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ABSTRACT

MODELING THERMODYNAMIC AND DIFFUSION PROPERTIES

IN CONCENTRATED POLYMER SOLUTIONS

By

Michael John Misovich

A methodology for evaluating solvent activities in concentrated polymer

solutions is proposed and demonstrated. This method allows the use of

any expression for the residual (enthalpic) interaction between polymer

and solvent, in conjunction with a Flory-Huggins expression for the

combinatorial entropy, and an empirical free volume correction. The new

method is applied using several choices for the residual term, including

the Analytical Solution of Groups (ASOG) group contribution equations.

When adjustable parameters are determined by best fit to data, results

predicted by the method generally agree with observed data from 21

isothermal binary polymer-solvent systems better than results given by

the Flory-Huggins model. When parameters are determined from a single

data point at low solvent concentration and extrapolated to higher

concentrations, a version of the new method agrees better with observed

data than the Flory-Huggins model and better than the UNIFAC-FV model

which uses no binary data.

Transformations of equations used by group contribution models to

calculate the residual contribution to the activity coefficient are

demonstrated. Using these transformations to allow more convenient

analysis of the mathematical properties of the equations, bounds on the

range of activity coefficients can be derived from incomplete data

without knowledge of the interaction parameter values. The predicted

values of activity coefficients are shown to depend on a normalization

step implicit in the definition of functional group size.

Three alternative models for prediction of binary diffusivities in

concentrated polymer solutions are compared: a complete free volume

model, a linearized form of this model, and a constant diffusivity

model. A method is presented for determining when the simpler models

are appropriate for calculations. The linear model is convenient to use

for determining the effects of the solvent activity coefficient on the

diffusivity.

A new statistical technique is proposed and demonstrated for determining



whether a nonlinear data fit is systematically in error with

observation. Unlike many statistical techniques, the new method is

valid regardless of the distribution of the observed variables. It is

capable of detecting complex patterns of systematic error not found

significant by other statistical methods.
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CHAPTER 1

INTRODUCTION

An understanding of the properties of polymer solutions is important for

rational process design. Basic physical properties, such as densities

and heat capacities, may often be estimated with reasonable accuracy

from pure component properties. This is generally untrue for

thermodynamic equilibrium properties, such as activities, and mass

transfer properties, such as binary diffusivities. In addition,

thermodynamic and diffusion properties of polymer solutions often show a

strong dependence on composition in a nonlinear manner. An

understanding of these properties is important in analysis of polymer

processing and use, in such topics as devolatization, plasticization,

permeability, and adhesion, to name a few.

This dissertation deals with four general topics applicable to

thermodynamic equilibria and mass transfer properties in binary

solutions. A variable size parameter approach to polymer solution

thermodynamics used a single adjustable parameter in the entropy of

mixing and could be used with any functional expression for the residual

enthalpy of mixing to predict solvent activities in polymer solutions

with good accuracy. Normalization and bounding properties of the

residual interaction term in solution of groups models for prediction of



activity coefficients were studied. The variable size parameter

thermodynamic model was combined with a free volume description of

diffusion in concentrated polymer solutions to generate a single model

for scaling of binary mutual diffusivities with temperature and

concentration above the glass transition temperature. A nonparametric

statistical method was developed to test for systematic error in data

fitting involving nonlinear parameter estimation.

VARIABLE SIZE PARAMETER METHOD FOR POLYMER SOLUTION THERMODYNAMICS

Polymer solution thermodynamics is characterized by low values of the

entropy of mixing. This necessitated a different approach to modeling

polymer solution behavior as compared to that of mixtures of similarly

sized small molecules. The standard approach was that taken by Flory

and Huggins (Flory, 1953) which relied on a statistical approach to

model entropy of mixing and used a single interaction parameter to

incorporate enthalpy of mixing. Subsequent work has shown the

theoretical basis of this model to be incorrect: solutions having little

or no enthalpy of mixing typically have positive nonzero values of the

interaction parameter. By framing the interaction parameter as a free

energy rather than enthalpy parameter, theoretical objection to the

model can be avoided.

Recent models for solution thermodynamics of small molecules have

incorporated many enhancements to calculation of molecular interactions.

These include modeling of molecular segregation (Wilson, 1964), use of a
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quasi-chemical approach (Abrams and Prausnitz, 1975), and use of

functional group interactions to predict overall solution behavior (Derr

and Deal, 1969). Continued use of the Flory-Huggins approach ignores

these advances in the modeling of solution interactions: its single

interaction parameter makes it more similar to the one-suffix Margules

equation.

Nonideal effects in polymer solutions due to changes in solution free

volume have also been proposed and studied. Equation of state

approaches have been used for this purpose (Flory, 1970; Lacombe and

Sanchez, 1976; Liu and Prausnitz, 1979; Scholte, 1982). Such

approaches, combined with mixing rules, could make solution behavior

predictable from pure component data and a small number of adjustable

system parameters. At present, agreement is lacking in fundamental

details such as what constitutes a pure component critical pressure or

temperature. It is definitely agreed that free volume relationships

affect polymer solution thermodynamics and should be included in models.

When the Flory-Huggins interaction parameter is interpreted as a free

energy parameter, the entropy part may be considered to arise from free

volume changes in solution.

Despite its shortcomings, the Flory-Huggins approach is commonly used in

practical calculations, mainly due to its simplicity and historical

acceptance. One goal of this work was to propose a novel approach to

solution thermodynamics, referred to as VSP (Variable Size Parameter).

Like Flory-Huggins, VSP contained a single adjustable parameter. This



A

parameter had a fundamental significance: it was the infinite dilution

limit of the solvent activity coefficient taken on a weight fraction

basis. The mathematical form of the VSP model relied on an adjustment

of the concentration variable in the statistical entropy of mixing

expression. The Flory-Huggins model adds an extra term to that

expression. The VSP model also allowed any functional form to be used

as an added term to incorporate enthalpy of mixing effects, if desired.

Comparisons with available binary polymer-solvent data were made. These

indicated that the VSP approach, even without an additional enthalpy

term, was approximately as accurate as the Flory-Huggins approach in

athermal solutions, and generally more accurate in more nonideal

(enthalpic) solutions. Comparison with the UNIFAC-FV model (Oishi and

Prausnitz, 1978) which incorporates a free volume approach, showed VSP

to be more accurate. This may have been due, in part, to the fact that

UNIFAC-FV generates predictions without use of binary activity data.

RESIDUAL INTERACTIONS IN GROUP CONTRIBUTION MODELS

A recent trend in solution thermodynamics has been the modeling of

molecular interactions by summing the interactions of the various

functional groups which compose the molecule in solution. This allows

predictions of solution behavior to be made for compounds for which no

binary data are available. All that is necessary is binary data for the

functional groups which constitute the compounds, which can be derived

from known data for other compounds containing the same functional

groups.



This concept has been successfully applied in the UNIFAC model

(Fredenslund, Jones, and Prausnitz, 1975) and the ASOG model (Derr and

Deal, 1969). Both methods predict activity coefficients by summing a

size interaction (combinatorial or entropic) contribution and a group

interaction (residual or enthalpic) contribution. Databases for

functional group interaction parameters have been constructed and

updated for both of these models (Kojima and Tochigi, 1979; Gmehling,

Rasmussen, and Fredenslund, 1982) and both show good predictive ability.

In these models, residual contributions to the activity coefficient of a

given molecular component are calculated by summing activity

coefficients of the functional groups which constitute the molecule.

Functional group activity coefficients are given by a form of the Wilson

equation (Wilson, 1964) written over functional groups in solution

rather than molecular species. Another goal of this work was to study

some basic properties of the equations as applied by these models.

Normalization refers to the effects of choosing a particular size basis

for measuring the number of functional groups in a molecule. Such a

normalization directly affects the predictions of the model because of

the nonlinearity of the Wilson equation. In addition, functional group

composition provides additional constraint within a solution which can

be used to bound the possible range of activity coefficients from an

incomplete set of experimental data.
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DIFFUSION IN POLYMER SOLUTIONS ABOVE TG

The study of diffusion in polymer solutions is complicated by several

factors. There exists no single theory capable of describing the

phenomena which occur under various conditions: viscoelastic and

relaxation-controlled processes, anomalies such as swelling and solvent

crazing, and diffusion coefficients which are non-Fickian in a classical

sense inasmuch as they are strong functions of penetrant concentration

(Vrentas and Duda, 1979). Characterization and modeling of polymer

solution diffusion is possible within limits of temperature and

concentration where abrupt changes in polymer morphology and physical

properties do not occur.

It is possible to scale binary mutual diffusion coefficients in

concentrated polymer solutions with temperature and concentration.

Models have been developed which assume that solution free volume is the

primary factor determining mobility and thus mass transfer in solution

(Fujita, 1968; Vrentas and Duda, 1977). This assumption is true above

the glass transition temperature T8, but not so far above T that

solution free volume becomes large, and activation energy effects become

important. It is true from zero solvent concentration up to

approximately 80 weight percent solvent, above which the gross mobility

of polymer molecules becomes important.

Since the driving force for diffusion is the chemical potential gradient

rather than the concentration gradient, nonideal thermodynamic effects
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must be considered in modeling binary mutual diffusivities. Another

goal of this work was to combine the VSP solution thermodynamics model

with the free volume diffusion model to generate a single model for

scaling of diffusivity with temperature and concentration in

concentrated polymer solutions above T8. A simplified form of the

general free volume model was also derived for use in certain practical

calculations, e.g., devolatilization of polymer melts. The process of

fitting experimental viscosity data to evaluate free volume parameters

was also discussed.

STATISTICS OF NONLINEAR DATA FITTING

In the process of fitting experimental data to an empirical equation or

model, it is necessary to choose values of the adjustable parameters

which are "best” according to some criterion. Normally, this is

accomplished by use of statistical results or procedures designed for

this purpose, such as least squares analysis and regression. The

criterion typically applied is that the sum of the squared deviations

between the actual and predicted values of the dependent variable be

minimized over all the points in the data set. Equations for this

purpose are commonly used when the model is linear in the parameters to

be fit.

When the model is nonlinear in the adjustable parameters, the equations

of linear least squares no longer apply to the situation. In this case,

it may be possible to linearize the model around a certain point to
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permit the approximate use of linear least squares techniques. However,

such an approach may be inaccurate, particularly when there are several

adjustable parameters which are strongly dependent upon one another.

Even in the case where the model is linear in the adjustable parameters,

least squares analysis is optimal only when the error or deviation

between actual and predicted values is distributed normally with zero

mean. The presence of outlier values in a data set can strongly affect

least squares estimation of parameters, making them inaccurate. This is

because outliers result from a distribution of error that does not

follow a normal law.

In this work, some statistical techniques to overcome these problems

have been successfully applied. Nonlinear parameter estimation was done

by directly applying the least squares criteria and solving them

numerically rather than using the standard linear least squares

equations which are algebraic. To test whether a nonlinear model fit

data with systematic rather than random error, a novel approach applying

nonparametric statistics was used. Test statistics were generated which

combined the best properties of both the runs test for randomness and

the rank correlation coefficient.



CHAPTER 2

VARIABLE SIZE PARAMETER APPROACH TO THERMODYNAMICS OF CONCENTRATED

POLYMER SOLUTIONS

In modeling the behavior of solutions containing both large molecules

(polymers) and small molecules (solvents), two types of interaction

occur to cause solution nonideality. Energetic (enthalpic or residual)

interactions between different types of molecules occur because of

changes in secondary bonding within solution as compared to within pure

solvent or pure polymer. This type of interaction is not unique to

polymer solutions, but occurs in mixtures of ordinary sized molecules as

well. Size (entropic or combinatorial) interactions between different

molecules occur on statistical grounds as determined by the number of

possible configurations that the solution can exhibit. This number

decreases substantially when large molecules are present. Size effects

are ordinarily not important in mixtures of similarly sized molecules.

In addition to residual and combinatorial interactions, additional

interactions may take place, particularly in polymer solutions. These

interactions are generally considered to be the cause of

noncombinatorial entropy in solution. Three distinct methods of

handling noncombinatorial entropy have been used historically in the

study of polymer solutions.
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The earliest method was given by the Flory-Huggins approach (Flory,

1942; Flory, 1953), which assumed a standard combinatorial entropy of

mixing and empirically adjusted an interaction parameter to fit

experimental data. The original definition of the interaction parameter

term was an enthalpic or residual interaction. Later interpretation of

this term (Flory and Krigbaum, 1950) allowed it to take on entropic

significance, i.e., noncombinatorial entropy. For this reason, the

Flory-Huggins model effectively treats noncombinatorial entropy as if it

were an additional enthalpy interaction, since the same term is used for

both types of interaction.

A second approach, which has been quite popular recently, is to model

solution behavior with an equation of state derived empirically or from

statistical thermodynamics. A variety of techniques have been proposed

(Flory, 1970; Lacombe and Sanchez, 1976; Oishi and Prausnitz, 1978; Liu

and Prausnitz, 1979; Scholte, 1982). In some, the equation of state

embodies both entropy and enthalpy effects in such a way that separate

terms for these are not used. In others, the equation of state is used

to generate an additional correction term to be applied in addition to

standard entropy and enthalpy interaction terms. There is presently no

single equation of state technique which is predominantly accepted in

the same way, for example, that the Flory-Huggins model is accepted for

prediction of combinatorial entropy. The general approach used for

liquid phase equations of state is corresponding states, but liquid

phase equations of state suffer from a lack of consensus on what should
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constitute a critical value of temperature and pressure. These

parameters are typically derived from a data fit with little physical

significance.

The final approach, which is developed in this chapter, is to assume a

standard enthalpy or residual interaction term while empirically

adjusting a parameter within the combinatorial entropy term to account

for the noncombinatorial entropy. This method originally was derived

from an analysis of the Analytical Solution of Groups (ASOG) group

contribution model for prediction of activity coefficients in solution

(Derr and Deal, 1969). In actuality, the ASOG model itself was of

significance only in that a form of the athermal Flory-Huggins equation

was used within ASOG to generate a size interaction term. However, the

ASOG model did yield insight into the modification of this size term,

and also suggested the terminology ”Variable Size Parameter” which was

associated with the new approach. (In 1973, Derr and Deal, the original

authors of ASOG, found that their equations were less accurate when

applied to polymer solutions than they had been for solutions of

similarly sized molecules. By choosing an "effective" value for the

size ratio of the molecules, rather than using the actual size ratio,

they were able to predict solvent activities in polymer solutions with

accuracy comparable to their results for solutions of similarly sized

molecules.)

The approach taken here is the converse of the the Flory-Huggins

interaction term in which noncombinatorial entropy effects were used to
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adjust a residual enthalpy term. In this work, noncombinatorial entropy

effects are used to adjust a combinatorial entropy term. Any expression

for residual interaction may be used in conjunction with this corrected

entropy term.

ORIGINAL VSP SINGLE PARAMETER METHOD

The reprint article which follows describes the derivation of the

original VSP method from the ASOG model. This is a simplified version

of the complete VSP method in that no residual interaction term is used.

Comparisons are made between the new method (referred to as "ASOG-VSP"),

the Flory-Huggins equation, and the UNIFAC-EV model by extrapolating

data from low solvent concentration to make predictions at higher

solvent concentration. Further details of the experimental data and

results are given in Appendices A, B, and D. Detailed derivations for

the equations proposed in the article are given in Appendix F.

There is one typographical error in the reprint which is significant.

In eq 27, the last term in the denominator of the argument of the

natural logarithm function should contain w2 in its numerator, not in

its denominator as given. The grouping should equal (e/Olm) multiplied

by w2, not divided by w2 as is shown.
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An understanding of the themodynamics of polymer-

solvent systems is important in many practical applica-

tions; processing steps such as polymerization, devolati-

lization. plasticization, and addition of other additives all

require a knowledge of polymer solution thermodyamics.

Diffusion phenomena in polymer melts and solutions are

often strongly affected by nonideal solution behavior.

Proper design of many polymer processe depends greatly

upon accurate modeling of thermodynamic parameters

such as solvent activities.

Thumk pruentsathermodynamicoorrelatimmethod

for solvent activities in polymer solutions as a function of

concentration. The method '- developed theoretically from

consideration of athermal solutiom: however, it shows good

agreement with experimental data available for some

polymer-solvent systems which have enthalpic interac-

tions. The model is based upon an athermal form of the

ASOG (Analytical Solution of Groups) group-contribution

model for calculation of activity coefficients in solution and

uses weight fractions to describe concentrations. A cor-

rection is made to account for the difference in the free

volume between the solvent and polymer, as evidenced by

their different densities. Since only athermal terms are

considered in the model development, group-interaction

parameters used in calculating enthalpy effects are not

included and the final model reduces to a single equation.

The model shows good agreement with experiment over

the entire range of concentrations reported in the literature

orss-saosrssliizeiosesmswo 0 use: When Canvas: Society



for solvent activities. In nearly all cases «widen-d. per-

formance“ the rat-dd is approfimately equal to the better

of either the f‘ltwyolloggins model or the UNIFAC-I’ll

group “attribution ltttdlt‘l print-ml by Oishi and Prat-suits

“978). The Flory Huggins model contains a single ad-

jtantalrle mastic-tor. the interaction parameter. and requirul

density data for the polymer and mlvent if the wetgbt

fraction is the t‘flttt't'ttlflltun variable. UNII’AC-l-‘V re-

quires knowledge of the densities for calculation of the free

Volume correction. A camtant value for a fitting param-

eter. the degrees of freedom for a solvent molecule. has

been determined by Modeling a number of data sets. The

adjustable parameter in the model proposed here is an

experimentally tslrtainable weight fraction solvent activity

coefficient at infinite dilution.

GroupCeatributiea Models

Grow alltribution tampon have been successfully used

in nurdelir‘ varitius physical and chemical phenomena. By

reducing a chemical compound to a set of functional

groups. it is praisible to greatly reduce the amount of in-

formation whicb needs be stored. Thousands of chemical

compounds can be represented by a set of only a hundred

or so functional groups which make them up. Storing the

needed functional group properties of compounds from the

known functional group properties provides a more effi-

cient means. in many cases, of determining the desired

properties. This is especially true in cases where few ex-

perimental data are available for the compound in ques-

tion. There are often little equilibrium data for poly-

trier-solvent systems over the concentration and temper-

ature ranges for devolatilization. In addition. polymers

are distributed in size but basically identical in their

functional group composition.

The first group-contribution model for prediction of

activity coefficients in solution was the ' Solution

ofGroups (ASOG) model by Derr and Deal (1969). It is

capableofseparately modelir‘theeffectsofmolectdarsiae

differencm with an entropic term from Flory-Huggins

timoryandthseffectsofftmctionalgroupinteractimtswith

an enthalpic term from Wilson (1964). Agreement with

esperirmeat'mfound tobsgood. Variatiormandextensiom

of the orkiaal ASOG model have been recently elaborated.

pctiradady for hydrocarbon systems (Ko'fimaand Tochii

[979; Vera and Vidal. 1984).

Raceatworhinphaaeequilibriumhmresultedinamom

generalformulationofthefundamentalsolutionofgrowa

concept. Th'a is the UNIFAC model (Fredermlund et al..

1975). In application. this model 'm similar to ASOG. but

the theoretial framework is quite distinct. UNIFAC is

based upon UNIQUAC. the Universal QuasioChemical

model developed by Abrams and Prausnita (1975). Th-

model is based upon statistical thermodynamics. particw

lady the work oquggenheim (l952) on he quasi-chemiml

theory of solutions. Like ASOG. UNIFAC/UNIQUAC

contains separate entropic (combinatorial) and (residual)

term, which are derived naturally from statistical ther-

modynamics. Pure component data are used to generate

molecular sine and surface area terms for each molecule.

based upon the number and type of functional groups it

contains. These values. along with parameters for the

residual interaction between different functional groups.

have been updated frequently and presently constitute a

data base of 76 basic functional groups (Gmehling et al..

l982).

Both the A506 and UNIFAC modeh "It-l. be modified

to model solution activity in polymer solutions. because

of the large differences in the free volume between the

polymer and solvent. An extension to the UNIFAC model.
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called UNIFAC-PV, was proposed by Oishi and Princeton

(I978). By adding an extra term to the combinatmial and

residual terms already given by UNIFAC. the effects of

free Volume differences between the [Itlylltcf and sult't'ttl

were modeled. Results were found to agree with experi-

ment within l0$.

Although the built of recent work in the “(Ull'lvt'ttllt‘t‘ll'

tration thermodynamic rnotlels has centered on the

UNIFAC model. a comparison of the predictive ability of

A500 and UNIFAC shows that they are approxnnatcly

equal in accuracy. and both are substantially better than

the group-crmtribution Non-Randomll‘wo.l.iqutd~(iroop

(NRTLC) and Enthalpic-Wilson-Croup (l-ZWG) models

(Riui and Huber. I98l). The theoretical advantage of

UNIFAC is a basis in statistical mechanics. but the ASOG

model has the advantage of a simpler mathematical form.

particularly for the entropic (mmbinatmial) activity term.

The Flory-Huggins form of the combinatorial term used

by ASOG is also preferred over the Staverman form used

by UNIFAC because the Staverman potential may leatl

to physically unrealizable positive Combinatorial Contri-

butions (Thomas and Ecltert. 1984). Although the Flo.

ry-Huggins model (Flory. [953) uses an entropy term

similar to that proposed in ASOG, there are no separate

terms for enthalpy or free volume effects on activity lloth

effects are lumped into the entropy term by the use of the

interaction parameter.

Since UNIFAC-EV was successful at extending the

UNIFAC model to polymer solutions, the extension of

ASOG to polymer solutions was attempted in this work.

In the theoretical development proposed here. we consid-

ered only systems of chemically similar polymers and

solvents. where the group interaction (enthalpic) effects

were shown to be negligible. This allowed the derivation

of a closed-form solution for the entropic activity coeffi-

cient.

ASOG Model

lndteASOGmodetthetwocontributionstotheactivity

coefficient are 7“. the entropic part. and 1.6. the enthalpic

part. The entropic activity coefficient is given by

lny"-l-R.+lnR| (l)

where R. is the sire term for component l (solvent). The

size term is in turn given by

a 5‘
' S"! + Sgt.

wherethes. andsgtermsarethe numberofsizegroups

found in the solvent and polymer molecules. respectively,

and the s, and 1, terms are the mole fractions of compo-

nents l or 2 within the solution. The definition of the size

group used in the original ASOG model (Derr and Deal,

1969) was adopted here: the number of sire groups in a

molecule is equal to the number of carbon atoms in the

molecule. When this definition is used, the ratio of size

groups 81/8. for the chemically similar polymer and sol-

vent 'a the same as the ratio of molecular weights Adz/M“

where M. is the molecular weight of the solvent and M,

was the number~average molecular weight of the polymer.

The reason for wing the number-average molecular weight

is shown by Misovich (1984) as following mathematically

from the mole fraction composition variables used by

ASOG combined with the directly proportional depen-

dence of the polymer size term 8, on the degree of po-

lymerization of the polymer molecule.

The enthalpic activity coefficient is given by ASOG as

In 7.6 - Z... In rg-Z‘:PM I" r‘. (3,

D

(2)
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Table l. Entropic and Enthalpic Aetlvlty Coefficients for

the Tnlnene-l’elyfstyrenel System Given by ASOG

I1 frat-t toluene enlropsr In 7.5 enthalpic ln hf;
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where r," is the number of functional groups of type k in

the solvent molecule. l‘. is the group activity Coefficient

for group k in solution. and l‘.’ is the standard group

activity coefficient for group b in pure solvent. Both l‘.

Ind l'.‘ are defined as

(4)
 

lid»

In F. i -In gay“, «0- l - $21.4:-

where r, is the mole fraction of group l and A“ is a group

interaction parameter for group b with group I (enthalpic

interaction). A“ values have been tabulated for various

functional groups (Palmer. 1975; Rizzi and Huber. I984).

The group mole fractions. 1,. used for calculating I‘. are

defined on the functional group composition of the entire

solution. whereas those used for mlculating f‘.‘ are defined

only upon the functional group composition of the solvent.

Por systems of chemically similar polymers and solvents.

the group mole fractions were approximately equal

whether defined on the entire solution or only upon the

solvent molecule. This resulted in approximately equal

values of f‘, and f.‘, giving In no equal to 0 in eq 3. On

the other hand. the entropic contribution wm espxted to

be large. due to the sire differences between the polymer

and solvent molecules.

A comparison was made between the entropic and en-

thalpic activity coefficients calculated by the ASOG model

for toluene-poly(styrene), representing a typical system

without large enthalpic interaction. The results are shown

in Table l. The logarithms ofentropic activity coefficients

were from 2 to 4 orders of magnitude larger than the

logarithms of enthalpic activity coefficients at nearly all

concentrations of solvent. These results provide justifi-

cation for neglecting the enthalpic activity coefficient in

modeling polymer-solvent systems which are similar

chemically. In the subsequent theoretical development

presented in this paper. only the entropic activity coeffio

cient will be considered in calculating solvent activities.

Modification of ASOG for Polymer Solutions

The sire group concept in ASOG applied to polymer

solutions assumes that the free volume of polymer and

solventarsequal. 'l‘hisisgenerallynottrue;ifitwere.the

demities of chemimlly similar polymer-advent pairs would

be equal. To show that this assumption results in sub-

stantial error. the infinite dilution weight fraction solvent

activity coefficient fl.’ was calculated according to the

A806 model. Equations l and 2 above. combined with

the assumption

3. << 3, (5)

resulted in an infinite dilution mole fraction activity

coefficient (the value of y.‘ as r. goes to zero)

5-

7|. ' 95": (6)

me 'n the baseof the natural ktgarithm. approximately

Table II. Typical Infinite llilution Weight Fraction

Activity Coefficients for Chemically Similar Systems

 

 
   

only 'i-olvm temp. '(‘ '.f,' ref

toluene polylstvrenel I'll .‘l ‘tit .'. I." o

ldll :l %-4 95 II

I50 5 '2'! r

I73 3.72— 4.56 n

I75 5 29 (‘

2i.) 5 3‘ r‘

benzene 'polylstyrene) IL" .1 9.1» 5 .‘lII a

NO 3 K)- lhfi o

I50 4 72 -5 .16 h

I73 3 67-4 26 o

ethylbenrene-polyhtyrenel I50 t.% r

I75 5.47 r

2“) 5.67 c

'Covits and King. I972; polymer molecular weight 3600-

ITrIUOOOU. ‘Calin and Rupprecht, 1978; linear and branched

polymer. 'Newman and Prausnits. I972; polymer molecular

weight97tll).

At infinite dilution of the solvent in pure polymer, the

mole fraction and weight fraction activity coefficients are

related by

0' . 7| Kl: (7)

Substituting eq 6 into eq 7 gives the desired result.

9 ' 8‘ M’ ' 8)I (S: M. (

Since for chemically similar polymer—solvent systems

ASOG gives 31/8. equal to M,/M.. the size group ratio

and molecular weight ratio cancel. leaving the result

o.°- e (9)

This result is in substantial disagreement with much data.

since for most chemimlly similar polymer-solvent systems.

the experimentally observed activity coefficient is much

larger than c. as shown in Table II. When the ASOG

model was applied directly to polymer solutions by Derr

and Deal (1973). they also noted that the predictions of

solvent activity were generally too low. They chose an

'effectivs' S, for the polymer molecule but proposed no

general procedure for making such a choice.

The proposed correction to the ASOG model. referred

to as ASOG-variable size parameter (ASOG-VSP). as-

sumesthattheformofquiscorrectbutthattheas-

sumption of equal free volumes of solvent and polymer

8: “I

s“. " .7; “°’

isincorrect. ToproduceacorrectvalmforthsratioS,/S..

eq 8 is rearranged with fl" considered as a known pa-

rametar for the polymer-solvent system. The resulting

equation allows the sire parameter ratio to vary in a

standard way for solvent-polymer systems.

S. C M!

- ' —— (ll)

8| 0'- Hg

The independent composition variable used in the

ASOG model is the mole fraction. The mole fraction is

generally not a useful variable for modeling polymer-

solvent systems. because the molecular weight of the

components differs by several orders of magnitude in most

cases. To make the ASOG-VSP results more practical for

modeling polymer solutions. a transformation from mole



fraction to weight fraction was made. The identities

H,

Em.

.. m M, (l2)

--m. + w,

M.

“'2

“2
mm. + m,

were applied to eq 2 for the ASOG sire term R. along with

cq ll. giving R. as a function of solvent weight fraction

W'.

—!(l ’ uh)

M:

w,+

R,- e

w+—-(l- -lI U" “i

(ll)

Since the weight fraction was being used as the concen-

tration variable. the activity coefficient was put on the

same basis. This was done by transforming from the mole

fraction activity coefficient. 7.. to the weight frection ac-

tivity coefficient. 0..

7t

u.- (5)

"UT;

The final step involved using the size term from eq 14 to

compute the entropic activity coefficient in eq l and then

finding 0. from eq 15.

(l - ‘9')

'¢_(' . mg)

0.-

cw C

I. 4' EU - lag)

(16) 0. I ‘

w. 4- Ell - to.)

In deriving this roult. the msumption

.3. ,, 51!

0g. ”3

w- mede.allowingthemolecularweight ratio term to be

ignored. Thisresult'nthtmrestrictedtopolymersofhigh

molecularweightcompared tothesolvent and tosolutions

where 0" is not very large.

The result (eq l6) is a closed-form solution. giving the

weight fraction solvent activity coefficient. 0.. as s function

of the solvent weight fraction '0'. The only adjustable

parameter which appears in the equation is the infinite

dilution weight fraction solvent activity coefficient. (If.

This parameter can be obtained from a single physical

meuurement of equilibrium solubility of a trace of solvent

in pure polymer.

It was also possible. of course. to correlate 0.’ as a

function of w. based upon a single measurement of solvent

activity at otinditions other than infinite dilution of solvent

in pure polymer. This can be done by solving eq 16 for

(If, given values of or!“ and in“. Due to the nonlin-

earity of the right-hand side of eq [6. a closed-form solu-

tion of 0" in terms of a.“ and D...” was not possible.

Asolutionispomiblebytrialanderrormrbythefollowing

(17)
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iteration procedure. Define

r

Y - w.""" + —(l m,""'l (m

I

and substitute Y into eq lfi.

Y _ w'vlfll)

...,(
Y

t

Y-esp(l -

Y

Talte an initial approximation

Y. ' espil - In il.""'l

40"“

Y.-exp l- Y -lnfl,""‘I

n-l

When a convergent value is found for Y... calculate il,’ by

rearrangement of eq l8.

mm“ . (1m

Rearranging this gives

4‘ esul

I

(fillY
 

(21)

and define

 

(9")U.-

n- d1_wrfl) an
I Y - “3".” .

This procedure converges quickly and allows eq [6 to be

used even when an infinite dilution activity coefficient is

not known.

Comparison To Flory-Huggins Model

The Flory-Huggins model for polymer solution activity

coefficients in concentrated solutions (Flory. 1953) relates

solvent activity. 0.. to solvent volume fraction. 0.. polymer

volume fraction. o, and the interaction parameter x by

the equation

lne.-lno,+¢,+x¢,’ (24)

As mentioned previously. the ASOG entropy term (eq

1) issimilarinformtoqut. lftl'ieaisefraction R. given

byeq 2isequatedwitb thevolumefractione. ineq 2‘.

eq 1 and 24 become identical when x is taken as 0. The

interaction parameter x derived from experimental data

in the athermal systems is generally small and positive.

Since enthalpy effects do not play a role in athermal

systems. x represents the contribution of the free volume

effects on the activity predicted by eq 24.

Since the enthalpy term in ASOG was neglected in the

ASOG-VSP model. the difference between the Flory-

Huggins model and the ASOG-VSP model lies in the

treatment of the free volume contribution to activity.

ASOG-VSP corrects the molecular size ratio for free vol-

ume effects so that the ASOG entropy term correctly

predicts infinite dilution behavior. Hay—Huggins uses the

interaction parameter to modify the entropic activity term

which wholly constitutes eq 24. Both models do lump

enthalpy effects with free volume effects: Flory-Huggins

via the x parameter and ASOG-VSP via the size ratio

parameter. since ASOG group interactiom were neglected.

It is generally accepted that the interaction parameter

can he a strong function of concentration. especially in

systems with large enthalpic interactions The ASOCoVSl’
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Figure I. Concentration dependence of the interaction parameter.

is. top) Henune-polytisobutylene) at 25 ‘C. lb. bottom) benzene-

polytethylene oxide) at 70 °C. Data points are denoted by closed

circles and the solid line gives eq 27.

model could be applied to predicting the variation of g

with concentration. To do this. the transformations

Os

7."
‘1 - (25’

-w. + an.

‘3 ' u, (28)

2w + to.
'I I

wsremadewithineq24.andeqlsand24werecombined

toexpreeaxintermsofthei variablew..the

ASOG-VSP parameter (If. and the ratio of polymer

density to solvent density ”In.

0' to ' U

x. .‘ (1’: l) -(2-‘+‘)+

w.+—w Pt”! 'l"!

a.-

” +'t”.

r I -

(3-1”) In " (27)
flgw: w|+ .

0"“:

Strict applications of Flory-Huggins requires x to be

mutant. yet the temperature and composition dependena

of x can be substantial even in athermal systems (Scholte,

l97l). Equation 27 gives a functional form for the de-

pendence of x upon the weight fraction predicted by the

ASOG-VSP model at constant temperature. Figure 1

compares the concentration dependence of x based upon

eq 27 to x values generated from experimental activity
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measurements for benxene—polyfisoliutylene) and liens.

ene-polytethylene oxide).

The behavior of the interaction parameter its a fttflt’ltnn

of concentration predicted by eq 27 dcpcmls strongly upon

the particular value of tl.‘. Athermal polymer-solvent

systems typically have il.‘ values in the range 4-6. and the

curve corresponding to such a system shows that X remains

fairly constant. decreasing slightly with increasing con-

centration. The experimental data for benzene-polyfiso

butylene) show a general decrease. a hit more steeply than

predicted but still very small in magnitude. On the other

hand. the curve corresponding to a system with enthalpic

interaction. with (If equal to 8.5. decreases rather sharply

with increasing concentration. The experimental data for

benzene-polyfisobutylene) follow the same pattern. al-

though not quite as sharply as predicted.

The results in Figure 1 indicate that the Flory—Huggins

model and ASOG-VSP model agree fairly closely in their

predictions for low weight fractions in athermal systems.

since x is roughly constant. For systems with enthalpic

interactions. the ASOG-VSP and Flory-Huggins models

predict different behavior. and ASOG-VSP correctly

predicts the downward trend of the experimental data.

ASOG-VSP predicts that x decreases with concentration

for a range of physically reasonable values of e/Q.‘ and

”In. The rate of decrease is least for athermal systems

and becomes larger as Q.‘ increases or decreases. i.e., in

systems with either positive or negative enthalpy effects.

Experimental data do exist which do not show a decrease

in x with concentration. possibly because of scatter in the

data. x values are particularly sensitive to activity mea-

surements at higher solvent concentrations. This is be-

cause eq 24. when rearranged to solve for x. requires di-

vision by h’. For this reason. the relative accuracy of the

Flory-Huggins and ASOGoVSP models can be better asp

seeaed by comparing their predicted activity coefficients

(eq 16 and 24).

Both the ASOG-VSP and Flory-Huggins models have

a fairly simple mathematical form. with a single adjmtable

parameter. However. the calculation of this parameter

requires only the measurement of one activity for ASOG

VSP. whereas the Flory-Huggins x parameter is derived

from an activity and two densities. The sparseneee and

uncertainty of much of the experimental data relating to

polymer solutions under devolatilization conditions in-

creases the utility of a model with a more easily obtained

adjustable parameter. Since it is also necessary to vary

x u a function of concentration to correctly model many

systems. the ASOGoVSP model is also superior in that its

adjustable parameter is a function of only the system

components and temperature. not of concentration.

Comparison To UNIFAC-EV Model

The ASOG-VSP model. in the form presented here. is

less general in its theoretical basis than the UNIFAC-W

model. The enthalpic or group interaction terms included

in the original UNIFAC model. and hence incorporated

into UNIFAC-W. are analogous to the terms which were

ignored during the derivation of ASOGoVSP. The free

volume correction made in ASOG-VSP is more empirical

in nature than the free volume correction in UNIFACoFV.

based upon theequation-of-state theory proposed by Flory

“970).

The UNIFAGFV model contains adjustable parameters

representing a proportionality factor used in defining the

reduced volume and a number of external degrees of

freedom per solvent molecule. Constant values are rec-

ommended for these parameters in most cases (Oishi and

Prausnitx.l978; Prausnitz, I982). It is difficult to deter-
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Table III. ('onparieon of ASOG-VSP. Flory-Huggins. and llNIr'A4'-V\' Models for Solmt -I'olyner Systems
 

 

Del" iu-luii temp. °(' 4UI'4'Ia4I .it' II.‘

halite-tie |I04\III\II‘HI" '35. I) I I I 4 "I"

60 u to: I 77

III) II '34“ 's I"

rnetl'tvl ethvl trium- pulylstytr'nrl 25‘ t) "I.” it ri‘t

Isenlenr 'lIIiI\IIIsIIIuI\'I4‘IK'I 10 11223 I" "4

25 0 (Nil 8.4 r

cyt‘lrihelnne tuniyliuilmtylrriel 23 0 1'!!! 4 91

u pentam- lmlytiu-lmtylriie) 25 11 0'35 ll 56

triisiigiriipyll-eiueite poly(styrenel lfih 0 0'29 I'.’.4ll

I75 0 0:30 “.52

Carl-in dlltllrldf‘vulyIIIYNMI 113 0 ()14 .175

I40 0 II“ $4.95

methanol-poly(methyl inethocrylatel 1'10 0.002 16.56

130 0.“)? 11.85

unluene‘prvlfimrthyl methacrylate) 130 0.016 11%

160 0105 11.16

toluene-poly(vinyl acetate) 35 0 084 9.29

40 0 051 8.85

47.5 0 062 8.31

chloroform-poly(vinyl acetate) 35 0.163 I 65

45 0.093 [.49

benzene-polytethylene oxide) 70 0 Otil 5 (Ii

70 0.050 4.61

75.1 0 052 4.48

88.1 0 0'26 4.50

102 0.020 4 5|

I254 0.010 4.35

I253 U 011 4 15

150.4 OW? 4.38

av $ error

Flurry-intro-1 axon. izkii'M'.

 

range nu. of .III VSI' Huggrm I'V '9'

it L's; 09)! It) '1 h 1.5 4.) n

"1790351 2 I5 06 I!) n

it If-rt on?) '3 I I 0.2 '2 4 n

I) 3m «1m :I '2 I 8.4 9.4 a

II V07 II L'sd 2 2 2 I" 2 .' 9 h

Utliil tut?) In 2.9 I32 2:) b

t) “35 4) ms 7 2| I 7 1.9 r

out: 0 ’M I) 2 0 5.2 T t d

units noun 2 2.9 157 27.5 e

0m? 0065 2 I63 20.5 22.4 e

u 0'34 4) No 2 0.0 I .3 .107 r

not I ~4HI‘19 3 I6 3 I81) 36.9 e

mm4).“)! 2 1.3 2.6 37 .6 e

01105-0006 2 9.9 6.6 66.6 r

0 05-9-0.) l2 2 30.3 49.2 8.3 r

0.0I44).036 4 24.6 33.6 29.6 e

0.) I7-0 I95 3 3 3 6.0 24.8 I

0076-0 )7) 6 3 .‘I 5.5 25.7 I

007141107 2 6.5 0 3 26.9 I

0.23I4).464 6 7.9 9.2 16.1 I

aim—0199 I5 3.4 4.6 14.7 I

0067—0366 6 2.7 4.1 )0.) g

0089—0265 4 0.7 I0 8 3 g

0.05) 0.145 3 0.7 0.3 8.9 g

0030-0090 3 0.7 1.1 10.3 g

Gull-0.116 IO 1.9 21 12.0 g

OOH—0032 3 1.3 1.4 I2.4 g

OOH-0.033 3 1.6 1.9 10.) g

0.0) I—0.022 3 3.9 4.0 13.1 g

‘I‘lawn et al. (1950). 'I-Iichinger and Flory (1968a). ‘ Irlichinger and Flor-311%). ‘Eichinger and Flory (1%). 'Liu (19%). ”U (1981).

‘Chang and Bonner (I975) ‘ Indicates some experimental points were deleted as outliers ' I’oint used to determine 0" (ASOG-VSP) and

x (Flory-Huggins).

mine whether these parameters. particularly the external

degrees of freedom parameter. are correct for a particular

polymer—solvent system without checking the predictions

of UNIFAC-W against experimental data for that system.

If such activity data are available. the ASOG-VSP model

is much simpler from a computational standpoint. In

particular. infinite dilution activity coefficient data are

typically available for many polymer-solvent systems even

in the absence of other thermodynamic data for the sys-

tem. and it is such data which can directly provide a value

for the one adjustable parameter. 0.“. in ASOG-VSP. For

example. inverse-phase gas chromatography has been used

by Newman and Prausnitx (1972). Galin and Rupprecht

(1976). Gundtix and Dincer (198)). and DiPaoIa-Baranyi

(1981) to measure infinite dilution activity coefficients for

many solvents in poly(styrene). various methacrylate

polymers. and some copolymers. Other methods for

measuring this coefficient are head space analysis and

quartz spring or microbalance sorption experiments.

One major advantage of the UNIFAC-W model is that

it does not require activity coefficient data for polymer-

solvent systems. In this sense. UNIFAC-W is predictive

while ASOG-VSP is correlative. using a single binary da-

turn to generate activity as a function of concentration. On

the other hand. UNIFAC-W does require pure component

density data for both the solvent and polymer. The same

comments which were made in regard to the need for such

data in using the Flory-Noggin model also apply to

UNIFAC-FV.

Comparison of ASOG-VSP. UNIFAC-W. and

Flory-Huggins Models with Experimental Data

Experimental data for It!) points in 29 sets of isothermal

polymer-solvent activities were used to test the prediction

of the ASOG-VSP. UNIFAC-FV. and Flory-Huggins

models. Of the 29 sets. 2 showed negative enthalpic in-

teractions (l1.' <20). 14 showed roughly athermal behavior

(3.5 < 0,‘ < 5.5) and 13 showed positive enthalpic inter-

actions (Of >80). Table 111 gives the details of the sets

studied.

For each set. the lowest concentration data point was

chosen for correlation of 0.‘ by eq 18—23. This (1.0 was

then used to predict the activity using the ASOG-VSP

model. TheFIory-Hugginxwascalculated fromIlfand

used as a constant value in the Flory-Huggins equation.

The UNIFAC-FV model was applied according to Oishi

and Prausnitz (1978). using their recommended values for

the free volume parametersand theGmehlingetal. (1982)

values for the group interaction and size parameters.

Denitydata forsolventsand polymerswereobtained from

Timmermans (I950). Brandup and Immergut (1975). and

Marketal. (1972). lnsomemses. liquid densitydata below

the normal boiling point were extrapolated to estimate

liquid densities at higher temperatures.

The ability ofany ofthe models to fit the data depends

on the value of 0". Tables lV-Vl give typical results for

three data sets: one each exhibiting negative. positive. and

athermal behavior. Table VII summarises the accuracy

of the three models on the given data sets. The perform-

ance of the Flory—Huggins model and ASOG-VSP model

was roughly equal on athermal systems. with both models

accurate within 5% of the experimental activity for about

90% of the data points. In systems showing marked

positive or negative deviations from athermal behavior. the

ASOG-VSP model predicted activity within 5% of ex-

periment for over 70% of the data. while the Flory-Hug-

ginmodelwasasaccurateleasthanillfi ofthe time. The

UNIFAC-W model generally performed more poorly than

ASOG-VSP and Flory-Huggins. as might be expected

since it utilizes no binary data in its predictions. It is

possible that performance of UNIFAC-W could have been
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'1. frat-t . ‘ . ‘ FM” ‘ . _ . ,

“4‘. "I". A5414. \hl' Huggins IINIl‘Al :I:.\_

(1121 111111 I 47:) 4 4i I 41151 511 15:07 It II
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021$ 1.452 145.1 1111 1 4714 1.11 I 1‘15 17 8

11.227 1.41!) 1.4411 :15 I 475 .'i .1 I 1')“: It 14

0.247 1.:1au 1443 ii; 1.47) liti I is” -I.‘17

0.276 1.382 1434 311 I464 59 1.197 ~14.)

0.295 1,3101 1 4'29 3.6 I 459 5.7 I lit-i -14.1

0.325 1.3135 1.4:" 4.0 I 45'.) 01 :1 1.111;) ~11?)

(1.355 1.351 1.410 4.4 I 44) 6.7 1.1111 -12.6

0.427 1.389 1.3113 41.4 1.415 19 I 177 ~15 't

0.461 1.378 1.369 41.6 1.401) I 6 I 175 -I4 11

0.470 1:195 1:162 -2..‘1 1.39:1 4). I 1,174 -158

0.499 1.416 1.35.1 —4.3 1.382 -2.4 1.172 -I7.2

av % error 3 t t 6 14 7

Table V. Comparison of Calculated and Experimental

Activities for Bensone-l’oly(ethyleae oxide) at 75.1 'C. 11,‘

I 4.48 and x I 0.210 Determined at w. ' 0.052

auIv activ coefT and % error

 

 

 

wt fract ‘ . Flury- UNIF:AC-

w“, 9‘1,“ AhOC-Vbl’ Huggins F\

0081 3.755 3.749 (12 3.764 0 2 3.416 ":1 0

0.108 3.561 3.543 41.5 3,559 {1.0 3 247 —8 8

0.145 3.332 3.289 -|..'l 3.307 -0.7 3.1138 41.8

Av % error 0.7 0.3 8.9

Table VI. Comparison of Calculated and Experimental

Activities for Beaseae-Pslytisobutylene) st 25 ’C. 11.“ -

0.41 and x I 1.09 Determined at w. - 0.043

solv activ coefl’ and % error

 

 

 

ASOG- Florv— UNIFAC-

“JI? "all VSP Huggins FV

0N3 6.409 6.274 -2.I 6.871 7.2 6.016 -6.1

0.094 5.460 5.520 1.0 6.224 13.8 5.452 -0.3

0.150 4.50s 4.5“ -2.2 5.251 14.0 4.620 0.3

0.152 4.63 4.404 -3.3 5.229 12.8 4.601 41.8

0.104 4.127 4.032 -2.3 4.752 15.1 4.199 1.8

0.245 3.404 3.370 --3.3 4.1X11 148 3.572 2.5

0.154 3.452 3.294 -4.6 3.911 13.3 3.497 13

0.” 3.070 2.940 —4.0 3. 485 13.5 3.144 2.4

0.321 2.073 2.779 -3.3 3.275 14.0 2.970 3.4

0.373 2.541 2.472 -2.7 2.801 13.4 2.642 4.0

av % error 2.9 13.2 2.3

Table V". Accuracy of the ASOGVSP. Flory-Huggins.

and UNIFAC-W Models an the Data Tested

 

 

model 0" < 2 3.5 < 0.‘ < 5.5 0.‘ > 8 all data

% of Data Points for Which Model Was Accurate Within 5%

ASOG-VSP 71 90 71 N

Flory-Huggins 29 89 21 54

UNIFAC-W 0 20 25 22

% of Data Points for Which Model Was Accurate Within 10%

ASOG-VSP If!) 97 83 92

Flory-Noggin 5 95 56 79

UNIFAC-W 0 59 50 46

improved if the value of the parameter used in calculating

the free volume correction had been adjusted: however. no

definitive guidelines for doing so are given by the authors

of UNIFAC-FV.

Conclusions

The ASOG-VSP model was successful in predicting

solvent activities in the polymer-solvent systems reviewed.

Performance was equal in the Flory-Huggins model. It)-
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perior In the UNIFAC-I'll model in athermal antenna. and

sine-rim tu laitli of their: models in systems with significant

enthalpic intvrm-Iinuvc ASWoVSI’ ului haul im mlvnntaigr-

twer IIIt‘M' models in not requiring density (lulu for ap-

plications of the model and is much simpler thiin UNI-

l-‘AC-I-‘V from a cornputational standpoint. However,

ANNE—VSP does require II single value of activity or an

infinite dilution activity coefficient as a parameter. which

UNIFAC-IV (Ii-est not.

The results presented here can he extended to multi-

cmnponent polymer-solvent systems. A theoretical de-

rivation for systems with enthalpic interactions between

polymer and solvent molecules by including the ASOG

group-interaction parameters is also rmssihle. as is exten-

Mun to modeling of temperature dependence of activity.

We are continuing worlt on these topics and on the ap-

plication of the results presented here to diffusion in

polymer melts.
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VSP METHOD USED WITH RESIDUAL INTERACTION TERMS

The manuscript which follows describes the derivation of the complete

VSP method which includes an additional residual interaction term.

Comparisons are made between the new method and the Flory-Huggins

equation by fitting complete data sets to the adjustable parameters in

each model. The new method is applied with three residual terms: one

which describes no residual interaction (equivalent to the original VSP

single parameter method); one which uses a term similar to the Flory-

Huggins interaction term; and one which uses the ASOG-KT group

contribution model to generate an interaction term from a parameter

database without use of any adjustable parameters for residual

interaction. Further details of the experimental data and results are

given in Appendices A, C, and E. Detailed derivations for the equations

proposed in the article are given in Appendix G.
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Prediction of Solvent Activities in Polymer Solutions Using an

Empirical Free Volume Correction

ABSTRACT

A recent correlation for solvent activities in polymer solutions is

extended in scope to provide a methodology for modeling nonideal effects

in polymer solutions. This new method allows the use of any expression

for the residual (enthalpic) interaction between polymer and solvent in

conjunction with a standard (Flory-Huggins) expression for the

combinatorial entropy. An empirical free volume correction uses the

infinite dilution weight fraction activity coefficient of the solvent as

an adjustable parameter. The new method is applied using one residual

term given by the Analytical Solution of Groups (ASOG) technique, one

similar to the Flory-Huggins interaction term, and one which yields no

residual interaction. The results of these three models are compared to

one another and to the Flory-Huggins model for 21 isothermal binary

polymer-solvent systems. When adjustable parameters are determined by

best fit to the data, each of the models applying the new method results

in a standard error of less than five percent for at least 16 of the

systems studied. This represented a better performance than the Flory-

Huggins model.
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INTRODUCTION

An understanding of the thermodynamics of polymer solutions is important

in practical applications such as polymerization, devolatilization, and

the incorporation of plasticizers and other additives. Diffusion

phenomena in polymer melts and solutions are strongly affected by

nonideal solution behavior, since chemical potential rather than

concentration provides the driving force for diffusion. Proper design

and engineering of many polymer processes depend greatly upon accurate

modeling of thermodynamic parameters such as solvent activities.

This work was an extension of previous work by the authors for

correlating solvent activities in polymer solutions (Misovich et a1,

1985). In that paper, an empirical free volume correction is derived

from an athermal form of the Flory-Huggins combinatorial entropy (Flory,

1953) suggested by the Analytical Solution of Groups (ASOG) group

contribution model for calculation of activity coefficients in solution

(Derr and Deal, 1969). The technique generally performs better than the

classical Flory-Huggins equation in extrapolating solvent activity data

from low solvent concentrations to higher concentrations. One

deficiency of the approach is that phase separation cannot be predicted,

i.e., dal/dw1 > O is always the case.

In this paper, the empirical free volume correction was modified to

allow the explicit inclusion of an expression for residual (enthalpic)

interaction between polymer and solvent. A general scheme was given to
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accomplish this, and three specific cases were analyzed and compared.

One case used the ASOG expression for residual interaction, while a

second used an interaction parameter approach similar to the Flory-

Huggins equation. The third case assumed that there was no residual

interaction term, and reduced to the generalized correlation previously

cited (Misovich et a1, 1985).

The results in this paper were based upon a best fit of the adjustable

parameters in each model using a least squares evaluation of all the

data, not by extrapolation from a single data point. In each of the

three cases, the infinite dilution weight fraction solvent activity

coefficient 01” is an adjustable binary parameter. A residual

interaction parameter is a second adjustable binary parameter in the

second case. The classical Flory-Huggins equation was also fit to the

data for comparison. In general, regardless of which residual

interaction expression was used, the new method fits the data with less

error than the Flory-Huggins equation.

GENERALIZED THERMODYNAMIC MODELING

Nonideal interactions between molecules in solution are generally

classified in one of two categories. Interactions resulting from

differences in the size or shape of molecules are classified as

entropic, while interactions resulting from differences in energy are

classified as enthalpic. The complete expression for solvent activity

a1 is typically derived by multiplying concentration (mole fraction) x1,
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a size or entropy activity coefficient, 118, and a enthalpy or group

interaction activity coefficient, 716, or by adding their logarithms as

shown in eq 1a. It is also common to lump the concentration with one of

the activity coefficients (usually the entropic coefficient) to give eq

lb.

1n a - 1n x + In S + 1n C (Is)

1 1 71 71

S G

In a1 - 1n a1 + In 71 (1b)

A statistical approach allows entropic interactions to be handled

combinatorially, as is done by the athermal Flory-Huggins equation

(Flory, 1953), giving for the entropic contribution to activity, a1S

S S
In a1 - 1n (x111 ) - 1 - ¢1 + 1n ¢1 (2)

where x1 is the mole fraction, 118 is the entropic activity coefficient,

and ¢1 is the volume or segment fraction of component 1 (solvent).

Staverman (1950) has also given an expression for combinatorial entropy

which includes surface area variables as well as volume variables.

The modeling of enthalpic interactions generally involves the use of

some type of binary interaction parameters. For similarly sized

molecules, the entropic term is often considered small and the activity

coefficient model consists wholly of the enthalpic term. In cases where

both effects must be considered, the enthalpic or group interaction

contribution to the activity coefficient, 116, is taken as the residual

remaining after the combinatorial entropic term is removed from the
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total activity coefficient. In the Flory-Huggins equation, this term is

given by

G 2

11 - X¢2 (3)

where x is the adjustable interaction parameter.

Several models for solution thermodynamics incorporate both types of

effects. Analytical Solution of Groups, or ASOG, (Derr and Deal, 1969)

uses a Flory-Huggins combinatorial entropy along with a residual

enthalpy similar to Wilson (1964). Universal Quasi-Chemical, or UNIQUAC

(Abrams and Prausnitz, 1975) and UNIFAC (Fredenslund et a1, 1975) are

similar, but use a Staverman combinatorial entropy, and use surface area

fraction rather than mole fraction as the independent variable.

ASOG and UNIFAC also differ from UNIQUAC in that a group-contribution

concept is used to analyze a solution in terms of interactions between

functional groups rather than molecules. In both models, a database of

functional group interaction parameters has been built. This allows

prediction of residual interactions without use of binary data for the

molecular components. All necessary binary data for functional groups

is available from the database.

Group-contribution models can be particularly useful in describing

polymer solutions. Although polymer molecules are distributed in

molecular weight, they are identical in their functional group

composition regardless of their size.
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Predictions of classical Flory-Huggins theory and the group-contribution

models show deficiencies when compared to actual data for concentrated

polymer solutions. The interaction parameter in the Flory-Ruggins

equation, x, does not correlate directly to the enthalpic interaction

between molecules. This is evidenced by the fact that significantly

nonzero values of x are required for accurate fit of data for systems

with little enthalpic interaction, like polystyrene-toluene. The

presently accepted interpretation of x is that of a free energy

interaction parameter incorporating both entropic and enthalpic effects.

When functional group interaction parameters (which are derived from

small molecules in ASOG and UNIFAC databases) are used to predict

solvent activities in polymer solutions, the results are significantly

poorer than those found for solutions of small molecules. Again, this

seems to be due to the existence of a noncombinatorial entropy effect.

Free volume differences contribute to such nonideal interactions.

Chemically similar polymers and solvents still differ in their free

volume, as evidenced by the difference in densities between polystyrene

and toluene. To account for such effects, Flory (1970) proposes an

equation of state approach for analysis of polymer solution properties

in terms of pure component properties. This is adapted to the UNIFAC

model by Oishi and Prausnitz (1978); the resulting UNIFAC-FV model is

more accurate than UNIFAC in fitting activity data from polymer

solutions. Other equations of state for polymer solutions have also

been proposed (Lacombe and Sanchez, 1976; Liu and Prausnitz, 1979;
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Scholte, 1982).

Derr and Deal (1973) note that the ASOG model is not accurate when

applied to polymer solutions. By choosing an ”effective" size parameter

for the polymer molecule, they are able to improve predictions. A

technique for choosing size parameters, referred to as Variable Size

Parameter (VSP), results in a correlation for solvent activities in

polymer solutions which shows good accuracy (Misovich et a1, 1985).

However, it is deficient in that residual interactions are not properly

modeled. That drawback was eliminated in this paper.

VARIABLE SIZE PARAMETER

The following discussion reviews the development of the VSP technique.

An expression similar to the combinatorial entropy given by eq 2 is used

in the ASOG model, shown in eq 4, with the volume fraction ¢1 replaced

by the size ratio R defined in eq 5.
1

ln'ylS-l-R1+lnR1 (4)

R1 - S1 / (Slx1 + 82x2) (5)

where Si is the size parameter of component i, and xi is the mole

fraction of component i. The size parameter is intended to correlate

with the molar volume of a component, and is calculated by counting the

number of atoms other than hydrogen in the molecule, with a few

exceptional cases such as H O.
2
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At infinite dilution of component 1 (pure polymer limit), and taking 81

<< S2 because of the size disparity of the molecules, eqs 4 and 5 yield

a mole fraction activity coefficient

Mole fraction concentration variables are seldom used for polymer

solutions because the difference in component molecular weights makes

them impractical. Weight fraction w1 is typically used, and weight

fraction activity coefficients 0 are defined by
1

a1 - 01w1 (7)

If the ratio of polymer size parameter to solvent size parameter, 82/81,

is assumed equal to the ratio of molecular weights, eq 6 can be

rewritten in terms of weight fraction activity coefficient at infinite

dilution.

01 - e (8)

Experimental values of 01” range from 1.5 for chloroform in poly(vinyl

acetate) (Ju, 1981) to over 100 for water in polystyrene (Gunduz and

Dincer, 1980). Much of the discrepancy can be attributed to residual

interactions which are not accounted for in eq 4. However, data for

toluene in polystyrene yield 01” values between 3.7 and 5.5 (Covitz and

King, 1972; Newman and Prausnitz, 1972), yet little residual interaction

is expected for this system. The discrepancy in this case can be

explained only in terms of the noncombinatorial entropy. The data for
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other chemically similar systems show a similar pattern.

Originally (Misovich et a1, 1985), an empirical correction was proposed

for the size ratio R1 in eq 5.

V1
R - .. <9)

w1 + (e/O1 )w2

 

This results in a correct value of weight fraction activity coefficient

at infinite dilution when used in eqs 4 and 7. Reasonably accurate

results are obtained for the variation of activity coefficient with

‘concentration for most systems for which data are available. However,

the approach lacks theoretical correctness for systems with residual

interactions since a term like the one given by eq 3 is not employed in

addition to eq 4. Also, the parameter 01” describes the complete

activity coefficient containing residual effects as well as

combinatorial and noncombinatorial entropy effects. Hence, including

01” in the size ratio R incorrectly places residual effects in an
1

entropic factor.

REVISED VARIABLE SIZE PARAMETER APPROACH

A more correct treatment of the size ratio given by eq 9 was made by

canceling the effect of residual interactions from 01”. This was

accomplished by placing the infinite dilution value of the residual

activity coefficient, 716m, in the numerator of the ratio e/Olm.
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w1

R - (10)

Go a

w1 + (e11 /01 )w2

 

Eq 1 can then be used in an appropriate manner to calculate solvent

activity. The first term on the right side of eq 1 will account for

size and free volume interactions between molecules according to eqs 4,

5, and 10. The second term on the right side of eq 1b will account for

residual interactions. Any functional expression may be used to

generate the term 116, e.g., the Flory-Huggins interaction parameter

term (eq 2) could be used. The factor 716” in eq 10 has the value given

by the expression for 116 with w taken as zero, i.e.,
1

G - f<w ) <11)
1'1 1

implies that

116‘” - f<0) (12)

The set of eqs 1, 4, 10, 11, and 12 constitute a method for correlating

solvent activities in polymer solutions as a function of concentration.

The order in which the steps are applied is crucial. First, choose an

expression for residual interaction (eq 11) and solve for its infinite

dilution value (eq 12). Then determine the empirical size ratio, R1,

for the chosen concentration using a known value of 01m (eq 10) and use

it to calculate the size and free volume component of solvent activity,

a1S (eq 4). Determine the residual activity coefficient, 116 (eq 11),

for the chosen concentration, and sum the entropic and residual terms in

eq 1 to produce solvent activity.
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This approach includes free volume effects with the entropy term als; a

separate term is not written for these effects. Other approaches have

variously modeled these effects as part of the entropy term as done

here, or with a term separate from entropy and enthalpy, or as part of

both entropy and enthalpy terms. These variations make direct

comparison of various free volume terms difficult except in the context

of overall activity predictions.

APPLICATION WITH VARIOUS RESIDUAL TERMS

Three examples using various residual terms will be presented here. We

believe the technique should be useable with other choices for the

residual term. In all cases, the general procedure outlined above was

followed. The first residual term to be considered was no residual

interaction.

G G0

71 - 71 " 1 (13a)

or

1n 116 - 1n 116‘” - 0 (13b)

The second residual term was given by a Flory-Huggins type expression

analogous to eq 3, replacing d2 by R2.

*

1n 11G - x R22 (14a)

116‘” - exp 0.") (14b)
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*

where x is an interaction parameter based on size ratio rather than

volume fraction. The third residual term was given by the ASOG model

equations.

1 G 2: 1 r 1 r* (15)n 11 - k "kl ( n k - n k ) a

XA

lnI‘k--1nZX1Ak1+l-2—}—-y-S- (15b)

1 lZXA
m 1m

m

1r“r 1r 1 (15)

- 2 x v / E 2 x u (15d)

xk 1 11:1]1313

Gen 6
In 11 - In 11 (x1 - 0) (15e)

In these equations, x1 is the mole fraction of molecular component i,

"ki is the number of functional groups of type k in component i, X is
l

the group mole fraction for group type 1, Pk is the group activity

coefficient for group type k in solution, and Fk* is the group activity

coefficient for group type k in pure component 1. Indices i and j

represent molecular components, while indices k, 1, and m represent

functional groups. The set of eqs 15a-15d are analogous to the Wilson

equation (Wilson, 1964) taken over functional groups rather than

molecular components, weighted over the functional group composition of

a molecule, and normalized for the relative occurrence of different

functional groups in the solution as compared to a pure component.

When eqs 13 were used, no residual interaction was modeled. The result

reduced to the previously described expression (Misovich et a1, 1985)
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for 01 as a function of concentration with 01co as a single parameter.

exp 1 (am ”>w / [w + (e/0 ”w 1 1
01 _ 1 2 1.. 1 2 (16)

w1 + (e/O1 )w2

 

This expression contained a single adjustable parameter, 01”, which was

selected to minimize the residual error in 1n 01 compared to experiment.

A numerical minimization technique was necessary.

The residual interaction given by eq 14 also allowed an expression to be

*

written for 01. In this expression, 116” was used in place of exp(x ),

which gave

G00 60 Geo an

(61 /0 M? (cur /0 )w a

exp [ 1 1 2 [1 + 1 1 2 1n 01 ]]

w

Goo on Gun an

a - 1 + (e11 /01 )w2 w1 + (e11 /01 )w2 (17)

1 w + (e1 GQ/fl on)w

l 1 1 2

  

 

Both 11c” and 01co were taken as adjustable parameters. They were chosen

in the same way as described for eq 16.

When the ASOG model given by eqs 15 was used for residual interaction,

constants from Kojima and Tochigi (1979) were used. (This version of

ASOG is called ASOG-KT.) Only 01co was taken as an adjustable parameter,

because 116co is given by eq 15e as a function of the ASOG-KT constants

only; hence, 1160 is itself a constant for a given polymer-solvent

system and temperature.
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FITTING OF MODEL PARAMETERS

Experimental data for 116 points in 21 sets of isothermal polymer-

solvent activities were used to test the VSP approach with each of the

three residual expressions. The classical Flory-Huggins model, eqs 1-3,

was also applied for comparison. For each data set and each equation,

the best fit of adjustable parameters was made to minimize the sum of

squares residual of 1n a1, i.e., to minimize the relative error in al.

An example of the technique is given as Appendix A. The parameters

adjusted were 01co (VSP with eq 13 and VSP with eqs 15), 01co and 11cm

(VSP with eqs 14), and x (Flory-Huggins). Table 1 contains all values

of the adjustable parameters which were derived from experimental data.

In addition, the value of 116° given by eq 15e from the ASOG-KT

parameter database is given for comparison.

Table 1 shows a remarkable consistency in 01do values in the VSP results

using different residual expressions. This indicates the physical

significance of the parameter, as distinguished from a mere data fit.

As long as there is a reasonable model for the enthalpic term, the VSP

method yields similar values for 01”. In Figure 1, the values of 01°

given using eqs 13 have been arbitrarily taken as x-coordinates, and the

values given using eqs 14 and 15 are plotted as y-coordinates. The plot

shows little scatter from the line x - y. Values of 01m given using eq

13 exceeded those given using the other equations when 11Gdo was greater

than unity (positive enthalpic deviations from Raoult's Law); the

opposite was true when 116” was less than unity.
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Comparison of the value of 116‘ between eqs 14 and 15 showed that some

data sets agreed well, while others had no apparent correlation, as

Figure 2 indicates. In particular, there were three data sets where eq

14 predicted a best fit value of 116” of unity or less while eq 15

predicted a value substantially larger than unity. The apparent

disagreement was due to the nature of the calculation of 116° in the VSP

model with eqs 14 and 15. In eq 14, 716” was an adjustable parameter,

while in eq 15, it was not adjustable but was given as a function of the

ASOG-KT constants. Noting this distinction, the results from eq 15

would generally have been considered preferable as they had a more

fundamental basis in a solution model than the parameter fitting results

from eq 14. The general agreement between parameters derived from

numerical fit and those estimated from the ASOG-KT database was

encouraging in many cases.

In Figure 3, the size factors defined as (e/fllm) in eq 13, and as

(eylco/Ola) in eqs 14 and 15 were compared. Again, there is a sizable

amount of scatter in the plot. Of the total of 63 data fits (21 sets

with three models), only in eight cases was a size factor greater than

unity predicted by any model. In no case did all three models predict a

size factor greater than unity for a given data set. These results are

consistent with the observation of Derr and Deal (1973) that the

"effective size factor" must be less than the actual size ratio of the

molecules; in our models, size factors less than unity indicated they

were less than the actual weight ratio.
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Table 1. Parameter Values Determined by Data Fit.

a Go Go

Solvent- wt no. 0 11 x 1

Polymer frac of VSP wifh eqs VSP with Flory- VSP with

Temp, 0C range pts l3 14 15 eq 14 Huggins eq 15e

(not data fit)

toluene-poly(styrene)a

25 0.111-0.918 11 4.95 4.56 4.94

60 0.102-0.261 3 4.85 4.63 4.84

80 0.246-0.67l 3 5.17 4.72 5.15

.73 0.34 1.01

.59 0.29 1.01

.58 0.32 1.00F
‘
P
‘
P
‘

methyl ethyl ketone-poly(styrene)a

25 0.091-0.298 4 8.93 8.23 7.77 1.65 0.71 1.88

benzene-poly(isobutylene)b

10 0.225-0.454 3 10.66 7.96

25 0.044-0.373 11 8.79 8.18

0
‘

.70 .92 0.84

.35 1.73 0.92

H .82

.71\
J

P
‘
P
‘

cyclohexane-poly(isobutylene)c

25 0.128-0.569 8 4.97 4.90 4.94 1.25 0.39 1.06

n-pentane-poly(isobutylene)d

25 0.029-0.584 9 8.76 8.33 8.76 1.64 0.68 1.00

triisopropylbenzene-poly(styrene)e

165 0.030-0.086 3 12.34 12.25 12.05 1.22 1.00 1.07

175 0.020-0.066 3 10.61 9.84 10.51 2.66 0.92 1.06

carbon disulfide-poly(styrene)e

115 0.014-0.041 3 3.73 3.73 3.70 1.00 0.41 3.61

140 0.008-0.029 4 3.48 3.48 3.48 1.00 0.34 4.15

methanol-poly(methyl methacrylate)e

120 0.003-0.009 3 16.65 16.33 16.23 2.71

130 0.003-0.008 3 12.73 10.79 12.56 0.19

.28

.01

.97

.84F
‘
P
‘

h
a
s
:

toluene-poly(methyl methacrylate)e

130 0.017-0.112 3 9.68 9.68 9.69 .00 0.79 0.97

160 0.006-0.037 5 10.95 10.95 11.07 1.00 0.95 0.90

H

toluene-poly(vinyl acetate)f

35 0.084-0.195 4 9.71 8.41 8.26 2.06 0.78 1.40

40 0.051-0.171 7 9.26 8.35 8.26 2.06 0.77 1.38

47 0.052-0.107 3 8.87 7.63 8.18 3.09 0.76 1.35

chloroform-poly(vinyl acetate)f

35 0.163-0.464 7 1.49 1.49 1.62 1.00 -0.41 0.41

45 0.093-0.499 16 1.44 1.40 1.48 0.67 -0.46 0.45

References: aBawn ea a1 (1950). bEichinger and Flgry (1968a). gEichinger

and Flory (1968b). Eichinger and Flory (1968c). Liu (1980). Ju (1981).
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Figure 1. Comparison of Infinite Dilution Activity Coefficients from

Different Residual Terms. Squares, eq 14; crosses, eq 15.
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Figure 2. Comparison of Infinite Dilution Residual Coefficients from

Different Residual Terms.
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Figure 3. Comparison of Size Factors from Different Residual Terms.

Squares, eq 14; crosses, eq 15.
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Disagreement among the models on the parameter values did not appear to

be random. Rather, certain systems seemed prone to good agreement or

poor agreement on certain parameters, as can be seen from examination of

Table 1. The systems benzene-poly(isobutylene), methyl ethyl ketone-

poly(styrene). and toluene-poly(vinyl acetate) had large relative

deviations among 01co values; the first two also had small relative

deviations among 116“ values. The opposite was true for the system

carbon disulfide-poly(styrene). Finally, the systems toluene-

poly(methyl methacrylate) and cyclohexane-poly(isobutylene) showed small

relative deviations in both parameter values. The other systems showed

either intermediate levels of deviation among parameters or showed

different trends at different temperatures.

COMPARISON WITH SOLVENT ACTIVITIES IN POLYMER SOLUTIONS

Some specific results which illustrate the accuracy and flexibility of

the method are given in Figures 4 through 6. Solvent weight fraction

activity coefficient 01 was plotted versus solvent weight fraction for a

given polymer-solvent system at a given temperature. Experimental

points were shown along with lines or curves representing the best fit

results of certain models.

In Figure 4, data for benzene-poly(isobutylene) at 25°C is shown, along

with the VSP model using eq 13 and the Flory-Huggins model. (Both of

these models contain one adjustable parameter.) The VSP predictions

were more accurate in this case, particularly at the extremes of
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Figure 4. Solvent Activity Coefficient as a Function of Concentration,

Benzene-Poly(isobutylene) at 25°C. Curves, equations; squares,

experiment.
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concentration that were used. Some investigators prefer to express

activity results as a variation of the interaction parameter x with

concentration, often referred to as "reduced residual chemical

potential." The curve in Figure 4 labeled ”Flory-Huggins" would

represent a constant x value. The experimental data would show x

decreasing with concentration because the slope of the data is more

steeply negative than the "Flory-Huggins" curve. The curve representing

VSP with eq 13 also correctly showed this decrease.

Figure 5 compares VSP using eq 15 with Flory-Huggins for the system

toluene-poly(methyl methacrylate) at 160°C. Neither model performed

well on this data set, although VSP with eq 15 did correctly model the

fact that x decreases with concentration, although not the magnitude of

decrease. In Figure 6, data for the system toluene-poly(styrene) at

60°C showed a very slight increase in x with concentration, and this was

correctly modeled by VSP with eq 14, since it predicted a less steeply

negative slope than the Flory-Huggins model. The examples in Figures 4

through 6 show that the VSP method is capable of modeling systems in

which x either decreases or increases with solvent concentration.

For each data set and equation, a standard error was defined by

pred _ 1n a exptl 2

2 (1n a )
s _[ 1 1 11/2

(n-d)

 

(18)

where the sum was over all n points in the data set, and where d was the

number of adjustable parameters (degrees of freedom) in the model used.
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Figure 5. Solvent Activity Coefficient as a Function of Concentration,

Toluene—Poly(methy1 methacrylate) at 160°C. Lines, equations; squares,

experiment.
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Figure 6. Solvent Activity Coefficient as a Function of Concentration,

Toluene-Poly(styrene) at 60°C. Lines, equations; squares, experiment.
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For the VSP model with eqs 14, d - 2; for all the other models, d - 1.

Hence, in cases where the VSP model with eqs 14 produced the same

standard error as the other models, it must have resulted in a smaller

deviation from experiment on the average. The standard error defined by

eq 18 in effect penalizes eq 14 because it has more adjustable

parameters.

The standard error results are given as Table 2, and were generally

quite good for all the models. Even the Flory-Huggins model, when fit

to the data, had a standard error of less than five percent in 14 of 21

data sets. The VSP models were somewhat more accurate, with standard

errors less than five percent for 16 of 21 data sets using eqs 13 and 15

for the residual term, and 17 of 21 data sets using eq 14. Previous

work (Misovich et a1, 1985) has shown that the VSP model using eqs 13 is

superior to the Flory-Huggins model when data from low concentration is

extrapolated to higher concentrations. The same results were found here

in a best fit of all data, for all the models using the VSP method

regardless of the residual expression used.

Because of the generally good performance of all the models, it was not

clear that any given model was significantly better or poorer than the

others for a particular system in many cases, outside of the general

trend noted in the previous paragraph.

(VSP, eq 14) > (VSP, eq 13) - (VSP, eq 15) > (Flory-Huggins)
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Table 2. Comparison of Models with Experiment.

Solvent- wt no. Std % error

Polymeg frac of VSP with eqs Flory-

Temp, C range pts 13 14 15 Huggins

toluene-poly(styrene)

25 0.111-0.918 11 2.1 1.1 2.0 1.6

60 0.102-0.261 3 1.3 0.4 1.3 0.8

80 0.246-0.67l 3 1.0 0.1 1.0 0.6

methyl ethyl ketone-poly(styrene)

25 0.091-0.298 4 1.9 0.6 1.6 2.4

benzene-poly(isobutylene)

10 0.225—0.454 3 2.1 0.8 2.3

25 0.044-0.373 11 2.6 1.2 4.4 5.2

cyclohexane-poly(isobutylene)

25 0.128-0.569 8 2.4 2.6 2.4 2.4

n-pentane-poly(isobutylene)

25 0.029-0.584 9 2.2 0.9 2.2 2.2

triisopropylbenzene-poly(styrene)

165 0.030-0.086 3 2.9 4.1 2.9 5.4

175 0.020-0.066 3 15.4 21.4 15.4 15.1

carbon disulfide-poly(styrene)

115 0.014-0.041 3 0.5 0.6 0.7 0.7

140 0.008-0.029 4 13.8 16.9 13.8 13.9

methanol-poly(methyl methacrylate)

120 0.003-0.009 3 1.4 1.4 1.0 1

130 0.003-0.008 3 6.9 0.6 6.2 6.

toluene-poly(methyl methacrylate)

130 0.017-0.112 3 20.2 28.6 20.2 24.1

160 0.006-0.037 5 12.4 14.3 11.9 14.3

toluene-poly(vinyl acetate)

35 0.084-0.195 4 2.8 0.3 0.5

40 0.051-0.l7l 7 2.9 1.4 1.4

47 0.052-0.107 3 4.6 2.4 2 7 t
o
r
-
'
0

\
m
e

chloroform-poly(vinyl acetate)

35 0.163-0.464 7 3.9 4.3

45 0.093-0.499 16 2.7 2.6 W
U

N
L
‘

O
‘
U
‘
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It was also difficult to define an average error over all the systems

tested because the presence of large errors in a few data sets tended to

obscure the behavior in the majority of data sets in which standard

errors were relatively small. The average error, defined by the

arithmetic mean over all 21 data sets, was greatly affected by this. At

the same time, the average defined by the geometric mean over all data

sets was affected most strongly by the presence of very small errors in

a few data sets. Both these averages, as well as the median standard

error for the 21 data sets, are given for each model as part of Table 3.

VSP with eqs 14 and 15 performed best according to these measurements;

VSP with eqs 13 and Flory-Huggins performed worst, but still showed

small standard errors on many sets.

Also included in Table 3 are the number of times each model had the

lowest (or highest) standard error for a single data set. (The numbers

total more than 21 because of ties.) VSP with eqs 14 and 15 again

outperformed the other two models. Finally, for each data set in which

a given model had the lowest (or highest) standard error, an average

amount by which the error in the other models exceeded that of the best

model (or the error in the worst model exceeded that of the other

models) was calculated. Both absolute (differences in standard errors)

and relative (ratios of standard errors) amounts are listed in Table

3. As was the case with arithmetic and geometric means above, the

absolute amounts gave greater weight to data sets in which all models

had large standard errors, while the relative amounts gave greater

weight to data sets in which standard errors were small. On an absolute
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Table 3. Comparison of Errors.

Model

VSP VSP VSP Flory-

eq 13 eq 14 eq 15 Huggins

Average standard error:

arithmetic mean 5.0 5.1 4.7 5.2

geometric mean 3.2 1.8 2.8 2.9

median 2.7 1.4 2.4 2.6

Number of data sets

where standard error was

lowest 5 12 8 5

highest 9 6 5 8

In sets with lowest

standard error, average

amount by which error was

larger in other models

absolute 0.3 0.8 0.5 0.2

relative 1.2 2.7 1.2 1.1

In sets with highest

standard error, average

amount by which error was

smaller in other models

absolute 0.5 0.9 0.1 0.4

relative 2.0 1.2 1.5 1.5
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basis, VSP with eqs 15 was the only model which outperformed the other

models by a wider margin when having the lowest error than the other

models outperformed it when it had the highest error. On a relative

basis, the same was true of only VSP with eqs 14.

By most measurements of average performance, the VSP model using eqs 14

or 15 produced a lower standard error than the VSP model using eq 13 or

the Flory-Huggins model. This was attributed to the fact that the

Flory-Huggins equation does not correctly model nonideal solution

interactions due to free volume differences, while the VSP model using

eq 13 does not include a term for nonideal residual interactions.

However, due to their simplicity, they were more convenient to use than

the more accurate models. Table 2 indicates that their performance was

generally in the same order of magnitude of standard error as the more

complicated, more accurate VSP models using eqs 14 or 15.

There are, however, certain situations in which behavior in the infinite

dilution limit of zero solvent is important, e.g., thermodynamic

modeling for polymer devolatilization. In such cases, as Table 1 shows,

the choice of model may produce a large difference in the predicted

value of infinite dilution parameters. This can be true even when all

models perform relatively equally over a larger concentration range as

shown by the standard errors in Table 2. For modeling behavior near

the pure polymer limit, the VSP models using eqs 14 or 15 would be

preferable to the other models tested.
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CONCLUSIONS

The VSP method using various residual terms allowed accurate prediction

of solvent activities in most of the polymer-solvent systems reviewed.

Choosing terms which modeled nonideal residual interactions in solution

gave the best results. When all the points in a given experimental data

set were fit to determine adjustable parameters, the VSP method

generally performed better than the Flory-Huggins model.

Use of the VSP method with residual interaction given by the ASOG-KT

equations produced accurate results with only one adjustable parameter

representing the infinite dilution solvent activity coefficient on a

weight fraction basis. Even better results were sometimes obtained by

using a residual term containing an additional adjustable parameter.
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APPENDIX A. EXAMPLE OF VSP METHOD.

The following experimental data are given for toluene(l)-

poly(styrene)(2) at 80°c.

w1 a1

0 246 0.706

0 458 0.914

0.671 0.984

To fit the Flory-Huggins parameter x in eqs 1-3, weight fraction data

must be converted to volume fraction data. Density data can be used

for this transformation.

 

w /p
i i

"1/91 + w2/82

Densities:

p - 0.8075

p2 - 1.068

W1 81 ‘1

0.246 0.706 0.301

0.458 0.914 0.528

0.671 0.984 0.730

The least squares condition results in the following equation which can

be directly solved for x. Subscripts 11 and 21 refer to components 1

and 2, data point i.

-2<¢21n<a /¢)-¢3)/2(¢“> (1-2)
X 1 21 11 11 21 1 21

x - 0.319
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Applying eqs 1-3 gives these results.

pred

'1 a1 81

0.246 0.706 0.708

0.458 0.914 0.909

0.671 0 984 0.979

To apply VSP using eq 13, it is necessary to minimize the error between

the activity calculated using eqs 1, 2, 4, 10, and 13, and the measured

activity. 01do is an adjustable parameter, but the least squares

condition cannot be solved directly for it. The simplest way to proceed

is to assume a value for 01w, generate R1 values from eq 10 (using 116”

- l as given by eq 13), and calculate the sum of squares residual given

pred 2

by adding [1n(a1/a1 )] for each data point. A good initial choice

for 01co comes from the Flory-Huggins model

Q

01 - (92/91) eXP (1 + x) (A-3)

using the known density values and x. The two tables below illustrate

m and the best fit value of 0 Q.the results using this initial 01 1

0 ° - 4.948 e/o ° - 0.549
1 1

red r d 2
w, a1 a, 61" [haul/a," e )1

0.246 0.706 0.373 0.698 1.36x10::

0.458 0.914 0.606 0.899 2.87::10_4

0.671 0.984 0.788 0.974 1.04x10_4

sum of squared residuals 5.26x10

no no

01 - 5.166 e/O1 - 0.526
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pred pred 2
w1 a1 R1 a1 [ln(a1/a1 )]

0.246 0.706 0.383 0.710 2.45x10:2

0.458 0.914 0.616 0.905 1.09x10_5

0.671 0.984 0.795 0.976 6.9lx10_4

sum of squared residuals 2.03x10

To apply VSP using eq 14, two adjustable parameters must be fit to the

data, 01” and ylcm. As in the previous case, the simplest way to

proceed is to assume values for these parameters, generate R1 values

from eq 10, and calculate the sum of squares residual given by adding

pred 2
[ln(a1/a1 )] for each data point. Initial choices for the

parameters can be made using the results from the previous case (or eqs

A-2 and A-3) for 0

illustrates the results using the best fit values.

a and setting 11G0° equal to unity. The table below

The initial values

are identical to the best fit results from the previous case.

0

01 - 4.719

w1 R1

0.246 0.264

0.458 0.481

0.671 0.691

w1 a1

0.246 0.706

0.458 0.914

0.671 0.984

To apply VSP using eq 15, only 0

is given a priori from the ASOG equations.

a - 1.580

S

1

0.551

0.809

0.941

a

a pred

1

0.706

0.914

0.983

Go

e11

G

11

1.281

1.131

1.044

O

/01 - 0.526

a pred

1

0.706

0.914

0.983

sum of squared residuals

1

pred)]2
[ln(a1/a1

1.69x10:§

2.64x10_7

5.53x10_7

8.34x10

a must be fit to the data because 116

The necessary parameters for

use of these equations for the example are given by Kojima and Tochigi

(1979). Molecular components toluene and poly(styrene) are defined in
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terms of functional groups CH2 and ArCH as follows.

v - number of functional groups k occuring in molecule or repeat

k1 unit 1

MW - molecular weight of molecule or repeat unit 1

V

ki

CH2 ArCH MW

toluene 1.0 6.0 92.0

PS 1.8 6 0 104.0

ASOG-KT gives functional group interaction parameters Ak1 used in eqs 15

as the sum of a temperature-independent and a temperature-dependent term

given by eq A-4. Values of these constants are listed for the groups in

this example.

Ak1 ' ex? (akl + bk1 / T) (A-4)

“R1 bkl

CH2 ArCH CH2 ArCH

CH2 0 -0.7457 0 146.0

ArCH 0.7297 0 -176.8 0

In the example, the temperature is 80°C or 353.16 K, giving interaction

parameter values of

Akl

CH2 ArCH

CH2 1.000 0.717

ArCH 1.257 1.000

*

which are used in eqs 15. Consider the calculation of 1n Pk in eq 15c.
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Since x1 equals one in this calculation, eq 15d gives this result for

group mole fractions.

x1 - 1.0 / (1.0 + 6.0) - 0.143

X2 - 1 - 0.143 - 0.857

Applying these group mole fractions in eq 15b gives

  

  

1n r1* - - 1n (0.143 1 + 0.857-0.717) + 1

0 143 1 0.857-1.257

- 0.143 1 + 0 857 0.717 - 0.143-1.257 + 0.857-1

ln r1* - 0.037

1n r2* - - 1n (0.143 1.257 + 0.857-1) + 1

0.143-0.717 0.857-1

- 0.143 1 + 0.857-0.717 - 0.143 1.257 + 0.857 1

1n r2* - 0.005

The same procedure is used to calculate ln Pk at any concentration. The

only additional step needed is the conversion of component or repeat

unit weight fraction to mole fraction.

X I1 0.246/92 / (0.246/92 + (l-0.246)/104) - 0.269

1 - 0.269 - 0.731N I

X1 - (0.269-1.0 + 0.731-1.8) / (0.269~7.0 + 0.731-7.8) - 0.209

N I l - 0.209 - 0.791



1n F

In P

1n P

ln F2
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- 1n (0.209-1 + 0.791-0.717) + 1

0.209-1

 

0.209-l + 0.791-0.717

0.040

0.791-1.257

 

0.209-1.257 + 0.791-1

- 1n (0.209-1.257 + 0.791-1) + 1

0.209-0.717

 

0.209-l + 0.791-0.717

0.004

0.791-l

 

0.209-1.257 + 0.791-l

The activity coefficient 116 for this concentration is given by eq 15a.

71° - exp ( 1.0 (0.040-0.037) + 6.0 (0.004-0.005) ) - 1.003

Results for all data points as well as pure components 1 and 2 are given

in the table.

w

l

1

0

0.246

0.458

0.671

The adjustable parameter 0

1.000

0

0.269

0.489

0.697

x1

0.143

0.231

0.209

0.190

0.172

x2

0.857

0.769

0.791

0.810

0.828

1n P1

0.049

0.037

0.040

0.043

0.045

In P2

0.002

0.005

0.004

0.003

0.003

c

71

1.005

1.003

1.001

1.000

G

can now be fit to the data.

pure toluene

pure polymer

A good initial

choice for this parameter is the result from VSP using eq 13 or from eqs

A-2 and A-3. The tables below give results for the initial value and

best fit value.
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01 - 5.166

w1 R1

0.246 0.382

0.458 0.615

0.671 0.794

WI 81

0.246 0.706

0.458 0.914

0.671 0.984

G

01 - 5.152

w1 R1

0.246 0.381

0.458 0.615

0.671 0.794

W1 81

0.246 0.706

0.458 0.914

0.671 0.984

Go Go 0
11 - 1.005 e 11 01 - 0.529

a S G a pred

1 11 1

0.708 1.003 0.710

0.904 1.001 0.905

0.976 1.000 0.976

pred pred 2

81 [1n(81/81 ) ]

0 710 3.38x10:g

0.905 9.52x10_5

0.976 6.40x10-4

sum of squared residuals 1.93x10

C00 Co) a:

11 - 1.005 e 11 / 01 - 0.530

a S G a pred

1 11 1

0.708 1 003 0.709

0.904 1.001 0.905

0.976 1.000 0.976

pred pred 2
al [ln(a1/a1 )]

0 709 2.34x10:z

0.905 1.03x10_S

0.976 6.58x10_h

sum of squared residuals 1.92x10



CHAPTER 3

ANALYSIS OF RESIDUAL TERMS USED IN GROUP CONTRIBUTION MODELS

One of the important advances in modeling of solution behavior has been

the isolation of residual (enthalpic or energetic) effects and

combinatorial (entropic) effects. The recent approach to both types of

interaction has become fairly standardized. In the case of

combinatorial effects, some form of combinatorial entropy (such as

Flory, 1953 or Staverman, 1950) is used. For residual effects, a local

composition model similar to Wilson (1964) is applied. The synthesis of

both types of interaction in a single model is typified by UNIQUAC

(Abrams and Prausnitz, 1975).

The use of distinct combinatorial and residual terms is commonplace in

group contribution models; in fact, the original development of the ASOG

model (Derr and Deal, 1969) predates UNIQUAC by several years. The

unique feature of group contribution models such as ASOG and UNIFAC

(Fredenslund, Jones, and Prausnitz, 1975) is the treatment of summed

functional group interactions rather than individual molecular

interactions. This makes data reduction possible in terms of functional

groups, so that binary molecular data is not required once a functional

group interaction database has been tabulated.

59
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The concept of deriving molecular solution properties, e.g., activity

coefficients, by summing properly weighted and normalized functional

group properties is the basis of the residual interaction terms in ASOG

and UNIFAC. The summations used make sense from an intuitive

standpoint, and the residual interaction given by a Wilson-like equation

has a theoretical basis in local composition and like-unlike pair

interaction. However, a careful study of the mathematical properties

inherent in the residual terms of group contribution models shows an

implicit dependence of the model predictions on the choice of unit used

to describe functional group size. This dependence arises from the fact

that the summation of functional group activity coefficients is done in

a linear fashion, but the Wilson-like equation used to derive these

coefficients is nonlinear in all its parameters and variables. In this

chapter, this idea is developed and studied in depth for the simplest

possible non-trivial case of a binary solution containing at most two

distinct functional groups.

One consequence of the detailed study of such systems is that the group

contribution model equations for residual interaction can be transformed

to make their behavior more explicit in some fashion. Doing so allows

the additional constraint of molecular composition (in terms of the

different ratios of functional groups present in different molecules) to

modify the rather weak constraint on activity coefficients given by a

Wilson-like equation. A framework is thus given for determining bounds

on activity coefficients without sufficient knowledge to actually fit

all the interaction parameters for functional groups in solution.
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Derivation of such bounds can also assist in the design of experiments

to take the necessary data for fitting interaction parameters.

ANALYSIS OF RESIDUAL TERM IN SOLUTION OF GROUPS MODEL

The manuscript which follows contains the analysis of bounding and

normalization properties inherent in typical solution of groups model

residual expressions. Transformations of the model which allow more

convenient analysis are developed and some typical results are shown for

a binary solution containing at most two distinct functional groups.

Extension of the technique to multicomponent, multifunctional group

solutions should be possible, but is not described here. Details of the

derivation of new equations which are presented in this manuscript are

given in Appendix H.
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Normalization and Bounding Properties Inherent in

Solution of Groups Activity Coefficient Models

ABSTRACT

Recent thermodynamic models for activity coefficients such as UNIFAC and

ASOG use a form of Wilson's equation to calculate the residual

contribution to the activity coefficient. These equations can be

transformed to allow more convenient analysis of their mathematical

properties. Two important results have been obtained from such an

analysis. Bounds on the range of activity coefficients can be derived

without knowledge of the interaction parameter values. The predicted

values of activity coefficients are shown to depend on a normalization

step implicit in the definition of functional group size.
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INTRODUCTION

The equation proposed by Wilson [1] for modeling nonideal liquid

solutions is a popular and useful tool in the design of chemical

processes. Comparisons of the Wilson equation to other activity

coefficient correlations such as the Margules and Van Laar equations

have shown the Wilson equation to have superior predictive ability for

binary systems and particularly for multicomponent systems [2].

Furthermore, the Wilson equation embodies the concept of local

composition as distinct from overall solution composition, thus

modeling the molecular segregation which occurs in nonideal solutions.

The success of the original Wilson equation has led to its adoption as a

basis or component of more sophisticated solution models. Among these

are the Nonrandom, Two-liquid (NRTL) equation [3], the Analytical

Solution of Groups (ASOG) model [4], the Universal Quasi-chemical

(UNIQUAC) model [5], and the UNIQUAC Functional Group Activity

Coefficient (UNIFAC) model [6]. These models utilize the form of the

Wilson equation because of its theoretical basis and good predictive

ability, but allow prediction of anomalous behavior such as phase

separation which the original Wilson equation is incapable of modeling.

Of these models, ASOG and UNIFAC include the concept of functional group

contribution. This concept allows a solution to be treated as if it

were composed not of interacting molecules, but rather of interacting

functional groups, and considers the interaction of a molecule to be the
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sum of its functional group interactions. By correlating available

equilibrium data, a database of functional group interaction parameters

can be derived and used to make predictions about substances for which

no equilibrium data are available, but which contain only functional

groups with parameters in the database. Progress has been made toward

constructing such databases for both UNIFAC [6,7] and ASOG [8-11].

Comparison of these two models shows both to have approximately equal

predictive ability and accuracy, and to be superior to other models

applying the group contribution concept [12].

Both UNIFAC and ASOG consider the activity of a component in solution to

be composed of two parts: a size interaction (entropic or combinatorial)

and a group interaction (enthalpic or residual). In both models, the

group or residual interaction term is given by a form of the

multicomponent Wilson equation. The ASOG model uses group mole fraction

as the independent variable for residual interaction while the UNIFAC

model uses group surface area fraction. The unit of surface area in the

UNIFAC model was originally chosen as the surface area of a single

methylene (CH2) group in an infinitely large polymethylene molecule.

Skjold-Jorgensen, Rasmussen, and Fredenslund [13] showed that the

predictions made by UNIFAC are quite sensitive to the selection of

surface area unit size, and indicated that the database could more

accurately model solution behavior if the interaction parameters were

derived again based on a different normalization of the surface area and

segment size parameters.
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The ASOG model, since it employs mole fractions rather than surface area

fractions, contains a natural normalization of its independent variable

in the entity of a single functional group of any type. However, this

may be somewhat misleading since functional groups themselves vary in

mass and size: for example, is it consistent to assign the same

importance to the interaction of a large carboxylic acid (COOH) group as

a small methylene (CH2) group? It is exactly this problem which UNIFAC

addresses by using functional group segment size and surface area

parameters. Recent revisions of A806, such as ASOG-KT [9], have also

attempted to address this problem in a somewhat systematic way by

assigning to each functional group a weighting factor equal to the

number of non-hydrogen atoms it contains, and including some special

cases as well. In doing so, ASOG makes explicit the normalization of

functional group size.

There are several methodological ideas which are useful in describing

and analyzing normalization effects in the calculation of residual

contributions to the activity coefficient within the solution of groups

framework. The ASOG model is used throughout to illustrate these

proposals and comments; however, they are applicable in the most part to

UNIFAC and other similar models. The standard equations for residual

activity coefficient in the ASOG model are reduced to simpler forms

applicable to binary systems containing at most two distinct functional

groups. This simple case can be representative of many binary

solutions, and was chosen to enable discussion and graphical

representation of the effects of changes in system parameters. The
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approach taken can be extended to multicomponent solutions containing

multiple distinct functional groups.

In addition to facilitating the discussion of size normalization, the

approach also allows the behavior of the ASOG model to be analyzed for

cases in which insufficient data are available to specify complete sets

of interaction parameters for the functional groups. In such cases,

conclusions about residual activity coefficients can be derived as

bounds rather than single values. These bounds can be made on the

concentration dependence of activity for either component of a binary

system based on a single measurement.

EFFECTS OF NORMALIZATION ON RESIDUAL ACTIVITY

Consider a binary solution whose molecules contain two distinct

functional groups, e.g., ethanol and methanol contain the functional

groups CH3 (or CH2) and OH. Denote the component mole fractions by x1

and x2. In order to apply the ASOG model, it is necessary to define

group mole fractions X1 and X2 according to

x+ X

xk _ “k1 1 “k2 2 (1)

(“11+“21)x1 + (“12+“22)x2

 

where nkj is proportional to some measure of the number of functional

groups of type k found in molecule j. Derr and Deal [4,8] consider this

measure to be the number of functional groups, whereas others [9-11]

consider it to be the number of functional groups multiplied by an
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appropriate weighting factor accounting for relative group sizes.

The use of a size-weighting factor to model group size in ASOG makes the

method equivalent to UNIFAC in its definition of the functional group

concentration variables denoted here by X and X . As studied by
1 2

Skjold-Jorgensen et al [13], there is an implicit normalization step in

the definition of group size. UNIFAC applies this normalization by

choosing the methylene (CH2) group to have unit volume and unit surface

area. ASOG does essentially the same thing in a less precise manner by

considering the number of non-hydrogen atoms in a group to be its size

measurement, with a few explicit exceptions such as water and multiple-

substituted carbon atoms (>CH- or >C<).

ASOG gives the residual part of component i activity coefficient for a

binary system containing two distinct functional groups by the following

equations.

  

G - i i
1n 71 - n1i(1n F1 - 1n P1 ) + n21(1n P2 - ln F2 ) (2)

X A X A

1n P - -1n(x Ak + x Ak ) + 1 - 1 1k - 2 2k (3)

k 1 1 2 2 X A +X A X A +X A

l 11 2 12 l 21 2 22

i

1n Pk - 1n Pk (xi - l) (4)

In these equations, 11G is the residual (or group interaction, hence the

letter C) part of component 1 activity coefficient, and Pk is the

functional group activity coefficient for group type k. I‘k1 is the

functional group activity coefficient for group type k, evaluated at the

functional group composition of pure component i, and Ak1 are group
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interaction parameters, with Akk - 1. Eq 3 is the Wilson equation,

applied to functional groups in solution rather than the actual

molecular components. Eq 2 gives the logarithm of component i activity

coefficient as the sum of its functional group activity coefficients,

1n P1 - 1n P11 and In F2 - 1n F 1 relative to a pure component basis.
2 9

The functional group activity coefficients in pure component i are

subtracted from the functional group activity coefficients in solution;

if this were not done, activity coefficients would not approach unity in

the pure component limit for molecules containing more than one distinct

functional group type.

The effect of group size normalization is to change the absolute values

of the factors n11 and n21 in eq 2, although not their ratio. (ASOG

would give a different ratio than UNIFAC, since each measures a

different type of size, but once a method is selected, the unit of size

will not affect the ratio.) If eq 3, the Wilson equation for group

activity coefficients, were linear in the group interaction parameters

Akl’ the magnitudes of n11 and 1121 would not affect overall predictions

of the equation set. The Wilson equations are obviously nonlinear in

the group interaction parameters (as well as the composition variables),

therefore an activity coefficient result in eq 2 cannot be associated,

independent of normalization, with any single set of group interaction

parameters A12 and A21 in eqs 3 and 4.

Since the technique used by both ASOG and UNIFAC is to construct a

database of group interaction parameters based upon reduction of



69

experimental activity data, it is apparent that such a database must

depend on the normalization of group size in a nonlinear way. This is

the underlying cause behind the discovery by Skjold-Jorgensen et a1 [13]

that varying the group size normalization within UNIFAC results in

changes in the group interaction parameter database. Some

normalizations produce a database which gives more accurate prediction

of concentration and temperature dependence of activity coefficients

than other normalizations. The relative merit of different

normalization schemes will not be discussed here; the relevant issue in

this paper is means of analyzing such effects.

A NORMALIZATION INDEPENDENT EXPRESSION FOR RESIDUAL ACTIVITY

COEFFICIENTS

It is possible to derive an expression related to residual activity

coefficient which contains no implicit or explicit dependence on the

unit of functional group size. The complexity of this expression can be

minimized by introduction of a conveniently weighted composition

variable, c1, for the molecular species in a binary solution, defined as

follows.

(n +n )x

c1 _ 11 21 1 (5)

(“11+“21)x1 + (“12+“22)x2

 

Such composition variables represent size-weighted fractions in that ci

equals the total size (as measured by number of functional groups) of

all molecules of component i in solution divided by the total size of
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all molecules in solution. Although c1 depends explicitly on the nkj

values, it does not depend on the unit of functional group size. Since

eq 5 contains one occurrence on an nkJ in each term of the numerator and

denominator, size effects will cancel in the overall expression.

Following through the calculations for a binary solution containing two

distinct functional groups, but using composition variables c1 and c2

rather than the actual mole fractions x1 and x2, simplified results for

group mole fraction can be found. Define group ratios

81 ' n21 / “11 (6)

giving the size-weighted ratio of group 2 to group 1 in each component

molecule, then

c c
1 + 2

1 + g1 l + g2

X1 -  (7)

defines the group mole fraction, X1 in eq 1, in terms of component

size-weighted fractions c1 and c2.

Group ratios are particularly useful in polymer solutions, because

polymer molecules are typically distributed in their molecular weight,

hence in their absolute size. This fact can make eqs 1-4 difficult to

apply to a solvent molecule in polymer solution since there is no single

x2. Characterization in terms of group ratios is sizeaindependent, thus

all polymer molecules of a given type have the same group ratios

regardless of their molecular weights. Eq 5 can also be rewritten for
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polymer solutions by using weight fraction w1 rather than mole fraction

x on the right side and adding average molecular weight factors to the

i

equation.

The definition of group ratios also allows eq 2 to be rewritten as

In G

1 - 1n P i) + (1n F - 1n F i) (8)

1 81 2 2

 

- (ln P1

n
11

The left side of eq 8 is the normalized residual activity coefficient of

component i. (It is termed "normalized" because it contains the term

n11, inversely proportional to the unit chosen for functional group

size, in its denominator.) The right side contains no explicit

dependence on the nkj’ since the group ratio g1 has been substituted.

The implicit dependence of F1, P11, F2, and [‘21 on nkj can be removed by

substituting eq 7 into eqs 3 and 4, and using the property that both

component size-weighted fractions and group mole fractions sum to unity.

The resulting lengthy equation is
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1n 11° (1 + g1)(l + A1231)

- ln

01, (1 + sj)(1 + A1281) + (8J - 8,)(A12 - 1)cj

 

'(1 + 8])(A21 + 81)
 + g1 1n

. (1 + 81)“21 + 81) + (8J - 81)(1 - A21)cJ

+ (1 + 8,)(8J - 81)Cj

A12

(1 + gj)(1 + A1281) + (8J - 81)(A12 - 1)c

(
 

J

A21
- 9

(1 + gj)(A21 + 81) + (gJ - 31)(1 - A21)cJ ) ( )

The result for component 1, (1n 11G)/n11, is given by setting i - 1 and

j - 2, while the result for component 2, (1n 726)/n12, is given by

setting 1 - 2 and j - 1. In eq 9, the normalized residual activity

coefficient (1n in)/n11 depends upon three distinct sets of variables.

The first of these, group ratios g1 and g2, describe the functional

group composition of the molecular components. These two ratios replace

the four functional group variables nkj in the original form of the ASOG

model. The second set of variables, A and A are the Wilson

12 21’

parameters for the functional groups. The third variables are size-

weighted fractions c or c2, which describe molecular component
1

composition in the solution.

None of these three sets of variables depends on the functional group

size unit. The Wilson parameters are constants for given functional

groups, while g1 and g2 are ratios of two nkj values which depend on the

size unit in the same linear way. The discussion following eq 5 showed
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that c1 and c2 are independent of the functional group size unit for

similar reasons. Hence, the right side of eq 9 will describe the same

function of composition for a given set of Wilson parameters regardless

of the size unit chosen for normalization. All of the normalization

dependence of this equation is given explicitly by the denominator of

the left side.

This result applies to any solution of functional groups methods which

treat component activities as the sum of functional group activities

given by the Wilson equation. The only distinction will be in the

definition of size-weighted fraction in eq 5. For example, in UNIFAC,

the size-weighted fraction will actually represent a molecular surface

area fraction, whereas in ASOG-KT, it will essentially represent a

molecular fraction of atoms other than hydrogen (as mentioned above,

there are a few special cases in ASOG-KT which do not follow the general

rule for determining group and molecule size).

The result given by eq 9 can also be extended to multicomponent

solutions containing several distinct functional groups. This is done

by defining additional group ratios so that the right side of the

equation contains only group ratios, Wilson parameters, and component

size-weighted composition variables. Such a generalized result will not

be attempted in this paper. Instead, the dependence of eq 9 upon its

existing parameters and variables will be interpreted.

In the remainder of this paper, the variables 1 and j in eq 9 will
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arbitrarily be taken as l and 2. Hence, the results given will apply to

the activity coefficient of component 1. Equivalent equations for

component 2 can be obtained by interchanging g1 with g2, and c1 with c2

on the right side, giving (1n 126)/n12 on the left side.

TRANSFORMATION OF WILSON PARAMETERS

The expression for normalized residual activity coefficient (1n 116)/n11

given by eq 9 is rather complicated; however, by appropriate

transformations of the Wilson parameters, simpler forms of the

expression can be written. Begin by defining transformed parameters

(8 - 8 )(A - 1)
312 _ (12+ 1 12 (10)

. 82)(1 + A1281)

(82 - 81)(1 - A21)

B21 - (11)

(1 + 82)(A21 + 81)

 

 

Each parameter Bij is a function of the group ratios and only one of the

Wilson parameters, so that B1.1 can be regarded as the transformation of

Aij' When eq 9 is written in terms of these parameters, it simplifies

 

  

to

1n 716

- - 1n (1 + Blzcz) - g1 1n (1 + B21c2)

n

11

c (8 -8 ) + (1+8 )8 (8 -8 ) - (1+8 )8 B
2 2 l 2 12 2 1 2 l 21

+ ( - ) (12)

1+g2 l + Blzc2 1 + B21c2
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At infinite dilution of component 1 in component 2, c2 approaches unity,

and eq 12 can be further simplified to

1n 116 Q

) - - 1n (1 + B ( ln (1 + B

n 12) ' g1 21)

11

1 (8 '8 ) + (1+8 )8 (8 -8 ) - (1+8 )8 B
+ ( 2 1 2 12 _ 2 1 2 1 21) (13)

1+g2 1 + 812 1 + 321

  
 

A further transformation of parameters B and 821 provides additional
12

simplification.

(1 + g )(1 + A 8 )

c - 1 + B - 1 12 2 (14)

(1 + 82)(1 + A1281)

(1 + 8 )(A + 8 )

c - 1 + B - 1 21 2 (15)

(1 + 82)(A21 + 81)

 

 

Application of these parameters to eq 13 gives

C

In 11 w 1+g1 1 g2

( - - 1n C12 - g1 1n C21 - (-—- + -——) + (1+g1) (16)

n11 1+82 C12 c21

  

Eq 16 is the simplest possible form of the infinite dilution normalized

residual activity coefficient in a binary solution. The only parameters

required for calculation of this quantity are the group ratios g1 and

g2, which measure the functional group composition of the molecular

components, and C12 and C21, transformations of the Wilson parameters

A12 and A21. This equation is simple enough so that its properties can

be thoroughly investigated.
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BASIC PROPERTIES OF INFINITE DILUTION NORMALIZED RESIDUAL ACTIVITY

COEFFICIENTS AND BOUNDS ON THEIR PARAMETERS

The quantity calculated by eq 16 classifies solution behavior into

positive or negative deviation (from Raoult's Law) or athermality,

depending upon its sign. By inspection of eq 16, the condition

C12 ' C21 ' 1
(17)

is seen to be sufficient for prediction of athermal behavior, since it

forces the expression to zero. Three distinct types of athermal

behavior can be described, dependent upon the group ratios and Wilson

parameters.

The first type is true athermality due to identical functional group

composition of components, occuring when g1 equals g2. An example of

this would be the binary system methanol-ethylene glycol, in which the

ratio of hydroxyl to hydrocarbon groups is unity in both molecules.

(ASOG-KT counts -CH -, -CH3, and -OH all as a having a size of one; this

would not be true in UNIFAC.) Eqs 14 and 15 are seen to reduce to eq 17

when g1 and g2 are equal.

A second type is true athermality due to non-interaction of functional

groups, occuring when A12 and A21 both equal unity, the standard value

of Wilson parameters in an ideal solution. Again, eqs 14 and 15 reduce

to satisfy the condition given by eq 17 when this is the case.
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The final type of athermality is accidental athermality, occuring when

the value given by eq 16 is zero, but the sufficient condition given by

eq 17 is not met. Examples of this behavior will be given later.

It is possible for the group ratios g1 and g2 to take on any nonnegative

values, including zero and infinity. A group ratio will equal zero (or

infinity) when the molecular component it describes contains only a

single functional group, while the other molecular component contains

both functional groups, e.g., water and ethanol. If each of the two

molecular components in a binary solution contain a single different

functional group, one group ratio will equal zero while the other

becomes infinite, e.g., hexane and water. This case represents the most

nonideal extreme of functional group composition, with increasing

ideality occuring in order for the following cases: one group ratio zero

(or infinite), the other finite and nonzero; both group ratios finite

and nonzero (e.g., l-hexanol and ethanol); group ratios equal.

For each case where at least one of the group ratios becomes zero or

infinite, special forms of eq 16 are possible. When g1 is zero, eq 16

reduces to

G
In 11 a 1 1 g2

) - - ln C12 - (-—- + -——) + l (18)

“11 1+82 C12 C21

  

when g2 is zero, it reduces to
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In 1 G l
1 Q

) - - ln €12 - g1 1n C21 + (1+g1)(l - -——) (l9)

n11 C12

(
 

and when g1 is zero and g2 is infinite, eq 16 becomes

In 110 1
Q

n ) - - 1n C12 - E—- + 1 (20)

11 21

 

(

There is no need to consider the situation when only one group ratio is

infinite and the other is nonzero. By relabeling the groups, this

becomes a situation where one group ratio is zero.

Interaction parameters A12 and A21 are physically interpreted as

resulting from energy differences between like-like and like—unlike

pairs in solution. Quantitatively, this is given by [14] as

Av (A - )
A __18xp[_ 11 11

11 v1 RT

 

] (21)

where v is the molar volume of component i and A is the interaction
1 11

energy of an i-j pair (Aij - 111). When applied to functional groups

rather than molecules, the preexponential factor vj/v1 is of magnitude

unity. The argument of the exponential factor varies from negative

values when like-like interactions are favored to positive values when

like-unlike interactions are favored. The magnitude of this argument

depends on the exact strength of secondary bonds, and can probably be

bounded by the maximum bond energy of a hydrogen bond, about 50 kJ/mole

[15]. Division by R gives a bound of approximately 6000/T, where T is
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in K. Interestingly, this is similar to the maximum values assigned to

the argument in several versions of the UNIFAC parameter tables (3000/T

in [6] and lOOOO/T in [7]).

At normal temperatures, then, the interaction parameters Ak1 can

probably be bounded by the values exp(-20) and exp(+20). This

essentially allows them to take on any positive values. However, the

transformed parameters, Ckl’ are generally more restricted in their

domain. If eqs 14 and 15 are differentiated with respect to A12 and

A21, respectively, several properties follow for unequal values of the

group ratios. First, C12 and C21 are either monotone increasing or

monotone decreasing functions of A and A . Second, if C
12 21 12

increasing function of A12, 021 will be a decreasing function of A21 a

vice versa. Third, the direction of variation is given in all cases by

is an

nd

either g2-g1 or gl-gz, as Table 1 indicates. Taking limits on eqs 14

and 15 for these cases results in a general set of bounds on C and

 

  

12

C

21°

1+g1 l+g1 g2

--— < C12 , 021 < -— when g2 > g1 (22)

1+g2 1+g2 g1

1+g1 g2 1+g

- < C12 , C21 < when g2 < g1 (23)

1+g2 g1 1+g2

Equality of g1 and g2 results in athermal behavior as discussed above,

with the condition of eq 17 holding.
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Table 1. Sign of deI/dAk1 as a Function of g1 and g2.

1(32 g1'32 31f328

dCIZ/dA12 + g

chl/dAZl - +

CONSTANT INFINITE DILUTION NORMALIZED RESIDUAL ACTIVITY RELATIONSHIPS

In the presence of a large amount of experimental data, optimal values

of the parameters C12 and C21 can be derived. The interaction parameter

databases of UNIFAC and ASOG are derived in such a way from many sets of

multicomponent, multifunctional group experimental data. For the

simplified binary component-binary group case presented here, two

experimental data points (e.g., two infinite dilution activity

coefficients) suffice to determine the interaction parameters 012 and

021. There are cases, however, where only one data point can be

determined at infinite dilution. An example would be the case of a

concentrated polymer solution for which only an infinite dilution

solvent activity coefficient was available. An analogous situation

arises in the multifunctional group case even when several experimental

values are available, because the number of interaction parameters

required for a system containing n distinct functional groups is

n(n+l)/2.

Given a constant value of the infinite dilution normalized residual

activity coefficient, as might be derived from experimental data using

suitable choices for the non-residual part of component activity and the

unit size normalization, a relationship between the parameters C and

12
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621 can be defined. Such a relationship would be given by eq 16 (or eq

18, 19, or 20 for special cases of group ratios). In addition, eq 22 or

23 would place bounds on C and C . It is possible to solve eqs 18-20
12 21

for an explicit function of one parameter in terms of the other at

constant [(1n 11G)/n11]m; such a solution is not possible for the

general case of eq 16 where the relationship remains implicit. In that

general case, a numerical solution for the (C ) relation can be

12'021

made.

Bounds on the maximum and minimum possible values of [(1n 116)/n11]co for

a given set of group ratios are also possible. Eq 16 can be

differentiated with respect to each interaction parameter C or C
12 21

with the other held constant. This allows necessary and sufficient

conditions for [(1n 11G)/n11]co to be an increasing function of each

interaction parameter to be written.

1+g1

—— > 612 (24)

l+g2

l+g g

-——l —3 > c (25)
21

1+g2 g1

Combining these results with those given in Table l, the maximum value

of [(1n ylc)/n11]co (as a function of 012 and C21) will always occur when
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1+g

c - —-—l12 (26)

1+g2

c - 1+g1 g3

21

 (27)

l+g2 g1

and the minimum value of [(ln 116)/n11]co will always occur when

1+g1 g2

 C -12 (28)

l+g2 g1

1+g1

 c -

21 (29)
1+g2

These maxima and minima are given by

G
In 11 a l+g2 g1

) - (1+g1) 1n + g1 1n —- (30)

11 max l+g1 g2

C
1n 11 a l+g g1 l

> - (1+g1> 1n + 1n -— + (82‘81>(“ - 1) (31)
n11 min l+g1 g2 g2

(
  

n

(
  

If eq 30 is differentiated with respect to either group ratio with the

other held constant, it can be shown that the expression takes on a

minimum value when g1 and g2 are equal. Since the normalized residual

activity coefficient equals zero under that condition, eq 30 necessarily

predicts that the maximum normalized residual activity coefficient for

distinct values of g1 and g2 must be positive. Similar arguments using

eq 31 show that the minimum normalized residual activity coefficient for

distinct values of g1 and g2 must be negative.
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Maximum and minimum values of [(1n 116)/n11]do are listed in Table 2 for

various finite values of g1 and g2. Some trends are apparent. Wider

ranges of normalized residual activity coefficients result when g1 and

g2 differ considerably from each other. The physical interpretation of

this result is that greater nonideality is expected when the functional

group similarity between two components decreases. When g2 or both of

the group ratios are zero or infinite, the range of normalized residual

activity coefficients is unbounded both positively and negatively. This

represents an even more nonideal case of functional group dissimilarity.

In all cases of finite group ratios, the minimum value of

[(1n 116)/n11]co is larger in magnitude than the maximum. This has no

physical significance; in fact, most nonideal systems exhibit positive

deviations from Raoult's Law. It appears to be an artifact of Wilson's

equation, indicating a mathematical tendency to predict negative values

of the residual activity. Large values of g1 lead to wider ranges of

[(1n ylc)/n11]do since the component activity coefficient is resulting

from a sum of a larger number of functional group activity coefficients.

The values in Table 2 may not be indicative of the magnitude of actual

residual activity coefficients 1n 116 because of the normalization

effect of dividing by the measurement n11 of functional groups of type 1

in component 1.
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Table 2. Extrema of Normalized Residual Activity Coefficient of

Component 1 as a Function of Component Group Ratios.

Group Ratios [(1n 116)/n

11]g1 g2 minimum max mum

l 2 -0 382 0.118

1 5 -2.612 0.588

1 10 -6.993 1.107

2 4 -0.661 0.146

5 10 -1.556 0.171

2 1 -0.523 0.170

5 1 -4.982 1.456

1 0.5 -0.382 0.118

1 0.2 -2.612 0.588

1 0.1 -6.993 1.107

0 l - a 0.693

0 2 - o 1.099

0 5 - m 1.792

0 10 - a 2.398

0 0.5 - o 0.405

0 0.2 - o 0.182

O 0.1 - m 0.095

For a given set of group ratios, eq 16 can be solved numerically for the

G a:

set of parameters (C12, C21) that result in a given [(ln 71 )/n11] .

Figures 1 and 2 show this representation as a set of constant

[(ln 116)/n11]co curves in (C12, C21) space for two sets of group ratios.

Figure 1 illustrates constant [(ln 710)/n11]m curves for a case when

both group ratios are finite and nonzero. The case g1 - 1, g2 - 2

(e.g., methanol-ethanol) is relatively close to ideality. Parameters

C12 and 021 are restricted to the domain between 2/3 and 4/3, and

normalized residual activity coefficients between -0.382 and 0.118 can

be predicted. Because g2 > g1, a decrease in [(1n 1lc)/n11]co is seen as

the curves are crossed in a clockwise direction from the 021 axis to the

612 axis. Clockwise rotation in this quadrant means an increase in C12
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at constant C21 or a decrease in C21 at constant C12.

Figure 2 represents a case where g2 equals zero, meaning that component

2 contains only a single functional group (e.g., water). Parameters C12

and 021 are restricted to the domain between zero and two by eqs 22 and

23, but the range of [(1n 116)/n11]co that can be predicted is unbounded.

In this case, g2 < g1, resulting in an increase in activity coefficient

with clockwise rotation about the axes. The set of curves collapses

into the 012 axis as C12 approaches zero; no asymptotic relationship

between 012 and C21 seems to exist for this case.

The presence of a curve for [(1n 116)/n11]no - 0 in Figures 1 and 2

illustrates the situation termed accidental athermality. Although eq 16

predicts [(1n 116)/n11]co - 0 for all points on this curve, only the

point (1,1) represents true athermality due to either identical

functional group composition of molecular components or non-interaction

of functional groups. All other points on this curve result from

cancelling effects of positive deviations from ideality by one

functional group and negative deviations by the other.

Figures 1 and 2 illustrate the wide range of behavior which can be

predicted by eq 16. This is true both in terms of the possible values

of the normalized residual activity coefficient which can be predicted I

as well as the (C12, 621) relationship which can generate a single

activity value. In the absence of additional experimental data beyond a

single point, it is not possible to determine which (612, 621) point on
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a constant [(1n 116)/n11]co curve to use in predicting the variation of

activity coefficient with concentration. However, the restriction of

interaction parameter values to a single curve can still provide useful

information regarding bounds on the activity coefficient, as shall be

seen.

BOUNDING THE CONCENTRATION DEPENDENCE OF NORMALIZED RESIDUAL ACTIVITY

COEFFICIENTS

Since the results of the previous section indicated that a wide range of

(C12, 021) points defined a given value of [(ln 116)/n11]w, it is

enlightening to consider the concentration dependence of normalized

residual activity as a function of the interaction parameters for a

fixed value of [(1n 116)/n11]o. This can be investigated by taking the

numerical results from eq 16 discussed above, applying eqs 14-15 to

transform from interaction parameters (C12, C21) to interaction

parameters (B12, B21). Eq 12 can then be used to give the concentration

dependence of [(1n 116)/n11].

Consideration of this point is useful in two regards. First, the

concentration dependence of normalized residual activity for a given set

of group ratios and infinite dilution value can be bounded over the

entire concentration range. This helps in estimation of the

concentration dependence when only a single infinite dilution property

is known.
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Second, this point leads directly into consideration of the

normalization of n11. For a given infinite dilution residual activity

[(1n 116)]m, the value of the normalized infinite dilution residual

will depend upon the normalization of n11. If

the concentration dependence of [(1n 110)/n11] changes markedly with

activity [(1n 1lc)/n11]co

changes in [(1n ylc)/n11]Q, then normalization of n11 will have a

noticeable change on the concentration dependence of residual activity

coefficients. This will be true even when a large body of experimental

data is used to find the optimal values of interaction parameters, as in

the databases of UNIFAC and ASOG. The interaction parameters databases

must then be considered size-dependent or normalization-dependent as

shown in [13].

The technique described above was applied to produce Figures 3 and 4.

These plots illustrate bounds on the normalized residual activity

coefficient as a function of concentration for various fixed values of

the infinite dilution normalized residual activity coefficient. For

positive fixed values of [(1n ylc)/n11]m, the bounds could always be

derived assuming C12 and C21 values at the endpoints of a specific curve

in Figures 1 and 2. Such endpoints can be found from numerical solution

of eq 16, or by algebraic solution of eq 18, 19, or 20 in special cases.

This is not necessarily the case for negative values of [(ln ylc)/n11]°,

which are not shown in Figures 3 and 4.

Figure 3 is based upon the same group ratios as Figure 1, representing a

solution not far from ideality. In this case, the bounding curves shown
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are quite tight. Knowledge of the infinite dilution value allows

estimation of the activity at any concentration with little uncertainty.

Also, infinite dilution values near zero and near the maximum possible

(0.118 for this case) result in the narrowest bounds on concentration

dependence. The fact that there is some uncertainty for the case of

zero infinite dilution value provides another example of accidental

athermality, as discussed above.

Figure 4, corresponding to the same group ratios as in Figure 2,

illustrates a case which is more nonideal than shown in Figure 3. As a

consequence of g2 equaling zero, a lower bounding curve could not be

derived for this case, and only upper bounding curves are shown.

In general, molecular components which are more dissimilar in their

functional group composition result in more uncertainty in the

concentration dependence of residual activity. That is why Figure 3

illustrates narrow bounding curves while Figure 4 illustrates a

situation which is unbounded in one direction. However, functional

groups which are more dissimilar in terms of their secondary

interactions result in less uncertainty in concentration dependence.

The uppermost set of bounding curves in Figure 3 represent the greatest

deviation from ideality by functional groups, yet show less uncertainty

than the bounding curves for an infinite dilution value of 0.05.

Combining these results, it seems that the tightest bounds occur for

systems in which the functional groups themselves interact strongly, but

the molecules are not too different in their functional group makeup,
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Figure 3. Bounding the Concentration Dependence of Normalized Residual

Activity Coefficients for g1 - l, g2 - 2. Labels are infinite dilution

values; curves are upper and lower bounds.
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e.g., methanol-ethanol.

The relevance of this type of analysis is that it allows bounds on the

concentration dependence of normalized residual activity to be

accurately made by some analytical means. Such bounds are important in

themselves, as they allow estimation of concentration dependence from a

single data point without recourse to a group interaction database.

They are also useful in providing bounds on the effect of normalization

of n11 upon residual activity, as discussed later.

BOUNDING THE UNKNOWN ACTIVITY OF A SECOND COMPONENT

An approach similar to that of the previous section can be used to

provide bounds for estimation of the activity of the second molecular

component. Again, only a single value of the activity of the first

component at infinite dilution is needed. The procedure for this

calculation is similar to that for bounding the concentration dependence

shown previously. An additional step is required because eqs 10-31 are

specific to component 1 activity calculation.

The first step consists of finding the (612, C21) endpoints of the

constant infinite dilution residual activity curve for component 1 as

described in the previous section. Since the transformed parameters Cij

are component-specific, it is necessary to invert eqs 14 and 15 to

generate A1.1 interaction parameters. The inverted equations are
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(1 + g )C - (l + g )
A12 _ 2 12 1 (32)

82(1 + 31) - 81(1 + 22)012

 

81(1 + 82)C21 ' 82(1 + 81)

A21 - (33) 

At this point, Cij values specific to component 2 can be generated by

1 replacing c2 in

addition to interchanging g1 with g2, then gives the concentration

interchanging g1 with g2 in eq 14. Eq 12, with c

dependence of component 2 activity, namely, (1n 12G)/n12. Bounding

curves like Figures 3 and 4 can be generated for component 2. The only

qualitative difference between these curves and those for component 1

will be that the infinite dilution value for component 2 will not be a

single point, i.e., the upper and lower bounding curves for component 2

will not merge at c2 - 0.

Since a single infinite dilution value for component 1 can be used to

generate bounds for the concentration dependence of component 2

activity, it can be used in particular to bound the infinite dilution

activity coefficient of component 2. This provides another graphical

relationship, shown in Figures 5 and 6. Values of [(1n 126)/n12]co are

plotted versus values of [(1n 11G)/n11]no ranging from zero to the

maximum allowable. The bounding curves show the allowable range of

component 2 activity at infinite dilution corresponding to a known

component 1 activity at infinite dilution. Figure 5 corresponds to the

fairly ideal case used for Figures 1 and 3; both upper and lower bounds

are available. In Figure 6, corresponding to the less ideal case of
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Figures 2 and 4, only an upper bounding curve is possible.

This approach provides a more powerful tool than the Gibbs-Duhem

relationship between activity coefficients of different components.

Since the Gibbs-Duhem equation relates differential changes in the

activity coefficients, it cannot be used to derive the activity of one

component from that of a second component. The added power of this

technique results from the assumption of a particular activity

coefficient relationship given by the solution of groups model.

However, the accuracy of the estimates depends on the validity of the

solution of groups model, whereas the Gibbs-Duhem relationship is always

thermodynamically correct.

Such a bounding approach is most useful for systems in which limited

data are available, where interaction parameters themselves cannot be

fit. In such cases, the bounding result can be used to help design an

experiment to take additional data.

NORMALIZATION DEPENDENCE OF RESIDUAL ACTIVITY COEFFICIENTS

Previously, a technique for bounding the concentration dependence of

[(1n 116)/n11] was developed. In the reduction of experimental data to

interaction parameter databases, a given normalization for n11 is

assumed, and interaction parameters are chosen to best fit

[(1n 11G)/n11] as a function of concentration. (In.UNIFAC and ASOG,

data points from various concentrations are used, not merely from
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infinite dilution.) Using the bounding technique of the previous

section, the effect of varying normalization of n11 can be

quantitatively illustrated.

This will be done within the framework of fitting concentration

dependence curves to an infinite dilution residual activity coefficient.

Taking (1n 116)no as a fixed value, but allowing n to vary, values of

11

[(1n 11G)/n11]co corresponding to different normalizations of n are

11

produced. Each of these infinite dilution normalized residual activity

coefficients has associated bounds as shown previously. If the bounds

upon [(1n 116)/nll] given by these curves are multiplied by n a set

11’

of bounds for (In 11G) is produced for each normalization of n11 which

is considered.

Figures 7 and 8 illustrate the results of this procedure for the same

group ratios shown previously, with a sample value of (In 716)do chosen

for each. Bounds derived from n11 values of l and 4 are compared. It

is evident from this plot that increases in n11, which are equivalent to

decreases in the size of the unit of normalization, result in a wider

possible variation in the concentration dependence of residual activity.

This shows in Figure 7 as increases in the upper bound and decreases in

the lower bound. In Figure 8, only an upper bound can be derived, and

it increases with increasing n11.

It is not necessarily true that wider bounds on the concentration

dependence of residual activity result in a more inaccurate fit of
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Figure 7. Bounding the Concentration Dependence of Residual Activity

Coefficients for g1 - l, g2 - 2 (ln ylc)° - 0.1 Solid curves are

upper and lower bounds for n11

bounds for n11 - 4.

- 1; dashed curves are upper and lower
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experimental data. As shown in [13], the average accuracy of UNIFAC was

increased when the unit of surface area was decreased in size. When

attempting to use the results given here to make predictions for systems

for which no interaction parameters are available, narrower bounds are

preferable, which seems to imply that larger functional group size units

would work best.

The results given here do not imply that normalization unit can be

varied indiscriminately in applying the residual activity equations

within solution of functional groups models. Such a procedure would

produce chaotic and meaningless results. What is illustrated here is

the effect of changes of normalization unit upon some aspects of

residual activity coefficient prediction, specifically, the bounds upon

concentration dependence given a fixed infinite dilution value. Such an

approach may prove useful in determining a proper value for the

normalization unit in solution of functional groups models.

CONCLUSIONS

The residual activity coefficient given by solution of groups models

using forms analogous to Wilson's equation can be conveniently analyzed

by the transformations presented here. Transformation of interaction

parameters allows simple expressions for component activity coefficient

to be written. The transformed parameters also are restricted to a

narrow range of values in many cases. In the case of a binary solution

with two functional groups, the concentration dependence of both
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residual activity coefficients can be bounded using only a single

infinite dilution activity value. Group contribution models measure

functional groups present in a component molecule in various ways.

Regardless of the measurement used, the size of the unit chosen for

normalization has an effect on the predicted concentration dependence of

activity coefficients given by such a model.
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CHAPTER 4

MODELING DIFFUSION COEFFICIENTS FOR CONCENTRATED POLYMER SOLUTIONS

ABOVE TG

Diffusion phenomena in polymer solutions have been difficult to study

and interpret, due to the variety of effects observed. Differences in

behavior occur dependent upon the state of the system, e.g., glassy,

melt, dilute solution. In most cases, the behavior is non-Fickian,

since the diffusion coefficient varies with composition and, under

some conditions, relaxation occurs on the same time scale as diffusion.

At temperatures sufficiently above T8, relaxation occurs more quickly

than diffusion and may be ignored. In concentrated polymer solutions or

melts, the mobility of polymer molecules can be neglected in comparison

to solvent molecules. The remaining problems in determining binary

mutual diffusivities are to model the self-diffusion coefficient (some

authors refer to this as the tracer diffusion coefficient) of solvent in

the system and to model the nonideal thermodynamic effects which cause

the chemical potential gradient to differ from the concentration

gradient. Both these effects must be considered as functions of

temperature and of solvent concentration. Typically, an increase of

solvent concentration results in an increase in solution free volume

which tends to increase the diffusivity, while it simultaneously results

103
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in a decrease in solvent activity coefficient which tends to decrease

the diffusivity.

The major quantitative analysis of this phenomenon has been made by two

sets of investigators over the last 25 years. Fujita (1961,1968)

originally proposed a model for the dependence of diffusion coefficients

upon free volume. Vrentas and Duda (1977) extended the model and

relaxed many of its original assumptions. The complexity of their model

and its use of different independent variables for the free volume term

and for the chemical potential term somewhat obscured its

interpretation. As an example of this, Fujita was unable to show that

water, unlike organic solvents, seemed to show very little increase in

diffusivity with increasing concentration in polymer. Vrentas and Duda

were able to show the correct concentration dependence with their model.

They apparently attributed this behavior to free volume effects. In

this chapter, a reprint describing the prediction of diffusion

coefficients in polymer solution is presented. The model given here

shows clearly that it is thermodynamic (chemical potential) effects

which cause the seemingly anomalous diffusion behavior of water.

A DIFFUSION COEFFICIENT MODEL FOR POLYMER DEVOLATILIZATION

The following reprint article develops a model for the prediction of

binary mutual diffusivities in concentrated polymer solutions and melts.

A general form of the model is based upon the work of Vrentas and Duda,

but applies a version of the new thermodynamic results given in Chapter
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2. A linearized version of this model is also described. In certain

cases, e.g., polymer devolatilization, the linearized model or a

constant diffusivity model is shown to be accurate for describing

diffusion phenomena. Details of the derivation of new equations

proposed in the article are given in Appendix 1.

Reprinted with permission from Polymer Engineering and Science, 21, 303

(1987). Copyright (c) 1987.
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A Diffusion Coefficient Model for Polymer Devolatilization'
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and

ROBERT F. BLANKS
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Polymer devolatilizers are in widespread use in the poly-

mer industry for removing solvents and monomers from

polymer melts prior to product fabrication. Design equa-

tions for describing the solvent flux usually include both

the diffusion coefficient of the solvent in the polymer melt

and the equilibrium ctmeentratlon of the solvent at the

polymer-vapor interface. Several models make the as-

sumption that the solvent diffusivity is constant over the

ranges of solvent concentrations and temperatures in the

devolatiltzer. This is a critical assumption that may be

difficult to check without obtaining diffusivity data at the

operating temperatures and concentrations of the process

equipment. There are three models that can be used for

diffusion coefficients in devolatilizer design: the free vol-

ume model developed by Duda. Vrentas. and coworkers: a

new linear model proposed in this study: and a constant

diffusivity model. The linear model is obtained by combin.

ing a new correlation for solvent activity coefficients in

molten polymers with free volume theory and lineartzing

the resulting equation. The error between using the com-

plete free volume theory and using the linear model. or

alternatively. using a constant diffusion coefficient. is

alculatcd for several solvent-polymer systems. The linear

model is convenient to use for determining the effects of

the solvent activity coefficient on the diffusion coefficient.

A method is presented for determining whether the corn-

plete model. the linear model. or the constant diffusivity

model is appropriate for a given devotatiliaer design.

INTRODUCTION

Diffusion processes play an important role in

the manufacture and processing of com-

mereial polymers. Processing steps such as

polymerization. devolatilization. plasticization.

and addition of additives require a knowledge

of diffusion within polymer solutions and melts.

Accurate modeling of diffusion coefficients of

solutes in polymer systems above their glass

transition temperatures is necessary for proper

design of these .

Molten polymer devolatilization is often done

’

.W.M.~ansisua—uwmussnaa

little-hm”

momma-Illumination. 1.7. “It,“d

in either rotating equipment. such as a vented

extruder or a thin fitm evaporator. or in equip-

ment which foams the polymer. Models for pre-

dicting the solvent flux in this equipment (I)

often need diffusion coefficients of the solvent

through the polymer at operating conditions.

Some models. such as that of Newman and

Simon (2) for foam devolatilization. are imple-

mented with constant solvent diffusion coeffi-

cients even though the calculations are per-

formed ovcr a temperature range in which the

temperature dependence of the diffusivity ls

significant. Devolatilization is frequently car-

ried out with less than 5 weight percent solvent

in the polymer. Over the temperature and con-

centration ranges in most commercial equip-
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ment. there can be a conventration-dependence

of the diffusion coefficient.

While it is simple from a computational point

of vicw to assume a consmiii value for the

diffusion coefficient. there can he significant

errors in doing so. Duda ct til. (ill have predicted

that the diffusion coefficient can vary signifi-

cantly with temperature and concentration for

the system. toluene-polystyrene. Their model

shows good agreement with diffusivity data in

some athermal polymer solutions above the

glass transition temperature. Unfortunately.

none of their comparisons are in the tempera-

ture and concentration ranges of actual devol-

atilization processes. There seem to be discrepo

aneles between diffusivities determined from

data taken in commerical devolatilizers (2) and

diffusivities estimated by model extrapolation

using parameters found at lower temperatures

(3).

in this work. we use the free volume diffusion

model and employ an improved correlation for

the thermodynamic factor (4] to analyze the

diffusion coefficient predictions at conditions

typical of devolatilization for polystyrene. At

temperatures well above T,. solvent diffusion

coefficients can be modeled by an equation lin-

ear in solvent weight fraction. For small solvent

concentrations. the diffusion coefficient can be

taken as a constant.

FREE VOLUME MODELS FOR DIFFUSIVITY

Free volume diffusion models for transport of

solvent in polymers are based on previous de-

scriptlons of transport properties in liquid sys-

tems. Cohen and Tumbull (5. 6) derived an

expression for selfdiffusion coefficients as a

function of free volume. Fujita (7. 8] used their

work for describing solvent-polymer diffusion.

Fujita's model is qualitatively correct but does

not give quantitative agreement with available

data.

Several assumptions of the Fujita model were

relaxed by Vrentas and Duda (9. 10) to derive a

free volume model showing good agreement

with data. Modifications and improvements

have been made to this model in a series of

papers since 1977. The most recent version

gives excellent agreement with data for the sys-

tems. toluene-polystyrene and cthylbcnzene-

polystyrene. over the temperature range of I 10

to 178'C and concentration ranges up to 70

weight percent solvent (3).

The binary mutual diffusion coefficient is

given by (3):

0217»: (flag)

T.’
RT do. (l,

0.0.

D. on the right hand side of Eq l computes the

effect of free volume changes on the diffusion

coefficient: and the second group. the chemical

potential derivative. computes the effect of

thermodynamic changes. The self diffusion

coeflicient of solvent. 1).. is given by:

“11”“ {,I: T fl"); 01.1

l). =1)...cxp - v," (2]

where thc nvcrugc holc lrcc volume. 17“,, is

given by:

9. K

—'—" - —'—! mm. + T — m

T 7 (3)

K
+ J 1011K" + 1' - T“)

T

The preexponential factor describing the en-

ergy needed to overcome neighboring attractive

forces. 1).... is given by:

(41

Equations 1 through 4 define the binary mutual

diffusion coefficient as a function of thermo-

dynamic parameters. free-volume parameters.

and an activation energy for diffusion. using

solvent weight fraction as a basis. The free-

volume parameters can be obtained from WLF

equation data (3].

I)". 8 Du CXH’EIIITI

CHEMICAL POTENTIAL DERIVATIVE

in their solution for liq l. Duda and coworkers

(3) used the Flory-Huggins theory and obtained

the following equation for the thermodynamic

factor:

2.2.91: 2:: - _ 2 _
RT (80),, u «in 2w.) (5)

For systems that are athermal (the enthalpy

change on mixing is zero). the interaction pa-

rameter. x. can be taken as a constant. The

athermal assumption is good for a system such

as toluene-polystyrene. However. for a number

of solvent-polymer pairs. enthalpic interactions

occur and x is expected to vary with solvent

concentration. in these cases. the variation of

x with concentration should be included in the

model equations. This could be done by writing

the chemical potential in terms of a concentra-

hon-dependent 1. taking the derivative with re-

spect to mass concentration. and substituting

the result for Eq 5. There is now no generally

accepted model for describing the concentration

dependence of x.

Misovich and coworkers (4) have recently de-

veloped a correlation for solvent activity coeffi-

cients in concentrated polymer solutions which

fits data for systems with enthalpic interactions

at least as well as the Flory-liuggins equation.

The correlation gives an improved result for the

concentration dependence of the chemical p0.

tenttal and can be used to determine the value

of the derivative In Eq l. The result is:

rummauoscemaw, 1'7. CH. 11.“. 4
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it.‘ is the weight fraction activity coefficient of

solvent in polymer at infinite dilution of solvent

and can be determined by a variety of methods.

For values of ll.‘ between 2 and 20. the new

correlation predicts the concentration depend.

ence of activity coefficients in binary solvent-

polymer systems. Since il.‘ in this correlation

is a true constant at a given temperature. this

equation can he used without revision for poly-

mer solutions that are athermal and for some

solutions with enthalpic interactions.

An additional advantage of Bq 6 is that the

weight fraction is used as the independent con-

centration variable. whereas the Flory-Huggins

equation uses volume fraction. Applying Eq 5

requires equilibrium and density data for the

solvent and polymer at the temperature of in-

terest. while Eq 6 only requires equilibrium

data. Blanks. et at. (I It show that the assump-

tion of a constant density ratio between solvent

and polymer is not a good one for devolatiliza-

tion problems.

The chemical potential derivative could be

obtained by differentiating expressions for the

chemical potential. There are methods for ob—

tainin the chemical potential based on equa-

tion-o -state approaches (l2). lattice fluid the-

ory (l3). and UNlFACoFV (l4). UNIFAC-W is

based upon statistical mechanics and contains

separate entropic (combinatorial) and enthalpic

(residual) terms. One of its advantages is that

many polymerosolveot systems can be de-

scribed by the database built for UNIFAC (15.

l6). Van den Berg (l7) has recently proposed a

method for generating UNIFAC-W activity coef-

ficients using a UNIFAC program. The disad-

vantage of using any of these methods to get

the chemical potential derivative Is that their

differentials are complicated expressions which

are difficult to analyze except by numerical

means.

Eqs 1 to4and6can becombinedtogetan

equation for the diffusion coefficient:

9 2

(7|

th

Q... and 9,..[7 are dependent on temperature.

Vrulv is also dependent on concentration. Even

though Eq 7 includes concentration and tem.

““[jww' + o.-......]

sumac-mumM.an. an. 12,...

perature dependence. it is not a convenient

form to use for modeling and design. In the next

section. we will show how to inudify liq 7 in get

a form that is easy to apply to (levolatiIi/er

design.

LINEARIZED DIFFUSIVITY MODEL

Polymer devolatilization often takes place at

solvent concentrations of less than 5 weight

percent and temperatures well above 1‘”. lie-

cause the solvent diffusivity is required at low

solvent weight fractions. we choose to linearize

Eq 7 with weight fraction at the point. to. -

0.The value of the diffusion coefficient at zero

weight fraction of solvent is easy to determine

and the differential of l) with w. is easy to

evaluate. Linearized models have been proposed

for describing the concentration dependence of

the solute diffusivity both for polymer diffusion

in dilute solutions ( l 8) and for solvent diffusion

in concentrated solutions (i9).

The free volume terms in Eq 3 vary with

temperature. These terms are grouped as shown

below and inserted in Eq 7:

K

A. - —;— (Kn + T - m (81

and

Kn

A: - ‘7' (K2: + T - 7}.) (9)

giving

e a

—. m

D 3 Do a.

e

wt + '—.'. w:

I

. . (10)

4 V.'w. + Vg'uag E
I” - - -

Aiw. + Aawa RT

for the diffusion coefficient. Equation 10 as-

sumes that the solvent and the polymer are in

thermodynamic equilibrium at the vaporopoly-

mer interface. This would seem to be met for

most polymer-solvent systems. Even for those

systems in which anomalous polymer behavior

is claimed (such as the T.1 transition in polysty-

rene) (20). the equilibrium requirement should

be met if the temperature is greater than 1.2

1“,. An implicit condition on the application of

the thermodynamic model is that the solvent

molecular weight should be much smaller than

the polymer molecular weight (4|.

Free volume parameters based on the WLF

equation are usually assumed valid up to lOO‘C

above T,. Some commercial devolatilization

conditions may exceed this temperature. There

is no generally accepted method for estimating

the polymer frecwolumc parameters for tem-

peratures greater than T, + lOO‘C. it is not clear

that the WLF equation is a good model for ex-

trapolating solvent-free volume parameters.
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The linearized model is:

7!)
(mini a Din..-" + '—— (m, - 0) (i ii
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Dita.) = ()(0NI + (K. - Kmtnl (l2)

where

'_o _ f, e
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C

a ll.“ l l

i we0(0) 1).. exp{- (RT+ A: )] il2ci

The term. K .. is the free volume factor. and
the term. K3. is the thermodynamic factor. The
exponential term in £q 12c includes a term
describing the attractive forces between neigh-
boring molecules and a term describing the ratio
of critical molar jumping units for the solvent
and polymer.

COMPARISON OF LINEAR AND COMPLETE

MODELS

The three levels of model complexity for de-
scribing the effects of solvent concentration on
diffusivity in polymer devolatillzers: the com-
plete model (Eq l0). the linear model proposed
here (Eq l2). and the constant diffusivity
model. provide a good range of choices for the
design engineer. An advantage of the linearized
model is that. at a given temperature. the dif-
ference between two constants describes the
concentration dependence of D. The errors as-
sociated with using the simpler models depend
on both the temperature and concentration
ranges over which devolatilization is taking
place. As shown in Fig. i. there can be a signif-
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icant effect of concentration. but its magnitude
depends on the temperature.

Equation 12 should only he used for modeling
after its accuracy has been evaluated. We have
compared these models for the system. piilysty-
relic-toluene. at a temperature Just alxwe T”

(l lO°Ci and a temperature typical of commer-
cial iievolatilizers (240‘Ci. The ratio between

the diffusion coefficient at the specified weight
fraction and that at zero solvent weight fraction
is used to determine the difference between the
two models.

Figure l shows the error associated with a
linear model at the two temperatures. At l iO°C.
the calculations show that. below lOO ppm sol-

vent. the diffusion coefficient can be considered
constant. There is less than 2.4 percent error
in the value of the diffusivity by this assump-
tion. Up to IOOO ppm solvent. the linear model
diffusivity is within 2 percent of the complete
model diffusivity. The accuracy of the linear
model decreases rapidly at greater solvent
weight fractions and. in this case. underpre-
diets the diffusivity. It is not clear whether the
condition of thermodynamic equilibrium at the
interface is met for this system at l l0°C. Anom-
alous transitions in the polymer melt might
make the polymer relaxation time the same or-
der of magnitude as the solvent diffusion time.
Figure l shows calculations for the same sys.

tem at 240'C. a temperature in the range of
typical devolatilization temperatures for poly.
styrene. At the higher temperature. diffusivity
can be considered constant at solvent weight
fractions less than lOOO ppm. in this case. the
linear model value is within l percent of the
value for the complete model up to 100.000 ppm
or to weight percent solvent. The diffusivity of
toluene in polystyrene at 5 weight percent (a
typical concentration of solvent in polymer at
the start of a devolatilization process) would be
2.2! times the value at zero weight fraction
solvent. suggesting that a model using a con-
stant diffusion coefficient could be in error.
Figure I does not show the temperature de.

pendence of the diffusivity. which can be sig-
nificant. We have calculated the infinite dilu-
tion solvent diffusion coefficients at two tem-
peratures based on Eq 12c and using the con-
stants su ed by Duda. et at. (3) for toluene]
polystyrene. At t IO°C. the diffusion coefficient
is 6.l x lO‘" cm’ls: and at 240‘C. the diffusion
coefficient is 5.5 x 10“ cm’ls. in changing the
temperature from near 1‘, to l.4 T,. the difoo
slon coefficient has increased by about 5 orders
of magnitude. Since the free volume parameters
of Eqs 1 to 3 are temperature-dependent. the
scalingof diffusivity with temperature does not
follow a simple Arrhenius equation.

There are practical problems associated with
determining the free volume parameters and
thermodynamic parameters for Eqs 10 and 12.
The concentration dependence of the solution
free volume parameters is taken to be linear (Bq

mmmmmw.manna:
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3|. The polymer and solvent free volume param-

eters are determined by fitting viscosity data

with the WM: equation. For polymers. the Vis-

cosity can usually be determined over the tem-

perature range of interest. For solvents. the

WM" parameters are usually determined below

the normal solvent boiling point (at atmospheric

pressure}. The thermodynamic terms in Eqs 7

and 12 describe the coneentrationodcpcndenec

of the activity coefficients. However. 11.‘

changes with temperature. as does the interac-

tion parameter. Typical errors associated with

these estimation techniques are discussed in

the next section.

EFFECTS OF SOLVENT WLF

PARAMETERS ON THE LINEAR MODEL

The WI.F equation (3) may not describe the

free volume changes of the solvent well. partic~

ularly if it is extrapolated to temperature well

above T... + lOO‘C.

79i°/Kii

13

K3|+T-T,| ( i

l’l '. 3 I" A. +

Furthermore. the fits of some solvent viscos-

lty data by the WLF equation seem to show

systematic deviations rather than random er-

ror. Such deviations suggest that this model

may not correctly predict the changes in solvent

free volume with temperature. If the WLF model

is used. it is preferable to determine its param-

eter values as close to the devolatilization tem-

perature as possible. The comparisons below

show typical differences in the linear diffusion

model parameters caused by differences in the

WLF parameters.

Table 1 lists solvent free volume constants

and the values of K. for acetone and methyl

acetate obtained from two different WLF fits of

viscosity data. Liu (21) apparently combined

two data sets (22) and (23). while only one set

was used in this work (22). The two data sets

covered similar temperature ranges. The WLF

parameters appear to be sensitive to small

changes in viscosity data. Polytmethyl methac-

rylate) is the polymer considered and has a Tn

of about 303 K. Both sets of WLF parameters

generate viscosity models which average 1 per-

cent relative error with the data.

The K. values. which describe the concentra-

tion-dependence of the diffusion coefficient. are

compared in the lower portion of Table 1. We

computed K. values at 378 K(1.25 T“) and 453

ML!) 1‘...) since this might be the range of tem-

peratures used in devolatilizing such polymer

solutions. The K. values calculated for acetone

in PMMA are similar for both sets of WLF pa-

rameters. However. the K. values for methyl-

acetate differ by factors of 3 to 4. Since both

sets of WLF parameters describe the viscosity

data about the same. it is not clear which set of

K. values is the better description of the free

mmmmmmx8.7. H. ".hl
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79“]
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Acetone -3 23 $08 -53 3 (2i)

-3 ii 468 -599 ttvssiudy

Methyl—W -3 64 662 -38 5 (21)

-2.26 lbs ~16!) this study

System I. 'K (.01) K. (this study)

Acetone-PUMA 378 $6 61

45.3 20 3|

MethylW 378 as it?

453 10 66

 

volume term. These calculations merely illusv

irate the sensitivity of K. to the values chosen

for the solvent's WLF parameters.

Vrentas et at. (24] (Eq. 5] suggest that defi-

nition of Kin/‘7 Pcrmits a bound to be placed on

this parameter. which results in a lower bound

for the group. 7V.'/K... For acetone. both val-

ues of yV.‘/K.. are above the lower bopnd of

450. For methylacetate. the value for 7V.'/K..

determined in this study is below the lower

bound (380). Presumably. different WLF con-

stants could be obtained by forcing this group

to equal the lower bound and varying the other

constants to fit the viscosity data with similar

precision. The bounding of this group depends

on the assumption that the WLF equation cor-

rectly describes free volume changes of the sol.

vent.

We calculated the K. parameters for toluene.

methanol. and water with polystyrene over the

temperature range. 1.02 T, to 1.42 T,. The WLF

parameters for the polymer were taken from

Liu (21). Figure 2 compares the results for tol-

uene and methanol. For both solvents. the dif-

ferences between the K. parameters are large

near 1‘, and become smaller at high tempera-

tures. Figure 3 compares K. values based on

WLF parameters from water viscosltica below

the normal boiling point (50 to 100°C) (20] with

those based on WLF parameters for water vis-

cosities taken between 110 and 160‘C (23). The

viscosity data between 50 and lOO‘C lead to

negative values of K.. Negative values of K.

imply that the polymer expands with tempera-

ture more than the solvent. which is not ex-

pected.

Thesereaultssuggestthatitwouldbepref-

erabie to determine the solvent WLF parame-

ters as close to the devolatilization temperature

range as possible. For many cases. this would

mean determining solvent viscosities at high

pressures. An alternative approach might be to

determine solvent free volume parameters from

viscosity data of polymer melts containing sol-

vent concentrations in the range of interest. A

capillary rhcometer might be used to talte such

data. ‘

N?
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EFFECTS O!" K. AND K. ON THE

LINEAR MODEL

Equation i2 provides a convenient method

for determining the effects of the thermody-

namic and free volume terms on the concentra-

tion dependence of the diffusion coefficient.

The difference between K. and K, gives the

slope of diffusivity versus solvent weight frac-

tion curve (as long as the linear model is valid).

Table 2 compares values of K. and K; for an

athermal system (toluene/polystyrene). a sys-

tem with moderate enthalpic interactions

(methanol/polystyrene). and a system with

strong enthalpic interactions (water/polysty-

renel. The WLF parameters for the solvents

were determined by fitting viscosity data taken

below the normal boiling point. The thermody-

namic data were obtained by condo: and Din.

eer (26). who measured weight fraction activity

coefficients for 42 solvents in polystyrene as a

function of temperature. Although their data

seems internally consistent. the activity coeffi-

cients they report are factorsof LE: to 2.0 higher

than coefficients reported by other researchers

 

 

 

  
 

.0 fl 1

.0

‘0

x.

30

0

. l A

"0 ‘CO 3'0 3‘0

Tampa 'C

Fig. .‘l. Comparison for K. versus temperature-for “Inter-

puiystyrene. Solid line-WU" parameters jrom water vis-

eosiites bdrm-en 50 and lOO‘C (221 Dashed iine-WLF

parameters from water Munsttics between 110 and

lGO'C (27L

Tablaz. WVahnsotK.ar-dl.tor$ovoral$olvant-

 

 

 

 

Polystyrene Systems.

System

Toluene/PS moans my}?

Temporal-m K.‘ K.‘ .' Ka' Kc‘ Kn‘

i62°C ' as so as so 33 no

l72‘C x 5.4 20 25 27 l”

220°C is 4.0 t7 12 14 57

m l3 3.6 ‘2 7.5 13 56

mum

‘u-nn

'l.astsrna-d-v-.rtaaas~.hba- net-raven

‘ma—fi‘uwuwwm

(27. 28). We use their values beause they seem

to be the only values available for our solvents.

For toluene-polystyrene. the difference be-

tween K. and K, is always positive. and. while

the linear model applies. the diffusivity will

increase as the weight fraction of solvent in-

creases. The difference between K. and K. for

the methanol-polystyrene system is much less.

The solvent diffusivity for this system should

show very little concentration dependence. It

should be noted that the ASOG-VSP model has

successfully represented the dependence of the

activity coefficient on solvent concentration for

methanol in poly(methyl methacrylate) (4). it is

not ltnown whether this model adequately de-

scribes the solubllity of methanol in polysty-

rene. We consider the calculations for the

water-polystyrene system to be speculative.

since the ASOG-VSP model has not been used

on data with such large infinite dilution weight

fraction activity coefficients. The negative dif~

ference between the free volume and thermo-

dynamic terms suggests that there may be a

range of water weight fractions for which the

diffusion coefficient decreases with increasing

water concentration. Performing measure-

rammed-communion “Luthflad
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inents on systems in which the concentration

dependence of the solvent diffusivity was near

zero. or negative. would constitute an interest-

ing test of the free volume theory.

Figure 4 shows the slope of the diffusivitv

versus weight fraction eutve lor the three sul-

vents from lit) to 2ii0"(.‘. it.“ values were ex-

trapolated using a model linear in temperature.

Over this temperature range. the diffusivity of

toluene should always increase as its weight

fraction increases (until the linear model is no

longer valid). 0n the other hand. methanol

shows very little concentration dependence of

the diffusivity above IGO‘C. The model predicts

that water should have the unusual property of

a decreasing diffusivity through polystyrene as

its weight fraction is increased. Again. this re-

sult should be considered Spt‘t’ulallvc since the

ASOG-VSP model has not been verified for sys-

tems with such large enthalpic interactions.

Using the linear model to analyze the effects

of thermodynamic and free volume terms is

valid as long as the linear model provides a good

approximation to the complete model. The error

associated with the linear model depends on the

solvent-polymer system and the temperature.

For the toluene-polystyrene system. the free

volume term dominates the concentration-de-

pendence of the diffusivity. Since diffusivity in

the methanol-polystyrene system is much less

dependent on solvent concentration. the linear

model should approximate the complete model

over larger concentration ranges than for the

toluene-polystyrene system.

Figures 5 and 6 show this effect for two

different sets of solvent free volume parame-

ters. For most temperatures. the linear model

will describe the complete model up to 10.000

ppm. The improved range of fit to the complete

model is due to the lower concentration depend-

enoeof this system. The linear model will either

predict a positive or negative (rarely zero) con-

ccntratlon dependence to the diffusivity and

will not predict maxima or minima in D versus

w. curves. Comparisons of Figs. 5b and 5d with

Figs. 6b and 6d illustrate the sensitivity of the

diffusion coefficient to the solvent-free volume

parameters. For both Figs. 6b and 6d. K. - K.

is slightly above zero and the complete model

should'go through a maximum value.

Figures 4 to 6 show how the thermodynamic

and free volume term affect the linear model

and over what concentration ranges the linear

model is valid. Figure 7 illustrates the effect of

the thermodynamic term on the diffusivity of

the complete model for methanol-polystyrene at

l55’C. For a 25 percent change in the value of

il.'. the diffusivity can change from monotoni-

cally decreasing to going through a small max.

imum.

While there is good agreement between mea-

sured solvent diffusivities and the free volume

model in the papers of Duda and Vrentas. sol.

vent diffusivities measured in actual devolati-

edema(MENm“aWY. I’ll. VOL 27. Na. d
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rene. kl outer-polystyrene. Lines identgfled perfigures 2

and .‘l.

A

"O m

llzers do not agree well with predicted values.

For example. in the foaming devolatilizer work

of Newman and Simon (2). the estimated value

for the diffusivity of styrene in polystyrene is l

x l0" cm'ls. This value was assumed constant

for fitting data between 200 and 250‘C. Al
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240’C. the free volume model predicts that the

diffusivity should be 4.2 x l0" emf/s. There is

obviously a significant error associated with

assuming a constant diffusivity over this tem-

perature range.

There are also discrepancies between diffu-

sivities measured in commermal equipment and

those measured in research equipment. in an

cxtruder devoiatilizer. liiesenberger and Kessi-

dis (29) report a diffusivity of styrene in poly-

styrene of l.5 x l0” cm’/s at l77‘C. Dnda ei

at. (3) measure a value of 3 x l0" cm’ls at

178°C for ethyibenzene (which should be simi-

lar to styrene).

The linear diffusion coefficient model pro-

posed in this work has the potential to be a

convenient tool for designing and controlling

the operation of commercial devolatilizers. The

designer can determine by calculation whether

to use the complete difquion model. the linear

diffusion model. or a constant diffusivity for his

equipment conditions. The concentration-de-

pendence of the solvent diffusivity is sensitive

to extrapolations with the solvent-free volume

parameters. Because of this sensitivity. it is

preferable either to use solvent viscosities ob-

tained at devolatilization temperatures or to de-

vise another method for obtaining them. Fi-

nally. the effects of thermodynamics on the

concentrationdependenceof solvent diffusivity

may be the same order of magnitude as the free-

volume effects for some solvent-polymer sys-

tems.

NOMENCLATURE

a. - activity of the solvent.

A.. A. - groups of parameters deflned by

Eqs 8 and 9.

D - binary mutual diffusion coefficient.

0. - self-dlffusion coefficient of solvent.

0. - defined by Eq 4.

Do. - defined by Eq 3.

e - base of the natural logarithm.

E - critical energy per mole needed to

overcome attractive forces.

K. - free volume coefficient in the line-

arized model. Sq 12a.

K. - thermodynamic coefficient in the

linearized model. Eq 12b.

K... Kn - free-volume parameters of solvent.

K... K.. - free-volume parametersof the poly-

mer.

pressure.

ideal gas constant.

temperature.

glass transition temperature of

component i.

partial specific volume of compo-

nent i.

q

I
I
I
I

S

I

 

Pig. 5. Log UlilOi versus log ippm soiuentljor nail-anoi-

poiysigrema Solvent free tar-fume parameter; c] this

study. lot i lO‘C. (bi l55‘C. itlm.idl215'C. Solid line-

13¢ :2. dashed line-flu to.
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(If = Specific critical hole free volume of

. component i required for ajump.

V,-,, = average hole free volume per gram

of mixture.

to, - weight fraction of component i.

x. = mole fraction of component i.

Greek Letters

7 =- overlap factor for free volume.

a. - chemical potential of solvent.

£ a ratio of critical molar volume of solvent

jumping unit to critical molar volume of

jumping unit of polymer.

mass concentration of component i.
Pi '-

a. - volume fraction of component i.

x - Flory-Huggins interaction parameter.

0. - solvent weight fraction activity coeffi-

cient.

o.‘ - solvent weight fraction activity coeffi-

cient at infinite dilution of solvent.

Subscripts

. - solvent.

, - polymer.
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CHAPTER 5

STATISTICAL DETERMINATION OF SYSTEMATIC ERROR

IN NONLINEAR PARAMETER ESTIMATION

Statistical parameter estimation involves the determination of the

value or values of some unknown quantity based upon data which may be

inconsistent or contain error. Normally, the quantity or quantities to

be estimated are in some ways characteristic of the sample from which

the data were taken. The determination of an equation or model for some

physical phenomenon normally involves the selection of an expression on

theoretical (or empirical) grounds followed by a parameter estimation

step to determine the unknown parameters of the model.

A set of estimated parameters is usually considered good if the

predicted values of the dependent variable generated from the model do

not deviate substantially from the observed values. A global criterion,

such as the sum of the squared deviations of the predicted values from

the observed values, is typically applied for this purpose. Use of a

global criterion of this type may mask conditions which cause the model

to be inadequate in other ways. One such problem is the existence of

systematic error within the model, causing overprediction and

underprediction of the dependent variable to be correlated to the

independent variable rather than random.
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Systematic error may indicate an underlying lack of agreement between

the model and the physics of the problem. It is a particularly crucial

type of error when results from a parameter estimation must be

extrapolated outside the domain of the independent variable over which

parameters were found. For this reason, testing for systematic error in

a parameter estimation may be important in certain situations, even when

the global fit of the model seems acceptable.

In order to do statistical testing, it is necessary to have a

hypothesis, usually in the assumption of a particular random

distribution of the variable or variables being studied. The standard

approach is to evaluate the distribution of the test statistic under

this random (or null) hypothesis. If the value of the test statistic

calculated from the observed variables is unlikely to have occurred with

random variables chosen under the null hypothesis, the null hypothesis

can be rejected. A good test statistic will be able to discriminate

between values taken under the null hypothesis and those taken under

some alternative hypothesis; the ability to discriminate in this manner

defines the power of the statistical test.

LINEAR AND NONLINEAR PARAMETER ESTIMATION

When the expression is linear in the unknown parameters, linear

parameter estimation techniques based upon least squares can be applied
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(Mendenhall, 1968; Graybill, 1961). Least squares means that values of

the unknown parameters are chosen such that the sum of the squared

deviation between each observed variable and predicted variable is

minimized. It is possible for the expression to be linear in the

unknown parameters even though it is nonlinear in the independent

variables. For example, if y is the dependent variable, and x is the

independent variable, the equation

2
y - ax + bx + c (1)

is linear in the parameters a, b, and c even though it is nonlinear in

the independent variable x (since it contains a term in x2). If x and y

are variables which can be measured, linear least squares can be used to

determine the best values of a, b, and c from measured data.

Least squares provides an optimal solution to the parameter estimation

problem when the distribution of error is normal. If x1 and y1 are the

observed or measured values, the error e is defined by

1

red
-yp -

‘1 1 Y1 (2)

which becomes, in the case of eq 1.

2
e - ax1 1 + bx1 + c - yi

(3)

When the error distribution is not normal, the equations of least

squares do not necessarily provide an optimal solution to the parameter

estimation problem. Such a situation may occur when the data contains
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outlier values due to measurement error or some other problem, or when

the equation used to model the physical situation is systematically in

error .

In cases where the expression is nonlinear in the unknown parameters,

least squares analysis still provides a solution to the parameter

estimation problem. However, the classical equations used for the

linear case are not applicable, and often the sum of squared error must

be minimized by a numerical method. Two examples of nonlinear parameter

estimation are given by equations used in Chapters 2 and 4.

exp { (e/o ”)w / [w + (em ”)w 1 )
0 _ 1 2 1 1 2 (a)
 

 

1 o

w1 + (e/O1 )w2

£3 "7K1
1n "1 - 1n A1 + 1 1 (5)

K21 + T - '1‘81

In eq 4, the dependent variable is 01, and w1 is the independent

variable, with w - 1 - w . The parameter to be estimated is 0 In

Q

2 1 1 '

eq 5, the dependent variable is al, and T is the independent variable.

Three parameters to be estimated are: Al, the grouping £Vl*/K11, and the

grouping (K21 - Tgl)' In deriving the results in Chapters 2 and 4, eq 2

was applied numerically to data used with eqs 4 and 5, allowing "best

fit" values to be determined for the necessary parameters.
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DEFICIENCIES OF LINEAR LEAST SQUARES TEST IN DETERMINING ERROR

DISTRIBUTION

One means of estimating the accuracy of a parameter fit is the

calculation of a confidence interval for each parameter, or a confidence

ellipsoid in parameter space. The Student's t statistic (Mendenhall,

1968) provides a means of generating a confidence interval for a linear

least squares parameter, but is not applicable to the nonlinear case.

One technique recommended for overcoming this problem is to linearize

the equation using one term of a Taylor expansion. This technique is

not useful if the domain and range of the measured variables fall

partially outside the region in which the linearization is accurate.

Confidence intervals estimated in this way may also be inaccurate if the

parameters are not independent.

The amount of information available to determine the ”goodness of fit"

in parameter estimation may be limited in nonlinear cases. Taking this

to be true, other, possibly simpler statistical procedures can be

employed. As an example, consider the use of eq 5, with parameters

estimated from data taken with the independent variable T in the range:

0 5,T S 100. Eq 5 is then to be used for prediction with values of T in

the range: 140 5 T S 240. Extrapolation beyond the domain of the

independent variable in the observed data is not always avoidable. A

predominant consideration for the modeler is whether the distribution of

error in the equation is a random function of the independent variable
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T, or whether the equation has a tendency to systematically give

inaccurate predictions.

Distribution of error can be analyzed statistically by using linear

regression to examine the correlation between the variables 6, the

error, and T, the independent variable. The correlation coefficient for

these variables is defined by eq 6.

n n n

nU2T c - 2 T 2 e
i i i-l ii-l i

 

[1153‘ '
L.1]m

['23: -[,_1 ]T”

If the variables 6 and T are not correlated, meaning that e is not a

function of T, the correlation coefficient, r, will be zero or near

zero. When that is true, the null hypothesis that e is not related to T

can be accepted, and systematic error in the equation used for fitting

data, eq 5, is assumed not to exist over the domain of T values

observed.

Two problems arise in such an analysis. First, the test for correlation

between two variables assumes both are normally distributed. If this is

not true, eq 6 does not give an accurate test of correlation. Even if

error is normally distributed, most physical data are taken at uniform

intervals, resulting in a nonnormal distribution.
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Second, nonlinear functions like eq 5, because of their curvature, have

a tendency to exhibit an unusual pattern of systematic error in cases

where systematic error is present. A typical example is overprediction

of the dependent variable near either end of the domain of the

independent variable, and underprediction in the middle of the domain of

the independent variable. Since correlation examines the linear

relationship between two variables, the effects will cancel and no

correlation between c and T will be observed. Yet, systematic error is

present despite the lack of correlation, and extrapolation in this case

would be greatly in error.

NONPARAMETRIC STATISTICAL TECHNIQUES

It is possible to devise statistical tests which do not assume a

particular distribution (e.g., normal) for the random variables. Such

techniques are termed nonparametric or distribution-free. Many

nonparametric techniques are similar to standard parametric techniques,

but with the actual data values replaced by their rank statistics, i.e.,

their position among the data values when the data is ordered. Since

the distribution of ranks is known (from 1 to N, where N is the number

of data items), it is possible to determine the distribution of various

statistics which are functions of ranks (Kendall and Stuart, 1961).

Nonparametric tests are generally less powerful than parametric tests

because less information is used. Information is lost when the actual
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data values are replaced by their ranks. However, parametric tests are

valid only when the distributions of the random variables being studied

are the same as assumed by the test. Generally, this means normal

distributions. If the distribution is not normal, parametric tests may

be invalid, and even if valid, may become less powerful than

nonparametric tests.

Another advantage of nonparametric statistics arises in the calculation

of the distribution of a test statistic. Without knowledge of the

distribution of a test statistic, inferences regarding statistical

hypotheses cannot be made. The distribution provides a basis for

deciding that a particular value of the test statistic observed in the

data would be unlikely to occur by chance. The known discrete

distribution of rank statistics can make it possible to derive the

distribution of statistics in the nonparametric case which would be

difficult to derive for a continuous normal distribution, or which might

have to be estimated, or derived under impractical assumptions.

Two nonparametric statistical procedures relevant to this discussion are

the runs test for randomness (Wald and Wolfowitz, 1940) and the rank

correlation coefficient (Spearman, 1904). Both of these can be applied

to the problem posed in the previous section: to determine whether the

relationship between error, e, and an independent variable, T, indicates

systematic error within the equation being used.
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The runs test for randomness consists of ordering the individual errors,

:1, in order of the corresponding T values. Each error is then
i

assigned a symbol, +, if it is positive and a symbol, -, if it is

negative, producing a ordered sequence of the symbols, + and -. Each

subsequence of successive symbols of the same type is termed a run. The

underlying principle of the runs test is that a small number of runs

indicates that similar e values occur for values of T near one another,

while a large number of runs indicates that 6 values have little

relationship to T values. Hence, the former situation describes a pattern of

correlation between 6 and T, or systematic deviation in the predictions

of the model when compared to observation.

For the case where there are n occurences of the symbol + and m

occurences of the symbol -, the probability of an even number of runs,

2k, or an odd number of runs, 2k+l, is given by eqs 7 and 8 for a random

(null) distribution of c. A table of the distribution of the number of

runs, R, as a function of m and n can be compiled using these equations.

2 n-l m-l

k-l k-l

P(R - 2k) - (7)

n+m

n

n-l m-l + n-l m-l

k k-l k-l k

P(R - 2k+l) - (3)

[“2“]

For large values of m and n, a normal approximation, 2, to the distibution
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of the random variable R can be used. This approximation is given by

eqs 9, 10, and 11. The distribution of 2 will be approximately N(0,1)

(normal with zero mean and unit variance) so that a table of the normal

distribution can be used to determine the probability that Z 5 2.

Figure 1 illustrates the approximation for typical values of m and n.

The additional term 0.5 arises in the numerator of eq 11 because a

continuous distribution of z is being used to approximate a discrete

distribution of R. The best approximation to the probability of a given

discrete value of R is given by the probability that the normal 2

calculated by eq 11 lies between Z(R - 0.5) and Z(R + 0.5).

2mn

- E(R) - 
“R +1 (9)

m-i-n

2mn(2mn- m - n)

Var(R) - 2 (10)

(m + n) (m + n - l)

 

R + 0.5 - ”R

z -
(11)

[Var<R>11/2

 

To apply the runs test for randomness, the number of runs R is counted,

and the probability of observing R runs or fewer is calculated from eqs

7 and 8, or eqs 9, 10, and 11. If this probability is less than some

small number, a, the hypothesis that the error distribution is random

with respect to T is rejected with probability l-a.

The strength of the runs test lies in its flexibility, ease of
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Figure 1. Normal Approximation to the Runs Statistic R.

normal distribution; points denote distribution of R.)
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(Line denotes
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application, and lack of assumptions about the underlying distributions

of e and T. However, the test is not very powerful, because it uses

only a small amount of the available information: namely, whether each

individual e value is positive or negative. The magnitude of deviation

from zero is ignored.

The rank correlation coefficient proposed by Spearman (1904), rs, is

analogous to the correlation coefficient used in linear regression. The

difference is that the ranks of the data are correlated (as integers

from 1 to n), rather than the actual data values. The Spearman rank

correlation for the problem posed here would consist of replacing each

error value, 61, by its rank when the 61 values were ordered, and

i by its rank when the Ti values

were ordered. Once this is done, the rank correlation coefficient is

replacing each independent variable T

computed by eqs 12 and 13, which are a simplified case of eq 6 when the

variables being correlated each contain an arrangement of the integers

from 1 to n.

di - rank(ei) - rank(Ti) (12)

n

62d12

i-l

r - 1 - -——--——- (13)

s n(n2 - 1)

To apply the rank correlation, the values of c and T are ranked, rank

differences for each data point are calculated by eq 12, and the rank

correlation coefficient is calculated by eq 13. Critical values of rs
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are available in statistics references (Mendenhall and Scheaffer, 1973;

Bradley, 1967) as a function of these parameters: n, the number of data

points, and a, the probability that a value as large or larger than rs

would be observed in correlating two random distributions of ranks. If

the absolute value of rs exceeds the critical value for a particular a,

the hypothesis that the error distribution is random with respect to t

is rejected with probability 1-2a. (Since either positive or negative

correlation indicates systematic error, the test described is two-sided,

rejecting the randomness hypothesis if rs is either too large or too

small.)

Like the runs test, the rank correlation is flexible, easily applied,

and makes no assumptions about the underlying distributions of e and T.

The rank correlation is generally more powerful than the runs test,

although not quite as powerful as the ordinary correlation of linear

regression, eq 6, when the underlying distributions are normal. This is

because the information about the actual deviations of the 6 values from

one another is not used; only the relative ranks are.

The rank correlation satisfies one of the objections to the correlation

coefficient from ordinary linear regression: the possibly erroneous

assumption of normal distribution of the variables being correlated.

However, the second problem discussed earlier still exists. If the

equation used to model the data is nonlinear, predicted values may

systematically overshoot and undershoot the actual observations over
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ranges of the independent variable. Like the correlation coefficient

from linear regression of the actual observations, the rank correlation

coefficient will tend to cancel these effects, producing a ”false

negative" conclusion of no correlation. For this reason, it may also be

a poor statistical test of the accuracy of extrapolation.

A PROPOSED NONPARAMETRIC STATISTIC FOR DETERMINATION OF SYSTEMATIC ERROR

The strengths of both the runs test and rank correlation test lie in

their nonparametric, distribution-free nature. This allows application

to any data, regardless of the form assumed for its underlying

distribution or even the knowledge of its distribution. Furthermore,

the distribution of the runs statistic, R, and the rank correlation

statistic, rs, and their critical values are relatively easy to

calculate, because the distributions are discrete and involve only

functions of positive integers.

Besides their general character as nonparametric procedures, the runs

test and rank correlation have strengths and weaknesses that complement

one another. The runs test lacks power because it reduces each data

value to a simple binary value, indidated above by the symbols, + and -.

Yet it is flexible in that it measures the deviation from randomness in

gradations from complete monotonicity (e.g., all + symbols precede all -

symbols; there are two runs), through randomness, to complete

periodicity (the sequence of + and - symbols alternate; there are n
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runs). The rank correlation retains a considerable amount of

information contained in the original data within the ranks. However,

it detects only a monotonic deviation from randomness.

A new statistical procedure, referred to as the Sum Square Rank

Difference (SSRD), combines the strong points of runs test and rank

correlation. The procedure begins by ordering the data values of the

independent variable, T, in either increasing or decreasing order, just

as the runs test did. The ranks of the e values corresponding to each
1

T1 value are used in calculating the statistic, Rd, by eq 14.

n-l 2

Rd -i§1[Rank(ei+1) - Rank(ei)] (14)

If the error values are similar at neighboring values of the independent

variable, the difference in ranks will be small and the statistic, Rd’

will be relatively small. If the value of Rd calculated from data is so

small as to be unlikely to have occurred by chance, this would indicate

that systematic error is present within the equation when fit to this

data. If the distribution of error is random, Rd will tend to take on

larger values, and the null hypothesis of no association between error

and the independent variable could be accepted.

In order to determine critical values of Rd, its distribution must be

derived. For small values of n, this can be done by exhaustive listing

of all possible orderings of the ranks (integers from 1 to n) and
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calculation of Rd for each case. For larger values of n, numerical

approximation of the distribution can be made by Monte Carlo techniques.

If the distribution of Rd obeys the Central Limit Theorem (assumed here

without proof), a normal approximation to the distribution of Rd

(analogous to eq 11 for the runs test) can be used. This is given by

 

 

eqs 15 to 17.

R - E(R )

Z - d I/Z (15)

[Var(Rd)]

n(n - l)(n + 1)

E(Rd) - (16)

6

n(n - 2)(n + l)(5n2 - 2n - 9)

Var(Rd) - (17)

180

 

The expected value (mean) and variance formulas were derived from

exhaustive listing for the cases n - 2 up to n - 8. Since the largest

value that a single term in the summation of eq 14 can have is (n - 1)2,

and since there are (n - 1) terms, R is bounded above by (n - 1)3.

d

Therefore, the distribution mean, E(Rd), can be represented as a

function of n which is no larger than a polynomial of degree three. The

result of fitting a cubic polynomial with unknown coefficients to the

mean derived from exhaustive enumeration of all cases from n - 2 to

n - S was eq 16. Similar arguments apply to the variance: since it

results from the difference of the square of the expected value of R
d

and the expected value of Rdz,

degree six or less. Eq 17 resulted from fitting a sixth degree

it can be represented as a polynomial of
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polynomial to calculated distribution variances for n - 2 to n - 8.

Since the SSRD statistic, R , is nonparametric, it is valid even when

the underlying distributions of the variables are nonnormal. The use of

ranks retains more of the information contained in the actual

observations than the binary value (+ or -) used by the runs test. At

the same time, the comparison of neighboring values allows systematic

patterns of similarity to be detected when the rank correlation would

find no overall linear correlation. For these reasons, the SSRD

statistic appears to be a useful procedure for determining whether a

nonlinear parameter fit exhibits systematic error.

AN EXAMPLE CALCULATION FOR DETERMINATION OF SYSTEMATIC ERROR

The data in Table 1 represent a typical example of data fitting using eq

5. The dependent variable, n1, is solvent viscosity as a function of

the independent variable, T1, which is temperature. The predicted value

of the dependent variable is labeled nipred, and the relative error in

prediction is labeled :1. (Since eq 5 actually predicts the logarithm

of "1, the :1 values shown are derived from subtracting logarithms,

which makes them the logarithms of relative errors in the dependent

variable.) Figure 2 shows the observed data and predictions, and a

visual inspection seems to indicate the fit is good. The relative error

is plotted versus temperature in Figure 3, and the plot does not show a

regular linear pattern of systematic error; there appears to be
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Acetone Viscosity Data and Predictions of Equation 5.

The values of the parameters are:

A1 - -3.603 evl /x11 - -642.7

T1, °c "1' c? qipred, cP

-92 50 2.1480 2.1100

-80.00 1.4870 1.5030

-59 60 0.9320 0.9557

-42.50 0.6950 0.7026

-30.00 0.5750 0.5792

-20.90 0.5100 0.5102

-13.00 0.4700 0.4608

-10 00 0.4500 0.4441

0.00 0.3990 0.3954

7.86 0.3638 0.3633

11.72 0.3495 0.3492

15.00 0.3370 0.3379

15.24 0.3376 0.3371

19.02 0.3258 0.3250

23.01 0.3131 0.3130

25.00 0.3160 0.3073

27.22 0.3007 0.3012

30.00 0.2950 0.2938

32.43 0.2863 0.2877

36.00 0.2772 0.2790

40.04 0.2675 0.2698

41.00 0.2800 0.2677

44.12 0.2584 0.2611

47.62 0.2503 0.2540

52.20 0.2405 0.2453

53.86 0.2377 0.2423

References: Weast, 1979; Washburn, 1929.

(K21

‘1

.0179

.0107

.0251

.0109

.0072

.0004

.0198

.0131

.0090

.0014

.0010

.0027

.0015

.0025

.0004

.0279

.0016

.0039

.0048

.0066

.0087

.0448

.0105

.0148

.0198

.0191

- T

81)

240.3

 

Table 2. Calculation of Linear Correlation Coefficient, r.

n - 26 2 T1 - 172.84 2 £1 - -0.0003

2 T e - 0.3069 2 T 2 - 41205.9 2 e 2 - 0.0059309
1 1 1 1

26 - 0 3069 - 172.84 . (-0.0003)

r-

(26 - 41205.9 - (172.84)2)1/2 (26 - 0 0059309 - (-0.0003)2)1/2

r - 0.0005
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Figure 2. Viscosity of Pure Acetone as a Function of Temperature.
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considerable scatter.

The T1 values given in Table 1 would probably not have come from a

normal distribution. Such a contention could be demonstrated by a

statistical procedure, such as the Kolmogorov-Smirnov goodness of fit

test (Kolmogorov, 1941; Smirnov, 1948), which allows an empirical

distribution (like the T values) to be compared to a hypothesized

i

distribution function (the normal distribution). That type of

demonstration will not be pursued here; mere observation of the values

will be used as evidence against an underlying normal distribution.

Applying the linear correlation coefficient, eq 6, using the summations

of the data given in Table 2, results in a correlation coefficient of

r - 0.0005, indicating nearly perfect lagk of correlation between 6 and

T. The chance of observing a correlation coefficient with magnitude at

least this large in a chance arrangement of 26 normally distributed

pairs of values would be 99.8 percent! The correlation coefficient

gives us no reason to suspect the error in eq 5 is systematic. This

example shows that the linear regression correlation coefficient can be

a poor statistical test for systematic error in a nonlinear parameter

fit.

The details of the calculation of the runs test are given in Table 3.

Replacement of the data with the + and - symbols gives 10 runs, with 14

positive data values and 12 negative data values. Since m and n are
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both larger than 10, use of the limiting normal distribution is valid.

The mean and variance of this distribution are calculated according to

eqs 9 and 10, then eq 11 is applied. The resulting normal variable,

2 g -l.379, would occur by chance in only 8.5 percent of randomly

distributed pairs of values. The runs test allows the rejection of the

null hypothesis (no correlation between 6 and T) at the 90 percent

confidence level, although not at the 95 percent level. This rejection

would be evidence for the presence of systematic error.

 

 

- + + + + + ----- + - - - - + - + + + - + + + +

l 2 3 4 S 6 7 8 9 10

R - 10 runs n - 14 (+) m - 12 (-)

2 - 12 - 14

"R - E(R) - + 1 - 13.923

12 + 14

2 - 12 - 14 - (2 - 12 - 14 - 12 - l4)

Var(R) - - 6.163

(12 + 14)2(12 + 14 - 1)

P(R S. 10) ' P(2 _<. 2)

(10.5 - 13 923)

z - - -l.379

(6.163)1/2

 

p(Z g -1.379) - 0.085

The data in Table 4 are used for calculation of both the rank

correlation coefficient and the SSRD statistic. These data were

produced by replacing the observed values in Table 1 by their ranks

within the 26 data points. The third and fourth columns contain

quantities used in the statistic calculations.
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Table 4. Ranked Temperature and Error Data.

Rank(Ti) Rank(ci) diz, eq 12 [Rank(ei+1)-Rank(ei)]2, eq 14

l 4 9 289

2 21 361 25

3 26 529 16

4 22 324 16

5 18 169 25

6 13 49 100

7 3 16 4

8 5 9 1

9 6 9 16

10 10 0 1

11 11 0 16

12 15 9 36

13 9 16 1

14 8 36 16

15 12 9 100

16 2 196 144

17 14 9 49

18 7 121 81

19 16 9 1

20 17 9 4

21 19 4 324

22 1 . 441 361

23 20 9 9

24 23 1 4

25 25 0 1

26 24 4

26 2 25 2

2 d1 - 2348 Z [Rank(ei+1)-Rank(ei)] - 1640

i-l i-l
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The data in Table 4 were used to determine the rank correlation

coefficient in Table 5, by use of eq 13. The value, rs - 0.1973, is not

significant at the 80 percent level, i.e., a value of this magnitude

would arise more than 20 percent of the time from a randomly chosen

sample. The hypothesis that the variation of c with T in the data is

random could not be rejected.

The rank correlation seems to show considerably more relationship

between a and T than the linear correlation coefficient based on the

original data. Even though the data in Table 4 contain less information

than the data in Table 1 from which they were derived, the fact that the

T1 observations are not normally distributed makes the linear

correlation coefficient an inappropriate statistical test for this data.

The rank correlation coefficient assumes no form for the distribution of

the original data: hence, it is appropriate and in fact detects some

correlation, although not at a statistically significant level.

Table 5. Calculation of Rank Correlation Coefficient, rs.

 

6 - 2348

rs - 1 - 2 - 0.1973

26(26 - 1)

p(lrsl 2 0 259) - 0.20 p(|rs| 2 0.329) - 0.10

Calculation of the SSRD statistic using eqs 15 to 17 is shown in Table

6. The required summation in eq 14 which defines R is already given in
d

Table 4. When the mean and variance are calculated and substituted into

the normal approximation formula, the resulting normal variable,
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Z 5 -2.305, would occur only 1.06 percent of the time by chance if the

pairs were random. The null hypothesis can be rejected at virtually the

99 percent confidence level when the SSRD statistic is used. The test

gives strong evidence to what may not be apparent to a casual viewer of

the data: that a systematic, nonlinear pattern of overprediction and

underprediction is present.

Table 6. Calculation of Sum Square Rank Difference, R

 

 

 

d.

25
2

Rd ' 2 [Rank(€i+1)-Rank(ei)]
- 1640

1-1

26 ' (25 ' 1) ' (26 + 1)

E(Rd) '
- 2925

6

1/2 26 ' <26 ~ 2><26 + 1)<s - 262 - 2 . 26 - 9, 1/2

[var(Rd)] -

- 557.37

180

1640 - 2925

z ' - -2.305

557.37

p(Z g -2.305) - 0.0106

In summary, the newly proposed SSRD procedure for testing whether a

nonlinear parameter estimation is systematically in error (alternative

hypothesis) or randomly in error (null hypothesis) was more successful

than standard procedures on the sample data set. This is believed to be

because it combines the flexibility in detecting patterns of similarity

found in the runs test with the additional information present in

rankings found in the rank correlation coefficient. Since the new

procedure is nonparametric, it may be applied to any data without
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concern about the form of the underlying distribution from which the

observations were made. This makes the SSRD procedure more appropriate

for use with physical data observed over uniform intervals than linear

parametric tests such as the correlation coefficient.

Appendix C contains additional examples of the SSRD statistic used with

thermodynamic data for solvent activity which were fit using the

nonlinear eq 4. An additional, similarly defined statistic is also shown

there: the Sum Absolute Rank Difference (SARD) defined by eq 18.

n-l

Rd' -i§1|Rank(ei+1) - Rank(ei)| (18)

Both the new statistics give similar results. From a mathematical

standpoint, the SSRD is probably preferable to the SARD because general

results are more difficult to derive mathematically for expressions

involving absolute values.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In view of the theoretical results given above and their comparison to

available data, the following conclusions can be made.

1) Use of a variable size parameter concept to modify the athermal

Flory-Huggins form of the entropy of mixing, incorporating an empirical

free volume correction, was successful. The resulting VSP correlation

technique provided predictions of polymer solution thermodynamics that

were more accurate than the original Flory-Huggins method or the UNIFAC-

FV method in most cases. When combined with appropriate terms to model

residual (enthalpic) interactions, the accuracy of the VSP technique was

increased further. Except for the case in which the residual term

contained an adjustable constant, the VSP technique required only a

single adjustable binary parameter, like the Flory-Huggins model.

Although the UNIFAC-FV model requires no adjustable binary parameters,

it does require more extensive pure component data which may not be

available.

2) The VSP method with an expression for residual interaction given by

the Analytical Solution of Groups (ASOG) provided a more accurate

correlation of experimental data than the VSP method with no residual

142
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interaction term. No additional adjustable binary parameters were

needed to use ASOG, since a tabulated group interaction database is

available.

3) In some cases when the overall fits of different correlations were

similar in accuracy, predicted infinite dilution weight fraction

activity coefficients showed considerable sensitivity to the particular

correlation chosen. This seemed especially true in cases where these

infinite dilution values were larger than approximately six.

4) A framework for analyzing residual interactions in group

contribution thermodynamic models based upon their mathematical

properties was proposed for the binary component case including at most

two distinct functional groups. The analysis indicated that the unit of

size chosen to normalize the measurement of functional groups in a

molecule has an effect on the predictions of the model. Equations for

removing this normalization dependence were given. These equations were

also able to provide bounds on the magnitude of residual interactions

based upon limited data. Such bounds were due to the additional

constraint imposed upon the solution by the functional group composition

of the molecular components.

5) Three models for predicting binary mutual diffusion coefficients in

concentrated polymer solutions were studied: constant diffusivity,

linear variation of diffusivity with concentration, and a complete free
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volume model. Techniques for determining which model was appropriate

for a given range of temperature and composition were shown. Under

typical devolatilization conditions, it was shown that the simpler

models often gave the same predictions as the complete free volume

model.

6) The linear diffusivity model allowed free volume effects and

chemical potential effects to be separated and described by single

parameters. When applied to typical data for polystyrene and various

solvents, this approach explained why diffusivity increases with solvent

concentration (at low solvent concentrations) in some systems, while it

decreases or remains roughly constant in others. Although the free

volume term typically leads to a moderately strong increase in

diffusivity, the thermodynamic term leads to a decrease in diffusivity,

the effect of which is proportional to the nonideality of the solvent-

polymer mixture.

7) When viscosity data were fit to equations to evaluate free volume

parameters, these parameters were extremely sensitive to slight

variations in the data. Alternative free volume parameters could be

chosen which fit the viscosity data equally well as the original

parameters, but which led to considerably different diffusivity

predictions.

8) A general statistical procedure for determining whether a nonlinear



145

data fit exhibits systematic rather than random error was proposed and

demonstrated on viscosity data as a function of temperature. The

procedure was based on nonparametric statistics and combined the strong

points of the runs test for randomness and the rank correlation

coefficient. When applied to the viscosity data set, the new test

statistic, Sum Square Rank Difference, was able to detect a complicated

pattern of systematic error which was not detected in a statistically

significant fashion by standard correlation, rank correlation, and runs

test procedures. The new test appeared to be particularly powerful in

cases where the underlying distribution of the data is not normal, and

contains outlier values.

Several recommendations can be made for additional study into the topics

discussed in this dissertation.

l) The VSP technique could be generalized to apply to ternary or higher

multicomponent systems. Since the ASOG model is a multicomponent model,

it can be applied for the residual term in these general cases. Only

the VSP free volume/entropy term needs to be generalized.

2) Generation of the adjustable parameter in the VSP technique (the

infinite dilution weight fraction solvent activity coefficient) by some

a priori approach such as group contribution could be attempted. This

would make VSP equivalent in nature to UNIFAC-FV. Predictions of some

polymer properties, such as solubility parameter, already make use of
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additive group contributions to the molar volume. These could be

adapted for use in a simple equation of state approach for the free

volume contribution to solution nonideality. The combination of

experimental and tabulated volumes, as done in UNIFAC-FV, should be

avoided.

3) A model for the temperature dependence of the adjustable parameter

in the VSP technique could be proposed. Since the ASOG-KT constants

contain a temperature dependence, this would give a complete temperature

dependence to the VSP model, making it equivalent in nature to the

equation of state techniques. This might be possible in conjunction

with recommendation 2 above, if the temperature dependence of free

volume were effectively modeled.

4) The analysis of residual terms in group contribution models should

be extended to the general multicomponent, multifunctional group case.

This would make the approach less of a novelty and more of a practical

technique for estimating activity coefficients. The nomenclature chosen

lends itself to such a generalization, with the exception of the group

ratios g1 and g2: the use of gjk to represent to ratio of functional

groups of type j to those of an (arbitrary) type 1 in molecular

component k would be more appropriate in the general case.

S) A more complete study of the sensitivity of predictions of the group

contribution models to the normalization unit size could be attempted.
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Perhaps the optimal normalization unit (in terms of predictive accuracy)

would be different for different functional groups. This seems

unphysical, but the present mathematical property of normalization unit

size dependence in these models is already unphysical. Why should there

be a different result when a functional group volume is taken as 5 A3

rather than 5x10"3 nm3?

6) A group contribution model which did not have this property of

normalization dependence could be proposed. In the present models, the

component activity coefficient is taken as the sum of functional group

activity coefficients, each of which are given by a Wilson-type

equation. If instead, the component interaction parameters as taken as

the sum of functional group interaction parameters, and then the Wilson

equation is applied to these parameters, the resulting model should no

longer contain a normalization dependence. If the Wilson equation is

used, however, it will also unfortunately lose the ability to model

liquid phase immiscibility. Alternatively, NRTL might be used as the

basis for the model to preserve this ability.

7) Only the simplest VSP model, with no residual interaction, was

applied to the prediction of the chemical potential dependence of

diffusivity. Since the various residual interaction terms can lead to

large differences in infinite dilution behavior, it would be useful to

try applying some of these other terms to the prediction of diffusivity.
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8) When fitting experimental viscosity data to equations for the

evaluation of free volume parameters, care must be taken to avoid

extrapolation errors. Since the recommended procedure is to fit data

from low temperatures where activation energy effects are negligible

compared togfree volume effects, the fit should be analyzed very

carefully if diffusivity predictions are to be made at higher

temperatures. The statistical test proposed in Chapter 5 would be

useful in this regard.

9) The present procedure of fitting viscosity data at low temperature

to derive free volume parameters, then assuming these free volume

parameters and fitting diffusivity data to derive an activation energy

and preexponential factor, seems unnecessarily complicated. Further, it

leads to unphysical results, such as a large difference in activation

energy and (consequently) several orders of magnitude difference in

preexponential factor, for the similar systems poly(styrene)-toluene and

poly(styrene)-ethylbenzene. Instead, viscosity data over a large

temperature range should be fit to a combined free volume and activation

energy model, and analogies between mass and momentum transport should

be used to generate an activation energy for diffusion from the

activation energy for viscosity. This will leave only the

preexponential diffusivity factor to be evaluated from data fit.

10) Further analysis of the Sum Square Rank Difference statistical

procedure should be attempted. Although the equations given for the
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mean and variance were derived in a mathematically valid way, it might

be possible to produce a more satisfying (elegant) derivation. The

assumption that the Central Limit Theorem applies to the distribution

should be proved in a rigorous manner. If possible, the power function

of the statistic should be calculated (or estimated), and the asymptotic

relative efficiency of the statistic compared to alternative statistical

tests should be derived under various standard distributions of observed

data.



APPENDIX A.

Data used in Thermodynamic Modeling.

The following data were used as input to computer programs which

generated the results of thermodynamic models used in Chapter 2 of this

dissertation. Each data set contains solvent activity as a function of

concentration for a particular solvent-polymer pair at a particular

temperature. In order to use the data as input to a computer program, a

standard format was followed throughout.

A line by line description of the data set contents is given here.

Lines 1 to 4 define the compounds and the temperature. Lines 5 to 7

define the infinite dilution activity to be used as a parameter in the

model, or give a data point from which the parameter can be

extrapolated. The units of measurement are also given here. Lines 8

and 9 define polymer and solvent density data and their units. Line 10

and all following lines define the solvent activity data for these

compounds at this temperature as a function of concentration.

Line 1: A heading for the data set, giving the solvent, the polymer,

and the temperature.

Line 2: The solvent name in upper case letters.
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Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 7a:

151

The polymer name in upper case letters.

The temperature (K) as a real number. This equals the Celsius

temperature plus 273.16.

The infinite dilution weight fraction solvent activity

coefficient, 0 w, as a real number, or zero if unknown. In

the data sets presented here, 01” was assumed unknown, so zero

was always entered.

If 01no was not given (line 5 was zero), an solvent activity or

activity coefficient as a real number, followed by the lower

case letter g (for activity), 3 (for weight fraction activity

coefficient), or 3 (for mole fraction activity coefficient).

If line 5 was nonzero, only the letter a, w, or 3 should be

given.

If 01co was not given (line 5 was zero), a concentration as a

real number, followed by the lower case letter 3 (for weight

fraction solvent), m (for mass ratio of solvent to polymer),

or 3 (for mole fraction solvent). If line 5 was nonzero, only

the letter 3, m, or 3 should be given.

If mole fraction solvent is the concentration variable (line 7

contained the lower case letter 3), the polymer molecular
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weight and solvent molecular weight are given as real numbers.

Otherwise, this line is not present. It is not present in the

data sets presented here because mole fraction solvent was

never used for the concentration variable.

Line 8: The density or a related quantity for the polymer as a real

number, followed by the lower case letter 9 (for density in

g/cm3), x (for specific volume in cm3/g), or m (for molar

volume in cm3/g mol).

Line 9: The density or a related quantity for the solvent as a real

number in the same units as were given for the polymer in line

8.

Lines 10 and following: Each line contains a solvent concentration as a

real number in the same units as line 7 followed by a solvent

activity or activity coefficient as a real number in the same

units as line 6. The end of the data set is marked by a line

containing a concentration value which is out of the legal

range.

It is assumed that line 1 of a new data set follows a line containing an

illegal concentration value, so that multiple data sets can be read from

a single computer disk file. The data used in this work is listed below

as Table A-1, in the exact format of the computer disk file, with two

exceptions. The first exception is that blank lines have been
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interspersed between data sets. The second exception is that the

reference for each data set is listed to the right of the data.

Dr. Eric A. Crulke of Michigan State University has a disk copy of the

data file. The file name is ASOCVSP.DAT.
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Table A-1. Data Used in Thermodynamic Modeling.

Toluene-Polystyrene at 25 C

TOLUENE

PS

298.16

.403a

.111w

.083 d

.8610

.191

.273

.476

.156

.236

.304

.380

.599

.744

.918

.611 (Bawn, Freeman, and Kamaliddin, 1950)

.740

.918

.523

.704

.791

.866

.969

.997

.000O
O
O
O
O
O
O
O
O
O
O
l
—
‘
O
O
O

H
O
O
O
O
O
O
O
O
O

i

H O

Toluene-Polystyrene at 60 C

TOLUENE

PS

333.16

0

0.383s

0.102w

1.074 d

0.82355

0.179 0.576 (Bawn, Freeman, and Kamaliddin, 1950)

0.261 0.725

-1 O

Toluene-Polystyrene at 80 C

TOLUENE

PS

353.16

.706a

.246w

.068 d

.8075

.458 0.914 (Bawn, Freeman, and Kamaliddin, 1950)

.671 0.984

1 0I
O
O
O
H
O
O
O
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Methyl ethyl ketone-Polystyrene at 25 C

MER

PS

298.16

O
O
O
O
H
O
O
O

.517a

.09lw

.091 d

.79970

.215 0.808

.279 0.882

.298 0.906

-1 0

(Bawn, Freeman, and Kamaliddin, 1950)

Benzene-Polyisobutylene at 25 C

BENZENE

PIB

298.16

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

.2990a

.0457m

.91693 d

.87382

.5948 0.9476

.4732 0.9227

.4226 0.9120

.340 0.8759

.3251 0.8548

.2258 0.7602

.1787 0.7029

.1767 0.6919

.1044 0.5169

.0676 0.4058

-2 0

(Eichinger and Flory, 1968a)

Benzene-Polyisobutylene at 10 C

BENZENE

PIB

283.16

O
O
O
O
O
O
O

.8388a

.291m

.92 d

.8895

.5543 0.9595

.8331 0.9811

-2 0

(Eichinger and Flory, 1968a)
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Cyclohexane-Polyisobutylene at 25 C

(Eichinger and Flory, 1968b)

N-pentane-Polyisobutylene at 25 C

CYCLOHEXANE

PIB

298.16

0

0.4625a

0.147m

1.0906v

1.2921

1.318 0.9598

0.668 0.8758

0.434 0.7836

0.390 0.708

0.307 0.6937

0.232 0.6105

0.198 0.5537

-2 0

N-PENTANE

PIB

298.16

0

0.2120a

0.0294m

1.0906v

1.6094

1.405 0.9897

0.4760 0.9263

0.488 0.9208

0.3634 0.8804

0.2688 0.8093

0.227 0.7684

0.1530 0.6434

0.0786 0.4414

-2 0

(Eichinger and Flory, 1968c)
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Table A-1 (cont'd.).

Triisopropylbenzene-Polystyrene at 165 C

TRIISOPROPYLBENZENE '

PS

438.16

.296a

.02979w

.022 d

.7

.06557 0.500 (Liu, 1980)

.08622 0.620

2 0I
O
O
O
H
O
O
O

Triisopropylbenzene-Polystyrene at 175 C

TRIISOPROPYLBENZENE

PS

448.16

0

0.203s

0.02036w

1.022 d

0.7

0.03793 0.267 (Liu, 1980)

0.06591 0.530

-2 0

Carbon disulfide-Polystyrene at 115 C

CSZ

PS

388.16

.0526a

.01439w

.054 d

.1608

.02448 0.0873 (Liu, 1980)

.04078 0.1413

-2 0

O
O
H
H
O
O
O
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Table A-1 (cont'd.).

Carbon disulfide-Polystyrene at 140 C

CSZ

PS

413.16

.03179a

.008182w

.039 d

.1418

.01112 0.04260 (Liu, 1980)

.01833 0.05490

.02900 0.0855

-2 0

C
O
O
l
—
‘
l
—
‘
O
O
O

Methanol-Polymethyl methacrylate at 120 C

METHANOL

PMMA

393.16

0

0.044s

0.002738w

1.141 d

0.6900

,0.006183 0.0952 (Liu, 1980)

0.009214 0.1410

-2 0

Methanol-Polymethyl methacrylate at 130 C

METHANOL

PMMA

403.16

0

0.0316a

0.002724w

1.135 d

0.677

0.005787 0.0707 (Liu, 1980)

0.008197 0.1043

-2 0
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Table A-1 (cont'd.).

Toluene-Polymethyl methacrylate at 130 C

TOLUENE

PMMA

403.16

0

0.1768a

0.01662w

1.135 d

0.775

0.05976 0.3480 (Liu, 1980)

0.1120 0.5550

-2 0

Toluene-Polymethyl methacrylate at 160 C

TOLUENE

PMMA

433.16

.0743a

.005851w

.120 d

.756

.01402 0.1393 (Liu, 1980)

.02516 0.2129

.02259 0.2111

.03676 0.2780

-2 0

O
O
O
O
O
l
—
‘
O
O
O

Toluene-Polyvinyl acetate at 35 C

TOLUENE

PVA

308.16

.5106a

.08397w

.182 d

.847

.11725 0.6304 (Ju, 1981)

.16142 0.7530

.19490 0.8200

-2 0

O
O
O
O
l
-
‘
O
O
O
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Table A-1 (cont'd.).

Toluene-Polyvinyl acetate at 40 C

TOLUENE

PVA

313.16

0

0.3505a

0.0513lw

1.178 d

0.842

0.07616 0.4723 (Ju, 1981)

0.08900 0.5283

0.09366 0.5369

0.12762 0.6750

0.13879 0.7016

0.17080 0.7590

-2 0

Toluene-Polyvinyl acetate at 47.5 C

TOLUENE

PVA

320.66

.3384a

.05201w

.172 d

.835

.07102 0.4524 (Ju, 1981)

.10747 0.6032

-2 0

O
C
C
l
—
‘
O
O
O

Chloroform-Polyvinyl acetate at 35 C

CHLOROFORM '

PVA

308.16

0

0.2590a

.16316w

.182 d

.463

.23146 0.3289 (Ju, 1981)

.27614 0.3885

.32688 0.4498

.38099 0.5197

.41592 0.5691

.46433 0.6373

2 0'
O
O
O
O
O
O
i
—
‘
i
—
‘
O
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Chloroform-Polyvinyl acetate at 45 C

(Ju, 1981)

Benzene-Polyethylene oxide at 70 C

CHLOROFORM

PVA

318.16

0

0.1375a

0.09303w

1.174 d

1.444

0.12100 0.1704

0.13925 0.1956

0.16448 0.2329

0.19824 0.2708

0.20573 0.2988

0.22683 0.3175

0.24657 0.3402

0.27616 0.3817

0.29528 0.4074

0.32486 0.4435

0.35519 0.4797

0.42694 0.5929

0.46082 0.6350

0.47794 0.6665

0.49949 0.7073

-2 0

BENZENE

PEO

343.16

0

4.3118w

0.06163w

1.10 d

0.825

0.06711 4.2311

0.0991 3.8095

0.1387 3.4739

0.1926 3.0925

0.261 2.6898

0.3881 2.1527

-2 0

(Chang and Bonner, 1975)



Table A-1 (cont'd.).

Benzene-Polyethylene oxide

BENZENE

PEO

343.16

.1031w

.05005w

.10 d

.825

.08908 3.7426

.1422 3.3435

.2006 2.9955

.2649 2.7017

-2 0

(Chang

O
O
O
O
O
l
-
‘
O
J
-
‘
O

Benzene-Polyethylene oxide

BENZENE

PEO

348.26

.9837w

.05254w

.095 d

.82

.08096 3.7549

.1083 3.5608

.1454 3.3316

-2 0

(Chang

O
O
O
O
H
O
M
O

Benzene-Polyethylene oxide

BENZENE

PEO

361.26

0

4.2337w

.02687w

.082 d

.81

.05012 3.9859

.06671 3.8503

.0906 3.6668

-2 0

(Chang

O
O
O
O
l
-
‘
O

162

at 70 C (second run)

and Bonner, 1975)

at 75.1 C

and Bonner, 1975)

at 88.1 C

and Bonner, 1975)
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Benzene-Polyethylene oxide at 102 C

BENZENE

PEO

375.16

O
O
O
O
O
O
O
O
O
O
O
H
O
#
O

.3033w

.02076w

.065 d

.80

.02192

.02502

.02919

.03687

.04418

.04777

.05834

.07706

.09184

.1180 3.1694

.2801

.2717

.2248

.1477

.0704

.0423

.9496

.7134

.5198w
w
a
-
‘
J
-
‘
b
J
-
‘
b
b

-2 0

(Chang and Bonner, 1975)

Benzene-Polyethylene oxide at 125.4 C

BENZENE

PEO

398.56

0

4.249w

O
O
O
O
l
-
‘
O .01094w

.042 d

.78

.01769 4.1411

.02392 4.0804

.03278 3.9928

-2 0

(Chang and Bonner, 1975)

Benzene-Polyethylene oxide at 125.7 C

BENZENE

PEO

398.86

0

4.1547w

'
O
O
O
O
l
-
‘
O .01115w

.042 d

.78

.01734 4.0733

.02474 3.9452

.03313 3.8742

2 0

(Chang and Bonner, 1975)



164

Table A-1 (cont'd.).

Benzene-Polyethylene oxide at 150.4 C

BENZENE

PEO

423.56

0

4.3113w

.007975w

.017 d

.76

.01130 4.2015 (Chang and Bonner, 1975)

.01635 4.0606

.02256 3.9560

-2 0

O
O
O
O
H
O



APPENDIX B.

Results of Thermodynamic Modeling Using Data Extrapolated from Low

Solvent Concentrations.

The results given in this appendix were produced as output by a computer

program using the data in Appendix A. This output was used as results

in Chapter 2 of the dissertation. The program itself and instructions

for its execution are given in Appendix D. Experimental data for a

given polymer-solvent system and given temperature were fit to the VSP

model (the column headed ASOGVSP in the table) and the Flory-Huggins

model using a single data point at low solvent concentration to evaluate

an adjustable parameter. The UNIFAC-EV model was also applied to the

data for comparison.

Each data set in Table B-1 begins with a heading which gives the polymer

and solvent used and the temperature. The next three lines give the

concentration data point from which adjustable parameters were

extrapolated, and the values of those parameters. The remainder of each

data set contains a comparison of experimental and predicted weight

fraction solvent activity coefficients for each concentration in the

data set. At the bottom of each column, the root mean square error for

165
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the data set is given.

Table B-1. Results Using Thermodynamic Data Extrapolated from Low

Solvent Concentrations.

Toluene-Polystyrene at 25 C

By correlating activity at finite conc 0.111

Infinite dilution wt frac activity coefficient was 4.6807

Flory-Huggins chi parameter was 0.3140

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.156 3.353 3.305 -l.4 3.347 -0.2 3.220 -4.0

0.191 3.199 3.081 -3.7 3.124 -2.3 3.003 —6.1

0.236 2.983 2.826 -5.3 2.867 ~3.9 2.758 -7.5

0.273 2.711 2.640 -2.6 2.679 -1.2 2.580 -4.8

0.304 2.602 2.499 -4.0 2.535 -2.6 2.444 -6.1

0.380 2.279 2.198 -3.6 2.227 -2.3 2.157 -5.3

0.476 1.929 1.893 -1.9 1.913 -0.8 1.866 -3.2

0.599 1.618 1.590 -1.7 1.602 -1.0 1.577 -2.5

0.744 1.340 1.323 -1.3 1.327 -0.9 1.318 -l.6

0.918 1.089 1.088 -0.1 1.088 -0.0 1.088 -0.2

Avg pct error 2.5 1.5 4.1

Toluene-Polystyrene at 60 C

By correlating activity at finite conc 0.102

Infinite dilution wt frac activity coefficient was 4.7774

Flory-Huggins chi parameter was 0.2984

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.179 3.218 3.189 -0.9 3.229 0.3 3.187 -l.0

0.261 2.778 2.720 -2.1 2.756 -0.8 2.700 -2.8

Avg pct error 1.5 0.6 1.9
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Table B-1 (cont'd.).

Toluene-Polystyrene at 80 C

By correlating activity at finite conc 0.246

Infinite dilution wt frac activity coefficient was 5.0991

Flory-Huggins chi parameter was 0.3495

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.458 1.996 1.971 -l.2 1.998 0.1 1.934 -3.

0.671 1.466 1.454 -0.9 1.462 -0.3 1.442 -1. N
H

Avg pct error 1.1 0.2 2.4

Methyl ethyl ketone-Polystyrene at 25 C

By correlating activity at finite conc 0.091

Infinite dilution wt frac activity coefficient was 8.6856

Flory-Huggins chi parameter was 0.8510

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.215 3.758 3.700 -l.5 4.113 9.5 4.164 10.

0.279 3.161 3.099 -2.0 3.431 8.5 3.456 9.

0.298 3.040 2.953 ~2.9 3.261 7.3 3.282 7. s
o
w
o
o

Avg pct error 2.1 8.4 9.4
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Table B-1 (cont'd.).

Benzene-Polyisobutylene at 25 C

By correlating activity at finite conc 0.043

Infinite dilution wt frac activity coefficient was 8

Flory-Huggins chi parameter was 1.0878

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.063 6.409 6.274 -2.1 6.871 7.2 6.016 -6.

0.094 5.468 5.520 1.0 6.224 13.8 5.452 -0.

0.150 4.608 4.506 -2.2 5.251 14.0 4.620 0.

0.152 4.636 4.484 -3.3 5.229 12.8 4.601 -0.

0.184 4.127 4.032 -2.3 4.752 15.1 4.199 1.

0.245 3.484 3.370 -3.3 4.001 14.8 3.572 2.

0.254 3.452 3.294 -4.6 3.911 13.3 3.497 1.

0.297 3.070 2.946 -4.0 3.485 13.5 3.144 2

0.321 2.873 2.779 -3.3 3.275 14.0 2.970 3

0.373 2.541 2.472 -2.7 2.881 13.4 2.642 4

Avg pct error 2.9 13.2 2.3

Benzene-Polyisobutylene at 10 C

By correlating activity at finite conc 0.225

Infinite dilution wt frac activity coefficient was 10

Flory-Huggins chi parameter was 1.2727

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.357 2.691 2.616 ~2.8 3.226 19.9 2.749 2.

0.454 2.159 2.122 -1.7 2.516 16.5 2.236 3.

Avg pct error 2.2 18.2 2.9

.4655

.0386
O
‘
N
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Table B-1 (cont'd.).

Cyclohexane-Polyisobutylene at 25 C

By correlating activity at finite conc 0.128

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.4221

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.165 3.350 3.330 -0.6 3.409 1.8 3.220 -3.

0.188 3.242 3.173 -2.1 3.253 0.3 3.070 -5.

0.235 2.953 2.890 -2.1 2.966 0.4 2.799 -5.

0.281 2.523 2.649 5.0 2.719 7.8 2.570 1.

0.303 2.589 2.544 -1.8 2.611 0.8 2.471 -4.

0.400 2.187 2.148 -1.8 2.199 0.5 2.098 -4.

0.569 1.688 1.665 -l.4 1.689 0.0 1.642 -2.

Avg pct error 2.1 1.7 3.9

N-pentane-Polyisobutylene at 25 C

By correlating activity at finite conc 0.028

Infinite dilution wt frac activity coefficient was 8

Flory-Huggins chi parameter was 0.7601

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.072 6.057 6.077 0.3 6.433 6.2 5.654 -6.

0.133 4.849 4.816 -0.7 5.205 7.3 4.487 -7.

0.185 4.153 4.040 -2.7 4.394 5.8 3.777 -9.

0.212 3.820 3.721 -2.6 4.050 6.0 3.488 -8.

0.267 3.303 3.193 -3.3 3.465 4.9 3.011 -8.

0.322 2.872 2.776 -3.3 2.992 4.2 2.635 -8.

0.328 2.808 2.741 -2.4 2.952 5.1 2.603 -7.

0.584 1.694 1.679 -0.9 1.733 2.3 1.644 -3.

Avg pct error 2.0 5.2 7.4

 

.9119

\
l
l
-
‘
G
‘
Q
N
U
J
O

.5781

C
W
U
Q
N
l
—
‘
U
‘
N
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Table B-1 (cont'd.).

Triisopropylbenzene-Polystyrene at 165 C

By correlating activity at finite conc 0.029

Infinite dilution wt frac activity coefficient was 12

Flory-Huggins chi parameter was 1.1421

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.065 7.625 7.901

Avg pct error 2.9 15.7 27.5

Triisopropylbenzene-Polystyrene at 175 C

By correlating activity at finite conc 0.020

Infinite dilution wt frac activity coefficient was 11

Flory-Huggins chi parameter was 1.0661

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.037 7.039 8.894 26.3 9.582 36.1 6.084 -l3.

0.065 8.041 7.544 -6.2 8.427 4.8 5.528 -31.

Avg pct error 16.3 20.5 22.4

Carbon disulfide-Polystyrene at 115 C

By correlating activity at finite conc 0.014

Infinite dilution wt frac activity coefficient was 3

Flory-Huggins chi parameter was 0.4179

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.024 3.566 3.592

Avg pct error 0.8 1.3 30.7

3.6 8.984 17.8 5.551 ~27.

0.086 7.191 7.031 -2.2 8.172 13.6 5.187 -27.

0.7 3.607 1.1 4.685 31.

0.040 3.465 3.493 0.8 3.516 1.5 4.503 30.

.4354

‘
D
N

.5246

(
3
0
‘

.7485
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Table B-1 (cont'd.).

Carbon disulfide—Polystyrene at 140 C

By correlating activity at finite conc 0.008

Infinite dilution wt frac activity coefficient was 3

Flory-Huggins chi parameter was 0.4671

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.011 3.831 3.864 0.9 3.874 1.1 4.488 17.

0.018 2.995 3.812 27.3 3.827 27.8 4.414 47.

0.029 2.948 3.737 26.7 3.760 27.5 4.309 46.

\

Avg pct error 18.3 18.8 36.9

Methanol-Polymethyl methacrylate at 120 C

By correlating activity at finite conc 0.002

Infinite dilution wt frac activity coefficient was 16

Flory-Huggins chi parameter was 1.3043

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.006 15.397 15.483 0.6 15.905 3.3 21.457 39.

0.009 15.303 14.996 -2.0 15.594 1.9 20.775 35.

Avg pct error 1.3 2.6 37.6

Methanol-Polymethyl methacrylate at 130 C

By correlating activity at finite conc 0.002

Infinite dilution wt frac activity coefficient was 11

Flory-Huggins chi parameter was 0.9552

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC—EV

0.005 12.217 11.336 -7.2 11.473 -6.1 21.021 72.

0.008 12.724 11.134 -12.5 11.323 -ll.0 20.493 61.

Avg pct error 9.9 8.6 66.6

.9461
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Table B-1 (cont'd.).

Toluene-Polymethyl methacrylate at 130 C

By correlating activity at finite conc 0.016

Infinite dilution wt frac activity coefficient was 12.0574

Flory-Huggins chi parameter was 1.1082

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.059 5.823 8.029 37.9 8.993 54.4 5.382 -7 .6

0.112 4.955 6.082 22.7 7.131 43.9 4.508 -9.0

Avg pct error 30.3 49.2 8.3

Toluene-Polymethyl methacrylate at 160 C

By correlating activity at finite cone 0.005

Infinite dilution wt frac activity coefficient was 13.3599

Flory-Huggins chi parameter was 1.1992

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.014 9.936 11.864 19.4 12.378 24.6 6.398 -35.6

0.022 9.345 11.084 18.6 11.825 26.5 6.189 -33.8

0.025 8.462 10.867 28.4 11.666 37.9 6.128 -27.6

0.036 7.563 9.973 31.9 10.982 45.2 5.866 -22.4

Avg pct error 24.6 33.6 29.8

Toluene-Polyvinyl acetate at 35 C

By correlating activity at finite conc 0.084

Infinite dilution wt frac activity coefficient was 9.2829

Flory-Huggins chi parameter was 0.8949

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.117 5.377 5.295 -l.5 5.862 9.0 3.970 -26.2

0.161 4.665 4.492 -3.7 5.031 7.9 3.512 -24.7

0.195 4.207 4.014 -4.6 4.511 7.2 3.221 -23.4

Avg pct error 3.3 8.0 24.8



173

Table B-1 (cont'd.).

Toluene-Polyvinyl acetate at 40 C

By correlating activity at finite conc 0.051

Infinite dilution wt frac activity coefficient was 8

Flory-Huggins chi parameter was 0.8450

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.076 6.201 6.114 -1.4 6.565 5.9 4.515 —27.

0.089 5.936 5.791 -2.4 6.263 5.5 4.341 -26.

0.093 5.732 5.682 -0.9 6.158 7.4 4.280 -25.

0.128 5.289 4.978 ~5.9 5.466 3.3 3.877 -26.

0.139 5.055 4.778 -5.5 5.262 4.1 3.757 -25.

0.171 4.444 4.277 -3.8 4.737 6.6 3.447 -22.

Avg pct error 3.3 5.5 25.7

Toluene-Polyvinyl acetate at 47.5 C

By correlating activity at finite conc 0.052

Infinite dilution wt frac activity coefficient was 8

Flory—Huggins chi parameter was

Wt Frac

Solvent

0.071

0.107

Exptl

6.370

5.613

Avg pct error

Chloroform-Polyvinyl acetate at 35 C

By correlating activity at finite conc

ASOGVSP

6.003

5.202

-5.8

-7.3

6.5

0.7793

Activity Coefficients and Percent Error

Flory-Huggins UNIFAC-EV

6.356

5.597

-0.2

-0.3

0.3 26.9

0.163

Infinite dilution wt frac activity coefficient was 1

Flory-Huggins chi parameter was

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.231 1.421 1.556 9.5 1.572 10.6 1.168 -l7.

0.276 1.407 1.535 9.1 1.551 10.3 1.165 -17.

0.327 1.376 1.509 9.6 1.526 10.9 1.162 -15.

0.381 1.364 1.479 8.4 1.497 9.8 1.160 -14.

0.416 1.368 1.459 6.7 1.477 7.9 1.159 -15.

0.464 1.373 1.430 4.2 1.447 5.5 1.158 -15.

Avg pct error 7.9 9.2 16.1

-0.2848

4.621 -27.

4.139 -26.

.8537
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Chloroform-Polyvinyl acetate at 45 C

By correlating activity at finite conc

Infinite dilution wt frac activity coefficient was

Flory-Huggins chi parameter was

Wt Frac

Solvent

.121

.139

.164

.198

.206

.227

.247

.276

.295

.325

.355

.427

.461

.478

.499O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Exptl

.408

.405

.416

.366

.452

.400

.380

.382

.380

.365

.351

.389

.378

.395

.416F
‘
F
‘
P
‘
F
‘
F
‘
P
‘
P
‘
P
‘
P
‘
P
‘
P
‘
F
‘
h
‘
h
‘
h
‘

Avg pct error

~0.3918

0.093

1

Activity Coefficients and Percent Error

Flory-Huggins UNIFAC-EVASOGVSP

1.473

1.469

1.463

1.455

1.453

1.448

1.443

1.434

1.429

1.420

1.410

1.383 ~0

1.369 -0

1.362 ~2

1.353 ~4

3.4
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Benzene-Polyethylene oxide at 70 C

By correlating activity at finite conc

Infinite dilution wt frac activity coefficient was

Flory-Huggins chi parameter was

Wt Frac

Solvent

0.067

0.099

0.139

0.193

0.261

0.388

Exptl

.231

.810

.474

.093

.690

.153N
N
W
W
W
L
‘

Avg pct error

0.3345
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‘
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‘
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‘ .207

.204

.200

.195

.195

.192

.190

.187

.186

.183

.181

.177

.175

.174

.172

~14.

~14.

~15.

~12.

~17.

~14.

~13.

~14.

~14.

~13.

~12.

~15.

~14.

~15.

~17.

14.7

Activity Coefficients and Percent Error

ASOGVSP
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Table B-1 (cont'd.).

Benzene-Polyethylene oxide at 70 C (second run)

By correlating activity at finite conc 0.050

Infinite dilution wt frac activity coefficient was 4.

Flory-Huggins chi parameter was 0.2403

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.089 3.743 3.765 0 6 3.785 1 1 3.379 ~9.

0.142 3.344 3.368 0.7 3.392 1 5 3.066 ~8.

0.201 2.996 3.001 0.2 3.026 1.0 2.771 ~7.

0.265 2.702 2.663 ~1 4 2.686 -0 6 2.494 ~7.

Avg pct error 0.7 1.0 8.3

Benzene-Polyethylene oxide at 75.1 C

By correlating activity at finite conc 0.052

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.2102

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-EV

0.081 3.755 3.749 ~0.2 3.764 0.2 3.416 ~9.

0.108 3.561 3.543 ~0.5 3.559 ~0.0 3.247 ~8.

0.145 3.332 3.289 ~1.3 3.307 ~0.7 3.038 ~8.

Avg pct error 0.7 0.3 8.9

Benzene-Polyethylene oxide at 88.1 C

By correlating activity at finite conc 0.026

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.2147

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.050 3.986 4.021 0.9 4.032 1.2 3.563 ~10.

0.066 3.850 3.879 0.7 3.893 1.1 3.454 ~10.

0.090 3.667 3.688 0.6 3.704 1.0 3.305 ~9.

Avg pct error 0.7 1.1 10.3
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Table B~1 (cont'd.).

176

Benzene-Polyethylene oxide at 102 C

By correlating activity at finite conc 0.020

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.2209

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.021 4.280 4.292 0.3 4.298 0.4 3.662 ~14.

0.025 4.272 4.262 ~0.2 4.269 ~0.0 3.641 ~14.

0.029 4.225 4.222 ~0.0 4.230 0.1 3.613 ~14.

0.036 4.148 4.150 0.0 4.160 0.3 3.562 ~14.

0.044 4.070 4.084 0.3 4.094 0.6 3.515 ~13.

0.047 4.042 4.051 0.2 4.063 0.5 3.492 ~13.

0.058 3.950 3.959 0.2 3.972 0.6 3.426 ~13.

0.077 3.713 3.802 2.4 3.818 2.8 3.314 ~10.

0.091 3.520 3.685 4.7 3.703 5.2 3.230 ~8.

0.118 3.169 3.491 10.2 3.510 10.8 3.087 ~2.

Avg pct error 1.9 2.1 12.0

Benzene-Polyethylene oxide at 125.4 C

By correlating activity at finite conc 0.010

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.1810

Wt Frac

Solvent

0.017

0.023

0.032

Exptl

4.141

4.080

3.993

Avg pct error

Activity Coefficients and Percent Error

ASOGVSP

4.187

4.131

4.054

1.

Flory-Huggins UNIFAC-EV

1.1 4.190 1.2 3.611 ~12.

1.2 4.136 1.4 3.571 ~12.

1.5 4.059 1.7 3.515 ~12.

3 1.4 12.4
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Table B-1 (cont'd.).

Benzene-Polyethylene oxide at 125.7 C

By correlating activity at finite conc 0.011

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.1583

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.017 4.073 4.101 0.7 4.103 0.7 3.613 ~11.

0.024 3.945 4.038 2.4 4.041 2.4 3.566 ~9.

0.033 3.874 3.969 2.4 3.973 2.5 3.513 ~9.

Avg pct error 1.8 1.9 10.1

Benzene-Polyethylene oxide at 150.4 C

By correlating activity at finite conc 0.007

Infinite dilution wt frac activity coefficient was 4

Flory-Huggins chi parameter was 0.1876

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV

0.011 4.202 4.280 1.9 4.282 1.9 3.569 ~15.

0.016 4.061 4.233 4.2 4.236 4.3 3.538 -12.

0.022 3.956 4.176 5.6 5.7 3.501 ~11.4.180

Avg pct error 3.9 4.0 13.1

.2540

w
o
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APPENDIX C.

Results of Thermodynamic Modeling Using a Best Fit of All Data

The results given in this appendix were produced as output by a computer

program using the data in Appendix A. This output was used as results

in Chapter 2 of the dissertation. The program itself and instructions

for its execution are given in Appendix E. Experimental data for a

given polymer-solvent system and given temperature were fit to the VSP

model assuming no residual interaction, the Flory-Huggins model, the VSP

model assuming a Flory-Huggins type residual interaction term, and the

VSP model assuming an interaction term given by Analytical Solution of

Groups (ASOG).

For each data set, a heading is given, followed by the values of

adjustable parameters determined by a least squares best fit criterion.

(The ASOG-VSP enthalpic coefficient is determined a priori from the ASOG

interaction parameter tables, not from fitting to the data, but is

included in this section for comparison.) The next section contains a

comparison of experimental and predicted weight fraction solvent

activity coefficients for each concentration in the data set. At the

bottom of each column, the root mean square error for the data set is

given. The following section gives the results of nonparametric

statistical tests of the randomness of the error in each model

178
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prediction compared to experiment, as discussed in Chapter 5 of the

dissertation. In cases where the Flory-Huggins or FH-VSP models predict

phase separation, the concentration at which it is predicted to occur is

given. (The VSP model using ASOG residual term is also capable of

predicting phase separation, but such prediction was not included in

this table.)

No ASOG interaction parameters are available for the ether oxygen (-O~)

functional group with the aromatic hydrocarbon (ArCH) functional group.

For this reason, calculations with the VSP model using ASOG residual

term could not be made for benzene-polyethylene oxide. There are values

given in the table for this system, but the ASOG-VSP results are

invalid, as the computer program generating the table set the

interaction parameters to zero for these functional groups. The results

for the other three models are valid for benzene-polyethylene oxide,

since those models do not use the ASOG parameter tables.



180

Table C-l. Results Using Thermodynamic Data Fit to the Entire Data Set.

Toluene-Polystyrene at 25 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.9495

Flory-Huggins chi parameter: 0.3394

FH-VSP inf diln parameters: wt frac act coeff 4.5644 enth coeff 1.7256

ASOG-VSP inf diln parameters: wt frac act coeff 4.9391 enth coeff 1.0064

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG—VSP

0.111 3.631 3.769 3.7 3.739 3.0 3.673 1.2 3.767 3.7

0.156 3.353 3.411 1.7 3.403 1.5 3.375 0.7 3.410 1.7

0.191 3.199 3.168 ~1.0 3.171 ~0.9 3.164 ~1.1 3.168 ~1.0

0.236 2.983 2.893 ~3.1 2.905 ~2.6 2.917 ~2.2 2.894 -3.0

0.273 2.711 2.694 ~0.6 2.710 ~0.0 2.732 0.8 2.695 ~0.6

0.304 2.602 2.543 ~2.3 2.562 ~1.6 2.589 ~0.5 2.545 ~2.2

0.380 2.279 2.226 ~2.3 2.245 ~1.5 2.278 ~0.0 2.228 ~2.3

0.476 1.929 1.908 ~1.1 1.924 ~0.3 1.954 1.3 1.909 ~1.0

0.599 1.618 1.597 ~1.3 1.607 ~0.7 1.628 0.6 1.598 ~1.2

0.744 1.340 1.325 ~1.1 1.329 ~0.8 1.338 ~0.1 1.325 ~1.1

0.918 1.089 1.088 ~0.1 1.088 ~0.1 1.089 0.0 1.088 ~0.1

Standard pct err 2.1 1.6 1.1 2 0

Analysis of model error randomness

Sum sqr rank difference test: mean - 220.00 sd - 61.55

Test statistic 158 187 210 158

Normal (2) ~1.007 ~0.536 ~0.162 ~1.007

Reject level 0.843114 0.704061 0.564541 0.843114

Sum abs rank difference test: mean - 40.00 sd - 6.66

Test statistic 34 35 40 34

Normal (2) -0.900 ~0.750 0.000 ~0.900

Reject level 0.816062 0.773481 0.500000 0.816062

Phase separation behavior prediction

FH-VSP model: wt frac - 0.919
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Table C-l (cont'd.).

Toluene-Polystyrene at 60 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.8456

Flory-Huggins chi parameter: 0.2938

FH-VSP inf diln parameters: wt frac act coeff 4.6321

ASOG-VSP inf diln parameters: wt frac act coeff 4.8393

enth coeff 1.5868

enth coeff 1.0052

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.102 3.755 3.792 1.0 3.777 0.6 3.750 ~0.1 3.791 1.0

0.179 3.218 3.213 ~0.2 3.220 0.1 3.227 0.3 3.213 ~0.1

0.261 2.778 2.734 ~1.6 2.750 ~1.0 2.773 ~0.2 2.735 ~l.5

Standard pct err 1.3 0.8 0.4 1.3

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 2 2 5 2

Normal (2) ~l.4l4 ~1.414 0.707 ~1.4l4

Reject level 0.921358 0.921358 0.760243 0.921358

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 2 2 3 2

Normal (2) ~l.4l4 ~1.4l4 0.707 ~1.414

Reject level 0.921358 0.921358 0.760243 0.921358
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Table C~1 (cont'd.).

Toluene-Polystyrene at 80 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 5.1655

Flory-Huggins chi parameter: 0.3195

FH-VSP inf diln parameters: wt frac act coeff 4.7192 enth coeff 1.5798

ASOG-VSP inf diln parameters: wt frac act coeff 5.1523 enth coeff 1.0045

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.246 2.870 2.884 0.5 2.880 0.3 2.870 ~0.0 2.884 0.5

0.458 1.996 1.975 ~1.0 1.984 ~0.6 1.997 0.1 1.976 ~l.0

0.671 1.466 1.454 ~0.8 1.459 ~0.5 1.465 ~0.1 1.455 ~0.8

Standard pct err 1.0 0.6 0.1 1.0

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 5 5 5 5

Normal (Z) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 3 3 3 3

Normal (2) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243
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Table C-l (cont'd.).

Methyl ethyl ketone-Polystyrene at 25 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 8.9345

Flory-Huggins chi parameter: 0.7101

FH-VSP inf diln parameters: wt frac act coeff 8.2319 enth coeff 1.6469

ASOG-VSP inf diln parameters: wt frac act coeff 7.7699 enth coeff 1.8783

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.091 5.681 5.774 1.6 5.515 ~3.0 5.674 ~0.1 5.575 ~l.9

0.215 3.758 3.730 ~0.8 3.817 1.6 3.777 0.5 3.805 1.2

0.279 3.161 3.116 ~1.4 3.230 2.2 3.169 0 2 3.208 1.5

0.298 3.040 2.968 ~2.4 3.082 1.4 3.019 -0 7 3.059 0.6

Standard pct err 1.9 2.4 0.6 1.6

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic 3 9 9 9

Normal (2) ~1.87l ~0.267 ~0.267 ~0.267

Reject level 0.969310 0.605367 0.605367 0.605367

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 3 5 5 5

Normal (2) ~2.000 0.000 0.000 0.000

Reject level 0.977241 0.500000 0.500000 0.500000

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.636
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Table C-l (cont'd.).

Benzene-Polyisobutylene at 25 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.9213

FH-VSP inf diln parameters: wt frac act coeff 8.1759

ASOG-VSP inf diln parameters: wt frac act coeff 7.3466

8.7866

enth coeff 1.7336

enth coeff 1.7073

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.044 6.842 7.039 2.8 6.291 ~8.4 6.809 -0.5 6.397 ~6.7

0.063 6.409 6.435 0.4 5.942 ~7.6 6.305 ~1.6 6.023 ~6.2

0.095 5.468 5.637 3.1 5.437 ~0.6 5.612 2.6 5.486 0.3

0.150 4.608 4.575 ~0.7 4.665 1.2 4.636 0.6 4.678 1.5

0.152 4.636 4.552 ~1.8 4.647 0.2 4.615 -0.5 4.659 0.5

0.184 4.127 4.083 ~1.1 4.262 3.2 4.164 0.9 4.262 3.2

0.245 3.484 3.401 ~2.4 3.647 4.6 3.489 0.1 3.634 4.2

0.254 3.452 3.323 ~3.8 3.572 3.4 3.410 ~1.2 3.558 3.0

0.297 3.070 2.966 ~3.5 3.217 4.7 3.045 ~0.8 3.199 4.1

0.321 2.873 2.795 ~2.7 3.040 5.7 2.869 ~0.1 3.021 5.0

0.373 2.541 2.483 ~2.3 2.704 6.2 2.545 0.2 2.685 5.5

Standard pct err 2.6 5.2 1.2 4.4

Analysis of model error randomness

Sum sqr rank difference test: mean - 220.00 sd - 61.55

Test statistic 43 22 202 38

Normal (2) ~2.876 ~3.217 ~0.292 ~2.957

Reject level 0.997978 0.999349 .615025 .998441

Sum abs rank difference test: mean - 40.00 sd 6.66

Test statistic 19 14 38 18

Normal (2) ~3.152 -3.902 ~0.300 ~3.302

Reject level 0.999184 0.999952 .617967 .999517

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.531

FH-VSP model: wt frac - 0.852
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Table C~l (cont'd.).

Benzene-Polyisobutylene at 10 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 10.6574

Flory-Huggins chi parameter: 0.8446

FH-VSP inf diln parameters: wt frac act coeff 7.9552 enth coeff 1.9196

ASOG-VSP inf diln parameters: wt frac act coeff 6.7035 enth coeff 1.8245

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.225 3.721 3.772 1.3 3.646 ~2.0 3.727 0.1 3.661 ~1.6

0.357 2.691 2.632 ~2.2 2.714 0.9 2.674 ~0.6 2.711 0.8

0.454 2.159 2.130 ~1.4 2.224 3.0 2.170 0.5 2.218 2.7

Standard pct err 2.1 2.6 0.8 2.3

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 5 2 5 2

Normal (2) 0.707 ~1.414 0.707 ~1.4l4

Reject level 0.760243 0.921358 0.760243 0.921358

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 3 2 3 2

Normal (2) 0.707 ~1.4l4 0.707 ~1.414

Reject level 0.760243 0.921358 0.760243 0.921358

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.584

FH-VSP model: wt frac - 0.683
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Table C~1 (cont'd.).

Cyclohexane~Polyisobuty1ene at 25 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.9719

Flory-Huggins chi parameter: 0.3891

FH-VSP inf diln parameters: wt frac act coeff 4.8958 enth coeff 1.2541

ASOG-VSP inf diln parameters: wt frac act coeff 4.9417 enth coeff 1.0595

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.128 3.609 3.636 0.8 3.597 ~0.3 3.624 0.4 3.632 0.6

0.165 3.350 3.352 0.1 3.336 ~0.4 3.347 ~0.1 3.350 0.0

0.188 3.242 3.193 ~1.5 3.187 ~1.7 3.192 -1.6 3.192 ~l.5

0.235 2.953 2.905 ~1.7 2.914 ~1.3 2.908 ~1.5 2.906 ~1.6

0.281 2.523 2.660 5.3 2.678 5.9 2.666 5.5 2.662 5.4

0.303 2.589 2.553 ~1.4 2.573 ~0.6 2.560 ~1.1 2.556 ~1.3

0.400 2.187 2.154 ~l.5 2.176 ~0.5 2.160 ~1.2 2.156 ~1.4

0.569 1.688 1.667 ~1.3 1.681 ~0.4 1.671 ~1.0 1.668 ~1.2

Standard pct err 2.4 2.4 2.6 2 4

Analysis of model error randomness

Sum sqr rank difference test: mean - 84.00 sd - 26.61

Test statistic 88 87 84 88

Normal (2) 0.150 0.113 0.000 0.150

Reject level 0.559757 0.544895 0.500000 0.559757

Sum abs rank difference test: mean - 21.00 sd - 3.87

Test statistic 20 21 20 20

Normal (2) -0.258 0.000 -0.258 -0.258

Reject level 0.601875 0.500000 0.601875 0.601875
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Table C-l (cont'd.).

N-pentane-Polyisobutylene at 25 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.6795

FH-VSP inf diln parameters: wt frac act coeff 8.3268

wt frac act coeff 8.7630

8.7630

enth coeff 1.6386

enth coeff 1.0000ASOG-VSP inf diln parameters:

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.029 7.423 7.556 1.8 7.087 ~4.6 7.336 ~1.2 7.556 1.8

0.073 6.057 6.161 1.7 6.030 ~0.5 6.120 1.0 6.161 1.7

0.133 4.849 4.863 0.3 4.933 1.7 4.917 1.4 4.863 0.3

0.185 4.153 4.069 ~2.1 4.200 1.1 4.145 ~0.2 4.069 ~2.1

0.212 3.820 3.744 -2.0 3.886 1.7 3.822 0.1 3.744 ~2.0

0.267 3.303 3.208 ~2.9 3.349 1.4 3.280 ~0.7 3.208 ~2.9

0.322 2.872 2.786 -3.1 2.910 1.3 2.846 ~0.9 2.786 ~3.1

0.328 2.808 2.750 ~2.1 2.872 2.3 2.809 0.0 2.750 ~2.1

0.584 1.694 1.680 ~0.8 1.718 1.4 1.696 0.1 1.680 ~0.8

Standard pct err 2.2 2.2 0.9 2.2

Analysis of model error randomness

Sum sqr rank difference test: mean - 120.00 sd - 36.37

Test statistic 35 117 102 35

Normal (2) ~2.337 -0.082 ~0.495 ~2.337

Reject level 0.990267 0.532877 0.689643 0.990267

Sum abs rank difference test: mean - 26.67 sd - 4.75

Test statistic 15 27 24 15

Normal (2) ~2.457 0.070 ~0.561 ~2.457

Reject level 0.992975 0.527987 0.712757 0.992975

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.654
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Table C~1 (cont'd.).

Triisopropylbenzene-Polystyrene at 165 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 12.3352

Flory-Huggins chi parameter: 1.0003

FH-VSP inf diln parameters: wt frac act coeff 12.2476 enth coeff 1.2180

ASOG-VSP inf diln parameters: wt frac act coeff 12.0454 enth coeff 1.0724

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.030 9.936 9.875 ~0.6 9.377 ~5.8 9.853 ~0.8 9.793 ~1.4

0.066 7.625 7.864 3.1 7.995 4.7 7.873 3.2 7.893 3.5

0.086 7.191 7.004 ~2.6 7.324 1.8 7.018 ~2.4 7.062 ~1.8

Standard pct err 2.9 5.4 4.1 2.9

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 5 5 5 5

Normal (Z) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 3 3 3 3

Normal (2) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.406
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Table C~1 (cont'd.).

Triisopropylbenzene~Polystyrene at 175 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 10.6137

Flory-Huggins chi parameter: 0.9154

FH-VSP inf diln parameters: wt frac act coeff 9.8435 enth coeff 2.6559

ASOG-VSP inf diln parameters: wt frac act coeff 10.5095 enth coeff 1.0559

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory—Huggins FH-VSP ASOG-VSP

0.020 9.971 9.296 ~7.0 9.043 ~9.8 9.014 ~10.1 9.261 ~7.4

0.038 7.039 8.366 17.3 8.375 17.4 8.373 17.3 8.369 17.3

0.066 8.041 7.178 ~11.4 7.445 ~7.7 7.474 ~7.3 7.215 ~10.8

Standard pct err 15.4 15.1 21.4 15.4

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 5 5 5 5

Normal (2) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 3 3 3 3

Normal (Z) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.452

FH-VSP model: wt frac - 0.435
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Table C~1 (cont'd.).

Carbon disulfide-Polystyrene at 115 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.4079

FH-VSP inf diln parameters: wt frac act coeff 3.7286

ASOG-VSP inf diln parameters: wt frac act coeff 3.7048

3.7286

enth coeff 1.0000

enth coeff 3.6140

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.014 3.655 3.637 ~0.5 3.629 ~0.7 3.637 ~0.5 3.626 ~0.8

0.024 3.566 3.574 0.2 3.573 0.2 3.574 0.2 3.572 0.2

0.041 3.465 3.476 0.3 3.484 0.6 3.476 0.3 3.487 0.6

Standard pct err 0.5 0.7 0.6 0.7

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 2 2 2 2

Normal (2) ~1.4l4 ~1.414 ~1.414 ~1.4l4

Reject level 0.921358 0.921358 0.921358 0.921358

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 2 2 2 2

Normal (Z) ~1.414 ~1.414 ~1.4l4 ~1.414

Reject level 0.921358 0.921358 0.921358 0.921358
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Table C~1 (cont'd.).

Carbon disulfide-Polystyrene at 140 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.3394

FH-VSP inf diln parameters: wt frac act coeff 3.4823 enth coeff 1.0000

ASOG-VSP inf diln parameters: wt frac act coeff 3.4761 enth coeff 4.1537

3.4823

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.008 3.885 3.438 ~12.2 3.433 ~12.4 3.438 ~12.2 3.432 ~12.4

0.011 3.831 3.423 ~11.3 3.418 ~11.4 3.423 ~11.3 3.417 ~11.4

0.018 2.995 3.384 12.2 3.383 12.2 3.384 12.2 3.379 12.1

0.029 2.948 3.329 12.2 3.332 12.2 3.329 12.2 3.324 12.0

Standard pct err 13.8 13.9 16.9 13.8

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic 6 3 6 6

Normal (Z) ~1.069 ~1.871 ~1.069 ~1.069

Reject level .857484 .969310 .857484 .857484

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 4 3 4 4

Normal (Z) ~1.000 ~2.000 ~1.000 ~1.000

Reject level .841351 .977241 .841351 .841351
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Table C~1 (cont'd.).

Methanol-Polymethyl methacrylate at 120 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 16.6476

Flory-Huggins chi parameter: 1.2827

FH-VSP inf diln parameters: wt frac act coeff 16.3347 enth coeff 2.7097

ASOG-VSP inf diln parameters: wt frac act coeff 16.2298 enth coeff 2.9717

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.003 16.070 16.148 0.5 15.924 ~0.9 15.989 ~0.5 15.934 ~0.9

0.006 15.397 15.555 1.0 15.572 1.1 15.568 1.1 15.571 1.1

0.009 15.303 15.063 ~1.6 15.271 ~0.2 15.211 ~0.6 15.262 ~0.3

Standard pct err 1.4 1.0 1.4 1.0

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 5 5 5 5

Normal (Z) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 3 3 3 3

Normal (2) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.279

FH-VSP model: wt frac - 0.312
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Table C~1 (cont'd.).

Methanol-Polymethyl methacrylate at 130 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 12.7268

Flory-Huggins chi parameter: 1.0138

FH-VSP inf diln parameters: wt frac act coeff 10.7857 enth coeff 0.1860

ASOG-VSP inf diln parameters: wt frac act coeff 12.5597 enth coeff 2.8431

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.003 11.601 12.442 7.0 12.366 6.4 11.581 ~0.2 12.365 6.4

0.006 12.217 12.135 ~0.7 12.152 ~0.5 12.274 0.5 12.152 ~0.5

0.008 12.724 11.902 ~6.7 11.987 ~6.0 12.686 ~0.3 11.988 ~6.0

Standard pct err 6.9 6.2 0.6 6.2

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 2 2 5 2

Normal (2) ~1.4l4 ~1.414 0.707 ~1.414

Reject level 0.921358 0.921358 0.760243 0.921358

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 2 2 3 2

Normal (Z) ~1.4l4 ~1.4l4 0.707 ~1.414

Reject level 0.921358 0.921358 0.760243 0.921358

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.367
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Table C~1 (cont'd.).

Toluene-Polymethyl methacrylate at 130 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 9.6790

Flory-Huggins chi parameter: 0.7953

FH-VSP inf diln parameters: wt frac act coeff 9.6790 enth coeff 1.0000

ASOG-VSP inf diln parameters: wt frac act coeff 9.6920 enth coeff 0.9658

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.017 10.638 8.772 ~19.3 8.224 ~25.7 8.772 ~19.3 8.779 ~19.2

0.060 5.823 6.980 18.1 6.921 17.3 6.980 18.1 6.985 18.2

0.112 4.955 5.517 10.7 5.706 14.1 5.517 10.7 5.526 10.9

Standard pct err 20.2 24.1 28.6 20.2

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 5 5 5 5

Normal (2) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 3 3 3 3

Normal (Z) 0.707 0.707 0.707 0.707

Reject level 0.760243 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.536
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Table C~1 (cont'd.).

Toluene-Polymethyl methacrylate at 160 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 10.9509

Flory-Huggins chi parameter: 0.9547

FH-VSP inf diln parameters: wt frac act coeff 10.9509

ASOG-VSP inf diln parameters: wt frac act coeff 11.0656

enth coeff 1.0000

enth coeff 0.9014

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.006 12.699 10.514 -18.9 10.174 ~22.2 10.514 ~18.9 10.590 ~18.2

0.014 9.936 9.951 0.2 9.791 ~1.5 9.951 0.2 9.982 0.5

0.023 9.345 9.413 0.7 9.409 0.7 9.413 0.7 9.408 0.7

0.025 8.462 9.261 9.0 9.299 9.4 9.261 9.0 9.247 8.9

0.037 7.563 8.624 13.1 8.822 15.4 8.624 13.1 8.576 12.6

Standard pct err 12.4 14.3 14.3 11.9

Analysis of model error randomness

Sum sqr rank difference test: mean - 20.00 sd - 7.28

Test statistic 4 4 4 4

Normal (2) ~2.198 ~2.198 ~2.198 ~2.198

Reject level 0.986006 0.986006 0.986006 0.986006

Sum abs rank difference test: mean - 8.00 sd - 1.61

Test statistic 4 4 4 4

Normal (Z) ~2.481 ~2.481 ~2.481 ~2.481

Reject level 0.993433 0.993433 0.993433 0.993433

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.426
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Table C~1 (cont'd.).

Toluene-Polyvinyl acetate at 35 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.7772

FH-VSP inf diln parameters: wt frac act coeff 8.4101 enth coeff 2.0621

ASOG-VSP inf diln parameters: wt frac act coeff 8.2575 enth coeff 1.4046

9.7100

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory—Huggins FH-VSP ASOG-VSP

0.084 6.081 6.240 2.6 6.038 ~0.7 6.067 ~0.2 6.039 ~0.7

0.117 5.377 5.408 0.6 5.391 0.3 5.396 0.4 5.391 0.3

0.161 4.665 4.565 ~2.2 4.676 0.2 4.663 ~0.0 4.677 0.3

0.195 4.207 4.068 ~3.4 4.224 0.4 4.202 ~0.1 4.225 0.4

Standard pct err 2.8 0.5 0.3 0.5

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic 3 9 11 9

Normal (Z) ~1.87l ~0.267 0.267 ~0.267

Reject level 0.969310 0.605367 0.605367 0.605367

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 3 5 5 5

Normal (Z) ~2.000 0.000 0.000 0.000

Reject level 0.977241 0.500000 0.500000 0.500000

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.564

FH-VSP model: wt frac - 0.598
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Table C~1 (cont'd.).

Toluene-Polyvinyl acetate at 40 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 9.2644

Flory-Huggins chi parameter: 0.7733

FH-VSP inf diln parameters: wt frac act coeff 8.3495 enth coeff 2.0578

ASOG-VSP inf diln parameters: wt frac act coeff 8.2587 enth coeff 1.3804

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.051 6.831 7.057 3.3 6.777 ~0.8 6.812 ~0.3 6.782 ~0.7

0.076 6.201 6.287 1.4 6.197 ~0.1 6.211 0.2 6.199 ~0.0

0.089 5.936 5.943 0.1 5.925 ~0.2 5.930 ~0.1 5.926 ~0.2

0.094 5.732 5.826 1.6 5.830 1.7 5.833 1.7 5.831 1.7

0.128 5.289 5.081 ~4.0 5.202 ~1.7 5.189 -l.9 5.202 ~1.7

0.139 5.055 4.871 ~3.7 5.017 ~0.8 5.000 ~1.1 5.016 ~0.8

0.171 4.444 4.346 ~2.2 4.536 2.1 4.512 1.5 4.535 2.0

Standard pct err 2.9 1.4 1.4 1.4

Analysis of model error randomness

Sum sqr rank difference test: mean - 56.00 sd — 18.58

Test statistic 36 59 67 60

Normal (Z) ~1.076 0.161 0.592 0.215

Reject level 0.859100 0.564134 0.723042 0.585218

Sum abs rank difference test: mean - 16.00 sd - 3.06

Test statistic 12 17 17 16

Normal (2) ~1.309 0.327 0.327 0.000

Reject level 0.904794 0.628285 0.628285 0.500000

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.567

FH-VSP model: wt frac - 0.602
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Table C~1 (cont'd.).

Toluene-Polyvinyl acetate at 47.5 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 8.8654

Flory-Huggins chi parameter: 0.7609

FH-VSP inf diln parameters: wt frac act coeff 7.6321 enth coeff 3.0918

ASOG-VSP inf diln parameters: wt frac act coeff 8.1821 enth coeff 1.3458

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.052 6.506 6.815 4.6 6.704 3.0 6.587 1.2 6.704 3.0

0.071 6.370 6.257 ~1.8 6.262 ~1.7 6.248 ~1.9 6.258 ~1.8

0.107 5.613 5.380 ~4.2 5.522 ~1.6 5.653 0.7 5.516 ~1.7

Standard pct err 4.6 2.7 2.4 2.7

Analysis of model error randomness

Sum sqr rank difference test: mean - 4.00 sd - 1.41

Test statistic 2 5 5 5

Normal (Z) ~1.414 0.707 0.707 0.707

Reject level 0.921358 0.760243 0.760243 0.760243

Sum abs rank difference test: mean - 2.67 sd - 0.47

Test statistic 2 3 3 3

Normal (2) ~1.4l4 0.707 0.707 0.707

Reject level 0.921358 0.760243 0.760243 0.760243

Phase separation behavior prediction

Flory-Huggins model: wt frac - 0.577

FH-VSP model: wt frac - 0.467
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Table C~1 (cont'd.).

Chloroform-Polyvinyl acetate at 35 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 1.4938

Flory-Huggins chi parameter: ~0.4l68

FH-VSP inf diln parameters: wt frac act coeff 1.4938

ASOG-VSP inf diln parameters: wt frac act coeff 1.6218

enth coeff 1.0000

enth coeff 0.4051

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.163 1.587 1.464 ~8.1 1.450 ~9.l 1.464 -8.1 1.501 -5.6

0.231 1.421 1.447 1.8 1.443 1.6 1.447 1.8 1.462 2.8

0.276 1.407 1.435 1.9 1.436 2.1 1.435 1.9 1.438 2.2

0.327 1.376 1.419 3.1 1.426 3.6 1.419 3.1 1.413 2.7

0.381 1.364 1.401 2.6 1.412 3.4 1.401 2.6 1.388 1.7

0.416 1.368 1.388 1.4 1.400 2.3 1.388 1.4 1.372 0.2

0.464 1.373 1.368 ~0.3 1.383 0.7 1.368 ~0.3 1.349 ~1.7

Standard pct err 3.9 4.5 4.3 3.1

Analysis of model error randomness

Sum sqr rank difference test: mean - 56.00 sd - 18.58

Test statistic 25 25 25 47

Normal (Z) ~1.668 ~1.668 ~1.668 ~0.484

Reject level 0.952360 0.952360 0.952360 0.685906

Sum abs rank difference test: mean - 16.00 sd - 3.06

Test statistic 11 11 11 13

Normal (2) ~1.637 ~1.637 ~1.637 ~0.982

Reject level 0.949147 0.949147 0.949147 0.836951
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Chloroform-Polyvinyl acetate at 45 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter:

FH-VSP inf diln parameters:

ASOG-VSP inf diln parameters:

Wt Frac

Solvent Exptl

0.093 1.478

0.121 1.408

0.139 1.405

0.164 1.416

0.198 1.366

0.206 1.452

0.227 1.400

0.247 1.380

0.276 1.382

0.295 1.380

0.325 1.365

0.355 1.351

0.427 1.389

0.461 1.378

0.478 1.395

0.499 1.416

Standard pct err

~0.4604

1.4417

wt frac act coeff 1.4048

wt frac act coeff 1.4801

Activity Coefficients and Percent Error
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enth coeff 0.6656

enth coeff 0.4490

ASOG-VSP

1.448 ~2.1

1.439 2.1

1.433 2.0

1.425 0.6

1.415 3.5

1.412 ~2.8

1.406 0.4

1.400 1.4

1.391 0.6

1.385 0.4

1.376 0.8

1.367 1.2

1.343 ~3.3

1.332 ~3.4

1.325 ~5.l

1.318 ~7.2

3.0

393

~1.773

0.961857

61

~1.955

0.974690
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 70 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.9056

Flory-Huggins chi parameter: 0.2870

FH-VSP inf diln parameters: wt frac act coeff 4.9056

ASOG—VSP inf diln parameters: wt frac act coeff 4.6698

enth coeff 1.0000

enth coeff 1.1931

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.062 4.312 4.204 ~2.5 4.177 ~3.2 4.204 ~2.5 4.118 ~4.6

0.067 4.231 4.149 -2.0 4.125 ~2.5 4.149 ~2.0 4.073 ~3.8

0.099 3.810 3.850 1.1 3.840 0.8 3.850 1.1 3.823 0.4

0.139 3.474 3.523 1.4 3.526 1.5 3.523 1.4 3.541 1.9

0.193 3.093 3.144 1.6 3.156 2.0 3.144 1.6 3.198 3.4

0.261 2.690 2.747 2.1 2.764 2.7 2.747 2.1 2.824 4.9

0.388 2.153 2.192 1.8 2.208 2.5 2.192 1.8 2.269 5.3

Standard pct err 2.0 2.5 2.2 4.1

Analysis of model error randomness

Sum sqr rank difference test: mean - 56.00 sd - 18.58

Test statistic 9 9 9 6

Normal (2) ~2.529 ~2.529 ~2.529 ~2.691

Reject level 0.994274 0.994274 0.994274 0.996426

Sum abs rank difference test: mean - 16.00 sd - 3.06

Test statistic 7 7 7 6

Normal (2) ~2.946 ~2.946 ~2.946 ~3.273

Reject level 0.998385 0.998385 0.998385 0.999466
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 70 C (second run)

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.5994

Flory-Huggins chi parameter: 0.2298

FH-VSP inf diln parameters: wt frac act coeff 4.5553

ASOG-VSP inf diln parameters: wt frac act coeff 4.4055

enth coeff 1.2775

enth coeff 1.1931

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.050 4.103 4.096 ~0.2 4.080 ~0.6 4.078 ~0.6 4.007 ~2.4

0.089 3.743 3.759 0.4 3.754 0.3 3.753 0.3 3.727 ~0.4

0.142 3.344 3.364 0.6 3.368 0.7 3.369 0.8 3.385 1.2

0.201 2.996 2.998 0.1 3.008 0.4 3.009 0.5 3.052 1.9

0.265 2.702 2.661 ~1.5 2.673 ~1.1 2.675 ~1.0 2.733 1.1

Standard pct err 0.8 0.8 0.9 1.7

Analysis of model error randomness

Sum sqr rank difference test: mean - 20.00 sd - 7.28

Test statistic 13 15 15 10

Normal (2) ~0.962 ~0.687 ~0.687 ~1.374

Reject level 0.831861 0.753889 0.753889 0.915226

Sum abs rank difference test: mean - 8.00 sd - 1.61

Test statistic 7 7 7 6

Normal (2) ~0.620 ~0.620 ~0.620 ~1.240

Reject level 0.732418 0.732418 0.732418 0.892587



203

Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 75.1 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.5056

Flory-Huggins chi parameter: 0.2106

FH-VSP inf diln parameters: wt frac act coeff 4.4221

ASOG-VSP inf diln parameters: wt frac act coeff 4.3698

enth coeff 1.4920

enth coeff 1.1635

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.053 3.984 4.004 0.5 3.996 0.3 3.977 ~0.2 3.959 ~0.6

0.081 3.755 3.766 0.3 3.765 0.3 3.761 0.2 3.756 0.0

0.108 3.561 3.557 ~0.1 3.560 ~0.0 3.567 0.2 3.574 0.4

0.145 3.332 3.300 ~0.9 3.308 ~0.7 3.326 ~0.2 3.344 0.4

Standard pct err 0.6 0.5 0.2 0.5

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic 3 3 11 6

Normal (2) -1.871 ~1.871 0.267 ~1.069

Reject level 0.969310 0.969310 0.605367 0.857484

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 3 3 5 4

Normal (Z) ~2.000 ~2.000 0.000 ~1.000

Reject level 0.977241 0.977241 0.500000 0.841351
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 88.1 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.4720

Flory-Huggins chi parameter: 0.2049

FH-VSP inf diln parameters: wt frac act coeff 4.4720 enth coeff 1.0000

ASOG-VSP inf diln parameters: wt frac act coeff 4.3992 enth coeff 1.0940

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH~VSP ASOG-VSP

0.027 4.234 4.209 ~0.6 4.202 ~0.7 4.209 ~0.6 4.175 ~1.4

0.050 3.986 3.999 0.3 3.998 0.3 3.999 0.3 3.994 0.2

0.067 3.850 3.859 0.2 3.861 0.3 3.859 0.2 3.870 0.5

0.091 3.667 3.670 0.1 3.676 0.2 3.670 0.1 3.701 0.9

Standard pct err 0.4 0.5 0.5 1.0

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic ll 11 ll 3

Normal (2) 0.267 0.267 0.267 ~1.87l

Reject level 0.605367 0.605367 0.605367 0.969310

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 5 5 5 3

Normal (Z) 0.000 0.000 0.000 ~2.000

Reject level 0.500000 0.500000 0.500000 0.977241
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 102 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.2020

FH-VSP inf diln parameters: wt frac act coeff 4.4430 enth coeff 1.0000

ASOG-VSP inf diln parameters: wt frac act coeff 4.3920 enth coeff 1.0280

4.4430

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.021 4.303 4.241 ~1.5 4.233 ~1.6 4.241 ~1.5 4.214 ~2.1

0.022 4.280 4.230 ~1.2 4.222 ~1.4 4.230 ~1.2 4.205 ~1.8

0.025 4.272 4.201 ~1.7 4.194 ~1.8 4.201 ~1.7 4.179 ~2.2

0.029 4.225 4.163 ~1.5 4.157 ~1.6 4.163 ~1.5 4.145 ~1.9

0.037 4.148 4.093 ~1.3 4.089 ~1.4 4.093 ~1.3 4.083 ~1.6

0.044 4.070 4.029 ~l.0 4.026 ~1.1 4.029 ~1.0 4.026 ~1.1

0.048 4.042 3.998 ~1.1 3.996 ~1.1 3.998 ~1.1 3.998 ~1.1

0.058 3.950 3.908 ~1.1 3.909 ~1.0 3.908 ~1.1 3.917 ~0.8

0.077 3.713 3.757 1.2 3.760 1.3 3.757 1.2 3.779 1.8

0.092 3.520 3.643 3.4 3.649 3.6 3.643 3.4 3.675 4.3

0.118 3.169 3.455 8.6 3.463 8.9 3.455 8.6 3.500 9.9

Standard pct err 3.2 3.3 3.4 3.8

Analysis of model error randomness

Sum sqr rank difference test: mean - 220.00 sd - 61.55

Test statistic 52 47 52 33

Normal (Z) ~2.729 ~2.811 ~2.729 ~3.038

Reject level 0.996821 0.997522 0.996821 0.998805

Sum abs rank difference test: mean - 40.00 sd - 6.66

Test statistic 20 19 20 17

Normal (Z) ~3.002 ~3.152 ~3.002 ~3.452

Reject level 0.998652 0.999184 0.998652 0.999720
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 125.4 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.3079

Flory-Huggins chi parameter: 0.1700

FH-VSP inf diln parameters: wt frac act coeff 4.3079

ASOG-VSP inf diln parameters: wt frac act coeff 4.2956

enth coeff 1.0000

enth coeff 0.9330

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.011 4.249 4.207 ~1.0 4.206 -l.0 4.207 ~l.0 4.202 ~1.1

0.018 4.141 4.147 0.1 4.146 0.1 4.147 0.1 4.145 0.1

0.024 4.080 4.093 0.3 4.093 0.3 4.093 0.3 4.094 0.3

0.033 3.993 4.017 0.6 4.018 0.6 4.017 0.6 4.023 0.8

Standard pct err 0.7 0.7 0.8 0.8

Analysis of model error randomness

Sum sqr rank difference test: mean — 10.00 sd - 3.74

Test statistic 3 3 3 3

Normal (2) ~1.87l ~1.87l ~1.871 ~1.87l

Reject level 0.969310 0.969310 0.969310 0.969310

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 3 3 3 3

Normal (2) ~2.000 ~2.000 ~2.000 ~2.000

Reject level 0.977241 0.977241 0.977241 0.977241
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 125.7 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient:

Flory-Huggins chi parameter: 0.1434

FH-VSP inf diln parameters: wt frac act coeff 4.1940

ASOG-VSP inf diln parameters: wt frac act coeff 4.1816

4.1940

enth coeff 1.0000

enth coeff 0.9319

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.011 4.155 4.098 ~1.4 4.097 ~1.4 4.098 ~1.4 4.092 ~1.5

0.017 4 073 4.046 ~0.7 4.046 ~0.7 4.046 ~0.7 4.044 ~0.7

0.025 3.945 3.985 1.0 3.986 1.0 3.985 1.0 3.987 1.1

0.033 3.874 3.918 1.1 3.919 1.2 3.918 1.1 3.924 1.3

Standard pct err 1.2 1.3 1.5 1.4

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic 3 3 3 3

Normal (2) ~1.871 ~1.871 ~1.87l ~1.871

Reject level 0.969310 0.969310 0.969310 0.969310

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 3 3 3 3

Normal (2) ~2.000 ~2.000 ~2.000 ~2.000

Reject level 0.977241 0.977241 0.977241 0.977241
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Table C~1 (cont'd.).

Benzene-Polyethylene oxide at 150.4 C

Results of least squares fit:

VSP inf diln wt frac activity coefficient: 4.2609

Flory-Huggins chi parameter: 0.1576

FH-VSP inf diln parameters: wt frac act coeff 4.2609

ASOG-VSP inf diln parameters: wt frac act coeff 4.2603

enth coeff 1.0000

enth coeff 0.8493

Wt Frac Activity Coefficients and Percent Error

Solvent Exptl VSP Flory-Huggins FH-VSP ASOG-VSP

0.008 4.311 4.189 ~2.9 4.188 ~2.9 4.189 ~2.9 4.189 ~2.9

0.011 4.202 4.160 ~l.0 4.159 ~l.0 4.160 ~1.0 4.160 ~l.0

0.016 4.061 4.116 1.4 4.116 1.4 4.116 1.4 4.116 1.4

0.023 3.956 4.063 2.7 4.064 2.7 4.063 2.7 4.063 2.7

Standard pct err 2.5 2.5 3.0 2.5

Analysis of model error randomness

Sum sqr rank difference test: mean - 10.00 sd - 3.74

Test statistic 3 3 3 3

Normal (Z) ~1.87l ~1.871 ~1.871 ~1.871

Reject level 0.969310 0.969310 0.969310 0.969310

Sum abs rank difference test: mean - 5.00 sd - 1.00

Test statistic 3 3 3 3

Normal (2) ~2.000 ~2.000 ~2.000 ~2.000

Reject level 0.977241 0.977241 0.977241 0.977241



APPENDIX D.

Program Used to Apply Thermodynamic Models Using Data Extrapolated from

Low Solvent Concentrations.

The program listed below was used to generate the results in Appendix B

from the original data in Appendix A. These results were presented in

Chapter 2 of the dissertation. Input in the form of polymer-solvent

activity data at a given temperature is processed to fit adjustable

parameters if necessary and then the predictions of the VSP, Flory-

Huggins, and UNIFAC-EV models are compared to experimental results.

Refer to Appendices A and B for a more detailed description of the input

data format and the output produced by the program.

The source code given below was written in IBM Pascal Version 2 for the

IBM Personal Computer XT. Since Pascal, unlike many version of Fortran

and Basic, has a fairly standardized language description, this code

should run with few revisions under any Pascal compiler. One possible

source of incompatibility is the use of string types, which are an IBM

Pascal extension not part of standard Pascal. Most Pascal compilers

support this or a similar extension (a type equivalent to array of

char). The use of file names in the program statement may not work in

other versions of Pascal, or may not work in the same way. In IBM

Pascal, the user is prompted for file names at the time execution

209
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begins.

To run this program, it should be compiled and linked. When execution

begins, the user is prompted to name the four files: infile, outfile,

display, and auxfile. Infile is the input to the program as described

in Appendix A. Outfile is the program output as shown is Appendix B.

Display is a file which receives prompt lines when input is expected

from infile. Auxfile receives auxiliary output containing intermediate

values of calculation, useful mostly for debugging purposes, but not

well labeled or documented.

Allowing file specification gives the program flexibility to accept data

either from an already created file or directly from user keyboard

input, and to produce output either to the monitor screen, or to the

printer, or to an external disk file for later review and use. To

accept input data from a file, give the file name (including the drive

designator and extension, e.g., A:MYFILE.DAT). To accept input data

from the keyboard, type USER. (USER is the IBM DOS filename for

keyboard input.) To produce output to a file, give the file name; to

produce it at the monitor, type USER; to produce it at the line printer,

type PRN: (the IBM DOS device designation for the printer).

If you have chosen to enter input from the keyboard, it is helpful to

specify USER for the Display file. This will result in messages

appearing on the monitor every time the program requires input. It is

probably not a good idea to specify USER for the Outfile file in this
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case, as the program output will intermix with the prompt messages at

certain points of program execution.

If you have chosen to enter input from an external file, specify NUL for

the Display file so that prompt messages are not displayed at the

monitor.

Since the Auxfile output is not generally useful, specify NUL for this

file also.

File specification is summarized here as Table D-l.

Table D-l. File Specification for Program Execution.

To use an external data file: To enter data from keyboard:

INFILE: <your file name> INFILE: user

OUTFILE: <see below> OUTFILE: <see below>

DISPLAY: nul DISPLAY: user

AUXFILE: nul AUXFILE: nul

To send output to the monitor:

OUTFILE: user

To send output to the printer:

OUTFILE: prn:

To save output on an external file (can be printed or sent to monitor at

a later time using the PRINT, TYPE, or COPY commands in DOS.)

OUTFILE: <your output file name>

There are some points in program execution where terminal input may be

necessary even if Infile is taking input from an external file. This

will occur if a new compound name (not previously used during any
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execution of this program) is specified on line 2 or 3 of a data set.

In this case, prompt messages will appear on the monitor for input to be

entered from the keyboard (regardless of your choices for Infile and

Display). The input will consist of the functional group description of

the compound, its molecular weight, and, if any new functional groups

are specified, UNIFAC interaction parameters must also be supplied as

input.

The functional group and compound information is stored on a file named

ASOGVSP.TAB. The format of this file is given as Table D-2.

Table D-2. Format of Functional Group and Compound Information File.

Line 1: N, the number of functional groups (limit of 20).

Lines 2 to N+l: Each line contains this information for one functional

group. The UNIFAC surface area parameter, q , as a real

value, followed by the UNIFAC segment volume parameter, r , as

a real value, followed by a group name (maximum 6 characters).

Lines N+2 to 2N+1: Each line contains the UNIFAC interaction

parameters, a j’ for group i with each of the N groups j, in

order, as real values.

Line 2N+2: M, the number of compounds (limit of 50).

Lines 2N+3 to 4N+2: Each two lines contain this information for one

compound. The first contains K, the number of different

groups in the compound as an integer, followed by the compound

molecular weight as a real value, followed by the compound

name (maximum 20 characters). The second contains 2K

integers, which represent K pairs of group information. Each

pair is the number of that particular group found in that

compound followed by the position of the group in rows 2 to

N+l of this file. Position is given as an integer between 1

and N (not between 2 and N+l).

Dr. Eric A. Grulke of Michigan State University has a disk copy of this

program and necessary files. Source code for the program is found on
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file ASOGVSP.PAS, and the executable version of the program is found on

file ASOGVSP.EXE. This file can be executed by typing its name at the

DOS prompt, i.e., A:ASOGVSP (assuming the floppy drive is device A:).

Table D-3. Source Code for Program to Extrapolate Low Solvent

Concentration Thermodynamic Data.

program asogvsp(infile,outfile,disp1ay,auxfile,input,output);

type

setptr - Adataset;

dataset - record

concenzreal;

activityzreal;

nextzsetptr

end;

modeltype - (asogvsp,flory,unifacfv,asog);

nametype - string(20);

const

e - 2.7182818;

const

compoundtablesize - 50;

grouptablesize - 20;

solutiontablesize - 10;

var

wl,omegalexp,omegalinf,conc,act,ml,m2,m2r,chi,densityratiozreal;

tempomegal,rhol,rh02,lastwl,moment0error:real;

omegal,pctdiff,1astpctdiff,momentlerror:array[modeltype] of real;

rpoly,qpoly,rsolv,qsolv:rea1;

rk,qk:array[l..grouptablesize] of real;

a:array[l..grouptablesize,l..grouptablesize] of real;

tkzreal;

count,i,j,solvindex,polyindex:integer;

numgroupszo..grouptablesize;

numcompounds:0..compoundtablesize;

endofdata,found:boolean;

concunit,actunit,rhounit,ch:char;

heading:string(80);

compoundname:array[l..compoundtablesize] of nametype;

compoundmw:array[l..compoundtablesize] of real;

compoundgroups:array[l..compoundtablesize] of integer;

groupsinit:array[l..compoundtablesize] of integer;

mw:array[1..compoundtablesize] of real;

numgroup,group:array[l..compoundtablesize,l..solutiontablesize]

of integer;

groupname:array[1..grouptablesize] of string(7);

ptr,firstset,lastset,nextset:setptr;

modelzmodeltype;

infile,outfile,display,auxfile,data:text;
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procedure getactunits;

begin

writeln(display,'

writeln(display,'

writeln(display,'

end;

procedure getconcunits;

begin

writeln(display,'

writeln(display,'

writeln(display,'

end;

procedure getmolecwts;

begin

‘
9

for

for

for

for

for

for
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activity');

wt frac activity coef');

mol frac activity coef');

weight fraction solvent');

mass ratio solvent/polymer');

mole fraction solvent');

write(display,'Enter MW of polymer, MW of solvent ');

readln(infile,m2,m1)

end;

function convertconc(conc:real;concunit:char):real;

begin

case concunit of

'w': convertconcz-conc;

'x': convertconc:-conc/(conc+(m2/m1)*(1.0-conc));

'm': convertconc:-1.0-1.0/(1.0+conc)

end

end;

function convertact(act:real;actunit:char):real;

begin

case actunit of

'w': convertact:-act;

'a': convertact:-act/w1;

’x': convertact:-act*conc/wl;

end

end;

function convertrho(rho:real;rhounit:char;mw:real):real;

begin

case rhounit of

'd': convertrhoz-rho;

'v': convertrho:-l.0/rho;

'm': convertrhoz-mw/rho;

end

end;

procedure getcompound(solvorpoly:nametype;var r,q:rea1;

var

name:nametype;

izinteger;

getnewzboolean;

var indexzinteger);
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Table D~3 (cont'd.).

procedure getsizeparams;

var

name:string(7);

k:integer;

procedure getgroupparams;

var

i,same:integer;

begin

same:-0;

if k > 1

then

begin

writeln(output,'Enter group interaction parameter a for '

groupname[k],' with the following groups');

for i:-l to k-l do

if same - 0

then

begin

write(output,groupname[i],' ');

readln(input,a[k,i]);

if a[k,i] - 0

then same:-i

end;

readln(input);

if same - 0

then

begin

writeln(‘Now enter group interaction parameter a for each of ',

'the following groups with ',groupname[k]);

for iz-l to k-l do write(output,groupname[i]);

begin

write(output,groupname[i]);

readln(input,a[i,k])

end

end

else for i:-l to k-l do a[i,k]:-a[i,same];

end;

a[k,k]:-0;

end;

begin

writeln(‘For ',compoundname[index]);

endofdataz-false;

r:-0;

Cit-0;

repeat

writeln(output,'Enter number of groups followed by group name');

write(output,'or: 0 ~ end of groups for component ');

read(input,numgroup[index,1+1]);
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Table D-3 (cont'd.).

if numgroup[index,i+1] > 0

then

begin

i:-i+l;

readln(input,name);

k:-0;

if numgroups > 0

then

repeat

k:-k+1;

until (name - groupname[k]) or (k - numgroups);

if (numgroups - 0) or (name <> groupname[k])

then

begin

numgroups:-numgroups+l;

groupname[numgroups]:-name;

write(output,:Enter Rk, Qk, for group ',name);

readln(input,rk[numgroups],qk[numgroups]);

kz-numgroups;

getgroupparams;

end;

group[index,i]:-k;

r:-r+numgroup[index,i]*rk[k];

q:-q+numgroup[index,i]*qk[k];

writeln(‘Groups entered so far:');

for kz-l to i do write(numgroup[index,k],group[index,k]);

writeln;

end

else

begin

readln(input);

endofdata:-true;

end;

until endofdata;

end;

begin

readln(infile,name);

index:-0;

getnewz-false;

if numcompounds > 0

then

repeat

index:-index+l;

until (compoundname[index] - name) or (index - numcompounds)

else getnew:-true;

if (numcompounds > 0) and (compoundname[index] <> name)

then getnewz-true;
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Table D-3 (cont'd.).

if getnew

then

begin

numcompounds:-numcompounds+l;

compoundname[numcompounds]:-name;

index:-numcompounds;

i:-0;

getsizeparams;

groupsinit[index]:-i;

write('Enter molecular weight of the ',solvorpoly);

readln(mw[index]);

end

else

begin

r:-0;

q=-0:

for i:-1 to groupsinit[index] do

begin

r:-r+numgroup[index,i]*rk[group[index,i]];

q:-q+numgroup[index,i]*qk[group[index,i]];

end;

end;

r:-r/mw[index];

q:-q/mw[index];

end;

function findact(model:modeltype):real;

const

2 - 10.0;

b - 1.28;

c1 - 1.1;

var

y,phi1,phi2,thetal,tempomegalinfzreal;

vlred,vmred,fv:rea1;

arfrac:array[l..2,l..10] of real;

grpindex:array[l..10] of integer;

factor:array[l..2] of real;

term,term2,residual,solvtotal,solntotalzreal;

i,j,k,1,solvgroups,solngroups:integer;

begin

case model of

asogvsp:

begin

y:-wl+(e/omegalinf)*(l.0-w1);

findact:-exp((y~wl)/y)/y

end;
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Table D~3 (cont'd.).

flory:

begin

phil:-densityratio*wl/(densityratio*wl+(1.0-wl));

phi2:-l.0-phil;

findact:-exp(ln(phi1)+chi*phi2*ph12+ph12)/wl

end;

unifacfv:

begin

thetal:-qsolv*w1/(qsolv*w1+qpoly*(1.0-w1));

phil:-rsolv*wl/(rsolv*wl+rpoly*(1.0-wl));

ph12z-l.0~phil;

findact:-ln(phil)+phi2;

findact:-result(findact)+(z/2.0)*ml*qsolv*ln(thetal/phil);

findact:-result(findact)~(z/2.0)*m1*qsolv*(1.0-phil/thetal);

findact:-exp(resu1t(findact))/wl;

write(auxfile,w1:8:3);

write(auxfile,resu1t(findact):8:3);

solvtotal:-0;

solvgroups:-groupsinit[solvindex];

for i:-1 to solvgroups do

begin

grpindex[i]:-group[solvindex,i];

arfrac[1,i]:-qk[grpindex[i]]/m1*numgroup[solvindex,i]*wl;

arfrac[2,i]:-arfrac[l,i];

solvtotal:-solvtota1+arfrac[l,i];

end;

solngroupsz-solvgroups;

solntotal:-solvtotal;

for i:-l to groupsinit[polyindex] do

begin

Ji-O;

repeat

j:-j+l

until (group[polyindex,i] - grpindex[j]) or

(j - solngroups);

if group[polyindex,i] - grpindex[j]

then

begin

arfrac[2,j]:-arfrac[2,j]+qk[grpindex[j]]/m2r*numgroup

[polyindex,i]*(l.0~w1);

end
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Table D~3 (cont'd.).

else

begin

solngroups:-solngroups+1;

grpindex[solngroups]:-group[polyindex,i];

arfrac[2,solngroups]:-qk[grpindex[solngroups]]/m2r*

numgroup[polyindex,i]*(1.0~w1);

arfrac[l,solngroups]:-0.0;

j:-solngroups;

end;

solntotal:-solntotal+qk[grpindex[j]]*numgroup[polyindex,i]/

m2r*(l.0~w1);

end;

for i:-l to solngroups do

begin

arfrac[1,i]:-arfrac[1,i]/solvtotal;

arfrac[2,i]:-arfrac[2,i]/solntotal;

end;

residualz-O;

for j:-l to solvgroups do

begin

for iz-l to 2 do

begin

term:-0;

for k:-1 to solngroups do

begin

term:-term+arfrac[i,k]

*exp(-a[grpindex[k],grpindex[j]]/tk);

end;

factor[i]:-l.0-1n(term);

term2z-0;

for kz-l to solngroups do

begin

termz-O;

for l:-l to solngroups do

term:-term+arfrac[i,l]

*exp(~a[grpindex[l],grpindex[k]]/tk);

term2:-term2+arfrac[i,k]

*exp(~a[grpindex[j],grpindex[k]]/tk)

/term;

end;

factor[i]:-factor[i]~term2;

end;

residual:-residual+qk[grpindex[j]]*(factor[2]~factor[1])

*numgroup[solvindex,j];

end;
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Table D~3 (cont'd.).

residual:-exp(residual);

write(auxfile,residual:8:3);

findact:-result(findact)*residual;

v1red:-1.0/(rhol*15.l7*b*rsolv);

vmred:-(w1/rhol+(l.0-w1)/rh02)/(15.17*b*(rsolv*w1+rpoly*

(1.0-v71)»:

fv:-3.0*c1*ln((exp(1n(vlred)/3.0)~l)/(exp(ln(vmred)/3.0)~1));

fv:-fv-cl*((v1red/vmred-l.0)/(l.0-exp(-1n(v1red)/3.0)));

fv:-exp(fv);

write(auxfile,fv:8:3);

findact:-resu1t(findact)*fv;

writeln(auxfile);

end;

asog:

begin

tempomegalinf:-omegalinf;

omegalinfz-e;

findact:-findact(asogvsp);

omegalinfz-tempomegalinf

end

end

end;

function findinfact(wl,omegal:real):real;

var

y,newy,lnomegal:real;

convergentzboolean;

begin

convergentz-false;

lnomegal:-ln(omega1);

y:-exp(l.0-1nomegal);

while not convergent do

begin

newy:-exp(l.0-wl/y-lnomegal);

convergent:-abs(newy~y) < (l.0e-5*newy);

yz-newy;

end;

findinfact:-e*(1.0-wl)/(y~wl);

writeln(outfile,'By correlating activity at finite conc ',w1:8:3);

end;

begin

reset(infile);

assign(data,'asogvsp.tab');

reset(data);

rewrite(outfile);

rewrite(display);

rewrite(auxfile);

readln(data,numgroups);

for i:-1 to numgroups do readln(data,rk[i],qk[i],groupname[i]);
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Table D~3 (cont'd.).

for iz—l to numgroups do

begin

for j:-l to numgroups do read(data,a[i,j]);

readln(data)

end;

readln(data,numcompounds);

for i:-1 to numcompounds do

begin

readln(data,groupsinit[i],mw[i],compoundname[i]);

for jz-l to groupsinit[i] do read(data,numgroup[i,j],group[i,j]);

readln(data);

end;

repeat

writeln(display,'Enter a heading for this data set');

readln(infile,heading);

writeln(outfile,heading);

writeln(outfile);

writeln(auxfile,heading);

write(display,'What is the solvent? ');

getcompound('solvent molecule ',rsolv,qsolv,solvindex);

ml:-mw[solvindex];

write(display,'What is the polymer? ');

getcompound('polymer repeat unit ',rpoly,qpoly,polyindex);

m2r:-mw[polyindex];

write(display,'Enter the temperature in K ');

readln(infile,tk);

writeln(display,

'Enter inf diln wt frac act coef, or 0 if unknown');

readln(infile,omegalinf);

if omegalinf - 0.0

then

begin

writeln(display,

'Enter known activity or act coef, followed by:');

getactunits;

read(infile,act,actunit);

while actunit - ' ' do read(infile,actunit);

readln(infile);

writeln(display,'Enter concentration, followed by unitsz');

getconcunits;

read(infile,conc,concunit);

while concunit - ' ' do read(infile,concunit);

readln(infile);

if concunit - 'x' then getmolecwts;

wl:-convertconc(conc,concunit);

tempomegal:-convertact(act,actunit);

omegalinf:-findinfact(wl,tempomegal);

end
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else

begin

writeln(display,'Enter units of activity or act coef data');

getactunits;

repeat read(infile,actunit); until actunit <> ' ';

readln(infile);

writeln(display,'Enter units of concentration data');

getconcunits;

repeat read(infile,concunit); until concunit <> ' ';

readln(infile);

end;

writeln(display,'Enter polymer density or sp vol followed by');

writeln(display,' d for density');

writeln(display,' v for specific volume');

writeln(display,' m for molar volume');

read(infile,rhoZ,rhounit);

while rhounit - ' ' do read(infile,rhounit);

readln(infile);

if (concunit <> 'x') and (rhounit - 'm') then getmolecwts;

rho2:-convertrho(rh02,rhounit,m2);

write(display,'Enter solvent ');

case rhounit of

'd': write(display,'density ');

'v': write(display,'specific volume ');

'm': write(display,'molar volume ')

end;

readln(infile,rhol);

rhol:-convertrho(rhol,rhounit,m1);

densityratio:-rh02/rhol;

chi:-~ln(e/omegalinf*densityratio);

firstsetz-nil;

repeat

writeln(display,'Enter conc followed by activity or act coef');

writeln(display,'or an out of range concentration to stop');

readln(infile,conc,act);

wl:-convertconc(conc,concunit);

omegalexp:-convertact(act,actunit);

endofdata:-(wl>l.0) or (wl<0.0);

if not endofdata

then

begin

nextsetz-firstset;

lastsetz-firstset;

foundz-false;

while not found do

begin

if nextset - nil

then foundz-true
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else

begin

found:-nextset“.concen > wl;

if not found

then

begin

lastsetz-nextset;

nextset:-nextset‘.next

end

end

end;

new(ptr);

ptr“.concen:-wl;

ptr“.activity:-omega1exp;

ptr“.next:-nextset;

if lastset - nextset

then firstsetz-ptr

else lastset“.next:-ptr;

end

until endofdata;

write(outfile,

'Infinite dilution wt frac activity coefficient was ');

writeln(outfile,omegalinf:10:4);

writeln(outfile,'Flory-Huggins chi parameter was ',chi:8:4);

writeln(outfile);

writeln(outfile,

' Wt Frac Activity Coefficients and Percent Error');

writeln(outfile,

' Solvent Exptl ASOGVSP Flory-Huggins UNIFAC-FV ASOG');

writeln(outfile);

ptrz-firstset;

momentOerror:-0.0;

for model :- asogvsp to asog do momentlerror[mode1]:-0.0;

while ptr <> nil do

begin

wl:-ptr‘.concen;

omegalexpz-ptr‘.activity;

ptr:-ptr“.next;

momentOerror:-moment0error+1.0;

write(outfile,wl:8:3,0megalexp:8:3);

for model :- asogvsp to asog do

begin

omegal[model]:-findact(model);

pctdiff[mode1]:-(omegal[model]/omega1exp~1.0)*100.0;

momentlerror[model]:nmomentlerror[model]

+abs(pctdiff[model]);

write(outfile,omegal[model]:8:3,pctdiff[model]:6:l)

end;
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writeln(outfile);

end;

writeln(outfile);

write(outfile,'Avg pct error ');

for model :- asogvsp to asog do write(outfile,momentlerror[model]/

momentOerrorzl4zl);

writeln(outfile);

page(outfile);

until eof(infile);

rewrite(data);

writeln(data,numgroups);

for i:-1 to numgroups do writeln(data,rk[i]:7:4,qk[i]26:3

.groupnamelil):

for iz-l to numgroups do

begin

for j:-1 to numgroups do write(data,a[i,j]:10:2);

writeln(data)

end;

writeln(data,numcompounds);

for i:-l to numcompounds do

begin

writeln(data,groupsinit[i],mw[i]:10:2,compoundname[i]);

for j:-l to groupsinit[i] do write(data,numgroup[i,j],group[i,j]);

writeln(data);

end

end.



APPENDIX E.

Program Used to Apply Thermodynamic Models Using Best Fit of All

Experimental Data.

The program listed below was used to generate the results in Appendix C

from the original data in Appendix A. These results were presented in

Chapter 2 of the dissertation. Input in the form of polymer-solvent

activity data at a given temperature is processed to fit adjustable

parameters and then the predictions of the VSP method using no residual

interaction, a Flory-Huggins type residual interaction, and an ASOG-KT

residual interaction are compared to experimental results. Refer to

Appendices A and C for a more detailed description of the input data

format and the output produced by the program. Directions for program

compilation, linking, and execution are identical to those given in

Appendix D. Much of the program presented in this appendix is identical

to that presented in Appendix D. Only the data analysis itself is

substantially different.

There are some points in program execution where terminal input may be

necessary even if Infile is taking input from an external file. This

will occur if a new compound name (not previously used during any

execution of this program) is specified on line 2 or 3 of a data set.

In this case, prompt messages will appear on the monitor for input to be

225
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entered from the keyboard (regardless of your choices for Infile and

Display). The input will consist of the functional group description of

the compound, its molecular weight, and, if any new functional groups

are specified, ASOG-KT interaction parameters must also be supplied as

input.

The functional group and compound information is stored on a file named

VSP.TAB. The format of this file is given as Table E-l.

Table E-l. Format of Functional Group and Compound Information File.

Line 1: N, the number of compounds (limit of 50), followed by M, the

number of functional groups (limit of 20).

N sets of lines follow, each set containing for a compound:

Line 1: J, the number of functional groups in the compound as an

integer, followed by the molecular weight of the compound or

repeat unit as a real value, followed by the compound name

(maximum 20 characters).

Lines 2 to J+1: For each functional group in the compound, the number

of times that group occurs in the compound as a real value

(ASOG-KT rules for counting groups allow fractional weighting)

followed by the position in which the group appears in the

list of M functional groups later in the file.

After all N sets have been completed, there are M lines, each containing

a group name (maximum 7 characters). Following these, there are two

sets of M lines containing the ASOG-KT interaction parameters. Each

line in the first set contains the ASOG-KT temperature-independent

interaction parameters, ai , for group i with each of the M groups j, in

order, as real values. Ealh line in the second set contains the ASOG-KT

temperature-dependent interaction parameters, b , for group i with each

of the M groups j, in order, as real values. 3

Dr. Eric A. Grulke of Michigan State University has a disk copy of this

program and necessary files. Source code for the program is stored in

file VSP.PAS, and the executable version of the program is stored in
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file VSP.EXE. The program is executed by giving the name of the file at

the DOS prompt, i.e., A:VSP (assuming the floppy drive is device A:).

Table D~2. Source Code for Program to Fit All Solvent Concentration

Thermodynamic Data.

program asogvsp(infile,outfile,display,auxfi1e,input,output);

type

setptr - Adataset;

dataset - record

concen:rea1;

activityzreal;

nextzsetptr

end;

modeltype - (vsp,flory,fhvsp,asogvsp);

nametype - string(20);

realarray - array[l..20] of real;

intarray - array[l..20] of integer;

const

e - 2.7182818;

grouptablesize - 20;

compoundtablesize - 50;

blank - ' ';

var

wl,omegalexp,omegalinf,conc,act,m1,m2,m2r,chi,densityratiozreal;

omegal,tempomega1,lng1,rhol,rh02,tk:real;

sumsqrerror:array[modeltype] of real;

olinf,olinf2,glinf,fholinf,fhglinf,res:real;

mean,sd:real;

z,tstat:array[mode1type] of real;

wlray,olray,lnglray:realarray;

relerr:array[modeltype] of realarray;

count,i,j,solvindex,polyindex:integer;

nptszinteger;

stat:array[modeltype] of integer;

rank:array[modeltype] of intarray;

numcompounds:0..compoundtablesize;

numgroupszo..grouptablesize;

endofdata,found:boolean;

concunit,actunit,rhounit,ch:char;

heading:string(80);

compoundname:array[l..compoundtablesize] of nametype;

compoundgroups:array[1..compoundtablesize] of integer;

grouptable:array[l..compoundtablesize,l..grouptablesize] of integer;

groupcount:array[l..compoundtablesize,l..grouptablesize] of real;

mw:array[1..compoundtablesize] of real;

groupname:array[1..grouptablesize] of nametype;

groupm,groupn,groupa:array[l..grouptablesize,l..grouptablesize]

of real;
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Table E~2 (cont'd.).

ptr,firstset,1astset,nextset:setptr;

modelzmodeltype;

infile,outfile,display,auxfile,data:text;

procedure getactunits;

begin

writeln(display,' a for activity');

writeln(display,' w for wt frac activity coef');

writeln(display,' x for mol frac activity coef');

end;

procedure getconcunits;

begin

writeln(display,' w for weight fraction solvent');

writeln(display,' m for mass ratio solvent/polymer');

writeln(display,' x for mole fraction solvent');

end;

procedure getmolecwts;

begin

write(display,'Enter MW of polymer, MW of solvent ');

readln(infile,m2,ml)

end;

function convertconc(conc:real;concunit:char):real;

begin

case concunit of

'w': convertconcz-conc;

'x': convertconc:-conc/(conc+(m2/ml)*(l.0-conc));

'm': convertconc:-1.0~l.0/(1.0+conc)

end

end;

function convertact(act:rea1;actunit:char):real;

begin

case actunit of

'w': convertact:-act;

'a': convertactz-act/wl;

'x': convertact:-act*conc/wl;

end

end;

function convertrho(rho:real;rhounit:char;mw:real):real;

begin

case rhounit of

'd': convertrhoz-rho;

'v': convertrho:-l.0/rho;

'm': convertrhoz-mw/rho;

end

end;

procedure getcompound(solvorpoly:nametype;var indexzinteger);

var

name:nametype;

izinteger;

getnewzboolean;
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Table E~2 (cont'd.).

procedure getgroups;

var

i,gindex:integer;

gnameznametype;

getnewzboolean;

procedure getgroupparams;

var

i:integer;

begin

if numgroups > 1

then writeln('Enter interaction parameters m and n');

for i:-1 to numgroups-1 do

begin

write('(',gname,groupname[i],') ’);

readln(groupm[numgroups,i],groupn[numgroups,i]);

end;

for i:-l to numgroups-1 do

begin

write('(',groupname[i],gname,') ');

readln(groupm[i,numgroups],groupn[i,numgroups]);

end;

groupm[numgroups,numgroups]:-0.0;

groupn[numgroups,numgroups]:-0.0;

end;

begin

iz-O;

repeat

writeln('Enter name of the next group in ',name);

write('or return to stop entering groups ');

readln(gname);

if gname <> blank

then

begin

i:-i+1;

gindex:-0;

getnew:-false;

if numgroups > 0

then

repeat

gindex:-gindex+1;

until (groupname[gindex] - gname) or (gindex - numgroups)

else getnew:-true;

if (numgroups > 0) and (groupname[gindex] <> gname)

then getnewz-true;
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Table E~2 (cont'd.).

if getnew

then

begin

numgroups:-numgroups+1;

groupname[numgroups]:-gname;

gindexz-numgroups;

getgroupparams;

end;

grouptable[index,i]:-gindex;

write('How many are in ', name);

readln(groupcount[index,i1);

end;

until gname - blank;

compoundgroups[index]:-i;

end;

begin

readln(infile,name);

index:-0;

getnewz-false;

if numcompounds > 0

then

repeat

index:-index+l;

until (compoundname[index] - name) or (index - numcompounds)

else getnew:-true;

if (numcompounds > 0) and (compoundname[index] <> name)

then getnewz-true;

if getnew

then

begin

numcompounds:-numcompounds+1;

compoundname[numcompounds]:-name;

indexz-numcompounds;

writeln('For ',name);

write('Enter molecular weight of the ',solvorpoly);

readln(mw[index]);

getgroups;

end;

end;

procedure generatea;

var

i,jzinteger;

begin

for iz-l to numgroups do

for j:-1 to numgroups do groupa[i,j]:-

exp(groupm[i.j1+groupnli.J]/tk);

end;
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Table E~2 (cont'd.).

function enthpart(w1:real):real;

type

grouptype - array[l..grouptablesize] of real;

var

kzinteger;

xl,x2,total:real;

group:array[l..grouptablesize] of integer;

num:array[l..grouptablesize] of real;

bigx,bigxstar:grouptype;

function gamma(x:grouptype; k:integer):real;

var

l,m:integer;

sum,den:real;

begin

sum:-0.0;

for 1:-1 to numgroups do sum:-sum+x[l]*groupa[k,l];

gamma:-~ln(sum)+l.0;

sum:-0.0;

for 1:-1 to numgroups do

begin

den:-0.0;

for m:-1 to numgroups do

den:-den+x[m]*groupa[l,m];

sum:-sum+x[1]*groupa[l,k]/den;

end;

gammaz-result(gamma)~sum;

end;

begin

x1:-wl/m1/(w1/m1+(l.0-w1)/m2r);

x2:-1.0-xl;

total:-0.0;

for k:-l to numgroups do bigxstar[k]:-0.0;

for k:-1 to compoundgroups[solvindex] do

begin

group[k]:-grouptab1e[solvindex,k];

num[k]:-groupcount[solvindex,k];

bigxstar[group[k]]:-num[k];

total:-total+bigxstar[group[k]];

end;

for kz-l to numgroups do bigxstar[k]:-bigxstar[k]/total;

total:-0.0;

for kz-l to numgroups do bigx[k]:-0.0;

for kz-l to compoundgroups[solvindex] do

bigx[group[k]]:-x1*num[k];

for k:-1 to compoundgroups[polyindex] do

bigx[grouptable[polyindex,k]]:-bigx[grouptab1e[polyindex,k]1+

x2*groupcount[polyindex,k];

for kz-l to numgroups do total:-total+bigx[k];

for kz-l to numgroups do bigx[k]:-bigx[k]/total;
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Table E~2 (cont'd.).

enthpart:-0.0;

for k:-1 to compoundgroups[solvindex] do

enthpart:-resu1t(enthpart)+num[k]*(gamma(bigx,group[k])

~gamma(bigxstar,group[k]));

writeln(auxfile,'enthpart of ',w1,': ',result(enthpart));

end;

function findact(mode1:modeltype):real;

var

y,phil,phi2:rea1;

begin

case model of

vsp:

begin

y:-w1+(e/olinf)*(1.0~w1);

findact:-exp((y-w1)/y)/y

end;

flory:

begin

phil:-densityratio*wl/(densityratio*wl+(1.0-wl));

phiZ:-l.0-phi1;

findact:-exp(ln(phi1)+chi*phi2*ph12+phi2)/wl

end;

fhvsp:

begin

y:-w1+(e*fhglinf/fholinf)*(1~w1);

findact:-exp((y-w1)/y*(y+(y-wl)*ln(fhglinf))/y)/y;

end;

asogvsp:

begin

y:-wl+(e*glinf/olinf2)*(l.0-w1);

findact:-exp((y-wl)/y+1ngl)/y

end;

end

end;

procedure fitparams(var chi,olinf,olinf2,glinf,fholinf,fhglinf,res:real;

wlray,olray:rea1array; nptszinteger);

const

delta - 0.0001;

var

i:integer;

resl,res2,res3,change,size:real;

deriv,deriv2:rea1;

procedure findchi;

var

i:integer;

phi1,ph12,num,den:real;

begin

numz-O;

denz-O;
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Table E~2 (cont'd.).

for i:-1 to npts do

begin

phiZ:-(l~wlray[i])/(densityratio*wlray[i]+l~wlray[i]);

phil:-1~phi2;

num:-num+sqr(phi2)*(ln(w1ray[i]*olray[i]/phil)~phi2);

den:-den+sqr(sqr(phi2));

end;

chi:-num/den;

end;

procedure findolinf(var res:real; olinf,g1inf:real);

var

i:integer;

gl,wtavg,size:real;

begin

resz-O;

for i:-1 to npts do

begin

size:-e*glinf/olinf;

wtavg:-wlray[i]+size*(l~wlray[i]);

if glinf <> 1.0 then g1:-1nglray[i] else g1:-0.0;

res:-res+sqr(ln(olray[i])+1n(wtavg)~size*(1~w1ray[i])/wtavg~gl);

end;

end;

procedure findolgl(var res,ol,g1:real; sizezreal);

var

i:integer;

r2,num,den,chi:real;

rlzrealarray;

begin

numz-O;

denz-O;

for i:-1 to npts do

begin

r1[i]:-wlray[i]/(wlray[i]+size*(1~wlray[i]));

r2:-l-rl[i];

num:-num+sqr(r2)*(ln(w1ray[i]*olray[i]/rl[i])~r2);

den:-den+sqr(sqr(r2));

end;

chiz-num/den;

gl:-exp(chi);

ol:-e*gl/size;

resz-O;
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Table E~2 (cont'd.).

for i:-1 to npts do

begin

r2:-l~rl[i];

res:-res+(ln(wlray[i]*olray[i]/rl[i])~r2~chi*sqr(r2))

*(1-1/rl[i]+2*chi*r2)*size/ol*(l-wlray[i])/wlray[i]

*sqr(r1[1l);

end;

count:-count+l;

end;

begin

countz-O;

findchi;

olinf:-densityratio*exp(l+chi);

olinf2z-olinf;

writeln(auxfile,'vsp');

repeat

findolinf(resZ,olinf+delta,1.0);

findolinf(resl,olinf—delta,1.0);

findolinf(re33,olinf,1.0);

deriv:-(resZ-resl)/(2*delta);

deriv2:-(res2+resl~2*res3)/sqr(de1ta);

if deriv2 > 0 then changez-deriv/deriv2

else change:-~deriv/deriv2;

olinfz-olinf-change;

writeln(auxfile,resZ,resl,res3,olinf,deriv,deriv2);

until abs(change) < 0.0001*abs(olinf);

glinf:-exp(enthpart(0.0));

for iz-l to npts do lnglray[i]:-enthpart(wlray[i]);

writeln(auxfile,'asogvsp, glinf - ',glinf);

repeat

findolinf(res2,olinf2+delta,glinf);

findolinf(resl,olinf2-delta,glinf);

findolinf(res3,olinf2,glinf);

deriv:-(re32~resl)/(2*de1ta);

deriv2:-(resZ+resl~2*res3)/sqr(delta);

if deriv2 > 0 then changez-deriv/deriv2

else change:-~deriv/deriv2;

olinf2:-olinf2~change;

writeln(auxfile,resZ,resl,res3,olinf2,deriv,deriv2);

until abs(change) < 0.0001*abs(olinf2);

sizez-l;

repeat

findolgl(resZ,fholinf,fhglinf,size+delta);

findolgl(resl,fholinf,fhglinf,size~delta);

findolgl(res,fholinf,fhglinf,size);

deriv:-(re52-resl)/(2*delta);

changez-res/deriv;
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Table E~2 (cont'd.).

if change < size

then size:-size~change

else sizez-size/Z;

if fhglinf > fholinf then size:-e/(4*olinf);

writeln(auxfile,size,change,deriv,res);

until abs(change) < 0.00001*size;

writeln(auxfile,'Total calls to fhvsp: ',countz4);

end;

procedure sortrank(error:realarray; var rank:intarray; nzinteger);

var

i,j,tempzinteger;

trankzintarray;

begin

for iz-l to n do trank[i]:-i;

for i:-l to n-l do

for j:-i+l to n do

if error[trank[i]] > error[trank[j]]

then

begin

temp:-trank[i];

trank[i]:-trank[j];

trank[j]:-temp;

end;

for i:-1 to n do rankltrank[i]]:-i;

end;

procedure stattest(test:integer; rank:intarray; nzinteger;

var statzinteger; var mean,sd,z,tstat:real);

var

i:integer;

tzreal;

begin

statz-O;

case test of

l: begin

for i:-l to n do stat:-stat+i*rank[i];

mean:-n*(n+l)*(n+l)/4;

sd:-n*(n+1)/12*sqrt(float(n~1));

end;

2: begin

for i:-1 to n-l do stat:-stat+sqr(rank[i+l]-rank[i]);

mean:-n*(n~l)*(n+l)/6;

sd:-sqrt(n*(n~2)*(n+1)*(5*n*n~2*n-9)/180);

end;

3: begin

for i:-l to n-l do stat:-stat+abs(rank[i+l]~rank[i]);

mean:-(n-l)*(n+l)/3;

sd:-sqrt((n-2)*(4*n*n~3*n~7)/90);

end;

end;
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Table E~2 (cont'd.).

z:-(stat-mean)/sd;

t:-1/(l+0.33267*abs(z));

tstat:-exp(~z*z/2)/sqrt(2*3.14159)*

t*(0.4361836+t*(~0.1201676+t*0.9372980));

if test > 1 then tstatz-l-tstat else tstat:-l~2*tstat;

end;

begin (* main program *)

reset(infile); '

assign(data,'vsp.tab');

reset(data);

rewrite(outfile);

rewrite(display);

rewrite(auxfile);

readln(data,numcompounds,numgroups);

for i:-l to numcompounds do

begin

readln(data,compoundgroups[i],mw[i],compoundname[i]);

for j:-l to compoundgroups[i] do

readln(data,groupcount[i,j],grouptab1e[i,j]);

end;

for i:-1 to numgroups do readln(data,groupname[i]);

for iz-l to numgroups do

begin

for j:-1 to numgroups do read(data,groupm[i,j]);

readln(data);

end;

for iz-l to numgroups do

begin

for j:-1 to numgroups do read(data,groupn[i,j]);

readln(data);

end;

repeat

writeln(display,'Enter a heading for this data set');

readln(infile,heading);

writeln(outfile,heading);

writeln(outfile);

writeln(auxfile,heading);

write(display,'What is the solvent? ');

getcompound('solvent molecule ',solvindex);

ml:-mw[solvindex];

write(display,'What is the polymer? ');

getcompound('polymer repeat unit ',polyindex);

m2r:-mw[polyindex];

write(display,'Enter temperature in Kelvin ');

readln(infile,tk);

writeln(display,

'Enter inf diln wt frac act coef, or 0 if unknown');

readln(infile,omegalinf);
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Table E~2 (cont'd.).

if omegalinf - 0.0

then

begin

writeln(display,

'Enter known activity or act coef, followed by:');

getactunits;

read(infile,act,actunit);

while actunit - ' ' do read(infile,actunit);

readln(infile);

writeln(display,'Enter concentration, followed by units:');

getconcunits;

read(infile,conc,concunit);

while concunit - ' ' do read(infile,concunit);

readln(infile);

if concunit - 'x' then getmolecwts;

wl:-convertconc(conc,concunit);

tempomegal:-convertact(act,actunit);

new(firstset);

firstset‘.concen:-wl;

firstset“.activity:-tempomegal;

firstset“.next:-nil;

end

else

begin

writeln(display,'Enter units of activity or act coef data');

getactunits;

repeat read(infile,actunit); until actunit <> ' ';

readln(infile);

writeln(display,'Enter units of concentration data');

getconcunits;

repeat read(infile,concunit); until concunit <> ' ';

readln(infile);

firstsetz-nil;

end;

writeln(display,'Enter polymer density or sp vol followed by');

writeln(display,' d for density');

writeln(display,' v for specific volume');

writeln(display,' m for molar volume');

read(infile,rhoz,rhounit);

while rhounit - ' ' do read(infile,rhounit);

readln(infile);

if (concunit <> 'x') and (rhounit - 'm') then getmolecwts;

rhoZ:-convertrho(rh02,rhounit,m2);

write(display,'Enter solvent ');

case rhounit of

'd': write(display,'density ');

'v': write(display,'specific volume ');

'm': write(display,'molar volume ')

end;
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Table E~2 (cont'd.).

readln(infile,rhol);

rhol:-convertrho(rhol,rhounit,m1);

densityratioz-rhOZ/rhol;

repeat

writeln(display,'Enter conc followed by activity or act coef');

writeln(display,'or an out of range concentration to stop');

readln(infile,conc,act);

wl:-convertconc(conc,concunit);

omegalexp:-convertact(act,actunit);

endofdata:-(wl>l.0) or (wl<0.0);

if not endofdata

then

begin

nextset:-firstset;

1astset:-firstset;

foundz-false;

while not found do

begin

if nextset - nil

then foundz-tru

else ‘

begin

found:-nextset‘.concen > wl;

if not found

then

begin

1astsetz-nextset;

nextset:-nextset“.next

end

end

end;

new(ptr);

ptr“.concen:-w1;

ptr“.activityz-omegalexp;

ptr‘.next:-nextset;

if lastset - nextset

then firstset:-ptr

else lastset‘.next:-ptr;

end

until endofdata;

ptr:-firstset;

npts:-0;

while ptr <> nil do

begin

npts:-npts+1;

wlray[npts]:-ptr“.concen;

olray[npts]:-ptr“.activity;

ptr:-ptr“.next;

end;
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Table E~2 (cont'd.).

generatea;

fitparams(chi,olinf,olinf2,glinf,fholinf,fhglinf,res,wlray,olray,

nPCS):

writeln(outfile,'Results of least squares fit:');

writeln(outfile);

write(outfile,'VSP inf diln wt frac activity coefficient: ');

writeln(outfile,olinf:10:4);

writeln(outfile,'Flory-Huggins chi parameter: ',chi:8:4);

write(outfile,’FH-VSP inf diln parameters: ');

write(outfile,’ wt frac act coeff',fholinf:8:4);

write(outfile,’ enth coeff',fhglinf:8:4); writeln(outfile);

write(outfile,’ASOG-VSP inf diln parameters: ');

write(outfile,’ wt frac act coeff',olinf2:8:4);

write(outfile,’ enth coeff',g1inf:8:4); writeln(outfile);

writeln(outfile);

writeln(outfile,

' Wt Frac Activity Coefficients and Percent Error');

writeln(outfile,

' Solvent Exptl VSP Flory-Huggins FH-VSP',

' ASOG-VSP');

writeln(outfile);

for model :- vsp to asogvsp do sumsqrerror[mode1]:-0.0;

for i:-l to npts do

begin

wl:-w1ray[i];

omegalexp:-olray[i];

lngl:-lnglray[i];

write(outfile,wl:8:3,0mega1exp:8:3);

for model :- vsp to asogvsp do

begin

omega1:-findact(model);

relerr[model,i]:-ln(omegal/omegalexp)*100;

write(outfile,omegal:8:3,relerr[model,i]:6:l);

sumsqrerror[mode1]:-sumsqrerror[model]+sqr(relerr[model,i]);

end;

if sumsqrerror[model] < 0.0 then sumsqrerror[model]:-0.0;

writeln(outfile);

end;

writeln(outfile);

write(outfile,'Standard pct err');

for model :- vsp to flory do write(outfile,

sqrt(sumsqrerror[modell/(npts-l)):l4:l);

if npts > 2

then write(outfile,sqrt(sumsqrerror[fhvsp]/(npts~2)):1421);

write(outfile,sqrt(sumsqrerror[asogvsp]/(npts~l)):14:l);

writeln(outfile); writeln(outfile); writeln(outfile);
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Table E~2 (cont'd.).

for model :- vsp to asogvsp do

begin

sortrank(relerr[model],rank[mode1],npts);

end;

writeln(outfile,'Analysis of model error randomness');

writeln(outfile);

write(outfile,'Sum sqr rank difference test: ');

for model :- vsp to asogvsp do

stattest(2,rank[mode1],npts,stat[model],mean,

sd,z[mode1],tstat[model]);

writeln(outfile,'mean - ',mean:7:2,' sd - ',sd:6:2);

writeln(outfile);

write(outfile,'Test statistic ');

for model :- vsp to asogvsp do write(outfile,stat[model]:14);

writeln(outfile);

write(outfile,'Normal (Z) ');

for model :- vsp to asogvsp do write(outfile,z[model]:14:3);

writeln(outfile);

write(outfile,'Reject level ');

for model :- vsp to asogvsp do write(outfile,tstat[model]:14:6);

writeln(outfile); writeln(outfile);

write(outfile,'Sum abs rank difference test: ');

for model :- vsp to asogvsp do

stattest(3,rank[model],npts,stat[model],mean,

sd,z[model],tstatlmodel]);

writeln(outfile,'mean - ',mean:7:2,' sd - ',sd:6:2);

writeln(outfile);

write(outfile,'Test statistic ');

for model :- vsp to asogvsp do write(outfile,stat[mode1]:14);

writeln(outfile);

write(outfile,'Norma1 (Z) ');

for model :- vsp to asogvsp do write(outfile,z[mode1]:14:3);

writeln(outfile);

write(outfile,'Reject level ');

for model :- vsp to asogvsp do write(outfile,tstat[model]:l4z6);

writeln(outfile); writeln(outfile); writeln(outfile);

if (chi >- 0.5) or (fhglinf >- sqrt(e))

then

begin

writeln(outfile,'Phase separation behavior prediction');

writeln(outfile);

if chi >- 0.5

then writeln(outfile,'Flory-Huggins model: ',

'wt frac - ',1/(l+densityratio*(2*chi~1)):5 3);

if fhglinf >- sqrt(e)

then writeln(outfile,'FH-VSP model: ',

'wt frac - ',1/(l+fholinf/(e*fhg1inf)*

(2*ln(fhglinf)-l)):5:3);

end;
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Table E~2 (cont'd.).

page(outfi1e);

until eof(infile);

rewrite(data);

writeln(data,numcompounds,numgroups);

for iz-l to numcompounds do

begin

writeln(data,compoundgroups[i]:3,mw[i]:7:2,compoundname[i]);

for j:-l to compoundgroups[i] do

writeln(data,groupcount[i,j]:5:2,grouptable[i,j]:3);

end;

for iz-l to numgroups do writeln(data,groupname[i]);

for iz-l to numgroups do

begin

for jz-l to numgroups do write(data,groupm[i,j]:12:4);

writeln(data);

end;

for i:-1 to numgroups do

begin

for j:-1 to numgroups do write(data,groupn[i,j]:12:4);

writeln(data);

end;

end.



APPENDIX F.

Derivation of Equations in "Generalized Correlation for Solvent

Activities in Polymer Solutions"

This appendix contains a more detailed derivation of the equations

presented in the reprint article "Generalized Correlation for Solvent

Activities in Polymer Solutions". This article was included as part of

Chapter 2 of the dissertation. The major source of the equations which

were used to derive the results was the ASOG model (Derr and Deal,

1969). In this appendix, equation numbers refer to the reprint article

itself, beginning on page 13 of the dissertation. New equations not

included in the article are numbered with a preceding letter F, e.g.,

F-l, F-2, etc.

Eqs 1 to 4 are taken directly from the ASOG model. Only eqs 1 and 2 are

used to derive further results; eqs 3 and 4 were presented for the sake

of completeness. Eq 5, actually an inequality, merely states the

assumption that the solvent molecule is much smaller than the polymer

molecule.

DERIVATION 0F EQUATION 6

Eq 6 is the first equation which was derived. The superscript w in the

242
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equations shown refers to the limiting value of a variable as the mole

fraction (or weight fraction) of solvent (component 1) approaches zero.

Beginning with eq 2 and letting x1 approach zero (x2 will approach one)

R1 - s1 / (51x1 + 82x2) (2)

Q

R1 - s1 / (51(0) + 32(1)) - sl / 52 (F-l)

then substituting this value into eq 1 to give the mole fraction

activity coefficient at infinite dilution

1n 115 - 1 - R1 + 1n R1 (1)

In 715” - 1 - R1” + 1n R1” - 1 - (51/32) + 1n (51/52) (F-2)

and finally using eq 5 to eliminate one of the terms in eq F-2 gives eq

6.

51 << 32 (5)

San

1n 11 - 1 + 1n (51/82) (F-3)

118m - exp [1 + 1n (81/32)] - exp(l) - Sl/S2 - e-Sl/S2 (6)

In the article, the superscript S was suppressed since only the size

component of activity was being considered. It should be pointed out

that eq 1, taken from the ASOG model, leaves out a factor which appears

in the athermal Flory-Huggins equation. For our purposes, this factor

would equal (1 ~ 81/82), and would differ negligibly from one after the

assumption of eq 5 is made. Eq 5 restricts the application of the

results to binary solutions of low molecular weight solvents in high

molecular weight polymers.
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DERIVATION 0F EQUATION 7

Eq 7 follows from the definition of mole fraction and weight fraction

concentration variables and activity coefficients at infinite dilution,

where x approaches zero and x1 approaches one.
2

a1 - 11x1 - Olwl (F-4)

01 - ylxl/w1 (F-5)

w1 - Mlx1 / (Mlx1 + M2x2) (F'6)

01 - 11 (Mlx1 + szz) / M1 (F-7)

0‘” wMO+M1 M ”M M (7)
1 - 71 ( 1( ) 2( )) / 1 71 2 / 1

Eq 8 follows from substitution of eq 6 into eq 7, and eq 9 follows from

substitution of eq 10 into eq 8. Eq 10 expresses the fact that the size

ratio equals the ratio of molecular weights for chemically similar

polymer-solvent pairs. This is the assumption which is removed by the

variable size parameter concept. Instead, the effective size ratio,

shown in eq 11, is given by rearrangement of eq 8, treating the size

ratio as an unknown and the activity coefficient 01do as a known value.

Eqs 12 and 13 are transformations from weight fraction composition

variables to mole fraction, analogous to eq F~6 above.

DERIVATION OF EQUATION 14

Eq 14 for the size ratio R1 was derived in several steps, as shown

below. Eq 2 was divided through by S then eq 11 was substituted for
1’

S2/Sl’ and eqs 12 and 13 were substituted for x1 and x2. The final
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expression was simplified by multiplying through by Ml/MZ.

R1 - s1 / (81x1 + 82x2) (2)

R1 - 1 / (x1 + (82/51) x2) (F-8)

82/31 - (e/nl°> (Hz/M1) (11)

R1 - 1 / (x1 + (e/Olm) (Mz/Ml) x2) (F-9)

x1 - (M2/M1) w1 / (("2/M1) w1 + w2> (12)

x2 - w2 / ((MZ/Ml) w1 + “2) (13)

R1 - ((“2/M1) w, + "2) / (("2/"1) w1 + (e/ol“) (Hz/M1) "2) <F-10>

R1 - (w1 + (Ml/M2) “2) / (w1 + (e/nl”) “2) (14)

In the article, w2 was replaced by 1~w to reinforce the fact that the
l

expressions derived were functions of a single concentration variable.

The variable w2 has been retained in this appendix for clarity in all

equations.

DERIVATION OF EQUATION 15

Eq 15 is easily derived from substitution of eq 12 into eq F-S,

cancelling w1 and multiplying through by Ml/Mz.

01 - ylxl/w1 (F-5)

x1 - (Hz/M1) w1 / ((“2/M1) w1 + w2> <12)

01 - 71 ("z/M1) w1 / w1 (042/141) w1 + "2) (F41)

0, - 11 / (w1 + (Ml/M2) ”2) (15)

DERIVATION 0F EQUATION 16
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To derive eq 16, begin by substituting eq 14 into eq 1 (superscript S

suppressed in eq 1), noting the simplification for 1~R1 given as eq

F-12.

1n 11 - 1 - R1 + 1n R1 (1)

R1 - (wl + (Ml/M2) w2) / (w1 + (e/ol°) w2) (14)

1 - R1 - (e/nlco - Ml/Mz) w2 / (wl + (e/nl”) w2) (F~12)

1n 11 - (e/le - Ml/MZ) w2 / (wl + (e/nl”) w2)

+ 1n (w1 + (Ml/M2) wz) - 1n (w1 + (e/nl”) wz) (F-l3)

Take the exponential of eq F-l3 and substitute it into eq 15 to produce

eq F~15. Then use the assumption given by eq 17 to eliminate the

molecular weight term, giving eq 16. The assumption is that the

molecular weight of solvent is much smaller than that of polymer, and

that 01co is not too large (the solution is not too nonideal).

11 - exp I (e/nl"o - Ml/M2> w2 / (w1 + (e/nl°) "2) 1

(pl + (Ml/M2) "2) / (w1 + <e/ol”) W2) <F-14)

0, - 11 / (w1 + (Ml/M2) "2) (15)

n, - exp [ (e/ol° - "1/"2) w, / (w1 + (e/nl”) “2) 1

- 1 / (w1 + (e/ol”) ”2) ‘ (F-15>

e/nlco >> Ml/Mz (17)

01 - exp [ (e/nl”) w2 / (w1 + (e/01°) w2> 1 / (x1 + (e/nl°) “2) (16)

CONVERGENCE OF THE ITERATION PROCEDURE FOR CALCULATING 01” IN EQUATIONS

18 TO 23

Eqs 18 to 23, defining an iteration procedure for calculating 0100 from
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a finite concentration activity value, all follow from straightforward

substitution involving eq 16 and eqs 18 to 23 themselves. The

convergence properties of the iteration scheme were not examined in the

article, except for the comment that the ”procedure converges quickly".

Since the method consists of successive substitutions, a necessary

condition for convergence in eq 20 is given by the magnitude of the

derivative of the right hand side, i.e., |F'(Y)| < l.

exptl exptl
Y - exp (1 - w1 /Y - In 01 ) - E(y) (20)

F'(Y) _ exp (1 _ wlexptl/Y _ 1n “lexpt1) . (w1exptl/Y2 )

_ Y . (w1exptl/Y2 )_ wlexptl/Y (F-16)

Since Y is calculated as the result of the exponential function, it is

necessarily positive. The experimental weight fraction of solvent,

w exptl exptl

l 1

iteration scheme would be unnecessary since the experimental activity

, is also a positive quantity. (If w were zero, the

value would already be at infinite dilution of solvent.) Consider the

first two approximations of Y, Yo (given by eq 21), and Y1 (given by eq

22 with n - 1, shown here as eq F-l7).

Yo - exp (1 - ln Olethl) (21)

_ - exptl _ exptl _
Y1 exp (1 w1 /Yo In 01 ) (F 17)

Yl - exp (1 - ln Olethl) - exp(- w ethl/Y0)

_ - exptl _

Y0 exp( w1 /Yo) (F 18)

Because the argument of the exponential function in eq F-18 is negative,

and Y0 is positive, Y1 < YO can be concluded. Identical logic applies

to the general case of Yn’ leading to this result.
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Yo > Y1 > Y2 > . . ..> Yn_1 > Y“ (F-l9)

Assume that the expression for F'(Y) given by eq F-l6 does not meet the

necessary condition for convergence.

IF'(Y)I - wlethl/Y 2 1 (p-20)

This expression will take on its smallest value when its denominator is

largest, i.e., when Y is largest. According to eq F-l9, this will occur

when n equals zero on the initial iteration. For eq F-20 to hold for

any value of Y, it must hold for Y as shown in eq F-Zl. The expression

0

for Yo from eq 21 can then be substituted to give eq F-22, and since the

denominator is positive, the direction of inequality remains the same in

eq F-23.

wleXPtl/Yo 2 1 (F-21)

Yo - exp (1 - ln olethl) (21)

wleth1 / exp (1 - 1n olethl) 2 1 (p-22)

wlethl 2 exp (1 - ln Olethl) (F-23)

Working through the exponential function gives eq F-24, which can then

be rearranged to eq F-25 using the definition of activity coefficient.

wlexptl

exptl exptl _ exptl
w1 01 a1 2

exptl

2 e / 01 (F-24)

e (F-25)

Since the activity of a component cannot exceed unity when based on a

pure component standard state, eq F-25 is a contradiction. Thus the

original assumption of eq F-2O must be false, and the necessary
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condition for convergence holds for the iteration scheme of successive

substitutions described by eqs 18 to 23.

Eq 24 is the Flory-Huggins equation for solvent activity, and eqs 25 and

26 are definitions of the volume fraction in a binary system with no

volume of mixing. When eq 24 is rearranged for x, and eqs F-h, 16, 25

and 26 are substituted, the results are

In a1 - 1n ¢1 + ¢2 + x¢22 (24)

x - (1n a1 - 1n p1 - p2) / p22 (F-26>

al - Olwl (F-h)

01 - exp 1 (e/01”> w2 / (w1 + (e/nl”) W2) 1 / (w1 + (e/ol”> w2> (16)

In a1 - 1n ¢1 + ¢2 + x¢22 (24)

¢1 - (pZ/pl) "1 / ( (pz/pl) “1 + w2 ) (25)

¢2 - w2 / < (”z/P1) w1 + “2 > (26)

In a1 - 1n ¢1 + ¢2 + x¢22 (24)

x - [ (e/fllno

+ 1n w1

) w2 / (w1 + (e/Olm) w2) - ln (“1 + (e/Olm) w2)

- 1n (”z/P1) "1 + 1n ( (pz/pl) "1 + “2 )

- w2 / ( (pz/p1> "1 + w2 ) 1 - ( (”z/P1) w1 + w2 )2 / w22 (F-27)

This result

as shown in

in eq F-29.

through the

error in eq

denominator

shown here.

is simplified by grouping together all the logarithm terms

eq F-28 and by dividing out individual w2 factors as shown

When the factor ( (pz/pl) wl/w2 + l )2 is multiplied

other three terms, eq 27 results. There is a typographical

27 of the article which shows a division by w2 in the

of the logarithm term; multiplication by w is correctly

2
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x - I (e/ol”> wz / (w1 + (e/01”> w2>

wz / ( (”z/P1) "1 + "2 )

+ 1n ( (wl + (pl/p2) w2) / (w1 + <e/nl”> “2) > 1

° ( (pZ/pl) wl + wz )2 / w22

x - [ (e/01°> wz / (w1 + (e/01”> w2>

1 / ( (pZ/pl) wl/w2 + 1 )

+ 1n < (w1 + (pl/p2) w2> / (w1 + (e/01”> w2> ) 1

° ( (pz/pl) wl/wz + 1 )2

x - ( (Pp/Pl) wl/w2 + 1 )2 - (e/nl”) w2 / (w1 + (e/nl”> "2)

( (pz/pl) "l/wz + 1 )

+ < (pz/pl) wl/w2 + 1 )2

- 1n ( (w, + (pl/p2) w2> / (w1 + (e/01”> wz) >

(F-28)

(F-29)

(27)

Table F-l. Equations Used in "Generalized Correlation for Solvent

Activities in Polymer Solutions".

In 118 - l - R + In R

1 1

R1 - s1 / (81x1 + 82x2)

1 G 2 1 r 2 1 r *
n 71 ' ”k1 “ k ' "k1 “ k

k k

x A

In Pk - - 1n 2 XlAk1 + l - 2 ——l—lE-

1 1 z x A
m In

m

51 << 52

Sea

71 - exp [1 + 1n (81/82)] - exp(l) - 81/82 - e-Sl/S2

01 - 71 (M1(0) + M2(1)) / M1 - 11 M2 / M1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(3)
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Table F-l (cont'd.).

(D

01 - e (9)

52/51 - 142/111 (10)

52/31 - (6/01 ) (HZ/M1) (11)

x1 - (Hz/M1) W1 / ((MZ/Ml) wl + “2) (12)

x2 - w2 / ((M2/Ml) w1 + w2> (13)

R1 - (w1 + (Ml/M2) w2> / (w1 + (e/nl”) "2) (14)

01 - ‘11 / (W1 + (Ml/M2) 1:72) (15)

01 - exp [ (e/ol°) "2 / (w1 + (e/nl°) w2> 1 / (w1 + (e/01°) w2> (16)

e/ol” >> 141/M2 (17)

_ exptl m
Y w1 + (e/O1 ) w2 (18)

olethl - exp [ (Y - wleth1> / Y 1 / Y (19)

Y - exp (1 - wlethl/Y - ln Olethl) - P(y) (20)

YO - exp (1 - ln Olethl) (21)

Yn - exp (1 - wl‘eXPtl/Yn.1 - 1n olethl) (22)

film _ e (1 _ wlexptl) / (Y _ wlexptl) (23)

ln a1 - ln ¢1 + ¢2 + x¢22 (24)

¢1 - (pz/pl) "1 / ( (pz/pl) “1 + w2 ) (25)

p2 - w2 / ( (pz/pl) w1 + w2 ) (26)

x - ( (Pz/Pl) wl/w2 + 1 )2 - (e/nl”) w2 / (w1 + (e/01°> w2)

- < (pz/pl) wl/w2 + 1 )

+ < (pz/pl) wl/w2 + 1 >2

- 1n < (w1 + (pl/p2) w2> / (w1 + (e/olm) w2> > (27)



APPENDIX C.

Derivation of Equations in "Prediction of Solvent Activities

in Polymer Solutions Using an Empirical Free Volume Correction"

This appendix contains a more detailed derivation of the equations

presented in the manuscript article ”Prediction of Solvent Activities in

Polymer Solutions Using an Empirical Free Volume Correction". This

article was included as part of Chapter 2 of the dissertation. In this

appendix, equation numbers refer to the manuscript article itself,

beginning on page 21 of the dissertation. New equations not included in

the article are numbered with a preceding letter G, e.g., G-l, G-2, etc.

Eqs la and 1b are defining equations for solvent mole fraction activity

coefficient size component and group interaction component and for the

size component of solvent activity. Eqs 2 and 3 illustrate these

definitions using the terms which make up the Flory-Huggins equation.

Eqs 4 to 9 were presented as background from "Generalized Correlation

for Solvent Activities in Polymer Solutions": these equations were

either taken from the ASOG model (Derr and Deal, 1969) or were derived

in Appendix F of this dissertation.

252
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DERIVATION OF EQUATION 10

The first new equation in this article is eq 10, an extension of eq 9,

which was derived in Appendix F. The key step in the derivation of eq 9

was assuming the activity coefficient 0 m was known and rearranging for

l

the unknown size ratio 82/81. The same approach is used to derive eq

10, but instead of considering only the size interaction component of

solvent activity, als, the complete solvent activity consisting of both

size and group interaction components is used as shown below. Eq 1a is

written as a product rather than a sum of logarithms in eq G-l, then

combined with the definition of weight fraction activity coefficient to

give eq G-2. The conversion of weight fraction to mole fraction is made

using eq G-3 to give eq G-4, which is evaluated at infinite dilution (as

solvent concentration x1 approaches zero) to give eq G-S for the

infinite dilution weight fraction activity coefficient 0 a1 .

lna-lnx+1n S+1 G (1)
1 1 11 n 11 a

s G
a1 - x111 11 (G-l)

0 - a /w - x S G (G 2

1 1 1 171 71 /"1 ' )

w1 - Mlx1 / (Mlx1 + M2x2) (5'3)

8 G

01 - 11 71 (Mlx1 + M2x2) / M1 (G-4)

on San Goo Sco Geo

01 - 71 11 (111(0) + M2(1)) / M1 - 11 71 M2 / M1 (G-S)

At this point, the expression for 115 in the ASOG model, eq 4, is

evaluated at infinite dilution and substituted into eq G-5, using the

fact that Sl/S2 is close to zero to simplify eq G-8.
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3
ln 11 - l - R1 + 1n R1 (4)

San co on

In 11 - l - R1 + ln R1 (G-6)

R1 - s1 / (81x1 + 82x2) (5)

0

R1 - s1 / (51(0) + 32(1)) - 31 / $2 (c-7)

Sue

ln 11 - 1 - 51/32 + ln sl/s2 - 1 + 1n 51/32 (G-8)

Sun

71 - e - 51/52 (G-9)

n m G” s s M (c-10)
1 ' e 71 ' 1/ 2 ' 2/"1

This expression is rearranged to give the size ratio 82/81 as a function

of the other factors and resubstituted into eq 5. Transformations from

mole fraction to weight fraction composition are used, and eq 10 is

finally produced by assuming Ml/M2 is close to zero.

82/81 - (mom/01‘”) (“z/“1) (G-ll)

R1 - s1 / (31x1 + 82x2) (5)

R1 - 1 / (x1 + (32/51) x2) (c-12)

R1 - 1 / (x1 + (evlc°°/01°°> (Hz/M1) x2) (64»

x1 - (142/ml) w1 / “Hz/"1) w1 + up (c-m

x2 - w2 / «142/Ml) w1 + "2) - (045)

(M /M ) w + w

R - 2 1 cl ”2 (G-16)

(M2/M1) "1 + (811 /01 ) (Hz/M1) “2

 

w + (M /M ) w

R - 1 g 2 2 (c-17)

+ (e1 com on) w
w1 1 1 2

 

w1

R ' Ge e (10)

w1 + (e1l /01 )w2

 

Eqs 11 and 12 illustrate how the infinite dilution group interaction



255

(residual) component of the activity coefficient, 116°, is derived from

a functional expression for the residual component of the activity

coefficient, 110. Eqs 13a and 13b define such a functional expression

for an athermal solution, giving activity coefficients of unity at all

concentrations. Eq 14a defines a Flory-Huggins type of residual

interaction.

DERIVATION OF EQUATION 143

To derive eq 14b, take w as zero in eq 10, and use the resulting R in

l 2

eq 14a.

R1” - <0) / ((0) + (evlcm/nl°> (1)) - o <c-18>

R2 - I - R1 - 1 - 0 - l (G-19)

G * 2
In 11 - x R2 (14a)

* a:

In 110‘” - x (R, )2 - x"'<1>2 - x* <c-20>

Geo *

11 - eXP(x ) (14b)

Eqs 15a to 15d are the standard ASOG model equations (Derr and Deal,

1969). Eq lSe merely states that these equations are to be evaluated at

x1 - 0 to give the infinite dilution residual component of the activity

coefficient. Eq 16 is identical to eq 16 (coincidentally) of

"Generalized Correlation for Solvent Activities in Polymer Solutions"

and is derived in Appendix F.
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DERIVATION OF EQUATION 17

Eq 17 is analogous to eq 16, but using the more complex eqs 14a and

14b for the residual component rather than the athermal eqs 13a and 13b.

The activity coefficient 01 is given as the product of a size

interaction component, 118, and a group interaction component, 116,

i.e., eq G—2. If only the expression x17ls/wl in eq G-2 is considered,

the derivation of eq 16 in Appendix F applies, with the only difference

in the result being the appearance of the additional factor 11cm in eq

10 for R1. Taking the result from Appendix F with the additional factor

gives eq G-21.

s c

01 ' a1/"1 ' x171 71 /“1 (6’2)

w1
R - (10)
1 Goo co

w1 + (e71 /01 )w2

 

Go

(e11 /01m) "2

 exp
Go a:

w1 + (e11 /01 ) w2

 
-11..

G

x 7 S/w -
1 1 1 Go a

w1 + (e11 /01 ) w2 11

(G-21)

The factor 116 in eq G-2 is given by eqs 14a and 10, generating eq G-24.

*

ln 116 - x R22 (14a)

w1
Rl - Gm m (10)

w1 + (e71 /01 )w2

 

(also/015w2

R — 1 - R -

2 1

 

(G-22)
Go on

w1 + (e11 /01 )w2
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Ga 0 2

(e1 /0 )w
G * [ l l 2 ] (G-23)

w

1n 1 - x
Go

1 1 + (e11 /nl°°)w2

Go a 2

(e1 /0 )w

716 ' exp x* 1 1 2 (6'2“)

" 2

Gen co

1 + (811 /01 )w

 

Multiplying eqs G-2l and G-24 together produces eq G-25 for 01. Since

the product of exponentials equals the exponential of the sum of the

arguments, the expression can be simplified into eq G-26. Taking a

common factor gives eq G-27, which is identical to eq 17 once the

*

substitution x - ln 116m from eq 14b is made.

5 c

01 ' x171 11 /V1

(evlcm/ol”) w2 , (8716m/01¢)W2 2
exp Gm @ ' exp X Cw o

w1 + (e11 /01 ) w2 w1 + (e11 /01 )w2

  

 

Geo co

w + (e1 /0 ) w

1 1 1 2 ’(c-25)

 

Gan on Can an 2

exp (811 /01 ) "2 + x* (e11 /01 )w2

w + (e1 Goom do) w w + (e1 G°/n co)w
l l l 2 1 1 l 2

w + (e1 /0 on) w

l l l 2

[ <e1,G°°/n,°°>w, [ , [ <e7,G°°/o;°>w2 H]

exp 1 + X

ww + (e7 G”/o do) w + (e1 G°/o ”)w
l l 1 2 l 1 1 2

01 - Gm m (G-27)

w1 + (e71 /O1 ) w2

(e7 Gm/n ”)w (e1 G”/o ”)w
l l 2 1 1 2 Gm

exp 1 + 1n 11

COD 00 Go: on

0 - 1 + (e11 /01 )w2 + (e71 /01 )w2 (17)

1 w + ( G”/o co)w
1 811 1 2

 

 
 

 

  

 

Eq 18 is a statistical formula for standard error in the expression

ln a1 which is generally available in statistics texts discussing
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analysis of variance.

Table G-l. Equations Used in "Prediction of Solvent Activities in

Polymer Solutions Using an Empirical Free Volume Correction”.

8 . C

1n a1 - ln x1 + In 11 + 1n 71

S G

ln a1 - ln a1 + 1n 11

S S

ln a1 - 1n (x171 ) - l - ¢1 + 1n ¢1

G 2

71 - x¢2

S

1n 11 - l - R1 + 1n R1

R1 - S1 / (Slx 82x

1 + 2)

 

m

w1 + (e/O1 )w2

w1

Goo co

w1 + (e71 /01 )w2

 

G - f(w

c

11

1)

Q - £(0)

71

In 116 - In 116” a 0

G * 2

In 11 - x R2

Goo *

11 - eXP (x )

*

In 116 - 2 uki (1n Pk - ln Pk )

k

(1a)

(1b)

(2)

(3)

(4)

(S)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13a)

(13b)

(14a)

(14b)

(15a)
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Table G-l (cont'd.).

x A

ln Pk - - ln 2 XIAk1 + 1 - 2 -l-lE-

1 1 2 x A
m In

In

1 r * 1 r 1
n k ' “ k(xl ' )

- Z x v / 2 2 x v

xk 1 1 ki J 1 j 1)

ln 710” - ln 116(x1 - 0)

exp ( (e/nl‘”)w2 / [wl + (e/ol°)w2] }

 

  

 

01 - m

w1 + (e/fl1 )w2

Go a: Gen co

exp (err1 ml )w2 1 + (611 /01 )w2 1n 1 Ga] ]

Gm w Go a 1

0 - w1 + (e71 /01 )w2 w1 + (e11 /01 )w2

1 Go a:

w1 + (e11 /01 )w2

pred - 1n a exptl 2
2 (ln a )

s _ [ 1 1 11/2

'(n-d)

(15b)

(15c)

(15d)

(lSe)

(16)

(17)

(18)



APPENDIX B.

Derivation of Equations in "Normalization and Bounding Properties

Inherent in Solution of Groups Activity Coefficient Models”

This appendix contains a more detailed derivation of the equations

presented in the manuscript article "Normalization and Bounding

Properties Inherent in Solution of Groups Activity Coefficient Models".

This article was included as part of Chapter 3 of the dissertation. In

this appendix, equation numbers refer to the manuscript article itself,

beginning on page xx of the dissertation. New equations not included in

the article are numbered with a preceding letter H, e.g., H-1, H-2, etc.

Eq 1 is the ASOG definition of group mole fraction Xk taken for a binary

solution whose molecules contain two distinct functional groups. Eqs 2

to 4 are the ASOG equations for calculation of the group interaction

(residual) component of the activity coefficient, 116, from group mole

fractions, Xk’ and group interaction parameters, Akl’ with group

activity coefficients, Pk and Pki, as intermediate results.

X + X

Xk _ ...... 231-}---IB?-? ...... (1)

(“11+“21)x1 + (“12+“22)x2

c 1 1
ln 71 - nli(ln P1 - 1n P1 ) + n21(ln F2 - ln P2 ) (2)

x A x A

In rk - -1n(X1Ak1 + XZARZ) + 1 - ----1-15--- - ----?-?¥--- (3)

x A +x A x A +x A
1 ll 2 12 1 21 2 22

260
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1
1n Pk - ln Pk (xi - l) (A)

Eqs 5 and 6 merely define size-weighted fraction composition variables,

c1, and group ratio variables, g1, neither of which depends on the size

of the unit chosen to measure the functional group composition of a

molecule. To derive eq 7, begin with eq 5 for c Eqs H-1 and H-2 are1.

eq 5 with i set to l and 1 set to 2. Similarly, eqs H—3 and H-4 are

derived from the group ratio definition of eq 6. When eq H-l is divided

by eq H-3, and eq H-2 is divided by eq H-4, eqs H-5 and H-6 result.

When eq 1 is written with k equal to l as eq H-7, it is evident that the

right hand side of eq 7 equals the sum of the right hand sides of eqs

H-5 and H-6. The left hand sides of these equations must follow the

same relationship, resulting in eq 7.

Ci - ......... lg--g§--; ....... (5)

(“11+“21)x1 + (“12+“22)x2

(n +n )x

,1 _ ......... 11--11--1 ....... (1-1)

(“11+“21)x1 + (“12+“22)x2

(n +n )x

,2 - ......... 11--11--1 ....... (11-2)

(“11+“21)x1 + (“12+“22)x2

g1 ' n21 / n11 (6)

1 + g1 — (n11 + n21) / n11 (H-3)

1 + g2 - (n12 + n22) / n12 (H-4)

C n x

--1 ............. 11-1 .......... (n-5,
l+g1 (n11+n21)x1 + (n12+n22)x2

C n X

--1 ............. 11-1 .......... (11-6)
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x + X

xx - ......131-1---131-1 ...... (1)

(“11+“211x1 + (“12+“221x2

n 2‘ +11 x

x1 - ....... 11-1----11-1 ...... (1-7)

(“11+“211x1 1 (“12+“221x2

C C

x1 - "-1- + ---1- (7)

Eq 8 follows immediately from eq 2 when both sides are divided by n
11

and the ratio “Zi/nli is replaced by g1.

In G - n (ln F - l P i) + n (ln F — In P 1) (2)

11 11 1 n 1 21 2 2

1“ 11 1 1
------ - (ln P1 - 1n F1 ) + gi(ln F2 - ln F2 ) (8)

n11

The derivation of eq 9 is algebraically lengthy, but follows directly

from combining eqs 3, 4, 7, and 8. Begin with the expression for group

activity coefficient given by eq 3, and substitute the expression given

by eq 7 for group mole fraction X and use l-X for X .
1’ 1 2

X A X A

m - 1M“, .XAk).1-----1-1*s........ 1-21:--- (3)
k 1 1 2 2 X A +X A X A +X A

1 ll 2 12 1 21 2 22

C C

x1 - ---}-- + ---g-- (7)

1 + g1 l + g2

C C

l 2

x2 - 1 - x1 - 1 - ------ + ------ (H-8)



C1 c2 c1 c2
1n r - - 1n [ ( ------ + ...... ) Ak + (1 - ------ + ------ ) AR 1

k 1 + 1 + 1 1 + 1 + g 2
g1 g2 81 2

C C

("'}" + ___g_-) A1k
l + g l + g

l 2
+ 1 - -------------------------------------------------

C C C C

1 2 l 2

( ------ + ------ ) All + (1 - ------ + ------ ) A12

1 + g1 l + g2 l + g1 l + g2

C C

(1 - --1-- + ---1--, 12k
1 + g1 l + g2

- ------------------------------------------------- (H-9)

C C C C

(---1-- . ---1--, A +11- "1--.---1-“
21 22

l + g1 l + g2 l + g1 1 + g2

The first step in reducing the complexity of H-9 is the calculation of

the pure component 1 basis group activity coefficient, ln Pkl, defined

as the group activity coefficient ln P taken with the mole fraction of
k

component 1 equal to one. Substituting x1 - l and x2 - 0 into eqs H-1

and E~2 gives results for the size-weighted fractions c1, which can then

be used in eqs 7 and H-8 for Xk. These group mole fractions can be

substituted into eq 3, giving ln P 1 which simplifies to eq H-lS.
k

,1 _ --------f?11f?113513 ....... - 1 (1.10)
(n11+n21)(l) + (n12+n22)(0)

,2 _ __---_--fi‘11‘f‘-‘1135‘33------- _ o (p-11)
(n11+n21)(l) + (n12+n22)(0)

1 o 1

x1 - i-+--- +1 ------------ (ii-12)

51 + g2 1 + g1

1 g1

x2-1-x1-1- ------ - ------ (ll-13)



l g1

ln Pk - ' ln [ (l 1---) Akl + (i';-") Ak2 ]

g1 81

1

< ------ >A
1k

1 + g

+1- ............. 1.’ .............

l g1

( """ ) A11 + ( """ 1 A12
1 + g1 l + g1

g1

( """ ) A2k
l + g1

- ........................... (3-14)

(1 (g1)------ ) A + --—--- A
21 22

l + g1 1 + g1

+ g A A 3

ln rkl - - ln [ 111---111-1 1 + 1 - ----- 15--------- 11-1--- (H-lS)

1 1 81 A11 + A1251 A21 + A2251

Since eq 2 for the calculation of the activity coefficient requires the

difference ln Pk - ln Pkl, not the individual terms, this difference can

be calculated by combining eqs H-9 and H-lS, cancelling and combining

several terms in the process.
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+ 3
1n rk - ln rkl - 1n [ -------------------f¥}---é¥?-} -------------------- 1

l + g1 1 + g1

(°1 1 """ c2) Akl 1 (1 1 81 ‘ c1 ' """ °2> AkZ
l + g2 l + g2

1+g1

A1k (C1 1 i""" C2) A1k
+82

+ ................................................................

1 + g1 l + g1

A11 1 A1231 (c1 1 """ °2) A11 1 (1 1 81 ' °1 ' """ c2) A12
1 + g2 l + g2

1 + g1

A2k31 (1 1 81 ' °1 ' """ C2) A2k
l + g2

+ ................................................................

l + g1 1 + g1

A21 1 A2231 (cl 1 """ c2) A21 1 (1 1 31 ' °1 ' """ c2) A22
1 + g2 l + g2

(H-l6)

Multiply out terms in the expressions so that the composition variables

are principal factors rather than the interaction parameters, giving eq

H-l7. Then eliminate c1 for c2, using c2 - l - CI, to give eq H-18.
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1
1n Pk - ln Pk -

“1:1 1 A1:231
ln [ ------------------------------------------------------- ]

1 + g1

Akz (1 1 31) 1 (Akl ‘ Ak2) c1 1 (Akl ‘ ARZ) <i';’;" °2

2

1 + g1

A11c Alk c1 1 A11: (i""" ) c2
+ 82

+ ...................................................................

1 + g1

A11 1 A1281 A12 (1 1 31) 1 (A11 ‘12) c1 1 (A11 A12) (i';';') c2

2

l + g1

A21851 A2k (1 1 51) ' A2k c1 ' A2k (i‘;';°) c2

1 ..................................................... 2 .............
1 + g1

A21 1 A2251 A22 (1 1 31) 1 (A21 ' A22) cl 1 (A21 ' A22) (i‘;'é') c2

2

(n-17)

+ 3
In P - ln r 1 - 1n [ ...............f3}---f¥3-3............... 1

k k
l + g1

Ak1 1 A1:251 1 (Akl ' Akz) (i""" ‘ 1) c2
+ 82

1 + g1

Alk Alk 1 Alk (i""" ' 1) c2
+ 82

+ .....................................................

1 + g1

A11 1 A1231 A11 1 A1231 1 (A11 A12) (i""" ‘ 1) c2
+ 82

1 + g1

A2k31 A2k31 ‘ A2k 1;""" ' 1) c2
+ 82

+ .....................................................

1 + g1

A21 1 A2231 A21 1 A2231 1 (A21 A22) (i""" ' 1) c2
+ 82

(H-18)
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Multiply the numerator and denominator of some of the terms by (1+g2) to

eliminate fractional factors and simplify the result.

(1 1 32)(Ak1 1 Ak231)
ln rk - ln rk1 - ln [ ----------------------------------------------- 1

(1 1 32)(Ak1 1 Ak231) 1 (Ak2 ' Ak1)(32 ' 31) c2

. "”1115.............. fiffzifys-I-f‘23-f§2---§23f2 .........

A11 1 A1251 (1 1 82"“11 1 “1231) 1 (A12 A11) (32 31) c2

. "-5215?! ........... ff-1-§z?les§1_fles-f§z--ffifz .........

A + A

(H-19)

Eq H-l9 defines the group activity coefficient differences which can be

used in eq 8 to find the normalized residual activity coefficient for

component 1. The algebra of this derivation is again quite involved.

Begin by taking 1 equal to l in eq 8, to give eq H420. Then substitute

eq H-l9 into eq H-20 twice, once each with k having the value 1 and 2.

...... - (1n r1 - 1n r1 ) + g1(ln r2 - 1n r2 ) (8)

n

11

..g... _ (ln P1 - ln F1 ) + g1(ln P2 - 1n P2 ) (H'ZO)

ll



268

11-31? - 11 [ -------------ff-f-§z?ff;;-f-f;z§13---4 ......... 1

n11 ‘1 1 82"“11 1 “1231) 1 (‘12 ’ A111(52 ' 31) °2

1 ----511 .............. 53-1-§23511-2-111-f§2---§23-32 .........

A11 1 A1231 (1 1 8210111 1 A1251) 1 (A12 A11) (32 31) c2

1 ...12191 ........... f?-1-§z?fzz§2-1-§21-f§z---§13-f2 .........

A21 1 A2231 (1 1 g2"“21 1 A2231) 1 (A22 A21) (32 51) c2

(1 1 g21(1‘21 1 A2231) 1
+ g In [ -----------------------------------------------

1

(1 1 g2)(A21 1 “2231) 1 (A22 ' A211(32 ' 31) c2

1 ---f12§1 ...........5151-1-ézifzz-I-?12§1-f§2-1-§;3-fz .......

A11 1 A1251 (1 1 g21(111 1 A1231) 1 (A12 ’ A11) (52 ’ 51) c2

2

1 --?22§1---- - ------51-1-ézifzzél--1-fzz§;-f§z---§13-?2 .......

A +A

Several of the terms in eq H-Zl have the same denominator and can be

combined into eq H-22. Common factors can be removed to give eq H-23.

C

11-71- _ 1, 1 -------------f}-1-§23ff};-1-fzz§13 ............. 1

n11 (1 1 g21(‘1‘11 1 A1231) 1 (A12 ' A111(32 ' 31) c2

1 ,1 1, 1 ------------f§-1-§z?$121-1-122§13 .............. 1

(1 1 g2"“21 1 A2231) 1 (A22 ' A21’132 ' 31) C2

A11 1 A1251 (1 1 g2)(A11 1 “1231) ' (32 ' g1"“11 1 A1231)°2

A11 1 A1231 (1 1 g2)(A11 1 A1231) 1 (A12 ' A11) (32 ' 31) c2

+ 8111121 1 A2231)

A21 1 A2231

- f?-1-§z?§1f?21-1-?zz§;3-T-f§z-I-§135121-T-?22§13f2 (H-221
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1“ 716 1 l (1 1 82111111 1 “1231) l
...... - n o.............-....-....--....--....-.......-..

n11 (1 1 g2"“11 1 A1251) 1 (A12 ’ A11)‘32 ' 51) c2

(1 + 8 )(A + A 8 )

+ g1 1n [ .................. g---?}----gg-}............... 1

(1 1 g2)“21 1 12231) 1 (A22 ’ A21’132 ‘ 51) c2

_ (1 1 82"“11 1 “1231) ' (32 ' 8111111 1 A1231)°2

(1 1 g2’311A21 1 “2231) 1 (32 ' g1"“21 1 A2231)°2
+ g1 - -------------------------------------------------- (H-23)

(1 1 8210121 1 “2231) 1 (A22 ' A21) (52 ' 31) c2

The terms 1 and g1 can be combined with the complicated terms following

them to produce eq H-Zh. Simplifying the numerators of these terms

gives eq H-25, and combining common factors in the last two terms gives

eq H-26.

C

11-71- _ 1,, 1 -------------ff-1-§235fi1-1-§12§13 ............. 1

n11 (1 1 82"“11 1 “1231) 1 (A12 ' A11’132 ' 31) c2

(1 + s )(A + A s )

+ 31 In [ .................. 2---?1----??-1 ............... 1

(1 1 g21(1‘21 1 “2231) 1 (A22 ' A21’132 ' 51) c2

(1 1 g2"“11 1 “1231) 1 (A12 ' A11) (32 ' 31) c2

(A - A ) g (s - s ) c - (s - g )(A + A g )c

1 --??----2}---1---2----}---2 ..... 2----1---?!----2¥-}--2 (11-2211
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In G (1+s)(A +As)
---?1- - 1n 1 ................... z---11.---1z-1 ......... ,..... 1

“11 (1 1 82"“11 1 “1231) 1 (A12 ' A11)(32 ' 31) c2

(1 1 82"“21 1 “2231) l
+ g In [ -----------------------------------------------

1

‘1 1 g21(“21 1 “2231) 1 (A22 ‘ A211132 ' 31) c2

A12 (1 + 81)(82 ‘ 81) c2

- ................................................ (H-2S)

G

31-71- - 1, 1 ............. f3-1-§z?ffz1-f-fzz§13 ............. 1

11 (1 1 g2"“11 1 “1231) 1 (A12 ' A111(32 ' 31) c2

(1 + g )(A + A g )
2 21 22 l

+ 8 1n [ ............................................... 1

l

n

+ (1 + gl)(g2 - 31) c2 °

Further simplification is provided by replacing A11 and A22 with l to

give eq H-27. This is allowed because the interaction parameter of a

group with itself, Akk’ is always defined as unity .This equation is

identical to eq 9 except that eq H-27 gives the ratio In 116 / n11 for

component 1, while eq 9 gives the ratio In 11G / 1111 for the general

case of component 1. Eq 9 can be derived without detailed calculation

by consideration of the variables involved in eq H-27. When molecular

components 1 and 2 are interchanged, subscripts which depend on the
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assignment of molecular components will interchange: In 716 with In 726,

n11 with n12, g1 with g2, and c1 with oz. The remaining subscripts

depend on assignment of functional groups and are not affected by

changes in the assignment of molecular components. Eq 9 follows from eq

H-27 by changing subscript l to i and subscript 2 to j in each of the

variables where subscripts interchange when molecular components are

interchanged. This completes the derivation of eq 9.

G

In 11 1 (l + g2)(l + A1281)

------ - n [ ---------------—-------------------—----------- ]

(1 + s )(A + g )

+ g1 1n [ ------------------ g---21----} ------------------ ]

(1 '1' 82)(A21 + 81) '1' (1 ' A21)(52 ' 81) C2

+ (1 + 81)(82 ' 81) CZ '

1 ......................{‘12 .......................

(1 + 82)(1 + A1231) + (A12 - 1) (32 - 31) c2

.A

- ..................... 2!......................... 1 (11.271
(1 + 82)(A21 + 31) + (1 - A21) (32 - 31) c2

In 110 (1 + s )(1 + A1231)
...... - 1n .................1........................

n11 (l + gj)(l + A1231) + (gj - gi)(A12 - 1)cj

(1 + s )(A + g )

+ 81 In .................1---g}----§ .............

+ (1 + si)(zj - spaJ

1 .........{‘12 .....................

(1 + sj)(1 + A1231) + (sJ - 31)(A12 - 1)cJ

.A

- .................. 2!..................... 1 (91
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Eqs 10 and 11 are definitions of transformed interaction parameters,

which are used to derive eq 12, a simplified form of eq H-27. Begin by

dividing each of the four terms of eq H-27 by the first term in the

denominator of that particular term to give eq H-28. The transformed

interaction parameters given by eqs 10 and 11 can immediately be

substituted in several places to given eq H-29.

In 716 l

------ - ln [ ------------------------- ]

“11 1 1 ff13---135§2---§13-€2

(1 + g2><1 + A1231)

1

+ 31 In t ------------------------- 1

(1-A )(g -g)c

1 1 ------ Z}---?----l---?

(1 + g2)(A21 + g1)

+ (1 + 31)(32 - 31) c2 '

1 112-{-Eff-1-§z?ff-f-fze§13I

(1 + g2)<1 + A1231)

A / [(1 + g )(A + 8 )1

- -2} .......... 2---?}----}-- ) (H-28)

312 - """""""""" (10)

1231)

521 - """"""""" (11)

(1 + 32)(A21 + 31)
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In G

71
...... - - 1n (1 + 3

“11

1n (1 + B

12°21 ' g1 21°21

+ (1 + 81)(82 ° 81) c2 .

A12 / [(1 + 82)(1 + A12g1)]

( ...........................

l + 312c2

A / [(1 + g )(A + g )1

- -2} .......... 3---?}----!-- 1 (H-29)

Further rearrangement of the final terms of eq H-29 results in eq H-30.

Eqs H-31 and H-32 indicate how the final terms can be rewritten to

become eq 12.

G
In 11

~----- - - 1n (1 + BIZCZ) - g1 1n (1 + B

“11

+ c2 / (l + g2)

21c2)

1 112.5? 1 113512-: §1Z-{-f}-1-112§13

1 + Blzc2

A (1 + g )(g - g ) / (A + g )
- -?} ------- 1---?----} ...... g}----}- ) (H-30)

(g - g )(A - 1) (g - g )(1 + A g )

(1 + g2)312 + (g2 - g1) :- --g----1----]:g ..... + --g---_].' ....... 12-]:-

(l + A1281) (1 + A

(g - g )(1 + g ) A

- --?----} ....... 1---}? (H-3l)
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(82 ' 817(A21 + 81) 81(82 ' gl)(1 ' A21)

(32 - gl) - (1 + 82781812 - ------------------
-----------

(g g )(1 + g ) A

- --?----} ....... 1---?! (3-32)

(A21 + $1)

In 116

--;--' - ' 1n (1 + BIZCZ) ' 81 In (1 + 821C2)

11

C (82’81) + (1+82)812 (32-81) - (1+32)81321

1 --?- 1 ----------------------------------------- ) <12)

l+g2 l + Blzc2 l + 821c2

Eq 13 results from taking c2 equal to one in eq 12. Eqs 14 and 15

define a second set of transformed interaction parameters which are used

in deriving eq 16. Steps of this derivation are given as eqs H-33 to

H-36.

In 116 m

(--;---) - - 1n (1 + 312) - g1 1n (1 + 321)

11

1 (g -g ) + (1+3 )3 (g -g ) - (1+8 )8 B

1 1-3--1 ........ 2112 - "2-1 ........ 1-1-211 1131

1+g2 1 + 312 1 + 321

c12 - 1 + 312 (14)

c21 - 1 + 321 (15)

In 71G m

(--;---) - - 1n C12 g1 ln C21

11

1 (g -g ) + (1+3 )8 (g -g ) - (1+3 )8 B

1 ---- 1--?--1 ........ 2..1? - --?--1 -------- 2--1-¥11 (H-331

1132 C12 c21
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In 1
1 co

( ------ ) - - 1n C12 - g1 ln C21

“11

1 --T- 1f??2§13-T-f}f%zif?1z-Z-TZ - 5121113-:-511123115121-2-131

1132 C12 C21

(3-34)

In 7 (g -g ) (1+5 ) (1+8 )C

(----1-) - - In 012 g1 1n C21 + -_?__} -------- g -----g--1g

“11 (1132)C12 (11g2)c12

(g 'g ) + (1+3 )3 (1+3 )8 C

- "2-1 --------2-11 "-2-1-21 111-351

(11321021 (1132)021

1n 1 (1+g ) g + g g

(____1_)m - - 1n c12 - g1 1n c21 - ----- 1--- + 1 - —?----}-z + g1

n (1+3 )c (1+g )c
11 2 12 2 21

(H-36)

c
In 11 w l+g1 l g2

( ------ ) - - In 012 - g1 1n c21 - ---- (--- + ---) + (1+g1) (16)

“11 1132 c12 C21

A sufficient condition for eq 16 to result in a value of zero is given

by eq 17. This is proved by substitution in eq H-37 below. Eqs 18 to

20 result when g1 or g2 or both take on specific values. Eqs H-38 to

H-ha show these derivations from eq 16.

C12 1 C21 ‘ 1
(17)

In 11G m l+g1 l g2

( ------ ) - - 1n 1 - g 1n 1 - ---- (- + --) + (1+g )

n 1 1+ 1 l 1

11 82

1+g1

- - 0 - s (0) - ---- (1+3 ) + (1+3 )
l 2 l

1+g2

- - (1+gl) + (1+g1) - O (H-37)
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12

12

12

12

12

12

12
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1+0 1 g

- 0 In C - ---- (--- + -9-) + (1+0)

21 1+ C C

82 12 21

l l g2

- ---- (--- + ---) + 1

1152 C12 C21

1+g1 1 0

- g ln c - ---- (--- + ---) + (1+g )

1 21 1+0 C C 1

12 21

1

- g1 1n C21 + (1+g1)(1 - ---)

C12

1+0 1 g2

- 0 1n C21 - ---- (--- + ---) + (1+0)

1132 c12 “21

1 l g2 l

- (---) - <---> + 1
l+g2 C12 1+g2 021

1 1

- <0) <---> - (1) (---> + 1

C12 C21

1

- --- + 1

C21

(H-38)

(H-39)

(18)

(H-AO)

(H-Al)

(19)

(H-38)

(H-39)

(H-42)

(H-43)

(H-Ah)

(20)

Eq 21 defines the interaction parameter in terms of molar volumes and

interaction energies.

differentiated with respect to A

and H-46.

Eqs 22 and 23 result when eqs 14 and 15 are

and A12 21 respectively to give eqs H-AS



277

(l + g1)(l + A

C - ------------------- (14)

1231 1232)

- .............................. (3-45)

0 - ------------------ (15)

— ............................ (H-46)

Since A12, A21, g1, and g2 are all nonnegative, eqs H-hS and H-46 show

that Ck1 are monotone increasing (or decreasing) functions of Ak1

dependent upon the sign of g2 - g This implies that the minima and1.

maxima of Ak1 are also the minima and maxima of the functions Ckl(Akl)'

Eq 21 restricts Ak1 to take on positive values. Therefore, limits on

the values of Ck1 can be given by taking Ak1 equal to zero and

approaching infinity in eqs 14 and 15.

A12 - 0 (H-47)

A21 -> o (a-aa)

u+gpu+<my> u+gp
c12 - --------------------------- (n-49)

U+8QU+(mfi) a+gp

(1 + g )(A + s ) (1 + s ) (A + a ) (1 + g )

c _ ...... 1---?}----?....... l- --?}----?.......l- (1) (H-SO)

(1 + 32)(A21 + 31) (1 + 32) (A21 + 31) (1 + 32)
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A12 -> on (PI-51)

A - o (H-SZ)

C _ f?-1-§135?-1-?12§23 _ f?-1-§135?(§12-1-§23 _ 51-1-é13-éz 11-531

12 (1 + g2)<1 + A1281) <1 + 82)(1/A12 + 31) (1 + 32> 21

(1 + g )((0) + g ) (1 + g ) g

021 - ...... 1 ......... 2 ........ 1---? (H-54)

(1 + g2)((0) + 31) (1 + 82) 81

Eqs H-49, H-SO, H-53, and H-54 express the limits on C which can be

kl’

succintly written as eqs 22 and 23.

l+g1 1+g1 g2

---- < c12 , 021 < ------ when g2 > g1 (22)

l+g 1+8 8
2 2 1

1+g1 g2 l+g1

------ < C , C < ---- when g < g (23)
12 21 , 2 1

l+g2 g1 l+g2

Eqs H-SS and H-56 are derived by differentiating eq 16 with respect to

one of the Ck1 while the other is held constant. Since the function

will increase when its derivative is positive, eqs 24 and 25 result when

the right hand sides of eqs H-SS and H-S6 are set greater than zero.

1n ‘71 00 1+3]. 1 $2

( ------ ) - - In C - g In c - ---- (--- + ---) + (1+g ) (16)n 12 1 21 1+ 6 c 1

11 82 12 21

6 1n 1 | l l+g -l 1 l+g 1
1 1

----(----}-)”| - - --- - ---- 1---?) - --- (---- --- - 1) (H-SS)

5C12 “11 lc21 C12 1132 C12 C12 1132 C12

6 1n 1 I 8 1+8 3 1 1+8 8
1 1 1 2 1 2

----( ------ )°| - - --- - ---- <---§) - --- (---- --- - g1) (H-ss)

5°21 “11 lc12 c21 1132 c21 C21 1132 C21
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1 l+g1 1

--. (---- --- - 1) > 0 (3-57)

C12 1132 c12

l+g1 l

---- --- - l > 0 (H-53)

l+g2 012

l+g1 l 1 (H 59)

....... > -

1132 C12

l+g1 24

1:11;" “12 ‘ ’
2

1 1+g1 g2

--- 1---- --- - g1) > o (H-eo)

C21 1132 C21

1+g g

---1 -2- - 31 > o (H-61)

1132 C21

1+g g

--.l -3- > 31 (H-62)

1132 c21

1+g g

---1 -3 > c (25)
21

l+g2 g1

The permissible domain of Ck1 values given by eqs 22 and 23 is such that

either eq 24 will always be satisfied and eq 25 will never be satisfied,

or the opposite will occur. When g2 > g1, bounds are given by eq 22.

Eq 24 will never be satisfied so the function takes on its maximum at

the minimum possible 012 value; at the same time, eq 25 will always be

satisfied so the function takes on its maximum at the maximum possible

021 value. These values where the function takes on its maximum are

given by eqs 26 and 27. When g2 < g1, bounds are given by eq 23. Eq 24

will always be satisfied so the function takes on its maximum at the
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maximum possible C12 value; at the same time, eq 25 will never be

satisfied so the function takes on its maximum at the minimum possible

C21 value. This is the opposite of the case when g2 > g1. However, the

bounds of eq 23 are also the opposite of the bounds of eq 22, so eqs 26

and 27 hold regardless of the sign of g2 - g When the objective is to1.

minimize the function, the logic reverses and eqs 28 and 29 must hold.

1+g1

C12 - ---- (26)

1+g2

1+g g

c - ---1 -2 (27)

21 1+

g2 g1

1+g g

c12 - ---} -1 (23)

1+g2 g1

1+g1

C21 - ---- (29)

1+g2

Eqs 30 and 31 result from substitution of either eqs 26 and 27, or eqs

28 and 29, into eq 16.

C

In 11 1+g 1 g
m 1 2

1 ...... ) - - 1n c12 - g1 1n c21 - ---- 1--- + ---) + (1+g1) (16)
n 1+g C C
11 2 12 21

G

In 1 1+3 1+8 5
l

( nnnnnn ) - C 1n --.1 o g 1 (.n-} u?)

n11 max 1+g2 1+82 81

1+g 1+g 1+g g

1 2 2
- ---- (---- + g2 ..... l) + (1+81)

(H-63)



C

1n 1 1+8 8

(mi)co - (1+g1) ln ---3 + 31 In -1

n11 max 1+g1 g2

' (1181) + (1181)

G

In 1 1+g g

(----1'-)co - (1+g1) 1n ---g + g1 1n -}

n11 max 1+g1 g2

C

1n 1 1+g g 1+g

<----1->” - - 1n <---1 -?) - g1 1n ---1
n11 min 1+g2 g1 1+g2

1+g 1+g g 1+g2

- ---1 (---g -1 + g ----) + (1+g1)
1+g2 1+g1 g2 1+g1

C

1n 1 1+8 8 1+8

(----1-)” - - 1n (---1 -3> - 31 In ---1
n11 min 1+g2 g1 1+g2

g1
- -- - g2 + (1+g1)

82

ln 716 m 1+g2 g1

< ------ ) - (1+31) 1n ---- + 1n -- + (82'81)(" - 1)

n11 min 1+g1 g2
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(H-64)

(30)

(H-65)

(H-66)

(31)

Eqs 32 and 33 are generated by inverting eqs 14 and 15 to express the

Ak1 as functions of C .

k1

112 - f?-1-§1351-1-§12§z?

(1 + 82)(1 + A1281)

51-1-??? 1 $1-1-f1zézi

(1 + 31) 12 (1 + A1231)

51-1-92? 1 1 A g 51.1.??? c - 1 1 A g
(1 + 81) 12 12 1 (1 + 81) 12 12 2

ff-1-§23 c - 1 - A g - A g 1 53-1-???
(1 + 81) 12 12 2 12 l 12 (1 + 81)

(14)

(H-67)

(H-68)

(H-69)
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(1 + 32) C12 ‘ (1 + 51) ' A12 32‘1 + 51) ’ A12 31‘1 + 52) C12

A12 - --------------------------

82(1 + $1) ' 81(1 + 82)C12

(1 + gl)(A21 + 82)

021 - ------------------

(1 + 32)(A21 + 31)

f}-f-§23 C ffzz-f-§23

(1 + g1) 21 (A21 + 81)

A 5?-T-§23 c + 53-T-§23 c _ (A + g )
21 (1 + $1) 21 1 (1 + 81) 21 21 2

g f}-f-§23 C - g _ A - A f}-f-§23 C
1 (1 + 81) 21 2 21 21 (1 + 31) 21

21

(1 + 81) ' (1 + g2)C21

(H-70)

(32)

(15)

(H-71)

(H-72)

(H-72)

(H-73)

(33)

Table H-l. Equations Used in "Normalization and Bounding Properties

Inherent in Solution of Groups Activity Coefficient Models"

Xk - ...... T32T1-T-?32T2 ......

(“11+“21)x1 + (“12+“22)x2

c 1 1
In 11 - nli(1n F1 - 1n F1 ) + n21(1n F2 - 1n F2 )

x A x A

In Pk - -1n(XlAk1 + XZAkZ) + 1 - ----}-}¥-------- 2-25---

XA HA XA mA
1 11 2 12 1 21 2 22

i
In Pk - 1n Pk (x1 - 1)

(“11+“21)x1 + (“12+“22)x2

(l)

(2)

(3)

(4)

(5)
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X1 - ---}-- + ---g--

1 + g1 1 + g2

1“ 11 1 1
------ - (1n P1 - 1n P1 ) + gi(1n P2 - 1n F2 )

n11

In 116 (1 + g1><1 + A1231)
...... - 1n ----------------- ------------------------

(1 + 31)(A21 + 31)

+ gi 1n -------------------.---------------------

+ (1 + gi)(gJ - 31)cj '

1 ..................§1z .....................

(1 + gj)(1 + A1231) + (gj - 81)(A12 1)cj

- .................§z1 ..................... ,

(1 + gj)(A21 + 31) + (gj 31)(1 A21)cJ

(32 81)(A12 - 1)

B - ...................

12 (1 + g2)(1 + A12g1)

(82 - 31)(1 - A21)

B - ..................

21 (1 + g2>(A21 + 81)

1n 1 G

1
------ - - 1n (1 + 31202) - g1 1n (1 + 321c2)

n

11

1 .f2. 1f§22§13-f-fff§23?12 _ f§22§13-2-fo§23§1?21)

1+g2 1 + Blzc2 1 + 821c2

1n 1
1 co

(--;---) - - 1n (1 + 312) - 31 In (1 + 321)

11

1 ..T. 15§22§13-f-fo§zZ?12 - 5§22513-2-5}f§23§1?21,

1+g2 1 + 312 1 + 321

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)



(1 + 31)(1 + A1232)

(1 + 32)(1 + A1231)

(1 + gl)(A21 + 82)

21 21

(1 + 82)(A21 + 31)

G

In 11 co
1+g]. 1 82

( ------ ) - - In C - g In C - ---- (--- + ---) + (1+g )
n 12 1 21 1+ C C 1

11 82 12 21

C12 ' C21 ' 1

In 116 m 1 1 g2
( ------ ) - - In C - ---- (--- + ---) + 1

n 12 1+ C C

11 32 12 21

In 11G m 1

(--;---) - - 1n C12 - g1 1n C21 - (1+g1)(1 - 6--)

11
12

In 11C 1

( ------ ) - - In C - --- + 1

n 12 C

11 21

v (A - A )

Aij - -1 exp [ .. --!'J----I'¥- ]

vi RT

1+g 1+g1 g

---- < C , C < ------ when g > g
12 21 2 1

1+g2 1+g2 g1

1+g1 g2 1+g

------ < C12 , C21 < ---- when g2 < g1

1+g2 g1 1+g2

1+g

---- > c
12

1+g2

1+g1 g2

------ > C

1+g g 21

2 1

1+g1

C12 ' ""

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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1+g g

021 - ---1 -3 (27)

1+g2 g1

1+g g

C12 - ---l -g (28)

1+g2 gl

1+g1

C21 - ---- (29)

1+g2

G

In 11 w 1+g2 g1

( ------ ) - (1+g1) 1n ---- + g1 1n -- (30)

n11 max 1+g1 g2

G

In 11 m 1+g2 g1 1

< ------ ) - (1+g1) 1n ---- + 1n -- + (gz-gl><-- - 1) (31)
1111 min 1+g1 g2 g2

A12 - """"""""""""""""""" (32)

A21 - """"""""""""""" (33)

(1 + 31) - (1 + 32)021



APPENDIX 1.

Derivation of Equations in "A Diffusion Coefficient Model

for Polymer Devolatilization"

This appendix contains a more detailed derivation of the equations

presented in the reprint article ”A Diffusion Coefficient Model for

Polymer Devolatilization". This article was included as part of Chapter

A of the dissertation. In this appendix, equation numbers refer to the

manuscript article itself, beginning on page 21 of the dissertation.

New equations not included in the article are numbered with a preceding

letter I, e.g., I-l, I-2, etc.

Eqs 1 to 5 were taken from previously published work (Duda, Vrentas, Ju,

and Liu, 1982) and are not derived here.

DERIVATION 0F EQUATION 6

The first new equation is eq 6. It was derived from the expression for

the activity of solvent developed in Chapter 2 of this dissertation.

Definitions from Chapter 2 are given as eqs 1-1 and I-2, and are

differentiated with respect to mole fraction to give eqs I-3 and 1-4.

The second factor on the right hand side of eq I-3 is given as a

function of the size ratio 82/81 and mole fraction x in eq I-S, which
1
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is combined with eq 1-4 to give eq I-6 for the derivative of the

logarithm of activity coefficient, In 11, with respect to mole fraction

x Eq I-7 uses the chain rule is used to express the derivative1.

d ln 11 / d In x in terms of the derivative in eq I-6, which is
l

substituted to give eq I-8. The definition of activity in used in eq

 

 

 
 

I-9 to produce an expression for the derivative d In a1 / d In x1 in eq

I-lO.

In 11 - l - R1 - 1n R1 (I-l)

R1 - $1 / (Slx1 + 82x2) - l / (x1 + (82/81) x2) (I-2)

d In 1 dR l

1 l

—————-— - --- <1 - -> <I-3)

dxl dx1 R1

dR 1 S
l 2

-—— - 2 - <1 - -) <I-4)
dx1 (x1 + (82/81) x2) 81

1 $2 $2

1 - —— - l - (x + - x ) - (l - -)(l - x ) (I-5)

R 1 S 2 S 1
l l l

d In 1 1 S S
1 2

—-——- - 2 - <1 - —->(1 - —3><1 - x1)
dx1 (x1 + (82/81) x2) S1 81

2

[1 - (S /s )1 <1 - x ) [1 - (s /8 >12<1 - x >
_ 2 1 l _ 2 1 1 (I 6)

2 2 -

(x1 + <s2/sl> x2) [(82/81) + [1 - (sz/sl>1x11

d In 11 d In 11 dx1 d In 11

--———— - -—-——- - ———-—-— - x1 ———-——— (I-7)

d In x1 dx1 d In x1 dx1

2
d 1n 1 [1 - (S /S )] x (1 - x )

l _ 2 l 1 I (I-8)
 

d In X1 [(32/31) + [1" (82/81)]xllz
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3.33.31 - 3.33.3131 - 3.33.31 1 3.33.31 - 1 1 3.33.31 (1-9)

d In x1 d 1n x1 d 1n x1 d In x1 d 1n x1

[1 - (sz/sl>12x1<1 - x1)

[(82/51) + [1 - (82/8911512

[1 - (sz/slnzx1 - [1 - (82/8913:1

(82/81)2 + 2(82/81111 - (sz/slnx1 + [1 - (sz/slnzx1

2

_ <s2/sl> + [1 + (82/81)1[1 - (s2/81nx1 (1-10)

<32/8112 + 2(82/sl>11 - (s2/8111x1 + 11 - (82/81)]2x12

 - l +

2

 - 1 + 2

 

When eq I-lO is multiplied through by x to give eq I—ll, the left hand
2

side matches eq 6. The right hand side must be transformed from size

ratio and mole fraction variables to infinite dilution activity

coefficient 01do and weight fraction variables. Eqs I-12 and I-13

provide the concentration variable transformations, giving eq I-14 when

the substitutions are made in eq I-11 and numerator and denominator are

multiplied through by the square of the denominator of I-12. Inspection

of the denominator of eq I-lh shows it to be a perfect square as written

in eq I-15 and simplified in eq I-l6, while the numerator is simplified

by multiplying out some terms in eq I-lS, then cancelling in eq I-16.

 

2
x d ln a1 _ (52/51) x2 + [1 + (32/51)][1 - (82/81)]x1x2

2 d 1n x1 (32/31)2 + 2(32/51)[1 - (82/81)]x1 + [1 - (52/51)]2x12

(1-11)

X1 " (Hz/H1)V1 / [(M2ml)wl + V2] (1'12)

x2 - w2 / [(MZ/M1)w1 + w2] (I-13)
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2

(32/51) w2[(M2/M1)W1 + W2]

 

 

 

x d 1n a1 - + [1 + (82/81)][1 - (82/81)](M2/M1)w1w2

2 (1 ln x1 (sz/sl)2[(112/111)w1 + 11212

+ 2(32/81)[1 - (Sz/Sl)](HZ/M1)w1[(M2/M1)w1 + W2]

2 2

(I-lA)

2 2 2

(32/51) w2""2/1“1)"1 ‘3 (32(31) w2

2
x d In a1 - + (HZ/M1)w1w2 - (82/81) (Hz/M1)w1w2

2 d In X1 [(82/31)[(M2/M1)W1 + wzl + [1 - (32/31)](M2/M1)W1]2

(I-lS)

d In a (S /S )2w 2 + (M /M )w w

1 2 1 2 2 l 1 2
x2 —-———- - q 2 (I-l6)

d In x1 [(82/S1)w2 + (Hz/M1)w1]

When the result for the size ratio from Chapter 2, eq I-l7, is

substituted into eq I-16, eq I-18 results. Multiplication of numerator

and denominator by (Ml/M2)2 gives eq I-l9. When the assumption M << M
l 2

is made in eq I-19, eq 6 results.

32/81 - («e/01‘”) (112/111) <1-17)

d ln al - (e/Olm)2(M2/M1)2w22 + (Hz/M1)w1w2

2 d In x1 Ice/01‘”) (112/111w2 + (”z/"1"‘112

d In a1 (e/Olw)2w22 + (Ml/M2)w1w2

__ - 2 (1-19)

11

X  (I-18)

X
 

2 a

d ln x1 [(e/fl1 )w2 + w



 

 

  

r e . 1 2

A _; w2

p2V2p1 apl d In a1 01

<—>T - x2 ————- - (6)
RT apl ,p d 1n x1 e

w + -— w

l w 2

L 01 J

Eq 7 results directly from substitution of eq 6 into eq 2, then

substitution of that result into eq 1.

DERIVATION OF EQUATION 10

Eqs 8 and 9 define parameter groups which appear in eq 3. When eqs 8

and 9 are used in eq 3, it becomes eq 1-20. substitution of eqs I-20

and 4 into eq 7 results in eq 10.

v K K
FH 11 12

.. 1110121 + 1‘ - 131) + w2 (K22 + T - ng) (3)

1 1 1

1.311111 11.1, (a)
1 1 21 gl

A-lflgw(l( +T-T) (9)
2 2 22 g2

1

v
FH

—;— - Alw1 + A2w2 (1'20)

D01 - Do exp (-E/RT) (4)
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r 1 2
e

—— W A A *

01cc 2 -1(w1V1* + w2£V2 )

D - D exp [ ] (7)

01 e A

W1 + -—; W2 VFH

0
L l J

r e 1 2

—- W A A

01” 2 w1V1* + wzév; E

D - Do exp [- - -—] (10)

e w + A w RT

w + _ w A1 1 2 2

1 w 2

L 01 J

DERIVATION OF EQUATIONS 12, 12A, 123, 12C

Eq 11 is a Taylor (or Maclaurin) expansion of the function D(w1) about

the point w1 equal to zero. Eq 12c results when w1 is taken as zero (w2

will then equal one) in eq 10, as shown in eq I-21. For simplicity of

derivation, define F1 and F2 to be the two factors in eq 10 which are

functions of wl, allowing eq 10 to be rewritten as eq I-24, and eq 11,

the partial derivative of eq 10 with respect to w to be written as eq1.

I-25. The derivatives of F1 and F2 themselves are given and simplified

in eqs I-26 and I-27, and substituted back into eq I-25 to give eq I-28.

Removing common factors results in eq I-29, and recognition of the

leading factor as the right hand side of eq I-24 gives eq I-30. When W1

is taken as zero, eqs 1-31 and 1-32 result, simplifying the expression

for the derivative to eq I-33. Comparison of eq I-33 with eqs 11, 12,

12a, 12b, and 12c shows the set of equations to be identical.
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r e 12

—w A A

n” 2 o.v +1.ev* 1:
1 1 2

D-Do exp[- -_]

e Al-O + A2-1 RT

0+7].

L 01 1

“ *

E 5V2

D(O) - Do exp [ - (-- + ----) ]

RT A

2

1 e ‘

F32

F- 1
l

e

w + -—- w
1 m 2

1 01 1

6* 6* Ew1 1 + w2£ 2

F2 - exp [- - __]

Alw1 + Azw2 RT

2
D - D0 F1 (wl) F2(w1)

8D 3F 6F

—--D [112—3+? -21-' —1]

6w 0 1 6w 2 law

1 1 1

31’ 37* 131*A A A A {7* 1*__g_F .(w11 +"’2‘52)(1' 2"(1w1+ 2"2)(1 -€2)

2 2
awl (Alw1 + A2w2)

A G * Ahv *

_F 152 ("1+"2" 21 ("1‘”‘2’

2 2
(Alw1 + A2w2)

AVA}. Av”
152 ‘ 21

- F2 . 2

(Alw1 + A2w2)

(I-21)

(12c)

(I-22)

(I-23)

(I-24)

(I-25)

(I-26)
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aFI (w1 + (e/0131w2) <-<e/01”)) - (emfw2 <1 - (e/01°)>
 

  
 

 
 

 
 

 

 

 

m 2
awl (w1 + (e/O1 )w2)

o o 2

- -(e/01 )(w1 + wz) - -(e/01 ) - - F1

°° 2 O 2 an

(w1 + (e/n1 )"2) (w1 + (e/o1 )Vz) (e/n1 )

an A 3 * A G * 2F 3
2 1€ 2 ‘ 2 1 1

“‘ ' Do [F1 F2 ' 2 ' F2 ' m ]
6w1 (Alw1 + A2w2) (e/O1 )

an A 6 * 3 A 6 * 2?
2 15 2 ' 2 1 1

' Do F1 F2 ° [ 2 ' a 1
awl (Alw1 + A2w2) (e/O1 )

an 9 * 6 * 2F
A16 2 ’ A2 1 1(V1)

-- - D(W1) ° [ 2 ' -—-—;-l

6w1 (Alw1 + A2w2) (e/O1 )

an A 9 * A G * 2F 0

._ -D1o).[1‘2'21__1‘_’_]
2 a:

awl wl-O (Al-O + A2-1) (e/O1 )

F1<0) - («e/01°)2 / [o + (e/01°)-1]2 - (e/ol‘”)2 / (ea/01‘”)2 - 1

 
 

 

an A G * 9 * 2
1e 2 ' A2 1

_ - 13(0) ° [ 2 ' Q ]

aw1 wl-O A2 (e/fl1 )

a

n(wl) - D + --- (w1 - 0)

wl-O aw1 T,w1-0  

D(w1) - 0(0) [1 + (x1 - x2) wl]

E ev2*

D(0) - Do exp [ - (-- + ----) ]

RT A

2

G A G *
‘3‘1’E 2 ' 2 1

K1 """"2"""
A

(I-27)

(I-28)

(I-29)

(I-30)

(1-31)

(I-32)

(I-33)

(11)

(12)

(12c)

(12a)
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e

x2 - 2 / --5 <12b)

01

Eq 13 is the commonly used WLF equation for viscosity, as applied by

Duda, Vrentas, Ju, and Liu (1982).

Table I-1. Equations Used in "A Diffusion Coefficient Model for Polymer

Devolatilization". '

 

 

 

9 V p an
2 2 l 1

D - I)1 ------ (---).1. (1)
RT apl ,p

(w 6 + w 16 *)-1
l l 2 2

'D1 - D01 exp [ ------------------ l (2)

VFH

v K K
FH 11 12
-;- - w1(x21 + 'r - 1'81) + w2 (K22 + '1‘ - 1'82) (3)

D01 - Do exp (-E/RT) (4)

p V p 3p
2 2 l l 2

------ <---)T - (1 - ¢1) <1 - 2x¢1) (5)
RT 6p ,p

1

r e W 2

Q a d 1 nmwz
P2 2p1 “1 3 a1 1( )1 - x2 —-—-- - (6)
RT ap1 '9 d In x1 e

W + -— w

1 w 2

L 0 J 
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f 12

e

_w A A

0 Q 2 -1(w V * + w {V *)

D-D 1 ex[ 11 2 2]

01 P

e A

W1+—;W2 VFH

0
L 1 J

K

11

Al - --- w1 (K21 + T - Tgl)

‘7

K

12

A2 - --- w2 (K22 + T - T 2)

'7

r e 12

—w A A

0 2 * *

o n 01 "1V1 3 "25"2 E
- o epr- --—1

e Alw1 + A2w2 RT

w + —-— w

1 m 2

L 01 J

a

D(w1) - D + --- (w1 - 0)

wl-O awl T,w1-0

D(wl) - D(O) [l + (K1 - K2) wl]

AG 16*
152 ' 21

K ..............

l A 2

2

e

K2-2/‘3-;

l

A *

E 6V2

D(O) - Do exp [ - (-- + ----) ]

RT A

2

‘ *

5V1/K11
1n "1 - 1n A1 + .............

K + T - T

21 gl

(7)

(8)

(9)

(10)

(11)

(12)

(12a)

(12b)

(12c)

(13)
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