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ABSTRACT
REDUCTION OF RUTTING AND FATIGUE CRACKING

by
Hamid Mukhtar

Flexible pavements are typically designed to provide a good ride quality and to
resist rutting and fatigue cracking. The two types of distress are mainly caused by wheel
loads and are accelerated by material and environmental factors. Although all the
pavement layers (base, subbase and roadbed soil) contribute to rutting and fatigue
cracking, the contribution of the asphalt concrete (AC) layer alone could be very
significant.

The pavement network in the State of Michigan is experiencing premature rutting
and fatigue cracking problems. The main objective of this study is to identify the AC
mix factors that affect pavement rutting and fatigue cracking.

Based on predetermined priority factors, forty-nine flexible and fifteen composite
pavement sections were selected from a large pool of pavements. For each selected
pavement section, rut and fatigue cracking measurements were made and for 13 sections,
full depth pavement cores were obtained. The cores were subjected to various laboratory
tests and the resilient, plastic, and fatigue life characteristics of the asphalt-aggregate
mixes were determined.

A multivariate regression analysis were performed to determine the relationship
of rut depth and laboratory fatigue life to the AC mix properties. The results showed that
high percent content of coarse angular aggregates (crushed on 3 or 4 sides), air voids
contents between 4 to 6 percent, and low amount of fine content can provide significant

improvement in the rut and fatigue cracking resistance of the AC mixes.
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Based on the analysis, shift factors between the fatigue lives of asphalt pavements
and the laboratory fatigue lives of the AC cores were developed and verified. Finally,
changes are recommended in the existing asphalt mix design and manufacturing processes

in the State of Michigan to reduce pavement rutting and fatigue cracking potential.
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CHAPTER 1
INTRODUCTION

1.1 GENERAL

The structural design of flexible highway pavements and bituminous overlays has
been an evolutionary processes based primarily on the experience and judgement of
highway engineers, expanded by empirical relationships developed through research and
field observations. The proper design of asphalt concrete pavements and asphalt overlays
requires the consideration of several complex and interrelated factors. Recent efforts
considering the interaction of these factors have resulted in the development of rational
new design models using the elastic and visco-elastic theories. Today, design methods
for flexible pavements and bituminous overlays could be divided into two groups:
empirical approaches, and mechanistic-empirical approaches. @ The main design
considerations in both groups are to limit the compressive strains induced at the top of
the subgrade to control permanent deformation (roadbed rutting), and to limit the tensile
strain induced at the bottom of the asphalt layer to minimize fatigue cracking. Both
approaches have their advantages and disadvantages. Empirical procedures are relatively
easy to use, are mainly derived from experience (they lack theoretical background), and
are often custom designed, thus, limiting their applications. Mechanistic-empirical design
approaches are based and supported by theory. However, they are unable to model the
interaction of different factors (e,g., environmental, drainage etc.) which cause pavement
distress.

Rutting of flexible pavements and bituminous overlays is defined as accumulation
of permanent deformation in the wheel path whereas, fatigue cracks are load induced
cracks that can be found in both wheel paths and are accelerated by environmental
factors. Both rutting and fatigue cracking are load related distresses. Rutting and fatigue

cracking potentials are affected by traffic volume and load, material properties,

1
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construction quality, layer thicknesses, and the environment.  Therefore, any
methodology solely based on empirical or mechanistic approach, will fail to model the

pavement behavior efficiently.
1.2 PROBLEM STATEMENT

A good portion of the pavement network in the State of Michigan is experiencing
premature rutting and fatigue cracking problem. The two types of distresses are caused

by several factors including:

1. Heavy vehicle loads and high number of multi-axle trailers.
2 The existing asphalt mix design practices.

3. The pavement design process.

4 Existing construction and quality control practices.

Hence, the need to determine the asphalt mix properties and asphalt mix design

factors that affect the two distresses have been recognized.

1.3 RESEARCH OBJECTIVE

The objectives of this research study are to:

l. Determine the asphalt mix properties (i,e. percent aggregate, sand and fine,
aggregate angularity, binder type and content, and percent air content) that affect
pavement rutting and fatigue cracking.

2. Model the rut and fatigue cracks as functions of the asphalt mix properties, traffic
load and volume, and the pavement cross-section.

3. Recommend changes in the existing asphalt mix design, and construction practices

to decrease rut and fatigue cracking potentials.

To this end, this dissertation is organized into six chapters and two appendices as

follows:
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Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Appendix A

Appendix B

3
Literature review.
Research plan.
Field and laboratory investigation.
Analysis and discussion.
Conclusions.
Data acquisition and reduction software for indirect tensile
test.
Pavement cross-section and deflection data for 564

pavement locations.



CHAPTER 2
LITERATURE REVIEW

2.1 GENERAL

The load carrying capacity of flexible pavements is brought about by the load-
distributing characteristics of their layered systems. In general, flexible pavements
consist of a series of layers with the highest quality material placed at or near the
surface. Hence, their strengths are the result of building up thick layers and thereby
distributing the load over the roadbed soil (1). Two types of load related distress can be
found in flexible pavements:

1. Rut - Rut can be defined as the sum of the plastic (permanent) deformations in
the AC, base, subbase, and roadbed soil. Rut is mainly caused by wheel loads
and is accelerated by environmental factors. In general, rut can be minimized by
using stiff materials in all layers and by proper pavement design and construction
practices.

2. Fatigue cracking - Fatigue or Alligator cracking is a series of interconnecting
cracks caused by fatigue failure of the asphalt concrete surface (or stabilized base)
under repeated traffic loading. It is a load associated distress that can be found
in both wheel paths and are accelerated by environmental factors. Fatigue
cracking potential of any pavement can be minimized by using the appropriate
pavement materials, proper design procedure, and good construction practices.
It should be noted that the contribution of the AC layer to the total pavement

rutting due to densification is negligible since, this layer is typically compacted to near

its theoretical maximum density during construction. Permanent deformation in the AC

layer is mainly the results of lateral distortion due to repeated shear deformation (5).
The tensile stresses or strains induced at the bottom of the AC layer due to a

wheel load cause fatigue cracking. In general, fatigue cracks start at the bottom of the

4
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AC layer and they propagate upwards towards the surface. Hence, fatigue cracks may

exist in a pavement structure for several years before they can be observed.

Consequently, there is no universally adopted standard definition of fatigue failure of

asphalt pavements.

In the laboratory, the fatigue life of a compacted asphalt specimen is defined by
the number of load applications that causes fatigue failure of the specimen. The
definition of fatigue failure, however, varies from one researcher to another. For
example, Santucci and Schmidt (2) defined laboratory fatigue failure as the number of
load applications required to reduce the stiffness of the specimen by 60 percent of its
initial stiffness measured at 200 load applications. Baladi (3), on the other hand, defined
the fatigue life (of a laboratory compacted Marshall size specimen tested by using the
indirect tensile cyclic load test) as the number of load applications at which the
cumulative horizontal plastic deformation (measured along the horizontal diameter of the
specimen) reaches a value equal to 95 percent of the total horizontal deformation of a
duplicate specimen tested to failure in the indirect tensile test mode.

Rut and fatigue cracking potentials of pavement can be minimized by taking
balanced engineering steps during the material design (asphalt mix design), pavement
design process and during construction. These include:

1. Engineered asphalt mix design that can withstand the expected traffic loading
without plastic yielding, resists the induced tensile stress without cracking, and
resists low temperature cracking.

2. Balanced pavement design process that provides adequate layer thicknesses to
reduce the induced compressive stresses at the top of the base and subbase layers
and at the top of the roadbed soil, which causes plastic deformation (rut) of these
layers, and ‘minimizes the tensile stress and strain induced at the bottom of the
AC thereby, increasing the fatigue life of the asphalt layer (see Figure 2.1).

3. Good construction practices that deliver adequate and uniform compaction of the
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Figure 2.1 : Illustration of critical stress/strain locations in a typical pavement
structure.



various pavement layers.

Existing flexible pavement design methods can be divided into two categories;
empirical and mechanistic-empirical. Most empirical design methods are based on
statistical equations derived from field observations of pavement rutting and surface
roughness. Mechanistic-empirical design methods, on the other hand, are mainly based
on two criteria:

1. Minimizing the rut potential of each pavement layer by limiting the magnitude of
the compressive stress induced at the top of that layer by a moving wheel load.

2. Maximizing the fatigue life of the AC layer by minimizing the induced tensile
stress at the bottom of the layer due to a moving wheel load.

Regardless of the pavement design method (empirical or mechanistic-empirical)
employed in the design of flexible pavements, the design process involves two major
steps as follows:

1. The design of the asphalt mix which involves the proportioning of the different
ingredients (coarse and fine aggregates, mineral fillers, and asphalt cement) in the
mix and the compaction effort.

2. The thickness design of the AC course and the other pavement layers (base and
subbase), which involves the evaluation of the behavior of these layers under the
anticipated traffic load and environmental conditions.

Since the outcomes of the asphalt mix design process (step 1) affect the
engineering properties of the mix, the thickness design of the pavement, and the
pavement performance, the two steps (mix design and thickness design) and construction
practices must be considered in a comprehensive way so that the desired pavement

performance is assured.
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2.2 MECHANICS OF PERMANENT DEFORMATION AND FATIGUE
CRACKING

2.2.1 Permanent Deformation (Rut)

Permanent deformation in flexible pavements manifest itself as rutting in the
wheel paths thereby, causing permanent distortion in the transverse profile. In addition,
pavement uplift may occur along the sides of the rut. In many instances, ruts are
noticeable only after a rainfall, when the wheel paths are filled with water. Nevertheless,
permanent deformation of the pavement surface is the result of rutting of the roadbed
soil, the subbase and base layers, and the AC surface. Pavement rutting is mainly caused
by densification or lateral distortion due to traffic loading, hence, rut is a load related
distress. Several other factors affect the magnitude of rut and its time rate of
accumulation. These include:

1. Construction factors including inadequate compaction (either low compaction
effort or compaction at lower temperatures than those specified).

2, Asphalt mix factors that include soft (low viscosity or high penetration) asphalt
cement, high air voids, rounded aggregate, and excess sand in the mix.

3. Environmental factors that include high temperatures which soften the AC layers,
and high moisture content or saturation of the lower layers (base and subbase) due
to inadequate drainage.

4. Tire factors such as studded tires and high tire pressures.

As stated earlier, pavement rutting is the sum of the rut in the AC, base and
subbase layers and in the roadbed soil. Figure 2.2 shows the results of a study of the
transverse profile of loops 4 and 6 of the AASHO Road Test (4). It can be seen that
rutting has taken place in all pavement layers and in the roadbed soil. The contribution
of each layer to the total pavement rut varies from one pavement to another. For

example, the average rut in each layer as a percent of the total pavement rut of section



o B L i il
x f

- il

o

Loop 6  6-3-I2 Design
{ 30 Kip Single Axie Load i

234"

7
¥ f
53

A Soa \ER
_
~ |

LN ]
#
il

SURFACING __ |

Bas!
suseASE
SKIN PATCH

5-3-4 Design
32 Kip Tandem Axie Load

TRANSVERSE DISTANCE, FEET

24
32"

Figure 2.2 : Trench study of the transverse profile of loops 4 and 6 of the AASHO
ROAD TEST (4).



10
51 of the AASHO Road Test, is shown in Table 2.1.

Table 2.2 provides a list of the relative percentages of the permanent deformation
of section 51 of the AASHO Road Test that are attributable to distortion alone. It can
be seen that, in general, permanent deformation is largely due to lateral distortion.

Based on laboratory data, Morris (5) concluded that densification and lateral
distortion in compacted asphalt concrete specimens are largely a function of the test
conditions. He added that, in the field, asphalt pavements are subjected to densification
in the compression zone and to lateral distortion in the tension zone. Tests on asphalt
concrete used at the Brampton Test Road (6), confirmed the above observations. It was
noted that the rut potential in the tension zone in asphalt concrete pavements is higher

than that in the compression zone because of distortion.

2.2.2 Fatigue Life

With the passage of each wheel load, a cyclic tensile stress is induced at the
bottom of the AC layer which causes cyclic tensile strains. This strain is composed of
three components as follows:

1. Elastic strain which is recoverable upon the removal of the load.

2. Viscoelastic strain which is recoverable after the load has been removed for a
certain time period.

3. Plastic strain which is permanent in nature and causes the asphalt cement to
stretch and crack.

As the number of load applications increases, the cumulative plastic tensile strains
increases causing further stretching of the asphalt cement until a crack is developed.
Additional load applications causes the crack to widen and to propagate upward toward
the pavement surface where it manifest itself as alligator (fatigue) cracks. Hence, the

plastic strain is the sole cause of the fatigue cracking. A perfectly elastic material



11

Table 2.1 : Average rut (percent of total rut) in each layer of section 51 of
the AASHO Road Test (5).

Percent of the total rut.
Base Subbase Roadbed soil
14 9

Table 2.2 : Percent rutting in various layers due to distortion, section 51
of AASHO Road Test, 1960, (S).

MATERIAL % Rutting due to distortion during a
given season

SUMMER
82

SPRING FALL
76

NO
MEASUR.

NO
MEASUR.
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will never develop fatigue cracking (3).

It should be noted that as the fatigue crack initiates at the bottom of the AC, the
tensile strength of the AC is reduced and hence its resistance to tensile cracking
decreases. Therefore, the rate of tensile cracks propagation increases as the width and
length of the crack increases.

Over the last 30-year period, large quantities of laboratory fatigue life data for
compacted asphalt mixtures have been obtained. Traditionally, the data are presented as
stress or strain amplitude versus the number of load repetitions to failure. The resulting
curves are known as the S-N curves. Like metals and other engineering materials, the
fatigue life of compacted asphalt mixtures steadily increases with decreasing stress or
strain amplitude until the stress or strain level of the fatigue limit is reached, below
which the fatigue life becomes infinitely long. In general, tensile stresses at or below
the fatigue limit causes only elastic strains. Based on laboratory fatigue tests conducted
by using indirect tensile and flexural beam tests, Baladi (3) concluded that the fatigue
limit of compacted asphalt mixtures is reached when the tensile stress is about 35 percent

of the indirect tensile strength of those mixtures.

2.3 FACTORS AFFECTING RUTTING AND FATIGUE CRACKING OF
ASPHALT SURFACED PAVEMENTS

2.3.1 Tire Inflation And Tire-Pavement Contact Pressures

In the U.S.A. asphalt surfaced pavements are experiencing premature rutting and
fatigue cracking due to increased traffic volume, loads and/or increased truck tire
pressure. Surveys in the States of Illinois and Texas indicate that the tire pressures have
increased substantially over the last few decades. An average tire pressure of 96 psi with

a maximum of 130 psi were recorded in the Illinois survey. The Texas survey showed

an average tire pressure of 110 psi with a maximum pressure of 155 psi (7).
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Typically, the rut potential of asphalt pavements has been evaluated on the basis

of the magnitude of the compressive stresses induced at the top of the base layer and

roadbed soil due to an 18-kip single axle load and a constant tire pressures (typically 85

psi). Experimental studies conducted by GoodYear tires and Rubber Company indicate

that (8):

1.

For a constant tire load, increasing the tire inflation pressure causes a shift in the
point of maximum contact pressure to the center region of the contact area
between the tire and the pavement surface.

For a constant tire pressure, increasing tire loads causes a shift of the point of
maximum contact pressure towards the perimeter of the contact area between the
tire and the pavement surface.

Regardless of the tire load and tire pressure, the tire-pavement contact pressure
is not uniform within the tire-pavement contact area. The distribution of the
contact pressure is a function of the tire type and design. For example, contact
pressures as high as twice the tire inflation pressure were measured for three tire
types as shown in Table 2.3.

Smith and Bonquist (9) studied the influence of tire type and tire inflation pressure

on pavement performance. They conducted full-scale pavement tests using the Federal
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