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ABSTRACT
THE EFFECT OF MECHANICAL TREATMENT OF MEAT PIECES

ON SENSORY PARAMETERS OF SECTIONED AND
FORMED PROCESSED MEATS

By

Jorge Fuentes Zapata

A study was designed and conducted to determine the
effects of tumbling time (60, 120 and 180 minutes); pressure
during tumbling (wvacuum and non vacuum); condition of the
meat (fresh and frozen and thawed meat); and brine injection

level (16% and 32%) on the nature of the exudate after tum-

bling and the quality parameters of sectioned and formed hams.

Results indicated that protein extraction from frozen
meat was faster than that from fresh meat with tumbling time.
Fat was extracted rapidly after a short period of tumbling,
and the use of vacuum during tumbling did not affect protein
and fat extraction. Longer tumbling periods and absence of
vacuum during tumbling increased lipid oxidation, with the
effect being more evident with frozen meat.

After brine pumping salt and nitrite were retained
better by fresh meat than frozen meat. Frozen meat tended
to absorb much of the cure during tumbling.

The use of vacuum did not contribute to myosin extrac-
tion when the meat was tumbled for 60 minutes. However, the
use of vacuum resulted in hams with good color distribution
and better tenderness and texture characteristics than those

tumbled without wvacuum.
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No differences in yields, calculated according to
Federal regualtions, were evident in hams from fresh and
frozen meat, indicating that frozen meat is quite suitable
for this type of processing.

Nitric oxide pigment content in hams was adversely
affected by vacuum during tumbling. However, color intensity
of the hams was not different.

Microscopic study showed a common pattern of increased
fiber disrupture in the tissue with tumbling time and in a
single muscle chunk going from the interior part to the
peripheral part. Fibers from frozen meat showed more damage
after tumbling than those from fresh meat. The use of vacuum
during tumbling eliminated presence of air bubbles in the
exudate.

There were some discrepancies in the direction of the
effects of the treatments on binding strength evaluated by
the Instron and by taste panel. However, both methods indi-
cated that hams pumped 167 bound significantly better than
those pumped 327%.

The use of vacuum during tumbling improved tenderness

of hams but not color distribution.
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INTRODUCTION

Ancient processing of meat products evolved as an art
and only in recent history have scientific principles and
advanced technologies been applied in meat processing. Today
approximately one out of seven pounds of meat produced in
most of the developed countries around the world is consumed
as sausage or other processed meat items. Since meat and
meat products play a key role in the diets of most cultures
by providing high quality proteins, minerals and vitamins
and a high satiety value to consumers, the demand for these
foods will no doubt remain high.

Although the origin of meat processing has been lost in
history, it most likely began when primitive man first dis-
covered that salt is an effective preservative and that
cooking prolongs the keeping quality of fresh meat. Today
processed meats are highly regarded for the convenience and
variety they provide to the meat portion of the diet. More-
over, increasing consumer demand for leaner meat, milder fla-
vor, tender texture and low levels of additives in cured
meats has encouraged the industry to experiment with new
processing developments.

Recently developed techniques in the production of

sectioned and formed meat products allow the retention of




the structural integrity of the original muscle source and

result in a greater uniformity than in the original pro-
duct. Such techniques have become widely used in the meat
industry in several European countries and in the United
States.

Although these processes are considered to be innova-
tive ones, they actually are adapted applications of ancient
principles. They attempt to form a stable heat set proteiﬁ

gel which will effectively bind legal limits of fat and

water in an attractive meat product packed so as to maintain
wholesomeness, appeal and palatability for a maximum length
of time.

Two of the most popular techniques used in the pro-
duction of sectioned and formed meats are massaging and tum-
bling. 1In both cases brine-injected muscle chunks are placed
in massagers or tumblers and subjected to wvarious mechanical
treatments. Mechanical work is then imparted to the chunks
of meat through a process of mixing, churning and pounding
in such a manner that the pieces of muscle become soft and
pliable and develop a creamy, tacky exudate on their surfaces
in the form of a protein coat. The protein coat is then
heat-coagulated by cooking to form a binding matrix between
muscle chunks which allows the product to possess the look
of "intact'" muscle foods, such as roast or hams.

The purpose of massaging and tumbling meat is to ensure
a quality finished product and to obtain the following objec-

tives: to maximize yields, impose color and binding, reduce






cooking time and loss, control added substances and reduce
inventory. The resultant uniformity of the brine distribu-
tion, the shortened curing time and the saved pickle are
equally important factors to consider in using these two
processsing techniques.

This study was designed to assess the mechanical effect
of tumbling meat pieces on the nature of the exudate and on
texture, cure distribution and acceptability parameters of
sectioned and formed boneless hams. Three specific objec-
tives were emphasized (1) the determination of the optimum
tumbling sequence of meat pieces for optimum bind, texture
and cure distribution characteristics, (the effect of vacuum
during the tumbling operation is also assessed at this point);
(2) the determination of the effect of the nature of the meat
source, (e.g. fresh hams versus frozen and thawed hams) on
bind, texture and cure distribution characteristics; and
(3) the determination of the effect of the pickle cure level

on the acceptance characteristics of the final product.



LITERATURE REVIEW

The Protein System in Pork Muscle

Muscle proteins, as they are organized and distributed
within the muscle, have traditionally been classified into
two main groups: extracellular and intrécellular proteins.
The former occur outside the sarcolemmal membrane and the
latter are contained inside that membrane (Asghar and Pear-
son, 1980).

A. Extracellular components: The connective tissue and the
proteins of the interstitial space constitute the extra-
cellular components. Morphologically, connective tissue
comprises three distinct components.

1. Fibrous proteins: The major fibrous proteins in the
extracellular spaces include collagen, elastin and
reticulin (Forrest et al., 1975).

2. Ground substance: The ground substance occupies the
extracellular space of the connective tissue and is
a viscous fluid derived from the plasma. It is com-
posed of globular mucoprotein (protein associated
with mucopolysaccharides), tropocollagen and tropo-
elastin (Asghar and Pearson, 1980).

3. Cells: Two types of cells are recognized: fixed




cells and wandering cells, the former include the
fibroblasts, undifferentiated mesenchyme cells and

adipose or fat storage cells (Forrest et al., 1975).

Intracellular proteins: Pork muscle cells contain a

large variety of proteins, many of which are involved in

the glycolytic pathway of muscle metabolism and the con-

traction relaxation process. These are the so-called

intracellular proteins, and they are further classified

into two main groups: the sarcoplasmic and the myo-

fibrillar proteins.

i

Sarcoplasmic proteins: Sarcoplasmic proteins are the
soluble proteins of the sarcoplasm located within the
sarcolemma. These proteins are soluble at ionic
strengths of 0.05 or less (Goll et al., 1974). They
comprise about 30 to 35% of the total muscle proteins.
They include a nuclear fraction, a mitochondrial
fraction, a microsomal fraction and a cytoplasmic
fraction, based on ultracentrifugation studies
(Asghar and Pearson, 1980). As many as 50 to 100
different proteins are known to constitute the sarco-
plasm (Goll et al., 1970). Some of these proteins
are the nucleoproteins and lipoproteins, the TCA
cycle and the electron transport chain enzymes,
myoglobin, as well as protein component of the
microsomes, sarcoplasmic reticulum, the T-system and
the lyzosomes.

Myofibrillar proteins are those components of the



unique myofibrillar system within muscle fibers.
They are further divided into two subclasses: (1)
the myofilamentous proteins, including myosin and
actin, and (2) the regulatory proteins, including
the tropomyosin-troponin complex, a- and B-actinins,
M-protein and C-protein (Maruyama and Ebashi, 1979).
According to Asghar and Pearson (1980) all these
proteins are involved either in muscle contraction

or in its regulation. A detailed discussion on

each of the contractile protein has been made by

Gergely (1966) and Briskey and Fukazawa (1971).

The Conversion of Pork Muscle to Meat

The conversion of muscle to the component tissue of a
cut of meat can be summarized as being the effects of the
degradation of ATP in the period from death to postrigor
It is true that commercial handling practices after slaughter
can influence the subsequent quality of meat, but they can
only do this within limits set by the physiological and bio-
chemical characteristics of an animal before and at the time
of slaughter (Lister, 1970).

According to Kastenschmidt (1970) the variable rate of
postmortem metabolism has important implications in the
ultimate usefulness of muscle as food. According to this
author '"'fast glycolyzing' muscle are those having a pH of 5.5
or less at 30 min. postmortem. ''Slow glycolyzing" muscle

have a pH of 6.0 or higher at 60 min. postmortem. ''Stress




resistant" animals are those which can withstand antemortem
stress and whose muscles after death are usually slow glyco-
lyzing. Finally, ''stress susceptible' animals are those which
cannot tolerate antemortem stress. They usually have fast-
glycolyzing muscle or expire before they can be exsanguinated.
It is generally accepted that the deficient water-binding
capacity of the pork meat is associated with a rapid pH fall
after slaughter due to rapid glycolysis. This type of meat
has been found less suitable for sausage manufacture and detri-
mental for the quality of canned hams (Wismer-Pedersen, 1969).
Numerous research efforts have been made to relate live
animal parameters to a judgment of the quality of postmortem
meat. A color and structure score (Wisconsin system) ranks
porcine meat from 1 being pale, soft and exudative (PSE) to
3 being normal to 5 being dark, firm and dry (DFD), (Cassens
et al., 1975). It is now known that meat from stress-suscep-
tible animals may be PSE, DFD or even normal in appearance,
depending on the handling of the animal before, during and
after slaughter. Cooper et al. (1969) made an attempt to
explain the cause of PSE condition in porcine muscle. These
authors found that stress-susceptible animals present skel-
etal muscle with a large number of intermediate fibers which
are dependent upon aerobic metabolism, but unlike typical
red fibers they have especially high ATPase and phosphorylase
activity, breaking down ATP and accelerating glycolysis to
trigger a rapid glycolytic rate in the entire muscle.

Additionally, even the regular white, and to a lesser extent




the regular red fibers have rather intense ATPase and
phosphorylase activity and further contribute to the accel-
eration of these metabolic phenomena in the muscles of stress-
susceptible animals. Merkel (1971a) found fewer capillaries
per square millimeter in PSE muscle. The fibers of PSE muscle
were also significantly larger. He concluded that PSE muscle
would be more predisposed to the development of anoxia.

There seems to be little doubt that PSE meat is less

desirable for certain processing procedures than is normal
meat. PSE hams have been reported to produce gelatinous
cookout losses with poor color and texture when compared to
normal hams (Cassens et al., 1975; Merkel, 1971b).

Myofibrillar Proteins and Functional
Properties of the Meat

The myofibrillar proteins and the connective tissue
proteins are fibrous and elongated and form viscous solutions
with large shear resistance. These properties together with
other lines of indirect evidence (Marsh, 1970; Marsh, 1972),
have led to the axiom that variation in meat tenderness is
directly and almost entirely the result of variations in the
state of myofibrillar and connective tissue protein fractions
(Goll et al., 1974).

Although tenderness is an important factor in processed
meat production, heat-gelling and emulsification properties are

critical characteristics in some types of processed meats such as



comminuted sausage, fine cut sausage and sectioned and formed
meat products. Again, myofibrillar proteins, especially
myosin, play a fundamental functional role (Briskey and
Fukazawa, 1971). According to these authors, myosin appears
to have a major influence, whereas actin has little influ-
ence on gelation. They also reported that when actin and
myosin are combined, however, gel strength is improved and
the complex binds more water than myosin alone. According
to Hamm and Hofman (1965) the heat coagulation of myofibril-
lar proteins is attributable to intermolecular associations
of side groups (other than sulfhydryl groups) on the mole-
cules. The experiments of Fukazawa et al. (196la, 1961b,
1961c) show myosin to be a key constituent of the desirable
binding quality in experimental sausage.

Trautman (1966) reported that muscle protein character-
istics and their food manufacturing properties are decidedly
influenced by the rate, temperature and extent of postmortem
pH decrease. Decreasing pH reduces salt-soluble protein
solubility and heat gelling properties. It also reduces the
solubility of water soluble proteins and releases free heme
from myoglobin.

The effect of heating on muscle systems, particularly
on myofibrillar proteins, has been studied by Hamm (1966).

He reported that changes in myofibrillar proteins at 30-50°C
include two steps: (1) an unfolding of peptide chain and (2)
the formation of relatively unstable cross linkages result-

ing in a tighter network of protein structure within the
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isoelectric range of pH. At 50-55°C a rearrangement of the
myofibrillar proteins occurs causing a delay in the changes
of water-holding capacity. At these temperatures new cross-
linkages begin to form. They are quite stable and cannot be
split by addition of weak base or acid. At 55-80°C most of
myofibrillar proteins are coagulated. Above 80°C disulfide
bonds form by oxidation of the sulfhydryl groups of acto-
myosin. Above 90°C H.S splits off from the sulfhydryl groups
of actomyosin.

Some other influences of heating on muscle systems
include changes in digestibility, a decrease in vitamins,
the development of the flavor and color of cooked meat, and
the change in tenderness, resulting from changes in collagen
molecules rather than changes in muscle proteins (Hamm, 1966).

Goll et al. (1964) studied solubility of myofibrillar
proteins after death. The authors found that significantly
greater amounts of protein could be extracted from bovine
muscle which had been excised immediately postmortem than
from muscles left attached to the skeleton, even after 312
hours postmortem. However, the excised muscles were the
least tender, these findings are in contradiction to those of
Hegarty et al. (1963), who found a positive relation between
myofibrillar protein solubility and tenderness. Sayre and
Briskey (1963), studying porcine muscle myofibrillar proteins
reported results similar to those by Goll et al. (1964).
They demonstrated that myofibrillar protein solubility

ranged from no reduction during the first 24 hours after
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death when pH remained high at rigor onset to 75% reduction
in muscle with low pH and high temperature at the onset of
rigor mortis. They also suggested that muscle protein solu-
bility appeared to be one of the major factors affecting the

juice-retaining properties of muscle.

The Process of Binding of Meat Pieces

Although an invention related to binding of chunks of
meat was patented in the early 1960's (Maas, 1963), little
work is found in the literature on the binding of pieces of
meat and the mechanism underlining such binding before 1970.
At this time, this type of binding became extremely important
for the poultry industry, expecially with the advent of new
products such as turkey loaves and rolls. In 1970 it was
estimated that 257 of all turkey meat was used in the pro-
duction of these convenience items, (Vadehra and Baker, 1970).
These authors found the binding of meat pieces, when appropri-
ately heated, to be complex and involve the following factors:
(1) water-holding capacity, (2) cell disrupture and breakage,
(3) release of intracellular material, (4) the myofibrillar
and connective tissue proteins, and (5) extraneous sources
of protein.

Maesso et al. (1970a) reported no difference in bind-
ing in turkey and broiler meat pieces (1 inch cubes). How-
ever, breast muscle was found to give better binding than
leg muscle. The difference in pH in these muscles was

reported to have some practical implications.
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Acton (1972a) reported a significant decrease in cook-
ing loss along with an increase in binding strength as meat
particle size become smaller in poultry loaves. Acton,
(1972b) also reported an increase in cooking loss as the
internal temperature of poultry loaves increases above 55°C.
Acton and McCaskill (1972) found that salt-soluble rather
than the water-soluble proteins in poultry meat are respon-
sible for increased meat binding and cooking yield.

Maesso et al. (1970b) reported that mechanical beat-
ing of meat releases the intracellular content of broken
muscle cells and causes a significant increase in binding.
They also reported an increase in binding by NaCl, Kena
(Na-tripolyphosphate, tetra-Na-pyrophosphate and Na-acid-
pyrophosphate) and hexametaphosphate. When NaCl was combined
with Kena they observed a significant additive effect.

MacFarlane et al. (1977) studied the ability of isolated
muscle proteins, actomyosin and myosin, to bind pieces of
meat together. They found that myosin is able to bind meat
pieces not previously subjected to mechanical agitation or
having salt added. Actomyosin was found to match myosin in
this respect only at high salt concentrations (1.2 and 1.4M).

Schnell et al. (1970) have clearly demonstrated the
importance of salt-soluble proteins in binding and reduction
of cook loss in chunk-type products. Moreover, these authors
concluded that salt-soluble proteins are not the only source
of binding materials.

Bard (1965) reported that extraction yields of salt
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soluble proteins are influenced by NaCl concentration, ex-
traction time, extraction temperature and the extent of rigor
development in the muscle tissue. The author stated that
there may be other factors of equal or even greater impor-
tance than those reported. Pepper and Schmidt (1975) showed
that both salt and phosphates increase the binding strength
and cook yield of beef rolls, and that binding strength is
higher in the salt-phosphate than in the salt treatments.
Similar results were reported by Moore et al. (1976) with
beef rolls. Furthermore, these authors reported that the
cook yield is closely associated with binding strength.

The effect of phosphates on salt-soluble protein ex-
tractability and binding strength of the sausages has been
studied by Fukazawa et al. (196lc). They concluded that the
ionic strength of the cured meat maintains a condition such
that the muscle structural protein is drawn to the outside
through the sarcolemma of the muscle cell and that such
action may be promoted by the use of phosphates. Further-
more, they stated that the binding quality of sausage has a
close relationship to the myosin A (myosin protein) content
and to the dissociable components of myosin B (actomyosin
complex) with phosphates having the effect of contributing
the dissociation of the complex. Fukazawa et al. (1961b)
pointed out the importance of suitable amounts of remaining
native myosin in fibrils for good binding properties.

The fact that the mechanism of binding between chunks

of meat is a heat initiated reaction, as described by Schnell
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et al. (1970) and Vedehra and Baker (1970) has led several
authors to investigate the gelation properties of myosin.
Ishioroshi et al. (1979) reported that the heat-induced gela-
tion of myosin is optimally developed at temperatures between
60 and 70°C and at pH 6.0 in 0.6 M KCl. Yasui et al. (1979)
showed similar results to those obtained by Ishioroshi et al.
(1979). Furthermore, these authors pointed out that the
heat-induced gelation of myosin may be the result of the
development of a three-dimensional network structure which
holds water in a less mobilized state. Samejima et al.
(1969) reported that heavy and light meromyosin fragments
have little influence on binding properties. They further
concluded that an intact molecule of myosin is required for
development of binding properties upon heating.

Schmidt et al. (1981) point out that the properties
characteristic of myosin gels suggest that the mechanism
behind the gelation of myosin involves the formation of
fairly stable bonds by irreversible changes in its quaternary
structure that are caused by heating.

Siegel and Schmidt (1979) found that the binding abil-
ity of crude myosin preparations are significantly greater
than the binding ability of either a muscle homogenate free
of fat and sarcoplasmic proteins (a total muscle homogenate)
or a non-protein control consisting of salt, phosphate and
water. They suggested that ionic interactions are implicated
in the binding phenomena.

Turner et al. (1979) reported that crude myosin
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extracted from postrigor bovine muscle has a potential use
as a meat binding agent, since no myosin was extracted from
muscles in either prerigor and postrigor state. They also
reported 1 M salt and 0.25% tripolyphosphate in the extracting
solution as the best concentrations to obtain maximum yields.

Ford et al. (1978) found significant correlatioms
between overall acceptability of restructured beef steak-
ettes containing added myosin and the flavor, juiciness,
tenderness and objective measurements in binding strength.
Significant correlations were also found between the objec-
tive and subjective assessments of binding strength.

Reynolds et al. (1978) studied the effects of ultra-
sonic treatment on binding strength in cured ham rolls.
They found that ultrasound causes changes in muscle micro-
structure, increases breaking strength, decreases cooking
loss and increases the extractability of salt-soluble pro-
tein.

The Technique of Tumbling and
Massaging Meat Pieces

The success of meat processing into sectioned and
formed meats has been reported by Schmidt (1978). He
pointed out that more than 284 million pounds of sectioned
and formed hams were produced under federal inspection in
1977. 1In addition, the same author lists nineteen patents

on sectioned and formed meat processes granted since 1963.
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Almost all these procedures included tumbling or massaging
procedures. Anonymous (1981), reported that according to
the U.S. Department of Agriculture, about 2 billion pounds
of boneless ham products were manufactured in 1979. About
50% of that tonnage was produced as smoked or cooked bone-
less or sectioned-and-formed hams (including water /added),
and 147 as canned products.

Tumbling, typically used in the domestic cured meat
industry, includes both tumbling and massaging action. Tum-
bling, per se, involves the result of "impact energy" influ-
ences on muscle such as would occur in allowing meat to fall
from the upper part of a rotating drum or striking it with
paddles or baffles. Such action leads to the transfer of
kinetic energy to the muscle mass and a resultant tempera-
ture rise of the processing material. Massaging is a less
physically rigorous process and involves '"frictional energy"
resulting from the rubbing of one meat surface on another or
on a smooth surface of a container (Weiss, 1974).

In both cases brine-injected muscle chunks are placed
in massagers or tumblers and subjected to various mechanical
treatments. Mechanical work is imparted to the chunks of
meat through a process of mixing, churning and pounding in
such a manner that the chunks of muscle become soft and pli-
able and develop a creamy, tacky exudate on their surfaces
in the form of a protein coat. The protein coat is then
heat coagulated by cooking to form a binding matrix between

muscle chunks which allows the product to possess the look
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of "intact" muscle foods such as roasts or hams (Theno et al.
1977).

Thus, the binding between meat chunks is concluded to
be a heat-mediated phenomenon which causes a structural rear-
rangement of the solubilized meat proteins, and renders them
more susceptible to essential protein binding. The forma-
tion of the protein matrix is therefore essential to optimal
binding in sectioned and formed products (Theno et al., 1976).

According to Schmidt (1979) the goal of these proce-
dures is the formation of a stable heat set protein gel that
will effectively bind legal limits of fat and water in an
attractive and palatable meat product packed in such a way
to remain wholesome, attractive and palatable for a maximum
length of time.

According to Starr (1979), in practice, the purpose of
massaging and tumbling meat are to ensure a quality finished
product and to obtain the following objectives: (1) maxi-
mizing yields, (2) impose color and binding, (3) reduce
cooking time, (4) control added substances, (5) reduce inven-
tory and (6) save curing brine. As stated by Woolen (1971)
perhaps the most important effect of mechanical working imparted
to the meat, other than high yield and homogeneous appearance,
is the evening out of the brine distribution and shortening of
curing time. This author also suggested that application of
tumbling to curing is best achieved by injecting the brine
before the first tumble. This process allows the absorption

and distribution of the brine. It is followed by a maturing



18

period, often ending with a second tumble, which is used for
the extraction of the salt-soluble proteins to provide for
the bonding of meat surfaces when meat is thermally processed.
This procedure has led to the development of automated tum-
blers in which a programmable system allows the meat chunks

to be tumbled under vacuum for predetermined intervals and
then to equilibrate before tumbled again (Anonymous, 1971).

In some equipment tumbling and massaging are combined.
Addis and Schanus (1979) reported on a vacuum massage tum-
bler designed in Europe. According to these authors, massag-
ing treatment is applied for 10 to 20 hours. Any brine not
absorbed by the meat during stitch pumping can be added to
the massaging vats and eventually incorporated during massag-
ing.

Weiss (1974) summarized the advantages and disadvan-
tages of tumbling and massaging. He lists the following
advantages: (1) improved brine penetration and uniformity of
dispersion; (2) uniform color development; (3) improved
release of salt-soluble protein enhancing product bind and
coherency; (4) development of a more uniform fine texture;
(5) improved yield during processing; (6) reduced product
weight loss during consumer preparation; (7) production of a
finished product with very desirable slicing characteristics.
The many disadvantages he lists include: (1) the initial
skinning, boning and defatting procedures require expertise
and precision; (2) the considerable massaging time required

to develop the qualitative aspects associated with the
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technique; (3) excessive massaging results in tissue integ-
rity destruction and adverse temperature rise; (4) excessive
moisture absorption adversely influencing finished product
coherency, bind and appeal; (5) massaging and tumbling equip-
ment primarily European in origin; (6) the technique employs
batch production units to produce desirable results; (7)
batch production units limited to 1500 pounds or less to
facilitate manufacture of finished products with superior
quality and consumer appeal.

Research in the United States on the effects of tum-
bling and massaging started in the 1970's. Siegel et al.
(1976 and 1978b) showed that as the massaging time increases
so does the level of fat and protein in the exudate of hams,
although these increases are more pronounced in the presence
of salt and phosphate.

The influence of tumbling and sodium tripolyphosphate
(Na-TPP) on salt and nitrite distribution in porcine muscle
was investigated by Krause et al. (1978a). The results indi-
cated that both Na-TPP and tumbling significantly increase
the migration of salt and nitrite and result in an increase
in cure color development. These observations agree with
those made by Okerman and Organisciak (1978). The results
by Krause et al. (1978a) also indicated that Na-TPP and tum-
bling increase the level of residual nitrite content, al-
though the tumbled hams have higher levels of cured meat pig-

ments formed.
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Krause et al. (1978b) studied the influence of tumbling,
tumbling time, trim and Na-TPP on quality and yield of cured
hams. They reported that tumbling has a significant influ-
ence on external appearance, internal ham color, slicability,
taste, yield and aroma. The most dramatic effect, however,
is on sliceability and yield. The authors also reported a
significant improvement in external color, sliceability,
taste and aroma and yield of cured hams independent of the
tumbling effect.

Rejt et al. (1978) used massage under vacuum in the
elaboration of canned hams. They observed that massaged
muscles show a definite change of structure, particularly of
surface layers, and an increased water-holding capacity.
After heat treatment hams show higher tenderness and lesser
cooking loss than the non-massaged meat. Siegel et al.
(1978b) reported that the massaging process involves great
degrees of tissue destruction at the cellular level which
aids in the extraction, solubilization, concentration and
distribution of the major myofibrillar proteins on surfaces
and interiors of muscle chunks. All these results of massag-
ing are beneficial to the improvement of binding. Theno et
al. (1978a, 1979b and 1978c) reported the observation of
light and scanning electron microscope microphotographs of
tumbled ham material. These authors indentified the pres-
ence of fiber fragments in the exudate of hams tumbled for
24 hours regardless of whether salt and phosphate were added

to the meat. The treatments with salt and phosphates showed
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clouds of solubilized protein. The length of massaging en-
hanced the effects in all treatments. Further massaging re-
sulted in longitudinal disruption of the fibers shown under
the scanning electron microscope. They also reported that
at low salt concentrations in the brines, the junctions
exhibited poor binding characteristics with high levels of
fat and cellular fragments as seen under the light microscope.
Junctions from rolls with adequate salt (22%) and phosphate
(0.5%) exhibited good binding characteristics. Cassidy et
al. (1978) made similar observations. In addition, however,
they reported that intermittent tumbling resulted in more
alterations in cell structure than continuous tumbling.

Ockerman et al. (1978) found increased cohesiveness
values in canned hams tumbled for 30 min. when meat was cured
with salt and tripolyphosphate. They also stated that tum-
bling for 30 min. is not sufficiently long to increase yield,
texture or sensory characteristics of hams.

Knipe et al. (1981l) studied the effeet of intermittent
tumbling and tumbling temperature on total aerobic plate
counts (ATPC) and quality of boneless, cured hams. They
showed that a significant rise in internal temperature of
the meat can be observed after 3 hours tumbling (10 min. tum-
bling, every hour, for 18 hours). They also reported that
the exudate ATPC is significantly reduced after 18 hours
tumbling.

Solomon et al. (1980) studied the effect of vacuum and

rigor condition on cure absorption in tumbled porcine
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muscles. Their results indicate that vacuum and prerigor
state independently increase the absorption of NaCl. They
also pointed out that vacuum is implicated in increased
binding functionality, since breaking strengths of ham
slices were found to be greater when vacuum tumbling was
used.

Non-meat Proteins in the Binding
of Meat Pieces

Hawley (1977) reported the use of non-meat proteins
along with the pumping brine as a technique for augmenting
intact muscle protein in hams. They recommended pumping to
1457 of green weight in order to obtain finished hams with
approximately a 130% yield when cooked (897 smokehouse
yield). The procedure also includes massaging or tumbling
to assure distribution and equilibration of the brine and
vacuum-mixing after tumbling to remove entrapped air from
the muscle.

Siegel et al. (1979b) studied the effects of various
levels of isolated soy protein (ISP) in combination hams.
They reported that massaging and ISP improves both binding
and cook yield. Increased levels of injection decrease bind-
ing strength and cooking yield. Massaging improves uniform-
ity, textural appeal and overall acceptability, but it de-
creases tenderness and does not effect juiciness and flavor.
In a similar study with ISP Siegel et al. (1979c) reported

that ISP occupies primarily perimysial spaces and that
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massaging acts to incorporate these proteins into the endo-
mysial spaces and mix them with extracted myofibrillar pro-
teins. According to the authors the ISP appears to enhance
myofibrillar protein extraction by binding water, thus in-

creasing the effective concentration of salt and phosphate.

Rardouche et al. (1978) used ISP at different levels
up to 3% with pre- and postrigor turkey in the preparation
of rolls. They concluded that as the level of ISP increases
the flavor, tenderness, texture and acceptability scores in-
crease, and the shear values decrease. They also reported
that the level of ISP has greater influence on the shear
value than the rigor state of the meat.

Siegel et al. (1979a) ranked the binding abilities of
several non-meat proteins in the presence of 8% salt and 2%
sodium tripolyphosphate from highest to lowest as wheat glu-
ten, egg white, corn gluten, calcium reduced dried skim milk,
bovine blood plasma, ISP and sodium caseinate.

New Trends in the Acceptance by Consumers of
Sectioned and Formed Meats

Considerable concern has been expressed over the cur-
rent dietary intake of fats and additives contained in
processed meats.

Kolari (1980) has discussed the salt dietary concern.
He concluded that, although current evidence does not pro-
vide the basis for drastically reducing salt dietary intake

for the general population, moderation needs to be considered
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for those at risk of developing essential hypertension.

Marsden (1980) reported that the contribution of the
processed meats to the sodium level in the American diet is
significant and the meat industry should be aware of its
involvement in this controversy. He concluded that sodium-
containing additives perform important technological func-
tions in addition to their contribution to flavor. Conse-
quently, if it becomes necessary to reduce the level of
sodium in processed meats, the amount of the reduction
should not be arbitrarily determined.

Nitrites present in processed meats are thought to pose
a health hazard by virtue of their ability to form N-nitro-
samines. Many of these compounds arecarcinogenic and, in
addition, some exhibit mutagenic, embryopathic or teratogenic
properties. Although there is no direct evidence the N-ni-
troéo compounds are carcinogenic to man, indirect proof from
animal studies on 12 species would suggest this potential
danger to man (Gray and Randall, 1979). The argument has
been made that ‘discontinuing the use of nitrite as a food
additive would greatly reduce or eliminate this risk (Tannen-
baum, 1979). However, according to the same author, the
risk that might exist from the use of nitrites according to
present regulations would be minuscle compared to those
resulting from the body's natural processes.

The other point of controversy concerns the fat con-
tent in meat and meat products as a major contributor to the

development of such chronic diseases as cardiovascular
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disease and cancer (Leveille, 1980). This author states
that, although there is no scientific evidence to support
the recommendation to reduce meat consumption, a challenge
should be made to the meat industry to reduce the fat con-
tent of both fresh and processed meats.

These points are part of the reasons why today con-
sumers exhibit new preferences related to processed meats.
They look for leaner and milder products containing lower
levels of fat and additives (salt, sodium, nitrite) than
previous products have contained.

The manufacture of sectioned and formed processed
meats may prove to be a process in which fat and additives
levels can be carefully controlled in order to produce a
finished product widely accepted by every segment of the

population.



MATERIAL AND METHODS

Description of the Experiment

The study was conducted in two parts in order to ratio-
nalize sample collection and duplicate processing yield
data. In the first experiment, conducted in the fall of
1980, 60 hams were assigned to fifteen processing treatment
groups. Four hams were used per treatment. The experiment
was duplicated in the winter of 1981 with 30 hams assigned
also to the processing treatment groups. However, only 2
hams (per treatment) were used in this second experiment.

The following sources of variation were considered in
the experiments:

A. Tumbling or massaging sequences. Three tumbling se-
quences were tested.

1. Sixty minutes of mechanical working of the meat was
accomplished by keeping the meat for 4 hours inside
the tumbler with 15 minutes tumbling and 45 minutes
pausing in each hour.

2. One hundred and twenty minutes mechanical working of
the meat was accomplished by keeping the meat for 8
hours inside the tumbler with 15 minutes tumbling
and 45 minutes pausing in each hour.

3. One hundred and eighty minutes mechanical working of

26
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the meat was accomplished by keeping the meat for 18
hours inside the tumbler with 10 minutes tumbling
and 50 minutes pausing in each hour.
B. Tumbling pressure effect: Two pressure conditions during
tumbling of the meat were studied.

1. Vacuum: Meats were tumbled for a period of time
given by the tumbling sequence treatment under 25
inches of Hg wvacuum.

2. Non-vacuum: Meats were tumbled as long as required

by the respective tumbling sequence at normal atmo-

spheric pressure.
C. Conditions of the meat: Two sources of meat were studied.
1. Frozen and thawed pork
2. Fresh pork
D. Level of brine injection: Two levels of brine injection,
based on raw meat weight, were studied.
1. Sixteen percent pumping
2. Thirty-two percent pumping
Processing treatments identified by code numbers are

shown in Table 1.

Statistical Design

The effects of tumbling sequence, tumbling pressure
and condition of the meat were analyzed by a 3-way analysis
of variance (ANOVA). This part of the design included treat-

ments 1-12, as shown in Table 2a.
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Table 2a - Processing treatments as arranged for statistical
analysis by 3-way ANOVA.

Tumbling Treatment Number

Sequence Vacuum Non Vacuum
min Fresh Frozen Fresh Frozen
60 10 9 12 11
120 6 5 8 7
180 2 1 4 3

The effects of tumbling sequence and level of brine

injection were statistically analyzed by a 2-way ANOVA.

This part of the design included treatments number 1, 5, 9,
13, 14 and 15, as shown in Table 2b. ANOVA was conducted

at the MSU Computer Center using the Statistical Package for
the Social Science (SPSS), version 8 (Nie et al., 1975).

Table 2b - Processing treatments as arranged for statistical
analysis by 2-way ANOVA.

Tumbling Treatment Number
Sequence 16% brine pumping 327 brine pumping
(min)
60 10 15
120 6 14
180 2 13

When significant differences were observed between

more than two means, the Bonferroni t statistics for
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nonorthogonal designed contrasts (Gill, 1978 and Neter and
Wasserman, 1974) was performed to determine which means were
significantly different. A part of the taste panel results
was analyzed by the Chi square method according to Steel and

Torrie (1960), and American Society for Testing and Materials

(1968) .

Source of Meat

Fresh pork was obtained from Peet Packing Co., Chesaning,

Mi. Although the requested weight for hams was 16 to 18 1lbs.

per unit, the hams arriving to our laboratory weighed between
14 and 22 1bs. Fresh hams intended to be used as a fresh
meat source were delivered in groups of 4 or 8 units, 1 or
2 days before the date of processing.

Fresh hams intended to be used as a frozen meat source
were delivered as a single batch at the beginning of the

experiment.

Preconditioning of Fresh Hams

Preconditioning of fresh hams is indicated in Figure 1
as the first stage of the processing flow chart. Fresh hams
used as a fresh meat source were vacuum packaged upon deliv-
ery into Cryovac ( polyvinylidene chloride) bags and kept in
a cooler at 2°C until processed. Fresh hams used as a frozen
source of meat were individually weighed upon delivery,
wrapped in butcher paper and vacuum packaged in Cryovac

bags. The packaged meats were then frozen and stored at
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-29°C. The frozen hams were taken out of the freezer as
needed and allowed to thaw in the cooler at 2°C for five or

six days before processing.

Processing and Sampling Operations

As the flow chart in Figure 1 indicates, the processing
of the meat is the second stage in the operation. At this
point fresh hams were individually weighed, skinned, boned
and separated into muscle groups and the fat was trimmed to
less than 1 mm thick. The weight of skin and fat, bones,
fines and trimmed muscles were recorded at this stage.

Five different muscle groups were identified and sepa-
rated from each ham: biceps femoris, semimembranous (with
gracilis attached), semitendinous, the quadriceps group
(commonly known as the knuckle of the ham) and the gastroc-
nemius group (commonly known as the mouse of the ham). The
trimmed ham muscles were then sampled (labeled as raw meat
sample) and analyzed for moisture, fat, protein and lipid
oxidation by the TBA method.

The meat was then injected with brine at either 16%
or 32% of the raw meat weight by using a stainless steel
pickle pump equipped with a spray multiple needle injection
system (Hubert Distributing Co., Cincinnati, OH. Catalog
numbers SS233EC, 4MH and SNCHA).

All brines contained high grade improved fine flake
salt (Diamond Crystal Salt Co., St. Clair, MI. ) sugar

(Monitor Sugar Company, Bay City, MI.), sodium tripolyphosphate
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(FMC Corp., Phosphorous Chemical Div., Newark, CA.), sodium
ascorbate (Permacurate Roche, Hoffman La Roche Inc., Nutley,
NJ.) and sodium nitrite (analytical reagent, Mallinckrodt
Inc., Paris, KY.). Brine compositions are shown in Table 3.
The brines were analyzed for salt and nitrite just before

the pumping of the meat.

Table 3 - Brine composition as used in the manufacturing
of boneless hams.

Ingredient Concentration in the brine, percent
Brine I (16% pumping) Brine 2 (32% pumping)
Salt 13.00 7.03
Sugar 4.87 2.63
Phosphate 1.62 .88
Ascorbate .36 .19
Nitrite .10 .05
Water 80.05 89.22

Pumped meat was then placed inside the tumbling machine
and tumbled as required by the respective processing treat-
ment in a cooler at 2°C. The tumbler used in this study was
a Roschermatic mixing, curing and massaging machine, model
MM 80 (RGscherwerke GmbH, Osnabrick, W. Germany), equipped
with a mixing arm rotating at 20 r.p.m. The drum was oper-
ated at an angle of 40° so that the mixing arm could always
grab the meat. Whenever vacuum was required, a Welch Duo-

Seal vacuum pump model 1405 (Sargent Welch Scientific Co.,
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Skokie, IL.) was used to pull 25 inches of Hg vacuum inside
the tumbler.

After mechanical working the meat was taken out of
the tumbler, weighed and sampled from the cores of the mus-
cles (labeled as tissue) and from the creamy exudate sur-
rounding the meat pieces (labeled as exudate). Tissue and
exudate samples were further analyzed for composition (pro-
tein, fat and moisture) by proximate analysis, lipid oxida-
tion, nitrite and salt. Exudate material was also analyzed
for soluble phase volume, protein content in the soluble
phase and character of the proteins in the soluble phase
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) .

Tumbled meat was then stuffed into prestuck clear
regular fibrous casings, 61 cm long and 14.2 cm diameter
(Union Carbide Corp., Chicago, IL.), by using a hand oper-
ated jiff net horn (Meat Packers and Butchers Supply Co.,
catalog number 81135, Los Angeles, CA). Full casings
were then tightly sealed using a hand operated stretch clip
machine, model J-1 (Global Industrial Machinery Corp.
Chicago, IL).

After stuffing, the product was labeled, weighed and
secured in tightly stretched stockinette clipped at either
end before cooking in a smokehouse.

Cooking of boneless hams was done in an Elek-Trol
laboratory smokehouse (Drying Systems Inc., Chicago, IL)

according to schedule shown in Table 4. All hams were
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cooked to an internal temperature of 68°C.

Table 4 - Smokehouse cooking schedule for boneless hams.

Temperature, °C Relative Time in
Dry Bulb Wet Bulb Humidity, % (hours)
60.0 43.9 40 2
71.1 53.3 40 6
80.0 61.1 40 4!

! This value represents an average time needed to reach
68°C internal temperature in the finished product.

After cooking, the temperature of the hams was brought
down overnight in a cooler at 2°C. Then, fully cooked hams
were sliced and sampled (labeled as ham). Hams were ana-
lyzed for moisture, fat and protein levels, lipid oxidation
(TBA), residual nitrite, salt, pigments (cured, total and
conversion) and color parameters. Hams were also sampled
for texture studies, taste panel and microscopy study on

the biceps femoris part of the finished product.

Methods of Analysis

1. Proximate analysis
a) Protein content was determined by the microKjeldahl
method for nitrogen according to AOAC (1965) proce-
dure. Results were expressed as protein percent
using 6.25 as a conversion factor for nitrogen values.

b) Moisture content was determined by the air drying
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method of the AOAC (1965) in convection oven at
102°C for 18 hours. Moisture was reported as weight
loss percent. Dried samples were saved for fat
determination.

c) Fat content was determined by extracting dried sam-
ples with anhydrous ether for 5 hours in Goldfisch
apparatus, as described in AOAC (1965).

Salt analyses were performed according to the official

Volhard method by the AOAC (1965).

Nitrite determination was made according to methods

described on a technical report by the United States

Department of Agriculture (USDA, 1979), as modified from

the AOAC (1965) method.

Lipid oxidation, as a measure of the rancidity of the meat,

was determined according to the method by Tarladgis et al.

(1960), modified by Zipser and Watts (1962), for cured meats.

Cured pigments, total pigments and pigment conversion

were determined by the method of Hornsey (1956), as

described by Konieco (1979).

Color determination was performed by using a Hunter Lab

Color/Difference Meter, model D 52-2 (Hunter Associates

Laboratory, Inc., Fairfax, VA.). The instrument was

standardized against a pink tile with values L = 67.6;

a=21.4 and b = 11.9.

Strength of the binding between pieces of meat was

assessed in the final product by using a Universal

Testing Instrument, model TTC, equipped with a tension
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load cell B, which was implemented with the appropriate
grip coupling (Instron Corp. Canton, MASS.). Ham pieces
approximately 1 cm thick, 2 cm width and 8 cm long and
containing a binding zone across the center of the ham
piece, were mechanically pulled apart at a constant speed
of 2.54 cm/min. The force needed to separate the pieces

of meat at the binding line was recorded in a chart
running at 2.54 cm/minand calibrated for 2.12 kg force
full scale deflection of the pen.

Soluble phase volume determination was made by weighing
20 g of exudate and 10 g of 3.9% w/v NaCl solution in a
100 ml homogenizing flask. The mixture was then blended
at a low speed in a Virtis "45" homogenizer (Virtis
Research Equipment, Gardiner, N.Y.) for 30 seconds.

Next, 10 g of the slurry were weighed in duplicate into
15 ml Corex centrifuge tubes and then centrifuged at

2°C for two hours at 40,000x g in a Sorvall refrigerated
centrifuge model RC2-B, equipped with a SS-34 rotor (Ivan
Sorvall, Inc., Norwalk, CONN.). After centrifugation 3
layers were clearly visible in the tubes: the upper
layer or fat cap, the intermediate layer or soluble phase
and the bottom layer composed mostly of connective tis-
sue and muscle tissue fragments. The fat cap was then
separated by a small spatula and the soluble phase was
allowed todrain into 15 ml graduated conical tubes pro-
vided with funnels with two layers of cheesecloth for

15 minutes inside a cooler room at 2°C. The collected
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fluid was expressed as soluble phase volume. One ml of

soluble phase was next diluted with 1 ml glycerol,

stirred in a Vortex tube mixer and stored in a freezer

at -20°C for further electrophoretic study.

Biuret analysis: Protein content in the soluble phase

was made by the microBiuret method described by Goa

(1953).

Sodium dodecyl sulfate-polyacrylamide gel electropho-

resis (SDS-PAGE) was done by the method of Weber and

Osborne (1969), modified by Porzio and Pearson (1977),

and adapted for pork muscle proteins as follows:

a)

Electrophoresis solutions

(1)

(2)

(3)

(4)

(3

Tris-Glycine stock solution (0.5M Tris; 1.5 M
Glycine) was prepared in a one-gallon plastic
bottle and stored at 2°C.

25% Acrylamide; 0.25% N,N-Methylenebisacrylamide
(BIS) stock solution was prepared and stored at
2°C in plastic bottle. This solution was for
10% gels cross-linked with BIS.

2.5% sodium dodecyl sulfate (SDS) solution was
stored at room temperature.

1% ammonium persulfate solution was prepared
immediately before using.

Chamber buffer solution (0.1% SDS, 0.20 M Tris-
Glycine, pH 8.8) was prepared by appropriate
dilution of solutions 1 and 3 and adjusted to

pH 8.8 with HC1l or NaOH solutions.




(6)

(7)

(8)
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Tracking dye solution was made of 1.0% SDS,

0.05 M Tris-HCl; 0.5% mercaptoethanol, 20%
glycerol and 0.01% Pyronin Y in distilled water.
pH was adjusted to 7.2 with 6N HCL and the solu-
tion stored in a plastic bottle in freezer at
-29°cC.

Staining solution was made of 50% methanol, 7%
glacial acetic acid and .033% Coomassie bril-

liant blue in distilled water. This solution

was prepared immediately before use.

Destaining solution was made of 7.5% glacial

acetic acid and 57 methanol in distilled water.

b) Gel Preparation

(1)

10 ml solution (2), 5 ml solution (1), 1.25 ml
glycerol, 1.0 ml solution (3), 0.01 ml of N,N,
N',N'-Tetramethylethylenediamine (TEMED), 6.75
ml of water and 1.0 ml solution (4) were com-
bined in a beaker with permanent but soft stir-
ring. The solution was then transferred to
running tubes and filled to 8 cm of the tube
length. Gels were then overlayed with water

and allowed to polymerize for 2 hours.

c) Sample preparation

(1)

Soluble phase samples stored in freezer in a
1:1 dilution with glycerol were appropriately
diluted with solution (6) to contain 0.4 mg pro-

tein/ml. Diluted samples were then heated in a
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boiling water bath for 5 min.

(2) A standard purified protein mix containing myo-
sin (MW : 200,000), bovine serum albumin (BSA)
(MW : 60,000), ovalbumin (MW : 45,000) and ly-
sozyme (MW : 15,000) was prepared in the same
way as the soluble phase proteins. These pro-
teins were mixed in equal parts to make a total
protein concentration of 0.4 mg protein/ml.

d) Electrophoresis

(1) The tubes containing the gels were placed in
the electrophoresis chamber. Next, the lower
and upper buffer chambers were filled with solu-
tion (5) and the gels loaded with 50 ul sample.
The entry of the sample into the gels was con-
ducted at a current of 0.2 mA per gel. After
the dye had completely entered, the current was
raised to 0.5 mA per gel and the migration con-
tinued until the dye front reached the tube end
(10 to 12 hours total run). Electrophoresis
was run in a cell Model 150 A connected to a
power supply Model 400 and the gels were further
destained in a diffusion chamber Model 172 A.
All these apparatuses were manufactured by Bio-
Rad (Bio-Rad Laboratories, Richmond, CA.).

e) Gel densitometry

(1) Gels were scanned using a Beckman DU Spectro-

photometer, Model 2400 (Beckman Instruments,
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Inc., Fullerton, CA.) equipped with a gel scan-
ner 2520 and a photometer 252 by Gilford (Gil-
ford Instrument Laboratories, Inc., Oberlin, OH).
This system was surfaced to an HP integrator
Model 3380 S (Hewlett Packard, Avondale, PA).
The gels were scanned at a rate of 1.0 cm/min.
and a chart speed of 2.0 cm/min. Start delay
and slope sensitivity settings were 0 and 3.0
mV/min., respectively. SDS-PAGE gels were
scanned at a wavelength of 550 nm. The rela-
tive areas of the individual protein peaks were
recorded. The relative mobility of the bands
was assessed from the total length of the gel
(or tracking dye migration distance) and from

the distances migrated by individual proteins.

11. Microscopy study.

a)

b)

Sample preparation and fixing: Finished hams were
sampled from the biceps femoris muscle by cutting
pieces of meat (approximately 20 mm long, 5 mm wide
and 2 mm thick) and keeping them in a 107 neutral
formalin solution.

Dehydrating, clearing and infiltration: This proce-
dure was carried out in an Autotechnicon Model 2 A
instrument (the Technicon Company, Chauncey, NY).
Fixed tissues first were placed in tissue buttons

and then in a basket carrier for the following immer-

sion schedule: 1 hour into each of two 70% ethanol



c)

d)

e)
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containers; 1 hour into an 80% ethanol container;

1 hour into each of two 957 ethanol containers;

1 hour into each of two 100% ethanol containers;

1 hour into a 50% ethanol - 50% xylene container;

1 hour into each of two 1007% xylene containers; and
2 hours into each of two liquid paraffin containers.
Paraffin used was '"Paraplast', m.p. 56-57°C (Scien-
tific Products, McGaw Park, IL) at about 60°C.
Imbedding: The infiltrated tissue preparations were

next imbedded into a plastic disposable boat (approx-

imately 2.5 cubic cm. volume) with melted paraffin
and allowed to cool down overnight at room tempera-
ture. Then the plastic boats were removed and dis-
carded.

Sectioning: Paraffin blocks containing tissue mater-
ial were mounted in a Minot-Mikrotome, Type 1212

(E. Leitz GMBH Wetzlar, Germany) and cut to a 6
micron thickness. Next, paraffin ribbons containing
the sectioned tissue material were floated in a warm
water bath containing 27 gelatin and pulled from the
ends to remove the wrinkles by stretching the tissue
material. The sections were then picked up on glass
slides by using a camel hair brush. They were
drained approximately 1 minute and finally dried on
a light bulb until the paraffin melted down.

Staining: Tissue samples were stained with Harris'

Hematoxylin and Eosine-Phloxine solutions according
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to Luna (1968), with the following schedule of slide
immersion: 5 min. into each of two xylene cells;
2 min. into each of two 100% ethanol cells; 2 min.
into a 95% ethanol cell; 2 min. into a 80% ethanol
cell; 2 min. into a distilled water cell; 10 min.
into a hematoxylin cell; 4 dips into a 1% HCl cell;
2 min. into a tap water cell, or until slide was
blue; 2 min. into an eosin cell; 2 dips into a 95%
ethanol cell; 2 dips into a 100% ethanol cell; 2 min.
into a 100% ethanol cell; 2 min. into a 50% ethanol-
50% xylene cell; 2 min. into a xylene cell and,
finally, 5 min. into a xylene cell.

f) Mounting: Stained preparations were covered with
1 or 2 drops of Pro-Texx mounting medium (Scientific
Products, McGraw Park, IL) and topped with a cover-
slip glass. These slides were allowed to air dry
overnight at room temperature.

g) Microscopic observation: This procedure was done
with either a Sterozoom microscope (Bausch and Lomb,
Rochester, NY) with 10X and 1X to 7X magnification
factors for ocular and objective lenses, respectively,
or with a Zeiss photo-microscope III (Carl Zeiss,
Oberkochen, West Germany) under 200X magnification
factor. Pictures were taken through both microscopes.

12. Taste Panel
a) A semi-trained taste panel was conducted in two

sessions with 12 panelists. In the first session



b)

c)
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panelists were instructed on the evaluation of slices
of hams by visual inspection. Three types of defects
were emphasized at this point: color uniformity,
surface texture and presence of non-muscle material.
The panelists were then asked to evaluate ham slices
corresponding to the 15 processing treatments used
in this study. The score sheet used in this trial
is shown in Appendix A-1. It was then demonstrated
to the panelists how to evaluate selected pieces of
ham for strength of the binding at the junction line
between two chunks of meat.
In the second session panelists were asked to evalu-
ate the binding strength by comparing pairs of sam-
ples. Four variables were studied in this trial:
times of tumbling (short tumbling time versus long
tumbling time); use of vacuum during tumbling ( vac-
uum versus non-vacuum); condition of the meat (fresh
pork versus frozen and thawed pork); and level of
brine pumping (16% pumping versus 32% pumping).
Panelists were also asked to evaluate the tenderness
or juiciness of the same samples by mouth feeling.
The score sheet for this trial is shown in Appendix
A-2.
Taste panel sample preparation
(1) Samples used in the first session for visual
inspection were ham slices (15 cm average dia-

meter and 1.5 cm average thickness). Ham slices



(2)

3)
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were shown at room temperature.

Samples used in the second session of the taste
panel for physical evaluation were cut as 8 cm
long, 3 cm width and 0.6 cm thick average ham
pieces containing a meat junction or seam line
across the length of the meat piece. Samples
were offered at room temperature.

Samples used in the second session of the taste
panel for mouth feeling or tenderness were cut
into 3 cm long by 3 cm width and 0.5 cm thick
ham pieces from zones of plain muscle in the
finished product. They were offered to the

panelists at room temperature.



RESULTS AND DISCUSSION

Chemical Composition of the Raw Meat

Fresh pork and frozen and thawed pork were compared for
moisture, protein and fat by proximate analysis and for ran-
cidity by the TBA method. Mean and standard error values
for these variables are shown in Table 5. No significant
differences (P50.01) between fresh and frozen meat were
detected at this point. Protein, fat and moisture content
of these meats are quite similar to those reported by
Kramlich et al. (1973) for thin separable raw-lean of the
pork ham. It is important to note that the low TBA values
found in the meats reflect a very sound condition of the raw
Pork in terms of lipid oxidation.

Table 5 - proximate composition and TBA values in raw pork
meat used in the manufacture of boneless hams.

Condition Moisture Fat Protein TBA N2
of the meat % % % mg malonaldehyde
e per 1000g sample
Fresh 71.60%1.31 7.42%1.70 19.94%.62 .135+.050
Frozen 70.02£1.65 8.91%2.07 20.43%+.74 .101%.044
'N=18

46
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Changes in Chemical Composition
Through Processing

Protein content of the meat in the tissue and exudate
after tumbling and in the final product is shown in Appendix
B-1. A significant increase (PS0.01) in protein content with
tumbling time was observed in the exudate from fresh meat
tumbled with or without vacuum (Figure 2a), but not in the
exudate of frozen meat (Figure 2b). Significant interactions
between the three factors in study (tumbling time, condition
of the meat and pressure during tumbling) are shown in the
analysis of the variance (ANOVA) table (Appendix C-1).

Figure 3 shows the effect of tumbling time on the protein
content in both the exudate and the ham for the meat pumped
with brine to 167% and 32%. Protein levels are significantly
lower in the exudate from meat injected 32% with brine than
those in the exudate from meat injected 16%. This is due to
the dilution effect of the higher level of water in the meat
system injected 32% with brine. The results also show a
significant increase (P$0.01) in protein in the exudate with
tumbling time (Figure 3a). The significant effects of tum-
bling time and pumping level on protein in the exudate as
well as the absence of interactions between these two factors
are shown in the corresponding ANOVA table (Appendix C-2).
Protein content in the hams pumped 32% brine were lower than
in those pumped 167 (Figure 3b). This was, probably, because
the final moisture content in hams pumped 32% was higher than

in those pumped 167%.
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Fat content in the tissue and exudate after tumbling
and in the final product is shown in Appendix B-2. Fat con-
tent in the exudate was significantly affected (P50.01) by
pressure during tumbling and by tumbling time (P=0.013) as
shown in ANOVA table in Appendix C;3. The interactions among
the three factors are shown in Figure 4. It is important to
note that fat level in the exudate increased soon after 60
minutes tumbling without vacuum. There seems to be a rapid
release of fat from the muscles to the exudate after a short
period of tumbling. This may be due to the fact that most
of the fat in the ham muscles is superficial rather than
intramuscular fat. Figure 5a shows the effects of tum-
bling time and pumping level on fat content in the exudate.
Although both effects, tumbling time and pumping level,
significantly affected fat percent in the exudate (Appendix
C-4), the direction of the interactions does not show a trend
of variation of fat content in the exudate and in the finished
product (Figures 5a and 5b).

Moisture content in tissue and exudate after tumbling
and in the final product is shown in Appendix B-3. Moisture
content in the exudate was found to be significantly affected
by tumbling time and pressure during tumbling (PS0.01), as
shown in the statistical analysis (Appendix C-5). However,
the direction of the interactions (Figures 6a and 6b) indi-
cates no clear effect of tumbling time, pressure during tum-
bling and condition of the meat on moisture content in the

exudate. A decrease in moisture level in the exudate should
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be expected as a consequence of the increase in protein and
fat together. Yet frozen meat rather than fresh meat was
found with this type of behavior as shown in Figure 6b. The
significant decrease in moisture in the exudate of frozen

meat tumbled without vacuum could be associated with an
increased water-holding capacity by the frozen meat with tum-
bling time. This observation tends to agree with those
reported by Rejt et al. (1978). These authors suggested

that loosening of the muscle structure, as a result of massage
or tumbling facilitated penetration of curing salt deep into
the muscle. This phenomenon may influence the water-holding
capacity of the meat, both with respect to water bound by
hydration centers and the so-called 'capillary water'". Fro-
zen meat seems to be more susceptible to tissue damage during
tumbling than fresh meat because of the physical stress of
freezing and thawing on the fibers. Therefore, water and cure
ingredients will penetrate frozen meat better than fresh

meat during tumbling.

The effect of pumping level on moisture content on the
exudate and the finished product is shown in Figures 7a and
7b. As expected, moisture content was lower in the meat
pumped 167 than in the meat pumped 327 in both the exudate
and ham. There is a clear tendency for the moisture to
decrease in the exudate and to increase in the finished pro-
duct with tumbling time. In the finished product the hams
apparently retained more water as tumbling time increased

arnd more protein was extracted. Again, an increase in
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water-holding capacity was apparent in the meat as tumbling
time increased.

TBA numbers for the meat system through the process
are shown in Appendix B-4. A significant effect (PS0.01) of
pressure during tumbling and tumbling time on exudate TBA
values was observed (Appendix C-6). The effect of vacuum was
evident with frozen meat but not with fresh meat as shown in
Figure 8a. The TBA values of frozen meat tumbled without
vacuum were significantly higher (Ps0.01) than those for fro-
zen meat tumbled under vacuum. This is most likely a result
of the presence of oxygen in the system without vacuum which
tends to accelerate lipid oxidation and thereby increase TBA
values. The effect of tumbling time is shown in Figure 8b.
Again the frozen meat showed TBA values which was signifi-
cantly higher (P<0.0l) at 180 min tumbling than at either
60 or 120 min. tumbling. The effect of pumping level on TBA
number in the exudate and the finished hams is shown in
Figures 9a and 9b, respectively. Percent pumping caused no
significant differences in TBA number of the exudate (Figure
9a and 9b). It is important to note that overall TBA values
in the meat system were quite low (less than 0.30) throughout
the process of manufacture of boneless hams. The presence
of nitrite in the cure seemed to protect the meat against
lipid oxidation quite efficiently through the process.
According to Kramlich et al. (1973), nitrite retards devel-
opment of rancidity in cured meats. Furthermore, Fooladi

et al. (1979) have reported that nitrite protects raw meats




57

£q pa31292)3a se ajasnu jyiod Jo ajepnxd ay)

*(10°054d) uaxaziyp

A13uedyjjuldys aie si1233a[ 3djaosiaadns
JUD13JJIP YITM 2A1ND 3WES 3 U0 SIUJOJ :ION
= = - = o= -

1eaw uazoag

jeam ysaiy O——

utw ‘awyl Buyyqung

cawy) 8ujrquny pue jeaw ayl jo uolljpuod
u} (@1dwes 3 gQoI/2opAyaplevojew Sw) 1aqunu yg) - g 2an1y

‘(1070 5d) ud12331p A[Iued

-1}1u81s 21v UO]ITPUOD IEAW Swes I 10j
1231971 3dyidsiadns JuD133JIp YITMm sieg :33I0N

wnNOeA-UON z
unndep mmu

Jeaw a3yl jJo uojIjpuo)

081 0zl 09 uazoay jeawm ysaiyg
| T T ]
-
£
e e
Al -
Ax
//m e -
/ X
’ -
/ 9
L]
n -
-
102339 aanssaad 1aa0 109330 awj) 3uppquny
padeiaae sangea vdl (q) 19n0 padeaaae vgl (®) 1

00°0

20°0

700

90°0

80°0

ot-o

1o

91°0

81°0

13qunu ygJ



58

*s7aA3] Juypdund pue awyl Buppquni £q pa3dayjIs
se (q) swey paysjujj pue (e) 23epnxa ioj (d7dues 3 QO1/2PAyapTeuofew Aue) iaqunu yqL - 6 21n3T4

*(10°0>d) uaI3dI3TP
£T3uedt3fudys 9i1e s1933197] 1dpidsiadns wnnoeA ‘jeaw ysaaj ‘Buydund y%zg¢ 0----9
JUSI3IFTP YITM 2AIND Bwes dY) U0 SIUFOJ 330N wnnoea ‘jesw ysaij ‘Supdund 397 O—€)

uyw ‘awfl Sugyqunj

081 (1TA 09 081 iTA 09
[\ Y T T - Y T | 00°0

71s0°0

01°0

s1°0

Wyl (9) | aivanxa (e)

0C°0

19qunu gl



59

against autoxidation, it also protects against oxidative
changes during cooking and against the rapid oxidation that
occurs during development of warmed-over flavor in cooked
meats. The results in this study also agree with observa-
tions made by Zipser et al. (1964). They reported that ni-
trite inhibits lipid oxidation in cured meats by converting
the meat pigments to the catalytically inactive ferrous ni-
tric oxide hemochromogen. The tumbling conditions used in
this experiment seemed to favor the protection of the meat
against lipid oxidation by nitrite since mechanical agita-
tion provided greater chance for nitrite to react with the
pigments during tumbling.

Salt content in the meat system is presented in Appendix
B-5. The small variation of salt concentration in the tissue
and exudate after tumbling that was observed, indicates that
this cure component diffuses quite well through the muscle
tissue after a short period of tumbling. A significant
effect of tumbling time was observed in the statistical anal-
ysis (Appendix C-7). The condition of the meat, tumbling
time and pressure during tumbling interactions are shown in
Figure 10. Salt concentration tended to decrease in the exu-
date from frozen meat with tumbling time (Figure 10b). Salt
in the frozen meat exudate after 180 min. was significantly
lower than that after 60 min. tumbling. The tendency of
salt to diffuse more easily in muscle subjected to freezer
storage may be due to the effect of cell disrupture by ice

crystal formation and/or growth during freezing. This
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alteration in the fibers may facilitate diffusion of small
ions like sodium and chloride into the muscle fibers.
Solomon et al. (1980) reported that vacuum during tumbling
significantly increased (P$0.0l) the absorption of NaCl. On
the other hand, Ockerman and Organisciak, (1978) reported
that tumbling improves cure diffusion. The results with
frozen meat in this study (Figure 10b) show that condition of
the meat rather than the use of vacuum during tumbling more
drastically affects the absorption of salt from the exudate
by the meat tissue. No significant effect of tumbling time
on salt in the exudate of the meat pumped 32% was observed
(Figure lla). Salt content in the finished hams was very
similar for the meat pumped either 167 or 327 with brine
(Figure 11b). These results show that salt concentration in
the 327 pumping brine was quite appropriate to obtain hams
with final salt concentration equivalent to those injected
16% with the high salt brine (Table 2 in Material and Methods
section).

Nitrite levels in the meat system are shown in Appen-
dix B-6. Residual nitrite level in hams was considerable
lower than those in the tissue and exudate after tumbling.
This effect is probably a result of the considerable amount
of nitrite reacting with ascorbate, myoglobin and other meat
components before and during cooking. According to Cassens
et al. (1979) nitrite reacts with myoglobin first to form
metmyoglobin, a brown pigment. However, under reducing

conditions, like the ones used in this study because of the
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presence of ascorbate in the brines, the color is converted
to the rather dark red of nitrosylmyoglobin. During cooking,
this pigment is converted into the stable nitrosylhemochrome,
which is pink. Nitrite can also react with non-heme protein
(Rubber¢d et al., 1974) binding to the sulfhydryl groups.
According to Goutefongea et al (1977) nitrite reacts with
adipose tissue when conditions are similar to those for meat
curing. Nitrite can also be converted into nitrate (Lee et
al., 1978), especially in the presence of the reductant
sodium ascorbate, as is the case in this study (Newmark
et al. 1974). Finally, nitrite can be converted into NO and
N, gases during the mixing stage of cured meat manufacture
(Sebranek et al. 1973). It was observed in this study that
during tumbling of the meat, nitrite finds great chances of
reaction inside the tumbler, not only with the meat components
discussed above but with ascorbate present in the cure brine.
It is important to note that during tumbling nitrite can also
interact with some components of the connective tissue frac-
tion of the meat, such as proline, which may lead to the
formation of nitrosamines in the final product (Gray and
Dugan, 1975). However, there are some factors during the
processing steps followed in this study which tend to decrease
the possibility of nitrosamine formation: (1) The source

of meat used in this experiment was quite low in both fat and
connective tissue (muscles were trimmed to less than 1 milli-
meter fat thickness) which decreases the proline content in

the meat. (2) The formation of various N-nitroso compounds
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can be blocked by the presence of ascorbate in the system.
According to Mirvish et al. (1972) the inhibitory effect of
ascorbate on formation of nitrosamines is that nitrite is
""used" so that it is unavailable for N-nitrosation because the
rate of reaction of nitrite with the reductant is greater
than it is with given amines in the system. (3) During cook-
ing of the meat internal temperature was raised to 68°C which
is below the critical temperature (80-100°C) at which N-nitro-
samine formation is accelerated (Gray and Dugan, 1975).
Tumbling time and pressure during tumbling significant-
ly affected (P<0.01) the content of nitrite in the exudate
(Appendix C-8). The significance of the interactions is
shown in Figure 12. Tumbling fresh meat under vacuum or
without vacuum resulted in significantly higher (P<0.01)
nitrite levels in the exudate after 180 min. tumbling. The
opposite pattern was observed for frozen meat (Figures 1l2a
and 12b). Assuming that the initial concentration of nitrite
in the exudate is higher than in the tissue (some injected
brine comes out of the tissue-right after stitch pumping),
then the recapture of nitrite by frozen meat seemed to be
more efficient than that by the fresh meat. Fresh meat pro-
bably retains the injected brine better than frozen meat in
that during extensive tumbling, the nitrite tends to leave
the tissue rather than to diffuse into it. The similarity
of the pattern of nitrite and salt diffusion from the exudate
to the tissue (Figures 10b and 12b) indicates that the fro-

zen meat tended to absorb much of the curing salts during tumbling.
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The Parameters of the Exudate

Table 6 shows average values for soluble phase volume.
A significant effect of tumbling time and condition of the
meat (PS0.0l) on soluble phase volume was detected (Appendix
C-9). A significant interaction between these two effects
is shown in Figure 13. A decrease in the volume of soluble
phase was observed with tumbling time. This occurrence was
more readily noticed in the system with frozen meat. It
appears that one of the reasons for the decrease in soluble
phase volume was the increase in relative viscosity ofithe
phase as both tumbling time and protein concentration
increased. Collection of soluble phase volumes from viscous
solutions was much more difficult because of the slow flow
of the material. As expected soluble phase volume for meat
32% pumped was slightly higher than that of from meat 167
pumped (Figure 14): This is probably because 327% pumped
meat showed a more fluid exudate with lower relative pro-

tein and fat concentrations.

Table 6 - Means! of soluble phase volume of the exudate
formed during tumbling of hams.

Tumbling Vacuum Non Vacuum
time (min) Fresh (ml) Frozen (ml) Fresh (ml) Frozen (ml)

60 6.15 5.10 6.00 5.70
120 4.05 3.65 5.45 2.90
180 4.85 - 5.65 2.65

'N = 2

Stat error = *0.32
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9 Soluble phase volume averaged
- over pressure factor
8 L
7 L
6 a
Soluble a a
phase 5 | S a/‘
volume, N
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Tumbling time, min
—— Fresh meat
meeeemee [rozen meat

Note: Mean points with different superscript along the same
curve are significantly different (P <0.01).

Figure 13 - Soluble phase volume (ml), averaged over the
pressure factor, as a function of tumbling time.
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Note: Points on the same curve with different superscript letters are
significantly different (P < 0.01)

Figure 14 - Soluble phase volume (ml) in the exudate as a
function of tumbling time and pumping level.
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The protein content of the soluble phase as determined
by Biuret method is shown in Table 7. Statistical analysis
for this variable showed significance (PS0.0l) in all the main
effects and interactions (Appendix C-10). Although tumbling
time did not affect the amount of protein in the exudate
soluble phase of fresh meat (Figure 15a), exudate soluble
phase from frozen meat showed protein levels, after 180 min.
tumbling significantly higher (P<0.0l) than those after 60
minutes tumbling (Figure 15b). This effect may be due, in
part, to the relatively high fragility in the muscle tissue
of frozen and thawed meat which may facilitate brine entry
to the tissue and protein release from the tissue to the
exudate. An estimation of the total amount of salt-soluble
protein in the soluble phase could be done by multiplying
soluble phase volume values (Table 6), by those of protein
in the soluble phase (Table 7). However these results
tended to show no substantial variation in the total amount
of salt-soluble protein extracted. As expected, the protein
content in the soluble phase of the meat injected 16% was
significantly higher (P20.01) than that of the meat injected
327%, with no significant effect of tumbling time (Figure 16).
Salt-soluble protein was, probably, more diluted in the
exudate of the 32% pumped meat than in that of the 167% pumped

meat.
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Table 7 - Mean' of protein content (mg/ml) in the soluble
phase as determined by the Biuret method.

Tumbling Vacuum Non Vacuum
time Fresh Frozen Fresh Frozen
(min.) (mg/ml) (mg/ml) (mg/ml) (mg/ml)
60 55.45 53.85 _ 58.05 46.70
120 58.75 54.90 54.75 58.00
180 58.80 97.40 52.90 69.40
IN =2

Std. error: *2.65
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60 pm
X
X
X
55 L
Protein
in 50 L
soluble
phase a
a "0
mg/ml Q—"'
45 L e
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/
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60 120 180

G———@ 167 pumping, fresh meat, vacuum
G-==~-Q 32% pumping, fresh meat, vacuum

Note: Points on the same curve with different
superscript letters are significantly
different (P<£0.01)

Figure 16 - Protein content (mg/ml) in the exudate soluble
phase as effected by tumbling time and pumping
level.
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Composition of the Soluble Phase

Figure 17 shows the relative mobility of several pro-
teins as obtained in sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) as a function of molecular
weight. The regression line shown in this figure was calcu-
lated and built on the basis of four standard proteins:
myosin heavy chain, MHC (Approximate MW = 200,000); bovine
serum albumin, BSA (Approximate MW = 60,000); ovalbumin
(Approximate MW = 45,000) and lysozyme (Approximate MW =
14,000). Next, the most common myofibrillar proteins were
marked on the standard line according to their molecular
weight and assigned a gel relative mobility wvalue. According
to this procedure eight major myofibrillar protein bands were
identified in our samples as shown in Table 8. Figure 18
illustrates the scanning of a gel with the major protein
bands showing different peaks. Relative concentration of
these proteins in the soluble phase were calculated from the
area under the band peaks in Figure 18. These values are
shown in Figures 19 and 20 as a function of tumbling time.

It is important to note that after 60 minutes of tum-
bling the relative concentration of the high molecular weight
proteins (myosin heavy chain; M-line and C-protein; a-actinin;
and tropomyosin ) are higher in the soluble phase of the meat
tumbled without vacuum than in the meat tumbled under vacuum.
The case of the myosin band is particularly important since

this major myofibrillar protein is primarily responsible for
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assigned to 8 of the most common myofibrillar proteins.

Figure No. 18 Scanning of a SDS-PAGE gel with the major bands
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(a) Myosin (b) M line protein
Z-protein
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[~ P Fresh meat, non-vacuum

Figure 19 - Relative concentration of Myosin (a); M~line protein and

Z-protein (b); a-actinin (c); and Tropomyosin complex (d)
in the exudate soluble phase as a function of tumbling time.
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Figure 20 - Relative concentration of G-actin (a); Troponin-T and high
MW Tropomyosin monomer (b); Low MW Tropomyosin monomer (c);
and Myosin light chains (d), in the exudate soluble phase as
a function of tumbling time.



79

the binding properties in this type of sectioned and formed
product (Hegarty, 1963). Statistical analysis showed a
significant effect of the condition of the meat and pressure
during tumbling on relative myosin concentration in the solu-
ble phase (Appendix C-11). After 60 minutes tumbling myosin
relative concentration was significantly higher (P50.01) in
both the fresh and frozen meats tumbled without vacuum than
in the same meats tumbled under vacuum (Figure 19a). 1In the
system with fresh meat tumbled under vacuum only after 180
minutes tumbling did the level of myosin reach a value com-
parable to that for the fresh meat tumbled 60 minutes with-
out vacuum (Figure 19a). This situation with myosin is quite
similar to the other three high molecular weight proteins
(Figures 19b, 19c¢, and 19d), which probably indicates that
the use of vacuum with short periods of tumbling did not
contribute to the extraction of myosin and the other high
molecular weight myofibrillar proteins. Low molecular weight
myofibrillar proteins (G-actin; troponin-T and tropomyosin
nonomer [36,000]; tropomyosin monomer [34,000]; and myosin
light chains) showed an opposite pattern of extraction.
After 60 minutes tumbling under vacuum fresh and frozen meat
tended to show higher relative concentrations of these low
molecular weight myofibrillar proteins than in the system
tumbled without vacuum (Figures 20a, 20b, 20c and 20d).
According to these results, after a short period of
tumbling (60 minutes) high molecular weight myofibrillar pro-

teins are higher in the exudate of the meat tumbled without
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vacuum than in that of the meat tumbled under vacuum (Figure
19). At the same time low molecular weight myofibrillar pro-
teins are higher in the exudate of the meat tumbled under
vacuum than in that of the meat tumbled under no vacuum (Fig-
ure 20). This pattern of protein extraction was not apparent
after 120 minutes and 180 minutes tumbling. These observa-
tions suggest that the use of vacuum during tumbling does not
necessarily contribute to the extraction of myofibrillar
proteins. Furthermore, the use of vacuum at the end of a
tumbling operation rather than throughout the whole process

of tumbling may be more advantageous for myosin extraction.

Parameters Related to the Final Product

Figure 21 shows processing steps affecting final pro-
cessing yield of hams. Pork meat injected 16% and 327% with
cure brine showed average processing yields of 100.5% and
112.3%, respectively. Figure 22 shows the effect of tumbling
time on actual ham yields. Statistical analysis for yields
showed a significant effect (P<0.01) of condition of the meat
(Appendix C-12). Although there is a trend for better per-
formance of fresh meat over frozen meat in terms of yield
(Figure 22), at only 120 minutes level of tumbling time this
effect was statistically significant (P$0.01). This differ-
ence in yield may occur because the water-holding capacity
of fresh meat appears to be better than that of frozen meat.
According to Kramlich et al. (1973) federal meat inspection

regulations recognize three ham categories depending on the
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FRESH FROZEN
MEAT MEAT
| T = THAWING LOSSES 0.29%
BONING
BONES 9.86%
= SKIN AND FAT 19.66%
‘ » FINES 13.61%
RAW MEAT
CURING BRINES 16.00% or
- 32.00%
TUMBLING]
» TUMBLING LOSSES 0.93%
STUFFING
= COOKING LOSSES 10.34% or
12.11%
COOKING
FINISHED
HAM
+ 'INAL YIELDS 100.50% or
STORAGE 112.30%

Note: Final yields calculated based on actual processing losses.

Figure 21 - Processing factors affecting final yields in the process
of manufacturing boneless hams.
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Note: Pairs of points belonging to the same meat condition with
different letters within the same tumbling time are signifi-
cantly different (P<0.01).

Figure 22 - Percent conversion of pork meat into boneless
ham as a function of tumbling time. Yields
calculated from actual processing losses.
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amount of added substance remaining in hams after processing.
Added substance refers to water and salt present in the cured
pfoduct in excess of the normal amount occurring in the un-
cured product. This control is exercised through calculation
based on chemical analysis. The following formula is used
for yields: estimated yield = 7 moisture + 7 salt - k x %
protein+ 100; (Kramlich et al. 1973). The protein multiplier
or k factor is an average figure representing the approxi-
mate ratio of moisture to protein. For smoked hams this
factor is 3.79. Table 9 shows the yield of the hams obtained
in this study as calculated according to the procedure fol-
lowed by federal inspection.

Table 9a - Estimated yields of hams as calculated by

Federal inspection procedures using 3.79 as
k factor.

Estimated yields according to Fed. inspection

Tumbling 167 pumping 32% pumping
time
(min.) Vacuum Non Vacuum Vacuum
- Fresh Frozen Fresh Frozen Fresh
60 107.82 99.6! 93.4! 98.21 . 116.13
120 101.82 103.52 97.8! 101.52 113.83
180 97.71 100.42 102.92 95.41 120.73

1Fully cooked hams with no label restrictions

2Fully cooked '"water-added'" hams (According to Federal
inspection)

‘Hams not eligible for sale.
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No labeling restrictions are imposed for those hams with
estimated yields equal or lower than 100%. Those hams with
added substance up to 107% are labeled '"water added" hams and
those with added substance over 107 are ineligible for sale.
according to Federal labeling restrictions (USDA, 1979b).

Our results show that 507% of the hams pumped 167% brine should
be classified as regular hams (no labeling restrictions) and
50% should be classified as water added hams. No appreciable
effect of processing treatments on estimated yields, as cal-
culated according to Federal inspection, was observed in this
study (Table 9). Hams pumped 327% with brine showed esti-
mated yields between 113.87% and 120.77% and they fall in the
category of not legal hams.

Cooking losses during thermal processing averaged 10.7%
with. a range from 10.0% to 12.4%. No significant differences
due to main effects and/or interactions were observed (Appen-
dix C-13). As expected, cooking losses for the meat injected
32% with brine were significantly higher (P<0.01) than those
for the meat injected 167% (Figure 23). According to Federal
inspection regulations the hams processed in this study are
fully cooked or ready-to-eat hams because they were cooked
to an internal temperature over 64.5°C (68°C actually).

Figures 24a and 24b show nitric oxide pigments content
and percent conversion (the fraction of the total pigments
converted into nitric oxide pigments), respectively, as
functions of tumbling time. From this figures it can be

noted that processing treatment did not drastically affect
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Figure 23 - Cooking losses (%) of the meat as a function of
tumbling time and pumping level.
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the content of nitric oxide pigments content and pigment
conversion in the meat. This is probably due to the multiple
needle stitch pumping system used in this study to inject the
muscles, which gives a relatively high initial concentration
of the cure inside the meat. Tumbling time produced a slight
increase in nitric oxide pigments and pigment conversion in
the meat tumbled without vacuum. This observation agrees
with results reported by Krause et al. (1978b). These
authors found a significant improvement in internal color of
hams tumbled for 18 hours over hams tumbled for 3 hours.
The effect of tumbling on the rate and uniformity of diffu-
sion of curing ingredients probably accounts for the color
development. The use of vacuum during tumbling, however,
did not improve nitric oxide pigment levels and/or pigment
conversion. Furthermore, the meat tumbled without wvacuum
showed higher levels of both nitric oxide pigments and pigment
conversion than that tumbled under vacuum after 180 minutes
(Figures 24a and 24b). Although no statistical analysis was
possible for these parameters the results tend to indicate
that vacuum during tumbling does not have a beneficial effect
on pigment conversion and nitric oxide pigments in the meat.
No noticeable effect of brine pumping level on nitric oxide
pigments or pigment conversion was observed (Figure 25).
Figure 26 shows L, a and b color parameters for ham
slices as measured by the Hunter color meter. Although a
significant effect (P<0.01) of tumbling time on L, a and b

color parameters was shown in the statistical study
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Curing
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Figure 24 - Nitric oxide pigment content (a) and percent pig-
ment conversion (b) in hams as a function of tumbling time.
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(a) Nitric oxide pigments
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Figure 25 - Nitric oxide pigments (a) and percent pigment
conversion (b) as a function of tumbling time
and pumping level.
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Figure 26 - Color parameter L (I); a (II) and b (III) in the slices as
a function of tumbling time.
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(Appendices C-14; C-15; and C-16), no trends were evident in
the study of the interactions shown in Figures 26(I); 26(1I),
and 26(III). No relationship between this color determina-
tion and the level of nitric oxide pigments discussed above
was found either. The main limitation of the assessment of
color in the ham by this technique is, of course, the rela-
tively large variability in color intensity from one type of
muscle to another within the same ham piece.

Results from the microscopy study are shown in the
next series of microphotographs. Figures 27 to 29 show the
effect of tumbling on the muscular fiber arrangement in a
transversal cut through the tissue. This effect goes from
a state in which the fibers are quite ordered, showing cir-
cular sections characteristic of intact fresh muscle, and
with very little exudate material around them after 60 min.
tumbling (Figure 27); to a state in which considerable amount
of soluble protein can be seen around the’fibers, with
increased spacing between fibers and some degree of cell
disrupture, after 120 min. tumbling (Figure 28); and to a
state in which the fibers have lost their circular shape to
the transversal cut, with large spaces filled by protein
exudate, air bubbles and/or fat globules (Figure 29).

These pictures are quite similar to those reported by Rejt
et al. (1978), for massaged porcine bicep femoris muscles.
However the presence of exudate material among the fibers is
much more evident in the pictures shown in this study than

those by Rejt et al. (1978). A similar pattern of fiber
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FIGURE 27. Microphotograph of the cross section
of bicep femoris fibers in ham from

fresh meat, vacuum, 60 minutes tumb-
ling (X80).

FIGURE 28. Microphotograph of the cross section
of bicep femoris fibers in ham from

fresh meat, vacuum, 120 minutes tumb-
ling (X80).
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L e B d

FIGURE 29. Microphotograph of the cross section
of bicep femoris fibers in ham from
fresh meat, vacuum, 180 minutes tumb-
ling (X80).

FIGURE 30. Microphotograph of the longitudinal
cut of bicep femoris fibers in ham
from fresh meat, non vacuum, 60 minu-
tes tumbling (X80).
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damage with tumbling time could be observed when the muscle
was cut along the direction of the fibers (Figures 30, 31
and 32). It was also evident that tissue fibers damage was
greater on the periphery of the muscle chunks than in the
interior part of the meat. These observations indicate that
the pattern of tissue disruption with tumbling observed in
this study can be found in a single chunk muscle which has
been tumbled for a relatively short period of time by sampling
at different locations from the interior to the periphery of
the meat piece. The pattern can also be found in a muscle
which is sampled at about the same location but at different
times during the tumbling operation. Figure 33 shows a typi-
cal seam area in which two chunks of meat bind together.
The cross sections of the fibers from one of the meat pieces
can be seen in the left side of the picture, separated from
the exudate material by some connective tissue layer. Some
fat droplets or air bubbles can be seen in the exudate in the
lower right corner of the picture. Tumbling seems to have
considerably damaged the fibers near the edge of the tissue
as the large spacing among them and their irregular shape at
the transversal cut demonstrate. Yet, this damage resulted
from a processing treatment which used an intermediate tum-
bling length (120 min.).

The effect of vacuum during tumbling can be seen in
Figures 34 and 35. In the former picture the exudate soluble
material appears to be quite homogeneous on the edge of the

tissue with a few small fat droplets. In the latter picture
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FIGURE 31. Microphotograph of the longitudinal
cut of bicep femoris fibers in ham

from fresh meat, non vacuum, 120 min-
utes tumbling (X64).

FIGURE 32.

Microphotograph of the longitudinal
cut of bicep femoris fibers in ham

from fresh meat, non vacuum, 180 min-
utes tumbling (X80).

%
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FIGURE 33. Microphotograph of a seam or binding
junction area in ham from fresh meat,
vacuum and 120 minutes tumbling (X64).
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FIGURE 34. Microphotograph of a seam or binding
junction area in ham from fresh meat,
vacuum, 120 minutes tumbling (X64).

FIGURE 35. Microphotograph of a seam or binding
junction area in ham from fresh meat,
non vacuum, 120 minutes tumbling (X64).
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the exudated soluble material on the left side of the picture
shows some air bubbles. Picture 8 belongs to a ham tumbled
under vacuum for 120 min. and picture 9 to a ham tumbled
without vacuum for 120 min. The use of vacuum during tum-
bling seems to eliminate much of the air entrapped in the
tissue and exudate. This effect will produce hams with a
more uniform surface texture and better binding. A foamy
exudate interfers with binding (Anonymous, 1981). The
effect of the condition of the meat used in this study can
be observed in Figures 36 and 37. The former one shows a
transversal cut across the fibers of a ham piece from fro-
Zzen and thawed muscle, and the latter one of a fresh muscle.
Both preparations belong to treatments tumbled under vacuum
for 120 minutes. The damage produced by the tumbling oper-
ation is much more evident in the tissue from frozen and
thawed meat than in that from fresh meat. Fibers from frozen
and thawed muscle seemed to be more fragile than those from
fresh muscle, the reason probably being the physical stress
on the fibers during freezing and thawing. No clear differ-
€nces due to pumping level were observed in the tissue under
the 1light microscope.

Binding strength in ham pieces is shown in Table 10
in the form of tensile strength parameters (g/cm?) obtained
With the Instron universal testing machine. These results
indicated that meat tumbled without vacuum binds signifi-
Cantly better (PS0.01) than the meat tumbled under vacuum,

for processing conditions which included fresh meat tumbled
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FIGURE 36. Microphotograph of a cross section

of bicep femoris fibers in ham from

frozen meat, vacuum, 120 minutes tumb-
ling (X80).

FIGURE 37. Microphotograph of a cross section
of bicep femoris fibers in ham from

fresh meat, vacuum, 120 minutes tumb-
ling (X80).
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Table 10 - Tensile strength values (g/cm?) measured to
separate pieces of hams by the seam or bind-

ing area.
TREATMENT
IDENTIFICATION PROCESSING FACTOR TENSILE STRENGTH
NUMBER TESTED g/cm?
2 Vacuum 513.4%: 11.3
Vs b
4 Non Vacuum 922.27°+ 84.9
11 Frozen meat 86.9%+ 20.3
Vs
12 Fresh meat 155.0°+ 12.3
3 Long tumbling 193.3%: 27.5
vs
11 Short tumbling 86.9%+ 20.3
10 16% pumping 331.7%: 42.2
15 32% pumping 256.3%: 31.2

'Means (within the same processing factor tested) with
different superscript letters are significantly different
" (P20.01).

N=3
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for 180 minutes. Although a better binding was expected

with vacuum tumbling, the values of binding for both treat-
ments under comparison are far above those needed for good
slicing properties in the ham. According to Theno et al.
(1978c), 100 g/cm2 binding strength is necessary for ham
rolls to exhibit acceptable slicing characteristics. Anon-
ymous (1981) reported that with vacuum tumbling a bind of
200 g/cm2 between muscle sections was considered good for
sliced product and was achieved in about four hours.

Results in Table 10 also show, as expected, that fresh meat
bound significantly better than frozen meat, longer tumbling
bound significantly better than short tumbling and 16%
pumping better than 327 pumping. It is important to note,
however, that this physical determination involves a series
of factors which may lead to erroneous measurements or inter-
Pretation of the results. One such factor is the difficulty
to take the sample from the finished hams. It is hard to
localize seams or junction areas in highly trimmed pieces of
muscles like the ones used in this study. Sometimes the
direction of the fibers on one side of the seam runs parallel
Lo the seam line which makes it very easy to tear apart the
Meat rather than separate apart the chunks of meat, when the
Instron is used. Another factor which may lead to erroneous
Tesults is the fact that there are natural seams between
Muscles which can be mistaken in the final product for pro-
tein gseams between two individual chunks of meat. In this

Case the values of tensile strength will be misleadingly
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lower or higher depending on the density of the connective
tissue between muscles. Finally, there are several muscle
components in a ham piece with different intrinsic strength
or tenderness. Very tender muscles like the semi membranous
can be easily ruptured during the tensile strength determina-
tion of the bonding of meat'pieces.

Table 11 shows the overall appearance of ham slices by
visual inspection. According to these results the color
distribution in ham slices from meat tumbled without vacuum
was significantly more uniform than that in those from meat
tumbled under vacuum. This unexpected result might be due
to the great variability in color within some ham slices.
Since various types of muscles may be present in a same ham
slice the rate of cure penetration and/or the rate of color
development is probably different from one muscle type to
another. Some characteristics of muscle type such as firm-
ness, fat content and connective tissue content may effect
the rate of cure penetration. Moreover, some muscles in
POork ham present different proportions of white and red
fibers with the consequent difference in pigment level avail-
able to react with the cure. Red muscle fibers have a
higher myoglobin content, more lipid and higher activity of
OXidative enzymes than do white fibers. Lee et al. (1976)
found lower residual nitrite in cured meat made from white
Muscle than that in meat from red muscle. These authors
Yeported that the cause of this phenomena was the low pH of

White muscle. No significant differences were observed for
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Table 11 - Evaluation of the overall appearance of ham
slices by a visual inspection panel.

Characteristic evaluated,
expressed as a preference ratio

Treatment Processing COLOR SURFACE TEXTURE EXTRANEOUS MATERIAL
ID factor Uniform/ No defects/ Absence/
number tested Non Uniform defects Presence
1 Vacuum 0/12*% 2/10 9/3
vs
3 Non vacuum 6/6 2/10 5/7
5 Frozen 5/7 8/4 3/9
vs
6 Fresh 3/9 2/10 4/8
2 Long tumb. 6/6 7/5 0/12*
vs
10 Short tumb. 4/8 4/8 7/5
6 16% pump. 3/9 % 2/10 4/8
vs
14 327% pump. 11/1 3/9 5/7

1

Ratios with an asterisk mark within the same processing factor tested
are sgignificantly different (P<0.01).
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surface texture and presence of non-lean material in the ham
slices from meat tumbled with or without vacuum (Table 11).
Condition of the meat did not significantly affect color,
texture or presence of non-lean material in the ham slices.
Moreover, according to the panelists, tumbling time did not
affect color and surface texture of ham slices. Short tum-
bling time (60 minutes) however, produced a significantly
higher (P<0.05) presence of non-lean material, such as fat
and connective tissue. The meat pumped to 327 showed a
color uniformity that was significantly higher (P<0.05) than
that pumped to 167%. No significant differences were detected
for surface texture and presence of non-lean material in the
meat tumbled 16% and 32%. It should be noticed, however,
that the panel failed to detect surface texture differences
between the meat tumbled with and without vacuum. Probably,
the most evident organoleptic characteristic of the hams
obtained in this study was the different surface texture of
the hams tumbled under vacuum and no vacuum. The use of
Vacuum produced hams with a very uniform and homogeneous
Surface texture; seams or binding joints between chunks of
Meat were very hard to localize in these products and the
wWhole piece of ham had the appearance of an intact muscle
Product. When the meat was tumbled without vacuum hams
Sshowed a fine porosity at the seam areas and in some muscle
Or tissue area. In other words, the effect of air bubbles
©limination by vacuum was usually apparent on the final pro-

duct ypon slicing the hams.
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Table 12 shows the binding strength of ham pieces as
evaluated by the taste panel. No significant differences
were detected at this point as consequence of tumbling time
and pressure during tumbling. Frozen meat bound significantly
stronger than fresh meat, a situation opposite to that found
with the use of the Instron, above. Sixteen percent pumping
produced hams which bound significantly better than those
pumped 32% brine, which agree with the results obtained by
the objective evaluation of binding using the Instron (Table
10).

It should be noted that values presented in Table 12
represent 24 observations per factor tested (a twelve persons
panel judging the same treatment samples in two sessions).
Although the group of people participating in this ham quality
evaluation was supposed to be a semi-trained panel high
variability in the scoring was observed. Scores from the
first session did not correlate well with those from the
Second session. This fact indicates that taste panel eval-
uation of binding strength in ham pieces is a quite subjec-
tive estimation of the force necessary to separate pieces
Of meat at the binding junction or seam line. Among the
factors involved in this problem are the difficulty in
Selecting and preparing samples, the difference, in binding
at different points in the same seam or junction line, the
Way the panelist pulls the pieces of meat apart, the judg-
Mment by the panelist of the binding strength, etc.

Table 13 indicates the values of tenderness of ham




105

Table 12 - Evaluation of binding strength between pieces of
meat in a ham slice by semi-trained panelists.’

Panelist preference for binding strength

Coding of Factor A stronger B stronger Cannot tell
treatments tested than B than A the difference
A = treatment 1 Vacuum
vs 102 1128 3
B = treatment 3 Non Vacuum
A = treatment 5 Frozen
vs 148 40 6
B = treatment 6 Fresh

A = treatment 2 Long tumbling
vs 78 118 6
B = treatment 10 Short tumbling

A = treatment 6 16% pumping
vs 162 50 3
B = treatment 14 32% pumping

'Values in the same row with different superscript letters
are significantly different (P<0.05).
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Table 13 - Evaluation of meat tenderness for ham slices
by tast panel.!
Panelist preference for tenderness
Coding of Factor A B
treatments tested more tender more tender Cannot tell
. than B than A the difference
A = treatment 2 Vacuum
vs 152 6? 3
B = treatment & Non Vacuum
A = treatment 7 Frozen
vs 162 1° 7
B = treatment 8 Fresh
A = treatment 1 Long Tumbling
vs 112 92 4
B = treatment 9 Short Tumbling
A = treatment 6 167 pumping
vs 102 9@ 5

B = treatment

14 327 pumping

Values in the same line with different superscript letters

are significantly different (P<0.05)
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slices as judged by a taste panel. According to these
results the meat tumbled under vacuum produced hams signifi-
cantly more tender (P<0.05) than that tumbled without wvacuum.
These results agree with those found by Rejt et al(1978).
These authors reported that vacuum massaged meat showed
higher tenderness and lesser cooking loss than non-massaged
meat. In this study, frozen meat produced hams significanﬁly
more tender than fresh meat. Overall rating of frozen meat
by taste penel was equal or better than fresh meat. These
observations are substantiated by the results of estimated
yields (Table 9) and cooking losses (Page 39) which show no
significant effect of condition of the meat. According to
the taste panel tumbling time and pumping level did not sig-
nificantly effect the tenderness of ham slices. Although
tenderness of the meat is a quality attribute relatively easy
to evaluate by mouth feeling, the intrinsic difference in
tenderness from one muscle type to another within a same
piece of ham may produce some variation in the response by

panelists.



SUMMARY AND CONCLUSIONS

The primary objective of this study was to determine
the effects of tumbling time, pressure during tumbling,
condition of the meat and brine pumping level on the nature
of the exudate after tumbling and the quality parameters of
sectioned and formed meats.

Fully cooked boneless hams were manufactured as a
model system for the experiment. Four sources of variation
were considered in this study: (1) tumbling time (60, 120
and 180 minutes); (2) pressure during tumbling (vacuum and
non vacuum); (3) condition of the meat (fresh meat and frozen
and thawed meat); and (4) brine injection level (16% and
32% pumping). The meat system was analyzed at four differ-
ent stages during the process of ham manufacture: (a) the
raw meat sample was collected from the trimmed pork muscles
just before brine injection and it was analyzed for moisture,
fat, protein and lipid oxidation; (b) the tissue sample was
collected from the core of the meat chunks, after tumbling,
and analyzed for moisture, fat, protein, lipid oxidation,
salt and nitrite; (c) the exudate sample, also collected
after tumbling, was anlayzed for moisture, fat, protein,
lipid oxidation, salt, nitrite, soluble phase volume, pro-

tein in the soluble phase and protein composition of the

108
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soluble phase; (d) the ham sample was collected from the
finished product and analyzed for moisture, fat, protein,
lipid oxidation, salt, nitrite, color distribution, tensile
strength, taste panel and microscopic structure of the meat.

Results indicated that protein and fat are extracted
with tumbling at different rates, with protein being extracted
gradually with tumbling time and fat being extracted mainly
at the beginning of tumbling. Protein from fresh meat is
extracted with more difficulty than from frozen meat. The
use of vacuum does not affect protein and fat extraction.

Although the meat system remained relatively free of
lipid oxidation throughout the process, the results indicated
that tumbling time and absence of vacuum during tumbling
increase lipid oxidation, with the effect being more evident
with frozen meat.

After pumping of the brine into the meat nitrite and
salt are retained better by fresh meat than frozen meat.
Frozen meat tends to absorb much of the cure during tumbling.
No effect of vacuum on cure distribution was observed.

The soluble phase extracted from the exudate varied in
viscosity with protein content. Small volumes of soluble
phase were collected from exudates with high protein content,
the amount of total protein being similar for all the treat-
ments under study. Since high myosin contents in the exudate
after tumbling are associated with good binding characteristics
in the final product the effect of processing treatments is

particularly important. The results of this study suggest
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that the use of vacuum during tumbling does not contribute to
the myosin extraction. Furthermore, with short tumbling
(60 minutes) myosin is extracted more easily by tumbling
without vacuum. The results also show that the effect of
tumbling time on myosin extraction is not conclusive and
further research in this area is suggested.

Results related to the final product show that hams
pumped 167 with brine are not affected, in terms of yield,
by tumbling time and the use of vacuum during tumbling.
Fresh meat shows slightly better yields than frozen meat.
According to Federal regulations about 507 of the hams pumped
167 in this experiment should be labeled '"water added hams".
Meat pumped 327% with brine produces hams ''not eligible for
sale" since they contain more than 107% added substance.

Nitric oxide pigment content and pigment conversion
in the hams tumbled without vacuum were higher than in those
tumbled under vacuum. However, this difference was not
evident when the product was assessed by Hunter color para-
meters.

Results from the microscopic study show a pattern of
increased cell disrupture in the muscle tissue with tumbling
time. However, the same pattern of fiber damage can also
be observed going from the interior parts to the peripheral
parts of the tissue in a single muscle chunk tumbled for a
short time. Fibers from frozen meat showed more damage after
tumbling than those from fresh meat. The use of vacuum

during tumbling eliminated presence of small air bubbles
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in the exudate.

Binding strength determinations by the Instron instru-
ment show that treatments without vacuum produced hams which
bind better than those from treatments with vacuum. However,
binding values for both treatments were highly acceptable
for slice-ability characteristics in the ham. No differences
in binding due to vacuum effect were detected by the taste
panel. Tumbling time does not affect binding strength,
according to both the objective and subjective evaluations

used in this experiment. Frozen meat binds better than fresh

meat, according to the taste panel, but not according to
the objective evaluation with the Instron. Although the
results show some discrepancies between the subjective and
objective evaluation of binding strength as affected by
tumbling time, pressure during tumbling and condition of the
meat the effect of pumping level is the most evident one.
Hams with 167 pumped brine bind significantly better than
those pumped 327%. .

Color distribution in hams from meat tumbled without
vacuum is more uniform than that from meat tumbled under
vacuum. However, tenderness of the meat was better in the
hams from meat tumbled with vacuum than that from meat tum-
bled without vacuum.

From the results summarized above it can be concluded
that:

(1) Tumbling allowed for more economical usage of

added cure substances producing hams of generally



112

good acceptance by consumers and panelists.

(2) Either fresh or frozen and thawed pork showed to
be suitable for this type of processing.

(3) Although protein increased with tumbling time in
the exudate, hams with highly acceptable character-
istics could be produced with tumbling times as
short as 60 minutes (four hours in the tumbler).

(4) The use of vacuum during tumbling improved the
overall appearance of the final product primarily
by elimination of air bubbles from the exudate.

Vacuum did not contribute to extraction of myosin

and nitric oxide pigment development in the pro-
duct. Vacuum should be used in the later stages
of the tumbling cycle to improve surface texture
of the meat.

(5) When tumbling procedures are used, percent pumping
showed to be a critical factor on quality charac-
teristics of the final product. Sixteen percent
pumping produced hams of good acceptance character-
istics. However, 32% pumping produced hams ineli-
gible for sale,due to the excess moisture retained
with poorer slicing and binding properties,
although the finished product exhibited acceptable

color, flavor and texture.
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APPENDIX A

APPENDIX A-1: Score sheet for the evaluation of ham slices
by visual inspection.

INSTRUCTIONS

In this part of the pamel, you are requested to evaluate the overall
appearance of 15 ham slices just by visual inspection. You should
concentrated on three types of defects: color uniformity (not color
intensity or color differences from one piece of muscle to another);
surface texture (presence of holes, air pockets or brine pockets); and
presence of non-muscle material (connective tissue lines or fat accumu-
lation).

You are asked to stop by each sample displayed on the table and evalu-
ate the three characteristics before going on the the next sample.

Mark your decision on the logo sheet with a v

COLOR UNIFORMITY SURFACE TEXTURE NON-MUSCLE MATERIAL
Presence of
Sample Good Non No Presence of No white

No. distribution uniform defects defects appreciable material
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APPENDIX A-2: Score sheet for the evaluation of binding
strength and ham tendermess.

HAM TASTE PANEL

Date

1. Evaluation of the binding strength.

In this part of the test compare the binding strength of the two
pieces of meat inside each plate separately.

Pull apart the meat piece by using either your fingers or by using
the two forks. Mark with a v the corresponding square.

Plate 1 stronger than ( ]
stronger than ( ]
is not different than [ ]

Plate 2 stronger than ( ]
stronger than [ ]
is not different than ( ]

Plate 3 stronger than [ ]
stronger than ( ]
is not different than ( ]

Plate 4 stronger than ( ]
stronger than [ ]
is not different than [ ]

2. Evaluation of ham tenderness.

In this part of the test compare the tenderness of ham pieces
separately in each plate. Chew both ham samples in a plate before
making your decision. Mark with a Y the corresponding square.
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APPENDIX A-2: (Continued)

Plate 1 more tender than [ ]
more tender than [ ]
not different than [ ]

Plate 2 more tender than (1
more tender than [ ]
not different than ( ]

Plate 3 more tender than [ ]
more tender than [ ]
not different than [ ]

Plate 4 more tender than [ ]
more tender than [ ]

not different than [ ]
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APPENDIX C

Analysis of Variance Tables



APPENDIX C-1. ANOVA table for protein content in the exudate as affected by

tumbling time, pressure during tumbling and condition of the meat.
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APPENDIX C-2. ANOVA table for protein content in the exudate as affected by

tumbling time and pumping level.
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APPENDIX C-3. ANOVA table for fat content in the exudate as affected by tumbling

time, pressure during tumbling and condition of the meat.
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APPENDIX C-4. ANOVA table for fat content in the exudate as affected by tumbling

and pumping level.
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APPENDIX C-5. ANOVA table for moisture content in the exudate as affected by

tumbling time, pressure during tumbling and condition of the meat.
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APPENDIX C-6. ANOVA table for TBA number in the exudate as affected by tumbling

time, pressure during tumbling and condition of the meat.
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APPENDIX C-7. ANOVA table for salt content in the exudate as affected by tumbling

time, pressure during tumbling and condition of the meat.
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y

) pressure during tumbling and condition of the meat.

8. ANOVA table for nitrite content in the exudate as affected b
tunbling time
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APPENDIX C-9. ANOVA table for volume of the soluble phase in the exudate as affected

by tumbling time, pressure during tumbling and condition of the meat.
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y tumbling

-10. ANOVA table for protein in the soluble phase ag affected b
time, pressure during tumbling and condition of the meat
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11. ANOVA table for myosin relative content in the soluble phase as affected
by tumbling time, pressure during tumbling and condition of the meat.
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APPENDIX C-12. ANOVA table for ham yields as affected by tumbling time, pressure
during tumbling and condition of the meat.
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APPENDIX C-13. ANOVA table for ham cooking losses as affected by tumbling time,

pressure during tumbling and condition of the meat.
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time, pressure during tumbling and condition of the meat.

APPENDIX C-14. ANOVA table for L color parameter in hams as affected by tumbling
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APPENDIX C-15. ANOVA table for a color parameter in hams as affected by tumbliag

time, pressure during tumbling and condition of the meat.
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APPENDIX C-16. ANOVA table for b color parameter in hams as affected by tumbling

time, pressure during tumbling and condition of the meat.
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