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ABSTRACT

MODELING THE ELECTROMAGNETIC FIELD AND THE PLASMA

EXCITATION IN A MODERATE PRESSURE MICROWAVE CAVITY

PLAMSA SOURCE

By

Wen-yi Tan

Microwave plasma sources are used for the generation of plasma discharges in a

number of applications including diamond thin film deposition. A numerical model has

been developed for these microwave plasma sources which includes a electromagnetic

field model and a fluid plasma model. The microwave plasma source modeled was a

cylindrical, single mode excited cavity with an input power probe for coupling the

microwave energy into the cavity. The time-varying electromagnetic fields inside the

resonant cavity, b0th inside and outside the discharge region, are obtained using the

electromagnetic field model which incorporates a finite-difference time-domain (FDTD)

method to solve Maxwell's equations. The microwave electric field interactions with the

plasma discharge are described using a finite difference solution of the electron

momentum transport equation. The characteristics of the discharge are simulated by the

fluid plasma model which solves the electron and ion continuity equations, electron

energy balance equation, and the Poisson equation. A final self-consistent solution is

obtained by iteratively solving the electromagnetic field model and the fluid plasma



model.

In particular, a TMOIn mode, 17.78 cm i.d. microwave cavity plasma reactor used

for diamond thin film deposition is simulated using this numerical model. The spatial

eleCtric field patterns, power absorption patterns, and quality factor of the cavity loaded

with a hydrogen discharge are investigated in the moderate pressure range (1 Torr - 100

Torr). The physical behavior of the hydrogen discharge, such as plasma density, electron

temperature, and plasma potential, are also simulated and analyzed for various input

conditions. The simulated results are compared with experimental data. Calculations of

the electromagnetic fields using the FDTD techniques are also done for a compact electron

cyclotron resonance (ECR) plasma source and for an argon coaxially loaded microwave

cavity plasma source. Additionally, microwave cavities loaded with lossy loads of various

conductivities were simulated and compared to exact analytical solution. Agreement was

found between the numerical FDTD solution and the analytical solution.
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Chapter 1

Introduction

1.1 Introduction

Microwave excited plasmas have demonstrated excellent potential in high-

pressure (>100 Torr), moderate-pressure (1 Torr - 100 Torr), and low-pressure (0.1 mTorr

- 1 Torr) plasma processing applications because of their ability to create high densities of

excited and charged species without high plasma sheath potentials and contamination

from electrodes. One way to create a microwave excited plasma is utilizing a single mode

microwave resonance cavity which couples microwave energy into the discharge with or

without a static multipolar magnetic field [1]. Previous studies have shown that

microwave plasma reactor sources can efficiently produce microwave discharges at high

pressures for thermal processing applications [2], at moderate pressure (10 -100 Torr) for

diamond film deposition [3], and at low pressure for silicon and III-V etching applications

[4115]-

The further development of microwave plasma processing technology requires

that the physical behavior of discharges inside microwave plasma reactors be better

understood and characterized. One of the major issues regarding this field is the plasma
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heating mechanism, and in particular, the electromagnetic excitation mechanism of

discharges inside microwave plasma sources. Generally, the discharges inside these

sources are generated and sustained by the microwave fields either through collisional

(Joule) heating or through electron cyclotron resonance (ECR) heating if an appropriate

static magnet field is present. Inside the discharges, since the mass of electrons is much

less than the mass of ions, electrons are usually accelerated to higher energies than the

ions by microwave fields. Therefore, the electromagnetic field energy is mainly imparted

to the electron gas, and the discharge heating mechanism is mainly determined by the

behavior of electrons.

Under moderate pressure conditions, the ECR heating mechanism becomes

insignificant since the mean free path of electrons, i.e., the distance between two

consecutive collisions, is much smaller than that in low pressure conditions. The electrons

can not resonate in the microwave electric field long enough to gain energy between

collisions. Therefore, under moderate pressure conditions, the plasma is usually

unmagnetized, and created mainly by Joule heating. During the Joule heating process, the

electrons are accelerated by the input microwave electric field, and a net transfer of energy

to the electrons occurs as the electrons undergo elastic collisions with heavier particles

such as ions and neutrals. In particular, the direction of electron motion changes during

elastic collisions, causing a net transfer of energy from the oscillating microwave fields to

the electron. This energetic electron gas can further transfer energy to heavier gas particles

by inelastic collision processes, such as gas ionization and dissociation. Thus, the input

gas is partially ionized and a discharge inside a plasma reactor is created.
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Once ionization and dissociation occurs, the energy loss mechanism of discharges

depends on a number of factors including a key factor which is pressure. When the

pressure is low, the collisions between particles are infrequent, so electrons, ions, and

dissociated atoms will diffuse to the boundary wall where wall recombination takes place.

Hence, the discharge spreads out and fills the whole chamber, and the main energy loss is

due to diffusion processes. As the pressure is increased the rate of volume recombination

increases. Electrons, ions, and free radicals recombine quickly and convert the ionization,

dissociation and excitation energy into thermal energy. The discharge then contracts away

from the wall boundary and becomes thermally inhomogenious. Heat conduction then

becomes an important energy loss mechanism of the discharges [2H3].

A key consideration for the operation of microwave plasmas is the impedance

matching between the microwave generator and the applicator which couples the

microwave power into the plasma. An impedance mismatch causes a partial reflection of

microwave power by the applicator; hence not all the power delivered by the generator

can be used to sustain the plasma. This behavior essentially arises from the fact that the

impedance of the applicator, and the resonance characteristics of a cavity, strongly depend

on the actual plasma state, e.g., density, temperature and electrical conductivity.

Therefore, in order to understand the coupling efficiency from the generator to the

applicator, the characteristics of the resonant cavity, and the interactions between

discharge and resonant microwave field, have to be studied in a systematic manner.

In order to understand these behaviors of the plasma inside a cavity reactor source,

microwave fields, gas transport, energy transport, as well as, their relations should be

investigated carefully. The coupling among these is complex and analytic models are hard



4

to apply to handle these problems. Thus, a systematic numerical model, which can self-

consistently solve the plasma behavior as well as the exciting microwave fields, is

essential to provide insight, interpret experiments, and help in the design, development,

and control of microwave plasma reactors.

1.2 Objective

The overall objective of this study is to develop a self-consistent numerical model

of a single mode microwave cavity plasma reactor source. This model will provide the

steady state electromagnetic field solutions inside cylindrical resonant cavity structures

loaded with H2 discharges, as well as, be used to investigate the excitation mechanism and

characteristics of these discharges across a pressure range (100 mTorr to 100 Torr) and

across an input power range. The overall significance of this study is to build up a self-

consistent model of microwave cavity plasma excitation.

The overall objective may be divided into several specific objectives which

include:

1. To develop a time domain numerical model to simulate the steady state

electromagnetic fields inside a cylindrical cavity with a specific resonant mode or input

coupling structure. The cavity can be either empty or loaded with a plasma.

2. To develop a plasma model which can describe the physical behavior and

investigate the characteristics of H2 discharges inside a microwave cavity plasma reactor

source.

3. To couple these two models together to build up a self-consistent microwave

cavity plasma reactor model. The discharge excitation mechanisms and the microwave
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power absorbed by the discharge will be investigated in detail by this model.

4. To verify that the models developed agree with experimental diagnostic

measurements.

1.3 Outline

This dissertation is organized as shown in Figure 1-1. Chapter 2 presents the finite

difference time-domain (FDTD) model which is used throughout this study for

electromagnetic field simulation. The plasma conductivity models used for determining

the microwave power absorbed by the discharges are developed in both the frequency

domain and the time domain. Chapter 3 reviews the numerical models for plasma

discharge simulation and presents the fluid plasma model used in this study for microwave

discharge simulation. The physical background and numerical techniques used for model

development are discussed. Chapter 4 provides the simulation results of transient state

response of empty and loaded resonant cavities. The FDTD model is applied to investigate

the characteristics of resonant cavities, such as the natural frequency response, cavity

quality factor Q, and the electric field patterns. The resonant cavities which are

investigated in this chapter include empty cavities operating in various resonant modes,

cavities loaded with lossy materials and argon discharges, and a compact ECR ion source.

Chapter 5 presents the simulation results of the electromagnetic behavior of a steady-state

microwave cavity plasma reactor used for diamond film deposition. The method used to

model the input power coupling is included in the FDTD model. Plasma discharges used

here are assumed spatially uniform and with a constant temperature. Electric field and

power absorption patterns under various input conductions are presented. Chapter 6
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couples the FDTD electromagnetic field model with the fluid plasma model to provide a

self-consistent microwave cavity plasma reactor model. The characteristics of discharges,

such as densities and electron temperature, are investigated under various input

conditions. The simulated cavity quality factor Q is compared with experimental results.

Chapter 7 presents the conclusions and some speculations on future research and

numerical model development for microwave cavity plasma reactor simulation.



Chapter 2

Electromagnetic Field Model

2.1 Introduction

Microwave fields serve as the energy source to excite and sustain the discharge

inside cavity plasma reactors. The microwave energy is imparted into the cavity as shown

in Figure 2-1 through an input electromagnetic coupling structure, such as a power

coupling probe, and confined by the cavity walls which serve as the electromagnetic

boundaries. When the exciting wave frequency and the cavity size match a certain

resonant condition, the electromagnetic field will oscillate back and forth inside the cavity.

These oscillating electromagnetic fields usually have specific field distribution patterns, or

so called resonant modes, so the electromagnetic energy can focus on some local regions

inside the cavity and breakdown the gases. These ionized gas species form the plasma

discharges which are usually confined in a container, such as a quartz chamber. For an

empty lossless cylindrical cavity, the electric field pattern, or the resonant cavity mode is

well characterized by the size and resonant frequency. When a plasma is present, the

plasma acts as a volume of lossy material loaded inside the cavity. It changes the resonant

electric field patterns and the characteristics of the resonant cavity because microwave
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Figure 2-1: Schematic description of microwave discharge generation.
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power is absorbed by the plasma. Moreover, since the plasma discharges are generated by

the resonant electromagnetic fields, changes of the resonant behavior of the cavity also

affect the characteristics of the discharges.

Since the resonant electromagnetic fields play a vital role for microwave discharge

characterization, a mathematical model is required to describe the electromagnetic field

behavior inside the plasma reactor system. In this chapter, the history of electromagnetic

field models, both frequency domain or time domain modules, used for solving the

resonant electromagnetic fields inside cavities are reviewed. The technique and

background of the finite-difference time-domain method, which is used in this study to

model the electromagnetic fields, are examined in detail. The method to implement the

FDTD model in cylindrical coordinate is next described. Finally, the techniques used to

solve electromagnetic field interactions with lossy materials and plasma discharges by

coupling the FDTD model with appropriate conductivity models and by simultaneously

solving the Maxwell’s equations with the electron momentum transport equations are

discussed.

2.2 Review of electromagnetic field model

One way to model the electromagnetic fields in a system is directly solving the

Maxwell equations, which govern all well-behaved electromagnetic quantities. The

Maxwell equations are
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BI!
VXE = — E

3E
VXH — 83—" +1 (21)

VoE = E

E

V-H = 0

where E is the electric field strength (Volts per meter), H is the magnetic field strength

(Amperes per meter), J is the electric current density (Amperes per square meter), p is the

electric charge density (Coulombs per cubic meter), 8 is the electric permittivity of the

medium (Coulombs per Volt-meter), and it is the magnetic permeability of the medium

(Volt-seconds per Ampere-meter). This differential form of Maxwell’s equations can be

solved either in the frequency domain or in the time domain.

2.2.] Frequency domain

To solve the electromagnetic fields for a resonant cavity in the frequency domain,

the electromagnetic quantities such as E and H are often assumed to be time-harmonic,

i.e., their time dependence can be described by a periodic sinusoid and can be included in

Maxwell’s equations as a factor of the form e’m. Then, the Maxwell equations are

converted to vector Helmholtz equations, and the E-field and the H-field are analytically

solved in cylindrical coordinates in terms of a set of Bessel function type solutions [49].

The problem becomes an eigenvalue problem and the electromagnetic field solution inside

the cavity can be expressed in terms of the eigenmode solutions such as the transverse

magnetic mode (TM mode) and transverse electric mode (TE mode) solutions[49]. For a

loaded cavity, i.e., different mediums filled inside the cavity, the electromagnetic fields
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can be expanded in terms of a series of eigenmode solutions in each medium region, and

appropriate boundary conditions are applied to ensure the electromagnetic continuity

conditions are satisfied at the boundaries. A characteristic equation then be formed to

determine the unknowns of the field solutions and can be solved either by graphical

techniques or by numerically searching for the eigenvalues using a complex root finding

method. This so called mode-matching or mode-expansion technique of solving time

harmonic electromagnetic field solutions has been well established for studying the

electromagnetic field behaviors inside coaxially loaded cylindrical waveguides and

cylindrical resonant cavities loaded with lossy materials [8].

In terms of microwave cavity plasma reactors, the same techniques can be applied

to investigate the microwave and plasma behavior by treating the discharges as lossy

materials. J. R. Roger [6] used this technique to solve the electromagnetic behavior inside

a cavity containing a quartz-tube-confined Ar plasma by treating the plasma as a lossy,

homogeneous, isotrOpic, rod-shaped material. M. L. Passow, et a1. [7] used the same

electromagnetic analysis to determine the electron density, conductivity and collision

frequency of a tube-contained air discharge. Modeling the inhomogeneous properties of

plasmas using the mode-matching technique has been investigated by S. Offermann

[9][10]. He coupled the Maxwell’s equations together with an energy balance equation to

solve the local dielectric constants of a high pressure Hg plasma. In order to reduce the

complexity of this problem, only TMOmO modes were considered, which reduced the field

configuration to one dimension only.

Generally, there are two major difficulties in applying the frequency domain

electromagnetic field solutions and mode-matching methods to solve the plasma-loaded
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cavity problem. First, the plasma discharges inside microwave cavity reactors are

inhomogeneous, anisotropic, and dispersive (the electric properties dependent on

excitation frequency) in nature. This behavior makes the mode-matching method hard to

apply to solve the plasma-loaded cavity problem. Another problem results from the

geometry of the lossy load (discharge) or resonant cavity. If the load or cavity are

geometrically complex, the number of boundary conditions needed for field solutions

increases leading to intractable computer solutions.

2.2.2 Time domain

An alternative way to solve the electromagnetic field inside the cavity is to directly

solve the time-dependent Maxwell’s equations by using a finite-difference time-domain

(FDTD) method. The FDTD technique was first proposed by K. S. Yee in 1966 to solve

the interactions of electromagnetic waves with perfectly conducting material [11]. In his

model, the time-dependent Maxwell’s equations in a rectangular coordinate system were

expanded to a set of six scalar equations:

29H,r [[35y 352)
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These scalar equations were further discretized in both the time and space domain

get a set of finite difference equations:
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H"+1/2(i,j+l,k+l)-H"+U2(i,j—l,k+1)

1‘ , 2 2 x 2 2 4,10 .k+1)

K Ay ’ ’j’ 2)
  

where (i, j, k) denotes a grid point in space and n denotes the time step, Ax, Ay, and A2 are

the space grid unit in x, y, and 2 directions, and At is the time step. These field components

in a unit cell are assigned in an interleaved manner similar to that shown in Figure 22.

With the system of equations, (2.8) to (2.13), the new value of a field vector component at

any grid point (e.g. Ex"), depends only on its previous value (e. g. EX“) and the value of
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Figure 2-2: A FDTD unit cell in three-dimensional cylindrical coordinates.
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the components of the other field vector at the adjacent point, which are perpendicular to it

(e.g. Hymn/2 and Hle/Z). Therefore, with appropriate initial and boundary conditions,

the electromagnetic fields on the grid points of the space mesh can be evaluated in time

domain at alternate half-time steps (leapfrog method). By the stagger mesh arrangement in

space and by the leapfrog time marching method, as shown in Figure 2-3, the numerical

solutions of the FDTD model can achieve second order accuracy both in time and space

[55].

This method has been used extensively to investigate the electromagnetic wave

scattering phenomenon with dielectric or conducting objects. R. Holland, et. al.,

developed a three-dimensional computer code based on the FDTD method, to solve the

electromagnetic pulse field scattering and surface currents for an aircraft [12]. Steady-

state, sinusoidal electromagnetic scattering and penetration problems were investigated by

A. Taflove, et. al., using the FDTD method for arbitrary metal or dielectric structures

[13][14]. The electromagnetic power deposition in a human body has also been simulated

by the FDTD method [17][18]. The model of the human body is an anatomically based

model, which is an inhomogeneous, human shaped structure and composed of different

types of tissues. Each tissue is assigned a set of specific dielectric constant and

conductivity values, which can be used to determine the electromagnetic power absorbed

by the tissue [19].

By using the Fourier Transform technique, the results of the FDTD method can be

used to calculate the parameters in the frequency domain. This technique has been applied

to analyze the characteristics of microsuips, waveguides, as well as, resonant cavities

[201-[26]. X. Zhang et. al. [20][21] use the FDTD method with Gaussian pulse excitation,
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which provides a wide band of frequency, to investigate the dispersive characteristics and

discontinuity of microstrips. In terms of resonant cavities, D. H. Choi, et al., used the

FDTD method and discrete Fourier transformation (DFI') techniques to solve three

dimensional eigenvalue problems of inhomogeneous rectangular resonators [24]. The

steady-state FDTD solution was treated as a time-harmonic function, from which the

eigenvalues (resonate frequencies) were extracted by a discrete Fourier Transform

technique given by

s m = 25" (10,1'0, k0) exp (—j21tsnf) (2.14)

n

where S is the frequency (f) response spectrum, F is the FDTD solution at grid point (10, jO,

k0) of the 11‘h iteration, and s is the stability factor. The same method was also used by A.

Navarro, et. al., [25] to calculate the resonant frequencies of TEO and TMO mode

cylindrical cavities with a axially symmetric dielectric load at the base. The FDTD

method was also applied to simulate the microwave interactions with materials inside a

resonant cavity. M. F. Iskander, et al., [26] used the FDTD method to simulate the

sintering process of ceramics inside a rectangular, single mode microwave cavity. They

provided a model which utilized a realistic wave excitation arrangement to improve the

calculation of the cavity Q and the shift in resonant frequency. The steady state spatial

electric field distributions were solved for both empty and loaded resonant cavities. The

power absorption for different materials loaded inside the resonant cavity under different

operating conditions was also calculated and analyzed.

There are several advantages of using the FDTD method to simulate the
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electromagnetic field behavior for a plasma loaded resonant cavity. First, it is easy to

implement for complicated loads (like plasmas), because spatially varying dielectric

parameters can be assigned using grid points. Second, complex simulation structure, such

as the discharge or cavity reactor geometry, can be solved by the FDTD method by using

appropriate grid structures. Moreover, most of the plasma numerical models, both particle

and fluid models, can be easy coupled to the FDTD model because both are in the time

domain. Therefore, the FDTD method has great potential to solve the electromagnetic

fields inside a discharge loaded cavity.

2.3 FDTD model implementation in cylindrical coordinates

As mentioned above, the finite-difference time-domain (FDTD) method is a good

choice for solving the electromagnetic fields inside a plasma loaded cavity. The FDTD

method used in this dissertation is adopted from Yee’s algorithm [11] and transferred into

three-dimensional cylindrical coordinates. In cylindrical coordinates, (2.1) can be

expanded as six scalar equations given by

BHr ltagq, 13132]

u

a -.-.- 5.2. —;§$ (2.15)

31¢ _—. l[a_EZ_a_E'] (216)
a: [.1 Br 82 '
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fr _ l[l?:12_a_H¢]-:’ (218)
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These six differential equations can be discretized in both time and space domain by the

central finite difference method. The resulting finite difference equations in cylindrical

coordinate are:
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where n is the time index, i, j, k are space indexes, At is the time step, Ar, At]; and A2 are

the dimensions of the unit cell in r, t1) and z direction, and rindex is position in r direction.

Similar to rectangular coordinates, the six field locations in cylindrical coordinates are

assigned to be interleaved in space to satisfy the continuity of tangential field components,

as shown in Figure 2-2. If the dielectric parameters, such as permittivity e and

permeability rt, are space dependent, appropriate values are assigned to lattice points for

each field component. Therefore, inhomogenous, anisotropic, or arbitrary shape materials

can be easily handled by the FDTD model.

If the simulation domain is (1) symmetry, such as the TMO mode resonant cavity

problem, the three dimensional FDTD model can be reduced to a two dimensional model

by neglecting all the variation in the 4) direction, and the index (i, j, k) in (2.21) to (2.26)

reduce to (i, k) only. The discretized two dimensional Maxwell’s equations by assuming 4)

symmetry can be rewritten as:
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The time step in (2.21) to (2.26) and (2.27) to (2.32) is determined by the cell size

and must satisfy the stability condition [13]:

 

5min . .

At 5 for three drrnensrons (2.33)

vme

and

At S m" for two dimensions (2.34)

vmaxJ5

 

where 8m." is the smallest space grid size, and vmaJlr is the maximum phase velocity within

the model. vm is typically selected as the speed of light, c.

2.4 Conductivity models for FDTD model implementation

For the resonant cavity simulation, the current density (J, 1,1,, Jz) in equations

(2.24) to (2.26) represents the current density which is induced by the applied

electromagnetic fields. It plays an important role in the FDTD model because it describes

the electromagnetic power absorbed by the loaded material or cavity wall. For an empty or

perfect dielectric (loseless) medium loaded cavity with perfect conducting walls, the
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current density is zero and there is no power loss in the cavity. When losses occur due to

the presence of a lossy medium, such as a plasma load, the power density P absorbed by

the medium is:

P(r, t) = J(r,r) 0E(r, t) . (2.35)

The current density J can be determined by using an appropriate conductivity

model for lossy materials or plasmas. The plasma conductivity model can be established

in the frequency (time—harmonic) domain as a fixed conductivity or in the time domain by

solving the momentum transport equation of electrons, where J = env. Additionally, the

current density J also can be calculated by averaging over the particle velocities in a

particle type plasma simulation.

2.4.1 Conductivity model for non-dispersive lossy materials

When electromagnetic fields interact with a non-dispersive (the dielectric

parameters are independent of frequency) lossy material, the current density (J,, J¢, J2) in

(2.24) to (2.26) can be evaluated using the conductivity of the load, i.e.

J,,,(i.j.k) = o<i.j.k)E,,(i.j.k), m=r,¢,z (2.36)

where i, j, and k denote the grid indices in the r, (p, and z directions, respectively. In this

case, like 6 and 1.1, o can be assigned to each lattice point to calculate the current density.

By substituting (2.36) into (2.24) to (2.26), the equation in center finite difference form for

E,, for example, can be rewritten as



27

Ef”(i+%,j,k) = CA,(i+%,j,k)Ef(i+%,j,k)+ Al’

£(i+ §,j,k)

fH:+l/2(i+%,j+%,k)—Hn+l/2(i+-1' '—-1-k) \

 

 

   

  

’ 2” 2’ (2.37)

x ’i+1/2A¢

H n+l/2(i+l . k+l)_Hn+l/2(i+_1_. k-l)

4* 2’1’ 2 e 2”’ 2

\- Az )

where

. l . . l . -l

1 Orl+§,j,k AI Or l+§,j,k A!

CA,(i+-,j,k) = 1— x 1+ (2.38)

2 . l . . l .

2811 + 2’1’ k) Ze,(r + 5,11)

Similarly, E,» and E2 can be rewritten in this manner.

2.4.2 Plasma conductivity model

Plasma discharges can also be viewed as lossy materials, and microwave power

absorbed by the plasma can be described using a plasma conductivity model. The

conductivity of a plasma can be derived by solving the macroscopic motion of the

electrons under the influence of applied forces and particle collision processes. The

microscopic electron motion can be described by the electron momentum transpon

equation, i.e., the Langevin equation [50] under the assumption of the cold plasma:

me%v(r,t) = —e(E(r, t) + v(r, t) xB (r, t)) —meveff(r, t) v(r, t) (2.39)

where v is the average electron velocity, E is the applied electric field, B is the applied
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magnetic field, q is the electron charge, me is the electron mass, and vefl is the effective

collision frequency which represents the elastic collision frequency between the electron

and neutrals for momentum transfer. This equation assumes that the electrons are free to

move in a stationary uniform background of ions and neutral which provide a viscous

damping force to the motion of the electrons. It is suitable. for partially ionized and elastic

collision dominate discharges such as those of interest in this study.

From (2.39) the current density can be determined as

J (r, t) = —ene (r, t) v (r, t) (2.40)

where ne is the electron density. By equation (2.39) and (2.40), the characteristics of the

plasma (tie and vefl) can be coupled with the J quantity in FDTD model to investigate the

electromagnetic excitation of discharges inside microwave cavity plasma reactor.

Equation (2.39) can be solved and modeled in either the time harmonic domain or the time

domain.

2.4.2.1 Time harmonic domain solution

In the time harmonic domain, the applied electric field is considered oscillating

harmonically with time, E = Eoeimt. For unmagnetized plasmas, the steady state

solution for v must have this time dependence given from (2.39)

jwmev = — eE — mvveff (2.41)

therefore,
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From (2.40), the current density is

J = CE = —enev (2°43)

and the conductivity of an unmagnitized plasma is

ezn v

o: m‘[ 2 eff 2—j 2‘” 2]. (2.44)

e veff+w veff+w

Also, the dielectric parameter of an unmagnitized plasma can be written as

e = 808,

2 2

(o v (o (2.45)
£,=1_j£= 1___L_ +j_€[. P

(”80 v2 + m2 (n v2 + (02
eff eff

where (0,, is the plasma frequency, which is defined by [50]

2

nee

(up = . (2.46)

"1:80

The time-average electromagnetic power absorbed by the plasma can be expressed

as[1]

<P>,,,,(r) = §Rewm . (o(r)E(r))*) (2.47)
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where P has the units of power density (Watt/m3). Substituting equations (2.43) and (2.44)

into equation (2.47), the time-average-absorbed power density of an unmagnitized plasma

is given by

 

n e2 ve

(”abs”) = 2:" [ 2 ff ZJIEUHZ (2.48)

e veff+w

where lE(r)| is the magnitude of the electric field as a function of r. From above, the power

absorbed by the discharge is proportional to the real part of the plasma conductivity, or the

imaginary part of the plasma dielectric constant.

For magnetized plasmas, the conductivity is in a complex tensor form, which

indicates the anisotropic properties of a magnetized plasma. By assuming the magnetic

field B exits only in the z direction, i.e., B = B02, the relation of the current density to the

applied electric field can be expressed as [50]:

 

r '- r 1 r -

J)r ol —0x 0 EJr

J, = ox <3l 0 Ey (2.49)

J O O 0,, E2     

where
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a)“ is defined as the electron cyclotron frequency, which is equal to eBO/m9.

Similarly, by substituting equations (2.49) and (2.50) into equation (2.47), the

time-averaged power density absorbed by the magnetized plasma becomes:

1 2 2

(P)abs (r) = 5(Re (oi) |Ei (r)| + Re (on) '511 (r)| ) (2.51)

where the symbol J. means perpendicular to the static magnetic field (B2), and // means

parallel to the static magnetic field (B2). If the time-varying electric field is perpendicular

to the static magnetic field only, the time-averaged power density absorbed by the plasma

becomes:

  

2v

(P)a,,_,.(r) = "‘8 e” 1 + 1 )lEml2 (2.52)
4me (Vesz'i' (to—(ow)2 (Vesz+ (w+coce)2)

Note that when to >> vefir and race ~ to, (2.52) represents the electron cyclotron heating

mechanism.

The above conductivity expressions can be coupled with the FDTD method by

assigning the calculated conductivity value at each grid point. This method can

approximately provide the power absorption solutions of the plasmas. However, because
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plasma discharges are dispersive in natural, i.e., its macroscopic dielectric parameters are

dependent on its excitation frequency, these conductivity models expressed in frequency

domain are highly dependent on the real exciting frequency. This will cause difficulties

while applying them in time-domain simulations (such as the FDTD model) where the

time variation of the electric fields may not be known before the simulation begins [16]. In

this study, in order to not lose generality, the Maxwell’s equations are solved self-

consistently in the time domain with the electron momentum transport equation (2.39).

The details are provided in the next section.

2.4.2.2 Time domain solution

To model the plasma conductivity due to an applied electric field in the time

domain, 8 and u in the discretized Maxwell’s equations (2.21) to (2.26) are set equal to £0

and #0 (dielectric parameters in vacuum or air), and the current density in equations (2.24)

to (2.26) is evaluated using the electron momentum transport equation (2.40). To get the

time domain solution of equation (2.40), the finite difference method is used to discretize

this first order differential equation in time. Neglecting the static magnetic field, (2.40)

becomes

n .. .. n—l.. Arn-r..

vr,¢,z(z,j,k) = (1.0—At-veff(z,1,k)) -v,,¢,z(z,),k)—%n: “wow/c) (2.53)

and the current density is

J”,_,(i.j, k) = —qn,(i.j. k) vf,,,,(i.j, k) (2.54)
r,
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where n denotes the time iteration count, At is the time step, and i, j, k denote the grid

location. Equations (2.53) and (2.54) are solved simultaneously with equations (2.21) to

(2.26). The absorbed power density can be solved directly by coupling (2.53) with (2.35).

From the above equations, the space-dependent current density J is determined by

the space-dependent discharge characteristics such as electron density ne and effective

collision frequency vefir. Moreover, the effective collision frequency which describes the

momentum transfer due to electron-neutral elastic collisions is a function of electron

energy distributions (electron temperature). For a complete microwave plasma excitation

solution, the electron density and electron temperature must be solved self-consistently by

using appropriate plasma models, such as fluid (continuum) or particle plasma models.

These models used for solving the characteristics of plasma discharges are discussed in

the next chapter.

2.5 Summary

The electromagnetic field model for this study was developed in this chapter. The

model developed solves Maxwell’s equations in two and three dimensional cylindrical

coordinates using a FDTD technique. The microwave induced current density which

determines the power absorption inside the cavity was described by using conductivity

models. The methods developed to describe the conductivity of discharges included the

solution of the electron momentum transport equation either in the frequency domain or in

the time domain. This electromagnetic field model will be verified by the transient state

simulation results of empty and loaded cavities in Chapter 4.



Chapter 3

Numerical Models of Plasma Discharges

3.1 Introduction

In this chapter, numerical models which describe the behavior of plasma

discharges are presented and developed. First, the models used for plasma simulation in

the literature are reviewed and the physical background of discharge transport behavior is

discussed. Next, the fluid description of the plasma based on the moments of Boltzmann

transport equation is derived. Finally, the numerical methods used for solving the fluid

model description are introduced.

3.2 Review of plasma discharge models

Generally, for plasma-aided processing simulation, there are two major approaches

to solve the transport behavior of discharges. One is the particle approach, which is done

using the particle simulation technique which treats the plasma as a combination of

particles (electrons, ions, and neutrals) and calculates the trajectories of many particles in

time to obtain the macroscopic quantities of the plasma. The other one is the continuum

(or fluid) approach, which neats the plasma as a fluid and solves the moment equations of

the Boltzmann transport equation (BTE) which include the continuity equation,

34
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momentum transport equation and energy transport equation of each plasma species by

appropriate numerical techniques. The fluid models and particle models are sometimes

combined together as a hybrid fluid/particle model to provide self-consistent solutions.

These models are reviewed in this section.

3.2.1 Particle model

The particle models simulate the trajectories of particles inside the discharge as

they move through a system under the influence of the applied fields and random

scattering forces. If the number of simulated trajectories is large enough, the average

results provide a good approximation of the particle transport behavior inside the

discharges. There are two types of particle models used in plasma processing simulation.

The first is a single particle Monte Carlo method, which precisely simulates a single

particle trajectory and its collision events. It is usually used to solve the transport

parameters such as mobility, diffusion coefficient and various collision rates of the plasma

species. M. J. Kushner [31] and B. E. Thompson, et. al. [32] studied the secondary

electrons phenomena and ion bombardment properties respectively in RF discharges by

the Monte Carlo techniques. A similar technique was developed by J. I. Ulacia and J. P.

Mchttie [33], to perform a two-dimensional plasma etching simulation. The motion of

electrons in applied magnetic fields has also been investigated using Monte Carlo methods

by G. R. Govinda Raju [34] and T. E. Sheridan, et. al. [35].

The major problem of the single particle Monte Carlo methods for plasma

simulation is the inclusion of the local electric field induced by charge densities variations.

To overcome the above problem, a many-particle simulation method, particle-in-cell
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method (PIC), is introduced in combination with the Monte Carlo collision method [47].

Originally, the PIC method was used in hot fully ionized collisionless bulk plasmas

(especially for fusion plasmas) [36]. The defining characteristic of the PIC simulations is

the method of calculating the force acting on each particle. The simulation region is

divided into a number of cells and the resulting grid is used in the solution of a field

equation (e.g. Poisson’s equation) from which the force on each particle can be

determined. Each simulation ‘particle’, also called a superparticle, is actually a group of

charges with a specific charge density. The history of the development of the PIC method

and the details of melding of PIC with Monte Carlo collision models was reviewed by C.

K. Birdsall [36].

Recently, the PIC method merged with the Monte Carlo collision method has been

used to model bounded, partially ionized, collisional discharges, which are used

intensively in industrial applications. D. Vender and R. Boswell [37], M. Suerndra and D.

B. Graves [38], H. W. Trombley et. al. [39], and R. W. Boswell and D. Vender [40] have

used the PIC method together with the Monte Carlo method to investigate RF discharge

behaviors for various operating conditions. T. A. Grotjohn [41] used a PIC/Monte Carlo

particle model coupled with FDTD solutions of Maxwell’s equations as mentioned in

Chapter 2 to model a compact ECR ion source in the 2d3v domain. In this magnetized

discharge simulation, the electron and ion trajectories were determined by the Lorentz

force equation and elastic/inelastic collision events.

In many cases, the particle models are the most accurate techniques available for

analyzing and simulating the plasma transport behaviors. Moreover, it is well suited for

low pressure, ECR, and non-equilibrium discharge simulation. However, its time-
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consuming nature when implemented in computer programs largely reduces its efficiency.

This is especially unattractive for large simulation domains (>> particle mean free path)

and three dimensional (3d3v) simulations. Therefore, in this study, the microwave

discharges are modeled based on fluid techniques.

3.2.2 Continuum (fluid) model

In continuum plasma models, the transport behavior of the plasma species are

described by moment equation solutions of the Boltzmann transport equation, including

the continuity equation, momentum transport equation, and energy transport equation.

These moment equations are often combined with Poisson equation to provide self-

consistent solutions. Under the assumption of a steady state thermal equilibrium existing

in the system, the fluid model might be simplified to solve only the continuity equation

and Poisson equation and becomes the drift-diffusion model. The details of these models

will be discussed in next section.

Fluid models have been used in the simulation of capacitively coupled DC and RF

discharges. The first global self-consistent continuum DC and RF discharge models were

build up by D. Graves and K. F. Jensen [27]. They solved the electron and ion continuity

equations, the Poisson’s equation, and an energy conservation equation for electrons.

Assuming collisionally dominated particle motion, the electron and ion momentum

transport equations were reduced to expressions for particle flux incorporating mobilities

and diffusivities. A finite-element method with mesh points was used for solving the

equations. D. Graves later coupled an electron excitation term into this model to

qualitatively examine the time and space dependence of rates of electron impact excitation
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[28]. J. P. Boeuf added negative ions into the continuity equations, and analyzed the

influence of frequency and gas composition (electropositive v.s. electronegative gas) on

RF glow discharge properties [29]. A local equilibrium approximation was assumed, so

the transport parameters were dependent on the local electric field. An implicit finite

difference scheme was used for the numerical technique. The same fluid model and

assumptions were extended to two-dimensional simulations for N2 and SF6 RF glow

discharges by J. H. Tsai and C. Wu [30]. They used a more accurate flux-corrected

transport method and a reconstructed fast-Fourier—transform technique to solve the

continuity equations and Poisson’s equation respectively.

The transport parameters and collision rates used in fluid plasma model are

sometimes determined by Monte Carlo techniques. M. S. Barnes, et. al. [42] used this

method to solve ion and electron continuity equations for RF glow discharge. In his later

work, Barnes further coupled the Monte Carlo method with three moments of the

Boltzmann transport equation for steady state RF discharge simulation [43]. The

nonequilibrium characteristics of electron transport was taken into account by N. Sato and

H. Tagashira [44] in their flux-corrected transport fluid model. In their study, the Monte

Carlo simulation showed the electron transport properties were not in equilibrium with the

local electrical field for SiH4/H2 mixture RF discharges.

For microwave ECR plasmas, due to the low operating pressure (0.1 mTorr to few

mTorr), fluid models may no longer be valid. However, a direct application of a particle

model (like PIC/MC) cost a lot of time for realistic ECR reactors, which normally require

simulation in two (or three) dimensions. R. K. Porteous and D. B. Graves [45] developed a

hybrid electron fluid-particle ion model for magnetically confined low pressure discharges
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with cylindrical axisymmetry. Ions are treated as particles, which can u'avel in two

dimensions under the combined influence of applied static magnetic fields and the self-

consistent electric fields solved by Poisson’s equation. Non-uniform grids were used

ranging from 0.5 Debye lengths to 300 Debye lengths. Electrons were treated as a fluid,

which were strongly magnetized and had only axial directional motion. A Maxwell-

Boltzmann distribution was assumed and both the continuity and energy equations were

solved for electrons. Power was directly deposited into electrons with an assumed profile.

This work provide the possibility of treating a two-dimensional system which had a very

small Debye length to system chamber length scale ratio.

Y. Weng and M. J. Kushner [46] used a hybrid Monte Carlo- fluid model to

investigate the electron energy distributions in ECR discharges. The Monte Carlo

simulation of the electron swarm was capable of resolving the electron-electron collisions

and provided the details of electron energy distributions. This MC simulation was

iteratively combined with a fluid model, which solved the electron and ion continuity

equations, to calculate ambipolar electric fields. The electric field cycled back to the MC

simulation and was included in the equations of motion for electrons. The microwave

electric fields were assumed to be a plane wave with uniform amplitude as a function of

radial position. The results of the fluid model for the ambipolar potential, though applied

in low pressure, successfully agreed with experimental results.

Two major difficulties which arise while applying a continuum model for plasma

simulation are: (1) If the pressure is low in the system, the collisions of particles are

infrequent. The mean free path for the particles (especially electrons) becomes large, and

in some case larger than the chamber dimensions. It is not suitable to apply fluid models



40

when the mean free paths are not the smallest characteristic length in the system. (2) For

discharges with non-equilibrium or large density (or energy) gradient regions, e.g. sheath

or ECR regions, the transport parameters and rates used in the moments of Boltzmann’s

equation are difficult to determined. The fluid model is inappropriate to apply under these

conditions.

3.3 Model development

The fluid plasma model used in this study is established in this section. The

physical background for model development, such as the concept of distribution function

and Boltzmann transport equations, is discussed. The moments of Boltzmann transport

equations are derived in detail. Finally, the moment equations used in the fluid plasma

model are introduced.

3.3.1 Distribution function

Plasmas consist of several categories of particles, including the electrons, ions, and

neutral species. In order to give a complete specification of the properties of this system of

particles, it is necessary to know the phase space location, i.e., the position r and velocity

v, of each particle. The number of particles in an elemental volume of the phase space at

any instant of time can be statistically specified by a distribution function f (r, v, t) . Then,

the density of particles n (r, t) at a given position inside the system can be determined by

integrating the distribution function over all velocity volume as

n(r,t) = [f(r, v, r) dv. (3.1)
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Then, the average quantity ¢ of the entire collection of particles is given by

1

n (r, I)

 

(4» = [4» (r. v. t)f(r. v. z) dv . (3.2)

For example, the average velocity (v (r, t)) , and energy (i (r, t)) of all particles are

 (v(r,t)) = "(1”)Jv(r,t)f(r, v, t) (IV (3.3)

(§(r t)) = —-—1——Ilmv2f(r v t)dv (3 4)

’ n(r,t) 2 ’ ’ '

respectively. Thus, the distribution function f can be described by the macroscopic

quantities (also called moments) defined by (3.1), (3.3) and (3.4) as shown in Figure 3-1.

The area under the distribution function f is described by the density n, the displacement

off described by the average velocity <v>, and the width off is described by the average

energy <§>.

If the system is in thermodynamic equilibrium and not subject to any external

force, the distribution function fbecomes the Maxwellian distribution

m )3/2 —-mv2/2kBT

f(r. v. r) = ntr.:)(m 7. e (3.5)
B

which is isotropic in velocity space. Sometimes, it is convenient to express f as a energy

distribution
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0 <v> v

Figure 3-1: The distribution functionfcan be described by three moments: n, <v>, and

<§>.
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LIE e—g/ZkBT
 

f(i) = (3.6)
J?! (kBT) 3/2

where f(E) has been normalized so that

gm.) at. = 1 . (3.7)

Using the Maxwellian distribution function, the average energy of all particles in

thermodynamic equilibrium can be determined by (3.4) as

(i) = ngT . (3.8)

3.3.2 Boltzmann transport equation

When an external force is applied to the system of particles, the transport

behaviors of the particles inside the discharge can be characterized by the Boltzmann

transport equation (BTE). The Boltzmann transport equation, which describes the motion

of the distribution function due to an external force in coordinate and velocity space, can

be written as

3f . E. _(§£)
37+v Vf+m Vf— at can (3.9)

where V, is a gradient in coordinate (x, y, 2) space, Vv is a gradient in velocity space, F

represents external forces, and m is particle mass. The right hand side of equation (3.9)

includes the randomly-timed scattering events that the particles experience, such as elastic
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collisions, ionization collisions, and recombination collisions.

Since equation (3.9) does not have a direct, closed form solution, an alternative

way to solve this equation is to make a series of simplifying assumptions to obtain the

moments of the Boltzmann transport equation. The basic assumption is that the

distributions of each plasma species can be described adequately by three macroscopic

quantities, namely, particle density n, drift velocity (v), and temperature T. The use of the

moment equations, or fluid equations, considers the plasma to act as a fluid, rather than as

individual particles. The condition for validity of this approximation is that the distance

between particles be small with respect to the interparticle forces, i.e., r2230 » 1 , where AD

is the Debye length, and the mean free path << scale of change of macroscopic quantities.

This condition is well satisfied in the plasma discharges investigated for this study. In the

following section, the fluid models used in this study are constructed by obtaining the

moment equations for the Boltzmann transport equation.

3.3.3 Moment equations

The moment equations are obtained from equation (3.9) by multiplying it by

various functions of velocity, <1>(v) , and integrating over velocity space. The result is

changing from the BTE (one equation) which is a function of (x, y, z, vx, vy, vz, t) to a

series of equations which are just functions of (x, y, z, t). Various (I) (v) functions include

1, v, and vv, etc. which give rise to the zero-order, first-order, and second-order, etc.

moment equations.

Hence, multiplying (3.9) by (I) (v) and integrating over velocity space, the general

moment equation may be written as
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a ne ad) _ a
5Euler») +V0(n(v¢))—;E- (57> — [502mm] (3.10)

coll

where F is replaced by (:19, where e is the particle charge and E is the electric field.

Thus the BTE for the distribution function f is replaced by a set of equations

containing averaged quantities. Each moment equation introduces the next higher-order

velocity moment due to the second term in equation (3.10). The moment equations are

then an infinite set of equations unless some additional assumptions are used to break the

chain of equations and restrict the variables to a manageable number. These additional

assumptions will be considered below.

The zero-order moment equation is obtained from equation (3.10) by putting (I) =1

[0 get

an _ an

37+V.(n<v>) - [§]c011. (3.11)

The zero-order moment equation (3.11) is the particle continuity equation. According to

(3.11) the change of particle density plus the divergence of particles equals the change in

density due to collisions.

The velocity v of the particles inside discharges can be expressed as the sum of the

drift velocity and thermal velocity c, i.e., v = (v) + c, and in most case, 6 » (v). By

putting (D (v) = mv into equation (3.10) and assuming the particle pressure is given by

P = rim (cz)/2 = nkBT (thermodynamic equilibrium condition), the first-order moment

equation can be derived to be
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col!

6 1 e _ a
37(v)+(v)-V(v)+'-;-,-IV(nkBT)—;IE _ [576)] (3.12)

where the collision term can be written as

8 1 a (v) a
— = — — —— — .1

[at<v>]coll mu [3! (mn<v>)]coll n [8100] col! (3 3)

which represents the rate of drift velocity (momentum) change due to elastic and inelastic

collisions.

Similarly, with the same assumption for particle pressure, the second-order

moment equations can be obtained by substitute (I) (v) = émvv into equation (3.10),

3?, + V0 ( (v) W) = en(v) o E — V0 ((v)nkBT) - VOQ + [gr/lo“ (3.14)

where W is the average energy density (W = énm<v>2 + gnkBT), and Q is the heat flux

(Q = —3.VT, 3. is the heat conductivity). Equation (3.14) contains on the left-hand side

the rate of change of the average energy density plus the outflow of average energy density

W. On the right-hand side, the first term is the power supplied by the electric field, the

second term is the work performed by the particle pressure, the third term is the

divergence of the heat flow Q, and the last term is the rate of change of particle energy

density due to collisions.

The zero, first, and second moment equations shown in (3.11), (3.12) and (3.14)

are also called the continuity equation, momentum conservation equation, and energy

conservation equation, respectively. These moment equations sometimes are simplified to

construct the drift-diffusion model as shown in the next section.
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3.3.4 Drift-Diffusion model

The Drift-Diffusion model consists of solving the Poisson equation and the

continuity equation (3.11). This model makes a simplified approximation for the

momentum equation (3.12) and neglects the energy conservation equation (3.14). The

drift-diffusion model assumes that all the particles in the discharges are at thermal

equilibrium and the particle temperature gradient is zero.

Assuming the particle considered here is an electron, e = —q, the first step to

simplify the moment conservation equation is using a simple relaxation model to replace

the collision term in (3.12), i.e.

[%(v)]cou = —'< v)vm (3'15)

where V", is defined as the collision frequency for momentum transfer. This assumption is

valid because the major momentum loss of electrons in partially ionized discharges results

primarily from the elastic collision with neutrals. Moreover, assuming the collision term

dominates over the inertial term, the momentum conservation equation becomes

(v) = -——————. (3.16)

11,. = .1— (3.17)

and
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kBT

”a = 7“":

then the expression for the electron velocity can written as

V

<v,> = -u,,E-D,.7"

and the electron flux becomes

1,, = n(vn) = —nunE—DnVn

(3.18)

(3.19)

(3.20)

This representation of electron transport is referred to as the ‘Drift-Diffusion’

model and can be extended similarly for ions in the discharges. The equations in the Drift-

Diffusion model for electrons and ions are the electron continuity equation, ion continuity

equation, and Poisson equation, which is used to provide a self-consistent space charge

field. The equations are written as

(3.21)

(3.22)

(3.23)

where ‘I' is the plasma potential, It, and n,- are the electron and ion density, and the electron

and ion current density 1,, and J,- can be expressed as
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Je = —neueE—Devne
(3.24)

and

J. = nipiE—DiVn‘. . (3.25)
1

3.3.5 Fluid model

The Drift-Diffusion model discussed above is valid only under the assumptions

that the discharge is in thermodynamic equilibrium condition, i.e. Tam,” = Tim

=anmls, and has a spatially uniform temperature distribution. However, this is not true

for microwave discharges. For the microwave discharges investigated in this study,

elecu’ons absorb microwave energy more efficiently and hence have a higher temperature

than other plasma species, such as ions and neutrals. Due to most of the microwave energy

being imparted into electron gas, and the electron temperature plays an important role in

determining the transport parameters and reaction rates. Therefore, the energy

conservation equation of electron has to be included in the fluid model in order to provide

a self-consistent solution. The fluid model used in this model then includes the ion

continuity equation (3.23), the ion current equation (3.25), the electron continuity

equation (3.22), the electron current equation (3.24) and a variation of the electron energy

conservation equation (3.14).

The energy conservation equation of electron used in the fluid model for this study

is based on equation (3.14). By assuming that the energy distribution of electrons is

ngTe » %m(v)2 , (3.14) can be simplified to be [51]
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()= wants-:4...

where qe is the electron heat flux, which includes both heat convection and conduction

terms

5 5
q, = gksTJe- EkBDene VTe. (3.27)

Note that the thermal conduction coefficient A in (3.14) is approximated to be gDene

[52].

For partially ionized discharges, where the neutral densities are much greater than

the electron and ion densities, the right~hand side of the continuity equations of electrons

and ions, (3.22) and (3.23), are primarily determined by the inelastic collision events of

electrons, such as ionization (electron-neutral interaction) and recombination (electron-ion

interaction). These can be written as

call

a a . . . .

1;] [.41 3.2.3.7.).(:0 j j

where Rio" is the ionization rate (sec'l), or, is the electron-ion recombination coefficient

(m3 sec'l), and index j stands for different ion and neutral species. Equation (3.28) also

implies that the electron attachment mechanism is not significant in the discharge of

interest. This is true for the argon gases portion of this study.

The electron energy loss due to collisions can also be more completely specified as

the energy loss due to several electron-neutral and electron-ion interactions, including
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electron-neutral elastic collisions, ionizations, excitations, dissociations, and electron-ion

recombinations. Thus the collision term on the right-hand side of equation (3.26) can be

written as

[314,” = «(24.2... gem.” 122.22...)

(3.29)
2me 3 3 . . 3 . .

- 27(iksTe ‘- §ks7i)"’m"e - iksTeZdr'éne

J J
n

where Rio", Rm, and Rdis together with Siam em, and 3dr: represent the rate and threshold

energy for ionization, excitation, and dissociation. vm is the electron-neutral momentum

transfer frequency. Moreover, the collision rate R for neutral ionization, excitation and

dissociation can be expressed as

R nk
ion, ext, dis = n ion, m, dis

where n" is the neutral density, and k is the rate coefficient with unit, m3/sec, which is

usually a function of electron temperature [50].

In summary, the fluid model for plasma discharges involving both electrons and

ions solves self-consistently the Poison equation, the continuity equation for electron, the

continuity equation for ions, and the energy conservation equation for electrons. Since in

this study we are interested in steady state phenomenon, these equations can be written as

V”? 1:01, — 72,.) (3.30)

V.Je Znennlgiorrzalrnline (3°31)

1° j
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V011.
2’12”" 1'kino—Zdnlne

V.qe = -—qJe OE

—nn"(2”[0,, ,0" +23,ext“#253.“in

—;—nze(§khT 4k7“)v'me—n ~23kTZajn121e

where

k
a

II —neueE—DeVne

and

=5kBTJe— (SkBDn)VTe.

3.4 Numerical solution implementation

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

In this section, the implementation of numerical solutions for the models discussed

in the last section will be presented. To solve the fluid plasma model numerically involves

discretization of the equations at a set of grid points. Setting up the discretized equations

for the grid points constructs a nonlinear matrix problem which typically needs to be

solved iteratively. If the iterations result in a convergent solution, the unknowns on the

grid points are solved. Several numerical methods have been used in the literature to solve



53

the fluid equations including the finite difference and finite element methods. For this

study, the finite difference method has been used to solve these equations. The details of

the numerical solution are presented below.

3.4.1 Discretization

The numerical solution of the fluid equations requires the discretization of the

equations (3.30) to (3.33) for an appropriate grid structure superimposed on the simulated

discharge geometry. For cylindrical microwave plasma sources, the discretization of the

equations should be done in cylindrical coordinate. Since the resonant electromagnetic

modes of the microwave plasma sources used for diamond thin film deposition are

normally TMorn mode, the electric field spatial distributions are (1) symmetric in nature and

the 13¢, component is zero. Therefore the discharge behavior can be assumed to be c)

symmetric and the discretization of the equations reduced to a two dimensional problem.

Thus, the simulation region remains in the r-z plane only.

In order to obtain a symmetric and stable solution from the simulation, a gird

structure arrangement is developed according to the staggered-mesh arrangement [43][59]

as shown in Figure 3—2. The area within the dotted square represents a simulation cell, (i,

k). The indices along the radial and axial axes are represented by i and k, respectively. The

positions of plasma densities, potential and electron temperature are defined at the center

of each cell which is represented by the dark circle. The r and 2 components of the current

density and electric field are defined at the positions marked with an empty circle and gray

circle, respectively. The quantity values at undefined positions can be interpolated from

their value-defined neighbors. For example, the electron density at the boundary between
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Figure 3-2: Staggered-mesh arrangement.
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cell (i, k) and cell (i, k+1) can be determined by averaging the electron density of positions

(i, k) and (i, k+l).

The discretization of the Poisson equation is done using a ‘five-point’ finite

difference approximation derived from truncated Taylor series. The details of the

derivation are shown in Appendix. It gives in cylindrical coordinates

 

 

 

- 2 ‘ ri+l/2 .

2 2 - Ar. -‘I’(r+1,k)

’i+1/2"i—1/2 ‘

. 2 ‘ 0-1/2 .
+ 2 2 .Ar- -‘l’(t—1,k)

’t+1/2”t-r/2 "1

+ 2 .‘I’(i,k+1)

(Azk+Azk_l) Azk

2 .trl (i, k- 1) (3.37)
 

I (Azk+Azk_l) Azk_1
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2 2 Ar. A,_

’i+1/2”z-1/2 ‘ "1

2 1 1 .

+ (Azk+Azk_1) (2T2); ”Lawn W”)
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For electron continuity equation, (3.31) can be written in discretized form as

2 . l

‘2 2 "’i+1/2'Jer(‘+§’k)

('t+1/2”i-1/2)

: 2 MI 1 l2 2 1/2 "

L j ' 2 (3.38)
’i+r/2 ’i— 1/2

(Azk+2Azk_ 1) 'Je(("k+2)'1¢2("k'2))

= ne (1', k) [nn (1', k) kion (i, k) —a, (i, k) ni (i, k) ]
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The electron flux in (3.34) can also be discretized as

 

 

 

 

. l - 0.. §W(i+1,k)—W(t,k) . .
Jer(l+2,k) — [—Z—ri+ 2( Ari )] ne(t+l,k)

(3.39)

+ &+“_¢(‘¥(i+1,k)—‘l’(i,k)) .n (ik)

Ari 2 Ari ‘3 ’

and

D . .

1,2(i,k+l)=[_—’.+”—’(‘P("k“)“W(""))]-ne(i+1,k)
2 2" 2 Azk (340)

De lie ‘P(i,k+1)—‘i’(i,k) . '
+[—k+-2—( Azk ) -ne(z,k).

The ion continuity equation is similar to that of the electron continuity equation

and is simply the substitute of index i for e and lie for -ui in (3.38), (3.39), and (3.40).

Finally, the electron energy conservation equation can be discretized using the

same methods discussed above. Note that the heating term we 0 E in equation (3.33)

primarily represents the microwave power absorbed by the plasma, which is determined

by the microwave electric field and the microwave induced current density using the

electromagnetic field model developed in Chapter 2. Therefore, for simplicity, this heating

term can be viewed as an input parameter, Pabs ,for the energy conservation equation, and

it is not necessary that it be discretized. Equation (3.33) can be discretized as:



57

4 2 A . 1k
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,-

(3.41)

 

where 211’ (i, k) represents all the collisional energy loss in (3.33). The heat flux terms

1

are discretized as

 

. 1 _5 (Te(i+1,k)+Te(i,/()) ( 1 )

qer(l+2’k) '- EkB 2 J” l+'2',k

  

 

  

5 D (ne(i+1,k) +ne(i,k)) Te(i+ 1,k) —Te(i’ k) (3.42)

—§ 8 e
2

Ari

and

. 1 __5 (Te(i,k+1)+Te(i,k
)) (.1)

qez(l,k+§) - ikg 2 Jez t,k+i
4

5k D (ne(i,k+1) +ne(i,k)) Tam/(+1) -Te(i,k)
(3. 3)

_§ 8 e 2
Azk

Equation (3.37) to (3.43) are derived for the case that r is not equal to zero, i.e. not

at the center of the cylinder. The discretized equations for r equal to zero and their

derivations are also given in Appendix.
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3.4.2 Numerical solution

The solution of the discretized fluid plasma equations on a grid of N nodes

involves a total of 4N unknowns for the fluid model since at each point the unknowns are

‘l’, ne, ni, and Te. The system of 4N dicretized equations including the Poisson equation,

the continuity equation for electrons and ions, and the energy conservation equation for

electrons are

”F“, (‘1’, ne, ”i3 T) ‘

F (‘P T ) Fn‘ (W, "e, n,, Te) 0 (3 44), n , n., = = ,

e ‘ e F"; (‘1’, ne, n,» T)

fr, (\P, ne, ni, Te) .  

where Ft}. denotes the system of the N poisson equations, FM and Fn) denote the system of

2N continuity equations for electrons and ions, and FTC. denotes the system of N energy

conservation equations for electrons. Two principle methods of solving the system of non-

linear equations (3.44) are the fully coupled method or Newton method and the decoupled

method or iterative method [60] [61].

The Newton’s method linearizes the system of partial differential equations and,

by starting from an initial guess, the solution of the nonlinear equations is obtained by

iterating the matrix equation
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r “k

317., an, an, an,

3‘17 3: Tn: 57¢ , -

- - F ‘l’k k nk 71‘

3F" 8F" 8F" 3F" N? ‘P ’ e’ i’ e
_._. _v_' k k k

a? ane ani aTe Ant F": ‘P’ e’ "PTI;
(3 45)

, — _ k Ir. k °3F". 8F": 8F". 3F": A", p4? HI.» "1., 71f)

W T T 57‘— ATme n. e .. e. FT(‘Pk’ "I; "f, 71;)

arr. aFT‘ 3F... BFT‘ - ‘

as! arts Bn‘. 8T3   
where k denotes the iteration count. The correction vector for the k-th iteration is given by

A‘Pk = ‘Pk+ l _ \Pk

An: = nelH-l—n k

Anik = nik + l _ n‘k (3'46)

ATek = Tek + l _ Tek

The iterative method decouples the equations such that each system of equations

can be treated independently for each iteration cycle. Each system of equations are solved

sequentially and variables are updated after each solution. When all the updates are less

than a set of criterion for an iteration, the convergence is reached. This iterative method

can be written as

 

[ant1:, ..g,:79)”. ",4r ,. .7.) (347)
8‘1, 9 "C, ni’



 

3F ‘Pk+1,nk’nk,Tk

[ 111‘}, an "e "t e) Ank=—Fn(‘l’k+1 ’ ,"UT/2) (3.48)

e

 

an.
I

k+1 nk+l k

aF (W 9 , "’7‘:[ n‘. nen1e)] An.k = _Fn.(‘Pk+l,n/C+l,nfi 7*) (349)

 

8F ‘Pk+1nk+l nk+1Tk

[ 13(9) ATek=—FT(‘l’ank+1 "@1713 (3.50)

87’
C

where (3.47) to (3.50) are solved sequentially. At each stage only one system of N

equations is being linearized and solved by the Newton method, so the matrix being

solved has N rows by N columns regardless of the number of coupled equations being

solved. Whereas, in the full Newton method, all of the coupling between variables are

taken into account and the matrix size will be 4N x 4N.

Because of the tight—coupling, the full Newton’s method requires a smaller number

of iterations for convergence, however, since the matrix size is larger, it takes more time to

solve each iteration. Moreover, the Newton method needs larger computer memory to

store the elements in the matrix. The iterative method usually takes considerably more

iterations to reach the convergence while the time for each iterations is often less than the

full Newton method because of the smaller matrix size. However, due to loosely coupled

feature, the iterative method is less stable than the full Newton method, especially for high

density plasma simulation.

In this study, both Newton’s method and iterative method are used to solve the

discretized equations. The Newton’s method is used to solve Poisson’s equation, electron
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continuity equation, and ion continuity equations. The matrix size is 3N x 3N and the

plasma potential, electron density and ion density are solved in a tightly-coupled manner.

These solutions are iteratively coupled with the discretized electron energy balance

equation to solve the electron temperature and this temperature is then put back to the

continuity equation and Poisson equation to modify the solution of densities and potential.

The final solution is achieved by iteratively solving the continuity/Poisson equations and

electron energy equation.

Since the electron energy balance equation and charge continuity equations are not

tightly coupled, a damping technique has to be used in order to prevent unstable numerical

problems such as oscillation or divergence from occurring. One damping method applied

here is to use only a portion of the updated data as the input to the next coupled equation.

This method can be written as

n+1

Q = Q" + LQ" +]— Q") x damping factor (351)

where Q represents a quantity to be solved (such as ne or Te) and n is the time index. (3.51)

indicates that the new quantity which is used as the input for next coupled equation in the

iterative solution is the sum of the previous quantity and a portion of the difference

between the previous quantity and updated quantity. The damping factor is usually less

than one to secure solution stability. If the damping factor is equal to one, that means no

damping is applied for the solution. The value of the damping factor depends on the

current situation of the solution. If damping factor is too high, the solution might diverge

very fast, however, if too low, it will take more loops to get a converged solution. A

automatic damping factor algorithm was implemented by checking the value of Ftp, Fne,
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Pm and FTe defined in (3.24). When an exact solution is reached, the value of Fry. Fne, Fm

and FTe should equal or be close to zero. If the current values of Fry, Fm, Pm and FTe are

higher than the previous ones, that means the solutions are starting to diverge and a

smaller value should be used to secure stability. Otherwise, the damping factor can

become larger to speedup the convergence. This damping technique is also used for the

Newton method while calculating the potential and densities to ensure the stability of the

solution.

Both the Newton method and iterative method produce a linear matrix equation of

the form Ax = B. This matrix equation can be solved by direct or iterative techniques [55].

In this study, this linear matrix equation is solved by the LU-decomposition method. Since

matrix A is a banded, sparse matrix, after a careful arrangement of matrix A, the size of A

can be reduced from 3N x 3N to (6n,+5)x3N, where nr is the number of grids in the r

direction. The reduced matrix A can save substantial memory space and increase the speed

of calculation [60].

3.5 Summary

The fluid plasma model of this study was developed in this chapter. The model

consists of the Poisson equation, electron and ion continuity equations, and electron

energy equation. The numerical methods used to solve these equations were also

discussed. This fluid model can be used to investigate the characteristics of discharges and

it can be coupled with the FDTD model to self-consistently simulate the electromagnetic

excitation of discharges inside a microwave cavity plasma reactor. These simulation

results will be present in Chapter 6.



Chapter 4

Transient State Simulation of Electromagnetic Fields

Inside Empty and Loaded Microwave Resonant Cavities

4.1 Introduction

In Chapter 2, we discussed the fundamentals of the FDTD method used for solving

Maxwell’s equations in order to get the electromagnetic field solutions inside cylindrical

cavities. Before simulating the complete microwave cavity plasma reactors operating in

steady state with complex plasma loads, a simple-structure cylindrical resonant cavity will

be simulated. Transient simulations of empty and loaded cylindrical resonant cavities will

be done in order to establish the accuracy of the FDTD model for microwave cavity

plasma reactors.

Several simulation results based on the FDTD model are provided in this chapter

to study the electromagnetic mode variation and energy transfer inside cylindrical

microwave resonant cavities. The electromagnetic resonant mode solutions of cylindrical,

lossless, empty cavities, operating in either TE or TM modes, are determined in the time

domain and are compared with theoretical results to verify the accuracy of the FDTD

model. Two types of lossy loads in the resonant cavity are considered here. The first type

is a non-dispersive load where the current density needed to solve Maxwell’s equations is
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determined from the conductivity using J = (SE. The second type is a dispersive load

where the current density is determined by simultaneously solving the momentum

transport equation in the time domain. For the non-dispersive load type, FDTD solutions

were directly compared and found to agree with known analytical solutions. For the

dispersive load type, FDTD solutions were compared to experimental measured argon

discharge data. The simulations model the interactions between cavity characteristics,

such as natural frequency and quality factor, and the properties of the plasma in

microwave resonating cavities. Finally, the FDTD simulation results of a compact ECR

ion source loaded with a helium discharge will be presented.

4.2 Simulation of electromagnetic fields inside empty cavities

In order to demonstrate the application and validity of the above FDTD

formulation in the microwave plasma cavity, empty resonant cavity solutions are first

described. Consider a cylindrical cavity geometry with perfectly conducting walls as

shown in Figure 4-1. The boundary condition for the electric fields in such a cavity is that

only the normal component of electric fields exists on the perfectly conducting wall and

the tangential electric fields at the wall are zero, i.e., E2 = 0 and E4, = 0 when r = a, and E,

andE¢=0whenz=Oand L.

The way chosen to numerically incorporate an electromagnetic field excitation

source inside the cavity for these empty cavity simulation is based on the specific cavity

mode of resonance. The resonant mode depends on the diameter and height of the

cylindrical cavity. The natural frequency (or so called eigenfrequencies) of a lossless,

empty cavity are given by:
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Figure 4-1: TEOH, 'I'Em, TMOH' and TM012 mode excitation techniques in a

cylindrical cavity.
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(it: = shelf—.3112?
’ 2

2.3.2112») (2.3-‘1’

where TE and TM are the transverse electric mode and transverse magnetic mode

(4.1) 

 

respectively, npq are integers for TB and TM mode specification, A!!!) is the p‘h root of the

Bessel function Jn(x), and Amp, is the plh root of the first derivative of the Bessel function

1,100 (J’n(X)).

One way to implement a source is selecting several lattice points as source points

and assigning magnitudes of an electric field component at these points based on

theoretical cavity field solutions [24]. These source points are driven a few cycles at a

frequency close to the resonant frequency, then turned off. The electromagnetic fields then

resonant inside the cavity at a frequency which depends on the cavity size as given by

equation (4.1). This technique of exciting a mode inside the cavity and then turning off the

source gives the natural frequency response.

For example, consider the excitation of the TECH mode. Assume a cavity is 15.25

cm in diameter and 6.5 cm height, the resonant frequency for the TED“ mode can be

calculated using equation (4.1) as 3.33 GHz. The source points are chosen along a circle in

the middle of the cavity height as shown in Figure 4-1, where the Eq, component has its

maximum amplitude based on the theoretical resonant cavity field distribution. A uniform

amplitude of E¢ is assigned along this circle and forced to oscillate at this frequency for a

few cycles. The electromagnetic fields propagate from these points and resonant inside the

cavity. The electromagnetic field energy U stored in the cavity is defined as
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U(t) = 0.51 (8(r) (E(r,t))2+p.(r) (H(r,t))2)dV (4.2)

v

where the integration is performed over the volume of the cavity, V. The electromagnetic

field energy starts to increase as shown in Figure 4-2 until the source is turned off (0.5

nanosecond), at which time the stored energy remains constant because no energy loss

occurs on the perfectly conducting walls. From the plots of the electric field variation

versus time, the oscillation frequency after the source is turned off at 0.5 nsec can be

obtained as the natural resonant frequency (3.33 GHz) as shown in Figure 4-2. The

electric field has E¢ components only, and its spatial variation in the r-z plane matches the

theoretical empty cavity results as shown in Figure 4-3. The theoretical empty cavity

mode solution can be obtained by solving the time-harmonic Maxwell’s equation in

cylindrical coordinates as mentioned in Chapter 2. For TED“ mode, the electric field

solution is given by

I

A01 r r r - N
E = E¢ = 8710(A015)Sln(z) (4.3)

where 1’01 is the first zero of the first derivative of the Bessel function JO, and B is the

amplitude.

The number of grids used is 31 by 36 by 31 in the r, q), and z directions,

respectively. The grid spacing in each direction is uniform. The grid structure is shown in

Figure 4-4. The unit time step is chosen as 0.5 psec to satisfy the finite difference stability

condition as discussed in Section 2.3.

Other examples of mode excitation are the TM), 1, W012 and TE”, modes. For
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Figure 4-2: Electric field energy, "VUEOE dV, versus time for the TED” mode. The
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empty cylindrical cavity was 15.25 cm in diameter and 6.5 cm high.
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Figure 4-4: Grid structure for FDTD simulation in cylindrical coordinate.
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TMm,n modes, instead of using a circle as a source, a cylindrical surface can be used as an

excitation source as shown in Figure 4-1. This surface has a height equal to the cavity

height, and a radius where E, has a maximum for these modes. E, is varied sinusoidally

along the excitation surface based on theoretical resonant solutions. Using the same

procedures mentioned above, the simulation results of the resonant electric field variations

with time and space for the TMOH mode are shown in Figure 4-5 to Figure 4-7. In

particular, the total stored energy as shown in Figure 4-6 is constant versus time after the

excitation source is turned off at 1.25 nsec. Figure 4-8 shows the electrical field variation

found using the FDTD technique and ideal empty cavity solutions versus r and z for the

TM012 mode. Figure 4-9 shows the simulated E, variation versus (1) for the TEm mode.

The TMOH, TMmz, and TE,“ modes solved by the FDTD method are all well matched

with the theoretical solutions.

Due to the perfectly conducting wall assumptions, there is no energy loss for the

empty cavity model, and the total energy inside the cavity remains constant once the

source is turned off as shown earlier in Figure 4-6. Steady state solutions which are

obtained by the source being always in an “on”‘condition can not be obtained for these

ideal empty cavity simulations because no loss exists. The simulation technique which

gives the steady-state response (the source is always on) for loaded cavities will be shown

in the next chapter.

4.3 Natural frequency response for loaded lossy cavity

One application of this FDTD model is to investigate the power absorption inside a

cavity when a lossy non-dispersive load is present, i.e., the dielectric property of the load
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is independent of the 'esonant frequency. The natural frequency describes the transient

response of the cavity to a pulse or to having a CW source shut off. For a cavity with a

lossy load, the natural frequency is no longer a real number, but a complex number which

can be written as

6) = (0’ +jw” (4.4)

where the real part (0’ of the natural frequency 6) describes the frequency of field

oscillation while the imaginary part 0)” of the natural frequency 6) is the exponential

decay coefficient due to power absorption.

The FDTD model described in Chapter 2 can be used to analyze the natural

frequencies of a lossy loaded cavity, by assigning a set of parameters including a, u and 0,

at each lattice point inside the cavity. For a natural frequency response simulation, after

the source is turned off, the electromagnetic fields inside the cavity will decay at a natural

oscillating frequency, and the stored field energy will decrease due to energy dissipated

into the lossy material. The relations can be expressed as follows:

If ' I

e-O) tgwt

E(t) E

O 2 ,, (4.5)

um = er' 0’ ’

where E0 is the initial electric field amplitude and U0 is the initial stored energy at the time

the source is turned off. By studying the electric field oscillation frequency after a source

is turned off and the rate of the stored energy decay, the real part and imaginary part of the

natural frequency 6) can be obtained.



78

As a specific example, consider a 15.24 cm diameter cavity loaded with a lossy,

homogeneous, non-dispersive load. The cavity is the same size as the TED” mode empty

cavity demonstrated in the previous section. The lossy load is 2.54 cm in diameter and it is

loaded coaxially with the same height as the cavity, as shown in Figure 4-10. To study the

effect of the load conductivity on the electromagnetic fields inside the load region, the

permittivity e in equations (2.15) to (2.20) is set equal to 3.080, and o is varied from zero

to several hundred. Near the boundary of lossy dielectrics, where the most power is

absorbed, fine grids are used to improve the accuracy of results. This fine grid structure is

shown in Figure 4-11. The plots of electric field strength and total stored energy decay are

shown in Figure 4-12 and Figure 4-13. It is clear from these plots that the decay rate and

oscillation frequency varies with different conductivities. For example, at o = 0.1 mho/m

the result was 0)’ = 20.68 x 109 rad/sec and (1)” = 0.09 x 109 rad/sec, at o = 1.0 mho/m

the result was (0' = 21.13 x 109 rad/sec and 0)” = 0.45 x 109 rad/sec, and at o = 10 mho/m

the result was (0’ = 21.59 x 109 rad/sec and to" = 0.16 x 109 rad/sec. The radial variation

of 15¢, for different conductivity loads is shown in Figure 4-14. For the case of the larger

conductivity the electric field decays rapidly into the 2.5 cm diameter load.

A s-plane frequency chart can be used to further demonstrate the effect of

conductivity variations on the electromagnetic fields. As shown in Figure 4-15, the

horizontal axis represents the imaginary part of the conjugate of the complex natural

frequency, i.e. —a)”, and the vertical axis is the real part of the conjugate of the complex

natural frequency, i.e. (0’. For 6 = O, the cavity is lossless and hence co” = 0. When 6

increases from zero, 0)” starts to increase, which is due to power dissipated into the lossy

material. After 6 is larger than 1.0, (1)” starts to decrease, because the cavity load
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Figure 4-10: Configuration of a coaxially loaded cylindrical cavity.
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Figure 4-11: Fine grid structure for TEOH mode lossy cavity simulation.



81

 

   

 

   

 

   

100 r t .

0.1 (mho/m)

N l- -1
E1 50

8 5 1 1.5 2 2 5

100 t 1 ,

1.0 (mho/m)

N .

g 50*
a

8 5 1 1.5 2 2 5

100 t w t

10.0 (mho/m)

N a
Q 50

8.5 1 1.5 2 2.5

Time (ns)

Figure 4-12: Space averaged lEl2 (arbitrary units), versus time, for the TED“ mode.

Results are shown for three different load conductivities after the source is

turned off.
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becomes a conducting-like material and the electromagnetic fields only penetrate the load

a small amount (i.e. a skin depth). Thus, the resonant frequency changes (increases) as the

TED“ empty cavity mode (0 = 0) varies to a coaxial type mode when 0 is large.

For the case of a cavity loaded by a lossy, non-dispersive coaxial load, analytical

solutions of (0’ and to” exist. The FDTD technique solutions are compared to an

analytical solution in Figure 4-15. In particular the FDTD result is compared with

Maming’s data [8], which is solved by an analytical method in the frequency domain. In

the analytical method, the electric and magnetic fields are solved in cylindrical coordinates

in terms of a set of Bessel function type solutions. The boundary conditions are applied to

form a characteristic equation which is used to determine (0’ and to” of the various

modes. This method provides analytical solutions for non-dispersive lossy loads. The

analytical solution and FDTD solution show agreement. However, if a more complex

plasma with dispersive, inhomogeneous properties is used, the problem becomes very

difficult to solve using analytical solutions. Moreover, if the geometry of the load is more

complicated, it is also hard to solve for an analytical solution. Hence, the analytical

solutions are only used in this work to verify the FDTD solution on simple geometry, non-

dispersive loads.

4.4 Simulation results of an argon plasma loaded cavity

A FDTD calculation has been done to compare with the experiment results of

Rogers [6]. In Rogers’ study, a 17.78 cm i.d., microwave cavity excited at 2.45 (3112 was

coaxially loaded by an argon plasma in a 12 mm i.d. quartz tube with the plasma

extending from the top to the bottom of the cavity as shown in Figure 4-16. The radial
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Quartz tube

 

. rgon discharge

   
 

Figure 4-16: The geometry of a 17.8 cm i.d. cylindrical cavity with a 12 mm i.d. quartz

tube loaded with an argon plasma.
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component of electric field strength was measured by micro-coax electrical probes

inserted through the cavity wall versus 2 and 0. The measured field distribution was

compared with theoretical results to verify the mode sustained in the cavity with the

discharge present was approximately a TM012 mode. The discharges inside the quartz tube

had diameters of 2-4 mm depending on the pressure which was varied from 40 to 200 Torr.

Rogers measured the cavity resonant length, average discharge diameter, total power

absorption, cavity quality factor and calibrated electrical field strength at a reference point

versus variations in pressure. This measured data was then used to extract the electron

density and effective collision frequency versus pressure using (2.44) as shown in Figure

4-17.

Treating these values of electron density, effective collision frequency, and

discharge diameter as input data, the cavity Q and the power density of the discharge can

be simulated using the FDTD model. The definition of the quality factor, Q, is the time

average energy stored in the cavity divided by time average energy dissipated in the cavity

per cycle. Therefore, by calculating the time average energy stored and the time average

power dissipated in the cavity for the first cycle after the source is turned off, a quality

factor can be determined. In the simulation of the discharge loaded cavity, the electron

density and the effective collision frequency are assumed uniform across the discharge

volume. Additionally, the discharge volume is evaluated as a cylindrical rod with the same

height as the cavity. The quartz tube was assumed lossless with a relative permittivity of e,

= 3.78 and a tube wall thickness equal to 1.0 mm. The electromagnetic source excitation

used is the same as the TM012 mode empty cavity shown earlier in Figure 4-1. Current

densities are calculated in time domain by equations (2.53) and (2.54) and coupled with a
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Figure 4-17: Electron density, ne, and effective collision frequency, vejf, versus pressure

for the argon plasma shown in Figure 4-16 (from Rogers’ data [6]).
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FDTD solution of Maxwell’s equations to solve the electromagnetic fields inside and

outside the discharge volume. Then, the power absorbed by the discharge is determined by

equation (2.35), and the absorbed power density is evaluated by dividing the power

absorbed in the discharge by the discharge volume. The simulation data of loaded cavity Q

and absorbed power density is compared to experimental data in Figure 4- 18 and Figure 4-

19. The FDTD calculations show good agreement with the experimental data, which

demonstrates the applicability of the FDTD technique to model plasma loaded microwave

cavities.

4.5 Implementation and results for a compact ECR ion source

The FDTD model also has been used to investigate the electric field distribution

inside a compact ion source [56]. The simplified ion source geometry for the FDTD

simulation is shown in Figure 4-20. Basically, this ion source is 5.4 cm in diameter and

12.4 cm in height, with a 3.0 cm 1d, 3.5 cm high quartz disk which is used to confine the

plasma discharges. The electromagnetic field boundaries for the structure in Figure 4-20

are the sliding short, center conductor, and the outer shell. Again, all the boundaries are

assumed perfect conducting, therefore only the normal component of the electric field

exists on these boundaries. The amplitude of an electric field component assigned on the

source points is based on the TEM mode wave solution for a cylindrical coaxial

waveguide. After an initial period of a few microwave oscillations (2.45 GHz), the source

term is turned off and the natural response for an empty ion source is observed as in Figure

4-21. The field excitation plane chosen for electromagnetic field generation is shown in

Figure 4-20. The resonant frequency is calculated from Figure 4-21 to be approximately
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Figure 4-20: Simulation structure for an compact ECR ion source.
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2.6 GHz. The electric field magnitude inside the resonating source is shown in Figure 4-22

and Figure 4-23.

The electromagnetic fields inside the resonant source when a helium plasma load

is present have also been simulated. The conductivity of the magnetized plasma is

determined based on equations (2.49) and (2.50), where the static magnetic fields

produced by the permanent magnets were simulated by TA. Grotjohn [41]. The plasma

density and electron temperature of the helium discharge are measured by plasma

diagnostic techniques in order to determine the effective collision frequency and

subsequently the conductivity of helium discharges [56]. The calculated conductivity for

the helium discharge has a peak value equal of 178 mho-m around the ECR region where

the microwave electric field is perpendicular to the permanent magnetic field. The

simulation results of the electric field distribution are shown in Figure 4-24 and Figure 4-

25. The electric fields maintain the general structure shown for the empty source, although

the influence of the plasma load can be seen. Also, the cavity was simulated as having a

high quality factor, Q value, (several hundred to 1000) for the lower density helium

discharges. For a more accurate simulation, a particle plasma model would need to be

used to simulate the characteristics of this low pressure discharge and ECR heating

mechanism.

4.6 Summary

In this chapter, simulation results for transient state solutions of lossless and lossy

microwave cavities, i.e., the sources are turned off after several microwave excitation

cycles, were presented. These solutions provide information for studying the



Figure 4-22: lErl (arbitrary units) versus r and z.
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Figure 4-23: lEzl (arbitrary units) versus r and z.
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Figure 4-24:

a helium plasma discharge.

IBTI (arbitrary units) versus r and z for the compact ion source operated with
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electromagnetic field distributions of empty cavities and the natural frequency responses

of lossy cavities. The application of transient simulations to two different plasma sources

was detailed.



Chapter 5

Steady State Simulation of Electromagnetic Fields

Inside Plasma Loaded Microwave Resonant Cavities

5.1 Introduction

In Chapter 4, all the electromagnetic field simulations of empty or lossy-loaded

cavities were based on transient state solutions, i.e., the source is turned off after several

microwave cycles. An alternative simulation approach is the steady state method where

the source is always on. This approach can not be used inside an ideal empty cavity

- because no losses exist. However, if a loss is present inside the cavity, it is possible to get

a steady state excitation when the input power (from the source points) is equal to the

power absorbed by the lossy material. For steady state solutions, the source points which

were described in Chapter 4 are kept oscillating all the time at a frequency equal to or

close to the natural frequency of the lossy loaded cavity. The stored energy increases and

achieves a steady state when the total stored energy is a constant versus time. This occurs

when the rate of power absorption matches the power input. One example is given in

Figure 5-1. The excitation mode, the cavity and the cavity load size are the same as that

used in natural frequency simulations discussed in Section 4.3 (see Figure 4-10). For the

data shown in Figure 5-1, the lossy material had 0 = 1.0 and e = 3.080.

100
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Another consideration for plasma-loaded resonant cavity simulation is the method

of exciting the fields. For a microwave resonant cavity, the electromagnetic fields in the

cavity are excited by an external circuit or waveguide, by means of coaxial-line probes,

loops and small apertures. Moreover, the input power tuning (or matching) methods are

important to adjust the cavity input impedance and control the microwave power reflected

from the cavity.

In this chapter, the steady state electromagnetic excitation of discharge loaded

microwave plasma reactors is numerically modeled including the input power coupling

structure. The inclusion of the input coupling structure, which must be terminated in the

simulation at some position, creates an open boundary in the simulation. For this open

boundary, a non-reflecting (absorbing) boundary condition is used for truncation of the

grid points in the FDTD model. The methods to excite input electromagnetic wave for

simulation and to evaluate net power coupling into the plasma-loaded cavity are

investigated. The simulation results of microwave discharge reactor sources used for

diamond film deposition will be provided. For simplicity, the discharges used in this

chapter are assumed to be a uniform, cold plasmas by using the simple conductivity model

discussed earlier in Chapter 2. The self-consistent plasma model which is coupled with the

steady state electromagnetic model will be present later in Chapter 6. The techniques used

to experimentally determined the electromagnetic mode and cavity factor Q are

introduced here and also in Chapter 6.
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5.2 Non-reflecting boundary conditions

The simplified geometry for plasma cavity plasma reactor simulation in this study

has been shown earlier in Chapter 2 (Figure 2-1). The electromagnetic waves are coupling

into the cavity via an input coaxial probe. The plasma confined in the quartz chamber can

be treated as a lossy material. The cavity walls serve as electromagnetic boundaries where

only perpendicular electric field components can exist based on perfectly conducting wall

assumptions. All the electromagnetic waves propagate to this boundary will be totally

reflected under this assumption and no field can penetrate through these boundaries.

Therefore, the grids used for FDTD simulation can be truncated at these region because no

wave or field can exist outside these boundaries. However, at the input end of the coaxial

probe is an open boundary, i.e., the domain in which the field has to be computed is

unbounded. The electromagnetic waves, either incident or reflected, do exist outside this

boundary and the number of grids needed for simulation becomes unlimited. Therefore, at

this open boundary a truncation method must be used for limiting the domain in which the

field is computed. Moreover, this method has to prevent any artificial reflection of the

outgoing wave. Boundary conditions of this type are called absorbing boundary

conditions, or non-reflecting boundary conditions. This absorbing boundary condition has

been investigated extensively in solving electromagnetic wave scattering problems

[13][14][15]. One technique which is widely used is provided by Mur [15].

From the FDTD cell shown in Figure 2-2, it can be found that all components of

the electric field vector E applied to a particular point on the boundary of the mesh are

tangential to this boundary while the relevant components of the magnetic field vector H

are normal to it. For grid points on the mesh boundary, the E field components which are
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tangential to the boundary plane cannot be evaluated by the finite-difference techniques

since this would require H field components that are outside the mesh. Therefore, the non-

reflecting boundary conditions for Maxwell’s equations on the mesh require the boundary

conditions for the electric field components tangential to the boundary surface. Mur

proposed that each of the E field components satisfy the three-dimensional sealer wave

equation independently

(32 32 02 -232

where W is the E field component and c is the wave propagation speed, which is equal to

1/J53 Assuming that the mesh is locate in the region 2 S Ito, and given the boundary

conditions for the plane 2 = k0, then a space-time plane-wave constituent traveling in the

direction of increasing 2, with inverse velocity components 5,, sy, 32 such that

2 2 2 -2 .
sx+sy+sz = c ,can be wrrttenas

W = Re(w(t+s{r+syy+(c-2—si-siy/22D (5.2)

. -2 2 2 1/2 . . . . .
wrth Re(c — 3x — 3,) S 0 , where w rs a function of trme. For this outgorng wave, the

first-order boundary condition

a -1 2 2)1/28) _

(5+c (1— (csx) - (csy) 5 W|z=ko — 0 (5.3)

would, for fixed values of 3x and sy, determine a W on the outer surface that is consistent

with an outgoing wave, i.e., it is absorbed. Assuming
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(l— (csx)2— (csy)2)1/2 = 1+0( (csx)2+ (csy)2), (5.4)

the first order approximation can be obtained as

(7+ (lg—JW'2: =0. (5.5)

For the grid termination structure shown in Figure 5-2, which is in three dimensional

cylindrical coordinates, the finite-difference approximation of (5.5) can be derived using

centered differences in both the space and time increments as

Ef+1(i,j,kk=0) E:(i’j’kO—1)+(f—Tr-Az)/(fit-+282)
(56

.)

x(E:+l(i,j,kO-l)—E,(i.j,ko))

and

”"(t1.k0)= E” (nu/<0 —1)+(j‘—L;-Az)/(77th) 7
(5.)

x(E"+](i1j,,k0—1)-E;(i,j.k0))

where k0 is the grid terminating point in the z direction. Note that only two E field

components needed to be evaluated at the boundary since they are the only components

tangential to the grid truncation plane, i.e., z = k0 plane.
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Figure 5-2: Grid termination structure.
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5.3 Implementation for a coaxial waveguide

The non-reflecting boundary condition described in (5.6) and (5.7) was

implemented in a coaxial waveguide in order to verify its validity and accuracy. The

reason for using a cylindrical waveguide as the simulation structure is because the

microwave input power coupling probe discussed in this study can be view as a cylindrical

coaxial probe where the TEM mode electromagnetic waves propagate inside. The

simulation structure for the cylindrical coaxial waveguide is shown in Figure 5-3. The

coaxial waveguide (9 cm in length) consists of an inner cylindrical conductor and an outer

conducting shell, and the electromagnetic waves propagate between these two conductors.

The diameter for the outer shell is 9 cm, and for the inner conductor is 3 cm. The

electromagnetic wave is excited at the z = 0 plane by assigning the time-varying electric

field component at the grid points on this plane based on theoretical TEM wave solutions

in a coaxial structure. The electric field for the TEM wave in a cylindrical coaxial

waveguide has an E, component only, which is constant in the z and 4) directions and

proportional to a l/r variation in the r direction. The electromagnetic wave will then

propagate to the end of the coaxial waveguide which is at the z = 9 cm plane, and be

terminated by the boundary condition without any artificial wave reflection. One way to

check the direction of wave propagation, as well as, the power flow is using Poynting’s

theorem:

W = §(ExH) . ds (5.3)

S

where W is the total power flow through a surface, S, which is the cross sectional plane of
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the coaxial waveguide, such as the z = 2.8 cm and z = 5.9 cm planes shown in Figure 5-3.

The direction of the surface S is toward the +2 direction for the power flow to the end of

the waveguide.

The simulation grid structure is the same as shown in Figure 4-4, and the total

grids are 30 x 36 x 30 in r, (b and 2 directions respectively. The inner and outer conductors

are assumed to be perfect conductors. The source points on the z = 0 plane oscillate at 2.45

GHz and the time step used here is one picosecond. The simulation results are obtained

after several microwave cycles and are shown in Figure 5—4 and Figure 5-5. In Figure 5-4,

the spatial average B, field at the excitation plane (2 = 0) kept the same shape and

amplitude as the one on the absorption plane (2 = 9 cm) all the time. These waveforms

also kept a constant phase difference between the z = 0 and z = 9 cm plane due to the wave

propagation distance of 9 cm. This shows that the waveform generated on the excitation

plane propagated though the Open end of the waveguide without any interference or

distortion resulting from unwanted reflecting waves. Figure 5-4 also shows that the

electromagnetic power flow though the waveguide is always positive, and the amplitude

of the power flow is constant. This proves the power flow is toward the end of the

waveguide and no other wave sources exist inside the waveguide and at the open

boundary. Figure 5-5 shows the time-average spatial variation of the r component of the

electric field. The 1:“.T is constant in the z direction and follows a 1/r decay in the r direction,

which is the same behavior as the theoretical TEM wave in a cylindrical coaxial structure

[53].
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Figure 5-4: Non-reflecting boundary simulation results: (above) spatial average E, vs.

time at two different cross section (solid: z=30, dash: z=0). (below) spatial

average power flow vs. time (solid: z=10, dash: z=20).
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5.4 Implementation for a Microwave Cavity Plasma Reactor

The FDTD model is implemented for a microwave cavity plasma reactor such as

used for diamond thin film deposition as shown schematically in Figure 5-6. This

cylindrical microwave cavity plasma reactor has a symmetrical construction which can be

excited in single electromagnetic; modes. As shown, the reactor consists of a cylindrical

sidewall which forms the outer conducting shell of the cavity reactor which has an inside

diameter of 17.78 cm. The sliding short, the baseplate and the cavity sidewalls, form the

cylindrical excitation cavity. Microwave energy at 2.45 GHz is coupled into the cavity

through the coaxial input probe. The specific resonant mode is determined by the

geometrical size of the cylindrical cavity and it can be adjusted by the movable sliding

short. Generally, the electromagnetic resonant modes of this type of microwave cavity

plasma reactor for diamond thin film deposition are Tan modes.

The simplified simulation structure of this reactor used in this section is shown in

Figure 5-7. The cavity is assumed to be a simple cylindrical cavity with a movable sliding

short on the top of the cavity. The short is used to adjust the height of the cavity (1.5) for

cavity resonant condition control[1]. A coaxial probe structure, including the inner and

outer conductor, are taken into account in the FDTD simulation region. The cavity

sidewalls, bottom, sliding short and coaxial probe (both the inner and outer conductor) are

assumed to be made of perfectly conducting material, so only the normal components of

the electric fields exist on these surface. These surfaces make up the electromagnetic

boundaries for the FDTD simulation model, and the only unbounded region (open

boundary) is at the input end of the coaxial probe. The non-reflecting boundary condition

discussed in the previous section is implemented at this boundary for grid truncation. The
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plasma discharge region, at this point, is treated as a uniform lossy material with a specific

assigned conductivity and a constant dielectric constant (6:80).

The major difference between this electromagnetic field model and the model

discussed in Chapter 4 for cylindrical resonant cavity simulation is, instead of selecting

several points inside the cavity region based on theoretical resonant cavity mode solutions

for electric field generation, the electric field here is provided by the coaxial probe which

is outside the cavity region. Hence, this method allows the simulation of the real

electromagnetic coupling mechanism for discharge excitation in the microwave cavity

plasma reactor. The technique used to excite the electromagnetic field in this numerical

model is to select grid points on a cross sectional plane of the coaxial probe as source

points and assign the time-varying electric field component at these points based on

theoretical TEM wave solutions in a coaxial.structure. The electromagnetic wave then

propagates down into the cavity region where power is absorbed by the discharge. Any

reflected electromagnetic wave will propagate to the end of the open boundary of the input

power probe and be terminated by the non-reflecting boundary condition without

producing any artificial wave reflection. In order to prevent the reflection of waves from

the source points, the electric fields on the source points are assigned as [13]

+ 1 . . . . .

E: (1,},k1) = E:(r,j,k1) +Csrn(21tft) (5.9)

where C is the amplitude of the electric field source, k1 is the grid points where the source

plane is located, andfis the excitation frequency.

For the microwave cavity plasma reactor simulation discussed in this section, the

inner diameter of the cavity is 17.78 cm, and the excitation frequency is 2.45 GHz. The
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discharge (or lossy material) is located at the center of the bottom of the cavity and is

assumed 8.85 cm in diameter and 2.0 cm in height. The conductivity and the cavity height

are treated as input parameters to investigate the steady state electric field patterns and

resonant characteristics of the loaded cylindrical cavity. The number of grids used in this

simulation is 30 x 36 x 45 in the r, d) and z direction respectively, and the time step is 0.5

psec.

The simulation results of a 14.41 cm high cavity loaded with a 0.5 mho/m lossy

material are shown in Figures 5-8 to 5-10. This height (14.41 cm) is basically the height

for the theoretical TMmz mode in an empty cylindrical cavity with the excitation

frequency and diameter mentioned previously. This empty cavity mode is described by

equation (4.1). Figure 5-8 shows the electric field energy stored in the cavity versus time.

After several microwave cycles, the power transfer to the cavity is equal to the power

absorbed by the lossy materials. When this balance occurs, the amplitude of the electric

field energy is constant and the system has reached its steady state. The spatial electric

field distribution in the r-z plane are shown in Figure 5-9 and Figure 5-10. The simulation

results are in agreement with the theoretical TMmz mode pattern as shown in Figure 5-11.

Especially for the E, component in the z direction, which follows a sin(ZTm-) variation

3

profile as expected for the theoretical TMmz mode variation in the z direction. Inside the

discharge region, the electric field strength decays due to microwave power dissipated in

the lossy materials (or discharges). Moreover, the calculated E, and 132 components are

symmetric in the (1) direction, and the 13¢ components remain zero all the time during the

simulation. Therefore, the three dimensional FDTD model used here can be further

simplified to be a two dimensional model, that is, the simulation domain are considered in
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the r and z direction only. This model can be built based on solving the two-dimensional

FDTD equations developed in Chapter 2 ((2.27) to (2.32)).

By using the two-dimensional FDTD model, the quality factor Q of the cavity,

which is determined from the stored electromagnetic energy and the power absorbed by

the lossy materials as discussed in Chapter 4, can beanalyzed for various discharge

conductivities and cavity heights. The simulation results of Q vs. cavity height for three

different conductivity materials are shown in Figure 5-12. For a load with a given

conductivity, the cavity Q changes as the cavity length varies. When the Q value drops,

that means power is absorbed more efficiently by the lossy load. Figure 5-12 shows that

the lowest Q value occurred at a cavity height of about 14 cm, which is close to the mom

resonant empty cavity height of 14.41 cm. The lowest Q value doesn’t exactly occur at the

theoretical TM012 mode empty cavity height (14.41 cm) due to the loaded lossy material

changing the resonant behavior of the cavity. This phenomenon has also been shown

earlier in Figure 4-15, where the resonant frequency of a cylindrical cavity changes with

the conductivity of material loaded inside the cavity. When the cavity height increases

beyond 14 cm, the Q value increases, which means less power is coupled into the load and

the more power is reflected from the cavity. The increase of reflected power is shown in

Figure 5-13. The reflecting power is determined by using Poyting’s vector in (5.8). The

cross section plane used for determining the power reflected from the cavity is the open

boundary surface and the direction of the surface is toward the +2 direction for the

reflected power flow out of the cavity. When the height approaches 21 cm, the Q value

drops again because the cavity is reaching another resonant condition, namely, TM013

mode, where the theoretical resonant cavity height is about 21 cm. Figure 5-12 also shows
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the resonant behaviors for different conductivities. When 0 = 0.1 mho/m, less power is

absorbed by the loaded material, i.e., less perturbation for the resonant cavity, and the Q is

higher and cavity height for resonant condition is about equal to that of the TM012 mode

empty cavity. When 0 increases, more power is absorbed by the loaded material.

Therefore, the Q values drop, and the cavity height is starting to shift away from the empty

cavity height in order to achieve the resonant condition for the lossy loaded cavity.

5.5 Simulation results for a cavity reactor loaded with a H2 discharge

Another application made of this FDTD model was to simulate the power

absorption and electric field distribution in a microwave cavity plasma reactor which was

investigated by Zhang, et. al [3]. In Zhang’s study, a 17.78 cm i.d. microwave cavity

excited at 2.45 GHz was loaded by a hydrogen dominated plasma in a 9.25 cm i.d., 4.35

cm high quartz disk. The radial component of electric field strength at the cavity outer

wall was measured by a micro-coax electric probe inserted through the cavity wall versus

2 and q). The measured field distribution was compared with theoretical results to verify

that the mode sustained in the cavity with the discharge present was approximately a

TM,” mode. The discharge inside the quartz disk had volumes as estimated visually of 30

cm3 to 100 cm3 depending on the pressure which was varied from 20 Torr to 70 Torr.

Zhang also found the quality factor, Q, of the cavity by measuring the absolute microwave

electric field amplitude and the electromagnetic field mode distribution to determine the

stored electromagnetic energy according to (4.2). The stored energy, U, and the input (or

total absorbed) microwave power, P, then determined the Q value as Q=coU/P. In

particular, Q values determined this way were about 60 and they varied little over the
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pressure range studied (20 - 70 Torr). Additional details of the experimental Q value

derivation and coax-probe calibration method will be discussed in next chapter.

The simulation structure of this reactor is shown in Figure 5-14, which is similar to

the structure used in the previous section. However, in this section, the baseplate included

in the numerical model is a more realistic reactor structure. The substrate holder is

assumed to be aligned with the bottom surface of the baseplate, and to have approximately

the same diameter as the quartz disk. Therefore, the sliding short, the baseplate, the

substrate holder, the coaxial probe (both the inner and outer conductor), and the cavity

sidewalls form the boundary of the FDTD simulation region. The boundary conditions for

the electric fields on these surfaces and the open boundary condiu'on are the same as in last

section. A discharge is excited and sustained inside the disk-shaped quartz dome region by

the input microwave power. Moreover, the quartz disk is included in this model and

assumed lossless with a relative permittivity of e, = 3.78.

The simulation of electromagnetic fields requires knowledge of both the electron

density, ne, and effective collision frequency, ve/f, in order to solve the electron

momentum transport equation and induced current density ((2.53) and (2.54)). A plasma

discharge description which includes several idealizing assumptions has been adopted for

this section. The discharge is assumed to have a cylindrical volume shape with a size

found from visual observation. The density and effective collision frequency within this

volume are assumed uniform. The idealizing assumptions ignore such behaviors as gas

flow, non-constant plasma temperature profile and plasma density variations. Hence, care

must be used in interpreting the simulation results in the plasma discharge on a local or

small scale. However, the macroscopic quantities such as electromagnetic field mode, Q,
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and absorbed power are expected to be simulated accurately by using the measured values

for plasma quantities. A more accurate plasma discharge model in the next chapter will

remove this restriction.

From the measured gas temperature [54] and the corresponding gas pressure, the

effective collision frequencies in hydrogen discharges at different pressures can be

calculated approximately as veff = 1.44 x 1012 x {1: (P is the pressure in Torr and T is the

temperature in Kelvin) according to [50]. Treating the discharge volume, collision

frequency and electron density (assumed uniform) as input data, the microwave

absorption properties can be evaluated by (2.35), and the electric field distributions, power

deposition distributions and the quality factor Q of the cavity are simulated using the

FDTD model. By calculating the time average energy stored and the time-average power

dissipated in the cavity using equations (2.35) and (4.2) after the simulation reaches steady

state, a quality factor can be determined. Moreover, at steady state, the power dissipated in

the cavity is equal to the net power transfer to the cavity, which can be calculated by

Poynting’s theorem given by (5.8).

For the hydrogen discharges in this study, the electron density has not been

measured experimentally yet with high accuracy so it is treated as a variable parameter.

The cavity quality factor Q is simulated versus electron density under different pressure

conditions using the corresponding measured gas temperature and discharge volume. The

results are shown in Figure 5-15 and Figure 5-16. These simulations are done by using the

two-dimensional FDTD model since if) symmetry exists for the TMon mode cavity. The Q

values calculated by using either the power dissipation model (2.35) or the power flow

model (5.8) are consistent with each other. For these simulations, when the electron
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density increases, the conductivity of the discharge increases. At lower electron densities

the increase in conductivity results in increased total power absorbed. As the electron

density increases further, the Q value reaches a minimum and then increases. The increase

of Q occurs because the plasma has a high conductivity, and hence power absorption

occurs primarily at the plasma boundaries and not throughout the entire plasma volume as

the microwave skin depth decreases. The skip depth is defined as the depth at which the

magnitude of the penetrating electric fields decrease to 1/e (about 36.9%) of their value at

the boundary surface [53]. Following this definition, the skin depth can be obtained from

the simulation data by examining the magnitude of elecrric field inside the discharge and

at discharge boundary. For example the simulated skin depth for transverse waves is about

0.7 cm at a plasma density of 3 x 1012 cm’3. Theoretically, the skin depth 8 for transverse

waves penetrating into plasmas is given by [62]

8 = c/(ope _ (5.10)

where (ope is the plasma frequency defined in (2.46). Equation (5.10) is valid under the

assumption (0 « (ope. For plasma density of 3 x 1012 cm'3, tape is 9.75 x 1010, then the skin

depth is calculated to be 0.3 cm, which is on the order of the simulation result. By

matching the calculated Q values with the experimental data (~ 60), the electron densities

can be predicted around 3 x 1012 cm'3at 20 Torr and about 8 x 10 12 cm'3 at 70 Torr. At a

Q value of about 60, the higher plasma density value is selected based on initial

experimental measurements[54].

The spatial electric field distributions in the r-z plane are shown in Figure 5-17 to

Figure 5-20 for the discharge maintained at 20 Torr with an electron density equal to 3.0 x
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1012 cm'3, and for the discharge maintained at 70 Torr with an electron density equal to

8.0 x 1013 cm'3 respectively. The calculated E, and 152 components are symmetric in the 0

direction, and the 13,, components are zero during the simulation. The simulation is in

approximate agreement with the theoretical TMOH mode wave pattern. In particular, from

these figures, the distribution of E, and E2 fields along the z and r directions are in

approximate agreement with the theoretical electric field distribution for the TMOH mode

which was the experimentally measured mode[3]. Due to the presence of the discharge,

the electric fields decay further into the plasma region as microwave energy is absorbed by

the plasma. Examples of absorbed power distribution for the substrate location indicated

in Figure 5-14 are shown in Figure 5-21 and Figure 5-22 for 20 Torr and 70 Torr

conditions respectively.

5.6 Conclusions

The FDTD numerical model has been applied to solve the steady state

electromagnetic fields inside a plasma loaded microwave cylindrical resonant cavity in

this chapter. The simulated structure included the input coupling power probe, as well as,

the geometry of the base plate, substrate location, and quartz disk structure. The

simulation results of a hydrogen discharge loaded plasma reactor, as compared to

experimental data, showed good agreement for the electric field distributions. The FDTD

electromagnetic model described in this paper will next be coupled with a more complete

plasma continuum model to obtain a more accurate simulation of microwave plasma

discharges, especially the spatial variations in the plasma. This self-consistent

electromagnetic field and plasma model will be discussed in the next chapter.
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Chapter 6

Self-consistent Simulation of 3 Microwave Cavity

Plasma Reactor

6.1 Introduction

In this chapter, a self-consistent model is presented which couples the FDTD

electromagnetic field model and the fluid plasma model together in order to investigate the

electromagnetic excitation of discharges inside a microwave cavity plasma reactor. The

techniques used to coupling these two model are discussed in detail. The Simulated plasma

reactor is loaded with a H2 discharge which is used for diamond thin film deposition.

Simulation results are provided and compared with diagnostic results.

6.2 Model description

The numerical model used in this chapter for microwave cavity plasma reactor

Simulation combines the FDTD model described in Chapter 2 and the fluid plasma model

described in Chapter 3. The FDTD model which solves the electromagnetic fields inside

the discharges can provide output information such as the microwave power absorption of

the discharges by using an appropriate plasma conductivity model. This absorbed

microwave power is the input to the fluid plasma model, which iS the heating term of the

138
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electron energy balance equation (3.33). The discharge characteristics such as the plasma

density and electron temperature are determined in steady State under this power

absorption condition. The discharge characteristics information is then sent to the FDTD

model to modify the plasma conductivity and calculate a new discharge power absorption.

Therefore, in this iterative manner, the power absorbed by the discharges will converge to

a stable value, and the electromagnetic fields inside the reactor source and the plasma

characteristics can be solved self-consistently. The plasma conductivity model which is

the link between the FDTD model and the fluid plasma model determines the relationship

between the microwave field and induced microwave current inside the discharges. This

relation can be determined by solving the electron momentum transport equation

(Langevin equation) equations (2.39) and (2.40) in the time domain as stated in Chapter 2.

The fluid plasma model describes the characteristics of discharges by solving the

steady state electron continuity equation, ion continuity equation, electron energy balance

equation, and Poisson equation (3.30)-(3.36). Finite difference techniques are used to

discretize these equations in cylindrical coordinates, and the resulting discretized

equations were shown in (3.37)-(3.43). To solve these non-linear type, discretized

equations, both direct method (Newton’s method) and iterative method techniques are

used (see section 3.4.2). In particular, the Poisson equation, electron continuity equation

and ion continuity equation are tightly coupled and solved by Newton’s method. The

unknowns solved at each grid point are the electron density, ion density and plasma

potential, and the electron and ion flux (steady State DC flux) can be determined by (3.34)

and (3.35) using the solution of these unknowns. Then, the electron density and flux are

coupled into the discretized electron energy balance equation (3.41) to solve the electron
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temperature. Another input for the discretized electron energy balance equation is the

absorbed microwave power density Pubs which comes from the FDTD electromagnetic

field model. The calculated electron temperature is then feedback to the continuity

equations and Poisson equation to modify the reaction rates and parameters and update the

electron density, ion density, and plasma potential. The final stable solution of density and

temperature is achieved by iteratively solving the continuity/Poisson equations and energy

balance equation.

The flow chart of the microwave cavity plasma simulation is shown in Figure 6-1.

The initial plasma density and potential data are determined by solving the Poisson

equation and electron and ion continuity equations with some given constant reaction

rates, such as the ionization rate and recombination rate. This information is coupled with

initial absorbed microwave power, which might be assumed constant, to be the input data

of the energy balance equation of electrons. Then, as previously discussed, the Steady state

electron density and temperature are determined by repeatedly solving the fluid plasma

equations. These two quantities are then used to evaluate the microwave induced

conductivity of the discharges in the FDTD model. Next, new power absorption data is

obtained after a few microwave cycles of FDTD simulation, and it is coupled back to the

fluid plasma model to update the plasma density and electron temperature. These

processes form a closed loop and are repeated until the steady state absorbed microwave

power converges to a stable value.

Since the solution of electron temperature and plasma densities are loosely

coupled, the damping technique discussed in Chapter 3 is used during the Simulation in

order to prevent divergence phenomenon from occurring. The damping factors for
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Figure 6- 1: Flow chart for microwave cavity plasma reactor simulation.
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electron temperature and density is normally 0.01, and might reduce to 10'5 if severe

oscillation or divergence occurs. The damping factor of the absorbed power density, Pubs,

which is the input to the fluid plasma model, is normally 0.1 to 0.01. For solving the

Poisson equation and continuity equations, since they are tightly coupled by the Newton

method, the damping factors are normally set to 1, and might be reduced to 0.01 if

divergence occurs.

6.3 Reactor description and Q value measurement

The basic structure of the microwave cavity plasma reactor for diamond thin film

deposition investigated in this chapter is similar to that in Chapter 5, which is shown in

Figure 5-6. The inner diameter of the cavity is Still 17.78 cm, but the height of the cavity,

L, is usually adjust to 20.4 cm for TM013 mode excitation with 2.45 GHz input frequency.

The plasma discharge is confined by a quartz disk which is 14.1 cm in diameter and 10.3

cm in high. The substrate holder and wafer size is 10.4 cm diameter, and the location of

the substrate holder can be adjusted in the z direction.

The electromagnetic resonant mode and cavity quality factor Q for this cavity

reactor are experimentally investigated by inserting a micro-coaxial probe into small holes

drilled though the resonant cavity walls. The center conductor of the probe is inserted

2mm beyond the inside surface of the cavity Side walls, and the other end is connected to a

power meter during the experiment, as shown in Figure 6-2. This probe samples a small

amount of electromagnetic power near the cavity inner side walls which can be measured

by the power meter. Since the probe power reading is proportional to the square of the rrns

electric field strength normal to the inside cavity, the cavity resonant mode and the cavity
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stored energy can be determined using this techniques.

In order to establish the relationship between the power reading of the probe and

the strength of electric field, a calibration procedure has to be performed. In this

procedure, the calibration of the probe is done by using a 17.78 cm i.d. empty cylindrical

brass cavity which is excited by a 2.45 GHz microwave frequency. This is the same brass

cavity used on the diamond deposition system to take electric field measurements. The

bottom of the cavity was covered with a brass plate in order to form a microwave resonant

cavity. The cavity height is adjusted to 20.4 cm for min mode excitation. The TM112

mode was selected since it gave the highest empty cavity quality factor (about 5000). This

quality factor was determined by the resonant frequency f0 and the bandwidth Af of the

reflected power measured from a frequency sweet of the resonant cavity, i.e., Q = f0/Af.

By inserting the micro-coax probe into the hole at z = 17.3 cm above the cavity bottom

surface on the cavity side walls, the probe power (Pp) was read from the connected power

meter. In order to established the relation between the electric field strength E near the

cavity inside cavity walls and the probe power reading Pp, the relationship between E at

the probe sampling position on the cavity walls and the absorbed power Pa has to be first

derived. The power absorbed by the empty cavity, Pa’ is defined by Pa=Pi-P,, where Pi is

the incident power imparted to the cavity (approximately 100 mWatts) in this case and Pr

is the reflected power from the cavity [48].

Using perturbation theory for the lossy conducting surfaces and assuming that the

power absorbed by the empty cavity is dissipated on the cavity walls, the following power

balance equation is established [49],
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Pa = R§|H|2ds (6.11)

where R is the surface resistance. For brass at 2.45 GHz excitation frequency,

R = 5.01 x 10‘7 f0 = 0.0248. (6.12)

For the W112 mode, the components of the H field are:

l r . 21tz

Hr = ‘A;11()"115)Sln(¢) cos(T) (6.13)

H — AL‘J' (it I) ( (Liz) (614)(D — — a 1 “a cos ¢)cos L .

and Hz = 0 , where A is the amplitude constant, and 2.11 is first root of the Bessel function

J1. For a = 8.85 cm (cavity radius), L = 20.4 cm, and A” = 3.83, equation (6.11) can be

evaluated by (6.12) to (6.14) giving

2nL 21w

Pa = R][|H¢(t=a)|2r(d¢)dz+2RH|H¢(z=0)|2r(d¢)dr

O 0 0 0

21th
(6.15)

+ 218“]ng = 0) |2r (d0) dr

0 0

= 03993.42

This evaluation was performed using numerical integration. For a cylindrical cavity, the

only component the electric field normal to the cavity Side walls is the B, field, which can

be written for the TM] 12 mode as
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1 21: A11 r . 21tz
Er = —A(jw——E)(T)(7)JI(KHE)COS ((1)) srn(T). (6.l6)

For r = a, q) = 0, and z = 17.3 cm, (6.16) can be calculated to be:

2

= 1.0344 x107A . (6.17)
r=a I542

From (6.15) and (6.17), the relationship between the electric field strength E near the

cavity inside walls and absorbed power is

= 2.59 x 107100. (6.18)
r=0 lErl2

Since the ratio of Pa to Pp, which is equal to 3243.24, is a constant, the relationship

between the electric field strength E near the cavity inside walls and the probe power is

obtained as

152 = IEJZ = 8.4><1010xPp (6.19)
 r=a

where the unit of E is Volt/m and the unit of PI) is Watt.

After the probe calibration is completed, the electric field Strength E near the inner

side walls of the microwave cavity plasma reactor can be determined from the power

reading of the micro-coax probe. Probe experiments are done by measuring the electric

field strength at various 2 positions for the microwave cavity plasma reactor during

diamond thin film deposition. The microwave excitation frequency is 2.45 GHz, and the

cavity height is adjusted to a position near 20.4 cm for a minimum reflected power
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condition. The result is shown in Figure 6-3 where the resonant condition for the

microwave cavity during deposition process matches closely to the ideal TMOB mode.

The field pattern for the TM013 mode is shown in Figure 6-4. Additionally, the electric

field was probed circumferential around the cavity. The field Strength Showed no variation

along the 6 direction as expected for the T194013 mode.

The Q factor of the plasma discharge loaded cavity reactor can be estimated by

calculating the electromagnetic energy Stored in the cavity and the power dissipated in the

cavity. The energy Stored in the cavity is determined under the assumption that the

electromagnetic fields are only Slightly altered by the presence of the discharge and that

the electromagnetic fields in the discharge are not much different from those when the

discharge is not present. The electric field for the theoretical T194013 cavity mode is given

 

by:

E_A)"01 31thr.3rtz 620

’_ju)ea-L_101c_rsm—L_ (°’

E0 = O (6.21)

2.2

Ez = A2):—12]0()‘01g)005(§'g‘z) (6.22)

1 a

where A01 is the first root of Bessel function JO, and A can be determined in (6.20) and

(6.22) with the measured probe power Pp. Thus, the energy Stored in the cavity can be

determined by:
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Figure 6-3: Electric field strength vs. cavity height for microwave cavity plasma

reactor during diamond deposition process.
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Figure 6-4: Field patterns for TM013 mode.
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U = 2Ue = eIIEIZdV = ej|Ede+ej|Ez|2dv (6.23)

and the Q factor is given by,

_ orU .Q _ 7 (6.24)

a

where Pa is the power absorbed with the plasma discharge present.

6.4 Implementation for H2 discharge simulation

The simulation structure for the FDTD model and the plasma fluid model are

Shown in Figure 675. The simulation structure for the FDTD model is basically the same

as that discussed in Chapter 5, but the quartz tube which is used to adjust the height of the

substrate holder is included in this chapter. The assignments of the perfect conductor

boundary condition and non-reflecting boundary condition are the same as in Chapter 5.

The location of substrate holder is again assumed as aligned with the upper surface of the

base plate. The boundaries of the fluid plasma simulation are the quartz disk and the

substrate holder, where the diameter of the substrate holder is the same as that of the

quartz disk. The boundary conditions of the fluid plasma model are:

an
e

r

atr = 0: = — = 0 (6.25)

Q
J
I
Q
J

"
*
6 Q
.
)

$
1an

- I?

and



Figure 6-5:

with quartz tube.

Simulation Structure cross-section for microwave cavity plasma reactor
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at the quartz wall and substrate: ne = n‘. = ‘l’ = 0

(6.26)

T? = Tn

At r = 0, which is the center of the cylindrical reactor, the boundary condition (6.25) is

based on assuming all the unsolved quantities (ne, ni, Te, and ‘1’) have an r symmetry when

r approaches to zero. The boundary conditions (6.26) at the quartz wall and substrate

assume wall recombination occurs when electrons and ions reach the walls and assume

that thermal equilibrium occurs at the walls. The potential is assumed zero on the substrate

and on the quartz walls. This assumption is good for the conducting substrate. However on

the insulating walls a floating potential is more appropriate. It was observed, though, that

the plasma is confined mostly to the region just above the substrate with only weak

interaction with the quartz disk walls. Hence, the selection of the quartz boundary

condition of ‘1’ = 0 did not alter the simulation results significantly.

The grid Structure used for the fluid plasma model is shown in Figure 6-6. The

total number of grids used in the plasma simulation is 11 x 11 in the r and z direction

respectively. In the z direction, a uniform grid Spacing of 0.57 cm is used. In the r

direction, the grids are constructed in such a way that all the unit cell areas (or volumes,

Aerr2rt) are equal. Therefore, the largest grid Spacing in the r direction is 2.22 cm, and

the smallest is 0.36 cm. Since the grid structure and grid space for the FDTD model are

different from those of the fluid plasma model, a linear interpolation technique was used to

interpolate the absorbed power to each grid point of the plasma model, and the plasma

density and electron temperature to each grid point of the FDTD model.

For the partially ionized and partially dissociated H2 plasma discharge simulation

developed in this study, the major particle interaction processes are the electron-H2 gas
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Figure 6-6: Grid structure for fluid plasma model.
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inelastic collisions, electron-H2 gas elastic collision and electron-hydrogen ion

recombination. The electron-H2 inelastic collisions include the H2 gas ionization,

excitation and dissociation processes. The rate coefficient for these collision processes are

expressed using the Arrhenius relationship [51] as

k' n = Aioncxp (—€ion/KBTe)ro

kext = Aextcxp (‘Eext/KBTe) (6.27)

kdis = Adiscxp (-8dis/KBTe)

where km, ken, and kdt's are the collision rate coefficient with unit of m3/sec introduced in

Chapter 3; £30", e,m and 8111's are the threshold energy for H2 gas ionization, excitation and

dissociation; and Aion» Am and Adi: are the pre-exponential factors which are obtained by

approximating the rate constant data at low Te in Janev at al.[57] to these relationships.

For simplicity, only the reactions with higher rate coefficients are considered in this study

for H2 gas. The types of inelastic collisions and their corresponding rate parameters are

summarized in Table 1. The collision frequency for electron-H2 gas momentum transfer

ven is relatively independent of the electron temperature, so it can be written as [50]

ven (”2) = 1.44 x1012
x Pressugi

(Torr)

Tnl K)

where Tn is the neutral temperature which can be represented by the translational

 (6.28)

temperature of H2 gas. Since ven is relatively independent of the electron temperature, the

effective collision frequency vcflis set equal to ven. It should be noted that the only neutral

species considered in the ion and electron simulations was the H2 species. Hence these

simulations assume a low hydrogen dissociation percentage.
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Table 1: H2 Reaction Rates

 

 

pre-

exponential

. . Threshold factor or

Reactron Expressron

energy rate

coefficient

(m3/sec)

Ionization e + H2 _, e + 1:15., 3 15.4 eV 1.0x10’14

Excitation 12.0 eV 6.5x10'15*

e+H2—)H2+e

 

. . . -14

Dissocratron e + H2 _) e + H + H 10.0 eV 1.0x10

 

Recombination 0 eV 1.0x10'l4

e + ion —> neutral      
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6.5 Simulation results for fluid plasma model

The simulation results for the microwave cavity plasma reactor loaded with a H2

discharge are present in this section. Before coupling the FDTD electromagnetic model

with the fluid plasma model to get self-consistent power absorption solutions, the validity

and stability of the fluid plasma model will examined first by providing a constant

absorbed power, 500 Watt, as input data. The neutral temperature profile is assumed

neutral as 2000 0K at the discharge center and 1000 0K at the quartz disk boundary. The

2000 0K neutral temperature and the volume of this 2000 0K region was selected based on

experimental measurements of the hydrogen translational temperature and the plasma

volume [54] as shown in Figure 6-7(d). Assuming the pressure is 50 Torr and the input

absorbed power is 500 Watt, the electron density, ion density, and electron temperature are

determined by solving the Poisson equation, the electron/ion continuity equations, and the

electron energy balance equation. The results are shown in Figure 6-7. Part (a) and part (b)

are the electron density and plasma potential. The electron density is higher at the center

and drops gradually toward the boundary to match the boundary condition (ne = ni = 0).

The plasma potential is quite uniform due to the quasi-neutral condition in the bulk plasma

region. Part (c) shows the electron temperature profile. Basically, it is uniform over the

discharge region. The stability of the numerical solution of the fluid plasma model is

shown in Figure 6-8. The electron temperature, which is very sensitive to the plasma

density oscillates severely during the beginning iterations since the electron energy

equation and the continuity equations are loosely coupled. By using a damping factor

equal to 10'5 for electron temperature during the beginning iterations, the electron

temperature converges to a Stable value after about 30 iterations.
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Figure 6-8: Electron temperature and density variations during fluid plasma simulation.
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This example shows the application of the fluid model for microwave discharge

simulation with a constant, uniform absorbed microwave power input. The resulting data

of this simulation can be used as the initial conditions (shown in Figure 6-1) for the self-

consistent microwave cavity plasma reactor simulation.

6.6 Self-Consistent results for microwave cavity plasma reactor

simulation

The microwave cavity plasma reactor loaded with H2 gas for diamond film

deposition is simulated and investigated by a self-consistent numerical model which has

been described in the previous sections. The input parameters for this model includes the

pressure and input microwave power. A set of empirical equations developed by G. King

[58] are used to establish the neutral temperature profile for this simulation. These

empirical equations are based on the statistically-designed experimental data obtained by

discharge diagnostics in a parameter space including pressure and input microwave power.

The empirical equations used to predict the translational temperature of H2 gas and the

discharge volume are [58]:

Translational Temperature (0K) = 228.6 + 374.3 x Incident Power (kW) + 16.5 x

Pressure (Torr) i 94.2 (6.29)

Plasma Volume (cm3) = 449.7 + 116.2 x Incident Power (kW) -I8.1 x Pressure

(Torr) + 57.1 x [Incident Power (kW)]2 + 0.25 X [Pressure (Torr)]2 - 5.4 X Pres-

sure (Torr) X Incident Power (kW) i 15.4 (6.30)

The plasma volume serves as a boundary for neutral temperature (Tn). Inside the plasma
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volume region, the translational temperature given by (6.29) is the neutral temperature.

Outside the volume, the neutral temperature is equal to the temperature assigned on

boundaries (Tn = 1000 OK). Between these two regions, a linear temperature change

profile is used to prevent an abrupt change of Tn, This is done by assigning the boundary

temperature (Tn = 1000 0K) to the region several grids, namely three grids, away from the

plasma volume in both the r and 2 directions. The temperature assigned on the grids

between these two region are linearly interpolated from the neutral temperature given by

(6.29) and boundary temperature (Tn = 1000 oK).

The simulation results for the electric field distribution are shown in Figure 6-9

and Figure 6-10 for 1'5.r and E2 field components respectively. The input condition for this

Simulation is 50 Torr in pressure and 1500 Watts input microwave power. The electric

field patterns basically follow the mom mode electric fields distribution. The affect of

the electric field caused by the presence of discharge can be observed. It reduces the

amplitude of the electric field in the plasma discharge region since electromagnetic power

is absorbed in the discharge region. The discontinuity of the electric field resulting from

the difference of dielectric constant between the quartz and air can also be seen. The

conductivity of the plasma can be determined from (3.42) using the solved density and

effective collision frequency. Figure 611 shows the maximum conductivity of the

discharge is around 0.4 mho-m. Figure 6-12 shows the power absorption pattern and

indicates that the most microwave power is absorbed in the center region and closed to the

substrate. The electric field patterns inside the quartz disk (plasma simulation region) are

shown in Figure 6-13 and Figure 6-14. It can be observed that the Ez field doesn’t just

decay into the discharge but also is concentrated in the region above the substrate. This is
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Substrate

Figure 6-13: B, field pattern inside the quartz disk region.
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Figure 6-14: Ez field pattern inside the quartz disk region.
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because the discharge has a finite Size and the plasma density is not uniform. Therefore,

the electric field might propagate into the quartz disk region from other directions and

concentrate at the region above the substrate without being blocked by the discharge.

The simulation result of the characteristics of a H2 discharges at 50 Torr and 1500

Watts input power is Shown in Figure 6-15. The neutral temperature profile determined by

the empirical equations is shown at part ((1). The plasma density is concentrated more at

the center. The electron temperature is also highest at the center of the discharge. The

Spatial variation of ionization and recombination rate are shown in Figure 6-16. The

ionization rate is higher near the substrate due to the electron temperature being higher at

that region. The recombination rate profile basically follows the electron density variation.

Figure 6-17 shows spatial variations of various energy loss mechanism of electrons,

including ionization, excitation, dissociation, recombination, and elastic collisions. It

shows the energy loss due to elastic collision is the major energy loss for electrons in H2

discharge under moderate pressure. The convergence behavior of the absorbed power is

shown in Figure 6-18. When the power absorbed by the plasma converges to a stable

value, the steady state solution of this numerical model has been obtained.

The characteristics of H2 discharges and cavity quality factor Q are analyzed for

various pressure and absorbed power by this numerical model. The neutral temperature

and plasma volume determined by (6.29) and (6.30) are the input data for simulations and

their variations for different incident power and pressure are shown Figure 6-19. The

simulation results of average electron temperature vs. absorbed microwave power are

shown in Figure 6-20. These average values are calculated by integrating the temperature

inside the plasma volume and divided by the plasma volume. The average electron
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Figure 6-15: Simulation results of a microwave cavity plasma reactor for pressure = 50

Torr and input microwave power = 1500 watt. (a) Electron density (b)

Plasma potential (c) Electron temperature ((1) Neutral temperature

(assigned values).



Torr and input microwave power = 1500 watt.

Figure 6-16: Spatial variation of ionization rate and recombination rate for pressure =50
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Figure 6-17: Spatial distribution of various energy loss for pressure = 50 Torr and input

microwave power = 1500 watt. The unit of the energy loss is Watt/m3.
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temperature is about 1.5 eV. The electron temperature increase with higher absorbed

microwave power. Also, the electron temperature drops with increases of pressure. This

can be understood since higher pressure means higher collision frequency for electron

with neutrals. Therefore, electrons more easily transfer their energy to neutral particles

and reduce their kinetic energy. The results for Q vs. absorbed microwave power are

shown in Figure 6-21 respectively. It shows when the more power absorbed by the

discharge the lower the Q factor. The pressure has only a little effect on the Q factor. At

the 50 Torr pressure and 1500 microwave power condition, the Q factor of the microwave

cavity plasma reactor with a H2 discharge has been experimental determined by using the

technique developed earlier Section 6.3. The Q value determined experimentally is about

100 which is close to the simulation result (Q = 107). This close agreement is an

additional indication of the validity of the model.

6.7 Summary

The self-consistent Simulation results for a microwave cavity plasma reactor were

given in this chapter by coupling the FDTD model and the fluid plasma model developed

in previous chapters. The electric field patterns and power absorption patterns in a TMor3

mode microwave cavity plasma reactor operating with a hydrogen discharge were

simulated. The simulated electric field distributions Showed a good agreement with the

results of electric field measurements done using a micro—coax probe technique. The

characteristics of the H2 plasma where also investigated and analyzed for various

microwave powers and pressures. The quality factor Q for the discharge loaded cavity was

determined by numerical Simulation and by experimental measurement The two results
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showed good agreement which serves as a verification of the accuracy of the numerical

model developed in this study.



Chapter 7

Conclusions

A self-consistent numerical model has been developed to simulate the

electromagnetic excitation of discharges inside microwave cavity plasma reactors. This

software includes a electromagnetic field model and a fluid plasma model. The microwave

cavity plasma reactors simulated by this numerical software were loaded with a H2

discharge and used for diamond thin film deposition. The complex reactor geometry and

input power coupling probe structure were included in the simulation. The input

parameters for the microwave cavity plasma reactor simulation included the pressure and

input microwave power. The operating pressure investigated in this study was the

moderate pressure range (1 Torr to 100 Torr). The input microwave power was from

several hundred watts to several kilowatts. The electromagnetic behavior of the discharge

loaded resonant cavity, such as the electric field distributions, power absorption patterns,

and cavity quality factor Q, were studied and analyzed for various input condition. The

characteristics of H2 discharges, including the plasma density, electron temperature, and

plasma potential, were also investigated and studied. The electromagnetic mode and

cavity Q value of a H2 discharge loaded reactor were simulated and Shown to be in

agreement with measured experimental values.
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The electromagnetic field model developed in this research is based on using the

finite-difference time-domain (FDTD) numerical method to solve the time-dependent

Maxwell’s equations. The major advantage of this method is that it can be easily

implemented to solve the field in complex geometry structures with complex loaded

materials, such as plasmas. In order to investigate the microwave power absorbed by the

lossy materials or discharges, appropriate conductivity models were identified and used to

solve the microwave field induced current density. For plasma discharges, this induced

current density was determined by solving the electron momentum transport equation.

Chapter 4 presented the transient Simulation results of microwave resonant cavities

using the three-dimensional FDTD simulation method for empty and loaded cylindrical

cavities. Comparisons to exact analytical models using simple geometry cavities were

used to verify the accuracy of the electromagnetic field model. The results of empty cavity

simulations agreed well with the theoretical resonant mode. The simulated natural

frequency of a lossy loaded cavity also match the analytical solutions. A compact ECR ion

source and a Ar loaded cavity were also simulated by using a magnetized discharge

conductivity model for the ECR source and by simultaneously solving the electron

momentum transport equation in the time domain, respectively The steady state

simulation method was introduced by including the input power coupling Structure into

the electromagnetic model as shown in Chapter 5. By implementing a non-reflecting

boundary condition, the open boundary problem at the end of the input coupling probe

was solved. The Q value and the power reflected from the microwave cavity plasma

reactor were analyzed for various cavity height and loaded conductivity. This Simulated

reflected power characteristic behavior is Similar to that found in experimental systems.
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A fluid plasma model was developed in Chapter 3. It solved the electron and ion

continuity equations, the electron energy balance equation, and the Poisson equation. The

input to this plasma model was the microwave power density absorbed by the discharge,

which was calculated by the electromagnetic field model. The discharge characteristics

Simulated by the plasma model were feedback to the electromagnetic field model to

update the electromagnetic field and power absorption. The final self-consistent results

were solved iteratively to a converging solution by these two models. This self-consistent

solution was done using two dimensional solution of the FDTD and fluid plasma models.

The electromagnetic field solution technique present in this study allows the

calculation of the power absorption profile in microwave discharges which has often been

a difficulty in plasma simulations. The understanding obtained from the electromagnetic

solution allows the reactor design structure to be analyzed for improvement and

optimization of such quantities as uniformity of microwave power absorption.

Additionally, the simulation and understanding of the electromagnetic fields is expected to

be key to microwave reactor control.

The techniques developed in this study could in the future be applied to a wide

range of plasma sources including the various high density sources, e.g. inductively

coupled sources, helicon source and ECR sources. Other future work extending this study

includes self-consistently solving the temperatures and densities of various neutral

species, expanding the two dimensional fluid plasma model to three dimensions, and

developing a numerical model to simulate the side-feed input coupling structure for TED”

mode cavities.
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The derivation of discretized Poisson equation (3.37) is provided here in details.

The Poisson equation can be written as

VOE = E ,
(A-l)

In 2-D cylindrical coordinates, it can be expanded to

BE
Za _ e

-a-;(rEr) +ra—z — r8. (A-Z)

Integrating from r,-_1/2 to no”); and Zk-1/2 to 2 “1,2, (A.1) becomes

. 1 . 1

’1+1/2Er(‘+§rk)° (Zk+1/2‘Zk—1/2) —ri—1/2Er(l—§’ k)“ (Zk+1/2'Zk—1/2)

2 2

r0 +r.

1 ””2 "”3154",“ilEzktk-ill -<A-3>

2 2

_ p(i,k) ’i+1/2+’i—1/2 ( )

" e 2 Zk-t-l/Z—Zk—l/Z

 

 

Since
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Azk+AZk—l

Zk+l/2—zk-1/2 = ‘—_2—— , (A4)

for uniform grid spacing in the z direction and

P (i. k) = e(n,-(i. k) —ne(i. k)) . (A5)

(A3) can be rewritten as

 

2 . 1 .1

( 2 2 )'(ri+1/2Er('+§ik)'ri—1/2Er(”§rk))

ri+l/2—ri—l/2

HM»
= 50.4.31.) —n,(i.k))

 

Moreover, using

V‘i’ = E, (A.7)

E, and E2 are discretized to be

 

 

. 1 _ ‘I’(i+1,k)-‘I’(i,k)
Er(r+-2-,k) — Ar(i) (A8)

and

. _1_ _ ll’(i,k+1)—‘1’(i,k)
Ez(r,k+2) — Az (k) . (A.9)

Substitute (A8) and (A9) into (A.6) the discretized Poisson equation is
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r.
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as Shown in (3.37). The other discretized equations, such as electron continuity equation

(3.38) and electron energy balance equation (3.41), can be derived in a similar manner.

In case of the point r = 0 (i = 1), then (A.2) is integrated from 0 to rm instead of

from r,-, 1,2 to 'i+1/2- With (A.4) and (A5), (A.6) becomes

 

3 2 1 1

’3/2Er15’kl‘“ (Azk+Azk_,) '(Ez("“§)‘5211”“§)l

= gtn,(1.k)-n,(1.k))

(A.11)

Then, substituting (A8) and (A9) into (A. 11), the discretized Poisson equation for r = 0 is
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2 l 2 1

—-—-‘1’(2,k)+—-—-‘1’(1,k)

'3/2 A’1 ’3/2 A’1

2 .‘I’(l,k+1)+ 2 _‘1’(1,k—1)
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2 1 l

— — — A11 l,k
(AZk+AZk_1)(Azk+Azk_1) ( )

(A.12)

 

= _g(n,(1,k)—n,(1.k)).

Similarly, the discretized electron continuity equation and electron energy balance

equation at r = O can be derived as

 

2 (3 1 2 1 1 ‘l ( 1)) '
—-J -,k + - Je 1,k+— -J¢ l,k—-

r3/2 er 2 (AZk+AZk-l) Z 2 Z 2 (A.13)

= ne(i, k) [nn(1,k)kion(l,k)—ar(l,k)n,(l,k)]

and
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(A.14)

(1. k)
obs

=ne(l,k)2Hi(l,k)+P

,-

where Je, Jez, qe, and q,Z are defined in (3.39), (3.40), (3.42), and (3.43).
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