PLACE II RETURN BOX to roman this checkout {rum your record. TO AVOID FINES Mom on or bdoro date duo. DATE DUE DATE DUE DATE DUE o 7 0 I .5 2.0.1; l ————— L‘i I Twflinlm . j 1 ' - Li: :fir—T—j MSU Is An Affirmative Action/Emil Opponmlty Inflation W m1 A PLUM CURCULIO MANAGEMENT SYSTEM FOR TART CHERRIES USING A DEGREE DAY BASED POST FULL BLOOM CONTROL INTERVAL By James Elliott Laubach A Thesis Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Master Of Science Department of Entomology 1995 ABSTRACT A PLUM CURCULIO MANAGEMENT SYSTEM FOR TART CHERRIES USING A DEGREE DAY BASED POST FULL BLOOM CONTROL INTERVAL By James Elliott Laubach Studies concluded in 1991 and 1993 showed that oviposition by plum curculio on tart cherries before 425 ddb50 F after full bloom did not result in larvae in the fruit at harvest. In 1994 a study was conducted to validate and evaluate this threshold in commercial blocks. The results from the harvest sampling data suggests that a 425 ddb50 F after full bloom threshold would prevent infested fruit at harvest except under high plum curculio population pressure. The results have been formulated into a working threshold for use by commercial tart cherry growers of 375 ddb50 F after full bloom to time controls for plum curculio. Dedicated To my wife, Sally J. Laubach and parents, Dr. George and Margaret Laubach ACKNOWLEDGMENTS I wish to thank Dr. James Johnson for his understanding, guidance and support during the course of my research and class work. I also would like to thank Dr. James Flore for serving on my committee and for not letting me forget the horticultural aspects of this work. A special thanks to Dr. Lany Olsen who started me down the IPM road in 1977. Thanks to Sally for your encouragement and help during this endeavor. iv TABLE OF CONTENTS LIST OF TABLES ................................................................................................. vi LIST OF FIGURES ............................................................................................... viii CHAPTER 1. Plum Curculio Caging Study ........................................................ 1 INTRODUCTION ............................................................................................. 1 LITERATURE REVIEW ................................................................................... 4 MATERIALS AND METHODS ......................................................................... 12 RESULTS ....................................................................................................... 16 DISCUSSIONS ............................................................................................... 25 CONCLUSIONS .............................................................................................. 28 CHAPTER 2. Commercial Orchard Validation Study .......................................... 29 INTRODUCTION ............................................................................................. 29 MATERIALS AND METHODS ......................................................................... 30 RESULTS ....................................................................................................... 32 DISCUSSIONS ............................................................................................... 37 CONCLUSIONS .............................................................................................. 40 APPENDIX ........................................................................................................... 42 BIBLIOGRAPHY .................................................................................................. 70 LIST OF TABLES Table 1. Maintenance spray schedule for study block in 13 $3311.;2."I)i;i.;i;.¥;;{e;'spray schedule for study block in 1993 .......................... 13 Table 3. Infestation data for 1991 ...................................................................... 17 Table 4. Infestation data for 1993 ....................................................................... 17 Table 5. Data for harvest date 7-06-91, one week before first normal harvest... 20 Table 6. Data for harvest date 7-13-91, first normal harvest .............................. 20 Table 7. Data for harvest date 7-18-93, two weeks before first normal harvest. 21 Table 8. Data for harvest date 7-25-93, one week before first normal harvest... 21 Table 9. Data for harvest date 7-31-93, first normal harvest ............................. 22 Table 10. Data for harvest date 8-07-93, one week after first normal harvest ..... 22 Table 11. Data for harvest date 8-14-93, two weeks after first normal harvest... 24 Table 12. Summary for 1991 and 1993: Second infestation period before first infestation period with infested fruit at harvest ..................................................... 26 Table 13. Study orchards .................................................................................... 33 Table 14. Mid-season damage sample: number of oviposition scars ................ 34 Table 15. Harvest damage sample: number of cherries with plum curculio damage ................................................................................................................ 36 Table A1. Temperature data for Harvest 1, 1991 ............................................... 42 Table A2. Temperature data for Harvest 2, 1991 ............................................... 45 vi LIST OF TABLES (cont’d) Table A3. Temperature data for Harvest 1, 1993 ............................................... 47 Table A4. Temperature data for Harvest 2, 1993 ............................................... 49 Table A5. Temperature data for Harvest 3, 1993 ............................................... 52 Table A6. Temperature data for Hanrest 4, 1993 ............................................... 55 Table A7. Temperature data for Harvest 5, 1993 ............................................... 58 Table A8. Temperature data for Bardenhagen farm ........................................... 61 Table A9. Temperature data for Sun Blossom farm ........................................... 64 Table A10 Temperature data for Laubach farm ................................................. 67 vii LIST OF FIGURES Figure 1. Theoretical pesticide use measured in alternate middle insecticide applications comparing plum curculio control strategies ................................. 39 Figure 2. Material cost per acre not including application costs, based on using Guthion 50 WP at 1.5 lb. per acre ......................................................... 39 viii CHAPTER 1. Plum Curculio Caging Study INTRODUCTION Plum curculio, Conctrachelus nenuphar (Herbst), is a primary insect pest of tart cherries in Michigan (Hewitt 1993). Damage occurs when adult females oviposit in the cherry and the resulting larvae feeds internally in the fruit. The larvae will usually destroy the fruit by feeding, exit the fruit and pupate in the soil. This damage can reach economic levels in the early season during peak egg laying (petal fall to about 30 days after petal fall) when the number of cherries destroyed by larvae exceeds the costs associated with applying an insecticide or mid to late season (20 days after petal fall to one week pro-harvest) when ovipostion can result in larvae in the cherries at harvest. Early season damage levels are related to area plum curculio populations. The size of a plum curculio population is a function of the historical use of insecticides, the wild hosts surrounding the orchard and the quality of ovenNintering habitat that may be present in and around the orchard. In most commercial blocks damage is uncommon or found at low levels, while in abandoned blocks damage can reach 100% (Laubach, unpublished). 2 Mid to late season injury can result in plum curculio larvae present in the fruit at harvest and is related to when during the season oviposition takes place and when the harvest takes place. The United States Department of Agriculture grade standards for tart cherries published in 1941 (USDA 1941, page 2) and used today, set a zero tolerance for “cherries which are affected by worms”. The potential costs for the grower associated with this type of damage is the rejection of the load and possibly their entire crop. This standard has resulted in the tart cherry industry developing conservative control programs for the insects that feed internally in cheny fruit. These insect pests are most commonly plum curculio, Conctrachelus nenuphar (Herbst), eastern cherry fruit fly, Rhagoletis cingulata (Loew), black cheny fruit fly, Rhagoletis fausta (0.3.) and less commonly apple maggot, Rhagoletis pomonella (Walsh), cherry fruit worm, Grapholitha packardi (Zeller) and mineola moth, Acrobasis tricolorella (Grote) (Hewitt 1993). Oblique banded leaf roller, Chon'stoneura rosaceana (Harris), which feeds primarily on leaves and externally on cherries has been found at high enough levels in cherry tanks to cause rejection of these tanks (Johnson, unpublished). Historically an insecticide residue has been maintained from petal fall to harvest in tart cheny orchards to control insects that feed internally in the fruit; requiring up to nine separate insecticide sprays. We theorized that plum curculio oviposition early in the season allows the larvae to produce enough damage so that the cheny abscises before harvest and does not contribute to contamination. Oviposition late in the season often results in insufficient damage to cause abscission and can result in infested fruit at harvest. Defining when during the season damage can result in larval infested fruit at harvest would allow growers to 3 reduce insecticide applications for plum curculio during the early season providing that populations of plum curculio are below economic crop reducing levels. The objective of these studies was to determine if there is a consistent point in the season when the outcome from plum curculio oviposition changes from pre- harvest drop of tart cheny fruit to larval infested fruit at harvest. LITERATURE REVIEW Life History Plum curculio, Conctrachelus nenuphar (Herbst), (Coleoptera: Curculionidae), is a primary insect pest of tart cherries in Michigan (Hewitt 1993). Damage occurs when adult females lay eggs in the cheny and the larvae feeds internally in the fruit. The larvae will usually destroy the fruit by feeding, exit the fruit and pupate in the soil. Adults ovenrvinter in orchard borders such as woodlots and fence rows (LaFleur et al. 1987). In the spring they migrate into the orchard when temperatures average 55 F to 65 F for several days. They have been found in orchards pro-bloom, but most will migrate during bloom and after bloom. If alternate hosts such as abandoned fruit trees border the commercial orchard, the threat of continued migration can be as long as 6 weeks after petal fall (Hewitt 1993). The adult plum curculio is a snout beetle, 5 mm long, dark-gray brown, and have three pairs of bumps on their back. The jaws of the beetle are on the end of the snout. Eggs are 0.4 mm wide by 0.6 mm long and are pearly white. Larva is whitish and legless and measures about 6 to 9 mm when full grown. The head capsule is brown to light brown. Pupae is found in the upper 1 to 2 inches of soil and measures from 5 to 7 mm (Hewitt 1993). Adults mate after becoming active in the spring and females can lay from 100 to 500 eggs (Hewitt 1993). Female plum curculio make a distinct crescent-shaped 5 oviposition mark with their snout on the cheny skin. Eggs are laid under the flap of skin created by the wound. Egg hatch occurs within a few days and larval feeding can be seen beneath the fruit skin within four to seven days. Larvae will continue to feed, eventually destroying the cheny. Peak egg laying occurs 2 to 3 weeks after petal fall and can continue up to 6 weeks after petal fall. The larvae will exit the ntit and pupate in the soil. Adults will begin emerging in mid to late July (Hewitt 1993). Activity Cook (1890) reports plum curculio does not begin visiting apple trees until petal fall in Central Michigan. After this time during egg laying, when weather is cold, plum curculio are often found beneath the tree under debris. Toward nightfall, activity increases with plum curculio reaching the canopy of the tree by walking up the trunk or flying. Cook observed that plum curculio, when on a limb, will commonly fall to the ground when disturbed. Studies conducted by Chouinard et al. (1992a) showed plum curculio most active from 2000 to 0400 hours with no correlation between temperature or humidity. Lefleur et al. (1987) found that most plum curculio released in the fall in orchards migrated towards high tree silhouettes at the edge of woodlots. Migration was influenced by leaf litter conditions in the woodlot. Where leaf litter was thin, plum curculio remained at the wood edge or returned to the orchard for hibernation. Most plum curculio hibemated in the leaf litter", less than 1 % entered the soil. V\finter survival was higher in forest soil with a thick litter layer than in orchard turf or forest soil with a thin litter layer. Lafleur and Hill (1987) found that, in spring migration studies of plum curculio after emergence and migration, plum curculio were found on the ground under apple 6 trees until up to petal fall on apples. They felt that future research should look at exploiting this behavior by developing ground-level traps and possible control measures, chemical and biological, that would be directed at them while they are on the ground. Owens et al. (1982) monitored adult plum curculio activity on apple trees from 0600 hours to 2100 hours from mid May to early July. Observations were only made on warm days with low winds. Adults spent 45% of the time resting, 23% of the time feeding, 19% of the time crawling, 12% of the time in oviposition associated behavior and less than 1% of the time in flight. Dropping behavior was reported frequently occurring after a disturbance caused by an observer. Dropping was also observed from presence of a bird and a loud noise. Racette et al. (1991) monitored daily activity of adults in field cages containing three to four dwarf apple trees. They found that from full bloom to petal fall plum curculio spent most of the time on the ground beneath the trees. By fnrit set, most of their time was spent in the trees. Activity at this time was greatest in late afternoon and at night. Mean daily rate of movement within the cage was positively correlated to mean daily temperature. Studies by Racette et al. (1990) used actographs to record daily activity of plum curculio in cages. The actograph measured the frequency of plum curculio dropping from the top of the cage. Before apple fmit set, plum curculio were active mostly during the night. During fruit set and June drop, plum curculio were active day and night. During mid-summer plum curculio were active mostly during the night. Host Finding Butkewich et al. (1987) found that in laboratory studies wounded plum fruit were visited more often by plum curculio adult females; however, oviposition was done more often in unwounded fruit than wounded fruit. They suggest that wounding of fruit enhances the ability of plum curculio to find fmit. Chemical Control Border row sprays have been shown to successfully control plum curculio damage in apple orchards (Chouinard et al. 1992b) . A border spray applied at pink and petal fall successfully controlled plum curculio at economically acceptable levels. In field tests, Fluke and Dever (1954) found aldrin, dieldrin or heptachlor applied to the ground to significantly reduce plum curculio. Snapp (1960) was able to control plum curculio in peach orchards for fours years with a single ground applied application of aldrin. Weed (1889) reports that in an efficacy trial comparing London purple with the untreated check the trees treated with London purple had 1.5% fruit damage and the untreated check had 6.17% damage. Biological Controls Parasitic wasps from the Braconidae family have been reported to parasitize the larvae of the plum curculio. Cushman (1916) reported that Thersilochus conotracheli (Riley) had been reared from plum curculio larvae collected in Connecticut, New York, New Jersey, Pennsylvania, Illinois, Missouri, Kansas and Michigan. 8 In North Carolina parasitism from Alia/us rufus (Riley) on plum curculio lawae feeding in blue benies was 2.9%. A. rufus (Riley) and A. curculionis (Fitch) were found infesting plum curculio larvae in wild plum at 2.7% and 5.4% respectively (Mampe 8. Neunzig,1967). A. cumulionis (Fitch) was reported as the most common larval parasite of plum curculio in the Niagara Peninsula, Ontario (Armstrong, 1958). In an unsprayed plum orchard parasitization was 26.6% in 1953 and 7.5% in 1955. Other species reared from plum curculio larvae in that study were A. rufus (Riley) and T. conotracheli (Riley). Chouinard et al. (1992b) reports toads, Bufo americanus americanus (Holbrook), were found with high level of (“2m used to mark adult plum curculio. Cook (1890) identified that the grazing of chickens and livestock in orchards was a successful method of controlling plum curculio. Lefleur et al. (1987) found that in a study using (’52n) labeled plum curculio, spiders, slugs, earthworms and birds where found contaminated with (°52n). Lefleur et al. (1987) isolated an unknown pathogenic fungus and bacterium from diseased plum curculio larvae. Tedders et al (1982) found in laboratory experiments the nematode Neoaplectana carpocapsae (Weiser) ineffective in causing mortality to plum curculio larvae. They found the fungi Metarhizium anisopliae (Metschnikoff) Sorokin and Beauven’a bassiana (Balsamo) Vuillemin to cause high levels of mortality to plum curculio larvae and suggest these species should be considered as biological control agents against plum curculio. Trapping and Monitoring Cook (1890) described a trap developed by a Mr. Ransom of St. Joseph Michigan that consisted of laying pieces of bark or chips at the base of a fmit tree that were checked daily for plum curculio. Prokopy (1993) reviewed past and present methods of monitoring plum curculio and concluded that no method presently used accurately predicted plum curculio populations. Prokopy (1993) reported that in previous work he did not find a direct correlation between oviposition on scout apples and subsequent damage to developing apples. Prokopy et al. (1980) reports that visual monitoring for ovipostion scars most be done daily or twice daily to be effective. Le Blanc et al. (1984) found that using limb jarring gave inaccurate conclusions of plum curculio populations due to variables such as size of jarred limb, size of drop cloth, strength of jarring blows, height of the “jarTer', time of day, temperature and wind velocity. Le Blanc et al. (1984) were able to attract plum curculio to oviposit on “Granny Smith” scout apples that were hung in an abandon apple orchards. Fruit Abscission Tart cheny fruit development occurs in three distinct stages. Stage 1, bloom to about 20 to 22 days after bloom, is characterized by rapid cell division and enlargement. Stage 2 lasts for approximately 16 to 20 days and is characterized by a hardening of the pit. Stage 3 lasts for approximately 21 to 23 days and is characterized by rapid cell enlargement (T ukey & Young 1939). Injury of the tart cheny seed during stage one or early to mid stage two will cause the cheny to abscise at the pedunclezpedicel zone. Injury at this time is 1 0 associated with an increase in ethylene production by the injured fruit. Injury to the mesocarp or endocarp did not induce ethylene production or fruit abscission. Seed injury in late stage 2 and stage 3 will not cause the cherry to abscise (WIttenbach and Bukovac 1974). Injury described in this work was induced by drilling a 0.79 mm diameter hole into the tissue. Injury at this time did not cause an increase in ethylene production by the fruit. Levine and Hall (1977) reported that plum curculio-induced fruit abscission of immature plums and apples was due to feeding activity by larvae. In a further study (1978) they found that enzymes produced by the larvae cause fruit tissue maceration and may be responsible for premature abscission of fruit while feeding on plum and apples. Mechanical or-Cultural Controls Weed (1890) reports that the common method of controlling plum curculio in the Ohio fruit growing region lying along the south shore of Lake Erie was to jar trees daily and sometimes twice daily to catch adults on a catching frame. “A sort of inverted umbrella mounted on wheels, it was not uncommon to obtain by jarring a single tree a hundred of them a day” (Weed 1890, p 226). Damage surveys conducted in 1890 in a commercial plum orchard showed 3% fruit injury on trees treated with Paris green and 4% injury on jarred trees. Cook (1890) felt that you could reduce plum curculio damage to fruit crops other than plums by planting plums (the preferred host of plum curculio) near by as a trap crop. This combined with janing of the trees from 10 to 15 times per season would adequately control plum curculio in cherry, peach and apple orchards. 11 Conclusion The literature has covered plum curculio life history, activity, host finding behavior, chemical and biological control and trapping. There are no reports attempting to manage plum curculio on tart cherries looking at applying controls to prevent infested fruit at harvest. It is for this reason that these studies are proposed. MATERIALS AND METHODS This study was conducted in a commercial tart cheny orchard in Benzie County, Michigan. The orchard received standard fungicide treatments (T able 1 and Table 2). During the course of the study, insecticides were not used within 18 m of the trees in the study except when insecticides were applied to study trees after infestation periods to prevent re-infestation by plum curculio or other orchard pests. Adult plum curculio were collected in the Spring of 1991 and 1993 from abandoned apricot, plum, tart cheny and apple trees. Adults were collected using a “beating tray”, a cloth device measuring 1 m square and held taut using a hard wood frame. The beating tray was held under a tree branch and the branch was jarred causing plum curculio to drop to the cloth frame. The plum curculio were maintained in 16 oz fruit canning jars with fresh tart cheny sheets for food and moisture, at densities less than 20 plum curculio per jar. Collection began after bloom and continued for approximately 20 days. The plum curculio were used in caging studies as discussed below. 1991 Beginning at the end of shuck split stage of development on tart chenies, eight tart cheny branches were infested with five un-sexed adult plum curculio per cage. The cages were made from mosquito netting and measured about 1/2 meter 12 Table 1. Maintenance spray schedule for study block in 1991 13 Date Common Name Trade Name and Rate Per Formulation Acre 5/26/91 Chlorothalonil Bravo 720 2 pints 5/26/91 Thiophanate- Topsin-M 0.5 lb. methyl 6/03/91 Fenarimol Rubigan 3 oz. 6/03/91 Dodine Dodine 65 WP 0.8 lb. 6103/91 Sulfur Liquid Sulfur (6 Ib.l gal.) 2 pints 6/08/91 Fenarimol Rubigan 4 oz. 6/15/91 Fenarimol Rubigan 3 oz. 6/15/91 Dodine Dodine 65 WP 0.5 lb. 6/28/91 Dodine Dodine 65 WP 0.8 lb. 6/28/91 Benomyl Benalate DF 0.3 lb. 6/28/91 Phosmet lmidan 50 WP 0.8 lb. 7/08/91 lprodione Rovral 50 WP 0.7 lb. 7/22/91 Chlorothalonil Bravo 720 2 pints 7/22/91 Fenarimol Rubigan 3 oz. Table 2. Maintenance spray schedule for study block in 1993 Date Common Name Trade Name and Rate Per Formulation Acre 6/05/93 Myclobutanil Nova 40 2.4 oz. 6105/93 Dodine Dodine 65 WP 0.4 lb. 6/11/93 Myclobutanil Nova 40 2.9 oz. 6/11/93 Dodine Dodine 65 WP 0.4 lb. 6/15/93 Myclobutanil Nova 40 2.9 oz. 6/15/93 Dodine Dodine 65 WP 0.8 lb. 6/23/93 Myclobutanil Nova 40 2.4 oz. 6/23/93 Dodine Dodine 65 WP 0.8 lb. 7l01/93 Phosmet lmidan 50 WP 0.8 lb. 7/01/93 Dodine Dodine 65 WP 0.8 lb. 7/10/93 Phosmet lmidan 50 WP 0.8 lb. 7l10/93 Dodine Dodine 65 WP 0.8 lb. 7/10/93 Sulfur Sulfur WP 90% 4 lb. 7/16/93 lprodione Rovral 50 WP 0.7 lb. 7I16/93 Sulfur Sulfur WP 90% 4 lb. 7/31/93 Sulfur Sulfur WP 90% 4 lb. 7I31/93 Dodine Dodine 65 WP 0.8 lb. 7I31/93 Carbaryl Sevin 808 1.2 lb. 14 in diameter and 1.3 meters long. Branches were approximately 2/3 to 1 meter long with approximately 50 to 400 cherries per branch. The cages remained on the branches for about 48 hours at which point the cages were removed and the plum curculio adults recaptured. This process was repeated at three day intervals, for a total of 12 infestation periods. Branches were selected randomly in trees and four branches per tree were caged. When the cages were removed from the branches, the number of cherries with oviposition scars were counted. Within 48 hours after the cages were removed, the treatments were sprayed at dilute rate with a backpack sprayer using lmidan 50 WP at 1 lb. per 100 gals. Cherries were harvested from the infested branches at two periods: 6 July, one week before first normal harvest; and 13 July, first normal harvest. Four branches were randomly selected from each infestation period for each harvest. Cherries with oviposition scars were placed in the following classifications: oviposition scar and no internal feeding; internal feeding with no larvae present; and internal feeding with larvae present. A treatment consisted of branches with the same infestation and harvest date. Weather data was collected from the nearest NOAA weather station located in Beulah, Michigan (Appendix: Table A1 and A2). 1993 Experiments were conducted as in 1991, except that branches were infested with six to nine unsexed adult plum curculio per cage. Additionally, there were 10 infestation periods rather than 12 as in 1991. 1 5 Cherries were harvested from the treatments: 18 July, two weeks before first normal harvest; 25 July, one week before first normal hawest; 31 July, first normal harvest; 7 August, one week after first normal harvest; and 14 August, two weeks after first normal harvest. Three to four branches were randomly selected form each infestation period for each hanrest. Cherries with oviposition scars were counted and classified as follows; oviposition scar and no internal feeding; internal feeding with no larvae present; and internal feeding with larvae present. A treatment is considered a series of branches with the same infestation and hawest date. Weather data was collected on site using an electronic data logger (Automata lnc., Grass Valley California) (Appendix 3-7). Degree days were calculated by the modified average method, (maximum daily temperature + minimum daily temperature (if minimum daily temperature is less than lower developmental threshold then use lower developmental threshold for minimum daily temperature) [2) - minimum developmental threshold = degree days for that day, (Johnson & Herr 1995). RESULTS Environmental Data This study was conducted in the 1991 and 1993 growing seasons. In 1991 the number of days between full bloom and first normal harvest were 61 calendar days and the accumulated degree days were 1630 ddb42 and 1164 ddb50. (See Appendix: Tables A1 - A7 for detailed seasonal temperature data and degree day accumulation information.) In 1993 the number of days between full bloom and first normal harvest were 78 calendar days and the accumulated degree days were 1600 ddb42 and 1100 ddb50. These data illustrate two very different seasons with respect to temperature accumulations and illustrate the similarities when looking at degree day accumulations between full bloom and first normal harvest. Infestation Results In 1991 and 1993 there were 12 and 10 inoculation periods respectively. The results are summarized in table 3 and table 4. In 1991 and 1993, infestations began at the end of shuck split; 229 ddb50 and 231 ddb50 respectively after full bloom. Creating timed ovipostion on tart cherries was successful as attempted with an average of 240 fmit with ovipostions scars produced from infestation periods in 1991 and an average of 529 cherries with ovipostion scars per infestation period in 1993. Peak ovipostion per plum curculio in 1991 was during the infestation period 16 17 5 8 6 s. 9. B a... 8 on Q. 858.: 9.26 N38 we Nm m... N N 3. N» N N mm 567.»: 8:8 9.3% N N 3 N .N 3 N 3 5 N Bean. .8 macaw .o a o>< 3. 3 on Na. 3 3. 3 Na in 3 On. .8 85% B u 22 NF NNF mNF 8N? 43 9: N: 8, N2 3 SSE 2 88 on. a u Em P8 09. 8m :8 82 mNm. men 93 Ba 55535 B 8%... .5 a 82 Ba t.» E 3K N8 m3 m9. 5... NB E83 =2 .25 N38 02 Em Bm me. E. 8N4 B» 2a EN EN E83 :2 BE... 85% N N N N N N N N N N 88.8 em; on. :8 he a 57¢ .26 .33 .578 SEN SEN STNN S79 572 STNF Emu 86:3 2% Sauces 82 .2 «an 8:31.25 .4 as: 5 8 No 8 B 9 8 3 9. E 8 mm Sfiafis 8:8 N38 8 5 9. 3. s. 8 N4 N 5 B 9. 8 8:58: 8:8 938 no od F 9o 3 5 we 3. 3. m he 3 528 L8. BEG .0 u m>< md we 3 3 ma 4.» ma 3 3 I: 4.9 E on L8 85v. Co a m>< BN 8 8 8 8 8 9. o... 9. o... 9. 9. was 2 89 on .o u 9 8 8 3 mo. 8. 3.... Km N8 m8 N8 8N 838.5 a 8%... Co a B: 82 :2 m3 3» at 88 20 08 m8 N4 8» E83 :2 can N32. wk NE E 88 48 man 8». 5. 48 Ba 8N mNN E8... =2 8% 028 N N N N N N N N N m N N uoamo em; on. can .5 a SEN SEN SEN :32: :33? :33: .579 53 :24 EN 52.8 BEAN 8:8 86:3 2% 8358:. 59. .5“— Ewu £03983. .n 030... 1 8 ending on 4 June; 23 days, 551 ddb42 and 384 ddb50 after full bloom and in 1993 on 25 June; 43 days, 662 ddb42 and 426 ddb50 after full bloom. In 1991 the last inoculation period was on 25 June with a total of 13 ovipostion scars produced from 25 plum curculio. This was 44 calendar days, 1107 ddb42 and 776 ddb50 after full bloom. In 1993 the last inoculation period was on 9 July with a total of 551 oviposition scars from 121 plum curculio. This was 57 calendar days, 1050 ddb42 and 706 ddb50 after full bloom. Harvest Evaluations In 1991 and 1993 there were two and five harvest sampling dates respectively. Cherries were examined for plum curculio damage and damaged cherries were classified as follows; larval presence, larval internal feeding damage with no larvae present and oviposition scar with no internal feeding damage. In the harvest samples, cherries that were 13 mm or less in diameter with larvae were noted; however, because these cherries were brownish, hollow and shriveled and would not make it through the processing process, they were not used in determining a pre-harvest interval. 1991 Harvest There were two harvests In 1991. The first harvest was 6 July, 1 week before first normal harvest and the second harvest was 13 July, first normal harvest. In the first harvest of 1991, three larval infested cherries with larvae were found in the 7 June infestation sample. These larvae were all in cherries less than 9 mm in diameter, brown, hollow and shriveled. The first infestation period to have lawal 1 9 infested cherries greater than 13 mm in diameter was in the 13 June infestation sample; therefore, the 10 June infestation period would be considered the last infestation period allowing a crop free of larvae-infested cherries 1 week before first normal harvest (Table 5). In the second harvest of 1991, two cherries with one larvae each were found in the 7 June infestation sample. These cherries were less than 13 mm in diameter, brownish, hollow and shriveled. The first infestation period to have larval infested cherries greater than 13 mm in s'ze was 10 June; therefore, the infestation period of 7 June would be considered the last infestation period allowing a crop free of larvae-infested cherries at first normal hawest (Table 6). 1993 Harvest There were five harvests in 1993. In the first hanIest of 1993 , 2 weeks before first normal harvest, the first infestation period to have lanral infested cherries was 25 June; therefore, the 22 June infestation period would be considered the last infestation period allowing a crop free of larvae-infested cherries (Table 7). In the second harvest of 1993, 1 week before first normal harvest, the first infestation period to have larval infested cherries was 28 June; therefore, the 25 June infestation period would be considered the last infestation period allowing a crop free of larvae-infested cherries (Table 8). In the third harvest of 1993, first normal harvest, the first infestation period to have larval infested cherries was 30 June; therefore, the 28 June infestation period would be considered the last infestation period allowing a crop free of lanrae-infested cherries (Table 9). In the fourth harvest of 1993, 1 week after first normal harvest, the first infestation period to have larval infested cherries was 30 June; therefore, the 28 June infestation 20 53:55 5 EE 9. 55 9.0. Eco—.0 cumanouou >53 m E 225 out! N 05 . at N: E. m8 v8 8m 03 5. 3m 8m 8N mNN 33: ESE :3 can 82% 8: $2 :9 m3 vow NR 80 m6 5m mom VNv m8 BEBE 883 :2 can N38 .4 N4 ov mm mm NN R 8 N N 2 me 3on E83 __:to=m 26.. .0 a o o o 0 NF o 9 9 E R 8 2 BB8. BEBE o: .8” 523.230 E; 8:55 B e m m m 2 n 2 B 6 B m4 4 o 83E 0: SEES BEBE 5E 3:36 .6 e F n N m N v m .N o o o o «832 an 823 5;, 8:35 e m we NN NN mm No BF v2 3N Sm SN 8 coaBmoE a 98m 825:5 55, 3E2". .6 a SI: 579 52: SE .53 SN 52-8 BERN Emu 86:3»ch gages SEN SEN 572 “moan... into: an...» .3.an Sun “moan; .8 END 6 03¢... BEEN? 5 EE m .55 man. moEocu E 9.03 OMEN. m 05 .. wt. NE. F; m8 vow 8m wwv NNV vwm mmn 8N mNN cannon—E E003 :3 Lots omnuv Nor F omow _. For mvm vow mt. wmo m we me mom VNv nmm acumen—E E003 =3.— ..otm anuu vv NV ov mm mm N0 mN wN .N _.N 9 m_. cannot: E003 =2 Leta gun he an o o m v mN or mm mm NV 50 mm 0N 9.500.— _uc._ouc_ o: .58 cow_won_>o 53> moEozo *0 % 9 9 m v 9. NN no .5 mv RN 0 0 002m. 0: 6:508 .mEEE 53> 325:0 no % N E. 3 m 5 F c an o o o 0 «329. «m on?! 53> moEozo % w MN 9. mN on _.v 8F “.3 wmw NoN va he cozmumouE «a mcmum coEmonSo 53> moEoco “.0 % SEN STNN SEN 5...? SI: 53: .52: SE 53 SN 52.8 BERN 3% BEES 2% 5:33: «moan; .mEo: “ME 282. x025 one .5695 Emu «moan; .8 Sun. .m 0...: 21 005 v8 Em mmv vnv va how m 5 saw EN 80—. 3a hvm wt. 3K N8 mum mmv 5v Nun hm vm 5 3 3 av 0v 8 mm . on am now 8 av Nm hm 8 mm mm 9. t 5 mv mu 9. 9 or N o o w v 0., N m o o o o 0 mm 3:. mm For mi. Lam-P mNF on 8.. mm ammo: E85 :2 3cm 855 8385 58.3 =2 :23 «33 328: E85 =2 8% Q63 :0 a, @538 .0625 o: .58 52895 53> 83.65 B % .329 o: .3588 BEBE 53> $3.30 :0 % «moan: F. 82m. 53> moEmzo % cofifimfi E Emom coEmoaSo 53> mmEoco he % #3; .336 57m :378 :33N :33N :37NN :372. :379. :37NF 8:8 86:3 2% 5638:. 5020: EEO: E: 9.80: x003 0:0 .mmémK Emu $033: :2 San— .» 030... won 30 an mmv v5. owv now m5 5mm 5N one Yum hvw Eh 3K N8 mum mmv 53 «um um vm Fm wv 9. av 0v mm mm on hm 9. F mm mv cm \L mv 0N m F N Nm uh _.v VN nm 9. _. F o o o N m mm m n o o o o FNF war mm? mm o: NVN mm? 0v 5 av 3.3m .370 .376 :378 :37wN :33nmN :37NN :372. :33 F :37NP F Baofi 585 =2 5% 028 8525 £8... :3 .23 ~38 832:. 585 =2 5% :8 .o u @583 .mEBE o: .58 5338330 53> 8335 “_o .3 325 o: @5302 .mEoE 53> 8335 _o u .329. um 09cm. 53> moEoco % :o_§m8:_ 8 £3» 82825 53> mmEoco ho n Emu 86:8 2% 558.5 $023: .055: «E: 0:20: 9.003 92 .mméwfi Emu ~8ch :2 930 K 036... 22 8F 38 me 8v Ev 8... F8 9” F8 FR 333:. £8... :2 3cm 83% 89 33 F3 Ft 3K «8 2.0. 84 F9. NR 353:. £8... =3 5% «3% 5 vm Fm 3 9. Q 8 on on on 8.82. £8... :2 3cm 1% .0 a «2 8 8 mm R 2 F mu mm mm 2 2.83 552:. o: :93 523.30 55. 3.520 :0 u 2 mm Fm FF 0 on 2 F. o o 32.... o: 6583 .5502. 5.; 8E2". .0 u o F o F o o o o o o .822 a $23 5.; 8.56 u .FHF F 8 02 LR: 8F F8 8 mum 8 8 838.5 5 98m 82035 5.; moEofi .0 u .32.. 33 5...... S78 S78 578 57% 579 53F 53F 3% 8.23 2% 8.8.8: .822 $2.8 Foe 3% .83 95 .38.» 3% 302% a. £8 .2 «3% SF 30 me 8w E. 0% F8 m Fm F8 F8 87.35 583 =2 .23 03% 82 3m 5.» Ft 3F «8 2m 3. F9 «5 8.82. 283 =2 3% ~32. R. 3 Fm 9. m... 9. 8 on 8 on 382. 585 :2 arm 2% B u 8 8F 9. an 8 mm 5 FF. Fm 2 9.83 352:. o: :8» 5208.30 5.; 3.520 B 3. FN 2 mu 8 m Fm a «F o o 32.2 on 3.88 5525 5.; 8.58 .0 u N o n F o o o o o o F322 5 823 F2; 3.55 % .mwNF R: k 3F mNF Fou F F F Fm mm 2 c8332. 5 98». cnfimmaso 5.; 8.520 Fe 3. 37m 33 .37» S78 578 57% 57% S79 :3va SEF 3% 8.23 2% 8.58.5 «32% .958 .2: .35: 3% F832 .2 £3 .a «3% 23 period would be considered the last infestation period allowing a crop free of larvae— infested cherries (Table 10). In the fifth harvest of 1993, 2 weeks after first normal harvest, the first infestation period to have larval infested cherries was 3 July; therefore, the 30 June infestation period would be considered the last infestation period allowing a crop free of larvae-infested cherries (Table 11). 24 8» v8 :3 8v omoF vmm va FFF 3 Fa Fm m... FF 3 3 mm m mm mu 9 o o N o 8 8 Fa l3 37m 57$ 37m 5.70» :370N cazw c37NN F572. ::_.rm_‘ CERNF vnv 3K 0* MN m 0 mm mwv N00 mv ON 5 0 mm _‘ how mum 0* mm h 0 mm m 5 mmv on on m 0 Na how a 9. 638%: 583 =3 Loam omnuu U3m9§ E005 =3 bozo N32. 3335 E85 :3 cor—m gnu ho % @582 .9555 o: coo» co_F_woa_>o 53> 8:55 o FFF 32m. 0: 5:608 BEBE 53> moEoco o a. F829. Fm 32m. 5.2, mmEoco % c2585 5 38m $5895 5? 8:55 o u 8% 86:3 2% 8:982. .8ch 38.5: E: cor—m 9.0m; 93 dwéPé Sac «moan... .2 END . E. 033. DISCUSSIONS The objective of this study was to determine if there is a consistent point in the season when the outcome from plum curculio oviposition changes from pre- harvest drop of fruit to larval infested fruit at harvest. This point in the season can be measured differently to determine the most consistent method during seasons of high variability. Data measuring: 1) calendar days; 2) degree days base 42 F; and 3) degree days base 50 F after full bloom were evaluated for their predictive ability. Using calendar days to predict a post-full bloom control interval would be extremely inaccurate with the 23 and 43 calendar day periods after full bloom I measured for 1991 and 1993 respectively. Using ddb42 would be less accurate than ddb50 as evidenced in the data for 1991 and 1993 (Table 12). Data collected on calendar days, degree days base 42 F and degree days base 50 F before harvest, were not reliable for predicting a control interval due to the unreliability of predicting harvest 30 days in advance. This data may be of use in the future if methods of forecasting tree growth and weather improve. We achieved our objective by demonstrating that cherries did not contain plum curculio larvae at first normal harvest when they were infested before 427 ddb50 and 475 ddb50 after full bloom in 1991 and 1993 respectively. A low percentage of cherries infested later than this time in the season did contain larvae at harvest (Table 6 and 9). The penalty to a grower for having larval infested fruit at 25 26 SfiEnfi 5 EE m .55 «no. 3:35 5 203 02cm. M 05 . VNV MNv MNv~ NMM M 5 VMM th acumen—E Eco—n =3 Foam omnuu VMN NMM NMM mum mow FMM M5 8685 EDGE =3 5cm ancu M? MV MV 9 MM MN MN 8685 E85 :3.— ..otm gnu no % MN M3 M0 M3 0N FM MM @583 3an5 o: .58 co:_moa_>o 53> 835:0 ho % M MM —.M or M NM NM omin— oc .0583 .mEBE 53> moEmco no u o o o o o o .M $029. an exam. 53> onmno % Mm EN EN GNP M? VON E c2552.: 5 38m co_:moa_>o 53> moEozo __o % MQMNB MQMNE MQMNB MQNNE MQM EM FQSM 5R8 $55 GEO—.3 Emu 55935:. M0? EM MQQM MQ _.MR MQMNR MQM FR 5‘ka FQMR Emu «mmZMI «mean: 5 =35 85.0.95 53> votoa c0593“: 5.: 8809 62.8 cos—3.0.82 ucoomw UM09. new 59 .55 39.:an .N_. min... 27 harvest can be the rejection of a load and possibly the entire crop. For this reason, we opted to develop a threshold that would have a high degree of safety. We examined the harvest dates of first normal harvest for 1991 and 1993 and used the second to the last infestation date before the first infestation date that had larval infested fruit. For 1991, this data was 4 June, 23 calendar days, 551 ddb42 and 384 ddb50 after full bloom. For 1993, 25 June, 43 calendar days, 662 ddb42 and 426 ddb50 after full bloom (Table 12). For a recommendation using this data we would use the 1991 data because it is more conservative and round it off to 375 ddb50 after full bloom. This threshold has a safety factor of an added 50 ddb50 built into it. In 1993 we examined the hypothesis that if harvest was delayed, the post-full bloom control interval would also be delayed. This would allow growers with long harvests (15 to 21 days are not unusual) to delay control sprays in orchards that are harvested later than first normal harvest. Delaying harvest would allow a small shift in the post-full bloom interval to later in the season (Table 12). In 1993, 2 harvest sample dates were added; 1 week after first normal harvest and 2 weeks after first normal harvest. Using the same method as above in building in a safety factor, a grower could delay applying a control spray approximately 50 ddb50 F for each week harvest was delayed. This data should not be used in formal recommendations due to the fact it was only collected for one season and that it has not been validated using larger sample sizes such as whole orchards. However, It could provide a strategy for blocks that have plum curculio infested fruit at harvest. In these blocks, harvest could be delayed for one or two weeks and the infested fruit would likely abscise. It also provides the basis for future research in determining the validation of this concept by conducting a second season of caging studies and a follow up whole orchard validation study. CONCLUSIONS The goal of this research project was to define when during the season the outcome of plum curculio oviposition on tart cherries changes from fruit abscission before hawest to larval infested fruit at harvest. We demonstrated in two seasons with very different daily temperature characteristics that there was definable point in the season when this outcome changed. In this study the populations of infested cherries were low when compared to a potential infestation found in commercial orchards with high plum curculio pressure. It is for this reason that it would be important to validate the threshold developed in this study in commercial tart cherry orchards. 28 CHAPTER 2: Commercial Orchard Validation Study INTRODUCTION In the 1991 and 1993 caging studies we identified a consistent point in the season when the outcome from plum curculio oviposition of tart cherries changed from pre-harvest abscission to larval infested fruit at harvest. The experiments were done using small populations of infested fruit, an average of 371 infested fruit per treatment. These experiments provided information to begin formulating a threshold that could be recommended to tart cheny growers to control plum curculio. To validate this threshold we designed a study that would use whole orchards as study units. The objective of this study was to evaluate a post-bloom control threshold for plum curculio control in commercial tart cherry orchards. 29 MATERIALS AND METHODS During the pre-bloom portion of the season 14 orchards in Northwest Ml were identified for inclusion in this study. All had a history of plum curculio damage in previous seasons and growers agreed to follow timing suggestions of insecticides for controlling plum curculio. Seven of the 14 orchards were randomly selected to have controls applied for plum curculio at 300 ddb50 after full bloom and 7 of the 14 orchards were randomly selected to have controls applied for plum curculio at 425 ddb50 after full bloom. These orchards were scouted weekly during the season and weather data for these sites were collected (Appendix: Tables A8-A10). In addition to weekly scouting for plum curculio, two damage surveys were conducted. The first survey was conducted after the plum curculio threshold control sprays were applied and the second survey was conducted at harvest from tanks of cherries on the growers cooling pad. The first survey was conducted by doing a 1 min/tree visual survey for plum curculio ovipostion scars. Twenty-four trees per orchard were surveyed. All surveys were conducted by the same observer. In each orchard, on each of four borders, three border trees were surveyed; four rows in from the surveyed border trees, three additional trees were surveyed. 30 31 The second survey was conducted at harvest. Results from the first survey were used to identify the border in each block with the highest levels of oviposition scars and cherries from these borders were sampled. Two sampling methods were used. The first sampling method was to visually survey cherries in cheny tanks for plum curculio ovipostion related injury for 2 minutes. Four tanks per orchard were surveyed using this technique. The second sampling method was designed to be identical to the method used by USDA raw product inspectors located at cheny processing facilities during the cheny harvest. This method sampled 1000 grams of cherries randomly selected from cherry tanks and each cheny examined for damage. Cherries with oviposition scars were dissected and placed in the following classifications: oviposition scar and no internal feeding; internal feeding with no larvae present; and internal feeding with larvae present. RESULTS The 1994 pest pressures in Northwest Ml cherry orchards were characterized by high populations of green fruit worm larvae during the period of 1 to 3 weeks after bloom. Most orchards exceeded the action threshold for this pest. Due to this reason, 6 of the 14 orchards in the study received insecticide applications that disqualified them for use in this study. These controls were applied late enough so it was not possible to replace them with other orchards in the region. One orchard of the 14 was not harvested due to quality problems unrelated to plum curculio and a harvest damage survey was not possible. As thresholds were approached in the study orchards, growers were advised to apply control sprays. Table 13 summarizes the assigned thresholds and the actual timing of control sprays. Mid-Season Damage Sample The primary objective of the first survey was to identify relative damage levels in the orchards. Table 14 summarizes this data. This data reinforces the observations that plum curculio populations and related damage vary widely between orchard and within orchards. 32 Table 13. Study Orchards 33 Orchard Name Assigned Threshold: Control Applied After Full Bloom Actual Timing of Control: After Full Bloom Diagonal Tarts 300 ddb50 327 ddb50 Six Rows 300 ddb50 327 ddb50 Reshaped Tarts 300 ddb50 327 ddb50 East Tarts 425 ddb50 466 ddb50 Mare Tarts 425 ddb50 437 ddb50 House Tarts 425 ddb50 426 ddb50 Blackbeny Tarts 425 ddb50 426 ddb50 34 womb N 38.3 o o... NMF 0 MN N M .80... I mom: 0 M N o o o F M bmo>> 89: o v MM 0 M o N M 259w new: 0 F F m9 0 F F N o M Snow mew... o 0N FN o M o M M Etoz mum... mtg mtg much 3.2. mtg «24. Eefioflm emaoI Ems. 33:81 9.61 5M .9585 320M mum... .mmw 23m :o_._moa_>o F0 .383: 6.95m cums—Mu c0886: .3. 03a» 35 Harvest Damage Sample. The primary question this sample was answering was if insecticide control sprays for plum curculio were delayed to 300 ddb50 or 425 ddb50 after full bloom, would fruit be free of larvae in a commercial orchard at harvest as it was in studies conducted in 1991 and 1993 using smaller study units. in the harvest damage samples no cherries with larvae were found, see Table 15. In the Mare tart orchard three cherries with larvae were found floating in tanks as they were harvested. These cherries are generally skimmed off the tanks before they reach the cooling pad. However, this finding indicates that when the density of ovipostion stings are extremely high the 425 ddb50 threshold can fail. 36 .EMEQSUM 9.2822 9: :o 933 E 958: 3:2 99> moan. 53> commas moEoco M 55558 05 c_ 958 29> Maze. 5? moEoco o: 5955?. .. MNEMFE... o o o o o o o €09.85 0 o M M o o o... MNimtm... 3:0... .o .o M F N N NMF MNEMFEF 292 o o o o o o o MNvEEh 7.3 08323 c o o o o F MN Encamom o o o o o o N ooflmsom 5w ooflmtfl. o o o o o o M .9585 .55 N a 82 5:. N a 89 .55 N a o8F E06 c.8_e8§ 5 mean. 6533 32m. 0: .9538 mean. 0: 6:602 N .323. .953 . . . . . 20525 .mEoFE 95M .mEoFE 95m .225 0: 95m EE F 356 ”anmm Footer ”29:8 52cm... ”mas—NM FmoZmI o a .F 323 FEM—.20 one—=3 2.323 :53 5:5 8:85 o 89:3: ”29:3 39:3 «Mean: .2. 03a... DISCUSSIONS The 1991 and 1993 caging studies showed that oviposition by plum curculio on tart chenies before 425 ddb50 after full bloom did not result in larvae in the fruit at harvest. The purpose of the 1994 study was to validate and evaluate this threshold in commercial blocks. The results from the harvest sampling data suggests that the 425 ddb50 threshold would be safe to use under most orchard conditions. Although no larval infested fruit were found in the harvest sampling, infested fruit were observed in the cheny tanks on the harvest equipment in the Mare Tart orchard, (three cherries with larvae floating in tanks while observing four tanks of cherries being harvested). This indicates that in orchards with high plum curculio pressure this threshold would not be appropriate given the quality requirements of processed tart cherries, (zero tolerance of larvae in fruit at harvest). From the 1994 data, it appears that at lower, more typical plum curculio pressures the 425 ddb50 threshold is very reliable. In orchards with high plum curculio pressure this threshold may fail and for that reason as will as the costs associated with that failure we are suggesting that the grower community in Michigan use a threshold of 375 ddb50 after full bloom in combination with a scouting program. In 1979 when I became active as a grower of tart cherries in Northwest Michigan it was common for extension personnel to recommend spraying for plum curculio on tart cherries at petal fall and using a calendar spray program thereafter. This illustrates the fear and extreme penalties that larval infested fnrit at harvest can cause, but it also indicates the lack of knowledge in the relationship between larval and fruit development 37 38 and the lack of confidence in scouting programs for plum curculio. Figure 1 and Figure 2 illustrate the savings in reduced pesticide use and costs that theoretically could be attained by using the threshold developed by this research compared to using a calendar approach. If this saving could be experienced by the Michigan tart cheny industry in 1994 there would have been a cost savings of approximately $600,000 and a reduction in use of 43,312 lbs of pesticide active ingredients. 39 ‘ I Calendar Approach I 375 ddb50 post full bloom 1991 1993 1994 Figure 1. Theoretical pesticide use measured in alternate middle insecticide applications comparing plum curculio control strategies. I Calendar Approach I 375 ddb50 post full bloom 1991 1993 1994 Figure 2. Material cost per acre not including application costs, based on using Guthion 50 WP at 1.5 lb. per acre. CONCLUSIONS When we conceptualized this research we were looking for a degree day based threshold that could be part of a plum curculio management program. We needed to know when during the season the outcome from plum curculio oviposition changed from pre-harvest drop of the cheny to infested fruit at hanrest. This knowledge would allow growers to accept low levels of plum curculio damage before the threshold is reached and apply a control spray when the threshold is reached. A possible weakness to the threshold we established is the fact that this work was done in one region of Michigan. The sites used were located in Northwest Michigan where mean seasonal temperatures are cooler than in Southwest Michigan. Tart cheny phenological growth develops at different rates than plum curculio. However, the seasons in which this work was done did represent extremes in possible mean seasonal temperature levels, and therefore, the threshold developed should be appropriate at locations with different mean temperature levels. An improvement in he design of these experiments would be to locate a treatment site in Southwest Michigan and Northwest Michigan to test the effectiveness of the threshold at both locations. The threshold will be used in a management program that will include a scouting program and an environmental monitoring program. Further research is necessary to develop sampling techniques and economic damage thresholds for plum curculio on tart cherries. These are challenging areas for research because the 40 41 biology and behavior of plum curculio are poorly understood. Damage thresholds, a component of the scouting program, are difficult to establish on tart cherries because the price of chenies are usually not established until after the season is over and will fluctuate between $.05 and $.50 per pound from year to year. Despite the lack of scientifically derived scouting protocols and economic thresholds there should be widespread use by growers and consultants of the information gained from this research. Best-guess scouting protocols and action thresholds can be established by extension specialists and consultants for managing plum curculio. The grade standard that does not allow for any tolerance of larvae in the fruit at harvest is the driving force for the pest management program we currently use in cherries. Despite this regulation we have been able to greatly reduce insecticide use for the direct feeding insect pests such as plum curculio and cheny fruit fly. This is a result largely of developing pest management programs using best-guess methods for establishing scouting protocols and action thresholds. These techniques used in formal IPM programs by growers or consultants have allowed for significant reductions in pesticide use. Wrth the potential penalties of having infested fruit a harvest at any levels, further reductions in insecticide use will only come when the zero tolerance regulation is modified to allow a small percentage of infested fruit at harvest. APPENDIX 42 APPENDIX Table A1. Temperature data for harvest 1, 1991 11 1| 9." F.’ a g 9 9 =5. 3 at at g. i ‘2 ‘9. .. g g a: 9* 9.. 2 2 8 a :r a a 9.. a g a a 9 9 * :— e 9 S a 3' 3' '3 3 .0 g ‘3 3 ft 11 11 13: 3 5' 9 3' “ ° ° 55’ 3’ 9 o o M a 3 3’ a 2 - - - 3 3 o o O 3 u- 2 2 2 S‘ a a s S 8 ‘ E S “’ ° " 8 3 3 -n -n S 3 -n 11 E :5 5 5112/91 81 57 27 19 F6* 55 1456 1038 511 3191 84 56 28 20 1 28 20 54 1429 1019 5114/91 82 50 24 16 2 52 36 53 1401 999 511 5191 86 48 25 18 PF“ 3 77 54 52 1377 983 5/16191 81 55 26 18 4 103 72 51 1352 965 511 7191 54 48 9 2 5 1 12 74 50 1326 947 5/18/91 62 44 11 6 6 123 80 49 1317 945 5119191 70 35 14 10 7 137 90 48 1306 939 5120191 74 34 1 6 12 8 1 53 1 02 47 1292 929 5121191 76 44 18 13 9 171 115 46 1276 917 5122/91 79 56 26 18 10 197 133 45 1258 904 5123/91 81 62 30 22 1 1 226 1 54 44 1 233 886 5124191 78 64 29 21 1 2 255 1 75 43 1 203 865 5125191 78 57 26 1 8 1 3 281 1 93 42 1 1 74 844 5126191 79 59 27 1 9 1 4 308 212 41 1 1 49 826 5127/91 77 58 26 1 8 1 5 333 229 40 1 122 807 5128191 87 60 32 24 1 6 365 253 39 1 096 790 5129191 84 60 30 22 1 7 395 275 38 1 065 766 5130191 80 63 30 22 18 424 296 37 1035 744 5131191 75 59 25 17 19 449 313 36 1005 723 6/ 1191 83 59 29 21 20 478 334 35 980 706 612191 75 63 27 1 9 21 505 353 34 951 685 613191 79 59 27 19 22 532 372 33 924 666 6/4/91 74 47 1 9 1 2 23 551 384 32 897 647 615191 77 48 21 1 4 24 571 398 31 879 635 616191 80 48 22 1 5 25 593 41 3 30 858 621 617 191 79 49 22 1 5 26 61 5 427 29 836 606 618191 81 53 25 1 7 27 640 444 28 8 1 4 592 619/91 85 53 27 19 28 667 463 27 789 575 Table A1. (cont'd) -rr 'n g! In 1" g g 9 9 5 o o 9 3 a: g g re «2 ' ' c c t 9o. 9.. a a 3 z r 3 3 2. a a 5 5 gr 9 9'- .=_ 5 g 2 g a 3' '5. '5. E 5- ? a 2’. .. 3 3 3 a a re 3 U E E a > g g g 9 9 e o a a 3 a. o. - - - 3 3 ‘P 0 _o_ a E u- 2 9| 2 9 a a a 8 ,g “3.. N S g g. i; 8 3 3 11 11 < m 'n 11 a .. .. 6110191 79 67 31 23 29 698 486 26 762 556 6111191 82 55 27 19 30 725 505 25 731 533 61 12191 72 58 23 15 31 748 520 24 705 514 6113191 86 49 26 18 32 773 538 23 682 499 611 4191 87 65 34 26 33 807 564 22 656 481 6115191 77 63 28 20 34 835 584 21 622 455 6116191 79 62 29 21 35 864 604 20 594 435 6117191 82 53 26 18 36 889 622 19 566 415 611 8191 85 56 29 21 37 918 642 18 540 397 6119191 87 59 31 23 38 949 665 17 512 377 6120191 87 59 31 23 39 980 688 16 481 354 6121191 83 63 31 23 40 1011 711 15 450 331 6122191 74 54 22 14 41 1033 725 14 419 308 6123191 83 48 24 17 42 1056 742 13 397 294 6124191 78 55 25 1 7 43 1 081 758 1 2 373 277 6125191 85 51 26 18 44 1107 776 11 349 261 6/26191 93 61 35 27 45 1142 803 10 323 243 6127/91 93 75 42 34 46 1 1 84 837 9 288 21 6 6128/91 84 75 38 30 47 1221 867 8 246 182 6129191 93 67 38 30 48 1 259 897 7 208 1 52 6130191 77 63 28 20 49 1 287 91 7 6 1 70 1 22 711191 78 58 26 18 50 1313 935 5 142 102 712191 83 63 31 23 51 1344 958 4 116 84 713191 80 61 29 21 52 1373 978 3 85 61 714191 79 62 29 21 53 1 401 999 2 57 41 715/91 79 61 28 20 54 1429 1019 1 28 20 716191 88 65 35 27 H 1 *** 55 1 464 1045 * F8 is full bloom Table A1 . (cont'd) mm. a o.“ cacao .u @303 1. mm” % 0.4 2.2» .u mega; ..... mm" a 2 an: age; 1.. 9.332.925 gnome .u 93353.5 2.1» .u x... u a." as: >32. .6 2.2.0.09. Dana» 09.3 None 3 ." 08:3 033 wane h» v. 3.33:3 33.5383 2.3.3.3 33.5383 098 ** PF is petal fall WH1 is harvest 1 45 Table A2. Temperature data for Harvest 2, 1991 TI 11 99 .09 I a an: as: g 3 c? r? N ' ' o o 3. a: ‘3 :3 o o * a 2 g g a 0 j: g g 9. a. g a a 2 2 a s- s— 9 E g 3' 3* 3 5 s '2‘- ?- 6 -n -n 3 3 w u: '0 m 0 a on w w '0 u 3 8 3' > a n- 95. 9;. 9;. 2 2 o o a :1- D- D- o o o D 3 ° h 01 9 2 g g 3 3 3 3 E g N o 8 '11 N o I I I o G o 11 11 ~< W 11 "I1 N N N 5112191 81 57 27 19 PB“ 62 1657 1183 5113/91 84 56 28 20 1 28 20 61 1630 1164 5114/91 82 50 24 16 2 52 36 60 1602 1144 5115191 86 48 25 18 PF“r 3 77 54 59 1578 1128 5116191 81 55 26 18 4 103 72 58 1553 1110 5117191 54 48 9 2 5 112 74 57 1527 1092 5118/91 62 44 11 6 6 123 80 56 1518 1090 5119/91 70 35 14 10 7 137 90 55 1507 1084 5120/91 74 34 16 12 8 153 102 54 1493 1074 5121/91 76 44 18 13 9 171 115 53 1477 1062 5122/91 79 56 26 18 10 197 133 52 1459 1049 5123191 81 62 30 22 11 226 154 51 1434 1031 5124/91 78 64 29 21 12 255 175 50 1404 1010 5125/91 78 57 26 18 13 281 193 49 1375 989 5126191 79 59 27 19 14 308 212 48 1350 971 5127191 77 58 26 18 15 333 229 47 1323 952 5128191 87 60 32 24 16 365 253 46 1297 935 5129191 84 60 30 22 17 395 275 45 1266 911 5130191 80 63 30 22 18 424 296 44 1236 889 5131191 75 59 25 17 19 449 313 43 1206 868 611191 83 59 29 21 20 478 334 42 1181 851 612191 75 63 27 19 21 505 353 41 1152 830 613/91 79 59 27 19 22 532 372 40 1125 811 614191 74 47 19 12 23 551 384 39 1098 792 615191 77 48 21 14 24 571 398 38 1080 780 616191 80 48 22 15 25 593 413 37 1059 766 617191 79 49 22 15 26 615 427 36 1037 751 618191 81 53 25 17 27 640 444 35 1015 737 619191 85 53 27 19 28 667 463 34 990 720 611 0191 79 67 31 23 29 698 486 33 963 701 611 1191 82 55 27 19 30 725 505 32 932 678 6/ 12191 72 58 23 15 31 748 520 31 906 659 611 3191 86 49 26 18 32 773 538 30 883 644 6114191 87 65 34 26 33 807 564 29 857 626 611 5191 77 63 28 20 34 835 584 28 823 600 Table A2. (cont'd). 'H 11 F.’ F.’ c U I E ‘t *l .3 5. a o P " o o as. 2. ‘9- ‘5 o 0 ‘t 3 3 3 3 3 3 =3: C c 9.. a. a c r: g 3 3 er a- a a 9 9 o s-. s-. 2 s s 3' 5' 5 5 2 '2‘- s- 5 w m 3 3 w tn 3 w G 0 a: w W '0 U 3 3 o > 9- °- 95. 95. 2. 2 52 a 0 3 It 3 g 9. 9. 2 U D g h 0" 9— 2 h 01 O a (I 3. g E N ° :3 11 N o I I I G 0 0 TI 11 '< W '1" 'n N N N 611 6191 79 62 29 21 35 864 604 27 795 580 611 7191 82 53 26 1 8 36 889 622 26 767 560 6118191 85 56 29 21 37 918 642 25 741 542 6119191 87 59 31 23 38 949 665 24 713 522 6120191 87 59 31 23 39 980 688 23 682 499 6121191 83 63 31 23 40 1011 711 22 651 476 6122191 74 54 22 14 41 1033 725 21 620 453 6123191 83 48 24 17 42 1056 742 20 598 439 6124191 78 55 25 17 43 1081 758 19 574 422 6125191 85 51 26 18 44 1107 776 18 550 406 6126191 93 61 35 27 45 1 1 42 803 1 7 524 388 6127191 93 75 42 34 46 1184 837 16 489 361 6128191 84 75 38 30 47 1221 867 15 447 327 6129191 93 67 38 30 48 1259 897 14 409 297 6130191 77 63 28 20 49 1 287 91 7 1 3 371 267 711191 78 58 26 18 50 1313 935 12 343 247 712191 83 63 31 23 51 1344 958 11 317 229 713191 80 61 29 21 52 1373 978 10 286 206 714191 79 62 29 21 53 1401 999 9 258 186 715191 79 61 28 20 54 1429 1019 8 229 165 716191 88 65 35 27 55 1464 1045 7 201 145 717191 88 63 34 26 56 1497 1071 6 167 119 718191 80 61 29 21 57 1526 1091 5 133 93 719191 77 54 24 16 58 1549 1107 4 105 73 7110191 83 58 29 21 59 1578 1127 3 81 57 7111/91 84 57 29 21 60 1606 1148 2 53 37 7112/91 69 63 24 16 61 1630 1164 1 24 16 7113191 77 59 26 18 H2*** 62 1656 1182 * F8 is full bloom ** PF is petal fall “H2 is harvest 2 47 Table A3. Temperature data for Han/est 1, 1993 '11 11 F! F? 3 z 5’ 9 E E * *t '5'. E e e " g g at 9- 9- a. § E i i 9".“ 2 2 f; g g N N '- — 3' 3' 3 ‘5. 1, E at ”g: *5. 2’. 1. 3 3 2 a" = " ‘° ° 9 a" 9: '8 '3 a: a 3 3’ 2 2; - - - o g g. i g g- 3 E g g 5 :2» g 3 3 :1 'fl 2 3 :1 'n E E E 511 3193 59 30 9 5 FB* 66 1276 865 5114193 66 42 12 8 1 9 5 65 1267 861 511 5193 63 33 11 7 2 21 13 64 1255 853 5116193 58 27 8 4 3 31 19 63 1245 846 5117193 55 30 7 3 4 39 23 62 1237 842 5118193 48 30 3 0 5 46 26 61 1230 840 5119193 58 25 8 4 6 49 26 60 1227 840 5120193 63 27 11 7 7 57 30 59 1219 836 5121193 64 32 11 7 8 67 36 58 1208 829 5122193 74 32 16 12 9 78 43 57 1197 822 5123193 60 53 15 7 10 94 55 56 1181 810 5124193 63 42 1 1 7 PF“ 1 1 109 62 55 1 167 804 5125193 66 40 12 8 12 119 68 54 1156 797 5126193 61 39 10 6 13 131 76 53 1145 789 5127193 62 40 10 6 14 141 81 52 1135 784 5128193 65 34 12 8 15 151 87 51 1125 778 5129193 64 29 1 1 7 16 162 95 50 1 1 14 770 5130193 55 42 7 3 1 7 1 73 102 49 1 103 763 5131193 49 30 4 0 18 180 105 48 1096 760 611193 63 28 10 6 19 183 105 47 1092 760 612193 67 39 13 9 20 194 111 46 1082 754 613193 65 38 12 8 21 206 120 45 1069 746 614193 65 29 12 8 22 218 127 44 1058 738 615193 65 40 12 8 23 229 135 43 1046 730 616193 77 29 18 14 24 241 142 42 1035 723 617193 68 54 19 11 25 259 156 41 1017 709 618193 79 60 28 20 26 278 167 40 998 698 619193 72 57 23 15 27 305 187 39 970 678 6110193 77 50 22 14 28 328 201 38 948 664 6111193 83 45 22 16 29 350 215 37 926 650 6112193 84 52 26 18 30 372 231 36 904 634 6113193 89 53 29 21 31 398 250 35 878 615 6114193 78 55 25 17 32 427 270 34 849 595 611 5193 64 39 11 7 33 451 287 33 824 578 6116193 69 36 13 9 34 462 294 32 813 571 48 Table A3. (cont'd). 1| TI TI 9 m n;- E 9 9 E: o o 9 2f 3 5. E. ‘2 ‘9. c C at -* - 3 3 3 3 “t 3 3 9. a a 5 g g g 9* = c U E 5' -l -l '< < E g g .2 '° 8 o o a a .0 .< < < a 11 '11 3 13: 2' 9 3 " ° “ 5P 9 9 o > a a. 2 2 8 8 a a a e ‘2‘ é.“ a»: 9 5 5 s s 6' “ 5 2 ° " ° 3 3 3 'n 11 S 3 11 'n E E 5 6117193 70 54 20 12 35 475 303 31 800 562 6118193 68 54 19 11 36 495 315 30 780 550 6119193 61 56 17 9 37 514 326 29 761 539 6120193 72 59 24 16 38 531 335 28 745 530 6121193 77 55 24 16 39 555 351 27 721 515 6122193 81 50 24 16 40 579 367 26 697 499 6123193 86 55 29 21 41 602 382 25 674 483 6124193 90 56 31 23 42 631 403 24 645 462 6125193 76 59 26 18 43 662 426 23 614 439 6126193 80 56 26 1 8 44 687 443 22 588 422 6127193 75 50 21 13 45 713 461 21 562 404 6128193 73 50 20 12 46 734 474 20 542 391 6129193 77 42 1 8 1 4 47 754 486 1 9 522 379 6130193 78 52 23 15 48 771 499 18 504 366 711193 85 52 27 19 49 794 514 17 481 351 712193 76 60 26 18 50 821 533 16 455 332 713193 92 62 35 27 51 847 551 15 429 314 714193 94 65 37 29 52 881 577 14 394 288 715193 90 64 35 27 53 919 607 13 357 258 716193 85 64 33 25 54 954 634 12 322 231 717193 89 62 33 25 55 986 658 1 1 289 207 718193 81 64 30 22 56 1020 684 10 256 181 719193 81 65 31 23 57 1050 706 9 226 159 7110193 85 56 29 21 58 1081 729 8 195 136 7111193 78 58 26 18 59 1109 749 7 166 116 7112193 77 50 22 14 60 1135 767 6 140 98 7113193 80 48 22 15 61 1157 781 5 119 84 711 4193 80 50 23 15 62 1179 796 4 97 69 711 5193 79 45 20 1 5 63 1 202 81 1 3 74 54 711 6193 85 47 24 1 7 64 1 222 825 2 54 40 711 7193 86 58 30 22 65 1 245 843 1 30 22 7118193 68 62 23 15 H1 *** 66 1276 865 * F8 is full bloom ** PF is petal fall ”*H1 is harvest 1 49 Table A4. Temperature data for Harvest 2, 1993 11 1" § § 9 9 gin,» o o 9 ‘0' 3: L‘. E. 9. ‘2 3 c at - a 3 3 8 8 *3 3 3 9.. 2 a 5 5 9, g 9- s. s. g E a -1 -| < < S g a < N 8 or o a a 1, .< < < a 11 11 3 3 r." a = " ‘° ° 9 9: a" '3 3. g 9.9 § 5 3 g a a a g g _ a H n 9 3:: 's’ 3 3 .3 7.. § 8' ; a“; 2 8 o o 11 1| < u) 11 11 N N n 5113193 59 30 9 5 FB* 73 1447 986 5114193 66 42 12 8 1 9 5 72 1438 982 5115193 63 33 11 7 2 21 13 71 1426 974 5116193 58 27 8 4 3 31 19 70 1416 967 511 7193 55 30 7 3 4 39 23 69 1 408 963 5118193 48 30 3 0 5 46 26 68 1401 961 511 9193 58 25 8 4 6 49 26 67 1 398 961 5120193 63 27 1 1 7 7 57 30 66 1390 957 5121193 64 32 11 7 8 67 36 65 1380 950 5122193 74 32 16 1 2 9 78 43 64 1 369 943 5123193 60 53 1 5 7 10 94 55 63 1 353 931 5124193 63 42 1 1 7 PF" 1 1 109 62 62 1 338 925 5125193 66 40 12 8 12 119 68 61 1328 918 5126193 61 39 10 6 13 131 76 60 1316 910 5127193 62 40 10 6 14 141 81 59 1306 905 5128193 65 34 12 8 15 151 87 58 1296 899 5129193 64 29 1 1 7 1 6 162 95 57 1 285 891 5130193 55 42 7 3 1 7 1 73 102 56 1274 884 5131193 49 30 4 0 18 180 105 55 1267 882 611193 63 28 10 6 19 183 105 54 1263 882 612193 67 39 1 3 9 20 194 1 1 1 53 1253 875 613193 65 38 1 2 8 21 206 1 20 52 1 240 867 614193 65 29 1 2 8 22 21 8 1 27 51 1 229 859 615193 65 40 12 8 23 229 135 50 1217 852 616193 77 29 18 14 24 241 142 49 1206 844 617193 68 54 19 1 1 25 259 1 56 48 1 1 88 830 618193 79 60 28 20 26 278 1 67 47 1 1 69 81 9 619193 72 57 23 1 5 27 305 1 87 46 1 141 800 611 0193 77 50 22 1 4 28 328 201 45 1 1 1 9 785 6111193 83 45 22 16 29 350 215 44 1097 771 6112193 84 52 26 18 30 372 231 43 1075 755 6113193 89 53 29 21 31 398 250 42 1049 736 6114193 78 55 25 17 32 427 270 41 1020 716 6115193 64 39 11 7 33 451 287 40 995 699 611 6193 69 36 1 3 9 34 462 294 39 985 692 Table M. (cont'd). 11 11 9 W "I" g 3 9 9 5 o n 9’ 1t 1" g g 19. 10 ' ' c 1: 11: 9.. 9.. a g 8 § :13 3 3 c a a t: 1: o 3 3 1' 9- g a s 9, g - s s g E g. -1 -| < < 9 a g < N ‘9 Q a a .0 .< < < N 11 1| 3 3 E 2’ 5 " ° ° 8 9 8 3 a a w > n a -. -. -. -1 '1 a 8 3 g 9. D. O O O m m 5' H H -1 ” q '1 N «a 'H N a: :I: z 8 co 1» 11 11 < In 11 11 N N N 6117193 70 54 20 12 35 475 303 38 971 683 6118193 68 54 19 11 36 495 315 37 951 671 6/19/93 61 56 17 9 37 514 326 36 933 660 6120193 72 59 24 16 38 531 335 35 916 651 6121193 77 55 24 16 39 555 351 34 892 636 6122193 81 50 24 16 40 579 367 33 868 620 6123193 86 55 29 21 41 602 382 32 845 604 6124193 90 56 31 23 42 631 403 31 816 584 6/25/93 76 59 26 18 43 662 426 30 785 561 6126193 80 56 26 18 44 687 443 29 759 543 6127193 75 50 21 13 45 713 461 28 733 525 6128193 73 50 20 12 46 734 474 27 713 512 6129193 77 42 1 8 1 4 47 754 486 26 693 501 6130193 78 52 23 15 48 771 499 25 675 487 7/1/93 85 52 27 19 49 794 514 24 652 472 712193 76 60 26 18 50 821 533 23 626 453 713193 92 62 35 27 51 847 551 22 600 436 714193 94 65 37 29 52 881 577 21 565 409 715193 90 64 35 27 53 919 607 20 528 380 716193 85 64 33 25 54 954 634 19 493 353 717193 89 62 33 25 55 986 658 18 460 328 718193 81 64 30 22 56 1020 684 17 427 303 719193 81 65 31 23 57 1050 706 16 397 280 7110193 85 56 29 21 58 1081 729 15 366 258 711 1193 78 58 26 1 8 59 1 109 749 1 4 338 237 7112193 77 50 22 14 60 1135 767 13 312 219 7113193 80 48 22 15 61 1157 781 12 290 206 711 4193 80 50 23 1 5 62 1 1 79 796 1 1 268 190 711 5193 79 45 20 1 5 63 1 202 81 1 10 245 1 75 711 6193 85 47 24 17 64 1222 825 9 225 161 7117193 86 58 3O 22 65 1245 843 8 201 143 7118193 68 62 23 15 66 1276 865 7 171 121 7/1 9193 82 63 30 22 67 1299 880 6 148 106 7120/93 80 54 25 1 7 68 1329 902 5 1 18 84 7121193 79 46 21 15 69 1354 919 4 93 67 51 Table A4. (cont'd). mm“ % ca 5.68 _u U633 IN mm" u 3 an!» m @203 1» mm" u 3 9E» macaw 1” 95.3535 .358 _u 05.35933 nag» .u In" a 3 03» >32 mm 2.25.03 06qu 033 mama mo 1 08:5 033 meme 3 a 2:235: 423.6383 2.8.5:... 42552983 098 52 72 3 2 1374 934 70 71 15 17 20 20 24 28 44 48 60 80 84 80 87 7122/93 7123/93 7/24/93 37 52 1394 949 20 28 1419 966 72 1447 986 25 H2*** 73 33 64 7125/93 * F8 is full bloom ** PF is petal fall ***H2 is harvest 2 52 Table A5. Temperature data for Harvest 3, 1993 11 11 11 Q m g 3 8 8 5 o o 59 7‘ t 2. 5.“ e «9. " = c :11: 9~ 9~ 3 a s s 1 3 3 9.. a a c t: o a a a 2 2 3 .3. s— 9 S s 3' 3' '5 '5 1) E 3 3 '8 11 11 3 3 12 a = “ ° ° 93 5' 1' .3 ‘8 g a g > a a '01 -01 -n -1 q a O a 2 ° 0 D a Q .5 - '1 z 6’ 0 8 8 ” g g N 8 .8 11 N S :n a: :1: 8 o a 11 11 < In 11 11 a co 1» 5113193 59 30 9 5 FB* 79 1625 1116 5114193 66 42 12 8 1 9 5 78 1616 1112 5115193 63 33 1 1 7 2 21 13 77 1604 1 104 511 6193 58 27 8 4 3 31 19 76 1594 1097 5117193 55 30 7 3 4 39 23 75 1586 1093 5118193 48 30 3 0 5 46 26 74 1579 1091 5119193 58 25 8 4 6 49 26 73 1576 1091 5120193 63 27 1 1 7 7 57 30 72 1568 1087 5121193 64 32 11 7 8 67 36 71 1558 1080 5122193 74 32 16 12 9 78 43 70 1547 1073 5123193 60 53 15 7 10 94 55 69 1531 1061 5124193 63 42 11 7 PF“ 11 109 62 68 1516 1055 5125193 66 40 12 8 12 119 68 67 1506 1048 5126193 61 39 10 6 13 131 76 66 1494 1040 5127193 62 40 10 6 14 141 81 65 1484 1035 5128193 65 34 12 8 15 151 87 64 1474 1029 5129193 64 29 1 1 7 16 162 95 63 1463 1021 5130193 55 42 7 3 17 173 102 62 1452 1014 5131193 49 30 4 0 18 180 105 61 1445 1012 611193 63 28 10 6 19 183 105 60 1441 1012 612193 67 39 13 9 20 194 111 59 1431 1005 613193 65 38 12 8 21 206 120 58 1418 997 614193 65 29 12 8 22 218 127 57 1407 989 615193 65 40 1 2 8 23 229 1 35 56 1 395 982 616193 77 29 18 14 24 241 142 55 1384 974 617193 68 54 19 1 1 25 259 156 54 1366 960 618193 79 60 28 20 26 278 167 53 1347 949 619193 72 57 23 15 27 305 187 52 1319 930 611 0193 77 50 22 14 28 328 201 51 1297 915 6111193 83 45 22 16 29 350 215 50 1275 901 6112193 84 52 26 18 30 372 231 49 1253 885 6113193 89 53 29 21 31 398 250 48 1227 866 611 4193 78 55 25 1 7 32 427 270 47 1 1 98 846 611 5193 64 39 1 1 7 33 451 287 46 1 1 73 829 6116193 69 36 1 3 9 34 462 294 45 1 163 822 Table A5. (cont'd). 11 11 11 '0‘, u! 8 E 9 9 0:9 o 0 59 t 2,3 5. 2. ‘9. ‘2 3 C 11: 1 - a 3 a 0 a; 3 3 o a. a c c " ° 0 3 3 - 9- g a a 9 9 - s. s g: E g -l -l '< < E g, a < N a a a a .0 .< < < a 11 11 a 3 E’ 8 3 a “ “’ 5' 3' 2‘ a 'u e > a. a. 3 3 8 ° 0 8 a 2 2 2 U 0* § - H E 0 w a ” 5 g N 8 18 'H N 3 :n z: z: 8 a m 11 11 < I!) 11 11 a w u 611 7193 70 54 20 1 2 35 475 303 44 1 1 49 81 3 6118/93 68 54 19 11 36 495 315 43 1129 801 611 9193 61 56 17 9 37 514 326 42 1111 790 6120193 72 59 24 16 38 531 335 41 1094 781 6121193 77 55 24 16 39 555 351 40 1070 766 6122193 81 50 24 16 40 579 367 39 1046 750 6123193 86 55 29 21 41 602 382 38 1023 734 6124193 90 56 31 23 42 631 403 37 994 714 6125193 76 59 26 18 43 662 426 36 963 691 6126193 80 56 26 18 44 687 443 35 937 673 6127193 75 50 21 13 45 713 461 34 911 655 6128193 73 50 20 12 46 734 474 33 891 642 6129193 77 42 18 14 47 754 486 32 871 631 6130193 78 52 23 15 48 771 499 31 853 617 711 193 85 52 27 19 49 794 514 30 830 602 712193 76 60 26 18 50 821 533 29 804 583 713193 92 62 35 27 51 847 551 28 778 566 714193 94 65 37 29 52 881 577 27 743 539 715193 90 64 35 27 53 919 607 26 706 510 716193 85 64 33 25 54 954 634 25 671 483 717193 89 62 33 25 55 986 658 24 638 458 718193 81 64 30 22 56 1020 684 23 605 433 719193 81 65 31 23 57 1050 706 22 575 410 711 0193 85 56 29 21 58 1081 729 21 544 388 7111193 78 58 26 18 59 1109 749 20 516 367 7112193 77 50 22 14 60 1135 767 19 490 349 7113193 80 48 22 15 61 1157 781 18 468 336 711 4193 80 50 23 15 62 1 1 79 796 1 7 446 320 711 5193 79 45 20 1 5 63 1 202 81 1 16 423 305 711 6193 85 47 24 17 64 1222 825 15 403 291 711 7193 86 58 30 22 65 1245 843 14 379 273 7/1 8193 68 62 23 15 66 1276 865 13 349 251 711 9193 81.8 62.7 30.3 22.3 67 1299 880 12 326 236 7120193 79.8 54.2 25 17 68 1329 902 11 296 214 7121193 79.3 46.1 20.7 14.7 69 1354 919 10 271 197 Table A5. (cont'd). 11 11 F? P? 11 § 3 9 9 0:5 0 n 9’ 3‘ 't E. i ‘9. ‘2 ' ° 5 5 =11: 9'- 9* 2 a 3 3 3 a 3 9.. a a a a s s a :1 g 2 g g 3' 5' '5 a .21 3 =3 '5 1. 1. 5 5 9 1' 3 “ " ° 9: 9 1: .8 3 01 a g > 3 2 3' 3' '5" B a a (D 2 a g 0' '1 11 '1 U E E 3 8 ° 7 N 8 m 111 a 513* a a 11 11 ‘° "' I I I '< W 11 11 w u 1» 7122193 80. 3 43. 6 20 15.2 70 1374 934 9 250 182 7123193 84. 3 48. 2 24. 3 17.2 71 1394 949 8 230 167 7124193 80. 3 59. 7 28 20 72 1 41 9 966 7 206 1 50 7125193 86. 8 63. 7 33. 3 25. 3 73 1447 986 6 178 130 7126193 81.3 67.2 32.3 24.3 74 1480 1011 5 145 105 7127193 84. 3 63. 7 32 24 75 1512 1036 4 1 13 81 7128193 82. 8 67. 2 33 25 76 1544 1060 3 81 57 7129193 72. 3 57. 7 23 1 5 77 1 577 1085 2 48 32 7130193 80.3 52.7 24.5 16.5 78 1600 1100 1 25 17 7131193 84.3 49.2 24.8 17.2 H3” 79 1625 1116 * PE is full bloom ** PF is petal fall “*H3 is harvest 3 55 Table A6. Temperature data for Han/est 4, 1993 'l'l 'l'l '1" m g g 3 9 9 E o o 9 '3 3* 2’. i «2 e " = = =11: 9~ 9- 3 a 9 9 =1 3 3 9. a a 5 5 9 g 3 = = 9 E 3 -1 -1 '< < E’ g g '< '° 8 a a a 11 .0 .< < < a 11 11 3 3 9 9 =1 “ 3 3 9 9 9 E E 9 9 3 i 3 3 a“ a“ a 9 5 5 s 9 3' " E 9 3 3 3 8 3 3 11 11 E 3 11 11 E E E 5113193 59 30 9 5 FB* 86 1780 1219 5114193 66 42 12 8 1 9 5 85 1772 1214 5115193 63 33 11 7 2 21 13 84 1760 1206 5116193 58 27 8 4 3 31 19 83 1749 1200 5117193 55 30 7 3 4 39 23 82 1741 1 196 5118193 48 30 3 0 5 46 26 81 1735 1 193 5119193 58 25 8 4 6 49 26 80 1732 1193 5120193 63 27 1 1 7 7 57 30 79 1724 1 189 5121193 64 32 11 7 8 67 36 78 1713 1183 5122193 74 32 16 12 9 78 43 77 1 702 1 1 76 5123193 60 53 15 7 10 94 55 76 1686 1 164 5124193 63 42 1 1 7 PF“ 1 1 109 62 75 1672 1 157 5125193 66 40 12 8 12 119 68 74 1661 1151 5126193 61 39 10 6 13 131 76 73 1649 1143 5127193 62 40 10 6 14 141 81 72 1640 1137 5128193 65 34 12 8 15 151 87 71 1630 1131 5129193 64 29 11 7 16 162 95 70 1618 1124 5130193 55 42 7 3 17 173 102 69 1607 1117 5131193 49 30 4 0 18 180 105 68 1601 1114 611/93 63 28 10 6 19 183 105 67 1597 1114 612193 67 39 13 9 20 194 111 66 1587 1108 613193 65 38 12 8 21 206 120 65 1574 1099 614193 65 29 12 8 22 218 127 64 1562 1092 615/93 65 40 12 8 23 229 135 63 1551 1084 616193 77 29 18 14 24 241 142 62 1539 1077 617193 68 54 19 11 25 259 156 61 1522 1063 618193 79 60 28 20 26 278 167 60 1503 1052 619193 72 57 23 15 27 305 187 59 1475 1032 6110193 77 50 22 14 28 328 201 58 1452 1018 6111193 83 45 22 16 29 350 215 57 1431 1004 6112193 84 52 26 18 30 372 231 56 1409 987 6113193 89 53 29 21 31 398 250 55 1383 969 6114193 78 55 25 17 32 427 270 54 1354 948 6115193 64 39 11 7 33 451 287 53 1329 932 611 6193 69 36 13 9 34 462 294 52 1318 925 Table A6. (cont'd). 'fl 1| "'1 g m ,3, E 9 9 i o o 9 2 3 25.. 2. ‘9. ‘9. g 5 =11: a a 8 3 3 2 2 9. 9 g —. .1 E 3 9 g g 3 N 3 a m a a .0 .< < < 01 11 11 2 3 9 9 9 “ " ° 9 9 9 q .. 8 a 3 g 0- Q o o o a: m — , z 9 a a a 9 C E 3 S O 11 N g 3 3 3 11 11 3 In 11 11 E E E 6117193 70 54 20 12 35 475 303 51 1305 915 6118193 68 54 19 11 36 495 315 50 1285 903 6119193 61 56 17 9 37 514 326 49 1266 893 6120193 72 59 24 16 38 531 335 48 1250 884 6121193 77 55 24 16 39 555 351 47 1226 868 6122193 81 50 24 16 40 579 367 46 1202 852 6123193 86 55 29 21 41 602 382 45 1178 837 6124193 90 56 31 23 42 631 403 44 1150 816 6125193 76 59 26 18 43 662 426 43 1 1 19 793 6126193 80 56 26 18 44 687 443 42 1093 775 6127193 75 50 21 13 45 713 461 41 1067 757 6128193 73 50 20 12 46 734 474 40 1046 745 6129193 77 42 18 14 47 754 486 39 1027 733 6130193 78 52 23 15 48 771 499 38 1009 720 711193 85 52 27 19 49 794 514 37 986 705 712193 76 60 26 18 50 821 533 36 960 686 713193 92 62 35 27 51 847 551 35 934 668 714193 94 65 37 29 52 881 577 34 899 642 715193 90 64 35 27 53 919 607 33 862 612 716193 85 64 33 25 54 954 634 32 827 585 717193 89 62 33 25 55 986 658 31 794 560 718193 81 64 30 22 56 1020 684 30 761 535 719193 81 65 31 23 57 1050 706 29 730 513 7110193 85 56 29 21 58 1081 729 28 700 490 7111193 78 58 26 18 59 1109 749 27 671 470 7112193 77 50 22 14 60 1135 767 26 645 452 7113193 80 48 22 15 61 1157 781 25 624 438 7114193 80 50 23 15 62 1179 796 24 601 423 7115193 79 45 20 15 63 1202 811 23 579 408 7116193 85 47 24 17 64 1222 825 22 559 393 7117193 86 58 30 22 65 1245 843 21 535 376 7118193 68 62 23 15 66 1276 865 20 505 354 711 9193 82 63 30 22 67 1299 880 19 482 339 7120193 80 54 25 1 7 68 1329 902 1 8 452 31 7 7121193 79 46 21 15 69 1354 919 17 427 300 57 Table A6. (cont'd). 11 11 Q U I a a: 3k .3. E 9 9 9 n o -- o o E. 2. E '2 3 5 =11: 1 - 2 2 3 3 :3 3 3 9.. a g a a 9 9 a 9. 9 9 E 9 5' 3' 9 9 .. =- a 9 1. 1. v ‘< < < a a 9 9 3’ a 3 ” 9 9 9 'u 11 a > a a 9 9 9 9 g g n a a a a U 2’. 9, JA 3 b- 11 E g 3 3 3 :11 g 5 N a 11 N :I: :l: I 3 111 m 11 11 < 111 11 11 :- 3 .5 7122193 80 44 20 1 5 70 1 374 934 16 406 285 7123193 84 48 24 1 7 71 1 394 949 1 5 386 270 7124193 80 60 28 20 72 1 41 9 966 1 4 362 253 7125193 87 64 33 25 73 1447 986 13 334 233 7126193 81 67 32 24 74 1480 1011 12 300 207 7127193 84 64 32 24 75 1512 1036 11 268 183 7128193 83 67 33 25 76 1544 1060 10 236 159 7129193 72 58 23 15 77 1 577 1085 9 203 1 34 7130193 80 53 25 17 78 1600 1100 8 180 119 7131193 84 49 25 17 79 1625 1116 7 156 103 811193 82 65 32 24 80 1649 1133 6 131 86 812193 77 54 24 16 81 1681 1157 5 99 62 813193 75 52 21 13 82 1 705 1 1 73 4 75 46 814193 72 49 1 9 1 1 83 1 726 1 186 3 54 33 815193 77 46 19 1 3 84 1 745 1 197 2 36 22 816193 62 55 16 8 85 1764 1210 1 16 8 817193 80 49 23 1 5 H4*** 86 1 780 1 21 9 * F3 is full bloom ** PF is petal fall “*H4 is harvest 4 58 Table A7. Temperature data for Harvest 5, 1993 'H “H 9; u: '11 g E 9 9 3 o n 9 3" 3‘ 2. a. e '9. " g g :1: g f; 3 3 3 2 2 3 9 9 .. .. E 3 9 g g 5 ~ 8 111 a a a .u .< < < in 11 11 3 3 9 9 = " ° 3 9 9 9 3 3 9 9 § 5 E g a a a H H n 9 5 5 3 8 g :, S g g g g: 3 3 3 11 11 1< 111 11 11 01 01 01 5113193 59 30 9 5 FB* 93 1972 1356 5114193 66 42 12 8 1 9 5 92 1964 1351 5115193 63 33 11 7 2 21 13 91 1952 1343 511 6193 58 27 8 4 3 31 19 90 1941 1337 511 7193 55 30 7 3 4 39 23 89 3 1933 1333 5118193 48 30 3 0 5 46 26 88 1927 1330 5119193 58 25 8 4 6 49 26 87 1924 1330 5120193 63 27 11 7 7 57 30 86 1916 1326 5121193 64 32 11 7 8 67 36 85 1905 1320 5122193 74 32 16 12 9 78 43 84 1894 1313 5123193 60 53 15 7 10 94 55 83 1878 1301 5124193 63 42 1 1 7 PFM 1 1 109 62 82 1864 1 294 5125193 66 40 12 8 12 119 68 81 1853 1288 5126193 61 39 10 6 13 131 76 80 1841 1280 5127193 62 40 10 6 14 141 81 79 1832 1274 5128193 65 34 12 8 15 151 87 78 1822 1268 5129193 64 29 11 7 16 162 95 77 1810 1261 5130193 55 42 7 3 1 7 1 73 102 76 1 799 1 254 5131193 49 30 4 0 18 180 105 75 1793 1251 611193 63 28 10 6 19 183 105 74 1789 1251 612193 67 39 13 9 20 194 1 1 1 73 1 779 1245 613193 65 38 12 8 21 206 120 72 1766 1236 614/93 65 29 12 8 22 218 127 71 1754 1229 615193 65 40 12 8 23 229 135 70 1743 1221 616/93 77 29 18 14 24 241 142 69 1731 1213 617193 68 54 19 11 25 259 156 68 1714 1200 618193 79 60 28 20 26 278 167 67 1695 1189 619193 72 57 23 15 27 305 187 66 1667 1169 6110193 77 50 22 14 28 328 201 65 1644 1154 6111193 83 45 22 16 29 350 215 64 1623 1141 6112193 84 52 26 18 30 372 231 63 1601 1124 6113193 89 53 29 21 31 398 250 62 1575 1106 6114193 78 55 25 17 32 427 270 61 1546 1085 6115193 64 39 11 7 33 451 287 60 1521 1068 6116193 69 36 13 9 34 462 294 59 1510 1062 59 Table A7. (cont'd). 11 11 11 F" m .3? E 5’ 9 3 o n 5' 1': 2 E. 2. ‘2 ‘2 = '3 :11: 1 - a a 9 9 9 3 3 o a 9 1: c o 3 3 "0 0' a a 9 9 1 s a g E g. -1 -1 < < 9 g g < N m a a a .0 .< < < a 11 11 3 3 9 9 = " ° ° 9 9 9 '8 '8 a1 a a > n. a. "' "' “' :1 a. a. 3 B " " O 3 a 91 91 2 U n .5 O- H z 0 a1 a 3’ 5 g N 3 en 11 "3 8 :1: a: :c 8 m a 11 11 < w 11 11 on 01 on 6117/93 70 54 20 12 35 475 303 58 1497 1052 6118193 68 54 19 11 36 495 315 57 1477 1040 6119/93 61 56 17 9 37 514 326 56 1458 1030 6120193 72 59 24 16 38 531 335 55 1442 1021 6121193 77 55 24 16 39 555 351 54 1418 1005 6122193 81 50 24 16 40 579 367 53 1394 989 6123193 86 55 29 21 41 602 382 52 1370 973 6124193 90 56 31 23 42 631 403 51 1342 953 6125193 76 59 26 18 43 662 426 50 1311 930 6126193 80 56 26 18 44 687 443 49 1285 912 6127193 75 50 21 13 45 713 461 48 1259 894 6128193 73 50 20 12 46 734 474 47 1238 881 6129193 77 42 18 14 47 754 486 46 1219 870 6130193 78 52 23 15 48 771 499 45 1201 856 711193 85 52 27 19 49 794 514 44 1178 841 712193 76 60 26 18 50 821 533 43 1152 823 7I3193 92 62 35 27 51 847 551 42 1126 805 714193 94 65 37 29 52 881 577 41 1091 778 715193 90 64 35 27 53 919 607 40 1054 749 716193 85 64 33 25 54 954 634 39 1019 722 717193 89 62 33 25 55 986 658 38 986 697 718193 81 64 30 22 56 1020 684 37 953 672 719193 81 65 31 23 57 1050 706 36 922 650 711 0193 85 56 29 21 58 1081 729 35 892 627 7111193 78 58 26 18 59 1109 749 34 863 606 7/1 2193 77 50 22 1 4 60 1 1 35 767 33 837 588 711 3193 80 48 22 1 5 61 1 1 57 781 32 81 6 575 7114193 80 50 23 1 5 62 1 1 79 796 31 793 560 7115193 79 45 20 15 63 1202 811 30 771 545 7116193 85 47 24 17 64 1222 825 29 751 530 7117193 86 58 30 22 65 1245 843 28 727 513 7118193 68 62 23 15 66 1276 865 27 697 491 7/1 9193 82 63 30 22 67 1 299 880 26 674 476 7120193 80 54 25 1 7 68 1329 902 25 644 453 7121193 79 46 21 15 69 1354 919 24 619 436 Table A7. (cont'd). 11 11 11 Q m g S 9 9 a o n 9' 3 3 g. E. '2 ‘9. .. g g 11: 9* 9.. a a a a 3 2 9 9 3 a a 9.. a g a a g: g! - s a g E g -1 -1 < < E g g < N m w a a 'u .< < < a 11 11 13: 3 3' 3’ 3 ° ° ° 5' 3’ 5' a» a a a g 3’ a. ‘3' - - - ‘ “ ¢ *3 o 3 a. 3 2 2 9. U 3 3 .5 3 -°- '1 E s m «o a m 5 5 N a 11 N :1: :1: :1: 8 cu m 11 11 < 111 11 11 an on 01 7122193 80 44 20 1 5 70 1 374 934 23 598 422 7123193 84 48 24 1 7 71 1 394 949 22 578 407 7124193 80 60 28 20 72 1419 966 21 554 389 7125193 87 64 33 25 73 1447 986 20 526 369 7126193 81 67 32 24 74 1 480 1 01 1 1 9 492 344 7127193 84 64 32 24 75 1 51 2 1036 1 8 460 320 7128193 83 67 33 25 76 1 544 1060 1 7 428 296 7129193 72 58 23 1 5 77 1 577 1085 1 6 395 271 7130193 80 53 25 1 7 78 1 600 1 100 1 5 372 256 7131193 84 49 25 1 7 79 1625 1 1 16 14 348 239 811193 82 65 32 24 80 1649 1 1 33 1 3 323 222 812193 77 54 24 16 81 1681 1157 12 291 199 813193 75 52 21 1 3 82 1 705 1 1 73 1 1 267 183 814193 72 49 19 1 1 83 1 726 1 186 10 246 1 70 815/93 77 46 19 13 84 1 745 1 197 9 228 1 59 816193 62 55 16 8 85 1 764 1210 8 208 145 817193 80 49 23 1 5 86 1 780 121 9 7 1 92 137 818193 80 49 23 1 5 87 1 803 1 234 6 1 69 1 22 819193 80 53 25 1 7 88 1 826 1 249 5 1 47 1 07 811 0193 83 61 30 22 89 1 850 1 266 4 1 22 90 811 1193 90 59 33 25 90 1 880 1 288 3 92 68 8112193 90 54 3O 22 91 1913 1312 2 59 43 811 3193 88 55 30 22 92 1 943 1 334 1 30 22 811 4193 85 6O 30 22 H5” 93 1 972 1 356 * FB is full bloom ** PF is petal fall “*H5 is harvest 5 Table A8. Temperature data for Bardenhagen farm 61 9 .3. 9. g 9 9. :3 3 3’ 3 3 9 9 3 3 U U 9 9 9 9 3 3 W a: a: a: 8 8 m (D (D TI TI 5125194 65 44 8 5126/94 53 34 2 2 5127/94 60 27 5 7 5128194 73 43 12 18 5129194 75 51 13 31 5130194 83 60 22 53 5131194 75 52 13 66 611194 57 38 3 69 612194 64 33 7 76 613194 71 30 10 87 614194 75 35 13 99 615/94 81 45 16 115 616194 71 49 11 126 617194 65 45 7 133 618194 66 35 8 141 619194 72 33 1 1 152 6110194 79 37 15 166 611 1194 77 44 14 180 6112194 77 51 14 194 611 3194 64 48 7 201 6114194 81 45 15 216 6115194 92 72 32 248 6116194 90 68 29 277 6117194 93 61 27 304 6118194 85 57 21 325 611 9194 78 53 16 341 6120194 82 61 22 363 6121194 79 51 15 378 6122194 81 49 16 393 6123194 70 51 10 404 6124194 62 55 8 412 6125194 71 50 10 422 Full Bloom 80% Petal Fall Table A8. (cont'd). 62 9 3 2.. g 9 9. 3 3 3 3 3 3 3 C C CD CD 3 3 o o g 5' 9 9 w w 0 9. 9. 1’1 E. 2 3' 8 m CD CD TI 1" 6126194 81 47 16 438 6127194 82 47 16 454 6128194 86 56 21 475 6129194 60 52 6 481 6130194 68 49 9 490 711194 79 52 16 506 712194 69 45 10 516 713194 80 43 15 531 714194 78 58 18 549 715194 78 59 18 568 716194 83 61 22 590 717194 81 63 22 612 718194 80 65 23 634 719194 72 51 1 1 646 7110194 71 45 11 656 7111194 77 42 13 670 7112194 79 56 18 687 711 3194 69 47 9 697 7114194 64 53 9 706 711 5194 74 53 1 3 71 9 7116194 77 53 15 734 7/1 7194 68 55 1 1 745 7/ 18194 77 52 14 759 7/1 9194 79 61 20 780 7120194 76 65 21 800 7121194 83 62 22 823 7122194 72 60 16 838 7123194 79 59 1 9 857 7124194 75 56 1 5 873 7125194 74 53 14 886 7126194 69 48 9 896 7127194 68 48 9 905 Table A8. (cont'd). 9 3 .9. g g 2. 3 3’ 3’ 3 3 a a C C CD CD 3 3 U 0 a: a 3 g a 3 w w 3 3 s 3 3' rn CD CD '71 TI 7128/94 73 45 1 1 916 7129194 76 51 13 929 7130194 81 57 19 949 7131194 81 62 22 970 811194 72 58 15 985 812194 75 51 13 998 813194 78 50 14 1012 814194 65 52 8 1021 815194 67 44 9 1029 816/94 69 41 9 1039 817194 74 47 12 1051 818194 63 49 6 1057 819194 63 47 7 1064 8110194 69 41 10 1073 8111194 70 49 10 1083 8112194 72 47 11 1095 811 3194 74 51 1 3 1 107 811 4194 62 52 7 1 1 1 4 811 5194 69 51 1 0 1 1 24 Table A9. Temperature data for Sun Blossom farm 64 2 3 5 3 < 0 3 3 9 5’ -° -' In (D 3 3 a a C C on a: 3 3 U U 3 3 c, a 3; 3 3' 2. : 2:: 8 8 m 0 CD TI 11 5123194 78 42 14 5124194 78 44 14 14 5125194 67 47 9 23 5126194 51 38 1 23 5127194 63 27 6 30 5128194 78 45 14 44 5129194 75 50 13 56 5130194 85 60 23 79 5131194 77 51 14 93 611194 55 39 3 96 612/94 63 36 7 102 613194 71 32 1 1 1 13 614194 81 38 15 128 615194 80 42 15 143 616194 73 50 1 1 155 617194 64 49 7 162 618194 63 35 7 168 619194 73 33 12 180 6110194 79 39 15 194 6111194 81 43 16 210 6112194 81 53 17 227 6113194 81 47 16 243 6114194 83 48 16 259 6115194 96 74 35 294 6116194 95 72 34 328 6117194 96 60 28 356 6118194 106 60 33 389 6119194 82 57 20 408 6120194 88 56 22 430 6121194 84 51 18 448 Full Bloom Petal Fall Table A9. (cont'd). 2 3 E a 3 g 5 e: 5' 5’ 9 §' §' 2 e c c 8 3 3 3 9 9 a a z 3 3 a 3 3 8 8 "I 0 fl Tl "l'l 6122194 85 50 17 465 6123194 73 54 13 479 6124194 63 56 9 488 6125194 72 52 12 500 6126194 82 48 16 517 6127194 84 52 18 534 6128194 86 58 22 556 6129194 64 55 10 566 6130194 74 49 12 578 711194 84 51 18 596 712194 70 48 10 606 713194 82 44 16 622 714194 80 60 20 642 715194 87 64 25 667 716194 89 64 27 694 717194 87 64 25 719 718194 86 67 27 746 719194 76 53 14 760 7110194 76 47 13 773 711 1194 80 42 15 788 7112194 84 59 21 810 7/ 13194 71 46 10 820 711 4194 69 55 12 832 7115194 77 55 16 848 711 6194 76 56 16 864 7117194 73 56 14 879 711 8194 82 53 17 896 7119194 87 62 25 921 7120194 73 69 21 942 7121194 87 64 25 967 Table A9. (cont'd). o C 3 C a? a. 5 3 g 5': 5° 9 9 _. —. u a: 5 3 3 3 C C a a 3 3 9 E 1: 1: 2’ 9 a s a 8 8 a. 3 a 8 8 f" CD CD 1| '11 7122/94 76 62 19 986 7123194 84 60 22 1008 7/24/94 79 56 18 1026 7125/94 78 53 15 1042 7I26/94 71 50 1 1 1052 7l27l94 70 48 10 1062 7/28194 74 47 12 1075 7/29/94 80 56 18 1093 7/30/94 83 57 20 1 1 13 7/31l94 83 62 22 1 135 811/94 71 58 14 1 149 812194 82 51 16 1 166 813/94 67 53 10 1176 8/4/94 67 53 10 1 186 8/5/94 71 46 1 1 1 197 8/6/94 78 43 14 121 1 817/94 76 47 13 1224 8/8/94 66 51 8 1232 819194 64 48 8 1240 8/10/94 75 44 7 1247 8/1 1I94 74 44 12 1260 8112/94 75 56 12 1272 ~ 8/13/94 80 49 15 1287 8/14/94 80 63 15 1302 8/15/94 75 47 12 1315 Table A10. Temperature data for Laubach farm 67 O C 3 5 2'; 3 g e: 3 9 9 3 3 ‘2 '2 c c 2 s 3 a U E 3 3 3 3 U a a 0 Q 2. 3 2:: 8 8 m 0 a “II TI 5123194 84 43 1 7 5124194 77 49 14 14 5125194 73 47 12 25 5126/94 53 41 2 27 5127194 64 27 7 34 5128194 78 44 14 48 5129194 75 58 17 64 5130194 85 60 23 87 5131194 81 62 22 108 611194 61 40 6 114 612194 65 34 8 121 613194 74 33 12 133 614194 81 40 16 149 615194 86 46 18 167 616194 73 47 12 178 617194 70 47 10 188 618194 71 37 11 199 619194 72 34 11 210 6110194 82 42 16 226 6111194 82 46 16 242 6112194 81 52 17 258 6113194 66 58 12 270 6114194 80 48 15 285 6115194 95 75 35 320 6116194 96 72 34 354 6117194 97 65 31 385 6/1 8194 94 62 28 413 6119194 89 55 22 435 6120194 82 61 22 457 6121194 87 59 23 480 6122194 88 52 20 500 6123194 75 58 17 516 6124194 63 58 11 527 Full Bloom 80% Petal Fall Table A10. (cont'd). 2 3 E. g. g G e: 3 9 9 3 3 e e = = a a 3 3 2 E a a 3 3 o 3 3 a g a 8 8 I11 0 Q “'1 TI 6125194 80 55 18 544 6126194 90 52 21 565 6127194 83 51 17 582 6128194 86 60 23 605 6129194 61 55 8 613 6130194 72 50 11] 624 711194 84 56 20 644 712194 78 50 14 658 713194 91 46 21 679 714194 84 60 22 701 715194 88 62 25 726 716194 80 65 23 748 717194 87 64 26 774 718194 83 67 25 799 719194 77 60 19 817 7110194 75 48 13 830 7111194 78 45 14 844 7112194 85 64 25 868 7113194 79 46 15 883 711 4194 69 53 1 1 894 7115194 80 59 20 913 7116194 85 57 21 934 7117194 71 60 16 950 7118194 83 55 19 969 7119194 87 63 25 994 7120194 83 69 26 1020 7121194 83 61 22 1042 7122194 72 60 16 1058 7123194 80 59 20 1077 7124194 75 56 16 1093 7125194 75 53 14 1107 7126194 74 52 1 3 1 120 712 7194 70 48 1 0 1 1 30 69 Table A10. (cont'd). O C a C r. :2. 3 3 z 3 5' 9 5’ -° -' IC D a 2 a a Q Q a a S’ 9 U 3 '3 3 3 N 9 a a a 3 8 "I Q Q 'I'I '11 7/23/94 74 47 12 1142 7/29/94 30 56 13 1160 7/30/94 33 57 20 1130 7/31/94 33 62 22 1202 3/1/94 71 53 14 1217 3/2/94 32 51 16 1233 6/3/94 67 53 10 1243 3/4/94 67 53 10 1254 375/94 71 46 11 1264 3/6/94 73 43 14 1273 3/7/94 76 47 13 1291 3/3/94 66 51 3 1299 3/9/94 64 43 7 1306 3/10/94 75 44 12 1319 3/11/94 74 44 12 1331 3/12/94 75 56 15 1346 3/13/94 80 49 15 1361 3/14/94 30 63 22 1333 8115194 75 47 12 1395 BIBLIOGRAPHY BIBLIOGRAPHY Armstrong T. 1958. Life-history and ecology of the plum curculio, Conctrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), in the Niagara Peninsula, Ontario. Canadian Ent. 90: 8-17. Butkewich S. L., R. J. Prokopy & T. A. Green. 1987. Discrimination of occupied host fruit by plum curculio females (Coleoptera: Curculionidae). J. Chem. Ecol. 3(8): 1833-1841. Chouinard G., C. Vincent, S. B. Hill & B. Panneton. 1992a. Cyclic behavior of plum curculio, Conctrachelus nenuphar (Herbst) (coleoptera: Curculionidae), within caged dwarf apple trees in Spring. J. Inst. Behavior. 5(3):385-394. Chouinard G., S. B. Hill, C. Vincent & N. N. Barthakur. 1992b. Border-row sprays for control of the plum curculio in apple orchards: Behavioral study. J. Econ. Entomol. 85(4): 1307-1317. Cook A. J. 1890. Fighting the plum curculio. Mich. Exp. Station Bull. NO. 39. pp. 3-8. Cushman R. A., 1916. Thersilochus conotracheli, a parasite of the plum curculio. J. Agric. Res. 6(22): 847-855. Fluke C. L. & D. A. Dever. 1954. Soil application of insecticides to control plum curculio. J. Econ. Entomol. 47(6):1115—1117. Howett A. J. 1993. Common Tree Fruit Pests. Michigan State University NCR 63. October 1993. pp. 3538. Johnson J. W. & M Herr. 1995. Apple Insect Scouting Manual. Great Lakes Publishing, Sparta Ml. pp. 10. Lafleur G., S. B. Hill 81 C. Vincent. 1987. Fall migration, hibernation site selection, and associated winter mortality of plum curculio (Coleoptera: Curculionidae) in a Quebec apple orchard. J. Econ. Entomol. 80(6): 1152-1172. Lafleur G. & S. B. Hill. 1987. Spring migration, within-orchard dispersal, and apple-tree preference of plum curculio (Coleoptera: Curculionidae) in Southern Quebec. J. Econ. Entomol. 80(6): 173-1 187. 70 71 Le Blanc, J. P. R., S. B. Hill & R. O. Paradis. 1984. Ovipostion in scout-apples by plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), and its relationship to subsequent damage. Environ. Entomol. 13:286-291. Levine E. & F. R. Hall. 1978. Pectinases and cellulases from plum curculio Ian/ae: Possible causes of apple and plum fruit abscission. Ent. Exp & Appl. 23: 259-268. Ned. Entomol. Ver. Amsterdam. Levine E. & F. R. Hall. 1977. Effect of feeding and oviposition by the plum curculio on apple and plum fruit abscission. J. Econ. Entomol. 70(5): 603-607. Mampe C. D. & H. H. Neunzig. 1967. The biology, parasitism, and population sampling of the plum curculio on blueberry in North Carolina. J. Econ. Entomol. 60(3): 807- 812. Owens E. D., K. I. Hauschild, G. L. Hubbell & R. J. Prokopy. 1982. Diurnal behavior of plum curculio (Coleoptera: Curculionidae) adults within host trees in nature. Ann. Entomol. Soc. Am. 75: 357-362. Prokopy R. J., G. Galarza, & P. L. Phelan. 1993. Monitoring plum curculio in orchards: new hope for a more effective method. Proceedings of the Massachusetts Fruit Growers Association 1993. pp.70-76. Racette G., G. Chouinard, S. B. Hill & C. Vincent. 1991. Activity of adult plum curculio (Coleoptera: Curculionidae) on apple trees in Spring. J. Econ. Entomol. 84(6): 1827-1832. Racette G., S. B. Hill & C. Vincent. 1990. Actographs for recording daily activity of plum curculio (Coleoptera: Curculionidae). J. Econ. Entomol. 83(6): 2385-2392. Snapp O. 1. 1957. Control of the plum curculio with soil insecticides. J. Econ. Entomol. 50(4): 457-459. Snapp O. l. 1960. Soil treatments in lieu of spraying for plum curculio control in peach orchards. J. Econ. Entomol. 53(3): 439-441. Tedders W. L., D. J. Weaver, E. J. Wehunt & C. R. Gentry. 1982. Bioassay of Metarhizium anisopliae, Beauven'a bassiana, and Neoaplectana carpocapsae against larvae of the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae). Environ. Entomol. 1 1: 901-904 (1982). Tukey, H. B. 8. J. 0. Young. 1939. Histological study of the developing fruit of the sour cherry. Bot. Gaz. 100:723-749. USDA 1941. United States standards for grades of red sour cherries for manufacture. April 20, 1941. 72 Weed C. M. 1889. Experiments in preventing the injuries of the plum curculio Conctrachelus nenuphar) 2nd of series. Bulletin of the Ohio Agricultural Experiment Station. 1889:133-143. Weed C. M. 1890. Experiments in preventing the injuries of the plum curculio (Conctrachelus nenuphar) 3rd of series. Bulletin of the Ohio Agricultural Experiment Station. 3(8): 225-228.