LIBRARY Mlchigan State University PLACE II RETURN BOXtonmavothl-duckomm ywrncoa'd. TO AVOID FINES mum on or baton dd. duo. DATE DUE DATE DUE DATE DUE ',\30 4‘3 1m m1 -_ ._ _. _,______._._____ __. 7,_, __— THE RR LYRAE VARIABLE STARS IN THE GLOBULAR CLUSTER M15 By Nancy Ann Silbermann A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics and Astronomy 1994 ABSTRACT THE R LYRAE VARIABLE STARS IN THE GLOBULAR CLUSTER M15 By Nancy Ann Silbermann The globular cluster M15 is a canonical Oosterhofl' type II globular cluster. The RR Lyrae variable stars within M15 have previously been used to determine the age of the cluster as well as the absolute magnitude of the variables. These previous studies have relied on photographic photometry. With the recent advances in electronic cameras (CCD’s), it is now possible to obtain higher quality photometry in a much shorter time. These new cameras challenge observers to make new analyses of RR Lyrae stars in globular clusters. To that end, new CCD photometry is presented of RR Lyrae variable stars in the globular cluster M15. This photometry, mainly in V and R, with some additional B and I, is used to construct lightcurves of 44 RR Lyraes and 1 Cepheid (VI) in M15. One new RR Lyrae star was discovered and is tentatively named v113. Using the new (V-R) colors and Kurucz’s stellar models, the blue and red edges of the instability strip are found to be at log Tefl' = 3.875 and log Tet! ~ 3.81, repectively. The transition line between the fundamental and first overtone mode pulsators is found to be at log Ten = 3.839. There is no overlap in (V-R) between the fundamental and first overtone mode variables. From pulsation theory and these observations, the absolute magnitude of the RR Lyrae stars in M15 is MV 2 +0.33 :l: 0.12, for an RR Lyrae mass of 0.75MQ. With Mv = +0.33, the age of M15 is 12.6 x 109 years. However, due to the still present uncertainties in R Lyrae mass and the Te“ scale calibration, the absolute magnitude of the M15 RR Lyrae stars still remains significantly uncertain. We have also investigated the period changes of 49 RR Lyrae variable stars in the globular cluster M15 using observations spanning almost a century. Some of the variables have been too sparsely observed over that time interval for reliable period changes to be determined. Others, which have been well observed, show a wide range of period change behavior. We find a significant excess of increasing over decreasing periods. The median rate of period change, +0.03 days / million years, agrees with the theoretical prediction of Lee. This implies that most M15 RR Lyrae stars are evolving from blue to red through the instability strip. However, it is not certain whether there are sufficient blue horizontal branch stars in M15 to sustain the M15 RR Lyrae population at the observed rate of period change. The dispersion in the rate of period change for R Lyraes of Bailey type ab is greater than for those of type cd. The origin of that difference in period change behavior is without adequate explanation. For my mother and father, at last. iv ACKNOWLEDGMENTS I would like to thank my Ph.D. advisor, Horace Smith, for everything. Without his patience and understanding I would not be where I am today. I will not forget those observing nights, that pig smell, those Open Houses (the mosquitos!), and of course, the ice cream. Thanks also to Jeff Kuhn, Haosheng Lin, and Ed Loh for maintaining the MSU and WIRO (MOPE) CCD’s and software (our friend STARGAZEl). A special thanks to Peter Stetson for his time when I was at DAO and for DAOPHOT and DAOPHOT II: TNG, and Jim Hesser for allowing me to use the facilities at DAO. A special thanks go to the MSU gang: Debbie Benedict, Xania Scheick, Larry Bendler and Ron Wilhelm. A special thanks also to the WIRO gang: Earl Spillar, Tim Titus, Leisa Townsley and Tom Edwards. I would also like to thank my other Ph.D. committee members: Ed Loh, Tim Beers, Wayne Repko, and Mike Dubson. This research used the resources of SIMBAD. This research would not have been possible without the support of the National Science Foundation Grant AST9015728. TABLE OF CONTENTS LIST OF TABLES .............................. , .......................... ix LIST OF FIGURES ....................................................... x 1. INTRODUCTION ...................................................... 1 PART I 2. EQUIPMENT & OBSERVATIONS 2.1 MSU ................................................................. 11 2.2 WIRO ............................................................... 14 3. DATA REDUCTION ...................... 18 4. CONVERSION TO THE STANDARD SYSTEM .................. 22 5. TRANSFORMING THE VARIABLE STAR PHOTOMETRY TO THE STANDARD SYSTEM .............. 39 6. NEW PERIODS AND LIGHTCURVES ............................ 42 7. ANALYSIS 7.1. Mean Magnitudes and Colors ......................................... 83 7.2 Radial Dependencies ................................................. 84 7.3 Comparison of < V > with Bingham et a1. ........................... 89 7.4 The Color-Magnitude Diagram of the Horizontal Branch .............. 91 7.5 Amplitude vs < V > and < V — R > ................................. 93 7.6 Period vs Amplitude Diagrams ....................................... 93 vi 7.7 Color vs Period Relations ............................................ 97 7.8 Mean Magnitude vs Period Relations ................................ 100 7.9 Summary ........................................................... 104 8. CONVERSION TO PHYSICAL PARAMETERS 8.1 Effective Temperature and Reddening ............................... 106 8.2 The Absolute Magnitude of the RR Lyrae Stars ..................... 112 8.3 The Distance to M15 ................................................ 118 8.4 The Age of M15 .................................................... 118 PART II. 9. PERIOD CHANGES 9.1 Introduction ........................................................ 120 9.2 The Data 9.2.1 Grouping of the Observations . . . .................... 121 9.2.2 The Problem of Gaps in the Observational Record ................ 124 9.3 The Phase Diagrams ................................................ 125 9.4 Period Changes 9.4.1 Parameterizing the Period Changes .............................. 125 9.4.2 Comments on Individual Variables ............................... 141 9.5 Discussion 9.5.1 The Excess of Increasing Periods ................................. 145 9.5.2 Interpretation of the Period Changes ............................. 149 9.5.3 Period Changes as a Function of Bailey Type ..................... 155 10. CONCLUSION ...................................................... 158 11. FUTURE WORK ................................................... 160 vii APPENDICES Appendix A MSU And WIRO Photometry of M15 Variables .............. 162 Appendix B Dates and Phases of Maxima for the M15 Variables ........... 212 LIST OF REFERENCES ............................................... 220 viii LIST OF TABLES Table 4.1: Summary of Comparison of Photometric Data ..................... 38 Table 6.1: Parameters of M15 Variables ...................................... 80 Table 8.1: Reddening Determinations for M15 .............................. 107 Table 8.2: mbol and Tag for M15 RR Lyraes ................................. 109 Table 8.3: mbol and Te“ for Non-variables ................................... 110 Table 9.1: Groupings of M15 Observations .................................. 122 Table 9.2: Periods for M15 RR Lyrae Stars ................................. 123 Table 9.3: Rate of Period Change for RR Lyrae Variables in M15 ........... 139 Table 9.4: Mean Rates of Period Change .................................... 148 Table A.1: MSU V Photometry of M15 Variables ........................... 163 Table A.2: MSU R Photometry of M15 Variables ........................... 187 Table A.3: WIRO B Photometry of M15 Variables .......................... 205 Table A.4: WIRO V Photometry of M15 Variables .......................... 206 Table A.5: WIRO R Photometry of M15 Variables .......................... 207 Table A.6: WIRO I Photometry of M15 Variables ........................... 208 Table A.7: WIRO B Photometry of M15 Variables - Northwest Field ........ 209 Table A.8: WIRO V Photometry of M15 Variables - Northwest Field ........ 209 Table A.9: WIRO R Photometry of M15 Variables - Northwest Field ........ 210 Table A.10: WIRO I Photometry of M15 Variables - Northwest Field ........ 210 Table A.11: Photometry for HB N on-variable Stars ......................... 211 Table B.1: Dates and Phases of Maxima .................................... 212 ix Figure 1.1: Figure 1.2: Figure 1.3: Figure 1.4: Figure 1.5: Figure 2.1: Figure 2.2: Figure 4.1: Figure 4.2: Figure 4.3: Figure 4.4: Figure 4.5: Figure 4.6: Figure 4.7: Figure 4.8: Figure 4.9: LIST OF FIGURES Position of RR Lyrae Stars on the Horizontal Branch .............. 2 Location of Bailey Types in the Instability Strip ................... 4 Differences in Horizontal Branch Morphology ...................... 6 Direction of Evolution Determining Pulsation Mode ............... 9 Typical MSU V CCD Frame of M15 .............................. 13 V CCD Frame of the WIRO M15 South Field .................... 16 V CCD Frame of the WIRO M15 Northwest Field ................ 17 WIRO B-V vs V Color-Magnitude Diagram ..................... 25 WIRO V-R vs V Color-Magnitude Diagram ..................... 26 WIRO V—I vs V Color-Magnitude Diagram ...................... 27 Comparison of V Photometry: Buonanno et al. and MSU ........ 29 Comparison of V and (B-V) Photometry: Buonanno et al. and WIRO ...................... 31 Comparison of V and (V-R) Photometry: MSU and WIRO South Field .................... 33 Comparison of V and (V—R) Photometry: MSU and WIRO Northwest Field ................ 34 Comparison of V and (B-V) Photometry: Battistini et al. and WIRO Northwest Field ...... 35 Comparison of V and (B—V) Photometry: Battistini et al. and WIRO South Field .......... 36 Figure 6.1: Lightcurves for the Variables in M15 ............................. 43 Figure 7.1: V vs Radius For the Variables .................................... 85 Figure 7.2: (V — Rh,“ vs Radius For the Variables .......................... 87 Figure 7.3: (V - Rh,“ vs Radius For Uncrowded Variables .................. 88 Figure 7.4: Comparison of Variable Star Photometry With Bingham et al. . . . 90 Figure 7.5: Color-Magnitude Diagram of the Horizontal Branch in M15 ....... 92 Figure 7.6: Mean Magnitude vs V Amplitude for the RR Lyrae Stars ......... 94 Figure 7.7: Mean Color vs V Amplitude for the RR Lyrae Stars .............. 95 Figure 7.8: Log Period vs V Amplitude for the RR Lyrae Stars ............... 96 Figure 7.9: Color vs Log Period for the RR Lyrae Stars ...................... 98 Figure 7.10: Color vs log P’ for the RR Lyrae Stars .......................... 99 Figure 7.11: Color vs log Po for the RR Lyrae Stars ......................... 101 Figure 7.12: Color vs log P6 for the RR Lyrae Stars ......................... 102 Figure 7.13: Log Period vs Mean V Magnitude for the RR Lyrae Stars ...... 103 Figure 8.1: Te“ vs mbol for the Horizontal Branch Stars ..................... 111 Figure 8.2: log Te“ vs log P6 for the RR Lyrae Stars ......................... 113 Figure 8.3: Comparison of Estimates of My for the RR Lyrae Stars ......... 115 Figure 8.4: Te“ vs mbol for (V—K) Data .................................... 117 Figure 9.1: Phase Diagrams for the RR Lyrae Stars in M15 ................. 126 Figure 9.2: Histogram of Beta for M15 RR Lyrae Stars ...................... 146 Figure 9.3: Histogram of Alpha for M15 RR Lyrae Stars .................... 147 Figure 9.4: (B—V) vs V Indicating Period Changes of RR Lyrae Stars ....... 152 Figure 9.5: (V—R) vs V Indicating Period Changes of RR Lyrae Stars ....... 153 xi CHAPTER 1 INTRODUCTION RR Lyrae variable stars have been studied for almost one hundred years, begin- ning in the 1890’s with Solon Bailey’s photographic investigations of variable stars in globular star clusters. Today some 2,000 RR Lyrae stars have been discovered within globular clusters, while some 7,000 have been identified in the field popula- tion of the Galaxy. In the course of the last century, much has been learned about the physical properties of these variable stars and the instability strip they occupy. We know that RR Lyrae stars vary in brightness because of radial pulsations of their tenuous outer envelopes. These pulsations are driven by the alternate damming and releasing of the radiative energy flux by the helium second ionization zone and the hydrogen ionization zone in the outer layers of the star. These zones act as valves, trapping the heat at maximum compression and releasing heat at maximum radius. This process gives the atmosphere a kick which can allow pulsations to continue for millions of years. RR Lyrae stars are in the horizontal branch stage of evolution, deriving energy from the fusion of helium to carbon in their cores and from fusion of hydrogen to helium in shells surrounding the central cores. Not all horizontal branch stars are R Lyrae stars. RR Lyraes occur only when the horizontal branch crosses a well- defined instability strip (Figure 1.1). The existence of high and low temperature limits to RR Lyrae pulsation is easy to understand qualitatively, though quantitative limits are harder to achieve. If the star is too hot, the ionization zones which drive l l I l l Asymptotic Giant Branch RR Lyrae Stars Bed Giant 0 " M—w (_- Branch Mv +2 — V Horizontal ('— SUbQISHts Branch +4 .. Main +6 - Sequence 0.0 0.4 0.8 1 .2 1 .e (53“V5c, Figure 1.1: Position of RR Lyrae Stars on the I Horizontal Branch. the pulsation will be too high in the stellar atmosphere. The low density high in the atmosphere means that there is not enough material in the ionization zones to effectively dam the flow of energy. If the star is too cool, then the energy flux is carried to the surface by convection, and the ionization zones again lose their roles as valves. Not all RR Lyrae stars pulsate in the same radial mode. As was discovered by Schwarzschild (1940), some (Bailey type RRab) pulsate in the fundamental mode, while others (RRc) pulsate in the first overtone mode. The fundamental mode is simply a breathing mode - the outer atmosphere of the star expands and contracts in unison. The first overtone mode occurs when a node develops - the region outside the node moves in the opposite direction to the region within the node. More recently, it has been discovered that some RR Lyrae stars pulsate simultaneously in the first overtone and fundamental radial modes (type RRd). In these double mode RR Lyraes, the first overtone mode is usually dominant. The Bailey types are not scattered randomly throughtout the instability strip. Rather, there is a distinct order to the strip. RRab stars populate the red side of the instability strip, while RRc variables populate the blue side. RRd stars tend to be in between. Figure 1.2 shows the horizontal branch of the RR. Lyrae-rich globular cluster M3. The RRab stars are indicated by crosses, the RRc stars are the open circles, and the non-variable stars are filled circles. The exact boundaries of the instablility strip, and the divisions between these types in the HR diagram will be subjects of this study. In globular clusters, the size of the population of RR Lyrae stars varies consid- erably from cluster to cluster. Some clusters contain over one hundred RR Lyrae stars; others contain none. This depends not only upon the size of the cluster M3 ' I I I IS r > I 50.. I . __l VC — .. . . 8° . x " i 1‘ ° 22'2“ ‘ — .,...-.~.-..--- fee as» I v: ‘ us -— :3 ‘° ma “2 '— .:L.. ' _ (B‘V )0 __. 9 0.2 0.4 0:6 15 — ' '— . “1:23.. m -- ~ . e. . 'e (on. o X . . .— bol . z : E . : rugs-{$5. .l 63% I’ IS — V . ° i 3.88 3-79 '- l i 4.0 3.9 3.8 3.7 LOG Te Frpm Sandage (11990) 'T Figure 1.2: Location of Bailey Types in the Instability Strip. population as a whole, but on its horizontal branch morphology. Some clusters have only a stubby red horizontal branch. Others have distributions of horizontal branch stars which are very blue in color. A globular cluster with only a small red stubby horizontal branch may have plenty of horizontal branch stars, but no RR Lyraes because the horizontal branch lies entirely to the red of the instability strip. A glob- ular cluster with a well populated horizontal branch in the region Of the instability strip may have many RR Lyraes, although it may have no more horizontal branch stars than the first cluster we considered (Figure 1.3). In general, metal-rich globu- lar clusters have redder horizontal branches then metal-poor globular clusters. Thus metallicity is the first parameter governing horizontal branch morphology. Globular clusters which contain significant numbers of RR Lyrae stars are generally metal- poor, having [Fe / H] < —l.0. These globular clusters fall into two distinct groups, based primarily upon the mean period of their RRab stars. This phenomenon was first observed by Oosterhoff (1939, 1944). The mean period of RRab variables in an Oosterhoff type I cluster is < Pub > = 0.55 days, while in an Oosterhoff type II cluster < Pab >=0.65 days. Although recent studies have shown something of a continuum in < Pub > within each group, the basic dichotomy still holds. There are other differences between Oosterhoff type I and type 11 clusters. In type I clusters, fewer than 20% of the RR Lyraes are RRc and RRd stars, whereas in type II clus- ters that fraction can grow to 50%. The Oosterhoff phenomenon is correlated with metallicity. Oosterhoff type I clusters, are moderately metal deficient, at [Fe/ H] = -1.5, whereas Oosterhoff type II clusters are very metal-poor, near [Fe/ H] = —2. M15, the subject of this thesis investigation, is believed to have an [Fe/H] value near —2 or slightly below (Butler 1975, Zinn 1985). It does not appear as though metallicity alone can account for the different hmoHoaA—uol Joanna ~euflonmuou am euuuouumwwa "n. a Gnu—urn on>lmu m4 m.” m6 To 96 '- - d _ u u q — u u H - me. H ER“: . .. 1:- u Exam: 1 .m.. u .13“: .. - L n — b n n — n - ni_ — p p b - n p _ n n - properties of RR Lyrae stars in Oosterhoff I and II clusters. Perhaps this should not be surprising, since it is known that horizontal branch morphology is not perfectly correlated with metallicity. Two clusters of the same [Fe / H], as for example M3 and M13, may have different color distributions of horizontal branch stars. A second parameter besides [Fe/ H] is needed to explain horizontal branch morphology. The nature of this second parameter may have a bearing upon the origin of the Oosterhoff dichotomy. Many culprits have been fingered as the second parameter: differences in mass or luminosity of the stars, helium abundance, abundance of CNO elements to iron, and' rotation. Recently, Lee, Demarque, and Zinn (1990) have championed age as the second parameter: if two globular clusters have equal [Fe / H] but different ages, the older cluster will have the bluer horizontal branch. I will address some testable aspects of the Lee, Demarque, and Zinn scenario in Chapter 9. This study of RR Lyrae variables in the Ooserhoff type II cluster M15 will be divided into two main parts. The first part presents new photometric observations of variable and non-variable stars in M15. These photometric observations will be used to fix the stars in the color-magnitude diagram, and to investigate the pulsational properties of the RR Lyrae stars. Some of the questions to be addressed in this part of the study are: (i) Is the vertical spread in the M15 horizontal branch real, or attributable en- tirely to observational error? Stellar evolution theory (e.g. Sweigart 1991) predicts that, as a horizontal branch stars evolves, it will move off the zero-age horizontal branch (ZAHB) and become brighter. The initial direction of evolution, whether to the red or blue, depends upon the mass and chemical composition of the stars. Ul- timately, the horizontal branch stars must evolve to the red to join the asymptotic red giant branch. Is this evolution off the ZAHB, expected to be about 0.1-0.2 mag in V, detectable? (ii) What are the boundaries to the M15 instability strip? And where within the strip are the different Bailey types located? Obtaining mean colors (hence surface temperatures) for RR Lyrae stars is more difficult than for nonvariables. There is debate over the best way to average colors over the light cycle to arrive at the equilibrium value (Carney et al. 1992, Sandage 1993). Carney et al. in particular have argued that non-LTE effects and flux redistributions during rising light can distort the emitted spectrum of RRab variables. This distortion is believed tO be strongest at shorter wavelengths. V-R colors may thus have some advantage over B—V colors in this regard. (iii) Related to the above questions is the issue of what determines pulsational properties within the instability strip. Is there a sharp break in color between RRcd and RRab pulsators? Some theorists (e.g. van Albada 8.: Baker 1973, Stellingwerf & Bono 1993) have proposed the existance of a hysteresis zone: a zone in which direction of evolution determines whether a star pulsates in the fundamental or first overtone mode. Figure 1.4 shows a schematic of this. If the variables are evolving to the blue, the RRab stars will retain their fundamental mode of pulsation as they cross the hysteresis (H) zone. If the variables are evolving to the red, the RRc stars will cross through the hysteresis zone, reaching the red boundary of the hysteresis zone before switching pulsation modes. It is of interest, then, to see whether RRcd and RRab variables overlap in color. It is also of general interest to determine how pulsational properties, such as period or amplitude, change with location in the instability strip. (iv) The pulsational properties of RR Lyrae stars depend upon luminosity and mass. The M15 data and stellar pulsation theory will be used to estimate the log L/Le—b 4—c-b e—ab—v .1“ ______L_ wt Figure 1 .4 : ~<— log To Direction of Evolution Deter-lining Pulsation node 10 absolute magnitude of the RR Lyrae stars and the age of Ml5. The second part of the study will search for period changes among the RR Lyrae variables, using almost a century of observations. The basic pulsation equation, Pfi = constant, tells us that a small change in the density of a star will be reflected in a change in its pulsation period. This affords a method of investigating the evolution of an R Lyrae variable star through the HR. diagram which is much more sensitive than any other. The metal-poor cluster M15 was selected for investigation for several reasons. It is an archetypal Oosterhoff type II cluster, which has been well-observed by pho- tographic methods (most recently by Sandage, Katem, S: Sandage 1981 (SKS) and by Bingham et al. 1984). It is well placed in the sky for observation from Michigan and is rich in RR Lyrae variables (more than 100 are known). Published color- magnitude diagrams show M15 to have a well-populated blue horizontal branch, but a much sparser population of red horizontal branch stars. A major difference between the present study and earlier work has been the use of CCD’s (charged-coupled devices) rather than photographic plates to obtain the observations. CCD’s have high quantum efficiencies, up to 85% in V and R, compared to the 1% for photographic plates. The red sensitivity of CCD’s is useful in this instance, where there are reasons to be suspicious of colors involving blue wavelengths. CCD’s are linear over a large dynamic range: that is, the signal is directly proportional to the number of photons captured, facilitating interpretation of the data. CCD frames can also be analyzed much more rapidly than photographic plates, if you know a computer god who has already labored to bring forth the basic software necessary to perform the reductions. PART I CHAPTER 2 EQUIPMENT 8: OBSERVATIONS 2.1 MSU Most of the M15 data were obtained using the 24” telescope at Michigan State University. This telescope, located on the southern agricultural part of campus, downwind from the Swine Teaching and Research Facility, is of Ritchey-Chretien design, manufactured by Boller & Chivens. The primary has a focal ratio Of f/ 3.0 and at the cassegrain focus, where the camera sits, the combined primary and secondary focal ratio is f / 8.0. The telescope is not guided. The telescope is controlled by a 286 IBM PC, thrOugh an A / D converter on a rather ancient Raytheon, and the camera is controlled by a 386 IBM PC. The two PC ’3 are linked together and small movements of the telescope can be made via the 386 IBM PC. Initially CCD data were stored on 9-track tapes and taken back to the Physics-Astronomy building for analysis. In November 1991 the 9-track tape drive at the observatory died, facilitating transfer to a recently installed 8mm exabyte tape drive. At the Physics-Astronomy building, data reduction was done on two computers, GRUS, a 3100 VAXstation and CORVUS, a 3200 VAXstation. There is no timing device (ie. clock) at the observatory and we did not trust the computer clock. All time measurements were made from a wristwatch, which was set to the correct time by calling the local time phone number. All the MSU data were Obtained using a charged coupled device, or CCD. The 11 l2 CCD system is a Photometrics, Ltd Slow Scan CCD Camera System, with a Ford Aerospace/SAIC 1024 x 1024 pixel CCD chip. This camera was extremely reliable with a typical readout noise of ~18 electrons. The combined telescope and CCD system provides a scale of 0.7 arc seconds per pixel, giving a total field of view of almost 12 arc minutes square. Due to the modest seeing conditions at this site and the desire to not fill up all available disk space, the pixels were usually binned 2 x 2 before readout, resulting in 472 x 472 pixel CCD frames. Binning a square of 2 x 2 pixels into 1 ”superpixel” before readout increases the signal to noise in each superpixel compared to unbinned pixels. There is however, a loss of resolution when binning. Since we rarely obtain 0.7 arc second seeing in Michigan, this was not a problem. The typical temperature of the CCD when obtaining data was between -100° C and —110° C. M15 Was Observed at MSU from July thru December 1991 and July thru October 1992. The globular cluster was centered in the field of the CCD. Exposure time for all the frames was 10 minutes. As the CCD is not very sensitive to blue wavelengths, only V and R frames were obtained at MSU. Figure 2.1 shows a typical MSU CCD frame. During every night of observation a set of flats and darks was taken. New flats were necessary every night due to the transient nature of dust particles on the window of the CCD. Whenever possible sky flats were obtained, otherwise dome flats had to be used. Sky flats were taken during evening twilight by pointing the telescope at zenith with the drive off and exposing the CCD from 3 to as many as 8 seconds to Obtain enough counts in the frame. The required number of flats could usually be obtained before stars began to appear in the CCD frames. For dome flats the telescope was pointed at the dome, which is white. Usually 3 flats in each color were taken and averaged together. The CCD was very consistent in the Figure 2.1: Typical 118!) V 00]) rule of I15 14 amount Of dark current produced. NO noticable differences, aside from a slight increase in (rare) cosmic ray hits, were seen in darks of 2 seconds to 10 minutes in length. As a result, a reasonable exposure time of 2 minutes was used for the darks. Usually 2 darks were taken on each night and averaged to give a final average dark. The CCD frames were then flat-fielded by subtracting the average dark from the data frame then dividing the resultant picture by the normalized average flat. 2.2 WIRO Additional CCD data of M15 were obtained at the Wyoming Infrared Obser- vatory (WIRO). WIRO has a 2.3m telescope with a primary focus beam of f/2.1. An optical RCA 337 x 527 pixel CCD camera was used. This CCD is rather old, having a readout noise of ~100 electrons. The CCD sits at primary focus and has a scale of 1.23 arc seconds per pixel which gives a 6.4 x 10.4 are minute field of view. The data from this CCD are not binned before readout. The CCD was controlled, and data aquired, using a VAXstation II (SUBARU). Preliminary observations of Ml5 at W IRO were made in September 1991. These observations, in B, V, and R, were made with the center of the cluster centered in the CCD field, just like the MSU data. Analysis of this data showed excessive saturation of the center of the cluster in V and R. Also, the corrector lens for the camera was not perfectly aligned along the Optical axis causing an elongation of the stars in one part of the frame. It was concluded that much better photometry of M15 could be obtained by offsetting the cluster center to the edge, or slightly off, of the CCD frames, and careful alignment of the corrector lens would have to be done in order to obtain useful data. The 1991 WIRO data were deemed inferior and not used. Another set of observations of M15 were made at WIRO on 14/ 15 thru 17/18 15 July 1993. The temperature of the CCD remained very steady, at approximately 152 K during the entire run. Two fields around M15, a south field and a northwest field (Figures 2.2 and 2.3), were Observed using B, V, R, and I filters. The B frames were 3 minute exposures while the V, R, and 1 frames were 2 minute exposures. A series of sky flats and darks were also taken during the run. The flats were median filtered to produce median flats for all the filters. This CCD produced consistent darks with exposures from 5 seconds to at least 7 minutes. The darks were also median filtered to reduce the number of cosmic ray residuals in the final ”average” dark. The CCD data were first saved on disk and then, at the end of the run, transferred to DAT tape and brought back to Michigan State University for analysis. The data were reduced on the same computers as the MSU data. 16 Figure 2.2: CCD Franc of the WIRO H15 South Field ‘1». Figure 2.3: CCD Free of the WIRO H15 Northwest Field CHAPTER 3 DATA REDUCTION Over 200 CCD frames of M15 in V and R were obtained using the MSU 0.6m telescope. Of these, 162 V and 129 R were deemed usable for this project. The July 1993 WIRO observing run yielded 16 south field and 14 northwest field CCD frames in B, V, R, and I. All but one of the south B field frames were deemed useable for this study. The profile-fitting photometry computer programs DAOPHOT and DAOPHOT II: The Next Generation (Stetson 1987) were used to obtain instrumental photometry for approximately 2200 stars per CCD frame, the actual number of stars per frame depending on seeing conditions and amount of moonlight during the observations. Since this whole project depends on accurate photometry of the variables I will go into some detail on how I proceeded. DAOPHOT is a master program. In DAOPHOT, one resides in a “command shell” where various commands can be given to manipulate the CCD data, such as OPTIONS, SKY, FIND, PHOT, PSF, etc. Upon running DAOPHOT, several parameters (OPTIONS) required to reduce the CCD images are displayed. Some of the more important parameters are: the full width half-maximum (FWHM) of a typical object you are interested in, the fitting radius (the radius used to define the profile of the star, for profile-fitting photometry), the radius of the point spread function, the maximum data value for the detector (the point where non-linear effects begin), and whether the point spread function varies across the field or not. For the MSU data, a FVVHM of 2.5 18 19 pixels was used for all the CCD frames. A psf radius of 8 pixels was determined to be best for the 472 x 472 frames and 11 pixels for the 1024 x 1024 frames. The maximum good data value was determined to be about 15,500 ADU, and a fitting radius of 2.0 pixels was used. No evidence for a varying point spread function was found in the CCD frames. For the WIRO data, a FWHM of 2.5 pixels was also used for all the frames. A psf radius of 8 pixels was used and the maximum good data value was determined to be at 20,000 ADU. A fitting radius of 2.0 pixels was used and the point spread function was determined to be constant across the CCD frames. Once these parameters have been set, a CCD frame can be reduced. The approximate sky value for each CCD frame is determined by running SKY. The sky value is used to determine an accurate threshold for finding stars to avoiding spurious false detections. Next, the stars on the frame are located using FIND. Then, using an aperture radius of 1.5 pixels, aperture” photometry is obtained for all the stars in the frame using PHOT. Since the stars in the frame are relatively crowded, profile-fitting photometry must be used to obtain accurate photometry. Several relatively isolated stars in the frame are chosen to define the point spread function (psf) of the frame. The same psf stars were not always chosen for all the frames, as sometimes a nearby cosmic ray hit, nearby bad column, or other defect rendered one or more of them inferior. Approximately 9 stars were used to define the point spread function for each frame. The routine PSF then calculates the point spread function Of the frame using the aperture photometry of these psf stars. Then the profile- fitting routine ALLSTAR uses the calculated point spread function and the magnitudes given by PHOT to derive final instrumental magnitudes for all the stars in the CCD frame. Typical running times of ALLSTAR on GRUS were 40—60 20 minutes per frame. On CORVUS the running time was 15-20 minutes per frame. Both computers could reduce a given frame faster if no one else was using up the CPU time (i.e. at night). Each MSU CCD frame was reduced separately, producing a list of star numbers and instrumental magnitudes for each frame. After all the MSU frames had been reduced, it was discovered that a better way would have been to use a common star list for all the frames. In this way, the same star in all the frames would have the same star number. This would have greatly simplified the reductions yet to be performed. It was too late to do this for the MSU data but this technique was used for the 1993 WIRO data. Part of the MSU data was reduced at the Dominon Astrophysical Observatory (DAO) using DAOPHOT II. This upgrade, as implemented at DAO, is more computer intensive than DAOPHOT I at MSU. In DAOPHOT II the user instructs the software how many psf stars to search for. The user then decides which of the potential psf stars to use. This makes the chore of displaying each CCD frame and searching for good psf stars obsolete. Also, the CCD frames are passed through the FIND routine three times, ensuring that over 90% of the stars actually in the frame are found. However, there was one problem with the CCD frames reduced at DAO. For a given real star, the photometry list sometimes indicated two stars, one of which was several magnitudes fainter than the other. This was found to be due to the multiple passes through FIND. Once a star was found by FIND and subtracted out, some residual light would be left over where the center of the star was located. The next pass through FIND would see this bright spot and tag it as a star. The result - two stars in the same location when there really is only one. Luckily, this problem only occured with the brightest stars in the frames - the photometry for the variables did not have this problem. 21 During the first year of data aquisition, preliminary instrumental lightcurves of the variables were made. This required picking out the same star on different frames and scaling the magnitudes to a fiducial frame. The same stars in different CCD frames were matched up via the computer program DAOMATCH. The computer program DAOMASTER is then used. This program cross-identifies all the stars on each frame to produce a variety of master lists, such as: mean magnitudes for each star, corrected magnitudes for each star for each frame, and raw magnitudes for each star for each frame. For the instrumental lightcurves, corrected magnitudes are needed. DAOMASTER corrects magnitudes from all other frames to the fiducial frame by applying additive constants to all the other frames. F iducial V and R frames were chosen from the first year of data and, using DAOMASTER, data files containing all the magnitudes, corrected to the fiducial frames, of all the stars in all the frames were produced. This provided easy access to the photometry of each star in the field. A Fortran program was written to read in the “corrected magnitudes” data file and extract the data of any given star. Due to the (large) number of MSU CCD frames, 10 of these “corrected magnitude” data files were constructed for the V frames and 7 for the R frames. Only one “corrected magnitude” data. file for each band was necessary for the WIRO data. CHAPTER 4 CONVERSION TO THE STANDARD SYSTEM Before the photometry can be used further, it must be converted to the stan— dard magnitude system. This is done by obtaining observations of standard stars on photometric nights. Landolt (1973, 1992) standards were used. His B and V photometry is on the usual Johnson system but his R is on the Cousins system. Photometric nights are a rare occurrence in mid-Michigan. Photometry was Ob- tained for standard stars on 2 nights in 1991 and 3 nights in 1992. On only one of those nights each year were data on M15 also obtained. Due to the larger range of airmass and larger number of observations for the 1992 standards, they were deemed superior to the 1991 standards. Therefore only the 1992 standards were used to convert the MSU data to the standard system. On that photometric night in 1992, 5 V and 6 R M15 frames were obtained. Of those, 3 V and 4 R frames were chosen as best for use in converting the MSU instrumental magnitudes to the standard system. For the July 1993 WIRO run, observations of standard stars were obtained on two nights. Four B, V, R, and I M15 frames from the last night of observing (the second night of standards) were used to convert the WIRO instrumental magni— tudes to the standard system. Conversion to the standard system was achieved using several computer programs (DAOGROW, COLLECT, CCDSTD, CCDAVE, FINAL) created by Peter Stetson (1990, 1992). These programs use observations of standard stars and a library of standard magnitudes for the stars to convert a given 22 23 instrumental magnitude system to the standard magnitude system. A very elemen- tary way of describing an instrumental magnitude system would be: observations of stars + telescope + instrument. Several stars in the field of M15 were chosen as “local standards” to convert the M15 frames to the standard system. First, curves of growth were calculated, via DAOGROW, for the standards. A curve of growth is a graph showing the differences in aperture photometry from increasing concentric radii around a star. It is used to determine the star’s true instrumental magnitude. The trick is to go out to a large enough radius so the the difference in magnitudes between two consecutive apertures approaches zero, indicating ~ all the light has been collected from the star.. But you cannot go out too far or noise (Poisson and/or contributions due to nearby faint stars) will creep into the calculations of the final magnitudes. For both the MSU and W'IRO data, 9 radii were used, with the smallest radius being 1.5 pixels and the largest radius being 22 pixels. DAOGROW then extrapolates the total instrumental magnitudes out to twice the largest aperture used. Next, the form of the transformation equations to be used to convert the instru- mental magnitudes to standard magnitudes must be chosen. Various forms of the equations were tried. CCDSTD then calculates the coefficients of these equations. Only those terms with coeflicient errors significantly smaller then the coefficients themselves were kept. For the MSU data the conversion equations are: v = V + 6.966 - 0.1949(V-R) + 0.2619X r = R + 7.190 - 0.3053(V-R) + 0.2148X with X = (airmass -- 1.25), v and r are the observed instrumental magnitudes, and V and R are the calculated standard magnitudes. The V and R. magnitudes are calculated by iterating these equations. For the W IRO data the conversion 24 equations are: b = B + 3.196 - 0.2820(B-V) + 0.0243(B — V)? + 0.2500); v = v + 3.052 - 0.0729(B-V) + 0.1400x r = R + 3.793 - 0.2781(V-R) + 0.0700): i = I + 4.428 + 0.0500): with X = (airmass - 1.25), b, v, r, and i being the Observed instrumental magni- tudes, and B, V, R, and I the calculated standard magnitudes. The airmass coef- ficient terms for the WIRO data were provided by Ed Loh (1994). If the airmass terms are not forced, the calculated values are almost the same as those provided by Loh. Again the B, V, R, and I magnitudes are iteratively calculated using the above equations. Once suitable equations were found and the coefficients determined, the local standards in the field of M15 were used to convert all the stars in the field to the standard system using FINAL. Nine V and R MSU frames were converted to the standard system in order to construct a V vs V—R color-magnitude diagram (CMD) of M15. Likewise, 4 B, V, R, and I WIRO frames of each of the two fields were also converted to the standard system to construct WIRO CMDs of Ml5. The W IRO CMDs are shown in Figures 4.1 - 4.3. These diagrams were constructed by adding the photometry from the south and northwest fields. Only stars lying Z 120 arcseconds from the center of the cluster are shown in the figures. No attempt was made to remove duplicate photometry of stars that appeared in both fields, as the overlap is only about 10 pixels. These diagrams were constructed to ascertain whether the CCD photometry agrees with previous studies of this cluster and to provide a population of non-variable horizontal branch stars to compare with the variables. These figures show a well populated blue horizontal branch, curving to fainter magnitudes as one 25 liuwdma vvsumfiNIlIHO~OD > ab >in OflHfl .>Im "~.¢ vacuum 08 81 91 ’71 26 quwumn Ouaumawatluofiou > u> uI> Gaul "NJ 95”.: ml> mtosm mmms mfiz 08 81 91 ’71 27 liumewa ovaumuuuxluo~oo > e> HI> OHM: HI> "n.¢ unawmh 88 81 91 v1 28 goes far to the blue. There is a slight suggestion of a red horizontal branch with the gap between the red and blue horizontal branches most prominent in the B—V vs V diagram. This gap is due to the removal of the variables from the CMDs. As the CMDs were created from only 4 frames in each band, the mean magnitudes and colors for the variables were not correct so they were removed. There is also a scattering of stars above the horizontal branch, to the blue of the top of the giant branch. These are probably foreground stars, as well as a few asymptotic giant branch stars of M15. The population of stars redward of the giant branch and main sequence are probably foreground stars as well. There is also the likelihood that a small fraction of the stars have photometry that is in error. That is, whether due to a cosmic ray hit, a nearby bad column or whatever, the photometry is incorrect. The photometry for the stars in the MSU and “7 IRO CMDs was compared to the photometry from previous studies of Ml5. In particular, Buonanno et al. (1983) obtained U, B, and V photographic photometry, based on Sandage’s (1970) photoelectric standards, for 657 stars in the field of M15. As a check on the MSU photometric system, Figure 4.4 shows the difference between Buonanno et al.’s V and my V for 46 stars, plotted against Buonanno et al.’s V. At this point I was unsure how good the comparison would be so I chose to use Buonanno et al.’s photometry as a standard of reference. For relatively bright stars, the difference between the two sets is quite small. However, as one goes fainter than V ~ 17.1 mag, AV begins to get quite large. Buonanno does claim accurate photometry down to B ~ 18.6 mag. I estimate the limiting magnitude for the MSU data at V ~ 18.0 mag. So the deviation in AV at fainter magnitudes is probably due to larger errors in one or the other sets of photometry as the limiting magnitude is approached. Looking at Figure 4.4, I would conservatively estimate that the point 29 am: can .~o um cannuoan "huuul0uonm > no communalou > occocoam ue.e unaumm 0&0». we I > Ann: I b - P b r P p P b r P noun. a) > occocosm . D I b P b 2'0 0'8 AV V'D 30 where the photometry starts to deteriorate is at V ~ 17.1 mag. Using only those stars determined by Buonanno et al. to have V S 17.1 mag (33 stars), the mean difference is AV 2 0.000 :t 0.007. SO, for the brighter stars, the MSU V magnitudes appear to be on the same photometric system as that of Buonanno et al. to within about $0.01 mag. Next is a check on the WIRO photometric system. The top diagram in Figure 4.5 shows AV between Buonanno et al. and the WIRO photometry, plotted against Buonanno et al.’s V. Limiting the comparison to those stars with V3,,“ S 17.1 mag, the mean differences are: K17”: 0.000 :1: 0.010 for the south W IRO field (31 stars) and -A_V = +0.028 i: 0.009 for the northwest field (23 stars). The bottom diagram in Figure 4.5 shows A(B — V) for the same stars. The mean differences are: A—(BTTF) = —0.033 :i: 0.006 for the south WIRO field and 'A—(BTVS = -0.031 :1: 0.006 for the northwest WIRO field. If I assume the Buonanno et al. photometry is good, the m for the northwest WIRO field is due in most part to an Offset in WIRO V, and the X7377) for the south field is due to an offset in WIRO B. Durrell & Harris (1993) found good agreement between their CCD photometry and Buonanno et al.’s, but did find a mean difference in A(B — V) = —0.011. They also found a mean difference Of AV = 0.012 between Sandage’s photoelectric standards, on which the Buonanno et al. photometry is based, and their CCD photometry. So part of the difference between Buonanno et al.’s photometry and mine may be due to real errors in Buonanno’s photometry. As another check, the MSU and WIRO photometry systems were compared. Unfortunately, there is a large difference in the range of magnitudes covered by the two systems. The brighter stars in the MSU frames, the ideal ones to use, were saturated in the WIRO frames. Fainter stars in the MSU frames had to be used. 31 ca; van .ue an 2525:: "Fungus—E gray can > we acemuealoo "we 93»?— 0'0 1'0- (A-DJV I 'VrU'UWWUIUUIUIVI’" > occocoao a. 2 2 n. W I I I - I I I I l- I I I - I I I I - I I I I 1 n o x 22... 58.5.6: x H v o M o A 1 x x m xo x 3:... 538. o n n 8 coma 00 O x O OX0 % x H T w. xwo m xooooxnwnmfio x o x . h x x x o x . .. 23... 5.2.5.32 .- 58ml. . :To 9:: .. To :89 2, > 8838 . U by by P - b D b P h D D b b b b b hi 1’ F I b h j > E 2 2 2 2 T I I I - I I I I - [Ii I I - I I I I - I I I I I. m 3:... 33.5.5... x m .u 2:... 538 o o a. 1. n & «€00 O %O 00 O D O «W x0 0 x n X 1". mg x “a can x on w xxofl: xo x o . xxo xx 00 o J. x o x x «.0 a. o x x x O o m 0 30C 0.0.5.5: a 530m .>o¢~3r>§9 e>>occocoan b D b b D b b b b b lllllllllllllllll t'e sis 1'0- AV 8'0 2'0 32 Also, a good half of M15 field in the northwest W IRO frames falls outside the field of the MSU frames. This severely limited the number of relatively isolated stars needed to make the comparison in that field. Figure 4.6, shows AV and A(V — R) for the south WIRO field, again plotted against Buonanno et al.’s V. For the 29 stars with V3,... 3 17.1 mag, 737 = —0.004 i 0.007 and m = —0.010 :1: 0.008. For the northwest field, Figure 4.7, ‘57 = —0.015 i 0.000 and 37173723 = —0.009 :i: 0.007, for 14 stars. There appears to be a slight gradient in both the AV and A(V - R) vs < V > diagrams for the northwest field, but with only 14 stars it is hard to tell if it is real. Battistini et al. (1985) also published U, B, and V photographic photometry for 923 stars in M15 but their photometric errors for individual stars are slightly larger, being S 0.1mag in both V and B—V. Figure 4.8 shows the difference in V and (B—V) between the northwest WIRO field and Battistini et al., plotted against WIRO V. The mean differences are (for 34 stars): A7 = —0.041 :1: 0.008 and m = +0050 :1: 0.011. Figure 4.9 shows the south W IRO field comparison. The mean differences are: AV = —0.047 :1: 0.007 and A—(B—TV) = +0.030 :i: 0.009, for 43 stars. As the WIRO photometry agrees fairly well with the MSU photometry, only the WIRO comparison was made. Considering the large error bars on Battistini et al.’s data, I give this comparison less weight than that with Buonanno et al.’s data. More recent work on M15 has been done by Durrell and Harris (1993). They Obtained B and V CCD photometry of 6222 stars in 4 wide fields around M15 and 831 stars in one deep field further out from the cluster center. They produced a B-V vs V CMD that ranged from 14 to 24th mag in V. They then used this data to construct a fiducial sequence for M15. Overlaying this sequence with my W IRO 33 30mm Anson can: can an: "manage—E :IDv can > we noemueaicu 34 0.25.: 1'0- 1'0 ITIU'U'Uj 0.5». ow I Data... :3 > ace—T88. O) > 9.3.5.530 D - D D D P r D D D D L D D D D by D D D D > 0953 an 2 3 mu 1 I q I I q I d I I I I q I I d. I d I I I I L .. L t f 1 I X X ._ . a x a. . t x x x x .n x x x x m x x n. . X X 1 X .. 1 X XX X X X ._ t X I 1 l . A . Chou. me u. 3:... 530m ¢I> Sun: I at. O) > occocoam . I D b D D D D b D D D ”D - P D R D b D L P D A > g o— 2 3 n— I I - iIl I I q d I1 I [1 I d I I I I q I I I V l m A T In . x xx 1 1 XXX X X X .. V x x A X X X X X H XX X X X X X X lllleljj 0'0 1'0- AV 1'0 (U-AJV vaomm Dominguez can: and am: "huuuloDonm AuIDV can > no noanQAIoo uh.¢ shaman 1'0- 0 0 (U-AIV 1'0 > oxaz a. an a. n— q I - I - I I I I - I I I I - I I I I . A . A 1 1 H x H H x xx . . elem .. L r A ..I J N are». e_ I e_o.a anoueaeoz .¢I> o¢_: . ¢I> am:. .> > o¢_: I T Di D b r —i D P D D h D D D D - D D D D > o¢_z on a_ a. n. I I l. I - I I I I 7- I I I I d I I I I t A 1 a. e H H . ..x H u it I x x 1 w ‘ U n are». .2 I u_..a sooueaeoz .> emu: I > :m:. .> > o¢_z . t A D D - D p D D D D b D D D D - D V D D 0'0 1'0- AV 1'0 35 wuomh uneanuuoz ouHD can .un uo mflmuemuuun "hauoIODOAD Ablnv can > no noemuualoo ”m.¢ ouawmh 2'0 T'V'IVVV' > Dam: O— nu ma n— u u - d u q q — q u q q u d a a d u a a 1 L H o . I o O 1 t 0 e0 e I D 0 0 U 8. o I I O o o 1 0 0 o e . I o o A I e e e e e e I U . o D l 1 0 O I 1 O i. t OLD». *0 I u—ouu »OOD£»LOZ >Im aucuvlqdaomloznza I) > Omnz . 1 1 I p p h b P p P h p p b p — b p u p p p p p m > ecu: cu Bu Ia n— q q u q q d u u q q q q u q q q q - q q T f 1 I O 0 I O U 0 o o o o 1 . e 1 v . 0 “ O 1 t e .9 e O o e e e . P 1 O i: O l l l l l l I l 0'0 1'0- AV 1'0 (A-DJV 36 v~0mh nuaom cams can .uu no mflmuemuuen "NHDOIODOJD ADInv can D we floumuualoo "a.c ouaumh 1'0- 1'0 2'0 U I U U' utovo fit I u—oum zaaom > aucuaouoaoolomnzu O) > emu: # L p b D D n D D D p D > 08—: ca 5— u— n— . T I I - I I I I d I I I I - I I I I n 4 L r . T . 1| 0 I. V l v I t e e e . n O O 0 0. 000 0 t e e .90 .6 e . 1 o 0 A . o o . n o o u T l . one». me I u—o—u zuaom e >Im .«cuue—uaomIomnx. 0> > can: . 1 1 T P D D D - D D D D h D D D D h D D D D l > can: ca 5— o“ n— - I I I - I I I I .1 I I I I - I dl I I t A . e e _o e . . u‘ .o e e so 2% U . \ 08 00% 000 e . I o. n Oi” Of 0 < e I . J I L 0 0'0 1'0- AV 1'0 D D D (A-DJV 37 CMD, I found (by eye) good agreement to i0.015 mag in (B-V) and i0.015 in V. In summary, my MSU photometric system appears to agree well with previously published work, to within AV = $0.01. The errors for the WIRO data, appear to be a little larger, but they are only at the 20 level. Therefore I decided not to add any corrections to the WIRO data. A summary of the comparison of photometric data is given in Table 4.1. 38 Table 4.1. Comparison of Photometric Data Systems Quantity Differences No. of Stars MSU — South WIRO AV -0.004 :t 0.007 29 MSU - South WIRO A(V-R) -0.010 :t 0.008 29 MSU - NW WIRO AV -0.015 :1: 0.009 14 MSU - NW WIRO A(V-R) -0.009 :t 0.007 14 Buonanno - MSU AV +0000 1 0.007 33 Buonanno - South WIRO AV 0.000 :t 0.010’ 31 Buonanno - South WIRO A(B.V) —0.033 :l: 0.006 31 Buonanno - NW WIRO AV +0.028 :l: 0.009 23 Buonanno — NW WIRO A(B-V) -0.03l :L- 0.006 23 South WIRO - Battistini AV —0.047 :i: 0.007 43 South WIRO - Battistini A(B-V) +0.030 i 0.009 43 NW WIRO - Battistini AV —-0.041 :h 0.008 32 NW WIRO - Battistini A(B-V) +0.050 d: 0.011 33 CHAPTER 5 Transforming the Variable Star Photometry to the Standard System Once the good agreement between our photometric system and prior work was established, the photometry of the variable stars had to be converted to the standard system. Since I already had instrumental magnitudes shifted to a fiducial frame, I decided to shift the fiducial frame to the standard system, as opposed to shifting all 291 frames to the standard system - an impossible task. One problem in converting the variables’ photometry is that the color of a variable can change significantly over its light cycle. This means “simultaneous” observations in each color are necessary to accurately convert the magnitudes. While the W IRO data have sequential B, V, R, and I frames only 2 or 3 minutes apart from one another, the MSU data do not. Sometimes only V frames or only R frames were taken on a given night. More often, 3 V and then 3 R frames were taken in a sequence, but each exposure was 10 minutes long meaning that there would be at least 30 minutes between a. V and an R measurement. For some of the variables, such as the RRab’s, their magnitudes might vary significantly in that time. Fortunately, most of the variables have excellent phase coverage over their light cycle. So I used the variables’ lightcurves to obtain the needed instrumental v—r colors which could then be put in the conversion equations. First, the variables’ v and r magnitudes were sorted by increasing phase, and any magnitude whose error, as given by DAOPHOT, was larger than 0.10 magnitude was removed at 39 40 this time. Then, the magnitudes were averaged in each 0.05 phase bin. A bin size of 0.05 was chosen as not too small to have too few points to average and not so big that the magnitude changed significantly across the bin. The averaged v and r magnitudes for each phase bin were subtracted giving a v-r color for each bin. The observed v or r magnitude and the corresponding binned v—r color are then used in the transformation equations to derive standard system magnitudes. Occasionally there is a variable that has a gap in phase coverage. In that case, a color is interpolated from colors on either side of the gap. While this method is not perfect, it is a reasonable way to accurately convert all the photometry taking into account color variations over a variable’s light cycle. If we look at the coefficients for (V—R) in the MSU transformation equations we see that even if our average v—r color in a phase bin is off by 0.05 mag, the corresponding error in V is 0.01 mag and 0.015 mag in R. A final list of photometry for each variable was produced by removing any magnitude whose error as determined by DAOPHOT was greater than 0.05 mag. The typical error in a single observation, as given by DAOPHOT, for the remaining photometry is i002 — 0.03 mag. Some of the variables had few photometry points left after the 0.05 mag error cutoff. To get a better idea of the lightcurves for these variables, the cutoff was left at 0.1 mag. These crowded variables are v6, v7, v20, v29 (R. only), v32, v65, v67, v74, and v97. For the WIRO data things were much easier, as B, V, R, and I frames were taken in sets. A fiducial frame in each color was chosen and all the other magnitudes of each color were shifted to the fiducial frames, just as for the MSU data. Only one south field B frame was seriously contaminated by clouds. The photometry for this frame was interpolated from the b magnitudes of the frame before and frame after. This way, the interpolated b magnitude could be used in “ff! - ite try. llSl dard to th 41 the v transformation equation for the needed (B—V ) color. Standard magnitudes were then calculated for the variables using the same method as for the MSU data - iterating the transformation equations. Next, the WIRO photometry for the variables was added to the MSU photome- try. Unfortunately, the two sets of variable star photometry did not match up. The MSU data appeared to be sytematically brighter than the W IRO data. Local stan- dards were used to correct for this difference. Using 15 stars, mean instrumental MSU v and r magnitudes were calculated. These magnitudes were then transformed to the standard system using the MSU equations producing standard V and R mag- nitudes. These magnitudes were then compared to their magnitudes in the MSU CMD. As noted above, the CMDs for the MSU and WIRO systems are consistent. An average shift of 0.0581 mag in V and 0.0407 mag in R was found between the MSU CMD and the transformation equation conversion. Thus, the difference in the MSU and WIRO photometry for the variables was really an inconsistency between the MSU variable star conversion routine and the MSU C MD. This difference is thought to be due to the fiducial frames used for the MSU variable photometry. These fiducial frames were not taken on a photometric night. As a result small errors due to thin clouds may be the culprit. Once this shift in V and R was added to the MSU data, both sets of data matched up. CHAPTER 6 NEW PERIODS AND LIGHTCURVES Acceptable photometry was obtained for 45 variables in M 15. Periods for the variables were determined using the phase dispersion minimization routine by Stellingwerf (1978). Initial new periods were determined using the 1991 MSU data. After collecting the second year of MSU data, new refined periods for the variables were determined. These periods were used in creating the lightcurves and thus the sequence of phases for determining the instrumental colors, v—r, used in convert- ing the instrumental magnitudes to the standard system. After both the MSU and WIRO data were converted to the standard system and added together, new refined periods were again determined for those variables for which we have WIRO data. The final lightcurves are given in Figure 6.1. The MSU and WIRO photometry for the variables is given in Appendix A. For those variables having a cutoff in error of 0.1 mag, any photometry with an error as given by DAOPHOT > 0.05 mag is marked with a colon. This photometry should be given lower weight than the pho- tometry with errors less than 0.05 mag. Photometric parameters for the variables are given in Table 6.1. In the course of this research a new RR Lyrae variable was found in M15 and tentatively named v113. A finder chart for the variable is given in Figure 2.1 and the position is (x = +6, y = —257) measured in arcseconds from the cluster center, where +x is east and +y is north. 42 I I I I I I I I r I I I 1 54...,” ' .. '. I ' i — }?r- .. - ’3: __ - — a; "0" -— c ‘f. -' _ ”annex S __ g d A 8 ' ' . 0: “1% __I—I ‘ ‘ _. _. H ‘8 __1—1 _ > ,f > . '- .8 glfi" -- . C’ - _Jfi I I I l I I I I I l I I l I I S'VI L’VI B'VI 9.71 U I 4. .I I 15;, 'I“ I .. __ 4 5*: m‘ .. ngs'x‘ ‘53 :7“ is?" I\ -_ f" _ ' l\ 4". '{? ” “’ gfifnuflqu '- .. H _. x q . It... .. fl W ”x‘ #‘ .— r-CI] ’:--::> n: "- ”I __.—4 __I—I _ > > J". J I I l I I I I l I I I I I M771 l I I I I 0’91 Q'QI 9'vI 1'91 8 A .6 1 .8 1 0.8 0.4 1 1 PHHSE Lightcurves for the Variables in 1115 0.8 0.4 PHHSE Figure 6.1: 44 _ _ _ _ — . _ q I1 C J r I H mw\/ _ _ _ . _ . _ _ . _ _ _ _ J _ . ”M: as! ”MD ”as I ...ufl$ 1.4.9.“...1. I J... W... .... Wu... J... Jr". .4 am...“ In .r_uu .2 £.¢ r m m> . _ _ . P . _ _ 8'91 L'VI 0'91 63' SEI .e.u=oo wmmId mw. a mW.nw "H.o unawmm T... .5. .fi. m as m . _ _ _ . _ . _ . u _ u — I _ - — - I ‘ ‘ Ill. ‘ “ ‘ “ r- . ‘ I. .1? .51 I < q I I Q G .l. I . ‘ I. 1 .mnm 99' 9:1 EE°SSI EI'EBI El'fal T'I, "I" "Ju'l .. "'1. -- _ 33%L__ : A?” .s‘ .6 1 1.8 PHHSE 0.8 0.4 'T .4 .I ‘.l I I I I lrfi‘fiufifig‘*j I I - _._ at In. _kfi-D q ‘: _— 1;?” 4 a: ”E;3 a -_ :1 _Ex) ___- i (Y) ‘ ‘ xx 1; P- ‘ ‘ ...... x 8‘ E?) I c “ ’qfig4kflfi“ -o_ —- " a PG) : -£> ,‘fi? d“ uI1Lu .m __.m . , > 4 > fig” _ . _— ". .5 ___LALJ; .l l I I I final! I. I l .6 1 l. PHHSE Cont'd. 0.8 0.4 Figure 6.1: 0'91 8'91 9'91 6'91 8 A 46 9'91 V'SI 8'91 Q'SI .v.ueoo "~.o ouswmm wmcla N.“ Mwaw ¢.® a. f. r ... > i H _ _ _ _ . _ . D . r . .7. _ _ _ _ .... _ a .. u N 4a N .r I H. mmmmsm.owa m .> A _ _ _ r _ _ _ _ 0'91 9'91 8'91 0'91 47 Cd d do 4 CC C e I Q V J 1 <1 d «d 1| C GIL 4 4 we (‘4 C - H m> I — — p _ — _ n _ L - — q — _ — u — q T 1 4 I - .w. new. . if ’ é ' X é I. 8 8 8 8 - .. an. . .. an. - V x ’ x a I w I ‘3' q I ‘XI. I”. l. u x F V'QI 8'91 9'91 8'91 .v.ucoo "H.o ouswwm mmmlm ‘ N mg mg we Yo ._ . _ . _......._ . firm“. I .3fnw _H . mfimvpmbua m m>. 1 “WT “fl? I .. w. .. w. I .a . .a I dun dun .. ..... .w .. ...~. a. .. W. 0% .. I 8 X” X 11 a > m> . _ I _ . _ . r . q 1 _c .. _ . _ 4 .c _ . _l ‘ ‘ I. I. I C l ‘ ‘ I . . I O ‘ O ‘ ‘ Q t- C ‘ I; ll 1 II N L 8'91 S'QI 8'91 6'91 {'3 as“ f x ii; an" I— ! X _... X X X ‘ -I a “a: " ==~' - m um», —— Him- l\ ‘01}; aft} " _ " xx ’2‘" _ \(9) ‘f‘fi'x: " x “a” x _. . II ~ “g 9’ x _._ 3"“ x x .— '3 as, £11, In" 1“ "x (E) $.31; w. an: .. r- ' 38 ‘ - 8: ‘ 1 0- ”g'xfijf’f a: ii; i x _ x" ‘ _... .I II ‘ x‘ _ xxl‘s‘g‘ xx 1:: x -> ” 5")!“ ’3‘" g! '- m f :x “at“ ' .1 .L\ ’1: a: "i‘ if,“ —_—-I\ f f {x I; .— > 1“!" x” > at xx: x x f 2")" “23*: ' '3’" if" . .. A I Lflfiiilifgl'f‘J l J,I,I I I I L Jf’f‘Ig I l l, I I 17'QI A 6'91 991 a 191 ‘ ' ' "1W 1.x}: [IrTr nfi‘fi : I. "" nI" v—-l h " ” f0 ans?!” 0\ 3‘ ’95} at x - Ln 2;; x \0 fl ’ a. II 0.6 I V'ev ' x I J’fi‘d‘filI I I th,I J I FL- IT Kfiilxtl”f"ulj I l I I - If” ”I - _ ,. “.1 _ ”is?" {8 ‘ + x‘xflfi‘x " .- ':& {'x: ”'50: II ’- _0: x. “.2 - \0 gig“ "I. .. > “.9: I" I— i.“ .- JIMI‘I‘IIIIIIII V’SI 691 A . 8931 8'91 8 1 . 8 0.8 1 0.4 1 1 0.8 0.4 PHHSE PHHSE Cont'd. Figure 6.1: « mmmmhs®w&_ > 9). w . WWWNAW II‘ .tQHml > shim... 49 Was] I I I I I I F? I I r I Ix I. I I I 1' I r giggF: -— 1;:3’ _ oo .. " " 1‘3 5i» . . " Lr) x .H ‘0‘” "" gr: I '1 I\ a... _ , ‘ 3g, __ 3 .1 6’ 1.53” “9" ”ll x ' -_ ' t _ 0- x I: x " '3 x .. §x &; __.. 355:! .— ;> 135 “.0: ' - fl“ " m " A- o . _ > a! > 3 a: ‘ I- . k ,& _.I— f}. .- MI 14 J l I I I I I I I‘x I" I I l I I I V'SI 6'91 I'QI S'SI A 8 "T‘T‘le q,1 l I I’I I I‘II' 1'1‘1_1F113,§ LN: l-L’L I‘I I— u {8" I —II- ‘ —I ._ I!" __ _.. Ln ' g, ~ f .- m 8 m “if -- "x - s z.“ _KD 1‘ —“- xrfifli _ - #fi II' i -.C§)d& a: ‘b " ‘:I~ . - II x "‘ “,3: a, ‘0. a“; " —’ .. > ' ...m ”f .. :5 —(D x ’8‘ ’3'?" ——(I) "‘3: -— > " ti > :- - 2” -- 4‘qu 1 Ix"x M I I I I J I I I I I I I I lfgjl I I l I I I L V'SI 6'91 0'91 Q'QI A 8 1 1 0.8 0.4 .6 1 0.8 1 0.4 PHHSE PHRSE Cont'd. Figure 6.1: .v.u:oo "~.c ouawmm mmmla o. a m. H m . o v . a . _ . _ . _ _ _ . arm. a...” I I??? v.3”... I .l xxx”: emu-or: exam. nub... x .1 mafia x may-Nu“ ”WW. fi‘firfil m. . m a H > ... . _ p _ _ . I . . . u _ . I .I. x%Wafl.Hh.lx x Wfluhfx a .I; I My. any...“ “a. F». n .. a... as... .. a. .m. .. a a dig HIM mmmmmm . Qua > ®H> . . _ . _ . F . _ _ (’91 17°91 0'91 981 51 u — q — H — — — u I ‘1 1“ I e I Q C I «C <1 I d d I 1‘ C {1 C II d II I 4 C I > 1 p _ b — H p H H— F - q - _ - — q I I I. G Gan. C 0“ I has 8"“ than.” a? I I D x a ‘3 kfi .- a fix an an... x 8.. xv»... .- .l. .. .. a .. a. - I. _J‘ -2 ..p a .a - xx x xx x N. &?am. & a 93' £31 23' E31 £.'SSI b"SEI mmcla mw. H .e.u=oo MW.mw u~.o ouswwm _ b _ ‘ Ac ‘ mommvm.®nd _ m HH> _ I, t 8‘! t Ifll II... I xx! xxx-t; xx! “Into-W! I I x x f x .w dwnw u Il'g I‘ w > 2., ... _ _ _ _ _ _ _ _ . l I _ q — — _ q _ q I «Sued ddeic I 65' 931 SS' £31 EI'EBI 65' £31 52 o. H wmcla m.H m.® v.® 1 ‘- l '91 '91 8'91 0 8'91 8 .v.uCOU mwmlm m.® m.H "H.o muswmm '14 '91 IIII'IIIFIIIII n _- _ C ‘ mvmmmmmud m mH> _ . _ . -_ _J_J_4_‘AJ I I I I l I I I I 9°91 S 8'91 ('91 WT '4 I I.‘ I“ I I I I I I I I FT 3%,,“ - ‘ c‘ _.- H _ 1e” 1 _ as?“ : I“: d — g x; -F 0“ 'l _- #5:” I‘ ‘. "1 e .— 5: x ‘ I x x _... G a II," C! "3:”: H ‘ _ I- -— ‘ - 5:3 ”Eiftfi 5:3 4 ’: _.. II " _.. 4 .— :> xifleh :> 4‘ m I I I l I I 4 IA ‘ l J I L I I 8'91 9'91 0'91 8 8'91 I I C l . .57h9 I I l 0 an!" C G I M IIIIII.FIITIIII [ImfiIJxIIJTIj d“ g?" ' ll ‘ . "' "- u .. . _‘l __ .r: _. m 3 > a I- L- H m .< m "' __v—I ‘ __v-I fixx‘ _d > 4‘ > k I— ‘ . 0 H... w H I I4? I l I I I I l I I I I I Igfll I L1 I l I I I I is s: f“ —I xx x d ('91 8'91 v'91 8 6'91 A .6 1 .8 0.8 1 0.4 1 l PHHSE Cont'd. 0.8 0.4 PHRSE Figure 6.1: 6 H®mmwm .®HQ m VHL h ~ ~ 5 s L h r—T—I—Tfi I I f I T V I I I _ “:2. ' __ ' ‘« " _ ~ 5? ' 1 _' x x "" 'Q‘ '- d x q ' Ex It” "" ‘ 'I _- ‘AEE‘ -_—- .: _- fi' ‘ h- -I— 1 - It" 4 L_ 3‘ x ‘. d— 0‘ . .- ~ I: I-—I ‘ _ 0: :2} _.. «‘ J <1- “ ' <1- : _. .—I x.” _..- --I ‘ _ > nfi: > ‘ - iii, -- .: - I I IA,I I I I I 41 I‘IJ I I I I V'QI L’SI 8'91 S'SI 8 I I 1' I I Ii; I I T I I [’1‘ I I I I I I ~ _ r- d qp mhm - C‘ ‘3:er _- v—I q x f}. _I ® 4 . 0“ x - m « -_ ’5’; - (I) q 1'3 - 0 . -I€- .. ® . ‘ ” ll ‘. __ x ‘ -— 0— Q C WW —-I m g. > ‘g?‘.x - q _. ‘ é: _ V- q . V Q: 3 __«rd ‘ __..w-4 fin; .— :> d :> 15:: - ‘ -_ .g _ 1 I I I‘I I I I I I I I I 935:2; I I I I I I 6'91 8 8'91 9'91 0‘91 A .6 1 .8 0.8 1 0.4 1 1 PHHSE Cont'd. 0.8 0.4 PHHSE Figure 6.1: 55 0'91 ‘fi—fl—lgI I, Ix’fg} I I I I I 1 I I‘ 1 I I I I II 33" C ‘1“ _ fi‘ -- ‘ _ _. ”Jgsi;l‘£_fl— .— x ‘ a 4' G " 5?: a ‘ “ x fdfi ‘ ‘ ‘ P— ‘g x x ‘1‘ —— - x ‘ c fi‘ ‘ _. 4.,__ ‘1. _. (I: ifii‘ P_‘ d m x 3‘ L0 ‘ ‘ - 1—0 __ v—II __ r> ‘ > " 1 I I I EEIEEEESflJI I I I I I ‘1 I .4 I I I 8 S'SI TjITIIYIIIIIIIIII I C d . - — p— — 4 v15 B P=@.583453 Q Q C 1IlllllllllIlllJll fl 6' SI 8 9'91 8'91 3 - {gtfl II II I nn114§ A 8'91 .6 1 1 0.8 0.4 .6 0.8 113 1 0.4 PHHSE PHHSE Cont'd. Figure 6.1: - - d I - fl - - - - _ — x - — q - v18 V P=0 367737 3‘3. . I 2‘5. : I v18 R I. 3% I I I” I l I 1 r5. [MI I I I II I I n: “I I I I 9.91 6.91 8'91 9'91 /\ a I I nIna: I§I r1“! T I I I I I I “fly I I I *‘ruzx‘?:r [’9‘" “is: .. '5: x a,“ ‘5‘ __ ”git: ' .- l'\ “x. "’x "" ._ ® a"; git“: a: "fi‘ _... O\ ’t ”z x x a: £2 a: .. G) "I!" -— f a (U " _.V' qfifig ‘3 ‘ _ ' & c9 d2? :5?%* ”'II.; g“‘§ ‘- “fit . - 0. 8 * x 3“ 7" ~ in! ,_ 13:! xxx x.“ __ “ta: ' _.. > 'h x ”’x 0: "' I— 33:: “I: * ' __ x’?‘ .. I\ x a; .2" I\ 7 a ._ v-I ‘ ___.'-4 _— > 3' > ,3" .. t“ .. if; .. W ht IF I I I I :I I jJ I I I I I I I I :7 I I S’QI 6'91 881 9 A EI 0.8 1.2 1. PHFISE 0.4 1 . 1 . PHHSE Cont'd. 0.4 0.8 Figure 6.1: 57 I I FI-III I'l'l'l I}; I“! I I I I I I Irrilgzl '5 I I I I I I _‘—‘ * Us; ~ I“ " CU it"s?" If!!!" '- II' x xx 9 If): xx} 7 —— “227:! x — 0\ 2 t; v. ' “\D I I: "‘ I!“ " . xhx‘zfg: ,7“ I 1:) a, —— :5 " - II § ' I“ x ,..0_ “I," . 7 x ,‘x -_ “:“xg In 7 I x} : 1’: " ‘1‘ x — In. Ix: x _ x x f " > g. 4: 1.: Ct f ,7. :— {’1 “u, "" l‘ 7: - ® I: ~: (3 4 'x x .m . a, ,1 __m in“ > ,haifil > “x3 ‘1 _ :1! _.. u .. Ll‘flLlllllIlllll IIIJI'IIIIIIIII #81 8' A 9I S'SI 8‘QI a I I I'IWIT l I I I I I I‘ l I I I I I IxixL 'xtlx I I I I'I I I r ‘5 -00 ~—— “I: — 8 "" —l'\ 3'- __ _I In a“ - . 1““? -- ,n - IS) I- II fig§ix ‘ "" 1"! Ila x . — _& ?_— It’s: L > " 0: El _ I -_ i _ 0\ 0x ‘5: _1—I I __I—I _ > I“ > as? * ,. i .I‘ -- “I, - I J'i* l l l l l I l I I I l l I “‘81 I I l I I I l I I B'QI 8' A SI I’QI 9'SI 8 1 . 8 1 0.8 4 1 1 PHFISE Cont'd. 0 4 PHFISE Figure 6.1: I I III F1 I“ I I 'J xIl r I I I" I I II J ‘ I fix“)! ‘5“ ' x I‘ x ' 00 "is" ‘* I.“ — 8 *7? x —— " l;— ,¥ #"& {kin .53 i??5 w _ — as 3335 -— “I; — H at" . fa; ' 0.. If ‘x x ‘ "" § '7' II ‘ ' ' '— '7 fig; Xx x _— '* ”L- :> {“1 0: ‘ ; — i“ 1"“): -- I“! 1 _EB £¢§i _EG ;Ej§x._ x“ -> :39- Iv - LnJ’mE’I I I I I I I Ix'I IL! I I I I #‘QI 8'QI I‘QI V‘QI A 8 I I I I‘I‘I I‘I‘I‘ 1.1;] I I I I IuI “I II I I I — xx?- x ‘ y — —m f "If“ —— y — F4 3 ' CS) iii; " I15‘Ff; ‘ m {1* ‘ x, I —l\ *‘x ‘! —_ if; _ G) - " ._ & flfi; fit“ ‘* —— 3‘! fl ' _ — x ’m— . :57: _ - > by __ ‘1 ”:3" _ In ,3”! m I»? “E ,an “ “>J 4‘. r 3 ‘ — :'x I! _I— if — llkrgLilIllll IIJJIII IIII E'SI L'SI I'SI Q‘QI A 8 1 1 0.8 .4 1 1 PHHSE Cont'd. 4 PHRSE Figure 6.1: S9 I I ‘ Q IS I 1 d 4 d 48 T II. I IS I I8 - H vm> I _ _ _ _ . _ . _ _ u — q — q _I — — — I “1.... up}... I .. .a: x x: x I I!!! x ”x’ I xlflfi I ”I... I I l a. .n. a.» .. a. 1.9 Inn 138 an «5} led f.”& x skin-xxx Mk xi xx 8 g 8 I II 8‘ 8 Q a .v.ucoo "_.o unawmm mmGIm m.“ m.& I d L: _ _ . _ Lu _ 1 I I {twang xx xflxfix‘flx I .r ”3?; . w... a”... La. I “x. a x “n. x 1:8 m... annex”: axmwg .18 as I ...V H > vm> H _ r _ T . d . . . . I 4 d I It I d d I 9 .l C C ‘ C Q I. IV I «Q C 1C I .lv I C C I 9 I dd «GI .8 m mmomwm.®um m ¢m> H . _ _ _ . _ _ _ . 6O 'a': a; “,l “m "(Ikx‘fi’ x f7 x - _m “t” ‘ _ “x A” L v x r g a! a ‘ sq," " .l\ -_ ' 1‘; .. ”7 3“ xi“ "? a a: “‘3: —— “’1‘“ x — 3* I; x PO‘.‘ #*.-;2' xxx x _.- "x xi?“ - u“ " I: at, "“ “u tkl f” — IIfWIII “It IIIII at“ x ' II '3‘ ' § 2:?“ v89] vT 1 8 ‘3‘“ .0 "3g,” - .JU , é: _— > ,1” l! I .Mi‘tfigIIIJIILIII IIxI hFI’LI’IIIIIIII 8’91 6°91 1'91 9'91 8.66638 ' fl 1 '3' v'P 3 3 g" «i in“: . v85 I 1111:11111I1114 I l l I l l l I l l I v'QI 6'91 A 8'91 9'91 8 1 .8 1 0.8 0.4 1 1 PHHSE Cont'd. 0.8 0.4 PHHSE Figure 6.1: W “mmm®v.®nflg m QM) . u . s r u . s F m 61 I I I'I “:1’88‘] 1 I I I‘ I‘ 1. I T T I. x I; ‘ .. ‘ .- “I _ its” __ xigi ‘1 '7 ,_ xx: :dz‘xx _.- d ‘ d ~. .5! ‘ - " dStilt: I! -" ‘2‘ 1 i I h”! '8‘ d ‘ — m I ‘ fix —— ‘ .— “a: I—I . a“ -_ - ® 8"!" I. Q 4 ‘ _.. (2 a; {dz'x‘ __ (Y>) ‘ 4 _ .. r " ‘ _ .. I 4: __ J I I I all A I I I I171 I I I I 1'91 v'91 0'91 8'91 8 I I I I I‘Ig I 1 I‘ I I T I I IWL I I I ._ 1 _... ‘ 33’8”“ ‘x‘ .- I\ ”'xx" _ g __. ‘21:: " _ 4 ‘ g“ ‘8 u— If) ‘ ‘ __. ‘é‘ .- 3 * I?” (9' . .4251 . '- II ‘ ‘ d- x ’1 . CL. ‘ ‘ 4 ‘§,. & I,:‘ ._ 4 __ x’II " .— < «I. ,us _- (D _b > “,7: d " X 8 ‘ _.-?) "'41". > " > 215' ‘ I I I I I I I ”I? I I I I I V 91 8 91 A .6 1 1 0.8 0.4 .6 1 1 0.8 0.4 PHHSE PHHSE Cont'd. Figure 6.1: "*2 \d—a H v I 1 x I 1y I: '5: I I I I I I I j I .. 8!"):‘1‘; ? ’1" __ ‘ 4 I— “ g ”‘2. ¢ 1: xi! It _ 43': -_ '&P ¢ r .fifl? £ & X - aft“. § -— x x ‘ "II ' '5: 8,, ‘ ‘ r x fl??? :L 0: II If ”‘8" I—I ‘ I- x N -I'- ‘ v—4 ":;;' v-4 ‘ _... (‘0 " " __ (‘0 x * 3" > _ > 4’? -_ 1‘ .: fix ‘ I I I .jfiErI {I I I I I I I I I 8'91 9'91 0'91 8'91 8 I I 1 I I I ‘I 'I I I I g I’fl x "L I I I I ¢ ’u¢.:'h§: ' " \D ‘ a "" 5‘ ,, I! izca 4 d " 26‘ I— m —_ 8 ~ = I22} . a) q_ 1 CS) 4 €;figak _ <1- ‘ « __ "k... - 4 c 4r 4 x d P- ? ‘ -v- ”t‘ I x. I: § 8: Cl. 4 “‘1' h. ‘ a -_- &' x i‘qfi _ m s‘ -- =34 H ‘ ._. Ii: ' (2 __ (2 fr“ 4 - a ‘ -- x ' d a ‘ g’u I I I, I I I I, Ix! I ‘L_‘IJ, I I I I 9'91 A 8'91 .6 1 1 0.8 0.4 1 1 0.8 0.4 PHHSE PHHSE Cont'd. Figure 6.1: W'k‘VIJL Ix I I I I‘ I I I I - : ':::J& c a: " III ' XI _. “‘59:" _. _ _ x x “I” ,5: __ _ x’k” “I g — x I a” _"_ .‘ -I a '1’ . I- X § 1"" ”“‘§‘ -'- ‘ d _. : 1?: _q__ d x .— [Ifi ' 5:: h—i b OJ '"fié" m- QJ I — m I ‘ xx; &' __ (Y) —I > .3: > g '- 'xi‘“ I4” "" “ '1 ,_L_]_:|fl_§llIlll IIIJIIIJ 0'91 V'91 6'V1 8'91 8 I IIIVIIIIIIIIII IIIfllvulng‘IfII 1. 0.8 1.2 PHRSE 0.4 ' «23:: _ llllllllIllll h —-f\ I7) V“ I- _,_ 8 ‘8' '35 ' _I CS) q 'fi ’i" .30 ‘. ‘__ dug. _ ' d S {‘d “H ‘ ""-".x.." ‘ __0— v _.- 3555 d m > 'a ,, " “' g! :‘.§¥ '1 _m‘“ .9; - x In" "8: II -* > ‘ > i: ’k'x - ‘ . .. *4: ‘ 9'91 8 1 '91 L - 8 fl 1 llIllll " at al‘ I 0‘! _ x 8'91 1 1 PHHSE Cont'd. 0.8 0.4 Figure 6.1: 64 d 4 4“ Q 4 C (a. 4 I ‘1 C . 3‘] H m m > I _ _ . _ . _ . _ . - _ _ _ u _ - _ _ . a.» . .4 .. mi... ““33: - nu. am... nu. 4n? L a a 1791 '91 1 1791 1'91 .v.u=oo "~.o unawfim wmclm mg m.® 1 Cu 3 {u w I I .1 k. I x. 4.... .. .1 .6... .. I. . I . V I u I — u _ _ _- — - — _- — d _ _ _ asymm.mmarmImmezp 0'91 [.91 7'91 '91 1 65 d — q _ d — _ — u I d 4 d 4 J I. . .. L r I - H mm> _ _ _ — p — _ _ . q _ u _ q _ - _ - 1 Cha88 Cfi8f l 1r i 1r t I 1r”... In... I I .. 1%.. U. .0: I m 1.... a 1.... 1&3 run a! Inf-L W. 1...}... 1H. - m mm> .. 1 _ 1 _ . _ . _ 1 V'91 '91 1 8'91 9'91 .v.u=ou "H.o muswmm mmclm m.H ngw v.0 . _.a w _ . — q.a P . I l. x x 6. "WW I T «a... 1... 1d «1.. 1... I 8* 8 8 88‘!“ 8‘ 8 888uf11 T "a u xv." as H 1 .11.. 1.1.11.1. 1m... 1.. .3. .1 m. 1.1.1. > mm> 1.“ 1 _ . _ _ _ . _ 1 q — _ I— _ _, q _ . T Q d ddl .mwmmnp ®m1_m_mm1. 6"91 9'91 0'91 8'91 66 q — q d - — d — d m H mm> I 1 1 1 1 1 1 _ 1 v I r 8““ ‘ fl 8"1 I l x 4 8&8 C d 5.111.? 1.11.11.11.11 I fin. 11.1 11 .1... 1.... 11 11.1 .1 11.. 1x a nut—tun? dx x aw"... 888 88 8 888 88 8 Lu Ira .mI ‘ 8 ‘ m mm> .1. t'91 '91 1 9'91 8'91 .w.u:oo wmmlm m?“ m.® "H.o unawmm v.0 J — q — u — u — q H .1... 1 1 .1... 1 I I. 1.1.1.11 .1 1.1..11111 I” u. flkxuuxbnmhh x .1 auburn": “an.” x I g.“% x x 5.8“. 3V8“ xx fi‘WJme I a 8.. Kit 1. a I 8x xix 8.. .uu 1w mm ‘W H > mm> H 1 _ 1 _ 1 L. 1 _ p d — u _ a — q — d I Cd d 4 «Q d I W C «C C L J. dd 1 m mommmm.®nm m OM) H 1 _ p p 1 _ 1 _ 1 6'91 9'91 8'91 8'91 67 I <4¢¢44 41‘... I I. 44 «4 IL I 1 ®¢> I 1 _ 1 1 _ 1 _ 1 1 _ 1 1 — 1 _ q I 1.11%.“. 1.11 111 I I 1.111111... 1111111..“ 1 1M. 1.1.. 1.1 .11.. - .111. .. .11. .. .. @1115 um: «1% 1.1180111 um: QMI 8 8 81! 1791 '91 1 L91 1791 .61ucoo 11.0 ouswmm mmcln. m1 m.® v.8 - — 1 — - H «KC. 8 I MQ&V& I 1.11. 1 1“ .11. .111 m3? . 1111.11... m1 I a n1 H > ®v> H 1 _ — — — — — — p — _ — _ _ _ - _ q I G «CO 1 CQC I r d C 1 m mmmmm.®n& m ®v> H 1 _ 1 — 1 F 1 b 1 8'91 991 ’7'91 0'91 68 I 1 I F I ‘4‘ T I I I &‘-' ‘ 8 ‘g' 11.. ‘ —I at“ x ‘ 1 1’ ? _ .33" 3 “{Jg‘ 11. ¢ ‘ -' 8 § 1 “1' —— — ¢gflr 4 if; 11 ' 1 x x ‘1 C $8.: Q: ‘ .— “P; __ d ‘ & ' “4 Q at 3" 1,. d 1 8 ‘ ,1 m . x ;§§3!P“ -_—— 1:: a . _- ‘1‘}. ‘ a” -- ‘ "' . l 1 l I I— - I- 1'91 t'91 I I [‘1‘ .I I I I I I I I I I ‘qs'lg‘; I I ‘l I I I— \0 4 ‘ 1.. ‘H 8“!” 1 - \I) "% __11 £Séfi‘ - v-I ‘ ‘ (E’i 1 CS) d 11 ' Ed? 1 \I) ‘ ‘9; (V) ‘ ' a - . -— mg." - ® 9 . ”a: 9 * I ‘* In ‘ ‘ :x 8 m > “g: 1 . 11 1 (U . ‘ (U £3 -— ‘11 ‘ C -———"3' ' is? -— :> a :> ! :gfll " . '1 1%” ' I I‘I I I I I I I I I I I figgth I I I I I I 0'91 8 V'91 9'91 0'91 A .6 1.2 1 0.8 0.4 .8 1 1 0 0.4 PHHSE PHHSE Cont'd. Figure 6.1: 69 wmmlm m.1 m.® v.0 1 1.1 d I I, I IxjflkI I, I 11 I I m1mmo.®nm - — n — n 1 > mv> 1 1 I! I I I '91 l 6'V1 9'v1 1 't1 .u.1coo 11.0 unamwm _l 1 _ 1 — q — 1 — 1 .I I b.» 1b.» 1 I .l. ydfi‘wa‘ xaflfivnié I 1. 1... 11.1.1111»... 1.1. 11.11.. 1. I l x x "xxx x 1. 1211. I. _w _umuw a ”mnm1IH 1w: .1... 1.11. 11.1.” H m vv> H p _ 1 — p _ 1 _ 1 I 1 _ 1 _ 1 _ 1 1 1x» I m... 1. 11.”: 1.1... 1... .1 x 1.1”: 1.1... 1... m 111.111.1111. . 111.11.111.11. . I ”1”» 1. 1. a my”. a x ”I. .1 x 1. my“: .1. 1. H I11. .1 1. 8.1111111... 11. x x 8.11.1111: I m 3 u R 1 8 a 8 .1. 1. 11. 1.1a . mmmmmswn: P111111, . w 6'91 8'91 9'91 8'91 70 I F’h W? I I I 1L0 1 " " 3‘- -~ (7) ‘7‘ *“88 x 8 .93 1. 1. ,o~ . "' .1 :, (Y). x 31‘ &.8” "CD * "“ ”In " _— ll ; " 1‘ 1 § 11 O- &:* ”'8’“? 8 .8 -—> 3% *‘ ‘:: ‘ ‘ _— .. 8‘ ‘18 «r- v—I ' ”‘3: 8| _Lf') ' __ > ,, 1 "g. '- u x 18:32}: x "P ._I__I_!m: I 1 I 11‘18dlrll111 8 8 ‘:;x a: J 1!. ' " " ‘ 1:1" 1 _ x " ‘1! " 44%;. 1 ‘:;x xx 1 r-I ‘ '8' LD ”,1?! :11 > x’I'I :l‘x'x ' I 1 IJLHIJII I 8'91 991 H I I I I “a Tj I I I I I I I I “:I T f I I I x I! " g“; "x x a: ' ' 1.: 1'. “I ”'1 ‘ ® ‘31:": : 2‘ " g " - 1ICI) ’il: ' & .11. 8 8 ‘1 a 3'3 13:“ 1— . g _1_ 3‘ ’k" —-I Q I x. ”,1? 1 II I" "x ‘ 0- 115‘ a'Il' 3' ”a” x” x x I‘ ”'1': I". —— I "‘1 " > ”If." 05 '4 ‘1' 1% "" " <9 ' I ’88: —I— 1.0 ‘ 8 a -— > 3'1? > .35 I- g 4.- “ - 1". " I I I Nani} I I [,1 I I 1,1 I liad, I I I I 0'91 A . 6 1 . 2 0.8 1 0.4 . 6 1 1 PHHSE Cont'd. 0.8 0.4 PHHSE Figure 6.1: ’51“ 4 4" \o _ gq§_n_ ‘3 _ I G x J’ c‘ H I I I “5:: ”i I l I I I‘ I 0 8 1 2 ‘q: I I v58 I I 0.4 . M l L l l l I l l ‘l ‘1 l J l J 8'91 9'91 I‘QI 7'91 8 I IIII‘IIITIIIII IiIrI‘ILIIIIII 4‘ ”itsq‘ I- Q Clb c \D .‘ H In}? Q‘ cm— _In ‘ __ “mi" _N - 4 ’Jk" ,q CS) 4 I l l ‘5: ”‘1: ‘ A L F):: :. .‘ar 98 V152 . B I I v58 V L .. 7'5: 0.4 w...“ an!” X [ltlJlllllllllfi4‘llllllll 6'91 7'91 S'SI 6'91 8 A PHHSE PHHSE Cont'd. Figure 6gl: I I I [#Eir‘ J E I’ I I I I [“l I ‘I I I “w" ‘ - I— ”M; qu- ‘ . a, a " 1 lg “" c“ " :2 «‘ .. {:2 . “ @- "‘ ‘ " C :3 a. d .. x .3 at x -- 3 x "x ‘ “'5'! _. “‘vk‘ __.. Q ‘ .— 0: ”I: H ¢ a d - , -- . I > * $2: > . I- ‘ -II— . J . a I J. I 1 Iifih 3 I I I I J. 1 A1 1 I I I'SI V' I SI c 00 $5. ‘ 453 . -— — H G t X .V’ ‘ _.. :1" x _ v—I x“ ,. N I‘ -— fl“ - _CS) ’1 ‘ __ {2%‘§n£§; 1| ‘ '§;.:u"‘ ' 0. d ”9% II I. . __ x ’1?“ ‘ .. _m ‘ -. > ‘3: q (‘0 . < m * .. *2 "I; w .. ~ ." ’i « ‘ “I '3’; I I I‘l I I I 1 I J I I I I£HEL¢§&“I 1 I I I I I I‘d‘LERFiZI I. I I I fix .. 0'91 8 8'91 S'SI 6°91 A 1 .8 0.8 1 0.4 0.8 1 1 0.4 PHHSE PHRSE Cont'd. Figure 6.1: v'SI 8'91 A v-w I'SI j I WI} I I I I I I I I I IW*I I I I _ \D :1? u' " -~ ’9‘ v“ - O\ x x f i ’k x 3 x ‘x _ a nu‘h‘f; a: x __ x$x _- " ”at? u flg' .— H 33‘1“! -._ ‘18 _ [\. § ‘: affix : :1" 8 2‘ _ ® 8 ‘fi- 8' ‘ “‘8 _- II I: ’ g g I: *1 4:5: -- *5. - _ :§ §‘ K‘ —— ‘v x _- I > ’ ~35}? m ' aw: L0 3 8‘?“ ' .4.- If) x?! - — \D x m; \0 “:2 _. > I If??? __ > ' 3:“ a _. g £ a” _... g‘ "i“ .. ,_L__l_u!lI '1 I l I I I L I x 1 I J ,7 . 8 SI I'QI Illxfigfij :LI II Tlrrffixl'llirr CU 'u‘xggz" __ '1”: I d ._ V 2‘ ‘ __.. '13: " _. L0 '3 i?” , - ox ’19:," __ 1- ' - m an?! 33’ ’ I?" 8 _ m :8qu ' ' dl— 'g‘h'ax ' '- I * ' ® ‘ 'I x L ll *5; .. -~ “I?” .. ‘ d 0- 3’1” ’5‘ x ' II x L > '38 “a“ ‘ -- m i';x { 4 <1- ” I?” <1- ,, — [D h," —— m 8’? x x .- > '1‘ ,k > uft'x '- ”A”? ' 3' __. ‘é’kéx x - I ‘ x I 11111341511111 9'91 8 0.8 1.2 1 0.4 1 1 PHHSE Cont'd. 0.8 0.4 PHRSE Figure 6.1: I I I I I‘VFIJI‘I I I I I I I 1| I I - ‘5 ., I“ x! ‘ I— ‘x' ‘ xi‘: 4 - x“€s:‘ ' ‘ 1 4 _ ~ Q I.“ II“; “ u C “Eff-t ‘d " ': 4k ‘ « m i‘ I In" H I: g ‘ \I) x : ‘1 \I) “ I—\0 3‘ ‘ \0 q > ‘3 > d: ’- ‘ xfi‘,‘ a ll‘ ‘ I I I I .. “if I I . I . I 1. I I I I‘I‘l I I I [IT llll!‘ fillll _ 4 ‘ ‘S‘QM —LD ‘ m . 3" —"’. I" “$193 ® C "I ‘3. a; __ [I] C . :> 5*\§5V _ . :52 8 <‘ 8 If“ — > a“ ‘ > ##2## 11:1 lliill lllll§lllll 0 91 17 . 91 9'91 A 6‘91 1 .2 1 0.8 .4 1l 1 8.8 0.4 PHHSE PHHSE Cont'd. Figure 6.1: 74 4 ‘ x .— 8‘ -I- ‘ '- fl x "‘ ‘ r x”' — ‘ — x ‘ ‘1 ‘d b " ' ‘” .‘ I 4 u 4 F’ § 1% __.. fl __ 88 .‘ - I“; _.- t - ‘h 3" 4 _ .= « __ « . .. m t ‘ It" I-—-l t g ‘ D ' -I— "1 \I) a x ‘n ‘JD “ —\0 xx x —— \D ‘ —I > . It: > f - , .x -_ 4 - 88x “ L [_41 l ;_;13L 1 I I I L I 1 I‘ I I I I 1 I I T 1 1 ‘ Q ‘ -— m G a . « 4 1' R . « . $ ® :' ll 4 fl 0— C , C ‘ m ‘ __ \0 4 ‘3 ‘ ' a‘ ' -— 4 4 I, I I_11 L,I I 1, L I IL, a 3‘" ‘ :>. Hm§§§V2§E".A \0 1:3.- ‘2 a " I I I l Iiit l 1 l I I 0'91 v'91 8 9'91 6’91 A 1 .2 1 0.8 0.4 1 1 PHRSE Cont'd. 0.8 0.4 PHHSE Figure 6.1: 1 I "xxxu§ ‘ 'II as!" 4 ‘ “Inn"! 3?"; .t 11“: II *3: 1" ‘13:: ”8"” x §§3§ ' x as"! " x: at 'ng'§‘ "‘kx’ffxi m 4 ‘xxx'*’ “'1‘!” |\ ’1 "x": *2 * z” _ {I ,I :58,“ a q C -II- 'II G '— 4 G C 4-1— ‘ - —— — Q 1—1 4 |\ —I— \D .— > . C C . I ' I I I v67 8 P=8.4@4687 8 N .. 4 xxfia"*xx " .- ‘8 __ 3"" :5“ ‘ — 13"“ x “a: _... ‘8 1", g,“ .- ’h ”93:: —— ”I i“ — fl“ ‘I ‘ "' I “C“ " 3 ‘fl‘g&‘x ‘ x ':.~ :3" __.. , .. > 4 ,9?" “:1” " -- 8’“ :56 ‘ .. r\\ fi'tfi x r” ——\o .I g! g“ _— > 132 -_ .“4 ”‘2- : .. X III‘IF'ITJI'IIIII ‘ " I f llljlleJlJl 1'91 9'91 1'91 A .6 1 .8 1 0.8 0.4 .6 1 1.8 PHRSE Cont'd. 0.8 0.4 PHHSE Figure 6.1: 76 I I Ifyj:f .l T I I I I I I I I1 I J I I I ’g x 8 “I g C .. "II” ,p‘ x. -- .I 35‘ 4 _ a: '3‘ __ .— 3: 'k ‘ ¢ ‘ '- f“ 8 I q _..— . -I x . a — ““ugx* ‘ 1 — 34;...» . .. x ‘. ,: .. ‘ .. — ' x‘ “x: i ‘ -— .‘ — [1: um, i: ‘ *‘4 1 I— ‘- ~': 'xx: "' V- ‘ -I _. I; '3 . ‘ I; ; _.. : ' ' I- x g’x! ‘ -— 1 _ M’uj' I I LI I J L I ‘1 l J I I I 1 I 8'91 L'QI 8'91 9'91 5 I I I I I I I I I I I I I I It" 15,“! I I I I I I I " I! u - - ‘ d -_ ' ‘}‘5¥r§# x _ 4‘ t ‘ a: —— v-i .___ "g .d 8 g: ‘ 8‘1‘8%‘ F m ‘ 1" x : 4g ' '5 " m " I7?” " I— . ¢ —— tad}! — _ ® 2 gaugi"§ II c -- 'x"'&jki - I— O- . _._ ‘ E‘x;"z ' —l m '3 > *‘ : I __ f: - « > )‘ffi g: - Q -I- 8 ‘ I —I . ,. .er I I l‘ l I I I l I I I I I 335% Ix I I I l I I I 8’91 8 6'91 1 .8 1 0.8 8.4 1 1.8 PHHSE Cont'd. 0.8 0.4 PHRSE Figure 6.1: 1 a: ['1 I I T I I I fl I I I I ’9‘ an!“ ' t -_ _ x a: ‘5‘," x __ _.. x xx‘x“ i?" __ .. at; ‘u'fit ’3 a u ’i" —— - 8'; z ' ‘ .. I: -- -_ a“ at“ (x x x____ _4 II I], I--I ..‘¢‘ _ Px - '33,: “f”! 0\ _. aff " > 8:21?‘ __. ‘ .- I 1.. ~II“I ”I I I I I I I I I I I I 9 SI 6‘91 v97 B P=0 . 696336 . 4 ‘c c d . d c ‘1 d c IIrwI§I1.IIIIII— x "u :1 IIIIIIIII 9. SI 1’91 A l 1 0.8 0.4 1 1 0.8 0.4 PHHSE PHHSE Cont'd. Figure 6.1: 78 mw. a .u.ucoo wmmIm mw. fl mw.mw "~.o ouawmm v..mw I .12.... 888 I l I In... 3...... .. III... III». fl d d - l 1 ”rank... .. g...“ I...” .. I“. m 00> - ' §§I " /_ t"E§I I fix... xxx xxx xx .r $3.4“:ng xxx an .r I ..w.... Q»? M35 .qu KI? M}. I ..I....... II... xxx 8% 3..th m®m®mm®nm > mm> .. _ . . _ _ . _ . 6»'§§I 59' E31 I I15: I I I ‘ I I _ "‘4'. _- a x ‘3' x _ éi 1 __. ‘ {I F t .. x ‘ g —I— ‘ _ ' ‘u‘ —— ‘. _ fikgrk -- ‘ _ tr 'qfi‘i ——-I-—I %‘ EL . - 2 I -- 2 _ v—II ,P‘ ‘____.—I ‘q > .. ‘ > ‘ 1 I :&I I J I I 8'91 S'SI B'QI v'SI H I I I I I I ii?“ I I ‘ I ‘ Ix .— :‘ -_ 3;!!qu _ 8 “ . ”I. In \I) c I, Si! .If‘ -- x 1‘ . ‘ “h It‘ .. CS) ‘ " II a: x if. —- m 2‘ > .3!!ng a "l - (Y) ‘ q- or) ’5: 9' H ‘ I—I _ H ‘d fl_s—I g? > :‘ > ”'13: I ‘I I I I {1" $1 0'91 8'91 S'SI 1'91 1 1 0.8 0.4 1.8 ‘ 1.6 PHHSE Cont'd. 0.8 014 PHHSE Figure 6.1: 80 Table 6.1. Parameters of M15 Variables Period Epoch of Max Int Mag Int. Mag Radius Var Type (days) 244848000+ < V > < V > (V-R) (V-R) (arcsec) AV 1 Cep 1.437712 660.312 14.996 14.944 0.360 0.339 121 0.95 2 ab 0.68430 660.131 15.585 15.573 0.359 0.355 172 0.56 3 c 0.388746 660.293 15.823 15.809 0.252 0.247 252 0.50 4 c 0.313587 660.108 15.902 15.880 0.205 0.196 199 0.65 5 c 0.384215 660.120 15.789 15.777 0.267 0.262 235 0.52 6 ab 0.665967 660.253 15.875: 15.845: 0.207: 0.207: 80 0.80 7 c 0.367557 660.342 15.687: 15.674: 0.342: 0.337: 74 0.75 8 ab 0.64625 660.287 15.880: 15.842: 0.400: 0.381: 127 0.90 9 ab 0.715277 660.437 15.759 15.735 0.326 0.319 140 0.80 10 c 0.386382 660.293 15.894 15.879 0.273 0.268 126 0.58 11 c 0.343267 660.085 15.828 15.806 0.205 0.196 174 0.65 13 ab 0.57491 660.169 15.896 15.861 0.319 0.306 144 1.05 14 c 0.38201 660.228 15.893 15.881 0.265 0.261 270 0.50 15 ab 0.583453 660.101 15.911 15.871 0.309 0.295 315 1.25 17 d 0.428907 660.302 15.866 15.854 0.280 0.275 139 0.42 18 c 0.367737 660.051 15.821 15.807 0.221 0.217 127 0.60 19 ab 0.57228 660.514 15.901 15.845 0.296 0.283 195 1.30 20 ab 0.697021 660.657 15.811: 15.777: 0.126: 0.115: 82 1.10 22 ab 0.72013 660.467 15.723 15.692 0.306 0.292 334 0.95 23 ab 0.632680 660.170 15.772 15.758 0.327 0.323 320 0.70 24 c 0.369693 660.013 15.769: 15.755: 0.297: 0.290: 107 0.68 25 ab 0.66532 660.496: missed maximum 303 — 29 ab 0.57493 660.457 15.978: 15.931: 0.422: 0.398: 268 1.25 30 d 0.405997 660.354 15.683 15.673 0.272 0.268 165 0.50 31 d 0.408154 660.319 15.870 15.860 0.269 0.266 270 0.43 32 ab 0.60547 660.205 15.733: 15.704: 0.321: 0.310: 119 1.10 35 c 0.38400 660.326 15.929 15.912 0.275 0.268 167 0.57 38 c 0.375265 660.140 15.812 15.795 0.237 0.230 146 0.64 39 d 0.389563 660.192 15.779 15.772 0.265 0.262 126 0.45 40 c 0.37735 660.362 15.882 15.870 0.262 0.259 176 0.58 42 c 0.360166 660.112 15.893 15.871 0.269 0.260 230 0.67 44 ab 0.59558 660.141 15.749: 15.718: 0.255: 0.239: 91 0.80 49 ab 0.65518 660.638 15.142: 15.128: 0.217: 0.212: 171 0.75 50 c 0.298060 660.266 15.922: 15.898: 0.201: 0.191: 193 0.70 51 d 0.396935 660.353 15.763: 15.755: 0.276: 0.272: 92 0.30 52 ab 0.57564 660.403 15.932 15.896 0.305 0.291 194 1.01 53 d 0.414108 660.130 15.784 15.775 0.231 0.229 145 0.40 54 d 0.399542 660.223 15.708: 15.700: 0.268: 0.268: 89 0.40 65 ab 0.718196 660.525 15.623: 15.614: 0.270: 0.266: 109 0.53 66 c 0.37935 660.346 15.890 15.878 0.282 0.279 132 0.55 67 d 0.404627 660.230 15.969: 15.962: 0.218: 0.216: 87 0.60 74 c 0.29601 660.164 16.007: 15.974: 0.371: 0.350: 93 0.80 97 ab 0.696336 660.008 15.897: 15.877: 0.177: 0.172: 85 0.70 99 c 0.290808 660.213 15.811: 15.808: 0.158: 0.157: 198 0.35 113 c 0.40603 660.375 15.698 15.696 0.220 0.219 257 0.22 81 Notes on individual variables: v1 - A cepheid variable. Photometry is reported for this variable but since I am only studying the RR Lyrae stars, v1 will not appear in any of the analyses. v2 - Somewhat brighter in < V > than the other RR Lyraes. Our value of < V > is ~ 0.1 mag brighter than Bingham et al.’s value. Our lightcurve is more symmetric and has less scatter than Bingham et al.’s. v6 - This variable has a near neighbor. Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v7 - This variable has a near neighbor. Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v8 - This variable has a near neighbor. Points included in lightcurve have errors < 0.1 mag. v12 - Too crowded in MSU frames - only WIRO data. v15 - Irregular lightcurve - probable Blazhko star. [The Blazhko effect is a secondary periodicity, typically tens of days in length]. v17 - A double mode variable according to Bingham et al. v20 - Crowded. Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v25 - Missed maximum in both V and R. v29 - This variable has a near neighbor. Points included in lightcurve have errors < 0.1 mag. v30 - A double mode variable according to Bingham et a1. v31 - A double mode variable according to Bingham et a1. 82 v32 - This variable has a near neighbor. Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v39 - A double mode variable according to Bingham et al. v40 - Considerable scatter in lightcurve. Perhaps it is a double mode variable? v44 — Messy lightcurve. v49 - Unusually bright for an RR Lyrae in this cluster - double star according to Bingham et al. & SKS. v50 - Points included in lightcurve have errors < 0.1 mag. v51 - A double mode variable according to Bingham et al. v53 - A double mode variable according to Bingham et a1. v54 - A double mode variable according to Bingham et a1. v65 - This variable has a near neighbor. Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v67 - A double mode variable according to Bingham et al. Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v7 4 - Points included in lightcurve have errors < 0.1 mag. v97 - Messy lightcurve. Points included in lightcurve have errors < 0.1 mag. v99 - Some scatter in lightcurve. v113 - period alias problems, P = 0.40603 days preferred over P = 0.288556 days. CHAPTER 7 ANALYSIS 7.1 Mean Magnitudes and Colors Once good lightcurves were produced for the variables, mean magnitudes need- ed to be calculated. Ideally, one would like to obtain a < V > for the variables that could then be compared to the < V > of non-variables in the horizontal branch. Unfortunately, as the variables change in magnitude, there is some debate as to how to average over the light cycle to obtain an equivalent non-variable < V >. The most common mean V magnitude used is intensity averaged V (< V >im) but there is no consensus on how to average the colors. Some people prefer magnitude averaged colors while others prefer intensity averaged colors. Others apply ampli- tude corrections. For this analysis, both intensity averaged and magnitude averaged < V >’s and colors were calculated for the variables and are given in Table 6.1. [Note: Whenever I am discussing a mean magnitude or color in general, I will use < V > or < V — R >. Otherwise, an intensity averaged V magnitude is designated by < V >1,“ and a magnitude averaged V magnitude by < V >mag. Mean colors are [< V > - < R >]im for intensity averaged V-R and < V - R >mag for magnitude averaged V—R.] Interpolated lightcurves were used to calculate the mean quantities. Each lightcurve was binned by 0.05 phase and a mean magnitude for each phase bin was calculated. Then, the Numerical Recipes (Press et. a1. 1986) routines SPLINE 83 84 and SPLINT were used to interpolate magnitudes every 0.01 phase. These inter- polated lightcurves were checked by eye with the actual lightcurves. For any stray points, a correction by hand to the file containing the magnitudes at every 0.05 phase bin and then re-interpolating was sufficient to correct the error. Gaps in the lightcurves were handled the same way. The magnitudes in these interpolated lightcurves were then averaged to obtain < V >mas and < V - R >mag. Intensity averaged magnitudes were determined by transforming each magnitude to an in- tensity, then averaging all the points and converting the mean intensity back into a magnitude. [< V > — < R >]im colors were determined by first calculating < V >im and < R >im and subtracting the two. While this method worked well for most of the variables, several of the variables had poor lightcurves or large gaps in the lightcurves. The mean quantities for these variables are suspect and are indicated as such by a colon next to the number in Table 6.1. For those variables with good phase coverage, I estimate the random error in < V > to be 21:0.02 mag, and the error in (V—R) to be 21:0.02 — 0.03 mag. 7.2 Radial dependencies Figure 7.1 shows < V >im of the variables as a function of the distance from the cluster center. The RRab stars are indicated by filled circles, the RRc’s by open circles and the RRd’s are indicated by crosses. There is some suggestion of increased scatter for stars at radii < 120 are seconds. This is quite possibly due to the increased crowding at one goes to smaller radii. Those variables that lie less than 120 arc seconds from the center of the cluster therefore have photometry that is suspect. There are over 40 known RR Lyrae variables in M15 that lie less than 120 arc seconds from the center of the cluster. Due to extreme crowding of the stars, photometry has been very difficult to obtain for these stars. Unfortunately, E magnumuub 0:» Mom nameuu up > u~.h ouaumm mUCOOQM 0L0 CH mDHUOK ®®m ®®H - - - _ _ a — u u — _ — _ — O l O OO O , O l m 0 0 X0 0 o o o o I O X X 0 I Dmm .w 0mm I — — — p — — p n n — p — — P - — u — — — u — q q —I - — u . O J C . . . 6'SI L’SI L'SI 6'SI (A) (A) 86 owing to the poor seeing conditions in Michigan, the effects of crowding in the center were compounded. Inside 100 arc seconds, the stars are badly blended in the CCD frames. It was decided not to try to obtain photometry of these stars. Indeed, for those few variables just inside 100 arc seconds (v20, v44, v51. v54, v67, and v74) for which photometry was tried, results indicate much poorer photometry than for the RR Lyrae stars further out. With the WIRO data, we wanted to obtain photometry for stars several magnitudes fainter than the horizontal branch to allow comparison with previous work on M15 (Buonnanno et al. 1983, Durrell & Harris 1993). Therefore the exposure times were longer than necessary just to get the RR Lyrae stars. As a result, the center region of M15 is saturated in the CCD frames. Photometry for the inner RR Lyrae stars was not attempted with the W IRO data. Figure 7.2 shows < V — R >mag as a function of distance from the cluster center. There appears to be a strong color dependence for the RR ab’s. However, this effect is not thought to be real, but to be a consequence of the crowding problem described above. The four RRab stars less than 100 are seconds from the center, v6, v20, v44, and v97, all show contamination in their lightcurves. There are near neighbors to these variables which, especially in the MSU data, degrade the photometry. The color of a nearby star will most likely be at least somewhat different and probably redder (contaminating the sky around the variable) than the color of the variable star itself. The photometric color obtained for a crowded variable may well be in error. Therefore, the colors for v6, v20, v44, and v97 are not to be trusted. If we exclude those variables with poor lightcurves and near neighbors we get Figure 7.3. The color dependence on radius for the RRab stars has now disappeared. The figure for the RRcd stars however, shows a very slight gradient of about 0.03 mag. However, since the innermost 2 stars are RRd variables. which probably are 87 821m...» 23 you 8&5. 2' mic—IS . wucoomm.oco CH mjfinom «4. one}... mam mom oofi u q _ . _ _ q — u — u — - _ - _ u a O O OO O Q 0 O l O D 00 O 9 X0“ 0 v~n I O omm I 0mm - I I I- I u u I I I u I I I n I I u I . - I o o l I I o a o o- o o o . .Il nomm - L p p p h h n _ _ P p b n _I P p b P 8 ' 0 (El-A) 17 0 17'0 (El-A) 88 «0.31.3.3 36.325 new .53 a? «diatg 3.6 0.5»: mncoomm 0L0 CH wjfinom som mom ooI _ _ _ 4 _ u _ q _ d A a _ - q _ q o o o M a o .l D 00 9 X0“ 0 v~n J cam I 0mm - I I I I I I I “I I I I _ I I I I I O o. L O 0 cl comm - 8 ° 0 (ti-A) i7 v (El-A) 89 actually redder then most RRc stars, this slight gradient. may not be a consequence of photometric error. Rather than correct for an effect that may not be real, no corrections were made to the data. 7 .3 Comparison of < V > with Bingham et al. Out of the 44 RR Lyrae stars for which I have photometry, 31 of them I would classify as “good”. That is, the lightcurve is clean (no scattered points) and well sampled in phase, leading to accurate values of < V > and < V — R >. These 31 variables are v2, v3, v4, v5, v9, v10, v11, v13, v14, v15, v17, v18, v19, v22, v23, v30, v31, v35, v38, v39, v40, v42, v52, v53, v66, and v113 — with VB, v24, v44, v51, and v54 having slightly greater uncertainties. These 5 variables with slightly greater uncertainties are represented in the diagrams as smaller symbols, and are given less weight. Figure 7.4 shows the comparison of my < V >im. and Bingham et al.’s final corrected < V > (from Table 8 in Bingham et a1. 1984) for 30 of the variables. The filled circles are RRab variables, the open circles are RRc’s and the crosses are RRd variables. Bingham et al.’s work is the most recent in depth look at the RR Lyrae population in M15. They obtained data from new B and V photographic plates of M15 and added to this re-reduced B and V Mt. Wilson data from SKS’s study. In all, 62 RR Lyrae were investigated. They found strong correlations in < V > and < B -- V > with cluster radius as well as a small north-south gradient in < B — V >. The correlation in radius was due to crowding effects as one approached the center of the cluster. Because of these contaminations in the data, Bingham et al. had to apply a correction to these values for the variables lying within approximately 120 arc seconds from the cluster center. From the error bars given in Bingham et al.’s color-magnitude diagram of the horizontal branch (their Figure 14), the error in 90 A>v< ®.® .au um luau-fin sum: huquOuo—E uuum uuaumuub no uoumunnlou 3.5 0.5»?— Xx 0'91 8'91 991 (A) 91 their mean < V > measurements for the variables is :1: 0.03 or 0.04 mag. In my Figure 7.4, nineteen of the thirty variables fall within A < V >= :l:0.04 mag zone. Four of the eleven variables outside the zone have more uncertain colors (smaller symbols). For my data, the typical internal error for < V >im for those variables with good phase coverage is :l: 0.02 mag. Therefore, I feel that I am in overall excellent agreement with Bingham et al.’s photometry, though significant differences exist for some variables. 7.4 The Color-Magnitude Diagram of the Horizontal Branch Figure 7.5 is a color magnitude diagram of the horizontal branch of M15. The variables in the figure are the 31 good ones. Again, as in all the figures, RRab variables are indicated by filled circles, RRc variables by open circles and RRd variables are indicated by crosses. Non-variable stars are indicated by the + symbol. The photometry of the non-variable stars is from the \YIRO CMDs and is given in Table A.11 in Appendix A. The variables are spread across the gap between the non-variable stars with some overlap between the variable and non-variable stars. The non-variable stars that are mixed in with the variables have been tested for variability. The photometry for some of the stars showed some scatter, but none were found to be definitely variable. Some of these stars could be field stars superimposed on the cluster. The RRd’s are mixed in with the RRc’s but tend to concentrate to the cooler (red) edge of the RRc domain. The RRab’s appear to be grouped separately from those other two groups. There is a spread in < V >im, of about 0.35 mag, including v2, which is slightly brighter than the other variables. There is a slight hint of increased (redder) color for the brighter RRab stars but not for the RRc and RRd stars. The blue edge of the instability strip is at < V —R >mag = 0.19. The red edge of the strip is at < V — R >maLg = 0.37, with no reddening 92 2: am Joanna uuuuonmuon on» no quwama ueaumuuullugoo 3.5 panama ezxmu>v Vb m.® m.® Ta 1.. ————_-—___-—_—_—— —-_ -+ l + .3. ++.HT l - +. 0;? o +H+¢fi++ - 0 cgnome 0+ + l ++ +. + l 9'91 B'9l 1791 881 ”m (A) 93 correction made. The implications of this diagram will be discussed further in Chapter 8. 7.5 Amplitude vs < V > and < V — R > Figure 7.6 shows < V > vs V amplitude, A.., for the 31 good variables. The top diagram shows < V >th while the bottom diagram uses < V >mag. Both of these show considerable scatter, but both indicate an increase in amplitude as < V > gets fainter for the RRab stars. This may be also true for the RRc’s but with only one RRc star (v113) with < V >< 15.75, the trend is very uncertain. The double mode variables appear to have the smallest amplitudes in this sample, excluding v113. This is no doubt due to their double mode nature. Stars that pulsate in more than one mode will have pulsation amplitudes less than single mode (fundamental or first overtone) amplitudes due to the modal mixing. The RRd stars show no correlation between < V > and amplitude. There also appears to be essentially no difference between the top and bottom figure. That is, there is no difference between using < V >1,“ and < V >mag. Figure 7.7 shows < V — R > vs .4.1 for the 31 good variables. Again, the top diagram is for [< V > — < R >]im and the bottom diagram is for < V — R >mag. Both diagrams indicate a strong correlation for the RRab stars. That is, as one goes to the red, the amplitude of the variables decreases. The effect is either very small or absent for the RRc and RRd variables (except for v113). 7 .6 Period vs Amplitude Diagrams Figure 7.8 shows the period vs amplitude relations for 42 variables with reliable amplitudes. It is easier to obtain accurate amplitudes of the variables than to obtain accurate mean magnitudes or colors. All you need is a well-defined minimum and maximum in the lightcurve. Thus I have more than 31 variables with reliable H. 9v .2 0.8 1 0.4 .8 1 0.8 0.4 94 I T I I l I .- [ : P . d r— . .- u- . u- . . . .. x O .. -— u ’§¢ .. I o i Z i . J I l I I I 15.6 15.8 16.0 .n Figure 7.6: Mean Magnitude vs V Amplitude for the RR Lyrae Stars 0v 0v 95 1 I I 1f I I j l I 1 I I —[ T I I f nu ’ .'.| ' H'- -I . I- g 1 I- . q 00 ._ . . - 9 .. P o o o o . o «I o_ . .. b 0 CI ) a J I I I I I J I I I J I J I I I I I 0.8 0.3 0.4 I-(R)lm, I I I l I I 1 I I 1 I I I I I I I I b "l m” C. - d)- u r- .. .. ml- . C «I: ooh— . . a— : 0 0° 0 ° 0 I 0°C . st’ 02‘ ‘ .— x x - o. I c-l _ o ‘ fi I L I I I I I I I J I I JI I I I I J 0.8 0.3 0.4 .. Figure 7.7: Mean Color vs V Amplitude for the RR Lyrae Stars Hv Hv 1.2 0.8 0.4 1 0.8 0.4 96 Figure 7.8: Log Period vs V Amplitude for the RR Lyrae Stars I 1m 1 I 1 1 1 l I 1 T 1 1 l 1 1 1 1 I If 1 1 l l I l 1 I- . O O -( i ' I 1— o o C .0 . "l ' oo 00’ ° ° ' _- )< _- C) ‘8‘ - u 1 L . 1 1 1 1 l 1 1 1 l 1 1 1 1 l 1 1 1J l 1 1 1 J l 1 1 1 1 -0.5 -0.4 -0.3 '0.8 '0.1 Log P 1 1 r 1 1 1 r l I In 1 1 l 1 I 1 1 I rm 1 1 l I l Ij : - I. '0 .I I- .. c- L. '. .. ._ s O - I 00° ' I 1- XOXO:; - -— g x x X — .- x a - O - 1 1 1 1 l 1 1 1 l 1 1 1 1 l 1 L 1 1 l 1 1 1 1 l 1 14 1 -0.5 -0.4 -0.3 -0.8 -0.1 L09 Pg' 97 amplitudes. The top diagram shows log P vs AV while the bottom figure shows the fundamentalized reduced period, log P6, vs Av. The reduced period of a variable is the period it would be expected to have were it at the mean < V > magnitude of all the variables. This has the effect of removing the scatter due to each variable having a different mean V magnitude. Following Bingham et al., the reduced period is given by: log P’ = log P + 0.336(< V > —‘<_V_§). The mean < V > for the variables was found using only the 31 good variables and is 15.817 mag. Also, the periods of the first overtone mode (P1) variables are often converted to their fundamental mode equivalent P0 to better observe the transition zone between the fundamental mode and first overtone mode pulsators. The relation between Po and P1 is log P0 = log P1 + 0.125 (Bingham et al. 1984). Because the reduced period depends on < V >, only the 31 variables with good < V > measurements are plotted in this figure. There appears to be a strong correlation between amplitude and period for the RRab variables. The RRd stars show little variation but then they occupy only a small region in period. The RRc stars are a bit harder to judge. Their amplitude appears to decrease at longer periods but v99, a much shorter period variable, also has a low amplitude. Does this mean the relation turns over at the shortest periods, perhaps at the blue edge of the instability strip? 7 .7 Color vs Period Relations Figure 7.9 shows log P vs [< V > - < R >lim and < V — R >mag. The RRd stars are plotted using their first overtone period only. The RRab are well isolated from the RRc and RRd stars. [Hereafter, if I am talking about both BBC and RRd stars I will use the notation RRcd to mean both groups of stars] There appears to 98 I u-dG—dddd—quud—dddu—quqq 1 puppphppp—nbbbhbpr—pth m6... m.o- ¢.o- a oo_ mél 0.3 0.4 [ l m, 0.2 quad—uqdd—dqqq—uddddddqd .. L T .1 r I. T 1 ppnn—nnnn—pnnp—bbbn—b-PP m.o- m.o- ¢.ou m.o- a mod 0.4 0.3 .‘ Color vs Log Period for the RR Lyrae Stars 0.8 Figure 7.9 99 .qq._q..q—q...—.4.q_..-q I 1 I l .I I. T l P-nn—P-bb—prrhbp-pbb-LP m.o- m.o- ¢.o- m.o- .a non 0.3 4 [-(R> l m 0.8 I +1 «dud—qdqq—quqd—JddW—dddq be-thbb—n-pb—pppn—PP-b l l 0.4 s r 03 0.2 l m.ou m.o- v.0- m.o- .a mo“ . 7 .8 Mean Magnitude vs Period Relations Figure 7.13 shows log P vs < V >im for the 31 good variables. Again the RRd stars are plotted using only their first overtone period. The top diagram shows log P vs < V >im while the bottom diagram shows the fundamentalized period, log Po vs < V >. The figures show that, in general, the different RR Lyrae types fall into three well defined groups, with the RRab stars showing a correlation between < V >int and period. The RRc stars show considerable more spread then the RRab stars for a given period so I am more uncertain whether a real correlation exists for that group. The RRd stars show no correlation in the figures, but again they cover a small period range. It appears that the spread in < V > among the variables is real - approximately 0.35 mag for the RRab stars and approximately 0.25 mag for the RRcd stars. From the last section, the tighter correlation between reduced periods and < V — R > strengthens the conclusion that the spread in < V > is real. 101 qqdfid-dqq—qqqd—dd-q l l C l . l s o s 1 s I s o 1. x 1 Koflo O o I. x o 1 O O .. o o 1 L pth—bp-h—pppp—r-pb m.o- m.o- v.9- .m oo_ 0.4 0.3 [.. 0.8 Color vs Log Po for the RR Lyrae Stars Figure 7.11: 102 I ffj—l— T1 1 1 qu-dflqjdq—qqu-ddd-q hLPbl—p-hp—rF-Pl—n-bp m.o- m.o- ¢.o- 3a was 0.4 0.3 []1nt 0.2 u-qfil—‘udqq—quflql—ddqq 14 L O 1. L o s - . l . o a. nu . xmcmm o I. X0 0 I 00 l L ppbp—ppb-—-b-PerL ms: 0o: You ma mo_ 0.4 0.3 .‘ 0.2 Color vs Log Po' for the RR Lyrae Stars Figure 7.12 103 fiIIIlIIIIjIjTIlIIIIIIIjIIIIII \D . __ I. .— "I F. 2 I. 15 o .i - up . x . . A _ .. >10 0 C90 V"" XX P o 0% , . - GD (3 .o'P .. F. I I I I I I I II I ILI I I I I I I I I I I I I I I I -0 5 -0 4 -0.3 -0 2 -01 Log P I I Ile I I I I Ij I ITIW I I1 I I I III I I I #0 .— . _ U3 O-I . ,5 . 2 . ° com o . . l\ ' _. )< _. >ID o :90 V"" x . 0%: ' o o , 4 63 oh — C-I I I I IIIIJIIILIIIJIJJIILI I I [III -0.5 -0.4 -0.3 -0.2 -0.1 L09 P. Figure 7.13: Log Period vs lean Magnitude for the RR Lyrae Stars 104 7.9 Summary Now that you have been inundated with all of these figures, what do they tell us? For the RRab stars, as you go to the blue, their amplitudes increase. Thus, those RRab stars found at the blue edge of the fundamental mode zone will have the highest amplitudes. This trend is nonexistent for the RRcd stars. The amplitude and period of the RRab and RRc stars are also well correlated. The longer the period of the variable, the lower its amplitude. This is true for both fundamental mode and first overtone pulsators but there is no correlation with the double mode variables. However, the RRd stars cover only a small range in period. The color-magnitude diagram for the variables indicates the blue edge of the instability strip is at < V - R >= 0.19:}:0025 mag. The red edge is at < V—R >~ 0.37i0.05 mag (both uncorrected for reddening). This assumes the instability strip cuts vertically through the horizontal branch which is probably not completely true (see Chapter 8). The blue edge of the fundamental mode zone (line between first overtone and fundamental mode pulsators) is at < V — R >= 0.28 :h 0.018 mag. There appears to be a real height to the horizontal branch of A < V >~ 0.35 mag. There is a strong correlation between < V — R > color and period for the variables. That is, as one goes to the red, the period of the variables increases. There is no overlap in color between RRab and RRcd variables using intensity averaged < V — R > colors or magnitude averaged < V — R > but the gap between types is smaller using the magnitude averaged colors. The tightest color-period diagram is Figure 7.12 — < V — R > vs log P6. This correlation is an expected consequence of the pulsation equation, Pf = constant, provided that all RR Lyrae stars have about the same mass. There is a correlation between period and mean magnitude for the RRab stars. That is, as you go to longer periods, the stars become brighter. There is a hint of this trend with the RRc stars. One would again expect a correlation between < V > and period because of the pulsation equation. CHAPTER 8 CONVERSION TO PHYSICAL PARAMETERS 8.1 Effective Temperature and Reddening Before the observed quantities, < V > and < V - R >, for the variables, can compared to theoretical models, and to the RR Lyrae variables in other clusters, they must be converted to real physical quantities. One of the most important of these is effective temperature or Ten. Accurate effective temperatures are necessary for a direct comparison between observations and theoretical stellar evolutionary models for both variables and non-variables. This is important for determining the precise location of the red and blue edges of the instability strip as well as for determining the location of different zones within the strip. Before effective temperatures can be calculated, the reddening of MlS must be determined. Reddening is a term used to describe the shift in color due to differential absorption by interstellar dust of light of different wavelengths. Interstellar dust preferentially scatters light of shorter wavelengths. Reddening is severest toward the Galactic plane. Reddening is smallest towards the Galactic poles, for there we are looking perpendicular to the plane of our Galaxy in which most of the dust is concentrated. The most common expression used to describe reddening is E(B—V), ' or the reddening of the (B—V) color. Several published estimates of the reddening to MIB are listed in Table 8.1. The exact value is still somewhat uncertain. I adopt the value E(B-—V) =0.08 i 0.02. I considered redctermining the reddening for M15 106 107 Table 8.1. Reddening Determinations for MlS Method E(B-V) Reference UBV photometry 0.12 Sandage (1969) Integrated light 0.08 Zinn (1980) Comparison with M3 0.08 Sandage, Katem, & Sandage (1981) Far Ultraviolet photometry 0.10 :l: 0.02 van Albada et al. (1981) Integrated DDO photometry 0.05 i 0.05 Bica & Pasteriza (1983) UBV Photometry 0.08 Buonanno (1983) UV spectra of M15 0.08 Nesci (1983) Sturch’s (1966) Method 0.11 Bingham et al. (1984) IUE spectra of UV bright stars < 0.08 Cacciari et al. (1984) Bingham’s data 0.10 :1: 0.02 Caputo et al. (1984) UBV photometry of 9 field stars 0.11 :1: 0.04 F ahlman et al. (1985) Comparison with M92 0.10 Stetson & Harris (1988) Comparison with M92 0.098 :1: 0.01 Durrell & Harris (1993) 108 by the method of Sturch (1966) [revisited by Blanco 1992], which depends on the (B—V) colors of RRab variables between phases 0.5 and 0.8. This was abandoned because too few RRab stars had adequate B coverage in that phase interval. As no one has done (V—R) work on this cluster before, there is no previous E(V—R) for this cluster. From Cardelli et al. (1989), I adopt E(B—V)/E(V-R) =0.74 or E(V—R)=0.06. The < V —- R > colors of the variables were then de-reddened using o =—E(V-R). Next, the theoretical stellar atmosphere models by Kurucz (1979) were used to find Tag and the bolometric corrections (BC) for the variables. The bolometric correction is added to V for the variables to obtain a bolometric magnitude. Using a micoturbulence of 2.0 (the only choice), and an [M/ H] = -2.0, I interpolated Kurucz’s models between his calculated gravities of log g = 2.5 and log g = 3.0 to obtain a sequence of models with log g = 2.75, appropriate for RR Lyrae stars. These models were then used to calculate Tea and BC’s for the variables and a selection of fairly isolated, nonvariable horizontal branch stars near the instability strip, given in Tables 8.2 and 8.3. Figure 8.1 shows the Te“ vs mbol diagram for the variables (usual symbols) and the nonvariables (+ symbol). This figure looks similar to Figure 7.5, the CMD of the horizontal branch (as it shouldl). Many of the blue horizontal branch stars are not in figure 31 because their < V— R > colors were too blue for the particular Kurucz models used. As I am interested in those stars closest to the edges of the instability strip, these very blue stars are not necessary for this analysis. The blue edge of the instability strip at the level of the horizontal branch is at about Te}; = 7500 (log Tea = 3.875) but the red edge is a little more ambiguous. V 2 lies further redward and is brighter than the other 109 Table 8.2. mbo. and Tea for Ml5 RR Lyraes Var mbo. Tefl' 2 15.412 6570 3 15.698 7110 4 15.794 7430 5 15.657 7030 8 15.680 6330 9 15.603 6740 10 15.760 6970 11 15.720 7430 13 15.742 6760 14 15.763 7040 15 15.762 6840 17 15.729 6950 18 15.710 7320 19 15.757 6860 22 15.576 6840 23 15.614 6730 24 15.624 6860 30 15.550 6990 31 15.737 7000 35 15.794 6970 38 15.694 7210 39 15.649 7040 40 15.753 7050 42 15.761 7000 44 15.624 7080 51 15.601 6960 52 15.785 68-10 53 15.670 7240 54 15.576 7010 .7 2 6940 113 15.586 7320 110 Table 8.3. mbol and Tefl' for Non-variables Star mbol Tefl' 1 15.455 7150 2 15.382 6050 3 15.401 6500 4 15.680 7550 5 15.508 6190 6 15.501 6170 7 15.560 6670 8 15.632 7730 9 15.631 7400 10 15.592 6710 11 15.654 6070 12 15.919 7530 13 15.701 6370 14 15.831 7700 15 15.318 63:50 16 15.352 6170 17 15.508 6420 111 :35 £2.93 usuuoumuom .23 you goal a» «was a...» 025mm :01._I oawm ®®mo 00mm ®®om _ u - — u - — q — — u q q 1 + 1 o 0 2&5 o + 1 0+ 0 0A 0 O 1 a on. + + + + .1 + o + 1 + 1 “L .1 091 1791 [Wm 9'91 291 112 variables, making the decision harder. One must also remember that there is no law that says the instability strip must be vertical through the horizontal branch. Indeed, many models indicate that the instability strip does have a slope through the horizontal branch. In fact, the circumstance that both v99 and v113 have low amplitudes suggests that the blue edge of the first overtone zone may become cooler as luminosity increases. The location of v2 suggests that it may be more evolved than other variables in the cluster. The effective temperature of the variables can be used with their periods to derive another physical quantity: the mass-to-light ratio of the RR Lyrae stars. From van Albada 8.: Baker (1971), the period of the fundamental mode of pulsation, P0, is given by log P0 = 11.50 — 0.68 log .7)! + 0.84logL - 3.4810g Teg, where M is the mass of the star in solar units and L is the bolometric luminosity. Since the variables change in brightness and temperature as they go through a cycle of pulsation. these quantities refer to mean values of L and Teff- Thus for each variable, if we know T eff and Po, we can calculated an M / L ratio. Even better, if there is a straight line correlation between log Po and log Tag for the variables, a mean M/L ratio of all of them can be calculated. Figure 8.2 shows log Teg vs log P6. There is indeed a strong correlation. The above equation predicts a line of slope -3.48 in this diagram (shown). Fitting a line of slope —3.48 to the data, I get log[11'I 0‘81 / L] = —1.93 i 0.05 (assuming a generous error in Tag of 21:200 K). 8.2 The Absolute Magnitude of the RR Lyrae Stars At this time, two of the most fundamental physical quantities of RR Lyrae stars are still somewhat uncertain: their mass and their absolute magnitude. Published determination of RR Lyrae masses range from 0.5 to 0.8 1119, while published 113 ausum any»; as osu you .om won a» «was no; t.» 001. om.m vmm mm.m "N.c unaumh - q — _ q — — _ _ u — va- 8 ' a- .”d 607 8'0- 114 absolute magnitudes range from Alv=0.0 to 1.0 or even fainter. One of the most recent determinations of RR Lyrae masses comes from an investigation of double mode RR Lyrae stars by Cox (1993) who employs the revised OPAL opacities. He found a mass of 0.75 [Hg for the double mode variables in Oosterhoff type 11 clusters. Using this mass and log 11! 0'81 / L = —1.93, we get log L = 1.83. Using MVbol - Metal = -2-5108 LRRbol/LGbala and a bolometric magnitude of the sun of 4.76 we get My“; = 0.188. Using the mean BC for the 31 good variables, —0.139, we get an absolute magnitude for the RR Lyrae of A/Iv=+0.33 mag. Cox (1994), applying the method of Cox, Hudson, & Clancy (1983) to our RR Lyrae data, obtains the slightly fainter value of Mbol = +0.29, corresponding to .Mv = +0.43. Walker (1992) also obtained 114v = +0.44 for metal-poor RR. Lyrae stars in the Large Magellanic Cloud (LMC), using a distance modulus for the LMC tied to observations of the ring around SN 1987A. These magnitudes are brighter than those found from recent Baade-Wesselink solutions or from the most recent statistical parallax analyses. From Baade- Wesselink analyses of nearby field RR. Lyrae stars, Carney et al. (1992) obtained 114v = 0.16[Fe/H] + 1.02, implying Alv = + 0.71 for [Fe/H] = -2.1. The statistical parallax solution of Layden et al. ( 1994) obtained Mv = +0.74 :1: 0.12 for halo RR Lyraes of < [F e / H ] > = —1.6. Similar values were found by Layden et al. for halo samples of slightly greater or lower metallicity. Figure 8.3 shows some recent estimates of the absolute magnitude of RR Lyrae stars. The filled circles are Mv estimates from my data (van Albada S: Baker (1971) equation and Cox’s (1994) estimate). The cross is VValker’s (1992) LMC estimate. The open circles are from statistical parallax measurements (Layden et a1 1994). The solid line is from Carney et al. (1992) and the dashed line is from Sandage (1993). Our bright Ml5 115 eunum Gonna an any now an no noun-«us» mo soumusalou _I\mn: H1I an.» ouaumm m6... 1 NA! 0. 8'0 #0 9'0. 8'0 01 “N 116 RR Lyrae absolute magnitudes accord better with the AA; — [Fe/ H] calibration of Sandage (1993). These discrepancies are unfortunate, because a relatively small uncertainty in Mv can have important consequences, for example, in calculating the ages of the globular clusters. An uncertainty of :1:0.1 mag in Adv translates into an uncertainty of about :1: 1.5 Gyr in the cluster age (see section 8.4). The absolute magnitude can be put back into the pulsation equations to de- termine what mass the RR Lyrae stars should have, if their absolute magnitudes are ~ +0.71 mag. Using my determinations of the the RR Lyrae BC in M15 and 1149501 = 4.76, I get A! R R = 0.48.M®. This is significantly different from the mass found by Cox (1993) and in fact is comparable to theoretical calculations of the core mass for RR. Lyrae stars. \Ve thus arrive at a contradiction. Can plausible systematic errors in our Te“ scale reconcile the values for absolute magnitude? Considering uncertainties in reddening and photometric calibration, our Teff scale might be uncertain by :t 150K. (This does not include errors in the Kurucz models). Let us assume that our Teff scale could be in error by i200K. Incorporating this uncertainty, we find 111v = +0.33 i 0.12, an error bar insufficient to close the gap with values near +0.7. To eliminate the discrepancy would require temperatures cooler by about 500K. Work done by Longmore et al. (1990) using V-K colors indicates a shift in this direction. Using the Longmore et al. Te“ calibration and K magnitudes, our values of < V >in11 and E(V—K) = 0.23, I place the M15 RR Lyraes in the HR diagram as shown in Figure 8.4. The Te“ scale is 400K cooler than that obtained from the V—R data. However, several of Longmore et al.’s RR Lyraes have only one or two measurements in the K band. That is not as bad as it sounds, because in the K band, the RR. Lyraes have amplitudes of only 117 «use Au1>v new goal .’ HUGH- n‘on ”NH—"1m“ _.....1—100... who ohm 8.1m $8 mm.m q_._4_.71~____.__fl44_ CXOOOO 11m. 9 O O O 1 o IIUMW .17m. 1...... a COHpOLDHHOU ¥l> 1 FFFL+_ 118 ~0.2 mag. Even so, their data should be considered as only approximate. A second problem is that the Longmore et al. calibration produces an instability strip cooler than theorists of stellar pulsation prefer. 8.3 The Distance to M15 Previous published values of the distance modulus to M15 vary from 15.03 to 15.40. Using < V >= 15.817 for the RR Lyrae variables, a V absorption of 3.2E(B-V), and an absolute magnitude of Alv = +0.33, I obtain a distance modulus of 15.23 :1: 0.09 (distance of 11kpc). Using 114v = +0.71 I get a distance modulus of 14.85 :1: 0.09 (distance of 9kpc). Until the absolute magnitude of RR Lyrae stars is better determined, the distance to M15 will remain somewhat uncertain using this method. 8.4 The Age of M15 One of the largest controversies in astronomical research is the age of the glob- ular clusters in the Galaxy. There are two opposing camps: one favors a relatively short time in which most of the globular clusters formed, while the other camp favors globular cluster formation over an extended time period. RR Lyrae stars have become central to this controversy. Using Iben’s (1971) interpolation formula for cluster age in units of 109 years, t9, logtg = 1.42 — 1.1 log LTO — 0.59(1" — 0.3) — 0.14(3 + log Z) where LTo is the main sequence turnoff luminosity, Y is the helium abundance, and Z is the metal abundance. To determine the main sequence turnoff luminosity, I will use: mv(RR) — mv(TO) = —2.5log[LRR/LT0] where mv(RR) is the apparent mean magnitude for the RR Lyrae stars, mv(TO) is the apparent magnitude at the main sequence turnoff, and LRR and LTO are their 119 respective luminosities. From Durrell S: Harris (1993), mv(TO) = 19.40 :1: 0.03; mv(RR) = 15.817 i 0.03 and log LRR = 1.83 i 0.05 from my work, and with bolometric corrections from Kurucz’s models (—0.139 for the RR Lyrae, —0.251 for the turnoff stars) I obtain log LTD 2 0.44 :1: 0.05. Using a helium abundance of Y = 0.23 and a log Z = —3.9 in the above equation, the result is log t9 = 1.10 :1: 0.04 or 12.6 x 109 years. If however, the absolute magnitude of the RR Lyrae stars is +0.71, log LRR = 1.68 which gives log LTO = 0.30. Using this log LTD in the above equation, log t9 = 1.26 or 18.2 x 109 years. We see that the ages of the globular clusters, using this method, depend strongly on the absolute magnitude of the RR Lyrae stars. Until better estimates are available for Mv this method is better suited to determine the relative ages of the globular clusters (as SKS does) than their absolute ages. PART II CHAPTER 9 PERIOD CHANGES 9.1 Introduction We can determine the period of an RR Lyrae star or Cepheid far more accurately than we can determine any of its other properties. The potential of period changes in these stars was recognized long ago by Eddington (1918): “It would be of great interest to determine the change in period (if any) of these stars, some of which have been under observation for many years; because this would give a means of measuring a very slight change of density, and so determine the rate of stellar evolution and the length of life of a star.” In the case of the RR Lyrae stars, this potential to reveal the speed and direction of evolution in the HR diagram has been partly, but perhaps not completely, frustrated. It has become clear that evolutionary period changes in R Lyrae stars are overlain by “noisy” period changes of ill-understood origin. Sweigart & Renzini (1979) attributed this apparent noise to mixing events associated with the semiconvective zone of the stellar core. Stothers (1980) attributed the noisy period changes to hydromagnetic effects. Whatever the origin, this period change noise means that the evolutionary rate of period change can not certainly be determined from observations of any individual RR Lyrae star, even should those observations span nearly a century. If true evolutionary period changes are to be revealed, then period change results from many RR Lyrae stars must be combined to average out 120 121 the period change noise. The R Lyrae stars in R Lyrae-rich globular clusters are obvious objects of interest in this connection. This provides the motivation for our period study of RR Lyrae variables in the globular cluster M15, for which the observational baseline extends over nearly a century. 9.2 The Data 9.2.1 Grouping of the Observations The approach adopted in this paper follows that of Wesselink (1974) which was also used by Smith & Sandage (1981). Since the study of Smith 8; Sandage, six new groups of observations have become available, giving a total of 20 possible epochs of observation. The identity of these 20 groups, the interval of Julian Date spanned by their observations, the number of observations within each group, and the reference to the paper reporting those observations are given in Table 9.1. For groups 1-6 and 9-14 observed times of maximum light were taken from Smith & Sandage when the variable under consideration was discussed in their paper. If the variable was not discussed by Smith & Sandage, then times of maximum light for these groups were determined as in Smith & Sandage. For groups 7, 8, and 18 lightcurves were plotted according to the adopted period (Table 9.2) and the mean epoch of maximum light for each group was determined from the lightcurves. Epochs of maximum light for groups 15 and 16 were adopted without modification from Bingham et al. (1984) and Filippenko & Simon (1981), respectively. The Gordenko et al. (1984) paper did not list individual observations for the stars they studied, and epochs of maximum for groups 17 and 19 were adopted unchanged from their paper. 122 Table 9.1. Groupings of M15 Observations No. of Group JD Interval Year Observations Reference 1 2413770 — 14212 1896/7 9 Bailey (1919) 2 2420724 -- 21113 1915/6 49 Bailey (1919) 3 2421157 - 22162 1916/9 24 Wemple (1932), Levy (1933) 4 2424381 - 24474 1925 46 Notni & Oleak (1958), Fritze (1963) Bronkalla (1960) 5 2426543 - 26959 1931/2 52 Wemple (1932), Levy (1933) 6 2427334 - 27384 1933 26 Notni & Oleak (1958), Fritze (1963) Bronkalla (1960) 7 2429107 - 29187 1938 93 Barlai (1989) 8 2433858 - 33895 1951 94 Barlai (1989) 9 2434973 — 35052 1954 166 Mannino (1956a,b), Grubissich (1956) Nobili (1957) 10 2435302 — 35407 1955 34 Mannino (1956a,b), Grubissich (1956) Nobili (1957) 11 2436136 — 36840 1957/9 163 Sandage, Katem, & Sandage (1981) 12 2437089 - 37905 1960/2 66 Maltarova & Akimova (1965) 13 2437913 - 37966 1962 84 Makarova 85 Akimova (1965) 14 2439356 — 40153 1966/8 47 Wesselink (1974) Smith & Wesselink (1977) 15 2441981 - 44168 1973/9 98 Bingham et al. (1984) 16 2442989 - 43723 1976/8 198 Filippenko & Simon (1981) 17 2444052 - 44219 1979 233 Gardenko et al. (1984) 18 2444136 — 44220 1979 41 Chu et al. (1982) 19 2444811 — 44824 1981 49 Gardenko et al. (1984) 20 2448446 - 49186 1991/3 178 Silbermann & Smith (1994) 123 Table 9.2. Periods for M15 RR Lyrae Stars Variable Adopted Period Current Period 2 0.6842702 0.684273 3 0.3887407 0.388743 4 0.313575 0.313576 5 0.384214 0.384216 6 0.665971 0.665968 7 0.367561 0.367567 8 0.646245 0.646243 9 0.71528277 0.715286 10 0.386391 0.386391 11 0.3432526 0.343267: 12 0.592848 0.592850 13 0.574961 0.574921 14 0.382001 0.382004 15 0.5835200 0.583540 17 0.4288967 0.428897 18 0.3677382 0.367742 19 0.5723027 0.572309 20 0.6969598 0.696947 22 0.7201462 0.720167 23 0.632700 0.632680 24 0.3697032 0.369703 25 0.665329 0.665329 26 0.402270 0.402270 28 0.670648 0.670648 29 0.574975 0.574977 30 0.405980 0.405980 31 0.408178 0.408178 32 0.605400 0.605401 35 0.383997 0.383997 36 0.6241424 - 38 0.375274 0.375270 39 0.389572 0.389573 40 0.377330 0.377339 41 0.6452282 — 42 0.3601746 0.360181 43 0.395993 - 44 0.5955543 0.595566 49 0.6552054 0.655193 50 0.2980583 0.298060 51 0.3969545 0.396954 52 0.575624 0.575636 53 0.414125 0.414126 54 0.3995683 0.399567 57 0.3492988 - 65 0.7183491 0.718196 66 0.379348 0.379350 67 0.404613 0.404609 74 0.296071 0.2960 1: 97 0.696333 0.696332 124 The epochs of maximum for group 20 were taken from the photometric study in Part I (hereafter referred to as Silbermann & Smith (1994)). This study is based upon new CCD observations of the variables. The bulk of these observations were obtained with the 0.6 m telescope at Michigan State University during 1991—1992. For many variables, the MSU observations were supplemented by a limited number of observations obtained in 1993 at the Wyoming Infrared Observatory. Although data were taken in several bandpasses, the phases of maximum are based mainly upon observations in the V passband. The number of observations reported for this epoch refers only to those in the V passband. One star, V12, was too crowded to be measured on the MSU frames but could be measured on the WIRO frames. More details of these observations are reported in Silbermann & Smith. 9.2.2 The Problem of Gaps in the Observational Record Gaps in the observational record occasionally cause difficulties in the determi- nation of the rates of period change. Usually, the rates of period change for M15 RR Lyrae stars are small enough relative to the spacing in time between groups of observations that the number of cycles elapsed between successive recorded epochs of maximum light is known. However, for some variables alternative cycle counts are possible between two epochs of maximum light. The period changes derived for such stars will depend upon which cycle count is used. These cycle count ambigu- ities are most severe for stars with observational records having large gaps or for stars showing especially large rates of period change. Sometimes, scattered obser- vations not included within any of the groups of Table 9.1 can help to decide which of two alternative cycle counts is correct. In other cases, a decision between the alternatives is not possible based on the available observations. There is then no remedy, other than discovering new observations in the historical record. We reiter- 125 ate the exhortation of Smith & Sandage that more or less continuous observations should be maintained for RR Lyrae stars in clusters like M15, so that in the future period changes can be derived without uncertainty from this cause. 9.3 The Phase Diagrams Phases of maximum light were calculated for each epoch from the formula Phase = (J De - 2400000) / period where the period is that adopted in column (1) of Table 9.2. Uncertainties were assigned each phase of maximum. These were taken from Smith 82. Sandage when they were available in that paper. Otherwise, the uncertainties were estimated based upon the lightcurve for each group of observations. Individual observations were not published for groups 17 and 19. For these groups, it was assumed that the uncertainties in the phases of maximum light were typical of those determined for other groups of photographic observations. Mean epochs and phases of maximum light are given in Table R1 in Appendix B. Diagrams plotting the phases of maximum light versus Julian Date were constructed for each variable. These are shown in Figure 9.1. 9.4 Period Changes 9.4.1 Parameterizing the Period Changes The phase diagram of a variable which is undergoing a slow but constant rate of period change is well described by a parabola. The rate of period change deduced from the phase diagram is often parameterized by fitting a parabola to the diagram to determine 6, the rate of period change in days/ million years. This is a useful approach which will be followed here. However, it is necessary to add a few words of caution. As others have pointed out, and as is apparent from Figure 9.1, 126 .®H\HEDEHXOZ m0 05H V m m 2: am ousum can»; an 05 you aloha}: one-E .®H\HEJEfixoz m0 can E :1: t _ 8'0 '0 xow 40 asoqd v 8'0 '0 xou 10 esoqd V v m .3 as»: m T _ _ :1: —o—l N) 6'0 ’1 I xow 1o asoqd t'0 8'0 xou 4o asoqd 127 .®fi\_sjefixoz m0 on. V m m a J _ _ 1.. :1 r 9'0 '0 xow 40 asoqd L 6'0 '1 xow go asoqd I .v.u:oo u~. .®fi\HEDEonz $0 can v m m m ouswwm _ J a; l IIILI L l V'0 '0 8 xow 10 asoqd '0 A xow 40 asoqd 6'0 xow JO esoqd I I I T ,1.._.I I T I I I I I I r I I I .I '96. 0° 1. -' an -- s ‘-+ 1d? 10 «o s “Q. d’ o- s __ ... .__. . .— "1lr‘ ‘I an s ~o~ d? "(U 7‘— 0“) -' v-4 v-4 > > 0—-.—— ”." l l I l 1 l l l 1 l l I I l l l l I l 9'1 0'1 9'0 8'0- xow 4o esoqd xow 10 asoqd I _.J I I I I I I I I I I I I.I I _..—.2: .r «r as 1—— --i— . -1 —o—- ‘h «r o 'flbk 1" —o~ o _- ._.—1 -_F— co: _- "‘**=ihn 1. v—o—a 0 .53“ 3 .153 ___:_4 ._ v—I v-4 > > .___.___q ~o~ 1 l 1 l 1 1 1 1 l 1 .111,1 L 1 1 8'0 1'0 8'0- 0'1- xow 4o asoqd [JD of Mox1mum1/1a‘ [JD of Mox1mum1/1a‘ Cont'd. Figure 9.1: 129 xou ;o asoqd I I I l I r I I I I n_._~I I I I 143:. rat-1‘ _. __.. ,_*F_, .— —O-r." -——O=.= new ~0— fi— lul— ——o—— ~0— _ 4.. _ ——o—— ———o——— ~4ra ——-o——~ —o~ -——o——- "0* use—o _. r\\ --_-(13 .— v-4 s—4 > > H—u l l l I l l l I l l l I I I 1 8’0 t'0 9'0 8'0 xou 4o asoqd x0” go asoqd 'J.‘ I 1 I I I I.: I l I I I I I I I I r 4:3: 1;! ~4h— "0* -' -—o—~ '—- wen '— o—Q—o u~_. ~0~ 1. «pirr «I o—Q—u .' _. __.. .-— ”"‘=I=~ “*Ho~ ~4h— ~o~ —O— H; ‘v— "_Uj ‘ v-4 v-4 > > _——4p——— -—0— 1 l 1 J, 1 1 1 1 1 l 1 1 1 1 l 1 1 1 1 8'0 1'0 v'a 1'0- xou 40 asoqd [JD of Maximuml/104 [JD of Maximuml/10‘ COnt'd. Figure 9.1: 130 .®H\_EJEHXOZ m0 on. v m m _ _ 0'0 '0 xow 10 esoqd 8 9'0 1 on 40 asoqd .v.u:oo "~.m ouowfim .®H\HEDEHXOZ *0 Dam v m m lt—O—o _ _ _ 1. ®m> mL> 9'0 0 xow 40 asoqd L' L'0 9'0 xow 10 asoqd 131 .®~\_snsfixoz V m m0 can _ _ ** :f* f rm; _* 9'0 '0 xow 10 asoqd L 8'0 '0 xou 40 esoqd 9 "~.a ouzwfim .®H\nsjsfixoz m0 058 v m m _ t'0 xow 10 asoqd 9'0 I xow 1o asoqd V'0 132 .®~\_easfixoz u0 can v m m .fi :: _..... Hm> 8'0 I xow 40 esoqd V'0 '0 9 xow go asoqd .v.u=oo u~.a ouswwm .os\.e:ssxoz to can m m w _ _ I 6'0 '1 I xow 40 asoqd 8'0 on 10 asoqd 9'0 xow 40 asoqd I I I r'_._.I fI I I Ij II ”'1t:3::!“ '11t:*°" «ED "." “" v-o—n - Vt'::: t—m o—Qfi" I'—! O-O-i rO-O E w "t 3 0-0-0 '—-.-- E _.. ~— _... mg e—.—— u—.— Z 1—0— t-O-o \I— (3 0’) of) ._. > > —.——0— l I l I l 11 I l l I ll 6'0 ('0 0'1 ('0 xow 1o asoqd xow Jo asoqd I FI.‘I I I I II I I I I I 31:: rue—- O-O-I ~0— ', GD ~o~ r-r- -‘ 8? "' v-O-o \ - "é r-1tr" 2) £5 ~o— I: ~0-' \I— (J "-0-‘ u-o—n 10 “x0 “”9 0’) (Y) ._. > > t——.—o _Ll I l l I l 1 l I l I J 9'0 2'0 v‘a 8'0 on 10 esoqd Cont'd. Figure 91.: on 4o asoqd I LQJ I I 1 I I I I r' I r 1* I 1 I I 1’ I I 1r Ti: *3: no— -- ~o~ -‘ '1h5" ~4r=°‘ a» 1.. ur.‘ fiih‘ wen ~o~ ~0~ -—- ~0— —o~ ~—o—~ '-.‘ ~0— *0* —o—- (U -—m T V V > > —o~ ——o—— 1 1 1 I, 1 1 1 l 1 1 11 1 1 1 l 1 1 1 l 1 1 1 8'0 I'0- 8'0 t'0 xow 40 asoqd xow 40 asoqd I I ~5~ I I I I I I I I I 1 I I I ‘I I I 1 I I "15%: -—o—- «r «y _— —o- as rflflr p... _.. .— ~0— «h ~04 wo— ® _—'—* _ V V > > u—o—u 1 1. 1 l 1 1 1 l 1 1 1 1 1 1 l 1 1 1 I 1 1 1 9'0 8'0 8'0 V'0 xow 40 asoqd [JD of Mox1mum1/1a‘ [JD of Mox1mum1/1a‘ Cont'd. Figure 9.1: I I r I I 1 _JF‘IF I l I I ’1 __.L" :r 1' CD ._ > e—O—o 1 l 1 l 1 1 1 l 1 1 11 1 1 9'0 t'0 1'1 8'0 xow 40 asoqd xou 40 asoqd .LH I l I I l 1 I fi1“I IoJ I I 1 I I I I Hi .2 CD __.. __ > __.— 1 1 I 1 1 l 1 1 1 1 1 I 1 1 1, I 1, 1 1 0'1 4'0 1'0 8'0 xow 10 asoqd xou 40 asoqd Cont'd. Figure 9.1: on go esoqd xow go asoqd I I I I I —L— I 1’ I I I r’ I I I I "___2:;:: "Thf ~—o—~ " - sf _... "01ar— so- ~0— —- ———-—o————— .01 " 0° _.— e—O—e ~4r~ o .1 "s1- 1\ ““1 LO LO > > ~——-.--—— 1 11, I 1 1 l 1 1 1 1 I 1 1 l 1 1 8'0 0'0 9'0 8'0 xou go esoqd xou go asoqd I***‘I I l I I J.‘I I I I I l I l I ':1::*0——~ 14:37 "-0-* ~0— — —«¢ 'dh§——. ~O~ n—o— ~0— F=QF3 ".3— *." H— _- ~o~ —o— -_ 00 ~4r—t ~4>~ __.—s ~0— ~4>~ "0* ” m m ““1 L0 L0 > > o-—-.—o 1 I 1 I 1 1 1 1 l 1 1 1 l 1,1 1 0'1 8'0 6'0 9'0 [JD of Maximum/104 [JD of Mox1mum1/1a‘ Cont'd. Figure 91.: xou 4o asoqd u——.-._.—_‘—I FO" __.-—‘ 0-.-‘ __.-— [\ V \0 l\ > > llJllIL 11111111 ['1 8'0 9'8 8'0 x0” 10 asoqd xow 4o asoqd TI1IIIIL‘TII Ill—.Jl wo- -—:;::2 t-O-t _.— _.fi —$ o—o—o __.-__. u—Q—n '0'. _.— ID \0 \D \0 > > lilIllJJLll ['4 I 1 8'0 V'D 8'0 9'0 xou 4o esoqd [JD of Maximum/104 [JD of Maximum/104 Cont'd. Figure 9.1: .v.u=oo "~.m gunman .®H\HEDEHXOZ *0 DfiH v m m 138 _ _ _ V'D xow 1o asoqd 9'0 Table 9.3. Rate of Period Change For RR Lyrae Variables in M15 139 (Parabola) (Line) ID Type Period 6 a x2 x2 2 ab 0.684 +0.32 :1: 0.04 +0.47 :1: 0.07 1.9 5.1 3 c 0.389 +0.05 :1: 0.01 +0.13 :1: 0.02 0.4 1.2 4 c 0.314 +0.01 :1: 0.01 +0.03 :1: 0.04 1.9 1.9 5 c 0.384 +0.04 :1: 0.01 +0.10 i 0.04 0.3 0.8 6 ab 0.666 -0.06 :1: 0.05 -0.09 :1: 0.07 0.4 0.5 7 c 0.368 +0.13 :h 0.02 +0.36 :h 0.06 1.8 5.5 8 ab 0.646 —0.04 :1: 0.02 -0.06 :1: 0.03 0.6 0.8 9 ab 0.715 +0.13 :1: 0.04 +0.18 :1; 0.06 0.2 0.8 10 c 0.386 —0.05 :t 0.01 -0.14 :1: 0.04 1.9 2.7 11 c 0.343 decrease — — 12 ab 0.593 increase - — 13 ab 0.575 -0.66 :1: 0.03 -1.15 :1: 0.05 0.5 39.8 14 c 0.382 0.00 :1: 0.01 0.00 :1: 0.03 1.2 1.2 15 ab 0.584 erratic — -- 17 d 0.429 +0.06 :1: 0.03 +0.14 :h 0.08 2.4 2.5 18 c 0.368 +0.08 :t 0.02 +0.21 :1: 0.04 0.5 2.2 19 ab 0.572 +0.18 :1: 0.02 +0.31 :1: 0.04 1.1 4.5 22 ab 0.720 +0.76 :1: 0.04 +1.06 :1: 0.05 6.5 33.6 23 ab 0.633 -0.21 :1: 0.03 -0.33 :1: 0.04 4.4 8.2 24 c 0.370 +0.01:1: 0.03 +0.03 :1: 0.10 3.7 3.2 25 ab 0.665 +0.01 :1: 0.03 +0.02 :1: 0.06 0.2 0.2 26 d 0.402 +0.17 :1: 0.02 +0.42 :1: 0.05 1.0 9.0 28 ab 0.671 +0.03 :1: 0.05 +0.04 :h 0.06 0.2 0.2 29 ab 0.575 —0.06 :1: 0.04 -0.10 :1: 0.07 2.0 2.0 30 d 0.406 0.00 :1: 0.02 0.00 :1: 0.05 2.1 1.9 31 d 0.408 +0.02 :1: 0.02 +0.05 :t 0.05 1.0 1.0 32 ab 0.605 +0.18 :1: 0.04 +0.30 :t 0.07 0.8 3.2 35 c 0.384 +0.03 :h 0.01 +0.08 :1: 0.03 2.3 2.3 38 c 0.375 -0.15 :t 0.01 —0.40 :1: 0.03 3.9 11.5 39 d 0.390 —0.02 :h 0.02 -0.05 :1: 0.05 1.5 1.5 40 c 0.377 +0.14 :h 0.02 +0.38 :1: 0.04 2.8 9.5 42 c 0.360 +0.12 :1: 0.01 +0.33 :h 0.03 5.5 14.7 43 c 0.396 +0.16 :h 0.02 +0.40 :1: 0.05 8.6 11.7 44 ab 0.596 increase - - 51 d 0.397 +0.02 :1: 0.02 +0.05 :1: 0.05 2.2 2.0 52 ab 0.576 +0.44 :1: 0.03 +0.76 :1: 0.05 0.3 16.7 53 d 0.414 +0.10 :1: 0.03 +0.25 :1: 0.06 1.1 2.4 54 d 0.400 +0.07 :1: 0.02 +0.17 :1: 0.05 1.0 2.1 66 c 0.379 +0.03 :1: 0.02 +0.07 :1: 0.05 1.1 1.2 140 the phase diagrams are not always well described by parabolae. Sometimes, the period changes seem so abrupt that the phase diagrams are better described by two or more straight lines than by a parabolic curve. In our discussion of the overall period changes of the M15 RR Lyrae stars, we will frequently make use of the 6 values determined for each variable. The goodness of the parabolic fit will, however, be addressed in the discussions of individual variables. Period change results are tabulated in Table 9.3. The variable is identified in column (1) according to its number in the catalog of Sawyer Hogg (1973). Its type, ab, c or d, is indicated in column (2). The period of the star is given in column (3). The rate of period change, fl, calculated in days/ million years, is listed in column (4), along with its mean error. Values of ,6 were determined by fitting a weighted least squares parabola to the phases of maximum in Table 3.1. The reduced x2 value of the parabolic fit is given in column (5). For comparison, column (6) gives the value of the reduced x2 for a single straight line least squares fit to the same data points. Column (7) restates the parabolic fit in terms of a = (1 / P)(dP /dt), where the interval dt is again taken as one million years. Only variables with nine or more observed epochs are included in Table 9.3. Several of the variables have observations reported for only five to six epochs. Period changes can be derived for these variables only if the period has changed little over the span of the observations. These variables are not included in Table 9.3. However, phase diagrams for these variables are given in Figure 9.1 and they are included in the discussion of individual variables. The last few points in the phase diagram have been used to estimate the current period of each-variable. These are listed in column (2) of Table 9.2. For a few stars, reliable current periods could not be determined by this method. In those cases, 141 the current period is the period found by Silbermann & Smith from their 1991-1993 data. These periods are marked with a colon and are good to about 1 part in 100,000. 9.4.2 Comments on Individual Variables V2. 19 is positive, but the phase diagram suggests that the actual period changes may have a more erratic pattern. V3. A parabola gives a good fit to the phase diagram, but a straight line does almost as well. A real period change is possible but not certain. V4. No overall period change is evident, but the phase diagram raises the possibility of a period increase near JD 2,430,000 followed by a period decrease near JD 2,438,000. V5. A period increase is likely but not certain. V6. A period decrease is possible but not certain. V7. The phasing of the first Bailey epoch (group 1) is uncertain. As noted by Smith & Sandage, there is evidence for the phasing depicted in Figure 1 based upon Bailey’s scattered meaurements made between the observations of groups 1 and 2. However, this evidence is not conclusive. The parabolic fit was made excluding group 1. The phase diagram for V7 nonetheless shows significant evidence for a period increase. V8. There is only marginal evidence for a period decrease. V9. The evidence for a small period increase is not conclusive, although the parabolic fit produces a considerable smaller reduced X2 value. V10. The period decrease depends mainly on epoch 1. 142 V11. Different cycle counts are possible, as shown in Figure 9.1. However, a period decrease of some sort seems likely. V12. Alternative cycle counts for groups 1 and 2 are possible. Nevertheless, a period increase of some sort seems likely. [For group 20, only WIRO photometry of V12 was obtained. Therefore HJ D of maximum for this group is 49185.713 and the phase of maximum is 1.13 :t 0.1.] V13. The variable with the largest rate of period decrease. The phase diagram is well fit by a parabola, but three line segments would also give a good fit. V14. There is no evidence for an overall period change, but some fluctuations in period are possible. V15. This star exhibits a strong Blazhko effect. As noted by Barlai (1977) the star may have experienced very large period changes near JD 2,421,000 the nature of which is difiicult to unravel (Smith & Sandage 1981). The phase diagram since JD 2,432,000 can be described by an abrupt period decrease near JD 2,438,000 followed by a period increase near JD 2,446,000. V17. Smith & Sandage interpreted this star as showing a large period increase, although they noted the possibility of a cycle count error. We now suggest that a period near 0.428897 with little or no period change is a more likely alternative. V18. A period increase for this star now seems likely. V19. A period increase is likely. V20. A small period decrease with B = -0.25 d: 0.07 is possible, but the small number of epochs makes this interpretation uncertain. Not included in Table 9.3. V22. A large period increase is certain. The phase diagram is better fit by two straight lines than by a parabola. 143 V23. The parabolic fit indicates an overall period decrease, but the phase diagram suggests a more complicated pattern: a period increase near JD 2,430,000 and a larger period decrease near JD 2,443,000. V24. Only nine epochs are available for this variable and a cycle count error cannot be excluded. However, our favored interpretation shows no period change. V25. No significant period change. V26. A period increase is likely. The phase diagram is reasonably well fit by either a parabola or two straight lines. V28. No significant evidence for a period change. V29. The parabolic fit indicates a possible though not certain period decrease. The parabola does not provide a good fit to the, admitted rather uncertain, point of group 1. V30. The phase diagram shows some scatter about a straight line, but no significant evidence for a period change. V31. There is no significant evidence for a period change. V32. A period increase is likely. Both a parabola and two straight lines provide a reasonable fit to the phase diagram. V35. The evidence for a period increase depends most strongly on the inability of a straight line to fit the group 1 point in the phase diagram. V36. With only five epochs, no definitive interpretation of the phase diagram is possible. Not included in Table 9.3. V38. An overall period decrease is probable, but a fit with three straight lines is superior to a parabola. A period increase is likely near JD 2,428,000 followed by a 144 period decrease near JD 2,438,000. V39. The evidence for a period decrease is weak. V40. Neither a straight line nor a parabola provide a good fit to the phase diagram. A cycle count error for group 1 is possible. An overall period increase is possible, but the phase diagram suggests that a more complicated sequence of period changes may have occurred. V41. Only three epochs. Not included in Table 9.3. V42. A period increase is likely, although there could be a cycle count error for group 1. V43. Neither a parabola nor a straight line provide a good fit to the phase diagram. A period increase seems most likely. V44. A period increase is likely but there could be a cycle count error in the placing of group 1. The fits have been made omitting that group. V49. The six epochs are not sufficient to unambiguously indicate the period changes of this star. A constant period seems unlikely. Not included in Table 9.3. V50. The six epochs for this star can be well fit with a straight line, but cycle count ambiguities are possible. Not included in Table 9.3. V51. The evidence for a period change is not significant. V52. A large period increase is certain. The phase diagram is well fit by a parabola. V53. A period increase is likely, although the phasing of the group 1 point may be off by a cycle. Epoch 1 was omitted in fitting the line and parabola. V54. The evidence for a period increase is marginal. 145 V57. N o reliable period change could be determined from the five observed epochs. Not included in Table 9.3. V65. The four epochs are too few for a reliable period change determination. Not included in Table 9.3. V66. The evidence for a period decrease is marginal. V67. The four epochs show no evidence for a period change but are too few for certain results. Not included in Table 9.3. V74. Only five observed epochs. Not included in Table 9.3. V97. The five epochs show no evidence for a period change, but are too few in number for certain results. Not included in Table 9.3. 9.5 Discussion 9.5.1 The Excess of Increasing Periods A striking aspect of Table 9.3 is' the excess number of stars with positive values of 6 relative to negative values. The first issue to be addressed is whether this excess is significant. Of the stars listed in Table 9.3, about 16 show unequivocal evidence of having undergone a period change, based upon the phase diagrams of Figure 9.1. Eleven of these 16 stars show an overall period increase, while 4 show a period decrease while in one case, V15, the changes are erratic. For the remainder, the phase diagram by itself does not provide unassailable evidence for a changing period. However, the distribution of the values of ,3 and a for these additional stars do not scatter evenly about zero, but show a preponderance of positive values. Unless this is an artifact, attributable to some bias of which we are unaware, this distribution provides statistical evidence for an excess of period increases among the M15 RR Lyrae stars which have relatively small values of 6. Histograms of the 146 m. opium ooh».— Id 3: new 30: mo Iduwouomu $.89» gonna \ £83 a . N.I N o "N.a magmas H3: 0. a». _+_ _ __l_.__ __I_1__ i. -k\\\ 1k“ l k \ \ v.1 __— mmwnmnu vowuom a 2 er a... a_fi__I_|—_ _ _d _ J l l 0H — — .— _.. l \\\\\\\\\ \ O .5 a (per million Years) 9.3: aiming ran of alpha for 1115 RR Lyrae Stars 148 Table 9.4. Mean Rates of Period Changes Mean Median Type n < 6 > s.d. < a > s.d. 6 a ab 13 +0.08 :1: 0.10 :1: 0.34 +0.11 :1: 0.16 :t 0.54 +0.03 +0.04 cd 22 +0.05 :1: 0.02 :t 0.07 +0.12 :1: 0.04 :1: 0.19 +0.03 +0.09 c 15 +0.05 :t 0.02 :t 0.09 +0.13 :1: 0.06 :1: 0.23 — - d 7 +0.04 :t 0.02 :1: 0.04 +0.09 :1: 0.04 :1: 0.10 - All 35 +0.06 :1: 0.04 :1: 0.21 +0.12 :1: 0.06 :1: 0.35 +0.03 +0.08 149 rates of period for both 5 and a are plotted in Figures 9.2 and 9.3 (hatched area indicate RRcd’s, open area indicate RRab’s). Mean and. median rates of period change are listed in Table 9.4 for the variables belonging to the various Bailey types, and also for the entire sample. The formal uncertainties of the mean values tend to be determined by the existence of several outlying stars of very large or small ,6. Even so, the positive mean values of 19 and a are significant at slightly less than the two sigma level. A different test of the significance of the excess of increasing periods can be made based only upon the sign of the {9 value for each star. Excluding the erratic star V15, we find that, among the remaining 38 variables in Table 9.3, 27 have positive values of 6 and 9 have negative values. If we distribute equally the two stars with [9 = 0.00, we end up with 28 positive and 10 negative. This would be an unlikely result, were positive and negative rates of period change equally likely. Under that hypothesis, the binomial theorem gives a likelihood of only 0.3 percent of obtaining an excess of increasing periods as large or greater than that observed. Thus, assuming we are not biased by any unknown effect, the preponderance of increasing periods would appear significant. Smith & Sandage, too, found an excess of increasing periods, but Barlai (1983) had argued for a more nearly equal number of increasing and decreasing periods. 9.5.2 Interpretation of the Period Changes If we accept the excess of positive values of [3 as significant, the next question is why this occurs. Evolution is a plausible explanation. Taken at face value, the excess of increasing periods implies that the majority of RR Lyrae variables in M15 are evolving across the instability strip from blue to red. Lee, Demarque, &. Zinn (1990) advanced an explanation for the Oosterhoff dichotomy wherein most RR 150 Lyrae variables in Oosterhoff type II clusters would, in fact, have evolved into the instability strip from ZAHB locations on the blue horizontal branch (BHB). These RR Lyrae stars would be evolving from blue to red during the latter stages of their horizontal branch lifetimes. Under this scenario, Lee (1991) calculated the expected mean rate of period change for R Lyrae stars in a globular cluster as a function of the color distribution of its horizontal branch stars. In the case of M15, Lee predicted a mean rate of period change, [3 equal to 0.03 days/million years, in excellent agreement with the observed median rate of period change. Lee’s histogram of theoretical period changes for M15 variables does not, however, perfectly accord with the observed histogram. The discrepancy is one that has been noted before in comparisons of theoretical and observed period changes (e.g. Iben 8: Rood 1970): the theoretical histogram does not account for the largest period changes observed, in the case of M15 especially the few large negative values of 6. Observational studies of RR Lyrae stars in globular clusters have tended to show < 19> = 0 for Oosterhoff type I clusters and slightly positive values of < B > for Oosterhoff type 11 clusters (Stagg & Wehlau 1980; Lee 1991; Hazen & Nemec 1992; Smith 1995). The new period change results are consistent with that pattern. Lee found this tendency to be in agreement with the predictions of the Lee, Demarque, & Zinn (1990) model, in which the excess of positive fl’s among the RR Lyraes of the Oosterhoff type 11 clusters is a consequence of their redward evolution. Two additional questions may be asked, however, which also may shed light on whether evolution is responsible for the excess of increasing periods: (1) Is the observed rate of period change correlated with the position of an R Lyrae star in the HR diagram? and (2) Are there enough BHB stars in M15 to populate the RR 151 Lyrae instability strip, given the observed mean rate of period change? To address the first question, we consider two color-magnitude diagrams for M15 RR Lyrae stars. Figure 9.4 depicts the rate of period change as a function of the color—magnitude data in Table 8 of Bingham et al. (1984). This color-magnitude diagram is based upon observations by Sandage, Katem, & Sandage (1981), as well as observations by Bingham et al. (1984). In this diagram, < V > is an intensity weighted time average, while (B-V) is the combination of magnitude and intensity weighted colors which Bingham et al. considered to best match the colors which the RR Lyrae stars would have were they not variables. The open circles represent variables with period increases and the filled circles are variables with period decreases. The larger symbols indicate an a > 0.18 and the smaller symbols indicate an a < 0.18. A second color-magnitude diagram is shown in Figure 9.5. It is based upon the V and R observations of Silbermann & Smith (1994). In this diagram, < V > and < R > are both intensity weighted time averages, and the symbol size indicates the size of 6, as in Figure 9.4. For stars more than 120 are seconds from the cluster center, the mean difference < V >(Bingham et al.) minus < V >(Silbermann & Smith) is 0.00 :l: 0.04. Discrepancies are often greater for stars at radii smaller than 120 are seconds, where crowding and cluster background are problems. In this region, values of < V > can differ by as much as 0.1 mag. Partly, these differences arise because Bingham et al. apply a correction for background light to these innermost stars, while Silbermann & Smith do not. Figure 9.4 suggests that the brighter envelope of RR Lyrae stars have a strong tendency toward increasing periods. The four brightest RR Lyrae stars in this diagram all have relatively large rates of period increase. The general pattern is similar, though perhaps not quite so clear, from Figure 9.5. 152 llljjlljjjjl1lj1jll‘l1lll .1 .. -lD _ _fl' 0 . .. . ° ‘8 .. o - .. '0 O - 0 -® __ o I O _V’ o . - ‘0 1- 0° - C 0 O :u') o — o 0.0 gm J13 .x ' I. o '8 . 3590 _ - (I C) (3 b -8 _. _(‘0 - “O - 0' - .. -lD _. _N .. “O lllLllllllIlllllllllllll-I| 9'91 ('91 8°91 6°91 (A) [B-V] (B—V) vs V Indicating Period Changes of RR Lyrae Stars Figure 9.4: 153 IIIIIIIIIIIIIIIIIUIIIIII L... . — " 0 h a - — . .- '_'_ o o ' o 0 -' L .0 .7 I- o -I o o o u o o 6 q .. '0 O .J .. O .— - . .. .. o - D o - :. . ‘ Illlllllllllllllllllllll 9'91 [81 8'91 6'91 ‘ (A) 0.35 0.40 0.30 (V—R) vs V Indicating Period Changes of an Lyrae Stars 0.85 0.20 (R) Figure 9.5: 154 The brighter RR Lyraes might be expected to be in the most advanced evolu- tionary state, hence to show the greatest rates of period increase. However, given the general preponderance of period increases, and the relatively small number of stars, it is difficult to be certain whether or not the patterns seen in Figures 9.4 and 9.5 are significant. If, using the Bingham et al. magnitudes, we compare the ten brightest stars with the twenty five fainter stars, we find < a > = +0.19 :1: 0.13 for the brighter group and +0.09 :1: 0.07 for the fainter, a suggestive but not conclusive difference. The second question, whether M15 contains enough BHB stars to populate the instability strip, we test following the simple approach of Smith & Sandage. Evolutionary lifetimes for HB stars are about 108 years (Sweigart 1991). At a rate of period change of 0.03 days / million years, an RR Lyrae star would evolve across the instability strip in roughly 13 million years. The ratio of RR Lyrae to RHB stars in M15 is about 5 to 1 (Lee, Demarque, & Zinn 1990)- Let us assign, then, a total span of about 16 million years for the RR Lyrae and RHB stages of evolution. We would then expect the BHB progenitor to spend roughly 84 million years to the blue of the instability strip, giving a ratio of BHB stars to RR Lyraes of about 6.5:1. Of course, the actual mean rate of period change could be somewhat smaller than 0.03 days / million years. However, if the mean rate were much under 0.015 days / million years, then, given the uncertainties in our determinations of 5, it would become dificult to explain the preponderance of positive 6 values. Thus, we would not expect a BHBzRR ratio smaller than about 3:1. The observed BHBzRR ratio is a about 3.8:1 (Lee, Demarque, & Zinn), con- sistent with our prediction but only if we take a lower limit for the mean rate of period change. Rood (1990) has pointed out another possible problem. To obtain 155 this ratio of 3.8:1, we must include the stars forming the very blue tail of the M15 HB. The origin of these very blue HB stars is unclear, nor is it clear whether they will eventually evolve through the RR Lyrae instability strip. If the blue tail is excluded, we are left with a BHB:RR ratio of less than 2:1, significantly smaller than that needed to feed the instability strip at the observed rate of period change. Our results, then, do provide significant evidence that we are seeing the mean evolution of the M15 RR Lyrae stars through the instability strip, a blue-to-red evolution similar to that predicted by Lee, Demarque, & Zinn. This interpretation is not, however, free of difficulty. It remains to be seen whether the BHB:RR ratio problem can be overcome and also whether the Lee, Demarque, & Zinn scenario is the only one to match the observations. 9.5.3 Period Changes as a Function of Bailey Type Though there is little evidence for a difference in < a > between RR Lyraes of Bailey type ab and those of Bailey type cd, there is nonetheless evidence for different period change behavior between these two groups. In particular, the RRab variables appear to show a greater range of period changes. As indicated in Table 9.4, the standard deviations about the mean for the a and 6 values are more than twice as large for the RRab variables as for the RRcd stars. The wider range in a and 19 for the RRab variables is also evident in the histograms of rate of period change (Figures 9.2 and 9.3). This difference in period change behavior among the M15 variables was noted earlier by Barlai (in Szeidl 1975) and by Smith & Sandage. The origin of this difference is unclear. It is surprising to find a difference in period change behavior which is associated with pulsation mode. Whether an RR Lyrae star pulsates in the first overtone or fundamental mode depends upon its location in the instability strip (Schwarzchild 1940; Bingham et al. 1984; 156 Silbermann & Smith 1994). On the other hand, the rate of evolutionary period change ought not to depend upon pulsation mode per se, but on the degree of evolution away from the ZAHB. The roughly equal values of < a > for RRab and RRcd variables indicate that, as a group, the RRab stars are not in a much more advanced evolutionary state than are the RRcd’s. It is true that the spread in < V > among the RRab variables does appear to be larger than among the RRcd variables, which could signify a greater range in degree of evolution away from the instability strip. One might seek the cause of the greater spread in < a > values among the RRab stars by considering the period change ”noise” believed to overlie the evolutioanry period changes in many stars. However, because this period change noise is itself without accepted explanation, only tentative conclusions can be obtained by this approach. Sweigart & Renzini (1979) attributed the period change noise to mixing events associated with the semi-convective zone in the stellar core. We might expect that these mixing events would not be associated in a direct manner with pulsation mode, a phenomenon chiefly of the outer envelope. It is possible that the frequency of mixing events might be associated with the frequency of occurrence of so-called ”breathing pulse” instabilities. The very existence of these breathing pulse instabilities is controversial. Dorman & Rood (1993) regard them as an artifact of the computer codes used to calculate the evolution of the core. If the pulses do exist, they would be expected to be increasingly important toward the end of the HB life of a star. Thus, if we seek to explain the greater spread in rates of period change among the RRab stars as a consequence of these breathing pulses, we again would require that the RRab stars be in a significantly more advanced evolutionary state than the RRcd variables. As we have noted, independent evidence for this is, 157 at best, equivocal. The RRd variables, which pulsate simultaneously in the first overtone and fundamental modes, have posed a severe test for stellar pulsation theory (Cox, Hodson, & Clancy 1983; Kovacs et al. 1992). It is not known why some Oosterhoff type II clusters, such as M15 and M68, contain relatively large numbers of RRd variables whereas others, such as M53 or 1..) Gen contain few or none. The first overtone periods of the RRd variables are among the longest found in cd pulsators in M15. It has been suggested that RRd variables might be mode switching. The period changes of these stars cannot confirm or refute this hypothesis. The rates of period change observed for the seven RRd variables in this study are similar to those of the RRc variables (Table 9.4). If the positive mean rates of period change were taken at face value, then the RRd variables, like most others in M15, would be evolving from blue to red. Thus, if they are changing modes, they must be changing from predominantly first overtone to predominantly fundamental pulsation. CHAPTER 10 CONCLUSION There appears to be a real spread in the height of the horizontal branch. A tight log P’ vs < V > diagram indicates the spread is real. The observed spread in < V > is ~ 0.3 mag, which is slightly larger than the 0.22 mag found by Sandage (1990). V2 and perhaps v113 appear to be more evolved than the other variables. Based upon the (V—R) data, the boundaries of the instability strip are: log T.“ = 3.875 for the blue edge and log Teff ~ 3.81 for the red edge. The sparce number of RR Lyrae towards the red edge means this value is uncertain. The transition line between the fundamental and first overtone mode variables is at log Teff = 3.839. The difference between < V — R >in¢ and < V — R >mag for the variables appears to be quite small. Thus, the difficulty over how to average colors for the variables may indeed be alleviated by going to longer wavelengths. There appears to be no overlap in < V - R > between the fundamental and first overtone mode pulsators. This may suggest that a hysteresis zone does not exist for M15. However, if all the variables are evolving to the red, the hysteresis zone would be completely populated by first overtone and double mode variables. The existence of a hysteresis is therefore not disproven by this investigation. The absolute magnitude of the RR Lyrae stars was found to be My = +0.33 21:0.12, which is significantly brighter than some estimates. However, the uncertain- ties in the reddening of M15, the Te“ scale calibration, and the mass of the RR 158 159 Lyrae stars contributes to the uncertainties in Mv. The absolute magnitude and masses of RR Lyrae stars are not well-determined quantities. Using Mv = +0.33, the age of M15 is 12.6 x 109 years. However, as noted above, this depends on physical quantities that are not well-determined for the variables. The excess of increasing periods among the RR Lyrae stars in M15 is significant. Though the hypothesis that this excess occurs because most M15 RR Lyraes are evolving from blue to red through the instability strip is tempting, it is not free of dificulty. The median rate of period change observed for the M15 RR Lyraes agrees well with the theoretical prediction of Lee (1991). However, at that rate of period increase there may not be enough blue horizontal branch stars in M15 to sustain the RR Lyrae population. The strength of this objection depends on whether stars in the blue tail of the M15 horizontal branch eventually evolve to become RR Lyrae variables, a matter of considerable uncertainty. If the problem is real, then something is wrong either with the way the rates of period change are determined (i.e., a century is too short a span to reveal the actual mean rate of period change) or with the evolutionary models. The greater dispersion in observed rates of period change in the RRab variables as compared to the RRcd variables is without adequate explanation. CHAPTER 11 FUTURE WORK A comparison with other globular clusters needs to be made, especially a com- parison with an Oosterhoff type I cluster like M3. At this time there are several groups working on various globular clusters using CCD data (ie. Cacciari et al. for M3). There are no completed, published analyses available yet. As a result I have decided to postpone a comparison between M15 and M3 in the hope that Cacciari et al. will publish their data soon. If so, a full analysis will be made between M15 and M3 before this work is published. Very preliminary results from Cacciari et al (1993) indicate a period shift ratio A log P/ A[Fe / H] = —0.1 which implies a fairly steep metallicity-luminosity relation, similar to Sandage’s (1993) results. An analysis of the double mode puslators should also be made. From van Albada & Baker (1971) the ratio of the fundamental and first overtone pulsation periods are given by: log Po/ log P1 = 0.438 — 0.032 log M + 0.014103; L — 0.09 log T,“ where again M is the mass of the star and L is its bolometric luminosity. For a star pulsating in both the fundamental and first overtone modes, this equations leads directly to a mass for the star. However, obervational errors in magnitudes and colors (hence log L and log Tag) are still a problem. An analysis of the double mode RR Lyrae stars in M15, using the new photometry presented here, has recently been begun. 160 161 On the theoretical front, better estimates of RR Lyrae masses and their absolute magnitudes are needed. Their usefulness in age determinations will be limited until that time. Perhaps more importantly, the different methods used for determining RR Lyrae masses and their absolute magnitudes should agree more than they presently do. Part of the problem is errors in reddening of the stars in globular clusters. Present values are in error by i002 — 0.03, which is enough to seriously affect the outcome of the above calculations. Also, there is a need for better/ more realistic stellar models, which in turn may lead to a more accurate color to Tefl’ transformation. It cannot be stressed too much that accurate and systematic observations of the RR Lyrae stars in globular clusters should continue. Only by observation will we be able to determine whether the period changes we see are due to evolution or some other long-term internal processes in these stars. APPENDICES APPENDIX A This appendix contains the MSU and WIRO photometry of the variables in M15. The tables also list the frame number and the heliocentric Julian Date of mid-exposure for each frame. Photometry with error > 0.05 mag but less than 0.1 mag is indicated by a colon. The tables begin on the next page. 162 163 Table A.1 MSU V Photometry of M15 Variables HJ D frame 2448000+ v1 v2 v3 v4 v5 v6 v7 v8 1501 446.837 15.25 15.57 15.63 15.70 15.61 — 15.33 15.86 1502 446.845 15.34 15.58 15.58 15.54 15.54 — 15.92: 15.99 1533 452.771 15.31 15.19 15.59 15.88 15.79 16.10 15.83: 16.12 1534 452.780 ‘ 15.25 15.25 15.62 15.79 15.84 - - — 1535 452.822 15.26 15.29 15.76 15.53 15.94 16.16 15.55: 15.28 1536 452.829 15.22 15.34 15.79 15.57 15.92 - 16.10: 15.20 1537 452.838 15.27 15.34 15.83 15.51 15.98 - 16.11: - 1508 453.772 15.10 15.72 16.02 15.51 15.49 15.44 15.36: 15.84 1509 453.781 15.12 15.66 16.01 15.51 15.53 15.32: 15.35: 15.81 1510 453.789 15.08 15.72 15.92 15.56 15.48 15.40 15.18: — 1511 453.830 15.13 15.70 15.71 15.70 — — 15.37 - 1512 453.838 15.13 15.65 15.65 15.76 15.57 15.47: 15.53: - 1513 453.846 15.08 15.71 15.62 15.76 15.58 15.39 15.45: - 1520 454.750 14.37 15.61 15.78 15.68 15.92 — 15.85: 15.38 1522 454.769 14.41 15.48 15.83 15.74 16.01 — 15.74 15.16 1523 454.817 14.42 15.26 16.01 15.98 15.97 16.12: 15.25: 15.34 1525 454.833 14.47 15.27 16.05 16.01 15.91 16.20: 15.32: 15.38 1559 474.726 14.45 15.38 16.05 15.87 15.98 16.25: 15.34 - 1563 474.763 14.44 15.44 16.05 15.50 — — 15.25 - 1565 474.784 14.40 15.43 15.90 15.54 16.01 - 15.80 15.40 1569 474.820 14.40 15.49 15.72 15.64 — — 15.65 15.18 1571 474.837 14.40 15.55 15.66 15.77 15.85 - 16.03: - 1572 475.683 - 15.70 15.59 15.61 15.45 - 15.93: - 1573 475.691 15.27 15.71 15.53 15.55 15.43 — 15.96: 15.82 1574 475.699 15.35 15.72 15.60 15.50 15.45 — 15.76: - 1578 475.733 15.48 15.73 15.72 15.50 15.53 15.69: 15.64: 15.86 1579 475.741 15.40 15.66 15.73 15.56 15.57 - 15.67 — 1580 475.750 15.40 15.70 - 15.58 15.54 15.71 15.34: — 1584 479.657 15.06 15.51 15.75 — 15.79 — 15.91: - 1585 479.665 15.03 15.49 — — 15.82 — 15.84: — 1586 479.673 15.10 15.58 — - 15.80 — - - 1590 479.707 15.09 15.60 15.93 16.06 15.95 - 15.80: - 1591 479.715 15.10 15.61 15.95 16.03 15.91 16.09: 15.64: - 1592 479.724 15.16 15.56 15.98 16.00 15.97 15.68: 15.68: - 1599 480.687 14.39 15.73 15.45 15.80 15.55 - 15.29: 15.46 2501 480.696 14.41 15.71 15.50 15.64 15.51 — 15.62: 15.39 2502 480.704 14.41 15.72 15.52 15.61 15.53 - — 15.48 2506 480.746 14.51 15.69 — 15.53 15.58 - 15.56: 15.58 2507 480.754 14.57 15.61 15.61 15.54 - - 15.65: 15.62 2508 480.763 14.60 15.55 15.63 15.55 15.64 - 15.90: - 2509 481.638 15.03 15.42 15.80 15.74 15.98 — 15.37 15.89 2511 481.655 15.06 15.42 15.89 15.58 15.97 - 15.25: - 2515 481.691 14.93 15.53 15.92 15.55 15.95 - 15.42: — 2516 481.702 14.86 15.56 16.00 15.61 15.96 — 15.44: — 2517 481.710 14.96 15.51 - 15.60 16.00 - 15.42: — Table A.1 (cont’d). 164 HJ D frame 2448000+ v1 v2 v3 v4 v5 v6 v7 VS 2521 481.743 14.85 15.60 16.03 15.82 15.96 15.59: 15.52: - 2522 481.751 14.82 15.59 16.02 15.82 15.86 15.45: 15.69: — 2523 481.760 14.80 15.63 15.99 15.79 15.84 15.30 15.67: 16.02 2530 537.523 15.27 15.71 15.66 15.60 - — 15.33: 15.34 2531 537.532 15.39 15.63 15.65 15.62 15.53 - 15.35: - 2532 537.540 15.34 15.66 15.68 15.63 15.53 — 15.60: 15.39 2534 546.573 14.37 15.27 15.90 15.52 15.94 15.99: 15.69 15.32 2535 546.581 14.39 15.28 — 15.54 15.98 15.99: - — 2536 546.615 14.38 15.34 — 15.55 15.95 — 15.51: - 2538 546.630 14.40 15.37 15.97 15.67 — — 15.66 15.48 2542 547.527 15.27 15.63 15.57 15.55 15.51 16.20: 15.50 - 2543 547.536 15.37 15.63 15.57 15.55 15.50 — 15.68: — 2544 547.543 15.34 15.64 15.58 15.56 15.54 16.28: 15.41' — 2545 547.592 15.33 15.72 - 15.78 15.62 16.00: - — 2549 568.542 14.73 15.42 15.53 15.54 15.98 15.84: 15.92: 15.28 2550 568.558 14.78 15.44 15.55 15.57 16.04 16.17' 15.76: 15.31 2551 568.573 14.79 15.45 15.61 15.63 15.91 - 15.64 15.38 2552 568.623 15.00 15.58 15.64 15.84 15.63 — 16.17: — 2553 568.634 15.10 15.52 15.70 15.85 15.57 - 15.76: 15.64 2565 569.627 14.48 15.69 — - — 16.26: 15.51: - 2567 570.489 15.22 15.19 - 15.76 15.93 — 15.78: 15.26 2568 570.497 15.29 — — - 15.89 — 15.83: 15.44 2569 570.531 15.33 15.30 15.55 15.97 15.72 15.84: 15.81: 15.52 2573 570.552 15.34 15.34 15.61 16.01 15.61 - 15.62: - 2574 570.559 15.35 15.36 15.62 15.97 15.58 15.92: 15.80: 15.65 2578 570.602 15.34 15.38 15.69 16.16 15.56 — 15.33: — 2579 570.609 15.27 15.41 15.80 16.16 15.48 - 15.32 - 2580 570.618 15.35 15.44 15.73 — 15.58 - 15.52 15.72 2585 574.560 15.12 15.42 - — - - — - 2586 574.569 15.13 15.36 15.96 15.83 15.82 15.82: — — 2587 574.576 15.15 15.30 15.98 15.82 15.84 — 15.75: — 2597 601.463 - — — — - — — — 2591 601.476 14.50 - 15.96 15.57 15.90 — 15.41: 15.28 2592 601.491 14.50 15.58 16.01 15.55 15.92 — 15.48 15.29 2594 601.507 14.54 — — 15.66 — — 15.21: - 2595 601.517 14.54 15.59 — - — — 15.45 15.37 2598 602.471 14.98 15.72 — 15.76 15.55 - 16.23: - 2599 602.479 14.97 15.75 - — 15.47 - - — 3501 602.487 14.96 - - - 15.59 — 15.71: 15.89 3502 602.495 14.96 15.66 - - 15.53 - 15.80: — 3505 802.799 14.53 — 16.00 15.53 15.81 15.34: - - 3506 802.807 — — 16.07 15.60 15.84 15.43: - 16.05 3507 802.815 14.63 - 16.03 15.60 15.85 15.50: — 16.03 3511 802.848 14.65 — 16.04 15.75 15.93 15.53: — — 3512 802.855 14.67 — 16.03 15.77 15.91 — — 16.09 165 Table A.1 (cont’d). HJ D frame 2448000+ v1 v2 v3 v4 v5 v6 v7 VS 3513 802.863 14.69 15.75 16.00 15.84 15.93 15.67 - - 3514 831.774 15.11 15.83 15.66 16.02 15.88 16.00 — — 3515 831.786 15.10 15.77 15.65 16.04 15.84 15.90 16.04: 15.98 3520 831.828 15.17 15.61 15.75 16.19 15.59 15.94 — - 3521 831.837 15.09 15.42 15.76 16.22 15.58 15.92 — - 3522 831.846 15.06 15.35 15.75 16.17 15.55 15.90: — - 3526 833.713 15.46 15.76 15.64 16.17 15.84 15.91 15.74: 15.63 3527 835.725 14.49 - 15.76 15.53 15.53 16.09 15.87 16.02 3528 835.733 14.43 15.74 15.77 15.56 15.53 15.97 — 16.07 3529 835.741 14.41 15.79 15.81 15.57 15.56 16.04 15.78: 16.07 3533 835.774 14.49 15.72 15.94 15.74 15.63 15.94 16.09: 16.12 3534 835.783 14.46 15.72 15.99 15.78 15.61 16.04 15.73: 16.08 3535 835.791 14.48 15.72 15.97 15.80 15.67 15.88 15.78 16.13 3539 835.824 14.57 15.77 16.00 15.92 15.74 15.88 15.78: 16.10 3540 835.831 14.48 15.79 16.02 15.92 15.79 15.95 15.68: - 3541 835.840 14.51 15.83 16.04 15.96 15.82 — 15.86 - 3545 836.712 15.44 15.26 15.84 15.76 15.98 15.32 15.54: 15.28 3546 836.720 15.33 15.25 15.76 15.74 16.00 15.28 15.61: 15.39 3547 836.727 15.37 15.25 15.73 15.78 15.98 15.19 15.56 15.36 3551 836.768 15.20 15.36 15.54 15.93 15.89 15.27 15.45: 15.51 3552 836.776 15.18 15.44 15.54 15.93 15.82 15.34 - 15.45 3553 836.784 15.18 - 15.55 15.97 15.79 15.42 15.73 15.51 3554 839.694 15.07 15.66 15.97 16.20 15.89 15.94 15.33 - 3555 839.702 15.01 15.64 16.01 16.18 15.91 15.89 15.70 16.12 3556 839.760 14.86 15.71 16.06 15.67 15.94 15.90 15.76: 16.10 3560 839.793 14.77 15.78 16.07 15.55 16.02 15.90 15.65 16.15 3561 839.801 14.62 15.76 16.04 15.55 16.06 — 15.80 - 3562 840.681 15.30 15.73 15.55 15.89 15.55 15.62 — 15.58 3563 840.696 15.25 15.70 15.57 15.68 15.53 15.65 15.69: 15.62 3564 840.704 15.27 15.64 15.61 15.63 15.56 15.30 15.58: 15.62 3568 854.648 14.76 15.59 15.57 15.98 15.77 15.89 15.76 16.14 3569 854.657 14.84 15.54 15.57 15.99 15.79 — 15.66: 16.06 3573 857.623 15.08 15.71 16.01 15.76 15.55 16.11: 15.79: 15.94 3574 857.630 15.14 15.70 16.00 15.71 15.56 15.86 15.55: 15.99 3575 857.638 15.07 - 16.02 15.63 15.59 15.81 15.82: 15.94 3576 857.646 15.11 15.70 16.08 15.57 15.65 15.90 15.63 15.97 3577 857.654 15.06 15.71 16.03 15.55 — 15.88 15.61: 16.05 3578 857.662 15.13 15.66 16.03 15.57 15.70 15.96: 15.60: 16.01 3579 857.678 15.16 15.68 15.99 15.57 15.65 16.08: 15.73: 16.00 3580 857.686 15.11 15.72 15.98 15.55 15.67 15.99 15.58 16.05 3581 857.694 15.13 15.70 15.99 15.60 15.66 15.87 15.49: 16.04 3582 857.703 15.15 15.77 15.88 15.65 15.69 15.97 15.70: 16.10 3583 857.719 15.14 15.79 15.75 15.73 15.79 16.12: 15.52 - 3584 857.735 15.16 15.85 15.73 15.81 15.84 15.93: 15.65 16.02 3585 857.744 15.22 15.86 15.69 15.80 15.80 15.87 - — 166 Table A.1 (cont’d). 11.1 D frame 2448000+ v1 v2 v3 v4 v5 v6 v7 v8 4551 867.607 14.86 15.46 15.80 16.12 15.53 15.86 15.51: 16.24 4552 867.616 14.95 15.48 15.81 16.13 15.53 15.82 15.65: — 4553 867.623 14.93 15.51 15.84 16.09 15.53 15.80 15.60 - 4560 869.672 15.45 15.47 16.04 15.85 15.88 15.76 16.21: 15.33 4561 888.568 15.14 15.76 15.67 16.13 15.96 16.05 15.66 15.70 4562 888.576 15.08 15.85 15.72 - 16.01 16.04 15.44 15.70 4563 888.584 15.03 15.72 , 15.75 16.22 15.98 16.26 15.59 15.74 4564 888.600 15.02 15.65 15.80 16.18 16.00 15.97 15.69: 15.83 4565 888.608 15.01 15.60 15.84 16.21 15.99 16.11 15.54 15.83 4566 888.616 14.99 15.52 15.87 16.18 15.99 16.03 15.28: 15.90 4567 888.623 14.97 15.42 15.90 16.17 16.00 15.77 15.42 15.89 4568 888.640 14.90 15.33 15.94 16.08 15.90 15.47 15.69: 15.88 4569 888.650 14.83 15.29 15.97 16.01 15.89 15.41 15.66 - 4570 888.659 14.83 15.26 15.99 15.90 15.77 15.34 15.78 - 4571 888.667 14.67 15.22 16.06 15.85 15.72 15.26 15.42 15.70 4572 888.702 14.57 15.23 16.05 15.57 15.56 15.35 - 15.93 4589 890.562 14.68 15.72 15.79 15.61 16.01 — 15.67: 15.83 4590 890.570 14.68 15.71 15.84 15.58 15.91 16.18 15.88 15.89 4591 890.578 14.72 15.70 15.87 15.57 - 16.13 15.70 15.83 4592 890.594 14.80 15.79 ‘15.93 15.56 15.79 16.04 15.99 15.90 4593 890.603 14.78 15.74 15.93 15.55 15.73 16.04 15.68: 15.95 4594 890.611 14.83 15.77 15.97 15.57 15.69 15.94 16.20: 16.01 4595 890.618 14.90 15.74 15.98 15.59 15.67 15.98 16.03: 16.07 4596 890.626 14.90 15.71 16.00 15.61 15.64 15.77 16.11: 15.99 5522 896.542 15.12 15.69 15.93 15.53 15.82 16.16: 15.95: 16.07 5523 896.550 15.15 15.69 15.96 15.56 15.81 16.16: 16.01: - 5524 897.530 14.41 15.31 15.68 15.63 15.58 15.72 15.88 15.49 167 Table A.1 (cont ’d). HJD frame 2448000+ v9 v10 v11 v13 v14 v15 v17 v18 1501 446.837 - 16.09 15.99 15.99 16.01 16.15 — 15.61 1502 446.845 — — 15.92 15.69 16.01 16.16 — 15.62 1533 452.771 15.89 15.59 15.46 15.77 15.63 16.26 15.70 15.84 1534 452.780 — 15.59 15.50 15.81 15.63 - 15.69 — 1535 452.822 — 15.58 15.65 15.93 15.68 16.23 15.78 15.93 1536 452.829 16.01 15.62 15.65 15.91 15.67 16.15 15.91 15.99 1537 452.838 — 15.69 - — 15.68 16.22 15.95 - 1508 453.772 15.41 16.02 15.47 15.21 16.03 16.00 15.91 15.53 1509 453.781 15.37 16.01 15.50 15.13 16.05 15.94 15.97 15.51 1510 453.789 15.37 16.01 15.46 15.17 16.05 15.96 16.00 15.58 1511 453.830 - - 15.52 15.40 — - 16.05 15.63 1512 453.838 15.53 16.05 15.62 15.44 16.02 16.10 15.95 15.67 1513 453.846 — 16.04 15.59 15.49 - 16.15 — 15.73 1520 454.750 15.83 15.64 — 16.14 15.70 15.29 16.02 - 1522 454.769 15.80 15.59 15.62 — 15.70 15.40 15.93 15.92 1523 454.817 — 15.71 15.45 16.01 15.79 15.55 15.75 15.63 1525 454.833 15.92 15.85 15.46 16.02 15.83 15.61 15.67 15.52 1559 474.726 15.83 16.00 15.41 - 15.89 15.80 15.95 15.53 1563 474.763 — 15.74 15.45 — — 15.83 16.04 — 1565 474.784 15.94 15.64 15.60 16.17 15.93 15.94 - 15.63 1569 474.820 15.88 15.55 15.67 16.07 15.98 16.01 16.22 15.80 1571 474.837 15.84 15.54 15.70 16.06 15.96 16.07 16.13 15.79 1572 475.683 15.89 15.73 — 15.44 15.66 15.36 15.96 16.01 1573 475.691 - 15.74 - 15.46 15.63 15.20 16.07 16.11 1574 475.699 15.99 15.82 15.82 15.50 15.56 15.00 16.02 16.09 1578 475.733 16.00 15.85 15.45 15.63 15.52 14.97 15.90 15.99 1579 475.741 - — 15.46 15.68 15.55 15.05 15.89 — 1580 475.750 16.11 15.98 15.51 15.66 15.59 15.11 15.84 15.86 1584 479.657 15.63 16.06 15.83 15.19 15.93 16.15 15.54 15.92 1585 479.665 15.62 - — 15.26 15.90 -- 15.54 15.97 1586 479.673 15.70 16.02 15.92 15.27 15.92 16.15 15.41 15.93 1590 479.707 15.77 16.11 16.00 15.46 16.07 16.23 15.42 16.05 1591 479.715 15.81 16.11 16.06 15.45 15.97 16.19 15.37 16.03 1592 479.724 15.81 - 16.02 15.52 16.08 16.15 15.44 16.06 1599 480.687 - 15.68 15.70 — 15.68 — - 15.77 2501 480.696 15.93 15.76 15.84 16.06 15.65 16.23 15.86 15.77 2502 480.704 - 15.78 15.99 — 15.63 - 15.96 - 2506 480.746 — 15.90 15.97 - 15.66 16.24 15.99 15.94 2507 480.754 - 15.97 — 15.97 15.74 — - 15.87 2508 480.763 — 15.98 - 15.75 15.70 16.27 16.02 15.97 2509 481.638 15.42 16.16 15.65 16.12 - 15.62 - 15.85 2511 481.655 15.43 - 15.73 — 16.08 15.66 - 15.83 2515 481.691 15.49 15.99 15.88 16.16 16.16 15.77 - 15.60 2516 481.702 15.65 16.03 15.90 - 16.14 15.80 - 15.57 2517 481.710 15.57 15.84 15.78 16.15 16.10 15.81 16.14 15.58 168 Table A.1 (cont’d). HJ D frame 2448000+ v9 v10 v11 v13 v14 v15 v17 v18 2521 481.743 15.59 15.67 — 16.26 15.96 15.82 16.15 15.67 2522 481.751 15.59 15.63 15.91 16.15 15.96 15.93 16.10 15.64 2523 481.760 15.63 15.64 16.05 16.18 15.86 15.85 16.12 15.70 2530 537.523 15.50 15.82 15.58 -— 16.03 15.88 16.06 16.04 2531 537.532 15.52 15.86 15.61 16.28 15.98 15.72 16.04 15.95 2532 537.540 15.48 - 15.55 -— 15.95 15.70 - 15.83 2534 546.573 16.07 16.09 15.81 16.05 16.20 16.11 15.64 15.94 2535 546.581 16.05 16.12 15.89 15.94 ‘ — 16.10 15.57 15.98 2536 546.615 - 15.99 — 16.21 — — 15.68 16.05 2538 546.630 — — — — - 16.14 15.67 16.04 2542 547.527 15.54 15.73 15.57 15.42 15.70 15.59 15.74 15.58 2543 547.536 - 15.80 15.64 15.45 15.66 15.62 15.74 15.59 2544 547.543 15.56 15.78 15.60 15.51 15.68 15.65 15.75 15.62 2545 547.592 15.59 — 15.75 15.63 15.72 15.70 15.76 15.63 2549 568.542 15.91 16.20 15.80 16.19 15.64 15.67 15.71 15.67 2550 568.558 15.98 16.15 15.94 16.22 15.67 15.69 15.79 15.69 2551 568.573 15.92 16.14 - 16.20 15.70 15.72 15.83 15.76 2552 568.623 15.94 16.03 - -— 15.73 15.82 -— - 2553 568.634 — 15.95 — — 15.78 - 15.89 15.85 2565 569.627 15.44 - - — — — - 15.71 2567 570.489 15.60 16.17 15.66 15.25 15.72 16.06 16.12 16.01 2568 570.497 15.64 16.13 15.57 15.22 15.74 16.04 16.04 15.96 2569 570.531 15.70 16.09 15.58 15.42 15.80 16.08 16.07 16.10 2573 570.552 15.78 16.07 15.66 15.49 15.85 16.06 15.95 16.06 2574 570.559 15.75 16.06 15.72 15.57 15.84 16.10 15.90 16.11 2578 570.602 — 15.79 15.79 15.79 16.06 16.11 15.51 16.11 2579 570.609 15.79 — 15.90 15.80 16.05 16.17 15.49 16.04 2580 570.618 - 15.71 15.87 15.78 - - 15.50 16.01 2585 574.560 15.37 15.61 15.93 15.48 16.06 15.96 — — 2586 574.569 15.32 15.68 15.77 — 16.00 16.00 15.77 — 2587 574.576 15.31 15.76 15.71 15.53 15.98 16.01 15.74 -— 2597 601.463 - 15.95 — 16.18 - - 15.67 15.93 2591 601.476 15.86 15.93 15.78 16.20 15.78 16.19 15.83 16.02 2592 601.491 15.89 15.79 — — 15.81 - 15.84 - 2594 601.507 16.00 — — 15.52 — — — — 2595 601.517 — — - 15.37 15.94 - - - 2598 602.471 15.30 15.98 15.65 — 15.94 15.91 15.74 15.93 2599 602.479 - 16.02 15.70 - 15.89 15.85 - 15.97 3501 602.487 — — 15.70 16.29 15.86 15.87 15.81 - 3502 602.495 15.31 — 15.74 - 15.74 — - - 3505 802.799 15.26 15.89 16.07 15.44 15.75 16.20 15.80 15.67 3506 802.807 15.31 15.80 16.05 15.46 15.75 16.21 15.81 15.70 3507 802.815 15.34 15.78 15.99 15.50 15.75 16.15 15.83 15.70 3511 802.848 15.44 15.63 15.61 15.61 15.88 16.17 15.93 15.77 3512 802.855 15.45 15.65 15.56 15.67 15.90 16.17 15.94 15.80 169 Table A.1 (cont’d). 111 D frame 2448000+ v9 v10 v11 v13 v14 v15 v17 v18 3513 802.863 15.44 15.65 15.51 15.68 15.91 16.18 15.99 15.83 3514 831.774 15.98 15.85 15.60 16.04 15.60 15.73 16.00 15.53 3515 831.786 15.92 15.76 15.63 16.04 15.64 15.79 15.88 15.54 3520 831.828 15.94 15.67 15.77 16.11 15.74 15.92 15.77 15.59 3521 831.837 15.94 15.64 15.78 16.18 15.76 16.02 15.75 15.59 3522 831.846 15.96 15.62 15.77 16.19 15.81 15.99 15.72 -— 3526 833.713 15.68 15.83 15.98 16.10 15.64 16.22 15.83 15.64 3527 835.725 15.38 15.62 16.03 15.84 15.93 14.97 15.76 16.07 3528 835.733 15.40 15.61 16.04 15.87 15.94 14.99 15.82 15.99 3529 835.741 15.43 15.62 16.05 15.89 15.98 15.07 15.82 16.02 3533 835.774 15.50 15.70 15.86 15.90 16.01 15.33 15.80 15.78 3534 835.783 15.53 15.70 15.82 15.95 16.01 15.35 15.86 15.77 3535 835.791 15.55 15.71 15.66 15.94 16.01 15.40 15.76 15.62 3539 835.824 15.62 15.86 15.45 16.05 16.04 15.57 15.86 15.48 3540 835.831 15.64 15.88 15.43 16.04 16.03 15.59 15.87 15.47 3541 835.840 - 15.88 15.45 16.09 16.06 15.61 15.92 15.49 3545 836.712 15.87 16.09 16.10 15.38 15.63 16.22 15.81 15.86 3546 836.720 15.89 16.10 16.08 15.44 15.64 16.19 15.87 15.91 3547 836.727 15.86 16.12 16.13 15.44 15.61 16.17 15.83 15.91 3551 836.768 15.92 16.05 16.03 15.59 15.66 16.13 15.95 16.05 3552 836.776 16.07 16.09 15.99 15.63 15.64 16.09 16.06 16.00 3553 836.784 15.91 15.98 15.98 15.65 15.68 16.17 16.01 16.05 3554 839.694 15.97 15.90 15.75 15.76 16.06 16.26 15.84 15.95 3555 839.702 15.95 15.98 15.76 15.77 15.96 16.22 15.82 16.00 3556 839.760 15.93 16.11 15.91 15.88 15.66 15.71 15.99 15.99 3560 839.793 16.02 16.08 15.97 15.96 15.57 15.05 16.00 16.01 3561 839.801 16.04 16.08 16.02 15.93 15.58 15.01 16.06 15.86 3562 840.681 15.25 15.75 15.61 15.32 15.92 — 15.93 15.60 3563 840.696 15.29 15.70 15.57 15.24 16.00 16.24 15.96 15.67 3564 840.704 15.29 15.64 15.68 15.26 16.03 16.22 15.90 15.70 3568 854.648 15.90 15.62 16.02 15.81 15.68 16.06 15.76 15.64 3569 854.657 15.91 15.65 15.92 15.79 15.64 16.04 15.77 15.63 3573 857.623 15.90 — 16.04 16.05 16.11 16.18 15.78 15.66 3574 857.630 15.95 16.11 — 16.04 16.13 16.25 15.82 15.76 3575 857.638 15.91 16.09 16.05 16.08 16.07 16.24 15.79 15.72 3576 857.646 15.90 16.00 16.12 16.04 16.08 16.23 15.81 15.78 3577 857.654 15.88 15.98 16.08 — 16.00 16.18 15.82 15.80 3578 857.662 15.95 15.90 16.10 16.10 15.88 16.17 15.80 15.85 3579 857.678 15.99 15.76 16.10 16.07 15.82 16.21 15.79 15.91 3580 857.686 - 15.71 - 16.09 15.78 16.20 15.84 15.93 3581 857.694 15.99 15.67 16.11 16.09 15.70 16.25 15.84 15.91 3582 857.703 16.03 15.69 16.08 16.10 15.68 16.20 15.86 15.94 3583 857.719 16.10 15.62 — 16.12 15.62 16.14 15.91 15.95 3584 857.735 16.09 15.60 15.94 16.15 15.65 16.11 15.90 16.05 3585 857.744 16.05 15.60 - — 15.64 - 15.89 15.97 170 Table A.1 (cont’d). 11.1 D frame 2448000+ v9 v10 v11 v13 v14 v15 v17 v18 4551 867.607 15.94 16.10 16.05 15.99 15.80 16.10 15.89 15.85 4552 867.616 15.98 16.08 16.09 16.02 15.72 16.07 15.89 15.88 4553 867.623 15.92 16.13 15.99 16.05 15.71 16.04 15.93 15.88 4560 869.672 15.92 15.69 16.07 15.92 15.78 15.64 15.77 15.52 4561 888.568 15.44 15.87 16.07 15.79 16.11 16.04 15.77 15.92 4562 888.576 15.36 15.83 16.07 15.79 16.10 16.04 15.81 15.89 4563 888.584 15.32 15.79 16.10 15.77 16.05 16.04 15.80 15.99 4564 888.600 15.29 15.69 16.07 15.81 15.95 16.02 15.81 15.94 4565 888.608 15.28 15.69 16.01 15.85 15.92 16.05 15.85 15.97 4566 888.616 15.34 15.62 16.01 15.83 15.89 16.02 15.89 15.99 4567 888.623 15.31 15.60 16.00 15.85 15.80 15.97 15.92 16.00 4568 888.640 15.35 15.56 15.86 15.89 15.71 15.97 15.93 16.00 4569 888.650 15.40 15.58 15.72 15.92 15.71 15.96 15.99 15.98 4570 888.659 15.43 15.65 15.67 15.99 15.67 15.97 16.03 16.00 4571 888.667 15.46 15.66 15.64 15.95 15.67 16.00 16.08 16.03 4572 888.702 15.55 15.74 15.43 16.11 15.67 16.08 16.11 15.94 4589 890.562 15.93 15.74 15.99 16.15 15.74 15.52 15.73 15.84 4590 890.570 15.97 15.67 16.00 16.12 15.74 15.49 15.63 15.77 4591 890.578 15.96 15.71 16.02 16.13 15.68 - 15.62 15.68 4592 890.594 15.98 15.73 16.07 16.06 15.69 15.46 15.59 15.61 4593 890.603 16.03 15.72 — 16.02 15.67 15.57 15.62 15.54 4594 890.611 16.01 15.70 16.09 16.05 15.68 15.58 15.55 15.55 4595 890.618 16.01 15.72 16.05 16.04 15.67 15.60 15.54 15.50 4596 890.626 16.03 15.76 16.06 16.07 15.70 15.63 15.57 15.54 5522 896.542 15.40 16.04 15.93 15.58 16.12 15.90 15.62 15.60 5523 896.550 15.41 16.09 15.82 15.67 — — 15.60 15.60 5524 897.530 15.85 15.65 16.14 16.16 15.79 15.73 15.71 15.97 171 Table A.1 (cont’d). II] D frame 2448000+ v19 v20 v22 v23 v24 v25 v29 v30 1501 446.837 16.14 15.68: 15.65 15.99 15.65 16.05 — 15.41 1502 446.845 — 15.95: 15.61 15.94 - 15.84 — 15.40 1533 452.771 14.94 16.28: 15.80 15.61 15.87 16.11 - 15.81 1534 452.780 14.99 16.22: 15.80 15.65 15.85 — - 15.74 1535 452.822 15.20 — 15.82 15.70 15.82 — - - 1536 452.829 15.27 16.46: 15.85 15.79 15.87 — — 15.49 1537 452.838 15.32 — 15.82 15.70 - — — 15.45 1508 453.772 16.18 15.70: 15.32 15.88 15.60 15.70 - 15.62 1509 453.781 - 15.54 15.23 15.88 15.62 15.74 - 15.61 1510 453.789 16.11 15.69: 15.21 15.87 15.58 15.74 — 15.56 1511 453.830 — 15.80: 15.21 15.94 — 15.84 - 15.63 1512 453.838 16.22 15.99: 15.21 15.91 - 15.87 — 15.61 1513 453.846 16.20 15.77: 15.22 15.82 15.68 15.90 - 15.61 1520 454.750 - 16.20: 15.60 15.73 15.80 — - 15.87 1522 454.769 16.04 16.22: 15.72 15.80 15.64 — — 15.85 1523 454.817 16.21 16.31: — 15.97 15.44 — — - 1525 454.833 16.10 16.29: 15.77 15.90 15.47 — — 15.87 1559 474.726 15.90 15.89: 15.30 15.90 15.69 15.97 - 15.72 1563 474.763 15.92 - 15.43 15.53 — — 14.97 15.59 1565 474.784 15.99 15.99 15.48 15.26 15.46 15.97 15.31 15.53 1569 474.820 16.12 16.07: 15.52 — 15.49 15.47 - 15.61 1571 474.837 16.15 16.09 15.59 — 15.50 15.24 15.44 15.62 1572 475.683 15.04 — 15.75 15.79 15.89 15.67 — 15.42 1573 475.691 15.10 - 15.83 - — 15.70 - 15.48 1574 475.699 15.09 16.35: 15.84 15.86 15.82 15.70 - 15.44 1578 475.733 15.33 16.27: 15.84 15.88 15.87 15.73 16.17 15.55 1579 475.741 15.44 - 15.88 15.90 - 15.73 - 15.56 1580 475.750 15.45 16.36: 15.87 - 15.92 15.76 - 15.61 1584 479.657 14.99 - 15.60 15.92 15.55 15.76 — 15.45 1585 479.665 14.93 — 15.54 - 15.49 15.70 — 15.49 1586 479.673 14.87 15.95: 15.47 15.94 15.56 15.74 — 15.48 1590 479.707 15.07 16.02: 15.15 15.90 15.67 15.74 — 15.55 1591 479.715 15.12 16.02: 15.10 15.81 — 15.77 — 15.54 1592 479.724 15.20 15.85 15.13 - - 15.80 — 15.55 1599 480.687 - - 15.69 - 15.30 16.08 - 15.68 2501 480.696 16.13 16.37: 15.64 15.69 15.43 16.13 — 15.72 2502 480.704 - — 15.72 15.74 15.31 - - 15.69 2506 480.746 - - - 15.90 15.44 16.11 - - 2507 480.754 16.24 - 15.87 — 15.52 16.06 - 15.88 2508 480.763 16.11 16.52: 15.84 15.81 — — - 15.90 2509 481.638 - 15.73: 15.82 15.92 15.89 15.82 15.13 15.58 2511 481.655 16.07 — 15.83 16.09 15.87 - — 15.53 2515 481.691 16.14 15.85: - 16.01 15.91 — — 15.36 2516 481.702 16.23 16.05: — 15.93 - 15.81 — 15.41 2517 481.710 16.11 15.78: 15.89 15.88 —- 15.82 15.51 15.38 172 Table A.1 (cont’d). 11.1 D frame 2448000+ v19 v20 v22 v23 v24 v25 v29 v30 2521 481.743 16.25 15.89 16.05 15.44 15.70 15.82 -- 15.44 2522 481.751 16.21 15.95: 15.96 15.40 15.69 15.80 15.56 15.45 2523 481.760 - 15.97 16.05 15.35 15.62 15.88 - 15.47 2530 537.523 15.33 15.93: 15.51 15.64 15.99 15.79 15.66 15.76 2531 537.532 15.35 16.29: 15.53 15.64 15.90 15.76 — 15.72 2532 537.540 15.36 — 15.54 15.68 15.93 15.80 — 15.77 2534 546.573 16.14 16.09 —- 15.92 15.51 - 15.38 15.71 2535 546.581 16.03 16.00: - 15.93 15.63 16.23 - 15.67 2536 546.615 15.14 16.22: 15.80 16.02 15.69 16.23 15.37 15.54 2538 546.630 15.04 16.27: 15.59 15.99 15.71 - 15.43 15.58 2542 547.527 16.18 16.14: — 15.41 — 15.84 -— 15.48 2543 547.536 16.18 — 15.43 15.32 16.00 15.73 - 15.44 2544 547.543 16.20 16.29: — 15.32 15.89 15.81 - 15.47 2545 547.592 16.21 16.26: 15.53 15.45 15.52 15.85 - 15.60 2549 568.542 15.80 — — 15.62 15.90 16.12 — 15.77 2550 568.558 15.81 — — 15.65 15.97 16.17 - 15.71 2551 568.573 15.92 — -— 15.74 15.88 16.15 15.29 15.61 2552 568.623 — — — 15.69 15.92 15.58 - 15.58 2553 568.634 — — - 15.81 15.74 15.49 - 15.60 2565 569.627 —- — — 15.71 — — — — 2567 570.489 16.22 16.10 — 15.74 — 16.14 — 15.78 2568 570.497 16.15 — — 15.75 — 16.15 — 15.71 2569 570.531 — 16.30: — 15.81 15.52 16.16 - 15.70 2573 570.552 16.23 16.19: — 15.77 15.50 16.15 — 15.64 2574 570.559 16.20 16.13: — 15.84 — 16.14 - 15.62 2578 570.602 — 16.44: — 15.98 15.57 15.95 — 15.48 2579 570.609 - 16.46: - 15.92 15.59 15.79 - 15.44 2580 570.618 16.09 — - 15.97 15.63 15.71 - 15.53 2585 574.560 16.17 16.06: 15.83 — - 16.11 - — 2586 574.569 — 15.99: 15.96 15.90 — 16.09 — - 2587 574.576 - 15.95 15.92 15.91 — 15.98 - - 2597 601.463 - - - - 15.83 — - 15.72 2591 601.476 16.19 15.39 15.24 15.71 - 15.88 — 15.41 2592 601.491 — 15.57: 15.36 15.70 — 15.82 - 15.44 2594 601.507 - 15.75: — - — — — 15.35 2595 601.517 — 15.59 - 15.72 — — - 15.45 2598 602.471 16.22 16.06: 15.75 - 15.87 16.14 — 15.77 2599 602.479 — - 15.81 — - 16.07 15.62 15.75 3501 602.487 16.09 — 15.77 15.94 15.92 16.16 — 15.85 3502 602.495 - — 15.78 — - - 15.72 15.78 , 3505 802.799 16.15 16.16: 15.95 15.85 - 15.84 16.22 15.78 3506 802.807 16.16 15.89: 15.96 15.87 15.75 15.68 - - 3507 802.815 16.15 15.94: 15.96 15.84 15.71 15.59 - 15.79 3511 802.848 16.16 15.53 15.97 15.94 15.81 15.31 16.12 - 3512 802.855 16.16 15.43 16.00 15.95 — 15.28 16.17 15.64 173 Table A.1 (cont’d). HJD frame 2448000+ v19 v20 v22 v23 v24 v25 v29 v30 3513 802.863 16.17 15.43: 16.01 15.96 15.87 15.26 - - 3514 831.774 15.74 15.99 - 15.59 15.98 15.92 15.15 15.65 3515 831.786 15.79 15.82 - 15.60 16.01 15.96 15.11 15.68 3520 831.828 15.91 15.97 — 15.66 15.97 15.94 15.44 15.70 3521 831.837 15.98 16.15 — 15.70 15.91 16.05 15.49 15.71 3522 831.846 15.95 15.90 — 15.71 15.80 16.07 15.58 15.69 3526 833.713 16.19 15.76 15.95 15.66 15.66 15.81 - 15.60 3527 835.725 15.53 15.52 15.76 15.82 15.73 15.88 16.15 15.45 3528 835.733 15.58 15.53 15.79 15.82 15.78 15.88 16.11 15.46 3529 835.741 15.60 15.49 15.82 15.86 15.78 15.89 16.12 15.47 3533 835.774 15.72 15.57 15.84 15.86 15.96 15.91 15.73 15.51 3534 835.783 15.75 15.64 15.84 15.87 16.01 15.93 15.55 15.57 3535 835.791 15.79 15.72 15.90 15.88 15.96 15.90 15.35 15.55 3539 835.824 15.87 15.64 15.89 15.88 16.02 15.93 15.17 15.58 3540 835.831 15.89 15.68 15.90 15.88 16.05 15.96 15.27 15.58 3541 835.840 15.92 15.67 15.90 15.87 16.02 15.99 - 15.64 3545 836.712 16.18 16.04 15.95 15.51 15.51 16.10 16.37 15.78 3546 836.720 16.06 15.95 15.96 15.49 15.50 16.02 16.41 15.73 3547 836.727 15.92 15.97 15.98 15.49 15.67 15.93 - 15.81 3551 836.768 15.08 15.93 16.04 15.52 — 15.41 16.36 15.85 3552 836.776 15.05 16.18 16.07 15.54 15.60 15.33 — 15.82 3553 836.784 15.09 15.95 16.01 15.57 15.79 15.30 16.44 15.92 3554 839.694 15.30 16.08 15.83 15.87 15.52 15.88 — 15.85 3555 839.702 15.36 16.05 15.74 15.84 15.55 15.86 16.38 15.92 3556 839.760 15.62 15.64 15.31 15.88 15.66 15.94 16.17 15.81 3560 839.793 15.73 15.25 15.30 15.79 15.76 15.94 15.93 15.63 3561 839.801 15.75 15.18 15.33 15.75 15.73 15.97 15.78 15.66 3562 840.681 16.19 15.63 15.63 15.71 - 16.16 16.26 15.52 3563 840.696 16.23 15.77 15.64 15.71 15.97 16.12 16.25 15.50 3564 840.704 16.18 15.72 15.74 15.69 15.89 16.06 16.14 15.60 3568 854.648 15.60 15.71 15.91 15.81 15.98 16.13 16.33 15.88 3569 854.657 15.65 15.84 15.91 15.80 16.02 16.11 16.26 16.02 3573 857.623 15.99 15.95 15.96 15.55 — 15.84 15.67 15.60 3574 857.630 16.07 15.96 16.02 15.63 15.99 15.87 15.54 15.58 3575 857.638 16.06 15.97 16.04 15.61 - 15.88 15.45 15.62 3576 857.646 16.06 16.00 16.07 15.65 — 15.83 15.24 15.51 3577 857.654 16.05 15.91: 16.07 15.63 16.14 15.87 15.22 15.56 3578 857.662 16.10 15.99 16.06 15.63 16.14 15.84 15.18 15.58 3579 857.678 16.13 15.92 16.03 15.65 — 15.89 15.27 15.63 3580 857.686 16.14 16.03 16.00 15.67 16.07 15.90 15.32 15.57 3581 857.694 16.14 16.04 15.96 15.64 - 15.91 15.37 15.57 3582 857.703 16.12 15.93 15.85 15.68 - - 15.38 15.63 3583 857.719 16.20 15.97 15.62 15.66 — — 15.49 15.67 3584 857.735 16.05 16.10: 15.52 15.67 15.75 15.89 15.57 15.65 3585 857.744 16.16 16.04 15.46 15.64 15.73 — 15.66 15.62 174 Table A.1 (cont’d). 11.1 D frame 2448000+ v19 v20 v22 v23 v24 v25 v29 v30 4551 867.607 16.26 15.99 15.95 15.80 16.01 15.79 16.05 15.96 4552 867.616 16.17 16.00 15.99 15.75 16.13 15.78 16.02 15.85 4553 867.623 16.07 15.74 15.96 15.71 15.98 15.77 16.09 15.99 4560 869.672 16.10 15.97 15.87 15.63 15.58 15.90 15.97 15.93 4561 888.568 16.13 15.33 15.99 15.32 15.72 16.14 16.25 15.40 4562 888.576 16.11 15.26 15.99 15.35 15.73 16.16 16.31 15.49 4563 888.584 16.15 15.22 16.03 15.39 15.75 16.13 16.24 15.44 4564 888.600 16.17 15.20 16.11 15.42 15.84 16.05 16.28 15.51 4565 888.608 16.13 15.17 16.08 15.48 15.86 16.05 16.20 15.64 4566 888.616 16.15 15.20 16.08 15.47 15.79 15.99 16.11 15.60 4567 888.623 16.19 15.26 16.12 15.51 15.84 15.86 15.99 15.58 4568 888.640 16.16 15.27 16.09 15.56 15.96 15.60 15.67 15.59 4569 888.650 16.20 15.48 16.03 15.57 15.97 15.56 15.50 15.63 4570 888.659 16.19 15.52 15.98 15.57 15.98 15.44 15.42 15.66 4571 888.667 16.21 15.54 15.91 15.61 15.99 15.37 15.47 15.67 4572 888.702 16.19 15.47 15.48 15.68 16.03 15.35 — 15.70 4589 890.562 15.19 16.10 15.84 15.62 15.99 16.21 16.03 15.60 4590 890.570 15.11 16.37 15.85 15.66 15.98 16.22 16.07 15.61 4591 890.578 15.10 16.12 15.90 15.68 15.96 16.23 16.08 15.62 4592 890.594 15.13 16.11 15.89 15.70 15.95 16.23 16.10 15.60 4593 890.603 15.19 16.01 15.90 15.72 15.94 16.15 16.15 15.58 4594 890.611 15.22 16.00 15.94 15.69 - 16.08 16.14 15.56 4595 890.618 15.26 15.94 15.94 15.72 . 15.87 15.95 16.15 15.60 4596 890.626 15.29 15.75 15.93 15.75 - 15.75 16.16 15.60 5522 896.542 16.04 15.98 - 16.01 15.99 - 16.18 15.93 5523 896.550 16.02 15.95 16.00 - 15.73 16.26 16.23 15.91 5524 897.530 15.58 16.16 15.44 15.68 15.95 15.91 16.24 15.55 175 Table A.1 (cont ’d). HJD frame 2448000+ v31 v32 v35 v38 V39 V40 V42 V44 1501 446.837 15.49 15.62: 15.64 - 15.71 15.74 — — 1502 446.845 15.50 15.64: 15.63 — 15.81 15.75 15.70 - 1533 452.771 16.04 15.70: 16.08 15.98 15.93 15.72 15.90 16.07 1534 452.780 15.97 15.65 16.13 — 15.82 15.65 15.94 — 1535 452.822 15.97 15.73 16.09 16.13 15.68 15.56 16.03 - 1536 452.829 — 15.65: — — — 15.50 16.08 - 1537 452.838 15.97 15.76 16.14 16.07 15.68 15.61 — 16.18 1508 453.772 15.82 15.17 15.67 15.52 15.56 15.98 15.54 15.86 1509 453.781 15.77 15.26 15.69 15.58 15.60 15.98 15.60 15.89 1510 453.789 15.86 15.32 15.68 15.63 15.60 16.03 15.62 15.91 1511 453.830 — 15.37 15.78 15.66 15.66 16.06 15.75 - 1512 453.838 15.77 15.39 15.77 15.72 15.66 16.12 15.74 .- 1513 453.846 15.76 15.35 15.81 15.76 15.72 16.08 - - 1520 454.750 15.93 — 16.20 — 15.91 15.72 15.73 15.45 1522 454.769 15.97 15.73: 16.15 — 15.79 15.62 15.56 15.46 1523 454.817 — 15.93: - 15.63 15.53 15.79 15.52 15.65 1525 454.833 16.07 15.90 15.76 15.51 15.42 15.83 15.61 15.59 1559 474.726 15.81 16.18: 16.14 15.50 15.43 — 15.75 16.12 1563 474.763 - 15.68: — 15.42 15.37 — 15.86 - 1565 474.784 15.95 - 15.96 15.57 15.48 — 15.99 - 1569 474.820 16.01 — 15.69 15.59 15.58 15.76 16.06 — 1571 474.837 16.00 15.87: 15.63 15.65 15.58 - 16.09 16.27 1572 475.683 16.10 15.58 15.71 15.93 15.77 — 15.54 15.69 1573 475.691 16.11 15.53: — — 15.75 — 15.52 - 1574 475.699 16.05 15.51 15.79 15.98 15.83 — 15.50 15.75 1578 475.733 16.01 15.69 15.80 16.06 15.84 16.06 15.48 15.80 1579 475.741 — 15.70: — 15.94 — — 15.55 15.84 1580 475.750 15.86 15.69 15.83 16.00 15.83 15.94 15.57 15.80 1584 479.657 15.82 16.05: 16.04 15.54 16.01 15.70 15.55 15.51 1585 479.665 15.97 - 16.17 15.55 15.87 15.71 15.54 15.26 1586 479.673 - 16.01: 16.16 15.57 15.93 15.62 15.60 15.29 1590 479.707 15.96 15.91 16.13 15.67 15.92 15.88 15.60 15.09 1591 479.715 15.96 16.01 16.12 15.68 15.90 15.73 15.61 15.22 1592 479.724 15.98 15.93 16.15 —- 15.87 15.79 15.67 15.18 1599 480.687 15.72 15.72: 15.78 15.74 - - - 15.90 2501 480.696 15.55 - 15.74 15.66 15.72 15.66 15.64 15.92 2502 480.704 15.54 - 15.80 15.59 15.73 15.82 15.58 15.64 2506 480.746 15.50 15.79: 15.86 15.48 15.85 15.54 15.57 15.88 2507 480.754 15.54 16.12: 15.87 15.44 15.89 15.48 15.59 - 2508 480.763 15.62 16.08 15.98 15.49 15.87 — 15.50 15.86 2509 481.638 15.80 15.15 16.24 15.86 - 15.91 - 15.66 2511 481.655 - 15.06: — 16.03 15.83 - 16.08 15.84 2515 481.691 16.01 15.42 16.02 16.03 15.75 — 16.12 15.67 2516 481.702 - 15.50 15.90 16.06 15.69 — - 15.77 2517 481.710 16.02 15.41: 15.84 16.15 15.76 — 16.23 — 176 Table A.1 (cont’d). HJ D frame 2448000+ v31 v32 v35 v38 v39 v40 v42 v44 2521 481.743 16.05 15.49: 15.68 16.05 15.68 — 15.95 15.82 2522 481.751 16.01 15.65 15.66 - 15.68 - 15.93 15.76 2523 481.760 16.10 15.67 15.65 15.98 15.77 — 15.81 15.90 2530 537.523 15.77 15.61: 15.81 15.80 15.66 — - 15.56 2531 537.532 15.76 15.49: 15.82 — 15.77 16.07 — 15.72 2532 537.540 15.72 — 15.92 15.79 15.69 — 16.14 15.64 2534 546.573 15.75 15.56: 16.12 — 15.89 — 16.07 — 2535 546.581 15.79 15.59 16.02 15.87 15.91 — 16.13 15.98 2536 546.615 - 15.59 15.81 - 15.97 — 15.78 16.01 2538 546.630 16.03 15.77: 15.78 - 15.94 —- 15.80 16.16 2542 547.527 — 15.94: 15.84 15.61 15.83 15.56 16.14 — 2543 547.536 — 15.90 15.86 15.56 15.86 15.61 16.15 15.81 2544 547.543 15.92 15.89 — 15.58 15.74 15.61 16.20 15.78 2545 547.592 -— 15.56: 16.05 15.59 15.72 15.74 -- 15.28 2549 568.542 15.69 -— 15.65 15.52 15.95 15.96 16.16 15.58 2550 568.558 15.77 15.96: 15.67 15.47 15.87 16.13 15.89 15.63 2551 568.573 - - 15.68 15.50 15.73 15.96 15.86 15.73 2552 568.623 15.95 - 15.79 15.69 15.49 15.82 15.59 — 2553 568.634 15.99 — 15.82 15.67 15.61 15.67 15.65 - 2565 569.627 — 15.84: — - - - - 15.30 2567 570.489 - 15.85: 15.67 15.59 15.87 15.83 15.76 15.87 2568 570.497 — 15.98: 15.59 15.60 15.87 15.74 15.86 16.02 2569 570.531 15.46 15.94 15.73 - 15.76 15.59 15.87 15.97 2573 570.552 15.54 15.96: 15.78 15.78 15.78 15.56 15.95 - 2574 570.559 15.53 15.71: 15.76 15.84 15.75 15.71 16.05 16.04 2578 570.602 15.64 15.17 15.97 15.96 15.73 - 16.19 16.20 2579 570.609 15.72 — 16.00 15.99 15.60 15.68 - - 2580 570.618 - 15.24 15.99 15.90 15.64 15.81 - - 2585 574.560 - 15.80: - - 15.75 — - - 2586 574.569 - 15.93: — 15.55 15.69 - 16.10 - 2587 574.576 - 15.87: 16.12 — 15.74 16.03 — 15.79 2597 601.463 15.69 16.01: — - 15.82 — 15.63 15.61 2591 601.476 15.88 14.98 - — 15.92 - 15.81 15.86 2592 601.491 15.85 14.99 15.97 15.96 15.97 15.60 15.86 16.09 2594 601.507 — 15.27: - — - 15.54 - - 2595 601.517 15.91 15.09 - - - - - - 2598 602.471 15.78 16.04: 15.93 15.88 15.74 16.10 15.59 15.62 2599 602.479 15.77 — -- — 15.70 — - - 3501 602.487 15.85 16.04: 15.95 15.81 15.68 - 15.56 - 3502 602.495 15.92 — — 16.12 15.72 - 15.64 15.72 3505 802.799 15.78 15.92 15.60 — 15.65 16.06 15.71 15.88 3506 802.807 15.79 15.93 15.63 15.70 15.63 16.04 15.72 15.92 3507 802.815 15.82 16.01 15.61 15.72 15.69 16.03 15.71 15.92 3511 802.848 15.81 16.07 15.68 15.83 15.74 16.06 15.86 15.88 3512 802.855 15.81 16.04: 15.72 15.84 15.77 16.06 15.88 15.94 177 Table A.1 (cont’d). 11.1 D frame 2448000+ v31 v32 v35 v38 v39 v40 v42 v44 3513 802.863 15.84 — 15.76 15.84 15.80 16.05 15.92 15.91 3514 831.774 15.82 15.82 16.13 15.76 15.84 15.95 16.14 15.51 3515 831.786 15.80 15.86 16.13 15.94 15.95 15.92 16.16 15.76 3520 831.828 15.84 15.93 16.15 - 15.87 16.09 15.99 15.59 3521 831.837 15.80 15.91 16.19 15.92 15.93 — 15.97 15.72 3522 831.846 15.85 15.93 16.22 16.02 15.84 - 15.90 15.67 3526 833.713 15.67 16.02 16.14 15.97 15.87 16.10 15.51 15.97 3527 835.725 16.10 16.01 16.06 15.56 15.96 16.08 16.11 15.93 3528 835.733 16.13 16.10 16.05 15.52 15.94 16.02 16.08 15.87 3529 835.741 16.05 16.02 15.97 15.51 15.88 16.01 16.12 15.91 3533 835.774 15.87 15.52 15.74 15.48 15.87 15.73 16.00 15.74 3534 835.783 15.83 15.40 15.72 15.55 15.92 15.67 15.98 15.77 3535 835.791 15.80 15.27 15.68 15.56 15.87 15.61 15.91 15.61 3539 835.824 15.68 15.21 15.61 15.64 15.76 15.60 15.61 15.07 3540 835.831 15.69 15.27 15.62 15.68 15.71 15.60 15.60 15.12 3541 835.840 15.69 15.29 15.65 15.72 15.64 -— 15.58 15.03 3545 836.712 15.74 15.95 15.90 16.00 15.72 15.97 15.95 15.95 3546 836.720 15.77 15.93 15.91 16.00 15.67 16.02 15.93 15.96 3547 836.727 15.80 16.01 15.95 16.05 15.74 15.98 16.00 15.85 3551 836.768 15.90 16.00 16.09 15.98 15.73 — 16.04 16.01 3552 836.776 15.88 16.12 16.07 16.07 15.76 — 16.18 16.06 3553 836.784 15.95 16.05 16.10 15.97 15.84 — 16.15 16.00 3554 839.694 16.00 15.89 15.69 16.04 15.58 15.92 16.18 15.87 3555 839.702 16.00 15.87 15.69 16.06 15.53 15.89 16.15 16.10 3556 839.760 16.06 16.03 15.83 16.02 15.47 16.03 15.95 15.98 3560 839.793 15.92 16.10 16.00 — 15.46 — 15.60 15.92 3561 839.801 15.83 16.10 15.97 15.76 15.52 — 15.59 15.86 3562 840.681 15.81 15.17 16.12 15.64 15.90 15.79 15.99 15.36 3563 840.696 15.75 15.31 16.16 15.55 15.76 15.70 16.01 15.50 3564 840.704 15.72 15.26 16.18 15.74 15.84 15.66 16.04 15.48 3568 854.648 15.64 15.44 15.66 15.87 15.69 15.78 15.69 16.25 3569 854.657 15.67 15.41 15.69 15.89 15.70 15.71 15.70 16.04 3573 857.623 15.98 15.13 16.07 15.82 15.76 16.07 16.06 15.93 3574 857.630 15.97 15.19 16.00 15.82 15.74 15.98 16.14 - 3575 857.638 16.02 15.24 15.88 15.81 15.77 15.90 16.11 16.04 3576 857.646 15.98 15.30 15.84 15.85 15.73 15.81 16.13 16.11 3577 857.654 16.04 15.34 15.81 15.89 15.63 15.82 16.14 15.91 3578 857.662 16.09 15.31 15.76 15.92 15.71 15.77 16.12 16.10 3579 857.678 16.06 15.42 15.69 15.99 15.71 15.70 16.14 15.94 3580 857.686 16.06 15.42 15.65 15.93 15.73 15.67 16.17 15.97 3581 857.694 16.10 15.45 15.63 15.99 15.73 15.63 16.13 15.87 13582 857.703 16.10 15.48 15.67 16.03 15.71 15.58 16.15 15.81 3583 857.719 16.12 15.52 15.65 16.03 15.67 15.63 16.12 - 3584 857.735 16.11 15.60 15.66 16.04 15.69 15.68 16.09 15.83 3585 857.744 16.05 15.53 15.71 16.08 15.63 . — - 15.87 178 Table A.1 (cont ’d). BJD frame 2448000+ v31 v32 v35 v38 v39 40 v42 v44 4551 867.607 15.66 15.93 16.06 15.61 15.86 15.82 15.67 15.76 4552 867.616 15.58 16.03 16.00 15.58 15.90 15.81 15.68 15.75 4553 867.623 15.54 16.08 15.91 15.53 15.88 15.86 15.73 15.69 4560 869.672 15.83 15.65 15.71 15.89 15.85 16.15 15.73 15.92 4561 888.568 15.72 15.45 15.97 15.93 15.72 16.01 15.90 15.86 4562 888.576 15.79 15.46 16.01 15.93 15.76 15.96 15.93 15.97 4563 888.584 15.78 15.53 16.04 15.92 15.72 15.88 15.94 15.88 4564 888.600 15.83 15.62 16.12 15.77 15.85 15.76 16.01 15.79 4565 888.608 15.86 15.64 16.11 15.63 — 15.72 16.04 15.87 4566 888.616 15.87 15.71 16.08 15.67 15.89 15.67 16.08 15.89 4567 888.623 15.92 15.66 16.14 15.64 15.82 15.62 16.07 15.91 4568 888.640 15.97 15.76 16.15 15.52 15.88 15.67 16.11 15.81 4569 888.650 15.97 15.74 16.16 — 15.93 15.69 16.12 15.89 4570 888.659 16.02 15.85 16.18 — 15.81 15.74 16.19 15.86 4571 888.667 16.07 15.81 16.22 15.41 — 15.79 16.20 15.90 4572 888.702 16.12 15.96 16.26 15.50 16.04 15.82 16.18 15.86 4589 890.562 15.66 15.74 16.16 — 16.00 15.75 15.84 15.91 4590 890.570 15.67 15.89 16.19 - 15.93 15.79 15.77 15.88 4591 890.578 15.66 15.91 16.16 15.69 — 15.77 15.73 15.98 4592 890.594 15.69 15.83 16.15 15.71 16.06 15.80 15.67 15.68 4593 890.603 15.72 15.96 16.16 15.69 - 15.83 15.64 15.45 4594 890.611 15.74 15.92 16.14 15.68 15.97 15.84 15.60 15.32 4595 890.618 15.74 15.88 16.15 15.70 16.13 15.84 15.58 15.30 4596 890.626 15.75 15.98 16.13 — 16.00 15.85 15.61 15.28 5522 896.542 16.00 15.71 15.73 15.56 15.99 15.71 16.10 15.69 5523 896.550 16.00 15.72 15.73 - 15.88 15.69 — 15.58 5524 897.530 15.76 15.52 16.15 - — - 15.87 15.98 Table A.1 (cont’d). 179 H] D frame 2448000+ v49 v50 V51 v52 v53 v54 v65 v66 1501 446.837 15.17 - 15.62 15.23 15.62 15.45 15.69 - 1502 446.845 15.19 - 15.49 15.23 15.66 15.45 15.68 - 1533 452.771 15.25 15.81 15.49 15.91 15.82 15.58 15.68: 15.82 1534 452.780 15.24 - 15.51 15.94 15.79 15.63 15.63 15.78 1535 452.822 15.33 — - 15.96 15.93 — 15.58 15.67 1536 452.829 15.32 - 15.53 16.09 - 15.43 15.69 - 1537 452.838 15.31 - 15.62 16.01 15.91 15.48 15.63 - 1508 453.772 15.06 - 15.90 15.26 15.88 15.58 15.48 15.98 1509 453.781 15.07 — 15.89 15.32 15.89 15.61 15.51: 15.99 1510 453.789 15.10 15.82 15.98 15.35 15.91 15.72 15.46 15.99 1511 453.830 15.10 — - - - — 15.47 - 1512 453.838 15.12 16.00 15.74 15.54 15.67 15.83 15.52 — 1513 453.846 15.13 - 15.73 15.66 15.68 15.78 15.49 16.10 1520 454.750 15.28 — 15.58 16.10 15.45 15.71 15.67: - 1522 454.769 15.27 16.17 15.55 16.05 15.47 15.74 15.77: - 1523 454.817 15.32 — 15.60 16.21 15.59 15.46 15.76: 15.77 1525 454.833 15.28 16.02 15.69 — 15.67 15.43 15.81: 15.91 1559 474.726 15.06 - 15.82 15.97 15.62 15.73 15.66 16.10 1563 474.763 15.16 - — 16.09 — 15.57 15.60 - 1565 474.784 15.10 — 15.94 16.12 15.84 15.53 15.65 - 1569 474.820 15.15 - 15.81 16.07 15.93 15.38 15.69 - 1571 474.837 15.15 15.47 15.95 16.18 — 15.44 15.71 - 1572 475.683 15.25 16.08 15.65 15.49 15.93. 15.52 15.80: 15.73 1573 475.691 15.25 - — 15.53 - - 15.63 15.82 1574 475.699 15.26 - 15.60 15.58 - 15.47 15.68: 15.81 1578 475.733 15.30 15.63 15.57 15.62 15.87 15.55 15.76: 15.91 1579 475.741 15.27 15.47 15.58 15.73 - 15.65 15.63 15.90 1580 475.750 15.31 15.50 15.57 15.73 15.85 15.72 15.75: 15.96 1584 479.657 15.22 15.44 15.68 15.21 15.63 15.43 15.53 16.08 1585 479.665 15.22 — 15.63 15.25 15.69 15.44 15.40 16.14 1586 479.673 15.24 — 15.64 15.34 15.64 15.52 15.51 16.05 1590 479.707 15.31 15.77 15.53 15.47 15.74 15.50 15.54 15.80 1591 479.715 15.30 15.84 15.52 15.50 - 15.55 15.57: - 1592 479.724 15.27 15.84 15.55 15.55 15.78 15.61 15.54: 15.72 1599 480.687 15.17 - — - 15.96 — 15.71: — 2501 480.696 15.11 - 15.78 16.07 15.99 15.78 15.68 - 2502 480.704 15.13 -— — 16.00 15.97 - 15.70: - 2506 480.746 15.20 16.14 — 16.13 15.79 - 15.65 - 2507 480.754 15.21 - 15.83 16.13 15.72 15.45 15.75 - 2508 480.763 15.22 — 15.90 15.84 — 15.51 15.75 16.06 2509 481.638 15.26 -— 15.81 - 15.67 15.40 15.43: — 2511 481.655 15.35 — 15.66 16.12 - 15.44 15.31 — 2515 481.691 15.36 15.61 15.62 16.18 15.73 15.58 15.36 15.65 2516 481.702 15.33 15.59 15.73 16.11 15.73 15.70 15.35 15.66 2517 481.710 15.26 — 15.60 16.17 15.76 15.52 15.34 15.67 Table A.1 (cont’d). 180 HJ D frame 2448000+ v49 v50 v51 V52 v53 v54 v65 v66 2521 481.743 14.89 — 15.71 16.16 15.69 15.78 15.41 - 2522 481.751 14.83 15.47 15.60 16.20 15.71 15.71 15.42 15.78 2523 481.760 14.80 15.64 15.60 16.14 15.82 15.63 15.41 15.79 2530 537.523 14.93 — 15.95 16.19 15.46 15.48 15.74: 15.74 2531 537.532 14.97 — 15.91 16.22 15.49 15.50 15.68 - 2532 537.540 14.96 - - 16.20 15.45 - 15.73: 15.81 2534 546.573 15.32 — 15.79 15.87 15.87 15.78 15.56 - 2535 546.581 15.23 — 15.78 15.86 '— 15.84 15.58 - 2536 546.615 14.77 — 15.77 15.92 15.74 15.77 15.63 - 2538 546.630 14.66 - 15.85 16.01 15.77 15.65 15.71 — 2542 547.527 15.18 — 15.73 - 15.50 15.46 15.68: 16.03 2543 547.536 15.15 16.13 15.81 16.02 15.61 — 15.82: — 2544 547.543 15.18 16.00 15.66 15.82 15.61 15.44 15.74: 16.20 2545 547.592 15.26 15.51 15.72 15.30 15.65 15.58 15.83: 15.96 2549 568.542 15.23 — 15.88 16.12 15.60 15.77 15.36 15.61 2550 568.558 15.24 — 15.74 16.12 15.61 15.78 15.33 — 2551 568.573 15.28 — 15.68 - 15.51 15.84 15.34 - 2552 568.623 15.30 - 15.54 - 15.45 15.92 15.40 - 2553 568.634 15.25 - 15.46 - 15.55 15.80 15.42 - 2565 569.627 14.92 — — - — — 15.85: — 2567 570.489 15.17 - 15.88 16.11 15.85 15.79 15.66: - 2568 570.497 15.17 — 15.93 16.12 - 15.81 15.72: -— 2569 570.531 15.27 - — 16.23 16.00 — 15.77: 15.78 2573 570.552 15.29 15.51 15.84 16.21 16.00 15.91 - 15.82 2574 570.559 15.27 15.56 15.77 16.02 15.99 15.85 15.85: 15.86 2578 570.602 15.25 - 15.58 15.35 15.95 - 15.69 - 2579 570.609 15.25 - 15.51 15.33 — 15.77 15.61: — 2580 570.618 15.27 - 15.48 15.33 15.92 15.74 15.77 - 2585 574.560 15.28 — 15.65 - — 15.88 15.58 15.82 2586 574.569 15.29 — — 16.26 15.87 - 15.67: 15.82 2587 574.576 15.30 16.09 15.57 — 16.03 — 15.64: 15.73 . 2597 601.463 -— — -— 15.97 15.67 15.81 15.39: 15.91 2591 601.476 15.24 16.09 15.84 16.28 15.70 15.48 15.80 - 2592 601.491 15.27 — 15.95 16.16 15.82 15.50 15.77: — 2594 601.507 15.21 - - - - 15.41 15.82: - 2595 601.517 — — 15.65 — - 15.59 15.72: - 2598 602.471 15.09 15.63 15.68 16.02 15.82 15.81 15.42 16.04 2599 602.479 15.11 - 15.58 15.99 - — 15.35 - 3501 602.487 15.10 15.68 15.72 15.99 15.76 15.90 15.49: - 3502 602.495 15.09 - - - 15.78 — 15.41: - 3505 802.799 14.64 15.78 - 16.01 15.92 - 15.50: 16.09 3506 802.807, 14.63 15.83 15.70 15.96 15.96 15.56 15.47: 16.08 3507 802.815 14.66 15.84 15.72 16.00 16.01 15.53 15.50 16.11 3511 802.848 14.78 16.00 - 16.04 16.04 — 15.50 16.07 3512 802.855 14.81 15.97 15.60 16.06 16.03 15.42 15.53: 16.12 Table A.1 (cont’d). 181 11.1 D frame 2448000+ v49 v50 v51 v52 v53 V54 v65 v66 3513 802.863 14.83 16.03 15.58 16.10 16.01 15.43 15.68 16.07 3514 831.774 15.10 16.07 15.85 16.07 16.01 15.83 15.79: 15.72 3515 831.786 15.09 16.11 15.70 16.11 15.93 - 15.80 15.71 3520 831.828 15.13 - 15.71 16.04 16.00 15.94 15.91: 15.68 3521 831.837 15.14 16.25 15.66 16.04 16.02 15.88 15.87 - 3522 831.846 15.17 — — 16.04 16.00 — 15.68 15.71 3526 833.713 15.04 15.52 16.01 15.39 15.68 15.64 15.53 15.67 3527 835.725 15.09 16.20 15.87 16.13 15.48 15.66 15.46 15.89 3528 835.733 15.09 16.13 15.96 16.15 15.49 15.80 15.40 15.90 3529 835.741 15.15 16.11 15.95 16.09 15.50 — 15.45 15.91 3533 835.774 15.13 15.92 15.71 16.10 15.55 15.92 15.45 16.02 3534 835.783 15.16 15.77 15.73 16.09 15.60 15.86 15.35 16.03 3535 835.791 15.18 15.69 15.61 16.03 15.59 15.83 15.47: 15.97 3539 835.824 15.18 15.53 15.65 16.04 15.67 15.87 15.46 16.12 3540 835.831 15.19 15.54 15.63 16.04 15.71 15.87 15.56: . 16.09 3541 835.840 15.21 15.51 15.72 16.01 15.79 15.73 15.34 16.09 3545 836.712 15.26 15.58 15.87 15.86 15.91 — 15.79 15.72 3546 836.720 15.24 15.56 15.82 15.89 15.93 15.90 15.49: 15.75 3547 836.727 15.25 15.57 15.82 15.88 15.90 15.81 15.71 15.68 3551 836.768 15.31 15.77 - 15.93 15.94 — 15.85: 15.70 3552 836.776 15.29 15.94 16.01 15.99 - 15.74 15.60 - 3553 836.784 15.24 15.83 15.99 16.05 15.91 15.71 15.77 15.65 3554 839.694 15.12 15.55 15.86 16.07 15.98 15.70 15.74: 15.98 3555 839.702 15.13 15.61 15.74 16.05 15.93 15.63 15.82 15.97 3556 839.760 15.15 15.80 15.62 16.10 15.83 — 15.85 15.73 3560 839.793 15.22 15.85 15.58 16.14 15.77 15.77 15.78 - 3561 839.801 15.20 - 15.64 16.08 15.75 15.90 15.81: 15.73 3562 840.681 15.25 15.94 15.70 15.66 15.50 15.85 15.72 15.88 3563 840.696 15.26 15.94 - 15.73 15.54 15.90 15.57 15.98 3564 840.704 15.24 15.90 15.77 15.79 15.52 15.80 15.55 16.00 3568 854.648 15.01 15.76 15.93 16.04 15.92 15.85 15.68 15.72 3569 854.657 15.00 15.75 16.08 16.04 15.84 16.03 15.47 15.76 3573 857.623 15.27 15.68 - - 15.71 15.65 15.88 15.68 3574 857.630 15.24 15.78 . — 16.22 15.71 — 15.76: 15.68 3575 857.638 15.25 15.83 15.59 16.24 15.66 — 15.89 15.68 3576 857.646 15.22 15.86 15.65 16.17 15.74 — 15.84: 15.71 3577 857.654 15.23 15.83 15.63 16.20 15.74 15.62 15.76: 15.71 3578 857.662 15.24 15.88 15.57 16.18 15.70 - 15.67: 15.71 3579 857.678 15.24 15.91 15.61 16.13 15.71 - 15.72: 15.71 3580 857.686 15.27 15.91 15.75 16.14 15.74 15.76 15.90: 15.76 3581 857.694 15.25 15.93 15.71 16.10 15.77 15.68 15.79: 15.76 3582 857.703 15.27 16.03 15.66 16.07 15.77 15.71 15.92: 15.80 3583 857.719 15.26 - 15.70 16.03 15.71 15.68 15.92: 15.89 3584 857.735 15.28 16.09 15.69 15.95 15.73 15.82 15.98: 15.87 3585 857.744 15.27 — 15.84 15.95 15.72 15.90 15.83: 15.84 Table A.1 (cont’d). 182 HJ D frame 2448000+ v49 v50 v51 V52 v53 V54 v65 v66 4551 867.607 15.22 16.21 15.71 15.48 15.68 — 15.85 15.85 4552 867.616 15.21 16.15 15.77 15.34 15.66 15.59 15.73 16.00 4553 867.623 15.12 16.10 15.83 15.24 15.69 15.59 15.83 16.00 4560 869.672 14.84 16.16 15.82 16.12 15.51 15.55 15.65 15.92 4561 888.568 15.34 15.59 15.45 15.94 15.91 15.91 15.87: 16.10 4562 888.576 15.31 15.56 15.49 15.93 15.94 15.93 15.63 16.10 4563 888.584 15.26 15.57 15.57 15.97 15.94 15.91 15.77 16.12 4564 888.600 15.04 15.60 15.48 15.99 15.91 15.79 15.85: 16.07 4565 888.608 14.89 15.73 15.48 16.02 15.88 — 15.81: 16.13 4566 888.616 14.81 15.64 15.60 16.01 15.89 15.92 15.77 16.10 4567 888.623 14.72 15.74 15.53 16.04 15.84 15.81 15.83: 16.02 4568 888.640 14.63 15.78 15.68 16.09 15.82 15.88 15.68 15.88 4569 888.650 14.66 15.81 15.68 16.08 15.82 15.92 15.72: 15.86 4570 888.659 14.70 15.79 15.75 16.09 15.73 15.88 15.74 15.74 4571 888.667 14.75 15.76 15.63 16.10 15.71 — 15.56 - 4572 888.702 14.87 16.12 15.60 16.17 15.72 15.61 15.76 15.68 4589 890.562 15.08 - 15.66 16.14 15.92 - 15.71 15.76 4590 890.570 14.95 16.30 15.66 16.18 15.93 — 15.77 15.73 4591 890.578 14.86 16.25 15.61 16.25 15.94 15.88 15.78 15.69 4592 890.594 14.69 16.17 15.62 16.28 15.97 — 15.72 15.69 4593 890.603 14.67 16.11 15.71 16.21 15.98 - 15.68 15.65 4594 890.611 14.67 16.02 15.56 16.13 15.93 15.84 15.76 15.64 4595 890.618 14.68 15.96 15.65 15.83 15.99 16.02 15.81 15.64 4596 890.626 14.71 15.85 15.72 15.60 15.96 15.91 15.81 15.65 5522 896.542 14.79 16.18 15.51 15.83 15.73 15.77 15.89 16.09 5523 896.550 14.83 - 15.64 15.86 15.74 15.99 15.60: 16.04 5524 897.530 15.28 15.62 15.98 15.71 15.69 - 15.39 15.78 183 Table A.1 (cont’d). HJ D frame 2448000+ V67 v74 v97 v99 v113 1501 446.837 15.87: 15.77 16.01: 15.86 15.56 1502 446.845 15.98: — 15.97: 15.88 15.67 1533 452.771 15.94: — 16.03 15.90 15.65 1534 452.780 15.78: — 15.98 15.92 15.66 1535 452.822 15.74: — 16.07: 15.74 15.59 1536 452.829 15.99 - 16.03 15.72 15.60 1537 452.838 15.96 - 16.12 15.78 15.64 1508 453.772 15.93: - 16.05: 15.75 15.60 1509 453.781 16.00: — 16.03 15.74 15.64 1510 453.789 15.77: 15.89 15.92: 15.83 15.66 1511 453.830 15.43 15.43 15.76: 15.87 - 1512 453.838 15.64: 15.49: 15.69 15.80 15.70 1513 453.846 15.46 15.39 15.54 15.81 - 1520 454.750 15.91: 15.42 15.82 15.89 15.78 1522 454.769 16.06 15.65 15.76 15.88 15.68 1523 454.817 — 15.78: 15.81 15.94 15.58 1525 454.833 16.15: 15.94 15.92 15.82 15.62 1559 474.726 16.26 - 15.92: 15.91 15.59 1563 474.763 15.95: - 15.59 — — 1565 474.784 - - 15.47 15.84 15.52 1569 474.820 16.24: 15.69 15.60 15.86 15.52 1571 474.837 16.01 15.60 15.78 15.81 15.50 1572 475.683 15.70 - 15.96 15.85 15.60 1573 475.691 15.58: - 16.09: — 15.68 1574 475.699 15.97: 15.88: 16.00 15.88 15.65 1578 475.733 15.91 15.47 16.01 15.92 15.68 1579 475.741 15.89 15.49 16.25: 15.87 15.66 1580 475.750 16.02: 15.49 16.08: - - 1584 479.657 - 15.65 15.36 15.71 15.57 1585 479.665 16.13 15.74 15.50 15.71 15.62 1586 479.673 - 15.77 — 15.74 15.58 1590 479.707 15.98: 15.87 15.51: 15.81 15.54 1591 479.715 16.03: 15.96 15.57 15.81 15.58 1592 479.724 - 16.01: 15.65 15.84 15.57 1599 480.687 - — 16.28: - — 2501 480.696 15.94: - 16.27: 15.83 15.81 2502 480.704 15.81: — 16.38: — 15.85 2506 480.746 16.10: — 16.19 15.72 15.78 2507 480.754 16.30: 15.76 16.40: 15.71 15.73 2508 480.763 - 15.51 16.20: 15.67 15.67 2509 481.638 - 15.64 16.08: 15.75 15.69 2511 481.655 - 15.71 15.95: 15.77 15.70 2515 481.691 - 15.48 15.57 15.78 15.64 2516 481.702 15.97: 15.51 15.73: 15.84 15.64 2517 481.710 16.02: 15.73: — 15.82 15.62 184 Table A.1 (cont’d). HJ D frame 2448000+ v67 v74 v97 v99 v113 2521 481.743 16.32: - 15.61 15.94 15.62 2522 481.751 16.12' 15.80 15.47 15.93 15.63 2523 481.760 15.91 15.79 15.54 15.91 15.60 2530 537.523 - — 15.74: 15.72 15.84 2531 537.532 16.45: 16.11 15.64: 15.76 15.85 2532 537.540 16.18: — 15.57 15.82 15.85 2534 546.573 15.92: — 15.65: 15.91 15.72 2535 546.581 15.99: — 15.63: 15.96 15.70 2536 546.615 16.17: — 15.82 - 15.69 2538 546.630 16.18: — 15.67 15.97 15.70 2542 547.527 16.20: 16.19 15.94: 15.88 15.59 2543 547.536 — — 16.00: 15.89 15.63 2544 547.543 16.24: — 16.21: 15.91 15.69 2545 547.592 16.16: — 16.34: 15.77 15.70 2549 568.542 16.09: — 16.07 15.86 15.66 2550 568.558 16.25: — 16.06: 15.81 15.67 2551 568.573 — — 16.13: 15.78 15.67 2552 568.623 16.21 — 16.30: 15.78 15.57 2553 568.634 — — 16.25: 15.67 15.61 2565 569.627 — - — - - 2567 570.489 - 15.60 15.88: 15.94 15.81 2568 570.497 — 15.57 15.81: 15.95 15.76 2569 570.531 - — 16.07 15.99 15.67 2573 570.552 — 15.84 16.11: 15.91 15.68 2574 570.559 16.16 15.87 16.06: 15.83 15.68 2578 570.602 - — 16.21: 15.68 15.67 2579 570.609 16.39: — 15.92: 15.68 15.70 2580 570.618 — - 16.04: 15.72 15.65 2585 574.560 - 16.08: 15.96: - 15.74 2586 574.569 16.12 16.03: 15.83 15.82 15.72 2587 574.576 16.16 15.93: 15.86 15.90 15.72 2597 601.463 — — 15.92: — 15.74 2591 601.476 — 16.12 15.53 15.69 15.66 2592 601.491 15.86: - 15.57: 15.74 15.63 2594 601.507 — — - - — 2595 601.517 - - 15.50: — 15.57 2598 602.471 16.00: 15.60 15.84 15.91 15.78 2599 602.479 15.87: 15.70: 15.87 - 15.80 3501 602.487 - 15.73: 15.96: 15.96 15.79 3502 602.495 16.03: 15.70: 15.99: 15.97 - 3505 802.799 - 15.90 15.52 15.87 15.64 3506 802.807 16.12 15.78 15.61: 15.89 15.63 3507 802.815 - 15.68 15.67 15.87 15.65 3511 802.848 - 15.49 15.67 15.83 15.61 3512 802.855 16.24: 15.55 15.70 15.83 15.62 185 Table A.1 (cont’d). 11.1 D frame 2448000+ v67 v74 v97 v99 V113 3513 802.863 16.37: 15.56 15.69 15.84 15.62 3514 831.774 15.44 16.27: 16.05 15.72 15.64 3515 831.786 15.60 16.37 15.81 15.71 15.65 3520 831.828 15.69 15.78 16.06 15.66 15.74 3521 831.837 15.72 15.71 16.04 15.70 15.74 3522 831.846 15.73 15.70 16.06 15.71 15.76 3526 833.713 16.07 15.91 15.94 15.99 15.59 3527 835.725 15.84 , 15.65 15.83 15.98 15.60 3528 835.733 15.88 15.77 15.92 15.94 15.59 3529 835.741 15.90 15.84 15.85 15.98 15.58 3533 835.774 15.81 15.96 15.63: 15.81 15.61 3534 835.783 15.76 15.94 15.93 15.80 15.60 3535 835.791 15.85 15.98 15.90 15.77 15.58 3539 835.824 15.81 16.15 15.86 15.67 15.61 3540 835.831 15.77 16.26 15.97 15.65 15.61 3541 835.840 15.94 16.13: 16.17 15.63 15.61 3545 836.712 15.64 16.22 15.77: 15.73 15.73 3546 836.720 15.96: 16.27 16.05 15.77 15.74 3547 836.727 15.71 16.23: 15.98 15.75 15.73 3551 836.768 15.84: 16.30: 15.96 15.81 15.77 3552 836.776 15.90 16.28: 15.94: 15.89 15.77 3553 836.784 15.98 16.30 15.79 15.86 15.77 3554 839.694 16.18 16.23 15.48 15.77 15.76 3555 839.702 16.44: 16.25 15.49 15.78 15.74 3556 839.760 16.17 16.28 15.62 15.80 15.67 3560 839.793 16.24 16.09 15.79 15.89 15.60 3561 839.801 15.91 16.01 15.78 15.90 15.61 3562 840.681 15.79 16.16 15.89 15.94 15.65 3563 840.696 15.95 16.07 16.09 15.92 15.68 3564 840.704 15.75 15.83 16.03 15.94 15.69 3568 854.648 16.03 15.74 15.94 15.95 15.81 3569 854.657 16.12 15.60 15.98 15.93 15.77 3573 857.623 15.84 15.67 16.02: 15.83 15.66 3574 857.630 16.03: 15.81 16.06: 15.75 15.71 3575 857.638 16.05: 15.74 16.03: 15.76 15.64 3576 857.646 15.83 15.76 16.06 15.66 15.64 3577 857.654 15.78 15.85: 15.97: 15.65 15.66 3578 857.662 15.90 15.89 15.88 15.62 15.62 3579 857.678 15.99: 15.92 15.77 15.63 15.60 3580 857.686 16.02: 16.13 15.72 15.61 15.63 3581 857.694 15.73 16.06 15.53 15.64 15.65 3582 857.703 15.87 16.05 15.61 15.73 15.63 3583 857.719 15.79 16.28: 15.53 15.75 15.62 3584 857.735 15.91 16.22: 15.51 15.81 15.60 3585 857.744 15.90 16.31: 15.59 15.86 15.63 186 Table A.1 (cont’d). HJ D frame 2448000+ v67 v74 V97 v99 V113 4551 867.607 16.15 16.17 15.60 15.72 15.76 4552 867.616 16.01 16.21: 15.63 15.71 15.76 4553 867.623 16.05 16.17 15.64 15.76 15.76 4560 869.672 16.17 16.23 15.53 15.88 15.77 4561 888.568 16.07 16.35: 15.74 15.87 15.63 4562 888.576 16.14 16.36 15.76 15.87 15.65 4563 888.584 16.13 16.46: 15.74 15.81 15.62 4564 888.600 16.16 16.50 15.75 15.82 15.62 4565 888.608 16.10 - 15.77 15.80 15.66 4566 888.616 16.20 16.29 15.81 15.82 15.65 4567 888.623 16.28 16.27: 15.69 15.79 15.68 4568 888.640 16.28: 16.15 15.74 15.82 15.67 4569 888.650 16.23 15.89 15.84 15.81 15.71 4570 888.659 16.22 15.87 15.78 15.84 15.71 4571 888.667 16.13: 15.73 15.87 15.88 15.70 4572 888.702 - 15.83 15.99 15.92 15.74 4589 890.562 16.02 16.14 15.55 15.70 15.64 4590 890.570 15.85 16.29 15.56 15.69 15.67 4591 890.578 15.85 16.26 15.62 15.72 15.65 4592 890.594 15.98 16.04 15.60 15.70 — 4593 890.603 15.96 16.20 15.65 15.73 15.65 4594 890.611 16.04 - 15.61 15.75 15.63 4595 890.618 15.98 16.24 15.60 15.75 15.64 4596 890.626 15.95 16.36 15.62 15.77 15.65 5522 896.542 15.69 16.36: 15.82 15.86 15.79 5523 896.550 15.78 16.37: 15.88 15.85 15.80 5524 897.530 16.00 15.97 15.59 15.74 15.67 187 Table A.2 MSU R Photometry of M15 Variables 11.1 D frame 2448000+ v1 v2 v3 v4 v5 v6 v7 VB 1503 446.857 14.97 15.17 15.35 15.44 - — 15.24: - 1504 446.865 14.95 15.15 15.36 15.48 15.31 — — - 1506 449.751 14.79 15.32 15.63 15.60 15.70 15.43: 15.20: — 1507 449.761 14.85 15.36 15.68 15.59 15.69 15.33 15.22: 15.30 1538 452.738 14.92 15.08 15.43 15.88 15.55 15.74: — — 1539 452.747 15.01 15.03 15.38 15.79 15.48 15.65: 15.13: — 1540 452.754 14.94 15.00 15.41 15.79 15.48 15.79: - - 1541 452.789 — 15.01 15.47 15.53 15.53 15.72: 15.72: - 1542 452.797 14.92 15.01 15.48 15.45 15.55 16.14: — - 1544 452.813 - 14.98 15.52 15.43 15.64 15.65: - — 1514 453.755 14.75 15.24 15.75 15.47 15.38 15.49: 15.09: - 1515 453.763 14.74 15.31 15.73 15.41 15.33 15.33: 15.22: 15.48 1516 453.798 14.76 15.28 15.65 15.45 15.29 15.19: - 15.54 1517 453.806 14.74 15.27 15.56 15.53 15.33 15.06: - 15.63 1526 454.711 14.21 15.30 15.32 15.42 15.58 15.75: 15.46: — 1527 454.728 14.23 15.38 15.49 15.41 15.66 15.61 15.79: 15.50 1528 454.735 14.20 15.35 15.49 15.46 15.67 15.56: 15.61: 15.30 1529 454.777 14.21 15.10 15.59 15.59 15.71 15.64: 15.47: 15.03 1530 454.793 14.16 15.09 15.63 15.66 15.69 15.61: 15.29: 15.08 1531 454.809 14.25 15.03 15.66 15.67 15.70 15.73: - 15.18 1552 473.716 — - 15.35 15.90 15.46 15.71: - — 1555 473.768 - 15.36 15.47 15.80 15.31 15.24: 15.63: — 1562 474.754 14.22 15.09 15.79 15.44 15.62 — 15.23: 15.69 1566 474.793 14.21 15.10 15.60 15.44 15.67 - 15.33: 15.09 1568 474.811 14.19 15.13 15.54 15.47 0.07 — 15.15: 15.02 1575 475.707 - - 15.43 15.44 15.29 16.05: — - 1576 475.716 — 15.37 15.49 15.40 15.32 15.74: - 15.60 1577 475.724 14.87 15.35 15.51 15.41 15.35 - 15.44: 15.48 1581 475.759 14.88 15.31 15.51 15.53 15.41 15.36: 15.12: - 1582 475.766 14.83 15.31 15.55 15.52 15.40 15.26: 15.30: - 1583 475.775 14.91 15.33 15.58 15.56 15.41 15.19: 15.41: 15.51 1587 479.682 14.74 15.18 15.59 15.91 15.56 16.09: - 15.60 1588 479.690 14.77 15.18 15.59 15.86 15.60 15.93: 15.57: - 1589 479.698 — - 15.65 15.88 15.63 — - - 1595 479.754 14.84 - 15.73 15.57 15.68 15.13: — - 1597 480.668 14.17 15.31 15.36 15.82 15.34 15.71: 15.19: 15.06 2503 480.714 14.21 15.33 15.37 15.43 15.37 15.74: 15.37: 15.15 2504 480.723 14.24 15.34 15.35 15.44 15.34 - - 15.21 2505 480.738 14.31 15.34 15.39 15.41 15.35 - - 15.29 2512 481.664 14.79 15.11 15.68 15.41 15.64 15.89: 14.93: - 2514 481.682 14.64 15.16 — 15.39 15.69 - 15.29: 15.60 2518 481.718 14.58 15.20 15.70 15.50 15.71 15.67: 15.34: 15.65 2520 481.735 14.57 15.16 15.77 15.56 15.65 15.40: 15.25: — 2525 481.777 14.48 15.25 15.66 15.68 15.47 15.14: 15.42: — 2540 546.597 14.21 15.01 15.71 15.45 15.72 15.53: — - Table A.2 (cont’d). 188 11.1 D frame 2448000+ v1 v2 v3 v4 v5 V6 v7 VS 2546 547.552 — 15.28 - 15.44 -— 15.70: 15.36: — 2547 547.560 - 15.31 15.27 15.44 15.43 15.86: — - 2548 547.568 - 15.29 - 15.44 — 15.70: 15.44: — 2557 568.501 14.37 15.02 15.46 15.57 15.69 15.42: 15.59: 15.06 2558 568.510 14.37 15.04 15.42 15.48 15.68 - 15.52 14.90 2559 568.517 14.42 15.03 15.41 15.44 15.68 15.48: 15.34: 14.93 2554 568.582 14.56 15.13 15.38 15.47 15.66 15.59: -- 15.08 2555 568.599 14.56 15.17 15.39 15.57 15.55 15.83: — 15.22 2556 568.615 14.63 15.17 15.44 15.62 15.50 15.77: 15.33: 15.22 2560 569.578 14.29 15.30 15.74 15.73 15.60 -- 15.14: - 2562 569.594 14.22 — 15.67 15.76 - — 15.17: — 2570 570.507 — 14.97 15.31 15.67 15.59 15.42: 15.64: 15.17 2571 570.514 14.82 14.98 15.27 15.68 15.59 15.37: 15.40: — 2575 570.568 15.00 15.10 15.37 15.79 15.34 15.51: - 15.33 2576 570.576 — - 15.41 15.76 15.28 - — — 2577 570.591 14.90 15.08 15.43 15.83 15.30 15.58 15.35: 15.29 2582 574.536 — - 15.63 15.47 - 15.49: — -— 2583 574.544 14.67 - 15.63 15.55 15.49 15.46: - 15.53 2584 574.552 — — 15.65 - 15.52 - — — 3508 802.823 14.27 - 15.75 15.47 15.60 15.43: 15.44: — 3509 802.831 - - 15.72 15.51 15.60 15.32 - - 3510 802.839 — - 15.75 15.51 15.63 15.36: - — 3517 831.803 14.71 15.38 15.47 15.83 15.47 15.99: 15.25: - 3518 831.810 14.65 15.33 15.47 15.87 15.41 15.75: 15.39: 15.55 3519 831.819 - — 15.52 15.90 15.40 15.75: — - 3523 831.854 14.73 15.02 15.54 15.90 15.32 - 15.60: - 3524 831.862 14.73 15.00 15.56 15.91 15.30 16.06: 15.44: «- 3525 831.869 14.77 14.96 15.59 15.88 15.27 15.87: 15.81: 15.64 3530 835.749 14.24 - 15.60 15.48 15.37 — 15.20: - 3531 835.758 14.24 15.41 15.67 15.54 15.36 15.85: 15.24: — 3532 835.766 - — 15.64 15.56 15.38 — 15.65 - 3548 836.743 14.86 — 15.45 15.65 15.67 15.21: -— 15.17 3549 836.751 14.88 - 15.44 15.67 15.68 15.22: 15.29: 15.18 3550 836.758 14.88 15.06 15.41 15.71 15.67 15.25: - - 3557 839.769 14.57 15.33 15.77 15.44 15.70 15.96: 15.15 - 3558 839.777 - 15.31 15.76 15.44 15.70 15.68: -- — 3559 839.785 14.57 — 15.79 15.47 15.68 16.07: 15.37: - 3565 840.713 - - 15.41 15.43 15.31 15.52: 15.21: - 3566 840.721 14.80 15.22 15.41 15.48 15.29 15.60: 15.43 15.35 3567 840.729 14.90 15.16 15.44 15.41 15.34 15.24: 14.99: 15.39 4554 869.589 14.89 15.02 15.56 15.42 15.44 15.66: 15.47: - 4555 869.606 14.95 15.04 15.64 15.43 15.43 15.62: 15.44: 15.61 4556 869.613 14.93 15.08 15.63 15.47 15.44 - - - 4557 869.640 14.91 15.11 15.71 15.58 15.53 - 15.46: - 4558 869.648 14.97 15.14 15.73 15.59 15.54 15.71: 15.48: 15.17 Table A.2 (cont’d). 189 HJ D frame 2448000+ v1 v2 V3 v4 V5 v6 v7 V8 4559 869.656 14.96 15.15 15.71 15.62 15.55 15.80: — 15.08 4573 889.569 14.80 15.16 — 15.86 15.40 — - 15.70 4574 889.585 14.87 15.20 — 15.82 15.43 — — - 4575 889.593 14.88 15.20 15.49 15.76 15.39 15.68: 15.37: - 4576 889.601 14.85 15.21 15.48 15.72 15.45 - - - 4577 889.609 14.89 15.28 15.45 15.63 15.48 15.73: - — 4578 889.617 — 15.29 15.43 15.55 15.51 15.80: 15.21 - 4579 889.625 14.92 15.27 15.42 15.46 15.52 - - 15.77 4580 889.633 — 15.28 15.42 15.41 15.51 - 15.05: 15.72 4581 889.641 — 15.26 15.42 15.42 15.53 — 15.14: - 4582 889.649 14.91 15.29 15.40 15.39 15.58 16.03: 15.13: - 4583 889.657 14.84 15.27 15.38 15.42 15.60 - 15.05: 15.35 4584 889.666 14.89 15.29 15.40 15.43 15.60 15.79: 15.14: 15.31 4585 889.682 14.91 15.25 15.42 15.44 15.66 15.91: - 15.20 4586 889.689 14.90 15.34 15.43 15.49 15.65 15.89: 15.11: 15.06 4587 889.697 14.88 15.33 15.42 15.51 15.66 15.81: 15.07: 15.04 4588 889.705 — 15.33 15.43 15.53 15.68 16.01: — - 5505 891.560 14.42 15.06 15.37 15.42 15.53 15.55: 15.21: 15.57 5506 891.568 14.39 15.12 — 15.45 15.53 15.61: — - 5507 891.577 14.38 15.11 — 15.53 — — 15.26: — 5508 891.593 14.32 15.13 15.37 15.59 15.62 15.58: 15.34: 15.38 5509 891.601 14.35 15.16 15.40 15.58 15.62 15.58: — 15.30 5525 897.539 - - — 15.53 15.35 15.68: 15.23 15.20 5526 897.546 — 14.95 - — 15.35 — — - 5527 897.562 14.18 — 15.55 15.62 15.34 - - 15.28 5528 897.571 14.20 - 15.59 15.64 15.33 15.65: — — 5529 897.578 - — 15.59 15.68 15.33 15.40: — — 5530 897.594 14.12 — 15.67 15.70 15.35 15.66: 15.52: — 5531 897.602 14.19 - 15.71 15.73 15.34 15.69: - 15.43 5532 897.610 — - 15.71 15.75 15.38 - - - 5533 897.618 - — 15.71 15.77 15.40 15.77: — — 5534 897.626 — - 15.72 15.78 15.40 15.65: — — 5535 897.634 - — 15.75 15.82 15.38 15.78: — 15.46 5536 897.642 14.28 15.13 15.77 15.82 15.42 15.74: 15.28: - 5537 897.650 14.29 - 15.78 15.88 15.45 15.72: 15.46: — 5538 897.658 14.22 - 15.81 15.88 15.47 15.83: 15.38: — 5539 897.666 14.24 — 15.81 15.90 15.47 15.87: — — 5540 897.674 14.30 — 15.82 15.91 15.47 - 15.42: 15.54 5541 897.682 14.25 - 15.79 15.96 15.52 15.98: 15.25: 15.48 190 a Table A.2 (cont’d). HJD frame 2448000+ v9 v10 v11 v13 v14 v15 v17 v18 1503 446.857 — - - 15.39 15.81 15.83 15.80 - 1504 446.865 — - 15.55 — - 15.81 15.77 - 1506 449.751 15.55 15.46 15.48 15.04 15.46 15.78 15.37 15.46 1507 449.761 15.50 15.43 15.47 15.02 15.44 15.72 15.41 15.44 1538 452.738 15.69 15.47 15.40 15.38 15.54 15.83 15.42 15.45 1539 452.747 15.59 15.49 15.34 15.43 15.54 15.80 15.39 15.51 1540 452.754 15.62 15.48 15.36 15.56 15.49 15.83 15.49 15.56 1541 452.789 15.61 15.37 15.45 15.49 15.47 15.82 15.48 15.65 1542 452.797 15.60 15.44 — 15.57 15.46 15.84 15.51 15.75 1544 452.813 15.59 15.49 — 15.45 15.45 15.83 15.55 15.69 1514 453.755 15.14 15.71 15.36 15.22 15.74 15.61 15.68 15.36 1515 453.763 15.14 15.77 15.35 15.13 15.72 15.65 15.70 15.36 1516 453.798 15.22 15.77 15.36 15.07 15.77 15.69 15.76 15.38 1517 453.806 15.23 15.77 15.34 15.16 15.83 15.71 15.76 15.45 1526 454.711 15.48 15.52 15.90 -— 15.46 14.90 - 15.83 1527 454.728 15.55 15.51 15.85 15.79 15.43 14.97 15.88 15.76 1528 454.735 15.50 15.40 15.74 15.77 15.43 15.03 15.83 15.83 1529 454.777 15.51 15.43 15.47 15.79 15.50 15.29 15.66 15.71 1530 454.793 15.55 15.49 15.36 15.68 15.53 15.27 15.56 15.62 1531 454.809 15.53 15.49 15.35 15.67 15.55 15.33 15.45 15.54 1552 473.716 15.09 15.44 15.35 15.80 15.74 15.84 15.60 15.58 1555 473.768 15.24 15.53 15.44 15.74 15.46 15.83 15.63 15.72 1562 474.754 15.55 15.49 — 15.61 15.67 15.53 15.78 15.43 1566 474.793 15.57 15.37 15.42 15.75 15.76 15.62 15.72 15.45 1568 474.811 15.57 15.41 15.42 15.77 0.08 15.65 15.90 15.57 1575 475.707 15.62 15.60 15.56 15.32 15.41 14.92 15.74 15.78 1576 475.716 15.74 15.54 15.51 15.34 15.41 14.89 15.72 15.73 1577 475.724 - 15.59 - 15.33 15.41 14.90 15.72 15.73 1581 475.759 15.76 15.66 15.38 15.43 15.42 15.16 15.60 15.54 1582 475.766 15.70 15.72 15.31 15.45 15.43 15.18 15.59 15.52 1583 475.775 - 15.70 15.31 15.49 15.43 15.20 15.55 15.49 1587 479.682 15.35 15.86 15.74 15.19 15.73 15.82 15.24 15.75 1588 479.690 15.44 15.79 - 15.19 15.76 15.87 15.27 15.76 1589 479.698 15.40 15.84 — 15.20 15.70 15.86 15.32 «- 1595 479.754 15.49 15.73 - 15.37 15.75 15.62 15.35 - 1597 480.668 15.63 15.47 15.56 15.76 15.53 15.78 15.60 15.51 2503 480.714 15.73 15.48 15.68 15.85 15.51 15.91 15.73 15.55 2504 480.723 15.61 15.64 15.78 15.79 15.46 15.88 15.60 15.61 2505 480.738 15.67 15.61 15.77 15.88 15.50 15.89 15.63 15.60 2512 481.664 15.20 15.77 15.56 15.71 15.76 15.38 15.76 15.44 2514 481.682 15.21 15.73 15.57 15.72 15.76 15.50 15.73 15.48 2518 481.718 15.24 15.65 15.64 15.78 15.77 15.60 15.75 15.37 2520 481.735 15.29 15.49 — 15.73 15.76 15.50 15.77 15.40 2525 481.777 15.35 15.38 15.70 15.71 15.55 15.61 15.80 15.48 2540 546.597 15.71 15.78 — 15.73 15.87 15.76 15.43 15.73 191 Table A.2 (cont’d). 11.1 D frame 2448000+ v9 V10 v11 V13 v14 v15 v17 v18 2546 547.552 15.28 15.56 15.51 15.30 15.41 15.33 15.50 15.42 2547 547.560 15.29 15.58 15.54 15.32 15.45 15.38 15.53 15.38 2548 547.568 15.27 - 15.51 15.32 15.47 15.41 15.46 15.40 2557 568.501 15.53 15.73 15.51 15.81 15.53 15.24 15.37 15.37 2558 568.510 15.60 15.67 15.40 15.76 15.54 15.26 15.43 15.31 2559 568.517 15.53 15.79 15.54 15.81 15.49 15.28 15.40 15.43 2554 568.582 15.57 15.78 15.65 15.85 15.44 15.44 15.55 15.50 2555 568.599 15.62 15.82 15.67 15.76 15.47 15.48 15.62 15.66 2556 568.615 15.57 15.73 15.81 15.74 15.56 15.52 15.60 15.64 2560 569.578 15.11 15.59 - 15.69 15.90 15.82 15.75 15.39 2562 569.594 15.02 15.62 15.61 15.66 15.83 15.69 15.73 15.38 2570 570.507 15.36 15.85 15.43 15.09 15.53 15.74 15.78 15.72 2571 570.514 - 15.83 15.45 15.17 15.51 15.74 15.78 15.77 2575 570.568 15.44 15.70 15.56 15.30 15.61 15.73 15.57 15.79 2576 570.576 15.37 15.62 — 15.35 15.63 15.70 15.47 15.80 2577 570.591 15.45 15.56 15.56 15.40 15.65 15.71 15.40 15.82 2582 574.536 15.23 — - 15.13 — 15.58 15.51 - 2583 574.544 15.32 15.44 15.78 15.19 15.85 15.64 15.56 15.73 2584 574.552 -— 15.47 — 15.19 15.79 15.57 - - 3508 802.823 15.15 15.54 15.75 15.25 15.53 15.81 15.60 15.51 3509 802.831 15.08 15.49 15.61 15.31 15.54 15.80 15.61 15.51 3510 802.839 15.16 15.44 15.57 15.29 15.59 15.80 15.61 15.54 3517 831.803 15.56 15.41 15.42 15.73 15.44 15.52 15.59 15.39 3518 831.810 15.62 15.39 15.57 15.70 15.46 15.53 15.54 15.37 ‘ 3519 831.819 15.58 15.41 15.58 15.75 15.42 15.54 15.53 15.47 3523 831.854 15.52 15.39 15.62 15.74 15.53 15.66 15.47 15.43 3524 831.862 15.58 15.39 15.65 15.75 15.55 15.67 15.43 15.50 3525 831.869 15.57 15.42 15.73 15.75 15.56 15.67 15.52 15.43 3530 835.749 15.19 15.45 15.76 15.57 15.71 14.93 15.55 15.75 3531 835.758 15.21 15.40 15.73 15.59 15.73 15.05 15.62 15.71 3532 835.766 15.25 15.41 - 15.57 15.77 15.07 15.55 15.67 3548 836.743 15.51 15.79 — 15.23 15.40 15.79 15.61 15.70 3549 836.751 15.57 15.79 15.86 15.29 15.39 15.80 15.66 15.74 3550 ' 836.758 15.55 15.80 15.79 15.32 15.42 15.83 15.64 15.76 3557 839.769 15.62 15.72 15.63 15.61 15.40 15.25 15.78 15.79 3558 839.777 15.63 15.77 15.79 15.54 15.39 15.12 15.75 15.80 3559 839.785 15.66 15.86 15.69 15.59 15.38 14.97 15.77 15.78 3565 840.713 15.11 15.38 15.44 15.06 15.70 15.81 15.68 15.52 3566 840.721 15.24 15.42 15.58 15.17 15.74 15.83 15.68 15.50 3567 840.729 15.14 15.45 15.56 15.13 15.76 15.80 15.69 15.54 4554 869.589 15.44 15.81 15.59 15.43 15.46 15.06 15.48 15.68 4555 869.606 15.50 15.75 15.66 15.48 15.43 15.22 15.47 15.49 4556 869.613 15.49 15.73 15.71 15.52 15.44 15.23 15.48 15.54 4557 869.640 15.49 15.59 15.79 15.55 15.49 15.31 15.54 15.40 4558 869.648 15.53 15.54 15.80 15.56 15.50 15.31 15.51 15.38 192 Table A.2 (cont’d). HJD frame 2448000+ v9 v10 v11 v13 V14 v15 v17 v18 4559 869.656 15.56 15.52 15.82 15.58 15.49 15.33 15.52 15.38 4573 889.569 — 15.67 15.81 15.09 15.61 15.54 15.65 - 4574 889.585 15.44 15.78 15.81 15.10 15.63 15.55 15.67 15.40 4575 889.593 15.45 15.76 15.84 15.16 15.68 15.57 15.70 15.46 4576 889.601 15.45 15.75 - 15.16 15.72 15.57 15.70 15.47 4577 889.609 15.43 - 15.81 15.21 15.69 15.59 15.64 15.52 4578 889.617 15.34 15.76 15.76 15.24 15.73 15.59 15.72 15.49 4579 889.625 15.48 15.74 15.81 15.28 15.74 15.57 15.64 15.52 4580 889.633 15.55 15.76 15.73 15.28 15.75 15.58 15.61 15.58 4581 889.641 15.47 15.78 15.81 15.31 15.76 15.60 15.61 15.59 4582 889.649 15.49 15.74 15.79 15.32 15.73 15.59 15.58 15.59 4583 889.657 15.51 15.79 15.73 15.34 15.78 15.64 15.55 15.60 4584 889.666 15.51 15.80 15.67 15.38 15.78 15.63 15.54 15.65 4585 889.682 15.50 15.77 15.59 15.38 15.79 15.65 15.49 15.67 4586 889.689 15.56 15.77 15.53 15.41 15.77 15.66 15.45 15.68 4587 889.697 15.52 15.77 15.45 15.45 15.78 15.68 15.45 15.74 4588 889.705 15.56 15.74 15.40 15.44 15.78 15.71 15.47 15.78 5505 891.560 15.17 15.82 15.68 15.69 15.81 15.73 15.51 15.74 5506 891.568 15.16 15.84 15.58 15.70 15.78 15.74 15.51 15.75 5507 . 891.577 15.18 15.83 15.65 15.68 15.80 15.73 15.57 15.76 5508 891.593 15.27 - 15.68 15.69 15.77 15.75 15.53 15.74 5509 891.601 15.27 15.82 15.72 15.74 15.81 15.76 15.59 15.75 5525 897.539 15.51 15.47 15.81 15.82 15.51 15.41 15.43 — 5526 897.546 15.46 15.44 15.77 15.81 15.51 15.34 15.48 15.60 5527 897.562 15.52 15.48 15.76 15.73 15.57 15.29 15.45 15.48 5528 897.571 15.53 15.48 15.68 15.63 15.57 15.27 15.47 15.45 5529 897.578 15.50 - 15.59 15.36 15.65 15.27 15.51 - 5530 897.594 15.54 15.51 15.43 15.23 15.61 15.24 15.55 15.38 5531 897.602 15.54 15.52 15.44 15.09 15.62 15.37 15.55 15.39 5532 897.610 15.55 15.50 15.40 15.09 15.65 15.36 15.56 15.37 5533 897.618 15.55 15.55 15.37 15.09 15.67 15.38 15.60 15.33 5534 897.626 15.59 15.55 15.34 15.10 15.68 15.38 15.59 15.37 5535 897.634 15.60 15.59 15.37 15.09 15.70 15.37 15.64 15.40 5536 897.642 15.61 15.61 15.34 15.11 — 15.35 15.64 15.40 5537 897.650 15.57 15.61 15.33 15.16 15.72 15.36 15.65 15.38 5538 897.658 15.60 15.62 15.39 15.21 15.71 15.39 15.69 15.42 5539 897.666 - 15.67 15.41 15.23 15.75 15.40 15.67 15.46 5540 897.674 15.58 15.69 15.42 15.27 15.73 15.43 15.70 15.47 5541 897.682 — 15.70 15.40 15.26 15.72 15.39 15.73 15.44 193 Table A.2 (cont’d). 11.1 D frame 2448000+ v19 V20 v22 V23 v24 V25 v29 v30 1503 446.857 15.90 - 15.31 15.62 15.56 15.48 15.74: 15.21 1504 446.865 15.89 — 15.31 — - — — 15.15 1506 449.751 15.88 15.71 15.45 15.53 15.44 15.38 15.97: 15.37 1507 449.761 15.83 — 15.46 15.55 15.32 15.38 - 15.39 1538 452.738 15.31 - 15.51 15.27 — 15.66 15.55: 15.52 1539 452.747 15.11 - 15.51 15.26 15.37 15.67 — 15.60 1540 452.754 15.00 - 15.50 15.30 15.47 15.73 — 15.58 1541 452.789 14.93 16.09: 15.51 15.38 15.50 15.79 — 15.53 1542 452.797 14.95 - 15.53 15.34 15.54 15.85 — 15.48 1544 452.813 15.03 — 15.56 15.38 - 15.80 - — 1514 453.755 15.85 15.40: 15.25 15.61 15.32 15.45 - 15.36 1515 453.763 15.80 15.48: 15.22 15.56 15.33 15.42 15.67 15.33 1516 453.798 15.82 15.47: 14.99 15.61 15.42 15.49 15.80: 15.37 1517 453.806 15.86 15.48: 15.02 15.62 15.43 15.49 15.75 15.37 1526 454.711 15.66 15.83: 15.24 15.45 15.56 15.73 15.41: 15.49 1527 454.728 15.73 15.93: 15.30 15.41 — 15.73 - 15.59 1528 454.735 15.70 15.80: 15.31 15.44 15.60 15.72 15.34: 15.57 1529 454.777 15.78 15.85: 15.38 15.48 15.41 15.79 - 15.56 1530 454.793 15.86 — 15.40 15.49 15.40 15.77 15.48 15.61 1531 454.809 15.81 15.80: 15.44 15.54 15.27 15.77 15.56 15.59 1552 473.716 15.84 — 15.54 15.39 — 15.42 15.50: -— 1555 473.768 15.88 — 15.64 15.48 15.38 15.46 — — 1562 474.754 15.63 15.72: 15.14 15.39 15.33 15.66 14.91 15.37 1566 474.793 15.73 15.70: 15.22 15.02 15.31 15.48 15.10 15.27 1568 474.811 15.78 - 15.22 15.02 0.07 15.33 15.12: 15.35 1575 475.707 15.09 — 15.47 15.49 15.66 15.44 15.82 15.31 1576 475.716 15.15 - 15.49 15.48 15.54 15.45 15.82 15.34 1577 475.724 15.17 15.94: 15.50 15.51 15.59 15.41 - 15.39 1581 475.759 15.28 - 15.49 15.59 15.57 15.50 — 15.38 1582 475.766 15.34 15.97: 15.52 15.58 15.63 15.48 15.65: 15.40 1583 475.775 15.34 — 15.53 15.56 15.63 15.53 — 15.39 1587 479.682 14.91 15.76: 15.20 15.64 15.44 15.51 15.89: 15.27 1588 479.690 14.95 - 15.03 15.57 15.32 15.53 15.91: 15.30 1589 479.698 14.99 15.63: 15.04 15.58 — 15.44 - - 1595 479.754 15.28 — 15.04 15.63 — 15.53 15.92 -— 1597 480.668 15.89 — 15.27 15.37 15.33 15.78 15.57 15.41 2503 480.714 15.94 - 15.40 15.45 15.20 15.83 15.55: 15.43 2504 480.723 15.87 15.90: 15.43 15.47 15.31 15.80 15.48: 15.54 2505 480.738 15.95 — 15.44 15.49 — 15.80 - 15.57 2512 481.664 15.76 - 15.46 15.64 15.66 15.40 15.04 15.24 2514 481.682 15.82 15.61: 15.57 15.60 - — 15.13: 15.16 2518 481.718 15.80 15.50: 15.64 15.45 15.67 15.48 15.32 15.18 2520 481.735 15.85 15.50: 15.68 15.26 — 15.46 15.39: - 2525 481.777 15.84 15.76: 15.70 15.05 15.31 15.54 15.30: 15.29 2540 546.597 15.27 15.70: — 15.57 15.38 15.89 15.23: 15.32 194 Table A.2 (cont’d). HJD frame 2448000+ v19 v20 v22 v23 v24 v25 V29 v30 2546 547.552 15.88 15.75 15.19 15.12 — 15.47 15.71: - 2547 547.560 15.81 15.88: 15.20 15.16 15.34 15.50 15.71: 15.29 2548 547.568 15.83 15.84: 15.23 15.16 - 15.51 15.74: - 2557 568.501 15.41 16.00: - 15.25 15.61 15.73 15.33 15.52 2558 568.510 15.46 16.24: — 15.25 15.60 15.76 15.35: 15.54 2559 568.517 15.44 — — 15.29 15.65 15.76 15.34: 15.48 2554 568.582 15.62 — - 15.33 15.61 15.75 - 15.31 2555 568.599 15.67 - 15.43 15.35 15.58 15.65 - 15.40 2556 568.615 15.67 - 15.48 15.40 15.48 15.42 15.58: 15.31 2560 569.578 15.15 - 15.66 15.63 15.53 15.63 15.14: 15.35 2562 569.594 15.22 15.79: — 15.63 15.63 15.60 15.17: 15.46 2570 570.507 15.86 15.69 - 15.42 15.34 15.75 15.75 15.49 2571 570.514 15.87 15.88: — 15.44 15.32 15.75 15.76: 15.48 2575 570.568 15.93 15.67 - 15.51 15.30 15.80 15.80: 15.30 2576 570.576 15.92 15.77: — 15.49 - 15.78 - 15.34 2577 570.591 16.01 — - 15.50 15.31 15.66 - 15.35 2582 574.536 15.83 15.59: 15.55 15.65 — - - - 2583 574.544 15.78 15.66: 15.55 15.64 15.35 15.78 - 15.56 2584 574.552 - 15.61: 15.59 — — 15.80 15.67: - 3508 802.823 15.81 15.58: 15.58 15.53 — 15.25 15.77: — 3509 802.831 15.82 - 15.62 15.51 15.49 15.20 15.59: 15.48 3510 802.839 15.82 15.32 15.64 15.54 15.56 15.15 - -— 3517 831.803 15.53 16.06: — 15.31 15.57 15.59 14.86: 15.39 3518 831.810 15.52 15.98: — 15.34 15.62 15.61 15.02 15.42 3519 831.819 15.56 15.85: — 15.33 — 15.58 15.01: - 3523 831.854 15.63 — — 15.39 15.51 15.64 15.19: 15.45 3524 831.862 15.64 15.94: - 15.38 15.43 15.64 15.28 15.50 3525 831.869 15.67 15.93: — 15.41 — 15.61 15.24 15.46 3530 835.749 15.38 15.51: 15.45 15.51 15.54 15.51 15.63: 15.24 3531 835.758 15.41 15.44 15.49 15.53 15.51 15.51 - 15.25 3532 835.766 15.41 - 15.55 15.52 15.56 15.57 - - 3548 836.743 15.21 15.77: 15.70 15.22 - 15.37 16.00: 15.53 3549 836.751 15.06 15.89: 15.71 15.23 15.32 15.30 15.84: -— 3550 836.758 14.95 15.83: 15.69 15.23 — 15.25 15.90: - 3557 839.769 15.39 15.60 15.08 15.54 15.33 15.58 15.46: 15.46 3558 839.777 15.43 15.47: 15.08 15.51 — 15.56 15.43: 15.43 3559 839.785 15.44 15.37 15.09 15.53 — 15.56 - - 3565 840.713 15.85 15.68: 15.39 15.41 15.50 15.65 15.58: 15.29 3566 840.721 15.90 - 15.36 15.42 15.56 15.55 15.70: 15.35 3567 840.729 15.76 15.75: 15.36 15.40 15.50 15.39 - 15.26 4554 869.589 15.58 15.89: 15.43 15.20 15.37 15.48 - 15.38 4555 869.606 15.56 15.99: 15.45 15.22 15.28 15.48 - 15.38 4556 869.613 15.62 — 15.47 15.22 15.29 15.50 15.70 15.40 4557 869.640 15.64 - 15.48 15.28 15.29 15.53 15.66: 15.45 4558 869.648 15.68 - 15.51 15.27 15.34 15.51 15.73: 15.50 195 Table A.2 (cont’d). HJ D frame 2448000+ v19 v20 v22 v23 v24 v25 V29 v30 4559 869.656 15.72 16.03: 15.52 15.30 15.37 15.51 15.73: 15.54 4573 889.569 15.43 — 15.21 15.56 — 15.48 15.63: 15.53 4574 889.585 15.47 - 15.20 15.54 - 15.49 15.78 15.55 4575 889.593 15.48 - 15.23 15.57 15.28 15.49 15.67: 15.57 4576 889.601 15.53 — 15.23 15.54 15.26 15.53 15.73: 15.55 4577 889.609 15.51 - 15.26 15.53 15.29 15.51 15.77 15.59 4578 889.617 15.53 — 15.27 15.55 15.22 15.52 — 15.53 4579 889.625 15.53 — 15.28 15.54 15.29 15.54 15.74: 15.51 4580 889.633 15.57 15.95: 15.33 15.55 15.33 15.53 — 15.48 4581 889.641 15.60 15.86: 15.34 15.53 15.37 15.52 — 15.49 4582 889.649 15.60 — - 15.54 15.33 15.57 15.61 15.56 4583 889.657 15.65 — 15.34 15.53 15.32 15.58 — 15.38 4584 889.666 15.64 — 15.35 15.52 15.32 15.58 — 15.38 4585 889.682 15.71 - — 15.54 15.45 15.58 — 15.34 4586 889.689 15.69 — '— 15.56 15.44 15.59 - 15.32 4587 889.697 15.73 — — 15.53 15.46 15.59 — 15.30 4588 889.705 15.75 - — 15.56 15.46 15.60 15.64 15.30 5505 891.560 15.82 15.60 15.37 15.57 15.44 15.54 15.20 15.40 5506 891.568 15.85 15.54: — 15.58 15.46 15.52 15.11 15.49 5507 891.577 15.80 15.59 - 15.54 15.51 15.52 15.07 15.53 5508 891.593 15.86 15.48: 15.20 15.56 - 15.53 — 15.54 5509 891.601 15.84 — 15.08 15.55 -— 15.53 15.22 15.56 5525 897.539 15.37 — - 15.33 15.61 -— 15.68 15.32 5526 897.546 15.36 15.94: - 15.34 — 15.47 15.72: 15.33 5527 897.562 15.41 15.90: 15.32 15.37 15.68 15.50 15.65 - 5528 897.571 15.45 15.82 15.32 15.36 — 15.48 15.72 15.41 5529 897.578 15.47 15.79: 15.31 — — 15.50 15.68: - 5530 897.594 15.48 15.60: 15.36 15.37 15.66 15.51 15.73: 15.51 5531 897.602 15.50 15.48 15.37 15.41 - 15.54 15.75 - 5532 897.610 15.52 15.47: 15.39 15.39 — 15.54 15.78: 15.51 5533 897.618 15.54 15.43 15.39 15.41 15.71 15.55 15.69 — 5534 897.626 15.56 15.37: 15.46 15.41 — 15.55 15.63: 15.57 5535 897.634 15.59 15.23 - 15.42 — 15.59 15.74 - 5536 897.642 15.60 15.26 15.47 15.41 15.56 15.52 15.70: 15.60 5537 897.650 15.60 15.17 —— 15.44 15.63 15.57 - - 5538 897.658 15.62 15.20 15.55 15.48 15.48 15.54 - - 5539 897.666 15.65 15.24 15.57 15.47 — 15.59 — - 5540 897.674 15.65 15.23 15.46 15.48 - 15.58 15.71: - 5541 897.682 15.66 15.33: 15.56 15.48 15.30 15.58 15.65: — 196 Table A.2 (cont’d). HJD frame 2448000+ v31 v32 v35 v38 v39 v40 v42 v44 1503 446.857 15.35 15.72 15.48 15.72 15.59 — 15.56 — 1504 446.865 - - 15.54 15.74 15.46 — - — 1506 449.751 15.50 15.50 15.80 15.61 15.38 15.51 15.39 15.69 1507 449.761 15.57 15.07: 15.92 15.65 15.38 15.41 15.28 - 1538 452.738 — 15.31 15.71 15.56 - 15.72 — - 1539 452.747 15.74 - 15.71 15.60 15.64 15.60 15.57 15.61 1540 452.754 15.75 15.44 15.76 - 15.64 15.62 15.57 15.64 1541 452.789 — 15.22: 15.80 15.78 15.65 15.49 15.68 15.67 1542 452.797 15.76 — 15.84 - 15.60 15.43 15.77 15.70 1544 452.813 15.75 15.55 15.90 — 15.56 15.47 15.80 15.76 1514 453.755 15.56 15.10 15.42 15.35 15.35 15.68 15.40 - 1515 453.763 15.55 14.97 15.40 15.40 15.35 15.72 15.35 15.55 1516 453.798 15.55 15.14 15.51 - 15.38 15.77 15.48 15.60 1517 453.806 15.56 15.13 15.52 15.40 15.40 15.75 15.45 15.67 1526 454.711 15.50 15.57: 15.82 - — — 15.84 15.06 1527 454.728 15.59 15.25: 15.88 — 15.74 15.45 15.75 15.16 1528 454.735 15.59 15.71 15.83 — 15.67 15.38 15.66 15.14 1529 454.777 15.71 15.60 15.82 15.64 15.49 15.46 15.42 15.33 1530 454.793 15.74 15.54 15.79 — 15.45 15.47 15.37 15.32 1531 454.809 15.75 15.60 15.72 15.43 15.36 15.51 15.38 15.28 1552 473.716 15.38 14.87 15.44 15.46 15.49 - 15.74 — 1555 473.768 15.42 14.89 — 15.67 15.64 15.77 15.71 . 15.17 1562 474.754 15.69 15.54: 15.80 15.30 15.25 — 15.59 - 1566 474.793 15.68 — 15.66 15.34 15.32 15.51 15.74 15.68 1568 474.811 15.72 15.40 15.52 15.43 0.06 15.62 15.81 15.44 1575 475.707 15.79 15.31 15.50 - 15.59 15.83 15.37 15.47 1576 475.716 15.78 15.36: 15.55 - 15.59 15.76 15.37 15.58 1577 475.724 15.76 15.27 15.54 15.75 15.62 15.87 15.38 15.54 1581 475.759 15.57 15.41 15.66 15.76 15.58 15.83 15.46 15.59 1582 475.766 15.54 15.43 15.69 15.68 15.72 15.70 15.50 - 1583 475.775 15.48 15.53 15.68 15.68 15.56 15.66 15.51 15.59 1587 479.682 15.65 15.41: 15.89 15.40 15.72 15.52 15.45 15.07 1588 479.690 15.70 15.51 15.81 15.43 15.68 15.58 15.42 15.15 1589 479.698 15.72 15.65: 15.87 - 15.60 15.58 15.40 - 1595 479.754 15.73 15.12 15.79 15.61 15.49 15.63 15.54 — 1597 480.668 15.52 - 15.51 15.64 15.47 15.80 15.71 15.82 2503 480.714 15.41 15.44 15.55 15.39 15.52 15.51 15.42 15.60 2504 480.723 15.38 — 15.57 15.33 15.55 15.44 15.44 15.49 2505 480.738 15.39 15.62 15.62 15.32 15.57 15.39 15.39 15.45 2512 481.664 15.59 15.01 15.80 15.66 15.61 15.79 15.78 15.33 2514 481.682 15.66 15.15: 15.71 - 15.59 15.82 15.83 15.40 2518 481.718 15.70 15.24 15.58 15.69 15.51 15.82 15.79 15.49 2520 481.735 15.79 15.28 15.48 15.74 15.49 15.78 15.72 15.50 2525 481.777 15.81 15.31 15.43 15.72 15.50 15.78 15.44 15.48 2540 546.597 15.57 15.36 15.73 - 15.67 — 15.64 15.57 197 Table A.2 (cont’d). 11.1 D frame 2448000+ v31 V32 v35 v38 v39 v40 v42 v44 2546 547.552 - 15.44 15.60 — 15.54 15.42 15.82 15.25 2547 547.560 15.49 15.47 15.65 15.33 15.51 15.42 15.84 15.18 2548 547.568 15.51 15.46 15.64 - 15.50 15.47 15.87 15.14 2557 568.501 15.40 15.51 15.56 15.54 15.70 15.84 15.84 15.24 2558 568.510 15.42 15.36 15.55 15.42 15.63 15.84 15.86 15.28 2559 568.517 15.47 15.49 15.54 15.47 15.68 15.76 15.81 15.32 2554 568.582 15.54 15.59 15.48 15.35 15.49 15.76 15.47 15.21 2555 568.599 15.60 - 15.51 15.36 15.39 15.68 15.42 15.44 2556 568.615 15.63 - 15.52 15.40 15.32 15.56 15.42 15.45 2560 569.578 15.70 — 15.87 — 15.66 15.71 15.83 15.79 2562 569.594 15.59 15.37 — — 15.64 - 15.88 15.23 2570 570.507 15.26 15.56 15.44 15.49 15.58 15.51 15.55 15.47 2571 570.514 — 15.53 15.50 — 15.55 15.49 15.58 15.56 2575 570.568 15.43 15.32: 15.57 - 15.51 15.47 15.72 15.57 2576 570.576 15.42 15.21 15.59 — 15.45 15.43 15.75 - 2577 570.591 15.44 15.07 15.63 15.63 15.45 15.47 15.75 15.61 2582 574.536 15.55 15.53: 15.82 — - 15.78 15.71 — 2583 574.544 15.47 15.58: - 15.41 15.41 15.82 15.78 15.26 2584 574.552 15.51 15.55: — — - 15.73 15.75 - 3508 802.823 15.55 15.55: 15.44 — 15.41 15.77 15.51 15.64 3509 802.831 15.55 15.41: 15.45 15.54 15.44 15.73 15.50 15.56 3510 802.839 15.58 15.66: 15.47 15.57 15.39 15.77 15.56 15.64 3517 831.803 15.52 15.35 15.81 15.68 15.56 15.65 15.78 15.38 3518 831.810 15.53 15.39 15.84 15.71 15.62 15.68 15.76 15.47 3519 831.819 15.55 15.43 15.84 15.72 15.65 15.66 15.69 15.43 3523 831.854 15.53 - 15.83 15.74 15.63 15.72 15.52 15.47 3524 831.862 15.57 15.55 15.80 15.76 15.52 15.75 15.45 15.54 3525 831.869 15.59 15.55 15.84 15.72 15.52 15.71 15.43 15.51 3530 835.749 15.75 15.67 15.64 15.34 15.65 15.63 15.75 15.63 3531 835.758 15.72 15.40: 15.59 15.33 15.62 15.55 15.74 15.70 3532 835.766 15.69 15.34 15.52 15.34 15.59 15.47 15.67 15.61 3548 836.743 15.58 15.61 15.73 15.74 15.49 15.74 - — 3549 836.751 15.58 15.66 15.73 - 15.47 15.73 15.70 15.54 3550 836.758 15.54 15.63: 15.77 — 15.48 15.76 15.77 - 3557 839.769 15.71 15.53: 15.58 15.71 15.25 15.73 15.55 15.71 3558 839.777 15.75 - 15.62 - 15.33 15.71 15.52 15.74 3559 839.785 15.67 15.54: 15.66 15.75 15.33 15.75 15.49 - 3565 840.713 15.49 15.03 15.81 15.53 15.60 15.34 15.82 15.41 3566 840.721 - 15.13 - — 15.55 15.46 15.74 15.28 3567 840.729 15.45 14.94: 15.72 15.54 15.58 — 15.75 15.43 4554 869.589 15.73 15.59 15.43 15.41 15.58 15.75 15.82 15.59 4555 869.606 15.74 15.70: 15.43 15.49 15.62 15.83 15.91 15.73 4556 869.613 15.76 15.54 15.45 15.49 15.58 15.79 15.78 15.59 4557 869.640 15.62 15.68: 15.43 15.53 15.56 15.82 15.78 15.66 4558 869.648 15.63 15.58 15.46 15.59 15.61 15.79 15.69 15.74 198 Table A.2 (cont’d). HJ D frame 2448000+ V31 v32 v35 v38 v39 v40 v42 v44 4559 869.656 15.62 — 15.47 15.57 15.59 15.81 15.64 15.80 4573 889.569 - 15.53 15.44 15.66 15.53 15.75 15.43 15.30 4574 889.585 — 15.65 15.46 — 15.51 15.80 15.44 15.39 4575 889.593 15.60 15.66 15.47 15.69 15.46 15.79 15.47 15.39 4576 889.601 15.61 15.69 15.46 15.71 15.47 15.78 15.50 - 4577 889.609 15.56 15.67 15.47 15.74 15.47 15.82 15.57 15.42 4578 889.617 15.55 15.57: 15.48 15.75 15.44 15.83 15.54 15.49 4579 889.625 15.49 - 15.48 15.73 15.44 15.79 15.57 15.48 4580 889.633 15.46 — 15.48 15.78 15.45 15.82 15.57 - 4581 889.641 15.45 15.62 15.53 15.76 15.48 15.80 15.57 15.52 4582 889.649 15.42 15.46 15.54 15.79 15.45 15.75 15.61 15.58 4583 889.657 15.42 15.16 15.54 15.76 15.41 15.81 15.62 — 4584 889.666 15.40 14.99: 15.55 15.73 15.46 15.80 15.65 15.57 4585 889.682 15.42 14.99 15.58 15.73 15.43 15.78 15.67 15.50 4586 889.689 15.42 14.95 15.60 — 15.46 15.73 15.73 15.57 4587 889.697 15.44 14.93 15.63 15.73 15.44 15.69 15.77 15.63 4588 889.705 15.42 14.95 15.64 15.63 15.42 15.64 15.79 15.59 5505 891.560 15.69 14.97 15.51 15.73 15.36 15.77 15.86 15.60 5506 891.568 - 15.12 15.51 15.71 15.31 15.73 15.89 15.58 5507 891.577 15.67 15.17 15.50 15.72 15.38 15.69 15.86 15.60 5508 891.593 — 15.12 15.58 15.54 15.42 15.60 15.81 15.58 5509 891.601 — 15.17 15.54 15.54 15.38 15.58 15.80 15.57 5525 897.539 — 15.12: 15.77 — 15.52 15.80 15.57 15.55 5526 897.546 — 15.08: 15.77 - 15.54 15.78 15.55 15.65 5527 897.562 15.60 14.93 15.74 15.81 15.54 15.82 15.61 15.58 5528 897.571 15.57 14.97 15.66 15.74 15.59 15.81 15.64 15.61 5529 897.578 15.60 14.92: 15.60 - - - — 15.59 5530 897.594 15.62 14.94 15.54 15.66 15.59 15.79 15.73 - 5531 897.602 15.67 15.10: 15.52 - 15.61 15.75 15.70 15.54 5532 897.610 15.67 15.12 15.50 15.54 15.63 15.72 15.75 15.61 5533 897.618 15.69 15.15 15.48 15.48 15.64 15.70 15.76 - 5534 897.626 15.70 15.20 15.43 15.46 15.61 15.65 15.76 15.62 5535 897.634 15.71 15.20 15.46 - 15.63 15.60 15.78 15.67 5536 897.642 15.75 15.12 15.44 15.42 15.58 15.54 15.83 15.67 5537 897.650 - 15.08: 15.42 15.38 15.68 15.47 15.79 15.57 5538 897.658 15.80 15.33: 15.43 15.42 15.64 15.45 15.83 15.64 5539 897.666 15.76 15.28: 15.45 15.42 15.61 15.42 15.81 15.64 5540 897.674 15.74 15.12: 15.48 15.35 15.62 15.38 15.80 15.66 5541 897.682 15.80 15.26: 15.50 15.41 15.58 15.39 15.80 15.63 Table A.2 (cont’d). 199 HJ D frame 2448000+ v49 v50 V51 v52 V53 V54 v65 v66 1503 446.857 15.01 — 15.29 15.18 15.40 15.20 15.46 15.48 1504 446.865 15.03 - 15.50 15.20 — 15.29 15.43 15.32 1506 449.751 14.80 — 15.60 15.15 15.33 15.46 15.46 — 1507 449.761 14.80 15.82 15.48 15.19 15.30 15.27 15.50 15.42 1538 452.738 15.03 15.97 - 15.46 15.41 — 15.47 15.91 1539 452.747 15.00 - — 15.49 15.51 15.75 15.57 - 1540 452.754 15.04 15.78 — 15.53 15.51 15.75 15.31: 15.74 1541 452.789 15.05 15.47 15.46 15.62 15.63 — 15.47 15.61 1542 452.797 15.11 - 15.65 15.62 15.60 15.56 15.53 - 1544 452.813 15.06 — - 15.68 15.62 — 15.47: 15.56 1514 453.755 14.87 — 15.56 15.11 15.64 15.38 15.28 15.52 1515 453.763 14.88 15.62 15.59 15.08 15.69 15.37 15.24 - 1516 453.798 14.91 15.69 — 15.24 15.62 — 15.27 15.72 1517 453.806 14.90 — 15.48 15.29 15.58 15.43 15.31: 15.77 1526 454.711 — - 15.28 15.86 15.30 — 15.37: — 1527 454.728 15.07 — 15.09 15.82 15.37 — 15.40 15.38 1528 454.735 15.03 - 15.51 15.80 15.34 15.74 15.44 15.36 1529 454.777 15.08 — — 15.71 15.40 15.59 15.48 15.36 1530 454.793 15.10 15.95 15.32 15.75 15.44 15.48 15.47 15.44 1531 454.809 15.09 -— 15.39 15.79 15.45 - 15.49 15.43 1552 473.716 15.06 15.51 — 15.78 15.43 15.46 15.32 - 1555 473.768 15.09 — — 15.68 15.41 — 15.15 - 1562 474.754 14.91 - 15.92 15.65 15.39 15.32 15.39 15.51 1566 474.793 14.92 — 15.74 15.74 15.71 15.37 15.40 — 1568 474.811 14.96 - 15.80 15.76 0.07 15.43 15.45 - 1575 475.707 15.02 15.80 15.47 15.37 15.79 15.43 15.49 15.53 1576 475.716 15.04 - - 15.36 15.75 - 15.40 - 1577 475.724 15.08 - 15.43 15.38 15.72 15.58 15.45 15.53 1581 475.759 15.09 15.47 15.41 15.47 15.61 15.53 15.45 15.85 1582 475.766 15.13 15.44 15.40 15.50 15.51 15.49 15.50 15.56 1583 475.775 15.10 - 15.43 15.51 15.47 15.43 15.52 - 1587 479.682 15.09 - 15.43 15.21 15.44 15.28 15.20 15.67 1588 479.690 15.12 15.52 15.47 15.25 — 15.31 15.20 15.73 1589 479.698 15.09 15.65 — 15.27 15.49 - 15.28: 15.57 1595 479.754 14.95 15.77 — 15.39 15.58 - 15.36: 15.51 1597 480.668 14.90 — 15.61 15.81 15.70 15.53 15.46 15.66 2503 480.714 14.96 — 15.61 15.84 - 15.53 15.43 - 2504 480.723 14.97 — 15.57 15.86 15.71 15.57 15.44: — 2505 480.738 14.96 15.88 15.84 15.88 15.57 15.58 15.44 15.76 2512 481.664 15.11 - 15.49 15.76 15.50 15.28 15.19 15.46 2514 481.682 15.11 15.59 15.44 15.78 15.48 15.51 15.19: 15.45 2518 481.718 14.92 — 15.40 15.81 15.45 15.40 15.17 15.48 2520 481.735 14.76 15.41 15.46 15.82 15.49 - 15.19: 15.56 2525 481.777 14.60 - 15.44 15.79 15.54 15.61 15.23 - 2540 546.597 14.80 - 15.65 15.60 15.54 15.52 15.31 - 200 Table A.2 (cont’d). 11.1 D frame 2448000+ v49 v50 v51 v52 v53 v54 V65 v66 2546 547.552 14.95 15.71 15.57 15.33 15.37 15.36 15.43: 15.79 2547 547.560 14.99 15.54 15.53 15.24 15.40 15.28 15.37 — 2548 547.568 14.99 15.50 — 15.19 15.35 15.37 15.44: 15.80 2557 568.501 14.92 15.52 15.59 15.64 15.68 15.44 15.31 15.42 2558 568.510 14.96 — 15.48 15.65 - 15.43 15.27 15.39 2559 568.517 14.95 - 15.80 15.64 15.57 15.73 15.26 15.38 2554 568.582 15.02 15.87 15.34 15.73 15.31 15.75 15.13 15.41 2555 568.599 15.04 — 15.35 15.77 15.35 15.42 15.18 — 2556 568.615 15.01 — 15.13 15.79 15.36 15.59 15.15 - 2560 569.578 14.66 — 15.68 15.47 15.59 15.37 15.37 - 2562 569.594 14.64 — 15.67 15.54 15.60 15.51 15.36 15.52 2570 570.507 14.98 — 15.58 15.79 15.65 15.66 15.40 15.47 2571 570.514 15.00 - 15.76 15.86 15.65 — 15.42 15.50 2575 570.568 15.03 15.47 15.41 15.52 15.69 — 15.44: 15.63 2576 570.576 15.02 15.50 — 15.46 15.71 — 15.49: 15.61 2577 570.591 15.02 — 15.51 15.15 15.64 15.57 15.54: 15.62 2582 574.536 15.01 — - 15.77 15.49 — - - 2583 574.544 15.08 — 15.38 15.75 15.54 - 15.29: -- 2584 574.552 15.05 — — 15.83 15.60 — - - 3508 802.823 14.54 15.68 — 15.63 15.76 - 15.27: 15.77 3509 802.831 14.59 15.73 15.33 15.64 15.72 15.21 15.26: 15.77 3510 802.839 14.59 - - 15.66 15.77 - 15.27 — 3517 831.803 14.89 - 15.31 15.77 15.69 15.45 15.44 15.34 3518 831.810 14.89 - 15.22 15.76 15.76 15.41 15.41 15.39 3519 831.819 14.88 — 15.27 15.70 15.76 — 15.43 15.31 3523 831.854 14.93 — 15.28 15.81 15.68 - 15.45: 15.49 3524 831.862 14.93 — 15.25 15.84 15.66 15.48 15.42 15.50 3525 831.869 14.94 15.92 15.36 15.81 15.69 15.55 15.53: 15.50 3530 835.749 14.91 — 15.49 15.79 15.39 15.37 15.14 15.64 3531 835.758 14.93 — 15.45 15.79 15.40 15.40 15.13 15.63 3532 835.766 14.91 — 15.33 15.78 15.41 - 15.12 15.62 3548 836.743 15.03 15.47 -— 15.60 15.63 — 15.48: 15.45 3549 836.751 15.09 15.50 — 15.63 15.67 — 15.43: — 3550 836.758 15.02 15.52 - 15.62 15.67 - 15.50: 15.46 3557 839.769 14.97 — 15.27 15.78 15.61 15.39 15.44 15.41 3558 839.777 14.97 15.67 15.26 15.77 15.55 15.43 15.49: 15.43 3559 839.785 15.03 - 15.28 15.73 15.46 15.44 15.48 15.40 3565 840.713 15.00 - 15.51 15.51 15.36 15.48 15.30 15.75 3566 840.721 15.01 - 15.58 15.50 15.34 15.55 15.27 15.75 3567 840.729 14.98 — - 15.51 15.39 15.41 15.21 15.83 4554 869.589 14.90 — 15.27 15.68 15.55 15.24 15.26 - 4555 869.606 14.80 15.77 15.30 15.68 15.48 15.19 15.19 15.84 4556 869.613 14.75 15.73 15.35 15.70 15.39 15.26 15.21 15.79 4557 869.640 14.62 — 15.37 15.75 15.36 15.25 15.23 15.86 4558 869.648 14.61 — 15.37 15.75 15.33 15.25 15.28 - Table A.2 (cont’d). 201 HJ D frame 2448000+ v49 v50 v51 v52 v53 v54 v65 V66 4559 869.656 14.63 — 15.40 15.75 15.37 15.24 15.31 - 4573 889.569 14.93 — 15.51 15.31 15.33 15.13 15.26: 15.56 4574 889.585 14.96 15.74 15.56 15.36 15.40 15.25 15.16: 15.51 4575 889.593 14.98 15.81 15.55 15.41 15.43 15.24 15.15 15.65 4576 889.601 15.00 15.75 15.57 15.41 15.43 15.27 15.16: 15.66 4577 889.609 15.01 — 15.56 15.43 15.36 15.23 15.14 15.60 4578 889.617 15.02 — 15.61 15.45 15.44 15.26 15.13 15.71 4579 889.625 15.00 - 15.53 15.46 15.46 15.27 15.19 15.59 4580 889.633 15.02 — 15.60 15.46 15.44 15.34 15.17 15.65 4581 889.641 15.02 — 15.57 15.51 15.46 15.32 15.19 15.68 4582 889.649 15.02 — 15.64 15.50 15.44 15.32 15.17 15.78 4583 889.657 15.03 — 15.54 15.51 15.51 15.29 15.17 15.71 4584 889.666 15.05 — 15.61 15.53 15.49 15.44 15.21 15.61 4585 889.682 15.03 15.93 15.55 15.54 15.54 15.37 15.23 15.74 4586 889.689 15.02 15.88 15.52 15.55 15.52 15.38 15.22 15.79 4587 889.697 15.03 — 15.47 15.60 15.55 15.42 15.25 15.77 4588 889.705 15.04 — 15.48 15.58 15.55 15.46 15.24 15.80 5505 891.560 14.95 — 15.51 15.83 15.58 15.18 15.42 15.75 5506 891.568 14.96 — 15.57 15.86 15.54 15.24 15.48 15.71 5507 891.577 14.98 15.46 15.53 15.84 15.61 15.21 15.44: 15.71 5508 891.593 15.01 15.49 15.56 15.83 - 15.23 15.55: 15.71 5509 891.601 15.01 15.51 15.57 15.85 15.49 15.26 15.51: 15.79 5525 897.539 15.00 15.44 - 15.34 —‘ — 15.14: 15.54 5526 897.546 15.04 15.46 15.59 15.22 — 15.17 - 15.51 5527 897.562 15.01 15.55 — 15.09 — — 15.21: 15.67 5528 897.571 15.05 15.56 — 15.13 15.58 - 15.16: 15.62 5529 897.578 15.02 15.61 - 15.14 -— - — 15.69 5530 897.594 15.05 - — 15.20 15.68 — 15.22 15.68 5531 897.602 15.03 15.64 - 15.22 15.65 - 15.35 15.71 5532 897.610 15.04 -— — 15.26 15.67 — 15.25 15.73 5533 897.618 15.04 15.70 — 15.29 15.67 — 15.25: 15.75 5534 897.626 15.03 15.76 15.59 15.28 15.70 — 15.20 15.76 5535 897.634 15.00 15.75 - 15.33 15.74 — 15.25: 15.75 5536 897.642 15.08 - 15.52 15.33 15.72 15.36 15.28 15.81 5537 897.650 15.06 — 15.48 15.37 15.75 15.32 15.24 15.77 5538 897.658 15.07 - 15.41 15.39 15.76 - 15.31 15.75 5539 897.666 15.08 — - 15.40 15.80 - 15.21 - 5540 897.674 15.06 — 15.31 15.46 15.78 15.33 15.30 15.79 5541 897.682 15.07 - - 15.47 15.80 - 15.34: 15.74 202 Table A.2 (cont’d). 111 D frame 2448000+ v67 v74 v97 v99 V113 1503 446.857 15.98 — — 15.74 15.44 1504 446.865 — — 15.56 15.76 15.44 1506 449.751 15.95: 15.44 15.67: 15.73 15.46 1507 449.761 — 15.36 15.45: 15.69 15.48 1538 452.738 -— — — 15.74 15.55 1539 452.747 15.49 15.49: — 15.68 15.46 1540 452.754 15.43 15.56: 15.71: 15.76 15.47 1541 452.789 15.53 15.61: 16.02: 15.70 15.42 1542 452.797 15.83 15.66: 15.99: 15.70 15.44 1544 452.813 15.69 — 15.83: 15.69 15.44 1514 453.755 15.82 — — 15.60 15.40 1515 453.763 15.72 15.83 — 15.63 15.44 1516 453.798 15.66: 15.56 15.78: 15.63 15.44 1517 453.806 15.57: 15.56 15.61: 15.65 15.46 1526 454.711 15.64: - 15.58: 15.74 15.53 1527 454.728 15.64 15.32: 15.75: 15.75 15.52 1528 454.735 15.59 15.34: 15.47 — 15.52 1529 454.777 15.79 15.41: 15.65: 15.78 15.49 1530 454.793 15.91: 15.63: 15.74: 15.71 15.48 1531 454.809 15.68 15.41: 15.68: 15.70 15.46 1552 473.716 15.79: 15.24: 15.85: 15.62 15.50 1555 473.768 15.52 15.41: 16.10' 15.59 15.57 1562 474.754 — - 15.51 15.72 15.35 1566 474.793 15.84 - 15.49 15.69 15.39 1568 474.811 15.80 15.44: — 15.70 0.08 1575 475.707 15.65 15.57: 15.85: 15.68 15.45 1576 475.716 15.55 15.62: - 15.69 15.42 1577 475.724 15.74: 15.37 - 15.70 15.46 1581 475.759 15.62 15.29 16.02: 15.71 15.50 1582 475.766 15.82: 15.32: 15.94: 15.68 15.51 1583 475.775 15.64 15.32 15.91: 15.67 15.52 1587 479.682 15.69 15.60: 15.40: 15.67 15.44 1588 479.690 - 15.68 — 15.64 15.41 1589 479.698 -— - - 15.64 15.43 1595 479.754 15.46: — 15.43: 15.72 15.44 1597 480.668 — - - 15.74 15.57 2503 480.714 - 15.63: - 15.69 15.58 2504 480.723 15.91: 15.75: 15.75: 15.64 15.55 2505 480.738 15.83: 15.59: 15.81: 15.59 15.53 2512 481.664 15.77 15.31: 15.64: 15.53 15.43 2514 481.682 15.66 15.38 15.75: 15.59 15.40 2518 481.718 15.71: 15.47 - 15.64 15.40 2520 481.735 15.80: 15.43: 15.45: 15.66 15.42 2525 481.777 15.66 15.55 15.66: 15.72 15.40 2540 546.597 15.64: - 15.48: 15.74 15.49 203 Table A.2 (cont’d). HJ D frame 2448000+ v67 V74 v97 v99 V113 2546 547.552 - 15.82: 15.78: 15.64 15.42 2547 547.560 15.91: 15.75: 15.76 15.60 15.45 2548 547.568 15.65: 15.87: 15.86: 15.60 15.45 2557 568.501 15.76 - - 15.75 15.49 2558 568.510 — 15.58 - 15.68 15.50 2559 568.517 — - 15.99: 15.67 15.47 2554 568.582 15.66 15.72: — 15.56 15.42 2555 568.599 - — 16.04: 15.56 15.41 2556 568.615 - - — 15.50 15.41 2560 569.578 15.57 — 15.44: 15.72 15.50 2562 569.594 - — 15.66: 15.71 15.53 2570 570.507 15.39 15.51: 15.50: 15.70 15.51 2571 570.514 15.41: 15.57 15.60: 15.67 15.51 2575 570.568 15.70 15.68: 15.69: 15.67 15.45 2576 570.576 15.81: — — 15.59 15.43 2577 570.591 - 15.66: - 15.53 15.44 2582 574.536 15.64: - — 15.67 15.55 2583 574.544 15.80: 15.86: 15.43 15.66 15.55 2584 574.552 15.63: 15.95: 15.38: - 15.53 3508 802.823 — 15.46: 15.54: 15.65 15.42 3509 802.831 15.91: 15.41 15.42 15.65 15.45 3510 802.839 — 15.35 — 15.67 15.38 3517 831.803 15.38 15.61 16.06: 15.50 15.45 3518 831.810 15.47 15.51 - 15.51 15.45 3519 831.819 15.59 15.49: - 15.53 15.47 3523 831.854 15.53 15.28: — 15.59 15.51 3524 831.862 15.57: 15.30 — 15.60 15.50 3525 831.869 15.61: 15.26: - 15.61 15.52 3530 835.749 15.71 15.48: 15.79: 15.75 15.37 3531 835.758 15.74 15.52: 15.93: 15.69 15.38 3532 835.766 15.80: 15.50 15.75: 15.72 15.37 3548 836.743 15.70: 15.87 - 15.66 15.49 3549 836.751 15.83: 15.92: 15.98: 15.63 15.50 3550 836.758 15.74: 15.83: 15.88: 15.63 15.53 3557 839.769 — 15.69: 15.80: 15.62 15.41 3558 839.777 16.04: 15.67: 15.68 15.69 15.39 3559 839.785 16.00: 15.74: 15.69: 15.65 15.40 3565 840.713 15.59 15.31 - 15.74 15.42 3566 840.721 15.51 15.28 - 15.74 15.44 3567 840.729 15.53 15.30 — 15.73 15.43 4554 869.589 15.80: - 15.36: 15.49 15.48 4555 869.606 15.96: 15.76 - 15.52 15.52 4556 869.613 - 15.88 15.43: 15.54 15.52 4557 869.640 — 15.86 15.55: 15.59 15.53 4558 869.648 16.00: 15.83 15.53: 15.61 15.52 204 Table A.2 (cont’d). 11.1 D frame 2448000+ v67 v74 v97 V99 v113 4559 869.656 — — 15.42: 15.62 15.55 4573 889.569 — 15.30 - 15.72 15.53 4574 889.585 — 15.37: — 15.71 15.55 4575 889.593 15.61 15.44 - 15.69 15.54 4576 889.601 15.69 15.38: - 15.70 15.55 4577 889.609 15.81: 15.40: 15.88: 15.70 15.52 4578 889.617 15.50 15.41 — 15.65 15.52 4579 889.625 15.64 15.48 — 15.65 15.52 4580 889.633 15.68 15.43 - 15.64 15.56 4581 889.641 15.73: 15.50 - 15.63 15.49 4582 889.649 15.76 15.53 - 15.61 15.45 4583 889.657 15.68 15.54 16.20: 15.61 15.47 4584 889.666 15.64 15.51 - 15.60 15.47 4585 889.682 15.67: 15.64: 16.09: 15.61 15.45 4586 889.689 15.75: — - 15.59 15.45 4587 889.697 15.64 — - 15.58 15.44 4588 889.705 15.74 15.68 15.81: 15.59 15.44 5505 891.560 15.60: — 15.72 15.74 15.55 5506 891.568 — 15.84: 15.80: 15.72 15.53 5507 891.577 - 15.73 15.71: 15.74 15.56 5508 891.593 — 15.75: — 15.74 15.57 5509 891.601 — 15.66 - 15.71 15.55 5525 897.539 — 15.56 15.37: 15.59 15.43 5526 897.546 - 15.47 15.32: 15.62 15.45 5527 897.562 — 15.52 15.43: 15.62 15.44 5528 897.571 — 15.41 15.41: 15.62 15.43 5529 897.578 15.83: 15.41: 15.44: 15.64 15.49 5530 897.594 — 15.54 15.54 15.72 15.48 5531 897.602 15.86: 15.60: 15.52 15.67 15.48 5532 897.610 16.07: 15.57 15.51 15.72 15.48 5533 897.618 15.89 15.54: 15.53: 15.74 15.49 5534 897.626 15.89 15.60 15.62 15.69 15.47 5535 897.634 16.02: 15.64: 15.59 15.69 15.52 5536 897.642 - 15.63: 15.74: 15.74 15.50 5537 897.650 15.84 15.63: 15.75: 15.71 15.51 5538 897.658 15.89 15.65: 15.82 15.69 15.52 5539 897.666 15.95: 15.67: 15.71 15.70 15.54 5540 897.674 15.86: 15.67: 15.76: 15.67 15.55 5541 897.682 15.85: 15.74: 15.86: 15.71 15.52 205 Table A3. WIRO B Photometry of M15 Variables 111 D frame 2448000+ v3 v4 v5 v11 v12 v13 v14 v15 v35 50 1183.890 16.05 16.21 16.02 15.84 - 15.86 16.47 16.74 16.47 58 1183.918 15.89 16.33 16.17 15.77 15.70 15.46 16.24 16.72 16.49 66 1183.940 15.85 16.40 16.25 15.83 15.66 15.51 16.11 16.62 16.58 123 1184.848 16.22 16.29 16.45 16.47 - 16.65 16.18 16.52 16.07 143 1184.893 16.38 16.47 16.12 15.97 16.55 16.61 16.41 16.65 15.97 151 1184.914 16.44 16.55 15.97 15.82 16.50 16.60 16.48 16.71 15.99 197 1185.824 16.09 16.42 16.08 16.55 16.08 16.27 16.26 15.48 16.51 205 1185.846 15.97 16.50 16.14 16.52 16.11 16.34 16.09 15.63 16.55 221 1185.889 15.91 16.58 16.32 16.41 16.32 16.45 15.87 15.91 16.56 229 1185.915 15.92 16.44 16.40 16.09 16.22 16.52 15.94 16.09 16.57 237 1185.936 15.99 16.22 16.47 15.81 16.32 16.59 16.02 16.23 16.58 301 1186.847 16.40 16.48 15.89 16.49 — 15.74 16.54 16.69 16.03 309 1186.868 16.47 16.32 15.79 16.54 — 15.86 16.56 16.58 16.09 317 1186.890 16.47 16.00 15.81 16.53 - 15.97 16.56 16.39 16.16 325 1186.911 16.55 15.80 - 16.49 15.61 16.09 16.59 16.01 16.22 HJ D frame 2448000+ v38 v39 v40 v42 v52 v53 v66 v74 v113 50 1183.890 16.38 16.21 16.39 16.17 16.53 16.33 16.03 16.17 16.15 58 1183.918 16.37 16.31 16.50 16.28 16.64 16.00 16.10 16.36 16.18 66 1183.940 16.16 16.38 16.50 16.41 16.64 15.87 16.13 16.41 16.18 123 1184848 16.07 16.08 15.89 15.91 15.70 16.08 16.55 16.49 16.06 143 1184.893 16.31 15.76 15.91 15.86 15.99 16.09 16.43 16.57 16.01 151 1184.914 16.42 15.77 15.96 15.91 16.08 16.12 16.26 16.59 16.00 197 1185.824 16.09 16.32 16.51 16.56 16.68 16.34 16.10 16.43 15.99 205 1185.846 15.95 16.34 16.50 16.51 16.62 16.42 16.21 16.22 16.03 221 1185.889 - 16.40 16.57 16.32 16.76 16.46 16.34 15.84 16.10 229 1185.915 15.88 16.44 16.38 15.98 16.62 16.49 16.46 15.82 16.11 237 1185.936 15.96 16.47 16.14 15.86 15.90 16.49 16.54 16.00 16.15 301 1186.847 16.50 16.11 16.12 16.48 16.74 15.89 16.06 16.19 16.12 309 1186.868 16.49 16.04 16.19 16.55 16.78 15.92 15.97 16.37 16.05 317 1186.890 16.49 16.02 16.32 16.57 16.79 15.96 15.96 16.38 16.03 325 1186.911 16.37 15.95 16.43 16.48 16.84 15.94 15.98 16.40 16.01 206 Table A4. WIRO V Photometry of M15 Variables 111 D frame 2448000+ V3 V4 V5 v11 v12 v13 v14 v15 v35 51 1183.892 15.67 15.92 15.71 15.55 — 15.49 16.05 16.23 16.04 59 1183.920 15.56 15.99 15.79 15.53 15.37 15.21 15.84 16.17 16.11 67 1183.942 15.52 16.07 15.86 15.56 15.32 15.29 15.74 16.10 16.13 124 1184.850 15.80 15.95 16.00 16.06 -- 16.12 15.84 16.03 15.73 144 1184.895 15.93 16.11 15.74 15.67 -- 16.11 16.00 16.13 15.66 152 1184.916 15.98 16.16 15.62 15.55 - — 16.05 16.18 15.71 198 1185.827 15.72 16.06 15.72 16.12 15.62 15.84 15.85 15.28 16.07 206 1185.848 15.61 16.15 15.78 16.11 15.67 15.88 15.73 15.39 16.11 214 1185.868 15.51 16.18 15.87 16.10 15.71 15.93 15.68 15.54 16.14 222 1185.891 15.57 16.14 15.92 16.01 - 15.96 15.63 15.63 16.15 230 1185.918 15.61 16.06 15.99 15.74 15.79 16.04 15.65 15.72 16.13 238 1185.938 15.63 15.96 16.12 15.51 - 16.01 15.76 15.87 16.20 302 1186.849 15.97 16.09 15.55 16.11 15.58 15.46 16.10 16.16 15.74 310 1186.870 16.01 16.00 15.52 16.13 15.42 15.56 16.11 16.07 15.77 318 1186.891 16.03 15.71 15.55 16.10 - 15.61 16.13 15.91 15.83 326 1186.912 16.03 15.60 15.60 16.07 15.33 15.67 16.13 15.63 15.89 HJD frame 2448000+ v38 v39 v40 v42 v52 v53, v66 v74 v113 51 1183.892 — 15.84 16.01 - 16.04 15.86 15.70 — 15.78 59 1183.920 15.96 15.90 16.04 15.90 16.08 15.65 15.75 16.03 15.80 67 1183.942 15.84 15.97 16.09 - 16.11 15.53 15.80 — 15.81 124 1184.850 15.76 15.72 15.61 15.58 15.45 15.72 16.11 16.22 15.72 144 1184.895 15.91 15.50 15.63 15.57 15.64 15.72 16.01 — 15.68 152 1184.916 15.99 15.50 15.66 15.62 15.71 15.74 15.87 16.23 15.67 198 1185.827 15.71 15.89 16.07 16.12 16.17 15.94 15.77 16.11 15.66 206 1185.848 15.64 15.95 16.10 16.09 16.11 15.96 15.84 15.87 15.70 214 1185.868 15.58 15.94 16.10 16.01 16.16 16.01 15.91 15.77 15.74 222 1185.891 15.52 15.98 16.06 15.88 16.26 16.02 15.98 15.60 15.74 230 1185.918 15.57 16.00 15.96 15.64 16.06 16.04 16.04 15.70 15.77 238 1185.938 15.74 16.06 15.79 15.53 15.48 16.04 16.13 15.81 - 302 1186.849 16.04 15.75 15.77 16.04 16.20 15.59 15.73 15.98 15.75 310 1186.870 16.07 15.70 15.86 16.09 16.23 15.60 15.66 16.07 15.72 318 1186.891 16.06 15.66 15.93 16.10 16.25 15.61 15.66 16.11 15.70 326 1186.912 16.02 15.66 16.03 16.10 16.22 15.62 15.68 16.12 15.68 207 Table A5. WIRO R Photometry of M15 Variables HJD frame 2448000+ v3 v4 v5 v11 v12 V13 v14 v15 v35 52 1183.894 - — 15.49 - — 15.22 - 15.87 15.74 60 1183.922 15.37 15.77 15.54 - 15.13 15.08 - - 15.81 68 1183.944 15.35 15.82 15.59 15.40 15.09 15.11 15.52 15.77 15.82 125 1184.852 15.56 15.73 15.70 15.80 - 15.73 15.60 15.71 15.52 145 1184.897 15.66 15.88 15.48 15.46 — 15.76 15.71 15.79 15.48 153 1184.918 15.69 15.91 15.41 15.38 -— , — 15.77 15.83 15.50 199 1185.825 15.49 15.82 15.47 15.85 15.31 15.52 15.59 15.12 15.77 207 1185.850 15.40 15.87 15.54 15.84 15.37 15.55 15.51 15.23 15.81 215 1185.870 15.35 15.92 15.59 15.82 — 15.59 15.45 15.32 15.83 223 1185.893 15.39 15.88 15.62 15.75 15.37 15.60 15.41 15.40 15.82 231 1185.920 15.40 15.82 15.70 15.52 — 15.67 15.44 15.47 15.84 239 1185.941 15.41 15.70 15.79 15.37 - 15.65 15.55 15.58 15.87 303 1186.852 15.68 15.87 15.35 - 15.24 15.27 15.78 15.83 15.51 311 1186.873 15.72 15.76 15.33 15.86 - 15.32 15.82 15.76 15.53 319 1186.894 15.74 15.53 15.35 15.85 — 15.36 15.84 15.62 15.58 327 1186.914 15.73 15.47 15.40 15.84 — 15.39 15.84 15.38 15.63 HJD . frame 2448000+ V38 v39 v40 V42 v52 v53 v66 v74 v113 52 1183.894 - — 15.72 15.61 15.69 15.58 15.49 - 15.55 60 1183.922 15.69 15.59 15.76 15.66 - - — - - 68 1183.944 - 15.65 15.80 15.70 15.75 15.31 15.57 15.93 15.57 125 1184.852 15.52 15.45 15.39 15.38 15.26 15.48 15.80 15.93 15.50 145 1184.897 15.65 15.28 15.43 15.37 15.40 15.47 15.71 - 15.46 153 1184.918 - 15.31 15.46 15.42 15.46 15.49 15.61 16.00 15.45 199 1185.825 15.49 15.60 15.77 15.82 15.84 15.63 15.55 15.86 15.44 207 1185.850 15.40 15.65 15.79 15.80 15.80 15.65 15.58 15.67 15.47 215 1185.870 15.41 15.64 15.78 15.76 15.84 15.70 15.62 15.57 15.51 223 1185.893 15.35 15.68 15.74 15.61 15.91 15.71 15.68 15.48 15.51 231 1185.920 15.39 15.70 15.67 15.45 15.71 15.71 15.75 15.70 15.53 239 1185.941 15.50 15.74 15.53 15.37 15.28 15.71 15.81 15.61 - 303 1186.852 15.75 15.49 15.49 15.75 15.82 15.36 15.49 15.81 15.53 311 1186.873 15.79 15.45 15.56 15.80 15.85 15.37 15.45 15.86 15.50 319 1186.894 15.77 15.43 15.63 15.81 15.86 15.38 15.45 - 15.48 327 1186.914 - 15.43 15.69 15.80 15.87 15.40 15.47 - 15.47 208 Table A6. WIRO I Photometry of M15 Variables 111 D frame 2448000+ V3 V4 V5 V11 v12 v13 v14 v15 v35 53 1183.897 15.22 15.51 15.25 — — — 15.52 15.60 15.50 61 1183.924 15.16 15.55 15.30 15.16 — 14.89 15.37 15.53 15.53 69 1183.945 15.14 15.60 15.35 15.23 -— 14.94 15.31 15.48 15.52 126 1184.854 15.30 15.53 15.44 15.48 15.23 15.41 15.36 15.40 15.29 146 1184.899 15.39 15.61 15.26 15.26 - 15.40 15.46 15.44 15.27 154 1184.920 15.40 15.66 15.18 15.18 - — 15.51 15.49 15.26 200 1185.832 15.25 15.58 15.23 15.59 15.01 15.18 15.35 14.98 15.48 208 1185.852 15.18 15.63 15.29 15.58 15.05 15.22 15.30 15.04 15.53 216 1185.873 15.14 15.67 15.32 15.54 — 15.25 15.25 15.12 15.54 224 1185.895 15.17 15.60 15.35 15.45 — 15.26 15.23 15.16 15.53 232 1185.923 15.19 15.58 15.43 15.29 — 15.33 15.27 15.24 15.56 240 1185.943 15.18 15.45 15.44 15.24 — 15.34 15.29 15.30 15.50 304 1186.854 15.40 15.61 15.13 — — 15.02 15.51 15.50 15.26 312 1186.875 15.42 15.52 15.13 15.58 — 15.05 15.55 15.46 15.35 320 1186.896 15.44 15.35 15.14 15.60 - 15.09 15.58 15.33 15.35 328 1186.917 15.44 15.33 15.20 15.51 - 15.10 15.57 15.14 15.38 HJ D frame 2448000+ V38 V39 v40 v42 V52 V53 V66 v74 V113 53 1183.897 - - 15.48 15.34 15.37 15.33 15.30 — 15.35 61 1183.924 15.44 15.33 15.52 15.39 15.41 15.19 15.31 — 15.35 69 1183.945 - 15.36 15.48 15.44 15.38 15.15 15.32 - 15.34 126 1184.854 15.31 15.23 15.25 15.20 15.09 15.24 15.54 -— 15.29 146 1184.899 15.38 15.11 15.25 15.19 15.19 15.23 15.50 15.82 15.26 154 1184.920 15.43 15.13 15.28 15.22 15.22 15.26 15.37 - ' 15.26 200 1185.832 15.26 15.36 15.47 15.52 15.54 15.36 15.30 15.54 15.25 208 1185.852 15.24 15.38 15.49 15.51 15.52 15.41 15.35 15.59 15.27 216 1185.873 15.21 15.42 15.52 15.46 15.57 15.40 15.37 15.43 15.30 224 1185.895 15.17 15.41 15.47 15.32 15.64 15.45 15.42 15.17 15.29 232 1185.923 15.17 15.42 15.36 15.22 15.36 15.41 15.50 15.44 15.32 240 1185.943 — 15.42 15.30 15.18 15.08 15.38 15.47 15.43 15.33 304 1186.854 15.48 15.26 15.24 15.49 15.52 15.17 15.29 15.41 15.31 312 1186.875 15.52 15.23 15.33 15.49 15.54 15.17 15.26 15.54 15.29 320 1186.896 15.49 15.22 15.37 15.51 15.55 15.19 15.25 15.55 15.28 328 1186.917 15.47 15.24 15.43 15.50 - 15.18 15.25 15.67 15.27 209 Table A7. WIRO B Photometry of M15 Variables - Northwest Field HJD frame 2448000+ V1 v2 v24 V30 v31 v32 v67 v97 54 1183.901 15.20 16.26 15.92 16.32 16.33 - — — 62 1183.928 - 16.28 — - 16.02 15.50 16.30 16.51 127 1184.858 14.98 16.28 16.53 15.75 16.18 - - 16.79 147 1184.903 14.79 15.99 16.25 15.70 16.18 16.50 16.17 16.91 155 1184.923 14.75 15.86 16.11 15.78 16.22 16.44 15.97 16.78 201 1185.835 15.89 16.06 16.17 16.08 16.48 15.69 16.27 16.16 209 1185.856 15.94 16.14 16.27 16.10 16.50 15.73 16.17 16.26 217 1185.876 15.90 16.15 — 16.13 16.53 15.83 16.19 16.33 225 1185.899 15.89 16.17 16.35 16.20 16.58 15.93 16.37 16.75 233 1185.926 15.93 16.21 16.43 16.24 16.54 15.98 16.30 16.42 305 1186.857 15.52 16.31 15.91 16.28 16.05 16.32 16.71 16.76 313 1186.878 15.56 — 15.93 16.12 16.10 16.38 16.69 16.71 321 1186.900 15.56 - 16.01 15.99 16.14 16.43 16.71 16.75 329 1186.919 15.63 — 16.12 15.85 16.12 16.47 - - Table A8. WIRO V Photometry of M15 Variables - Northwest Field HJD frame 2448000+ V1 V2 v24 v30 V31 v32 v67 v97 55 1183.905 14.77 - - - 15.90 15.59 - 15.92 63 1183.931 - 15.66 15.59 15.90 15.65 15.17 16.03 15.92 128 1184.861 14.65 - - 15.43 15.80 - - - 148 1184.906 14.50 — 15.84 15.42 15.80 15.93 15.71 16.25 156 1184.926 14.46 - 15.66 15.47 15.82 15.92 15.58 16.19 202 1185.838 15.31 15.57 15.74 15.68 16.03 15.33 15.87 15.69 210 1185.858 15.30 15.59 15.77 15.71 16.05 15.39 15.86 15.71 218 1185.880 15.31 15.57 15.86 15.74 16.08 15.48 15.90 15.80 226 1185.905 15.35 - - 15.78 16.06 15.53 15.89 15.86 234 1185.928 15.35 15.62 15.94 15.81 16.07 15.60 15.91 15.88 306 1186.860 14.97 - 15.54 15.82 15.71 15.90 16.11 16.04 314 1186.881 15.00 - 15.58 15.71 15.72 15.95 16.38 16.07 322 1186.902 15.03 - 15.66 15.57 15.75 - 16.24 — 330 1186.922 15.05 - 15.70 15.51 15.76 15.85 16.13 - 210 Table A9. WIRO R Photometry of M15 Variables - Northwest Field HJD frame 2448000+ v1 v2 v24 v30 v31 v32 v67 v97 56 1183.908 14.52 - 15.35 - 15.63 15.26 15.60 — 64 1183.933 14.59 — — — 15.42 - — — 129 1184.863 14.45 - - - 15.54 - 15.89 - 149 1184.908 14.31 - — 15.23 15.56 15.59 15.52 — 157 1184.928 14.28 - 15.42 15.27 15.56 15.57 15.42 15.85 203 1185.840 14.94 15.21 - 15.43 15.70 15.13 15.63 — 211 1185.860 14.94 15.19 — 15.46 15.73 15.18 15.63 15.45 219 1185.883 14.96 - — 15.48 15.77 15.24 15.63 15.52 227 1185.907 14.98 — 15.66 - 15.78 — 15.65 - 235 1185.930 14.98 - - 15.53 15.75 15.30 15.64 15.58 307 1186.863 14.68 — 15.34 15.57 15.46 — - - 315 1186.882 14.73 — — — 15.50 15.61 15.96 - 323 1186.905 14.71 — - - 15.51 — 16.03 - 331 1186.924 14.72 - - 15.30 15.52 15.51 15.87 - Table A10. WIRO I Photometry of M15 Variables - Northwest Field HJD frame 2448000+ V1 v2 V24 v30 V31 v32 v67 v97 57 1183.911 14.25 14.92 — 15.29 15.31 14.94 15.33 -— 65 1183.935 14.32 - - - 15.18 — 15.31 - 130 1184.865 14.23 - - 15.03 15.30 — 15.40 - 150 1184.910 14.13 — — 15.03 15.30 - 15.23 - 158 1184.930 14.11 - 15.15 15.07 15.28 - 15.12 - 204 1185.843 14.59 - 15.18 15.18 15.43 — 15.30 15.25 212 1185.862 — — - 15.19 15.42 14.89 15.24 — 220 1185.885 14.65 14.88 15.31 15.23 15.44 14.92 15.33 - 228 1185.909 14.64 14.92 15.26 15.22 15.46 14.93 15.30 - 236 1185.933 14.64 — 15.26 15.29 15.49 14.94 15.28 - 308 1186.865 14.35 - - 15.29 15.22 15.20 - — 316 1186.884 14.36 - 15.14 15.21 15.24 - 15.55 - 324 1186.907 14.38 - - 15.12 — — — — 332 1186.927 14.41 14.99 - 15.09 15.28 - - — 211 Table A.11. Photometry for HB Non-variable Stars fin 1 15.516 0.402 2 15.578 0.247 3 15.581 0.377 4 15.612 0.450 5 15.614 0.425 6 15.697 0.388 7 15.718 0.431 8 15.722 0.426 9 15.723 0.340 10 15.736 0.209 11 15.739 0.167 12 15.752 0.333 13 15.787 0.182 14 15.860 0.120 15 15.869 0.448 16 15.893 0.397 17 15.897 0.158 18 15.910 0.109 19 15.916 0.099 20 15.920 0.111 21 15.922 0.140 22 15.928 0.130 23 15.937 0.170 24 15.942 0.134 25 15.958 0.157 26 15.961 0.088 27 15.961 0.107 28 15.981 0.137 29 16.001 0.077 30 16.003 0.084 31 16.007 0.139 32 16.025 0.193 33 16.029 0.066 34 16.032 0.061 35 16.078 0.066 36 16.106 0.480 APPENDIX B This appendix contains Phase of Maxima tables for the RR Lyrae variable stars in M15. The tables begin on the next page 212 Table B.1. 213 Dates and Phases of Maxima HJD V2 V3 V4 V5 14000 20950 21650 24400 26950 27350 29140 33875 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.451 0.480 0.569 0.167 0.537 0.600 0.558 0.869 0.149 0.231 0.460 0.091 0.391 0.669 0.303 0.663 0.131 41".“ 0.22 :1: 0.05 0.25 :1: 0.05 0.26 :h 0.04 0.27 :1: 0.03 0.30 :1: 0.05 0.17 :1: 0.03 0.20 :1: 0.02 0.22 :1: 0.06 0.20 :1: 0.02 0.25 :1: 0.06 0.22 :1: 0.06 0.22 :1: 0.05 0.35 :1: 0.04 0.43 :1: 0.06 0.51 :1: 0.05 0.41 :1: 0.06 0.45 :1: 0.03 0.044 0.323 0.049 0.000 0.162 0.175 0.345 0.214 0.235 0.238 0.319 0.250 0.019 0.269 0.166 0.762 0.310 0.657 0.293 ¢moz 0.84 :1: 0.16 0.80 :1: 0.04 0.78 :1: 0.04 0.78 :1: 0.05 0.84 :1: 0.04 0.84 :1: 0.08 0.88 :1: 0.06 0.90 :1: 0.08 0.91 :1: 0.03 0.89 :1: 0.03 0.87 :1: 0.03 0.98 :1: 0.07 0.97 :1: 0.03 0.95 :1: 0.06 1.07 i 0.06 1.08 :1: 0.05 1.08 :1: 0.04 1.05 :1: 0.05 1.17 :1: 0.03 d 0.245 0.022 0.240 0.283 0.275 0.094 0.257 0.276 0.085 0.201 0.027 0.256 0.227 0.177 0.047 0.618 0.187 0.680 0.108 ¢mu 0.20 :l: 0.07 0.24 :1: 0.05 0.26 :1: 0.05 0.23 :1: 0.04 0.23 :1: 0.05 0.27 :1: 0.05 0.15 :1: 0.06 0.26 :1: 0.05 0.31 :1: 0.04 0.29 :1: 0.06 0.40 :1: 0.03 0.43 :1: 0.07 0.40 :1: 0.03 0.50 :1: 0.03 0.48 :1: 0.05 0.42 :1: 0.05 0.39 :1: 0.03 0.48 :1: 0.05 0.53 :1: 0.03 d 0.096 0.123 0.161 0.374 0.377 0.371 0.034 0.094 0.102 0.057 0.165 0.102 0.142 0.233 0.657 0.325 0.642 0.120 ¢mas 0.26 :1: 0.09 0.20 :1: 0.04 0.20 :h 0.06 0.22 :1: 0.08 0.15 :1: 0.06 0.22 :1: 0.07 0.24 :l: 0.08 0.25 :1: 0.04 0.29 :1: 0.03 0.26 :1: 0.06 0.33 :1: 0.03 0.30 :1: 0.05 0.29 :1: 0.04 0.38 :1: 0.06 0.38 :1: 0.05 0.38 :1: 0.06 0.41 :1: 0.05 0.48 :1: 0.03 HJD V6 V7 V8 V9 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.642 0.022 0.584 0.425 0.656 0.096 0.122 0.625 0.221 0.385 0.461 0.313 0.253 ¢mu 0.90 :1: 0.12 0.86 :1: 0.04 0.80 :1: 0.06 0.87 :1; 0.03 0.84 :1: 0.05 0.80 :1: 0.04 0.76 :t 0.05 0.78 :1: 0.03 0.80 :1: 0.07 0.75 :1: 0.03 0.63 :1: 0.04 0.66 :1: 0.04 0.62 :1: 0.04 0.330 0.163 0.261 0.010 0.288 0.369 0.277 0.085 0.344 0.325 0.003 0.194 0.342 ¢mu 0.24 :1: 0.05 0.23 d: 0.07 0.25 :1: 0.05 0.19 :1: 0.04 0.20 i 0.04 0.36 :1: 0.10 0.33 i 0.05 0.52 :t 0.03 0.48 :l: 0.07 0.48 :1: 0.03 0.82 :1: 0.06 0.97 :1: 0.05 1.13 i 0.06 0.265 0.643 0.527 0.273 0.366 0.487 0.515 0.644 0.040 0.270 0.121 0.434 0.620 0.323 0.287 ¢mas 1.02 :1: 0.04 1.04 :1: 0.03 1.04 :1: 0.04 1.00 d: 0.03 1.02 :1: 0.03 1.01 :1: 0.06 1.00 :h 0.04 1.02 :1: 0.02 1.05 :l: 0.04 0.98 :1: 0.03 1.05 :1: 0.02 0.97 i 0.03 0.99 :h 0.05 1.00 :1: 0.04 0.96 :l: 0.02 0.659 0.310 0.558 0.119 0.109 0.653 0.269 0.457 0.603 0.493 0.392 0.450 0.155 0.365 0.255 0.760 0.437 4m 0.60 :1: 0.18 0.55 :l: 0.04 0.53 :1: 0.05 0.55 :1: 0.03 0.56 :1: 0.02 0.54 :1: 0.02 0.51 :1; 0.03 0.53 :1: 0.02 0.54 :1: 0.02 0.53 :1: 0.03 0.54 :l: 0.02 0.57 :t 0.04 0.60 :1: 0.03 0.58 :1: 0.04 0.58 :1: 0.04 0.60 :1: 0.04 0.65 :1: 0.03 214 Table B.1. Cont’d 111 D V10 V11 V12 V13 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 d 0.095 0.232 0.357 0.375 0.154 0.098 0.202 0.396 0.226 0.141 0.232 0.312 0.188 0.324 0.169 0.712 0.293 mm -0.02 :1: 0.12 0.29 :1: 0.04 0.25 :1: 0.05 0.44 :1: 0.05 0.40 :1: 0.04 0.48 :1: 0.07 0.36 :1: 0.05 0.29 :t 0.04 0.40 :1: 0.03 0.41 :1: 0.03 0.44 :t 0.02 0.39 :1: 0.04 0.42 :1: 0.02 0.34 :1: 0.05 0.46 :1: 0.06 0.33 :1: 0.05 0.37 :t 0.04 d 0.019 0.178 0.077 0.063 0.084 0.316 0.108 0.052 0.243 0.123 0.251 0.813 0.831 0.793 0.227 0.126 0.466 0.632 0.085 ¢mu -1.66 :1: 0.10 -0.72 :t 0.04 -0.70 :l: 0.05 -0.15 :l: 0.04 —0.16 :1: 0.04 -0.16 :1: 0.05 0.06 :1: 0.06 0.41 :1: 0.03 0.42 :1: 0.04 0.39 :1: 0.08 0.44 :1: 0.03 0.43 :1: 0.07 0.48 :1: 0.04 0.31 :1: 0.03 -0.37 :1: 0.06 -0.68 :1: 0.05 -0.69 :1: 0.04 -0.77 :t 0.05 -1.27 :h 0.04 d 0.028 0.235 0.302 0.129 0.307 0.066 0.049 0.376 0.579 0.438 0.547 0.489 0.423 0.404 0.522 0.536 ¢mat 1.87 i 0.22 1.29 :1: 0.05 0.77 :1: 0.04 0.75 :1: 0.05 0.76 :1: 0.14 0.68 :t 0.04 0.52 :1: 0.03 0.69 :h 0.03 0.74 :1: 0.06 0.71 :t 0.03 0.91 :1: 0.04 0.86 :1: 0.03 0.94 :t 0.04 1.03 :1: 0.05 1.03 :1: 0.04 1.07 :1: 0.05 d 0.164 0.450 0.755 0.211 0.142 0.338 0.114 0.351 0.526 0.090 0.439 0.326 0.503 0.033 0.008 0.277 0.285 0.890 0.169 ¢mu 0.76 :1: 0.10 1.04 :1: 0.04 0.97 :1: 0.04 1.03 :1: 0.03 0.99 :1: 0.03 1.04 i: 0.07 0.90 :1: 0.03 0.65 :1: 0.02 0.61 :t 0.02 0.55 :1: 0.04 0.49 :1: 0.03 0.38 :1: 0.04 0.36 :1: 0.03 0.18 :1: 0.03 -0.18 :L- 0.05 ~0.27 :1: 0.04 -0.25 :t 0.04 -0.34 :1: 0.04 -0.88 i 0.03 11.1 D V14 V15 V17 V18 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.014 0.164 0.353 0.367 0.226 0.201 0.212 0.208 0.201 0.137 0.084 0.432 0.412 0.302 0.456 0.392 0.678 0.228 ¢mu 0.16 :h 0.10 0.22 :1: 0.05 0.17 :1: 0.08 0.14 :1: 0.05 0.15 :h 0.05 0.20 :h 0.08 0.08 :1: 0.10 0.32 :1: 0.06 0.32 :h 0.02 0.27 :1: 0.05 0.29 :1: 0.03 0.42 :1: 0.06 0.40 :1: 0.05 0.35 :1: 0.05 0.30 :1: 0.06 0.35 :1: 0.06 0.31 :1: 0.06 0.45 :h 0.04 d 0.024 0.218 0.470 0.521 0.399 0.183 0.141 0.235 0.330 0.049 0.365 0.229 0.148 0.262 0.440 0.580 0.349 0.357 0.101 ¢mu 0.36 :1: 0.08 0.17 :h 0.04 0.22 :1: 0.08 0.08 :1: 0.05 -0.10 i 0.04 0.03 :1: 0.05 -0.45 :1: 0.02 0.25 :1: 0.03 0.37 :1: 0.03 0.39 :1: 0.04 0.47 :t 0.03 0.54 :1: 0.06 0.58 :1: 0.04 0.51 :1: 0.05 0.40 :l: 0.05 0.36 :1: 0.05 0.38 :1: 0.08 0.32 :1: 0.05 0.63 :1: 0.03 0.023 0.142 0.287 0.118 0.389 0.335 0.327 0.082 0.215 0.370 0.235 0.400 0.278 0.407 0.777 0.302 ¢maz 0.94 :1: 0.15 0.59 :1: 0.05 0.82 :1: 0.05 0.54 :1: 0.06 0.67 :1: 0.10 0.50 :1: 0.10 0.49 :t 0.05 0.54 :1: 0.04 0.59 d: 0.04 0.50 :1: 0.06 0.39 :1: 0.05 0.53 :1: 0.08 0.55 :1: 0.10 0.47 :1: 0.12 0.49 :1: 0.10 0.59 :1: 0.10 0.530 0.649 0.645 0.055 0.040 0.702 0.794 0.183 0.598 0.687 0.765 0.141 0.146 0.323 0.815 0.051 ¢mas 0.32 :1: 0.04 0.32 :1: 0.06 0.32 :1: 0.06 0.30 :1: 0.07 0.27 :1: 0.03 0.32 :1: 0.03 0.30 :1: 0.05 0.27 :1: 0.03 0.35 :1: 0.10 0.29 :1: 0.04 0.29 :1: 0.05 0.35 :1: 0.06 0.41 :1: 0.05 0.43 :1: 0.04 0.40 :h 0.05 0.55 :1: 0.04 215 Table B.1. Cont’d 11.1 D V19 V20 V22 V23 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.074 0.536 0.377 0.604 0.209 0.461 0.609 0.646 0.059 0.422 0.309 0.237 0.337 0.534 0.428 0.867 0.514 ¢m¢s 0.71 :h 0.10 0.44 :1: 0.04 0.44 :1: 0.04 0.45 :t 0.03 0.48 :1: 0.03 0.51 :1: 0.02 0.51 :1: 0.02 0.50 :1: 0.03 0.57 :1: 0.03 0.50 :1: 0.03 0.60 :1: 0.03 0.66 :1: 0.03 0.69 :1: 0.04 0.72 :1: 0.04 0.72 :1: 0.04 0.71 :1: 0.04 0.84 :1: 0.02 ¢mas 0.63 :1: 0.05 0.77 :1: 0.10 0.69 :1: 0.02 0.58 :1: 0.03 0.58 :1: 0.05 0.45 :1: 0.03 0.650 0.852 0.381 0.784 0.319 0.298 0.911 0.628 0.094 0.639 0.738 0.527 0.018 0.457 0.503 0.484 0.467 ¢mas 0.40 :1: 0.10 0.50 i 0.03 0.54 :1: 0.02 0.49 :1: 0.08 0.45 :1: 0.04 0.47 :1: 0.03 0.51 :1: 0.01 0.56 :1: 0.02 0.62 :1: 0.02 0.65 :1: 0.04 0.66 :1: 0.03 0.86 :1: 0.03 1.02 :1: 0.03 1.02 :t 0.06 1.25 :h 0.10 1.03 :1: 0.06 1.27 :h 0.03 d 0.638 0.771 0.839 0.417 0.372 0.468 0.418 0.290 0.545 0.679 0.729 0.255 0.385 0.183 0.463 0.170 ¢mac 0.40 :1: 0.10 0.28 :1: 0.03 0.21 :1: 0.04 0.10 :1: 0.08 0.17 :1: 0.04 0.12 :1: 0.03 0.14 :1: 0.02 0.15 :1: 0.02 0.16 :1: 0.02 0.11 :1: 0.03 0.14 :l: 0.02 0.09 :1: 0.04 0.05 :1: 0.04 0.08 :t 0.05 -0.01 :1: 0.04 -0.24 :1: 0.02 HJD V24 V25 V26 V28 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 ¢mu 0.35 :t 0.12 0.17 :1: 0.20 0.41 :1: 0.07 0.04 :1; 0.05 0.11 :1: 0.06 0.24 :1: 0.05 0.22 :k 0.13 0.09 :t 0.12 0.13 :1: 0.04 0.217 0.216 0.632 0.707 0.407 0.551 0.626 0.299 0.965 0.700 0.415 0.478 0.573 0.210 0.871 0.496 ¢mu 0.55 :1: 0.08 0.51 :1: 0.02 0.54 :1: 0.06 0.54 :1: 0.06 0.49 :1: 0.02 0.49 :h 0.03 0.49 :t 0.02 0.49 :t 0.02 0.54 :1: 0.12 0.50 :1: 0.02 0.50 :1: 0.01 0.48 :1: 0.02 0.46 :1: 0.04 0.48 :1: 0.05 0.48 :1: 0.04 0.50 :1: 0.03 0.136 0.371 0.072 0.142 0.670 0.566 0.290 0.584 0.331 0.322 0.072 0.405 0.524 0.211 ¢m 68 0.83 :1: 0.05 0.37 :t 0.05 0.09 :1: 0.10 -0.04 :1: 0.10 -0.10 :1: 0.05 0.00 :1: 0.06 -0.03 :1: 0.03 0.07 :1: 0.06 0.05 :1: 0.06 0.10 :1: 0.06 0.07 :l: 0.07 0.08 :1: 0.06 0.01 :1: 0.07 0.06 :h 0.06 0.227 0.753 0.022 0.483 0.822 0.523 0.330 0.341 0.447 0.046 0.527 0.669 0.460 ¢mas 0.67 :h 0.25 0.57 :1: 0.04 0.55 :1: 0.05 0.57 :1: 0.02 0.56 :1: 0.02 0.55 :1: 0.02 0.55 :1: 0.02 0.54 :1: 0.02 0.55 i 0.03 0.57 :1: 0.04 0.58 :1: 0.06 0.58 :1: 0.03 0.57 :1: 0.04 216 Table B.1. Cont’d 111 D V29 V30 V31 V32 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.354 0.513 0.314 0.037 0.524 0.539 0.148 0.348 0.190 0.345 0.300 0.624 0.065 0.774 0.457 ¢m¢s 0.50 :1: 0.12 0.26 i 0.05 0.22 :h 0.07 0.35 :1: 0.04 0.37 :1: 0.07 0.54 :1: 0.03 0.47 :1: 0.03 0.50 :1: 0.05 0.48 :1: 0.03 0.47 :1: 0.05 0.50 :l: 0.04 0.46 :1: 0.05 0.49 :1: 0.05 0.56 :t 0.05 0.56 :1: 0.04 d 0.200 0.168 0.230 0.146 0.050 0.315 0.327 0.230 0.262 0.336 0.227 0.246 0.241 0.400 0.639 0.354 ¢maz 0.95 :1: 0.11 0.94 :1: 0.05 1.05 :1: 0.05 1.21 :t 0.07 1.06 :1: 0.10 0.85 :1: 0.08 0.95 :1: 0.03 0.98 :1: 0.05 0.99 :1: 0.03 0.91 :1: 0.07 1.07 :1: 0.05 0.90 :1: 0.06 0.92 :1: 0.07 0.96 :1: 0.08 1.10 :1: 0.07 1.00 :1: 0.06 d 0.313 0.316 0.241 0.124 0.023 0.292 0.214 0.323 0.031 0.113 0.195 0.135 0.212 0.128 0.620 0.319 ¢mu 0.53 :1: 0.08 0.42 :1: 0.04 0.43 :1: 0.04 0.38 :1: 0.08 0.48 :1: 0.06 0.47 :t 0.03 0.43 :1: 0.03 0.66 :1: 0.08 0.45 :1: 0.03 0.42 :1: 0.04 0.46 :1: 0.04 0.49 :1: 0.06 0.47 :1: 0.07 0.61 :1: 0.15 0.55 :1: 0.07 0.48 :1: 0.06 d 0.450 0.351 0.508 0.011 0.154 0.611 0.468 0.020 0.533 0.523 0.624 0.205 ¢maz 0.95 :1: 0.15 0.80 :1: 0.03 0.77 :1: 0.03 0.76 :1: 0.06 0.72 :1: 0.04 0.75 :1: 0.02 0.79 :1: 0.03 0.77 :1: 0.04 0.78 :1: 0.02 0.93 :1: 0.03 0.93 :1: 0.05 0.95 :1: 0.04 H.) D V35 V36 V38 V39 '14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.219 0.161 0.345 0.993 0.425 0.178 0.695 0.437 0.309 0.173 0.369 0.002 0.385 0.430 0.746 0.326 ¢maz 0.19 :1: 0.10 0.14 :1: 0.06 0.06 :t 0.04 0.10 :1: 0.04 0.12 :1: 0.04 0.30 :1: 0.06 0.35 :1: 0.03 0.36 :1; 0.08 0.38 :1: 0.03 0.35 :1: 0.05 0.39 :1: 0.03 0.55 :1: 0.05 0.59 :1: 0.05 0.60 :1: 0.05 0.60 i 0.05 0.59 :1: 0.03 ¢m08 0.22 :1: 0.04 0.21 :1: 0.03 0.39 :1.- 0.03 0.21 :1: 0.04 0.16 :t 0.04 0.194 0.663 0.551 0.605 0.327 0.207 0.679 0.714 0.246 0.742 0.683 0.542 0.244 0.289 0.219 0.772 0.140 $0302 0.59 :1: 0.10 0.64 :1: 0.06 0.63 :t 0.05 0.69 :1: 0.05 0.80 :1: 0.03 0.93 :1: 0.03 0.99 :1: 0.04 0.98 :1: 0.05 0.95 :1: 0.03 0.96 :1: 0.08 0.94 :1: 0.05 1.05 :1: 0.04 0.89 :1: 0.06 0.84 :l: 0.04 0.94 :1: 0.05 0.79 :1: 0.04 0.63 :r 0.03 0.082 0.363 0.053 0.262 0.349 0.190 0.240 0.332 0.032 0.178 0.100 0.325 0.045 0.306 0.335 0.880 0.192 ¢mu 1.08 :1: 0.20 0.89 :1: 0.04 0.97 :l: 0.05 0.92 :1: 0.10 0.93 :1: 0.12 0.89 :1: 0.10 0.80 :1: 0.03 0.81 :1: 0.04 0.84 :1: 0.03 0.94 :t 0.07 0.86 :1: 0.04 0.89 :1: 0.06 0.75 :1: 0.05 0.65 :1: 0.07 0.76 :1: 0.08 0.59 :1: 0.07 0.80 :1: 0.07 217 Table B. 1. Cont’d HJD V40 V41 V42 V43 d ¢mas d ¢mu d ¢mu d ¢mu 14000 0.141 0.17 :1: 0.08 - - 0.061 0.21 :t 0.05 0.391 0.15 :1: 0.10 20950 0.472 -0.06 :1: 0.04 0.056 0.22 :1: 0.05 0.185 -0.25 :1: 0.05 0.153 0.36 :1: 0.06 21650 -— — - - — — - - 24400 0.043 0.00 :1: 0.03 - - 0.283 -0.29 :t 0.06 0.372 0.19 :t 0.06 26950 - - — — — - — - 27350 0.029 0.05 i 0.05 — — 0.448 ~0.36 :h 0.05 0.222 0.44 :1: 0.08 29140 0.094 0.08 :1: 0.05 — - 0.198 -0.25 :1: 0.04 0.176 0.60 :1: 0.06 33875 0.208 0.08 :1: 0.05 — - 0.085 -0.16 :1: 0.04 0.460 0.60 :1: 0.04 35000 0.051 0.14 :1: 0.05 — - 0.674 0.02 :t 0.03 0.384 0.37 :1: 0.04 35400 0.013 0.12 :1: 0.05 -- - 0.468 -0.04 :1: 0.04 0.333 0.36 :h 0.07 36488 0.214 0.07 :t 0.03 - - 0.235 0.07 :1: 0.03 0.147 0.41 :1: 0.03 37500 - - - - 0.666 0.02 :t 0.07 0.307 0.42 :1: 0.07 37950 0.003 0.10 :1: 0.06 — - 0.543 0.07 :1: 0.05 0.115 0.32 :1: 0.05 39750 0.238 0.08 :1: 0.03 — - 0.370 0.17 :1: 0.05 0.315 0.36 :1: 0.06 43360 0.248 0.33 :1: 0.05 0.089 0.17 :1: 0.03 0.063 0.23 :1: 0.04 0.389 0.87 :1: 0.08 44133 0.403 0.35 :t 0.05 - - 0.352 0.22 :1: 0.04 0.364 0.86 :1: 0.06 44156 0.417 0.34 :1: 0.04 0.160 0.95 :1: 0.07 0.408 0.23 :t 0.02 0.353 0.97 :1: 0.06 44180 - - — -— - - 0.109 0.90 :l: 0.05 44820 0.539 0.40 :1: 0.05 — — 0.573 0.24 :1: 0.04 0.845 0.95 :l: 0.06 48660 0.362 0.70 :1: 0.04 - — 0.112 0.45 :1: 0.04 — - HJD V44 V49 V50 V51 d ¢mas d ¢mae d ¢mar d ¢m¢z 14000 0.052 0.60 :1: 0.15 — — — - 0.089 0.75 :1: 0.10 20950 0.254 0.74 :1: 0.04 0.193 0.00 :t 0.03 0.026 0.35 :1: 0.05 0.052 0.96 :1: 0.05 21650 - — - -— — — - — 24400 0.336 0.80 :t 0.04 - — - - 0.000 1.00 :1: 0.05 26950 - - — - — — — — 27350 - - - - - — - - 29140 0.247 0.62 :1: 0.03 0.175 0.17 :l: 0.05 0.049 0.37 :1: 0.05 0.464 1.09 :1: 0.04 33875 0.529 0.67 :1: 0.02 0.713 0.78 :1: 0.03 0.018 0.44 :1: 0.04 0.312 1.02 :1: 0.05 35000 0.565 0.73 i: 0.03 - - - — 0.280 1.02 :1: 0.05 35400 0.164 0.70 :1: 0.05 — - — — 0.019 1.04 :1: 0.06 36488 0.234 0.69 :1: 0.03 - - — — 0.062 1.01 :1: 0.03 37500 - - - — - - - — 37950 0.333 0.71 :1: 0.04 — - — - — - 39750 - — — - - — — — 43360 0.502 0.97 :1: 0.05 0.179 0.99 :1: 0.05 0.160 0.43 :1: 0.06 0.231 1.24 :h 0.05 44133 0.525 0.95 :1: 0.04 - - — — - - 44156 0.210 1.05 :1: 0.05 0.243 0.98 :1: 0.04 0.265 0.40 :1: 0.04 0.119 1.23 :1: 0.06 44180 - - — - - — - - 44820 0.779 0.93 :h 0.04 - — - - -— - 48660 0.141 1.18 :1: 0.03 0.638 0.76 :1: 0.04 0.266 0.55 :1: 0.04 0.353 1.20 :1: 0.05 218 Table B. 1. Cont’d HJD V52 V53 V54 V57 d ¢mas d ¢mac d ¢mas d ¢mu 14000 — — 0.075 0.40 :1: 0.15 0.134 0.15 :h 0.15 - — 20950 0.440 1.05 :1: 0.03 0.066 0.75 m 0.04 0.209 0.114 0.05 0.331 0.25 4 0.15 21650 - — - — - - - - 24400 0.057 0.88 a 0.04 0.137 0.74 a 0.05 0.078 0.10 :1: 0.10 — - 26950 — -— -- - — — — — 27350 0.091 0.81 :1: 0.04 0.327 0.65 a; 0.07 0.058 0.02 4; 0.07 - - 29140 0.246 0.75 a 0.02 0.249 0.83 :1; 0.06 0.134 0.04 a 0.15 0.186 0.81 :h 0.03 33875 0.297 0.69 a 0.02 0.265 0.61 :t 0.10 0.367 -0.08 :1; 0.03 0.137 0.40 :1: 0.04 35000 0.075 0.71 :1: 0.03 0.081 0.74 a 0.05 0.137 -012 :1; 0.05 - - 35400 0.139 0.72 m 0.04 0.146 0.79 :1: 0.05 0.137 -004 a; 0.06 - — 36488 0.055 0.70 :1 0.03 0.067 0.82 a 0.05 0.157 -005 :t 0.04 - - 37500 0.016 0.72 :1: 0.05 — - — — - — 37950 0.171 0.75 a 0.03 0.301 0.72 a 0.05 — - - - 39750 - — - — — - - — 43360 0.509 0.83 :1: 0.04 0.066 0.84 :1: 0.06 0.383 0.07 :1 0.06 0.710 0.44 :1: 0.06 44133 0.585 0.86 a 0.04 0.289 0.97 a 0.06 - - - - 44156 0.005 0.80 a 0.06 0.487 0.99 a 0.07 0.342 0.12 :1: 0.12 0.199 0.83 :1: 0.05 44180 - - - — — - — - 44820 0.313 0.87 a 0.04 0.728 0.95 a 0.06 - — — — 48660 0.403 1.05 a 0.03 0.130 1.07 a 0.05 0.223 -001 a: 0.04 — - HJD V65 V66 V67 V74 d ¢mas d ¢mas d ¢mas d ¢mu 14000 - - — — — _ .. - 20950 0.809 0.22 :1 0.03 0.133 0.69 a: 0.05 — - — - 21650 - — — — — - _ _ 24400 - — 0.316 0.72 a 0.05 — — — — 26950 — — — — — .. _ _ 27350 - - 0.107 0.67 :1: 0.07 - — — — 29140 — - 0.254 0.68 a 0.08 - — 0.048 0.55 :1: 0.09 33875 — - 0.286 0.713: 0.07 0.115 1.26 :1: 0.08 0.020 0.50 :1: 0.04 35000 - — 0.050 0.70 :1: 0.03 - - — - 35400 — — 0.270 0.72 :t 0.06 — - - — 36488 — - 0.227 0.69 :1: 0.03 - — — — 37500 — — — - ._ _ _ _ 37950 — - 0.254 0.74 :1; 0.04 — — - _ 39750 — - _ .. _ _ _ _ 43360 0.254 0.98 a 0.04 0.079 0.59 :1; 0.06 0.263 0.78 :1: 0.04 0.100 0.69 :1: 0.07 44133 - - 0.176 0.55 a 0.05 - — -— — 44156 0.022 0.75 a 0.04 0.322 0.57 :1: 0.06 0.153 0.82 a: 0.12 0.377 0.17 a 0.03 44180 — — — - _ - _ _ 44820 - - 0.555 0.55 :1: 0.05 — — - - 48660 0.525 0.38 a 0.03 0.346 0.63 :1: 0.03 0.230 0.64 a 0.07 0.164 0.03 :1: 0.04 219 Table B. 1. Cont’d HJD V97 14000 20950 21650 24400 26950 27350 29140 33875 35000 35400 36488 37500 37950 39750 43360 44133 44156 44180 44820 48660 0.42 :1: 0.03 0.37 :1: 0.03 0.37 :1: 0.02 0.37 a 0.04 0.37 :1: 0.03 LIST OF REFERENCES LIST OF REFERENCES Bailey, S. I. 1919. Harvard Ann. 78:199. Barlai, K. 1977. in The Role of Star Clusters in Cosmology and in the Study of Galactic Structure ed. B. A. Balozs, (Budapest):139. Barlai, K. 1983. in Observational Tests of Stellar Evolution Theory ed. by A. Maeder and A. Renzini, (Dordrecht: Reidel):457. Barlai, K. 1989. Comm. Konlcoly Observ. 92:145. Battistini, P., Bregoli, C., Pecci, F. F., Lolli, M., and Bingham, E. A. 1985. As- tronom. 8 Astrophys. Supp. 61:487. Bica, E. L. and Pastoriza, M. G. 1983. Astrophys. Space Science 91:99. Bingham, E. A., Cacciari, C., Dickens, R. F., and Pecci, F., 1984. Monthly Notices Royal Astronom. Soc 209:765. Bronkalla, W. 1960. Astron. Nachr 285:181. Buonanno, R., Buscema, C., Corsi, C. E., Iannicola, C., and Pecci, F. F. 1983. Astronom. 8 Astrophys. Supp. 51:83. Butler, D. 1975. Astrophys. J. 200:68. Cacciari, C., Caloi, V., Castellani, V. and Pecci, F. F. 1984. Astronom. 8 Astro- phys. 139:285. Cacciari, C., Carretta, E., Ferraro, F. Pecci, F. F., Tessicini, G., Nemec, J. M., and Walker, A. R. 1993. in New Perspectives on Stellar Pulsation and Pulsating Variable Stars ed. J. M. Nemec and J. M. Matthews (Cambridge: Cambridge Univ. Press):325. Carney, B. W., Storm, J ., and Jones, R. V. 1992. Astrophys. J. 386:663. 220 221 Cardelli, J. A., Clayton, G. C. and Mathis, J. S. 1989. Astrophys. J. 345:245. Chu, Y.-H., Shen, C.-J., and Di, X.-H. 1982. Acta Astronom. Sinica 23:118. Cox, A. N. 1993. in New Perspectives on Stellar Pulsation and Pulsating Vari- able Stars ed. J. M. Nemec and J. M. Matthews (Cambridge: Cambridge Univ. Press):261. Cox, A. N. 1994. Private Communication. Cox, A. N ., Hodson, S. W. and Clancy, S. P. 1983. Astrophys. J 266:94. Dorman, B. and Rood, R. T. 1993. Astrophys. J 409:387. Durrell, P. R. and Harris, W. E. 1993. Astronom. J. 105:1420. Eddington, A. S. 1918. Monthly Notices Royal Astronom. Soc 79:2. Fahlman, G. C., Richer, H. B., and VandenBerg, D. A. 1985 Astrophys. J. Supp. 58:225. Filippenko, A. and Simon, R. 1981. Astronom. J. 86, Fritze, K. 1963. Astron. Nachr 287 :79. Gardenko, A. F., Klabukova, A. V., and Fashchevskij, N. N. 1984. Problemy Kos- micheslcoj Fiziki 19:93. Hazen, M. L. and Nemec, J. M. 1992. Astronom. J. 104:111. Iben, 1. Jr. and Rood, R. T. 1970. Astrophys. J. 161:587. Kovacs, G. D., Buchler, S. R., Marom, A., Iglesias, C. A., and Rogers, F. J. 1992. Astronom. 8 Astrophys. 259:L46. Kurucz, R. L. 1979. Astrophys. J. Supp. 40:1. Landolt, A. 1973. Astronom. J. 78:959. Landolt, A. 1992. Astronom J. 104:340. Layden, A. C., Hanson, R. B., and Hawley, S. L. 1994. Bull. American Astronom. Soc. 26 No.2:911. Lee, Y.-W. 1991. Astrophys. J. 367 :524. 222 Lee, Y.-W., Demarque, P., and Zinn, R. 1990. Astrophys. J. 350:155. Levy, M. 1933. Harvard Bull 893:24. Loh, E. 1994. Personal communication. Longmore, A. J., Dixon, R., Skillen, 1., Jameson, R. F. and Fernley, J. A. 1990. Monthly Notices Royal Astronom. Soc. 247:684. Makarova, V. A. and Akimova, V. P. 1965. Perem. Zvezdy 15:350. Mannino, G. 1956a. Asiago Contrib. No. 74. Mannino, G. 1956b. Asiago Contrib. No. 75. Nesci, R. 1983. Astronom. 8 Astrophys. 121:226. Nobili, F. 1957. Asiago Contrib. No. 81. Notni, P. and Oleak, H. 1958. Astron. Nachr. 284:49. Oosterhoff, P. Th. 1939. Observatory 62:104. Oosterhoff, P. Th. 1944. Bull. Astra. Instit. Netherlands 10:55. Press, W. H., Flannery, B. P. Teukolsky, S. A. and Vetterling, W. T. 1986. in Numerical Recipes: The Art of Scientific Computing (New York: Cambridge Univ. Press):88-89. Rood, R. T. 1990. in Confrontation Between Stellar Pulsation and Evolution ed. C. Cacciari and G. Clementini, (San Francisco: ASP):11. Sandage, A. 1969. Astrophys. J. 157:515. Sandage, A. 1970. Astrophys. J. 160:841. Sandage, A. 1990. Astrophys. J. 350:603. Sandage, A. 1993. Astronom. J. 106:703. Sandage, A., Katem, B., and Sandage, M. 1981. Astrophys. J. Supp. 46:41. Sawyer Hogg, H. 1973. Publ. David Dunlap Observ. 3, No. 6. Schwarzschild, M. 1940. Harvard College Observ. Circular No. 437. 223 Smith, H. A. 1995. in The RR Lyrae Stars (Cambridge Univ. Press), in press. Smith, H. A. and Sandage, A. 1981. Astronom. J. 86:1870. Smith, H. A. and Wesselink, A. J. 1977. Astronom. 8 Astrophys 56:135 Stagg, C. and Wehlau, A. 1980. Astronom. J. 85:1182. Stellingwerf, R. F. 1978. Astrophys. J. 224:953. Stellingwerf, R. F. and Bono, G. 1993. in New Prespectives on Stellar Pulsation and Pulsating Variable Stars ed. J. M. Nemec and J. M. Matthews, (Cambridge: Cambridge Univ. Press):252. Stetson, P. B. 1987. Publ. Astronom. Soc. Pacific 99:191. Stetson, P. B. 1990. Publ. Astronom. Soc. Pacific 102:932. Stetson, P. B. 1992. J. Royal Astronom. Soc. Canada 86:71. Stetson, P. B. and Harris, W. E. 1988. Astronom. J. 96:909. Stothers, R. 1980. Publ. Astronom. Soc. Pacific 92:475. Sturch, C. R. 1966. Astrophys. J. '143z774. Sweigart, A. V. 1991. in Precision Photometry: Astrophysics of the Galaxy ed. by A. G. D. Philip, A. R. Upgren, and K. A. Janes, (Schenectady: L. Davis Press):13. Sweigart, A. V. and Renzini, A. 1979. Astronom. 8 Astrophys. 71:66. Szeidl, B. 1975. in Variable Stars And Stellar Evolution ed. by V. E. Sherwood and L. Plaut, (Dordrecht: D. Reidel):545. van Albada, T. S. and Baker, N. 1971. Astrophys. J. 169:311. van Albada, T. S. and Baker, N. 1973. Astrophys. J. 185:477. van Albada, T. S., de Boer, K. S. and Dickens, R. J. 1981. Monthly Notices Royal Astronom. Soc. 195:591. Walker, A. R. 1992. Astrophys. J. Lett. 390:L81. Wemple, L. 1932. Harvard Bull. 899:9. 224 Wesselink, A. J. 1974. Astronom. 8 Astrophys 36:163. Zinn, R. 1980. Astrophys. J. Supp. 42:163. Zinn, R. 1985. Astrophys. J. 293:424.