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Abstract

OUTPUT FEEDBACK CONTROL

IN THE PRESENCE OF UNCERTAINTIES:

USING EXTENDED HIGH-GAIN OBSERVERS WITH

DYNAMIC INVERSION

By

Joonho Lee

Control design for uncertain nonlinear systems is an important issue. Uncertainties always

reside in nonlinear systems due to incomplete mathematical model description or intended

approximation factors in system models, e.g. linearization for system models. Furthermore,

unexpected external disturbances and unmeasured system states increase the uncertainties

in the systems.

In this dissertation, we consider an uncertain nonlinear systems that takes the form of

a chain of integrators and introduce control design methodologies based on output feedback

control: using extended high-gain observers and dynamic inversion.

The proposed output feedback controller results in a closed-loop system with a three-

time-scale structure; an extended high-gain observer estimates unmeasured states and un-

certainties in the fastest time scale and dynamic inversion is used to deal with nonaffine

control inputs or input uncertainties in the intermediate time scale whereas the plant dy-

namics evolves in the slowest time scale. The dynamic inversion algorithm, based on sector

conditions, results in fast convergence into inputs under state feedback control. Together

with the extended high-gain observer, dynamic inversion results in performance recovery of

a target system.

The time-scale-separation approach is well-suited to underactuated mechanical systems

to overcome the lack of the number of inputs. Since the time separation is created between

subsystems in plant dynamics, subsystem dynamics are viewed as virtual inputs for the

other subsystems. In this dissertation, we apply the time-scale separation strategy to two



examples of underactuated mechanical systems in the presence of uncertainties, the inverted

pendulum on a cart and the autonomous helicopter.
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Chapter 1

Introduction

Control design of uncertain nonlinear systems has been a challenging problem. Mathe-

matical models cannot capture entire features of system dynamics or unexpected external

disturbances. Even if system dynamics were precise, nonaffine control inputs add difficulties

to the design. Furthermore, systems states are not always measurable. All these factors

make control design a challenging task.

In this dissertation, we consider a class of nonlinear systems in the presence of uncer-

tainties, which takes the form of a chain of integrators, e.g., a single-input-single-output

nonlinear system,

ẋi = xi+1, for i = 1, . . . , n− 1

ẋn = f(x, z, u) + δ(x, u, t)

ż = f0(x, z)

y = x1

(1.1)

where x = [x1, . . . , xn]
T ∈ Rn and z ∈ Rm are the system states, u ∈ R is the control input,

δ(x, u, t) ∈ R is the uncertainty, and y ∈ R is the measured output. The chain of inte-

grators is commonly used to describe dynamics of mechanical systems. If f(x, z, u) in (1.1)

has affine control, i.e., f(x, z, u) = fn(x, z) + g(x)u, the system of (1.1) become a standard
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normal form [30], [33]. This dissertation provide a way to deal with a class of uncertain

nonlinear systems using extended high-gain observers and dynamic inversion. The extended

high-gain observer is used to estimate both unmeasured states and uncertainties and the

dynamic inversion deals with the nonaffine control or input uncertainties. In other words,

using the extended high-gain observers and the dynamic inversion, a control design problem

for uncertain nonlinear systems with the nonaffine control input, is viewed as the control

design for the standard normal form in the absence of uncertainties.

The dissertation is organized as follows. In Chapter 1, motivation examples, the dynamic

inversion, high-gain observers, and the extended high-gain observers are introduced. Chap-

ter 2 presents the performance recovery in the presence of uncertainties using the extended

high-gain observer and dynamic inversion. In Chapter 3, the stabilization problem is intro-

duced for the inverted pendulum on a cart in the presence of uncertainties. In Chapter 4, the

output feedback control is designed for an autonomous helicopter in the presence of external

disturbances. Lastly, conclusions and future works are provided in Chapter 5.

1.1 Motivation

First, we consider the example of translational dynamics for x-direction in a helicopter with

bounded uncertainty δ(t), i.e., an uncertain nonlinear system with nonaffine

ẋ1 = x2

ẋ2 = − 1

m
(cosφ1 sin θ1 cosψ1 + sinφ1 sinψ1)TM + δ(t)

(1.2)

where x1 and x2 are a position and velocity respectively, φ1 is viewed as an input given

appropriate values of θ1, ψ1, and TM . One approach to deal with the nonaffine control in

(1.2), is to introduce an additional integrator into the state space equation for the control
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variable φ1, i.e., x3 = φ1, and ẋ3 = ν = φ̇1. We obtain the new system equation

ẋ1 = x2

ẋ2 = − 1

m
(cos x3 sin θ1 cosψ1 + sin x3 sinψ1)TM + δ(t)

ẋ3 = ν

(1.3)

However, this approach changes the matched uncertainty in (1.2) into the unmatched uncer-

tainty δ(x1, t) in (1.3). The matching condition plays an important role in robust nonlinear

control design as in Sections 14.1 and 14.2 of [33]. The uncertainty is matched when it enters

the system equation at the same point as the control input.

As the second motivation, we will consider uncertainties in the system. Consider the

example of the inverted pendulum on a cart,

ẋ1 = x2

ẋ2 = δ1(α1)− δ2(α1)u

α̇1 = α2

α̇2 = u

y = [x1, α1]
T

(1.4)

where x = [x1, x2]
T ∈ R2 and α = [α1, α2]

T ∈ R2 are the system states; y ∈ R2 is the

measured output; the domain of α1 is −π/2 < α1 < π/2; δ1 and δ2 are uncertainties; and

we assume that δ2 > 0 and the sign of δ2 is known. The control objective is to stabilize the

system at x = 0 and α = 0.

In this dissertation, using the extended high-gain observer and the dynamic inversion, we

will deal with the control design for the two cases: one is for control design for stabilization

of the inverted pendulum on a cart at the upper equilibrium in Chapter 3 and the other is

for control design for an autonomous helicopter with nonaffine control input in Chapter 4.
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1.2 Dynamic Inversion

In this section, we introduce a control algorithm to find approximate solutions for nonlinear

maps, which is called dynamic inversion. In [52, 53], observers were used to invert nonlin-

ear maps. In [25], two dynamic inversion algorithms were introduced: one is based on a

Newton method and the other uses a gradient-decent algorithm. In [28, 29], using a two-

time-scale approach together with a gradient decent algorithm, a dynamic inversion scheme

was generated. In [64], a second-order sliding mode controller with saturation for a single-

input-single-output nonaffine systems was used to deal with uncertainties and nonaffine input

forms. In [24], neural-networks and the mean value theorem were used to produce a dynamic

inversion algorithm. Hovakimyan et al [27] also used neural-networks with a two-time-scale

approach to deal with a single-input-single-output uncertain nonaffine system.

To briefly explain the principle of dynamic inversion, the example in (1.2) is reconsidered.

Now, it is assumed that δ(x, t) in (1.2) is known. For the stabilization of the system in (1.2),

a controller form of the dynamic inversion is given by

εφ̇1 = −K(x, φ1)

{

− 1

m
(cosφ1 sin θ1 cosψ1 + sin φ1 sinψ1)TM − uc

}

(1.5)

where uc ∈ R is a reference input (e.g. uc = −kpx1 − kvx2 + rx(t) with kp, kv > 0), rx(t) is a

reference trajectory, K(x, φ1) ∈ R is satisfies K(x, φ1) ≥ k0 > 0 with the positive constant

k0, over the domain of interest. With a sufficiently small positive ε ≃ 0 in (1.5), we obtain

the quasi steady-state equation

−K(x, φ1)

{

− 1

m
(cosφ1 sin θ1 cosψ1 + sin φ1 sinψ1)TM − uc

}

= 0 (1.6)

Using the assumption that K(x, φ1) ≥ k0 > 0, we have

− 1

m
(cosφ1 sin θ1 cosψ1 + sinφ1 sinψ1)TM = uc = −kpx1 − kvx2 + rx(t) (1.7)
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Since in view of a multi-time-scale approach, the system of (1.5) is fast and the system of

(1.2) is slow, the fast system of (1.5) reaches the quasi-steady state while the variable x in

the slow system is almost frozen. This means that − 1

m
(cosφ1 sin θ1 cosψ1 + sinφ1 sinψ1)TM

is replaced with −kpx1 − kvx2 + rx(t) and then we obtain

ẋ1 = x2

ẋ2 = −kpx1 − kvx2 + rx(t)

(1.8)

With a reference system

ẋr1 = xr2

ẋr2 = −kpxr1 − kvxr2 + rx(t)

(1.9)

and error variables e1 = x1 − xr1 and e2 = x2 − xr2 , the error dynamics are

ė1 = e2

ė2 = −kpe1 − kve2

(1.10)

which means that x1 and x2 track asymptotically the reference system in (1.9).

In the next section, to realize the controller in (1.5) for the case of the unknown δ(x, t)

and unmeasured states, the extended high-gain observers will be introduced. We start by

introducing high-gain observers.

1.3 High-Gain Observers and Extended High-Gain

Observers

High-gain observers started from the earlier work in [21]. In [21], a fully linearizable nonlinear

system was dealt with, which is a special case of the normal form. It was shown that

the high-gain observers recovered the performance of state feedback controllers when the
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observer gain is sufficiently high and the control input is globally bounded. In [7], the

performance recovery of state feedback controllers was accomplished using saturated inputs

and a separation principle for nonlinear systems was shown. More recent results on high-gain

observers are available in [35].

We consider a multi-input-multi-output nonlinear system with multiple chains of integral,

given by

ẋ = Ax+Bφu(x, u, t)

y = Cx

(1.11)

where x ∈ Rρ is system states, y ∈ Rm is a measured system output, u ∈ Rp is the control

input, φu = [φu1, · · · , φum]T is assumed to be locally Lipschitz in its arguments over the

domain of interest, and matrices A, B, C are

A = block diag[A1, . . . , Am], Ai =

























0 1 · · · · · · 0

0 0 1 · · · 0

...
...

0 · · · · · · 0 1

0 · · · · · · · · · 0

























∈ Rρi×ρi

B = block diag[B1, . . . , Bm], Bi = [0, 0, · · · , 0, 1]T ∈ Rρi×1

C = block diag[C1, . . . , Cm], Ci = [1, 0, · · · , · · · , 0] ∈ R1×ρi

(1.12)

with 1 ≤ i ≤ m and ρ = ρ1 + · · · + ρm. It is assumed that a state feedback controller,

u = Γ(x, t) is designed to asymptotically stabilize the system in (1.11) at the origin, where

Γ(x, t) is locally Lipschitz in its arguments over the domain of interest.
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1.3.1 High-Gain Observers

We design a high-gain observer for the system in (1.3) as

˙̂x = Ax̂+Bφn(x̂, u, t) +H(y − Cx̂) (1.13)

where φn(x, u, t) = [φn1
, · · · , φnm]T is a nominal model of φu in (1.11) and φn(0, 0, t) = 0,

and the observer gain, H , is chosen as

H = block diag[H1, . . . , Hm], Hi =

























hi1/ε

hi2/ε
2

...

hiρi−1
/ερi−1

hiρi/ε
ρi

























(1.14)

with a small positive constant, 0 < ε ≪ 1. The components hij of H are chosen such that

the polynomials

λρi + hi1λ
ρi−1 + · · ·+ hiρi−1

λ+ hiρi = 0, for i = 1, · · · , m (1.15)

are Hurwitz. An important phenomenon in high-gain observers is peaking [7]. The scaled

error variable is defined by η = [ηT1 , η
T
2 , · · · , ηTm]T , ηi = [ηi1 , · · · , ηiρi ]

T ,

ηij =
xij − x̂ij
ερi+1−j

, for 1 ≤ i ≤ m, 1 ≤ j ≤ ρi (1.16)

To show the peaking phenomenon, a SISO second-order subsystem with i = 1 and ρ1 = 2 is

considered as

ẋ11 = x12 , ẋ12 = φ11
(1.17)
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and the scaled error variables are

η11 =
x11 − x̂11

ε
, η12 = x12 − x̂12 (1.18)

The error dynamics are

εη̇11 = −h11η11 + η12

εη̇12 = −h12η11 + ε(φu,1 − φn,1)

(1.19)

With sufficiently small ε, the effect of the difference, (φu,1 − φn,1), on the right-hand side

of (1.19) is small enough that the behavior of the differential equation of (1.19) becomes a

linear system. The solution of such linear systems contains a term of the form

a

ε
exp(−at/ε), with a > 0 (1.20)

As ε → 0, peaking of a/ε degrades the system performance and may destabilize the system

[7]. One approach to overcome the peaking phenomenon is to design the control as a globally

bounded function of the state, which can be achieved by saturating the control inputs or

the state estimates [33]. The saturations are chosen such that they are not active over the

domain of interest under state feedback.

1.3.2 Extended High-Gain Observers

By adding one more integrator into the high-gain observer, an extended high-gain ob-

server is created to estimate both unmeasured system states and uncertainties [23]. Con-

sider a multi-input-multi-output nonlinear system in the presence of uncertainties σ(x, t) =
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[σ1, · · · , σm]T ∈ Rm, given by

ẋ = Ax+B[φn(x, u, t) + σ(x, t)]

y = Cx

(1.21)

where x, y, φu(x, u, t), A, B and C are given below (1.11). An extended high-gain observer

is designed as

˙̂x = Ax̂+B[φn(x̂, u, t) + σ̂(t)] +H(y − Cx̂)

˙̂σ = He(y − Cx̂)

(1.22)

where φn and H are same in (1.13) and He is

He = [h1ρ1/ε
ρ1+1, · · · , hmρm/ερm+1]T (1.23)

The observer gains, hi1 , · · · , hiρi+1
are chosen that the polynomials

λρi+1 + hi1λ
ρi + · · ·+ hiρiλ+ hiρi+1

for i = 1, · · · , m (1.24)

are Hurwitz.

Extended high-gaion observers have been used for several applications. In [51], robust

stabilization of non-minimum phase nonlinear system was considered using a continuous

sliding-mode control and an extended high-gain observer. Using fast estimation speed of

the extended high-gain observer, the derivative of system output was estimated and one of

unknown functions in the last chain of integrator was also estimated by the extended high-

gain observer. Then estimates were used for the sliding mode control. In [13], an extended

high-gain observer as a fast time-scale was combined with an extended kalman filter as a

slow time-scale to estimate states of internal dynamics. Estimates of the extended high-gain

observer were used as a virtual measurement output for the extended kalman filter.
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Chapter 2

Output Feedback Performance

Recovery in the Presence of

Uncertainties

2.1 Introduction

Control of dynamical systems is challenging in the presence of uncertainties. Uncertainties

may arise from inaccurate description of the dynamics by the mathematical model used, or

can be due to external disturbances that are not accounted for in the model. Additional

challenges are posed when the states of the system are not available for measurement and

the control variables do not appear linearly in the mathematical model. To achieve desired

control objectives, many of these challenges have been addressed by several researchers.

To consider uncertain, nonaffine systems with external disturbances, Chakrabortty et

al. [16, 17] designed a time-scale separation method. Two filers were used in [17] to deal

with system uncertainties and nonaffine input forms; one filter was designed to estimate the

uncertainties and the other filter was used to deal with nonaffine input forms. The work

in [16] is an extension of Chakrabortty et al. [17] where unmodeled dynamics in the control
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inputs are additionally taken into account. Hovakimyan et al. [28] proposed a fast gradient

algorithm for dynamic inversion to deal with Multi-Input-Multi-Output (MIMO) nonaffine

systems. The control approaches developed by Chakrabortty et al. [16,17] and Hovakimyan

et al. [28] are based on state feedback.

Tanelli et al. [64] designed a state feedback control scheme for uncertain, Single-Input-

Single-Output (SISO) nonaffine systems. A second-order sliding mode controller with sat-

uration was used to deal with uncertainties and nonaffine input forms. The system states

were estimated using the first-order differentiator proposed by Lavant [40] but the stability

analysis was based on state feedback control.

In [23], Extended High-Gain Observers (EHGOs) were designed to estimate unmeasured

states and uncertainties by combining the High-Gain Observers (HGOs) proposed by Atassi

and Khalil [7] with an additional integrator. Back and Shim [9] developed controllers for un-

certain, SISO nonline systems using a time-scale separation approach and the circle criterion;

the unmeasured states and external disturbances were estimated using an observer. These

results were extended in [10] to deal with uncertain MIMO systems using the multi-variable

circle criterion. The results in [23] and [9, 10] are applicable to systems with affine inputs.

Hovakimyan et al. [27] proposed an output feedback controller for uncertain, SISO non-

affine input systems using neural network observers together with dynamic inversion. Ge

and Zhang et al. [24] used neural networks to deal with SISO nonaffine systems and high-

gain observers were used to estimate the unmeasured states. Chen et al. [18] proposed state

feedback control for uncertain, MIMO nonaffine systems using neural networks. Neural

networks were used to model the system dynamics, uncertainties in the system, and input

nonlinearities and uncertainties. A robust backstepping controller, combining backstepping

with variable structure control, was used to deal with neural networks approximation errors.

All of these methods based on neural networks require heavy computations and good prior

knowledge of the system.

In this chapter, we propose an output feedback control scheme for uncertain nonlinear

11



systems with nonaffine inputs and external disturbances; it is an extension of our earlier

work [41, 42]. By operating an EHGO in the fastest time scale, unmeasured system states,

model uncertainties, and external disturbance were estimated. For the fast recovery of tar-

get system inputs in the presence of uncertainties, dynamic inversion was used based on the

estimates provided by the EHGO together with sector conditions for the inputs. Using a

multi-time-scale controller, the performance of target system states and inputs is recovered

in the presence of uncertainties. The singular perturbation method is used to analyze the

closed-loop system behavior and establish stability and performance recovery.

This chapter is organized as follows. In the Section 2.2, the problem is formulated for

uncertain, MIMO, systems. In Section 2.3 the output feedback controller is presented along

with the EHGO and the dynamic inversion algorithm. Section 2.4 provides the stability anal-

ysis and establishes performance recovery. Simulation results are presented in Section 2.5

and compared with results of other algorithms in the literature. Performance recovery is

also verified through the simulations. Concluding remarks are provided in Section 2.6.

2.2 Problem Statements

The goal of this chapter is to design an output feedback controller that can make an uncertain,

MIMO, nonlinear system follow a target system. Consider a MIMO nonlinear system given

by

ẋ =Ax+Bf(x, z, u), x(0) = x0

ż =f0(x, z), z(0) = z0

y =Cx,

(2.1)
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where A, B, and C represent n chains of integrators as

A = block diag[A1, . . . , An], B = block diag[B1, . . . , Bn]

Ai =

























0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 1

0 0 · · · · · · 0

























ρi×ρi

, Bi =

























0

0

...

0

1

























ρi×1

C = block diag[C1, . . . , Cn], Ci = [1, 0, · · · , 0]1×ρi ,

and f(x, z, u) = fn(x, u) + σ(x, z, u) with

fn(x, u) =













fn,1
...

fn,n













n×1

, σ(x, z, u) =













σ1(x, z, u)

...

σn(x, z, u)













n×1

1 ≤ i ≤ n, ρ = ρ1 + · · ·+ ρn, x ∈ Dx ⊂ Rρ, z ∈ Dz ⊂ Rm, and u ∈ Du ⊂ Rn. The domains

Dx, Dz, and Du contains their respective origins. The output y ∈ Dy ⊂ Rn is measured, the

nominal function fn(x, u) is known, and σ(x, z, u) is unknown. Assumptions for the system

are made as follows.

Assumption 1. The functions fn(x, u), σ(x, z, u), and f0(x, z) are continuously differen-

tiable.

In this chapter, we are designing controllers for minimum-phase systems. Assumption 2,

below, implies that the z-subsystem in (2.1) is bounded-input-bounded-state stable.

Assumption 2. There exists a radially unbounded positive definite function Vz such that for

all x ∈ Rρ and z ∈ Rm

V̇z ≤ 0 for z ≥Wz(x) (2.2)
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where Wz(x) is a nonnegative continuous function.

A target system is defined by

ẋr = (A− BL)xr +Buc(t), xr(0) = xr0, (2.3)

where the matrix L is block diagonal such that the matrix (A−BL) is Hurwitz and uc(t) is

a bounded command input belonging to the compact set Dr ⊂ Rn and its derivative u̇c is

chosen to be bounded. With the variable e = x− xr, the error dynamics are given by

ė = (A− BL)e +BF (x, z, u, uc), e0 = e(0) (2.4)

where F (x, z, u, uc) = f(x, z, u) +Lx− uc(t). With the error dynamics of (2.4), we have the

following assumption.

Assumption 3. • There is a unique continuously differentiable function φ(x, z, uc) such

that ur = φ(x, z, ur) solves the equation

F (x, z, ur, uc) = 0 (2.5)

The derivative u̇r = φd(x, z, uc, u̇c) is bounded on compact sets of x and z.

• There is a known matrix K(x, s + ur, uc) such that the function F satisfies the sector

condition

sTK(x, s+ ur, uc)F (x, z, s + ur, uc) ≥ βsTs, β > 0 (2.6)

for all (x, z, ud), with s = u− ur.

Remark 1. When the system is affine in u, i.e., f(x, z, u) = h(x, z) + G(x, z)u, condition

14



(2.6) is equivalent to the existence of a known matrix K(x, s+ ur, uc) such that

K(x, s+ ur, uc)G(x, z) +GT (x, z)KT (x, s+ ur, uc) ≥ kI (2.7)

with k > 0. This condition holds with K = I when G(x, z) satisfies

G(x, z) +GT (x, z) ≥ kI, k > 0 (2.8)

This will be the case for single-input systems when G is positive and bounded away from

zero. Condition (2.7) is less restrictive than (2.8) as it will be shown in Section 2.5 by an

example.

Remark 2. Earlier work on systems that are nonaffine in the input, in particular, [17]

requires the Jacobian matrix (∂f/∂u) to satisfy the condition.

(

∂f

∂u

)

+

(

∂f

∂u

)T

≥ kI, k > 0 (2.9)

and [27–29] require the Jacobian matrix (∂f/∂u) to satisfy either the condition (2.9) or the

condition

ζT
(

∂f

∂u

T

(x, u1, uc)

)(

∂f

∂u
(x, u2, uc)

)

ζ ≥ 2kc‖ζ‖2 ∀ζ ∈ Rn (2.10)

where u1 and u2 are distinct variables and kc is a positive constant. The sector condition

(2.6) is less restrictive than (2.9) and (2.10). For single-input systems, (2.9) requires the

Jacobian to be positive for all u. The sector condition (2.6), on the other hand, allows the

Jacobian to be negative as long as f(x, z, u) belongs to the sector [k,∞), uniformly in x, z

and uc.

For multi-input systems, the sector condition does not require the Jacobian (∂f/∂u) to

be nonsingular. The relation between K in (2.7) and the Jacobian matrix (∂f/∂u) will be
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mentioned in Section‘2.3. In Section 2.5, it is shown that the sector condition in (2.7) is

less conservative than the conditions (2.9) and (2.10) through numerical simulations.

2.3 Control Design

We use dynamic inversion to deal with nonaffine and/ or uncertain functions. Had x and σ

been available, the dynamic inversion would have been taken as

µu̇ = −K(x, u, uc)F (x, z, u, uc), u(0) = u0

= −K(x, u, uc)[fn(x, u) + σ(x, z, u) + Lx− uc]

(2.11)

If the matrix K is chosen as the Jacobian matrix (∂f/∂u)T , i.e., K = (∂f/∂u)T (x, u, uc)

and the function F in (2.11) is not a function of z, i.e., F = F (x, u, uc), the derivative of the

Lyapunov function Vs = sT s/2 along the trajectories (2.1) and (2.3), is

V̇s = (u̇− φd)
T s+ sT (u̇− φd)

=−
(

1

2µ

)

sT

[

KF (x, u, uc) + F T (x, u, uc)K
T

]

s− φTd s
(2.12)

with s = u−ur and u̇r = φd(x, uc, u̇c). By using the mean value theorem (Appendix B, [34])

with F (x, ur, uc) = 0 in (2.5),

F (x, u, uc)− F (x, ur, uc)

=

∫ 1

0

∂F

∂u

(

x, (1− σ)s+ ur, uc
)

dσs
(2.13)

for 0 ≤ σ ≤ 1, and ∂f/∂u = ∂F/∂u, V̇s is rewritten as

V̇s = −
(

1

2µ

)

sT
[

P TKT +KP
]

s− φTd s (2.14)
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where

P =

∫ 1

0

∂f

∂u
(x, (1− σ)s+ ur, uc)dσ (2.15)

With sufficiently small µ and the condition

sT (P TKT +KP )s ≥ kj‖s‖2 (2.16)

V̇s ≤ −(ks/µ)Vs+ δ with kj, ks > 0, and δ > 0 independent of µ. We note that the condition

in (2.16) is similar to the condition in (2.10).

In output feedback control, x and σ are estimated using the EHGO:

˙̂x = Ax̂+B[fn(x̂, u) + σ̂(t)] +H(ε)(y − Cx̂)

˙̂σ = Hn+1(y − Cx̂), x̂(0) = x̂0, σ̂(0) = σ̂0

(2.17)

where σ̂(t) = [σ̂1, · · · , σ̂n]T ∈ Rn is the estimate of σ(x, z, u), and

H = block diag[H1, · · · , Hn],

Hi(ε) = [αi,1/ε, · · · , αi,ρi/ερi]T ,

Hn+1 = block diag[α1,ρ1/ε
ρ1+1, · · · , αn,ρn/ερn+1]

(2.18)

The constants αi,1, · · · , αi,ρi+1 are chosen such that the polynomials

λρi+1 + αi,1λ
ρi + · · ·+ αi,ρiλ+ αi,ρi+1 for i = 1, . . . , n

are Hurwitz and the control parameter ε > 0 is small enough. We note that the small

parameter ε is smaller than µ to make the dynamics of the EHGO faster than the dynamics

of the dynamic inversion since the dynamic inversion uses estimates provided by the EHGO.

Therefore, the control parameters ε and µ are chosen such that 0 < ε ≪ µ≪ 1.
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Using the EHGO in (2.17) together with the dynamic inversion in (2.11), the output

feedback control is designed as

µu̇= −K[fn(x̂s, u) + σ̂s + Lx̂s − uc]

x̂s = [x̂Ts1, . . . , x̂
T
sn]

T , σ̂s = [σ̂s1, . . . , σ̂sn]
T

x̂si=

[

Mxi,1sat

(

x̂i,1
Mxi,1

)

, . . . ,Mxi,ρi
sat

(

x̂i,ρi
Mxi,ρi

)]T

σ̂si =

[

Mσ1sat

(

σ̂1
Mσ1

)

, . . . ,Mσnsat

(

σ̂n
Mσn

)]T

(2.19)

for i = 1, . . . , n, where sat(·) is the saturation function defined by

sat(k) =

{

k |k| ≤ 1

sign(k) |k| > 1
(2.20)

The saturation function is used to prevent peaking from degrading the system performance.

The saturation levelsMxi,j andMσi for j = 1, . . . , ρi and i = 1, . . . , n in (2.19), are determined

outside of a compact set of interest, which is specified next. Under Assumption 3, the error

dynamics of (2.4) with u = ur is exponentially stable at e = 0. Let P = P T > 0 be the

solution of the Lyapunov equation P (A − BL) + (A − BL)TP = −I. With u = ur and

Assumption 2, for any given positive constant cx and for all x(t) ∈ {Vx(x) ≤ cx} where

Vx(x) = xTPx, and uc(t) ∈ Dr, the positively invariant set {Vz(z) ≤ cz + αz(cx)} can be

chosen for the dynamics of z in (2.1), where αz(ce) is a class K∞ function and cz > 0. Now,

we can define the compact set

Ωs = {Vx(x) ≤ cx} × {Vz(z) ≤ cz + αz(cx)} (2.21)

By choosing cx sufficiently large, any compact subset of Rρ × Rm can be included in the

interior of Ωs. Based on the compact set Ωs, the levels of saturation are determined as
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follows.

Mxi,j > max
x∈{Vx(x)≤cx}

|xi,j|,

Mσi > max
(x,z)∈Ωs,uc∈Dr

|σi(x, z, ur(x, z, uc))|
(2.22)

for j = 1, . . . , ρi and i = 1, . . . , n.

2.4 Main Result

In this section, we will show that in the presence of uncertainties, the output feedback control

(2.17) and (2.19) can recover the performance of both states and inputs of the target system

(2.3). Consider the fast variables η = [ηT1 , · · · , ηTn+1]
T with ηi = [ηi,1, · · · , ηi,ρi]T ∈ Rρi for

error dynamics of the EHGO

ηi,j =
xi,j − x̂i,j
ερi+1−j

, ηi,ρi+1 = σi(x, z, u)− σ̂i(t)

for 1 ≤ i ≤ n, 1 ≤ j ≤ ρi

(2.23)

Using (2.4), the dynamics of z in (2.1), (2.17), and (2.19), the closed-loop system equations

can be written in the standard singularly perturbed form

ė = (A− BL)e +B[f(x, z, s+ ur) + Lx− uc(t)], (2.24)

ż = f0(x, z) (2.25)

µṡ = −K[fn(x̂s, s+ ur) + σ̂s + Lx̂s − uc]− µφd (2.26)

εη̇ = Λη + ε[B̄1ψ1 + (B̄2/µ)ψ2] (2.27)
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where

Λ = block diag[Λ1, · · · ,Λn],

Λi=

























−αi,1 1 0 · · · 0

−αi,2 0 1
. . . 0

...
...

. . .
...

...

−αi,ρi 0 · · · 0 1

−αi,ρi+1 0 · · · · · · 0

























ρi×ρi

B̄1 = block diag[B1,1, · · · , B1,n],

B̄2 = block diag[B2,1, · · · , B2,n],

B1,i =







0

Bi







(ρi+1)×1

, B2,i =







Bi

0







(ρi+1)×1

(2.28)

for i = 1, . . . , n and the functions ψ1 and ψ2 are given by

ψ1 =(1/ε)[fn(x, s+ ur)− fn(x̂s, s+ ur)]

ψ2 =µ
{

(

∂σ

∂x

)T

[Ax+Bf(x, z, s+ ur)]

+

(

∂σ

∂z

)T

f0(x, z)
}

−
(

∂σ

∂u

)T

KFs

Fs = fn(x̂s, s+ ur) + σ̂s + Lx̂s − uc

(2.29)

We note that ur and φd(x, z, s+ ur) in (2.24) and (2.25), respectively, are mentioned in the

Assumption 3, the nominal function fn(x, s + ur) is Lipschitz in its arguments so that the

inequality ‖fn(x, s + ur)− fn(x̂s, s+ ur)‖ ≤ εkψ1
‖η‖ is satisfied with kψ1

independent of ε.

we are going to show the stability of the boundary layer and reduced systems in the closed-

loop system (2.24)-(2.27). Since the z-subsystem of (2.25) with the input x is bounded-input-

bounded-state stable, we are focusing on the subsystems (2.24), (2.26), and (2.27).

Now, using the time-scale structure of the closed-loop system (2.24), (2.26), and (2.27),
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the stability analysis of each subsystem will be shown. By considering the subsystem (2.27) as

the fast system and the other subsystems (2.24) and (2.26) as the slow system, the boundary

layer system in (2.27) can be obtained by

εη̇ = Λη, η(0) = η0 (2.30)

Since the matrix Λ is Hurwitz, the boundary layer system (2.30) is exponentially stable at

the origin.

After the fast variable η reaches its quasi-steady state, η = 0, the reduced system for

(2.24) and (2.26) is obtained by setting η = 0 and ε = 0. In the reduced system, the

dynamic inversion (2.26) is viewed as fast and the subsystem (2.24) is slow. The boundary

layer system for (2.26) is given by

µṡ = −KF (x, z, s+ ur, uc), s(0) = s0 (2.31)

To investigate the stability of the boundary layer system (2.31), the Lyapunov function

Vs = (sT s)/2 is defined. With the sector condition (2.6), its derivative V̇s along the trajectory

(2.31) is

µV̇s = −sTKF ≤ −β‖s‖2 (2.32)

Therefore, the boundary layer system (2.31) is exponentially stable at s = 0.

The reduced system for (2.24) is obtained by setting ε = 0, η = 0, µ = 0, and s = 0.

With the input u = ur and x = x̂, the reduced system for (2.24) is obtained as

ė = (A− BL)e, e(0) = e0 (2.33)
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Figure 2.1: The trajectory starting from (e0, z0, s0) ∈ Ωa and η0 /∈ {Vη ≤ b3(ε/µ)
2} converges

into (e, z, s, η) ∈ Ωb × {Vη ≤ b3(ε/µ)
2}.

which is exponentially stable at e = 0.

The following theorem shows that all trajectories will be bounded and (x, u) approach

the trajectories of the target system (2.3) as µ, (ε/µ), and ε tend to zero.

Theorem 1. Consider the closed-loop system (2.24) - (2.27) under Assumption 1, 2, and 3.

Suppose the trajectories (x, z, u, x̂, σ̂) start from the compact sets (x0, z0, u0) ∈ Sx×Sz×Su ⊂

Dx ×Dz ×Du and (x̂0, σ̂0) ∈ Qx ×Qs ⊂ Rρ ×Rn. Then, there exists a constant ς > 0 such

that for max{µ, (ε/µ), ε} < ς

• all trajectories are bounded;

• ‖x− xr‖ → 0 and ‖u− ur‖ → 0 as µ, (ε/µ), ε→ 0 for all t ≥ 0.

Proof. As the first part of the proof, we are going to show that all trajectories enter a

positively invariant set.

We define the Lyapunov functions Ve = eTPe and Vη = ηTPηη for the subsystems, (2.24)

and (2.27), respectively, where Pη is the solutions for the Lyapunov equation PηΛ+ΛTPη =

−I. We define the sets
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Ωa={Ve ≤ a1}×{Vz ≤ cz + αz(cx)}×{Vs ≤ a2}

Ωb={Ve ≤ b1}×{Vz ≤ cz + αz(cx)}×{Vs ≤ b2}

Ωc={Ve ≤ c1}×{Vz ≤ cz + αz(cx)}

(2.34)

with the relations

0 < a1 < b1 < c1, 0 < a2 < b2 (2.35)

The constant c1 is chosen such as that

e ∈ {Ve ≤ c1} ⇒ x ∈ {Vx ≤ cx} (2.36)

so that ∀e ∈ {Ve ≤ c1}, z ∈ {Vz ≤ cz + αz(cx)}. The constant a1 and a2 are chosen such

that Sx × Sz × Su ⊂ Ωa.

Similar to earlier work on high-gain observers, e.g., [33], it can be shown that, for suffi-

ciently small (ε/µ), the set Ωb × {Vη ≤ b3(ε/µ)
2}, for some b3 > 0, is positively invariant.

This is done by showing that the derivatives of Ve, Vz, and Vs are negative on the boundaries

{Ve = a1}, {Vz = cz + αz(cx)}, and {Vs = a2}, respectively. Similarly, it can be shown that

for sufficiently small λ = max{µ, ε/µ}, the set Ωc×{Vs ≤ c2λ
2}×{Vη ≤ b3(ε/µ)

2}, for some

c2 > 0, is positively invariant.

We show boundedness of the trajectories in two steps:

• firstly, the trajectories (e, z, s) and η starting from (e0, z0, s0) ∈ Ωa and η(0) /∈ {Vη ≤

b2(ε/µ)
2} enter the set Ωb × {Vη ≤ b3(ε/µ)

2} in finite time as depicted in Fig. 2.1;

• secondly, the trajectories (e, z), s, and η starting from Ωb×{Vη ≤ b3(ε/µ)
2} enters the

set Ωc × {Vs ≤ c2λ
2} × {Vη ≤ b3(ε/µ)

2} in finite time.

In the first step, consider that the initial conditions are in (e0, z0, s0) ∈ Ωa and η(0) starting

from outside the set {Vη ≤ b3(ε/µ)
2}. Due to the scaling (2.23), η(0) could be of the order of
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1/ερm where ρm = maxi=1,...,n ρi. Because the term [B̄1ψ1 + (B̄2/µ)ψ2] in (2.27) is bounded

by k1‖η‖ + k2 for all (x, z, s) ∈ Ωb, for some positive constants k1 and k2, it can be shown

that

εV̇η ≤ −‖η‖2 + εk3‖η‖2 + εk4‖η‖ (2.37)

for some positive constants k3 and k4. Hence,

εV̇η ≤ −1

2
‖η‖2 + ε

µ
‖η‖ (2.38)

for ε < 1/(2k3). It follows that there is b3 > 0 such that

εV̇η ≤ −γ1Vη, for Vη ≥
(

ε

µ

)2

b3 (2.39)

for some γ1 > 0. Taking into consideration that ‖η(0)‖ ≤ k5/ε
ρm for some positive constant

k5 > 0, we obtain

Vη ≤
k6
ε2ρm

e−γ1t/ε (2.40)

for some positive constant k6 > 0. Since ε ≤ ε/µ, we can estimate the time the trajectory

will enter {Vη ≤ b3(ε/µ)
2} by the more conservative time, T1(ε), when Vη = b3ε

2. The time

T1(ε) is given by

k6
ε2ρm

e−γ1T1/ε = b3ε
2 ⇔ T1 =

ε

γ1
ln

(

k6
b3ε2(ρm+1)

)

(2.41)

By L’Hopital’s rule, it can be shown that limε→0 T1(ε) = 0. Because a1 < b1, a2 < b2, and

the right-hand side functions of (2.24), (2.25), and (2.27) are bounded uniformly in ε, there

is time T0 such that (x, z, s) ∈ Ωb for all t ∈ [0, T0]. By choosing ε small enough we can have
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T1(ε) = (1/2)T0.

In the second step, we repeat the same argument to show that s enters the set {Vs ≤ c2λ
2}.

The right-hand side of (2.26) is a perturbation of the right-hand side of (2.31) with the

perturbation term bounded by k7‖η‖+ k8µ for some positive constants k7 and k8. Because

η cannot leave the set {Vη ≤ b(ε/µ)2},

k7‖η‖+ k8µ ≤ k9λ for some k9 > 0 (2.42)

where λ = max{µ, ε/µ}. Hence

µV̇s ≤ −β‖s‖2 + k10λ‖s‖ (2.43)

Therefore, there is c2 > such that

µV̇s ≤ −γ2Vs, for Vs ≥ c2λ
2 (2.44)

This show that there is time T2 = T2(µ) such that the trajectory enters {Vs ≤ c2λ
2}. Once

again by choosing µ small enough, (e, z) stay in the set {Ve ≤ c1} × {Vz ≤ cz + α(cx)}.

Thus, with the time T (ε, µ) = T1(ε) + T2(µ), the trajectory enters the positively invariant

set Ωc × {Vs ≤ c2λ
2} × {Vη ≤ b3(ε/µ)

2}.

Lastly, we are going to show the performance recovery for x and u. Since the proof is

similar for both variables, we show it only for u. The nominal model of (2.26) is the system

(2.31), which is exponential stable at s = 0. The difference between (2.26) and (2.31) is

G =−K[fn(x̂s, s+ ur)− fn(x, s+ ur)

+ σ̂s(t)− σ(x, z, s+ ur) + L(x̂s − x)] + µu̇r

(2.45)

where u̇r = φd(x, z, uc, u̇c) is bounded on the compact set of x, z, uc, and u̇c, i.e., ‖u̇r‖ ≤ urm,
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with urm > 0, uniformly in µ and ε. The function G is bounded

‖G‖ ≤ Km[εL1‖η‖+ L2‖η‖] + µurm (2.46)

for some positive constants Km, L1, L2, which can be made arbitrarily small by choosing

sufficient small µ and ε/µ, for t ≥ T (ε, µ). Using Theorem 9.1 in [33], we conclude that

‖u(t)− ur(t)‖ ≤ δ(µ, ε/µ), ∀t ≥ T (µ, ε) > 0 (2.47)

where δ(µ, ε) → 0 as µ, (ε/µ), ε → 0. For the time interval t ∈ [0, T (µ, ε)], since the

trajectories u and ur are in the compact set, we have two inequalities

‖u(t)− u(0)‖ ≤ ktt, ‖ur(t)− u(0)‖ ≤ ktt (2.48)

with kt > 0, during the time interval. Using the triangle inequality, we obtain the inequality

‖u− ur‖ ≤ 2ktT (µ, ε), ∀t ∈ [0, T (µ, ε)] (2.49)

Therefore, given any δ1 > 0, we can ensure that

‖u(t)− ur(t)‖ ≤ δ1, for all t ≥ 0 (2.50)

by choosing ε, µ, and (ε/µ) sufficiently small.

2.5 Simulations

In this section, we choose examples for the comparison with other papers, [28], and [17].

The first example, which has nonaffine input, considers the case that the Jacobian matrix

is singular at some values. As a second example, which has affine input forms and system
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uncertainties, the camera image coordinate system in [17] is modified to show that our

proposed control methods provide less conservative conditions than ones in [17].

2.5.1 Example 1

First, we are considering the case where the Jacobian matrix, (∂f/∂u) in (2.10), is singular

at some values. In this example, we assume that the state x = [x1, x2]
T is available and there

is no system uncertainty. The MIMO nonlinear nonaffine system is given by







ẋ1

ẋ2






=







x1 + 2u31 − 15u21 + 36u1

2u32 − 15u22 + 36u2






(2.51)

The target system is

ẋr = (A−BL)xr + uc, xr = [xr1, xr2]
T

uc =







100

100






, A− LB =







−x1 0

0 −x2







(2.52)

Our proposed controller for the dynamic inversion is

µu̇ = −







x1+2u31−15u21+36u1+x1 − 100

2u32−15u22+36u2+x2 − 100






, (2.53)

where u = [u1, u2]
T , the small constant µ = 0.1, and K in (2.6) is chosen as an identity

matrix, i.e., K = I2×2 (a 2×2-identity matrix). In Fig. 2.2, the solid lines x1 and x2 generated

by the proposed controller in (2.52), converge into the reference trajectories (dashed lines)

in (2.52). Since the proposed controller in (2.53) is designed based on the sector condition,

the controller is not affected by the singularity of the Jacobian matrix in Fig. 2.3.
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Figure 2.2: The solid and dashed lines represent trajectories xi for i = 1, 2 driven by the
proposed controller in (2.53) and reference trajectories xri for i = 1, 2 in (2.52), respectively.

2.5.2 Example 2

A modified model from [17] is given by

ẋ = Rmu, y = [x1, x2]
T ,

Rm =







cosφ sin φ

sin φ − cosφ







(2.54)

with x = [x1, x2]
T , u = [u1, u2]

T , and φ = 45◦. The target system with uc = [0, 0]T is the same

as in (2.52). With the condition φ = 45◦, the Jacobian condition (∂Rm/∂u)
T +(∂Rm/∂u) ≥

kpI2×2 in [17] is not satisfied. Using the dynamic inversion, the control inputs are designed
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Figure 2.3: Input trajectories u1 and u2 in (2.53) are shown and both u1 and u2 cross the
values u1 = 2, 3 and u2 = 2, 3 which make the Jacobian matrix (∂f/∂u) singular.

by

µu̇ = −KF (2.55)

where

KF =







u1 cos φ+ u2 sinφ+ x1

−u1 sin φ+ u2 cosφ− x2






(2.56)
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The sector condition in Assumption 3 is satisfied as follows.

sTKF ≥ β‖s‖2 (2.57)

with the constant β > 0. Now, the EHGO is designed to estimate uncertainties i.e., the

right-hand side of (2.54), Rmu,

˙̂x1 = σ̂1 +
h11
ε
(x1 − x̂1), ˙̂σ1 =

h12
ε2

(x1 − x̂1)

˙̂x2 = σ̂2 +
h21
ε
(x2 − x̂2), ˙̂σ2 =

h22
ε2

(x2 − x̂2)

(2.58)

where σ̂1 and σ̂2 are the estimates of ẋ1 and ẋ2, respectively. The constants hi,1 and hi,2,

i = 1, 2 are chosen such that the polynomials

λ2 + hi,1λ+ hi,2 = 0, for i = 1, 2 (2.59)

are Hurwitz. The output feedback control is

µu̇ = −KFs, KFs =







Mσ1sat(σ̂1/Mσ1) + x1

−Mσ2sat(σ̂2/Mσ2)− x2







where the levels of saturation, Mσ1 and Mσ2 are chosen such that the saturations will not be

activated in the range of state feedback control.

For the simulation, the parameters are given by

µ = 0.02, ε = 0.0002, hi,1 = 3, hi,2 = 1 (2.60)

for i = 1, 2. In Fig. 2.4, the states x1 and x2 (solid lines) and their estimates x̂1 and x̂2

(dotted lines), respectively are plotted. The initial conditions of trajectories are given by

x(0) = [2, 4]T , u(0) = [0, 0]T , the estimates x̂1(0) = 0 and x̂2(0) = 0, and σ̂1(0) = 0 and
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Figure 2.4: The solid and dotted lines represent the system states x1 and x2, and estimates
x̂1 and x̂2, respectively.

σ̂2(0) = 0. In Fig. 2.4, the estimate trajectories quickly converge into the system states and

both the states and estimates are indistinguishable. The results shown in Fig. 2.5, indicate

the EHGO successfully estimates the uncertainties (i.e., the entire terms in the right-hand

side of (2.54)) in a short period of time. At beginning of the simulations in Fig. 2.5, the

peaking phenomena are shown and quickly disappear, which are overcome by the use of

saturation functions. To illustrate the performances recovery for inputs, we choose the same

rate of (ε/µ) = 0.01 with different values µ = 0.2 and µ = 0.02. The other parameters in

the EHGO are the same as in (2.60). In Fig. 2.6, the input ur = R−1
m x is solid lines, the

dashed lines represents the inputs under the output feedback with parameters µ = 0.02 and

ε/µ = 0.01, and the dotted lines are trajectories for the input under the output feedback
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Figure 2.5: The solid and dotted lines represent the system states ẋ1 and ẋ2, and estimates
σ̂1 and σ̂2, respectively.

with parameters µ = 0.2 and ε/µ = 0.01. The input u with the control parameters µ = 0.02

and ε/µ = 0.01, has an faster convergence into ur than the input with control parameters

µ = 0.2 and ε/µ = 0.01.

2.6 Conclusions

Unmeasured states, uncertainties, and nonaffine inputs pose challenges in control design

for nonlinear systems. An output feedback control design was proposed to address these

challenges. The unmeasured states and uncertainties were estimated using an EHGO and

sector conditions were utilized for dynamic inversion to deal with nonaffine and uncertain
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Figure 2.6: The solid, dashed, and dotted lines represent the inputs ur = R−1
m x, u with

µ = 0.02 and ε/µ = 0.01, and u with µ = 0.2 and ε/µ = 0.01, respectively.

inputs. The EHGO and the dynamic inversion together result in exponential convergence

of the states to those of a target system. The stability and performance of the system were

analyzed using singular perturbation methods and the effectiveness of the proposed controller

was verified through numerical simulations. Our future work will consider extension of our

approach to non-minimum phase systems.
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Chapter 3

Output Feedback Stabilization of

Inverted Pendulum on a Cart

in the Presence of Uncertainties

3.1 Introduction

An inverted pendulum on a cart is a classical example of an underactuated mechanical sys-

tem and its stabilization problem has been investigated by many researchers. Based on

linearized system dynamics, controllers can be designed to stabilize the equilibrium but the

size of the region of attraction is typically small. Furthermore, these controllers are not very

effective in the presence of significant uncertainties in the system model. In this chapter we

present an output feedback control design that can stabilize the equilibrium in the presence

of significant uncertainties and provide a large region of attraction.

One representative approach for stabilization of the inverted pendulum on a cart is based

on the energy of the system. Spong and Praly [62] used partial feedback linearization to

linearize the cart dynamics followed by transfer of energy from the cart to the pendulum. A

stabilizing controller is invoked when the configuration of the system reaches a neighbour-
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hood of the equilibrium. Astrom and Furuta [6] used a Lyapunov function based on the

potential energy of the pendulum, and Lozano et al. [46] stabilized the pendulum around

its homoclinic orbit prior to stabilization. Fradkov [22] developed a control method using

an energy-based objective function and the speed-gradient, and Shiriaev et al. [61] proposed

a modified controller using the idea of variable structure systems. Muralidharan et al. [50]

designed a controller for the two-wheeled inverted pendulum using the interconnection and

damping-passivity-based control (IDA-PBC) method proposed by Ortega et al. [55] for un-

deractuated systems. Sarras et al. [59] combined the approach of the Immersion & Invariance

proposed by Astolfi et al [5] with the Hamiltonian formulation to accommodate underactua-

tion degree greater than one. Bloch et al. [12], [11] used the controlled Lagrangian approach

to derive a desired closed-loop system dynamics for stabilization. The controller is designed

by matching the dynamic equations for the uncontrolled and controlled Lagrangians. In [12],

only the kinetic energy was shaped to obtain the desired dynamics whereas both kinetic and

potential energies were shaped in [11]. Angeli [4] developed a smooth feedback law for

almost-global stabilization based on the energy-shaping control strategy in [12]. Auckly [8]

derived a stabilizing controller by solving a set of linear partial differential equations; these

equations were obtained by matching the desired closed-loop system dynamics based on the

potential energy with the original dynamics.

Among other approaches, Mazenc et al. [49] and Teel [66] developed control methods based

on the concept of interconnected systems. In [49], the stability analysis was carried out

using a Lyapunov function whereas in [66] a nonlinear small gain theorem was used. Olfati-

Saber [54] proposed a transformation to convert the system into cascade normal form, for

which existing control methods can be used for stabilization. A two-time-scale approach

was proposed by Getz et al. [26] and Srinivasan et al. [63]. In [26], the trajectories of the

pendulum were rapidly converged to a reference trajectory and the reference trajectory was

slowly varied to converge the cart to its desired position. In [63], low gains were used near

the equilibrium for separation of time scales. All of the methods discussed above require
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exact knowledge of the system dynamics and are unlikely to guarantee stabilization in the

presence of significant uncertainties.

To deal with uncertainties of the system model, Ravichandran et al. [57] used a two-time-

scale approach together with Lyapunov redesign. However, the transient behavior of the fast

system was not analyzed. Park et al. [56] utilized two sliding surfaces for the pendulum and

cart subsystems to stabilize the system in the presence of disturbances but uncertainties in

system parameters were not considered. Adhikary et al. [2] used backstepping and sliding

mode control to the normal form of the system. Both uncertainties and disturbances were

considered but they were introduced after the system was converted into normal form. Xu et

al. [68] used integral sliding-mode control [15] to deal with uncertainties in the two-wheeled

mobile inverted pendulum but the size of the region of attraction of the equilibrium is small

since the controller is designed based on the linearized system dynamics.

In this chapter we present an output feedback controller to stabilize the inverted pendulum

on a cart in the presence of significant uncertainties. Extended High-Gain Observers and dy-

namic inversion are combined together with a multi-time-scale structure to deal with model

uncertainties. The stability analysis for the multi-time-scale structure is carried out using

singular perturbation methods; the advantage of this approach is that the behavior of the

system can be analyzed independently for each time scale. The multi-time-scale structure of

the controller effectively provides a large region of attraction and this is illustrated through

simulations. Output feedback control of the inverted pendulum on a cart has not been pro-

posed earlier and it is shown here that it can recover the performance of the system under

state feedback.

The chapter is organized as follows. In section 3.2, a state feedback controller is designed

using a two-time-scale structure; uncertainties are not considered. In section 3.3, the output

feedback controller is designed in the presence of uncertainties. Simulation and experimental

results are presented in section 3.4 and conclusions are provided in section 3.5.
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3.2 Stabilization in the Absence of Uncertainties

We present a control strategy to stabilize the desired equilibrium of the inverted pendulum

on a cart system, in the absence of uncertainties. The controller is based on the designs

proposed by [25] and [63]; here we cast the closed-loop system dynamics in two-time scale

format for the purpose of stability analysis. The stability analysis is done by transforming

the system into a standard singularly perturbed one.

Remark 3. As an intermediate step for the output feedback controller in Section 3.3, we

design a controller in this section in the absence of uncertainties.

3.2.1 Dynamics of an inverted pendulum on a cart

The dynamics of an inverted pendulum on a cart are given by







mp +mc ℓmp cosα

ℓmp cosα ℓ2mp













ẍ

α̈






=







ℓmpα̇
2 sinα

gℓmp sinα






+







F

0






(3.1)

Figure 3.1: Inverted pendulum on a cart
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where mp, mc are masses of the pendulum and the cart, respectively; g is the acceleration

due to gravity; and ℓ is the length of the pendulum - see Fig. 3.1. The variables x and α

denote the position of the cart and the angular displacement of the pendulum, respectively;

α is measured clockwise from the vertical following the notation in [25]. The variable F

denotes the force applied on the cart and is the control input. With the choice of state

variables

x1 = x, x2 = ẋ, α1 = α, α2 = α̇

the system equations of (3.1) take the form

ẋ1=x2, ẋ2=fx(α1, α2, F ), α̇1=α2, α̇2=fα(α1, α2, F ) (3.2)

where

fx =
1

(mp +mc −mp cos2 α1)
F +Gx

fα =
− cosα1

ℓ(mp +mc −mp cos2 α1)
F +Gα

Gx =
(ℓmpα

2
2 sinα1 −mpg cosα1 sinα1)

(mp +mc −mp cos2 α1)

Gα =
(g

ℓ

)

sinα1 −
cosα1

ℓ
Gx

(3.3)

We consider equations in (3.2) over the domain x = [x1, x2]
T ∈ Dx and α = [α1, α2]

T ∈ Dα

where Dx = {−ax1 < x1 < ax1} × {−ax2 < x2 < ax2} ⊂ R2 and Dα = {−aα1
< α1 <

aα1
} × {−aα2

< α2 < aα2
} ⊂ R2 are bounded. The constants, ax1 , ax2 , aα1

, and aα2
are

positive numbers and aα1
< π/2.
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3.2.2 Control Design

The choice of the control input

F = (mc +mp −mp cos
2 α1)(u−Gx) (3.4)

with

u = g tanα1 −
(

ℓ

cosα1

)

νd (3.5)

results in

ẋ1 = x2

ẋ2 = g tanα1 −
(

ℓ

cosα1

)

νd

(3.6)

α̇1 = α2

α̇2 = νd

(3.7)

We choose

νd = −β1(α1 − αr)− β2α2 (3.8)

where αr is a reference trajectory for α1, which will be chosen using the concept of equilibrium

manifold [25].

The desired dynamics of the x-subsystem is

ẋ1 =x2

ẋ2 =vext −
(

ℓ

cosα1

)

νd

(3.9)
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where vext is chosen as

vext = −γ1x1 − γ2x2 (3.10)

and (ℓ/ cosα1)νd is considered to be a vanishing perturbation. By comparing the actual

x-subsystem in (3.6) with the desired x-subsystem in (3.9), the desired reference trajectory

for αr can be determined as follows

g tanαr = vext ⇔ αr = tan−1

(

vext
g

)

(3.11)

The control input νd in (3.8) can now be designed as follows:

νd = −β1
[

α1 − tan−1

(

vext
g

)]

− β2α2 (3.12)

3.2.3 Closed-loop system

Using (3.4), (3.5), and (3.8), the closed-loop system dynamics can be represented as

ẋ1 =x2

ẋ2 =g tanα1 +

(

ℓ

cosα1

)

[β2α2 + β1(α1 − αr)]

α̇1 =α2

α̇2 =− β2α2 − β1(α1 − αr)

(3.13)

The above system is comprised of two subsystems: the cart dynamics described by states x1

and x2, and the pendulum dynamics described by states α1 and α2. Through proper choice

of β1 and β2, we can ensure that α1 converges to αr quickly and α2 converges to 0. Then,
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the cart dynamics is described by

ẋ1 =x2

ẋ2 =g tanαr = vext = −γ1x1 − γ2x2

(3.14)

which guarantees asymptotic stability of the origin (x, ẋ) = (0, 0).

3.2.4 Analysis using singular perturbations

To make the cart dynamics slower than the pendulum dynamics, we choose low gains for the

cart controller: γ1 = ε21k1 and γ2 = ε1k2, where ε1 is a small positive parameter and positive

constants k1 and k2 are independent of ε1. We note that instead of using the low gains in

the cart controller, high gains can be used in the pendulum controller. However, the use of

high gains results in peaking in the slow dynamics. The change of variables

y = [y1, y2]
T , y1 = ε21x1, y2 = ε1x2 (3.15)

θ = [θ1, θ2]
T , θ1 = α1 − αr, θ2 = α2 (3.16)

transforms the system (3.13) into the singularly perturbed form

ẏ1 =ε1y2

ẏ2 =ε1[−k1y1 − k2y2 + hx(θ, αr)]

θ̇1 =θ2 + ε1hα(y, θ, αr, F )

θ̇2 =− β1θ1 − β2θ2

(3.17)
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where hx and hα are given by the expressions

hx =g [tan(θ1 + αr)− tanαr]

+

[

ℓ

cos(θ1 + αr)

]

(β1θ1 + β2θ2) ,

hα =

[

g

g2 + (−k1y1 − k2y2)2

]

(k1y2 + k2fx)

(3.18)

and fx is defined in (3.3), except that α1 should now be replaced by (θ1 + αr) in accordance

with (3.15). We note that hx and hα are bounded by constants independent of ε1 for all

ε1 ≪ 1 over the domains Dx and Dα. The boundary layer system is obtained by setting

ε1 = 0 in (3.17):

θ̇ = Aθθ, Aθ =







0 1

−β1 −β2






(3.19)

where β1 and β2 are chosen such that Aθ is Hurwitz. The reduced system is obtained by

setting ε1 = 0:

ẏ = ε1Ayy, Ay =







0 1

−k1 −k2






(3.20)

where k1 and k2 are chosen such that Ay is Hurwitz. The two time-scale structure of the

system is depicted in Fig. 3.2.

It follows from Theorem 11.4 of [33] that there exists a positive constant ε∗1 such that for

ε1 ∈ (0, ε∗1) the origin of the closed-loop system (3.17) is exponentially stable.

The design of β1 and β2 should ensure that α1 stays in the set |α1| < aα1
where aα1

< π/2.

Since θ1 = α1 − αr = α1 − tan−1(vext/g), by choosing ε1 small enough we can constrain

θ1 to the set |θ1| ≤ bθ1 with bθ1 < π/2. The initial state θ(0) belongs to a compact set

{|θ1| ≤ aθ1 , |θ2| ≤ aθ2} where aθ1 < π/2 and aθ2 is some positive constant. We are going to
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design β1 and β2 to obtain a Lyapunov function Vθ for the system:

θ̇1 = θ2, θ̇2 = −β1θ1 − β2θ2

such that the compact set {Vθ ≤ cθ} contains the set {|θ1| ≤ aθ1 , |θ2| ≤ aθ2} and is

contained in the strip |θ1| ≤ bθ1 with aθ1 < bθ1 < π/2. By showing that V̇θ is negative

definite we ensure that the set {Vθ ≤ cθ} is positively invariant and all trajectories starting

in {|θ1| ≤ aθ1 , |θ2| ≤ aθ2} stay in the strip |θ1| ≤ bθ1 for all t ≥ 0. The gains β1 and β2

are taken as β1 = (βc1/µ) and β2 = (βc2/µ) with positive constants βc1 and βc2, and a small

positive constant µ. The Lyapunov function is taken as

Vθ= θ̃
TPαθ̃, θ̃=







θ1
(

β1
β2

)

θ1 + θ2






, Pα=







1

2
0

0
d

2






(3.21)

By choosing cθ <
1

2
b2θ1 we have

Vθ ≤ cθ ⇒ 1

2
θ21 ≤ cθ <

1

2
b2θ1 ⇒ |θ1| < bθ1

Over the set {|θ1| ≤ aθ1 , |θ2| ≤ aθ2},

Vθ ≤
1

2
a2θ1 +

d

2

[(

β1
β2

)

aθ1 + aθ2

]2

Therefore by choosing

d <
(2cθ − a2θ1)

[(β1/β2)aθ1 + aθ2 ]
2

we ensure that {|θ1| ≤ aθ1 , |θ2| ≤ aθ2} ⊂ {Vθ ≤ cθ}. As in standard analysis of singularly

perturbed systems (Theorem 2.1 of Chapter 7.2 of [36]), the derivative V̇θ will be negative
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Normal Speed System Slow System

Pendulum Cart

(3.8)
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(3.7) (3.6)

(3.10)

Figure 3.2: The two-time-scale structure of the inverted pendulum on a cart system

definite by choosing µ sufficiently small.

3.3 Stabilization in the Presence of Uncertainties

In the presence of parameter uncertainties, fx and fα of (3.2) are unknown. We however

note that the following conditions (the sign of the input coefficients in (3.3)) hold in Dx and

Dα:

sign(cx) > 0, cx =
1

mp +mc −mp cos2 α1

sign(cα) > 0, cα =
cx cosα1

ℓ

(3.22)

Extended High-Gain Observers will be used to estimate the uncertain terms in fx and fα in

addition to the states; and dynamic inversion will be used to compute the inputs F and u,

described by (3.4) and (3.5), using the estimates of fx and fα.
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3.3.1 Dynamic inversion

With the knowledge of the sign of the input coefficients, as shown in (3.22), we use a dynamic

inversion scheme which is different from ones in [25], [29], and [28], in order to compute

the control inputs F and u. The proposed dynamic inversion scheme in the chapter is

an extension in our earlier work [42] since our earlier work dealt with SISO systems. In

particular, had fx and fα been known, we could have used

ε2







Ḟ

u̇






=







−fx + u

fα − νd






(3.23)

to solve for F and u, starting from arbitrary initial conditions. In the above equation, ε2 is

a small positive number; its relationship with ε1 will be discussed later. As ε2 → 0 and the

stability of (3.23) is guaranteed, fx ≈ u and fα ≈ νd. The equation (3.23) is a singularly

perturbed system of the form

ε2







Ḟ

u̇






= Az







F

u






+







Gx

Gα − νd






, Az =







−cx 1

−cα 0






(3.24)

whose quasi-steady-state solution is given by (3.4) and (3.5). Since the foregoing equation

is linear in F and u and the matrix Az with frozen x and α is Hurwitz, it can be seen that

for sufficiently small ε2, F and u converge fast to their values that satisfy (3.4) and (3.5).

The stability analysis for the system in (3.24) will be discussed in Section 3.3.

Remark 4. The dynamic inversion scheme used in this section is different from ones in

[25], [29], and [28].

• In [25] and [28], the dynamic inversion schemes were developed by the Jacobian with

respect to inputs whereas the proposed one in the chapter is based on the stability of

the fast dynamics in (3.24), which only requires the knowledge on the signs of inputs.
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• In [25], the stability analysis for the dynamic inversion is limited to a local neighborhood

of the equilibrium, whereas our stability analysis is based on Lyapunov functions, which

covers a larger domain than one in [25].

• In [29], the dynamic inversion is only for SISO systems whereas our dynamic inversion

scheme is able to deal with MIMO systems since the dynamic inversion has the inputs

F and u in (3.24).

3.3.2 Extended High-Gain Observers (EHGOs)

Now, we assume that velocity and acceleration terms, x2, α2, σx(x, α, u), and σα(x, α, u),

which are used in the dynamic inversion, are unknown. EHGOs are designed to estimate

the acceleration and velocity terms. The EHGOs for the cart and pendulum systems are

designed as

˙̂x1 =x̂2 +

(

h11
ε3

)

(x1 − x̂1)

˙̂x2 =f̄x(α̂1, α̂2, F ) + σ̂x +

(

h12
ε23

)

(x1 − x̂1)

˙̂σx =

(

h13
ε33

)

(x1 − x̂1)

˙̂α1 =α̂2 +

(

h21
ε3

)

(α1 − α̂1)

˙̂α2 =f̄α(α̂1, α̂2, F ) + σ̂α +

(

h22
ε23

)

(α1 − α̂1)

˙̂σα =

(

h23
ε33

)

(α1 − α̂1)

(3.25)

where f̄x and f̄α are the nominal values of fx and fα in (3.3); σ̂x and σ̂α denote the estimates of

σx and σα, which are the uncertainties in the values of fx and fα, respectively, i.e. fx = f̄x+σx

and fα = f̄α + σα. The constants hij for i = 1, 2 and j = 1, 2, 3 are chosen such that the
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following polynomials

s3 + hi1s
2 + hi2s+ hi3, for i = 1, 2

are Hurwitz and ε3 is a small positive number.

Remark 5. The parameters ε1, ε2 and ε3 should satisfy ε1 ≪ 1, ε2 ≪ 1, and (ε3/ε2) ≪ 1.

This requirement can be intuitively explained as follows. Since the EHGOs’ estimates σ̂x and

σ̂α are used in dynamic inversion, the observer dynamics should be faster than the dynamic

inversion algorithm; hence, (ε3/ε2) ≪ 1. Since the dynamic inversion computes u and F ,

which are used to implement the controller, it’s dynamics should be faster than the dynamics

of the closed-loop system with no uncertainty (3.13); hence ε2 ≪ 1. Since the x-dynamics is

much slower than the α-dynamics, ε1 ≪ 1.

3.3.3 Output feedback control

Using the dynamic inversions together with the EHGOs, the output feedback control is

ε2







Ḟ

u̇






=









−f̄x
(

α1,Mθsat

(

α̂2

Mθ

)

, F
)

−Mxsat

(

σ̂x
Mx

)

+u

f̄α

(

α1,Mθsat

(

α̂2

Mθ

)

, F
)

+Mαsat

(

σ̂α
Mα

)

−ν̂d









(3.26)

where

ν̂d = −β1(α1 − α̂r)− β2Mθsat

(

α̂2

Mθ

)

,

α̂r = tan−1

(

v̂ext
g

)

,

v̂ext = −γ1x1 − γ2x̂2

(3.27)
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Entire System

Fast System

EHGOs
(3.31)

Slow System

Fast System

Dynamic Inversion
(3.30)

Slow System

Fast System

Pendulum Dynamics

(3.29)

Slow System

Cart Dynamics
(3.28)

Figure 3.3: Multi-time-scale structure for the closed-loop system

To protect the system from peaking, the saturation function sat(·)

sat(e) =

{

e, if |e| ≤ 1

sign(e), if |e| > 1

is used. The saturation limits Mx, Mα, and Mθ are determined such that the saturation

functions will not be invoked under state feedback.

3.3.4 Stability analysis in the presence of uncertainties

The closed-loop system is represented in the singularly perturbed form

ẏ1 =ε1y2

ẏ2 =ε1fx (θ1 + αr, θ2, F )

(3.28)
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θ̇1 =θ2 + ε1hα(y, θ, αr, F )

θ̇2 =fα (θ1 + αr, θ2, F )

(3.29)

ε2ż =Azz + ψ(·)− ε2φ(·) (3.30)

ε3η̇ =Aηη + ε3

[

B̄1∆1 + B̄2∆2 +

(

1

ε2

)

B̄2∆3

]

(3.31)

where Aη, B̄1 and B̄2 are given in Appendix and z = [zF , zu]
T with

zF = F − F ∗, zu = u− u∗

With the variables F ∗ and u∗, the conditions fx(θ1 + αr, θ2, F
∗) − u∗ = 0 and fα(θ1 +

αr, θ2, F
∗)− νd = 0 in (3.23) hold, and ψ(·) = 0 when η = 0, and φ(·) is bounded uniformly

in ε2. The fast variables η = [ηx, ηα]
T , ηx = [ηx1 , ηx2, ηx3]

T and ηα = [ηα1
, ηα2

, ηα3
]T are

defined by

ηx1 =
x1 − x̂1
ε23

, ηx2 =
x2 − x̂2
ε3

,

ηx3 =σx(θ1 + αr,θ2, F )−σ̂x

ηα1
=
α1 − α̂1

ε23
, ηα2

=
α2 − α̂2

ε3
,

ηα3
=σα(θ1 + αr,θ2, F )−σ̂α,

We note that fx and fα of (3.28) and (3.29) are bounded uniformly in ε2 and ε3.

The stability analysis for the each subsystem will be done by starting from the fastest one,

i.e. the error dynamics of the two EHGOs (3.31) to the slowest one, i.e. the cart dynamics

(3.28). The singularly perturbed system can be viewed as a two-time-scale structure if the

error dynamics of the two EHGOs (3.31) are the fast subsystem, while other subsystems

(3.28), (3.29), (3.30) are the slow one as depicted in Fig.3.3. The boundary layer system,
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which is obtained by setting ε3 = 0 in (3.31),

ε3

(

dη

dt

)

= Aηη

is exponentially stable. We note that in the error dynamics of the EHGOs, the matrix Aη

is Hurwitz, and ∆1, ∆2, and ∆3 and the constant matrix B̄1, B̄2, and B̄3 are uniformly

bounded in ε3 whose definitions are given in the Appendix.

Next, the dynamic inversion (3.30) is slow relative to the EHGOs and fast relative to the

systems (3.28) and (3.29) as depicted in Fig.3.3. Setting ε3 = 0 and η = 0, which yields

x = x̂, α = α̂, fx = f̄x + σ̂x, fα = f̄α + σ̂α,

results in the boundary layer system

ε2ż = Azz +







−fx(θ1 + αr, θ2, F
∗) + u∗

fα(θ1 + αr, θ2, F
∗)− νd






− ε2







Ḟ ∗

u̇∗







with

fx(θ1 + αr, θ2, F
∗) = cxF

∗ +Gx,

fα(θ1 + αr, θ2, F
∗) = −cαF ∗ +Gα

Since fx(θ1 + αr, θ2, F
∗) − u∗ = 0 and fα(θ1 + αr, θ2, F

∗) − νd = 0 with the inputs F ∗ and

u∗, we have

ε2ż = Azz − ε2







Ḟ ∗

u̇∗






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Setting ε2 = 0 yields exponential stability of z = 0.

After the EHGOs and dynamic inversion reach quasi-steady state, hierarchically, i.e.,

ε3 = 0, η = 0, ε2 = 0, z = 0

we have the reduced system for the inverted pendulum on a cart which is the same as the

system in (3.17). The reduced system also has a time-scale structure and its stability analysis

is given in Section 3.2.4.

Typically, a slow variable in a multi-time-scale structure is assumed to be constant although

it is evolving slowly. We consider the behavior of the slow variable and define sets for stability

analysis of our multi-time-scale structure using Lyapunov functions. Lyapunov functions for

three of the four subsystems are defined by; Vy = yTPyy, Vz = zTPzz, and Vη = ηTPηη,

where Py, Pz, and Pη are solutions of Lyapunov equations with right-hand sides equal to

the negative identity matrix. The Lyapunov function Vθ is defined in (3.21). The fastest

variable η converges quickly into the set {Vη ≤ ρ(ε3/ε2)
2} with a positive constant ρ, while

the variables y, θ, and z move relatively slowly. We define a set (y, θ, z) ∈ {Vy ≤ a1}×{Vθ ≤

a2} × {Vz ≤ a3} with positive constants a1, a2, and a3. Although a short convergence

time period T1(ε3) exists for the fastest variable η, the trajectories of variables y, θ, and z

can leave the set {Vy ≤ a1} × {Vθ ≤ a2} × {Vz ≤ a3}. Therefore, we define the superset

{Vy ≤ b1}×{Vθ ≤ b2}×{Vz ≤ b3}, where bi, (bi > ai) can be arbitrarily close to ai, i = 1, 2, 3,

(for a sufficiently small ε3) that satisfies the condition for the constrained domain for θ. After

the variable η converges into the set {Vη ≤ ρ(ε3/ε2)
2}, we consider the time period T2(ε2) for

convergence of the second fastest variable z. During the time period T2(ε2), the trajectories

of y and θ can leave the set {Vy ≤ b1} × {Vθ ≤ b2}. To guarantee that the condition for the

constrained domain for θ is satisfied during both time periods T1(ε3) and T2(ε2), we define

the superset (y, θ) ∈ {Vy ≤ A1} × {Vθ ≤ A2} where Ai (Ai > bi) can be arbitrarily close to

bi, i = 1, 2, (for a sufficiently small ε2).
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The main result of this chapter is presented next with the help of the following theorem.

Theorem 2. Let X1 be any compact set of (x, α) in the domain Dx ×Dα, X2 any compact

subset of R2, and X3 any compact subset of R6. There exists ε∗ such that for all

ε1 < ε∗, ε2 < ε∗,
ε3
ε2
< ε∗, ε3 < ε∗

and for all initial states (x(0), α(0)) ∈ X1, (F (0), u(0)) ∈ X2, and (x̂(0), α̂(0)) ∈ X3, the

closed-loop system (3.28) - (3.31) has an exponentially stable equilibrium point, at which

x = 0 and α = 0, and the set X1 ×X2 ×X3 is a subset of the region of attraction.

Proof. It is shown in the Appendix that the closed-loop system (3.28) - (3.31) can be written

as

ẏ = ε1
[

Ayy +B
(

hx(θ, αr) + cxzF
)]

(3.32)

θ̇ = Aθθ + ε1Ehα(y, θ, αr, F )−BcαzF (3.33)

ε2ż = Azz + ψ(·)− ε2φ(·) (3.34)

ε3η̇ = Aηη + ε3

[

B̄1∆1 + B̄2∆2 +

(

1

ε2

)

B̄2∆3

]

(3.35)

For the first part of the proof, all trajectories starting from (x(0), α(0), F (0), u(0)) ∈ X1×X2,

will converge into the desired equilibrium while α1 satisfies the condition for the constrained

domain. We are going to show that all trajectories converge to a positive invariant set

{Vy ≤ d1} × {Vθ ≤ (ε∗θ)
2d2} × {Vz ≤ (ε∗z)

2c3} × {Vη ≤ (ε3/ε2)
2ρ} with the positive constants

d1, d2, c3, ρ, ε
∗
θ = max{ε1, ε∗z}, and ε∗z = max{ε2, (ε3/ε2)}. Note that it is shown that in

section 3.2.4, the condition for the constrained domain for α1 with sufficiently small ε1 > 0,

is satisfied even though change of variables is used. We are going to use the following

hierarchical, repeated process

• First, we are going to prove that a subset {Vz ≤ b3}×{Vη ≤ (ε3/ε2)
2ρ} of {Vy ≤ b1}×

{Vθ ≤ b2}×{Vz ≤ b3}×{Vη ≤ (ε3/ε2)
2ρ} is positively invariant by properly choosing ρ,
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while the variable η is viewed as fast and the other variables y, θ, and z are considered

as slow. The time period T1(ε3) for η to converge into the set {Vη ≤ (ε3/ε2)
2ρ}, can

be arbitrarily small as ε3 → 0.

• Second, it will be shown that the subset {Vθ ≤ c2}×{Vz ≤ (ε∗z)
2c3}×{Vη ≤ (ε3/ε2)

2ρ}

of {Vy ≤ c1} × {Vθ ≤ c2} × {Vz ≤ (ε∗z)
2c3} × {Vη ≤ (ε3/ε2)

2ρ} with b1 < c1 < A1 and

b2 < c2 < A2 is positively invariant by properly choosing c3. In this stage, the variable

η is already in the set {Vη ≤ (ε3/ε2)
2ρ} and the variable z converges rapidly into the

set {Vz ≤ (ε∗z)
2c3} with the convergence time period T2(ε2). The time T2(ε2) can be

arbitrarily small as ε2 → 0.

• Lastly, it will be claimed that the set of {Vy ≤ d1}×{Vθ ≤ (ε∗θ)
2d2}×{Vz ≤ (ε∗z)

2c3}×

{Vη ≤ (ε3/ε2)
2ρ} with c1 < d1 < A1 is positively invariant by properly choosing d2. In

this stage, the variables z and η are in the set {Vz ≤ (ε∗z)
2c3} × {Vη ≤ (ε3/ε2)

2ρ} and

the fast variable θ converges into {Vθ ≤ (ε∗θ)
2d2}.

In this proof, we are going to show only the first bullet out of three since proofs for the others

are the same as the first bullet. There is an upper bound ‖η‖ ≤ (ε3/ε2)
√

ρ/λmin(Pη), where

symbols λmax(N) and λmin(N) are used to denote maximum and minimum eigenvalues of a

matrix N , respectively, and the variables y and θ are in a compact set. The derivative of Vz

along the trajectory (3.34) is

V̇z≤−
(

1

ε2

)

‖z‖2+
(

2

ε2

)

Pzmkψ‖η‖‖z‖

+2Pzm

[

kφ1‖y‖+kφ2‖θ‖+kφ3‖z‖
]

‖z‖ ≤− az
2ε2

‖z‖2

for ‖z‖ ≥ ε∗z

(

4Pzm
az

)

kzb

(3.36)

for all (y, θ, z, η) ∈ {Vy ≤ b1} × {Vθ ≤ b2} × {Vz = b3} × {Vη ≤ (ε3/ε2)
2ρ}, where az =

1 − 2ε2kφ1Pzm , Pzm = λmax(Pz), and the positive constants kzb, kψ, kφ1, kφ2 , and kφ3 are
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independent of ε∗z. The derivative of Vη along the trajectory (3.35) is

V̇η ≤− 1

ε3
‖η‖2 + 2Pηm

[

(kη1‖y‖+ kη2‖θ‖+ kη3‖z‖)

+

(

1

ε2

)

(kη4‖z‖+kη5‖η‖)+kη6‖η‖
]

‖η‖

V̇η ≤ − aη
2ε3

‖η‖2, for ‖η‖≥
(

ε3
ε2

)(

4Pηm
aη

)

bη (3.37)

for all (y, θ, z, η) ∈ {Vy ≤ b1} × {Vθ ≤ b2} × {Vz ≤ (ε∗z)
2b3} × {Vη = ρ(ε3/ε2)

2}, where

aη = 1− 2Pηm
[

(ε3/ε2)kη5 + ε3kη6
]

, Pηm = λmax(Pη), and the positive constants bη and kη1 to

kη6 are independent of (ε3/ε2). By choosing ρ = 16P 3
ηm(bη/aη)

2 and using (3.36) and (3.37),

we conclude that the set {Vz ≤ b3} × {Vη ≤ (ε3/ε2)
2ρ} is positively invariant.

Now, it will be shown that for sufficiently small ε3, trajectories starting from (F, u) ∈ X2

and (x̂, α̂) ∈ X3 enter the corresponding the invariant set of {Vz ≤ b3}×{Vηρ(ε3/ε2)2} in the

finite time T1(ε3), where limε3→0 T1(ε3) = 0. There exists the error bound ‖η(0)‖ ≤ kt/ε
2
3

with a non-negative constant kt. Due to the continuity and boundedness of ẏ, θ̇, and ż, we

have

‖y(t)−y(0)‖≤kft, ‖θ(t)−θ(0)‖≤kf t, ‖z(t)−z(0)‖≤kf t

with the constant kf > 0. Instead of computing the time Tn when the trajectory η enters

into the set {Vη ≤ ρ(ε3/ε2)
2}, we will find the longer time T1 than Tn to ensure that the

trajectory enters the set in a finite time. Using the bound for the initial condition of η and

the property of exponential stable Lyapunov function Vη in (3.37), we have

Vη ≤
(

σ2
ε43

)

exp(−σ1t/ε3)
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where σ1 = aη/(2Pηm) and σ2 = Pηmk
2
t . Due to ε3 < (ε3/ε2), we obtain

ε23ρ =

(

σ2
ε43

)

exp(−σ1T1/ε3)

The bound for the time T1(ε3) ∈ (0, T0] is obtained

T1(ε3) =

(

ε3
σ1

)

ln(
σ2
ρ4ε63

) ≤ 1

2
T0

As ε3 → 0, T1(ε3) → 0.

As the second part of the proof, we are going to show that the closed-loop system (3.28)

- (3.31) has an exponentially stable equilibrium point, at which x = 0, α = 0. Consider

the derivative of the Lyapunov functions Vθ and Vz along the trajectories (3.33) and (3.34),

respectively, are

V̇θ≤− km‖θ‖2+
[

ε1kh1‖y‖+ ε1kh2‖θ‖

+(ε1kh3 + cαm)‖z‖
]

‖θ‖
(3.38)

V̇y ≤ ε1[−‖y‖2 + 2kθPym‖θ‖‖y‖+ 2cxmPym‖z‖‖y‖] (3.39)

where Pym = λmax(Py), ‖cx‖ ≤ cxm , ‖cα‖ ≤ cαm and the positive constants km, kh1, kh2, kh3,

and kθ are independent of ε1, ε2, ε3, and (ε3/ε2).

By defining Wy =
√

Vy, Wθ =
√
Vθ, Wz =

√
Vz, and Wη =

√

Vη and using (3.36), (3.37),
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(3.38), and (3.39), we have

D+W ≤ −MW, W = [Wy,Wθ,Wz,Wη]
T

M=





















ε1k11 −ε1k12 −ε1k13 0

−ε1k21 (1− ε1k22)k
∗
22 −(ε1k23 + k∗23) 0

−k31 −k32 (
k33
ε2

)(1− ε2k
∗
33) −

k34
ε2

−k41 −k42 −(k43+
k∗43
ε2

) kM





















where kM =
1

ε3

(

1− ε3k44 −
ε3
ε2
k∗44

)

and D+W (·) denotes the upper right-hand derivative,

and kij and k∗ij for i, j = 1, . . . , 4 are positive constants independent of ε1, ε2, ε3, and

(ε3/ε2). Consider the differential equation U̇ = −MU with U = [Uy, Uθ, Uz, Uη]
T and the

same initial condition U(0) = W (0), whose origin is exponentially stable since the leading

principal minors of the matrix M can be all positive (i.e., the matrix M can be Hurwitz) by

choosing ε1 ≪ 1, ε2 ≪ 1, ε3 ≪ 1, and ε3/ε2 ≪ 1 small enough. Using a vectorial comparison

method in Chapter IX of [58], we conclude that W ≤ U for all t ≥ 0. Therefore, the closed-

loop system (3.28) - (3.31) has an exponentially stable equilibrium point, at which x = 0,

α = 0.

3.4 Simulation and Experiment

3.4.1 Simulation results

For simulations, the system parameters were assumed to be

mc = 0.94 kg, mp = 0.23 kg

g = 9.8 m/s2, ℓ = 0.3206 m

(3.40)

56



The state feedback controller described by (3.4), (3.5), (3.10), and (3.12) was implemented

using the following parameter values; The control parameters for the state feedback are

γ1 = ε21k1, γ2 = ε1k2, β1 = 5, β2 = 3 (3.41)

where ε1, k1, and k2 were chosen as

ε1 = 0.2, k1 = 2, k2 = 1 (3.42)

For the output feedback controller, we assume that the system dynamics is completely un-

known except for the sign conditions in (3.22). The output feedback controller with dynamic

inversion described by (3.25), (3.26), and (3.27) was implemented by setting f̄x(·) = 0 and

f̄α(·) = 0 in (3.25) and (3.26). The following parameter values were used

hi1 = 5, hi2 = 5, hi3 = 4, i = 1, 2

The parameters ε1 and βi, γi, i = 1, 2, are the same as those used in state feedback control

- see (3.41) and (3.42). The saturation limits Mx, Mα, and Mθ are chosen to be slightly

greater than the maximum absolute values of fx, fα, and α2, respectively, observed in state

feedback control simulations.

For both state feedback and output feedback, the initial states x1(0), x2(0), α1(0), and α2(0)

were chosen as

x1(0) = 0 m, x2(0) = 0 m/s,

α1(0) = 0.8727 rad (50◦), α2(0) = 0 rad/s
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The initial conditions used for the dynamic inversion and the EHGOs were

F (0) = 0, u(0) = 0,

x̂1(0) = 0.1, x̂2(0) = 0.1, f̂x(0) = 0,

α̂1(0) = 0.1, α̂2(0) = 0.1, f̂α(0) = 0

To investigate the performance of output feedback vis-a-vis state feedback, we simulate two

cases with: (ε2, ε3) = (0.02, 0.002) and (ε2, ε3) = (0.01, 0.0001). The results are shown in

Figs.3.4 and 3.5.

The plots of x1 and x2 are shown in Fig.3.4 and the plots of α1 and α2 are shown in Fig.3.5;

these plots have different time horizons since the dynamics of x1 and x2 are slower than

the dynamics of α1 and α2. Both Figs.3.4 and 3.5 indicate that the states converge to the

desired values and the output feedback controller is able to recover the performance of the

state feedback controller when ε2 and ε3 are chosen small enough.

We present results from a second simulation where the initial configuration of the pendulum

is almost horizontal with different initial conditions. The initial conditions were assumed to

be

x1(0) = 0 m, x2(0) = −3 m/s,

α1(0) = 1.3963 rad (80◦), α2(0) =
π

2
rad/s

The time-scale control parameters ε1, ε2, and ε3 were chosen as ε1 = 0.05, ε2 = 0.002 and

ε3 = 0.0001, and the control parameters β1 and β2 were chosen as β1 = 15, β2 = 10. The

remaining control parameters and initial conditions were chosen to be identical to the first

simulation. The results, shown in Fig.3.6, indicate that the pendulum and the cart are both

successfully stabilized to their desired configuration.
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Figure 3.4: Trajectories of x1 and x2 for state feedback (solid line), output feedback with
(ε2, ε3) = (0.02, 0.002) (dotted line), and output feedback with (ε2, ε3) = (0.01, 0.0001)
(dashed line)

3.4.2 Experimental results

The experimental testbed for the inverted pendulum on a cart is shown in Fig.3.7. A 6V-DC

motor with a planetary gearhead (reduction ratio 3.71:1) drives the cart on the racks. The

angle of the pendulum and the position of the cart are measured by optical encoders that

have a resolution of 1024 lines per revolution. The experimental hardware was interfaced

with a dSPACE board and the output feedback controller was implemented in the Mat-

lab/Simulink environment with a sampling interval of 0.0006 sec.

The dynamics of the inverted pendulum on a cart is described by (3.2) and (3.3) and the

nominal parameter values are given by (3.40). The dynamic inversion based output feed-
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Figure 3.5: Trajectories of α1 and α2 for state feedback (solid line), output feedback with
(ε2, ε3) = (0.02, 0.002) (dotted line), and output feedback with (ε2, ε3) = (0.01, 0.0001)
(dashed line).

back controller described by (3.25), (3.26), and (3.27) was implemented using the following

parameter values

k1 = 9, k2 = 5, γ1 = ε21k1, γ2 = ε1k2,

β1 = 50, β2 = 30,

hi1 = 3, hi2 = 3, hi3 = 1, for i = 1, 2

ε1 = 0.2, ε2 = 0.01, ε3 = 0.005
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Figure 3.6: Trajectories of x1 and α1 (solid lines), and x2 and α2 (dashed lines) are shown
in the top and middle subfigures. In the bottom subfigure, a trajectory of the input F in
(3.26) is shown.

The initial conditions were chosen as follows

x1(0) = −0.38 m, x2(0) = 0 m/sec,

α1(0) = 0.19 rad (10.9◦), α2(0) = 0 rad/sec

The initial angle of the pendulum was chosen close to the upright configuration such that

the cart position did not exceed the physical limit of the racks and the motor did not exceed

its torque limit. To reduce the effect of measurement noise, the encoder signals were passed

through low-pass filters of bandwidth 1000 Hz.

The experimental results are shown in Fig.3.8. Until around 0.5 sec, the pendulum on the
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Figure 3.7: Experimental testbed for the inverted pendulum on a cart - a product of Quanser
[1]

cart is held manually while the power switch is off. At around 0.5 sec, the power switch

is turned on. The trajectories of x1 and its estimate x̂1, and α1 and its estimate α̂1, all

converge to the origin.

Within an allowable operation range of the system, we compared experimentally results

generated by our control algorithm with ones provided by an LQR controller and the control

algorithm in [63]. The LQR controller is designed by following instructions in manufacturer

manuals. The stabilization control scheme proposed by [63] was also implemented to check

the effectiveness of estimates of uncertainties by the EHGOs. In Fig. 3.9, we show the ulti-

mate boundedness results from system uncertainties, which could be due to friction between

cart’s pion and racks, mass of the cart and pendulum, etc. In Fig. 10, the effectiveness of fast

estimates by the EHGOs with the dynamic inversion results in the appropriate control input

F whereas the other two controllers use high gains to stabilize the system at the equilibrium

in the presence of uncertainties.
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Figure 3.8: Trajectories of x1 and its estimate x̂1, and α1 and its estimate α̂1 are shown.
The estimated values are indistinguishable from their true (measured) values.

3.5 Conclusion

An output feedback controller for stabilization of an inverted pendulum on a cart was pre-

sented. From a practical point of view, this is an important contribution since all states of

the system are typically not accessible and uncertainties reside in the system. To estimate

the unmeasured states and to compensate for the uncertain dynamics, Extended High-Gain

Observers were used. To deal with uncertainties in the input coefficients, dynamic inversion

was used. Both Extended High-Gain Observers and dynamic inversion introduce fast time

scales and this required the controller to be designed using a multi-time-scale structure. The

multi-time-scale structure is well-suited for control of underactuated systems, and for the
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Figure 3.9: Trajectories of x1 and α1 are shown with different control schemes. Solid lines
driven by our control scheme, converge into the origin. Dotted lines generated by a LQR
controller, have ultimate boundedness. Dash-dot lines provided by the control algorithm
in [63] have the biggest ultimate boundedness.

inverted pendulum on a cart, additional time scale separation was used to first converge the

pendulum to a reference trajectory and then converge the cart to its desired configuration.

Using singular perturbation methods, the stability of the closed-loop system was analyzed

and exponential stability of the equilibrium was established. Numerical simulations were

used to show that the output feedback controller recovers the performance of state feedback

and to demonstrate a large region of attraction of the equilibrium. Experimental results

were used to demonstrate the feasibility of practical implementation with uncertainties in

system parameters. Our future work will focus on extending our approach to output feedback

stabilization of other underactuated mechanical systems.
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Figure 3.10: Trajectories of inputs F in (3.26) (the top subfigure), LQR (the middle subfig-
ure), and [63] (the bottom subfigure) are shown.
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Chapter 4

Output Feedback Control for an

Autonomous Helicopter in the

Presence of Disturbances

4.1 Introduction

In recent years, autonomous helicopter operation has been used in various areas such as

above-ground transportation, forest fire monitoring, monitoring criminal activity, and multi-

agent, multi-objective UAV mission in [60, 67]. However designing a control system for an

autonomous helicopter is a challenging task. Since helicopter dynamics have nonaffine con-

trol inputs and are underactuated mechanical systems, it is difficult to control and it can

easily become unstable compared to other mechanical systems like ground vehicles.

In [3, 20, 38, 39], controllers were proposed for helicopters without considering unmea-

sured states and uncertainties. In [38], a dynamic extension concept from [30] was used to

eliminate internal dynamics in an approximate model of a helicopter. In [39], a differential

flatness method was proposed through an approximation model. In [39], using the concept

of a natural two-time-scale separation, it was possible to design outer-loop (position dynam-
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ics) and inner-loop (the rest of the system) controls separately and overcome the feature

of underactuated mechanical systems. In [3], while considering dynamics of actuators, the

approximated (input-affine) model was combined with backstepping to control a helicopter.

Since an approximate model was used in both [38, 39] and [3], and neither disturbance nor

model uncertainties were considered, the proposed methods are not valid in the presence of

disturbance.

In [31, 47, 48], using high gains a two-time-scale approach for helicopter dynamics was

proposed considering the helicopter system parameter uncertainties. In [31], based on a two

time-scale separation approach between rotational and translational dynamics, a controller

with an affine control input model was designed to track the vertical reference trajectory

which has unknown phase, amplitude, and frequency, while stabilizing the lateral, longitu-

dinal, and attitude dynamics. In [31], the robustness of the controller to uncertainties was

considered through numerical simulations. In [47, 48], a state feedback controller robust to

uncertain aerodynamical parameters of the helicopter was proposed, which is based on the

linear approximation of control inputs. In [48], high gains were used to dominate uncertain

parameters and to render the helicopter rotational dynamics quickly converge into desired

trajectories which are control inputs for the translational dynamics. Moreover, nested satu-

ration control was used to prevent the controller having singularities. In [47], the systematic

control design process was presented, based on the earlier work of [48]. For the three papers,

it was assumed that states of the system were measurable and external disturbances were

not considered. Nonaffine control inputs were approximated to affine control inputs.

In [14, 19, 65], neural networks were proposed to deal with nonaffine control inputs and

uncertainties. In [14], neural networks were used to deal with uncertain, input-nonaffine,

nonlinear systems (for example, attitude dynamics of a helicopter). In [19], using neural

networks and backstepping scheme, uncertain system parameters and external disturbances

were dealt with under state feedback control. In [65], robust adaptive neural networks con-

trol was designed in the absence of uncertainties for vertical flight of helicopters, i.e., a
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single-input-single-output nonaffine system. The system states were estimated by high-gain

observers [33] and adaptive nenural networks were used to deal with a nonaffine control in-

put. However, neural networks require training, and selection of the basis and weights often

requires significant computation.

Disturbance estimators were used to consider uncertainties in helicopter dynamics in

[41, 45]. In [45], nonlinear model predictive control with disturbance observers was used

to deal with parameter uncertainties and external disturbances under the assumption that

states of the system were measurable and control inputs were affine. In [41], output feedback

control design for an unmanned helicopter in the presence of uncertainties was developed

for the rotational dynamics; the dynamic inversion scheme was used to deal with nonaffine

control inputs and an extended high-gain observer estimated unmeasured states, system pa-

rameter uncertainties, and external disturbances.

In this chapter, the output feedback control of a helicopter is proposed as an extension

of [41] from a Single-Input-Single-Output (SISO) systems to MIMO systems. We propose

to use an Extended High-Gain Observer (EHGO) to estimate the system states and distur-

bances of a helicopter instead of a neural network. In order to deal with nonaffine control

inputs in a helicopter, the EHGO is used together with the method of dynamic inversion.

The combined system has five time scales: two-time scales are required by plant dynamics

between translational and rotational dynamics; the third time-scale is required by dynamic

inversion for the translational dynamics; the fourth time-scale is required by the dynamic

inversion for the rotational dynamics; and the fifth, fastest, time scale is required by the

EHGO for estimation of the states, uncertain system parameter, and external disturbances.

This chapter is organized as follow. In Section 4.2, a helicopter model is given. In

Section 4.3, we define the problem and design state feedback control in the absence of uncer-

tainties. The stability analysis for the closed-loop system is conducted under state feedback.

In Section 4.4, output feedback control for full helicopter dynamics is designed in the presence

of uncertainties using the EHGO and dynamic inversion. Based on the singular perturbation
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method, the stability for the multi-time-scale closed-loop system is analyzed. The effective-

ness of the proposed control scheme is verified through numerical simulations in Section 4.5.

Section 4.6 presents concluding remarks.

4.2 Dynamics of a Helicopter

In this section, the rigid body dynamics of a helicopter are presented. It is assumed that

the actuator dynamics are sufficiently fast compared to the rigid body dynamics and can be

ignored in the mathematical model. The rigid body dynamics are based on [38] and written

as






M 0

0 I













v̇b

ω̇b






+







ωb ×mvb

ωb × Iωb






=







f b

τ b






,

where M = diag[m,m,m] and I = diag[Ixx, Iyy, Izz] are mass matrix and the inertia matrix

of the helicopter, respectively; m is the mass of a helicopter; Ixx, Iyy, and Izz are the principle

moments of inertia; vb =
[

vbx, v
b
y, v

b
z

]T
is the body velocity vector; vbi for i = x, y, z are the

linear velocities in the x, y, and z directions; τ b = [τ b1 , τ
b
2 , τ

b
3 ]
T is the torque, specified later

in next Subsection 4.2.1; and ωb = [ω1, ω2, ω3]
T is the angular velocity vector where ωj for

j = 1, 2, 3 are the angular velocities about x, y, and z axes. The input force matrix is

expressed as

f b =













XM

YM + YT

ZM













+RT (Θb)




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

0

0
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
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



,
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where the set of forces (XM , YM , YT , and ZM) or moments (RM , MM , NM , and MT ) acting

on a helicopter is given by

XM = −TM sin a1s, YM = TM sin b1s,

ZM = −TM cos a1s cos b1s, YT = −TT ,

RM ⋍

∂RM

∂b1s
b1s −QM sin a1s, MM ⋍

∂MM

∂a1s
a1s +QM sin b1s,

NM ⋍ −QM cos a1s cos b1s, MT = −QT .

QM = CQ
MT

1.5
M + DQ

M and QT = CQ
T T

1.5
T + DQ

T are the approximate rotor torque equations

for main and tail rotors, respectively (we follow the model in [38]). CQ
M and CQ

T are the

thrust coefficients of TM and TT , respectively, and D
Q
M and DQ

T are the lift drag coefficients

of TM and TT , respectively. The system parameters are given in Section 4.5. a1s and b1s

are longitudinal and lateral tilts of the tip path plane of the main rotor with respect to the

shaft, respectively; and TM and TT are main rotor thrust and tail rotor thrust, respectively.

The gravitational acceleration is g = 9.8 m/s2 and the rotation matrix R(Θb) is defined by

R(Θb) =













cθcψ sφsθcψ − cθsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ













,

where Θb = [φ, θ, ψ]T , φ (roll), θ (pitch), ψ (yaw) are the Euler angels and s(·) =

sin(·), c(·) = cos(·). Control inputs, TM , TT , a1s, and b1s are used for a helicopter control

under the assumption that the dynamics of a1s and b1s are sufficiently fast. In Table. 4.1,

Table 4.1: Parameters in a helicopter

hM Distance from COM(Center of Mass) to the main rotor along the z axis
hT Distance from COM to the tail rotor along the z axis
lM Distance from COM to the main rotor along the x axis
lT Distance from COM to the tail rotor along the x axis
yM Distance from COM to the main rotor along the y axis
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parameters are given for the helicopter. The side and top view of the helicopter is shown

with the parameters in Fig. 4.1.

4.2.1 Rotational Dynamics of a Helicopter

The helicopter dynamics can be divided into two parts, an inner-loop and an outer-loop due

to a natural time-scale separation [38] as shown in Fig. 4.2. In Fig. 4.2, φ, θ, ψ are actual

Euler angle values of a helicopter, and Θr = [φr, θr, ψr]
T is the reference trajectory which

is generated from the controller of translational dynamics, CT . The inner-loop is rotational

dynamics of a helicopter whereas the outer-loop is translational dynamics.

The inner-loop dynamics of a helicopter (attitude dynamics) are given by

Θ̇b = Ψ(Θb)ω
b

ω̇b = −I−1ωb × Iωb +Bτ b,

(4.1)

Figure 4.1: Side and top view of the helicopter

71



Figure 4.2: The block diagram is shown for rotational dynamics (inner-loop) and transla-
tional dynamics (outer-loop) control structure via two time-scale separation. The blocks PR,
PT are rotational dynamics and translational dynamics, respectively. The blocks CR, CT
are controllers for rotational and translational dynamics, respectively. χ is the position of
the helicopter and χr and Θr are reference trajectories for the translational and rotational
dynamics, respectively.

where B = diag[1/Ixx, 1/Iyy, 1/Izz]; and

Ψ(Θb) =













1 sin φ tan θ cosφ tan θ

0 cosφ − sin φ

0 sin φ sec θ cosφ sec θ


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



, Ψ−1(Θb) =






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



1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ













(4.2)

In order to make (4.1) compatible to extended high-gain observer method, the following

coordinates are used as

Θ̇b = Ω

Ω̇ = FI(Θb, Ω, τ
b),

(4.3)

where Ω = Ψ(Θb)ω
b =

[

φ̇, θ̇, ψ̇
]T

is a vector of the Euler angle rates. In (4.3), Ω̇ =

FI(Θb, Ω, τ
b) = [φ̈, θ̈, ψ̈]T is obtained from (4.1) as

φ̈ = (ω2 cosφ tan θ − ω3 sin φ tan θ)φ̇+ (ω2 sec
2 θ sin φ+ ω3 cos φ sec

2 θ)θ̇

− (Izz − Iyy)

Ixx
ω2ω3 +

(Izz − Ixx)

Iyy
ω1ω3 sin φ tan θ −

(Iyy − Ixx)

Izz
ω1ω2 cosφ tan θ

+
1

Ixx
τ b1 +

sin φ tan θ

Iyy
τ b2 +

cosφ tan θ

Izz
τ b3 ,

(4.4)
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θ̈ = −(ω2 sinφ+ ω3 cosφ)φ̇+
(Izz − Ixx)

Iyy
ω1ω3 cosφ+

(Iyy − Ixx)

Izz
ω1ω2 sin φ

+
cos φ

Iyy
τ b2 −

sinφ

Izz
τ b3

(4.5)

ψ̈ = (ω2 cosφ sec θ − ω3 sec θ sin φ)φ̇+ (ω2 sec θ sinφ tan θ + ω3 cosφ sec θ tan θ)θ̇

+
(Izz − Ixx)

Iyy
ω1ω3 sec θ sinφ− (Iyy − Ixx)

Izz
ω1ω2 cosφ sec θ

+
sec θ sin φ

Iyy
τ b2 +

cos φ sec θ

Izz
τ b3 ,

(4.6)

and τ = [τ b1 , τ
b
2 , τ

b
3 ]
T is given by

τ b1 =
∂RM

∂b1s
b1s −QM sin(a1s) + TM sin(b1s)hM − TM cos(a1s) cos(b1s)yM − TThT ,

τ b2 =
∂MM

∂a1s
a1s +QM sin(b1s)−QT + TM sin(a1s)hM − TM cos(a1s) cos(b1s)lM ,

τ b3 =−QM cos(a1s) cos(b1s)− TM sin(b1s)lM + TT lT ,

4.2.2 Translational Dynamics of a Helicopter

The translational dynamics of a helicopter (i.e., position dynamics) are given by

Ṗ =vb

v̇b =
1

m
R(Θ)f b = FP ,

(4.7)
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where P = [x, y, z]T , vb = [ẋ, ẏ, ż]T are a position vector and a velocity vector in North-East-

Down orientation, respectively, and FP = [fx, fy, fz]
T is

fx =

(

1

m

)

{−TM cos θ cosψ sin a1s

+ (sinφ sin θ cosψ − cos φ sinψ)[TM sin b1s − TT ]

− TM(cos φ sin θ cosψ + sin φ sinψ) cos a1s cos b1s}

fy =

(

1

m

)

{−TM cos θ sinψ sin a1s

+ (sinφ sin θ sinψ + cosφ cosψ)[TM sin b1s − TT ]

− TM(cos φ sin θ sinψ − sin φ cosψ) cos a1s cos b1s}

fz =

(

1

m

)

{TM sin θ sin a1s + (sinφ cos θ)[TM sin b1s− TT ]

− TM cosφ cos θ cos a1s cos b1s}+ g

(4.8)

4.3 Stability Analysis in the Absence of Disturbances

In this section, we describe a control strategy for a helicopter in the absence of uncertainties,

based on a time-scale separation strategy between the translational and rotational dynamics.

The control objective is to follow given reference trajectories xr, yr, zr, and ψr with inputs

TM , TT , a1s and b1s.

In this section we assume that all system states and dynamic models are known. For the

translational dynamics, we neglect flapping dynamics a1s and b1s and the tail rotor thrust

TT in y-direction in [38], [31], [48], [47] and the translational dynamics are given by

P̈ =
1

m
R(Θ)













0

0

−TM













+













0

0

g













(4.9)
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We are going to design a controller which renders the rotational dynamics faster than

the translational dynamics while dealing with nonaffine control inputs. Based on the

time-scale separation between the rotational and translation dynamics, new control inputs

ur = [TT , a1s, b1s]
T for the rotational dynamics and ut = [TM , φd, θd]

T for the translational

dynamics are designed, where φd and θd in dynamic inversion control will be specified later.

As depicted in Fig. 4.2, an inner-loop controller for the rotational dynamics is designed

to force the rotational dynamics to follow the desired reference trajectories φr, θr, and ψr

with a fast convergence rate. An outer-loop controller for the translational dynamics is

designed to provides desired reference trajectories φr, θr, and ψr for the rotational dynamics

and to obtain slower translation dynamics than rotational dynamics. A dynamic inversion

controller will be designed to deal with nonaffine input forms.

4.3.1 State feedback control

With state variables

χx = [x1, x2]
T = [x, ẋ]T , χy = [y1, y2]

T = [y, ẏ]T , χz = [z1, z2]
T = [z, ż]T

Θφ = [φ1, φ2]
T = [φ, φ̇]T , Θθ = [θ1, θ2]

T = [θ, θ̇]T , Θψ = [ψ1, ψ2]
T = [ψ, ψ̇]T

(4.10)

the translational dynamics of (4.9) are rewritten as

χ̇ = Aχ+BFO (4.11)

where χ = [χTx , χ
T
y , χ

T
z ]
T ∈ Dχ, Dχ ⊂ R6 is bounded, A = block diag[A1, A1, A1], B =

block diag[B1, B1, B1] with

A1 =







0 1

0 0






, B1 =







0

1






(4.12)
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and

FO =













fx

fy

fz













=













− 1

m
(cosφ1 sin θ1 cosψ1 + sinφ1 sinψ1)TM

− 1

m
(cosφ1 sin θ1 sinψ1 − sinφ1 cosψ1)TM

− 1

m
(cosφ1 cos θ1)TM + g













(4.13)

We note that in the translational dynamics in (4.11), control inputs are φ1, θ1, and TM where

φ1 and θ1 are viewed as the virtual control provided by the rotational dynamics as the fast

time scale. A target system for the translational dynamics is given by

χ̇r = (A− BL)χr +Buc (4.14)

where χr = [xr, ẋr, yr, ẏr, zr, żr]
T ∈ Dχr , Dχr ⊂ R6 is bounded, the matrix L =

block diag[Lχ, Lχ, Lχ] with Lχ = [kp, kv] is block diagonal such that the matrix (A−BL) is

Hurwitz, and uc = [rx, ry, rz]
T is a bounded commend input and continuously differentiable.

To track the reference trajectories for the translational dynamics, it is required to find φr,

θr and T
∗
m given ψr such that

Fχ =













fx(φr, θr, ψr, T
∗
M)

fy(φr, θr, ψr, T
∗
M)

fz(φr, θr, T
∗
M)













+ Lχ− uc(t) = 0 (4.15)

The dynamic inversion in the translational dynamics is used to obtain approximated solutions

φd, θd, and TM for (4.15).

With the state variables in (4.10), the rotational dynamics of a helicopter in (4.3) can be

represented as

Θ̇ = AΘ+BFI , (4.16)

76



where Θ = [ΘT
φ ,Θ

T
θ ,Θ

T
ψ ]
T ∈ DΘ ⊂ R6 and FI = [fφ, fθ, fψ]

T = FI(Θb,Ω, τ
b) ∈ R3 in (4.3).

The domain DΘ is given by DΘ = DΘφ×DΘθ×DΘψ , DΘp = {−ap ≤ p ≤ ap}×{bp ≤ ṗ ≤ bp},

for p = φ, θ, ψ with bounded 0 < ap < π/2 and b > 0.

There are two tasks of a controller for the rotational dynamics: one is to deal with

nonaffine input forms which is required to find solutions a∗1s, b1s, and T
∗
T such that

FΘ =













fφ(Θ, TM , a
∗
1s, b

∗
1s, T

∗
T )+kφ1(φ1−φd)+kφ2φ2)

fθ(Θ, TM , a
∗
1s, b

∗
1s, T

∗
T )+kθ1(θ1−θd) + kθ2θ2)

fψ(Θ, TM , a
∗
1s, b

∗
1s, T

∗
T )+kψ1

(ψ1−ψr)+kψ2
ψ2)













= 0, (4.17)

where fφ, fθ, and fψ given in in (4.13), and kφi, kθi, kψi for i = 1, 2 are high gains specified

later; and the other is to make the rotational dynamics converge quickly into the desired

reference trajectories φd, θd, and ψr provided by a dynamic inversion controller. For the

rotational dynamics, the dynamic inversion is used to find approximated solutions a1s, b1s,

and TT for (4.17).

Two dynamic inversion controllers in [43, 44] are designed to deal with nonaffine inputs

ut = [TM , φd, θd]
T and ur = [TT , a1s, b1s]

T . The dynamic inversion for the translational

dynamics is

ε2u̇t = −
(

∂Fχd
∂ut

)T

Fχd(Θ, χ, ut, uc) (4.18)

where ut ∈ Dt ⊂ R3; (∂Fχd/∂ut) is given in Appendix Appendix B;

Fχd(Θ, χ, ut, uc) =













fx(φd, θd, ψr, TM)

fy(φd, θd, ψr, TM)

fz(φd, θd, TM)













+ Lχ− uc(t), uc(t) =













rx(t)

ry(t)

rz(t)













(4.19)
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fx, fy and fz are given in (4.13); and rx(t), ry(t), and rz(t) are bounded reference commends.

The dynamic inversion for the rotational dynamics

ε3u̇r = −
(

∂FΘ

∂ur

)T

FΘ(Θ, ut, ur, ψr) (4.20)

where ur ∈ Dr ⊂ R3, (∂FΘ/∂ur) is given in Appendix Appendix B, and

FΘ(Θ, ut, ur, ψr) =













fφ(Θ, ut, ur)+kφ1(φ1−φd)+kφ2φ2)

fθ(Θ, ut, ur)+kθ1(θ1−θd) + kθ2θ2)

fψ(Θ, ut, ur)+kψ1
(ψ1−ψr)+kψ2

ψ2)













(4.21)

To obtain the fast rotational dynamics, kφi, kθi, kψi for i = 1, 2 are chosen as

kφ1 = kθ1 = kψ1
=
k1
ε21
, kφ2 = kθ2 = kψ2

=
k2
ε1

(4.22)

where kr,1 and kr,2 are positive constants independent of ε1 and ε2. The assumption for the

Jacobian matrices (∂Fχd/∂ut) and (∂FΘ/∂ur) are as follows.

Assumption 4. In the domains Dχ, Dχr , DΘ, Dt and Dr,

• the Jacobian matrices (∂Fχd/∂ut) and (∂FΘ/∂ur) are nonsingular;

• λmin

(

(∂Fχd/∂ut)(∂Fχd/∂ut)
T

)

> a with a > 0 and λmin

(

(∂FΘ/∂ur)(∂FΘ/∂ur)
T

)

> b

with b > 0;

• Fχ and FΘ are continuously differentiable,

where λmin(P ) denotes the minimum eigenvalue of the matrix P .

4.3.2 Stability analysis

Using the systems (4.11), (4.14), and (4.16) with the control (4.18) and (4.20), the standard

singularly perturbed form for the closed-loop system is derived. Error variables for the
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translational dynamics are

ex1 = x1 − xr, ex2 = x2 − ẋr

ey1 = y1 − yr, ey2 = y2 − ẏr

ez1 = z1 − zr, ez2 = z2 − żr

(4.23)

Time-scaled variables for the rotational dynamics are

eφ1 = φ1 − φr, eφ2 = ε1(φ2 − φ̇r)

eθ1 = θ1 − θr, eθ2 = ε1(θ2 − θ̇r)

eψ1
= ψ1 − ψr, eψ2

= ε1(ψ2 − ψ̇r)

(4.24)

Error variables of the dynamic inversion for the translational and rotational dynamics are

st = ut − u∗t and sr = ur − u∗r with

ut =













TM

φd

θd













, u∗t =













T ∗
M

φr

θr













, ur =













TT

a1s

b1s













, u∗r =













T ∗
T

a∗1s

b∗1s













(4.25)

u∗t and u
∗
r are satisfied with

FΘ(Θ, ut, u
∗
r, ψr) = 0, Fχ(Θ, χ, u

∗
t , uc) = 0

Fχ(Θ, χ, u
∗
t , uc) =













fx(φr, θr, ψr, T
∗
M)

fy(φr, θr, ψr, T
∗
M)

fz(φr, θr, T
∗
M)













+ Lχ− uc(t),
(4.26)

In view of Assumption 4 and the Lipschitz property of Fχd in its arguments, it is reasonable

to have the following assumption on the relation between ‖Fχd‖ and ‖s‖:

Assumption 5. kl‖st‖ ≤ ‖Fχd(Θ, χ, ut, uc)−Fχd(Θ, χ, u∗t , uc)‖ ≤ kl‖s‖ with some constants
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kl, kp > 0 on the domains Dχ, Dχr , DΘ, Dt, and Dr

So, u∗r is a function, u∗r = u∗r(Θ, ut, ψr) and u∗t a function, u∗t = u∗t (Θ, χ, uc). Error

dynamics of translational dynamics are represented as

ėχ = Aχeχ +BFχ(Θ, χ, ut, uc) (4.27)

with eχ = [eTx , e
T
y , e

T
z ]
T and Aχ = A − BL. With the time-scaled variables in (4.24), the

closed-loop standard singular perturbed form for error dynamics of the rotational dynamics

is

ε1ėΘ = AθeΘ +B[k1(Θd −Θr) + ε21FΘ(Θ, ut, ur, ψr)− ε21Θ̈r − ε1k2Θ̇r] (4.28)

with Aθ = A − BLθ, eΘ = [eTφ , e
T
θ , e

T
ψ ]
T , eφ = [eφ1 , eφ2 ]

T , eθ = [eθ1 , eθ2 ]
T , eψ = [eψ1

, eψ2
]T ,

Lθ = block diag[L1, L1, L1], L1 = [k1, k2], Θd = [φd, θd, ψr]
T , and Θr = [φr, θr, ψr]

T . The

error dynamics for the variable st are

ε2ṡt = −
(

∂Fχd
∂ut

)T

Fχd(Θ, χ, ut, uc)− ε2u̇
∗
t

(4.29)

where u̇∗t is

u̇∗t =

(

∂ut
∂Θ

)

Θ̇ +

(

∂ut
∂χ

)

χ̇ +

(

∂ut
∂uc

)

u̇c (4.30)

The error dynamics for sr is

ε3ṡr = −
(

∂FΘ

∂ur

)T

FΘ(Θ, ut, ur, ψr)− ε3u̇
∗
r (4.31)
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where u̇∗r is

u̇∗r =

(

∂ur
∂Θ

)

Θ̇−
(

1

ε2

)(

∂ur
∂ut

)(

∂Fχd
∂ut

)T

Fχd +

(

∂ut
∂ψr

)

ψ̇r (4.32)

Using (4.27), (4.28), (4.29), and (4.31), the singularly perturbed form is

ėχ = Aχeχ +BFχ(eΘ +Θer, eχ + χr, s+ u∗, uc) (4.33)

ε1ėΘ = AθeΘ +B[k1(Θd −Θr) + ε21FΘ(Θ, s+ u∗, ψr)− ε21Θ̈r − ε1k2Θ̇r] (4.34)

ε2ṡt = −
(

∂Fχd
∂ut

)T

Fχd(Θ, eχ + χr, st + u∗t , uc)− ε2u̇
∗
t (4.35)

ε3ṡr = −
(

∂FΘ

∂ur

)T

FΘ(Θ, eχ + χr, st + u∗t , sr + u∗r, ψr)− ε3u̇
∗
r (4.36)

We have a three-time-scale structure in (4.33), (4.34), (4.35), and (4.36). We note that the

small parameters ε1, ε2, and ε3 have the relation, 0 < ε3 ≪ ε2 ≪ ε1 ≪ 1. Since u̇∗t in

(4.35) has the term (1/ε1), it is required to have 0 < ε2 ≪ ε1 ≪ 1. ε3 is required to be

0 < ε3 ≪ ε2 ≪ 1 since u̇r in (4.36), has the term (1/ε2).

Stability analysis starts from the fastest boundary layer system of the dynamic inversion

in (4.36). The boundary layer system can be obtained setting ε3 = 0 on the right-hand side

of (4.36)

ε3ṡr = −
(

∂FΘ

∂ur

)T

FΘ(Θ, eχ + χr, st + u∗t , sr + u∗r, ψr) (4.37)

A Lyapunov function for the boundary layer system is Vr = F T
ΘFΘ/2. The derivatives of the

Lyapunov function along trajectories in (4.37) and under Assumption 4. is

V̇r = −
(

1

ε3

)

F T
Θ

(

∂FΘ

∂ur

)(

∂FΘ

∂ur

)T

FΘ

+ F T
Θ

[

(

∂FΘ

∂Θ

)

Θ̇ +

(

∂FΘ

∂χ

)

χ̇−
(

1

ε2

)(

∂FΘ

∂ut

)(

∂Fχd
∂ut

)T

Fχd

] (4.38)
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Then,

V̇r ≤ −
(

1

2ε3λmin(Pr)

)

Vr +

(

δ1
ε1

+
δ2
ε2

+ δ3

)

(4.39)

where Pr = (∂FΘ/∂ur)(∂FΘ/∂ur)
T ; and δ1, δ2, and δ3 are positive constants related to the

upper bounds for the terms F T
Θ (∂FΘ/∂Θ)Θ̇, F T

Θ (∂FΘ/∂ut)(∂Fχ/∂ut)
TFχ, and F

T
Θ (∂FΘ/∂χ)χ̇

and independent of ε3. With ε3 ≪ ε2 ≪ ε1 ≪ 1, V̇r is negative with Vr 6= 0.

Now the fastest variable ur reached in the quasi-steady state, i.e. ur = u∗r and the other

subsystems (4.33), (4.34), and (4.35) are viewed as the reduced system with ε3 = 0 and

sr = 0. The reduce system has a multi-time-scale structure in which (4.35) is fast and the

other two, (4.33) and (4.34) are slow. By setting ε2 = 0, and sr = 0 (i.e., the fastest system

reaches the quasi-steady state) on the right-hand side of (4.35), the boundary layer systems

for the second fastest dynamic inversion is obtained by

ε2ṡt = −
(

∂Fχd
∂ut

)T

Fχd(Θ, eχ + χr, st + u∗t , uc) (4.40)

A Lyapunov function Vt = (F T
χd
Fχd)/2 is defined and the derivative of the Lyapunov functiono

is

V̇t = −
(

1

ε2

)

F T
χd

(

∂Fχd
∂ut

)(

∂Fχd
∂ut

)T

Fχd

+ F T
χd

[(

∂Fχd
∂Θ

)

Θ̇ +

(

∂Fχd
∂χ

)

χ̇+

(

∂Fχd
∂uc

)

u̇c

]
(4.41)

V̇t ≤ −
(

1

2ε2λmin(Pt)

)

Vt +

(

δ4
ε1

+ δ5

)

(4.42)

where Pt = (∂Fχd/∂ut)(∂Fχd/∂ut)
T , δ4 and δ5 are positive constants related to the upper

bounds for the terms F T
χd
(∂Fχd/∂Θ)Θ̇, F T

χd
(∂Fχd/∂χ)χ̇, and F

T
χd
(∂Fχd/∂uc)u̇c, and indepen-

dent of ε2. With ε2 ≪ ε1 ≪ 1, V̇t is negative with Vt 6= 0.
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Two fast variables ur and ut reach in the quasi-steady state, i.e., ur = u∗r and ut = u∗t

sr = ur − u∗r =













TT − T ∗
T

a1s − a∗1s

b1s − b∗1s













= 0, st = ut − u∗t =













TM − T ∗
M

φd − φr

θd − θr













= 0 (4.43)

With Θr = [φd, θd, ψr]
T and Θr = [φr, θr, ψr]

T given below (4.28) and (4.43), we obtain

(Θd −Θr) = 0. Setting εi = 0 for i = 1, 2, st = 0, and sr = 0 on the right-hand side of both

(4.33) and (4.34), we obtain the reduce system

ėχ = Aχeχ, (4.44)

ε1ėΘ = AΘeΘ − ε21Θ̈r − ε1k2Θ̇r (4.45)

Now, in the reduced system, (4.44) and (4.45), the rotational dynamics are faster than the

translational dynamics. The boundary layer system for (4.45) is obtained setting ε1 = 0 on

the right-hand side of (4.45),

ε1ėΘ = AΘeΘ (4.46)

which has asymptotic stability at eΘ = 0. Setting ε1 = 0 and eΘ = 0, the reduced system

for (4.44) is

ėχ = Aχeχ (4.47)

which is asymptotically stable at eχ = 0. By using a composite Lyapunov function, the

effect of the interconnections for the closed-loop system (4.33), (4.34), (4.35), and (4.36),

can be considered. The procedure for the effect of the interconnections are similar to the

output feedback control stability analysis. So, we omit the procedure which will be shown

83



in Section 4.4.

4.4 Stability Analysis in the Presence of Disturbances

In this section, output feedback control will be designed using the extended high-gain ob-

server to estimate unmeasured system states and external disturbances. Using the singular

perturbation method, stability analysis for the closed-loop system will be conducted.

Let us consider the case where the helicopter dynamics in (4.11) and (4.16) have external

disturbances as follows.

χ̇ = Aχ +B[FO(Θ, ut) + σχ(t)]

yχ = Cχ

Θ̇ = AΘ+B[FI(Θ, ut, ur) + σΘ(t)]

yΘ = CΘ

(4.48)

where χ and FO(Θ, ut) for the translational dynamics and Θ and FI(Θ, ut, ur) for the ro-

tational dynamics are given right after below of (4.11) and (4.16), respectively; yχ and yΘ

are measurements; and C = block diag[C1, C1, C1] is with C1 = [1, 0]. It is assumed that

the external disturbances, σχ(t) = [σx, σy, σz]
T and σΘ(t) = [σφ, σθ, σψ]

T have the following

properties.

Assumption 6. The functions σχ(t) and σΘ(t) are continuously differentiable.
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4.4.1 Design of Extend High-Gain Observers (EHGOs)

Unknown external disturbances σχ and σΘ, and unmeasured states will be estimated using

the EHGO

˙̂χ = Aχ̂ +B[FO(Θ̂, ut) + σ̂χ(t)] +Hχ(ε4)(yχ − Cχ̂)

˙̂σχ = Hχe(yχ − Cχ̂)

˙̂
Θ = AΘ̂ +B[FI(Θ̂, ut, ur) + σ̂Θ(t)] +HΘ(ε4)(yΘ − CΘ̂)

˙̂σΘ = HΘe(yΘ − CΘ̂)

(4.49)

where the estimates of χ and Θ are χ̂ = [χ̂Tx , χ̂
T
y , χ̂

T
z ]
T and Θ̂ = [Θ̂T

φ , Θ̂
T
θ , Θ̂

T
ψ ]
T , respectively,

with

χ̂x = [x̂1, x̂2]
T , χ̂y = [ŷ1, ŷ2]

T , χ̂z = [ẑ1, ẑ2]
T

Θ̂φ = [φ̂1, φ̂2]
T , Θ̂θ = [θ̂1, θ̂2]

T , Θ̂ψ = [ψ̂1, ψ̂2]
T

(4.50)

and σ̂χ = [σ̂x, σ̂y, σ̂z]
T and σ̂Θ = [σ̂φ, σ̂θ, σ̂ψ]

T are estimates of σχ(t) and σΘ(t), respectively.

The observer gains, Hχ, Hχe, HΘ and HΘe are given by

Hχ = block diag[H1, H2, H3], HΘ = block diag[H4, H5, H6]

Hi = [hi1/ε4, hi2/ε
2
4]
T , for i = 1, . . . , 6

Hχe = block diag[h13/ε
3
4, h23/ε

3
4, h33/ε

3
4], HΘe = block diag[h43/ε

3
4, h53/ε

3
4, h63/ε

3
4]

(4.51)

where the components hi1, hi2, and hi3 of the high gains are chosen such that the polynomials

λ3 + hi,1λ
2 + hi,2λ+ hi,3 for i = 1, . . . , 6 (4.52)

are Hurwitz and the control parameter ε4 > 0 is small enough. The relation between ε3 and

ε4 is ε4 ≪ ε3 ≪ 1 since the dynamic inversion uses estimates provided by the EHGO.
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4.4.2 Output feedback control

With the EHGO in (4.49), the output feedback control, based on the dynamic inversion, is

designed as

ε2u̇t = −
(

∂Fχd
∂ut

)T

Fχs(Θs, χs, ut, uc, σ̂χs)

ε3u̇r = −
(

∂FΘ

∂ur

)T

FΘs(Θs, ut, ur, ψr, σ̂Θs)

(4.53)

where

Θs = [ΘT
φs ,Θ

T
θs,Θ

T
ψs]

T χs = [χTxs, χ
T
ys, χ

T
zs]

T

Θφs =









φ1

Mφsat

(

φ̂2

Mφ

)









, Θθs =









θ1

Mθsat

(

θ̂2
Mθ

)









, Θψs =









ψ1

Mψsat

(

ψ̂2

Mψ

)









χxs =







x1

Mxsat

(

x̂2
Mx

)






, χys =







y1

Mysat

(

ŷ2
My

)






, χzs =







z1

Mzsat

(

ẑ2
Mz

)






,

(4.54)

σ̂s = [σ̂Tχs , σ̂
T
Θs ]

T

σ̂χs =













M1sat(σ̂x/M1)

M2sat(σ̂y/M2)

M3sat(σ̂z/M3)













, σ̂Θs =













M4sat(σ̂φ/M4)

M5sat(σ̂θ/M5)

M6sat(σ̂ψ/M6)













, (4.55)

and Fχs and FΘs are

Fχs =













fx(φd, θd, ψ1, TM) +M1sat(σ̂x/M1) + kx1x1 + kx2Mxsat(x̂2/Mx)− rx(t)

fy(φd, θd, ψ1, TM) +M2sat(σ̂y/M2) + ky1y1 + ky2Mysat(ŷ2/My)− ry(t)

fz(φd, θd, ψ1, TM) +M3sat(σ̂z/M3) + kz1y1 + kz2Mzsat(ẑ2/Mz)− rz(t)













(4.56)
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FΘs =













fφ(Θ, ut, ur) +M4sat(σ̂φ/M4) + kφ1(φ1 − φd) + kφ2Mφsat(φ̂2/Mφ)

fθ(Θ, ut, ur) +M5sat(σ̂θ/M5) + kθ1(θ1 − θd) + kθ2Mθsat(θ̂2/Mθ)

fψ(Θ, ut, ur) +M6sat(σ̂ψ/M6) + kψ1
(ψ1 − ψd) + kψ2

Mψsat(ψ̂2/Mψ)













(4.57)

The saturation function, sat(·) is defined by

sat(k) =

{

k |k| ≤ 1

sign(k) |k| > 1
(4.58)

The saturation levels Mj for j = φ, θ, ψ, x, y, z, 1, 2, . . . , 6 are determined such that the

saturation function will not be activated under the state feedback.

4.4.3 Stability analysis in the presence of disturbances

The fast error variables η = [ηTχ , η
T
Θ]
T for the EHGO are given by

ηχ = [ηTx , η
T
y , η

T
z ]
T , ηΘ = [ηTφ , η

T
θ , η

T
ψ ]
T

ηx = [ηx1, ηx2 , ηx3]
T , ηy = [ηy1 , ηy2, ηy3 ]

T , ηz = [ηz1 , ηz2 , ηz3]
T

ηφ = [ηφ1 , ηφ2, ηφ3 ]
T , ηθ = [ηθ1 , ηθ2, ηθ3 ]

T , ηψ = [ηψ1
, ηψ2

, ηψ3
]T

(4.59)

where

ηx1 =
x1 − x̂1
ε24

, ηx2 =
x2 − x̂2
ε4

, ηx3 = σx(t)− σ̂x(t)

ηy1 =
y1 − ŷ1
ε24

, ηy2 =
y2 − ŷ2
ε4

, ηy3 = σy(t)− σ̂y(t)

ηz1 =
z1 − ẑ1
ε24

, ηz2 =
z2 − ẑ2
ε4

, ηz3 = σz(t)− σ̂z(t)

(4.60)
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and

ηφ1 =
φ1 − φ̂1

ε24
, ηφ2 =

φ2 − φ̂2

ε4
, ηφ3 = σφ(t)− σ̂φ(t)

ηθ1 =
θ1 − θ̂1
ε24

, ηθ2 =
θ2 − θ̂2
ε4

, ηθ3 = σθ(t)− σ̂θ(t)

ηψ1
=
ψ1 − ψ̂1

ε24
, ηψ2

=
ψ2 − ψ̂2

ε4
, ηψ3

= σψ(t)− σ̂ψ(t)

(4.61)

Error dynamics for the EHGO are

ε4η̇ = Λη + ε4[B̄1∆1 + B̄2∆2] (4.62)

where Λ = block diag[A,A] ∈ R18×18,

B̄1 = block diag[Be1, · · · , Be1] ∈ R18×6, Be1 = [0, 1, 0]T

B̄2 = block diag[Be2, · · · , Be2] ∈ R18×6, Be2 = [0, 0, 1]T
(4.63)

∆1 =

































(fx(φ1, θ1, ψ1, TM)− fx(φ̂1, θ̂1, ψ̂1, TM))/ε4

(fy(φ1, θ1, ψ1, TM)− fy(φ̂1, θ̂1, ψ̂1, TM))/ε4

(fz(φ1, θ1, TM)− fz(φ̂1, θ̂1, TM))/ε4

(fφ(Θ, u)− fφ(Θ̂, u))/ε4

(fθ(Θ, u)− fθ(Θ̂, u))/ε4

(fψ(Θ, u)− fψ(Θ̂, u))/ε4

































, ∆2 =

































σ̇x

σ̇y

σ̇z

σ̇φ

σ̇θ

σ̇ψ

































(4.64)

We note that the components of ∆1, i.e., (fi(Θ, u)− fi(Θ̂, u)) for i = x, y, z, φ, θ, ψ, have the

bound ‖fi(Θ, u)− fi(Θ̂, u)‖ ≤ ε4‖η‖, and ‖∆2‖ ≤ kδ with kδ > 0.

Using the target system of (4.14), the plant dynamics (4.48), and (4.53) with the error
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variables eχ, eΘ, and s, the closed-loop system is presented in the singularly perturbed form

ėχ = Aχeχ +BFχ(Θ, eχ + χr, ut, uc, σχ(t)) (4.65)

ε1ėΘ = AθeΘ +B[k1(Θd −Θr) + ε21FΘ(Θ, ut, ur, ψr, σΘ(t))− ε21Θ̈r − ε1k2Θ̇r] (4.66)

ε2ṡt = −
(

∂Fχd
∂ut

)T

Fχd(Θ, eχ + χr, st + u∗t , uc, σχ) + ∆σχ +∆χ − ε2u̇
∗
t (4.67)

ε3ṡr = −
(

∂FΘ

∂ur

)T

FΘ(Θ, st + u∗t , sr + u∗r, ψr, σΘ) + ∆σΘ +∆Θ − ε3u̇
∗
r (4.68)

ε4η̇ = Λη + ε4[B̄1∆1 + B̄2∆2] (4.69)

where Fχ and FΘ are given in (4.26) and (4.21), respectively and u∗t and u
∗
r are satisfied with

Fχ(Θ, χ, u
∗
t , uc, σχ) = 0, FΘ(Θ, ut, u

∗
r, ψr, σΘ) = 0, (4.70)

∆σχ =

















M1sat

(

σ̂x
M1

)

− σx

M2sat

(

σ̂y
M2

)

− σy

M3sat

(

σ̂z
M3

)

− σz

















, ∆σΘ =

















M4sat

(

σ̂φ
M4

)

− σφ

M5sat

(

σ̂y
M5

)

− σθ

M6sat

(

σ̂z
M6

)

− σψ

















(4.71)

∆χ =



















kx2

(

Mxsat

(

x̂2
Mx

)

− x2

)

ky2

(

Mysat

(

ŷ2
My

)

− y2

)

kz2

(

Mzsat

(

ẑ2
Mz

)

− z2

)



















, ∆Θ =

























kφ2

(

Mφsat

(

φ̂2

Mφ

)

− φ2

)

kθ2

(

Mθsat

(

θ̂2
Mθ

)

− θ2

)

kψ2

(

Mψsat

(

ψ̂2

Mz

)

− ψ2

)

























(4.72)

Now, the next theorem states the stability analysis for the closed-loop system (4.65),

(4.66), (4.67), (4.67), and (4.69).

Theorem 3. Consider the closed-loop system (4.65), (4.66), (4.67), (4.67), and (4.69) under
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the Assumption 4, 5, and 6. There exists ε∗ such that all

ε1 < ε∗, ε2 < ε∗, ε3 < ε∗, ε4 < ε∗

(ε2/ε1) < ε∗, (ε3/ε2) < ε∗, (ε4/ε3) < ε∗
(4.73)

and for all initial states (χ(0),Θ(0)) ∈ X1, (ut(0), ur(0)) ∈ X2, and (χ̂(0), Θ̂(0)) ∈ X3,

where X1 is a compact set of (χ,Θ) in the domain Dχ × DΘ, X2 is any compact subset of

R2, and X3 is any compact subset of R18, all trajectories are bounded and the size of the

ultimate boundedness for error state variables in the error dynamics can be arbitrarily small

with sufficiently small εi for i = 1, . . . , 4 and (ε2/ε1), (ε3/ε2), (ε4/ε3).

Proof. We consider Lyapunov functions Vχ = eTχPχeχ, VΘ = eTΘPχeΘ, and Vη = ηTPηη where

Pχ, PΘ, and Pη are solutions of the Lyapunov equations, ATχPχ+PχAχ = −I, ATΘPΘ+PΘAΘ =

−I, and ΛTPη + PηΛ = −I. Since we are going to use a time-scale separation approach

between subsystems, sets are defined by

Ωa = {Vχ ≤ a1} × {VΘ ≤ a2} × {Vt ≤ a3} × {Vr ≤ a4}

Ωb = {Vχ ≤ b1} × {VΘ ≤ b2} × {Vt ≤ b3} × {Vr ≤ b4}

Ωc = {Vχ ≤ c1} × {VΘ ≤ c2} × {Vt ≤ c3}

Ωd = {Vχ ≤ d1} × {VΘ ≤ d2}

(4.74)

with

0 < a1 < b1 < c1 < d1, 0 < a2 < b2 < c2 < d2, 0 < a3 < b3 < c3, o < a4 < b4 (4.75)

To consider relations between the trajectories χ and eχ, and Θ and eΘ, the constants m1

and m2 are chosen such that

(eχ, eΘ) ∈ {Vχ ≤ a1} × {VΘ ≤ a2} =⇒ (χ,Θ) ∈ X1 (4.76)
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Now, we briefly describe the process of the proof for the boundedness of trajectories using

the next steps:

• initially, the trajectories (eχ, eΘ, st, sr) and η starting from (eχ(0), eΘ(0), st(0), sr(0)) ∈

Ωa and η(0) from the outside of the set of {Vη ∈ ρε24}, enter the set Ωb × {Vη ≤ ρ1ε
2
4};

• secondly, the trajectories (eχ, eΘ, st, sr) and η starting from Ωb × {Vη ≤ ρε24} enter the

set Ωc × {Vr ≤ ρ2µ
2
1} × {Vη ≤ ρ1ε

2
4} with µ1 = (ε3/ε2);

• thirdly, the trajectories (eχ, eΘ, st, sr) and η starting from Ωc × {Vr ≤ ρ2µ
2
1} × {Vη ≤

ρ1ε
2
4} enter the set Ωd × {Vt ≤ ρ3µ

2
2} × {Vr ≤ ρ2µ

2
1} × {Vη ≤ ρ1ε

2
4} with µ2 = (ε2/ε1) ;

• lastly, the trajectories (eχ, eΘ, st, sr) and η starting from Ωd × {Vt ≤ ρ3µ
2
2} × {Vr ≤

ρ2µ
2
1} × {Vη ≤ ρ1ε

2
4} enter the set {Vχ ≤ e1} × {VΘ ≤ e2ε

2
1} × {Vt ≤ ρ3µ

2
2} × {Vr ≤

ρ2µ
2
1} × {Vη ≤ ρ1ε

2
4}, where e1 and e2 are positive constants.

Since these above four steps are similar, we are going to show only the first bullet and the

others will be omitted. In the first step, initial trajectories (eχ, eΘ, st, sr) and η start from the

set (eχ(0), eΘ(0), st(0), sr(0)) ∈ Ωa and η /∈ {Vη ∈ ρε24} with ‖η(0)‖ ≤ (k/ε24). The derivative

of Vη along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69) is

V̇η = −
(

1

ε4

)

ηTη + (B̄1∆1 + B̄2∆2)
TPηη (4.77)

Using the bound of the term (B̄1∆1 + B̄2∆2) in (4.69) for all (eχ, eΘ, st, sr) ∈ Ωa , i.e.,

ko1‖η‖+ ko2 for some positive constants ko1 and ko2 , we obtain

V̇η ≤ − 1

ε4
‖η‖2 + ko3‖η‖2 + ko4‖η‖

≤ − 1

2ε4
‖η‖2 + ko4‖η‖ for ε4 <

1

2ko3

(4.78)
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where koi for i = 1, . . . , 4 are positive constants. With ε4 < 1/(2ko3),

V̇η ≤ −
(

γ1
ε4

)

Vη, for Vη ≥ ρ1ε
2
4 (4.79)

where ρ1 = P 2
ηmγ

2
2 , some γ1 > 0, γ2 > 0, and Pηm = λmax(Pη). As previous works of the

high-gain observers, the trajectory η starts from the outside of the set {Vη ≤ ρε24} with

‖η(0)‖ ≤ (k/ε24) and enters into the set Ωb × {Vη ≤ ρ1ε
2
4} in a finite time T (ε4). As ε4 → 0,

T (ε4) → 0. Since the proof of the finite time convergence is similar to previous Chapter 2

and 3, the proof is omitted.

For the second bullet, since the trajectory η cannot leave the set {Vη ≤ ρ1ε
2
4}, η has the

upper bound, ‖η‖ ≤ 4ko4ε4. With this upper bound, the similar procedure can be used to

prove the second bullet so that the proof for the rest of them will be omitted. All trajectories

enter the set, {Vχ ≤ e1}×{VΘ ≤ e2ε
2
1}× {Vt ≤ ρµ2

2}×{Vr ≤ ρµ2
1}× {Vη ≤ ρ1ε

2
4}, which can

be taken as a positively invariant set.

We are going to show that the size of the ultimate boundedness can be arbitrarily small

with sufficient small control parameters, 0 < ε4 ≪ ε3 ≪ ε2 ≪ ε1 ≪ 1. Consider the

derivative of the Lyapunov function Vχ along the trajectories (4.65), (4.66), (4.67), (4.68),

and (4.69) is

V̇χ = −eTχeχ + 2F T
χ (Θ, eχ + χr, ut, uc, σχ)χB

TPχeχ

≤ −‖eχ‖2 + 2Pχm(kχ1
‖eΘ‖+ kχ2

‖st‖)‖eχ‖
(4.80)

where ‖Pχ‖ ≤ Pχm and some positive constants kχ1
> 0 and kχ2

> 0. The derivative of the

Lyapunov function VΘ along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69), is

V̇Θ = −
(

1

ε1

)

eTΘeΘ + 2

[

ε1(F
T
Θ − Θ̈T

r )− k2Θ̇
T
r +

(

2k1
ε1

)

(Θd −Θr)
T

]

BTPΘeΘ

≤ −
(

1

ε1

)

‖eΘ‖2 +
[

ε1kΘ1
(‖FΘ‖+Θr1) + kΘ2

Θr2 +

(

kΘ3

ε1

)

‖st‖
]

‖eΘ‖
(4.81)
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where kΘi for i = 1, 2, 3 are positive constants. The derivative of the Lyapunov function Vt

along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69), is

V̇t = −
(

1

ε2

)

F T
χd

(

∂Fχd
∂ut

)(

∂Fχd
∂ut

)T

Fχd −
(

1

ε2

)

F T
χd

(

∂Fχd
∂ut

)(

∂Fχd
∂ut

)T

(Fχs − Fχd)

+ F T
χd

(

∂Fχd
∂Θ

)

{

(

1

ε1

)

[AΘeΘ + k1B(Θd −Θr)] + [ε1(FΘ − Θ̈r) + Θ̇r + Θ̃r(t)]

}

+ F T
χd

(

∂Fχd
∂χ

)

[Aχeχ + Fχ + χr] + F T
χd

{

(

∂Fχd
∂uc

)

u̇c +

(

∂Fχd
∂σχ

)

σ̇χ

}

,

(4.82)

Using the bounds, V̇t is

V̇t ≤ −
(

kt1
ε2

)

‖Fχd‖2 +
(

kt2
ε2

)

‖Fχd‖(∆σχ +∆χ)

+

[

(

1

ε1

)

(kt3‖eΘ‖+ kt4‖st‖) + ε1kt5(‖FΘ‖+Θr1(t)) + kt6Θ̄1(t)

]

‖Fχd‖

+ [kt7‖eχ‖+ kt8(kχ1
‖eΘ‖+ kχ2

‖st‖)]‖Fχd‖+ kt9∆t(t)‖Fχd‖

(4.83)

where kti for i = 1, . . . , 9 are positive constants, the bounds for ∆σχ and ∆χ are ∆σχ ≤ kt10‖η‖

with kt10 > 0 and ∆χ ≤ ε3‖η‖ after the saturation active period for the EHGO. The derivative

of the Lyapunov function Vr along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69),

is

V̇r = −
(

1

ε3

)

F T
Θ

(

∂FΘ

∂ur

)(

∂FΘ

∂ur

)T

FΘ −
(

1

ε3

)

F T
Θ

(

∂FΘ

∂ur

)(

∂FΘ

∂ur

)T

[FΘs − FΘ]

−
(

1

ε2

)

F T
Θ

(

∂FΘ

∂ut

)(

∂Fχd
∂ut

)T

Fχd + F T
Θ

[

(

∂FΘ

∂ψr

)

ψ̇r +

(

∂FΘ

∂σΘ

)

σ̇Θ

]

+ F T
Θ

(

∂FΘ

∂Θ

)

{

(

1

ε1

)

[AΘeΘ + k1B(Θd −Θr)] + [ε1(FΘ − Θ̈r) + Θ̇r + Θ̃r(t)]

}

(4.84)
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Then, inequality for V̇r is

V̇r ≤ −
(

kr1
ε3

)

‖FΘ‖2 +
(

kr2
ε3

)

‖FΘ‖(∆σΘ +∆Θ) +

(

kr3
ε2

)

‖FΘ‖‖Fχd‖

+

[

(

1

ε1

)

(kr4‖eΘ‖+ kr5‖st‖) + ε1kr6(‖FΘ‖+ kr7Θr1)

]

‖FΘ‖+ Θ̄2(t)‖FΘ‖
(4.85)

where kri for i = 1, . . . , 7 are positive constants, ∆σΘ and ∆Θ become ∆σΘ ≤ kΘ8
‖η‖ and

∆Θ ≤ ε4kΘ9
‖η‖ after passing the transient period for the EHGOs. Using the method in

Section 9.3 of in [33] with (4.78), (4.80), (4.81), (4.83), (4.85) and choosing W1 =
√

Vχ,

W2 =
√
VΘ, W3 =

√
Vt, W4 =

√
Vr, and W5 =

√

Vη, we obtain

D+W1 ≤ −k̄a1W1 + k̄a2W2 + k̄a3W3

D+W2 ≤ −
(

k̄b1
ε1

)

W2 + ε1k̄b2W4 +

(

k̄b3
ε1

)

W3 + ε1k̄b4 δ̄1(t) + k̄b5 δ̄2(t)

D+W3 ≤ −
(

k̄c1
ε2

− k̄c2
ε1

− k̄c3

)

W3 +

(

k̄c4 + ε4k̄c5
ε2

)

W5 + ε1k̄c6W4

+

(

k̄c7
ε1

+ k̄c8

)

W2 + k̄c9W1 + ε1k̄c10 δ̄3(t) + k̄c11 δ̄4(t)

D+W4 ≤ −
(

k̄d1
ε3

− ε1k̄d2

)

W4 +

(

k̄d3 + k̄d4ε4
ε3

)

W5 +

(

k̄d5
ε2

+
k̄d6
ε1

)

W3 +

(

k̄d7
ε1

)

W2

+ ε1k̄d8 δ̄5(t) + k̄d9 δ̄6(t)

D+W5 ≤ −
(

k̄e1
ε4

)

W5 + k̄e2W5 + k̄e3 δ̄7(t)

(4.86)

where D+W (·) denotes the upper right-hand derivative; the notation related to k̄pi for p =

a, b, c, d, e and i = 1, 2, . . . , 11, denotes the positive constants independent on ε1, ε2, ε3, and

ε4; and δ̄i for i = 1, . . . , 7 are nonvanishing perturbations. The matrix form of (4.86) is

D+W ≤ −HW + ε1Γ1 + Γ2 (4.87)

where D+W = [D+W1, D
+W2, D

+W3, D
+W4, D

+W5]
T , W = [W1,W2,W3,W4,W5]

T ; Γ1 and
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Γ2 are

Γ1 = [0, k̄b4 δ̄1(t), k̄c10 δ̄3(t), k̄d8 δ̄5(t), 0]
T , Γ2 = [0, k̄b5 δ̄2(t), k̄c11 δ̄4(t), k̄d9 δ̄6(t), k̄e3 δ̄7(t)]

T (4.88)

Since the off-diagonal components of H are positive, H is quasi-monotone increasing [58]

with the condition 0 < ε4 ≪ ε3 ≪ ε2 ≪ ε1 ≪ 1 and is given in Appendix Appendix B.

Consider the differential equation

U̇ = −HU + ε1Γ1 + Γ2 (4.89)

with U = [U1, U2, U3, U4]
T and the same initial conditions U(0) = W (0). Using the vectorial

comparison method in Chapter IX of [58], it is concluded that W ≤ U for all t ≥ 0 and

the steady state of U(t) is H−1(ε1Γ1 + Γ2). The computation of the size of the ultimate

boundedness is given in Appendix Appendix B. Since the size of ultimate boundedness is

dependent on εi for i = 1, . . . , 4, i.e., as εi → 0 for i = 1, . . . , 4 with 0 < ε4 ≪ ε3 ≪ ε2 ≪

ε1 ≪ 1, the size of the ultimate boundedness can be made arbitrarily small.

4.5 Simulation Results

The performances of the proposed controller are illustrated through dynamics of a helicopter.

The inertial, geometric, and aerodynamic parameters from [37] are listed below

Ix = 0.142413 Iy = 0.271256 Iz = 0.271492

lM = −0.015 yM = 0 hM = 0.2943

CQ
M = 0.004452 DQ

M = 0.6304 (∂RM/∂b1s) = 25.23

CQ
T = 0.005066 DQ

T = 0.008488 (∂MM/∂a1s) = 25.23.

With full dynamics of a helicopter, results from the state feedback are compared to results

from the output feedback to show the important role and benefit of the EHGO in presence
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of uncertainties. The translational and rotational dynamics of a helicopter given in (4.7) and

(4.1), respectively, were considered in presence of disturbances, σχ = [3 sin t, 3 sin t, 3 sin t]T

and σΘ = [cos t, cos t, cos t]T like wind gusts. The control objective is to track the reference

u(t) = [rx, ry, rz]
T = [5 sin t, 5 cos t, 5 sin t]T and ψr = 0.1 rad in the presence of the external

disturbances σχ and σΘ. In numerical simulations, we used a helicopter model in (4.1) and

(4.7) without approximations.

For the state feedback controller in (4.18) and (4.20), and the output feedback controller

(4.53), the common control parameters are given by

kp = 8, kv = 4, k1 = 2 k2 = 4,

ε1 = 0.1, ε2 = 0.001, ε3 = 0.0007

(4.90)

For the EHGO, the observer gains of Hi, Hχe, and HΘe in (4.49), are

ε4 = 0.0001, hi1 = 3, hi2 = 3, hi3 = 1, for i = 1, . . . , 6 (4.91)

The saturation levels for the estimates by the EHGO are chosen not to be activated under

the state feedback. For both the state feedback and output feedback, the initial states for

the plant and reference dynamics were chosen as

χ = [1, 0.2, 1,−0.1, 1, 0.1]T , Θ = [0, 0, 0, 0, 0, 0]T , χr = [0.1, 1, 0, 0, 1]T (4.92)

The initial conditions for the dynamic inversion controllers and the EHGO were

ut(0) = [TM(0), φd(0), θd(0)]
T = [48, 0.5, 0.5]T ,

ur(0) = [TT (0), a1s(0), b1s(0)]
T = [3, 0, 0]T

χ̂(0) = [0, 0, 0, 0, 0, 0]T , Θ̂(0) = [1, 0, 1, 1, 1, 0]T ,

σ̂χ = [0, 0, 0]T , σ̂Θ = [0, 1, 0]T

(4.93)
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For the comparison with the output feedback, the state feedback controllers (4.18) and (4.20)
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Figure 4.3: Trajectories x1, y1, and z1 (solid-lines) under the state feedback in the presence
of disturbances and reference states xr, yr, and zr (dished-lines)

with the control parameters (4.90) and the initial conditions in (4.93), was simulated, which

is shown in Fig. 4.3. In Fig. 4.3, we can see tracking errors between trajectories x1, y1, and

z1 driven by the state feedback controller and the reference states xr, yr, and zr due to the

effects of external disturbances. In Fig. 4.4 and 4.5, under the proposed output feedback,

system states, χ and Θ and the references xr, yr, zr, and ψr are almost indistinguishable.

In Fig. 4.5, the references are φd and ψd which are provided by the dynamic inversion. In

Fig. 4.6 and 4.7, the system states xi, yi, and zi for i = 1, 2 are plotted with solid-lines.

The estimates x̂i, ŷi, and ẑi for i = 1, 2 are dashed-lines. At begin of the simulations, the

peaking due to high gains and the difference of initial conditions, is saturated to prevent
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Figure 4.4: Trajectories of x1, y1, and z1 (solid-lines) under the output feedback in (4.53) in
the presence of disturbances, and references xr, yr, and zr (dashed-lines) for rx(t) = 5 sin t,
ry(t) = 5 cos t, and rz(t) = 5 sin t in (4.14)

from degrading the system performance. In Fig. 4.8 and 4.9, trajectories of the state states

φi, θi, and ψi, and the estimate φ̂i, θ̂i, and ψ̂i for i = 1, 2 are shown. At the beginning of

the simulation, peaking is saturated. Expect at the beginning of the simulation, the systems

states and estimates are indistinguishable. In Fig. 4.10, the components of sum of Fp in

(4.7) and σχ are plotted with solid-lines and the components of sum of FO in (4.11) and σ̂χ

are plotted with dashed-lines. At the first part of simulations, the peaking is saturated. In

Fig. 4.11, the external disturbance σΘ (solid lines) and tis estimate σ̂Θ (dashed-lines) are

shown. At the first part of simulations, the peaking is saturated. The actual helicopter

control inputs TM , TT , a1s, and b1s are shown in Fig. 4.12.
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Figure 4.5: Trajectories φd, θd, and ψr (dashed-lines) are references for the states φ1, θ1, ψ1

of the rotational dynamics in the presence of disturbances.

4.6 Conclusions

An output feedback controller for a helicopter system was presented. In the presence of

uncertainties, the output feedback controller is able to track the given reference trajectories

xr, yr, zr, and ψr. The states and uncertainties in the helicopter dynamics were estimated

using the EHGO and dynamic inversion was subsequently used for design of the controller

to deal with nonaffine control inputs. In the time-scale structure the EHGO estimated

unmeasurable system states and uncertain system parameters and external disturbances

and the estimates were utilized in the two dynamic inversion controllers. There is also a

time-scale structure between the two dynamic inversion controllers, in which the rotational
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Figure 4.6: Trajectories x1, y1 and z1 (solid-lines) and the estimates x̂1, ŷ1, and ẑ1 (dashed-
lines) by the EHGO

dynamic inversion controller is faster than the translational dynamic inversion controller. By

using a time scale between the two dynamic inversion controller, we were able to design an

efficient controller with less dimensions than one dynamic inversion without a time scale. The

dynamic inversion controllers were designed to render the rotational dynamics faster than

the translational dynamics to overcome underactuated system structures. Using the multi-

time-scale separation approach, the proposed controller was able to control the full degree of

freedom (i.e. 6 degrees of freedom) for an unmanned helicopter. The singular perturbation

method was used to design controllers and analyze the multi-time-scale structure. This is

confirmed through numerical simulations.
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Figure 4.7: Trajectories x2, y2 and z2 (solid-lines) and the estimates x̂2, ŷ2, and ẑ2 (dashed-
lines) by the EHGO
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Figure 4.8: Trajectories φ1, θ1 and ψ1 (solid-lines) and the estimates φ̂1, θ̂1, and ψ̂1 (dashed-
lines) by the EHGO
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Figure 4.9: Trajectories φ2, θ2 and ψ2 (solid-lines) and the estimates φ̂2, θ̂2, and ψ̂2 (dashed-
lines) by the EHGO
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Figure 4.10: Plots for sum of the actual terms of acceleration (without approximation in
model, Fp in (4.7)) and external disturbances σΘ: dashed-lines and plots for sum of nominal
terms of acceleration (i.e., FO in (4.11)) the estimate of external disturbances σχ by the
EHGO: solid-lines
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Figure 4.11: Plots for the external disturbances σΘ (solid-lines) and plots for the estimates
σ̂Θ (dashed-lines)
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Figure 4.12: Plots for the helicopter actual control inputs, TM , TT , a1s, and b1s under the
output feedback
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Chapter 5

Conclusions and Future Works

5.1 Concluding Remarks

This dissertation is considering a class of uncertain nonlinear systems which have the form

of a chain of integrators focusing on output feedback. The uncertain nonlinear systems were

governed by a multi-time-scale structure control design. In the output feedback design, the

Extended High-Gain Observers were used to estimate unmeasured systems states, uncer-

tain system parameters, and external disturbances as well. Using the Extended High-Gain

Observers, the uncertain factors were eliminated in the uncertain nonlinear systems. The

estimates were provided to the dynamic inversion. The dynamic inversion was able to deal

with nonaffine control inputs, system parameter uncertainties, and disturbances using the

estimates. The proposed control design created a multi-time-scale structure in the uncertain

nonlinear systems, in which the plant dynamics were forced to have a time-scale structure

by the controller.

The time-scale structure was well-suited to underactuated mechanical systems where the

number of inputs are less than the number of the degrees of freedom since the fast dynamics

in the plant are considered as virtual inputs to the slow dynamics. This time-scale struc-

ture approach were verified using two examples of underactuated mechanical systems: the
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inverted pendulum on a cart and the autonomous helicopter.

The multi-time scale structures were analyzed through the singular perturbation method.

Moreover, the stability for the close-loop systems was guaranteed by the proposed control

schemes. The proposed controllers were verified through the numerical simulations and

experimental tests.

5.1.1 Main contributions

The main contributions of this dissertation are as follow as.

1. In Chapter 2,

• this dissertation provided a novel way to deal with nonlinear systems which have

the form of chains of integrators, nonaffine control inputs, unmeasured system

states, and uncertainties;

• to deal with the uncertain, nonaffine, nonlinear systems, the extended high-gain

observer and the dynamic inversion were combined using a multi-time-scale sep-

aration approach;

• the time-scale approach control design was devised and the stability of the pro-

posed controller was conducted using the singular perturbation method.

2. In Chapter 3,

• the output feedback stabilization control design for the inverted pendulum on

a car in the presence of uncertainties was proposed through a multi-time-scale

approach;

• the combination of the Extended High-Gain Observer and the dynamic inversion

provided a new way to deal with unmeasured systems states and uncertain system

parameters;
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• the stability analysis for the closed-loop system of the inverted pendulum on a

cart was conducted using the singular perturbation method;

• the proposed control design was verified through both numerical simulations and

experimental tests.

3. In Chapter 4,

• output feedback control design for tracking given reference of the autonomous

helicopter in the presence of uncertainties was proposed through a multi-time-

scale separation approach;

• Using the extended high-gain observers and two dynamic inversion controllers with

a multi-time-scale separation, the nonaffine control inputs and uncertainties were

considered and a time-scale structure between the translational and rotational

dynamics were constructed;

• The stability analysis for the multi-time-scale structure in the closed-loop system

was conducted through the singular perturbation method;

• the proposed controller was verified through numerical simulations.

5.2 Future Works

Extensions of this dissertation as future works are given as follows.

• In Chapter 2, the future work will consider extension of our approach to non-minimum

phase systems. The main issue of this work would be how to deal with unstable zero

dynamics in the absence of measurements in the zero dynamics;

• in Chapter 3, our future work will focus on extending our approach to output feedback

stabilization of other underactuated mechanical systems with two degrees of freedom.

Expected difficulties would be how to create a time-scale structure in the underacuated

mechanical systems with the two degrees of freedom;
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• in Chapter 4, extension of our work will be implementing the proposed control al-

gorithm into miniature helicopters and develop new control algorithms for the other

types of unmanned vehicles.
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Appendix A Appendix for Chapter 2

In this section, we are going to derive the standard singularly perturbed systems (3.32),

(3.33), (3.34), and (3.35) with time-scaled variables.

Error dynamics of the EHGOs

With the fast variables for EHGOs are

ηx1 =
x1 − x̂1
ε23

, ηx2 =
x2 − x̂2
ε3

,

ηx3 =σx(θ1 + αr,θ2, F )−σ̂x

ηα1
=
α1 − α̂1

ε23
, ηα2

=
α2 − α̂2

ε3
,

ηα3
=σα(θ1 + αr,θ2, F )−σ̂α,

(1)

with θ1 = α1 − αr, θ2 = α2, where x̂i and α̂i for i = 1, 2, and σ̂x and σ̂α, are given in (3.25).

The derivatives of ηx1 and ηα1
along the trajectories of (3.2) and (3.25) are

ε3η̇x1 = −h11ηx1 + ηx2

ε3η̇α1
= −h21ηα1

+ ηα2

(2)

The derivatives of ηx2 and ηα2
along the trajectories of (3.2) and (3.25) are

ε3η̇x2 =− h12ηx1 + σx(α1, α2, F )− σ̂x(t)

+ f̄x(α1, α2, F )− f̄x(α̂1, α̂2, F )

=− h12ηx1+ηx3+f̄x(α1, α2, F )−f̄x(α̂1, α̂2, F )

ε3η̇α2
=− h22ηα1

+ σα(α1, α2, F )− σ̂α(t)

+ f̄α(α1, α2, F )− f̄α(α̂1, α̂2, F )

=− h22ηα1
+ηα3

+f̄α(α1,α2,F )−f̄α(̂α1,α̂2, F )

(3)
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The derivatives of ηx3 and ηα3
along the trajectories of (3.2), (3.25) and (3.26) are

ε3η̇x3 =− h13ηx1 + ε3σ̇x(α1, α2, F )

=− h13ηx1 + ε3

{

(

∂σx
∂α1

)

α2 +

(

∂σx
∂α2

)

α̇2

− 1

ε2
·
(

∂σx
∂F

)

[f̄x(α1,Mθsat(
α̂2

Mθ
), F )

+Mxsat(σ̂x/Mx)− u]
}

ε3η̇α3
=− h23ηα1

+ ε3σ̇α(α1, α2, F )

=− h23ηα1
+ ε3

{

(

∂σα
∂α1

)

α2 +

(

∂σα
∂α2

)

α̇2

− 1

ε2
·
(

∂σα
∂F

)

[f̄x(α1,Mθsat(
α̂2

Mθ
), F )

+Mxsat(σ̂x/Mx)− u]
}

(4)

The error dynamics for the EHGOs are

ε3η̇ = Aηη + ε3[B̄1∆1 + B̄2∆2 +

(

1

ε2

)

B̄2∆3] (5)

where η = [ηTx , η
T
α ]
T with ηx = [ηx1 , ηx2, ηx3]

T and ηα = [ηα1
, ηα2

, ηα3
]T ; the matrices Aη=







Aη1 03×3

03×3 Aη2






, B̄1 and B̄2 are given by

Aη1=













−h11 1 0

−h12 0 1

−h13 0 0













, Aη2=













−h21 1 0

−h22 0 1

−h23 0 0













,

B̄j =







Bj 03×1

03×1 Bj






, for j = 1, 2

B1 = [0, 1, 0]T , B2 = [0, 0, 1]T
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with the zero matrix 0i×j ∈ Ri×j, B = [0, 1]T ; and ∆i for i = 1, 2, 3 are

∆1=









f̄x(α1, α2, F )− f̄x(α̂1, α̂2, F )

ε3
f̄α(α1, α2, F )− f̄α(α̂1, α̂2, F )

ε3









∆2=









(

∂σx
∂α1

)

α2 +

(

∂σx
∂α2

)

fα(α1, α2, F )
(

∂σα
∂α1

)

α2 +

(

∂σα
∂α2

)

fα(α1, α2, F )









∆3=









(

∂σx
∂F

)

[f̄x(α1,Mθsat(
α̂2

Mθ
), F)+Mxsat(

σ̂x
Mx

)−u]
(

∂σα
∂F

)

[f̄x(α1,Mθsat(
α̂2

Mθ
), F)+Mxsat(

σ̂x
Mx

)−u]









where ‖∆1‖ ≤ k∆‖η‖ with a positive constant k∆ due to the Lipschitz conditions

‖f̄x(α1, α2, F ) − f̄x(α̂1, α̂2, F )‖ ≤ ε3k∆x‖η‖ and ‖f̄α(α1, α2, F )− f̄α(α̂1, α̂2, F )‖ ≤ ε3k∆α‖η‖

with positive constants k∆x and k∆α.

Error dynamics of the dynamic inversion

With the change of variables for the dynamic inversion,

zF = F − F ∗, zu = u− u∗ (6)

the derivative of zF along the trajectories of (3.2), (3.25), and (3.26) with multiplication of

ε2, is

ε2żF = ε2Ḟ − ε2Ḟ
∗

=−f̄x
(

α1,Mθsat(
α̂2

Mθ
), F

)

−Mxsat

(

σ̂x
Mx

)

+u−ε2Ḟ ∗
(7)

By adding and subtracting f̄x(α1, α2, F ) + σx(α1, α2, F ) and adding f̄x(α1, α2, F
∗) +

σx(α1, α2, F
∗) − u∗ (i.e., f̄x(α1, α2, F

∗) + σx(α1, α2, F
∗) − u∗ = 0) to the right-hand side
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of ε2żF , we obtain

ε2żF = −f̄x(α1, α2, F )− σx(α1, α2, F )

+ f̄x(α1, α2, F
∗) + σx(α1, α2, F

∗)

+ f̄x(α1, α2, F )− f̄x

(

α1,Mθsat

(

α̂2

Mθ

)

, F

)

+ σx(α1, α2, F )−Mxsat

(

σ̂x
Mx

)

+u−u∗−ε2Ḟ ∗

(8)

Since

f̄x(α1, α2, F
∗) + σx(α1, α2, F

∗)

− f̄x(α1, α2, F )− σx(α1, α2, F ) = −cxzF ,
(9)

it is simplified to

ε2żF = −cxzF + zu

+ f̄x(α1, α2, F )− f̄x

(

α1,Mθsat

(

α̂2

Mθ

)

, F

)

+ σx(α1, α2, F )−Mxsat

(

σ̂x
Mx

)

− ε2Ḟ
∗

(10)

Since F ∗ = F ∗(α1, α2, νd) is

F ∗ =
[u∗ −Gx]

cx
, u∗ = g tanα1 −

(

ℓ

cosα1

)

νd, (11)

with cx in (3.22), Gx in (3.3), and νd in (3.12), Ḟ ∗ is

Ḟ ∗ =

(

∂F ∗

∂α1

)

α̇1 +

(

∂F ∗

∂α2

)

α̇2 +

(

∂F ∗

∂νd

)

ν̇d

= F1(θ1 + αr, θ2, F
∗) + ε1F2(θ1 + αr, θ2, y, F

∗)

(12)
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where F1 and F2 are

F1=

(

∂F ∗

∂α1
− β1

∂F ∗

∂νd

)

α2+

(

∂F ∗

∂α2
− β2

∂F ∗

∂νd

)

fα(·)

F2=−β1
(

∂F ∗

∂νd

)(

g

g2 + v2ext

)

[k1y2 + k2fx(·)]
(13)

By differentiating zu and multiplying żu by ε2, we obtain

ε2żu = ε2u̇− ε2u̇
∗

=f̄α

(

α1,Mθsat

(

α̂2

Mθ

)

,F

)

+Mαsat

(

σα
Mα

)

−ν̂d−ε2u̇∗
(14)

With the similar procedure of the derivation for ε2żF , adding and subtracting f̄α(α1, α2, F )+

σα(α1, α2, F ) and subtracting f̄α(α1, α2, F
∗) + σα(α1, α2, F

∗) − νd (i.e., f̄α(α1, α2, F
∗) +

σα(α1, α2, F
∗)− νd = 0), we obtain

ε3żu=−cαzF+f̄α
(

α1,Mθsat

(

α̂2

Mθ

)

,F

)

−f̄α(α1,α2,F )

+Mαsat

(

σ̂α
Mα

)

−σα(α1,α2,F )+νd −ν̂d−ε2u̇∗
(15)

where

νd − ν̂d=−β1(αr−α̂r)−β2
[

Mθsat

(

α̂2

Mθ

)

− α2

]

(16)

with α̂r in (3.27) and u∗ = u∗(α1, νd) in (11), u̇∗ is

u̇∗ =

(

∂u∗

∂α1

)

α̇1 +

(

∂u∗

∂νd

)

ν̇d

= u1(θ1 + αr, θ2, F ) + ε1u2(θ1 + αr, θ2, y, F )

(17)

u1 =

(

∂u∗

∂α1
− β1

∂u∗

∂νd

)

α2 − β2

(

∂u∗

∂νd

)

fα(·)

u2 = −β1
(

∂u∗

∂νd

)(

g

g2 + v2ext

)

[k1y2 + k2fx(·)]
(18)
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With (10) and (15), we obtain

ε2ż = Azz + ψ(·)− ε2φ(·) (19)

where Az is given in (3.24), z = [zF , zu]
T , φ = [Ḟ ∗, u̇∗]T , ψ= [ψ1, ψ2 + νd − ν̂d]

T is

ψ1= f̄x(α1, α2, F )− f̄x

(

α1,Mθsat

(

α̂2

Mθ

)

, F

)

+ σx(α1, α2, F )−Mxsat

(

σ̂x
Mx

)

ψ2= f̄α

(

α1,Mθsat

(

α̂2

Mθ

)

,F

)

−f̄α(α1,α2,F )

+Mαsat

(

σ̂α
Mα

)

−σα(α1,α2,F )

(20)

and ψ(·)|η=0 = 0 and when saturation is not effective ‖ψ‖ ≤ kψ‖η‖ with a positive constant

kψ.

Error dynamics of the plant

The change of variables θ1 = α1 − αr with αr in (3.11) and θ2 = α2 for the pendulum

dynamics, and y1 = ε21x1 and y2 = ε1x2 for the cart dynamics, is used. The derivative of θ1

along the trajectories of (3.2), (3.25), and (3.26) is

θ̇1= α̇1 − α̇r = θ2 + ε1hα (21)

with hα in (3.18) and the derivative of θ2 is

θ̇2 = fα(α1, α2, F ) = −cαF +Gα (22)
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with cα in (3.22) and Gα in (3.3). Adding and subtracting fα(α1, α2, F
∗) = −cαF ∗ + Gα

with F ∗ and u∗ in (11), we obtain

θ̇2=fα(α1,α2,F
∗)+fα(α1,α2,F )−fα(α1,α2,F

∗)

= −cαF ∗ +Gα +fα(α1,α2,F )−fα(α1,α2,F
∗)

= −β1θ1 − β2θ2 − cαzF

(23)

With (21) and (23), the pendulum dynamics is

θ̇ = Aθθ + ε1Ehα(y, θ, αr, F )−BcαzF (24)

where Aθ is given in (3.19), θ = [θ1, θ2]
T , E = [1, 0]T , and B = [0, 1]T . With the slow

variables of y1 = ε21x1 and y2 = ε1x2 for the cart dynamics, the derivatives of y1 and y2 along

the trajectories of (3.2), (3.25), and (3.26) are

ẏ1 = ε1y2

ẏ2 = ε1fx(α1, α2, F )

(25)

With F ∗ and u∗ in (11), adding and subtracting ε1fx(α1, α2, F
∗) = ε1[cxF

∗ +Gx] to ẏ2, it is

obtained

ẏ2 = ε1[fx(α1, α2, F
∗) + fx(α1, α2, F )− (α1, α2, F

∗)]

= ε1[cxF
∗ +Gx + cxzF ]

= ε1[−k1y1 − k2y2 + hx + cxzF ]

(26)

with hx(θ, αr) in (3.18) and hx(0, αr) = 0. With (25) and (26), we obtain

ẏ = ε1
[

Ayy +B
(

hx(θ, αr) + cxzF
)]

(27)
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where Ay is given in (3.20) and y = [y1, y2]
T .
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Appendix B Appendix for Chapter 4

Jacobian matrix

Jacobian matrix for the translational dynamics

The Jacobian for the translational dynamics (∂Fχd/∂ut) is given by (∂Fχ/∂ut) is

∂Fχ
∂ut

=















∂fx
∂TM

∂fx
∂φd

∂fx
∂θd

∂fy
∂TM

∂fy
∂φd

∂fy
∂θd

∂fz
∂TM

∂fz
∂φd

∂fz
∂θd















(28)

The components of the matrix are as follows.

∂fx
∂TM

= −
(

1

m

)

(cosφd sin θd cosψ1 + sinφd sinψ1)

∂fx
∂φd

=

(

1

m

)

(sinφd sin θd cosψ1 − cosφd sinψ1)TM

∂fx
∂θ

= −
(

1

m

)

(cosφd cos θd cosψ1)TM

(29)

∂fy
∂TM

= −
(

1

m

)

(cosφd sin θd sinψ1 − sinφd cosψ1)

∂fy
∂φd

=

(

1

m

)

(sinφd sin θd sinψ1 + cosφd cosψ1)TM

∂fy
∂θd

= −
(

1

m

)

(cosφd cos θd sinψ1)TM

(30)

∂fz
∂TM

= −
(

1

m

)

(cosφd cos θd)

∂fz
∂φd

=

(

1

m

)

(sin φd cos θd)TM

∂fz
∂θd

=

(

1

m

)

(cosφd sin θd)TM

(31)
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Jacobian matrix for the rotational dynamics

The Jacobian matrix (∂FΘ/∂ur) is

∂FΘ

∂ur
=















∂fφ
∂TT

∂fφ
∂a1s

∂fφ
∂b1s

∂fθ
∂TT

∂fθ
∂a1s

∂fθ
∂b1s

∂fψ
∂TT

∂fψ
∂a1s

∂fψ
∂b1s















(32)

The components of the matrix are as follows.

∂fφ
∂TT

=

(

1

Ixx

)(

∂τ b1
∂TT

)

+

(

sinφ1 tan θ1
Iyy

)(

∂τ b2
∂TT

)

+

(

cosφ1 tan θ1
Izz

)(

∂τ b3
∂TT

)

∂fφ
∂a1s

=

(

1

Ixx

)(

∂τ b1
∂a1s

)

+

(

sinφ1 tan θ1
Iyy

)(

∂τ b2
∂a1s

)

+

(

cos φ1 tan θ1
Izz

)(

∂τ b3
∂a1s

)

∂fφ
∂b1s

=

(

1

Ixx

)(

∂τ b1
∂b1s

)

+

(

sinφ1 tan θ1
Iyy

)(

∂τ b2
∂b1s

)

+

(

cosφ1 tan θ1
Izz

)(

∂τ b3
∂b1s

)

(33)

∂fθ
∂TT

=

(

cosφ1

Iyy

)(

∂τ b2
∂TT

)

−
(

sin φ1

Izz

)(

∂τ b3
∂TT

)

∂fθ
∂a1s

=

(

cosφ1

Iyy

)(

∂τ b2
∂a1s

)

−
(

sin φ1

Izz

)(

∂τ b3
∂a1s

)

∂fθ
∂b1s

=

(

cosφ1

Iyy

)(

∂τ b2
∂b1s

)

−
(

sinφ1

Izz

)(

∂τ b3
∂b1s

)

(34)

∂fψ
∂TT

=

(

sec θ1 sinφ1

Iyy

)(

∂τ b2
∂TT

)

+

(

cosφ1 sec θ1
Izz

)(

∂τ b3
∂TT

)

∂fψ
∂a1s

=

(

sec θ1 sinφ1

Iyy

)(

∂τ b2
∂a1s

)

+

(

cosφ1 sec θ1
Izz

)(

∂τ b3
∂a1s

)

∂fψ
∂b1s

=

(

sec θ1 sinφ1

Iyy

)(

∂τ b2
∂b1s

)

+

(

cosφ1 sec θ1
Izz

)(

∂τ b3
∂b1s

)

(35)
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∂τ b1
∂TT

=− hT ,
∂τ b1
∂a1s

= −QM cos a1s + TM sin a1s cos b1syM ,

∂τ b1
∂b1s

=
∂RM

∂b1s
+ TMhM cos b1s + TMyM cos a1s sin b1s,

∂τ b2
∂TT

=− 1.5CQ
T T

0.5
T ,

∂τ b2
∂a1s

=
∂MM

∂a1s
+ TMhM cos(a1s) + TM sin(a1s) cos(b1s)lM ,

∂τ b2
∂b1s

=QM cos(b1s) + TM cos(a1s) sin(b1s)lM ,

∂τ b3
∂TT

=lT ,
∂τ b3
∂a1s

= QM sin(a1s) cos(b1s),

∂τ b3
∂b1s

=QM cos(a1s) sin(b1s)− TM cos(b1s)lM .

(36)

Computation for the size of ultimate boundedness

The matrix H

The matrix H is given by

H =







H4 H51

01×4

k̄e1
ε4

− k̄e2






, H51 =























0

0

−
(

k̄d3 + k̄d4ε4
ε3

)

−
(

k̄c4 + ε4k̄c5
ε2

)























(37)

H4 =







H3 H41

H42

(

k̄d1
ε3

− ε1k̄d2

)






, H41 =













0

−ε1k̄b2
−ε1k̄c6













, H42 =















0

− k̄d7
ε1

−
(

k̄d5
ε2

+
k̄d6
ε1

)















T

(38)

H3 =















k̄a1 −k̄a2 −k̄a3
0

k̄b1
ε1

− k̄b3
ε1

−k̄c9 −
(

k̄c7
ε1

+ k̄c8

) (

k̄c1
ε2

− k̄c2
ε1

− k̄c3

)















(39)
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The size of ultimate boundedness

By multiplying ε4 by both left-hand and right-hand sides of the last inequality, D+W5 in

(4.86), the size of the upper bound W5 is approximated to

‖W5‖ ≤ k̄e3 δ̄7(t)/(k̄e1 + ε4k̄e2) (40)

The sizes of the boundedness for Wi for i = 1, . . . , 4, are computed by using the inverse of

block matrices in Appendix A.20 of [32] as follows.

H−1
4 =







H3 H41

H42

(

k̄d1
ε3

− ε1k̄d2

)







−1

=







H−1
3 + E4∆

−1
4 F4 −E4∆

−1
4

−∆−1
4 F4 ∆−1

4







(41)

where ∆4 = (k̄d1 − ε3ε1k̄d2)/ε3 −H42H
−1
3 H41, E4 = H−1

3 H41 and F4 = H42H
−1
3 . The matrix

H−1
4 is rewritten as

H−1
4 =







H−1
3 +O(ε3)H41 O(ε3)H̄42

O(ε3)H̄43 O(ε3)






(42)

where 0 < O(εp) ≤ kpεp with positive numbers kp, εp, 0 < εp ≪ kp. The matrix H−1
3 can be

computed as

H−1
3 =







H2 H31

H32

(

k̄c1
ε2

− k̄c2
ε1

− k̄c3

)







−1

=







H−1
2 + E3∆

−1
3 F3 −E3∆

−1
3

−∆−1
3 F3 ∆−1

3







(43)

where

H2 =







k̄a1 −k̄a2
0

k̄b1
ε1






, H31 =







−k̄a3
− k̄b3
ε1






, H32 =







−k̄c9
−
(

k̄c7
ε1

+ k̄c8

)







T

(44)
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∆3 =

(

1

ε2

)(

k̄c1 −
ε2k̄a2
ε1

− ε2k̄c3

)

−H32H
−1
2 H31 (45)

E3 = H−1
2 H31 and F3 = H32H

−1
2 . The matrix H−1

3 is rewritten as

H−1
3 =







H−1
2 +O(ε2)H31 O(ε2)H̄32

O(ε2)H̄33 O(ε2)






(46)

With (42), (46), and (44), the upper bounds ofWi for i = 1, 2, 3, 4 can be computed by using

H−1
4 (ε1Γ3 + Γ4) = Γ = [Γ11,Γ22,Γ33,Γ44]

T

Γ3 = [0, k̄b4 δ̄1(t), k̄c10 δ̄3(t), k̄d8 δ̄5(t)]
T , Γ4 = [0, k̄b5 δ̄2(t), k̄c11 δ̄4(t), k̄d9 δ̄6(t)]

T

(47)

Then the upper bounds for each component of Γ is

‖Γ11‖ ≤ [ε1kf1 +O(ε2)][ε1k̄b4 δ̄1(t) + k̄b5 δ̄2(t)] +O(ε2)[ε1k̄c10 δ̄3(t) + k̄c11 δ̄4(t)]

+O(ε3)[ε1k̄d8 δ̄5(t) + k̄d9 δ̄6(t)]

‖Γ22‖ ≤ O(ε2)[ε1k̄b4 δ̄1(t) + k̄b5 δ̄2(t)] + [ε1kf2 +O(ε2)][ε1k̄c10 δ̄3(t) + k̄c11 δ̄4(t)]

+O(ε3)[ε1k̄d8 δ̄5(t) + k̄d9 δ̄6(t)]

‖Γ33‖ ≤ O(ε2)[ε1k̄b4 δ̄1(t) + k̄b5 δ̄2(t)] +O(ε2)[ε1k̄c10 δ̄3(t) + k̄c11 δ̄4(t)]

+O(ε3)[ε1k̄d8 δ̄5(t) + k̄d9 δ̄6(t)]

‖Γ44‖ ≤ O(ε2)O(ε3)[ε1k̄b4 δ̄1(t) + k̄b5 δ̄2(t)] +O(ε2)O(ε3)[ε1k̄c10 δ̄3(t) + k̄c11 δ̄4(t)]

+O(ε3)[ε1k̄d8 δ̄5(t) + k̄d9 δ̄6(t)]

(48)

with k̄f1 > 0 and k̄f2 > 0. Using the upper bounds ‖Γ11‖, ‖Γ22‖, and ‖Γ33‖ in (48) and ‖w5‖

in (40), the ultimate boundedness is
√

‖Γ11‖2 + ‖Γ22‖2 + ‖Γ33‖2 + ‖W5‖2.
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