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ABSTRACT

BAYESIAN HIERARCHICAL SPATIAL MODELS TO IMPROVE FOREST VARIABLE
PREDICTION AND MAPPING WITH LIGHT DETECTION AND RANGING DATA

SETS

By

Chad Babcock

Light Detection and Ranging (LiDAR) data has shown great potential to estimate spatially

explicit forest variables, including above-ground biomass, stem density, tree height, and more.

Due to its ability to garner information about the vertical and horizontal structure of forest

canopies effectively and efficiently, LiDAR sensors have played a key role in the development

of operational air and space-borne instruments capable of gathering information about for-

est structure at regional, continental, and global scales. Combining LiDAR datasets with

field-based validation measurements to build predictive models is becoming an attractive

solution to the problem of quantifying and mapping forest structure for private forest land

owners and local, state, and federal government entities alike. As with any statistical model

using spatially indexed data, the potential to violate modeling assumptions resulting from

spatial correlation is high. This thesis explores several different modeling frameworks that

aim to accommodate correlation structures within model residuals. The development is mo-

tivated using LiDAR and forest inventory datasets. Special attention is paid to estimation

and propagation of parameter and model uncertainty through to prediction units. Inference

follows a Bayesian statistical paradigm. Results suggest the proposed frameworks help en-

sure model assumptions are met and prediction performance can be improved by pursuing

spatially enabled models.
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CHAPTER 1

OVERVIEW

Over the past decade, there has been increasing interest in deriving spatially explicit esti-

mates of forest structure variables ranging from the individual tree to landscape level (Brun-

ner (1998); Frescino et al. (2001); Vepakomma et al. (2008); Honey-Rosés et al. (2011)).

From a forest ecology and management perspective, researchers are often interested in the

spatial configuration of tree canopies, for either studying light penetration to the forest floor,

animal habitat fragmentation, or other tree canopy dependent phenomena. For example,

deGravelles et al. (2014) looked at Baldcypress sapling growth responses to over-story canopy

gap size. Garabedian et al. (2014) used LiDAR predicted forest attributes to map and

analyze red-cockaded woodpecker habitat in South Carolina. Yang et al. (2013) used a

LiDAR reconstructed forest and thermal images to better understand bat flight behavior.

Beyond exploration of small scale questions concerning individual trees or stands, there is

a need within the research community for statistical models appropriate for capturing spatial

and temporal processes at broad scales. For example, concerning climate change, the United

Nations has set forth their Reducing Emissions from Deforestation and forest Degradation

(REDD+) initiative which aims to reduce net greenhouse gas emissions, in part, by encour-

aging the use of enhanced forest management practices in developing countries. In order

to implement some of the incentive programs proposed in REDD+, methods to accurately

measure and map forest carbon stocks along with associated measures of uncertainty need

to be developed. The National Aeronautics and Space Administration (NASA) has created

the Carbon Monitoring System (CMS) to fund research activities leading to the develop-

ment of carbon measurement and verification systems in effort to meet the goals set forth

by REDD+.
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Calibrating LiDAR data with field validation measurements through linear regression

models is often used to accommodate the need for spatial prediction of forest structure

(Means et al. (2000); Montesano et al. (2014); Næsset et al. (2013)). Census collection of

spatially explicit tree data is prohibitively expensive even for small forest areas. As a result,

tree measurements are usually only collected for a subset of the trees in a domain. Given

that most stems, even in relatively small study areas, e.g. 10 ha, are never measured, effec-

tive methods are needed to predict forest characteristics at unmeasured locations. Because

LiDAR remote sensing is an effective and efficient way to collect spatially explicit data about

forest height and canopy size, relating variables derived from LiDAR point clouds or wave-

forms to spatially indexed field measurements can lead to powerful predictive models for

mapping forest structure (Wulder et al. (2008); Lefsky et al. (2002)). Special considerations

are needed when working with spatial data in linear modeling. Often when developing these

types of models, after accounting for LiDAR covariates, extraneous spatially structured vari-

ation is present in the residuals. This is a violation of the assumption of independent and

identically distributed errors, which calls into question any inference gained or predictions

carried out using the model.

This thesis details and illustrates Bayesian hierarchical spatial models appropriate for

addressing issues of spatially correlated regression model residuals when calibrating LiDAR

data in a forest setting. Chapter 2 explores the use of multivariate spatial regression modeling

to simultaneously predict tree height, canopy depth, crown radius and stem diameter. Spatial

random effects are used to ensure statistical validity and improve prediction performance.

Chapter 3 also uses spatial random effects to derive spatially varying coefficients models

to predict forest above-ground biomass at four study sites. Results from both Chapters

2 and 3 show that leveraging residual spatial dependence via spatial random effects can

improve predictions of forest structure variables. We see from Chapter 2 that when predicting

multiple, correlated, forest outcome variables, ‘borrowing strength’ both within and among

2



trees via random effects can lead to improved model fit and prediction. Chapter 3 shows

that accommodating LiDAR coefficient non-stationarity with strategically placed spatial

random effects can improve prediction accuracies. Such methods may enjoy expanded use as

researchers are increasingly focusing on modeling small scale environmental processes over

larger domains.
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CHAPTER 2

MULTIVARIATE SPATIAL REGRESSION MODELS FOR PREDICTING
INDIVIDUAL TREE STRUCTURE VARIABLES USING LIDAR DATA

2.1 Introduction

Recent advances in remote sensing, specifically Light Detection and Ranging (LiDAR) sen-

sors, provide detailed data at unprecedented scales. At broad spatial scales, large amounts

of LiDAR data for temperate North American forests are being collected, or will soon

be collected by the U.S. Forest Service (USFS), NASA’s Laser Vegetation Imaging Sensor

(LVIS; https://lvis.gsfc.nasa.gov), National Ecological Observatory Network (NEON) Air-

borne Observation Platform (Kamper et al., 2010), and upcoming NASA missions. These

high-dimensional data contain information about individual tree and forest structure that

can be related to variables of interest through suitable modeling frameworks. Many studies

couple LiDAR variables with georeferenced forest inventory plot data through parametric or

non-parametric regression techniques, see, e.g., Salas et al. (2010), Dalponte et al. (2009),

Dinuls et al. (2012), Monnet et al. (2011), Niemann et al. (2012), Junttila et al. (2010), and

references therein. The inference garnered through these analyses often supports decisions

with important economic and ecological implications; therefore, it is critical to correctly

estimate uncertainty.

NEON and similar initiatives aim to assimilate high spatial resolution LiDAR data with

intensive forest inventories, e.g., stem maps, to better predict individual tree characteris-

tics (Kamper et al., 2010). Given variable measurements on a subset of trees included in a

stem map and LiDAR variables for all trees, a regression model is used to predict variable

values for all unmeasured trees. Many studies have used regression analysis in this capac-

ity; however, few explicitly accommodate residual spatial dependence, see, e.g., Anderson
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et al. (2008), Gonzalez et al. (2010), Muss et al. (2011), Tonolli et al. (2011), Popescu et al.

(2011). These non-spatial regression models are adequate in the absence of extraneous struc-

tured variation, beyond what is explained by the covariates. However, when observations are

spatially indexed, we might expect similar outcomes, i.e., tree measurements, in proximate

locations, possibly resulting from common environmental conditions or disturbance regimes.

Ignoring this spatial dependence can result in spurious estimates of model parameters and

erroneous predictions. Hoeting (2009) offers a nice discussion on the consequences of not

meeting the assumption of uncorrelated model residuals. A common solution to spatial

dependence among the residuals is to add a spatially varying model intercept via spatial

random effects that account for spatial association through a decreasing function of distance

and perhaps direction between observed locations. Beyond helping to ensure the statistical

validity of the model, the addition of spatial random effects to the intercept allows for parti-

tioning of residual uncertainty into a spatial and non-spatial component which can improve

model fit and predictive performance. Further, from a forest assessment standpoint, we are

often interested in predicting multiple tree variables. These variables are often correlated

within and between individual trees and therefore it is attractive to consider joint models

that are capable of estimating these covariances and leverage them for subsequent prediction

for unmeasured trees.

In this paper, we detail spatial regression models that incorporate information from

LiDAR along with information inherent in the observed forest inventory data to predict

multiple outcome variables. In particular, we define and assess the utility of a multivari-

ate spatial regression model with spatial random effects that accommodate dependence of

outcome variables both within and between tree locations. The remainder of the paper is

organized as follows. The study area and data set used to illustrate the proposed models are

described in Section 2.2. The proposed regression models are detailed in Section 3.3 along

with the associated model validation methods. Details about candidate model implementa-
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tion and subsequent analysis results are given in Sections 2.4 and 3.4, respectively. Finally,

some concluding remarks with an indication of future work are provided in Section 3.5.

2.2 Materials

2.2.1 Study area and field data

This study was conducted on the 1619 ha Penobscot Experimental Forest (PEF) located in

the towns of Bradley and Eddington, Maine (44◦ 52’ N, 68◦ 38’ W; Figure 1). Mean annual

temperature is 6.2◦C and mean annual precipitation is 110 cm. The principal soil material

is glacial till and soils range from well-drained loams and sandy loams found on glacial till

ridges to poorly and very poorly drained silt loams found in flatter areas between ridges

(Sendak et al., 2003).

Located within the Acadian forest, the PEF is characterized by a mixture of north-

ern conifer and hardwood species. Conifer species include red (Picea rubens Sarg.), white

(P. glauca (Moench) Voss), black spruce (P. mariana (Mill.) BSP), balsam fir (Abies bal-

samea (L.) Mill.), eastern hemlock (Tsuga canadensis (L.) Carr.), eastern white pine (Pinus

strobus L.), and northern white-cedar (Thuja occidentalis L.). Hardwood species include

red maple (Acer rubrum L.), paper (Betula papyrifera Marsh.), gray birch (B. populifo-

lia Marsh.), quaking (Populus tremuloides Michx.), and bigtooth aspen (P. grandidentata

Michx.). An operational-scale experiment to compare ten silvicultural treatments was es-

tablished by USFS researchers on the PEF between 1952 and 1957. The experiment was

designed to investigate the influence of silviculture on the growth, yield, and economics of

eastern spruce-fir (northern conifer) stands.

A network of permanent sample plots (PSPs) was established along transects nested

within each experimental unit, averaging 18 plots per unit. The PSPs consisted of a nested

design with 0.081-, 0.020-, and 0.008 ha circular plots sharing the same plot center. The
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USFS routinely inventoried these PSPs: all pole- and sawtimber-sized trees ≥ 11.4 cm

diameter at breast height (DBH; measured at 1.37 m above the forest floor) were measured

in the 0.081 ha plot, large saplings (6.4 cm ≤ DBH <11.4 cm) were measured on the 0.020

ha plot, and small saplings (1.3 cm ≤ DBH <6.4 cm) were measured on the 0.008 ha plot.

Since 2000, PSPs have been remeasured by the USFS every 10 years, and, if harvesting

occurred, immediately pre- and post-harvest. Live trees were uniquely numbered in these

plots while experimental unit, plot and tree number, species, DBH, and status (e.g. live

tree versus snag), were recorded. On approximately 25% of the PSPs, all trees were stem

mapped and measured for total height (HT; nearest 0.1 m), height to crown base (HCB;

lowest live branch; nearest 0.1 m), and crown radii (CR; nearest 0.1 m) in four cardinal

directions. From this data, crown length (CL; m) was estimated as the absolute difference

between HT and HCB. For this analysis, a total of 494 trees from 19 plots was used.

2.2.2 LiDAR data

Discrete return LiDAR was acquired over the PEF in the early fall of 2010 (leaf-on) with

a small fixed-wing aircraft. The density of the LiDAR returns was 0.5 pulse hits per m2.

LiDAR returns within a 5 m radius of each tree centroid were used to calculate a range

of percentile heights to serve as a candidate set of LiDAR covariates. Percentile heights

were calculated at 5% intervals, ranging from 5% to 100%. Exploratory data analysis using

univariate non-spatial regression models identified the 95th percentile height as the best

predictor variable for HT, CL, CR, and DBH. The 50th percentile height covariate also

explained a statistically significant portion of the variability in HT and DBH and was not

highly correlated with the 95th percentile height covariate. These covariates are referred to

as P50 and P95 in the subsequent development.

10
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Figure 2.1: Location of the Penobscot Experimental Forest (PEF), Maine, is identified with
a diamond symbol in the lower-left inset map. Point symbols within the PEF’s two bounding
polygons denote the location of the 19 inventory plots included in the study. Three of these
plots with associated tree locations are illustrated in Figure 2.2.

2.3 Methods

2.3.1 Univariate spatial regression

Following the data description in Section 2.2, at tree location s ∈ D ⊆ <2, we observe an

outcome variable y(s), e.g., HT, CL, CR, or DBH, along with a p× 1 vector of spatially ref-
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erenced covariates x(s) derived from the LiDAR data. The outcome variable and covariates

can be associated through a spatial regression model such as,

y (s) = x (s)′ β + w (s) + ε (s) , (2.1)

where the model residual comprises a spatial process, w(s), and an independent white-noise

process, ε(s), that captures measurement error or micro-scale spatial variation. With any

collection of n locations, say S = {s1, . . . , sn}, we assume the independent and identically

distributed ε(si)’s follow a normal distribution N(0, τ2), where τ2 is often called the nugget.

The spatial random effects, w(s), provide local adjustment (with structured depen-

dence) to the mean, interpreted as capturing the effect of unmeasured or unobserved co-

variates with spatial pattern. A popular modeling choice for the spatial random effects

is the Gaussian process, w(s) ∼ GP (0, C(·, ·;θ)), specified by a valid covariance func-

tion C(s, s∗;θ) = Cov(w(s), w(s∗)) that models the covariance corresponding to a pair

of locations s and s∗. The process realizations are collected into a n × 1 vector, say

w = (w(s1), . . . , w(sn))
′, which follows a multivariate normal distribution MVN(0,Σw),

where Σw is the n×n covariance matrix ofw with (i, j)th element given by C(si, sj ;θ). Spec-

ification of C(s, s∗;θ) must ensure that the resulting Σw matrix is symmetric and positive

definite. This can be done by using a class of positive definite functions that are characterized

as the characteristic function of a symmetric random variable, see, e.g., Cressie (1993), Chilés

& Delfiner (2008), and Banerjee et al. (2004). Here, we specify C(s, s∗;θ) = σ2ρ(s, s∗;φ)

where θ = {σ2, φ}, ρ(·;φ) is a correlation function, and φ controls the rate of correlation

decay of the surface w(s). Then Var(w(s)) = σ2 represents a spatial variance component

in the model in (3.1). This specification assumes a stationary and isotropic process. Sta-

tionarity, in spatial modeling contexts refers to the setting where the correlation function

only depends on the separation between locations (i.e., translation-invariant). Isotropy goes

further and specifies the dependence through the Euclidean distance between the sites s and
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s∗, i.e., ‖s− s∗‖ (see, e.g., Banerjee et al., 2004, p22).

To complete the Bayesian specification, we assign prior distributions to the model param-

eters and inference proceeds by sampling from the posterior distributions of the parameters,

see, e.g., Gelman et al. (2004) for further details. Note that the spatial process induces

a MVN(0, σ2R(φ)) distribution on w, where R(φ) is the n × n correlation matrix whose

(i, j)th element is ρ(si, sj ;φ). For the remaining parameters, we assign β a multivariate

normal prior, say MVN(µβ ,Σβ) and the spatial variance components σ2 and τ2 are as-

signed inverse-Gamma (IG) priors. The process correlation parameter, φ, is assigned an

informative prior based on characteristics of the underlying spatial domain.

Following notation similar to that used in Gelman et al. (2004), the posterior distribution

of p(β,w, σ2, τ2, φ |y), where y = (y(s1), . . . , y(sn))
′, is proportional to

p(φ)× IG(τ2 | aτ , bτ )× IG(σ2 | aσ, bσ)

×MVN(β |µβ ,Σβ)×MVN(w |0, σ2R(φ))

×
n∏

i=1

N(y(si) |x(si)′β + w(si), τ
2). (2.2)

The posterior distribution of each parameter was estimated using a Markov chain Monte

Carlo (MCMC) algorithm. Specifically, β and w were updated using a Gibbs sampler

from their full conditional distributions and the remaining parameters were updated using a

Metropolis-Hastings sampler, where the target distribution for any (set of) parameter(s) is

proportional to the product of the terms in (3.2) that involve that (those) parameter(s). For

convenience, we collect the model parameters into Ω = {β, σ2, φ, τ2}. The MCMC algorithm

yielded posterior samples Ω and spatial random effects w.

2.3.1.1 Prediction

As detailed in Section 3.1, our interest is in predicting structure characteristics of n0 un-

measured trees using their locations, say S0 = {s0,1, s0,2, . . . , s0,n0}, and associated LiDAR
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covariates. The posterior predictive distribution of spatial random effects p(w0 |y), where

w0 = (w(s0,1), w(s0,2), . . . , w(s0,n0))
′, is proportional to∫

p(w0 |Ω,w,y)p(w |Ω,y)p(Ω |y)dΩw. (2.3)

Given posterior samples, {Ω(l),w(l)}Ll=1 this distribution can be obtained via composition

sampling by drawing w
(l)
0 from p(w0 |Ω(l),w(l),y). The process realizations over the new

locations are conditionally independent of the observed outcomes given the realizations over

the observed locations and the process parameters. That is, p(w0 |w,Ω,y) = p(w0 |Ω,w),

which is a multivariate normal distribution with mean and variance given by

E[w0 |w,Ω] = Cov(w0,w)Var−1(w)w = R0(φ)
′R(φ)−1w

and

Var[w0 |w,Ω] = σ2
{
R(φ)−R0(φ)

′R(φ)−1R0(φ)
}

,

where R0(φ)
′ is the n0×n matrix with (i, j)th element given by ρ(s0,i, sj ;φ). Finally, given

a set of covariates at a new location s0, samples from the posterior predictive distribution of

the outcome variable, y(s0)
(l), are drawn from N(x(s0)

′β(l)+w
(l)
0 , τ2(l)) for l = 1, 2, . . . , L.

2.3.2 Multivariate spatial regression

As described in Section 3.1, given the covariance among trees’ structure outcome variables

it is particularly attractive to specify a joint model capable of estimating and using this co-

variance to potentially improve prediction. Here, we extend the univariate spatial regression

to consider each tree’s m outcome variables. In our setting m = 4, i.e., HT, CL, CR, and

DBH. Let y(s) = (y1(s), . . . , ym(s))′ be the collection of these outcomes measured at tree

location s. Given such data our model should account for inherent association between the

outcomes within each location and between observations across locations. We consider the
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following multivariate regression model

y(s) = X(s)′β +w(s) + ε(s). (2.4)

Here X(s)′ is an m × p block-diagonal matrix (p =
∑m

l=1 pl), with l-th diagonal element

being the 1×pl vector xl(s)
′, and β = (β1, . . . ,βp)

′ is a p×1 vector of regression coefficients,

with each βl a pl × 1 vector of regression coefficients corresponding to xl(s)
′. This specifies

the mean structure that accounts for large scale variation in the outcome. Spatial variation in

the outcome is modeled using a m× 1 vector of random effects w(s) = (w1(s), . . . , wm(s))′.

Customarily, we assume the unstructured residuals ε(s), defined analogous to w(s), follow

a multivariate normal distribution with zero mean and an m×m dispersion matrix Ψ.

Spatially structured dependence is introduced in (2.4) through a multivariate (m × 1)

spatial process w(s) ∼ GP (0, C(·, ·;θ)), see, e.g., Cressie (1993), where the cross-covariance

function C(s, s∗;θ) is now defined to be the m×m matrix with (i, j)th entry Cij(s, s
∗) =

Cov(wi(s), wj(s
∗)). As in the univariate case, this model specifies a stationary and isotropic

process.

The cross-covariance function completely determines the joint dispersion structure im-

plied by the spatial process. Specifically, for any n and any arbitrary collection of locations S

the nm×1 vectorw = (w(s1)
′, . . . ,w(sn)

′)′ will have the covariance matrix given by Σw(θ),

an nm × nm block matrix whose (i, j)th block is the cross-covariance matrix C(si, sj ;θ),

which is a symmetric and positive definite function.

One possibility for C(s, s∗;θ), where θ = {Σ, φ}, is a separable specification, ρ(s, s∗;φ)Σ,

where Σ is an m × m covariance matrix between the outcomes and ρ(s, s∗;φ) is a spatial

correlation function. This implies Var(w) = R(φ) ⊗ Σ, where ⊗ is the kronecker product

operator and R(φ) was defined previously in Section 2.3.1. A separable spatial association

structure is rather restrictive here, assigning a single spatial correlation parameter φ to be

shared by all the outcomes. This can be inappropriate, e.g., why should all the tree structure
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variables have the same strength of spatial associations?

More general cross-covariance functions are not routine to specify since they demand

that for any number of locations and any choice of these locations the resulting covariance

matrix for the associated data be positive definite. Various constructions are possible, see,

e.g., Hoef & Barry (1998), Higdon et al. (1999), and Fuentes & Smith (2002).

We motivate an alternative approach as follows. For the separable model, notice that

we can write C(s, s∗;θ) = AΘ(s, s∗;φ)A′ where Σ = AA′ is a Cholesky factorization and

Θ(s, s∗;φ) = ρ(s, s∗;φ)Im, where Im is the m×m identity matrix. We call Θ(s, s∗;φ) the

cross-correlation function which must satisfy Θ(s, s;φ) = Im for all φ = {φ1,φ2, . . . ,φm}.

This implies that C(s, s) = AA′ and A identifies with a matrix square-root (e.g., Cholesky)

of C(s, s). For modeling A, without loss of generality one can assume that A = C1/2(s, s)

is a lower-triangular square-root; the one-to-one correspondence between the elements of A

and Cw(s, s) is well-known (see, e.g., Harville, 1997, p229). Therefore, A determines the

association between the elements of w(s) within s. Also we adopt a flexible and computa-

tionally feasible approach that specifies Θ(s, s∗;φ) as a diagonal matrix with ρk(s, s
∗;φk),

k = 1, . . . ,m as its diagonal elements. This incorporates a set of m correlation parame-

ters, or even m different correlation functions, offering an attractive, easily interpretable and

flexible approach. This approach resembles the linear model of coregionalization (LMC) as

in, e.g., Grzebyk & Wackernagel (1994), Wackernagel (2003), Schmidt & Gelfand (2003),

and Gelfand et al. (2004). See, also, Reich & Fuentes (2007) for a Bayesian nonparametric

adaptation. We will assume this structure in our subsequent development.

Once a cross-covariance function is specified for a multivariate Gaussian process, the

realizations of w(s) over the set of observed locations S is given by MVN(0,Σw(θ)), where

θ = {A,φ} and Σw(θ) is an mn × mn block matrix whose (i, j)th block is the m × m

cross-covariance C(si, sj ;θ), i, j = 1, . . . , n.

Collecting observations from the n locations into anmn×1 vector y = (y(s1)
′, . . . ,y(sn)′)′,
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the multivariate analogue of (3.2) as

m∏
k=1

p(φk)× p(A)×MVN(β |µβ ,Σβ)

× p(Ψ)×MVN(w |0,Σw(θ))

×
n∏

i=1

MVN(y(si) |X(si)
′β +w(si),Ψ), (2.5)

With the appropriate dimensional adjustments, the prior specifications for w, β, and

elements of φ are the same as the univariate case. We assumed cross-covariance matrix AA′

and Ψ followed an inverse-Wishart (IW) distribution. Sampling from the parameters’ poste-

rior distributions follows the same algorithm as the univariate case. Upon convergence, the

MCMC output generates L samples, {Ω(l),w(l)}Ll=1, where Ω is now {β,A,φ,Ψ}. Subse-

quent prediction of the spatial random effects w(s0) and the outcome y(s0) is also analogous

to the univariate setting.

2.3.3 Model selection

Model fit is assessed using a posterior predictive loss function based on simulating indepen-

dent replicates for each observed outcome. For the multivariate spatial model (2.4), and

each location si we compute, for each i = 1, 2, . . . , n,

p(yrep(si) |y) =
∫

MVN(yrep(si) |Xβ +w(si),Ψ)

× p(Ω,w(si) |y) dΩ dw(si) (2.6)

where the conditional distribution of the replicate yrep(si) given the parameters is simply

the likelihood component corresponding to y(si). Models that perform well under a decision-

theoretic balanced loss function, i) penalizing both departure of replicated means from their

observed values (lack of fit) and ii) excessive uncertainty in the replicated data, are preferred.
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Let µrep,i and Σrep,i be the posterior predictive mean and variance for each yrep(si). Then

using a squared error loss function (e.g., Gelfand & Ghosh, 1998), the measures for these two

criteria are evaluated as G =
∑n

i=1 ‖y(si)− µrep,i‖2, where ‖ · ‖ is the standard Euclidean

norm, and P =
∑n

i=1 trace(Σrep,i). Following Gelfand & Ghosh (1998), we used the score

D = G+ P as a model selection criterion, with lower values of D indicating better models.
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Figure 2.2: Three of the 19 inventory plots with observed trees denoted with an open circle
symbol and validation holdout trees denoted with a plus symbol.

Finally, because prediction is our overarching objective, we assessed model predictive

performance using a split-set validation approach. Here, 85% of the observations were used

to estimate candidate models’ parameters and the remaining 15% were used for subsequent

prediction-based validation. Models were ranked based on their holdout set root mean

squared prediction error (RMSPE), where again lower values of RMSPE indicate greater

predictive performance.
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2.4 Candidate models and implementation

We considered four candidate models for the tree structure data described in Section 2.2: i)

univariate non-spatial regression (3.1) with w = 0; ii) univariate spatial regression (3.1); iii)

multivariate non-spatial regression (2.4) with w = 0, and; iv) multivariate spatial regression

(2.4).

Prior to regression analysis HT, CL, CR, and DBH were log transformed to satisfy the

model assumption that ε(si)’s are normally distributed. This transformation also ensures a

correct positive support for the outcomes following back transformation.

As detailed in Section 2.3.3, model fit was evaluated using the D criterion. Predictive

performance was assessed using RMSPE calculated using 74 randomly selected trees i.e.,

a 15% holdout set. Candidate model parameters were estimated using the remaining 420

observations. The distribution of observed and holdout trees in three inventory plots are

illustrated in Figure 2.2.

To complete the proposed models’ Bayesian specification, prior distributions were as-

signed to each parameter. As is customary, a flat prior was assigned to the regression

intercept and slope parameters, i.e., Σβ = 0. The covariance matrices AA′ and Ψ, were

each assigned an IW (a, b) with the degrees of freedom, a, set to m+1. For AA′ and Ψ, the

IW scale matrix, b, was constructed with zeros on the off-diagonal elements and diagonal

elements taken as the partial-sill and nugget values, respectively, from univariate semivari-

ograms fit to the residuals of the non-spatial multivariate model. An exponential correlation

function, ρ(s, s∗;φ) = exp(−φ‖s−s∗‖), was used in the univariate and multivariate models.

The maximum distance between any two trees in the data set is 2479 m. Therefore the

spatial decay parameters, φ’s, were assigned a uniform U(0.0012, 3), which corresponds to

support for an effective spatial range between approximately 1 to 2500 m (i.e., where effective

spatial range is the distance at which the correlation drops to 0.05).
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The candidate models were coded in C++ and used Intel’s Math Kernel Library threaded

BLAS and LAPACK routines for matrix computations. All analyses were conducted on a

Linux workstation using two Intel Nahalem hyperthreaded quad-Xeon processors. The sam-

plers were run for three chains of 50,000 iterations. The first 10,000 iterations were discarded

as burn-in, following convergence diagnostics detailed in Gelman et al. (2004). Parameter

and predictive inference was based on 120,000 post burn-in samples (i.e., three chains each

of 40,000 iterations). The most computationally intensive model required approximately 3

hours to deliver the three chains.

2.5 Results and Discussion

Figure 2.3 offers histograms of the multivariate spatial regression model residuals and pro-

vides evidence that, following the transformation described in Section 2.4, the assumption

about the distribution of residuals is reasonable. Parameter estimates for the multivariate

non-spatial and spatial regression models, i.e., candidate models iii and iv, are provided in

Tables 2.1 and 2.2, respectively. In both tables, subscripts on the regression slope parame-

ters indicate the outcome variable and associated LiDAR covariate. The β·,0 correspond to

the intercept whereas β·,P50 and β·,P95 correspond to the 50th and 95th LiDAR height per-

centile covariate, respectively. All of the non-spatial model slope parameters are significant

at the 0.05 level, i.e., 95% credible intervals do not include zero. This result suggests the

LiDAR covariates explain a substantial portion of the variability in the outcome variables.

A very different conclusion is drawn from the multivariate spatial regression model results,

Table 2.2, which suggest none of the slope parameters associated with the LiDAR covariates

differ from zero. These disparate conclusions occur because we violate the key model as-

sumption of independent and identically distributed residuals when applying the non-spatial

model to these data. The non-spatial model assumes each tree observation contributes a
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unique portion of information, however, this is not the case – due to strong spatial depen-

dence among measurements between tree locations. The addition of the spatial random

effects help to meet this model assumption by explicitly modeling the residual spatial depen-

dence and hence providing a more accurate summary of covariates’ importance. Comparing

Tables 2.1 and 2.2, apportioning residual variability from the non-spatial model variance-

covariance Ψ to the spatial model cross-covariance AA′ confirms the presence of strong

residual spatial dependence. Further, the estimates of effective spatial range in Table 2.2

suggest there is spatial dependence beyond 0.5 km for all outcomes, even after accounting

for the LiDAR covariates.

Given the assumed exponential correlation function, the effective spatial range associated

with the first outcome variable in the multivariate vector, i.e., y1(s), is obtained by solving

ρ(d;φ) = 0.05 for d, i.e., d = − ln(0.05)/φ. However, because of the linear combination

induced by the cross-covariance matrix, the subsequent effective spatial ranges are obtained

by solving a system of equations (see, e.g., Gelfand et al., 2004, p292). For example, the ef-

fective spatial range for y2(s) is given by solving (a22,1ρ(d;φ1)+a22,2ρ(d;φ2))/(a
2
2,1+a22,2) =

0.05 for d, where a2,1 and a2,2 are the elements of A corresponding to the row and col-

umn subscripts. In a similar way, the effective spatial range for y3(s) is given by solving

(a23,1ρ(d;φ1) + a23,2ρ(d;φ2) + a23,3ρ(d;φ3))/(a
2
3,1 + a23,2 + a23,3) = 0.05 for d. The effective

spatial ranges for y4(s), . . . ,ym(s) follow the same pattern.

Although not shown, the univariate non-spatial and spatial regression models, i.e., candi-

date models i and ii, parameter estimates do not differ substantially from their multivariate

counterparts.

Contrary to the spatial model results, one expects the P95 covariate to explain a sub-

stantial portion of variability in at least the tree height outcome, i.e., HT. The P95, or

similar upper canopy LiDAR return covariate, has been shown to be well correlated with

tree height in many studies. However, in the current data set there is just not enough unique
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Figure 2.3: Histogram of the spatial multivariate regression model residuals for height.

information to reduce the width of βHT,P95’s credible interval and exclude zero. Given the

estimated range of spatial dependence, we might conclude that tree measurements within

plots are redundant and that even plots in close proximity are not contributing much unique

information. In the end, we are probably only working with an effective sample size of / 19,
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Table 2.1: Non-spatial multivariate regression model parameter estimates.

Parameter 50 (2.5, 97.5) percentiles

βHT,0 1.67 (1.60, 1.74)
βHT,P50 -0.02 (-0.03, -0.01)
βHT,P95 0.07 (0.06, 0.08)
βCL,0 1.29 (1.20, 1.38)
βCL,P95 0.04 (0.03, 0.04)
βCR,0 -0.10 (-0.20, -0.00)
βCR,P95 0.05 (0.04, 0.05)
βDBH,0 1.41 (1.30, 1.54)
βDBH,P50 -0.01 (-0.02, -0.00)
βDBH,P95 0.09 (0.08, 0.10)
ΨHT,HT 0.07 (0.06, 0.08)
ΨHT,CL 0.06 (0.05, 0.07)
ΨHT,CR 0.06 (0.05, 0.07)
ΨHT,DBH 0.10 (0.09, 0.12)
ΨCL,CL 0.15 (0.14, 0.17)
ΨCL,CR 0.11 (0.09, 0.12)
ΨCL,DBH 0.13 (0.11, 0.15)
ΨCR,CR 0.18 (0.16, 0.21)
ΨCR,CL 0.17 (0.14, 0.19)
ΨDBH,DBH 0.25 (0.22, 0.28)

as opposed to the 420 tree observations assumed when applying the non-spatial model.

Model fit and prediction summaries are given in Table 2.3. Here, a lower value of D for

the spatial models compared to that of the non-spatial models suggests that the addition of

spatial random effects improves model fit.

As detailed in Section 3.1, our interest is in the predictive ability of the models. This is

assessed using the RMSPE based on prediction for the 15% holdout set and summarized in

the last four rows of Table 2.3. These results suggest the spatially structured random effects

result in greater predictive accuracy than that obtained from the non-spatial models, i.e.,

candidate models ii and iv have lower RMSPE than their non-spatial counterparts i and iii,

respectively.

There are marginal differences between the RMSPEs obtained from the univariate and

multivariate spatial models. However, with the exception of CL, the multivariate model

achieves a smaller RMSPE for the outcome variables. The lower RMSPE is likely due to
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Table 2.2: Spatial multivariate regression model parameter estimates.

Parameter 50 (2.5, 97.5) percentiles

βHT,0 2.65 (2.36, 2.98)
βHT,P50 0.00 (-0.00, 0.01)
βHT,P95 0.00 (-0.01, 0.01)
βCL,0 2.15 (1.69, 2.39)
βCL,P95 -0.01 (-0.02, 0.01)
βCR,0 0.97 (0.43, 1.24)
βCR,P95 -0.00 (-0.02, 0.01)
βDBH,0 3.07 (2.43, 3.54)
βDBH,P50 0.00 (-0.00, 0.02)
βDBH,P95 -0.00 (-0.02, 0.01)
AA′

HT,HT 0.14 (0.11, 0.17)
AA′

HT,CL 0.14 (0.11, 0.15)
AA′

HT,CR 0.17 (0.14, 0.18)
AA′

HT,DBH 0.25 (0.21, 0.27)
AA′

CL,CL 0.17 (0.12, 0.24)
AA′

CL,CR 0.19 (0.16, 0.26)
AA′

CL,DBH 0.29 (0.22, 0.34)
AA′

CR,CR 0.30 (0.24, 0.34)
AA′

CR,DBH 0.37 (0.31, 0.42)
AA′

DBH,DBH 0.51 (0.43, 0.60)
ρHT,CL 0.87 (0.83, 0.89)
ρHT,CR 0.83 (0.78, 0.85)
ρHT,DBH 0.91 (0.89, 0.95)
ρCL,CR 0.89 (0.86, 0.93)
ρCL,DBH 0.94 (0.92, 0.96)
ρCR,DBH 0.94 (0.92, 0.97)
ΨHT,HT 0.03 (0.02, 0.03)
ΨHT,CL 0.03 (0.02, 0.03)
ΨHT,CR 0.01 (0.01, 0.02)
ΨHT,DBH 0.03 (0.02, 0.04)
ΨCL,CL 0.09 (0.08, 0.10)
ΨCL,CR 0.04 (0.03, 0.05)
ΨCL,DBH 0.04 (0.03, 0.05)
ΨCR,CR 0.05 (0.04, 0.06)
ΨCR,DBH 0.03 (0.02, 0.04)

ΨDBH,DBH 0.07 (0.04, 0.09)

Eff. range1 (m) 598.22 (276.58, 804.28)

Eff. range2 (m) 609.64 (428.73, 740.14)

Eff. range3 (m) 567.48 (352.99, 704.88)

Eff. range4 (m) 592.88 (338.04, 772.92)

explicit modeling of the covariance among the random effects via the cross-covariance matrix

AA′. The cross-covariance matrix allows the model to borrow strength across the random
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Table 2.3: Candidate models’ fit and predictive performance.

Univariate Multivariate

Non-spatial Spatial Non-spatial Spatial

G – – 265 75

P – – 278 121

D – – 543 196

RMSPEHT 3.84 2.60 3.82 2.56

RMSPECL 2.91 2.41 2.88 2.45

RMSPECR 1.06 0.81 1.05 0.76

RMSPEDBH 12.67 8.67 12.73 8.46

effects which can improve prediction. Figure 2.4 shows scatter plots of the univariate non-

spatial model residuals, i.e., after accounting for the LiDAR covariates. These plots suggest

several strong positive linear relationships among the residuals, a portion of which is captured

by the AA′ which can also be viewed as the within tree outcome covariance. In Table 2.2, we

have converted the AA′ covariance estimates to correlations to simplify interpretation, e.g.,

ρHT,CL = AA′
HT,CL/(AA′

HT,HT × AA′
CL,CL). It is these strong correlations that help

improve predictive performance. Further, explicitly modeling these within tree covariances

can help to ensure a biologically feasible combination of predicted structure variables for new

locations – this is not guaranteed when using m separate univariate models for prediction.

Finally, although it is not an objective of this study, estimates of AA′ or corresponding

ρ’s can allow one to test hypotheses about the statistical significance of covariation among

outcomes – after accounting for covariates. For example, after accounting for the LiDAR

covariates, all outcomes have positive covariance or correlations that differ significantly from

zero.
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Figure 2.4: Scatter plots of residuals from non-spatial version of the multivariate candidate
model.

2.6 Summary

In this paper we compared univariate and multivariate regression models with and without

spatially-structured random effects for predicting several tree structure variables. In addition
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to helping meet the regression model’s assumption of independent and identically distributed

residuals, the results of the PEF data analysis suggest that the addition of univariate or mul-

tivariate spatial random effects improved model fit and prediction. In some cases, explicitly

modeling the residual spatial dependence among the outcomes via multivariate random ef-

fects resulted in improved inference.

The difference between inference gleaned from the non-spatial and spatial models about

the importance of the LiDAR covariates underscores the need to meet model assumptions

in this and similar studies where residual spatial dependence could be present.

By working in a Bayesian paradigm we have access to the full posterior predictive distribu-

tion of each outcome variable at each new location, which facilitates uncertainty assessment.

Access to posterior predictive samples could also be useful in settings where the investiga-

tor wishes to propagate uncertainty in outcome variables through subsequent economic or

ecological numerical models. For example, many forest yield models require spatially and

temporally explicit inputs that must be somehow imputed to the region of interest.

There are obviously many alternative approaches to deriving covariates from LiDAR data

and more exhaustive approaches for selecting a subset of covariates to serve in the regression

model. Regardless of the approach used, there is typically strong correlation among the

covariates and hence only a few can be included in the model – without risking issues related

to multicollinearity. Therefore, we do not expect that a more sophisticated covariate selection

approach would result in substantial gains in explained variance over that obtained using the

P50 and P95 covariates. Rather, in practice the addition of spatial random effects generally

results in larger gains in model fit and predictive ability.

Our future research will focus on developing modeling frameworks that automate the

selection of covariates from high-dimensional remotely sensed data. Also, we are consid-

ering application of non-stationary cross-covariance functions that allow covariance among

outcomes to vary by location.
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CHAPTER 3

IMPROVING LIDAR BASED PREDICTION OF FOREST BIOMASS USING
HIERARCHICAL MODELS WITH SPATIALLY VARYING COEFFICIENTS

3.1 Introduction

Estimating forest above-ground biomass (AGB), along with other structure variables, using

discrete Light Detection and Ranging (LiDAR) data is an active subject in ecological re-

search. Studies in this area show a strong potential for discrete return LiDAR to be used as

a tool for developing spatially explicit estimates of many forest attributes, including AGB,

either on its own or in conjunction with other remote sensing technologies (see, e.g., Gonzalez

et al., 2010; Sherrill et al., 2008; Lucas et al., 2006; Lim & Treitz, 2004).

Regression models proposed for forest AGB mapping using LiDAR data often do not

explicitly accommodate residual spatial dependence, see, e.g, Anderson et al. (2008), Gon-

zalez et al. (2010), Muss et al. (2011), Tonolli et al. (2011), and Popescu et al. (2011). A

non-spatial model can be appropriate if all spatially structured variation in the outcome is

accounted for by the covariates used for model fitting; however, this is often an unrealistic

assumption when data are spatially indexed. Considering forest attribute data, it is reason-

able to expect similar outcomes for neighboring locations. For example, inventory plots close

together could comprise like tree species and have comparable stem densities due to similar

disturbance histories and environmental conditions. In contrast, inventory plots far apart

are less likely to share common composition or structure attributions. A key assumption of

regression is that model residuals are not correlated. Given the spatially dependent nature

of forest inventory data, the potential for spatially correlated residuals in AGB models is

high. Not accounting for residual spatial dependence can result in falsely precise estimates

of model parameters and erroneous predictions (Hoeting, 2009). For these reasons, it is
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important to check for spatially structured residuals when spatial data are used to fit AGB

models.

To ensure a model’s statistical validity, spatial dependence among residuals can be ac-

commodated by introducing a spatially varying intercept via the addition of an appropriately

structured random effect. Including spatial random effects that account for spatial associ-

ation between observed locations can not only help to reduce correlation among residuals

but also improve model fit and prediction accuracy via partitioning error uncertainty to a

spatial and non-spatial component and borrowing information from observed locations to

inform prediction at proximate locations.

In addition to a spatially varying intercept, it may be appealing to allow the regression

parameters associated with the covariates to vary across the study area. For instance, given

the heterogeneity of forest species composition, age classes, and resources (e.g., light, water,

soil characteristics), a single set of regression parameters might not adequately capture the

space varying relationship between forest outcome variables and the covariates. In such

cases, one might attempt to capture these localized effects by including forest characteristics

and/or environmental conditions as covariates in the regression model; however, it is not

always clear which variables should be included and, in many applied settings, the necessary

variables are not available. Rather, localized relationships between the outcome variable and

covariates might be more effectively captured by allowing the regression coefficients to vary

smoothly over the study area.

Such spatially varying coefficient models have received some attention in the statistical

literature (see, e.g., Gelfand et al., 2004; Finley et al., 2009, 2011), and more recently in

applied disciplines (Wheeler & Calder, 2007; Wheeler & Waller, 2009; Finley, 2010). Flexible

specification of these models follows the Bayesian paradigm of statistical inference (see,

e.g., Carlin & Louis, 2000; Gelman et al., 2013; Banerjee et al., 2004), where analysis uses

samples, obtained using Markov chain Monte Carlo (MCMC) methods, from the posterior
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distributions of model parameters.

In an effort to more fully account for patterns of spatial dependence between AGB and

LiDAR covariates, we assess the utility of a Bayesian hierarchical modeling framework that

accommodates both residual spatial dependence and non-stationarity of model covariates

through the introduction of spatial random effects.

We explore this objective using four forest inventory datasets that are part of the North

American Carbon Program (NACP) each comprising point-referenced measures of AGB and

discrete LiDAR. For each dataset, we consider a set of regression model specifications of

varying complexity. Models are assessed based on fit criteria and predictive performance

using a ten-fold cross-validation approach.

The remainder of the paper evolves as follows. The motivating datasets and field and

LiDAR data processing are detailed in Section 3.2. The proposed modeling framework and

model assessment are described in Section 3.3, followed by analysis results and associated

discussion presented in Section 3.4. Finally, some concluding remarks with an indication of

future work are provided in Section 3.5.

3.2 Study Sites

3.2.1 Fraser Experimental Forest

The Fraser Experimental Forest (FEF) is located in central Colorado (39◦ 4’ N, 105◦ 52’

W) near the town of Fraser. Tree species at FEF consist primarily of Abies lasiocarpa and

Picea engelmannii at higher elevations and Pinus contorta at lower elevations. Climate at

FEF is characterized by cold and relatively long winters, with mean annual temperature

and precipitation of 0◦C and 737 mm, respectively. FEF experienced a widespread stand-

replacing fire in approximately 1685. Selective clearcuts were conducted as watershed-scale

manipulations at FEF in the 1950s. Although FEF is currently experiencing mortality due
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to mountain pine beetle, the field measurements and LiDAR acquisition for this study were

completed prior to beetle infestation.

3.2.2 Marcell Experimental Forest

Located in northern Minnesota, the Marcell Experimental Forest (MEF) consists of mixed

forests that include both upland forests and peatlands. Upland forests are generally dom-

inated by Populus tremuloides and grandidentata, but contain substantial components of

Betula papyrifera, Pinus resinosa, Pinus strobus, and Pinus banksiana. Lowland tree species

include Larix laricina, Picea mariana, Fraxinus nigra, and Thuja occidentalis. Climate at

MEF is subhumid continental, with mean annual precipitation of 785 mm, mean annual

temperature of 3◦C and air temperature extremes of −46◦C and 38◦C. Forests of the Lake

States region experienced widespread logging around the turn of the 20th century, includ-

ing much of the MEF landscape, and natural disturbances at MEF include windstorms of

variable intensity and rare wildfires.

3.2.3 Glacier Lake Ecosystem Experimental Site

Glacier Lake Ecosystem Experimental Site (GLEES) is located approximately 55 km west of

Laramie, Wyoming at 3190 m elevation (41◦ 22’ N, 106◦ 14’ W). GLEES includes a mosaic of

trees and alpine meadows; the forest is dominated by Picea engelmannii and Abies lasiocarpa.

GLEES has a mean annual temperature of −2◦C and a mean annual precipitation of 1000

mm, primarily as snow. Tree ages at GLEES suggest either a stand-replacing disturbance

more than 400 years ago with slow recovery, or a series of smaller disturbances over the last

400 years (Bradford et al., 2008).
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3.2.4 Niwot Long Term Ecological Research Site

Niwot Long Term Ecological Research Site (NIWOT) is located at 3050 m elevation on the

front range of the Rocky Mountains (40◦ 2’ N, 105◦ 33’ W), near the town of Nederland,

Colorado. Tree species include primarily a mix of Abies lasiocarpa, Picea engelmannii and

Pinus contorta with minor components of Pinus flexilis and Populus tremuloides. Mean

annual temperature and precipitation are 4◦C and 800 mm, respectively. Disturbance history

at NIWOT includes widespread clearcuts between 1900-1910.

3.2.5 Field Data Preparation

Field data at each site were collected using methods similar to the Forest Inventory and

Analysis style plot design (Bechtold & Patterson, 2005). Each plot location consists of four

subplots with radius 8–10 m (depending on site) with one being in the center and 3 others 35

m away from the plot center at 0◦, 120◦, and 240◦. Additional plots consisting of only one

subplot were also used in this analysis. FEF, MEF, NIWOT and GLEES contained 61, 115,

62 and 46 subplots respectively. Figure 3.1 shows the spatial distribution of the plots within

the LiDAR coverage area. Within each subplot, individual tree diameter at breast height

and height measurements for both live and dead trees were taken and used in species specific

allometric equations to estimate AGB (stem, branch and foliage biomass). Additional details

about field measurements and allometric equations used for biomass estimation are available

in Bradford et al. (2010). The individual tree AGB estimates were totaled for each subplot

and converted to AGB Mg/ha. The AGB measurements were then square root transformed

to better approximate a normal distribution before model fitting.
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Figure 3.1: Aerial photographs of FEF, MEF, GLEES, and NIWOT with inventory sub-plot
locations highlighted in red.

3.2.6 LiDAR Data Preparation

Height-above-ground measurements for the first return pulses were calculated by subtracting

the point elevations from a digital terrain model constructed from the LiDAR data. LiDAR

return height empirical cumulative distribution curves were constructed over each sub-plot
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and a percentile height dataset was compiled by extracting heights associated with 5% in-

tervals (i.e., 5%–100%) for each curve. These percentile heights served as an initial set of

regression covariates. Using the same intervals, a percentile height dataset was constructed

for a 20× 20 meter grid over the LiDAR coverage area and subsequently used to construct

AGB prediction maps. The cell size was chosen because it is approximately the same area

as the observed sub-plots.

Variable selection via dimension reduction was necessary because of high collinearity

among the percentile height covariates. We chose eigen (spectral) decomposition to ac-

complish this. Eigen decomposition is a matrix factorization technique that is useful for

characterizing patterns in high-dimensional data (Harville, 1997). Eigen decomposition (or

similar orthogonalization techniques) is used widely for data reduction or compression in

statistics, signal processing, pattern recognition, remote sensing, and other fields where

high-dimensional and/or highly correlated data are encountered (Guanter et al., 2012, 2013;

Huang et al., 2014; Wang et al., 2014).

Let A be the sub-plot and B be the grid percentile height sets with observations along

the rows and percentile heights along the columns. Their dimensions are n × p and m × p,

respectively, where n is the number of observations (i.e., sub-plot count) andm is the number

of prediction cells. Let Ã be the standardized scores for A calculated as follows,

Ãi,j =
Ai,j − µj

σj
,

here µj and σj are the mean and standard deviation of the j-th column of A. A correlation

matrix ρ is constructed for A by,

ρ =
Ã

′
Ã

n− 1
.

Let

ρ = PΛP ′
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be the eigen decomposition of ρ with the diagonal elements of Λ (p× p) holding the eigen-

values of ρ in decreasing order (off diagonal elements are zero) and P (p × p) holding the

corresponding eigenvectors along the columns. P is an orthogonal transformation matrix

that can be used to project Ã into a new vector space. Let A∗ = ÃP be the transformed

standardized scores of the sub-plot percentile height matrix. The columns of A∗ are now

uncorrelated.

To transform the gridded dataB to the same vector space asA∗,B was first standardized

via,

B̃i,j =
Bi,j − µj

σj
.

Note that µj and σj are the mean are standard deviation calculated from A. Then B∗ =

B̃P is then the gridded percentile height data projected into the same vector space as A∗.

In practice, a subset of columns from A∗ (i.e., principal component scores) can be used as

covariates in regression analysis—referred to as principal components regression (Chatterjee

& Hadi, 2006). This is the approach we pursued here. The columns of A∗ represent a

new, orthogonal (i.e., uncorrelated), candidate covariate set. From this set we retained the

minimum number of covariates that explained at least 80% of the variance in the percentile

height data. This was done by selecting the leftmost columns of A∗ whose standardized

eigenvalues total was > 0.8. To meet this criterion the two leftmost columns of A∗ were

retained for FEF, NIWOT and GLEES. It was necessary to keep three columns for MEF.

Figure 3.2 shows a plot of the cumulative sum of the eigenvalues for each site. We kept the

corresponding columns of B∗ for each site to use in subsequent grid prediction and mapping.

Some grid cell locations contained covariate values that well exceeded the range of values

used for model fitting. This is a result of a relatively small set of observed field plots

compared to the size and heterogeneity of the study area. To avoid potential issues arising

from model extrapolation (Perrin, 1904), grid cells with values outside the support of the

observed covariate values were removed from the analysis. In the AGB maps that follow,
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the excluded grid cells are shown in black.
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Figure 3.2: The cumulative sums of the standardized eigenvalues (in decreasing order) for
FEF, MEF, GLEES, and NIWOT.
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3.3 Methods

3.3.1 Modeling Framework

Geostatistical settings typically assume at location s ∈ D ⊆ R2, where s is a vector of

geographic coordinates in domain D, a Gaussian outcome variable y(s) is modeled using the

regression model,

y(s) = x(s)′β + x̃(s)′w(s) + ε(s). (3.1)

Here the linear mean structure that accounts for large scale variation in the outcome is

composed of a p×1 vector x(s), comprising an intercept and spatially referenced covariates,

and an associated column vector of regression coefficients β = (β1, β2, . . . , βp)
′. The x̃(s) is

a q × 1 vector that includes the intercept and those covariates from x(s) whose impact on

the outcome is posited to vary spatially. This space varying impact is captured through the

vector of spatial random effects w(s) = (w1(s), w2(s), . . . , wq(s))
′. Various sub-models are

formed by specifying different combinations of x̃(s) and associated w(s). Customarily, ε(s)

is modeled as an independent white-noise process that captures measurement error or micro-

scale variation. With any collection of n locations, say S = {s1, s2, . . . , sn}, we assume that

the ε(si)’s are identically and independently distributed as N(0, τ2), where τ2 is often called

the nugget.

For this model, spatial structure is typically introduced through a multivariate Gaus-

sian process (GP) (Cressie, 1993; Wackernagel, 2003; Banerjee et al., 2004), where a cross-

covariance function explicitly models the covariance of w(s) both within and among lo-

cations. This additional flexibility is attractive in many settings (see, e.g., Gelfand et al.,

2004; Banerjee et al., 2011; Finley et al., 2011); however, for the objectives of this study

it is not clear the extra effort will fetch substantial advantages. Rather, for simplicity and

substantially reduced computational demand, we assumed the elements of w(s) arise from

q independent univariate GPs. Specifically, the process associated with the k-th covariate
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is wk(s) ∼ GP (0, C(·, ·;θk)) where C(s, s∗;θk) = Cov(wk(s), wk(s
∗)) is a valid covariance

function that models the covariance corresponding to a pair of locations s and s∗. The

process realizations are collected into an n× 1 vector, say wk = (wk(s1), . . . , wk(sn))
′, that

follows a multivariate normal distribution MVN(0,Σk), where Σk is the n × n covariance

matrix of wk with (i, j)-th element given by C(si, sj ;θk). Clearly C(s, s∗;θk) cannot be

just any function; it must ensure that the resulting Σk matrix is symmetric and positive

definite. Such functions are known as positive definite functions and are characterized as

the characteristic function of a symmetric random variable. Further technical details about

positive definite functions can be found in Cressie (1993), Chilès & Delfiner (1999), and

Banerjee et al. (2004).

We specify C(s, s∗;θk) = σ2kρ(s, s
∗;φk) with θk = {σ2k, φk}, ρ(·;φk) is a valid spatial

correlation function, where φk quantifies the rate of correlation decay and Var(wk) = σ2k. For

the subsequent analyses we assumed an exponential correlation function, ρ(‖s− s∗‖;φk) =

exp(−φk‖s−s∗‖), where ‖s−s∗‖ is the Euclidean distance between the locations s and s∗.

To complete the Bayesian model specification, we assign prior distributions to the model

parameters and inference proceeds by sampling from the posterior distribution of the pa-

rameters. As customary, we assume β follows a MVN(µβ ,Σβ) prior, while the spatial vari-

ance components σ2k’s and the measurement error variance τ2 are assigned inverse-Gamma,

IG(a, b), priors. The process correlation decay parameters φk’s follow a Uniform, Unif(a, b),

with support over the geographic range of the study area.

Using notations similar to Gelman et al. (2013), we can write the posterior distribution of

the model parameters as p(Ω |y), where Ω = {β,w1,w2, . . . ,wq, σ
2
1, . . . , σ

2
q , φ1, . . . , φq, τ

2}
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and y = (y(s1), . . . , y(sn))
′, which is proportional to

q∏
k=1

Unif(φk | aφk , bφk)×
q∏

k=1

IG(σ2k | aσk , bσk)×N(β |µβ ,Σβ)× IG(τ2 | aτ , bτ )×

×
q∏

k=1

N(wk |0,Σk)×
n∏

i=1

N(y(si) |x(si)′β + x̃(s)′w(s), τ2).

(3.2)

An efficient MCMC algorithm for estimation of (3.2) is obtained by updating β from

its full conditional then using Metropolis steps for the remaining parameters. Alternatively,

the model can be reparametrized such that the spatial random effects w do not need to

be sampled directly (Banerjee et al., 2008). In either case, the MCMC algorithms yield

posterior samples of Ω.

For predictions, if S0 = {s0,1, s0,2, . . . , s0,m} is a collection of m new locations, the pos-

terior predictive distribution of the spatial random effects associated with the k-th regression

coefficient is given by

p(wk,0 |y) ∝
∫

p(wk,0 |wk,Ω,y)p(wk |Ω,y)p(Ω |y)dΩwk, (3.3)

where wk,0 = (wk(s0,1), wk(s0,2), . . . , wk(s0,m))′.

Given L posterior samples, {Ω(l)}Ll=1, this distribution can be obtained via composition

sampling by first draw w
(l)
k and then draw w

(l)
k,0 for each l from p(wk,0 |w

(l)
k ,Ω(l),y), where

this last distribution is derived as a conditional distribution from a multivariate normal

and, hence, is multivariate normal. More precisely, the process realizations over the new

locations are conditionally independent of the observed outcomes given the realizations over

the observed locations and the process parameters. In other words, p(wk,0 |wk,Ω,y) =

p(wk,0 |wk,Ω), which is a multivariate normal distribution with mean and variance given

44



by

E[wk,0 |wk,Ω] = Cov(wk,0,wk)Var
−1(wk)wk = R0(φk)

′R(φk)
−1wk

and Var[wk,0 |wk,Ω] = σ2k

{
R(φk)−R0(φk)

′R(φk)
−1R0(φk)

}
,

where R0(φk) is the n×m matrix with (i, j)-th element given by ρ(s0,i, sj ;φk) and R(φk) is

the n× n matrix with (i, j)-th element given by ρ(si, sj ;φk). This procedure is repeated to

generate samples for all wk’s. Finally, given a set of covariates at a new location s0, samples

from the posterior predictive distribution of the outcome variable, y(s0)
(l), are drawn from

N(x(s0)
′β(l) + x̃(s0)

′w(l)
0 , τ2(l)) for l = 1, 2, . . . , L.

3.3.2 Candidate Models

Five candidate models were derived from (3.1) and include: non-spatial, where wk’s are set

to zero; spatially varying intercept (SVI ), where only the spatial random effects associated

with the model intercept are included; the full spatially varying coefficients (SVC ), where all

regression coefficients have associated spatial random effects; SVC-β1, where spatial random

effects for the intercept and β1 are included, and; SVC-β2, where spatial random effects

for the intercept and β2 are included. Due to MEF’s additional covariate, four additional

candidate models were tested. SVC-β3 has spatial random effects associated with β0 and β3;

SVC-β1β2 has spatial random effects associated with β0, β1, and β2; SVC-β1β3 has spatial

random effects associated with β0, β1, and β3, and; SVC-β2β3 has spatial random effects

associated with β0, β2, and β3.

Empirical semivariograms fit to the residuals of the non-spatial models (Figure 3.3) were

used to help guide hyperprior specification for the candidate models’ IG and Unif priors.

Specifically, for the variance parameters we set the IG hyperprior a=2, which results in a

prior distribution mean equal to b and infinite variance (see, e.g., IG definition in Gelman

et al. (2013)). Then the b hyperpriors for the models’ τ2 and σ2’s were set according to the
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nugget and partial sill of the semivariograms. The prior for the spatial decay parameters,

φ’s, was set to Unif(0.0006, 3) which, assuming the exponential spatial correlation function,

corresponds to support for an effective spatial range between ∼1-5000 m. We define the

effective spatial range as the distance at which the correlation equals 0.05.

The MCMC samplers were implemented in C++ and Fortran and leveraged Intel’s Math

Kernel Library threaded BLAS and LAPACK routines for matrix computations. All analyses

were conducted on a Linux workstation using two Intel Nehalem quad-Xeon processors.

Three MCMC chains were run for 25000 iterations each. The most demanding model

required ∼1 hour to complete a single MCMC chain. Convergence was diagnosed using the

CODA package in R by monitoring mixing of chains and the Gelman-Rubin statistic (Gelman &

Rubin, 1992). Satisfactory convergence was diagnosed within 10000 iterations for all models.

Posterior inference was based on a post burn-in sub-sample of 15000 iterations (5000 from

each chain).

3.3.3 Fit and Prediction Accuracy Assessment

We assessed model performance using the popular Deviance Information Criterion (DIC) to

rank models in terms of how well they fit the data (Spiegelhalter et al., 2002). This criteria

is the sum of the Bayesian deviance (a measure of model fit) and the effective number of

parameters (a penalty for model complexity), D and pD, respectively. Lower values of DIC

indicate better model fit.

Predictive performance was assessed using a ten-fold cross-validation approach. Here,

the full dataset was split into ten roughly equal sized subsets. Then AGB was predicted

for locations within each subset, given parameters estimated from the remaining subsets.

Root mean squared prediction error (RMSPE) was then calculated using the observed AGB

values and corresponding median of the posterior predictive distribution. Lower RMSPE

values signify more accurate predictions.
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3.4 Results

Our experimental design produced 24 combinations of candidate models and sites. Tables 3.1,

3.2, 3.3, and 3.4 provide summaries of the candidate models’ parameter estimates, fit, and

predictive performance for FEF, MEF, GLEES and NIWOT, respectively. Concerning all

sites non-spatial models, the exclusion of zero from the regression slope parameters’ 95%

credible interval suggests the derived LiDAR covariates explain a substantial portion of

variability in AGB with the exception of NIWOT’s β2 parameter.

The results in Tables 3.1, 3.3, and 3.4 show that for the FEF, GLEES, and NIWOT sites,

the SVI models produce marginally to moderately lower D, DIC, and RMSPE compared

to the non-spatial models. This suggests the addition of a spatial random effect to the model

intercept results in improved fit and predictive performance. Given the clear spatial structure

seen in the exploratory semivariogram plots of the non-spatial models’ residuals (Figure 3.3

(a), (c), and (d)) the SVIs’ improved fit to the data is not surprising. These semivariogram

plots along with the formal assessment of model fit and predictive performance suggest

the non-spatial models violate the assumption of independent and identically distributed

residuals at FEF, GLEES, and NIWOT.

On the other hand, the semivariogram of the non-spatial model residuals for MEF (Fig-

ure 3.3 (b)), does not provide strong evidence of any residual spatial correlation. We also see

in Table 3.2 only slight gains in model fit along with a decrease in model prediction accuracy

when comparing the non-spatial and SVI candidates. This suggests the addition of a spatial

random effect to the intercept at MEF is not only unnecessary, but allowing the intercept

to vary spatially causes the model to over-fit the data and hence prediction suffers.

These observations are further corroborated by the candidate models’ parameter esti-

mates provided in Tables 3.1, 3.2, 3.3, and 3.4. The ratio τ2/(τ2 + σ20) calculated using

estimates from the SVI model is useful for assessing the need for spatial random effects.
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The lower the ratio, the greater the spatial structure in the non-spatial models’ residuals

and, hence, need to include the spatially-varying intercept. This ratio is 0.15, 0.13, and 0.29

for FEF, GLEES, and NIWOT, respectively. Compared to MEF’s 0.45 ratio, we can see

that the non-spatial model residuals for FEF, GLEES, and NIWOT contain more spatial

structure.

The effective spatial range is another parameter that describes the strength of a spatial

component. A long spatial range suggests stronger and farther reaching spatial dependence.

We see from Tables 3.1, 3.2, 3.3, and 3.4 that MEF’s SVI spatial range of 29.5 m is much

shorter than the SVI ranges for FEF, GLEES and NIWOT. The long spatial ranges and

low nugget to total variance ratios suggest the spatial random effects are capturing substan-

tial residual spatial structure and the non-spatial models are not appropriate for the FEF,

GLEES, and NIWOT datasets. In contrast, these same measures suggest there is little spa-

tial structure in the MEF non-spatial model residuals and hence spatial random effects may

not be warranted.

The remainder of this section is divided into four subsections, one for each site. In each

subsection we identify which model was selected as the “best” and explore some site specific

results.
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Figure 3.3: Semivariogram models generated using the residuals from the non-spatial model
estimates for FEF, MEF, GLEES, and NIWOT.
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51



3.4.1 FEF Results

At FEF the full SVC model yields the lowest D, DIC, and RMSPE. The SVC model

shows a 83% improvement in DIC (model fit) compared to the non-spatial model. This

improvement is clearly seen when comparing Figures 3.6a and 3.6b. Figure 3.6b shows

high correspondence between the observed and fitted values for the SVC model, where as

in Figure 3.6a, the fitted values are scattered further from the one-to-one line. It is also

evident that the credible intervals for the SVC fitted values are much tighter than for the

non-spatial fitted values. There is a 9% improvement in RMSPE (prediction accuracy)

when moving from the non-spatial to SVC model. Figures 3.4a and 3.5a show maps of SVC

model predicted biomass and prediction uncertainty, respectively. Most of the predictions in

Figure 3.4a fall within the range of observed AGB (0 – 430 Mg/ha); however, those pixels

that exceed this observed range exhibit high associated uncertainties (Figure 3.5a).

In addition to the regression coefficient estimates given in Table 3.1, it is also instruc-

tive to look at surfaces of βk(s) = βk + wk(s) which provide insight into the space-varying

relationship between the k-th covariate and AGB. For example, the β1(s) coefficient map

(Figure 3.7b) shows clear spatial structure and suggests the associated LiDAR covariate ex-

plains more variability in AGB in the northern regions of the study area, i.e., β1(s) is further

from zero in the north. Compared to β1(s), random effects associated with β0(s) and β2(s)

have much shorter effect ranges (Table 3.1) which make their adjustments less noticeable at

the scale shown in Figure 3.7. In regions far from inventory sub-plot locations the random

effects on β0 and β2 retreat to zero. By zooming into a region with a high concentration

of sub-plot inventories, switching from an equal to quantile interval color classification, and

passing the predictions of the β(s)′s through a smoothing filter we can highlight the more

subtle spatial adjustments to β0 and β2. Figures 3.8a and 3.8b depict β0(s) and β2(s) at

the extents shown by the red outline in Figures 3.7a and 3.7c, respectively. These surfaces

show how the global estimates of β0 and β2, given in Table 3.1 as ∼11.28 and ∼0.91 respec-
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tively, are influenced by their corresponding spatial random effects to better accommodate

the non-stationary relationship between the covariates and AGB. These adjustments, along

with the increases in prediction accuracy and model fit support the use of the SVC model

for FEF.

Table 3.1: Candidate model parameter estimates and 95% credible intervals for FEF.

Non-Spatial SVI SVC-β1 SVC-β2 SVC

p
a
ra
m
et
er

C
.I
.

50
%

(2
.5
%
,
97
.5
%
)

β0 11.16 (10.49, 11.80) 11.33 (10.44, 12.27) 11.58 (10.88, 12.30) 11.41 (10.69, 12.05) 11.28 (10.69, 11.90)

β1 -1.08 (-1.25, -0.92) -1.06 (-1.23, -0.88) -1.04 (-1.91, 0.17) -0.97 (-1.16, -0.78) -0.81 (-1.76, 0.12)

β2 1.10 (0.70, 1.51) 1.01 (0.57, 1.44) 0.77 (0.35, 1.22) 1.46 (0.63, 3.51) 0.91 (0.35, 1.41)

τ2 6.49 (4.62, 9.58) 0.89 (0.32, 3.70) 3.38 (1.61, 5.70) 2.36 (0.79, 4.83) 0.07 (0.02, 0.75)

3/φ0 — 121.45 (20.05, 284.91) 21.14 (10.29, 241.36) 31.29 (10.37, 1612.90) 20.62 (10.27, 156.90)

3/φ1 — — 2380.95 (160.09, 4838.71) — 2400.00 (302.72, 4918.03)

3/φ2 — — — 194.74 (10.82, 2542.37) 21.63 (10.25, 185.87)

σ20 — 5.18 (2.51, 8.71) 0.48 (0.21, 1.73) 0.53 (0.21, 2.19) 0.48 (0.20, 1.19)

σ21 — — 0.66 (0.29, 1.91) — 0.74 (0.33, 1.95)

σ22 — — — 2.28 (0.80, 7.99) 1.64 (0.89, 3.09)

fi
t

st
a
ti
st
ic
s D 293.21 93.13 248.42 224.71 22.43

pD 3.93 38.24 24.17 29.57 25.71

DIC 297.14 131.37 272.59 254.28 48.14

RMSPE 71.70 69.44 71.16 74.88 65.27
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Figure 3.6: Plots showing fitted versus actual AGB values for FEF’s non-spatial and SVC
models. Vertical grey error bars depict 95% credible intervals for fitted values.
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3.4.2 MEF Results

As noted previously, of the eight spatial models fit to the MEF dataset none out performed

the non-spatial model with regard to prediction accuracy and only the SVI model shows an

improvement in DIC over the non-spatial model (Table 3.2).

Figures 3.4b and 3.5b show the non-spatial model AGB prediction and associated un-

certainty for the extent of the LiDAR data. A large number of grid cells in the southwest

corner of MEF were removed from the prediction dataset because their covariate values far

exceeded those seen in the observed dataset, see Section 3.2.6. We also see that grid cells in

this area that were included in the prediction set have high uncertainties. The aerial photo

in Figure 3.1b suggests that the forest in this region of MEF shows very different qualities

than the areas where field data were collected.
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Figure 3.9: Plots showing fitted versus actual AGB values for MEF’s non-spatial and SVI
models. Vertical grey error bars depict 95% credible intervals for fitted values.
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Table 3.2: Candidate model parameter estimates and 95% credible intervals for MEF.

Non-Spatial Spatial SVC-β1 SVC-β2 SVC-β3 SVC-β1β2 SVC-β1β3 SVC-β2β3 SVC

p
a
ra
m
et
er

C
.I
.

50
%

(2
.5
%
,
97
.5
%
)

β0 9.10 (8.45, 9.73) 9.08 (8.43, 9.73) 9.00 (8.30, 9.69) 9.12 (8.44, 9.80) 9.09 (8.45, 9.73) 9.01 (8.27, 9.75) 8.98 (8.27, 9.69) 9.09 (8.39, 9.79) 9.00 (8.22, 9.75)

β1 -1.29 (-1.49, -1.09) -1.29 (-1.48, -1.09) -1.23 (-1.50, -0.93) -1.28 (-1.51, -1.06) -1.28 (-1.49, -1.06) -1.22 (-1.51, -0.91) -1.22 (-1.54, -0.84) -1.27 (-1.51, -1.03) -1.21 (-1.52, -0.91)

β2 0.89 (0.61, 1.15) 0.88 (0.61, 1.15) 0.90 (0.57, 1.23) 0.83 (0.35, 1.29) 0.86 (0.53, 1.18) 0.84 (0.30, 1.38) 0.88 (0.48, 1.25) 0.82 (0.33, 1.30) 0.83 (0.27, 1.38)

β3 -1.20 (-1.67, -0.74) -1.18 (-1.64, -0.71) -1.26 (-1.84, -0.70) -1.25 (-1.83, -0.68) -1.21 (-1.85, -0.59) -1.34 (-2.03, -0.64) -1.29 (-2.00, -0.60) -1.29 (-2.00, -0.57) -1.38 (-2.18, -0.60)

τ2 11.56 (8.99, 15.36) 4.98 (1.24, 11.25) 10.51 (7.75, 14.37) 10.15 (7.55, 13.75) 10.30 (7.67, 13.93) 9.52 (6.67, 13.44) 9.27 (6.92, 13.59) 9.85 (7.16, 13.58) 9.10 (6.19, 13.07)

3/φ0 — 29.50 (12.04, 192.98) 20.33 (10.26, 284.90) 21.51 (10.28, 607.29) 22.44 (10.29, 928.79) 20.30 (10.29, 332.59) 21.23 (10.29, 417.25) 21.02 (10.29, 572.52) 20.96 (10.27, 466.56)

3/φ1 — — 24.52 (10.32, 1612.90) — — 25.30 (10.32, 1363.64) 32.31 (10.36, 2439.02) — 25.08 (10.31, 594.06)

3/φ2 — — — 22.33 (10.31, 699.30) — 21.35 (10.29, 518.13) — 22.06 (10.32, 584.80) 22.29 (10.32, 390.12)

3/φ3 — — — — 19.52 (10.25, 276.50) — 20.07 (10.25, 323.62) 19.59 (10.26, 386.25) 19.76 (10.27, 250.63)

σ20 — 5.98 (1.31, 11.37) 0.36 (0.17, 1.02) 0.36 (0.17, 0.90) 0.36 (0.17, 1.01) 0.36 (0.17, 1.01) 0.36 (0.17, 0.96) 0.37 (0.17, 1.05) 0.36 (0.17, 0.92)

σ21 — — 0.36 (0.19, 0.69) — — 0.39 (0.21, 0.80) 0.39 (0.20, 0.80) — 0.40 (0.21, 0.79)

σ22 — — — 0.65 (0.30, 1.52) — 0.70 (0.32, 1.71) — 0.64 (0.28, 1.52) 0.70 (0.31, 1.78)

σ23 — — — — 0.99 (0.37, 2.75) — 1.08 (0.41, 3.23) 0.94 (0.38, 2.77) 1.07 (0.41, 3.10)

fi
t

st
a
ti
st
ic
s D 608.41 501.53 600.15 595.76 597.53 588.21 590.97 592.34 583.05

pD 4.95 41.29 28.61 22.85 19.05 41.54 37.34 29.88 47.55

DIC 613.37 542.82 628.77 618.61 616.59 629.74 628.31 622.22 630.60

RMSPE 66.89 67.46 67.53 70.81 68.23 72.41 68.44 73.59 75.28

..
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3.4.3 GLEES Results

The SVI model at GLEES has the lowest RMSPE value of the five models (Table 3.3);

however, we see lower D and DIC values in all three SVC variant models. Again the

increased flexibility afforded by the additional spatial random effects in the SVC models

improves the fit but may cause prediction accuracy to suffer due to over-fitting. For this

reason the SVI model is preferred for the GLEES dataset. We see a 33% improvement in

DIC and a 4.5% increase in prediction accuracy moving from the non-spatial to the SVI

model. Figure 3.10b shows stronger one-to-one correspondence between fitted and observed

AGB values comparing to the models non-spatial counterpart in Figure 3.10a.

Table 3.3: Candidate model parameter estimates and 95% credible intervals for GLEES.

Non-Spatial SVI SVC-β1 SVC-β2 SVC

p
a
ra
m
et
er

C
.I
.

50
%

(2
.5
%
,
9
7.
5%

)

β0 8.27 (7.66, 8.86) 8.40 (7.76, 9.14) 8.31 (7.61, 9.03) 7.94 (7.43, 8.51) 8.06 (7.38, 8.74)

β1 -0.62 (-0.79, -0.44) -0.63 (-0.81, -0.45) -0.61 (-0.89, -0.31) -0.61 (-0.77, -0.46) -0.62 (-0.96, -0.34)

β2 0.66 (0.37, 0.96) 0.67 (0.37, 0.99) 0.86 (0.49, 1.23) 0.74 (0.14, 1.29) 0.87 (0.33, 1.45)

τ2 4.10 (2.75, 6.63) 0.53 (0.19, 2.01) 0.40 (0.10, 1.67) 0.32 (0.10, 1.22) 0.25 (0.08, 0.95)

3/φ0 — 44.11 (12.90, 173.16) 22.85 (10.31, 125.63) 20.96 (10.27, 151.98) 20.19 (10.27, 198.41)

3/φ1 — — 33.88 (10.46, 527.24) — 29.80 (10.37, 1020.50)

3/φ2 — — — 58.09 (10.56, 552.49) 28.21 (10.39, 643.78)

σ20 — 3.45 (1.95, 5.88) 0.98 (0.35, 2.66) 0.71 (0.29, 1.77) 0.53 (0.24, 1.33)

σ21 — — 0.44 (0.24, 0.88) — 0.39 (0.21, 0.85)

σ22 — — — 1.11 (0.54, 2.48) 0.78 (0.35, 1.90)

fi
t

st
a
ti
st
ic
s D 196.30 103.69 90.35 79.59 67.79

pD 3.90 29.79 27.58 30.25 33.74

DIC 200.20 133.48 117.93 109.85 101.53

RMSPE 35.79 34.21 35.63 35.02 35.20
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Figure 3.10: Plots showing fitted versus actual AGB values for GLEES’s non-spatial and
SVI models. Vertical grey error bars depict 95% credible intervals for fitted values.
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3.4.4 NIWOT Results

The SVC-β2 model provides the best fit and prediction for the NIWOT dataset. This model

yields a 24% lowerDIC and 7% lower RMSPE value compared to the non-spatial model. As

with GLEES, the more complex SVC model provides better fit, but the increased flexibility

results in decreased predictive power. Comparing Figure 3.11a and 3.11b reveals greater

one-to-one correspondence and tighter credible intervals for the SVC-β2 over that of the

non-spatial model.

Predicted biomass and associated uncertainty maps for NIWOT are provided in Fig-

ures 3.4d and 3.5d, respectively. As in GLEES and FEF, AGB values predicted outside the

range of observed AGB have the largest associated uncertainties. Figures 3.12a and 3.12c

show the space varying impact of w0 and w2 on β0 and β2, respectively. Zooming into the

region of observed data and applying a similar smoothing filter as used for the FEF surfaces,

we can again see local parameter adjustment to accommodate the non-stationary impact of

the covariates on AGB (Figure 3.13). As mentioned previously, β2 for NIWOTs’ non-spatial

model is insignificant. When β2 is allowed to vary across the domain, as in SVC-β2, we

see that even though globally insignificant, in local regions the covariate can explain AGB

variability and contribute to an overall increase in prediction accuracy.
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Table 3.4: Candidate model parameter estimates and 95% credible intervals for NIWOT.

Non-Spatial SVI SVC-β1 SVC-β2 SVC

p
a
ra
m
et
er

C
.I
.

5
0%

(2
.5
%
,
97

.5
%
)

β0 12.34 (11.83, 12.85) 12.35 (11.38, 13.18) 12.35 (11.42, 13.01) 12.19 (11.38, 12.85) 12.21 (11.47, 13.06)

β1 -0.82 (-0.95, -0.68) -0.77 (-0.93, -0.60) -0.84 (-1.17, -0.17) -0.77 (-0.93, -0.59) -0.84 (-1.22, -0.29)

β2 0.21 (-0.04, 0.49) 0.21 (-0.05, 0.48) 0.31 (-0.01, 0.62) 0.23 (-0.52, 0.78) 0.34 (-0.17, 0.82)

τ2 4.01 (2.82, 5.98) 1.29 (0.36, 3.74) 1.09 (0.25, 2.76) 0.99 (0.21, 3.14) 0.66 (0.20, 2.10)

3/φ0 — 116.58 (13.64, 1444.64) 60.19 (10.52, 1578.95) 137.24 (11.40, 1167.32) 42.98 (10.43, 1401.87)

3/φ1 — — 50.58 (10.40, 2097.90) — 77.34 (10.46, 2419.35)

3/φ2 — — — 45.68 (10.45, 2343.75) 22.29 (10.30, 669.64)

σ20 — 2.66 (0.78, 5.07) 1.19 (0.34, 3.21) 1.74 (0.41, 3.87) 0.87 (0.30, 2.51)

σ21 — — 0.37 (0.20, 1.03) — 0.38 (0.20, 1.00)

σ22 — — — 0.74 (0.32, 2.03) 0.78 (0.33, 1.90)

fi
t

st
a
ti
st
ic
s D 262.40 189.65 177.34 172.77 150.60

pD 3.93 27.65 34.78 28.97 41.52

DIC 266.32 217.29 212.12 201.74 192.12

RMSPE 50.05 48.27 49.31 46.31 49.40
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Figure 3.11: Plots showing fitted versus actual AGB values for NIWOT’s non-spatial and
SVC-β2 models. Vertical grey error bars depict 95% credible intervals for fitted values.
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Figure 3.12: Maps showing the spatially varying coefficients (β̂x + ŵx) and associated 95%
credible interval width (CIW) for the SVC-β2 model at NIWOT.
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Figure 3.13: Maps showing the spatially varying coefficients β̂0+ŵ0 and β̂2+ŵ2 zoomed into
the extent outlined in red in figures 3.12a and 3.12c. A quantile interval color classification
and smoothing filter are used to highlight the more subtle spatial adjustments of these
parameters. The sub-plot locations are identified in green.
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3.5 Disscusion

For three of the four study sites, the non-spatial model residuals exhibit enough spatial cor-

relation to warrant the use of a spatial random effect on the intercept. The presence of these

serial correlations among the residuals suggest the assumptions of the non-spatial model

are violated and the validity of subsequent inference is questionable. Further, this suggests

that beyond meeting model assumptions, explicitly accommodating the residual dependence

via spatially structured random effects might fetch improved prediction by borrowing infor-

mation from proximate observed locations. This was illustrated in the analysis of the FEF,

GLEES, and NIWOT datasets, where the SVI models outperformed the non-spatial models.

Uncertainty quantification is an important component of carbon Measurement, Report-

ing, and Verification systems (MRVs) like those called for by the United Nations Collab-

orative Programme on Reducing Emissions from Deforestation and Forest Degradation in

Developing Countries and actively being developed by NASA’s Carbon Monitoring System

Science Team (UN-REDD, 2009; CMS, 2010). The uncertainty maps like the ones developed

in Figure 3.5 can aid uncertainty analysis by providing a tool to assess the reliability of AGB

predictions.

Mapping random effects can shed light on missing covariates. As an example, the random

effect associated with β1 at FEF (Figure 3.7b) is moderately correlated with elevation.

Although not explored here, after fitting a model as we did for FEF, a researcher could now

consider elevation as an additional covariate either as an additive component to the model

or test the multiplicative interaction with the LiDAR covariates.

Given the small size of the datasets considered here, the proposed modeling framework

was computationally feasible. However, when the datasets consist of several thousand ob-

servations, which is common in forest inventory databases, cubic order matrix operations

required for evaluating the model likelihood make parameter estimation computationally
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onerous. Therefore, our future work will focus on exploring strategies for dimension reduc-

tion when fitting spatially varying coefficients models. Further, we will extend the spatially

varying coefficients models to accommodate multiple forest variables of interest.
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CHAPTER 4

SUMMARY AND FUTURE WORK

This thesis explored the use of flexible Bayesian hierarchical regression frameworks for cal-

ibarating LiDAR remote sensing information to forest inventory datasets. Chapters 2 and 3

provide examples where using Bayesian hierarchical spatial models can improve fit and pre-

dictive performance when modeling both univariate and multivariate forest structure data.

When model residuals exhibit spatial correlation, that relationship can be absorbed into a

spatially structured random effect to ensure statistically valid model inference and increase

the predictive ability of the model. Further, Chapter 2 shows how leveraging not only spatial

relationships, but correlations among different variables within the same tree can improve

predictive performance. Chapter 3 demonstrates how building models that accommodate

coefficient non-stationarity via the introduction of spatial random effects can yield increased

model fit and prediction accuracies when using LiDAR to model and map forest character-

istics.

As the forestry and remote sensing research communities strive to answer questions

about more complex and dynamic ecological associations among differing environmental

variables across space and time, richer classes of models beyond ordinary least squares or

maximum likelihood methods will be needed. Bayesian hierarchical models for both spatial

and spatio-temporal processes are seeing rapid development in the applied environmental

sciences because of their immense flexibility to suit intricate variable associations and the

ease of propagation of uncertainty through complex hierarchies.

In future work, I plan to explore the use of Bayesian hierarchical modeling for forestry

and ecological processes in more detail. The research in this thesis has shown the potential

for spatial random effects to improve prediction accuracies. A next logical step is to examine
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how spatial random effects can be used to uncover missing covariates. Exploring what

latent processes the spatial random effects might be capturing can lead to more ecologically

meaningful results by providing insight into the underlying environmental processes causing

the spatial distribution of the outcome variable, or variables, of interest.

The study sites examined in this thesis cover small spatial extents, i.e., stand level.

Particularly with the models explored in Chapter 3, spatially varying coefficients may play a

more significant role for fitting models over larger domains possibly crossing climatic zones

or having large altitude gradients. Changes in these types of macro environmental conditions

over one spatial domain usually indicate the need to fit more than one model, i.e., divide

the original extent into smaller regions and fit uniquely parametrized regressions to each.

Allowing coefficients to vary over space allows for parameter influence to change moving from

one region to another. Rather than having several models with potentially low numbers

of sample locations, one model can be formed that is able to borrow strength across the

observations of the full domain and be less likely to suffer inadequate sample size. Also,

instead of imposing divisions of the original domain based on speculation, the space varying

coefficients model allows the data to inform when and how parameters change.

As we move into a data rich era in the environmental sciences, there is increasing need for

computationally efficient methods for estimating cumbersome models with rich parameter

association structures. In the future, I plan to further develop and refine the computational

procedures used in this thesis. I hope to eventually author a package for the statistical

programming language R so that other researchers interested in ecological modeling can easily

execute the statistical methods explored in Chapters 2 and 3 in their research. The study sites

examined here were all reasonably sized which meant that the estimation of these models was

computationally feasible. As environmental datasets grow larger, new, more computationally

efficient fitting procedures are needed. In future work, I plan to look into speeding up

computation time for large datasets by examining the use of increased computational power
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given by new technologies, such as processor hyper-threading and parallel processing to make

complex ecological modeling more accessible to the environmental research field.
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