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ABSTRACT

THEORETICAL CALCULATIONS OF POWER—BROADENED

MICROWAVE LINESHAPES

By

Keith L. Peterson

The traditional method of analyzing high-power micro-

wave transitions is to assume the lineshape is a sum of

Lorentzians - one for each m-component pair connected by

the microwave radiation. This assumption is tested by

using extended Anderson Theory and infinite order energy

sudden approximations to calculate relaxation cross sec-

tions. These cross sections appear in the power-broadening

term of a recently derived expression for high-power line-

shapes which correctly takes into account the degeneracy of

the rotational levels. The theoretical lineshape obtained

with the relaxation coefficients is fit to a sum of Lorentz-

ians using a computer program developed for fitting experi-

mental lineshapes. The goodness of fit is a measure of the

validity of the sum of Lorentzians approximation. The

results for the J = 2 + 1 transition in DOS and the (J,K)=

(3,3) inversion transition of NH3 show that in both modified
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Anderson Theory and energy sudden approximations the value

of Tl/T2 obtained by fitting to a sum of Lorentzians is a

good approximation to the calculated values of Tl/T2'

The values of T1 calculated above were based on the

assumption that the population of the two levels connected

by radiation remains constant. If this assumption is removed

(inclusion of n-level effects) in the calculation of Tl’

the same conclusions as above may be drawn. In addition,

however, the Tl/T2 ratios are brought into better agreement

with experimental results. As expected, the n-level effects

are more pronounced for OCS than for NH3.

The sudden approximation has been applied to four-level

double resonance experiments in NH3. The analysis Justifies

several of the assumptions used previously in the analysis

of these experiments. However, numerical calculations agree

only qualitatively with experimental results.

The sudden approximation gives values for cross sections

that are too large. This is due to neglect of internal

state energy differences. Two energy corrections to the

sudden approximation are discussed. Their practical applica-

tion to the calculation of relaxation parameters requires a

complex numerical integration, a reversion to a hard sphere

cutoff procedure, or an approximation that is difficult to

justify rigorously, but which enables analytical evaluation

of a required integral.

A model of relaxation commonly used in NMR is transformed
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to a spherical tensor basis. After introducing a correla-

tion function for the intermolecular potential, the form

of the relaxation parameters replicates that of the modified

Anderson Theory. If a reasonable correlation function can

be obtained the model offers an extremely simple method of

calculating relaxation coefficients.

Phase conventions are established for matrix elements

in a previous work on microwave lineshapes. A previous

derivation of steady-state absorption by a linear rotor in

a static electric field is extended to symmetric tops with

inversion.
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INTRODUCTION

Spectral lines in steady-state, gas-phase microwave

absorption experiments are Characterized by a shape and

width. Contributions to the width may come from uncer-

tainty,(l) DOppler,(2) saturation,(3) and collision(u)

broadening, as well as various experimental effects such as

modulation broadening,(5) collisions of molecules with sample-

cell walls,(6) and beam transit—times.(7) While it is pos-

sible that these various broadening mechanisms may act in-

dependently, they often act in concert. One example of this

is the correlation of Doppler and collisional effects such

that for certain conditions the spectral width is not merely

the sum of the Doppler and collisional widths but instead

a more complicated function of these quantities.(8'1u)

Experimental conditions in microwave spectroscopy may

easily be realized where only collisional and saturation

effects are important in determining the lineshape. This

dissertation will be concerned exclusively with these two

effects. As will be seen later, the term in the lineshape

expression that describes the saturation broadening is

a fUnction of the incident microwave power and various col-

Llisional relaxation cross sections. If the incident micro-

Inave power is known, measurement of the linewidth is capable



of giving information about the cross sections. Thus, line-

width and/or lineshape measurements are probes of the

dynamics of molecular collisions. This information can be

used to gain information about intermolecular energy transfer

and intermolecular potential energy surfaces. Steady—state

absorption experiments are complementary to a host of other

experiments which also yield information concerning col-

lision dynamics. These include microwave-microwave(15-20)

(21—26)double resonance, fluores—

(31-38)

(A0)

and infrared-microwave

cence,(27-3O) beam maser, molecular beam,(39)

microwave transient effects, and transport proper-

ties.(ul’u2)

On a more practical level, lineshape measurements are

useful as temperature probes in gases and plasmas,(u3) and

in the study of planetary atmospheres. Carbon monoxide is

pressure-broadened by carbon dioxide in the atmosphere of

(AA)
while in the Jovian atmosphere methane is

(us—A8)

Mars,

broadened by several gases. Lineshapes have seen

application in pollution analysis<u9> and are also useful

in determining Optimal conditions for gas-laser opera—

tion.(50-52)

In view of the potential application of saturation-

broadened and collision-broadened microwave transitions,

it is desirable to have at hand a correct method of

analyzing such lineshapes.

It is well known that low-power lineshapes, i.e.,



those lineshapes where saturation effects are not important,

can be analyzed in terms of a single Lorentzian whose width

is proportional to a polarization relaxation cross sec-

tion.(53) The inverse of this cross section is denoted T2 in

analogy with NMR relaxation. The traditional assumption

for analyzing high-power lineshapes where saturation ef-

fects are important is that the lineshape can be expressed

as a sum of Lorentzians — one for each m-component pair con-

nected by the microwave radiation - each of which has its

own T1 and T2.(5u) (T1 is a population relaxation time,

again in analogy to NMR relaxation.) These assumptions are

difficult to justify theoretically. Recently, an expression

for power-broadened transitions has been derived which cor-

rectly accounts for the degeneracy of the rotational

levels.(55) The term which describes the power-broaden-

ing contains various relaxation cross sections. The main

thrust of this dissertation is the following: Procedures

are develOped for the theoretical calculation of the cross

sections in the exact lineshape expression. The procedures

involve either an extended Anderson theory or an infinite

order sudden approximation. Lineshapes are computed from

the theoretical cross sections and are fit to a sum of

Lorentzians(5u) by using a computer program developed to

analyze experimental lineshapes. The goodness of fit is

6i measure of the validity of the sum of Lorentzians ap-

IIPoximation. In addition to the lineshape calculations



a model of relaxation commonly used in NMR is adapted to

the microwave absorption case and is shown to be in quali-

tative agreement with the extended Anderson theory results.

Also, the effect of two adiabatic corrections to the infinite

order sudden approximation is developed. Finally, because

of the interest in microwave-microwave double resonance

experiments in collisions causing the rotational angular

momentum to change by two or more units, the infinite order

sudden approximation is developed for use in calculating

cross sections for such collisions.



CHAPTER I

CURRENT STATUS OF POWER-BROADENED MICROWAVE

LINESHAPES AND RELAXATION PARAMETERS

A. History and Summarygof Steady-State Microwave Line-

shapes

In any discussion of steady-state microwave line-

shapes it is necessary first to distinguish a two—state

approach from a two-level approach. In the absence of

fields, rotation or rotation—vibration energy levels have

at least a (2J + l)-fold degeneracy, where J is the total

angular momentum. This degeneracy is usually termed m-

degeneracy (m = -J, -J + l, . . . J) and is a result of the

2J + 1 possible projections of the angular momentum on a

space-fixed z axis. In the sum of Lorentzians approxima-

tion, each m-component pair connected by microwave radia-

tion is treated as a two-state system. Equations of motion

for a two-state density matrix are solved in the steady-

state to obtain an expression for the absorption coefficient.

Degeneracy of rotational levels is accounted for by summing

over the m-component pairs. In the two-level approach,

‘the degeneracy is considered from the beginning by forming



appropriate linear combinations of density matrix elements.

Equations of motion for these linear combinations are solved

in a manner analogous to the two—state case to obtain

the absorption coefficient.

The following summary of the two-state approach follows

a review by Flygare and his coworkers.(5u) An incident

radiation field

e = E(z,t)cos[wt—kz+¢] (l)

induces a macroscopic polarization

P = PC cos[wt-kz+¢] + PS sin[wt-kz+¢] (2)

In Equations Cl)and (2), z is a Spatial coordinate, t is

time, w is the angular frequency of the field, k is the

wave vector, ¢ is a phase, and PC and P8 are components of

the polarization. By starting with the wave equation,(56)

828 _ 1 326 A11 3213

2 — j ——2' + H 2 3 (3)

BZ C 3t C at

it is possible to deduce that the absorption coefficient

0 as a function of frequency can be written as

A P

1T0)

a(w) = C .5. (A) 



(C is the speed of light.)

It is assumed that the radiation interacts only with

the dipole moments of the molecules. Then, for a sample

of dipoles the polarization is a macroscopic dipole moment

and can be written as

P = Ntr(uo) (5)

where N is the number of dipoles, u is the dipole moment,

and p is the density matrix.(57) The symbol tr(x) denotes

the trace of the matrix x. From Equations (2), (A) and (5)

it is seen that if p can be determined, P, a(w) and there—

fore, the lineshape can be obtained.

The equation of motion for the density matrix is

ih %% = [H,o] = Hp - DH (6)

where H = HO-UE cos[wt—kz+¢]. For rigid rotors HO sup-

ports the rotational levels of an unperturbed molecule.

In writing H, the effect of collisions has been ignored.

As in all previous two-state approaches, collisional

effects will be added phenomenologically. When the two—

level approach is considered, collisions will be treated

Imore rigorously. Diagonal elements of the density matrix,

011, are proportional to the population of state i. To

:see the meaning of the off-diagonal elements consider a



two-state system with states 1 and f. The polarization

of this system is

O u o. p.
P m tr(up) = tr{( if)( 11 lf)}

0 ofi Off“ti

= “ifpfi + Ufipif (7)

(The assumption has been made that the diagonal matrix

elements of u are zero.) That is, the off-diagonal density

matrix elements are related to the polarization. If Equa—

tion (6) is written out in detail the following equations

for density matrix elements in the interaction representa-

tion(58) result.

1P ‘3?‘ = Eufi(pff-pii) " “Awpfi

. 391i

3h ‘St' = ’Eufipif + Epfiuif
(9)

(The interaction representation is simply a device which

allows the Operators to carry the time-dependence of Ho°)

The rotating wave approximation, which assumes that the

experimental apparatus has a limited ability to follow

rapid time variation, has also been made. In Equation

(8) Am is the difference between the frequency of the



applied radiation and the resonant frequency of the spectral

transition 1 + f. Equations (8) and (9) and the correspond-

ing equations for Off and pif are equivalent to the follow-

ing set of equations

dPC

EH7 + APPS = 0

 

where AN is the population difference between states i

and f.

(10)

(11)

(12)

It is traditional to introduce the effects of collisions

by phenomenologically adding relaxation times so that Equa-

tions (10) - (l2) become

dP

__2

dt
(13)

(1A)

(15)
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A single relaxation time, T2, has been attributed to both

P and PS, while a different relaxation time, T1, has been
c

attributed to the population difference. The presence of

-ANO in Equation (15) is a statement that the perturbed

population difference decays to an equilibrium population

difference, ANO.

Equations (13) - (15) can be solved in the steady-

state by setting the time derivatives equal to zero. This

results in an expression for PS:

 

UifE(l/T2) ( 6)

P m l
s 2 1 2 2 2 T1

Ps is related to the absorption coefficient C(w) by Equa-

tion (A) so that Equation (16) is essentially the lineshape

in the two-state model. The sum of Lorentzian's approxima-

tion consists of using Equation (16) for each m-component

pair connected by radiation.

If the saturation term in the denominator of Equation

T

(16) “IfB2(Tl) goes to zero (low-power conditions), the

resulting exgression is essentially that derived by

lkanVleck and Weisskopf.(59) If the assumption is made

tfliat both the polarization and the population difference

Imalax to equilibrium values at the same rate, i.e., T1=T2,

Eqiuation (16) becomes the expression of Karplus and



ll

(61) (62)
Schwinger,(6o) and Snyder and Richards. Townes

was the first to suggest that two different relaxation times

be used and this approach has been used extensively by

Flygare and his coworkers in their analysis of microwave

(5A)
transient effect experiments.

It is possible to be more rigorous in defining the ef—

fects of collisions. Within the impact approximation the

equation of motion for the density matrix including col-

(63)
lisions may be written as

apfi

Ifi —§E—_E“fi(pff'pii)'fiAwpfi'ifif33, Afif'i'pf'i'
(1?)

391i

*9 at ' ”Euripif+E“ifpfi‘if1 i Aiikkpkk (18)

 

For the present it is sufficient to describe the A as

thermally averaged products of scattering matrices. The

impact approximation states that a collision is an instan—

taneous event compared to the time between collisions. If

the impact approximation is not valid the A are thermally

averaged products of both on-shell and off-shell t matrix

(elements. More precise discussions of the impact approxima-

tixan are available.(6u) It will always be assumed in this

dixssertation that the impact approximation is valid. It

is ‘very difficult to establish rigorous limits of validity
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for this approximation and it is almost impossible with

present day methods to calculate the A when this approxima—

tion is not valid. Experimentally, it is known that the low-

power lineshape is Lorentzian when the impact approximation

is expected to be valid. All high-power lineshapes con-

sidered in this dissertation are obtained under conditions

where the corresponding low-power lineshape is essentially

Lorentzian.

The A will be considered in great detail later as they

form the principal tOpic of this work. For the moment it

is sufficient to recognize that a two-state approximation

applied to the A in Equations (17) and (18) (that is,

restricting the summation indices f',1' and k to i and f)

allows the relaxation times T1 and T2 to be expressed as

1_1

T‘ ' 2(Aiiii + Affff ' Affii - Aiiff) (19)

III2 ( f'j j ) ( )

where Re(x) denotes the real part of x. Im(Afifi) gives

“the line shift. The methods that will be used to calculate

1‘ are such that Im(A) E O.

The above paragraphs summarize the two-state approach

tn) analyzing high-power microwave lineshapes. If there
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is no collisional coupling of the m states it is clear that

each of the m-component pairs connected by radiation will

evolve independently of the others and a sum of Lorent-

zian's approximation is valid. This can be seen from the

equations of motion for the density matrix when written to

(63)
include the degenerate m—states

1 3L (' m j m) = Aw (j m j m)
at0 Jr ’ i rip f ’ i

-E<jfm|nljim>[o(Jim,jim)-O(meijfm)J

. . . .,,.,, ,,.,,
-1j§j§m'<<3fmaimlAlme Jim >>p(me Jim ) (21)

f i

i §gp<iimiim> = -E[<Jimluljfm>o(3fm,jim)

-O(jim3fm) <jfm|u|jim>]

-—i z <<j.mj.m|A|j'm'j'm'>>p(j'm'j'm') (22)
j'm' 1 1

(6A)
ijmfjimi>> is a vector in Liouville space and is

(defined by ljfmfjimi>>5|jfmf><jimi|. Equations (21) and

(22) assume plane polarized radiation so that matrix elements

<3f‘ p and u are diagonal in m. The various m—component pairs

arwe collisionally coupled unless for some reason certain of

trme A matrix elements are zero. As discussed later, within



1A

the context of first order perturbation theory it is pos-

sible to say that m—components are not collisionally coupled

for dipole-dipole interaction potentials when the molecular

rotational levels have definite parity. More definitive

statements or statements outside the scope of first order

perturbation theory are difficult to make. It is usually

necessary to resort to numerical calculations.

(65) wasPickett apparently the first to recognize that

degenerate m states are collisionally coupled and that the

sum of Lorentzians may not be a valid approximation. Liu

and Marcus<63> (hereafter denoted by LM) made the first

serious attempt to deal with the m degeneracy of the rota-

tional levels. By forming the linear combinations

j -m j j. K

prim) >3 (—1) f f<2K+1>V2<f 1 )oufmfjimi), .(23)
mimf mf-mi-Q

they arrived at the following two equations

2

_ _ J~+J J J l

jE:§%-pfi(10)=wfiofi(lO)//3-ufiEcoswt§(-l) l f(mi_ ; 0)

3

xfo(JimJim)-o(jfmime-if'Xi' fif,i,pf,i, (10)//3 (2A)
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i 3 ECOSwt
-————— —-D..(OO) = —:—-——~—[U O (10)- p. (10)U J

/2Ji+1 3t 11 /3(2j.l+1) 1f fi 1f fi

. 1/2

. [23k+l] o

-1 E ‘53213— Aiikkpkk(00) . (25)

In Equations (2A) and (25) Sir is defined by

3

“if

j o -m o

. . l l

(Jimilulmef>=(-l) ( O

f

i jf l)—- , (26)

m.-m

l

which is merely an application of the Wigner—Eckart theorem.

The quantum number Q is always equal to 0 if the microwave

radiation is plane-polarized. The AK are defined by

‘1

Jf‘m%+Jf’mf

<<mefJ.13miIAImefJim. >> =23: {-1) (2K+l)

KQ

., ., . .

Jr Ji K JfJi K K
x A ,., . (27)

m'-m'-Q IH'ml-Q f 1 fl

‘f ‘i f i

\

ITKIS is a direct consequence of forming linear combinations

(pf 'mefjimi>> in analogy with Equation (23), i.e
° 3

l3 J ,KQ>>= z: jr'mr 1/2 if JiK
f i mfmi(-l) (2K+1)H_m- IJfmfjimi >> (28)
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This can be inverted to give

j —m J j K

ijmfjimi>>=ZI(-l) f f(2K+l)l/2(mf i )|jfji;KQ>> (29)

KQ f-mi—Q

The Ag'i'fi are independent of the quantum number Q. This

is a result of rotational invariance and has been discussed

in detail by Ben-Reuven.(66)

The problem with Equations (2A) and (25) is that

p(K,Q) are coupled to p(jmj'm'). To get around this, LM

noted that

(30)

U
d
l
l
—
JJ J 1 2

f i

m m -m o

and assumed that in Equation (2A) the quantity

J j 1

2( f i )[o(jimjim)-O(mejfm)]

m m —m 0

could be replaced by

l
%[(2ji+l)- pii<oO)-(23f+i>‘1pff(oo)3.

Thijs assumption has been shown to be inadequate for analyzing
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experimental data for several transitions in lSNH3.(67)

This finding spawned the introduction of an alternative to

the quantity Tl/T2’ namely qu/T2’ where q is related to the

distributions of populations among the m states.(67)

This parameter has since been shown to be an impractical

method of analyzing line shapes and will not be discussed

further. The next progress came when Bottcher gave a set

of equations involving only p(KQ) and solved them exactly

 

in the steady-state for the j = 1 + o transition.(68)

The lineshape for this case is proportional to

l

(31)
2T T

2 1 2 A 2 2 l A
+ _ _ .—

(Aw) (T2) + 9 ifE (T2 + T3)

Comparison with the denominator of Equation (16) shows that

the power broadening terms (the last term in the denominator

are qualitatively similar. There is an additional relaxa-

‘tion time in (31), TA’ which describes the relaxation of

off (20).

Coombe and Snider<69> also considered the j = 1 + O

traruxition and arrive at an expression for the lineshape

whick1;is in agreement with that given by Bottcher.(68)

Coombe and Snider also considered the general transition

3 + l +- J,(7O) The set of equations of motion for the

0(KQ) bexzomes very large as j increases. In the interest
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of keeping the size of this set tractable Coombe and Snider

assumed that all 0(KQ) with K greater than 2 could be ig—

nored. This gave a set of eight equations which under two

conditions reduce to a set of four equations. These give

a lineshape identical to Equation (31) with the exception

of numerical factors (which are a function of j) in the

power broadening term. The two conditions are that plane

polarized radiation be used and that the collision dynamics

are the same in the j and j+l levels. This latter condi-

tion is often referred to as a high-j approximation.

Finally, Schwendeman<55> has derived an expression for

power-broadened lineshapes which is valid for plane-polarized

radiation and for any j. The expression may be used for

either R branch (j = j + l + j) or Q branch (j = j + 3)

transitions and does not make any high—j approximations.

Thus, an expression is now available that exactly accounts

for the m—degeneracy of the rotational levels involved in

‘the spectral transition. The power-broadening term is a

rhinction of many AK. By calculating the AK and fitting the

Iéesulting lineshape to a sum of Lorentzians, the validity

cxf this approximation may be assessed.

The equations of motion for the p(KQ) can be written
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. ii
1 at pfi

_ J -J. K K' 1 K' K 1

-Ep. )3{(-l)f l[<2K+1)(2K'+131/2 p (K')
f1 K' O 0 j j j 11

f' i i

{K' K 1 (K )}

ji jfiHAff

(32)

j _'. K K' 1

-(-1) f Jl[(2X+1)(2K'+1)]1/2 ( )

' o o o

_ . AK

1 fif‘ip fi(K) ,

- iL (K) = -E— z:[ (Kw-(4)31-jf (K')J
1 at pii “fiK. pfi 0if

j -j. K K' 1 K K' 1

x (-l) f l[(2K+l)(2K’+l)]l/2 < ) { }

00 O 'jfji'ji

K o

Iii the above p§k(K) is the equilibrium value of pkk(K),

{ :::} is a 6-j symbol,(71) and the label Q in pfi(KQ) has

beaen.deleted because it is always zero as a consequence of

pléine—polarized radiation.

The following points are worth noting. The relaxation

Of ea density matrix element labelled by K is governed by
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1

AK and not by any AK for K' # K. This is a result of the

assumption of rotational invariance. The only coupling

to different values of K arises in the field dependent

'

terms. The 3-j symbol (g g g) is zero if K + K' + l is

odd. Therefore, the only values of K' in the summation

over K' are K i 1. For the case of plane-polarized radia-

tion this implies that diagonal matrix elements may have

only even K while off-diagonal density matrix elements may

have only odd K. The set of coupled equations (32) and

(33) may be solved in steady-state to give an expression

for the line shape.

 

 

piiE(%:)AN

Ps(l) m P ( ) (3A)

2 l 2 2 2 s 3
(Am) + (T5) + ufiE [PS(1)1

PS(K+2) PS(K+A) K K

where *ggrij— is a function of PETXT77’ Afifi’ A1111,

K K K .
.A .ffff’ Aiiff and Affii' PS(K) Is the analogue ofPth§)PS

s
cuzcurring in Equations (2) and (A). The factor [ngITJ in

Ekauation (3A) is in the form of a continued fraction and

Ekluation (3A) will henceforth be referred to as the con-

tiiuued fraction lineshape. Schwendeman was able to show

truit the continued fraction lineshape reduces to a sum of

Lorwentzians for the conditions on AK given in Table I.(55)
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Table 1. Conditions on AK for the Continued Fraction Line-

shape to Reduce to a Sum of Lorentzians.

 

 

R Branch

K

All Afifi are equal

All AK 1iiii are equa

K

All Aiiff = O

Q Branch

All AK are equal

fifi *

All Tl-like relaxation times are equal
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This set of conditions may not be the only set of conditions

for which the continued fraction lineshape reduces to a sum

of Lorentzians.

It will be useful later to consider now the p(KQ)

K
and AK in slightly more detail. The details of A will be

given in later chapters. For the present it is satisfactory

to give a brief qualitative discussion. The p(KQ) are

variously known as state multipoles or statistical tensors.(7l)

They were first introduced by Fano.(72) While their applica-

tion in chemistry has been rather limited, their applica-

tion in physics includes discussions of the production of

polarized particles in nuclear reactions,(73’7u) the re-

distribution of resonance radiation,(75) angular distribu-

tions of photoelectrons,(76-79) optical pumping(80‘82)

and transport properties.(83’8u) Besides the previously

mentioned work concerning microwave absorption, the work

most closely related to this topic is that of Case et al.(85)

who applied the state multipoles to the problem of determin-

ing rotational state distributions in fluorescence experi-

ments.

The p(KQ) formed by Equation (23) are said to be the

matrix elements of an irreducible tensorial basis. All

Of the 2K + l componentsfku'a given K form an invariant

set:,(66) i.e., under rotations they transform only among
 

thennselves. It is easy to show from Equation (23) that

011(00) = ;o(Jimjim)//2ji+1 . (35)
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This follows from the relation

J J O _ _

( ) = (-1)3 m<2i+1) 1/2 . (36)
m-m 0

Therefore, (2ji+1)—l/2 pii(OO) is an average level popula-

tion. At equilibrium the 0(Jimjim) are equal to each other

for all m in which case the pii(KQ) are independent of K.

A level that has nonzero pii(KQ) for K = 0 only is said to

be unpolarized. A rotational level that has nonzero

pii(KQ) for K > O is said to be polarized with a multipole

moment, or simply moment of order K. The quantum number K

may also be referred to as the tensor order. The off-

diagonal p(KQ) are related to the macroscopic polarization

induced by the applied radiation field. For a system of

dipoles the dipole polarization may be written as

P = Ntr(uo(10)) % uifofi(10) + “fioif(10) (37)

in analogy with Equations (5) and (7). The state multi-

13018 has K = 1 here because u is a tensor operator of

‘tensor order 1.

The A0 may be interpreted as being proportional

iiii

tC) the total collisional rate of transfer of molecules out

Of‘ level i. The AIikk are proportional to the negative of

true rate of collisional transfer from level k to level i.
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This is a consequence of the unitarity of the scattering

matrix, which may be expressed as

E Aiikk E O . (38)

Equation (38) simply states that the total population of

molecules remains fixed. The AIikk for K > O are called

mUltipole relaxation coefficients as thev describe how the

diagonal elements of a state multipole of order K relaxes

due to collisions, i.e.,

. 8 . K

1 FE P::<KO> ~ -1 i Aiikkokk(KO) . <39)

SiJnilarly, the Agifi describes the relaxation of the off—

diiagonal elements of state multipoles of order K. For K

ru>t equal to l the A§ifi are generalizations to arbitrary

l

fifi'

Re3(A%ifi) is just the traditional low power linewidth, i.e.

tendsor order of A This is of interest because

l/J? This quantity has been the subject of considerable
2.

attention.

B. History and Summary of the Multipole Relaxation

Qgefficients

TThe first complete theory for AIifi for rotation and

(53)
Vibrwition—rotation levels was given by Anderson in
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l9A9. The theory was amplified in 1962 by Tsao and Cur-

nutte<86) (hereafter referred to as TC) who explicitly

considered dipole—dipole, dipole-quadrupole, quadrupole-

dipole, quadrupole-quadrupole, and dispersion intermolecular

potentials. (The first four of these potentials will be

abbreviated as U-u, u-Q, Q-u, and Q-Q.) Anderson made

several key assumptions that are worth enumerating here.

The most important assumption is that the impact approxima-

tion is valid. As mentioned above this requires that the

time of collision be negligible compared to the time be-

tween collisions. This implies that only complete col-

lisions need to be considered and in turn that only scatter-

iJig matrices (or equivalently on—shell t matrices), and not

oITf-shell t matrices are needed. Present day methods do

TKDt allow calculation of off-shell t matrices for systems

of‘ interest in microwave spectroscopy. The impact ap-

prwoximation has been discussed in detail by Baranger(6u)

wTuo also gave several expressions for estimating the validity

lijnits of the approximation. Obtaining numerical esti-

maixes from these expressions is almost as difficult as cal-

culéiting AIifi itself so that, as explained earlier, the

aSSLunption will be made here that the impact approximation

is Ilalid for the conditions considered in this work. A

germaral expression for the AK that does not depend on the

impaxyt approximation was given by Fano<87) in 1963. An

equilnalent expression, derived by different methods, was
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given by Ben-Reuven in 1975.(88)

Anderson also assumed that all molecules move along

classical straight line paths. This implies that col-

lisions resulting in changes in molecular internal states

have a negligible effect on the trajectory. For rotational

levels separated by energies : kT (Boltzmann constant times

temperature), this is true. A discussion of this point

may be found in Reference 89. The assumption of straight

line paths has practical implications for numerical calcula-

tions that are both good and bad. In the Anderson formula-

tion the relaxation coefficient goes to infinity as the

.intermolecular distance goes to zero. Circumventing this

(iifficulty requires an artificial means of imposing uni—

tnarity. The traditional method of doing this is to use a

'Wiard sphere cutoff." Details of the cutoff procedure will

bee discussed later in this work and may also be found in

tflie papers of Anderson<53> and TC.

Baranger was apparently the first to remove the restric-

ticni of classical straight line paths by treating all

Peliitive molecular motion quantum mechanically.(6u)

Baranger was also the first to formally exploit the

cornsequences of rotational invariance. These ideas were

caruried to completion by Ben-Reuven.(66) The key result

or tflais work is that it is possible to write

. . . K
((JIJIK'Q'lAIijiKQ>> = Af'i'fiaK'KaQ'Q (”0)
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where Ag'i'f is defined by Equation (27). The point is
i

that the SK'K precludes the possibility of a sum over K'

in the relaxation terms of Equations (32) and (33).

K
Almost all previous calculations of A have been for

I

Afifi’

l/T2. By far the most common calculations are those that

(90-98)

i.e., the cross section for low—power linewidth,

employ Anderson's formulation as amplified by TC.

(99)
Goldflam et al. have used the close coupled (CC) and

coupled states (CS) methods to calculate Raman cross sec-

2

tions Afifi for H2 perturbed by He. (The CC and CS methods

(89)
will be discussed shortly.) Nielsen and Gordon solved

the time—dependent Schrodinger equation for a classical

trajectory determined by a spherically symmetric potential.

1 l 2

and A"f'if for HCl per-They calculated Afifi’ 1,1,11, 1

turbed by Ar. The AK with K greater than one were calculated

to rationalize the results of NMR relaxation and Raman

(lOO)
lineshape experiments. Shafer and Gordon calculated

the same cross sections for H2 perturbed by He by using a

CC method. Marcus and coworkers<101’lo2) have calculated

1 -l _ 1 O 0 0 o O

Afifi and T1 ‘ 2(Aiiii + Affff ‘ Aiiff ' Arfii) “ iiii

O

- Aiiff for OCS and HCN perturbed by noble gas atoms. They

used a semiclassical technique that required the calcula-

A

tion of complex valued trajectories. This technique was

(lOA,lO5) The infinite

(106) to

developed by Marcus(103) and Miller.

order sudden (IOS) approximation was used by Green

calculate AIifi and various AIikk for OCS perturbed by
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K

iikk

for a system of interest to microwave spectrOSCOpy. The

noble gas atoms. This is the only calculation of A

only other calculations of Agikk are those mentioned pre-

viously for NMR relaxation. Finally, a few distorted wave

(107)
Born approximation calculations have been performed to

rationalize experimental results for various transport ex—

(108)
periment properties.

C. Summary of Available Methods for Calculating the Scatter-

ing Matrix
 

The AK are proportional to thermally averaged products

of scattering matrices. The central problem in calculat-

ing AK is to find a feasible method of obtaining the

scattering matrix. There are a multitude of techniques

for doing this. The close coupling method (CC) is the

essentially exact, completely quantum mechanical method of

(109’110) As it iscalculating S, the scattering matrix.

usually formulated the method consists of solving a set of

N coupled second order differential equations, where N is

the number of states included in the calculation. For

rotational scattering the number of states increases rapidly

with increasing j because of the m-degeneracy. The computer

time required for solution of the differential equations

rises approximately as N3. For this reason the CC method

is practical at present only for light diatoms and symmetric

tops perturbed by noble gas atoms. The coupled states (CS)
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method attempts to reduce the number of equations by

making an approximation on the orbital angular momentum

(111)
operator. This has the effect of reducing N by a

factor of two. The next level of simplification is the

infinite order sudden (IOS) approximation.(ll2'll6) By

neglecting the energy difference between rotational levels

and freezing the orbital angular momentum quantum number at

an arbitrary value (there are several choices possible for

this quantum number, some of which appear to be better than

others) the set of N coupled equations becomes completely

uncoupled. This results in considerable saving in computa-

tional time so that diatomic, symmetric top, and asymmetric

top molecules perturbed by noble gas atoms can be dealt with

reasonably. A preliminary calculation involving H - H

(M117)

2 2

has recently been reporte

At the other end of the spectrum from fully quantal

(118) In the typicalmethods are fully classical techniques.

case Hamilton's equations of motion are integrated for a

given set of initial conditions. The rotational quantum

numbers are treated classically (i.e., continuously) with

the result that the trajectories are "binned" to obtain

transition probabilities. That is, for a given set of

initial conditions all trajectories with a final rotational

angular momentum between, for example, 2.5 and 3.5 are

lumped together and are considered to have j equal to 3.

The main disadvantage of this method is that a large number
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of trajectories must be calculated-sometimes as many as

one or two thousand. Also, any quantum effects will not be

accurately considered. This is not expected to be a large

problem, however, for the AK, as they are relatively highly

averaged quantities. A calculation of transition prob—

abilities has been performed for OCS perturbed by H2 treated

(118)
as a structureless perturber. The results were only

qualitatively accurate.

In an effort to include quantum effects in a classical

(lOA,lO5) and Marcus<lo3> havetrajectory framework Miller

independently developed a semiclassical technique that in—

volves calculating complex-valued trajectories. Several

calculations Of Agifi have been performed.(101’102) The

theoretical values are smaller than the experimental low-

power linewidths.

In addition to the three broad categories outlined

above there are many methods which treat certain degrees

of freedom classically and others quantum mechanically,

each with appropriate approximations. A very brief,

representative sampling of these methods is in References

119-135.

D. Choice of Methods for Calculating AK

There are obviously many choices for the calculation of

the scattering matrices and thereby, the AK. The method of

choice should be relatively simple, inexpensive and capable
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of giving reliable results. Two methods have been chosen

with these considerations in mind. The first method is

the Anderson theory, which will be extended to enable cal-

culation not only of APifi but of all other AK as well.

The theory meets the above criteria and has the additional

advantage of being relatively familiar to microwave

spectroscopists. The Anderson theory is capable of giving

8009 values for AIifi for many molecules although for some

symmetric tops, most notably NH3, it is necessary to norma—

lize computed values Of AIifi to one experimental value.

The major drawbacks of the theory are that it requires an

artificial method of imposing unitarity (this was discussed

earlier, and will be discussed again later) and that because

it is only a first order theory in the scattering matrix,

a dipole-dipole potential will allow only collisional transi-

tions where j changes by zero or one. To estimate the

effect of these drawbacks the AK will also be calculated

using a sudden approximation.(136’l37) As employed here

dipole-dipole potentials and straight line paths are used

so that a direct comparison with the Anderson theory may

be made. The sudden approximation allows estimation of

transitions where j changes by more than one. Other

calculations to be presented have been outlined in the

introduction.



CHAPTER II

EXTENSION OF ANDERSON THEORY TO

THE CALCULATION OF AK

A. Relation of the Liu-Marcus AK to Anderson Theory

The A appearing in the continued fraction lineshape

of Schwendeman<55> are the AK as defined by LM. Specific-

ally,

K K

Af'i'fi = (VOf'i'fi> (”1)

where

Ji-j'+K—£'

0?,i,fi (1%) z 2 (—l) i (2Ji+l)(2Jf+1)

k 22' J.J
1 f

Jf Ji K Jf Ji K Ji Jf*

X [éi'iéf'f ‘ Si'isf'f]
' ' t ‘ I !

Ji Jr A 31 Jr 2 (A2)

In tile above expressions <v . . .> denotes a thermal

average, v is the relative velocity, k = Pi),- is the

rmflflritude of the relative collision wave vector with U

(financeduced mass of the collision pair (i.e., system

32
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molecule plus perturber molecule), K is the tensor order

of the relaxation process, lower case subscripted j's are

rotational quantum numbers of the system molecule, A and

2' are relative orbital angular momentum quantum numbers

before and after the collision, respectively, Jk is the

total angular momentum formed by coupling jk and A, and

SJk is the scattering matrix which is diagonal in Jk and

M. (M is the projection of Jk on a space-fixed axis.)

Equation (A2) is valid for the case of a molecule perturbed

by a structureless (143;, no internal states) perturber,

such as a noble gas atom. Equation (A2) is exact in the

sense that all degrees of freedom have been treated quan-

tum mechanically.

The Ag'i'fi must be related to an expression from An-

derson theory. The simplest way to do this is to recognize

1

that Afifi

and that the familiar expression from Anderson theory also

is l/T2 for the Spectroscopic transition f + i,

ggives 1/T2. One could then assume that all other Ag'i'fi

(norrespond to certain modifications of the Anderson expres-

sixmns. The Anderson theory expression for the AIifi was

cnmiginally given in an uncoupled basis; Eifi’ a basis

wherwe jk and A are not coupled to form Jk' It is shown in

Apperndix A that the cross section in an uncoupled basis,
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KK' n 1/2 Ji'Ji'mi-mi
Oi'f'if = ('_2) Z Z [(2K+l)(2K'+l)] ('1)

YA'mm'

v V

J1 J' K' J J K
1 f i f *

X (m'—m' ) (m Q)[éi'iéf'f " Sivisfvf] 3 ([43)

i f‘Q i‘mf‘

is equivalent to Equation (A2). In Equation (A3) the pos-

sibility that K # K' is allowed. The derivation in Appen-

dix A shows that K = K'. After performing a thermal

average (Equation (Al)), Equation (A3) can be identified

with (A27) of LM:

2

2

Af'i'fi ‘ 5; ggfidEapaE5f'f5i'iaa'a‘sf'a'fa
1

(AA)

*

Si'a'ia

where ZdEapa constitutes a thermal average. (Although

Equatign (A3) is written in the spherical tensor basis and

iEquation (AA) is not, it is the thermal average which is of

iJiterest at the moment and which is the same for either

Equation (A3) or Equation (AA).) After taking a classical

ILhnit; 243;, after replacing the quantum mechanical treat-

ment (of relative translational motion and the use of the

Quarnrum numbers A and 2' by a classical treatment of the

relaiuive motion and the use of an impact parameter b,

EQuaixions (113a) - (115) of Ben-Reuven(88) may be used to

Convert the thermal average <v . . .> to
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2nnfvf(v)dvfbdb . (A5)

In Equation (A5) v is the relative collision velocity,

f(v) is the distribution function for v, and b is the

impact parameter. The conversion to a classical limit is

important because the Anderson theory treats the relative

motion classically.

To summarize, Equations (Al) and (A2) may be replaced

with the equivalent expressions,

K K

Aftitfi = 2NDfo<VJdebdbOfyi'fi , (H6)

and

° _-v _ 1 J! .j' K - .

UK = I Z (_l)Ji Ji'mi mi(2K+1) 1 f Ji Jr K

f'i'fi mm

1 I m'—m'-O m -m —Q
mfmf ' ' i f

X [OiviOfvf - Si'isif'f] 3 (1(7)

lfliere»the scattering matrices in Equation (A7) are under-

stood.to be functions of v and b.

7P0 make Equation (A7) consistent with Anderson theory,

it is; necessary to "renormalize" it. The cross section

0?.1yzfi is rotationally invariant. Therefore, it is in-

depeflkflent of Q, and each of the (2K+l) Q components is
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equal. This implies that the factor (2K+l) can be eliminated

if a sum over Q is added. Equation (A7) will be written

as

X [5i'i9f'f ‘ Si'isg'f] ° (“8)

Finally, because of a difference in conventions for

Ieeduced matrix elements between LM and Anderson,(53)

Ekquation (A8) will be rewritten as

. ' 0 0' 0

K Jf-ig.+mf-min 2ji+l 1/2 Ji K Jr 31 K 3f"

O (Jijflijffimzmz' (-1) _— ( )( )

2ji+1

- _ v_ _ vm le mi Q mf mi Q mf

f f

XEcs.

JfJf‘ (SJiJ'Omfm5m m'- (JILmI'sIS‘x‘ljfmf><jim
lilsljimi>3

f 1 1

(A9)

The (conventions for reduced matrix elements are discussed

irlAppendix B. Appendix C shows that Equation (A9) is

identical to the expression given by Anderson<53) for the

1rIteraction of a molecule with a structureless perturber.

Equation (A9) must be modified to include perturber
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states when the perturber has internal structure. This

(I 8)
3 AC.has been done by Ben-Reuven

(139)

and Fiutak and Van-

Kranendonk. Modification of the notation slightly

to agree with TC gives the final working expression for

 

OK(i'f'if)

K , , , , Jf’Jf‘+mf'm'f 1231+1 1/2
oj2(333fjijf)= mzmzmzm'(--l) (2j2+l)123 +1

i f r 1

m2m2QJ2

"

ji jf K ji Jr K

ix ( )(: [5. ..G. a 5m ,5 ,
V_ _ :_ _ J - J J 6J J m.lm' m m m

mi mf Q mi mf Q iJ l f f 2 2 i mf f 2 2

._<mefj2m2|Tl|jfmfj2m2><jiHmlj 2m2|T|jimij2m2>1 (50)

The 'T matrices in Equation (50) are analogues of the S

matrrices in Equation (A9). The letter T has been used

merefily to agree with the notation of TC. In Equation (50)

it Srlould be noted that even when ji = ji and jf = jf, the

Timajzrix elements can still be off-diagonal in perturber

states.

The subscript j2 has been added to OK in EQuation (50)

beCHause the cross section is for a given j2 perturber

1eVel. The total cross section is



38

K K.,.,. . _ . .,., .

0 (JiJfJiJf) — 230(32)0j2(JiJfJiJf) (51)

J2

where p(J2) is a Boltzmann factor for the perturber level

j2. To obtain Ag'i'fi Equation (A6) is then used.

B. AK in Terms of Anderson's P Matrix

Iflow that the equivalence of the quantum mechanical AI'f'if

(of LM and the semiclassical (iiii’ classical translational

rnotion and quantum mechanical internal motion) OI'f'if

(if Anderson<53> theory has been established, the Anderson-

lLike expansions of the cross sections can be carried out.

FRDllowing TC, let

T = TO + T1 + T2 + . . . (52)

O
wherne T = (UO)'1Um with U and Um the evolution operators

coruresponding to the Hamiltonians HO and Hm, respectively.

Herea, H0 is the unperturbed internal state Hamiltonian for

the Esystem molecule and Hm = H0 + HC where Hc is the Hamil-

toniiin for the intermolecular potential. The equations of

motixan for T and T-1 are

in 3T = [(UO)'1HCUO]T
3E

and
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—1

. 3(T )_ -1 0—1 0

in T" -T ((1)) Rev 1 . (53)

An iterative solution gives

T0 = 1 , (5A)

T1 = fig f[(UO)'1HC(t)UO]dt, (55)

T2 = ;%J[(UO)‘1HC(t')Uoldt'ft(UQ)'1HC(t")UOJdt" , (56)

etc.

An operator P is defined by

P = %-,C;[(UO)-1Hc(t)U01dt , (57)

in which case

T1 = -iP, Til = -T1 = iP, (58)

T2 = a} P2, and T21 = T2 = I; P2 . (59)

TheSe relations enable the Anderson-like expansions to be

expressed in terms of P. The expansions are analogous to the

expansion in TC for OIfif' Details of the expansions are

given in Appendix D. The results are given here.
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[

N
I
H

o? (ifif) =
. . -1 2 . .

2 (231+1)(2J2+l] (Jimi32m2'P IJim132m2>Z

mim2

. , — . 2 . .

+> 2 [(2Jf+1)(232+1)l 1<mefj2m2|P [mef32m2s

mm

f 2

U%-m% —l Jvijf K J.iJf K

- I E z '(—1) (2j2+l) (

mimimfmf mi—mf-Q mi-mi-Q
'0'

m211232Q

X<jfmfj2m2IPljfmfj2m2><31m132m2IPIJimij2m2>'

(60)

j.-j!+n.—n! —l

a? (i'i'ii) = _ 2 § 2 (-1) 1 1 1 l(2jé+1)
I

2 miminini

v.

m2m2QJé

 

(213+1)1/2 (3i ji K)(ji

X

2ji+l '

i

x <iinii2mglPljinilémé><iimii§mglPliimiigm2> - (61)
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K o o o o o o —l 2

1111 = .+ ° ' ° ~0. ( ) z [(231 1)(232+1)] <Jim132m2|P |JimiJ2m2>

2 mim2

n-n' i .i i oi

- z z z (-1)j. 3T(232+1)1( ) < )

mimininiQ
mi—ni—Q m -ni Q

m2m2J2

x (ji n.ij2m2|Pljinij2m 2><JimlJ2m2|P|jim jm22> (62)

Some general discussion of these results is warranted.

First, there are in general two types of terms in each

cross section. One is independent of K and corresponds to

the "outer" terms of Anderson, the other depends on K and

corresponds to the "middle" terms of Anderson. The outer

terms are identically zero for UK (i'i'ii). The general

J2

form of the cross sections given here is in agreement with

the equations given by Ben-Reuven(l38) and Coombe, Snider

and Sanctuary.(luo) Their expressions are written in

‘terms of transition (t) matrices, whereas the cross sec-

txions given here were initially in terms of scattering (T)

"matrices and later in terms of a P matrix. It is useful

tc: show that the P matrix is equivalent to a lSt order

.Deerturbation approximation to the t matrix.

Let a wave function ¢(t) = U(t,t0)¢(t0) obey the

SC hrodinger equat ion ,
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h a
1 7%111+ H'w(t) = 0 . (63)

Then, the equation of motion for U(t,tO) is

f] 3U(t,t0)

I"“§E‘_‘ + H'U(t,t0) = o (64)

with initial condition U(tO,tO) = 1. This is equivalent

to

- i t 1 V I I

U(t,t0) — l-§§jEOH (t NJU;,tO)dt , (65)

Which has the iterative solution,

U(O)(t,to) 1,

t

U(l)(t,t0) = 1 - ,1; ftOH'(t')dt' , (66>

or,

_ °° (n)
U(t,t0) - E U (t,t0) , (67)

WhEre

u(h) i n t 1;: 1501-1)

(E) fl; fl; °°°€ H'(t')H'(t")...H'(t(n))dt(n)...dt'.

o o o

(68)
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Equations (67) and (68) are equivalent to

t

U(t,t0) = P exp[-(%)f H'(t')dt'] (69)

t
o

where here, P is the time ordering operator; i.e., P
 

orders the upper limits of integration in Equation (68).

The approximations in Equation (66) may be written

(0) _ _
U - U0 - l

(l) _
U - U0 + U1

(2) _

Sintilarly, with the definition 8 = U(+w, -m),

s = 2 8n = P exp[-(%) I” H'(t')dt'] (71)

n=0 —oo

with

3(0) = 80 = 1,

(1)
s — 30 + 31,

8(2) = 80 + 81 + 82, etc. (72)
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(n)
The matrix elements of S are

(n)
<f|S |i> = 5fi + (sl)fi + ... + (Sn)f1 . (73)

Then, the t matrix is defined by

- 2nio(Ei-Ef)tf1 . (7U)

Alternatively,

Hfi = - 21ri<S(Ei-Ef)tfi (75)

where the matrix H is related to the scattering matrix by

s = 1 + n . (76)

The delta functions in Equations (7“) and (75) are merely

Statements that both S and t are on the energy shell; 1:53;,

these matrices conserve energy. Upon comparison of Equa-

tixbri (73) with Equations (7n) and (75), the following con-

Clusions may be drawn. First, the zeroth approximation of

S is irrelevant for the scattering problem. Second, the nlCh

approximation to the t matrix on the energy shell (ii,

Ei‘Ef) may be obtained from HUI) = Sl + S2 + S3 + + Sn

Therefore, the matrix elements of P and/or P2 have the

same interpretation as the matrix elements of t, the
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transition operator. For f # i tfi is the probability

amplitude for the transition f + i, while (tii) is propor-

tional to the total inelastic cross section from state i.

This result is a statement of the optical theorem<lul> and

is the reason that Equation (38) is true.

Several other points can be made concerning Equations

( 60)-(62).

l) The factors [(2ji+l)(2j2+l)]-l in the outer terms

giirise from an average over initial collisional states of

t>c>th molecule and perturber.

2) In Equation (60) the only K-dependence comes from/

ccaillisions that are simultaneously elastic in levels ji

aiqci jf. This middle term gives rise to what have been

0513;1ed interference or correlation effects. If this term

ifs zero, there is no K-dependence in the a? (ifif) cross

2

seecisions. More importantly, the Rydberg—Ritz principle

155 \falid, as discussed by Fano.(87) This means that the

16?Veels ji and jf relax independently of each other, and

tkuat; the Liouville or "line-space" (i;e;, the need for four

irmij.ces on AK) formalism is not needed.

3) It is useful to look at o? (1111). For this case

2

Q == 0. Use of Equation (36) in Equation (62) leads to a

mid d 1e term of

mi'mi -1
- z z (-1) [(231+1)(212+1)l

m m!
i 1

m2m2 2

(77)

. o . 'c" 9 '°" ° '

ix (JimiJ2m2lPlJimiJ2m2><JimiJ2m2lPlJimiJ2m2>’
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which shows by reasoning similar to that in Reference (67)

(iiii) is proportional to the total collisional

2

rate out of level i.

that o?

M) It is also of interest to set K = O in o? (i'i'ii).

2

(Then, use of Equation (36) in Equation (61) gives

0 '0'00 0 -1 o l/2(2Ji+l 1/2

, = — 2 + . ._____0J2(i 1 11) nzng ( J2 1) [(2Ji+l)(23 +l)l 2j1+1

i 13,
1

m2m2 2

>(31111321112lpljinij2m2>m
. 3

m
a

X<J.111152112[1"311113

-l 2

=
° '1!

1(2Ji+l)(2j2+l) n2; |<Jinij2m2lPlJinijgm2>|
(78)

$71143 has the same form as the negative of the usual cross

SENci:ion for a level-to—level collisional transition.

The renormalization of the Lin—Marcus cross section5)

alfll<>ws a summation over Q. This in turn is the reason why

tr“? outer terms are K-independent.

0' Evaluation of the P Matrix for Multipole-Multipole

Intermolecular Potentials

It remains to evaluate the matrix elements of P and

2?

P Etnd.substitute the results into Equations (60)-(62).
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Following TC the intermolecular potential is assumed to be

expanded as

k k k k
l 2 1

HC =. 22 C) 1 Y1 (1)Y12(2) , (79)

k k l 2 l 2
l 2

A A

k1
vvhere Y) (1) is a spherical harmonic of order kl, a func-

l

t:ion of the internal coordinates of molecule 1, and

k kg

CZAlAc is a factor that depends on the intermolecular dist-

l 2

Eirice.

tzrie charge distributions of the two molecules do not over—

induction,

The expansion (Equation 79) is valid as long as

].ezp. Therefore, it can express electrostatic,

zar1d.dispersion forces but not exchange forces. From TC

tliee matrix element of P is

. . . (Akj)11":
<Jlmm32m2|P|Jlmlm2m2> k); a

2

12

kl k2

oo
""'

x <Jlm132m2|YAl(l)YA2(2)IJlm132m2>

_ (ij) -. . .. ., , .

" 1 a A(J11113111(1)21‘2~12)<31k1mi11”1111)

., , .
x <J2k2m2A2IJ2m2> (80)
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where a<AkJ> is a radial factor that depends on kl and k2

as k, Al and )2 as A and jl, ji, j2, and J5 as J; it must

be evaluated for each potential. A(J'kj) is given by

3 ’3' 2k1'1 1/2
A(j'k j ) = (—1) ( MT: ) <3 k K OIJ'K >

 

 

. 1/2 J j' k
J —K 2k+ l

= (-1) (L1,n ) (2j'+l)l/2 (K ) , (81)

—K
\

vqriere the relation

a b c

<abaBIc—y> = (-1)a'b"Y(2o+1)1/2 (o B y) (82)

has been used.

Tsao and Curnutte have evaluated a; (ifif). The other

2

01°CHSS sections follow by analogy and are worked out in

d63tiail in Appendix D. The results are given here.
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K . . '
oj (1f1r) = 1 2 (21i+1)<215+1)|a1k1|2

. ., 2 . . 2

k. 2JH‘Jf k1 J2 32 k2

<231+1><2Jé+1>|ax ‘7' ( ) ( )
Kf—Kf O K2-K2 O

(2ji+l)(2jf+l) A +Ag+kl+K

+ 2 z z (-1) (2Jé+1)a(klk2x A j)

l6Tr kkj' 12
122

1112

 

2

_ 3' 3' k 5 J k 5 3' k 3 J K

x a<klk2_(§y2j.) ( 1 1 1) ( f f 1) ( 2 2 2) { i f }

Ki-Ki o Kf-Kf o K2-K2 O Jf 51 ki

(83)

. 1/2 . 3/2
2 .+ 2 !+ .-"+

(3;: (i'i'ii) = ( J1 1) "(231 1) Z X (-l)‘jl J1 kl+K+l

22 "
16" k1k232

1112

 

. 2 2
2 J J! k 3 J' k J J K

x <2: 1) (2 2 2) {e s )-Ki" 1 0 K2"K2 0 J1 J1 k1 (8“)
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 a}? (1111) = 12 2 >3 (21'5+:L>(2j§+1>laml‘2
J2 16n j j k k

1 2 1 2

A1A2

Jijikl2jgjék2 2

Ki-Ki o K2-K2 o

(2ji+l)2
K+k1+1 1k 2+ __———§~— z z (-1) (2j'2+1)la Jl

l6n k1k2AlA2

V

J2

51511‘1232521‘223131K
x< ) ( > { } . (85)

Ki—Ki o K2-K2 0 ji ji kl

It is of interest to evaluate o? (iiii) and a? (i'i'ii).

2

EXY analogy with Equation (77) and Equation (78),

 

O 2

03 (1111) 1-2 2 (231+1)(232+1)|a*k3|
' Y

2 low Jij2klk2

A1‘2

31.33 k1 2 J2 32 k2 2

X

Ki-Ki o K2-K2 0

~ J 1 k 2 J " k 2
(2J1+1) Akj 2 1'1 1 232 2

\—2——k 2 X(21'+1)|a I <86)

161T11‘252 K K K K o
1' 1 0 2' 2

l 2
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. ., 2. .,

J1 Ji 1 J2 J2 k2

X< )( > . (87)
K.—K. O K2-K2 0

Equations (86) and (87) can be obtained from Equations

C 85) and (8“), respectively, by using the relation<7l>

31 32 J3 .

J +3 +3
_

g . } = (-l) 1 2 3[(2j2+1)(233+1)] 1/2 (88)

O J332

For the K = 0 case the structure of the middle term

00 (i'i'ii) collapses to the structure of an outer term.

This is seen by comparing Equation (87) with the first

term of (86).

It should be noted that the matrix elements in Equa-

tion (80) are valid for linear molecule eigenfunctions

(Spherical harmonics) and for "one-ended" symmetric top

eigenfunctions (proportional to rotation matrices). Proper

eigenfunctions of symmetric tOp molecules should also be

eigenfunctions of the inversion operator, which demands

that they be linear combinations of the rotation matrices.
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It can be easily shown that for dipole potentials,

either proper or one-ended eigenfunctions give the

same matrix elements. Quadrupole potentials work the

same way. A discussion of these effects is relegated

to Appendix F.

ID. Tensor Order Dependence of the AK

The motivation for studying the K-dependence of the

/\}< may be seen by examining Table I. This table gives a

sseat of conditions — hereafter called the Karplus—Schwinger—

'Ik3wnes conditions - on the K—dependence of AK under WhiCh

‘tldea continued fraction lineshape reduces to a sum of

LADI°entzians. It was implied earlier that K—independence

817j;ses if there is no collisional interaction in one level.

191i.s is illustrated for oK(ifif) for a structureless per-

tuPher. In this case Equation (M9) is appropriate and can

be rewritten as

K.. _ mf-mf'. 3'1fo JiJfK

0 (1f1f)— l -X '23 (-—l)

m m!
mimiQ mi mf-Q ml-m%—Q

f f

x <me%|S*ijmf><jimilsljimi> (89)
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The Kronecker deltas have been eliminated by using a sum

rule over the 3-j symbols.(7l) The technique is illustrated

in Appendix D. If there is no interaction in the jf level,

<jfm%|8*|jfmf> = Gmfm% and the second term in Equation (89)

becomes

K Ji 3f K

om! ' )<Jimi|Sljimi>

l l mi-mf—Q mi—mf_Q

. -l .
= -2; (231+1) <Jimi|S|Jimi> . (90)

m.

l

'Ifldis is equivalent to one of the outer terms obtained pre-

\rixously for oK(ifif). The other outer term would have

tDeuen obtained if it were assumed that there was no inter-

51C13ion in the 3i level. The assumption <jfm%|S*|jfmf> =

5 , is equivalent to setting TO = 1, (See Equation (5“)
Infqnf

831Ci Appendix D) and it may be said that oK(ifif) consists

C”? three terms, the two outer terms, which describe how

143\7els 3i and jf evolve independently of each other, and

t1163 middle term, which describes the aforementioned inter-

fer‘ence effects .

It is possible to discuss the K—dependence of the

c17<>sss sections in terms of various intermolecular poten-

ties-Il_s. Consider one of the products of 3-J symbols in the

K

K"dependent middle term of OJ (ifif) in Equation (83).

2
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If the system molecule is linear so that Ki = Kf = O,

the product may be written as

31 31 k1 jf'jf k1

( )( ),
O O O O O O

which is zero if either ji+ji+kl or jf+jf+k1 is odd.(7l)

That is, the K-dependent middle term is zero if kl is odd.

If molecule 2 (the perturber) is linear, no definite con-

clusions can be reached because the middle term may be

inelastic in j2. Completely analogous arguments hold for

the middle terms of Equations (8”) and (85). The result

for 0K(iiii) is the same as for oK(ifif), while 0K(i'i'ii)

is K-independent for kl = even.

For symmetric tops with inversion (example, NH3) the

Ioarity of the involved levels must be taken into account.

(This is not explicitly indicated in the notation. The

(zonsiderations are quite obvious and the results are the

saime as for linear molecules. For symmetric tops without

Lirlversion the situation is nebulous and no definite con-

<3ZL11sions may be drawn. These results are summarized in

TableIL

For simple potentials a more quantitative description

C’I‘ ‘the K-dependence may be given. The cross section

I{

<7 (zifif) can be written as

oK(ifif) = OK(ifif)Oi + 0K(ifif)of + CK(1fif)m (92)
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Table II. K-Dependence of AK for Multipole-Multipole

Potentials.

 

 

R Branch (Aj = il)

Linear molecules

K

Afifi no K-dependence for kl = odd

K

iiii

K

Aiikk no K-dependence for k 1 even

Symmetric TOps without inversion

no definite conclusions possible except for

K = 0 (reduces to linear molecule)

Q Branch (A3 = O) (inversion levels)

results are as for linear molecules.
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where the subscripts oi, of, and m denote the outer term

for the i level, the outer term for the f level and the

middle term, respectively. The only K—dependence is in the

middle term and may be written as

j ' K
( 1)K 1 Jr

- . (93)

iji k1

The major interest is in AEfif° Since AK is obtained by

K .

adding all 0 for each J2 and weighting them by a Boltz-

mann factor it is possible to write

K K—l K , , K-l . .

Aifif ' Aifif = F: 0 (lflf)m " F3 O (ifif)m (9”)

J2 J2

where the sum over 32 is meant also to imply weighting with

a Boltzmann factor. Extraction of the K-dependent part

of gK(ifif) enables Equation (9“) to be written as

J1 JOf K

AK AK”l = 2: (-1)K F('fk )
ifif ' ifif k 1 1

l Jf'Ji k1

ji jf K-l

k . .

l 3f Ji k1

'where F(ifkl) is everything in the middle term except



57

KJ. ’
K Jf

(-1) l 1 For a} . (F(ifkl) includes .2.)

j j k
f i l

32

sition, F (ifkl) has the same numerical value in

the two terms on the right side of Equation (95)

J. ij J
K K—l _ K 1 i

Aifif ’Aifif If ('1) { } -<-1)K'l{
.1 o .. k .

Jle l Jf

Let k1 = 1 only. As a result of the symmetry of

symbols,

given tran-

each of

so that

} F(ifkl)

Ji k1

(96)

the 6—j

{ H w H }.1 . . . l . .

(97)

3f ji 1 ji Jf Jf Ji 1 J1 Jf

From Table 5 of Edmonds<lu2)

a+b+c+l 2[b(b+l)+c(c+l)-a(a+l)]

(-l)
 

‘a b c}

l c b

Aft er some

[2b(2b+l)(2b+2)(
20)(2c+1)(2c+2)]

1/2

(98)

algebra, the square bracket in the numerator of



58

Equation (96) can be evaluated to give

 

 

 

1+3
AK _AK—l = (-1) 1 f(UK)

ifif ifif . . . . . . l 2

[23f<23f+1><2Jf+2><2Ji><2gi+1><2ai+2>1 /

x F(ifl) (99)

Th d' lt f AK 'e correspon ing resu or iiii 15

K K-l MK ..

A....-A.... = . , , F(111) . (100)

1111 1111 2Ji(2Ji+l)(2Jl+2)

The result analogous to Equation (99) for Agikk is too

cumbersome to be of use.

A more useful result for Agikk may be obtained by

realizing that it has no outer terms. For a single given

potential the following ratio may be formed.

K - 31 3f k1}

Aiiff Jr 31 K
_____ = . . (101)
K-l J j k

A. i f l
iiff . , K 1

E. Some Additional Properties of the Anderson AK
 

In anticipation of some later results concerning the

application of a sudden approximation for calculating

K
.A the sudden approximation within the Anderson theory
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will be discussed. Also, the P operator will be expanded

in terms of irreducible tensors. This will be useful later

in comparing the K-dependence of the Anderson theory with

that of the sudden approximation.

El. Expansion of the ngperator in Irreducible

Tensors

The matrix elements of P can be rewritten from Equation

(80) as

-Kl-K2-ml-m2 a(1kj)
. . ., ... , = _

<J1m132m2|P|31m132m2> k2; ( 1) —_EF__

1 2

A1A2

XE(2jl+l)(2j
i+l)(2j2+l)(

2jé+l)(2kl+l
)(2k2+l)]l/2

31 3i K1 32 32 k2 J'1 3i K1 32 32 k2

x< >< >< >< )-
- — — '_ - -

K1 K1 0 K2 K2 0 m1 m1 Al m2 mé A2

Consider firsttfluasimple matrix element,

_ Mm
(-1)’K1 ”1 é;;jj7§[(231+1><21i+1)(2k1+1)11/2

X ( 1 :1 (51 Ji R1) (103)

Kl-Kl 0‘) ml-mi-Al '
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If the left side of Equation (103) is expanded in irreducible

(1U3)
tensors by using equation 18.1 of Fano and Racah,

i.e., if,
 

J'1 3i K
J -m +Q

(jlmllPIjiml>=z:(—1) 1 1 (2K+l)l/2 (

KQ ml-mi—Q
) leji(KQ)

(104)

Then comparison of the right hand sides of Equation (103)

and Equation (10“) shows that they are equal if K is iden-

tified with k Q with Al and if1,

"51+K1'Q—(Akj) (231+1)(2Ji+1)(2k1+1) 1/2

P- ,(KQ)=(-l) [ Hn (2K+l)

1131

J J' k

X ( 1 1 l) . (105)

Kl—Kl O

lj,(KQ) is independent of m and m' as it should be.

 

Here, Pj l 1

Upon returning to Equation (102) and applying Equation

(104) twice, it is found that

31+32-m1—m2+Q+R

<Jlmlj2m2|P|jimijémé>=£§ 5%(-l)

3111 K) (j2jé L1/2

x [(2K+l)(2L+l)] (

-mi_Q

) leji(KQ)PJ2J2(LR),

(106)
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where

P- °v(KQ) P. .,(LR) = (-1)-J1+J2+K1+K2-Q_R
a<xkj>

J131 J232
__EF—‘

l/2

 

( (2jl+l)(2ji)(2j2+1)(2jé+l)(2kl+l)(2k2+l)

X (2K+l)(2L+l) )

J1 3i K J2 35 L

1 >< >
0Kl-Kl K2—K2 0

The conclusion to be drawn from the above is that expanding

the matrix elements of P into a multipole potential is

equivalent to expanding the matrix elements of P into ir-

reducible tensors.

E.2. Sudden Approximations in Anderson Theory

Some interesting sum rules may be derived from Anderson

theory if the sudden approximation<l36’137) is made. This

Akj

approximation consists of assuming that the a factors

are independent of 3 or the internal energy. A more detailed

discussion of the sudden approximation is presented in

Chapter IV. To establish notation it is useful to con-

sider
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K . . 1 . )k‘ 2
. If f , = 2 '+ '1 J

CJ2( l )0]. 5172' '3'!ng k ( J1 1)(23a+l)|a I

1 2 1 2

2 . . 2

J1 Ji kl 3232 kg

x ( ) ( ) (108)

Ki—Kl o K2-K2 o

= 1 z z C(11'22'k k )onj) (109)

32w2 j'j'k k 1 2
1 2 1 2

1 2

Ak' 2

where Q(1kj) = Ia J| . If k1 = o,

2

—1 j2 32 k2
G(ii'22'0k2) = (2ji+l)(2jé+l)5. ..(23 +1) ( )

J.J. 1
l l K2-K2 O

2

J2 52 k2
= 63 j,(2jé+l) ( (110)

1 1 K2—K2 0

Similarly,

G(ii'22'00) = a. ..6. .. (111)
31313232

The last two equations simply state that if kl or k2 are

zero (i.e., an isotropic potential), inelastic collisions

arm? not possible.
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The middle terms of 0K(ifif) may be written

 

K . .
o (1f1f) = 1 Z Z G(if22'k k K)Q()kj) (112)

m 161:2 k k 3' 1 2
1 2 2

1112

where the definitions of G and Q are obvious upon comparison

with Equation (83). For isotropic potentials

C(if22'00K) = (-1)K(2ji+l)(2jf+l)(2jé+1)

2

(3131 O)(jf jf O)(J.2 3‘22 0) lji jf K}

Ki-Ki o Kf-Kf o K2—K2 0 3f 31 o

K.-K

= (-1) 1 f5. .. . (113)
J2J2

That is, the monopole (isotropic) potentials have no K-

dependence. This is true even if k2 # 0, i.e.,

 

K+j.+j -K.-K

G(if22'0k2K) = (-1) 1 f 1 f[(2ji+1)(23f+1)11/2

j.+j -K _

x (-1) 1 f [<211+1><23f+1)1 1/2(2jé+l)

. , 2 . v

J2 32 k2 -Ki-Kf J2 J2 k2

x ( )==(—1) (235+1)( ) (11h)
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Exactly analogous analyses hold for 0K(i'i'ii) and

OK(1111).

For oK(i'i'ii) an interesting sum rule may be derived.

 

Writing

OK(1'1'11) = ’1 2:2: G(i'i22'klk2K)Q(Akj) (115)

16n k k j'
1 2 2

A122

(compare to Equation (8U)) allows G to be written for K = 0

8.8

. 2 . . 2

j§_31 k1 J2 32 k2

G(i'i22'klk20) = (2ji+l)(2jé+l)( ) .

Ki-Ki o K2-K2 o

(116)

Also,

-j!-k +K

G(0i'22'k1k2K) = <-1) 1 l (215+1)3/2(2J§+1>

2 2

()31 k1 J2 32 k2 35.0 k1

.( )( ){ }o o o K2-K2 o o 31 K

. 2

J2321‘2

= (2J§+1)(2J'i+1)l/2( >K053121 ° (“7)
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Equation (117) allows oK(i'i'00) to be written as

 

 

l6n2 k 5' 2 1
2 2

A1A2

. ., 2

(J2 J2 k2)

X Q<Akj>6 6 . (118)

K2-K2 0 KO R131

Therefore,

K . . .. J -J'-k +K

o (1'1'11) = £Z(-l) l i 1 (2ji+l)(2ji+1)l/2

1

' J‘! k 2 .' . k

31 1 1 31.31 1

X( ) < ) oK(i'i'00)
(119)

_ ’ "

K1 K1 0 J1 J1 K

. 2 ,

-1 Ji+K 1/2 J1 k1 k1 R1 31 k1

= 6 2 (-l) (2kl+l)(2ji+1) < :

1 7r

K1 K1 0 ji kl K

0 .
X 0 (1'1'00) . (120)

This is an interesting result because it gives a oK(i'i'ii)

cross section in terms of a oK(i'i'00) cross section.

Setting K = 0 gives
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. ' k 2

0 3/2 1/2 1 l 1
o (1'1'11) = -Z(2ji+1) (231+1)

k
1 Ki-Ki o

x 00(1'1'00) (121)

Use of the above relations is valid only when Q(1kj)

is independent of 3. This is the case in the sudden ap-

proximation. In the Anderson theory Equation (121) is of

limited utility because 00(i'i'00) cannot be calculated for

ji > 2 (assuming potentials up to quadrupole).

An analysis similar to the above can be carried out for

oK(iiii)m. Defining the G function as

kl+K 2 31 J1 kl

. , _ _ . .,
G(122 klkZK) - ( l) (2Ji+l) (232+l) { }

. . 2 , , 2

31.31 k1 J2 32 k2

x ( > ( ) (122)

Ki-Ki O K2-K2 0

gives

2

J2321‘2
t = -v

G(022 klk2K) (232+l) ( ) leOSKO . (123)

K -K
2 2 O

Tlierefore,
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, 2

K _1 kl+K 2 31 J1 k1

o (1111) = 2:(—1) (2J +1)
m 16w2 k 2

1 K.-K. 0
l l

31 J1 k1 K

x i } o (0000)
m

J1 J1 K

2

-1 2 J1 J1 0 J1 J1 0 0

- 2(2ji+l) o (0000)

160 K -K O . O m

1 J1 J1

= '12 00(0000)m (12M)

l6fl

and 0K(iiii) becomes K-independent in a sudden approximation.

The analogous result for oK(ifif)m is

K . . j ’K'
o (ifif) = 1'2 GK(ofof) (—l) f l

m 160 m

 

(125)

and does not appear to be useful.

The sudden approximation allows simplification of the

expressions given earlier for the AK. If the perturber

molecule is treated with the sudden approximation, the sums

over jé, mé and m2 may be carried out analytically. Writing

oK(ifif) as
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K mi—m! -1 J1.31 K 31‘ J1 K

o (ifif) = 1 —22 (-l) l(2j2+1) ( )( )

_ v- v-
mf mf Q mf mf Q

o . -l o .' g . yo . .

X<mef32m2|T Ime532m2><JimiJémé[TlgimiJ2m2> (126)

and using the relations<7l>

Z Y. r' Y = - 'j'm' 32m2(’b ) Jéméhg) Mr g) (127)

2 2

and

. -l l
(2 +1) 2 Y. r Y. r = ——32 m J2m2(m) J2m2(m) “fl (128)

2

allows (126) to be written as

m.—m: 5131 K 5131 K

oK(ifif) = 1 - 2: 2: (-l) l 1 l )

m.m!Q u"
mimi mf-mi—Q m%-mi-Q

f f

, -l . y .
x <mef|T [me%><jimi|T|Jimi> . (129)

Analogous results clearly hold for the other cross sec-

tions. The above results are valid only in the sudden ap-

proximation, i.e., when the T operators do not depend on

32. The results for the cross sections in the sudden ap-

proximation are given below. They are the analogs of
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Equations (83) — (85).

 

 

 

2
J. j! k

K . . _ 1 ., Akj 2 l l 1
o (ifif) — Z (2J.+1)Ia I

3211 "k A 1

J1 1 1 K —K 0
k A l l

2 2

(2j.+1)(2j +1) k +1 +1 +K

+ l 2 f X (-l) l l 2 a(k1k21112j)

16w klk

1 A

j131 k1 31'51 k1 31.31 K

K.-K.<1 K —K 0 j j. k1
l 1 f f f 1 (130)

K (211+1)1/2<215+1)3/2
0 (1'1'11) = 2 x

16w klk2

K1K2

j.—j'+k +K+1 Ak' 2

x (-l) l i 1 la JI

'1 . .,

J1 J1 k1 3: J1 k1

x (131)

- 0' 0

K1 K1 0 J1 J1 K
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k +K+l . 2
K ...

0 (1111) = 1 z z <-1) 1 [.11le
160 k k

1 23.

1112 1

. , 2 . .

Ji 311%. 1111.K1

x < ) { } (132)

Ki—Ki 0 31 31 K

The a factors are the same as before except that now they

are evaluated by neglecting the energy spacing between the

rotational levels of molecule 2. Calculation of the a

factors will be discussed in section F of this chapter.

The derivations in Equations (126)-(128) and the results

in Equations (130)—(132) are also valid if one-ended sym-

metric top eigenfunctions are used. This will be shown

in Chapter IV where the sudden approximation is discussed

in much greater detail.

F. Numerical Results for OCS and NH3 Systems

The theory developed in the previous sections of this

chapter is applied here to the J = 2 + 1 transition in OCS

and the (J,K) = (3,3) inversion transition in NH3. Before

presenting the results the basic problem will be restated.

Most previous analyses of power—broadened microwave

lineshapes have assumed that the lineshape is a sum of
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Lorentzians, one for each m-component pair. This is

equivalent to assuming that the m-component pairs are not

collisionally coupled. Fitting an experimental lineshape

to this model allows extraction of a parameter denoted

(Tl/T If the model is valid, (Tl/T should be very
2)O' 2)O

close to the true Tl/T2° To test this model, the Anderson-

like expansions derived here are used to calculate Tl/T2

and all of the other relaxation parameters that occur in the

more exact continued fraction lineshape expression. These

parameters are used to compute a lineshape which is then

(5”) to obtain the parameterfit to a sum of Lorentzians

(Tl/T2)O' If this (Tl/T2)O and the calculated Tl/T2 are

equal, the model is presumed valid. Alternatively, the

better the fit of the lineshape the more valid the model.

There are two secondary purposes for calculating the

K allows therelaxation parameters. Knowledge of all the A

calculation by means of Equation (27), of the

<<Jme|AIJ'm'j'm'>>, which have an intuitive physical inter-

pretation. In addition, knowledge of the AK allows the

calculation of M-level effects, which have been discussed

in Reference 55. A summary of these effects will be given

shortly.

Before discussing the results of the calculations it

is worthwhile to discuss the method of calculation.

The calculation may be split into four parts, the
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calculation of the aAkJ factors (the resonance function

in the parlance of TC), the calculation of the angular

momentum coupling coefficients, the determination of the

hard sphere cutoff and the calculation of the thermal

average. The resonance functions are given explicitly in

TC in terms of modified Bessel functions of the 2nd kind.(luu)

TC also provides a table of these functions. Rather than

interpolate from this table, explicit calculation of the

functions is included in the program. To do this, the

Bessel functions are expanded in terms of Tchebycheff poly-

(1145)
nomials. In practice, a Tchebycheff expansion is

used to calculate the modified Bessel functions of the

first kind, which are in turn used in another Tchebycheff

expansion to calculate the desired modified Bessel functions

of the second kind. The resonance functions are given in

detail in Appendix H.

Some of the angular momentum coefficients were cal-

culated by using the general formula for 3—j coefficients

givenim1Reference 71. Other coefficients were calculated

by means of special case formulas.(7l)

Determination of the hard sphere cutoff has been dis-

cussed in many places.(86’93’9u’98) In the present cal-

culations separate cutoffs for each tensor order are

determined. That is, the cutoffs for Aifif and Aifif are

calculated separately. The plural "cutoffs" is used be-

cause a new cutoff is calculated for every perturber
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rotational level. A problem arises in the calculation

K

of Ai'i'ii' For K = O, the relation

0 O _

A1111 11.7.1 A1'1'11 = O (133)

must hold. The only way to insure that this condition

holds is to use for given perturber rotational levels, the

same cutoffs for Ag'i'ii as for Agiii' The cutoffs are

calculated by a simple bisection iteration procedure.

Therefore, the relaxation parameters obtained in this

process depend on the upper and lower limits declared for

the bisection. The limits used in the calculations reported

hereanwaO K and 20 K. The uncertainty in the relaxation

coefficients due to the choice of limits is estimated to

be about 12 K2. Further details of the hard sphere cut-

off calculation are presented in Appendix G.

The thermal average consists of an average over the

relative velocity distribution and a weighting by a Boltz-

mann factor for each perturber rotational level. The cal-

culations presented here ignore the velocity average. The

assumption is made that at a given temperature all col-

lisions occur at the mean relative velocity. This assump-

tion should be quite good. Calculations of Aifif by

(92)
Cattani show a 2% difference for OCS between including

the average and ignoring it. The difference for the

(J,K) = (3,3) inversion line of NH3 is about 8%. The
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Boltzmann factors used are those given for high tempera-

ture limits by Townes and Schawlow.(1U6)

Table III gives the assumed parameters used in the

OCS calculation. The minimum value of “.13 K for 0 (hard

sphere) is the gas kinetic diameter. If the calculated

hard sphere cutoff is less than A.l3 3, the program de-

faults to the value “.13 K and uses this as the hard sphere

cutoff.

Table IV is a tabulation of many of the relaxation

parameters for OCS. These parameters incorporate all

multipole—multipole potentials through quadrupole. The

only parameters showing marked K-dependence are the

K

Ai'i'ii’ which also show a large dependence on rotational

level. Condition (133) is satisfied very closely, as can

be seen by considering, for example, A3222.

0 O O O O 02

A2222 + AM422 + A3322 + A1122 + A0022 = 2-8” A 1

a relatively small difference from zero. This is a result

of the cutoff procedure described earlier. It is also

worth noting that Equation (133) requires Ag'i'ii to be

negative for i' # i. Finally,

0

where 5/3 = (2jf+l)/(2ji+l).
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Table III. Assumed Parameters for OCS Calculations.

 

 

“D = 0.71519 D

Q = 1.0 x 10—26 esu cm2

BO = 6081.“9 MHZ

T = 300K

312: “.6 x 10“ cm/s

j (perturber) i 90

0 (hard sphere) 3 “.13 K

 

 



 

 

 

 

 

Table IV. Relaxation Parameters for OCS.8

1111 K=0 K=2 K=“ K=6 K=8

0000 263.7

1111 263.2 263.6

2222 26“.9 265.2 265.1

3333 266.7 267.1 267.5 267.0

““““ 269.8 269.9 270.1 270.3 269.9

5555 273.0

1100 -259.6

2211 -176.0 —103.6

3322 —155.6 —131.5 — 66.5

““33 -150.0 —138.8 —10“.“ - “9.5

55““ -152.0

0011 - 86.0

1122 -103.3 - 60.8

2233 -110.5 - 91.5 — “6.1

33““ -115.8 —10“.5 - 78.6 - 37.2

““55 -119.2

2200 “.“

3311 — 2.7 — 1.3

““22 - 2.3 - 1.7 - 0.6

5533 - 2.1 - 1.8 - 1.1 - 0.“

66““ — 2.0

aThe entries in this table are AK n 32.
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Table V gives the relaxation parameters necessary to

calculate the power-broadened lineshape of the J = 2 + 1

transition of OCS. Comparison of Tables I and V shows

that the first three Karplus-Schwinger-Townes conditions

as well satisfied, while the fourth, i.e., all Agiff and

K

Affii equal zero, is not satisfied at all. The value of

T31 calculated from the equationKSS)

T (2j+3)bgf+(2j+1)bgi+[(2j+1)(2j+3)]l/2(bgf+bgi)

1 1(3+1><bgibgf-égbgi)
(135)

is very large resulting in a Tl/T2 which is apparently

1
quite small. The calculated T1 was obtained by assuming

the total population of the two levels is constant. This

is referred to as a 2—1evel approximation. The T21 is

about 10 £2 larger than the experimental values and

(98)
consistent with previous calculations. In equation

(135) the following definitions have been used:

ff _ K

bK ' Affff’

if _ K

bK ' Aiiff’

fi = K

bx A1111 - (136)

The large value of T11 in the 2-level approximation

suggests that “-level effects may be important. These
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Table V. Relaxation Parameters for the OCS J = 2 + 1

Transition: 2-Level Approximation.

 

 

 

 

 

02

1 26“.3 = T51

3 26“.5

11 22 12 21 0
K bK bK bK bK (A

0 263.2 26“.9 -176.0 -103.3

2 263.6 265.2 —103.6 - 60.8

“ 265.1

1‘1 = 399.“ $2

Tl/T2 = 0.662
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are discussed in detail in Appendix A of Reference 55.

To summarize, it is noted that if the assumption of constant

total population of the two levels is relaxed, the equations

-1 ik k

nK = Yi - i bK AnK

of fk k

UK = Yf - 1E. bK AnK

°j = _ jk k

nK i bK AnK (137)

are valid. In these equations Y1 and Yf are terms pro-

portional to the radiation field, n% = pjj(K), and An%

is the difference between n; and its equilibrium value.

Equations (137) have a steady-state solution of the form

B11 B12

B
21 B22

AN Y

MAN? = (01) (138)

in which the B.lj’ ANi and Yi are appropriate submatrices

of the quantities in Equation (137). Inversion of Equa-

tion (138) yields

_ v

in which

-1
Y _

B11 ' B11 ' B12 B22 B21 (139)
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If all An% for j # i or f are assumed to be negligible (the

two-level approximation), then Y1 = BllANl‘ Therefore,

the effect of including collisional transfer to levels

other than those connected by radiation is to replace Bll

by a new matrix B11 which is to be used to calculate

-1
1 .

relaxation coefficients for the J = 2 + 1 transition are

T The matrices are shown in Table VI. The resulting

given in Table VII. The new value of Til is much smaller

than the previous case and gives a Tl/TZ which, while still

small, is much closer to the expected value. The “-level

effects are most pronounced in bél and b52

changes in b32 and bi2.

with smaller

All other relaxation parameters

are virtually unchanged.

The relaxation parameters have been used to calculate

a lineshape according to Equation (53) of Reference 55.

(This equation is the precise result described by Equation

(3“) of the present work.) The calculated lineshape was

then numerically power-averaged to represent the power-

averaging that occurs in a microwave waveguide sample

cell.(5u) The experimental parameters assumed for the

lineshape calculation are given in Table III. The resulting

lineshapes were fit to a sum of Lorentzians and the

parameter (Tl/T obtained. The results for three dif—
2)0

ferent pressures are given in Table VIII. The calculated

(Tl/T210 agrees fairly well with the experimental (Tl/T2)0

only when “—1evel effects are included. The values of
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Table VI. Matrices of b Coefficients for Calculation of

“-Level Corrections for the OCS J = 2 + 1

Transition (J i “; K = 0).8

 

 

 

 

(1)11 (2) (0) (3) (1:)

263.2 -176.0 —86.0 - 2.7 0

-103.3 26“.9 - 0.9 -155.6 - 2.3

B = -259.6 - “.“ 26357 O O

- 1.1 -110.5 0 266.7 -150.0

0 - 1.2 0 —115.8 269.8

(1) (2)

' _ 178.5 —178.9

11‘ -105.0 178.8
 

 

aValues are in X2.

bThe numbers in parentheses above the matrix are the J values

for the corresponding columns. The rows are in the same

order.
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Table VII. Relaxation Parameters for the OCS J = 2 + 1

Transition: “~Level Effects, J i “.

 

 

 

 

 

02

K aK(A)

1 26u.3 = 121

3 26“.5

11 22 12 21 02

K bK 6K 0K bK (A

0 178.5 178.8 —178.9 -105.0

2 263.6 208.2 -10“.2 - 61.1

252.1

1‘1 - 318.“ 12

T /T2 = 0.830
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Table VIII. Summary of Tl/T2 Calculations for the OCS

J = 2 + 1 Transition.

 

 

w/o “-Level Effects With “-Leve1 Effects

 

{Ymtorr Tl/T2 (Tl/T2): Tl/T2 (Tl/T2):

60 0.662 0.732 0.830 0.930

80 0.662 0.731 0.830 0.926

100 0.662 0.729 0.830 0.925

(Tl/T2)0 (exp) = 1.0“ 0.10H
-

 

 

aExperimental parameters assumed for the determination of

(Tl/T2)O from the theoretical lineshapes are power,

10.00 Mw; attenuation, 0.800.
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(Tl/T2)O for the three pressures are approximately 12%

larger than the calculated Tl/T2 and approximately 11%

smaller than the experimental value of (Tl/T2) For OCS0'

it appears that Tl/T2 should be estimated to be about 10%

less than the experimentally derived (Tl/T2)O.

Finally, the relaxation parameters for the J = 2 + 1

transition that are not required for the calculation of the

plane-polarized radiation lineshape have been calculated.

These are A§212 for even K and A§122 and AS211 for odd K.

This allows relaxation parameters between two different

m states to be obtained by means of Equation (27). The

results are shown in Table IX and indicate that elastic

reorienting collisions are negligible. The small contribu-

tion to these collisions is due to quadrupole interactions.

Therefore, the various m-components are not coupled by

this mechanism. They are, however, coupled by Aj = 1,

Am = :1 collisions. This is shown in the 1122 and 2211

entries.

Table X gives the assumed parameters used in the NH3

calculations. Only the dipole-dipole interaction potential

was used. Contributions due to quadrupole potentials are

negligible. Table XI gives all relaxation parameters for

the (J,K) = (3,3) inversion line of NH3. The Agiii and

K

Aifif have no K-dependence (for a dipole potential, this

K

i'i'ii

as the ratio of two 6—j symbols. As for OCS, the Karplus-

was shown earlier) while the A have K-dependence given
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Table IX. State to State Relaxation Parameters for the

OCS J = 2 + 1 Transition.8

 

 

 

(2121)a

m/m' -1 0 l

0 91.6 105.8 91.6

1 79.“ 91.6 79.“

(1111)

m/m' -1 0 1

0 —O.1 263.5 —O.l

1 -0.3 -0.1 263.7

(2222)

m/m' —2 -1 O l 2

0 -0 1 0.0 265.1 0.0 -0.1

l O O -O.1 0.0 265.1 -O.1

2 0 0 0.0 —0.1 -0.1 265.1

(1122)

m/m' —2 -1 0 l 2

0 -0.1 -39.9 -53.2 —39.9 -0.1

1 -0.1 -13.“ —“0.0 —79.8

(2211)

m/m’ —l 0 l

O —22.8 -90.7 —22.8

1 —0.3 -68.1 -68.0

2 —O.3 -O.2 -135.8

 

 

8The values tabulated are <<jmjm|A|j'm'J'm'>> where j and

j' are the numbers in parentheses. All values are in
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Table X. Assumed Parameters for NH3 Calculations.

 

 

uD = 1.“68 D

Q = -l.0 x 10"26 esu cm2

B0 = 9.933 cm—1

00 = 6.3 cm”1

T = 300 K

312 = 8.6“ x 10” cm/s

j (perturber) : 15

0 (hard sphere) : “.“3 3
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Table XI. Relaxation Parameters for the (J,K) = (3,3)

Inversion Doublet of NH .a

 

 

3

K(+-+-) 70“.5 = 131, all K

K(++++) 70“.“, all K

O(++--) -657.3

1(++--) -602.5

2(++._) —u93.0

3(++——) -328.6

“(++__) -109.5

5(++—-) 16“.3

6(++——) “93.0

-1-

T1 — 1361.7

Tl/T2 = 0.517 2-1eve1 approximation

 

 

aThe values tabulated are A§f1,f, where ifi'f' are given in

parentheses as the parity of the level. The left super-

script is K (the tensor order). All values are in 32.
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Schwinger-Townes conditions are only partially satisfied.

The inversion doublets of NH3 are usually considered

to be a very good approximation to a 2-leve1 system. To

test this approximation, “-level effects have been included

in a calculation of T11. The B11 and B11 matrices are

given in Table XII. The new value of Tl/T2 of 0.582 is

consistent with the view of the inversion doublet as a 2-

level system. T was calculated from the formula given by
1

(55)
Schwendeman

iibff if fi

 

-1 _ 2(bK K 'bK bK 1

T1 ‘ ff 11 if fi ' (1A0)
(bK +bK +bK +bK )

A lineshape has been calculated by power-averaging the

relaxation parameters. (Tl/T2)O obtained from fitting the

theoretical lineshape to a sum of Lorentzians is given in

Table XIII for three different pressures. As for OCS,

(Tl/T2)0 is a fair approximation to (Tl/T2)O(exp).

Relaxation parameters between two m states have been

obtained from Equation (27). The results are given in

Table XIV. As expected, the elastic reorienting collisions

do not couple different m—component pairs. This is a direct

result of using only dipole potentials.
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Table XII. Matrices of b Coefficients for the NH3 (J,K) =

(3,3) Transition for Calculation of “-Level

Corrections: J i 5, K = 0.

 

 

 

(33+)3 (33-) (“3+) (“3-) (53+) (53-)

70“.“ -657.3 0.0 — “7.0 0.0 0.0

-657.3 70“.“ - “7.0 0.0 0.0 0.0

B= 0.0 — “8.8 596.7 -“89.0 0.0 - 59.0

— “8.8 0.0 -“89.0 596.7 - 59.0 0.0

0.0 0.0 0.0 77.5 522.5 -388.3

0.0 0.0 - 77.5 0.0 ~388.3 522.5

 

(33+) (33-)

 

' 687.8 -671.8

B11=
-67l.8 687.8

11/12 = .518

 

 

8The values in parentheses are J, K, parity for the cor-

responding columns. The order of the rows is the same.
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Table XIII. Summary Of Tl/T2 Calculations for the NH3

(J,K) = (3,3) Transition.

 

 

 
 

 

w/o “-level Effects With “-level Effects

D/mtorr (Tl/T2) (Tl/T2): (Tl/T2) (Tl/T2)O

20 .517 .567 .518 .568

30 .517 .550 .518 .552

“O .517 .5“5 .518 .5“6

(Tl/T2)O(exp) = 0.71 1 0.07

 

 

aExperimental parameters assumed for the determination of

(Tl/T2)0 from the theoretical lineshapes are power = 15 MW,

attenuation = 0.8.
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Table XIV. State to State Relaxation Parameters for the

NH3 (J,K) = (3,3) Transition: Dipole—Dipole

 

 

 

 

Potential.a

(+-+-)

m/m' 0 3

0 70“.5 0 0 0

1 0 70“.5 0 O

2 0 0 70“.5 0

3 0 0 0 70“.5

(++++)

m/m' 0 l 2 3

0 70“.“ 0 0 0

l 0 70“.“ 0 0

2 0 0 70“.“ 0

3 0 0 0 70“.“

(++——)b

m/m' 0 1 2 3

0 .02 -328.66 - .01 01

1 -328.66 - 5“.77 -273.86 - 0 0

2 - .01 -273.86 -219.08 -16“ 33

3 - 01 - 0.0 -16“.33 -“92 96

(33““)

m/m' 0 l 2 3 “

0 - 2“.63 - 15.38 .02 0.0 .01

1 - 9.22 - 23.07 - 23.07 0.01 . 0.0

2 .01 - “.61 - 18.“5 - 32.30 0.0

3 .01 0.0 - 1.5“ - 10.77 - “3.07

aThe values tabulated are<ogmjm|A|j'm'J'g'>>. For the first

three tables J=J'. All values are in

bThe (m,m') = (0,-1) value which is not given here is

-328.7. All other values not given are 0.0.



92

0. Numerical Results for OCS and NH3 Systems Within the
 

Anderson Sudden Approximation

The sudden approximation consists of neglecting internal

state energy differences. When molecule 2 is treated in

the sudden approximation the cross sections of interest

are given by Equations (130) - (132). These equations are

independent of molecule 2 quantum numbers. Therefore,

weighting by a Boltzmann factor is not necessary. In

addition only one hard sphere cutoff needs to be calculated

for each cross section.

Tables XV and XVI summarize the results of T1 and T2

calculations for OCS and NH3 in the sudden approximation

for dipole-dipole potentials. The K-dependence of the

relaxation parameters A§f1,f, is the same as the previous

results, and values for these parameters are not given

separately.

1
Calculated values of T.1 and T_ are larger than those

1 2

calculated by the normal Anderson theory. This is ex-

pected from the properties of the resonance function for

large values of internal state frequencies. It is in-

teresting to note that the values of Tl/TZ are all very

close to the Tl/T2 values calculated from the Anderson

theory. The only exception to this behavior occurs in

NH3 for the case that the internal energy differences in

the system molecule are accounted for but those in the

perturber molecule are not. That is, the sudden
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Table XV. Values of T1 and T2 for the OCS J = 2 + 1

Transition Calculated by Anderson Sudden Ap-

proximation and Dipole-Dipole Potential.a

 

 

SUDDEN

SYSTEM PERTURBER

1/T2 = 63“.0 l/Tl 961.9

'NO YES 11/12 = 0.659

YES YES l/T2 = 61“.0 1/Tl 93“.6

Tl/T2 = 0.659

 

 

2
aValues of 1/T2 and 1/11 are in K ,



9“

Table XVI. Values of T1 and T2 for the NH3 (J,K) = (3,3)

Transition Calculated by Anderson Sudden Ap—

proximation and Dipole—Dipole Potential.a

 

 

SUDDEN

SYSTEM PERTURBER

NO YES 1/T2 = 1216.5 l/T1 2“27.2

2““8.9YES YES 1/12 = l“01.5 1/1l

Tl/T2 = 0.572.

 

 

a

Values Of l/T2 and l/Tl are in 32.
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approximation is invoked for the perturber molecule but

not for the system molecule. In this case the calculated

Tl/T2 is smaller than that calculated from the full Ander-

son theory.

A plausible explanation of this fact is as follows.

The small value of Tl/T2 implies that T is too small or
1

equivalently that l/Tl is too big. The latter quantity

can be made too large if the cross sections for J + 1 + J

collisional transitions are too big. In NH3 the J + 1 + J

energy gap is very large. All of this implies that the

Anderson theory becomes poor at large energy gaps. The

only quantity in the cross sections that depends on internal

state energy differences is the resonance function which

is calculated assuming a linear intermolecular trajectory.

When the internal energy gap is large a large deviation

from a straight line path is expected. Therefore, the

above behavior Of Tl/T2 values may be taken as evidence

that linear trajectories are not valid for collisional

transitions exhibiting large internal energy changes.



CHAPTER III

A SIMPLE MODEL FOR THE RELAXATION COEFFICIENTS

In the previous chapter a formalism based on Anderson

theory was developed to calculate multipole relaxation co-

efficients using multipole-multipole potentials. In this

chapter a simple model will be developed which replicates

the form of the Anderson theory results. The model utilizes

the iterative solution to the equation of motion of the

density matrix in the interaction representation. This

is a common starting point for treating relaxation in

nuclear magnetic resonance. The density matrix and inter-

action potential are expanded in irreducible tensors. In

addition, the potential is assumed to have an exponential

correlation function, a root mean square strength or ampli-

tude, and a characteristic decay time. These quantities

will be defined later. The resulting equations exhibit the

same form as the Anderson theory results. The dependence

on tensor order is identical, while the resonance function

and its associated numerical factors are represented in

the form of a product of a root mean square amplitude and

a decay time. This latter characteristic arises from the

fact that the details of the collision are in effect

96
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averaged out by the introduction of a correlation function

for the potential.

The following summary of the iterative solution to the

equation of motion of the density matrix and its applica—

tion to relaxation in magnetic resonance is taken from

Abragam,(1u7) Weissbluth,(lu8) and Redfield.(1u9) Since

only collisions are considered here (and not the inter-

action of the system with a radiation field), the Hamil-

tonian can be written as

H = H0 + V (1“1)

where V is the intermolecular potential and H0 supports

the internal rotational states of the molecule. The

Hamiltonian H0 may also describe a static external field.

In the interaction representation the density matrix may

be written

iHOt/h -1HOt/fi

01(t) = e 0(t)e , (1“2)

where the subscript I denotes the interaction representa—

tion. The equation of motion for pI(t) is

3pI(t)

31-5 T = [VI(t)’ 01(13):] 3 (1113)
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which has the formal solution

° t

01(t) = oI(tO) - % 4%)dt[v1(tl),pl(tl)l . (1““)

Equation (1““) can be iterated to give

DI(t) = oI(tO)— % ftto dt[V1(tl)0I(tO)]

_- 2 t t

1 dtlf l

0

t dt2[VI(t1),[VI(t2),oI(tO)]] + ... (1“5)

This can in turn be differentiated, resulting in

do (t) _. °

__%6__ = 3%[V1(t),01(t0)] + (3%)2ii)dt'EVI(t)’[VI(t')’

oI(tO)11 + . . . (1“6)

Following the usual argument of nuclear magnetic resonance

relaxation, it will be assumed that the ensemble average

of VI(t) is zero, so that the first term in Equation (1“6)

is zero. If this assumption is not valid, the first term

merely produces a frequency shift, which may be either

ignored or incorporated into a redefinition of H0 and H1.

Hereafter, all quantities are assumed to be in the

interaction representation and the subscript I will be
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dropped. By assuming that the first term in Equation

(1“6) is zero and by setting h = 1, Equation (1“6) can be

rewritten as

0
.
.

SE = -[A§[V<t>EV<t-r),o(t)lldTJaV
(117)

Three assumptions have been made in going from Equation

(1“6) to Equation (1“7). These are: 1) it is possible to

neglect correlation between V(t) and p(tO); 2) it is then

permissible to replace p(t0) by p(t); and 3) it is pos—

sible to extend the upper limit of integration from t to

m. In addition all quantities are ensemble averaged in

Equation (1“7). All of these assumptions have been dis—

(1“?)
cussed by Abragam.

AbragamKlu7) and Redfield(lu9) have shown that Equa—

tion (1“7) is equivalent to

k k
do ' “ 1
—— = - 23 [v ,[v ,p]]k (0) . (1“8)

where

k (w) = f°°<vk(t)vk (t-T)>eindT . (1A9)
(19' 0 q q'

In going from Equation (1“7) to Equations (1“8) and (1“9)

it has been assumed that the intermolecular potential has

multipole character k and can be written
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k k

V(t) = 2(-1)qv (t)v . (150)
q ’q q

0 k 0 O O

In Equation (150), V_q(t) is an expans1on coeffic1ent and

k

vq is a unit tensor of order k and component q. Any effort

to obtain an absolute numerical rate of change of the

density matrix requires evaluation of Equation (1“9) with

subsequent substitution into Equation (1“8).

The goal of the present work is to obtain a simple

model capable of giving easily calculated numerical re-

sults and tensor order dependence of the state multipoles.

To accomplish this the correlation function<150>

-T/T

k k Sq,_q(-l)qv2e C

<Vq(t)Vq,(t-T)> = (2k+l)§ (151) 

is introduced for the potential expansion coefficients.

In Equation (151) Tc is a correlation time and v is an

average intermolecular interaction strength. With this

correlation function koq'(w) may be evaluated as

‘

 

8 _ .(-l)qV2 “ (iw-l/T )T

q 2

0q_q.(—l) v To

= ( (2k+l 1 1‘1ch
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Obviously,

(SO_q.(-1)qv2

qu,(0) =( ’ 2k+l )TC . (152)
 

The next step is to transform Equation (1“8) into a

spherical tensor basis. The potential has already been

expanded in such a basis. The analogue of Equation (150)

for the density matrix is

k

q . (153)
k

p = 23 (-l)qp_ v

kq q

k . .
where, as before, V0 is a unit tensor of order k. There—

fore, double commutators containing unit tensors of the

k k k

form [v ,[v 1, v 1] must be evaluated. This can be

q“ 91 92

accomplished by using the following relation, given by

Judd:(151)

k k
:17 n_ v_

[v 1(22'),v 2(2"1"')1 = z: (-1)21 +1 1 q3
q1 q2 R q

3 3

- 1/2 k1 k2 k3
x [(2kl+l)(2k2+1)(2k3+1)] (

ql Q2-Q3

kl+k2+k3+2+g'+2"+2"' k1 k2 k3

X [6£'£!1(-1)

2,"!2’ 2’"

k3 k1 k2 k3 k3

X V (88"')-5 1!! } V (KHQ')1 . (15“)

q AK q

3 2" 2' 8 3
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To understand the meaning of the 2' it is useful to con—

sider the v2 in greater detail. The unit tensors v: can

be written

. j j. k
J -m f l

vk = 1 (-1) f (2k+l)l/2 (

mm'

)ijm><jim'| . (155)

m -m'-q

The v: in Equation (155) will hereafter be denoted

vg<1fji) where the labels if and 31 are taken from the ket

and the bra, respectively, occurring in Equation (155).

Therefore, the 2' in Equation (15“) are taken as rotational

angular momentum quantum numbers. Use of Equation (15“)

twice allows the double commutator with all 2's the same,

K“ k1 k2
for example, [v (££)[v (£8),v (££)11 to be evaluated as

k k R —q -q

[v “(22)[v l(u),v 2(512)11 = 2 z (-1) 3 5(2k3+1)

q“ 91 q2 k k

3 5

q3‘15

k +k2+k3

1 [(2kl+l)(2k2+l)(2ku+l)(2k5+l)]l/2[(-l) 1 —1]

k3+ku+k5 k1 k2 k3 ku k3 k5 k1 k2 k3
x [(-l) -11 (

ql q2'93 9“ 93-95 K 2

X

k k k

{ u 3 5} vk5(82) . (156)
q

2 2 8 5
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Equations (152) and (156) may be substituted into Equation

(1“8), the right hand side of which becomes

2

z z z 8 ( 1)-qu V TC ( 1)-q3-q5(2 )_ - — k +1
k3k5qlq3 qlqu (2kl+1) 3

Quq5

x [(2kl+1)(2k2+1)(2ku+1)(2k5+1)1 [(-1) l -1]

(“K
3 k

5
} vq (88)

Ql QE-Q3 q“ Q3-q5
8 8 8 5

(157)

q-q —q

= z X (-1) 3 5 V2Tc(2k3+l)[(2k2+1)(2k5+131/2

k3K5q
9395

k+k2+k3 k3+k+k5 K k2 k3 k k5 k3

x [(—l) -11[(-l) -11

q 92-Q3 9 95-93

k k2 k3 k k5 k3 k5

x } v (28) . (158)

C15
8 Q 1 Q 2 2

In going from Equation (157) to Equation (158) the sub-

script on ql has Eeen dropped. Also, recalling that the

tensors Vq“ and vql in Equation (156) both come from the

same intermolecular potential, k1 has been set equal to
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k“, k1 = k“ = k. This is consistent with Equations (150)

and (151), in which it was assumed that the potential had

a single multipole charaCter. The two 3-j symbols demand

“q-Q3'QS

that q2 = q5 and --q2 = q — q , from which (-1)

2 3

= (-l) q2. The q's are always integers here so that

-20

(-l) ‘2 is always positive. Therefore, expression (158)

can be written as

k+k +k

z z v21 (2k +l)[(2k +l)(2k +1)]1/2[(-1) 2 3—11
c 3 2 5

k k
3 5

q q

k+k3+k5 K k2 K3 K k5 K3 K K2 K3

x [(-l) -11 ( t

q Q2-qB q q2-Q3 Q 2 2

k k5 k3 k5

x v (88) . (159)

q2

The sums over q and q3 may be performed by using Equation

(C2). The result is to eliminate the two 3—j symbols and

the factor [(2k2+l)(2k5+l)]l/2. Also, the product of the

k+k2+k3

two square brackets is equal to 2[1-(-1) J. Expres-

sion (159) then becomes

k k2 k3 k k2 k3 k

1 { v 2(88).

q2
8 8 8 8 8 8

(160)

k+k +k

g; 2V2TC(2k3+1)[1—(-l) 2 2] {
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(71)
Use of the sum rules

a b k a b k

z (2k+l)(2f+l) = a (161)

k fg
c d f c d g

and

a b k a b k a d f
+ .

z (-m WW1) { H }.l } (152)

k c d f ‘ d c g b c g

allows expression (20) to be reduced to

k R R k

2 l k+k 2

2V TCETEE1T) - ('1) 2 { } JVq (£1) - (163)

k2 8 8 2

It is useful to recall that 8 represents a rotational angular

momentum quantum number, k is the multipole order of the

intermolecular potential V, and k2 is the tensor order of one

of the multipoles in the expansion of p, Equation (153).

The expression in (163) followed from the double com-

mutator given just before Equation (156). If the same

process is repeated for all of the needed double commuta—

tors for the case of all 8's the same, and the expansion

for p in Equation (153) is used, Equation (lUB) becomes
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V I I

d q2 k2 k2
—[ z (-1) p_ , v ,(88)] = z 2V2'r [—1— - (4)“‘2
dt k'q' q2 q2 k c 2£+l

2 2 2q2

k R g k2 q2 k
x v0 (88)(—1) p 2 (16M)

k2 8 8 2 ’qg

The linear independence of the v5 then allows corresponding

terms in the sums to be equated. This leads to

d k2 2 1 k+k2 k R g k2
a? D_q2 (2Q) - 2V TC[?I:I “ (’1) ]p_q2 3

where the 88 dependence of the expansion coefficients

pkq has been shown explicitly. Expressions for other non-

zero double commutators and their corresponding relaxation

terms are as follows:

18LI kl k2 k1 k2 k3 k“ k3 k5

[V (ii),[v (ii),v (fi)]] = 22A { }

q“ Qi Q2

f i i f i i

k

x v 5(fi) (166)

‘15
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k

k k
k +k2+ku+k

[v u(ff),[v l(ff),v 2<r1>11 = ZZA(—1) 1 5

X 1 { } V W (1.7)
i f f i f f

kn . k1 . k
[un(fl)[vq (1f)vq

. k k k

2(fi)]l = + zzA(-1)f‘l { 1 2 3}

1 2

k k k

l 3 5 k k +k +k +k +i+f

X { }v05(fi) + ZZA(-l) l 2 u 5

kl k2 k3 ku k3 k5 k

-
. Q5

1 1 f 1 f 1

k k k k +k +k

[v “<11)[v 1(ff)v 2(fi)]] = _ZZA(_1) 1 2 3

q“ q1 q2

k1 k2 k3 k4 k3 k5 k

5 .

x { } { }V (fl) (169)

qs
1 f f f 1 1

k k k
k +k +k

[v ”(ff)[v 1(ii)v 2(fi)]] = —zzA(—1) 3 u 5

q“ q1 q2

k k2 R3

1 k“ k3 k5 k5

{ } { } V (fi)
(170)

q5
f 1 1 1 f f
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k

u k k k +k-+k +i+f

[un(if)[v 1(fi)v 2<1i>11 = ZZA(-1) 1 2 3

q1 q2

k1 k2 k3 k3+ku+k5 k3 ku k5 k5

X }[(-1) v (ii) -

. q5
1 f 1 i i f

-: } vq (ff)] (171)

. 5
f f 1

k k k
k k k 1 2 3

[vou(fi)[v l(if)v 2(ii)]] = “mm-Di"f { }

1 f i

k k k k k k
3 l4 5 k k +k +k 3 u 5 k

x [{ ] vq5<11> - (-1) 3 u 5‘ } v05(ff)]

1 1 f ' 5 f f 1 ‘5

(172)

where the summations are over k3, k5, q3 and q5 and A is

given by

A = (2k3+l)[(2kl+l)(2k2+l)(2ku+1)(2k5+1)]l/2

5 -q -q

x ) (~1) 3 5 . (173)

Q1 q2-q3 qu q3—05
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By using the procedure shown in detail for the case of all

2's equal, Equations (166) — (172), respectively, may be

shown to give rise to the following relaxation terms.

  

no on f. 2 1 k2 (f0)

11 11 1 + v Tc 2i+l p Q2 1

ff ff f' + 2 1' k (f')
l V Tc 2f+l p q2 1

1+1 i+f k
. . . 2 (-1) {-1) 2 .

f1 1f fl * “V Tc [“18337“ + "ififiif‘JO-Q2(fl)

k f f
i+f+k+k2 { } pk2

11 ff £1 + -v2Tc(-l) -0 (fi)

. *2
R2 1 1

2 i+f+k+k2 k f f k2

ff 1- fi + -v TC(-l) . o_q (f1)

‘ . . 2
R2 1 1

k+k k f 1
. . .. 2 2 ( k

1f f1 11 + -v TC[(-l) fi } p_: (ff) —

2
1k2 f

( 1)“f —¥L—- k2 (11)]
' ’ 21+1 p-q2

2 k+k2 k f 1 k2

11 if 11 + -v T [(-1) p (ff) —

k
i+f l 2

<-1) 21+1 o_q2(ii)] 

(17M)

(175)

(176)

(177)

(178)

(179)

(180)
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2 k+k2 k l i 1 k2

i1 11 11 + —2v Tc[(-l) - 21+lJp-q2(li)

k i i

2

(181)

The left hand sides of expressions (17h) — (181) are a

shorthand for denoting the double commutator; i.e.,

k

88' 8"8"' 8iV8V = [v§(£8'), [v:(8"8"'), vq2(81V8V)]]. Also,

2

in Expressions (17M) — (181) i and f are shorthand for

8 = 3i and jf, respectively.

Through Equations (148) and (153), Equations (17“) -

k

(178) describe the time dependence of p g

- 2

with the notation of Chapter II shows that (-l)qu(fi) =

(fi). Comparison

pfi(KQ). Equations (17“) - (176) have the form of an

outer term of oK(ifif); i.e., in each case the coefficient

k
2

of p_q (fi) is independent of tensor order and has been

2

averaged over the degenerate initial rotational states of

 

the system molecule. The factor V210 corresponds to the

quantity

. 2 .

<J1m132m2IP IJ1m132m2>

(232+1>

 

XX

[
U
H
-
J

of Chapter II. Equations (179) - (181) describe the time

k

dependence of the diagonal coefficients pq2(ii). With

2

these comments, each of the equations can be given an
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interpretation. Equations (17“) and (175) correspond to the

the elastic contributions to the outer terms of oK(ifif),

while Equation (176) is the inelastic contribution to this

quantity. Equations (177) and (178) correspond to the

middle terms of oK(ifif) and contain elastic contributions

from levels 1 and f simultaneously. Because k is the multi-

pole order of the potential (R1 of the previous chapter)

and k2 is the tensor order of the relaxation (K of Chapter

II), it is seen that Equations (177) and (178) replicate

the tensor order dependence of oK(ifif). The first term

of both Equations (179) and (180) corresponds to

0K(i'i'ii), while the second term of these equations cor-

responds to the inelastic contributions to the outer

terms of oK(iiii). Finally, the first term of Equation

(181) corresponds to the middle term of oK(iiii), while

the second term is the elastic contribution to the outer

term of 0K(iiii). Again, the tensor order dependence is

exactly the same as the Anderson theory results.

2 depends on the correlation functionThe quantity v

<V:(t)V:,(t-T)>, and therefore also on the indices 8'.

Suppose that the above results are to be applied to the

calculation of oK(ifif) for the case of a dipole-dipole

potential. The relevant equations are Equations (17A) —

(178). In Chapter II it was noted that matrix elements of

the dipole moment operator between the same rotational

levels of a linear molecule are zero; i.e., <jm|p|jm'>=o.
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Therefore, only Equation (176) can be non-zero. The point

2
is that the v in Equations (17M), (175), (177) and (178)

2
is zero while the v in Equation (l76) is nonzero. Con-

siderations such as these must be taken into account in the

determination of v2.



 

CHAPTER IV

APPLICATION OF AN ENERGY SUDDEN APPROXIMATION TO

THE CALCULATION OF AK

A. Derivation of Equations and Numerical Results
 

In Chapter II the Anderson theory was extended to

enable the calculation of Ag'i'fi' The major weakness of

this theory and in general any perturbation technique that

uses linear trajectories is that the scattering matrix is

not unitary. This necessitates the evaluation of a hard

sphere cutoff. If the use of a hard sphere cutoff is

satisfactory for Agifi and Agiii’ then its use for .

Ag'i'ii is questionable. For Agifi and Agiii the cutoff

essentially is that value of the impact parameter for which

the probability for scattering(either elastic or inelastic)

K
is one. In calculating A.1'i'ii - individual transition

probabilities - the transition probability goes to zero

as the impact parameter goes to zero. This is because for

small b there is a large number of possible transitions,

making the probability for any one transition small.

(This is just the opposite case from moderately large

impact parameters where only collisions with small Aj

113
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are likely.) This behavior is not reflected in the cutoff

procedure described in Chapter II. It is difficult to

incorporate such behavior because the probabilities usually

do not go to zero in a simple fashion.

These problems can be avoided by using an exponential

(152,15u)
approximation to the S matrix

s = exp(2in) = 2(2in)n/n! , I (182)

n

where an element of the phase shift matrix n is(15u)

nij(b,¢) = n0(b)6ij - EELZDAvij[v(t),e(t),¢]exp(1wt)dt.

(183)

The integral is taken over a classical trajectory determined

by a spherically symmetric potential V0. In Equation

(183) AVij is the matrix element of AV = V - V0, where V is

the full potential and V0 is the part used to determine

the trajectory, ”O is the phase shift corresponding to V0

and w = (Ei - Ej)/fi with E1 the internal energy of state

i. The z-axis is assumed to be parallel to the initial

velocity. This means that the polar angle, a, and the

intermolecular distance, v, depend on time, but the azi-

muthal angle, ¢, does not.

This chapter will treat only linear trajectories so

that comparison with the previous Anderson theory results

may be made. In this case VO = 0, ”0 = 0, and AV = V,
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so that the working equation for n is

_ -1 m i
nij(b3¢) - — f_ooe2h wtvij[r(t),6(t),¢1dt. (181)

Comparison with Chapter II shows that nij is just minus

one-half the P matrix element used there. Writing out

the first few terms of the expansion (182) as

. 2

s = 1 + 21m + 13%92—.+ ... (185)

clearly shows the relation of the current results to the

1 - iP + (iP)2/2 +Anderson theory, 8

It is very difficult to evaluate the infinite sum in

Equation (182) analytically. (To the best of this author's

knowledge it is not possible. The phase shift may be

evaluated using the WKB approximation, but this requires

use of numerical techniques.) If the "sudden approximation"

is invoked, the problem is simplified considerably.(133’l36)

The sudden limit is the limit where the molecular orienta-

tion remains fixed during the collision. That is, the

rotation time is slow compared to the collision time.

For an atom and a rigid linear rotor, the scattering matrix

in the sudden approximation is

S (b,¢) = <j'm'lexp[21n(6m¢m)]|jm> (186)

J'Jm'm
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where for linear trajectories the sudden phase shift is

n(b,¢,6m,¢m) = 3%{:V[r(t),e(t),¢,em,¢m]dt . (187)

The free linear rotor wavefunctions are ij(em’¢m)’ so that

e and ¢m describe the (fixed) orientation of the molecule.
m

A comparison of Equations (18“) and (187) shows that in

Equation (187) the exponential has been set equal to one.

This implies that the sudden approximation will be valid

for small internal energy spacings. It has already been

mentioned that transitions with small Aj occur at large

impact parameters, where the trajectories are linear to a

very good approximation. At small impact parameters col-

lisions with large Aj are possible and the corresponding

trajectories will be non-linear. Therefore, collisions

for large Aj will suffer in two respects when calculated

in the sudden approximation with linear trajectories.

First, the assumption of linear trajectories will break

down, and second, becomes large and setting the ex-wij

ponential to one may not be valid. It will be shown later

that probabilities calculated in the sudden approximation

are too large.

Equation (186) is difficult to use directly because

many integrals must be evaluated. However, because the

factor exp(2in) is a function of em and ¢m it is possible

to expand it as
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exp(21n) = i; flu qu(em¢m) (188)

with the coefficients fAU given by

. 2W .
fAu = &; sinemdem A) exp[21n(b,¢,6m,¢m)]Y§u(em¢m)d¢m

(189)

The S matrix results from taking matrix elements of exp(2in);

i.e., matrix elements of Equation (188). If this is done,

8- = <j'm'lexp(2in)ljm>
J'jm'm

= Z fAU<j'm'|YAU(em,¢m)ljm>

 

Au

= z; (-1)m' [(23'+1)(23+1)(2 +1)]1/2

Au an

A J J' A (190)

x6 ex 1».
O O m—m' u

The last step is a standard result and was used earlier

when the matrix elements of the P operator were evaluated

for multipole-multipole potentials.

(155)
Cross has used the above formulation to evaluate

transition probabilities P for dipole—dipole potentials.

J'J

After integrating Pj'j over the impact parameter, these
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(It is important to note

however, that P.. does not correspond to A9...;

JJ 1111

. . O

quantities correspond to Ai'i'ii'

this will

be discussed later.) A brief review of Cross' derivation

will be given before developing the formulas for the general

. . . K

relaxat1on coeff1c1ents Ai'f'if'

The transition probability from state j to state j'

is given by

22
. . b = T . g = o oPJ,J( ) |S J.J] (191)

J'J 63'3

If the Pj'j are averaged over the degenerate m states, the

probability is

(192). . b = 2'+ ' .PJ.J( ) ( J 1) z T

By using Equations (190), (191) and (192) it is easy to

show that

35% 2

. . = " , 1PJ.J(b) i (23 +1) ( > FA(b) ( 93)

0 0 o

where

_ -1/2 2
FA - zl(un) flu — dxol . (19M)

1.]

Equation (193) is valid for a linear molecule - atom system.



119

It will be generalized to symmetric tops later. If Equa-

tion (193) is integrated over the impact parameter, the

result is A?

J'J'J'J"

J J' A 2
O ., co

Aj'j'jj = 21T 2 (2.] +1) ( ) f0 FA(b)bdb (195)

A 000

For a system of two linear rotors the transition prob—

ability may be written

1
= ° - — °v v-v v

P5131(b) [(2Jl+l)(2J2+l)1 ma'mzm'|<11m132m2|

1 1 2 2

-1

J2

. . . 2
x |exp(21n)-1|jlm132m2>| (196)

where exp(2in)—l is just the T operator. Since only mole—

cule l is observed, the internal states of molecule 2 may

be summed over by using Equations (127) and (128). This

gives

1 -1
2

' = 74—— + -v 1 - _

1

x dn2 (197)

For linear perturbers the volume element dQ2 is sin62d62d¢2.
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Cross<155> showed that for a dipole-dipole potential,

the function Fx(b) may be evaluated as

_ 1 n . . _ 2
Fx(b) _ (A+§) &)[Jx(y s1n8) 510] sin82d82 (198)

where

2U U2

y = —_lE—— 3 (199)

hb v

and jA(x) is a spherical Bessel function. It is related

to the normal Bessel function by

W 1/2

JA(X> = (5;) Jx+1/2(X) (200)

. O .

Finally, Aj'j'jj is given as

O 2 /h )Z(2" jl 3i A 2A (201)AJ'J'jJ ( "U1U2 V A Jl+l) (O O O) A,

where

Tr2

A0 ‘ EH

n2 -1

AA = 1r[(2x+3)(2A-1)] (A # O)

n2

AtOt = 2 AA = 7r . (202)
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The derivation of Equation (201) followed that given

by Cross. A corresponding equation for a general relaxa-

tion coefficient may be evaluated in the following manner.

The general cross section is

J -J'+m -m' _

oK(i'f'if) = z 2 2m (- 1) f f f f(232+1) 1

$fQJ2

K K

231+1 1/2

) [23;11]

Q

'1"

)(:1 J1“

Y

1

x[6 aj 5 '8 5 . - <J'm'J'm'|S*h
31 Ji 63 fj' jzj' mimi mfm% m2m2 f f 2 2 fmf52m2>

X <JymlJ Mm ISIJimiJ2m2>l (203)

After the molecule 2 states have been summed over (by again

using Equation (127) and (128)), (203) can be written as

 

J J K
j j +m m' 1 f

8(if'1f)=1%;nzz' (-1)ffff( )

mimiQ m —mf-Q

mfmf

Ji jf' K 2ji+l 1/2 *

X [231+l [aJij'anJ' 5mim'5m m jfmfls [Jr f

mi-m'-Q' i

x <jimiISIjimi>1dQ2 (20“)
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Use of the relation

J J' A J J' A

= _ m . ., 1/2

éj'jém'm i ( 1) [(2J+l)(2J +1)] ( )( >510

O O C m-m' u

(205)

for 6 -.6m m’ and 6 ,6m m" use of Equation (190) for

jiJim1m1 Jfmefmf

the matrix elements of the scattering operator, and use of

Equation (D8) enables the cross section to be written as

x , , K+u+J -J'
o (l'f'lf)= 3% ffE (- 1) f f(253+1)[(2jf+1)(2j£,+1)31/2

MA

J1 J) A Jf.J} A J1 J5 A 1 2

X ( >( { ) [(E—ffx - 6A03d92

o o o o o 0‘ " K U
Jf 3f (206)

By using Equation (206) o K(i' i' ii) and AK can be
i' i 'ii

obtained as

OK(i'i'ii) = _X(_1)K(2J1+l)3/2(2ji+1)1/2

A

J1 J; A2 Ji 31 A

x < ) ‘ } FA (207)

o o o 31 31 K

and
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K _ K . /2 . 1/2
11.1.11 - —(2wulu2/hv) i <-1> (2Ji+1§ (231+1)

0" .

31316231391A

x < > { AA . (208)

o'.

O O O 31 31 K

The coefficients Agfif and AK cannot be written in terms
iiii

of AA' This is seen by comparing Equations (206) and (198).

When A = 0, the terms in square brackets in these equations

are not the same. It is shown in Appendix H that Agfif

K

and Aiiii can be written in a form similar to Equation

(208) with AA replaced by BA where BA = AA for A # 0

d B ”‘2
a“ 0 "127°

If the system molecule is a symmetric top with one-

ended symmetric top eigenfunctions, the results are almost

the same as those given above. In particular, the sudden

8 matrix element is now

S = <j'k'm'lexp(2in)|jkm>
j'jk'km'm

{fou<3'kvmvIYAu(em,¢m)|jkm>

 A: (-1)k'+m'[(211'+1)(12l;1r+1
)(2A+1)]1/2

u

33' A j j' A

x( >( )fxu. (209)

k-k' 0 m-m' u
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In the cross section, 6 ,6 ,6 , is replaced by

5131 kiki mimi

k!+m!
o 0 1/2

..5 ,5 ,- 2 (—1) 1 l[(2J.+1)(2J'+1)]

131 kiki mimi Au 1 i

. ., . .,

31 31 A 31 Ji A

x( )( 6A0 (210)

k.-k! o
l l

The angular momentum algebra is the same as that leading

to Equation (206). The analogue of Equation (206) is

K+A+j —j'
K ., ,. = -1 f f .

o (1 f if) H? ff ;I(-l) (235+l)

u

J- 5' A J J' A J- J! A

. ., 1/2 1 i f f 1 1
x [(23f+1)(23f+1)]

ki-ki O kf'kf O 3% 5f K

x [3- f2 - a Jan (211)
Er— Au A0 2

The same comments regarding the functions A and B for

A A

. K K

the COfoiCIGNtS A1111 and Aifif for the linear rotor case

apply to the present case.

Proper consideration of symmetric top molecules in-

volves the parity-adapted symmetric top eigenfunctions

Ijkm€> = N€[ljkm>-+e| J-km>] (212)
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where

N6 = l for k = e = 0

NE = 1//2 for k > o and e = :1

By using these functions, the scattering matrix in the

sudden approximation may be written as

Sjtjkvkmvmm = <J'k'm'e'lsmkme>

. ., J'

Au

3 5' ; J J' A J J' A J J' A

x: + 5' +6 +ee'

k-k' -k-k' k' 0 —k k' 0

In this discussion only k = k' will be considered. In

Au

m-m' u

(218)

this case

_ k+m' (23+1)(2j'+1)(2A+1) 1/2

Sj'jk'km'me'e ’ NEN€v('1) f; E “n J

J 5' A J J' A

I

x [l + ee'(—l)J+J +Alfxu (21H)

k-k O m-m' u

The cross section in Equation (211) becomes
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K . . '1 K+A+j —j'

o (1'f'1f)= ENE N€,N€ Ne, ff 2 (-1) f f

f f 1 1 Au

jf+jf+x 31”?Av _ v _ -v

J, 33 A Jf~Jf A J, 53 A}

ki-ki O k -kf O

f 3% Jf K

X [Hg f - 5AOJdQ2 . (215)

All of the previous equations are valid for the case that

molecule 2 is a symmetric top. Instead of Equations (127)

and (128) the following two equations are used to sum over

the internal states of molecule 2.

*

 

 

 

2jé+l Dj2 j'

Z Z 2 Dkm,(aBY)Dk2mé(a' B' y' ) = 6(d--d' )

jék'mé 8n 2 2 k2

X 5(8-8')5(Y-Y') (216)

2j +1Dj j2
22 2 l

. X (aBY)D (dB ) = -—- Z 1.

2J2.” k m 8W2 Dk2m2 k2m2 Y 8W2 k
2 2 2

. 2
= (232+l)/80

(217)

In the application of these two equations two points
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must be considered. First, the factor (un)-l in Equation

(197) becomes (81r2)_l in the present case. However, the

volume element dQ2 for a symmetric top is da sine dB dy

so that after integration over a the (14K)-1 factor remains.

Second, it appears from Equation (217) that an additional

factor of (2j2+l) will be introduced. However, since the

quantity Pj'j of Equation (196) is averaged over all

degenerate states of the perturber an extra factor of

(232+1)‘1 should be inserted in Equation (196) when the

perturber is a symmetric top. This additional factor is

necessary because of the average over k2.

The preceding analysis has been applied to the cal-

culation of all relaxation coefficients for the J = 2 + 1

transition of OCS and the (J,K) = (3,3) inversion transition

of NH3. The coefficients are given in Table XVII. The

assumed parameters for the calculations are the same as for

the extended Anderson theory calculations and are given in

Tables III and X, respectively. The values of T for OCS

l

and NH were calculated from Equations (135) and (1A0),

3

respectively. All of the relaxation coefficients here are

larger than the corresponding quantities obtained from the

modified Anderson theory of Chapter II. In addition the

Aifif are larger than the eXperimental low-power linewidth.

It is expected that cross sections calculated from a sudden

approximation will be larger than those calculated from a

theory where the energy differences between internal states
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are considered. This will be discussed later. The other

major difference from the Anderson theory results is in

the tensor order dependence of the cross sections. While

K

the K-dependence of A.1.1.11 is similar in both theories,

the Agfif and A1111 show a larger variation with K in the

sudden approximation. (The fact that the 3_3_3_3_,

3+3+3+3+ and 3+3_3+3_ cross sections are the same may be

easily demonstrated by using Equation (21M).)

Table XVIII gives the B matrices obtained from four-

level corrections to OCS and NH3. Tables XX and XXII

describe and compare the fits of the theoretical lineshapes

to a sum of Lorentzians. The procedure is the same as

that used in Chapter II. As before, the four-level effects

are larger for OCS than for NH3. However, the effects of

four-level corrections for OCS are smaller than the same

effects in the Anderson theory calculations. A plausible

explanation of this is that because the sudden approxima-

tion neglects all internal state energy differences it

effectively already treats the system as a many level one.

The sudden value of 0.68 for Tl/T2 gives rise to a

(Tl/T2)O of 0.71 which is in excellent agreement with the

experimental value. If one assumes that the sudden ap-

proximation is a valid description of the collision

dynamics, the value of Tl/T2 obtained from a lineshape

experiment which has been analyzed by fitting to a sum

of Lorentzians would be 0.68.
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Table XVIII. Matrices of b Coefficients in Sudden Ap—

proximation for Calculation of U-Level Cor—

rections.

K:

Doublet (J i 5; K = 0.

OCS J = 2 + 1 Transition (J i A;

O) and NH3 (J,K) = (3,3) Inversion

 

 

 

 

 

 

 

 

 

OCS

ma (2) (0) (3) (1:)

505.17 -137.77 -321.U7 - 23.66 — 8.89

-229.62 507.95 - 76.5“ -1U7.55 - 26.58

B = -107.16 - 15.31 535.79 - 5.10 - 2.32

- 55.20 -206.57 - 35.72 509.31 -152.68

- 26.66 — “7.85 - 20.87 -196.30 510.03

(1) (2)

B' “35.37 —163.07

11 —271.79 u2u.91

NH3

(33+)b (33-) (u3+) (u3—) (53+) (53-)

11u7.9 -56u.1 —17o.6 — 69.8 -28.0 _ 22.6

-56H.1 11U7.9 - 69.8 -170.6 -22.6 - 28.0

B = -219.3 - 89.8 12ou.6 -382.u —226.3 — 61.8

- 89.8 -219.3 —3A2.u 12OU.6 - 61.8 -226.3

- “3.9 - 35.6 -276.6 - 75.5 1212.0 -238.0

- 35.6 - “3.9 - 75.5 -276.6 -238.0 1212.0

(33+) (33-)

v = 1084.72 -618.56

B11 -618.56 108u.72

8The numbers in parentheses above the matrix are

.for the corresponding columns. The rows are in

order.

{Phe symbols in parentheses above the matrix are

Inarity for the corresponding columns. The rows

Same order .

the J values

the same

J, K)

are in the
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Table XIX. Relaxation Parameters in Sudden Approximation

for the OCS J = 2 + 1 Transition: U-Level

Effects, J i “.

 

 

 

 

 

2

K aK (3 )

1 520.5

3 531.“

11 22 12 21 2
K bK bK bK bK (fl )

O “35.37 “2“.91 -163.07 -271.79

2 532.01 “98.“1 - 81.71 -136.17

A 518.92

-1-

T1 — 6““.38

Tl/T2 = .8078
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Table XX. Summary of Tl/T2 Calculations in Sudden Ap-

2 + 1 Transition.proximation for the OCS J

 

 

w/o U—Level With “-Level

 

Effects Effects

a a

p/mtorr Tl/T2 (Tl/T2)O Tl/T2 (Tl/T2)O

60 .761 .802 .808 .850

80 .761 .800 .808 .8u8

100 .761 .799 .808 .8“6

(T1/T2)0 (exp) = 1.0a : 0.10

 

 

aExperimental parameters assumed for the determination of

(Tl/T2)0 from the theoretical lineshapes are power =

10.00 Mw, attenuation = 0.800.
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Table XXI. State to State Relaxation Parameters in Sudden

Approximation for the OCS J = 2 + l Transition.a

 

 

(2121)a

m/m' -l 0 l

0 18“.l 212.6 18u.1

1 159.u l8“.l 159.u

(1111)

m/m' -l 0 l

0 - 9.2 523.5 - 9.2

1 -l8.“ - 9.2 532.7

(2222)

m/m' -2 -l 0 l 2

— 7.0 3.0 527.9 — 3.0 - 7.0

- 1.5 -1l.2 - 3 0 533.u — 9

- 3.0 - 1.5 - 7.0 - 9.8 529.2

(1122)

m/m' —2 -1 0 1 2

0 - l 7 -52 5 -69.“ -52 5 - 1 7

l - 5 l - 3 u -l8.6 -50 8 -100.0

(2211)

m/m' -l O l

0 -3l.0 —115.8 -3l.0

l - 5.6 -87.5 -8A.7

2 - 8.5 - 2.8 -l66.6

‘

aThe values tabulated are <<jme|A|j'm'j'm'>> where J agd

J' are the numbers in parentheses. All values are in 2.
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Table XXII. Summary of Tl/T2 Calculations in Sudden Ap-

proximation for the NH3 (J,K) = (3,3) In-

version doublet.

w/o U-Level With U-Level

Effects Effects

a
p/mtorr (Tl/T2) (Tl/T2)O (Tl/T2) (Tl/T2)O

30 .682 .705 .686 .712

“O .682 .70“ .686 .709

(Tl/T2)O(exp) = 0.71 i 0.07

 

 

aExperimental parameters for the determination of (Tl/T2)0

from the theoretical lineshapes are power = 15.0 Mw,

attenuation = 0.800.
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State to State Relaxation Parameters in

 

 

 

 

Sudden Approximation for the NH3 (J,K) =

(3,3) Inversion Doublet.a’b

b
(+—+-)

mfin' -3 -2 -l 0 l 2 3

0 -0.7 -2“.3 - 2.6 1203.1 - 2.6 - 2“.3 - 0.7

l -0.5 - 0.2 -29.6 - 2.6 1212.0 - 18.6 -l2.7

2 0.0 - 0.8 - 0.2 - 2“.3 - 18.6 1222.“ -30.6

3 0.0 0.0 - .5 - 0.7 - 12.7 - 30.6 1192.5

(++-—)C

m/m' —3 —2 -l 0 l 2 3

0 -2.3 - 2.3 -277.“ 0.0 -277.“ — 2.3 - 2.3

l —0.1 - “.5 0.0 —277.“ - “8.2 -229.“ = “.5

2 -0.1 0.0 - “.5 - 2.3 —229.“ -185.7 -l“2.1

3 0.0 -00.1 - 0.1 - 2.3 - “.5 -1“2.l -“15.0

aThe values tabulated are <<jmjm|A|jm'Jm>> where J = 3

and the parity is indicated in the parentheses. All values

are in 32.

bThe values for (++++) and (--—-) are the same as the

values for (+-+-).

cThe values for (—-++) are the same as the values for

(++—-).
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State to state relaxation parameters are given in

Tables XXI and XXIII. It is interesting to note that the

elements <<jmjm|A|jm'jm'>> (where 3 may also denote parity

for the case of NH3) for Am 3 l are all very small relative

to those elements diagonal in m. This is reminiscent of

the results obtained from the Anderson calculations. In

the latter case the elements for Am 2 l are small because

the Anderson theory is a first order theory. One might

expect that in an infinite order theory such as the sudden

approximation the off-diagonal elements would be large.

That they are small implies that the m—component pairs are

not significantly coupled by collisions.

B. Application of the Sudden Approximation to Four-Level

Double Resonance Experiments
 

The most powerful and general method of observing

rotationally inelastic scattering is microwave—microwave

double resonance. A brief summary of a four-level double

resonance experiment in NH3 will be presented here. Oka

has published a complete review of these experiments.(15)

A four-level double resonance experiment on NH3 is

depicted schematically in Figure l. The double arrow

represents a microwave pump beam which tends to equalize

the populations of the pair of inversion levels that it

connects. This change in populations is transferred to



137

 + l J+I.K

81$ 3 '
- 2 J+I.K

 

Figure 1. Energy level scheme for a four-level double

resonance experiment in NH3.
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other levels by collisions, and is monitored by observing

the change in absorption intensity, A1, of a weak radiation

field (the signal). To a good first approximation the

observed change in intensity can be related to collisional

rates among four levels, the two pump levels and the two

signal levels.

The quantity which is measured experimentally is

ka(15)
n = AI/I. 0 has shown that

  

+

n = \2 + + (218)
s k +k +2k +k

a Y 8 E

if the following conditions hold.

2 +
K13 k2, - kY

+

k1L1 k23 k0

k3u E ku3 = k

k+ z k+ B

B — B

In these equations knm is the rate constant for collision-

+

ally-induced transitions from state n to m. The symbol ka

denotes the collisional rate from a higher to a lower level

and is related to k; by
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= exp(-AE/kT) . (220)

W
‘

W

Q
+
Q
+

The condition kg 5 kg is a statement that the energy dif-

ference between the levels of an inversion doublet is very

small.

Oka has calculated n by using a simplified Anderson

 

theory with dipole-dipole potentials.(156) For this case,

k E 0 and k E 0, so that

Y E

—vp k+

”=6 —,——°‘-—. (221)

s k +2k

a 8

Although this calculation gives the algebraic sign of

n in agreement with experiment the calculated magnitude of

n is about five times too large. With the sudden approxi-

mation developed in this chapter it is possible to cal-

culate n by using Equation (218)

The collisional rates k occurring in Equation (218)

are just the A9'i'ii with the appropriate 1 and i' indices
1

given earlier in this chapter. Specifically,

0 21ml“2
ji+ji+A

A1'1'11 = ( hv

. 2 2
'

)(2Ji+l)NE N X [l+€.€!(-l)
'

°.+ '+A ' +"+A 3' 31 A 31.31 A

Jl 31 l(-l)JiJi ( l ) ( )AA

0

X [l+€.€!(—l)

1 l k-1< 0
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Four rates need to be considered. These are AO(jk- +

j+lk-) and AO(jk+ + j+lk+), which are dipole allowed in

first order perturbation theory, and AO(jk- + j+lk+) and

Ao(jk+ + j+lk-), which are dipole forbidden. The minus and

plus signs in the current notation denote e and not the

parity of the level. Equation (222) can be used to give

the following expressions for the rate constants.

0 3+1 j A 2

A (Jk- + J+lk-) = c z [1+(-1)“1l2 ,(223)

A k - k 0

J+l J A

AO(jk+ + j+1k+) = C X [l+(-l)x+1]2

A

A’ (22“)

A

J+l J

AO(jk- + j+lk+) C 2 [1-(-l)“l]2 j):A, (225)

J+l J

AO(jk+ + j+lk-) = c z [l-(-1)“1l2 AA.
A

(226)

where

2"“1112
c = (——————)(2j+l)(% ) . (227)

hv

In Equations (223) and (22“) only terms with A odd contribute,

while in Equations (225) and (226) only terms with A even

contribute. Also Equations (223) and (22“) are equal, as

are Equations (225) and (226). Therefore, in the sudden
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approximation the first two conditions given in Equation

(219) are satisfied.

It is useful to compare these results with the Ander-

son theory expression for Ao(i'i'ii) (dipole—dipole inter-

action)

. .,
J2 J2 1

 2"Z( Ji+l)
1

2 J'

2 k.—k. k2—k2 0

16K

00(1'1'11) m

|aAk3|2 (228)

The only part of this expression that depends on e is

laxkjl2. The dependence on e is due to the energy spacing

of the inversion doublets. Therefore, there should be

differences between the two dipole allowed transitions.

However, the computational results presented in Chapter II

show that to a resolution of about 0.2 A2 there are no dif—

ferences.

The results of the sudden approximation calculation

of the rate constants k are summarized in Table XXIV.

Oka's calculation using a simplified Anderson theory shows

the best agreement with the experimental value. The agree-

ment is probably merely fortuitous, because only resonant

collisions have been considered. Inclusion of non-resonant

collisions would lead to a larger value as discussed by

Oka.(156)
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Table XXIV. Sudden Approximation Calculations of Rate

Constants for Four—Level Double Resonance

 

 

 

Experiments in NH3,a

1:
ka 170.6

2'.

= 6 .8RY 9

k = 6“.

8 5 l

k = 10 .0g 3

kg-ki

( + + Y ) = 0.0685

k +k +2k +k SUDDEN

a Y B E

k;
—:—*—— = 0.0567

R +2k OKA

d B

OBSERVED = 0.0112

 

 

aThe levels involved are J = 3 and K = 3 in Figure l.
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C. Energy Corrections to the Sudden Approximation
 

Scatterinngatrix
 

The sudden approximation to the scattering matrix

neglects energy differences between internal states.

Therefore, it is expected to give transition probabilities

that are too large. Because the sudden approximation relaxa-

tion coefficients are so easy to calculate it is of in—

terest to try to correct the approximation by reintroduc-

ing consideration of internal state energy differences.

(157) have made an attempt at doing this.De Pristo et al.

A brief description of their approach and applications to

relaxation coefficients will be given here. Later, some

other ways of incorporating energy corrections will be

considered.

It is difficult to evaluate the accuracy of energy

corrections because there is little experimental data on

transition probabilities and because there are very few

accurate fully quantum mechanical calculations of transi-

tion probabilities for systems of interest to microwave

spectroscopists.

The argument of DePristo et al. is as follows. The

perturbation series for the exact S matrix in the inter-

action representation is



1““

5mm. = 6m. - in‘1 L: exp(inmm.t)vrsnm,(t)dt

— h‘2 z f°° eXp(iw t)VS (t) It exp(iw t')
m" ...00 mm" mm" _<D mum,

v2 (t')dt'dt + (22 )X mum! - . . 9

where

. S

me.(t) = exp(1wmm.t)Vm,(t) . (230)

In the sudden approximation all exp(iwmm,t) factors are set

equal to one. The energy correction consists of setting

the limits of integration to iTC/2 (Tc is the collision

duration) and keeping the exponential factors in the first

integrals only. That is, the 8 matrix is written as

_ . -l T /2 . s
Smm. - 6mm. - 1h {ICC/2 exp(lwmm.t)vmm,(t)dt

-2 TC/2 . S t S ' '

— h min {Tc/2 exp(1umm.t)vmm..(t) {Tc/2 Vm..m.(t )dt dt

(231)

T 2

The integral f C/ exp(iwt)VS(t)dt is approximated by
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1 2 2

-— ITO/2 (1+iwt-w t /2)dt ITC/2 VS(t)dt . (232)
TC -TC/2

“Tc/2

The first integral in Equation (232) is l-w2(TC/2)2/6

which is rewritten as 6[6+(w10(2)21-1- (This is a Padé

approximant.) The second integral is identified as the

th

n term in the expansion of the sudden S matrix. The

result of this is an energy corrected sudden approxima-

tion.

2 -l s

8mm. = 6[6 + (wmm.rC/2) 1 8mm, (233)

where Sim, is the sudden 8 matrix. The collision time can

be approximated as

 

T = (23“)

3
where for a r- potential Xc = 1.5.

It is of interest to carry the results of DePristo et al.

a step further by substituting Equation (233) into the

equation for a general relaxation cross section 0K(1'f'1f).

Both oK(iiii) and oK(ifif) contain only elastic S matrix

elements Smm’ For elastlc S matrix elements ”mm is zero

and Equation (233) shows that there is no energy correction

S

to Smm' Therefore in the context of the above correction

only gK(i'i'ii) for i' # i will be considered. (Several
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l

calculations of Aifif have been performed by using a fully

quantum mechanical sudden method - the infinite order

d.(115’116) These calculations were forsudden (IOS) metho

vibration—rotation lines of He—HD, He-HCl, He-CO, and He-

HCN systems and were compared to exact close coupled cal-

culations. It is interesting to note that the 108 results

range from 7 to 500% higher than the CC results. This

suggests that there may be room for improvement in the

energy correction given in Equation (233).)

If 3' # j in Equation (192), the T matrix may be re-

placed by the S matrix. By using Equations (193), (19“)

and (233) the energy corrected cross section for the transi-

tion probability from j' to 3 may be written as

 

36 z (2J'+l)

0
o (J'J'JJ) =

ECS w. b

{6+[—%%%—]2 2.25}2 A“

J J' A 2

f)“ (235)X ! W

0 0 0

Equation (235) must be integrated over the impact param-

eter and 82 to obtain Ag'j'jj' After expanding the denomin-

ator of the correction factor, the following integral must

be evaluated

2 .

1L Infm yJA+l/2(YSin8)81n0dyd0

O

aOy + aly + a2
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where

a0 = 36

2 2

a = 2Aulu2 wj'j(1'5)

1 hv “V2

uuiug w§.j(1.5)”

a = fi” (237)

2 h2v2 16 v

and all other symbols have been previously defined. At-

tempts to evaluate Equation (236) analytically have failed.

While Equation (236) could be evaluated numerically, the

value of such an effort is probably not worthwhile until

accurate values of transition probabilities for dipole-

dipole systems are available.

An alternative to the integral in Equation (236) is

simply to set b in the correction factor equal to some

average inelastic impact parameber b This is similar in0.

principle to the hard sphere cutoff used in the Anderson

theory. Unfortunately, the desire to bypass such a concept

is one motivation for using the sudden approximation in the

first place.

It is undoubtedly possible to devise many different

energy corrections to the sudden S matrix. An alterna-

tive to the approach discussed above has as its starting

point the Anderson approximation to the scattering 0p—

erator,
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S 2 l - iP

1 - iPS (238)U
) (
I

where P is the same P as used in Chapter 11; PS is the P

operator in the sudden limit. The precise form of PS

will be given shortly.

It is convenient to consider matrix elements of the

above operators. For the case m # n, Equation (238) gives

the following

Smn = ’iPmn

5 ~ s

smn ~ -1Pmn (239)

From Equation (239)

P2

2 _ mn s 2

Smn — ?;§—;§ (Smn) . (2&0)

mn

Each of the quantities in Equation (2&0) is understood to

be evaluated at a given impact parameter. It is also worth-

while to note that although Equation (2&0) has been written

with Anderson theory in mind it is a much more general

result in that Pmn may be evaluated within a different set

of approximations than those used in Anderson theory. For

example, Pmn may be the fully quantum mechanical first

Born Approximation. Also, the correction in Equation (2&0)
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may be extended to terms higher than first order by

 

writing

. 1 2 2

2 (“lpmn - 2 Pmn ) s 2

Smn — (-lPS _ l<Ps ) + 6;? (Smn) (2&1)

mn 2 mn

The quantities of interest are cross sections. These

may be obtained from Sin and the analogous quantities by

taking the absolute value of Smn’ squaring it, summing over

m,m}m2, mé and jé, and multiplying by [(2j+1)(2j2+1)]-l.

Following this prescription the first of Equations (239)

may be written as

.. —1.. 2
X g [(2J+l(232+l)] |<Jm32m2|S|j'm'jémé>|

j

m2mé 2

o o -l . 2

= Z 2 +1 2 + v v-v v
m3' 3' [( J ) J2 1)] I<jmJ2m2IPIJ m J2m2>l ,

m2m2 2 (2&2)

with a similar equation involving SS and PS. The analogue

of Equation (2&0), written in terms of cross sections, is

0(3) = —O—(—P§)—O(SS) (21:3)

o(P )

In Equation (2&3) C(88) is the cross section evaluated from

a scattering matrix computed in the sudden approximation.
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The quantity 0(8) is an exact value of the corresponding

cross section. Now, o(P) and C(PS) are cross sections cal—

culated by using the approximation in Equation (238).

Equation (2&3) will be useful if the ratio o(P)/O(PS)

is more exact than either of its factors. From Chapter

II 0(P) may be written (for a dipole-dipole potential)

. . -l . .
0(2) = 2' z [(2J+l(2J2+l)] |<Jm32m2lplj'm'3émé>l2

mm .,

m2m'J2

. 2 . .
2 J J’ 1 J2 Jé l

= C 2: B (2j'+1)(2j'+1)

2 l o o 0 0 0

A2

(2&&)

where

2
c = (plu2/3th2)

It was shown by TC that

2 2 2 2
z B = 2[K (k) + &K (k) + 3Ko(k)] . (2&5)

l l A1*2 2 1

Defining f(k) as

f(k) = g k“ 2: Bilx2

A1A2

enables o(P) to be written as



JJ' 1 232551

o(P) = 8C .2 f(k)(2j'+l)(2j§+l)
J'

2 O O O O 0

(2&6)

In the sudden limit w and therefore k goes to zero and

f(0) is one. Therefore

. . 2 . 2

3'1 :32 .jé

(P8) = 80 z (2j'+1)(2jé+1)
"

J2 o o o o o

2

J J' 1

=8C(2j'+l)
(2&7)

O O O

Substitution of Equations (2&6) and (2&7) into Equation

(2&3) gives

, 2

32 Jé 3-

0(8) = [2% f(k)(2jé+l) 10(85) . (2&8)

J2 o o 0

In Equation (2&8), o(S), f(k) and C(88) are understood to

be evaluated at the same given impact parameter.

The interesting features of Equation (2&8) are most

clearly seen if molecule two is considered to be adequately

described by the sudden approximation. In this case the

sum over 35 in Equation (2&8) may be carried out giving

0(8) = f(k)o(SS)
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A qualitative plot of f(k) vs. (k) is given in Figure 2

for a dipole-dipole potential. The most significant

difference between Equation (2&8) and Equation (235) is

that while in Equation (235) 0(3) is smaller than 0(55)

for all values of m at a given b, this is no longer true

in Equation (2&8). (wj'j 3 0 in Equation (235).) For

values of m such that k is less than k0 Equation (2&8)

predicts that 0(8) is larger than C(83).

If it is desired to extend Equation (2&8) to relaxation

coefficients, the equation must be averaged over the impact

parameter; i.e.,
 

J2 jé l 2

2n A bo(S)db = 2n};(2jé+l) if bf(k)o(SS)db

J2 o o o

(2&9)

The integral on the right side of Equation (2&9) involves

integrals of the form

°°72C 2wb

L,b JA(;§)Kn(?7)db , (250)

where C is a constant, n is an integer and A is a half-

integer. All attempts to integrate Equation (250) analyti-

cally have failed.

It is possible to analytically evaluate an approximation

to Equation (2&9). Because 0(SS) is proportional to FA’

the integral on the right side of Equation (2&9) is



f(k)

Figure 2.
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dipole potential. k = g? .
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4? bf(k)FAdb ,

which may be approximated as

gff(k)dbif bFAdb . (251)

The second integral in Equation (251) is just the integral

that was evaluated earlier for the pure sudden approxima—

tion. (If the integral was approximated as {fbf(k)db{fFAdb,

the introduction of a hard sphere impact parameter would

be necessary.) The first integral may be evaluated

analytically. The details are given in Appendix I. The

result is

(X)

A f(k)db (%)(%)(1.5)3[I‘(1.5)Ju (252)

v
2.77586(5)

In this approximation Equation (2&9) becomes

32 i; 1 2

MS) = 2 (235m (§)(%)(1.5>3[r(1.5>l“pj

32 o 0 o 2

J2

x A(SS) (253)

where 03 is a Boltzmann factor.

2
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One of the advantages of the sudden approximation is

that the sum 0V9? 32 309 35 may be neglected. (The per-

turber states have been summed over by using the closure

relations for spherical harmonics and rotation matrices

given earlier.) This advantage is lost in Equation (253).

The essential prediction of Equation (253) is that

A(S) m (%)A(SS) (25&)

When u is small, A(S) is much greater than A(Ss) while

when w is large, A(S) is much less than A(SS). Intuitively,

only the latter limit seems reasonable.

To attempt to establish the validity of approximation

(Equation (251)) the exact integral should be evaluated

numerically at least once. To compute a cross section,

however, the exact integral will have to be evaluated for

every allowed value of A. Because |j-j'|:)ij+j', this

could become very expensive.



CHAPTER V

ADDITIONAL RESULTS

In this chapter two additional results will be pre—

sented. They are concerned with the equations of motion

for the density matrix. First, the equations of motion for

a symmetric top Q-branch transition in a static external

electric field will be derived. The second part of the

chapter discusses some phase conventions for reduced matrix

elements and their relation to previously derived equations

of motion for state multipoles.

A. Comparison of T2 for Transitions in a Static Electric

Field in Linear and Symmetric Top Molecules

The case of a linear rotor in a static external elec—

tric field has been discussed in LM. Before discussing the

analogous case for symmetric tops, a brief summary of the

LM results will be presented.

In a static electric field and plane polarized

radiation the (jfm) + (jim) and (jf-m) + (ji-m) spectral

transitions are coupled. By using the Wigner—Eckart

theorem it is possible to show that

156



157

<jim|u|jfm> = <ji-mluljf-m> (255)

This result and the following linear combination of density

matrix elements

oi(JiJf) = p(jimjfm)to(Ji-mjf-m) (256)

can be used to write the equations of motion as

0 a ’ ° ° ' o o

i §€Qi(JfJi) = wfipi(JfJi)-<me|u[Jim>€COSwt

x [oi(jiji)-pi(JfJf)]

: (o I ) o i
— + _ O C

ilfifio- JfJi lkfiifo:(lilf) (257)

a 0 o o . o o 0

i -a—t01(Jj-Ji) = ’ECoswt[<Jimlulme>pi(JfJi)'pi(Ji-Jf)

o 0 I i o O . i o o

X (meluIJim>]-1Aiiiipi(JiJi)—lxiiffpi(JfJf) (258)

In the above equations the m-dependence of pi(jijf) has

been suppressed. The A: are defined as

i
. .

O O O

Afifi=<<meJimlAl
jfmjim>>i<<3f_mJ

i—mlAlmeJim>> (259)
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i +

A d A'

i

fiif’ iiff 3“ iiii'

Equation (27) may be used in Equation (259) to give

with analogous equations for A

2

jf 3i K+jf+ji K

= Z (2K+l) [li(-l) JAfifi

K

i

Afifi (260)

m- m 0

'th i ‘1 t' f i i iw1 s ml ar equa ions or Afiif’ Aiiff and Aiiii' Equa-

tions (257) and (258) decouple the pair of transitions

(jfm) + (jim) and (jf—m) + (ji—m) from the other possible

transitions among m states. They also show that 0+ and

p_ are uncoupled. The polarization for this case can be

written

P = <jfmluljim>0+(JiJf) + (JimIUijm>p+(jfji) (261)

so that only the equations of motion for 0+ are needed.

The system can be treated analogously to a two-state system

and gives for relaxation times

1 +

T ‘ Rexfifi

l + + + +

T1 ‘ 2‘Aiiii‘*ffii**fffr‘*iiff) (262)

In the above it was assumed that the strength of the field

was such that the spectral lines arising from different

values of m are non overlapping.

The dipole moment matrix element for a symmetric top
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evaluated with a parity-adapted basis may be written

J.

<Jikm+luljfkm-> = (-l) 1 if . (263)

The following discussion is restricted to Q-branch transi-

tions in a symmetric top with inversion (like NH3). For

this case,

J J

<ka+lu|ka-> = (-1)3’m Eif . (26&)

m-m

Also

+ J J l

<jk—m+|p|jk-m—> = (-l)1 m pif

—m m 0

, + J j 1

= H)” 1 a (265)
if

m-m 0

where the symmetry properties of the 3-j symbols and the

fact that m is an integer have been used. The conclusion

from Equations (26&) and (265) is that

<jkm+|p|jkm—> = -<jk-m+|u|jk-m-> . (266)
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The polarization can be written

"
U I

‘ tr(uo)

; [<Jimlulme>o(meJim)+<melu!Jim>o(Jimem)l

(267)

where the sum over m is restricted to m and -m. In Equa—

tion (267) the symbols ji and jf include, in addition to

the j valueof the state, the quantum number k and the

parity. Equation (267) can be evaluated to give

P = (jimluljfm>0_(jfji)+p_(jijf)<3fmlU[jim>- (268)

Therefore, the equations of motion for p_ are needed. Use

of Equation (21) of Chapter I and Equation (266) of the

present chapter gives the equation of motion for p_(jfji)

as

i 5%o_(JfJi)=wfip_(JfJi)-€COSwt<melulJim>

x [0+(JiJi)-p+(JfJf)]

' ixfifip-(iji) ‘ iAEiifp—(jijf) (269)

This result differs from Equation (257) in that here

D_(JfJi) is coupled to p+(jiji) and 0+(ijf). In a manner
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similar to that used to obtain Equation (269) the equation

of motion for 0+(jj) is

3 . - . . . .
i §Efl+(JiJi) = -ecoswt[<Jimlulme>o_(JfJi)-o_(JiJf)

x <jfm|uIJim>1

+

. . . + .
- 1A 1 l

p+(jiji) is coupled to p_(jfji) which is given in Equation

(269). Therefore Equation (269) and Equation (270) are the

equations of motion necessary to describe this system.

The relaxation times are seen to be

1 _

T2 = 39(Afifi)

.2; _ l + + + +

T1 ‘ 2(Aiiii ‘ Affii + Affff ‘ Aiii‘i‘) (271)

This is the same T1 as for the linear rotor. The 1/T2

differs from the linear rotor case in that here the minus

combination is needed. For comparison Afifi and Afifi

are given as

3f Ji K jf+j.+K

igifi = A (2K+1) [l-(-l) 1 llfiifi (272)
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and

O o 2

Jr Ji ' -
+ Jf+Ji+K (273)

A . . = z (2K+1) 1+ -1 K °
fifi K (m m :>[ ( ) 1Afifi

For Q-branch transitions in a symmetric top with inversion,

Afifi is needed for l/T2 and only terms with odd K contrib—

ute to Equation (272). For R-branch transitions in a

linear POtOP, Afifi is needed and again only terms with

K odd contribute to Equation (273).

Equations (272) and (273) suggest a way of experi-

mentally obtaining Agifi for K greater than 1. To be

concrete, Equation (273) will be considered for R-branch

transitions in linear rotors. The following comments apply

equally well to Equation (272) for Q-branch symmetric top

transitions. Re(A%ifi) is the low-power linewidth ob-

tained in zero field. For a 1 + 0 transition K = 1 only

K

for Afifi. For a 2 t 1 transition and plane—polarized

radiation K = 1, 3 for Agifi' Re A%ifi may be obtained from

a zero field lineshape experiment. This enables Agifi to

be obtained when a non—zero field lineshape experiment is

performed. For a 3 + 2 transition K = l, 3, 5. After

Re A%1fi is obtained from a zero field experiment there

are two remaining unknowns. However, there are three dif-

ferent m-component: pairs which may be probed. This en-

ables a set of linear equations to be set up from Equation

(273), with one equation for each |m|. Obtaining Agifi



163

in this way would be a useful check on the theoretical

calculations presented earlier. In the Anderson theory

K

the Agifi and Aiiii are similar in form so that indirect

comparison with the AKiiii may also be made.

B. Phase Conventions for Reduced Matrix Elements
 

In this section a discussion of conventions for re-

duced matrix elements and their relation to equations of

motion for the density matrix is presented. Equations

(&.1) and (&.2) of LM may be written for plane-polarized

radiation and non-overlapping lines as

1 3L (’ m' m) = w (' mj m)-€coswt<' ml I' m>
atp Jr Ji rip Jr i Jr uz Ji

x [0(JimJim)—0(meme)1

-j_£}2f<ifmjim|A|j%m'jim'>>p(j%m'jim') (27&)

jfjim

. 3 . . . .

1 350(JimJim) = —ecoswt[<jim|uzIme>p(mejim)

-o(Jimem)<meluz|Jim>l

.4_ Z 2 <<jimjim|AIj'm'j'm'>>p(j'm'j'm') . (275)

J'm'

Equation (27&) is identical to Equation (1) of



l6&

Schwendeman.(55) Equation (2) of Schwendeman is

8 . . . . . . . .

i §Eo(JimJim) = -€coswt<3fm|uzIJim>[o(meJim)-O(Jim3fm)1

-i. Z Z <<Jimj.mIAIj'm'j'm'>>p(j'm'j'm') (276)
j'm' 3-

Comparing Equation (276) with Equation (275) shows that

in Equation (276) the assumption

<Jim|uZlme> = <meluzlJim> (277)

has been made.

The adjoint of a tensor operator is defined as

. -o . + .
<Jm|qu|j'm'> (-l)p ‘<JmlTk_q|J'm'>

_ *
(_l)p q<j!m'lTk-q|jm>

(278)

where q is the z—component of the tensor order k. As

discussed in Brink and Satchler,(7l) there are two choices

for the parameter p; p = 0 or p = k. These choices will

be denoted convention I and II, respectively. If p = 0,

the following relations hold:

_ , *

<jm|qu|j'm'> (-1) q<J'm'|Tk_q|jm> , (279)

<J||Tkllj'> (-l>j'j'<J'IITkl|J>* : (280)
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while if p = k,

<jm|qu[j'm'> = (-l)k-q<j'm'|Tk_q|jm>* (281)

and

<JIITKI|J'> = <-1>J‘J"k<J'IITkIIi>* . (282)

In the previous four equations <j||Tk||j'> is a reduced

matrix element and obeys the same equation as fifi of

Chapter I(Equation (26)). It is noted that if Equation

(279) is adopted then Equation (280) and not Equation (28)

must be used. (Equations (280) and (282) follow from

Equations (271) and (281), respectively, by use of the

Wigner-Eckart theorem.) In the following the z-component

(i.e., q = 0) of the dipole moment will be considered.
 

It will also be assumed that <jm|uZ|j'm'> is real. Then,

Equations (279) - (282) give the following results.

Convention I (p = 0):

(Jimluloljfm> = (jfmluloljim> (283)

J_ -J __
u,, = (-1) 1 f u,, (28a)



166

Convention II (p = 1):

(jimluloljfm> = “(jfmluloljim> (285)

“if = fifi (286)

Equation (3&) of Schwendeman<55> is

_ - “J

(K) = -euficoswt21C§;,[pfi(K')-(-l)ji
r

(K')l
K pif

i.2_

atpii

K

-i i Aiikkokk(K) (287)

In Equation (287) the Cii. are defined as

J J k k' 1 K K' 1

fi _ r”

.i '

CKK' (-1) [(2K+1)(2K +1)]
1/2 {

O O (3 3f J1 J1

(288)

It is possible to derive an equation of motion for

pii(K) without choosing a convention. This is (neglecting

collisions)

a _ jf-ji fi
1 §tpii(K) - -ecoswt £1 (-1) CKK'

x [Eifpfi(x') - fifioif(x')l . (289)

If convention I is used in Equation (289), the result is
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Equation (287); i.e., the result is Equation (3&) of

(55)
Schwendeman. This establishes the phase conventions

used in that work.

Finally, it is interesting to note that the commuta-

tion relation given in Equation (15&) of Chapter III may

be used to obtain the equations of motion for the state

multipoles. This is done by recognizing that these equa-

tions are essentially just the commutators [pii(K)“fi(l)]’

[pff(K)ufi(l)] and [pif(K),ufi(l)]. These commutators may

be easily evaluated to give, respectivelv,

j _J K 1 K l< l K'

([5 Z [(2K+l)(2K'+l)]l/2(-1) f { }

K O O O JfJi 31

x pfi(K') . - (290)

' -J

/3 2 [(2K+l)(2K'+l)]l/2(-1)Jf i

K 1 K K 1 K'

K' }

O O 0

J1 3f 3f

X pfi(K') (291)

K 1 K K 1 K'}

/'3 2 [(2K+1)(2K'+1)Jl/2 [

K! O O 0 Ji 31 5f

k l K'

x o,,(K') -{ }pff(x')l . (292)

if J, J,
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The factor /3 arises from a different normalization of

reduced matrix elements.



APPENDICES



APPENDIX A

EQUIVALENCE OF EQUATIONS (&2) AND (&3)

In this appendix the equivalence between Equations (&2)

and (&3) of Chapter II is established. By using the four

equations,

it Q" J!

2'-jf-M% ‘f

<Ji‘mrl'm'l = z (-1) (2JIL+1)1/
! Y

Jfo mi -M%

x <j'2'J Mfl , (Al)

. J 8 J

i-J -M f f

[jfmf£m> = 23 (-l) f f(2J +l)1/2

J M f
f f mf m—lVIf

ijfiJfo> , (A2)

1-3 -M. Ji 1 Ji

|jimitm> 2: (-l) i 1(2J.+1)1/2

J M. l
i 1 m m-M

[jiniMi> , (A3)

and
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V I '

£"ji'M1 1/2 J k J1

<J'mm'm'l = z (-1> (am)
i 1 J'M'

i i
m! m'-M'

1 i

X (jig'JiMi' ,
(A&)

51.16f,f can be written as

 

j.-j!-j -j'-M.—M!-M —M'

= z z 2 (-l) 1 1 f f 1 1 f f[(2Ji+l)(2J!+l)

J J'J J' 1
i i f f

t t

MiMiMfo

'1 I t

1/2 31 A i j. R J.

x (2Jf+l)] (2J%+l)]

v v__ v \ _
i m Mi mi m Mi

x jifl'JiMiljikJiMi>

x <512'J1Miljf2Jfo> . (5)

*

Also, S. .S ,f can be written as
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0 -0' o -0 _ _ '- _ y

s., s - z z 2 (-l)

l i 1'1 J J'J J'
i i f f

v M!
MiMiMf”f

x [(2J +1)(2J'+l)(2J +l)(2J'+l)]l/2
i i f f

t t t 0' .

J 2 J1 Jl 2 J1 Jr 2' Jf 3f 2 J1.

X

1 '_V -1 v !_1 _
i m Mi ml m M1 f m Mf f m Mf

SJi SJf

X i'i f'f
(A6)

Use of Equations (A5) and (A6) and the fact that the scatter-

ing matrix must be diagonal in Jk and Mk allows Oi'f'if

to be written as

1

j.-j!+j -jf—j.-j'-M.-M!-M —M'—m.-m

x (-l) 1 l f 1 f 1 1 f f 1 1(2J1+1)(2Jf+1)

1/2 ¥H_3f K 31.3% K' ji 2 J

X [(2K+1)(2K'+l)]

i

.. _ V- '_ _mi mf Q mi mf Q i m Mi

3i.1' Ji 3i'1 Jr JE‘k' Jr J J *

x [8 8 -S i S f 1
i'i f'f i'i f'f

v v_ _ v 1_
i m Mi f m Mf mf m Mf

(A7)
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Finally, use of the relation

ji+jf+£+mi+mf+m 3f 1 Jr 31 1 J1 J1 jf K

2? 2 <-1)
m.m m

1 f mf m—M mi m-Mi mi-mf-O

(A8)

twice and summation over the resulting two 3-j symbols

results in Equation (U2).



APPENDIX B

CONVENTIONS FOR REDUCED MATRIX ELEMENTS

In this appendix the LM and TC conventions for reduced

matrix elements are compared.

According to Equation (U.lO) of LM, the LM convention

for reduced matrix elements is

. j'-m'
<y'j'm'|T(KQ)|me> = (—l) <y'jv||T||yj>

—m Q'm

(B1)

1

This is Equation (5.“.1) of Edmonds.(142)

The TC convention is obtained from Equation (81) of

TC as

(jimiluzljfmf> <jflmrol31m1>F'

J l J-
J +m.+l f 1

= (-1) f 1 (23144)“2 F'

f 0’m1

3 l J
j -m. i f

= (-1) i 1(29-11+1)1/2 F'

-mi 0 m (B2)

Equation (B2) differs from Equation (Bl) by the factor

(231+1)1/2.
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APPENDIX C

REDUCTION OF EQUATION (“9) TO

THE ANDERSON RESULT

This appendix shows that Equation (A9) of the text

reduces to the expression given by Anderson (Equation (U7')

of Reference (53)) and TC (Equation (88)) for 01(jijfjijf).

If the appropriate substitutions (i.e., K = l, j; = ji’ etc.

are made in Equation (A9), then

1 mf—mf «111(5r' 31 K 3r

o (ifif) = Z Z (-1) 5 m'5m .

m m' mr f imi
i i m.-Q-m m!-Q-m'

m :0. l l

‘ f

m 4n' Ji K Jf

f f .

’ Z Z (-l) <J m'lS*IJ m >
mm' f f f f

V

mfmf

x <jimi|S|jimi> . (Cl)

The first term of Equation (Cl) is Just

JiKJf JiKJf JiJfK .31ij

Z Z = XX

m m

i f- 1‘Q'm mi‘Q‘mf mi'mf‘Q mi’mf’Q
Q

= ’3 T2'KL+15 = 1 (C2)
Q

17“



175

Use in turn of the three relations,

 

a b c

= (-l)a"b'Y(2c+1)'l/2<abae|c-y> , (03)

a B Y

b+ + 1/2
<aba8|cY> = (-l) BES:+%] <cb—YBIa—a> , (CA)

and

<aba8ICY> = (-l)a+b-C<ab-d-B|c-v> , (C5)

allows the second term of (Cl) to be expressed such that

(Cl) can be written

(jflmeljimi><jflmrQljimi>

 01(ifif) = 1 — z z

(231+1)

 x <me;Is* ><JimngIJim.> (06)
mef l

which in a slightly different notation is exactly the

expression given by Anderson and Tsao and Curnutte.



APPENDIX D

DERIVATION OF ANDERSON-LIKE EXPRESSIONS FOR AK

This appendix presents the details of the Anderson—

like expansions of the cross sections given above in Equa-

tions (60)-(62) and Equations (83)-(85). The terminology

follows that of TC. The expansion T = TO + T1 + T2 +

is substituted into the product T'lT giving [(T’l)O +

(T—l)l + (T-l)2 + ...](TO + T1 + T2 + ...). The order

of the expansion of UK is determined by the sum of the sub-

scripts on the various terms of T and will be denoted as

On-

oK(ifif)

Zeroth order: let T = T0 = l and T.1 = T61 = l.

mf-m% -1 3i 3f K

o = 1 - z z z (-1) (23 +1)
0 , , 2

m.m,m m
1 3; f‘f" i—mf-Q

Ji jf K 5 6 5

X dmrmr mimi m2mé 323é
t_m!_Q

i f ~
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1 - z 2(2j2+1)-1

mim

 

f m.-m _ m.—m _q
m2Q f 1 f

J1 Jf K Jijf K

= l - Z Z

m.m
f - _ h _1Q 1 mf Q mi mf Q

+K 6 6

= 1 _ Z M = 0

Q=-K (2K+l)

. -l _ -l .

First order: let T - T0 = l and T = T1 = -1P or

-1 .

T = 1? and T = l.

The first combination (i.e., T61 = l and T1 = -ip) gives

mf—mg, -1 31 3f «ji jf

o =-222 {—1) (23 +1)
1 m m'm m' 2

i i f f .-m -Q m!-m'-Q

t -' (l f ‘ l f

X 5. ..5 ,6 ,<j.m!j'm'|-iP j m,j m >

J2J2 m2m2 mfmf 1 1 2 2 i 1 2 2

If mf = m%, as required by the factor Smfm%, the two 3-j

symbols require that m. = m. Therefore, 01 can be writtenv

1 1'
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-1 JiJf K JiJf K

01 = i E Z (2j2+l)

mimf omi-mf" i-mf-

m2Q

X (jfmf32m2'Pljimij2m2> ’

OI”

_ . . . -1 . . .
01 - 1 £:£:[(2Ji+1)(232+1)] <Jim132m2|PlJimij2m2>

‘i 2

(D1)

where

5. 6
C O m.

Ji Jf 51 ij 3131 mi 1

Z = (231+l)

m Q
f .—mf—

H—m—

has been used, By a,completely analogous procedure, the

combination T0 = LT;l = iP gives

 

. . -l . . .

- 1 m2; [(2Jf+l)(232+l)] <mefj2m2|P|mefJ2m2> . (D2)

f 2

Second Order: Let T-1 = l, T = -P 2, T.1 = -P g,

T = 1; or T" = 1?, T = -iP.
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The first combination gives

02 = - z z 2(-1) f(232+1)1
' 1

mimimfmf m. —mf— Q mi-mi-Q

m m'Q j' 1

2 2 2

X 6. 6 6 <j m'j'm'l- lP213 m j m >

3232 mfmi mimi i i 2 2 2 i i 2 2

1 _1 jiJf K j.

= 5 2323(2J2+1)

mimf m -m '1’m

i f f

m Q
2a

X (jimij2m2lp2|J1m1J2m2

l 0 O -1 Q . 2

— .+ +21§1§ [(2Jl l)(2J2 l] <Jimi32m2|P |Jimij2m2> , (D3)

1 2

Similarly, the second combination gives

1: z z[(2j +l)(2j +1)]’1<3 m ° m IP2|j m j m > (Du)
2 f 2 f £32 2 f r 2 2 °

mfm2

For T"1 = iP and T = —iP,

mf—me‘ -1 ji Jf' Ji Jf K

o = —. z z z (-1) (23 +1)

2 m m'm m' 2

i i f‘f m.—m —o mi—m%-Q
mm'Q J! l f

2 2 2

X (jrmf32m2lPlmeTJ2m2><jim132m2rp|31mij2m2> ’ (D5)
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which cannot be simplified further. This completes the

Anderson-like expansion of OK(ifif). The first order term

is pure imaginary and therefore contributes only to the

lineshift. It will not be considered further here. Com-

bination of Equations (D3)—(D5) gives Equation (60) of

Chapter II.

oK(i'i'ii)
 

In Equation (50) of Chapter II the symbol 3 in

oK(J.ijfjiJf) and in 5313', etc. should be considered to be

i

a set of quantum numbers. If j # j', the outer terms drop

out giving the purely middle term, Equation (50).

Both zeroth and first order contributions to oK(i'i'ii)

are zero in the same manner as for 0K(i'f'if).

Second Order: Let T-1 = l and T = - l 2; T = l and
2

T’1 = - %p2; and T"1 = 1P and T = -iP.

Again, the first two combinations are zero, while the last

combination gives

j -j.'+n -n' 2j'+l

_. z z z (-1) i i i 1(232+1)1 [231+111/2

miminini 1

2m2Q J2

(:r:‘ji f>mjj!-ni-Q q-ni—

' " ' V' " '°' 1 '

X <31n132m2|Pl312132m2><31m132m2|P|31m132m2> ’ (D6)



181

which is Equation (61) of Chapter II.

oK(iiii)

The zeroth order term is zero by reasoning analogous

to that used for the other cross sections.

First Order: Let T‘1 = 1 and T = -iP; T = 1 and

T'1 = 1P.

The first combination gives

 

n.-n! :1 J1 J1 X 31 51 K

01 = — z z z (—1) l 1(2j2+1)-

m,m'n.n{

l i l 1 mi-ni-Q i-ni-O

7 "

m2m2Q J2

x 6 ,6 ,6. . <j m'j'm'l-iPIj,m,j m >

nini m2m2 J2J2 i i 2 2 1 1 2 2

o o o -1 o o

= 2 + o

lerf [( J1 l)(232+1)] <JimiJ2m2lP Jimij2m2>

1 2

A similar calculation shows that the second combination

gives the negative of this result, so that the first order

term is identically zero.

Second Order: Let T‘1 = 1 and T = _ %P2

T"1 = - %P2; and T”1 = i? and T = -iP.

The first two combinations are completely analogous to the

; T = l and

corresponding part of the second order expansion of

OK(ifif) and give

1 . . -1 . 2 .

i 2
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and

1- z [(21l+1)(2 +1)J1< n (p2 > (D8
2 n,“ J2 J11321112 IJiniJ'2m2 ’ )

i 2

respectively. The third combination gives

ni-ni -l Joi J1 J.i Joi K

- z z z (-1) (232+1)

m.m'n n!

l i i 1 mi-ni— mi-ni-

V '!

m2m2Q J2

. . . V

x <JiniJ2m2|P|Jinij'2m2><jimi'j2m2lPljim.”32 (D9)

Equations (D7)-(D9) give Equation (62) of Chapter II.

The next step is to evaluate the matrix elements of the

P operator. Tsao and Curnutte have done this for 01(ifif).

The result may be immediately generalized to oK(ifif).

The outer term is

1 (Akj) 2 . 2 2__._. Z )3 '1 t

321 j'j'k k la I <Jik1KiO|JiKi> <32k 2K2O|12K2 >
i 2 1 2

1112

J- J' k
1 i l

JiJ2k1k2 K.-K. 0

Al
1 1

, 2

2 32 K2
X

(D10)

-K o
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with a similar term for jf. The middle term is

 

Ji+jf+K [(2ji+l)(2jf+1)]l/2 k1+11112

(-1) 2 z z (-1)
° v

16“ klk2J2

A1A2

x a(klk211121)a(klk2-Allgj')<JileiOIJiKi><Jfk1KrO'Jfo>

. . , 2 . . . .

<J2k2K2dJ§K2> W<JiJfJiJf;Kk1)

 

X

(2j,+1)(2j +1) 1 +1 +k +K

= 1 2 f z z (-1) 1 2 l (2jé+l)
'9

l6“ klk2A1A2J2

_ J1.31 k1 jf jflfi

x a(klk2AlAZJ)a(kkk2-Al-A2J')

Kl-Kl o Kf-Kf o

. ., 2 . .

J2321‘2 J1 JfK

X { } , (D11)

K2'K2 0 Jr 31 k1

where W(abcd;ef) is a Racah symbol, related to the 6-3

symbol by(71)

a b e

W(abcd;ef) = (-l)a+b+C+d { i

d c f
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Substitution of the matrix elements of P given in

Equation (80) into the expression for oK(i'i'ii) gives

j!+m.-m! _
1 1 1(252+l) l

J--

0K(i'i'ii) = - z z z z (—1) 1
' '

mimiklk2k1k2

' V '

n1“1A1A2A1A2
' o

m2m232Q

>
4

. 0' . O

A(J.’1k131)A(J2k232)

 

 X A<jiklji)A(j2kéjé)<jiklmixl 51m1><j2k2m2*2'j2m2>

<' !n A'l V '><' y A'I.' '>2ji+l 1/2

X J11‘1 1 131“: J2K2”2 2 J2m2 [5311?]

After using the definition of A(abc) given in Equation

(81), using Equation (82), and setting kl = ki, k2 = ké,

X1 = Xi and A2 = A5 @he validity of which is discussed in

Appendix E), the above expression may be written

J.-ji+mi-ni la(}\kj)|2

 oK(i'i'ii) = - z z z (-1) l 2

mimiklk2 l6n

n199112

15c;

231+1 1/2 . . ji ji kl 2
x EEK—:T] (2k1+1)(231+l)(2Ji+D(2Jé+l)

1 K -K. o



185

. . 2 . . . . . .

J2 32 k J1 J1 K\ 31.31 K 31.31 k1 J1 J1 k1

K2 K2 0 m1 n1 Q 1 “1 Q 1 m1 11 “1“n1 11

The product of the last four 3—J symbols and the factor

m.-n!

(-l) l 1 may be written as

 

" °' ' o o

( )Ji+ji+kl+mi-ni J1 J1 J1 J1 J1 51 k1

-l

_ v t _ _ _ -

m1 n1 Q +n1 m1 ~ m1 m1 11

J1 31 k1

x (D12)

’ni “1‘11

Now, the sum rule<71)

A b C a B B A c

X Z (_l)a+8+y+c+c

V '

QBYG B a B! Y 0' B‘Y _B a Y!

a b 01 sec GY'Y' a b c

x — 1 1 (D13)
(2c+l)

a' 8' vi A B C

is used with A = 31’ B = 3%, C = K, a = ji, b = 31’

c = kl, a = mi, 8 = mi, y = Q, a' = -mi, 8' = mi, and

y' = 11' With this rule and the observations that
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a+8+Y = mi + m1 + Q and -mi + ni + Q = O, which in turn

. 0 ' = ?_
_ = — 'implies that ni mi Q and therefore that mi ni m1 m1

+ Q, it is possible to sum Equation (D12) over mi, mi,

n n! and Q to give the right side of Equation (D13).
1’ 1’

ThisgfiveS‘the final expression for oK(i'i'ii) as Equation

(8U).

The outer term of 0K(iiii) is just twice one outer term

 

of oK(ifif). Therefore, it can be written

, 2

1 . J1 31 k

z z |a<1kJ)|2<21'+1)<21'+1)

16112 k k 5' 1 2
1 2 i K.—Ki O

1 1 1v 1
l 212

J'2 32 k2

x

K2-K2 O

The middle term of 0K(iiii) may be obtained by the same

procedure used to obtain 0K(i'i'ii). The only change is

that ji is replaced by 31'



APPENDIX E

PROOF OF RESTRICTIONS ON MULTIPOLE ORDER

OF POTENTIALS IMPOSED IN APPENDIX D

In appendix D the restrictions k1 = k1’ k2 = k5:

11 = 11 and 12 = 1% were imposed in the derivation of

0K(i'i'ii). In this appendix these restrictions are shown

to be rigorous. If the assumption is made that the above

conditions do not hold, 00(i'i'ii) may be written as

j -j!+mo—m
'

_

00(1'1'11) = _ Z Z Z X (_1) 1 l l 1(2j2+1) l

' v v

m1m1k1k21‘11‘2

' ' '

m2111211121112

X awkwam'k'j)

X A(31k131)1(31k13111(32k23é)’1(32k23é)

o . 1 1 Y 1

X <11k1m111131m1><31k1m111ljim1>

x <32k2m212ljémé><32k2m21é135mé>
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The symmetry properties of the

demand that A =A'

1 1

rewriting the above expression

and X2 = X'2.

Clebsch-Gordon coefficients

With these restrictions,

in terms of 3-j symbols

 

gives

'1 't O

-(21 +1)(2j!+1) . . J1 J1
i 2 1 Z Z aAkJaxk'J(2jé+1)

'
l6n mimik1k2 m'-m! O

m m'k'k' i 1

2 2 1 2

'

j21112

J1 J1 O J'1’311‘1111'11‘1
x (-1) [(2k1+1)(2ki+l)(2k2+1)

ml-mi O

1/2 '1 :11 11 3131 k :11 .12 k2
x (2ké+1)]

, . . . .

J2 J2 k2 31.31 k1 31.31 k1 J2 J2 k2

x

- ' -

K2-K2 O mi-mi A m1 mi 1 m2 mé 12

J2 32 k2

x

_ 1

m2 m2 12

Summation over m2 and mé then demands that k2 = ké and

gives
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O _(2j.+1)(2j’+1) j -j!+m -m!

o (i'i'ii) = l 6 2 i Z Z Z (-1) i l i l

I

1 n mimik1k2

' I

j21111112

Akj xk'j . 1/2 J1 11 O
x a a (23211)[(2k1+1)(2k1+1)1

mi-mi 0

Finally, Equation (D13) may be used to show that k1 = k1.

These results may be easily generalized to arbitrary K and

also applied to oK(iiii)m.



APPENDIX E

MATRIX ELEMENTS OF MULTIPOLE MOMENT OPERATORS

FOR ONE-ENDED AND PARITY ADAPTED SYMMETRIC

TOP EIGENFUNCTIONS

This appendix considers matrix elements of dipole and

quadrupole moments for both "one-ended" and proper sym-

metric top eigenfunctions.

Following the notation of Anderson<53> parity-adapted

symmetric top eigenfunctions are written as

(W _ W
+K _K) (Fl)11).}. = 3'— (W+K + 11)-K); 1p_ =

.1.

f2 /2

where w+K are the usual symmetric top eigenfunctions for

J = J and k = :K. Therefore,

_ 1 , 1

(M — 72 (11+ + w_), w_K 5 (1+ - w_> . (F2)

By using these relations and the fact that the dipole

moment n has odd parity, it is easy to show that

<KIUIK> = %[<+|Ul-> +<-|U|+>1 ,

<-K|u|—K> = - %[<+|u|-> + <-|p|+>]
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That is,

<KIu|K> = -<-KluI—K>. (F3)

Equation (F3) can be demonstrated directly using

<J'K'M'|Y%(6¢)|JKM>

1/2
 

[(2J+1)(2J'+1)(2j+1)
t+Mt )4," J

= (—1)K

x (FM)

with j = l and m = 0. Equations (F1) and (F2) can also

be used to show that

<+|u|-> %[<KIU|K>-<K|p|-K> + <-K|u|K> —<-K|u|—K ]

= <K|u|K> . (F5)

The last step follows from application of Equation (FA)

to obtain

<K|u|-K> = <-K|u|K> = O

and
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<K|u|K>==-<-KIuI—K> . (F6)

Equation (F5) shows that the matrix elements of the dipole

moment operator may be taken using either "one-ended" or

proper eigenfunctions.

By using Equations (F1) and (F2) and the fact that the

quadrupole moment Q has even parity, it is easy to show

that

<K|Q|K> <—KIQI-K> (F7)

and

<+|Ql+> %[<+K‘QI+K> + <-KIQl-K> +<+KIQI-K> + <—K|Q|+K>].

Equation (FA) may be used with j = 2 to show that

<+|Q|+> = <+K|Q|+K> (F8)



APPENDIX C

SUMMARY OF RESONANCE FUNCTIONS AND

HARD—SPHERE CUTOFF CALCULATIONS

This appendix will give explicit expressions for the

alkj factors occurring in the expressions for oK(i'f'if)

in Chapter II. Comparison in turn of Equation (108) of

TC with Equations (133), (150) and (161) of TC leads to

the following identifications for dipole—dipole, dipole-

quadrupole and quadrupole-quadrupole interactions,

respectively:

1 Ak' 2

———:la JI %(2)2 f k), - ; (G1)

 

32112 = “5 “V b6 5:3 5 (G2)

and

. Q Q
1 AkJ 2 1 2 2 1_— a = (__) f (k) , (2-9, . (G3)

32-12' I 115 “V b8 3

wb
In the above equations k-—77, where w is an internal state

energy difference, and b is the impact parameter. The

193



19A

functions fl(k), f2(k) and f3(k) are defined as

1 A 2 2 2

f1(k) E k [K2(k) + 1Kl(k) + 3K0(k)]

12(1) 61 k2[K§(k) + 6K§(k) + 15K§<k> + 10K§(k)1

1 8 2 2 2 2
f3(k) — 236E k [Ku(k) + 8K3(k) + 28K2(k) + 56Kl(k) +

2

35K0<k)1

II

|
.
_
J

fn(0) 1’1 = 1,233

As regards the middle terms, TC show that

A +1

2 (-1) 1 2

1112 1112

Ak 2

|a1| .

so that the above equations may also be used to compute

middle terms of oK(i'f'if).

The hard sphere cutoff is determined by the condition

UK (b ) = l

32 0

That is, the hard sphere cutoff is that value of b (de—

noted bo) such that a? is one. Integration of a? (b)

2 2
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over b gives

K _ 2 m K

(b)db

J2 0 J2

If, (for simplicity) only a u—p potential is considered

the integral to be evaluated is

2 2 2
4) bEK2 + uKl + 3K0]db

O

_ l 2 2 2 2

2 boEK3K1 + “K2Ko “ K2 ' K1 ' 3K03k=k0

The notation [ Jk-k indicates that the K functions are

_ O wb

to be evaluated at k = k0 = —Vg . As a result of these

integrations a? may be written as

2

K _ 2 1 1"
oj — nb0{1 + T[,,Z.,Ali(3132)F1(ko) +

2 b0 J132

+ z .A1f(jfjé)Fl(kO) + 2: Alm(jé)Fl(kO)]}.

3%35 Jé

The above equation is specific for a? (ifif) and a u-u

2

potential. Similar expressions for a? (ifi'f') are easily

2

obtained from expressions in Chapter II. With the follow-

ing expressions for Fn(k) the A coefficients are easily

obtained.
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_ 1 u 2 2 2 ,
Fl(k) — E k [K3Kl + uK2KO - K2-Kl - 3K0], u—u

- 1 6 2 2
F2(k) — 6E k [KuK2 + 6K3Kl + 15K2KO - K3 — 6K2

— sxi - lOKS]; u-Q

Q-u

_ 1. 8
F3(k) - 5355 k [K5K3 + 8KuK2 + 28K3Kl + 56K2K0

2 , 2 2 2 2 .
- Ku - 8K3 - 28K2 — 21Kl - 35KO], Q-Q

Fl(O) = l

_ 1

F2(O) ‘ 2

= l
F3(O) 3

The values Of fn(O) and Fn(O) are necessary when the

internal energy state differences are zero, i.e., m = O.

This is the case in the sudden approximation.



APPENDIX H

DETERMINATION OF THE SUDDEN APPROXIMATION B0

The objective of this appendix is to obtain the cor—

rect A function for the relaxation coefficients Agfif

and AEiii' By using Equations (20) and (21) of Chapter

0

IV 23A.,.,.. can be written as

j' J J JJ

. 2

O 2nulu2) (2.,+1) J J, A

f." J'J'J'J' “(T 5%, J Ax (H1)
0 O O

(2flulu2) A
— — hv A

27m 11 2

— hvl 2) §r (H2)

Also,

0 O O

z A.,.,. = L....-+ z A ,.,.. . (H3)
J. J J JJ JJJJ j.¢J J J JJ

The symbol L0 is used instead of A9. . because the

3333 JJJJ

term in the sum for j = j' is not what has been defined

0 0

l as ..° i.e. L.... t ortional to theprevious y AJJJJ’ , JJJJ is no prop
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total collisional rate of transfer out of level 3.

From the discussion of A3 of Chapter I, the follow-
i'i'ii

ing relation must hold:

0 O

A.... = — Z A ,.,.. (HA)

JJJJ j'fij J J JJ

Therefore,

2: A0 = +LO - A0 = —c "2 (H5)
j' j'J'JJ JJJJ JJJJ 7T ’

and

2

O 0 H

A. .. = L.. . + C ——

JJJJ JJJJ 8

2

J J A 2

= CE-(2j+l) AA + %;] . (H6)

0 O O

In the above

0 = 2““1“2

hv °

Considering the case J = O in Equation (I6) gives

2

O n

A0000 ‘ CE-AO + If]

2

7T
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Therefore, the quantity B of Chapter V is

O

2

B0 = %E7 . (H8)

In the above argument only the case for K = O and linear

rotors was considered. However, the argument is valid for

any tensor order and for symmetric tops as well, because

the A and B0 functions do not depend on these factors.
A



APPENDIX I

ANALYTICAL EVALUATION OF IMPACT PARAMETER

INTEGRATION IN THE ENERGY CORRECTION TO

THE SUDDEN APPROXIMATION

The integral

s—l
g(s) = 4? X Ku(ax)Kv(ax)dx

is given in reference (158) as

(s) = 28-3 3’5 rtl<s+v+u)1r[l(s- +v)3r[l(s+u—v>1
g f(s) 2 2 u 2

x r[%<s-u-v>1 . (II)

The first integral in Equation (251) becomes

4? f(k)db = % if k“[x§ + ”Ki + 3Kg]db

u) A l °° )4 2 u) 0° U 2 m

= (V) [E f0 b K2(;,-b)db + [O b Kl(§l_—b)db

A 2 w3 00

+ H L, b KO 513)de

Repeated use of Equation (Il) leads to
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= (a?) Q) <§>3 mgn“

In the above the following relations concerning gamma

functions have been used.

T(p+l) p!, p integer

f(x+l) XI‘(x)
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