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ABSTRACT

THEORETICAL CALCULATIONS OF POWER-BROADENED

MICROWAVE LINESHAPES

By

Keith L. Peterson

The traditional method of analyzing high-power micro-
wave transitions is to assume the lineshape is a sum of
Lorentzians - one for each m-component pair connected by
the microwave radiation. This assumption is tested by
using extended Anderson Theory and infinite order energy
sudden approximations to calculate relaxation cross sec-
tions. These cross sections appear in the power-broadening
term of a recently derived expression for high-power line-
shapes which correctly takes into account the degeneracy of
the rotational levels. The theoretical lineshape obtained
with the relaxation coefficients is fit to a sum of Lorentz-
ians using a computer program developed for fitting experi-
mental lineshapes. The goodness of fit is a measure of the
validity of the sum of Lorentzlians approximation. The
results for the J = 2 « 1 transition in OCS and the (J,K)=

(3,3) inversion transition of NH3 show that in both modified
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Anderson Theory and energy sudden approximations the value
of Tl/T2 obtained by fitting to a sum of Lorentzians is a
good approximation to the calculated values of Tl/T2'

The values of T, calculated above were based on the
assumption that the population of the two levels connected
by radiation remains constant. If this assumption is removed
(inclusion of n-level effects) in the calculation of Tl’
the same conclusions as above may be drawn. In addition,
however, the Tl/TZ ratios are brought into better agreement
with experimental results. As expected, the n-level effects
are more pronounced for OCS than for NH3.

The sudden approximation has been applied to four-level
double resonance experiments in NH3. The analysils Justifies
several of the assumptions used previously in the analysis
of these experiments. However, numerical calculations agree
only qualitatively with experimental results.

The sudden approximation gives values for cross sections
that are too large. This is due to neglect of internal
state energy differences. Two energy corrections to the
sudden approximation are discussed. Thelr practical applica-
tion to the calculation of relaxation parameters requlres a
complex numerical integration, a reversion to a hard sphere
cutoff procedure, or an approximation that is difficult to
justify rigorously, but which enables analytical evaluation
of a required integral.

A model of relaxation commonly used in NMR 1s transformed
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to a spherical tensor basis. After introducing a correla-
tion function for the intermolecular potential, the form
of the relaxation parameters replicates that of the modified
Anderson Theory. If a reasonable correlation function can
be obtained the model offers an extremely simple method of
calculating relaxation coefficients.

Phase conventions are established for matrix elements
in a previous work on microwave lineshapes. A previous
derivation of steady-state absorption by a linear rotor in
a static electric field is extended to symmetric tops with

inversion.
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INTRODUCTION

Spectral lines in steady-state, gas-phase microwave
absorption experiments are characterized by a shape and
width. Contributions to the width may come from uncer-
tainty,(l) Doppler,(g) saturation,(3) and collision(u)
broadening, as well as various experimental effects such as
modulation broadening,(S) collisions of molecules with sample-
cell walls,(6) and beam transit—times.(7) While it is pos-
sible that these various broadening mechanisms may act in-
dependently, they often act in concert. One example of this
is the correlation of Doppler and collisional effects such
that for certain conditions the spectral width is not merely
the sum of the Doppler and collisional widths but instead
a more complicated function of these quantities.(B'lu)

Experimental conditions in microwave spectroscopy may
easily be realized where only collisional and saturation
effects are important in determining the lineshape. This
dissertation will be concerned exclusively with these two
effects. As will be seen later, the term in the lineshape
expression that describes the saturation broadening is
a function of the 1ncident microwave power and various col-
lisional relaxation cross sections. If the incident micro-

wave power 1s known, measurement of the linewidth is capable



of giving information about the cross sections. Thus, line-
width and/or lineshape measurements are probes of the
dynamics of molecular collisions. This information can be
used to gain information about intermolecular energy transfer
and intermolecular potential energy surfaces. Steady-state
absorption experiments are complementary to a host of other
experiments which also yield information concerning col-

lision dynamics. These include microwave—microwave(15'20)

(21-26)double resonance, fluores-

(31-38)
(4o)

and infrared-microwave

cence,(27_3o) beam maser, molecular beam,(39)

microwave transient effects, and transport proper-

ties.(U1’u2)

On a more practical level, lineshape measurements are
useful as temperature probes in gases and plasmas,(u3) and
in the study of planetary atmospheres. Carbon monoxide 1is
pressure-broadened by carbon dioxide in the atmosphere of

(44) while in the Jovian atmosphere methane is

(45-48)

Mars,
broadened by several gases. Lineshapes have seen
application in pollution analysis(ug) and are also useful
in determining optimal conditions for gas-laser opera-
tion. (50-52)

In view of the potential application of saturation-
broadened and collision-broadened microwave transitions,
it 1is desirable to have at hand a correct method of

analyzing such lineshapes.

It is well known that low-power lineshapes, i.e.,



those lineshapes where saturation effects are not important,
can be analyzed in terms of a single Lorentzian whose width
is proportional to a polarization relaxation cross sec-
tion.(53) The inverse of this cross section is denoted T2 in
analogy with NMR relaxation. The traditional assumption

for analyzing high-power lineshapes where saturation ef-
fects are important is that the lineshape can be expressed
as a sum of Lorentzians - one for each m-component pair con-
nected by the microwave radiation - each of which has its
own Ty and T2.(5u) (T, is a population relaxation time,
again in analogy to NMR relaxation.) These assumptions are
difficult to justify theoretically. Recently, an expression
for power-broadened transitions has been derived which cor-
rectly accounts for the degeneracy of the rotational
levels.(55) The term which describes the power-broaden-

ing contains various relaxation cross sections. The main
thrust of this dissertation is the following: Procedures
are developed for the theoretical calculation of the cross
sections in the exact lineshape expression. The procedures
involve either an extended Anderson theory or an infinite
order sudden approxlimation. Lineshapes are computed from
the theoretical cross sections and are fit to a sum of
Lorentzians(Su) by using a computer program developed to
analyze experimental lineshapes. The goodness of fit is

a measure of the validity of the sum of Lorentzians ap-

Proximation. In addition to the lineshape calculations



a model of relaxation commonly used in NMR is adapted to

the microwave absorption case and is shown to be in quali-
tative agreement with the extended Anderson theory results.
Also, the effect of two adiabatic corrections to the infinite
order sudden approximation is developed. Finally, because

of the interest in microwave-microwave double resonance
experiments in collisions causing the rotational angular
momentum to change by two or more units, the infinite order
sudden approximation is developed for use in calculating

cross sections for such collisions.



CHAPTER I

CURRENT STATUS OF POWER-BROADENED MICROWAVE

LINESHAPES AND RELAXATION PARAMETERS

A. History and Summary of Steady-State Microwave Line-

shapes

In any discussion of steady-state microwave line-
shapes 1t is necessary first to distinguish a two-state
approach from a two-level approach. In the absence of
fields, rotation or rotation-vibration energy levels have
at least a (2J + 1)-fold degeneracy, where J is the total
angular momentum. This degeneracy is usually termed m-
degeneracy (m = =J, =J + 1, . . . J) and is a result of the
2J + 1 possible projections of the angular momentum on a
space-fixed z axis. In the sum of Lorentzians approxima-
tion, each m-component pair connected by microwave radia-
tion is treated as a two-state system. Equations of motion
f'or a two-state density matrix are solved in the steady-
state to obtain an expression for the absorption coefficient.
Degeneracy of rotational levels 1s accounted for by summing
over the m-component pairs. In the two-level approach,

the degeneracy 1s considered from the beginning by forming



appropriate linear combinations of density matrix elements.
Equations of motion for these linear combinations are solved
in a manner analogous to the two-state case to obtain
the absorption coefficient.

The following summary of the two-state approach follows
a review by Flygare and his coworkers.(su) An incident

radiation field
€ = E(z,t)cos[wt-kz+¢] (1)
induces a macroscopic polarization

P = P, coslwt-kz+¢] + P, sinlwt-kz+¢] (2)
In Equations (1) and (2), z is a spatial coordinate, t is
time, w is the angular frequency of the field, k is the

wave vector, ¢ is a phase, and P_ and Ps are components of

c
the polarization. By starting with the wave equation,(56)
3% _ 1 3% , Un 3°p
2T 2,2t 22 (3)
32z C® 9t C= a3t

it is possible to deduce that the absorption coefficient

& as a function of freguency can be written as

y P
a(w) =_Téu—)-E-- (’4)



(C is the speed of light.)

It is assumed that the radiation interacts only with
the dipole moments of the molecules. Then, for a sample
of dipoles the polarization 1s a macroscopic dipole moment

and can be written as
P = Ntr(up) (5)

where N is the number of dipoles, u is the dipole moment,
and p is the density matrix.(57) The symbol tr(x) denotes
the trace of the matrix x. From Equations (2), (4) and (5)
it is seen that if p can be determined, P, ¢(y) and there-
fore, the lineshape can be obtained.

The equation of motion for the density matrix is

ih 32 = [H,p] = Hp - oH (6)
where H = H_-uE cos[wt-kz+¢]. For rigid rotors H, sup-
ports the rotational levels of an unperturbed molecule.
In writing H, the effect of collisions has been ignored.
As in all previous two-state approaches, collisional
effects will be added phenomenologically. When the two-
level approach is considered, collisions will be treated

more rigorously. Diagonal elements of the density matrix,

Pjyq, are proportional to the population of state i. To

See the meaning of the off-diagonal elements consider a



two-state system with states i1 and f. The polarization

of this system is

0 o 0,
P trlup) = tr‘( 1f)( 11 1f)}
ey O Pry  Per

= MipPry * HpiPip (7)
(The assumption has been made that the diagonal matrix
elements of u are zero.) That is, the off-diagonal density
matrix elements are related to the polarization. If Equa-
tion (6) is written out in detail the following equations

for density matrix elements in the interaction representa-

tion(58) result.

9p
£ _
ap
n 'é%i = -Eupjosp + EPpyHyr (9)

(The interaction representation is simply a device which
allows the operators to carry the time-dependence of HO,)
The rotating wave approximation, which assumes that the
experimental apparatus has a limited ability to follow
rapid time variation, has also been made. In Equation

(8) Aw is the difference between the frequency of the



applied radiation and the resonant frequency of the spectral

transition 1 > f. Equations (8) and (9) and the correspond-

ing equations for Ppp and psp are equivalent to the follow-

ing set of equations

dPC
-—dT+AwPS=O

4P uifEAN
qr - bwPe ¥ —5— =0
AD
aleN) _ Hppg = 0

where AN 1s the population difference between states 1

and f.

(10)

(11)

(12)

It is traditional to introduce the effects of collisions

by phenomenologically adding relaxation times so that Eaqua-

tions (10) - (12) become

ap P

¢} C
_dt + AUJPS + T

n

(13)

(14)

(15)
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A single relaxation time, T2, has been attributed to both
Pa and Pg, while a different relaxation time, Tl’ has been
attributed to the population difference. The presence of
-AN, in Equation (15) 1s a statement that the perturbed
population difference decays to an equilibrium population
difference, ANO.

Equations (13) - (15) can be solved in the steady-
state by setting the time derivatives equal to zero. This

results in an expression for PS:

2
V. E(1/T5)
if 2 (16)

PS N

2 1.2 2 2,11
(Aw)™ + (T2) + uirE (T2)

Ps is related to the absorption coefficient a(w) by Equa-
tion (4) so that Equation (16) is essentially the lineshape
in the two-state model. The sum of Lorentzian's approxima-
tion consists of using Equation (16) for each m-component
palr connected by radiation.

If the saturation term in the denominator of Equation
(16) ungz(;l) goes to zero (low-power conditions), the
resulting exgression is essentially that derived by
VanVleck and Weisskopf.(Sg) If the assumption 1s made
that both the polarization and the population difference

relax to equilibrium values at the same rate, i.e., T;=T,,

Equation (16) becomes the expression of Karplus and
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(61) (62)

(60) and Snyder and Richards. Townes

Schwinger,
was the first to suggest that two different relaxation times
be used and this approach has been used extensively by
Flygare and his coworkers in their analysis of microwave
transient effect experiments.(Su)

It is possible to be more rigorous in defining the ef-

fects of collisions. Within the impact approximation the

equation of motion for the density matrix including col-

(63)

lisions may be written as

3ppyg
M % ‘E“fi(off‘pii)‘ﬁAwpfi'iﬁff;. NogprarPerge (7D
9P34 g
M 5= ~EupseiptEnugpopy-ih i M ikkPrk (18)
For the present it is sufficient to describe the A as
The

thermally averaged products of scattering matrices.
impact approximation states that a collision is an instan-

taneous event compared to the time between collisions. If
the impact approximation 1s not valid the A are thermally

averaged products of both on-shell and off-shell t matrix

elements. More precise discussions of the impact approxima-

tion are available.(6u) It will always be assumed in this

dissertation that the impact approximation 1s valid. It

1s very difficult to establish rigorous limits of validity
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for this approximation and it 1s almost impossible with
present day methods to calculate the A when this approxima-
tion is not valid. Experimentally, it is known that the low-
power lineshape is Lorentzian when the impact approximation
is expected to be valid. All high-power lineshapes con-
sidered 1n this dissertation are obtained under conditions
where the corresponding low-power lineshape 1s essentially
Lorentzian.

The A will be considered in great detail later as they
form the principal topic of this work. For the moment it
is sufficient to recognize that a two-state approximation
applied to the A in Equations (17) and (18) (that is,
restricting the summation indices f',i' and k to i and f)

allows the relaxation times T1 and T, to be expressed as

L -1

+ A
T1 2

1911 eeee — Mrrit - Miire) (19)

and
7= = Re(Apypy) (20)
T, = ellieirs

where Re(x) denotes the real part of x. Im(Afifi) gives
the line shift. The methods that will be used to calculate
A are such that Im(A) = O.

The above paragraphs summarize the two-state approach

to analyzing high-power microwave lineshapes. If there
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is no collisional coupling of the m states it is clear that
each of the m-component pairs connected by radiation will
evolve independently of the others and a sum of Lorent-
zian's approximation is valid. This can be seen from the
equations of motion for the density matrix when written to

(63)

include the degenerate m-states
i (JemyJ.m) = Awesp(jem,J.m)
sePldeMady riPtdrMsdy

'E<~jfmlu Ijim>[p(jim’jim)—o(jfm,jfrﬂ)]

“i-§j§m.<<jfmjim]Alj%m'jim'>>0(jfm'33m') (21)
Jedy
i g%p(jim,jim) = -El<jym|ulipm>po(Jpem, i m)

-D(jimjfm) <jfm|11 Ijim>]

-i 3 <<jimjim|A|j'm'j'm'>>p(j'm'j'm') (22)
j'mi

(64) and is

ijmfjimi>> is a vector in Liouville space
defined by ijmfjimi>>5|jfmf><jimi|. Equations (21) and
(22) assume plane polarized radiation so that matrix elements
of p and y are diagonal in m. The various m-component pairs

are collisionally coupled unless for some reason certain of

the A matrix elements are zero. As discussed later, within
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the context of first order perturbation theory it 1s pos-
sible to say that m-components are not collisionally coupled
for dipole-dipole interaction potentials when the molecular
rotational levels have definite parity. More definitive
statements or statements outside the scope of first order
perturbation theory are difficult to make. It is usually
necessary to resort to numerical calculations.

(65) was apparently the first to recognize that

Pickett
degenerate m states are collisionally coupled and that the
sum of Lorentzians may not be a valid approximation. Liu
and Marcus(63) (hereafter denoted by LM) made the first

serious attempt to deal with the m degeneracy of the rota-

tional levels. By forming the linear combinations

Jp-m Jp Jy K
pep(k) T (-1)°F f<2K+1)1/2< rot )o(;}fmfjimi), (23)
mimf mf~mi—Q

they arrived at the following two equations

ST Jitiefdy Jp 1
L g% Ppy(10)=wpyp oy (10)/V3-up EcoswtI(-1) 1 f( 1 Jr >
73 m m-mO0
x(p(JsmIym)=p(FemI m)I=1 T AL, .\ .y0ays,(10)/V3 (1)
R er pryr Tifr1rPrry
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1 3 Ecoswt r— .
— 2, (00) = —=2" [y, 0., (10)-p, . (10)p,,]
m at 11 /3(2ji+l) lf fl lf fl

. 1/2
[2Jk+1] o

In Equations (24) and (25) Eif is defined by

Hip

Je-msfds Ja 1\_
<iomulima=(-1) 2 TP )L s (26)
iTi °f m 0
i~Me

‘

which 1s merely an application of the Wigner-Eckart theorem.
The quantum number Q 1s always equal to 0 if the microwave

radiation 1s plane-polarized. The AK are defined by

Jp-mptd pome

dpmpiimilhlgemesymg>> =IL (-1) (2K+1)
s 1 ] s .
Je J3 K\ e J5 Ky x
X Noysgps 27)
mlem! =0 M=, —Q fri'fi
np=my My

This 1s a direct consequence of forming linear combinations

of ’mefjimi>> in analogy with Equation (23), i.e.,

5 s _ Ja-m Jp Jdy K
ldeli,KQ>>-n]il(_l) £ f(2K+1)1/2( £ 1 Q)|3fmf31mi>> (28)
i mf-m i"’
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This can be inverted to give

3 pmm Je 3y K
|3 pmedymy>>=£ (-1)°F f(2K+1>1/2(mf 1 )ljfji;KQ>> (29)
KQ f-mi-o

The A?'i'fi are independent of the quantum number Q. This

is a result of rotational invariance and has been discussed

in detail by Ben—Reuven.(66)
The problem with Equations (24) and (25) is that

p(K,Q) are coupled to p(jmj'm'). To get around this, LM

noted that

(30)

W+

2
Je Js 1
Z(fi>=
mm-mo

and assumed that in Equation (24) the quantity

2
Je Jy 1
z( £ 1 ) [p(jimjim)'p(jfmjfm)]

m\m -m O

could be replaced by

025,410 044 (00)= (25 4+1) o 10 (00) 1.

This assumption has been shown to be inadequate for analyzing
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experimental data for several transitions in 15NH3.(67)
This finding spawned the introduction of an alternative to
the quantity Tl/T2, namely qu/Tz, where q is related to the
distributions of populations among the m states.(67)
This parameter has since been shown to be an impractical
method of analyzing line shapes and will not be discussed

further. The next progress came when Bottcher gave a set

of equations involving only p(KQ) and solved them exactly

in the steady-state for the j =1 « 0 transition.(68)
The lineshape for this case is proportional to
1
(31)
2T T
2 1.2 L 2 _2 1 Yy
() + ()" + quisE” (g~ + )

Comparison with the denominator of Equation (16) shows that
the power broadening terms (the last term in the denominator
are qualitatively similar. There is an additional relaxa-
tion time in (31), T), which describes the relaxation of
prp (20).

Coombe and Snider(69) also considered the J =1 « 0
transition and arrive at an expression for the lineshape
which is in agreement with that given by Bottcher.(68)
Coombe and Snider also considered the general transition

J + 1 « J,(70) The set of equations of motion for the

p(KQ) becomes very large as J increases. In the interest
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of keeping the size of this set tractable Coombe and Snider
assumed that all p(KQ) with K greater than 2 could be ig-
nored. This gave a set of eight equations which under two
conditions reduce to a set of four equations. These give

a lineshape identical to Eguation (31) with the exception
of numerical factors (which are a function of j) in the
power broadening term. The two conditions are that plane
polarized radliation be used and that the collision dynamics
are the same in the j and j+1 levels. This latter condi-
tion 1is often referred to as a high-j approximation.

Finally, Schwendeman(BS) has derived an expression for

power-broadened lineshapes which is wvalid for plane-polarized
radiation and for any j. The expression may be used for
either R branch (j = jJ + 1 « j) or Q branch (j = j « J)
transitions and does not make any high-j approximations.
Thus, an expression is now available that exactly accounts
for the m-degeneracy of the rotational levels involved in
the spectral transition. The power-broadening term is a
function of many AK. By calculating the AK and fitting the
resulting lineshape to a sum of Lorentzians, the validity
of this approximation may be assessed.

The equations of motion for the p(KQ) can be written
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.y _
i9g Ppg(K) = Bupsppy (K)

_ Jo=ds K' 1\ (K' K 1

“Epes {10 T “rr(ek+1) (2K 417172 o1q (K1)
fi K 0 0 Jo 34 3 ii
fJ1i 93

{K' IR PO
Iy Jg J'JOff

Jp=3 K K' 1
S(-1) T ok ) (2K 410732 < )
' 00 0

. K
Tt heirie L(x) (32)
1 2 p..(K) = =Epo: I [p (K')-(-l)ji_jfo- (K')]

ot Fii flK, fi if

Ja=5s K K' 1\ (X X' 1
x (-1 T Ter+1) (exr+1)1Y2 ( ) ‘ :
00 0 p gy dy
(33)

K
-1 i A ixiloyy (K)=ppy (KD ]

In the above pf, (K) is the equilibrium value of pkk(K),

{: } is a 6-] symbol,(71) and the label Q in pfi(KQ) has

been deleted because it is always zero as a consequence of
Plane-polarized radiation.
The following points are worth noting. The relaxation

of a density matrix element labelled by K is governed by
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AK and not by any AK' for K' # K. This is a result of the
assumption of rotational invariance. The only coupling
to different values of K arises in the field dependent
terms. The 3-j symbol (g g' é) is zero if K + K' + 1 is
odd. Therefore, the only values of K' in the summation
over K' are K + 1, For the case of plane-polarized radia-
tion this implies that diagonal matrix elements may have
only even K while off-diagonal density matrix elements may
have only odd K. The set of coupled equations (32) and

(33) may be solved in steady-state to give an expression

for the line shape.

2 1

Ps(1) ) (34)
2 1.2 2 2.°s
(Aw)™ + (f;) + upsE [Ps(l)]

P (K+2) Po (K+4) \K K
where —?_TKT— is a function of F_T_—§7 fifi’ Aiiii’
K K K
A
ferps Mypp and Affii' P, (K) is the analogue ofPt?g)Ps

occurring in Equations (2) and (4). The factor [P (1)] in
EqQuation (34) is in the form of a continued fractlon and
Equation (34) will henceforth be referred to as the con-
tinued fraction lineshape. Schwendeman was able to show
that the continued fraction lineshape reduces to a sum of

(55)

Lorentzians for the conditions on AK given in Table I.
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Table I. Conditions on AK for the Continued Fraction Line-
shape to Reduce to a Sum of Lorentzians.

R Branch
A1l AK 1
pify are equa
All AK 1
{111 are equa
K
A1l Aiiff =0
Q Branch
All AK are equal
fifi N

All Ti-like relaxation times are equal
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This set of conditions may not be the only set of conditions
for which the continued fraction lineshape reduces to a sum
of Lorentzians.

It will be useful later to consider now the p(XQ)
and AK in slightly more detail. The details of AK will be
given in later chapters. For the present it 1is satisfactory
to give a brief gualitative discussion. TheAp(KQ) are
variously known as state multipoles or statistical tensors.(71)
They were first introduced by Fano.(72) While their applica-
tion in chemistry has been rather limited, their applica-
tion in physics includes discussions of the production of
polarized particles in nuclear reactions,(73’7u) the re-
distribution of resonance radiation,(75) angular distribu-
tions of photoelectrons,(76'79) optical pumping(8o'82)
and transport properties.(83’8u) Besides the previously
mentioned work concerning microwave absorption, the work
most closely related to this topic is that of Case et al.(85)
who applied the state multipoles to the problem of determin-
ing rotational state distributions in fluorescence experi-
ments.

The p(KQ) formed by Equation (23) are said to be the
matrix elements of an irreducible tensorial basis. All
of the 2K + 1 components for a given K form an invariant

set:,(66) i.e., under rotations they transform only among

themselves. It is easy to show from Equation (23) that

py4(00) = Iip(Jimjim)/»/zjiﬂ . (35)
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This follows from the relation

JJo _ -
( ) = (-9 254172 (36)

m-m O

Therefore, (23‘i+1)_1/2

pii(OO) is an average level popula-
tion. At equilibrium the p(jimjim) are equal to each other
for all m in which case the pii(KQ) are independent of K.

A level that has nonzero oii(KQ) for K = 0 only is saild to
be unpolarized. A rotational level that has nonzero
Dii(KQ) for K > 0 is said to be polarized with a multipole
moment, or simply moment of order K. The quantum number K
may also be referred to as the tensor order. The off-
diagonal p(KQ) are related to the macroscopic polarization

induced by the applied radiation field. For a system of

dipoles the dipole polarization may be written as
P = Ntr(up(10)) v uypppy (10) + wps0,0(10) (37)

in analogy with Equations (5) and (7). The state multi-
pole has K = 1 here because py is a tensor operator of
tensor order 1.

The Aiiii may be interpreted as being proportional
to the total collisional rate of transfer of molecules out
Oof level i. The AO are proportional to the negative of

iikk
the rate of collisional transfer from level k to level i.
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This is a consequence of the unitarity of the scattering

matrix, which may be expressed as
O = 8
§ Mispx = 0 . (38)

Equation (38) simply states that the total population of
molecules remains fixed. The A?ikk for K > 0 are called
multipole relaxation coefficients as thev describe how the
diagonal elements of a state multipole of order K relaxes

due to collisions, i.e.,

., 0 K

Similarly, the A?ifi describes the relaxation of the off-

diagonal elements of state multipoles of order K. For K

not equal to 1 the A?ifi are generalizations to arbitrary

1
tensor order of A This 1s of interest because

fifi-
RG?(A%ifi) is just the traditional low power linewildth, 1l.e.

1/T This quantity has been the subject of considerable

2.
attention.

B. History and Summary of the Multipole Relaxation

Coefficients

The first complete theory for A%ifi for rotation and

Vibration-rotation levels was given by Anderson(53) in
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1949. The theory was amplified in 1962 by Tsao and Cur-
nutte(86) (hereafter referred to as TC) who explicitly
considered dipole-dipole, dipole-quadrupole, quadrupole-
dipole, quadrupole-aquadrupole, and dispersion intermolecular
potentials. (The first four of these potentials will be
abbreviated as u-u, u-Q, Q-p, and Q-Q.) Anderson made
several key assumptions that are worth enumerating here.

The most important assumption is that the impact approxima-
tion is valid. As mentioned above this requires that the
time of collision be negligible compared to the time be-
tween collisions. This implies that only complete col-
lisions need to be considered and in turn that only scatter-
ing matrices (or equivalently on-shell t matrices), and not
of f-shell t matrices are needed. Present day methods do
not allow calculation of off-shell t matrices for systems
off interest in microwave spectroscopy. The impact ap-
proximation has been discussed in detail by Baranger(6u)
who also gave several expressions for estimating the validity
limits of the approximation. Obtaining numerical esti-
mates from these expressions 1is almost as difficult as cal-
culating A%ifi itself so that, as explalned earlier, the
assumption will be made here that the impact approximation

1s valid for the conditions considered in this work. A
géneral expression for the AK that does not depend on the
impact approximation was given by Fano(87) in 1963. An

€Quivalent expression, derived by different methods, was
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given by Ben-Reuven in 1975.(88)

Anderson also assumed that all molecules move along
classical straight 1line paths. This implies that col-
lisions resulting in changes in molecular internal states
have a negligible effect on the trajectory. For rotational
levels separated by energies < kT (Boltzmann constant times
temperature), this 1s true. A discussion of this point
may be found in Reference 89. The assumption of straight
1line paths has practical implications for numerical calcula-
tions that are both good and bad. In the Anderson formula-
tion the relaxation coefficient goes to infinity as the
intermolecular distance goes to zero. Circumventing this
difficulty requires an artificial means of Imposing uni-
tarity. The traditional method of doing this is to use a
"hard sphere cutoff." Details of the cutoff procedure will
be discussed later in this work and may also be found in
the papers of Anderson(53) and TC.

Baranger was apparently the first to remove the restric-
tion of classical straight line paths by treating all
relative molecular motion quantum mechanically.(6u)

Baranger was also the first to formally exploit the
consequences of rotational invariance. These ideas were

carried to completion by Ben-Reuven.(66) The key result

of this work is that it is possible to write

K 8 (40)

<<IRIIK'QUIAI LI KQ>> = Ay py8iikSaig
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where A?'i'fi is defined by Equation (27). The point is
that the GK'K precludes the possibility of a sum over KXK'
in the relaxation terms of Equations (32) and (33).

Almost all previous calculations of AK have been for

A%ifi’ i.e., the cross section for low-power linewidth,
1/T,. By far the most common calculations are those that
(90-98)

employ Anderson's formulation as amplified by TC.

(99)

Goldflam et al. have used the close coupled (CC) and

coupled states (CS) methods to calculate Raman cross sec-
2
tions MNes ey for H2 perturbed by He. (The CC and CS methods

(89) solved

will be discussed shortly.) Nielsen and Gordon
the time-dependent Schrodinger equation for a classical

trajectory determined by a spherically symmetric potential.

1 1 2
firi> Mivirii> @nd Ay pvyp for HCL per-

turbed by Ar. The AK with K greater than one were calculated

They calculated A

to rationalize the results of NMR relaxation and Raman

(100)

lineshape experiments. Shafer and Gordon calculated

the same cross sections for H, perturbed by He by using a

(101,102)

CC method. Marcus and coworkers have calculated

1 0 0

1 -1 _1,,0 0 0
Aespy @nd T97 = 5(Ayy45 * Apppe = Myspp = Pepag) = Mags

- Agiff for OCS and HCN perturbed by noble gas atoms. They

used a semiclassical technique that required the calcula-

tion of complex valued trajectories. This technique was

(104,105)  qpe infinite

(106) to

developed by Marcus(103) and Miller.
order sudden (IOS) approximation was used by Green

calculate A%ifi and various A?ikk for OCS perturbed by
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K
iikk
for a system of interest to microwave spectroscopy. The

noble gas atoms. This is the only calculation of A

only other calculations of A?iyk are those mentioned pre-

viously for NMR relaxation. Finally, a few distorted wave

(107)

Born approximation calculations have been performed to

rationalize experimental results for various transport ex-

(108)

periment properties.

C. Summary of Available Methods for Calculating the Scatter-

ing Matrix

The AK are proportional to thermally averaged products
of scattering matrices. The central problem in calculat-
ing AK is to find a feasible method of obtaining the
scattering matrix. There are a multitude of techniques
for doing this. The close coupling method (CC) 1is the
essentially exact, completely quantum mechanical method of

(109,110)  »5 3¢ 145

calculating S, the scattering matrix.
usually formulated the method consists of solving a set of

N coupled second order differential equations, where N is
the number of states included in the calculation. For
rotational scattering the number of states increases rapidly
with increasing J because of the m-degeneracy. The computer
time requifed for solution of the differential equations
rises approximately as N3. For this reason the CC method

is practical at present only for light dliatoms and symmetric

tops perturbed by noble gas atoms. The coupled states (CS)
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method attempts to reduce the number of equations by
making an approximation on the orbital angular momentum

(111)

operator. This has the effect of reducing N by a

factor of two. The next level of simplification is the

infinite order sudden (IOS) approximation.<112‘116)

By
neglecting the energy difference between rotational levels
and freezing the orbital angular momentum gquantum number at
an arbitrary value (there are several choices possible for
this gquantum number, some of which appear to be better than
others) the set of N coupled equations becomes completely
uncoupled. This results in considerable saving in computa-
tional time so that diatomic, symmetric top, and asymmetric
top molecules perturbed by noble gas atoms can be dealt with

reasonably. A preliminary calculation involving H, - H

2 2

has recently been reported.(117)

At the other end of the spectrum from fully quantal
methods are fully classical techniques.(118) In the typical
case Hamilton's equations of motion are integrated for a
given set of initial conditions. The rotational quantum
numbers are treated classically (i.e., continuously) with
the result that the trajectories are "binned" to obtain
transition probabilities. That is, for a given set of
initial conditions all trajectories with a final rotational
angular momentum between, for example, 2.5 and 3.5 are
lumped together and are considered to have J equal to 3.

The main disadvantage of this method is that a large number
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of trajectories must be calculated-sometimes as many as
one or two thousand. Also, any quantum effects will not be
accurately considered. This is not expected to be a large
problem, however, for the AK, as they are relatively highly
averaged quantities. A calculation of transition prob-

abilities has been performed for OCS perturbed by H2 treated

(118) The results were only

as a structureless perturber.
qualitatively accurate.
In an effort to include quantum effects in a classical

(104,105) (103) have

trajectory framework Miller and Marcus
independently developed a semiclassical technique that in-

volves calculating complex-valued trajectories. Several

calculations of A?ifi have been performed.(IOI’loz) The

theoretical values are smaller than the experimental low-
power linewidths.

In addition to the three broad categories outlined
above there are many methods which treat certain degrees
of freedom classically and others quantum mechanically,
each with appropriate approximations. A very brief,
representative sampling of these methods 1is in References

119-135.

D. Choice of Methods for Calculating AK

There are obviously many choices for the calculation of
the scattering matrices and thereby, the AK. The method of

choice should be relatively simple, inexpensive and capable
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of giving reliable results. Two methods have been chosen
with these considerations in mind. The first method 1s

the Anderson theory, which will be extended to enable cal-
culation not only of A%ifi but of all other AK as well.

The theory meets the above criteria and has the additional
advantage of being relatively familiar to microwave
spectroscopists. The Anderson theory is capable of giving
good values for A%ifi for many molecules although for some
symmetric tops, most notably NH3, it is necessary to norma-
lize computed values of A%ifi to one experimental value.

The major drawbacks of the theory are that it requires an
artificial method of imposing unitarity (this was discussed
earlier, and will be discussed again later) and that because
it is only a first order theory in the scattering matrix,

a dipole-dipole potential will allow only collisional transi-
tions where j changes by zero or one. To estimate the

L will also be calculated

effect of these drawbacks the A
using a sudden approximation.(l36’l37) As employed here
dipole-dipole potentials and straight line paths are used
so that a direct comparison with the Anderson theory may
be made. The sudden approximation allows estimation of
transitions where J changes by more than one. Other

calculations to be presented have been outlined in the

introduction.



CHAPTER II

EXTENSION OF ANDERSON THEORY TO

THE CALCULATION oF A%

A. Relation of the Liu-Marcus AK to Anderson Theory

The AK appearing in the continued fraction lineshape

of Schwendeman(?®®) are the AK as defined by LM. Specific-

ally,
K K
Apvirpy = <VOprgrey? (41)
where
X Ji-314a-g
Ofrgipy = () T 1 (-n7E (27 +1) (2T p41)
k2 gt J.J
1V
Jo 3, Ky Je Iy K 5 It
X [65148pvp = S3135p1¢]
3 1 8 ] 1]
Jg Jp 87005 Jp 2 (42)

In the above expressions <v . . .> denotes a thermal
average, v is the relative velocity, k = %¥ is the
magni tude of the relative collision wave vector with u

the reduced mass of the collision pair (i.e., system

32
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molecule plus perturber molecule), K is the tensor order
of the relaxation process, lower case subscripted j's are
rotational quantum numbers of the system molecule, £ and
' are relative orbital angular momentum quantum numbers
before and after the collision, respectively, Jk is the
total angular momentum formed by coupling jk and 2, and
SJk is the scattering matrix which is diagonal 1n Jk and
M. (M is the projection of Ji on a space-fixed axis.)
Equation (42) is valid for the case of a molecule perturbed
by a structureless (;;g;, no internal states) perturber,
such as a noble gas atom. Equation (42) 1is exact in the
sense that all degrees of freedom have been treated quan-
tum mechanically.

The A?'i'fi must be related to an expression from An-
derson theory. The simplest way to do this is to recognize
that A%ifi is 1/T2 for the spectroscopic transition f « 1,
and that the familiar expression from Anderson theory also
gives l/T2. One could then assume that all other A?'i'fi
correspond to certain modifications of the Anderson expres-
sions. The Anderson theory expression for the A%ifi was
originally given in an uncoupled basis; i.e., a basis
where j, and % are not coupled to form J . It is shown in

Appendix A that the cross section in an uncoupled basis,
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' 1 Ji‘J '-m"‘mj_
o§§f,if = (55) I I [(2K+1)(2K'+1)] /2.1 174
¥°  90'mm'
1 1

Jy J& K! Js Je K
X ( 1o ) < 1ef )[Gi'idf'f - si'is?"f] ’ (43)

"'em! - -
ms mf Q my-Me Q

is equivalent to Equation (42). 1In Equation (43) the pos-
sibility that K # K' is allowed. The derivation in Appen-
dix A shows that K = K'. After performing a thermal
average (Equation (41)), Equation (43) can be identified

with (A27) of LM:

=

- _2 %
Mevives = 57 gﬁﬂdana[ﬁf'fsi'15a'a‘sf'a'fasi'a'ia]
(ub)

where IdE p  constitutes a thermal average. (Although
Equatiin (43) is written in the spherical tensor basis and
Equation (44) is not, it is the thermal average which is of
interest at the moment and which is the same for either
Equation (43) or Equation (44).) After taking a classical
limit; i.e., after replacing the quantum mechanical treat-
ment of relative translational motion and the use of the
quantum numbers £ and &' by a classical treatment of the
relat ive motion and the use of an impact parameter b,
Equations (113a) - (115) of Ben-Reuven(88) may be used to

convert the thermal average <v . . .> to
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2rnfvf(v)dv/bdb . (45)

In Equation (45) v is the relative collision velocity,
f(v) is the distribution function for v, and b is the
impact parameter. The conversion to a classical 1limit is
important because the Anderson theory treats the relative
motion classically.

To summarize, Equations (41) and (42) may be replaced
with the equivalent expressions,

K K
Af'i'fi = 2ﬂanf(V)debdb0fyi|fi > (u6)

and

Js=3'-m,-m! ji j% K J j~ K
ok S DT q)iTYiTM i(2K+1)< 10r
\ 1
r mim% m'-m!'-Q/ ‘\m,-m.-Q
mfmf i T i f
X [51!15f1f - Si'iS;'f] s (47)

where the scattering matrices in Equation (47) are under-
stood to be functions of v and b.

To make Equation (47) consistent with Anderson theory,
it 1s necessary to "renormalize" it. The cross section
°§.1.:f1 is rotationally invariant. Therefore, it is in-

dependent of Q, and each of the (2K+l1) Q components is
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equal. This implies that the factor (2K+1) can be eliminated

if a sum over Q is added. Equation (47) will be written

as

. .y . .

X jo=3t-m,-mi 9t Jp Ky dg Jp K
. = _l) 1 1 1 1

Of'l'fi Iz (

m!-ml- m.-m,.—-
i Q i f A

X [6l'iéf'f - Si'is;'f] . (118)

Finally, because of a difference in conventions for

reduced matrix elements between LM and Anderson,(53)

Eqguation (48) will be rewritten as

K Je=d ptme-mp (25 141\1/2/01 K ey Ji K Jp
o (iplgdpmr 2 (-1) (i) < )( )
mim%Q i mi‘Q”mf

' Oam?
N mi Q mf
£f

m

XL &S .
C <5f3%651Ji6 6mimi - <pmpls*lyemo><gime Isl3gm >]

(49)

\]
Mempe

The conventions for reduced matrix elements are discussed
in Appendix B. Appendix C shows that Equation (49) is

ldentical to the expression given by Anderson(53) for the
Interaction of a molecule with a structureless perturber.

Equation (49) must be modified to include perturber
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states when the perturber has internal structure. This

has been done by Ben-Reuven(138),TC, and Fiutak and Van-
(139)

Kranendonk. Modification of the notation slightly

to agree with TC gives the final working expression for

oKirerir)
K ,.. . Jp=3p +mpe-m! 1(23it1\1/2
oy (J1ipdydgp) = 131 -1y ¢t f(25,41)7* Jiﬂ
2 m,m'm_m! i
iiff
momyQd 5
<ji Jr K) (Ji Jf K)
* (s 8, S8
J' jeg! j j! S, smi memiTmom)
mi-mf-Q mi-m%-Q fovf 9292 i e 2T2
._<jfmfj2m2|T ]me j m2><3 mijémé|T|jimij2m2>] (50)

The T matrices in Equation (50) are analogues of the S
matrices in Equation (49). The letter T has been used
merely to agree with the notation of TC. In Equation (50)
it should be noted that even when Jj; = j{ and jp = j}, the
T matrix elements can still be off-diagonal in perturber
states.

The subscript j, has been added to oK in Equation (50)
becauyse the cross section is for a given j, perturber

level. The total cross section is
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K
IR p<j2>o§2<jppijf> (51)
2

where p(j2) is a Boltzmann factor for the perturber level

. . K .
Jo. To obtain Apyjipy Equation (46) is then used.

B. AK in Terms of Anderson's P Matrix

Now that the equivalence of the quantum mechanical A?'f'if
of LM and the semiclassical (1_._e;, classical translational
motion and quantum mechanical internal motion) og'f'if

of Anderson(53) theory has been established, the Anderson-

1 1ike expansions of the cross sections can be carried out.

Following TC, 1let

T =Ty +T +Ty+ . .. (52)
where T = (UO)'lUm with U0 and Um the evolution operators
corresponding to the Hamiltonians H0 and Hm, respectively.
Here , Ho is the unperturbed internal state Hamiltonian for
the system molecule and H = HO + H, where H, is the Hamil-
tonian for the intermolecular potential. The equations of
motion for T and T 1 are

3T _ 0,-1 0
h 55 = [(U7)77H,UTIT

ang
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a(T'l) -1;,..0y-1, ;0
iff So—== -T "[(U")""H, U] . (53)

ot

An iterative solution gives
Ty =1, (54)
T, = g ST, (6)00as, (55)
Ty = 00T (600 Iar T T (emyullasn , (56)
etc.

An operator P is defined by

P=z 2wt e)flae (57)
in which case
T, = -1iP URE I, iP (58)
1 > 1 1 >
T, = % P?, and T;l =T, = %% p° . (59)

These relations enable the Anderson-like expansions to be
€XPressed in terms of P. The expansions are analogous to the

€Xpansion in TC for O}fif' Details of the expansions are

glven in Appendix D. The results are given here.
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K . 1 . -1 21 s
ojz(iflf) = E[m i} (2§ ;+1)(25,+1] <jimi32m2|P IJimij2m2>
i2

+ 5 [(20p+1)(23,+1) 1 g pmpd my [P2]3 pmpdomy >

mf.mz
mo-m, Ly P e By gde de K
- IIz (-1 (25 5+1) (
mlmlmfmf mi—mf-Q mi-m%—Q
mymyJ50Q

X<3 moJomy | PlJpmpd dmy><gymigbmb [P I ms Jomy>
(60)

J j'+n
£y =-ppz (P i(2jé+1)
1
2 mymininy
Mo 2032

-1

X <Jynydom,|Pliintgimi><gimigsmy Pl m;d,my> (61)
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K/ xens . . -1 2
iiii) = .+ + j j I
oj2< ) Io0(23441) (23 ,+1) ) T<gymy dom, [PT g m, g omy>
m;mo

, J. 3. Ko 3. 3. K
np-n i1 iv1
-Izrzs (-1)1 3;(2j2+1)-1 < ) ( >

m.min.n!Q
i1iv1vie m.-n.- t-nl!-Q
i i < mi-njg Q

mzméj2

. : | ) (3 1] 1 ]
X <Jini‘]2m2Ipljini"]émé><‘]imij2m2lPl‘jimij2m2> (62)

Some general discussion of these results is warranted.
First, there are in general two types of terms in each

cross section. One 1s independent of K and corresponds to

the "outer" terms of Anderson, the other depends on K and
corresponds to the "middle" terms of Anderson. The outer
terms are identically zero for o?2(i'i'ii). The general
form of the cross sections given here is in agreement with
the equations given by Ben-Reuven(138) and Coombe, Snider

and Sanctuary.(luo) Their expressions are written in

terms of transition (t) matrices, whereas the cross sec-

tions given here were initially in terms of scattering (T)
matrices and later in terms of a P matrix. It is useful
to show that the P matrix is equivalent to a ISt order
Perturbation approximation to the t matrix.

Let a wave function y(t) = U(t’to)w(to) obey the

Sc hrddinger equation,
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f
i

%‘lfc_(t_h H'y(t) = 0 . (63)
T hen, the equation of motion for U(t,to) is

£ 8U(t,to)

T+ H'U(t,t0) = 0 (64)

wilth initial condition U(to,to) = 1. This is equivalent

to

1ot
Ult,tg) = 1 - = L H(eU,epdaet (65)

which has the iterative solution,

U(O)(t,to) 1,

t

(1) - 1 (] 1 1
Uttty =1 - ftOH (tde' , (66)

or,
U(t,ty) = 2 U(n)(t,to) , (67)

n=0
Whepe
uln)d _ ,i.ont £ £ (n=-1)
= (E)ft ft ft HY (6)H' (6M). . H' (£ ))ae (M), aer.

0 ‘o 0

(68)
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Equations (67) and (68) are equivalent to
1.t
Ut,tg) = P expl-(§)/ H' (t')dt'] (69)
t

0

where here, P is the time ordering operator; i.e., P

oxr-ders the upper limits of integration in Equation (68).

The approximations in Equation (66) may be written

(0) _ _

U = Uo =1

(1) _

(2) _

U = U0 + Ul + U2 (70)

Similarly, with the definition S = U(4w, -w),

S= 1S =P expl-(}) /7 H' (t)at] (71)
n=0 - 00
with
(0) _ _
S = SO - 1:
(1) _
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(n)

The matrix elements of S are

(n)

<f|S [i> = (Sfi + (Sl)fi + ... + (Sn)fi . (73)

T hen, the t matrix is defined by

S = §

£1 - 2w16(Ei—E )t . (74)

fi £’ fi

A1 ternatively,
Mg = = 2mi8(E{-Ep)tey (75)
where the matrix I is related to the scattering matrix by

S=1+1. (76)

The delta functions in Equations (74) and (75) are merely

statements that both S and t are on the energy shell; i.e.,

these matrices conserve energy. Upon comparison of Equa-
tion (73) with Equations (74) and (75), the following con-
clusions may be drawn. First, the zeroth approximation of

S i1s irrelevant for the scattering problem. Second, the n°P
aPProximation to the t matrix on the energy shell (i.e.,
Ei“Ef) may be obtained from n(n) =5 + S5, + S3 + ... + s,
Ther'efore, the matrix elements of P and/or P2 have the

Same interpretation as the matrix elements of t, the
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transition operator. For f # 1 tr; 1s the probability
amplitude for the transition f - i, while (tii) is propor-
tional to the total inelastic cross section from state 1i.

(141)

This result 1s a statement of the optical theorem and

is the reason that Eaguation (38) is true.

Several other points can be made concerning Equations

( €0)-(62).
1) The factors [(2ji+1)(2j2+1)]-1 in the outer terms

aarise from an average over initial collisional states of

b oth molecule and perturber.

2) In Equation (60) the only K-dependence comes from

/

co llisions that are simultaneously elastic in levels ji
and jr. This middle term gives rise to what have been
called interference or correlation effects. If this term

is =zero, there is no K-dependence in the o? (ifif) cross
2

Sections. More importantly, the Rydberg-Ritz principle

1s walid, as discussed by Fano. (87)  This means that the

leveis Ji and jp relax independently of each other, and
that the Liouville or "line-space" (i.e., the need for four
1ndices on AK) formalism 1s not needed.

3) It is useful to look at o? (1i1ii). For this case

2
Q@ = 0. vUse of Equation (3€) in Equation (62) leads to a

MAdq e term of

my-my 1
rz (-1) [(25,+1)(25,+1)]7
m,m!
11
1 ]
moMmads

—

2 * t2ten? | B OO | ] 2
X <Jymydomy |[PIIymidpmp><dymidoms| Pl mydoms>, (77)
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which shows by reasoning similar to that in Reference (67)

(11ii) is proportional to the total collisional

2
rate out of 1level 1i.

0
that Oj

K

4) It is also of interest to set K = 0 in Oj (ivi'11).
2

Then, use of Equation (36) in Equation (61) gives

0 fivsvssy - _ “1r,,, : 1/2(231+1>1/2
0j2(i 1'11) n§n§ (23 ,+1) [(23,+1)(23'+1)] 27,77,
i1,
mzméj2

x<§yngdomy|PlIinigima><giniysmy |P[Jn,Jom,>

= -1 . p)
- T231+1)(2j2+1) nzr:n |<'jini32m2lp|tjinij2m2>l (78)

This has the same form as the negative of the usual cross
Section for a level-to-level collisional transition.

5) The renormalization of the Liu-Marcus cross section

@l1l1l ows a summation over Q. This in turn is the reason why

the outer terms are K-independent.

C. Evaluation of the P Matrix for Multipole-Multipole

Intermolecular Potentials

It remains to evaluate the matrix elements of P and

2
P and substitute the results into Equations (60)-(62).
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Following TC the intermolecular potential is assumed to be

expanded as

k-k, k k
172,71
H, = £z c,T °Y Ly 22, (79)
k.k 172 "1 2
172
Xlkg

k
1
where YA (1) is a spherical harmonic of order ki, a func-

£ ion of the internal coordinates of molecule 1, and

k_k
2
1 is a factor that depends on the intermolecular dist-
172
The expansion (Equation 79) is valid as long as

t he charge distributions of the two molecules do not over-

lap. Therefore, it can express electrostatic, induction,
From TC

and dispersion forces but not exchange forces.

the matrix element of P is

* tmtmtm? v =
<Jlmm32m2|P|jlmlm2m2> kii

k k

1 2
X <jlmlj2m2|Yxl(l)YA2(2)ljimijémé>

(AkJ), (s . .
831k 3708 5ko0)<I kqmn [Jqmy >

™
)

(80)

.
x <Jpkomprslgmy>
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where a(AkJ) is a radial factor that depends on kl and k2

as k, Xy and Xy as A and jq, ji, Jos and jé as J; it must

be evaluated for each potential. A(j'kj) is given by

J=3' 2kt1
25k 5 ) = -1 T Pk k o5k >

. 1/2 J 3" k
j -K [2k+1
= (-1) ( o ) (2j'+1)1/2 ( ) , (81)
‘ K -XK 0

where the relation

abe
cabaBle-y> = (-1)27P7Y(2¢+1)1/? (5 7) (82)

has been used.

Tsao and Curnutte have evaluated o} (ifif). The other
2

Cross sections follow by analogy and are worked out in

det ail in Appendix D. The results are given here.
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. . kj 2
(235+1)(23é+1)|ax Y]

. 2 . 2
i oogdr I8 ka2 J2 ko
apmapnr(C ") ()

)
LI |
£J 27172 Ko-Kp O K=K, O
172

(2ji+1)(2jf+1) A1+A2+kl+K
5 T (-1)

167 K koJ)d

Ao

+ (2jé+1)a(klk2xlkzj)

2

K,=-K5 0

2 2

Ki-Ki 0 Ke-Kp 0

(83)

_.'
J1-3 34k +K+1

(25,+1)7 % (25341)3/2 1

5 z I (-1)

kikods
o2
xkj|2 (31 Ji kl) (32 I3 kz) lji Ji K

K.-K. 0 K-K, 0/ |5} 5! }'
178y 2% RS L PN

(1i'i'ii) =

K
Jo 167

x (2j3+1)]a

Ji J1 kl) (jf Jp Ky (Jz 35 kz) {Ji Jr K
) Sp 3y K

|
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of (1111) = -2 s I I (231+1)(233+1)|a* K| 2
2 1672 3135k k,
Aro
K

i i
(2ji+1)2 K+kq+1 Ak 2
+—=——— 1 I (-1) (234+1)[a"*Y |
167 kikod Ay
1
j2
Jg J3 Ky 2700 35 kp\2(dg 5 K
x( ) ( )‘ } . (85)
Ky=K; 0 Ky-K5 0 3y 3y ¥y

It is of interest to evaluate 0? (1iii) and O? (i'i'ii).
2 2

By analogy with Equation (77) and Equation (78),

. 2
0 (1111) - Lo 21 (a5 (i) e
s 1 A
2 16m° 135k k,
Ao
Jy 3% Kq\273, 35 kp\2
X
K;-K; 0/ \Ky=K, O
2 2
= (2y,+1) a2 (0171 Fy T (J2 da ke
TT———— L I (21+1)|a" Y] (86)
16m2 kkyyy 2 K K, 0
i-Ki 0 K2" 2

12
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-(231+1) 2

> N
o
N -

N
Ji d1 Ky o 35 K
(o

Equations (86) and (87) can be obtained from Equations

( 85) and (84), respectively, by using the relation(71)

31 3o 35
J1*+3 o _

{ . } = (1)U e (2341017 (88)

0 J3 Jo

For the K = 0 case the structure of the middle term
CO (i1'i'11) collapses to the structure of an outer term.
This is seen by comparing Equation (87) with the first
term or (86).

It should be noted that the matrix elements in Equa-
tion (80) are valid for linear molecule eigenfunctions
“SIDIderical harmonics) and for "one-ended" symmetric top
ej~E§eenfunctions (proportional to rotation matrices). Proper
®1 gmenfunctions of symmetric top molecules should also be
Y genfunctions of the inversion operator, which demands

t}‘eit: they be linear combinations of the rotation matrices.
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It can be easily shown that for dipole potentials,
either propver or one-ended eigenfunctions give the
same matrix elements. Quadrupole potentials work the
same way. A discussion of these effects is relegated

to Appendix F.

D. Tensor Order Dependence of the AK

The motivation for studying the K-dependence of the

/\I< may be seen by examining Table I. This table gives a

set of conditions - hereafter called the Karplus-Schwinger-
Townes conditions - on the K-dependence of AK under which

the continued fraction lineshape reduces to a sum of

Lorentzians. It was implied earlier that K-independence
ar ises if there is no collisional interaction in one level.
This is illustrated for oK(ifif) for a structureless per-

turber. In this case Equation (L9) is appropriate and can

be yeyritten as

™M
™
~~
1
—
N
3
H
|
3
SN
.
[
[
H
=
N——
N
Cae
[
.
Hh
=
N

o Kiirir) = 1 -

X <Jpmp|S*[Jpme><yymils]gym;> (89)
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The Kronecker deltas have been eliminated by using a sum

rule over the 3-j symbols.(7l) The technique 1is illustrated

in Appendix D. If there 1is no interaction in the jf level,

<jpmp|S¥[jeme> = Gmfm% and the second term in Equation (89)

becomes

K. Jy Jp K
)<jimi|S|jimi>
my~Me=Q7 'mi-mp-Q

. -1 ;
= -2 (234+1) “<Iymy[S]Iymy> . (90)

m,
1

This 1s equivalent to one of the outer terms obtained pre-

viously for cK(ifif). The other outer term would have

been obtained if it were assumed that there was no inter-

action in the j; level. The assumption <jfm%|S*|jfmf> =

S , i1s equivalent to setting T; = 1, (See Equation (54)

nlfqnf
and Appendix D) and it may be said that oK(ifif) consists

©f <three terms, the two outer terms, which describe how
levels Ji and jf evolve independently of each other, and
the niddle term, which describes the aforementioned inter-
fexr-ence effects.

It 1s possible to discuss the K-dependence of the
Cr*oss sections in terms of various intermolecular poten-
tIa23s. consider one of the products of 3-j symbols in the

K
K"‘CiEEpendent middle term of o (ifif) in Equation (83).
2
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If the system molecule 1s linear so that Ky = Ke = 0,

the product may be written as

(

which is zero if either ji+ji+k

Jg J1 Ky, e Jp ¥
TR
o 0o of Yo 0o o

1 or jf+jf+k1 is odd.(7l)
That 1is, the K-dependent middle term is zero if kl is odd.
If molecule 2 (the perturber) is linear, no definite con-
clusions can be reached because the middle term may be
inelastic in j2. Completely analogous arguments hold for
the middle terms of Equations (84) and (85). The result
for oK(iiii) is the same as for oK(ifif), while gK(i'i'ii)
is K-independent for k; = even.

For symmetric tops with inversion (example, NH3) the
parity of the involved levels must be taken into account.
This is not explicitly indicated in the notation. The
considerations are quite obvious and the results are the
same as for linear molecules. For symmetric tops without

Inversion the situation is nebulous and no definite con-

c 1l usions may be drawn. These results are summarized in

Table II.

For simple potentials a more quantitative description

O I the K-dependence may be given. The cross section

K
O " C3fif) can be written as

oMy = oRaarin) |+ ofairir) o+ oMarin)  (92)
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Table II. K-Dependence of AK for Multipole-Multipole
Potentials.

R Branch (Aj = #1)

Linear molecules
K

Afifi no K-dependence for ki, = odd
K

Aiiii

AK K-d d f
11Kk no K-dependence for kl = even

Symmetric Tops without inversion

no definite conclusions possible except for

K = 0 (reduces to linear molecule)

Q Branch (Aj = 0) (inversion levels)

results are as for linear molecules.
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where the subscripts oi, of, and m denote the outer term
for the 1 level, the outer term for the f level and the

middle term, respectively. The only K-dependence is in the

middle term and may be written as

Js Je K
( 1)K 1 drf
- . (93)

Jp 33 K

The major interest is in A?fif‘ Since AK is obtained by
K .
adding all ¢~ for each j, and weighting them by a Boltz-

mann factor it is possible to write

K

- K .. -1 .
spip - Mpejp = T 0 (ifif) - I o© (iflf)m (94)

Io J2
where the sum over J, is meant also to imply weighting with
a Boltzmann factor. Extraction of the K-dependent part

of OK(ifif) enables Equation (94) to be written as

X K-1 K Ji dp K
Mipse = Mipsr = F (-1) ‘ } F(ifk,)
1 Je J1 K
Jy 3 K-1
- g (-1)K-1 ‘ }F(ifkl) (95)
1 Jr 31 Ky

where F(ifkl) is everything in the middle term except
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J. 30 K
Klvi1 ¢°f . . .
(-1) . (F(lfkl) includes I .) For a given tran-

Je Jy

sition, F (

Ky J2

ifkl) has the same numerical value in each of

the two terms on the right side of Equation (95) so that

Meie -

Let kl =1

symbols,

{ji Jr K

Je dg 1
From Table

{a b ¢

lcbod

Aft er some

Jy Je K J. 3. K-1
K-1 _ K"+ idr
Nrie = I|C-D) [ } _(_1)K-1{ F(1fk )

only. As a result of the symmetry of the 6-j

l IK Jr ji} {ji Jr K'l} ‘K‘l Jr 31}
= and = .
. 1

1 Ji Jr Je Jg 1 Ji Je

(97)

5 of Edmonds(luz)

a+b+c+l 2[b(b+1)+c(c+l)-a(a+l)]
[2b(2b+1) (2b+2) (2¢) (2c+1) (2¢+2)11/2

(98)

= (-1)

algebra, the square bracket in the numerator of
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Equation (96) can be evaluated to give

Ji+]d
K K-1 - T

Ay nso=Asoin =
ifif "ifif [25p(23p+1)(25p+2)(2541)(254+1)(25442)]

1/2

x F(ifl) (99)

. K .
The corresponding result for Aiiii is

K K-1 LK )
. . -— . . = < F .
1111 M g4 231(2ji+1)(231+2) (1i1) (100)

A

K
11Kk is too

The result analogous to Equation (99) for A\
cumbersome to be of use.
A more useful result for A?ikk may be obtained by

realizing that it has no outer terms. For a single given

potential the following ratio may be formed.

‘ -{31 Je kl’
Miep Jp Jq K
= —\ : (101)
K=1 3. Jr K
A 1 Jr K
11FF :

E. Some Additional Properties of the Anderson AK

In anticipation of some later results concerning the

application of a sudden approximation for calculating

AK the sudden approximation within the Anderson theory
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will be discussed. Also, the P operator will be expanded
in terms of irreducible tensors. This will be useful later
in comparing the K-dependence of the Anderson theory with

that of the sudden approximation.

El. Expansion of the P Operator in Irreducible

Tensors

The matrix elements of P can be rewritten from Equation

(80) as

~Ky=Kommp-my 5 (AkJ)

* ) 13 I'S>= -
<Jqmydomy|Pliimigimy> kz (-1) i

1Ko

Aido

X[ (25141 (25141 (23 #1) (25 3+1) (2k +1) (2k +1) ]2

Jp 37 Ky do 35 ko Jy J1 Ky 35 35 K,
CEEEY)
K.-K. 07 ‘“K.-K. 0

- -mt- -m! -
17 2702 my=my=Ay7 TmymmaA s
Consider firstthe simple matrix element,

—K+-m; 3 (AKJ)
<JimIPlIgmi>= I (-1) 1 ————j7—[(231+1)(2Ji+1)(2k s1)1Y
171

. (31 J1 K (31 J1 kl) 105)
Kl-Kl 0 ) ml-mi-kl :
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If the left side of Equation (103) is expanded in irreducible
tensors by using equation 18.1 of Fano and Racah,(1u3)

i.e., if,

J,-m,+Q Ji J1 K
<gymy|Plaim>=1 (-1 C(eke)t/2 ( 11 ) Py 4 (KQ)
KQ -m)-Q 191

(104)

Then comparison of the right hand sides of Equation (103)
and Equation (104) shows that they are equal if K is iden-

tified with kl, Q with Al and if

-J1+K;-Q ~0k) (25+1)(2J1+1) (2ky+1) 1/2
jlj,(KQ) (-1) [ A ).C2)

J. J1 k
X ( 191 1) . (105)

1 1
Upon returning to Equation (102) and applying Equation

Here, Pj J.(KQ) is independent of m, and m! as it should be.
1J1

(104) twice, it is found that

; ] Plgimigimis=t T ( 1)31+32-m1_m2+Q+R
< m m m.,JjAmi>= -
1717272 1122 KQ LR

172,91 31 K\ 3, 35 L
x [(2K+1) (2L+1)] ( 1 91 ) ( 2 92 ) 5. g0 ()P, (LR),
1_Q 191 232

ml-m m2—m2-R

(106)
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where

leji(KQ) Pj2jé(LR) = (-1) B T

1/2
( (251+41)(233) (25 ,+1) (25 5+1) (2ky+1) (2ky+1)
X (2K+1) (2L+1) )

J'lJ':'LK Jp 35 L

x( )( ) (107)
Kl-K1 0 K,-K5 0

The conclusion to be drawn from the above i1s that expanding
the matrix elements of P into a multipole potential is

equivalent to expanding the matrix elements of P into ir-

reducible tensors.

E.2. Sudden Approximations in Anderson Theory

Some interesting sum rules may be derived from Anderson

theory if the sudden approximation(136’l37) is made. This

AkJ

approximation consists of assuming that the a factors

are independent of J or the internal energy. A more detailed
~discussion of the sudden approximation is presented in

Chapter IV. To establish notation it is useful to con-

sider
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s 1 . Akj @
o 2(1f1f)0i o j'§'§ . (231+1) (231 +1) 12" |
192%1%2
Ao
. 2 . . 2
jl Ji ¥ 3235 k2
K,-K; 0 K,-Ky 0
- 1 5 L I G(i1'22'k k,)Q(Ak]) (109)
R
32m Jidpkiky
12
N
where Q(akj) = [a**I| . 1Ir ky = 0,
_1 /32 35 ks °
G(11'22'0k,) = (23}+1)(255+1)8, ., (2], +1) ( )
Jsd i
194 K,-K, 0
2
Jp 35k,
= ¢, J,(2jé+1) ( (110)
11 K=K, 0
Similarly,
G(11722'00) = 6, 48, 4 (111)
Jiji 32j2

The last two equations simply state that 1if k1 or k2 are

zero (i.e., an isotropic potential), inelastic collisions

are not possible.
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The middle terms of oK(ifif) may be written

Kosps
oM (ifif) = —E5 I I G(ir22'k k,K)Q(rkj) (112)
1607 k k! 12
1292
AMA2

where the definitions of G and Q are obvious upon comparison

with Equation (83). For isotropic potentials

G(1£22100K) = (-1)%(25,+1) (25 +1) (25 5+1)
2

(ji Ji O)(jf Jr 0)<32 Jb 0) lji Jr K}
K, -K K

Ko-Kp O »=K5 0 Jp 3y O

= (—1) GJZJ' . (113)

That is, the monopole (isotropic) potentials have no K-

dependence. This is true even if ko # 0, 1.e.,

K+j -K

+j .-K
G(1f22'0k,K) = (-1) terd f[(zjiﬂ)(.2Jf+1)]1/2
JytieK —1/2
x (-1) [(234+1)(23,+1)] (255+1)
? 2 ]
Jo 35 ko ~K; =K, Jo 35 ks
b ( )= (-1) (235+1) (114)
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Exactly analogous analyses hold for oK(i'i'ii) and
oF(1111).
For gK(i'i'ii) an interesting sum rule may be derived.

Writing

oK(i'i'ii) = =1 Tz G(i'i22'klk2K)Q(ij) (115)
167 k1k2jé

AAo

(compare to Equation (84)) allows G to be written for K = 0

as

X 2 . 2
11 d1 Ky 2 ko
G(i'i22'k1k20) = (2ji+1)(2jé+l)< ) .

(116)
Also,
—Ji-ky*K 3/2
G(01'22'kyk,K) = (-1) (231+1)°77(235+1)
2
033 ky\ (32 35 Ko : J1 0 K
(0 )
00 O Ky-K, 0 0 J K
2
Jo, 35 k
2 J2 X2
- (253+1) (23 341) 2 ( )Koéjikl : (117)

K2—K2 0
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Equation (117) allows oK(i'i'OO) to be written as

(i11100) =

-1 5

. 1/2
(231+1)(25'+41)
16TT2 k J2 ji

1
297

A1Ao
2

) Q(Akj)éKoék (118)

Jop 35 Ky
 (
X

J'
K=Ky O 191

Therefore,

J =3 1=k +K

i1 2

Hirarin) = 3 (1) (233+1) (23,410

Jg dg K 101 Ky
X( ) ( ) oK (111100) (119)
.0 '

K Jy kg kyy Sk 3y Ky

- J 171 1
- =L D e+ (25,41) Y2 ( ) ‘ }
kK, 07 Ly, K

16m

x c2(1'1'00) . (120)

This is an interesting result because it gives a oK(i'i'ii)
cross section in terms of a ox(i'i'OO) cross section.

Setting K = 0 gives
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5k
0 3/2 1/2(°1 °1 71
o (1'1741) = - I (2§1+1)77°(254+1) (
K
1 K -K, 0
x 62(1'1'00) (121)

Use of the above relations is valid only when Q(akj)
is independent of j. This is the case in the sudden ap-
proximation. In the Anderson theory Equation (121) is of
limited utility because oo(i'i'OO) cannot be calculated for
ji > 2 (assuming potentials up to quadrupole).

An analysis similar to the above can be carried out for

oK(iiii)m. Defining the G function as

k) +K , Ji J3 Ky
' — L]
G(i22 klsz) = (-1) (2Ji+l) (2jé+1) ‘ }
2 .. 2
Ji 3y Kqy 400 35 kp
e ( ) < ) (122)
Ki-Ki 0 Ky-K, 0
gives
2
Jo 35 ko
U = s 1
G(022 kleK) (232+1) ( ) 6k105K0 . (123)
Ko-K, 0

Therefore,
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k) +K 91 91 ky,
-1 1 (25,41) ( )
K -K; O

X } oK(oooo)m

J. Js O

Js J
_ 171 i1
- 612(2ji+1)2 ( ) ‘ } oo(oooo)m
1om K.-K. 0 0

-1
16m

5 oo(oooo)m (124)

and oK(iiii) becomes K-independent in a sudden approximation.

The analogous result for oK(ifif)m is

J =K,
oK(ifif)m - L OK(ofof)m(—l) i
16m

(125)

and does not appear to be useful.

The sudden approximation allows simplification of the
expressions given earlier for the AK. If the perturber
molecule is treated with the sudden approximation, the sums

over Jé, mé and my, may be carried out analytically. Writing

oK(irifr) as
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Je J1 K\ Jp J5 K

mev_mv_Q)

£fr

m,-m! -
oK(ifif) =1 -1z (-1) * l(23‘2+1) 1(

. . -1 . t st [ . N .
X<Jpmpdpmo [T 7| Jpmpd gmp><gymidomy | T]gymyJomy> (126)

and using the relations(7l)

i iy R Y gamy ) = kgt (127)
272
and
(i +1)7h oy, ()Y, (r) = A
e P P PR L (128)

allows (126) to be written as

K m.-m' Je J‘i K jf Jy K
o (ifif) =1 - ¢ ¢ (1) *+ 1 ﬁ%( ) )

mim;Q

m,-m.-Q" ‘mhi-m!-Q
£ i £ i
memp
. -1 .
X <Jeme|T T [Jpmi><g mi [ T|5m,> . (129)

Ahalogous results clearly hold for the other cross sec-

tions. The above results are valid only in the sudden ap-
proximation, i.e., when the T operators do not depend on
Jo- The results for the cross sections in the sudden ap-
proximation are given below. They are the analogs of
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Equations (83) - (85).

2
joo3!k
2 Adh T R |
of(irir) = -:— s (231+1) |a*XJ |
327 5Tk A i
iK1M K,-K; 0
kods
(25 :41) (23 A1) K. +A,+A 4K
PRt Sk r (1) 1172 a(k koA hy])
16m klk
"
3y Jq Ky e dp Ky (Jg Jp K
K,-K, 07 “ko-k. 07 V5.5 K
i i f ' f f Y41 (130)
K (23,4122 (25341)3/2
o (i'i'ii) = 5 z
16m k1k2
Aro
Ji=d Ik KHL g 2
x (-1) LTI R
' 2 .
Jy Ji Ky (J1di Ky
X < (131)
K,-K; 0 313 K
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1
} (132)
K

The a factors are the same as before except that now they
are evaluated by neglecting the energy spacing between the
rotational levels of molecule 2. Calculation of the a
factors will be discussed in section F of this chapter.

The derivations in Equations (126)-(128) and the results
in Equations (130)-(132) are also valid if one-ended sym-
metric top eigenfunctions are used. This will be shown

in Chapter IV where the sudden approximation is discussed

in much greater detail.

F. Numerical Results for OCS and NH3 Systems

The theory developed in the previous sections of this
chapter 1s applied here to the J = 2 « 1 transition in OCS
and the (J,K) = (3,3) inversion transition in NH3. Before
presenting the results the basic problem will be restated.

Most previous analyses of power-broadened microwave

lineshapes have assumed that the lineshape is a sum of
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Lorentzians, one for each m-component pair. This is
equivalent to assuming that the m-component pairs are not
collisionally coupled. Fitting an experimental lineshape
to this model allows extraction of a parameter denoted
should be very

(Tl/T If the model is valid, (TI/T

20 220
close to the true Tl/T2° To test this model, the Anderson-
like expansions derived here are used to calculate Tl/T2

and all of the other relaxation parameters that occur in the
more exact continued fraction lineshape expression. These
parameters are used to compute a lineshape which is then

fit to a sum of Lorentzians(su) to obtain the parameter
(Tl/TZ)O' If this (Tl/Tg)o and the calculated T,/T, are
equal, the model is presumed valid. Alternatively, the

better the fit of the lineshape the more wvalid the model.

There are two secondary purposes for calculating the

K allows the

relaxation parameters. Knowledge of all the A
calculation by means of Equation (27), of the
<<jmelA|J'm'j'm'>>, which have an intuitive physical inter-
pretation. In addition, knowledge of the AK allows the
calculation of l4-level effects, which have been discussed
in Reference 55. A summary of these effects will be given
shortly.

Before discussing the results of the calculations it

is worthwhile to discuss the method of calculation.

The calculation may be split into four parts, the
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calculation of the a>‘kj factors (the resonance function
in the parlance of TC), the calculation of the angular
momentum coupling coefficients, the determination of the
hard sphere cutoff and the calculation of the thermal
average. The resonance functions are given explicitly in
TC in terms of modified Bessel functions of the 2nd kind.(luu)
TC also provides a table of these functions. Rather than
interpolate from this table, explicit calculation of the
functions is included in the program. To do this, the

Bessel functions are expanded in terms of Tchebycheff poly-

(145) In practice, a Tchebycheff expansion is

nomials.
used to calculate the modified Bessel functions of the

first kind, which are in turn used in another Tchebycheff
expansion to calculate the desired modified Bessel functions
of the second kind. The resonance functions are given in
detail in Appendix H.

Some of the angular momentum coefficients were cal-
culated by using the general formula for 3-j coefficients
given in Reference 71. Other coefficients were calculated
by means of special case formulas.(71)

Determination of the hard sphere cutoff has been dis-

(86,93,94,98) 1, the present cal-

cussed in many places.
culations separate cutoffs for each tensor order are

1 3
determined. That 1is, the cutoffs for Aifif and Aifif are
calculated separately. The plural "cutoffs" is used be-

cause a new cutoff is calculated for every perturber
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rotational level. A problem arises in the calculation

K
of Ai'i'ii' For K = 0, the relation

IS S = 0 (133)

iiii 11 #1 irtirtii
must hold. The only way to insure that this condition
holds 1is to use for given perturber rotational levels, the

0
same cutoffs for A"i'ii as for Agiii' The cutoffs are

1
calculated by a simple bisection iteration procedure.
Therefore, the relaxation parameters obtained in this
process depend on the upper and lower limits declared for
the bisection. The limits used in the calculations reported
here are 0 R and 20 K. The uncertainty in the relaxation
coefficients due to the choice of 1limits is estimated to

be about =*2 32. Further details of the hard sphere cut-

off calculation are presented in Appendix G.

The thermal average consists of an average over the
relative velocity distribution and a weighting by a Boltz-
mann factor for each perturber rotational level. The cal-
culations presented here ignore the velocity average. The
assumption 1s made that at a given temperature all col-
lisions occur at the mean relative velocity. This assump-
tion should be quite good. Calculations of A}fif by
Cattani(gz) show a 2% difference for OCS between including
the average and ignoring it. The difference for the

(J,K) = (3,3) inversion line of NH3 is about 8%. The
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Boltzmann factors used are those given for high tempera-
ture limits by Townes and Schawlow.(1u6)
Table III gives the assumed parameters used in the

0CS calculation. The minimum value of 4.13 R for ¢ (hard
sphere) is the gas kinetic diameter. If the calculated
hard sphere cutoff is less than 4.13 3, the program de-
faults to the value 4.13 R and uses this as the hard sphere
cutoff.

Table IV is a tabulation of many of the relaxation
parameters for OCS. These parameters incorporate all
multipole-multipole potentials through quadrupole. The
only parameters showing marked K-dependence are the
A?'i'ii’ which also show a large dependence on rotational
level. Condition (133) is satisfied very closely, as can

be seen by considering, for example, Ag222.

0 0 0 0 0 02
Moooo + Myyop + A330p + Aypop + Agppp = 2.84 A,

a relatively small difference from zero. This is a result
of the cutoff procedure described earlier. It is also
worth noting that Equation (133) requires Ag'i'ii to be

negative for i' # i. Finally,

0
% Ayop = =172.2 ® =176.0 (134)

where 5/3 = (2jp+1)/(234+1).
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Table III. Assumed Parameters for OCS Calculations.

Up = 0.71519 D

Q = 1.0 x 10—26 esu em®
BO = 6081.49 MHz

T = 300K
312= .6 x 1OLl cem/s

j (perturber) < 90

o (hard sphere) > 4.13 R
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Table IV. Relaxation Parameters for 0CS.2

1133 K=0 K=2 K=4 K=6 K=8
0000 263.7

1111 263.2 263.6

2222 264.9 265.2 265.1

3333 266.7 267.1 267.5 267.0
LLuy 269.8 269.9 270.1 270.3 269.9
5555 273.0

1100 -259.6

2211 -176.0 -103.6

3322 -155.6 -131.5 - £6.5

4433 -150.0 -138.8 -104.4 - 49.5
5544 -152.0

0011 - 86.0

1122 -103.3 - €0.8

2233 -110.5 - 91.5 - b6.1

3344 -115.8 -104.5 - 78.6 - 37.2
4u55 -119.2

2200 - 4.y

3311 - 2.7 - 1.3

4u22 - 2.3 - 1.7 - 0.6

5533 - 2.1 - 1.8 1.1 - 0.4
66UY - 2.0

8The entries in this table are AK in Kz.

113
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Table V gives the relaxation parameters necessary to
calculate the power-broadened lineshape of the J = 2 <« 1
transition of OCS. Comparison of Tables I and V shows

that the first three Karplus-Schwinger-Townes conditions

as well satisfied, while the fourth, i.e., all A?iff

A?fii equal zero, is not satisfied at all. The value of

(55)

and

Til calculated from the equation

(2543360 +(23+1) 51+ (25+1) (254317 2 (op T 400 1)

T. = n -
! u(j+1)(bélbgf_%gbgl) 359
5

is very large resulting in a Tl/T2 which is apparently
quite small. The calculated Til was obtained by assuming

the total population of the two levels 1is constant. This
is referred to as a 2-level approximation. The T;l is

about 10 32 larger than the experimental values and
(98)

consistent with previous calculations. In equation

(135) the following definitions have been used:

e K
bx" = Mepeps

if X

by" = Ajirpp>

F1 _ K
by Aepyg - (136)

The large value of Tll in the 2-level approximation

suggests that U-level effects may be important. These
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Table V. Relaxation Parameters for the 0CS J = 2 <«
Transition: 2-Level Approximation.

0?2

K aK (A )
1 264.3 = Tgl
3 264.5

11 22 12 21
K by b by by
0 263.2 264.9 -176.0 -103.3
2 263.6 265.2 -103.6 - 60.8
4 265.1

TIl = 399.4 R°

Tl/T2 = 0.662
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are discussed in detail in Appendix A of Reference 55.
To summarize, it is noted that if the assumption of constant

total population of the two levels is relaxed, the equations

o1 ik k

f fk k

ng = Yf - ﬁ bK AnK

*J _ _ jk .k

ny ﬁ bK ANy (137)

are valid. In these equations Yi and Yf are terms pro-

portional to the radiation field, ni = pjj(K), and An%
J

is the difference between ny and its equilibrium value.

Equations (137) have a steady-state solution of the form

B
(B

B AN Y

11 12 1 1
) = (o) (138)

21 Boo

in which the Bij’ ANi and Yi are appropriate submatrices
of the quantities in Equation (137). Inversion of Equa-
tion (138) yields

1

in which

-1

! -
Byy = Byl - Byp Byp B

21 (139)
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If all An% for J # 1 or f are assumed to be negligible (the
two-level approximation), then Y1 = By18N;. Therefore,

the effect of including collisional transfer to levels
other than those connected by radiation is to replace Bll

by a new matrix Bil which is to be used to calculate

-1
1

relaxation coefficients for the J = 2 « 1 transition are

T The matrices are shown in Table VI. The resulting
given in Table VII. The new value of Til is much smaller
than the previous case and gives a Tl/TZ which, while still

small, is much closer to the expected value. The U4-level

effects are most pronounced in bél and b82 with smaller
changes in bgz and bgz. All other relaxation parameters

are virtually unchanged.

The relaxation parameters have been used to calculate
a lineshape according to Equation (53) of Reference 55.
(This equation is the precise result described by Equation
(34) of the present work.) The calculated lineshape was
then numerically power-averaged to represent the power-
averaging that occurs in a microwave waveguide sample
cell.(su) The experimental parameters assumed for the
lineshape calculation are given in Table III. The resulting
lineshapes were fit to a sum of Lorentzians and the
parameter (Tl/T2)O obtained. The results for three dif-
ferent pressures are given in Table VIII. The calculated
(Tl/T2)o agrees fairly well with the experimental (Tl/T2)0

only when l-level effects are included. The values of



81

Table VI. Matrices of b Coefficients for Calculation of
l-TLevel Corrections for the OCS J = 2 « 1
Transition (J < 4; K = 0).2a

(1) (2) (0) (3) (4)
263.2 -176.0 -86.0 - 2.7 0
-103.3 26L.9 - 0.9 -155.6 - 2.3
B = -259.6 T 263.7 0 0
- 1.1 ~110.5 0 266.7 ~150.0
0 - 1.2 0 -115.8 269.8
(1) (2)
. 178.5 -178.9
117 _105.0 178.8

8Values are in 32.

bThe numbers in parentheses above the matrix are the J values
for the corresponding columns. The rows are in the same

order.
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Table VII. Relaxation Parameters for the 0OCS J = 2 1
Transition: U-Level Effects, J < A4.
02
K ay (A7)
-1
3 264.5
11 22 12 21 02
K bK bK bK bK (A7)
0 178.5 178.8 -178.9 -105.0
2 263.6 208.2 -104.2 - 61.1
252.1
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Table VIII. Summary of Tl/T2 Calculations for the OCS
J = 2 « 1 Transition.

w/o U-Level Effects With L4-Level Effects

mtorr Tl/T2 (Tl/T2)g Tl/T2 (Tl/T2)g
60 0.662 0.732 0.830 0.930
80 0.€62 0.731 0.830 0.926
100 0.662 0.729 0.830 0.925

(Tl/T2)O (exp) = 1.04 0.10

I+

aExperimental parameters assumed for the determination of

(Tl/Tz)O from the theoretical lineshapes are power,
10.00 Mw; attenuation, 0.800.
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(Tl/T2)O for the three pressures are approximately 12%
larger than the calculated TI/TQ and approximately 11%

smaller than the experimental value of (Tl/T2) For OCS

0
it appears that T,/T, should be estimated to be about 10%
less than the experimentally derived (Tl/T2)O‘

Finally, the relaxation parameters for the J = 2 « 1
transition that are not required for the calculation of the
plane-polarized radiation lineshape have been calculated.
These "are A§212 for even K and A§122 and Ag211 for odd K.
This allows relaxation parameters between two different
m states to be obtained by means of Equation (27). The
results are shown in Table IX and indicate that elastic
reorienting collisions are negligible. The small contribu-
tion to these collisions is due to quadrupole interactions.
Therefore, the various m-components are not coupled by
this mechanism. They are, however, coupled by Aj = 1,

Am = *1 collisions. This is shown in the 1122 and 2211
entries.

Table X gives the assumed parameters used in the NH3
calculations. Only the dipole-dipole interaction potential
was used. Contributions due to quadrupole potentials are
negligible. Table XI gives all relaxation parameters for
the (J,K) = (3,3) inversion line of NH3. The A?iii and

Affif have no K-dependence (for a dipole potential, this
K

irivii
as the ratio of two 6-j symbols. As for OCS, the Karplus-

was shown earlier) while the A have K-dependence given
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Table IX. State to State Relaxation Parameters for the
OCS J = 2 « 1 Transition.@

(2121)2
m/m' -1 0 1
0 91.6 105.8 91.6
1 79.4 91.6 79.4
(1111)
m/m? -1 0 1
0 -0.1 263.5 -0.1
1 -0.3 -0.1 263.7
(2222)
m/m? -2 -1 0 1 2
0 -0.1 0.0 265.1 0.0 -0.1
1 0.0 -0.1 0.0 265.1 -0.1
2 0.0 0.0 -0.1 -0.1 265.1
(1122)
m/m' -2 -1 0 1 2
0 -0.1 -39.9 -53.2 -39.9 -0.1
1 -0.1 -13.4 -Lo.o -79.8
(2211)
m/m" -1 0 1
0 -22.8 -90.7 -22.8
1 -0.3 -68.1 -68.0
2 -0.3 -0.2 -135.8

4The values tabulated are <<jmjm|A|J'm'J'm's>> where j and
J' are the numbers in parentheses. All values are in
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Table X. Assumed Parameters for NH3 Calculations.

Mp = 1.468 D

Q = -1.0 x 10_26 esu cm2
By = 9.933 cm-1

Co = 6.3 em™1

T = 300 K
312 = 8.64 x 10” cm/s

j (perturber) < 15

o (hard sphere) > 4.43 iy
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Table XI. Relaxation Parameters for the (J,K) = (3,3)
Inversion Doublet of NH_.&

3

K4-eo) 704.5 = 131, a1l X
K(a444) 704.4, all K
O(++--) -657.3
1(44-2) -602.5
2(++--) -493.0
3(+4-=) -328.6
u(++--) -109.5
2 (44--) 164.3
6 (44-m) 493.0
_1-
T, = 1361.7
Tl/T2 = 0.517 2-level approximation

aThe values tabulated are A?fi'f' where ifi'f' are given in
parentheses as the parity of the level. The left super-
script is K (the tensor order). All values are in 32.
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Schwinger-Townes conditions are only partially satisfied.
The inversion doublets of NH3 are usually considered
to be a very good approximation to a 2-level system. To

test this approximation, U4-level effects have been included

. -1
in a calculat £ 7 . !
calculation o 1 The Bll and B11 matrices are

given in Table XII. The new value of Tl/T2 of 0.582 is
consistent with the view of the inversion doublet as a 2-

level system. T1 was calculated from the formula given by
(55)

Schwendeman

> (o lipf_pifyfl,
-1 _ 2(bg by ~y by
T T iTypiipify, 1y (140)
K Pk Py Pk

A lineshape has been calculated by power-averaging the
relaxation parameters. (T,/T,), obtained from fitting the
theoretical lineshape to a sum of Lorentzians is given in
Table XIII for three different pressures. As for OCS,
(T;/T5)g is a fair approximation to (T,/T,) (exp).

Relaxation parameters between two m states have been
obtained from Equation (27). The results are given in
Table XIV. As expected, the elastic reorienting collisions
do not couple different m-component pairs. This is a direct

result of using only dipole potentials.
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Table XII. Matrices of b Coefficients for the NH3 (J,K) =
(3,3) Transition for Calculation of U-Level
Corrections: J < 5, K = 0.

(336)%  (33-) (43+) (43-) (53+) (53-)
704.4 -657.3 0.0 - 47.0 0.0 0.0
-657.3 7044 - b7.0 0.0 0.0 0.0

B= 0.0 - 48.8 596.7 -489.0 0.0 - 59.0
- 48.8 0.0 -489.0 596.7 - 59.0 0.0

0.0 0.0 0.0 77.5 522.5 -388.3

0.0 0.0 - 77.5 0.0 -388.3 522.5

(33+) (33-)

687.8 -671.8
-671.8 687.8

Tl/T2 = .518

aThe values 1in parentheses are J, K, parity for the cor-
responding columns. The order of the rows is the same.
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Table XIII. Summary of Tl/T2 Calculations for the NH3
(J,K) = (3,3) Transition.

w/o l-level Effects With U4-level Effects
p/mtorr (T,/T,) (T /T5)5 (T/T,) (T1/T5)
20 .517 .567 .518 .568
30 .517 . 550 .518 .552
40 .517 . 545 .518 .546

(T1/T5)y(exp) = 0.71 + 0.07

aExper'imental parameters assumed for the determination of
(Tl/T2)O from the theoretical lineshapes are power = 15 MW,
attenuation = 0.8.
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Table XIV. State to State Relaxation Parameters for the

NH3 (J,K) = (3,3) Transition: Dipole-Dipole
Potential.?
(+-+-)
m/m' 0 2 3
0 704.5 0 0 0
1 0 704.5 0 0
2 0 0 704.5 0
3 0 0 0 704.5
(+++4)
m/m’ 0 3
0 704.4 0 0 0
1 0 704.4 0 0
2 0 0 704.4 0
3 0 0 0 704.4
§++--)b
m/m’ 0 1 2 3
0 .02 -328.66 - .01 .01
1 -328.66 - 54,77 -273.86 - 0.0
2 - .01 -273.86 -219.08 -164.33
3 - 01 - 0.0 -164.33 -492.96
(3344)
m/m’ 0 1 2 3 Yy
0 - 24.63 - 15.38 .02 0.0 .01
1 - 9.22 - 23.07 - 23.07 0.01 . 0.0
2 .01 - L4.61 - 18.45 - 32.30 0.0
3 .01 0.0 - 1.54 - 10.77 - 43,07
8The values tabulated are <gjmjm|A|J'm'I'm'>>. For the first

three tables j=j'. All values are in

bThe (m,m') = (0,-1) value which is not given here is

-328.7. All other values not given are 0.0.
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G. Numerical Results for OCS and NH3 Systems Within the

Anderson Sudden Approximation

The sudden approximation consists of neglecting internal
state energy differences. When molecule 2 is treated in
the sudden approximation the cross sections of interest
are given by Equations (130) - (132). These equations are
independent of molecule 2 quantum numbers. Therefore,
welghting by a Boltzmann factor is not necessary. In
addition only one hard sphere cutoff needs to be calculated
for each cross section.

Tables XV and XVI summarize the results of Tl and T2
calculations for OCS and NH3 in the sudden approximation
for dipole-dipole potentials. The K-dependence of the
relaxation parameters A?fi'f' is the same as the previous
results, and values for these parameters are not given
separately.

Calculated values of Til and Tgl are larger than those
calculated by the normal Anderson theory. This is ex-
pected from the properties of the resonance function for
large values of internal state frequencies. It is in-
teresting to note that the values of Tl/T2 are all very
close to the Tl/T2 values calculated from the Anderson
theory. The only exception to this behavior occurs in
NH3 for the case that the internal energy differences in

the system molecule are accounted for but those in the

perturber molecule are not. That is, the sudden
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Table XV. Values of ‘I‘1 and T2 for the OCS J = 2 « 1
Transition Calculated by Anderson Sudden Ap-
proximation and Dipole-Dipole Potential.?

SUDDEN
SYSTEM PERTURBER

1/T, = 634.0  1/T; = 961.9

NO YES T,/T, = 0.659

YES YES l/T2 = 614.0 1/T1 934.6
Tl/T2 = 0.659

ayalues of 1/T2 and 1/T, are in 32
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Table XVI. Values of T; and T2 for the NH3 (J,K) = (3,3)
Transition Calculated by Anderson Sudden Ap-

proximation and Dipole-Dipole Potential.?

SUDDEN
SYSTEM PERTURBER

NO YES

YES YES

1/T, = 1216.5

1/T2 = 1“01.5

Tl/T2 = 0.572.

1/74

2h27.2

2448.9

a
Values of l/T2 and l/Tl are in 32.
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approximation is invoked for the perturber molecule but
not for the system molecule. In this case the calculated
Tl/T2 is smaller than that calculated from the full Ander-
son theory.

A plausible explanation of this fact is as follows.

The small value of Tl/T2 implies that T, is too small or

1
equivalently that 1/T; is too big. The latter quantity

can be made too large if the cross sections for J + 1 « J
collisional transitions are too big. 1In NH3 the J + 1 « J
energy gap is very large. All of this implies that the
Anderson theory becomes poor at large energy gaps. The
only quantity in the cross sections that depends on internal
state energy differences is the resonance function which

is calculated assuming a linear intermolecular trajectory.
When the internal energy gap is large a large deviation

from a straight line path is expected. Therefore, the

above behavior of Tl/T2 values may be taken as evidence

that linear trajectories are not valid for collisional

transitions exhibiting large internal energy changes.



CHAPTER III

A SIMPLE MODEL FOR THE RELAXATION COEFFICIENTS

In the previous chapter a formalism based on Anderson
theory was developed to calculate multipole relaxation co-
efficients using multipole-multipole potentials. In this
chapter a simple model will be developed which replicates
the form of the Anderson theory results. The model utilizes
the iterative solution to the equation of motion of the
density matrix in the interaction representation. This
is a common starting point for treating relaxation in
nuclear magnetic resonance. The density matrix and inter-
action potential are expanded in irreducible tensors. In
addition, the potential is assumed to have an exponential
correlation function, a root mean square strength or ampli-
tude, and a characteristic decay time. These quantities
will be defined later. The resulting equations exhibit the
same form as the Anderson theory results. The dependence
on tensor order is identical, while the resonance function
and its associated numerical factors are represented in
the form of a product of a root mean square amplitude and
a decay time. This latter characteristic arises from the

fact that the detalls of the collision are in effect

96
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averaged out by the introduction of a correlation function
for the potential.

The following summary of the iterative solution to the
equation of motion of the density matrix and its applica-
tion to relaxation in magnetic resonance is taken from
Abragam,(1u7) Weissbluth,(lu8) and Redfield.(lug) Since
only collisions are considered here (and not the inter-
action of the system with a radiation field), the Hamil-

tonian can be written as
H = HO + V (141)

where V 1s the intermolecular potential and Hp supports
the internal rotational staées of the molecule. The
Hamiltonian Hpy may also describe a static external field.
In the interaction representation the density matrix may

be written

iHOt/h -iHOt/ﬁ

pr(t) = e p(t)e . (142)

where the subscript I denotes the interaction representa-

tion. The equation of motion for pI(t) is

apI(t)

1h —5r— = [V (t), op(t)] (143)
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which has the formal solution
i .t
pr(t) = p1(ty) - & Q%)dt[VI(tl),pI(tl)] . (144)

Equation (1L44) can be iterated to give

pr(t) = pr(tg)- & fttodt[VI(tl)OI(to)]

_1)2 t tl v ( l
+ (F) 4 dtIQQ)dtg[ 1 tl),[VI(t2),pI(tO)]] + ... (145)

This can in turn be differentiated, resulting in

de;(t)  _
——%f—_ - ?%[Vl(t),ol(to)] * (%%)24i)dt'[vl(t)’[vl(t')’

pr(ty) 1] + . . . (146)

Following the usual argument of nuclear magnetic resonance
relaxation, it will be assumed that the ensemble average
of VI(t) is zero, so that the first term in Equation (146)
is zero. If this assumption is not valid, the first term
merely produces a frequency shift, which may be either
ignored or incorporated into a redefinition of Hy and Hl'
Hereafter, all quantities are assumed to be 1n the

interaction representation and the subscript I will be
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dropped. By assuming that the first term in Equation
(146) 1is zero and by setting h = 1, Equation (146) can be

rewritten as

Q,

do o LIV IV (t-1) 40 (8) 1 TdT],,, (147

Three assumptions have been made in going from Equation
(146) to Equation (147). These are: 1) it is possible to
neglect correlation between V(t) and p(to); 2) it is then
permissible to replace p(ty) by p(t); and 3) it is pos-
sible to extend the upper limit of integration from t to
o, In addition all aquantities are ensemble averaged in
Equation (147). All of these assumptions have been dis-
cussed by Abragam.(1u7)

Abragam(1u7) and Redfield(lug) have shown that Equa-

tion (147) is equivalent to

ok k

dp Y 1
= =- I [v, v _T,p]1k (0) . (148)
dt a9y, Q' a A9,
where
_ = k k iwT
qu.(w) = &)<Vq(t)Vq.(t-T)>e dt . (149)

In going from Equation (147) to Equations (148) and (149)
it has been assumed that the intermolecular potential has

multipole character k and can be written
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V() = T-DWS (e | (150)
a -q q

In Equation (150), VEq(t) is an expansion coefficient and
vg is a unit tensor of order k and component q. Any effort
to obtain an absolute numerical rate of change of the
density matrix requires evaluation of Equation (149) with
subsequent substitution into Equation (148).

The goal of the present work is to obtaln a simple

model capable of giving easlily calculated numerical re-

sults and tensor order dependence of the state multipoles.

To accomplish this the correlation function(ISO)
-t/1
Kk k Gq._q(-l)qv2e ¢
<Vq(t)Vq,(t-T)> = (PRFLY (151)

is introduced for the potential expansion coefficients.

In Equation (151) 1, is a correlation time and v is an

c

average intermolecular interaction strength. With this

correlation function koq'(w) may be evaluated as

Gq_
quv(w) = ( (2k+1)

.(—1)qv2 © (fw-1/1t.)7T
g Jr e ¢ drt
0

q.2
(Sq_q'("l) v ) Tc
(2k+1 l‘inc
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Obviously,

6O_q'(—l)qv2
Kqqr (00 =( SR+1 A S (152)

The next step is to transform Eguation (148) into a
spherical tensor basis. The potential has already been
expanded in such a basis. The analogue of Equation (150)

for the density matrix is

k _k

PgVq ° (153)

o = I (—l)q
kq

where, as before, vg is a unit tensor of order k. There-

fore, double commutators containing unit tensors of the
k k k

form [v_ ,[v 1, v_~]] must be evaluated. This can be
Q7" 97 9

accomplished by using the following relation, given by

Judd:(lsl)

k k Tt gN_ot_
[vql(QQ'),vq2(2"2"')] = I (—1)22 HHeT-t-ag
1 2 k3q3
. 1/ kl k2 k3
x [(2ky+1) (2ky+1) (2k3+1) ] (
ql Q2'Q3

KqtkotKka+oa+8'+2"+2" ! k1 ko k3
1772773
X [62‘2"(-1)
L"re "

ky k) ky kg kg
XV (2" )=8, 111 v ("e")] . (154)
Q3 L q3
e o g
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To understand the meaning of the 2' it is useful to con-
sider the vg in greater detail. The unit tensors vg can

be written

. Ja j: k
J p=m £ J1
vKe s e T (oke1)/? (
mm'

)ijm><jim'l . (155)
m -m'-q
k . .

The vq in Equation (155) will hereafter be denoted

k,. . .
vq(dpdy) where the labels jp and j; are taken from the ket
and the bra, respectively, occurring in Equation (155).
Therefore, the 2' in Equation (154) are taken as rotational
angular momentum quantum numbers. Use of Equation (154)

twice allows the double commutator with all &'s the same,

k“ kl k2
for example, [vO (22)[v_~(22),v_“(22)]] to be evaluated as
k k k -Qd,-qQ
[v u(ll)[v 1(22),v 2(22)]] = 11 (-1) 3 5(2k3+1)
Qy a 9z k. k
375
9395

3 [(2k1+1)(2k2+1)(2ku+1)(2k5+1)] [(-1) 1 -1]

kgt +ks ky ks kg ky k3 kg (ky kp Kg
x [(-1) -1] (

a; a,-a3" ‘ay az-ag’ A& %

|

kg
’ v_2(88) . (156)
95

k), k3 k5
X

L 2 2
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Equations (152) and (156) may be substituted into Equation

(148), the right hand side of which becomes

2
I § ( 1)_qu M- (- 937%
SR -a,q, - _—E~IT7 1) (2k3+1)
3754173
QMqS
k +k2+k3

>

[(2k1+1)(2k2+1)(2ku+1)(2k5+1)]1/2[( 1) -1]

kl k2 k3 k) k3 k5 kl k2 k3 Ky k5 k3 k5
X ( ) ( ) { ’ { } Vg (22)
a; a,may) Ny ag-ag’ v o2l ey 5

(157)

Q-d,-q
z T (-1) 375 V2TC(2k3+l)[(2k2+1)(2k5+1]1/2

k3kga
4395
k k

k k k

K+k,+k k.,+k+k 5 k3

x [(-1) 2 3-1][(-1) 3 °

-1]
q Q2'QB q q5—Q3

k k k k k
k

{ } { } v.2(88) . (158)
A5

In going from Equation (157) to Equation (158) the sub-

script on a4 has been dropped. Also, recalling that the
k k

tensors vqi and vql in Equation (156) both come from the
1

same intermolecular potentilal, ki has been set equal to
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ky, k; = kj = k. This is consistent with Equations (150)
and (151), in which it was assumed that the potential had
a single multipole character. The two 3-j symbols demand
‘Q'Q3‘q5
that q, = a5 and -q5, = g - Q,, from which (=1)
5 3
(-1)"°92. The q's are always integers here so that

-2q
(-1) 12 is always positive. Therefore, expression (158)

can be written as

k+k~+k
Iz v2TC(2k3+1)[(2k2+1)(2k5+1)]1/2[(-1) 2 3—1]
K,k
375
aa
k+k3+k5 k kj k3 k k5 k3 k k2 k3
x [(-1) -11] ( ‘
q 95-05 a g,-ds3 22 %
k kg ks k5
X v (22) . (159)
R
22 2

The sums over g and q3 may be performed by using Equation

(C2). The result is to eliminate the two 3-j symbols and

the factor [(2k2+1)(2k5+1)]1/2. Also, the product of the

k+k2+k3
two square brackets is equal to 2[1-(-1) ]. Expres-
sion (159) then becomes
s o ke o+ Kokp k3 (K kg K3y ok,
2veT (2ko+1)[1-(-1) ] v_“(Le).
k3 c 3 a,
2 L 2 £ L £

(160)
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Use of the sum rules(71)

a bk a bk

£ (2k+1)(2f+1) ‘ l ‘ } =6 (161)
K e
cd f cdg
and
abk, abk adf
r (-1)T8YK 5p4) l ’ l } = ‘ } (162)
k cdrfr’ decg becg

allows expression (20) to be reduced to

k 2 2 K
2vzrc[r§%?f7 o (-1)FtRe ‘ } ]vqi(zz) . (163)
ky 22
It 1s useful to recall that % represents a rotational angular
momentum quantum number, k is the multipole order of the
intermolecular potential V, and k2 is the tensor order of one
of the multipoles in the expansion of p, Equation (153).

The expression in (163) followed from the double com-
mutator given just before Equation (156). If the same
process 1s repeated for all of the needed double commuta-
tors for the case of all &'s the same, and the expansion

for p in Equation (153) 1is used, Equation (148) becomes
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al k! k!
S5 (-1) % 2, v.2(a)] = 1 2vlr [=io - (-1)ktke
dt Klq! -q2 q2 K c-28+1
292 292
kK 2 2 k, 9
X v, (22)(-1) “p 2 (164)
K, 2 2 2 ~q5

The linear independence of the vg then allows corresponding

terms in the sums to be equated. This leads to
a{ Q_q2 (22) = 2v TC[?ITI - (-1) ]Q_qz ’

where the 22 dependence of the expansion coefficients

pfq has been shown explicitly. Expressions for other non-

zero double commutators and thelr corresponding relaxation

terms are as follows:

k), ky k, ki k, k3) (ky k3 kg
(v "(i1),[v_~(ii),v. “(fi)]] = IIA
£ i 1 f i 1
Kk
X Vv 5(f‘i)

(166)
a5
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k
Kk K K +ky+k)y+k

[vq“<ff>,[v Yirey,v 2(ri)1] = £3A(-1) © 5
y q; 95 ’

k) ks kg (ky ks kg k5
X v _2(f1) (167)

i £ f i £ f

ky oK oK
[un(fl)[vq (1f)vq

20¢1)7] = + zza(-1f-1 ‘
1 2

kl Ky k3
£f £ i

kK, ks k
1 73 75] k K,+kotk) +kc+i+f
x ‘ ‘VOS(fi) s zEa(-1) 12N

£ o1 F 5

ky K, k3 (ky kq ke k5
X ‘ ‘ !v (fi) (168)
i i f

a
1 ¢ 1) 75

k), kl k, K
[v "(11)[v_~(ff)v_“(f1)]] = -IzA(-1)
QM ql q2

+k2+k

1 3

ki ky k3) (ky kg kg K,
X [ }v (£1) (169)
95
i £ f f i i

k k k k3+ku+k5

) 1 2 L eenl
[vg, (F)LvgT (A)ve> (111 = -2zAC-1)

ky kp k3y (ky k3 kg ke
‘ } { } (fi) (170)
f

Vq5
i 1 i £ f
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K
4 k k k., +k. +k +i+f
g cie)tv L(ri)v_2(11)77 = zza(-1) + ¢ 3
ay a,
ki kp kg kgtkytkg k3 ky kg ke
X }[(-1) vq (ii) -
iofr i i1 f >
k3 ky kg ke
- Vq (ff)] (171)
. 5
£f £ i
kK. k. k
Kk Kk k 1 72 73
[Vou(fi)[v Lairyv 2(11)37 = zza-niT ‘
_u ql q2 1 p 1

k., k), k K. k, k
3 X4 *5) Kk Ko+k,tk (3 "4 °5) «k
X [{ l vq5(ii) - (-1) 3 ! 5{ } S(e£)]
£

v
qQ
i 1 f 5 £ o1 5

(172)

where the summations are over k3, k5, a3 and ag and A is

given by

A = (2k3+1)[(2k1+1)(2k2+1)(2ku+1)(2k5+1)]1/2

k) kp K3\ ky K3 kg -a3-a5
x ) (-1) : (173)
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By using the procedure shown in detall for the case of all
2's equal, Equations (166) - (172), respectively, may be

shown to give rise to the following relaxation terms.

Ce s 2 1 2 s
ii i1 fi > v TC -21—‘*'].— p_q2(fl) (17“)
K
) 2 1 2 ..
FEEL £1 > Vv T, 3757 p_q2(f1> (175)
f+1 1+ Kk
. . 2 (-1) (-1) 2 s
fiif fi > -vir, S350 * —377 ]p_q2(f1) (176)
5 1+f+k+k, ko £ f K,
i1 ff £i » -vo1 (-1) p_g (1) (177)
2

k2 ii

k £ °f
1+f+k+k, ‘ } pk2

£r i- £1 + -ver_(-1) Lo (f1) (178)
k, 110 °
. , k+ky (k£ 1
ir £i 11 » -vZr [(-1) i l 02 (rr) -
2
k2 ifr
k
147 _1 2
- (DT g P, (M) (179)
, S e
f1 1f 11 » -vor [(-1) p_o (ff) -
a2

Ko if

k
- DM iy elg (1)) (180)
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2 ey (0 F 1 4 Ko
11 11 11 » -2vot [(-1) - =—=Jp_Z (i1)
2

2i+1 a
k- 1 14

2
(181)

The left hand sides of expressions (174) - (181) are a

shorthand for denoting the double commutator; i.e.,
k

gar grem givev [vg(zz'), [vg(l"i"'), qu(zivzv)]]. Also,
in Expressions (174) - (181) i and f are siorthand for
L = Ji and Jg, respectively.

Through Equations (148) and (153), Equations (174) -

k
(178) describe the time dependence of p g
)

with the notation of Chapter II shows that (-l)qu(fi) =

(fi). Comparison

pry(KQ). Equations (174) - (176) have the form of an

outer term of oK(ifif); i.e., in each case the coefficient
k
2
of p_q (f1) is independent of tensor order and has been
2
averaged over the degenerate initial rotational states of

the system molecule. The factor V2Tc corresponds to the

quantity

<Jimi32m2|P2|jimijzm2>
(23 ,+1)

Lz

-

of Chapter II. Equations (179) - (181) describe the time
k

dependence of the diagonal coefficients pq2(ii). With
2

these comments, each of the equations can be given an
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interpretation. Equations (174) and (175) correspond to the
the elastic contributions to the outer terms of oK(ifif),
while Equation (176) is the inelastic contribution to this
quantity. Equations (177) and (178) correspond to the
middle terms of oK(ifif) and contain elastic contributions
from levels i and f simultaneously. Because k is the multi-
pole order of the potential (k1 of the previous chapter)

and k2 is the tensor order of the relaxation (K of Chapter
II), it is seen that Equations (177) and (178) replicate

the tensor order dependence of oK(ifif). The first term

of both Egquations (179) and (180) corresponds to

OK(i'i'ii), while the second term of these equations cor-
responds to the inelastic contributions to the outer

terms of oK(iiii). Finally, the first term of Equation
(181) corresponds to the middle term of oK(iiii), while

the second term is the elastic contribution to the outer
term of gK(iiii). Again, the tensor order dependence is
exactly the same as the Anderson theory results.

The quantity v2 depends on the correlation functlon
<V§(t)Vg,(t—T)>, and therefore also on the indices 2&'.
Suppose that the above results are to be applied to the
calculation of cK(ifif) for the case of a dipole-dipole
potential. The relevant equations are Equations (174) -
(178). In Chapter II it was noted that matrix elements of

the dipole moment operator between the same rotational

levels of a linear molecule are zero; i.e., <Jm|u|Jm'>=0.
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Therefore, only Equation (176) can be non-zero. The point

2

is that the v© in Equations (174), (175), (177) and (178)

2

is zero while the v° in Equation (176) is nonzero. Con-

siderations such as these must be taken into account in the

determination of v2



CHAPTER IV

APPLICATION OF AN ENERGY SUDDEN APPROXIMATION TO

THE CALCULATION OF AK

A. Derivation of Equations and Numerical Results

In Chapter II the Anderson theory was extended to
enable the calculation of A?'i'fi' The major weakness of
this theory and in general any perturbation technique that
uses linear trajectories is that the scattering matrix is
not unitary. This necessitates the evaluation of a hard
sphere cutoff. If the use of a hard sphere cutoff is
satisfactory for A?ifi and A?iii’ then its use for v
A?'i'ii is questionable. For A?ifi and A?iii the cutoff
essentially is that value of the impact parameter for which
the probability for scattering (either elastic or inelastic)
is one. 1In calculating A?'i'ii - individual transition
probabilities - the transition probability goes to zero
as the impact parameter goes to zero. This 1s because for
small b there is a large number of possible transitions,
making the probability for any one transition small.

(This is just the opposite case from moderately large

impact parameters where only collisions with small A]J

113
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are likely.) This behavior is not reflected in the cutoff
procedure described in Chapter II. It is difficult to
incorporate such behavior because the probabilities usually
do not go to zero in a simmnle fashion.

These problems can be avoided by using an exponential

(152,154)

approximation to the S matrix

S = exp(2in) = I(2in)"/nt , ' (182)
n

where an element of the phase shift matrix np is(lsu)

nyg(0,0) = ng()8y s = 557 AV, [v(£),0(t),0Texp(1ut)dt.
(183)

The integral is taken over a classical trajectory determined
by a spherically symmetric potential VO. In Equation
(183) Avij is the matrix element of AV = V - V,, where V is
the full potential and V0 is the part used to determine
the trajectory, no is the phase shift corresponding to VO
and w = (Ei - Ej)/ﬁ with E; the internal energy of state
i. The z-axis is assumed to be parallel to the initial
velocity. This means that the polar angle, 6, and the
intermolecular distance, v, depend on time, but the azi-
muthal angle, ¢, does not.

This chapter will treat only linear trajectories so
that comparison with the previous Anderson theory results

may be made. In this case VO = 0, ng = 0, and AV =V,
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so that the working equation for n is

nyy(0,9) = = ,t;iei“’tvij[r(t),e(t),¢]dt. (184)

Comparison with Chapter II shows that n is just minus

13

one-half the P matrix element used there. Writing out

the first few terms of the expansion (182) as

S=1+2in+£2—12n—)—2+... (185)
clearly shows the relation of the current results to the
Anderson theory, S =1 - iP + (iP)2/2 + ...

It is very difficult to evaluate the 1nfinite sum in
Equation (182) analytically. (To the best of this author's
knowledge it is not possible. The phase shift may be
evaluated using the WKB approximation, but this requires
use of numerical techniques.) If the "sudden approximation"
is invoked, the problem is simplified considerably.(133’136)
The sudden limit is the 1limit where the molecular orienta-
tion remains fixed during the collision. That 1s, the
rotation time 1s slow compared to the collision time.

For an atom and a rigid linear rotor, the scattering matrix

in the sudden approximation is

Sj'Jm'm(b’q)) = <J"m'|exp[2in(em¢m)]|jm> (186)
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where for linear trajectories the sudden phase shift is

n(b,0,6 506,) = %%I_ZV[r(t),e(t),cb,e lat . (187)

m"bm

The free linear rotor wavefunctions are ij(em’¢m)’ so that

6, and ¢, describe the (fixed) orlentation of the molecule.

m
A comparison of Equations (184) and (187) shows that in
Equation (187) the exponential has been set equal to one.
This implies that the sudden approximation will be valid
for small internal energy spacings. It has already been
mentioned that transitions with small Aj occur at large
impact parameters, where the trajectories are linear to a
very good approximation. At small impact parameters col-
lisions with large Aj are possible and the corresponding
trajectories will be non-linear. Therefore, collisions
for large Aj will suffer in two respects when calculated
in the sudden approximation with linear trajectories.
First, the assumption of linear trajectories will break

down, and second, becomes large and setting the ex-

wij
ponential to one may not be valid. It will be shown later
that probabilities calculated in the sudden approximation
are too large.

Equation (186) is difficult to use directly because
many integrals must be evaluated. However, because the

factor exp(2in) is a function of 6, and ¢, it 1s possible

to expand 1t as
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exp(2in) = ¥ f

o qu(em¢m) (188)

Au

with the coefficients fku given by

_ T 2m . ¥
fyu = % sing de Q) eXp[21n(b’¢’em’¢m)]YAu(9m¢m)d¢m

(189)

The S matrix results from taking matrix elements of exp(2in);

i.e., matrix elements of Equation (188). If this is done,
Sytymrm = <J'm'lexp(2in)|jm>

;L fAu<j'm'|YAu(em’¢m)ljm>

-5 (o™ L3t (24+1)(2 +1)41/2
Au Y

JJ" a ,d 3" A (190)

R S

m-m' u
The last step is a standard result and was used earlier
when the matrix elements of the P operator were evaluated

for multipole-multipole potentials.
(155)

Cross has used the above formulation to evaluate

transition probabilities P for dipole-dipole potentials.

J'J
After integrating Pj'j over the impact parameter, these
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0
quantities correspond to Ai'i'ii' (It is important to note
0 3
iiii-

be discussed later.) A brief review of Cross' derivation

however, that ij does not correspond to A this will

will be given before developing the formulas for the general

relaxation coefficients A?'f'if'

The transition probability from state jJ to state j'

is given by

2 2

(©) = Tyvy =18505 = 8504l

Pj'j (191)

If the Pj'j are averaged over the degenerate m states, the

probability is

1 2

Pj,j(b) = (2j+1) ~ I TY (192)

By using Equations (190), (191) and (192) it is easy to

show that
33 °
Pj.j(b) = § (25'+1) < ) Fx(b) R (193)
00 O
where
_ -1/2 2
Fy, = Sl(un) fap = 510' . (194)

Equation (193) is valid for a linear molecule - atom system.
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It will be generalized to symmetric tops later. If Equa-
tion (193) is integrated over the impact parameter, the
0

1t i X e
resu is AJ'j'JJ

RN

0 . o
hyvsog; = 2n ¥ (23'+1) ( ) fo F)\(b)bdb (195)

A 00 o0

For a system of two linear rotors the transition prob-

ability may be written

_ . : -1 .
Pirg, (0) = L@I#1 Q214117 3 1 J<dymisgmy]

. 2
X |exp(2in)—1|j1m132m2>| (196)

where exp(2in)-1 is just the T operator. Since only mole-
cule 1 is observed, the internal states of molecule 2 may
be summed over by using Equations (127) and (128). This

gives
Pory (b) = &= FF(259+41)° Y £ |<jrm!|exp(2in)=1|f.my>|°
J191 I 1 mm! 1M 1™
1

x 4o, (197)

For linear perturbers the volume element dg, is sin62de2d¢2.
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Cross (122) showed that for a dipole-dipole potential,

the function Fx(b) may be evaluated as

_ 1 mros _ 2
Fy(b) = (A+§) A [Jx(y sing) GXO] sin62d62 (198)
where
2uy U,
y = —_lg_— Iy (199)
hb“v

and jx(x) is a spherical Bessel function. It is related

to the normal Bessel function by

5,0 = G . (200)
. 0
Finally, Aj'j'jj is given as
C ar 4 2
0 _ -, Jp 31 A
AJ'J'jJ = (2HD1U2/ﬁV)§(2J1+1) (O 0 0) AX’ (201)
where
n2
Ao = 77
n2 1
A, = 1r[(2x+3)(2x-1)]' (X # 0)
1T2
Aot =2 Ay =37 - (202)
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The derivation of Equation (201) followed that given
by Cross. A corresponding equation for a general relaxa-
tion coefficient may be evaluated in the following manner.

The general cross section is

Jp=J ptmp-m¢
Kirerir) = gz (- forEf 1
1 1

memaQJ 5

(232+1)'

Lttt 3ty .
*085.3183,0285,330m ! 0m mafm my = <JgMpdomp | S g ed omy>

x <Jimijimb|S|Jymydomy>] (203)

After the molecule 2 states have been summed over (by again

using Equation (127) and (128)), (203) can be written as

Jy Jo K
Joe=jl4m.-m iv“f
otirerar) = =y oz ()T LT ( )
" mimi m,-m.—Q
nom1 Q 17Mf
£hr

' 8

3318359 mymtSnomy = JEMEISY]S pme

x <Jimils|yymy>laq, (204)
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Use of the relation

J 3 JoJgvoa

m . . 1/2
R = - + '+
$511%mtm i (=1) [(23+1)(25'+1)] ( ) ( >6AO
00 ¢ m-m' u
(205)
for 6; 46 y and 8. +,§ 1s use of Equation (190) for
Jydy mymy Jpdp MemMe

the matrix elements of the scattering operator, and use of

Equation (D8) enables the cross section to be written as

- K+u+jpe=J¢
ol (irerie) = = I (-1) £ F(231+1)0 (25 o+1) (2334112
Au
Jg 3D A dp dp Ay (Jg 312 ,
R [V E B R AR
P H
o 0o o/ o o 0o Yl K (206)
K . K
By using Equation (206) ¢ (i'i'ii) and Ajrq1qq can be
obtained as
Jfaririn) = —p(-1%(251+1)3 2 (25,4102
A
S MR, Jt oA
ivY1 i9J1
X < ) ‘ , F) (207)
0 0 O

313y K

and
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K
Wigrgg = =(@moqup/mv) 2 128253417 2 (23,4102
5,30 02 3y 31
X ( ) { } Ay (208)
0 0 0 313y K

The coefficients A?fif and A?iii cannot be written in terms
of AA' This is seen by comparing Equations (206) and (198).
When A = 0, the terms in square brackets in these equations
are not the same. It is shown in Appendix H that A?fif

K
and Aiiii can be written in a form similar to Equation

(208) with Ay replaced by BA where BA = AA for » # 0
d B ~n?
and Bo = T2

If the system molecule is a symmetric top with one-
ended symmetric top eigenfunctions, the results are almost
the same as those given above. In particular, the sudden

S matrix element is now

Sj'jk'km'm = <j'k'm'|exp(21in)|jkm>

;Lfku<3'k'm'|qu(em’¢m)ljkm>

z(_l)kv+mv[(21}+1)(3i+1)(2x+1)]1/2

Au

J3T a3 A
CNC )

k-k' O m-m' u

»



124

In the cross section, § is replaced by

ki+mi
- s, = T (1) [(25.+1)(27'+1)]
Jgdikykimims 1 1

s 1/2

>5AO (210)

The angular momentum algebra is the same as that leading

to Egquation (206). The analogue of Equation (206) is

_ K+r+j = !
K(irerie) = = 13 (1) f f(235+1)
Au
Sy 31 Ay dp 3p A\ (g 1A
x [(25p+1) (25341112 ( >(. ) ‘ }
ky=ky 0 Vkp-k2 0" Yp gp K
x [ fiu - 6, ,Jda, (211)

The same comments regarding the functions AA and BA for
K K
the coefficients Aiiii and Ay, for the linear rotor case
apply to the present case.
Proper consideration of symmetric top molecules in-

volves the parity-adapted symmetric top eigenfunctions

| jkme> = Ne[ljkm>-+e| Jj=km>] (212)
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where
Ne =1 for k = e =0
N, = 1//2 for ¥ > 0 and ¢ = #1

By using these functions, the scattering matrix in the

sudden approximation may be written as

Sj'jk'km'me'e = <J'k'm'el|S]jkme>

J' o
= NN '(_1)k'+mv 5 [(2J+1)(2gv+1)(2x+1)]1/2
€ € Au Tf ' Au
m-m' u
JJ' AT ) 330 A PRI
X + e’ +e<k +ee! ’.
o N . T e (218)

In this discussion only k = k' will be considered. 1In

this case

- k+m' (2341)(23'+1)(2x+1),1/2
Sytiktkmmere - NeNer (-1) oot Iy ]

TN g3 IR '
x (1 + eer (-3 Ar (214)
k-k O m-m'

The cross section in Equation (211) becomes
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K++] p=J

K R -1

of(1TEAE) = TN, NN N, gr o5 (-1 T f
A S R | Au

1+ SRS

I e+ 114
x [l4epep(-1"0 70 l4e er -1t T T3R50

1o J1 3 N\ e I N (Jg 12
x [(230+1)(25'+1)] ‘ ,
ky-ky 0/ \kpmkp 0/ U351 5o K

X [f; ffu - §,,)an, . (215)

A1l of the previous equations are valid for the case that
molecule 2 is a symmetric top. 1Instead of Equations (127)
and (128) the following two equations are used to sum over

the internal states of molecule 2.

*
251 3% 3!

2 2
Iz D,y s (aBy)D vy y(a'B'Y') = §(a-a')
Jykymy 8  K2M2 kom3
x 6(B=-B")S(y=-v") (216)
2J 541 J, J
2 1
T - D (aBy)D (aBy) = —= I 1
25,41 o gm? kpmp XY TkomytARY 81° k
272 2
= (2§,%1)/87° (217)

In the application of these two equations two points
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must be considered. First, the factor (lhr)"1 in Equation
(197) becomes (8n2)‘1 in the present case. However, the
volume element dQ, for a symmetric top is dao sing dg dy
so that after integration over a the (Mn)'l factor remains.
Second, it appears from Equation (217) that an additional
factor of (2j2+1) will be introduced. However, since the
quantity Pj'j of Eguation (196) is averaged over all
degenerate states of the perturber an extra factor of
(2,3‘24-1)-1 should be inserted in Equation (196) when the
perturber is a symmetric top. This additional factor 1is
necessary because of the average over k2.

The preceding analysis has been applied to the cal-
culation of all relaxation coefficients for the J = 2 « 1
transition of OCS and the (J,K) = (3,3) inversion transition
of NH3. The coefficients are given in Table XVII. The

assumed parameters for the calculations are the same as for

the extended Anderson theory calculations and are given in
Tables IITI and X, respectively. The values of Tl for OCS
and NH3 were calculated from Equations (135) and (140),
respectively. All of the relaxation coefficients here are
larger than the corresponding quantities obtained from the
modified Anderson theory of Chapter II. In addition the
Aifif are larger than the experimental low-power linewidth.
It is expected that cross sections calculated from a sudden

approximation will be larger than those calculated from a

theory where the energy differences between internal states
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are considered. This will be discussed later. The other
major difference from the Anderson theory results is in

the tensor order dependence of the cross sections. While
the K-dependence of A?'i'ii is similar in both theories,

K K
the Ajpjp @nd Ayy44

show a larger variation with K in the
sudden approximation. (The fact that the 3_3_3_3_,
3+3+3+3+ and 3+3_3+3_ cross sections are the same may be
easily demonstrated by using Equation (214).)

Table XVIII gives the B matrices obtained from four-
level corrections to OCS and NH3. Tables XX and XXII
describe and compare the fits of the theoretical lineshapes
to a sum of Lorentzians. The procedure is the same as
that used in Chapter II. As before, the four-level effects
are larger for OCS than for NH3. However, the effects of
four-level corrections for OCS are smaller than the same
effects iIn the Anderson theory calculations. A plausible
explanation of this 1s that because the sudden approxima-
tion neglects all internal state energy differences it
effectively already treats the system as a many level one.
The sudden value of 0.68 for T,/T, gives rise to a
(Tl/T2)0 of 0.71 which is in excellent agreement with the
experimental value. If one assumes that the sudden ap-
proximation is a valid description of the collision
dynamics, the value of Tl/T2 obtained from a lineshape
experiment which has been analyzed by fitting to a sum

of Lorentzians would be 0.68.
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Table XVIII. Matrices of b Coefficients in Sudden Ap-
proximation for Calculation of U4-Level Cor-
rections. OCS J = 2 « 1 Transition (J < 4;
K = 0) and NH3 (J,K) = (3,3) Inversion
Doublet (J < 5; K = 0.

0CS
(1) (2) (0) (3) (4)
505.17 -137.77 -321.47 - 23.66 - 8.89
-229.62 507.95 - 76.54 -147.55 - 26.58
B = -107.16 - 15.31 535.79 - 5.10 - 2.32
- 55.20 -206.57 - 35.72 509.31 -152.68
- 26.66 - 47.85 - 20.87 -196.30 510.03
(1) (2)
B! 435,37 -163.07
11 -271.79 4ok, 91
NH3
(339)%  (33-)  (43+)  (43-)  (53+) (53-)
1147.9 -564.1 -170.6 - 69.8 -=28.0 - 22.6
-564,1 1147.9 - 69.8 -170.6 =22.6 - 28.0
B = -219.3 - 89.8 1204.6 -342.4 -226.3 - 61.8
- 89.8 -219.3 -342.4 1204.6 - 61.8 -226.3
- 43.9 - 35.6 -276.6 - 75.5 1212.0 -238.0
- 35.6 - 43.9 - 75.5 -276.6 -238.0 1212.0
(33+) (33-)
v 1084.72 -618.56
! _618.56 1084 .72

@The numbers in parentheses above the matrix are the J values
for the corresponding columns. The rows are in the same
order.

The symbols in parentheses above the matrix are J, K,
parity for the corresponding columns. The rows are 1in the
Same order.
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Table XIX. Relaxation Parameters in Sudden Approximation
for the OCS J = 2 « 1 Transition: U4-Level
Effects, J < 4.

2

K ayg (29)

1 520.5

3 531.4
11 22 12 21 ,q2
K by bK by by (R<)
0 435.37 424,91 -163.07 -271.79
p) 532.01 498.41 - 81.71 -136.17

I 518.92
-1 = 6uu.38

1

T,/T, = .8078
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Table XX. Summary of Tl/T2 Calculations in Sudden Ap-
proximation for the OCS J = 2 « 1 Transition.
w/o L-Level With U4-Level
Effects Effects
a a

p/mtorr Tl/T2 (Tl/Tz)0 Tl/T2 (Tl/TZ)O
60 .761 .802 .808 .850
80 .761 .800 .808 .848
100 .761 .799 .808 .846

(T1/T2)o (exp) = 1.04 + 0.10

aExperimental parameters assumed for the determination of

(Tl/T2)0 from the theoretical lineshapes are power =
10.00 Mw, attenuation = 0.800.
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Table XXI. State to State Relaxation Parameters in Sudden
Approximation for the OCS J = 2 « 1 Transition.?

(2121)2
m/m' -1 0 1
0 184.1 212.6 184.,1
1 159.4 184.1 159.4
(1111)
m/m’ -1 0 1
0 - 9.2 523.5 - 9.2
1 -18.14 - 9.2 532.7
(2222)
m/m’ =2 -1 0 1 2
0 - 7.0 3.0 527.9 - 3.0 - 7.0
1 - 1.5 -11.2 - 30 533.4 - 9.8
2 - 3.0 - 1.5 - 7.0 - 9.8 529.2
(1122)
m/m’ -2 -1 0 1 2
0 - 1.7 -52.5 -69.4 -52.5 - 1.7
1 - 5.1 - 3.4 -18.6 -50.8 -100.0
(2211)
m/m' -1 0 1
0 -31.0 -115.8 -31.0
1 - 5.6 -87.5 -84.7
2 - 8.5 - 2.8 -166.6

4The values tabulated are <<jmjm|A|J'm*'I'm">> where j agd
J' are the numbers in parentheses. All values are in 2,
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Table XXII. Summary of Tl/T2 Calculations in Sudden Ap-
proximation for the NH3 (J,K) = (3,3) In-

version doublet.

w/0 U-Level With U4-Level
Effects Effects
a
20 .682 . 705 . 686 .720
30 .682 . 705 .686 .T712
40 .682 .704 .686 .709

(T,/Ty)y(exp) = 0.71 * 0.07

aExperimental parameters for the determination of (Tl/Tz)O
from the theoretical lineshapes are power = 15.0 Mw,
attenuation = 0.800.
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Table XXIII. State to State Relaxation Parameters in

Sudden Approximation for the NH3 (J,K) =
(3,3) Inversion Doublet.2sP
(+-+-)b
m/m' -3 -2 -1 0 1 2 3
0 -0.7 =24.3 - 2.6 1203.1 - 2.6 - 24.3 - 0.7
1 -0.5 - 0.2 =-29.6 - 2.6 1212.0 - 18.6 =-12.7
2 0.0 - 0.8 - 0.2 - 24,3 - 18.6 1222.4 =30.6
3 0.0 0.0 - 0.5 - 0.7 =-12.7 - 30.6 1192.5
g++--}c
m/m' -3 -2 -1 0 1 2 3
0 -2.3 - 2.3 =277.4 0.0 =-277.4 - 2.3 - 2.3
1 -0.1 - 4.5 0.0 -277.4 - u48.2 -229.4 = 4.5
2 -0.1 0.0 - 4.5 - 2.3 =-229.4 -185.7 -142.1
3 0.0 =-00.1 - 0.1 - 2.3 - 4,5 -142.,1 -415.0

4The values tabulated are <<jmjm|A|jm'jm>> where J = 3
and the parity is indicated in the parentheses. All values

are in 32.

OThe values for (++++) and (----) are the same as the

values for (+-+-=).

CThe values for (--++) are the same as the values for
(+4--).
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State to state relaxation parameters are given in
Tables XXI and XXIII. It is interesting to note that the
elements <<jmjm|A|jm'jm'>> (where j may also denote parity
for the case of NH3) for Am > 1 are all very small relative
to those elements diagonal in m. This is reminiscent of
the results obtained from the Anderson calculations. 1In
the latter case the elements for am > 1 are small because
the Anderson theory i1s a first order theory. One might
expect that in an infinite order theory such as the sudden
approximation the off-diagonal elements would be 1large.
That they are small implies that the m-component pairs are

not significantly coupled by collisions.

B. Application of the Sudden Approximation to Four-Level

Double Resonance Experiments

The most powerful and general method of observing
rotationally inelastic scattering is microwave-microwave
double resonance. A brief summary of a four-level double
resonance experiment in NH; will be presented here. Oka
has published a complete review of these experiments.(IS)

A four-level double resonance experiment on NH3 is
depicted schematically in Figure 1. The double arrow
represents a microwave pump beam which tends to equalilze

the populations of the pair of inversion levels that it

connects. This change in populations is transferred to
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+ | J+I, K
aill -
2 J+I, K

Figure 1. Energy level scheme for a four-level double
resonance experiment in NH3.
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other levels by collisions, and is monitored by observing
the change in absorption intensity, AI, of a weak radiation
field (the signal). To a good first approximation the
observed change in intensity can be related to collisional
rates among four levels, the two pump levels and the two
signal levels.

The quantity which is measured experimentally is

1a (15)

n = AI/I. O has shown that

T
Ve ky—ky
nT N At (218)
s k +k +2k_+k
a Yy B &

if the following conditions hold.

. oy

kys = kpy = ky

. oy

kKiy ® kp3 = Ky

kay = Kyg = g

e B
B~ B

In these equations knm is the rate constant for collision-
ally-induced transitions from state n to m. The symbol k;
denotes the collisional rate from a higher to a lower level

and is related to k; by
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-2 = exp(-AE/KT) . (220)

The condition kg = k; is a statement that the energy d4if-
ference between the levels of an inversion doublet is very
small.

Oka has calculated n by using a simplified Anderson

theory with dipole-dipole potentials.(156) For this case,
k. = 0 and k., = 0, so that
Y €
-vp k*
n = R —T—g—— . (221)
s k +2k
o B

Although this calculation gives the algebraic sign of
n in agreement with experiment the calculated magnitude of
n is about five times too large. With the sudden approxi-
mation developed in this chapter it is possible to cal-
culate n by using Equation (218)

The collisional rates k occurring in Equation (218)

are just the AQ

1rivi4 with the appropriate 1 and i' indices

given earlier in this chapter. Specifically,

0 2TH )

5 j.+ji+)
Ai'i'ii = ( nv

)(2ji+1)N§ N [1+€i€i(-1) * ]

e! Z
i 71i A

EACERRE i

Jorgren (91 912
T (

) ()
A
x -k o A

(222)

x [1+eg,el(-1)
171 k=X O
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Four rates need to be considered. These are AO(Jk_ -+
J+1lk-) and Ao(jk+ + j+1k+), which are dipole allowed in
first order perturbation theory, and Ao(jk— + J+1lk+) and
Ao(jk+ + j+1k-), which are dipole forbidden. The minus and
plus signs in the current notation denote ¢ and not the
parity of the level. Eaguation (222) can be used to give
the following expressions for the rate constants.

. j+1jx2
A (jk- » j+lk-) = C ¢ [1+(-1>“1]2
A

, (223)
k - k0

A

J+1

C g [1-(-1) 172 ,» (225)

A

J+1 3 )
A0 (5k+ » J41k+) = C T [14(-1) 1192 ‘> ys (221)
0
A (Jk= » J+lk+) )

Ao(jk+ > j+1k-)

J4L 5 N 2
¢z [1-(-1)**17° )
A

(226)

where
2T U,
C = (—_————)(23+1)(H) . (227)

In Equations (223) and (224) only terms with ) odd contribute,
while in Equations (225) and (226) only terms with ) even
contribute. Also Equations (223) and (224) are equal, as
are Equations (225) and (226). Therefore, in the sudden
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approximation the first two conditions given in Equation
(219) are satisfied.

It is useful to compare these results with the Ander-
son theory expression for Ao(i'i'ii) (dipole-dipole inter-

action)

. 33 3 N, 801
o (1i'i'ii) A

z (2ji+1)

1
2 30
2 k.-k; k2—k2 0

167

|2 kd |2 (228)

The only part of this expression that depends on e is
[anj|2. The dependence on ¢ is due to the energy spacing
of the inversion doublets. Therefore, there should be
differences between the two dipole allowed transitions.
However, the computational results presented in Chapter II
show that to a resolution of about 0.2 32 there are no dif-
ferences.

The results of the sudden approximation calculation
of the rate constants k are summarized in Table XXIV.
Oka's calculation using a simplified Anderson theory shows
the best agreement with the experimental value. The agree-
ment is probably merely fortuitous, because only resonant
collisions have been considered. Inclusion of non-resonant

collisions would lead to a larger value as discussed by
Oka. (156)
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Table XXIV. Sudden Approximation Calculations of Rate
Constants for Four-Level Double Resonance
Experiments in NH3,a

-
ka 170.6
+
k. = 69.8
Y 9
k_ = 564.1
8 5
k. = 103.0
£ 3
kt-xs
(—— ) = 0.0685
k +k 42k _.+k, SUDDEN
oy B &
Ky
P = 0.0567
k' +2k, OKA
o B
OBSERVED = 0.0112
8The levels involved are J = 3 and K = 3 in Figure 1.
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C. Energy Corrections to the Sudden Approximation

Scattering Matrix

The sudden approximation to the scattering matrix
neglects energy differences between internal states.
Therefore, 1t is expected to give transition probabilities
that are too large. Because the sudden aporoximation relaxa-
tion coefficients are so easy to calculate it 1is of in-
terest to try to correct the avproximation by reintroduc-
ing consideration of internal state energy differences.

De Pristo et al.(157)

have made an attempt at doing this.
A brief description of their approach and applications to
relaxation coefficients will be given here. Later, some
other ways of incorporating energy corrections will be
considered.

It i1s difficult to evaluate the accuracy of energy
corrections because there 1s 1little experimental data on
transition probabilities and because there are very few
accurate fully quantum mechanical calculations of transi-
tion probabilities for systems of interest to microwave
spectroscopists.

The argument of DePristo et al. is as follows. The

perturbation series for the exact S matrix in the inter-

action representation is
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Spmt = Smme = 1M1 LT exp (L £)VS L (t)dt
-0 % 5 ™ exp(d YV (t) st exp(iw £r)
= PLlwmme mm" | ® m"m?
Ve (t')dt'dt + (229)
X m"m? ¢« e . 9
where
Vot (8) = exp(ig o £)Ve, (8) . (230)

In the sudden approximation all exp(iwmm,t) factors are set
equal to one. The energy correction consists of setting
the limits of integration to *t1,/2 (Tc is the collision
duration) ard keeping the exponential factors in the first

integrals only. That is, the S matrix 1s written as

_ -1 T /2 . S
Symt = Spm - 1IN I-TCC/2 exp(lw 1 t)V__,(t)dt
-2 TC/2 s t s . .
- h mZ" f-Tc/E exp (1w ,t)me..(t) J_Tc/2 Vm.,m,(t Ydt'dt

(231)

T /2
The integral [ C/ exp(iwt)VS (t)dt is approximated by
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1 Tt /2 . 2,2 To/2 s
— [ c (l+4iwt-w t /2)dt S C Vo (t)dt . (232)
TC -Tc/2 —Tc/2

The first integral in Equation (232) is 1-w2(rc/2)2/6
which is rewritten as 6[6+(wTC(2)2]-1- (This is a Padé
approximant.) The second integral is identified as the

th
n

term in the expansion of the sudden S matrix. The

result of this 1s an energy corrected sudden approxima-

tion.
2.=-1 oS
Spmt = 606 + (wy1./2)°170 S” | (233)
where Sim' is the sudden S matrix. The collision time can

be approximated as

T, = (234)

3

where for a r - potential X, = 1.5.

It is of interest to carry the results of DePristo et al.
a step further by substituting Equation (233) into the
equation for a general relaxation cross section oK(i'f'if).
Both gK(iiii) and oK(ifif) contain only elastic S matrix

. For elastic S matrix elements w is zero

elements Sm o

m

and Equation (233) shows that there is no energy correction

S

to Smm' Therefore 1n the context of the above correction

only oK(i'i'ii) for i' # 1 will be considered. (Several
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calculations of Aifif have been performed by using a fully
gquantum mechanical sudden method - the infinite order
sudden (IOS) method.(115’116) These calculations were for
vibration-rotation lines cf He-HD, He-HCl, He-CO, and He=-
HCN systems and were compared to exact close coupled cal-
culations. It is interesting to note that the IOS results
range from 7 to 500% higher than the CC results. This
suggests that there may be room for improvement in the
energy correction given in Equation (233).)

If j' # j in Equation (192), the T matrix may be re-
placed by the S matrix. By using Equations (193), (194)
and (233) the energy corrected cross section for the transi-

tion probability from j' to J may be written as

36 5 (25'+1)

0

o (J'3'3d) =
ECS W,,.b

{6+[—%R}—]2 2.25)° M

J VN p°
x e (235)
00 O

Equation (235) must be integrated over the impact param-
eter and 6, to obtain A?'j'jj' After expanding the denomin-
ator of the correction factor, the following integral must
be evaluated

2
o

o 4 (236)
2y +apy” + 2,
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where
ap = 36
2 2
N 2“U1U2 wj'j(l‘S)
1 hv Mv2
4
uUiug wj.J(l.S)u

nv 16 v

and all other symbols have been previously defined. At-
tempts to evaluate Equation (236) analytically have failed.
While Equation (236) could be evaluated numerically, the
value of such an effort is probably not worthwhile until
accurate values of transition probabilities for dipole-
dipole systems are available.

An alternative to the integral in Equation (236) is
simply to set b in the correction factor equal to some
average inelastic impact parameber bo. This is similar in
principle to the hard sphere cutoff used in the Anderson
theory. Unfortunately, the desire to bypass such a concept
is one motivation for using the sudden approximation in the
first place.

It is undoubtedly possible to devise many different
energy corrections to the sudden S matrix. An alterna-
tive to the approach discussed above has as its starting
point the Anderson approximation to the scattering op-

erator,



148

S = 1 - 1P

1 - iPS (238)

92}
{2

where P is the same P as used in Chapter II; PS5 is the P
operator in the sudden limit. The precise form of P°S

will be given shortly.
It 1s convenient to consider matrix elements of the
above operators. For the case m # n, Equation (238) gives

the following

Smn = 1P
s s
Spn = ~1Pon (239)
From Eguation (239)
2
g2 _ _‘mn (s8 42 210)
mn S 2 mn . (240
(P> )
mn

Each of the quantities in Equation (240) is understood to

be evaluated at a given impact parameter. It 1is also worth-
while to note that although Equation (240) has been written
with Anderson theory in mind it is a much more general
result in that Pmn may be evaluated within a different set

of approximations than those used in Anderson theory. For

example, Pmn may be the fully quantum mechanical first

Born Approximation. Also, the correction in Equation (240)
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may be extended to terms higher than first order by

writing

1 .2 2
S2 _ (-ipmn -2 Pmn+"‘) (sS )2 (241)
mn - ( s 1 pS 42 2 mn :
-iPmn - 2( mn) +...)

The gquantities of interest are cross sections. These
may be obtained from S;n and the analogous quantities by
taking the absolute value of Smn’ squaring it, summing over
msmims,, mé and jé, and multiplying by [(2j+1)(2j2+1)]-1.
Following this prescription the first of Equations (239)

may be written as

. -1, .. 2
r [(23+1(25,+1)] |<Jm my|SJtm'ims>|
J

. - . 2

= 11 [(23#1)25,+1) 17 [ <gmymy B[ g mt g ym> | S,
mm' j!

m,m, 2 (242)

with a similar equation involving SS and P®. The analogue

of Equation (240), written in terms of cross sections, is

o(S) = ili%g- o(SS) (243)
o(P

In Equation (243) o(SS) is the cross section evaluated from

a scattering matrix computed in the sudden approximation.
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The quantity o(S) is an exact value of the corresponding
cross section. Now, o(P) and o(PS) are cross sections cal-
culated by using the approximation in Equation (238).
Equation (243) will be useful if the ratio g(P)/g(P°)

is more exact than either of its factors. From Chapter

IT o(P) may be written (for a dipole-dipole potential)

o(P) = ¢ I [(2j+1(2j2+1)]_1|<jmj2m2|P|j'm'jémé>|2
mm' 3!
1
m2m2 2
2 2
5 JJg' Js Jé i\
=C ¢ B (25'+1)(251+41)
21 00 0 0 O
Ao
(244)
where
2
C = (uyu,/30vb°)
It was shown by TC that
2 2 2 2
£ B = 2[K .
o A A, [ 2(k) + uxl(k) + 3K0(k)] (245)

Defining f(k) as

PO =3k T Bin,

enables o(P) to be written as



2
JUN° i, 351
o(P) = 8C z f(k)(2j'+l)(2jé+l)
I 00 0 0

(246)

In the sudden limit w and therefore k goes to zero and
f(0) is one. Therefore

. 2

3" N3, 5)

(pS) = 8c = (25 '41) (25 3+1)
o 00 0 0 0

g 3’7
=8C(25'+1) (247)
00 O
Substitution of Equations (246) and (247) into Equation
(243) gives
. 2
Jo 35 1
o(8) = [T f(k)(2)5+1) lo(s®) . (248)
* 1
J2 0 0 o
In Equation (248), o(S), f(k) and 0(S%) are understood to
be evaluated at the same given impact parameter.
The interesting features of Equation (248) are most
clearly seen 1if molecule two is considered to be adequately

described by the sudden approximation. In this case the

sum over jé in Equation (248) may be carried out giving

o(S) = f(k)o(S%) .
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A qualitative plot of f(k) vs. (k) is given in Figure 2
for a dipoie-dipole potential. The most significant
difference between Equation (248) and Equation (235) is
that while in Equation (235) ¢(S) is smaller than ¢(S%)
for all values of y at a given b, this is no longer true
in Equation (248). (wj'j > 0 in Equation (235).) For
values of  such that k is less than ko Equation (248)
predicts that g(S) is larger than g(SS).

If it is desired to extend Equation (248) to relaxation

coefficients, the equation must be averaged over the impact

parameter; i.e.,

3o 95 \°
21 f bo(S)db = 27 1 (2)5+1) Jy bf(k)o(s®)db
J2 0 0 0

(249)

The integral on the right side of Egquation (249) involves

integrals of the form
o T7.2,C 2wb
L b JA(;§)Kn(77)db s (250)

where C is a constant, n is an integer and X is a half-
integer. All attempts to integrate Equation (250) analyti-
cally have failed.

It is possible to analytically evaluate an approximation
to Equation (249). Because o(s%) 1is proportional to FA’
the integral on the right side of Equation (249) is
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f(k)

x
o
x

Figure 2. Qualitative plot of f(k) vs k for a dipole-
x = ¥ |

dipole potential. =
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Jy, bf (K)F,db
which may be approximated as

LT (k)db g bF db . (251)

The second integral in Eguation (251) is just the integral

that was evaluated earlier for the pure sudden approxima-

tion. (If the integral was approximated as fwa(k)dbwaAdb,
[o] (o]

the introduction of a hard sphere impact parameter would

be necessary.) The first integral may be evaluated
analytically. The details are given in Appendix I. The

result 1is

oo

£t = (3 .5)3ra.51" (252)

2.77586 (%)

In this approximation Equation (249) becomes

I, 35 1\2
A(S) = I (25341) ) (3)(1.5)3[1(1.5)1%,
35 0 0 0 2
o
x A(S®) (253)

where p.j is a Boltzmann factor.
2
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One of the advantages of the sudden approximation is
that the sum over j, and Jé may be neglected. (The per-
turber states have been summed over by using the closure
relations for spherical harmonics and rotation matrices

given earlier.) This advantage is lost in Equation (253).

The essential prediction of Equation (253) is that
A(S) v (IA(S®) (254)

When w is small, A(S) is much greater than A(S®) while
when o is large, A(S) is much less than A(SS). Intuitively,
only the latter 1limit seems reasonable.

To attempt to establish the validity of approximation
(Equation (251)) the exact integral should be evaluated
numerically at least once. To compute a cross section,
however, the exact integral will have to be evaluated for
every allowed value of X. Because [J-]'|<A<j+j', this

could become very expensive.



CHAPTER V
ADDITIONAL RESULTS

In this chapter two additional results will be pre-
sented. They are concerned with the equations of motion
for the density matrix. First, the equations of motion for
a symmetric top Q-branch transition in a static external
electric field will be derived. The second part of the
chapter discusses some phase conventions for reduced matrix
elements and their relation to previously derived equations

of motion for state multipoles.

A. Comparison of T2 for Transitions in a Static Electric

Field in Linear and Symmetric Top Molecules

The case of a linear rotor in a static external elec-
tric field has been discussed in LM. Before discussing the
analogous case for symmetric tops, a brief summary of the
LM results will be presented.

In a static electric field and plane polarized
radiation the (me) - (Jim) and (Jp-m) « (Ji-m) spectral
transitions are coupled. By using the Wigner-Eckart

theorem 1t is possible to show that

156
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<jim!Uljfm> = <Ji"m|U|jf-m> (255)

This result and the following linear combination of density

matrix elements
0+(J3dp) = p(Jymiom)ep(J-my —m) (256)
can be used to write the equations of motion as
i g%pt(jfji) = mfipt(jfji)-<jfm|u|jim>gCOSwt

X [oi(jiji)-pt(jfjf)]

- hpypqPtpdy) ~1hgy eer(ddp) (257)
1 204(3,3,) = —ecoswtl<dymlulim>o2(jpdy )0ty )
x <3 gm|uldym>I-1ays 1102033y )-10yypp02 (Jpd ) (258)

In the above equations the m-dependence of pt(jijf) has

been suppressed. The Ai are defined as

A%ifi=<<3fmjim|A|meJim>>i<<Jf-mji-mlA|jfmjim>> (259)
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+

+ +
piirs Aqipp @nd Aggqq-
Equation (27) may be used in Equation (259) to give

with analogous equations for A

>
. Jp J4 K+ oS, o
Apipy = L (2K+1) [1:(-1) Meipy  (260)

K m-m O

with similar equations for A?iif’ Aiiff and Aiiii‘ Equa-
tions (257) and (258) decouple the pair of transitions
(me) < (§ym) and (Jp-m) < (J4-m) from the other possible
transitions among m states. They also show that py and
p_ are uncoupled. The polarization for this case can be

written

P = <me|U|j1m>o+(jiJf) + <JimlUljfm>p+(jfji) (261)

so that only the equations of motion for p; are needed.
The system can be treated analogously to a two-state system

and gives for relaxation times

1 +
T = Redpipy

(262)

"

1(X+ -A+ + + + )
T, T 21117 A reai A eerrT aarr

In the above it was assumed that the strength of the field

was such that the spectral lines arising from different

values of m are non overlapping.

The dipole moment matrix element for a symmetric top
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evaluated with a parity-adapted basis may be written

J.~-m Ji jf '

. l —
+ - = -
<jykmt|uld ckm=> = (-1) TR (263)
m -m
The following discussion 1is restricted to Q-branch transi-
tions in a symmetric top with inversion (like NH3). For

this case,

3 d
<jkm#+|p|jkm-> = (-1)3'm Eif . (264)
m-m
Also
i4 JJgu
<jk-m+|u|jk-m-> = (=1)¢7" Wyp
-m m O
j-m+1 R
= (-1))7" My (265)
m-m O

where the symmetry properties of the 3-j symbols and the
fact that m is an integer have been used. The conclusion

from Equations (264) and (265) is that

<jkm+|u|jkm-> = -<jk-m+|u|jk-m-> . (266)
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The polarization can be written

jav)
L[}

tr(up)

i [<3ymluliem>p (Jemj m)+<gomulg m>p (J mjem)]

(267)
where the sum over m is restricted to m and -m. In Equa-
tion (267) the symbols Ji and j, include, in addition to
the j value of the state, the guantum number k and the

parity. Egquation (267) can be evaluated to give

P = <jim|Uljfm>p_(.jfji)+p_(jijf)<3fmlUIjim>- (268)

Therefore, the equations of motion for p_ are needed. Use
of Equation (21) of Chapter I and Equation (266) of the
present chapter gives the equation of motion for p_(jfji)

as
1 gep_(Jpdy)=upg0_(Jpdy)-ccosut<d m|u] g ym>
x Loy (3431)-0,03pdp)]
- Dpgpip (Fpdq) = Tpygpep_(Jids) (269)

This result differs from Equation (257) in that here

o_(iji) is coupled to p+(jiji) and p+(ijf). In a manner
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similar to that used to obtain Equation (269) the equation

of motion for o, (3j) is
3 : :
i EEQ+(jiJi) = -CCoswt[<Jim|Ulme>0_(JfJi)-D_(JiJf)
X <jfm|U|jim>]

)\+
- 1A5591P4

. s L+
(JiJi) - 1Aiiff0+(JfJf) (270)
p4(J4Jy) 1is coupled to p_(JjeJ;) which is given in Equation
(269). Therefore Eguation (269) and Equation (270) are the
equations of motion necessary to describe this system.

The relaxation times are seen to be

1 -

T, = ReCripy)

1l _1,,+ + + +

7, = 2%a11 ~ Aresn Y rere - Myaer) (271)

This is the same T1 as for the linear rotor. The l/T2
differs from the linear rotor case in that here the minus
- +
combination 1is needed. For comparison Afifi and Afifi
are given as
2
Je Js K
f J1 jf+ji+K K

Mriry = I (2Kk+1) [1-(-1) Ihpypy  (272)
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and

2
jf 4 Jatj.tK
+ - eI K . (273)
Mrary 7 I (2K+1) <; i §> [14(-1) 1K, o

For Q-branch transitions in a symmetric top with inversion,
A}ifi is needed for 1/T2 and only terms with odd K contrib-
ute to Equation (272). For R-branch transitions in a
linear rotor, A;ifi is needed and again only terms with

K odd contribute to Equation (273).

Equations (272) and (273) suggest a way of experi-
mentally obtaining A?ifi for K greater than 1. To be
concrete, Equation (273) will be considered for R-branch
transitions in linear rotors. The following comments apply
equally well to Equation (272) for Q-branch symmetric top
transitions. Re(A%ifi) is the low-power linewidth ob-

tained in zero field. For a 1 « O transition K = 1 only

K
for Apspy. For a 2 * 1 transition and plane-polarized

radiation K = 1’ 3 for A?ifio Re A%ifi may be obtained from

a zero field lineshape experiment. This enables Agifi to
be obtained when a non-zero field lineshape experiment 1is
performed. For a 3 « 2 transition K =1, 3, 5. After

Re A%ifi is obtained from a zero field experiment there
are two remaining unknowns. However, there are three dif-
ferent m-component. pairs which may be probed. This en-

ables a set of linear equations to be set up from Equation

(273), with one equation for each |m[. Obtaining A?ifi
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in this way would be a useful check on the theoretical

calculations presented earlier. In the Anderson theory
K

the A?ifi and Aiiii are similar in form so that indirect

comparison with the AK may also be made.

iiii

B. Phase Conventions for Reduced Matrix Elements

In this section a discussion of conventions for re-
duced matrix elements and their relation to equations of

motion for the density matrix is presented. Equations

(4.1) and (4.2) of LM may be written for plane-polarized
radiation and non-overlappling lines as
3

1 ggp(Jemiym) = wpsp(Jemj m)-ecoswt<Iem|u,[J m>

x Lo(gymism)-p(JemJpm)]

—1D T <<domigm|A]Gim S Imt>>p(fim! Sim") (271)
J%Jim'f i f i f i
i g%o(JimJim) = —ecoswt[<J m|u [jem>p(Jemyym)

—p (3 ymdgm)<d gmlu, |3 ym>]

-1 Iz <<Jimjim|/\|j'm'j'm'>>p(J'm'j'm') . (275)
Jlm'

Equation (274) is identical to Equation (1) of
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Schwendeman.(55) Equation (2) of Schwendeman is
9 . . . . . .
i ggo(JimJim) = -ecoswt<3fm]uz|Jim>[o(jfmJim)-p(jimem)]
-1 I <<JImim|AlI'm'itm'>>p(i'm" I 'm") (276)
j'm' i i

Comparing Equation (276) with Equation (275) shows that

in Equation (276) the assumption

<jim!Uszfm> = <jfm|UZ|Jim> (277)
has been made.

The adjoint of a tensor operator is defined as

<jm[qu|j'm'> (-l)p‘q<jm|Tl_q|j'm'>

- *
(-1)P q<j'm'ITk_q|jm> (278)

where q 1s the z-component of the tensor order k. As
discussed in Brink and Satchler,(71) there are two choices
for the parameter p; p = 0 or p = k. These choices will
be denoted convention I and II, resnectively. If p = 0,

the following relations hold:

1}

- *
<jm|qu|Jvmv> (-1) q<j'm'|Tk_q|jm> s (279)

STl 13> = I gy T (280)
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while if p = k,
<gm|Tyqldtm'> = (-1)k‘q<j'm'|Tk_q|jm>* (281)

and

<GlITel 13> = (~1)d=3 Kegry o (282)

k| 13>*%
In the previous four equations <j||Tk||j'> is a reduced

matrix element and obeys the same equation as of

Ef‘i
Chapter I(Equation (26)). It is noted that if Equation
(279) is adopted then Equation (280) and not Equation (28)
must be used. (Equations (280) and (282) follow from
Equations (271) and (281), respectively, by use of the
Wigner-Eckart theorem.) In the following the z-component
(i.e., g = 0) of the dipole moment will be considered.

It will also be assumed that <jm|p,|j'm'> is real. Then,

Equations (279) - (282) give the following results.

Convention I (p = 0):

<jim|uloljfm> = <jfm|uloljim> (283)

J

_ e
e = (1) TN (284)
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Convention II (p = 1):

3ymluyolagm> = —<i mlug ol gmo (285)
Hir = Hrg (286)
Equation (34) of Schwendeman(SS) is
i g%pii(K) euficoswtZICKK,[pfi(K')—(-l)Ji pif(K')]
K'
-1 A P (K (287)

In Equation (287) the Cﬁi. are defined as

kK k' I\ K K'1
£i Jp=Jd4

CKK' (-1) [(2K+1)(2K'+1)]

1/2 ‘
oo o Y., 4y

(288)

It is possible to derive an equation of motion for
oii(K) without choosing a convention. This is (neglecting

collisions)
3 Je=di p4
i Efpii(K) = ~gcoswt % (-1) Cxk

x [ugpops (K') = upyogp(KD)] . (289)

If convention I is used in Equation (289), the result is
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Equation (287); i.e., the result is Equation (34) of
Schwendeman.(SS) This establishes the phase conventions
used in that work.

Finally, it 1s interesting to note that the commuta-
tion relation given in Equation (154) of Chapter III may
be used to obtain the equations of motion for the state
multipoles. This is done by recognizing that these equa-
tions are essentially Jjust the commutators [oii(K)“fi(l)]’
[pff(K)ufi(l)] and [pif(K),ufi(l)]. These commutators may

be easily evaluated to give, respectivelv,

Jomy K1EK K 1 K
V3 L [(2K+1)(2K'+1)]l/2(—1) £ ‘ }
: 0007 e dy Iy
p'e pfi(K') . : (290)

-J
/3 Z [(2K+1)(2K'+1)]1/2(_1)jf 1

K 1K K 1 X
K! }

00

(@]

‘ji Jf Jf

X pfi(K') (291)

Y3 © [(2K+1)(2K'+1)]

K1K K 1 K
K' }

1/2 [
00O Ji Ji jf
k 1 K
X pii(K') “ ,fo(K')] . (292)

Jf Jf Ji
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The factor ¥3 arises from a different normalization of

reduced matrix elements.



APPENDICES



APPENDIX A

EQUIVALENCE OF EQUATIONS (42) AND (43)

In this appendix the equivalence between Equations (U42)

and (43) of Chapter II is established. By using the four
equations,

1' R" J'
R'-jA-ML 12 °f f
<jimig'm'| = I (-1) (2J1+1)
£me T £
f ' M
Mg M Mf
X <IpR'IpMp| (A1)
|jema.em> = 3 (-1) (2T ~41)
r IM f
f e m—Mf
x |3pRdpMe> (A2)
R-3,-M, e P17
|j4myam> . (-1) (274+1)
JyM
11 m; m-M,
x 3409 4M> (A3)

and
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J' 2]! Jl
L1-3g-My 1/2 1
<jtmie'm'| = = (-1) (27'+1)
i g3y o
mi m -Mi
x <jieraiMi| o, (AL)
[ 8 can be written as

itivf'fe

§iv38prp =<jimil'm'|jimilm><j%m%2'm'ljfmf2m>
Ji=31=3 amj h=M,=M! =M M}
s oprpr ()RR o5 41y (20541)
J,.J!J.J!
1°1°fFYF
] ]
M MiMeME
1 ] | |
1/2 Ji 295\ e Py
X (2Jf+1)] (2J%+1)]
' 1M -
AP AN FANZ P 8
X . j;Q'JiMiljilJiMi>
! -— -
p m Mf mf m Mf
X <j%Q'J%M%|jf2Jfo> . (5)

*
Also, Si'isf'f can be written as
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Ji=31+je-jL-M,-M!-M_-M!
174t 1 £
Sy14S%,. = I I I (-1) £ i

JiJiJfJ%

' '
MiMiMfo

x [(23341)(204#1) (20 0+1) (23 341) 1%/

e =

ji '3 Ji j% ! J% jf '3 Jf
1 M =] ' "M -
3 m Mi mi m Mi p m Mf £ m Mf
J J ¥
i f
X Si'i Sevp (A6)

Use of Equations (A5) and (A6) and the fact that the scatter-
ing matrix must be diagonal in Jk and Mk allows Osrpryif

to be written as

Oyrprar =

]

Je=3l43 o= b3 =3 b=M,-M!-M_-Mi-m, -m
R R 1(2Ji+1)(2Jf+1)

x (-1)

Lo (P 3e K\ /31 IR KN 3y By
x [(2K+1)(2K'+1)] < <m

m,=me=Q/ \mi-mi= 1 ™My
Ji 2T I4\ e 2 Ip\ f3p B I I, 3¢
X (8514808574550 ¢]
' '_ _ ' '_
g m'=My7 Ame me=Mg /o Amg mi-HMg (A7)
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Finally, use of the relation

Ji*jf+2+mi+mf+m Jp 2 Jp Ji 2 Ji Ji Jr K

r I (-1)
m.m_m
i f mf m-M mi m—Mi mi-mf—O
Jf Ji K Jf Ji K
_ { (48)
Mf Mi'Q Ji Jf '3

twice and summation over the resulting two 3-j symbols

results in Equation (42).



APPENDIX B

CONVENTIONS FOR REDUCED MATRIX ELEMENTS

In this appendix the LM and TC conventions for reduced
matrix elements are compared.

According to Equation (4.10) of LM, the LM convention

for reduced matrix elements is

L ] j' Kj
<y'3'm' |T(KQ) |yjm> = (-1)9 M <yryrllTllve>
-m Qm
(B1)
(142)

This is Equation (5.4.1) of Edmonds.

The TC convention is obtained from Equation (81) of

TC as

<Jymg lu ldpme> = <3pIm 0[gymy>F"

Je 1 J
J otm, +1 f i
= (-1) £ (2j1+1)1/2 F!
£ O—mi
Jy 1J
Je=m i f
= (-1) i 1(2J1+1)1/2 P!
—my 0 m (B2)

Equation (B2) differs from Equation (Bl) by the factor
(2Ji+1)1/2.
173



APPENDIX C

REDUCTION OF EQUATION (49) TO

THE ANDERSON RESULT

This appendix shows that Equation (49) of the text
reduces to the expression given by Anderson (Equation (47')

of Reference (53)) and TC (Eguation (88)) for ol(jijfjijf),

If the appropriate substitutions (i.e., K = 1, ji = ji, etec.)
are made in Equation (49), then
1 me-mp (J1 K Je\ /33 K dr
o (ififr) = £ Z (-1) S m'dm m
mi 1 mi-Q—m m!-Q-m! Trf 1
m 1 Q i
f f
mo-ml (I3 K Jg\ /34 K Jp
- - < ! ¥ |3 >
nfnﬁ (-1) Jpmp1s* 1y omy
1
MeMp
' [
X <jimi|S|Jimi> . (C1)

The first term of Equation (Cl) is Just

3y Kdp\ /34 K g 3y 3p K\ 73y Jp K
r z P) = LI
m,m

igf' i-Q-m mi-Q-mf m -mf-Q my-m -Q

i f

" Ieoen Tl (c2)
174
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Use in turn of the three relations,

abe
= (-1)a’b‘Y(2c+1)‘1/2<abas|c—y> , (C3)
a By
b+ +1,1/2
<abaBlcy> = (-1) B[gg+i] / <cb-yBla-a> (ch)
and
<abaB|cy> = (—1)a+b—c<ab—a—8|c—y> y (C5)

allows the second term of (Cl) to be expressed such that

(Cl) can be written

<JplmeQlJymy><jplmiQlj mi>

Gl(ifif) = 1 - I %
(234+1)

x <JpmilS*[jome><g mifS[gm, > (C6)

which in a slightly different notation is exactly the

expression given by Anderson and Tsao and Curnutte.



APPENDIX D
DERIVATION OF ANDERSON-LIKE EXPRESSIONS FOR AK

This appendix presents the details of the Anderson-
like expansions of the cross sections given above in Equa-
tions (60)-(62) and Equations (83)-(85). The terminology
follows that of TC. The expansion T = TO + T1 + T2 +
is substituted into the product 71l giving [(T—l)O +
(T_l)l + (T_l)2 + ...1(Tp + Ty + T, + ...). The order
of the expansion of oK is determined by the sum of the sub-

scripts on the various terms of T and will be denoted as

o

o
Keirif)
Zeroth order: let T = TO = 1 and T—1 = Tal = 1.
mf-m% -1 Ji Jf S
op=1- I1LZI (-1) (2j2+1)
? ]
mim%mfn}{, i_mf_Q
mymsQ Jj
Jij Je K
X 6 m'Gm m'dm m'6j J'
Mmeme MyMy MomMs - Jodo
t_m?! o
1~mp=Q
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1 - 11 (2j,+1)7"

m,m
i f m:.L mf- mi-mf"Q

m2Q

=1 - 312
m.m
£ -m - em -
‘B 1 mf Q mi mf Q
+K 6.,.08
_y o keag
Q==K (2K+1)
, , -1 -1 .
First order: let T = TO =1 and T = T1 = -iP or
_1 .
T"% = 4P and T = 1.
The first combination (i.e., T(-)l = 1and T, = -1P) gives
m-mt [P e Ji g
o= - 22z (-1 T Tag,e)
1
mym;Memp -m.-0/ \m!-mi-C
] 1 ﬁ. f 1 f
s LRI S I )
X 6j2jé‘sm A FLIDFL Y hnd RELIR P Pre

272 f'f

If me = mg, as required by the factor Gmfm%’ the two 3-]
symbols require that my = mj. Therefore, o, can be written
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o, = iz (2j2+1)
MyMe m,-m_.— -M,=0
m-o if i=vr
2..
X <jfmszm2|P|jimij2m2> s
or
r
- : -1 ; .
o = i;f:f [(254+1)(25,+1)] <jim132m2|P|Jimij2m2>,
iT2
(D1)
where
8 8
Iy Jr Jy Jp K Jdg MMy
g = (254
me -m,- -m_-Q
i7f ir

has been used., By a.completely analogous procedure, the

combination T, = l,T;l = 1P gives

-1 z [(2Jf+l)(2j2+1)]_1<mefj2m2|P|jfmfj2m2> . (D2)
MeMo

Second Order: Let T ® =1, T = -P %; S
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The first combination gives

me-m}, Ji Jr Ji Jp K
o, = - I I(-1) 1 Tyt
mmm o Vot
iQf1f my-me=0/" \nj-mg
32

""_12.' .
* Gjejéémfm%Gmimi<jimiJ2m2l Pl gmyd o>

%— T3 (23'2+1)"1
mimf -m
my =M~ 1~Me=

m,Q

»

<Jymyd mzlp |3 3mydomy>

%mzmzz[<2ai+1>(2j2+1j (M d oMy P23, domy> L (D3)
1

Similarly, the second combination gives

1 . . -1 2 .
5 LI [(2]p+1)(25,+1)] <mefj2m2|P |jfmf32m2> . (D)
m,.m
£ 2
For T'! = iP and T = -1P,
o, =- £z (-1) (25,+1)
2 m,m'm_m! 2
i i f‘f mi_m __0 m'_m'_Q
mm'Q j! b ivf
22 2

x <Jpmedoms | PlIpmiyiml><iym 3imy [P]I mydomy> s (D5)
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which cannot be simplified further. This completes the
Anderson-1like expansion of oK(ifif). The first order term
is pure imaginary and therefore contributes only to the
lineshift. It will not be considered further here. Com-
bination of Eguations (D3)-(D5) gives Equation (60) of

Chapter II.

of(iri111)

In Equation (50) of Chapter II the symbol j in

g1 etc. should be considered to be
i‘i
a set of quantum numbers. If j # j', the outer terms drop

K, orey
o (JiJfJ

ijf) and in 6j

out giving the purely middle term, Equation (50).
Both zeroth and first order contributions to o (i'i'i1)
are zero in the same manner as for oK(i'f'if).
Second Order: Let T™' =1 and T = - %Pz; T = 1 and
T~ =-3p°; and T - = iP and T = -iP.
Again, the first two combinations are zero, while the last

combination gives

Ji=3i+n,-n} _ 2j1+1
- 2z (-1) 1P i(23 +1) 1 [——1——]1/2
m,m'n,n! 2 231+1
1717171
1 s 1
momyQ J5

5.y K\ g3} 31K
X

\ ] 1 1 s 0 1 ] \}
x <Jyngdomy[PlIinigoma><gimigimy [Py mygomy> (D6)
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which is Equation (61) of Chapter II.
oK(iiii)

The zeroth order term is zero by reasoning analogous
to that used for the other cross sections.

First Order: Let T'' = 1 and T = -iP; T = 1 and

1 - ip.

The first combination gives

n,-n! /% B\ fa dg K
o, = - r I (-1) (2j2+l)
m.,m'n,n'
i i3 mi-ni-Q '-n!-0
1 !
mym5Q J5
x 8 S 8§, y<J,mij!m!|-iP|j.m, J. m,>
n.ni m2mé szé iiv22 iiv272

]
e
™

. -1 . .
| g:[(2ji+1)(2J2+1)] <Jimij2m2'PlJimi32m2>
i 2

A similar calculatioh shows that the second combination
gives the negative of this result, so that the first order

term is identically zero.

Second Order: Let T ' =1 and T = - EP ; T =1 and

U %P2; and T°1 = 1P and T = -1iP.

The first two combinations are completely analogous to the

corresponding part of the second order expansion of

oK(ifif) and give

5 1 [(23341) (23 p+ 1)1 e m g m, [ P23 m g omy> (D7)
miMa
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and

2
nzmz[(&] +1)(232+1)] <jinij2m2|P ljinij2m2> , (D8)
1

1
2

respectively. The third combination gives

n.-n' ji ji jj_ 'ji K
- rrr (-1 eey,41)T
m.m'n,n!
i i1 m,=ns- mi—ni-
' 3t
momyQ J5
X <jinij2m2[P|J nijom 2><Jim J2m2|P|J m,Jom, (D9)

Equations (D7)-(D9) give Equation (62) of Chapter II.

The next step is to evaluate the matrix elements of the
P operator. Tsao and Curnutte have done this for ol(ifif).
The result may be immediately generalized to oK(ifif).

The outer term is

1 (AkJ) 2 . 2 v L2
327 j'?'i . |a | <Jik1KiO|JiKi> <J K K20|j K,>
19251 %5
NP
2
1 Ak3) 2 SEREE
=5 I |a(AkI) 2 (550 141) (25 3+1)
3135k K K,-K; 0
Ay 1
2
2 J5 X7
X (D10)
K. 0

2 72
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with a similar term for jf. The middle term'is

J.o+j 4K [(23.+1)(25+41)3%/2 K. +Ao 4+
(-1) +°f X g I1o(-1) 12
16w k1k2J2
Ao

>

a(k kohydpdlalkyk=A h,51)<g kK 0[5 K ><d pkyKpO |3 pKe>

»

. e 2

(23 ,41) (27 .+1) AL+A . +k,+K

2 s
167 k1k2A1X232

(25 5+1)

Jy Jg K e Jp K)

»

a(k1k2A1A2j)a(kkk2—x1—x2j')

R
i, J) k

=

2
A (J1 Jr K
l } s (D11)

k

Ko-K5 0 Jp ds Ky

where W(abcd;ef) is a Racah symbol, related to the 6-j

symbol by(71)

abe
W(abcdsef) = (-1)atbtctd ‘ |

dcec f
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Substitution of the matrix elements of P given in

Equation (80) into the expression for oK(i'i'ii) gives

of(iriti1) = - sz (-1 (25 ,41)7%
mymikyKokikp
niniklkzkiké
momaJ 5@
Jy J; K 2
X LR ERLAG PPN EY
mi-ni- Y

»

B(J3k 338 03okE35)<dkymy g [T {m]><fokomyry [Joms>

2Ji*1 1/»
1 \ 1 1 .
<Jikinixlljini><j2ké"2xé’Jémé>[2ji+1]

>

After using the definition of a(abc) given in Equation

(81), using Equation (82), and setting ky = K,

Al = Ki and A2 = Aé (the validity of which is discussed in

k2 = kb,

Appendix E), the above expression may be written

- \ 2
(1) 17t |a OkdD

of(111111) = = T T T .
mimiklk2 16w
nyniXd,

519
233+1 1 /5 Jg Ji Kq :
X [55;;TJ (2k141) (233+1) (25142 24 5+1)

K;-K. O

i1
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2
Jo 35 Kk Ji d1 K\ /1 di K\ /33 J3 K\ /g i K

Kp-K, 0 mi-ni-Q/ i~n{=Q/ \mg-mi A/ Ang-ng Xy

The product of the last four 3-j symbols and the factor

my-ny
(-1) may be written as
s 1 1 .
J4*3 ] ¥k +my-n] J; 35 J1 35 AERRERRS)
(-1)
- ] \] - - _ -
mi ni & Wng-m-0f A-my mi-iy
Ji 31 Ky
X (D12)
"Ny ny-Ay
Now, the sum rule(71)
Ab C a B B Ac
) (_1)a+B+Y+c+C
| ]
apye s a 8 v/ \a' 8-v/\-8 o ¥
a b ¢ $ §.+.y ya b c
1 cc, vy'y
X - _l“__.___l'. (D13)
(2c+1)
a' B' Yi ABC

i1s used with A = j;, B = ji, C =K, a-= ji, b = Ji’
c = kl, [0} = mi’ B = mi’ Y = Q’ a' = -mi, B' = mi, and

Yy' = Al. With this rule and the observations that
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a+B+y = mi + my + Q and -mi + ni + Q = 0, which in turn

implies that ni = mi-Q and therefore that mi-ni = mi-mi
+ Q, it is possible to sum Equation (D12) over ms s m!,

n n!, and Q to give the right side of Eguation (D13).

i?> i
This gives the final expression for oK(i'i'ii) as Equation
(84).

The outer term of OK(iiii) is just twice one outer term

of OK(ifif). Therefore, it can be written

) 2
1 . Jj Ji k
£z |aAkd)|205141) (25141)
167° %K. k.j! i 2
1Ko K.-K, 0
ATy s 178
;
1 292
Jo J5 kp
X
K.-K. 0

2 2

The middle term of oK(iiii) may be obtained by the same
procedure used to obtain OK(i'i'ii). The only change is

that ji is replaced by ji.



APPENDIX E

PROOF OF RESTRICTIONS ON MULTIPOLE ORDER

OF POTENTIALS IMPOSED IN APPENDIX D

In appendix D the restrictions k1 = ki’ ky = ké:
Xl = Ai and A, = Aé were imposed in the derivation of
oK(i'i'ii). In this appendix these restrictions are shown
to be rigorous. If the assumption is made that the above

conditions do not hold, oo(i'i'ii) may be written as

Je=314m,-m} _
cP(11111) = - 1z (-1°t il i(2J2+1) !
1 L A
mimik1k2k1k2
1 \] \
moMmaAAodiAs
1 \
« g (AkI) (ATk'])
]
Jij Ji O\/J1 350
1 ] 1 | |
X <Jykqmydyl3gmi><g kqmiri[dgmy>
t_m!? -
mi mi 0 mi mi 0

X <j2k2m2A2|jémé><j2kémzkéljémé>
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The symmetry properties of the Clebsch-Gordon coefficients

demand that A, =li and l2 = Aé. With these restrictions,

rewriting the above expression in terms of 3-j symbols

gives
S50
—(254+1)(251+1) . Ji J4
L Dz atkI Ak g0
]
16 mimik1k2 mi‘mi 0
] ] ]
m2m2klk2
PYSRP
Ji Js O .
iJi Ji—Ji+mi—mi :
X (-1) [(2k1+1)(2k1+1)(2k2+1)
ml—mi 0

~
e
1
=
.
O
e
"
=
no
o

Summation over my and mé then demands that k2 = ké and

gives
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- —(25,+1) (25 141) 34=314+m,-m!
o2 (111711) = 1 — 1 r oy (-1)1tiiod
1]
167 mimiklk2
\] 1
JokiA12s
jj 31 o
. .
x 2™ 2M I (25541 [ (2 +1) (2K 41)78/2
mi-mi 0
Ji 31 O\ /Jq 31 K\ /91 J1 K1\ /94 J5 kq\ /] 31 K1
X
mi—mi 0 mi—mi Al mi—mi A Ki_Ki 0 Ki-Ki 0
_ 2
Js Jo ko
X

Finally, Equation (D13) may be used to show that ky = kq.

These results may be easily generalized to arbitrary K and

also applied to oK(iiii)m.



APPENDIX F

MATRIX ELEMENTS OF MULTIPOLE MOMENT OPERATORS
FOR ONE-ENDED AND PARITY ADAPTED SYMMETRIC

TOP EIGENFUNCTIONS

This appendix considers matrix elements of dipole and
quadrupole moments for both "one-ended" and proper sym-
metric top eigenfunctions.

Following the notation of Anderson(53) parity-adapted

symmetric top eigenfunctions are written as

1 . _ 1
ba = s U+ b0 b= Vox - V) (F1)

where w+K are the usual symmetric top eigenfunctions for

J = J and k = K. Therefore,

_ 1 : _ 1
bag = s (P s s (- (F2)

By using these relations and the fact that the dipole

moment y has odd parity, it 1s easy to show that

<Klulk> = S[<tul-> +<=ful+>] ,

<-K|u|-K> = - %[<+|u|-> + <=|u|+>]

190
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That is,
<K|lu|K> = —<-K|u|-K>. (F3)
Equation (F3) can be demonstrated directly using

<J'K'M'|YY (8) | TKM>

[(2J+1)(2J'+1)(2j+1)

1/2
g ]

K'+M'

(-1)

X (F4)
K-K' 0 M-M' m

with j = 1 and m = 0. Equations (F1) and (F2) can also

be used to show that

<t|ul-> %[<KIU|K>—<K|p|—K> + <=K|u|K> =<=K|u|-K ]

= <K|p|K> . (F5)

The last step follows from application of Equation (F4)

to obtain
<K|ul—K> = <-K|u[K> =0

and
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<K|u|K>=-<=K|u|-K> . (F6)

Equation (F5) shows that the matrix elements of the dipole
moment operator may be taken using either "one-ended" or
prooer eigenfunctions.

By using Eouations (F1l) and (F2) and the fact that the
guadruvpole moment @ has even parity, it is easy to show

that

<K|Q|K>

<-K[Q[-K> (F7)

and

<+|qQl+>

%[<+K|Q|+K> + <-K|Q|-K> +<+K|Q|-K> + <-K|Q|+K>].
Equation (F4) may be used with j = 2 to show that

<+|Q|+> = <+K|Q|+K> (F8)



APPENDIX G

SUMMARY OF RESONANCE FUNCTIONS AND

HARD-SPHERE CUTOFF CALCULATIONS

This appendix will give explicit expressions for the
axkj factors occurring in the expressions for oK(i'f'if)
in Chapter II. Comparison in turn of Equation (108) of
TC with Equations (133), (150) and (161) of TC leads to
the following identifications for dipole-dipole, dipole-
quadrupole and quadrupole-quadrupole interactions,

respectively:

Ak J Hqls 2
LM% L 22 Lor o, e (1)
32T b
1, _akj2 _ 4 Mi¥pi2 1
32n2|a I = )_ls(_h—v ) ;)‘6 fz(k), 5:3 ; (G2)
and
. Q,Q
1 Akj 2 1,%1%2.2 1
= (——=) fo(k) , Q-Q . (G3)
32n2| | 250 nv 58 3
wb

In the above equations k==77, where w is an internal state

energy difference, and b is the impact parameter. The

193
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functions fl(k), f2(k) and f3(k) are defined as

_ 1 4.2 2 2
£1(k) = T k [K2(k) + uKl(k) + 3K0(k)]
£,(k) = gﬁ k2[K§<k) + 6K§(k) + 15K2 (k) + IOKg(k)]
ro(k) = §§6H kB[Kf(k) + 8K§(k) + 28K§(k) + 56K§(k) +
2
35K2 (k)]
fn(O) =1 n=1,2,3

As regards the middle terms, TC show that

142
(-1) a(kkphprpdlal (kyky-Ay=2,31) = I

A1A2 Alkz

AkJ 2
la?kde
so that the above equations may also be used to compute
middle terms of gi(i'f'if).

The hard sphere cutoff is determined by the condition

K

Ojg(bO) =1

That 1s, the hard sphere cutoff is that value of b (de-

noted bo) such that c? is one. Integration of o? (b)
2 2
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over b gives

og = nb2 + fao 2Tb OK

(b)db
3o 0" b, 3o

If, (for simplicity) only a py-u potential is considered

the integral to be evaluated 1is

©o

2 2 2
fbob[}{2 + 4K] + 3Kgldb
1.2 2 2 2
=3 bo[K3Kl + MKZKO - K2 - Kl - 3K0]k=ko .
The notation [ ]k—k indicates that the K functions are
R0 wb
to be evaluated at k = ko = —;9 . As a result of these
integrations c? may be written as
2
K _ .2 1 Vo
0J2 = TTbO{l + ;H' [J'Xj,Ali(jij.Q)Fl(ko) +
0 iJ2
1
+ J'E" AL (JEISIF, (ky) + jz' Alm(35)Fy (k) 1},
J2 2

The above equation is specific for o? (ifif) and a p-u
2

potential. Similar expressions for o§ (ifi'f') are easily
2

obtained from expressions in Chapter II. With the follow-

ing expressions for Fn(k) the A coefficients are easily

obtained.
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_ 1.4 2 .2 2.
Fl(k) =Tk [K3K1 + uK2KO - K2-K1 - 3Ko], u-u

_ 1 .6 2 2
F2(k) = Z1 K [KuKe + 6K3K1 + 15K,K, - K3 - 6KX5

2 2
- 5KZ - 10K%); u-Q
1 0 Q-u

_ 1 8
F3(k) = 3300 k [K5K3 + 8KuK2 + 28K3K1 + 56K2K0

2 2 2 2
- 28K5 - 21Ky - 35K3l; Q-Q

2
- Ku - 8K3

F(0) =1
1

Fa(0) = 3
_1

F3(O) =3

The values of fn(O) and F,(0) are necessary when the
internal energy state differences are zero, i.e., w = 0.

This i1s the case in the sudden approximation.



APPENDIX H

DETERMINATION OF THE SUDDEN APPROXIMATION B0

The objective of this appendix is to obtain the cor-

rect AA function for the relaxation coefficients A?fif

and A?iii' By using Equations (20) and (21) of Chapter
0
IV Z Ayy:,:5 Ccan be written as
jrodt3tad
. 2
0 2TTU1U2 ( JJroa
ey e, = = 2j'+1
IA 515153 (—g7—) I (23'+1) A, (H1)
J J A 00 0
27U, U
172
= -7 ) A
2TH, U 2
= (= (H2)
Also,
0 0 0
I A = L,. + . H
oM T Bt E Mo H3)
The symbol ngjj is used instead of A?J.Jj because the
term in the sum for J = j' 1s not what has been defined

previously as A?Jjj; i.e., L?jjj is not proportional to the

197
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total collisional rate of transfer

. . K
From the discussion of Ai'i'ii

ing relation must hold:

out of 1level J.

of Chapter I, the follow-

0 0
csss = = )X R (L)
JJid 145 97 JJ
Therefore,
2
0 0 0 i1
T AN,y.y.s = +L.... = A,.., = =C H
jro313tas 3iid J3id 8 (H5)
and
2
0 0 m
A.... = L, . + C —
J3id JJdJ 8
. 2
JJ 5
= C[-(25+1) Ay + %T] . (H6)
000
In the above
c - 2Tuq M,
v :
Considering the case j = 0 in Equation (I6) gives
2
0 s
2
- T
= +C(12) (HT)
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Therefore, the quantity B_ of Chapter V is

0

2
By = %%7 . (H8)

In the above argument only the case for K = 0 and linear
rotors was considered. However, the argument is valid for
any tensor order and for symmetric tops as well, because

the A, and BO functions do not depend on these factors.

A



APPENDIX I

ANALYTICAL EVALUATION OF IMPACT PARAMETER
INTEGRATION IN THE ENERGY CORRECTION TO

THE SUDDEN APPROXIMATION

The integral

g(s) = [ Xs"lKu(ax)Kv(ax)dx

is given in reference (158) as

S~ -
3 5=S

g(s) = S TI(s+vh) IT[5(s-usv) ITL5(s+u-v)]

x T[3(s-u-v)] . (11)

The first integral in Equation (251) becomes

K r(db = § 5 k”[Kg + 4K + 3K51db

- &'} £ o' k2 E0)an + £ v K (@o)an

+ 3 5 b'K5(o)dp]

Repeated use of Equation (I1) leads to

200
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& 3 3

In the above the following relations concernine gamma

functions have been used.

I'(p+1l) p!, p integer

[(x+1)

xT ()
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