REDUCTIVE DECHLORINATION OF P,P'-DDT BY ESCHERICHIA COLI AND PSEUDOMONAS AERUGINOSA

Thests for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY

Allen L. French
1968

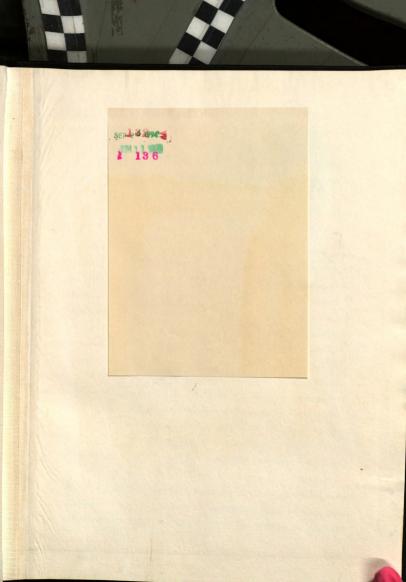
THESIS

This is to certify that the

thesis entitled

REDUCTIVE DECHLORINATION
OF p,p'-DDT BY ESCHERICHIA COLI
AND PSEUDOMONAS AERUGINOSA

presented by


Allen L. French

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Entomology

Roge Hoopingerner
Major professor

Date November 15, 1968

additional converse Asset

BY ESCHERICHIA COLI AND PSEUDONORAS ASMUTECES.

Allen L. Prene

Marketon Charles

The metabolism and uptake of Old-labeled p.p'-DET 12.1.
1-trichloro-2,2-bis(p-chlorophenyl) sthane) by intect cells of the bacteria Escherichia coli and Pseudomonas norveiness were investigated. The phenyl rings of the p.p'-DOT molecules were uniformly labeled with Cl4 atoms. The cultures were incumented for 1, 2, or 3 days in Anderson's minimal synthetic broth medium (Scheenhard, 1961) in the presence or absence of atmospheric oxygen. Autoclaved cultures served as controls.

In addition, washed mombrane fractions were obtained from E. coll by Lysozyme treatment followed by osomotic shock. The capacity of callular pospenents to metabolize p.p'-DDT was investigated. The effect of exceptions from the factors and intermediates on the metabolize of p.p'-DDT by particulate compenents of the batterial coll was evaluated.

The p.p'-Do't and its sobabolites were identified by tein-layer and gas-liquid chromatography. Estabolites containing of wars determined by autoradography of this-layer chromatograms and samples to entheatic complex of a.p. 50.

cld-labeled compounds were collected from the column erglanet and their radioactivity de ABSTRACT by liquid semisilation

and its metabolites, quantification was accomplished by

REDUCTIVE DECHLORINATION OF P.P'-DDT BY ESCHERICHIA COLI AND PSEUDOMONAS AERUGINOSA

Adronic and analysis of the french

The metabolism and uptake of C¹⁴-labeled p,p'-DDT (1,1, 1-trichloro-2,2-bis(p-chlorophenyl)ethane) by intact cells of the bacteria <u>Escherichia coli</u> and <u>Pseudomonas aeruginosa</u> were investigated. The phenyl rings of the p,p'-DDT molecules were uniformly labeled with C¹⁴ atoms. The cultures were incubated for 1, 2, or 3 days in Anderson's minimal synthetic broth medium (Schoenhard, 1961) in the presence or absence of atmospheric oxygen. Autoclaved cultures served as controls.

In addition, washed membrane fractions were obtained from <u>E. coli</u> by lysozyme treatment followed by osomotic shock. The capacity of cellular components to metabolize p,p'-DDT was investigated. The effect of exogenous Krebs cofactors and intermediates on the metabolism of p,p'-DDT by particulate components of the bacterial cell was evaluated.

The p,p'-DDT and its metabolites were identified by thin-layer and gas-liquid chromatography. Metabolites containing C¹⁴ were determined by autoradiography of thin-layer chromatograms and compared to authentic samples of p,p'-DDT

TOMPTEE

REDUCTIVE DECRICALISTICS OF P.D'-IDT BY ESCHERICHE COLI AND PSECONOMIAS ARRESTNOSA

TE

Hen L. French

The metabolism and uptake of Cli-labeled p.p'-DDT (1.1.)

1-trichloro-2,2-bis(p-chlorophenyi)ethans) by intact calls of
the bacteria Mechanicha coli and Preudomones serutinosa were
investigated. The phenyl rings of the p.p'-DDT molecules
were uniformly labeled with Cli atoms. The cultures were incubated for 1, 2, or 3 days in Anderson's minimal synthetic
broth medium (Schoenhard, 1961) in the presence or absence of
atmospheric crygen. Autoclaved cultures served as controls.

In addition, washed membrane fractions were obtained from <u>B</u>. <u>coll</u> by lysosyme treatment followed by osomotic shook. The capacity of cellular components to metabolite p.p.-DDT was investigated. The effect of excessous frees co-factors and intermediates on the metabolism of p.p.-DDT by particulate components of the bacterial cell was evaluated.

The p.p.-DPT and its metabolities were identified by thin-layer and gas-liquid chromatography. Netabolities containing old were determined by autoradiography of thin-layer communicarams and compared to authentic samples of p.p.-DRT

Allen L. French

and its metabolites. Quantification was accomplished by gas-liquid chromatography and liquid scintillation counting. Cl4-labeled compounds were collected from the column effluent and their radioactivity determined by liquid scintillation counting. Each assay was performed 3 times, and each incubant was replicated 2 times.

Aerobic and anaerobic cultures of <u>E. coli</u> and <u>P. aeru-ginosa</u> degraded p,p'-DDT to p,p'-DDD (1,1-dichloro-2,2-bis-(p-chlorophenyl)ethane). The capacity to degrade p,p'-DDT increased with the exclusion of atmospheric oxygen from the incubation medium. Over 90% of the p,p'-DDT was degraded to p,p'-DDD by anaerobic cultures of <u>E. coli</u> incubated 3 days.

Less than 10% conversion occurred in autoclaved cell cultures incubated anaerobically. The pattern of p,p'-DDT metabolism by <u>P. aeruginosa</u> was similar to that found in the <u>E. coli</u> incubations. However, anaerobic cultures of <u>P. aeruginosa</u> were able to metabolize p,p'-DDT to p,p'-DDD more rapidly. Over 85% of the p,p'-DDT was reductively dechlorinated to p,p'-DDD by anaerobic cultures incubated 2 days.

Uptake of p,p'DDT was not increased by its metabolism.

After 3 days of incubation, 71% of the radioactivity was associated with the cells of E. coli cultured anaerobically, and 80.1% was associated with the cells of aerobic cultures.

Autoclaved cells were able to take up 47.2% of the radioactivity.

After 4 hr of anaerobic incubation, neither the particulate membranes (20,000 g precipatate) nor the non-sedimented and the metabolites, Quantification was accomplished by gas-liquid chromatography and liquid existillation counting.

Cli-labeled compounds were collected from the column efficient and their redicactivity determined by liquid solutillation counting. Each easy was jettlered ; times, and each terms bear was replicated 2 times.

Asrobic and anscrobic cultures of E. 2011 and P. 2000. [Increased p.p. DDT to p.p. CDD (Increased p.p. DDT to p.p. CDD (Increased p.p. DDT increased with the exclusion of stacements expend from the incompation medium. Over 90% of the p.p. DDT was degraded to p.p. DDD by anscrobic cultures of E. 2011 incompated 3 days. Less than 10% conversion occurred in autoclaved cell oulsures by E. asrusinosa was similar to that found in the E. 2011 incompations. However, anscrobic cultures of I. sarusinosa was similar to that found in the E. 2011 incompations. However, anscrobic cultures of I. sarusinosa was shelp to p.p. DDT to p.p. DDD wore republically. Over able to metabolise p.p. DDT to p.p. DDD wore republically. Over by anscrobic cultures incompated 2 days.

Uptaire of p.p.DDT was not increased by its metabolism.

After 3 days of incubation, 71% of the radioactivity was associated with the cells of s. coll oultured anaerobically, and
80.1% was associated with the cells of acrobic oultures.

Autoplayed cells were able to take up 47.2% of the radioactivity.

After 4 hr of enserable incubation, neither the partieus

components ("shockate" supernatant fraction) of E. colicells, produced substantial amounts of p.p'-DDD. When the above fractions were combined, conversion of p.p'-DDT to p.p'-DDD occurred (29.8%). However, addition of "shockate" supernatant to boiled membrane fractions did not stimulate p.p'-DDD production.

When 3 ml of washed membrane fractions (25 mg/ml original wet weight of cells) were combined with a mixture of Krebs cycle cofactors and intermediates consisting of 2.0 umole each of NAD, NADP, FAD, malate, pyruvate and 0.1 umole each of ADP and inorganic phosphate and incubated anaerobically for 4 hr, 2.2% conversion of p,p'-DDT to p,p'-DDD occurred. When NAD, NADP, or malate and pyruvate were omitted from the incubations, the conversion was increased by a factor of 10.

Addition of FAD (2.0 umole) to washed membrane fractions resulted in the conversion of 22.5% of the p.p'-DDT to p.p'-DDD. However, addition of exogenous FAD to aerobically incubated membrane fractions did not stimulate p.p'DDD production.

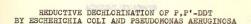
Eased on the results of the membrane studies, the following possibilities are suggested. Reductive dechlorination of p.p'-DDT occurs in the membranous portion of the bacterial cell and is not cytoplasmic in origin. It is stimulated by component(s) in the cytoplasm. Reductive dechlorination of p.p'-DDT does not utilize electrons produced by the oxidation of Krebs cycle intermediates and passed through the cytochrome system. Reductive dechlorination of p.p'-DDT

components ("shockate" supermatant fraction) of E. colidects, produced substantial amounts of p.p'-DDD. When the above fractions were combined, conversion of p.p'-DDT to p.p'-DDD occurred (29.8%), However, addition of "shockate" supermatant to belied membrane fractions did not stimulate p.p'-DDD production.

When 3 ml of weehed membrane fractions (25 mg/ml original wet weight of cells) were combined with a mixture of Krebs cycle cofactors and intermediates consisting of 2.0 umcle each of MAD, MAD, MAD, malate, pyruvate and 0.1 umcle each of ADP and inorgenic phosphate and incubated anaerobically for 4 hr. 2.2% conversion of p.p'-DDT to p.p'-DDD occurred. When MAD, MADP, or malate and pyruvate were omitted from the incubations, the conversion was increased by a factor of 10.

Addition of FAD (2.0 unole) to washed membrane fractions resulted in the conversion of 22.5% of the p,p'-DDT to p.p'-DDD. However, addition of exogenous FAD to serobloally incubated membrane fractions did not stimulate p,p'DDD production.

Based on the results of the membrane studies, the following possibilities are suggested. Reductive dechlorination of
p.p'-DDT occurs in the membranous portion of the bacterial
cell and is not cytoplasmic in origin. It is stimulated by
component(s) in the cytoplasm. Reductive dechlorination of
p.p'-DDT does not utilize electrons produced by the oxidation of Erebs cycle intermediates and passed through the
cytochrome system. Reductive dechlorination of p.p'-DDT



Allen L. French

is dependent upon the enzymatic reduction of FAD and occurs only under anaerobic conditions. Reductive dechlorination of p,p'-DDT requires electrons produced by the oxidation of an energy source. Reductive dechlorination of p,p'-DDT may require the formation of free radicals. The oxidation of endogenous substrates can produce the half-reduced form of FAD (FADH-, a semiquinone) and may be the active moiety involved in the enzymatic reduction of p,p'-DDT.

Allen L. French

is dependent upon the enzymetto reductive dechlorination only under emercial conditions, Esductive dechlorination of p.p'-DDT requires electrons produced by the oxidation of energy source. Heductive dechlorination of p.p'-DDT may require the formation of free radicals. The oxidation of endogenous substrates can produce the half-reduced form of TAD (TADE), a swrightness) and may be the active motety involved in the enzymetic reduction of p.p'-DDT.

Dr. R. A. Hoopingary Allen L. French

A special thank you to my wife, Patrista.

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Entomology 1968 REDUCTIVE DECEMBERS OF P.P. - DOT BY ESCHEMICS OLI ASD PSECHMENTAL ASTRAINMENT

Dr. R this Leeli

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Entomology

1968

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks to
Dr. R. A. Hoopingarner for his assistance and counsel with
this study. Appreciation is also expressed to Dr. N. C.
Leeling for advice during the course of this study.

A special thank you to my wife, Patricia.

ACKNOWLEDG MENTS

The author wishes to express his sincere thanks to Dr. H. A. Hoopingarmer for his assistance and counsel with this study. Appreciation is also expressed to Dr. M. C. Leeling for advice during the course of this study.

A special thank you to my wife, Patricia.

LIST

INTRO

LITE

HATER

DISCU SUMMA LITER APPEN

TABLE OF CONTENTS

	Page
LIST OF TABLES	iv
LIST OF FIGURES INTRODUCTION	v 1
LITERATURE REVIEW	3
Microorganisms Isolated From Animals Microorganisms Isolated From Soil Laboratory Isolates Degradative Mechanisms Nonenzymatic Degradation Animal Degradation Biochemical Inhibitions Metabolic Capacity of Isolated Membranes	56
MATERIALS AND METHODS	12
Intact Cell Studies Extraction & "Clean-up" Analytical Methods Cell Free Studies	12 13 13
RESULTS OF INTACT CELL STUDIES	18
RESULTS OF MEMBRANE STUDIES	22
DISCUSSION	26
SUMMARY	32
LITERATURE CITED	34
APPENDIX	39

TABLE OF CONTENTS

v1	LIST OF TABLES
T	LIST OF PIGURES
I	HOIPOUGETHI
	SILVER REVIAMENTAL
109876542	Microorganisme Isolated From Entmels Microorganisms Isolated From Soil Laboratory Isolated Degradative Woohanisms Nomenaymatic Degradation Animal Degradation Blooremics of Isolated Metabolic Capacity of Isolated Membranes
RE	MATERIALS AND METHODS
12	Intact Cell Studies Extraction & "Ulcan-up" Analytical Rethods Cell Frac Studies
18	RESULTS OF INTACT CELL STUDIES
22	RESULTS OF REMEMBER STUDIES
26	Molesuperd
32	TEANNUE VERNIUR
HE.	LITERATURE CITED
	APZENDIX

LIST OF TABLES

Table		Page
1	DDT metabolism by intact cells of E. coli incubated aerobically	19
2	DDT metabolism by intact cells of E. coli incubated anaerobically	19
3	Distribution of radioactivity in cultures of \underline{E} . \underline{coli}	20
4	DDT metabolism by intact cells of P. aeru-ginosa incubated aerobically	21
5	DDT metabolism by intact cells of P. aeru-ginosa incubated anaerobically	21
6	Effect of membrane and cytoplasm of \underline{E} , $\underline{\text{coli}}$ on conversion of DDT to DDD	22
7	Effect of exogenous Krebs cycle intermediates and cofactors on DDT metabolism by membrane preparations of <u>E</u> . <u>coli</u>	24
8	Effect of NAD, FAD, ADP, and inorganic phosphate on DDT metabolism by membrane preparations of E. coli	25
	Autorediagrams of thin-layer chromate- grams of Carbon-10-labeled mot and assemble LR-inteled metabolites produced to P. serveinosa	
	44 Austrolic and seroble salking server bated 2 days and susubbless server insubsted 2 days.	
	4B Amerobic and appoints solution above bated 2 days and analysis and appoint the incubated 2 days at a second control of the	

LIST OF TABLES

		eldel
19	DDT metabolism by intact cells of E. coli thoubated serobloslly	I
19	DDT metabolism by intact cells of E. coli incubated anecroblosity	2
	Distribution of radiosoffvity in cultures of E. coli	3
21	DDT metaboltem by intact cells of P. aeru- ginosa incubated serobloally	44
21	DDT metabolism by intact cells of r. seru- chocs incubated anserobleally	5
22	Effect of membrane and oytoplasm of E. collon conversion of DDT to DDD	9
45	Effect of exogenous Krebs cycle intermediates and cofactors on UDT metabolism by membrane preparations of E. ooli	
25	Affect of MAD, MAD, ADP, and inorganic phosphate on DDT metabolism by membrane preparations of E. coll	6,0

Amboredig of a thin-layer chroming the collection of the collectio

Figure	grams of carbon-14-labeled the	Pag
1	Preparation of membranes from protoplasts	17
2	Representative thin-layer chromatogram	39
3	Autoradiograms of thin-layer chromatograms of carbon-14-labeled DDT and carbon-14-labeled metabolites produced by <u>E. coli</u>	40
	3A Anaerobic cultures incubated 1 and 2 days	41
	3B Anaerobic cultures incubated 2 days, 3 days, and autoclaved cells incubated 3 days	42
tore i	3C Anaerobic and aerobic cultures incu- bated 3 days and autoclaved cells incubated 3 days	43
	3D Aerobic cultures incubated 1 and 2 days	44
	3E Aerobic culture incubated 2 and 3 days	45
	Autoradiograms of thin-layer chromato- grams of carbon-14-labeled DDT and carbon- 14-labeled metabolites produced by P. aeruginosa	46
	44 Anaerobic and aerobic cultures incu- bated 2 days and autoclaved cells incubated 2 days	47
	4B Anaerobic and aerobic cultures incu- bated 2 days and autoclaved cells incubated 2 days	48

LIST OF FIGURES

TATE		nue!
	stanicatorq mort senerales to notificate	1
	Representative thin-layer chromatogram	2
o#	Autoradio_team of _thin_layer ohromato- grams of cerbon_il-labeled DDT end boundary _thin of the cerbon of the boundary _thin of the cerbon of the cerbon by E cell	3
E#	3A Amerobic cultures incubated 1 and 2 days	
24	38 Amerobio cultures incubated 2 days. 3 days, and autoclayed cells incubated 3 days.	
Ed	3C Amsoroble and seroble oultures incu- bated 5 days and autoolaved cells imoubated 3 days.	
क्ष	3D Aerobic oultures incubated 1 and 2 days	
45	3E Aeroblo oulture incubated 2 and 3 days	
941	Autoradiograms of binin-layer chromato- grams of carbon-il-labeled DDT and carbon- la-labeled metabolites produced by P. geruginosa	4
44	\$4 Amerobic and aerobic cultures incu- bated 2 days and autoclaved cells incubated 2 days.	
81/	4B Amserobic and asrobic oultures incu- bated 2 days and autoolsved cells incubated 2 days	

igure	F	age
5	Autoradiogram of a thin-layer chromatogram of carbon-14-labeled DDT and metabolites produced by combining cytoplasmic fractions and membrane preparations of E. coli	49
6 kontrate	Autoradiograms of thin-layer chromato- grams of carbon-14-labeled DDT and me- tabolites produced by the addition of Krebs cycle intermediates or cofactors to membrane preparations of <u>E</u> . <u>coli</u>	50
DD (1	6A Addition of intermediates and co- factors and the omission of ADP, inorganic phosphate or NAD	51
legrad	6B Addition of intermediates and co- factors, membrane only and omission of intermediates	52
out th	6C Omission of FAD, NADP and intermediates	53
	6D Addition of FAD, ADP and inorganic phosphate	54
Tron s	6E Addition of FAD or NAD or FAD, ADP, PO ₄ & atmospheric O ₂	55
incube	Autoradiogram of a thin-layer chromato- gram of carbon-14-labeled DDT and metab- olites produced by the addition of FAD, ADF and inorganic phosphate to membrane preparations suspended in cytoplasmic fractions	56

vi

metabolism, cytoplasmic or perturbation and the same on

Although provious investigations examples a wide microbiological spectrum of p. r. - Now Continuous advantage.

Pa	Pigure
-ciamon reveluir a to meraciberoluide companie deservante de la	
depends of teleplayer chromato- remm of carbon-layer chart and me- remm of carbon-layer confidence for the dediction for the carbon-layer or color of the carbon- co mentions preparations of 1.00. 3. Addition of intermediates and co- factors and the carbon-layer of the.	i i
inorganic phosphate or MAD	
Addition of PAD, ADP and inorganic phosphate.	
Addition of PAR or MAD or PAR, ADR.	
interediogram of a thin-layer chromate- gram of carbon-14-labeled DDT and metab- lites produced by the addition of TAL, IDP and inorganic phosphate to membrane reparations suspended in cytoplasmic ractions	

of these questions and provide information which may prove useful in future investigations.

INTRODUCTION

Kallman and Andrews (1963) were the first to demonstrate that an isolated microorganism could degrade p,p'-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) to p,p'-DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane). Following this report, interest grew in the role of microorganisms in degradation of "persistent" pesticides. Since p,p'-DDT is extremely stable and has been extensively employed throughout the environment, several investigators have studied its metabolism.

Investigators have employed organisms that were obtained from soils, animal feces, intestines, and laboratory strains. Their ability to degrade p,p'-DDT was measured after various incubation intervals in a variety of broth cultures, agarbased suspensions and soils in the presence and absence of oxygen. The results of these investigations are presented in the literature review.

Although previous investigations established a wide microbiological spectrum of p,p'-DDT degradative capacity, little is known about the biological mechanism involved in bacterial uptake and degradation of p,p'-DDT. The site of metabolism, cytoplasmic or particulate, is still open to question. The present study was undertaken to answer some

INTRODUCTION

Ealman and Andrews (1963) were the first to demonstrate that an isolated microcreshism could degrade p.p'DDT (1,1,1-trichloro-2,2-bis(p-chloropheny))ethane) to p.p'DDD (1,1-dichloro-2,2-bis(p-chloropheny))ethane). Following
this report, interest grew in the role of microcreanisms in
degradation of "persistent" pesticides. Since p.p'-DDT is
extremely stable and has been extensively employed throughout the environment, several investigators have studied its
metabolism.

Investigators have employed organisms that were obtained from soils, animal foces, intestines, and laboratory strains. Their ability to degrade p.p'-DDT was measured efter various incubation intervals in a variety of broth cultures, agarbased suspensions and soils in the presence and absence of oxygen. The results of these investigations are presented in the literature review.

Although previous investigations established a wide microbiological spectrum of p.p.-DDT degradative capacity, little is known about the biological mechanism involved in bacterial uptake and degradation of p.p.-DDT. The site of metabolism, cytoplasmic or particulate, is still open to question. The present study was undertaken to answer some

of these questions and provide information which may prove useful in future investigations.

LITTERSTURE REVIEW

Strate that microbes could metabolize BDT to DBD when they oultured commercial yeast shaerobically. Eighty-eight foon-version occurred after j days compared to only 35 conversion in the boiled centrols. They reported that DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)-shylone) was not metabolized by the yeast.

Microorganisms Isolated From Animals

Several investigators have demonstrated the metabolism of DDT to DDD by microorganisms isolated free arisels. Siekus et al. (1965) reported partial conversion of DDT to DDD in boving rumen fluid. Stenersen (1965) determined the ability of Severatia marcescens and Alcaligenes reseally, isolated from feces of resistant stableflies, lictures additions (L), and laboratory cultures of Eschericals (C). Severation browns and Acrobaster acrosses to setabolise (L). Severation with the DDT had been metabolisms to the severation was reported in aerobic cultures. The severation was reported in aerobic cultures.

str cul vers in i

yeas Mica

of I et s vine Ser fece labo Aero

obic Was from infu foun

LITERATURE REVIEW from rat faces, in trypticase may broth for 2 days with DDT.

Kallman and Andrews (1963) were the first to demonstrate that microbes could metabolize DDT to DDD when they cultured commercial yeast anaerobically. Eighty-eight % conversion occurred after 3 days compared to only 3% conversion in the boiled controls. They reported that DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) was not metabolized by the yeast. rade DDT while 6 actinonycates did produce DDD. A max-

Microorganisms Isolated From Animals

Several investigators have demonstrated the metabolism of DDT to DDD by microorganisms isolated from animals. Miskus et al. (1965) reported partial conversion of DDT to DDD in bovine rumen fluid. Stenersen (1965) determined the ability of Serratia marcescens and Alcaligenes faecalis, isolated from feces of resistant stableflies, Stomoxys calcitrans (L), and laboratory cultures of Escherichia coli, Bacillus brevis and Aerobacter aerogenes to metabolize C14-labeled DDT. Ninety % of the DDT had been metabolized to DDD after 3 days of anaerobic incubation in meat extract bouillon while no conversion was reported in aerobic cultures. Proteus vulgaris, isolated from the intestinal tract of a mouse, was cultured in heart infusion medium with DDT by Baker and Morrison (1965). They found 65% conversion of DDT to DDD in 6 days. Between 6 tridium sporogenes failes to og

i come in the desirable

fro

inu

lig

180

bic

pro

tri

ity ind:

Sapi

in t

Only

LITERATURE REVIEW

Kallman and Andrews (1963) were the first to demonstrate that microbes could metabolize DDT to DDD when they cultured commercial yeast emerchically. Eighty-eight & conversion occurred after 3 days compared to only 3% conversion in the boiled controls. They reported that DDE (1,1-dichloro-2,2-bis(p-chlorophanyl)ethylene) was not metabolized by the yeast.

Microorganisms Isolated From Animals

Several investigators have demonstrated the metabolism of DDT to DDD by microorganisms isolated from animals. Highes et al. (1965) reported partial conversion of DDT to DDD in bovine rumen fluid. Stenarsen (1965) determined the ability of serratia marcoscops and Alcalisenss faccalis, isolated from foces of reststant stablefiles, Stomarys calcitrans (L), and laboratory cultures of Escherichis coli. Sacillus brevis and Arobacter seronenes to metabolise Cli. Labeled DDT. Winety & Arobacter seronenes to metabolised to DDD after 3 days of anserone incubation in mest extract bouillon while no conversion was reported in seront cultures. Proteus vulceris, isolated from the intestinal tract of a mouse, was cultured in heart infusion medium with DDT by Edwar and Northson (1965). They

and 20 days a steady decline in recoverable DDD was noted, suggesting that other metabolites were formed. Mendel and Walton (1966) cultured E. coli and A. aerogenes, isolated from rat feces, in trypticase soy broth for 2 days with DDT.

E. coli degraded 35.9% of the DDT to DDD, and A. aerogenes degraded 33% to DDD.

Microorganisms Isolated From Soil

Chacko et al. (1966) tested 9 actinomycetes and 8 fungi from soil for their ability to degrade DDT in a nutrient medium. None of the fungi displayed any appreciable capacity to degrade DDT while 6 actinomycetes did produce DDD. A maximum of 25% was degraded by <u>Streptomyces aureofaciens</u> in 6 days.

Matsumura and Bousch (1968), employing an unspecified liquid medium containing Cl4-labeled DDT, incubated 18 soil isolated variants of the fungus Trichoderma viride anaerobically for 3 days. Of the 18 variants tested, 8 cultures produced both DDD and dicofol (1,1-bis(p-chlorophenyl)2,2,2-trichloroethanol) as their major metabolite, 3 produced DDD and 1 produced DDE and DDD. Six variants displayed no ability to degrade DDT under the conditions tested. The authors indicated the presence of unknown water soluble metabolites.

Johnson (1967) cultured 27 species of pathogenic and saprophytic bacteria associated with plants, anaerobically, in thioglycolate medium containing DDT for 7 or 14 days.

Only the strict aerobe Sarcina letea and the anaerobe Clostridium sporogenes failed to convert DDT to DDD. None of

and 20 days a steady decline in recoverable DDD was noted, suggesting that other metabolites were formed. Hendel and walton (1966) outured S. coli and A. serogenes, isolated from rat feces, in trypticase soy broth for 2 days with DDT S. coli degraded 35.9% of the DDT to DDD, and A. serogenes degraded 33% to DDD.

Microorganisms Isolated From Soil

Chacke et al. (1966) tested 9 actinomycetes and 8 fungi from soil for their sbility to degrade DDT in a nutrient medium. None of the fungi displayed any appreciable capacity to degrade DDT while 6 actinomycetes did produce DDD. A maximum of 25% was degraded by Streptomyces sureofactems in 6 days.

Mateumura and Bouson (1963), employing an unspecified liquid medium containing Old-labeled DDT, incubated, 18 soil isolated variants of the fungur Trichoderms viride enserobically for 3 days. Of the 18 variants tested, 8 cultures produced both DDD and dicofol (1.1-bis(p-chloropheny1)2.2.2-trichloropheny1) as their major metabolite, 3 produced DDD and I produced DDD. Six variants displayed no ability to degrade DDT under the conditions tested. The authors indicated the presence of unknown water soluble metabolites.

Johnson (1967) oultured 27 species of pathogenic and seprophytic bacteria associated with plants, emerchically, in thicglycolate medium containing DDF for 7 or 14 days.

Only the strict acrobe <u>Sarche letes</u> and the emerche Clostridum approcemes failed to convert DDF to DDD. None of

the organisms tested displayed any capacity to degrade DDT to DDD when cultured aerobically.

Guenzi and Beard (1967) recovered 34% of the C¹⁴-labeled DDT which had been added to soil and maintained anaerobically for 4 weeks. The major metabolite was DDD (62%) while only 4% was recovered as other products. Although the authors incubated autoclaved soil containing DDT, no values were presented. Bartha et al. (1967) measured the effect of DDT and DDD on carbon dioxide and nitrite production in the soil. The compounds at 150 and 1500 ppm had no appreciable effect on carbon dioxide production but were found to slightly increase nitrification as measured by nitrite production.

Laboratory Isolates 77 and added to buffer to which her in

Wedemeyer (1966) tested <u>E. coli</u>, <u>A. aerogenes</u> and <u>Klebsiella pneumoniae</u> for their ability to anaerobically degrade DDT in trypticase soy broth or thioglycolate medium. Maximum conversion to DDD (80%) was achieved by <u>A. aerogenes</u> cultures after an unspecified incubation period. In subsequent reports Wedemeyer (1967 a and 1967 b), using 2 day <u>A. aerogenes</u> cultures, identified 4 additional metabolites, DDMU (1-chloro-2,2-bis(p-chlorophenyl)ethylene), DDMS (1-chloro-2,2-bis(p-chlorophenyl)ethylene), DDMS (p-chlorophenyl)ethylene), and DDE. When the cells were incubated in mineral media containing methionine as a carbon source, only DDD was recovered after 100 hr incubation.

the organisms tested displayed any capacity to degrade DDT to the notion outtured aerobically.

Guenzi and Beard (1967) recovered 34% of the Cl4-labeled DDT which had been added to soil and maintained anaerobically for 4 weeks. The major metabolite was DDD (62%) while only the metabolite was DDD (62%) while only cubated autoclaved as, other products. Although the authors incubated autoclaved soil containing DDT, no values were presented. Bartha et al. (1967) measured the effect of DDT and DDD on earbon dioxide and nitrite production in the soil. The compounds at 150 and 1500 ppm had no appreciable effect on carbon dioxide production but were found to slightly increase nitrification as measured by nitrite production.

Laboratory Isolates

Medemeyer (1966) tested 1. coli, 4. serogenes and Klebstells pneumoniae for their ability to anserobically degrade
DDT in trypticase say broth or thicglycolate medium. Maximum
conversion to DDD (80%) was achieved by A. serogenes cultures
after an unspecified incubation period. In subsequent reports
Wedomeyer (1967 a and 1967 b), using 2 day A. serogenes onltures, identified 4 additional metabolites, DDMU (1-chloro2,2-bis(p-chlorophenyl)ethylene), DDMS (1-chloro-2,2-bis(pchlorophenyl)ethane), DDMU (unsym-bis(p-chlorophenyl)ethylone),
and DDE, When the cells were incubated in mineral media containing methicnine as a carbon source, only DDD was recovered
after 100 br incubation.

Degradative Mechanisms

Plemmer et al. (1968), employing deuterated DDT, convincingly demonstrated that DDE was not an intermediate in the metabolism of DDT to DDD. After incubating A. aerogenes anaerobically for 2 days in trypticase broth containing deuterated DDT, 2-deuterioethane was found to be present in the recovered DDD. Ninety-two % conversion was reported with DDD being the only metabolite.

Wedemeyer (1966) employed sonically disrupted cells of A. aerogenes and selected inhibitors to ellucidate the biological mechanism involved in reductive dechlorination of DDT to DDD. Cell suspensions were sonically disrupted in 0.07 M phosphate buffer (pH 7) and added to buffer to which DDT in an acetone solution had been added resulting in a final concentration of 5 ppm. After incubating overnight, anaerobically, an average of 70% conversion to DDD occurred. No other metabolites were reported, and no conversion was found in the boiled controls. Cyanide, nitrate, ferricyanide, malonate, antimycin A and an atmosphere of carbon monoxide completely inhibited DDD production. The carbon monoxide effect was completely reversed by exogenous cytochrome c plus ascorbate. Based on the nature of the inhibition, the author concluded that reduced cytochrome oxidase was probably the agent of reductive dechlorination. In subsequent work, Wedemeyer (1967 a) increased the incubation time to 2 days and determined the influence of temperature, pH and exogenous energy sources on the metabolism of DDT by cell free preparations of

Degradative Mechanisms

Plemmer et al. (1968), employing deuterated DDT, convincingly demonstrated that DDE was not an intermediate in the metabolism of DDT to DDD. After incubating A. aerogenes ancerobically for 2 days in trypticase broth containing deuterated DDT. 2-deuterications was found to be present in the recovered DDD. Kinety-two % conversion was reported with DDD being the only metabolite.

Wedemayer (1966) employed sonically disrupted cells of acrogenes and selected inhibitors to ellucidate the biological mechanism involved in reductive dechlorination of DDT to DDD, cell suspendions were sonically disrupted in 0.07 m phosphate buffer (pH 7) and added to buffer to which DDT in an acetone solution had been added resulting in a final concentration of 5 ppm, After incubating overnight, ansercotically, an average of 70% conversion to DDD occurred. No other metabolites were reported, and no conversion was found in the boiled controls. Cyanide, nitrate, ferricyanide, melonate, antimyoin A and an atmosphere of carbon monoxide completely inhibited DDD production. The carbon monoxide effect was completely reversed by exagenous cytochrome o plus ascordate. Date the nature of the inhibition, the author concluded that reduced cytochrome oxidase was probably the agent of reductive dechloringtion. In subsequent work, dedeneyer of reductive dechloringtion. In subsequent work, dedeneyer mined the influence of temperature, pH and exogenous energy mined the influence of temperature, pH and exogenous energy sources on the metabolism of DDT by cell free preparations of

A. aerogenes. The preparation of the cell free system was essentially the same as reported previously. However, he did reduce the acetone concentration to 0.5%, doubled the mass of the preparation and increased the volume of cell free preparation utilized. Five metabolites of DDT were identified: DDD, DDE, DDMU, DDMS, and DDNU with DDD and DDNU being the major metabolites. The recovery of DDT from aerobic incubations averaged 92%. Ninety-five % remained unchanged in the boiled controls. When cultured anaerobically, the relative distribution of metabolites varied with both temperature and pH but not with different carbon sources. Each metabolite was synthesized and incubated with the cell free preparation. Based on the results of these studies. the author proposed the following pathway: DDT -> DDD -> DDMU -> DDMS -> DDNU. DDE was not degraded further, while DDA (2,2-bis(p-chlorophenyl)acetate) was produced from DDNU, and DBP (4,4'-dichlorobenzophenone) from DDA but not from DDT. The conversion of DDD to DDMU was inhibited by cyanide, fluoride, iodoacetate and malonate. DDMS conversion to DDNU was inhibited by malonic acid while DDA to DBP was not inhibited by any of the agents employed. 1966). If the excised livers of DDF ingre-inc rate were ale

Nonenzymatic Degradation

the recovered D

The brains buff

VA DE VIII N

total their

vietelopoo so

o hance .all

ovitoutes to

HOTE IS THE

THE BILL BUIL

of m sign

A number of workers have shown nonenzymatic conversion of DDT to DDD. Castro (1964) demonstrated that dilute solutions of Fe⁺⁺ can be oxidized at room temperature by alkyl halides, including DDT, to the corresponding Fe⁺⁺⁺ halide

A. serogenes. The preparation of the cell free system was essentially the same as reported previously. However, he did reduce the acetone concentration to 0.5%. doubled the fleo to emulov end besestont bus nollaragers end to seam free preparation utilized. Five metabolites of DDT were identified: DDD, DDE, DDMU, DDMS, and DDMU with DDD and DONU being the major metabolites. The recovery of DOT TOT changed in the boiled controls. When oultured anaerobically, the relative distribution of metabolites veried with both temperature and pH but not with different carbon sources. Lieo ent ntiw betaduoni bna bezizentnya saw etilodatem nosi free preparation. Based on the results of these studies, the author proposed the following pathway: DDT -- DDT DONU - DDMS - DDMU. DDE was not degraded further, while DDA (2,2-bis(p-chlorophenyl)acetate) was produced from DDMU, and DBP (4,4'-dichlorobenzophenone) from CDA but not from DDT. The conversion of DDD to DDMU was inhibited by evanide, fluoride, todoscetate and malonate. DDMS conversion to DDMU was inhibited by malonic acid while DDA to DBP was not inhibited by any of the agents employed.

Monenzymatic Degradation

A number of workers have shown nonenzymatic conversion of NDT to NDD. Castro (1964) demonstrated that dilute solutions of Pott can be exidized at room temperature by alkyl maides, including NDT, to the corresponding Pott maide

complexes. Miskus et al. (1965) showed partial conversion of DDT to DDD in hemoglobin and hematin solutions. Ott and Gunther (1965) established that DDT can be converted to DDD when injected in a stainless steel gas chromatographic column at 228°C. Farrow et al. (1966) showed conversion of residual DDT to DDD during canning of spinach. Ecobichon and Saschenbrecker (1967) observed conversion of DDT to DDE, DDD and other undetermined metabolites in frozen chicken blood. To obtain samples, the blood was repeatedly thawed over a twelve week period.

Animal Degradation kinase in Tritona inference (Agosin, 1967)

DDE, DDD and dicofol have been reported as metabolites of DDT in insects, while DDD production has been reported as common in mammals. A DDA derivative has been produced by rats, and DDE production has been reported in man (O'Brien, 1967). When rats were fed DDT, DDD was recovered from the liver (Datta, et al., 1964; Klein, et al., 1964; Peterson and Robinson, 1964; Mendel and Walton, 1966). However, when DDT was administered by interperitoneal injection, no conversion to DDD occurred (Baker and Morrison, 1964; Mendel and Walton, 1966). If the excised livers of DDT injected rats were allowed to putrify then DDD was recovered (Baker and Morrison, 1964; Peterson and Robinson, 1964; Mendel and Walton, 1966). Significantly, bacteria isolated from intestinal tracts and feces of animals have shown the ability to degrade DDT to DDD (Baker, et al., 1965; Stenersen, 1965; Mendel and Walton, 1966;

complemes. Mishus of al. (1965) showed partial conversion of DDT to DDD in hemoglobin and hematin solutions. Oft and Gunther (1965) established that DDT can be converted to DDD when injected in a stainless steel gas chromatographic column at 228°C. Harrow of al. (1966) whowed conversion of residual DDT to DDD during cauning of spinach. Scobience and Saschanbracker (1967) observed conversion of DDT to DDE, DDD and other undetermined metabolites in frozen chicken blood. To obtain samples, the blood was repeatedly thawed over a twolve meak period.

notisaberred family

DDB, DDB and dicorol have been reported as metabolites of DDT in incects, while DDB production has been produced by common in mammals. A DDA derivative has been produced by rats, and DDE production has been reported in man (0.8rien, 1967). When rats were fed DDT, DDD was recovered from the liver (Datta, et al., 1964; Klein, et al., 1964; Peterson and Robinson, 1964; Mendel and Walton, 1966). However, when DDT was administered by interperitoned injection, no conversion to DDD occurred (Baker and Morrison, 1964; Mendel and Walton, 1966). If the excised livers of DDT injected rats were allowed to putrify then DDD was recovered (Baker and Morrison, 1964; Peterson and Abbinson, 1964; Mendel and Walton, 1966).

1365; Peterson and Abbinson, 1964; Mendel and Walton, 1966).

1500cc of animals have shown the ability to degrade DDT to DDD feece of animals have shown the ability to degrade DDT to DDD feece of animals have shown the ability to degrade DDT to DDD feece of animals have shown the ability to degrade DDT to DDD feeces of animals have shown the ability to degrade DDT to DDD feeces of all, 1965; Stenersen, 1965; Mendel and Walton, 1966;

9

Brunberg and Beck, 1968). Mendel and Walton concluded that the microflora of the intestinal tract were responsible for the conversion of DDT to DDD in the rat. However, Morella (1965) isolated microsomes from rat liver that degraded DDT to DDD, and DDT-metabolizing activity was increased after intraperitoneal injections of DDT. The inductive effect of DDT and its metabolites on rat liver microsomes have also resulted in increased epoxidation of Aldrin (1,2,3,4,10,10,-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endo-exo-5,8-dimethanophthalene), (0'Brien, 1967; Gillett, 1968). DDT has been shown to induce NAD kinase in Tritoma infestans (Agosin, 1967) and to induce the synthesis of messenger RNA and overall protein synthesis (Litvak, 1968).

Biochemical Inhibitions

DDT and many non-insecticidal derivatives have been reported to inhibit the cytochrome oxidase activity in muscle homogenates of the American roach, Periplaneta americana (Morrison and Brown, 1954), in meal worm homogenates, Pyralis farinalis L. (Ludwig, et al., 1955), by sub-cell particles from the housefly, Musca domestica L. (Sacklin, et al., 1955)

Brunberg and Beek, 1968). Kendel and Walton concluded that the microflora of the intestinal tract were responsible for the convertion of DDT to DDD in the rat. However, Morella (1965) isolated microsomes from rat liver that degraded DDT to DDD, and DDT-metabolizing activity was increased after intraperitoneal injections of DDT. The inductive effect of DDT and its metabolites on rat liver microsomes have also resulted in increased epoxidation of Aldrin (1,2,3,4,10,10,-1,4,2,6,10,10,-1,4,4,5,5,8,3,2,4,2,4,10,10,-1,4,2,10,10,-1,4,4,5,5,8,3,4,4,5,7,6;111ett, 1968). DDT has been anophthalene), (0'Erlen, 1967; Gillett, 1968). DDT has been shown to induce the synthesis of messenger HVA and overall prodein synthesis (Litvak, 1968).

Peterson and Robinson (1964) proposed the following pathway of DDT metabolism in rats. DDT -> DDD -> DDMG -> DDMU -> DDMU -> DDM. The pathway was deduced from the metabolism of orally administered doses of DDT and DDT metabolites. It should be noted, however, that not all metabolites were recovered when DDT was the initial substrate.

Biochemical Inhibitions

der

DDT and many non-insectioidal derivatives have been reperted to inhibit the cytochrome exidase activity in muscle
homogenates of the American roach, Fortplaneta sucritaina
(Morrison and Brown, 1954), in med worm homogenates, Pyralis
farinalis L. (Endwis, et al., 1955), by sub-cell particles
from the housefly, inese demention L. (Sacklin, et al., 1956)

and in muscle homogenates of mealworm and housefly (Barsa and Ludwig, 1959) and lactate dehydrogenase (Sova, 1966).

DDT also inhibits the oxidation of Kreb cycle intermediates and oxidative phosphorylation catalized by sub-cell particles obtained from houseflies (Sacklin, et al., 1955) and glycolytic pyruvate production in cell free preparations of thoracic leg muscle obtained from Triatoma infestans (Agosin, 1961). DDT has been reported to inhibit oxidative phosphorylation of rat liver metochondria (O'Brien, 1967) and housefly mitochondria (Gregg, et al., 1964). However, in most cases concentrations greater than 0.001 M were required.

Metabolic Capacity of Isolated Membranes

That the Krebs cycle is the pathway of terminal respiration in bacteria was first established by cell-free extracts (Kornberg, 1959). Weibull (1953) was the first to successfully employ lysozyme to dissolve the cell wall of Bacillus megaterium to produce protoplasts. Yoshida et al. (1960) demonstrated that the sub-cellular membrane system procuced by lysozyme treatment followed by osmotic shock could produce large membrane fragments of E. coli capable of incorporation of Cl4-labeled amino acids into protein. The authors also established the necessity of magnesium ions for membrane activity. Utilizing a similar method of preparation, Mizuno et al. (1961) demonstrated the capacity of isolated bacterial membranes to oxidize Krebs cycle intermediates, carbohydrates and casamino acids. The authors further noted

and in muscle homogenates or mealworm and housefly (Barse and Ludwis, 1959) and lactate dehydrogenase (Sova, 1966).

Dot also inhibits the oxidation of Areb cycle intermediates and oxidative phosphorylation ostalized by sub-cell particles obtained from houseflies (Sacklin, et al., 1955) and Slycolytic pyruvate production in cell free preparations of the racio les muscle obtained from Triatoms infestens (Agosin, 1961). Unit has been reported to inhibit oxidative phosphorylation of rat liver metochendria (O'Brien, 1967) and housefly mitochendria (Gregs, et al., 1964). However, in most cases concentrations greater than 0.001 N were required.

Metabolic Capacity of Isolated Membranes

OX

That the Krebs cycle is the pathway of terminal respiration in bacteria was first established by cell-free extracts (Kornberg, 1959). Welbull (1953) was the first to successfully employ lysexyme to dissolve the cell wall of Bacillus negatorium to produce protoplasts. Yoshida ot al. (1960) demonstrated that the sub-cellular membrane system procuced by lysexyme treatment followed by osmotic shock could produce large membrane fragments of E. cold capable of incorporation of Cl4-labeled amino acids into protein. The same membrane activity. Utilizing a similar method of preparation, litemediates activity. Utilizing a similar method of preparation, bacterial membranes to oxidize Arebs cycle intermediates.

that the exidations were stimulated by addition of the "shockate" supernatant. This was confirmed by Gray et al. (1966) who was able to identify the cytochromes b, a, a2, c and o associated with E. coli membrane fractions, and Cox et al. (1968), who employed membranes isolated from a ubiquinone-deficient mutant to study the exidation of malate. Nagata et al. (1966) and Yoshida et al. (1966) reported the ability of isolated E. coli membranes to incorporate P³² into nucleic acids, Cl4-labeled amino acids into protein and to catalize exidative phosphorylation.

The experimental incorts consisted of \$25 mg (dry weight) of washed calls. The calls were recompanied in 500 ml sli-quots of sterile minimal medium to which had been edded 0.1 ml of sactone containing 2.22 x 105 aps or 014 ring labeled p.p. -DDT (1.1.1-trichloro-2.2-bis(p-chlorophane)) sthams). The cultures were shaken at 3700 for 1.6, or 5 tape under marchio or nitrogen atmospheres. Contains sentiated of auto-claved cells to which Cl4-labeled in the market and an accounts maded.

that the oxidations were stimulated by addition of the "chockate" emperiatant. This was confirmed by Gray et al. (1966) who was able to identify the cytochromes b. a. ac. c and c associated with E. coll membrane fractions, and Cox et al. (1968), who employed membranes isolated from a ubiquinonederic mutant to study the exidation of malate. Assets et al. (1966) and Yeshida et al. (1966) reported the ability of isolated E. coll membranes to incorporate PJE into micleic acids, Cla-labeled amino acids into protein and to catalize oxidative phosphorylation.

- 21 officials

Trease of salts

PARTY MARKET

and the second of

The second secon

process the first of the second particle

MATERIALS AND METHODS

Intact Cell Studies

For uptake and metabolism studies with whole cells, sterile Anderson's minimal synthetic broth medium was inoculated with Escherichia coli or Pseudomonas aeruginosa and incubated for 19 hr at 37°C with shaking. At the end of the growth periods, measurements of cell masses were made by observing their optical densities at 650 mm with a Bausch and Lomb Spectronic 20. Their dry weights were read from a calibration curve relating optical density at 650 mm to dry weight in mg/ml. The cells were harvested by centrifugation at 12,000 g for 5 minutes. The cells were washed by resuspending in 0.85% saline and recentrifuged.

The experimental inocula consisted of 425 mg (dry weight) of washed cells. The cells were resuspended in 500 ml aliquots of sterile minimal medium to which had been added 0.1 ml of acetone containing 2.22 x 10⁵ dpm of C¹⁴ ring labeled p,p'-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane). The cultures were shaken at 37°C for 1,2, or 3 days under aerobic or nitrogen atmospheres. Controls consisted of autoclaved cells to which C¹⁴-labeled DDT was aseptically added.

Mad the said task

MATERIALS AND METHODS

Intact Cell Studies

and

Wer

uti]

vate

to (

scin

nat

tio

ert

The

con

Mod der

For upteke and metabolism studies with whole cells, storile Anderson's minimal synthetic broth medium was inconlated with Escherichie cell or resudomonas caruzinosa and incubated for 19 hr at 37°C with shaking. At the end of the growth periods, measurements of cell masses were made by observing their optical densities at 650 mm with a Bausch and Lomb Spectronic 20. Their dry weights were read from a cell-bration curve relating optical density at 650 mm to dry weight in mg/ml. The cells were harvested by centrifugation at 12,000 g for 5 minutes. The cells were washed by resuspending in 0.855 saline and recentrifuged.

The experimental incoula consisted of \$425 mg (dry weight) of washed cells. The cells were resuspended in 500 ml aliquots of sterile minimal medium to which had been added 0.1 ml of acetome containing 2.22 x 105 dpm of Cl\$ ting labeled p.*-DDT (1,1,1-trichloro-2.2-bis(p-chlorophenyl)ethane). The cultures were shaken at 37°C for 1.2, or 3 days under acrobic or nitrogen atmospheres. Controls consisted of autocared cells to which Cl\$-labeled DDT was aseptically added.

Extraction & "Clean-up" behave to resulve the authentic shape

After incubation the cells were separated from the medium by centrifugation at 12,000 g for 5 minutes. The supernatants were extracted 3 times with 100 ml volumes of hexane and concentrated to 25 ml aliquots. Interfering materials were removed from the concentrates by column chromatography utilizing 10 g aliquots of Florisil and Celite (5:1) deactivated with water (15%). The effluents were concentrated to 0.5 ml and assayed for Cl4 content with a Mark I liquid scintillation computer (Nuclear-Chicago Corporation). Supernatants were assayed for Cl4 content before and after extraction. The cells were extracted 3 times with acetone. The extracts were taken to dryness and "cleaned-up" as above.

The effluents were concentrated to 0.5 ml and assayed for Cl4 content.

Analytical Methods

DDT and its metabolites were identified by thin-layer and gas-liquid chromatography. Thirty µg of p,p'-DDT, o,p'-DDT (1,1,1-trichloro-2,o-chloropheny1-2-p-chloropheny1-ethane), DDD, and DDE were spotted on silica gel H thin-layer chromatographic plates (Brinkman Instrument Co.) with 15,000 dpm of each experimental concentrate and developed twice through 15 cm. Autoradiograms were produced by exposing Kodak medical X-ray film to the plates for 4 days. After development of the X-ray films, the chromatograms were sprayed lightly with a 0.1% alcoholic Ehodamine B solution and

Extraction & "Clean-up"

After incubation the cells were separated from the medium by centrifugation at 12,000 g for 5 minutes. The supernatents were extracted 3 times with 100 ml volumes of hexane and concentrated to 25 ml aliquots. Interfering materials were removed from the concentrates by column chromatography utilizing 10 g aliquots of Florinil and Celite (5:1) deactivated with water (15%). The effluents were concentrated to 0.5 ml and assayed for Cl⁴ content with a Mark I liquid sointillation computer (Nuclear-Chicago Corporation). Superatems were assayed for Cl⁴ content before and after extraction. The cells were extracted 3 times with acetone. The extracts were taken to dryness and "cleaned-up" as above.
The effluents were concentrated to 0.5 ml and assayed for Cl⁴ content.

Analytical Methods

DDT and its metabolites were identified by thin-layer and gas-liquid chromatography. Thirty µg of p,p'-DDT, o,p'-DDT (1,1,1-trichloro-2,0-chlorophenyl-2-p-chlorophenyl-citano), DDD, and DDE were spotted on silica gel H thin-layer chromatographic plates (Brinicman Instrument Co.) with 15,000 dpm of each experimental concentrate and developed twice through 15 cm. Autorediograms were produced by exposing Modek medical X-ray film to the plates for # days. After development of the X-ray films, the chromatograms were spreyed development of the X-ray films, the chromatograms were spreyed lightly with a 0.15 alcoholic Nobembine B solution and

14

treated with sodium carbonate to resolve the authentic standards (Johnson and Goodman, 1967).

Quantification was accomplished by gas-liquid co-chromatography utilizing a 6 ft. X 1 in. glass column containing 80-100 mesh Gas Chrome-Q (The Anspec Co.) coated with 11% DC QF-1 (Applied Science Laboratories, Inc.) and OV-17 (Applied Science Laboratories. Inc.) in a ratio of 1.3:1.0. Base line separations of the standards were achieved by a column temperature of 190°C, detector temperature of 200°C and nitrogen flow rate of 20 cc/min. A Packard Model 850 gas fraction collector employing cartridges filled with Pyrex glass wool was used to collect C14 labeled components from the effluent stream of the column. Following injection of the sample, collections were made at 5 minute intervals for a total of 75 minutes. The glass wool was removed from the cartridges and the entraped radioactivity determined by liquid scintillation counting. The retention times of the C14-labeled components were compared to the retention times of the 4 authentic standards mentioned above.

Cell Free Studies

For cell free studies, active E. coli membranes were prepared by the method of Nagata et al. (1966). Washed intact cells (0.25 mg/ml dry weight) were incubated at 30°C for 30 minutes with gentle shaking in a medium consisting of 3 parts 0.9 M sucrose in pH 8.0, 0.05 M Tris (2-amino-2-(hydroxymethyl)-1,3-propanediol), 1 part 0.0071 M EDTA

breated with sodium carbonate to resolve the authentic standards (Johnson and Goodman, 1967).

Quantification was accomplished by ras-liquid co-chromatography utilizing a 6 ft. X t in. glass column containing 80-100 mesh Gas Chrome-Q (The Anspec Co.) coated with 11% DC 27-1 (Applied Science Laboratories, Inc.) and OV-17 (Applied Science isboratories, Inc.) in a ratio of 1.3:1.0. Base line separations of the standards were achieved by a column temperature of 1909C, detector temperature of 200°C and nitrogen flow rate of 20 co/min. A Packerd Model 850 gas fraction collector employing cartridges filled with Pyrex glass wool was used to collect Clt labeled components from the effluent stream of the column. Following injection of the sample, To Istot a rol slavreini ejunim ? Ja ebam erew anoitoelloo 75 minutes. The glass wool was removed from the cartridges end the entraped radiosctivity determined by liquid sointillation counting. The retention times of the Cl4-labeled components were compared to the retention times of the 4 .evoda benotinem abrabnata otinentus

Cell Free Studies

For cell free studies, sotive E. coll membranes were prepared by the method of Mageta et al. (1966). Washed intact cells (0.25 mg/ml dry weight) were incubated at 30°C for 30 minutes with gentle sheking in a medium consisting of 3 parts 0.9 H sucrose in pH 8.0, 0.05 H Tris (2-amino-2-(hydroxymethyl)-1,3-propanedic)), 1 part 0.0071 H EDTA

15

(ethylenediaminetetraacetic acid), and 1 part of lysozyme (Sigma Corporation) solution at 0.6 mg/ml. The incubation mixture was centrifuged at 15,000 g for 5 minutes and the "protoplasts" harvested. Membranes were obtained from protoplasts as illustrated in Figure 1.

Incubations were carried out in 10 ml Warburg flasks containing 0.1 g glass beads (15 μ) and 350,000 dpm of DDT-Cl4 was added in acetone solution to the surface of the beads and the acetone evaporated prior to the addition of 3 ml aliquots of membrane suspension. The desired Krebs cycle intermediates and cofactors were added to the side arms of the flasks and the contents emptied into the incubation mixtures after 5 minute periods of temperature and atmospheric equilibration. Controls consisted of boiled membrane suspensions. Nitrogen atmospheres were maintained throughout the incubation period. Extraction of Cl4 metabolites, their identification and quantification were carried out as described previously.

The Cl4-labeled p,p'-DDT was obtained from Nuclear-Chicago Corporation. The p,p'-DDT (unlabeled) was obtained from City Chemical Corp., the o,p'-DDT isomer from Geigy Chemical Corp., and the DDD from City Chemical Corp. The p,p'-DDE was prepared by alkaline dehydrochlorination of p,p'-DDT and Alumina chromatography (Sternburg and Kerns, 1952). The Krebs cycle intermediates, malonate and pyruvate, as well as the cofactors NAD (nicotinamide adenine dinucleotide), NADP (nicotinamide adenine dinucleotide), FAD

(ethylemediaminetetrascetic acid), and 1 part of lysozyme (Sigma Corporation) solution at 0.6 mg/ml. The incubation mixture was centrifuged at 15,000 g for 5 minutes and the "protoplasts" harvested. Membranes were obtained from protoplasts as illustrated in Figure 1.

Inoubations were cerried out in 10 ml Marburg flasks containing 0.1 g glass beads $(15\,\mu)$ and 350,000 dpm of DDT- 0^{10} was added in acetone solution to the surface of the beads and the acetone evaporated prior to the addition of 3 ml altiquots of membrane suspension. The desired frees cycle intermediates and coffectors were added to the side arms of the translates and the contents suspined into the incubation mixtures after 5 minute periods of tsuperature and atmospheric equilibration. Controls conststed of boiled membrane suspensions. Mitrogen atmospheres were maintained throughout the incubation period. Extraction of 0^{10} metabolities, their identification and quantification were carried out an described previously.

The Cl4-labeled p.p'-DDT was obtained from Wuclear-Chicago Corporation. The p.p'-DDT (unlabeled) was obtained from
City Chemical Corp., who o.p'-DDT isomer from Geigy Chemical
Corp., and the DDD from City Chemical Corp. The p.p'-DDE was
prepared by alkaline dehydrochlorination of p.p'-DDT and
Alumina chromatography (Sternburg and Herns, 1952). The
Krebs cycle intermediates, malonate and pyruvate, as well as
the octactors NAD (nicotinamide adenine dinucleotide), NADP
(nicotinamide adenine dinucleotide), PAD

1617

(flavin adenine dinucleotide), and ADP (adenosine diphosphate), were obtained from the Sigma Corporation.

Values presented in the results are means of two replicate experiments. The results are means of two repli-

Centrifuged at 20,000 x g for 20 min, at 1,000.

"Shockate" Precipitate

"Shockate" Supernatant

desuspended in 0.05 H Tris pH 7.5, 0.005 H MgClo at 12.5 ng/ml of original dry weight.

Centrifuged at 20,000 x g for 20 atn. at 1,000.

Precipitate (membrane)

(alsoarded)

Resuspended in 0.05 h Tris is 1.00 0.005 t MgClo at 25.0 mg/ml original day

Figure 1. Preparation of penantum fine presentants, (Wagata, et al., 1969)

consider person house the so-

the equipment of the true attack and

SHIPLE THE RESERVE OF THE PERSON

(Thavin adenine dinucleotide), and ADF (adenosine diphosphate), were obtained from the Signa Corporation.

Values presented in the results are means of two replicate experiments.


PROTOPLASTS

Homogenized with a Teflon homogenizer in ice cold pH 7.6, 0.05 M Tris containing 0.005 M MgCl₂.

("Shockate")

Centrifuged at 20,000 x g for 20 min. at 1.0°C.

bioally (Tables 1 and 2). In both cases the con

Resuspended in 0.05 M Tris pH 7.6, 0.005 M MgCl₂ at 12.5 mg/ml of original dry weight.

and anaerobically. Rowever, these values the new a

Centrifuged at 20,000 x g for 20 min. at 1.0°C.

Resuspended in 0.05 M Tris pH 7.6, 0.005 M MgCl₂ at 25.0 mg/ml original dry weight.

Figure 1. Preparation of membranes from protoplasts. (Nagata, et al., 1966)

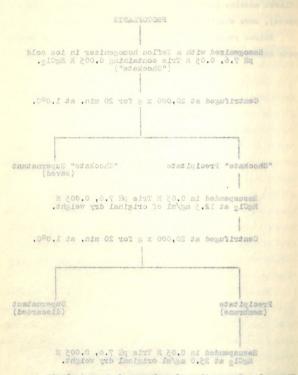


Figure 1. Freparation of membranes from protoplasts. (Magata, et al., 1966)

RESULTS OF INTACT CELL STUDIES

Cells cultured anaerobically were able to convert substantially more p,p'-DDT to p,p'-DDD than those cultured aerobically (Tables 1 and 2). In both cases the conversion achieved in the third day of a 3 day incubation period approximately equaled the conversion achieved in the previous 2 days. Although the aerobic cultures converted 70% less DDT to DDD, they did convert approximately 10% more DDT to DDD than autoclaved cells incubated anaerobically for 3 days (Table 2). DDE was produced by E. coli cultured aerobically and anaerobically. However, these values did not substantially exceed those obtained from autoclaved cells, nor did the values change with incubation time. The levels of recovered o,p'-DDT did not change with time or incubation conditions. All 3 metabolites occurred at low levels in the stock DDT-C¹⁴ (Table 1).

The distribution of recovered radioactivity between cells and medium is presented in Table 3. Although bacteria both in aerobic and anaerobic cultures were able to concentrate the radioactivity progressively with time, slightly more radioactivity was concentrated by cells cultured aerobically. After 3 days, 96% of the radioactivity found in the medium was DDD in anaerobic cultures, while 70% of the radioactivity was DDT in the medium of aerobic cultures.

MESULTS OF INTACT CELL STUDIES

Cells outtured snaerobically were able to convert substantially more p.p'-DDT to p.p'-DDD than those cultured aerobically (Tables 1 and 2). In both cases the conversion schieved in the third day of a 3 day incubation period approximately equaled the conversion achieved in the previous 2 days. Although the serobic cultures converted 70% less DDT to DDD, they did convert approximately 10% more DDT to DDD than autoclaved cells incubated anaerobically for 3 days (Table 2). DDE was produced by E. coli cultured nerobically and anaerobically. However, these values did not substantially exceed those obtained from autoclaved cells, nor did the values change with incubation time. The levels of recovered c.p'-DDT did not change with time or incubation conditions. All 3 metabolites occurred at low levels in the stock DDT-Cl4 (Table 1).

The distribution of recovered radioactivity between cells and medium is presented in Table 3. Although bacteria both in serobic and auserobic cultures were able to concentrate the radioactivity progressively with time, slightly more radioactivity was concentrated by cells cultured acrobically. After 3 days, 96% of the radioactivity found in the medium was DDD in anaerobic cultures, while 70% of the radioactivity was DDT in the medium of serobic cultures.

19

Table 1. DDT metabolism by intact cells of E. coli incubated aerobically.

the state of		% cl	4 found	as DDT	metabo	lites
Fraction	Time (days)	p,p'-	o,p'-	p,p'-	p,p'-	Unknown
Medium	1	5.1	1.6	12.9	75.4	5.0
Cells Medium	2 2	3.9 8.1	2.7	13.5	74.6 76.6 70.4	3.0 3.3 2.4
Cells Medium	3	2.0	1.7	17.4 24.0 22.4	70.2	2.7
Cells Cl4_Stock	0	3.5	1.5	0.8	91.8	2.2

Table 2. DDT metabolism by intact cells of \underline{E} , <u>coli</u> incubated anaerobically.

The pat		% cl	4 found	as DD	r metabo	olites
Fraction	Time (days)	p,p'-	o,p'-	p,p'-	p,p'-	Unknown
Medium	1	2.0	1.8	39.2	53.0	4.0
Cells	earlylas muc	7.0	1.0	22.3	62.0	7.6
Medium	2	3.4	1.8	54.2	39.1 54.3	1.5
Cells	ble to produ	5.4	2.0	35.6	54.3	2.7
Medium	3	1.0	1.1	96.1	0.9	0.8
Cells	ngino3a cult	2.2	2.0	92.4	3.0	0.4
Control media	uma 3	2.9	1.2	10.3	82.7	3.3
Control cella	3	8.6	2.0	9.0	75.1	5.3

a Autoclaved cultures were employed as controls.

tures incubated 3 days (71%). Some important and the

an average of 845 er the second to the second to the recovered from injected the second the second to the second t

Table 1. DDT metabolism by intact cells of $\underline{\mathbb{E}}$. coll incubated aerobically.

230 TT			bauo? 4		- James	
Unknown	- q.q Tad	. वेवेवे	Tag	= a'd	Time (days)	nolicar
5.0	75.4	12.9	2.6	5.1	I at last	Tedium
3.0	74.6	15.2	0.0	7.2	1	ells
3.3	76.6	13.5	2.7	8.1	2	muibe
2.7	70.2	0.49	1.1	2.0	3	muital
3.9	70.3	4.22	1.5	I.S	3	elle
2.2	91.8	8.0	1.7	3.5	ò	Moose TI

Table 2. DDT metabolism by intact cells of E. coli incubated amserobleally.

raction	Time (days)	agg agg		P.p		Unknown
medium cells cells cells cells control mo		000000000000000000000000000000000000000	0.20.00.00 0.20.20.00 0.20.20.00 0.20.20.00 0.20.20.00 0.20.20.20 0.20	9035529	55.00 55.00	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Autoclaved cultures were employed as controls.

Table 3. Distribution of radioactivity in cultures of E. coli.

		% radios	activity
Culture	Time(days)	Medium	Cells
Aerobic	1	81.0	19.0
	2	42.3	57·7 80.3
Anaerobic	3	19.7	18.0
Midelopic	2	61.0	39.0
	3	29.0	71.0
Anaerobic con	trol 3	52.8	71.0

With autoclaved \underline{E} , coli, 58% of the recovered radioactivity was associated with the medium, while 47.2% was associated with the cells.

The pattern of DDT metabolism by P. aeruginosa was similar to that found in the E. coli incubations (Tables 4 and 5). However, anaerobic cultures of P. aeruginosa were able to produce nearly as much DDD in 2 days as the E. coli cultures were able to produce in 3 days. In addition, 2-day-aerobic P. aeruginosa cultures were able to produce slightly more DDD from DDT than 1-day-anaerobic E. coli cultures.

The percent recovery of C¹⁴-labeled metabolites extracted from the medium varied. The highest recovery was attained in 1-day-aerobic cultures (97%) and the lowest from anaerobic cultures incubated 3 days (71%). This non-extractable radio-activity attained a maximum of 4% of the total radioactivity.

An average of 84% of the extracted radioactivity was recovered from injected samples by glass wool trapping.

Table 3. Distribution of radioactivity in cultures of E. col1.

orus Lu		Time(days)	Mediam	Cells
ordore		r	0.18	19.0
210079		Š	42.3	57.72
			19.7	€.08
maerobic		Ţ	82.0	18.0
		2	61.0	39.0
naerobio	Forstman		52.8	2.74

With autoclaved \underline{x} , $\underline{col1}$, $58\overline{s}$ of the recovered radio-activity was associated with the medium, while $47.2\overline{s}$ was associated with the colls.

The pettern of DDT metabolism by F. especinose was simtiar to that found in the E. coli incubations (Tables # and 5). However, enseroble oultures of E. asympthose were able to produce nearly as much DDD in 2 days as the E. coli cultures were able to produce in 3 days. In addition, 2-day-asroble E. asympthose Oultures were able to produce slightly more DDD from DCT then 1-day-phaserobic E. coli cultures.

The percent recovery of C^{14} labeled metabolites extracted from the medium varied. The highest recovery was attained in law-acrobic cultures (97%) and the lowest from anaerobic cultures incubated 3 days (71%). This non-extractable radio-activity attained a maximum of 4% of the total radioactivity.

An average of Sty of the extracted radiosotivity was recovered from injected samples by glass wool trapping.

Table 4. DDT metabolism by intact cells of P. aeruginosa incubated aerobically.

	Time	% C	= 0 001101	as DDT	metabo	lites
Fraction	(days)	p,p'-	o,p'-	p,p'-	p,p'-	Unknown
Medium Cells	2 2	2.8	0.8	37.0 40.1	57.4 55.1	2.0

Table 5. DDT metabolism by intact cells of P. aeruginosa incubated anaerobically.

				as DDT		olites
Fraction	Time (days)	p,p'-	O,p'-	p,p'-	p,p'-	Unknown
Medium	2	2.1	0.7	87.4	6.4	3.4
Cells Control medium	2	3.3	2.5	86.5	85.3	2.2
Control cells	2	1.5	1.0	5.7	88.3	3.5

The membrane fractions is at the court of the buffer sentiating membranes at the buffer sentiating membranes at the buffer sentiating buffer and action to buffer and action to buffer and action to buffer and b

b The meshrane ppt. were resembled to a resident of

Table 4. DDT metabolism by intact cells of P. acresinosa

	Time	- *d.d	-10.0	-10.0	-'0.0	-
raction	(days)	add		aga	Tad	Unlanown
muthel	C	2.8	8.0	37.0	57.4	0.5
ells	Š	2.2	1.1	40.1	55.1	1.5

Table 5. DDT metabolism by intact cells of F. seruginoss incubated anaerobically.

seif.	metabol	as DDT	is found	5 o 2		
Unimown	- q.q TOO	- q.q	- q.o	p.p	Time (days)	Fraction
4.000	6.9	86.5	0.7	1.523	2222	Medium Cells Control

A CONTRACTOR OF THE PART OF TH

In the presence of HAD, HADP, ADP, PAD, inorganic phosy phate, malate, and pyruvate, the level of BUD recovered was not substantially different from that of the sembranes alone

(malate and private) were not included as the impulsion

Experiments were designed to acertain the site of DDT metabolism in E. col1. Both the cytoplasmic fraction ("shockate" supernatant) alone and the cytoplasmic fraction plus boiled membrane fraction displayed little ability to degrade DDT to DDD (Table 6). On the other hand, cytoplasmic fractions plus unboiled membranes produced substantially more DDD (29.8 vs. 2.4 and 3.8%). Thus the membrane of bacteria is the site of reductive dechlorination of DDT and the cytoplasm contains an essential factor(s).

Table 6. Effect of membrane and cytoplasm of E. coli on conversion of DDT to DDD.

	% 0	14 four	nd as DI	T metab	olites
Componentsa	p,p'-	o,p'-	p,p'-	p,p'-	Unknown
Membrane only Membrane & Cytoplasm ^b Cytoplasm only Boiled membrane &	0.4 0.3 0.1	1.8	4.6 29.8 2.4	90.5 61.9 92.5	2.7 6.7 3.0
Cytoplasm DDT-Carbon-14 &	0.3	1.5	3.8	90.0	4.4
Buffer	0.4	1.9	0.6	93.9	3.2

a The membrane fractions (3 ml aliquots) consisted of Tris buffer containing membranes at 25.0 mg/ml (original dry Weight of cells).

b The membrane ppt. were resuspended in cytoplasmic fraction at 25.0 mg/ml (original dry weight of cells).

CONTROL CONTROL CO OR STAND

Experiments were designed to scertain the site of DDT metabolism in E. coli. Doth the cytoplasmic fraction ("shock-ste" supermatant) alone and the cytoplasmic fraction plus boiled membrane fraction displayed little ability to degrade DDT to DDD (Table 6). On the other hand, cytoplasmic fractions plus unboiled membranes produced substantially more DDD (29.8 vs. 2.4 and 3.8%). Thus the membrane of bacteria is the site of reductive dechlorination of DDT and the cytoplasm contains an essential factor(s).

Table 6. Effect of membrane and cytoplasm of E. coli on con-

		% cl4 found as DDT metaboli						
omponentse	DDE	-'g.o	DDD - 'q - q	-'g,g	Unknown			
embrane only embrane & Gytoplasmb ytoplasm only	4.0 0.3 0.1	1.8	4.6 29.8 2.4	90.5	2.7 6.7 3.0			
ytoplasm	0.3	1.5	3.8	90.0	4.4			
DT-Carbon-14 &	4.0	1.9	0.6	93.9	3.2			

A The membrane fractions () ml aliquots) consisted of Tris buffer containing membranes at 25.0 mg/ml (criginal dry waight of cells).

The membrane ppt, were resuspended in cytoplasmic fraction at 25.0 mg/ml (original dry weight of cells).

In the presence of NAD, NADP, ADP, FAD, inorganic phosphate, malate, and pyruvate, the level of DDD recovered was not substantially different from that of the membranes alone (Table 7). When NAD, NADP, or the Krebs cycle intermediates (malate and pyruvate) were not included in the incubation mixtures, increases in DDD production occurred. Omission of ADP plus inorganic phosphate or FAD from the incubation mixture gave no increase in DDD production. Significantly, substantial DDD production was achieved only in those incubants containing FAD, ADP, and inorganic phosphate.

Since addition of exogenous ADP plus inorganic phosphate or FAD did enhance DDD production by isolated membranes, experiments were conducted to determine the effects of these components singly or in combination (Table 8). Membranes plus exogenous FAD, ADP, and inorganic phosphate or membranes plus FAD only produced over 4 times the DDD then membranes incubated with exogenous FAD plus inorganic phosphate (Table 8). Thus the addition of exogenous FAD to membrane preparations enhances DDD production. Increasing the exogenous FAD from 2 to 8 pmole did not result in a substantial increases in DDD production.

The addition of ADP plus inorganic phosphate, or FAD, or FAD plus ADP and inorganic phosphate to membrane resuspended in cytoplasmic fractions did not increase DDD production beyond that attained by membrane and cytoplasmic combinations only (Tables 6 and 8). These results suggest that the availability of endogenous enzymes and/or substrates were

The second secon

The addition of FAD, ADP, and inorganic phosphate to membrane fractions incubated aerobically did not enhance DDD production. Thus FAD enhancement of DDD production is dependent on anaerobic conditions. This suggests that normally operating oxidative pathways preclude the reductive dechlorination of DDT.

Table 7. Effect of exogenous Krebs cycle intermediates and cofactors on DDT metabolism by membrane preparations of E, coli.

Components ^a	% C ¹⁴ found as DDT metabolites						
	p,p'-	o,p'-	p.p'-	p.p'-	Unknown		
Membrane only	0.4	1.8	4.6	90.5	2.7		
All Cofactors & Chos.b	0.2	1.3	2.2	93.2	3.1 4.1 5.8 3.1 5.5 7.2 3.5		
Cofactors & Chos. (0.1X)	0.1	1.6	7.9	86.3	4.1		
minus FAD	1.1	1.8	4.9	86.4	5.8		
minus ADP & PO4	0.0	1.2	5.9	89.1	3.8		
minus Malate & Pyruvate	0.4	1.4	21.4	73.7	3.1		
minus NAD	0.5	1.6	26.8	65.6	5.5		
minus NADP	0.8	1.6	21.1	69.3	7.2		
minus Chos. (control) C	0.1	0.4	1,3	94.7	3.5		

a Each incubant contained 3 ml of membrane fraction.

b Two mmole each of NAD, NADP, FAD, malate, pyruvate, and 0.1 mmole each of ADP and inorganic phosphate.

Components consisted of 3ml boiled membrane fraction plus exogenous cofactors. Malate and pyruvate were not added.

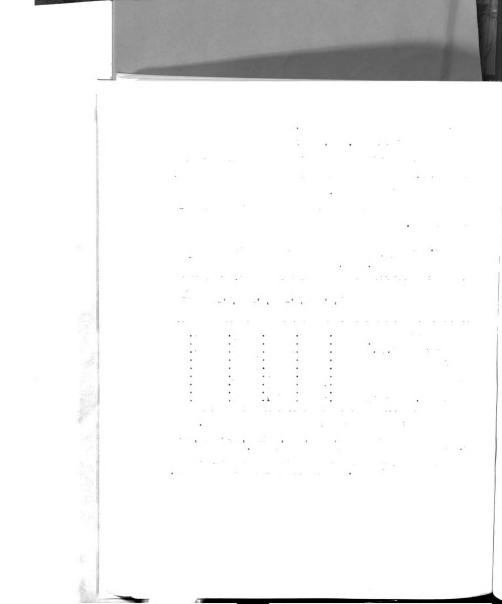
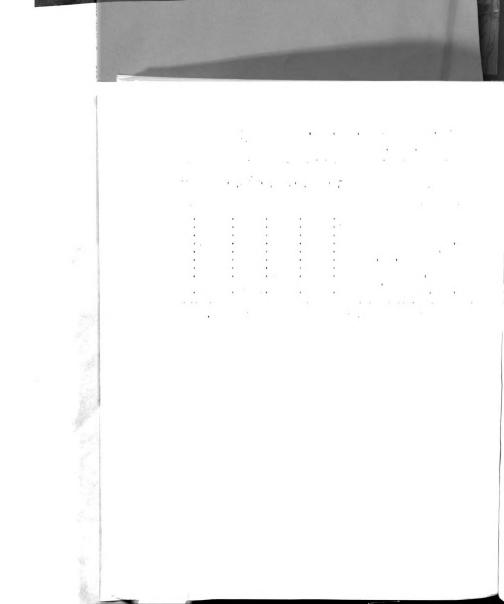



Table 8. Effect of NAD, FAD, ADP, and inorganic phosphate on DDT metabolism by membrane preparations of E. coli.

Components ^a	% Cl4 found as DDT metabolites					
	p,p'-	o,p'-	p,p'-	p,p'-	Unknown	
NAD	0.3	1.3	7.7	87.4	3.3	
FAD	0.2	1.2	22.5	72.6	3.5 3.9 3.1 4.3	
ADP & PO4	0.5	2.1	5.2	88.3	3.9	
FAD, ADP & PO4	0.5	1.7	20.5	74.2	3.1	
4X FAD, ADP & PO4	0.7	0.8	23.1	71.1	4.3	
Cytoplasm & FAD, ADP, PO4	0.9	1.6	28.9	62.6	6.0	
Cytoplasm & FAD	0.1	1.3	26.2	68.8	3.6	
Cytoplasm, ADP & PO4 Aerobic Atmosphere,	0.5	1.3	27.9	65.1	5.2	
FAD, ADP, & PO4	0.5	1.6	2.9	90.0	5.0	

a Each incubant contained 3 ml of membrane fraction.

DISCUSSION

The results of the whole cell studies carried out in this investigation are in general agreement with the observations made by other investigators, that is, the conversion of DDT to DDD is inversely related to the supply of atmospheric oxygen available to the bacteria. However, the present investigation also demonstrated aerobic conversion of DDT to DDD by bacterial cultures. Two investigators have reported that no conversion of DDT to DDD occurs in aerobic bacterial cultures (Stenersen, 1965; Johnson, 1967) while others have reported the contrary (Chacko, et al., 1966; Wedemeyer, 1966). Metabolic differences between species may account for this discrepancy. On the other hand, shaking may not have provided sufficient oxygen to maintain an aerobic state with the bacterial populations employed in this investigation.

The levels of DDE exceeded that of the DDT-C¹⁴ stock solution. However, the DDE content did not increase with incubation time and did not vary significantly from the levels found in autoclaved cells. Similar results have been obtained by other investigators employing other microorganisms (Kallman and Andrews, 1963; Stenersen, 1965; Wedemeyer, 1966; Plemmer, et al., 1968). Guenzi and

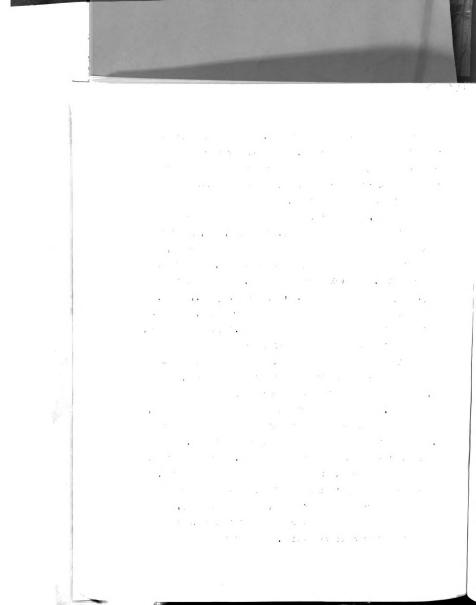
: • Ŋ 1 1 in âe

27

Beard (1967) reported a slight increase in recoverable DDE after incubating nonsterile soil, 4 weeks, anaerobically, with DDT.

Autoclaved cells displayed a limited capacity to convert DDT to DDD under anaerobic conditions. Of those investigators that referred to autoclaved control experiments, none reported conversion of DDT to DDD. Contamination of the control cultures cannot be categorically eliminated as the control cultures were not plated after incubation. The observations by Castro (1964) that dilute solutions of Fe⁺⁺ porphyrins can dechlorinate DDT and Miskus (1965) that dechlorination can be accomplished by hemoglobin and hemitin solutions at room temperature, demonstrate non-biologically catalized degradation can occur with relatively mild conditions. This may account for all the DDE and a fraction of the DDD extracted from aerobic and anaerobic cultures and for the presence of DDE and DDD in autoclaved cultures.

The non-hexane-extractable radioactivity in anaerobic E. coli cultures represented 4% of the radioactivity after 3 days. Stenersen (1965), Guenzi and Beard (1967), and Matsumura and Bousch (1968) also indicated the presence of nonextractable radioactivity associated with water phases. This residual activity may represent water soluble metabolites. The autoradiograms of anaerobic cultures of E. coli, incubated 3 days, and P. aeruginosa, incubated 2 days, possessed 1 slightly exposed spot of extremely low Rf, probably

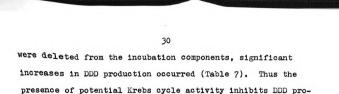


28

indicating a high degree of polarity, which did not correspond to any of the standards. This lends support to reports of Wedemeyer (1967 a) and Bousch and Matsumura (1968) that products other than DDD occurred as minor metabolites of bacterial degradation of DDT.

Anaerobic, aerobic and autoclaved cells concentrated DDT and its metabolites (Table 3). Eighty %, 71%, and 47% of the total C^{14} was extracted from the cells of aerobic, anaerobic and autoclaved cultures respectively, after 3 days of incubation. The volume occupied by 0.25 mg (dry weight) of E. coli is approximately 1.0 µl (Roberts, et al., 1963). At the population levels employed in this research, the bacteria occupied a volume of approximately 3.5 µl/ml of culture. Relating this information to the distribution of extractable radioactivity presented in Table 3, a more dramatic representation of the radioactive distribution can be seen. That is. 80% of the extractable radioactivity was associated with less than 0.4% of the incubation volumes in aerobic cultures. and 71% of the extractable radioactivity was associated with 0.4% of the incubation volumes in anaerobic cultures. Washing the bacterial pellets by resuspension in 0.85% sodium chloride solution released an insignificant amount of radioactivity. Since a rather large initial inocula of lag-phase bacteria were employed in these experiments (425 mg/experiment), the increases in population were not sufficient to alter the optical density of the medium. Thus living cells

do concentrate DDT and its metabolites, but this is not a requisite for uptake as autoclaved cells displayed this capacity as well (Table 3). The ability to metabolize DDT does not enhance its uptake under the conditions employed in this investigation. In addition, most of the DDD produced by the bacteria remained associated with the cells. However, the role of the medium cannot be discounted. If media of high lipid content were employed, the partitioning of DDT and its metabolites may show different characteristics.


After cellular lysis, neither the particulate membrane fraction nor the soluble fraction (cytoplasm) could produce significant amounts of DDD (Table 6). If, however, these 2 fractions were combined, conversion of DDT to DDD occurred. Upon boiling the membrane fraction for 5 minutes and combining the boiled membranes with the "shockate" supernatant, one could no longer obtain significant conversion. These observations, plus the fact that the addition of FAD to the membrane fraction enhanced DDD production, suggests that the capacity to metabolize DDT to DDD resides in the membranous portion of the bacterial cell and is not cytoplasmic in origin. Since the cell walls were depolymerized and made soluble by the action of lysozyme (Salton, 1960), it most probably plays no direct role in this aspect of DDT degradation.

The membrane fraction plus NAD, NADP, pyruvate, malate, FAD, ADP, and inorganic phosphate converted little DDT to DDD. However, if NAD, NADP or the 2 Krebs cycle intermediates

do concentrate DDT and the metabolites, but this is not a requisite for uptake as autoclaved cells displayed this espacity as well (Table 3). The ability to metabolice DDT does not anhance its uptake under the conditions employed in this investigation. In addition, wost of the DDD produced by the bacteria remained associated with the cells. However, the role of the medium cannot be discounted. If media of high lipid content were employed, the partitioning of DDT and its metabolites may show different characteristics.

After collular lysis, neither the particulate membrane fraction nor the soluble fraction (cytoplasm) could produce significant amounts of DDD (Table 5). If, however, these 2 fractions were combined, conversion of DDT to DDD occurred. Upon boiling the membrane fraction for 5 minutes and combining the boiled membranes with the "shockate" supernatant, bining the boiled membranes with the "shockate" supernatant, one could no longer obtain significant conversion. These observations, plus the fact that the addition of FAD to the capacity to metabolize DDT to DDD resides in the membrancus capacity to metabolize DDT to DDD resides in the membrancus portion of the bacterial cell and is not cytoplesmic in origin. Since the cell wells were depolymented and made soluble by the sction of lycozyme (Salton, 1960), it most probably plays no direct role in this aspect of DDT degradation.

The membrane fraction plus MAD, MADP, pyruvate, malate, FAD, ADP, and inorganic phosphase converted little DET to DDD. However, if MAD, MADP or the 2 hards oyele intermediates

duction with the conditions utilized in this study.

Since membrane preparations of <u>E. coli</u> are capable of metabolizing Krebs intermediates (Mizuno, et al., 1961; Gray, et al., 1966; Cox, et al., 1968), and furthermore, contain the cytochromes b, a, a₂ and c (Gray, et al., 1968), one would not expect the results obtained in this investigation. If indeed, reduced cytochrome a₃ (cytochrome oxidase) is the enzyme responsible for the conversion of DDT to DDD (Wedemeyer, 1966) then the deletion of major components of the Krebs cycle should not enhance DDD production. On the contrary, their metabolism should contribute electrons to the cytochrome system and maintain them in a reduced state.

The involvement of FAD in enzymatic electron transfer processes is well documented (White, et al., 1965; Slater, 1966; Wellner, 1967). Addition of exogenous FAD to the membrane fraction significantly enhanced DDD production (Table 8). However, addition of FAD to aerobically incubated membrane fractions did not stimulate DDD production. Thus anaerobic conditions are a requisite to FAD enhancement of DDD production. The results of this investigation suggest that under anaerobic conditions FAD may be a cofactor required for the enzymatic conversion of DDT to DDD. Secondly, the results suggest that FAD may function as a cofactor in an electron transfer process not directly involved in the

were deleted from the incubation components, significant increases in DDD production occurred (Table ?). Thus the presence of potential Krebs cycle activity inhibits DDD production with the conditions utilized in this study.

Since membrane preparations of E. coll are capable of metabolizing Krebs intermediates (Mizuno, et al., 1961; Gray, et al., 1966; Gor, et al., 1968), and furthermore, contain the cytcohromes b, a, eg and c (Gray, et al., 1968), one would not expect the results obtained in this investigation. If indeed, reduced cytcohrome as (cytcohrome oxidase) is the enzyme responsible for the conversion of DDT to DDD (Wedemeyer, 1966) then the deletion of major components of the Krebs cycle should not enhance DDD production. On the contrary, their metabolism should contribute electrons to the cytcohrome system and maintain them in a reduced state.

The involvement of FAD in engymetic electron transfer processes is well documented (White, ct al., 1965; Slater, 1965; Wellner, 1967). Addition of exceences FAD to the membrane fraction significantly enhanced DDD production (Table B). However, addition of FAD to serotically incubated membrane fractions did not stimulate LDD production. Thus enacrobic conditions are a requisite to FAD enhancement of DDD production. The results of this investigation suggest that under enscribt conditions FAD may be a coractor required for the enzymatic conversion of DDF to DDD. Secondly, the results engress that FAD may function as a cofactor in the encounter process not directly involved in the

31

immediate reduction of DDT to DDD, but in an electron transfer process or processes necessary for the ultimate reduction of DDT. Further investigation would be required to establish the role of FAD in DDT reduction.

Four-fold increments of exogenous FAD added to membrane fractions failed to significantly increase DDD production beyond that obtained by the addition of 2 umole aliquots (Table 8). This suggests that another factor or factors are limiting the rate of DDT reduction. Cytoplasmic stimulation of DDT reduction by membrane preparations was not increased by addition of exogenous FAD. The stimulating factor or factors that were present in the cytomplsmic fraction ("shockate" supernatant) are unknown. The isolation and characterization of this factor or factors required for DDT reduction would contribute valuable information concerning the metabolic processes involved in DDT reduction.

SUMMARY

Aerobic and anaerobic cultures of E. coli and P. aeruginosa degraded DDT to DDD. This conversion was inversely related to the supply of atmospheric oxygen available to the bacteria. Autoclaved cells produced substantially less DDD. The levels of DDE and o.p'-DDT produced after 3 days did not exceed the control levels.

Anaerobic, aerobic and autoclaved cells concentrated DDT and its metabolites. The magnitude of C¹⁴ uptake was not related to the ability of the cells to metabolize DDT. Thus the ability to concentrate DDT is a passive process.

The membrane fraction or the cytoplasmic fraction

(20,000 g "shockate" supernatant) degraded little DDT to

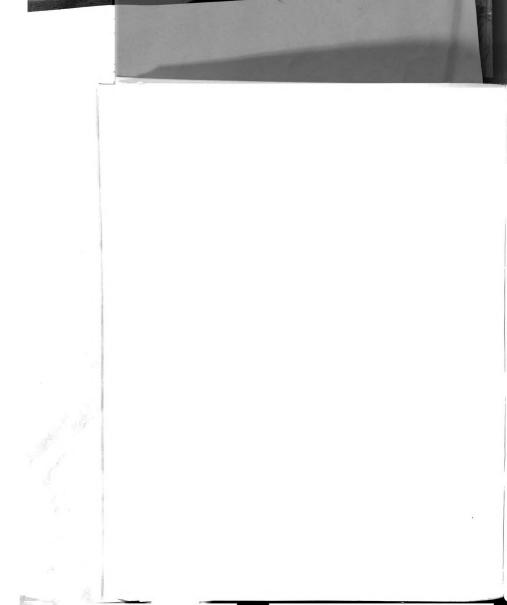
DDD. The combined fractions were able to dechlorinate

more DDT. Addition of cytoplasmic fractions to boiled membrane fractions did not enhance the reductive dechlorination

of DDT.

When NAD, NADP, FAD, ADP, malate, pyruvate, and inorganic phosphate was added to membrane fractions, the levels of recovered DDD did not exceed the levels of DDD produced by membrane fractions only. When NAD, NADP, or malate and pyruvate were omitted from the incubation components, increases in DDD production occurred. Addition of exogenous

FAD to membrane fractions resulted in increased DDD production under anaerobic conditions.

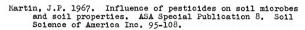

The results of the membrane studies indicate the following:

- 1. Reductive dechlorination of DDT occurs in the membranous portion of the bacterial cell and is not cytoplasmic in origin.
- 2. Reductive dechlorination of DDT is stimulated by components in the cytoplasm.
- 3. Reductive dechlorination of DDT does not utilize electrons produced by the oxidation of Krebs cycle intermediates and passed through the cytochrome system.
- 4. Reductive dechlorination of DDT is dependent upon the enzymatic reduction of FAD and occurs only under anaerobic conditions.
- 5. Reductive dechlorination of DDT requires electrons produced by the oxidation of an energy source.
- 6. Reductive dechlorination of DDT may require the formation of free radicals. The oxidation of endogenous substrates could produce the half-reduced form of FAD (FADE*, a semiquinone) and may be the active molety involved in the enzymatic reduction of DDT.

-

LITERATURE CITED

LITERATURE CITED


- Agosin. M., Scaramelli, N., and Neghme, A. 1961. Intermediary carbohydrate metabolism of <u>Triatoma infestans</u>. Comp. Biochem. Physiol. 2:143-159.
- , Ilividky, J., and Litvak, S. 1967. The induction of NADkinase by DDT in Triatoma infestans. Can. J. Biochem. 451619-626.
- Baker, P.S., and Morrison, F.O. 1964. Breakdown of DDT to DDD in mouse tissue. Can. J. Zool. 42:324-325.
- _____, and Morrison, F.O. 1965. Conversion of DDT to DDD by <u>Proteus vulgaris</u>, a bacterium isolated from the intestinal flora of a mouse. Nature 2051621-622.
- Barsa, M.C., and Ludwig, D. 1959. Effects of DDT on the respiratory enzymes of the mealworm, Tenebric molitor L. and of the housefly, Musca domestica L. Ann. Entomol. Soc. 52:179-182.
- Bartha, R., Lanzilotta, R.P., and Pramer, D. 1967. Stability and effect of some pesticides in soil. J. Appl. Microbiol. 15:67-75.
- Brunberg, R.C., and Beck, V. 1968. Interaction of DDT and the gastrointestinal microflora of the rat. J. Ag. and Food Chem. 16:451-453.
- Castro, C.A. 1964. The rapid oxidation of Iron (II) porphyrins by alkyl halides. A possible mode of intoxication of organisms by alkyl halides. J. Amer. Chem. Soc. 86:2310-2311.
- Chacko, C.I., Lockwood, J.L., and Zabik, M. 1966. Chlorinated hydrocarbon pesticides: degradation by microbes. Science 154:893-895.
- Collins, J.A., and Langlois, B.E. 1968. Effect of DDT, Dieldrin and Heptachlor on the growth of selected bacteria. Appl. Microbiol. 16:799-800.
- Cox, G.B., Snoswell, A.M., and Gibson, F. 1968. The use of a ublquinone-deficient mutant in the study of malate oxidation in E. coll. Blochim. Blophy. Acta 153:1-12.

35

- Datta, P.R., Laug, E.P., and Klein, A.K. 1964. Conversion of P.P.-DDT to P.P.-DDD in the liver of the rat. Science 145:1052-1053.
- Ecobichon, D.L., and Saschenbrecker, P.W. 1967. Dechlor-ination of DDT in frozen blood. Science 156:663-664.
- Farrow, R.P., Eldins, E.R., and Cook, R.W. 1966. Conversion of DDT to TDE in canned spinach. J. Ag. Food Chem. 14:430-434.
- Gillett, J.W. 1968. No effect level of DDT in induction of microsomal epoxidation. J. Ag. Food Chem. 16:295-297.
- Gray, C.T., Wimpenny, J.M.T., Hughes, D.E., and Mossman, M. 1966. Regulation of metabolism in facultative bacteria. Biochim. Biophys. Acta 117:22-32.
- Gregg, C.T., Johnson, J.R., Heisler, C.R., and Remmert, L.F. 1964. Inhibition of oxidative phosphorylation and related reactions in insect mitochondria. Biochim. Biophys. Acta 82;340-343.
- Guenzi, W.O., and Beard, W.E. 1967. Anaerobic biodegradation of DDT to DDD in soil. Science 156:1116-1117.
- Hayes Jr., W.J. 1965. Review of the metabolism of chlorinated hydrocarbon insecticides especially in mammals. Ann. Review Pharmacology 5:27-52.
- Johnson, B.T., and Goodman, R.N. 1967. Conversion of DDT to DDD by pathogenic and saprophytic bacteria associated with plants. Science 157:560-561.
- Kallman, B.J., and Andrews, A.K. 1963. Reductive dechlorination of DDT to DDD by yeast. Science 141:1050-1051.
- Klein, A.K., Laug, E.P., Datta, P.R., Watts, J.O., and Chen, J.T. 1964. Reductive dechlorination of DDT to DDD and isomeric transformation. J. Assoc. Official Ag. Chem. 47:1129-1145.
- Kornberg, H.L. 1959. Aspects of terminal respiration in microorganisms. Ann. Rev. Microbiol. 113:49-55.
- Litvak, S., Litvak, L., and Pobete, P. 1968. Evidence for the DDT-induced synthesis of messenger ribonucleic acid in <u>Triatoma</u> infestans. Comp. Biochem. Physiol. 26:45-56.
- Ludwig, D., Barsa, M.C., and Cali, T. 1955. The effect of DDT on the activity of cytochrome oxidase. Ann. Entomol. Soc. Amer. 48:165-170.

- Datts, P.S., Laug, E.P., and kieln, A.K. 1964. Conversion of P.P.-DDT to P.P.-DDD in the liver of the rat. Solvence 145:1052-1053.
- doctions, D.L., and Saschenbrecker, 1.1. 1967. Decilorinstitute of DDT in frozen blood. Science 156.663-664.
- Perrow, E.F. Eldis, b.i. and Cook, s.w. 1966. Conversion of DPT to Mub in canned spinson. J. Ag. Food Chem, 18:890-854.
- Gillett, J.M. 1968. We effect level of D. T in induction of microsomal epoxidation. . . As. Food Chem. 16:295-297.
- Gray C.C. Mimpenny J.K. Author D.S. and Mosman K. 1966 Bogulation of vetacolsem in facultative bacteria. 31conim. Stophys. Acta. 117:228-32
- Gregs, C.T., Johnson, J.A., Schler, C.A., and Remmert, L.F. 1906. Inhibition of oxidative prespectivition and related wead those in insect mitcohondria. Sloonin, Blownys. Acta 82:340-343.
 - Coenzi, W.O., and Degrd, E.E. 1967. Anserobic biodegradation of DDT to NDD in soil. Science 156:1116-1117.
- Bayes Jr., W.J. 1965, Heview of the metabolism of chlorinfield hydrocarbon insecticides especially in mammals, Arm. Soview Plantascology 5127-52.
- Johnson, 3.T. and Goodwan, E.M. 1967, Conversion of BDTto BDD by pathogenic and saprophytic bacteria associated with plants, Stience 157:560-561.
- Mallwan, E.t., and Andrews, A.K. 1963. Reductive dechlortmetton of DDT to DDD by yeast. Science 141:1050-1051.
- Main, A.K., Lawg, E.F., Datts, P.R., Watts, J.C., and Chen, J.T. 1966. Reductive decidering ton of DDT to DDD and lagneric transfortation. J. Assoc. Official Ag. Chem.
- Someon, M.L. 1959. Aspects of terminal respiration in microrganisms. Ann. Rev. Microbiol. 113:49-55.
- Hivek, S., Litvak, L., and Pobete, P. 1968. Evidence for the DDF-induced synthesis of messenger ribonuclate acid in Tristone infectors. Comp. Bloomem, Physical 26:45-56.
 - hadrin, D., Borse, M.C. and Call, T. 1955. The offect of LDT on the schufty of sychologe oxidase. Ann. Entewed. Soc. Amer. Well5-170.

- Matsumura, F., and Bousch, G.M. 1968. Degradation of insecticides by a soil fungus, <u>Trichoderma</u> <u>viride</u>. J. Econ. Entomol. 61:610-612.
- Mendel, J.L., and Walton, M.S. 1966. Conversion of P,P'-DDT to P,P'-DDD by intestinal flora of the rat. Science 151:1527-1528.
- Miskus, P., Blair, D.P., and Casida, J.E. 1965. Conversion of DDT to DDD by bovine rumen fluid, lake water, and reduced porphyrins. J. Ag. Food Chem. 1j.481-483.
- Mizuno, S., Yoshida, E., Takahashi, H., and Maruo, B. 1961. Experimental proof of a compartment of "energy-rich-P" in a subcellular system from <u>Pseudomonas flourscent</u>. Blochim. Blophys. Acta 49;361-381.
- Morello, A. 1965. Induction of DDT-metabolizing enzymes in microsomes of rat liver after administration of DDT. Can. J. Biochem. 43:1289-1293.
- Morrison, P.E., and Brown, A.W.A. 1954. The effects of insecticides on cytochrome oxidase. J. Econ. Entomol. 47:723-730.
- Nagata, Y., Mizuno, S., and Maruo, B. 1966. Preparation and properties of active membrane systems from various species of bacteria. J. Biochem. 59:404-410.
- O'Brien, R.D. 1967. <u>Insecticides, Action and Metabolism.</u> Academic Press, New York.
- Ott, D.E., and Gunther, F.A. 1965. DDD as a decomposition product of DDT. Residue Rev. 10:70-84.
- Perry, A.S., and Sacktor, B. 1955. Detoxification of DDT in relation to cytochrome oxidase activity in resistant and susceptible houseflies. Ann. Entomol. Soc. 48:329-333.
- , 1960. Biochemical aspects of insect resistance to chlorinated hydrocarbons. Miscellaneous Pub. Entomol. Soc. Amer. 2:119-137.
- Peterson, J.E., and Robison, Wm. H. 1964. Metabolic products of P.P'-DDT in the rat. Toxicology Appl. Pharmacol. 6: 321-327.

. • • • •

- Plemmer, J.R., Kleamey, P.C., and VanEndt, D.W. 1968. Mechanism of conversion of DDT to DDD by <u>Aerobacter arogenes</u>. J. Ag. Food Chem. 16:594-597.
- Roberts, R.B., Abelson, P.H., Bolton, E.T., Cowie, D.B., and Britten, R.J. 1963. Studies of Biosynthesis in <u>Escher-ichia coli</u>. Carnegie Institution, Washington.
- Sacklin, J.A., Terriere, L.C., and Remmert, L.F. 1955. Effect of DDT on enzymatic oxidation and phosphorylation. Science 122:377-378.
- Salton, M.R.J. 1960. The properties of lysozymes. Ann. Rev. Microbiol. 115:82-99.
- Schoenhard, D.E. 1961. <u>Basic Concepts and Experiments in Microbiology</u>. Burgess Publishing Co., Minneapolis.
- Slater, E.C. 1966. Flavin and Flavoproteins. Elsevier Publishing Co., New York.
- Sova, C.R. 1966. Lactate dehydroginase activity: effect in vitro of some pesticidal chemicals. Science 154:1661-1662.
- Stenersen, V.H.J. 1965. DDT metabolism in resistant and susceptible stableflies and in bacteria. Nature 207: 660-661.
- Sternburg, J., and Kearns, W. 1952. Chromatographic separation of DDT and some of its known and possible metabolites. J. Econ. Entol. 45:505-509.
- Wedemeyer, G. 1966. Dechlorination of DDT by Aerobacter aerogenes. Science 152:647.
- , 1967 a. Dechlorination of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane by <u>Aerobacter aerogenes</u>. 1. Metabolic products. J. Appl. Microbiol. 15;569-574.
- . 1967 b. Biodegradation of dichlorodiphenyl trichloroethane: Intermediates in dichlorodiphenylacetic acid metabolism by <u>Aerobacter aerogenes</u>. J. Appl. Microbiol. 15:1494-1495.
- Weibull, C. 1953. Isolation of protoplasts from <u>Bacillus</u> <u>megaterium</u> by controlled treatment with lysozyme. J. <u>Bacteriol.</u> 66:688-695.
- Wellner, D. 1967. Flavoproteins. Ann. Rev. Biochem. 36: 669-687.
- White, A., Handler, P., and Smith, E.L. 1964. Principles of Biochemistry. 3rd ed., McGraw-Hill Book Co., New York.

Plemes, J.R. Kleamey, P.C. and VanEndt, D.4 1968 Heonemism of conversion of BDT to BDD by <u>Aerobacter arccenes</u>. J. Ag. Food Chem. 16:59h-597.

Soberts, H.S. Abelson, P.H., Bolton, E.T., Cowie, D.B., and Erithen, R.J. 1963. Studies or Blosynthesis in <u>Escher-</u> 1ente of the Carmegic Institution, Washington.

Smoklan J.A., Terriere, L.C., and hommert, L.F. 1955.

Effect of DDT on enzymethe oridation and phosphorylation.

Science 122:377-378.

Salton, M.B.J. 1960. The properties of lysosymes, Ann. Bev. Marchiol. 115:82-99.

Schoenhard, D.B. 1961. Basic Concepts and Experiments in Microbiology. Surgess Fublishing Co. Minnespolis.

Slater, E.C. 1966. <u>Flavin and Alavoroteins</u>. Elsevier Publishing Co., New York.

Sova, C.S. 1966. Lactate denydroginace activity: effect in vitro of some pectioidal chemical.. ocience 154:1561-1562.

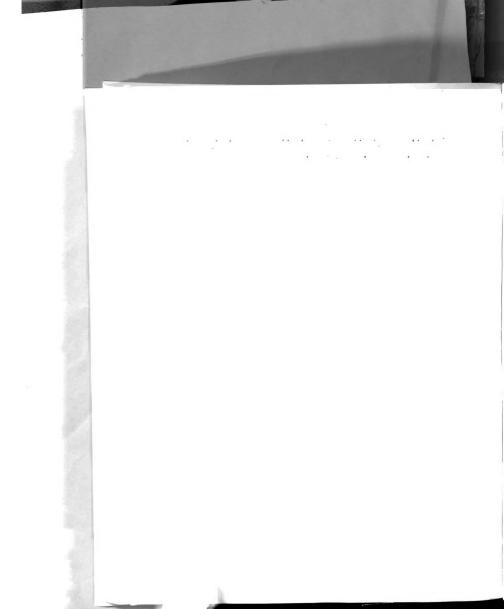
Stenersen, V.H.J. 1965. DDT metabolism in resistant and succeptible stableflies and in bacteria. Mature 207: 660-661.

Stemburg, J., and Mearns, W. 1952. Chromatographic separation of DDT and some of its known and possible metabolites. J. Econ. Entol. 45:505-509.

Wedeneyer, G. 1966. Decalorination of DDF by Aerobacter sarogenes. Selence 152:647.

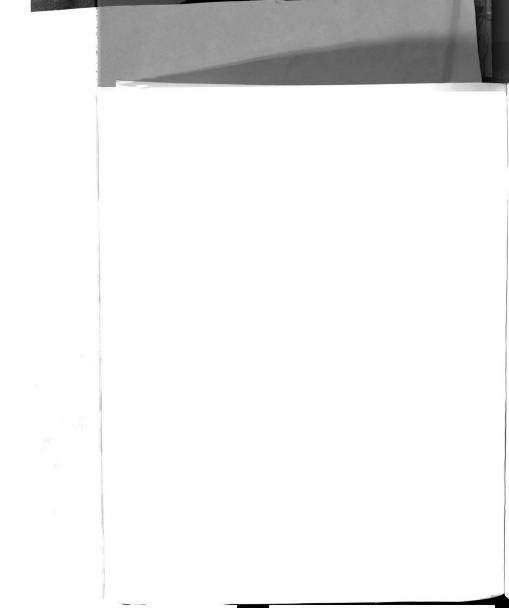
1967 a. Dechlorination of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane by Aerobeeter serogenes 1. Metabolic products. J. Appl. Microbiol. 15,509-574.

1967 b. Biodegradation of dichlorodiphenyl trichlorostkane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerokovier nerozenes. J. Appl. Microbiol. 15:1494-1495.


submil. C. 1953. Redation of protoplasts from Badilius meanterium by controlled treatment with lysotyme. J. Easterloi. 60:568-695.

elmar, D. 1967. Flavoproteins, Ann. Rov. Biochem. 36: 669-687.

mite, A., Handler, P., and Smith, S.L. 1964. Principles of Biochemistry. 3rd ed., McGrew-Hill Book Co., New York.


38

Yoshida, E., Mitsui, H., Takahashi, H., and Maruo, B. 1960. Amino acid incorporation by a bacterial cell free system. J. Biochem. 48:251-261.

APPENDIX

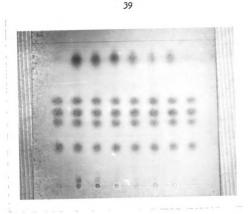
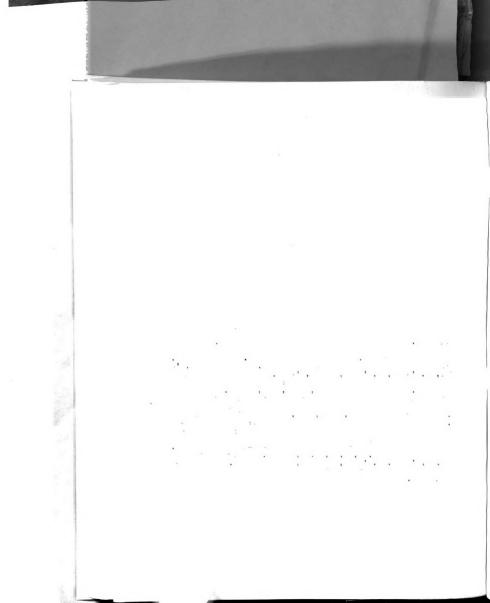



Figure 2. Representative thin-layer chromatogram.

Mobil phase; hexane. Chromogenic agent: 0.1% Rhodamine B. Each point of origin was spotted with 30.0 µg each of p,p'-DDE, o,p'-DDT, p,p'-DDT, and p,p'-DDD. From left to right DDE, o,p'-DDT, p,p'-DDT, and p,p'-DDD. From left to right authentic carbon-14-labeled DDT (1); 3ml of membrane fraction + 2.0 µmoles each of NAD, NADP, FAD, and 0.1 µmoles each of ADF & inorganic PO4 (2); duplicate experiment using the components of number 2 (3); 3 ml of membrane fraction + 0.2 µmoles each of NAD, NADP, FAD, malate and pyruvate and 0.01µmoles each of ADF & inorganic PO4 (4); duplicate experiment using the components of number 4 (5); 3 ml of membrane fraction (6); duplicate experiment using the components of number 6 (7); authentic carbon-14-labeled DDT (8). The spots at R_f 0.60, 0.51, 0.44, and 0.26 correspond to DDE, o,p'-DDT, p,p'-DDT, and DDD, respectively. The autoradiogram obtained from this chromatogram is presented in Figure 6B. Figure 6B.

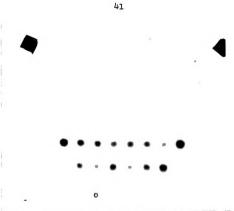



Figure 3A. Anaerobic cultures incubated 1 and 2 days.

From left to right carbon-14-labeled DDT (1); medium of an anaerobic culture incubated 1 day (2); bacteria of an anaerobic culture incubated 1 day (3); medium of an anaerobic culture incubated 1 day (4); bacteria of an anaerobic culture incubated 1 day (5); bacteria of an anaerobic culture incubated 2 days (6); medium of an anaerobic culture incubated 2 days (6); medium of an anaerobic culture incubated 2 days (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.

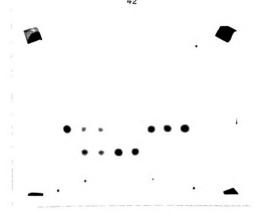


Figure 3B. Anaerobic cultures incubated 2 days, 3 days, and autoclaved cells incubated 3 days.

From left to right authentic carbon-14-labeled DDT (1); medium of an anaerobic culture incubated 2 days (2); bacteria of an anaerobic culture incubated 2 days (3); medium of an anaerobic culture incubated 3 days (4); bacteria of an anaerobic culture incubated 3 days (5); medium of an anaerobic autoclaved culture incubated 3 days (6); bacteria of an anaerobic autoclaved culture incubated 3 days (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.

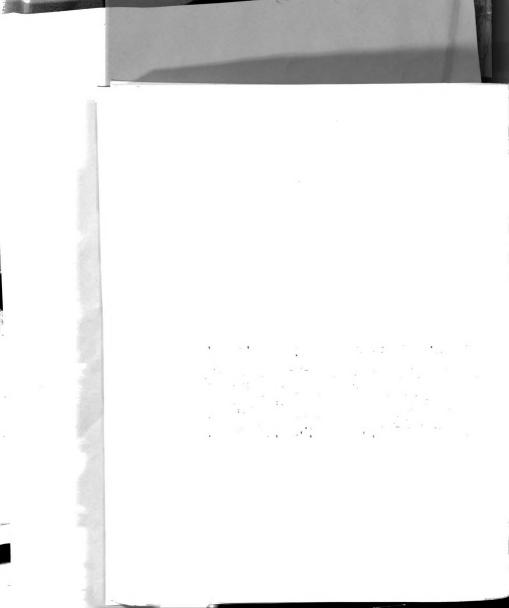


Figure 3C. Anaerobic and aerobic cultures incubated 3 days and autoclaved cells incubated 3 days.

From left to right authentic carbon-14-labeled DDT (1); medium of an anaerobic culture incubated 3 days (2); bacteria of an anaerobic culture incubated 3 days (3); medium of an anaerobic autoclaved culture incubated 3 days (4); bacteria of an anaerobic autoclaved culture incubated 3 days (6); bacteria of an aerobic culture incubated 3 days (6); bacteria of an aerobic culture incubated 3 days (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p.p'-DDT and p.p'-DDD, respectively.

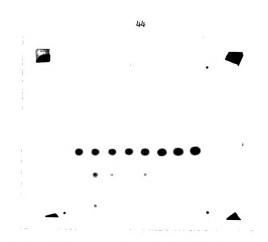


Figure 3D. Aerobic cultures incubated 1 and 2 days.

From left to right authentic carbon-14-labeled DDT (1); bacteria of an aerobic culture incubated 2 days (2); medium of an aerobic culture incubated 2 days (3); medium of an aerobic culture incubated 1 day (4); bacteria of an aerobic culture incubated 1 day (5); medium of an aerobic culture incubated 1 day (6); bacteria of an aerobic culture incubated 1 day (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p*-DDT and p,p*-DDD, respectively.

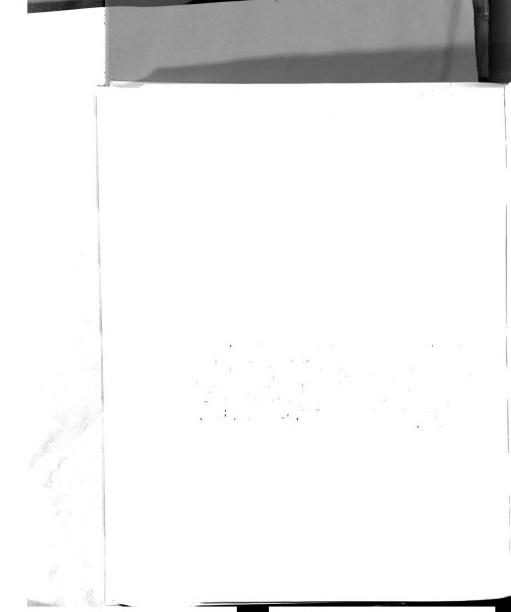


Figure 3E. Aerobic culture incubated 2 and 3 days.

From left to right authentic carbon-l4-labeled DDT (1); medium of an aerobic culture incubated 2 days (2); bacteria of an aerobic culture incubated 2 days (3); medium of an aerobic culture incubated 3 days (4); bacteria of an aerobic culture incubated 3 days (4); bacteria of an aerobic culture incubated 3 days (5); authentic carbon-l4-labeled DDT (6). The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.

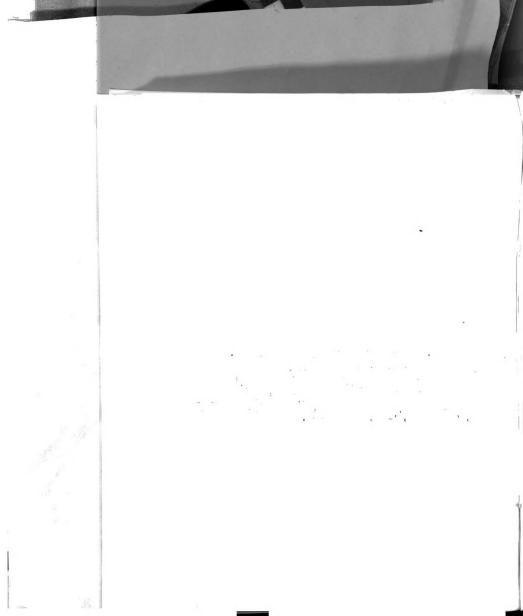
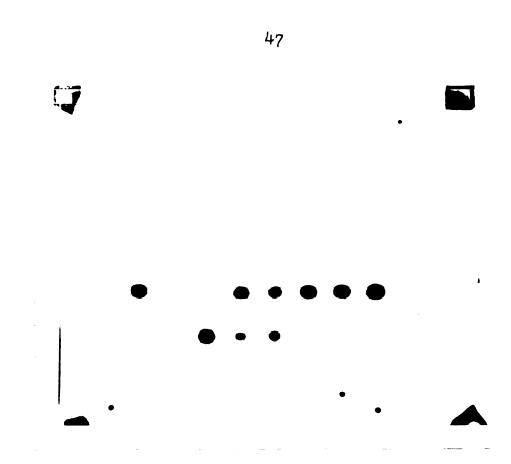



Figure 4. Autoradiograms of thin-layer chromatograms of carbon-14-labeled DDT and carbon-14-labeled metabolites produced by \underline{P} . aeruginosa.

cans of plites

Figure 4A. Anaerobic and aerobic cultures incubated 2 days and autoclaved cells incubated 2 days.

From left to right authentic carbon-14-labeled DDT (1); medium of an anaerobic culture incubated 2 days (2); bacteria of an anaerobic culture incubated 2 days (3); medium of an aerobic culture incubated 2 days (4); bacteria of an aerobic culture incubated 2 days (5); medium of an anaerobic autoclaved culture incubated 2 days (6); bacteria of an anaerobic autoclaved culture incubated 2 days (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p*-DDT and p,p*-DDD, respectively.

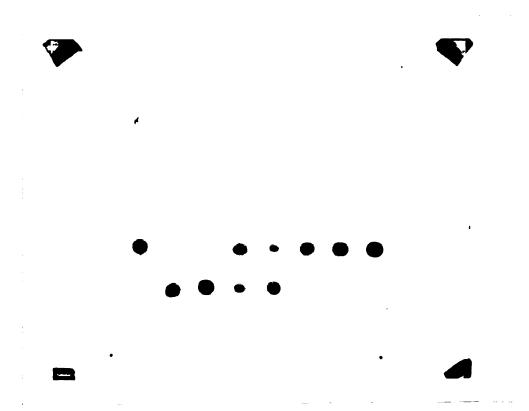
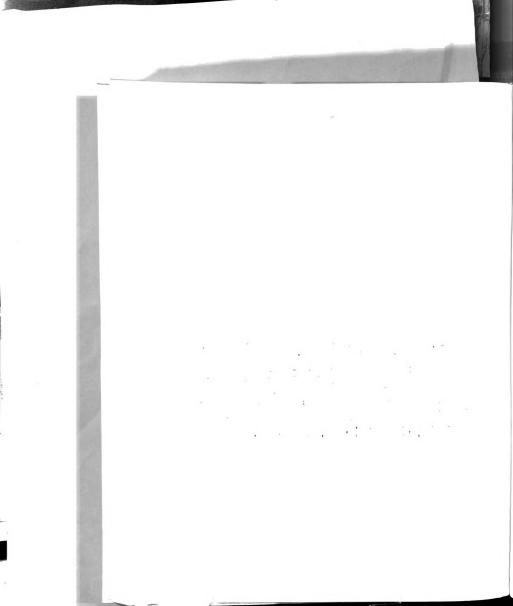
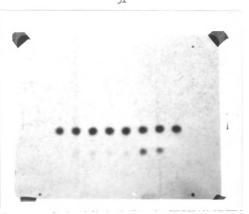


Figure 4B. Anaerobic and aerobic cultures incubated 2 days and autoclaved cells incubated 2 days.

From left to right authentic carbon-14-labeled DDT (1); medium of an anaerobic culture incubated 2 days (2); bacteria of an anaerobic culture incubated 2 days (3); medium of an aerobic culture incubated 2 days (4); bacteria of an aerobic culture incubated 2 days (5); medium of an anaerobic autoclaved culture incubated 2 days (6); bacteria of an anaerobic autoclaved culture incubated 2 days (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.




Figure 5. Autoradiogram of a thin-layer chromatogram of carbon-14 labeled DDT and metabolites produced by combining cytoplasmic fractions and membrane preparations of \underline{E} . \underline{coli} .

From left to right authentic carbon-14-labeled DDT(1);
3 ml of boiled membrane + cytoplasmic fraction (2); duplicate experiment using the components of 2 (3); 3 ml of
membrane + cytoplasmic fraction (4); duplicate experiment
using the components of number 4 (5); 3 ml of cytoplasmic
fraction only (6); duplicate of 6 (7); authentic carbon-14labeled DDT (8). The upper and lower spots corresponded to
p,p'-DDT and p,p'-DDD, respectively.

Figure 6. Autoradiograms of thin-layer chromatograms of carbon-14-labeled DDT and metabolites produced by the addition of Krebs cycle intermediates or cofactors to membrane preparations of \underline{E} . $\underline{\operatorname{coll}}$.

grams of y the addto membra

Figure 6A. Addition of intermediates and cofactors and the omission of ADP, inorganic phosphate or NAD.

From left to right authentic carbon-14-labeled DDT (1); 3 ml of membrane + 2.0 µmole each of NAD, NADP, FAD, malate, pyruvate, & 0.1 µmole each of ADP & FOU (2); duplicate experiment using the components of 2 (3); 3 ml of membrane + cofactors & intermediates minus ADP & FOU (4); duplicate experiment using the components of 4 (5); 3 ml of membrane + cofactors & intermediates minus NAD (6); duplicate experiment using the components of 6 (7); authentic carbon-14 labeled DDT (8). The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.

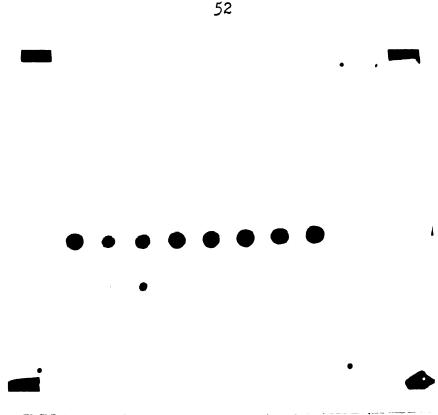


Figure 6B. Addition of intermediates and cofactors, membrane only and omission of intermediates.

From left to right authentic carbon-14+labeled DDT (1); 3 ml of membrane fraction + 2.0 µmole each of cofactors minus intermediates (2); duplicate experiment using the components of 2 (3); 3 ml of membrane + 0.2 pmoles each of intermediates and cofactors & 0.01 pmole each of ADP & PO4 (4); duplicate experiment using the components of 4 (5); 3 ml of membrane only (6); duplicate experiment using the components of 6 (7); authentic carbon-14-labeled DDT (8). The upper and lower spots corresponded to p,p'-DDT and p,p'-DDD, respectively.

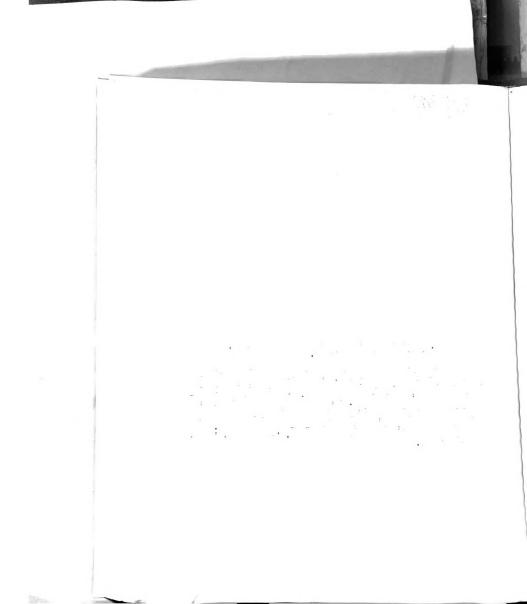


Figure 6C. Omission of FAD, NADP and intermediates.

From left to right 3 ml of membrane + 2.0 µmole of cofactors & intermediates minus FAD (1); duplicate experiment using the components of 1 (2); authentic carbon-14-labeled DDT (3); 3 ml membrane + intermediates, cofactors, ADP & FO4 minus NADP (4); duplicate experiment using the components of 4 (5); 3 ml of membrane + cofactors, ADP & PO4 minus intermediates (6); duplicate experiment using the components of 6 (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p*-DDT and p,p*-DDD, respectively.

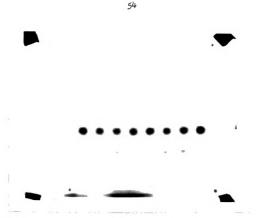
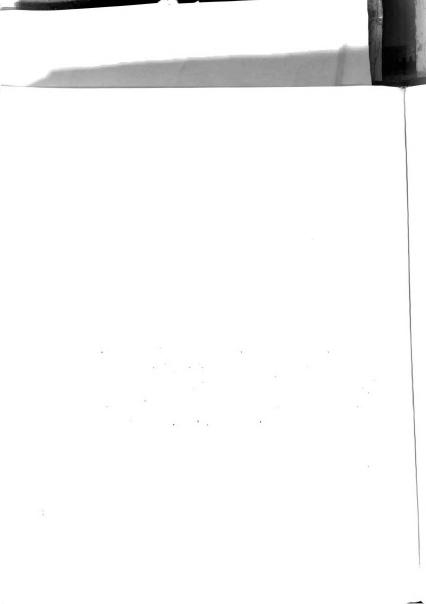



Figure 6D. Addition of FAD, ADP and inorganic phosphate.

From left to right authentic carbon-14-labeled DDT (1); 3 ml of membrane + 2.0 µmole FAD (2); duplicate experiment using the components of 2 (3); 3 ml of membrane + 0.1 µmole each of ADP & PO4 (4); duplicate experiment using the components of 4 (5); 3 ml of membrane + FAD, ADP & PO4 (6); duplicate experiment using the components of 6 (7); authentic carbon-14-labeled DDT (8). The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.

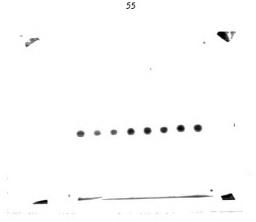
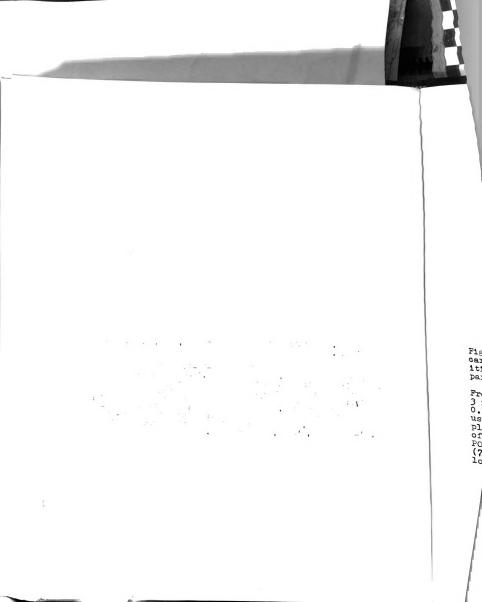
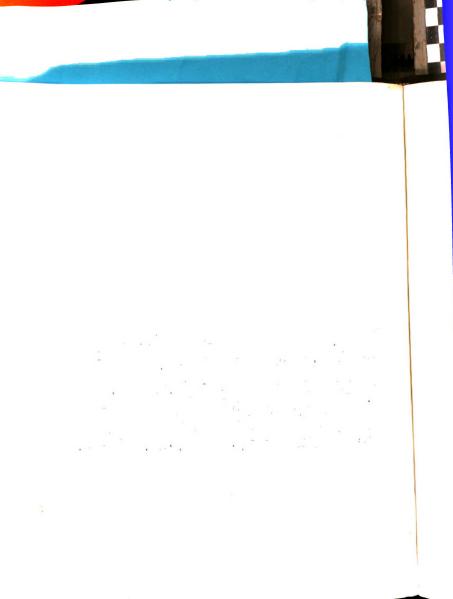
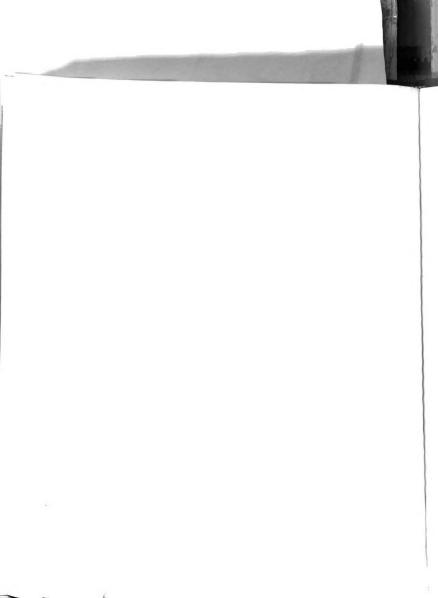
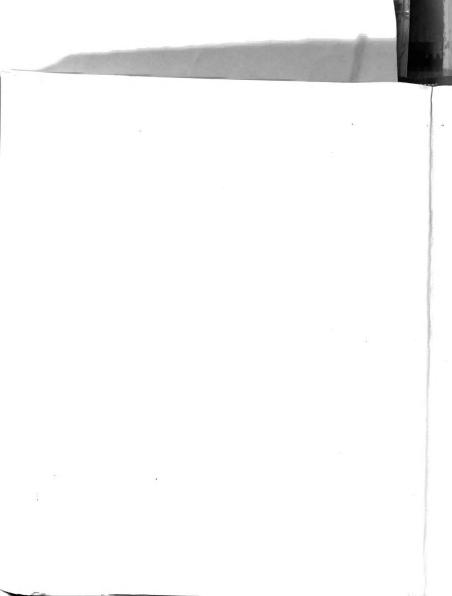


Figure 6E. Addition of FAD or NAD or FAD, ADP, PO $_{\rm H}$ & atmospheric O $_{\rm 2}$.

From left to right authentic carbon-14-labeled DDT (1); 3 ml of membrane + 8.0 µmole FAD & 0.1 µmole each of ADF & POL, (2); duplicate experiment using the components of 2 (3); 3 ml of membrane + FAD, ADF & POL, with atmospheric O₂ (4); duplicate experiment using the components of 4 (5); 3 ml of membrane + 2.0 µmole of NAD (6); duplicate experiment using the components of 6 (7); authentic carbon-14 labeled DDT (8). The upper and lower spots correspond to p,p*-DDT and p,p*-DDD, respectively.




Figure 7. Autoradiogram of a thin-layer chromatogram of carbon-l4-labeled DDT and metabolites produced by the addition of FAD, ADF and inorganic phosphate to membrane preparations suspended in cytoplasmic fractions.

From left to right authentic carbon-l4-labeled DDT (1); 3 ml of membrane in cytoplasm fraction + 2.0 µmole FAD, 0.1 µmole each of ADP & POµ (2); duplicate experiment using the components of 2 (3); 3 ml of membrane in cytoplasm + FAD (4); duplicate experiment using the components of 4 (5); 3 ml of membrane in cytoplasm fraction + ADP & POµ (6); duplicate experiment using the components of 6 (7); authentic carbon-l4-labeled DDT (8); The upper and lower spots correspond to p,p'-DDT and p,p'-DDD, respectively.

