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ABSTRACT

CHARACTERIZATION OF TRANSIENT VIBRATIONS

IN MECHANICAL SYSTEMS: TIME-FREQUENCY

LOCALIZATION WITH WAVELETS AND STFT

By

Taner Onsay

Linear timefrequency localization techniques are utilized to study transient

vibration characteristics of mechanical systems. The advantages, limitations and

the conceptual similarities of the short-time Fourier (STFT), Gabor and Wavelet

transforms are investigated. Particular attention is given to the application of

recently-developed mathematical concepts regarding wavelets, frames and multi-

resolution analysis.

In the first part, the effectiveness of the wavelet transform in the analysis

of transient wave propagation is explored. The time-scale representations gener-

ated by the wavelet transform are utilized to characterize the dynamic behavior

of different wavebearing media and the time-evolution of the spectral components

of transient waves. The propagation, reflection and scattering of a transient wave-

form in a dispersive medium are given particular attention due to the similar-

ity in the fundamental properties of the physical phenomena and the analysis

tool. As an alternative, a space-wavenumber representation is introduced. The

wavelet transform is correlated with the group properties of a dispersed wave-

form. The self-adjusting window structure of the wavelet transform is exploited

during the analysis of different wave-modes in a wave-guide. In applications, the

time-evolution of the complex interference patterns in finite systems are investi-

gated. An interesting periodic pulse reconstitution phenomenon is uncovered on

a uniform single-span beam.
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In the second part, the convolution integral is replaced by an efficient syn—

thesis scheme by using multi-resolution and wavelet frame concepts. The wavelet

response function of a linear system is introduced. The transient vibration re-

sponse of a proportionally-damped wide-band system is constructed by adding

together the contributions coming from different resolution levels. The proposed

method automatically adjusts the time-frequency resolution at each level and pre-

vents time-domain aliasing problems associated with DFT schemes. In the appli-

cations, the transient vibration response of a finite beam is constructed by using

a multi-voice Morlet wavelet frame. The effectiveness of the proposed technique is

compared with the performance of the classical discrete Fourier transform (DFT)

method. The study is concluded with a comprehensive discussion of the use of

different wavelet basis, orthonormality and frames.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives

_ Over the last century, the Fourier transform has demonstrated an un~

matched compatibility and efficiency in the analysis of stationary periodic signals.

In the meantime, ongoing progress in signal processing and information theory

has introduced new time-frequency representation techniques for the analysis of

nonstationary transient signals [29,69,116]. In particular, recently there have been

both intense research activity and major developments in the mathematical theory

of wavelets [14,24,36,43,95]. It is the objective of this thesis to built upon these

recent developments and explore their aplicability in mechanical sciences.

The motivation for this study comes from the need to have a better under-

standing and more accurate prediction of complex transient vibration response of

vibro-acoustic systems. The analysis of transient vibration signals may be under-

taken for different purposes, such as machine monitoring, fault detection, system

identification and active control. A transient vibration or acoustic signal gener-

ated by a physical system may carry substantial amount of information about the

governing dynamic phenomena. Therefore, during the analysis, the major task

is the extraction and interpretation of the relevant information. On the other

hand, an accurate prediction of a transient response of a system can help with

the design and performance of engineering structures and machinery components.

Hence there are two main objectives in this study. The first is the incorporation

of the wavelet transform to the analysis of transient wave propagation in disper-

sive and non-dispersive mediums, and the second is to achieve a more eficient

and accurate synthesis scheme for prediction of transient vibration response of lin-

ear time-invariant systems by using spectral-partitioning and frame-decomposition

concepts.



1.2 fiansient Vibration Analysis of Mechanical Systems

For almost two centuries, Fourier analysis has been used as a major math-

ematical tool in the study of vibro-acoustic systems. Since the eigenfunctions

ofthe derivative operator are complex exponentials ( d(e‘“’"‘)/dt = iwn em“ ),

the solution of the most fundamental differential equations are given as a linear

combination of harmonic functions, in terms of sines and cosines. The nonlocal

characteristics of the sine-cosine basis makes Fourier transform a one—dimensional

analysis tool, such that the information contained in a signal is represented either

in time or frequency domains, but not simultanously in both.

In addition to the Fourier transform, the analysis of vibro—acoustic sys-

tems has been carried out by employing other statistical measures and transform

techniques, such as autocorrelation, cross-correlational, cross-spectrum, cepstrum,

coherence, cross-bispectral analysis and Hilbert transform. Although these tech—

niques and the Fourier transform have proved to be very effective tools in the

analysis of stationary periodic signals, in essence none of them are designed to

give local spectral representations. Therefore, a different analysis tool is needed

to study time evolution of the spectrum in nonstationary signals.

Practically, a signal is refered to as nonstationary when the statistical char-

acteristics of the signal depend on the time interval that is being considered. Our

daily lives are full of examples of nonstationary transient signals, and there are

particular ones that are generated by some vibro-acoustic phenomena. A piece

of chalk squeaking on a blackboard, the thunder following a flash of lightning, an

automobile passing over bumps, the vibrations of an airplane during touchdown,

arrhythmic heart beat of a patient and the sound generated from our speech are

all examples of physical processes that generate some form of nonstationary sig-

nal. In particular, mechanical systems are very rich sources of transient processes,

such as the startup of an engine, meshing between worn gears, a shaft rotating in

a damaged bearing, a piston slapping on a cylinder wall, a tool chattering during
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a cutting operation, ignition and burning of fuel, onset of cavitation, blade—vortex

interactions and impact between loose components. These processes are all ca-

pable of generating some form of transient signal that carries information about

the characteristics of the governing physical phenomena. The property that is

common to all of the above transient vibration phenomena is the time dependent

nature of the information transmitted to the outside world.

1.3 Time-Frequency and Time-Scale Representations

In nonstationary signals, the time evolution of the spectrum is an impor-

tant part of the information carried by the signal. A classical example is a musical

score, where the notes on each line (or space) define the local musical spectrum

and the type of note represents the duration (count). When notes or chords on

each scale are played successively over time then the resulting (synthesized) signal

is interpreted by the human ear as a harmonious melody. Similar to a musical

score, the entire information transmitted from a vibrating machine component

can be broken down into smaller pieces and represented by time—frequency infor-

mation cells to ease the interpretation of the governing phenomena. As a result,

the original one-dimensional signal is transformed into a two-dimensional time-

frequency representation (TFR). Alternatively, if the signal is space dependent,

then the transformation results in a space-wavenumber representation (SWR).

A time-frequency representation reveals the temporal localization of a sig-

nal’s spectral components. Different mathematical methods have been developed

to generate a TFR from a nonstationary signal. A comprehensive list of the

existing TFR techniques can be found in the seperate reviews by Cohen [29]

and Hlawatsch and Boudreaux—Bartels [69]. The classification of TFRs is usu-

ally made according to linear, quadratic and nonlinear-nonquadratic properties.

The group of linear TFRs includes Gabor, STFT and wavelet transforms. Some

of the well-known quadratic TFRs are the ambiguity function, Bertrand, Born-

Jordan, Choi-Williams, Wigner-Ville and Rihaczek distributions. As an example
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of nonlinear-nonquadratic TFRs, radially-Gaussian and Cohen’s nonnegative dis-

tributions can be listed. The definitions and the properties of these TFRs are

given in [29,69].

In this study, attention is focused on the linear time-frequency represen-

tations, and in particular to the application of STFT and wavelet transforms

to transient wave propagation phenomena. Some of the linear and quadratic

time-frequency representations have been already used in the analysis of tran-

sient vibration signals. For example, Hodges et a1. [70] applied the Short-Time

Fourier TYansform (STFT) to the analysis of transient vibrations in cylindrical

shells. In an analytical study, Wahl and Bolton [131] applied Wigner Distribu-

tion (WD) to the identification of dispersive and non-dispersive waves in struc-

tures. Both of these time-frequency representation techniques have well-known

short-comings. STFT has a time-frequency resolution problem. The uncertainty

principle, AgAw 2 1/2 , imposes a trade off between the time and the frequency

resolutions [14,23,29,42,60,69,100]. As demonstrated by the examples given in

this study, the constant window structure employed by the STFT is not capa-

ble of providing sufficient resolution over a wide spectral range. On the other

hand, Wigner distribution, due to its quadratic structure, generates cross terms

that make the interpretation of the associated physical phenomena quite difficult

and may require further processing to yield valuable information [29,69,131]. In

comparison to these techniques, the wavelet transform, endowed with the linearity

and the self-adjusting window structure, may prove to be a more versatile and

effective tool for the analysis of transient vibration signals in certain applications

[36,51,95,104,105]. Particularly in the analysis of transient wave propagation in a

dispersive medium, the physical phenomena and the analysis tool both have simi-

lar fundamental properties. Therefore, the wavelet transform is expected to yield

an effective representation for the spectral evolution of the wave components both

in time and space coordinates [104].



1.4 Literature on Wavelets, STFT and Gabor Transform

In recent years, considerable developments have been achieved on concepts

and theories related to STFT, wavelets, frames and multi-resolution analysis.

Since the antecedents of the present linear time-frequency representation tech-

niques date back to the beginning of the 18th century, a complete historical ac-

count of the subject is beyond the scope of this study. Therefore, in the following,

only some of the selected references will be reviewed to relate the present work

to its antecedents. More detailed historical review of the subject and additional

references can be found in [14,43,69,94,96,116].

The beginning of the research on harmonic analysis dates back to 1807,

when Fourier solved the heat equation by representing a function as a sum of

weighted sine-cosine components. Since then, the Fourier transform has developed

into a powerfull mathematical tool that is now being used for many different

purposes; such as the solution of differential equations, spectral decomposition of

signals and analysis of linear time-invariant systems. In the future, in spite of

the other developments in the signal processing technology, Fourier analysis will

continue to be the basic tool and perhaps applied more widely in the engineering

sciences.

In essence, Fourier analysis decomposes a finite energy signal into its sine

and cosine components. Therefore, the standard Fourier analysis is not very effec-

tive in representation of local information contained in nonstationary signals, such

as speech, seismic acceleration or sonar signals. In order to represent the time—

evolution of the spectral components, the time-domain and frequency-domain con-

cepts need to be combined into a single framework. In 1946, Gabor [60] introduced

a Gaussian weighting window that is translated along the signal while recording

the spectrum at succesive time intervals. This process resulted in a two dimen-

sional representation of the signal on the time-frequency plane. The remarkable

fact about the Gaussian function is that it provides an optimal localization in the
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time-frequency domain. Following Gabor’s classical study, the use of other sliding-

window functions led the way to the definition of the short-time Fourier transform

(STFT). Since Gabor’s classical work, STFT has gone through much development

and have been applied in many different areas of physical sciences. The details

and the properties of STFT can be found in references [2,9,10,61,69,76,103,112].

As stated earlier, the major limitation of the STFT is imposed by the uncertainty

principle, AtAu 2 1/2 , which requires a trade-off between the time and fre-

quency resolutions. Therefore, once the window size is selected the resolution is

fixed throughout the time-frequency plane.

In comparison to STFT, the self-adjusting window (zooming) property of

the wavelet transform brought efficiency into linear time-frequency analysis. The

recent excitement in wavelet research was initiated by a geophysical application

conducted by Morlet et of. [100,101]. As an alternative to Gabor’s constant-

window decomposition, Morlet suggested the use of constant-Q (quality factor)

wavelets in exploring the propagation of a plane wave through a multilayered

medium. The success of Morlet’s application of wavelets led to more detailed

mathematical studies on the subject. Theoretical physicist Grossman associated

the wavelet transform to square integrable group representations [64,65]. Since

similar ideas and wavelet-like constructions had been already known to mathe-

maticians, it did not take long before a comprehensive mathematical theory was

presented by Meyer [94]. The connections between the recent developments on

wavelets and the related earlier mathematical studies are reviewed in the refer-

ences [14,42,94,115,116,124].

The new developments in the wavelet theory caught the attention of the

signal processing community and initiated intense research in all the related as-

pects of the subject. The original wavelet used in Morlet’s study did not attract

much attention from the signal processing community, since it had a noncom-

pact support and thus made the real-time implementation of the corresponding

finite-impulse response (FIR) filter quite difficult. Therefore, Daubechies’s [39]

construction of the orthonormal basis of compactly supported wavelets was con-

sidered a breakthrough and opened the way to a wide field of applications. The
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wavelet transform provided the means for looking at a signal at different scales

or details. Therefore, wavelets found immediate use in image processing applica-

tions and stimulated Mallat’s studies [82-85] that established connections between

wavelets and multiresolution analysis (MRA).

Meanwhile, there were other important contributions to the theory of

wavelets. Battle [1 1—13] used renormalization group ideas to construct orthonormal

wavelets. Frazier and Jawerth [54-58] introduced the ¢~transform and developed

the concept to serve efficiently in signal processing applications. The connection

between the spline theory and wavelets is established by Chui [23-27]. Coifman

[32-34], Beylkin [17-20] and Wickerhauser [132] developed the theory on atomic

decompositions and introduced fast algorithms based on wave packets and best-

basis selection routines. These entropy based algorithms were used primarily for

compression of acoustic signals and two-dimensional gray scale images. Alpert

[3-5] considered the use of wavelets to achieve fast matrix operations and studied

the representation of integral operators with wavelets. The concept of frames in-

troduced by Duffin and Schaeffer [48] was tied to the wavelet theory in the studies

of Heil and Walnut [68], Daubechies [38, 41-43] and Benedetto [15-16]. The filter

bank structure induced by a wavelet and its corresponding scaling function are

linked to the quadrature mirror filters by Vetterli and Herley [129].

Unlike the sine-cosine basis used in Fourier transform, the function used

to generate a wavelet basis may take a variety of forms, provided that a certain

admissibility condition is satisfied as discussed later in section 2.2. Therefore,

the question of which wavelet to use comes about frequently in applications. The

optimal choice in signal processing applications depends on the regularity and

the size of the FIR filter [116,126]. The filter coefficients for compactly supported

wavelets are obtained at different regularity conditions by Daubechies [42,43]. The

algorithms performing the continuous and the discrete wavelet transforms can be

found in the studies conducted by Holschneider [71], Dutilleux [50] Rioul and

Duhamel [118] and Shensa [123].



1.53

0: '1‘;
‘ \«\.

Q

M? It:

I .

C‘EQSII:

..

€02.11

air if,

Space c

‘ i134



8

The ongoing excitement in wavelet research has been due to the histori-

cal collaboration between scientists from different disciplines. The recent break-

through in wavelet research is the natural outcome of evolution and blending of

different concepts and theories that were introduced in diverse fields of science.

Today, while mathematicians are trying to discover new interesting features of

wavelets, applications of the wavelet theory are being investigated in physical and

engineering sciences. In this study, the application of the wavelet theory is ex-

tended to the analysis of transient vibrations in mechanical systems.

1.5 Mathematical Preliminaries

In the following, a mathematical background is formed by reviewing some

of the preliminary concepts, definitions and notations that are used frequently in

the rest of this study. The details of the following definitions can be found in any

classical textbook on real and complex analysis, such as [75,119,121].

A finite energy signal or a function f E L2(R) is required to be piecewise

continuous and square integrable in Lebesque sense. The space R. implies the real

line (—00, 00). The space Z consists of all the positive and negative integers. The

space of all square—summable sequences {on} are denoted by [2(Z).

The norm associated with the Hilbert space L2(R) is defined as

Ilfllz.2 = {/00 |f(t)l2dt]l/2 (1-1)
-00

The inner product of two functions f, h E L2(R) is defined as

(M) = /_°° f(t)3ft_)'dt (1.2)

where overbar denotes complex conjugation. The relation between the norm and

the inner product is given by [I fI]2 = (f, f).
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If a bounded linear operator F maps one Hilbert space to another, F :

H1 ——§ H2, then the adjoint operator F‘ is defined as F‘ : H; —-> H1 such that

(fliF'f2)=(Ff1,f2) (1-3)

for f1 6 H1 and f2 6 H2. If F‘ = F then F is called self adjoint.

The Fourier transform and its inverse are defined as

1 00

fit») = 75.; -.., f(t)e““" dt,

00 (1.4)

N) = vii; f... f(w)e‘“‘ dw

where f and f are assumed to be absolutely integrable. In engineering litera-

ture, the Fourier transform f is denoted sometimes by the capital letter of the

correponding function, such as F. In this study, both notations, the hat and the

capital letter, will be used interchangeably without causing confusion. Some of

the important properties of the Fourier transform are listed in Appendix A.

A family of functions 1pm,. 6 L2(R) , with m, n E Z, forms an orthonormal

basis in L2(R), provided that

(thmmtfijk) = 5mn5jk, j, k,m,n E Z (1.5)

where the Kronecker delta is defined by 6"", = 1 if m = n and 6n", = 0 otherwise.

For a finite sequence x(n), n = 0, ..., (N — 1), the z-transform is defined by

N-l

X(z) = Z a:(n) z'" . (1.6)

n=0

Evaluating the z-transform on the unit circle, 2 = e“, gives

N-l

X(e“") = Z x(n)e_i“’". (1.7)

n=0
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Then, the discrete Fourier transform (DFT) is defined by dividing the frequency

range [0,21r] into N intervals

N—l

X(h) = E any-WW”) , k = 0,1,...,(N — 1). (1.8)

n=0

The preceding equation forms the basis for the construction of FFT algorithms

used in applications.

1.6 Organization of the Dissertation

Following the preceding general introduction and the survey of literature,

the second chapter establishes a background on the fundamental properties of lin-

ear time-frequency representation (TFR) techniques. Particular attention is given

to the recent developments in the wavelet theory that are pertinent to this research.

A summary of the basic mathematical concepts and definitions is followed by a

detailed discussion of the algorithms used during the implementations. The basic

features of the STFT and the wavelet transform are demonstrated on synthetic

signals.

In Chapters 3 and 4, the STFT and wavelet transforms are utilized dur-

ing the analysis of transient waves propagating in dispersive and nondispersive

mediums. As an example of a dispersive medium, the bending vibrations of a

beam is considered. The TFRs of the transient vibration response are analyzed to

characterize the dispersion, reflection and the cut-off phenomena. The closed form

analytical solution of an infinite beam is used to introduce a space-wavenumber

representation (SWR). The use of a wavelet transform leads to the discovery of an

interesting pulse reconstitution phenomenon on a free-free beam. As an example

of a nondispersive medium, acoustic wave propagation in an open-ended pipe is

considered and the signature of the echos are analyzed by using TFRs.

Chapters 5 and 6 are devoted to the development of a synthesis scheme

for the prediction of the transient vibration response. Chapter 5 presents the
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fundamental concepts and relationships governing the wavelet frame expansion of

the convolution integral. The analytical construction leads to the introduction of

wavelet response functions. Then, in Chapter 6, the developed synthesis scheme is

used to predict the transient response of a beam. It is shown that the time-domain

aliasing problems associated with an FFT construction scheme are eliminated by

this wavelet frame synthesis technique.

In Chapter 7, some of the secondary issues that are raised during the main

text are discussed in detail. The bandwidth of the Morlet filter is changed to

study the effect on the resolution of the wavelet transforms. The implementation

of different wavelet basis is investigated by considering a reference signal. The

study is concluded with a comprehensive discussion of the use of the wavelet

transform in other applications in mechanical sciences.
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CHAPTER 2

LINEAR TIME-FREQUENCY REPRESENTATIONS

The objective of this chapter is to introduce some of the basic mathemat-

ical concepts, definitions and properties of linear time—frequency representations

(TFRs). Due to its relatively new appearance in mechanical sciences, attention is

focused on the wavelet transform. In order to give a self-contained presentation,

some of the fundamental concepts and algorithms are explained in detail. The ba-

sic properties of the STFT and wavelet transform are demonstrated by considering

benchmark synthetic signals.

2.1 Introduction

Time-frequency representations characterize local spectral and temporal

variations in a signal. The transformation of a signal into the time-frequency

domain is performed by applying a specific mathematical operation on the signal.

Depending on the properties of this operation, the transformation may be linear,

quadratic or nonlinear [29,69,116]. Within the group of linear transformations,

the short-time Fourier transform (STFT) and the wavelet transform (WT) lead

to time-frequency and time-scale representations, respectively.

The properties of a linear transformation depend on the structure of the

basis used during the decomposition. The STFT and Gabor transforms employ

a fixed-window sine-cosine basis, which imposes certain restrictions on the time-

frequency resolutions. Whereas, the basis used in the wavelet transform is gener-

ated by the dilations and translations of a basic wavelet function. As a result, the

wavelet transform has a very desirable self-adjusting window structure and a large

12
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class of admissible basis functions. The mathematical definitions and properties

of these linear transform techniques are explained further in the following.

2.2 STFT, Gabor and Wavelet Transforms

2.2.1 Mathematical Background

From a mathematical perspective, the linear integral transforms that are

mentioned above can be viewed as an inner product of a signal or a function f

with a specific set of functions. For example, in the case of Fourier transform, the

inner product representation becomes

(ff)(w)=(f. h) = /_°° woman (21)

h(t) = eiwt

where the overbar represents complex conjugation. In Fourier transform, the

transformation kernel h(t) is constructed from sine-cosine functions, which are

well-localized in frequency but widely spread in time. The information regarding

the time dependendence of the spectral components becomes buried in the phase

of the Fourier transform. Therefore, it is fair to say that Fourier transform is not

well-suited for the analysis of time-local spectrum.

In the analysis of nonstationary signals, a classical approach to localization

of spectral evolutions is the use of a sliding-window spectrum of the signal, which

is known as the Short-Time Fourier Transform (STFT). The STFT is performed

by using a short-length window function. As the window is shifted in time, a new

spectrum is defined at each position, thus generating a time-frequency represen-

tation of the signal. Again, the transformation can be viewed as an inner product

of the signal f with a windowed sine-cosine basis as follows:

(gthw) = (f, In) = °° “smart
-.., (2.2)

hh(t) = 90 - 106“”
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where 5 defines the translation of the window function g(t). Since generally the

window g(t) is compactly supported or well-localized in time, its application on

the sine-cosine functions generates a basis that has the desired localization prop-

erties. The selection of the window function is based on the anticipated time and

frequency localization characteristics. Some of the commonly used STFT win-

dow functions are listed in Appendix B. The efficiency of the localization in the

time-frequency plane is influenced by the width of the window function. However,

as discussed later in this study, the window size can not be selected arbitrarily,

but needs to satisfy the uncertainty inequality. The examples given later in this

chapter may help to clarify some of the preceding concepts.

As a special case of the STFT, Gabor [60] has shown that the use of a

Gaussian window will result in optimal time-frequency localization. Thus, the

Gabor transform is defined as

(grew) = (f, ha = _°° mam,

(2.3)

 

1 _2
e t/4a.

WC!

3(t)=ga(t-b)e‘“‘, ga(t)= 2J—

The basic properties of the STFT applies equally to the Gabor transform. There-

fore, in this study, the Gabor transform will be also refered to as an STFT.

In the case of wavelet transform, although a similar inner product oper-

ation is still employed in the definition, the form of the basis functions differs

significantly. The continuous wavelet transform (CWT) of a signal f E L2(R)

with respect to a family of wavelets is defined as [14,23,36,43,94]

(w no.1») = (f, h...» = f” f(t)—ha,i(t)dt.

—°° (2.4)

me) = lal‘i h (ii—’3) . a,be R. a #0.

The family of functions hay, is generated from a single function h by performing

dilation and translation operations, which are controlled by the parameters a and
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b, respectively. The original function h is referred to as the “basic wavelet” or the

“mother wavelet”. The mother wavelet has to satisfy an admissibility condition

that ensures the existance of an inverse wavelet transform. The admissibility

condition is stated as

00 A 2

/_ le'1|h(w)l dw < 00 (2.5)
00

where h = (.7: h) is the Fourier transform of the mother wavelet. The admissibility

condition requires h(O) = 0, which implies

/ h(t)dt = 0 . (2.6)

Therefore, the mother wavelet is expected to have some oscillations about the

zero mean. Distinct families of wavelets can be generated by selecting different

admissible h(t) functions.

In applications, a sublattice is constructed by discretizing the dilation and

translation parameters a and b. First, the constants a, and b0 are assigned to the

dilation and translation step sizes. Then, applying the definitions

3” and b = nb am (2.7)
0 o

with m,n E Z to the relation given in equation (2.4) results in a discrete set of

wavelets

hmn(t) = 0:...” h(ao'mt — nbo) . (2.8)

Since the translation parameter b is designed to depend on the dilation index,

the time-frequency resolution of the wavelet is adjusted automatically at different

scales. The width of the time-frequency window becomes smaller at higher scales

and elongates at lower frequencies. This self-adjusting window property is the

major difference between the wavelet transform and STFT.

For example, considering n = 0, larger values of m generate oscillating

functions hmo which are spread out in time. The examples shown in Figure 2.1
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Figure 2.1 The Mexican hat wavelet and its dilations in the time domain.



  



translations are from left to right it = —6, —4, -2,0,2,4,6.

Figure 2.2 The translation of the Mexican hat wavelet at different scales. The
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are generated by using the Mexican hat wavelet, which is defined later in section

2.3.2.1. Since at low frequencies it would take longer time to see a change in the

information content of the signal, the redundancy during the sampling of the sig-

nal is automatically avoided by the larger translation step size of the wavelet, as

demonstrated in Figure 2.2. Whereas, for large negative values of m, a shrunken

version of the mother wavelet gives a higher resolution, which is more appropri-

ate for representation of high frequency variations in a signal. This self-adjusting

resolution (zooming) property of the wavelet transform is analogous to the oper-

ational principles of a microscope or a telescope. The detail of the information at

different levels of magnification or scale is analyzed with an adequate resolution.

The benefit of the zooming property is that the wavelet transform has a relatively

more eficient coverage of the time-frequency plane.

2.2.2 Time-hequency Space Coverage

The main difference between the STFT and the Wavelet transform is in

their coverage of the time-frequency plane. As sketched in Figure 2.3, STFT

maintains a constant window size throughout the transformation plane, whereas

the window size is automatically adjusted in the wavelet transform. For higher

frequencies the time-width is contracted and for lower frequencies it is dilated.

This zooming property of the wavelet transform is utilized in many different signal

processing applications.

By looking at the time-frequency coverage of the STFT, it is natural to

wonder if the size of the basic window element can be made smaller to achieve

better localization characteristics. Unfortunately, the answer is negative. The

uncertainty principle sets a lower bound on the time-frequency window size of the

STFT, which is discussed in the following.

2.2.3 Time-Frequency Resolution and the Uncertainty Principle

Consider a finite energy signal f E L2(R) and its Fourier transform f

Then, in the time domain, the center and radius of the signal are defined, respec—
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b) Wavelet Transforma) STFT

Figure 2.3 Time-frequency space coverage of the STFT and Wavelet transform

h(t)) h(t)

Ll’l/Vt

b) Spline Wavelet

 
a) Haar Wavelet

Figure 2.4 Two classical examples on wavelet functions.
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tively, as [23,60,69]

t. 1 f” we)? dt
- llfllia -00

A; = i‘fli? {/_:(t - mm»? dt}m

Similarly, in the frequency domain, the corresponding center and radius becomes

(2.9)

 w. 1 / w’lf(w)|2dw

 

=llflli= -..,
1/2 (2.10)

1 °° A
AA: A w—wcz w 2dw}, ”fl,“ {/__w( )If( )1

In the engineering literature, 2A1 and 2A? are referred to as the RMS duration

and the RMS bandwidth of the signal, repectively.

Based on the preceding definitions, the uncertainty principle states that

A; Afz (2.11)

N
I
H

The proof for this inequality is provided in Appendix C. The fundamental concept

behind the uncertainty principle is that a function f cannot have arbitrarily small

duration A, and bandwidth A? about the centers in time t6 and frequency we,

respectively. The uncertainty principle imposes a limit on the choice of the window

size.

The uncertainty inequality becomes an equality only for the modulated

Gausian function;

1 -iw - a

f(t) = .Z—Te ‘e "/(4 > (2.12)
a

which results in an optimal localization in the time-frequency plane.
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2.3 Wavelet Families; Definitions and Properties

As mentioned earlier, any function that satisfies the admissibility condi-

tion can be used as a mother wavelet. Some of the important properties that

are considered during the selection of a wavelet are the compactness (support),

orthogonality, regularity (smoothness) and the spectral decay characteristics. The

following examples are intended to give a taste of different wavelet families. The

list is in no way exhaustive, and one can find many other examples listed in the

literature [7,11,14,23,36,43,69,94,95,100,122].

2.3.1 Haar and Spline Wavelets

Although the Haar function has been known since 1910, its relation to

wavelet theory and multi-resolution analysis has been brought to attention very

recently. The Haar wavelet is defined as

L Ost<§,

h(t) = 1, % g t < 1, (2.13)

0, otherwise.

A sketch of the Haar wavelet is given in Figure 2.4a. Inspite of its simple con-

struction, the Haar wavelet does not have a desirable time-frequency localization

behavior, since h(w) or Ital"l as w -—> 00. Therefore, the Haar function has

been used generally for academical purposes to demonstrate the construction of

an orthonormal wavelet basis in L2(R).

Another simple example is obtained by using the linear spline hat function,

t, 0 S t S 1,

¢(t) = { 2 — t, 1 S t S 2, (2.14)

0, otherwise.

which is known as the scaling function and satisfies the dilation equation ¢(t) =

2 ck¢(2t—k) with ck = 1/2, 1, 1/2. Then, the equation h(t) = E(—1)"c1_k¢(2t—

It) defines the first-order spline wavelet as

h(t) = —%¢(2t + 1) + ¢(2t) — %¢(2t — 1) (2.15)
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which is sketched in Figure 2.4b. One can increase the order of the spline func-

tion to achieve a higher number of continuous derivatives. These linear spline

orthonormal wavelet bases were studied by Battle and Lemarie [11,43].

2.3.2 Derivatives of the Gaussian Function

The derivatives of the Gaussian function constitute another family of

wavelets. The Gaussian function and its Fourier transform are defined as

g(t) = 44’”) i. §(w) = 6.1-W?) . (2.16)

Following the definition of the derivative operator, D" = d“/dt", (n = 1, 2, )...,

the first eight derivatives of the Gaussian function are obtained as follows:

Dlg(t) = —t e(""/”

12290) = (.2 — 1) eH’”)

D3g(t) = —(t2 — 3) t eH'm

D4g(t) = (t4 — 6t2 + 3) e(""/2)

. (2.17)

D5g(t) = —(t‘* — 10t2 + 15) t e(" /2)

D6g(t) = (t6 — 15:4 + 45t2 — 15) e(-"/2)

D7g(t) = —(t6 — 21:4 + 105t2 — 105) t e(-"/2>

Dag(t) = (t8 - 28t° + 210t4 — 420:2 + 105) eH’”)

These functions are plotted in Figure 2.5. Note that the odd and even ordered

derivatives generate odd and even functions, respectively. The functions become

more oscillatory, as the order of the derivative is increased. For n > 2, the shape of

the functions becomes very similar to the modulated Gaussian function exp(-ict —

t2/2), which is discussed in more detail later in this chapter.

The preceding derivatives of the Gaussian function are used to define a

family of wavelets, given as

h(t) = c, D"g(t) .L h(w) = 0,. (iw)” a...) (2.13)
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Figure 2.5 The Gaussian function and its derivatives, D"g = «Pg/cit".
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where g(t) and §(w) are defined in equation (2.16). The normalization constant

Cu is obtained by applying the Lz-norm [It/1|] L, = 1.

In order to derive a general relation for the normalization constant C",

first we consider the equality between Lz-norms of the wavelet in the time and

frequency domains

IIhIIL. = [/ |h(t)|’dt]m = [/ mercy/2 = “in“ .

Then, the evaluation of the second integral is performed as follows:

2 2 w 2

/ IC'n (iw)" e(-“’ l2)l dw = 203/ L02" e"“’ dw

0

... ll:0: (2n2n1).. \/1_r

Equating the norm on the right-hand side to unity and solving for the normaliza-

tion constant gives

 

2n—l _ .1/2

2 (n 1)] , n=1,2,.... (2.19)
= —1/4

C" 1r [ (2n—1)!

The preceding result together with equation (2.18) define a general formula for

the wavelets generated from the derivatives of the Gaussian. In the following

examples, two particular cases are singled out from the above list and studied in

more detail.

2.3.2.1 Example 1: Mexican Hat Wavelet

Following a sign change in the second derivative of the Gaussian, the Mex-

ican hat wavelet and its Fourier transform are defined as [42]

2

WW?

(1-t’)e("’/2) «L my):  h(t) = (.02 el-W” (2.20)
2

VIA/1?
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Figure 2.6 The Mexican hat wavelet and its Fourier transform. ,
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Figure 2.7 The filter bank structure induced by the Mexican hat wavelet.
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where the normalization constant is determined by substituting n = 2 in equation

(2.18). A sketch of the Mexican hat wavelet is given in Figure 2.6. From this

mother wavelet, a family of wavelets hmn are generated by using 00 = 2 and

b0 = 1 in equations (2.7) and (2.8), which results in a dyadic grid with a = 2'”

and b = n2”. The wavelets corresponding to this dyadic grid are defined by

hm..(t) = 535—127—157? [1 — (21"T — n)2] exp [mg- (2'35 — n)2] , (2.21)

and their Fourier transforms become

’12,...(5) = 2N (2M/3)% (...2'")2 eI-<~2”>’/21 84"?” . (2.22)

This set of discrete wavelet functions generate a bandpass filter bank structure, as

shown in Figure 2.7. Since the bandwidth, 2A;, of the wavelet bandpass filter is

proportional to the center frequency we, the quality factor Q = Lac/2A? remains

constant at each level of dilation. As a result, the wavelet transform is also known

as a “constant-Q” analysis.

The four samples I/J-2,0,¢'—1,0,1/)0,0 and 1P1,0 from the above family of

wavelets were plotted earlier in Figure 2.1. Note that, as the dilation index m

gets larger, the wavelets spread out. Whereas, large negative m values gener-

ate shrunken versions of the mother wavelet which are used in representing high

frequency components of a signal. Each distinct scale, or m value, generates a

different resolution in translation. As shown in Figure 2.2, within a given interval,

the wavelet it-” takes twice as many steps as its dilated version $-15). This

logarithmic adjustment of the translational resolution with respect to the dilation

index results in a very effective “zooming” property of the wavelet.

2.3.2.2 Example 2: D8G Wavelet

Similar to the Mexican hat wavelet, the eighth derivative of the Gaussian

is used to define the D8G wavelet as follows:

-1/4 2157! 1,2 8 0 4 2 (-t’/2)
h(t)=1r —15—, (t —28t +210: -420t +105)e (2.23)
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Figure 2.8 The D8G wavelet and its Fourier transform.
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Figure 2.9 The filter bank structure induced by the D8G wavelet.
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where again the normalization constant is determined by using “h“ 1.2 = 1. The

Fourier transform of the D8G wavelet is obtained as

A 15 ] 1/2

h(w) = “Ir—1,“ (2—1-5—) (.08 e(—“’3/2) . (2.24)

A plot of the D8G wavelet is provided in Figure 2.8. Since in comparison to

the Mexican hat wavelet, the D8G contains more oscillations, the quality factor

is relatively higher and the bandpass filter bank structure shown in Figure 2.9

demonstrates that feature.

2.3.2.3 Example 3: Complex DG Wavelets

In some applications, a complex wavelet with real and imaginary parts that

are in quadrature is found to be very usefull. Since the order of the derivative

causes alternating odd-even functions for the Gaussian wavelets, two successive

derivatives can be combined to define a new complex wavelet given as

h(t) = CnD"g(t) + iCn+1Dn+lg(t) . (2.25)

0

As a result, the wavelet transform will also have real and imaginary parts. The

advantage of such an odd-even real and imaginary parts is that the phase of

the transform would display dicontinuities in the signal. This complex family of

functions looks very similar to the modulated Gaussian wavelets discussed in the

following.

2.3.3 Modulated Gaussian (Morlet) Wavelet

The modulated Gaussian wavelet became popular after Morlet [100,101]

made extensive use of it in geophysical studies. The definition of the Morlet

wavelet and its Fourier transform are given as follows:

h(t) = it"l/4 (e'“"°‘ — e—wz/z) e43,2

(2.26)

{-1—} h(w) = r-1/4 [e"(“""""=)2/2 — 6“”:(2 6"”2/2] .
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The Fourier transform has a symmetric Gaussian distribution about the center

frequency we. As implied by equation (2.26), the center frequency we defines the

number of oscillations in the time domain as well as the bandwidth of the wavelet

filter in the frequency domain. Depending on the application, different values are

used for we. One of the choices depends on the time-domain criteria of having a

ratio of 1:2 between the highest peak and the neighbouring one [43] and results in

we = n [2/ ln2]1/2 = 5.3364, which is approximated in practice as we = 5 .

Since in equation (2.26), the contribution coming from the second term is

quite small, for relatively large values of we, the simplified form of the Morlet

wavelet and its Fourier transform become

h(t) = 1r'1/4 ('in 642/2 (1+ h(w) = 7r"1/4 e-(“"*—“")a/2 . (2.27)

The real and the imaginary parts of the Morlet wavelet and its Fourier transform

are given in Figure 2.10. The filter bank structure generated by the Morlet wavelet

is plotted in Figure 2.11.

In applications, the implementation of the Morlet wavelet can be performed

by considering the Euler’s formula e59 = cos(0) + isin(9). Thus, the complex

Morlet wavelet can be split into two seperate real wavelets as

h(t) = h1(t) + ih2(t) (2.28)

where

h1(t) = 1.4/4 cos(ct)e-"/2, h2(t) = —«-1/4 sin(ct)e-"/2 .

As a result, the wavelet transform has real and imaginary parts, which is usually

represented in magnitude and phase format.

2.3.4 Battle-Lemarié Wavelets

The Battle-Lemarie [1 1-13] cubic spline wavelets are known as very smooth

wavelets and therefore they are called the “queen of wavelets” . Battle-Lemarie
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wavelets have infinite support and exponential decay. The following example, for

the Battle-Lemarie wavelet family, is utilized later in the final chapter of this study.

In real-time signal processing applications, the wavelets are implemented

as quadrature mirror filters [129], which are composed of a pair of low-pass and

high-pass filters. For the Battle-Lemarie wavelet, the low-pass filter is defined in

the frequency domain as

315 — 42021 + 125:.2 — 4:13 1’2

315 — 4201) + 126v2 — 4v3

 H(w) = 2(1 — u)4 (2.29)

where u = sin2 (w/2) and v = sin2(w).° A common choice for the corresponding

high-pass filter is G(w) = e"“"H(w + 1r). In the signal processing literature [129],

these two filters H(w) and G(w) are known as quadrature mirror filters. Based on

these quadrature mirror filters, the corresponding wavelet is defined as

a2...) = G(w) 3(5) (2.30)

where

37(0)) = (2104/2 H H(Cd/2" ) (2-31)

i=1

is known as the scaling function [43]. A plot of the scaling function, the Battle-

Lemarie wavelet, and the corresponding spectra are given in Figure 2.12. The

wavelet has oscillations about the origin that decay slowly as It] —» 00. The

bandpass filter has an exponentially decaying magnitude, which may be quite

desirable in some applications.

2.3.5 Daubechies’s Compactly Supported Orthonormal Wavelets

In addition to the preceding classical definitions of wavelets, Daubechies

constructed compactly supported wavelets which are favored in signal processing

applications involving FIR filters. While the details of the mathematical theory
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behind Daubechies’s orthonormal wavelets can be found in her original work [38-

43], some of the main concepts and definitions are summarized in Appendix D.

Daubechies’s [39] proved that the step sizes a0 = 2 and b, = 1 lead to the

construction of a special family of wavelets with compact support, which also form

an orthonormal basis for the Hilbert space L2(R). As an example of Daubechies’s

compactly supported orthonormal wavelets, the D10 case is considered in the

following. This wavelet has 20 non-vanishing coefficients, hn, for the low-pass

filter H, which are calculated in [43]. The relations given earlier in equation

(2.30-2.31) define the spectrum of the wavelet and the scaling function. In Figure

2.13, the D10 wavelet and the scaling function are plotted. The support of the

wavelet is defined as (—10, 10), or (0,20) as shown in Figure 2.13. Although

the spectral representations of the Lemarie and D10 wavelets, given in Figures

2.12 and 2.13, look similar, their time domain plots are quite different due to

the distinction in their phases. More importantly, the D10 wavelet has a finite

support. The performance of both of these wavelets in the analysis of physical

signals are compared later in the final chapter.

2.3.6 Multiresolution Analysis

Mathematically, the orthonormal wavelets are closely related to the mul—

tiresolution analysis (MRA). The concepts that are introduced in the context of

MRA are used in the second part of this study to construct the transient vibration

response of a linear time-invariant system. The following brief review is intended

to bridge the gap between the wavelets and the MRA concepts to form a back-

ground for later constructions. More details of the definitions and theory of MRA

can be found in Mallat’s work [82-85] and the follow-up is given in Daubechies’s

studies [38-43].

In multiresolution analysis, a function f E L2(R) is represented as a limit of

successive approximations. The Hilbert space L2(R) is decomposed systematically
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into a ladder of closed subspaces Vm , which satisfy the following conditions [82,84]:

1) ...CV2cV1cVocV_1cV-2c...

2) n v... = {0}, U V... = L2(R)

mez mez (2.32)

3) feVm <5 f(2-)eV,,,_1 <5 f(2"‘-)evo

4) fEVm=>f(-—2-mn)EVm VnEZ

Condition (3) implies that the subspaces V... are scaled versions of V0, which is

an important aspect of the multiresolution analysis. The orthogonal projection

Pmf of a function f onto the subspace Vm corresponds to an approximation with

resolution 2'”, and Vm —» L2(R) as m —+ —oo.

Corresponding to each Vm C Vm_1 , there exists an orthogonal complement

Wm C Vm-1 , such that

v,,,_l = v... Q9 Wm, (2.33)

where the circled-plus sign represents a direct sum. In comparison to nested

subspaces V,,., the subspaces Wm satisfy

Wm n W), = {0} and Wm .1. Wk , Vm # k . (2.34)

Therefore, the Hilbert space L2(R) can be represented by the direct sum

L2(R) = 6; Wm. (2.35)

mEZ

If a ladder of subspaces satisfy the preceding requirements of the multires-

olution analysis, then there exists an orthonormal wavelet basis for L2(R)

{1pm, m,n e Z} with times) = 2-m/’¢(2-mz — n), (2.36)
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such that, for all f E L2(R)

Pm_1f =m+ :0, 1A....) «i... . (2.37)

nEZ

Again, Pm is the orthogonal projection onto Vm. On each fixed scale m, the

wavelets {¢m,n(r); n E Z} form an orthonormal basis of Wm. Furthermore, there

exists a companion to 30, called the scaling function 43 6 V0, such that for a fixed

scale m the set

{¢m,n; n E Z} with ¢m,n($) = 2-m/2¢(2-mr — n) (2.38)

form an orthonormal basis of Vm. The following example may help to clarify the

preceding mathematical concepts.

Example: Haar Basis

A classical example for an orthonormal wavelet basis and the multiresolu-

tion analysis is the Haar wavelet. The details of the Haar multiresolution analysis

is given in Appendix E.

As an application of the Haar multiresolution analysis, consider the Gaus-

sian function

f(:v) = 92—; eXP(’$2)-

The projection of this Gaussian function onto the Haar multiresolution subspaces

is performed as follows:

2'”(n+l)

2

me = Zmfigfz exp(—r2)dr 

'"n

2 /°° 2 2 /°° 2
= e —:i: dr— ex —r d:

WWI; 2% XP( ) Zmfizn: "(n+0 p( )

= 51:: Z [cram + 1)) — edema]
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Figure 2.14 Projections of the Gaussian function onto multiresolution subspaces.
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Figure 2.15 a) Representation of the Gaussian function in v-1 and v_, subspaces.

b) Projection of the Gaussian function onto W-) subspace.



39

where erf is the error function. Four different projections are given in Figure

2.14. For a given (m, n) pair, the error function is evaluated by using a fifth-order

polynomial approximation. Note that, in Figure 2.14, as m gets large negative

values, the projection of f simulates the Gaussian function more closely. Two

of the projection are overlayed on Figure 2.15a. The difference between the two

projections is plotted in Figure 2.15b, which gives the sum of the integer-translates

of the Haar wavelet multiplied by the wavelet coefficients or the inner products,

which is also implied by the equations (2.37) and (E8)

2.4 Implementation of the Wavelet Transform

Since the recent progress on wavelet theory began, there has been various

suggestions for the implementation of the wavelet transform for different purposes.

Algorithme 5 trous was introduced by Holschneider et a1. [71], and later applied

to real time analysis of sound from musical instruments by Dutilleux [50]. The

tree-algorithm of Mallat and Meyer [82,94,96] was based on orthonormal wavelet

basis and designed originally to perform multiresolution decomposition of images.

A detailed review of the existing algorithms, their properties and relationship to

each other can be found in the studies by Shensa [123] and Rioul and Duhamel

[118]. In principle, all the algorithms perform some form of filtering operation on

the signal while carrying out an interpolation and decimation on each stage. In the

following, some of the basic properties of the well-known algorithms are reviewed

briefly.

2.4.1 Existing Algorithms

Algorithme a trous (algorithm with holes) does not require orthogonal

wavelets and can be implemented on multi-voice schemes [50]. The basic prin-

ciple of the algorithm is based on the sampling of the mother wavelet in the time

domain. Then, at every stage, its dilated version is generated before the discrete

convolution of the filter with the signal is performed. A sketch of the operational
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Figure 2.16 The sketch of two algorithms for implementation of wavelet transform;

a) algorithme a trous, and b) multiresolution algorithm.
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structure of the algorithm is given in Figure 2.16a. In this sketch, the dilation

operation which places zeros in between every sample is marked by D, the prein-

tegrator is defined by F1 = 1 + TDF, the unit sample delay operator is expressed

by T, the sampled wavelet by h and the wavelet coefficients by we [50]. The

way the algorithm works is that, an output is generated for every sample of the

input. Therefore, the resulting TFR is very dense and highly redundant. Infact,

the size of the input array grows with the number of filtering stages. The redun-

dancy is sometimes usefull, since dense representation may ease the visualization

of spectral evolutions on the time-scale plane. On the other hand, the algorithm

can be adjusted to skip certain number of samples, at every stage of the filtering

operation, generating a less dense TFR.

The tree algorithm of Mallat and Meyer is based on orthonormal wavelet

basis. A sketch of the tree algorithm is given in Figure 2.16b. In this figure, the

box with a downward arrow stands for the decimation operation. The filter h is

a low-pass filter and the filter g is the corresponding high-pass filter. These two

filters are related to each other and their definition involves certain constraints

which are detailed in Mallat and Meyer’s seperate works [82,84,94,96]. The dual

filter structure has been known in signal processing literature as quadrature mirror

filtering [129].

In addition to these two classical algorithms, Beylkin et a1. [17] introduced

a fast wavelet transform algorithm that was specifically designed for fast numerical

application of dense matrices and integral operators. The algorithm is based on

Coifman’s [32-34] entropy-based best-adapted wavelet packets. As Strang [124]

has stated in his review paper, all good wavelet algorithms are based on recursion.

As shown in Figure 2.16b, the recursion takes place only on the upper branch of

the tree-algorithm. A more efficient implementation for the orthonormal wavelet

decomposition and synthesis can be achieved by extending the recursion to both

branches [58].

In this study, the implementation of the wavelet transform is carried out by

using an FFT based discrete wavelet transform algorithm. The main operational
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features of the algorthme 5 trous are combined with the FFT based bandpass

filtering scheme to perform non-real time transformations. In the following, the

basic principles of the discrete wavelet transform are layed out.

2.4.2 Discrete Wavelet Transform

Continuous wavelet transform (CWT) of a signal .9 E L2(R) with respect

to a family of wavelets was defined earlier in equation (2.4). In signal processing

applications, the discrete version of the wavelet transform is applied on a signal

s(nT,) which is sampled in time with the sampling frequency f, = 1/T,. The

discrete version of the CWT is defined as

 

n _ _1_ 3 (k — n)T,

(w s)(a, T.) _ T, fi 2*: (kT,)h (—-———a) . (2.39)

It is a common practice to simplify the preceding equation by selecting T, = 1

and defining

1

J6

where the subscript a denotes a particular wavelet bandpass filter. Then, the

standard form of the DWT becomes

h...(n) = h (-n/a) . (2-40)

(we s)(n) = :30.) h,(n — k) . (2.41)

k

In signal processing terminology, this final form represents a discrete convolution of

a signal sequence with a noncausal band-pass filter. In the following, the subscript

“a” is dropped to simplify the notation.

In a practical setting, unless the wavelet has a finite support, one would

generally need to truncate an infinite sequence at a finite number of samples M.

The truncated wavelet sequence is represented by hg(fl), n = —M/2, ------ , M/2,

which has a z-transform defined as

M/2

H.(z) = Z h,(n)z-n . (2.42)

k=—M/2
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For the implementation of the convolution operation, we need to define a causal

filter. This is obtained by shifting the wavelet sequence by M/2 samples in positive

direction;

hem) = h.(.. — M/2), n = 0, - . . ,M — 1 (2.43)

which in the z—domain corresponds to

M-l

Htc(z) = H; Z—NI/2 = 2: h¢(n) Z_(n+M/2) .

n=0

In this final form, the wavelet has become a Finite Impulse Response (FIR) filter.

The convolution of the FIR filter with the signal generates an output of the form:

Y¢e(z) = 5(2) Hee(z) . (2.44)

Then, the corresponding response in the 22-domain becomes

M-l

y:c(n) = Z h..(lc)s(n — k). (2.45)

k=0

However, from the mathematical point of view this result is a little short of what

we were really looking for, that is the convolution of the signal with a noncausal

wavelet filter. This objective can be achieved by performing a simple shift opera-

tion in time, which would convert the causal output to a noncausal one. Therefore,

we consider z-domain representation of the convolution given in equation (2.44)

and multiply both sides by 21"”2 to obtain

”Mn th(2) = 5(2) H:c(z) 2M”

= 5(2) He(z) = Y, .

In the 32-domain, the preceding relation becomes

y¢(n) == yee(n + M/2), n = 0, ~ - - ,M - 1 . (2.46)
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Therefore, during the implementation of the wavelet transform first the output

from the causal filter is determined and then the desired noncausal output is

obtained by shifting the signal. If the sampling period T, :,£ 1 needs to be taken into

account, the indices n and k are replaced by nT, and IcT, in the above formulations.

2.4.3 Filter Bank Implementation by Using FFT

During the implementation of the wavelet transform, the relation given in

equation (2.44) forms the basic operation of the algorithm. The relation between

the z-transform and the Fourier transform implies that the response of a particular

filter is just a simple multiplication of the Fourier transforms of the signal and

the wavelet impulse response function. Therefore, for every scale of the wavelet

transform, the band-pass filter is defined and implemented by using the above

procedure. Later, the output is inverse Fourier transformed by using an FFT

algorithm. Alternatively, the output can be interleaved by any number of samples

to adjust the resolution. The only difficulty with the present approach is the

length of the filter and the signal. For example, in a Morlet wavelet transform

with we = 5, an FFT size of 215 gives aproximately 10 octave range before aliasing

starts to take effect in higher octaves. In order to process long-length signals, the

overlap-add method is employed during the filtering operation. The details of the

method can be found in any textbook on signal processing, such as [108,111].

Unless otherwise indicated, the wavelet transforms used in the rest of this

study are performed by using the Morlet wavelet, given in equation (2.27). The

center frequency is fixed as we = 5. The effect of different choices of the center

frequency is discussed later in the final chapter.

2.5 STFT and Wavelet Transform of Synthetic Signals

In the following examples, four different synthetic signals are considered to

demonstrate some of the properties of the Gabor (STFT) and wavelet transforms.

The characteristic time-frequency representations resulting from these bench-mark
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signals will be helpfull during the interpretation of the transforms obtained from

measured physical signals, which are considered later in this study.

The implementation of the discrete Gabor (STFT) transform is performed

by using an FFT algorithm. During the implementation of the STFT, the window

type, size and the translation step are varied. The wavelet transform is imple-

mented by using the Morlet wavelet in an FFT based bandpass filtering algorithm,

as discussed earlier. In the display of the wavelet transforms, the “scale(octave)”

parameter differs from the dilation index only by a sign, octave = -m.

2.5.1 Unit Sample Pulse

During the initial phases of the implementation and evaluation of the

wavelet transform, a signal consisting of a unit magnitude sample-pulse 6(n —

M/2) has been found to be very useful. As shown at the top of Figure 2.17, the

signal consists of a unit amplitude sample pulse located at the center of a time

series that has zeros assigned to the rest of the M samples.

The time-scale representation resulting from the wavelet transform can be

displayed in different graphical formats. For the pulse signal, the magnitude of the

wavelet transform is shown in three different formats in Figures 2.17 and 2.18a.

The contours in Figure 2.17a have a 40 dB range with 2 dB rise per contour. The

color scale used throughout this study is defined in the Appendix I. A comparison

0f Figures 2.17b and 2.18a may help in understanding some of the features of the

cOlor-coded plots generated from measured physical signals in later sections.

The discrete convolution of the filter (wavelet) impulse response function

With this unit pulse signal generates an output that characterizes the spectral

cOutent of the filter bank structure induced by the wavelet transform. Since a

Pulse signal is ultimately localized in time, its Fourier representation requires equal

contributions from all spectral components. Whereas in the wavelet transform, as

shown in Figure 2.17, the contracted versions of the mother wavelet have much

larger contributions in the representation of the pulse.
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Figure 2.17 The wavelet transform of a. unit sample pulse. The magnitude is
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0 Time (ms) 1'0

Figure 2.18 Color coded plot for the wavelet transform of a unit

sample pulse; a) the magnitude and b) the phase.
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The phase of the wavelet transform also plays an important role and carries

a part of the information. In Figure 2.18b, the phase of the transform is displayed

by using a linear gray scale that runs from white to black within 0 to 21r range.

Thus, each black to white transition implies the completion of one cycle in the cor-

responding wavelet basis. These cyclic linear phase changes are observed to occur

more frequently at higher scales. The logarithmic contraction of the wavelet basis

is evident from the conical shape of the phase distribution. The constant phase

line running vertically through all scales at the center of Figure 2.18b indicates

the location of the sharp change in the signal.

In the analysis of vibration signals, a pulse may represent a sharp change

in the observed variable, such as the acceleration signal following an impact on

a structure. In the following chapter, the preceding features observed from the

wavelet transform of the pulse signal are utilized to study impact induced transient

vibrations of a beam.

2.5.2 Two Sines and a Pulse

The Fourier transform, due to its sine-cosine basis, is known to perform

very effectively on signals containing sinusoidal components. However, when local

perturbations in a signal occur, it effects all spectral components. As discussed

earlier, in a sliding-window spectrum (STFT), the uncertainty principle imposes

a trade off between time and frequency resolutions. Therefore, as demonstrated

in the following, the size of the window function has an influence on the outcome

of the transformation.

In this example, the signal consists of two sine components, with frequencies

at f1 = 44 Hz and f2 = 15 - f1, and a pulse superimposed at the center of the

tiIne record, as shown at the top of Figure 2.19. The magnitude of the wavelet

t'I‘linsform plotted in Figure 2.19 shows two wide horizontal bands corresponding

to the sine components and a conic-vertical strip at the center that penetrates

tlll‘ough these bands. The other half-conical distributions on either side of the

time record are due to start-up and termination transients that are generated

by the wavelet filter bank. Note that the magnitude of the conic-vertical strip
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50 
Figure 2.20 The magnitude of the STFT for the signal shown in Figure 2.19.

The Gaussian window length is a) 256 and b) 1024 samples.
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increases and its width gets smaller at the higher octave levels, which gives a clear

indication of the location and magnitude of the pulse. However, the same is not

true for the time-frequency localization of the sinusoidal components, since they

are represented over relatively wider bands in the wavelet transforms.

The Gabor (STFT) transform was applied next on the same signal. The

signal contained a total of 4096 samples. During the transformation, two different

lengths, 256 and 1024 samples long, were used for the Gaussian window. The

translation step size was selected as 32 samples. The results for the short and long

window cases are plotted in Figure 2.20. In both of these plots, the two peaks

running parallel to the time axis correspond to the sinusoidal components, and the

ridge penetrating through them at the center is associated with the pulse. The

transform based on the short window length provides relatively better time local-

ization of the pulse, but poor frequency localization of the sinusoidal components.

The opposite is true for the choice of the longer time window. As discussed earlier

and demonstrated clearly in this example, the constant window structure of the

STFT requires a trade-off between time and frequency resolutions.

2.5.3 Gaussian Enveloped Log-Sweep

In this example, the signal is generated by sampling a gaussian-enveloped

logarithmic sine-sweep function. The signal and its wavelet transform are given

in Figure 2.21. If the ridge formed by the magnitude of the wavelet transform is

traced, it forms a straight line confirming the logarithmic scaling of the frequency

axis.

Similar to the previous example, the Gabor transform of the signal was

performed by using two different window lengths, and the results are plotted in

Figure 2.22. The contours have 60 dB range with 3dB rise per contour. As

shown in Figure 2.22a, the transform resulting from the short window displays

relatively better time-localization at higher frequencies. Increasing the size of the

transformation window, in Figure 2.22b, results in a better frequency localization

at lower frequencies, but as a trade off, gives away from the time—localization

characteristics.
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Figure 2.22 The STFT of the signal shown in Figure 2.21. The Gaussian

window length is a) 256 and b) 1024 samples.
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The benefit of using a time-frequency representation is demonstrated clearly

in this example. The time-evolution of the spectral components were displayed

effectively both in wavelet and Gabor transforms. As shown in later applications,

similar time-evolving spectral behaviors are encountered in the dynamic response

of some physical systems.

2.5.4 Exponentially Decaying Sinusoidal Signal

The transient vibration response of dynamic systems generally involve some

kind of sinusoidal function decaying exponentially in time. If the system is excited

by a short-duration transient force, the response may look similar to the signal

shown in Figure 2.23. The wavelet transform of the signal displays two different

characteristics of the signal simultaneously. The initial start-up transient of the

signal is represented by the conic-vertical strip, which is very similar in shape to

the wavelet transform given in Figure 2.17a. The exponentially decaying response

is well-localized in the time-scale plane with the peak magnitude representing the

center of the signal’s envelope. The nose extending to the right characterizes an

exponentially decaying sinusoid. In vibro-acoustic systems, similar behaviors are

associated with non-dispersive transient vibrations of structures, as demonstrated

in the following chapter.
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CHAPTER 3

WAVELET TRANSFORM ANALYSIS OF

TRANSIENT WAVE PROPAGATION

In this part of the study, the effectiveness of the wavelet transform in the

analysis of transient wave propagation is investigated. The characteristics of differ-

ent wavebearing media are explored by using time-scale representations resulting

from the wavelet transform of measured acceleration and acoustic signals. The

dispersion of a transient waveform is given particular attention, since the physical

phenomenon and the analysis tool (wavelet transform) both have similar funda-

mental properties. As an alternative, a space-wavenumber representation is in-

troduced by considering the wavelet transform of the space-dependent vibration

response of a beam. The relationship between the time-scale representation and

the group velocity of a transient waveform is emphasized. The self-adjusting win-

dow structure of the wavelet transform is exploited during the analysis of different

wave-modes in a wave-guide. The propagation and the dispersion of the higher

wave-modes and the associated cut-off phenomenon are identified from the time-

scale representations. Physical examples are utilized to compare the advantages

and limitations of the wavelet and Gabor transforms.

3.1 Introduction

It is well-known that, in a dispersive medium, an arbitrary waveform evolves

in time and space if the phase speed depends on the frequency. Since each progres-

sive wave component propagates with a different phase speed, the initial shape of

a transient waveform is distorted in time. Similarly, a wavelet basis is generated

by dilating and translating an original waveform in space or in time. An out-

standing property of the wavelet transform is the built-in self-adjusting (zooming)
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window structure that helps to resolve high and low-frequency transient phenom-

ena effectively. This zooming property of the wavelet transform can be utilized to

identify the distinct spectral charateristics of a transient waveform propagating in

a dispersive medium.

Before going into the details of the wavelet transform analysis of transient

waves, it is appropriate to begin our discussion with a brief background on the

propagation of waves in dispersive and nondispersive mediums.

3.2 Waves in Dispersive and Nondispersive Media

In a wave-bearing medium, the propagation of a simple harmonic progres-

sive wave, exp(ilc:t: — iwt), is characterized by the relationship that exists between

the wavenumber k and the frequency w. If the dispersion relation is linear, such

as in an acoustic medium (k = w/c), then an arbitrary waveform would main-

tain its original shape during its propagation. However, there are many physical

systems for which the relationship between the wavenumber and the frequency is

expressed by nonlinear functional forms. [37,67,97,113]. For such cases, the phase

speed of waves is dependent on the frequency of vibrations. Consequently, dif-

ferent progressive wave components making up the original shape of an arbitrary

waveform travel at different speeds, and results in the dispersion of the waveform.

Classical examples of wave dispersion are the gravity waves in deep-waters and

the decomposition of white light into its spectral colors. As an example of prop-

agation in a nondispersive medium, the wave motion along the length of a string

or in an acoustic medium can be considered. Other examples of dispersive media

are discussed in Rayleigh’s [113] and Havelock’s [67] studies.

For flexural waves, a beam or a plate becomes a dispersive medium. For ex-

ample, when a transient waveform is induced on a uniform beam, the flexural wave

components propagate at different speeds and thus cause dispersion. When such

dispersion phenomena takes affect, the phase and group velocities of a waveform

are used to determine the characteristics of the wave-bearing medium.
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3.2.1 Phase and Group Velocities

The propagation characteristics for a group of waves were mentioned first

by Hamilton (1839) in his published short abstracts. The analytical treatment

and the classical definition of the group velocity are attributed to Stokes (1876).

The detailed treatment of phase and group velocities were originated from Lord

Rayleigh’s [113] classical work. Many of the modern treatments of the wave prop-

agation concepts are based on Rayleigh’s interesting formulations and definitions.

In a later work, Havelock made extensive use of the wave-group concepts and

studied many different problems that were related to propagation of disturbances

in dispersive media. Among the more recent collections in the literature, detailed

discussion of wave groups can be found in the studies conducted by Brillouin [22],

Achenbach [1] and Miklowitz [97]. The following summary on phase and group

velocity concepts are intended to form a background for later discussions.

The concept of wave-group is introduced by considering a simple harmonic

progressive wave component propagating in a one-dimensional medium, which is

defined by [22]

y(r,t) = A cos(k:i: — wt) = A cos [h(a: - cpt)] (3.1)

where c, = w/Ic is the phase velocity of the wave. A simple wave group can be

constructed by adding two such harmonic wave components together [97];

y(a:,t) = A cos [h(r - cpt)] + A cos {(k + Ah) [2: — (c, + Ae)t]} . (3.2)

In this wave group, the wavenumber and the phase velocity are assumed to differ

slightly between the two components. The preceding equation can be reorganized

into a more managable form by first expanding the trigonometric functions, and

then taking the limits of the incremental differences. When the higher order terms

are neglected the first-order representation gives

y(r,t) : 2A cos [(dh/2)(r — cgt)] cos [h(r -— cpt)] (3.3)
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where the group velocity is defined by

dadk . (3.4)cg = cp + k

The envelope of the wave-group moves with the velocity cg, while the wave carried

under the envelope propagates with the velocity or Therefore, as pointed out

by Rayleigh [113], for an observer travelling with the envelope, if c, 76 cg, then

the carrier waves will look as if they are propagating from one end of the group,

passing the observer and propagating toward the other end.

The preceding analysis can be generalized to include an arbitrary waveform

composed of a finite number of simple harmonic progressive wave components. In

this more general case, the velocity of the group is defined as [67,113]

E"

_ d(lcc,,)
Cg—
 dk = 21—]; (3.5)

The group velocity also represents the speed at which energy is propagated in

a wave-bearing medium. Achenbach [1] derived equation (3.5) for the speed of

propagation of energy by considering the general definition of the Lagrangian

density for a linear elastic, homogenous, isotropic body.

It is interesting to note that Brillouin [22] refers to the wave packets as

“wavelets”, which in the context used, refers to the physical wave motion and has

no relation to the present mathematical theory on wavelets. Never-the-less, the

envelope of a carrier wave in the wave group analysis looks very similar to the

windowing function used in STFT. Furthermore, since wave groups are local phe-

nomena, a local analysis, such as the wavelet transform, should be very effective

in generating time-frequency and space-wavenumber representations. In the fol-

lowing, a sample from each type of media is considered in order to investigate the

application of the wavelet transform to the analysis of transient wave propagation.
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3.3 Dispersive Medium: Bending Waves on a Beam

Within the group of dispersive media, the propagation of flexural waves

along a beam is known as a classical example, which can be studied in detail both

analytically and experimentally. However, since the bending vibrations of a beam

is governed by a fourth-order PDE, evanescent waves are generated near impedance

discontinuities or external disturbances, which need to be considered in addition

to the positive- and negative-going waves. Therefore, a closed form solution to the

response of a beam can be found only for very special initial conditions.

In the following, the analytical formulation for the vibration response of an

infinite beam is presented by considering a specific set of initial conditions. The

results obtained from the numerical simulation are used to predict the vibration

characteristics of a physical setup. In the experimental measurements, a semi-

infinite beam is simulated by using an unechoic termination at the end of a long

beam. The measured vibration signals are analyzed by using the STFT and the

wavelet transforms.

3.3.1 Bending Waves on an Infinite Beam: An Analytical Study

Considering the flexural vibrations of a uniform beam at broadband low-

frequencies, the equation governing the transverse displacements is derived as

63“ p at” = 0 (3.6)

where the effects of shear deformations and rotary inertia have been neglected.

Note that, the contribution of such effects becomes significant ( above 10% ) only

when A < 6h, where A is the bending wavelength and h is the thickness of the

beam.

The simple harmonic progressive wave solution y(r, t) = exp(ik:r — iwt) of

the governing equation results in the dispersion relationship

10sz
4—

k E1

= 0 . (3.7) 
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The dispersion relation not only governs the possible wave types, but it is also

used to define the phase and group velocities [37];

w EI 1" dw
cp=;=\/w(p—A) , cg=fi=20p. (3.8)

Since the phase velocity is directly proportional to the half power of the frequency,

the high frequency wave components are expected to propagate with a faster wave

speed. Therefore, the initial shape of an arbitrary waveform, which in general is

composed of many different Fourier components, will be distorted as the waves

propagate along the beam. This would result in the dispersion of the transient

waveform and cause the spectral distribution to evolve in time and space.

If the beam is subjected to certain initial conditions, then a different solu-

tion procedure needs to be followed. As mentioned earlier, closed form analytical

solutions are tractable only for very special initial conditions. One such special

case was studied by Boussinesq (1885) for the initial conditions defined as

=.(.) ..,... a5; Hag—<2 (3..)
i=0 i=0

31(33, t)

 

where n2 = EI/(pA). By using the Fourier transform, the solution for the free

vibration response of an infinite beam subject to the preceding initial conditions

is obtained as [92]

y(r,t) = —‘/% [1: f(:r — 2m/Ef) (cos a2 + sin :12) du

00 (3.10)

— / g(:c — 2ux/n_t) (cos a2 — sin u2)du] .

-oo

This integral solution can be evaluated further for a specific choice of functions

defining the initial conditions, such as

 

f($) = fi—% e—za/4a and g(x) = 25:31. 8-19,“: (3.11)
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where y0 and v, are the amplitudes of the initial displacement and initial velocity

of the beam. Substituting these functions, f(r) and 9(2), back into equation (3.6)

and then evaluating the integrals give

y(z,t) = :fl—fifl-V“ e("2°‘/fl) [yo cos(6) + 120 sin(0)] , (3.12)

where

9(r,t) = rzxt/fl — étan'IOct/a), fl(t) = 4(1:2 t2 + 02) .

The corresponding velocity and the acceleration response of the beam can be

obtained by differentiating the dispacement response y(z, t) with respect to time.

The preceding closed-form solution is utilized to analyze the propagation of

bending waves on an infinite beam. In the numerical simulations, the properties

and the cross-sectional dimensions of the beam were matched to the physical setup

used in later experiments. The system consisted of a steel beam having a cross

sectional area 50.8 by 6.35 mm. The time-response of the beam was calculated

at two different field points; one at :r = 0 and the other at :1: = 2.858 m. The

response of the system was obtained by considering an impulsive excitation applied

at the origin, which was simulated by using the initial velocity distribution given

in equation (3.11) and by letting the initial dispacement y0 = 0.

The vibration response of the beam at the two field points are plotted in

Figure 3.1. For clarity, the time axis is shifted artificially by 2 ms, and the actual

starting point for calculated response (the positive-time) is indicated by arrows.

The wave motion is initiated by the sharp impulsive acceleration observed at the

origin, as shown in Figure 3.1a. Since the simple harmonic wave components

making up this initial pulse are travelling at different phase speeds, the dispersion

process spreads the wave components apart. Therefore each component arrives

to the later field point at different times, as observed in Figure 3.1b. The corre-

sponding velocity and displacement of the beam are given in Figures 3.1c and 3.1d.
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Figure 3.1 The vibration response of an infinite beam following an im-

pulsive excitation; a) acceleration at z = 0, b) acceleration at

a: = 2.858 m, c) velocity at 2: = 2.858 m, and d) displacement at

:1: = 2.858 m.
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Figure 3.2 The spatial distribution of the velocity response of the beam

at successive time intervals.
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The envelope is observed to stretch out in time as moved from the acceleration to

displacement response of the beam.

In order to clarify the dispersion phenomena, the spatial distribution of

the velocity response is plotted in Figure 3.2 at successive time intervals. It is

interesting to note that, substitution of g(:c) from equation (3.11) into equation

(3.9) generates the second derivative of the Gaussian function which was treated

in detail in section 2.3 as the Mexican Hat wavelet. In other words, the velocity

distribution induced by the impulsive excitation of the beam is approximated by

the negative of the Mexican hat wavelet function, which is plotted in Figure 3.2 at

t = 0.0 ms. At later instances, the shape of the original pulse is immediately lost

as the wave components start to propagate in negative and positive directions. As

time progresses, it is observed from Figure 3.2 that the short-wavelength (high-

frequency) components are travelling ahead of the group while the long-wavelength

(low-frequency) components are trailing behind them. As a result, an observer

sitting at a later field point will record a sequence of wave components arriving at

different times, with the high-frequency components leading the group.

When the components making up an original transient waveform are spread

over a wide spectral range, the resulting evolution of the spectrum becomes a

natural candidate for the wavelet transform analysis. The reason is that the

self-adjusting window structure of the wavelet transform results in a time-scale

representation that displays the growth of the spectral components with varying

resolutions. Therefore, as demonstrated in the following examples, the wavelet

transform is an effective tool and a perfect match for the analysis of transient

waves propagating in a dispersive medium.

The wavelet transform of the acceleration signal at the two field points are

plotted in Figures 3.3 and 3.4. These contour plots have a range 20 dB with 1 dB

rise per contour. The time-scale representation given in Figure 3.3 looks very

similar to the wavelet transform of the unit sample pulse given in Figures 2.16

and 2.17. The curved ridge of the wavelet transform observed in Figure 3.4 is a
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characteristic of the dispersion phenomena. A more detailed discussion of similar

time-frequency representations is given following the experimental results.

The wavelet transform not only generates time-frequency representations,

but it can also be used to characterize the dynamic behavior of a system in the

space-wavenumber domain. For the present problem, the spatial distribution of

the acceleration response is obtained at two different times and plotted at the

top of Figures 3.5 and 3.6. Note that, in these figures, the scale represents the

wavenumber. A comparison of the space-wavenumber representations given in

Figures 3.5 and 3.6 reveals that the high-wavenumber components are leading the

wave group while low-wavenumber components are trailing behind them. Since

according to the dispersion relationship, given in equation (3.7), the wavenumber

is proportional to the half power of the frequency, a large wavenumber is associated

with a high frequency. Therefore, the curved ridges observed in Figures 3.4 and

3.6 complement each other in a nice way.

In the following experimental analysis, the preceding analytical results are

confirmed and further details of the dispersion phenomena are discussed.

3.3.2 Bending Waves on a Semi-Infinite Beam: Experimental Analysis

A semi-infinite uniform beam was used in the experimental study of propa-

gation and dispersion of bending waves. The excitation of the beam at the free-end

is expected to generate a response that is comparable to the response of an infinite

beam discussed earlier. The mathematical model implies that, in a semi-infinite

beam, any disturbance initiated at the free end would propagate away for ever. In

a physical system, this infinite propagation condition is simulated on a finite beam

by using an unechoic termination. For bending vibrations, burying one end of a

long beam into a fine-grained dry sand, as sketched in Figure 3.7, gives a quite

satisfactory result in terms of simulating an unechoic termination.

The experimental setup, sketched in Figure 3.7, consisted of a slender steel

beam with one end buried in a sand box. The beam was 50.8 by 6.35 mm in

cross-section and 3.658 m in total length. Two miniature accelerometers were
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 Sand Box

Figure 3.7 The experimental setup used for the simulation of a semi-

infinite beam.

mounted firmly on the beam, one at the free end and the other further down the

beam near the sand box, at a distance 2.858 m from the free end. An impulsive

force was applied to the beam by using two different impacters. First, a tuned

impact hammer having a myler tip was employed; and later, a small glass ball was

used. The acceleration data from the two accelerometers was recorded and later

analyzed by using a computer code performing the wavelet transform.

In the experiments, a hammer blow was applied to the beam at the tip of

the free end in a direction parallel to the horizontal plane. The initial instances

of the signal measured from the accelerometer, mounted just across the impact

point, is displayed at the top of Figure 3.8. Note that, the reflection from the

sand covered end of the beam is observed to be negligible, thus confirming the

effectiveness of the unechoic termination. The wavelet transform of this initial

acceleration signal given in Figure 3.8 is repeated as a color-coded magnitude plot

in Figure 3.10a. The contours in Figure 3.8 have 20 dB range with 1 dB rise per

contour. The center frequencies of the Morlet wavelet filters, in Figures 3.8-3.10,

correspond to f5" = 2'” - 400 Hz, with m = 0, ..., 7. Since the acceleration signal

generated by the initial impact is very similar to the impulsive excitation used in
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 , 8

Time (ms)

Figure 3.10 Color-coded plots for the wavelet transform of the signals

measured from a) accelerometer-1 and b) accelerometer-2.
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the analytical model, the wavelet transforms shown in Figures 3.3 and 3.8 have

very similar features.

Following the initial impact, each individual progressive wave component

constituting the initial waveform propagates with a different phase velocity. There-

fore, the waveform is dispersed as the waves forming the original pulse propagate

toward the second observation point. The acceleration response of the beam at

the second observation point, given in Figure 3.9, shows that the high frequency

progressive wave components are leading the wave group, while the low frequency

components are trailing behind them. The wavelet transform of the acceleration

signal, given in Figures 3.9 and 3.10b, displays clearly the evolution of the spectral

components during the dispersion phenomena. The contours in Figure 3.9 have

20 dB range with 1dB rise per contour. The similarity between the analytical

time-frequency representation given in Figures 3.4 and the experimental one given

in Figure 3.9 is quite remarkable. The curved shape of the graph observed in Fig-

ure 3.10b confirms the inverse relationship T or 1/\/w- between the arrival time T

and the frequency w. In order to have a correct interpretation of such time-scale

representations, the information exposed by the wavelet transform needs to be

clarified in the context of wave dispersion.

So far in this study, the discussion of the dispersion phenomena was based

on the simple harmonic progressive wave decomposition of the original transient

waveform. However, in order to interpret a wavelet transform, the building block

needs to be changed to the “progressive wavelet components”. A progressive

wavelet component is nothing more than a group of simple harmonic wave compo-

nents added together. For example, the Fourier transform of the mother wavelet

given in Figure 2.10(b) can be interpreted as a continuous group of simple har-

monic progressive wave components that has a Gaussian distribution about a

center frequency. Thus, each wavelet component is characterized by an associated

group of waves that have a particular propagation speed given by equation (3.8).

The center frequency of a wavelet component determines the group velocity and

thus the arrival times in Figure 3.10(b). For example, in Figure 3.10 the center
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frequency, 3200Hz, corresponding to the third octave results in a group velocity of

866.8 m/.9. Considering the distance travelled, from the free end up to the second

observation point, this group velocity yields an arrival time of 3.3 ms; which is in

good agreement with 3.5 ms measured from the wavelet transform results given

in Figures 3.10a and 3.10b.

3.3.3 Wave-Guide Behavior of a Beam

In order to extend the use of the wavelet transform, the wave-guide behav-

ior of the semi-infinite beam was investigated experimentally. The myler tipped

impact hammer used in the preceding experiments was capable of exciting only the

broadband mid-frequencies of the steel beam. In the second set of experiments

conducted on the same setup, higher frequencies were excited by using a small

glass ball as an impacter. The glass ball was hung from a string and then swung

from an initially displaced position to hit the free end of the beam at a point

half-way across its height. The impact of the glass ball excited the high-frequency

bending modes across the height of the specimen. Therefore, in addition to the

fundamental bending wave mode propagating along the beam, now the propaga-

tion of the first plate-mode was also recognized in the results. Consequently, the

beam started to behave more like a wave-guide.

The time traces of the two accelerometer signals recorded after the initial

impact are plotted at the top of Figures 3.11 and 3.12. The corresponding wavelet

transforms given in these figures are repeated as color-coded plots in Figure 3.13.

The contours in Figures 3.11 and 3.12 have 20 dB range with 1 dB rise per contour.

The center frequencies of the Morlet bandpass wavelet filters correspond to f3" =

2'" . 400 Hz, with m = 0,...,7. These time-scale representations reveal that

the impact of the glass ball has excited the fundamental flexural mode across

the height of the beam. By considering the free edges across the height, the

fundamental resonance is predicted as 12890 Hz; which is comparable to the

value 12930 Hz measured form the physical system. Therefore in Figure 3.13a,

the resonance of the first plate-mode is extending along the fifth octave, which has

a center frequency of 12800 Hz. Due to dissipation, the magnitude of the standing



 

 

 

  
uorzararooov

77

 

 

 

llllllllllllllIlllllllllllllllllllllllllllllIlIllllIlllllllllllllllllllllllllllllll'llllllllllllllllllllll

I

T
I
M
E

(
m
s
)

1
6

 
 

°.
F

O O. O. O O. O.
(0 ID V (’3 N "‘

(M8100) saves

0
.
0

0

F
i
g
u
r
e
3
.
1
1
T
h
e

w
a
v
e
l
e
t
t
r
a
n
s
f
o
r
m
o
f
t
h
e
s
i
g
n
a
l
m
e
a
s
u
r
e
d
f
r
o
m
a
c
c
e
l
e
r
o
m
e
t
e
r
-
1
.



 

 
 

  
 

no
!I

nl
al
aa
av

78

 

 

7
.
0

'.
‘

)0-

."

I.
..
‘x

-‘

I.

0

)M
i.

:‘fi
k

-
(1h

33)) ~
“i
n; 6
/ ‘ 1

. “£
15m

.

.ff‘
tr

. -.

’f
il
'@
)1

11.2119
? "—4...

1;1
“W[

{((
(©)

)h

”m"
’>:

‘¢n

HI!
;{L

&©»
»..

.

. Fl
ag
??
?”

-..
_..

.

.. 1 IIII
‘T -

.....
. fl,

T:J
II‘

(((
',,

,

6
.
0

5
.
0

(°“*°o) a
rms

”In

‘g
h

'.
)’

-.‘
A

I -"P’I
'I

.:
“
"

1
'

.

""
In

4
.
0

3
.
0

 

2
.
0

1
.
0

 
0
.
0

1
6

T
I
M
E

(
m
s
)

F
i
g
u
r
e
3
.
1
2
T
h
e

w
a
v
e
l
e
t
t
r
a
n
s
f
o
r
m
o
f
t
h
e
s
i
g
n
a
l
m
e
a
s
u
r
e
d
f
r
o
m

a
c
c
e
l
e
r
o
m
e
t
e
r
-
2
.



S
c
a
l
e

(
O
c
t
a
v
e
s
)

(b)

S
c
a
l
e

(
O
c
t
a
v
e
s
)

79

 
0 8 16

Time (ms)

Figure 3.13 Color-coded plots for the wavelet transform of the signals

measured from a) accelerometer-1 and b) accelerometer-2.
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wave that is set across the height of the beam decays in time following the initial

impact. Considering the wave-guide properties of the beam, it is concluded that

this higher plate-mode can propagate along the beam only for frequencies higher

than the cut-off, 12930 Hz. In Figure 3.13b, the dispersion of the primary bending

wave-mode is now accompanied by a secondary dispersion phenomena that extends

from higher frequencies down to the cut-off frequency where it decays off. Although

the dispersion of the fundamental bending wave—mode is carried all the way down

to the lower scales, the dispersion of the plate-mode is contained above the cut-

off frequency; since this latter mode can not propagate along the beam at lower

frequencies.

The large frequency range of the spectral evolutions observed in this ex-

ample gives us a good opportunity to compare the two different time frequency

representations resulting from the STFT and the wavelet transforms. Therefore,

in Figures 3.14-3.16, the acceleration signals obtained from the two field points

are re—analyzed by using the STFT. During the application of the STFT to the

signals, a Gaussian window was used. The window length is chosen as 512 samples

and the translation step size is assigned 16 samples. The contours in Figures 3.14

and 3.15 have 20 dB range with 1 dB rise per contour. Comparison of the wavelet

transforms given in Figures 3.11-3.13 with the STFT results given in Figures 3.14-

3.16 shows that the general characteristics of the dispersion and cutoff phenomena

are represented succesfully by both of the transform techniques. However, the

wavelet transform demonstrates a better performance in localization of physical

characteristics in the time-frequency plane. For example, in Figure 3.11, the be-

ginning of the initial pulse is localized precisely by the wavelet transform, whereas

STFT gives a relatively much wider band in Figure 3.14. Also, the wavelet trans-

form given in Figure 3.12 presents a much more detailed representation for the

transient wave motion, which, in comparison, is smeared out in Figure 3.15 due

to the constant window structure of the STFT.

The second accelerometer output recorded in this example is used as a

reference signal later in Chapter 7 to compare the performance of other wavelet

functions.
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Figure 3.16 Color-coded plots for the STFT of the signals measured from

a) accelerometer-1 and b) accelerometer-2.
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3.4 Nondispersive Medium: Acoustic Waves in a Pipe

In the case of a nondispersive system, the analysis of transient wave motion

becomes relatively more tracktable and leads to easy-to-interpret time-frequency

representations. In the following example, the propagation of an acoustic waveform

in a long air-filled pipe is analyzed by using STFT and wavelet transforms.

3.4.1 Dispersion Relation for the Acoustic Medium

The equation governing the propagation of an acoustic disturbance is ob-

tained from the Navier-Stokes equations which represent the continuity of fluid

mass-flow and the fluid momentum-density. The first-order equation governing an

acoustic motion is given by

6212;?” = C, 622223) (3.13)

where c is the speed of sound in the medium. The preceding second order PDE

is known as the wave equation. The details for the solution of the wave equa-

tion, under different initial conditions and boundary impedances, can be found in

classical textbooks, such as [92,102,113]. Therefore, here we consider only the sim-

ple harmonic progressive wave solution y(r,t) = exp(ik:r — iwt) of the governing

equation to obtain the dispersion relationship

c = w/k (3.14)

In this case, the definitions of the phase and group velocities given in equations

(3.1) and (3.5) imply that c, = c, = c. Since the phase and group velocities

are independent of the frequency of the wave components, the initial shape of a

waveform is maintained throughout time and space. In general, the dissipation in

the medium is expected to attenuate the amplitude of the acoustic waves without

effecting its shape. This shape—preserving characteristic of a nondispersive medium

is demonstrated in the following example on a physical setup.



Speaker [ P11"? .crophone

Figure 3.17 A sketch of the setup used for the acoustic pipe experiment.

3.4.2 Experimental Analysis of Acoustic Wave Motion

In this example, the nondispersive wave-bearing medium consists of a long

pipe with both ends open to atmospheric air, as sketched in Figure 3.17. A

uniform aluminum pipe with 64 mm inner diameter and 2.41 m length was used

in the experiments. A measuring microphone was placed at one end of the pipe.

The acoustic waveform was generated by using a 75 mm diameter speaker which

was placed at a distance 5 cm away from the end of the pipe. This seperation

between the speaker and the pipe minimized the interference which otherwise

would distort the waveform during its reflections from the boundary. A function

generator was used to initiate the pulse. The measured acoustic pressure is plotted

at the top of Figure 3.18. Form this time trace, it is oberved that the shape of

the pulse is maintained despite the reflections from the free boundaries. The

time interval between each arrival of the pulse at the microphone is calculated as

T = 2L/c = 14.05 ms. This prediction compares well with the measured value

T = 14.10 ms, which corresponds to the time intervals between the center of the

peaks in the wavelet transform given in Figure 3.18. The contours in Figure 3.18

have 40 dB range with 2 dB rise per contour. The center frequencies of the Morlet

Wavelet filters are given by fc’" = 2’" ~ 200 Hz, with m = 0, ..., 7. The time-scale

representation shown in Figure 3.18 demonstrates that the original signature of

the waveform is repeated in each cycle as the waveform propagates in the pipe.
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As time progresses, the amplitude of the waveform becomes attenuated, but its

shape is preserved.

In order to give a comparison, the STFT of the same acoustic pressure

signal was performed and the result is plotted in Figure 3.19. The STFT was

performed by using a Gaussian window. In Figure 3.19, the contours have 40 dB

range with 2 dB rise per contour. The window length is chosen as 512 samples, and

the translation step size is assigned 16 samples. As observed from Figure 3.19,

some of the basic features of the acoustic wave motion is also captured by the

STFT with a reasonable localization. However, the time-frequency representation

given in Figure 3.19 lacks the low frequency detail and the sharp time localization

characteristics demonstrated by the wavelet transform in Figure 3.18.

3.5 Discussion and Conclusions

In summary, the preceding examples gave a clear demonstration of the

advantages of using a time-frequency representation for the analysis of transient

wave motion. In particular, transient wave propagation in a dispersive medium is

found to be a perfect example for the effective use of the self-adjusting window and

variable resolution properties of the wavelet transform. The wavelet transform is

capable of displaying the details of the spectral evolutions over a wide range of

frequencies. In essense, the wavelet transform is expected to work equally well in

other physical phenomena that have similar wide-band scaling and time—evolving

characteristics.

The preceding examples demonstrated that the time-scale representations

(TSR) generated by the wavelet transform reveal distinctive signatures of transient

waveforms and help to identify the wavebearing characteristics of the medium.

The arrival times observed from the wavelet transform are associated with the

group velocities of the wavelet components. In the analysis of wave-guides, the

wavelet transform is shown to be an effective tool in seperating the evolution of

different wave-modes and in analyzing the cut-off phenomenon. In a nondispersive

medium, time-frequency analysis helps to localize echos from the boundaries. The
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local spectral content of the reflected waves are used to identify the dynamic

characteristics of the boundaries and the propagator itself.

As an alternative, space-wavenumber representation (SWR) is introduced

for a one-dimensional system. The display of SWRs succesively in time gives a clear

picture of the spatial-evolution of the wave components. Since it is quite difficult to

perform a high-resolution simultaneous measurement of space-dependent response

of a physical system, SWRs are expected to be of more use in the analysis of

analytical signals.

In the following chapter, the degree of difficulty involved in the analysis of

dispersion phenomenon is increased by including other complicating effects, such

as multiple reflections of waves from the boundaries.



CHAPTER 4

WAVE PROPAGATION IN FINITE STRUCTURES:

TRANSFER MATRICES AND WAVELET TRANSFORM

In the following, the self-adjusting (zooming) window structure of the

wavelet transform is utilized to analyze complex transient wave-interference pat-

terns generated by the reflections in a finite dispersive medium. The flexural

vibration of a beam is used as an example to study the propagation, reflection

and dispersion of a transient waveform. In order to analyze different beam config-

urations easily, the general frequency response function of a single-span beam is

formulated by using impedance boundary conditions in a transfer matrix method.

For a free-free beam, the results obtained from the numerical analysis are con-

firmed by experimental measurements. The wavelet transform of the acceleration

signals resulted in symmetric grid-patterns in the time-scale domain, and led to

the discovery of an interesting pulse reconstitution phenomenon.

4.1 Introduction

In an unbounded continuous medium, if there are no impedance discon-

tinuities in the field, the propagation characteristics of a transient waveform

will depend only on the properties of the wavebearing medium. However, in a

physical structure, the dispersion phenomenon is usually accompanied by addi-

tional effects, such as reflection and scattering of the wave components which are

caused by impedance discontinuities, boundaries and external disturbances. In

such cases, the interaction of the incident and reflected wave components may

result in complex wave interference patterns which are difficult to analyze by us-

ing one-dimensional spectral methods. In the analysis of such complex transient

Wave motion, the use of time-frequency or space-wavenumber representations may

90
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provide an effective means for studying time and space evolution of the spectral

components contained in the transient response. The transient vibration response

of a system can be obtained either by experimental measurements or by numerical

simulations of an analytical model.

One of the effective ways of determining the transient vibration response

of a linear time-invariant system is based on the use of the frequency response

function together with the excitation in a convolution integral. In the analysis of

linear one-dimensional systems, the frequency response function can be determined

by using a transfer matrix method. Here, the word “dimension” refers to the

number of independent space coordinates. In literature [80,86-91,106,107,110], the

effectiveness of the transfer matrix approach has been already established during

the analysis of different one-dimensional systems. Particularly, the use of wave-

mode representations in the transfer matrices has made the approach analytically

more tracktable and numerically more efficient [107].

In the following, the transfer matrix approach is employed to formulate

the frequency response function (FRF) of a point-excited single-span beam that

has general impedance boundary conditions. The formulated FRF is utilized to

construct the transient vibration response of different beam configurations. Later,

the results are analyzed by using the wavelet transform and compared with exper-

imental findings.

4.2 Transfer Matrices: General Method of Analysis

When a one-dimensional vibro—acoustic system performs single-frequency

time-harmonic vibrations, it is often possible to seperate the time and space de-

pendence. In such problems, the spatial distribution of the vibration amplitude

is governed in general by a set of ordinary differential equations (ODEs). These

governing ODEs can be transformed into a general state-space form [106,107]

dv

212' = Av + r (4.1)
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where v,f E C“ and A is a complex matrix. The elements of v, f and A

represent system variables, external forces and system parameters, respectively.

The most crucial step in the development of transfer matrices is the construction

of the modal matrix M which follows from the eigenvalues and eigenvectors of the

system matrix A. The modal matrix is used to transform equation (4.1) into an

uncoupled phase variable canonical form

dz -1

— = A M f 4.2dr 2 + ( )

where the elements of the diagonal matrix A represent the eigenvalues of A. The

preceding uncoupled form allows the solution of the system response as

2(2) = T1,-..) .(.,) + / T1.-.) M“ «ed: (4.3)

The matrix exponent T(e-eo) = eA("’0) is known as the field transfer matrix

of the system. Using 2 = M-‘v, the system response is transformed from the

canonical form back into the physical state variable representation

v(r) = MT(,_xo) IVI-l V(Io) + [z MT(,_£) Mml 1(5) (if (4.4)

The effectiveness of the transfer matrix method is not only due to the com-

pactness and ease of deriving the solutions, but also comes from the interpretation

of the results in both physical and canonical state variable representations. It is

known [106,107,134] that the elements of the canonical state vector 2, represent

the complex amplitudes of the wave-modes which are present in the system. The

canonical form of the solution given in equation (4.3) implies that the complex

Wave amplitudes are transfered from a station at r, to a latter station at :1: by

applying the field transfer matrix and by adding the contributions from the ex-

ternal disturbances. During this operation, the diagonal form of the field transfer

matrix renders the approach analytically more tractable and computationally less
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involved. In addition, by equating the complex eigenvalue A to ii: in the char-

acteristic equation, detIAI - AI = 0, one can obtain a dispersion relation for the

wave-bearing medium [106].

An outstanding feature of the transfer matrix method is that the inclusion

of boundaries and different constraints does not increase the size of the matrices.

Such physical complexities are handled very efficiently in a compact form by per-

forming simple matrix algebra, which is demonstrated later in the applications.

After the inclusion of all the constraints, one always ends up with a fundamental

relation of the form [106]

B z = b (4.5)

where z is the reference state that is being solved. The physical characteristics of

the system and the external disturbances are represented by B and b, respectively.

The solution of 2 requires the inverse of the matrix B, which will exist only if

det(B) 76 0. This condition is satisfied for most physical systems, since there

is always some kind of mechanism that dissipates energy. Consequently, as the

frequency w is varied no true resonances (singularities) are encountered, and the

amplitude of the response stays finite.

The transfer matrix approach defined above is employed in Appendix F to

formulate the general bending vibration response of a flexible beam. The transfer

matrices, derived in Appendix F, are applied in the following to formulate the

vibration response of a single-span beam.

4.3 Vibration Response of a Single-Span Beam

A single-span uniform beam is considered to have arbitrary boundary con-

ditions represented by mechanical impedances, as sketched in Figure 4.1. The

response of the beam to a concentrated force F0 acting at :1: = aIL is obtained in

terms of the transfer matrices; starting from the left-hand side, the relationship

between the states 2(2) and 2(0) can be expressed as

2(0) = T(.,) 2(1!) (4.6)
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Figure 4.1 A single-span beam with general translational and rota-

tional 1mpedance boundary conditions and a point force.

Similarly, the relationship between the states z(r) and z(L) is obtained from equa—

tion (F.10) as

z(L) = T(L—r) 2(3) + T(L-o.,1.)C_1 K-l f0 (4-7)

where, for the present problem, fo = [ 0 0 0 — ino (w) /B]T.

The boundary conditions, given in equation (F.28), require that

1 0 £11 £12 _ r11 r12 1 0 _

[0 1 g en]z(0)—0, [7.“ r” 0 1 z(L)—0 (4.8)

21

where 2;,- and ng are the corresponding elements of the reflection matrices, R0

and RL , defined in equation (F.26).

The four matrix relations, given in equations (4.6-4.8), are sufficient to

determine the velocity response of the system. In order to solve for the reference

state of the flexural vibrations, 2(a), the state vectors at the boundaries, 2(0) and

Z(L), are eliminated by substituting equations (4.6) and (4.7) into equation (4.8).
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Then, the resulting two matrix equations are combined into a single partioned-

matrix relation as

 

A0 T(_z) 0

______ z(e) = ________:1_:1__ (4.9)

A1. T(L-3) _AL T(L-GIL) C K ft)

\_-——-/
k v

B b

which is in the general form defined in equation (4.5). In the preceding equation,

  

e—ik,z 0 e6“" cue-k,z

0 6*" e::eik, 1: e e-k,z

B: rueik,(L—z) rue-k,(L—z) e—ilc,(L—r) 2’ 0 (4-10)

r” eik,(L—.r:) 1'2, e-k,(L—r) 0 eh,(L—:l:)

T

b= [0 o 7. 1.] (4.11)

where, by assigning A = k, L, the elements of the vector b are defined as

ino(w) , _ _, a
7, = __°._4Bk: ,-,.e M1 a1)_,.u—A(1—a1)_ 111-1)]

in-—°(w)i ,- _a _ _a _

The eigenfrequencies of an undamped system are determined from its chara-

teristic equation, by solving det(B) E A = 0, where

A = Z. r, e704” — 2,, r,, 1341“” - 8,, r,, 120“” + c(1-i)A — (3,, r,, +2,,r,,)

(4.12)

In the preceding equation, 2. = (2,, 2,, — 3,, Zn) and r. = (r,, r,, — r,,r,,). It is

Clear that for an undamped system, the characteristic equation gives real roots,

Ag. However, if damping is present, the roots will have both real and imaginary

parts. In a physical system, the presence of any form of energy dissipation, such as
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an impedance boundary, guarantees the existence of B". Under such conditions,

premultiplying the right-hand-side of equation (4.9) with 3'1 gives the response

of the system in terms of the phase-variable canonical form z(z). The physical

variables, such as the velocity amplitude V(z,w), can be recovered by using the

back transformation given in equation (F.16). The velocity amplitudes of other

points along the beam can be determined by using the state transfer relationships

given earlier.

The dynamic charateristics of the system can be expressed in terms of the

transfer mobility of the system, which is defined as H,f(w) = V(:c,w)/F,, (w). The

transfer mobility of the system between the points :1: and 2:, = afL is obtained as

1 . , . .

Hzf(w) = Z[— en 78 ekp(L+tz) _ £12 7‘ e—akp(L-t) + 3‘ re e-k,(L—Iz) _ g. 7', ck,(sL-z)

_ en 73 ek,(L-1:) _ in 7‘ e-k,(z+iL) + 73 ek,(L—i1:)+ 7‘ ek,,(:I:-:'L)

_ in re e—k,(L+i1:) _ e” 1‘, eik,(L-z) + 821 re ek,(.1:—L) +3“ r, ek,(z+iL)]

(4.13)

where r, = r,, 7,, — r,, 7,, rc = r,, 7,, - r,, 7, and a: S afL. The transfer mobility

for the region a: > OIL can be readily obtained in a similar manner. The result

is the same as that obtained by interchanging the boundary impedances at :c = 0

and a: = L, i.e. r,,- with 85,-, and substituting (L — x) for 2:, (1 — of) for a, in

equation (4.13).

Simplification of equation (4.13) leads to the standard results. For example,

when the boundary impedances at a: = 0 and :r = L are made equal, [5,- = r,,, the

characteristic equation reduces to

(,.11 r” _ r12 r21)2 6-0-0A _ 7‘32 e“(1+i)X _ r31 e(l+i)a\ + C(l-i)A _ 2r” r” = 0

(4.14)

As a specific example, if we consider a pinned-pinned beam, the coefficients become

"1, = r,, = 1 and r,, = r,, = 0, which when substituted into equation (4.14) gives



97

the characteristic equation as sin(lcl) = 0, as expected. Other more complex

boundary conditions can be analyzed easily by using the above relations in a

numerical algorithm.

In the analysis of a single span beam, the general solution for the drive-

point mobility, given in equation (4.13), can be used to investigate a wide variety

of configurations with different boundary conditions. In the following, a few of the

ideal boundary conditions are considered to study the transient wave propagation

in a single-span beam.

4.4 Transient Response of a Free-Free Beam: Analytical Study

In literature [45,67,92,97,102,113], transient wave propagation in a finite

dispersive medium is known as a challenging analytical problem, since closed form

solutions are not tractable for most of the practical systems. Therefore in ap-

plications, the propagation of transient waves are studied by employing either

numerical or experimental techniques. In the following, the wavelet transform is

applied to the analysis of impact induced transient vibrations of a uniform beam

for different boundary conditions. The analytical results obtained for a free-free

beam are later compared with experimental measurements.

The transient vibration response of a single-span beam at an excitation

point can be predicted by using the definition of the drive-point mobility Hz,(w) =

V(z, w)/F, (w), stated earlier before equation (4.41). For a given point force Fo (w),

the velocity response V(:r,w) is determined in the complex frequency domain. In

general, a closed-form solution for the time-domain velocity response v(:r, t) is

dificult to obtain from V(z, w) by using the inverse continuous Fourier transform.

Usually, numerical techniques are employed during the calculation of the inverse

Fourier transform. The Discrete Fourier Transform (DFT) is one of the methods

used commonly in practice, and requires uniform sampling of the response function

in the frequency domain. There are well-known pitfalls and limitations related
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with the application of the DFT, such as the time-domain aliasing problem. These

difficulties and alternate solution procedures are discussed seperately later in this

study.

In the following numerical simulations, the time-domain response is pre-

dicted by using an FFT algorithm. The size of the FFT used during the computa-

tions was N = 215, which over a frequency range of fmaz = 6.25 kHz resulted in

a uniform sampling interval 6; = 0.78125 Hz. The spectrum of the force F0 (w) is

considered to have a Gaussian distribution about the origin and decays by 20 dB

near 6 kHz. The spectrum of the force is designed to simulate the sharp impulsive

excitation used in the experiments that are discussed later. The beam is consid-

ered to be made of aluminum with dimensions 38.1 by 6.35 mm in cross-section

and 1.402 m in length.

Since both boundaries of the beam are considered to be free, the transla-

tional and rotational impedances on each boundary should be 2,, = To = 0 and

it, = T, = O. The excitation and the observation points are collocated at one of

the free ends of the beam. The predicted time domain acceleration response of the

beam is plotted at the top of Figure 4.2. The time-scale representation generated

by the wavelet transform demonstrates an interesting interference pattern in Fig-

ure 4.2. The contours in Figure 4.2 have 20 dB range with 2 dB rise per contour.

The center frequencies of the Morlet wavelet filters correspond to f5” = 2'” ~40 Hz,

with m = 0, ..., 7. The details of the physical phenomena governing this interfer-

ence pattern is discussed in the following experimental analysis.

4.5 Transient Response of a Free-Free Beam: Experimental Analysis

The preceding analytical results showed that, following the application of

an impulsive load on a finite beam, the interference of bending waves propagat-

ing along the beam may generate an interesting signature in the time-frequency

domain. The following experimental results confirm this predicted dynamic be-

havior and shed light on the physical principles behind the unusual interference
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patterns. Two different beam configurations were tested. In each case, the ma-

terial properties, the length and the cross-sectional dimensions of the beam were

different.

4.5.1 Experiments on a Steel Beam

In the first set of experiments, the specimen used in the preceding chapter

was reconfigured as a free-free beam with a length L = 3.658 m. The beam was

held in a horizontal position by hanging it at two points, at a distance L/10 away

from each boundary. A miniature accelerometer was mounted at one of the free

ends. Again, by using the myler-tipped hammer, the beam was impacted at the

free end at a point just across from the accelerometer. The recorded acceleration

signal is plotted in Figure 4.3a. In order to display some of the details, the initial

instances of the time trace is enlarged in Figure 4.3b. These time traces show that,

following the initial occurrence of the pulse, a quiet period of time exists, during

which the bending waves travel along the beam toward the other free boundary.

Upon reflecting from the other boundary, each wave component propagates back

toward the observation point. Since high frequency components that are present in

the initial pulse travel at a faster phase speed, they arrive first at the observation

point, which is clearly displayed in Figure 4.3b. As time progresses, multiple

reflections of waves from the boundaries together with the dispersion phenomena

results in a complicated transient interference pattern. In a way, a time-frequency

representation helps to unfold this complex interference pattern and expose the

details of the time evolution of the spectral components.

The wavelet transform of the signal is given in Figures 4.4-4.6 by using both

contour and color-coded plots. In Figures 4.5 and 4.6b, the first quarter of this

wavelet transform is enlarged to show more details of the initial instances. The

contours have 20 dB range with 1 dB rise per contour. The center frequencies of

the Morlet wavelet filters correspond to fg" = 2'" - 20 Hz, with m = 0, ..., 7. The

primary vertical band corresponds to the initial impulse, which is very similar in

form to the transform of a unit sample pulse, given earlier in Figures 2.16 and

2.17. Again, following a quiet moment, the first curved band represents the initial
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Figure 4.6 Color-coded plots for the wavelet transform of the acceleration

signal measured
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arrival of the wave components. Following the original impact, each individual

wave component completes a round-trip by first propagating, then reflecting from

the other boundary, and finally propagating back to the initial point. Due to

the dipersion phenomena, each wavelet component approaches to the observation

point at a different time T oc 1/\/u7. This same process repeats itself over time

and results in a succession of such bent curves in Figures 4.5 and 4.6b. Therefore,

at a given time, such as 80 ms in Figure 4.6b, there may be more than one wavelet

component in the signal with each being associated with a different loop-count.

This behavior is also observed from the time trace shown in Figure 4.3b. At about

t N 38 ms, while the low frequency component is completing its first round-trip,

the high frequency component having a faster phase speed has already finished its

second loop. As the time progresses, these multiple reflections together with the

dispersion of the waves generate an extraordinary interference pattern as displayed

by the time-scale representation given in Figure 4.6a.

The interference pattern shows a symmetry property that reveals a seem-

ingly impossible pulse reconstitution phenomenon. After a period of time, at

around 500 ms in Figures 4.4 and 4.6a, all spectral components reallign them-

selves with their original relative phases, and reconstruct the original pulse. This

remarkable reconstruction phenomenon occurs after the wave components have

propagated in a dispersive medium and reflected many times from the boundaries.

The acceleration time trace, plotted in Figure 4.3a, also gives a clear exposition of

this pulse reconstitution phenomenon, as indicated by the small arrow. Another

interesting fact about this phenomenon is that it repeats itself with a constant

period given by

Ta = L’/(n/Eh2/12p) (4.44)

which is obtained by using the method of images and by performing a group anal-

ysis of the propagating bending waves [67,97]. For the steel beam, the preceding

equation gives TR = 456.9 ms, which is confirmed by the experimental value mea-

sured as 455.5 ms. As might be expected, the material damping that is present in

the system causes a slight misallignment of the wave components. However, in the

present lightly-damped system, the spatial attenuation of the wave components
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does not obscure the periodic repetition of the pulse-reformation. Further mea-

surements conducted for longer periods of time have shown that the magnitude

of the wavelet transform decays slowly starting from higher frequencies. However,

the main grid structure observed in Figure 4.6a is repeated.

4.5.2 Experiments on an Aluminum Beam

In order to raise confidence in the preceding findings, a second set of experi-

ments were conducted on an aluminum beam that had similar free boundaries, but

different dimensions. This second example forms the experimental counterpart of

the system simulated numerically earlier in section 4.3. Again, the dimensions of

the beam were 38.1 mm by 6.35 mm in cross-section and 1.402 m in length. The

mounting conditions, instrumentation and the testing procedure were repeated

from the previous experiment. The measured acceleration data is plotted at the

top of Figure 4.7, where again the arrow points to the first reconstruction of the

original pulse. The wavelet transform of this signal is given in Figures 4.7 and

4.8. In Figure 4.7, the contours have 20 dB range with 2 dB rise per contour. The

center frequencies of the Morlet wavelet filters correspond to f5” = 2'” - 40 Hz,

with m = 0, ..., 7. The general features observed from these figures are very similar

to the preceding steel beam case. For this aluminum beam, the period of recon-

stitution is calculated from equation (4.44) as 78.5 ms, which is confirmed by the

value 78.3 ms measured from the experimental results.

In order to have a closer look at the pulse reformation phenomenon, the

initial part of the wavelet transform and the part of the signal corresponding

to the first reconstruction are enlarged in Figures 4.9-4.10 and Figure 4.11-4.12,

respectively. The signature of the original pulse, observed in Figures 4.9-10, is

almost exactly repeated later in time as shown in Figures 4.11-4.12. The occur-

rence of the pulse is detected easily by recognizing the conical shape of the phase

distribution and the constant phase line running vertically downward though all

scales. Note that in Figure 4.10b the constant phase line has a distinctive wavy

signature near the base line. In addition to the reconstruction of this signature,

many other distinctive features of the phase distribution are repeated in Figure
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Figure 4.8 Color-coded plot for the wavelet transform of the acceleration

signal measured from the aluminum beam.
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Figure 4.10 Color-coded plot for the details of the initial instances of the

wavelet transform given in Figure 4.8; a) magnitude and b) phase.
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Figure 4.12 Color-coded plot for the details of the first pulse-reconstruction

segment of the wavelet transform given in Figure 4.8; a) magni-

tude and b) phase.
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4.12(b), which further proves that the spectral components are indeed realligning

themselves during the pulse reformation phenomenon.

4.6 More Examples with Different Configurations

For a single-span beam, a general frequency response function was derived

earlier by considering mechanical impedances of boundaries in a transfer matrix

method. The impedance formulation of the boundaries is a very effective approach,

since a large group of beam configurations can be analyzed by using the same

matrices. In the following, some other well-known ideal boundary conditions are

simulated to demonstrate the transient vibration characteristics of different beam

configurations. The objective is to study the similarity of the impact induced wave

interference patterns in different beam configurations. In all of the examples that

follow, the beam properties and simulation parameters are kept the same as those

listed in section 4.3.

4.6.1 Pinned-Pinned Beam

In order to introduce ideally pinned supports at both ends of the beam,

the translational impedances at the boundaries Z, = Z, are assigned very large

values and the rotational impedance are set to zero, To = T, = 0. In order to

observe the reconstitution phenomenon, the excitation and the observation points

are collocated at the center of the beam. In Figure 4.13, the predicted time

domain acceleration response of the beam and its wavelet transform are plotted.

The center frequencies of the Morlet wavelet filters correspond to f5" = 2'” ~40 Hz,

with m = 0, ..., 7. The time-scale representation (TSR) resulting from the wavelet

transform looks quite similar to the free-free beam response, repeating a typical

symmetric grid pattern. Since the distance the waves travel following each count is

halved, L/2 instead of L, the reconstitution time is a quarter of its value calculated

for the free-free beam, T3 = 78.5/4 = 19.6 ms. The physical interpretation of the

interference pattern follows from the free-free case.
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4.6.2 Clamped-Clamped Beam

In an ideally clamped boundary, both of the mechanical impedances become

very high. Therefore, in this case, all the boundary impedances, Z, = Z, = To =

~

TL , are assigned a common large value. Again, the observation point is collocated

with the external force at the center of the beam. The predicted vibration response

and the corresponding wavelet transform are given in Figure 4.14. The center

frequencies of the Morlet wavelet filters correspond to fg‘ = 2'" - 40 Hz, with

m = 0, ...,7. The TFR shown in Figure 4.14 is similar to the results observed

in earlier cases. Infact, the transient wave interference pattern depends little

on the boundary conditions, provided that the boundary reflects the incoming

energy or the reflection coefficient is unity. Since, the evanescent components

decay off within a few wavelengths from a boundary, the interference pattern

observed at high frequencies is totally due to positive- and negative-going wave

components. If the boundary is transmitting part of the incident power to some

other wavebearing medium, then the scattered wave components will break the

structure of the interference patterns, as demontrated in the following example.

4.6.3 Pin-Connected Two Beams

The aluminum beam used in the preceding examples is duplicated, and thus

a two-span configuration is obtained by laying two identical beams horizontally

end-to—end and considering an ideal pin-connection between them. The other two

ends of the beams are allowed to vibrate freely. There is a simple numerical

procedure to extend the transfer matrix formulation of a single—span beam given

earlier to such multi-span configurations; the frequency response function for one

of the beams can be used as the boundary impedance for the other. Since an ideal

pin connection is free to rotate, the torsional impedance at the pin connection

is allowed to vanish. In this example, the observation and excitation points are

collocated at either one of the free ends of the beams.

The predicted response of the combined system and its corresponding

wavelet transform are given in Figure 4.15. The Morlet wavelet center frequen-

cies correspond to f3" = 2'" - 40 Hz, with m = 0, ...,7. At the initial instances,
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the wave interference pattern looks similar to earlier examples, but starting im-

mediately with the third loop-count an interesting cancellation happens causing

a missed curve in the TSR. In later moments, the combination of dispersion,

multiple-reflections and scattering causes the grid pattern to be smeared out in

the time-frequency plane. Therefore, the interference patterns observed in earlier

examples are not repeated, the symmetry is lost, and no distinctive signature seems

to characterize the transient vibrations of the system during the later instances of

time.

4.6 Discussion and Conclusions

In practice, the pulse reformation phenomenon is expected to exist only

under very special circumstances. The conditions for its occurrence are such that it

may be difficult to observe this phenomenon in practical systems where dissipation,

nonuniformities, non-ideal boundaries and asymetric configurations are likely to

exist. Even on a single-span beam it was observed only when the excitation and

observation points were collocated at the boundaries or at the center. In that

respect, the results presented above were intended mainly to demonstrate the

efficacy of the wavelet transform in uncovering complex transient wave propagation

phenomena.

The preceding results and discussions demonstrated the effectiveness of the

wavelet transform in the analysis of transient waves propagating in a finite disper-

sive medium. The similarity in the general structure of the wavelet basis and the

basic characteristics of the physical phenomena brought about a powerful analy-

sis scheme. The time—scale representations resulting from the wavelet transform

demonstrated a very efficient way of exposing the evolution of the spectrum dur-

ing the dispersion and reflection of an impulsive waveform. The self-adjusting

window structure of the wavelet transform provided adequate resolutions over a

wide spectral range and thus, resulted in an efficient localization of the complex

interference patterns in the time-scale domain. The TSRs clearly displayed the

return of each wave component after each round-trip; its propagation along the
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beam, reflection from the boundary, and then its propagation back to the obser-

vation point. In addition, the decomposition of a transient vibration signal into

its wavelet components resulted in a wave-group representation of the dispersed

waveform.

The physical examples demonstrated the basic advantages and some of the

limitations of the wavelet transform analysis. The wavelet transform performs

effectively for vibration signals that have wide-band frequency content with com-

plex spectral evolutions in time. However, in the analysis of standing waves, the

constant-Q characteristics of the wavelet transform makes it difficult to distinguish

harmonic contributions coming from individual modes.

Finally, it should be stressed that the analysis scheme demonstrated in this

chapter by using relatively simple mechanical structures is perfectly applicable

to more complex systems that may have different dispersive characteristics and

structural configurations. Indeed, it is hoped that the results presented here will

stimulate the use of the time-frequency representation techniques in a wide field

of applications.
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CHAPTER 5

WAVELET FRAME EXPANSIONS

AND

WAVELET RESPONSE FUNCTIONS

The main goal of this chapter is to lay the framework for the theory of

wavelet response functions by arguing for their practical use in the characteriza-

tion of linear system dynamics. Particular attention is given to the synthesis of the

transient time-domain response of a proportionally-damped wide-band linear sys-

tem by using its frequency response function. The convolution integral is replaced

by an efficient synthesis scheme which is developed by using multi-resolution and

wavelet frame concepts. In order to give a self-contained presentation, some of the

issues regarding time-domain aliasing and the concept of wavelet frames will be

discussed. Later, the definition of the wavelet response function is introduced by

considering the wavelet series expansion of the forcing function in the convolution

integral.

5.1 Introduction

In the analysis of linear time-invariant (LTI) systems, frequency and im-

pulse response functions are utilized frequently during the characterization of dy-

namic behaviors. Since frequency response functions (FRFs), such as a recep-

tance, impedance or an accelerance, are readily available in today’s multi-channel

analyzers and softwares, they are employed commonly in experimental analysis of

vibro—acoustic systems. Therefore, in analytical studies, the frequency-domain for-

mulation of a system’s response not only facilitates the mathematical derivations,

but it also generates results that are easily compared to physical measurements.
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In comparison to FRFs, impulse response functions are used to represent the tran-

sient response characteristics of linear systems. The impulse response function of a

linear system acts as the kernel of the convolution integral, where the latter defines

the transient response of the system to an arbitrary excitation. In the complex

frequency domain, the convolution integral becomes a simple multiplication of the

Fourier transforms, which is related to the definition of an FRF.

Basically, a frequency or an impulse response function can be determined

by measuring the dynamic response of a system to a sinusoidal or an impulsive

excitation. The major difference between these classical excitation functions is

that they have opposite time-frequency localization characteristics. An ideal si-

nusoidal excitation extends throughout time and is well-localized in the frequency

domain, whereas an impulsive excitation is well-localized in time but has a widely

distributed spectrum. Between these two extreme excitation types, one can find

many different functions, such as wavelets, that have desirable localization char-

acteristics both in time and frequency domains.

5.2 Preliminary Concepts and Background

In order to form a background to the succeeding mathematical construc-

tions, some of the major concepts and definitions are discussed in the following.

5.2.1 Convolution Integral

The response of a linear time-invariant (LTI) system to an arbitrary exci-

tation is given by the convolution integral

oo

y(t) = f(1') h(t - 1') dr (5.1)

—oo

where f(t) and h(t) represent the excitation and the impulse response function

of an LTI system, respectively. In order to replace the convolution integral by

"
~
.
"
'
T
.
3
‘
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a simpler algebraic operation, the Fourier transform of the preceding equation is

performed;

/_: y(t)e-iw‘dt = I: [1: f(.,) h(t _ T) d7] e-iwt dt

= :0 f(r) e"“"’ dr [.00 h(t) e‘w‘ dt

which is simplified as

Y(w) = H(‘0) F(w), (5.2)

with Y(w), F(w), and H(w) representing the Fourier transforms of y(t), f(t),

and h(t), respectively. The interchange of the integrals is allowed by the Eubini’s

theorem. Equation (5.2) implies that the convolution of two functions in the

time-domain is equivalent to the multiplication of their Fourier transforms in the

complex frequency domain. The simplicity of this algebraic operation is the main

reason for the use of the Fourier transform in evaluation of the convolution integral

to obtain the response of an LTI system.

The frequency response function, H(w), is usually analytically tractable

from a dynamic model of the system, or else it can be determined experimentally.

Therefore, if the Fourier transform of the input F(w) is known, the time domain

representation of the system response can be obtained by evaluating the inverse

Fourier transform of the frequency-domain response

t = —— Y w e'” dw . 5.3y( ) fl; -.,. ( ) < )

In practice, the evaluation of the preceding integral causes serious difficulties, and

closed-form analytical solutions are known to exist only for very special cases.

A more practical and commonly used alternate approach is based on the

discretization of the frequency-domain response Y(w). Then, the corresponding

discrete-time system response is obtained by applying the inverse discrete Fourier
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transform (DFT) to the sequence of samples. For narrow-band systems, this DFT

approach may generate acceptable results with reasonable computational load.

However, in lightly—damped wide-band LTI systems, time-domain aliasing creates

additional difficulties and imposes restrictions on the number of samples and the

sampled frequency range.

5.2.2. Signal Bandwidth and Duration; Time-Domain Aliasing

In the applications, generally the continuous spectrum Y(w) is sampled

uniformly over a finite number of frequencies. During this discretization process,

the sampling interval and the number of samples need to be chosen carefully to

prevent time-domain aliasing of the synthesized signal.

During the forward transform, frequency-domain aliasing is prevented by

choosing the sampling frequency F. 2 2F"... , where Fm. represents the spectral

range of the transformed signal. Similarly, during the inverse Fourier transform,

time-domain aliasing is averted by choosing the sampling duration T, _>_ 2Tmu,

where Tm. represents the total duration of the reconstructed signal [108,111].

Duality of the forward and inverse Fourier transform concepts is apparent from the

preceding statements. In practical applications involving the forward transform,

the spectral range of the signal is estimated aprior to the transformation. The

estimate is based on physical considerations and also on the objectives imposed

by the particular application.

In practice, it is well-known that a signal which is highly localized in time,

such as an impact acceleration signal, has a Fourier transform which is wide spread

throughout the spectrum. On the other hand, a sharp peak in a spectral represen-

tation is associated with a signal that has a very long duration in time. Therefore,

during the application of an FFT synthesis scheme to the reconstruction of a

transient vibration response, a narrow bandwith resonance peak in the frequency

response function corresponds to a long duration signal in the time-domain. In

comparison, high-frequency structural vibrations generally have wide bandwidths
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that generates short duration transient signals. Consequently, the relationship be-

tween the bandwidth and the time-duration of a transient vibration signal needs

to be known to choose proper sampling parameters.

In vibro-acoustic systems, the reveberation time is used frequently as a

convenient measure for the duration of a transient response. The definition of

the reveberation time and the related concepts are summarized in Appendix H.

The reveberation time is given as T8 = 2.2/B3“, where B,“ is the half-power

bandwidth. Other definitions of bandwith that are in common use are listed

in Appendix G. The relationship between the bandwidth of the system and the

duration of its impulse response is stated as

T = 2.2 . (5.4)
"ICC Bsda

 

Again in Appendix H, the half-power bandwidth is shown to be directly propor-

tional to the loss factor 17 and the natural frequency f” of the system:

Bade = ”fl! - (5.5)

The preceding expression for the half-power bandwidth is quite general, and it is

also valid for vibrations of multi-modal systems in bending, torsion and in longi-

tudinal motions [37]. Note that, if the loss factor is held constant, the bandwidth

increases with the natural frequency. This point is fundamental in enabling us to

exploit the properties of wavelets, as discussed later in this study.

The combination of the preceding relations provides an upper bound for

the interval between frequency samples

1 1 B
= — < = “a ,

T, _' 2T 4.4 (5 6)

  

5!

which needs to be satisfied for an unalliased time-domain construction. For lighly-

damped systems, equations (5.4) and (5.5) imply long signal durations, and there-

fore, require very frequent sampling within a given frequency range. For a multi-

modal system, the frequency response function is generally spread over a wide
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spectral range and therefore render the efficiency of such sampling schemes ques-

tionable. The problem is nothing more than the well-known time frequency reso-

lution problem associated with the Fourier transform.

A solution to the preceding problem is the partitioning of the spectrum into

different resolution frequency bands. For example, the Shannon wavelet basis that

is generated from the sine function, sin(1rt)/1rt, can be used to divide the spectrum

into disjoint partitions [14,23,116], as shown in Figure 5.1a. If we consider the

continuous set of all positive frequencies w 6 R'l’ = (0, co), the dyadic division

implies [23,58]

+_ m A m+l A

R .. [J (2 13,3 A,]

where the rms-bandwidth is defined by Brm, = 2A; , with the latter being the

radius. Certainly, the Shannon wavelets, with their infinite support and slow

decay characteristics, would not be the most practical choice. In that respect, the

concept of frames comes to the rescue and relaxes the choice of the wavelet basis

at the expense of overlapping the spectral bands as shown in Figure 5.1b. In the

following sections, the variable resolution property of the wavelet frame expansions

are exploited during the decomposition of the convolution integral.

5.3 flames and Wavelet Response Ehnctions

In the synthesis of transient response, the time-frequency resolution prob-

lem induced by the Fourier transform can be averted by dividing the frequency

spectrum into variable resolution bands. The multi-scale and variable-resolution

(zooming) properties of the wavelet transform provide the desired structure for ac-

curate reconstruction of the time-domain response. A combination of the wavelet

and the frame concepts are employed to replace the convolution integral with a set

of multi-resolution components. The transient response of the system is formed

by adding the contributions coming from different resolution levels. In order to

form the background for later discussions, the frame concepts are reviewed briefly

in the following.
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5.3.1. The Frame Concepts

The frame concepts were first introduced by Duffin and Schaeffer [48] and

later by Young [135], Heil and Walnut [68] and treated in detail by Daubechies

[42,43] and Benedetto [15,16] within the context of the wavelet theory.

In a Hilbert space H, a family of functions {zbmg m, n E Z} constitutes a

frame if there exists bounds A > 0 and B < 00 such that, for every f e H

Allfllz S 2 |(f.t/).....)l2 S Bllfllz - (5-7)

The frame operator is defined as T : H —+ €2(Z) such that any f E H is mapped

to a c,,m E 22(Z) as follows:

(Tf)mn = (fa i1bmn) = Cmn -

The associated adjoint operator is given by T‘ : 22(Z) —» H, such that for any

c E [2(Z), this operator generates

TIC : Z cmnizmn

m,n

=2<fa¢mn>$mn =f

(5.8)

The family of functions {Jinn : m,n E Z} constitutes a dual frame, which is

generated from «pm as shown in the following. From the preceding definitions the

bounds on the operators are derived as

AI S T‘T S B I

B’1 I 5 (T"T)"l S A'1 I

where I is the identity operator. Therefore, the dual frame is defined by

Jmn = (T.T)-1‘/)mn : m," E Z . (5.9)
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Then, for any f, g 6 H we have

(fag) = Zifflbmnl (Jmmg) a

m,n

which implies the frame expansion

f = 2(1: 4....) «Z... = 20.4%....) 4.... . (5.10)

The preceding definitions apply to all different forms of frames that may be defined

in a Hilbert space H. In general, the frames are classified by their frame bounds,

as discussed in the following.

The ratio B/A represents the redundancy of the frame. Frames having B/A

close to one are called “snug frames”, which are used to generate approximate

m n

In this case the tilde sign is dropped, which implies that the analyzing wavelet

frame is used during both the analysis and the reconstruction stages. If the two

frame bounds are equal, A = B, then it is called a “tight frame”, and the above

relationships imply

z: l(f.t/Jm..)|2 = A||f||2 , (5.12)

which gives

f = A-l Zifflpmn) ¢mn . (5.13)

i

This last formula looks very similar to the expansion of any f E L2(R) in terms of

an orthonormal basis. However, even the tight frames do not form an orthonormal
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basis. As a natural extension, a tight frame with A = B = 1 generates an

orthonormal basis, which can be used in the series expansion

f = Zif: d’mn) ¢mn . (5.14)

During the applications considered in the next chapter, a frame is generated

by usign the Morlet wavelet with four voices per octave. This particular choice

results in a very snug frame as discussed later. In the following, the preceding

frame concepts are extended to the wavelet frame expansions.

5.3.2 Wavelet flame Expansions

Earlier in Chapter 2 the discrete form of the wavelet families and multi—

resolution concepts were discussed. In order to generate some usefull relationships,

the same discretization process will be carried out in two stages as shown in the

following.

Let us begin by considering the family of wavelet functions

 

Wm“) = 7110:“), (t ; b) (5.15)

where a, b 6 R and a 79 0. As a first step in the two-stage discretization process,

the dilation parameter is assigned a = 2’” with m E Z. Then, the semi-discrete

form of the wavelet family is represented by

ti.e.-42.52), ..,...

Similarly, the translation parameter is discretized by using I) = n2”, which gives

(4.....(t) .—. 2-m/2 4(2-mt — n) , m,n e z . (5.17)
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The semi-discrete form, which has continuous translation property, can be decom-

posed into elementary discrete wavelet components

(X)

31:“) = 2 ($31: Juan) d’mn“) : m,” E Z . (5.18)

fl=—CX3

which will be usefull in the following wavelet frame expansions.

The preceding discrete wavelet components are combined with the earlier

frame concepts to decompose a function f E L2(R) into multi-resolution compo-

nents. In order to obtain some usefull structures, the decomposition will be carried

out in two steps. First, the frequency localization will be performed by represent-

ing the function as a series of detail functions, and later each detail function will

be resolved into time-local wavelet components.

The semi-discrete form of the wavelets, given in equation (5.16), are utilized

to decompose a function f E L2(R) as [23]

oo

f(t) = 2 mt). (5.19)

where

mt) = [0 <f.$.°..>¢f..(t)db. m e z. (5.20)

is the projection of f onto the mth resolution subspace and therefore, it represents

the detail contained in the original function at the mth resolution level. Therefore

it is proper to call ff, the “detail function”.

In order to achieve time localization at each resolution level, the wavelet

expansion of 112:, given in equation (5.18) is substituted back into the preceding
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expression, and then the summation and integration are interchanged as follows:

f.'.".(t) = f” (£153.) [ 2 <43..$...>4...(t)] db
- n=—oo

= i [1:tf.$fn)(¢fm$m)db time)

= Z (figmn) ¢mn(t) -

This result implies

f.‘.”.(t) = Z anzbmnu) , (5.21)

"-7—-”

where the wavelet coefficients Fm“ are defined by

 

Fm, = (fjm) = /_°° f(t) Jm,(t)dt, m,n e z. (5.22)

As a result of the preceding two-level localization process, the wavelet series ex-

pansion of f, defined in equation (5.19), becomes

f(t)= Z Z an¢mn(t)- (5.23)

m=-oo n=-oo

Since the whole wavelet concept is based on recursion relations, there are

many simplifications that one can consider during the implementation of the pre-

ceding concepts. For example, the Fourier transform of the elementary wavelet

ftmctions is obtained recursively from the Fourier transform of the mother wavelet,

$mn(w) = 2""2 e““2m“ $(2mw) , by using the shifting and scaling properties of

the Fourier transform, given in Appendix A. Therefore, the Fourier transform of

the detail function defined in equation (5.21) becomes

75100) = 2: Fun: 1igmno'”)

n=—oo (5.24)

= 2M2 $(2mw) r,,.(w) .
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where the modulated wavelet coefficients Fm are defined as

Fm(w)= Z Fm, 6-5.2»)... (5.25)

n=-oo

The preceding series expansion in terms of elementary wavelet components can be

exploited in physical applications concerning transient response of linear systems.

For example, equation (5.21) implies that the detail of a signal at the mth reso-

lution level is equivalent to the sum of the integer translates of wavelet functions

weighted by the wavelet coefficients. This multi—resolution property of wavelet

transform is utilized in the following decomposition of the convolution integral.

5.3.3 Wavelet Response Functions

The response of an LTI system to an arbitrary input is given by the con-

volution integral

y(t) = [00 f(T) h(t — 1')d1' . (5.26)

If the input to the system is classified as a finite energy signal, f E L2(R), then the

convolution integral can be resolved into a discrete latice of elementary wavelets.

Substituting the wavelet series expansion of the input f(t) = Em f,',f’, (t) back into

the convolution integral and interchanging the summation and integration, by

assuming 2 ||f,',",||2 < 00, yields

:10) = /_: [ fifl] h(t-T)dT

m=—oo

= i Um fg;(r)h(t—r)dr] .

m=-oo -°°

This result can be reorganized as

W) = 2 113.0) . (5-27)

"3:-”
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by defining

y,‘f,(t) = / f,‘f’,(1’)h(t — r)dr , m E Z . (5.28)

Equations (5.27) and (5.28) suggest the decomposition of the convolution integral

into multi-resolution components. As sketched in Figure 5.2b, the response ym

from each level of resolution carries a distinct detail of the overall system response.

In the frequency domain, the Fourier transform of the system response, at

the mth resolution level is obtained from equation (5.28) as

rte») = muffle)

= 2"'/2 $(2mw) Fm(w)Tz(w) (5.29)

= ..(wfizttw) .

where the relation given in equation (5.24) is utilized. The preceding equation

contains a new function defined as

35(5)) = 2m/2 $(2mw)’fi(w) , m e z ,

which in the time domain implies

hfifl) =/ i/rm(‘r) h(t — 1')d1' , m E Z . (5.30)

Note that 1])", = tbmo is the dilated version of the mother wavelet localized around

the origin. The preceding equation implies the convolution of the system impulse

response function with an elementary wavelet function. Therefore, it is natural to

call hi, a “wavelet response function”. The superscript 1b is a reminder that these

functions are determined following a particular choice of the mother wavelet.

In summary, the original convolution integral is replaced by the convolution

of the impulse response with the elementary input signals. The output of the

system is formed by adding contributions coming from each resolution level, as
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Figure 5.2 The block-diagram representation of the convolution operation for an

LTI system; a) standard representation, b) wavelet frame expansion of

the input, and c) implementation based on wavelet response functions.
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sketched in Figure 5.2c. Besides their mathematical implications, the wavelet

response functions also have an associated physical meaning. This new definition

is a natural extension of the well-known concept such as “Frequency Response”,

“Impulse Response” and “Indicial Response” functions of a linear system.

5.4 An Alternate Construction

The natural extansion that follows from the preceding discussion is to find

an alternate representation for the convolution integral by decomposing both the

input f and the impulse reponse function h. Therefore, the series expansion of the

input f(t) = 2m f,'f’,(t) and the impulse response h(t) = 2,. hflt) are substituted

into the convolution integral;

y(t)=/_°° 2 film] [ Z Hit-7)] d‘r

m=-oo j=-oo

oo oo

= Z 2: 31:13“),

m=-oo j=—oo

where

1131,,(1) = [o fg;(r)hj'(t—r)dr, m,k e z,

The Fourier transform of the preceding expression gives

53,4.) = fittw) hftw) .

Horn equation (5.24) we have

75(5) = 2m” are») F...(..)

then) = 21'” 4124411514)

(5.31)

(5.32)

(5.33)

(5.34)
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where the original definition is extended for the impulse response function h. Sub-

stituting the preceding relationships back into (5.33) gives

17.”...(w) = 2‘3“)” $(2jw)$(2mw)Fm(w)H.-(w) . (5.35)

Therefore, the contribution coming from the mth resolution level is significant only

if m and j are close to each other. If the wavelet has sharp decay characteristics in

the frequency domain, excitation in one frequency band remains localized around

that particular band. This argument agrees with our understanding of the one-

to-one input-output relationship that governs the linear systems in the frequency

domain.

5.5 Implementation of the Wavelet Response Functions

Equation (5.27) implies that the overall system response is formed by the

addition of all contributions from different resolution levels. Therefore, it is ap-

propriate to perform the inverse Fourier transform on each individual component

of the response, 37$,(w), and later superimpose all the time reponses contributed

from different detail levels. The advantage gained during this operation is that

the sampling interval used at each resolution level can be adjusted during the

implementation of the DFT.

5.5.1 Bandpass Filtering with Wavelets

Since each one of the wavelet components acts as a bandpass filter, the

wavelet response functions can be determined accurately by using the inverse

Fourier transforms. Consider flKw) to be localized within wl _<_ w 5 w. First,

this function is shifted to the origin by an amount wc = (w; + wg )/2 and then the
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inverse Fourier transform is performed

112%) = ——,_:7, f... ate» + ...) .1.

= etwct 27,. / W110”) eswt dw

V -oo

= 6“”“ y.‘f’.(t)

Then, the response is obtained from

11310) = 6"“ 1133’“) (5-36)

Note that, the spectral range for finflw) is defined as —w1 _<_ w 5 wg. The

frequency wc acts as a carrier with yx’, (t) being imposed on it as an information

bearing signal.

The above concepts and relations are applied in the following chapter to

physical problems. The efficiency of the wavelet frame reconstruction scheme is

discussed by using examples.

5.6 Discussion and Conclusions

As it was discovered earlier during the analysis of wave dispersion, the

wavelet decomposition and reconstruction performs effectively on signals having

spectral evolutions that are spread over a wide band of frequencies. In the case of

proportional-bandwidth systems, the duration of a transient response depends di-

rectly on the frequency of vibrations. High-frequency (wide-bandwidth) transient

phenomena results in short signal durations and therefore requires more samples

in a given time frame. The opposite is true for low-frequency (narrow-bandwidth)

transient vibrations. During the construction of transient vibration response for a

multi-modal system, both high- and low-frequency components need to be added

together to form the overall system response. Consequently, the short- and long-

term dynamic behaviors of the system need to be generated at different resolutions,
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and this point is the fundamental reason for the advantage of the proposed wavelet

frame synthesis scheme.

The partitioning of the spectral range by using wavelet frames allows us

to consider the output from different resolution levels and automatically adjusts

the resolution and the time-duration at different levels of detail. Since wavelets

are functions that are localized both in time and frequency, the definition of the

wavelet response function fills in the gap between impulse and frequency response

functions, which are sharply localized either in time or frequency but not in both.

Therefore, it may be argued that wavelet forcing functions are physically more

meaningful and may find further use in the experimental analysis of vibro-acoustic

systems.

The implementation of the proposed synthesis scheme is clarified during

the applications considered in the following chapter.
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CHAPTER 6

APPLICATIONS OF WAVELET FRAME EXPANSIONS

AND WAVELET RESPONSE FUNCTIONS

In the following applications, the effectiveness of the wavelet frame synthe-

sis scheme is investigated by considering the construction of the transient vibration

response of a finite beam. First, some simple decomposition and reconstruction

examples are considered to form a background on wavelet frame expansions. Later,

the time history for the acceleration response of a free-free beam to an impact ex-

citation is obtained by employing two different methods. In the classical method,

the frequency response of the system is uniformly sampled and then inverse Fourier

transformed. The time-domain aliasing problem associated with a DFT construc-

tion scheme is demonstrated by considering a lightly-damped system. As an al-

ternative, wavelet frame expansion is used to partition the spectral range into

multi-resolution frequency bands, where the response from each resolution level is

obtained by using a proper sampling interval.

6.1 Introduction

The mathematical theory and applications of orthonormal basis for Hilbert

spaces has been under development for more than a century. In recent studies, the

decomposition of signals and functions in non-orthonormal basis, such as frames,

has started to receive more attention [15,16,38,42,43,48,68,135]. In particular, the

relationship. between the frames and wavelets developed recently has opened the

way to new analysis and synthesis schemes that benefit from the advantages of

both concepts.

The synthesis scheme introduced in the preceding chapter was based on

wavelet frame expansions. In the following, multi-voice Morlet wavelet frames are

139
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defined, which are later used to decompose and reconstruct benchmark signals and

transient response of a beam.

6.2 Wavelet Frame Expansions

There are many different wavelets that can be used to generate a frame in

L2(R). Due to its smoothness and mathematical simplicity the Morlet wavelet is

chosen for the following applications. Since a multi-voice construction is needed

to form a usefull frame from the Morlet wavelet, the following presentation be-

gins with a discussion of this issue. Later, the decomposition and reconstruction

features of the wavelet frame are studied by giving examples.

6.2.1 Multi-Voice Morlet Wavelet Frames

In the applications, a frame generated by a family of wavelets can be quite

usequ during decomposition and reconstruction of functions and signals. The

redundancy introduced by a snug, or even better a tight frame, can be exploited

during applications [42]. Certainly, different wavelets generate frames with distin-

tive properties. The characteristics of different wavelet frames are investigated in

Daubechies’s studies [42,43]. In the following, some of her results are used directly

without repeating long derivations and proofs.

The Morlet wavelet, used earlier for analysis purposes, has considerable

potential for generating effective wavelet frame expansions. In particular, the

multi-voice schemes that generate snug frames are very suitable for wavelet frame

expansion of functions and signals. In a multi-voice construction, the number of

filter-banks that partition the frequency range in a dyadic grid are increased by

introducing fractional dilations (or voices) of the mother wavelet. A new family

of wavelets is generated from the mother wavelet by each fractional dilation;

Wm = z-i/N ¢(2-i/N t) j = 0,1,... ,N — 1 (6.1)
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where N is the number of voices in each octave. Then, the definition of the Morlet

wavelet given in equation (2.27) implies that the new wavelets should be defined

as

-zj/N t2
¢j(t) = 2-j/N ”-1/4 exp {—iwcz"’”t] exp {—2 2

where again j = 0, 1, . . . ,N — 1. On a discrete lattice, the preceding multi-voice

wavelet representation yields

  :L...(:) = 2-(:/,2/:J/N) exp {—m. 2"”(2-mt — n)] exp [—2""’" (2-m12_ ")2]

(6.2)

where m, n 6 Z and j = 0, 1, . . . , N — 1. Depending on the choice of N, equation

(6.2) leads to the construction of different wavelet frames with each characterized

by the corresponding frame bounds. Daubechies has shown that a Morlet wavelet

frame constructed by using four voices has the frame bounds A = 6.918 and

B = 6.923, which yield a redundancy ratio B/A = 1.0008. Therefore, N = 4

results in a very snug frame. This four-voice Morlet wavelet frame is used in the

rest of this chapter to decompose and reconstruct functions and signals.

6.2.2 Reconstruction of the Dirac Delta Function

A dirac delta function (distribution) can be used as a simple means of

checking the reconstruction properties of Morlet wavelet frames. The dirac delta

function is defined as

0, t 7E to

6(t - t ) = 6,,

° f... 6(t —t,)dt = 1

The wavelet frame decomposition of the delta function generates wavelet coeffi-

cients which are obtained as

00

F2... = (6.4:...) = f 6(t — to)¢:;..(t)dt = 3.0.).
-oo
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In order to simplify the computations, the location of the dirac delta pulse is

assigned to the origin to = 0. Then, from equation (6.2) the wavelet coefficients

are derived as

—2jIN n2
2-(m/2+J'/N)

12] exp {-2 ? ,F,’,,,, = 1/4 exp [iwc2

1r

 

m,n€Z, j=0,1,...,N-—1.

Following such a decomposition, the wavelet frame expansion given in equation

(5.11) implies that the original delta function can be approximated closely by

5.,,,.(.) z fi—E 2: F3... 5.0). (6.3)
I’m,“

Although such an expansion theoretically requires m to take all integer values in Z,

in applications m has to be limited to a finite interval. In order to demonstrate the

effectiveness of such a truncation, equation (6.3) is simulated with the preceding

wavelet coeflicients by using the four-voice Morlet frame. In Figure 6.1, the total

number of octaves used during the decomposition—reconstruction process is varied

in each of the cases (a) through (d). Inclusion of contributions from higher octaves

in Figure 6.1a results in a finer resolution and gives better cancellation of the

waviness on either side of the pulse. As observed from this example, no matter

how sharp the signal might be, the total number of octaves for a satisfactory

,resonstruction of the original signal can be expected to be in the order of 20

octaves. For smoother signals, one can use even smaller number of octaves as

discussed in the following examples.

6.2.3 Reconstruction of Synthetic Signals

In general, for a given signal the wavelet coefficients are not tractable an-

alytically, but needs to be calculated numerically. Therefore, the discrete wavelet

transform algorithm that was introduced earlier in section 2.4 is reconfigured to
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Figure 6.1 The reconstruction of a dirac delta function by using wavelet

frame expansions. The total number of octaves used during

the reconstruction are a) 19, b) 15, c) 11 and d) 7.
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output wavelet frame coefficients for a given signal. The four-voice Morlet wavelet

frame expansion scheme used in the preceding example is applied to some well-

known synthetic signals. In each of the following examples, a total of nine octaves

are used during the decomposition and reconstruction operations. In Figure 6.2,

the original and the resconstructed signals are compared to each other. The results

show that the nine octave range gives quite accurate reconstructions for smoothly

varying signals. However, sharp discontinuties require contribution from higher

scales for better reconstruction.

In order to evaluate the potential of the frame reconstruction scheme, the

preceding decomposition-reconstruction algorithm was applied on a measured ac-

celeration signal. The acceleration signal measured earlier in section 4.4 is used

here as an example. The physics of the governing transient wave propagation

phenomena was studied earlier in section 4.4. The original acceleration signal,

plotted in Figure 6.3a, was first decomposed into the Morlet wavelet frame rep-

resentation, and later reconstructed by using nine octaves. The reconstructed

acceleration signal is plotted in Figure 6.3b. A comparison of the original and the

reconstructed signals shows that the wavelet frame expansion succesfully recovers

the main temporal and spectral characteristics of the acceleration signal. The nine

octave range, that was used during the resonstruction process, filters out very low-

and high-frequency components of the original signal.

The decomposition and reconstruction properties of the wavelet frame ex-

pansions considered in the preceding examples helped us gain confidence and in-

sight in the procedure. So far, both the starting point and the end result were

chosen as the time-domain representation of a signal. However, in many engineer-

ing applications, the frequency domain is the most suitable starting point for the

formulation of a system’s response. In the following, the utilization of wavelet

frame expansions to obtain transient vibration response of linear systems is in-

vestigated. In order to clarify the benefits of using wavelet response functions in

such a synthesis scheme, first the limitations of a commonly used discrete Fourier

transform (DFT) approach are discussed by considering an example.
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Figure 6.2 Examples on decomposition and reconstruction of synthetic

signals. The wavelet frame contains nine octaves and four

voices. - -- Original signal, — Reconstructed-signal.
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6.3 'h'ansient Response of a Beam: FFT Synthesis

In the following, the discrete Fourier transform is used to synthesize the

transient vibration response of a uniform beam that has free boundaries. The

specimen is considered to have the same material and geometric properties as the

aluminum beam used in section 4.4.2. The drive-point accelerance of the beam

is obtained by using the transfer matrix method, given by equation (4.13). The

magnitude of the accelerance is given in Figure 6.4a. An average loss factor of

= 0.001 is used to characterize the material damping in the aluminum beam.

The system is considered to be excited by a Gaussian pulse, which has a spec-

tral distribution as shown in Figure 6.4b, with the magnitude decaying off near

6 kHz. In experiments, a similar spectrum for the excitation was observed from

the measurements conducted with a myler-tipped hammer during its impact on

the beam. According to equation (5.2), the response of the system is given by

Y(w) = H(w) F(w). Therefore, the action of the force may be thought of as

though it is low-pass filtering the impulse response of the system.

In order to apply the inverse discrete Fourier transform, the frequency re-

sponse Y(w) is sampled in the frequency domain. The bandwidths and the upper

bounds for the sampling interval are calculated by using the relations given in

equations (5.5.) and (5.6). The results are tabulated in Table 6.1. Since the first

mode has the smallest bandwidth, the sampling criteria is determined by using

the corresponding frequency interval, which is 6; 5 0.0033. The spectral range is

chosen to include 0 Hz to Fm“ = 12800 Hz. Consequently, in order to prevent

time domain aliasing, the size of the FFT needs to satify N Z 7 757 576, which is

unacceptably large for all practical purposes. If the frequency interval is fixed, the

use of smaller number of FFT points will increase the interval between frequency

samples. Therefore, the contribution coming from the modes at the lower end of

the spectrum (which have smaller bandwidths and large T.) will cause aliasing

during reconstruction of the system’s time response.
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Table 6.1 The natural frequencies, the associated bandwidths and

the suggested sampling intervals.

 

 

 

 

 

 

 

 

 

Mode# f(Hz) BM, (Hz) 615

1 14.43 0.0144 0.0033

2 39.77 0.0398 0.0090

3 77.97 0.0780 0.0177

4 128.89 0.1289 0.0293

5 192.55 0.1926 0.0438

6 268.94 0.2689 0.0611

7 358.05 0.3581 0.0814

8 459.90 0.4599 0.1045      
 

The effect of the sampling interval on the constructed system response is

investigated by considering different FFT sizes in the present problem. In Figure

6.5, the vibration response of the beam is obtained by sampling the frequency

response at four different sampling intervals. The detail at the initial instances of

time, following the impulsive force, is shown in Figure 6.6. As observed clearly from

Figures 6.5a and 6.6a, the sampling interval 6.25 Hz causes unacceptably heavy

aliasing in the time domain and hardly displays any information relevant to the

physics of the wave propagation and dispersion. As the sampling interval becomes

smaller, proceeding downward in Figures 6.5 and 6.6, the effect of aliasing slowly

weakens down. However, as demonstrated by the above calculations, even the case

N = 2”, given in Figure 6.5d, still carries the effects of aliasing coming from low-

ordered modes. Consequently, as long as the synthesized response contains aliased

modal contributions, these results can qualify only as rough approximations.

The preceding example demonstrated the time-frequency resolution prob-

lem associated with the Fourier transform. As peaks get sharper in the frequency
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Figure 6.5 The transient vibration response of the free-free beam synthesized from

its frequency response function by using uniform sampling and inverse

discrete Fourier transform. The sampling intervals and the correspond-

ing FFT sizes are a) 6, = 6.25 Hz, N = 2”, b) 6, = 3.125 Hz, N = 213, c)

6, = 1.5625 Hz, N = 214, and d) 6, = 0.78125 Hz, N = 215.
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Figure 6.6 The initial instances of the system response, corresponding

to the cases shown in Figure 6.5.



dorn:

The:

1
"

beta.

l
l

1
.

~
...

“

C186.

spec

(lliit

I830 .

6.4

DE!

the

the

H10

Wa

is

the

C0;

I0r

Vir



152

domain, it takes longer for the transient response to decay in the time domain.

Therefore, the effectiveness of using uniform sampling in the frequency domain

becomes questionable, since the bandwidth of the frequency response function in-

creases proportionally with frequency. It would certainly be more efficient if the

spectrum could be divided into multi-resolution bands with each band assigned a

different sampling interval. The wavelet frame expansion provides such a multi-

resolution construction, as shown in the following.

6.4 'D'ansient Response of a Beam: Wavelet Frame Synthesis

In the preceding chapter, the convolution integral was replaced with a new

synthesis scheme. In the following applications, the implementation of the wavelet

frame synthesis is carried out in three stages. In the first stage, the wavelet frame

coefficients of the excitation signal is determined. A four-voice Morlet wavelet

frame is used throughout this analysis. In the second stage, wavelet response

functions of the system are calculated. In the final stage, the modulated wavelet

frame coefficients are found and multiplied with the associated wavelet response

function. Then, the response contributions coming from different resolution levels

are added together to form the vibration response of the system.

The response of the system is synthesized by using 9 octaves and 4 voices

per octave, which makes a total of 36 resolution components. In order to optimize

the performance of the reconstruction, the nine octave range was offset to span

the octave range m = 4, . . . , 12, the decision being based on the distribution of the

modal frequencies of the beam. The number of samples in each frequency interval

was fixed at 213 samples. Therefore, on each octave-band the spectral resolution

is automatically adjusted, becoming smaller at lower-frequency bands. Some of

these features are summarized in Table 6.2. Note that, the frequency resolution

corresponding to 4th octave, 6f = 0.004 Hz, is very close to the value required

for the un-aliased synthesis of the first modal contribution, which was stated in

Table 6.1 as 6f _<_ 0.0033. Therefore, as far as aliasing is concerned, the results are

virtually unaffected.
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Table 6.2. The center frequency for each octave band, the associated max-

imum frequency and the sampling interval required for 213 samples.

 

 

 

 

 

 

 

 

 

 

 

 

 

    

m (Octave) fume, (Hz) Fm“ (Hz) 6, (Hz)

0 0.8493 2.1232 0.00026

1 1.6986 4.2466 0.00052

2 3.3973 8.4931 0.00010

3 6.7945 16.986 0.00207

4 13.589 33.973 0.00415

5 27.178 67.945 0.00829

6 54.356 135.89 0.01659

7 108.71 271.78 0.03318

8 217.42 543.56 0.06635

9 434.85 1087.1 0.13270

10 869.70 2174.2 0.26540

11 1739.4 4348.5 0.53080

12 3478.8 8697.0 1.06160
 

 
6.4.1 Unit Sample Pulse Excitation

 

The acceleration response of the aluminum beam following an initial impul-

sive force is obtained by using the wavelet frame expansions, and the result is shown

in Figure 6.7a. Following the initial excitation, the acceleration response decays

slowly in time while showing off the pulse-reformation phenomenon four times

in Figure 6.7a. The duration until the first occurance of the pulse-reformation

phenomena are given in more detail in Figure 6.7b. Further details for the ini-

tial instances of the system response and the pulse-reformation are provided in
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Figure 6.8. The pulse-reformation phenomenon is observed to occur at around

78.5 ms, following the initial pulse. As discussed earlier in relation to Figure 6.1,

the decomposition of a unit sample pulse over nine-octaves gives an oscillatory rep-

resentation during the reconstruction. As demonstrated earlier in Figure 6.1, the

representation of a delta function over nine octaves results in a function oscillating

on both sides of a sharp peak. Therefore it is fair to say that the system responds

to an excitation that has a wide-band spectral representation defined in 0 — 9 kHz

range. Infact, the affect of this forcing function is observed from the response for

the initial instances of time in Figure 6.8a, where the initial vibrations mimic the

oscillatory behavior of the excitation. The flat zero response region following the

initial pulse, and also before and after the reconstructed pulse, give a clear indica-

tion of the quality of the synthesized system response. The reason is that a zero

response over an extended period of time requires perfect cancellations between

the response contributions coming from different resolutions. In comparison, the

results given in Figure 6.6 demonstrated that the aliased signal components did

not allow this cancellation to occur completely.

The effectiveness of the present approach is clarified by considering the

contribution to the response of the system from each resolution level. In reference

to Figure 5.2, the response components yx’,(t) are studied independently. For the

present problem, the response of the system contributed from five different octaves

is presented in Figure 6.9. Since the frequency resolution is altered at each octave,

6, increases with m, and thus the time duration of the signal becomes shorter at

higher frequency bands. The striking feature is that this adjustment of the time

duration works to prevent aliasing at all resolution levels. As observed from Figure

6.9, each response component decays off within the first half of the corresponding

time window length. As a result, both the long-time (low-frequency) and short-

time (high-frequency) behavior of the system are obtained simultaneously. In a

way, the wavelet frame synthesis works like a microscope, displaying the details of

the system dynamics at different levels of magnification with adequate resolutions.

This way of viewing the contents of a signal can give us further insight

into the pulse reconstruction phenomenon discussed earlier. In the following, the



(ZS/w) uoraeraraaav

0
.
0
1
5
 

(
a
)

 

 
 
 

1
0
0

1
5
0

2
0
0

2
5
0

(
b
)

 

 

 

 
-
0
.
0
2

i
.

I
.

.
 

 

T
i
m
e

(
s
)

F
i
g
u
r
e
6
.
9
T
h
e
e
n
v
e
l
o
p
e
o
f
t
h
e
a
c
c
e
l
e
r
a
t
i
o
n
r
e
s
p
o
n
s
e
o
f
t
h
e
s
y
s
t
e
m
c
o
n
t
r
i
b
u
t
e
d
f
r
o
m

d
i
f
f
e
r
e
n
t

o
c
t
a
v
e

r
e
s
o
l
u
t
i
o
n
s
,

y,
",

’,
(t

).
T
h
e

o
c
t
a
v
e
n
u
m
b
e
r
s

a
r
e

a
)
m
=

4
,
b
)
m
=

6
,

c
)
m
=

8
,
d
)

m
=
1
0
a
n
d

e
)
m
=
1
2
.

157



 

"
A
I

-
\



158

 
 

In <1-
—

A A

U "U
v V

_N _ _N..—
—

"7

<1-_ -c~ - 4N-

_‘°._ —~= — _

  

 

     
 

0
.
2
5

(as/w) uoraeraraaav

(
8
)

T
i
m
e

F
i
g
u
r
e
6
.
9

(
C
o
n
t
i
n
u
e
d

)
.



159

 

 

    

—

A

G)
v

_ no

net

_ ..‘9.
G

_ _‘Z
G

_ _‘Y
c

—‘
.-°

1

In G In

"" '7

(as/w) uoraeraraaav

(
8
)

T
i
m
e

F
i
g
u
r
e
6
.
9

(
C
o
n
t
i
n
u
e
d

)
.



160

response of the system contributed from each resolution level is used to give a

better explanation for the pulse-reformation phenomenon. Note that, the response

given in Figure 6.7a was constructed by summing all the contributions coming

from different resolution levels at a given time, y(t) = Zy,‘f’,(t). In Figure 6.10,

the system’s response is displayed at three successive octave resolution levels. It

is obvious that the projection of the unit sample pulse to each resolution subspace

results in a different wave pattern in the system’s response contributions. It is the

summation of such wave groups that results in the initial pulse shown in Figure

6.8a. In all three cases shown in Figure 6.10, the initial wave group is observed to

continue to disperse and go through multiple reflection until t = 78.5ms (pointed

by the arrows). Remarkably, at each resolution level the wavegroup reformes

into its original shape at around t = 78.5 ms, the only difference being slightly

lower magnitudes due to dissipation. Consequently, the summation of such wave

groups at t = 78.5 ms results in an another pulse looking very similar to the

original one, as shown in Figure 6.8b. The initial and the reconstructed waveform

observed in Figure 6.10c, is expanded for better comparison in Figure 6.11. After

many reflections from the boundaries and continued dispersion throughout its

propagation, the original waveform is very closely duplicated with only a slight

reduction in the magnitude due to material damping.

6.4.1 Gaussian Pulse Excitation

The unit sample pulse used in the preceding example is not a physically

realistic forcing function due to its sharpness. As a result of using a limited

number of octaves, the decomposition of the unit sample pulse was lacking high

frequency information and thus in Figure 6.8 small amplitude oscillations were

observed about t = 0. A more realistic function that can be used to simulate an

impulsive excitation is the Gaussian pulse. The acceleration response of the beam

due to a Gaussian pulse excitation is obtained by employing the preceding wavelet

frame expansion scheme. The results, which are given in Figure 6.12, portray

features similar to Figure 6.7, but now the contribution coming from the higher

frequency bands is reduced. The detail of the initial and reconstructed pulses

are given in Figure 6.13. The smoothness of the Gaussian pulse has prevented the
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Figure 6.10 The reconstruction of the initial wave group at three different

octave resolutions. The reconstruction time is T, = 78.5 ms.

The octave numbers are a) m = 10, b) m = 11 and c) m = 12.



(,9/w) uoraeraraaav

 
1
5

I

(
a
)

 
 

 
_
1
5

I
m

I

-
0
.
0
0
2

-
0
.
0
0
1

0
.
0
0
l

0
.
0
0
2

 

 

=

 
1
5

I

(
b
)

 
 

 
'
1
5

l
I

1

0
.
0
7
6
5

0
.
0
7
7
5

0
.
0
7
8
5

0
.
0
7
9
5

0
.
0
8
0
5

 

 

T
i
m
e

(
s
)

F
i
g
u
r
e
6
.
1
1
T
h
e

r
e
c
o
n
s
t
r
u
c
t
i
o
n
o
f
t
h
e
o
r
i
g
i
n
a
l
w
a
v
e
g
r
o
u
p

a
t
t
h
e

1
2
t
h
o
c
t
a
v
e

r
e
s
o
l
u
-

t
i
o
n
.

a
)
O
r
i
g
i
n
a
l
w
a
v
e
g
r
o
u
p
,
b
)
R
e
c
o
n
s
t
r
u
c
t
e
d
w
a
v
e
g
r
o
u
p
.

 

162



163

small oscillations on either side of the original and reconstructed pulses which were

observed earlier in Figure 6.8. These results look very similar to the acceleration

signals measured in experiments discussed in Chapter 4.

6.5 Discussions and Conclusions

A comparison of the results obtained from the uniformly-sampled discrete

Fourier transform method (Figure 6.5d) and those obtained from a wavelet frame

expansion (Figure 6.12b) shows an overall similarity in the constructed time do-

main signals. In particular, the details of the initial instances given in Figures

6.6d and 6.13a are quite similar. Small differences are due to the aliasing that is

present in the former case.

In general, the self-adjusting sampling property of the wavelet frame syn—

thesis scheme results in a more efficient construction, since the details of the signal

are generated at different resolutions. A distinct advantage of the wavelet frame

reconstruction scheme is that the effect of the excitation on the system’s response

can be viewed at different scales. The resolution at each scale level is matched

with the detail of the reconstructed component of the response. Consequently,

the short- and long-time duration contributions to the overall system response

are obtained simultaneously. However, in comparison to a direct FFT inversion

scheme, the wavelet frame expansion method is generally more difficult to imple-

ment. The advantage of the proposed synthesis scheme becomes more pronounced

as the range of frequencies contained in the signal becomes larger.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

In this concluding part of the study, some of the secondary issues raised

during the preceding chapters are considered in more detail. For example, since

wavelet transform can operate with different wavelets, the performance of alter-

nate choices are investigated. The use of different bandwidths in Morlet wavelet

filters are also discussed, and the effect on the resolution of the transforms is

studied by considering a reference signal. The distinction between wavelet frames

and orthonormal basis is discussed in the context of reconstruction of transient

signals. The chapter is concluded with a discussion on other possible applications

of wavelets in mechanical systems, a summary of the properties of wavelets, and

a presentation of the specific contributions of this research.

7.1 Alternate Choices for Wavelets

During the application of the wavelet theory, one of the diffith decisions

that needs to be made is the choice of the mother wavelet. Since the begin-

ning of the recent uptrend in the wavelet research, many different families of

wavelets have been suggested for use in applications, as listed in the literature

[14,24,36,43,94,116,122]. With the current trend, it is expected that different types

will be discovered in the near future. In applications, the properties that are con-

sidered during the selection of a wavelet basis are listed as; the orthogonality of

the basis (vs. frames), support range (finite or infinite), symmetry, regularity

(smoothness), real or complex types, size of the quadrature mirror filters, exis-

tence of the side bands in the spectrum, decay characteristics in both time and

frequency domains and the ease of implementation. In a particular application,

it may be sufficient to consider only a few of these properties and disregard the
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others. For example, in signal compression applications, the selection of a partic-

ular type of wavelet depends very much on the characteristics of the signal that

is being analyzed. One solution to this difficult selection problem is suggested by

Coifman [32-34], where an entropy-based algorithm is designed to operate on a

wide class of wavelets.

In the analysis of mechanical systems, the physical interpretation of the

transform becomes as important as the other factors. One needs to understand

the physical meaning of the basic building blocks themselves before decompos-

ing a measured signal into its corresponding components. For example, earlier in

section 3.3.3, the group velocity and the propagation of vibrational energy were

nicely related to the time-scale representations generated by the Morlet wavelet

transform. Both the dispersion and the cutoff phenomenon were clearly identi-

fied from the wavelet transform of the acceleration signal, which was measured

from a semi-infinite beam following the impact of a hammer on the free end. This

particular acceleration signal was analyzed first by using the Morlet wavelet trans-

form with wc = 5, and later, by employing STFT with two different window sizes.

The signal and resulting TFRs were plotted in Figures 3.11-3.13. Since this par-

ticular acceleration signal contains two different dynamic phenomena that have

spectral components evolving simultaneously in time, it is used in the following as

. a reference signal to study the performance of different wavelet families.

7.1.1 Morlet Wavelet with Different Center Frequencies

In some applications, wavelet filters with narrower bandwidths are found

to give more effective displays of the spectral evolution of a nonstationary signal

[36]. So far in this study, a particular form of the Morlet wavelet was used having

a center frequency wc = 5. The definition of the Morlet wavelet, given in section

2.3.4, implies that the bandwidth of the wavelet filter is defined by the center

frequency, we, of the mother wavelet. Therefore, if we is increased, the bandpass

filter bank structure induced by the Morlet wavelet will become narrower and

shifted toward higher frequencies. In order to demonstrate the effect of increasing

the center frequency on the TFRs, the reference acceleration signal is transformed
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by using two different wc values in the Morlet wavelet. In Figure 7.1, the TFRs

corresponding to wc = 10 and wc = 20 are displayed. A comparison between the

earlier transform result ( based on wc = 5) given in Figure 3.12 and the present

TFRs, reveals that better spectral localization can be achieved by adjusting we.

For instance, the two physical phenomena, the dispersion of the fundamental flex-

ural wave motion and the cutoff of the first plate-mode, are seperated clearly in

Figure 7.1a. However, as the bandwidth becomes narrower with increasing we,

the quality of the time localization starts to deteriorate in the wavelet transforms.

Based on other examples considered in this study, it can be concluded that, for

a typical transient vibration analysis application, the center frequency will vary

between 5 and 20. The final choice will be dictated by the particular application.

7.1.2 Mexican Hat and Battle-Lemarie Wavelets

The Mexican hat and the Battle-Lemarie wavelets were introduced in sec-

tion 2.3, and their graphs were plotted in Figures 2.7 and 2.12, respectively. Unlike

the Morlet wavelet, these wavelets are both real, and therefore they generate real

transforms. Again, the same acceleration signal is transformed by using Mexican

hat and Battle-Lemarie wavelets. The magnitudes of the transforms are plotted

in Figures 7.2 and 7.3. The general signature of the TFR given in Figure 7.1 is

observed also in both of these wavelet transforms. However, the details of the TFR

displayed in Figures 7.2 and 7.3 are more complicated and some of the features are

not easily associated with any particular physical phenomenon. In particular, at

higher scales it is difficult to distinguish between the ridges corresponding to the

two different dynamic behaviors; the dispersion of the fundamental flexural wave

motion and the cutoff phenomenon.

7.1.3 Daubechies’s Compactly Supported Orthonormal Wavelet

The compactly supported orthonormal wavelets were introduced specifically

for image and signal compression applications. In comparison to infinite-support

slowly-decaying wavelets, Daubechies’s wavelets are expected to give superior per-

formance in real-time FIR filter bank implementations. However, in the analysis
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of signals measured from physical systems, the interpretation of the transforms

based on Daubeshies’s wavelets may become quite difficult if not impossible.

As an example of Daubechies’s [43] compactly supported orthonormal

wavelets, the D10 wavelet was considered earlier in section 2.3.6. A graphical

representation of the D10 wavelet was given in Figure 2.13. Note that, the D10

wavelet is also real and therefore will generate real transforms. The application of

the D10 wavelet to the reference acceleration signal resulted in a TFR as shown

in Figure 7.4a. It is interesting to note that if the D10 wavelet shown in Figure

2.13c is time-reversed, the result would look similar to a dispersing wave group, as

discussed earlier in section 3.3. Such a time-reversed D10 wavelet was also tested,

and the resulting TFR is presented in Figure 7.4b. Since both the D10 wavelet

and its time-reversed versions are real valued, the TFRs capture only the general

signature of the physical processes. As in the preceding examples, it is difficult

to associate every detail provided by the transforms with a particular physical

phenomenon.

Certainly, the above wavelets may perform better in other applications,

such as signal compression and multi-resolution analysis of images. For the ap-

plications considered in this study, the complex wavelet introduced by Morlet has

performed substantialy better than the others. The time-frequency localization

and symmetry properties of the Morlet wavelet matched very well with the ana-

lyzed physical phenomena. It may be argued that any wavelet that has real and

imaginary parts that are in quadrature, such as the one introduced in equation

(2.25), may perform as well as the Morlet wavelet. Infact, the wavelet defined by

equation (2.25), derivatives of Gaussian function, looks very similar to the Morlet

wavelet, and therefore it is expected that they may be equally effective in the

analysis of nonstationary vibration signals.
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7.2 Orthonormal Basis vs. Frames

The preceding discussion on the selection of the wavelet function becomes

more important for the wavelet frame reconstruction scheme outlined in the sec-

ond part of this study. The frame bounds and the redundancy ratio depend on

the type of wavelet and the number of voices considered in each construction. As

shown in Daubechies’s [42,43] study, not all choices of wavelets generate frames

that have desirable properties. Certainly, as the number of voices are increased

and the translation step size is decreased, the frame becomes tighter. Although,

a slightly higher redundancy is favored for signal reconstruction and information

recovery purposes, it may sometimes increase the storage space and computations

requirements beyond practical limits. Certainly, these practical difficulties can be

averted by using an orthonormal wavelet basis, which would give better compres-

sion of information and decrease the number of operations. However, the price

paid for such advantages is the mathematical complexity involved during the cre-

ation of orthonormal basis. In comparison to the wavelet theory, the frame concept

is relatively new and there exist exciting possibilities for its future use.

7.3 Other Application of Wavelets in Mechanical Systems

In general, mechanical systems involve a variety of transient phenomena

that may be effectively analyzed by using wavelet transform and multiresolution

analysis. In such analyses, characterization of the information contained in mea-

sured signals is the major task in diagnosing and predicting a particular dynamic

phenomenon. For example, a rotating shaft is a natural source of vibrations and

involves complex dynamic behaviors. In practical applications, there are many

factors, such as clearances in the bearings, mating gears mounted on the shaft and

other drive mechanisms, that may all contribute in different ways to the resulting

transient vibration response of a rotor-bearing system. As it was demonstrated

in this study, the wavelet transform is a powerful tool that can be used to resolve

complex transient signals efficiently. The TFRs generated by the wavelet trans-

form can be used to analyze the transient dynamic interactions that occur between
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different components of a complex mechanism during its operation. For example

in engines, the wavelet transform could be used to detect lifter mulfunctions in the

drive-train, valve impacts, piston slap, misaligned bearings and ignition-induced

vibrations.

Another specific area that may use wavelets as a powerful analysis tool is

that of metal cutting and machining. In general, the metal cutting operations

generate substantial vibrations in the workpiece and in the cutting tool. There-

fore, the quality of the product depends strongly on the level and nature of these

vibrations. Analysis of vibrations in machine tools has been a formidable task

due to the time-varying nature of the signals. Since the low-frequency vibrations

coming from the drive-train are superimposed on top of the high-frequency vi-

brations due to the cutting operation, the transient signals can be expected to

have a wide spectral range. Therefore, characterization of the transient vibration

response can be performed effectively by using the self-adjusting window property

of the wavelet transform.

An additional property of wavelets which has not been expoited in this

research is that of data (information) compression. The area of telemetry would

seem to be an application that could make good use of this property. One more

application results from the fact that wavelets are another form of harmonic analy-

sis. It is therefore natural to expect that they will be widely used in the solution of

linear and nonlinear PDEs. However, in comparison to the Fourier analysis, where

the spectral decomposition of differential operators results in diagonal matrices,

the wavelet transform generates near diagonal elements which decay rapidly away

from the diagonal. However, the wavelet theory may be of great help in the nu-

merical analysis of some nonlinear equations and analysis of nonlinear phenomena,

such as the formation and tracking of shock fronts.

The above list of applications is expected to grow as the potential of

wavelets and multiresolution analysis is discovered in mechanical sciences.
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7.4 Summary of Properties

In the short-time Fourier transform (STFT), the window size is kept con-

stant during the analysis. Therefore, as implied by the uncertainty principle,

A1 A“, Z %, a compromise between time and frequency resolutions is necessary.

The Gaussian window used in the Gabor Transform results in an optimum time—

frequency localization. The Gabor transform is found particularly useful in the

analysis of finite-energy sinusoidal signals. Shifting the window with smaller steps

( or larger overlaps) smooths the transitions during the evolution of the spectra.

In the wavelet transform, the window size is self-adjusted with scale, re-

sulting in an efficient logarithmic “zooming” property. Different analyzing wavelet

functions are available to characterize various physical phenomena. The wavelet

transform induces a multiple—scale or multi-resolution analysis. It is particularly

effective on wide—band nonstationary signals and the time-evolution of high- and

low-frequency transient vibration signals are represented efficiently. As an alter-

native, the wavelet transform can be used to generate space-wavenumber repre-

sentations (SWR). Wavelet decomposition and reconstruction can be also used as

a powerful tool for data compression.

7.5 Conclusions

The analysis and synthesis schemes developed in this study were the result

of blending different concepts regarding wavelets, frames, multi-resolution analysis,

signal processing and vibrations. In particular, these concepts were utilized to

analyze transient wave propagation in dispersive and nondispersive mediums, and

to synthesize the transient vibration response of proportional-bandwidth, linear,

timerinvariant systems. It is believed that this thesis has established a foundation

for further advancement of applications of the preceding concepts in mechanical

sciences.

In Chapter 1, the antecedents of the present wavelet research were briefly

reviewed. Chapter 2 was devoted to the introduction of the basic mathematical
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concepts, definitions, properties and algorithms regarding linear time-frequency

representations. The advantages, limitations and the conceptual similarities of the

wavelet transform were compared to the short-time Fourier (STFT) and Gabor

transforms by using a few examples selected from synthetic signals.

In the analysis sections (Chapters 3 and 4), the wavelet transform was used

to study transient wave propagation in physical systems. The dispersion of a tran-

sient waveform was introduced as an excellent example for the efficient use of the

self-adjusting window and the variable resolution properties of the wavelet trans-

form. The evolution of the spectra during the dispersion of an impulsive waveform

were displayed clearly by the time-scale representations (TSRs) of measured ac-

celeration signals. In the examples involving a semi-infinite beam (Chapter 3),

the distinctive signature of a transient waveform was uncovered and used to iden-

tify the wavebearing characteristics of the medium. The arrival times observed

from the wavelet transform were shown to be related to the group velocities of

the wavelet components. In the analysis of wave-guides, the wavelet transform

was confirmed to be an effective tool in seperating the evolution of different wave-

modes and in analyzing and clearly demonstrating the transients of the cut-off

phenomenon. In a nondispersive medium, time-frequency analysis helped to lo-

calize echos from the boundaries. In addition, the dynamic characteristics of the

boundaries and the medium were identified by studying the local spectral content

of the reflected waves observed in the TSRs.

As an alternative, a space-wavenumber representation (SWR) was intro-

duced in Chapter 3 to analyze a one—dimensional system. The display of SWRs

successively in time gave a clear picture of the spatial-evolution of the wave com-

ponents. The use of SWRs and TSRs together was shown to clearly depict the

dispersive characteristics of a medium.

In the analysis of a finite dispersive system (Chapter 4), multiple reflections

from the boundaries were identified from the TSRs. The self-adjusting window

structure of the wavelet transform was found to provide an adequate resolution

over a wide spectral range and, thus, resulted in an efficient localization of the
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complex interference patterns in the time-scale domain. During the analysis of an

impact excited free-free beam, the TSRs of the acceleration signals were utilized to

uncover a symmetric grid pattern and a periodic pulse-reformation phenomenon.

The second part of this study (Chapters 5 and 6) was devoted to the de-

velopment and testing of a new synthesis scheme which can be used to predict

the transient vibration response of linear systems. In Chapter 5, the wavelet

frame expansion and multi-resolution concepts were utilized to replace the con-

volution integral with a more efficient synthesis scheme. It was demonstrated

that the response of a system could be accurately constructed by adding together

the contributions coming from different resolution levels. The wavelet frame de-

composition of the forcing function was employed to partition the spectrum into

constant-Q frequency bands (resolution levels). This partitioning of the spectral

range by using wavelet frames resulted in an automatic adjustment of the resolu-

tion and time-duration at different levels of detail, and therefore avoided possible

time-domain aliasing problems. Consequently, the proposed synthesis scheme is

particularly effective in situations where proportional damping is present. A com-

mon example of this is the bending vibrations of beams and plates, where the

duration of a transient vibration (determined by the bandwidth) decreases with

increasing frequency.

In Chapter 6, the proposed wavelet frame synthesis scheme was applied to

the prediction of the transient response of a beam. The wavelet frame synthesis

scheme was shown to generate the short- and long-term vibration response of

a beam at different resolution levels. The proposed synthesis scheme provided

sufficent detail over a self-adjusting window in time, and therefore prevented time-

domain aliasing problems observed in uniformly-sampled FFT synthesis schemes.

In closing, this study exploited the fundamental properties of the wavelet

transform and established an effective scheme for the analysis of wide-band tran-

sient vibration signals. The wavelet transform was found to be particulary usefull

in the study of dispersion and cut-off phenomena. The analysis scheme, demon-

strated in this study for the flexural vibrations of a beam, is perfectly applica-

ble to more complex systems that have different dispersive characteristics and
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structural configurations. In addition, the concepts regarding frequency response

functions, wavelet frame expansions, and multiresolution analysis are combined to

generate an efficient synthesis scheme for the prediction of the transient vibration

response of linear proportional-bandwith systems. The proposed synthesis scheme

is based on a newly defined wavelet response function, which was introduced as

an alternative to impulse and frequency response functions and features better

time-frequency localization characteristics.
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APPENDIX A

The following properties of the Fourier transform are used frequently during

the development and implementation of the wavelet theory.

A.l Derivatives

The following Fourier transform pairs are related

9(2) «1» 31w)

mm) «1» aw)" aw)

where the derivative operator D" = dn/dr", (n = 1,2, ..).

A.2 Scaling

Following Fourier transform pairs are used frequently during the dilations

of wavelets;

h(x) «——» a...)

h(ar) +1.» I—cll—I Rid/a)

h(z/a) +—’—» lama»)

I. j: A

—hza 1—1 ahawm(/) \/||()

A.3 Shifting

Shifting in time-domain causes phase change in frequency domain;

h(x) .5. fl(w)

h(z—b) .L. e"‘”’1i(w)
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APPENDIX B

The following window functions, g(n) with n = 0, ..., M — 1, are commonly

used during the implementation of the STFT.

Parzen ('h'iangular) Window:

 

 

 

_ 2n—(M—1)

gm— 1_ (M+1)

Welch Window:

_ 2n - (M — 1) .2

9(")_1_ (M+1) l

Hanning (Raised-Cosine) Window:

«m=111-ws112211
 

Hamming Window:

 y(n) = 0.54 — 0.46 cos (Air—n1)

Blackman Window:

an 4wn

g(n)—0.42-0.5 cos (M—l) +0.08 cos (M—l)  

Gaussian Window:

_ n - M/2 2

9‘") * exp 1"“(W) 1
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APPENDIX C

The uncertainty principle is prooved as shown in the following. One of the

the fundamental theorems that is needed in the proof is stated as

df df . _ 2 A A:]EEI cit—la: f(w)f (..)d...

where “21:” denotes complex conjugation. Also, the Shwartz inequality will be

needed;

2

4 / f(t) f‘(t)dt / y(t)g"(t)01t Z l [[f‘(t)9(t) +f(t)9"(t)]dt

The centers tc and we are assumed to be located at the origin. In the following,

all integrals are to be taken between infinite limits and the notation || - || refers

to the L2 norm defined at the beginning. Then the derivation of the uncertainty

principle goes as follows:

ft2|f(t)l’dtfwjlf(w)|2dw = ft2f(t)f'(t)dtfwjf(w3 11‘1wa

l|f|| llfll ff(t)f‘(t)dt ff(w)f"'(w)<fiv

11:10)] It f‘(t)1 dt 1 $1 11‘ dt

(1 f(t)f‘(t)dt)2

> If [tf‘(t)§£+tf(t)§£‘ altl2

4 (I f(t) f*(t) at)”

= lf‘%1f(t>f‘(t)ldtl’ = Iff(t)f'(t)dtl’ =1

4 (f f<t>f*(t)dt)” 4 (f f(t)f‘(t)dt)2 4

 

(A0203?)2 =

 

 

  

which implies

AfA Z

N
I
H

?

The definitions of the radia A, and A? were given in section 2.2.3.
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APPENDIX D

Daubechies’s Wavelets

The compactly supported orthonormal wavelet 1,11 and its companion, the

scaling function (I), are defined by the dilation equations [43]:

N-l

#3) = V2- 2 gn¢(2$ - n) (111)

n=0

N—l

¢(r) 2 J5 Z: hn¢(2:c — n) (D.2)

n=0

where the coefficients are related by 9,, = (—1)"h~-,, with n = 0,. .. ,N - 1.

Similar to the admisibility condition used during the definition of a wavelet, the

scaling function has to satisfy f ¢(r)dr = 1. The number of coefficients in the

preceding summation, N, is twice the the number of vanishing moments, N = 2M,

such that f¢(r)zmdx =0 for m: 0,...,M— 1.

In the construction of a mother wavelet, first the Fourier transform of the

scaling function, given in equation (D.2), is considered

N-l
A 1 . A

¢(w = — h" ¢=:—""“"/2 ¢ w/2)

) \f2— g. ( (19.3)

= H(w/2131w/2)

where the low-pass filter H is defined by

N-l

H(w) = T}? Z hue-W. (0.4)

n==0
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The 21r-periodic function H(w) satisfies the equation

IH(w)I2 + IH(w + «)I2 = 1 . (0.5)

The trigonometric polynomial solutions of H define the compactly supported

wavelets with vanishing moments.

Daubechies [43] gives the trigonometric polynomial solution of H(w) in the

form

 H(w) = (1 +26”) M £(e“") (D.6)

where .C is a polynomial given by

|.C(e'.‘")|2 = P (sin2 g) + sinzM (g) R (90—82(32) . (D.7)

The polynomials P and R in this last expression satisfy the following relations:

F(y) = E1 (M ‘ 1 ”)1", (0.8)
n

n=0

 

0 S P(y) + yMR(-;- — y) for 0 S y S 1, (D.9)

sup [F(y) + yMR(-1- — 31)] < 22(M"1), if M Z 2, (D.10)

05:51 2

2 2 I

— < < —— < — ° = .1 _ 2'31 _ R(a:) _ 1 +2|$| for Irl _ 2, if M 1

Therefore, once the solution given by equation (D6) is constructed, then the

coefficients 11,. can be determined and used in equation (D.1) to define the mother

wavelet. The mathematical derivations of the preceding relations for the compactly

supported wavelets can be found in more detail in Daubechies’s work [38-43].
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APPENDIX E

Haar Wavelet Basis and Multi-Resolution Analysis

The Haar function is a classical academic example for an orthonormal

wavelet basis which is nicely related to the multiresolution analysis. The con-

struction of the Haar wavelet starts from the box function. Consider a ladder of

subspaces Vm containing piecewise constant box functions

Vm = {f E L2(R); f(x) = constant, 2mn S :1: < 2m(n + 1), Vn E Z}

(E.1)

These subspaces Vm satisfy the conditions given in equation (2.32), and therefore

induce a multiresolution analysis of L2(R). In particular, if the subspace V0

is considered, the constant function corresponding to n = 0 yields the following

definition of the scaling function

1, 0 S a: < 1,

¢(x) _ {0, otherwise. (E2)

Then, the corresponding discrete lattice of scaling functions are obtained as

¢m,n(z) = 2—m/2 ¢(2_m.’€ — n)

E.
= {rm/2, 2'”n g a: < 2"‘(n + 1), ( 3)

0, otherwise.

 

where 410,, = 45 E V, and for a fixed m the subspace V... = span{¢m,n} as

expected. Furthermore, at a coarser level m + 1 , the scaling function becomes

¢m+1,n = 2-1/2(¢m,2n + ¢m,2n+1) (EA)

where the translated components of the scaling function at level 11: are averaged.
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The preceding definitions of the multiresolution subspaces Vm and the

corresponding basis functions dun,” allow us to find the projection of any arbitrary

function f E L2(R) onto the subspaces Vm. Therefore, first the following inner

product is defined;

2'"(n+l)

(f, 45m.) = 2-"*/2 / f(x)da: (E.5)

2'"n

In addition, the use of equation (EA) results in an expression for the inner product

at a coarser level m + 1

(f1¢m+l,n) = 2-1/2((f: ¢m,2n) + (f, ¢m,2n+l)) (E6)

which will be of use in later derivations. The inner product defined in equation

(E.5) yields the following expression for the orthogonal projection of f E L2(R)

onto a subspace Vm

me = Z<f1¢mm>¢mm

1 2”(M-1)

— — Z [2 f(21dx
2m" .,

(13.7)

Note that, as the scale m adopts large negative values, the support [2mm 2'"(n +

1)] becomes narrower, and in the limit as m —v —oo , Pm f —: f, which implies

V", —+ L2(R).

As stated in equation (BA), 45",“... can be obtained from ¢m.2n and

¢m’2n+1, through an averaging process. Such a relation between basis functions

leads us to search for the difference between projections onto V...“ and Vm.

Therefore, we define

Qm+1 f = me - Pm+1 f (E-3)
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Then, using equations (E.4-E.7) in (ES) gives

Qm+lf = 2 (f: ¢m,n) ¢m,n — Z (fa ¢m+l,n) ¢m+l,n

= $- ((f, ¢m,2n) - (f, ¢m,2n+1)) (¢m,2n - ¢m,2n+1) (E.9)

= 2: (f: ¢m+l,n) I1bm--l>1,r:

where the final equality is based upon the definitions

¢m+l,n = 71—5 (¢m,2n — ¢m,2n+l)

L
./§

As a result of the preceding definitions, it is clear that

(f1¢m+l,n) = (W...) — (f. «1......11)

1

1.0mm = E (¢m-1,2n — ¢m—1,2n+1) (E10)

2 2"”,2 1,1)(2—ma: — n)

Consequently, the mother wavelet, tb = ab“, = 2—1/2(¢—1,o —¢_1,1), can be defined

as

1, 0

11(1): 96(231- 45(23 - 1) = 1. l2

0, otherwise.

(13.11)

which has been known as the Haar function since 1910.

For a fixed m, the set of functions {'I’mm} is an othonormal basis for the

subspace Wm = Vi, which is the orthogonal complement of Vm in V,,,_.1 . Since

the set of functions {z/Jmm; m, n E Z} is an orthonormal wavelet basis for L2(R),

any Lz-function f can be approximated by a linear combination of dam... Since

Wm _L Vm and Vm_.1 = Vm GBWm, the subspaces Wm are mutually orthogonal

and their direct sum gives L2(R). The relation given in equation (E.9) defines the

orthogonal projection of f onto Wm.“ .



APPENDIX F

F.l Bending Vibration Response of a Beam: Transfer Matrices

The flexural vibrations of a uniform isotropic beam is governed by

32110:. t)

31:4

where the effects of the shear deformation and rotatory inertia have been neglected.

In equation (F.1), B = EI[1 - in(w)] is the complex bending stiffness and 17(w)

is the structural loss factor. Considering a time-harmonic external disturbance,

f(r,t) = F(z,w)exp(—iwt), the vibration response of the linear system is antic—

ipated to take the form y(z,t) = Y(:1:,w) exp(—iwt). Therefore, in terms of the

velocity response of the beam, V(:r,w) = (—iw)Y(1:,w), equation (F.1) yields

d‘V(r,w)

dr‘

iw

— k;V(x,w) = — (‘5) F(r,w) (F.2)

where k, = “/ p.411.)2 /B is the complex propagation constant or the free bending

wavenumber of the beam.

The state variable form of the fourth order ODE given in equation (F.2) is

obtained as

dv,/dz 0 1 0 0 v, 0

dv,/d:c __ 0 0 1 0 v, 0

dv,/d:c " o o o 1 v, + . 0 (F3)

dv,| /d2: 1:; 0 0 0 v, :JfFCt, w)

\_\,__/ hw—dv

dv/dz A v f

where the state variables are defined by

_ _ JV dv, sz _ dv2 _ d3V _ dv,

VI-V’ “-72:75, “-21:27- 1.1V1-712'a'7; (F4)
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Since equation (F.3) is in the general state variable form defined in equation (4.1),

the rest of the procedure outlined earlier applies directly to the present system.

The construction of the transformation matrix M requires the eigenvectors

and the eigenvalues of the system. The eigenvalues of the system are determined

by considering the characteristic equation obtained from det(AI — A) = 0 , which

is derived as A4 — k: = 0. The roots of this characteristic equation are given by

A] = ikp, A2 = — kp, A3 = —i kp, A4 = k, (F.5)

Furthermore, the eigenvectors of the system are determined by considering

(A,I—A)v,~=0, j=1,2,3,4 (F.6)

For a particular eigenvalue, any three of the relations implied by equation (F.6)

can be utilized to determine the corresponding eigenvector in terms of one of

its elements. The normalized form of the eigenvectors can be defined by setting

vj, = 1. Then, solving other elements of the eigenvectors from equation (F.6) gives

v,- = [1 A,- A? A; ]T, where A,- are defined in equation (F..5) The transformation

matrix is constructed by placing the eigenvectors into the columns of a 4 x 4

matrix;

1 1 1 1

1"". 7]? if: :1

411cc: 4:3 £ka kg
P P P

M = (F.7)

In order to ease the manipulation of matrices, the modal matrix is decomposed

into two sub-matrices; a diagonal and a constant matrix, given as

M = K C and M = C K (F.8)

where

1 0 0 0 1 I 1 1

__ 0 k, 0 0 _ i —1 —z 1

K _ 0 0 k: 0 ’ C — —1 1 —1 1

0 0 0 k: —:' —1 z 1
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1 0 0 0 1 —i —I i

-1 _ O l/kp O 0 -1 _ 1 1 —1 I. -1

K _ 0 0 I/k: 0 i C _ 4 1 f -1 —i

0 0 0 l/k: 1 1 1 1

Note that, for the present system, the similarity transformation becomes

A=M"AM = C-‘K-iAKC (F.9)

where A = diag(/\1, A2, A3, A4).

In order to determine the response of the system, the inverse of the modal

matrix, given in equation (F8), is substituted into equation (4.3) and the result

is given by

Z($) = Tbs-1:0) z(xo) + fr (F.10)

where the force vector fF is defined as

f. = /. T1.-.)C"I<"f(c) dc (R11)
to

and the field transfer matrix is given by

T(z—zo) = diag [ emu—:0) e-k,(x-xo) (ma—:0) ek,(z—zo) J (F.12)

Furthermore, if the origin of the space coordinate is assigned to the first station,

to = 0, and the corresponding canonical state variables are defined as z(O) =

[a+ a: a" 0;]T, then equation (F.10) can be expressed expilicitly as

   

we)“ - a+ e‘W-W - ' if; e""""°F(c,w)d: ‘

22(3) 0: e'k'(3"‘0) {w _f:o e-kp(3"£) F(£,W) d6

z,(r) a” e‘“‘r(“‘°) P —:' f; e""’P("'9F(£,w) d£

.z.(z). . a; e‘v""°’ ~ 1 I; e""“" mac-21d:   
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where zj(1:) are the elements of the vector 2(1) and F(r,w) is an external

ditributed force. Equation (F.13) implies that, across a distributed external force,

the complex wave amplitudes at the later station are determined by adding the

transfered wave component to the corresponding contribution coming from the

particular integral. In the following, two of the frequently encountered force dis-

tributions are considered to obtain the special forms of the preceding general

solution.

F.2 Homogenous Solution

In this case, the external force distribution is removed, F(x,w) = 0. Then,

equation (F.13) gives the homogenous solution. The unforced response of the

system at the later station 3: becomes

. o T

z(z) = T(,) z(O) = a+ €sz a: 6“" a' e""‘" a; ekfl] (F.14)

In this phase-variable canonical form of the homogenous solution, it is possible to

identify the four flexural wave components as the propagating waves in the positive

and negative directions, 12"“ and 6"", and evanescent waves in the positive and

negative directions, 3'“ and e’“, [37]. It follows that the elements of this state

vector, z(O), correspond to the amplitudes of the flexural wave components, which

+ +
area ,aN, a“ and 0;. Since, in general, 11:, is a complex wave number, the

homogenous solution, given in equation (F.14), implies that the magnitude and

the phase of these complex wave amplitudes will vary along the z-coordinate.

It is useful to define a relationship between the field transfer matrix devel-

oped above and the transfer matrices that use the physical variables of a beam.

The state variables of a beam in terms of physical parameters are defined by a

vector as

8: [V(r,w) cp(:c,w) M(:1:,w) Q(r,w)]T (F.15)

where V(a:,w), cp(:c,w), M(z,w) and Q(x,w) are the amplitudes of the transverse

velocity, angular velocity, the bending moment, and the shear force, respectively.
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The relationship between this state vector 8 and the state vectors used in the

present analysis can be given as

s=Hv=HKCz (F.16)

where the diagonal matrix H = diag[ 1, 1, B/iw, —B/iw]. Substitution of the

respective matrices and vectors into equation (4.21), gives

V(:1:,w) = a+eik" + aie-k" + a'e-‘k'z + a;e"" (F.17)

<p(a:,w) = k, (ia+e"‘" -a:e"‘P‘ —ia'e""‘" + a;e"") (F.18)

Bk: + 'k + —k — —'k - I:
M(a:,w) = 73- (—a e' '3 +a~e 1" — a e ' " + aNe l"’) (F.19)

Bk: -+'k +-k --—'k —l:
Q(:r,w) = :i:(-za e' " —aNe 1” +za e ' 1" + aNe ") (F.20)

As expected, the velocity response of the system, V(a:,w) is composed of contri-

butions coming from each one of the flexural wave components. In an unforced

segment of the beam, these contributions coming from the wave components are

determined by the field transfer matrix, which depends on the bending wave num-

ber, lap, and the distance between the two stations.

F.3 Point Force

The transfer function between two stations of a beam, with a point source

in between, can be found by substituting the mathematical definition of a point

force, 1' = fo(w)6(z — 2:1), into equation (F.10). Then, evaluating the integrals

results in

z(x) = T(,_,o) z(ro) + T(,_,’) C-1 I{-1 f0 (F21)

The vector f0 (1.0) represents a combination of a frequency-dependent external force

and moment.

ino(w) —ino(w) T

B B (R22) f,=[0 o
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Then, the transfer of state just across the drive point becomes

_ -1 -1

This change in the state of vibrations depends on the type of the excitation, which

could be a moment, shear, or a combination of forcing terms.

FA Transfer Matrices for the Boundaries

Boundary conditions are treated in a way similar to the point impedances.

The transfer matrices governing the boundaries are obtained by using the physical

state variables of the beam. For future use, the boundaries are characterized by

translational and rotational impedances T and Z, respectively. The subscripts 0

and L are used to indicate the boundaries at :1: = 0 and :1: = L of the beam.

As in the previous analysis, force and moment relationships for the bound-

aryatz=0canbegivenas

Z V = —Q and Togo = —M (F.24)
0

Substituting equations (F.17-F.20) into equation (F.24), and then organizing the

result in a matrix form gives

"+2; +1 .+ _ —Z+..i -1-.2.’ .-
[1—51‘ —T] 1a;]’[1+ir —1—T][a-j (E25)

N

where 20 = iw Z0 /(B k:) and To = iw To/(B 16,) are the normalized impedances.

The expressions for the incident wave [a+ 0:]T, and the reflected wave

_]T

N , can be combined to define a reflection matrix R0:[a' a

R, = [‘11 in] (F.26)
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where

2,, = [(1 — i)(1 - iii) + 22', + 21%,] /2,,

2,, = 2(1 + fig/24

2,, = —2i(1 + fig/2,, (R27)

2,, = [(1 — i)(f,'z', — 1) + 21?, + 22,]/2.,

2,, = (1 + i)(1 — iii) + 22, — 21?,

The boundary conditions at a: = 0 and a: = L are defined in terms of the reflection

matrix, in a partitioned matrix form, as

A, z(O) = 0 , A, z(L) = 0 (R28)

where A, = [I | R,], A, = [R, | I] and I is a 2 X 2 identity matrix.

The reflection matrix R, has the same form as the matrix R,. The elements

of the matrix R,, which are designated by r,,, can be defined by substituting

the normalized boundary impedances, Z, and T, into the definition of 35,-. The

size of the coefficient matrices, A0 and A, , is 2 x 4, each defining two boundary

conditions, as they should.



APPENDIX G

In the engineering applications, the bandwith of a simple oscillator or a filter

is defined in several different ways. Considering the frequency response function

H(w) of an oscillator, the following definitions apply for its bandwidth:

a) Half-power or 3dB bandwidth

Bun = f: — f1 (GI)

such that the power supplied to the oscillator is drops to half of its maximum at

f. and f2; IHUJI2 = 111I(f2)|2 = %|H(f.)|2. 88 shown in Appendix H Figure H-1-

b) Mean square or noise bandwidth

[3; WM” df

B“ = 1H 1*
 (0.2)

which is the width of a rectangle that has the height as the maximum power and

the area equivalent to the total spectral power of the oscillator.

c) Root-Mean-Square (rms) bandwidth:

B.-. = 1511711; U” w’IH(w)I’ dw] ”2 (6.3)
-oo

This definition is mathematically more convenient and conceptually more infor-

mative for complex spectra. It is analogous to the radius of gyration of a body

about an axis of rotation or to the standard deviation of a statistical distribution.
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APPENDIX H

Single-Degree of Freedom System

A mass-spring-dashpot is the elementary model that is frequently used in

the vibration analysis of multi-degree-of-freedom systems. Considering an external

force f(t), the equation governing the vibrations of the mass is given by

(12:1:(t) da:(t) _

771—7“?- + CT + kx(t) —f(t)

which can be written in an alternate form as

5(1) + wnnflt) + w: 2(1) = f(t)/m (H.1)

In the preceding equation, w” = ‘/’C/m is the natural frequency and r] = c/Vlcm

is the loss factor. The loss factor is related to the critical damping ratio C = q/2

and to the quality factor Q = 1/1).

The unforced response of the system is given by

r(t) = A 6’1”" "‘ sin(w,t + (13) (H2)

where w, = w" ‘/ 1 — 172/4. The constants A and 43 are determined from the initial

conditions.

For a physical sytem, the oscillations will decay in time due to energy

disipation. In acoustics, the duration of decay is measured by the reverberation

time T3, which represents a decrease in the vibrational energy by a factor of 10‘“.

If we consider the time-averaged total energy in the system E = Bloc-”n W, then

2""" ”Tu = 10"6 gives the revebration time as

_ 2.2

nf.
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where f. = w“ /21r.

The response of the system to a harmonic excitation is determined by con-

sidering f(t) = Fe““" and f(t) = Ve"“". Then, the mobility of the system is

definedas

_ V _ l/m

H(w) — F — wnn — i(w —w,,/w)

 (11.4)

The magnitude of the mobility is plotted in Figure H.1.

The time-averaged power supplied to the system is given by

1 t 1 2 1 2 2

= 5WV 1 = §IF| 911110.11} = ,w. nm IFI IH(w)| (II-5)

The maximum power is supplied when 1H(w)|m. = 1/(mw,,17), which occurs at

w = wn(1 — :72/2). For small 1), the power absorbed by the oscillator drops to half

of its peak value at w, = wn(1 — 17/2) and w, = 1.0,,(1 + n/2). A commonly used

definition of bandwith corresponds to the span between the preceding frequencies

and is defined as the “half-power or 3dB bandwidth” of the oscillator

B = 17f, (II-6)348

which, for a given loss factor, is linearly proportional to the center frequency, f“ .

The definition of the 3dB-bandwidth is sketched in Figure H.1. In terms of the

3dB—bandwith, the reveberation time given in equation (H.3) becomes

2.2
T =

" B...

(11.7) 

which is a convenient measure for the duration of the time decay for the transient

vibration response of a single degree-of-freedom system.
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Figure H.1. The 3dB-bandwidth of an oscillator.

 

 

 



APPENDIX I

Color Code for the Display of Wavelet Transforms

The color scale used for the representation of the wavelet transform mag-

nitude is obtained by mixing red, green, and blue colors. A total of 256 different

colors were utilized to display the magnitude information. The assignments were

 

made as follows: E7

dark red = maximum transform magnitude f

bright yellow = 20 dB below the maximum L3

dark greeen = 40 dB below the maximum

black = 60 dB below the maximum.
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