calculating the statistic, Rd’ by eq 14.

n-1
R, = £ [Rank(e

2
- Rank(e,)] (14)
d 1=1 i

1+1)

If the error values are similar at neighboring values of the independent

variable, the difference in ranks will be small and the statistic, Rd’

will be relatively small. If the value of Rd calculated from data is so

small as to be unlikely to have occurred by chance, this would indicate
that systematic error is present within the equation when fit to this

data. If the distribution of error is random, R, will tend to take on

d

larger values, and the null hypothesis of no association between error

and the independent variable could be accepted.

In order to determine critical values of Rd’ its distribution must be

derived. For small values of n, this can be done by exhaustive listing

of all possible orderings of the ranks (integers from 1 to n) and
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calculation of Rd for each case. For larger values of n, numerical
approximation of the distribution can be made by Monte Carlo techniques.
If the distribution of Rd obeys the Central Limit Theorem (assumed here
without proof), a normal approximation to the distribution of R

d

(analogous to eq 11 for the runs test) can be used. This is given by

eqs 15 to 17.

R, - E(R))
z - 9 ‘1‘/2 (15)

[Var(R,)]

n(n - 1)(n + 1)
E(Ry) = (16)
6
n(n - 2)(n + 1)(5n2 - 2n - 9)
Var(Rd) - 17)
180

The expected value (mean) and variance formulas were derived from
exhaustive listing for the cases n = 2 up to n = 8. Since the largest
value that a single term in the summation of eq 14 can have is (n - 1)2,
and since there are (n - 1) terms, Rd is bounded above by (n - 1)3.
Therefore, the distribution mean, E(Rd), can be represented as a
function of n which is no larger than a polynomial of degree three. The
result of fitting a cubic polynomial with unknown coefficients to the
mean derived from exhaustive enumeration of all cases from n = 2 to
n = 5 was eq 16. Similar arguments apply to the variance: since it
results from the difference of the square of the expected value of Rd

and the expected value of Rdz, it can be represented as a polynomial of

degree six or less. Eq 17 resulted from fitting a sixth degree
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polynomial to calculated distribution variances for n = 2 to n = 8.

Since the SSRD statistic, R,, is nonparametric, it is valid even when
the underlying distributions of the variables are nonnormal. The use of
ranks retains more of the information contained in the actual
observations than the binary value (+ or -) used by the runs test. At
the same time, the comparison of neighboring values allows systematic
patterns of similarity to be detected when the rank correlation would
find no overall linear correlation. For these reasons, the SSRD
statistic appears to be a useful procedure for determining whether a

nonlinear parameter fit exhibits systematic error.

AN EXAMPLE CALCULATION FOR DETERMINATION OF SYSTEMATIC ERROR

The data in Table 1 represent a typical example of data fitting using eq
5. The dependent variable, o is solvent viscosity as a function of

the independent variable, T,, which is temperature. The predicted value

il

of the dependent variable is labeled nipred

, and the relative error in

prediction is labeled ¢ (Since eq 5 actually predicts the logarithm

g
of g the € values shown are derived from subtracting logarithms,
which makes them the logarithms of relative errors in the dependent
variable.) Figure 2 shows the observed data and predictions, and a
visual inspection seems to indicate the fit is good. The relative error

is plotted versus temperature in Figure 3, and the plot does not show a

regular linear pattern of systematic error; there appears to be
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Table 1. Acetone Viscosity Data and Predictions of Equation 5.

The values of the parameters are:

*

Al = -3.603 EVI /l(11 - -642.7 (K21 - Tgl) - 240.3
Ti' oC "i' cP ﬂipred’ cP €
-92.50 2.1480 2.1100 -0.0179
-80.00 1.4870 1.5030 0.0107
-59.60 0.9320 0.9557 0.0251
-42.50 0.6950 0.7026 0.0109
-30.00 0.5750 0.5792 0.0072
-20.90 0.5100 0.5102 0.0004
-13.00 0.4700 0.4608 -0.0198
-10.00 0.4500 0.4441 -0.0131

0.00 0.3990 0.3954 -0.0090

7.86 0.3638 0.3633 -0.0014
11.72 0.3495 0.3492 -0.0010
15.00 0.3370 0.3379 0.0027
15.24 0.3376 0.3371 -0.0015
19.02 0.3258 0.3250 -0.0025
23.01 0.3131 0.3130 -0.0004
25.00 0.3160 0.3073 -0.0279
27.22 0.3007 0.3012 0.0016
30.00 0.2950 0.2938 -0.0039
32.43 0.2863 0.2877 0.0048
36.00 0.2772 0.2790 0.0066
40.04 0.2675 0.2698 0.0087
41.00 0.2800 0.2677 -0.0448
44,12 0.2584 0.2611 0.0105
47.62 0.2503 0.2540 0.0148
52.20 0.2405 0.2453 0.0198
53.86 0.2377 0.2423 0.0191

References: Weast, 1979; Washburn, 1929.

Table 2. Calculation of Linear Correlation Coefficient, r.

n = 26 ST, - 172.84 £ e, = -0.0003
S T,e, = 0.3069 £ T.2 = 41205.9 £ e.2 = 0.0059309
1€1 i i
26 - 0.3069 - 172.84 - (-0.0003)
r= 2.1/2

(26 - 41205.9 - (172.846)2)Y/2 (26 . 0.0059309 - (-0.0003)2)1/2

r = 0.0005
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Figure 2. Viscosity of Pure Acetone as a Function of Temperature.
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considerable scatter.

The T1 values given in Table 1 would probably not have come from a
normal distribution. Such a contention could be demonstrated by a
statistical procedure, such as the Kolmogorov-Smirnov goodness of fit
test (Kolmogorov, 1941; Smirnov, 1948), which allows an empirical
distribution (like the Ti values) to be compared to a hypothesized
distribution function (the normal distribution). That type of
demonstration will not be pursued here; mere observation of the values

will be used as evidence against an underlying normal distribution.

Applying the linear correlation coefficient, eq 6, using the summations
of the data given in Table 2, results in a correlation coefficient of

r = 0.0005, indicating nearly perfect lack of correlation between ¢ and
T. The chance of observing a correlation coefficient with magnitude at
least this large in a chance arrangement of 26 normally distributed
pairs of values would be 99.8 percent! The correlation coefficient
gives us no reason to suspect the error in eq 5 is systematic. This
example shows that the linear regression correlation coefficient can be
a poor statistical test for systematic error in a nonlinear parameter

fit.

The details of the calculation of the runs test are given in Table 3.
Replacement of the data with the + and - symbols gives 10 runs, with 14

positive data values and 12 negative data values. Since m and n are
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both larger than 10, use of the limiting normal distribution is valid.
The mean and variance of this distribution are calculated according to
eqs 9 and 10, then eq 11 is applied. The resulting normal variable,
Z < -1.379, would occur by chance in only 8.5 percent of randomly
distributed pairs of values. The runs test allows the rejection of the
null hypothesis (no correlation between ¢ and T) at the 90 percent
confidence level, although not at the 95 percent level. This rejection

would be evidence for the presence of systematic error.

-+ +++ - - - - - T I S R S S
12 3 4 5 6 78 9 10
R = 10 runs n =14 (+) m=12 (-)
2 - 12 - 14
Bg = E(R) = ———— + 1 = 13.923
12 + 14

2 12 - 14 - (2 - 12 - 14 - 12 - 14)

Var(R) = = 6.163

12 + 1&)2(12 +14 - 1)
P(R £ 10) = p(Z < 2)
(10.5 - 13.923)

z = - -1.379
(6.163)1/2

p(Z £ -1.379) = 0.085

The data in Table 4 are used for calculation of both the rank
correlation coefficient and the SSRD statistic. These data were
produced by replacing the observed values in Table 1 by their ranks
within the 26 data points. The third and fourth columns contain

quantities used in the statistic calculations.
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Ranked Temperature and Error Data.

Rank(ei)

4
21
26
22
18
13
3
5
6
10
11
15
9
8
12
2
14
7
16
17
19
1
20
23
25
24

2
di , eq 12

9
361
529
324
169
49
16
9

9

0

0

9

s diz - 2348

2
[Rank(e1+1)-Rank(ci)] , eq 14

289
25
16
16
25
100
4
1
16
1
16
36
1
16
100
144
49
81
1
4
324
361

25
z
i-1

[Rank(ei+1)-Rank(ei)]2 - 1640
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The data in Table 4 were used to determine the rank correlation
coefficient in Table 5, by use of eq 13. The value, rs = 0.1973, is not
significant at the 80 percent level, i.e., a value of this magnitude
would arise more than 20 percent of the time from a randomly chosen
sample. The hypothesis that the variation of ¢ with T in the data is

random could not be rejected.

The rank correlation seems to show considerably more relationship
between ¢ and T than the linear correlation coefficient based on the
original data. Even though the data in Table 4 contain less information
than the data in Table 1 from which they were derived, the fact that the
T1 observations are not normally distributed makes the linear
correlation coefficient an inappropriate statistical test for this data.
The rank correlation coefficient assumes no form for the distribution of
the original data: hence, it is appropriate and in fact detects some

correlation, although not at a statistically significant level.

Table 5. Calculation of Rank Correlation Coefficient, r,.

6 - 2348
r,=1- ——F—— =0.1973
26(26° - 1)
p(lr | 2 0.259) = 0.20 p(lr | 2 0.329) = 0.10

Calculation of the SSRD statistic using eqs 15 to 17 is shown in Table

6. The required summation in eq 14 which defines R, is already given in

d

Table 4. When the mean and variance are calculated and substituted into

the normal approximation formula, the resulting normal variable,
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Z € -2.305, would occur only 1.06 percent of the time by chance if the
pairs were random. The null hypothesis can be rejected at virtually the
99 percent confidence level when the SSRD statistic is used. The test
gives strong evidence to what may not be apparent to a casual viewer of
the data: that a systematic, nonlinear pattern of overprediction and

underprediction is present.

Table 6. Calculation of Sum Square Rank Difference, R

"

25 )
R, -ifl[Rank(ei+1)-Rank(ei)] - 1640

26 - (26 - 1) - (26 + 1)
ER,) - - 2925
6
12 26 - (26 - 2)(26 + 1)(5 - 26% - 2 - 26 - 9) Y1/2
(Var(Rp] ™" = = 557.37
180

1640 - 2925

Z = — . .2.305
557.37

p(Z < -2.305) = 0.0106

In summary, the newly proposed SSRD procedure for testing whether a
nonlinear parameter estimation is systematically in error (alternative
hypothesis) or randomly in error (null hypothesis) was more successful
then standard procedures on the sample data set. This is believed to be
because it combines the flexibility in detecting patterns of similarity
found in the runs test with the additional information present in
rankings found in the rank correlation coefficient. Since the new

procedure is nonparametric, it may be applied to any data without
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concern about the form of the underlying distribution from which the
observations were made. This makes the SSRD procedure more appropriate
for use with physical data observed over uniform intervals than linear

parametric tests such as the correlation coefficient.

Appendix C contains additional examples of the SSRD statistic used with
thermodynamic data for solvent activity which were fit using the
nonlinear eq 4. An additional, similarly defined statistic is also shown
there: the Sum Absolute Rank Difference (SARD) defined by eq 18.

n-1

R.' = % |Rank(e

) - Rank(e,)| (18)
d =1 i+l i

Both the new statistics give similar results. From a mathematical
standpoint, the SSRD is probably preferable to the SARD because general
results are more difficult to derive mathematically for expressions

involving absolute values.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In view of the theoretical results given above and their comparison to

available data, the following conclusions can be made.

1) Use of a variable size parameter concept to modify the athermal
Flory-Huggins form of the entropy of mixing, incorporating an empirical
free volume correction, was successful. The resulting VSP correlation
technique provided predictions of polymer solution thermodynamics that
were more accurate than the original Flory-Huggins method or the UNIFAC-
FV method in most cases. When combined with appropriate terms to model
residual (enthalpic) interactions, the accuracy of the VSP technique was
increased further. Except for the case in which the residual term
contained an adjustable constant, the VSP technique required only a
single adjustable binary parameter, like the Flory-Huggins model.
Although the UNIFAC-FV model requires no adjustable binary parameters,
it does require more extensive pure component data which may not be

available.
2) The VSP method with an expression for residual interaction given by
the Analytical Solution of Groups (ASOG) provided a more accurate

correlation of experimental data than the VSP method with no residual
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interaction term. No additional adjustable binary parameters were
needed to use ASOG, since a tabulated group interaction database is

available.

3) In some cases when the overall fits of different correlations were
similar in accuracy, predicted infinite dilution weight fraction
activity coefficients showed considerable sensitivity to the particular
correlation chosen. This seemed especially true in cases where these

infinite dilution values were larger than approximately six.

4) A framework for analyzing residual interactions in group
contribution thermodynamic models based upon their mathematical
properties was proposed for the binary component case including at most
two distinct functional groups. The analysis indicated that the unit of
size chosen to normalize the measurement of functional groups in a
molecule has an effect on the predictions of the model. Equations for
removing this normalization dependence were given. These equations were
also able to provide bounds on the magnitude of residual interactions
based upon limited data. Such bounds were due to the additional
constraint imposed upon the solution by the functional group composition

of the molecular components.

5) Three models for predicting binary mutual diffusion coefficients in
concentrated polymer solutions were studied: constant diffusivity,

linear variation of diffusivity with concentration, and a complete free
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volume model. Techniques for determining which model was appropriate
for a given range of temperature and composition were shown. Under
typical devolatilization conditions, it was shown that the simpler
models often gave the same predictions as the complete free volume

model.

6) The linear diffusivity model allowed free volume effects and
chemical potential effects to be separated and described by single
parameters. When applied to typical data for polystyrene and various
solvents, this approach explained why diffusivity increases with solvent
concentration (at low solvent concentrations) in some systems, while it
decreases or remains roughly constant in others. Although the free
volume term typically leads to a moderately strong increase in
diffusivity, the thermodynamic term leads to a decrease in diffusivity,
the effect of which is proportional to the nonideality of the solvent-

polymer mixture.

7) When viscosity data were fit to equations to evaluate free volume
parameters, these parameters were extremely sensitive to slight
variations in the data. Alternative free volume parameters could be
chosen which fit the viscosity data equally well as the original
parameters, but which led to considerably different diffusivity

predictions.

8) A general statistical procedure for determining whether a nonlinear
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data fit exhibits systematic rather than random error was proposed and
demonstrated on viscosity data as a function of temperature. The
procedure was based on nonparametric statistics and combined the strong
points of the runs test for randomness and the rank correlation
coefficient. When applied to the viscosity data set, the new test
statistic, Sum Square Rank Difference, was able to detect a complicated
pattern of systematic error which was not detected in a statistically
significant fashion by standard correlation, rank correlation, and runs
test procedures. The new test appeared to be particularly powerful in
cases where the underlying distribution of the data is not normal, and

contains outlier values.

Several recommendations can be made for additional study into the topics

discussed in this dissertation.

1) The VSP technique could be generalized to apply to ternary or higher
multicomponent systems. Since the ASOG model is a multicomponent model,
it can be applied for the residual term in these general cases. Only

the VSP free volume/entropy term needs to be generalized.

2) Generation of the adjustable parameter in the VSP technique (the
infinite dilution weight fraction solvent activity coefficient) by some
a priori approach such as group contribution could be attempted. This
would make VSP equivalent in nature to UNIFAC-FV. Predictions of some

polymer properties, such as solubility parameter, already make use of
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additive group contributions to the molar volume. These could be
adapted for use in a simple equation of state approach for the free
volume contribution to solution nonideality. The combination of
experimental and tabulated volumes, as done in UNIFAC-FV, should be

avoided.

3) A model for the temperature dependence of the adjustable parameter
in the VSP technique could be proposed. Since the ASOG-KT constants
contain a temperature dependence, this would give a complete temperature
dependence to the VSP model, making it equivalent in nature to the
equation of state techniques. This might be possible in conjunction
with recommendation 2 above, if the temperature dependence of free

volume were effectively modeled.

4) The analysis of residual terms in group contribution models should
be extended to the general multicomponent, multifunctional group case.
This would make the approach less of a novelty and more of a practical
technique for estimating activity coefficients. The nomenclature chosen
lends itself to such a generalization, with the exception of the group
ratios 81 and 8y: the use of gjk to represent to ratio of functional
groups of type j to those of an (arbitrary) type 1 in molecular

component k would be more appropriate in the general case.

5) A more complete study of the sensitivity of predictions of the group

contribution models to the normalization unit size could be attempted.
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Perhaps the optimal normalization unit (in terms of predictive accuracy)
would be different for different functional groups. This seems
unphysical, but the present mathematical property of normalization unit
size dependence in these models is already unphysical. Why should there

be a different result when a functional group volume is taken as 5 A3

rather than SxIO'3 nm3?

6) A group contribution model which did not have this property of
normalization dependence could be proposed. In the present models, the
component activity coefficient is taken as the sum of functional group
activity coefficients, each of which are given by a Wilson-type
equation. If instead, the component interaction parameters as taken as
the sum of functional group interaction parameters, and then the Wilson
equation is applied to these parameters, the resulting model should no
longer contain a normalization dependence. If the Wilson equation is
used, however, it will also unfortunately lose the ability to model
liquid phase immiscibility. Alternatively, NRTL might be used as the

basis for the model to preserve this ability.

7) Only the simplest VSP model, with no residual interaction, was
applied to the prediction of the chemical potential dependence of
diffusivity. Since the various residual interaction terms can lead to
large differences in infinite dilution behavior, it would be useful to

try applying some of these other terms to the prediction of diffusivity.
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8) When fitting experimental viscosity data to equations for the
evaluation of free volume parameters, care must be taken to avoid
extrapolation errors. Since the recommended procedure is to fit data
from low temperatures where activation energy effects are negligible
compared to free volume effects, the fit should be analyzed very
carefully if diffusivity predictions are to be made at higher
temperatures. The statistical test proposed in Chapter 5 would be

useful in this regard.

9) The present procedure of fitting viscosity data at low temperature
to derive free volume parameters, then assuming these free volume
parameters and fitting diffusivity data to derive an activation energy
and preexponential factor, seems unnecessarily complicated. Further, it
leads to unphysical results, such as a large difference in activation
energy and (consequently) several orders of magnitude difference in
preexponential factor, for the similar systems poly(styrene)-toluene and
poly(styrene)-ethylbenzene. Instead, viscosity data over a large
temperature range should be fit to a combined free volume and activation
energy model, and analogies between mass and momentum transport should
be used to generate an activation energy for diffusion from the
activation energy for viscosity. This will leave only the

preexponential diffusivity factor to be evaluated from data fit.

10) Further analysis of the Sum Square Rank Difference statistical

procedure should be attempted. Although the equations given for the



149
mean and variance were derived in a mathematically valid way, it might
be possible to produce a more satisfying (elegant) derivation. The
assumption that the Central Limit Theorem applies to the distribution
should be proved in a rigorous manner. If possible, the power function
of the statistic should be calculated (or estimated), and the asymptotic
relative efficiency of the statistic compared to alternative statistical

tests should be derived under various standard distributions of observed

data.



APPENDIX A.

Data used in Thermodynamic Modeling.

The following data were used as input to computer programs which
generated the results of thermodynamic models used in Chapter 2 of this
dissertation. Each data set contains solvent activity as a function of
concentration for a particular solvent-polymer pair at a particular
temperature. In order to use the data as input to a computer program, a

standard format was followed throughout.

A line by line description of the data set contents is given here.
Lines 1 to 4 define the compounds and the temperature. Lines 5 to 7
define the infinite dilution activity to be used as a parameter in the
model, or give a data point from which the parameter can be
extrapolated. The units of measurement are also given here. Lines 8
and 9 define polymer and solvent density data and their units. Line 10
and all following lines define the solvent activity data for these

compounds at this temperature as a function of concentration.

Line 1: A heading for the data set, giving the solvent, the polymer,

and the temperature.

Line 2: The solvent name in upper case letters.

150



Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 7a:

151
The polymer name in upper case letters.

The temperature (K) as a real number. This equals the Celsius

temperature plus 273.16.

The infinite dilution weight fraction solvent activity
coefficient, 010, as a real number, or zero if unknown. In
the data sets presented here, 010 was assumed unknown, so zero

was always entered.

If Olw was not given (line 5 was zero), an solvent activity or
activity coefficient as a real number, followed by the lower
case letter a (for activity), w (for weight fraction activity
coefficient), or X (for mole fraction activity coefficient).
If 1line 5 was nonzero, only the letter a, w, or X should be

-3

given.

If 01"° was not given (line 5 was zero), a concentration as a
real number, followed by the lower case letter w (for weight
fraction solvent), m (for mass ratio of solvent to polymer),
or X (for mole fraction solvent). If line 5 was nonzero, only

the letter w, m, or x should be given.

If mole fraction solvent is the concentration variable (line 7

contained the lower case letter x), the polymer molecular



Line 8:

Line 9:
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weight and solvent molecular weight are given as real numbers.
Otherwise, this line is not present. It is not present in the
data sets presented here because mole fraction solvent was

never used for the concentration variable.

The density or a related quantity for the polymer as a real
number, followed by the lower case letter d (for density in
g/cm3), v (for specific volume in cm3/g), or ; (for molar

volume in cm3/g mol).

The density or a related quantity for the solvent as a real

number in the same units as were given for the polymer in line

8.

Lines 10 and following: Each line contains a solvent concentration as a

real number in the same units as line 7 followed by a solvent
activity or activity coefficient as a real number in the same
units as line 6. The end of the data set is marked by a line
containing a concentration value which is out of the legal

range.

It is assumed that line 1 of a new data set follows a line containing an

illegal concentration value, so that multiple data sets can be read from

a single computer disk file. The data used in this work is listed below

as Table A-1, in the exact format of the computer disk file, with two

exceptions. The first exception is that blank lines have been
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interspersed between data sets. The second exception is that the

reference for each data set is listed to the right of the data.

Dr. Eric A. Grulke of Michigan State University has a disk copy of the

data file. The file name is ASOGVSP.DAT.
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Table A-1. Data Used in Thermodynamic Modeling.

Toluene-Polystyrene at 25 C
TOLUENE

PS

298.16

.403a
111w
.083 4
.8610
.191
.273
.476
.156
.236
.304
.380
.599
.744
.918
10

.611 (Bawn, Freeman, and Kamaliddin, 1950)
.740
.918
.523
.704
.791
.866
.969
.997
.000

+t O00000DO0OO0CO0O0OHOOO
HOOOOOOOOO

Toluene-Polystyrene at 60 C
TOLUENE

PS

333.16

0

0.383a

0.102w

1.074 4

0.82355

0.179 0.576 (Bawn, Freeman, and Kamaliddin, 1950)
0.261 0.725

-10

Toluene-Polystyrene at 80 C
TOLUENE

PS

353.16

0

0.706a

0.246w

1.068 4

0.8075

0.458 0.914 (Bawn, Freeman, and Kamaliddin, 1950)
0.671 0.984

-10
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Table A-1 (cont’d.).

Methyl ethyl ketone-Polystyrene at 25 C
MEK

Ps

298.16

.517a

.091w

.091 4

.79970

.215 0.808 (Bawn, Freeman, and Kamaliddin, 1950)
.279 0.882

.298 0.906

-10

COo0OO0OOrHOOO

Benzene-Polyisobutylene at 25 C
BENZENE

PIB

298.16

.2990a
.0457m
.91693 4
.87382

.5948 0.9476 (Eichinger and Flory, 1968a)
.4732 0.9227
.4226 0.9120
.340 0.8759
.3251 0.8548
.2258 0.7602
.1787 0.7029
.1767 0.6919
.1044 0.5169
.0676 0.4058
-2 0

[~ NeNeNeoNoNeNoNoNeNeNoNoNeNo N o]

Benzene-Polyisobutylene at 10 C
BENZENE

PIB

283.16

0

0.8388a

0.291m

0.92 d

0.8895

0.5543 0.9595 (Eichinger and Flory, 1968a)
0.8331 0.9811

-2 0



Table A-1 (cont’d.).
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Cyclohexane-Polyisobutylene at 25 C

(Eichinger and Flory, 1968b)

N-pentane-Polyisobutylene at 25 C

CYCLOHEXANE
PIB

298.16

0

0.4625a
0.147m
1.0906v
1.2921

1.318 0.9598
0.668 0.8758
0.434 0.7836
0.390 0.708
0.307 0.6937
0.232 0.6105
0.198 0.5537
-2 0
N-PENTANE

PIB

298.16

0

0.2120a
0.0294m
1.0906v
1.6094

1.405 0.9897
0.4760 0.9263
0.488 0.9208
0.3634 0.8804
0.2688 0.8093
0.227 0.7684
0.1530 0.6434
0.0786 0.4414

-2 0

(Eichinger and Flory, 1968c)
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Table A-1 (cont’d.).

Triisopropylbenzene-Polystyrene at 165 C
TRIISOPROPYLBENZENE

PS

438.16

0

0.296a
0.02979w
1.022 d
0.7
0.06557 0.500 (Liu, 1980)
0.08622 0.620

-2 0

Triisopropylbenzene-Polystyrene at 175 C
TRIISOPROPYLBENZENE

PS

448.16

0
0.203a

0.02036w

1.022 4

0.7

0.03793 0.267 (Liu, 1980)
0.06591 0.530

-2 0

Carbon disulfide-Polystyrene at 115 C
Cs2

PS

388.16

.0526a

.01439w

.054 d

.1608

.02448 0.0873 (Liu, 1980)
.04078 0.1413

-2 0

oCoOrHrMHHOOO
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Table A-1 (cont’'d.).

Carbon disulfide-Polystyrene at 140 C
Cs2

PS

413.16

.03179a

.008182w

.039 d

.1418

.01112 0.04260 (Liu, 1980)
.01833 0.05490

.02900 0.0855

1 O0OOMHMHFOOO

N
o

Methanol-Polymethyl methacrylate at 120 C
METHANOL

PMMA

393.16

.044a

.002738w

.141 4

.6900

.006183 0.0952 (Liu, 1980)
.009214 0.1410

20

P O0ooOoMOOO

Methanol-Polymethyl methacrylate at 130 C
METHANOL

PMMA

403.16

.0316a

.002724w

.135 d

.677

.005787 0.0707 (Liu, 1980)
.008197 0.1043

20

1 00O~ OO0O0
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Table A-1 (cont’d.).

Toluene-Polymethyl methacrylate at 130 C
TOLUENE

PMMA

403.16

0
0.1768a

0.01662w

1.135 4d

0.775

0.05976 0.3480 (Liu, 1980)
0.1120 0.5550

-2 0

Toluene-Polymethyl methacrylate at 160 C
TOLUENE

PMMA

433.16

.0743a

.005851w

.120 4

.756

.01402 0.1393 (Liu, 1980)
.02516 0.2129

.02259 0.2111

.03676 0.2780

-2 0

CO0OO0OO0OOrHOOO

Toluene-Polyvinyl acetate at 35 C
TOLUENE

PVA

308.16

.5106a

.08397w

.182 d

.847

.11725 0.6304 (Ju, 1981)
.16142 0.7530

.19490 0.8200

-2 0

COoOO0OO+HOOO



160
Table A-1 (cont’d.).

Toluene-Polyvinyl acetate at 40 C
TOLUENE

PVA

313.16

.3505a
.05131w

.178 d

.842

.07616 0.4723 (Ju, 1981)
.08900 0.5283
.09366 0.5369
.12762 0.6750
.13879 0.7016
.17080 0.7590
-2 0

OCO0OO0OO0OO0OO0OOMHOOO

Toluene-Polyvinyl acetate at 47.5 C
TOLUENE

PVA

320.66

0
0.3384a

0.05201w

1.172 4

0.835

0.07102 0.4524 (Ju, 1981)
0.10747 0.6032

-2 0

Chloroform-Polyvinyl acetate at 35 C
CHLOROFORM '

PVA

308.16

0

0.2590a

.16316w

.182 4

.463

.23146 0.3289 (Ju, 1981)
.27614 0.3885

.32688 0.4498

.38099 0.5197

.41592 0.5691

.46433 0.6373

-2 0

[oNeNeNoNeNo N N -]
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Table A-1 (cont’d.).

Chloroform-Polyvinyl acetate at 45 C
CHLOROFORM

PVA

318.16

0

0.1375a
0.09303w

1.174 4

1.444

0.12100 0.1704 (Ju, 1981)
0.13925 0.1956
0.16448 0.2329
0.19824 0.2708
0.20573 0.2988
0.22683 0.3175
0.24657 0.3402
0.27616 0.3817
0.29528 0.4074
0.32486 0.4435
0.35519 0.4797
0.42694 0.5929
0.46082 0.6350
0.47794 0.6665
0.49949 0.7073
<20

Benzene-Polyethylene oxide at 70 C
BENZENE

PEO

343.16

0

4.3118w
0.06163w
1.10 4

0.825

0.06711 4.2311 (Chang and Bonner, 1975)
0.0991 3.8095
0.1387 3.4739
0.1926 3.0925
0.261 2.6898
0.3881 2.1527

-2 0
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Table A-1 (cont’d.).

Benzene-Polyethylene oxide at 70 C (second run)
BENZENE

PEO

343.16

.1031w

.05005w

.10 4

.825

.08908 3.7426 (Chang and Bonner, 1975)
.1422 3.3435

.2006 2.9955

.2649 2.7017

-2 0

[eNoNeoNoNoN _Nel¥-Ne)

Benzene-Polyethylene oxide at 75.1 C
BENZENE

PEO

348.26

.9837w

.05254w

.095 d

.82

.08096 3.7549 (Chang and Bonner, 1975)
.1083 3.5608

.1454 3.3316

-2 0

COO0OOMHMOWO

Benzene-Polyethylene oxide at 88.1 C
BENZENE

PEO

361.26

0

4.2337w

.02687w

.082 d

.81

.05012 3.9859 (Chang and Bonner, 1975)
.06671 3.8503

.0906 3.6668

-20

OCOO0OOmMO



Table A-1 (cont’d.).
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Benzene-Polyethylene oxide at 102 C
BENZENE
PEO
375.16

[eNeNeoNeNoNeNoNNeNeNaoNoll el o)

.3033w
.02076w
.065 d
.80

.02192
.02502
.02919
.03687
.04418
.04777
.05834
.07706
.09184
.1180 3.1694

.2801
L2717
.2248
L1477
.0704
.0423
.9496
L7134
.5198

WWwWwesesesesess

-2 0

(Chang and Bonner, 1975)

Benzene-Polyethylene oxide at 125.4 C
BENZENE
PEO

398.56

0

4,249

(e NeNeNoN o]

.01094w

.042 d

.78

.01769 4.1411
.02392 4.0804
.03278 3.9928

-2 0

(Chang and Bonner, 1975)

Benzene-Polyethylene oxide at 125.7 C
BENZENE
PEO
398.86

OO OoOOMHO SO

1547w
.01115w

.042 4

.78

.01734 4.0733
.02474 3.9452
.03313 3.8742

-2 0

(Chang and Bonner, 1975)
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Table A-1 (cont’d.).

Benzene-Polyethylene oxide at 150.4 C
BENZENE

PEO

423.56

.3113w

.007975w

.017 d

.76

.01130 4.2015 (Chang and Bonner, 1975)
.01635 4.0606

.02256 3.9560

-20

QOO Om=OH&HO



APPENDIX B.

Results of Thermodynamic Modeling Using Data Extrapolated from Low

Solvent Concentrations.

The results given in this appendix were produced as output by a computer
program using the data in Appendix A. This output was used as results
in Chapter 2 of the dissertation. The program itself and instructions
for its execution are given in Appendix D. Experimental data for a
given polymer-solvent system and given temperature were fit to the VSP
model (the column headed ASOGVSP in the table) and the Flory-Huggins
model using a single data point at low solvent concentration to evaluate
an adjustable parameter. The UNIFAC-FV model was also applied to the

data for comparison.

Each data set in Table B-1 begins with a heading which gives the polymer
and solvent used and the temperature. The next three lines give the
concentration data point from which adjustable parameters were
extrapolated, and the values of those parameters. The remainder of each
data set contains a comparison of experimental and predicted weight
fraction solvent activity coefficients for each concentration in the

data set. At the bottom of each column, the root mean square error for
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the data set is given.

Table B-1. Results Using Thermodynamic Data Extrapolated from Low
Solvent Concentrations.

Toluene-Polystyrene at 25 C
By correlating activity at finite conc 0.111

Infinite dilution wt frac activity coefficient was 4.6807
Flory-Huggins chi parameter was 0.3140

Wt Frac Activity Coefficients and Percent Error

Solvent  Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.156 3.353 3.305 -1.4 3.347 -0.2 3.220 -4.0
0.191 3.199 3.081 -3.7 3.124 -2.3 3.003 -6.1
0.236 2.983 2.826 -5.3 2.867 -3.9 2.758 -7.5
0.273 2.711 2.640 -2.6 2.679 -1.2 2.580 -4.8
0.304 2.602 2.499 -4.0 2.535 -2.6 2.444 -6.1
0.380 2.279 2.198 -3.6 2.227 -2.3 2.157 -5.3
0.476 1.929 1.893 -1.9 1.913 -0.8 1.866 -3.2
0.599 1.618 1.590 -1.7 1.602 -1.0 1.577 -2.5
0.744 1.340 1.323 -1.3 1.327 -0.9 1.318 -1.6
0.918 1.089 1.088 -0.1 1.088 -0.0 1.088 -0.2

Avg pct error 2.5 1.5 4.1

Toluene-Polystyrene at 60 C

By correlating activity at finite conc 0.102

Infinite dilution wt frac activity coefficient was 4.7774
Flory-Huggins chi parameter was 0.2984

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.179 3.218 3.189 -0.9 3.229 0.3 3.187 -1.0
0.261 2.778 2.720 -2.1 2.756 -0.8 2.700 -2.8

Avg pct error 1.5 0.6 1.9
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Table B-1 (cont’d.).
Toluene-Polystyrene at 80 C
By correlating activity at finite conc 0.246
Infinite dilution wt frac activity coefficient was 5.0991
Flory-Huggins chi parameter was 0.3495

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.458 1.996 1.971 -1.2 1.998 0.1 1.934 -3.1
0.671 1.466 1.454 -0.9 1.462 -0.3 1.442 -1.7

Avg pct error 1.1 0.2 2.4

Methyl ethyl ketone-Polystyrene at 25 C

By correlating activity at finite conc 0.091
Infinite dilution wt frac activity coefficient was 8.6856
Flory-Huggins chi parameter was 0.8510

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.215 3.758 3.700 -1.5 4.113 9.5 4.164 10.8
0.279 3.161 3.099 -2.0 3.431 8.5 3.456 9.3
0.298 3.040 2.953 -2.9 3.261 7.3 3.282 7.9

Avg pct error 2.1 8.4 9.4



Table B-1 (cont’d.).

Benzene-Polyisobutylene at 25 C

168

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was

Flory-Huggins chi parameter was

Wt Frac

Solvent  Exptl
0.063 6.409
0.094 5.468
0.150 4.608
0.152 4.636
0.184 4.127
0.245 3.484
0.254  3.452
0.297 3.070
0.321 2.873
0.373 2.541

Avg pct error

Benzene-Polyisobutylene at 10 C

1.08

78

0.043

8.

Activity Coefficients and Percent Error
Flory-Huggins UNIFAC-FV

ASOGVSP

.274
.520
.506
.484
.032
.370
.294
.946
.779
472

NN WWEsESPFULO

2.

-2.

1.
-2.
-3.
-2.
-3.
-4,
-4,
-3.
-2.

9

NWOARNARWWWNO -

.871
.224
.251
.229
.752
.001
911
.485
.275
.881

MNWWLWWsEPFPLULOAO

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was

Flory-Huggins chi parameter was

Wt Frac

Solvent  Exptl
0.357 2.691
0.454 2.159

Avg pct error

1.27

7.
13.
14.
12.
15.
14.
13.
13.
14.
13.

13.2

27

SFOVLWOHFH®O®O®N

0.225

.016
.452
.620
.601
.199
.572
.497
.l44
.970
.642

NN WWLWESsPFULO

-6.
-0.

0.
-0.

10.

Activity Coefficients and Percent Error
Flory-Huggins UNIFAC-FV

ASOGVSP

2.616
2.122

2.

-2

2

.8
-1.

7

3.226 19.9
2.516 16.5

18.2

2.749
2.236

2.
3.

2.9

SFWNOHENDM-

4655

0386



Table B-1 (cont’d.).
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Cyclohexane-Polyisobutylene at 25 C

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was
0.4221

Flory-Huggins chi parameter was

Wt Frac
Solvent

.165
.188
.235
.281
.303
.400
.569

[eNeNeoNeoNoNeNo]

Exptl

.350
.242
.953
.523
.589
.187
.688

HNMNMDNODDNDWW

Avg pct error

N-pentane-Polyisobutylene at 25 C

0.128

4,

Activity Coefficients and Percent Error
Flory-Huggins UNIFAC-FV

ASOGVSP
3.330 -0.
3.173 -2.
2.890 -2.
2.649
2.544 -1.
2.148 -1.
1.665 -1.
2.1

5.

$ 00O O = H-HON

.409
.253
.966
.719
.611
.199
.689

HFNNNMNNDNDWW

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was
0.7601

Flory-Huggins chi parameter was

Wt Frac
Solvent

.072
.133
.185
.212
.267
.322
.328
.584

[eNeNoN-NoNeNoie]

Exptl

.057
.849
.153
.820
.303
.872
.808
.694

HFNNDWWSSO

Avg pct error

1.7

OCOO~NOOm
O oo H W

0.028

NN WW

.220
.070
.799
.570
471
.098
.642

-3.
-5.
-5.

1.
-4,
-4.
-2.

3.9

8.

Activity Coefficients and Percent Error
Flory-Huggins UNIFAC-FV

ASOGVSP
6.077 O
4.816 -0.
4.040 -2,
3.721 -2.
3.193 -3.
2.776 -3.
2.741 -2.
1.679 -0.
2.0

WHEWWOHNNW

.433
.205
.394
.050
465
.992
.952
.733

NN WSPSUBLO

5.2

NV

WHENWOVOWN

HNOMNMNWWWEWL

.654
487
.777
.488
.011
.635
.603
.644

-6.
-7.
-9.
-8.
-8.
-8.
-7.
-3.

7.4

9119

N ONWOVWN WY

5781
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Table B-1 (cont’d.).
Triisopropylbenzene-Polystyrene at 165 C
By correlating activity at finite conc 0.029
Infinite dilution wt frac activity coefficient was 12

Flory-Huggins chi parameter was 1.1421

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.065 7.625 7.901

Avg pct error 2.9 15.7 27.5

Triisopropylbenzene-Polystyrene at 175 C

By correlating activity at finite conc 0.020
Infinite dilution wt frac activity coefficient was 11
Flory-Huggins chi parameter was 1.0661

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.037 7.039 8.89 26.3 9.582 36.1 6.084 -13.
0.065 8.041 7.544 -6.2 8.427 4.8 5.528 -31.

Avg pct error 16.3 20.5 22.4

Carbon disulfide-Polystyrene at 115 C

By correlating activity at finite conc 0.014

Infinite dilution wt frac activity coefficient was 3
Flory-Huggins chi parameter was 0.4179

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.024 3.566 3.592

Avg pct error 0.8 1.3 30.7

3.6 8.984 17.8 5.551 -27.
0.086 7.191 7.031 -2.2 8.172 13.6 5.187 -27.

0.7 3.607 1.1 4.685 31.
0.040 3.465 3.493 0.8 3.516 1.5 4.503 30.

.4354

.5246

w o
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Table B-1 (cont’d.).
Carbon disulfide-Polystyrene at 140 C
By correlating activity at finite conc 0.008
Infinite dilution wt frac activity coefficient was 3

Flory-Huggins chi parameter was 0.4671

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.011 3.831 3.864 0.9 3.874 1.1 4.488 17.
0.018 2.995 3.812 27.3 3.827 27.8 4.414 A47.
0.029 2.948 3.737 26.7 3.760 27.5 4.309 46.

\

Avg pct error 18.3 18.8 36.9

Methanol-Polymethyl methacrylate at 120 C

By correlating activity at finite conc 0.002

Infinite dilution wt frac activity coefficient was 16.

Flory-Huggins chi parameter was 1.3043

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.006 15.397 15.483 0.6 15.905 3.3 21.457 39.
0.009 15.303 14.996 -2.0 15.594 1.9 20.775 35.

Avg pct error 1.3 2.6 37.6

Methanol-Polymethyl methacrylate at 130 C

By correlating activity at finite conc 0.002
Infinite dilution wt frac activity coefficient was 11
Flory-Huggins chi parameter was 0.9552

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.005 12.217 11.336 -7.2 11.473 -6.1 21.021 72.
0.008 12.724 11.134 -12.5 11.323 -11.0 20.493 61.

Avg pct error 9.9 8.6 66.6

.9461

e

5646

.8452
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Table B-1 (cont’d.).
Toluene-Polymethyl methacrylate at 130 C

By correlating activity at finite conc 0.016

Infinite dilution wt frac activity coefficient was 12.

Flory-Huggins chi parameter was 1.1082

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.059 5.823 8.029 37.9 8.993 54.4 5.382 -7.
0.112 4.955 6.082 22.7 7.131 43.9 4.508 -9.

Avg pct error 30.3 49.2 8.3

Toluene-Polymethyl methacrylate at 160 C

By correlating activity at finite conc 0.005
Infinite dilution wt frac activity coefficient was 13.
Flory-Huggins chi parameter was 1.1992

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.014 9.936 11.864 19.4 12.378 24.6 6.398 -35.
0.022 9.345 11.084 18.6 11.825 26.5 6.189 -33.
0.025 8.462 10.867 28.4 11.666 37.9 6.128 -27.

0.036 7.563 9.973 31.9 10.982 45.2 5.866 -22.

Avg pct error 24.6 33.6 29.8

Toluene-Polyvinyl acetate at 35 C

By correlating activity at finite conc 0.084

Infinite dilution wt frac activity coefficient was 9

Flory-Huggins chi parameter was 0.8949

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.117 5.377 5.295 -1.5 5.862 9.0 3.970 -26.
0.161 4.665 4.492 -3.7 5.031 7.9 3.512 -24.
0.195 4.207 4.014 -4.6 4.511 7.2 3.221 -23.

Avg pct error 3.3 8.0 24.8

0574

3599

S 0o O

.2829

NN
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Table B-1 (cont’d.).
Toluene-Polyvinyl acetate at 40 C
By correlating activity at finite conc 0.051

Infinite dilution wt frac activity coefficient was 8
Flory-Huggins chi parameter was 0.8450

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.076 6.201 6.114 -1.4 6.565 5.9 4.515 -27.
0.089 5.936 5.791 -2.4 6.263 5.5 4.341 -26.
0.093 5.732 5.682 -0.9 6.158 7.4 4.280 -25.
0.128 5.289 4.978 -5.9 5.466 3.3 3.877 -26.
0.139 5.055 4.778 -5.5 5.262 4.1 3.757 -25.
0.171 4.444 4.277 -3.8 4.737 6.6 3.447 -22.
Avg pct error 3.3 5.5 25.7

Toluene-Polyvinyl acetate at 47.5 C

By correlating activity at finite conc 0.052
Infinite dilution wt frac activity coefficient was 8
Flory-Huggins chi parameter was 0.7793

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.071 6.370 6.003 -5.8 6.356 -0.2 4.621 -27.
0.107 5.613 5.202 -7.3 5.597 -0.3 4.139 -26.

Avg pct error 6.5 0.3 26.9
Chloroform-Polyvinyl acetate at 35 C

By correlating activity at finite conc 0.163
Infinite dilution wt frac activity coefficient was 1
Flory-Huggins chi parameter was -0.2848

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.231 1.421 1.556 9.5 1.572 10.6 1.168 -17.
0.276 1.407 1.535 9.1 1.551 10.3 1.165 -17.
0.327 1.376 1.509 9.6 1.526 10.9 1.162 -15.
0.381 1.364 1.479 8.4 1.497 9.8 1.160 -14.
0.416 1.368 1.459 6.7 1.477 7.9 1.159 -15.
0.464 1.373 1.430 4.2 1.447 5.5 1.158 -15.

Avg pct error 7.9 9.2 16.1

.8537

SEBNNWON

.3169

wwun
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Chloroform-Polyvinyl acetate at 45 C

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was
-0.3918

Flory-Huggins chi parameter was

Wt Frac
Solvent

.121
.139
.164
.198
.206
.227
.247
.276
.295
.325
.355
427
.461
.478
.499

[eNeoNeNeNeoNeoNeoNoloNoNoNo oo N

Exptl

.408
.405
.416
.366
.452
.400
.380
.382
.380
.365
.351
.389
.378
.395
.416

I Y R S o N Tl S e S e T

Avg pct error

0.093

1.

Activity Coefficients and Percent Error

ASOGVSP

.473
.469
.463
.455
.453
448
.443
434
.429
.420
.410
.383
.369
.362
.353

Nl el e el el e

3.4

SfPUVLUWHFEWORRWS S
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Flory-Huggins UNIFAC-FV

.489
.488
.485
.480
.478
.475
471
.464
.459
.451
441
.415
.400
.393
.382

o D e e b et e e e

Benzene-Polyethylene oxide at 70 C

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was
0.3345

Flory-Huggins chi parameter was

Wt Frac
Solvent

0.067
0.099
0.139
0.193
0.261
0.388

Exptl

4.231
3.810
3.474
3.093
2.690
2.153

Avg pct error

&
(=)}

NOMFEMFEOAORUVUNAOAWVE®SVLWL
EFHOONVOVUNWNOVRNWOLWOODLWOo

0.061

Y ol ol e

.207
.204
.200
.195
.195
.192
.190
.187
.186
.183
.181
.177
.175
.174
.172

-14.
-14.
-15.
-12.
-17.
-14.
-13.
-14.
-14.
-13.
-12.
-15.
-14.
-15.
-17.

14.7

Activity Coefficients and Percent Error

ASOGVSP

4.253
3.936
3.591
3.192
2.779
2.207

2.7

NWWWwWwWo
VW SsLWL

Flory-Huggins UNIFAC-FV

.291
.982
.642
. 244
.826
.239

NN WWWS

4.1

SO
OO WwVwoWwmH

NN WWW

.524
.317
.085
.809
.510
.070

-16.
-12.
-11.
-9.
-6.
-3.

10.1

4937
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Table B-1 (cont’d.).
Benzene-Polyethylene oxide at 70 C (second run)
By correlating activity at finite conc 0.050

Infinite dilution wt frac activity coefficient was 4
Flory-Huggins chi parameter was 0.2403

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.089 3.743 3.765 0.6 3.785 1.1 3.379 -9.
0.142 3.344 3.368 0.7 3.392 1.5 3.066 -8.
0.201 2.996 3.001 0.2 3.026 1.0 2.771 -7.
0.265 2.702 2.663 -1.4 2.686 -0.6 2.494 -7.
Avg pct error 0.7 1.0 8.3

Benzene-Polyethylene oxide at 75.1 C

By correlating activity at finite conc 0.052
Infinite dilution wt frac activity coefficient was 4
Flory-Huggins chi parameter was 0.2102

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.081 3.755 3.749 -0.2 3.764 0.2 3.416 -9.
0.108 3.561 3.543 -0.5 3.559 -0.0 3.247 -8.
0.145 3.332 3.289 -1.3 3.307 -0.7 3.038 -8.

Avg pct error 0.7 0.3 8.9

Benzene-Polyethylene oxide at 88.1 C

By correlating activity at finite conc 0.026
Infinite dilution wt frac activity coefficient was 4
Flory-Huggins chi parameter was 0.2147

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.050 3.986 4.021 0.9 4.032 1.2 3.563 -10.
0.066 3.850 3.879 0.7 3.893 1.1 3.454 -10.
0.090 3.667 3.688 0.6 3.704 1.0 3.305 -9.

Avg pct error 0.7 1.1 10.3

.6088
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Table B-1 (cont’d.).
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Benzene-Polyethylene oxide at 102 C

By correlating activity at finite conc
Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.021 4.280 4.292 0.3 4.298 0.4 3.662 -14.
0.025 4.272 4.262 -0.2 4.269 -0.0 3.641 -14.
0.029 4.225 4.222 -0.0 4.230 0.1 3.613 -14.
0.036 4.148 4.150 0.0 4.160 0.3 3.562 -1l4.
0.044 4.070 4.084 0.3 4.094 0.6 3.515 -13.
0.047 4.042 4.051 0.2 4.063 0.5 3.492 -13.
0.058 3.950 3.959 0.2 3.972 0.6 3.426 -13.
0.077 3.713 3.802 2.4 3.818 2.8 3.314 -10.
0.091 3.520 3.685 4.7 3.703 5.2 3.230 -8.
0.118 3.169 3.491 10.2 3.510 10.8 3.087 -2.
Avg pct error 1.9 2.1 12.0
Benzene-Polyethylene oxide at 125.4 C
By correlating activity at finite conc 0.010
Infinite dilution wt frac activity coefficient was 4
Flory-Huggins chi parameter was 0.1810
Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.017 4.141 4.187 1.1 4.190 1.2 3.611 -12.
0.023 4.080 4.131 1.2 4.136 1.4 3.571 -12.
0.032 3.993 4.054 1.5 4.059 1.7 3.515 -12.
Avg pct error 1.3 1.4 12.4

0.020

0.2209

.5132
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Table B-1 (cont’d.).
Benzene-Polyethylene oxide at 125.7 C

By correlating activity at finite conc 0.011

Infinite dilution wt frac activity coefficient was 4.
Flory-Huggins chi parameter was 0.1583
Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV
0.017 4.073 4.101 0.7 4.103 0.7 3.613 -11.
0.024 3.945 4.038 2.4 4.041 2.4 3.566 -9.
0.033 3.874 3.969 2.4 3.973 2.5 3.513 -9.
Avg pct error 1.8 1.9 10.1

Benzene-Polyethylene oxide at 150.4 C

By correlating activity at finite conc 0.007

Infinite dilution wt frac activity coefficient was 4
Flory-Huggins chi parameter was 0.1876

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  ASOGVSP Flory-Huggins UNIFAC-FV

0.011 4.202 4.280

0.022 3.956 4.176 4.180

o

Avg pct error 3.9 4, 13.1

1.9 4.282 1.9 3.569 -15.
0.016 4.061 4.233 4.2 4.236 4.3 3.538 -12.
5.6 5.7 3.501 -11.

2540

w oW

.3883



APPENDIX C.

Results of Thermodynamic Modeling Using a Best Fit of All Data

The results given in this appendix were produced as output by a computer
program using the data in Appendix A. This output was used as results
in Chapter 2 of the dissertation. The program itself and instructions
for its execution are given in Appendix E. Experimental data for a
glven polymer-solvent system and given temperature were fit to the VSP
model assuming no residual interaction, the Flory-Huggins model, the VSP
model assuming a Flory-Huggins type residual interaction term, and the
VSP model assuming an interaction term given by Analytical Solution of

Groups (ASOG).

For each data set, a heading is given, followed by the values of
adjustable parameters determined by a least squares best fit criterion.
(The ASOG-VSP enthalpic coefficient is determined a priori from the ASOG
interaction parameter tables, not from fitting to the data, but is
included in this section for comparison.) The next section contains a
comparison of experimental and predicted weight fraction solvent
activity coefficients for each concentration in the data set. At the
bottom of each column, the root mean square error for the data set is
given. The following section gives the results of nonparametric

statistical tests of the randomness of the error in each model

178
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prediction compared to experiment, as discussed in Chapter 5 of the
dissertation. In cases where the Flory-Huggins or FH-VSP models predict
phase separation, the concentration at which it is predicted to occur is
given. (The VSP model using ASOG residual term is also capable of
predicting phase separation, but such prediction was not included in

this table.)

No ASOG interaction parameters are available for the ether oxygen (-0-)
functional group with the aromatic hydrocarbon (ArCH) functional group.
For this reason, calculations with the VSP model using ASOG residual
term could not be made for benzene-polyethylene oxide. There are values
given in the table for this system, but the ASOG-VSP results are
invalid, as the computer program generating the table set the
interaction parameters to zero for these functional groups. The results
for the other three models are valid for benzene-polyethylene oxide,

since those models do not use the ASOG parameter tables.
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Table C-1. Results Using Thermodynamic Data Fit to the Entire Data Set.
Toluene-Polystyrene at 25 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.9495
Flory-Huggins chi parameter: 0.3394

FH-VSP inf diln parameters: wt frac act coeff 4.5644 enth coeff 1.7256
ASOG-VSP inf diln parameters: wt frac act coeff 4.9391 enth coeff 1.0064

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl  VSP Flory-Huggins FH-VSP ASOG-VSP
0.111 3.631 3.769 3.7 3.739 3.0 3.673 1.2 3.767 3.7
0.156 3.353 3.411 1.7 3.403 1.5 3.375 0.7 3.410 1.7
0.191 3.199 3.168 -1.0 3.171 -0.9 3.164 -1.1 3.168 -1.0
0.236 2.983 2.893 -3.1 2.905 -2.6 2.917 -2.2 2.894 -3.0
0.273 2.711 2.694 -0.6 2.710 -0.0 2.732 0.8 2.695 -0.6
0.304 2.602 2.543 -2.3 2.562 -1.6 2.589 -0.5 2.545 -2.2
0.380 2.279 2.226 -2.3 2.245 -1.5 2.278 -0.0 2.228 -2.3
0.476 1.929 1.908 -1.1 1.924 -0.3 1.95% 1.3 1.909 -1.0
0.599 1.618 1.597 -1.3 1.607 -0.7 1.628 0.6 1.598 -1.2
0.744 1.340 1.325 -1.1 1.329 -0.8 1.338 -0.1 1.325 -1.1
0.918 1.089 1.088 -0.1 1.088 -0.1 1.089 0.0 1.088 -0.1

Standard pct err 2.1 1.6 1.1 2.0

Analysis of model error randomness

Sum sqr rank difference test: mean = 220.00 sd = 61.55

Test statistic 158 187 210 158
Normal (2Z) -1.007 -0.536 -0.162 -1.007
Reject level 0.843114 0.704061 0.564541 0.843114

Sum abs rank difference test: mean = 40.00 sd = 6.66

Test statistic 34 35 40 34
Normal (2Z) -0.900 -0.750 0.000 -0.900
Reject level 0.816062 0.773481 0.500000 0.816062

Phase separation behavior prediction

FH-VSP model: wt frac = 0.919
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Table C-1 (cont’'d.).
Toluene-Polystyrene at 60 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.8456

Flory-Huggins chi parameter: 0.2938

FH-VSP inf diln parameters: wt frac act coeff 4.6321 enth coeff 1.5868
ASOG-VSP inf diln parameters: wt frac act coeff 4.8393 enth coeff 1.0052

Wt Frac Activity Coefficients and Percent Error

Solvent  Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.102 3.755 3.792 1.0 3.777 0.6 3.750 -0.1 3.791 1.0
0.179 3.218 3.213 -0.2 3.220 0.1 3.227 0.3 3.213 -0.1
0.261 2.778 2.734 -1.6 2.750 -1.0 2.773 -0.2 2.735 -1.5

Standard pct err 1.3 0.8 0.4 1.3

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic 2 2 5 2

Normal (2) -1.414 -1.414 0.707 -1.414

Reject level 0.921358 0.921358 0.760243 0.921358

Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 2 2 3 2

Normal (Z) -1.414 -1.414 0.707 -1.414

Reject level 0.921358 0.921358 0.760243 0.921358
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Table C-1 (cont’'d.).
Toluene-Polystyrene at 80 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 5.1655
Flory-Huggins chi parameter: 0.3195
FH-VSP inf diln parameters: wt frac act coeff 4.7192 enth coeff 1.5798
ASOG-VSP inf diln parameters: wt frac act coeff 5.1523 enth coeff 1.0045

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.246 2.870 2.88 0.5 2.880 0.3 2.870 -0.0 2.884 0.5
0.458 1.996 1.975 -1.0 1.984 -0.6 1.997 0.1 1.976 -1.0
0.671 1.466 1.454 -0.8 1.459 -0.5 1.465 -0.1 1.455 -0.8

Standard pct err 1.0 0.6 0.1 1.0

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic 5 S ) 5
Normal (Z) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243
Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 3 3 3 3
Normal (Z) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243
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Table C-1 (cont’'d.).
Methyl ethyl ketone-Polystyrene at 25 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 8.9345
Flory-Huggins chi parameter: 0.7101

FH-VSP inf diln parameters: wt frac act coeff 8.2319 enth coeff 1.6469
ASOG-VSP inf diln parameters: wt frac act coeff 7.7699 enth coeff 1.8783

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.091 5.681 5.774 1.6 5.515 -3.0 5.674 -0.1 5.575 -1.9
0.215 3.758 3.730 -0.8 3.817 1.6 3.777 0.5 3.805 1.2
0.279 3.161 3.116 -1.4 3.230 2.2 3.169 0.2 3.208 1.5
0.298 3.040 2.968 -2.4 3.082 1.4 3.019 -0.7 3.059 0.6

Standard pct err 1.9 2.4 0.6 1.6

Analysis of model error randomness

Sum sqr rank difference test: mean = 10.00 sd = 3.74

Test statistic 3 9 9 9

Normal (Z) -1.871 -0.267 -0.267 -0.267

Reject level 0.969310 0.605367 0.605367 0.605367

Sum abs rank difference test: mean = 5.00 sd = 1.00

Test statistic 3 5 5 5

Normal (2Z) -2.000 0.000 0.000 0.000

Reject level 0.977241 0.500000 0.500000 0.500000

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.636
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Table C-1 (cont’d.).
Benzene-Polyisobutylene at 25 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 8.7866
Flory-Huggins chi parameter: 0.9213

FH-VSP inf diln parameters: wt frac act coeff 8.1759 enth coeff 1.7336
ASOG-VSP inf diln parameters: wt frac act coeff 7.3466 enth coeff 1.7073

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.044 6.842 7.039 2.8 6.291 -8.4 6.809 -0.5 6.397 -6.7
0.063 6.409 6.435 0.4 5.942 -7.6 6.305 -1.6 6.023 -6.2
0.095 5.468 5.637 3.1 5.437 -0.6 5.612 2.6 5.486 0.3
0.150 4.608 4.575 -0.7 4.665 1.2 4.636 0.6 4.678 1.5
0.152 4.636 4.552 -1.8 4.647 0.2 4.615 -0.5 4.659 0.5
0.184 4.127 4.083 -1.1 4.262 3.2 4.164 0.9 4.262 3.2
0.245 3.484 3.401 -2.4 3.647 4.6 3.489 0.1 3.634 4.2
0.254 3.452 3.323 -3.8 3.572 3.4 3.410 -1.2 3.558 3.0
0.297 3.070 2.966 -3.5 3.217 4.7 3.045 -0.8 3.199 4.1
0.321 2.873 2.795 -2.7 3.040 5.7 2.869 -0.1 3.021 5.0
0.373 2.541 2.483 -2.3 2.704 6.2 2.545 0.2 2.685 5.5
Standard pct err 2.6 5.2 1.2 4.4

Analysis of model error randomness

Sum sqr rank difference test: mean = 220.00 sd = 61.55

Test statistic 43 22 202 38
Normal (Z) -2.876 -3.217 -0.292 -2.957
Reject level 0.997978 0.999349 0.615025 0.998441

Sum abs rank difference test: mean = 40.00 sd = 6.66

Test statistic 19 14 38 18
Normal (Z) -3.152 -3.902 -0.300 -3.302
Reject level 0.999184 0.999952 0.617967 0.999517

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.531
FH-VSP model: wt frac = 0.852
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Table C-1 (cont’d.).
Benzene-Polyisobutylene at 10 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 10.6574
Flory-Huggins chi parameter: 0.8446
FH-VSP inf diln parameters: wt frac act coeff 7.9552 enth coeff 1.9196
ASOG-VSP inf diln parameters: wt frac act coeff 6.7035 enth coeff 1.8245

Wt Frac Activity Coefficients and Percent Error
Solvent  Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.225 3.721 3.772 1.3 3.646 -2.0 3.727 0.1 3.661 -1.6
0.357 2.691 2.632 -2.2 2.714 0.9 2.674 -0.6 2.711 0.8
0.454 2,159 2.130 -1.4 2.224 3.0 2.170 0.5 2.218 2.7

Standard pct err 2.1 2.6 0.8 2.3

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic 5 2 S 2
Normal (Z) 0.707 -1.414 0.707 -1.414
Reject level 0.760243 0.921358 0.760243 0.921358
Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 3 2 3 é
Normal (Z) 0.707 -1.414 0.707 -1.414
Reject level 0.760243 0.921358 0.760243 0.921358

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.584
FH-VSP model: wt frac = 0.683
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Table C-1 (cont’d.).
Cyclohexane-Polyisobutylene at 25 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.9719
Flory-Huggins chi parameter: 0.3891

FH-VSP inf diln parameters: wt frac act coeff 4.8958 enth coeff 1.2541
ASOG-VSP inf diln parameters: wt frac act coeff 4.9417 enth coeff 1.0595

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.128 3.609 3.636 0.8 3.597 -0.3 3.624 0.4 3.632 0.6
0.165 3.350 3.352 0.1 3.336 -0.4 3.347 -0.1 3.350 0.0
0.188 3.242 3.193 -1.5 3.187 -1.7 3.192 -1.6 3.192 -1.5
0.235 2.953 2.905 -1.7 2.914 -1.3 2.908 -1.5 2.906 ~-1.6
0.281 2.523 2.660 5.3 2.678 5.9 2.666 5.5 2.662 5.4
0.303 2.589 2.553 -1.4 2.573 -0.6 2.560 -1.1 2.556 -1.3
0.400 2.187 2.154 -1.5 2.176 -0.5 2.160 -1.2 2.156 -1l.4
0.569 1.688 1.667 -1.3 1.681 -0.4 1.671 -1.0 1.668 -1.2

Standard pct err 2.4 2.4 2.6 2.4

Analysis of model error randomness

Sum sqr rank difference test: mean = 84.00 sd = 26.61

Test statistic 88 87 84 88
Normal (2) 0.150 0.113 0.000 0.150
Reject level 0.559757 0.544895 0.500000 0.559757
Sum abs rank difference test: mean = 21.00 sd = 3.87

Test statistic 20 21 20 20
Normal (2) -0.258 0.000 -0.258 -0.258

Reject level 0.601875 0.500000 0.601875 0.601875
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Table C-1 (cont’d.).
N-pentane-Polyisobutylene at 25 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 8.7630
Flory-Huggins chi parameter: 0.6795

FH-VSP inf diln parameters: wt frac act coeff 8.3268 enth coeff 1.6386
ASOG-VSP inf diln parameters: wt frac act coeff 8.7630 enth coeff 1.0000

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.029 7.423 7.556 1.8 7.087 -4.6 7.336 -1.2 7.556 1.8
0.073 6.057 6.161 1.7 6.030 -0.5 6.120 1.0 6.161 1.7
0.133 4.849 4.863 0.3 4.933 1.7 4.917 1.4 4.863 0.3
0.185 4.153 4.069 -2.1 4.200 1.1 4.145 -0.2 4.069 -2.1
0.212 3.820 3.744 -2,0 3.886 1.7 3.822 0.1 3.744 -2.0
0.267 3.303 3.208 -2.9 3.349 1.4 3.280 -0.7 3.208 -2.9
0.322 2.872 2.786 -3.1 2.910 1.3 2.846 -0.9 2.786 -3.1
0.328 2.808 2.750 -2.1 2.872 2.3 2.809 0.0 2.750 -2.1
0.584 1.694 1.680 -0.8 1.718 1.4 1.696 0.1 1.680 -0.8

Standard pct err 2.2 2.2 0.9 2.2

Analysis of model error randomness

Sum sqr rank difference test: mean = 120.00 sd = 36.37

Test statistic 35 117 102 35

Normal (Z) -2.337 -0.082 -0.495 -2.337

Reject level 0.990267 0.532877 0.689643 0.990267

Sum abs rank difference test: mean = 26.67 sd = 4.75

Test statistic 15 27 24 15

Normal (2) -2.457 0.070 -0.561 -2.457

Reject level 0.992975 0.527987 0.712757 0.992975

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.654
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Table C-1 (cont’d.).
Triisopropylbenzene-Polystyrene at 165 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 12.3352
Flory-Huggins chi parameter: 1.0003
FH-VSP inf diln parameters: wt frac act coeff 12.2476 enth coeff 1.2180
ASOG-VSP inf diln parameters: wt frac act coeff 12.0454 enth coeff 1.0724

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.030 9.936 9.875 -0.6 9.377 -5.8 9.853
0.066 7.625 7.864 3.1 7.995 4
0.086 7.191 7.004 -2.6

-0.8 9.793 -1.4
.7 7.873 3.2 7.893 3.5
7.324 1.8 7.018 -2.4 7.062 -1.8

Standard pct err 2.9 5.4 4.1 2.9

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic S ) ) 5
Normal (Z) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 3 3 3 3
Normal (Z) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.406
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Table C-1 (cont’d.).
Triisopropylbenzene-Polystyrene at 175 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 10.6137
Flory-Huggins chi parameter: 0.9154
FH-VSP inf diln parameters: wt frac act coeff 9.8435 enth coeff 2.6559
ASOG-VSP inf diln parameters: wt frac act coeff 10.5095 enth coeff 1.0559

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.020 9.971 9.296 -7.0 9.043 -9.8 9.014 -10.1 9.261 -7.4
0.038 7.039 8.366 17.3 8.375 17.4 8.373 17.3 8.369 17.3
0.066 8.041 7.178 -11.4 7.445 -7.7 7.474 -7.3 7.215 -10.8

Standard pct err 15.4 15.1 21.4 15.4

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic S 5 5 5
Normal (2) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 3 3 3 3
Normal (Z) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.452
FH-VSP model: wt frac = 0.435
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Table C-1 (cont’d.).
Carbon disulfide-Polystyrene at 115 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 3.7286
Flory-Huggins chi parameter: 0.4079

FH-VSP inf diln parameters: wt frac act coeff 3.7286 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 3.7048 enth coeff 3.6140

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl  VSP Flory-Huggins FH-VSP ASOG-VSP

0.014 3.655 3.637 -0.5 3.629 -0.7 3.637 -0.5 3.626 -0.8

0.024 3.566 3.574 0.2 3.573 0.2 3.574 0.2 3.572 0.2

0.041 3.465 3.476 0.3 3.484 0.6 3.476 0.3 3.487 0.6
0.

Standard pct err 0.5 0.7

(-}

0.7

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic 2 2 2 . 2
Normal (Z) -1.414 -1.414 -1.414 -1.414
Reject level 0.921358 0.921358 0.921358 0.921358
Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 2 2 2 2
Normal (Z) -1.414 -1.414 -1.414 -1.414

Reject level 0.921358 0.921358 0.921358 0.921358
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Table C-1 (cont’d.).
Carbon disulfide-Polystyrene at 140 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 3.4823
Flory-Huggins chi parameter: 0.3394

FH-VSP inf diln parameters: wt frac act coeff 3.4823 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 3.4761 enth coeff 4.1537

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.008 3.885 3.438 -12.2 3.433 -12.4 3.438 -12.2 3.432 -12.4
0.011 3.831 3.423 -11.3 3.418 -11.4 3.423 -11.3 3.417 -11l.4
0.018 2.995 3.38% 12.2 3.383 12.2 3.384 12.2 3.379 12.1
0.029 2.948 3.329 12.2 3.332 12.2 3.329 12.2 3.324 12.0

Standard pct err 13.8 13.9 16.9 13.8

Analysis of model error randomness

Sum sqr rank difference test: mean = 10.00 sd = 3.74

Test statistic 6 3 6 6

Normal (Z) -1.069 -1.871 -1.069 -1.069

Reject level 0.857484 0.969310 0.857484 0.857484

Sum abs rank difference test: mean = 5.00 sd = 1.00

Test statistic 4 3 4 4

Normal (Z) -1.000 -2.000 -1.000 -1.000

Reject level 0.841351 0.977241 0.841351 0.841351
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Table C-1 (cont’d.).
Methanol-Polymethyl methacrylate at 120 C
Results of least squares fit:

VSP inf diln wt frac activity coefficient:
Flory-Huggins chi parameter: 1.2827

FH-VSP inf diln parameters: wt frac act coeff 16.3347 enth coeff 2.7097
ASOG-VSP inf diln parameters: wt frac act coeff 16.2298 enth coeff 2.9717

16.6476

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP

0.003 16.070 16.148 0.5 15.924 -0.9
0.006 15.397 15.555 1.0 15.572 1.1
0.009 15.303 15.063 -1.6 15.271 -0.2

Standard pct err 1.4 1.0

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00
Test statistic 5 5
Normal (Z) 0.707 0.707
Reject level 0.760243 0.760243
Sum abs rank difference test: mean = 2.67
Test statistic 3 3
Normal (Z) 0.707 0.707
Reject level 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.279
FH-VSP model: wt frac = 0.312

ASOG-VSP

15.989 -0.5 15.934 -0.9
15.568 1.1 15.571 1.1
15.211 -0.6 15.262 -0.3

1.4

sd = 1.41

5
0.707
0.760243

sd = 0.47
3

0.707
0.760243

1.0

5
0.707
0.760243

3
0.707
0.760243
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Table C-1 (cont’d.).
Methanol-Polymethyl methacrylate at 130 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 12.7268
Flory-Huggins chi parameter: 1.0138
FH-VSP inf diln parameters: wt frac act coeff 10.7857 enth coeff 0.1860
ASOG-VSP inf diln parameters: wt frac act coeff 12.5597 enth coeff 2.8431

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.003 11.601 12.442 7.0 12.366 6.4 11.581 -0.2 12.365 6.4
0.006 12.217 12.135 -0.7 12.152 -0.5 12.274 0.5 12.152 -0.5
0.008 12.724 11.902 -6.7 11.987 -6.0 12.686 -0.3 11.988 -6.0

Standard pct err 6.9 6.2 0.6 6.2

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic 2 2 ) 2
Normal (Z) -1.414 -1.414 0.707 -1.414
Reject level 0.921358 0.921358 0.760243 0.921358

Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 2 2 3 2
Normal (2Z) -1.414 -1.414 0.707 -1.414
Reject level 0.921358 0.921358 0.760243 0.921358

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.367
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Table C-1 (cont’d.).
Toluene-Polymethyl methacrylate at 130 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 9.6790
Flory-Huggins chi parameter: 0.7953
FH-VSP inf diln parameters: wt frac act coeff 9.6790 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 9.6920 enth coeff 0.9658

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.017 10.638 8.772 -19.3 8.224 -25.7 8.772 -19.3 8.779 -19.2
0.060 5.823 6.980 18.1 6.921 17.3 6.980 18.1 6.985 18.2
0.112 4.955 5.517 10.7 5.706 14.1 5.517 10.7 5.526 10.9

Standard pct err 20.2 24.1 28.6 20.2

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic S 5 5 5
Normal (2) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243
Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 3 3 3 3
Normal (Z) 0.707 0.707 0.707 0.707
Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.536
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Table C-1 (cont'd.).
Toluene-Polymethyl methacrylate at 160 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 10.9509
Flory-Huggins chi parameter: 0.9547

FH-VSP inf diln parameters: wt frac act coeff 10.9509 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 11.0656 enth coeff 0.9014

Wt Frac Activity Coefficients and Percent Error
Solvent  Exptl  VSP Flory-Huggins FH-VSP ASOG-VSP
0.006 12.699 10.514 -18.9 10.174 -22.2 10.514 -18.9 10.590 -18.2
0.014 9.936 9.951 0.2 9.791 -1.5 9.951 0.2 9.982 0.5
0.023 9.345 9.413 0.7 9.409 0.7 9.413 0.7 9.408 0.7
0.025 8.462 9.261 9.0 9.299 9.4 9.261 9.0 9.247 8.9
0.037 7.563 8.624 13.1 8.822 15.4 8.624 13.1 8.576 12.6
Standard pct err 12.4 14.3 14.3 11.9
Analysis of model error randomness
Sum sqr rank difference test: mean = 20.00 sd = 7.28
Test statistic 4 4 4 4
Normal (Z) -2.198 -2.198 -2.198 -2.198
Reject level 0.986006 0.986006 0.986006 0.986006
Sum abs rank difference test: mean = 8.00 sd = 1l.61
Test statistic 4 4 4 4
Normal (Z2) -2.481 -2.481 -2.481 -2.481
Reject level 0.993433 0.993433 0.993433 0.993433

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.426
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Table C-1 (cont’d.).
Toluene-Polyvinyl acetate at 35 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 9.7100
Flory-Huggins chi parameter: 0.7772

FH-VSP inf diln parameters: wt frac act coeff 8.4101 enth coeff 2.0621
ASOG-VSP inf diln parameters: wt frac act coeff 8.2575 enth coeff 1.4046

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.084 6.081 6.240 2.6 6.038 -0.7 6.067 -0.2 6.039 -0.7
0.117 5.377 5.408 0.6 5.391 0.3 5.396 0.4 5.391 0.3
0.161 4.665 4.565 -2.2 4.676 0.2 4.663 -0.0 4.677 0.3
0.195 4.207 4.068 -3.4 4.224 0.4 4.202 -0.1 4.225 0.4
Standard pct err 2.8 0.5 0.3 0.5
Analysis of model error randomness
Sum sqr rank difference test: mean = 10.00 sd = 3.74
Test statistic 3 9 11 9
Normal (2) -1.871 -0.267 0.267 -0.267
Reject level 0.969310 0.605367 0.605367 0.605367
Sum abs rank difference test: mean = 5.00 sd = 1.00
Test statistic 3 5 5 5
Normal (2) -2.000 0.000 0.000 0.000
Reject level 0.977241 0.500000 0.500000 0.500000

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.564
FH-VSP model: wt frac = 0.598
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Table C-1 (cont’d.).
Toluene-Polyvinyl acetate at 40 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 9.2644
Flory-Huggins chi parameter: 0.7733

FH-VSP inf diln parameters: wt frac act coeff 8.3495 enth coeff 2.0578
ASOG-VSP inf diln parameters: wt frac act coeff 8.2587 enth coeff 1.3804

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.051 6.831 7.057 3.3 6.777 -0.8 6.812 -0.3 6.782 -0.7
0.076 6.201 6.287 1.4 6.197 -0.1 6.211 0.2 6.199 -0.0
0.089 5.936 5.943 0.1 5.925 -0.2 5.930 -0.1 5.926 -0.2
0.094 5.732 5.826 1.6 5.830 1.7 5.833 1.7 5.831 1.7
0.128 5.289 5.081 -4.0 5.202 -1.7 5.189 -1.9 5.202 -1.7
0.139 5.055 4.871 -3.7 5.017 -0.8 5.000 -1.1 5.016 -0.8
0.171 4.444 4.346 -2.2 4.536 2.1 4.512 1.5 4.535 2.0
Standard pct err 2.9 1.4 1.4 1.4
Analysis of model error randomness
Sum sqr rank difference test: mean = 56.00 sd = 18.58
Test statistic 36 59 67 60
Normal (Z) -1.076 0.161 0.592 0.215
Reject level 0.859100 0.564134 0.723042 0.585218
Sum abs rank difference test: mean = 16.00 sd = 3.06
Test statistic 12 17 17 16
Normal (2) -1.309 0.327 0.327 0.000
Reject level 0.904794 0.628285 0.628285 0.500000

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.567
FH-VSP model: wt frac = 0.602
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Table C-1 (cont’d.).
Toluene-Polyvinyl acetate at 47.5 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 8.8654
Flory-Huggins chi parameter: 0.7609
FH-VSP inf diln parameters: wt frac act coeff 7.6321 enth coeff 3.0918
ASOG-VSP inf diln parameters: wt frac act coeff 8.1821 enth coeff 1.3458

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.052 6.506 6.815 4.6 6.704 3.0 6.587 1.2 6.704 3.0
0.071 6.370 6.257 -1.8 6.262 -1.7 6.248 -1.9 6.258 -1.8
0.107 5.613 5.380 -4.2 5.522 -1.6 5.653 0.7 5.516 -1.7

Standard pct err 4.6 2.7 2.4 2.7

Analysis of model error randomness

Sum sqr rank difference test: mean = 4.00 sd = 1.41

Test statistic 2 5 5 S
Normal (Z) -1.414 0.707 0.707 0.707
Reject level 0.921358 0.760243 0.760243 0.760243

Sum abs rank difference test: mean = 2.67 sd = 0.47

Test statistic 2 3 3 3
Normal (Z) -1.414 0.707 0.707 0.707
Reject level 0.921358 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac = 0.577
FH-VSP model: wt frac = 0.467
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Table C-1 (cont’d.).
Chloroform-Polyvinyl acetate at 35 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 1.4938
Flory-Huggins chi parameter: -0.4168

FH-VSP inf diln parameters: wt frac act coeff 1.4938 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 1.6218 enth coeff 0.4051

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.163 1.587 1.464 -8.1 1.450 -9.1 1.464 -8.1 1.501 -5.6
0.231 1.421 1.447 1.8 1.443 1.6 1.447 1.8 1.462 2.8
0.276 1.407 1.435 1.9 1.436 2.1 1.435 1.9 1.438 2.2
0.327 1.376 1.419 3.1 1.426 3.6 1.419 3.1 1.413 2.7
0.381 1.364 1.401 2.6 1.412 3.4 1.401 2.6 1.388 1.7
0.416 1.368 1.388 1.4 1.400 2.3 1.388 1.4 1.372 0.2
0.464 1.373 1.368 -0.3 1.383 0.7 1.368 -0.3 1.349 -1.7

Standard pct err

w
O
&
w
S
w
w
-

Analysis of model error randomness

Sum sqr rank Qifference test: mean = 56.00 sd = 18.58

Test statistic 25 25 25 47
Normal (Z) -1.668 -1.668 -1.668 -0.484
Reject level 0.952360 0.952360 0.952360 0.685906

Sum abs rank difference test: mean = 16.00 sd = 3.06

Test statistic 11 11 11 13
Normal (2) -1.637 -1.637 -1.637 -0.982
Reject level 0.949147 0.949147 0.949147 0.836951
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Table C-1 (cont’d.).
Chloroform-Polyvinyl acetate at 45 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 1.4417
Flory-Huggins chi parameter: -0.4604

FH-VSP inf diln parameters: wt frac act coeff 1.4048 enth coeff 0.6656
ASOG-VSP inf diln parameters: wt frac act coeff 1.4801 enth coeff 0.4490

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl  VSP Flory-Huggins FH-VSP ASOG-VSP
0.093 1.478 1.432 -3.2 1.407 -4.9 1.412 -4.6 1.448 -2.1
0.121 1.408 1.428 1.4 1.409 0.0 1.413 0.3 1.439 2.1
0.139 1.405 1.425 1.5 1.410 0.4 1.413 0.6 1.433 2.0
0.164 1.416 1.421 0.4 1.411 -0.4 1.413 -0.2 1.425 0.6
0.198 1.366 1.416 3.6 1.411 3.2 1.412 3.3 1.415 3.5
0.206 1.452 1.414 -2.7 1.411 -2.9 1.411 -2.9 1.412 -2.8
0.227 1.400 1.410 0.8 1.410 0.7 1.410 0.7 1.406 0.4
0.247 1.380 1.406 1.9 1.409 2.1 1.408 2.0 1.400 1.4
0.276 1.382 1.400 1.3 1.406 1.7 1.405 1.6 1.391 0.6
0.295 1.380 1.396 1.1 1.404 1.8 1.402 1.6 1.385 0.4
0.325 1.365 1.388 1.7 1.400 2.5 1.397 2.3 1.376 0.8
0.355 1.351 1.380 2.2 1.395 3.2 1.392 3.0 1.367 1.2
0.427 1.389 1.358 -2.2 1.378 -0.8 1.374 -1.1 1.343 -3.3
0.461 1.378 1.347 -2.3 1.367 -0.8 1.363 -1.1 1.332 -3.4
0.478 1.395 1.341 -3.9 1.362 -2.4 1.357 -2.7 1.325 -5.1
0.499 1.416 1.332 -6.1 1.354 -4.5 1.349 -4.8 1.318 -7.2

N
~

Standard pct err 2.

N
N
=)}
w
o

Analysis of model error randomness

Sum sqr rank difference test: mean = 680.00 sd = 161.90

Test statistic 496 481 475 393
Normal (2Z) -1.137 -1.229 -1.266 -1.773
Reject level 0.872136 0.890503 0.897291 0.961857

Sum abs rank difference test: mean = 85.00 sd = 12.28

Test statistic 70 63 63 61
Normal (Z) -1.222 -1.792 -1.792 -1.955
Reject level 0.889111 0.963423 0.963423 0.974690
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Table C-1 (cont’d.).
Benzene-Polyethylene oxide at 70 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.9056
Flory-Huggins chi parameter: 0.2870

FH-VSP inf diln parameters: wt frac act coeff 4.9056 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 4.6698 enth coeff 1.1931

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.062 4.312 4.204 -2.5 4.177 -3.2 4.204 -2.5 4.118 -4.6
0.067 4.231 4.149 -2.0 4.125 -2.5 4.149 -2.0 4.073 -3.8
0.099 3.810 3.850 1.1 3.80 0.8 3.80 1.1 3.823 0.4
0.139 3.474 3.523 1.4 3.526 1.5 3.523 1.4 3.541 1.9
0.193 3.093 3.144 1.6 3.156 2.0 3.144 1.6 3.198 3.4
0.261 2.690 2.747 2.1 2.764 2.7 2.747 2.1 2.824 4.9
0.388 2.153 2.192 1.8 2.208 2.5 2.192 1.8 2.269 5.3

Standard pct err 2.0 2.5 2.2 4.1

Analysis of model error randomness

Sum sqr rank difference test: mean = 56.00 sd = 18.58

Test statistic 9 9 9 6

Normal (Z) -2.529 -2.529 -2.529 -2.691

Reject level 0.994274 0.994274 0.994274 0.996426

Sum abs rank difference test: mean = 16.00 sd = 3.06

Test statistic 7 7 7 6

Normal (Z) -2.946 -2.946 -2.946 -3.273

Reject level 0.998385 0.998385 0.998385 0.999466
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Table C-1 (cont'd.).
Benzene-Polyethylene oxide at 70 C (second run)
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.5994
Flory-Huggins chi parameter: 0.2298

FH-VSP inf diln parameters: wt frac act coeff 4.5553 enth coeff 1.2775
ASOG-VSP inf diln parameters: wt frac act coeff 4.4055 enth coeff 1.1931

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.050 4.103 4.096 -0.2 4.080 -0.6 4.078 -0.6 4.007 -2.4
0.089 3.743 3.759 0.4 3.754 0.3 3.753 0.3 3.727 -0.4
0.142 3.344 3.364 0.6 3.368 0.7 3.369 0.8 3.385 1.2
0.201 2.996 2.998 0.1 3.008 0.4 3.009 0.5 3.052 1.9
0.265 2.702 2.661 -1.5 2.673 -1.1 2.675 -1.0 2.733 1.1
Standard pct err 0.8 0.8 0.9 1.7
Analysis of model error randomness
Sum sqr rank difference test: mean = 20.00 sd = 7.28
Test statistic 13 15 15 10
Normal (2) -0.962 -0.687 -0.687 -1.374
Reject level 0.831861 0.753889 0.753889 0.915226
Sum abs rank difference test: mean = 8.00 sd = 1.61
Test statistic 7 7 7 6
Normal (2) -0.620 -0.620 -0.620 -1.240

Reject level 0.732418 0.732418 0.732418 0.892587
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Table C-1 (cont’d.).
Benzene-Polyethylene oxide at 75.1 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.5056
Flory-Huggins chi parameter: 0.2106

FH-VSP inf diln parameters: wt frac act coeff 4.4221 enth coeff 1.4920
ASOG-VSP inf diln parameters: wt frac act coeff 4.3698 enth coeff 1.1635

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.053 3.984 4.006 0.5 3.996 0.3 3.977 -0.2 3.959 -0.6
0.081 3.755 3.766 0.3 3.765 0.3 3.761 0.2 3.756 0.0
0.108 3.561 3.557 -0.1 3.560 -0.0 3.567 0.2 3.574 0.4
0.145 3.332 3,300 -0.9 3.308 -0.7 3.326 -0.2 3.344 0.4
Standard pct err 0.6 0.5 0.2 0.5
Analysis of model error randomness
Sum sqr rank difference test: mean = 10.00 sd = 3.74
Test statistic 3 3 11 6
Normal (2) -1.871 -1.871 0.267 -1.069
Reject level 0.969310 0.969310 0.605367 0.857484
Sum abs rank difference test: mean = 5.00 sd=- 1.00
Test statistic 3 3 5 4
Normal (2) -2.000 -2.000 0.000 -1.000

Reject level 0.977241 0.977241 0.500000 0.841351
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Table C-1 (cont’d.).
Benzene-Polyethylene oxide at 88.1 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.4720
Flory-Huggins chi parameter: 0.2049

FH-VSP inf diln parameters: wt frac act coeff 4.4720 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 4.3992 enth coeff 1.0940

Wt Frac Activity Coefficients and Percent Error
Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.027 4.234 4.209 -0.6 4.202 -0.7 4.209 -0.6 4.175 -1.4
0.050 3.986 3.999 0.3 3.998 0.3 3.999 0.3 3.994 0.2
0.067 3.850 3.859 0.2 3.861 0.3 3.89 0.2 3.870 0.5
0.091 3.667 3.670 0.1 3.676 0.2 3.670 0.1 3.701 0.9
Standard pct err 0.4 0.5 0.5 1.0
Analysis of model error randomness
Sum sqr rank difference test: mean = 10.00 sd = 3.74
Test statistic 11 11 11 3
Normal (2Z) 0.267 0.267 0.267 -1.871
Reject level 0.605367 0.605367 0.605367 0.969310
Sum abs rank difference test: mean = 5.00 sd = 1.00
Test statistic 5 5 5 3
Normal (Z) 0.000 0.000 0.000 -2.000

Reject level 0.500000 0.500000 0.500000 0.977241
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Table C-1 (cont’d.).
Benzene-Polyethylene oxide at 102 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.4430
Flory-Huggins chi parameter: 0.2020

FH-VSP inf diln parameters: wt frac act coeff 4.4430 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 4.3920 enth coeff 1.0280

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.021 4.303 4.241 -1.5 4.233 -1.6 4.241 -1.5 4.214 -2.1
0.022 4.280 4.230 -1.2 4.222 -1.4 4.230 -1.2 4.205 ~-1.8
0.025 4.272 4.201 -1.7 4.194 -1.8 4.201 -1.7 4.179 -2.2
0.029 4.225 4.163 -1.5 4.157 -1.6 4.163 -1.5 4.145 -1.9
0.037 4.148 4.093 -1.3 4.089 -1.4 4.093 -1.3 4.083 -1.6
0.044 4.070 4.029 -1.0 4.026 -1.1 4.029 -1.0 4.026 -1.1
0.048 4.042 3.998 -1.1 3.996 -1.1 3.998 -1.1 3.998 -1.1
0.058 3.950 3.908 -1.1 3.909 -1.0 3.908 -1.1 3.917 -0.8
0.077 3.713 3.757 1.2 3.760 1.3 3.757 1.2 3.779 1.8
0.092 3.520 3.643 3.4 3.649 3.6 3.643 3.4 3675 4.3
0.118 3.169 3.455 8.6 3.463 8.9 3.455 8.6 3.500 9.9

Standard pct err 3.2 3.3 3.4 3.8

Analysis of model error randomness

Sum sqr rank difference test: mean = 226.00 sd = 61.55

Test statistic 52 47 52 33

Normal (2) -2.729 -2.811 -2.729 -3.038

Reject level 0.996821 0.997522 0.996821 0.998805

Sum abs rank difference test: mean = 40.00 sd = 6.66

Test statistic 20 19 20 17

Normal (Z) -3.002 -3.152 -3.002 -3.452

Reject level 0.998652 0.999184 0.998652 0.999720
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Table C-1 (cont’d.).
Benzene-Polyethylene oxide at 125.4 C
Results of least squares fit:
VSP inf diln wt frac activity coefficient: 4.3079
Flory-Huggins chi parameter: 0.1700

FH-VSP inf diln parameters: wt frac act coeff 4.3079 enth coeff 1.0000
ASOG-VSP inf diln parameters: wt frac act coeff 4.2956 enth coeff 0.9330

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP
0.011 4.249 4.207 -1.0 4.206 -1.0 4.207 -1.0 4.202 -1.1
0.018 4.141 4.147 0.1 4.146 0.1 4.147 0.1 4.145 0.1
0.024 4.080 4.093 0.3 4.093 0.3 4.093 0.3 4.09¢ 0.3
0.033 3,993 4.017 0.6 4.018 0.6 4.017 0.6 4.023 0.8

Standard pct err 0.7 0.7 0.8 0.8
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