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ABSTRACT

INTEGRAL MODELS OF CERTAIN PEL SHIMURA

VARIETIES WITH Γ1(p)-TYPE LEVEL STRUCTURE

By

Richard Shadrach

We study p-adic integral models of certain PEL-Shimura varieties with level

subgroup at p given by the pro-unipotent radical of an Iwahori. We will consider

two cases: the case of Shimura varieties associated to unitary groups that split

over an unramified extension of Qp and the case of Siegel modular varieties. We

construct local models, i.e. simpler schemes which are étale locally isomorphic to

the integral models. Our integral models are defined by a moduli scheme using the

notion of an Oort-Tate generator of a group scheme. We use these local models

to find a resolution of the integral model in the case of the Siegel modular variety

of genus 2. The resolution is regular with special fiber a nonreduced divisor with

normal crossings.
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Introduction

In the arithmetic study of Shimura varieties, one seeks to have a model of the Shimura variety

over the ring of integers OE, where E is the completion of the reflex field E at some finite

place p. Denote by ShK(G, X) the Shimura variety given by the Shimura datum (G, X)

and choice of an open compact subgroup K =
∏

`K` ⊂ G(Af ), where Af is the ring of

finite rational adèles. For Shimura varieties of PEL-type, which are moduli spaces of abelian

varieties with certain (polarization, endomorphism, and level) structures, one can define

such an integral model by proposing a moduli problem over OE. The study of such models

began with modular curves by Shimura and Deligne-Rapoport. More generally, Langlands,

Kottwitz, Rapoport-Zink, Chai, and others studied these models for various types of PEL

Shimura varieties. The reduction modulo p of these integral models is nonsingular if the

factor Kp ⊂ G(Qp) is chosen to be “hyperspecial” for the rational prime p lying under

p. However if the level subgroup Kp is not hyperspecial, usually (although not always)

singularities occur. It is important to determine what kinds of singularities can occur, and

this is expected to be influenced by the level subgroup Kp.

In order to study the singularities of these integral models, significant progress has been made

by finding “local models”. These are schemes defined in simpler terms which control the

singularities of the integral model. They first appeared in [DP] for Hilbert modular varieties
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and in [dJ2] for Siegel modular varieties with Iwahori level subgroup. More generally in [RZ],

Rapoport and Zink constructed local models for PEL Shimura varieties with parahoric level

subgroup.

In [Gör1] Görtz showed that in the case of a Shimura variety of PEL-type associated with

a unitary group which splits over an unramified extension of Qp, the Rapoport-Zink local

models are flat with reduced special fiber. In [Gör2], the same is shown for the local models

of Siegel modular varieties. On the other hand, Pappas has shown that these local models

can fail to be flat in the case of a ramified extension [Pap2]. In [PR1], [PR2], and [PR3],

Pappas and Rapoport give alternative definitions of the local models which are flat. More

recently in [PZ], Pappas and Zhu have given a general group-theoretic definition of the local

models which, for PEL cases, agree with Rapoport-Zink local models in the unramified case

and the alternative definitions in the ramified case.

Throughout this article, Kp is assumed to be either an Iwahori subgroup of G(Qp) or the

pro-unipotent radical of an Iwahori subgroup. There is some ambiguity in calling these Γ0(p)-

level structure and Γ1(p)-level structure respectively; indeed one may consider more generally

a parahoric subgroup. As such, we will call the former Iw0(p)-level structure and the latter

Iw1(p)-level structure. In all the situations we consider, G = GQp extends to a reductive

group over Zp and one can take an Iwahori subgroup as being the inverse image of a Borel

subgroup of G(Fp) under the reduction G(Zp) → G(Fp). We will also take Kp =
∏

` 6=pK`

to be a sufficiently small open compact subgroup of G(Ap
f ) so that the moduli problems we

consider below are represented by schemes.

In [HR] Haines and Rapoport, interested in determining the local factor of the zeta func-

tion associated with the Shimura variety, constructed affine schemes which are étale locally

isomorphic to integral models of certain Shimura varieties with Iw1(p)-level structure. This
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follows the older works of Pappas [Pap1] and Harris-Taylor [HT]. Haines and Rapoport

consider the case of a Shimura variety associated with a unitary group which splits locally

at p given by a division algebra B defined over an imaginary quadratic extension of Q. The

cocharacter associated with the Shimura datum is assumed to be of “Drinfeld type”.

In this article, we will consider Iw1(p)-level structure for two particular types of Shimura

varieties. First the unitary case, where the division algebra B has center F , an imaginary

quadratic extension of a totally real finite extension F+ of Q which is unramified at p. We

will make assumptions on p so that the unitary group G in the Shimura datum splits over

an unramified extension of Qp as GLn ×Gm. The second case is that of the Siegel modular

varieties where the group in the Shimura datum is G = GSp2n. We will refer to this as the

symplectic case.

The moduli problem defining the integral model with Iw0(p)-level structure is given in terms

of chains of isogenies of abelian schemes with certain additional structures. We write AGL
0

and AGSp
0 for the scheme representing this moduli problem in the unitary and symplectic

cases respectively. Then in these two cases, the moduli problem defining the integral model

with Iw1(p)-level structure is given by also including choices of “Oort-Tate generators” for

certain group schemes associated with the kernels of the isogenies (see Section A.4.2 for the

notion of an Oort-Tate generator). Let AGL
1 and AGSp

1 denote the schemes representing these

moduli problems in each case respectively.

To study the singularities of AGL
1 and AGSp

1 we will construct étale local models.

Definition 0.1. Let X and M be schemes. We say that M is an étale local model of X if

there exists an étale cover V → X and an étale morphism V →M .
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In order to describe our results in the unitary case, we begin by recalling the local model

of AGL
0 as constructed in [RZ, Chapter 3]. In this introduction, we assume for simplicity

that F+ = Q. The local model in the general case will be a product of such local models

after an unramified base extension. As mentioned above, we also make assumptions so that

GQp = GLn,Qp × Gm,Qp . We can choose an isomorphism BQp
∼= Mn(Qp) ×Mn(Qp) so that

the minuscule cocharacter µ : Gm,Qp → GQp is identified with

µ(z) = diag(1n−r, (z−1)r)× diag((z−1)n−r, 1r), 1 ≤ r ≤ n− 1,

which we will write concisely as µ = (0n−r, (−1)r). Then for a Zp-scheme S, an S-valued

point of the local model M loc
GL of AGL

0 is determined by giving a diagram

OnS OnS · · · OnS OnS

F0 F1 · · · Fn−1 Fn

ϕ0 ϕ1 ϕn−2 ϕn−1

where ϕi is given by the matrix diag((p−1)i+1, 1n−i−1) with respect to the standard basis, Fi

is an OS-submodule of OnS, and Zariski locally on S, Fi is a direct summand of OnS of rank

r. With S = M loc
GL, the determinants

top∧
Fi →

top∧
Fi+1 and

top∧
OnS/Fi →

top∧
OnS/Fi+1

determine global sections qi and q∗i of the universal line bundles

Qi =

(
top∧
Fi

)−1

⊗
top∧
Fi+1 and Q∗i =

(
top∧
OnS/Fi

)−1

⊗
top∧
OnS/Fi+1

respectively.
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As shown in [Gör1], the special fiber of the local model can be embedded into the affine

flag variety for SLn and identified with a disjoint union of Schubert cells. Let U ⊂ M loc
GL

be an affine open neighborhood of the “worst point”, i.e. the unique cell which consists of

a single closed point, with U sufficiently small so that each Q∗i is trivial. Choosing such a

trivialization, we can then identify the sections q∗i with regular functions on U .

Theorem 0.2. The scheme

U1 = SpecU
(
O[u0, . . . , un−1]/(up−1

0 − q∗0, . . . , u
p−1
n−1 − q∗n−1)

)
is an étale local model of AGL

1 .

By loc. cit. we can take U = Spec(BGL) where

BGL = Zp[aijk, i = 0, . . . , n− 1, j = 1, . . . , n− r, k = 1, . . . , r]/I

and I is the ideal generated by the entries of certain matrices. In this chosen presentation,

we will show that, up to a unit, q∗i = ai+1
n−r,r for 0 ≤ i ≤ n− 1 where the upper index is taken

modulo n.

For the symplectic case, the integral model AGSp
0 is again given in terms of chains of isogenies

of abelian schemes with certain additional structures. Our construction of the local models

for AGSp
1 is similar to that of the unitary case. In particular, they are explicitly defined as

well.

It is also of interest to have certain resolutions of the integral model of the Shimura variety

with “nice” singularities, for example one which is semi-stable or locally toroidal. This
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problem was considered in the case of Iw0(p)-level structure by Genestier [Gen], Faltings

[Fal], de Jong [dJ1], and Görtz [Gör3] among others. Using the explicitly defined local

model, and in particular the rather simple expression for q∗i , we will construct a resolution

of AGSp
1 in the case n = 2. By a “nonreduced divisor with normal crossings” we mean a

divisor D such that in the completion of the local ring at every closed point, D is given by

Z(f e11 · · · f ett ) where {f1, . . . , ft} are part of a regular system of parameters and the integers

ei are greater than zero.

Theorem 0.3. Let A1 denote the moduli scheme for the Siegel modular variety of genus

2 with Iw1(p)-level structure. There is a regular scheme Ã1 with special fiber a nonreduced

divisor with normal crossings that supports a birational morphism Ã1 → A1.

Moreover, we will describe the irreducible components of Ã1 ⊗ Fp and how they intersect

using a “dual complex”, see Theorem 5.6.6 for details.

Let us outline the construction of Ã1. We begin with the known semi-stable resolution

Ã0 → A0 [dJ1]. This gives a modification (i.e. proper birational morphism) A1 ×A0 Ã0 →

A1. The scheme A1 ×A0 Ã0 is not normal. Let Z be the reduced closed subscheme of A0

whose support is the locus of closed points where all of the corresponding group schemes

are infinitesimal. Take the strict transform of Z with respect to the morphism Ã0 → A0

followed by the reduced inverse image of this with respect to the projection A1×A0 Ã0 → Ã0

and denote the resulting scheme by Z ′. Consider the modification given by the blowup of

A1 ×A0 Ã0 along Z ′:

BlZ′(A1 ×A0 Ã0)→ A1 ×A0 Ã0.

We will see that BlZ′(A1×A0 Ã0) is normal. In A0, denote byW the unique irreducible com-

ponent of the special fiber where each corresponding group scheme is generically isomorphic
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to µp. Transform W via the morphisms

BlZ′(A1 ×A0 Ã0)→ A1 ×A0 Ã0 → Ã0 → A0

by taking the strict transform with respect to the first and third morphisms, and the reduced

inverse image with respect to the second morphism. Denote the resulting subscheme of

BlZ′(A1 ×A0 Ã0) by W ′. We arrive at Ã1 by first blowing up BlZ(A1 ×A0 Ã0) along W ′ and

then blowing up each resulting modification along the strict transform of W ′, stopping after

a total of p − 2 blowups. Carrying out the corresponding process on the local model, by

explicit computation we will show that the resulting resolution of the local model is regular

with special fiber a nonreduced divisor with normal crossings. It will then follow that Ã1 has

these properties as well. By keeping track of how certain subschemes transform in each step

of the above process, with much of this information coming from the explicit computation

of the modifications of the local model, we will be able to describe certain aspects of the

irreducible components of Ã1 ⊗ Fp as mentioned above.

In closing we mention that as this article was prepared, T. Haines and B. Stroh announced

a similar construction of local models in order to prove the analogue of the Kottwitz nearby

cycles conjecture. They relate their local models to “enhanced” affine flag varieties.

Finally, I would like to thank G. Pappas for introducing me to this area of mathematics and

for his invaluable support. I would also like to thank M. Rapoport for a useful conversation,

T. Haines and B. Stroh for communicating their results, and U. Görtz for providing the

source for Figure 5.1.4 to which some modifications were made.
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Chapter 1

Shimura Varieties

In this section we review the definition of a Shimura datum, the group theoretic data which

is used to construct a Shimura variety. We specialize this data in the unitary and symplectic

cases.

1.1 Shimura datum

Let S denote ResC/R(Gm), where Res(·) is the Weil restriction of scalars. Note that S(R) =

C× and S(C) = C× × C× and we have the homomorphism

S(R)→ S(C) sending z → (z, z).
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For a connected algebraic group H defined over R, a Cartan involution of H is an involution

θ of H as an algebraic group over R such that

H(θ)(R) := {g ∈ H(C) : g = θ(ḡ)}

is compact, where ḡ denotes complex conjugation. The following definition uses the language

introduced by Deligne in [Del].

Definition 1.1.1. A Shimura datum is a collection (G, {h} , K) where

• G is a reductive group defined over Q;

• {h} a G(R)-conjugacy class of homomorphisms of real algebraic groups S→ GR; and

• K is a sufficiently small compact open subgroup of G(Af )

such that the following conditions hold.

(SV1) For any h : S → GR, only the characters 1, z/z̄, and z̄/z occur in the induced

representation of S on Lie(Gad)C.

(SV2) The adjoint action of h(i) induces a Cartan involution on the adjoint group of GR.

(SV3) The adjoint group Gad
R does not admit a factor H defined over Q such that the

projection of h on H is trivial.

Remark 1.1.2.

• For h ∈ {h}, h : S→ GR, the action of g ∈ G(R) is given as follows. For an R-algebra

A, we define the homomorphism

(g · h)(A) : S(A)→ GR(A) sending α→ g · h(A)(α) · g−1

9



where we are identifying g ∈ G(R) with its image under G(R)→ G(A).

• Condition (SV1) means the following. Given a homomorphism h : S → GR, we can

compose this with the adjoint representation GR → GL(Lie(Gad
R )) and then complexify

so that we have S(R) → S(C) → GL(Lie(Gad)C) where the first homomorphism is as

described above. Thus for z ∈ S(R) = C× we have a natural action on Lie(Gad)C. The

condition is that

Lie(Gad)C = V 0 ⊕ V 1 ⊕ V −1

with

V 0 :=
{
v ∈ VC : z · v = v for all z ∈ C×

}
V 1 :=

{
v ∈ VC : z · v = zz−1v for all z ∈ C×

}
V −1 :=

{
v ∈ VC : z · v = zz−1v for all z ∈ C×

}
where on the right hand side the product is given by the natural action of C on the

complex vector space Lie(Gad)C.

• The condition that K is sufficiently small will be explained in Section 2.4.

1.2 PEL Shimura varieties

We now specialize to the case of PEL Shimura varieties. Fix once and for all a choice

i =
√
−1.

Definition 1.2.1. A PEL Shimura datum is given by a tuple (B, ι, V, (·, ·), h0, K) satisfying

the following conditions.
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• B is a finite-dimensional semi-simple Q-algebra with positive involution ι.

• V 6= 0 is a finitely-generated left B-module.

• (·, ·) is a non-degenerate alternating form V × V → Q such that (bv, w) = (v, bιw) for

all b ∈ B and v, w ∈ V .

• h0 is given as follows. The form (·, ·) determines an involution ∗ on EndB(V ) where

for f ∈ EndB(V ), f ∗ ∈ EndB(V ) is the unique element such that

(f(x), y) = (x, f ∗(y)) for all x, y ∈ V.

In particular, for b ∈ B we have b∗ = bι. Here were are making the identification

b ∈ EndB(V ) by left multiplication. We require that h0 : C → EndB⊗R(V ⊗ R) be an

R-algebra homomorphism satisfying h0(z) = h0(z)∗ for all z ∈ C and is such that the

symmetric bilinear form

(·, h0(i)·) : VR × VR → R

is positive definite.

• We define the Q-group G on a Q-algebra R by

G(R) =
{
g ∈ GLB⊗R(V ⊗R) : g∗g ∈ R×

}
.

We require K be a sufficiently small compact open subgroup of G(Ap
f ).

Remark 1.2.2. In the above definition, given a PEL Shimura datum (B, ι, V, (·, ·), h0,K)

we defined the involution ∗ on EndB(V ) and the algebraic group G defined over Q. We will

also define the objects h, µh, E, and E′ below. Henceforth we will implicitly associate these

objects with a PEL Shimura datum.
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We define h to be the homomorphism of real algebraic groups

h : C× z→z−1

−−−−→ C× h0−→ G(R)

and the cocharacter µh : Gm,C → GC as follows. By base change hC : SC → GC where for

any C-algebra R we have

SC(R) = ResC/R(Gm)(R) = Gm,C(C⊗R R)
∼−→ Gm,C(R)×Gm,C(R).

The isomorphism above is induced by C⊗R R
∼−→ R × R sending z ⊗ r → (zr, zr). We thus

have SC ∼= Gm,C×Gm,C and we define µh by restricting the map hC : SC → GC to the factor

of SC corresponding to the identity (as opposed to complex conjugation).

Define the field E to be the field of definition of the G(R)-conjugacy class {µh}. We will

postpone the definition of E′ until after the proof of Proposition 1.2.4.

Remark 1.2.3. Let k be an algebraically closed field. For B a semisimple k-algebra with

involution ι, (B, ι) is isomorphic to a product of the following three types [Kot2, Section 1].

(A) Mn(k)×Mn(k), (a, b)∗ = (bt, at)

(C) Mn(k), b∗ = bt

(BD) Mn(k), b∗ = JbtJ−1, J =

0 −I

I 0



Now suppose B is a semisimple Q-algebra with involution ι and center a field F . Set

F0 = {x ∈ F : x∗ = x}. Then for all Q-homomorphisms ρ : F0 → Q, the Q-algebra with

involution (B⊗F0,ρQ, ι) is a product of types (A), (C), or (BD). We will refer to this multiset
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of types as the type of (B ⊗F0,ρ Q, ι). Since Gal(F0/Q) acts transitively on the collection

(B⊗F0,ρQ, ι)ρ by isomorphisms, we define the type of (B, ι) to be the type of any extension

(B ⊗F0,ρ Q, ι).

From here on we will assume that (B, ι) is a product of types (A) or (C).

Proposition 1.2.4. Given a PEL Shimura datum (B, ι, V, (·, ·), h0, K), the induced (G, h,K)

(see Remark 1.2.2) is a Shimura datum.

Proof. To see that G is reductive, we consider GQ̄. Then (B, ι) decomposes into a product

where each factor is of type (A) or (C). Hence GQ̄ decomposes into a product of reductive

groups, each being GLn × Gm or GSpn depending on whether the corresponding factor of

(B, ι) is of type (A) or (C).

(SV1) Set J = h(i) ∈ G(R) ⊂ GLB⊗R(V ⊗R). The action of J makes V ⊗QR into a complex

vector space with complex structure h : C → EndR(V ⊗Q R). Now consider the the

action of C× on the Lie algebra of GLC(VC) through h and the adjoint action. Note

that VC = V + ⊕ V − where

V + = {v ∈ VC : Jv = iv}

V − = {v ∈ VC : Jv = −iv}

which induces the decomposition

Hom(VC, VC) = Hom(V +, V +)⊕ Hom(V +, V −)⊕ Hom(V −, V +)⊕ Hom(V −, V −).

The adjoint action of h(z) on Hom(VC, VC) is by conjugation, i.e. for g : VC → VC and
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z = a+ bi ∈ C×, we have that h(a+ bi) · g = (a+ bJ) ◦ g ◦ (a+ bJ)−1. Therefore in the

decomposition above, h(z) acts as 1 on Hom(V +, V +), zz−1 on Hom(V +, V −), z−1z on

Hom(V −, V +), and 1 on Hom(V −, V −) as required.

(SV2) We must show that the group

(Gad)(h(i))(R) :=
{
g ∈ Gad(C) : gg∗ = 1, h(i)−1gh(i) = g

}
is compact, where g denotes complex conjugation. For g ∈ Gad(C), denote by g → g′

the involution given by the tensor product of ∗ on EndB(V ) and complex conjugation

on C, i.e. for α⊗ λ ∈ EndB⊗C(V ⊗ C) we have

(α⊗ λ)′ = α∗ ⊗ λ.

As ∗ and complex conjugation are both positive involutions, it follows that g → g′

is also positive [Kot2, Lemma 2.3]. Note that (Gad)(h(i))(R) is a closed subgroup of{
g ∈ Gad(C) : gg′ = 1

}
, namely (Gad)(h(i))(R) is given by enforcing the condition gg∗ =

1. Since g → g′ is positive, by [Kot2, Lemma 2.2] there is a faithful positive definite

Hermitian Gad(C)-module W . Denote its Hermitian form by (·, ·)W . Now the transpose

defined by (·, ·)W is precisely g → g′ and thus (Gad)(h(i))(R) can be viewed as a closed

subgroup of the orthogonal group with respect to (·, ·)W . As this orthogonal group is

compact, it therefore follows that (Gad)(h(i))(R) is compact.

(SV3) If Gad
R has a Q-factor on which h is trivial, then the form (·, h0(i)·) on VR × VR could

not be positive definite since (·, ·) is alternating.

Remark 1.2.5. From (SV1), we get that µh induces a decomposition VC = V +⊕V − where
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µh acts as z−1 on V + and 1 on V −. We define E′ to be the finite extension of E over which

this decomposition is defined. Fix an isomorphism BC ∼= Mn(C) ×Mn(C) so that µh(z) is

identified with

diag(1n − r, (z−1)r)× diag(z−1)n−r, 1r).

We will write this as µh = (0n−r, (−1)r).

1.2.1 Unitary case

We now give a specialized set of data for which the group G in the induced Shimura datum

is a unitary group.

Definition 1.2.6. A unitary PEL Shimura datum is a tuple (D, ∗, h0) where

• D is a finite dimensional division algebra with center a field F , where F is an imaginary

quadratic extension of some totally real field F+/Q;

• ∗ is an involution of D which induces on F the nontrivial element of Gal(F/F+); and

• h0 : C → D ⊗Q R is an R-algebra homomorphism such that h0(z)∗ = h0(z) and the

involution x→ h0(i)−1x∗h0(i) is positive.

A datum (D, ∗, h0) induces a PEL datum (B, ι, V, (·, ·), h0, K), up to a choice of K, as follows.

Set B = Dopp and V = D where we view V as a left B-module using right multiplications.

That is, for v ∈ D and b ∈ Dopp we define b · v = vb, where on the right hand side the

multiplication is given by the multiplication in D. Then EndB(V ) can be identified with D

using left multiplications. It remains to define the involution ι on B = Dopp and the pairing

(·, ·) on V = D. We will use the following lemma.
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Lemma 1.2.7. There exists ξ ∈ D× such that ξ∗ = −ξ and the involution x → ξx∗ξ−1 is

positive. With such a ξ, the alternating pairing (·, ·) : D ×D → Q defined by

(x, y) = TrD/Q(xξy∗)

is nondegenerate. We may also choose ξ, still subject to the above conditions, such that the

pairing (·, h0(i)·) is positive definite.

Proof. Let σ be any involution of D of the second kind, meaning σ restricts to the nontrivial

element of Gal(F/F+). Then ∗ ◦ σ fixes F . Thus we may apply Skolem-Noether to the

F -algebra homomorphisms ∗ ◦ σ : D → D and IdD : D → D. Hence there is a unit u

such that (∗ ◦ σ)(d) = u−1du for all d ∈ D. Applying the involution ∗ to both sides gives

σ(d) = u∗d∗(u−1)∗ for all d ∈ D. As u∗ is also a unit of D, we will replace u with u∗ and

write this as σ(d) = ud∗u−1. Then for all d ∈ D,

σ(σ(d)) = u(ud∗u−1)∗u−1 = u(u−1)∗du∗u−1.

The condition that σ is an involution implies that for all d ∈ D, u(u−1)∗du∗u−1 = d. This

condition is satisfied if and only if u(u∗)−1 lies in the center F . Conversely, for any unit u

such that u(u∗)−1 ∈ F , we have that d→ ud∗u−1 is an involution of the second kind.

By [Mum, pg. 201-2], positive involutions of the second kind exist. So there is a u ∈ D such

that d→ ud∗u−1 is a positive involution. Then

u(u∗)−1 · (u(u∗)−1)∗ = u(u∗)−1 · (u−1u∗) = uu−1u∗(u∗)−1 = 1

where the second to last equality is using that u(u∗)−1 is in the center of D. Since ∗ restricted
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to F is the nontrivial element in Gal(F/F+), this says precisely that NF/F+(u(u∗)−1) = 1

where NF/F+ is the norm of F over F+. By Hilbert’s Theorem 90 [Hil, Theorem 90], there

exists f ∈ F× such that u(u∗)−1 = f ∗f−1. Using this equation we have (uf)∗ = f ∗u∗ = uf .

Finally, there exists ε ∈ F× such that ε∗ = −ε (take any nonzero element of F \ F+ and

complete the square). We (temporarily, see below) set ξ = εfu, and denote the involution

d → ξd∗ξ−1 by ι. Note that since εf is in the center of D, this is the same involution as

d→ ud∗u−1 and hence is positive and of the second kind.

Since TrD/Q is invariant with respect to ∗ [Kot2, Lemma 2.7], we have that for all x, y ∈ D

(x, y) = TrD/Q(xξy∗) = TrD/Q((xξy∗)∗) = −TrD/Q(yξx∗) = −(y, x)

so the claimed pairing is indeed alternating. It is also non-degenerate because the pairing

(x, y)→ TrD/Q(xy) is non-degenerate, ∗ is bijective, and ξ is a unit.

We claim that (·, h0(i)·) is either positive or negative definite. To see this, fix an isomorphism

D ⊗F0 R
∼−→Mn(C)

such that the involution ι goes over to the standard involution X → X
t

on Mn(C). Denote

by H the image of ξh0(i)−1 under this isomorphism. Since ξh0(i)−1 is invertible in D, H is

invertible in Mn(C). Furthermore

ι(ξh0(i)−1) = ξ(ξh0(i)−1)∗ξ−1 = ξh0(i)(−ξ)ξ−1 = −ξh0(i) = ξh0(i)−1

and thus H
t

= H, i.e. H is Hermitian. Unwinding the definition of the pairing (·, h0(i)·) we
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have for all x, y ∈ DR

(x, h0(i)y) = TrDR/R(xξy∗h0(i)−1) = TrDR/R(x(ξy∗ξ−1)ξh0(i)−1) = TrDR/R(xι(y)ξh0(i)−1)

and hence under the fixed isomorphism this pairing becomes

〈X, Y 〉 = TrMn(C)/R(XY
t
H) for X, Y ∈Mn(C).

Let U ∈ Mn(C) be a unitary matrix such that U−1HU = D where D = diag(λ1, · · · , λn)

is some diagonal matrix with λi ∈ C. In fact, since H is Hermitian and hence has real

eigenvalues, we have λi ∈ R for all i. Then since the involution x → h0(i)−1x∗h0(i) is

positive by hypothesis, we have

TrDR/R(xh0(i)−1x∗h0(i)) > 0 for all 0 6= x ∈ DR.

Now

xh0(i)−1x∗h0(i) = xh0(i)−1ξ−1(ξx∗ξ−1)ξh0(i) = x(ξh0(i)−1)−1ι(x)(ξh0(i)−1)

where the last equality is using that −h0(i) = h0(i)−1. Thus under the fixed isomorphism

TrMn(C)/R(XH−1X
t
H) > 0 for all 0 6= X ∈Mn(C).
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As U is unitary,

TrMn(C)/R(XH−1X
t
H) = TrMn(C)/R((UXU−1)H−1(UX

t
U−1)H)

= TrMn(C)/R(X(U−1H−1U)X
t
(U−1HU))

= TrMn(C)/R(XD−1X
t
D)

> 0.

Finally, we calculate

TrMn(C)/R(XD−1X
t
D) = 2

n∑
i,j

|xij|2
λj
λi

where X = (xij).

Since this last quantity must be positive for any X ∈ Mn(C), it must be that every λi ∈ R

has the same sign.

We now show that 〈·, ·〉 is either positive or negative definite.

〈X,X〉 = 〈UX,UX〉

= TrMn(C)/R(UXX
t
U−1H)

= TrMn(C)/R(XX
t
U−1HU)

= TrMn(C)/R(XX
t
D)

Letting X = (xij), one can calculate that

TrMn(C)/R(XX
t
D) = 2

n∑
i,j=1

xijxijλr = 2
n∑

i,j=1

|xij|2λr,

and with all λi’s possessing the same sign, the claim follows. Therefore, by possibly replacing

ξ with −ξ, we have that 〈·, ·〉 and hence (·, h0(i)·) is positive definite.
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We take the involution ι and the pairing (·, ·) defined by ξ as in the lemma.

Proposition 1.2.8. Let (D, ∗, h0) induce (B, ι, V, (·, ·), h0) as described above. This datum

satisfies all the conditions of being a PEL datum, up to a choice of K.

Proof. All claims have already been shown except that (·, ·) is a Hermitian form. It remains

to see that (bx, y) = (x, bιy) for all x, y ∈ D and b ∈ Dopp. Regarding b as an element of D,

we need to show (xb, y) = (x, ybι). Recall that ξ is chosen so that ξ∗ = −ξ.

(x, ybι) = (x, yξb∗ξ−1)

= TrD/Q(xξ(yξb∗ξ−1)∗)

= TrD/Q(xξ(−ξ−1)b(−ξ)y∗)

= TrD/Q(xbξy∗)

= (xb, y)

1.2.2 Symplectic case

In this section we will describe the PEL datum (B, ι, V, (·, ·), h0, K) for the Siegel modular

varieties. The data here is given by

• B = Q;

• ι is the trivial involution on Q;

• V = Q2n;
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• (·, ·) is the alternating pairing on V given by the 2n× 2n matrix

J =

 Jn

−Jn

 where Jn =



1

1

. .
.

1


• h0 : C→ EndR(VR) is the unique R-algebra homomorphism with h0(i) = J ; and

• K is a sufficiently small compact open subgroup of G.

Proposition 1.2.9. The datum (B, ι, V, (·, ·), h0, K) described above is a PEL datum.

Proof. B is a finite semi-simple Q-algebra and ι, being trivial, is positive since α2 > 0 for

α ∈ R. The pairing (·, ·) induced by J is certainly non-degenerate and alternating, and the

equality (bv, w) = (v, bιw) for v, w ∈ V and b ∈ B is an immediate consequence of (·, ·) being

bilinear.

It remains to show that h0(z) = h0(z)∗, where ∗ is the involution on EndB(V ) induced by

(·, ·), and (·, J ·) is positive definite. Note that h0(a+ bi) = a+ bJ and h0(a+ bi) = a− bJ ,

where on the right hand side we are writing a and b as the linear map given as scalar

multiplication by a and b respectively. The involution ∗ is given by

A B

C D

→
 tD − tB

− tC tA


where tA denotes the transpose of A along the anti-diagonal. Thus it follows that (a+bJ)∗ =

(a−bJ). One can compute the pairing (·, J ·) in standard coordinates and see that it is positive

definite.
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Remark 1.2.10. From the definition of h0, we have µ = (0n, (−1)n).
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Chapter 2

Integral and local models of A0

In this chapter we describe the integral and local models for PEL Shimura varieties where

the level subgroup at an odd rational prime p is given by a parahoric subgroup. We then

specialize the description of the integral and local models to the unitary and symplectic

cases where the level subgroup at p is given by an Iwahori subgroup. Finally we prove the

representability of the moduli problems defining the integral models in these two special

cases.

2.1 PEL case

In order to define the integral model, we first need to specify additional integral data.

Definition 2.1.1. Fix an odd rational prime p. An integral PEL Shimura datum is a tuple

(B, ι, V, (·, ·), h0,OB,L, Kp)
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where

• (B, ι, V, (·, ·), h0, K) is a PEL Shimura datum with K = KpK
p (see below);

• OB is a Z(p)-order in B whose p-adic completion OB ⊗ Zp is a maximal order in BQp

that is stable under ι;

• L is a self-dual multichain of OB ⊗ Zp-lattices in VQp , where duality is with respect to

the pairing induced by (·, ·);

• Kp = Aut(L) ⊂ G(Qp); and

• Kp ⊂ G(Ap
f ) is an open compact subgroup.

Furthermore, if Kp ⊂ G(Qp) is an Iwahori subgroup, we say that the integral datum is of

Iwahori-type.

Remark 2.1.2. We will not recall the definition of a self-dual multichain of OB⊗Zp-lattices,

see [RZ, Defintions 3.1, 3.4, 3.13]. However in the two cases we consider, we will make the

definition of L explicit.

For the remainder of this section we fix an odd rational prime p and an integral PEL Shimura

datum. Recall that associated with a PEL Shimura datum is the reflex field E described in

Remark 1.2.2. Fix once and for all embeddings Q ↪→ C and Q ↪→ Qp, and let p denote the

corresponding prime of OE lying over p. Set E = Ep, E
′ = E′p, and G = GQp . Using these

fixed embeddings, we have that the conjugacy class µ : Gm,C → GC induces, by abuse of

notation, the conjugacy class µ : Gm,Qp → GQp .

Definition 2.1.3. The moduli functor A0 is defined over Spec(OE) as follows. For an OE-

scheme S, the set A0(S) is given by the collection of tuples ({AΛ} , i, λ̄, η̄) up to isomorphism

where
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• {AΛ}Λ∈L is an L-set of abelian schemes with an action of OB

i : OB ⊗ Z(p) → End(A)⊗ Z(p);

• λ is a Q-homogeneous principal polarization of the L-set A; and

• η : V ⊗ Ap
f

∼−→ H1(A,Ap
f ) mod Kp is a Kp-level structure that respects the bilinear

forms on both sides up to a constant in (Ap
f )
× (see below)

such that the determinant condition of Kottwitz holds: for b ∈ OB and Λ ∈ L we have

detOS(b|Lie(AΛ)) = detE′(b|V +) (see below).

An isomorphism between two S-valued points ({AΛ} , i, λ̄, η̄) and ({A′Λ} , i′, λ̄′, η̄′) is an iso-

morphism of the L-sets {AΛ}
∼−→ {A′Λ} which carries λ̄, i, and η̄ to λ̄′, i′, and η̄′ respectively.

Remark 2.1.4. We will not recall the definition of an L-set of abelian schemes or a Q-

homogeneous principal polarization, see [RZ, Definitions 6.5,6.7]. We will make these notions

explicit in the two cases we consider (Definitions 2.2.1 and 2.3.1).

Kp-level structures

Let (A, λ, i) be a polarized abelian scheme over S with OB-action by i as in the definition

above. Fix a geometric point s of S and consider an isomorphism

η : V ⊗ Ap
f

∼−→ H1(As,Ap
f ).
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The pairing (·, ·) on V induces a pairing on V ⊗ Ap
f , we again denote this by (·, ·). The

polarization λ induces the pairing

〈·, ·〉 : H1(As,Ap
f )×H1(As,Ap

f )→ Ap
f (1).

Noncanonically, Ap
f (1) ∼= Ap

f , where the isomorphism is well-defined up to some scalar mul-

tiple in (Ẑ(p))×. We say that η respects the pairings if there exists cη ∈ (Ap
f )
× such that for

all x, y ∈ V ⊗ Ap
f we have

(x, y) = cη〈η(x), η(y)〉.

Now consider the OB-action on A given by i. This induces an OB-action on H1(A,Ap
f )

which we again denote by i. Then we say that η respects the OB-action if for all b ∈ OB

and x ∈ V ⊗ Ap
f we have

i(b) · η(x) = η(b · x).

Proposition 2.1.5. If η : V ⊗ Ap
f → H1(A,Ap

f ) respects the pairings and OB-action, then

so does η ◦ g for g ∈ G(Ap
f ).

Proof. This follows immediately from the definition of G(Ap
f ) consisting of elements g ∈

GLB⊗Apf (V ⊗ Ap
f ) such that there exists c ∈ (Ap

f )
× with (gx, gy) = c · (x, y) for all x, y ∈

V ⊗Q Ap
f .

Definition 2.1.6. Let S be an OE-scheme and (A, λ, i) be a principally polarized abelian

scheme over S with OB-action by i. Then a Kp-level structure on (A, λ, i) is a choice of

geometric point s in S for each connected component of S and a Kp-orbit η of isomorphisms

η : V ⊗Ap
f

∼−→ H1(As,Ap
f ) respecting the pairings and OB-action such that the orbit is fixed

under the action of π1(S, s).
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Here is what is meant by the π1-action in the definition above. For this, we suppose S is

connected and choose a geometric point s of S. View A[`n] as a locally constant constructible

Z/`nZ-sheaf on the étale site Sét. That is, A[`n](U
étale−−→ S) = HomS(U,A[`n]). Denote by

Fs the functor from finite étale covers of S to sets given by

Fs(T
f−→ S) = {geometric points t of T : f(t) = s}

with the monodromy action of π1(S, s) on Fs(T → S). Then we have the canonical identifi-

cation A[`n]s = Fs(A[`n], S) = As[`
n].

Given ϕ ∈ π1(S, s), we have ϕ(A[`n]→ S) : Fs(A[`n]→ S)→ Fs(A[`n]→ S) and this gives

the isomorphism

[ϕ] : As[`
n] = Fs(A[`n]→ S)

ϕ−→ Fs(A[`n]→ S) = As[`
n].

Now let s′ be another geometric point of the (connected) scheme S. Then there exists an

isomorphism Φ : Fs
∼−→ Fs′ of the fiber functions and hence as above, we get an isomorphism

[Φ] : As[`
n]
∼−→ As′ [`

n].

Taking the inverse limit over n ∈ Z>0 of these isomorphisms we have [ϕ] : T`(As)→ T`(As)

and [Φ] : T`(As) → T`(As′). Taking the product over all ` 6= p and tensoring with Q gives

[ϕ] : H1(As,Ap
f )→ H1(As,Ap

f ) and [Φ] : H1(As,Ap
f )→ H1(As′ ,Ap

f ).

Proposition 2.1.7. Let (A, λ, i) a principally polarized abelian scheme over an OE-scheme

S with OB-action. The collection of geometric points of S where there exists a Kp-level
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structure is a union of connected components of S.

Proof. It suffices to show that in a connected component of S, if a Kp-level structure exists

at a single geometric point, then it exists at all geometric points. So let S be connected,

suppose there is a Kp-level structure at some geometric point s, and let s′ be any geometric

point of S. Choose an isomorphism Φ : Fs
∼−→ Fs′ of the fiber functions. This induces

the isomorphism [Φ] : H1(As,Ap
f )

∼−→ H1(As′ ,Ap
f ) described above. We define η′ to be the

collection of symplectic similitudes

V ⊗ Apf
η−→ H1(As,Ap

f )
[Φ]−→ H1(As′ ,Ap

f )

for all η ∈ η. That this is a Kp-orbit follows immediately from the fact that η is. To see

that η′ is also fixed under the action of π1(S, s′), first note that the map

π1(S, s)→ π1(S, s′) sending ϕ→ Φ ◦ ϕ ◦ Φ−1 ∈ π1(S, s′)

is an isomorphism. Letting Φ ◦ ϕ ◦Φ−1 be an arbitrary element of π1(S, s′), its action on an

element Φ ◦ η ∈ η′ is given by

V ⊗ Ap
f

η−→ H1(As,Ap
f )

Φ−→ H1(As′ ,Ap
f )

Φ−1

−−→ H1(As,Ap
f )

ϕ−→ H1(As,Ap
f )

Φ−→ H1(As′ ,Ap
f ).

This is also an element of η′ because ϕ ◦ η ∈ η.
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The determinant condition of Kottwitz

Recalling the decomposition VC = V +⊕V −, we have that V + is a BC-module. Thus it makes

sense to consider

detV + : VBC → A1
C

where VBC is the functor on C-algebras sending S to S ⊗C BC (see Section A.1 with R = C

and A = BC).

Proposition 2.1.8. detV + is defined over OE.

Proof. The B-module structure of V + gives a Q-algebra homomorphism ϕ : B → EndC(V +).

Choosing a C-basis of V + gives an embedding of EndC(V +) ↪→ Mm(C) where m is the

dimension of V + over C. With B finite-dimensional, we in fact have ϕ0 : B ↪→ Mn(Ẽ) for

some finite extension Ẽ of Q. By enlarging Ẽ if necessary, assume E ⊂ Ẽ. Set W = Ẽm

with ϕ0 giving W the structure of a BẼ-module. Note that W ⊗Ẽ C is isomorphic to V + as

BC-modules.

Choose a basis of W over Ẽ and let M be the OB ⊗Z OẼ-module generated by this basis.

Then we can recover the BẼ-module W by M ⊗OẼ
Ẽ. Note that M is finite and locally free

over OẼ, so we may consider detM . Since M ⊗OẼ
Ẽ⊗Ẽ C = V as BC-modules, we have

detM⊗OẼ
C = detV + .

Therefore detV + is defined over OẼ.

It remains to show that detV + is defined over E, as then it is defined over OẼ ∩ E = OE.

It is therefore sufficient to show that detC(x|V +) ∈ E for all x ∈ BE. Since we have
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TrC(x|V +) ∈ E, the result will follow if we are able to show that we can express detC(x|V +)

as a polynomial in {
TrC(x|V +),TrC(x2|V +), . . . ,TrC(xm|V +)

}
.

Let pi ∈ Z[X1, . . . , Xm] denote the ith power sum, so p1 = X1 + X2 + · · · + Xm, p2 =

X2
1 +X1X2 + · · ·+Xm−1Xt+X2

m, etc. Let ei denote the ith complete symmetric polynomial.

With λ1, . . . , λm denoting the eigenvalues of x, we have

TrC(xi|V +) = pi(λ1, . . . , λm)

detC(x|V +) = e1(λ1, . . . , λm).

By [Mac, I.2.12], Z[p1, . . . , pm] = Z[e1, . . . , em] and therefore e1 can be expressed as a poly-

nomial in p1, . . . , pm, giving the result.

Let S be an OE-scheme, b1, . . . , bt be a set of generators of OB as a Z(p)-module, and

(A, λ, i, η) be a principally polarized abelian scheme over S equipped with an OB-action and

Kp-level structure. The action i : OB⊗Z(p) → End(A)⊗Z(p) induces an action of OB⊗Z(p)

on Lie(A), a locally free OS-module. Thus on each affine open U ⊂ S, we have detLie(A)(U) ∈

Γ(U,OU)[X1, . . . , Xt]. Since the determinant respects localization (Proposition A.1.2), these

sections glue to define

detLieA ∈ Γ(S,OS)[X1, . . . , Xt].

Likewise, from the above proposition the OB-action on V + gives

detV + ∈ OE[X1, . . . , Xt].

By applying the ring homomorphism OE → Γ(S,OS) to the coefficients of detV + , we can
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compare these two determinants. Then the determinant condition is that detV + = detLie(A).

Local model

Definition 2.1.9. A local model of a scheme X is a scheme M such that there exists an

étale cover V → X and an étale morphism V →M .

For the integral models described above, [RZ, Chapter 3] constructs a local model diagram.

Ã0

A0 M loc

Φ Ψ

This gives, in particular, a local model of the integral model. To construct Ã0, let H1
dR(Ai)

∨

denote the OS-dual of the de Rham cohomology sheaf (see Section A.5). It is a locally free

OS-module of rank 2n2 [BBM, Section 2.5]. Then (H1
dR(Ai)

∨)i gives a polarized multichain

of OB ⊗Zp OS-modules of type (L) in the sense of [RZ, Definition 3.14]. Define Ã0 to be the

OE-scheme that represents the functor defined as follows. We associate with an OE-scheme

S the set of tuples ({Ai} , λ̄, η̄, {γi}) up to isomorphism where ({Ai} , λ̄, η̄) ∈ A0(S) and

γi : H1
dR(Ai)

∨ ∼−→ Λi ⊗Zp OS

is an isomorphism of polarized multichains of OB ⊗Zp OS-modules. Then we define the

morphism

Φ : Ã0 → A0 by ({Ai} , λ̄, η̄, {γi})→ ({Ai} , λ̄, η̄).
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Proposition 2.1.10. [RZ, Theorems 3.11, 3.16] Let L = {Λ} be a self-dual multichain of

OB ⊗ Zp lattices in V in the sense of loc. cit. Let S be any Zp-scheme where p is locally

nilpotent. Then any polarized multichain {MΛ} of OB ⊗Zp OS-modules of type (L) is locally

(for the étale topology on S) isomorphic to the polarized multichain
{

Λ⊗Zp OS
}

.

Moreover, the functor sending

T → Isom({MΛ ⊗OT} , {Λ⊗OT}),

is represented by a smooth affine scheme over S.

The proposition holds for any Zp-scheme S [Pap2, Theorem 2.2]. Let G be the smooth affine

S-group scheme given by

G(T ) = Aut({Λ⊗OT}) for an S-scheme T.

It follows from the proposition above that Φ : Ã0 → A0 is a smooth surjective G-torsor.

Definition 2.1.11. [RZ, Definition 3.27] With S an OE-scheme, an S-valued point of M loc

is given by the following data.

(i). A functor from the category L to the category of OB ⊗Zp OS-modules on S

Λ→ ωΛ, Λ ∈ L.

(ii). A morphism of functors ψΛ : ωΛ → Λ⊗Zp OS.

We require the following conditions are satisfied:
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(i). the morphisms ψΛ are inclusions;

(ii). the quotient tΛ := Λ⊗Zp OS/ψ(ωΛ) is a locally free OS-module of finite rank. For the

action of OB on tΛ, we have the Kottwitz condition

detOS(b|tΛ) = detE′(b|V +), b ∈ OB; and

(iii). for each Λ ∈ L, ωperp
Λ = ωΛ⊥ where

ωperp
Λ =

{
y ∈ Λ⊥ ⊗OS : (x, y) = 0 for all x ∈ ωΛ

}
.

Remark 2.1.12. The above definition of the local model is the subobject variant. Denoting

ΛS = Λ ⊗ OS, the moduli problem remains the same if one replaces ωΛ and the injective

morphisms ψΛ : ωΛ → ΛS with tΛ and surjective morphisms ϕΛ : ΛS → tΛ. In such a case,

condition (iii) can be restated as follows. For each Λ ∈ L the composition

t̂Λ
ϕ̂Λ−→ Λ̂S

(·,·)−−→ Λ⊥S
ψ

Λ⊥−−→ tΛ⊥

is zero. Here ·̂ = HomS(·,OS).

Note that G acts on the local model by acting on ψΛ through its natural action on Λ⊗OS.

For an abelian scheme A/S we have the Hodge filtration (Proposition A.5.1)

0→ ωÂ → H1
dR(A)∨ → Lie(A)→ 0.

We can now associate with each point ({Ai} , λ̄, η̄, {γi}) ∈ Ã0(S) a collection of injective

morphisms

0→ ωÂi → H1
dR(Ai)

∨ ∼→
γi

Λi ⊗Zp OS
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and this defines the map Ψ in the following diagram.

Ã0

A0 M loc

Φ Ψ

Proposition 2.1.13. [RZ, Chapter 3] The diagram above is a local model diagram. Specifi-

cally the morphisms Φ and Ψ are smooth, Φ is surjective, and étale locally A0
∼= M loc: there

exists an étale cover V → A0 and a section s : V → Ã0 of Φ such that Ψ ◦ s is étale.

Also the morphism Φ is a torsor for the smooth affine group scheme G and Ψ is G-equivariant.

2.2 Unitary case

We now specialize the moduli problem of Definition 2.1.3 defining the integral model to

the unitary case. Let (D, ∗, h0) be a unitary datum as in Definition 1.2.6. As described in

Section 1.2.1, this induces the PEL Shimura datum (B, ι, V, (·, ·), h0, K) up to the choice of

K. As we are considering the split unitary case, we make the following two assumptions on

the odd rational prime p.

(i). (p) is unramifed in F+ and each factor of (p) in F+ splits in F .

(ii). DQp splits.

In view of the first assumption, write (p) =
∏

j pj in F+ and pj = pjp
∗
j in F . Then

FQp =
∏
j

Fpj × Fp∗j
making DQp =

∏
j

Dpj ×Dp∗j
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where Dpj and Dp∗j
are respectively a central simple Fpj and Fp∗j

algebra for each j. Recalling

that ∗ induces on F the nontrivial element of Gal(F/F+), we have ∗ : Dpj
∼−→ Dopp

p∗j
. The

second assumption means Dpj
∼= Mn(Fpj) for every j.

The splitting of DQp makes

G =
∏
j

Gj

where each factor is given on a Qp-algebra R as

Gj(R) =
{

(x1, x2) ∈ (Dpj ×R)× × (Dp∗j
×R)× : x1 = c(x∗2)−1 for some c ∈ R×

}
.

Thus Gj
∼= D×pj × Gm,Qp

∼= GLn,Qp × Gm,Qp . Finally we define µj : Gm,Qp → Gj,Qp by

composing µ : Gm,Qp → GQp with the jth projection.

With these decompositions, by taking the product over all j it suffices to describe the order

OB and lattice chain L on each factor. Set Dj = Dpj ×Dp∗j
and fix an isomorphism

Dpj ×Dp∗j

∼−→Mn(Fpj)×Mn(Fpj)

such that the involution ι becomes (X, Y ) → (Y t, X t). With ξ as in Lemma 1.2.7, set

(χt,−χ) to be the image of ξ under this isomorphism where χ ∈ GLn(Fpj). Then the pairing

(·, ·) becomes

〈(X1, X2), (Y1, Y2)〉 = TrDj/Qp(X1Y
t

2χ
t,−X2Y

t
1χ).

Letting πj be a uniformizer of OFpj
, the OFpj

-lattice chain Lj in Dpj ×Dp∗j
is given by

Λj,i = diag((π−1
j )i, 1n−i)Mn(OFpj

) and Λ∗j,i = χ−1diag(1n−i, (π−1
j )i)Mn(OFpj

)
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where again we are using the fixed isomorphism above. Of course the description of Λj,i and

Λ∗j,i is independent of the choice of uniformizer πj. By definition we have

(Λj,0 ⊕ Λ∗j,0) ⊂ (Λj,1 ⊕ Λ∗j,1) ⊂ · · · ⊂ (Λj,n ⊕ Λ∗j,n) = π−1
j (Λj,0 ⊕ Λ∗j,0)

and one can compute

(Λj,i ⊕ Λ∗j,i)
⊥ = Λj,−i ⊕ Λ∗j,−i.

Recalling that Bj = Dopp
j , take OBj ⊂ Bj to be the unique maximal Z(p)-order such that

under the fixed isomorphism we have

OBj ⊗ Zp
∼−→Mopp

n (OFpj
)×Mopp

n (OFpj
).

Then it is immediate that Λj,i ⊕ Λ∗j,i is an OBj ⊗ Zp-lattice and OBj ⊗ Zp is invariant under

ι.

Set L = (Λi)i with Λi =
∏

j Λj,i ⊕ Λ∗j,i and OB =
∏

j OBj . Finally take K = KpKp where

Kp = Aut(L) and Kp is a sufficiently small open compact subgroup of G(Ap
f ). With this data,

the moduli problem for the integral model given in Definition 2.1.3 becomes the following.

Definition 2.2.1. For an OE-scheme S, AGL
0 (S) = AGL

0,Kp(S) is the collection of tuples

(A•, λ̄, i, η̄) up to isomorphism where

• A• is a chain of abelian schemes

· · · → A0
α0−→ A1

α1−→ · · · αn−1−−−→ An → · · ·

of relative dimension n2 over S, indexed by L by setting Ai = AΛi for i ∈ Z;
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• Each Ai is equipped with an OB-action i : OB ⊗ Z(p) → End(Ai)⊗ Z(p);

• λ̄ is a Q-homogeneous class of principal polarizations. That is, λ̄ is a collection of

isogenies
{
λi : Ai → Â−i

}
making the diagram

· · · A−1 A0 A1 · · · An · · ·

· · · Â1 Â0 Â−1 · · · Â−n · · ·

α−2 α−1

λ−1

α0

λ0

α1

λ1

αn−1 αn

λn
α∨1 α∨0 α∨−1 α∨−2 α∨−n α∨−n−1

commute and satisfying the following two conditions: up to some Q-multiple every λi

is an isomorphism and for each i we have Ai
λi−→ Â−i → Âi is a rational multiple of a

polarization of Ai; and

• η̄ is a Kp-level structure

η̄ : H1(A0,Ap
f )
∼−→ V ⊗ Ap

f mod Kp.

We require that the following conditions hold:

(i). Each αi is an isogeny of degree p2n;

(ii). There are “periodicity isomorphisms” θp : Ai+n
∼−→ Ai such that for each i the map

Ai → Ai+1 → · · · → Ai+n
θp−→ Ai

is multiplication by p;

(iii). αi commutes with the OB ⊗ Z(p) actions;

(iv). For all i and b ∈ OB

detOS(b|Lie(Ai)) = detE′(b|V +).
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An isomorphism of S-valued points f : ({Ai} , λ̄, i, η̄)
∼−→ ({A′i} , λ̄′, i, η̄′) is a collection of

Z(p)-isogenies fi : Ai → A′i each making the diagram

Ai Ai+1

A′i A′i+1

αi

fi fi+1

α′i

commute such that

• for each i there exists a locally constant function ri with values in Z×(p) such that

λi = ri · (f∨i ◦ λ′i ◦ fi);

• for each i the morphism End(Ai)⊗Z(p) → End(A′i)⊗Z(p) induced by fi, which is again

denoted by fi, is such that fi ◦ i(b) = i′(b) for all b ∈ OB; and

• H1(f0) ◦ η = η′.

We now turn our attention to the local model. Let FGal denote the Galois closure of F

inside F sep
0 . Under our fixed embedding Q ↪→ Qp (see Section 2.1), we will identify F0 ⊂

F ⊂ FGal ⊂ Qp. As we have that GFGal splits, E ⊂ FGal by [Kot1, 1.2]. We can thus consider

M loc ⊗OE OFGal . An S-valued point of this scheme is given by a functor Λ → ωΛ from the

category L to the category of OB ⊗Zp OS-modules, satisfying the additional conditions as in

Definition 2.1.11. Now we have the decompositions

F ⊗Qp F
Gal =

⊕
ϕ:F→FGal

FGal,

V ⊗Qp F
Gal =

⊕
ϕ

Vϕ, V + =
⊕
ϕ

V +
ϕ
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where dimFGal Vϕ = dimF V = n and the number of summands is [F : Qp]. Since F/Qp is

unramified, there is a ring isomorphism

OF ⊗Zp OFGal =
⊕
ϕ

OFGal .

We therefore have that an OF ⊗Zp OFGal-module M is a family (Mϕ)ϕ of OFGal-modules

and likewise, homomorphisms M → N are families (Mϕ → Nϕ)ϕ of homomorphisms of

OFGal-modules. The following proposition immediately follows.

Proposition 2.2.2. M loc ⊗OE OFGal is isomorphic to the base change of a product of local

models in the case F+ = Q.

For the remainder of this section, we will work on a single factor, taking the product over

all such factors. We thus omit any subscript ϕ or j and we will assume that F+ = Q. Then

F is an imaginary quadratic extension of Q and the prime p splits in F . Thus F = FGal and

GQp splits so E = Qp. Furthermore Fp = Fp∗ = Qp.

Recall from earlier in this section that the assumptions on p give the splitting

OB ⊗ Zp ∼= Mopp
n (Zp)×Mopp

n (Zp).

For a scheme S over Spec(OE), the sheaves on S induced by a S-valued point of the local

model carry an OB ⊗Zp-action, and as such we get a corresponding splitting. Using Morita

equivalence, we will be able to reduce the “size” of the local model data. We will now

describe this in more detail.
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An S-valued point of the local model M loc
GL is determined by the following commutative

diagram.

L0,S ⊕L ∗
0,S L1,S ⊕L ∗

1,S · · · Ln,S ⊕L ∗
n,S

ω0 ω1 · · · ωn

ϕ0 ϕ1 ϕn−1

Here we are writing Li,S ⊕L ∗
i,S for what was Λi,S in Definition 2.1.11, where the splitting is

given by OB ⊗Zp = Mopp
n (Zp)×Mopp

n (Zp). In particular, Li,S and L ∗
i,S are locally free OS-

sheaves of rank n2. Now ωi is a locally free OS-submodule of Li,S⊕L ∗
i,S, ωi is Zariski-locally

a direct summand of Li,S ⊕L ∗
i,S of rank n2, and the vertical arrows are inclusions,.

The action of Mopp
n (Zp)×Mopp

n (Zp) gives

Li,S =
⊕
n

e11Li,S and L ∗
i,S =

⊕
n

f11L
∗
i,S

where e11 and f11 are respectively idempotents of the first and second factors of Mopp
n (Zp)×

Mopp
n (Zp).

Let W and W ∗ be Znp , viewed as left OB ⊗Zp-modules via right multiplications by elements

of the first and second factor of Mopp
n (Zp)×Mopp

n (Zp) respectively. Recall the decomposition

VE′ = V + ⊕ V − induced by µh = (0n−r, (−1)r).

V + = W n−r
E′ ⊕ (W ∗

E′)
r.

With tLi
= Li/ωi, the determinant condition

detOS(a; tLi
) = detE′(a;V +), a ∈ OB
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is equivalent to the splitting of tLi
into two factors of rank n2−nr and nr, each respectively

a quotient of Li and L ∗
i . Thus, we have the splitting of ωi into two summands of ranks

nr and n2 − nr contained in Li and L ∗
i respectively. The action of each copy of Mopp

n (Zp)

splits these into a direct sum of n copies of Fi of ranks r and F∗i of rank n− r respectively.

As such, we write Λi,S = e11Li,S, Λ∗i,S = f11Li,S, Fi = e11ωi, and F∗i = f11ωi. Therefore, an

S-valued point of the local model M loc
GL is determined by the commutative diagram

Λ0,S ⊕ Λ∗0,S Λ1,S ⊕ Λ∗1,S · · · Λn,S ⊕ Λ∗n,S

F0 ⊕F∗0 F1 ⊕F∗1 · · · Fn ⊕F∗n

ϕ0 ϕ1 ϕn−1

where Fi ⊕ F∗i is an OS-submodule of Λi,S ⊕ Λ∗i,S, the vertical arrows are inclusions, and

Zariski locally over S, Fi is a direct summand of Λi,S of rank r and F∗i is a direct summand

of Λ∗i,S of rank n− r.

Condition (iii) of the local model

ωperp
Λ = ωΛ⊥

is simply (Fi ⊕ F∗i )perp = F−i ⊕ F∗−i. From the explicit definition of 〈·, ·〉, we have (Fi ⊕

F∗i )perp = (F∗i )perp ⊕ Fperp
i . Therefore {Fi} (or alternatively, {F∗i }) determines {Fi ⊕F∗i }.

The following proposition summarizes this discussion.

Proposition 2.2.3. In the unitary case, an S-valued point of the local model is determined

by a diagram

Λ0,S Λ1,S · · · Λn,S

F0 F1 · · · Fn

ϕ0 ϕ1 ϕn−1
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where

• Λi,S = e11(Li ⊕L ∗
i );

• ϕi is the morphism induced from the inclusions of the lattice chain;

• Fi is a locally free OS-module which is Zariski locally a direct summand of Λi,S of rank

r; and

• the vertical arrows are inclusions.

Note that in the above diagram we are, by abuse of notation, labeling the restriction ϕi|Λi,S

as ϕi.

2.3 Symplectic case

We now consider the symplectic case. With the datum (B, ι, V, (·, ·), h0, K) as in Sec-

tion 1.2.2, we take OB = Z(p) and L to be the standard Zp-lattice chain as follows. Let

{e1, . . . , e2n} be the standard basis of V = Q2n
p and define the Zp-lattice chain

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn−1

where for 0 ≤ i ≤ 2n− 1,

Λi = 〈p−1e1, . . . , p
−1ei, ei+1, . . . , e2n〉 ⊂ Q2n

p as a Zp-module

extended periodically by Λi+n = p−1Λi for all integers i. Note that Λ⊥i = Λ−i. Let Kp =

Aut(L) and Kp be a sufficiently small open compact subgroup of G(Ap
f ). With G split over

Qp, we have E = Qp. The moduli problem in Definition 2.1.3 for the integral model AGSp
0
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may be described as follows.

Definition 2.3.1. For any Zp-scheme S, AGSp
0 (S) = AGSp

0,Kp(S) is the collection of tuples

(A•, λ0, λn, η̄) up to isomorphism (defined below) where

(i). A• is a chain of abelian schemes

· · · → A0
α0−→ A1

α1−→ · · · αn−1−−−→ An → · · ·

over S of relative dimension n, indexed by L by setting Ai = AΛi for i ∈ Z, where each

morphism αi : Ai → Ai+1 is an isogeny of degree p;

(ii). the maps λ0 : A0 → Â0 and λn : An → Ân are principal polarizations making the loop

starting at any Ai or Âi in the diagram

A0 A1 · · · An

Â0 Â1 · · · Ân

α0 α1 αn−1

λnλ−1
0

α∨0 α∨1 α∨n−1

multiplication by p; and

(iii). η̄ is a Kp-level structure on A0.

An isomorphism of S-valued points f : (A•, λ0, λn, η̄)
∼−→ (A•, λ0, λn, η̄

′) is a collection of

Z(p)-isogenies fi : Ai → A′i making the diagrams

Ai Ai+1

A′i A′i+1

αi

fi fi+1

α′i

commute and are such that
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• for i = 0 and i = n there exists a locally constant function si with values in Z×(p) such

that λi = si · (f∨i ◦ λ′i ◦ f); and

• H1(f0) ◦ η = η′.

There is an alternative description of this moduli problem in terms of chains of finite flat

group subschemes instead of chains of isogenies [dJ2, Section 1].

Turning our attention to the local model, we have that an S-valued point of M loc
GSp is given

by a commutative diagram

Λ0,S Λ1,S · · · Λ2n−1,S p−1Λ0,S

F0 F1 · · · F2n−1 p−1Λ0

satisfying the three conditions as in Definition 2.1.11. Condition (iii) is equivalent to the

following condition. Set

Λ̂i,S = HomOS(Λi,S,OS)

F̂i = HomOS(Fi,OS).

(iii’) For any i the composition

Fi → Λi,S
∼−→ Λ̂2n−i,S → F̂2n−i

is zero, where the middle isomorphism is induced by the isomorphism

Λi
∼−→ Λ̂2n−i sending x→ (px, ·).
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To see this, first assume (iii) making Fperp
i = pF2n−i. Then for a morphism S → M loc and

an open subscheme U ⊂ S, the composition above sends a section x ∈ Fi(U) to the map

(px, ·)|F2n−i(U) : F2n−i(U)→ OS(U)

which is clearly zero. Conversely, assume condition (iii’). Then in the same way we see that

pF2n−i ⊂ Fperp
i . But since they have the same rank (namely, n), we get equality as required.

The following proposition summarizes this discussion.

Proposition 2.3.2. An S-valued point of M loc
GSp is given by a commutative diagram

Λ0,S Λ1,S · · · Λ2n−1,S p−1Λ0,S

F0 F1 · · · F2n−1 p−1Λ0

ϕ0 ϕ1 ϕ2n−1 ϕ2n

where Λi,S = Λi ⊗Zp OS, the ϕi are induced by the inclusions of the lattice chain, Fi are

locally free OS-submodules of rank n which are Zariski-locally direct summands of Λi,S, the

vertical arrows are inclusions, and the Fi satisfy the following duality condition. We require

the map

Fi → Λi,S
∼−→ Λ̂2n−i,S → F̂2n−i

is zero for all i. Here Λi,S
∼−→ Λ̂2n−i,S is induced from the duality Λi

∼−→ Λ̂2n−i.

2.4 Representability

Let An,1,N denote the moduli space of principally polarized abelian schemes of relative di-

mension n equipped with a full symplectic level N structure. Then for N ≥ 3 with p - N ,
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An,1,N is represented by a scheme (Theorem A.6.7). To prove the representability of AGL
0

and AGSp
0 , we will show that they are relatively representable over An,1,N . We first give an

equivalent moduli problem for An,1,N involving a Kp-level structure.

Fix a integral PEL Shimura datum (B, ι, V, (·, ·), h0,OB,L, Kp) induced from the data in

either the unitary or symplectic case and an integer N ≥ 3 with p - N . We assume that Kp

is the principle level N structure with respect to the integral PEL Shimura datum. That is,

Kp = K(N) =
{
g ∈ G(Ap

f ) : (g − 1)(Λ0 ⊗ Ẑ(p)) ⊂ N ·
(

Λ0 ⊗ Ẑ(p)
)}

.

Note that K(N) =
∏
6̀=pK`(N) with K`(N) ⊂ G(Q`).

Remark 2.4.1. Let s be a geometric point of a Zp-scheme S. For any Z(p)-isogeny f :

A → A′ of abelian schemes over S, there is an induced isomorphism H1(f) : H1(As,Ap
f )
∼−→

H1(A′s,A
p
f ), and hence isomorphisms V`(f) : V`(As)

∼−→ V`(A
′
s) for all primes ` 6= p. Therefore

given such a Z(p)-isogeny f we will implicitly identify H1(As,Ap
f ) and H1(A′s,A

p
f ) using this

isomorphism, and similarly with V`(As) and V`(A
′
s).

Proposition 2.4.2. Let S be a connected Zp-scheme, s a geometric point of S, and A/S an

abelian scheme. Let Λ ⊂ H1(As,Ap
f ) be a self-dual Ẑ(p)-lattice that is fixed by the action of

π1(S, s). Then there exists a unique abelian scheme B, up to isomorphism, equipped with a

Z(p)-isogeny A→ B such that H1(Bs, Ẑ(p)) = Λ.

Proof. We first show uniqueness. Suppose that there are two such abelian schemes B and B′

over S. Then we have the Z(p)-isogenies f : A→ B and f ′ : A→ B′ with H1(Bs, Ẑ(p)) = Λ =

H1(B′s, Ẑ(p)). Therefore we have that the Z(p)-isogeny f−1 ◦ f ′ : B′ → B carries H1(Bs, Ẑ(p))

isomorphically onto H1(B′s, Ẑ(p)), and hence it must be that f−1 ◦ f ′ is an isomorphism.
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To show existence, we must produce an abelian scheme B and a Z(p)-isogeny A → B such

that H1(Bs, Ẑ(p)) = Λ. Note that Λ∩H1(As, Ẑ(p)) ⊂ H1(As,Ap
f ) is a Ẑ(p)-lattice. Thus there

exists α ∈ Ẑ(p) such that

αH1(As, Ẑ(p)) ⊂ Λ ∩H1(As, Ẑ(p)) ⊂ H1(As, Ẑ(p))

and writing α = (α`)` ∈
∏

` 6=p Z`, we have α` is a unit in Z` for almost every prime `. In the

following, we will work on a single factor where α` is not a unit in Z`, taking the product

over all such factors. Denote by Λ` ⊂ V`(As) the factor of Λ corresponding to `.

Now for such an `, there exists an integer k > 0 such that

`kT`(As) ⊂ Λ` ∩ T`(As) ⊂ T`(As).

Thus we can consider the quotients

(
Λ` ∩ T`(As)

)
/`kT`(As) ⊂ T`(As)/`

kT`(As) = As[`
k].

Set C` = (Λ` ∩ T`(As))/`kT`(As) ⊂ As[`
k]. Denote the order of C` by `m and consider the

isogeny A/C` → A with kernel A[`m]/C`. Then from Proposition A.6.12, we have the exact

sequence

0→ T`(A/C`)→ T`(A)→ A[`m]/C` → 0.

Since A[`m]/C` = T`(A)/Λ` ∩ T`(As), we have T`(A/C`) = Λ` ∩ T`(As).

As mentioned above, set C =
∏
6̀=pC`. Then A→ A/C is a Z(p)-isogeny with

H1((A/C)s, Ẑ(p)) = Λ ∩H1(As, Ẑ(p)).
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Thus we are reduced to the case where H1(As, Ẑ(p)) ⊂ Λ.

Similar to the above, for each prime ` 6= p there exists an integer k` ≤ 0 such that Λ` ⊂

`k`T`(As). Note that k` = 0 for almost every prime `. By using the multiplication by `k`

map, we may assume that Λ ⊂ H1(As, Ẑ(p)).

Now there exists an α ∈ Ẑ(p) such that αH1(As, Ẑ(p)) ⊂ Λ ⊂ H1(As, Ẑ(p)). For each prime

` set C` = Λ`/α`T`(As). Then as above, T`(As/C`) = Λ` and taking C =
∏

`6=pC` gives the

equality H1(As/C, Ẑ(p)) = Λ as required.

Proposition 2.4.3. Let S be an OE-scheme and A/S a principally polarized abelian scheme.

Fix a geometric point s of S. In the following statements, we take ` 6= p to be a rational

prime.

(i). Let ` - N . Then giving a K`(N)-orbit of symplectic similitudes η : V ⊗ Q`
∼−→ V`(As),

with similitude in Z×` , is equivalent to giving a self-dual Z`-lattice Λ ⊂ V`(As).

(ii). Let ` | N and set N = a`k with ` - a. Then giving a K`(N)-orbit of symplectic

similitudes η : V ⊗ Q`
∼−→ V`(As), with similitude in Z×` , is equivalent to giving a

self-dual Z`-lattice Λ ⊂ V`(As) and an isomorphism

Λ0 ⊗ Z`/
(
`k · (Λ0 ⊗ Z`)

) ∼−→ Λ/`kΛ.

Proof.

(i). Suppose first that η is such a K`(N)-orbit. Define Λ by choosing η ∈ η and setting

Λ = η(Λ0 ⊗ Z`). Since η preserves the pairing up to some Z×` -multiple and Λ0 ⊗ Z` is

self-dual, it follows that Λ is self-dual. As g(Λ0 ⊗ Z`) = Λ0 ⊗ Z` for all g ∈ K`(N), we

have Λ is well-defined.
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Conversely, let Λ ⊂ V`(As) be a self-dual lattice. Then we may choose a symplectic

basis of Λ. The choice of basis of Λ gives a symplectic isomorphism η : V ⊗Q`
∼−→ V`(As)

sending Λ0 ⊗ Z` onto Λ. While the isomorphism η depends on the choice of basis, the

K`(N)-orbit {η ◦ g : g ∈ K`(N)} does not.

(ii). Suppose now that η is a K`(N)-orbit with N = a`k and ` - a. Choose η ∈ η and set

Λ = η(Λ0⊗Z`) as before. Since (g−1)(Λ0⊗Z`) ⊂ N · (Λ0⊗Z`), for all possible choices

of η ∈ η the induced isomorphism Λ0 ⊗ Z`/(`k · Λ0 ⊗ Z`)
∼−→ Λ/`kΛ is fixed.

Conversely, fix a self-dual Λ ⊂ V`(As) and an isomorphism Λ0⊗Z`/
(
`k · (Λ0⊗Z`)

) ∼−→
Λ/`kΛ. As in (i), the choice of a symplectic basis of Λ determines an isomorphism

V ⊗Q`
∼−→ V`(As). We choose a symplectic basis so that the induced map V ⊗Q`

∼−→

V`(As) extends the fixed isomorphism Λ0 ⊗ Z`/(`k · Λ0 ⊗ Z`)
∼−→ Λ/`kΛ. This is well-

defined up to an element of K`(N).

Proposition 2.4.4. The functor An,1,N on the category of Zp-schemes is isomorphic to the

following functor. For a Zp-scheme S, let A′n,1,N(S) be the set of all tuples (A, λ, η) up to

isomorphism where

• A is an abelian scheme of dimension n over S;

• λ : A→ Â is a polarization which is also a Z(p)-isogeny; and

• η is a K(N)-orbit of symplectic similitudes η : V ⊗ Ap
f

∼−→ H1(As,Ap
f ).

We furthermore require that there be some representative (A, λ, η) with λ a principal polar-

ization.

Here an isomorphism f : (A, λ, η)→ (A′, λ′, η′) between two objects in A′n,1,N(S) consists of
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a Z(p)-isogeny f : A→ A′ such that

• there exists a locally constant function r with values in Z×(p) such that λ = r(f∨ ◦λ′ ◦f);

and

• H1(f) ◦ η = η′.

Proof. We start by defining a natural transformation Φ : An,1,N → A′n,1,N . Let (A, λ, α)

be a representative of an element of An,1,N(S). Then α : (Z/NZ)2n ∼−→ A[N ] induces an

isomorphism αs : (Z/NZ)2n ∼−→ As[N ] that is invariant under the action of π1(S, s). To

define η, we need to define it at every place ` 6= p, i.e. a K`(N)-orbit of symplectic similitudes

V ⊗ Q`
∼−→ V`(As) that is invariant under the action of π1(S, s). By Proposition 2.4.3, for

` - N such a K`(N)-orbit is given by the self-dual lattice H1(As,Z`). Note this lattice is

also fixed under the action of π1(S, s). For ` | N with N = a`k and ` - a, a K`(N)-orbit of

symplectic similitudes is given by T`(As) and the isomorphism (Z/`kZ)2n ∼−→ As[`
k] which is

induced from α.

Suppose that the S-valued points (A, λ, α) and (A′, λ′, α′) of An,1,N are isomorphic. Then

there is an isomorphism f : A→ A′ such that λ = f∨ ◦ λ′ ◦ f and α′ = f ◦ α. Hence f also

serves as an isomorphism between (A, λ, η) and (A′, λ′, η′) constructed as above.

Suppose now that two objects (A, λ, α) and (A′, λ′, α′) of An,1,N(S) are sent to isomorphic

objects (A, λ, η) and (A′, λ′, η′) of A′n,1,N(S). We may assume that λ and λ′ are principal

polarizations. Let f be an isomorphism between these two objects, i.e. a Z(p)-isogeny respect-

ing the polarization and Kp-level structures. Then since the objects (A, λ, η) and (A′, λ′, η′)

arise from objects of An,1,N(S), H1(f) maps H1(As, Ẑ(p)) isomorphically onto H1(A′s, Ẑ(p)).

Therefore f must be an isomorphism. Now λ = r · f∨ ◦ λ′ ◦ f for some locally constant

function r taking values in Z×(p). But since λ, λ′, and f are isomorphisms, it must be that
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r = 1. That α′ = f ◦ α follows from Proposition 2.4.3. Therefore f induces an isomorphism

between the objects (A, λ, α) and (A′, λ′, α′) of An,1,N(S).

Now let (A, λ, η) be a representative of some element in A′n,1,N(S). Then we must find an

object in the same isomorphism class of (A, λ, η) that arises from some object of An,1,N(S)

via the functor constructed above. The Kp-level structure provides a self-dual Ẑ(p)-lattice

Λ ⊂ H1(As,Ap
f ) invariant under the action of π1(S, s). From Proposition 2.4.2 we can find

an abelian scheme B/S, unique up isomorphism (of abelian schemes), and a Z(p)-isogeny

f : A → B such that Λ = H1(Bs, Ẑ(p)). We claim that B suffices, and to show this

it remains to equip B with a principal polarization λ′ and Kp-level structure η′ so that

f : A → B induces an isomorphism of objects in A′n,1,N(S) and (B, λ′, η′) arises from an

object of An,1,N(S). To equip B with a principal polarization we first define the Z(p)-isogeny

λ′ = (f∨)−1 ◦ λ ◦ f−1. By construction, H1(Bs, Ẑ(p)) = Λ and hence H1(B̂s, Ẑ(p)) = Λ since

the lattice Λ is self-dual. Therefore λ′ sends H1(Bs, Ẑ(p)) onto H1(B̂s, Ẑ(p)) and hence λ′

must be an isomorphism. We also define η′ = H1(f) ◦ η. With Λ = H1(Bs, Ẑ(p)) we have the

canonical identification Λ/NΛ = Bs[N ]. Thus (B, λ′, η′) induces (B, λ′, α′) as required.

Remark 2.4.5. We will henceforth use either description of the functor An,1,N .

As an intermediate step in proving the representability of AGL
0 and AGSp

0 , we will show that

the moduli problem defined below is representable by a quasi-projective scheme.

Definition 2.4.6. [Kot2, Section 5] Let Ahyp denote the the following functor on schemes

over Spec(Zp). For a Zp-scheme S, let Ahyp(S) be the set of all tuples (A, λ, i, η) up to

isomorphism, where

• A is an abelian scheme of dimension n over S;

51



• λ : A→ Â is a Z(p)-isogeny, which at every geometric point s of S is a polarization of

A;

• i : OB ⊗ Z(p) → End(A)⊗ Z(p) a homomorphism;

• detS(b|LieA) = detE′(b|V +) for all b ∈ OB; and

• η is a K(N)-orbit of symplectic similitudes V ⊗ Ap
f

∼−→ H1(As,Ap
f ).

We furthermore require that there be some representative (A, λ, i, η) with λ a principal

polarization.

An isomorphism f : (A, λ, i, η)→ (A′, λ′, i′, η′) between two objects in Ahyp(S) consists of a

Z(p)-isogeny f : A→ A′ such that

• there exists a locally constant function r with values in Z×(p) such that λ = r(f∨◦λ′◦f);

• the morphism End(A)⊗ Z(p) → End(A′)⊗ Z(p) induced by f , which is again denoted

by f , is such that f ◦ i(b) = i′(b) for all b ∈ OB; and

• H1(f) ◦ η = η′.

Proposition 2.4.7. The functor Ahyp is representable by a quasi-projective scheme.

Proof. We have the forgetful functor Ahyp → An,1,N by forgetting the OB-action. We will

show that Ahyp is relatively representable over An,1,N by a projective scheme.

Fix a Zp-scheme S and a morphism S → An,1,N inducing (A, λ, η). Consider the functor

Ahyp×An,1,N S. By [Hid, Section 6.1] the functor on S-schemes sending T → End(AT )⊗Z(p)

is representable by a union of projective schemes over S, denote the scheme representing this

functor by E . Now the polarization λ induces the Rosati involution on End(A)⊗Z(p), and this

in turn gives an involution r : E → E . Choose a set of generators {a1, . . . , a2m} of OB ⊗Z(p)

as a Z(p)-algebra such that am+i = ι(ai) for 1 ≤ i ≤ m and define the closed subscheme Z
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of E2m as follows. For an S-scheme T , a point (x1, . . . , x2m) ∈ E2m(T ) is in Z if and only if

any relationship satisfied by (a1, . . . , a2m) is also satisfied by (x1, . . . , x2m) and r(xi) = xm+i.

Note that any morphism T → E2m induced by a T -valued point of Ahyp ×An,1,N S factors

through Z.

With this, AZ = A ×S Z is an abelian scheme over Z and the morphism AZ → Z induces

{x1, . . . , x2m} ⊂ End(AZ)⊗Z(p) giving the algebra homomorphism OB ⊗Z(p) → End(AZ)⊗

Z(p) by sending ai to xi. By the conditions defining Z, this homomorphism is compatible

with the Rosati involution.

By Proposition 2.1.7, the locus where there is a Kp-level structure is a union of connected

components of Z. Now consider the determinant condition. With Lie(AZ) locally free, we

have detLie(AZ) ∈ Γ(Z,OZ)[X1, . . . , X2m]. The condition detLie(AZ) = detE′(V
+) is an equality

of global sections of Z. Thus enforcing both of these conditions gives a closed subscheme

X ⊂ Z. Again, any morphism T → E2m induced by a T -valued point of Ahyp ×An,1,N S

factors through X.

Therefore X, with the universal abelian scheme AX , represents the functor Ahyp ×An,1,N S.

Since X is projective over S, we have that the scheme representing Ahyp is quasi-projective.

Lemma 2.4.8. Let S be a Zp-scheme. Any object (A, λ, i, η) of Ahyp(S) only has the trivial

automorphism.

Proof. An automorphism of (A, λ, i, η) is given by f : (A, λ, i, η) → (A′, λ′, i′, η′) where

(A′, λ′, i′, η′) is in the same isomorphism class as (A, λ, i, η). With the forgetful morphism

of functors Ahyp → An,1,N , the automorphism f induces an automorphism of the induced
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objects of An,1,N(S). By [Ser2], this induced automorphism must be the identity. It follows

that f : A→ A′ is the identity.

Proposition 2.4.9. AGL
0 is representable by a quasi-projective scheme.

Proof. One has the forgetful functor AGL
0 → Ahyp and hence it suffices to show that AGL

0 is

relatively representable over Ahyp.

Fix S → Ahyp inducing (A0, λ0, η) and consider the functor AGL
0 ×Ahyp

S. Note that we may

choose the representative (A0, λ0, η) such that λ0 is a principal polarization.

Let FH = FHn
A0

denote the Flag Hilbert scheme with respect to the projective scheme A0

and the Hilbert polynomials
{
p2n, p4n, . . . , p2n2

}
[Ser1, Section 4.5]. This is a projective

scheme representing the following functor: to give a T valued point of FH is to give a chain

H1 ⊂ H2 ⊂ · · · ⊂ Hn of T -flat closed subschemes of AT such that Hi has Hilbert polynomial

p2ni. Let Z• = (Zi)i denote the universal object over FH, so in particular for each i we have

Zi ↪→ A0 ×S FH.

Given an object of (AGL
0 ×Ahyp

S)(T ), we claim that there is an induced morphism T → FH.

Choosing a representative (A•, λ, i, η), we have the chain of finite flat subgroup schemes

Hi = ker(αi : A0 → Ai). We must show that this chain is well-defined, i.e. that it does not

depend on the choice of representative. To see this, recall that an isomorphism of objects

f : (A•, λ, i, η) → (A′•, λ
′
, i′, η′) of (AGL

0 ×Ahyp
S)(T ) is given by a collection fi : Ai → A′i of

Z(p)-isogenies such that, in particular, the diagram
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A0 Ai

A0 A′i

αi

f0 fi
(α′)i

commutes. By the lemma above, f0 : A0 → A0 must be the identity. Furthermore fi : Ai →

A′i, if it exists, is determined uniquely by f0. We may identify Ai = A0/Hi, and likewise

A′i = A′0/H
′
i. Then we see that fi : A0/Hi → A′0/H

′
i must descend from f0 : A0 → A′0.

Thus f0(Hi) = H ′i and so the chain is well-defined. Therefore an object of (AGL
0 ×Ahyp

S)(T )

induces a morphism T → FH.

We define the closed subscheme FH1 ⊂ FH as follows. A geometric point x of FH is a

point of FH1 if and only if for all i, the morphisms x
ε−→ A0,x, Zi,x ×FH Zi,x

µ−→ A0,x, and

Zi,x
ι−→ A0,x factor through Zi,x ↪→ A0,x. Here Zi,x and A0,x denote the geometric fiber with

respect to x and ε, µ, and ι are the restrictions of the identity, multiplication, and inverse of

A0,x respectively. Any morphism T → FH induced by an object of (AGL
0 ×Ahyp

S)(T ) factors

through FH1.

Now define the closed scheme FH2 ⊂ FH1 as follows. A geometric point x of FH1 is a point

of FH2 if and only if Zn,x = A0,x[p] as closed subschemes of A0,x. Any morphism T → FH1

induced by an object of (AGL
0 ×Ahyp

S)(T ) factors through FH2.

Define Z ′i = Zi ×FH FH2 for 1 ≤ i ≤ n − 1. Then each Z ′i is a flat subgroup scheme of

A0 ×S FH2 and moreover each Z ′i is finite over FH2. So any morphism T → FH2 induces a

chain

A0,T
α0−→ A0,T/H1

α1−→ . . .
αn−2−−−→ A0,T/Hn−1

αn−1−−−→ A0,T/A0[p]

where A0,T = A0×ST and each morphism is the canonical quotient map and hence an isogeny

of degree p2n. By abuse of notation write A0 for A0,T and set Ai = A0/Hi for 0 ≤ i ≤ n− 1.
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Since Hn−1 ⊂ A0[p], we can define An = A0 with the map An−1
αn−1−−−→ An being induced by

[p] : A0 → A0. We then take the periodicity isomorphism θp : An → A0 to be the identity.

Now extend this chain periodically to be an infinite chain (Ai)i for i ∈ Z.

It remains to enforce the condition that there exists a Q-homogeneous class of principal

polarizations. Consider the diagram

A−i A0 Ai

Â−i Â0

αi

λ0

αi

(α∨)i

and write Ai = A−i/Hi where we now denote by Hi a finite flat subgroup scheme of A−i.

We claim that an isomorphism λi : Ai
∼−→ Â−i making the diagram

A0 Ai

Â0 Â−i

αi

λ0 λi
(α∨)i

commute, if it exists, must be descended from the map A−i
αi−→ A0

λ0−→ Â0
(α∨)i−−−→ Â−i. To

see this, denoting θp : An
∼−→ A0 the periodicity isomorphism and [p] multiplication by p, we

have

(
(α∨)i ◦ λ0 ◦ θp ◦ αn−i

)
◦ α2i = (α∨)i ◦ λ0 ◦ [p] ◦ αi

= λi ◦ αi ◦ [p] ◦ αi

Since [p] is an isogeny, this implies that (α∨)i ◦ λ0 ◦ αi = λi ◦ α2i which is precisely to say
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that λi descends from (α∨)i ◦ λ0 ◦ αi.

The map (α∨)i ◦ λ0 ◦αi will descend to an isomorphism Ai
∼−→ Â−i if and only if its kernel is

precisely Hi. Enforcing this condition for each i, we see that there exists a closed subscheme

FH3 of FH2 such that a morphism T → FH2 will factor through FH3 if and only if the

corresponding point of T → FH2 may be equipped with a Q-homogeneous class of principal

polarizations. Therefore FH3 represents AGL
0 . With FH3 a projective over S, AGL

0 is quasi-

projective.

Proposition 2.4.10. AGSp
0 is representably by a scheme.

Proof. As in the previous theorem, one has the forgetful functor AGSp
0 → Ahyp and hence

it suffices to show that AGSp
0 is relatively representable over Ahyp. Fix S → Ahyp inducing

(A0, λ0, η) and consider the functorAGSp
0 ×Ahyp

S. Note that we may choose the representative

(A0, λ0, η) so that λ0 is a principal polarization. As in the above theorem, an object of

(AGSp
0 ×Ahyp

S)(T ) induces a morphism T → FHn
A0

where we now take {p, p2, . . . , pn} to

be the collection of Hilbert polynomials. There is a closed subscheme Z of FHn
A0

such that

T → FHn
A0

factors through Z if and only if the corresponding chain of flat subschemes forms

a chain of finite flat subgroup schemes of AT contained in AT [p].

By abuse of notation denote A0,T by A0 and set Ai = A0/Hi for 1 ≤ i ≤ n − 1. Then we

have the diagram

A0 A1 . . . An−1

Â0 Â1 . . . Ân−1

α

λ0

α α

λn

α∨ α∨ α∨
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It remains to enforce the condition that there exists principal polarizations λn : An → Ân

making the loop in the diagram multiplication by p. Such a polarization exists if and only

if the kernel Hn−1 = ker(αn−1) is totally isotropic with respect to the Weil pairing induced

by λ0. Thus there exists a closed subscheme of X ⊂ Z such that T → Z factors through X

if and only if there exists such a λn as above.

Therefore Z represents AGSp
0 .
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Chapter 3

Stratification of A0

In this chapter we will describe the following result.

Theorem 3.1 ([Gör1],[Gör2]). Let A0 and M loc respectively denote the integral model and

local model in either the unitary or symplectic case. Then M loc ⊗ Fp can be embedded into

an affine flag variety associated with SLn and Sp2n respectively. Each affine flag variety is

stratified by Schubert cells which induces a stratification of M loc ⊗ Fp. There is a unique

stratum of M loc ⊗ Fp which consists of a single closed point, called the “worst point”. Any

open subscheme of M loc containing the worst point is an étale local model for A0.

Following loc. cit., we will also make a specific choice of open subscheme U0 ⊂M loc (denoted

Uτ in loc. cit.) containing the worst point and give an explicit presentation of U0.

Consider the local model M loc associated with an integral Shimura datum of Iwahori-type

in either the unitary or symplectic case. As before, let G = GQp where G is the reductive
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group defined over Q in the Shimura datum. In the unitary case, recall that the assumptions

on p gave the splitting of G =
∏

j Gj which in turn makes the local model (after some finite

base extension) isomorphic to a product of local models in the case F+ = Q (see Proposition

2.2.2). We thus assume that in the unitary case, F+ = Q.

Throughout this chapter, we will fix notation in such a way that we may describe the

stratifications in both the unitary and the symplectic cases simultaneously. In the unitary

case we have G = GLn,Qp × Gm,Qp with µ = (0n−r, (−1)r) and in the symplectic case we

have G = GSpn,Qp where n = 2r for r ∈ N with µ = (0r, (−1)r). Thus in either case,

µ = (0n−r, (−1)r). Note that this notation differs from slightly from Section 2.3 where we

had GSp2n,Qp .

Let k be an algebraically closure of Fp and let F denote the affine flag variety over k associated

with SLn in the unitary case and Spn in the symplectic case. We identify FSL with the space

of complete (n−r)-special lattice chains and likewise FSp with the space of complete self-dual

(n − r)-special lattice chains (see Propositions A.3.5 and A.3.7). Let R be a k-algebra and

set

λi = (t−1R[[t]])i ⊕R[[t]]n−i, 0 ≤ i ≤ n− 1

noting that λ⊥i = λ−i.

Proposition 3.2. [Gör1, Proposition 3.5],[Gör2, Proposition 3.2]

(i). Let (Fi)i be an R-valued point of M loc
GL⊗k so that Fi is a subspace of Λi,R = Rn ∼= λi/tλi.

Let Li be the inverse image of Fi under the canonical projection λi → λi/tλi. Then

(Li)i is a complete (n− r)-special lattice chain and the map

M loc
GL ⊗ k → FSL sending (Fi)i → (Li)i
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is a closed immersion. The image is precisely the lattice chains (Li)i ∈ FSL such that

tλi ⊂ Li ⊂ λi.

(ii). Let (Fi)i be an R-valued point of M loc
GSp ⊗ k inducing (Li)i as in (i). Then (Li)i is

a complete self-dual r-special lattice chain and the map M loc
GSp ⊗ k → FSp is a closed

immersion. The image is precisely the lattice chains (Li)i ∈ FSp such that tλi ⊂ Li ⊂

λi.

Proof.

(i). That (Li)i forms a complete lattice chain is immediate from the definition of (Fi)i. We

now show that L0 is (n − r)-special. By localization, we can assume that F0 ⊂ Rn is

a direct summand. Without loss of generality, suppose F0 = Rr ↪→ Rr ⊕ Rn−r = Rn.

Then under the map π0 : λ0 → λ0/tλ0
∼= Rn we have that π−1

0 (F0) is the R[[t]]-lattice

generated by the elements of λ0 where the last n − r coordinates are contained in

tR[[t]]. As L0 → ∧nL0 is given by the determinant, it follows that ∧nLi = tn−rR[[t]]

as required.

By definition, for (Fi) ∈ M loc
GL ⊗ k the induced lattice chain (Li) is such that tλi ⊂

Li ⊂ λi for all i. Now suppose (Li)i ∈ FSL such that tλi ⊂ Li ⊂ λi for all i. Then

the image of Li under the map λi → λi/tλi
∼−→ Rn is a locally free R-module of rank

r, denote it by Fi. Thus (Fi)i is a point of M loc
GL ⊗ k that maps onto (Li)i as required.

(ii). Noting that n − r = r here, all of the claims will follow from (i) by showing that

enforcing the duality condition on (Fi)i is equivalent to enforcing the condition that

(Li)i is self-dual. Since (Fi)i and hence (Li)i are periodic, it suffices to show the claim

on the indices i = 0, . . . , n−1. We claim that in fact the duality condition is equivalent

to L⊥i = Ln−i for 0 ≤ i ≤ n− 1.
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Since tλi ⊂ Li ⊂ λi, certainly we have λ⊥i ⊂ L⊥i ⊂ t−1λ⊥i . Using λ⊥i = tλn−i, we have

tλn−i ⊂ L⊥i ⊂ λn−i. This implies that Ln−i ⊂ L⊥i if and only if Ln−i = L⊥i .

We have the following commutative diagram

Li × L−i R[[t]]

Fi,R ×F−i,R R

where the horizontal map on the bottom is the restriction of Λi,R×Λ−i,R → R induced

by the duality Λ⊥i = Λ−i.

The duality condition is equivalent to the pairing Li × L−i → R[[t]] having image in

tR[[t]], and this in turn is equivalent to t−1L−i ⊂ L⊥i . Since (Li)i is periodic, Ln−i = L⊥i

and the result follows.

As a result of the proposition, we will frequently identify M loc⊗k with its image in F . Recall

the description of the stratification of F (see Section A.3 for details). Set

ω = (ω0, . . . , ωn−1) where ωi = (1i, 0n−i).

τ =
(
(1r, 0n−r), (1r+1, 0n−r−1), . . . , (2r−2, 1n−r), (2r−1, 1n−r+1)

)
With τ as a base alcove, the extended affine Weyl group W̃ acts simply transitively on the

set of alcoves and hence we may identify W̃ with the set of alcoves. Thus given (Li)i ∈ F ,

there is a uniquely determined element w ∈ W̃ and an element b in the Iwahori subgroup

I, such that (Li)i = bwτ . We say that wτ is the alcove associated to the point (Fi)i. This
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gives a stratification

F =
⋃

w∈W aff

Swτ , where Swτ = IwI/I.

From the description of M loc⊗k in F in Proposition 3.2, we immediately have that M loc⊗k

is invariant under the action of the Iwahori subgroup I, and hence that M loc ⊗ k is set-

theoretically a disjoint union of Schubert cells Swτ .

Now let (Fi)i ∈M loc(k) and (Li)i ∈ F the corresponding point of the affine flag variety. Let

x = (x0, . . . , xn−1) be an alcove and suppose (Li)i ∈ Sx. Then

Li = b ·



t−xi(1)+1

t−xi(2)+1

. . .

t−xi(n)+1


for some b ∈ I. Here we are writing the matrix on the right with respect to the standard

basis {e1, . . . , en} of k((t))n and identifying this matrix with the k[[t]]-submodule of k((t))n

given by its column space.

Remark 3.3. Note that for an alcove x such that 0 ≤ xi(j)− ωi(j) ≤ 1, the quotient λi/Li

is generated by the eij such that xi(j) = ωi(j). Indeed, we certainly have that the claim holds

for b = 1. Now let b ∈ I be arbitrary. Since I stabilizes the standard lattice chain, we have

λi/Li is generated by
{
beij : xi(j) = ωi(j)

}
. Of course in the quotient λi/Li, the subspace

generated by this set is the same as that generated by
{
eij : xi(j) = ωi(j)

}
.

Definition 3.4. Let x = (x0, . . . , xn−1) be an alcove. Then

(i). The number
∑

j xi(j)−
∑

j ωi(j) is independent of i and is called the size of x.
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(ii). We say that x is minuscule if 0 ≤ xi(j)−ωi(j) ≤ 1 for all 0 ≤ i ≤ n−1 and 1 ≤ j ≤ n.

(iii). We say that x is µ-permissible if x is minuscule of size r.

We will denote the collection of µ-permissible alcoves by Perm(µ).

Remark 3.5. τ is µ-permissible.

Proposition 3.6. Sx ∩ (M loc ⊗ k) 6= ∅ if and only if x is a µ-permissible alcove and hence,

set-theoretically,

M loc ⊗ k =
⋃

x∈Perm(µ)

Sx.

Proof. For all 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, the condition tλi ⊂ Li ⊂ λi is equivalent to

the condition 0 ≤ xi(j)− ωi(j) ≤ 1. Thus we may assume that this is indeed the case. Now

(Li)i is (n− r)-special is equivalent to λi/Li has rank n− r. By Remark 3.3, this is in turn

equivalent to # {j : xi(j) = ωi(j)} = n− r for every 0 ≤ i ≤ n− 1, and hence equivalent to

n∑
j=1

xi(j)− ωi(j) = r.

Definition 3.7. Let x = (x0, . . . , xn−1) be a µ-permissible alcove. Define Ux to be the subset

of M loc ⊗ k which consists of all the points (Fi)i such that for all i, the quotient Λi/Fi is

generated by those eij with ωi(j) = xi(j).

Proposition 3.8. Let x = (x0, . . . , xn−1) be a µ-permissible alcove and Ux be as in the

definition above. Then we have the following.

(i). Ux is an open subscheme of M loc ⊗ k.
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(ii). The stratum Sx is contained in Ux.

(iii). The irreducible components of M loc⊗k are the closures of the Sx where x is an extreme

alcove, i.e. x = tw(µ) for some w ∈ W .

(iv). The stratum Sτ consists of only one point.

(v). For any open subscheme U ⊂M loc ⊗ k containing Sτ , U intersects every stratum.

Proof.

(i). Let x ∈ Perm(µ), (Fi)i ∈M loc(k), and (Li)i the associated point of F . For any fixed i,

as shown in the proof of Proposition 3.6, the collection of eij with ωi(j) = xi(j) consists

of n − r elements, and this set is a subset of a basis of λi. Since λi/Li is free of rank

n − r, in general for an arbitrary set {s1, . . . , sn−r} ⊂ λi, the set {s1, . . . , sn−r} forms

a basis of λi/Li if and only if {s1, . . . , sn−r} /∈ Li and {s1, . . . , sn−r} is part of a basis

of λi.

Let {jk}n−rk=1 be a collection of distinct integers with 1 ≤ jk ≤ n. Consider the collection

T =
{
eijk : 0 ≤ i ≤ n− 1, 1 ≤ k ≤ n− r

}
.

By the above it suffices to show that the collection (Li)i ∈M loc such that eijk /∈ Li for

all eijk ∈ T is open. This is the intersection of finitely many sets, each defined by the

condition that for some fixed i and k, eijk /∈ Li. As each such set is open, it follows

that Ux is open.

(ii). This is Remark 3.3.

(iii). From [KR], the extreme alcoves are precisely the µ-permissible alcoves x such that

x ≤ y implies x = y for y a µ-permissible alcove. Recalling that the stratification has

the property Sx ⊂ Sy if and only if x ≤ y, the result follows.
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(iv). With I the Iwahori subgroup of LG(k), consider the action of I on M loc ⊗ k given by

I×M loc⊗k →M loc⊗k. As Sτ is an I-orbit, for any p ∈ Sτ we have that the restriction

I×{p} → Sτ is surjective. Furthermore, since the action of I on M loc⊗k is continuous

and I is connected, we get that Sτ is connected. Finally, Sτ is zero dimensional since

`(τ) = 0 (Proposition A.3.9). Therefore Sτ consists of a single point.

(v). Let U ⊂ M loc ⊗ k be an open subscheme with Sτ ∈ U . From Proposition A.3.9, as

τ ≤ x for all µ-permissible x, we have Sτ ∈ Sx. Hence U intersects Sx and thus U

meets Sx.

Remark 3.9. Let U be an open subscheme of M loc ⊗ k with Sτ ∈ U and let x be µ-

permissible. Then since U meets Sx and Sx is an I-orbit, we have that the image of I×U →

M loc contains all of Sx. As M loc ⊗ k is the disjoint union of Sx for x ∈ Perm(µ), we have

I × U → M loc is surjective. It follows immediately that any open subscheme U ⊂ M loc

containing the point Sτ serves as an étale local model of A0. In particular, Uτ is a local

model of A0.

As in [Gör1] and [Gör2], we now write down a presentation of Uτ , which we will henceforth

denote by U0. With M loc being a closed subscheme of a product of Grassmannians, we

represent a point of M loc by giving (Fi)n−1
i=0 where each Fi is an r-dimensional subspace, and

we represent Fi as the column space of the n× r matrix (aijk) with respect to the basis
{
eij
}

.

It is then easy to check (Fi)i ∈ U0 implies that the r × r minor given by rows i+ 1 to r + i

(taken cyclically, so row n+ 1 is row 1) of Fi is invertible for 0 ≤ i < n. As such, we require
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this submatrix to be the identity matrix. For example, F0 and F1 are represented by



1

1

. . .

1

a0
11 a0

12 . . . a0
1r

...
...

...

a0
n−r,1 a0

n−r,2 . . . a0
n−r,r



and



a1
n−r,1 a1

n−r,2 . . . a1
n−r,r

1

1

. . .

1

a1
11 a1

12 . . . a1
1r

...
...

...

a1
n−r−1,1 a1

n−r−1,2 . . . a1
n−r−1,r



.

Note that by requiring the matrix to have a specific r× r submatrix which is the identity, all

the entries of the matrix are uniquely determined by its column space. By abuse of notation,

we will use Fi to denote both the subspace and the matrix representing it. To express the

condition Fi is mapped into Fi+1, we must have

ϕi(Fi) = Fi+1Ai

for some r×r matrix Ai. However Fi+1 has an r×r submatrix which is given by the identity

matrix, and so Ai is determined:

Ai =



0 1

. . .
. . .

0 1

ai11 ai12 . . . ai1r


.

Proposition 3.10.
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(i). UGL
0
∼= Spec(BGL) with

BGL = Zp[aijk; i = 0, . . . , n− 1, j = 1, . . . , n, k = 1, . . . , r]/I

where I is the ideal generated by following two collections of relations. The first collec-

tion is given for 0 ≤ i ≤ n− 1 by the entries of the matrices


ai+1

11 . . . ai+1
1r

. . .
. . .

ai+1
n−r,1 . . . ai+1

n−r,r

Ai −



ai21 ai22 . . . ai2r
. . .

. . .
. . .

ain−r,1 ain−r,2 . . . ain−r,r

p 0 . . . 0


.

The second collection is given by the entries of the matrices

An−1An−2 · · ·A0−p·Id, An−2 · · ·A0An−1−p·Id, . . . , A0An−1 · · ·A1−p·Id.

(ii). [Gör2, Section 5] UGSp
0
∼= Spec(BGSp) with BGSp = BGL/J where J is the ideal gener-

ated by

a2n−i
jk − εjkain−k+1,n−j+1 with εjk =

 1 j, k ≤ i or j, k ≥ i+ 1

−1 otherwise

for each 0 ≤ i ≤ n− 1.

Proof.

(i). The first collection of equations is equivalent to the requirement that ϕ(Fi) ⊂ Fi+1
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and the second collection is equivalent to the compositions

ϕn−1ϕn−2 . . . ϕ0, ϕn−2ϕn−3 . . . ϕ0ϕn−1, . . . , ϕ0ϕn−1 . . . ϕ1

are all multiplication by p.

(ii). M loc
GSp is a closed subscheme of M loc

GL given by enforcing the duality condition. That

this condition is given by the equations above is computed in [Gör2, Section 5.1].

Remark 3.11. We mention here without proof the vastly reduced presentation from [Gör3,

Section 3]: UGL
τ is isomorphic to the spectrum of

Zp[ai1k; i = 0, . . . , n− 1, k = 1, . . . , r]/I

where I is the ideal generated by the entries of the matrices

An−1An−2 · · ·A0 − p · Id, An−2 · · ·A0An−1 − p · Id, . . . , A0An−1 · · ·A1 − p · Id.

The following lemma will be used in Chapter 4.

Lemma 3.12. With the presentation of U0 as in the above proposition, let x be a closed

point of U0 associated with {Fi ⊂ Λi}.

(i). The map Fi → Fi+1 is an isomorphism if and only if ai11 6= 0.

(ii). The map Λi/Fi → Λi+1/Fi+1 is an isomorphism if and only if ai+1
n−r,r 6= 0.

Proof.
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(i). The map Fi → Fi+1 will be an isomorphism if and only if det(Ai) 6= 0, which is if and

only if ai11 6= 0.

(ii). Before proceeding, let us make the following remark on the indices for eij and aijk. The

upper indices refer to the flag and so are taken modulo n with the standard set of

representatives {0, . . . , n− 1}. The lower indices refer to the position in a vector or

matrix, and as such are also taken modulo n however with the set of representatives

{1, . . . , n}.

The relations defining the quotient Λi/Fi are

eii+j = −
n−r∑
k=1

aikje
i
i+r+k for 1 ≤ j ≤ r.

Thus we may take
{
eii+r+1, . . . , e

i
i+n

}
as a basis of Λi/Fi. By abuse of notation, let ϕi

be the induced map Λi/Fi → Λi+1/Fi+1 and note we have following equations.

ϕi(e
i
i+r+1) = ei+1

i+r+1 = −
n−r∑
k=1

ai+1
kr e

i+1
i+r+k+1

and

ϕi(e
i
i+r+j) = ei+1

i+r+j for 2 ≤ j ≤ n− r.

Therefore the matrix representing the map Λi/Fi → Λi+1/Fi+1 with respect to these

bases is 

−ai+1
1r 1

−ai+1
2r 1

...
. . .

1

−ai+1
n−r,r


.
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From this, we see that the map Λi/Fi → Λi+1/Fi+1 is an isomorphism if and only if

ai+1
n−r,r 6= 0.
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Chapter 4

Integral and local models of A1

In this section we use the theory of Oort-Tate to define the integral model ofA1 and construct

affine local models. Throughout this chapter, let S be an OE-scheme and k an algebraically

closed field. In the unitary case we let G = GLn,Qp × Gm,Qp with minuscule cocharacter

µ = (1r, 0n−r) and in the unitary case we let G = GSp2n,Qp with minuscule cocharacter

µ = (1n, 0n).

4.1 The group schemes Gi

An S-valued point x : S → A0 is given by the data ({Ai} , λ, i, η). In this section we will

associate to x a collection {Gi}n−1
i=0 of finite flat group schemes of rank p corresponding to

the kernel of Ai → Ai+1. Furthermore, in the case where S = Spec(k), there exists an étale

neighborhood ϕ : V → A0 with a closed point p of V and a section σ : V → Ã0
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Ã0

V A0 M loc

Φ Ψ

σ

such that ϕ(p) = x and Ψ ◦ σ is étale at p. Let y = Ψ ◦ σ(p). In such a case, we will be able

to tell the isomorphism type of Gi from the data ({Fi ↪→ Λi,S}) given by y.

We start by first restricting our attention to the unitary case. Recall that we have the

splittings

Li,S ⊕L ∗
i,S = (Λi,S)n ⊕ (Λ∗i,S)n and ωi = (Fi)n ⊕ (F∗i )n

induced by the splitting OB ⊗Zp OS ∼= Mopp
n (OFp) ×Mopp

n (OFp
). Consider the p-divisible

group defined by

Ai(p
∞) = lim−→

n

Ai[p
n]

and note Hi = ker(Ai → Ai+1) is contained in Ai(p
∞). Now the action of OB ⊗ Zp gives

Ai(p
∞) =

n⊕
j=1

e11Ai(p
∞)⊕

n⊕
j=1

f11Ai(p
∞)

where e11 and f11 are idempotents of the first, respectively second, factor of Mopp
n (Zp) ×

Mopp
n (Zp). By functoriality this gives a chain

e11A0(p∞)→ e11A1(p∞)→ · · · → e11An−1(p∞)→ e11A0(p∞)

of isogenies of degree p with the composition e11A0(p∞) → e11A0(p∞) being multiplication

by p. We then set

Gi = ker (e11Ai(p
∞)→ e11Ai+1(p∞))

noting that Gi is a finite flat group scheme of order p.
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Now consider the symplectic case. Here the maps Ai → Ai+1 are isogenies of degree p, and

we set Gi = ker(Ai → Ai+1).

Definition 4.1.1. For a group scheme G/S, define ωG = ωG/S to be the sheaf on S given

by ε∗(Ω1
G/S) where ε : S → G is the identity section.

In the following proposition in the unitary case, recall that we are using ϕi for both the

morphism Li,S ⊕L ∗
i,S → Li+1,S ⊕L ∗

i+1,S and its restriction to Λi,S → Λi+1,S.

Proposition 4.1.2. Let S = Spec(k), x : S → A0, and y : S →M loc corresponding to x as

described above inducing the data {Fi ↪→ Λi,S}. Then

(i) In the unitary case, dimk ωH∗i = dimk(ωi+1/ϕi(ωi)), where H∗i the Cartier dual of Hi.

(ii) In the unitary case, dimk ωHi = dimk(Li+1,S ⊕L ∗
i+1,S)/

(
ϕi(Li,S ⊕L ∗

i,S) + ωi+1

)
.

(iii) In both the unitary and symplectic cases, dimk ωG∗i = dimk(Fi+1/ϕi(Fi)).

(iv) In both the unitary and symplectic cases, dimk ωGi = dimk Λi+1,S/ (ϕi(Λi,S) + Fi+1).

Proof. (i) H∗i is given by the exact sequence

0→ H∗i → Âi+1
α̂−→ Âi.

The sequence of morphisms Âi+1
α̂−→ Âi → Spec(k) gives the standard exact sequence of

Kähler differentials

α̂∗(Ω1
Âi

)→ Ω1
Âi+1
→ Ω1

Âi+1/Âi
→ 0.
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Now pull back this sequence by the identity section εÂi+1

ωÂi → ωÂi+1
→ ε∗

Âi+1
(Ω1

Âi+1/Âi
)→ 0.

As H∗i can be described by the fibered product

H∗i Âi+1

Spec(k) Âi

i

α

εÂi

and i ◦ εH∗i = εÂi+1
, we have the canonical isomorphisms

Ω1
H∗i

= i∗(Ω1
Âi+1/Âi

) and ε∗
Âi

(Ω1
Âi+1/Âi

) = (i ◦ εH∗i )∗(Ω1
Âi+1/Âi

) = ωH∗i .

Therefore the exact sequence of invariant differentials becomes

ωÂi → ωÂi+1
→ ωH∗i → 0.

Now (i) follows since by definition ωi = ωÂi .

(ii) Starting with the exact sequence

0→ Hi → Ai
α−→ Ai+1

as above we have

ωAi+1
→ ωAi → ωHi → 0.
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From the Hodge filtration, ωAi
∼=
(
M(Ai)/ωÂi

)∨
. As the map ϕi sends ωi into ωi+1 we have

dimk ωHi = dimk

(
Li+1 ⊕L ∗

i+1)/ (ϕi(Li ⊕L ∗
i ) + ωi+1)

)
.

In the unitary case, parts (iii) and (iv) then follow from (i) and (ii) by the functoriality of

our decompositions. In the symplectic case, (iii) and (iv) follow as in the proof of (i) and

(ii) by replacing Hi with Gi, ωAi with Fi, and Li ⊕L ∗
i with Λi.

For a general S-valued point y : S → M loc, the maps ϕi : Fi → Fi+1 and ϕ∗i : Λi/Fi →

Λi+1/Fi+1 induce global sections qi and q∗i of the line bundles

Qi =

(
top∧
Fi

)−1

⊗
top∧
Fi+1 and Q∗i =

(
top∧

Λi/Fi

)−1

⊗
top∧

Λi+1/Fi+1

respectively. In the case S = Spec(k), qi and q∗i are the determinants of the corresponding

linear maps and it is immediate that qi ⊗ q∗i = π.

Proposition 4.1.3. Let x : Spec(k)→ A0 and y : Spec(k)→M loc a corresponding geomet-

ric point inducing the sections qi and q∗i as described above.

(i) qi = 0 if and only if dimk ωG∗i = 1.

(ii) q∗i = 0 if and only if dimk ωGi = 1.

Proof. This follows immediately as qi 6= 0 if and only if Fi is carried isomorphically onto

Fi+1, and similarly with q∗i .

We now recall the classification of finite flat group schemes of order p over an algebraically

closed field (see Section A.4.1 for details). If char(k) 6= p, then any finite flat group scheme
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of order p over Spec(k) is isomorphic to the constant group scheme Z/pZ. If char(k) = p,

then there are, up to isomorphism, three finite flat group schemes G of order p over Spec(k):

Z/pZ, µp, and αp. The Cartier dual of Z/pZ is µp, and the Cartier dual of αp is αp itself.

The following table is computed in Section A.4.1.

G µp Z/pZ αp
(dimk ωG, dimk ωG∗) (1,0) (0,1) (1,1)

Table 4.1: Dimension of invariant differentials of group schemes of order p.

Thus knowing qi and q∗i , one can determine the isomorphism type of Gi.

Corollary 4.1.4. Given a morphism S → A0, consider the divisor on S defined by the

vanishing of q∗i . Then the support of this divisor is precisely the locus given by the collection

of closed points

{x ∈ S ⊗ Fp : x : Spec(k(x))→ A0 induces Gi
∼= µp or Gi

∼= αp} .

4.2 Integral and local model of A1

Oort-Tate theory, as described in Section A.4.3, can be summarized as follows.

Theorem 4.2.1. [HR, Theorem 3.3.1] Let OT be the Zp-stack representing finite flat group

schemes of order p.

(i). OT is an Artin stack isomorphic to

[(SpecZp[X, Y ]/(XY − wp))/Gm]
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where Gm acts via λ · (X, Y ) = (λp−1X,λ1−pY ). Here wp denotes an explicit element

of pZ×p given in loc. cit.

(ii). The universal group scheme GOT over OT is

GOT = [(SpecOT O[Z]/(Zp −XZ))/Gm],

(where Gm acts via Z → λZ), with zero section Z = 0.

(iii). Cartier duality acts on OT by interchanging X and Y .

As in [HR], we denote G×OT to be the closed subscheme of GOT defined by the ideal (Zp−1−X).

The morphism G×OT → OT is relatively representable, finite, and flat of degree p − 1. The

notation is justified by the following proposition.

Proposition 4.2.2. [HR, 3.3.2] (cf. [Pap1, 5.1]) Let S and G be as in Definition A.4.11,

so G corresponds to a morphism ϕ : S → OT determined by the condition G = ϕ∗(GOT ).

Set G× = ϕ∗(G×OT ). For c ∈ G(S), c ∈ G×(S) if and only if c is an Oort-Tate generator.

Remark 4.2.3. Let ϕ : S → OT correspond to G/S with G finite flat of order p. Then

ϕ∗(X) cuts out the locus of closed point of S where G is infinitesimal.

Given an S-valued point of A0, we have associated with it the group schemes {Gi}n−1
i=0 over

S in the previous section. This defines a morphism

ϕ : A0 →
n times︷ ︸︸ ︷

OT ×Zp · · · ×Zp OT .

Definition 4.2.4. A1 is the fibered product
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A1 G×OT × · · · × G
×
OT

A0

n times︷ ︸︸ ︷
OT × · · · ×OT .

π

ϕ

Remark 4.2.5. With G×OT → OT relatively representable, we have A1 is represented by a

quasi-projective scheme. It is also immediate from the definition that A1 is finite and flat

over A0. Since A0 is flat over Spec(Zp) [Gör1] [Gör2], we have A1 is flat over Spec(Zp) as

well.

Given a geometric point x : Spec(k) → A0, as noted in the previous section there exists an

étale neighborhood V → A0 and an étale morphism ψ : V → M loc. Assume that ψ factors

through an open subscheme U ⊂M loc where each Q∗i is trivial. Choosing a trivialization, by

abuse of notation we will write q∗i ∈ Γ(U,OU), where q∗i is the global section of Q∗i defined in

the previous section. Note that ifQ∗i is trivial then so isQi. Thus we also have qi ∈ Γ(U,OU).

Consider the following diagram

V A0 OT

U

ψ

ϕi

where ϕi : A0 → OT is ϕ followed by the ith projection.

Proposition 4.2.6. The morphism ρi : V → OT in the diagram above is given by

ρ∗i (Xi) = εiψ
∗(q∗i ) ρ∗i (Yi) = wpε

−1
i ψ∗(qi)

where εi is a unit in V and wp is from the description of the Oort-Tate stack in Theorem
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4.2.1.

Proof. The special fiber of M loc, and therefore of V , is reduced [Gör1], [Gör2]. From the

equalities qiq
∗
i = π and XiYi = ωpπ we have that the divisors defined by the vanishing

of the global sections Z(ψ∗(q∗i )) and Z(ρ∗i (Xi)) are reduced. By Corollary 4.1.4, Example

A.4.14, and Remark 4.2.3, the locus where ψ∗(q∗i ) vanishes agrees with the locus where ρ∗i (Xi)

vanishes. Therefore Z(ψ∗(q∗i )) = Z(ρ∗i (Xi)).

M loc is flat over OE with reduced special fiber [Gör1],[Gör2]. Furthermore, the generic

fiber is normal (smooth, even). It follows that M loc is normal [PZ, Proposition 8.2]. Since

V → M loc is finite étale, we have that V is normal as well. Thus the equality of divisors

above implies ψ∗(q∗i ) and ρ∗i (Xi) are equal up to a unit, say εi. The same proof applies for

the statement regarding ρ∗i (Yi), and so ψ∗(qi) and ρ∗i (Yi) are equal up to a unit. This unit

must be wpε
−1
i because XiYi = wpπ and qiq

∗
i = π.

Proposition 4.2.7. Let x̃ : Spec(k) → A1 with π(x̃) = x : Spec(k) → A0 and V → A0 be

an étale neighborhood of x which carries an étale morphism V → M loc. Suppose V → M loc

factors through an open affine subscheme U ⊂M loc on which Q∗i is trivial for each i. Set

U1 = SpecU
(
OU [u0, . . . , un−1]/

(
up−1

0 − q∗0, . . . , u
p−1
n−1 − q∗n−1

))
.

Then there exists an étale neighborhood Ṽ of x̃ and an étale morphism ψ : Ṽ → U1.

Proof. Define Ṽ = V ×A0 A1. Consider the diagram
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U1 Ṽ A1 G×OT × · · · × G
×
OT

U V A0 OT × · · · ×OT

and denote by η the morphism Ṽ → G×OT × · · · × G
×
OT in the diagram. The two right squares

of the diagram are Cartesian and the morphism on the top left is defined by sending ui to

η∗(Zi). The diagram commutes by the proposition above. The morphism G×OT → OT is

relatively representable and thus

Ṽ ∼= SpecV
(
OV [u0, . . . , un−1]/(up−1

0 − η∗(Z0), . . . , up−1
n−1 − η∗(Zn−1))

)
.

As the top left morphism of the diagram above is given by sending ui to η∗(Zi), it follows

that Ṽ ∼= U1 ×U V . Therefore by the above diagram, the morphism Ṽ → U1 is étale.

Remark 4.2.8. Given a covering of affine open subschemes {Uj} ofA0 such thatQ∗i is trivial

on every Uj for each i, it is tempting to hope that one may glue together the corresponding

affine schemes defined in the proposition above to get a scheme “M loc
1 ” with a morphism

M loc
1 →M loc which is a local model for A1. However this is not possible. Indeed, let {Uj} be

any open cover of M loc so that for each j, Q∗i |Uj is trivial. Suppose that M loc
1 is a connected

scheme which is a local model for A1 with a morphism M loc
1 →M loc such that for each j,

Uj ×M loc M loc
1
∼= SpecUj

(
OUj [u0, . . . , un−1]/(up−1

0 − q∗0, . . . , u
p−1
n−1 − q∗n−1)

)
.

Recall that the sections q∗0, . . . , q
∗
n−1 vanish only on the special fiber. Therefore, the restriction

of M loc
1 → M loc to the generic fiber is finite étale. However the generic fiber of M loc is the

Grassmannian Gr(n, r), and is therefore simply connected. It follows that M loc
1 → M loc is

an isomorphism on the generic fiber, which is a contradiction.
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Let U ⊂M loc be any open subset containing Sτ and consider the special fiber U ⊗Fp. From

the above proposition, U ⊗ Fp intersects every stratum. From Proposition 3.8, the action of

I on M loc⊗Fp gives a surjective map I × (U ⊗Fp)→M loc⊗Fp. Thus every closed point of

M loc has a Zariski neighborhood isomorphic to a neighborhood of some closed point of U .

Combining this with Proposition 4.2.7, assume in addition that U is small enough so that

each Q∗i is trivial.

Theorem 4.2.9. The scheme

U1 = SpecU
(
OU [u0, . . . , un−1]/

(
up−1

0 − q∗0, . . . , u
p−1
n−1 − q∗n−1

))
is étale locally isomorphic to A1. More precisely, for every closed point x of A0, there exists

an étale neighborhood V of x and an étale morphism V → U1.

By choosing U = U0 from Chapter 3, Lemma 3.12 states that up to a unit, q∗i = ai+1
n−r,r for

0 ≤ i ≤ n− 1. With this chosen presentation, the above theorem becomes the following.

Theorem 4.2.10. The scheme

U1 = Spec
(
B[u0, . . . , un−1]/

(
up−1

0 − a1
n−r,r, . . . , u

p−1
n−2 − an−1

n−r,r, u
p−1
n−1 − a0

n−r,r
))

is étale locally isomorphic to A1. More precisely, for every closed point x of A0, there exists

an étale neighborhood V of x and an étale morphism V → U1.
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4.3 Modification of U1

As in the previous section, fix an affine open subscheme U ⊂M loc where U = Spec(B) such

that U contains the “worst point” and for each i the line bundle Qi|U is trivial. We therefore

identify q∗i ∈ Γ(U,Qi|U) with a regular function on U . Assume we have a modification (i.e.

proper birational morphism) U ′ → U which is an isomorphism on the generic fiber and such

that U ′ is Zariski locally of the form

Spec(Zp[x1, . . . , xt]/(x1 · · ·xs − p)).

Such modifications are known to exist for the local models associated with GSp4 and GL4,

given by blowing up irreducible components of the special fiber [dJ1, Gör3]. We then get a

modification of U1 given by

U ′1 = U1 ×U U ′ → U1.

Proposition 4.3.1. Let x ∈ U ′1 be a closed point. Then there exists a Zariski open neigh-

borhood of x of the form

Spec(Zp[x1, . . . , xt, u0, . . . , un−1]/(x1 · · ·xs − p, up−1
0 − q∗0, . . . , u

p−1
n−1 − q∗n−1))

where each q∗i is, up to a unit, a monomial in x1, . . . , xs with each xj occurring with multi-

plicity at most 1.

Proof. Let x ∈ U ′1 map to y ∈ U ′ and let V ⊂ U ′ be an affine open neighborhood of y of the

form

V = Spec(C), C = Zp[x1, . . . , xt]/(x1 · · ·xs − p).
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By the preceding section, U1 is given by

Spec(B[u0, . . . , un−1]/(up−1
0 − q∗0, . . . , u

p−1
n−1 − q∗n−1)).

For each j, by abuse of notation write qj and q∗j for their images under the ring homomorphism

B → C. We then have an affine open chart of U ′1 given by

Spec(C[u0, . . . , un−1]/(up−1
0 − q∗0, . . . , u

p−1
n−1 − q∗n−1)).

It remains to show that the q∗j are, up to a unit, monomials in the variables x1, . . . , xs with

multiplicity at most 1. With qjq
∗
j = p we have that, as a divisor on V = Spec(C), Z(q∗j )

has support in the special fiber and hence must be a sum of the irreducible components of

V ⊗ Fp. These are given by Z(xi) for 1 ≤ i ≤ s. Suppose

Z(q∗j ) =
∑
i

niZ(xi).

Then Z(q∗j ) = Z(xn1
1 · · ·xnss ) and since V is normal we get q∗j = εjx

n1
1 · · ·xnss where εj is a

unit in C. As the special fiber of V is reduced and qiq
∗
i = 0, each ni is either 0 or 1 for all

i.

Remark 4.3.2. Such a modification U ′1 → U1 is not in general normal. An example of this

will be seen when we consider such a modification for the group GSp4 in the next chapter.
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Chapter 5

Resolution of A1 associated with GSp4

All schemes in this section are of finite type over Spec(Zp) and all subschemes are locally

closed, where p is an odd rational prime. We denote by A1 the integral model of the Shimura

variety associated with GSp4 equipped K(N) level structure, where N ≥ 3 and p - N . Will

construct and describe the resolution of singularities of A1 mentioned in the introduction.

To reach a resolution ofA1 we will start with the known semi-stable resolution Ã0 ofA0. This

is obtained by blowing up an irreducible component in the special fiber of A0 (see below).

By fibering Ã0 → A0 with A1 → A0, the resulting modification (i.e. proper birational

morphism) for A1 will take the form mentioned in Proposition 4.3.1; however it will fail to

be even normal. A sequence of p − 1 further blowups will produce the regular resolution

described in the introduction.

At each stage of the above process, we will first work on a local model and then carry this

over to the integral model. When performing a blowup of a local model, we require that the

subscheme being blown up corresponds to a subscheme of the integral model. In order to
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understand more of the global structure of the resolution, such as the number of irreducible

components and how they intersect, it is also necessary to track how certain subschemes

transform with each modification. We begin by stating definitions and lemmas that will be

used throughout the process.

5.1 Preliminaries

Notation 5.1.1. Let f : X → Y be a morphism of schemes and Z ⊂ Y a subscheme. Then

• Zred denotes the subscheme of Y given as a set by Z with reduced scheme structure;

and

• f−1(Z) denotes the scheme-theoretic inverse image under f .

In particular, f−1(Z)red denotes the reduced inverse image of Z in X.

Definition 5.1.2 ([EH]). Let X be a scheme, Z ⊂ X a subscheme. We say that Z is Cartier

at a closed point p in X if in an affine open neighborhood of p it is the zero locus of a single

regular function which is not a zero divisor. We say that Z is a Cartier subscheme of X if

Z is Cartier at all closed points of X.

Definition 5.1.3. Let ρ : X ′ → X be a modification.

• If ρ is given by the blowup of a closed subscheme Z of X, then Z is called a center of

ρ.

• The true center of ρ, denoted by Cρ, is defined to be the closed reduced subscheme of

X given set-theoretically by the complement of the maximal open subscheme where ρ
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is an isomorphism.

• The fundamental center of ρ, denoted by C fund
ρ , is defined to be the reduced subscheme

of Cρ whose support is given by the closed points with fiber of dimension at least one.

• The residual locus of ρ, denoted by Cres
ρ , is defined to be the reduced subscheme of Cρ

whose support is given by the closed points with fiber of dimension zero.

• The exceptional locus of ρ is ρ−1(Cρ)
red.

Remark 5.1.4. For a modification ρ with a center Z, we will often say “the center” when

there is a canonical choice of Z. The subscript ρ will be dropped from Cρ, C
fund
ρ , and Cres

ρ

when the morphism ρ is understood. By upper semi-continuity of the fiber, the fundamental

center C fund is a closed subscheme of C. By definition Cres = C \ C fund, an open subscheme

of C. Since all schemes are assumed to be of finite type over Spec(Zp), the fiber over a closed

point of Cres is a finite collection of closed points.

Definition 5.1.5. Let ρ : X ′ → X be a modification and W ⊂ X be a closed subscheme.

Set U = X \ Cρ. Then the strict transform of W with respect to ρ, denoted by STρ(W ) or

by ST(W ) if ρ is understood, is defined to be either

(i). the Zariski closure of ρ−1(W \ Cρ) inside of X ′ if W 6⊂ Cρ; or

(ii). ρ−1(W ) if W ⊂ Cρ.

Definition 5.1.6. Let M be an étale local model of X. We say that a subscheme Z of M

étale locally corresponds to a subscheme Z of X if there exists an étale cover V → X with

an étale morphism V → M such that the scheme-theoretic pullback of Z and Z to V are

equal as subschemes of V .

Remark 5.1.7. In the situation of the definition, we have in particular that Z is an étale
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local model of Z.

Lemma 5.1.8. Let M be an étale local model of X. Fix an étale cover V → X with an

étale morphism V → M . Suppose that with these fixed morphisms, for i = 1, 2 the reduced

subscheme Zi ⊂ X étale locally corresponds to the reduced subscheme Zi ⊂ M . Then the

following pairs étale locally correspond, where each is given the reduced scheme structure.

Z1 ∪ Z2 and Z1 ∪ Z2

Z1 ∩ Z2 and Z1 ∩ Z2

Z1 \ Z2 and Z1 \ Z2

Z1 and Z1

Here, Z1 denotes the Zariski closure inside of X, and similarly with Z1 inside of M .

Proof. Let VZi denote the pullback of Zi along the morphism V → X, VZi the pullback of

Zi along V → M , and similarly with VZ1∪Z2 and VZ1∪Z2 . Then VZ1∪Z2 = VZ1 ∪ VZ2 and

VZ1∪Z2 = VZ1 ∪ VZ2 as sets. With VZi = VZi for i = 1, 2 we have VZ1∪Z2 = VZ1∪Z2 as sets.

Now since Z1 ∪ Z2 is given the reduced scheme structure and V → X is étale, VZ1∪Z2 is

reduced. Likewise VZ1∪Z2 is reduced. Therefore they are equal as subschemes of V .

The statement for the next two pairs of subschemes follows in a similar manner. The state-

ment for Z1 and Z1 follows from the fact that étale morphisms are flat and hence open,

giving that the pullback of Z1 to V is the Zariski closure of the pullback of Z1 to V .

Lemma 5.1.9. Let X be a scheme with étale local model M , Z ⊂ X a closed subscheme

étale locally corresponding to the closed subscheme Z ⊂ M . Then BlM(Z) is an étale local

model of BlX(Z).
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Proof. Let ϕ : V → X be an étale cover of X with an étale morphism ψ : V →M such that

ZV = ϕ−1(Z) is equal to ZV = ψ−1(Z) as closed subschemes of V . Then since blowing up

commutes with flat (and hence, étale) base extension, we have that the diagrams

BlV (ZV ) BlX(Z)

V X

BlV (ZV ) BlM(Z)

V M

are cartesian. Of course, BlV (ZV ) = BlV (ZV ) and so BlV (ZV ) → BlX(Z) is an étale cover

with étale morphism BlV (ZV ) = BlV (ZV ) → BlM(Z). Therefore BlM(Z) is an étale local

model of BlX(Z).

Remark 5.1.10. In the proof of the above lemma, given an étale cover V → X and étale

morphism V →M there is constructed a canonical étale cover BlV (ZV )→ BlX(Z) and étale

morphism BlV (ZV )→ BlM(Z). This will be vital for applying Lemma 5.1.8 throughout the

construction.

Lemma 5.1.11. Let Z ⊂ X be a closed subscheme and ϕ : V → X be an étale morphism.

Then Z is Cartier at a closed point x ∈ X if and only if ϕ−1(Z) is Cartier at some closed

point of ϕ−1(x).

Proof. Let Z be Cartier at a closed point x, so in fact Z is Cartier on some open affine

neighborhood U of x. Since ϕ is étale, we have in particular that ϕ|ϕ−1(U) : ϕ−1(U) → U is

flat. It follows that ϕ−1(Z) is Cartier on ϕ−1(U), and in particular, at every closed point of

ϕ−1(x).

Conversely, suppose ϕ−1(Z) is Cartier at some closed point y of ϕ−1(x). Let Spec(A) ⊂ X be

an affine open neighborhood of x, and let Spec(B) ⊂ ϕ−1(S) be an affine open neighborhood
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of y where ϕ−1(Z) is Cartier. Let η : A → B be the ring homomorphism corresponding to

ϕ|Spec(B), I ⊂ A the ideal corresponding to Z, mx ⊂ A the maximal ideal corresponding to x,

and my ⊂ B the maximal ideal corresponding to y. With Â and B̂ denoting the completion

with respect to mx and my respectively, we have η̂ : Â→ B̂ is an isomorphism after possibly

some base extension. As η(I)B is principal and generated by a nonzero divisor, the same

is true for IÂ. By Nakayama’s lemma, it suffices to show that IAm ⊂ Am is principal and

generated by a nonzero divisor. This is the content of the following lemma.

Lemma 5.1.12. Let (R,m) be a Noetherian local ring and I ⊂ R an ideal. Denote by ˆ

the completion with respect to m. Suppose that Î = I ⊗R R̂ is principal and generated by a

nonzero divisor. Then I is principal and generated by a nonzero divisor as well.

Proof. Once it is shown that I = (t) for some t ∈ R, it follows that t is a nonzero divisor

from the faithfully flat map R→ R̂.

By Nakayama’s lemma, it suffices to show that I/mI is generated by a single element as an

R/m-module. In the following, all isomorphisms are as R/m-modules.

I/mI ∼= I ⊗R R/m

∼= I ⊗R R̂/m̂

∼= (I ⊗R R̂)⊗R̂ R̂/m̂

∼= Î/m̂Î

Now Î is generated by a single element as an R̂-module, and hence so is Î/m̂Î as an R̂/m̂-

module. But as R̂/m̂ = R/m, we have that Î/m̂Î, and hence I/mI, is generated by a single

element as an R/m-module.
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Lemma 5.1.13. Let Z ⊂ X be a closed subscheme, ϕ : V → X étale, ZV = ϕ−1(Z), and

ρX : BlX(Z)→ X (respectively ρV : BlV (ZV )→ V ) be the blowing up of Z in X (respectively

ZV in V ). Then

CρV = ϕ−1(CρX ), C fund
ρV

= ϕ−1(C fund
ρX

), and Cres
ρV

= ϕ−1(Cres
ρX

).

Proof. Note that since ϕ is étale, the pullback of a reduced subscheme is reduced. As such,

all subschemes of V in the above equalities have reduced scheme structure, and it suffices to

verify the equalities as sets.

That CρV = ϕ−1(CρX ) follows immediately from Lemma 5.1.11. The second equality C fund
ρV

=

ϕ−1(C fund
ρX

) is clear from the cartesian diagram

BlV (ZV ) BlX(Z)

V X

as mentioned in Lemma 5.1.9. Finally, Cres
ρV

= ϕ−1(Cres
ρX

) follows immediately from the

previous two statements.

Corollary 5.1.14. Let X be a scheme with étale local model M , Z ⊂ X a closed subscheme

étale locally corresponding to the closed subscheme Z ⊂ M . Then the true center, funda-

mental center, and residual locus of BlX(Z)→ X étale locally corresponds respectively to the

true center, fundamental center, and residual locus of BlM(Z)→M .

The next proposition says that strict transforms may be calculated étale locally.
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Proposition 5.1.15. Let Z ⊂ X be a closed subscheme, ϕ : V → X be étale, and ZV =

ϕ−1(Z) giving the following cartesian diagram.

BlV (ZV ) BlX(Z)

V X

ϕ′

ρV ρX
ϕ

Then

STρV (ϕ−1(Z)) = (ϕ′)−1(STρX (Z)).

Proof. In the case that Z is contained in the true center of ρX , the strict transform of Z

under ρX is defined to be ρ−1
X (Z). Then the claim follows immediately from the definitions

and Lemma 5.1.13.

So assume that Z is not contained in the true center CρX . Then

STρV (ϕ−1(Z)) = ρ−1
V (ϕ−1(Z) \ CρV )

= ρ−1
V (ϕ−1(Z \ CρX )) by Lemma 5.1.13

= (ϕ′)−1(ρ−1
X (Z \ CρX ))

= (ϕ′)−1
(
ρ−1
X (Z \ CρX )

)
since ϕ′ is flat and hence open

= (ϕ′)−1(STρX (Z)).

Lemma 5.1.16. Let M and M ′ be étale local models of X and X ′ respectively. Suppose there

is an étale cover ϕ : V → X with an étale morphism ψ : V → M along with morphisms ρX

and ρM giving the diagram
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X ′ V ′ M ′

X V M

ρX

ϕ′ ψ′

ρV ρM
ϕ ψ

where the left and right squares are cartesian.

(i). Let Z ⊂ X be a closed subscheme étale locally corresponding to a closed subscheme

Z ⊂M with respect to ϕ and ψ. Then ρ−1
X (Z) étale locally corresponds to ρ−1

M (Z).

(ii). Let v′ ∈ V ′ be a closed point, and set

x′ = ϕ′(v′), y′ = ψ′(v′), v = ρV (v′), x = ϕ(v), y = ψ(v).

Suppose further that k(x) = k(v). Then k(x′) = k(v′) and

ρ−1
X (x) ∼= ρ−1

M (y)×Spec(k(y)) Spec(k(x)).

Proof. (i) Pulling back ρ−1
X (Z) (respectively ρ−1

M (Z)) to V ′ is the same as pulling back ϕ−1(Z)

(respectively ψ−1(Z)) to V ′. With ϕ−1(Z) = ψ−1(Z) as subschemes of V , the claim follows.

(ii) With v′ ∈ V ′ a closed point mapping to x′ ∈ X ′ and v ∈ V , k(v′) is a quotient of

k(x′)⊗k(x) k(v) = k(x′). Thus k(x′) = k(v′).

For the second statement, note that there is an inclusion k(y) ⊂ k(v) = k(x) giving the
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morphism Spec(k(x))→ Spec(k(y)). Thus

ρ−1
X (x) = X ′ ×X Spec(k(x))

= (X ′ ×X V )×V Spec(k(x))

= (M ′ ×M V )×V Spec(k(x))

= M ′ ×M Spec(k(x))

= (M ′ ×M Spec(k(y)))×Spec(k(y)) Spec(k(x))

= ρ−1
M (y)×Spec(k(y)) Spec(k(x)).

Lemma 5.1.17. Let f : X → Y be a morphism of schemes. Suppose there exists a closed

point y ∈ Y such that f−1(y) is connected and the set-theoretic image of every connected

component of X under f contains y. Then X is connected.

Proof. Let X = X1

∐
X2 where Xi is open and closed in X for i = 1, 2. Then

f−1(y) = (f−1(y) ∩X1) ∪ (f−1(y) ∩X2)

with f−1(y) ∩ Xi being open and closed in f−1(y) for i = 1, 2. Since f−1(y) is connected,

without loss of generality suppose f−1(y) = f−1(y) ∩ X1. Then f−1(y) ∩ X2 = ∅. As the

image of each connected of X contains y, it must be that X2 is not a union of connected

components; i.e. X2 = ∅. Therefore X is connected.

94



5.1.1 Étale cover

In view of Proposition 5.1.8, it will be important that we work with a fixed étale cover of

the integral model and a fixed étale morphism to the local model in each step. It is also

important that we chose such a cover so that we are able to apply Proposition 5.1.16 part

(ii) as well as Proposition 4.2.6. We now describe the covers and morphisms to be used

throughout the construction.

Proposition 5.1.18. There exists an étale cover ϕ : V → A0 and an étale morphism

ψ : V → U0 such that for each closed point x ∈ A0, there exists a closed point v ∈ V with

x = ϕ(v) and k(x) = k(v).

Proof. This follows from modifying the argument given in [DP, Section 3]. Let us briefly

sketch how. Let x : Spec(k)→ A0 be a closed point with k = k(x) and

Auniv
0 → Auniv

1 → Auniv
2

be the chain of universal abelian schemes over A0. By [RZ, Proposition A.56], there exists

a Zariski open neighborhood U ⊂ A0 of x where H1
dR(Auniv

i ) is free for all i. This gives a

section U → Ã0 of Ã0 → A0 and hence, restricting if necessary, a morphism

ϕ : U → Ã0 → U0.

By taking V to be the Zariski open subset of U where ϕ is étale, the proposition will follow

from showing ϕ is étale at x.

Let y = ϕ(x), A∧x0 the completion of A0 at x, U
∧y
0 the completion of U0 at y, and U

∧y
0 ⊗ k
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be the extension of residue field of U
∧y
0 to k. It suffices to show that the induced map

A∧x0 → U
∧y
0 ⊗ k is an isomorphism.

Let B = k[ε]/(ε2) and

(A0 → A1 → A2, λ0, λn, η)

correspond to x : Spec(k) → A0. As in [dJ2, Section 2] the principal polarizations induce

the nondegenerate alternating pairings

eλj : D(Aj)× D(Aj)→ Okcrys for j = 0, n.

Let A′0 → · · · → A′n be a chain of abelian schemes over Spec(B) with A′i a deformation

of Ai for every i. Then as shown in [dJ2, Proposition 4.5], the polarization induced by x

lifts giving a deformation Spec(B)→ A∧0,x of x if and only if for j = 0, n the corresponding

filtration Fil1j ⊂ D(Aj)Spec(B) is totally isotropic with respect to the pairing eλj ,Spec(B). It

follows that the Spec(B)-valued points of A∧x0 and U
∧y
0 ⊗ k are the same and hence the map

A∧x0 → U
∧y
0 ⊗ k induces an isomorphism on Zariski tangent spaces.

Now the proof given in [DP, Theorem 3.3] below Lemma 3.5 shows that the map A∧x0 →

U
∧y
0 ⊗ k is indeed an isomorphism.

Remark 5.1.19. In the course of the proof of the above proposition, ϕ and ψ were chosen

so that we have the diagram

Ã0

V A0 U0

ΨΦ

ϕ
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where ψ is given by the composition V → Ã0 → U0. Thus Proposition 4.2.6 may be applied.

In fact, since Ψ is surjective [Gen, Proposition 1.3.2], we also choose V → U0 such that ψ is

surjective.

We fix such an étale cover ϕ : V → A0 and étale morphism ψ : V → U0 as in the proposition.

In Step I we construct

A′0 = BlA0(Z1) and U ′0 = BlU0(Z1)

taking the induced étale cover ϕ′ : V ′ → A′0 with étale morphism ψ′ : V ′ → U ′0 as described

in the proof of Proposition 5.6.1. In Step II, the schemes constructed are

A′′1 = A1 ×A0 A′0 U ′′1 = U1 ×U0 U
′
0.

The étale cover and morphism in Step II are given by the top horizontal arrows of the

diagram

A′′1 V ′′ U ′′1

A′0 V ′ U ′0

ρ′′A

ϕ′′ ψ′′

ρ′′V ρ′′U
ϕ′ ψ′

where both squares are cartesian. With each step after II being given by a blowup, we again

take the étale cover and étale morphism described in the proof of Proposition 5.6.1.

Repeated applications of Proposition 5.1.16 part (ii) give the following.

Proposition 5.1.20. Let 1 ≤ i ≤ p + 1 and x[i−1] ∈ A[i−1]
j be a closed point, where j = 0

if i = 1, 2 and j = 1 if i > 2. Then there exists a closed point v[i−1] ∈ V [i−1] with x[i−1] =
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ϕ[i−1](v[i−1]) such that k(x[i−1]) = k(v[i−1]), where k(·) denotes the residue field. Let v[i] ∈ V [i]

be any closed point such that ρ
[i]
V (v[i]) = v[i−1] and set y[i−1] = ψ(v[i−1]). Then

(ρ
[i]
A)−1(x[i−1]) ∼= (ρ

[i]
U )−1(y[i−1])×Spec(k(y[i−1])) Spec(k(x[i−1])).

In particular if the fiber (ρ
[i]
U )−1(y[i−1]) is geometrically connected, then (ρ

[i]
A)−1(x[i−1]) is con-

nected.

5.1.2 Notation

Before beginning the construction of the resolution, we explain some notation that will be

used throughout.

Roman letters such as Z, C, and E will be used to denote subschemes of the local models.

Calligraphic letters such as Z, C, and E denote subschemes of the integral models that étale

locally correspond to their Roman counterparts.

The construction will proceed in steps, where Step II is constructed by a fiber product and

every other step is constructed by a blowup. The schemes constructed in each additional

step will be decorated with an additional tick mark ′, and the superscript [i] denotes i tick

marks (e.g. A[0]
0 = A0, A[1]

0 = A′0). The integral models that will be constructed are

A[p+1]
1

ρ
[p+1]
A−−−→ A[p]

1

ρ
[p]
A−−→ . . .

ρ
[5]
A−−→ A[4]

1

ρ
[4]
A−−→ A′′′1

ρ′′′A−→ A′′1
ρ′′A−→ A′0

ρ′A−→ A0

with their corresponding étale local models

U
[p+1]
1

ρ
[p+1]
U−−−→ U

[p]
1

ρ
[p]
U−−→ . . .

ρ
[5]
U−−→ U

[4]
1

ρ
[4]
U−−→ U ′′′1

ρ
′′′
U−→ U ′′1

ρ
′′
U−→ U ′0

ρ
′
U−→ U0.
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Moreover, any subscheme will also be decorated by tick marks, e.g. Z ′′ signifies that Z ′′ ⊂ A′′1.

The subschemes that will be blown up in each step will arise from subschemes of A0. As

such, it will be necessary to observe how these subschemes of A0 transform (either their

strict transform or scheme-theoretic inverse image) in each step. To keep track of this, we

will use a subscript to denote which step the subscheme will be used in. So for example, C4

is a subscheme of A0. The C indicates it will transform to be the true center of some blowup,

and the 4 indicates that it will become the true center of Step 4. So in this example, we start

with the strict transform C ′4 = STρ′(C4) and then C ′′4 = (ρ′′)−1(C ′4)red. Finally C ′′′4 = STρ′′′(C ′′4 )

and, as we will show, this is the true center of the blowup A[4]
1 → A′′′1 in Step 4.

In general, C and C will denote true centers, E and E will denote exceptional loci, and Zij and

Zij will denote irreducible components. For x ∈ Perm(µ), Ax will denote the KR-stratum

corresponding to x and nx the number of connected components of Ax (see Chapter 3 and

the next subsection).

5.1.3 Connected components

Let (A0 → A1 → A2, λ0, λ2, η) correspond to a closed point Spec(k) → A0. The functor

A0 → An,1,N from Section 2.4 induces A0[N ]
∼−→ (Z/NZ)4. Combining this with the Weil

pairing induced by λ0, we get the homomorphism

(Z/NZ)4 × (Z/NZ)4 ∼−→ A[N ]× A[N ]→ µN(k)

where µN denotes the Nth roots of unity. Taking the highest exterior power gives Z/NZ ∼−→

µN which is equivalent to choosing a primitive Nth root of unity ζN . Therefore the structure
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morphism of A0 over Spec(Zp) factors as

A0 → Spec(Zp[ζN ])→ Spec(Zp).

The fibers over the closed points of Spec(Zp[ζN ]) are connected [Hai, Lemma 13.2].

Furthermore, in each connected component every KR-stratum is nonempty [Hai, Lemma

13.2] and every KR-stratum has the same number of connected components [GY1]. In

view of the this, for our construction of the resolution it suffices to treat a single connected

component ofA0 → Spec(Zp[ζN ]). By abuse of notation we will writeA0 for such a connected

component over Spec(Zp[ζN ]). Similarly, we write A1 for the union of connected components

lying over A0 with respect to the map π : A1 → A0.

5.1.4 KR Strata

The KR strata of A0 will play a fundamental role in what follows. Recall that the strata of

M loc ⊗ Fp correspond to the µ-permissible set of W aff.
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Figure 5.1: µ-permissible set for GSp4

The alcoves that make up the µ-permissible set are shown above in various shades of gray.

The collection {si} are the standard generators of the affine Weyl group of GSp4 (see Section

A.2). The dimension of each stratum can be read off the corresponding w ∈ W aff by `(w),

where `(·) is the length with respect to the Bruhat order (see Section A.2 and Proposition

A.3.9). The stratum Sτ corresponding to the base alcove τ is the unique KR-stratum of

dimension zero, which corresponds to the worst point of the local model. The irreducible

components are the extreme alcoves which are shaded medium gray. By [GY2, Theorem 1.5]

the extreme alcoves are connected, and as they are smooth, it follows that there are precisely
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four irreducible components of A0 ⊗ Fp. The supersingular locus is pictured in dark gray,

given by As0s2τ ∪ As1τ . Note that the supersingular locus is precisely the locus where the

zero section is an Oort-Tate generator of both of the corresponding group schemes.

5.2 Step 0: A0, U0, and A1

5.2.1 Description of the local model U0

A presentation of U0 is given as the closed subscheme of Spec(Zp[aijk; i = 0, . . . , 3, j, k = 1, 2])

cut out by the following two collections of equations. This first collection comes from the

equations of the local model associated with GL4.

ai21 = ai+1
12 a

i
11, ai22 = ai+1

11 + ai+1
12 a

i
12, i ∈ Z/4Z

(ai+2
11 + ai+2

12 a
i+1
12 )ai11 − p, i ∈ Z/4Z

ai+2
12 a

i+1
11 + (ai+2

11 + ai+2
12 a

i+1
12 )ai12, i ∈ Z/4Z

We also have to include those coming from the duality condition (see Proposition 3.10).

a0
22 = a0

11 a2
22 = a2

11
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a3
11 = a1

22 a3
12 = −a1

12 a3
21 = −a1

21 a3
22 = a1

11.

By setting

x = a1
22 y = a0

11 a = a0
12 b = a2

12 c = −a1
12

we arrive at the equations derived in [dJ2]:

U0 = Spec(B) where B = Zp[x, y, a, b, c]/(xy − p, ax+ by + abc).

With this presentation we have that, up to a unit:

q0 = y, q∗0 = x, q1 = y + ac, q∗1 = x+ bc.

Following [dJ2, Section 5], we label the four irreducible components of U0 ⊗ Fp as

Z00 = Z(y, a)

Z01 = Z(y, x+ bc)

Z10 = Z(x, y + ac)

Z11 = Z(x, b).

5.2.2 Description of the integral model A0

Still following [dJ2, Section 5], using the local model diagram
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Ã0

A0 U0

Φ Ψ

we define Zij = Φ(Ψ−1(Zij)). Since there are precisely four irreducible components of A0⊗Fp

[Yu], the Zij make up all of the irreducible components of A0 ⊗ Fp.

Proposition 5.2.1. Zij étale locally corresponds to Zij. Moreover this holds for arbitrary

unions, intersections, and complements of the Zij, e.g. Z11 ∪ (Z01 ∩Z10) étale locally corre-

sponds to Z11 ∪ (Z01 ∩ Z10), where each is given the reduced scheme structure.

Proof. Let x ∈ A0 be a closed point of Zij. With A0 ← V → U0 our chosen étale cover

and étale morphism, by Remark 5.1.19 we may apply Proposition 4.2.6. Thus we have that

pullback of q0 and y to V induce the same divisor on V , and likewise for q∗0, q1, and q∗1 with

x, y + ac, x + bc respectively. Now each Zij can be described as the Zariski closure of the

locus given by certain conditions on the functions qi and q∗i .

Irreducible component Conditions
Z00 q0 = 0, q∗0 6= 0, q1 = 0, q∗1 6= 0
Z01 q0 = 0, q∗0 6= 0, q1 6= 0, q∗1 = 0
Z10 q0 6= 0, q∗0 = 0, q1 = 0, q∗1 6= 0
Z11 q0 6= 0, q∗0 = 0, q1 6= 0, q∗1 = 0

Table 5.1: Irreducible components of A0

Thus we have that the pullback of Zij and Zij to V define the same closed subscheme and

hence étale locally correspond. The claim for arbitrary unions, intersections, and comple-

ments follows by applying Lemma 5.1.8.
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We now define subschemes that will be used in the steps throughout the construction of the

resolution.

Local model U0 Integral model A0

Z1 = Z(x, b) Z1 = Z11

C1 = Z(x, y, a, b) C1 = Z00 ∩ Z01 ∩ Z10 ∩ Z11

Z3 = Z(x, bc) Z3 = Z11 ∪ (Z01 ∩ Z10)
C3 = Z(x, bc) C3 = Z11 ∪ (Z01 ∩ Z10)
Z4 = Z(x, b) Z4 = Z11

C4 = Z(x, y, b, c) C4 = (Z01 ∩ Z10 ∩ Z11) \ Z00

Table 5.2: Subschemes of A0

Proposition 5.2.1 shows that the subschemes on the left étale locally correspond to those on

the right.

Proposition 5.2.2. Writing each subscheme below as a disjoint union of KR-strata, we

have the following.

Z11 = As2s1s2τ = Aτ ∪ As1τ ∪ As2τ ∪ As2s1τ ∪ As2s1s2τ
Z01 ∩ Z10 = As0s2τ ∪ As1τ = Aτ ∪ As0τ ∪ As1τ ∪ As2τ ∪ As0s2τ

Z00 ∩ Z01 ∩ Z10 ∩ Z11 = As1τ = Aτ ∪ As1τ
(Z01 ∩ Z10 ∩ Z11) \ Z00 = As2τ = Aτ ∪ As2τ

Proof. With our chosen presentation, the locus on U0 corresponding to the supersingular

locus of A1 is Z01 ∩ Z10. By Proposition 5.2.1 it follows that Z01 ∩ Z10 is the supersingular

locus. The supersingular locus is given by As0s2τ ∪ As1τ [GY1, Section 2] and the claim

follows.

To show Z11 = As2s1s2τ we choose the point x = a = b = c = 0 and y = 1 of U0 which lies

solely on the irreducible component Z11. Using the equations in Section 5.2.1 and Chapter
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3, this point corresponds to the following flag.

F0 =



1 0

0 1

1 0

0 1


, F1 =



0 0

1 0

0 1

1 0


, F2 =



0 0

0 0

1 0

0 1


, F3 =



0 1

0 0

0 1

1 0


.

In the notation of Proposition A.3.10 this gives the alcove



1

π 1

1 π

1


,



1

1

1

1 π


,



1

1

1

1


,



π−1

1

π−1 1

1


where we omit any entry which is zero. Our chosen point lies in As2s1s2τ if and only if there

is an element b in the Iwahori subgroup such that b · s2s1s2τ gives the same alcove as above.

With s2s1s2τ given by the alcove



π

π

1

1


,



1

π

1

1


,



1

1

1

1


,



1

1

π−1

1


it is easy to check that

b =



1 1

1 1

1

1


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suffices. Therefore Z11 = As2s1s2τ . Since Z00 ∩ Z11 is the union of a two dimensional and

one dimensional scheme, we see from the µ-permissible set (Section 5.1.4) it must be that

Z00 = As0s1s0τ . That Z00 ∩ Z01 ∩ Z10 ∩ Z11 = Aτ ∪ As1τ again follows from the diagram in

Section 5.1.4. Finally

Z01 ∩ Z10 ∩ Z11 = Aτ ∪ As1τ ∪ As2τ

and thus we have

(Z01 ∩ Z10 ∩ Z11) \ Z00 = As2τ .

Proposition 5.2.3. The number of connected and irreducible components of the subschemes

of A0 are as follows.

Subscheme of A0 # of connected components # irreducible components
Z1 1 1
C1 ns1τ ns1τ
Z3 1 1 + ns0s2τ
C3 1 1 + ns0s2τ
Z4 1 1
C4 ns2τ ns2τ

Table 5.3: Number of connected and irreducible components of subschemes of A0

Proof. Z1 = Z4 = Z11: This is an irreducible component.

Z3 = C3 = Z11 ∪ (Z01 ∩ Z10): To see this subscheme is connected, it suffices to show that

each connected component of Z01 ∩Z10 meets Z11. Let W be such a connected component.

With Z01 ∩ Z10 being a union of KR-strata, by possibly shrinking W we may assume W is

a connected component of some KR-stratum. By [GY2, Theorem 6.4] W ∩ Aτ 6= ∅, where

W is the Zariski closure of W inside of A0. As Aτ ⊂ Z11, the claim follows.
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To find the number of irreducible components, note that Z11∪ (Z01∩Z10) is a union of three

and two dimensional irreducible components: the unique three dimensional component is

Z11 and the two dimensional components are given by the irreducible components of

(Z01 ∩ Z10) \ Z11 = As0s2τ .

As (Z01 ∩ Z10) \ Z11 corresponds to the ideal (x, y, a, b) of B, we have that Z01 ∩ Z10 \ Z11

is smooth. Thus as Z01 ∩ Z10 \ Z11 has ns0s2τ connected components and each component is

irreducible, we have a total of 1 + ns0s2τ irreducible components of Z3 = C3.

C1 = Z00 ∩ Z01 ∩ Z10 ∩ Z11: From Proposition 5.2.2, this subscheme is given by As1τ . Since

C1 and hence As1τ is smooth, each connected component of As1τ is irreducible and As1τ has

the same number of connected components as As1τ .

C4: This follows by a similar argument to that given for the statement about C1.

5.2.3 Description of A1

As remarked in section 5.1.4, A0 ⊗ Fp has four irreducible components. Using the notation

of [dJ2, Section 5], we denote these irreducible components by Z00, Z01, Z10, and Z11. To

determine the irreducible components of A1 ⊗ Fp, we will need the following.

Lemma 5.2.4. The irreducible components of U1 ⊗ Fp are normal.

Proof. The four irreducible components of U1 ⊗ Fp correspond to the following ideals in
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Zp[x, y, a, b, c, u, v]/(xy − p, ax+ by + abc, up−1 − x, vp−1 − x− bc).

(u, v, b), (u, y + ac), (y, v), (y, a)

The first irreducible component is smooth, while the other three are the spectra of

Fp[y, a, b, c, v]/(vp−1−bc), Fp[a, b, c, u, v]/(up−1−bc), and Fp[b, c, u, v]/(vp−1−up−1−bc).

Note that each is a complete intersection and hence Cohen-Macaulay. The Jacobian Criterion

shows that the singular-locus has codimension greater than one. By Serre’s Criterion [Mat,

Theorem 23.8], each is normal.

Proposition 5.2.5. A1 ⊗ Fp is connected, equidimensional of dimension three, and the

irreducible components are normal. Furthermore A1 ⊗ Fp and has precisely four irreducible

components and these irreducible components are given by π−1(Zij)red where π : A1 → A0.

Proof. That A1 ⊗ Fp is equidimensional of dimension three is immediate from inspection of

the local model U1⊗Fp. As Aτ is in the supersingular locus, the fiber above a closed point of

Aτ ⊂ A0 with respect to π consists of a single closed point. Since π is finite and surjective,

each irreducible component of A1 ⊗ Fp maps surjectively onto an irreducible component of

A0 ⊗ Fp. Finally as every irreducible component of A0 ⊗ Fp contains Aτ , we conclude that

A1 ⊗ Fp is connected by Lemma 5.1.17.

Let Z ′ij denote a fixed irreducible component of A1 ⊗ Fp which maps onto Zij and suppose

there is a fifth irreducible component Z ′ of A1⊗Fp. By [GY2, Theorem 6.4], each irreducible

component of A0⊗Fp contains Aτ , and thus Z ′00,Z ′01,Z ′10,Z ′11, and Z ′ simultaneously inter-

sect at some closed point x of A1 ⊗ Fp. We now show that this is not possible.
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Let A1 ⊗ Fp
ϕ←− V

ψ−→ U1 ⊗ Fp be an étale cover of A1 ⊗ Fp with étale morphism to U1 ⊗ Fp.

Choose a closed point p ∈ V such that ϕ(p) = x. Set y = ψ(p). Since the irreducible

components of U1⊗Fp are integral, normal, and excellent, the completion of any irreducible

component at y is also an integral domain and normal. Therefore, there are at most four

components of V passing through p. Thus the number of irreducible components passing

through x ∈ A1 ⊗ Fp is at most four, giving the contradiction that we are seeking.

5.3 Step I: Semi-stable resolution of A0

We define the integral and local models

A′0 = BlA0(Z1) and U ′0 = BlU0(Z1).

5.3.1 Description of the local model U ′0

With I the ideal sheaf on Spec(B) corresponding to the ideal (x, b) ⊂ B, the blowup is given

by

U ′0 = ProjU0

(
O ⊕ I ⊕ I2 ⊕ . . .

)
.

Note that we have the morphism

T = ProjU0

(
B[x̃, b̃]/(ax̃+ b̃y + ab̃c, xb̃− x̃b)

)
→ U ′0
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sending x̃ and b̃ respectively to x and b in grade one. The two standard affine open charts

of T are given by

x̃ 6= 0 : T1 = Spec

(
Zp

[
x, y, a, c,

b̃

x̃

]
/

(
xy − p, a+

b̃

x̃
y + a

b̃

x̃
c

))

and

b̃ 6= 0 : T2 = Spec

(
Zp
[
a, b, c,

x̃

b̃

]
/

(
x̃

b̃
b(−a)

(
x̃

b̃
+ c

)
− p
))

.

T1 is covered by the two open subschemes defined by the conditions b̃ 6= 0 and 1 + b̃c 6= 0.

Noting that the condition b̃ 6= 0 makes the first of these open subschemes a subscheme of

T2, we merely write down the presentation of the second, given by 1 + b̃c 6= 0:

T ′1 = Spec
(
Zp[x, y, c, b̃, (1 + b̃c)−1]/(xy − p)

)
.

From the affine open cover T ′1 ∪ T2, we see that T is integral. As the blowup U ′0 may be,

a priori, cut out by more equations, we at least have a closed immersion U ′0 → T . This

closed immersion is an isomorphism on the generic fiber and with T integral, it must be an

isomorphism.

The morphism U ′0 → U0 is given as homomorphisms of coordinate rings, sending the ordered

set of global sections to the ordered set of global sections, as

T ′1 : {x, y, a, b, c} → {x̃b,−a(x̃+ c), a, b, c}

T2 : {x, y, a, b, c} →
{
x, y, b̃y(1 + b̃c)−1, xb̃, c

}
.

The true center of U ′0 → U0 is the closed subscheme where the ideal sheaf induced by the ideal
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(x, b) is not Cartier. From the relation ax+ by + abc = 0, we see that C1 must be contained

in the closed subscheme Z(x, y, a, b). From the presentation of the morphism above, we see

that the fiber over any closed point of Z(x, y, a, b) is the affine line given by the coordinate

x̃. Therefore, C1 = Z(x, y, a, b) and is of dimension one, the true center of ρ′U is equal to

the fundamental center, and the exceptional locus of ρ′U is two dimensional. The affine cover

T ′1∪T2 also shows that U ′0⊗Fp is equidimensional of dimension three. The strict transforms

of the closed subschemes given in Step 0 are as follows.

Z3 = C3 = Z(x, bc): The complement Z3 \ C1 a union of three subschemes defined by the

following conditions.

x = 0, b = 0, a 6= 0

x = 0, b = 0, y 6= 0

x = 0, b 6= 0, a 6= 0, c = 0

Now consider the inverse image of Z3 \ C1 under the morphisms ρ′U : U ′0 → U0. The Zariski

closure of the inverse image of the first two subschemes give the same subscheme, namely the

subscheme corresponding to the ideals (x̃, b) and (x, b) in the coordinate rings of T ′1 and T2

respectively. Likewise the third corresponds to (x, y, c, x̃) and (1) in T ′1 and T2 respectively.

Thus Z ′3 = C ′3 is given by Z(x, b) ∪ Z(x, y, c, x̃).

Z4 = Z(x, b): This must necessarily be the irreducible component lying above Z(x, b), and

it is also given by Z(x, b).

C4 = Z(x, y, b, c): The complement Z3 \ C1 given by x = y = b = c = 0 and a 6= 0. The

Zariski closure of the inverse image is Z(x, y, b, c).

In summary, we have:

112



Z ′3 = Z(x, b) ∪ Z(x, y, c, x̃)

C ′3 = Z(x, b) ∪ Z(x, y, c, x̃)

Z ′4 = Z(x, b)

C ′4 = Z(x, y, b, c).

5.3.2 Description of the integral model A′0

With U ′0 an étale local model of A′0, Lemma 5.1.13 and Proposition 5.2.1 give that the true

center ofA′0 → A0 is C1. By the remarks in the previous section, A′0⊗Fp is equidimensional of

dimension three. From Lemma 5.1.16, the exceptional locus of A′0 → A0 is two dimensional.

Thus no irreducible component of A′0 ⊗ Fp is contained in the exceptional locus. Therefore

A′0 ⊗ Fp has four irreducible components, each being given by the strict transform of an

irreducible component of A0 ⊗ Fp. We denote these strict transforms by Z ′00, Z ′01, Z ′10, and

Z ′11.

Proposition 5.3.1. The number of connected and irreducible components of the subschemes

of A′0 are as follows.

Closed subscheme of A′0 # connected components # irreducible components
Z ′3 = ST(Z3) 1 ns0s2τ + 1
C ′3 = ST(C3) 1 ns0s2τ + 1
Z ′4 = ST(Z4) 1 1
C ′4 = ST(C4) ns2τ ns2τ

Table 5.4: Number of connected and irreducible components of subschemes of A′0

113



Proof. Z ′3 = C ′3: We start by showing Z ′3 is connected. From Proposition 5.2.3, Z3 =

Z11 ∪ (Z01 ∩ Z10) is a union of three and two dimensional components intersecting in a one

dimensional closed subscheme. We claim that this one dimensional subscheme intersects

with the true center C1 = Z00 ∩ Z01 ∩ Z10 ∩ Z11 in a zero dimensional subscheme. This can

easily be seen by writing each as a union of KR-strata. Indeed, set W = Z01 ∩ Z10 \ Z11

which is equidimensional of dimension two. Then Z3 = Z11∪W and from Proposition 5.2.2,

each is given as a union of KR-strata as follows.

Z11 = Aτ ∪ As1τ ∪ As2τ ∪ As2s1τ ∪ As2s1s2τ

W = Aτ ∪ As0τ ∪ As2τ ∪ As0s2τ

C1 = Aτ ∪ As1τ

Therefore the one dimensional subscheme Z11∩W intersects with C1 inAτ , a zero dimensional

subscheme as claimed. With Z11 and W smooth it follows immediately that Z3 \ C1 is

connected, and thus so is the strict transform of Z3. Therefore Z ′3 = C ′3 is connected.

Now we show that Z ′3 = C ′3 has ns0s2 + 1 irreducible components. From the proof of Proposi-

tion 5.2.3 we have Z3 is a union ns0s2 + 1 irreducible components, each of dimension two or

three. Since the true center of A′0 → A0 is of dimension one, each irreducible component is

not contained in the true center. Hence the strict transform of each irreducible component

is irreducible as well and the claim follows.

Z ′4: Note that Z4 is connected, smooth, and three dimensional giving that Z4\C1 is connected

as well. It follows immediately that Z ′4 is connected and irreducible.

C ′4: As C4 is smooth, each irreducible component is a connected component. Also, C4 in-

tersects the true center of A′0 → A0 in a zero-dimensional subscheme and therefore strict
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transform of each irreducible component of C4 is irreducible.

5.4 Step II: Fiber with A1

We define the integral and local models

A′′1 = A1 ×A0 A′0 and U ′′1 = U1 ×U0 U
′
0.

5.4.1 Description of the local model U ′′1

As in Theorem 4.2.10, U1 is given in the chosen presentation by adjoining the variables u

and v along with the relations up−1 − x and vp−1 − (x+ bc) to U0. We thus have

U ′′1 = ProjU0

(
B[u, v][x̃, b̃]/(ax̃+ b̃y + ab̃c, xb̃− x̃b, up−1 − x, vp−1 − (x+ bc)

)

where B[u, v] is of grade 0 and x̃ and b̃ are of grade 1. We define Z ′′ij to be the reduced inverse

image of Z ′ij under the morphism ρ′′U : U ′′1 → U ′0. These are the irreducible components of
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U ′′1 . The reduced inverse images under U ′′1 → U ′0 are given by

Z ′′00 = Z(y, a)

Z ′′01 = Z(y, v)

Z ′′10 = Z(u, y + ac)

Z ′′11 = Z(u, v, b)

Z ′′3 = Z(u, v, b) ∪ Z(u, v, y, c, x̃)

C ′′3 = Z(u, v, b) ∪ Z(u, v, y, c, x̃)

Z ′′4 = Z(u, v, b)

C ′′4 = Z(u, v, y, b, c, x̃).

Note that Z(u, v, b) ∪ Z(u, v, y, c, x̃) = Z(u, v) as the relation vp−1 − up−1 − bc implies that

if u and v are zero, then bc = 0 giving the two components.

5.4.2 Description of the integral model A′′1

With A′′1 = A1 ×A0 A′0, the projection A′′1 → A1 is proper and birational and so it is a

modification. Also note that the projection ρ′′ : A′′1 → A′0 is finite and flat. As claimed in

the introduction, we have the following.

Proposition 5.4.1. A′′1 is not normal.

Proof. Since ψ : V → U0 and hence ψ′′ : V ′′ → U ′′1 is surjective, it suffices to show that

U ′′1 is not normal. Consider the irreducible component Z ′′11 of U ′′1 ⊗ Fp. In the local ring of

the generic point of this component, the maximal ideal is given by (u, v). This ideal is not
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principal since u /∈ (v) and v /∈ (u). Therefore U ′′1 is not normal by Serre’s Criterion [Mat,

Theorem 23.8].

Proposition 5.4.2. Set Z ′′ij = (ρ′′)−1(Z ′ij)red. Each Z ′′ij is an irreducible component of

A′′1 ⊗ Fp, and these give all the irreducible components of A′′1 ⊗ Fp.

Proof. From Proposition 5.2.5 we have thatWij := π−1(Zij)red is irreducible, where π : A1 →

A0. Note that the morphism A′′1 → A1 is a modification with true center of dimension at

most one. As such, Wij is not contained in the true center and therefore its strict transform

W ′′ij with respect to A′′1 → A1 is irreducible.

Set

U = A0 \ C1, U ′ = (ρ′A)−1(U), and U ′′ = (ρ′′A)−1(U ′).

Then Z ′′ij ∩ U ′′ = W ′′ij ∩ U ′′ because both can be described as the reduced inverse image of

Zij ∩ (A0 \ C1) under the two paths in the following cartesian diagram.

A′′1 A′0

A1 A0
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As sets we have

Z ′′ij = (ρ′′A)−1(Z ′ij)

= (ρ′′A)−1(Z ′ij ∩ U ′) since Z ′ij is irreducible

= (ρ′′A)−1(Z ′ij ∩ U ′) since ρ′′A is flat

= (ρ′′A)−1(Z ′ij) ∩ (ρ′′A)−1(U ′)

= Z ′′ij ∩ U ′′.

It thus suffices to show that Z ′′ij ∩ U ′′ is irreducible. But this is immediate since Z ′′ij ∩ U ′′ =

W ′′ij ∩ U ′′ with W ′′ij irreducible.

That the collection
{
Z ′′ij
}

gives all the irreducible components is immediate.

Note that by Lemma 5.1.16 part (i) we have that Z ′′ij étale locally corresponds to Z ′′ij.

Proposition 5.4.3. The number of connected and irreducible components of the subschemes

of A′′1 are as follows.

Closed subscheme of A′′1 # connected components # irreducible components
Z ′′3 = (ρ′′A)−1(Z ′3)red 1 ns0s2τ + 1
C ′′3 = (ρ′′A)−1(C ′3)red 1 ns0s2τ + 1
Z ′′4 = (ρ′′A)−1(Z ′4)red 1 1
C ′′4 = (ρ′′A)−1(C ′4)red ns2τ ns2τ

Table 5.5: Number of connected and irreducible components of subschemes of A′′1

Proof. Z ′′3 = C ′′3 : Let W ′ ⊂ Z ′3 be an irreducible component. We claim that (ρ′′A)−1(W ′) is

irreducible. As shown in the proof of Proposition 5.3.1, W ′ arises as the strict transform of

an irreducible component of Z3. First consider the case where W ′ is the strict transform of

Z11. Then W ′ = Z ′11 and Proposition 5.4.2 says that (ρ′′A)−1(Z ′11) is irreducible.
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So assume now thatW ′ is the strict transform of some two dimensional irreducible component

of Z3. From the proof of Proposition 5.2.3 it must be that this two dimensional component

of Z3 is contained in Z01 ∩ Z10 and hence ρ′A(W ′) ⊂ Z01 ∩ Z10.

For convenience, we remind the reader of the following cartesian diagram for the next argu-

ment.

A′′1 A′0

A1 A0

ρ′′A

ρ′A
π

Let x′ ∈ W ′ be a closed point and so x = ρ′A(x′) ∈ Z01∩Z10. Then as x is in the supersingular

locus, π−1(x) consists of a single closed point. Therefore the fiber (ρ′′A)−1(x′) also consists of

a single closed point. With ρ′′ finite and flat, it must be that (ρ′′A)−1(W ′) is irreducible.

Thus we conclude that each irreducible component of Z ′′3 = C ′′3 arises as the reduced inverse

image of an irreducible component of Z ′3, and therefore the number of irreducible components

of Z ′′3 is ns0s2τ + 1. That Z ′′3 = C ′′3 is connected follows from the fact that the fiber above any

closed point of a two dimension component of Z ′11 with respect to the morphism ρ′′A consists

of a single closed point.

C ′′4 : Let W ′ be a connected component of C ′4. From the proof of Proposition 5.2.3, W ′ is

irreducible and arises as the strict transform of some irreducible component of C4 ⊂ A0.

Let x′ ∈ W ′ be a closed point. Then x = ρ′A(x′) ∈ C4 is contained in the supersingular

locus of A0. As such, π−1(x) consists of a single closed point. Thus it follows that the fiber

(ρ′′A)−1(W ′) consists of a single closed point as well. Hence the reduced inverse image of

W ′ under A′′1 → A′0 is connected and irreducible. Therefore, C ′′4 has the same number of

connected and irreducible components as C ′4, namely ns2τ .
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5.5 Step III: Blowup of Z ′′3 .

A′′′1 = BlA′′1 (Z ′′3 ) and U ′′′1 = BlU ′′1 (Z ′′3 )

5.5.1 Description of the local model U ′′′1

In each affine chart of U ′′1 , the subscheme Z ′′3 corresponds to the ideal (u, v). We start by

describing a scheme X which is given by, a priori, a subset of the equations defining U ′′′1 .

Once we show that X is integral, from an argument similar to that given in Step I it will

follow that X = U ′′′1 . A presentation of X is given by the closed subscheme of ProjU ′′1 (O[ũ, ṽ])

where u and v are of grade 1 cut out by the following equations.

uṽ − ũv, (x̃+ b̃c)ũp−1 − x̃ṽp−1, yũp−1 − (y + ac)ṽp−1

Using these equation along with those in the presentation for U ′′1 , we have that X is covered

by four standard affine charts.

X00 x̃ = 1 ũ = 1 Zp[y, a, c, u, b̃, ṽ]/(up−1y − p, ṽp−1 − (1 + b̃c), a(1 + b̃c) + b̃y)

X01 x̃ = 1 ṽ = 1 Zp[y, c, v, b̃, ũ]/(vp−1ũp−1y − p, ũp−1(1 + b̃c)− 1)

X10 b̃ = 1 ũ = 1 Zp[a, b, u, x̃, ṽ]/(bx̃2ṽp−1(−a)− p, up−1 − bx̃)

X11 b̃ = 1 ṽ = 1 Zp[a, b, s, v, ũ]/(bs2ũp−1(−a)− p, vp−1 − bs).

Note: The last chart uses a change of coordinates s = x̃+ c.

We can cover X00 with two open subschemes each respectively defined by the condition b̃

and 1 + b̃c is invertible. These open subschemes are
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X ′00 b̃ 6= 0 Zp[a, u, b̃±1, ṽ]/(up−1(−a)ṽp−1b̃−1 − p)

X ′′00 1 + b̃c 6= 0 Zp[y, c, u, b̃, ṽ, (1 + b̃c)−1]/(up−1y − p, ṽp−1 − (1 + b̃c)).

Since X ′00 ⊂ X10 as an open subscheme, X is covered by X ′′00, X01, X10, and X11. Thus we

see that X is integral and so X ∼= U ′′′1 .

Proposition 5.5.1. X is normal.

Proof. The statement is clear for the charts X ′′00 and X01. Focusing now on the chart X10,

note first that it is a complete intersection and hence Cohen-Macaulay. With the generic

fiber smooth, by Serre’s Criterion it suffices to check that the generic points of the irreducible

components of the special fiber are regular, i.e. their maximal ideals are generated by a single

element. Their maximal ideals, written in the corresponding local ring, are given by

(b, u) = (u), (x̃, u) = (u), (ṽ), (a).

The normality of the chart X11 follows from the argument just given by a change of variables.

Therefore X is normal.

As remarked in the previous section, Z(u, v) = Z(u, v, b) ∪ Z(u, v, y, c, x̃) inside of U ′′1 . The

true center is a closed subscheme of Z(u, v), and we see from the above charts that the fiber

above a closed point of Z(u, v, y, c, x̃) consists of the projective line given by [ũ : ṽ] which

lies inside Z10 ∪Z11. Also, the fiber over a closed point of Z(u, v, b) outside of Z(u, v, y, c, x̃)

consists of a p − 1 closed points. Therefore the true center is C ′′3 , the fundamental center

is Z(u, v, x̃, y, c) = Z ′′01 ∩ Z ′′10, and the residual locus is Z ′′11 \ (Z ′′01 ∩ Z ′′10). Moreover the

fundamental center is two dimensional and smooth, the residual locus is three dimensional,

and the exceptional locus is equidimensional of dimension three. Taking the strict transform
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under ρ′′′U we have

Z ′′′00 = Z(y, a)

Z ′′′01 = Z(y, v, x̃+ b̃c, ṽ)

Z ′′′10 = Z(u, y + ac, x̃, ũ)

Z ′′′11 = Z(u, v, b)

Z ′′′4 = Z(u, v, b)

C ′′′4 = Z(u, v, y, b, c, x̃).

We note that C ′′4 is smooth of dimension two and C ′′4 intersects with the fundamental center

of U ′′′1 → U ′′1 in a smooth one dimensional subscheme.

5.5.2 Description of the integral model A′′′1

A′′′1 has U ′′′1 as an étale local model and it is immediate that A′′′1 is normal. As the true

center of U ′′′1 → U ′′1 is C ′′3 , we have that the true center of A′′′1 → A′′1 is C ′′3 .

Proposition 5.5.2. A′′′1 ⊗ Fp has precisely 4 + ns0s2τ irreducible components. Three are

given by the strict transforms of Z ′′00, Z ′′01, and Z ′′10. The other 1+ns0s2τ are contained in the

exceptional locus: one lying above Z ′′11 and one lying above each two dimensional irreducible

component of Z ′′3 .

Proof. That the strict transforms of Z ′′00, Z ′′01, and Z ′′10 are irreducible follows immediately

from the fact that they are not contained in the true center C ′′3 .

From Section 5.5.1, the exceptional locus E ′′′ of A′′′1 → A′′1 is equidimensional of dimension
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three. As the exceptional locus maps surjectively onto the true center C ′′3 and C ′′3 has 1+ns0s2τ

irreducible components by Proposition 5.4.3, we conclude that E ′′′ must consist of at least

1 + ns0s2τ irreducible components. Denote these irreducible components by {Wi}. Without

loss of generality assume that ρ′′′A(W ′′′1 ) ⊂ Z ′′11 and ρ′′′A(W ′′′2 ), . . . , ρ′′′A(W ′′′1+ns0s2τ
) are each

contained in a unique two dimensional irreducible component of Z ′′3 .

We claim that if ρ′′′A(W ′′′i ) ⊂ Z ′′11, then ρ′′′A(W ′′′i ) = Z ′′11. Indeed, since ρ′′′A is proper it suffices

to show that ρ′′′A(W ′′′i ) is three dimensional. As the fiber above any closed point of U ′′1 with

respect to ρ′′′U is at most one dimensional, we conclude that the same is true for ρ′′′A and

thus ρ′′′A(W ′′′i ) is at least two dimensional. So by way of contradiction, suppose ρ′′′A(W ′′′i ) has

dimension exactly two. From Step II we have that Z11 = Z(u, v, b) and from the previous

section C ′′fund,3 = Z(u, v, x̃, y, c). Thus they intersect in a smooth one dimensional scheme.

It follows that the intersection of Z ′′11 with any two dimensional component of C ′′fund,3 is

one dimensional. As such, there exists a closed point x′′ ∈ ρ′′′A(W ′′′i ) lying solely on the

component Z ′′11 such that the fiber above x′′ is one dimensional. Let y′′ be a closed point of

U ′′1 corresponding to x′′. Then it must be that y′′ lies solely on the irreducible component

Z ′′11. Since no closed point of C ′′res,3 = Z ′′11 \(Z ′′01∩Z ′′10) has fiber of dimension one with respect

to the morphism U ′′′1 → U ′′1 , using Proposition 5.1.20 we arrive at a contradiction. Therefore,

for any i with W ′′′i → Z ′′11 it must be that the image is three dimensional as claimed.

Now consider a closed point x′′ ∈ C ′′3 \ Z ′′11. From Proposition 5.1.20 and U ′′′1 → U ′′1 we see

that the fiber above x′′ is connected and smooth. It follows from Lemma 5.1.17 that for each

irreducible component of C ′′3 \ Z ′′11, there is a single irreducible component of the exceptional

locus of ρ′′′ mapping surjectively onto it. Recall that we have labeled these components

W ′′′2 , . . . ,W ′′′1+ns0s2τ
.

We claim that (ρ′′′)−1(Z ′′11)red is irreducible. Indeed, since the reduced inverse image of
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Z ′′11 under the morphism U ′′′1 → U ′′1 is smooth and equidimensional of dimension three, so is

(ρ′′′)−1(Z ′′11)red. This implies that (ρ′′′)−1(Z ′′11)red is a disjoint union of irreducible components

of A′′′1 ⊗ Fp. As each of these irreducible components maps into Z ′′11, they must indeed map

surjectively onto Z ′′11. It follows that the image of each irreducible component contains a

closed point x′′ ∈ Z ′′11 ∩ C ′′3 \ Z ′′11. From Proposition 5.1.20 we have the fiber above x′′ is

connected, and hence (ρ′′′)−1(Z ′′11)red is connected. The claim follows immediately.

Now suppose there exists another irreducible component W2+ns0s2τ
. By the above, it must

be that W2+ns0s2τ
→ Z ′′11. But then it follows that in fact

W2+ns0s2τ
⊂ (ρ′′′)−1(Z ′′11)red =W1

and therefore W2+ns0s2τ
=W1.

Proposition 5.5.3. The number of connected and irreducible components of the subschemes

of A′′′1 are as follows.

Closed subscheme of A′′′1 # connected components # irreducible components
Z ′′′4 = ST(Z ′′11) 1 1
C ′′′4 = ST(C ′′4 ) ns2τ ns2τ

Table 5.6: Number of connected and irreducible components of subschemes of A′′′1

Proof. That Z ′′′4 is irreducible was shown in the proof of the previous proposition.

As C ′′4 and C ′′′4 are both smooth, C ′′4 and C ′′′4 are as well giving that each connected component

is irreducible. Let W ′′ ⊂ C ′′4 be some connected component. Recalling that C ′′4 has ns2τ such

connected components, the proposition will follow by showing that the inverse image of

W ′′ with respect to A′′′1 → A′′1 is connected. But this follows immediately since the fiber

above every closed point of C ′′4 with respect to the morphism U ′′′1 → U ′′1 is smooth and
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connected.

5.6 Step IV: p− 2 blowups of Z ′′′11.

In this last step we define the integral models A[i]
1 for 4 ≤ i ≤ p+ 1 by first blowing up Z ′′′4

in A′′′1 and then blowing up the strict transform of Z ′′′4 in each successive step. Likewise, we

define the local models U
[i]
1 for 4 ≤ i ≤ p+ 1 by blowing up Z ′′′4 in U ′′′1 and then blowing up

the strict transform of Z ′′′4 in each successive step.

5.6.1 Description of the local model U
[i]
1

Recall that Z ′′′11 is given by Z(u, v, b). Z ′′′11 may be described on each affine chart of X = U ′′′1

by giving its corresponding ideal.

Chart X ′′00 X01 X10 X11

Ideal (u) (v) (u, b) (v, b)

Table 5.7: Ideal sheaf of Z ′′′11

Write U
[3]
1 = U ′′′1 and Z

[3]
11 = Z ′′′11. As Z ′′′11 is Cartier on X ′′00 and X01, the blowups of Z ′′′11 and

its strict transforms are isomorphisms over these open subschemes. Focusing now on X10

and X11, each of these two charts are given by a scheme with the presentation

Y = Spec(A), A = Zp[x1, x2, x3, x4, u]/(x1x
2
2x

p−1
3 x4 − p, up−1 − x1x2)

and Z ′′′3 is given by the subscheme W corresponding to the ideal (u, x1) in this presentation.

To describe the blowups, we write x
[0]
1 = x1, and x

[1]
1 = x̃1, x

[2]
1 = ˜̃x1, etc. for projective
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coordinates.

Proposition 5.6.1. Set Y [0] = Y , W0 = W , and for 1 ≤ i ≤ p − 2, define Y [i] inside

Y ×
i−times︷ ︸︸ ︷

P1 × · · · × P1 by

u[i]up−i−1 − x[i]
1 x2, ux

[1]
1 − x1u

[1]

uu[j−1]x
[j]
1 − x

[j−1]
1 u[j] for 2 ≤ j ≤ i.

Let Wi be the strict transform of Wi−1 in Y [i] for each i ≥ 1. Then for 1 ≤ i ≤ p − 2 we

have the following.

(i). Y [i] ∼= BlWi−1
(Y [i−1]).

(ii). The true center of Y [i] → Y [i−1] is one dimensional and smooth.

(iii). The fundamental center of Y [i] → Y [i−1] is equal to the true center.

(iv). The exceptional locus of Y [i] → Y [i−1] is smooth and two dimensional.

Furthermore, Y [p−2] is regular with special fiber a divisor with normal crossings.

Proof. (i) We proceed by induction. So assume Wi−1 corresponds to the ideal (u, x
[i−1]
1 ),

which is certainly true for i = 1. By explicit computation, the claimed equations are part of

those defining BlWi−1
(Y [i−1]). The standard affine charts of Y [i], indexed by 1 ≤ k ≤ i + 1,

are described by the conditions

u[j] 6= 0 for 1 ≤ j < k and x
[j]
1 6= 0 for k ≤ j ≤ i.

In order to explicitly write them, we must consider three cases.
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k = 1: The equations of Y [i] become

x2 = xp−2
1

(
u[1]

x
[1]
1

)p−1

, u = x1
u[1]

x
[1]
1

,
u[j]

x
[j]
1

= xj−1
1

(
u[1]

x
[1]
1

)j

, 2 ≤ j ≤ i,

and the coordinate ring is

Zp

[
x1,

u[1]

x
[1]
1

, x3, x4

]
/

x2p−3
1

(
u[1]

x
[1]
1

)2p−2

xp−1
3 x4 − p

 .

1 < k ≤ i: The equations of Y [i] become

x1 =

(
x

[k−1]
1

u[k−1]

)k(
u[k]

x
[k]
1

)k−1

, x2 =

(
x

[k−1]
1

u[k−1]

)p−k−1(
u[k]

x
[k]
1

)p−k

, u =
x

[k−1]
1

u[k−1]

u[k]

x
[k]
1

x
[j−1]
1

u[j−1]
=

(
x

[k−1]
1

u[k−1]

)k−j+1(
u[k]

x
[k]
1

)k−j

, for 2 ≤ j < k,

u[j]

x
[j]
1

=

(
x

[k−1]
1

u[k−1]

)j−k(
u[k]

x
[k]
1

)j−k+1

for k < j ≤ i,

and the coordinate ring is

Zp

[
x

[k−1]
1

u[k−1]
,
u[k]

x
[k]
1

, x3, x4

]
/

(x[k−1]
1

u[k−1]

)2p−k−2(
u[k]

x
[k]
1

)2p−k−1

xp−1
3 x4 − p

 .

k = i+ 1: The equations of Y [i] become

x1 = u
x

[1]
1

u[1]
up−i−1 − x

[i]
1

u[i]
x2 = 0

x
[j]
1

u[j]
= ui−j+1x

[i+1]
1

u[i+1]
for 2 ≤ j ≤ i
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and the coordinate ring is

Zp

[
x

[i]
1

u[i]
, x2, , x3, x4, u

]
/

(
ui
x

[i]
1

u[i]
x2

2x
p−1
3 x4 − p, up−i−1 − x

[i]
1

u[i]
x2

)
.

Note that each chart is integral. Since the equations defining Y [i] are part of those defining

BlWi−1
(Y [i−1]), there is a closed immersion ι : BlWi−1

(Y [i−1])→ Y [i] which is an isomorphism

on the generic fiber. With Y [i] integral and of the same dimension as BlWi−1
(Y [i−1]), this

implies ι is an isomorphism.

To complete the induction, we must show that the strict transform of the subscheme of

Y [i−1] given by Z(u, x
[i−1]
1 ) corresponds to the subscheme of Y [i] given by Z(u, x

[i]
1 ). From

the charts above, the true center of the blowup in Y [i−1] is given by Z(u, x
[i−1]
1 , x2). Thus

taking the inverse image away from the center we have that x2 is invertible, and so from the

relation u[i]up−i−1 − x[i]
1 x2 of Y [i] we get that x

[i]
1 is in the ideal defining the strict transform.

As subschemes of Y [i], Z(u, x
[i−1]
1 , x

[i]
1 ) = Z(u, x

[i]
1 ). This subscheme is irreducible and of

dimension three and therefore we conclude it must be the strict transform of Wi−1.

We now inspect these charts to deduce the remainder of the proposition. To calculate the

true center of U
[i+1]
1 → U

[i]
1 , one need only to consider the chart indexed by k = i + 1

since Z(u, x
[i]
1 ) is Cartier in all others. Here we see that the true center is contained in

Z(u, x
[i]
1 , x2). Now consider the fiber over any closed point of Z(u, x

[i]
1 , x2) with respect to

the morphism U
[i+1]
1 → U

[i]
1 . We have that both of the relations u[i+1]up−i−2 − x[i+1]

1 x2 and

uu[i]x
[i+1]
1 − x[i]

1 u
[i+1] vanish, since we are assuming that u, x

[i]
1 , and x2 are all zero. No other

relation involving u[i+1] and x
[i+1]
1 exists and therefore the fiber over this closed point is

isomorphic to P1
Fp . This gives (ii), (iii), and (iv).
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Using the explicit equations above, we record the global structure of the irreducible compo-

nents of the special fiber.

Lemma 5.6.2. The irreducible components of U
[p−2]
1 ⊗ Fp are described as follows.

• There are p+ 3 components.

• Three components are given by Z(ũ), Z(ṽ) and Z(a). We index the other components

by 1 ≤ i ≤ p. For 1 ≤ i ≤ p− 1, the ith irreducible component is given by the locus

Zi = Z(u, b, x̃, b[1], b[2], . . . , b[i−2], u[i], u[i+1], . . . , u[p−2])

and the pth irreducible component is given by the locus

Zp = Z(u, b, b[1], b[2], . . . , b[p−2]).

• The components given by Z(ũ), Z(ṽ), Z(a), and Zi have multiplicity p − 1, p − 1, 1,

and 2p− i− 1 respectively. In particular, Zp−1 is the only component with multiplicity

divisible by p.

• The components Z1 and Zp are isomorphic to A3
Fp. The components Zi with 2 ≤ i ≤

p− 1 are isomorphic to P1
Fp × A2

Fp.

• The components intersect as indicated in the following “dual complex”, drawn for p = 5.

Each vertex represents an irreducible component where the label indicates the multiplic-

ity of the irreducible component. Each edge indicates that the two irreducible compo-

nents intersect.
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Figure 5.2: Dual complex of U
[p+2]
1 for p = 5

Moreover, consider a k-simplex appearing in the complex where every pair of vertices

within the simplex is directly connected by an edge. Such a simplex indicates a (k+ 1)-

fold intersection of the irreducible components.

• A k-fold intersection of the components has dimension 3− k over Spec(Fp).

5.6.2 Description of the integral model

Proposition 5.6.3. For 3 ≤ i ≤ p + 1, the number of irreducible components of A[i]
1 is

4 + ns0s2τ + ns2τ · (i− 3).

Proof. We recall the following facts:

(i). C[3]
4 has ns2τ connected components and each is smooth of dimension two;

(ii). For 3 ≤ i ≤ p + 1, the fiber over a closed point of the true center of U
[i]
1 → U

[i−1]
1 is
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one dimensional, smooth, and connected; and

(iii). For 3 ≤ i ≤ p+ 1, U
[i]
1 ⊗ Fp is equidimensional of dimension three.

We proceed by induction, starting with the modification A[4]
1 → A

[3]
1 . Now (i) and (ii) imply

that the exceptional locus of A[4]
1 → A

[3]
1 has the same number of connected components

as the true center C[3]
4 , and furthermore that each such connected component is three di-

mensional and smooth. By (iii) each of these components is an irreducible component of

A[4]
1 ⊗ Fp, with all of the other irreducible components of A[4]

1 ⊗ Fp being given by the strict

transform of the irreducible components of A[3]
1 ⊗ Fp. Therefore there are 4 + ns0s2τ + ns2τ

irreducible components of A[4]
1 ⊗ Fp.

Now assume the result is true for i−1 with 4 < i ≤ p+1. We must show that, C[i−1]
i has ns2τ

connected components and each is smooth of dimension two. Indeed, then the induction will

follow using the same argument as in the above paragraph. Note that from the local model

we have each connected component of C[i−1]
i is two dimensional and smooth, so it is left to

show that there are ns2τ connected components of C[i−1]
i .

Now Z [i−1]
i , E [i−1], and C[i−1]

i étale locally correspond to Z
[i−1]
i , E[i−1], and C

[i−1]
i respectively.

As C
[i−1]
i = Z

[i−1]
i ∩ E[i−1] we get that C[i−1]

i = Z [i−1]
i ∩ E [i−1].

Consider a connected component of C[i−2]
i−1 , which is irreducible because C[i−2]

i−1 is smooth. The

fiber above this component is connected since A[i−2]
1 is normal by Zariski’s Main Theorem.

Thus E [i−1] has the same number of connected components as C[i−2]
i−1 . Now Z [i−1]

i = ST(Z [i−2]
i−1 )

maps surjectively onto Z [i−2]
i−1 via ρ

[i−1]
A and hence the image meets each connected component

of C[i−2]
i−1 . As such, Z [i−1]

i meets each connected component of E [i−1]. Therefore C[i−1]
i =

Z [i−1]
i ∩ E [i−1] has the same number of connected components as C[i−2]

i−1 ; namely ns2τ .

We will use the following graph to describe how these irreducible components of the special
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fiber intersect.

Definition 5.6.4. Let p be an odd rational prime and Kp ⊂ G(Ap
f ) so that Kp determines

the numbers ns2τ and ns0s2τ of A0,Kp , i.e. the number of connected components of the KR

strata s2τ and s0s2τ . We then define the vertex-labeled graph Γp,Kp as follows.

(i). Begin with ns2τ batons, each having p−2 vertices. Label the vertices 2p−3, 2p−4, . . . , p

from head to tail.

Figure 5.3: Batons of Γp,Kp where p = 5, ns2τ = 2

(ii). Add one vertex labeled 2p− 2 (top left) and attach edges between this vertex and the

heads of the batons. Add two more vertices labeled p− 1 (bottom left and top right)

and connect these two vertices to every vertex in the batons, as well as the (unique)

vertex labeled 2p − 2. Add ns0s2τ vertices labeled p − 1 (bottom right) and attach

edges between these and the tails of the batons, as well as the two vertices labeled

p− 1 added in the previous sentence.
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Figure 5.4: Base of Γp,Kp where p = 5, ns2τ = 2, ns0s2τ = 3

(iii). Add one vertex labeled 1 and attach edges from this to every vertex constructed in the

above two steps.

Figure 5.5: Γp,Kp where p = 5, ns2τ = 2, ns0s2τ = 3

Definition 5.6.5. We define the following subsets of the vertices of Γp,Kp .

• The batons consist of the vertices given in step (i) above. They may be identified as

the vertices with label in [p, 2p− 3].

• The front consists of the vertices labeled p − 1 on the bottom right of the diagram
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directly above. They may be identified as the vertices of label p− 1 and (edge) degree

3 + ns2τ that share edges with precisely two vertices labeled 4.

• The sides consist of the vertices labeled p− 1 which are not in the front.

Recall that we are writing A0 for a single connected component of A0 → Spec(Zp[ζN ]) and

similarly with A1 (see Section 5.1.3 for details).

Theorem 5.6.6. A[p+1]
1 → A1 is a resolution of singularities and the special fiber of A[p+1]

1 is

a nonreduced divisor with normal crossings. A[p+1]
1 ⊗Fp has 4+ns0s2τ +ns2τ (p−2) irreducible

components whose intersections are described by the vertex-labeled graph Γp,Kp as follows.

(i). Each vertex represents an irreducible component. The label of the vertex is the multi-

plicity of the component.

(ii). A k-simplex of Γp,Kp indicates a (k + 1)-fold intersection of irreducible components

corresponding to the vertices of the k-simplex. Such an intersection has dimension

3− k over Spec(Fp).

(iii). Let x[p+1] ∈ A[p+1]
1 be a closed point and {e1, . . . , et} be the multiset of the multiplicities

of the irreducible components which x[p+1] lies on. Then there is an étale neighborhood

of x[p+1] of the form

Spec(Zp[x1, x2, x3, x4]/(xe11 . . . xett − p)).

(iv). The following table gives the image of each irreducible component under the map

A[p+1]
1 → A0.
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Description Image

Front
Each irreducible component surjects onto a connected
component of As0s2τ

Sides
These two irreducible components surject onto the
irreducible components Z01 and Z10 respectively.

Vertex labeled 2p− 2 Surjects onto Z11.

Vertex labeled 1 Surjects onto Z00.

Batons

Fix a baton B. The irreducible components
corresponding to a vertices in B all surject onto the
same connected component of As2τ . This induces a
bijection between the set of batons and the connected
components of As2τ .

Table 5.8: Images of irreducible components of A[p+1]
1
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A.1 Determinants

Let R be a ring and M a finite locally free R-module. For r ∈ R, denote by [r] : M → M

the homomorphism given by multiplication by r. We then define

det : EndR(M)→
∧rkM EndR(M)

∼−→ R

as follows. The R-homomorphism EndR(M) →
∧rkM EndR(M) is given by f →

∧rkM f .

The second map in the above composition is the inverse of the isomorphism

R→
rkM∧

EndR(M) sending r →
rkM∧

[r].

That this map is indeed an isomorphism can be verified locally, and hence we are reduced

to the case where M is free.

Let A be an R-algebra and let M be a left A-module which is finite and locally free as an R-

module. Define VA to be the functor on the category of R-algebras given by VA(S) = A⊗RS.

We define the morphism detM,A : VA → A1
R on S-valued points by

x→ detS(x|M ⊗R S).

If A is finite and free as an R-algebra, let {a1, . . . , at} be a R-basis of A. Then we have

St
∼−→ A⊗R S by (x1, . . . , xt)→ a1 ⊗ x1 + · · ·+ at ⊗ xt.
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Therefore V is representable by At
R and detM corresponds to the polynomial

detR[X1,...,Xt]

(
a1 ⊗X1 + · · ·+ at ⊗Xt|M ⊗R R[X1, . . . , Xt]

)
.

Proposition A.1.1. Suppose R = k is a field and A is a finite dimensional semisimple k-

algebra. Let M and N be A-modules. Then M ∼= N as A-modules if and only if detM = detN .

Proof. If M ∼= N then certainly detM = detN . So suppose detM = detN . Write A =

A1 × · · · × Ar where each Ai as simple. Let {a1, . . . ar} be a set of mutually orthogonal

idempotents with ai ∈ Ai, so a2
i = ai and aiaj = 0 for i 6= j. Then we have the decompositions

M = M1 × · · · ×Mr and N = N1 × · · · ×Nr

where Mi = aiM and Ni = aiN . Set S = Ri[T ] and consider the element 1⊗ T ∈ VA(S) =

A⊗R Ri[T ]. Then

rkRiMi = detRi[T ](T |M ⊗R Ri[T ]) = detRi[T ](T |N ⊗R Ri[T ]) = rkRiNi.

Since each Ai is simple there exists a unique irreducible Ai-module up to isomorphism, and

therefore Mi
∼= Ni. The proposition immediately follows.

Proposition A.1.2. Let f ∈ R and Rf denote the localization of R with respect to the set

{1, f, f 2, . . .}. Then detMf
= detM ⊗RRf , where detMf

is with respect to the Rf -module Af .

Proof. Note that V ⊗Rf = VA⊗RRf is the functor on the category of Rf -algebras sending S

to Af ⊗Rf S. Then detM ⊗RRf : V ⊗ Rf → A1
Rf

which on an Rf -algebra S sends x ∈ S to

detS(x|(M ⊗R Rf )S). Since M ⊗R Rf = Mf by definition, the result is immediate.
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A.2 Weyl groups

Let G be a split reductive linear algebraic group over a field k, B a Borel subgroup, and

T ⊂ B a maximal torus defined over k. Let Φ be the set of roots given by T , Φ+ denote the set

of positive roots distinguished by B, and Q denote the subgroup of the affine transformations

of V ∗ generated by Φ∨. Write X∗(T ) = Hom(Gm, T ), the cocharacter lattice of T .

Definition A.2.1. With respect to the above data, we define the following groups.

• The Weyl group W = NG(T )/T ;

• The affine Weyl group W aff = QoW ;

• The extended affine Weyl group W̃ = W oX∗(T ).

Example A.2.2.

• The Weyl group of G = SLn is isomorphic to Sn. The affine Weyl group Wa is the

semidirect product of Sn with the subgroup of Zn consisting of all tuples (a1, . . . , an)

with
∑

i ai = 0, where Sn acts on Zn via permutation of the coordinates.

• The Weyl group of Sp2n can be realized as a subgroup of S2n consisting of the permu-

tations that commute with the permutation (1, 2n)(2, 2n− 1) . . . (n, n+ 1) ∈ S2n. The

affine Weyl group of Sp2n is the subgroup of Z2n o S2n generated by the permutations

(i, i + 1)(2n + 1 − i, 2n − i) for 1 ≤ i ≤ n − 1, the permutation (n, n + 1), and the

element (−1, 0, . . . , 0, 1)(1, 2n).

Definition A.2.3. Let (W,S) be a Coxeter system. Then for u, v ∈ W we write u ≤ v if

there is a reduced word v = s1s2 . . . sd and a sequence 1 ≤ i1 < i2 < · · · < ir ≤ d such that

139



w = si1si2 . . . sir is a reduced word for w. This is a partial order on W .

As W and W aff are both Coxeter groups, they can be equipped with the Bruhat order. The

Bruhat order, denoted by ≤, may be extended to W̃ = W oX∗ as follows. With x, x′ ∈ W̃ ,

they may be uniquely decomposed as x = wc and x′ = w′c′ where w,w′ ∈ W and c, c′ ∈ X∗.

Then x ≤ x′ means w ≤ w′ and c = c′.

A.3 Affine flag variety

Let G be a reductive linear algebraic group over a field k, B a Borel subgroup of G.

Definition A.3.1. Define the following functors from k-algebra to sets.

• The loop group LG

R→ G(R((T ))).

• The positive loop group L+G

R→ G(R[[T ]])).

• Let I denote the Iwahori subgroup of LG induced by B, given by identifying the inverse

image of B under L+G → G with a subgroup of LG using L+G ↪→ LG. Then the

affine flag variety FG = LG/I where the quotient is as fpqc-sheaves on k-schemes.

Proposition A.3.2. We have the following properties.

(i). L+G is represented by an affine scheme over Spec(k).

(ii). LG is represented by an ind-scheme over Spec(k).
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Proof.

(i). Let us first show this for G = GLn. Here we identify GLn(R[[t]]) with the set of

matrices

{(A,B) ∈Mn(R[[t]])×Mn(R[[t]]) : AB = 1} .

We can consider Mn(R[[t]]) as
∏

i≥0 An2

R , where each index i gives the coefficient of ti.

It then follows that GLn is a closed subscheme of the affine scheme
∏

i≥0 An2 × An2
.

For an arbitrary linear group G, a closed embedding of G into GLn for some n gives a

closed embedding of L+G into L+GLn.

(ii). It is clear that

LG(R) = lim−→
i≤0

G(tiR[[t]])

with the directed system given by the inclusion homomorphisms, so that LG is an

ind-scheme.

The affine flag variety can be realized as a space of lattices subject to additional conditions.

We now explain this in detail in the case G = SLn or G = GSp2n.

Definition A.3.3. A lattice L ⊂ R((t))n is a locally free R[[t]]-submodule such that L⊗R[[t]]

R((t)) = R((t))n.

We say that a lattice L is r-special if
∧n L = trΛR.

Definition A.3.4. A sequence L0 ⊂ L1 ⊂ · · · ⊂ Ln−1 ⊂ t−1L0 of lattices in R((t))n is called

a complete lattice chain if Li+1/Li is a locally free R-module of rank one for all i.
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Proposition A.3.5. Fix r ∈ Z. There is a functorial isomorphism

F(R)
∼−→ {r-special complete lattice chains in R((t))n} .

Proof. The morphism is given by

g → g · (λi)i, where λi = R[[t]]n−r+i ⊕ (tR[[t]])r−i.

Since I is the stabilizer of the standard lattice chain (λi)i, this map is well-defined and

injective. It remains to show that if (Li)i is an r-special lattice chain, then Zariski-locally

on Spec(R) there exists an element g ∈ SLn(R[[t]]) such that (Li)i = g · (λi)i. Now each Li

is locally free and so there exists, Zariski-locally on R, g′ ∈ GLn(R[[t]]) such that (Li)i =

g′ · (λi)i. As L0 is r-special, we have

∧n λ0

∧n L0

trR[[t]] trR[[t]]

∧g′

∼

giving that det(g′) ∈ R[[t]]×. As such, we can find an element g ∈ SLn(R[[t]]) such that

(Li)i = g · (λi)i.

Definition A.3.6. Let 〈·, ·〉 denote the alternating pairing on R((t))n given by the matrix

J =

 Jn

−Jn

 , where Jn =



1

1

. .
.

1


.
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We say that a lattice chain L is self-dual if for all lattices Λ ∈ L, the dual

Λ⊥ = {x ∈ Kn : 〈x, y〉 ∈ R[[t]] for all y ∈ Λ}

also occurs in the lattice chain.

Proposition A.3.7. There is a functorial isomorphism

F(R)
∼−→ {0-special self-dual complete lattice chains in R((t))n} .

Proof. The morphism is given by

g → g · (λi)i, where λi = R[[t]]n−r+i ⊕ tR[[t]]r−i.

Since I is the stabilizer of the standard lattice chain (λi)i, this map is well-defined and

injective. It remains to show that if (Li)i is an r-special lattice chain, then Zariski-locally

on Spec(R) there exists an element g ∈ Spn(R[[t]]) such that (Li)i = g · (λi)i. This follows

from [RZ, Proposition A.21].

The affine flag varieties admit a stratification by Schubert cells. By a stratification of a space

X we mean that there exists a collection {Xi ⊂ X}i∈I where I has a partial order ≤ such

that

X =
∐
i

Xi and Xi =
⋃
j≤i

Xj for every i ∈ I.

In the case of the affine flag variety associated with SLn or Sp2n, there is a canonical strati-

fication where I = W̃ and for w ∈ W̃ , Xw is the associated Schubert cell.

In the following, we regard all algebraic groups as the group given by their k((t))-valued
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points. Thus we will write G for G(k((t))), etc. We define an embedding ι : X∗(T ) ↪→ G as

follows. For λ ∈ X∗(T ), we have λ : Gm → T and thus set ι(λ) = λ(t) ∈ T ⊂ G.

When G = SLn we can identify W = NGT/T with the group of permutation matrices. When

G = Sp2n we can identify W with the subgroup of generalized permutation matrices. Thus

in either case we have an extension ι : W̃ ↪→ G. From now on, we will identify W̃ as a subset

of G via the embedding ι.

Definition A.3.8. Let w ∈ W̃ . The Schubert cell associated to w is given by IwI/I ⊂ FG.

The Schubert variety associated with w, denoted by Xw, is the Zariski closure of IwI/I

inside of FG.

Proposition A.3.9. For w ∈ W̃ , we have

(i). Xw = ∪v≤wIvI/I;

(ii). For v ∈ W aff, Xv ⊂ Xw if and only if v ≤ w;

(iii). dimXw = `(w), where `(w) is the length of a reduced expression for w;

and FG admits a stratification

FG =
∐
w∈W̃

IwI/I.

The standard apartment of (the Bruhat-Tits building associated with) F is defined as follows.

Let {e1, . . . , en} be the standard basis of k((t))n. Then the vertices of the standard apartment

are given by lattices generated by

〈t−r1e1, . . . , t
−rnen〉.
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Identify such a lattice with the n-tuple (r1, . . . , rn) ∈ Zn. Two lattices (r1, . . . , rn) and

(s1, . . . sn) are considered equivalent if there exists an integer m such that

(s1, . . . , sn) = (r1 +m, . . . , rn +m).

Thus the set of vertices of the standard apartment can be identified with Zn modulo Z,

where Z acts diagonally by addition.

The alcoves of the standard apartment of F are by definition tuples (x0, . . . , xn−1) where

each xi is a vertex (i.e. an element of Zn/Z) such that for some choice of lifts x̃i ∈ Zn we

have

x̃0 ≤ x̃1 ≤ · · · ≤ x̃n−1 ≤ x̃n := x̃0 + (1, . . . , 1)

and

∑
j

x̃i+1(j) =
∑
j

x̃i(j) + 1 for all i.

Here x̃i ≤ x̃j is defined coordinate-wise: x̃i(j) ≤ x̃i+1(j) for all i, j. In the case G = Spn, we

also impose the additional condition that for 1 ≤ i ≤ 2n we have

xn−i = θ(xi), where θ(r1, r2, . . . , rn) = (−rn,−rn−1, . . . ,−r1).

Note that such an alcove (x1, . . . , xn) naturally corresponds to a complete periodic (and in

the case GSp2n, self-dual) lattice chain, i.e. an element of F .

We now fix the alcoves

ω = (ω0, . . . , ωn−1), ωi = (1i, 0n−i)

τ =
(
(1r, 0n−r), (1r+1, 0n−r−1), . . . , (2r−2, 1n−r), (2r−1, 1n−r+1)

)
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noting that both are alcoves of FSp and hence also alcoves of FSL. We define the size of an

alcove x to be
n−1∑
j=0

xi(j)− ωi(j)

which is constant with respect to the choice of i. The affine Weyl group in each case naturally

acts on the set of alcoves of size r in the standard apartment, given by acting on each vertex.

This action is simply transitive. With our fixed base alcove τ we can thus identify the affine

Weyl group with the set of alcoves of size r in the standard apartment.

Proposition A.3.10. Let x = (x0, . . . , xn−1) be an and (Li)i ∈ Sx. Then there exists b ∈ I

such that

Li = b ·



t−xi(1)+1

t−xi(2)+1

. . .

t−xi(n)+1


.

Here we are identifying the matrix above with the lattice generated by its columns.

Proof. This is immediate as Sx is defined as the Iwahori-orbit of x in F .

A.4 Group schemes

Definition A.4.1. Let S be a scheme. A group scheme G over S is an S-scheme equipped

with S-morphisms

µ : G×S G→ G ε : S → G ι : G→ G

such that the following diagrams commute.
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(i). Associativity

G×S G×S G G×S G

G×S G G

id× µ

µ× id

µ

µ

(ii). Identity

S ×S G G×S G

G G×S S

ε× id

pr2
µ

pr1

id× ε

(iii). Inverse

G×S G

G S G

G×S G

µ(id, ι)

(ι, id)

ε

µ

Definition A.4.2. Let G/S be a group scheme and σ : G×SG→ G×SG be the morphism

which interchanges the factors. Then we sayG is a commutative group scheme if the following

diagram commutes.

G×S G G

G×S G

µ

σ µ

Definition A.4.3. Let S be a Noetherian scheme. A finite flat group scheme over S is a

group scheme G/S such that the structure morphism G→ S is finite and flat. Equivalently,

the structure morphism makes OG into a locally free OS-module of finite rank. The rank is

then a locally constant function on S, and when the rank function is constant, we will refer
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to it as the order of G/S, or simply the order of G if S is understood.

Definition A.4.4. Let S = Spec(R) be a Noetherian scheme and G = Spec(A) a finite flat

group scheme over S. The Cartier dual of G is given by G∗ = Spec(HomR(A,R)) equipped

with the following maps.

• ε∗ : S → G∗. This morphism is defined on the coordinate rings HomR(A,R) → R by

sending an R-module homomorphism ϕ : A → R to ϕ ◦ π#(1) where π# : R → A is

the structure morphism of G/S.

• µ∗ : G∗ ×G∗ → G∗. This morphism is defined on the coordinate rings HomR(A,R)→

HomR(A,R)⊗R HomR(A,R) by first identifying

HomR(A,R)⊗R HomR(A,R) = HomR(A⊗R A,R)

and sending an R-module homomorphism ϕ : A→ R to

A⊗R A
m−→ A

ϕ−→ R

where m(a⊗ b) = ab.

• ι∗ : G∗ → G∗. This morphism is defined on the coordinate rings HomR(A,R) →

HomR(A,R) by sending an R-module homomorphism ϕ : A→ R to A
ι#−→ A

ϕ−→ R.

One can check that these maps give G∗ the structure of a finite flat group scheme over S,

and that (G∗)∗ is canonically isomorphic to G.

Definition A.4.5. Let G/S be a group scheme, ε : S → G the identity section. The sheaf
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of invariant differentials of G/S is defined to be

ωG/S = ε∗(ΩG/S).

A.4.1 Finite group schemes of order p

Throughout this section, k denotes an algebraically closed field and p a rational prime. Set

S = Spec(k). If the characteristic of k is not p, there is (up to isomorphism) precisely one

finite flat group scheme of order p over S. On the other hand, if the characteristic of k is p,

then there are (up to isomorphism) three finite flat group schemes of order p over S. We will

present these three group schemes, calculate their Cartier duals, and calculate the dimension

of their invariant differentials.

Example A.4.6. The constant group scheme G = (Z/pZ)S.

Description of G: As a scheme, G is given by the disjoint union of p copies of Spec(k) and

we fix an indexing by 0, 1, . . . , p− 1 which we will write as Si ⊂ G for 0 ≤ i ≤ p− 1. Then

this induces an indexing of G ×S G by pairs (i, j) with 0 ≤ i, j ≤ p − 1, which we write as

Sij ⊂ G×SG. Define the multiplication map G×SG→ G by Sij → Si+j where the addition

is in Z/pZ and the morphism is the identity map. The identity and inverse are respectively

defined as

S → S0 and Si → S−i

again using the identity maps. It is straightforward to see that this makes G/S into a group

scheme and that G is finite and flat over S.

The Cartier dual of G: The collection of (set) maps {ei : Z/pZ→ k} where ei is defined by
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ei(j) = δij gives a basis of the k-vector space Γ(G,OG). The morphisms µ, ε, and ι are given

on the coordinate rings as

µ#(ei ⊗ ej) = δijei ε#(ei) = δ0i ι#(ei) = e−i.

To calculate the Cartier dual, let {e∗i } be the dual basis defined by e∗i (ej) = δij. Then µ∗,

ε∗, and ι∗ of the Cartier dual G∗ are given on the coordinate rings as

(µ∗)#(e∗i ) = e∗i ⊗ e∗i (ε∗)#(e∗i ) = 1 (ι∗)#(e∗i ) = e∗−i.

From this description, it is immediate that (Z/pZ)∗S
∼= (µp)S (see the example below).

The invariant differentials of G: Since G → S is étale, it is immediate that ΩG/S = 0 and

hence ωG/S = 0.

Example A.4.7. The roots of unity G = (µp)S.

Description of G: Define G = Spec(k[T ]/(T p − 1)) over Spec(k) with the morphisms µ, ε,

and ι defined on the coordinate rings as

T → T ⊗ T T → 1 T → T p−1.

It is easy to check that this morphisms satisfy the required commutative diagrams, and

G is visibly flat and finite over Spec(k). Furthermore G is étale over S if and only if the

characteristic of k is not p.

The Cartier dual of G: As the double (Cartier) dual of a group scheme is canonically

isomorphic to the group scheme itself, we have that the Cartier dual of G is (Z/pZ)S.
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The invariant differentials of G: If the characteristic of k is not p, then µS is étale over S

and thus the dimension of its invariant differentials is automatically zero. We thus assume

that the characteristic of k is p. Set I = (xp − 1) and A = k[x]/I. We have the standard

exact sequence

I/I2 δ−→ Ωk[x]/k ⊗k[x] A→ ΩR/k → 0

where the first map is given by δ(α) = dα⊗ 1. The image of the first map is thus generated

by pxp−1 which is zero since the characteristic of k is p. We therefore have that ΩG/S

is given by the module k[x]dx/(xp − 1). The pullback of this module to k is given by

k[x]〈dx〉/(xp − 1)⊗k[x]/(xp−1) k. It follows that the invariant differentials are given by k〈dx〉

and therefore are of dimension one.

Example A.4.8. G = (αp)S, where p is a rational prime and k is of characteristic p.

Description of G: Define G = Spec(k[T ]/(T p)) with the morphisms µ, ε, and ι defined on

the coordinate rings as

T → T ⊗ 1 + 1⊗ T T → 0 T → −T.

Note that the first map above is a ring homomorphism precisely because the characteristic

of k is p. Again, it is easy to check that this morphisms satisfy the required commutative

diagrams, and αp is visibly flat and finite over Spec(k), but certainly not étale since G is not

reduced.

The Cartier dual of G: Set R = k[T ]/(T p). We have a k-basis of R given by {T i}. Let {ui}

denote the dual basis, i.e. ui(T
j) = δij. Then the k-linear map

ϕ : Homk(R, k)→ R sending ui → T i/i!
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is k-isomorphism. Furthermore, it preserves the morphisms giving the group structure of G.

To see this, first note that the multiplication map m is given on coordinate rings by

m#(T i) =
i∑

j=0

(
i

j

)
T j ⊗ T i−j.

The multiplication map for the Cartier dual of G is given on coordinate rings by

(m∗)#(ui) =
i∑

j=0

uj ⊗ ui−j.

Thus we have that the diagram (given on generators)

ui T i/i!

∑i
j=0 u

j ⊗ ui−j 1
i!

∑i
j=0

(
i
j

)
T j ⊗ T i−j

ϕ

(m∗)#
m#

ϕ⊗ ϕ

commutes for all i. The inverse and identity maps may be checked in a similar fashion and

it therefore follows that G ∼= G∗.

The invariant differentials of G: Set I = (xp) and A = k[x]/I. We have the standard exact

sequence

I/I2 δ−→ Ωk[x]/k ⊗k[x] A→ ΩR/k → 0

where the first map is given by δ(α) = dα⊗ 1. The image of the first map is thus generated

by pxp−1 = 0 since the characteristic of k is p. We therefore have that ΩG/S is given by the

module k[x]〈dx〉/(xp). The pullback of this module to k is given by k[x]〈dx〉/(xp)⊗k[x]/(xp) k.

It follows that the invariant differentials are given by k〈dx〉 and therefore are of dimension

one.
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Theorem A.4.9. [OT, Lemma 1] Let k be an algebraically closed field. If the characteristic

of k is not p, then (Z/pZ)k is the only finite flat group scheme of order p up to isomorphism.

If the characteristic of k is p, then there are three nonisomorphic finite flat group schemes

of order p:

(Z/pZ)k, (µp)k, and (αp)k.

A.4.2 Oort-Tate generators

Using the notion of a “full-set of sections” [KM] for a finite flat group scheme G/S, we recall

the definition of an Oort-Tate generator from [HR].

Definition A.4.10. [KM, 1.8.2] Let G be finite flat group scheme over S of rank N ≥ 1.

Then we say that a set of sections P1, . . . , PN in G(S) is a full set of sections of G/S if for

every affine S-scheme T = Spec(R), and for every function f ∈ B = Γ(G×S T,OZ×ST ), we

have:

NormB/R(f) =
N∏
i=1

f(Pi).

Definition A.4.11. Let S be a Zp-scheme and π : G→ S finite flat group scheme of order

p with finite presentation over S. Suppose σ : S → G is a section of π. Then we have a

collection of sections {ε, σ, [2]σ, . . . , [p− 1]σ}. We say that σ is an Oort-Tate generator if

this collection is a full set of sections of G/S.

Proposition A.4.12. [KM, Lemma 1.8.3] Let S be a connected scheme, G/S be a finite

étale group scheme of order N , and σ1, . . . , σN be a collection of sections S → G of G. Then

the following conditions are equivalent.

153



(i). The S-morphism
N∐
i=1

S → G

defined by the sections {σi} is an isomorphism of S schemes.

(ii). {σ1, . . . , σN} form a full set of sections of G/S.

Proof. Suppose the morphism
∐
S → G is an isomorphism. Then for T = Spec(R) in

the definition above, B = ⊕Ni=1R. Choosing the standard R-basis {ei}, we have that for

f =
∑

i riei the matrix representing “multiplication by f” in this basis is diag(r1, . . . , rn)

and hence NormB/R(f) =
∏

i ri. Since f(Pi) = ri, the conclusion follows.

Conversely, suppose {σi} form a full set of sections of G/S. Then on each connected com-

ponent of the source, the morphism
N∐
i=1

S → G

restricts to the identity map onto its image in G. Thus to show that this is an isomorphism,

we only need to show that no two connected components of the source are sent to the same

connected component of G.

It thus suffices to show that for every geometric point Spec(k) → S, the N points σi,k :

Spec(k)→ Gk are all distinct. To see this, let Q1, . . . , QN denote the reduced closed points

whose disjoint union forms Gk. Let f : Gk → A1
k such that f(Qi) are all distinct values.

Then the characteristic polynomial of f is

det(T − f) =
N∏
i=1

(T − f(Qi))
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and since {σi} form a full set of sections, we also have

det(T − f) =
N∏
i=1

(T − f(σi,k)).

It follows that f(σi,k) are all distinct, meaning of course that σi,k are as well.

Proposition A.4.13. Let Z = Spec(k[x]/(x − a)n) and S = Spec(k) where k is an alge-

braically closed field. Then the collection of sections {P1, . . . , Pn} where each is defined on

coordinate rings as x→ a gives a full set of sections. Furthermore, this collection is the only

full set of sections.

Proof. Let R be a k-algebra, B = R[x]/(x−a)n, and f ∈ B. We first calculate NormB/R(f).

Note that {1, x− a, . . . , (x− a)n−1} forms an R-basis of B and write f =
∑n

i=0 fi(x − a)i.

Then the matrix representing the map “multiplication by f” with respect to this basis is



f0

f1 f0

...
...

. . .

fn−1 fn−2 . . . f0


.

Therefore NormB/R(f) = fn0 and this is precisely
∏n

i=1 f(a).

That this is the only collection forming a full set of sections is immediate, as a collection of

sections in this case is determined by the collections cardinality.

We now describe the Oort-Tate generators of the three group schemes we are primarily

interested in.
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Example A.4.14.

(i). G = (Z/pZ)k, k = k a field. This group scheme is étale and hence the p − 1 nonzero

sections are all Oort-Tate generators.

(ii). G = (µp)k, k = k a field of characteristic p. This group scheme is the spectrum of a

nonreduced point, and hence the zero section is the only generator.

(iii). G = (αp)k, k = k a field of characteristic p. This group scheme is the spectrum of a

nonreduced point, and hence the zero section is the only generator.

A.4.3 Oort-Tate Theory

In [OT], Oort and Tate classify finite flat group schemes over

Spec(Λp), where Λp = Z
[
ζ,

1

p(p− 1)

]
∩ Zp.

In particular, the classification applies to schemes S over Spec(Zp), the case of interest. We

will state the classification and then recast it using stacks as in [HR].

Theorem A.4.15. [OT, Theorem 2] Let S be a scheme over Spec(Λp). Then there is a

natural 1-1 correspondence finite flat group schemes of order p and the collection of (L, a, b)

where

• L is an invertible sheaf on S;

• a ∈ Γ(S, L⊗(p−1)), b ∈ Γ(S, L⊗(1−p)); and

• a⊗ b = wp ∈ Γ(S,Os) where wp = ε · p with ε ∈ Λ×p .

Sketch. Let us merely indicate how to construct (L, a, b) from a group scheme G. We first
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define

ei =
1

p− 1

∑
j∈Z/pZ×

χ−i(j)[j] ∈ OS[Z/pZ×].

Here χ : Z/pZ→ Zp is the Teichmüller representative (whose image consists of the (p− 1)st

roots of unity) and [j] : G → G is multiplication by j. Let m0 = ker(ε#) where ε : S → G

is the identity section. One can show that the ei are orthogonal idempotents, and thus we

have

m0 =

p−1⊕
i=1

eim0.

Set I = e1m0. The above construction applies equally as well to the Cartier dual G∗, and we

likewise define ID in the same manner but with respect to G∗. Now it turns out the p-fold

multiplication of G sends I⊗p → I which is to say that there is a homomorphism in

HomOS(I⊗p, I) = HomOS(OS, I⊗1−p) = Γ(S, I⊗1−p)

giving the global section a. Applying the same to G∗ we get b. Now one cay show a⊗ b = wp

where wp is defined as follows. In the ring Λp[z]/(zp − 1) set

yj =
∑

m∈Z/pZ×
χ−j(m)(1− zm)

and define wp by the equation yp1 = wpyp. Finally one shows that wp is indeed p · ε where ε

is a unit in Λp.
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A.5 de Rham cohomology

Let F • be a complex of sheaves of abelian groups on a topological space X such that F i = 0

for i << 0. Denote by di : F i → F i+1 the differential of the complex, so that di+1di = 0.

Then the ith cohomology of the complex F • is given by

hi(F •) = ker di/ Img di−1.

We say that a map of complexes ϕ : F • → G• of sheaves of abelian groups on a topological

space X is called a quasi-isomorphism if it induces an isomorphism hi(ϕ) : hi(F •)→ hi(G•)

for all i.

An injective resolution is a quasi-isomorphism f • : F • → I• where I i is an injective sheaf

for all i. Then the hypercohomology of F • is

Hi(X,F •) = hi(Γ(X, I•))

where Γ is the global sections functor. The hypercohomology groups are independent of the

injective resolution chosen.

Now let S be a scheme and A/S be an abelian scheme of relative dimension n. The de Rham

complex of A/S is given by

Ω1
A/S

d1

−→ Ω2
A/S

d2

−→ . . .
dn−1

−−−→ Ωn
A/S

with differential di : Ωi
A/S → Ωi+1

A/S. We define the de Rham cohomology of A/S to be the
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hypercohomology of A/S with respect to the de Rham complex:

H1
dR(A/S) = H1(A,Ω•A/S).

Proposition A.5.1. [BBM] Set ωA/S = e∗(Ω1
A/S) where e : S → A is the identity section;

ωA/S is called the sheaf of invariant differentials of A/S. Let Lie(A∨/S) denote the Lie

algebra of the dual abelian scheme A∨/S. There is an exact sequence of locally free modules

over S

0→ ωA/S → H1
dR(A/S)→ Lie(A∨/S)→ 0

whose formation commutes with base change.

A.6 Abelian schemes

We collect here definitions and propositions relating to abelian schemes. We include only

the essentials needed.

Definition A.6.1. Let S be a Noetherian scheme, and π : A → S be an abelian scheme

of relative dimension n. That is, A/S is a group scheme where π is smooth, proper, and

the geometric fibers of π are connected. Denote the multiplication by µ : A×S A→ A, the

inverse by ι : A→ A, and the identity by ε : S → A.

Definition A.6.2. The dual abelian scheme over S is

A∨ = Pic0(A/S)
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where Pic0 is the connected component of the identity of the scheme representing the Picard

functor.

Definition A.6.3. The Lie algebra of A/S is

Lie(A/S) = ε∗TA/S

where TA/S = HomOA(ΩA/S,OA) is the tangent bundle of A/S.

Definition A.6.4. The p-divisible group of A/S is

A[p∞] = lim−→
n

A[pn]

where the maps of the directed system are given by inclusion.

Definition A.6.5. A full level N structure on A/S consists of a collection of sections σi :

S → A where 1 ≤ i ≤ 2N such that

(i). for all geometric points s of S, the images σi(s) form a basis for As[N ]; and

(ii). [N ] ◦ σi = ε where [N ] : A→ A is multiplication by N .

We now seek to define a polarization of an abelian scheme. Let L be an invertible sheaf on

A and consider the invertible sheaf on A×S A given by

µ∗(L)⊗ p∗1(L)−1 ⊗ p∗2(L)−1 where A×S A
p2

⇒
p1

A.

Regarding A×SA as a scheme over A via p1, this sheaf defines an A-valued point Λ(L) : A→
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Pic(A/S). Now Λ(L) ◦ ε : S → Pic(A/S) is the identity and thus ψ is a homomorphism.

Also, since the geometric fibers of A over S are connected, we have Λ(L) factors through

A∨ = Pic0(A/S) ↪→ Pic(A/S).

Definition A.6.6. A polarization of an abelian scheme A/S is an S-homomorphism λ :

A→ A∨ such that for all geometric points s of S, the induced homomorphism λs : As → A∨s

is of the form Λ(Ls) for some ample invertible sheaf Ls on As. Such a polarization is said to

be principal if λ is an isomorphism.

Theorem A.6.7. [MFK, Theorem 7.9] Let An,1,N denote the moduli functor of abelian

schemes of relative dimension n, equipped with a principal polarization and level N structure.

If N ≥ 3, then a fine moduli scheme for An,1,N exists.

We now describe the Rosati involution. Let A be an abelian variety over an algebraically

closed field k equipped with a polarization λ : A→ A∨. Let End0(A) = End(A)⊗Q.

Definition A.6.8. The Rosati involution on End0(A) with respect to λ is defined by

ϕ→ ϕ′ = λ−1 ◦ ϕ∨ ◦ λ

for ϕ ∈ End0(A) where ϕ∨ ∈ End0(A∨) is the dual isogeny of ϕ.

Proposition A.6.9. [Mum, pg. 189-190] The Rosati involution satisfies the following prop-

erties.

(i). The map (·)′ : End0(A)→ End0(A) is a Q-algebra homomorphism.

(ii). eλ(ϕx, y) = eλ(x, ϕ′y), where eλ is the Weil pairing induced by λ. As eλ is a non-
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degenerate bilinear form, this immediately implies that ϕ→ ϕ′ is an involution.

(iii). The Rosati involution is positive.

Definition A.6.10. Suppose R is a subring of Q. An R-isogeny f : A → A′ between two

abelian S-schemes is an isomorphism in the category of whose objects are abelian schemes

over S and whose morphisms consist of Hom(A,A′)⊗Z R.

Let A/k be an abelian variety of dimension n with k algebraically closed and let ` 6= char(k)

be a rational prime. Then A[`i] ∼= (Z/liZ)n. We have surjective homomorphisms [`] :

A[`i+1] → A[`i] given by multiplication by `. These homomorphisms are compatible in the

sense that they form an inverse system.

Definition A.6.11. Let A/k be an abelian variety with k algebraically closed. The `-adic

Tate module of A/k is defined to be the inverse limit

T`(A) = lim←−
i

A[`i].

With A/k still an abelian variety over an algebraically closed field, suppose A is equipped

with a principal polarization λ : A→ Â. Then the polarization induces the Weil pairing

A[`i]× A[`i]→ µ`i

where µ`i is the group of `i roots of unity in k. Define the `-adic Tate module Z`(1) = lim←−i µ`i ,

taking the inverse limit over the Weil pairing gives

T`(A)× T`(A)→ Z`(1).
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With Z`(1) ∼= Z` noncanonically, we may choose an isomorphism Z`(1)
∼−→ Z` and thus have

the Weil pairing on the `-adic Tate modules take values in Z`. As the choice of such an

isomorphism is up to some Z×` -multiple, T` × T` → Z` is well-defined up to a Z×` multiple.

Proposition A.6.12. If f : A→ A′ is an isogeny with kernel N , there is an exact sequence

0→ T`(A)
T`(f)−−−→ T`(A

′)→ N` → 0

where N` is the pro-` part of N .

Proposition A.6.13. Let f : A → A′ be an isogeny that is also a Z(p)-isogeny. Then f

is an isomorphism if and only if for all primes ` 6= p, the induced homomorphism T`(f) :

T`(A)→ T`(A
′) is an isomorphism.

The paring on T`(A) induces a pairing on the rational Tate module V` := T`(A)⊗Z Q which

we also call the Weil pairing.

Proposition A.6.14. If f : A → A′ is a Z(p)-isogeny, then the induced homomorphism

V`(f) : V`(A)→ V`(A
′) is an isomorphism.

Define

H1(A, Ẑ(p)) =
∏
6̀=p

T`(A) and H1(A,Ap
f ) =

∏
`6=p

T`(A)⊗Q.

We again have the Weil pairing on H1(A,Ap
f ) taking values in Ap

f (1) :=
∏

`6=p Z`(1)⊗Q.

Proposition A.6.15. If f : A → A′ is a Z(p)-isogeny, then f induces an isomorphism
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H1(f) : H1(A,Ap
f )
∼−→ H1(A′,Ap

f ).
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