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ABSTRACT

OUTPUT FEEDBACK CONTROL
IN THE PRESENCE OF UNCERTAINTIES:
USING EXTENDED HIGH-GAIN OBSERVERS WITH
DYNAMIC INVERSION
By

Joonho Lee

Control design for uncertain nonlinear systems is an important issue. Uncertainties always
reside in nonlinear systems due to incomplete mathematical model description or intended
approximation factors in system models, e.g. linearization for system models. Furthermore,
unexpected external disturbances and unmeasured system states increase the uncertainties
in the systems.

In this dissertation, we consider an uncertain nonlinear systems that takes the form of
a chain of integrators and introduce control design methodologies based on output feedback
control: using extended high-gain observers and dynamic inversion.

The proposed output feedback controller results in a closed-loop system with a three-
time-scale structure; an extended high-gain observer estimates unmeasured states and un-
certainties in the fastest time scale and dynamic inversion is used to deal with nonaffine
control inputs or input uncertainties in the intermediate time scale whereas the plant dy-
namics evolves in the slowest time scale. The dynamic inversion algorithm, based on sector
conditions, results in fast convergence into inputs under state feedback control. Together
with the extended high-gain observer, dynamic inversion results in performance recovery of
a target system.

The time-scale-separation approach is well-suited to underactuated mechanical systems
to overcome the lack of the number of inputs. Since the time separation is created between
subsystems in plant dynamics, subsystem dynamics are viewed as virtual inputs for the

other subsystems. In this dissertation, we apply the time-scale separation strategy to two



examples of underactuated mechanical systems in the presence of uncertainties, the inverted

pendulum on a cart and the autonomous helicopter.
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Chapter 1

Introduction

Control design of uncertain nonlinear systems has been a challenging problem. Mathe-
matical models cannot capture entire features of system dynamics or unexpected external
disturbances. Even if system dynamics were precise, nonaffine control inputs add difficulties
to the design. Furthermore, systems states are not always measurable. All these factors
make control design a challenging task.

In this dissertation, we consider a class of nonlinear systems in the presence of uncer-
tainties, which takes the form of a chain of integrators, e.g., a single-input-single-output

nonlinear system,

Ty = X1, fori=1....n—1

&y = f(,2,u) +6(z,u,1) (1.1)

z = f()(l’, Z)
Yy=mn
where x = [z1,...,z,]7 € R" and z € R™ are the system states, u € R is the control input,

d(z,u,t) € R is the uncertainty, and y € R is the measured output. The chain of inte-
grators is commonly used to describe dynamics of mechanical systems. If f(x,z,u) in (1.1)

has affine control, i.e., f(z, z,u) = fu(x, 2) + g(x)u, the system of (1.1) become a standard
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normal form [30], [33]. This dissertation provide a way to deal with a class of uncertain
nonlinear systems using extended high-gain observers and dynamic inversion. The extended
high-gain observer is used to estimate both unmeasured states and uncertainties and the
dynamic inversion deals with the nonaffine control or input uncertainties. In other words,
using the extended high-gain observers and the dynamic inversion, a control design problem
for uncertain nonlinear systems with the nonaffine control input, is viewed as the control
design for the standard normal form in the absence of uncertainties.

The dissertation is organized as follows. In Chapter 1, motivation examples, the dynamic
inversion, high-gain observers, and the extended high-gain observers are introduced. Chap-
ter 2 presents the performance recovery in the presence of uncertainties using the extended
high-gain observer and dynamic inversion. In Chapter 3, the stabilization problem is intro-
duced for the inverted pendulum on a cart in the presence of uncertainties. In Chapter 4, the
output feedback control is designed for an autonomous helicopter in the presence of external

disturbances. Lastly, conclusions and future works are provided in Chapter 5.

1.1 Motivation

First, we consider the example of translational dynamics for z-direction in a helicopter with
bounded uncertainty §(t), i.e., an uncertain nonlinear system with nonaffine
Ty = T

(1.2)
o —i(cos ¢18in 61 cos 1y + sin ¢q sin 1) Ty + 6(t)
m

where z; and x, are a position and velocity respectively, ¢; is viewed as an input given
appropriate values of 01, ¥, and Tj;. One approach to deal with the nonaffine control in

(1.2), is to introduce an additional integrator into the state space equation for the control
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variable ¢, i.e., 23 = ¢1, and i3 = v = ¢;. We obtain the new system equation

l"l = T2
1

T9g = ——(cos x3sin 01 cos Yy + sin xz sin ;) Tas + 6(t) (1.3)
m

Lt'3 =VU

However, this approach changes the matched uncertainty in (1.2) into the unmatched uncer-
tainty 0(x1,t) in (1.3). The matching condition plays an important role in robust nonlinear
control design as in Sections 14.1 and 14.2 of [33]. The uncertainty is matched when it enters
the system equation at the same point as the control input.

As the second motivation, we will consider uncertainties in the system. Consider the

example of the inverted pendulum on a cart,

T] = Ta

to = 01(aq) — da(a)u

1 = s (1.4)
g =1U

Yy = [Zlfl, al]T

where z = [r1,25]7 € R? and a = [a1, a7 € R? are the system states; y € R? is the
measured output; the domain of oy is —7/2 < a; < 7/2; d; and 09 are uncertainties; and
we assume that d, > 0 and the sign of d5 is known. The control objective is to stabilize the
system at x = 0 and o = 0.

In this dissertation, using the extended high-gain observer and the dynamic inversion, we
will deal with the control design for the two cases: one is for control design for stabilization
of the inverted pendulum on a cart at the upper equilibrium in Chapter 3 and the other is

for control design for an autonomous helicopter with nonaffine control input in Chapter 4.



1.2 Dynamic Inversion

In this section, we introduce a control algorithm to find approximate solutions for nonlinear
maps, which is called dynamic inversion. In [52,53], observers were used to invert nonlin-
ear maps. In [25], two dynamic inversion algorithms were introduced: one is based on a
Newton method and the other uses a gradient-decent algorithm. In [28,29], using a two-
time-scale approach together with a gradient decent algorithm, a dynamic inversion scheme
was generated. In [64], a second-order sliding mode controller with saturation for a single-
input-single-output nonaffine systems was used to deal with uncertainties and nonaffine input
forms. In [24], neural-networks and the mean value theorem were used to produce a dynamic
inversion algorithm. Hovakimyan et al [27] also used neural-networks with a two-time-scale
approach to deal with a single-input-single-output uncertain nonaffine system.

To briefly explain the principle of dynamic inversion, the example in (1.2) is reconsidered.
Now, it is assumed that d(x,t) in (1.2) is known. For the stabilization of the system in (1.2),

a controller form of the dynamic inversion is given by

5¢§1 = —K(x, qﬁl){ — %(cos ¢18in 6 cos 1y + sin ¢y sin )Ty — uc} (1.5)

where u. € R is a reference input (e.g. u. = —kpx1 — kyxo +1,(t) with ky, k, > 0), r,.(¢) is a
reference trajectory, K(x,¢;) € R is satisfies K(x,¢1) > ko > 0 with the positive constant
ko, over the domain of interest. With a sufficiently small positive € ~ 0 in (1.5), we obtain

the quasi steady-state equation
1
— K (z, qbl){ — —(cos ¢ sin 6y cos 1y + sin ¢y siny) Ty — uc} =0 (1.6)
m
Using the assumption that K (x, ¢1) > ko > 0, we have

1
_E(COS ¢18in 0y cos iy + sin ¢y sin )Ty = ue = —kpry — kg + 14(t) (1.7)
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Since in view of a multi-time-scale approach, the system of (1.5) is fast and the system of

(1.2) is slow, the fast system of (1.5) reaches the quasi-steady state while the variable z in
1

the slow system is almost frozen. This means that ——/cos ¢y sin 0 cos ¥y + sin ¢y sin ¢y )Ty
m

is replaced with —k,z1 — k25 + 7,(t) and then we obtain

l"l = X9
(1.8)
jjg = —]fpl’l — ]{JULL’Q + Tx<t)
With a reference system
Ly = Ty
b (1.9)
Ty = —kpTp, — kpTpy + 12(t)
and error variables e; = 1 — x,, and es = x93 — x,,, the error dynamics are
él = €2
(1.10)
ég = —k:pel — k’v62

which means that x; and z, track asymptotically the reference system in (1.9).
In the next section, to realize the controller in (1.5) for the case of the unknown 6(x,t)
and unmeasured states, the extended high-gain observers will be introduced. We start by

introducing high-gain observers.

1.3 High-Gain Observers and Extended High-Gain
Observers

High-gain observers started from the earlier work in [21]. In [21], a fully linearizable nonlinear
system was dealt with, which is a special case of the normal form. It was shown that

the high-gain observers recovered the performance of state feedback controllers when the
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observer gain is sufficiently high and the control input is globally bounded. In [7], the
performance recovery of state feedback controllers was accomplished using saturated inputs
and a separation principle for nonlinear systems was shown. More recent results on high-gain
observers are available in [35].

We consider a multi-input-multi-output nonlinear system with multiple chains of integral,
given by

y=Cx
where z € R’ is system states, y € R™ is a measured system output, u € R? is the control
input, ¢, = [Guy, "+, bu,,|T is assumed to be locally Lipschitz in its arguments over the

domain of interest, and matrices A, B, C' are

0 1 0
0 0 1 0
A = block diag[Ay, ..., Anl, Ai=| | e ReXPi
0 o e 0

B = block diag[B,,...,Bn], B;=10,0,---,0,1]T € R

C = block diag[C},...,Cp], Ci=11,0,---,---,0] € R"F

with 1 < ¢ < mand p = p; + - -+ pn. It is assumed that a state feedback controller,
u = I'(z,t) is designed to asymptotically stabilize the system in (1.11) at the origin, where

['(x,t) is locally Lipschitz in its arguments over the domain of interest.



1.3.1 High-Gain Observers
We design a high-gain observer for the system in (1.3) as

i =A%+ Bo,(i,u,t) + H(y — C%) (1.13)

where ¢, (z,u,t) = [Pn,,"+* ,bn,]T is a nominal model of ¢, in (1.11) and ¢,(0,0,t) = 0,

and the observer gain, H, is chosen as

hi, /e
hi, /€
H = block diag|Hq, ..., H,], H;= : (1.14)
hi,,_, /€7

hipi /Epi

with a small positive constant, 0 < ¢ < 1. The components h;; of H are chosen such that

the polynomials

)\pi+hi1)\pi_l+"'+hipi71)‘+h' =0, fori=1,---.m (1.15)

’lpi

are Hurwitz. An important phenomenon in high-gain observers is peaking [7]. The scaled

error variable is defined by n = [7;{7 n2T, . ’U;F@]Tj ni= [, - 7m.pi]T7
ni; = ﬁ, for 1<i<m, 1<j<p; (1.16)

To show the peaking phenomenon, a SISO second-order subsystem with ¢ =1 and p; = 2 is

considered as

':tll = T1,, j}'12 = ¢11 (117)



and the scaled error variables are

The error dynamics are

67'711 = —h117711 + M,

€My = —hi,m, +e(Pu1 — Pn1)

(1.18)

(1.19)

With sufficiently small €, the effect of the difference, (¢u1 — ¢n.1), on the right-hand side

of (1.19) is small enough that the behavior of the differential equation of (1.19) becomes a

linear system. The solution of such linear systems contains a term of the form

gexp(—at/&t), with a >0
£

(1.20)

As e — 0, peaking of a/e degrades the system performance and may destabilize the system

[7]. One approach to overcome the peaking phenomenon is to design the control as a globally

bounded function of the state, which can be achieved by saturating the control inputs or

the state estimates [33]. The saturations are chosen such that they are not active over the

domain of interest under state feedback.

1.3.2 Extended High-Gain Observers

By adding one more integrator into the high-gain observer, an extended high-gain ob-

server is created to estimate both unmeasured system states and uncertainties [23]. Con-

sider a multi-input-multi-output nonlinear system in the presence of uncertainties o(z,t) =

8



(o1, 0,7 € R™, given by

& = Az + Blgn(z,u,t) + o(z,1)] (1.21)

y=Cx

where z, y, ¢, (z,u,t), A, B and C are given below (1.11). An extended high-gain observer

is designed as

(1.22)
6=H/(y—Cxz)
where ¢, and H are same in (1.13) and H, is
H. = [hy,, Jertl L ’hmpm/gperl]T (1.23)
The observer gains, h;,,- -+, h;, ,, are chosen that the polynomials
AP R NP hip A+ hi, ., for i=1,--- m (1.24)

are Hurwitz.

Extended high-gaion observers have been used for several applications. In [51], robust
stabilization of non-minimum phase nonlinear system was considered using a continuous
sliding-mode control and an extended high-gain observer. Using fast estimation speed of
the extended high-gain observer, the derivative of system output was estimated and one of
unknown functions in the last chain of integrator was also estimated by the extended high-
gain observer. Then estimates were used for the sliding mode control. In [13], an extended
high-gain observer as a fast time-scale was combined with an extended kalman filter as a
slow time-scale to estimate states of internal dynamics. Estimates of the extended high-gain

observer were used as a virtual measurement output for the extended kalman filter.



Chapter 2

Output Feedback Performance
Recovery in the Presence of

Uncertainties

2.1 Introduction

Control of dynamical systems is challenging in the presence of uncertainties. Uncertainties
may arise from inaccurate description of the dynamics by the mathematical model used, or
can be due to external disturbances that are not accounted for in the model. Additional
challenges are posed when the states of the system are not available for measurement and
the control variables do not appear linearly in the mathematical model. To achieve desired
control objectives, many of these challenges have been addressed by several researchers.

To consider uncertain, nonaffine systems with external disturbances, Chakrabortty et
al. [16,17] designed a time-scale separation method. Two filers were used in [17] to deal
with system uncertainties and nonaffine input forms; one filter was designed to estimate the
uncertainties and the other filter was used to deal with nonaffine input forms. The work

in [16] is an extension of Chakrabortty et al. [17] where unmodeled dynamics in the control
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inputs are additionally taken into account. Hovakimyan et al. [28] proposed a fast gradient
algorithm for dynamic inversion to deal with Multi-Input-Multi-Output (MIMO) nonaffine
systems. The control approaches developed by Chakrabortty et al. [16,17] and Hovakimyan
et al. [28] are based on state feedback.

Tanelli et al. [64] designed a state feedback control scheme for uncertain, Single-Input-
Single-Output (SISO) nonaffine systems. A second-order sliding mode controller with sat-
uration was used to deal with uncertainties and nonaffine input forms. The system states
were estimated using the first-order differentiator proposed by Lavant [40] but the stability
analysis was based on state feedback control.

In [23], Extended High-Gain Observers (EHGOs) were designed to estimate unmeasured
states and uncertainties by combining the High-Gain Observers (HGOs) proposed by Atassi
and Khalil [7] with an additional integrator. Back and Shim [9] developed controllers for un-
certain, SISO nonline systems using a time-scale separation approach and the circle criterion;
the unmeasured states and external disturbances were estimated using an observer. These
results were extended in [10] to deal with uncertain MIMO systems using the multi-variable
circle criterion. The results in [23] and [9, 10] are applicable to systems with affine inputs.

Hovakimyan et al. [27] proposed an output feedback controller for uncertain, SISO non-
affine input systems using neural network observers together with dynamic inversion. Ge
and Zhang et al. [24] used neural networks to deal with SISO nonaffine systems and high-
gain observers were used to estimate the unmeasured states. Chen et al. [18] proposed state
feedback control for uncertain, MIMO nonaffine systems using neural networks. Neural
networks were used to model the system dynamics, uncertainties in the system, and input
nonlinearities and uncertainties. A robust backstepping controller, combining backstepping
with variable structure control, was used to deal with neural networks approximation errors.
All of these methods based on neural networks require heavy computations and good prior
knowledge of the system.

In this chapter, we propose an output feedback control scheme for uncertain nonlinear
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systems with nonaffine inputs and external disturbances; it is an extension of our earlier
work [41,42]. By operating an EHGO in the fastest time scale, unmeasured system states,
model uncertainties, and external disturbance were estimated. For the fast recovery of tar-
get system inputs in the presence of uncertainties, dynamic inversion was used based on the
estimates provided by the EHGO together with sector conditions for the inputs. Using a
multi-time-scale controller, the performance of target system states and inputs is recovered
in the presence of uncertainties. The singular perturbation method is used to analyze the
closed-loop system behavior and establish stability and performance recovery.

This chapter is organized as follows. In the Section 2.2, the problem is formulated for
uncertain, MIMO, systems. In Section 2.3 the output feedback controller is presented along
with the EHGO and the dynamic inversion algorithm. Section 2.4 provides the stability anal-
ysis and establishes performance recovery. Simulation results are presented in Section 2.5
and compared with results of other algorithms in the literature. Performance recovery is

also verified through the simulations. Concluding remarks are provided in Section 2.6.

2.2 Problem Statements

The goal of this chapter is to design an output feedback controller that can make an uncertain,
MIMO, nonlinear system follow a target system. Consider a MIMO nonlinear system given

by

T =Azx+ Bf(z,z,u), z(0)=xg

z=folz,2), =z(0)=z (2.1)

12



where A, B, and C represent n chains of integrators as

A = block diag[A, ..., A,], B = block diag[By, ..., B,]

(01 0 - 0] [0 ]
00 1 - 0 0

A = B =
00 - 0 1 0
00 - - O'Pixpi _1_pix1

C = block diag[Ch,...,C,], C;=[1,0,---,0]1x,,

and f(z,z,u) = fu(z,u) + o(z, z,u) with

fn,l 0'1(1’, Z,U)

folew,w) = : , o, z,u) =

fn,n O'n(l', Z,U)
nx1 nx1

1<i<n,p=p1+-+pp,xeD, CR, 2z€ D, CR™ and u € D, C R". The domains
D,, D., and D, contains their respective origins. The output y € D, C R" is measured, the
nominal function f,(z,u) is known, and o(x, z,u) is unknown. Assumptions for the system

are made as follows.

Assumption 1. The functions f,(x,u), o(z,z,u), and fo(x,z) are continuously differen-

tiable.

In this chapter, we are designing controllers for minimum-phase systems. Assumption 2,

below, implies that the z-subsystem in (2.1) is bounded-input-bounded-state stable.

Assumption 2. There exists a radially unbounded positive definite function V, such that for

allr € R? and z € R™

V. <0 for z>W,(z) (2.2)

13



where W,(x) is a nonnegative continuous function.

A target system is defined by

T, = (A - BL)IT’ + Buc(t)> IT(O) = Tr0, (23)

where the matrix L is block diagonal such that the matrix (A — BL) is Hurwitz and u.(t) is
a bounded command input belonging to the compact set D, C R" and its derivative 1. is

chosen to be bounded. With the variable e = x — x,., the error dynamics are given by

¢ =(A—BL)e+ BF(x,z,u,u.), ey=e(0) (2.4)

where F(x, z,u,u.) = f(x,z,u) + Lx — u.(t). With the error dynamics of (2.4), we have the

following assumption.

Assumption 3. o There is a unique continuously differentiable function ¢(z, z, u.) such

that u, = ¢(x, z,u,) solves the equation

F(z,z,uy,u.) =0 (2.5)

The derivative i, = Qq(x, 2, Ue, Ue) 18 bounded on compact sets of © and z.

o There is a known matriz K(x,s + u,,u.) such that the function F satisfies the sector

condition

sTK (2,8 4+ up, ue)F(x, 2,8 +upu,) > Bs's, B>0 (2.6)
for all (x, z,ug), with s = u — u,.

Remark 1. When the system is affine in u, i.e., f(x,z,u) = h(zx,2) + G(x, 2)u, condition

14



(2.6) is equivalent to the existence of a known matriz K(z,s + u,, u.) such that

K(x, s+ up,u) Gz, 2) + GT (2, 2) KT (2, 5 + up, u0) > kI (2.7)

with k > 0. This condition holds with K = I when G(z, z) satisfies

Gz, 2) + G (x,2) > kI, k>0 (2.8)

This will be the case for single-input systems when G is positive and bounded away from
zero. Condition (2.7) is less restrictive than (2.8) as it will be shown in Section 2.5 by an

example.

Remark 2. Earlier work on systems that are nonaffine in the input, in particular, [17]

requires the Jacobian matriz (Of/0u) to satisfy the condition.

of of\"
<%) 4 <%) > kI, k>0 (2.9)

and [27-29] require the Jacobian matriz (Of /Ou) to satisfy either the condition (2.9) or the

condition

7 _T(x u of > 2k 2 YCeR" (2.10)
o ) 17u0) 8u(x7u27u6) C— CHCH CG :

where uy and uy are distinct vartables and k. is a positive constant. The sector condition
(2.6) is less restrictive than (2.9) and (2.10). For single-input systems, (2.9) requires the
Jacobian to be positive for all w. The sector condition (2.6), on the other hand, allows the
Jacobian to be negative as long as f(x,z,u) belongs to the sector [k, o), uniformly in x, z
and U,.

For multi-input systems, the sector condition does not require the Jacobian (0f/0u) to

be nonsingular. The relation between K in (2.7) and the Jacobian matriz (Of /Ou) will be
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mentioned in Section‘2.3. In Section 2.5, it is shown that the sector condition in (2.7) is

less conservative than the conditions (2.9) and (2.10) through numerical simulations.

2.3 Control Design

We use dynamic inversion to deal with nonaffine and/ or uncertain functions. Had z and o

been available, the dynamic inversion would have been taken as

,uu - —K(ZII’, U, UC)F(ZI}', Za u7 U‘C)7 U(O) = Uo
(2.11)

= —K(z,u,u.)[fu(z,u) + o(x,2,u) + Lr — u,|

If the matrix K is chosen as the Jacobian matrix (0f /0u)”, i.e., K = (0f/0u)" (z,u, u.)
and the function F' in (2.11) is not a function of z, i.e., F' = F(z,u, u.), the derivative of the

Lyapunov function V; = s7s/2 along the trajectories (2.1) and (2.3), is

“/3 = (u — ¢d)TS + ST(H — (bd)
1
()

with s = u —wu, and @, = ¢4(z, u, u.). By using the mean value theorem (Appendix B, [34])

(2.12)
KF(z,u,ue) + FT(z,u,u) KT | s — ¢s

with F(z,u,,u.) = 0 in (2.5),

F(z,u,u.) — F(x,u, u.)

' (2.13)

oF

= - 11— ry Ue)d
/0 au(:c,( o)s + Uy, uc)dos
for 0 <o <1, and 9f/0u = OF /0u, V., is rewritten as
. 1

Vo= (2_) §T [PTKT + KP|s—¢Ts (2.14)

1
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where

1 af
P= | —(z,(1—0)s+u,,u.)do (2.15)
0 8U

With sufficiently small p and the condition
sT(PTKT + KP)s > kjl|s| (2.16)

V, < —(ks/p)Vs+0 with k;, ks > 0, and § > 0 independent of p. We note that the condition
in (2.16) is similar to the condition in (2.10).

In output feedback control, x and o are estimated using the EHGO:

(2.17)
&:Hn+1(y—Ci'), .CL’(O) :Li'o, &(O) :&0
where 6(t) = |61, -+ ,6,]7 € R™ is the estimate of o(x, z,u), and
H = block diag[H, - - - , H,],
HZ(€> = [O‘Z}l/‘gv e 7O‘i7Pi/€pi]T7 (218)
H, 1 = block diag[ay ,, /e -+ ap,, /e ]
The constants o1, - -, a;,+1 are chosen such that the polynomials

)\pz-i- + Oéi,1>\pl + -+ Oéimi)\ + Qi pi+1 fori = 1, ...,n

are Hurwitz and the control parameter ¢ > 0 is small enough. We note that the small
parameter ¢ is smaller than p to make the dynamics of the EHGO faster than the dynamics
of the dynamic inversion since the dynamic inversion uses estimates provided by the EHGO.

Therefore, the control parameters € and p are chosen such that 0 < e < p < 1.
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Using the EHGO in (2.17) together with the dynamic inversion in (2.11), the output

feedback control is designed as

pi= —K|[f,(&s,u) + 05 + Lis — u,

) a-s - [&sla'-->&sn]T

T
. Tiq Tip, (2.19)
61 60 \1"
Goi = [Mglsat <M01) ,o.., M, sat (M:L)]

fori =1,...,n, where sat(-) is the saturation function defined by

sat(k) = { " k<1 (2.20)
sign(k) |kl >1

The saturation function is used to prevent peaking from degrading the system performance.
The saturation levels M, ; and M,, forj =1,...,p;andi = 1,...,nin (2.19), are determined
outside of a compact set of interest, which is specified next. Under Assumption 3, the error
dynamics of (2.4) with u = u, is exponentially stable at e = 0. Let P = PT > 0 be the
solution of the Lyapunov equation P(A — BL) + (A — BL)'P = —I. With u = u, and
Assumption 2, for any given positive constant ¢, and for all z(t) € {V,(z) < ¢,} where
Vo(z) = 27 Px, and u.(t) € D,, the positively invariant set {V.(z) < ¢, + a.(c;)} can be
chosen for the dynamics of z in (2.1), where a,(c.) is a class K, function and ¢, > 0. Now,

we can define the compact set

Q= {Va(z) <o} x {Va(2) < e +az(c)} (2.21)

By choosing ¢, sufficiently large, any compact subset of R” x R™ can be included in the

interior of €),. Based on the compact set €1, the levels of saturation are determined as
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follows.

M,,, > max |z,
’ ze{Va(xz)<ce}

(2.22)

M,, > (x,z)e%i}zfceDr loi(x, 2, ur(x, 2, ue))|

fory=1,....p;andi=1,... n.

2.4 Main Result

In this section, we will show that in the presence of uncertainties, the output feedback control
(2.17) and (2.19) can recover the performance of both states and inputs of the target system
(2.3). Consider the fast variables n = [p{,--- ,nl ]" with n; = [n;1,- -+ ,m:,,)7 € R? for
error dynamics of the EHGO

Li 45 — i’@j

—— Nipit1 = 0i(x, 2,u) — 6,(1)
gptid (2.23)

for 1<i<n, 1<j5<p;

Nij =

Using (2.4), the dynamics of z in (2.1), (2.17), and (2.19), the closed-loop system equations

can be written in the standard singularly perturbed form

¢ = (A— BL)e + B[f(z, 2,5 +u,) + Lz — uo(t)], (2.24)
2= fola, 2) (2.25)
s = —K[fu(s, 8 +up) + 65 + Ly — uc] — popa (2.26)
en = An +e[Bir + (Ba/ )] (2.27)
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where

A = block diag[Aq, -+, Ay,

—a;; 1 0 -0
—Q; 9 0 1 o0
Ai:
iy 0 o 01
e 0 e 0 (229)
B = piXp;
Bl = block diag[Blvl, ce >Bl,n]a
BQ = block diag[Bgvl, ce ,Bgﬂ],
0 B;
By = , Byi=
B; 0
(pi+1)x1 (pi+1)x1
for e = 1,...,n and the functions 1, and )y are given by
wl :(1/5)[fn(za s+ ur) - fn(‘%sa s+ ur)]
o0\ "
vo=n{ (52) [Av+Bf(w,z5+u)
(2.29)

o0\ " o0\ "
+<E) fo(z, z)} — (%) KF,
Fs:fn(i'SaS“—ur)“'a-s“'Li's_uc

We note that u, and ¢q4(z, 2, s + u,) in (2.24) and (2.25), respectively, are mentioned in the
Assumption 3, the nominal function f,(z,s + u,) is Lipschitz in its arguments so that the
inequality || fn(x,s + u,) — fu(Zs, s+ u,)|| < eky,||n|| is satisfied with ky, independent of e.
we are going to show the stability of the boundary layer and reduced systems in the closed-
loop system (2.24)-(2.27). Since the z-subsystem of (2.25) with the input « is bounded-input-
bounded-state stable, we are focusing on the subsystems (2.24), (2.26), and (2.27).

Now, using the time-scale structure of the closed-loop system (2.24), (2.26), and (2.27),
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the stability analysis of each subsystem will be shown. By considering the subsystem (2.27) as
the fast system and the other subsystems (2.24) and (2.26) as the slow system, the boundary

layer system in (2.27) can be obtained by

en=2~An, n0)=mn (2.30)

Since the matrix A is Hurwitz, the boundary layer system (2.30) is exponentially stable at
the origin.

After the fast variable 7 reaches its quasi-steady state, n = 0, the reduced system for
(2.24) and (2.26) is obtained by setting n = 0 and ¢ = 0. In the reduced system, the
dynamic inversion (2.26) is viewed as fast and the subsystem (2.24) is slow. The boundary

layer system for (2.26) is given by

pus = —KF(x, 2,5+ u,u.), s(0)=so (2.31)

To investigate the stability of the boundary layer system (2.31), the Lyapunov function
V, = (sTs)/2 is defined. With the sector condition (2.6), its derivative V, along the trajectory

(2.31) is

1wV =—sTKF < —p|s|? (2.32)

Therefore, the boundary layer system (2.31) is exponentially stable at s = 0.
The reduced system for (2.24) is obtained by setting e = 0, 7 = 0, © = 0, and s = 0.

With the input u = u, and = %, the reduced system for (2.24) is obtained as

¢=(A—BL)e, ¢e(0)=¢eg (2.33)
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Figure 2.1: The trajectory starting from (eg, 20, So) € 2, and 1o & {V,, < bs(e/p)*} converges
into (e, z,s,1m) € Q x {V,, < bs(e/p)?}.
which is exponentially stable at e = 0.

The following theorem shows that all trajectories will be bounded and (x,u) approach

the trajectories of the target system (2.3) as p, (¢/u), and € tend to zero.

Theorem 1. Consider the closed-loop system (2.24) - (2.27) under Assumption 1, 2, and 3.
Suppose the trajectories (x, z,u, &, &) start from the compact sets (g, 2o, up) € Sz X S, X Sy C
D, x D, x Dy and (Zg,00) € Q. X Qs C R? x R". Then, there exists a constant ¢ > 0 such

that for max{u, (¢/pn),e} <<
e all trajectories are bounded;
o ||z —x =0 and ||lu—u.|| — 0 as p,(e/p),e = 0 for all t > 0.

Proof. As the first part of the proof, we are going to show that all trajectories enter a
positively invariant set.

We define the Lyapunov functions V, = e’ Pe and V,, = 5’ P,n for the subsystems, (2.24)
and (2.27), respectively, where P, is the solutions for the Lyapunov equation P,A + AT P, =
—1. We define the sets
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Qu={Ve < a1} x{V, <, + a.(cy) } x{Vs < as}
Qp={V. < b} x{V, <, + a,(c,) } x{Vs < by} (2.34)

Qc:{‘/e < Cl} X{‘/Z <ec,+ az(cx)}

with the relations

O<CL1<b1<Cl, 0<as <by (235)

The constant ¢; is chosen such as that

ce{V.<a}l = ze{V, <} (2.36)

so that Ve € {V, < 1}, z € {V, < ¢, + a,(¢;)}. The constant a; and ay are chosen such
that S, x S, x S, C €,.

Similar to earlier work on high-gain observers, e.g., [33], it can be shown that, for suffi-
ciently small (/u), the set Q x {V,, < bs(e/u)?}, for some by > 0, is positively invariant.
This is done by showing that the derivatives of V., V., and V; are negative on the boundaries
{Ve=a1}, {V, =c. + a.(c)}, and {V; = ay}, respectively. Similarly, it can be shown that
for sufficiently small A = max{u,e/u}, the set Q. x {Vi < 2 ?} x {V,, < bs(e/u)?}, for some
co > 0, is positively invariant.

We show boundedness of the trajectories in two steps:

o firstly, the trajectories (e, 2, s) and n starting from (eq, 20, 50) € 2, and 7(0) ¢ {V, <

ba(e/w)?} enter the set Q, x {V,, < bs(e/p)?} in finite time as depicted in Fig. 2.1;

e secondly, the trajectories (e, z), s, and 7 starting from Qy, x {V;, < bs(¢/p)?} enters the

set Q. x {Vy < 2A?} x {V,, < bs(e/p)?} in finite time.

In the first step, consider that the initial conditions are in (eq, 2o, S9) € €2, and 7(0) starting

from outside the set {V,, < b3(/p)?}. Due to the scaling (2.23), n(0) could be of the order of
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.....

by ki||n|| + ko for all (z,z,s) € €, for some positive constants k; and ks, it can be shown

that

eVy < —|Inll? + ekslnl? + ekalln]| (2.37)

for some positive constants k3 and ky. Hence,
2V, < —=linll2 + S (2.38)
for e < 1/(2k3). It follows that there is b3 > 0 such that
eVy < —mV,, forV, > <—> bs (2.39)
i

for some 7, > 0. Taking into consideration that ||n(0)|| < ks/e”™ for some positive constant

ks > 0, we obtain

ke

€2Pm

V, < =9 et (2.40)

for some positive constant kg > 0. Since € < €/u, we can estimate the time the trajectory
will enter {V,, < bs(e/p)*} by the more conservative time, Ti(¢), when V,, = bze?. The time

Ti(e) is given by

k’ﬁ — T/ 2 9 k‘@
€2Pm€ = 635 < Tl B % ln b352(P7n+1) (241)

By L’Hopital’s rule, it can be shown that lim. o 77(¢) = 0. Because a; < by, ay < by, and
the right-hand side functions of (2.24), (2.25), and (2.27) are bounded uniformly in ¢, there

is time T such that (z,z,s) € , for all t € [0,T5]. By choosing € small enough we can have
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Ti(e) = (1/2)Ts.

In the second step, we repeat the same argument to show that s enters the set {V, < cu\?}.
The right-hand side of (2.26) is a perturbation of the right-hand side of (2.31) with the
perturbation term bounded by kz||n|| + ks for some positive constants k7 and kg. Because

n cannot leave the set {V; < b(e/u)?},

kz||n|| + ksp < koA for some kg > 0 (2.42)

where A = max{u,e/u}. Hence

1V, < —B||s||? + kio]|s]| (2.43)

Therefore, there is ¢y > such that

PV, < =72V, for V, > o)\’ (2.44)

This show that there is time Ty = Ty(p) such that the trajectory enters {V, < coA?}. Once
again by choosing p small enough, (e, z) stay in the set {V, < 1} x {V, < ¢, + alc)}-
Thus, with the time T'(e, u) = Ti(e) + Ta(u), the trajectory enters the positively invariant
set Q. x {Vy < oA} x {V}, < bs(e/p)*}.

Lastly, we are going to show the performance recovery for x and u. Since the proof is
similar for both variables, we show it only for u. The nominal model of (2.26) is the system

(2.31), which is exponential stable at s = 0. The difference between (2.26) and (2.31) is

G=- K[fn(i'sa s+ ur) - fn(xa s+ ur)
(2.45)

+0s5(t) —o(z, 2,8 +u,) + L(Ts — )] + paiy,

where u, = ¢4(z, 2, U, 1.) is bounded on the compact set of x, z, u., and ., i.e., @] < Upm,
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with ., > 0, uniformly in p and . The function G is bounded

IGI| < KmleLallnll + Lalnll] + pttrm (2.46)

for some positive constants K,,, Ly, Ly, which can be made arbitrarily small by choosing

sufficient small p and e/, for ¢ > T'(e, ). Using Theorem 9.1 in [33], we conclude that

lut) = ur (O] < 0(p,e/p), Yt =T(p,e) >0 (2.47)

where d(p,e) — 0 as u,(e/p),e — 0. For the time interval t € [0,7(u,¢)|, since the

trajectories u and u, are in the compact set, we have two inequalities

u(t) — u(0)]] < ke, [un(t) — w(0)|| < ket (2.48)

with k; > 0, during the time interval. Using the triangle inequality, we obtain the inequality

Ju— | < 2T, ), ¥t € [0, (1, ) (2.49)

Therefore, given any d; > 0, we can ensure that

|lu(t) — u.(t)|| <61, forall t>0 (2.50)

by choosing ¢, u, and (e/p) sufficiently small. O

2.5 Simulations

In this section, we choose examples for the comparison with other papers, [28], and [17].
The first example, which has nonaffine input, considers the case that the Jacobian matrix

is singular at some values. As a second example, which has affine input forms and system
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uncertainties, the camera image coordinate system in [17] is modified to show that our

proposed control methods provide less conservative conditions than ones in [17].

2.5.1 Example 1

First, we are considering the case where the Jacobian matrix, (0f/0u) in (2.10), is singular

T

at some values. In this example, we assume that the state x = [z, 25" is available and there

is no system uncertainty. The MIMO nonlinear nonaffine system is given by

= (2.51)
T 2u3 — 15u + 36u;
The target system is
j:r = (A - BL)xr + Uey, X = [IT’la xr2]T
100 —T 0 (2.52)
U = , A— LB =
100 0 —x9

Our proposed controller for the dynamic inversion is

) 5171+2u:1)’—15u%—|—36u1—|—:£1 — 100
pt = — , (2.53)
2u§—15u§+36uQ+x2 — 100

where u = [uy, us)?, the small constant x4 = 0.1, and K in (2.6) is chosen as an identity
matrix, i.e., K = Irxo (a2 x2-identity matrix). In Fig. 2.2, the solid lines z; and x5 generated
by the proposed controller in (2.52), converge into the reference trajectories (dashed lines)
in (2.52). Since the proposed controller in (2.53) is designed based on the sector condition,

the controller is not affected by the singularity of the Jacobian matrix in Fig. 2.3.
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Figure 2.2: The solid and dashed lines represent trajectories z; for « = 1,2 driven by the
proposed controller in (2.53) and reference trajectories x,; for i = 1,2 in (2.52), respectively.

2.5.2 Example 2

A modified model from [17] is given by

i:Rmua y= [xl?xQ]T

Y

cos¢ sing (2.54)

R, =
sing —coso
with z = [x1, 22]7, u = [uy, us)T, and ¢ = 45°. The target system with u, = [0,0]” is the same

as in (2.52). With the condition ¢ = 45°, the Jacobian condition (OR,,/0u)” + (OR,,/0u) >

kploxo in [17] is not satisfied. Using the dynamic inversion, the control inputs are designed
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Figure 2.3: Input trajectories u; and uy in (2.53) are shown and both u; and us cross the
values u; = 2,3 and us = 2,3 which make the Jacobian matrix (0f/0u) singular.

pi = —KF (2.55)

where

U1 COS @ + Ug sin + x
KFP=| ’ ' (2.56)

—u7 Sin ¢ + ug COS P — X9
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The sector condition in Assumption 3 is satisfied as follows.

STKF > Bs|? (2.57)

with the constant § > 0. Now, the EHGO is designed to estimate uncertainties i.e., the

right-hand side of (2.54), R,u,
L 1 2 hi .
1’1:0'1—‘—?(1’1—1’1), 0’1:?(1'1—1’1)

h21 N S h22 N

Q‘UQZO-Q_'_?(QUQ_«IQ), 02:?(1’2—1’2)

(2.58)

where 01 and &9 are the estimates of #; and a3, respectively. The constants h;; and h; o,

1 = 1,2 are chosen such that the polynomials

N4+ hiA+hip =0, fori=1,2 (2.59)
are Hurwitz. The output feedback control is

M, sat(61 /My, ) + x1
i —KF. KF, - 1sat(01/Mo,)
—M,,sat(69/M,,) — xo
where the levels of saturation, M,, and M,, are chosen such that the saturations will not be

activated in the range of state feedback control.

For the simulation, the parameters are given by

p=0.02, & = 0.0002, iy =3, his=1 (2.60)

for i = 1,2. In Fig. 2.4, the states z; and xs (solid lines) and their estimates #; and 5
(dotted lines), respectively are plotted. The initial conditions of trajectories are given by

2(0) = [2,4]%, u(0) = [0,0]7, the estimates ;(0) = 0 and Z(0) = 0, and 5;(0) = 0 and
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Figure 2.4: The solid and dotted lines represent the system states x; and o, and estimates
21 and I, respectively.

d2(0) = 0. In Fig. 2.4, the estimate trajectories quickly converge into the system states and
both the states and estimates are indistinguishable. The results shown in Fig. 2.5, indicate
the EHGO successfully estimates the uncertainties (i.e., the entire terms in the right-hand
side of (2.54)) in a short period of time. At beginning of the simulations in Fig. 2.5, the
peaking phenomena are shown and quickly disappear, which are overcome by the use of
saturation functions. To illustrate the performances recovery for inputs, we choose the same
rate of (¢/u) = 0.01 with different values p = 0.2 and g = 0.02. The other parameters in
the EHGO are the same as in (2.60). In Fig. 2.6, the input u, = R 'z is solid lines, the
dashed lines represents the inputs under the output feedback with parameters u = 0.02 and

e/p = 0.01, and the dotted lines are trajectories for the input under the output feedback
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t(sec)

t(sec)

Figure 2.5: The solid and dotted lines represent the system states i; and @9, and estimates
01 and &9, respectively.

with parameters g = 0.2 and ¢/ = 0.01. The input u with the control parameters p = 0.02
and £/p = 0.01, has an faster convergence into w, than the input with control parameters

w=0.2and e/p = 0.01.

2.6 Conclusions

Unmeasured states, uncertainties, and nonaffine inputs pose challenges in control design
for nonlinear systems. An output feedback control design was proposed to address these
challenges. The unmeasured states and uncertainties were estimated using an EHGO and

sector conditions were utilized for dynamic inversion to deal with nonaffine and uncertain

32



Inputu1

t (sec)

t (sec)

Figure 2.6: The solid, dashed, and dotted lines represent the inputs u, = R 'z, u with
pu=0.02 and e/p = 0.01, and u with g = 0.2 and &/p = 0.01, respectively.

inputs. The EHGO and the dynamic inversion together result in exponential convergence
of the states to those of a target system. The stability and performance of the system were
analyzed using singular perturbation methods and the effectiveness of the proposed controller

was verified through numerical simulations. Our future work will consider extension of our

approach to non-minimum phase systems.
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Chapter 3

Output Feedback Stabilization of
Inverted Pendulum on a Cart

in the Presence of Uncertainties

3.1 Introduction

An inverted pendulum on a cart is a classical example of an underactuated mechanical sys-
tem and its stabilization problem has been investigated by many researchers. Based on
linearized system dynamics, controllers can be designed to stabilize the equilibrium but the
size of the region of attraction is typically small. Furthermore, these controllers are not very
effective in the presence of significant uncertainties in the system model. In this chapter we
present an output feedback control design that can stabilize the equilibrium in the presence
of significant uncertainties and provide a large region of attraction.

One representative approach for stabilization of the inverted pendulum on a cart is based
on the energy of the system. Spong and Praly [62] used partial feedback linearization to
linearize the cart dynamics followed by transfer of energy from the cart to the pendulum. A

stabilizing controller is invoked when the configuration of the system reaches a neighbour-
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hood of the equilibrium. Astrom and Furuta [6] used a Lyapunov function based on the
potential energy of the pendulum, and Lozano et al. [46] stabilized the pendulum around
its homoclinic orbit prior to stabilization. Fradkov [22] developed a control method using
an energy-based objective function and the speed-gradient, and Shiriaev et al. [61] proposed
a modified controller using the idea of variable structure systems. Muralidharan et al. [50]
designed a controller for the two-wheeled inverted pendulum using the interconnection and
damping-passivity-based control (IDA-PBC) method proposed by Ortega et al. [55] for un-
deractuated systems. Sarras et al. [59] combined the approach of the Immersion & Invariance
proposed by Astolfi et al [5] with the Hamiltonian formulation to accommodate underactua-
tion degree greater than one. Bloch et al. [12], [11] used the controlled Lagrangian approach
to derive a desired closed-loop system dynamics for stabilization. The controller is designed
by matching the dynamic equations for the uncontrolled and controlled Lagrangians. In [12],
only the kinetic energy was shaped to obtain the desired dynamics whereas both kinetic and
potential energies were shaped in [11]. Angeli [4] developed a smooth feedback law for
almost-global stabilization based on the energy-shaping control strategy in [12]. Auckly [§]
derived a stabilizing controller by solving a set of linear partial differential equations; these
equations were obtained by matching the desired closed-loop system dynamics based on the
potential energy with the original dynamics.

Among other approaches, Mazenc et al. [49] and Teel [66] developed control methods based
on the concept of interconnected systems. In [49], the stability analysis was carried out
using a Lyapunov function whereas in [66] a nonlinear small gain theorem was used. Olfati-
Saber [54] proposed a transformation to convert the system into cascade normal form, for
which existing control methods can be used for stabilization. A two-time-scale approach
was proposed by Getz et al. [26] and Srinivasan et al. [63]. In [26], the trajectories of the
pendulum were rapidly converged to a reference trajectory and the reference trajectory was
slowly varied to converge the cart to its desired position. In [63], low gains were used near

the equilibrium for separation of time scales. All of the methods discussed above require
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exact knowledge of the system dynamics and are unlikely to guarantee stabilization in the
presence of significant uncertainties.

To deal with uncertainties of the system model, Ravichandran et al. [57] used a two-time-
scale approach together with Lyapunov redesign. However, the transient behavior of the fast
system was not analyzed. Park et al. [56] utilized two sliding surfaces for the pendulum and
cart subsystems to stabilize the system in the presence of disturbances but uncertainties in
system parameters were not considered. Adhikary et al. [2] used backstepping and sliding
mode control to the normal form of the system. Both uncertainties and disturbances were
considered but they were introduced after the system was converted into normal form. Xu et
al. [68] used integral sliding-mode control [15] to deal with uncertainties in the two-wheeled
mobile inverted pendulum but the size of the region of attraction of the equilibrium is small
since the controller is designed based on the linearized system dynamics.

In this chapter we present an output feedback controller to stabilize the inverted pendulum
on a cart in the presence of significant uncertainties. Extended High-Gain Observers and dy-
namic inversion are combined together with a multi-time-scale structure to deal with model
uncertainties. The stability analysis for the multi-time-scale structure is carried out using
singular perturbation methods; the advantage of this approach is that the behavior of the
system can be analyzed independently for each time scale. The multi-time-scale structure of
the controller effectively provides a large region of attraction and this is illustrated through
simulations. Output feedback control of the inverted pendulum on a cart has not been pro-
posed earlier and it is shown here that it can recover the performance of the system under
state feedback.

The chapter is organized as follows. In section 3.2, a state feedback controller is designed
using a two-time-scale structure; uncertainties are not considered. In section 3.3, the output
feedback controller is designed in the presence of uncertainties. Simulation and experimental

results are presented in section 3.4 and conclusions are provided in section 3.5.
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3.2 Stabilization in the Absence of Uncertainties

We present a control strategy to stabilize the desired equilibrium of the inverted pendulum
on a cart system, in the absence of uncertainties. The controller is based on the designs
proposed by [25] and [63]; here we cast the closed-loop system dynamics in two-time scale
format for the purpose of stability analysis. The stability analysis is done by transforming

the system into a standard singularly perturbed one.

Remark 3. As an intermediate step for the output feedback controller in Section 3.3, we

design a controller in this section in the absence of uncertainties.

3.2.1 Dynamics of an inverted pendulum on a cart

The dynamics of an inverted pendulum on a cart are given by

my +m. Imycosa| | Im,&% sin F
= + (3.1)

2 . .
{mycosa  {“m, o glm,, sin o 0

Yy__ | _

AN\

| Q
|

Figure 3.1: Inverted pendulum on a cart

37



where m,,, m. are masses of the pendulum and the cart, respectively; ¢ is the acceleration
due to gravity; and ¢ is the length of the pendulum - see Fig. 3.1. The variables x and «
denote the position of the cart and the angular displacement of the pendulum, respectively;
« is measured clockwise from the vertical following the notation in [25]. The variable F
denotes the force applied on the cart and is the control input. With the choice of state

variables

r1 =@, l’gzi’, a] = Oégzd

the system equations of (3.1) take the form

@1 =T, o= frlon, a2, F), d1=an, o= falon, g, F) (3.2)
where
fo= ! F+G
“ (my +me —my cos? ay) ¢
— COS (v
(mp + me —m,, cos? o) (3.3)
o — (fmyad sin ay — my,g cos ay sin oy ) '
! (mp +me —m,, cos? o)
G, = (%) sin a; — COS;”G:B

We consider equations in (3.2) over the domain = = [z, 25]T € D, and a = [ay, 0]’ € D,
where D, = {—a,, < 71 < az,} X {—as, < T2 < az,} C R* and D, = {—a,, < a; <
Uy} X {—00, < ay < @a,} C R? are bounded. The constants, dg,, Gg,, Ga,, and a,, are

positive numbers and a,, < /2.
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3.2.2 Control Design

The choice of the control input

F = (m¢+m, —mycos®a;)(u — G,)

with
14
u = gtana; — Vg
COS /1
results in
.jfl = T2
. 14
Ty = gtanayg — Vg
COS /1
a1 = Q9
g = Vg
We choose
Vg = —51(041 - Oér) - ﬁ2042

(3.4)

(3.5)

(3.7)

(3.8)

where «, is a reference trajectory for v, which will be chosen using the concept of equilibrium

manifold [25].

The desired dynamics of the z-subsystem is

Zifl =9

. l
Lo =Vegt — Va
cos o
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where v.,; is chosen as

Vegt = —Y1T1 — V222 (310)

and (¢/cosaq)yy is considered to be a vanishing perturbation. By comparing the actual
x-subsystem in (3.6) with the desired z-subsystem in (3.9), the desired reference trajectory

for «, can be determined as follows

gtano, = Ve < a, =tan ' (Uegm) (3.11)

The control input v, in (3.8) can now be designed as follows:

Vg = _Bl |:Oé1 - tan_l <'Ueg:ct):| - /620[2 (312)

3.2.3 Closed-loop system

Using (3.4), (3.5), and (3.8), the closed-loop system dynamics can be represented as

jfl =T

To =gtan g + ( ) [Bacry + Bi(c1 — )]

COS Oél (313)

=@
Qg = — Baay — Pi(an — o)
The above system is comprised of two subsystems: the cart dynamics described by states x;

and z9, and the pendulum dynamics described by states a; and ay. Through proper choice

of B and Py, we can ensure that oy converges to «, quickly and ay converges to 0. Then,
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the cart dynamics is described by

T1 =T
(3.14)
To =gtan o, = Vegr = —Y1T1 — Y22

which guarantees asymptotic stability of the origin (x, %) = (0,0).

3.2.4 Analysis using singular perturbations

To make the cart dynamics slower than the pendulum dynamics, we choose low gains for the
cart controller: v, = 5%/{;1 and vy = €1ko, where ¢ is a small positive parameter and positive
constants k; and ko are independent of £;. We note that instead of using the low gains in
the cart controller, high gains can be used in the pendulum controller. However, the use of
high gains results in peaking in the slow dynamics. The change of variables

T

y=1ly, 2", 1 =elwr, 1= err (3.15)

0=101,0]", 0y =0n—a,, by=0 (3.16)

transforms the system (3.13) into the singularly perturbed form

U1 =€1Y2

Yo =c1[—k1y1 — kay2 + hs (0, )]

. (3.17)
91 :92 + €1ha<y, 9, (67N F)

0y = — (161 — Baby
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where h, and h, are given by the expressions

h, =g [tan(6; + «,.) — tan «,]
+ [m} (8161 + B202) , (3.18)

he = [ J

g+ (R — ko)

2] (k1y2 + ko fz)

and f, is defined in (3.3), except that oy should now be replaced by (6; + o) in accordance
with (3.15). We note that h, and h, are bounded by constants independent of ¢; for all
€1 < 1 over the domains D, and D,. The boundary layer system is obtained by setting
g1 =01n (3.17):

. 0 1
b= Ay, Ay— (3.19)

—B1 B
where (8, and [y are chosen such that Ay is Hurwitz. The reduced system is obtained by

setting €1 = 0:
j=ady, A= (3.20)

where k; and kg are chosen such that A, is Hurwitz. The two time-scale structure of the
system is depicted in Fig. 3.2.

It follows from Theorem 11.4 of [33] that there exists a positive constant €} such that for
1 € (0,¢7) the origin of the closed-loop system (3.17) is exponentially stable.

The design of §; and f2 should ensure that oy stays in the set |a;| < a,, where a,, < 7/2.
Since 0, = a; — o, = a; — tan " (vez/g), by choosing £; small enough we can constrain
6, to the set 01| < by, with by, < 7/2. The initial state #(0) belongs to a compact set

{16h] < ag,, |02] < ag,} where ay, < /2 and ay, is some positive constant. We are going to
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design 31 and (5 to obtain a Lyapunov function Vj for the system:

0y =0y, 0y = —F10) — Baby

such that the compact set {Vy < ¢y} contains the set {|6| < ag,, |02 < ap,} and is
contained in the strip |6;| < by, with as, < bs, < 7/2. By showing that Vj, is negative
definite we ensure that the set {Vj < ¢y} is positively invariant and all trajectories starting
in {|61] < ag,, [02] < ag,} stay in the strip |61 < by, for all ¢ > 0. The gains 5; and [y
are taken as 1 = (B.1/p) and By = (Beo/p) with positive constants f.; and [.o, and a small

positive constant pu. The Lyapunov function is taken as

(3.21)

o0

|

S N -
N O

_ T N O—
Vy,=0TP,0, 0= <51
B2

1
By choosing ¢y < 565 . we have

1 1
Vo< cy = 59%§09<§b§1 = |601] < by,

Over the set {|61] < ag,, |02] < ag,},

1 2
Vo < 5@31 +g [(ﬁ) ap, +a92]

Therefore by choosing

(2co — agl)

[(B1/B2)ag, + a92]2

d<

we ensure that {|61] < ag,, |02 < ag,} C {Vh < cp}. As in standard analysis of singularly

perturbed systems (Theorem 2.1 of Chapter 7.2 of [36]), the derivative Vp will be negative

43



Normal Speed System Slow System

Pendulum

(38) Vq 1
—+P I ——1 .

Pe=s

(3.10) ¢

Figure 3.2: The two-time-scale structure of the inverted pendulum on a cart system

definite by choosing p sufficiently small.

3.3 Stabilization in the Presence of Uncertainties

In the presence of parameter uncertainties, f, and f, of (3.2) are unknown. We however
note that the following conditions (the sign of the input coefficients in (3.3)) hold in D, and
D,:

1

my + me — m,, cos? ay

sign(c;) >0, ¢, =
(3.22)

Cg COS (g

sign(cq,) >0, ¢q = 7

Extended High-Gain Observers will be used to estimate the uncertain terms in f, and f, in
addition to the states; and dynamic inversion will be used to compute the inputs F' and u,

described by (3.4) and (3.5), using the estimates of f, and f,.
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3.3.1 Dynamic inversion

With the knowledge of the sign of the input coefficients, as shown in (3.22), we use a dynamic
inversion scheme which is different from ones in [25], [29], and [28], in order to compute
the control inputs F' and u. The proposed dynamic inversion scheme in the chapter is
an extension in our earlier work [42] since our earlier work dealt with SISO systems. In
particular, had f, and f, been known, we could have used

F —f:+u

u f a — Vd
to solve for F' and u, starting from arbitrary initial conditions. In the above equation, &5 is
a small positive number; its relationship with ; will be discussed later. As e — 0 and the
stability of (3.23) is guaranteed, f, ~ u and f, =~ v4. The equation (3.23) is a singularly

perturbed system of the form

€9 = Az + s Az = (324)

U U G, — 1y —co 0
whose quasi-steady-state solution is given by (3.4) and (3.5). Since the foregoing equation
is linear in F' and u and the matrix A, with frozen x and « is Hurwitz, it can be seen that
for sufficiently small €5, F' and u converge fast to their values that satisfy (3.4) and (3.5).

The stability analysis for the system in (3.24) will be discussed in Section 3.3.

Remark 4. The dynamic inversion scheme used in this section is different from ones in

[25], [29], and [28].

o [n [25] and [28], the dynamic inversion schemes were developed by the Jacobian with
respect to inputs whereas the proposed one in the chapter is based on the stability of

the fast dynamics in (3.24), which only requires the knowledge on the signs of inputs.
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o [n [25], the stability analysis for the dynamic inversion is limited to a local neighborhood
of the equilibrium, whereas our stability analysis is based on Lyapunov functions, which

covers a larger domain than one in [25].

o [n [29], the dynamic inversion is only for SISO systems whereas our dynamic inversion
scheme is able to deal with MIMO systems since the dynamic inversion has the inputs

F and u in (3.24).

3.3.2 Extended High-Gain Observers (EHGOs)

Now, we assume that velocity and acceleration terms, xs, s, 0.(x,a,u), and o,(z, @, u),
which are used in the dynamic inversion, are unknown. EHGOs are designed to estimate
the acceleration and velocity terms. The EHGOs for the cart and pendulum systems are

designed as

: h
T1 =To + (2) (1'1 - il)

€3

L Foa oA . h X
T2 :fm(al,ag,F) + 0, + (g) (.f(fl — ZL’l)
3

PO h .
o =0 + (ﬂ) (Oé1 - 041)

€3

A . h .
o =fo(bq, b0, F) + 64 + (g) (on — &)
3

: h .
0o = <—233> (a1 —an)
€3

where f, and f, are the nominal values of f, and f, in (3.3); 0, and 6, denote the estimates of
o, and o, which are the uncertainties in the values of f, and f., respectively, i.e. f, = fo+0,

and f, = fa + 04. The constants h;; for i = 1,2 and j = 1,2, 3 are chosen such that the
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following polynomials

83 —+ hi182 -+ higS -+ hig, fori = 1, 2

are Hurwitz and €3 is a small positive number.

Remark 5. The parameters €1, €5 and 3 should satisfy e1 < 1, 9 < 1, and (e3/e9) < 1.
This requirement can be intuitively explained as follows. Since the FEHGOs’ estimates &, and
0o are used in dynamic inversion, the observer dynamics should be faster than the dynamic
inversion algorithm; hence, (e3/e2) < 1. Since the dynamic inversion computes u and F,
which are used to implement the controller, it’s dynamics should be faster than the dynamics
of the closed-loop system with no uncertainty (3.13); hence e < 1. Since the z-dynamics is

much slower than the a-dynamics, €1 < 1.

3.3.3 Output feedback control

Using the dynamic inversions together with the EHGOs, the output feedback control is

— d a_x
F _fm (Oél’ Mgsat <ﬁ2) ’ F)—stat <ﬁ>+u

o =] S W (3.26)
i (s Mosat (£ ), ) Mosat (- ) -
(L J (Oél psa (Me) + M,sa (Ma) d
where
Vqg = —pi(oq — &) — BaMgsat <](\14—2€) ;
&, = tan™" (ﬁem) , (3.27)
g
ﬁext = N1 — 723%2
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Entire System

Fast System |
EHGOs
(3.31)

Slow System

| Fast System
Dynamic Inversion |
(3.30)

_ _Slow System __
[ Fast System _i |
| | Pendulum Dynamics |

| (3.29) |

| Slow System | |
|

| |

I (3.28)

Figure 3.3: Multi-time-scale structure for the closed-loop system

To protect the system from peaking, the saturation function sat(-)

e, if [e] <1
sat(e) = {

sign(e), if |e|] > 1

is used. The saturation limits M,, M,, and M, are determined such that the saturation

functions will not be invoked under state feedback.

3.3.4 Stability analysis in the presence of uncertainties

The closed-loop system is represented in the singularly perturbed form

Y1 =€1Y2
(3.28)

Yo =¢1 fr (61 + ., 02, F)
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91 :92 + glha(yu 97 (079 F)

' (3.29)
02 =fo (01 + v, 02, F)
e02 =Az+ () — e20(+) (3.30)
_ _ 1 _
e3n =Ayn + €3 | BiA1 + BaAg + (6—) B2A3] (3.31)
2

where A,, By and By are given in Appendix and z = [z, 2,]T with

zp=F—F" z,=u—u"

With the variables F* and u*, the conditions f.(0; + «a,, 6y, F*) — u* = 0 and f,(0; +
Qy, 02, F*) — vy = 0 in (3.23) hold, and ¢(-) = 0 when 1 = 0, and ¢(+) is bounded uniformly

in g5. The fast variables n = [, 7a)%, e = [Mers Mosy Mes)t and N = [Nays Mg s |- are

defined by

T1 — I Ty — T
Ney = =

Nz
Eg ) 2 83 )

Nxs :O'I(Hl —|—O{7«,92,F)—(3'm

oy — g Qg — (ip
Nay =

o —
8% Y 2 63 )

na;g :Oa(el +a7’a92aF)_a-Om

We note that f, and f, of (3.28) and (3.29) are bounded uniformly in 5 and 3.

The stability analysis for the each subsystem will be done by starting from the fastest one,
i.e. the error dynamics of the two EHGOs (3.31) to the slowest one, i.e. the cart dynamics
(3.28). The singularly perturbed system can be viewed as a two-time-scale structure if the
error dynamics of the two EHGOs (3.31) are the fast subsystem, while other subsystems

(3.28), (3.29), (3.30) are the slow one as depicted in Fig.3.3. The boundary layer system,
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which is obtained by setting 3 = 0 in (3.31),

dn
o () =

is exponentially stable. We note that in the error dynamics of the EHGOs, the matrix A,
is Hurwitz, and Ay, Ao, and Az and the constant matrix By, B,, and Bs are uniformly
bounded in £3 whose definitions are given in the Appendix.

Next, the dynamic inversion (3.30) is slow relative to the EHGOs and fast relative to the

systems (3.28) and (3.29) as depicted in Fig.3.3. Setting €3 = 0 and 1 = 0, which yields

r=1I, a=4q, fm:fm+&$7 fa:fa"'_&av
results in the boundary layer system

' — (01 + o, Oy, F*) + u* F
E9Z = AZZ + — &9

fa(91+aT7927F*)_Vd u*
with

fm(el + ar7927F*> = CmF* + Gwa

fa(el + ar>92>F*) = _CaF* + Ga

Since f.(61 + a,, 02, F*) —u* = 0 and f, (61 + ., 02, F*) — vy = 0 with the inputs F* and

u*, we have

F*
822 = AZZ — &9
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Setting €5 = 0 yields exponential stability of z = 0.

After the EHGOs and dynamic inversion reach quasi-steady state, hierarchically, i.e.,

e3=0,71=0,e=0, 2=0

we have the reduced system for the inverted pendulum on a cart which is the same as the
system in (3.17). The reduced system also has a time-scale structure and its stability analysis
is given in Section 3.2.4.

Typically, a slow variable in a multi-time-scale structure is assumed to be constant although
it is evolving slowly. We consider the behavior of the slow variable and define sets for stability
analysis of our multi-time-scale structure using Lyapunov functions. Lyapunov functions for
three of the four subsystems are defined by; V, = y" Py, V, = 27 P,z, and V,, = n' P,
where P,, P,, and P, are solutions of Lyapunov equations with right-hand sides equal to
the negative identity matrix. The Lyapunov function Vj is defined in (3.21). The fastest
variable 7 converges quickly into the set {V,, < p(e3/£2)?} with a positive constant p, while
the variables y, 6, and z move relatively slowly. We define a set (y,0,2) € {V, < a1} x{Vp <
as} x {V, < a3} with positive constants a;, as, and az. Although a short convergence
time period Tj(e3) exists for the fastest variable 7, the trajectories of variables y, 6, and z
can leave the set {V, < a1} x {Vh < ax} x {V, < a3z}. Therefore, we define the superset
{V, < b1} x{Vy < by} x{V, < bs}, where b;, (b; > a;) can be arbitrarily close to a;, i = 1,2, 3,
(for a sufficiently small £3) that satisfies the condition for the constrained domain for 6. After
the variable 7 converges into the set {V,, < p(e3/e2)?}, we consider the time period Ty(e) for
convergence of the second fastest variable z. During the time period T5(e2), the trajectories
of y and 0 can leave the set {V, < b} x {Vp < be}. To guarantee that the condition for the
constrained domain for 6 is satisfied during both time periods T3(e3) and T5(e2), we define
the superset (y,0) € {V, < A} x {Vp < Ay} where A; (A; > b;) can be arbitrarily close to

bi, i = 1,2, (for a sufficiently small ¢5).
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The main result of this chapter is presented next with the help of the following theorem.

Theorem 2. Let Xy be any compact set of (x,«) in the domain D, x D, X5 any compact

subset of R%, and X3 any compact subset of R®. There exists e* such that for all

€3
g1 <€, gg<e’, =<t e3<eE”
€2

and for all initial states (x(0),«(0)) € X3, (F(0),u(0)) € Xo, and (2(0),&(0)) € X3, the
closed-loop system (3.28) - (3.31) has an exponentially stable equilibrium point, at which

r =0 and a =0, and the set X1 x X5 X X3 is a subset of the region of attraction.

Proof. It is shown in the Appendix that the closed-loop system (3.28) - (3.31) can be written

as

g =e1 [Ayy + B(ha(0, ) + cr2r)] (3.32)
0 = Agh + e1Ehy(y,0, o, F) — Begzp (3.33)
g2 = Az + () — e20(+) (3.34)
3t = Ayn+e3 | BiAy + BaAg + (5_12) BQA3:| (3.35)

For the first part of the proof, all trajectories starting from (2(0), «(0), F'(0),u(0)) € X; x Xa,
will converge into the desired equilibrium while «; satisfies the condition for the constrained
domain. We are going to show that all trajectories converge to a positive invariant set
{V, <di} x {Vh < (g5)%da} x {V, < (})?c3} x {V,, < (e3/e2)?p} with the positive constants
dy, dy, c3, p, €, = max{ey, e}, and £f = max{ey, (¢3/¢2)}. Note that it is shown that in
section 3.2.4, the condition for the constrained domain for a; with sufficiently small e; > 0,
is satisfied even though change of variables is used. We are going to use the following

hierarchical, repeated process

e First, we are going to prove that a subset {V. < b3} x {V;, < (e3/e2)?p} of {V,, < b1} X

{Vo < ba} x{V. < b3} x{V,, < (£3/e2)?p} is positively invariant by properly choosing p,
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while the variable n is viewed as fast and the other variables y, 6, and z are considered
as slow. The time period Ti(g3) for 1 to converge into the set {V, < (e3/£2)?p}, can

be arbitrarily small as e3 — 0.

Second, it will be shown that the subset {Vp < e} x {V, < (g1)2%c3} x {V}, < (e3/22)?p}
of {V, < e} x {Vy < o} x {V, < (e3)%cs} x {V,, < (e3/e2)?p} with by < ¢1 < Ay and
by < g < Aj is positively invariant by properly choosing c3. In this stage, the variable
n is already in the set {V, < (£3/e2)*p} and the variable z converges rapidly into the
set {V, < (%)%c3} with the convergence time period Ty(g2). The time T(g3) can be

arbitrarily small as €5 — 0.

Lastly, it will be claimed that the set of {V,, < di} x {Vp < (g5)?da} X {V, < (3)%c3} x
{V,, < (e3/e2)*p} with ¢; < dy < A; is positively invariant by properly choosing dy. In
this stage, the variables z and 1 are in the set {V, < (e7)%cs} x {V}, < (e3/£2)?p} and

the fast variable 6 converges into {Vp < (})%ds}.

In this proof, we are going to show only the first bullet out of three since proofs for the others

are the same as the first bullet. There is an upper bound ||n|| < (e3/€2)/p/Amin(F,), Where

symbols A\pax(N) and Ayin(N) are used to denote maximum and minimum eigenvalues of a

matrix N, respectively, and the variables y and 6 are in a compact set. The derivative of V,

along the trajectory (3.34) is

. 1 2
V.<— (—) ||21|2+(—) P, kylnlll =]
£9 9

2P, o [+ 101+ e 1211 12 <

4P,
for el 2 22 (422 ) b,

z

a,
2—52”2”2 (3-36)

for all (y,0,z,m) € {V, < bi} x {Vh < b} x {V, = b3} x {V,, < (e3/e2)*p}, where a, =

1 — 2e0ky, Ps,., Ps. = Amax(P:), and the positive constants k.,, ky, kg, ke,, and ke, are
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independent of €¥. The derivative of V;, along the trajectory (3.35) is

: 1
Vy<— 6—3Hn!l2 + 25, [(km Y1l =+ K 101 + Kol 211)

1
+ () @llel -+l

. 4P,
Vy < =gl for wz(g‘”’)( )b (3.37)
3

o)\ ay

for all (y,0,2,n) € {V, < b1} x {Vh < b} x {V, < (e5)?b3} x {V,, = p(e3/eq)?}, where
ay, =1=2P,, [(es/e2)knps + 3kys], Py. = Amax(P,), and the positive constants b, and k,, to
ke are independent of (e3/e2). By choosing p = 16P} (b,/a,)* and using (3.36) and (3.37),
we conclude that the set {V, < b3} x {V,, < (e3/22)?p} is positively invariant.

Now, it will be shown that for sufficiently small e3, trajectories starting from (F,u) € X,
and (2, &) € X3 enter the corresponding the invariant set of {V, < bs} x {V,p(e3/22)?} in the
finite time T} (e3), where lim., ,o71(e3) = 0. There exists the error bound ||n(0)|| < k;/e2
with a non-negative constant k,. Due to the continuity and boundedness of ¢, 6, and %, we

have

ly ()= (0)[[<kst, [10(6)-0(0)[|<kst, |[2(2)—2(0)[[<kst

with the constant £y > 0. Instead of computing the time 7;, when the trajectory n enters
into the set {V;, < p(e3/e2)?}, we will find the longer time 7 than T), to ensure that the
trajectory enters the set in a finite time. Using the bound for the initial condition of 1 and

the property of exponential stable Lyapunov function V;, in (3.37), we have

V, < (g) exp(—oit/e3)

3
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where 01 = a,/(2P,,,) and 0y = P, ki. Due to 3 < (£3/e2), we obtain

g
Egp = (;i) eXp(—01T1/83>

3

The bound for the time T3(e3) € (0, Tp] is obtained

€3 02 1
T == )In(—) < =T
= (5 G = %

As ez — 0, Ti(e5) — 0.

As the second part of the proof, we are going to show that the closed-loop system (3.28)
- (3.31) has an exponentially stable equilibrium point, at which x = 0, a = 0. Consider
the derivative of the Lyapunov functions Vy and V, along the trajectories (3.33) and (3.34),

respectively, are

Vi knllOll+ [erknlyll + 1knlé]
(3.38)

(1 + ca,) 121 191

Vy < eil=llyl® + 2ko Py, J101yll + 2¢2, Py, 1211yl (3.39)

where P, = Anax(Py), ||zl < cans |Icall < ca,, and the positive constants ki, kn,, kny, kng,
and kg are independent of €1, €9, €3, and (e3/¢5).

By defining W, = /V,,, Wy = \/Vp, W, = V/V;, and W,, = /V,, and using (3.36), (3.37),
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(3.38), and (3.39), we have

DYW < —MW, W = [W,, Wy, W., W,]"

g1k —e1kig —e1kis 0

—€1kor (1 — e1kao)ksy —(c1koz +k33) 0

M= k k
k31 —ks32 (ﬁ)(l — €9k33) —=
€9 o €2
—ka — k4o — (k43+$) kn
| 2 J

where ks = gl (1 — eakay — ?k‘jh) and DT (-) denotes the upper right-hand derivative,
and k;; and l{% for i,5 = 1,.2. .,4 are positive constants independent of 1, €5, €3, and
(e3/22). Consider the differential equation U = —MU with U = [U,, Up, U, U,|" and the
same initial condition U(0) = W (0), whose origin is exponentially stable since the leading
principal minors of the matrix M can be all positive (i.e., the matrix M can be Hurwitz) by
choosing 61 <€ 1, g9 € 1, 63 < 1, and £3/e5 < 1 small enough. Using a vectorial comparison
method in Chapter IX of [58], we conclude that W < U for all ¢ > 0. Therefore, the closed-
loop system (3.28) - (3.31) has an exponentially stable equilibrium point, at which z = 0,

a=0. O

3.4 Simulation and Experiment

3.4.1 Simulation results

For simulations, the system parameters were assumed to be

m. = 0.94 kg, m, = 0.23 kg
(3.40)
g=9.8m/s* (=0.3206m
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The state feedback controller described by (3.4), (3.5), (3.10), and (3.12) was implemented

using the following parameter values; The control parameters for the state feedback are

M =¢tk, y2=¢iky, S =5, B2 =3 (3.41)

where €1, kq, and ko were chosen as

g1 = 02, ]{51 = 2, ]{52 =1 (342)

For the output feedback controller, we assume that the system dynamics is completely un-
known except for the sign conditions in (3.22). The output feedback controller with dynamic
inversion described by (3.25), (3.26), and (3.27) was implemented by setting f,(-) = 0 and

fo(-) = 0in (3.25) and (3.26). The following parameter values were used

hit =95, hig =5, hiz=4, 1=1,2

The parameters €; and f;, 7v;, ¢ = 1,2, are the same as those used in state feedback control
- see (3.41) and (3.42). The saturation limits M,, M,, and M, are chosen to be slightly
greater than the maximum absolute values of f,, f., and as, respectively, observed in state
feedback control simulations.

For both state feedback and output feedback, the initial states z1(0), 22(0), a1(0), and a»(0)

were chosen as

21(0) =0m, x2(0) =0m/s,

a1(0) = 0.8727 rad (50°), a»(0) = 0rad/s
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The initial conditions used for the dynamic inversion and the EHGOs were

#1(0) = 0.1, #5(0) = 0.1, fx(0) =0,

a1(0) = 0.1, G(0) = 0.1, f,(0) =0

To investigate the performance of output feedback vis-a-vis state feedback, we simulate two
cases with: (e9,e3) = (0.02,0.002) and (e9,e3) = (0.01,0.0001). The results are shown in
Figs.3.4 and 3.5.

The plots of 1 and x5 are shown in Fig.3.4 and the plots of a; and as are shown in Fig.3.5;
these plots have different time horizons since the dynamics of x; and x5 are slower than
the dynamics of ay and as. Both Figs.3.4 and 3.5 indicate that the states converge to the
desired values and the output feedback controller is able to recover the performance of the
state feedback controller when €5 and €3 are chosen small enough.

We present results from a second simulation where the initial configuration of the pendulum
is almost horizontal with different initial conditions. The initial conditions were assumed to

be

z1(0) =0m, x9(0) = -3 m/s,

a1(0) = 1.3963 rad (80°), as(0) = g rad /s

The time-scale control parameters €1, €5, and £3 were chosen as €; = 0.05, 5 = 0.002 and
g3 = 0.0001, and the control parameters $; and 35 were chosen as 1 = 15, [ = 10. The
remaining control parameters and initial conditions were chosen to be identical to the first
simulation. The results, shown in Fig.3.6, indicate that the pendulum and the cart are both

successfully stabilized to their desired configuration.
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t (sec)

Figure 3.4: Trajectories of x; and x5 for state feedback (solid line), output feedback with
(e9,e3) = (0.02,0.002) (dotted line), and output feedback with (e5,e3) = (0.01,0.0001)
(dashed line)

3.4.2 Experimental results

The experimental testbed for the inverted pendulum on a cart is shown in Fig.3.7. A 6V-DC
motor with a planetary gearhead (reduction ratio 3.71:1) drives the cart on the racks. The
angle of the pendulum and the position of the cart are measured by optical encoders that
have a resolution of 1024 lines per revolution. The experimental hardware was interfaced
with a dSPACE board and the output feedback controller was implemented in the Mat-
lab/Simulink environment with a sampling interval of 0.0006 sec.

The dynamics of the inverted pendulum on a cart is described by (3.2) and (3.3) and the

nominal parameter values are given by (3.40). The dynamic inversion based output feed-
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Figure 3.5: Trajectories of a; and ay for state feedback (solid line), output feedback with
(e9,e3) = (0.02,0.002) (dotted line), and output feedback with (e5,e3) = (0.01,0.0001)
(dashed line).

back controller described by (3.25), (3.26), and (3.27) was implemented using the following

parameter values

ki1 =9, ko =5, v1 = etky, 72 = e1ko,
B =950, B2 = 30,
hii =3, hix =3, hig=1, for i=1,2

&1 = 02, E9 = 001, E3 = 0.005
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Figure 3.6: Trajectories of z; and «; (solid lines), and z5 and s (dashed lines) are shown
in the top and middle subfigures. In the bottom subfigure, a trajectory of the input F in
(3.26) is shown.

The initial conditions were chosen as follows

21(0) = —0.38 m, z2(0) = 0 m/sec,

a1(0) = 0.19 rad (10.9°), as(0) = 0 rad/sec

The initial angle of the pendulum was chosen close to the upright configuration such that
the cart position did not exceed the physical limit of the racks and the motor did not exceed
its torque limit. To reduce the effect of measurement noise, the encoder signals were passed
through low-pass filters of bandwidth 1000 Hz.

The experimental results are shown in Fig.3.8. Until around 0.5 sec, the pendulum on the
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Figure 3.7: Experimental testbed for the inverted pendulum on a cart - a product of Quanser

1]

cart is held manually while the power switch is off. At around 0.5 sec, the power switch
is turned on. The trajectories of x; and its estimate Z;, and a; and its estimate &y, all
converge to the origin.

Within an allowable operation range of the system, we compared experimentally results
generated by our control algorithm with ones provided by an LQR controller and the control
algorithm in [63]. The LQR controller is designed by following instructions in manufacturer
manuals. The stabilization control scheme proposed by [63] was also implemented to check
the effectiveness of estimates of uncertainties by the EHGOs. In Fig. 3.9, we show the ulti-
mate boundedness results from system uncertainties, which could be due to friction between
cart’s pion and racks, mass of the cart and pendulum, etc. In Fig. 10, the effectiveness of fast
estimates by the EHGOs with the dynamic inversion results in the appropriate control input
F whereas the other two controllers use high gains to stabilize the system at the equilibrium

in the presence of uncertainties.
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Figure 3.8: Trajectories of x; and its estimate %7, and a; and its estimate &; are shown.
The estimated values are indistinguishable from their true (measured) values.

3.5 Conclusion

An output feedback controller for stabilization of an inverted pendulum on a cart was pre-
sented. From a practical point of view, this is an important contribution since all states of
the system are typically not accessible and uncertainties reside in the system. To estimate
the unmeasured states and to compensate for the uncertain dynamics, Extended High-Gain
Observers were used. To deal with uncertainties in the input coefficients, dynamic inversion
was used. Both Extended High-Gain Observers and dynamic inversion introduce fast time
scales and this required the controller to be designed using a multi-time-scale structure. The

multi-time-scale structure is well-suited for control of underactuated systems, and for the
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Figure 3.9: Trajectories of x; and a; are shown with different control schemes. Solid lines
driven by our control scheme, converge into the origin. Dotted lines generated by a LQR
controller, have ultimate boundedness. Dash-dot lines provided by the control algorithm
in [63] have the biggest ultimate boundedness.

inverted pendulum on a cart, additional time scale separation was used to first converge the
pendulum to a reference trajectory and then converge the cart to its desired configuration.
Using singular perturbation methods, the stability of the closed-loop system was analyzed
and exponential stability of the equilibrium was established. Numerical simulations were
used to show that the output feedback controller recovers the performance of state feedback
and to demonstrate a large region of attraction of the equilibrium. Experimental results
were used to demonstrate the feasibility of practical implementation with uncertainties in
system parameters. Our future work will focus on extending our approach to output feedback

stabilization of other underactuated mechanical systems.
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Figure 3.10: Trajectories of inputs F in (3.26) (the top subfigure), LQR (the middle subfig-
ure), and [63] (the bottom subfigure) are shown.
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Chapter 4

Output Feedback Control for an
Autonomous Helicopter in the

Presence of Disturbances

4.1 Introduction

In recent years, autonomous helicopter operation has been used in various areas such as
above-ground transportation, forest fire monitoring, monitoring criminal activity, and multi-
agent, multi-objective UAV mission in [60,67]. However designing a control system for an
autonomous helicopter is a challenging task. Since helicopter dynamics have nonaffine con-
trol inputs and are underactuated mechanical systems, it is difficult to control and it can
easily become unstable compared to other mechanical systems like ground vehicles.

In [3, 20, 38, 39], controllers were proposed for helicopters without considering unmea-
sured states and uncertainties. In [38], a dynamic extension concept from [30] was used to
eliminate internal dynamics in an approximate model of a helicopter. In [39], a differential
flatness method was proposed through an approximation model. In [39], using the concept

of a natural two-time-scale separation, it was possible to design outer-loop (position dynam-
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ics) and inner-loop (the rest of the system) controls separately and overcome the feature
of underactuated mechanical systems. In [3], while considering dynamics of actuators, the
approximated (input-affine) model was combined with backstepping to control a helicopter.
Since an approximate model was used in both [38,39] and [3], and neither disturbance nor
model uncertainties were considered, the proposed methods are not valid in the presence of
disturbance.

In [31,47,48], using high gains a two-time-scale approach for helicopter dynamics was
proposed considering the helicopter system parameter uncertainties. In [31], based on a two
time-scale separation approach between rotational and translational dynamics, a controller
with an affine control input model was designed to track the vertical reference trajectory
which has unknown phase, amplitude, and frequency, while stabilizing the lateral, longitu-
dinal, and attitude dynamics. In [31], the robustness of the controller to uncertainties was
considered through numerical simulations. In [47,48], a state feedback controller robust to
uncertain aerodynamical parameters of the helicopter was proposed, which is based on the
linear approximation of control inputs. In [48], high gains were used to dominate uncertain
parameters and to render the helicopter rotational dynamics quickly converge into desired
trajectories which are control inputs for the translational dynamics. Moreover, nested satu-
ration control was used to prevent the controller having singularities. In [47], the systematic
control design process was presented, based on the earlier work of [48]. For the three papers,
it was assumed that states of the system were measurable and external disturbances were
not considered. Nonaffine control inputs were approximated to affine control inputs.

In [14,19,65], neural networks were proposed to deal with nonaffine control inputs and
uncertainties. In [14], neural networks were used to deal with uncertain, input-nonaffine,
nonlinear systems (for example, attitude dynamics of a helicopter). In [19], using neural
networks and backstepping scheme, uncertain system parameters and external disturbances
were dealt with under state feedback control. In [65], robust adaptive neural networks con-

trol was designed in the absence of uncertainties for vertical flight of helicopters, i.e., a
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single-input-single-output nonaffine system. The system states were estimated by high-gain
observers [33] and adaptive nenural networks were used to deal with a nonaffine control in-
put. However, neural networks require training, and selection of the basis and weights often
requires significant computation.

Disturbance estimators were used to consider uncertainties in helicopter dynamics in
[41,45]. In [45], nonlinear model predictive control with disturbance observers was used
to deal with parameter uncertainties and external disturbances under the assumption that
states of the system were measurable and control inputs were affine. In [41], output feedback
control design for an unmanned helicopter in the presence of uncertainties was developed
for the rotational dynamics; the dynamic inversion scheme was used to deal with nonaffine
control inputs and an extended high-gain observer estimated unmeasured states, system pa-
rameter uncertainties, and external disturbances.

In this chapter, the output feedback control of a helicopter is proposed as an extension
of [41] from a Single-Input-Single-Output (SISO) systems to MIMO systems. We propose
to use an Extended High-Gain Observer (EHGO) to estimate the system states and distur-
bances of a helicopter instead of a neural network. In order to deal with nonaffine control
inputs in a helicopter, the EHGO is used together with the method of dynamic inversion.
The combined system has five time scales: two-time scales are required by plant dynamics
between translational and rotational dynamics; the third time-scale is required by dynamic
inversion for the translational dynamics; the fourth time-scale is required by the dynamic
inversion for the rotational dynamics; and the fifth, fastest, time scale is required by the
EHGO for estimation of the states, uncertain system parameter, and external disturbances.

This chapter is organized as follow. In Section 4.2, a helicopter model is given. In
Section 4.3, we define the problem and design state feedback control in the absence of uncer-
tainties. The stability analysis for the closed-loop system is conducted under state feedback.
In Section 4.4, output feedback control for full helicopter dynamics is designed in the presence

of uncertainties using the EHGO and dynamic inversion. Based on the singular perturbation
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method, the stability for the multi-time-scale closed-loop system is analyzed. The effective-
ness of the proposed control scheme is verified through numerical simulations in Section 4.5.

Section 4.6 presents concluding remarks.

4.2 Dynamics of a Helicopter

In this section, the rigid body dynamics of a helicopter are presented. It is assumed that
the actuator dynamics are sufficiently fast compared to the rigid body dynamics and can be

ignored in the mathematical model. The rigid body dynamics are based on [38] and written

M 0 Ik wb x mo® fo
+ = ,
0 I wb wb x Twb b
where M = diag[m, m,m] and I = diag[l,,, I, I..| are mass matrix and the inertia matrix
of the helicopter, respectively; m is the mass of a helicopter; I,,, I, and I, are the principle
bbb

. . T . . .
moments of inertia; v® = [vx,vy,vz} is the body velocity vector; v? for i = x,y, 2 are the

linear velocities in the z, y, and 2z directions; 7° = [72, 72, 7%]T is the torque, specified later

in next Subsection 4.2.1; and w® = [wy,wy, wg]T is the angular velocity vector where w; for
7 = 1,2,3 are the angular velocities about z, y, and 2z axes. The input force matrix is

expressed as

Xy 0
=l vy+yy | +R" O] 0o |,

Zn mg
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where the set of forces (X, Yas, Y7, and Zy) or moments (Ryy, My, Ny, and Mr) acting

on a helicopter is given by

Xy = —Tysinars, Yy = Ty sinbyg,

Zy = =Ty cosayscosbyy, Ypr=—Tr,

Ry = aa:%bls — Qusina, My = 88]\;[1]:[ ars + Qarsin by,
Ny = —Qpcosaqscosbys, Mp=—Qr.

Qu = Cﬁij’ + Dz\% and Qr = C’?T%‘S + D? are the approximate rotor torque equations
for main and tail rotors, respectively (we follow the model in [38]). C% and CZ are the
thrust coefficients of T, and T7r, respectively, and D]%[ and chg are the lift drag coefficients
of Ty; and T, respectively. The system parameters are given in Section 4.5. a;, and by,
are longitudinal and lateral tilts of the tip path plane of the main rotor with respect to the
shaft, respectively; and Ty, and T are main rotor thrust and tail rotor thrust, respectively.

The gravitational acceleration is g = 9.8 m/s? and the rotation matrix R(0;) is defined by

By spsbcp — clsy  cpsbcy) + spsiy
R(Oy) = | chsth s¢psOsip + cocp  chpsbsi — soep |
—s0 soch coch

where ©, = [¢,0,¢]", ¢ (roll), 6 (pitch), ¢ (yaw) are the Euler angels and s(-) =
sin(+), ¢(-) = cos(+). Control inputs, Ty, Tr, a1, and by, are used for a helicopter control

under the assumption that the dynamics of a;, and by, are sufficiently fast. In Table. 4.1,

Table 4.1: Parameters in a helicopter

hy | Distance from COM(Center of Mass) to the main rotor along the z axis
hr Distance from COM to the tail rotor along the z axis
I Distance from COM to the main rotor along the x axis
Iy Distance from COM to the tail rotor along the x axis
Ynm Distance from COM to the main rotor along the y axis
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parameters are given for the helicopter. The side and top view of the helicopter is shown

with the parameters in Fig. 4.1.

4.2.1 Rotational Dynamics of a Helicopter

The helicopter dynamics can be divided into two parts, an inner-loop and an outer-loop due
to a natural time-scale separation [38] as shown in Fig. 4.2. In Fig. 4.2, ¢, 0, ¢ are actual
Euler angle values of a helicopter, and O, = [¢,,0,,1,]7 is the reference trajectory which
is generated from the controller of translational dynamics, Cp. The inner-loop is rotational
dynamics of a helicopter whereas the outer-loop is translational dynamics.

The inner-loop dynamics of a helicopter (attitude dynamics) are given by

Oy = U(0,)w’ m

Wb = —T 1w x Twb + Br?,

Side View

L

<

I

N
4
A

Top View

S
I
I
I
I
[ S R

COM
Figure 4.1: Side and top view of the helicopter
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Figure 4.2: The block diagram is shown for rotational dynamics (inner-loop) and transla-
tional dynamics (outer-loop) control structure via two time-scale separation. The blocks Pg,
Pr are rotational dynamics and translational dynamics, respectively. The blocks Cg, Cr
are controllers for rotational and translational dynamics, respectively. y is the position of
the helicopter and x, and O, are reference trajectories for the translational and rotational
dynamics, respectively.

where B = dlag[l/lxm 1/Iyy7 ]-/IZZ]’ and

1 singtanf cos¢tané 1 0 —sin
V()= | 0 coS @ —sin ¢ , U6, =10 -cos ¢ sin¢cost (4.2)
0 singsect cospsect 0 —sin¢g cos¢cosf

In order to make (4.1) compatible to extended high-gain observer method, the following

coordinates are used as

O =
| (4.3)
2= FI(@ba Qa Tb)7

LT :
where 2 = ¥(0,)w’ = [qb,@,q/z] is a vector of the Euler angle rates. In (4.3), 2 =
F1 (O, 2,7%) = [$,6,9]" is obtained from (4.1) as

¢ = (wo cos ¢ tan O — ws sin ¢ tan 0)d + (wy sec? Osin ¢ + ws cos P sec? 0)0

— Mu@wg + lewg sin ¢ tan § — Mwlu@ cos ¢ tan @ (4.4)
Ixx [yy Izz
1 sin ¢ tan 6 cos ¢ tan 6
Ay e T
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0 = —(wq sin ¢ + w3 cos @) + ([7)%@, cos ¢ + (yy]i)wlcug sin ¢
vy zz
cos¢ , sing , (45)

T T
2 3
]yy Izz

) = (wy cos gsec — wysec Osin ¢)d + (ws sec O sin ¢ tan 6 4 w; cos ¢ sec § tan §)6

+ gwlwg secfsin ¢ — Mwlu@ cos ¢ sec ) (4.6)
‘[yy ‘[ZZ
secfsing , cos¢secl ,
Ty T3,
Ly, L.

and 7 = |70, 7%, 78] is given by

OR
7'{’ :#bls — Qu sin(ays) + Ty sin(byg)hay — Ty cos(aqs) cos(bis)yn — Trhr,
To =—F—

= 3a ars + Qursin(bys) — Qr + Ty sin(as)hay — Thy cos(aqs) cos(bis)lar,
1s

78 = — Qs cos(ays) cos(bys) — Ty sin(byg)las + Trlr,

4.2.2 Translational Dynamics of a Helicopter

The translational dynamics of a helicopter (i.e., position dynamics) are given by

P =

1 (4.7)
Ub :—R(@)fb = Fp,

m



b

where P = [z, vy, Z]T, v = [,7, Z]T are a position vector and a velocity vector in North-East-

Down orientation, respectively, and Fp = [fy, f,, =] is

1
fo= (E) {=T cos 6 cos 1) sin a5

+ (sin ¢ sin @ cos 1) — cos ¢psin ) [Ty sin by — Tr|

— Ths(cos ¢ sinf cos ) + sin ¢ sin 1)) cos ais cos by}

1
fy= (E) {=T) cos @ sin sin a;

+ (sin ¢ sin @ sin ¢ + cos ¢ cos ) [Ty sinbys — Tp|

— Th(cos ¢ sin @ sin i) — sin ¢ cos 1)) cos ajs cos by}
1
f.= (a) {T'n sin @ sin aq5 + (sin ¢ cos ) [Ty sin bys— Tr]

— Ty cos ¢pcosf cosarscosbis} + g

4.3 Stability Analysis in the Absence of Disturbances

In this section, we describe a control strategy for a helicopter in the absence of uncertainties,
based on a time-scale separation strategy between the translational and rotational dynamics.
The control objective is to follow given reference trajectories x,, y,, 2., and ¥, with inputs
Ty, T, a1s and by,.

In this section we assume that all system states and dynamic models are known. For the
translational dynamics, we neglect flapping dynamics a;s and b4 and the tail rotor thrust

Tr in y-direction in [38], [31], [48], [47] and the translational dynamics are given by

0 0
.1
P=— .
Lrer| o |+ o (49)
—Ty g



We are going to design a controller which renders the rotational dynamics faster than
the translational dynamics while dealing with nonaffine control inputs. Based on the
time-scale separation between the rotational and translation dynamics, new control inputs
u, = [Tr, a1, bys|" for the rotational dynamics and u; = [Thy, ¢, 04)7 for the translational
dynamics are designed, where ¢4 and 6 in dynamic inversion control will be specified later.
As depicted in Fig. 4.2, an inner-loop controller for the rotational dynamics is designed
to force the rotational dynamics to follow the desired reference trajectories ¢,, 6., and 1,
with a fast convergence rate. An outer-loop controller for the translational dynamics is
designed to provides desired reference trajectories ¢,., 6., and 1, for the rotational dynamics
and to obtain slower translation dynamics than rotational dynamics. A dynamic inversion

controller will be designed to deal with nonaffine input forms.

4.3.1 State feedback control

With state variables

Xz = [1’1, x2]T = [l’, j:]Ta Xy = [y1>y2]T - [ya y]T’ Xz = [251, 22]T - [27 Z]T
' ‘ ‘ (4.10)
@¢ = [¢1a ¢2]T - [¢7 ¢]Ta @9 = [ela 92]T = [97 9]T> @w = [wla ¢2]T = [wa ¢]T
the translational dynamics of (4.9) are rewritten as
x = Ax + Blp (4.11)

where x = [xI,xi,xZ]" € Dy, D, C R®is bounded, A = block diag[A;, A1, A1], B =
block diag[Bl, Bl> Bl] with

Al == y Bl (412)
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and

1

o ——(cos ¢ sin 0 cos Yy + sin ¢y sin iy )Ty
m
1

Fo=1f, | = | ——(cos¢ysinb;sinty; —sin ¢y cos)r) Ty (4.13)
m
1
f- _E(COS ¢p1cos0)Ty +g

We note that in the translational dynamics in (4.11), control inputs are ¢1, 61, and T, where
¢1 and 0, are viewed as the virtual control provided by the rotational dynamics as the fast

time scale. A target system for the translational dynamics is given by

Xr = (A— BL)x, + Bu, (4.14)

where x, = [Ty, Zr,Yrs Ur, 2, 2] € Dy, Dy, C RS is bounded, the matrix L =
block diag|Ly, Ly, L,] with L, = [k,, k| is block diagonal such that the matrix (A — BL) is
Hurwitz, and u, = [r;, ry,7.]" is a bounded commend input and continuously differentiable.
To track the reference trajectories for the translational dynamics, it is required to find ¢,.,

0, and T given v, such that

fo(&r, 0,800, Ty)
Ey=1 (60,4, Ts) | +Lx— uc(t) =0 (4.15)
fo(@r, 00, Ty)

The dynamic inversion in the translational dynamics is used to obtain approximated solutions
¢d> Qd, and TM for (415)
With the state variables in (4.10), the rotational dynamics of a helicopter in (4.3) can be

represented as

© = A + BF}, (4.16)
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where © = [0],07,0]]" € Do C R® and F; = [fy, fo, fu]" = F1(6,,Q,7°) € R? in (4.3).
The domain Dg is given by De = De, x De, x De,,, Do, = {—a, <p < a,} x{b, <p < b,},
for p = ¢, 6,1 with bounded 0 < a, < 7/2 and b > 0.

There are two tasks of a controller for the rotational dynamics: one is to deal with

nonaffine input forms which is required to find solutions aj,, bis, and 77 such that

f¢(@7 TMv CLTS, biﬂ T7*“>+k¢>1 (¢1 _¢d)+k¢2¢2>
Fe = | f3(©,Ty,a},, b3, T7)+ ko, (601 —0a) + ko,02) | =0, (4.17)

Jo(©, Tar, a3, b, T7) Ky (1 —r )+ Fiyy h2)

where fy, fp, and fy given in in (4.13), and ky,, ky,, ky, for i = 1,2 are high gains specified
later; and the other is to make the rotational dynamics converge quickly into the desired
reference trajectories ¢4, 04, and 1, provided by a dynamic inversion controller. For the
rotational dynamics, the dynamic inversion is used to find approximated solutions ais, by,
and T for (4.17).

Two dynamic inversion controllers in [43,44] are designed to deal with nonaffine inputs
ug = [Tar, da, 04)7 and w, = [Tr, ars, bis]t. The dynamic inversion for the translational

dynamics is

AT
Eolly = — (aa Xd) F\, (0, x, u, uc) (4.18)
Ut

where u; € D; C R?; (OF,,/0u;) is given in Appendix Appendix B;

fo(@a,0a, 0, Thr) r(t)
Fey(©x uue) = | fy(da, 0a,tr, Tar) | +IX = welt), uelt) = | ry(1) (4.19)
f2(¢a, 04, Tar) r.(t)

7



fz, fy and f, are given in (4.13); and r,(t), r,(t), and 7,(t) are bounded reference commends.

The dynamic inversion for the rotational dynamics

)a T
63?17« = - <aau®) F@(Gvutuurv¢r) (420)

where u, € D, C R3, (0Fg/0u,) is given in Appendix Appendix B, and

f¢(@a U, ur)+k¢1(¢1 _¢d)+k¢2¢2)
Fo(0,uy, ur, ¥r) = | f5(0, uy, u, )+ ko, (01 —04) + ko, 02) (4.21)

fw((av Ut uT>+k¢1 (% _¢r)+k¢2¢2)

To obtain the fast rotational dynamics, k¢,, kg,, ky, for i = 1,2 are chosen as

k’l k2
?’ k¢2 = kez = sz =

k¢1 = kel = klﬁl =
1 €1

(4.22)

where k,; and k, 2 are positive constants independent of €; and €. The assumption for the

Jacobian matrices (0F,,/0u;) and (0Fe/0u,) are as follows.
Assumption 4. In the domains D,, D, , Dg, D, and D,,

o the Jacobian matrices (OF,,/0u;) and (0Fg/0u,) are nonsingular;

® \uin <(8FXd/0ut)(0FXd/8ut)T> > a with a > 0 and )\min<(0F@/0ur)(0F@/0ur)T) > b
with b > 0;

o [ and Fg are continuously differentiable,

where Apin(P) denotes the minimum eigenvalue of the matrix P.

4.3.2 Stability analysis

Using the systems (4.11), (4.14), and (4.16) with the control (4.18) and (4.20), the standard

singularly perturbed form for the closed-loop system is derived. Error variables for the
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translational dynamics are

€y = T1 — Tp, €y, = Ty — Ty
Cyr = Y1 — Yr, Cyy = Y2 — yr (423)

€ = R1 — Zp, €zy = 22 — Z'r
Time-scaled variables for the rotational dynamics are
€p1 = ¢1— Or, Coy = 51(¢2 - (bT)

€9, = 91 - 9,«, €oy = 61(92 - GT) (424)

€y = 101 - ¢r7 €y = 61(7vb2 - %)

Error variables of the dynamic inversion for the translational and rotational dynamics are

sy = u; — uy and s, = u, —u; with

Uy = (bd ) u;fk = ¢7« y  Ur = [ a5 | s U: = a*{s (425)
Oa 0, bis Ts

uy and wu) are satisfied with

F@(@7ut7u:a¢7“) =0, Fx(@>Xau:>u0) =0
fo(br, 0r, 00, Tiy)
Fx(@aX>u:>u0) = fy(@,HT,wT,TX/[) +LX_uc(t)a
[, 00, Thp)

(4.26)

In view of Assumption 4 and the Lipschitz property of F), in its arguments, it is reasonable

to have the following assumption on the relation between ||F),|| and ||s||:

Assumption 5. kif[s¢|| < ||Fy,(©, x, u, ue) — F\, (O, x, uf, ue) || < kil|s]| with some constants
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ki, k, > 0 on the domains D,, D,,, Do, D, and D,

So, wu} is a function, uf = uf(©,u,¢,) and u; a function, u; = u; (O, x,u.). Error

dynamics of translational dynamics are represented as

&y = Ayey + BE(O, x, ur, u,) (4.27)

with e, = [el el el]" and A, = A — BL. With the time-scaled variables in (4.24), the

)Ty Tz

closed-loop standard singular perturbed form for error dynamics of the rotational dynamics
is

£160 = Ageo + Blk1(04 — ©,) + 2Fo(0, uy, uy, 1,) — €20, — e1k20,] (4.28)

Y

with Ag = A — BLy, eg = [egvegveg]ipv € = [6¢176¢2]T7 €o = [6917692]T7 €y = [ewuewz]T
L9 = blOCk diag[LlaLbLl]a Ll = [klakQ]a @d = [Qsdaed?wT]T? and @T’ = [¢T797’a¢r]T- The

error dynamics for the variable s, are

. OF,\ " .
€98 = — < a;f) F\ (0, x, ut, u.) — 21 (4.29)
where 4} is
Lx (9ut . 0ut . 0ut .

The error dynamics for s, is

OFs\"
6357“ = - <au®) F@(@7 U, ur7¢7‘> - 63/&: (431)
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where 1 is

(0 1\ (0u,\ (0F,\" Oy \
Yr = (8@) - (5) (am) ( Oy ) Pt (W) vr (4:2)

Using (4.27), (4.28), (4.29), and (4.31), the singularly perturbed form is

éy = Ayey, + BF (€0 + Ocr, €y + Xry S + U™, Ue) (4.33)

€160 = Ageo + Blk1(04 — ©,) + 2Fo (0, 5 + u*,1b,) — €20, — £1k20,] (4.34)
, or,,\" \ i

€98 = — ( . ) F\,(©, ey + Xr, st + Uy, ue) — €20 (4.35)
, OFo\ " .

€38, = — < . ) Fo(O,ey + Xr, St + u;, S + ur, 10,) — €3ty (4.36)

We have a three-time-scale structure in (4.33), (4.34), (4.35), and (4.36). We note that the
small parameters €1, €5, and €3 have the relation, 0 < €3 < g9 < 7 < 1. Since u; in
(4.35) has the term (1/e7), it is required to have 0 < g5 < &7 < 1. &3 is required to be
0 < g3 < €9 < 1 since @, in (4.36), has the term (1/e2).

Stability analysis starts from the fastest boundary layer system of the dynamic inversion
in (4.36). The boundary layer system can be obtained setting 5 = 0 on the right-hand side
of (4.36)

G 8F@ ’ * *
6.387" - - au F@(@7 6X+Xr,st+ut,sr —I—UT,’QDT) (4-37)

A Lyapunov function for the boundary layer system is V, = FZ Fg/2. The derivatives of the

Lyapunov function along trajectories in (4.37) and under Assumption 4. is

o (1N . (0Fe\ [0Fe\"
w=-() 7 (50) (5) =
0Fg )\ . IFe\ . (1Y [OFe OF, \"
(a@)@+(ax)x <52)(0ut)<8ut M
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Then,

. 1 01 0o
P < = —————== r —+ =49 4.
V= (253)\min(Pr)) et (81 " €2 i 3) ( 39)

where P, = (0Fg/0u,)(0Fs/0u,)T; and 41, d,, and d3 are positive constants related to the
upper bounds for the terms Fg (0Fo/00)0, F&(0Fe/du,)(OF, )0u,)T Fy, and FE(0Fe/dx)x
and independent of 3. With e3 < g9 < g1 < 1, V,, is negative with V,. # 0.

Now the fastest variable u, reached in the quasi-steady state, i.e. u, = u} and the other
subsystems (4.33), (4.34), and (4.35) are viewed as the reduced system with e3 = 0 and
s = 0. The reduce system has a multi-time-scale structure in which (4.35) is fast and the
other two, (4.33) and (4.34) are slow. By setting o = 0, and s, = 0 (i.e., the fastest system
reaches the quasi-steady state) on the right-hand side of (4.35), the boundary layer systems

for the second fastest dynamic inversion is obtained by

. OF,\ " .
€25t = — ( &Zd) F, (O, ey + xr, St + uf, uc) (4.40)

A Lyapunov function V; = (F| F,,)/2 is defined and the derivative of the Lyapunov functiono

d
T
= () () (Bee) e
- OF. " OF N OF. (4.41)
T Xd : Xd . Xd .
T K 76 )@+( EN )“(mc)“C]

. 1 04
V- — — 44 4.42
t= (252)\min(Pt)) Vit (51 " 5) (4.42)

where P, = (0F,,/0u;)(0F,,/0u,)”, 64 and d5 are positive constants related to the upper

is

bounds for the terms FY (0F,,/00)0, FL (0F,,/0x)x, and FT (9F,,/0u.)t., and indepen-

dent of 5. With gy, € g1 < 1, Vt is negative with V; # 0.
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Two fast variables u, and u,; reach in the quasi-steady state, i.e., u, = u; and u; = uy

Tr—T5 Ty — Ty
Sp = Up — Uy = ay, —at, | =0, S =up —uy = bg — Or =0 (4.43)
bls - st 6)cl - 97’

With O, = [¢g4,04,%,]" and O, = [¢,,0,,1,]" given below (4.28) and (4.43), we obtain
(04— 6,) =0. Setting &, =0 fori = 1,2, s;, = 0, and s,, = 0 on the right-hand side of both

(4.33) and (4.34), we obtain the reduce system

& = Avey, (4.44)

€1é@ = A@e@ — 8%@T — 61k2®T (445)

Now, in the reduced system, (4.44) and (4.45), the rotational dynamics are faster than the
translational dynamics. The boundary layer system for (4.45) is obtained setting 1 = 0 on

the right-hand side of (4.45),

which has asymptotic stability at eg = 0. Setting ¢; = 0 and eg = 0, the reduced system
for (4.44) is

&y = Ayey (4.47)

which is asymptotically stable at e, = 0. By using a composite Lyapunov function, the
effect of the interconnections for the closed-loop system (4.33), (4.34), (4.35), and (4.36),
can be considered. The procedure for the effect of the interconnections are similar to the

output feedback control stability analysis. So, we omit the procedure which will be shown
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in Section 4.4.

4.4 Stability Analysis in the Presence of Disturbances

In this section, output feedback control will be designed using the extended high-gain ob-
server to estimate unmeasured system states and external disturbances. Using the singular
perturbation method, stability analysis for the closed-loop system will be conducted.

Let us consider the case where the helicopter dynamics in (4.11) and (4.16) have external

disturbances as follows.

X = Ax + B[Fo(0,u) + 0, (1)]
Yy = Cx

(4.48)
© = AO + B[F;(©, u, u,) + oo(t)]

yeo = CO

where y and Fp(0,u,) for the translational dynamics and © and F7(O,uy, u,) for the ro-
tational dynamics are given right after below of (4.11) and (4.16), respectively; y, and ye
are measurements; and C' = block diag|C}, Cy, (4] is with C; = [1,0]. It is assumed that
the external disturbances, o, (t) = [0, 0y,0,]" and o¢(t) = [04, 09, 0y have the following

properties.

Assumption 6. The functions o, (t) and oe(t) are continuously differentiable.
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4.4.1 Design of Extend High-Gain Observers (EHGOs)

Unknown external disturbances o, and og, and unmeasured states will be estimated using

the EHGO

);( = Ax + B[FO(é>ut) + &x(t)] + Hx(54)(yx - Cf()
&x = er(?/x - Cf()

. ) ) ) (4.49)
O = AO + B[F;(0,us, u,) + 6o (t)] + He(es)(yo — CO)

6o = Ho,(yo — CO)

where the estimates of x and © are ¥ = [xZ, )2;‘5, 7T and 6= [(:)Z;, (1);{, (:)i]T, respectively,
with
X"E = ['1%17:'%2]717 Xy = [:&17?;2]717 )A(z = [217 22]T

éqﬁ = [le,ﬁgﬂT, Oy = [élaéﬂTa éw - wl’%]T

(4.50)

and 6, = [6,,0,,0.]" and 6o = [64,09,54]" are estimates of o,(t) and og(t), respectively.

The observer gains, H,, H,,, Hg and Hg, are given by

HX = block diag[Hl, HQ, Hg], H@ = block diag[H4, H5, HG]
Hi = [hi1/€4, hig/Ei]T, for ¢ = 1, e ,6 (451)

er = block diag[h13/€i, hgg/Ei, hgg/Ei], H@e = block diag[h43/5i, h53/€i, hﬁg/Ei]
where the components h;q, h;s, and h;3 of the high gains are chosen such that the polynomials
A3 B A2+ high + by for i=1,...,6 (4.52)

are Hurwitz and the control parameter €, > 0 is small enough. The relation between 3 and

€4 18 €4 < €3 < 1 since the dynamic inversion uses estimates provided by the EHGO.
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4.4.2 QOutput feedback control

With the EHGO in (4.49), the output feedback control, based on the dynamic inversion, is

designed as

OF,,\"
Eolly = — ( Xd) FXs(@Suxsvutvuma-Xs)

Ou . (4.53)
0Fe
€3, = — ( ) F63(987Ut7u7“7¢7“76-@5)
ou,
where
0, =107.,65,, 0, 1" xs = [Xau Xy X2
¢1 th (0
Oy, = ¢ , O, = ) , Oy, = )
s 2 s 2 s 2
Mysat (E) Mpysat (ﬁe Mysat I (4.54)
T n <1
XIES = T 9 X s = U 9 XZS 2 9
M, sat (]\Z—i) ! M, sat <J\?i[y) M.sat (]\zjz)
0, = [6’52, &ESS]T
Mlsat(&m/Ml) M4S&t(6'¢/M4)
Oy = | Masat(6,/My) | Go,= | Mssat(69/Ms) | (4.55)
Mgsat(&z/Mg) Mﬁsat(&w/Mﬁ)

and F\, and Fg, are

fx(gbd, Hd, ’le, TM) + Mlsat(&x/Ml) + k’xll’l + kszxsat(i’g/Mx) — rx(t)
Fxo =1 fy(a:0a,901, Tar) + Mosat (G, /Ma) + ky,y1 + ky, Mysat(ga/M,) — 1,(t) (4.56)
fo(@a, 00,1, Thr) + Mzsat (6. /Ms) + k,y1 + ko Mesat(22/M,) — r.(t)
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Fs(©, g, uy) + Masat(6s/My) + kg, (61 — ¢a) + kg, Mysat(¢o/My)
Fo, = fo(©,us, u,) + Mssat(Ge/Ms) + ko, (01 — 64) + k92Mgsat(é2/Mg)
Fo(©,up,u,) + Mesat (G /Mg) + kyy (Y1 — ) + kg, Mysat (o /My)

(4.57)

The saturation function, sat(-) is defined by

{ EoooJk <1
sat(k) = (4.58)
sign(k) |kl >1

The saturation levels M; for j = ¢,0,¢,2,y,2,1,2,...,6 are determined such that the

saturation function will not be activated under the state feedback.

4.4.3 Stability analysis in the presence of disturbances

The fast error variables ) = [}, n§]" for the EHGO are given by

me= e nt)" me =g, ng,m)"

N = [771‘1> N 77963]T’ Ny = [nyvnyw ny:s]T’ Nz = [7721>7722> 7723]T (4’59)
Ny = [77¢1a Ngas 77¢3]T> Mo = [n91a Mo, 7703]T> Ny = [771/;1, Thpa s 771113]T
where
T — T1 Tg — Tg A
Ty 5 Tz y My = 04(t) — 0.()
€] €4
Y1 — 1 Y2 — Yo N
y1 — 2 Ny = - ) Yz — Uy(t) - Uy(t) (4'60)
4 4
21— 2 29 — Zo A
21 — ) zo s 23 — Oz t) — z t
R = N REAURYAC



and

61— o ¢ — ¢ .
W= M= Mgy = 0e(t) — ()
71 €
6, — 6 6, — 6
U - 2 17 Mo, 2 27 Nz = UG(t) - 09(t>
64 64
— ¥ .
R
1 4
Error dynamics for the EHGO are
547;] = A77 + 84[BlA1 + BQAQ]
where A = block diag[A, A] € R'®*18
= block diag[B,,, -, B.,] € R*®**% B, =10,1,0]"
= block diag[B,,, - - , B.,] € R**°, B, =10,0,1]"
(fo(@1, 01,01, Tar) — fulr, 01,001, Tar)) Je4 O
(fy (b1, 01,01, Tar) — £, (61, 01,901, Tar)) J4 oy
A | EOBT = LG b T e | o
(fo(©,u) = f5(O,u))/e4 o
(fo(©,u) = fo(©,u))/z4 G
_ (Ful©,0) = £ul©,w) /24 | &

We note that the components of Ay, i.e., (fi(©,u)

bound || f;(©,u) —

£i(0,0)|| < eqllnl|, and [|As]| < ks with ks > 0.

(4.61)

(4.62)

(4.63)

(4.64)

— fz((:),u)) for i = x,y, 2z, ¢, 0,1, have the

Using the target system of (4.14), the plant dynamics (4.48), and (4.53) with the error

88



variables e,, eg, and s, the closed-loop system is presented in the singularly perturbed form

éy = Avey, + BF\ (0, ey + Xr, Ut, U, 0y (1))

816@ = Agee + B ]{71 @d — @ ) + 61F@(@ Uy, ur,qbr, O'@( )) — c":‘%ér — 81]6294

€38, = — OFo
3°9r — 8U7«

. OF,,
w25 = ( 8ut

547;] = A77 + 84[BlA1 + BQAQ]

05 ey + X, St U U, 0y ) + Ay + A

8211:

@ st+ut>sr+ura¢raa@) _I_AUO +A® _53u

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

where I, and Fg are given in (4.26) and (4.21), respectively and u; and u; are satisfied with

FX(@v Xv u;fkv U, UX)

ke, (stat (%) — 1’2)
A, = k2(Msat< )—yg) ,
X Y My
k., (Mzsat (AZ; ) — 22)

o8

Misat | — | — o
Mo
o

Mysat | =2 | — o
My) Y
o

Mssat -0
M3 ?

U2

=0,

Ae

0¢
Mysat | —

4 M,

0
= | Mssat | -2
5 M-

o8

Migsat

| Me

]{3¢2 <M¢sat (;\/);Z

kg, | Mysat [ —
( ¢sa <M¢
0,
kg, | Mgsat | — | — 6

F@(@u U, u:7 ¢7‘7 O'@) = 07

)

)2).

(4.70)

(4.71)

(4.72)

Now, the next theorem states the stability analysis for the closed-loop system (4.65),

(4.66), (4.67), (4.67), and (4.69).

Theorem 3. Consider the closed-loop system (4.65), (4.66), (4.67), (4.67), and (4.69) under
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the Assumption 4, 5, and 6. There exists €* such that all

g1 < e, g9 <", e3<et, g<e
(4.73)

*

(eg/e1) < &%, (e3/eq) <e¥, (e4fe3) <e

and for all initial states (x(0),0(0)) € X1, (u,(0),u,.(0)) € Xs, and (x(0),0(0)) € X,
where Xy is a compact set of (x,©) in the domain D, x De, X, is any compact subset of
R?, and X5 is any compact subset of R, all trajectories are bounded and the size of the

ultimate boundedness for error state variables in the error dynamics can be arbitrarily small

with sufficiently small e; for i =1,...,4 and (eq/e1), (e3/€2), (€4/€3).

Proof. We consider Lyapunov functions V, = el Pyey, Vo = €5 Pyeo, and V;, = " P;n where
Py, Po, and P, are solutions of the Lyapunov equations, Az;PXjLPXAX = —1I, ALPo+PoAg =
—1I, and ATP, + P,A = —I. Since we are going to use a time-scale separation approach

between subsystems, sets are defined by

Qp ={Vy <ar} x {Vo <ag} x{V; <as} x{V, <ay}

Q= {Vy < b1} x {Vio < bo} x {V; < b} x {V, < by}
(4.74)

Q. ={Vi <a} x {Vo < e} x {Vi < s}

Qd:{ngdl}x{V@§d2}
with
O<&1<bl<01<d1, O<&2<bg<€2<d2, O<a,3<bg<03, 0<ay <by (475)

To consider relations between the trajectories x and e,, and © and eg, the constants m,

and msy are chosen such that

(ex,e0) € {Vi < a1} x {Vo <a} = (x,0) € Xj (4.76)
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Now, we briefly describe the process of the proof for the boundedness of trajectories using

the next steps:

e initially, the trajectories (ey, ee, s, s,) and 7 starting from (e, (0), eg(0), s¢(0), s,(0)) €

Q, and n(0) from the outside of the set of {V;, € pe3}, enter the set Q, x {V, < p1ei};

e secondly, the trajectories (ey, ee, st, s,) and 7 starting from Q, x {V;, < pe3} enter the

set Qe x {V,. < popit} x {V;) < pred} with pn = (e3/e2);

e thirdly, the trajectories (e, €o, s1, $,) and 7 starting from Q. x {V, < pap?} x {V,, <

p1e1} enter the set Qy x {V; < pspz}t x {V, < popii} x {V,, < pre3} with ps = (e2/e1) ;

IN

e lastly, the trajectories (ey,ee, s, s,) and 7 starting from Q; x {V; < psu3} x {V.

N

papd} x {V,, < piei} enter the set {Vy < e1} x {Vo < exe?} x {V; < psud} x {V.

papi} x {V, < piei}, where e; and ey are positive constants.

Since these above four steps are similar, we are going to show only the first bullet and the
others will be omitted. In the first step, initial trajectories (e,, ee, $t, s,) and 7 start from the
set (e,(0),ee(0),5:(0),5,(0)) € Q, and n ¢ {V, € pei} with ||n(0)]| < (k/e%). The derivative
of V,, along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69) is

. 1 _ _
Vn = — (a) T]T’f] + (BlAl + BQAQ)TPnn (477)

Using the bound of the term (B;A; + ByAy) in (4.69) for all (ey, e, si,8,) € Qu , ie.,

ko, ||n|| + ko, for some positive constants k,, and k,,, we obtain

: 1
Vi < =—Inll* + ko 1nll” + Ko I
. (4.78)

1
< ——||In|* + &, f <
< 2€4||77|| + ko, |Inf|  for e T
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where k,, for i =1,...,4 are positive constants. With e, < 1/(2k,,),

Vv, < - (Z—i) V,, for V, > pe? (4.79)
where py = P2 73, some v, > 0, 72 > 0, and P, = Anax(P,). As previous works of the
high-gain observers, the trajectory n starts from the outside of the set {V, < pei} with
17(0)]] < (k/e3) and enters into the set €, x {V,, < p1£1} in a finite time T'(g4). As g4 — 0,
T(e4) — 0. Since the proof of the finite time convergence is similar to previous Chapter 2
and 3, the proof is omitted.

For the second bullet, since the trajectory n cannot leave the set {V,, < pie3}, n has the
upper bound, ||n|| < 4k,,e4. With this upper bound, the similar procedure can be used to
prove the second bullet so that the proof for the rest of them will be omitted. All trajectories
enter the set, {V, < e1} x {Vo < exe?} x {Vi < pu3} x {V, < pp2} x {V,, < p1£3}, which can
be taken as a positively invariant set.

We are going to show that the size of the ultimate boundedness can be arbitrarily small
with sufficient small control parameters, 0 < g4 K €3 K g9 <€ €1 < 1. Consider the
derivative of the Lyapunov function V, along the trajectories (4.65), (4.66), (4.67), (4.68),
and (4.69) is

VX = —eiex + 2FXT(®, ex + Xr, Ut, Ue, 0y ) BT Pyey, (450)
< —llexl® + 2Py, (ki lleall + ks llsell) llex|

where || P,|| < P,,, and some positive constants k,, > 0 and k,, > 0. The derivative of the

Lyapunov function Vg along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69), is

] 1 .. . 2k
Vo =— (8—) eoeo + 2 {&(Fg —0]) — k0] + (6—1) (©a — @r>T] B" Poce
1 1

1
é—(—)W@W+
€1

(4.81)

ke
am&wﬂﬂ+@m+w@a¢+(&ﬁnw1ww
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where kg, for ¢ = 1,2, 3 are positive constants. The derivative of the Lyapunov function V;

along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69), is

o (L r (0F oF\, ! a r (OF, oF,, T B
V;f - <€2) de < aut ) ( aut de 62 F 8ut 8ut (FXs de)

LT (a;’gd) { (i) Aoce + ki B0y — 0,)] + [1(Fo — 6,) + O, + éru)]}

€1

OF OF OF
T Xd T Xd : Xd :
+ I, ( o ) [Aye, + Fy + xy] +de{ ( Du. ) Ue + (f%x ) ax},

(4.82)
Using the bounds, V; is
s kt1 2 ktz
Vo= (S ) e+ (B2) 1A, + a0
2 €2
1 _
# | () talleall + Rlsl) + etk Fel + 0,0 + k10| Il (489
+ [k llex]l + ke (Bya lleoll + Ko llse DI Fxall + g Ae (@) [ Fy, |l
where ky, for7 = 1,...,9 are positive constants, the bounds for A, and A, are A, < Ky, ||7]|

with &y, > 0and A, < e5]|n| after the saturation active period for the EHGO. The derivative

of the Lyapunov function V, along the trajectories (4.65), (4.66), (4.67), (4.68), and (4.69),
is

. ( ) 0 @) (%Z?)TF@_ (;3) FT (8859) (%ZT)T[F@S ~ Fe)
(& ) (5 ) (F) movst| ()i (522)

A@€@ + ]{31 (@d - 97‘)] + [51(F® - @r) + 67‘ + ér(t)]}

(4.84)

0Fe¢
"‘F@ —@
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Then, inequality for V. is

) K, k; k.
Vo< = (22 1l + (22 1Fol@n, + 00+ (22) IRl
€3 €3 9P
1 (4.85)
+ <5) (kralleoll + krsllsell) + 1k ([ Foll + kr©1,) | | Foll + O2(t) || Fo |
where k,, for i = 1,...,7 are positive constants, A,, and Ag become A, < kg||n| and

Ao < e4ke,||n|| after passing the transient period for the EHGOs. Using the method in
Section 9.3 of in [33] with (4.78), (4.80), (4.81), (4.83), (4.85) and choosing W; = /V,,
Wa = Ve, Wy =/ Vi, Wy =+/V,, and W5 = /V},, we obtain

D+W1 S _]%alwl + ];;CLQW2 + ];;G,SW3

k _ k o o
DWW, < — (gi) Wo + &1k, Wi + (E—b) W + ek, 01(8) + ki, 02(t)
1 1

]%c ]%C 7 ]%c ]%c 1.
D*W5 < — (g - Z - kg) Ws + (%) Ws + erke, Wi

+ (_E u + k’08) W2 + kchl + Elkcmé?)(t) + k01154(t)
1

DY, < — (ﬂ _51,%) W+ (M) W+ ( & ﬂ) W+ (i) W
€3 €3 €9 €1 €1

+ El%dsgg)(t) + /;;d95_6(t)
ke _ .
D Wy < — (5—1) W5 + ke, Ws + key07(t)
4

(4.86)

where DTW (-) denotes the upper right-hand derivative; the notation related to k,, for p =

a,b,c,d,eand v =1,2,...,11, denotes the positive constants independent on ¢y, £, €3, and
e4; and 6; for 4 = 1,...,7 are nonvanishing perturbations. The matrix form of (4.86) is
DW < —HW + &Iy + Ty (4.87)

where D+W = [D+W1, D+W2, D+W3, D+W4, D+W5]T, W = [Wl, WQ, Wg, W4, Wg,]T; Fl and
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I'y are

' = [07 %b451 (t)v ]%01053@)7 ]%d855 (t)v O]Tv Iy = [07 ]%b552 (t)v E01154(t>7 Edggﬁ (t)v ]%6357(t)]T (488)

Since the off-diagonal components of H are positive, H is quasi-monotone increasing [58]
with the condition 0 < ¢4 K €3 € €2 < £; < 1 and is given in Appendix Appendix B.

Consider the differential equation

U=-HU + €1F1 + FQ (489)

with U = [Uy, Uy, Us, Uy]" and the same initial conditions U(0) = W (0). Using the vectorial
comparison method in Chapter IX of [58], it is concluded that W < U for all t > 0 and
the steady state of U(t) is H '(g;I'; + I'y). The computation of the size of the ultimate
boundedness is given in Appendix Appendix B. Since the size of ultimate boundedness is
dependent on ¢; fori =1,...,4,ie,as¢e; = 0fori=1,...,4 with 0 < g4 K g3 K g9 K

g1 < 1, the size of the ultimate boundedness can be made arbitrarily small. O

4.5 Simulation Results

The performances of the proposed controller are illustrated through dynamics of a helicopter.

The inertial, geometric, and aerodynamic parameters from [37] are listed below

I, = 0.142413 I, = 0.271256 Iz =0.271492
Iy = —0.015 Y =0 ha = 0.2943

C9 =0.004452 D% =0.6304 (DR /0b1,) = 25.23

C2 =0.005066 DY =0.008488 (OM);/das,) = 25.23.

With full dynamics of a helicopter, results from the state feedback are compared to results

from the output feedback to show the important role and benefit of the EHGO in presence
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of uncertainties. The translational and rotational dynamics of a helicopter given in (4.7) and
(4.1), respectively, were considered in presence of disturbances, o, = [3sint, 3sint, 3sint]”
and og = [cost,cost, cost]T like wind gusts. The control objective is to track the reference
u(t) = [rg,my,m.)7 = [5sint,5cost, 5sint]” and 1, = 0.1 rad in the presence of the external
disturbances o, and ce. In numerical simulations, we used a helicopter model in (4.1) and
(4.7) without approximations.

For the state feedback controller in (4.18) and (4.20), and the output feedback controller

(4.53), the common control parameters are given by

ky=8, ky=4, k=2 k=4,

(4.90)
e1=0.1, £,,=0.001, &3=0.0007
For the EHGO, the observer gains of H;, H,., and Heg, in (4.49), are
£4=0.0001, hqp=3, hp=3, hs=1 fori=1,...,6 (4.91)

The saturation levels for the estimates by the EHGO are chosen not to be activated under
the state feedback. For both the state feedback and output feedback, the initial states for

the plant and reference dynamics were chosen as

x=[1,02,1,-0.1,1,01]", ©=10,0,0,0,0,0]", x,=1[0.1,1,0,0,1]" (4.92)
The initial conditions for the dynamic inversion controllers and the EHGO were

u(0) = [Tar(0), ¢a(0), 04(0)]" = [48,0.5,0.5]",
u,(0) = [T7(0), a15(0), b15(0)]" = [3,0,0]"

(4.93)
%(0) =[0,0,0,0,0,0]", ©6(0)=[1,0,1,1,1,0]",

6, =[0,0,0", 66 =10,1,0]"
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For the comparison with the output feedback, the state feedback controllers (4.18) and (4.20)

0 2 4 6 8 10

Figure 4.3: Trajectories z1, y1, and z; (solid-lines) under the state feedback in the presence
of disturbances and reference states x,, y,, and z, (dished-lines)

with the control parameters (4.90) and the initial conditions in (4.93), was simulated, which
is shown in Fig. 4.3. In Fig. 4.3, we can see tracking errors between trajectories x1, y;, and
z1 driven by the state feedback controller and the reference states x,, y,., and z, due to the
effects of external disturbances. In Fig. 4.4 and 4.5, under the proposed output feedback,
system states, xy and © and the references x,, y,, 2., and 1, are almost indistinguishable.
In Fig. 4.5, the references are ¢4 and 1)y which are provided by the dynamic inversion. In
Fig. 4.6 and 4.7, the system states x;, y;, and z; for ¢ = 1,2 are plotted with solid-lines.
The estimates z;, y;, and Z; for ¢ = 1,2 are dashed-lines. At begin of the simulations, the

peaking due to high gains and the difference of initial conditions, is saturated to prevent
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Figure 4.4: Trajectories of 1, 31, and 27 (solid-lines) under the output feedback in (4.53) in
the presence of disturbances, and references x,., y,, and z, (dashed-lines) for r,(t) = 5sint,
ry(t) = 5cost, and r,(t) = 5sint in (4.14)

from degrading the system performance. In Fig. 4.8 and 4.9, trajectories of the state states
oi, 0;, and 1;, and the estimate QAS,-, 6;, and ’l/A)Z for 1 = 1,2 are shown. At the beginning of
the simulation, peaking is saturated. Expect at the beginning of the simulation, the systems
states and estimates are indistinguishable. In Fig. 4.10, the components of sum of F, in
(4.7) and o, are plotted with solid-lines and the components of sum of Fp in (4.11) and &,
are plotted with dashed-lines. At the first part of simulations, the peaking is saturated. In
Fig. 4.11, the external disturbance og (solid lines) and tis estimate ¢ (dashed-lines) are
shown. At the first part of simulations, the peaking is saturated. The actual helicopter

control inputs Ty, T, ais, and by, are shown in Fig. 4.12.
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Figure 4.5: Trajectories ¢g, 04, and 1, (dashed-lines) are references for the states ¢y, 01, 1
of the rotational dynamics in the presence of disturbances.

4.6 Conclusions

An output feedback controller for a helicopter system was presented. In the presence of
uncertainties, the output feedback controller is able to track the given reference trajectories
ZTr, Yr, 2r, and .. The states and uncertainties in the helicopter dynamics were estimated
using the EHGO and dynamic inversion was subsequently used for design of the controller
to deal with nonaffine control inputs. In the time-scale structure the EHGO estimated
unmeasurable system states and uncertain system parameters and external disturbances
and the estimates were utilized in the two dynamic inversion controllers. There is also a

time-scale structure between the two dynamic inversion controllers, in which the rotational
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Figure 4.6: Trajectories x1, y; and z; (solid-lines) and the estimates Z1, 71, and 2; (dashed-
lines) by the EHGO

dynamic inversion controller is faster than the translational dynamic inversion controller. By
using a time scale between the two dynamic inversion controller, we were able to design an
efficient controller with less dimensions than one dynamic inversion without a time scale. The
dynamic inversion controllers were designed to render the rotational dynamics faster than
the translational dynamics to overcome underactuated system structures. Using the multi-
time-scale separation approach, the proposed controller was able to control the full degree of
freedom (i.e. 6 degrees of freedom) for an unmanned helicopter. The singular perturbation
method was used to design controllers and analyze the multi-time-scale structure. This is

confirmed through numerical simulations.
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Figure 4.7: Trajectories xs, yo and 2o (solid-lines) and the estimates Zs, 7o, and 2, (dashed-
lines) by the EHGO

101



_1 1 1 1 1 1
0 2 4 6 8 10
t (sec)
1 | T T T T
~
AW |
Q‘g O }/\/\/—\
_1 1 1 1 1 1
0 2 4 6 8 10
t (sec)
1 | T T T T
i
<§ |
§ of .
_.1 1 1 1 1 1
0 2 4 6 8 10
t (sec)

Figure 4.8: Trajectories ¢q, 1 and 91 (solid-lines) and the estimates ggl, él, and 1&1 (dashed-
lines) by the EHGO
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Figure 4.9: Trajectories ¢, 65 and 15 (solid-lines) and the estimates g52, ég, and % (dashed-
lines) by the EHGO
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Figure 4.10: Plots for sum of the actual terms of acceleration (without approximation in
model, F}, in (4.7)) and external disturbances og: dashed-lines and plots for sum of nominal
terms of acceleration (i.e., Fpp in (4.11)) the estimate of external disturbances o, by the
EHGO: solid-lines
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Figure 4.12: Plots for the helicopter actual control inputs, Ty, Tr, a5, and by under the
output feedback
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Chapter 5

Conclusions and Future Works

5.1 Concluding Remarks

This dissertation is considering a class of uncertain nonlinear systems which have the form
of a chain of integrators focusing on output feedback. The uncertain nonlinear systems were
governed by a multi-time-scale structure control design. In the output feedback design, the
Extended High-Gain Observers were used to estimate unmeasured systems states, uncer-
tain system parameters, and external disturbances as well. Using the Extended High-Gain
Observers, the uncertain factors were eliminated in the uncertain nonlinear systems. The
estimates were provided to the dynamic inversion. The dynamic inversion was able to deal
with nonaffine control inputs, system parameter uncertainties, and disturbances using the
estimates. The proposed control design created a multi-time-scale structure in the uncertain
nonlinear systems, in which the plant dynamics were forced to have a time-scale structure
by the controller.

The time-scale structure was well-suited to underactuated mechanical systems where the
number of inputs are less than the number of the degrees of freedom since the fast dynamics
in the plant are considered as virtual inputs to the slow dynamics. This time-scale struc-

ture approach were verified using two examples of underactuated mechanical systems: the
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inverted pendulum on a cart and the autonomous helicopter.

The multi-time scale structures were analyzed through the singular perturbation method.
Moreover, the stability for the close-loop systems was guaranteed by the proposed control
schemes. The proposed controllers were verified through the numerical simulations and

experimental tests.

5.1.1 Main contributions

The main contributions of this dissertation are as follow as.

1. In Chapter 2,

e this dissertation provided a novel way to deal with nonlinear systems which have
the form of chains of integrators, nonaffine control inputs, unmeasured system

states, and uncertainties;

e to deal with the uncertain, nonaffine, nonlinear systems, the extended high-gain
observer and the dynamic inversion were combined using a multi-time-scale sep-

aration approach;

e the time-scale approach control design was devised and the stability of the pro-

posed controller was conducted using the singular perturbation method.

2. In Chapter 3,

e the output feedback stabilization control design for the inverted pendulum on
a car in the presence of uncertainties was proposed through a multi-time-scale

approach;

e the combination of the Extended High-Gain Observer and the dynamic inversion
provided a new way to deal with unmeasured systems states and uncertain system

parameters;
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e the stability analysis for the closed-loop system of the inverted pendulum on a

cart was conducted using the singular perturbation method;

e the proposed control design was verified through both numerical simulations and

experimental tests.
3. In Chapter 4,

e output feedback control design for tracking given reference of the autonomous
helicopter in the presence of uncertainties was proposed through a multi-time-

scale separation approach;

e Using the extended high-gain observers and two dynamic inversion controllers with
a multi-time-scale separation, the nonaffine control inputs and uncertainties were
considered and a time-scale structure between the translational and rotational

dynamics were constructed;

e The stability analysis for the multi-time-scale structure in the closed-loop system

was conducted through the singular perturbation method;

e the proposed controller was verified through numerical simulations.

5.2 Future Works

Extensions of this dissertation as future works are given as follows.

e In Chapter 2, the future work will consider extension of our approach to non-minimum
phase systems. The main issue of this work would be how to deal with unstable zero

dynamics in the absence of measurements in the zero dynamics;

e in Chapter 3, our future work will focus on extending our approach to output feedback
stabilization of other underactuated mechanical systems with two degrees of freedom.
Expected difficulties would be how to create a time-scale structure in the underacuated

mechanical systems with the two degrees of freedom;
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e in Chapter 4, extension of our work will be implementing the proposed control al-
gorithm into miniature helicopters and develop new control algorithms for the other

types of unmanned vehicles.
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Appendix A Appendix for Chapter 2

In this section, we are going to derive the standard singularly perturbed systems (3.32),

(3.33), (3.34), and (3.35) with time-scaled variables.

Error dynamics of the EHGOs

With the fast variables for EHGOs are

T1 — I Ty — T
Ney = =

Nz
gg ) 2 83 )

Nzs :O'I(Hl +aT7027F>_6-m

o — 0y g — Qi
nal == 9 a = )
2 €3

nag :Ua(el +a7’792aF)_a-Om

with 1 = oy — ., 03 = aw, where z; and &; for ¢ = 1,2, and 6, and 7,, are given in (3.25).

The derivatives of 7., and n,, along the trajectories of (3.2) and (3.25) are

53ﬁm1 = _hllnxl + UE

63ﬁo¢1 = _h2177a1 + Moo

The derivatives of 7,, and 7,, along the trajectories of (3.2) and (3.25) are

€3Ny = — P1aNay + 0u(ar, o, F) — 6,()
+ folon, g, F) — fu(Gy, G, F)
- h1277x1+nx3+.fx(alaa2>F)_.fx(dlad2>F)
€3N0y = — hoaMay, + 0al1, o, F) — G4(%)
_'_ fa(a17a27F) - fa(@17&27F)
=— hoolay g + fol 01,00 F) — foGr,Go, F)
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The derivatives of 7., and n,, along the trajectories of (3.2), (3.25) and (3.26) are

637;]:1,‘3 = - h1377:c1 + Ede(QM Qg, F)

0o, Jo \ .
:—hlsﬁm1+€3{ % Qo + % Qo

~

1 (0o, \ 7
(%) o

+ Msat(6,/M,) — u]}

€370y = — No3Ma, + €304 (00, g, F)
= — hogMa, + 53{ <%> s + <%) Qo
! aOél 80@
1 Jdo, &

_ . (a_F) [fx(al,Mgsat(j\;f—ze),F)

€2

+ Msat(c,/M,) — u]}

The error dynamics for the EHGOs are
_ _ 1 _
e3n = Ayn + e3[B1A; + BaAy + <€—) ByAs] (5)
2

where n = [n;,7,]" With 17, = [12y, %z, Mes]" a0d N0 = [Ny, 7azs 7as] 5 the matrices A=

A, 0 _ _
"o , By and B, are given by

O3x3 Ay,

_h13 0 0 —h23 0 0

_ B: 0

= T N forj=1,2
03><1 Bj

B, =10,1,0", B, =[0,0,1]"
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with the zero matrix 0;x; € R/, B = [0,1]7; and A, for i = 1,2, 3 are

[ .f_x(alaa27F) - f_x(dla&QaF)
A= = & _ .
! fa(a17a27F)_fa(a17a27F>
B €3
[ (Oo, Jo,,
aa Qg + 80 falon,aq, F)
Ay= Qi Q2
990 o+ (972 £ (ar, . F)
I 80&1 (6%} 80&2 alld, g,
[ (Do,
R 5F [, Mgsat( )F)—i—M sat(M )—ul
371 (0o,
_ 3 [fx(al, Mgsat(M ), F)+ M, sat(Mx) ul

where ||A1|| < kalln|| with a positive constant ka due to the Lipschitz conditions

| folar, o, F) = fo(da, da, F)|| < eska,|Inl| and || fa(ar, as, F) — fo(dy, Go, F)|| < eska,|nl]

with positive constants ka, and k.

Error dynamics of the dynamic inversion

With the change of variables for the dynamic inversion,

zp=F—F" z,=u—u" (6)

the derivative of zp along the trajectories of (3.2), (3.25), and (3.26) with multiplication of

€9, is

EgZ"F = €2F — EQF*
(7)

A

7 Qo
=—f, (ozl, Mysat( Mg) F) M. sat <M

x

)+u 52F

By adding and subtracting f,(a1, a2, F) + o.(a1, a0, F) and adding f.(aq1,az, F*) +

ooy, o, F*) — u* (ie., folay, ao, F*) + 0.(a1, az, F*) — u* = 0) to the right-hand side
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of €92, we obtain

<C:22}F = _fx(a1>a2aF) _Ux(a1>a2aF)
+ fulou, o, F*) 4+ 04(0n, oz, F*)

+ fx(al>a2aF) - fx <a1,Mgsat <2) >F)
My
o

+ o, (a1, ag, F) — M,sat (ﬁ) +u—ut—eo B

T

Since

folar, ag, F*) 4+ 0,(aq, ag, F*)

o fx(al’ G2, F) - O';E(Ofl, g, F) = —CzZF,
it is simplified to
E2ip = —Co2p + 2
_ - G
+ folag, a0, F) — fo (al,Mgsat (—) ,F)
My

+ o.(aq, a9, F) — M,sat (%) .

xT

Since F* = F*(ay, g, vg) is

*_Gx
F*:u, u*:gtana1—< ¢ )I/d,

Cy Cos o

with ¢, in (3.22), G, in (3.3), and v, in (3.12), F* is

b (PN oy (OEY o (OF7
N 80&1 a 80&2 a2 81/d va

= F1(01 + o, 0, F*) + 61 Fo(61 + i, 02, y, F)
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where I} and F), are

Fi= (8F* —51817) (E—@&F)fa()

B oF™ g

By differentiating z, and multiplying 2, by 5, we obtain

822u = 52’& — 52’&*

] : (14
=f, (041, Mgat C\Z—QG) ,F) + M sat (X/[—OQ —Ug—e9tll”

With the similar procedure of the derivation for £,25, adding and subtracting f,(ay, ag, F) +
Ua(alonvF) and Subtracting f_‘a(Oél,Oég,F*) + Ua(a17a27F*> — Vq (i‘e’7 fa(ahanF*) +
oo(aq, e, F*) — vy = 0), we obtain

532u:_caZF+fa <0417M93at (%) ,F) —fa(Oq,O@,F)
)

. (15)
+ M, sat (ﬁo;) —0al0n,00,F )+ vy —g—eot”
where
Vg — I)d:—ﬁl (Oér—éér) ﬁg {Mgsat (M) — 042:| (16)
0

with &, in (3.27) and u* = u*(aq, ) in (11), @* is

o= (8u*) b+ <8u*) ;
0@1 ! al/d d (17)
=w (01 + ap, b0, F) + e1us(01 + ., 02, y, F)
ou* ou* 8
8041 8Vd (18)
B ou* g
uz = —h (8Vd) <92 n ngt) (Frys + kafo(4)]
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With (10) and (15), we obtain

e2f = Az + () — 20(:) (19)
where A, is given in (3.24), z = [2p, 24]7, ¢ = [F*, 0*]T, ¢= [, ¥ + vq — g is
_ i} b
Y11= folar, ag, F) — fo <a1,Mgsat <ﬁ) >F>
0
O
+ oz(ay, ag, F') — M,sat (E)

w2:fa (OéluMBSat (]?4—29)7}7) _fa(a17a27F)

A

Oa

+ M,sat (E) —0ql0n,00,F)

and 9(-)|,=0 = 0 and when saturation is not effective ||¢|| < ky||n|| with a positive constant

ky.

Error dynamics of the plant

The change of variables #; = a; — «, with «, in (3.11) and 6y = «s for the pendulum
dynamics, and y; = e2x; and yp = 125 for the cart dynamics, is used. The derivative of 6,

along the trajectories of (3.2), (3.25), and (3.26) is

élzdl — dr = 92 + €1ha (21)

with A, in (3.18) and the derivative of 0y is

92 = fa(a17a27F) = —CoF' + Ga (22)
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with ¢, in (3.22) and G, in (3.3). Adding and subtracting f,(cay, as, F*) = —co F* + G,

with F* and «* in (11), we obtain

92:fa(O{hO(z,F*)—i-fa(Oél,OéQ,F)_fa(a17a27F*>
= o F* ot G+ falon 00, F) — falavr,cva, F) (23)

= _Bl‘gl - ﬁ292 — CaRF

With (21) and (23), the pendulum dynamics is

0 = Ayl + e1Eho(y,0, ., F) — Begzp (24)

where Ay is given in (3.19), 0 = [01,65)7, E = [1,0]T, and B = [0,1]7. With the slow
variables of y; = g2z, and y, = £, for the cart dynamics, the derivatives of y; and y, along

the trajectories of (3.2), (3.25), and (3.26) are

U1 = €192
(25)

Yo = €1 fz(1, g, F)

With F* and u* in (11), adding and subtracting e, f,(au, ag, F*) = e1[c. F* + G| to 3, it is

obtained

’gZ = El[fx(a1>a2a F*) + fx(alaa27F) - (alaa2a F*)]
= e[, " 4+ Gy + c22F) (26)

= e1[—kiy1 — kayo + hy + 27

with A, (0, «,) in (3.18) and h,(0, ) = 0. With (25) and (26), we obtain

y = &1 [Ayy + B(hm(ﬁ, OKT) + CmZF)] (27)
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where A, is given in (3.20) and y = [y1, y2]”.
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Appendix B Appendix for Chapter 4

Jacobian matrix

Jacobian matrix for the translational dynamics

The Jacobian for the translational dynamics (OF,,/0u,) is given by (0F, /0u;) is

[ Ofs Ofa Ofc ]

Ty Opg 004
OF, of, 0f, Of,

Ay 0Ty 0Obg 004
of. 0f., 0f.
| 9Ty 0oy 00, |

The components of the matrix are as follows.

gjjjm =— (%) (cos g sin O cos 11 + sin ¢g sin ;)
M
gix = ( 1 ) (sm ¢asin b, cos Py — cos ¢gsin wl)
d
aaj;x ( ) (cos ¢pq cos Oy cos )Ty
;j{y = <%) (€OS g sin Oy sin 1y — sin ¢y cos 1)
M
o (1Y )
90 sin ¢g sin 6y sin Yy + cos ¢4 cos 1) Ty
g—gz = — (%) (cos ¢q cos Og sin 1) Ty

o7y = () femevestd
of. _ (i) (sin ¢q cos 04) Ty
m

P4
1
a0, = (E) (cos ¢gsinOy) Ty

of
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Jacobian matrix for the rotational dynamics

The Jacobian matrix (0Fg/0u,.) is

[ Ofy Ofs Ofy ]

8TT 8a18 8()18
8F@ 8f9 8f9 af@

ou, Olr Oays Obys
Ofy  Ofy  Ofy
8TT 8a18 8618 4

The components of the matrix are as follows.

Ay <_) (67‘{’) N (singbltanHl
oTr oTr

ofy Ty smgﬁl tan 6,
Oays B ( ) (86!13)

ofs < ) (07‘1 ) N <51n¢1tan91
abls B abls

(07‘21’ ) N (cos o tan91> ( orb )

oTr oTr

( ort ) N (cos o1 tan@l) ( orb )
Oas day

<07‘2b> N <Cos¢1 tan91> <07‘§)
Obys Obys

S— ~ —

0fg  [cos¢y or} sin ¢y orb
dTr a ( Iyy ol - ( L. ) (ﬂ
dfy [ cosn ort sin ¢y orb
das B ( Iyy Oas a ( I.. ) <aals)

) (57)
) ()
e () () -
) (57)
) (&)
) (&)

ofy (sec 01 sin ¢, orl N (cos o1 sec 0, ) ( orb )
oTr I,y oTr I.. oTr
ofy <sec 0, sin ¢, ort N (COS o1 sec b, ) < orb )
Oas I, Oaqg I.. Oaq
ofy (sec 0; sin ¢, 0ty N (cos ¢1 sec 0y ) ( orb )
by I, by I, by



b b
ory ory

@ =— hrp, Da.. = —Qp cosars + Ty sin aqg cos by,
ort  OR
8;18 :Wf + Thrhas cos bis + Tharyar cos aq, sin by,
or? ort oM
e 1.5CJQT§'5, T2 _ M o Torhas cos(ais) + Ty sin(aqs) cos(bis)lns,
0TT 0&15 8a18 (36)
a b
6;—2 =Q s cos(bis) + Ty cos(ays) sin(bys) s,
1s
orl orb .
ﬁ =lr, %f’s = Qursin(ays) cos(bs),
orb .
% =Q s cos(ays) sin(bys) — Tay cos(bis)lns-
1s

Computation for the size of ultimate boundedness

The matrix H

The matrix H is given by

0
H,y Hs, 0
L R o M= (ke + ka,ea (37)
014 oL ey &3 _
. kC4 + 84]'{:05
L €2 i
~ 4T
0 0
H3 H41 ~ kd7
Hy= |7 g N c Ho = | —eyky, | Hio = — (38)
Hys (— —Elk‘dz) _ kg ' kg
3 o (A
L €2 €1 i
ka, _/’?;a2 l%ag
]{Zb kb
Hy e = (39)
_ ke, - ke,  key -
| TFa - (a “fcs) <— 5 ’f) _




The size of ultimate boundedness

By multiplying €4 by both left-hand and right-hand sides of the last inequality, D*Wj in

(4.86), the size of the upper bound Wj is approximated to

IWs]| < keadr(8)/ (ke, + eake,) (40)

The sizes of the boundedness for W; for i = 1,...,4, are computed by using the inverse of

block matrices in Appendix A.20 of [32] as follows.

-1

Hy | Hy Hy' + EJAJ'Fy, —Ey A7

H4_1 = | ]{Zd - - (41)
Hys (—1 - €1k‘d2) ~AJFy AL

where A4 = (Zfdl — 5351];}[2)/83 — H42H3_1H41, E4 = H3_1H41 and F4 = H42H3_1. The matrix
H; ' is rewritten as
-1 5
H4_1 _ H3 + 0(53)H41 O(€3)H42 (42)
O(€3)H43 0(83)
where 0 < O(g,) < k,e, with positive numbers k,, €,, 0 < €, < k,. The matrix H; ' can be

computed as

» H ! H3 Hy'+ EsA;'F; —F3A3?

e R S 42)

H32 E (5_2 — Z — ]{703> —Ag_ng A?)_l
where

- - B ~ T
kal ka2 _kag kCQ

Hy = ky , Hz = ]}b . Hzp = 76 _ (44)
0 1 - — <—7 + kcg)

€1 €1 €1



1 . eoka, - _
Az = (—> <k‘c1 - 25 - €2kC3) - H32H2 1H31 (45)

) 1

Es = H2_1H31 and F3 = H32H2_1. The matrix H3_1 is rewritten as

Hy' +0(e2)Hs O(gy)H
= | (f2) 51 O(e2)Hao (46)
O(€2)H33 0(82)

With (42), (46), and (44), the upper bounds of W; for i = 1,2, 3,4 can be computed by using

Hi'eiD3 +Ty) =T = 11, g, Taz, Tug]”
(47)

F3 = [0’ %b451 (t)> qug?»(t)? Ed855 (t)]T’ F4 = [07 kb552 (t)a ];701154(15)’ %dggﬁ(t)]T

Then the upper bounds for each component of I is

IT11]| < [erky, + O(e2)][e1k,01(F) + ki 02(t)] + O(e2)[e1kery03(t) + key, 04(1)]
+ O(es)[e1kag05(t) + kay0(t)]

ITa2|| < O(e2)[erkn, d1(t) + k02 (t)] + [e1ks, + O(2)][E1Kery03(E) + Koy, 04(t)]

+ O(e3)[e1kay 05 (t) + kay 0o ()] (48)

IT33]| < O(e2)[erkn, 01(t) + k02 (t)] + O(e2)[e1kery03(L) + key, 04(t)]
+ O(es)[e1kag05(t) + kay06(t)]
ITaall < O(£2)O(es) g1k, 01 (t) + ks 02(t)] + O(e2)O(€3) [1kery03(t) + Ficy, 04(1)]

+ 0(83)[81]%[1855 (t) + ];;dggﬁ (t)]

with ky, > 0 and ks, > 0. Using the upper bounds ||T'y;]], [|[Ta2||, and ||T's3]| in (48) and ||ws]|

in (40), the ultimate boundedness is \/[|[T11]]2 + [|Ta2||2 + [[Taal|2 + [|[W5]2.
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