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ABSTRACT
MODELING, DESIGN AND CONTROL OF GLIDING ROBOTIC FISH
By

Feitian Zhang

Autonomous underwater robots have been studied by resgarfdr the past half century. In
particular, for the past two decades, due to the increagntpdd for environmental sustainability,
significant attention has been paid to aquatic environnhembaitoring using autonomous under-
water robots. In this dissertation, a new type of underwateots, gliding robotic fish, is proposed
for mobile sensing in versatile aquatic environments. Sagcbbot combines buoyancy-driven
gliding and fin-actuated swimming, inspired by underwatelags and robotic fish, to realize both
energy-efficient locomotion and high maneuverability. Tgrototypes, a preliminary miniature
underwater glider and a fully functioning gliding robotistii are presented. The actuation system
and the sensing system are introduced. Dynamic model oflanglrobotic fish is derived by in-
tegrating the dynamics of miniature underwater glider dedimfluence of an actively-controlled
tail. Hydrodynamic model is established where hydrodyrmaimices and moments are dependent
on the angle of attack and the sideslip angle. Using the tqabrof computational fluid dynamics
(CFD) water-tunnel simulation is carried out for evalugtihe hydrodynamic coefficients. Scaling
analysis is provided to shed light on the dimension design.

Two operational modes of gliding robotic fish, steady glglin the sagittal plane and tail-
enabled spiraling in the three-dimensional space, araisistl. Steady-state equations for both
motions are derived and solved numerically. In particuiar,spiral motion, recursive Newton’s
method is adopted and the region of convergence for thisadathnumerically examined. The

local asymptotic stability of the computed equilibria isadsgished through checking the Jacobian



matrix, and the basins of attraction are further numenaatplored. Simulation and experiments
are conducted to validate steady-state models and caddugjuilibria for both motions.

Tail-enabled feedback control strategies are studied th bagittal-plane glide stabilization
and three-dimensional heading maintenance. A passias$gdbcontroller and a sliding mode con-
troller are designed and tested in experiments for thoseprablems, respectively. In sagittal-
plane glide stabilization, a nonlinear observer is degigaad implemented to estimate velocity-
related states. A three-dimensional curve tracking prabgealso discussed and a two-degree-of-
freedom control scheme is proposed by integrating statierse mapping antl, control tech-
nique. The differential geometric features, such as theidorand curvature, are explored for
planning the trajectory.

Finally, the field tests with the lab-developed prototypeylding robotic fish are conducted
in the Kalamazoo River, Michigan and the Wintergreen Lakehigan for detecting oil spill and
sampling harmful algal blooms, respectively. Both glidargd spiraling motions are tested in the
experiments as well as the fish-like swimming. The field tesults are presented to show the

effectiveness of the designed robot in environmental nooinig tasks.
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Chapter 1

Introduction

Gliding robotic fish, a new type of underwater robots, is jmsgd for monitoring aquatic environ-
ment in this dissertation. Such a robot combines the adgastaf both underwater gliders and
robotic fish, and features long operation duration and higheunverability.

In this introduction, | will first discuss the existing mettwin aquatic environmental moni-
toring, and conduct a brief literature review on two impattanderwater robots, the underwater
glider and robotic fish. Afterwards, gliding robotic fish idrioduced as a new type of underwater
robots, inspired by the above two well-known classes of tRbbocomotion mechanism and ad-
vantages of the gliding robotic fish are briefly discussecde Jtnucture of this dissertation is then

clarified. At last, an overview of the contributions is pnetsal.

1.1 Technology in Aquatic Environmental Monitoring

There is a growing interest in monitoring aquatic environtsgdue to the emerging problems
of environmental pollution and expanding demand for sastale development. Such pollutions
involve various types contaminants, including industwalkte, chemicals, and bacteria, etc. The
pollution could happen in different aquatic environmesisch as ponds, rivers, lakes, and even
the ocean. Due to ongoing industrialization and expandxpdpeation of aquatic resources, water
pollution problems have become increasingly frequent andre, which has drawn a global atten-

tion [5—7]. In particular, the massive 2010 oil spill in thelGof Mexico has brought world-wide



attention and attracted intensive research into this wigsae. The cleanup and recovery will take
many years and millions of dollars. Throughout this procesmitoring the water quality and de-
tecting the remaining contaminants in the water are an @abtask [8, 9]. Similar contamination
incidents include the 2010 oil spill in Kalamazoo River, Kigan, [10], 2010 Xingang Port oil
spill in China Yellow Sea [11], 2011 Nigeria oil spill [12]nd 2012 Arthur Kill storage tank spill
in New Jersey [13].

Throughout the development in technology for aquatic emrirental monitoring, a variety of
different water sampling methods have been studied andagmghl Manual sampling, via boat/-
ship or with handheld devices, is still a common practicedgnadic environmental monitoring.
This approach is labor-intensive and has difficulty capiyirilynamic and spatially distributed
phenomena of interest. An alternative is in-situ sensirtp fixed or buoyed/moored sensors [14],
including vertical profilers that can move up and down alonwgager column [15-19]. However,
since buoyed sensors have little or no freedom to move aroucwrluld take a prohibitive number
of them to capture spatially inhomogeneous informatione Pphst decade or so has seen great
progress in the use of robotic technology in aquatic enwviremtal sensing [20—36]. Predominant
examples of these technologies include remotely operatbdties (ROVS) [20, 24, 27, 33], au-
tonomous surface vehicles (ASVs) [22, 23, 25, 31, 35], gteppowered autonomous underwater
vehicles (AUVSs) [24, 30, 34, 36—39], and underwater glidérs3]. ROVs typically have limited
spatial access and autonomy due to their tethered natuiks thbk sampling space of ASVs is
limited to the two-dimensional (2D) water surface. AUVs,tbe other hand, can operate freely
and autonomously in the 3D water body, but their high prigs taipward of $150K per vehicle)
presents a huge barrier to their deployment in large numbensigh-resolution spatiotemporal
coverage. Besides, there has been a growing interest im&pared underwater robots [40—-46],

such as robotic fish, which holds great potential in wide i@pgibn in water monitoring. The



shortcoming of this kind of robots is the limited operatibdaration and thus area coverage, due

to the energy constraints and the requirement of constamtaan for propulsion..

1.2 Gliding Robotic Fish

1.2.1 Design Concept

The design concept of a gliding robotic fish comes from eneffjgient underwater gliders and
highly-maneuverable robotic fish.

Underwater seagliders are known for their great energgieficy and long-duration operation
in oceanographic applications [47]. An underwater glidelizes its buoyancy and gravity to
enable motion without any additional propulsion, and adjits center of gravity to achieve certain
attitude, which results in glide and thus horizontal tra&hce energy is needed only for buoyancy
and center-of-gravity adjustment when switching the gldefile, underwater gliders are very
energy-efficient, as proven by the great success of the iSeagl], Spray [2] and Slocum [3]
(Fig. 1.1). The maneuverability of underwater gliders, beer, is quite limited. The large size
(1- 2 m long), heavy weight (50 kg and above), and high cost¢éithese vehicles also impede
their adoption in the application of networked sensing angersatile environments like ponds and
inland lakes.

On the other hand, over the past two decades, there has lgggicant interest in developing
robots that propel and maneuver themselves like real fistOdien calledrobotic fish(Fig. 1.2),
they accomplish swimming by deforming the body and fin-likp@ndages [48—68]. In many
designs, a fish-like flapping tail is used to provide proparidorce and a biased tail angle is applied
to realize turning. Due to the similarity to the real fish ahd fact that the rotation of the tail fin

is usually enabled by a motor that is easy to control and fasesponse, robotic fish typically
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(b)

(c)
Figure 1.1: Classic underwater gliders. (a) Seaglider([f)]Spray [2]; (c) Slocum [3].



(b)

Figure 1.2: Examples of robotic fish. (a) From Mechatronies@arch laboratory at Massachusetts
Institute of Technology [4]; (b) From Smart Microsystemslat Michigan State University.



have high maneuverability (e.g., small turning radius)wédeer, as the forward propelling force is
generated from the flapping motion of the fins, such robotsiregonstant actuation for swimming
and cannot work for extended periods of time without battecharge.

In this dissertation, inspired by the design and merits @hlhmderwater gliders and robotic
fish, a new type of underwater robotgiding robotic fish is proposed. Gliding robotic fish com-
bines both mechanisms of gliding and swimming and featunesyy efficiency and high maneu-
verability at the same time. Such a robot would realize mbigs docomotion through gliding like
underwater gliders, by utilizing its buoyancy and graviyenhable motion without any additional
propulsion, and adjusting its center of gravity to achiewegdain attitude. It would use actively
controlled fins to achieve high maneuverability, duringitng and orientation maintenance. Of
course, fins can also provide additional propulsive powenduocomotion, if needed.

The dimension of the gliding robotic fish is supposed to bellemidan traditional underwater
gliders, and one use of such a robot is to provide a mobilarsgipsatform in relatively shallow
waters, such as lakes, rivers, and even ponds, where ldigersgare not quite suitable due to
their large size and high cost. The small size and low coslidiihg robotic fish also facilitate the

research of networked sensing and operative control.

1.2.2 Motion and Control

For gliding robotic fish, there could be various interestimgtions generated by integrating the
gliding and swimming mechanisms. In this dissertation, taain steady motion profiles are dis-
cussed as the regular working patterns for sampling watee.i©steady-state gliding in the sagittal
plane, and the other is steady-state spiraling in the tireensional (3D) space.

The steady-state gliding is also the common operating mod&dditional underwater glid-

ers, used for sampling the water field 1.3. In the zig-zagettayy, the gliding robotic fish only
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Figure 1.3: Schematics of working pattern “gliding in stajiplane”.



Figure 1.4: Schematics of working pattern “spiraling in 3iase”.



consumes energy during the transition between descendihgstending. In the phase of steady
glide, balances of forces and moments are achieved. If vegprdt the motion intuitively, the
net buoyancy of the robot enables a propelling force to @ract the hydrodynamic resistance.
Zero energy consumption in the steady gliding period makegliding robotic fish highly energy-
efficient.

The other motion, steady spiral in the three-dimentionatspis proposed as a novel method
of sampling a water column for gliding robotic fish 1.4. A watelumn is a conceptual narrow
volume (like a narrow cylinder) of water stretching vertigérom the surface to the bottom. Water
column sampling is a routine surveying method in environtalestudies to evaluate the stratifica-
tion or mixing of water layers [69]. This motion is achieveglibcorporating the steady gliding
with a deflected fish-like tail. The non-zero angled tail fillwitroduce a turning moment to the
steady gliding robot and lead to a 3D spiraling motion. Wit &ctively-controlled tail, the gliding
robotic fish is capable of spiral motions with tight turniraglius. If needed, a gradually changing
tail angle will form spiral-in or spiral-out 3D trajectoge

For most of its operation time, a gliding robotic fish holdsreget steady gliding path without
any energy consumption. The gliding angle is calculatedrgedeployment so that the robot will
follow a designed trajectory, which either minimizes thergy cost, or maximizes the field map-
ping capability [70]. However, a gliding robot fish is sulfjgx many non-negligible uncertainties
from the aquatic environment (e.g. current disturbanchj¢kvresults in additional energy cost be-
cause counteracting the deviation from the preset coucgeres re-calibration and control effort
to keep the robot on or bring it back to the designed path [Z9] [72]. The stability property of
the steady gliding path and fast convergence to the pativeayamportant for the gliding robotic
fish to reduce the energy expenditure on path correction. stdiglization involves both sagittal

and lateral dynamics, corresponding to sagittal and letisaurbances.



For the gliding angle stabilization in the sagittal plafeere are several related results in liter-
ature for underwater gliders. Most of them use the net bunyand internal mass displacement
as control variables. For instance, in [73] and [74] the ardlpresented an LQR (linear quadratic
regulator) controller and a PID controller, respectivelyt both based on a linearized model. Al-
though in the LQR method energy is used as a cost functiomppeoach does not consider the
additional cost for the course correction and guidance.hB&R and PID controller can not
fully address the nonlinear gliding characteristics. Nuwgdr controllers involving torque control
and buoyancy control are proposed by Bhatta [75], but thasthaals ignore the dynamics of the
control surface and also require full state feedback forcthr@roller implementation, which will
increase the complexity of the software and hardware. A upap-based control design is re-
ported in [76]; however, for the elevator control, it onlyatkewith a fixed-value control input to
achieve a certain equilibrium gliding path. In this disagdn, a novel, passivity-based nonlinear
controller is proposed for the sagittal-plane stabil@atroblem using only a whale-like tail fin of
the gliding robotic fish. The singular perturbation resirten [76] are utilized to reduce the full-
order system to a slow-mode second-order system. A pasbiaged controller is designed based
on the approximated reduced system, and the controllepigeaiback into the original full-order
system. Through checking the Jacobian matrix, the lochllgteof the full-order closed-loop sys-
tem is established given sufficient time-scale separakarthermore, a nonlinear observer is also
proposed to estimate velocity-related system states,hndrie used in controller implementation.
Both open-loop and closed-loop experiments are carriedoolliustrate the effectiveness of the
designed controller and observer.

For the lateral motion, attitude stabilization is of greaportance to underwater robots, which
are subjected to various environmental disturbances. eThas been extensive work on pitch

motion stabilization in the longitudinal plane for undeteragliders as discussed in the previous
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paragraph, where typically the absence of lateral moti@ssimed [73, 76—78]. There has also
been some limited research into three-dimensional glichiwglving lateral motion, most of which
focuses on the steady-state turning or spiraling [79-8jvéVer, little work has been reported on
the yaw angle stabilization where ambient flow disturbawoesd easily push the robot away from
its desired heading orientation. In this dissertation,riiative degree of the system dynamics is
first identified and error dynamics is then derived based esyltem normal form. A sliding mode
controller is designed for the error dynamics to achievieudie stabilization. Both simulation and
experiments are conducted to evaluate the effectivendbe groposed control scheme.

Three-dimensional curve tracking is also crucial for umdger robots, including in particu-
lar, gliding robotic fish. For example, it is critical in salmg water columns, seeking pollutant
sources, and mapping the whole aquatic environment. Rreaisking control is very challenging
due to dynamic nonlinearity and strong coupling among mldtcontrol inputs. As stated previ-
ously, there has been some limited literature that coveegttimensional gliding involving lateral
motion, most of which focuses on the steady-state turnirgpwaling [79—81]. However, it is still
an unexplored area of three-dimensional curve trackingrabfor buoyancy-driven underwater
robots. In this dissertation, | propose a novel two degifeieeedom (DOF) control strategy for
gliding robotic fish to track three-dimensional curves lobase the differential geometric features
of steady spirals. The control strategy includes a feeddoaveontroller that is designed through
inverse mapping of steady spiral motion, and a feedbackalert designed using the robudt,
framework based on local, linearized dynamics. The effengss of the proposed 2-DOF control
scheme is demonstrated in simulation, where PI control goah-boop inverse mapping control
are also conducted for the purpose of comparison.

There are a number of challenges in aquatic environmentaltoring, especially in field ex-

periments using autonomous underwater robots. Glidingtrolfish is proposed to carry out the

11



water sampling work with great energy efficiency, high mameability and adaptability to versa-
tile environments. As the final test of the design conceptrahdt development, the gliding robotic
fish prototype is taken to Kalamazoo River, Michigan, to detel spill, and Wintergreen Lake,
Michigan, to sample harmful algal blooms. The external gvedyte environmental sensor reads
the field data of interest and the on-board micro-contraésrds back the information wirelessly
to the base station. The GPS-based positioning systenitdées the water sampling task with
precise location information, where the motions of swimgnigliding and spiraling are tested and
integrated. The field test results are presented to denad@gire functionality and usefulness of
the proposed gliding robotic fish as a novel platform for s@\he real-world problem of aquatic

environmental monitoring.

1.3 Overview of Contributions

The contributions of this research reside mainly on dynaraitalysis and tail-enabled control of
a new type of underwater robot, the gliding robotic fish. Thtads are as follows.

First, the design idea of combining buoyancy-driven prejaul and tail-enabled maneuverabil-
ity is novel. The advantages of long operation duration aghl maneuverability from underwater
gliders and robotic fish, make the gliding robotic fish a dal@aunderwater platform in shallow
water environmental sensing.

Second, the discussion about the two water-sampling workatterns, the sagittal-plane glide
and three-dimensional spiral, provides insights of thegynefficient feature of gliding robotic
fish. Particularly, the tail-enabled steady spiral, is aehawotion proposed for sampling water
columns, and potential path planning tasks. The turniniyisacbuld be as tight as 0.5 m, providing

much higher sampling resolution compared to the 30-40 mugaftom traditional underwater
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gliders.

Third, the steady glide stabilization is usually realizédotigh buoyancy control or mass-
distribution control in literature. In this dissertation actively-control tail fin is adopted as the
control input to stabilize the steady gliding motion. Foe first time in literature of the sagittal-
plane motion of buoyancy-driven underwater robots, a pagdiased feedback controller is de-
signed to obtain a fast convergence speed with partial &atback, which is convenient for
implementation. For the heading maintenance in laterahnyes, a sliding mode controller is
proposed with only a requirement on the yaw angle feedbdoknration. Moreover, both simu-
lation and experimental results are presented to provisighhinto the stabilization problem for
buoyancy-driven underwater robots.

Fourth, three-dimensional curve tracking for buoyandyedr underwater robots is very chal-
lenging and little relevant work could be found. In this @gation, A novel two-degree-of-
freedom control strategy, which consists of a feedforwarttioller designed through inverse map-
ping of steady spiral motion, and a feedback controllerglesil using the robust. framework
based on local, linearized dynamics, is proposed for theedwacking problem using the differen-
tial geometric features of steady spirals. The study of #wnwetric features of the spiral motion,
such as torsion and curvature, also shows a promising mpkaoming and navigation method.

Finally, the successful development of gliding robotic fsbtotype and the field tests in the
Kalamazoo River and the Wintergreen Lake, proves the carafepe design, and demonstrates
the functions of the robot as a platform for aquatic envirental monitoring. This leads to more
research directions, such as adaptive sampling, netwarettol and cooperative control with
multiple agents, and it opens the door to further collabhonatith biologists and sociologists to

solve bigger real-world water-pollution problems.
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Chapter 2

Implementation of Gliding Robotic Fish

During the research of the gliding robotic fish, two protagmave been developed. The first
one is a miniature underwater glider, reported in [82, 8Gjltlbo study the gliding component of
gliding robotic fish and help to evaluate the steady glide ehotthe sagittal plane (Fig. 2.1). The
second one is a fully functioning gliding robotic fish proto¢, named “Grace” (Fig. 2.2) [84]. In
this section, I will focus on the implementation of the ghdirobotic fish “Grace”, which naturally

explains the case for the miniature underwater glider.

2.1 Actuation System

Integrating an actively-controlled tail into the miniagunderwater glider, the research team has
developed a fully functioning gliding robotic fish, namedr&ée”. The robot has three actuation
systems for locomotion, including the buoyancy system,niass distribution system, and the
actively-controlled tail fin system.

In the buoyancy system, water is pumped in and out of the iboidy to change the net
buoyancy. When the robot is heavier than the water it digglgnegatively buoyant), the robot
will descend (Fig. 2.2); and when it is lighter than the wattelisplaces (positively buoyant), the
robot will ascend. The pumping system of “Grace” is enabhed hinear actuator with integrated
feedback, which allows the precise control of water voluraspite the pressure differences at

different depths, while a DC pump is used for the miniaturéarwater glider prototype.
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Figure 2.1: Protoype I, the miniature underwater gliderrapeg in the swimming pool.

Figure 2.2: Gliding robotic fish “Grace” gliding in the largedoor tank in the Smart Microsystems
Lab.
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Figure 2.3: Gliding Rototic fish “Grace” swimming in Kalangazriver.

For the mass distribution system, a linear actuator is us@dish a mass (battery pack) back
and forth along a guiding rail to change the center of the nfasshe purpose of manipulating the
pitch angle, in both miniature underwater glider and “Gface

The fish-like tail fin system in “Grace” is driven by a servo wothrough a chain transmis-
sion. In three-dimensional gliding, a deflected tail can eduto control the turning motion and
heading orientation. Like a real fish, the robot can also fieail to realize the swimming motion

(Fig. 2.3).

2.2 Gliding Robotic Fish Components

A schematic of selected components for the gliding robatit 6 shown in Fig. 2.4. In the figure,
the components of the three actuation systems can be igentBesides, there are two physically
separated printed circuit boards (PCBs). One isctne?CB containing the micro-controller and

navigational sensors, such as gyroscopes, acceleronagtiers digital compass; the other is the
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Figure 2.4: The schematic of internal configuration for igigdrobotic fish.

driver PCB containing regulators and driver components for the actgaincluding the linear
actuators and the servo motor. A pressure sensor is usedasumeethe depth of the current
location of the robot, with one port connecting to the ambveaster.

There are some other components equipped on the shell ofitlreggobotic fish, including
the wireless communication antenna, environmental seresmdl the GPS receiver, as shown in
Fig. 2.5. “Grace” is equipped with a crude oil sensor and apemature sensor, and has been
tested in the Kalamazoo River, Michigan, to sample the aitemtration near the site of a 2010 oil
spill (Fig. 2.3). The sensor can be easily swapped to meashes environmental processes, such
as chlorophyll, harmful algae, turbidity, rhodamine. ThBSGunit is used to measure the global
position and provide the universal time, when the glidinigatic fish surfaces. Table 2.1 lists the

details of the used components mentioned above.
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Figure 2.5: Components on the outside of prototype “Grace”.

Table 2.1: Selected components used in “Grace”.

Component name

Component model

1 Micro-controller Microchip dsPIC6014A

2 Battery Batteryspace 18.5V Polymer-Li-lon battery pack
3 Linear actuator Firgelli L16-140-63-12-P

4  Pump 1 (miniature underwater glider) Flight Works ModedG0

5 Pump 2 (“Grace”) Servocity 180 Ibs thrust linear actuator

6 Servo motor Hitec Servo HS-7980TH

7 Pressure sensor Honeywell 40PC100G2A

8 GPS Garmin GPS 18x LVC

9 Gyro ST LPY503AL

10 Accelerometer+Compass ST LSM303DLH

11 Wireless module XBee Pro 900 XSC RPSMA

12 Wireless antenna 900MHz Duck Antenna RP-SMA

13 Crude oil sensor Turner Designs Cyclops-7 Crude Oil Senso
14 Temperature sensor TMP36
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2.3 Mechanical Design

The mechanical structure of the robot is designed consigehie requirements of compactness,
low cost, and energy efficiency, and the limitation of hawiad¢nouse all necessary electrical com-
ponents. The outer shell is designed to have a fish-like shéthea streamline profile for the
purpose of energy efficiency. The pair of wings is designeg@rtivide enough hydrodynamic
forces and moments for a satisfactory glide. A guide raileisigned to help push the battery pack
using the linear actuator to change the mass distribution.

SolidWorks is used to draw schematics of most of the mechbn@mmponents. A computer
numerical control (CNC) machine is used to manufacturesparthe system, such as the mold of
the shell. 3D printer is used to print other parts of the systuch as the tail compartment.

The robot shell is made of carbon-fiber, which is strong ehotagsustain the underwater
pressure. The tail compartment is made of composite polyi@eBD printing, which enables
rapid prototyping. The guide rail is made of stainless ste#lich is rigid enough to provide a
straight traveling path for the battery pack.

Some physical parameters of “Grace” are as the follows. tteigy65 cm (body) / 90 cm
(total); width is 15 cm (body) / 75 cm (with wings); and heighfi8 cm (body) / 34 cm (including
tail). Here, the term “total” includes the body, the tailetantenna and the environmental sensor.
The wings are in a trapezoidal shape with a wingspan of 30 e¢re ¢éade) and an aspect ratio of
1.45. The weight is 9 kg in total. The tail with the servo compeent weighs 0.8 kg itself.

The talil is special in the design in that it is the only movirggtpseen from the outside, so it
must be designed properly to be waterproof, robust, andhieliwith respect to different flapping
amplitude and frequency. The tail flapping motion is transid from the rotation of a servo by a

chain system, in which two identical gears are used as shoWwiyi 2.6.
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Figure 2.7: Top cap interface of Grace to the outside whercoapred.
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Figure 2.8: Top cap interface of Grace to the outside wheropap.

The robot must be waterproofed for all electrical/elecc@omponents. In “Grace”, all elec-
trical/electronic components are placed in the main badpalticular, the system switch, charging
port, and programming port are located under the top capuAgdr-like cap covered by rubber is
used to seal the top interface, with two screw bolts to enth@sealing, as shown in Figs. 2.7 and
2.8.

In addition, the tail is detachable from the main body, eimgols to replace the tail if some-
thing goes wrong. The detachable tail enforces the reiiglof the sealing of the main body with
double O-rings. Furthermore, the tail can be configured dldeways (like a shark) or up and

down (like a whale).
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Chapter 3

Dynamic Model of Gliding Robotic Fish

3.1 Full Dynamic Model

A gliding robotic fish is a hybrid of a miniature underwateidgk and a robotic fish, and its mod-
eling will need to incorporate the effects of both. The taijbding robotic fish is used to control
the lateral motion for underwater gliding, and used to pkrape robot for swimming. We treat
it as a control surface and a source for external forces andents. The robot is modeled as a
rigid-body system, including an internal movable mass émter-of-mass control and a water tank
for buoyancy adjustment [73,82, 83]. On the other hand, dilkected tail provides external thrust
force and side force as well as the yaw moment.

Fig. 3.1 shows the mass distribution within the robot. Tlaiehary body massi (excluding
the movable mass) has three components: hull mgsg@ssumed to be uniformly distributed),
point masamy accounting for nonuniform hull mass distribution with desgementry with re-
spect to the geometry center (GC), and ballast mas@vater in the tank) at the GC, which is a
reasonable simplification since the effect on the centerafity caused by the water in the tank
is negligible compared with the effect from the movable maBse movable massy, which is
located atr p with respect to the GC, provides a moment to the robot. Théamaif the movable
mass is restricted to the longitudinal axis. The robot higpthces a volume of fluid of mass.
Let my = ms+ m— m represents the excess mass (negative net buoyancy). Toiewisink if

mp > 0 and ascend 1ing < O.
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Figure 3.1: The mass distribution of the gliding robotic fisthle view).
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Figure 3.2: lllustration of the reference frame and hydrayic forces.
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The relevant coordinate reference frames are defined foipthe standard convention. The
body-fixed reference frame, denoted@s,y,z, and shown in Fig. 3.2, has its origld at the
geometry center, so the origin will be the point of applicatfor the buoyancy force. Th@x,
axis is along the body’s longitudinal axis pointing to thetigtheOz, axis is perpendicular t@x,
axis in the sagittal plane of the robot pointing downwardi @y, axis is automatically formed by
the right-hand orthonormal principle. In the inertial frakixyz Az axis is along gravity direction,
andAx/Ay are defined in the horizontal plane, while the origiis a fixed point in space.

As commonly used in the literaturR represents the rotation matrix from the body-fixed ref-
erence frame to the inertial framR is parameterized by three Euler angles: the roll agglthe

pitch angle@, and the yaw angley. Here

cOce sEsOcy —cesy  cesOcy + spsy
R=| cOsy cocy+spsdsy —spcy + cepsosy (3.1)
—s6 spch cqco
T T
wheres(-) is short for sirg-) andc for cog-). Letvy = { Vi Vo V3 } andwy = [ W W W3 }
represent the translational velocity and angular velpogtgpectively, expressed in the body-fixed
frame. The subscrigh indicates that the vector is expressed in the body-fixed draand this
notation is applied throughout this dissertation.

We assume that the tail fin is rigid and pivots at the junctietween the body and the tail about
the Oz, axis. The tail induces an external thrust foFgeon the robot when it flaps. There are also
other hydrodynamic forces and moments generated becatise i@lative movement between the
tail and the surrounding water, like the side force and thve yepment.

By extending the previous modeling work for underwater gigl[81, 82], we obtain the dy-
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namic model for a gliding robotic fish with an actively-casited tail fin as the following,

bi = Rw (3.2)
R = Ry (3.3)
Vp = M_1<va><wb+rngTk+Fext> (3.4)

(:Ob - J1 (—Jwb+Jwb X Wp+ MVp X Vp+ Text

Magrw X (RT k) +1mgrp <RT k)) (3.5)

HereM = (ms+ m)l + M¢ = diag{my,mp,mg}, wherel is the 3x 3 identity matrix, andM¢

is the added-mass matrix, which can be calculated via stapry [85]. J = diag{Jy,Jo,J3} IS
the sum of the inertia matrix due to the stationary massidigion and the added inertia matrix
in water. In additionk is the unit vector along thAz direction in the inertial framery is a
constant vector, anch is the controllable movable mass position vector, whichdresdegree of
freedom in theDx, direction,rp = [ o1 0 0 r. b = [ Xy Zr is the position vector of
the robot in the inertial reference framm@y, is the skew-symmetric matrix correspondingeag.
Fext stands for all external forces: the external thrust fdfgenduced by tail flapping, and the
external hydrodynamic forces (lift force, drag force andesiorce) acting on the gliding robotic
fish body, expressed in the body-fixed frame. Finallgy: is the total hydrodynamic moment

caused by ext.
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3.2 Hydrodynamic Model

3.2.1 Hydrodynamic Equations

In order to model the hydrodynamics, we first introduce thieaity reference frameéx,yyzy.
Oxy axis is along the direction of the velocity, af lies in the sagittal plane perpendicular to
Oxy. Rotation matrixRy,, represents the rotation operation from the velocity refeedrame to the

body-fixed frame:

cacB —casB —sa
Rov=1] B cB 0o |- (3.6)
sacB —sasB ca
where the angle of attaak = arctanvs/v1) and the sideslip angl@ = arcsir(vo/||Vp||)

The hydrodynamic forces include the lift forte the drag forceD, and the side forc€g; the
hydrodynamic moments include the roll moméf, the pitch momenm,, and the yaw moment
Ms. All of those forces and moments are defined in the velocayn& [86]. And if we further
assume that the tail is flapping relatively slowly and smbothsually true for the yaw control
motion during steady glide, the propelling force from thiéwall be negligible compared to the
buoyancy-induced propelling force, which medfhis= 0. Then we will have the following rela-
tionship:

-
Fext= va[ -D Fg —-L } (3.7)

T
Text= va|: |\/|1 |V|2 |\/|3 } (38)

The hydrodynamic forces and moments are dependent on the ainagttacka, the sideslip
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anglef, the velocity magnitud¥ [87—90], and the tail anglé:

D = 1/2pV2S(Cpo+CHa’®+C5s?) (3.9)
_ 2q/ B )

Fs = 1/20V?S(CE B +CE.0) (3.10)

L = 1/2pV2S(CLo+Cla) (3.11)

My — 1/2pv25(c,€|RB+Kq1wl) (3.12)

My = 1/2pVZS(CM0+C,6|Pa+Kq2w2) (3.13)

My — 1/2pv25(cﬁYB+Kq3w3+c€,,Y5) (3.14)

wherep is the density of water an8lis the characteristic area of the gliding robotic fish. Thee ta
angled is defined as the angle between the longitudinal &g and the center line of the tall
projected into thédx,y, plane, withOz, axis as the positive directioKy, Kgp, Kz are rotation
damping coefficients. All other constants wi@i in their notations are hydrodynamic coefficients,

whose values can be evaluated through CFD-based watell ginmgation [82].

3.2.2 CFD-based Evaluation of Hydrodynamic Coefficients

In this dissertation we use CFD simulation to obtain the bggnamic coefficients for any given
gliding robotic fish body geometry. Experimental metho#s tiowing experiments can be further
used to verify the CFD results [91], [92].

We first look into the influence of the angle of attack on therbggtnamic forces and moments.
We simulate the steady gliding motion when the sideslip eragld the tail angle (no actively-
controlled tail for miniature underwater) are both zero idey to eliminate their influence. In the

simulation the gliding robotic fish model is created in S@fmrks 2009. We use Gambit 2.3.16 to
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Figure 3.3: The meshing used for the water tunnel simulaf@orminiature underwater glider
prototype (generated with Gambit).
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Figure 3.4: An example contour of the static pressure withahgle of attack and the sideslip
angle set as zero for miniature underwater glider prototype
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create a mesh file (Fig. 3.3), which contains the shape aedrdzrmation of the gliding robotic
fish, and then use Fluent 6.2.16 to simulate the flow and pressstribution around the robot
body (Fig. 3.4), which is placed in a water channel. With aual water tunnel as the simulation
workspace, the boundary conditions are set to differeet mglocities, and under such different
boundary conditions, CFD simulations are run with différangles of attack. With given values
for the characteristic area and length, we form a table ®ctinvergent coefficients obtained from
CFD simulation for lift force, drag force and pitch momentof the convergent results, lift, drag
and pitch moment functions are approximated with polyndsrima by curve fitting. When tail
angled and sideslip anglg are fixed at zero, drag coefficie@p, lift coefficientC,_, and pitch

moment coefficien€y» can be expressed as

Cp =Cp, +C§a?,
CL= C|_O + CE a,
— a
Data fitting is conducted to compute the drag, lift, and pitedment coefficients, as a function
of the angle of attackr. For example, Fig. 3.5, Fig. 3.6 and Fig. 3.7 show the fittedtfion for the

drag, lift and pitch moment coefficients, respectively, ttog miniature underwater glider model.

The constants in the lift, drag, and pitch moment functimesestimated to be:

Cp, = 0.45275 Cg =17.5948
CL, = 0.074606 CZ = 19,5777,
Cwmg = 0.0075719 Cff | = 05665

As a compatrative trial, another set of wings is used with #meswingspan but doubled aspect
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Figure 3.5: Data fitting for the drag force coefficient as action of a.
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Lift coefficient CL
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Figure 3.6: Data fitting for the lift force coefficient as a @ion of a.
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Figure 3.7: Data fitting for the pitch moment coefficient asiaction ofa.

(a) larger wings (b) smaller wings

Figure 3.8: lllustration of the glider body with two differewing designs. Area of wings in (b) is
half of that in (a).
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Figure 3.9: An example contour of the static pressure withahgle of attack and the sideslip
angle set as zero for gliding robotic fish prototype.

ratio (i.e., chord length is half), while the body is left tnanged. Fig. 3.8 illustrates the two models
created in SolidWorks that have different sets of wings. Aiygrodynamic coefficients relevant to

the angle of attack for the one with smaller wings are:

Cp, = 044724 CE =10298
CL, = 0.054273 C = 115545

Cwmg = 0.0062683 C&P =0.2903
With similar CFD water-tunnel simulation, we can obtain tharodynamic coefficients re-
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garding the sideslip angle when we set the angle of attacktadail angle to zero. And the
hydrodynamic coefficients involving the tail angle can béagied similarly by setting the other
two hydrodynamic angles to zero (3.9). Here we want to poutttbat in this dissertation we
ignore the coupling effect of those three angles (the sigesigle, the angle of attack and the talil

angle) on the dynamics of the glider.
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Chapter 4

Steady Gliding in the Sagittal Plane

4.1 Reduced Model in the Sagittal Plane

Steady-state gliding in the sagittal plane is one of mosbirtgmt working patterns for the gliding

robotic fish. When the robot motion is restricted to the $abjtlane, we have

cosf 0O sinb X Vi
R= o 1 0 |[-bi=f{o0o]| Yw=]| o0 |
—sin@ 0 cosf z V3
0 Mp1 0
=1 wp |> p= 0o |, fTw= o |, 0=0
0 0 rwa

Here we assume the point mamsg is just below the center of geomet®/by r,,3 as such bottom-

heavy design is desirable for stability concern and alsceaable with manufacture. Plugging the
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hydrodynamic forces and moment into the robot dynamicstemns we get the following model:

V] = (m1+rﬁ)_1(—(rng-l—rﬁ)v?,wz—mogsine—i—Lsina—Dcosa) (4.1)
V3 = (mg+m)~L((my+m)viw, +mogcosd — Leosa —sina) (4.2)
W = Jz_l(M2+(m3—ml)v1V3—mNng3$in6—rﬁgrplcose) (4.3)
X = Vvqc088+v3sinf (4.4)
z = —viSinB+vgcosh (4.5)
6 = w (4.6)

During steady glide, the angular velocity is zero, while Y&docity stays unchanged. The
controlrp; andmy are constant, which means that the position of the movabés nsefixed with

respect to the origi® and the pumping rate is zero. So the steady motion can beiloeddy:

0 = —mpgsinB+Lsina —Dcosa 4.7)
0 = mpgcosf —Lcosa —Dsina (4.8)
0 = Mpy+ (mg—myg)vVz —Magrygsing —mgry; cosé (4.9)

The solution to the above equation gives us the steady gljoith.

4.2 Computation of Steady Gliding Path in the Sagittal Plane

With the hydrodynamic parameters obtained from CFD sinmratet us take a look at the solution
of the steady gliding equations (4.7)—(4.9). These equatawe highly nonlinear due to the terms

involving trigonometric functions and inverse trigonometunctions in the state. When the angle
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Table 4.1: Computed steady gliding path under differenteslof the center of gravigeg, the
movable mass displacemeny;, and the excess mas®, for the two models shown in Fig. 3.8.

(a) larger wings

Zcg(em) | rpp(em) | mg (@) | (V,a,6g) (m/s?°
0.1 0.3 10 | (0.1129 3.0470 -29.5522)
0.1 0.5 10 | (0.1366 1.6543 -43.0404)
0.1 0.7 10 | (0.1485 1.0936 -52.7389)
0.1 0.3 30 | (0.1766 3.9483 -25.0827)
0.1 0.5 30 | (0.2245 2.0106 -38.4395)
0.1 0.7 30 | (0.2495 1.3300 -48.7594)
0.1 0.3 50 | (0.2245 4.0967 -24.5276)
0.1 0.5 50 | (0.2846 2.1371-37.0375)
0.1 0.7 50 | (0.3174 1.3980 -47.0516)
0.2 0.3 10 | (0.0856 5.8988 -20.2069)
0.2 0.5 10 | (0.1084 3.3827 -27.6331)
0.2 0.7 10 | (0.1240 2.3211 -35.1835)

(b) smaller wings

206 (€M) | o (€m) [ Mo (@) | (V.a1,8) (m/se,”
0.1 0.3 10 | (0.1221 4.0658 -37.0187)
0.1 0.5 10 | (0.1396 2.4940 -48.3662)
0.1 0.7 10 | (0.1486 1.7575 -56.4820)
0.1 0.3 30 | (0.2260 3.2732 -41.9002)
0.1 0.5 30 | (0.2477 2.2108 -51.2303)
0.1 0.7 30 | (0.2598 1.6385 -58.0061)
0.1 0.3 50 | (0.3105 2.5525 -47.811Q)
0.1 0.5 50 | (0.3290 1.8747 -55.0414)
0.1 0.7 50 | (0.3401 1.4598 -60.4123)
0.2 0.3 10 | (0.0949 7.7979 -26.1314)
0.2 0.5 10 | (0.1136 5.0110 -32.7957)
0.2 0.7 10 | (0.1265 3.6361 -39.4833)
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of attack is small enough, we can use the approximatioo sina and cosx ~ 1, and derive an
approximate analytical solution for the desired contiglandmy in order to achieve some given
steady states [74]. However, here we are interested in {balation of the steady gliding states
themselves under a fixed control. Unfortunately, there arteasible analytical solutions for this
problem. So with Matlab commarsmblve() we numerically solve equations (4.7)—(4.9) to get the
velocity v, pitch anglef, and glide anglegy for a given movable mass displacemegtand net
buoyancymy, under different conditions fany, the location of nonuniform stationary mass. There
is only one feasible solution for each pair op( mg). Other solutions are rejected based on their
physical interpretations.

Table 4.1 shows scan results where the steady gliding pgitesgented with different sets of
center of mass distribution, location of movable mass, atdonoyancy, for both wing designs
illustrated in Section 3.2.2. The gliding anglg = 6 — a is the angle betwee@x, and Ax with
gliding up as positivez- stands for the center of gravity expressed inztais coordinate of the

body-fixed frame and there is a bijective function frofa to zog:

M
Zcg= Hrwg. (4.10)

Here we ignore the influence of the excess nmag®n z-g, which is really small compared to
that ofmy. For examplemy is generally around 30 g while, is up to several kilograms. From
the results, we can see that different wing designs leadfterelnt static gliding profiles. For
example, the larger wings result in shallower gliding patbager horizontal travel) but slower
total speed compared to the smaller wings, given the sana sentrol inputs. Since the wings
can be easily replaced in our design, we can potentiallgrtile wing designs, while leaving the

glider body and its inside intact, to accommodate the requénts of different applications. On
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the other hand, the results in the table show that, for a fixad design, the speed is influenced by
both the excess mass) and the pair Kp, zcc) While the pitch angle is affected mainly by the pair
(rp, Zcg)- Therefore, the center of mass plays an important role ierdening the steady gliding
attitude. In particular, if we compare the cases where theegaofz- g are different but the other
parameters are the same, we find that smafleyresults in higher speed and larger glide angle.
This observation has been used in our design — by makiggmall, we can achieve desired glide

angle with very small displacement of the movable mass.

4.3 Scaling Analysis

We study the larger-wing glider model (Fig. 3.8a) at différecales and introduce a new cost
performance index, which reflects the horizontal travetiatise per unit energy consumption. For
one dive (descent and ascent), the horizontal travel distag is approximated as

Vhph

Dy =Wtg=2—, (4.11)
W

whereV}, and\y, are the steady-state horizontal speed and vertical spesgectivelyty is the
travel time for one dive, and is the vertical travel depth. The energy consumption in are d
comes from two sources, the pump actuation and the movalde awuation, while the energy
consumed for the latter is negligible compared to that fanpimg since the pump needs to over-
come large pressure when the glider switches to ascent festedt. So the energy consumption

per diveEy can be approximated as

Eq = pghoSplp+ pg(ho + h)Splp. (4.12)
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Table 4.2: Computed steady gliding path for the scaled nsooliethe larger wing prototype. In
computationyp = 5mm is used for the original scale model (1:1) while the vadsealed linearly
with dimension for other models.

scale | mass (kg)| mg (kg) | Vi, (M/s) | W, (m/s) v\\//LmO(kg'l) glide ratio
0.25:1 1 0.0075| 0.063 | 0.018 488.35 3.5
0.5:1 2 0.015 0.11 0.039 203.25 2.82
1:1 4 0.03 0.19 0.094 74.55 2.02
2:1 8 0.06 0.28 0.207 28.30 1.35
4:1 16 0.12 0.39 0.377 12.01 1.03
8:1 32 0.24 0.54 0.574 5.72 0.94

Here, p is the water densityhg is the equivalent water depth of the atmosphere presSqres

the cross-section area of the pump tank inlet (and outlet) grepresents the length of the water
column if the water pumped in each cycle is placed in a cyigadicontainer with cross-section
areaSp. Noting the net buoyancyg = %psplp, we further simplify the energy consumption
per dive toEy = 2mpg(2hg + h). Then we have the horizontal travel distance per unit energy

consumption

Bd_ Vb 1 (4.13)
Eq  Vimoqy oMo
For a specific task, the depth is fixed and we have
D \Y/
Zdpg_h (4.14)
Eq Wmg

which we define as the cost performance index

We now conduct scaling analysis to examine how the cost pedoce metric evolves with
the dimensions (and consequently the weight) of the gli@&D simulation shows that the drag
coefficientCp and lift coefficientC; stay almost the same at different scales we considered (from

0.25:1to 8:1), while the pitch moment coeffici€y scales linearly with the characteristic dimen-
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Figure 4.1: The glider cost performance index with respeoatbddel scales.
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sionl of the glider. All related masses of the glider will scalel%,sincluding the movable mass
m and the negative net buoyaney. Taking the total length of the glider asthe scale 1:1 would
imply | =50 cm. By plugging those new parameter values into equatibi$—(4.9), we can solve
the glide path for the scaled model.

Table 4.2 shows the glide paths for glider models at diffeseales. Fig. 4.1 shows the rela-
tionship between the cost performance in@é/f?% and the scale. The results show us that with a
larger body the glider has a smaller glide ratio and a smadlet performance index value, thus
consuming more energy for a given horizontal travel distaddis is consistent with the fact that
a larger glider needs to pump more water for a proper net mayyt@ provide the propelling force,
which is also the main energy consumption source. Howevargar-scale glider is able to achieve
faster horizontal speed as shown in Fig. 4.2. There is a-nffdeetween the achieved horizontal
speed and the horizontal distance coverage per unit enesgywhen selecting the optimal scale
for the glider. Other factors, like the dimension and the srafghe sensors and actuation devices,

should be also taken into account in the design process.

4.4 Experimental Results and Model Validation

With the developed miniature glider prototype, underwgleting experiments are conducted in
order to validate the model. Most experiments are conduaotedarge water tank that measures
15-foot long, 10-foot wide, and 4-foot deep.

For the steady gliding in the sagittal plane, we use the aegie tail. First, we set the initial
net buoyancy (negatively buoyant) and the linear actuabsition to desired values. Then the
glider is released on the water surface with a stopwatchestaand the glider dives down until

it reaches the programmed depth indicated by the pressaoserseThen it pumps water out and
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resets its attitude to glide up. Here we focus on the glidlogm section and record the whole
gliding process with an underwater video camera fixed inidevater tank, pointing directly to
the glide motion plane (Fig. 4.3). Then we conduct video {postessing to extract the steady
gliding data, including the operating depth, horizontaVél distance and the time spent. We first
carry out one series of experiments with net buoyancy fixee2&t g, and vary the linear actuator
positions. Then in another series of experiments, we vayntdt buoyancy while holding linear
actuator position at 0.5 cm forward. For each setting of nel/hncy and linear actuator position,
we repeat the experiments 10 times and evaluate both thesna@ainstandard deviations for the
measured variables. Most experiments are conducted vatlather set of wings, but we have also
experimented with the smaller set of wings to further vabdae model.

There are several things that must be given careful tredatmiéinst, although the pressure
sensor can provide accurate depth measurement when tlee fidt rest, the measurement is
subject to larger error when the glider is moving throughwlaer. Therefore, we have chosen
to measure the actual depth each time. Second, we need tleeofahe center of gravity of the
glider zz to obtain model-based predictions. We calculate it by hanthe glider up at different
points on the glider with strings and then taking the intetisa of different hanging strings. This
value is further fine-tuned with collected tank test dataird;ito deal with the image distortion,
we have made a grid board for calibration. The board mea&usas by 1.5 m, with grid cell size
of 10 cm by 10 cm. We fix the grid board in the glide motion pland take its images. Then with
post-processing techniques, those grid images are inigabinto the gliding videos, to facilitate
the extraction of glide paths. Fourth, there is a periodarigrents before the glider reaches steady
gliding. To minimize the error introduced by the transiemte have chosen to use only the data
from last three seconds of descent in each run to computedadysglide parameters.

Fig. 4.4 and Fig. 4.5 show the comparison between modelgireds and experiment results
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Figure 4.3: Superimposed snapshot of the gliding expetisiaran indoor tank.
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when we vary the movable mass position while holding the net/ancy fixed, and Fig. 4.6 and
Fig. 4.7 show the results when the net buoyancy is changinlg wke movable mass location is
fixed. From the comparison results, we can see that the welacd glide angle calculated from
the model match the experimental data reasonably well. iicpéar, the model has predicted well
the trends of how glide speed and angle vary with the centdgreofravity and the net buoyancy.

We note that there are some non-negligible factors coringpuo errors in the measurement.
When the glider starts gliding from rest, it is acceleratrather than steadily gliding for a few
seconds. We have already tried to remove the acceleratotigisérom the data in the video pro-
cessing process; however, it is difficult to completely @tiate that effect, especially considering
the relatively shallowness of the test tank. This effect Mdone reduced with deeper gliding; how-
ever, conducting precise measurement in a deep water txatijptesents challenges. In addition,
flow disturbances in the tank influence the experiment resisltwell. So with these uncertainties,
we consider the match between our experimental resultshenohodel predictions in Figs. 4.4 —
4.7 satisfactory.

We have further compared the glide performance when themiédequipped with the larger
and smaller wings, respectively. Fig. 4.8 and Fig. 4.9 shHwmvdlide angle and the glide speed,
respectively, as the movable mass displacement is varide e net buoyancy is held fixed at
—20 g. Both model predictions and experimental measuremergheown in the figures, and they
match well for both sets of wings. From the results, we cantsaewith smaller wings, the
glider tends to have a deeper gliding profile but higher spedich matches our model predic-
tions. These results further validate our derived moded, @ove the effectiveness of our design
method with CFD-based evaluation of hydrodynamic coefiiisién Section 3.2.2. Meanwhile, the
results also indicate that we can realize various glidinggosance and meet different mission

requirements by replacing the wings, which are designee tdsy to change.
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Table 4.3: Comparison of our miniature glider with undemvaliders reported in the literature.
Velocity refers to the terminal velocity. The bottom row slsothe metrics of the glider reported
in this dissertation (with the larger wings).

Name Length| Weight | NetBuoyancy| Velocity
Slocum Electric Glider [47]| 1.8 m | 52 kg 5209 0.4m/s

Spray Glider [47] 2m 51 kg 900 g 0.45m/s

Seaglider [47] 1.8m | 52kg 84049 0.45m/s
ROGUE Lab Glider [73] - 11.2 kg 360 g -

ALBAC Glider [93] 1.4m | 45kg - 0.51 m/s
USM Glider [93] 1.3m - - -

ANT Littoral Glider [93] 2m | 120 kg - 1.03 m/s

Miniature Glider (this work)] 0.5m | 4.2 kg 2049 0.17 m/s

The size of our miniature underwater glider is much smabengared to traditional underwater
gliders, since we expect the future gliding robotic fish tdigktweight, easy to carry, and operate
in relatively shallow waters such as inland lakes and ponidgle 4.3 shows some metrics of
existing gliders and our miniature glider prototype. FroablE 4.3, we can see that the ratio
between net buoyancy and total weight of our miniature glidesimilar to those of traditional
underwater gliders, at the order of 1 %, while the velocitgmtude is less than 1/3 of those typical
gliders. However, the cost performance index, the achiéadzontal travel distance per unit
energy consumption, by our glider is over 18 times biggen thase of reported gliders, assuming
they have similar gliding angles. All the above unique feaswof our miniature underwater glider
are consistent with the scaling analysis in Section 4.3ckvibbuld be used to design the glider

based on the specific applications.
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Chapter 5

Steady Spiral in Three-Dimensional Space

5.1 Steady-State Spiraling Equations

If control inputs are fixed with nonzero tail angle, we camatrthe influence of the tail on the
hydrodynamic forces and moments as the effects of increagaiddynamic anglesa(, 8), and
we know that the gliding robotic fish will perform three-dingonal steady spiraling motion (
[94], [81]), where the yaw anglgy changes at constant rate while the roll angland pitch angle

0 are constants. TheRT k is constant since

0 —sinf
R'k=R"| 0 | =] sinpcoss (5.1)
1 cosgpcost

Taking time derivative oRTk, we have

wp x (RTk) =0, (5.2)

so the angular velocity has only one degree of freedom wihin Oz axis in the inertial frame.
Then

wp = w3 (RTK) (5.3)
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The translational velocity in the body-fixed frame

.
Vb:valV 0 o} (5.4)

There are two important parameters in the spiraling motio@turning radiu® and the verti-
cal speed/eriicar BY projecting the total velocity into the horizontal plazed vertical direction,

we have

Viertical = va(V 0 O)T(RTk> (5.5)

R = /V2-V?/wy (5.6)

The steady-state spiraling equations are obtained byngditne derivatives to zero for the

robot’s dynamics:

0 = MV, x wp+MygRT K+ Fext (5.7)

0 = Jwpx wp+MVy X Vp+ Text+ Mygrw x <RTk> +morp x (RTk) (5.8)

From equations (3.1), (3.6), (5.3), (5.4) and the abovelststate spiraling equations, we know

there are six independent states for describing the stwmotion:{ 0 ¢ wy V a B }

with { my rp1 O } as the three control inputs. Expanding equations (5.7) &&], (then trans-

forming the original states to the above six independetgstave can obtain the nonlinear steady-
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state spiraling equations as in (5.9) - (5.14).

0 = mpsBVcecOuwsi —mgsacPV spcwsi —mpgsd — 1/2pVZS(CDo -I—Cga2 —i—CSc‘SZ)cacB

—1/2pV2S(CE B +C3r5)casB +1/20V2S(CLo+Cl a)sa (5.9)
0 = —mgsacBVsBws —mecacBV cpchws; — 1/2pV28(CDo+Cgor2 +C862)SB
+1/20V2S(CE B +C2r5)cB + mogsped (5.10)

0 = mycacBV spchws +mpsBY By + Mogeped — 1/20V2S(Cpg +CE a? +C35%)sacp
—1/2pV2S(CE B +C3r5)sasB — 1/2pV2S(C o+ Cl a)ca (5.11)
0 = (Jo—Ja)spcOcpcOws + (my — mg)sBsacBV2 + 1/2pVZS(C,€|RB — Kg1sbwsj)cacp
-1/ 2pVZS(C|\/|0 - C,(‘,ﬁpa + Kgzspchws; )casB — mygrwseco
—1/2pVZS(C,€|Y B+Kgacpehuwy +Cy 8)sa (5.12)
0 = (- 33)86c¢06a>§i + (mg — ml)cachochV2 — Mygrwse — mgry; cpco
-|-1/2pVZS(C|€|RB — Kqus93)$B + 1/2pV2S(Cyyy + Cif, @ + KepspeBag B (5.13)
0 = (Jo—Jy)SOspcOw3 + (Mg —my)cacBsBV2 + 1/2pVZS(C,6|RB — Kq1SBus;)sacp
~1/2pV?S(Cyy + Cito @ + Kq259c00x5) 50 + Mgy el

+1/2pv25(c:,€IY B+Kgacpehuwg +Cfy, 8)ca (5.14)

Here, we assume the mass matrix and inertia matrix have tlogvfng form:

m O 0 J) 0 O
M=]1 0 m 0 J=10 % 0
0 0 my 0 0 J
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5.2 Computation of Spiral Path and Evaluation of Stability

5.2.1 Newton’s method for Solving the Steady-State Spiralg Equations

The steady-state spiraling equations are highly nonlidearto the terms involving trigonometric
functions and inverse trigonometric functions. Given thgla of attacka, the sideslip anglé,
and the velocity magnitudé, a recursive algorithm based on fixed-point iteration cqaitentially
be applied to solve the equations for the other system saatésontrol inputs [80]. However, we
are more interested in the converse problem of how to cakstaady-state solutions given fixed
control inputs, which are more useful for path planning andtl purposes. Unfortunately, this
problem does not admit analytical solutions and the comrerg condition for the corresponding
fixed-point problem is not satisfied. In the following we appewton’s method to solve the
problem.

Letx=[9 ¢ wy V a f ]T be the six states that we want to solve for steady-state spira
gliding equations. And let1 = | my rpr O ]T be the three control inputs. For convenience of

presentation, we write the governing equations in a conmfpaat
0= f(x,u)=[fi(x,u)li=1,..6 (5.15)

For examplef; is the right hand side of equation (5.9).

The iterative algorithm for Newton’s method reads [95]

%1 = —JI7 (%, u)f (%, u) (5.16)
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HereX; is theith-step iteration for the steady states, dfxl u) is the Jacobian matrix df(x, u)

J(X,U) - & -

ﬂ} (5.17)
(9Xj 6x6

The first row elements of the Jacobian matrix are given in egos (5.18) - (5.23) while the

others are omitted for succinct presentation, which carabmutated similarly.

0f1/0x1 = —mpsBVcesOws; + mgsacBV spsO wsj — mpgco (5.18)
0f1/0x2 = —mpsBV spcOwsj — mgsacBV cpeh w; (5.19)
d0f1/0x3 = mpsBV cech — mgsacBV spch (5.20)

0f1/0xq4 = mpsBcechas; —mgsacBsecOuws —mpgsd — pV SCpg Jnga2 +C852)cac[3
—pVS(Ch B +C8:5)casp +pVSCLo+Cla)sa (5.21)
0f1/0xs = —mgeacBVspchas —pV2SEacach +1/20V2S(Cpo+CSa?+C3d%)sach
+1/2pV2S(CE B +C8-8)sasB + 1/20V2 ST sa
+1/2pV2S(CLo+Cl a)ca (5.22)
0f1/dxg = MpcBY cpchws +mesasBV speaws + 1/2pV2S(Cpo+CS a2 +C36%)casB

~1/2pv2SC casB — 1/20v2S(CE B + CEr8)cach (5.23)

Based on the parameters of the miniature underwater glid¢otype as listed in Table 5.1,
Newton’s iterative formula is used to solve the steadyestiraling equations. Characteristic
parameters for steady spiraling motion, including the ingrradius and ascending/descending

speed, are obtained with different inputs as shown in Talle o apply Newton’s method, the
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Table 5.1: Parameters of the lab-developed underwatet redeal in the steady-state spiraling

equations.

Parameter  Value Parameter  Value
my 3.88 kg o 9.9 kg
mg 5.32 kg m 0.8 kg

Coo 0.45 cg 17.59 rad 2
CES -2 rad? C,‘;SS 1.5rad ™1
CLo 0.075 ce 19.58 rad !
Jp 0.8 kgm? X 0.05 kgm?
J3 0.08 kgm? CiMg 0.0076 m
C,elR -0.3 m/rad C,?,’lp 0.57 m/rad
C,aY 5 m/rad C,\‘}Y -0.2 m/rad
Kq1 -0.1 ms/rad Kg2 -0.5 ms/rad
Kgs | -0.1 msirad S 0.012 n?

initial values of states for iteration are chosen tagbe —10°, ¢ = —10°, w3 = 0.1 rad/sy = 0.3
m/s,a = 0°, B = 0°. From the calculated results, we can see that a small turamfigs requires
a large tail angle, a large displacement of movable massaamdall net buoyancy, while a low
descending or ascending speed demands a small tail anghalledssplacement of movable mass,

and a medium net buoyancy.

5.2.2 Region of Convergence for Newton’s Method

For Newton’s method, the choice of the initial condition igpiortant to the convergence of the
algorithm. Here, we numerically explore the region of cageace. For a fixed set of control
inputs, €.9.yp1 = 5 mm, mg = 30 g andd = 30°, we carry out the convergence test by running
the algorithm starting from different initial values of tetates, and record whether a given initial
condition leads to convergence. Fig. 5.1a shows the coexeggtest results for different initial

conditions of the roll angle, pitch anglef and spiraling speed while the initial values of the
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Table 5.2: Computed spiraling steady states through Nésvtoethod.

Mo (g) rpl (Cm) 5<O) (97 @, ws;i 7V7 a, B) O,O,rad/s,m/é’”o) (Vverticala R) (m/S’m)
25 0.3 45 | (-44.5,-31.0, 0.425, 0.264, -0.914, 4.10) (0.182, 0.450)
25 0.4 45 | (-46.8,-36.6,0.448,0.267,-1.32,4.52) (0.190, 0.417)
25 0.5 45 | (-48.3,-40.6,0.464,0.268, -1.61, 4.87) (0.195, 0.396)
25 0.6 45 | (-49.3,-43.8,0.476,0.267,-1.84,5.18) (0.197, 0.380)
25 0.7 45 | (-50.2,-46.5, 0.486, 0.267, -2.04,5.48) (0.211, 0.338)
10 0.5 45 | (-70.8,-49.3,0.589, 0.184, -3.64, 7.36)  (0.169, 0.121)
15 0.5 45 | (-63.5,-52.7,0.571,0.218, -3.30, 6.98)  (0.189, 0.190)
20 0.5 45 | (-55.5,-47.8,0.517,0.247,-2.46,5.85) (0.197, 0.287)
30 0.5 45 | (-42.1,-34.3,0.423,0.281, -0.901, 4.24) (0.185, 0.500)
35 0.5 45 | (-36.9,-29.3, 0.392, 0.289, -0.306, 3.85) (0.172, 0.591)
40 0.5 45 | (-32.3,-25.3,0.368, 0.293, 0.224, 3.6(0) (0.157, 0.670)
25 0.5 30 | (-37.6,-11.9,0.235,0.242,0.854, 2.19) (0.151, 0.806)
25 0.5 35 | (-43.4,-20.7,0.311, 0.258, 0.0698, 2.8§7) (0.178, 0.602)
25 0.5 40 | (-46.8,-31.2,0.389, 0.266,-0.761, 3.77) (0.192, 0.474)
25 0.5 50 | (-49.2,-48.8,0.537,0.264, -2.54,6.19) (0.192,0.337)
25 0.5 55 | (-51.1,-56.4,0.615, 0.257, -3.62, 7.86)  (0.190, 0.283)
25 0.5 60 | (-55.0,-63.8,0.705,0.247,-4.95,10.0) (0.189, 0.225)

other three states are setmas- 0°, f = 0°, wz; = 0.1 rad/s; Fig. 5.1b shows the results for different
initial conditons of the angle of attaek, sideslip anglg8 and the angular speea; with the initial
values of the other three states setgas —10°,6 = —10°,V = 0.3 m/s. From the results, we
see that a small roll angle, a small pitch angle and a largecitglin the reasonable range will
lead to convergence; and the signs of the angle of attack idedlip angle are very important
to the convergence of the solution. These observations ioght into how to properly choose
the initial conditions when running the Newton’s method btain the steady spiraling path; for

example, one may want to select zero degree for the initiabgaf the angle of attack and sideslip

angle when having no idea about the signs of those two vasabl
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(a) Convergence with respect to the roll angle, pitch anglk a
spiraling speed

w,. (rad/s)

B() 10 -0 a ()

(b) convergence with respect to the angle of attack, siglesigle
and angular speed

Figure 5.1: Convergence test results for Newton’s methal meispect to initial conditions. Color

yellow (light) means that convergence to the steady-statalsg equilibrium is achievable with
the corresponding initial values; color blue (dark) medrat there is no convergent solution or

the convergent solution is not at the steady-state spgaguilibrium. In the test, the used set
of control inputs isrp; =5 mm, myg = 30 g, d = 45°; and the corresponding equilibrium state
values ared = —42.1281°, ¢ = —34.2830°, w3; = 0.4229 rad/sy = 0.2809 m/sa = —0.9014,

B =4.2414.
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5.2.3 Stability Analysis of Spiraling Motion

It is of interest to understand the stability of the spiraltimo under a given set of control inputs.
Global stability analysis, however, is very difficult if nohpossible due to the highly nonlinear
dynamics of the system. In this subsection we perform Idehlikty analysis for the steady spiral-
ing motion obtained from (5.9)—(5.14). A solution to theg@&tions can be considered a relative
equilibrium of the system since it is independent of the dowtes of the robot in the inertial
frame. We denote witlij(Xq, u) the Jacobian matrix for the dynamics (3.4) and (3.5), whe:e i
compact form the system state vector is representg as Vp Wp ]T and the system dynamics
asxg = fq(Xg,u). As the (relative) equilibrium point is computed using defiént set of system
statesx=[9 ¢ wy V a B |7, and the Jacobian matrikx, u) for the steady-state equa-
tions has been evaluated with those states (Section 5#elgan evaluatdy through the chain

rule

M1 o dxg\ 1
Jd (Xd7 u) — J(X, U) (d—x:) (524)
o J1
0 0 0 cacB —VsacB —Vcasp
0 0 0 B 0 Vg
. 0 0 0 sacf VcacB -VsusB
Whel’ed—x);j = hspiral(X)x6 =
—spsfay  cpcBuwy  spcd O 0 0
—cpsbwg —spcbws cpcd 0 0 0

So the value of linearization matrdg at the equilibrium point can be obtained by just plugging

the steady state valuag computed in Section 5.2.1 into the above equation, and bgkahg the
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Hurwitz property of the linearization matridg, we can understand the local stability property of
the steady-state spiraling motion.

We test the listed steady-state spiral motions in Table &.2otcal stability. For example, for
the steady spiral corresponding to the control inputget 25 g,rp; = 0.3 cm, andd = 45°, the
eigenvalues of Jacobian mattdy are—0.91+5.02i, —6.69, —2.09, —0.42 —0.090, which shows
exponential stability. We find that all spirals in Table 5&/& a Hurwitz Jacobian matrix and thus

the equilibrium of each spiral is locally asymptoticallpiske.

5.2.4 Basins of Attraction for the Spiraling Dynamics

The analysis in the previous subsection suggests that ldtesecequilibria associated with steady
spiraling are locally stable. It is of interest to gain som&ght into the sizes of basins of attraction
for those equilibria. In this subsection, we run the dynansienulation starting from different
initial conditions for a given fixed control input, and thezcord whether each initial state con-
figuration will lead to convergence to steady spiraling, @nges, what is the approximate time
it takes to converge. Since one cannot visualize a stategganore than three dimensions, we
have chosen to visualize the basin of attraction in thresedsional subspaces of the original state
space.

Fig. 5.2 shows the simulation results of convergence tinsetb@n the parameters of our ex-
perimental prototype with respect to three stael, v4. To obtain the results shown in this figure,
the control inputs are given ag; =5 mm, my = 30 g andd = 45°. Following this simulation
method, we can get the basins of attraction with convergénoe for any other set of control
inputs. Similarly, we can obtain the convergence test tesahown in Fig. 5.3, when we vary
the initial conditions for the angular velocities in the lyefiked frame. From the results, it seems

that the basin of attractions for the spiraling dynamicsasyMarge, which means that, starting
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Figure 5.2: Convergence time in seconds for spiraling dyogsmwith respect to different initial
values of states in roll anglg, pitch anglef, and translational velocity; along theOx, direction,
for the control inputs of 5 =5 mm,mgy = 30 g andd = 45°. The corresponding equilibrium state
values ared = —42.1281°, ¢ = —34.2830C°, andv; = 0.2801 m/s.
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Figure 5.3: Convergence time in seconds for spiraling dyogamith respect to different initial
values of states in angular velocities, for the control tsmfr,; =5 mm,my = 30 g andd = 45,
displayed in orthogonal slice planes. The correspondingjibum state values aren = 0.2837
rad/s,ap = —0.1767 rad/s, andys = 0.2592 rad/s.
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Figure 5.4: Snap shots of the robot spiraling in the expemirtenk.

from almost every state configuration in a reasonable stdtevange, the glider is able to achieve
the steady spiraling motion eventually. However, we alsticedhat the convergence time varies
significantly with the starting condition. When the pitchgémand roll angle are negative, and
the speed is neither too high nor too low, the convergence tamelatively short. This provides
us with some ideas about when to switch to a desired glidin§jlerand how long we expect for
the transient period. We also notice that among all threellangelocity states, only the initial
condition ofw,; takes a noticeable influence on the convergence time of itlerglynamics. This
is consistent with the slow dynamics of the rotation motio®i, direction due to the enhanced

inertia from the large wings.

5.3 Experimental Results

With the miniature underwater glider prototype featuringveappable tail fin, experiments are

conducted in order to confirm the spiraling motion and vaédae derived mathematical model.
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The experiments are performed in a large water tank that unesd 5-foot long, 10-foot wide,
and 4-foot deep, as shown in Fig. 5.4. We set the net buoyaregafively buoyant), the linear
actuator position and the tail angle to fixed values. Themliger is released on the water surface
and enters into the spiraling mode. Cameras are set to réleerdideos in both top view and
side view. The turning radii of the spirals are extracte@rafideo processing. The comparison
between model predictions and experiment results on tgmadius for different tail angles and
different excess masses are shown in Fig. 5.5 and Fig. Specévely. From the results, we can
see that the turning radius of the spiral is smaller with gdadeflected tail angle and a smaller
net buoyancy. The error bar in the figures shows the averdge @ad standard deviation of the
turning radius out of ten repeated experiments. The modeligtion shares the same trend with
the experimental results, and generally speaking, thehmmtween those two are good.

There are some factors contributing to the measurementserféirst, the scales of camera
images are different at different distances. Here, an geesaale is used in the information ac-
quisition during video processing. A grid board is used falibration, captured with the camera
at the average distance. Second, there are some initigig¢rdarprocesses, which is difficult to
be completely separate from the steady spiraling periogheBEmental environment with deeper
water will effectively reduce the influence of initial traest; however, the complexity of exper-
iments setup will be increased as a result. The environrdrsi@irbances such as currents will
also affect the experimental results. So with these unoéiga, we consider the match between

our experimental results and the model predictions satisfa
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Figure 5.5: Spiraling radius with respect to the tail anglgh fixed movable mass displacement
of 0.5 cm and fixed excess mass of 30 g.
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Chapter 6

Passivity-based Stabilization with a

Whale-type Tall

In this chapter, the sagittal-plane stabilization probt#ma gliding robotic fish with a whale-type
tail is discussed. The dynamics of an underwater gliderenstigittal plane is first reviewed and
separated into the slow dynamics and fast dynamics basehgula perturbation analysis. In
Section 6.2, a passivity-based nonlinear controller fer dpproximated reduced model is pro-
posed, and stability analysis for the full system is conédatia linearization. Simulation results
are presented to show the effectiveness of the designetbtient A nonlinear observer is then
proposed in Section 6.3 for the implementation of the comstirategy. In Section 6.4, both open-
loop and closed-loop experimental results are presentad agliding robotic fish to illustrate the

effectiveness of both the controller and the observer.

6.1 Model of a Gliding Robotic Fish with a Whale-type Talil

In this section, the effect of a whale-type tail of a glidirapotic fish is considered as a control
surface. A dynamic model for underwater gliders in the $algglane is first reviewed [76, 78],

which is an invariant plane for such robots. Then with siagplerturbation analysis, the model is
separated into two subsystems, a fast-mode system and arslde system, for controller design

in Section 6.2.
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Figure 6.1: The schematic of a gliding robotic fish with f@@d moments defined in the corre-
sponding coordinate frames (side view).

6.1.1 Dynamic Model in the Sagittal Plane

This dissertation is focused on the motion in the robot'sfrant plane. As shown in Fig. 6.1, a
gliding robotic fish is modeled as a rigid-body system, withedlipsoidal shape and fixed wings
as typically reported in the underwater glider literatufbe relevant coordinate reference frames
are defined as follows: the body-fixed reference frame, @ehasOx,ypz,, has its originO at
the geometric center. Th@x, axis is along the body’s longitudinal axis pointing to theatie
the Oz, axis is perpendicular t®x, axis in the sagittal plane of the robot pointing downwards,
andOyy axis will be automatically formed by the right-hand orthemal principle. In the velocity
reference fram@®x,yvzy, OX, axis is along the direction of velocity whose magnitudé jandOz,

lies in the sagittal plane perpendiculaiQa,. In the inertial frameAxyz(not shown in Fig. 6.1)Az
axis points in the gravitational acceleration directiamd Axis defined in the same direction as the

intersection line of the horizontal plane and the sagittahe, while the origimA is a fixed point
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in space. There are three angles defined following the stdrd@vention in marine applications,
based on the aforementioned reference frames. The pit¢th Amgthe angle betwee@x, andAx
with nose up as positive; the gliding andlgis the angle betwee@x, andAx with gliding up as
positive; the angle of attaak is the angle fronDx, axis toOx, axis with rotation axi©yj,.

We define the sum of the mass of the gliding robotic fish, and the added mass Dx,
direction asny, and similarly, the sum afyy and the added mass @y, direction asmnz. The robot
displaces a volume of water of masg,. Let mg = mg—m, represent the excess mass (negative
buoyancy).

The forces acting on the robot body include gravitationedtdpbuoyancy force, hydrodynamic
forces (lift and drag) and control force. Due to the symneeshape of the robot, the center of
buoyancy will be through the origi®. The assumptions in [76] are taken that the movable mass
is fixed at the origirO (during steady gliding), with the stationary mass distr#oluniformly, and
the added masses are equally valueg£ mg = m). Then the center of gravity will coincide with
the center of buoyancy at the origin. The force pair, gréaiteal force and buoyancy force, act like
one force of excess masg at the originO in Azdirection. The hydrodynamic lift force is along
negativeOz, axis, while the drag forc® is along negativéx, direction. The control forc&s
is in Oz, direction, exerted by the control surface (e.g., a whaleefiylpe tail) traveling through
the fluid medium, which is essentially another hydrodynafoice. The control surface angfe

is defined as the angle between the control surface planéhakgy, plane. The hydrodynamic
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forces are dependent on the angle of attack and the velafllaws:

L = (KLo+KLa)V? (6.1)
D— (KDO+ KD012> V2 (6.2)
Fs = K|:5V2u5 (6.3)

whereKy g, K| are lift coefficients, an&pg, Kp are drag coefficientsss is the effective angle of
attack that the control surface contributes to the glidogptic fish. There is a linear relationship
betweerus and the control surface angde us = Ku;9, whereKy; is a scale constankr is the
coupling factor that describes the additional force thatdbntrol surface induces.

There are two moments about g, axis, which rotate the robot to a specific attitude. One is

the hydrodynamic pitch momeMy, and the other is the control momevijy. They are modeled

as

Mz = (Kyo+Kma + Kgaawp) V2 (6.4)

Mg = —KpusV?2 (6.5)

whereKyp andKy, are pitch moment coefficientk is the pitching damping coefficient ang

is the angular velocity for the pitch.

By applying Newton'’s second law and the moment of momentunagon, the gliding robotic
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fish dynamics are obtained as

V= _mi (rrbgsineg+D—F5sina) (6.6)
1
O = eV (—mpgcosfy + L + F5cosa) (6.7)
) 1
a=wy— Y, (—mpgcosby + L + F5cosa) (6.8)
) 1
W = — (KM0+KMC¥+Kq20)2—KMU5)V2 (6.9)

J

whereJ, is the total inertia aboudy, axis, consisting of stationary mass inertia and addedianert
in water, andy represents the gravitational acceleration.
For the open-loop system (i.el5 = 0), the steady gliding profile can be obtained from (6.6)-

(6.9). The state variables at the equilibrium have the falg relationships

K K mlg  \°
fge = arctan—28 g = —-MO We—=0, Ve— |-—109

Kie Km ,/K%e-l-KEe

whereKpg = Kpg + KDag, KLe = Ko+ KL0e.

6.1.2 System Reduction via Singular Perturbation

Bhatta and Leonard [76] have shown with singular pertudpaginalysis that for the open-loop

system, the dynamic model can be reduced to a second-orskenswith good approximation,
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and the corresponding non-dimensional full state model is:

g—::] = o2 (mopgsin(Bg+ Bge) + D — Fssin(a + ae))
dég 1 — _
T KoV2 (1Y) (—mpgcos(Bg+ Bge) + L + F5cos(a + ae))
Sld_a =y — 31;_ (—mogcos(Bg + Bge) +L + F5cos(a + ae))
dty KpeVé (14V) ¢
£ G2 = — A+ —U) (1+V)°

where the new state variables are defined as

- V—Ve — _ _ Kg
V= By = 6y— 6 a=a—-aqa =T
Vo g g — Oge; e W Ky W
the non-dimensional timig and some related constants are defined as
mg b 1 Kq 1
Ts= —, &)= — — th=1/Ts, g ==
s KDeVe 2 vaez Ts : / S 1 KM Ts

For the new state model, the hydrodynamic forces and monaerbe described as

D = (Kpo+Kp (@ +ae)?) V& (1+V)°
L = (KLo+ KL (0 + are)) VE(1+V)?

_ = 2 \2
My = (KMO+KMC¥+Kq(02)Ve (1+V)

Fs = Kr5UsVE (1+V)?
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(6.13)

(6.14)
(6.15)
(6.16)
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The system can be further written in a compact form

d
d—tE =f(&,n,uy) (6.18)
n
d
Mgk = Ag(&.n,€,u5) (6.19)
n
where,
\7 E f]_ J1
E - _ b n - _ b f - b g - b
Oy Wy 1) g2
gﬂ 0 &
A= ! ’ €= ’ H= maX(SL 82)7
0 % )

andf andg are defined accordingly based on (6.10) - (6.13).

From singular perturbation analysis, by setting 0, we arrive ato, = 0 anda = ug. Plugging
those two fast-mode states into the other two state equatios reduced model for the full system
is obtained. Now we further set = 0 in the reduced model for design convenience, simds

relatively small in value. Then the approximation of theueeld model can be expressed as

dg

E = f ('5707 U5) (620)

and this second-order system will be used in the controksigh. The effectiveness of design-
ing the controller based on the approximated reduced sy&tethe original full system, will be

demonstrated in next section.
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6.2 Passivity-based Controller Design

6.2.1 Passivity-based Controller for the Approximated Redced Model

The open-loop reduced model (6.20) with = 0 has an exponentially stable equilibrium point
at the origin, which can be proven by Lyapunov analysis withfbllowing positive definite Lya-

punov function [76]
2 — ~ 1 — 3
b= é—(1+V>COSGQ+§(1+V> (6.21)

andg—?f (£,0,0) < —by ||&] with by > 0.
Now the objective is to design a feedback controller to $itabthe origin of the approximated

reduced model, which also provides a faster convergeneglspée approximated reduced system

is linear in control

4

at. (£,0,0)+0r (&) us (6.22)
where
Ke, (1+V)%sinae/K
or (&) = ! _) sinde/Koe (6.23)
K|:5(1+V)cosae/KDe

For passivity-based controller design, an outpubeeds to be defined for the approximated

reduced system, to make the system passive [96]. The ostphbsen as

od
Yr = ﬁgr (&) (6.24)
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where

o [d(D dCD]

0F | v o6

= { —cos(59+(1+\7)2 (1+\7)sin§g (6.25)

We check the following expression for the approximated cedumodel,

do 00

E_ﬁ(f(fao,o)-l-gr(f)%)

It is known that

o

So

a® _
dy, = oY

Then by the definition of a passive system, the followingesyst

4

dt (6707 U5>
n (6.26)
A
is passive. Let contrals for system (6.22) be
Us = —®(Yr) (6.27)

for some functionp, whereyrus = —yr@(yr) <O0.
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Now we taked in (6.21) as the Lyapunov function for the closed-loop sys(6.26). Then

dd 9
d_mzﬁ(f(E,O,O)-l-gr(E)Ua)
oD 0P

zﬁf(E,O,O)-l-ﬁgr(E)UcS

< —bg ||€]| +yrus

For the robot controller design, there is limitation on thagmitude of the control variable;,

so in this dissertation, we take

o) = Kic arctarfyr) (6.28)

whereKc is the control parameter that is used to limit the contropatimagnitude. We then have

do

1
<= N .
G < ~PLl€l — yrarctariyo) (6.29)

which proves the asymptotic stability of the origin. Furthere, the additional negative term

—K—yr arctarjyr ) in the derivative of Lyapunov function provides an extrdgization advantage.
C

With that term, the Lyapunov function will converge to zeroma quickly, which results in a faster

convergence speed. That would help the robot to return stgedy gliding path with less time.

80



6.2.2 Stability Analysis for the Full Closed-loop System

From Egs. (6.23) - (6.25), the designed contrallgiin (6.27) is dependent on the reduced model
states as

1 1 P . — — —
Us = Ke arctar(K—De(KF5 cosaesmeg(l-l—V)z—i— Krs smore(l—i—V)z((l—i-V)2 —cosby)))

(6.30)

If applying the above controller to the full-order systenil@® - (6.13), we will have the closed-

loop system, expressed in the compact form as
—= =h(z,us(¢)) (6.31)

-
where the full system state vectos { & n } :

It is challenging to establish the global stability of thégar in (6.31), so it is focused on the
local stability in this dissertation. The linearizationtmvais defined as

Jh
A= 52

~[ailes 632
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The calculated elements in the Jacobian mafirace

2Kr 2sir ae
a=-2-—2
2 9
KcKpe
mogcosfy,  KF 52 SiN0eCOSte
ar2=— — ,
2KD ae
a3z = — ,
Kpe
mogcoslye K ae 2KFs°SiNdecosde
a1 = 5 K~ 5 7
KpeVé De KcKpe
mygsinfye  Krs°COS de
a2 = 5 — >
KpeVé KcKpe
a23 = K /Kpe,

a14=0, ap=0, agg=ap;, agx=agy, agz3=ays,

1 2KF5 sinde
1= >

&  KcKpe

1 K|:5 COSOe
d2= &  KcKpe

aga=1/€1, agz=-1/e, ayu=-1/&.

By examining theA matrix for the Hurwitz property, we would know whether thesgd-loop
system with the passivity-based controller is asympttyicdable at its equilibrium. However, it
is technically difficult to check this 4-by-4 matrix diregtlnless we use a numerical approach.
But due to the time-scale separation property of systemi j6tBere is an alternative way to check
the stability, by checking two 2-by-2 matrices on their Hiteproperty [97].

First, we break the matriA into four blocks using four 2-by-2 matrice$; 1, A12,A21, Aoo.
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Here,

Al A
A—

A1 A2
Following [97], instead of checking matrik, we only need to check 2-by-2 matric8s, and
A11— A12A2721A21 on whether they are Hurwitz, for proving the stability of fludl-order system
whenp is sufficiently small. Plugging the calculated elementdroddrization matriA into those

four matrices, we have

KL u
Hioe & bt
Ago = : A11—A12A55 A1 =
I by by
& €

where

2K|:525in2 e 4u2KpéaesinaeKD

by=-2—

KCKI:2)e €1€2KCK|:2)e
by = — Mpgcosbge KF525in0!eCOSGe N 2u2K|:5 Kpaecosae
KDeVez KCK%e 8182KCK[2)8
by Mygcosfge | Kide 2KF625inaecosae B 2u2KF5 K sinde
KpeVé Kpe KcK3,e £160KcK 2,
by — Mg sinBye B KF520052 Oe B HK|:5 K| cosae
KD(:-'VE2 KCK[Z)e EchK[z)e

For matrixAy», the characteristic equation is

A2 4 KA +kg=0
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where

T _u? KLy

ki — — _
! Hipe €12 uKDeEZ

) Kpe

Becauseu ~ O(¢g), i.e., u is in the same order of the time scaeand they are both sufficiently
small, it can be shown easily that the coefficiat@ndky are both positive, which mearg, is
Hurwitz.

Now for matrixAll—A12A2_21A21, let the coefficients of the characteristic equationband

lo, defined similar tkq andkg. It is easy to get

l1=—(bp+bg),  lo="Dibs—bobs (6.33)

Here we exploit information about the gliding robotic fislrsm and set a range for those

parameters. From the gliding robotic fish application pecsipe, we have

sinde~ e, Coae)~1, O0<Kg, ~O(10), Ve<1, Kpe~O(10), Kys~ O(1),

KLe~O(10), K ~0(100), Kp~O(100), 0.25< |fge <0.75

where metric units are applied to all above parameter vaBesides, we bound the control param-
eterK¢ in an open setl, 10) to restrain the magnitude of the contrg from 9° to 9C¢°, which is
consistent with the application constraints. Then we firad tbr each element in the 2-by-2 matrix
A11—A12A2721A21, there is a dominant term, which determines the sign of tleshent, with all

other minor terms only influencing the value. We express gpgaximation using the dominant
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terms for the matrix elements

Mg COSBye ba ~ Mg CoSBye by Mpgsinbye

bl ~ —27 b2 ~ — R 3~ R )~
KpeVé KpeVé KpeVé

Sincemy and 6y, are always opposite in sighy < 0. We also notice thdt, andbz are opposite
in sign. So from equation (6.33), we halge> 0 andlg > 0. With all characteristic equation
coefficients positive, the matrié(ll—AleZTZlAﬂ is Hurwitz.

From the above analysis, we have shown that the original-4-bgearization matrixA is
Hurwitz for sufficiently smallu, which proves that the passivity-based controller derivech the
approximated reduced model also stabilizes the full-osgstem. Furthermore, by the fact that
the controller is designed based on the approximated reslygtem through passivity analysis,
we conjecture that this controller will be similarly effae for the full system as it does for the
approximated reduced system. In particular, we anticifretethe controller will provide a faster
convergence speed than the open-loop controljer= 0, due to the additional negative term it

introduced into (6.29).

6.2.3 Simulation Results

We apply the passivity-based controller to the full dynameodel, and use Matlab Simulink
to simulate the controller performance. The robot parareetee used arem = 10 kg, Jo =

0.08 kgn?, K g =0 kg/m, K| = 3036 kg/m,Kpg=3.15 kg/m, Kp = 2828 kg/m, Kq = —0.8 kgs,
Kmo = 0.39 kg,Ky = —14.7 kg, & = 29.5, my = 0.05 kg. The equilibrium point i¥e = 0.24 m/s,

Bge = —22.5°, 0e = 1.52° and wye = 0 rad/s. Suppose that we have a current disturbance that
makes the robot deviate off its steady gliding path. Fromhpgbant we want the robot to return to its

equilibrium gliding profile. The initial states are given\gs= 0.2 m/s, gy = —35°, ap=1°and
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Figure 6.2: Simulation results on the trajectories of theigy) angle6y for the open-loopis =0
and closed-loopK = 2) cases, respectively.

wpo= 0rad/s. In simulation, we also consider the dynamics of the aotdat moving the control
surface, approximated by a first-order system with a timestaom of 10 ms. The simulation time
is 60 seconds.

Fig. 6.2 shows that the passivity-based controller desigoethe reduced model works for
the original full-order system, not only stabilizing theatly gliding equilibrium but also speeding
up the convergence process as we expected from the andfygss. 6.3-6.4 show the influences
of the control parametef; on the control output and the glide angle transients. It Gasden
that with a smalleKc, the system converges faster but requires larger initiafrobeffort. With

the arctangent function in (6.28), the tunable parami€tanakes it easy to balance between the
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Figure 6.3: The trajectory of contraj; for the closed-loop simulation with different values .
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Figure 6.4: The trajectory of gliding angl for the closed-loop simulation with different values
for K.
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control effort and the convergence speed.

6.3 Observer Design

In this section, we propose a nonlinear model-based ohstrnestimate the velocity and the
gliding angle6y (see (6.30)), using only the pitch angle which can be medsinoen onboard
sensors. The local stability of the observer is analyzeld witonstructed Lyapunov function [98].
A nonlinear observer is proposed in order to estimate systatas with a relatively large con-
vergence region. The observer gain structure is selectaglltnear, to enable efficient computation
and onboard implementation in experiments. The gain isioddeby solving the Riccati equation
as in the Extended Kalman Filter, in order to take the rolmsstito the measurement noise into the

design consideration. The nonlinear observer can be esguies

A

X = f(X,us)+Ho(6—0) (6.34)

A

6 = h(X) (6.35)

Here,X=[v ég & oy |T is the estimated system stafég, us) is the observer dynamics, as

described in Egs. (6.6)—(6.9)(X) = ég + @ is the output function, anHy is the observer gain.
Let Q be a 4-by-4 symmetric positive definite matrix, which desdtee process noise covari-

ance for the state dynamics. LRbe a constant, representing the measurement noise varlastce

P be the solution of the Riccati equation

AoP+PAl +Q-PCIRIC,P=0 (6.36)
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whereAgy andCg are the linearization matrix of the system,

10D mgeosy 10D
my oV my my da
1 JL mpgsin6y 1 oL 0
Ao — mV oV mV mV da
a 1 _mpgsingg 1 JL 1
mV oV mV mV da
2V (Kmo +Kma) 0 K2 KgaV?
L Jo J2 J e
COZ[O 11 0}

Here,|-]e means that matrix elements are evaluated at the equililppint.

AL AL D aD
= —KVE “— = V(Kp+KLa), = = 2KpVZa, = 2V (Kpo+ Kpa?).

da oV Jda

The existence of a positive definite matixs guaranteed by the observability @& Co). If

P exists, the observer gaky can be designed as

Ho = PCIR™! (6.37)

By tuning the value oR, we can adjust the robustness of the observer to differgatd®f mea-

surement noise.

The stability of the designed nonlinear observer is anaymow. We first define the dynamics
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system states as= [ v By a wp ]T. Then the system dynamics can be expressed as

X = f (X, us) (6.38)

0 = h(x) (6.39)

Define the state estimation error &s- X — X, and then from Eqs. (6.34) (6.35) (6.38) (6.39) we

have the estimation error dynamics
%= f(x,us) — f(X,u5) — Ho(h(x) — (X)) (6.40)
Taylor series of function$ andh are taken at the equilibrium point, and we have
% = (Ao — HoCo)X+ 1 (%,t) (6.41)

Heren(X,t) represents the sum of Taylor series terms that contain demater and higher-order
X. Furthermorep(0,t) = 0. There exist positive constartg andk; such that when estimation

error |X| < cg andx is bounded, we have
(%) < ke [%I? (6.42)
We define a Lyapunov functio(X) for the system (6.41)

V(&) =%"P 1% (6.43)
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We take the time derivative &f(X)

V(&) =% P 1x+% Pk (6.44)

From Egs. (6.36), (6.37), (6.41), (6.44), we have

V(%) = —%" (IR ICo+ P 1QP H)x 4 2xT P~ 1n (% t) (6.45)

Here (CIR™1Co + P71QP~1) > 01inl4x 4 is positive definite, andiy,q is a finite scaler. From

Eq. (6.42), the time derivative of Lyapunov function is bded

V(%) < —c1]|%]|? + o] X2 (6.46)

Herec; andc, are positive scalar coefficients that depend on the noisalsigand the system

matrices. The coefficients can be selected as

CL= Omin, Co=2ky|P7Y| (6.47)

It can be easily shown from Eq. (6.46) that the state estomagirrorX dynamics is locally
exponentially stable. Furthermore, the local exponestiability of the full closed-loop system
can be verified by the separation principle [96] with the grolocal exponential stability property
of the passivity-based controller and the nonlinear oleserv

We also consider the influence of the system noise and measatenoise on the observer
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stability. The noise-corrupted system dynamics can beesged as

x=f(X,us)+ vy (6.48)

6 = h(X) + v, (6.49)

wherev; andv, represent the process noise and measurement noise, reslyedthe state esti-

mation error dynamics for such a system is

k= f(x,us) — f (& ug) — Ho(h(X) — h(X)) + V1 — HoVy (6.50)

Taylor series of function$ andh are taken at the equilibrium point, and we have

X = (Ao — HoCo)X+ N (%,t) + &(t) (6.51)

Here &(t) = v1 — HoVvo. Assuming thatx is bounded and the noise signais and v, are also

bounded, there exist constdgqtandk, such that

In&H] < k%% €M) <k (6.52)

We take the same Lyapunov functiwiX) for the system (6.51)

V(%) =x"P 1% (6.53)
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From Eqgs. (6.36), (6.37), (6.44), (6.51), the time derixatfV (X) is
V(%) = %" (CIR o+ P QP %+ 2P~ (n(%,t) + & (1)) (6.54)

Because of the boundedness properties of the noise sitpealinte derivative of Lyapunov

function is bounded
V(%) < —c1||%]|? + || X3 + c3] X| (6.55)

Herecy, ¢y andcg are positive scalar coefficients that depend on the noisals@nd the system

matrices. The coefficients can be selected as
C1=0Omin, C2=2k|P7Y|, c3=2k|P Y (6.56)
It can be shown from Eq. (6.55) that the state estimatiorr enibbe bounded

1X| < “ when 4£,c3 — c% <0 and ZCTl < Cp (6.57)
2

The condition inequalities in Eq. (6.57) can be checked fgivaen system with known system
matrices and the noise signal characteristics. We specthlat the stabilization output of the full
closed-loop system will also be bounded around the nomisakey based on the boundedness of
the state estimation error and the exponential stabilithefdesigned passivity-based controller.
Simulation is carried out to examine the performance of #sghed observer. The closed-loop
system with the passivity-based controller for stabilmais simulated with full state feedback.

The observer runs in parallel with the closed-loop dynamiitls the measured pitch angle as the
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Figure 6.5: Simulated trajectory of the measured pitch@mdlich is corrupted with noise. The
measurement noise is modeled as Gaussian random prock$-wil.1.

observer input. In simulation, measurement noiég, added to the system outpfift ), is modeled
as a Gaussian random process with zero-mgéa,} = 0, and varianc®, E{u(t)u(1)} = RO (t —

T). Fig. 6.5 shows the noise-corrupted system output, theunegpitch angle with the variance of
measurement noige= 0.1. Fig. 6.6 shows both the real and estimated gliding angjedtories.
Gliding anglefy is used here to evaluate the effectiveness of state estimbécause it is the
signature variable in the sagittal-plane glide motion. @WanparameteK = 2 is used. The
simulation results show that the proposed observer is al#stimate the system states with good

robustness to the measurement noise.
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Figure 6.6: Simulation results: the trajectories of theigly angledy of the real state and nonlinear
observer estimation with measurement noise.
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6.4 Experimental Results

In order to test the effectiveness of the proposed pasddased controller (Section 6.2.1) and the
nonlinear observer (Section 6.3), we conduct both opep-#oml closed-loop experiments using a
gliding robotic fish prototype “Grace”. The tail fin system“{@race” is driven by a servo motor
(Hitec Servo HS-7980TH) through a chain transmission. meexnents, the tail is adjusted up or
down like a whale fluke to modulate the glide motion. A micnocoller (dsPIC 30F6014A) in
the robot runs the glide control program and provides seoragmory for the measurement data.
“Grace” is also equipped with the inertial measurementsumitluding gyros (ST LPY503AL),
accelerometers and a digital compass (ST LSM303DLMTR)¢lvare used to measure the robot’s

attitude.

6.4.1 Filter Design

The IMU sensor output is corrupted with a high-frequencysaoi The system output, namely,
the pitch angle, is computed from the accelerometer sengpub In this dissertation, in order
to smooth the measured pitch angle, a second-order Buttitrwaital filter is adopted. The

discrete-time transfer function of the filter can be expedsss

~1 -2
aot+taz ~+apz
H(z) = 6.58
@ 1+biz 14 bpz2 ( )
whereag, a;, ap, by, by are filter coefficients.
Let f, denote the ratio between the sampling frequefi@and the cutoff frequencyc

fs
fr=-— (6.59)

fc
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For the Butterworth filter, the above coefficients can berdaitaed as the follows

/2
Q== wCT
a; = 2qg
2( - 1)
by = ===
b 1—2cog1m/4) .+ wl?
2:

C

wherewl, = tan(mr/ f;), andc = 1+ 2 cog 11/4) wl + wi2.
In this dissertation, the sampling frequency is 50 Hz, amddintoff frequency is designed to
be 10 Hz. The low-pass Butterworth filter for the pitch angla be described using the following

recursive difference equation,

0(n) =agbs(n) +a16s(n—1) +aybs(n—2) —b16(n—1) —byB(n—2) (6.60)

where8(n) and 6s5(n) are the Butterworth filter's output and input (pitch anglée}te nth step,

respectively. In this dissertatioag = ap = 0.20644,a; = 0.41289,b; = —0.3702,b, = 0.19597.

6.4.2 Open-loop Experiments

Open-loop experiments are first conducted in a large indodk, which measures 5 m long, 3.3 m
wide, and 1.3 m deep, using the gliding robotic fish prototgpened “Grace” (Fig. 6.7). The
robot is first released from the water surface with a fixedaadled, and then water is pumped
into the robot’s body until the net buoyanoy, reaches 50 g. Two seconds after the gliding
down motion is initiated, the observer is initialized in timécrocontroller. During the following

period, the robot records the pitch angle readings from boboard sensors and the observer. The
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Figure 6.7: A snapshot of the open-loop experiment with fbegicangle using gliding robotic fish
“Grace” in the lab tank.

readings are further compared together with the pure coemimatsed Matlab simulation result,
which is obtained by running the same observer dynamicdraamisly in Matlab based on the
sensor output history recorded onboard. Fig. 6.8 showsdgberenental results on the pitch angle
6 for different fixed tail angle® = 15°,30°,45°, where the measured pitch angle is compared
with the values derived from the state estimate with Eq.56.3-irst, we can observe that the
computer-based Matlab simulation of the nonlinear obsgr@luces estimate trajectories almost
identical to those from the onboard observer, confirmingjtt@microcontroller is able to execute
the observer with little loss in accuracy. Second, the mbgtiveen the observer estimation and

sensor output further validates the design of the nonlinbaerver.
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Figure 6.8: The trajectories of pitch angle of the on-boamkssr reading, observer estimation and
computer-based simulation result, in the open-loop erpanmis using gliding robotic fish “Grace”.

(@) 5 = 15°; (b) & = 30°; (C) & = 45°.
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6.4.3 Closed-loop Experiments

In this subsection, experimental results on sagittalglstabilization using the passivity-based
controller are presented to verify the effectiveness ohlibeé proposed nonlinear controller and
the nonlinear observer. Experiments are conducted in thardleBuoyancy Research Facility
(NBRF) at the University of Maryland, College Park, whiclaig/ater tank measuring 15 m across
and 7.5 m deep.

In the experiments, the robot is released from the wateasenvith a net buoyanaeyy = 50 g.
The tail angled is initially set to 60. Then the robot enters gliding down motion. When the robot
reaches a preset depth of 1 m, the tail flap® te 0° to provide an initial perturbation for the
stabilization process. Then the designed passivity-begettoller (6.30) kicks in to stabilize the
system, with the state estimation using the nonlinear obs€Fig. 6.9). A Qualysis underwater
motion capture system, which consists of 12 underwater @sv@d motion tracking software, is
used to record the whole stabilization process and anatgmbtion afterwards (Fig. 6.10).

Fig. 6.11 shows the experimental results on three typestofi gingle trajectories including
onboard sensor measurements, onboard observer estimatibmotion capture system output,
together with the onboard gliding angle estimation, wheremalback control exists, with tail an-
gle trajectory designed as in Fig. 6.12. Figs. 6.13—-6.1&/d¢he experimental results for passivity-
based stabilization for two different values of the corn&ogain. From the experimental results,
we observe a good match among the pitch angle estimatiooytimard sensor reading, and the
motion capture system output. The results further verigypgloposed nonlinear observer design.
Besides, the gliding angle converges to the equilibriummparound—23.5°. The results con-
firm that the passivity-based controller effectively sliabs the sagittal-plane glide motion and

speeds up the convergence process, comparing with the ayligle trajectory in the open-loop
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Figure 6.9: A snapshot of stabilization experiment usirndigd robotic fish “Grace” in NBRF,
University of Maryland.
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QuALISYS

Figure 6.10: A snapshot of stabilization experiment in tlewof the 12 underwater cameras of
the Qualysis motion capture system in NBRF, University ofjnd.
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Figure 6.11: The trajectories of pitch angle and glidinglang the experiment of gliding stabi-
lization without feedback control.

case (Fig. 6.11). It also shows that with a smaller contrgin K¢, the arising time of the pitch
angle is shorter (1 second in Fig. 6.15 vs 2 seconds in Fi§) Guid the control output magnitude
is larger (25 in Fig. 6.16 vs 18 in Fig. 6.14), which is consistent with and complementary to
the simulation findings in Section 6.2.3. This providesghsinto the control parameter design in
order to balance between convergence time and controteffor

In experiments, we also implemented proportional corgrahd PI controller for glide stabi-
lization for the purpose of comparison. Experimental rissusing a proportional controller and a
PI controller are shown in Figs. 6.17-6.18 and Figs. 6.133Gespectively. We varied the con-

troller parameters, the proportional gafp and the integral gaii; in order to obtain a better
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Figure 6.13: The trajectories of pitch angle and glidinglang the passivity-based stabilization
experiment withK¢ = 3.
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Figure 6.14: The trajectory of tail angle in the passivigsbd stabilization experiment wikg = 3.
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Figure 6.15: The trajectories of pitch angle and glidinglang the passivity-based stabilization
experiment withK¢ = 1.
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Figure 6.16: The trajectory of tail angle in the passivigsbd stabilization experiment wikg = 1.
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performance. We find that with a larggp andK, the arising time of the gliding angle trajec-
tory is reduced, however, with the cost of larger overshadt@scillation amplitude, which shows
similar tradeoff in tuning the passivity-based controtj@in. Furthermore, in the comparison of
the experimental results between using P/PI control andiypgsbased control, the differences
in arising time, percent overshoot, and oscillation timevshhat passivity-based controller has
an overall better performance than the P/PI controllereegfly in terms of the balance between

convergence speed and control effort.
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Figure 6.17: The trajectories in the comparative staliibmeexperiments with a proportional con-
troller with Kp = 2. (a) pitch angle and gliding angle; (b) tail angle.
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Figure 6.18: The trajectories in the comparative staliiizeexperiments with a proportional con-
troller with Kp = 3. (a) pitch angle and gliding angle; (b) tail angle.
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Chapter 7

Yaw Stabilization Using Sliding Mode

Control

7.1 Problem Statement

Steady gliding motion is the most commonly used profile fodemvater gliders, providing the
capability of sampling water in the field while saving eneajythe same time. Setting the right
hand side of Egs. (3.2)—(3.5) to zero, we can solve thosetiegsdor the steady glide path given
a fixed movable mass displacemeptand excess masgg, with zero tail angle [80]. Due to the
existence of ambient currents or disturbances, the robsmigseptible to yaw deviation from its
desired direction, beside the sagittal-plane perturbatiscussed in Chapter 6, which makes yaw
angle stabilization very important.

For succinctness, we first rewrite the system dynamics Bgg)~(3.5) in a compact form

X = f(X)+A1(X) +9(X)(u+Ax(t,x,u)) (7.1)

y=h(x) =y (7.2)

wherexisthe systemstat&=[ ¢ 0 ¢ v; v, v3 W %]T,u:éisthetail angle,

which is the control input in the current setting, alvf{X) andAx(t, X, u) represent uncertainties.
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The system output is chosen to be the yaw aggl&he functiong(x) is dependent on the state

0341

1 o .
—Epv SC‘SSFcosa sing

1 o
X) = - 7.3
g(x) 2m3pV ch,:smasmﬁ (7.3)
1 . .
_Z_lev ScﬁIY sina

0

1 2
—pV
2 P SCf,]Y cosa

The yaw motion stabilization problem is how to design théestaedback controller for the tail

angled, to stabilize the yaw anglgy to a desired valuein the presence of disturbances.

7.2 Sliding Mode Control for Yaw Stabilization

Sliding model control is a practical nonlinear control nmethespecially for robust stabilization
[96]. In this dissertation, we adopt sliding mode contral til-enabled yaw motion stabilization
of gliding robotic fish. Basic control design proceduredalk the approach described in [96]. We
further construct a simplified controller requiring onlyrfial state feedback information based on
the derived controller [99].

In order to obtain the relative degree of the system, we tagéime derivatives ofi(X)

h(x) = ( = sinpsedw, + cospsecdws = Lth(X) (7.4)

h(X) = @ = LEh(X) + La, Lh(X) + LgLth(X) (u+Aa(t, X, u) (7.5)
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whereL ¢h(-) represents the Lie derivative of functibf) with respect to the vector fieltl -) [96],
andL2h(x) is equal to_¢L¢h(x).

The results thalt(x) does not depend on control inpuandh(x) does, imply that

Lgh(x) =0 (7.6)

LgLth(x) #0 (7.7)

so the relative degree of the systggys= 2.
From Frobenius Theorem [100], there exists a transformtfond (x), which converts the

original system to the normal form with system stdigsé|".

p1(X)
n P(x)
= =| py(x) | =T(X) (7.8)
3 W(x)
h(x)
L¢h(x)
where
%(x)—Ofori—lz 7 (7.9)
0xg - ™ Dt Rt .
§=& (7.10)

Let r denote the reference trajectory for the yaw angle, whichldvba a constant number in
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the stabilization problem. Take

R = (7.11)
r
The yaw error vectoe is
{1t
e=¢—-%= (7.12)
So—f
Then the error dynamics is expressed as
n = fo(n,§) (7.13)
€1 =€ (7.14)
& = LFh(x) +La, Lih(X)
+LgL¢h(X)(u+2Ax(t,x,u)) =¥ (7.15)

Assume thaf) = fo(n, &) is bounded-input-bounded-state stable vitas the input. Then we

design a sliding manifold

s=ey+koer (7.16)

wherekg is a positive constant.

Sliding mode control can be taken as the following to canoelknown terms as in feedback
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linearization,

u=

gyt (

wherev is the switching component, and

L2h(x)

oy
ox

Or we can take the controller as the pure switching component

_9v,
- 0X
_9v
- ox
cospseddwp
secd tand(cospwy + CoSPws)
= 05 x 1
singpsecd
cospsecd

Then in either case, theequation can be written as

Suppose that the uncertainty

' A(t, X,

5= LgLh(X)v +A(t,X,v)

satisfies the following inkiyua

v)

<p(X)+Kolv], 0<Kp<1
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(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)



wherep(X) represents the upper bound of the uncertainty related teyftem states.

Design the switching component
v = —y(X)sat(s/€) (7.24)

wheresat(s/¢) is a high-slope saturation function with a small constgniised to reduce chat-
tering, andy(X) > p(X)/(1— Kp) + Yo with constanty, to deal with the non-vanishing disturbance
A(t,x,v) if that is the case.

In this dissertation, we choose
k
V(%) = Ky [|X— Xel|5? + K3 (7.25)

whereXe is the system equilibrium point, which can be calculatecgia steady gliding profile
[82], andk, ko, k3 are tunable controller parameters, determined by the taiogr type and also
capable of adjusting closed-loop dynamics performance.

Based on the fact that the yaw anglas the state we really care about, we further simplify the

sliding mode controller (Eq. (7.21),(7.24),(7.25)) to
U= —(ky | — |2 + ka)sat(s/e) (7.26)

where the sliding mode controller only requires the infotiora of yaw angle, making it easy
to implement. The effect of this simplification on stabilitgn be compensated by increasing
controller parameters;, ko and especially the non-zero constégt Although this will increase
the tracking error in general, the controller implemematbecomes much more simpler. The

effectiveness of the designed controller will be evaluatedimulation and experiments in the
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Table 7.1: Parameters of gliding robotic fish “Grace”.

Parametel Value Parameter Value
my 8.0 kg ny 19.8 kg
mg 10.8 kg m 1.6 kg
Coo 0.45 cg 17.59 rad 2
CE 2 rad! c2 1.5rad?

S S
CLo 0.075 ce 19.58 rad !
Jp 1.27 kgm? X 0.08 kgm?
J3 0.13 kgm? CiMg 0.0076 m
Che | -0-3mirad %o | O.71mirad
C,&Y 5 m/rad C,\‘}Y -0.2 m/rad
Kq1 -0.16 ms/rad Kg2 -0.80 ms/rad
Kgs | -0.16 msirad S 0.019 n?

following sections.

7.3 Simulation

To evaluate the designed sliding mode controller, simaitais carried out in Matlab. The param-
eters used in the simulation is based on the gliding robatlt prototype “Grace”, obtained via
scaling analysis on our previously developed prototyp&#j (Tab. 7.1).

The initial state values for the simulation are

=0, 6 = -30°, Y =30, v1 =0.27m/s, Vo =0,
v3=0, w =0, wp =0, w3 =0.
The controller parameters used in the simulation are
ko = 10, k1 = 10/30/50, k) =0.8/1/1.2 ks =0.01
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Figure 7.1: Yaw angle trajectory with respect to differeomiroller parameterk; .
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Figure 7.2: Tail angle trajectory with respect to differeantroller parameters;.
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Figure 7.3: Sideslip angle trajectory with respect to défe controller parameteks.
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Figure 7.4: Yaw angle trajectory with respect to differemiroller parameterk,.

In Figs. 7.1-7.3, the trajectories of yaw angle controller command, and sideslip angle
B are shown for varying controller parametgrwhile Figs. 7.4—7.6 shows the simulation results
when varying controller parametks. From the results, we can see that under proper controller
parameter setting, the sliding mode controller is able ¢uiliete the yaw angle, which is deviated
from the desired orientation, back to the original, zerolangthin a relative short time. Con-
sequently, the trajectory of the glider is adjusted to th&red path, with the heading orientation
being zero degree, as shown in Fig. 7.7. From the comparisderuifferent controller parame-
ters, we find thak, andk, control the balance between response speed and contiitdr &/ith

largerk; and smallek,, the system responses faster and requires bigger contpitamplitude.
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Regarding parametésg, as in the sliding mode design principle, it should balaheesteady-state
error and uncertainty tolerance capability. With a larggrthe controller is able to work under

larger uncertainty while leading to bigger steady-staterer

7.4 Experimental Results

We implement the sliding mode controller on our lab-devetbgliding robotic fish “Grace”, and
conduct yaw angle stabilization experiments in a large andeater tank that measures 15-foot
long, 10-foot wide, and 4-foot deep. Yaw angle is calculdtethe on-board micro-controller
using real-time sensor feedback from compass, acceleeonaetd gyro. The sampling time for
sensor reading is 100 ms. A discrete-time low pass filter diegh directly after the raw data to

smooth out high frequency noise, with the difference equati

o(n)=axi(n)+(1—a)xo(n—1) (7.27)

wherei(n) ando(n) are the low-pass filter's input and output at timeespectively. Filter param-
eterae (0,1) is selected to be.B in the experiment.

In the experiments, we release the gliding robotic fish onviheer surface with a deviated
yaw angle. Then the robot starts to pump water in and tram$het movable mass forward to
the set valuemny = 40 g, andrp = 5 mm. After the robot is fully submerged and enters gliding
down maotion, the sliding mode controller is applied to regelthe yaw angle to the desired value,
defined as zero degree. The robot motion in the whole prosessarded with a top-view camera
hung on a guiding rail and a side-view underwater cameraglacthe tank (Fig. 7.8).

The sensor reading is stored in the on-board memory and sekttb the laptop through
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(b) Side view

Figure 7.8: Snapshots of controlled motion with yaw stahtiion using sliding mode controller,
under parametetls = 50, ko = 1.
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Figure 7.9: Yaw angle trajectory using “Grace”

wireless communication when the robot surfaces. Due to dhge limitation of the tank, we

conduct the experiment for about 15 seconds. That correspmnthe most of transient process,

leaving the period that is close to the steady-state motiweaorded.
In Figs. 7.9 and 7.10, we plot experimental results for batih gngley and tail angled. From

the experiment, we can see that the proposed sliding modeotienis able to regulate the deviated
yaw angle to the desired set value, with reasonable taikeasaglplitude. There exist sensor noise

and tail rotation dynamics, which contributes to the unsthgaw angle readings. More advanced

sensor and filtering method could be used to solve the praoblem

131



60

gl
o

20

1
1
°_ 407 BT R
o o
@ PR |
> 30 G B
s P ;
T o0l T T T
— 20 = \’\:
1 ’/‘s,\/
10+ Il M. '—'\”l;‘ o
I
O — 1 1 1
0 ) 10 15
Time (S)

Figure 7.10: Tail angle trajectory using “Grace”

132



Chapter 8

Three-Dimensional Curve Tracking

8.1 Three-Dimensional Steady Spiral and Its Differential G-

ometry Features

The three-dimensional motion control for gliding robotistj in terms of curve tracking, is very
challenging because the influences of the control inputsherrabot’s locomotion are strongly
nonlinear and coupled. It is more convenient to look intoitifeience of control inputs on the
robot’s differential geometry features, such as curvaaue torsion, because we can examine the
relationship between those geometric characteristiopeters and the control inputs by studying
the steady-state spiral motions of the robot.

We decompose an arbitrary three-dimensional curve intb@f sentinuously evolving spirals.
In this way, at any point of the space curve, there is an inagimatching spiral curve with the
same curvature and torsion. With this interpretation gadtof using the Euclidean positions, we
will explore the task of three-dimensional curve trackimgadesigning and following continuously
evolving spirals from the point of view of differential geetny [101].

First, Let us review the results of the steady spiral motiscussed in Chapter 4.

There are three control variables available to manipuleedbot’s motion profile: the excess
massmg, the position of the movable masg, and the tail anglé. From [80] and [81], we know

that when all three controls are fixed at non-zero valuegjlileng robotic fish will perform three-

133



dimensional spiraling motion and finally enter a steadyadpivhere the yaw anglgp changes at a
constant rate while the roll ang{gand pitch anglé remain constant.

The dynamics of the spiral motion, derived from (3.2)-(39n be presented in a compact
form as

Xs = f(xs,u) = [fi(Xs, U)lgx1 (8.1)

T T
wherexs:<(p 0 Vi Vo V3 W QB) ,andcontrolinput1;|:<rIO mo 5) .

The steady-state spiraling equations can be obtained tiggs8ine derivatives to zero in (8.1)

0= f(xs,u) = [fi(Xs, U)]gx1 (8.2)

In a steady spiraRTk is constant since

0 —sin@
Rk=R"| o | = sinpcosh (8.3)
1 cosgpcost

The angular velocity has only one degree of freedom waghin Ox axis in the inertial frame

wh = w3 (RTK) (8.4)

Therefore, in the system of algebraic equations (8.2)¢ethez nine independent variables (includ-
ingcontrolinputs)fordescribingthesteadyspiralmoIi(JrqD 0 wy rp M 6V a P )T.

Hereafter we will use a state transformation on linear vigfa@riables for the sake of calculation
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convenience

Vi Vv V cosa cosf3
Ww=| w |=Rw| 0 [= Vsinp (8.5)
V3 0 V sina cosp

In the elementary differential geometry, a three-dimemsicurve is captured by its curvature
and torsion. The curvature is the amount by which a geometric object deviates from b#aig
or the degree by which a geometric object bends, while torsimeasures the departure of a curve
from a plane, or how sharply a curve twists. Any time-trapegtof a smooth space curve can
be completely described mathematically using curvatumsjdn and velocity with Frenet-Serret

formulas [102].

The geometric parameters (curvature, torsion, velocitg) steady spiral can be expressed as

r

K = 2,2 (8.6)
C
TS oL@ 8.7

wherer is the steady spiral radius, andr@is the steady spiral pitch, or the vertical separation

between two steady spirals. Furthermore,

whereV}, andV,, are the horizontal velocity and vertical velocity, respesy, of the steady spiral

motion.
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We also have

V242 = v? (8.10)

From (8.6)-(8.10), the angular velocitys; and the vertical velocityy, can be described by the

three geometric parameters, 7, andV

wsi = VVK24T2 (8.11)
T2

8.2 Influence of Control Inputs on Spiral Trajectory

As for the spiral motion, the three control inputs, incluglthe movable mass displacemegtthe
net buoyancymg, and the tail angl®, have different influences on both the steady-state motion
profile and the transient dynamics. In this dissertationfagas on the influences of control inputs
on the steady-state spiral trajectory characteristicgshwbrovide useful insight for path planning
in three-dimensional curve tracking.

We study the relationship between three system controltsngud three trajectory character-
istic parameters, including curvatuke torsiont and total speel, which are used to completely
describe any three-dimensional trajectory. With the systgnamic model in Chapter 3 and sys-
tem parameters as in “Grace”, we conduct simulation wittetght sets of values of system control
inputs, and then record the corresponding steady-statd ppiths.

Fig. 8.1 shows the relationship between tail angland the three trajectory characteristic

parameters, while the net buoyaney and the displacement of movable magsare fixed at

136



30 g and 6 cm, respectively. Simulation results of varyimg andr are shown in Figs. 8.2-8.3.
From those figures, we see that all control inputs have sagmifiinfluence on the motion profile,
although the degree of influence varies. For examplandrp have greater influence anand

T thanmg. Most relationships show monotonic trends, while non-nmonic relationships appear
betweerk/t andmy (Fig.8.2a). The simulation results of the influences of oanbputs on robot’s
spiral trajectory, provide insight into the capability dir¢e-dimensional maneuvering as well as
the feedback controller design for three-dimensional etracking.

In order to verify the relationship between the control itgpand the trajectory characteristic
parameters of steady-state spirals, experiments are ctattlusing the prototype “Grace”. The
experiments are carried out in the Neutral Buoyancy Rekelgacility (NBRF), University of
Maryland. The water tank measures 50 feet across and 25dept d

In experiments, “Grace” are remotely controlled via Xbee€ymmunication to perform spiral
motions with different control input values (Fig. 8.4). TiWlole spiral process is recorded using
a Qualysis underwater motion capture system. The motiolmapystem features 12 underwater
cameras around the water tank, with 8 at a shallower deptilaidh deeper depth. Each cam-
era captures the spiral motion from a different angle of viéwg. 8.5). The robot is equipped
with five markers, which the motion capture system uses totifyethe rigid body. Some of the
robot’s states, such as linear and angular positions carebsumed and outputted using the system
(Fig. 8.6), and other system states, including translatiand angular velocities can be estimated
from those measurements.

Fig. 8.7a and Fig. 8.7b show the comparison results betwesembdel prediction and the
experimental results on the spiral curvature and torsioenwaryingd from 20° to 50° with
the myg andr, fixed at 30 g and & cm, respectively. The results on the spiral total speedts n

presented as the influence of the tail angle on that varialvletivery obvious as shown in Fig. 8.1b.
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Figure 8.4: The gliding robotic fish “Grace” spiraling in Neal Buoyancy Research Facility,
University of Maryland.
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QUALISYS

Figure 8.5: Snapshots of spiral motion with 12 underwateraras from different angles of view
using a Qualysis underwater motion capture system.

Figure 8.6: lllustration of robot’s rigid body and coordiaesa in spiral motion using a Qualysis
underwater motion capture system.
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The spiral experiments at each set of control input valuesanducted five times. The mean and
standard deviation af andt are provided with the error bar in the figures. Considerirgciirrent
disturbance in the water tank due to the boundary effectganstantly active filtering system, the
match between the model prediction and the experimentaltsas reasonable well, which further
validates the derived system model.

The experiments for varyingg andrp are not carried out and presented here because the speed
and the gliding angle could be much increased so that the mitidoump into the metal frame

located in the center of the water tank (setup for other expmts and not removable currently).

8.3 Two Degree-of-Freedom Control Design

In this section, we propose a 2-DOF control strategy for tinee tracking problem where an
inverse mapping is used as a feedforward controller whilebaistH. controller is used as the
feedback controller, which is designed based on the linedrmodel around the steady spiral
trajectory. The open-loop feedforward controller obtdift®m inverse mapping of steady spiral
motion serves as a driving force pushing the robot towareslésired steady spiral. However, the
convergence time is relatively long, which will be demoatgd in simulation later. The feedback
He controller aims to speed up the convergence and enhancerioerpance robustness. The idea
of the 2-DOF controller is that with the feedforward inversapping, the dynamic nonlinearity is
reduced so that a feedbaldk controller can be designed based on the linearized modehie\ae

improved transient performance.
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other two control inputs are fixety = 30 g, andp = 0.5 cm. (a) curvature; (b) torsion.
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8.3.1 Feedforward Control via Inverse Mapping of Steady Spal Motion

In this subsection, we study the feedforward control for 8ibve tracking for gliding robotic fish.
Based on the fact that a three-dimensional curve can be qes®d into a set of continuously
evolving spirals, we propose a 3D curve tracking method bgking geometric characteristics
of these spirals instead of following Euclidean positiods) open-loop feedforward controller
is designed using inverse mapping of the steady spiral mofidhis inverse controller will also
become part of the proposed 2-DOF controller.

We will calculate the desired control inputs for a given dieapiral profile, which is param-
eterized by curvature, torsion and velocity. This inversgpping solution can be adopted as an
open-loop feedforward controller for the 3D curve trackprgblem.

With (8.4), it can be shown that the first two equations in &l#ays hold, thus redundant.

With the value oy, known from (8.12), we have one more constraint equation

\
W=Rp/ | 0 (RT k) (8.13)

0

Givenk, T andV, we can calculate the value of the angular veloaigyfrom (8.11). Knowing
the values oV and wg;, there are seven unknown variables left out of nine indepenhstates
for the steady spiral motioh ¢ 6 wi fp My &V a B )T. Correspondingly, there are
seven independent algebraic equations from (8.2) and)(8Th2 inverse mapping problem is then

formulated as

0=9g(x) = [6i(X)]7x1 (8.14)
wherex=(¢ 6 o B rp mg & )T. The expansion afj(x) is shown in (8.15)-(8.21).
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+ 1/2pVZS(C|€|RB — Kaa$03;)sB +1/20V 2S(Ci, + G, @ + KgaspeB g )cB (8.19)
0= (Jp— Jq)S850cO w3 + (My — my)cacBsBV2 + 1/2pV25(C,€|RB — Kq1S8wsi)sacp

—1/2pV?S(Cyy + Cit 0 + Kq2s9c0as; ) sas + mgrpsged

+ 1/2pv25(c:,€IY B+Kgacpehuwg +Cfy 8)ca (8.20)

0=W/V +cacpsf —spcOsp — sacBchcy (8.21)

Unfortunately, there is no closed-form solution to thisteys of equations. In this dissertation,

we use a Newton’s method to find solutions recursively, whpobvide the desired open-loop
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control inputs. The iterative algorithm for Newton’s medhreads [95]
%11 =% —JI7H(%)g(%) (8.37)

HereX; is theith-step iteration fox, andJ(X) is the Jacobian matrix @f(x)

_dg_ [0y
J(x,u) = I <0—Xj)7x7 (8.38)

8.3.2 Linearized Model Around the Steady Spiral Trajectory

The linearized model can be obtained by linearization ofsiieal dynamics around the equilib-

rium spiral trajectory. Recall the spiral dynamics (8.1)
Xs = f (X37 u) - [fl (XS7 u>]8>< 1

wherexs= (¢ 6 v; v, vg w0 w, ) andu=(r, my &)'. We define trans-
formedsystemstates=( 9 6 V o B w wp %)T for the convenience of computation

of the Jacobian matri3(xs, u). The linearized system matrices are

A== |G| - [‘;—; (%) _1] 839)
B [% L (8.40)

Here[-]o means the matrix elements are evaluated at the equilibrain.p

We define the linearized system outputyas: ( ¢ @ Vi )T, linear in system states. The
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linearized system output matrices are

C = [133 0345 (8.41)

D =03, 3 (8.42)

The objective of the controller design for the linearizedd®lds to drive the three selected system
outputs to the desired values that are computed via inveapgimg (Section 8.3.1) at an improved

speed.

8.3.3 He Controller Design

A 2-DOF control is adopted for the 3D curve tracking probleninicrease the system bandwidth.
The 2-DOF control system configuration is shown in Fig. 8.8e Transfer functior(s) repre-
sents the spiral dynamics systel(s) is the feedback controller. = (¢ 6, vy, )T is the
perturbation of the reference signal from the nominal v&lwe= ( o My o )T is the control
input to the plant.e = r —y represents the tracking erroWe(s) is the user-defined weighting
function to impose the requirements for the tracking baxdwand tracking error amplitude. The

state-space realization 8&(s) is as follows,

Xw = AwXw + Bwuw (843)

2,y = CyXw + DwUw (8.44)

W, = diag(wy1, W2, Wy3) is the weighting function to help control the magnitude cfteyn control

inputs, andzy = W,u.

The tracking performance can be characterized by the trgekirore. Meanwhile, the control
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Figure 8.8: The control system diagram with combination pérmloop control and closed-loop
control.

L J
1

K jfe——-

Figure 8.9: Transformed 2-DOF control configuratiorHig control framework .

effort can be characterized by the control inpwthich is desired to be small for the consideration
of energy consumption. The objective of the feedback cowkesign is to minimize those two
signalse andu.

This optimization problem with the feedback control for fireearized model can be trans-

formed into anHs robust control framework as shown in Fig. 8.9. In thlg control system
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configuration,

The interconnected system

where

Cp

—DuwC Gy

z2=(zy 24 )"
n=r—y
A, B
o p Bp
Cp Dp
Bp

(8.45)

(8.46)

(8.47)

(8.48)

—DwD

-D

The design objective is then to minimizing thie, norm of the transfer function fromto z

min|[TZ(9) .

(8.49)

To solve the abovEl, optimization problem, we adopt the commadndfmix-) in Matlab LMI

toolbox, the output of which provides the feedback congrd(s).
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8.4 Simulation Results

Given desired trajectories of curvature, torsion and vgfpsimulation is conducted to test the
effectiveness of the proposed 2-DOF control algorithm. therpurpose of comparison, we have
also conducted simulation with pure inverse mapping cé(ge® Section 8.3.1) and Proportional-

Integral (PI) control. The PI controller is designed as

5 = KSnK+KS / Ak (8.50)
rp = KPBT+KP [ (8.51)
my = KpPAV 4K / AV (8.52)

whereA stands for the difference between the desired value andlaaiue of the variable that
follows. The particular form of the PI controller, where ot@ntrol input is only dependent on
the error feedback from one geometric parameter, is addptetbsign convenience and based on
the observed influences (in simulation) of the control isput the geometric parameters, where it
appears that each control input has more pronounced impami® of the geometric parameters
than other two inputs. The PI controller coefficients aregiesd asKlgS =0.1, K|‘S =0.01, K:;p =
0.05, KlIrIO = 0.005, Kgb =0.1, Klmo = 0.01. There are three control inputs and three geometric
variables to track, so the strong coupling between the obmtputs makes the parameter tuning
quite challenging. The PI control parameters are tunednmulsition in order to obtain the best
tracking performance.

The model parameters used in simulation are based on thieladdeped gliding robotic fish
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prototype “Grace” as in Table 7.1. The initial values of syststates used in simulation are

0=-72° Q

I
()

vi=0.1m/s Vo =0

vz = 0.04° Wy

0 wp, =0 w3=0

This represents a sagittal-plane glide motion.

The weighting functions for the feedbakk, control design are chosen as

Ay = diag(—500, —100, —200) Bw = diag 9,9,9)
Cw = diag(—1, —1,—1) Dw = diag0.1,0.1,0.1)

W, = diag(0.2,0.05,0.2)

The solution to theH, optimization problem is a eleventh-order linear systemtfa con-
troller K(s). Through model reduction techniques by investigating thidant singular values,
a seventh-order controller is used in simulation. Satona also imposed to restrict the control
inputs to the feasible range of actuators.

Figures 8.10 and 8.11 show the simulation results of the&itnggoerformance of three geo-
metric parameters and the control efforts of three conimalis, respectively, for tracking a steady
spiral trajectory with constant geometric parameters agd&12 shows the tracking trajectory
in the 3D view under the proposed 2-DOF controller. From tiheukation results, we see that
both PI controller and feedforward inverse mapping coterare able to stabilize the system to
the desired steady-spiral trajectory. However, both harerergence times between 30 and 40
seconds. There is also noticeable steady-state trackiogweith the PI controller. With the pro-

posed 2-DOF controller, the system tracking performana@psoved significantly. Convergence
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time decreases to less than 10 seconds with smaller stéatgyesrors. Meanwhile, the 2DOF
controller uses more control effort than the open-loop fileedard strategy. Figs. 8.13 and 8.14
show the simulation results of the tracking performancéde geometric parameters and the con-
trol efforts of three control inputs, respectively, whee tieference velocity changes as a sinusoid
function with respect to time while the curvature and tansiwe kept constant. There is a large
time/phase delay in the tracking of velocity for the feedfard control, which is expected due to
the observed slow convergence speed. Besides the time theday is also significant tracking er-
ror with the PI control. But with the 2-DOF controller, thatking performance shows significant
improvement in terms of the time/phase delay and the trgo&imor. Besides, in Figs. 8.13a and
8.13b, the variables fluctuate even though the referenceasstant. This shows coupling among

control inputs on the spiral geometric features.
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Figure 8.10: The simulation results of the geometric patarsevhen tracking a steady spiral
trajectory. (a) curvature; (b) torsion; (c) velocity.
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Figure 8.14: The simulation results of control inputs on wktee reference velocity changes as a
sinusoid function with respect to time while curvature amion are kept constant. (a) displace-
ment of movable mass; (b) tail angle; (c) net buoyancy.
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Chapter 9

Field Test Results for Environmental

Monitoring

In this chapter, we present some preliminary field testiisglts for oil spill detection in the Kala-
mazoo River, Michigan, and algae bloom monitoring in the \&figreen Lake, Michigan, where
basic functions of gliding robotic fish, the swimming, thélglg, and the spiraling are tested in
the field. It is found that the crude oil sensor readings wéferdnt at the three selected locations
along Kalamazoo River near the spill site, with slightly lneg values at the downstream sites.
For the algae concentration, the sampling results werestens with readings from a traditional

hand-held device [84].

9.1 Kalamazoo River Test

“Grace” was deployed in Kalamazoo River in November, 20b2¢dtect the crude oil content
near the 2010 Enbridge oil spill site near Marshall, MiclhigA Turner Designs Cyclops-7 crude
oil sensor was used to sample the water. We tested threediesatlong the Kalamazoo River
(Fig. 9.1). The spot A was downstream of the oil spill spotetthivas an open river area (Fig. 9.2);
the spot B was upstream which was in the woods (Figs. 9.3)teedpot C was also upstream
which was under a bridge (Fig. 9.4). “Grace” swam in the Kalaao river by flapping its tail

fin, collecting data in the selected locations. The readfrm® the sensor are recorded onboard
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Figure 9.1: Three selected sampling locations illustratggdoogle Map.

Table 9.1: Locations and sensor readings in Kalamazoo Rager

Spot GPS Coordinate Sensor Reading
A (42.258655, -84.99888333) 3.33V
B (42.26156167, -84.953565) 3.04V
C (42.2616, -84.85534667) 2.87V

and transmitted wirelessly to the base station onshore.GR® position and the average sensor
reading at each spot are shown in Table 9.1.

The results show that the sensor readings were slightlyehighthe downstream sites of the
spill spot than the upstream. There is a relationship betwlee sensor’s output (in voltage) and
the real concentration of crude oil. In this dissertatior,provide only the raw readings from the
crude oil sensor. The detection spectrum of the sensomatvely wide so that it may not precisely

reflect the actual crude oil concentration.
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Figure 9.3: Swimming trajectory of gliding robotic fish inetivoods at testing spot B.
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Figure 9.4: Swimming trajectory of gliding robotic fish um@ebridge at testing spot C.

9.2 Wintergreen Lake Test

Gliding robotic fish “Grace” was also used to sample the Wgreen Lake, Michigan for the blue-
green algae (cyanobacteria) concentration in July, 20b&. SEnsor we used was Turner Designs
Cyclops-7 Freshwater Blue-Green Algae Sensor. The seeadings in this field test are compared
with those from a manually deployed profiler with the bluegr algae sensor (Hydrolab) that has
been traditionally used in the sampling of harmful algae.

Surface swimming was tested first at Wintergreen Lake usiig¢e” (Fig. 9.5), with sensor
readings recorded for selected locations. Table 9.2 shwev&PS position and the sensor outputs
of algae concentration at those points.

Since algae concentration varies at different depths, wa raumber of steady glide and steady
spiral motions using the robot to detect the algae bloom éntkinee-dimensional water space.

Figs. 9.6-9.9 show the results of steady glide tests. The(stédomerging) and the end (surfacing)
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Figure 9.5: Selected sampling points in the Wintergreerelwith surface swimming.

Table 9.2: Locations and sensor readings in Wintergreee Led.

Spot Sensor Reading Hydrolab Chl GPS Coordinate

A 0.252979V 2.19 (42.3987, -85.38334)
B 0.336768 V 2.45 (42.39851, -85.38359)
C 0.289233 V 2.33 (42.39874, -85.38367)
D 0.263452 V 3.06 (42.39904, -85.38356)
E 0.269897 V 2.60 (42.39919, -85.3831)
F 0.422168 V 3.89 (42.39938, -85.38271)
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Figure 9.6: Depth trajectory of steady glide when samplilagewin Wintergreen Lake, Michigan.
points are (42.398228, -85.384644), and (42.398361, 886.36), respectively, with a travel dis-
tance of 14 meters. The readings of Chlorophyll from the Ildiady device at this location are 3.11
at1.26 m, 5.69 at 2.45 m, and 8.73 at 3.55 m. Figs 9.10-9.18 gteresults for the steady spiral
test with the spiral center at (42.398338, -85.384727). réladings of Chlorophyll from the Hy-
drolab device at this location are 2.89 at 0.97 m, 6.59 at4&8nd 10.26 at 4.05 m. The readings

from the robot were found to be consistent in general witls¢hfoom the Hydrolab device.

164



sensor reading (V)
c o ©o o ©o
a1 (o)} ~ (o) ©

o
N

Figure 9.7: Sensor readings of steady glide when samplingrwaWintergreen Lake, Michigan.

Figure 9.8: Yaw angle trajectory when sampling water in \&figteen Lake, Michigan.
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Figure 9.9: Pitch angle trajectory when sampling water imté&figreen Lake, Michigan.
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Figure 9.10: Depth trajectory of steady spiral when sangpliiater in Wintergreen Lake, Michi-
gan.
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Figure 9.11: Sensor readings of steady spiral when sanyhiter in Wintergreen Lake, Michigan.
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Figure 9.12: Yaw angle trajectory of steady spiral when dargpwvater in Wintergreen Lake,
Michigan.
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Figure 9.13: Pitch angle trajectory of steady spiral whemag water in Wintergreen Lake,
Michigan.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

We reported a new type of underwater robots, gliding robiidit, designed for aquatic environ-
mental monitoring. Combing design features of buoyanayedrpropulsion of underwater gliders
and tail-fin actuation of robotic fish, the gliding roboticifishows a great potential in shallow
water sampling with energy efficiency and high maneuveitgbil

We first introduced two lab-developed prototypes, a mimatinderwater glider and a gliding
robotic fish “Grace”. The actuation systems were discusseldding the buoyancy system, mass
distribution system and tail-fin system, to explain the lmotion mechanism of the robot. The
sensor system was introduced, including the inertial nreasent units and environmental sensing
units. The mechanical design of the robot was also discussed

Dynamic model of gliding robotic fish was derived and furthesiuced according to two spe-
cial steady-state motions, the sagittal-plane glide andt@ady sprial. Solutions of the robot’s
gliding path were provided for both motions. Particulafty, steady spiral, we adopted Newton’s
method and numerically explored the basins of attractiothiis recursive algorithm. Experiments
were conducted on the miniature underwater glider promtgimparison between model predic-
tion and experimental results of the glide path was carrigdm validate the derived model and
proposed recursive solving method.

Stabilization problems were studied, for both sagittalrgl and lateral motions. For the sagittal-

169



plane gliding path stabilization, a passivity-based adtgr using a whale-like tail fin was pro-
posed with partial state feedback. A nonlinear observer dessgned to estimate the velocity-
related system states in controller implementation. Batiukation and experiments were con-
ducted to evaluate the effectiveness of the designed dlamtemd observer. For lateral motion
stabilization, a sliding mode control scheme was adoptdid aviish-like tail as the system control
input, which depended only on the pitch angle informatiorottBsimulation and experimental
results were presented.

A 2-DOF control strategy was proposed for three-dimengicnave tracking problem for
gliding robotic fish, by following the trajectory charadsgic parameters (curvature, torsion and
speed). We investigated the steady spiral motion and itsg&a characteristics. A feedforward
controller was designed first via inverse mapping of ste@ihakmotion. A 2-DOF control design
was then proposed, which included an inverse mapping feedfd controller and a robust
feedback controller, designed based on the linearized Im8dweulation was conducted with com-
parison to Pl control and pure feedforward inverse mapporgrol. The simulation results were
presented to verify the effectiveness of the proposed 2-Dd@¥rol design.

At last, full functions of the developed gliding robotic fiphototype were tested in field. The
results of field tests, including crude oil detection in Kakzoo River and algae sampling in Win-

tergreen Lake, were presented.

10.2 Future Work

First, in both the lab/pool experiments and the field tesgmicant drifting of the robot was
observed that was caused by the currents and waves of itdi@goaronment, e.g., the water jets

shooting from the side wall of the swimming pool. Thus an emwinental current flow estimation
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or prediction is desirable in disturbance rejection anaigeelocomotion. The information of the
surrounding environments will benefit the controller dasagd the path following.

Second, a comprehensive path planning and path followintralcstrategy is needed in water
sampling tasks. Take the algae sampling in Wintergreen bakan example. It is of interest to
develop adaptive sampling strategies and explore the gatbn of elementary energy-efficient
motions (steady gliding and steady spiraling), to coventhele lake with high sampling resolu-

tion and and low energy consumption.
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