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ABSTRACT

SCALABLE MULTICAST COMMUNICATION

IN MASSIVELY PARALLEL COMPUTERS

By

David F. Robinson

Efficient communication has long been considered the key to achieving ever greater

performance from parallel processing. Recently, much attention has been focused

on multicast communication, in which a single source node delivers a message to a

group of destination nodes. Such operations have become recognized as crucial to the

performance of many parallel algorithms. Given the important role played by multi-

cast communication in parallel processing, the research reported in this dissertation

addresses the effect on multicast communication of three key aspects of communica-

tion architecture in massively parallel computers, namely (1) port model; (2) virtual

channels; and (3) intermediate message reception. This research shows that the per-

formance of multicast communication can be significantly improved by considering

these three architectural characteristics in the design of multicast operations.

Research into the effect of the port model focuses on the problem of multicast in

wormhole-routed hypercubes. The system model allows a processor to send and re-

ceive data in all dimensions simultaneously. New theoretical results that characterize

contention among messages in wormhole-routed hypercubes are developed and used

to design new multicast routing algorithms. The algorithms are compared in terms



of the number of steps required in each, their measured execution times when imple-

mented on a relatively small-scale nCUBE—Z, and their simulated execution times on

larger hypercubes. The results indicate that significant performance improvement is

possible when the multicast algorithm actively identifies and uses multiple ports in

parallel.

Through the study of virtual channels, efficient algorithms are presented to imple-

ment multicast communication in wormhole-routed torus networks. By exploiting the

properties of the switching technology and the use of virtual channels, a minimum-

time multicast algorithm is presented for n-dimensional torus networks that use de-

terministic, dimension-ordered routing of unicast messages.

In order to study the third characteristic of communication architecture, research

is presented that focuses on torus networks in which intermediate nodes on a message

path are able to receive a copy of a message while simultaneously routing the message

to subsequent destinations. In developing new multicast algorithms for such networks,

this research examines the effects of intermediate message reception on multicast

communication. The results of a simulation study show that, through the efficient

use of special routing hardware, the performance of multicast communication in torus

networks with unidirectional communication links can be significantly improved.
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CHAPTER 1

Introduction

The recent trend in supercomputer design has been towards scalable parallel comput-

ers, which are designed to offer corresponding gains in performance as the number of

processors is increased. Many such systems, known as massively parallel computers

(MPCs), are characterized by the distribution of memory among an ensemble of pro-

cessing nodes. Each node has its own processor, local memory, and other supporting

devices. MPCs are scalable because, as the number of nodes in the system increases,

the total communication bandwidth, memory bandwidth, and processing capability

of the system also increase.

1 .1 Motivation

In parallel scientific computing, data must be redistributed periodically in such a way

that all processors can be kept busy performing useful tasks. Because they do not

physically share memory, nodes in MPCs must communicate by passing messages

through a communications network. Some communication operations are point-to-

point, that is, they involve only a single source and a single destination. Other

operations are collective, in that they involve more than two nodes. Examples of

collective communication include multicast, reduction, and barrier synchronization.



Multicast communication, in which a single source node delivers a message to a

group of destination nodes, is important to many MPC activities, including numeric

algorithms, parallel simulation, and the implementation of data-parallel languages,

such as High Performance Fortran. The performance of MPCs is thus highly de-

pendent on the performance of the underlying multicast operations, which, in turn,

depends on several characteristics of the MPC communication architecture.

Three characteristics that affect the performance of multicast communication are

network topology, message routing algorithm, and message switching strategy. The

network topology defines the pattern of interconnection that exists between nodes;

for example, the nodes of an MPC may be connected to form a two-dimensional

(2D) mesh network. The routing algorithm determines the path taken by a message

between the source and destination nodes, and the switching strategy determines

how messages are transferred between adjacent nodes on the message path. Early

multicomputers used store-and-forward switching, in which the time taken to transmit

a message is proportional to the distance between the source and destination nodes. In

contrast, many current MPCs employ wormhole routing, where messages are pipelined

through the network.

The characteristics of communication architecture noted above have been widely

studied; these contributions are surveyed in Chapter 2. However, there are other

system attributes that also have a large effect on the performance of multicast com-

munication. One such attribute is the port model, which describes the number of

(parallel) connections between a node processor and the communication network. In

a one-port architecture, each processor is connected to the network by a single in-

put/output channel pair, thereby effectively serializing all communication originating

from, and destined for, that node. Some MPCs support a multi-port architecture,

where processors are connected to the communication network by multiple pairs of



input/output channels. In an all-port architecture, nodes are maximally connected to

the network, so that simultaneous communication over all network links is possible.

Another characteristic affecting multicast communication is the use of virtual

channels. Some network topologies require virtual channels, in which adjacent nodes

are connected by more than a single logical link in one or both directions. The

redundant communication paths provided by virtual channels are needed by these

topologies in order to provide deadlock-free communication.

Multicast communication in MPCs is also influenced by intermediate reception

capability. When a message is routed through an intermediate node on a path from

the source node to the destination, the processor of the intermediate node is ordinarily

unaffected by the message; in fact, message routing hardware is usually such that the

processor of an intermediate node cannot access a passing message without interfering

with its transmission. A system that allows a processor to simultaneously receive a

message while it is being relayed through the node enroute to other destinations is

said to have intermediate reception capabilities.

1 .2 Thesis Statement

In this dissertation, we address three specific characteristics of MPC communication

architecture, and how they relate to the performance of multicast communication.

The thesis statement is:

The performance of multicast communication in MPCS can be significantly

improved by exploiting specific properties of the following three character-

istics in the design of the multicast operation: (1) port model; {2) virtual

channels; and (3) intermediate message reception.



1.3 Research Contributions

This dissertation offers three specific contributions to the current research in the area

of multicast communication on MPCs, as follows:

1. We develop a new multicast algorithm for all-port hypercubes. This new algo-

rithm is shown to perform significantly better on all-port architectures than the

best known algorithm, which is optimal for one-port architectures.

2. We develop an optimal multicast algorithm for one-port torus networks. This

algorithm accounts for the presence of virtual channels in torus topologies and

is compatible with networks having either unidirectional or bidirectional com-

munication links.

3. We develop new multicast algorithms for torus networks with intermediate mes-

sage reception capabilities. These algorithms allow multicast communication to

be efficiently implemented either wholly or partly in hardware, with a resulting

performance gain over corresponding software implementations.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, background

is given for multicast communication, MPC communication architectures, and the

influence of these architectures on the design of efficient multicast operations. Also in

Chapter 2, the related research is reviewed, and differences from the research described

in this dissertation are discussed. The three research contributions stated above are

described in Chapters 3 through 6. Chapters 3 and 4 describe in detail the research

in the area of efficient software-based multicast algorithms for MPCs. In Chapter 3,

investigations into all-port hypercubes are presented, while in Chapter 4, we discuss



our findings for one-port torus networks. The research presented in Chapters 5 and 6

addresses multicast methods for torus networks with intermediate reception capability

and unidirectional communication links. In Chapter 5, a deadlock-free path—based

routing method is described. In Chapter 6, this routing method is used as a basis for

path-based multicast algorithms. Two classes of algorithms are presented: (1) single-

phase, in which a single multi-destination message is used to perform the multicast

operation, and (2) multi-phase, where a collection of multi-destination messages are

generated during a sequence of communication phases. Finally, Chapter 7 presents

the concluding remarks.



CHAPTER 2

Background and Related Work

This chapter presents background information needed to study multicast communi-

cation in MPCs. Multicast communication operations, MPC communication archi-

tectures, and the issues involved in the implementation of multicast operations are

covered. The research of other investigators is reviewed, and differences from the

research described in this dissertation are described.

2.1 Multicast Communication

Point-to-point, or unicast, communication involves a single source node and a sin-

gle destination node. In collective communication, also termed group communica-

tion, more than two nodes are involved. Collective communication operations can

be roughly decomposed into three categories: (1) those with a single source node

and multiple destination nodes; (2) those with multiple source nodes and a single

destination node; and (3) those with multiple source and multiple destination nodes.

In a multicast operation, a source node must deliver copies of a single message

to each node in the destination group. A special case of multicast is broadcast, in

which the destination group contains every node in the network (except the source).

Unfortunately, the terms broadcast and multicast are often used interchangeably in



the literature. Throughout our work, we use broadcast to refer only to the case where

the destination set includes all processors in the MPC; other cases are referred to as

multicast. Multicast is a fundamental collective communication operation, and is

important in many parallel numerical algorithms, including matrix multiplication [2],

matrix transpose [3], tridiagonalization [4], eigenvalue computation [5], Gaussian

elimination [6], and LU factorization [7]. Efficient implementation of multicast is

also useful in many other aspects of parallel computing, including support for barrier

synchronization [8], memory updates and invalidation in distributed shared-memory

systems [9], and global notification of events in parallel simulation.

The growing interest in the use of collective communication routines, including

multicast, is evidenced by their inclusion in the Message Passing Interface (MP1) [10],

an emerging standard for communication routines used by message-passing programs,

and in many research and commercial communication libraries, including IBM’s Col-

lective Communication Library (CCL) [11] and MSU’s ComPaSS project [6]. Besides

message passing, multicast communication is also important in implementing data-

parallel languages, such as High Performance Fortran [12], on distributed-memory

systems.

Much research has been performed in the area of multicast communication for

parallel computers. Many multicast and broadcast algorithms have been developed

under the assumption of store-and-forward architectures [13, 14, 15, 16, 17], and mul-

ticast communication has been investigated in bus-based architectures [18]. Much

of the recent work in this area has addressed software-based (unicast-based) multi-

cast [19, 20, 21] and broadcast [22, 23, 24, 25, 26, 27, 28] communication in wormhole-

routed MPCs. Some of the work has investigated the use of special routing hardware

for the support of multicast and broadcast communication [29, 30, 31, 32, 33, 34, 35].

In much of the current research in the area of multicast communication, it is

assumed that the group of destination nodes consists of all nodes in the MPC; that



is to say, the operation is assumed to be broadcast rather than general multicast.

However, we focus on multicast operations that allow the destination node group

to be arbitrarily specified. Usually, such operations are more difficult to develop

than those that place restrictions on the node groups. When designing a software-

based multicast operation that will send a message to an arbitrarily specified group of

destination nodes, only the processors of the source and destination nodes should be

used in the operation. Furthermore, no a priori assumptions can be made regarding

which nodes will and will not be included in the destination group; the operation

must work for any and all destination groups.

Because the set of nodes allocated to an application by the operating system fre-

quently consists of only a subset of the MPC (rather than the entire MPC), multicast

communication operations that allow for arbitrary specification of the node groups are

often needed even when the application algorithm calls for an operation that accesses

all nodes, or some regular subset of nodes. For example, when an application program

executing on an allocated subset of the nodes of an MPC requests a broadcast to all

nodes, the appropriate operation is actually a selective multicast to the allocated set

of nodes. As further evidence of the need for flexible operations, the MPI standard [10]

specifies that all collective communication operations are performed on node groups

specified arbitrarily by the programmer.

Multicast communication may be implemented in either hardware or software.

However, most existing MPCs support only point—to—point, or unicast communication

in hardware. In these environments, multicast communication must be implemented

in software, typically in a communication library, by sending one or more unicast mes-

sages; such implementations are called unicast-based [19]. For example, a multicast

operation may be implemented using separate addressing, in which a separate copy

of the message is sent directly from the source to every destination. An alternative

is to use a multicast tree [19] of unicast messages. The tree can be considered as a



sequence of message-passing steps. In the first step, the source node actually sends

the message to only a subset of the destinations. In the next step, each node holding

a copy of the message forwards it to some subset of the destinations that have not

yet received it. The sequence of message—passing steps continues until all destinations

have received the message. Using this approach, the time required for the operation

can be greatly reduced [19].

In order to prevent interference with computation on nodes not directly involved

in a multicast operation, the implementation should not affect any local processors

other than those explicitly involved in the operation. That is to say, only source and

destination node processors should be required to handle the message.

2.2 MPC Communication Architectures

We now describe some of the important characteristics of MPC communication ar-

chitecture that affect multicast communication. These characteristics are network

topology, switching strategy, and routing strategy. Three additional architectural

characteristics that affect multicast communication in MP0s are port model, virtual

channels, and intermediate reception. These last three factors are central to the

research presented in this dissertation, and are discussed in Sections 2.3, 2.4, and 2.5,

respectively.

2.2.1 Network Topologies

Two major categories of MPC network topology are direct networks and indirect

networks. In a direct network, each node includes a processor and local memory as

well as switching hardware, and is directly connected by physical communication links

to some set of nodes, called neighboring nodes. In an indirect, or multistage network,
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some nodes act only as switching elements and have no processing capabilities. Pro-

cessing nodes are connected indirectly through switching nodes. For example, in a Fat

Tree topology, such as the Thinking Machines CM-5 [36], the nodes are arranged as

a tree, where only the leaf nodes are processing nodes; intermediate nodes in the tree

are switching nodes used to deliver messages between processing nodes. We concen-

trate only on direct networks, which are used in most MPC architectures. Network

topologies of commercial and research direct network MPCs vary widely. Some of

these topologies are illustrated in Figure 2.1.

 

 

  
   

 

  
4D hypercube

Figure 2.1. MPC network topologies
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An n-dimensional mesh of width k contains k" nodes. Each node of a mesh has an

n-digit, radix-k address; each digit of the address specifies the coordinate of the node

in the corresponding dimension. For example, in a 2—dimensional (2D) mesh, node

addresses are the familiar 2D Cartesian coordinates. There exists a communication

link between two nodes in a mesh if and only if their corresponding addresses are equal

in every dimension except one, in which the address values differ by exactly one. Two

nodes connected by a communication link are said to be adjacent, or neighboring,

nodes. Examples of mesh architectures include the 2D Intel Paragon [37], the 2D

Caltech Mosaic C [38], and the 3D MIT J-machine [39].

An n-dimensional torus is equivalent to an n-dimensional mesh in which each edge

node is connected to the corresponding node on the opposite edge by a “wraparound”

channel. Pairs of nodes on opposite edges of the network are made adjacent by these

wraparound channels, thereby providing a shorter average path length than in a

mesh network. Torus networks include the 2D Intel/CMU iWarp [40], the 3D Cray

T3D [41], and the Torus Routing Chip [42], which can be used directly to construct

3D torus networks or cascaded to build tori of higher dimension.

An n-dimensional hypercube, or n-cube, contains 2" nodes, each with an n-bit

binary address. Two nodes at and y in a hypercube are adjacent if and only if their

corresponding addresses differ in exactly one bit position. Commercial hypercubes

include the nCUBE-2 [43] and nCUBE-3 [44]. An n-cube (hypercube) is a special

case of an n-dimensional mesh or torus, where the width is 2. The general term k-ary

n-cube has been used to refer to both mesh and torus networks of width It; thus, a

binary n-cube is a hypercube [45].

Early systems that used store-and-forward switching often adopted a hypercube

topology [46] because of the relatively dense interconnection network, which resulted

in shorter message paths. However, in systems with wormhole routing, the distance

between communicating nodes is less important; hence, the more easily constructed
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lower-dimension meshes and tori are often chosen as topologies for current MPCs [45].

Torus networks are sometimes favored over meshes, because with random communi-

cation, the communication links of a mesh are not evenly utilized, whereas a torus

network achieves equal utilization of all links [41]. Also, because of the existence

of wraparound channels, a torus with bidirectional communication links can provide

shorter message paths on average than can a mesh, thus resulting in a more lightly

loaded network. However, torus networks require the use of virtual channels in order

to provide deadlock-free communication, whereas mesh and hypercube networks do

not have this requirement.

2.2.2 Switching Strategy

The predominant switching technique in MPCs is wormhole routing [42], in which a

message is divided into a number of flits that are pipelined through the network. The

header flit of a message proceeds on the path to the destination node, followed by

the remaining flits. If the header encounters a needed communication channel that is

not currently available (due to use by another message), the header, along with those

trailing flits already in the network, are blocked in place. When the required channel

becomes available, the header flit, followed by the subsequent flits of the message,

continue towards the destination.

Because of the way in which messages are blocked in place in a wormhole-routed

network, only very small, fixed-size flit buffers are needed for each communication

channel. These buffers can be as small as a single flit [43, 47], and are easily in-

corporated into the routing hardware at each node [42]. The term network latency

refers to the elapsed time after the head of a message has entered the network at the

source until the tail of the packet emerges at the destination. For long messages, the

pipelining effect of wormhole routing reduces the effect of path length on network

latency [1]. The startup latency is the time required for the system to handle the
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packet at both the source and destination nodes. For small messages, the startup

latency often dominates unicast latency [19]. Therefore, in the absence of contention

among messages for network resources, the latency of wormhole-routed messages is

nearly distance-insensitive [1].

This behavior is in contrast to early store-and-forward systems [46], in which

messages are transferred completely across each hop on the path before beginning

travel on the next hop. Store-and-forward systems require adequate buffer space

with each channel to accommodate the largest possible message. In addition, the

amount of time required to deliver a message using store-and-forward switching is

roughly proportional to the length of the message path. The distance-insensitive

communication latencies and small buffer requirements associated with wormhole

routing make this technique scalable, and thus well suited for use in MPCs.

Wormhole routing has been adopted in the Symult 2010, the nCUBE-2 and

nCUBE-3, Intel/DARPA’s Touchstone DELTA and the subsequent Intel Paragon,

the MIT J-machine, Intel/CMU’s iWarp, the Caltech Mosaic C, the Transputer IMS

T9000 family, the Torus Routing Chip, the TMC CM-5, and the Cray T3D. A survey

of the issues related to wormhole routing can be found in the literature [1].

Under wormhole routing, a message must acquire exclusive use of all channels on

the path on which it travels. This extended retention of communication resources

makes wormhole routing susceptible to channel contention, in which two or more

messages simultaneously require the same communication channel. When channel

contention occurs, the message that first requested the common channel proceeds,

while other messages requiring the same channel are blocked in place in the network

until the required channel has been relinquished. When messages are blocked in place

by channel contention, they continue to hold the channels they have already acquired,

thereby increasing the possibility of further channel contention. Thus, when designing
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multicast operations for wormhole—routed systems, it is important to avoid channel

contention among the constituent messages of the operation.

2.2.3 Routing Algorithm

Nodes in current MPCs are connected by topologies that provide multiple paths

between a given source and destination node; in fact, in all existing MPC topologies,

there is more than one shortest path between many of the source/destination pairs.

Thus, routing choices must be made when transmitting a message from source to

destination. The way in which these routing choices are made is termed the routing

algorithm.

Under adaptive routing, information about current network conditions such as

traffic and defective nodes or links is used to determine message routes. This ap-

proach is in contrast to deterministic routing, in which the route between a given

source and destination is unique and independent of current network conditions.

Deterministic routing has also been termed oblivious routing. Although adaptive

routing mechanisms for wormhole-routed networks have been the focus of recent

research [48, 49, 50, 51, 52, 53, 54, 55], we study deterministic strategies because

of their prevalence in both current and newly-announced architectures. In a deter-

ministic routing method termed dimension-ordered routing, messages are routed first

in the highest (lowest) dimension in which the source and destination nodes differ.

Routing then proceeds on each required dimension, in descending (ascending) order

of dimension, until the routing path reaches the destination. Routing in a particular

dimension is always completed before routing in the next dimension begins. We

assume, without loss of generality, that routing is performed in descending order of

dimension.

Sullivan and Brashkow [56] introduced E-cube routing, which is essentially

dimension-ordered routing for hypercubes. In 2D grid-like architectures such as a
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2D mesh or torus, dimension-ordered routing is also termed XY-routing [1], since

messages are routed first in the so called “X” dimension, and then in the “Y” di-

mension. Similarly, dimension—ordered routing in 3D topologies is often referred to

as XYZ-routing. Many current and research MPCs use both wormhole routing as a

switching strategy and dimension-ordered routing as a routing strategy, including the

Symult 2010, the nCUBE—2 and nCUBE-3, Intel/DARPA’s Touchstone DELTA and

the subsequent Intel Paragon, the MIT J-machine, the Caltech Mosaic C, the Torus

Routing Chip, and the Cray T3D.

The choice of routing algorithm also has a large influence in the design of multicast

operations, because it determines how the constituent messages must be scheduled in

order to avoid channel conflict. Channel conflict is undesirable in wormhole-routed

networks because of the resultant message blocking. For example, consider the two

unicast messages in a 2D mesh: message U1 from source node (0, 3) to destination node

(2,1), and message 112 from source node (3,3) to destination node (2,2). Although

there are numerous minimum-length paths in a 2D mesh that would result in messages

U1 and U2 traveling on arc-disjoint paths, the rules of dimension-ordered routing

dictate the paths shown in Figure 2.2, which are unfortunately not arc-disjoint. Thus,

in order to avoid channel contention in an MPC with dimension-ordered routing, a

multicast operation must be implemented so as to produce messages that are pairwise

either (1) arc-disjoint under the routing rules, or (2) temporally distinct.

2.3 Port Model

In wormhole-routed MPCs, communication among nodes is handled by a separate

router. As shown in Figure 2.3, several pairs of external channels connect the router

to neighboring routers, and are used for communication between those routers. The

pattern in which the external channels are connected defines the network topology.
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Figure 2.2. Example message paths under dimension—ordered routing in a mesh

Usually, the router can relay multiple messages simultaneously, provided that each

incoming message requires a unique outgoing channel.

A router is connected to the local processor/memory by one or more pairs of

internal channels. One channel of each pair is for input, the other for output. The

port model of a system refers to the number of internal channels at each node. If each

node possesses exactly one pair of internal channels, then the result is a so-called

“one-port communication architecture” [14]. A major consequence of a one-port

architecture is that the local processor must transmit (receive) messages sequentially.

Although additional pairs of internal channels will increase communication capacity,

the one-port architecture is characteristic of many existing systems. Architectures

with multiple ports reduce this bottleneck. In the case of an all-port system, every

external channel has a corresponding internal channel, allowing the node to send to

and receive on all external channels simultaneously.
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Some researchers have considered the effects of an all-port or Multiple Link Avail-

ability (MLA) architecture under the store-and-forward model. This work includes

the study of broadcast communication in hypercube topologies [13, 14, 17]. Research

into multicast communication on current wormhole-routed MPCs with multi-port

architecture is just emerging, and includes work on broadcast in hypercubes [24, 25]

and meshes [27]. Broadcast in all-port torus and mesh architectures is considered

in [26], where a non-standard routing algorithm is assumed.

Our work in this area, which is described in Chapter 3, differs from the previous

research in the following ways. As pointed out above, broadcast in all-port systems

has been studied previously. However, the more general multicast problem has not

been addressed. McKinley, et al. [19] developed the U-cube and U—mesh multi-

cast algorithms, which are optimal for arbitrary multicast operations in one-port

wormhole-routed hypercubes and meshes, respectively. By generalizing the U-cube

algorithm, we provide a framework for studying all-port multicast algorithms, and

then use this framework to develop the W—sort multicast algorithm, which performs
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better than U—cube in an all-port hypercube. We are the first to study multicast in

all-port wormhole-routed MPCs.

2.4 Virtual Channels

In topologies with natural channel routing cycles, such as a torus, if only one commu-

nication channel is provided between each pair of neighboring nodes, then the network

will not be deadlock free, since it would then be possible for a cycle of channel alloca-

tion and demand to exist among two or more unicast messages. Dally and Seitz [57]

show that a network is deadlock-free under deterministic routing if and only if there

are no cycles in the channel dependency graph. A channel dependency graph is a

directed graph in which each vertex represents a channel of the network; there is an

are from channel c,- to channel c,- if and only if a message arriving on c,- might next be

routed on cj. We consider the case of a 1D torus, which is a simple ring. If there is only

one unidirectional channel between each pair of neighboring nodes, then the channel

dependency graph will consist of a single ring of channels (see Figure 2.4), which

shows that the associated network is not deadlock-free. Similar cycles appear along

each dimension in the channel dependency graphs of larger-dimension tori whenever

pairs of nodes are connected only by single, unidirectional channels.

In order to enable deadlock-free routing in a torus network, multiple virtual chan-

nels can be multiplexed onto each physical communication link. These virtual chan-

nels share the bandwidth of the physical link, and provide multiple logical paths

between neighboring nodes that are used by the routing algorithm to break cycles of

channel dependency.

The issues related to the use of virtual channels to avoid deadlock in gen-

eral topologies with natural channel dependency cycles are discussed by Dally and
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Figure 2.4. Channel dependencies in a 1D torus with single channels

Seitz [57]. Virtual channels are used to avoid deadlock in current torus MPC ar-

chitectures, including the Cray T3D [41], and the Torus Routing Chip [42]. Be-

sides providing deadlock-free routing in torus networks, the multiple logical paths

associated with virtual channels have been used to support adaptive routing algo—

rithms [49, 50, 51, 53, 54]. Dally [58] examines the use of virtual channels to improve

network throughput in MPCs.

Our work in this area, which is described in Chapter 4, differs from the previous

research in the following ways. As noted above, much research has focused on the use

of virtual channels to provide deadlock-free and adaptive routing in MPCs. However,

this work has generally included only point-to-point communication. Park, et al.

[26] have studied broadcast in torus networks, but their work assumes a non-standard

routing algorithm. The U-mesh multicast algorithm [19] is contention-free in one-port

wormhole-routed mesh networks, but not in torus networks. In designing an optimal

multicast algorithm for one-port wormhole-routed torus networks, we are the first to

study unicast-based multicast on wormhole-routed torus architectures.
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2.5 Intermediate Message Reception

In systems that support only point-to-point communication in hardware, multicast

operations must be implemented in software by using unicast-based techniques such as

multicast trees. In order to improve multicast performance and reduce software over-

head, enhancements to the network routers have been proposed. These enhancements

include two additional router features, message replication and intermediate reception,

intended to provide some level of hardware support for multicast operations. Message

replication refers to the ability to duplicate incoming messages onto more than one

outgoing channel, while intermediate reception is the ability to simultaneously deliver

an incoming message to the local processor/memory and to an outgoing channel.

In a unicast-based multicast operation, a message is replicated by the processor

at intermediate destination nodes, and these multiple copies are then transmitted to

subsequent destination nodes. A seemingly natural extension of a multicast tree is

message replication, a tree-based approach using hardware support, where the router

is enhanced so that an incoming message can be simultaneously transmitted on two

(or more) outgoing links. That is, each flit of a message entering the router can

be transmitted by the router on multiple outgoing channels, effectively producing a

tree-like message worm. Figure 2.5(a) illustrates a message that is being replicated

by a router in a 2D mesh (or torus), while Figure 2.6 shows how message replication

can be used to perform a multicast operation in a 2D mesh. In the example shown

in Figure 2.6, the message is replicated by the routers at nodes (1,2), (2,2), (3,2),

(4, 2), and (5, 2). Such message worms have headers on each branch of the resulting

message tree.

A difficulty with this approach is that when any branch of the tree encounters a

required channel that is unavailable, the entire message tree must be blocked, render-

ing all channels used by the tree unavailable for other communication. That is to say,
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because of the pipelining effects of wormhole routing, when just one branch of the tree

is blocked due to channel contention, progress on every branch of the tree is suspended.

Even when such a tree is not blocked by channel contention, many communication

channels are simultaneously held, and thus unavailable, during the operation. Mul-

ticast operations based on message replication are thus highly susceptible to channel

contention especially for large destination sets, and must be carefully designed in

order to avoid deadlock. Because of these disadvantages, message replication has not

been widely supported. Lin, et al. [30] present, as a comparison, a multicast method

for 2D meshes based on message replication, but do not recommend its use. The

nCUBE—2 hypercube [43] includes hardware support for message replication, which

is used to implement tree-based broadcast and limited multicast in cases where the

destinations form a subcube, but this mechanism is not deadlock-free.

In order to avoid the disadvantages of the tree-like worms produced by mes-

sage replication, and yet apply hardware support to the implementation of mul-

ticast operations, the technique of intermediate reception (IR) has been pro-

posed [30, 31, 32, 33, 34, 59]. A router possessing IR capability is able to copy the

flits of a message to the memory of the local processor as the message passes through

the router enroute to other destinations, as illustrated in Figure 2.5(b). In this way, a



 
source node destination node other node

Figure 2.6. A multicast operation using message replication

message originating at a source node can be routed as a single worm through several

destination nodes, depositing a copy of the message at each of the intermediate des-

tinations as it passes through. Such communication methods are termed path-based,

while the constituent messages are called multi-destination worms.

Most of the literature dealing with router enhancements for multicast communi-

cation is based on IR, and includes the following work. Lin, et al. [30] present a

path-based multicast routing algorithm for 2D meshes based on Hamiltonian paths.

Kim and Kim [31] propose methods to perform multicast communication in the sup-

port of parallel-prefix computations on meshes, which are, in turn, incorporated into

a proposed matrix multiplication algorithm. Tseng and King [32] describe broadcast

and multicast methods for tori. Panda and Singal [33] present methods for broadcast

and all-to-all (simultaneous) broadcast in mesh and torus networks. These methods

are a hybrid of hardware and software methods, in that they use multi-destination

worms, but also employ the processors at intermediate destination nodes to start new

multi-destination worms. Ho and Kao [35] have proposed a multi-step path-based
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broadcast method for hypercubes, in which all messages conform to E—cube routing

rules. By adhering to dimension-ordered routing, deadlock is avoided; however, the

routing rules are not sufficiently flexible to allow single-path broadcast operations.

Panda and Prabhakaran [34] present a path-based multicast method that uses the

underlying base routing algorithm, such as deterministic dimension-ordered routing

or the adaptive turn model [50] routing.

Our work in this area, which is described in Chapters 5 and 6, differs from the

previous research in the following ways. The work proposed in [34] is not a multi-

cast routing algorithm, but rather an algorithm for creating multi-destination worms

that are consistent with existing unicast routing algorithms. Given the constraints

of dimension-ordered routing, certain destination sets cause this method to behave

extremely poorly for multicast (0(m) communication steps for m — 1 destinations, as

compared to [log2 m] steps for existing software-based methods [19, 21]). Although

a multicast routing algorithm for tori is proposed in [32], in order to avoid deadlock

this method requires virtual cut-through routing, in which message-sized buffers are

required for each channel. The methods of [33] are not deadlock-free in the pres-

ence of network traffic in addition to the single collective communication operation.

In contrast to the above work, we present deadlock-free path-based multicast rout-

ing methods for wormhole-routed torus networks with unidirectional communication

links.



CHAPTER 3

Unicast-Based Multicast in

All-Port Hypercubes

In this chapter, the specific problem of efficient unicast-based multicast communi-

cation for all-port wormhole-routed hypercubes is addressed. Formally, a hypercube

(or n-cube) consists of 2" nodes, each of which has a unique n-bit binary address.

For each node v, let v also denote its n-bit binary address, and let M v [I represent

the number of 1’s in v. A channel c = (u,v) is present in an n-cube if and only if

[I u EB v [I = 1, where 63 is the bitwise exclusive-or operation on binary numbers. The

hypercube topology has been used in multicomputer design for many years [46]. The

nCUBE-2 [43] hypercube supports wormhole-routing, as does the recently announced

nCUBE-3 [44].

This chapter is organized as follows. Section 3.1 describes the issues and prob-

lems involved in supporting efficient multicast communication in all-port hypercube

systems. Section 3.2 gives new theoretical results that provide the foundation for this

work. Sections 3.3 and 3.4 present the new algorithms that have been designed to

support multicast in all-port wormhole-routed hypercubes. Although the multicast

problem has been studied previously for one-port architectures [19], the proposed

24
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methods improve performance by exploiting the presence of multiple ports. Sec-

tion 3.5 compares the new algorithms using analysis, simulation, and implementations

on a 64-node nCUBE—2, which possesses an all-port architecture. Finally, a summary

is given in Section 3.6.

3.1 Issues

Although implemented in software, unicast—based multicast communication algo-

rithms must exploit the underlying architecture in order to minimize their execution

time. In a wormhole-routed system, the implementation should not only take ad-

vantage of the distance-insensitivity of unicast latency, but must also avoid channel

contention, that is, no two messages involved in the operation should simultaneously

require the same channel. Avoiding channel contention depends on the underlying

unicast routing algorithm of the MPC; hypercubes often adopt E—cube routing [56],

in which messages are routed through dimensions in either ascending or descending

order. Also, the implementation should affect no local processors other than those

explicitly involved in the operation. For example, in a multicast operation, only

source and destination processors should be required to handle the message. Finally,

the implementation should account for the port model, which affects the rate at which

nodes can send and receive messages.

The following (small-scale) example illustrates the issues and difficulties involved

in implementing efficient multicast communication in hypercubes. We consider the

4-cube in Figure 3.1, and suppose that a multicast message is to be sent from node

0000 to eight destinations {0001, 0011, 0101, 0111, 1011, 1100, 1110, 1111}. In this

example and all subsequent examples, we assume that the E—cube routing algorithm

resolves addresses from high order bits to low order bits. In the nCUBE-2, the
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opposite resolution strategy is used, but this difference does not affect any of the

results presented.

a source node

[E] destination node

B other node

 

Figure 3.1. An example of multicast in a 4-cube

In early hypercube systems that used store—and-forward switching, the procedure

shown in Figure 3.2(a) could be used to implement the multicast operation [60]. At

step 1, the source sends the message to node 1000. At step 2, nodes 0000 and 1000

inform nodes 0100 and 1010, respectively. Continuing in this fashion, this implemen-

tation requires 4 steps to reach all destinations. In this example, five of the nodes

that are required to relay the message (0010, 0100, 0110, 1000, and 1010) are not

destinations themselves. Using the same routing algorithm in a one-port wormhole-

routed network also requires 4 steps, as shown in Figure 3.2(b). In this case, however,

only the routers at two of the non-destination nodes (0010 and 0110) are involved in

forwarding the message. The message may be passed from node 0000 to node 0011

in one step because it is pipelined through the router at node 0010 rather than being

relayed by the local processor at that node. However, because the message must be

replicated and forwarded on multiple outgoing channels at nodes 0100, 1000, and

1010, the local processors at those nodes must still handle the message.

Figure 3.2(c) illustrates the result of using the U-cube algorithm [19] to solve the

problem on a one—port wormhole-routed system. The U-cube algorithm, which was
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Figure 3.2. Unicast-based software multicast trees

designed specifically for one-port wormhole-routed architectures, will be discussed

further in Section 3.3. Using this algorithm, the only local processors required to

handle the message are those at destination nodes. Furthermore, on a one-port ar—

chitecture, all messages are guaranteed to be contention-free [19]. Although common

channels are used between the 0111-to-1011 path and the 0111-to—1100 path, these

messages are sent sequentially, so contention does not occur.

Since the U-cube algorithm was designed for one-port systems it makes no explicit

attempt to take advantage of multiple ports between local processors and routers.

That is to say, the U-cube algorithm does not actively seek out and use multiple

ports in parallel. For example, if the algorithm were implemented on an all-port

hypercube, it would still require four steps to complete the multicast in the above

example, as illustrated in Figure 3.2(d). Some destinations are reached earlier than
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in Figure 3.2(c) simply because the algorithm inadvertently uses multiple ports at

some nodes simultaneously. Notice that three steps are required to reach destination

node 1011, since that unicast message must traverse a channel (0111,1111) that lies

along the path required to reach node 1100, thereby delaying its transmission.

Figure 3.2(e) shows a multicast tree that accounts for both wormhole routing and

an all-port architecture. The algorithm requires only two steps, no local processors

other than the source and destinations are involved, and contention among constituent

messages is avoided. This particular tree is based on the methods presented in this

chapter. In the next section, we develop the theoretical results necessary to guarantee

that our new algorithms, presented in Sections 3.3 and 3.4, are contention-free.

Under the proposed system model, even the best known methods for broadcasting

are heuristic [24], and since the multicast problem is a generalization of broadcast, it

is at least as hard as broadcast with respect to computational complexity. We con-

jecture that generating optimal multicast solutions for an all-port wormhole-routed

hypercube is an NP-hard problem. The methods presented in this chapter are there-

fore heuristic, and thus do not provide optimal solutions in every case (although the

multicast tree shown in Figure 3.2(c) is, in fact, optimal for the given set of nodes).

3.2 Theoretical Foundations

In this section, we present new theoretical results that will serve as a basis for sub-

sequent algorithms. First, we formally define terms related to routing and subcubes.

We then state and prove several theorems that are useful in determining that certain

pairs of paths are guaranteed to be arc-disjoint (and hence, contention-free). Finally,

we formally define contention in an all-port hypercube architecture, and prove a

related theorem.
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3.2.1 Notation and Definitions

Bitwise exclusive-or is represented by the symbol 69; logical and and or are represented

by /\ and V, respectively, and ii is used to represent the bitwise complement of v.

The symbol ||v|| denotes the number of non-zero bits in v. We use N to represent

the number of processors in the system. Since n represents the dimensionality of

the hypercube, N = 2". The ifh bit of address v is denoted by o,(v), 0 S i S

n — 1, where 00(v) represents the least-significant address bit; hence, address U can be

written as on_1(v)o,,_2(v) . .. 00(v). For each node, v, the outgoing (and incoming)

channels of node v are labeled 0 through it - 1, where channel (I connects node

v = 0,,_1(v)on_2(v) oo(v) to node on_1(v) . .. od+1(v)od(v)od_1(v) ... 00(v).

We say that channel d is used to travel in dimension d.

Dimension-ordered routing is a minimal deterministic routing algorithm in which

every message traverses dimensions of the network in a strict monotonic order. Under

dimension-ordered routing, each routing step brings the message one hop closer to the

destination, along the highest (alternatively, lowest) dimension in which the current

node and the destination node differ. E-cube routing is the hypercube-specific case

of dimension-ordered routing.

Definition 3.1 Given distinct nodes u and v in an n-dimensional hypercube, let i

be the highest dimension such that o;(u) 7f o;(v). Under E-cube routing, a message

sent from u to v will be routed first along dimension i to intermediate node w =

0,,_1(v)o,,_2(v) . . .o,+1(v)o,(v)o;_1(u) . ..oo(u), where o,-(w) = o;(u). At node w, the

same routing algorithm is invoked to determine the next intermediate node.

The E—cube path from a source node u to a destination node U will be denoted

P(u,v) = (u;w1;w2;...;w,,;v), where the nodes w,-, 1 S i S p, are the nodes vis-

ited on the path. We note that p + 1 = ”u 63 v”. In any shortest path from a

destination u to a source v, a message will travel exactly once in each dimension
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d such that od(u) 75 od(v). Traveling over these ”a EB v|| dimensions in any arbi-

trary order will result in a shortest path between it and v. For example, the path

from source node 0101 to destination node 1110 resulting from E-cube routing is

P(0101,1110) = (0101; 1101; 1111; 1110). A unicast from node u to node v occurring

at time step t is denoted (u,v, P(u, v),t). The following definition simplifies refer-

ences to the initial channel in a dimension-ordered route, that is, the first dimension

in which a message will travel.

Definition 3.2 The symbol 6(u,v) represents the highest-ordered bit position in

which u and v differ. Formally, 6(u,v) = max{i :0 S i S n —1 :o,(u) gé o,(v)}. If

u = v, then 6(u,v) is undefined.

In order to identify a subcube of the nodes of a hypercube, we may explicitly state

some of the n address bits, and allow the other address bits to range over all possible

values. In this chapter, we need to work only with subcubes in which the explicitly-

stated address bits are the high-order bits, and the free-ranging address bits are the

low-order bits. We refer to such subcubes as S-cubes.

Definition 3.3 An S-cube S = (bn_1bn_2 bus) is defined by a dimensionality

n5 6 {0, ..., n}, and a (n—n5)—bit mask (bn_1b,,_2 bn5>- Informally, 5' consists

of those nodes whose address is of the form (bn_1b,,_2 . . . bus * * *), where the

*’s represent arbitrary bit values. Formally, for any node v, v E S if and only if

o,(v)= b;,forn3 S i S n— 1.

For example, the S-cube (01) in a 4-dimension hypercube contains the four nodes

0100, 0101, 0110, and 0111, while the S-cube (110) in a 6-dimension hypercube

contains the eight nodes 110000, 110001, 110010, 110011, 110100, 110101, 110110,

and 110111.
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3.2.2 Useful Lemmas

This section contains lemmas that will be used to facilitate the proof of subsequent

theorems. These lemmas and their proofs are also useful in understanding later

sections of the chapter.

Lemma 3.1 Let P(u,v) = (u;w1;w2; . . .;wp;v) be any E—cube path (For clarity, let

wo = u and wp+1 = v.), and let (w,,w,-+1) E P be any are in P(u,v). Let d be

the dimension over which (w,,w,+1) travels, od(w,-) = od(w,-+1). Then the following

conditions hold:

1. For allj E {1, ..., i} and for all k E {0, ..., d}, ok(w,-) = ok(u)

(Before traveling in dimension d, a message does not travel in dimensions less

than d.)

2. For allj E {i+1, ..., p} and for all/c6 {d+1, ..., n—l}, ok(wJ-) =ok(v)

(After traveling in dimension d, a message does not travel in dimensions greater

than, or equal to, d.)

3. od(u) 7E od(v)

(A message travels in dimension d only if the source and destination node ad-

dresses differ in dimension d.)

Proof: All three assertions follow directly from the behavior of dimension-ordered

routing in hypercubes. Cl

Lemma 3.2 For any three nodes u,v,x, and for any S-cube S, if u,x 6 S and

u S v S x, then v E S'. (The node addresses within any S-cube are contiguous.)

Proof: Let S be represented by (bn_1b,,_2 bus), let u, v and x be as specified,

and assume that v ¢ 5. Then we have 0‘,~(u) = o,-(x) = b,- for us S i S n — 1; and

oj(v) 75 b, for some j, n5 S j S n -— 1. Let k be the value of the largest such j.

Assume, without loss of generality, that ok(v) > bk. Then for k + 1 S i S n — 1,

o,(v) = b,- = o,-(x); and ok(v) > bi. = ok(x). It follows that v > x, a contradiction.
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(If ok(v) < bk, then we conclude similarly that v < u, also a contradiction.) Cl

3.2.3 Arc-Disjoint Paths

In implementing a unicast-based multicast algorithm, whenever the paths of two

constituent unicast messages share an arc (channel), care must be taken to ensure that

the paths do not attempt to use the shared are simultaneously, otherwise contention

will arise. When two paths have no arc in common, of course, contention between

these two particular paths is always avoided. Paths with no common arc are said to

be arc-disjoint.

Each of the following theorems state sufficient conditions on two paths such that

any two paths meeting these conditions are arc-disjoint. Each theorem is stated for-

mally. Where needed for clarity, theorems are stated informally within a parenthetical

block of text.

Theorem 3.1 Consider any two paths P(u,v) and P(u,y) originating from a com-

mon source node u in a hypercube. If 6(u,v) 75 6(u,y), then P(u,v) and P(u,y) are

arc-disjoint. {Paths leaving a common source on difierent channels are arc-disjoint.)

Proof: Without loss of generality, assume that 6(u,v) > 6(u,y), and let d =

6(u,v). Now suppose that there is some node r 75 it contained in both paths:

r E P(u,v) /\ r E P(u,y). Since r E P(u,v) and 6(u,v) = at, then by Lemma 3.1,

od(r) # od(u). But since r E P(u,y) and 6(u,y) < d, then od(r) = od(u), which is a

contradiction. So there cannot exist any node r 75 11 contained in both paths. Since

paths P(u, v) and P(u, y) do not share any node (except the source node it), they are

arc-disjoint. Cl
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Theorem 3.2 Consider any two paths P(u,v) and P(x,y) in a hypercube. If there

exists an S-cube S such that u,v E S /\ x,y ¢ 5', then P(u,v) and P(x,y) are

arc-disjoint. {A path with source and destination within S-cube S is arc-disjoint from

any path with source and destination outside S.)

Proof: Suppose there is an arc (w,z) common to both paths. Let (1 be the di-

mension in which w and z differ, that is, od(w) = 5.753, and a,(w) = o,-(z) for all i,

0 S i S n-l, wherei # d. Let us be the dimensionality of S; S = (bn_1b,,_2 bus).

Case 1: d 2 n5. Since (w,z) E P(u,v), then od(w) = od(u) and 001(2) = od(v)

(dimension-ordered routing). Since od(w) = W, then od(w) 74 04(2), hence,

od(u) 75 od(v). But since u, v E S and d 2 as, we have od(u) = od(v), a contradiction.

Case 2: d S n3. Since (w,z) E P(u,v) and d S n3, then 2 E S if and only if

v E S. Likewise, since (w,z) E P(x,y), z 6 S if and only if y E S. So v E S if and

only if y E S. But v E S and y ¢ S, a contradiction.

Thus, there is no are common to both paths. El

3.2.4 Avoiding Depth Contention

As previously stated, any two unicasts having arc-disjoint paths are contention-free.

One may suspect that two unicasts sent in different steps of a multicast algorithm

would also be contention-free, whether or not they are arc-disjoint. However, unicast

messages sent in diflerent steps may actually be transmitted concurrently depending

on the value of startup latency, which includes the system call time at both the

source and destination nodes. If startup latency is large, then the steps of a multicast

tree may become staggered, causing unicasts in different steps to actually be sent

simultaneously. This condition is possible in commercial systems, where the sending

and receiving latencies may be much greater than the network latency of a message.
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In order to study contention between messages sent in different steps, the definition

of the reachable set is needed.

Definition 3.4 [19] Given a multicast implementation, a node v is in the reachable

set of a node u, denoted Ru, if and only if one of the following conditions holds:

1. v = u, or

2. There exists a unicast (x,v,P(x,v),t) in the implementation such that x E R“.

If the multicast implementation is considered to be a directed tree of unicast

messages rooted at the source node do, then the reachable set of a node u is

the set of nodes in the subtree rooted at node u. In Figure 3.2(e), for example,

R1110 = {1110, 1011, 1100,1111}. Using this definition, the properties of an imple-

mentation necessary to avoid contention between messages sent in different steps can

be characterized. A multicast implementation is said to be depth contention-free if, re-

gardless of overlap in message passing steps caused by startup latency, the constituent

messages are contention-free. The following theorem gives sufficient conditions for a

multicast implementation to be depth contention-free.

Theorem 3.3 [19] A multicast implementation is depth contention-free if at least

one of the following four conditions holds for every pair of unicasts (u,v, P(u,v),t)

and (x,y, P(x,y),r) in the implementation, where t S 1'.

1. P(u,v) and P(x,y) are arc-disjoint.

3.xER,,.

4. x E Ru. and the implementation contains the unicast (u,w,P(u,w),t + k), for

some node w and positive integer k.
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Proof: We need to show that contention does not arise between any pair of unicast

messages in the implementation. We consider two arbitrary unicasts (u, v, P(u, v), t)

and (x,y, P(x,y),r), with t S 7'.

Condition 1. If the two paths of the messages, P(u, v) and P(x, y), are arc-disjoint,

then the two unicasts are contention-free.

Condition 2. If x = u, then we must consider two cases depending on whether

or not destination nodes v and y are reached through the same outgoing channel

from source node u. If 6(u,v) = 6(x, y), then t < 7' since u must send the messages

sequentially. Figure 3.3(a) illustrates the situation. Node u sends the message to v

before sending it to y. Even if r = t + 1 and the sending latency is 0, contention

will not occur. If, on the other hand, 6(u, v) 75 6(x, y), then by Theorem 3.1, the two

unicasts are arc-disjoint, and hence contention-free.

Condition 3. If x E Ru, as shown in Figure 3.3(a), then the u—to-v unicast must

be completed before the x-to-y unicast begins, so they are contention-free.

Condition 4. As shown in Figure 3.3(c), node u sends the message to v prior to

sending it to node w, which is either an ancestor of x or perhaps x itself. Clearly,

node v will have received the message prior to node x, thus preventing contention. Cl
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where w is an ancestor of it

Figure 3.3. Conditions 2, 3, and 4 of Theorem 3.3    
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In the next two sections, we define several multicast algorithms for all-port hy-

percubes. All the algorithms are depth-contention free. Their performance, which

is compared in Section 3.5, depends largely on how well they take advantage of the

presence of multiple ports.

3.3 Algorithms Based on Dimension-Ordered

Chains

The algorithms considered in this section are extensions of the U-cube algorithm [19],

which was mentioned in Section 3.1. The new algorithms were constructed by modi-

fying the U-cube algorithm so as to make better use of multiple ports between each

node and its router.

We begin with a brief review of the U-cube algorithm. This algorithm, designed for

one-port architectures, produces multicast trees on such systems that are of minimum

height and are guaranteed to be contention-free. The U-cube multicast algorithm

relies on the binary relation “dimension order,” denoted <d, which is defined between

two nodes u and v as follows: u <d v if and only if either u = v, or there exists a j

such that 03-(u) < oj(v) and (7,-(u) = o;(v) for all i, j + 1 S i S n — 1. A sequence

{d0, d1, d2, . . . , dp} of source and destination addresses in which all the elements are

distinct and d,- <d dj for all 0 S i < j S p is called a dimension-ordered chain [19]. A

sequence {d1,d2, . . . ,dm} is called a (to-relative dimension-ordered chain if and only

if {do EB d1, do 69 d2, . . . , do EB dm} is a dimension-ordered chain.

If address resolution is performed from highest (left) to lowest (right), then di-

mension order is the same as the usual increasing order. For example, dimension

ordering of 10100, 00010, and 10010 results in the chain: {00010, 10010, 10100}, since

00010 <4 10010 <4 10100. Alternatively, on systems in which addresses are resolved

from lowest to highest, the dimension-ordered chain is: {10100, 00010, 10010}.
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In the U-cube algorithm, the source do and the destination addresses are sorted

into a Clo-relative dimension-ordered chain, denoted (I), at the time when the multicast

is initiated. The source node successively divides (I) in half and sends a message to

the first node in the upper half of the chain. That destination node is responsible for

delivering the message to the other nodes in the upper half, using the same U-cube

algorithm. At each step, the source deletes from (I) the address of the receiving node

and those nodes in the upper half of the chain. The source continues this procedure

until (I) contains only its own address.

Figure 3.4 gives an example of this method in a one-port 4—cube. The source node

0100 is sending to a set of eight destinations {0001, 0011, 0101, 0111, 1000, 1010, 1011,

1111}. Taking the exclusive-or of each destination address with 0100 and sorting the

results produces the dimension-ordered chain (I) = {0000, 0001, 0011, 0101, 0111,

1011, 1100, 1110, 1111}. (The reader will notice that this chain (I) represents the

same multicast operation examined in Figure 3.2.) The corresponding U-cube tree

is shown in Figure 3.4; it takes 4 steps for all destination processors to receive the

message.
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Figure 3.4. Multicast chain in a one-port 4-cube
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It has been previously shown that message transmission in a U-cube tree is

contention-free regardless of startup latency and message length [19]. Furthermore,

the U-cube algorithm executes in minimum time for a one-port architecture by re-

quiring only [log2(m + 1)] time steps for m destinations. For details of the theory

underlying the U-cube and the accompanying U-mesh algorithm, please refer to [19].

Since the U-cube algorithm was designed for one—port architectures, it makes no

attempt to parallelize message transmissions from a given sender by using multiple

ports. When executed on an all-port hypercube, the algorithm will often fail to

take advantage of that architectural property. In the tree shown in Figure 3.2(d), for

example, step 1 of the algorithm “mistakenly” selects node 0111 as the first destination

to which the message is transmitted. This decision leaves node 0111 responsible for

delivering the message to four nodes, all of which difler from 0111 in the highest

dimension. Better message-forwarding decisions, shown in Figure 3.2(c), result in a

tree of height two instead of four.

This observation leads to two variations on the U-cube algorithm called Maxport

and Combine. Both algorithms differ from U-cube in a single statement, which deter-

mines the degree to which they exploit the all-port capability of the system. Figure 3.5

gives the generalized multicast algorithm, which encompasses all three algorithms. If

Step 4(a) is executed, then the algorithm is identical to the U-cube algorithm [19].

In the Maxport algorithm, a sender transmits (in parallel) to the maximum number

of destinations permitted by the architecture and the specific destination set. Step

4(b) in the body of the main loop of the generalized multicast algorithm is executed,

setting next 2 highdim, rather than next = center. This choice can sometimes lead

to performance worse than U-cube, however. For example, if node 0000 is the source

of a multicast to nodes 1001, 1010, and 1011, then the resulting Maxport “tree”

will require three steps, as shown in Figure 3.6(a). The U-cube solution shown in

Figure 3.6(b) requires only two steps.
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Algorithm 1: Generalized Multicast Algorithm

Input: Dimension ordered address sequence

{d141, daft“, - . - , dog/u}, where dlcfi

is the local address, and a message M.

Output: Send out one or more copies of message M

Procedure:

repeat

1. Set k = C(dlcfi, d,,,;,,), the position of the first bit

difference

2. Let dughdgm be the leftmost destination in the

chain such that 6(dlcfl, dughdgm) = k

. Set center = left + [M]

4. Set next according to algorithm variation

a. next 2 center /* U-cube */

b. next 2 highdim /* Maxport */

c. next = max(highdim, center) /* Combine */

5- D = {dnexta dnexH-l, . - - , dright};

6. Send a copy of message M to node dnm with

the address field D

7. right = next — 1

until (left = right)

O
D

Figure 3.5. Generalized multicast algorithm  
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Figure 3.6. Simple Maxport and U-cube comparison
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Just as U-cube does not account for dimension, neither does Maxport account

for the number of destinations for which each node is responsible. A simple modifi—

cation to the algorithm addresses this problem. As the name implies, the Combine

algorithm exhibits characteristics of both the U-Cube and Maxport algorithms. This

algorithm attempts to use multiple ports, but not at the expense of leaving a sin-

gle node responsible for a large subset of the destinations. In order to obtain the

Combine algorithm, Step 4(c) in the body of the main loop is executed, setting

next 2 max(highdim, center). The performance of all three algorithms is compared in

Section 3.5.

3.4 An Algorithm Based on Cube-Ordered

Chains

In this section, we present an alternative approach to multicasting, in which the

source node and destination nodes are considered as elements of S-cubes.

Definition 3.5 A chain D = {dfint’ dfint+1, , dzm} is a cube-ordered chain of

dimension n if and only if

1. ForalldED, 0SdS2"—1;and

2. For all S-cubes S, and for all i,j, k where first S i S j S k S last, if d,,dk E S,

then dj 6 S.

(A chain D is cube-ordered if and only if the nodes of D within any S-cube are

contiguous.)

Figure 3.7 illustrates three cube-ordered chains in a 16-node hypercube. Although

each chain contains the same set of node addresses, these addresses appear in three

different orders. In Figure 3.7(a), the cube-ordered chain is {0, 1, 3, 5, 7,11, 12, 14, 15}.

Notice that for each S-cube, of different sizes, the nodes of the chain within the
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S-cube are contiguous. In Figure 3.7(b), two halves of an S-cube, each of which is

in turn an S-cube, have been interchanged. As can be seen, the resulting address

sequence {0, 1,3,5, 7,12,14, 15,11} is also a cube-ordered chain. Figure 3.7(c) shows

an additional interchange of S-cube halves, resulting in a third cube-ordered chain

{0, 1, 3, 5, 7,14,15,12, 11}. The notion of interchanging S-cube halves within a cube-

ordered chain is important to an algorithm described later in this section.
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Figure 3.7. Cube-ordered chains of dimension 4

Theorem 3.4 Every dimension-ordered chain is also a cube-ordered chain.

Proof: Let D = {dfirm dfimH, , dzw} be any dimension-ordered chain. Thus,

for all i,j 6 {first, ..., last}, ifi < j, then d,- < dj. The theorem now follows
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directly from Lemma 3.2. C]

In the Maxport algorithm, for each participating node, say v, the unicasts orig-

inating at node v are transmitted on different outgoing channels. In this approach,

the message is always forwarded to different S-cubes. When node v receives the

message over channel d, it also receives a list of destination nodes, D, which are in

the same d—dimension S-cube as v, say S-cube S. In turn, v issues one unicast into

each S-cube within S which (1) does not contain v, (2) is maximal, and (3) contains

at least one destination node. As will be shown later, it is possible to input any

cube-ordered chain, not just a dimension-ordered chain, to Maxport and still avoid

contention among messages. An ordinary dimension-ordered chain may not be the

most appropriate cube-ordered chain to use, however. In fact, performance increase

may be gained by exchanging S-cubes of the chain, where possible, so that source

nodes (including intermediate source nodes in the multicast tree) always choose the

most “crowded” destination node among available destination nodes.

Figure 3.8 shows the WeightedSort algorithm, which permutes a cube-ordered

chain so that the most “crowded” node appears as the first node of each S-cube.

This task is accomplished by exchanging S-cube halves (these halves are themselves

S-cubes) so that the most populated half occurs first in the chain. Notice that the

CubeCenter function is applied to a cube-ordered chain of addresses that are contained

within an S-cube of dimension n5. This function returns the starting position of the

second (n5 — 1) dimension S-cube “half” of the input S-cube. If one of the (n5 — 1)

dimension S-cubes contains no destination nodes, then CubeCenter returns a value

of last + 1.
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Procedure: WeightedSort (D, first, last, n5)

Input: Cube-ordered chain D = {dfirm dfir3¢+1,.. . , dlm}

and an S-cube dimension n5.

Output: Upon exit, D is a weighted cube-ordered chain.

Procedure:

if last — first 2 2 then

center 2 CubeCenter (D, first, last, n5)

WeightedSort(D,first, center — 1, n5 — 1)

WeightedSort(D, center, last, n3 — 1)

if (first 75 0) A

((center— first) < (last — center+ 1)) then

/* swap S-cubes */

D : {dcenten dcenter-l-l, - - . a dlasta

dfirat, dfiraH-l a ' ' ' a dcenter—l}

endif

endif

Figure 3.8. The WeightedSort procedure  
 

In order to use the WeightedSort algorithm with Maxport, the list of destinations

is first sorted according to dimension-order, then sorted using the weighted sort al-

gorithm, and finally input to Maxport. We call the combination of these techniques

the W-sort routing algorithm.

Figure 3.9 illustrates the advantage of the W-sort algorithm in a 4-cube. As

shown in Figure 3.9(a), the set of destination nodes is D = {0, 1, 3, 5, 7, 11, 12, 14,

15}. (Their binary equivalents are given for reference.) Since the nodes of D are in

ascending order, D is a cube-ordered address sequence, by Theorem 3.4. Figure 3.9(a)

shows the U-cube algorithm executed on an all-port architecture, which requires four

time steps to perform the multicast. Each arc represents a unicast, and is labeled

with the time step in which it occurs. In this example, intermediate routers are not

represented. Notice that node 7 cannot send to nodes 11 and 12 during the same

time step, since both unicasts require the same outgoing channel.
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Figure 3.9(b) shows the Maxport algorithm applied directly to address sequence D.

In this example, the Maxport algorithm also requires four steps to reach all destination

nodes. All unicasts with a common source node are transmitted on different outgoing

channels, and thus can be sent during the same time step in an all-port architecture.

Now, we consider rearranging the nodes in the destination address sequence before

beginning the multicast. As illustrated in Figure 3.7, applying the WeightedSort

algorithm to address sequence D produces a new address sequence D = {0, 1, 3, 5, 7,

14, 15, 12, 11}. S-cube S = (1) contains destination nodes {11, 12, 14, 15}. The two

halves of S-cube S, So 2 (10) and 31 = (11), contain destination nodes {11} and

{12, 14, 15}, respectively. Thus, the WeightedSort algorithm interchanges So and

51, since So contains fewer destination nodes than 31. This interchange results in

the more populated S-cube (51) receiving the message first. Continuing recursively,

the two halves of S-cube SI are also interchanged. Figure 3.9(c) shows the resulting

W—sort multicast, which requires only 2 steps.

Theorem 3.5 The WeightedSort algorithm applied to a cube-ordered chain D =

{dfirsb dfirst-H; ° - - , dlaat} T‘CSttltS in D = {dfirsty dfirat+12 - - - : dlast}: where:

1. D is a cube-ordered chain;

2. D is a permutation of D; and

3. dfim = dfim (the source node remains in the first position).

Proof: With regard to the second assertion of the theorem, the algorithm contains

only one statement that modifies the address sequence D. Since this statement does

nothing more than permute the elements of D, the final result of the algorithm will

be a permutation of D.

The third assertion of the theorem is confirmed by examining the second if state-

ment of the algorithm: the “(first 75 0)” guard clause prevents modification of any

portion of D containing do. Thus, do = do.



45

 

 

  

O 1 3 5 7 11 12 14 15

 

 

 
(c) W—sort multicast algorithm

Figure 3.9. Examples of multicast communication

Upon application of the algorithm, the elements of {dfir‘h dfirgt+1,. ..,dza,,} are

members of S-cube S = (bn_1b,,_2 bus). S consists of two “halves,”

So = (bn_1b,,_2 bnSO) and S] = (bn_1b,,_2 bnsl).

If dfiru 6 So, then let Sfim = So and let Sim = S. Otherwise (dfiru ¢ So), let

Sfim = SI and let Sim = So. Since D is a cube-ordered chain, members of 3);,“

must appear contiguously in D. Likewise for SIM. So if Sfim 9f 0 and Sim 76 (b, then
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there is a unique value center E {first + 1, . . . , last} such that downy—1 E Sfim and

dcenter 6 Sim. The CubeCenter function provides this unique value of center.

Initially, the WeightedSort algorithm is invoked with the input parameter no

equal to the cube dimension n, thus satisfying the input condition requiring that the

destination nodes {dfirm dfirsHJ, . . . , dim} contain only elements of an S-cube of

dimension n5 (since an S-cube of dimension 12 corresponds to the entire hypercube).

The algorithm is then called recursively for S-cubes Sfim and 51m, thereby preserving

invariance of the input condition.

Because {dfinh dfim+1, , dumpl} and {damn dame,“ , .. . , dlm} represent

the elements of D that are members of Sfim and Sim, respectively, the statement

that assigns to D a permutation of D only interchanges S—cubes Sfim and S1“; within

S-cube S. (We note that Sfim and S14,, form two disjoint “halves” of S: SfiruUSIau = S

and 5);,“ (1 Sim = 0.)

Clearly, the interchange of two S-cubes (Sfim and Sim) forming halves of a larger

S-cube (S) cannot alter the contiguity of elements within any S-cube. Hence, the

WeightedSort algorithm, when applied to a cube-ordered chain, results in a cube-

ordered chain, and the first assertion of Theorem 3.5 is true. U

Theorem 3.6 The W-sort algorithm applied to a cube-ordered chain D = {d141,

dlcfl+1, , dn-ght} results in a contention-free multicast from source node dlefl to

destination nodes {dzcfl+1, duff”, , (in-gm}.

Proof: First, we establish some facts about how the Maxport algorithm divides the

address sequence {dam dlefi+], , drum} during each iteration of the repeat-until

loop (Figure 3.5).

During the first iteration of the loop, the variable highdim acts to divide

the list of destination nodes into two 8-cubes, Slow; and Srcmotc, such that



47

{dlefla dlcfl+h , dhighdim—l} Q Slocal and {dhighdimy dhighdim-f-l, , dright} E Sremote-

After S is divided into Slocal and Sremote, the local node (dlcfl) then sends the message to

node dh,g;,d,-m with address field {db-gum, dhighdim+l, . . . , dram}, thereby relinquishing

to node dMghdgm responsibility for the destination nodes within Sumo“. In subsequent

iterations of the repeat-until loop, SIM; is repeatedly divided into pairs of S-cubes,

until SIM, = {(1141}, at which time the algorithm at node dlefl terminates.

We make the following assertion: during each iteration of the loop, the address

sequences Alocal = {dlefla diefi+1, , dhighdim-I} and Aremote = {dhighdima dhighdim+1a . - - ,

dn-gm} are cube-ordered chains; furthermore, if Sim, and Smnm are the minimal

S-cubes such that A10“; 9 SIM, and Arman Q Snmote, then Sim, fl Srcmm = (0.

In order to see that the assertion is valid, we note that the input sequence to

Maxport, A = {Chef-g, Chef-(+1, , drggm}, is a cube-ordered chain. Since address

sequences Aim; and Ammo“ are subsequences of A, then it follows from Definition 3.5

that Aim; and Arm“, are also cube-ordered chains.

In order to show that Sim, and Smnm are disjoint, suppose there is some node

w 6 Sim; (I Snmm. Since dhgghdgm is the leftmost node in the chain such that

6(dlcfl,dhgghd;m) = k = C(dlcfl,dfl'ght), then for all i, left S i S highdim — 1, 6(dzcfi,d,-) <

k. Similarly, for all j, highdim S j S right, 6(dh,ghd,-m,d,-) < k. Since w E Szmz, and

since Sim; is the minimal S-cube such that {dlcfh dlcfl+1, . . . , dh;g;,d,-m_1} Q Szml, then

6(dzcfl, w) < k. Similarly, 6(dh;g;,d,m, w) < k. But it then follows that C(dhfi, digghdgm) <

k, a contradiction. Thus, S10“; (1 Sumo, = @.

Let Sim, and Simon be the respective values of Sim; and Sremot, during the if”

iteration of the repeat-until loop, i Z 1; and for notational convenience, let Sam, =

A.

Arc contention between constituent unicasts of the W-sort algorithm is avoided

in the following way. We consider any two unicasts 111 = (u,v, P(u, v),t) and 112 =

(x, y, P(x, y), 1') produced by the W-sort algorithm. There are two cases to consider
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with regard to unicast U1: either (1) U1 originates from the source node do}. (that is,

u = dlefl), or (2) L11 is produced by one of the destination nodes relinquished by node

dlcfl (that is, u,v E 5‘ for some i Z 1).
remote,

In the first case (u = dlcfi), if unicast U2 also originates from node dlcfi (that

is, u = x = dlcfl), then Condition 2 of Theorem 3.3 ensures that 111 and U; are

contention-free. Otherwise, U2 must occur within one of the S-cubes relinquished by

dfim (that is, x,y E Simon, for some i Z 1). Since U2 is in this case an ancestor of

M, by Condition 3 of Theorem 3.3, U1 and 112 are contention-free.

i
"mm, for some i Z 1), we must consider two forms ofIn the second case (u,v 6 S

potential contention: contention between S-cubes, and contention within S-cubes.

In the case of potential contention between S-cubes, we have the following sit-

i
nation: u,v E Srcmote

Si C Si-l Slocal C S.—

t

remote — local, — local?

and 12,3; 6 Siemm, wherei at j. Since for alli Z 1,

1 and Sim, (1 5‘ = 0, then for all i,j Z 1 where
remote

i aé j, fem“ (1 Simon = 3. Applying Theorem 3.2 shows that 111 and 112 are are-

disjoint, and thus contention-free.

Potential contention within S-cubes involves the following situation: u,v,x, y E

5i
remote for some i _>_ 1, in which case U1 and U2 are the product of the same recursive

invocation of the Maxport algorithm, and by the above argument, such an invocation

of Maxport produces only contention-free unicasts.

Having covered all possible cases, we now conclude that the unicasts of the W—sort

algorithm are pairwise contention-free. [I]

The W—sort algorithm places certain computational requirements on the source

node processor. Recall that the W-sort algorithm requires that the source node

(1) sort the list of destination nodes into a dimension-ordered chain, (2) invoke the

WeightedSort algorithm to produce a cube-ordered chain, and (3) execute the Max-

port algorithm.
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Sorting the list of m destination nodes into a. dimension-ordered chain can be done

in 0(m logo m) time. The worst-case computational complexity of the WeightedSort

algorithm occurs when the input chain is split after the first element; that is, when

the value of center is equal to first + 1 (Figure 3.8). The CubeCenter function can

be implemented with a simple binary search, which executes in 0(log2 k) time on an

input of size k. This approach gives a worst-case total of 0(m logo m) comparison

operations for the WeightedSort algorithm; while the statement that permutes D

produces a corresponding total of 0(m2) address copies. The resulting total worst-

case computational complexity of W-sort is 0(m2).

In many cases, the computational complexity of W-sort may not be important,

particularly when a set of destination nodes remains constant over many multicast

operations. In this case, WeightedSort can be executed once to produce the appropri-

ate cube-ordered chain, and Maxport can then be executed repeatedly on this fixed

chain. However, there may be cases in which a computational requirement less than

0(m2) would be advantageous. Since the Maxport algorithm has a computational

complexity of only 0(m) at the local node, it would be useful to distribute, and thus

parallelize, some of the work of the WeightedSort operation, thereby reducing the

computational requirements placed on the source node by the W-sort algorithm.

If, rather than using WeightedSort to permute the address sequence D, the source

node merely identifies the appropriate destination nodes (and of course, transmits

to these destination nodes the message along with a list of relinquished destina-

tions), then the worst-case computational complexity of W-sort can be reduced to

0(m logo m) at the local node. By Definition 3.5, the address sequence to be relin-

quished to any destination node will be contiguous in a cube-ordered chain; thus, no

permutation of the addresses in D is required.
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3.5 Performance Evaluation

In order to understand the relative performance of the algorithms presented in Sec-

tions 3.3 and 3.4, they have been compared in three ways on destination sets in

which the nodes are randomly distributed throughout the hypercube. First, we com-

pared their performance in terms of the maximum number of steps required to reach

the destinations. Second, we compared the algorithms by implementing them on an

nCUBE-2 and measuring the average and maximum delay, across destinations. Third,

we simulated the performance of the algorithms using a simulation tool that has been

validated against the nCUBE-2. Since we had access to a real system with only 64

nodes, only simulation allowed us to compare the algorithms on larger systems.

Each destination set was produced by selecting, from all nodes in the system,

the appropriate number of unique nodes under a uniform distribution model, using a

random number generator. The source node was always assumed to be node 0. Due

to the symmetry of the hypercube topology, there is a homomorphism between the

multicasts originating at a particular source node, and those originating at any other

source.

3.5.1 Stepwise Comparisons

Figures 3.10 and 3.11 plot the averages, among random sets of destinations, of the

maximum number of steps needed to multicast data in a 6-cube and a lO-cube,

respectively. For each point in a curve, 100 destination sets were chosen randomly.

In addition to reducing the number of steps, the new algorithms “smooth out” the

staircase behavior of the U-cube algorithm. As shown in these plots, the W-sort

algorithm performs significantly better than the other algorithms. This performance

improvement is due to the actions of WeightedSort, which cause destination nodes
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within more populated S-cubes to migrate toward the root of the multicast tree,

thereby allowing the use of multiple ports to occur earlier in the multicast.
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Figure 3.10. Stepwise comparisons on a 6-cube

All of the curves converge at the highest data point, which represents the special

case of broadcast. This behavior results from the degeneration of all of the algorithms

to the same algorithm in the case of broadcast, where the set of nodes involved in the

multicast consists of every node in the system.

3.5.2 Implementations on an nCUBE-2

Figures 3.12 and 3.13 plot the average and maximum, respectively, among destina-

tions, of the measured delay between the sending of a 4096—byte multicast message

and its receipt at the destination. For each point in a curve, 20 destination sets were

chosen randomly in a 5-cube. These plots show that all the algorithms designed to
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Figure 3.11. Stepwise comparisons on a 10-cube

take advantage of the all-port architecture offer some benefit over the U-cube algo-

rithm. However, any advantage among Maxport, Combine, and W-sort, is unclear.

Interestingly, Figure 3.12 shows that the average delay for U—cube is actually worse for

multicast than for broadcast. This anomaly occurs because the algorithm sometimes

transmits multiple messages along the same channel instead of taking advantage of

multiple channels. In Figure 3.13, we see clearly the staircase behavior of U-cube.

As predicted by the stepwise comparisons, the new algorithms tend to smooth the

relative delays among various sized destination sets.

We infer that the relatively similar results among the new algorithms, and in

particular, the lack of a clear advantage for the W-sort algorithm, is due to the startup

latency of the nCUBE—2, which prevents the machine from taking full advantage of

the all-port architecture. In the nCUBE—Z, the sending latency is about 107 psec and

the receiving latency is about 80 psec. For small messages, these latencies dominate

the network latency; the system behaves much like a one-port architecture, and there
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Figure 3.12. Average delay comparisons on a 5-cube

is less difference between the various multicast algorithms. For larger messages, the

network latency becomes more significant compared to startup latency. One would

expect the performance advantage of the W-sort algorithm to improve for all sizes of

messages if the startup latency were reduced. It is therefore worth noting that the

recently announced nCUBE-3 is claimed to exhibit a startup latency of only 5 ,usec.

3.5.3 Simulations of Larger Systems

In order to compare the algorithm for larger hypercubes, we relied on simulation.

McKinley and Trefftz [61] have developed a CSIM-based simulation tool, called Mul-

tiSim, which can be used to simulate large-scale multiprocessors. In particular, Multi-

Sim uses novel methods to efficiently simulate wormhole-routed systems. In addition,

the simulator has been validated against an nCUBE-2 hypercube multicomputer [61].
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Figures 3.14 and 3.15 plot the average and maximum, respectively, among desti-

nations, of the delay between the sending of a 4096-byte multicast message and its

receipt at the destination. For each point in a curve, 100 destination sets were chosen

randomly in a 10-cube. These plots show that all the algorithms designed to take

advantage of the all-port architecture offer advantages over the U-cube algorithm.

For the larger systems, the advantage of W-sort becomes more obvious in both the

average and maximum cases.

3.6 Conclusions

Efficient data distribution is critical to the performance of new generation super-

computers that use massively parallel architectures. In this chapter, the problem of

multicast in all-port wormhole-routed hypercubes has been addressed. It has been
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Figure 3.14. Average delay comparisons on a 10-cube

demonstrated why the U-cube multicast algorithm [19], which is optimal for one-port

architectures, fails to take advantage of multiple ports when they are present in the

system. New theoretical results regarding contention among messages in wormhole-

routed hypercubes have been developed and used to design new multicast routing

algorithms and to prove that these algorithms are contention-free. The algorithms

were compared in terms of the number of steps required in each, their measured

execution times when implemented on a relatively small-scale nCUBE-2, and their

simulated execution times on larger hypercubes. The results indicate that significant

performance improvement is possible when the multicast algorithm actively identifies

and uses multiple ports in parallel.
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CHAPTER 4

Unicast-Based Multicast in

One-Port Torus Networks

In this chapter, we develop a unicast-based multicast algorithm for one-port,

wormhole-routed n-dimensional torus networks. This algorithm achieves the lower

bound of [log2 m] message-passing steps and avoids contention among the constituent

unicast messages. Optimal multicast algorithms have previously been developed for

meshes and hypercubes [19]; we generalize the earlier research to accommodate torus

networks. The salient difference between the two topologies is the presence of wrap—

around channels in tori, which affects the design of techniques for routing and switch-

ing of messages through the network in order to avoid deadlock. These torus-specific

properties must be considered in the design of tree-based multicast algorithms in

order to minimize the number of message-passing steps while avoiding contention.

The remainder of this chapter is organized as follows. Section 4.1 presents the

system models under which we study multicast communication; we consider torus

networks with both unidirectional and bidirectional communication links. In Sec-

tion 4.2, we discuss the unicast routing algorithms for each architecture, upon which

the multicast algorithm will be based. Section 4.3 develops theoretical results re-

garding channel contention in wormhole-routed torus networks, while in Section 4.4,

57
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we present an optimal unicast-based multicast algorithm for torus networks. In Sec-

tion 4.5, we study the performance of the proposed multicast algorithm. Finally, a

summary is presented in Section 4.6.

4.1 System Model

Formally, an n-dimensional torus has ko x k1 >< - . - >< kn_2 X kn_1 nodes, with k,- nodes

along each dimension i, where k,- 2 2 for 0 S i S n — 1. Each node x is identified by n

coordinates, on_1(x)o,,_2(x) . . .oo(x), where 0 S o,(x) S k,-—1 for 0 S i S n—l. Two

nodes x and y are neighbors if and only if o,(x) = o,~(y) for all i, 0 S i S n — 1, except

one, j, where oj(x) :l: 1 = oj(y) mod k,. In this chapter, we will assume for purposes

of discussion that a torus is regular, that is, that k,- = kj for all 0 S i, j S n — 1,

and we refer to the width, or arity, of the torus as simply k; however, all of the

results we present are also applicable to non-regular tori. We consider the problem of

multicast on two classes of torus networks: those with unidirectional links, and those

with bidirectional links. We refer to these network types as unidirectional tori and

bidirectional tori, respectively.

In a unidirectional torus, neighboring nodes are connected by physical channels in

one direction only. That is, if there is a channel from node r to node 3, denoted (r, s),

then there is not a channel (s,r). Specifically, a physical channel (r,s) is present if

and only if there is a dimension d, 0 S d S n — 1, such that od(r) + 1 = od(s) mod k,

and o,(r) = o,-(s) whenever i 75 (I. Figure 4.1(a) shows the physical links associated

with a 2D unidirectional torus. Also shown are the paths taken by two example

unicast messages, one from source node (0, 0) to destination node (2, 1), and another

from source node (0,2) to destination node (3,1). The paths shown result from a

deterministic routing algorithm termed dimension-ordered routing [42]. In this ap-

proach, messages are routed first in the highest (lowest) dimension in which the source
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and destination nodes differ. Routing then proceeds on each required dimension, in

descending (ascending) order of dimension, until the routing path reaches the desti-

nation. Routing in a particular dimension is always completed before routing in the

next dimension begins. Although adaptive routing mechanisms for wormhole-routed

networks have been the focus of recent research [51, 53], in this chapter we focus on

the deterministic dimension-ordered routing strategy, which is widely used due to its

simplicity [1].
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Figure 4.1. Examples of 2D torus networks

In a torus network with only unidirectional links, messages are often forced to

travel a longer path than would otherwise be possible. Although message transmis-

sion time may be nearly distance-insensitive in a wormhole-routed network, it is still
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desirable to reduce path lengths whenever possible, since messages that travel on

shorter paths use fewer channels, thereby reducing overall channel load, and hence

decreasing the frequency of channel contention.

To this end, we also consider the problem of multicast in bidirectional tori, in

which direct message transmission is possible in either direction between neighboring

nodes. Formally, a physical link (r, s) is present in a bidirectional torus if and only

if there is a dimension d, 0 S d S n — 1, such that od(r) + 1 = od(s) mod k or

od(r) — 1 = od(s) mod k, and o,-(r) = o,(s) whenever i 75 d. The physical links

associated with a 2D bidirectional torus are shown in Figure 4.1(b). As in the case of

the unidirectional torus in Figure 4.1(a), paths for two unicast messages are shown.

In the case of the path from source node (0, 2) to destination node (3, 1), bidirectional

links provide a shorter path than do unidirectional links (2 links versus 6). When

a message is routed through a bidirectional torus, there are two possible directions

of travel for each dimension. We consider systems in which the direction associated

with the shorter path is always taken. For networks with even arity, ties are possible

(that is, a message may need to travel exactly k/2 hops in a particular dimension). In

the case of ties, we assume that the path not using a wraparound channel is selected.

The neighboring nodes in a bidirectional torus may be connected by either single,

bidirectional physical channels, or by pairs of unidirectional physical channels facing

in opposing directions.

4.2 Unicast Routing Algorithms

Daily and Seitz [57] observed that torus networks with single (unidirectional or bidi-

rectional) channels between neighboring nodes exhibit cycles of channel dependency

between unicast messages that can cause deadlock, and that these channel-dependence
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cycles can be broken by multiplexing virtual channels on a single physical communi-

cation channel. Each virtual channel has its own flit buffer and control [58]. In order

to prevent message deadlock in a torus network, single channels between neighbor-

ing nodes are replaced with multiple virtual channels, thus allowing the underlying

routing algorithm to choose among these multiple virtual channels in such a way as

to eliminate cycles of channel dependency.

Virtual channels may be used in a variety of ways to eliminate deadlock, but

how they are used has a significant effect on the design of efficient unicast-based

multicast operations. We now describe two unicast routing algorithms that we will

later consider in the context of their support of unicast-based multicast operations.

The first routing algorithm is suitable for torus architectures with unidirectional links,

while the second algorithm is applicable to systems with bidirectional links.

4.2.1 Unidirectional Torus Routing

For unidirectional torus routing (UTR), there are two parallel sets of virtual channels,

called p—channels and h-channels. The fundamental idea behind UTR is that, for each

dimension in which a message travels, p—channels (‘p’ for pre-wraparound) are used

only by messages that will eventually use the wraparound channel in the current

dimension; after using the wraparound channel, such messages use the h-channels (‘h’

for high-direction) for all remaining travel in the current dimension. Those messages

that will not use the wraparound channel in a particular dimension use h—channels

exclusively for travel in that dimension. Figure 4.2 illustrates the virtual channels

within a single dimension, d, of a unidirectional torus. We use the notation of Dally

and Seitz [57], where coax represents the virtual channel leaving node x in dimension

d, in the virtual channel set a where 01 E {‘p’,‘h’}; that is, 0 indicates whether com,

is a p-channel or an h-channel).
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Figure 4.2. Virtual channels in one dimension of a unidirectional torus

Formally, for each dimension d, 0 S d S k — 1, and for each node x, let y be the

node such that od(y) = od(x) + 1 mod k and o,(y) = o,(x) for all i 75 d. Then under

UTR,

1. There is an h-channel, thx, from x to y whenever 0 S od(x) S k — 2, and

2. There is a p—channel, Cdpx, from x to y whenever I S od(x) S k - 1.

As illustrated in Figure 4.2, there is no p-channel when od(x) = 0, since the p—channels

are used only by messages that will eventually use the wraparound channel, and

clearly, no message will first visit node 0 and later use the wraparound channel in the

same dimension, since to do so would constitute a cycle in the path. Similarly, when

od(x) = k — 1, there is no (wraparound) h-channel, since h—channels are used only by

messages that have already traversed the wraparound channel (there is no need to

use a wraparound channel twice in the same dimension) and by messages that will

not use the wraparound channel.

The UTR routing algorithm is described formally by the function Rum : N x N —+

C, which maps a (current node, destination node) pair into the next channel of the

routing path. In order to define RUTR(x, y), let d be the highest-ordered dimension

in which x and y differ, and let A = od(y) — od(x). Then

Cdpx if A < 0

RUTR(xal/) = (4-1)

Cd)”; if A > 0
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A message is routed from a source node to a destination node by applying the

Rum function, first at the source, and then at each router through which the message

travels, until the destination is reached. Implementing the Rom function in a router

is straightforward. The UTR routes unicast messages along only shortest paths (under

the constraints of unidirectional links) and is deadlock-free [57].

4.2.2 Bidirectional Torus Routing

In a torus network with bidirectional links, cycles of channel dependency exist in both

directions in each dimension; as with unidirectional tori, multiple virtual channels

are necessary to provide a deadlock-free routing algorithm. For bidirectional torus

routing (BTR), there are three sets of virtual channels: p-channels, l—channels, and

h-channels. Each individual virtual channel carries messages in one direction only.

The p-channels route messages that will eventually use the wraparound channel in the

same dimension. The l-channels (‘l’ for low-direction) and h—channels are used after

the wraparound channel has been traversed; the h-channels are also used by messages

that will not use the wraparound channel in the current dimension. The l—channels

are directed towards lower-address neighboring nodes, while higher-address neighbors

are reached through h-channels.

The virtual channels along a single dimension, d, of a bidirectional torus with even

width, k, are illustrated in Figure 4.3. The situation is similar when k is odd.
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Only one set of p-channels is needed, since a message that eventually uses the

wraparound channel in a particular dimension will travel only away from the “center”

of that dimension prior to using the wraparound channel; to do otherwise would result

in non-minimum length routing. Formally, for each dimension d, 0 S d S k— 1, and for

each node x, let y be the node such that od(y) = od(x)+1 mod k and o;(y) = 0';(x) for

all i 75 d, and let w be the node such that od(w) = od(x) —1 mod k and o,(w) = 0',(x)

for all i 75 d. Then under BTR,

1. There is an l-channel, Cdlx, from x to w whenever I S od(x) S k — l,

2. There is an h-channel, thx, from x to y whenever 0 S od(x) S k — 2,

3. There is a p—channel, cdpx, from x to y whenever [5%] +1 S od(x) S k — 1, and

4. There is a p—channel, cdpx, from x to w whenever 0 S od(x) S [1&1] — 1.

As shown in Figure 4.3, some pairs of neighboring nodes require only two intercon-

necting virtual channels, rather than three. For example, p-channels, which are used

by a message prior to wraparound, are not needed near the center of a particular di-

mension, since a message routed on a shortest path will never pass through the center

of a dimension and also use a wraparound channel in that dimension. Wraparound

channels are required only in the p-channel set, for reasons similar to those given for

UTR.

The BTR routing algorithm is described formally by the function 72ng : N x N —-1

C, which maps a (current node, destination node) pair into the next channel of the

routing path. In order to define R3m(x, y), let (1 be the highest—ordered dimension

in which x and y differ, and let A = od(y) — od(x). Then

Cdpx if [A] > %

RBTRUBU) = Cd]; if - g S A S -l (4.2)

aaHISAsg
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Since RBTR routes messages using a wraparound channel in each dimension, d, in

which Iod(y) — od(x)| > k/2, then BTR always selects a shortest path between source

and destination nodes. BTR is deadlock-free, since there are no cycles of channel

dependency between unicast messages routed by Rom.

4.3 Contention in Wormhole-Routed Torus Net-

works

The unicast routing algorithm directly affects the design of multicast algorithms in

wormhole-routed systems, because it determines how the constituent messages must

be scheduled in order to avoid channel contention. Before a multicast operation

begins, only the source node has a copy of the message. During the first message-

passing step, the source can send the message to only one destination node on a one-

port architecture. In each subsequent step, each node holding a copy of the message

can send it to at most one new node. Therefore, the number of nodes that have a

copy of the message can at most double during each step, leading to a lower bound of

[log2 m] on the number of steps required to complete a multicast to m — 1 destination

nodes. In order for the actual time required by this recursive doubling procedure to

be proportional to the number of message-passing steps, contention between unicast

messages must be avoided.

The following example illustrates the issues and difficulties involved in imple-

menting efficient multicast communication in torus networks. We consider the 2D

(5 x 5) torus in Figure 4.4, and suppose that a multicast message is to be sent from

source node (4, 3) to six destinations. We define a multicast operation by a message,

M, and a list of nodes, (1) = {xo,x1,x2,..., xm_1}, where xo is the source node

and {x1,x2, . . . , xm_1} are the destination nodes, listed in arbitrary order. In this

example, 0 = ((4,3), (0,0), (1,1), (2,1), (0,3), (1,3), (4,4)).



 

 

 

 

 

 

      
D source node E] destination node D other node

Figure 4.4. An example of multicast in a 2D torus

Figure 4.5 illustrates the multicast trees associated with three different implemen-

tations of the example multicast operation in a unidirectional torus (under UTR).

The intermediate nodes and virtual channels (arcs) of each unicast are shown, as

well as the communication step in which the unicast occurs. All arcs of a particular

unicast share the same step label; because of the message pipelining associated with

wormhole routing, a unicast message is considered to occur in a single step regardless

of the number of hops on the associated path. In all three implementations, the local

processors at only the source and the destination nodes are required to handle the

message.

Although the multicast implementation depicted in Figure 4.5(a) appears to com-

plete the multicast in 3 steps, the unicasts from node (0, 3) to node (1,1), and from

(4,3) to (1,3), both require the use of the h—channel from node (0,3) to node (1,3)

during step 2. Since the unicasts are sent in the same step, there is said to be stepwise
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Figure 4.5. Unicast-based software multicast trees

contention between them, which will cause one of the unicasts to be blocked until the

other has relinquished the shared arc. This contention will delay one of the unicasts

by approximately one step, thereby causing a delay in the receipt of the message (at

either nodes (2, 1) and (0, 0), or at node (1, 3), depending on which of the two unicasts

was blocked) so that the multicast actually requires four steps to complete.

In Figure 4.5(b), we see an alternate implementation of the same multicast opera-

tion, but in this case without stepwise contention. However, under certain conditions,

messages occurring in two different communication steps may actually be transmit-

ted concurrently. This skewing of message-passing steps is due to the effects of the



68

various communication latencies. As described in Section 2.2.2, the startup latency

is the overhead incurred in handling a message at the source and destination nodes.

Startup latency is composed of sending latency, t5, and receiving latency, tn. The

network latency of a message, tN, is dependent upon the message length.

In Figure 4.5(b), the message from node (4, 3) to node (0, 3) during the first step is

completely received by node (0, 3) at time ts + tN + tR. The message from node (0, 3)

to node (1,1) during the second step thus enters the network at time 2ts + tN + tR.

The three messages originating at the source node (4, 3) enter the network at time t3,

2t5, and 3ts, respectively. Given the above facts, suppose that the communication

latencies are such that t3 = tN + tR (for example, perhaps is = 2tN = 2tR). Then the

message from node (0, 3) to node (1, 1) occurring in the second step, and the message

from node (4,3) to node (1,3) occurring in the third step, both enter the network

at time 3t5. Since these two messages each require the h—channel from node (0, 3)

to node (1, 3), then the messages will exhibit channel contention under this scenario

of communication latencies. Such channel contention occurring among messages in

diflerent communication steps is termed depth contention.

Figure 4.5(c) illustrates the use of techniques presented in this chapter, which pro-

vide contention-free multicast in a torus using the optimal number of steps. Although

the p-channel from node (4, 3) to node (0,3) is used by two unicasts (in steps 1 and

2, respectively), there can be no contention for this shared arc, since the first unicast

is guaranteed to be complete before the second unicast begins.

Before formally studying contention between messages, we present some no-

tation. The path from a source node u to a destination node v result-

ing from dimension-ordered routing in a torus network is denoted P(u, v) =

(u; co; x1; CI; (to; co; . . . ;xq; cq; v), where c,- is the virtual channel used to travel

from node x,- to node x,+1, for 0 S i S q (where xo = u and xq+1 = v).
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The sequence of nodes visited on the path is (u;x1;x2; ;xq;v). For ex-

ample, the path from source node (0,0) to destination node (2,1) in a unidi-

rectional torus, depicted in Figure 4.1(a), is represented by P((0,0),(2,1)) =

((0, 0);Cih(o,0);(1,0);Cih(1,0);(2,0);00h(2,0);(2,1))- A unicast from node u to node v

occurring at step t is denoted (u,v, P(u,v),t).

To help understand the structure of a unicast-based multicast operation, the reach-

able set [19] of a node, say node u, in a multicast implementation is defined to be the

set of nodes in the multicast that receive the message, either directly or indirectly,

through node u. If the multicast is viewed as a tree of unicast messages, then Ru

is the set of nodes in the subtree rooted at 11. As an example, in the multicast

implementation shown in Figure 4.5(a), R(o,3) = {(0, 3), (1, 1), (2, 1), (0,0)}.

Definition 4.1 A node v is in the reachable set of node 11, denoted Ru, if and only

if one of the following holds:

1. v = u; or

2. The implementation contains a unicast (w, v, P(w, v), t) such that w E R“.

We now present several theorems regarding contention in wormhole-routed torus

networks. These theorems are important in verifying that the proposed torus mul-

ticast algorithm, presented in Section 4.4, produces only multicast operations whose

constituent unicast messages are pairwise contention-free.

Contention in wormhole-routed, n-dimensional mesh networks has been investi-

gated in a previous work [19], in which the following theorem regarding contention

in general wormhole-routed networks is presented. We use this theorem to develop

corresponding results about contention in torus networks.

Theorem 4.1 Given a multicast implementation, if at least one of the follow-

ing four conditions holds for every pair of resultant unicasts (u,v,P(u,v),t) and

(x,y,P(x,y),r), where t S r, then the multicast is depth contention-free.
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1. x E R...

2. P(u,v) and P(x,y) are arc-disjoint.

3. x = u

4. x E Ru, and (u, w, P(u, w), t + i) is a product of the multicast, for some node w

and positive integer i.

In implementing a multicast algorithm, whenever the paths of two constituent

unicast messages share an arc (virtual channel), care must be taken to ensure that the

paths do not attempt to use the shared arc simultaneously. When two paths have no

virtual channel in common, of course, contention between these two particular paths

is always avoided. Paths with no common virtual channel are said to be arc-disjoint.

We now develop two theorems (Theorems 4.2 and 4.3) that identify situations in a

torus network, under UTR and BTR, respectively, in which pairs of unicast messages

are arc-disjoint. We first give Lemma 4.1, which formalizes the basic notions of

dimension-ordered routing and will be useful in later proofs.

Lemma 4.1 Let P(u,v) = (u;co;x1;c1;x2;c2; ;xq;cq;v) be any dimension-

ordered path (For clarity, let xo 2 u and xq+1 = v.), and let Cd”, 6 P be any

arc in P(u,v). Then the following conditions hold:

1. For all j, 0 S j S i, and for all f, 0 S f S d — 1, Uf($j) = 0f(U).

(Before traveling in dimension d, a message does not travel in dimensions lower

than d.)

2. Forallj,i+1Squ,andforallf,d+1SfSn—l, Uf($j):0'f(v).

(Upon traveling in dimension d, a message does not travel in dimensions higher

than d.)

3. od(u) 75 od(v).

(A message travels in dimension d only if the source and destination node ad-

dresses differ in dimension d.)

Proof: The lemma follows directly from the behavior of dimension-ordered routing.

Cl
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Definition 4.2 formally describes a dimension order, denoted <d, which is a lex-

icographical ordering (and thus, a total ordering) on the node addresses of a torus

network. For example, given nodes (2,1,5), (2,1,8) and (1,3,7) in a 3D torus, we

have (1,3, 7) <0) (2,1,5) <d (2,1,8).

Definition 4.2 [19] The binary relation dimension order, <d, is defined between two

nodes x and y as follows: x <4 y if and only if either x = y or there exists an integer

j such that oj(x) < oj(y) and (7,-(x) = o,-(y) forj +1 S i S n — 1.

Lemma 4.2 For any four nodes u, v, x, y in a torus network, ifv <4 x <d y and paths

P(u,v) and P(x,y) share an arc in dimension d under dimension-ordered routing,

then od(v) S od(x) < od(y).

Proof: Let (r,s) be an arc in dimension (1, shared by paths P(u,v) and P(x,y).

Since r lies along dimension-ordered paths to both v and y, then by Lemma 4.1,

(7,-(r) = o,(v) = o,(y) for all i > d. Since v <d x <d y, it follows that

(1,-(v) = (1,-(x) = o,(y), and od(v) S od(x) S od(y). Finally, because the path P(x,y)

travels in dimension d, od(x) yé od(y). II]

We next present two theorems that give sufficient conditions under which message

paths will be arc-disjoint in a torus network using the dimension-ordered routing

algorithms described in Section 4.2. Theorem 4.2 applies to unidirectional networks,

while Theorem 4.3 is applicable to bidirectional networks.

Theorem 4.2 For any four nodes u,v,x,y, ifv <d x <d y then under UTR, paths

P(u,v) and P(x,y) are arc-disjoint.

Proof: The proof is by contradiction. Assume that there is an are (r, 3) shared by

paths P(u,v) and P(x,y), and let d be the dimension in which (r,s) travels. Then

by Lemma 4.2, od(v) S od(x) < od(y).
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From the definition of Rum (Expression 4.1), path P(x, y) uses only h—channels

between od(x) and od(y) when traveling in dimension d, since od(x) < ad(y) (recall

that h-channels are used after using the wraparound channel, and by messages that

will not use the wraparound channel in a particular dimension).

There are two cases to consider with regard to 0,1(u): (case 1) od(u) < od(v); and

(case 2) od(u) > od(v). Figure 4.6 shows for each of these two cases the routes taken

by paths P(u, v) and P(x, y) in dimension d, as prescribed by UTR (Expression 4.1).

Although, in case 2, od(u) may, in fact, be farther to the right than shown in the fig-

ure, this difference would only cause fewer channels to be used by P(u, v). As shown,

paths P(u,v) and P(x, y) cannot share an arc in dimension d; thus, the assumption

of the existence of such a shared arc must be false. (:1

h—channels h—channels

o -----------o——>o--------------o—-Io------------- o

0 Od(u) Od(v) Odor) O’d(y) k-I

 
 

 

0 Od(v) Od(u) Od(x) Gd(y) k—I

Case 2: Od(u) > Od(v)

Figure 4.6. Channels used by P(u,v) and P(x,y) in dimension d (Theorem 4.2)

The next theorem is equivalent to Theorem 4.2, but is applicable to bidirectional,

rather than unidirectional, torus networks.
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Theorem 4.3 For any four nodes u,v,x,y, ifv <01 :1: <1 y then under BTR, paths

P(u,v) and P(x,y) are arc-disjoint.

Proof: The proof is by contradiction. Assume that there is an arc (r, 3) shared by

paths P(u,v) and P(x,y), and let d be the dimension in which (r,s) travels. Then

by Lemma 4.2, od(v) S od(x) < od(y).

We must consider three possible cases with respect to the shared arc: either (r, s)

is (1) a p-channel; (2) an l-channel; or (3) an h-channel.

Case 1. Arc (r,s) is a p—channel: Since the same (pm-wraparound) p—channel,

(r, s), is used in the path from od(u) to od(v), and in the path from od(x) to od(y), then

the relationship between od(u) and od(v) must be the same as the relationship between

od(x) and od(y); that is, either od(u) < od(v) and od(x) < od(y), or od(u) > od(v) and

od(x) > od(y). Thus, since od(v) S od(x) < od(y) is known, then od(u) < od(v) S

od(x) < od(y), as shown in Figure 4.7(a). But since paths P(u,v) and P(x,y) both

use a p-channel in dimension d, then od(v) — od(u) > k/2 and od(y) -— od(x) > k/2,

which cannot be possible when od(u) < od(v) S od(x) < od(y).

Case 2. Arc (r,s) is an l—channel: Since arc (r,s) is an l—channel (low-direction)

used in the path P(x,y), and since od(x) < od(y), then P(x,y) must first use a

wraparound channel in dimension d before using are (r, s). It then follows that od(x) <

od(y) S od(s) < od(r), and od(y) — od(x) > k/2, as shown in Figure 4.7(b). If

od(u) > od(v), then path P(u, v) does not use a wraparound channel in dimension d,

so od(v) S 04(3) < od(r) S od(u), but since od(y) — od(x) > k/2, then od(u) < od(y)

(otherwise, od(u) — od(v) > k/2, in which case P(u,v) would use a wraparound

channel in dimension d), from which follows that od(r) < od(y), a contradiction. On

the other hand, if od(u) < od(v), we have od(u) < od(v) S od(x) < od(y), and since

od(y) - od(x) > k/2, then od(v) — od(u) < k/2, so path P(u,v) uses only h~channels

in dimension d.
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Figure 4.7. Channels used by P(u, v) and P(x, y) in dimension d (Theorem 4.3)

Case 3. Arc (r,s) is an h—channel: Since od(x) < 0.1(y), we know that od(x) S

od(r) < 0,1(3) S od(y), as shown in Figure 4.7(c). If od(u) > od(v), then od(r) <

od(s) S od(v), hence od(r) < od(x), a contradiction. If od(u) < od(v), then it follows

that od(u) S od(r) < od(s) S od(v); and again, od(r) < od(x), a contradiction.

Since each of the above cases leads to a contradiction, the assumption that paths

P(u,v) and P(x,y) share an arc must be false. D

4.4 Optimal Multicast Algorithm

In this section, we use the theorems of Section 4.3 to develop a unicast-based multicast

algorithm for wormhole-routed tori that use either UTR or BTR routing. We show
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that this algorithm produces pairwise contention-free unicast messages and completes

the multicast in the minimum possible number of steps.

The algorithm uses the recursive doubling procedure described earlier. This

method can be viewed in many ways; one possible view is depicted in Figure 4.8,

where we assume for simplicity that m, the number of nodes involved in the mul-

ticast, is a power of 2. Figure 4.8 shows all unicasts occurring in the first three

steps of an optimal multicast (labeled “[1],” “[2],” and “[3],” respectively), as well as

two unicasts occurring in the final step (labeled “[log2 m]”). As shown, the source

node, do, sends the message to destination node dm/2 during the first step; this step

partitions the multicast problem of size m into two problems, each of size m/2, with

source nodes do and dm/g, respectively. This process continues recursively until all

destination nodes have received the message.

 

 

Figure 4.8. A minimum-time multicast

The key to avoiding contention among the constituent messages is the ordering

of the destinations. For example, the recursive doubling technique illustrated in

Figure 4.8 has previously been applied to meshes; the resultant algorithm is called U-

mesh [19]. In order to prevent contention, the U-mesh algorithm orders the destination

nodes according to the dimension order relation, <11, which was discussed in the

previous section. Such an ordered list is called a dimension-ordered chain [19], and

is defined as follows.
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Definition 4.3 A sequence of nodes {xo,x1,x2,..., xm_1} is a dimension-ordered

chain if and only if all the elements are distinct and x, <d x,+1 for 0 S i < m — 1.

It turns out that using dimension-ordered chains does not prevent contention in

torus networks; that is to say, the U-mesh algorithm is not contention-free when

executed on a torus. However, we now show how an extension of the dimension-

ordered chain can be used to avoid contention in a torus (and, incidentally, also on

a mesh). The resultant U-torus algorithm produces contention-free, minimum-time

multicast operations on a torus, under either UTR or BTR.

Definition 4.4 If<I> = {xo,x1,x2, . . . , xm_1} is a dimension-ordered chain and x, is

an element of<I>, then {x,, x,+1, . . ., xm_1, xo, x1, . . . , x,_1} is an R-chain with respect

to x,.

An R-chain is an end-around rotation of a dimension-ordered chain. Any dimension-

ordered chain (I) = {xo, x1, x2, ..., xm_1} is an R—chain with respect to xo; that is,

any dimension-ordered chain is also an R-chain with respect to the first element. As

an example of the construction of an R-chain, we consider the following multicast

from source node (8, 4, 5) in a 3D torus, where

{(_8__45),(4 9 3),(19 7) (10 2M8 5 4)

(4-—’—9)’18(9’015)3 (31515)’(910’ 1), (8,0,5), (1,614)}

is the specified multicast operation, with source node (8,4,5) underlined. First, we

sort <I> according to a lexicographical ordering of the node addresses, to obtain the

dimension-ordered chain

{(1,0,2),(1,6,4),(1 9 7

5)(4,9,3), (8,0,5), (8__,___4, (9,0,5)}

Next, we rotate the chain <I>’ so that the source node, (8,4, 5), appears at the head of

the list. This action results in the following R-chain,
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<1" = {(8,4,5),(8,5,4),(9,0,1),(9,0,5),(1,0,2),

(1,6,4), (1,9,7), (3,5,5), (4,8,9), (4,9,3), (8,015)}-

Figure 4.9 gives the U-torus algorithm, which implements the recursive doubling

process described above in a torus network. The algorithm takes an R—chain as input.

 

Algorithm 1: The U-Torus Algorithm

Input: R-chain {dlefia did”), . . . , dright},

where did, is the local address.

Output: Send [log2(right — left + 1)] messages

Procedure:

while left < right do

center = left + [flih—f'glsfl-‘f—l];

D={dcenter, dcenter+1 ) - ~ - , dright};

Send a message to node deem, with the address field D;

right 2 center — 1

endwhile

Figure 4.9. The U-torus algorithm for multicast  
 

Figure 4.10 illustrates the application of the U-torus algorithm to the R-chain (1)”

from the previous example. For clarity, intermediate routers in the unicast paths are

omitted. As shown, the U-torus algorithm requires four steps in this example to reach

all destination nodes. Since there are 10 destination nodes, the lower bound on the

number of steps required to perform the multicast is also [log2 11] = 4.

Theorem 4.4 If<I> = {do,d1, ,dm-1} is an R-chain, then the U-torus algorithm

applied to (I), under either UTR or BTR, performs a minimum-time, contention-free

multicast from source do to destinations {d1, ..., dm_1}.
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Figure 4.10. Example multicast using the U-torus algorithm

Proof: From the above description of the U-torus algorithm and the accompanying

discussion, it is easy to see that the algorithm produces a multicast from the source

to the intended destinations, and that barring contention, [log2 m] steps are required

to complete a multicast to m — 1 destinations. The more difficult task is to show that

the unicast messages produced by the algorithm are always pairwise contention-free.

Let (u,v, P(u,v),t) and (x,y, P(x,y),r) be any two unicasts produced by an in-

vocation of the U-torus algorithm, and assume, without loss of generality, that t S T.

There are three possible relationships between the two unicasts; these are depicted

in Figure 4.11. In case 1, x = u, so by item 3 of Theorem 4.1, the unicasts are

contention-free. In case 2, item 4 of Theorem 4.1 holds, so again, the unicasts are

contention-free. We now show that the unicasts represented by case 3 are arc-disjoint,

and hence, contention-free.

  

 

Case 3

—> R—chain ———> unicast -----> series of one or more unicasts

Figure 4.11. Possible relations between unicasts produced by U—torus
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We note from Definition 4.4 that an R-chain, (I) = {x,,x,+1, . . . , xm_1,xo,x1, . . .,

x,_1}, consists of two concatenated sub-chains, (I), = {x,, x,+1, . . . , xm_1}, and in =

{xo,xl, . . . , x,_1}. Since nodes u,v,x and y appear in the given order (u,v,x,y) in

the R-chain, there are five possible points with respect to these four nodes where the

partition between <I>a and (In, might occur. These five subcases are enumerated as

follows:

i. u,v,x,yE<I>a

ii. u,v,x€<I>a;y€<I>b

iii. u,vEQa;x,y€<I>b

iv. u€<1>a;v,x,y6<l>b

v. u,v,x,y€ (Db

We consider any two nodes u and v in an R-chain, where it occurs before v in the

R-chain. From Definitions 4.3 and 4.4, if u and v belong to the same sub-chain (that

is, if either u,v E (I), or u,v E (Pb), then u <d v. Also, if the two nodes belong to

different sub-chains, (that is, if u E (D, and v 6 (1)5), then v <4 it. Thus we can

conclude, for each of the above subcases, respectively, the following:

i. u<dv<dx<dy

ii. y<du<dv<dx

iii. x<dy<du<dv

iV. v<dx<dy<du

V. u<dv<dx<dy

Since Theorem 4.2 (or Theorem 4.3, depending on whether the network being consid-

ered is unidirectional or bidirectional) applies to each of the above five subcases, we

now conclude that, in case 3 of Figure 4.11, paths P(u, v) and P(x, y) are arc-disjoint,

and therefore contention-free. El
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Let us now consider the computational demands placed on the source node pro-

cessor by the U-torus algorithm. The list of destination nodes (along with the source

node) must be arranged as an R—chain. This arrangement can be accomplished by

sorting the node addresses, and then rotating the sorted list. The associated compu-

tational complexity is thus 0(m log2 m) for a multicast of size m. The computation

performed by intermediate destination nodes of the U-torus algorithm consists of se-

lecting the central node in the destination list; this selection is performed in constant

time (see Figure 4.9). In cases where the same set of destination nodes is used for

many multicast operations, such as in numerical algorithms, the list of node addresses

need only be arranged into an R-chain once. This R-chain can then be used for all

subsequent multicasts involving the same source and destination set.

4.5 Performance Evaluation

As shown in Section 4.4, the U-torus algorithm completes in a minimum number

of steps, and the unicasts produced by the algorithm are pairwise contention-free

(Theorem 4.4). As a practical consideration, however, we note that it is possible

for the U-torus algorithm to generate pairs of unicasts that simultaneously use two

different virtual channels joining the same pair of neighboring nodes. In Figure 4.2,

for example, virtual channels com and thI might be used simultaneously by two

unicasts produced by the U-torus algorithm. If each virtual channel of a torus network

corresponds to a distinct physical communication link, then the above situation has

no effect on the performance of the algorithm, that is, unicast messages traveling

between a particular pair of adjacent nodes will travel on separate physical links, and

thus be unaffected by one another. However, we must also consider torus networks

in which pairs of parallel virtual channels are multiplexed onto a single physical

communication link [1].
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When two virtual channels are multiplexed onto a single physical link, they share

the bandwidth of that link. If one of the virtual channels is idle, then a message

traversing the other virtual channel will use all the bandwidth of the physical link.

When two unicasts simultaneously use virtual channels that are multiplexed onto

a physical link, however, the speed at which these messages are delivered to their

destination is reduced by half. This situation is quite different from are contention,

in which two (or more) messages require the same virtual channel simultaneously, and

in which one message is blocked until the other has completely passed through the

mutually-required channel.

In order to study the effect of virtual channel multiplexing on the performance of

the U-torus algorithm, we examined its behavior when executed on destination sets

in which the nodes are randomly distributed throughout a network. For this study,

we assume that whenever two unicast messages in the same step use virtual channels

that are multiplexed onto the same physical link, these two unicasts each require time

equivalent to two message-passing steps, rather than one.

In the case of a unidirectional torus, we assume that both of the virtual channels

between a particular pair of neighboring nodes are multiplexed onto a single physical

link, while for a bidirectional torus, we consider virtual channels in the same direction

to share a single physical link. For example, in Figure 4.3, nodes 0 and 1 are connected

by two unidirectional physical links; one link supports virtual channel tho, while

virtual channels cdpl and can are multiplexed onto the other physical link.

Given the above assumptions, Figure 4.12 plots the average, among destinations,

of the number of message—passing steps required to reach the destination nodes in

a U-torus multicast operation, while Figure 4.13 shows the maximum number of

steps among destinations. Each point in these plots was produced by averaging over

a large number of uniformly distributed destination sets. Both unidirectional and

bidirectional networks are considered, as well as both 1024-node 2D (32 X 32) and
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512-node 3D (8 x 8 x 8) topologies. Multicast set sizes from 8 through 64 nodes

were examined. For both the average and the maximum case, the plotted lower

bound is calculated as the number of steps required when physical link sharing is not

considered.
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Figure 4.12. Average communication steps (512 and 1024-node tori)

We also examined the effects of physical link sharing on larger torus networks.

Figures 4.14 and 4.15 plot the average and maximum number of steps, among desti-

nations, for 4096-node 2D (64 x 64) and 3D (16 x 16 x 16) torus networks, with both

unidirectional and bidirectional links. For these larger configurations, multicast set

sizes from 64 through 512 nodes were considered.

As illustrated in Figures 4.12 and 4.14, the effect of virtual channel multiplexing

on the average number of steps is small. In all cases, the number of steps is close

to the theoretical lower bound for systems in which virtual channels do not share

physical link bandwidth. In Figures 4.13 and 4.15, we see that the effect on the
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Figure 4.13. Maximum communication steps (512 and 1024-node tori)

maximum number of steps is greater than for the average case, but even this effect

is limited. It is noted that, for a given cost, systems using fewer physical links will

have individual links with greater capacity than systems in which each virtual channel

is supported by a separate physical link. Thus, the modest effects of physical link

sharing are likely to be more than offset by the greater capacity of each link resulting

from virtual channel multiplexing.

To put the effects of physical link sharing into perspective, Figure 4.16 compares

the worst-case observed performance of U-torus with the number of steps required

when the source node performs the multicast operation. The worst observed case

occurred with a 2D, 4096-node, unidirectional torus, as shown in Figure 4.15. As

Figure 4.16 demonstrates, the difference between the performance of the U-torus

algorithm, with and without the practical consideration of link sharing, is extremely

small compared to the performance increase over a multicast operation performed

using separate addressing, in which the source directly sends the message to every

destination.
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Figure 4.14. Average communication steps (4096-node tori)

In the case of a bidirectional torus, one might also consider designing a network in

which all three virtual channels between a pair of neighboring nodes are multiplexed

onto a single, bidirectional physical link. For example, in Figure 4.3, virtual channels

Caho, cop], and cm might all be multiplexed onto a single physical link. This 3-way

multiplexing would have two additional consequences beyond the 2-way multiplexing

that we have already considered. First, two messages that travel between the same

pair of nodes, but in opposite directions, would now share the bandwidth of a single

physical link. Second, it would now be possible for three messages to simultaneously

share a physical link. We examined the additional effects of the first item (2—way mul-

tiplexing between opposite-direction messages) on the U-torus algorithm and found

an increase in the average and maximum number of steps of not more than 3 and 7

percent, respectively, over the values presented in the previous plots; in many cases,

the effect was much smaller.

In order to better understand the effect of three unicast messages simultaneously

sharing a physical link, we studied the frequency of such occurrences. Figure 4.17
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Figure 4.15. Maximum communication steps (4096—node tori)

compares, for 4096-node 2D and 3D bidirectional torus networks, the number of

unicasts produced by the U-torus algorithm that are involved in the following two

types of physical link sharing. Recall that the total number of unicasts in a multicast

operation equals the number of destinations.

Type 1. Unicasts that share a physical link with another unicast in the same step,

given the assumption that only virtual channels traveling in the same direction

are multiplexed together.

Type 2. Unicasts that share a physical link with two other unicast in the same step,

given the assumption that all virtual channels between a pair of adjacent nodes

are multiplexed onto a single physical link.

We chose the above comparison because we know the effects of the first type of

link sharing. As shown in Figure 4.17, the frequency of 3-way link sharing is very

small compared to 2-way sharing. Since we have demonstrated that the effect of

2-way link sharing is not large, we conclude that the effect of 3-way link sharing is

likely to be inconsequential.
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Figure 4.16. Effects of physical link sharing

Thus, the U-torus algorithm performs well in a variety of environments: those

with either unidirectional or bidirectional communication links; and those with vir-

tual channels implemented with either independent physical links, or by multiplexing

either two or three (in the case of bidirectional tori) virtual channels onto a single

physical link.

4.6 Conclusions

This chapter has presented an efficient algorithm for multicast communication on

wormhole-routed torus networks. The U-torus algorithm applies to unidirectional

and bidirectional tori of any dimension. The algorithm produces multicast trees

in which the constituent unicast messages do not contend for the same channels,

regardless of message length or startup latency. Moreover, the number of message-

passing steps required to multicast data to m — 1 destinations is [log2 m], which is

optimal for one-port architectures. The results of a simulation study showed that the
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practical consideration of physical link sharing by constituent messages transmitted

on different virtual channels has little effect on performance.
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CHAPTER 5

Path-Based Routing in

Unidirectional Torus Networks

We now turn to research in the area of path-based message routing. In this chapter,

we develop a general path-based message routing mechanism for wormhole—routed uni-

directional torus networks with intermediate reception (IR) capability. As described

in Section 2.5, a router with IR capability is able not only to route incoming messages

onto outgoing channels without processor intervention, but can also simultaneously

deliver a copy of a passing message to the local processor/memory. The path—based

routing mechanism presented in this chapter will be used in Chapter 6 as a basis for

a family of path-based multicast algorithms for unidirectional torus networks with IR

capability.

The organization of this chapter is as follows: The major issues associated with

path-based routing in unidirectional torus networks are discussed in Section 5.1. In

Section 5.2, Hamiltonian Circuits in torus networks are presented as a means by

which deadlock-free path-based routing can be achieved. The path routing function

for multi-destination messages is described in Section 5.3, and in Section 5.4, a mes-

sage preparation algorithm is described. This algorithm is used to order a list of

destination nodes in such a way that when the path routing function is used to route
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from the source node through each destination node in the prescribed order, the re-

sulting multi-destination message is deadlock-free in combination with any collection

of such messages in the network. The correctness of the proposed message routing

technique is verified in Section 5.5. The implementation issues associated with this

path-based routing method are addressed in Section 5.6. Finally, conclusions are

given in Section 5.7.

5.1 Issues

Multi-destination messages are subject to the same deadlock considerations as we

have described for unicast messages. Since the progress of an entire multi-destination

worm depends on the concurrent availability of all channels used by that worm, the

routing rules must be applied to the worm as a whole, and not just individually to

the segments of the worm that exist between destination nodes.

In an attempt to provide deadlock-free path-based routing, multi-destination

worms may be subjected to the same routing rules that are known to be deadlock-free

for unicast routing. However, in a communication operation involving an arbitrary

destination set, such as multicast, multi-destination worms that are forced to adhere

to existing deadlock-free unicast routing rules are often ineffective.

Figure 5.1 illustrates a multicast problem in a 2D (6 x 6) torus, where the source

node (3, 2) is to deliver a message to 9 destination nodes. In this example, any single

message following XY routing rules can reach at most two destination nodes. For

instance, XY routing dictates that the path from source node (3,2) to destination

node (4, 3) is ((3, 2), (4, 2), (4, 3)). Upon reaching node (4, 3), this path has not passed

through any additional destination nodes and has already traveled in the Y direction,

so node (4,5) is the only additional destination node that can be reached. In this

case, the routing rules prevent a message enroute to any destination node from passing
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through a large number of the other destinations. The routing rules used for path-

based routing must therefore be liberal enough to allow flexibility in message routing,

so that many intermediate destination nodes can be visited by a single message.

However, these routing rules must still avoid deadlock.

 

 

   

 

 
  

 

   
 

 

   
 

 

       

 

  

 

             
 

 
——> communication link

Figure 5.1. A multicast operation in a 2D torus

The way in which a multi-destination message is prepared for transmission can

affect the channel dependencies created by the message, and hence, the deadlock

properties of the system. For example, the order in which the destinations of a

multi-destination worm are visited affects the channel dependencies produced by the

message.

In general, the more flexible routing rules needed for path-based routing introduce

additional channel dependencies over those that exist for unicast routing. In order to
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prevent deadlock in systems with deterministic routing rules, the channel dependency

graph must be acyclic [57]. In order to avoid deadlock, the routing rules need only

account for those messages that can actually be produced by the supported commu-

nication operations. For example, if a multi-destination message visiting destination

nodes u, v, and w, in that order, will never be produced, then such a message need

not be considered when analyzing the deadlock properties of a system. Therefore, it is

the combination of the message preparation algorithm and the path routing function

that must be considered when designing a deadlock—free system.

Throughout this chapter and the next, we assume that the system model is a

regular unidirectional torus of width k and dimension n. The reader is referred to

Section 4.1 for a definition of this system model. In addition, node routers are assumed

to have IR capabilities, as described in Section 2.5.

In systems with one-port architectures, the single path from a router to the local

node may itself induce communication deadlock when two or more multi-destination

messages are issued concurrently. Figure 5.2 illustrates a scenario in which two multi-

destination worms are each attempting to deliver a message to nodes u and v. How-

ever, each message is holding the single input port at one node, while waiting to

use the input port at the other node, resulting in communication deadlock. So that

such port-induced deadlock does not occur, we assume a system with an all-port

architecture.

For any node u, and any dimension (1, let u“ be the node adjacent to u in dimension

d. Formally,

u“ = on_1(u)o,,_2(u) od+1(u)[od(u) + 1 mod k]od_1(u) oo(u). (5.1)
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Figure 5.2. Port-induced communication deadlock in a one-port system

5.2 Hamiltonian Circuits

One way in which deadlock can be avoided in path-based routing is by ensuring

that there are no cycles of channel dependency allowed by the routing algorithm.

Ensuring an absence of channel dependence cycles, and thus freedom from deadlock,

can sometimes be accomplished by means of a Hamiltonian Path (HP). An HP in

a network is a path that traverses communication links, visiting each node exactly

once, while a Hamiltonian Circuit (HC) is an HP whose last node is adjacent to the

first node (thus completing the circuit).

An example of an HP in a 2D mesh is shown in Figure 5.3. The numbers near the

upper-left corner of each node define a total ordering of the nodes. This ordering

corresponds to an HP through the network. In general, a network may contain

many HPs. If the routing algorithm can be designed so that messages always visit

nodes (including the destination nodes and the intermediate nodes at which only the

router is used) in the same order as those nodes appear on a particular HP, then a

total ordering will be induced on the use of the communication channels (resources),

thereby ensuring deadlock-free communication.
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Figure 5.3 shows two message worms generated by a path-based multicast algo-

rithm designed for mesh networks [30]. These message worms each travel in an order

corresponding to the HP and together deliver the message, via IR, to the destination

nodes. Since the communication channels that connect nodes in a forward direction

with respect to the HP are disjoint from those that connect nodes in a reverse di-

rection, the use of both message worms that travel forward, and those that travel

backward, on the HP does not produce communication deadlocks.
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Figure 5.3. Path-based multicast routing in a mesh using Hamiltonian Paths

The path-based routing method for meshes, described above, is based on the

existence of an HP with the following characteristic: it is possible to route a message

from an arbitrary source node to an arbitrary destination such that the nodes visited

on the route (including the source and destination) conform to the ordering of nodes
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defined by the HP. In a torus network with unidirectional communication links, an

HP with the above characteristic clearly does not exist. Therefore, in order to provide

deadlock-free path-based routing in this topology, we cannot rely on an HP alone.

Figure 5.4 shows an HC in a 2D (6 x 6) unidirectional torus. The numbers near

the upper-left corner of each node correspond to one particular HC; this HC begins

at node (0, 0), continues through the network, visiting every node. Although there is

generally more than one HC in a unidirectional torus, we use only a particular HC

such the one illustrated in Figure 5.4. We refer to this special HC in a particular torus,

T, as HT, or simply 'H when it is clear which torus network is indicated. Informally,

H begins at node 0 (node 0 is the node whose address value is 0 in every dimension);

at each node u on ’H, the next node is the neighbor, u“, of u that minimizes d under

the constraint that u“ does not already precede u on ’H. Also shown in Figure 5.4 are

boundaries, which are communication links that travel backwards in ’H. Boundaries

will be used when defining a path-based routing function for torus networks.

 
— ] boundary —> communication link

Figure 5.4. Hamiltonian circuit 'H in a 2D torus
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Figure 5.5 shows the node orderings defined by ’H in a 3D (4 x 4 x 4) torus where,

for clarity, the communication channels in dimension 2 (inter-plane) are not shown. In

addition to the boundaries shown explicitly in Figure 5.5, every channel from plane 3

to plane 0 is also a boundary.
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Figure 5.5. Hamiltonian circuit ’H in a 3D torus

We define notation (1(a) to be the ordinal position, or label, of a node u in

torus T as determined by 7717. Again, when it is clear which torus network is under



96

consideration, we use notation [(11). For example, in Figure 5.4, [(0, 0) = 0, [(0, 1) =

1, ((1,0) = 7, and so forth. We define ’H formally by defining the ordinal position,

((u), of an arbitrary node, 11. For a 1D torus, which is simply a ring, trivially,

((u) = oo(u). For a 2D torus, as shown in Figure 5.4, we have

((u) = [(oo(u) + 01(u)) mod k] + k [01(u)] for n = 2

For the general case of a k-ary n-dimensional torus, ’H is defined by Equation 5.2:

[(u) = ":1 [ki ((35 Uj(U)) mod k)] for n 2 1 (5.2)

i=0 j=i

In Definition 5.1, node labels are used to formally define a boundary in a unidi-

rectional torus.

Definition 5.1 Ifu and v are two neighboring nodes {that is, if 11‘ = v for some

0 S i S n — 1), then channel (u,v) is a boundary if and only if€(u) > €(v).

5.3 The Path Routing Function

In order to develop the path routing function, we first describe a path-based routing

method for a restricted class of multi-destination messages in which the source node

precedes, on 71, every destination node. We then extend this method to include

arbitrary multi-destination messages.

5.3.1 Restrictive Routing

We consider a multi-destination message in which the destination nodes have been

arranged in ascending order according to their position on ’H. Such a message is
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defined by the node sequence Q = {uo, 7.11, 112, . . . , um_1}, where no is the source node,

{u1, ug, . . . , um_1} are the destination nodes, and [(u,-) < ((uj) for 0 S i < j S m—l.

We can describe a multi-destination message path that begins at the source node

no and visits each destination node in order. At each step, the path routing function

is applied to the current node and the next destination node, in order to determine

the node adjacent to the current node to which the message is next routed. In order

to provide minimal paths between destination nodes, we must restrict travel to those

dimensions in which the addresses of the current node and the next destination node

differ; these are called useful dimensions.

Given the above, we can define the path routing function (for this restrictive case)

as follows: messages are always routed in the lowest useful dimension that does not

cross a boundary. More formally, at the current node, 11, the message is routed to the

neighboring node, 11“, such that

1. The addresses of node 11 and the next destination node differ in dimension d;

2. Channel (u,u“) is not a boundary; and

3. The value of d is minimal, given the above two restrictions.

For example, Figure 5.6 illustrates the application of this routing algorithm to

the (restrictive) multi-destination message Q = {(3,2)23, (4,3)”, (4,5)”, (5,1)”,

(5, 4)33}, where the first element, (3, 2), is the source node, and the destination nodes

are ordered according to their labels (which have been placed as superscripts in the

above list).

Since the multi-destination message path described above visits all nodes in an

order that is consistent with the total ordering established by ’H (and does not utilize

the cyclic property of ’H), then all cycles of channel dependency are prevented, thereby

ensuring deadlock-free routing.
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Figure 5.6. A (restrictive) multi-destination message in a 2D torus

5.3.2 General Routing

The restrictive path-based routing described above does not apply to messages in

which one or more destination nodes precede the source node on ’H. In order to

provide a general path-based routing method that is deadlock-free, we extend the

above restrictive routing mechanism through the use of virtual communication chan-

nels. It is known that deadlock-free deterministic routing cannot be achieved in a

wormhole-routed torus network without the use of multiple virtual channel sets, even

in the simplified case of unicast routing [57]. Thus, at least two virtual channel sets

are required in order to provide deadlock-free deterministic path-based (or unicast)

routing. We will, in fact, describe a path-based routing that requires only this lower

bound of two virtual channel sets.
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For unidirectional torus path-based routing (UTPR), there are two virtual channels

sets, called p-channels and h-channels. Briefly, the p-channels (‘ p’ for pre-boundary)

are used by messages only prior to crossing a boundary; after crossing a boundary,

messages use the h-channels (‘h’ for high-channel) for all remaining travel. Those mes-

sages that will not cross a boundary use p—channels exclusively. Each non-boundary

physical communication link in the network has multiplexed onto it a p—channel and an

h—channel. Only h-channels are required at boundary links. Formally, under UTPR,

for each dimension d, 0 S d S k — 1, and for each node u,

1. There is a p-channel, cop“, from u to it“ whenever (u, u“) is not a boundary, and

2. There is an h—channel, thu, from u to u“.

The rule for routing from node 11 to node v has been described above for the case

where [(u) < [(v). We must now consider the case where [(u) > €(v). To route from

a node u to a node v, where either [(u) < [(v) or [(u) > ((v), we use the following

generalized routing rule: travel occurs in the lowest useful dimension that does not

cross a boundary. If every useful dimension crosses a boundary, then travel occurs in

the highest useful dimension.

By using p—channels prior to crossing a boundary, and h-channels thereafter, cycles

of dependency among virtual channels, and thus deadlock, are impossible. We show in

Section 5.5 that an arbitrary multi-destination message can be routed so that at most

one boundary is crossed. Limiting a message to a single boundary is important, since

with only two virtual channel sets, allowing messages to cycle through the network

multiple times could cause deadlock, even if these messages are restricted to the cyclic

order given by 'H.

The path routing function for UTPR is described formally by the function RUTH; :

N x {‘p’,‘h’} x N —> C, which maps a (current node, incoming virtual channel set,

destination node) triple into the next channel of the routing path. Let A(u, v) be the
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set of useful dimensions for routing from u to v. That is,

A(u,v) = {i I 0 S i S n — 1 and (7,-(u) 74 o,-(v)}

Let A;(u, v) to be the useful dimensions that are not boundaries at 11. Thus,

Af(u,v) = {i E A(u,v) | (u,v') is not a boundary}

We define RUTPR, based on A and A}, as follows.

RUTPRWflW) = Cufida Where

min(A;(u,v)), if Af(u,v) # 0

max(A(u, v)), otherwise (5.3)

S ‘p’, if a = ‘p’ and (u,vd) is not a boundary

— ‘h’, otherwise.

A multi-destination message is routed from a source node to a destination node

(or between successive destination nodes) by applying the RUTH; function, first at

the source, and then at each router through which the message travels, until the

destination is reached. When a message enters the network, it is initially routed over

a p-channel. As specified by Equation 5.3, the message continues to be routed over

p-channels unless a boundary is crossed. After crossing a boundary, a message is

routed on h-channels.

5.4 Message Preparation

The path routing function, realized in hardware within the node router, determines

the route taken by a message between subsequent destination nodes (and between
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the source node and the first destination node). The message preparation algorithm,

implemented in software within the source node processor, arranges the list of des-

tination nodes in the message header, thereby determining the order in which the

destination nodes are reached. The path routing function and message preparation

algorithm must therefore be carefully designed in tandem, so that cycles of channel

dependency, and thus deadlock, are avoided.

The path routing function RUTPR defined in Equation 5.3 describes how messages

can be routed between pairs of nodes; that is, between the source node and the

first destination node, and between pairs of successive destination nodes of a multi-

destination message. One way to maintain the deadlock-free properties of RUTH;

is to force the multi-destination message to visit the destination nodes in an order

corresponding to H. In addition, given the constraints of only two virtual channel

sets, the message must be limited to one full cycle of H.

In order to meet the above requirements, we introduce the notion of an H~cycle.

We then show how path-based routing can be applied to an arbitrary source and

list of destination nodes that have been arranged into an H—cycle. We first define

an H-chain, which is simply a sequence of nodes whose order is consistent with the

linear (as opposed to cyclic) ordering established by H.

Definition 5.2 A sequence of nodes {uo, u1,u2, . . . , um_1} is an H-chain if and only

if all elements are distinct, and [(u;) < €(u;+1) for 0 S i < m — 1.

An H-chain does not utilize the cyclic properties of H —— the labels of the elements

of an H-chain are strictly increasing. An H-cycle, on the other hand, is a sequence of

nodes whose ordering is consistent with the cyclic ordering associated with H, and is

defined as an end-around rotation of an H-chain.

Definition 5.3 IfQ = {uo,u1,u2, . . . , um_1} is an H-chain and u, is an element of

Q, then {u,,u,+1, . . ., um_.1,uo,u1, . . . , u,_1} is an H-cycle with respect to us.
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For any H-chain Q = {uo, ul, ug, . . . , um_1}, Q is an H-cycle with respect to

no; that is, any H-chain is also an H-cycle with respect to the first element. As an

example of the construction of an H-cycle, we consider the multicast problem in a

2D (6 x 6) torus depicted in Figure 5.1, where the source node (3,2) is to deliver a

message to 9 destination nodes using a single multi-destination message. The problem

is thus defined by the sequence

‘1’ = {(3,2)23,(0,5)5,(4,5)27,(3,4)19,(5,4)33,(4,3)25,(1,2)9,(2, 1)15,(5,1)3°,(110)7}

where the first element of Q is the source node, and the destination nodes are listed in

arbitrary order. For convenience, the source node is underlined, and the label, [(u),

of each node, u, is added as a superscript to the node address. (For reference, the

node labels of a 2D (6 x 6) torus are illustrated in Figure 5.4.)

First, Q is sorted according to labels of the node addresses to obtain the H—chain

¢I : {(015)5’ (11 0)71(1’ 2)91(211)15’(314)193(312)233(413)251(41 5)27’(5’1)301(514)33} 

Next, the H-chain Q’ is rotated so that the source node, (3,2), appears at the head

of the list, resulting in the following H-cycle

<1":{(3,2)23,(4,3)25,(4,5)27,(5,1)3°,(5,4)33,(0,5)5,(1,0)7,(1,2)9,(2,1)15,(3,4)19}

Finally, a single message can be routed, starting at the source node (3, 2), and then

to each destination node in Q”, in turn, according to the path routing function RUTPR

(Equation 5.3). Figure 5.7 illustrates the path of this multi-destination message as it

is routed to the successive elements of the H-cycle Q”.

Figure 5.8 gives the message preparation algorithm, which is executed by the

source node processor in order to build the multi-destination message header.
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—’ communication link

—>message path

—[ boundary

El El :1
source node destination node other node

Figure 5.7. A multi-destination message in a 2D torus

5.5 Correctness

In order to implement the above path-based message routing, the source node applies

the message preparation algorithm to the source and destination node addresses. The

resultant H-cycle is then used as the destination address list of a multi-destination

message that will be routed, in turn, to each destination node, according to the path

routing function RUTPR. Theorem 5.1 shows that this method provides an efficient,

deadlock-free, path-based routing mechanism for unidirectional torus networks of ar-

bitrary dimension.

Theorem 5.1 IfQ = {uo,u1,u2, ,um_1} is an H-cycle, then a multi-destination

message, routed according to path routing function RUTPR, beginning at source node
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The Message Preparation Algorithm

Input: A sequence of nodes Q = {uo, ul, no, , um_1},

where no is the source node.

Output: Message header M.

Procedure:

1. Sort Q according to an ascending ordering of the

node labels [(ug) of each node u,-

2. Rotate Q so that no is again the first element of Q

3. M = Q '— {110}

Figure 5.8. The message preparation algorithm for path-based routing   
 

no and routed through destination nodes u1,u2, ,um_1, in that order, has the

following properties.

1. All paths between successive destination nodes are minimal.

2. The network is deadlock-free under any and all combinations of such multi-

destination messages.

3. The message uses all distinct physical channels.

In order to prove Theorem 5.1, we first present a series of lemmas. As a notational

convenience throughout the following lemmas, we define Z,- to be the coefficient of the

i” term of Equation 5.2; that is, for any node n and for 0 S i S n — 1,

[,(u) = (7: (71-01)) mod k (5.4)

Thus, we can write Equation 5.2 as

(04) = "i [k‘€1(u)] (5.5)
i=0
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Lemma 5.1 Let u be any node in a unidirectional torus, and let d be any dimension,

0 S d S n — 1. Then [(11) > ((u“) if and only if€d(u) > €d(u“).

Proof: We consider the maximum amount that the value of ((u) is effected by the

first d — 1 terms of Equation 5.2. Because of the modulo-k arithmetic, the value of

€,-(u) can change by at most k — 1 as the value of u changes; thus, the corresponding

aggregate change to the value of ((21) due to terms 0 through d — 1 of Equation 5.2 is

bounded above by

Emit—1)]: kd — 1.

Since k“ is the minimum amount by which a change in the d“ term of Equation 5.2

can effect the value of ((u), and since terms d + 1 through 72 — 1 are not effected by

the value of od(u), then the lemma is valid. Cl

Lemma 5.2 Let u and v be any two distinct nodes in a unidirectional torus and let

d be the greatest integer such that od(u) 75 od(v). If channel (u,u“) is a boundary,

then [(u) > [(v).

Proof: By Definition 5.1, ((11) > ((u“). It then follows from Lemma 5.1 that

€d(u) > €d(u“), and from the rules of modulo arithmetic, 2,1(11) = k — 1.

From the premise of the lemma, od(u) 76 od(v) and oj(u) = oj(v) for j > d, hence,

€d(v) 75 k — 1 Therefore, due to the modulo-k arithmetic, €d(v) < k -— 1. Finally, again

by Lemma 5.1, [(u) > €(v). El

Lemma 5.3 Let u and v be any two distinct nodes in a unidirectional torus. If

on_1(u) :,£ on_1(v) then on_1(u) > 0,,__1(v) if and only if ((u) > ((v).

Proof: From Equation 5.4, (n-1(u) = on__1(u), so it suffices to show that

[n-1(u) > [n-1(v) if and only if ((u) > ((v). By the same reasons given in the
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proof of Lemma 5.1, the value of 2?;02[kf€,-(u)] is bounded by

71-2 .

0 g 2 [k*e,-(u)] g k"‘1 — 1

i=0

Therefore, in-1(u) > (n-1(v) only if ((u) > [(v), and similarly, [n-1(u) < (n-1(v)

only if [(u) < €(v). Since (”-1 74 [n-1(v) because on_1(u) ¢ on_1(v), then the lemma

is proved. El

Lemma 5.4 Let u and v be any two distinct nodes in a unidirectional torus. If€(u) <

((v) then there exists a dimension d such that od(u) 75 od(v) and [(u) < [(u“) S [(v).

If [(u) > [(v) then there exists a dimension (I such that od(u) 75 od(v) and either

[(u) < ((ud) or ((ud) S €(v).

Proof: Part I. [(u) < ((v): The proof is by induction on n, the dimensionality of

the torus. If n = 1, the torus is a ring, therefore €(u) = oo(u) = u; likewise, [(v) = v.

The assertion is then trivially true. We now assume that the lemma is true for n — 1

(although this assumption will only be needed in Case 1, below).

Case 1. 0,,_1(u) = 0,,_1(v): In this case, all routing occurs in sub-tori of dimension

n—l. If 0,,_1(u) = 0, then the Hamiltonian Circuit H within this sub-tori is equivalent

to H7 within a torus, T, of dimension n — 1. Otherwise, by the symmetry of the torus

network, the sub-tori is isomorphic to T. Thus, by induction, there is a dimension d

such that od(u) = od(v) and ((u) < [(ud) S [(v).

Case 2. 0,,_1(u) 75 on_1(v): By Lemma 5.2, channel (u,u"’1) is not a boundary,

and by Lemma 5.3, 0,,_1(u) < on-1(v).

Case 2a. on_1(v)-o,,_1(u) > 1: Then on_1(u"‘1) < 0,,_1(v), and from Lemma 5.3,

[(un‘l) < [(v). Since channel (u,u"'1) is not a boundary, [(u) < [(un’l).

Case 2b. on_1 (v) —o,,_1(u) = 1: This case is divided into two sub-cases, as follows.
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Case 2b.i. There exists a dimension d < n— 1 such that od(u) 75 od(v) and channel

(u,vd) is not a boundary: Then 0,,_1(ud) = on_1(u) < 0,,_1(v), so from Lemma 5.3,

((u“) < [(v). Since channel (u,u“) is not a boundary, [(u) < [(u“).

Case 2b.ii. There is no dimension d < n — 1 such that od(u) 75 od(v) and channel

(u,u“) is not a boundary: In this case we have that for all d < n — 1 such that

od(u) 74 od(v), channel (u,u“) is a boundary, and hence, [(u) > [(u“); therefore, we

must show that ((un'l) S [(v).

Let d be any dimension such that d < n — 1 and od(u) 7E od(v). Since channel

(u,vd) is a boundary, then by Lemma 5.1, €d(u) = k — 1. Because channel (u,u”‘1)

is not a boundary, then from Lemma 5.3, on_1(u"‘1) > on_1(u), so on_1(u"'l) =

on_1(u) + 1. It then follows, from Equation 5.5, that €d(u“’1) = 0.

Since od(u) = od(u"‘1) for all d < n— 1, we have that €d(u"’1) = 0 for all d < n—l

such that od(u"‘1) 79 od(v). Therefore, from Equation 5.5, ((un‘l) S [(v).

Part II. ((11) > [(v): If there is a dimension (1 such that od(u) 75 od(v) and channel

(u,vd) is not a boundary, then trivially, [(u) < ((u“). Otherwise, we know that for

all d such that ad(u) 75 od(v), channel (u,u“) is a boundary, and we must show that

for at least one such dimension, [(u“) S ((v).

For reasons similar to those given in Part I of this proof (Case 2b.ii), if we choose

d as the greatest integer such that od(u) 314 od(v), then [6(u“) = 0 for all e < d such

that a,(ud) ,1 0,,(0), and thus, ((ud) g [(0). 1:1

Lemma 5.5 Let u and v be any two distinct nodes in a unidirectional torus and let

w be the first node (after node u) on the path from u to v, as determined by the path

routing function RUTPR. If ((u) < €(v) then [(u) < [(7.0) S €(v). If€(u) > ((v) then

either [(11) < ((w) or €(w) S ((v).



108

Proof: Let cog, = RUTpR(u,a,v) be the first channel on the path from u to v.

Then w = if. Although the value of the virtual channel set, a, is not specified

above, the dimension, e, produced by the RUTPR function does not depend on 0

(Equation 5.3).

Part I. [(u) < ((v): By Lemma 5.4, there exists a useful dimension, d, such that

(u,u“) is not a boundary and [(u“) S [(v). From Definition 5.1 and Lemma 5.1

follows that if i and j are two dimensions such that i < j and neither channel (u, u')

nor channel (u,vj) is a boundary, then ((uf) < ((u’). Since ’RUTPR always selects

the minimum dimension among useful non-boundary dimensions, then €(u) < [(w) S

[(v).

Part II. [(u) > €(v): If channel (u, w) is a boundary then all channels in useful

dimensions are boundaries, since RUTPR always selects a non-boundary channel if one

exists in a useful dimension. Thus, by Lemma 5.4, there exists a useful dimension, d,

such that [(u“) S €(v). Since [(v) < €(u), then (u,u“) is a boundary.

From Definition 5.1 and Lemma 5.1 follows that if i and j are two dimensions

such that i > j and both channel (u,vf) and channel (u,vj) are boundaries, then

((uf) < ((uj). Since RUTPR always selects the maximum dimension among useful

boundary dimensions, then ((w) S [(v).

If, on the other hand, channel (u,w) is not a boundary, then by Definition 5.1,

((w) > [(11). [:1

Lemma 5.6 Let u and v be any two distinct nodes in a unidirectional torus. If

((u) < [(v) then the path from u to v, as determined by the path routing function

RUTPR, does not contain a boundary. If [(u) > €(v) then the path contains exactly

one boundary.
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Proof: Let wo,w1, 1.02, . . . ,wq be the sequence of nodes on the path from u to v,

where wo = u and w, = v.

Part I. [(u) < €(v): By Lemma 5.5, ((wo) < €(w1) S €(wq), and by extension,

[(wo) < [(wl) < 3(w2) < < ((wq). Hence, the path contains no boundaries.

Part 11. ((u) > ((v): Since ((wo) > [(wq), then there exists an integer i

(0 S i S q— 1) such that €(w,-) > €(w,+1). Choosing the value of i as the least such in-

teger gives [(wo) < ((wl) < < €(w,) > €(w,+1). By Lemma 5.5, €(w,+1) S ((wq),

and by extension, €(w,+1) < I?(w,-+2) < - - - < ((wq). Hence, the path contains exactly

one boundary, channel (w,, w,+1). Cl

Proof of Theorem 5.1 With the use of the above lemmas, the three assertions

stated in the theorem are now proved, in turn.

Assertion 1 (minimal paths): Since the path routing function RUTPR selects only

useful dimensions, then all paths are minimal.

Assertion 2 (deadlock-free): In order to show that the network is deadlock-free,

we first define a total ordering on the virtual channels of the network, and then show

that all messages reserve virtual channels in an order that is consistent with this total

ordering.

For any channel cuad, define A(cuad) as follows.

0.€(u).d if a = ‘p’

/\(cuad) =

1.!(u).d if a = ‘h’

A lexicographical ordering of the three-part labels, /\(c), of each channel, c, defines

a total ordering of the virtual channels. All p-channels precede all h-channels in this

ordering; among the same virtual channels set, the ordering is determined by the
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label, [(11), of the source node, 11. Finally, channels of the same virtual channel set

and source node are ordered by the dimension, d, in which they travel.

We consider two cases with respect to the H-cycle, Q.

Case 1. Q is an H-chain: By Definition 5.1, [(u;) < ((11.41) for 0 S i < m — 1, and

by Lemma 5.6, the path from node no to node um-1 does not contain a boundary;

thus, from Equation 5.3, the path contains only p-channels. Virtual channels are

therefore used by the path from node no to node um_1 in an order that is consistent

with the total ordering described above.

Case 2. Q is not an H—chain: Since Q is an H-cycle, and is not an H-chain, then

there exists an integer, q, 1 S q S m — 1, such that [(uo) > [(um_1) and

((110) < ((211) < < ((119-1) > €(uq) < t(uq+1) < < ((um-1)

By applying Lemma 5.6 to each pair of consecutive nodes in Q, the path from node

no to node um_1 contains exactly one boundary. Thus, by Equation 5.3, the path uses

p-channels prior to the boundary and h-channels thereafter, and from Definition 5.1,

both the sequence of p-channels and the sequence of h-channels on the path visit nodes

in an ascending order of node labels, [(u). Thus, the order of all virtual channels on

the path from node no to node um_1 is consistent with the total ordering described

above.

Since all messages reserve virtual channels in an order that is consistent with

the total ordering of virtual channels defined above by /\, then cycles of channel

dependency, and thus deadlock, cannot occur.

Assertion 3 (distinct physical channels): From the above proof of Assertion 2, it

is clear that the path from node no to node um._1 does not visit any node more than

once, therefore, it cannot contain a multiple occurrence of a physical channel. Cl



111

Because unicast communication is also essential, it should be supported efficiently

and in a way that is compatible with other network communication such as multi-

destination messages. Since a unicast message is a special case of a multi-destination

message in which there is only one destination node, it follows that minimal, deadlock-

free unicast routing is also provided by the above routing mechanism. Furthermore,

all combinations of multi-destination and unicast messages can coexist without pos-

sibility of network deadlock.

5.6 Implementation Issues

Because the path routing function must be implemented in hardware, it must be

simple. Thus, the path routing function must be designed so that the output channel

on which an incoming message is to be forwarded can be quickly determined by exam-

ining only the first flit of the message header (which indicates the next destination),

and perhaps also taking into account the channel on which the message is arriving.

Also, the router must be able to quickly decide if the current node is a destination of

the incoming message, and if so, whether there are additional destinations to which

the message must be forwarded.

5.6.1 Multi-Destination Message Format

With unicast wormhole routing, the header flit of a message contains the address of

the destination node (absolute addressing), or perhaps some indication of the direction

and distance from the current node to the destination node (relative addressing). In

path-based routing for messages with arbitrary destination sets, the message worm

can be prefixed with a list of destination node addresses. The order of these addresses

corresponds to the order in which the destination nodes will be visited. Once the

message header reaches the first destination node in the list, the router at that node
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removes its own address from the head of the list and forwards the remainder of the

message worm towards the next destination node, while simultaneously copying the

message contents to the local host memory. The router at the last destination node

copies the message to the local host memory, but does not forward the message.

In this way, the address of the next destination node, used by the router at each

node to determine the next node in the path of a message, is always at the head of the

message worm. Thus, as the head of the message advances through the network, each

router at which the message arrives need only examine the first flit of the message in

order to identify the outgoing channel over which the message will be routed. In the

case of intermediate destination nodes, the router first identifies that the first flit of

the message is the local address, and after discarding this flit, considers the next flit,

which represents the address of the next destination, to determine message routing.

Upon recognizing that the message is addressed to the local node, the router also

prepares to copy the flits of the message body to the local host.

In order to identify the last destination address in the message header, and con-

sequently, the beginning of the message body, the address of the last destination

node can be duplicated in the message header. The occurrence of two consecutive

and identical destination addresses then signifies the end of the destination address

list. The message format corresponding to the H-cycle Q = {uo,u1,u2, . . . , um_1},

which represents a multi-destination message from source node no to destination nodes

u1,u2, . . . , um_1, is depicted in Figure 5.9.

"2H (J...
head tail

  

“I u,,,.; message body

    

Figure 5.9. Multi-destination message format
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This format represents the original message, as constructed by the host at the

source node, uo. As the message progresses through the network, the header becomes

shorter as the routers at each destination node remove their respective addresses from

the head of the message.

In order to reduce the message header length, destination encoding schemes have

been proposed that avoid the need to list each destination address separately. For

example, Kim and Kim [31] describe the use of address masks, which allow “don’t-

care” bits in the address field in order to match a group of destination addresses with

a single entry in the message header. While such address encoding methods can be

useful in reducing the length of the message header in cases where the destination

nodes form a regular pattern, they add complexity to the routing hardware, and fail

to ofler an advantage with arbitrary destination sets.

5.6.2 The Flit Forwarding Algorithm

Figure 5.10 shows the flit forwarding algorithm implemented in a router in order to

support the proposed path-based routing. The recv function reads the next incoming

flit, while the send function transmits a flit over the specified outgoing channel. In

cases where channel contention occurs so that a flit cannot be sent over the specified

channel, the send function can be considered to block until the channel is available.

The send-local function copies a flit to the local host memory. The flit forwarding

algorithm, as shown in Figure 5.10, is invoked for each incoming message; thus,

there may be concurrent invocations of the algorithm if there are messages arriving

concurrently on different incoming channels.

The above discussion assumes the use of absolute addressing. In the case of

relative addressing, rather than duplicating the address of the last destination node,

the list of destination addresses can simply be appended with a zero offset (which,

conceptually, is equivalent to duplicating the last address, since an offset of zero from
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The Multi—Destination Flit Forwarding Algorithm

Input: Local node u and incoming virtual channel cwad.

Output: Forward incoming message to outgoing channel

and/or local host, as appropriate.

Procedure:

flitl = recv (cwad) ;

if flitl = u then // u is a destination

isDest = true ;

flit2 = recv (Cwad) ;

if flit2 = flitl then // u is the last destination

isLastDest = true

else

isLastDest = false ;

nextDest = flit2

endif

else // u is not a destination

isDest = false ;

isLastDest = false ;

nextDest = flitl

endif

if not isLastDest then

c = RUTPR (u,a,nextDest) ; // set output channel

send (c, nextDest) // send first flit (address of next dest.)

endif

if isDest then

while flit2 # flitl do // skip to message body

flitl = flit2 ;

flit2 = recv (cwad) ;

send (c, flit2)

endwhile

endif

while not end-of-message do

flitl = recv (cwad) ;

if isDest then

send-local (flitl) ;

if not isLastDest then

send (c, flitl) ;

endwhile

Figure 5.10. The flit forwarding algorithm for path-based routing

 
 



115

the last destination is, indeed, the last destination). In conjunction with this change,

very minor adjustments to the flit forwarding algorithm are also required in order to

support relative addressing.

5.6.3 Boundary Identification

In order for the router at a node, 11, to implement the path routing function RUTH;

given in Equation 5.3, the outgoing channels at node u that are boundaries must

be identified. Of course, one way for node 11 to accomplish this task is to compute

the address of each neighbor of u using Equation 5.1, and to then compute the

labels of these neighboring nodes using Equation 5.2. The boundary channels can

then be identified by comparing the label of u with those of the neighboring nodes, as

described in Definition 5.1. There is, however, a much simpler method of determining

which of the routing dimensions correspond to boundary channels, as provided for by

Lemma 5.7.

Lemma 5.7 For any node u, and any dimension d (0 S d S n — 1), channel (u,u“)

is a boundary if and only if:

(”if oj(u)) mod k = k — 1

j=d

Proof: The lemma follows directly from Lemma 5.1. II]

The configuration of boundaries in a network is completely static; thus, the bound-

ary dimensions for each node can be identified once during system startup, and need

never be recomputed. Alternatively, the identification of boundaries can be made a

part of the node’s static configuration, much the same as the local address of a node

is part of that node’s static configuration.
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5.6.4 Implementation of the Path Routing Function

The formal definition of the path routing function RUTPR, given by Equation 5.3,

is intended to convey the concept of how the routing path of a message is deter-

mined; it does not, however, represent an efficient implementation of the function.

An algorithmic view of the function RUTPR, more suitable for implementation in a

router, is given in Figure 5.11. The predicate boundary simply indicates whether an

outgoing channel on the specified dimension is a boundary. For messages originating

at the local node, 11 (as opposed to those that arrive on network channels), the input

parameter a is set initially to ‘p’.

 

The Path Routing Einction

Input: Local node u, next destination node v,

and virtual channel set of incoming message a 6 {‘p’,‘h’}.

Output: Outgoing virtual channel set and dimension.

Procedure:

fori=0ton—1do

if o,(u) 75 (7,-(v) then // useful dimension?

if not boundary(i) then

return (a,i) // lowest non-boundary dimension

else

d = i

endif

endif

endfor

return (‘h’, d) // highest boundary dimension

Figure 5.11. Implementation of the path routing function RUTPR    
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In actuality, when the dimensionality, n, of a torus is small, as is the case with

all current and proposed machines, the RUTH; path routing function can be easily

implemented with a simple combinational logic circuit.

5.7 Conclusions

In this chapter, the area of path-based message routing in unidirectional torus net-

works with IR capabilities has been studied. An efficient, deadlock-free path-based

routing method was presented. This method is deadlock-free under all combinations

of network traffic, provides minimal routing paths between subsequent destination

nodes, and requires only the lower bound of two virtual channel sets. In the following

chapter, this routing mechanism is used in the development of path-based multicast

algorithms for torus networks with unidirectional communication links.



CHAPTER 6

Path-Based Multicast in

Unidirectional Torus Networks

In this chapter, the path—based routing mechanism described in Chapter 5 is used

as a basis for a family of efficient, deadlock-free path-based multicast algorithms for

torus networks with unidirectional communication links.

In order to perform a multicast operation using multi-destination messages, one or

more communication steps may be used. Methods that reach all destination nodes in

one communication step are termed single-phase, while those that require more than

one step are called multi-phase. During the first phase of a multi-phase multicast,

the source node sends a single message to a subset of the destination nodes. During

subsequent phases, some (perhaps all) of the nodes that have already received the

message each send a multi-destination message to a distinct subset of the nodes that

have not yet received the message. This process continues until the message has

reached every destination node.

The remainder of this chapter is organized as follows: In Section 6.1 a single-phase

multicast algorithm is presented. This algorithm follows directly from the path-based

routing method presented in Chapter 5. A generalized multi-phase multicast algo-

rithm is described in Section 6.2. This algorithm constitutes a family of path-based

118



119

multicast algorithms. In Section 6.3, a specific instance of this generalized multicast

algorithm is presented. By incorporating the topology of the torus network when

partitioning the multicast destinations into individual multi-destination messages,

the algorithm completes a multicast operation in n phases, where n is the number of

dimensions in the network. Another instance of the generalized multi-phase multicast

algorithm is described in Section 6.4. This algorithm partitions the destination nodes

so that all messages produced by a multicast operation are addressed to a nearly equal

number of destination nodes. Implementation issues specific to multi-phase multicast

algorithms are addressed in Section 6.5. In Section 6.6, the results of a simulation

study are presented. This study compares the performance of the multicast algorithms

developed in this chapter, as well as a unicast-based multicast method based on the

same routing mechanism. Conclusions are presented in Section 6.7.

6.1 The S-Torus Multicast Algorithm

The path-based routing method described in Chapter 5 provides a mechanism

whereby any node can send a single multi-destination message to an arbitrary set

of destination nodes within the network. When a single message is used in this way

to perform a complete multicast operation, we call this process the S-torus multicast

algorithm (‘S’ for single phase).

There are several advantages to implementing multicast communication with a

single multi—destination message. The operation requires only one communication

step. Hence, for long messages, full advantage is taken of the communication pipelin-

ing of wormhole routing. Also, the only processor involved in the operation is that

of the source node. Each destination node receives the message via the node router,

without the need to use the local processor to relay the message to other destination

nodes.
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However, the S-torus algorithm also suffers from some disadvantages. For example,

a single message used to reach all nodes in the network, as in the case of a broadcast

operation, will have a total path length of N— 1. Such extremely large path lengths are

likely to result in poor performance in large networks due not only to the length of the

path traveled by the message flits from the source node to the last destination node,

but also due indirectly to the network congestion caused by the many communication

channels reserved by the message for the duration of the operation. In addition, a

single—phase approach to multicast does not exploit the communication parallelism

that is possible when concurrent messages are used to complete the operation.

6.2 The M-Torus Generalized Multicast Algo-

rithm

Due to the limitations of the single-phase S-torus algorithm, we also consider multi-

phase multicast algorithms. We describe a generalized multi-phase multicast algo-

rithm that combines multi-destination messages in order to form a coverage of the

destination nodes. Since this algorithm uses only messages that have been shown to

result in a deadlock-free network, then the algorithm is also deadlock-free. We assume

that a multicast operation is described by an H-cycle, Q, where the first element of

Q is the destination node. We define a linear partitioning of an H-cycle, which will

be used as a basis for the generalized multi-phase multicast algorithm.

Definition 6.1 A linear partitioning of an H-cycle Q = {uo, ul, U2, ..., um_1} is

a set of non-empty sub-sequences fl = {Qo, Q1, Q2, ..., Q,._1} such that r 2 2 and

Q = Qo || Q1 || Q2 || || Q,._1, where the symbol ‘|| ’ represents concatenation of

lists. Each element, Q,, off) is written as Q,- = {11,-,0, um, ..., u,,(m,_1)}.
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Lemma 6.1 [fit 2 {Qo, Q1, Q2, ..., Q,_1} is a linear partitioning of an H-cycle

Q, then

1. Each sub-sequence Q,- is an H-cycle, 0 S i S r — 1.

2. At least r — 1 of the r sub-sequences are H-chains. The remaining sub-sequence

is either an H-chain or an H-cycle.

Proof: The lemma follows directly from Definitions 5.2, 5.3, and 6.1. D

Given an H-cycle Q that describes a multicast operation, a linear partitioning

of Q can be used to define the first phase of a multi-phase path-based multicast

operation. In this first phase, the source node sends a multi-destination message

according to the path-based routing method described in Chapter 5. The destination

nodes of this message comprise the first elements of each of the partitions of Q (except

that the source node, which is always the first element of the first partition, is, of

course, not included as a destination). After this first phase is complete, the multicast

problem has, in effect, been partitioned into a set of smaller multicast problems, each

corresponding to one of the partitions of Q. The source node of each of these new

multicasts is the first element, and the destination nodes are the remaining elements,

of the respective partition.

The M-torus multicast algorithm is shown in Figure 6.1. This algorithm imple-

ments a multi-phase path-based multicast operation on an input sequence that has

been arranged as an H-cycle. As shown in Theorem 6.1, the resulting multicast

operations are deadlock-free, while the constituent multi-destination messages are

contention-free.

Theorem 6.1 The M—torus algorithm applied to an H-cycle Q = {uo, ul, U2, ,

um..1} results in a contention-free multicast from source node no to destination nodes

u1,u2, ,um_1. Furthermore, the linear partitioning need not be consistent across
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The M-Torus Multicast Algorithm

Input: Message, M, and H-cycle Q = {uo, ul, uz, ..., um_1},

where no is the local address.

Output: Performs a multi-phase, path-based multicast to

destination nodes u], 112, . . . , um_1.

Procedure:

if |Q| > 1 then

1. Let Q = {Qo, Q1, Q2, , Q,..1} be a linear partitioning of Q.

2. Send a multi-destination message to the sequence of

destination nodes {u1,o, um, ..., u(,_1),o}.

3. Each node u,-,o (0 S i S n — 1) invokes the M-torus algorithm,

recursively, with the input H-cycle set to Q,~.

endif

Figure 6.1. The M-torus algorithm for multicast   
 

the distributed invocations of the algorithm, nor over the successive invocations at any

single node.

Proof: From definition 6.1, each partition is written as Q,- = {u,-,o, um, . . . ,

u,-,(m,-1)}. For each partition Q,, range(Q,-) is defined as follows.

{11 [€(u;,o) S ((u) S [(u;,(m-1))} if Q; is an H-chain

range(Q,-) =

{u | t’(u,-,o) S ((u) or ((u) S [(u,,(m-1))} if Q,- is not an H-chain

From Lemma 5.6 follows that the above sets are all disjoint, that is, range(Q,-) (1

range (Q;) = (0 whenever i 75 j.

We now consider the multi-destination messages generated within a partition, say

partition Q;. The first such message is generated by node u,,o. Since the source and

destination node list of each such message is ordered according to a sub-sequence

(partition) of the H-cycle Q,-, then by Lemma 5.6, every node visited by the message
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is an element of range (Q;). We therefore conclude that, once the original multicast

operation has been partitioned into r sub-problems, each corresponding to an H-cycle,

the messages generated by these sub-problems do not visit common nodes. That is

to say, there is no contention between any two sub-problems.

Since the message generated in Step 2 of the algorithm (Figure 6.1) precedes

all other messages of the multicast, then it cannot contend with any other message

produced by the operation.

Recursively, each multicast sub-problem corresponding to one of the partitions, Q;,

is itself contention-free. Therefore, the entire multicast operation is contention-free.

Since no assumptions have been made in this proof regarding the nature of any

of the partitionings performed in Step 1 of the algorithm, except that they are linear

partitionings, then the second assertion of the theorem is also valid. C1

The M-torus algorithm actually represents a family of multi-phase multicast al-

gorithms, whose specific instances are determined by the partitioning method used

in Step 1. For example, if the input H-cycle is partitioned into sub-sequences whose

lengths are all one, then the M—torus algorithm will produce a single-phase multi—

cast equivalent to the S-torus algorithm. On the other hand, if the input H-cycle

is always partitioned into exactly two subsequences, then all messages generated by

the algorithm will have only a single destination, thus resulting in a unicast—based

implementation.

Between these two extremes are a multitude of partitioning schemes, each resulting

in a different version of the M-torus algorithm. We will examine two particular

partitionings; namely (1) dimensional partitioning and (2) uniform partitioning.
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6.3 The Md-Torus Multicast Algorithm

By examining Statement 2 of the M-torus algorithm (Figure 6.1) and the definition

of a linear partitioning (Definition 6.1), it can be seen that the multi-destination

messages generated by the M-torus algorithm must reach destination nodes that may

be widely distributed over the input H-cycle.

Since higher-dimension channels traverse a greater span of H than do channels of

lower dimension (we refer to Equation 5.2 and, for example, Figures 5.4 and 5.5), we

consider partitionings that result in messages that cross higher-dimension channels

between subsequent destination nodes. In this way, the path length of the constituent

messages of the M-torus algorithm can be controlled. A dimensional partitioning is

such a method. A dimensional partitioning of order (1, in effect, partitions the nodes

of an H—cycle into their respective sub-tori of dimension d. For example, in a 3D

torus, as shown in Figure 5.5, each element of a dimensional partitioning of order 2

corresponds to a plane of the network. Each plane of a 3D torus is, itself, a 2D torus.

In a similar manner, a dimensional partitioning of order 1 partitions a network into

1D tori, or rings, corresponding to the columns of nodes in Figures 5.4 and 5.5.

Definition 6.2 A linear partitioning ft of an H-cycle Q is a dimensional partitioning

of order (1 if and only if

1. For each sub-sequence Q, 6 fl, and for any two elements u,v 6 Q0, (7,-(u) =

o,-(v), for d S i S n — 1; and

2. For any two sub-sequences Qme E Q, where 0 at b, and any two elements

11 E Q, and v 6 Q5, there exists some integer i, d S i S n — 1, such that

o,-(u) # o,-(v).

By using dimensional partitionings, we create a specific instance of the M-torus

algorithm, as follows (please refer to Figure 6.1). During the first communication

phase, the partition, It, is a dimensional partitioning of order n — 1. During the

second phase, a dimensional partitioning of order n — 2 is used, and so forth, until the
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nth and last phase, where it is a dimensional partitioning of order 0, which is simply

a partitioning of Q into individual nodes. This combination of the M-torus algorithm

with dimensional partitioning is referred to as the Md-torus multicast algorithm.

As an example, in a 3D torus, during the first phase of the Md-torus algorithm,

the destinations are partitioned into their respective 2D planes. A multi-destination

message is sent by the source node to a single destination in each plane (among

those planes that contain destination nodes). During the second phase, destinations

reached during the first phase, as well as the original source node, each partition their

respective 2D plane into 1D rings and send a multi-destination message that reaches

one destination node in each of these rings. Finally, during the third phase, there is

exactly one destination node in each 1D ring (the columns in Figure 5.5) that has

received the message; each of these destinations sends a multi-destination message to

cover the remaining destinations in the respective 1D ring.

6.4 The Mu-Torus Multicast Algorithm

The Md-torus algorithm partitions the destination nodes based only on the structure

of the underlying torus network, without regard to the actual destinations of a par-

ticular multicast operation (except that partitions corresponding to sub-tori without

destination nodes are not created). In some cases, it is useful to consider the structure

of the set of destination nodes when partitioning the associated H-cycle. For example,

limiting the number of destination nodes reached by any single message reduces the

length of the message header (which contains the list of destination nodes addresses)

and tends to also reduce the message path length.

A method that allows the number of destinations per message to be controlled

is uniform partitioning, in which the H-cycle is divided into a specified number of
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sub-sequences whose sizes are as nearly equal as possible. Uniform partitioning is

defined as follows.

Definition 6.3 A linear partitioning Q of an H-cycle Q is a uniform partitioning of

size r if and only if

1. [9| = r; and

2. For each partition Q, E 11, either [QGI = [m/r] or |Qa| = [m/r], where m = [Q]

is the size of the multicast operation.

When the M-torus algorithm employs uniform partitioning, we term the result the

Mu-torus multicast algorithm. The Mu-torus algorithm is parameterized by the num-

ber of partitions, r, which corresponds to one more than the number of destinations

of each constituent message. During the last phase of the algorithm the multicast

size, m, may be less than r. In this case, the H-cycle is partitioned into m single-node

partitions, resulting in a final message that is sent to m — 1 destinations rather than

r -— 1.

Since the number of destinations of each message produced by the Mu-torus algo-

rithm is r — 1 (except, perhaps, during the last phase), then the aggregate number

of destinations reached will grow by a factor of r during each phase, leading to the

following result: The Mu-torus algorithm, with partitioning parameter r, applied to

a multicast operation of size m, requires (log, m] phases to complete the multicast.

In addition to the two specific methods covered above, many other linear parti-

tionings are possible. As an example, one possible partitioning could combine sub-tori

produced by dimensional partitioning whenever two or more adjacent sub-tori contain

relatively few destination nodes, and could split single sub-tori that contain an over-

abundance of destination nodes. This hybrid of dimensional and uniform partitioning

would balance the purely network view imposed by dimensional partitioning with the

destination—set View of uniform partitioning.
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6.5 Multi-Phase Implementation Issues

In the M-torus multicast algorithm, the original source node sends a multicast message

to a set of intermediate destination nodes, which, in turn, send the message on to

other destination nodes. Depending on the number of phases used to perform the

operation, these new destination nodes may also be required to relay the message,

and so forth.

In some way, each intermediate destination node must be informed of the sequence

of nodes to which it will send the message. The following are three mechanisms

by which the dissemination of the multicast structure can be accomplished: (1) If

a particular source node is to perform repeated multicasts to the same group of

destination nodes, the necessary information can be distributed once at the time

the communication group is formed. During subsequent multicasts to that group,

the group identifier (GID) is attached to the message body so that each destination

node can refer to the local information now associated with the group [6]; (2) The

H-cycle for which an intermediate destination node is subsequently responsible can

be included in the multicast message body; and (3) The required information can be

incorporated into the message header so that the router relays to each intermediate

destination node the appropriate H-cycle.

For succinct discussion, we introduce the following notation. Let Q“ be the H-cycle

that is originally used as input when invoking the M-torus algorithm at node u. The

H-cycle Qu thus contains those destination nodes for which node 11 is responsible;

that is, the destination nodes that receive the multicast message, either directly or

indirectly, through the processor at node it. For example, if u is the original source

node, then Q“ represents the entire multicast operation.

As a practical matter, we note that when distributing the information in Q“ to

node 11, the first element, which is the address of node 11, need not be included. The
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notation Q“ represents the value of Q“, after the address of node u has been removed;

that is, Q" = Q“ — {ii}.

To support the third method, in which the message header contains information

regarding the multicast structure, the header format shown in Figure 6.2 can be used.

 

   

head

 

  

u ,_1 [ message body

tail

Figure 6.2. Compound message format

Figure 6.2 depicts a message that will be transmitted from source node no to des-

tination nodes ul, U2, . . . , um_1, where node uo has partitioned the multicast problem

represented by H-cycle Q into r sub—sequences Qo, Q1, Q2, .. . , Q,_1, and where u,- is

the first element of Q,- (0 S i S r — 1). We term this structure a compound message

format. Each destination node address, 11,-, in the header of a compound message is

followed by a count, 02,- = |Q“" |, of the number of destination nodes for which u,- will

in later phases be responsible, as well as the list, Q‘“, of those node addresses. As in

the standard multi-destination message header described in Section 5.6, the address

of the last destination node, u,-1, is duplicated to signify the end of the header. In

this example, node uo may be the original source of the multicast operation, or it

may be an intermediate destination node that has received the message and is now

responsible for the destination nodes contained in Q. In either case, the actions taken

by node no will be the same.
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To process a compound message header, in addition to the activities required for a

basic multi-destination message as shown in Figure 5.10, the router must perform two

additional tasks: (1) When forwarding the message header to the next destination

node, the included H-cycles must also be forwarded; and (2) When the local node is a

destination of the message, the H-cycle immediately following the local node address

must be forwarded to the local host.

After a compound message has been processed by the router at a node that is

a destination of the message, the local host will have received, in addition to the

message body, the H-cycle needed as input when invoking the M-torus algorithm at

the local node.

In the implementation of a system supporting path-based multicast, the choice

between the above three methods of distributing the multicast structure depends on

several factors. The first method, in which the structure information is distributed

initially upon creation of a group of communicating nodes, is efficient only in cases

where the same source and destinations will be involved in repeated multicasts. This

method also requires that each destination node maintain a local group table in which

information is stored for each group to which the node belongs.

If the multicast structure is added to the message body, as in the second method

described above, one difficulty is that every destination node of a multi-destination

message must receive the information intended for all of the other destination nodes.

Without additional router support, the same message body must be delivered to each

of the destination nodes of the message; therefore, there is no way to distinguish

the structural information that is needed by a particular destination. Instead, the

local host at each destination node must locate and use the correct H-cycle from the

sequence of H-cycles received in the message body. An advantage of this method is

that no additional hardware support is needed beyond that required for single-phase

multicast.
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Minor enhancements to the routing hardware, however, are required to support

the compound message format. As stated above, the router must forward the correct

H-cycle, included in the message header, to the local host of a destination node; and

must also forward all other H-cycles to subsequent destination nodes. In return for

this additional router capability each destination node will receive only the H-cycle

it requires in order to perform its portion of the multicast. The compound message

format does add overhead in the case of simple multi-destination messages, which are

used during the last phase of a multi-phase operation, and for single-phase methods,

which may also be used on systems supporting multi-phase operations. When using

the compound message format for a simple multi-destination message in which no

multicast structure is being distributed, the H-cycle for each destination node is null;

however, in order for the router to process the message header, the associated H-cycle

size counts, all zero, must be included. Thus, the compound message format incurs

an overhead of one additional header flit for each destination node when used for a

simple (non—compound) message.

To efficiently support both compound and non-compound multi-destination mes-

sage formats, it is possible to incorporate a message type indicator into the message

header. This indicator would distinguish between the two types of multi-destination

message formats, and could even identify a unicast message, so that the most efficient

message format could be used for each type of message. However, in order to interpret

the message type information and adjust the router functionality accordingly, even

more extensive hardware support is required.

6.6 Performance Evaluation

In order to better understand the performance of the multicast algorithms presented

in this chapter, a simulation study has been conducted in which these algorithms,
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as well as a unicast-based multicast algorithm, are examined. The system model

for the simulation is the same as assumed throughout this chapter, that is, a k-ary

n-dimension torus with unidirectional communication links and all-port architecture.

In order to evaluate the performance of the multicast methods through simulation,

specific time values were chosen for the following message latencies. The software

overhead at the message source and destination node are represented respectively by

the message send latency, 7'5, and the message receive latency, T3. The combined

send and receive latencies are referred to as the message startup latency. The time

required for a message in the network to advance one flit is represented by the per-flit

network latency, Tn.

All simulations were performed for a 4096-node torus. Both 2D (16 x 16 x 16) and

3D (64 x 64) topologies were examined, as well as various message lengths, multicast

sizes, and message latencies. To provide example cases for the simulation, each mul-

ticast set was produced by selecting, from all nodes in the system, the appropriate

number of unique nodes under a uniform distribution model, using a random number

generator. Statistics for each configuration are averaged over 400 trials.

Five specific multicast algorithms are simulated: the single-phase S-torus algo-

rithm, the Md-torus algorithm, two instances of the Mu-torus algorithm, and for

comparison, a unicast-based multicast algorithm. To examine the effect of the par-

titioning parameter, r, on the Mu-torus algorithm, two such parameter values have

been chosen; they are r = 8 and r = 64. We refer to the corresponding algorithms as

Mu-torus(8) and Mu-torus(64), respectively.

As a comparison to the path-based methods presented in this chapter, an efli-

cient unicast-based multicast algorithm is also simulated. This algorithm uses the

same minimum-path routing function, RUTPR, as do the path-based methods. The

unicast-based algorithm is essentially the Mu-torus algorithm with parameter value

r = 2. To complete a multicast of size m, the algorithm therefore requires [logz m]
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phases, or communication steps, which has been shown in Chapter 4 to be optimal for

unicast—based methods under the one-port model and is also the best known result for

multicast in all-port torus architectures. Thus, the simulated unicast-based method

is efficient and serves as a useful comparison to the studied path-based methods.

Figure 6.3 shows the performance of the various multicast methods on a 2D

(64 x 64) torus with message latency values of 7'5 = 95psec, 73 = 75psec, and

7,, = 0.5,usec. These values represent the relatively high message startup latencies

associated with many of the current wormhole-routed computers. Both average and

maximum multicast latencies are shown; the former being the elapsed time from

the initiation of the multicast operation at the source node to the reception of the

message at each destination processor, averaged over the destination nodes; and the

later being the maximum time over all destinations of the multicast message. Results

are shown for message lengths of 8, 512, and 16384 flits.

With this configuration, the results show clearly that all of the path-based methods

perform better than the unicast-based operation, except for very small messages.

Even for small messages, the Mu-torus(8) algorithm performs much better than the

unicast-based method. In general, as the message length is increased, methods that

use fewer communication phases tend to perform better. This behavior is due to the

pipelining of wormhole routing.

Among path-based algorithms, the method providing the best performance de-

pends greatly on the message length. The S-torus algorithm performs very well for

large messages, whereas the Mu-torus(8) algorithm is better with short and medium

message lengths.

For the results shown in Figure 6.4, lower message startup latencies were used

to simulate the architecture of state-of-the—art MPCs. The respective latency values

are rs = 10psec, T3 = 8psec, and as before, Tn = 0.5psec. Again, message sizes of

8, 512, and 16384 flits were simulated. Under this configuration, the unicast-based



133

method exhibits performance that is nearly identical to the Mu-torus(8) algorithm

for small messages, but still performs poorly, compared to the path-based methods,

for medium and large messages. Again, with large messages, the S-torus algorithm

shows the best performance.

Figures 6.5 and 6.6 show the results of simulating a 4096-node 3D (16 x 16 x 16)

torus; the configurations are otherwise identical to those associated with Figures 6.3

and 6.4. Except for small messages, the performance of all algorithms is very similar

to the corresponding 2D case. Compared to the unicast-based and Mu-torus(8) al-

gorithms, the S-torus, Md-torus, and Mu-torus(64) algorithms produce relatively few

communication phases, and consequently, tend to generate individual messages that

are addressed to a larger number of destination nodes. The performance of these

latter three algorithms increases on the 3D torus, as compared to the 2D torus, due

to the more dense interconnection network and resulting shorter path lengths of the

3D topology.

In Figure 6.7, the multicast latencies are plotted against the message length for

a multicast size of 512 nodes. The results of using both the high and low message

startup latencies described above are presented. The results show that the amount

by which the algorithm is effected by an increase in the message size is directly

related to the number of communication phases used by the algorithm. The S-torus

algorithm, with only one phase, is least effected by the message length, while at the

other extreme, the unicast-based method, requiring [log2 512] = 9 phases, is most

effected.

An important attribute of any communication operation is the resultant amount

of network congestion. To investigate the amount of network traffic produced by the

above multicast methods, the total number of link visits was recorded for each sim-

ulated multicast operation. Each link visit represents the use of one communication

link by one message. Multiplying the number of link visits involved in a multicast
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operation by the message length and by the per-flit network latency, Tn, produces a

value equivalent to the summation, over all links in the network, of the total time

during which the link is being used by the operation and is therefore unavailable.

Figure 6.8 depicts the resultant link usage for both 2D and 3D 4096-node torus

networks, for various multicast sizes. As shown, the path-based algorithms require

the use of fewer communication links than does the unicast-based method, especially

with the 2D topology.

6.7 Conclusions

In this chapter, the area of multicast algorithms for unidirectional torus networks with

IR capabilities has been studied. Specifically, several efficient path-based multicast

algorithms were presented. The S—torus multicast algorithm uses a single multi-

destination message to perform an arbitrary multicast operation. The S-torus algo-

rithm was extended to the M—torus algorithm, a generalized multi-phase multicast

algorithm, in which a combination of multi-destination messages is used to perform

a multicast in one or more communication phases. Two specific instances of the M-

torus algorithm, the Md-torus and Mu-torus multicast algorithms, were presented.

These algorithms produce contention-free multicast operations and are deadlock-free

under all combinations of network traffic.

As a way to better gauge the real performance of the techniques presented in

this chapter, a simulation study of the proposed multicast algorithms was conducted.

The results of this study show that the path-based multicast algorithms presented in

this chapter, together with the path-based routing method presented in Chapter 5,

offer significant performance gains over unicast-based multicast techniques. By using

the proposed algorithms, unidirectional torus systems with IR capability are able
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to perform efficient unicast and path-based multicast operations within a variety of

environments.
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(c) Message length: 16384 fiits

Figure 6.6. Multicast latency (4096-node 3D torus, low message startup latency)
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CHAPTER 7

Conclusions

Efficient multicast communication is critical to the performance of new generation

supercomputers that use massively parallel architectures. In this dissertation, we

have presented research that focuses on three aspects of parallel communication ar-

chitecture affecting multicast communication, namely (1) port model; (2) virtual

communication channels; and (3) intermediate message reception. We have shown

that the performance of multicast operations in current wormhole-routed parallel

computers can be significantly improved by accounting for these three characteristics

in the design of the operations.

In Chapter 3, we investigated the effects of all-port architectures on the per-

formance of multicast communication in wormhole-routed hypercubes. It has been

demonstrated why the U-cube multicast algorithm [19], which is optimal for one-port

architectures, fails to take advantage of multiple ports when they are present in the

system. New theoretical results regarding contention among messages in wormhole—

routed hypercubes have been developed and used to design new multicast routing

algorithms and to prove that these algorithms are contention-free. The algorithms

were compared in terms of the number of steps required in each, their measured

execution times when implemented on a relatively small-scale nCUBE-Z, and their

simulated execution times on larger hypercubes. The results indicate that significant
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performance improvement is possible when the multicast algorithm actively identifies

and uses multiple ports in parallel.

In Chapter 4, we considered multicast communication in wormhole-routed torus

networks, which require the use of virtual channels in order to provide deadlock-

free message routing. The proposed U—torus algorithm applies to unidirectional and

bidirectional tori of any dimension. The algorithm produces multicast trees in which

the constituent unicast messages do not contend for the same channels, regardless of

message length or startup latency. Moreover, the number of message passing steps

required to multicast data to m — 1 destinations is [log2 m] , which is optimal for one-

port architectures. A simulation study was conducted which showed that the practical

consideration of sharing of physical links by constituent messages transmitted on

different virtual channels had little effect on performance.

In Chapters 5 and 6, we addressed architectures in which intermediate nodes on a

message path are able to receive a copy of a message while simultaneously routing the

message to subsequent destinations. In particular, in Chapter 5, by focusing on the

torus topology, we investigated the interaction of intermediate reception capability

with the use of virtual communication channels. We developed a routing method

for unidirectional torus networks that not only supports efficient multi-destination

messages, but also unicast communication. This routing method is deadlock-free

for all combinations of multi-destination and unicast messages. In Chapter 6, this

routing method was used to develop a family of path-based multicast algorithms.

These algorithms are contention-free, and were shown through simulation to perform

well in a wide variety of situations.

The research presented in this dissertation makes three primary contributions

to the field of parallel computing: (1) the application of multi-port architectures

to improve the performance of multicast communication in wormhole-routed parallel

computers; (2) the use of virtual channels to provide efficient software-based multicast
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communication in wormhole-routed torus networks; and (3) the use of intermediate

message reception to implement efficient path-based multicast communication in uni-

directional wormhole-routed torus networks.
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