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ABSTRACT

COMPILATION-TIME DATA
DECOMPOSITION OPTIMIZATION FOR
DATA PARALLEL PROGRAMS

By

Hong Xu

Data decomposition is critical to the performance of data parallel programs on
scalable parallel computers. A data decomposition model can be viewed as a two-level
mapping of array elements to abstract processors. Data alignment determines what
array elements are aligned relative to one another, and data distribution resolves how
the group of aligned arrays is distributed onto the processors. Depending on the
alignment relationship as within dimension or across dimension, alignment can be
classified into base alignment and offset alignment.

The purpose of base alignment is to reduce the amount of unstructured communi-
cation. In this research, we use the data reference graph model to describe the various
reference patterns associated with each array and to resolve the conflict of the com-
patible alignment requirements. An efficient spanning tree algorithm addresses the
fundamental issues in base alignment. Base alignment is further studied with the con-

sideration of the optimal expression evaluation and dataflow analysis. Efficient base



alignment algorithms are proposed to reduce the redundant communication and opti-
mize the RHS expression evaluation. These contributions make this research unique
from related research.

The purpose of offset alignment is to reduce the amount of data shift movement.
This thesis successfully models the cost of data shift movement using the piecewise
linear function. This cost model solves the accuracy problem in measuring the quan-
tity of data shift movement, an unresolved problem left by other work in this area.
Based on this cost model, the optimal post-alignment algorithm is first proposed to
exceed the limitation of the owner-computes rule and minimize the amount of data
shift movement after offset alignment is determined. The data reference graph model
is used to address the problem of offset alignment and develop efficient spanning tree
algorithms. The RHS expression evaluation and dataflow optimizations are incorpo-
rated with the proposed offset alignment algorithms.

The purpose of data distribution is to reduce the impact of data shift movement
and increase processor workload balance. Segment distribution is proposed to resolve
the conflict between reducing data shift movement and increasing processor workload
balance with regard to a particular dimension of the template array. An optimal
processor allocation algorithm is introduced to minimize the overall cost of data
shift communication across multiple dimensions of the template array. The segment
distribution and optimal processor allocation proposed in this thesis provide the best

data distribution support for most data parallel programs.
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CHAPTER 1

Introduction

Sequential computers are approaching a fundamental physical limit, the speed of
light, on their potential computational power. Such a limit cannot satisfy the compu-
tation power requirement of the so-called grand-challenge problems including three-
dimensional fluid flow calculations, real-time simulations of complex systems, and in-
telligent robots which require over 1,000 times the computing power of the maximum-
power uniprocessors. It has been widely recognized that parallel computing represents
the only plausible way to continue to increase the computational power available to
such grand-challenge applications. Such parallel computers, also known as scalable
parallel computers (SPCs), are designed to offer corresponding increases in the pro-
cessing capability of the system, memory bandwidth, and total interprocessor commu-
nication bandwidth as the number of processors and the number of memory modules
are increased.

However, programming on SPCs is much more complicated than programming on
uniprocessor computers. The naive approach of exposing system architecture features
directly to programmers has been proved to be time-consuming, tedious, and error-
prone due to the difficulty in compromising various conflicting requirements arising
from concurrent processing and distributed data allocation. As a result, an easy-

to-use and highly efficient programming model is critical to the success of SPCs.



The data-parallel programming model has been accepted as one of the most efficient
programming models provided for SPCs. The basic idea of a data-parallel program
is to decompose the global data objects across the processors each of which executes
the same program structure on the data objects it owns. Based on this type of single-
program-maultiple-data (SPMD) mode of computation, data decomposition determines
both the process scheduling and interprocessor communication. Selecting an efficient
data decomposition is one of the most important intellectual steps in developing
quality data-parallel programs.

The purpose of this dissertation research is to make an in-depth study of optimiz-
ing data decomposition for data-parallel programs. The proposed algorithmic results
provide a framework for data decomposition optimization used by parallelizing com-
pilers in optimizing user-written data-parallel programs at compilation-time. The
theoretical results obtained in this thesis are derived from the fundamental architec-
ture features among various existing SPC platforms. It is not the intention of this
thesis to address any specific issues involved in a particular machine architecture.
Instead, our proposed framework has chosen the machine-independent approach as
the focus of our study.

In this introductory chapter, we provide a brief review of the fundamental features
of SPC architectures, present an overview of data-parallel programming model and

its implementations, and describe the objectives and scope of this research.

1.1 Scalable Parallel Computer Architectures

There are two major classes of parallel computers: shared-memory multiprocessors
and message-passing multiprocessors. Differing in how the memory is shared and dis-
tributed among the processors, shared-memory multiprocessors can be further classi-

fied into uniform-memory-access (UMA) multiprocessors and non-untform-memory-



access (NUMA) multiprocessors. In UMA multiprocessors, all processors have equal
access time to all memory words. This feature prevents maximizing the performance
from the impact of data locality with regard to data allocation in the memory. How-
ever, limited by the current technique and cost, the delayed memory access time due
to the added interconnection network significantly degrades the overall performance
as the number of the processors and memory modules increases. For this reason, it

is believed that UM A multiprocessors shall not be a good candidate for SPCs.

1.1.1 The NUMA Multiprocessors

Typically in NUMA multiprocessors, each processor has a local memory. The collec-
tion of all local memories forms a global address space accessible by all processors.
However, the memory access time varies with the location of the memory word. It
is quicker to access a local memory with a local processor. The access of remote
memory attached to other processors takes longer due to the added delay through
the interconnection network. BBN TC-2000 [1] is an example of the commercial ma-
chines using NUMA architecture. The TC-2000 can be configured to have up to 512
M88100 processors interconnected by a multistage cube network. In the TC-2000,
the remote memory access time is about fives times as expensive as the local memory
access time. Besides the TC-2000, the Cray T3D [2] and Convex Exampler [3] are

two other important commercial machines using NUMA architecture.

1.1.2 The Message-Passing Based Multiprocessors

Distributed-memory multiprocessors are organized as ensembles of nodes, each of
which is a programmable computer with its own processor, local memory, and other
supporting devices. As the number of nodes in the system increases, the total com-

munication bandwidth, memory bandwidth, and processing capability of the system



also increase. Nodes communicate each other by passing messages through the in-
terconnection network. For this reason, distributed-memory multiprocessors are also
known as the message-passing based multiprocessors. A noval switching technique,
known as wormhole routing [4], uses a cut-through approach to reduce the impact
of the physical distance between two communicating nodes. The commercial ma-
chines characterized by the message-passing based multiprocessors include the Intel
Paragon (successor to Touchstone DELTA [5]), Ncube nCUBE-2 [6], Meiko CS-2 [7],
and TMC CM-5 [8]. However, in those systems, the communication latency is orders

of magnitude as expensive as the local memory access.

1.1.3 Workstation Clusters

Recently, the evolution of fast LAN-connected workstation cluster has the trend in
creating yet another kind of SPCs. The high-performance workstation clusters inter-
connected through high-speed switches have been advocated in the place of special-
purpose multicomputers. The IBM SP-1 [9] development has already moved in this
direction. In the SP-1 configuration, a collection of IBM RS6000s are interconnected
through the IBM high-performance Vulcan switch [10]. Though great efforts are be-
ing made to reduce the communication overhead involved in operating systems and
communication protocols [11, 12], message transmission is still much more expensive
than local memory access in workstation clusters.

Overall, the hierarchy of the local memory and remote memory with significant
access latency difference characterizes the fundamental feature of the current existing
SPCs. Exploring data locality is critical to the performance of message-passing based
multicomputers, NUMA multicomputers, and workstation clusters. The data objects
referenced by each processor should be arranged to reside in the local memory with
that processor in order to avoid the communication overhead added by remote data

access. The importance of data locality motivates the research of this thesis. It should



be emphasized that it is not the intent of this thesis to consider the detailed implemen-
tation of remote data access, such as remote memory reference through the crossbar
in NUMA multicomputers or message transmission through the interconnection net-
work in distributed-memory multiprocessors. Our research is based on the abstract

memory hierarchy model which characterizes the existing SPC architectures.

1.2 Data Parallel Programming Model

The data parallel programming model has been recognized as one of the most success-
ful programming models for the SPCs. Data objects are pre-distributed across the
local processor memories before a data parallel program is executed. During the exe-
cution, each processor runs an identical copy of the original program but only writes
to the data objects owned by that processor. As a result, instruction partition in data
parallel programs is fully determined by data partition. With the similar concept of
lockstep operations in the SIMD programming model, the data parallel programs are
easier to write, easy to port, and much more scalable. However, unlike the SIMD
programming model, the data parallel programs emphasize medium-grain parallelism
and synchronization at the subprogram level rather than at the instruction level.

It has been commonly accepted that the programming languages supporting global
name space are much easier to use than the programming languages supporting sepa-
rate name space, in particular for those scientific application programmers who wish
to write the programs in some dialect of Fortran when using the SPCs. One of the
greatest advantages that the data parallel programming model has is the nature of
supporting global name space at the language level. Many successful data paral-
lel languages, including Fortran 90 (13] and High Performance Fortran (HPF) [14],
support global name space.

Though programmers may give some hint about how to decompose the data ob-






jects using specific language extensions, compiler is responsible for arranging and
optimizing data allocation across the processor local memories. The type of memory
space addressing is hidden from the viewpoint of programmers. If the underlying
memory architecture serves the global address space, the reference to a data object
owned by a remote processor is simply achieved by a remote memory access. If the
underlying system architecture only supports separate address space, the reference
to a data object owned by a remote processor is implemented by a proper message
passing which is inserted at compilation time. Such a data parallel programming

model maximizes the programmability.

1.3 Motivation and Problem Definition

There are two levels of data parallel activities in data-parallel application programs.
First, there is the question of how arrays should be aligned with respect to one another,
both within and across array dimensions. This is called as the problem mapping [15,
16] induced by the structure of the underlying computation. It represents the minimal
requirements for reducing data movement for the program, and largely independent
of any machine considerations. The alignment of arrays in the program depends on
the natural fine-grain parallelism defined by individual members of data arrays.
Second, there is the question of how arrays should be distributed onto the SPCs.
This is called as the machine mapping caused by translating the computation struc-
ture onto the finite resources of the machine. Data distribution provides opportunities
to reduce data movement, but must also maintain load balance. The distribution of
arrays in the program depends on the coarse-grain parallelism defined by the SPCs.
The objective of data decomposition is to minimize data movement across distinct
Processor local memories and maximize the processor workload balance among all pro-

cessors. The first effort of reducing data movement is to optimize data alignment.



There are two-level of alignment: base alignment and offset alignment. Base align-
ment determines the alignment across dimensions of various arrays. Offset alignment
specifies the alignment within each dimension of various arrays.

Traditionally, data arrays are decomposed based on each dimension and base
alignment is dimension-based alignment. However, the limitation of such a dimension-
based alignment prevents the optimizer from exploring the inherit parallelism avail-
able in many programming structures. Recently, this limitation has been removed by
partitioning a data array in a family of parallel hyperplanes in the linear-tangle space
defined by the data array [17, 18]. Array elements residing on the same hyperplane
are allocated to the same processor local memory such that any unstructured data
reference among elements on the same hyperplane is free of interprocessor commu-
nication. Based on this new partitioning strategy, this thesis proposes efficient base
alignment algorithms to resolve the conflicted communication-free partitions imposed
by different computation structures.

The goal of offset alignment is to reduce data shift movement. The previous work
[19] on the offset alignment problem focuses on the SIMD programming model on the
SIMD multiprocessors, where each processor is assigned a single element in each array
operand. In the SPMD programming model on the SPCs, however, each processor
can be assigned a collection of elements in the same data array. As a result, the
amount of shifted data with respect to each local processor is the accumulation of all
shifted data requested by defining each element owned by the local processor. Since
each processor owns a collection of data elements in SPMD programs, the shifted
data requested by defining one local element has great chance to overlap another
local element on the same processor. However, this fact has been ignored by other
research works which have been done so far in the area of data decomposition. This
thesis establishes a mathematical framework to model the problem of offset alignment

for data parallel programs. The theoretical results built upon this framework provide



efficient solutions in optimizing offset alignment.

This thesis emphasizes the impact of optimal expression evaluation to the data
alignment analysis [20, 21]. The traditional implementation of data parallel programs
follows the owner-computes rule in which all the right-hand side (RHS) operands must
be first transmitted to the local processor and then the evaluation of the RHS is taken
place on that local processor. Data movement may be minimized by evaluating an
intermediate result on a remote processor rather than the local processor which owns
the left-hand side (LHS) operand. Of course, this approach of optimal expression
evaluation is based on the presumption that the associate and commutative properties
of the RHS are not violated. The issues of optimizing expression evaluation for SIMD
mode of programming have been addressed in [19]. However, the algorithm in [19] is
given only for a single assignment statement with the assumption that the alignment
of each array operand is given. This thesis pioneerly studies optimal expression
evaluation with regard to multiple assignment statements. The algorithmic results
given by this thesis take advantage of such optimal expression evaluation in resolving
both base alignment and offset alignment.

In traditional parallelizing compilers, interprocessor communication optimization
including redundant message avoidance, message vectorization, and overlapping com-
munication with computation is performed after data decomposition analysis. How-
ever, it is not true that the profitability of every communication optimization tech-
nique is only passively determined by the result of data decomposition. In this thesis,
the effect of redundant communication avoidance is considered in the first place during
the decision making for data alignment. More efficient solution of data alignment can
be obtained by the alignment algorithms proposed in this thesis because the dataflow
analysis eliminates the impact of redundant communication in cost estimation and
assists the data alignment analyzer to make a more accurate decision. Message vector-

ization usually reduces the software latency per message, provided that the software



latency in a SPC is significant as against the network latency [22]. Since the em-
phasize of this thesis is on the issues of machine independent data decomposition,
we do not make any assumption about the detailed machine parameters including
the ratio between the software latency and network latency. Therefore, the message
vectorization technique is not discussed in this thesis. For the same reason, we do not
make any assumption about the computation speed over the communication speed.
Hence, the technique of overlapping communication with computation is left to the
back-end compilation optimizer after the data decomposition is performed.

Data distribution is responsible for reducing data shift communication and in-
creasing processor workload balance. The amount of data shift communication can
be greatly reduced if elements are distributed to processors in block fashion. On the
other hand, however, limited by the owner-computes rule, the requirement of proces-
sor workload balance favors cyclic distribution when the workload is not uniformly
distributed among all the LHS elements. The conflict between block and cyclic distri-
bution has become an open issue in the research of data distribution. In this thesis,
we propose a segment distribution which minimizes the impact of data shift move-
ment by allocating elements consecutively to processors and balances the processor
workload by varying the size of the segments assigned to different processors. An
optimal processor allocation algorithm is given to minimize the overall cost of data
shift communication across multiple dimensions of the template array. The segment
distribution and optimal processor allocation proposed in this thesis provide the best

data distribution support for most data parallel programs.

1.4 Objectives and Scope of Research

The results of our data decomposition analysis are presented based on data parallel

Fortran languages which are written in the global name space. The reason we choose
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data parallel Fortran languages is that scientists wish to use the SPCs in their fa-
miliar dialect of sequential Frotran. The parallelizable loops are the major resources
of parallelism available in data parallel Fortran programs. Many sophisticated loop
transformation techniques [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] have been
developed to transform various sequential loops into parallelizable loops in order to
explore the inherit parallelism. In this thesis, we assume that the data decomposition
analysis takes place after the loop transformation has been performed. Given an ap-
plication program, our data decomposition analysis neglects those non-parallelizable
subprogram structures and only focuses on the parallelizable subprogram structures
which can be represented by the HPF FORALL structures [14]. We believe that this

approach is reasonable and practical due to the following reasons:

e DOACROSS loops can be successfully parallelized by pipelining both computation
and communication. The corresponding decomposition for arrays referenced in
the DOACROSS loops is also straightforward: block distribution on the partitioned

dimension.

e Most of non-parallelizable subprogram structures in data parallel Fortran pro-
grams can be formalized into a few intrinsic functions which efficient implemen-
tation is machine dependent and may be resorted to special system software or

even hardware support.

We do not address the data decomposition issue involved in the procedure calling
because the techniques available in dealing with the interprocedural data dependence
test are still at the preliminary stage. Without the support of a mature interprocedu-
ral data dependence testing technique, we feel it extremely difficult to achieve quality
data decomposition results.

Our data decomposition framework is based on the abstract model of the SPCs.

The basic assumption is that interprocessor communication is much more expensive
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than local memory access and thus the performance of data parallel programs is
dictated by the data locality. Only the number of elements involved in remote data
reference is measured as the cost of interprocessor communication. Detailed machine-
dependent parameters, such as the network latency, software latency, and switching
techniques, have been ignored. In the data distribution analysis, we simply assume
that data elements are distributed to the virtual processors which are interconnected
through a fully connected network. Though the actual architecture of a SPC is not
likely to afford the fully connected network topology, the scalable communication
library (35, 36, 37, 38] usually can offset the adverse impact of network topology
and achieve efficient data communication. In addition, other machine-dependent
optimization issues [39, 40], including run-time support [41], will not be addressed in
this thesis.

It should be emphasized that it is not the intention of this thesis to address
the compilation techniques [41] involved in generating efficient parallel programs for
the SPCs after data decomposition is well-defined. The data partition, instruction
partition, and communication generation have been actually performed in order to
obtain the performance results of benchmark subprogram structures. However, they
are just treated as a part of implementation and will not be further addressed in the

rest of this thesis.

1.5 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, an overview of data decom-
position for data parallel programs is presented. Different subprogram structures are
clarified and different types of interprocessor communication are examined. A layer
structured data decomposition model is used to illustrate the tasks accomplished in

each major phase. Strategies and difficulties are discussed for data re-distribution
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and data re-alignment. Major previous work is classified based on the proposed layer
structure model. Chapter 3 addresses the base alignment phase. Efficient base align-
ment algorithms are proposed with regard to various concerns including the optimal
expression evaluation and redundant communication avoidance. Chapter 4 addresses
the offset alignment phase. Efficient offset alignment algorithms are proposed by
considering both the optimal expression evaluation and redundant communication
avoidance. Chapter 5 addresses the data distribution phase. An optimal virtual pro-
cessor allocation strategy is proposed and the closed form of segment distribution
is given to maximize the processor workload balance and minimize the neighboring
communication. Experimental results of benchmark program structures are shown in
each of Chapters 3, 4, and 5. Finally, Chapter 6 summerizes the major contribution

of this research and provides directions for future research.



CHAPTER 2

Data Decomposition Overview

This chapter gives an overview of the data decomposition problem. Different subpro-
gram structures are clarified and different types of interprocessor communication are
examined. A layer structured data decomposition model is proposed to illustrate each
major phase in data decomposition. Strategies and difficulties are discussed for data
re-distribution and data re-alignment. Influential previous work has been classified
based on the proposed layer structure model.

In this thesis, we follow Fortran 90 array specification. In a one-dimensional
array, an array subscript is declared as 0 : n — 1 : 3, where n is the total number of
elements and s is the value of stride. An array subscript always starts with zero. The
stride option can be omitted if its value is one. For example, A(0 : n — 1) represents
A(0:n —1:1). Consecutive array elements A({), A({+ 1), ..., A(r) (£ < r) can
be represented by array segment A(£ : r). In a multi-dimensional array, the array
subscript declared for each dimension is separated by a comma. For example, a 8 x 10
two-dimensional array A can be represented by A(0:7,0:9). A(1,2) is an element
in A(0 : 7,0 : 9). The notation for array subscript is also applicable to the loop

statement declaration.

13
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2.1 Loop Characteristics

Loop is the major resource of parallelism in data parallel Fortran programs [42].
What type of parallelism a loop can explore is determined by the pattern of data

dependence among different iterations of the loop.

2.1.1 Parallelizable Loop

A loop is a parallelizable loop if a data object defined in an iteration is not used or
re-defined in other iterations in the loop [24, 43]. A general form of parallelizable
loops can be modeled by the FORALL loop in HPF [14]. A FORALL loop may consist
of one or more FORALL assignment statements, or FORALL assignments for short. A
FORALL assignment is implemented by first executing the evaluation of the RHS of the
assignment statement for all combination of loop index subscripts, and then assigning
to the corresponding elements of the array referenced at the LHS of the assignment
statement. A FORALL assignment is free of loop-carried data dependence. Seman-
tically, in a FORALL loop consisting of several FORALL assignments, the execution of
the next FORALL assignment will not take place until the execution of the previous
FORALL assignment is fully completed.

In a FORALL assignment, the access to a RHS data element owned by a remote
processor is achieved by passing a message to the local processor. Since the FORALL
assignment is free of loop-carried data dependence, messages sent to the local proces-
sor can be combined and transferred prior to the loop execution. As a result, in the
execution of a FORALL loop consisting of several FORALL assignments, computation
and communication are alternated statement-by-statement. Since it is fully paral-
lelizable, the performance of a FORALL loop is only determined by processor workload
balance and interprocessor communication overhead. Therefore, the FORALL loop be-

comes one of the most important program structures on which data decomposition
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issues are studied. The survey of previous work with regard to the FORALL loop can

be found in Chapter 2.7.

2.1.2 Perfectly Nested Loops

In many perfectly nested loops with constant distance vectors, the outmost loop
cannot be parallelized by any legal loop transformation [29]. This feature makes the
coarse-grain parallelism difficult to explore and thus degrades the overall performance
on the SPCs due to the large overhead of barrier synchronization at the end of each
iteration of the outmost loop. A closer inspection reveals that computation and
communication can be pipelined in a perfectly nested loop with constant distance

vectors. For example, consider the following four point difference operation.

DO i] = 2,n -1
DO iz = 2,n -1
51 X(i1,i2) = (X (i1 — 1,i2) + X (i1 + 1,32) + X (i1,32 — 1) + X (31,32 + 1))/4
END DO
END DO

Figure 2.1(a) shows the original iteration space in which an arrow represents the
direction of data dependence. Figure 2.1(b) illustrates how this loop can be executed
in pipeline. The iterations are assigned to different processors in shaded blocks, so
are columns of array X. The row segment assigned to each processor is labeled by
the lock step in pipeline. As long as the computation on the first row is finished, all
processors can start executing in parallel. This technique is also known as tiling [44].
The tiled code the corresponds to Figure 2.1(b) is as follows.

Here b is the length of the row segment assigned to each processor. The original

12 loop is split into two dimensions: the outer z4 loop and inner ¢3 loop. Iterations of



DO is=2n—1,b

DO =2,n—-1
DO i3 = igmin(n — 1,is +b—1)
st X(in,is) = (X(ia = 1,d3) + X (i1 + 1,i5) + X(in, i3 — 1) + X (i, 45 + 1))/4
END DO
END DO
END DO

the 74 loop are spread across processors, while iterations of the i, and i3 loops reside

on the same processor.
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(a) Original iteration space (b) Pipelining computation and communication

Figure 2.1. Pipeline computation and communication

An important feature of pipelining is that computation and communication can
be overlapped [17]. As shown in Figure 2.1(b), processor p; can send the result of
X (i1,b) to processor p;, while processor p; is still working on element X(i; — 1,43)
where b < i3 < 2b. The pipelining technique can also be applied to the perfectly
nested loops with irregular and complex dependence constraints using the dependence

uniformation methods [45].
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2.1.3 Special-Purpose Loops

Special parallel algorithms may be required to parallelize those special-purpose oper-
ations, such as prefix, suffix, gather, scatter, and other combining operations. Gener-
ally speaking, these algorithms are machine-dependent or architecture-dependent. As
a result, they are typically supported as library routines, such as intrinsic procedures
in HPF, and usually not further optimized at compilation time. An important issue
which the compilation optimizer should deal with is how to efficiently utilize these
library routines, in particular, when library routines are designed for various data
decomposition patterns. Issues in designing scalable library routines for MPCs can

be found in [46).

2.2 Interprocessor Communication

Interprocessor communication occurs when a data object referenced by a local proces-
sor resides in a remote memory. As mentioned in [47], interprocessor communication
generated in executing data parallel Fortran programs can be classified into intrin-
sic communication and residual communication. Intrinsic communication arises from
those special-purpose computational operations such as scatter and gather that re-
quire data motion as an integral part of the operation. As addressed in the previous
section, minimizing intrinsic communication is a major task of efficient intrinsic li-
brary implementation [48, 35, 36, 37, 49, 38, 50, 51] and thus is beyond the scope of
compiler optimization.

Residual communication arises from nonlocal data references required in a compu-
tation whose operands are not aligned with respect to each other. Typically, residual
communication can be further separated into neighboring communication and reorga-
nization communication. Neighboring communication refers to the nearest-neighbor

shifts of data. Reorganization communication is due to the mismatch in data de-
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composition, which requires reorganizing the entire data structure. Not all residual
communication patterns are equally expensive in SPCs. Neighboring communica-
tion can be significantly reduced by distributing data arrays in blocks. On the other
hand, however, reorganization communication is often much more expensive because
the data movement pattern is unstructured, such as transpose, change of stride, and
vector-valued subscripts.

Reducing interprocessor communication by properly allocating data objects into

processors is a key issue in the data decomposition analysis.

2.3 Processor Workload Balance

The main reason to employ SPCs is to reduce the overall execution time. In most
data parallel scientific programs, parallelizable loops are the major resources of the
parallelism. For concurrent execution of a parallelizable loop, the iterations have to
be assigned to processors. This is also known as workload distribution. Ideally, given
the fixed amount of the overall workload, the workload should be evenly distributed to
each processor. Therefore, the overall execution time regarding to the whole system
can be minimized. Otherwise, the overall execution time would be longer if there is
a processor idle when other processors are still working. Note that a barrier synchro-
nization is typically required between two adjacent subprogram phases. As a result,
if it finishes its own work earlier than others, a processor has to be idle rather than
start working on the next subprogram phase.

The previous study in the processor workload balance has been focused on the
run-time scheduling on shared-memory multiprocessor systems [52, 53, 54, 55, 56, 57,
58, 59]. In data parallel programs, the workload is distributed in the way that a data
object is written only by the local processor which owns it. Therefore, the workload

distribution depends on the pattern of data decomposition which is determined at
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compilation-time. In this thesis, we study the static processor workload balance,
another key issue in the data decomposition analysis. It has been shown [60] that
static processor workload balance is critical to the overall performance even with the

support of the runtime scheduling.

2.4 The Model for Data Decomposition
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Figure 2.2. The model for data decomposition

As illustrated in Figure 2.2, the data decomposition model can be viewed as a two-level

mapping of array elements to abstract processors. Array elements are first aligned
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relative to one another, known as data alignment; the group of aligned arrays is then
distributed onto a set of virtual processors, known as data distribution. Data align-
ment, the problem mapping, represents the requirements of reducing data movement
induced by the structure of the underlying computation. Data alignment is achieved
by aligning array elements to an abstract index space, known as template in HPF [14],
which is typically represented by a rectilinear space. Data distribution, the virtual-
machine mapping, represents the requirement of efficiently allocating computation
structures to finite machine resources. Data distribution is attained by allocating
template elements onto the rectilinear arrangement of virtual processors. As a result,
all array elements which are aligned to the same template element are allocated to
the processor to which that particular template element is allocated. However, the
data alignment and distribution phases are machine-independent. The final step in
which the rectilinear arrangement of virtual processors are mapped to the physical
processors is machine-dependent. The issues in physical processor mapping are be-
yond the scope of this thesis. For simplicity, in the rest of this thesis a processor

refers to a virtual processor rather than a physical processor.

2.4.1 Formulation for Data Alignment and Distribution

A mathematical model is presented for data alignment and data distribution. An
array of dimension m defines an array space A, an m-dimensional rectangle. Each el-
ement in the array is accessed by an integer vector @ = (a;,as,...,an). For the same
reason, a template of dimension k defines an array space 7, an h-dimensional rectan-

gle. Each element in the template is accessed by an integer vector f= (tiyt2,. .., th).

Definition 2.1 For each inder @ of an m-dimensional array, the data alignment of

the array onto an h-dimensional template is a function §4(d@) : A — T, where

64(@) = Dad + dy
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D, is an h x m linear transformation matriz and d4 is a constant vector.

Definition 2.2 D, is called alignment matrix of array A. da is called alignment

offset of array A.

The rectilinear arrangement of abstract processors is represented by a processor
array. The dimension of the processor should be the same as the dimension of the tem-
plate. The processor array defines an array space P, an h-dimensional rectangle. Each

element in the processor array is accessed by an integer vector p'= (p1,p2,-..,Ph)-

Definition 2.3 For each indez t of an h-dimensional template, the data distribution

of the array onto an h-dimensional processor array is a function yr(t): T — P.

The function 47 may not necessarily be an affine function and varies with different

applications.

2.4.2 Layered Structure for Data Decomposition

A typical data decomposition process can be described by a three-phase layered struc-
ture shown in Figure 2.3. The base alignment phase determines alignment matrix D4
in alignment function 64 for each array A. The offset alignment phase specifies align-
ment offset JA in alignment function 64 for each array A. The base alignment and
offset alignment phases accomplish the task of data alignment by mapping array el-
ements to template elements. The distribution phase decides in what fashion the
template elements are distributed to the processors. All array elements which are
aligned to the same template element are allocated to the same processor to which
that particular template element is allocated. As a result, taking the bridge of the

template, the distribution phase fulfills the requirement of data distribution.
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Figure 2.3. Layered structure for data decomposition process

2.4.3 The Base Alignment Phase

A multi-dimensional array can be treated as a multi-dimensional bounded linear
space, called data space, in which each integer grid represents an array element. A
multi-dimensional array can be partitioned in a family of parallel hyperplanes such
that array elements on the same hyperplanes are always allocated to the same pro-
cessor. As a result, the potential overhead of interprocessor communication involved
in the mutual references between the elements in the same hyperplane can be fully
avoided.

Consider the NAS benchmark loop in Example 1 (Figure 2.4). Array elements
Y (¢1,i2) and Y (42,41) referenced in FORALL assignment s; are along the diagonal.
Therefore, FORALL assignment s, is free of interprocessor communication if array Y

1s partitioned in a family of off-diagonals, as shown in Figure 2.5(b). In Figure 2.5(b),
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FORALL(1,1=0'n-—1,22=On—l—zl)

811 Y(i],ig) = Y(iz,il)
82 X(t1,01 +22) = Y (i1, 22)
END FORALL

Figure 2.4. Example 1: A NAS benchmark loop

1 is the index of the column dimension and y; is the index of the row dimension of
array Y. T represents the one-dimensional template array. The size of array Y is
declared as 8 x 8 and the size of T' is 8. Each array element is represented by a circle.
Elements on each off-diagonal (represented by a solid line) are collapsed and mapped
(represented by each dash line) to the same element in the template. Some array
elements are not covered by any solid line since they are out of the loop boundary.
Vector (1, —1), the direction vector of an off-diagonal, is called the collapse base
of array Y. Two Y elements must be collapsed and mapped to the same element
in the template if the vector starting with one element and ending with another is
parallel to collapse base (1,—1). Vector (1,1), which is orthogonal to the collapse
base (1,—1), is called the distribution base of Y. Two Y elements must be mapped
to the different elements in the template and thus may be distributed to different
processors if the inner-product of the distribution base and the vector constructed by
these two Y elements is non-zero. Alignment matrix is constructed by distribution
bases. In this example, since there is only one distribution base (1,1), Dy = (1,1).

Thus, alignment function dy can be specified as follows.

)1 Y (731
t = by ( ) =Dy = (1,1) =y +y2

Y2 Y2 Y2

where Y (y1,y2) is a Y element and T'(¢) is a template element. Base alignment only
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determines the value of alignment matrices. The value of alignment offsets is decided

in the offset alignment phase. In the above éx and dy, we simply assume that dx =0

and dy =0.
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Figure 2.5. Base alignment in Example 1

Generally speaking, the vector represented by each row in an alignment matrix
indicates a distribution base. As a result, the rows in the same alignment matrix must
be mutually linear independent. On the other hand, the vector which is orthogonal
to all rows in a alignment matrix implies that that vector is a collapse base. The
distinct collapse bases must also be mutually linear independent. All collapse bases

and distribution bases should span the entire data space with regard to each array.
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Consider the array subscript structure in FORALL assignment s, (Figure 2.4).
Since Y elements are collapsed along the off-diagonal, X elements have to be collapsed
in columns so as to make FORALL assignment s; free of interprocessor communication.
Therefore, the collapse base of array X is equal to (1,0), the direction vector of a
column. The distribution base of array X is equal to (0,1), which is orthogonal to
collapse base (1,0). Therefore, we have Dx = (0,1). Thus, alignment function éx
can be specified as follows.

I I I

t=6x( )= Dx = (0,1) =z,

2 2} 2
where X (z;,z;) is an X element and T'(¢) is a template element. Figure 2.5(a) shows
the alignment of array X with regards to the template. In Figure 2.5(a), z; is the
index of the column dimension and z; is the index of the row dimension of array X.
The size of array X is declared as 8 x 8. X elements in the same column (represented
by each solid line) are collapsed and mapped (represented by each dash line) to the
same element in the template. Some elements are not covered by any solid line since
they are out of loop boundary.

Note that the X partition in columns and Y partition in off-diagonals are not
randomized. They are in fact inducted from the requirement of minimizing inter-
processor communication based on the given array subscript structures in Example
1. Such a relationship between the alignment of X and the alignment of Y is called
base alignment. Base alignment represents the alignment relationship between various
distribution bases of various arrays and the alignment relationship between various
collapse bases of various arrays.

Depending on the pattern of how array elements are mapped to the template, an
array may have more than one distribution base and/or more than one collapse base.

Consider the Purdue benchmark loop in Example 2 (Figure 2.6). Unlike Example
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FORALL(Z] =0: n; — 1,i2 =0: Ny — 1)
Sy W(ilai2) = Z(ihil)
END FORALL

Figure 2.6. Example 2: A Purdue benchmark loop

1, in Example 2 there is no self-reference regarding to arrays W and Z. Both W
and Z can be partitioned in both row and column dimensions. Thus, the collapse
base of both W and Z is degenerated to (0,0). Both W and Z have distribution
bases (1,0) and (0,1), which span the entire data space. This implies that there is
no requirement that two particular elements in the same array should be mapped to

the same template element.
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Figure 2.7. Base alignment in Example 2
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Figure 2.7 shows the alignment of W and Z. In Figure 2.7, the size of W is
declared as 4 x 8 and the size of Z is declared as 8 x 4. Template T is declared
as a two-dimensional array which size is 4 x 8. wy, 21, and t; represent the column
dimension of arrays W, Z, and T, respectively. w,, 2, and t; represent the row
dimension of arrays W, Z, and T, respectively. Figure 2.7(a) shows the alignment of

array W: dimension w; is aligned with dimension ¢; and dimension w, is aligned with

0

dimension t;. Therefore, Dy = and alignment function éw is specified as
01
follows.
t, w; wy 10 wy w;
123 wo w, 01 wo wo

where W(w;,w;) is a W element and T'(¢;,1;) is a template element. Figure 2.7(b)

shows the alignment of array Z: dimension z; is aligned with dimension t; and di-
mension z; is aligned with dimension ;. Therefore, Dz = and alignment

function 8z is specified as follows.

tq 2 21 0 1 Z1 22
= b6z( )= Dz

t, 29 29 10 29 21

where Z(z1,2;) is a Z element and T'(¢4,1;) is a template element.

For arrays each of which has multiple (linear independent) distribution bases, it
is crucial that which distribution base of one array should be aligned with which
distribution base of the other. In Example 2 (Figure 2.6), in order to make FORALL
assignment s, free of interprocessor communication, distribution base (1,0) (the col-
umn dimension) of W is aligned with distribution base (0,1) (the row dimension) of

Z, and distribution base (0,1) (the row dimension) of W is aligned with distribution
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base (1,0) (the column dimension) of Z. Aligned distribution bases in various arrays
comprise an aligned-base group. Example 2 has two distinct aligned-base groups. One
consists of distribution base (0,1) of W and distribution base (1,0) of Z. The other
consists of distribution base (1,0) of W and distribution base (0,1) of Z. By the def-
inition of the alignment function, each aligned-base group can be uniquely identified
by a dimension in the template array. Different distribution bases of the same array

can never be aligned with each other and never be included in the same aligned-base

group.

2.4.4 The Offset Alignment Phase

As described in the previous section, an array can be partitioned in a family of
parallel hyperlanes in each of which the array elements are collapsed and mapped
to the same element in the template. However, base alignment only determines the
constituent base(s), known as distribution base(s) and collapse base(s), for such a
family of parallel hyperlanes. Offset alignment is responsible for the displacement of
each hyperplane with regard to the template. In other words, while base alignment
determines D4, offset alignment determines da in alignment function é4 for each

array A.

FORALL(:; =0:n—1,i,=0:n -3 —7;)

8. Y(il, 22) = Y(iQ, 1,1)
Sa: X(il,l.l + 1, +2) = Y(2122)
END FORALL

Figure 2.8. Example 3: A NAS benchmark loop

Consider the NAS benchmark loop in Example 3 (Figure 2.8). Except the access
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Figure 2.9. Offset alignment in Example 3

offset 2 in the array subscript X(1,¢, + 22 + 2) (Figure 2.8), Example 3 is similar to
Example 1. For this reason, the base alignment analysis in Example 3 is identical to
that in Example 1. Dx = (0,1) and Dy = (1,1). Figure 2.9 shows the alignment for
arrays X and Y in Example 3. In Figure 2.9, Y is partitioned in off-diagonals and
X is partitioned in columns. Unlike Example 1 (Figure 2.5), however, in Example 3
(Figure 2.8), the (k + 2)-th column in X should be aligned with the k-th off-diagonal
in Y, in order to make FORALL assignment s, free of interprocessor communication.
Such an alignment relationship between the column displacement in X and the off-
diagonal displacement in Y is called offset alignment. In Example 3, we have dx = 2
and dy = 0. Alignment function §x can be written as follows:

I I

t = éx( )=Dx +dx =z, 42

I3 I2

where X (z1,z2) is an X element and T'(¢) is a template element. Alignment function
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éy can be written as follows:

)1 Y1
t = dy( )= Dy +dy =+

Y2 Y2
where Y (y1,y2) is a Y element and T'(t) is a template element.

Generally speaking, the value of alignment offset is represented by a constant
vector. Offset alignment should determine each component in such an alignment
offset vector. In Chapter 4, we will show that the components in the alignment offset
vector are independent with one another. Each component can be decided based on

a distinct aligned-base group.

2.4.5 The Data Distribution Phase

The data distribution phase determines how to map the template elements to vir-
tual processors. Since both the template and the virtual processor arrangement are
represented by multi-dimensional arrays, there are two major decisions to make re-
garding to each dimension in the template: what is the distribution type and how
many virtual processors should be allocated.

We first consider the case in which both the template array and the processor
array are one-dimensional. There are numerous ways to distribute template elements
across processors. Among them the cyclic distribution and block distribution are
most popular. In cyclic distribution, template elements are assigned to processors in
the round-robin fashion. In block distribution, template elements are contiguously
allocated to each processor. Figure 2.10 shows the data distribution phase of Example
3. In Figure 2.10, arrays X and Y are declared as 8 x8. There are total two processors
available, denoted as P(0) and P(1). The template array is distributed in cyclic. As

a result, processor P(0) owns the even-numbered X columns and the even-numbered
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Figure 2.10. Data distribution in Example 3

Y off-diagonals. Processor P(1) owns the odd-numbered X columns and the odd-
numbered Y off-diagonals. The data distribution function, 47, can be written as
follows:

p=~r(t)=t mod 2

where P(p) is an element in the processor array and 7T'(t) is an element in the template
array. Note that the number of the LHS array elements mapped to each template
element is varied. For example, two Y elements are mapped to T'(1) but five Y
elements are mapped to T'(4). Since workload assigned to each processor depends
on the number of the LHS elements owned by that processor, the workload imposed
by each template element can be varied. For this reason, the cyclic distribution
increases the processor workload balance. Another reason of using cyclic distribution
is that interprocessor communication has been fully eliminated by the alignment
function. Otherwise, significant communication cost could occur if cyclic distribution

is employed.
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The template array and processor array can be multi-dimensional. The task of
processor allocation is to determine the layout of the multi-dimensional processor

array.

FORALL(ZI =1: ny — 3,i2 =1: Ny — 3)

81 W(i],ig) = Z(l],22)+Z(21+1,12)+Z(21 - l,ig)
+Z(t1,02+ 1) + Z(21,22 — 1)
Sa: Z(i],ig) = W(il,ig)
END FORALL

Figure 2.11. Example 4: A Heatwave benchmark loop

Consider the Heatwave benchmark loop in Example 4 (Figure 2.6). By the con-
struction of array subscripts in FORALL assignment s,, there is no interprocessor com-
munication as long as W(iy,1;) and Z(z1,1,) are mapped to the same template ele-
ment. On the other hand, however, since both Z(z;+1,72) and Z(z1, ;) are referenced,
assignment 3, is free of communication only if Z elements are collapsed in the row
dimension. Similarly, since both Z (7,72 + 1) and Z(2,,7;) are referenced, assignment
sy 1s free of communication only if Z elements are collapsed in the column dimension.
This conflict implies that interprocessor communication in executing assignment s;
cannot be avoided no matter how W and Z are aligned. For this reason, alignment

functions éw and 6z are simply defined as follows:
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and
tq 21 21
= 62( ) =
tz 29 22
where W (w,, w;) is a W element, Z(z, z2) is a Z element, and T'(¢,,t;) is a template

element.
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Figure 2.12. Processor allocation in Example 4

Figure 2.12 shows a pattern of processor allocation in Example 4. In Figure 2.12,
arrays W, Z, and T (the template array) are declared as 6 x 12. There are total
6 processors available. The processor array is specified as 2 x 3, denoted as P(0 :
1,0 : 2). P(0: 1,0 : 2) indicates there are 2 processors assigned to row dimension
and 3 processors assigned to column dimension. Template elemets are distributed to

processors in block fashion. The mapped data blocks in arrays W and Z are indicated
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by the dash lines. The data distribution function, 47, can be written as follows:

21 — t )= 7]
P2 12} L%J

where P(p1,p2) is an element in the processor array and T'(t1,1;) is an element in the
template array. Note that the 2 x 3 processor allocation minimizes the overall cost
of interprocessor communication involved in executing assignment s;. The theory of

the processor allocation optimization will be addressed in Chapter 5.

2.5 Data Re-distribution and Data Re-Alignment

It is not necessary to keep the same layout of data decomposition in the life time of
a data parallel program. Data objects can be re-aligned and re-distributed from one
subprogram phase to the other in order to meet the requirement of minimizing in-
terprocessor communication and maximizing processor workload balance imposed by
different computing structures. However, few researchers have addressed these issues
due to the lack of good mathematical model(s) to represent data re-alignment and
data re-distribution. The major difficulty that data re-distribution and re-alignment
are encountering is the lack of the knowledge of the subprogram breaking point. A
straight forward approach is to treat each array assignment statement as a building
block on which data re-distribution and data re-alignment is considered. A dynamic
programming algorithm based on this approach is proposed [61] to resolve the data
re-distribution and data re-alignment. We briefly review its basic idea as follows.
Let s;, s2, ..., sx be k FORALL assignments in sequence in the program. Let
M;; be the cost of computing in sequence of loops s;, Sit1, ..., and 8i4;-1 using
the component-alignment algorithm [62], and D;; be the distribution scheme, for

1 <i<kandl<j<k—i+1. Define C,; to be the minimum cost of interprocessor
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communication involved in computing the sequence of loops s;, sit1, ..., and 8i4;_
with the restriction that the final data distribution scheme after computing C; ; is
D, ;.

A dynamic programming algorithm for computing the minimum cost of data dis-
tribution schema of executing a sequence of k FORALL assignments is formalized in
Figure 2.13. In Figure 2.13, cost(Di-¢¢, D;;) returns the communication cost of

changing data distribution layouts from D;_,, to D, ;.

Input: M;; and D;;, where 1 <:<kand1<j<k—-1+1

Output: The minimum-cost data distribution of executing k FORALL assignments
(1) fori=2to kdo

(2) forj=1tos—i+1do

(3) Ci;j = min<e<k{Ci—ee + M j + cost(Di_ge, Di j)}
(4) endfor
(5) endfor

(6) MinimumCost=min;<¢<k{Ck-rt41,¢}

Figure 2.13. A dynamic programming algorithm for data re-alignment and data
re-distribution

However, the above dynamic programming algorithm has the following drawbacks:

1 The component-alignment algorithm cannot give the accurate cost of interpro-
cessor communication, in particular, the cost of data shift movement generated

by mismatched alignment offset.

2 In the component-alignment algorithm, only a dimension can be chosen as a

distribution base. In other words, the partition of an array is dimension-based.

3 The dynamic programming algorithm only emphasizes data re-distribution. In

fact, in many data parallel programs, the distribution layout of the template
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may not be changed, while the alignment function is likely to change during the

different subprogram phases.

4 The assumption of arranging k FORALL assignments in the sequential order is
too limited. Depending on the program control flow, the relationship among
those FORALL assignments can form much more complicated graph, such as a

directed acyclic graph (DAG).

5 The algorithm is time-consuming by taking each FORALL assignment as the
building block of the dynamic programming when the program has tens of

thousands lines.

The first two issues have been resolved by the results obtained in this thesis. In
addition, this thesis has done an in-depth study of the data alignment analysis and
provided the accurate cost of interprocessor communication imposed by mismatched
alignment. This basically answers the questions raised in the third issue. The forth
issue can be resolved by extending the dynamic programming algorithm to the situa-
tion where the control dependence of adjacent subprograms constitutes a DAG. The
fifth issue is still an open problem. However, the concept of single assignment block
proposed in this thesis has made a great effort in finding the bigger building block
for the dynamic programming algorithm. For the above reasons, we do not address

the issues in data re-distribution and data re-alignment in the rest of this thesis.

2.6 Data Flow Analysis

Communication overhead can significantly affect the performance of executing data
parallel programs on the SPCs. The dataflow analysis has been proposed to assist
communication optimizations [63, 64, 65]. This section briefly reviews the basic ideas

used in the dataflow analysis for optimizing communication [64].
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For each remote reference requiring communication, it is fundamental to deter-
mine all points in the program at which the communication can be performed. This
information can be computed by identifying the communication associated with each
statement and propagating it in the backward direction along all execution paths in
the program. An array reference nested within a loop may reference different remote
array elements during each loop iteration. The group of remote elements residing
on the same remote processor are represented as a single entity. Groups of array
elements that must be communicated are propagated. If definitions of array elements
are encountered, the propagation of those elements is discontinued. A reference to a
group of remote elements may have to be split when a definition which only defines
a subset of elements in the group is encountered. Moreover, repeated communication
of the same remote elements may be encounted during the back paths. In this case,
the repeated references can be combined and the redundant communication can be
avoided.

The extra cost of analyzing dataflow information for array reference is the set rep-
resentation and set operation for array elements, in particular, the set union and the
set intersection. For regular data distribution pattern, this extra cost is reasonable.
The detailed framework of such dataflow analysis can be found in [64]. This thesis
will use the results of existing array dataflow analysis to assist data alignment but

not address the issues in dataflow analysis.

2.7 Related Work

This section briefly summarizes influential previous work in the research area of data
decomposition. Table 2.1 compares the existing work in the area of base alignment.
The RHS expression evaluation optimization indicates that part or whole RHS expres-

sion evaluation can be executed on the remote processor which does not own the LHS



operand. Table 2.2 compares the existing work in the area of offset alignment. The
piecewise linear function accurately models the cost of data shift movement regard-
ing to multiple instances of the same array variable referenced in the same statement.
Table 2.3 compares the existing work in the area of data distribution. The summary
of each major related work is given in the rest of this section. Note that the scope of

most existing data decomposition work, including this thesis, is limited to the scope

of FORALL structure.
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Table 2.1. Related work in base alignment analysis

Methods Base Alignment Analysis
Dimension | Hyperlane RHS expression
partition | partition | evaluation optimization
HPF et al. No No No
Li and Chen Yes No No
Knob et al. Yes No No
Gupta et al. Yes No No
Chatterjee et al. Yes No No
Anderson and Lam Yes Yes No
This thesis Yes Yes Yes
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Table 2.2. Related work in offset alignment analysis

Methods Offset Alignment Analysis
Using access | Using piecewise RHS expression
offset linear function | evaluation optimization

HPF et al. No No No
Li and Chen No No No
Knob et al. No No No
Gupta et al. No No No
Anderson and Lam No No No
Chatterjee et al. Yes No No
This thesis Yes Yes Yes

Table 2.3. Related work in data distribution analysis

Methods Data Distribution Analysis
Reducing Increasing | Optimizing processor
communication | load balance allocation

HPF et al. No No No
Li and Chen No No No
Knob et al. No No No
Anderson and Lam No No No
Chatterjee et al. No No No
Gupta et al. Yes No No
This thesis Yes Yes Yes

2.7.1 Data Parallel Languages

In order to provide high-level language support for data-parallel programming, sev-
eral data-parallel Fortran extensions have been proposed, such as Fortran D [66]

and Vienna Fortran [67]. In an effort to standardize data parallel Fortran program-
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ming, HPF (High Performance Fortran) is being proposed as a standard by the High
Performance Fortran Forum led by Rice University [14] for distributed-memory ma-
chines. An essential part of these data parallel Fortran extensions is the specification,
through compiler directives, of the distribution and alignment of data arrays. The
languages, however, do not provide the programmer any guidance in selecting the
data decomposition. Programmers are fully responsible for choosing an efficient data

decomposition.

2.7.2 Preference Graph Model

One representation that has been frequently used in alignment analysis is the pref-
erence graph. The preference graph is a undirected, weighted graph. The nodes are
constructed by dimensions of various arrays. The edges are constructed from data
references in the source program. Edges represent the alignment preferences among
various array dimensions. There are two principal variants of this general framework.

Knob, Lukas, and Steel [68] use the preference graph model to address alignment
issues in the SIMD (Single Instruction Multiple Data) mode of computation. In
their approach, the concept of virtual processor space is adopted in which each array
element is mapped to a distinct virtual processor grid. The mapping function can
be represented by ai + b where azis alignment determines the dimension ¢, stride
alignment determines the value of a, and offset alignment determines the value of b.
Note that axis alignment and stride alignment are two special cases of base alignment.
In their preference graph model, the weight on each edge is determined by the loop
nesting depth of the reference the edge represents. Alignment is determined in the
way that a preference edge with higher weight is honored by constructing a maximum-
weight spanning tree.

Li and Chen [62] use the preference graph model, known as component affinity

graph, to address the axis alignment problem. In their approach, the weight on each
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edge is represented by either ¢, or 1, or co, which depends on the type of the reference
the edge represents. The purpose of the component affinity algorithm is to partition
the nodes into different components such that the total weight of edges, which incident
nodes are in different components, is minimized. They have proved such a component
affinity problem is NP-complete.

The limitation of the preference graph model is that arrays can only be partitioned
based on each dimension. For instance, a 2D array can be partitioned only in row or
column, but not diagonal. This limitation prevents the compilation optimizer from

exploiting inherent data locality in the source program.

2.7.3 Using Communication Cost Estimation

The preference graph model has been extended by other researchers [69]. Among
them, Gupta and Banerjee [70] use the cost of of underlying communication primi-
tives to estimate the penalty if an alignment preference is not honored. This approach
is known as the constraint-based approach. Li and Chen [71] first present the idea of
using a set of low level communication primitives to best match the communication
requirements generated in data parallel programs. The cost of such low level commu-
nication primitives can also be evaluated by given a particular system architecture. In
the constraint-based approach, edge weight is assigned by the communication penalty
cost when such an alignment preference is not honored.

However, the penalty cost is a function of alignment. Different values of penalty
cost can be obtained by different alignment results. The constraint-based approach

has difficulties in representing and using such dynamic cost evaluation.
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2.7.4 Dynamic Programming Methods

Chatterjee, Gilbert, Schreiber, and Teng [19, 72, 47, 73, 74] propose a dynamic pro-
gramming method to solve axis alignment, stride alignment, and offset alignment
for a basic block. A DAG representation is used to model the basic block. Their
approach first fixes the alignment position of each input array represented by a leaf
node and then uses dynamic programming method to find the optimal alignment for
each intermediate array represented by an internal node. A set of distance functions
is incorporated to characterize different architecture topologies. Their approach does
find an optimal alignment when the common subexpression is not contained in a
DAG, in other words, the DAG is a tree. Otherwise, the cost function defined in their
approach is only an approximation to the real communication cost. They have proved
that finding a minimum-cost offset alignment using their definition of cost function
is NP-complete.

One major limitation in their approach is that the computation complexity of the
dynamic algorithm would be unacceptablely high when the alignment position of each

input array is free.

2.7.5 Linear Algebra Methods

In stead of using the graph model, Ramanujam and Sadayappan [75] use a matrix
notation to describe array access functions. Their approach focuses on the search of
the existence of a hyperplane such that communication is free if the array is parti-
tioned in a family of such parallel hyperplanes. The hyperplane partition determines
both base alignment and offset alignment. However, their approach does not address
the issues of how to minimize the interprocessor communication overhead when there
does not exist a communication-free hyperplane partition.

Recently, Anderson and Lam [17, 76] use linear space properties to find a hyper-
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lane such that reorganization communication is free if arrays referenced in a loop are
partitioned in a family of such parallel hyperplanes. Reorganization communication
refers to communication due to mismatches in base alignment which requires moving
the entire data structure. Communication due to mismatches in offset alignment is
named neighboring communication. Their approach first searches for a linear sub-
space such that reorganization communication is free if arrays are partitioned in a
family of such parallel subspaces. If such reorganization communication-free sub-
space partition does not exist, their approach uses a data flow iterative algorithm to
find an effient partition which can reduce reorganization communication. However,
their approach does not address the offset alignment problem and cannot minimize

neighboring communication.

2.7.6 Parallelizing Loops with Data Dependence

All techniques summarized above are focusing on the study of Fortran 90 [13] like
array languages. In other words, there is no loop-carried data dependence existing
during an array operation. The analysis is much more complicated and difficult when
loop-carried data dependence is considered. A simple approach taken by Li and Chen
[62] in the component affinity graph model is to assign the weight oo to an edge which
models a reference involved in a loop-carried data dependence.

Anderson and Lam [17] use tiling method [18, 77] to pipeline communication
and computation in a perfectly nested loop with loop-carried data dependence. In
[17], a relationship between iteration space and data space is studied and arrays are
distributed with regards to the iteration space partition. When the data array size is
much larger than the number of available processors, the linear speedup can be almost
achieved. In order to guarantee the legality of tiling, their approach first transforms
a nested loop into a fully permutable loop [29]. This transformation requires the

knowledge of all distance vectors which may not be always practical for any type of
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nested loops. In fact, the tiling method can be further extended by using convex
hull method proposed by Tzen and Ni [45]. In [45], Tzen and Ni use convex hull
to search for the maximum and minimum values of dependence slopes by given any
type of dependence functions. A legal tiling can be easily implemented by given the
values of the maximum and minimum dependence slopes [18]. Therefore, in theory,
the pipeline technique can be used to overlap communication and computation given

any perfectly nested loop.



CHAPTER 3

Base Alignment

Base alignment determines the alignment matrix for each array in order to reduce
the cost of interprocessor communication. In this chapter, we present a mathemati-
cal model to represent base alignment, analyze the communication cost imposed by

mismatched alignment, and propose efficient base alignment algorithms.

3.1 Terminology

A loop nest of depth ¢, with loop bounds that are affine functions of the loop indices,
defines an iteration space Z, a polytope in ¢-dimensional space. Each iteration of
the loop nest corresponds to an integer point in the polytope and is identified by its
index vector 7 = (21,2,---,%¢). An array of dimension m defines an array space A,
an m-dimensional rectangle. Each element in the array can be accessed by an integer
vector @ = (a1,4az,...,a,). Therefore, an affine array subscript can be written as
Fi+ f, where F is a linear transformation and f is a constant vector. F' is called
access matriz and f is called access offset. The subscript F' 7+ f is called access
function.

If an instance A(Fi + f) is referenced in a statement si, we want to label the

subscript Fi + f by the array variable and the statement number. However, multiple

45



46

instances of the same array may be referenced in the same FORALL assignment. For
instance, Y(41,72) and Y(¢2,%;) in statement 3; of Example 1 (Figure 2.4). The
concept of single-occurrence statement is used to simplify the symbolic notation used

in the thesis.

Definition 3.1 A single-occurrence statement is the statement in which any refer-

enced array variable can not have more than one type of distinct instances.

In Example 1, FORALL assingment s; is a single-occurrence statement, but FORALL
assingment 3; is not because two distinct types of instances Y'(i1,7;) and Y (i3,7,)
appear. Any assignment statement can be transformed to the equivalent single-
occurrence statements by using extra temporary array variables. Example 1 can

be re-written as shown in Figure 3.1.

FORALL(ZI—_—OTl—l,lz‘—'OTl’—l—ll)

S3: TT(Zg,tl) = Y(iz,il)

34 Y(i],iz) = TT(ZQ, 21)

82: X(i],il + 22) = Y(lllg)
END FORALL

Figure 3.1. Example 1 in single occurrence statements

The statement s; in the original loop (Figure 2.4) is equivalent to single occurrence
statements 33 and s4 in the transformed loop (Figure 3.1) by using the temporary
array variable TT. The temporary variables used for such single occurrence transfor-
mation are only necessary for the sake of alignment analysis and will be ignored in
the code generation.

In a FORALL structure consisting of only single occurrence statements, index ma-

trices of different instances can be uniquely distinguished by the pair < A, k > where
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A is an array variable, and k is the statement number. Let Fj4 4 be the access ma-

trix for the instance of array A referenced in FORALL assingment s;. In Example

0 1 10 10
1 (Figure 3.1), we have FY'3 = , Fy’4 = R FY,2 = s and
10 01 01
10
Fx2=
11

In order to make the base alignment results transparent from the single occurrence
transformation, the access function of a temporary variable is forced to be same as

that of the data array instance which the temporary variable replaces. In Example

01
1 (Figure 3.1), Fr14 = Frr3z = Fys3 = . Moreover, the alignment function

10
of the temporary variable is also forced to be same as that of the data array instance

which the temporary variable replaces. For temporary variable TT in Example 1
(Figure 3.1), érr is always equal to éy. It is assumed that any program structure
used in this chapter has been pre-processed by the necessary single occurrence trans-
formation and all base alignment theorems and algorithms are stated based on the

denotation of single occurrence statements.

Definition 3.2 If array A is referenced on the LHS and array B is referenced on the
RHS in statement s, the read/write relationship between arrays A and B is called a

reference and is represented by the symbolic form “A «— BQs;”.

In Example 1 (Figure 3.1), we have references “I'T « Y@Qs3”, “Y « TTQs,”,
and “X « Y@s,”. The notation “A « B@s,” is not ambiguous because A and B
have only one type of instance referenced in statement s, by the assumption of the

single occurrence statement.
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3.2 Base Alignment for Single Reference

In this section, we use the linear space theory to model the inter-relationship between

base alignment and access function regarding to a single reference.

3.2.1 Base Alignment Equation

)
Consider reference “X « Y@s,” in Example 1 (Figure 3.1). In iteration ' ,

)
assume that X(z;,z;) is referenced on the LHS and Y(y;,y2) is referenced on the

RHS. Using the access function specification, we have

\ (i)

= Fyx, (3.1)
@ ) Ty
(

1 21

=Fra| (3.2)
y2 ) \ %2 )

I

Multiplying both sides of Equation 3.1 by Dx and both sides of Equation 3.2 by Dy,

we have
I ( 2 \

3 \ %2 )
()
Dy = Dy Fy, (3.4)

Y2 \i2/

The purpose of data alignment is to eliminate interprocessor communication. In

this case, interprocessor communication guarantees to be avoided if both X(z;,z;)
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and Y (y1,y2) can be aligned to the same template element. In other words,

I Y1

ox( ) = by ( )

T2 Y2

Therefore, we search for the solution of Dx and Dy such that

T y
Dy 1| _ Dy 1
T2 Y2
e 2 . n )
Substituting Dx by Equation 3.3 and Dy by Equation 3.4, we get
T2 Y2
i i
Dx Fx , = Dy Fy, (3.5)
i2 i2
Equation 3.5 can be re-written as follows:
u
(Dx Fx,2 — Dy Fyp) =0
i2
1
Since represents any iteration in the iteration space, Equation 3.5 holds if and
i2
only if
DxFx2— DyFy,=0 (3.6)

Equation 3.6 can be easily extended to the following property for any multi-

dimensional arrays A and B.

”»

Proposition 1 Reference “A «— BQs,” is free of interprocessor communication if
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the following equation holds.

DsFsx — DpFpix =0

or

DaFax = DpFpk (3.7)

Alignment matrices D4 and Dpg are compatible with respect to statement s if Equa-
tion 3.7 holds. Otherwise, D4 and Dp are called incompatible in respect to that

statement.

Consider reference “Y «— TT@s,” in Example 1 (Figure 3.1). Using Proposition 1,

we get

Dy Fya = DrrFrra (3.8)

Since TT is the temporary variable used to replace Y (i2,7;) in statement s3, it is
always true that Drr = Dy and Frr4 = Fys. Substituting the values of Drr and

Frr4 into Equation 3.8, we get

DyFy4 = DyFyg

This can be re-written as

Dy(Fys— Fy3) =0

On Substitution of Fy4 and Fy 3, we have

10 01
Dy ( - )=0



o1

Dy =0 (3.9)

which conducts Dy = (1,1). Substituting the result of Dy into alignment function

by, we have

)1 %
by ( ) = Dy =y1+¥y2

Y2 Y2
Alignment function éy implies that all elements in an off-diagonal must be collapsed
to the same element in the template. This guarantees that Y (;,72) and Y (i2,%;) must
be assigned to the same processor and thus assignment s, is free of reorganization
communication.
Substituting values of Dy, Fy.,, and Fyx ; into Equation 3.6, we have Dx = (0,1)
and the alignment function of X can be specified as follows.

I T

Ox( ) = Dx =z

Z2 I

This implies that, in order to make assignment s, free of reorganization communica-

tion, X must be partitioned in columns if Y is partitioned in off-diagonals.

3.2.2 A Legitimate Solution of Alignment Matrix

Note that there are infinite solutions of Dy which can satisfy Equation 3.9. The
reason we chose Dy = (1,1) is that the image projected by éy from ), data space of

Y, to T, data space of T, should be compact.

Definition 3.3 A subspace is compact if and only if the subspace includes every

integer grid on any line which two ends are included in the subspace.
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An image on the template space 7 is compact if and only if the image includes
every integer grid on any line which two ends are included in the image. The concept of
the compactness can be explained in Figure 3.2. In Figure 3.2, the template elements
included in the image projected by the alignment function are in dark. Figure 3.2(a)
shows the compact image projected by éy defined by Dy = (1,1). Figure 3.2(b) shows
the non-compact image projected by éy defined by Dy = (2,2). In Figure 3.2(b),
T(3) is the integer grid on the line incident with T'(0) and T'(7). However, T'(3) is

not included in the image, while 7'(0) and T'(7) are.
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(b) Dy=(2,2) and the image on T is not compact

Figure 3.2. The compactness of the image on T
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Given a n X m matrix A, let A, be a square submatrix of A such that its de-
terminant |A,| # 0 and r is the rank of the original matrix A. The value of |A,|
is defined to be the determinant of the rectangle n x m matrix A, denoted as |A|.
Array elements which are defined or used in a FORALL structure are called effective
elements. The effective domain of an array is composed of all effective elements in
the array. Generally speaking, the solution of an alignment matrix Dy is legitimate
if the effective domain of A is compact and |D4| = 1. In this case, the image on
the template space projected by §4 will be guaranteed compact. In Example 1 (Fig-
ure 2.5), the effective domain of array Y consists of the whole upper triangle and thus
is compact. Therefore, Dy = (1,1) is legitimate since |Dy| = 1.

However, the determinant of legitimate D4 can be any rational number if the
effective domain of array A is no longer compact. Under such circumstance, the
stride in A’s effective domain has to be considered in order to find a correct solution
of D4. This can be illustrated by using the Whetstone benchmark loop shown in
Example 5 (Figure 3.3).

FORALL(z;=0:n/2-1,42=0:n/3-1)

381- B(?Zl, 322) = A(i], 212)
S2: A(11,222) = B(11,322)
END FORALL

Figure 3.3. Example 5: A Whetstone benchmark loop

For Example 5, by Proposition 1, we get

DpFp1= DsFa,

DyFs3 =DpFg,
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2 0 1
where Fg; = , Fpa = yand Fy1 = Fy, = . Since Fy,
0 3 03 0 2
and Fj, . are invertible, the above equations can be re-writen as follows:
DBFB,IF;'} =Dy (3.10)
Dy = DBFB‘QF;,; (3.11)
By substitution, we have
DBFBJF;'{ == DBFB,2FX,;
which can be re-written as follows:
DB(FBJF;’} — FB,2FX,;) =0
2 0 10 10 10
Dg( - )=0
03 0 % 0 3 0 %
10
Dp =0 (3.12)
00

Any vector (0,k) could be a solution of Equation 3.12. However, there is one
legitimate solution of Dp which makes the compact image on the template space
projected by alignment function ép. Since B(2i,,3i2) and B(z;,3:;) are referenced
in Example 5 (Figure 3.3), the stride in B’s effective domain regarding to the row

dimension is 3. Therefore, we choose

1
Dg = (07 §)



b

Substituting the value of Dpg into Equation 3.11, we have

Dy =(0a )

1
2

Therefore, the alignment functions of A and B can be specified as follows.

1
5A = 502
(12)
by \ 1
53 - gbg
bg}

a] 50 50 0’0 6o g o <’?)'<) y o o $ oo g 00 p o B 0 0 90 D bl
%c;%o%o%oio}o;r ) 4\00*0 ;fmo%oo%ooi
[e] O o ¢ O o ¢ O < )0 [ S] O C [S I TS NS o ©
A [e] o I o b o 6 a] o o O 90 B 1: o © i [¢] b o0 0 O \t o o &

C 000 000000 00 D0 0o ocCc 0o o0 0o S0 0 00 0 Q0
O 0 OO0 0O 0000 0 O O 8] QG e o0 GO0 e OO o o
0O 0 0 O O 0O O O 0 0 2 0 « C 3 C Y O 0 O 0 D« =) O 0O U 0 0O 0 0
O 0 00 00 0000 00 O 0 ¢ O OO 000000000000 00

Figure 3.4. The alignment for A and B in Example 5

Figure 3.4 shows the alignment of A and B in Example 5. In Figure 3.4, effective
elementsin A and B are covered by solid lines. The effective domain of A only contains
elements (a;,az) such that a; must be a multiplier of 2. The effective domain of B

only contains elements (b;, b;) such that b3 must be a multiplier of 3. Though neither
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A’s effective domain nor B’s effective domain is compact, the image on the template

space projected by 64 and ép is compact.

3.2.3 Solving Base Alignment Equation

If access matrix F4  is non-singular, Equation 3.7 can be easily transformed into
D = DgFpiFJ}

and the relationship of D4 and Dp is straightforward. However, solving Equation 3.7
may not be simple when both Fj4x and Fp are singular. For singular matrices F4 x
and Fpy, let Ff, be the right inverse matrix of F4x and Fg, be the right inverse

matrix of Fg . Therefore, Equation 3.7 is equivalent to the following two equations

Dyl = DBFB,ka,k

DaFAxFE, = Dgl,,

where r4 is the rank of D4 and rp is the rank of Dg . The method to find a right
inverse matrix of a given matrix can be found in [78]. Example 6 (Figure 3.5) is used

to illustrate the basic idea.

FORALL(Z] =0:n—1,i2:0:n—1)

381: ZZ(21,12)=0
DOiz=0:n-1
32 ZZ(i1,i2) = ZZ(ir,i2) + X X (i1, 33) x YY (i3, 42)
END DO
END FORALL

Figure 3.5. Example 6: Inner product benchmark loop
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In Example 6, the inner DO loop is sequential and thus will not be distributed

1 00 1 00
across the processors. Fzz, = , Fxxo = , and Fyy, =
010 0 01
0 01
. Consider the equation
010

DzzFzz2=DxxFxx,.

for reference “ZZ — XX@s,”. Since Fzz, and Fxx 2 are singular matrices, the
Al A g

above equation is equivalent to

Dzzl,-zz = DxxFXX,2F;Z,2

Dzzez,zF)?x,z = Dxx1I;yy

10 10
where rzz = rxx = 2, F,’}X,2 =] 0 0| and F';Z_2 =] 0 1 |- On substitution of
01 00
those values, we have
10
Dzz = Dxx
00
1 0
Dzz = Dxx
00

Therefore, the solution of both Dzz and Dxx have to be in the format of (&, 0).

The similar approach is used in solving the equation

DzzFzz2 = Dyy Fyy,
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for reference “ZZ « YYQ@Qs,” since Fzz, and Fyy, are singular matrices. The
solution specified by this equation requires both Dzz and Dyy to be in the format of
(0,g). The requirement of Dzz imposed by two equations conflicts with each other,

which implies that interprocessor communication cannot be avoided.

3.3 The Cost of Reorganization Communication

Reorganization communication occurs if Proposition 1 does not hold for a given ref-

erence. This section studies the cost of reorganization communication.

3.3.1 Reorganization Communication

i
Consider reference “X « Y@s,” in Example 1 (Figure 2.4). In iteration ' ,

i2
assume that X(z1,z) is referenced on the LHS and Y (y;,y.) is referenced on the

RHS. Using the access function specification, we have

I ( il
= Fx

T2 \ ig

n 1
= Fy,

Y2 \ i

Since Fx ; and Fy, are invertible, the above equations can be rewritten as

(31 - Fo1 I

] T fxa2

12 T2

1

1 _ p-1 )1
= Ty

t2 Y2
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where F,}}z is the inverted matrix of Fx , and F,?; is the inverted matrix of Fy,. By

substitution, we get

I i
Fx2 = Fy,
T2 Y2
It can be rewritten as
n _ T
= F}’,QFX‘IZ
Y2 T2

Multiplying both sides of the above equation by Dy, we get

Yy I
Dy | 7' | = DyFraFzy| (3.13)

Y2 T2

Assume that given values of Dy and Dy, Proposition 1 does not hold for reference

“X « Y@s,”. In other words,
DxFxz2 # Dy Fya
Since Fx; is invertible,
Dx # Dy Fy Fx} (3.14)

On substitution of Dy Fy,F ;}_, from Inequality 3.14, Equation 3.13 can be rewritten

as

Y I

Dy # Dx

Y2 T2
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In other words,

] I
by ( ) # 6x( )
Y2 T2
) hn I )
This means that array elements and are never aligned to the same
Y2 T2

element in the template. Moreover, by Equation 3.13, we have

)1 T Y T
by ( ) = 6x( ) = Dy - Dx
Y2 T2 Y2 T2
a4 I 1 I
= Dy Fy Fx, — Dx = (Dy Fy2Fx, — Dx)
T2 T2 T2
. . hn 1 .
By Equation 3.14, the difference between Dy and Dy is an affine
Y2 T2
1 . o . .
function of . However, if template elements are distributed in regular patterns,
)

. N I1 .
such as block or cyclic, by ( ) and x( ) are unlikely to be mapped onto
Y2 T2
the same processor. This implies that to write an X element, the local processor

almost always requires a remote access to the RHS Y element. Figure 3.6 is used to
illustrate the idea.

In Figure 3.6, arrays X and Y (in Example 1) are declared as 8 x 8. The template
array is one-dimensional and has eight elements. There are four processors, denoted
as P(0 : 3). The template elements are distributed onto these four processors in
block. Since Dx = (1,-1) and Dy = (1,1), X is distributed along diagonal and Y

is distributed along anti-diagonal. Equation 3.7 does not hold for reference “X «
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Figure 3.6. Reorganization communication for Dx = (1,—1) and Dy = (1,1) in
Example 1

Y @s,;”. To write an X element on the line £, —z2 = 1 (highlighted in dark), a distinct
RHS Y element on the line y2 = 1 (highlighted in dark) is accessed. However, all X
elements on the line z; — z; = 1 are owned by processor P(0), while six out of seven
elements on the line y; = 1 are owned by other three processors.

Based on the above observation, we have the following proposition.

Proposition 2 Assume that array elements are evenly distributed across the proces-

sors. For reference “A «— BQs,”, the cost of reorganization communication ts %

if
DpFax # DpFpi

where n is the total number of elements involved in reference “A «— BQs,” and p is

the total number of available processors.

Since p is the total number of available processors and is a fixed constant to the
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base decomposition analysis, n, the total number of elements involved in reference

“A « BQ@s,”, determines the cost of reorganization communication. In the rest of

this chapter, the cost of reorganization communication is simply measured in n.
Proposition 2 justifies the correctness of the single occurrence transformation with

regarding to base alignment. In the following loop, the original FORALL assignment

FORALL(:;; =0:n—14=0:n—1—1,)
L% X (21,81 +12) = Y (41,22) + Y (41,21 + 22)
END FORALL

s; references two distinct instances of array Y: Y(i1,72) and Y(2y,¢, + ¢2). In order

0
to distinguish the access matrices of these two instances, let Fy, = and
01
, 10
Fy, = . Assume that Dx = (1,—1) and Dy = (1,1). Since DxFx, #
11

Dy Fy,, by Proposition 2, the number of remote Y required to be accessed is %
regarding to instance Y (i;,72). Similar, since Dx Fx, # DyF}','l, by Proposition 2,
the number of remote Y required to be accessed is  regarding to instance Y (41,21+12).
Moreover, since Dy Fy,; # DyF}I/’l, corresponding elements Y (z1,;) and Y (21,21 + 22)
are allocated to different remote processors. Therefore, the total cost of reorganization
communication is %‘. This cost estimation is consistent with the result obtained from

the following transformed loop, which has the property of single occurrence. For this

FORALL(:; =0:n— 14, =0:n—1—1,)
8o TT(Z],ZQ) = Y(il,ig)
83. X(i],i] + 22) = TT(I], 22) + Y(il,il + 12)
END FORALL
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reason, we claim that single occurrence transformation does not bring any side effect

in the base alignment analysis.

3.3.2 The Weighted Cost

In Proposition 2, the total number of elements involved in reference “A « B@s;”
may not be equal to the number of all elements in array A or B. Typically there
are three different cases resulting in different costs of reorganization communication.
First, the number of elements involved in reference “A « B@s,” are limited to the
effective domain imposed by the loop boundary. In Example 1 (Figure 2.4), suppose
that the size of arrays X and Y is no X n;. The number of effective elements limited
by the loop boundary is only equal to %n2.

Second, the number of effective elements involved in reference “A «— B@s,” can
be limited by the probability of the WHERE clause used in a FORALL assignment. For

example, in the following code, the total number of elements in array X is 10, 000.

FORALL(z'l =0:100-1,6,=0:100-1)
WHERE(X (¢,,1,).NE.0)
S1: X(il,iz) =X(ix,i2)**2
END WHERE
END FORALL

However, if the possibility for the condition in WHERE clause to be true is only 90%, the
cost of reorganization would be only 9,000 provided that the elements which values
are zero are evenly distributed among processors.

Third, the number of elements involved in reference “A « B@s;” can be equal to
the number of elements in B where the size of B is much larger than that of A. For

example, in the following code, the inner loop s, is a sequential loop. Therefore, the
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FORALL(i; = 0 : 100 — 1,i; = 0: 100 — 1)

S1: X(il,iz) = Y(il,ig)
For(i3=0:100—1)
S2. X(il,iz) = X(il,ig) + Y(il,iz,i3)
END FOR
END FORALL

cost of reorganization communication is 1,000,000, which equals to the number of

elements in array Y, if Dx and Dy are incompatible with respect to statement s;.

3.4 Spanning-Tree Base Alignment Algorithm

3.4.1 Data Reference Graph

The problem of base alignment can be simply modeled by data reference graph (DRG).
Given a program structure, a DRG G = (V, E) is constructed as follows. An array is
represented by a node in V. For an array which has multiple instances referenced in
one or more FORALL assignments, there is only one corresponding node in the DRG.
There is a distinct edge in E connecting two nodes for each reference between the
corresponding two arrays. A DRG is undirected.

Figure 3.8(a) shows the DRG for Example 7 (Figure 3.7). In Figure 3.8(a), each
array variable is represented by a node labeled by the variable name. Edges are
constructed based on the references generated by each FORALL assignment in Example
7. For example, edge (A, X) connects nodes A and X due to reference “A «— X@s,”.
There is no edge between nodes X and Y because these two arrays are not involved
in the same reference. Since there is one-to-one correspondence between an array and
a node, terms “array” and “node” are used alternatively in the rest of this chapter.
Similarly, since there is one-to-one correspondence between an edge and reference,

terms “edge” and “reference” are also used alternatively in the rest of this chapter.
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In Figure 3.8 (a), each edge is weighted by the cost of reorganization communication if
alignment matrices of two arrays connected by the edge are incompatible with respect
to the reference represented by the edge. The weight on each edge is decided based

on the probability of true condition in the WHERE clause.

FORALL(i; = 0: 10, i, = 0 : 10)
81 Y(i], 12) = A(221 + ig, i] + 22)

WHERE(A(i1, i5).NE.0)

'HPF the probability of A(;,72) # 0 is 83%

S2: A(il, 12) = W(i], 22) + X(Zl + ig, il + 2l2)
END WHERE

WHERE(Z (i1, i5).NE.0)
'HPF the probability of Z(z;,72) # 0 is 83%

S3. Z(i],iz) = B(i],ig) * Y(il, 12)
END WHERE
84: W (i1,12) = Z(21 + 12,01 + 2t2)

WHERE(B(i1, i2).NE.0)
'HPF the probability of B(i1,i2) # 0 is 53%
85! B(i1,32) = A(2¢) + 13,81 + 23)
END WHERE

WHERE(X (i1, i).NE.0)
'HPF the probability of X (z;,1;) # 0 is 53%
S¢. X(il,ig) = Z(il,ig)
END WHERE
END FORALL

Figure 3.7. Example 7: A Lapack benchmark loop

Generally speaking, there may not exist a solution of the alignment matrices such

that every reference can be free of reorganization communication. This is because the
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Figure 3.8. The DRG and base alignment for Example 7

compatibility requirement imposed by one reference may conflict with that imposed by
another reference, in particular, when the two edges representing these two references
are involved in a cycle. For example, Figure 3.8(a) consists of cycle A - W — Z —
Y — A. By Proposition 3.7, the four references represented by four edges in the cycle
are free of reorganization communication if and only the following equations have a

non-trivial solution of alignment matrices D4, Dw, Dz, and Dy.

DsFs2 = DwFw,
DwFws = DzFz,4
DzFz3 = DyFygs

<

| Dy Fyy = DaFy,
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10 11

where Faz = Fywy = Fz3 = Fyy = Fys = Fyw, = y Fz4 = , and
01 1 2
2 1
Fa1 = . Since all index matrices are invertible, the above equations can be
11

re-written as follows.

[ D4 = Dw FwaFy)
Dw = DzFz4Fy),
Dz = Dy Fy3F7}

| Dy = D4Fa1Fy,)

By substitution, we get
Dy = DAFAJF}Z}Fy'3FZ—';FZV4FV;}4FW,2F;;

Using the value of each alignment matrix, the above equation can be written as

21 11
Dy =Dy
11 1 2
10 3 4
DA( - ) =0
01 2 3
-2 =2
Dy =0
-3 -2

In order to satisfy the above equation, D4 has to be (0,0). This implies that there
does not exist a solution of alignment matrices such that all the four references in
the cycle are free of reorganization communication. In other words, there exists at

least one reference with respect to which any given solution of alignment matrices is

incompatible.



68

3.4.2 Spanning Tree Base Alignment Algorithms

If all index matrices are invertible, the conflict of compatibility requirement can only
occur within a cycle of a DRG. Intuitively, such conflict can be resolved by a spanning
tree. Base alignment between two arrays are specified by the tree edge connecting
these two arrays using Equation 3.7. As a result, references represented by tree edges
are always free of reorganization communication. Each non-tree edge determines a
unique fundamental cycle of the DRG with respect to the spanning tree. Reorganiza-
tion communication may not be avoided for each non-tree edge. An edge is weighted.
Given a choice between two edges, the tree edge would be chosen as the one with
higher weight. As a result, the spanning tree for base alignment would be chosen as
a maximum-weight spanning tree.

For example, Figure 3.8(b) shows a maximum-weight spanning tree for base align-

2 -1
ment in Example 7. In Figure 3.8(b), Dw = D4, Dx = Dy , Dy =
-1 1
2 1 2 1 2 -1 2 -1
DA ,DB=DA ,andDzsz =DA
11 11 -1 1 -1 1

Though (Z, X)) is a non-tree edge, Dx and Dz are compatible with respect to edge

(Z,X) because Dx and Dz satisfy the equation
DxFxe= DzFzge

Therefore, non-tree edge (Z, X) is also free of reorganization communication. Given

2

Dw = D4 and Dx = Dy , edges (W, Z) and (X, Z) are called homoge-
-1 1

neous since the base alignment equations imposed by two edges are equivalent.

DxFxe= DzFzs

DwFwas= DzFz4
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Edges (W, Z) and (X, Z) comprise a homogeneous edge set.

In Figure 3.8(b), reorganization communication can not be avoided on non-tree
edges (Y, Z) and (B, Z) since Dx and Dz are not compatible with respect to edge
(X,Z) and Dx and Dy are not compatible with respect to edge (Y, Z). Fixing base
alignment in a DRG G, an induced communication subgraph (ICS) G! = (VL E!) is
a subgraph of G such that alignment matrices are compatible with respect to each
edge in E — E! but incompatible with respect to each edge in E. Therefore, the
total cost of reorganization communication in G is equal to that in G!. The ICS
for the maximum-weight spanning tree alignment is shown in Figure 3.8(b). The
total cost of reorganization communication in Figure 3.8(b) is equal to 200. The
problem of optimizing base alignment is to find a base alignment such that the cost
of reorganization communication in the ICS is minimal.

Does the maximum-weight spanning tree (MWST) algorithm always minimize
the cost of neighboring communication? The answer is no. Figure 3.7(c) shows
yet another spanning tree alignment. The cost of reorganization communication in
Figure 3.7(c) is only 185 because Dz and Dy are compatible with respect to non-
tree edge (X,Y). The failure of the MWST algorithm is due to the assumption that
only tree edge is free of reorganization communication. However, in fact not every
non-tree edge is necessary included in the ICS. A non-tree edge can also be free of
reorganization communication as long as the alignment matrices of two incident arrays
are compatible. Next, we introduce a new spanning tree base alignment algorithm
which aims to minimize the sum of weights on those non-tree edges included in the

ICS. We name it as the minimum-weight ICS (MICS) algorithm.

Definition 3.4 Given a DRG G = (V,E), let U be an arbitrary subset of V. Node
A has the single-degree connectivity with U if and only if A is not in U and there is
only one node B in U such that edge (A, B) is in E.
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Definition 3.5 Given a DRG G = (V,E), let U be an arbitrary subset of V. Node A
has the multi-degree connectivity with U if and only if A is not in U and there exist

at least two distinct nodes X and 'Y in U such that edges (A, X) and (A,Y) are in E.

Definition 3.6 Given a DRG G = (V,E), let U be an arbitrary subset of V. Node A
is a single-degree neighbor of U if A has the single-degree connectivity with U. Node

B is a multi-degree neighbor of U if B has the multi-degree connectivity with U.

For example, in Figure 3.8(a), let U = {A,X,Y}. Thus, W and B are single-degree
neighbors of U. Z is a multi-degree neighbor of U since it is incident with both X
and Y.

Given a DRG G = (V, E), the MICS algorithm can be formalized as follows:

(1) T=4¢

(2) while T #V do

(3) Let Q; be the set of single-degree neighbors of T
(4) if Q; # ¢ then

(5) Find a node A in Q; such that edge (A, B) has the maximum weight
among all edges incident with one node in Q; and another in T

(6) Define D, such that Dy F4x = DgFp x where (A, B) represents
reference “A — BQs,”

(7) T=Tu{A}

(8)  else

(9) Let Q=V-T

(10) Find a node A in Qj such that the homogeneous edge set, each edge in

which is incident with A and a node in T, has the maximum
accumulated weight

(11) Define D4 such that Dy F4x = DgFp x where reference “A — BQs),”
is represented by an edge (A, B) in the above homogeneous edge set

(12) T=Tu{A}

(13) end if

(14) end while

Figure 3.9. The minimum-weight induced communication algorithm
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Figure 3.10 illustrates how base alignment is resolved using the MICS algorithm
(Figure 3.9). Table 3.1 shows the contents of T, Q1, and Qy at each step of outmost
while loop (lines (2)-(14)). Initially, T is empty and any node in V is assumed to be
a single-degree neighbor of an empty set. In Figure 3.10, the nodes included in T at
each step are highlighted. The algorithm starts with X which is arbitrarily selected
and T = {X}. In step (b), since the weight of edge (X, A) is greater than that of
(X, Z), A is chosen to be a new member of T (line (5)). Arrays X and A are aligned
by DsFa2 = Dx Fx 2 (line (6)). For the same reason, in step (c), node Y is included
in T because edge (A,Y) has the maximum weight among edges incident with nodes
W, Z,Y, and B, all single-degree neighbors of {A, X} (line (5)). Arrays A and Y are
aligned by Dy Fy; = D4 F4, (line (6)). The same algorithm repeats in steps (d) and
(e). Nodes W and B are included in T, respectively. Eventually, node Z becomes a

multi-degree neighbor of T.

Figure 3.10. Use the MICS algorithm to resolve base alignment for Example 7
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Table 3.1. Values of T, Q1, and Q3 in executing the MICS algorithm for Example 7

steps | T Q Q, | base alignment
Initial | ¢ {A,W,X,Y,B,Z} | ¢

(@) [{X} {A, 7} ¢

(b) {X’A} {WaYaB’Z} ¢ DA=DXFX.2

(<) {X,A,Y} {W, B} {Z} | Dy = DsFaq

(d) {XaA’YaW} {B} {Z} DW = DA

(e) {X, A,Y, W,B} ¢ {Z} DB = DAFA,4

(f) {X,A,Y,W,B,Z} | ¢ ¢ Dz = Dy

In step (f), Q1 = ¢. By line (9), Q =V —T = {Z}. Node Z is incident with
two homogeneous edge sets. One set includes edges (W, Z) and (X, Z). The other
includes edges (Y, Z) and (B, Z). The accumulated weight in the set {(W, Z), (X, Z)}
is equal to 185, while the accumulated weight in the set {(Y, Z), (B, Z)} is equal to
200. Since nodes W, X, Y, and B are all included in T, by line (11), Dz is chosen
such that Dz Fz3 = Dy Fy 3 because edge (Z,Y') is in the homogeneous edge set with
the larger weight.

The MICS algorithm (Figure 3.9) is an improvement of the MWST algorithm. If
Q; is not empty, like the MWST algorithm, the tree edge is selected as an edge with
the largest weight among all the edges which are incident with one node in Q; and
another node in T (lines (4)-(7)). If Q; is empty but Q is not, alignment matrix
is determined such that every edge in a homogeneous edge set with the maximum
accumulated-weight is free of reorganization communication. By its construction,
the MICS algorithm is superior to the MWST algorithm in general. If the heap-
sort algorithm [79] is used in lines (5) and (10), the time complexity of finding the
maximum-weight edge or homogeneous edge set can be reduced to O(log|E|) where
|E| is the number of edges in DRG G = (V,E). As a result, the time complexity of
the MICS algorithm is O(|E|log|E|).
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3.4.3 Experimental Results

3 T T T T
4.5 MWST algorithm A— .
MICS algorithm B5—
4 b Benchmark loop: Example 7 _
Communication
Cost 3.5 | -
(msec)
3F -
25 F -
2

Number of processors

Figure 3.11. Comparison of MWST algorithm and MICS algorithm on 16-node
nCUBE-2

Figure 3.11 shows the comparison of communication cost between the MWST
algorithm and MICS algorithm on 16-node Purdue nCUBE-2. Example 7 (Figure 3.7)
is used as the benchmark loop in our experiment. We increase the iteration space in
Example 7 by allocating the loop boundary as (z; = 0: 34,7, = 0 : 34). In Figure 3.11,
when the number of processors is 16, the size of the messages sent out from each
processor reaches the minimum and the number of messages reaches the maximum.
Since the startup software latency is much expensive than the network latency in
message transmission on Purdue nCUBE-2, the startup latency dominates the overall
communication latency when the message size is relatively small. This explains why

the overall communication overhead increases when the number of processors becomes

16.
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3.5 Optimizing RHS Expression Evaluation

3.5.1 RHS Expression Evaluation Optimization

In the MICS algorithm, it is assumed that all the operations in a FORALL assign-
ment are performed in the local processor which owns the LHS operand. If a RHS
operand is owned by a remote processor, message passing is invoked in order to
transfer the operand to the local processor first. However, this limitation, known as
owner-computes rule, can be exceeded by evaluating different parts of the RHS ex-
pression in a FORALL assignment on different processors. Given a FORALL assignment
which consists of one kind of associative and commutative operations, data movement
can be minimized by an optimal evaluation tree in which an intermediate result may

be evaluated by a remote processor rather than the one which owns the LHS operand.

FORALL(:; =0:9,2,=0:9)

3. A(il, 22) = B(il, 22) * X(il,ig) * Y(il,ig) * Z(il,iz)
s2: B(i1,12) = A(21) + 82,81 + 12) + X (261 + 22,71 + 12) + Y (241 4 42,71 + 43)
+Z(ilai2)
END FORALL

Figure 3.12. Example 8: A Splash benchmark loop

In Example 8 (Figure 3.12), it is assumed that base alignment is pre-determined
such that DyFa1 = DgFp1 = DxFx, = DyFy, = DzFz,. Therefore, FORALL
assignment s, is free of reorganization communication. Nevertheless, reorganization
communication cannot be eliminated in FORALL assignment s; because DgFg, #
DpFp2, DpFp3 # DxFx 3, and DgFgs # Dy Fy,. If the owner-computes rule is

followed, remote elements A(2:; + 13,21 +12), X (2t 412,71 +12), and Y (24, + 42,2, +¢2)
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have to be transferred to the local processor which owns the LHS B(z;,1;). As a result,

the cost of reorganization communication is equal to 300.

100 _—% ‘*\\,‘ 0
e I
A, LT T
/q(l;) TTQij+iy, i +i,) Z(@pig)
- NS 0 el W
A B TR
~ / e N

Blipip) XGpip Ylpip) ZGpip)  AQisiyi+iy  XQigriy iviy  YQisiy i+iy

staterment 5, statement s,

Figure 3.13. Optimal evaluation trees for Example 8

However, closer inspection reveals that DgF4 2 = Dx Fx 3 = Dy Fy. This implies
that the sum of A(2i; +13,%;+142), X(2¢1+12,%1+42), and Y (241 412,71 +12) can be first
calculated on a remote processor without any data movement. Figure 3.13 shows such
an optimal evaluation tree for Example 8. Asshown in Figure 3.13, TT(2:;+12,%1+72),
a temporary variable which stores the sum, is then added with Z(z,,:;) by passing a
message to the local processor which owns B(z1,?;). In Figure 3.13, each arc represents
a reference relationship from one array to the other. Each arc is weighted by the cost of
reorganization communication if the alignment matrices of two corresponding arrays
are incompatible with respect to the reference represented by the arc. The optimal

evaluation of Example 8 can be rewritten as follows:

FORALL(#; =0:9,:,=0:9)

S81: A(il, 22) = B(il, 12) * X(i], 12) * Y(il, 22) * Z(il, 22)

S2.1: TT(2i1 + t3,%1 + 22) = A(261 + 22,21 + 22) + X (247 + 2,11 + 12)
+Y (241 + 23,21 + 23)

82,2 B(il, 12) = TT(ll,Zg) + Z(il, 22)

END FORALL
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The original assignment s, is transformed into two assignments sz ; and sz2. The
alignment matrix of T'T is determined as Dyt = D4. Statement sz is free of reorga-
nization communication. Reorganization communication only occurs in assignments
s2.2. The total cost of reorganization communication is reduced to 100.

Generally speaking, given a a FORALL assignment, the RHS expression evaluation

can be optimized using the following rule.

Proposition 3 Assume that in a given FORALL assignment, the RHS ezpression is
operated by one kind of associate and commutative operations. FEach group of the
RHS array operands which alignment matrices are compatible with each other should
be evaluated together. Only the intermediate results needs to be transmitted to the
local processor which owns the LHS operand if the intermediate results are generated

on a remote PToOCeSSor.

In order to take advantage of optimal expression evaluation, we assume that the
original program has been pre-processed by transforming each original FORALL as-
signment into an equivalent set of FORALL assignments, each of which has the RHS

expression operated by one kind of associate and commutative operations.

3.5.2 Alignment Graph

An alignment graph (AG) is used to model the alignment problem. An AG is a
collection of arrays and statements which can be represented as a bipartite graph,
G = (V,4, Vs, E). An array is represented by a node in V,. A statement is represented
by a node in V,. A undirected edge in E connects an array and a statement if the

array is referenced in the statement.

Figure 3.15 shows the AG for Example 9 (Figure 3.14).
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FORALL(:;, =0:9,2;,=0:9)

S1: A(il, 12) = B(i], 12) * X(il,ig) * Y(i], 22)
82: B(il, 12) = A(ll + ig,il) + X(Zl + ig, 21) + Y(tl + ig, 21)
S83. X(il,iz) = B(il,ig)*A(il +1:2,i1)

END FORALL

Figure 3.14. Example 9: An Electric benchmark loop

Figure 3.15. Alignment graph for Example 9

3.5.3 AG Base Alignment Algorithm

The AG-based base alignment (AGBA) algorithm is shown in Figure 3.16. In an AG
G = (Va, Vs, E), there is a set, denoted as Qi, associated with each node s in V,.
Initially, each set Qi is empty. During the execution, each Q; will contain elements
of type DyF4 k. Each element of Qx, DgFap, is further weighted by the number of
effective elements in array A referenced in assignment s.

By Proposition 3, a group of the RHS array operands with compatible alignment
matrices can be evaluated together. Thus, the cost of reorganization communication
only depends on the effective elements in the intermediate results, rather than the
accumulation of effective elements among all the RHS array operands. For this reason,
with respect to a single FORALL assignment, the fewer the number of the distinct

groups of compatible alignment matrices among all the RHS array operands, the less
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) for each node A in V,

) T=¢

)  for each neighboring node s, (in V,) of A

) for each element DgFp  in Qi

) T=TuU DBFB,kF;,}g

) endfor

)  endfor

) Choose Dy = DpFpFy} such that DgFpxF} is the member
in T which has the maximum accumulated-weight

(9)  for each neighboring node s (in V,) of A

(10) if DyFy ) 1s not in Q: then
(11) Qk = QxU {DaFax}

(12) endif

(13) endfor

(14) endfor

Figure 3.16. The alignment graph base alignment algorithm

the cost of reorganization communication. In Figure 3.16, Qi records the distinct
groups of compatible alignment matrices among all operands in statement s, (lines
(10)-(12)). When array A is referenced in statement sy, we hope that DsFy4 i can
be chosen in the way that it matches to another element DgFpg; existing in Q
and the size of Qj is not increased. In other words, D4 should be compatible with
Dpg. Therefore, no extra reorganization communication occurs since A and B can
be evaluated together and the communication cost of moving intermediate results is
equal to that of moving the operand B. On the other hand, however, array A may
be referenced in multiple statements and the compatibility requirements imposed by
different FORALL assignment may conflict with one another. T collects all the types of
different Dp Fg xF ) if both array A and array B are referenced in FORALL assignment
Sk. Note that T may contain multiple identical elements each of which comes from a

distinct FORALL assignment. As a result, D, is chosen to be the member in T which
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has the maximum accumulated-weight (line (8)). The accumulated weight refers to
the weight accumulated among all identical elements. Thus, the maximum amount
of reorganization communication has been eliminated.

Table 3.2 illustrates how the AGBA algorithm works using Example 9. Table 3.2
shows the content of each Qi at each step of the outmost loop between lines (1)-
(14) in Figure 3.16. The algorithm begins with A. After executing lines (9)-(13),
Qi1, Qz, and Q; become {DgF4,}, {DaFaz}, and {DaF43}, respectively. Fq, =

10 1
and Fa2 = Fa3 = . Next, B is selected. After executing lines
01 10
(3)-(7), T = {DAFAJFB—'II,DAFA’QFE'IZ, DAFA,;;FE};}. Since FB,l = FB'2 = FB,3 = I,
1 11 11
T = {Da,D4 , Dy }. Consequently, D4 is the member
1 0 10 10

11
in T which has the larger accumulated-weight. Thus, Dg = Dj4 (line(8)).

Continuing in the algorithm, Dx and Dy are likewise obtained.

Table 3.2. Resolving base alignment for Example 9

alignment matrices | Q; Q2 Qs
4 Dy Daf o) [Pa{1 o
o |pena(13) e (1) [oa(13) [2e( 1 4
X | Dx = D4 DaDa( 1 o) [Da( ] o) |Pala( ] ¢
Y | Dy = Dy Dp,Dy }(1) D4 i (1) Da,D4 } (1]

In Figure 3.16, the order in which V, nodes are visited (line (1)) is important

in minimizing reorganization communication. An efficient heuristic approach can be
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addressed as follows. Let U be a subset of V,. A node in V, is a neighboring node of U
if this node is connected to a node in U. Initially, U is empty. The algorithm begins
with a node in V,, say A, which has the maximum connectivity degree. U = UU {A}.
Then, in each of the rest steps, a node in V, — U, say B, is selected such that B is
connected to a neighboring node of U, say si, where s; has the minimum connectivity
degree among those neighboring nodes of U. U = U U {B}. This procedure repeats
until U contains every node in V,.

If the heap-sort algorithm [78] is used in line (6), the time complexity of finding
the element with the maximum accumulated-weight would be reduced to O(log|E|)
where |E| is the number of edges in AG G = (V, E). As a result, the time complexity
of the AGBA algorithm is O(|E|log|E|).

3.5.4 Experimental Results

6 Ll I ] I

MWST algorithm A—
MICS algorithm 58—
S AGBA algorithm >«

Benchmark loop: Example 9

. .. 4
Communication

Cost
(msec) 3l i
2F -
1 1 1 1 1

Number of processors

Figure 3.17. Comparison of the MWST, MICS, and AGBA algorithms on 16-node
nCUBE-2
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Figure 3.17 shows the comparison of communication cost among the MWST,
MICS, and AGBA algorithms on 16-node nCUBE-2. Example 9 (Figure 3.14) is used
as the benchmark loop in our experiment. We increase the iteration space in Example
9 by allocating the loop boundary as (¢ = 0: 24, 7, = 0 : 24). The AGBA algorithm
outperforms other two algorithms. In Figure 3.11, when the number of processors
increases, the number of the messages sent out from each processor increases, while
the size of each message decreases. The startup software latency is much expensive
than the network latency in message transmission on Purdue nCUBE-2. Therefore,
the startup latency dominates the overall communication latency when the message
size is relatively small. Since the amount of communication generated by the proposed
MICS and AGBA algorithms is small comparing with the MWST algorithm, both
the performance of MICS algorithm and the performance of AGBA algorithm are
dominated by the startup latency and getting close each other after the number of

processors exceeds 8.

3.6 Avoiding Redundant Communication

3.6.1 Redundant Communication

The same context of array elements may be referenced in more than one FORALL
assignment. If these elements reside on remote processors, a local processor should
receive a single copy of these elements rather than multiple identical copies. This
technique is known as redundant communication avoidance. The identification of re-
duﬁdant communication can not only reduce communication overhead following up
the data decomposition phase, but also have great impact in the alignment anal-
ysis. In this section, we focus on the issues of avoiding redundant reorganization

communication.
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11
In Example 10 (Figure 3.18), assume that Dp = Dz = Dy. As a result,
10

DpFga# DaFas2and DzFz3 # DsFa3. Inorder words, remote element A(z;+12,1;)
is referenced in both statements s; and s3. However, Dg = Dz implies that the
LHS element B(i,%;) in statement s; and the LHS element Z(¢,%;) in statement
s3 reside on the same local processor. A(i; + 2,1;) is required to be sent from the
same remote processor to the same local processor in executing both statements s,
and s3. However, since A is not written between statement s; and s3, the message
transmission of remote element A(z; + i2,7;) in statement s, is redundant with that
of remote element A(z; +¢2,7;) in statement s3. These two messages transmitting the

same A(Z; + i2,1;) comprise redundant communication.

WHERE(X (i1, i).NE.0)
'HPF the probability is 83%

81 X(il,ig) = A(il,iz)
8g: B(il,iz) = A(Zl + ig, 21)
s3: Z(i1,12) = Aty + 12, 01) * B(41,172)
END WHERE
S4: A(i], 22) = Z(‘il, Zg)
Ss. B(il,iz) = X(il,ig) + A(il,iz)
END FORALL

Figure 3.18. Example 10: An Oceanwater benchmark loop

The identification of redundant communication is resorted to both the location and
the context. The location requires that the senders of redundant communication must
be the same, so do the receivers. The location requirement can be judged by alignment

matrices. In Example 10, since DgFp, = Dz Fz 3, elements B(z1,1;) and Z(z,1;) are
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always owned by the same local processor. The context requires that the context of
every redundant message must be identical. In Example 10, array A is not defined
between references “B(i1,12) «— A(1 +12,11)@8,” and “Z(i1,12) «— A(23 +12,7;)Q@s3”.
Therefore, two messages transmitting the same context of A(z;+12,7;) are redundant.
Consider references “X(21,22) — A(%1,22)@s,” and “B(i1,t2) «— A(%1,72)@ss”. The
messages transmitting remote element A(zy,¢2) are not redundant because array A is
re-defined in statement s4 and the context of A(zy,1;) referenced in statement s, is
different from the context of A(z;,7;) referenced in statement ss.

The concept of single assignment block is used to identify the distinct contexts

with regard to the same array variable.

Definition 3.7 Given a program structure, a single assignment block of array A,
denoted as S4, contains a block of statements such that A is only defined in the first

statement in S4 and A is used in the other statements in Sy4.

In Example 10, there are two single assignment blocks with regard to A :{s, s2, s3}
and {s4, 35}. B has two single assignment blocks:{ss,s3} and {ss}. Z has one single
assignment block: {ss, s4}. The single assignment block is based on the def/use flow
for array variables. Therefore, the identification of a single assignment block can be
easily obtained using data flow analysis algorithms [63]. The single assignment block

has the following important property:

Proposition 4 The contezt of an array element is not changed within the same
single assingment block. The contexts of the same array element in different single

assingment blocks are different.

3.6.2 Enhanced Alignment Graph

An alignment graph can be enhanced to model the use/def flow for array variables

by using the concept of single assignment block. The definition of an enhanced
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alignment graph (EAG) G = (V,,V,, E, A,) is similar to that of an alignment graph
G = (V4,V,, E) except that an EAG has an extra arc set A,. The definition of V,, V,,
and E can be found in Section 3.5. There is an arc in set A, from node s, to node

sk if an array defined in statement s, is used in statement s,. Figure 3.19 shows the

EAG for Example 10 (Figure 3.18).
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Figure 3.19. Enhanced alignment graph for Example 10

3.6.3 EAG Base Alignment Algorithm

The EAG-based base alignment (EAGBA) algorithm is shown in Figure 3.20. In an
EAG G = (V,,V,,E,A,), there is a set, denoted as Qk, associated with each node sy
in V,. Initially, each set Q) is empty. During the execution, each Q) will contain
elments of type DgF4 k. Each element of Qx, DaFax, is further weighted by the
number of effective elements in array A referenced in assignment sy.

In Figure 3.20, lines (3)-(13) indicate that the same element DpFpg xFax is only

included once in T for each single assignment block regarding to B. Therefore, redun-
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(1) for each node A in V,

(20 T=¢
(3) for each neighboring node s (in V,) of A
(4) for each DBFB,k in Qk

(5) if DpFpFy} is not in T then

(6) T=TuU DBFB,kFA_,}c

(7 else if s, is in a new single assignment block for B then
(8) T=TUDpFpFy}

9) else if there exists an element ¢ in Qi such that

q= DBFB,,‘F,;'}c but some effective elements of B
are not included in ¢’s effective domain then

(10) Merge those new effective elements of B to ¢’s effective domain
(11) endif

(12) endfor

(13) endfor

(14) Choose Dy = DpFp«Fy ) such that DpFpiFy} is the member
in T which has the maximum accumulated-weight

(15) for each neighboring node s (in V,) of A

(16) if DyF, ) is not in Qi then

(17) Qr = Qx U {DaFax}

(18) endif

(19) endfor

(20) endfor

Figure 3.20. The enhanced alignment graph base alignment algorithm
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dant communication will not be counted in line (14) and the selection of alignment ma-
trix D4 will be immuned from the adverse impact of redundant communication. This
feature makes the EAGBA algorithm superior to the AGBA algorithm. Note that
the same array variable may be referenced in different FORALL assignments within the
same single assignment block regarding to that particular array variable. The effec-
tive domains imposed by those different FORALL assignment loop boundaries can be
different. For this reason, different effective domains for the same type of the element
in T need to be combined (lines (9)-(10)). The array expression operation proposed
in [64] can be used to combine different effective domains. The single assignment
block can be found by using data flow analysis regarding to array variables [80, 81].

Example 10 is used to illustrate the basic idea. In the EAG for Example 10
(Figure 3.19), A has the maximum degree of the connectivity. Therefore, A is se-

lected first in line (1) of the EAG-based algorithm (Figure 3.20). Executing lines

11 11
(13)-(17), we have Q; = {D4}, Q; = {D4 }, Qs = {Da b
10 10

Q4 = {Da}, and Qs = {Da}. Assume that B is selected next. Since B is only
referenced in statements s;, s3, and sg4, only Q2, Q3, and Q4 are considered in de-

termining T in lines (3)-(11). Since statements s, and s3 are in the same single

assignment block regarding to A, D4 is only included once in T. Therefore,
11
T = {Da yDa}. The weight associated with D4 is 121 (in statement s,),

11
and the weight associated with D,4 is 100 (in statement s;). Therefore, by
10

line (12), Dp is chosen such that Dg = D4. In contrast, if the AGBA algorithm

1 11
isused, T = {Dj4 ,Da ,D4}. Since the weight associated with

10 10
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1
each D, is 100, the accumulated-weight over these two identical elements

10
1

1
Dy in T is 200, which is larger than 121, the weight of D4. As a result,
10

11
Dg would be chosen as Dg = Dy instead of Ds. The AGBA algorithm
10

replicates the cost of redundant reorganization communication and makes the wrong
decision in base alignment. As shown in Table 3.3, continuing in the algorithm, Dx

and Dz are likewise obtained.

Table 3.3. Resolving base alignment for Example 10

A B X Z
result Dg =Dy Dx =Dy ( ; (1) ) Dz =Dy
11 11
Qi | D4 Dy Dys,Dy 10 Dys,Dy 10
11 1 1 11 11
Qz DA 1 0 DA’DA 1 0 DA’DA 1 0 DA9DA 1 0
11 11 11 11
Qs | Da 1 0 D4, Dy 1 0 Da,Dy 1 0 Dy,Dy 1 0
Qs | D4 Dy D, Dy
Qs | Da Dy Dy Dy

The time complexity of the EAGBA algorithm is the same as that of the AGBA
algorithm. In general, the size of T should be smaller in the EAGBA algorithm than
that in the AGBA algorithm. Therefore, less searching time would be taken in line
(14) of the EAGBA algorithm.



CHAPTER 4

Offset Alignment

In the base alignment phase, an array can be partitioned in a family of parallel hyper-
planes. Offset alignment determines the displacement of each hyperlane with respect
to the template. More precisely, the alignment offset d for each array A is resolved in
the offset alignment phase. This chapter provides a mathematical framework to ad-
dress communication cost in offset alignment. The impact of access offset is accurately
represented by piecewise linear cost function. Efficient offset alignment algorithms
are proposed to be incorporated with the RHS expression evaluation optimization

and redundant communication avoidance.

4.1 Offset Alignment for Single Reference

Similar to labeling access matrix, if an instance A(F7+ f ) is referenced in a statement
sk, we want to label the access offset f by the array variable A and the statement
number k. However, multiple instances of the same array may be referenced in the
same FORALL assignment. Unlike the base alignment analysis, the single occurrence
transformation will change the meaning of access offset in the transformed program
(details discussed in Section 4.3). For this reason, this section only considers the case

where each array has no more than one type of instance referenced in each FORALL

88
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assignment. Let fA,k be the access offset for the instance of array A referenced in

FORALL assingment sy.

4.1.1 Offset Alignment Equation

Consider reference “X « Y @s,” in Example 3 (Figure 2.8). Assume that in iteration

?
! , X(z1,z2) is referenced on the LHS and Y(y1,y2) is referenced on the RHS.
i2
T L . .
We want to map and to the same template element in order to avoid
T2 Y2

interprocessor communication. In other words,

By the definition of alignment function, the above equation can be re-written as

follows:

I - nN —
Dx +dx = Dy + dy (4.1)

T2 Y2

On the other hand, by the definition of access function, we have

I / 4 \ -

=Fx, + fx2 (4.2)
T \ iz
Y / (31

= Fy,

+ fra (4.3)

)
)
)

Y2 \ P
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10 10 - -
where Fx ; = , Fyo = y fx2= ,and fy; = . Substi-

11 01 2 0
tuting Equation 4.2 and Equation 4.3 into Equation 4.1, we get

7 o o 1 o -
DxFx, N Dx fx2+dx = Dy Fy, A Dy fy, + dy

22 22

To satisfy the above equation, the following two equations must hold.

il il

Dx Fx,2 = Dy Fy, (4.4)
i2 i2

Dxfxz +dx = Dy fys + dy (4.5)

Equation 4.4 implies that Dx and Dy must be compatible with respect to reference
“X « YQ@s,”. Equation 4.1 cannot hold if Equation 4.4 is not satisfied. This implies
that offset alignment should be studied only if Dx and Dy are compatible with respect
to reference “X «— Y @s,”. In general, offset alignment is only studied among those
references which are free of reorganization communication. Equation 4.5 specifies
the relationship between alignment offsets d} and d;r in order to make reference
“X « YQs,” free of interprocessor communication.

As specified in section 2.4, let Dx = (0,1) and Dy = (1,1). This solution of
Dx and Dy satisfies Equation 4.4. Substituting the values of Dx and Dy into

Equation 4.5, we get
0 - 0 -
(0,1) +dx =(1,1) + dy

In order words, d;/ - d;( = (2). For simplicity, we choose d;, = (2) and d} = (0).

U

Therefore, reference “X « Y @s,” is free of interprocessor communication.
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Equation 4.5 can be easily extended to the following property for any multi-

dimensional arrays.

Proposition 5 In reference “A(FA'J-{- j;g‘k) — B(FB,J+ fB'k)@Sk”, suppose that
alignment matrices D4 and Dp are given such that DaFa, = DgFpg . The reference

is free of interprocessor communication if and only the following equation holds.
Dafax +da = Dpfas+dp (4.6)

Given reference “A — BQs,”, if the values of da and dg cannot satisfy Equa-

tion 4.6, d4 and dp are called to be mismatched each other regarding to that reference.

4.1.2 Multiple Aligned Base Groups

In Example 3 (Figure 2.8), there is only one aligned-base group. In this section, we
study how to resolve offset alignment for multiple aligned-base groups.

Consider Example 11 in Figure 4.1.

FORALL(I] =2: n; — 2,i2 =0: Ny — 1)
81: W(i1+1,i2)=Z(i2—2,i1)
END FORALL

Figure 4.1. Example 11: An Eispack benchmark loop

Suppose that base alignment in Example 11 is pre-determined as follows. Both
arrays W and Z are distributed in row dimension and column dimension. The row

dimension of W is aligned with the column dimension of Z. The column dimension
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10
of W is aligned with the row dimension of Z. Therefore, Dy = and
01
01 10 01
Dz = . Since Fw,; = and Fz; = , 1t is easy to verify
10 01 10

that Equation 3.7 holds for such Dw and Dz. In other words,

DwFwy = DzFz,

Therefore, by Proposition 5, reference “W(i; + 1,13) « Z(i2 — 2,7;)@s,” is free of

interprocessor communication, if the following equation holds

Dw fw1 +dw = Dz fz1 + dz (4.7)
- 1 - -2
where fwi = and fz; =
0 0
) ) . Dy w D,z
Alignment matrices Dw and Dz can be re-written as and
Dy w D, z

where Dyw = (1,0), Dow = (0,1), D1,z = (0,1), and D2z = (1,0). Note that

D, w and D, w are two distribution bases of W. D, z and D, z are two distribution

- d , - d ,Z -

bases of Z. Let dw = LW and dz = ! . Let fw; = frwa and
da,w da,z fawa

~ fu,za . .

fza = . Equation 4.7 can be re-written as follows.

f2,21
Dy w fiwa dyw D,z frza d,z

+ = +

D, w fawa daw D,z f2,2 d2.z
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The above equation holds if and only if the following two equations hold.

( \ )

Dy w Frwa +diw =Dz ( hz +dz (4.8)
\ fawa ] \ fa,z1 )
[ o)

D, w Fu +dyw = Dy z h +dsz (4.9)
\ fowa ) \ f2,z.1 )

Equations 4.8 and 4.9 reveal two important facts. First, Equation 4.8 indicates
that distribution base (1,0) of W (represented by D, w) and distribution base (0,1)
of Z (represented by D, z) comprise an aligned-base group. Equation 4.9 indicates
that distribution base (0,1) of W (represented by D, w) and distribution base (1, 0)
of Z (represented by D, z) comprise another aligned-base group. In general, if two
distribution bases of two various arrays are aligned, these two distribution bases must
satisfy Equation 3.7.

Second, the solution of d; w and d; z in Equation 4.8 is competely independent
to the solution of d;w and dz 7z in Equation 4.9. The values of d; w and d,,z are
determined with regard to the first aligned-base group. The values of d; w and d; 2z

are determined with regard to the second aligned-base group.

fiwa fuza fiwa
On substitution of Dyw, D1z, Daw, D2z, , , ,
fawa faz1 fawa
fizy : : :
and by their values, Equations 4.8 and 4.9 can be re-written as follows.
fa,z1

diw+1l=dz—-2

dow = da z

Therefore, reference “W (z;+1,13) « Z(i2—2,1,)@s,” is free of interprocessor commu-
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nication if dy = and dz = . Substituting the values of two alignment

0 0

offsets in the alignment functions, we get

h - w wy - 10 wy -1 \
= w( ) = Dw +dw = +
t2 W2 Wy 01 Wao 0 )
w, — 1 \
= (4.10)
W2 }
tl - 21 21 - 01 21 2 \
= éz( )= Dz +dz = +
t2 29 29 10 29 0 }
22 — 2 \
= (4.11)

21 )

where T'(%;,%2) is a template element. Alignment functions 4.10 and 4.11 indicate
that the (k+ 1)-th row of W is aligned with the (k — 2)-th column of Z, and the ¢-th
column of W is aligned with the ¢-th row of Z.

Since offset alignment can be analyzed independently with each aligned-base
group, the examples used in the rest of this chapter will contain only one aligned-base
group. Moreover, the template is only a one-dimensional array for a data decompo-
sition pattern which employs a single aligned-base group. Therefore, the vector of
alignment offset, J, will contain only one element. For this reason, d, 4 will be simpli-

fied as integer d4 in the rest of this chapter.

4.1.3 Calculating Alignment Offset

The value of alignment offset can be decimal. Consider Example 12 (Figure 4.2). The

base alignment analysis in Example 12 is identical to that in Example 5. Therefore,
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Example 12 also has

1
DA = (0, 5)

1
Dp = (Oa §)

FORALL(i;=0:n/2-1,i,=1:n/3-2)

81 B(2z1, 312 - 1) = A(i1,2i2 + 1)
S2: A(21,222) = B(Zl,312)
END FORALL

Figure 4.2. Example 12: A Weather-Climate benchmark loop

By Proposition 5, FORALL assignment s, is free of neighboring communication if

Dafar+da=Dgfp1+dp

where f;,l = and f‘B'] = . The above equation can be re-written as
1 -1
1 1
—+dyg=—-+d
5 + da 3 +dp
Therefore, we choose d4 = —% and dg + % to avoid interprocessor communication.

The alignment functions of A and B can be specified as follows.



4.2 The Cost of Neighboring Communication

4.2.1 The Basic Cost

Consider reference “X (21,11 +t2+2) « Y (21,22)” in Example 3 (Figure 2.8). Assume
i

that in iteration | , X(z1,z2) is referenced on the LHS and Y (y, y2) is referenced
i

on the RHS. Therefore, we have

I ( il -

=Fx, + fx.2 (4.12)
fop) \ iz )
3 ( o ) -

= Fyz + fra2 (4.13)

Y2 \ %2

We assume that element X (z,, z2) is mapped to the template element T'(¢x) and
element Y (y1,y2) is mapped to the template element T'(ty). Therefore, alignment

functions for X and Y can be written as follows:

()
tx = Dx +dx
\ #2
(yl

ty = Dy +dy

\ ¥2 )

Hence, if the communication-free requirement cannot be honored, the misalignment

between X and Y can be evaluated based on the difference between tx and ty. On
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z
substitution of ' from Equation 4.12 and o from Equation 4.13, we get
T2 Y2
1 . o
tx —ty = (DxFx2— DyFya) | = | +(Dxfxz2+dx)— (Dyfrz+dy)

12

Since offset alignment is only studied for references which are free of reorganization
communication, we only consider those values of Dx and Dy such that DxFx, =
Dy Fy,. For example, Dx = (0,1) and Dy = (1,1). On substitution of Dx = (0,1)

and Dy = (1,1), the above equation can be re-written as follows:

tx —ty =2+4+dx —dy (4.14)

I
Note that the value of tx — ty is independent from or
T2 Y2
In this thesis, a segment distribution is used to distribute the template elements

across the processors. Like block distribution, the basic idea of segment distribution
is to assign template elements consecutively to processors. However, unlike block
distribution, the length of segment owned by each processor can be varied. The
detailed description of segment distribution will be found in Chapter 5.

Assume that template is declared as T'(0 : n — 1) and the number of available
processors is q. T(0 : n — 1) is partitioned into ¢ segments T'(m; : m,;4; — 1) where
0=mo<m; <my<...<my_y <my=n-—1. Segment T'(m; : miy; — 1) is owned
by processor P(z). Therefore, by the owner-computes rule, processor P(z) will work
on the X elements which are mapped to T'(m; : m;;; —1). By equation 4.14, we know
that the Y elements accessed by processor P(:) are mapped to T'(m; —2 —dx +dy :

mi41—2—dx+dy —1). As aresult, those Y elements which are mapped to the portion
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T(miy1 — 2 — dx + dy : my;) *are remote to processor P(i). For grand-challenge
applications, the size of the template is usually large. Therefore, the remote portion
T(mi41 — 2 — dx + dy : m;41) should be owned by processor P(i 4+ 1). As a result,
this type of data shift communication from processor P(i + 1) to processor P(z) is
classified as neighboring communication. For this reason, neighboring communication

occurs if alignment offsets are mismatched.

Definition 4.1 Suppose that alignment function of A and alignment function of B
are pre-determined. Given reference “A «— BQ@s,”, the basic cost of neighboring
communication, basic cost for short, is defined to be the number of remote template

elements to which remote B elements are mapped in order to define A.

In this above example, the basic cost is equal to 2 + dx — dy. This property can

be formalized as follows:

Proposition 6 In reference “A(Faxi + f_,‘q'k) — B(Fpxi + fB,k)@sk " suppose that
alignment matrices Dy and Dp are given such that DaFax = DpFpx. The basic

cost of neighboring communication is equal to |(Dafax — D fa) + (da — dB)|.

4.2.2 The Weight of the Basic Cost

The basic cost depends on the number of template elements to which the remote
effective data array elements mapped. The basic cost is equal to the actual cost of
neighboring communication if there is only one effective element of each data array
mapped to each template element. However, in many cases, the map between array
elements and template elements is many-to-one. If the number of effective elements
mapped to a template element is called the density of the template element, the actual
amount of neighboring communication should be the product of the density and the

basic cost.

*Assume 2 4+ dx — dy > 0. For other cases, see Section 3.3.
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A closer inspection of many benchmark programs reveals that the density of dif-
ferent template elements can be different. The density function, wy x, is defined such
that the value of w4 k(Z) is the number of effective elements in array A which are
mapped to template element T'(f) with respect to FORALL assignment s;. Consider
Example 3 (Figure 2.8). Suppose alignment functions of X and Y are defined as

follows:

I

t=6x( )=.’L'2+1
up)
U

t = by ( )=+ Y2
Y2

where T'(t) is a template element. Thus, X is partitioned in columns and Y is
partitioned along diagonal. Alignment offsets dx = 1 and dy = 0 imply that the
(k + 1)-th column in X is aligned with the k-th off-diagonal. By the definity of

density function, we have

wx 2(t) = max{0,t — 1}

wya(t) =t

Since the density function is not uniform, the amount of neighboring communication
between different pairs of neighboring processors is different. In this thesis, neighbor-
ing processors refer to processors P(¢) and P(z + 1).

Figure 4.3 shows the amount of neighboring communication between each pair of
neighboring processors. In Figure 4.3, arrays X and Y are declared as 8 x 8 and the
number of available processors is 3. Each array element is represented by a cirle. In
each array, elements mapped to the same element in the template are connected by the

same solid line. Only effective elements are covered by solid lines. By Proposition 6,
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neigboring

Figure 4.3. Neighboring communication in Example 3

the basic cost of neighboring communication is equal to 1. Figure 4.3 gives the real
meaning which the value 1 stands for. In order to define the LHS X elements on
a column, each processor requires to access remote Y elements which form one off-
diagonal line. For example, in order to write elements X(z1,%;) on line z, = 5,
processor P(2) accesses elements Y (y1,y2) on line y; + y2 = 3 which are owned by
remote processor P(1). Therefore, the amount of neighboring communication between
processors P(1) and P(2) is equal to the number of elements on line y; + y, = 3,
which is 4. Similarly, the amount of neighboring communication between processors
P(0) and P(1) is equal to 2. Note that the amount of neighboring communication
between P(0) and P(1) is less than that between P(1) and P(2). Since the messages
for neighboring communication can be transmitted simultaneously among pairs of
neighboring processors, the cost of neighboring communication among all processors

should be equal to the maximum amount of neighboring communication per pair of
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processors. Thus, the actual cost of neighboring communication is 4 in Figure 4.3.
This justifies the reason that the basic cost can be used to measure the actual cost of
neighboring communication.

Like the cost of reorganization communication, the cost of neighboring commu-
nication can be weighed by various array sizes. For example, in the following code

segment, loop s; is a sequential loop and can not be parallelized among the processors.

ALIGN Y (5) WITH X ()
ALIGN Z(j) WITH X (j)

FORALL(s; = 0 : 10)

381 X(l]) =Y(11+1)
FOR(i, = 0 : 10)
S2: X(ll) =X(21)+Z(21+1,12)
END FOR
END FORALL

Y (7) is aligned with X (2), so is Z(z). By Proposition 5, the basic cost of neighboring
communication involved in reading Y'(i; + 1) is 1, and the basic cost of neighboring
communication involved in reading Z(i; + 1, ¢;) is also 1. However, in the former case,
the actual cost of neighboring communication is 1. In the later case, the actual cost
of neighboring communication is 10 since the whole column in Z is mapped to the
same template element.

In the rest of this Chapter, we use the weight of the basic éost to formalize the
impact of the density function and different array sizes on the actual amount of
neighboring communication imposed by a given offset alignment. The actual amount
of neighboring communication will be represented by the so-called weighted basic

cost.
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4.3 The Impact of Access Offset

4.3.1 Piecewise Linear Cost Function

The following code pattern is very common in scientific application programs.

Multiple instances of array Y referenced on the RHS have the same access matrix

FORALL(i; = 0 : 10)
END FORALL

but different access offsets. The access offset of instance X(¢;) is 0, the access offset
of instance X(¢; + 1) is 1, and the access offset of instance X(i; + 2) is 2. Using
the notation from the previous section, assume that there are totally ¢ processors
and template elements T'(m; + 1 : m;4; — 1) are owned by the local processor P(z)
where 0 = mg < m; < my < ... <my_; <my =n—1. Since t = éx(z) = z + dx,
the X elements owned by processor P(z) are X(m; —dx : m;y; — 1 — dx). Conse-
quently, by the construction of statement s;, processor P(z) requires to access elements
Y (m;—dx : m;;1 —1 —dx) with respect to instance Y (¢1), Y (m;—dx +1 : m;y; —dx)
with respect to instance Y (¢; + 1), and Y(m; —dx + 2 : m;y; —dx + 1) with respect
to instance Y (i; + 2). On the other hand, since t = éy(y) = y + dy, the Y elements
owned by processor P(i) are Y(m; —dy : m;;; — 1 — dy). Consider the remote Y
elements accessed by processor P(z).

If dx < dy, remote elements Y(m,;; — dy : m;y; — dx) are accessed with respect
to instance Y (7;). Remote elements Y (m,4; — dy : m;4; — dx + 1) are accessed with
respect to instance Y'(z; + 1). Remote elements Y (m;y; — dy : m;4; — dx + 2) are

accessed with respect to instance Y (i; +2). Elements in these three segments overlap.
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The union of these three segments is Y (m;4; — dy : miy1 — dx + 2). Therefore, the
cost of neighboring communication is equal to dy — dx + 2 if dx < dy.

If dx > dy + 2, remote elements Y(m; — dx : m; — 1 — dy) are accessed with
respect to instance Y (z;). Remote elements Y (m; —dx +1 : m; — 1 —dy) are accessed
with respect to instance Y(i; + 1). Remote elements Y(m; —dx +2: m; — 1 — dy)
accessed with respect to instance Y (¢z; + 2). The union of these three segments is
Y(m; —dx : m; — 1 —dy). Therefore, the cost of neighboring communication is equal
todx —dy if dx > dy + 2.

In particular, if dx = dy, remote elements Y (m; — dy) and Y (m; — dy + 1) are
accessed with respect to instances Y (¢;+1) and Y (i; +2), respectively. If dy +1 = dy,
remote elements Y (m;—dx —1) and Y (m;—dy) are accessed with respect to instances
Y(¢1) and Y (¢, + 2), respectively. If dy + 2 = dx, remote elements Y (m; — dx — 2)
and Y(m; — dx — 1) and Y(m; — dy) are accessed with respect to instances Y(i;)
and Y (z; + 1), respectively. Overall, under these three special conditions, the cost of
neighboring communication is equal to 2.

Let cp i be the cost of neighboring communication involved in accessing all in-
stances of array B referenced on the RHS of statement s;. In the above example, we

have the following result.

2—(dx~dy) when (dx—dy) <0
Cy, = 2 when 0<(dx —dy) <2 (4.15)
(dx - dy) when 2< (dx — dy)

Unlike the cost of reorganization communication, Equation 4.15 shows that the cost
of neighboring communication cannot be treated independently for each distinct in-
stance when there are multiple instances for the same array referenced in the same
statement. In the above example, if the cost of neighboring communication regard-

ing to instances Y (z;), Y(¢; + 1), and Y(z; + 2) were estimated independently by

A Y=
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Proposition 5, the overall cost would be

|dx—dy|+|dx—dy+1|+|dx—dy+2|

The value of the above equation would be three times as much as cy,;. For this reason,
the single occurrence transformation is not used in the offset alignment analysis since
it can change the cost estimation and thus affect the result of offset alignment. For
ease of explanation, in the rest of this chapter, we use the symbol “A « B@s,;” to
represent the references of all distinct instances of array B in order to write the LHS
A elements in statement sx. For the sake of consistency, the symbol “A «— B@s,” is
still called a reference.

Equation 4.15 can be extended as follows:

Proposition 7 Assume that in a FORALL assignment sk, all instances of array B
are referenced on the RHS. These instances are represented by B(iy + 1), B(41 +r2),
..., and B(i; + r¢) where r; < r; < ... < re. The access offset tuple is denoted as
ugk = {r1,72,...7¢}, which is distinguished by the array variable B and the statement
number k. cpx, the cost of neighboring communication generated by accessing all B

instances in ezecuting statement sy, can be formalized by the following piecewise linear

equation.

r¢— (da —dg) when (dgq—dp)<m
CBk = Ty — T when 1 <(dg—dg)<ry (4.16)

(da —dg) —r1 when 1< (ds—dp)

where array A is referenced on the LHS. For simplicity, cg x is called the cost function.

Proposition 7 can be easily extended to the case where the array referenced on the
LHS has different instance(s) referenced on the RHS in the same statement. Assume
that A(z1 + r;) is referenced on the LHS and other instances of A referenced on the

RHS are A(:; + 1), ..., A(t1 + 7j-1), A(21 + 7j41), ..., and A(¢; + r¢) where r; <
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..<rj_1 <1j<rTj41 <...<re By using the similar analysis as in Equation 4.16,
the cost of neighboring communication involved in accessing A elements is equal to
r¢ — r; no matter whatever d4 is. In other words, the cost is a constant which is

independent with the alignment of array A.

4.3.2 Properties of Piecewise Linear Cost Function

In the rest of this section, we explore more properties of the piecewise linear cost

function. Consider the following program structure. Assignment s; is free of neigh-

FORALL(z; =0
81: X(il) =Y(Zl)+Y(Zl+1)+Y(ll+2)
S2: Z(41) = X(21) * %2
83: X)) =X@)+Y(@H+4)+Y(E +5)+Y(a+7)
END IF
END FORALL

boring communication as long as dz = dx. Consider the relationship of dy and d.

Since uy; = {0,1,2}, we have

2—(dx —dy) when (dx —dy)<0
cyy = 2 when 0< (dx —dy) <2

(dx — dy) when 2 < (dx — dy)

Since uy3 = {4,5,7}, we have

7—(dx—dy) when (dx—dy)<4
Cy3 = 3 when 4<(dx —dy) <7

(dx —dy)—4 when 7 < (dx —dy)
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The task of offset alignment is to find the optimal value of dx — dy such that the sum
of ¢y and cy3 is minimal. Figure 4.4 shows the sum of cy; and cy3 in a coordinate

system.

X %

Figure 4.4. The sum of ¢y, and cys3

Studying Figure 4.4, we obtain the following results. If the position of dx — dy
is chosen between 2 and 4, such as the postion g, the value of ¢y, is (g — 2) + 2
and the value of cy3 is (4 — g) + 3. As a result, the sum of cy; and cy3 is equal to
(4—9g)+(g—2)+2+3,0r (4—2)+2+3. Note that (4 — 2) is the distance between
the maximum element in tuple uy,; and the minimum element in tuple uy. If the
position of dx — dy is chosen to the left of 2, such as the position f, the value of ¢y,
is (2— f) +2 and the value of cy;3 is (4 — f) + 3. Since f extends left to 2, (4 — f), the

distance between f and 4, is greater than 2, the distance between 2 and 4. Therefore,
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the sum of (2 — f) + 2 and (4 — f) + 3 is greater than (4 — 2) + 2+ 3. On the other
hand, if the position of dx — dy is chosen to the right of 4, such as the position A, the
value of ¢y is (A — 2) + 2 and the value of cy3 is (h — 7) + 3. Since h extends right
to 4, (h — 2), the distance between 2 and h, is greater than 2, the distance between 2
and 4. Overall, we conclude that the minimal value of cy; + cy3 is 7 when dx — dy
is chosen as any integer between (including) 2 and (including) 4.

We further notice that the middle elements, 1 in uy; and 5 in uy 3, do not affect the
shape of the piecewise linear function and thus are not relevant to the decision making
for the minimal sum of the cost. For this reason, the minimum and maximum elements
in an access offset tuple are sufficient to identify a piecewise linear cost function. For
this reason, the cost function cp is be denoted as cgx =< lpx,rBr > where g
is the minimum element and rp is the maximum element in ugx. Element lg; is
called the left end point and element up i is called then right end point. Both Ip
and up are called end points for simplicity.

Using the similar analysis as in Figure 4.4, we can obtain the general results as

follows.

Proposition 8 Assume that cp ; is the cost function for accessing remote B elements
in ezecuting reference “A — BQs;” and cp i ts the cost function for accessing remote
B elements in ezecuting reference “A «— BQs,”. Let cg,; =< lgj,rB,; > and cgx =<
lBx,Bx >. If lg; < TBk, the sum of cg; and cp is minimized when dy — dp is
chosen as any integer between rg; and lpx. The minimum value of the sum of cp ;

and cpk is equal to rg; — lp k.

Figure 4.4 only shows the case where rp ; < lg x. Proposition 8 also holds for both
case rg,; < lp and case rg; > lp, as shown in Figure 4.5(a) and (b).
A close inspection of Figure 4.5 reveals that the sum of cg; and cg, can be

represented by the piecewise linear function when d4 — dp varies between lp ; and
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Figure 4.5. The sum of cp ; and cp
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rg k. This can be formalized as follows.

Proposition 9 Assume that cg ; is the cost function for accessing remote B elements
J g

in ezecuting reference “A — BQs;” and cpx is the cost function for accessing remote

B elements in ezecuting reference “A «— BQs,”. Let cgj =< lgj,rp,j > and cpr =<

lgx,rBx >. Iflgj < TRk, the sum of cj and cpx have the following property.

¢cg,;t+cBr =
(da —dB) —lg; + (rBx — lBx) maz{rp;,lpix} < (da —dp) < TBk
1 re; — Bk min{rg ;, Bk} < (da — dg) < maz{rgj, g i}

rex —(da —dg) + (r8j — ;) lp; < (da —dp) < min{rp,;,lpi}

\

For example, in Figure 4.4, the sum of cy; and cy3 can be represented as the
following piecewise linear function where the value of dx — dy varies between 0 and

7.
[ 7 _(dy —dy)+2 when 0< (dx—dy)<2

<
¢y, + Cy3 = ¢ 7 when 2 < (dx —dy) <4

(dx—dy)+3 when 4<(dx—dy)$7

\

Proposition 9 is important in determining offset alignment between arrays A and
B such that the sum of the cost of neighboring communication with regard to multiple
FORALL assignments is minimal. More precisely, the problem can be formalized as
follows. Assume that there are m distinct references “A « B@s;” where cg,; =<
lg,j,r,j > for 1 < j < m. The following algorithm can be used to find the value of
ds — dp such that 3", cp ; can be minimized.

The minimal-cost pairwise offset alignment (MPOA) algorithm is shown in Fig-
ure 4.6. In Figure 4.6, piecewise linear cost function cp, is monotonously increasing
when d4 — dp extends right to rp . or left to [ .. Therefore, if I ; is the minimal end

point and rpx is the maximum end point among all access offset tuples in T, each
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(1) T=ULi{<IBjra;>}
(2) while T contains more than one tuple do

(3) Find j such that /g ; has the minimal value among all end points in T
(4) Find k such that rp s has the maximum value among all end points in T
(5) if £k = j then

(6) T=T- {< IB'J',TB,]‘ >}

(7 else

(8) T=T- {< IB,J',T‘B']' >, < IB,k, TB k >}

(9) T=Tu {< min{rB,j, Ig'k},max{rg,j, lB,k} >}

(10) end if

(11) end while

(12) d4 — dp can be chosen as any integer number between (including) Ip .
and (including) rp¢ where {lg¢, B} is the only tuple left in T

Figure 4.6. The minimal-cost pairwise offset alignment algorithm

piecewise linear function cg; (1 < j < m) is monotonously increasing when d4 — dp
extends left to Ig, or right to rg, (lines (3)-(4)). This implies that the value of
d4 —dp must be between g and rp  such that 7%, cg ; can be minimized. If j = k
(line (5)), I,; and rp x are two end points in the same tuple up ;. By Equation 4.16,
the cost function cp x is a constant when d4 — dp is between lg ¢ and rp . Therefore,
this tuple is no longer considered in the rest steps (line (6)). If j # & (lines (7)-(9)),
the sum of ¢ j and cpx is considered. By Proposition 9, the sum function can be rep-
resented by the piecewise linear function < min{rp, s}, maz{rp;,Isx} > when
ds —dp is between g j and rp ;. Finally, when there is one tuple left in step (12), the
optimal value of d4 — dp can be chosen using Equation 4.16. The MPOA algorithm
terminates in m — 1 steps of the while loop because one tuple is deleted from T at
each step (lines (6) and (8)). By its construction, the MPOA algorithm does find
the optimal d4 — dg. If the heap-sort algorithm is used to search the maximum and
minimum end points (lines (3) and (4)), the time complexity of the MPOA algorithm
is O(mlog(m)).
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No new end point can be generated in the MPOA algorithm, though new tuples
may be generated (line (9)). This important feature implies that given a set of
cg,j =< lpj,rp,j > for 1 < j < m, there exists an end point to which d4 — dp can
be assigned such that 3°7., cp,; is minimized. This fact results in a straight forward
algorithm to find the minimal value of 7., cp ;: assign each end point to d4 — dp

and find the one which generates the minimal-cost.

Proposition 10 Given a set of cg; =< lg,j,rB,; > for 1 < j < m, there erists an

end point to which d4 — dp can be assigned such that 3°7_, cp ; is minimized.

As mentioned in the previous section, the access offset can have different weights

due to various array sizes. For example, in the following program structure, the cost

FORALL(i; = 0 : 10)

381 X(ll) =Y(21,0)+Y(11 +1,0)+Y(11 +2,0)
FOR(i; = 0 : 10)
S2: X(h) = X(Zl) + Y(Zl + 4,i2) + Y(Zl + 5,7:2) + Y(Zl + 7,i2)
END FOR
END FORALL

of neighboring communication is cy,; + 10 x cy,2 where

¢,

2 —(dx —dy) when (dx —dy)<0

cy) = § 2 when 0<(dx —dy) <2
| (dx—dy)  when 2 < (dx —dy)

' (7T—(dx —dy)) when (dx —dy)<4

Cy,2 = 9 3 when 4 < (dx —dy) <7

((dx —dy) —4) when 7 < (dx —dy)

\

The cost cy is weighted by 10 since a column of remote Y elements are accessed
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in the innerloop s;. Therefore, the problem of finding the optimal d4 — dp in the
presence of weighted cost situation can be formalized as follows: Assume that there
are m distinct references “A «— B@s;” where cp; =< lg;,rpj; > for 1 < j < m.
Each cp; is weighted by w;. The optimal d4 — dp should minimize the value of
YL wj X ¢B,;j

One approach to resolve this alignment problem is to use the MPOA algorithm.
In line (1), let T consist of w; identical copies of tuple < lg j,rp; > for 1 < 7 < m.
Though it may take excessive time if w; is large, the MPOA algorithm guarantees
that Proposition 10 still holds regarding to the weighted cost of neighboring commu-
nication. Therefore, we can assign d4 — dg to be each distinct end point in all access

offset tuples and find the one with the minimal-cost.

4.4 Spanning-Tree Offset Alignment Algorithm

4.4.1 Offset Reference Graph

The problem of offset alignment can be modeled by offset reference graph (ORG).
Given a program structure in which the alignment matrix of each array is pre-
determined, an ORG G = (V,E) is constructed as follows. An array is represented
by a node in V. For an array which has multiple instances referenced in one or more
FORALL assignments, there is only one corresponding node in the ORG. A reference
which is free of reorganization communication is presented by an edge in E. The
edge connects two nodes which represent two arrays specified by the corresponding
reference. There is only one edge connecting the LHS array A and the RHS array B
for all B instances which have the same access matrix and are referenced in the same
statement. A ORG is undirected. Since offset alignment is studied independently
for each aligned-base group, different ORGs are used to model different aligned-base

groups. For simplicity, the examples used in the rest of this chapter only contain a
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single aligned-base group and there is only one ORG for each program structure.

FORALL(i:; =0 : 9)
FOR(i; =0:1)
381- A(ll) =X(z1 +2,22)+A(11 +4)
END FOR

FOR(i =0:9)
S2: A(l]) = A(Z]) + Z(ll + 3,i2) + Z(ll + 5, 12)
END FOR

S3. Y(ll) = A(21 - 3) + A(ll) + A(l] + l) + X(Zl - 2,0)
FOR(i, =0:1)
S4. Y(ll) = Y(l]) + Z(Z] + 2, 1,2) + Z(Z] + 4,i2)

END FOR
END FORALL

Figure 4.7. Example 13: A Livermore benchmark loop

Figure 4.8 shows the ORG for Example 13 (Figure 4.7). In Figure 4.8, each array
variable is represented by a node labeled by the variable name. Edges are constructed
based on the references generated by each FORALL assignment in Example 13. For
example, edge (A, X) connects nodes A and X due to reference “A «— X@s,”. Edge
(A, Z) connects nodes A and Z because of reference “A — Z@s,”. Note that reference
“A « ZQs,” represents the access to all distinct instances of array Z in statement
82. Therefore, there is only one edge incident with A and Z. Since there is one-
to-one correspondence between an array and a node, terms “array” and “node” are
used alternatively in the rest of this chapter. Similarly, since there is one-to-one
correspondence between an edge and a reference, terms “edge” and “reference” are

also used alternatively in the rest of this chapter.
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Figure 4.8. The offset reference graph for Example 13

Consider reference “A « B@s,” with access offset tuple ugi. By Proposi-
tion 4.16, the minimum cost of neighboring communication is zero if up x only contains
one element. The minimum cost of neighboring communication is equal to rg s —Ip & if
up, contains more than one element and g« is the left end point and rp x is the right
end point. However, considering multiple references, there may not exist a solution of
the alignment offsets such that the minimum cost of neighboring communication can
be achieved for every reference. The reason is that the minimum-cost requirement
imposed by one reference may conflict with that imposed by another reference, in
particular, when the two edges representing these two references are involved in a
cycle. For example, Figure 4.8 has a cycle A - X — Y — A. By Equation 4.16,
since ux,; = {2}, the minimum cost for reference “A «— X@s,” is zero if the following

equation is satisfied.

dg—dx =2 (4.17)
Since ux3 = {—2}, the minimum cost for reference “Y «— X@s3” is zero if the
following equation is satisfied.

dy —dx = -2 (4.18)

Since ug3 = {—3,—1,1}, the minimum cost for reference “Y « A@s3” is 4 if the
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following inequality is satisfied.
—3<dy —ds <1 (4.19)
However, subtracting Equation 4.18 from Equation 4.17, we have
da—dy =4

which does not satisfy Inequality 4.19. This implies that the minimum cost of neigh-
boring communication cannot be attained for at least one reference among the above

three.

4.4.2 Spanning Tree Offset Alignment Algorithms

The conflict of minimum-cost requirement can only occur if an ORG consists of cycles.
Intuitively, such conflict can be resolved by a spanning tree: offset alignment between
two arrays is specified by the tree edge connecting these two arrays such that the
minimum cost can be achieved on the reference represented by this tree edge. Each
non-tree edge determines a unique fundamental cycle of the ORG with respect to
the spanning tree. The minimum cost of neighboring communication may not be
achieved for each non-tree edge. Each edge is weighted. Since loop s; in Example 13
is a sequential loop, the cost of neighboring communication for reference “A « Z”
is weighted by 10, the number of elements in a row of two-dimensional array Z.
Consequently, edge (A, Z) is weighted by 10. For simplicity, the weight on edge (A, B)
is denoted as wy p. In Figure 4.8, ws,z = 10, wa x = wy,z = 2,and wxy = way = 1.
Given a choice between two edges, the tree edge would be chosen as the one with
higher weight. As a result, the spanning tree for offset alignment would be chosen as

a maximum-weight spanning tree (MWST).
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Similar to the analysis in section 3.4 for the MICS algorithm, the MWST algo-
rithm may not generate offset alignment which offers the minimum overall cost of
neighboring communication regarding to all references in a program structure. For
Example 13, the maximum-weight spanning tree is shown in Figure 4.9(a). Alignment
offsets are selected such that d4 —dz = 3, dy —dz =2, and d4 — dx = 2. Thus, the
minimum cost requirements of neighboring communication imposed by edges (4, Z),
(Y, Z), and (A, X) are satisfied, respectively. Without loss of generality, let d4 = 0.
We have dz = -3, dy = 2, and dx = —2. Therefore, by Proposition 7, the overall
cost of neighboring communication is 42 regarding to all five references in Example
13. However, the spanning tree alignment in Figure 4.9(b) generates lower overall
cost of neighboring communication. In Figure 4.9(b), alignment offsets are selected
such that dqy —dz = 3,dy —da = 0, and d4 — dx = 2. Thus, the minimum cost
requirements of neighboring communication imposed by edges (A, Z), (Y, A), and
(A, X) are satisfied, respectively. Without loss of generality, let d4 = 0. We have
dz = =3, dy = 0, and dx = —2. Therefore, by Proposition 7, the overall cost of

neighboring communication is only 40.

A (A
2 \ 2 \
| ; . )
N A N
Y (y)
(a) Maximum-weight spanning tree (b) Minimum-—cost spanning tree

Figure 4.9. The offset reference graph for Example 13

In this section, we propose an efficient spanning-tree offset alignment (STOA)
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algorithm which is an improvement of the MWST algorithm. Given an ORG G =
(V,E), the STOA algorithm can be formalized in Figure 4.10.

(1) Choose an arbitrary array variable A
Let T = {A}
(2) while T #V do
(3) Let Q; be the set of single-degree neighbors of T
(4) if Q1 # ¢ then

(5) Find a node B in Q; such that there exists an edge (B, H)
where H € T and wp,y = min{Xte,YGT} wxy

(6) Let dgp — dy = Iy where edge (B, H) represents reference
“B «— HQs;” and Iy is the left end point in ug

(7 T=TuU{B}

(8) else

9) Let Q=V-T

(10) for each node X in Q; do

(11) Let wy = Z{YGT} wxy

(12) end for

(13) Find a node B in Q) such that wp = max;xeQ,) WX

(14) Use Proposition 10 to determine the value of dg which achieves

MIN{dp—d,} 2{(B.H)€E,H€T, and (H,B) represents “H—B@s"} CB.j
(15) T=TuU{B}
(16) end if
(17) end while

Figure 4.10. The spanning-tree offset alignment algorithm

In Figure 4.10, the single-degree neighbor and the multi-degree neighbor is defined
as in section 3.4. If Q; is not empty, like the MWST algorithm, the tree edge is
selected as an edge with the largest weight among all the edges which are incident
with one node in Q; and another node in T (lines (4)-(7)). If Q; is empty but Q3 is
not, we find the next tree edge as follows. First, wx, the sum of the weight over all

edges connecting X and another node in T, is computed for each node X in Qy (lines
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(10)-(12)). Then the node B in Q; with the maximum sum of the weight is selected
to be the next tree node (line (15)). The value of alignment offset dp is determined
by using Proposition 10. By this construction, the STOA algorithm is superior to the
MWST algorithm.

A A, LA
2 10 2 | 10 2 10
: |
(Z) X 1| (z) (x 1 )

7

(X 1

1 2 I ! 2 1 2

1y y) Y
(a) (b) (c)

Figure 4.11. Resolving offset alignment for Example 13

Figure 4.11 shows how the STOA algorithm works to resolve offset alignment for
Example 13. In Figure 4.11, array A is selected as the template (line(1)). Note
that the selection is arbitrary. The values of other alignment offsets will be in the
form of ~ da + k where k can be any integer. T = {A}. The first phase is shown
in Figure 4.11(a). Since all X, Y, and Z are single-degree neighbors of T, Q; =
{X,Y,Z}. Since it has the maximum weight among edges (A,Y) and (A, Z), edge
(A, Z) is selected as the tree edge (line (5)). Since edge (A, Z) represents reference
“A « ZQs,” where uzz; = {3,5}, da — dz = 3 (line (6)). Note that line (6) only
shows one case. In another case, edge (B, H) may represent reference “H « BQs,”.
As a result, dg should be determined as dy — dg = lg .

The second phase is shown in Figure 4.11(b). In the second phase, T = {A, Z}.
Therefore, node X becomes the only single-degree neighbor of T. Similar to the first

phase, we have dy — dx = 2.
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The last phase is shown in Figure 4.11(c). In the last phase, T = {A, X, Z}. Node
Y is multi-degree neighbor of T. The cost functions for references “Y «— X@s3”,
“Y « AQsj3”, and “Y « ZQ@s4” can be represented by piecewise linear functions
cx3 =< =2 >, ca3 =< —-3,1 >, and cz4 =< 2,4 >, respectively. Note that
cx3 =< —2 > is a function of dy — dx. Since dx = d4 — 2 (step (b)), cx,3 can be
rewritten as < 0 > with respect to dy — d4. cz4 =< 2,4 > is a function of dy — dz.
Since d4 — dz = 3 (step (a)), cz4 can be rewritten as < —1,1 > with respect to
dy — d4. Therefore, using Proposition 10, we conclude that the minimal value of the
sum cz4 + ca3 + cx,3 can be achieved when dy — d4 = 0 (lines (14)). The values of

T, Q1, and Qg in each phase are illustrated in Table 4.1.

Table 4.1. Values of T, Q1, and Q3 in executing the MICS algorithm for Example 13

phases | T Q Qy | offst alignment
(a) {A} {X,Y,Z} | ¢ da—dz =3
b)) _[{AXT 121 (V) [dx=ds2
(c) {A, X,Y} | ¢ {Y}|dy —da=0

In the STOA algorithm, each edge in the ORG G is referenced only once. If the
heap-sort algorithm [79] is used in lines (5) and (13), the time complexity of finding
the maximum-weight edge can be reduced to O(log|E|) where |E| is the number of
edges in DRG G = (V,E). As a result, the time complexity of the STOA algorithm
is O(|E|log|E]).
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4.5 Optimizing RHS Expression Evaluation

4.5.1 RHS Expression Evaluation Optimization

Similar to the base alignment analysis, neighboring communication can be minimized
by an optimal evaluation tree in which an intermediate result may be evaluated on
a remote processor instead of the local processor which owns the LHS operand. The
limitation of the owner-computes rule can be exceeded by executing different parts
of a FORALL assignment in distinct processors. We assume the original program has
already been pre-processed by transforming each original FORALL assignment into an
equivalent set of FORALL assignments, each of which has the RHS expression operated

by one kind of associate and commutative operations.

FORALL(i; = 0 : 9)

S1- A(Z]) = B(Zl)*X(ll)*Y(Zl)
END FORALL

Figure 4.12. Example 14: A Livermore Kernel 7 loop

Consider Example 14 in Figure 4.12. In Example 14, offset alignment are pre-
determined such that d4 = dgp = dx = dy. By Equation 4.16, the cost of neighboring
communication for all references in statement s, is 0. Therefore, statement s; is free
of neighboring communication. However, such an offset alignment decision makes ev-
ery reference in statement s; not free of neighboring communication. Consider how to
minimize the cost of neighboring communication in statement s;. Since the interme-
diate result can be generated by a remote processor rather than the one which onws

the LHS operand, the key issue is to find what operands should be operated together
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statement S, statement s

2

Figure 4.13. The optimal evaluation trees for Example 14

on what processor? Figure 4.13 shows an optimal evaluation tree for statement s;. In
Figure 4.13, each reference is represented by an arc. The cost of neighboring commu-
nication required for each reference is represented by the weight on the corresponding
arc. X (23 + 3) and Y (¢; + 4) are first added and the result is saved to a temporary
variable TT1(z; + 3) at the remote processor which owns X(z; + 3). drm = dx.
The cost of neighboring communication for reference “T'T1 « Y” is 1. TT1(z; + 3)
and A(7; + 1) are then added and the result is saved to another temporary variable
TT2(i, + 1) at the remote processor which owns A(%; + 1). drr2 = da. The cost of
neighboring communication for reference “T'T2 «— TT1” is 2. Finally, TT2(, + 1) is
assigned to B(z;). The cost of neighboring communication for reference “B « TT2”

is 1. Therefore, the optimal evaluation for Example 14 can be written as follows:

FORALL(i, = 0: 9)
81. A(Zl) = B(Z])*X(Z])*Y(ll)
82.2¢ TT2(11 + 1) = TTl(ll + 3) + A(Z] + 1)
82.3: B(l]) = TT2(21 + 1)

END FORALL
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4.5.2 Post-Alignment Optimization

The study of Example 14 reveals two important phases in determining the optimal
expression evaluation with regard to multiple FORALL assignments. One phase is the
offset alignment phase. By Proposition 6, no cost of neighboring communication is
involved in a RHS expression evaluation if an appropriate offset alignment is used. For
example, in Example 14, assignment s; is free of neighboring communication when
ds = dgp = dx = dy. However, for multiple assignments, neighboring communication
may not be fully avoided no matter how good offset alignment is. Therefore, the other
phase is to minimize the cost of neighboring communication in each statement after
alignment offset for each array is determined. This phase is known as post-alignment
optimization. In Example 14, the post-alignment optimization for assignment s; is
shown in Figure 4.13. These two phases are not isolated. By the definition, the
post-alignment optimization is carried out after the offset alignment analysis is done.
On the other hand, however, the decision of offset alignment depends on the accurate
cost estimation provided by post-alignment optimization techniques. We study the

post-alignment optimization technique as follows.

Proposition 11 Assume that in a FORALL assignment, the RHS ezpression is oper-
ated by one kind of associate and commutative operations. Ao(t1 + ro) is referenced
on the LHS. All instances referenced on the RHS are Ay(i11+11), A2(31+72), ..., and
An(i1 + rm). Assume that da,, da,, da,, ..., and d4,, are pre-determined. Assume
that the sequence of ro+da,,r1+da,,r2+da,,...,"m +da,, isin monotonous (either
increase or decrease) order. Therefore, the optimal evaluation of the assignment is

as follows:

1. Begin with Ap(t1+71y). Operate Ap(i1+7m) with Am—1(21+7m-1) and save the
intermediate result in the temporary variable TT,,_1(i1 + rm-1) at the processor

which owns Ap_1(t1 + rm-1).
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2. Operate TTj(i1+ ;) with Aj_1(¢1 +1;-1) and save the intermediate result in the
temporary variable TT;_,(i, +rj_1) at the processor which owns Aj_1(i1+7j-1)

for2<j<m-1.
3. Assign TT\(iy + 1) to Ao(i1 + 70).

It is easy to prove that Proposition 11 is true. Consider the cost of neighboring
communication involved in reading A,.(i1 + rm). Since (rm + da,,) — (7o + da,) >
ri +da, — (ro + dy,) for (1 < j < m —1), the distance between A (i; + ) and the
LHS operand is the longest among that between any other RHS operand and the LHS
operand. Therefore, we hope that A,,(z; + ) can be operated with another operand
which is closer to the LHS operand. On the other hand, the cost of moving A, (z; +
rm) to such an operand should be as small as possible. Since the closest operand
to Am(i1 + Tm) is Am—1(t1 + *m-1), Am-1(¢1 + rm—1) becomes the best candidate.
Repeating the similar approach, the optimism in Proposition 11 can be proved.

In Proposition 11, the symbols Aq, A;, Az, ..., and A,, are not required to be
pairwise distinct. Proposition 11 still holds if an arbitrary subset of them represents

the same array. For example, in the following FORALL assignment, assume dyx = dy =

0.
FORALL(:; = 0:9)
81 X(u)=YuH-3)+Y(@ -)+Y(@E +1)+ X(i —2) + X(21 +2)
+X (i1 +6)
END FORALL

Figure 4.14 shows the result of the post-alignment optimization for the above
FORALL assignment. In Figure 4.14, each reference is represented by an arc. The

cost of neighboring communication required for each reference is represented by the
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weight on the corresponding arc. Note that the sequence of instances with respect to
the monotonous order of access offset is {Y (23 —3), X(¢41 —2),Y (21— 1), X(41), Y (21 +
1), X (21 +2), X (21 + 6)}. Since the LHS instance X(¢;) resides in the middle, the se-
quence is separated into two subsequences: {Y (:;—3), X (41 —2),Y (:1—1), X(¢1)} and
{X(21),Y(i1+1), X (51 +2), X (i1 +6)}. Proposition 11 works on each of subsequences
as shown in Figure 4.14. Note that the unit cost of neighboring communication must
have the same weight with regard to all arrays referenced in the same FORALL as-
signment. Therefore, Proposition 11 holds with the consideration of the weighted

cost.

1 - X(y )\.._\1
TT2(i, -1 TT3(, +1)
1 ,.// \‘\ 0 o/l \\\l
7 S/ AN
TT1(, -2) Y(i, -1) Y(i +1) TT4(i+2)

v

1.7 %o 07 ™4

\\ - \\

Y( il -3) X(il =2) X( il+2) X( il +6)

Figure 4.14. An example of post-alignment optimization

4.5.3 Alignment Graph

Like base alignment, alignment graph (AG) is used to model the offset alignment
problem. An AG is a collection of arrays and statements which can be represented
as a bipartite graph, G = (V,,V,,E). An array is represented by a node in V,. A
statement is represented by a node in V,. A undirected edge in E connects an array
A and a statement sy if A is the LHS array. A undirected edge in E connects an array

B and a statement s; if DgFpx = DsF4x where A is referenced on the LHS and B
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is referenced on the RHS in statement s,. There is only one edge connecting the LHS
array A and the RHS array B for all B instances which have the same access matrix
and are referenced in the same statement. Figure 4.15 shows the AG for Example 13

(Figure 4.7).

(Y:!

Figure 4.15. The AG for Example 13

4.5.4 AG-Based Offset Alignment Algorithm

The AG-based offset alignment (AGOA) algorithm is shown in Figure 4.16. In an
AG G = (V,,V,, E), there is a set, denoted as Qi, associated with each node s in V,.
Initially, each set Qi is empty. During the execution, each Q; will contain elements
in access offset tuple for each array which is referenced in statement s, and whose
alignment offset has been determined.

In Figure 4.16, g, 4 represents an element in the access offset tuple ussr =
{91,4k,91,4ks---+9n,4%} (lines (5) and (15)). The first array selected in line (1),
say A, serves as the template. The value of other alignment offset is in the form of
h da + k where k is any integer. Set T contains all choices of b ds + k for every

other array to select as alignment offset. Given an array B, dp is chosen among all
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elements in T such that the sum of the cost of neighboring communication over each
FORALL assignment where B is referenced can be minimized (line (13)). The cost of
neighboring communication in executing each FORALL assignment is estimated using
Proposition 11. If the heapsort algorithm [79] is used in finding the minimum value,

the time complexity in line (13) is

O(log D_ |upxl)

(B,sx)€E
(1) for each node B in V, do
(2) T=¢
(3) for each neighboring node si (in V,) of B do
(5) for each element ¢; g x in upx do
(6) for each element ¢ in Q; do
(M if ¢— g¢Bx is not in T then
(8) T=TU{q— 954}
(9) end if
(10) end for

(11) end for

(12) end for

(13) Assign dp to be the element in T such that the sum of the
cost of neighboring communication over each FORALL assignment
where B is referenced is the minimum

(14) for each neighboring node s (in V,) of B do

(15) for each ge¢,B .k in UB,k do

(16) if dg + g¢,Bk is not in Q, then
(17) Qx = Qx U {dB + 9¢,B.k}

(18) end if

(19) end for
(20) end for
(21) end for

Figure 4.16. The alignment graph offset alignment algorithm
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where |up k| is the number of distinct elements in up . Thus, the time complexity of

the AGOA algorithm is
O( Y lubkllog Y- lupxl)

(B,sx) (B,sx)

Table 4.2. Resolving offset alignment for Example 13 by using the AGOA algorithm

VA Y X
Q {da,ds + 4} {da,da + 4} {da,da + 4}
Q: | {da} {da,da +2} {da,da+2}
Qs {da—3,da,da+1} | {da —3,da,da + 1} | {da —3,d4a,ds + 1}
Q4 {} {da—1,ds +1} {da—1,da +1}
result | dz =d4 — 3 dy =da+1 dy =da+2

Table 4.2 illustrates how offset alignment in Example 13 is resolved by using
the AGOA algorithm (Figure 4.16). The algorithm begins with A since A has the
maximum degree of connectivity. Thus, A serves as the template. Arrays Z, Y, and
X are chosen in sequential (line (1)). Table 4.2 shows the content of Q;, Q;, Q3, and
Q4 at the end of each iteration in the outmost for loop, where each of arrays A, Z,
Y, and X is selected. When A is first select, sets Q;, Q2, Q3, and Qg are all empty.
Therefore, no operation is done in line (13). Since A is referenced in statements s,
82, and 83, Q; = {da,ds + 4}, Q2 = {da}, and Q3 = {d4 — 3,d4,ds + 1} by lines
(14)-(20).

Next, Z is selected. Since Z is referenced in statement s; and uz2 =< +3,+5 >,
T = {da — 3,ds — 5}. Note that though Z is referenced in statement s4, Q4 is still
empty. Therefore, Q4 makes no contribution to T. By Proposition 11 (line (13)),
either d4 — 3 or d4 — 5 can be the value of dz. Thus, we choose dz = d4 — 3.
Executing lines (14)-(20), Q2 = {da,ds + 2} and Q4 = {d4 — 1,d4 + 1} since Z is

referenced in both statements s, and sy.
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Next, Y is selected. Since Y is referenced in statements s3 and sy, for executing
lines (2)-(12), T = {da —3,da — 1,ds,d4 + 1}. Consider ca 3, the cost of neighboring
communication in accessing the RHS elements A(z; — 3), A(z1), and A(é; + 1) in
statement s3. By Proposition 11 (line (13)), ca3 = 4 if dy is chosen as any element
in T. Consider cz3, the cost of neighboring communication in accessing the RHS
elements Z(¢; + 2) and Z(z; + 4) in statement s4. By Proposition 11 (line (13)),
cys = 8 if dy is selected as d4 — 3. cyq = 4 if dy is selected as either d4 — 1, or dg4,
or dg + 1. Thus, we choose dy = d4 + 1. Executing lines (14)-(20), Q3 and Qg are
not changed.

Last, X is selected. Since X is referenced in statements s; and s3, by executing
lines (2)-(12), T = {da—2,ds—1,da+2,d4+3}. Consider cx,, the cost of neighboring
communication in accessing the RHS elements X (z; + 2) in statement s;. No extra
cost of neighboring communication is paid if dx is chosen as either d4 — 2 or d4 + 2.
If dx = dy — 2, elements A(7;) and X(z; + 2) are owned by the same processor. If
dx = da + 2, elements A(z; +4) and X(z; + 2) are owned by the same processor and
the RHS expression can be evaluated on the processor which owns A(z;+4). Consider
cx,3, the cost of neighboring communication in accessing the RHS elements X (z; — 2)
in statement s3. Similarly, no extra cost of neighboring communication is paid if dx

is chosen as either d4 — 1 or d4 + 2. Therefore, d4 + 2 is the only solution of dx (line

(13)).

4.5.5 Performance Comparison

Table 4.3 shows the comparison of the overall cost of neighboring communication
generated by the MWST, STOA, and AGOA algorithms using Example 13. The
AGOA algorithm outperforms the other two algorithms. In the AGOA algorithm,
each element in access offset tuple is taken count into in performing the best post-

alignment optimization. For example, when dx is chosen as d4 + 2, in statement



129

Table 4.3. Comparison of the MWST, STOA, and AGOA algorithms using Example
13

Algorithms Overall cost of
neighboring communication
MWST 42
STOA 40
AGOA 36

s3 elements X (i; — 2,0) and A(:;) are owned by the same processor. However, this
information is not utilized by the STOA algorithm since the STOA algorithm only

considers the two end points in u4 3 =< —3,0,1 > and ignores the middle element 0.

4.6 Avoiding Redundant Communication

When the same context of remote elements are referenced in more than one FORALL
assignment, the local processor should receive a single copy of these elements instead
of multiple identical copies. The importance of such redundant communication avoid-
ance has been shown in Section 3.6 regarding to the base alignment analysis. In this
section, we concentrate on issues of avoiding redundant communication regarding to

the offset alignment analysis.

4.6.1 Redundant Communication

In Example 15 (Figure 4.17), array A is two-dimensional and other arrays are one-
dimensional. A is partitioned in columns such that all elements in the same column are
collapsed to the same processor. Only the outmost loop indexed by ¢ is distributed
across the processors. Assume that offset alignment is pre-determined such that
ds = dp = dz = 0. Since dg = dz, the LHS element Z(7,) in statement s3 and the

LHS element B(z;) in statement s4 are located to the same local processor. Therefore,
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the two copies of A(z;+3,0) referenced in both statements are identical. The messages
transmitting remote element A(z;+3,0) in statement s3 and s4 are redundant. Assume
that processor P(i) owns elements A(m; : m;3; — 1,0). The remote A elements
referenced by P(7) in executing statement s3 and s4 are A(mi41 : mi4+1+2,0). Consider
statement s;. Since d4 = dp, the remote A elements referenced by P(t) in executing
statement s; are A(m,41 : m;41+4,0). Therefore, the messages transmitting remote A
elementsin statements s3 and s4 are further redundant with the messages transmitting
remote A elements in statements s;. Combining the remote A elements referenced
by local processor P(:) in executing statements sz, s3, and sy, we conclude that
A(mi41 : miy1 + 4,0) are only remote A elements required to be transmitted from

the remote processor to the local processor.

FORALL(:; =0:9)
81. A(ZI,O) = X(ll)
Sa: B(ll) = A(Zl + 4, 0) + A(Z] + 5,0)
83 Z(Zl) = A(Zl + 3,0) * B(Z])
S4: B(ll) = X(Z]) + A(Zl + 3,0)
FORALL(:2=0:9)
S5. A(il,ig) = A(il, ig - 1) + '1:2
END FORALL
FOR(ZQ =0: 1)
S6- B(l]) = B(zl) + A(Zl + I,ig)
END FOR
END FORALL
Figure 4.17. Example 15: A Dhrystone benchmark loop

As addressed in section 3.6, the identification of redundant neighboring commu-
nication depends on both location and the context. The location requires that the

senders of redundant communication must be the same, so do the receivers. The
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context requirement implies that the context of the redundant remote elements must
be the same. As introduced in Section 3.6, the concept of single assignment block can
be used to identify the distinct contexts with regard to a particular array variable. In
Example 15, there are two single assignment blocks with regard to A: {sy, s2, 53,34}
and {ss,s6}. Therefore, the message transmission of A(m;41,0) in executing state-
ment se is not redundant with the message transmission of A(mi41 : miy1 +4,0) in
executing statements sz, s3, and s4 because the context of array A is re-defined in
statement ss.

More accurately, redundant neighboring communication can be classified into two
types: fully redundant messages and partially redundant messages. In respect to fully
redundant messages, the messages carrying remote elements for executing two distinct
FORALL assignments are identical, such as the messages transmitted in executing
statements s3 and s4 (Example 15). Only one copy of the fully redundant messages
needs to be transmitted and the cost of neighboring communication is equal to the
size of the single message. In respect to partially redundant messages, the messages
carrying remote elements for executing two distinct FORALL assignments overlap in a
subset of common elements. However, the two messages are not identical, such as the
messages transmitted in executing statements s; and s3 (Example 15). In this case,
the redundant elements should be only transmitted once. In Example 15, the result
of combining remote A elements accessed in executing statements s, and s3 can be
treated as if instances A(z;+3,0), A(z;+4,0), and A(z,+5,0) are accessed in the same
statement and thus the access offset tuple becomes < 3,4,5 >. The understanding of
avoiding partially redundant messages is important in correctly estimating the cost

of necessary neighboring communication.



132

4.6.2 Enhanced Alignment Graph

As addressed in Section 4.6, the enhanced alignment graph (EAG) is used to identify
single assignment block. The definition of an enhanced alignment graph (EAG) G =
(Va, Vs, E, A,) is similar to that of an alignment graph G = (V,,V,, E) except that an
EAG has an extra arc set A,. The definition of V,, V,, and E can be found in Section
4.5. There is an arc in A, from node s, to node s; if an array defined in statement s,
is used in statement s;. A distinct EAG is used for the offset alignment analysis in
each aligned-base group. Figure 4.18 shows the EAG for Example 15 (Figure 4.17).

In Figure 4.18, edges are weighted 1 if their weights are not labeled.
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Figure 4.18. Enhanced alignment graph for Example 15

4.6.3 EAG-Based Offset Alignment Algorithm

The EAG-based offset alignment (EAGOA) algorithm is shown in Figure 4.19. The
EAGOA algorithm is an invariant of AGOA algorithm introduced in Section 4.5. Like

the AGOA algorithm, in Figure 4.19, set Q; is associated with each node s; in V,.
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Initially, each set Qi is empty. During the execution, each Qi will contain elements
in access offset tuple for each array which alignment offset has been determined and
is referenced in statement sx. g 4k represents an element in the access offset tuple
uakr = {91.4%:91,4k>---,9n.Ak} (lines (5) and (15)). The first array selected in line
(1), say A, serves as the template. The values of other alignment offsets are in the

form of ~ d 4 + k where k is any integer.

(1) for each node B in V, do

20 T=¢

(3) for each neighboring node s (in V,) of B do
(5) for each element g, in upx do

(6) for each element ¢ in Qx do

(7) if ¢ — g¢,Bx is not in T then

(8) T=TU{q- g8}

(9) end if

(10) end for

(11) end for

(12) end for

(13) Assign dp to be the element in T such that the sum of the
cost of neighboring communication over each single assignment
block with respect to B is the minimum

(14) for each neighboring node s (in V,) of B do

(15) for each ge¢,B .k in UpB k do

(16) if dg + ge,B k 1s not in Q: then
(17) Qi = Qe U {dp + ge,B.x}

(18) end if

(19) end for
(20) end for
(21) end for

Figure 4.19. The enhanced alignment graph offset alignment algorithm

The major difference between the EAGOA and AGOA algorithms is how to es-
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timate the sum of the cost of neighboring communication (line (13)). In the AGOA
algorithm, the sum of the cost is estimated based on each FORALL assignment where
a particular array is referenced. However, in the EAGOA algorithm, the sum of the
cost is estimated based on each single assignment block with respect to that par-
ticular array. Therefore, the EAGOA algorithm prevents the selection of alignment
offset from the adverse impact of redundant neighboring communication. This feature
makes the EAGOA algorithm superior to the AGOA algorithm. Example 15 can be
used to illustrate the idea.

In Figure 4.18, A has the maximum connectivity degree. Therefore, A is selected
first. Executing lines (14)-(20) in the EAGOA algorithm, we have Q; = {d4}, Q2 =
{da+4,da+5},Q3 = {da+3}, Qs = {da+3}, Qs = {da}, and Qg = {da+1}. Assume
that B is selected next. Since B is referenced in statements sz, s3, 4, and sg, T is only
constructed based on Q;, Q3, Q4, and Q¢. By lines (3)-(12), we have T = {da+1,ds+
3,da+4,ds+5}. Statements s;, s3, and s4 comprise the single assignment statement
with regard to arrays A, X, and Z. When redundant neighboring communication is
removed, the sum of the cost of neighboring communication in statements s;, s3, and
ss can be modeled by the piecewise linear function < 3,5 > with respect to dg — d4.
On the other hand, the cost of neighboring communication generated by statement
s¢ is modeled by piecewise linear function < 1 > with respect to dg — d4. Since
statement sg is not in the same single assignment block in which statements s,, s3,
and s4 are (regarding to array A), the sum of the cost in line (13) is equal to < 3,5 >
+ <1 >+ < 1>. Note that the cost of neighboring communication is weighted
by 2 for statement s¢. Therefore, the minimal valueof < 3,5 > + <1 >4+ <1 >
can be achieved when dg = d4 + 1. In contrast, if the AGOA algorithm is used, the
sum of the cost of neighboring communication is estimated based on each FORALL
assignment. In other words, the cost sum would be cg; + ¢ 3 + cg 4 + cBe, Where

cp2 =< 4,5 >, cp3 =<3 >,cpq4 =<3 >, and cgg =< 1 > + < 1 > regarding



135

to dg — d4. This wrong cost estimation leads to the solution dg = d4 + 3 which
minimizes the valueof < 4,5 >4+ <3>+<3I>+<1>+<1>.

The extra time complexity in the EAGOA algorithm is spent in identifying single
assignment blocks for each array variable. Using the dataflow analysis technique
proposed in [64], the extra time complexity is O(|V,||V,|). Thus, the overall time
complexity is

O(IVallVsl + 3 lupkllog 37 |upkl)
(B,sk) (B,sx)



CHAPTER 5

Data Distribution

The task of data distribution is to determine the mapping of the template elements
onto the processors. Data elements are assigned to the processor to which the mapped
template element is assigned. The goal of data distribution is to both reduce neighbor-
ing communication and increase processor workload balance. In this chapter, segment
distribution is introduced as the best distribution pattern for data distribution within
a single dimension. An optimal processor allocation algorithm is proposed to further
minimize the overall cost of neighboring communication across multiple dimensions

of the template array.

5.1 Segment Distribution

In this section, we study data distribution with regard to a single dimension in the
template array. The issues involved in data distribution across multiple dimensions

in the template array will be addressed in the next section.

5.1.1 The Limitation of Existing Distribution Types

We illustrate the limitation of existing distribution types by using Example 16 (Fig-

ure 5.1).

136
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FORALL(;; =0:n—14 =12 :n—2)
81 B(i],i2+1)=B(n—1+i1—ig,ig)**Q
END FORALL

Figure 5.1. Example 16: An Electromagnetic benchmark loop

In Example 16, array B is distributed in columns. In other words, the distribution
function ép is defined as follows:

by
t=65( )=bz

by

where T'(t) is a template element and B(b;,b;) is a B element. By Proposition 1,
assignment s, is free of reorganization communication. However, neighboring com-
munication cannot be avoided. By Proposition 5, the basic cost of neighboring com-
munication generated by assignment s, is 1. An effective element is a data element
that is used or defined in assignment s;. Limited by the loop boundary, the effective
elements form the upper triangle in the two-dimensional data space. Thus, density

function wg can be defined as follows:

wp(t) =t where T'(¢) is a template element

Figure 5.2 shows three different types of data distribution for Example 16: cyclic
distribution, block distribution, and segment distribution. In Figure 5.2, array B is
declared as 11 x 11. Template T is one-dimensional array with 11 elements. There
are three processors available, denoted as P(0), P(1), and P(2). Figure 5.2 shows
the distribution patterns of both the template elements and the effective elements in

array B.
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Since the RHS computation is uniform among all the LHS elements, workload on
a processor is proportional to the number of the LHS elements that the processor
owns. For simplicity, ¢p(;), the workload on processor P(:), is represented by the
number of the LHS elements that processor P(z) owns. The quality of processor
workload balance imposed by a particular distribution pattern can be evaluated by

the variance of workload,

. Srgéaj)éz{ 1€oii) — Lo}

The cost of neighboring communication generated on processor P(:) is denoted as
cp(i)- The value of cp(;) is determined by the number of remote elements that pro-
cessor P(%) accesses in executing assignment s;. Since the basic cost of neighboring
communication in Example 16 is 1, each processor will access one solid line owned
by a remote processor. However, since the length of solid lines are varied, the value
of cp(i) for different processor P(:) is different. Therefore, the cost of neighboring
communication is measured by

max{cp }

Figure 5.2(a) shows cyclic distribution in which the template elements are dis-
tributed to three processors in the round-robin fashion. Though it attains a good
processor workload balance (|¢p(1) — €p(2)| = 8), cyclic distribution generates an ex-
tremely high cost of neighboring communication (cpo) = 22). Figure 5.2(b) shows
block distribution in which the template elements are distributed to three proces-
sors in the block fashion. The number of template elements each processor owns is
equal. Though it attains a low cost of neighboring communication (cp) = 8), the
poor quality of processor workload balance (|¢p(3) — £p1)| = 20) is hard to accept.
A new distribution pattern, segment distribution, is employed in Figure 5.2(c). In
segment distribution, the template elements are consecutively assigned to the proces-

SOrs. Howéver, the number of template elements owned by different processors can be
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varied. In Figure 5.2(c), the number of template elements owned by each processor
is niced arranged such that processor workload is balanced (|€p(2) — £p(1)| = 3) and
the cost of neighboring communication is small (cpnq) = 9).

The study of Example 16 reveals two important facts. First, as shown in Fig-
ure 5.2(a), with cyclic distribution, a remote element is read for writing each local
element in Example 1. This implies that the cost of neighboring communication
generated by an inappropriate distribution pattern can be as much as the cost of re-
organization communication generated by mismatched alignment bases. Second, the
impact of neighboring communication can be significantly reduced by consecutively
assigning template elements to processors. As shown in Figure 5.2(b) and (c), tem-
plate elements are consecutively assigned to processors in both block distribution and
segment distribution. As a result, the cost of neighboring communication is small,
cp) = 8 in Figure 5.2(b) and cpy) = 9 in Figure 5.2(c). The relative difference
of the cost of neighboring communication between block distribution and segment

ditribution will be smaller when the size of arrays increases.

5.1.2 Segment Distribution

As discussed in the previous section, in segment distribution, template elements are
consecutively assigned to processors in order to minimize the impact of neighboring
communication. The length of the segment assigned to each processor may be var-
ied. This feature gives segment distribution a big flexibility to exploit the maximum
processor workload balance.

In data parallel programs, data elements are typically written by the processor
which owns them. As a result, the workload assigned to a processor is determined by
the LHS elements owned by that processor. Therefore, the distribution strategy for
the LHS array elements on each assignment statement determines processor workload

balance.
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Given total ¢ processors, template array T'(0 : n — 1) is partitioned into ¢ pieces
such that each piece T'(m; : m;4; — 1) is owned by processor P(z) where 0 < i < ¢—1,
mo = 0, and my_; = n. Our goal is to find the value of those break points m;
(0 <7 < ¢g—1) such that the workload imposed by elements in each segment can be

equal. This can be formalized as follows:

my—1 ma—1 mg—1—1

Y owat)= Y walt)=...= 3 walt) (5.1)

t=mo Jj=m Jj=mgq_2

where A serves as the LHS array in a FORALL assignment and w4(t) is the density
function of A.

In Equation 5.1, the density w4(t) only shows the number of LHS A elements
mapped to the template element T'(¢). Strictly speaking, the number of the LHS
elements may not be proportional to the workload imposed by the LHS elements.
For example, in the Linpack TQL2 loop (Figure 5.3), array Z is referenced on the
LHS. Since Z is the one-dimensional array, there is only one Z element mapped to
each template element. However, based on the inner loop indexed by :,, the workload
imposed by different Z elements is obviously different: total nn inner loop iterations
are executed for element Z(1), while only one inner loop iteration is executed for

element Z(nn).

FORALL(z; =2 : nn)

381. Z(l1)=Z(11+1)
DO (12 = il,nn)
S2: Z(ZI)IZ(21)+S*(H(Zl,22)+F*H(Zl —l,iz))
END DO
END FORALL

Figure 5.3. Linpack TQL2 benchmark loop
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In order to precisely model the workload, we modify the definition of density

function w4 as follows:

wa(t)= Y mala)

§a(a)=t
where T'(t) is a template element, A(a) is a data element, and m4(a) represents the
computation estimate to define the LHS element A(a). The computation can be
estimated based on the number of integer or floating-point operations required by the

RHS expression evaluation. For instance, in assignment s; of Example 16,

nz(z) = (nn — 2 + 1)(2t. + 2t4 + 2t; + t,)

where t, represents a floating-point multiplication, t; represents a floating-point ad-
dition, t,, represents a memory load operation, and ¢, represents a memory store
operation. The amount of computation can be further normalized by converting
various operations to the equivalent number of clock cycles.

In most scientific applications, the density function of a LHS array is typically a
constant of an affine function with a single variable. Figure 5.4 shows a few common
loop patterns extracted from scientific application programs. In Figure 5.4, A is a
two-dimensional array and B is a one-dimensional array. The template array is one-
dimensional and A is distributed in columns. In Figure 5.4(d), (e), (f), and (h), the
inner loop is sequential. In Figure 5.4(a), wa(t) = ¢ for element T'(¢). In Figure 5.4(b),
wa(t) = n—1—t for element T'(t). In Figure 5.4(c), wa = min{t,n—1—1t} for element
T(t). In Figure 5.4(d), wp(t) =t for element 7'(¢). In Figure 5.4(e), wp(t) =n—1—t
for element T'(¢t). In Figure 5.4(f), wp = min{t,n — 1 — t} for element T'(¢t). In
Figure 5.4(g), wp(t) = 1 for element T'(t). In Figure 5.4(h), wg(t) = n for element
T(t). In Figure 5.4(i), wa(t) = n for element T'(¢).

For this reason, in this thesis we assume that wy = aj + b for each template

element 7T'(j). Here, both a and b are fixed integers. Suppose there are total q
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processors. Template elements T'(0 : n — 1) are partitioned into ¢ segments such that
each segment T(m; : m;y; — 1) is owned by processor P(i) where 0 < : < ¢ — 1,

mo = 0, and my_, = n. Break points m; (0 < ¢ < ¢ — 1) are optimized such that the

workload imposed by each segment isequal. In other words,

ml—l

S aj+b= > aj+b=...

Jj=mo

FORALL(z,=0:n-1)
FORALL(i;=0:,)
A(il, 22) = ...
END FORALL
END FORALL

(a)

FORALL(¢;=0:n-1)
FOR(#2=0:7;)
B(Zl) = e
END FOR
END FORALL

(d)

FORALL(?;=0:n-1)
B(Z]) = ...
END FORALL
(8)

m;—l

j=m

FORALL(z;=0:n-1)
FORALL(i,=4;:n-2)
A(i],iz) = ...
END FORALL
END FORALL

(b)

FORALL(¢,=0:n-1)
FOR(i;=%;:n-2)
B(Zl) = e
END FOR
END FORALL

()

FORALL(?,=0:n-1)
FOR(i2=0:n-2)
END FOR

END FORALL

(h)

mq_.l—l

> aj+b

J=mgq_2

FORALL(i;=0:n-1)
FORALL(thZl :n-l-il)
A(ir,iz) = ...
END FORALL
END FORALL

(c)

FORALL(i;=0:n-1)
FORALL(i2=i1:n-1—z'1)
END FORALL

END FORALL

(f)

FORALL(¢;=0:n-1)
FORALL(:;=0:n-1)
A(il,’ig) = ..
END FORALL
END FORALL

(i)

Figure 5.4. Some common loop patterns

We find these optimal break points by extending density function w4 to all real

numbers within the range [0,n — 1]. The density function is extended to wq = av+b

for any real v in [0,n — 1]. Segment [0,n — 1] is partitioned into q pieces of [v;, v;41]
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where 0 < i < ¢—2, vo =0, and v,y = n — 1. We need to find break points v;

(0 <i < g—1) such that

) v Vg—1
/ av+b=/ av+b=...=/ av+b
vo v vg—2

This implies

/Ulav+b=i/vq_lav+b
vo q Vo

Uy 1 n—1
/ av+b=i/ av+b
0 qJo

Solving the integration, we get

or

L2 b= A ka(n— 192 4 b(n —
590 + by, = q(2a(n 1)+ b(n-1))
2b i 2b
2 20 Y ey 22
o+ o= (0= 1+ 2 - 1)

Solving the above equation, we get the solution of v; as

2+ +a((n -1+ 2(n-1)
2
L -1+ 21 - 2 (5.2)

a? ¢ a a

v =

v =

Since v; may not be an integer grid, m; is chosen as an integer approximation of v;

by

On the other hand, we should know what processor a particular template element

T(j) is assigned to. Suppose that T'(j) is owned by processor P(z). Therefore, we
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should have v; < j < v;4;. Thus, by Equation 5.2, we have

St im-rp B - 1<y
j < gwlean—nt+?m—4» 2

This can be re-written as

o(2f 4 ) — 2(n - 1)
Ls (n—1)2
d(2i+7%)-2n-1)

(n—1)2 —lse
In other words, we have
aBi+) =21 . dQH) -2 1)
(n—1)? sts (n— 1

Since it should be an integer, 7 can be selected as

o a(Bi+5) = 2(n-1)
= (n—1)2 J

Overall, we summerize the above results as follows:

Proposition 12 Assume that wa(j) = aj + b is the density function conducted by
the mapping from a data array A to a one-dimensional template array T(0: n — 1).

Given the q processors, segment distribution of T can be specified as follows:

1. Processor P(3i) (0 <7 < q—1) owns the consecutive elements T(m; : m;3q — 1)

where
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2. Element T(j) is owned by processor P(i) where

Lq(";—”j +7%) = 2(n - 1)J
(n—1)2

1=

The specification of segment distribution in Figure 5.2(c) can be obtained using
Proposition 12. In Figure 5.2(c), the template has 11 elements 7(0 : 11 — 1) and
thus n = 11. wy(j) = j for each element T'(5) and thus @ = 1 and b = 0. Using

Proposition 12, we obtain that

0o=0

my = [10\/; =6
may = [10\/% =9

mz =11 —1

Therefore, T'(0 : 6 — 1) is distributed to processor P(0), T'(6 : 9 — 1) is distributed
to processor P(1), and T'(9 : 11 — 1) is distributed to processor P(2). Given element
T(7), it is owned by processor P(i) where

i = 1327

5.1.3 Multiple-Variable Density Function

If the template is a multi-dimensional array, a density function can be a function
of multiple variables each of which represents a distinct dimension in the template
array. In this case, we cannot simply formulate the requirement of processor workload
balance by using Equation 5.1. In this section, we study data distribution regarding

to multiple-variable density function.
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Assume that the template is represented by a m-dimensional array T'(0 : n; —
1,0 : np — 1,...,0 : ny,_; — 1). Processors are represented by a m-dimensional
array P(0 : ¢ — 1,0 : g2 — 1,...,0 : ¢y — 1). Each element P(ko,k1,...,kn-1)
represents a particular processor. Each dimension of the template array is distributed
to processors in segment fashion. Assume that the j-th dimension of the template
is partitioned into g¢; blocks: T'(...,njo:n;1 —1,...), T(...,nj1 :nj2 —1,...), ..,
and T(...,njq,-2 : Njq-1 — 1,...) where n;o = 0 and n;, —; = n;. Therefore, the
block of the template elements which processor P(ko, k1,...,km-1) owns is T'(nox, :
Noko+1 — Ly M1k © Migk+1 — Loy Mk y ¢ Nk, 41 — 1) Where 0 < kg < go — 1,
0<k<q-1,..,and 0 < k3 < gm-1— 1.

Assume that A is the LHS array referenced in FORALL assignment s,. Let w4 be

the density function with respect to A. Therefore, ¢p(k, ,....k.._,), the workload on

processor P(ko, ki,...,km-1), can be formalized as follows:
ﬂ0,k°+1—l ny,k, +1—1 Tl kpm—y+1-1
CP(ko yrokmes) = D o oo Y wa(osdke e s Jme1) (5.3)
Jo=ng kg J1=71k Jm=-1=n1 kg

In Equation 5.3, template element T(jo,J1,...,Jm-1) is owned by proces-
sor P(ko,k1,...,km-1). wa(Jo,Jky---,Jm-1), the density of template element

T(jo,J1,---,Jm-1), can be estimated as follows:

wA(jO,jka'--,jm—l) = Z 7rA(aOaala'“sah)
64(a0,814-ar)=T(J0,Jk v+--sJm—1)

where 74(ag,a1,...,as) is the estimate of the RHS expression evaluation in order to
define the LHS element A(ao, ay,-..,ax).

Similar to Equation 5.3, ¢,,, the overall workload over all LHS elements with
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respect to statement sy, can be obtained as follows:

no—1n;-—1 npm-1—1

[,h = E E s E wA(jO’jla-"ajm—l) (54)

Jo=0 j1=1 Jm-1=0

Therefore, the problem of finding the optimal segment size can be formalized as

follows.
Proposition 13 If the size of segment T(nok, : Moke+1 — 1,1k : Nik+1 —
l,...,01 k., : N1k, ,+1-1) owned by processor P(ko,k1,...,km_1) is optimal, then

the following condition must be satisfied.

14

e(Pko WPhyrerkm—1) = —*
where ¢ = qoq1...qm-1 1S the number of total processors. A distribution pattern is

optimal if the size of the segment assigned to each processor is optimal.

By Equation 5.4, the workload distribution depends on the property of density
function wy. For certain density function wy4, there may not exist an optimal distribu-
tion pattern which can satisfy Proposition 13. For example, consider two-dimensional

template T'(0 : no — 1,0 : n; — 1) with density function

o 1 where 0 < jo=j; < min{ng,n;}
wa(Jo, J1) =
0 otherwise
Therefore, min {ng,n,} is the overall workload. However, as shown in Figure 5.5(a),
there always exists some data block on which workload is zero as long as there are
two or more processors assigned to each dimension of the template T. Therefore,

the optimal distribution pattern does not exit if T is partitioned along both row and

column dimensions.
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Figure 5.5. An example of no optimal distribution pattern

To resolve this problem, we convert the multiple-variable density function into a
new single-variable density function and then use the proposed segment distribution
to assign the template elements along that dimension which index is the variable
in the new density function. This idea can be formalized as follows. Assume that
template T'(0: ny — 1,0 : 2 — 1,...,0 : n,,y — 1) is m-dimensional array. A density
function wy is a function of dimensions ?,, 25, ..., and 7z, where 2 < h < m. No
processor is allocated to dimension 25, 3, ..., and 4. The template elements on the

?1-th dimension is distributed in segment distribution by the new density function

/

Wiy
4 nj,—1 n.'a—l n.'h—l
w:‘(il): Z E e 2 WA(il,ig,ia,...,ih)
12=0 13=0 ;=0

For the example shown in Figure 5.5, since w, is a function of variables jo and j;, no
processor is allocated to dimension j;. As shown in Figure 5.5(b), template elements
are only distributed to processors along the jo-th dimension with the new density

function

ny
wiy(jo) = Y waljo, 1) =1

n=1
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Since w/; has uniform density, the number of columns allocated to each processor

should be equal.

5.1.4 Experimental Results

4500 T T T

4000 |- workload variance on segment distribution A— -
workload variance on block distribution 5—

3500 16 processors on an nCUBE-2 7
the maximum 3000 |- T
workload 2500 | 7]
per processor  oqq0 | _{
1500 | -
1000 |- // -

500 £ 1 1

64 80 96

Size of nn

Figure 5.6. Comparison of processor workload balance between block distribution
and segment distribution

Figure 5.6 shows the comparison of processor workload variance between block
distribution and segment distribution by running the Linpack TQL2 loop (Figure 5.3)
on a 16-node nCUBE-2. In our experiment, the number of processors is fixed as 16
and the problem size is varied. Figure 5.6 only shows the workload variance of each
distribution pattern. The cost of neighboring communication involved in accessing
remote elements is not included. Segment distribution outperforms block distribution

in all cases.
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5.2 Virtual Processor Allocation

If the data alignment analysis generates multiple aligned-base groups, the template
must be a multi-dimensional array. Segment distribution is used to specify the dis-
tribution pattern of template elements regarding to each dimension of the template
array. Segment distribution maximizes processor workload balance regardless of the
number of assigned processors. Therefore, as long as template elements are distributed
in segment fashion along each dimension of the template array, processor workload
will be well-balanced. However, though segment distribution minimizes neighboring
communication regarding to each dimension of the template array, the sum of the
cost of neighboring communication across all dimensions depends on the number of

processors assigned to each dimension of the template array.

5.2.1 Reducing the Overall Neighboring Communication

Figure 5.7 shows the impact of processor allocation on the overall cost of neigh-
boring communication in Example 4 (Figure 2.11), in which the template is a two-

dimensional array.

In Figure 5.7, arrays W, Z, and T (the template array) are declared as 6 x 12.

Alignment functions éw and 6z are specified as follows:

) (o)
o) \w)
t, B zl\
to - 22/

where W (w,, w;) is a W element, Z(2y, z3) is a Z element, and T'(¢;, ;) is a template
element. Thus, there are two aligned-base groups: the row dimension of W is aligned

with the row dimension of Z; the column dimension of W is aligned with the column



Twzo S ¢ o C g oo oo \W e - L. W o
wl | o “O T‘" b oo L" (t ¢} ﬂr }1} e 1] ‘7:‘ r ‘:‘) ‘k.‘ k \'n ;) s} o o
Ao je o olo b wlo o P PR f,, o o e oo
: w 1 j?:n ﬁ f!" = L ‘I‘{V © ‘Ir K : } I o) - o ( I\» ) {'i“!“ b o
| | O d 30 o d (J fv" o d & ' i 9] e d (H m: (ORI W 1,)] :
TR e e TR L
| :':%ﬁwll.ﬂﬂm Ty IR A qlff
LT ooy I Ralny ey 1 .. NN
TE TR I e | ] il
[No o o] P Lo Jor &b 3l g lo| o ' | i .
\\Ju [ .Ci* Iv\‘:‘ yAb ]\ o /Ll | A Te . I
| gy Aagn e Arl e 2 bR
T e TR, *
R R DS R AP S
| Pl fT {"_'_T‘T’T'h_‘ — L
oyl gy g D P
=z b et
Ry Goeoal o bl r\[“i'»!ﬂ Om"l’_! b
\21 .|,| B ;,\ I\ N L |
R VIR SR IR AR
z o ¢ dH oo o é. o p a :
\.‘7\| ‘l)) ;) ((1 '}\‘ t [s) j :xl I3
(a) Processor array is 2x3 (b) Processor array is 3x2

Figure 5.7. Two different processor allocation patterns for Example 4

dimension of Z. There are total 6 processors available. As shown in Figure 5.7,
template T is distributed to processors in both row and column dimensions. Each
dimension is distributed in segment fashion. Since each template element is mapped
by one W element and one Z element, the density function of both W and Z is uni-
form. Therefore, each dimension in fact is distributed in block fashion. Figure 5.7(a)
and (b) show two different processor allocation patterns.

By the construction of array subscripts in assignment s; (Example 4), one remote
Z element must be referenced to define W(zy,142) if W(71,1;) is a boundary element
in the data block owned by the local processor. For example, in Figure 5.7(a), in
order to write the LHS element W(1,4) owned by processor P(0,1), the remote RHS
element Z(1, 3) owned by processor P(0,0) is read. Moreover, two remote Z elements
will be accessed to define W (i,,172) if W (4;,12) resides on the corner of the data block
owned by the local processor. For example, in Figure 5.7(b), in order to write the

LHS element W(4,5) owned by processor P(2,0), the remote RHS elements Z(4, 6)
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owned by processor P(2,1) and Z(3,5) owned by processor P(1,0) are read. This
implies that the basic cost of neighboring communication in either aligned-base group
is 1. The cost of neighboring communication regarding to the aligned-base group
represented by the row dimension of the template is the number of the elements on
the vertical boundary. Similarly, the cost of neighboring communication regarding
to the aligned-base group represented by the column dimension of the template is
the number of the elements on the horizontal boundary. Thus, the overall cost of
neighboring communication is equal to the number of elements on the circumference.

Since each block is two-dimensional, given the total number of processors, the
length of the circumference in each block depends on the shape of template array and
the shape of processor array. In Figure 5.7(a), the processor array is specified as 2 x 3,
denoted as P(0: 1,0 : 2). Processors P(0,1) and P(1,1) access 10 remote elements
each. The other four processors access 7 remote elements each. In Figure 5.7(b), the
processor array is specified as 3 x 2, denoted as P(0 : 2,0 : 1). Processors P(1,0) and
P(1,1) access 14 remote elements each. The other four processors access 8 remote
elements each. Therefore, the amount of neighboring communication in processor
allocation 2 x 3 is much less than that in processor allocation 3 x 2. Given the total
number of processors, the shape of processor array makes difference in reducing the

overall neighboring communication.

5.2.2 Optimal Processor Allocation

In this section, we propose the optimal processor allocation approach such that overall
neighboring communication can be minimized by given a multi-dimensional template
array and a total number of processors. The problem of processor allocation can
be formalized as follows. Let T(0 : ny — 1,0 : np — 1,...,0 : nyp_y — 1) be the
m-dimensional template array. Assume that c is the basic cost of neighboring com-

munication regarding to the aligned-base group represented by the k-th dimension of
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the template (0 < k < m — 1). There are totally ¢ number of available processors.

Proposition 14 If there ezists a k (0 < k < m — 1) such that ¢, = 0, assign all

processors to the k-th dimension of the template.

If there does not exist a k (0 < k£ < m — 1) such that ¢, = 0, find the positive

integer numbers ¢y, gz, . .., ¢m such that the total cost of neighboring communication
G 92 dm-1 9o 92 dm-1 90 k-1 Gk+1 dm-1
non Ny —
temog—— ... 22 (5.5)
do 1 dm-2
can be minimized where qo, q1,...,¢n-1 are subject to
9q1---9m-1=¢ (5.6)

In Equation 5.5, the value

No Mk—1 Nk41 Nm-1

90 o Gk-1 Gk+1 o dm-1

is the number of total elements on the k-th dimension boundary in the block owned by
processor P(k). The rest of this section shows how to find the solution of minimizing
Equation 5.5.

Let n be the total number of the elements in the template array. Thus, we have
n = ngny...N,-1. Substituting the value of gx from Equation 5.6 into Equation 5.5,

Formula 5.5 can be re-written as follows:
n q

n q n q q
Co——+Cl——+...+Ck—_+...+Cm_1
Mo 9o nq Nk gk Nm-14m-1
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Since ck%‘% for 0 < k < m — 1 is constant, it is denoted as yr = ¢ %E Furthermore,

we define

zkzl where 0 <k<m-1
qk

and

|-

Therefore, the problem of finding the minimal value of Equation 5.5 is equivalent to

that of finding the minimal value in the following equation

Yoo+ N1T1+ ...+ Ym-1Tm-1

where zoTi...Tmo1 =12 (5.7)

Note that

YoZTo + ¥1To+ .- - + Ym-1Tm-1
m

VYoToY1T1 - - - Ym-1Tm-1 <

The equality holds if and only if

YoZo = Y1T1 = ... = Ym-1Tm-1 (5.8)
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Therefore, the minimum value is achieved when Equation 5.8 holds. From Equa-

tion 5.8, we have

Iy = }y’%fﬂo
— Yo .
| Tk = i To (5 9)
{ Tm-1 = Ym—1 To
Substituting values of z;, z2, ..., and z,,—; from Equation 5.9 into Equation 5.7, we

have

Substituting the value of zo in Equation 5.9, we get

( T = m/-'Cyol;Z;‘--_ym—l
1

— TY0---Yk—1Yk41---Ym—1
J zk - '\'/ ym-l =
k

i ZTYoVY1.--Ym-2
Tm-1= P m—1
\ Ym-1

Therefore, by substitution of the real values of zx, yx, and z (0 < k < m —1), we

have the following conclusion.

Proposition 15 If there does not exist a k (0 < k < m — 1) such that ¢, = 0, then

the total cost of neighboring communication

nyn2 Nm-1 No N2 Nm-1 No Nk—1 Nk41 Nm-1
1 .o +...+C[¢——... .

qQ1 92 dm-1 90 92 dm-1 90 dk-1 Gk+1 dm-1
No N Npm-2

+Cm-1—m—...
go ©1 qm-2
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can be minimized when

NO - Mk1MMa] « . Ny Cot
qk="\{q0 o177kt m-17k where 0<k<m-1

m-—1
n, Co...Ck—1Ck41 ---Cm—1

The optimal processor allocation strategy proposed by Proposition 15 is machine
independent and architecture independent. We assume that all processors are inter-
connected with a fully-connected network topology. The mapping from such a virtual
model of fully-connected network to a particular machine architecture is beyond the

scope of this thesis.

5.2.3 Performance Results

Figure 5.8 shows a livermore kernel 18 benchmark loop. In Figure 5.8, the size of
all arrays is 256 x 256. Array Z A serves the template. There are two aligned-base
groups. The (57 — 1)-th rows of ZU, ZP, ZQ, ZR, and ZM are aligned with the
j-th row of ZA. The k-th rows of ZU, ZP, ZQ, ZR, and ZM are aligned with the
k-th row of ZA. Let ¢y be the basic cost of neighboring communication with regard
to the aligned-based group represented by the row dimension of ZA. Therefore,
co = 1 due to the access to remote element ZR(j,k). Let ¢; be the basic cost of
neighboring communication with regard to the aligned-based group represented by
the column dimension of ZA. Therefore, ¢; = 4 due to the accesses to remote elements
ZU(j—-1,k+1),ZP(G-1,k+1),ZQ( —1,k+1),and M(j — 1,k +1).

Figure 5.9 compares the overall cost of neighboring communication in three differ-
ent approaches on a 64-node nCUBE-2. Three approaches are the optimal allocation

proposed in this thesis, the square allocation, and the row allocation. By Proposi-
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FORALL(j = 2 : 255,k = 2 : 255)
st ZAG, k) =ZU(G —Lk+1)+ ZU(G — 1,k) + (ZP(G — 1,k + 1)+
ZQ(—1L,k+1)—-ZP(j —1,k)— Z2Q(; — 1,k)) *(ZR(j, k)+
ZR(j — 1,k)/(ZM(j — 1,k) + ZM(j — 1,k + 1))
END FORALL

Figure 5.8. A livermore kernel 18 benchmark loop
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Figure 5.9. Comparison of different processor allocation strategies on a 64-node

nCUBE-2
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tion 15, the optimal processor allocation can be specified as

w= i
‘I1=2\/31_

where qo is the number of the processors assigned to the row dimension of ZA, ¢, is
the number of the processors assigned to the row dimension of ZA, and ¢ is the total
number of processors. In the square allocation, the same number of processors is allo-
cated to each dimension. In the row allocation, all processors are allocated to the row
dimension since the basic cost on that dimension is smaller. The experimental results

show that the optimal allocation outperforms the other two allocation strategies.




CHAPTER 6

Conclusions and Future Research

Data decomposition is critical to the performance of data parallel programs on scal-
able parallel computers. This thesis studies each fundamental phase in data decom-
position and develops important theoretical results and practical algorithmic results
to determine efficient data decomposition. In this chapter, we summarize the salient
contributions made by this research and present interesting avenues for possible future

research.

6.1 Research Contributions

The data decomposition model can be viewed as a two-level mapping of array elements
to abstract processors. Data alignment determines what array elements are aligned
relative to one another, and data distribution resolves how the group of aligned arrays
is distributed onto the processors. The template array performs as an abstract index
space, each grid in which represents a group of aligned array elements. The con-
cept of the template makes the specification of the alignment and distribution clear.
Depending on the alignment relationship as within dimension or across dimension,
alignment can be classified into base alignment and offset alignment. If two arrays are

mismatched in base alignment with respect to a reference, the whole data structure

160
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of the array to be used is required to be reorganized and almost evey array element
will be involved in the data movement across the processors. As a result, an efficient
base alignment has the first priority in the data decomposition analysis. After base
alignment is determined, offset alignment specifies the offset between aligned array
elements of various arrays with respect to the abstract index space. Since the align-
ment offset is a constant, the penalty of mismatched offset alignment with respect
to a reference will be the data shift operation. The communication cost of the data
shift operation can be greatly reduced if elements (in the template) are consecutively
assigned to the processors. This requires that the pattern of data distribution be
of the block distribution type. On the other hand, however, limited by the owner-
computes rule in code generation, the requirement of processor workload balance
favors the cyclic distribution type when the RHS computation is not uniform among
all the LHS elements or when the number of the LHS elements mapped to different
template elements is varied. This conflict between increasing workload balance and
reducing data shift communication has become an open issue in the research of data
distribution.

Using the affine alignment function [17], we have extended and developed the
mathematical framework to model the relationship between data reference and base
alignment. The cost estimate of reorganization communication has been studied based
on different types of data reference. Data reference graph model is used to describe
the impact of multiple data references and resolve the conflict of compatible alignment
requirement. An efficient spanning tree algorithm addresses the fundamental issues in
base alignment. Efficient base alignment algorithms are proposed to be incorporated
with the RHS expression evaluation and dataflow optimizations. These contributions
make this research unique from related research.

This thesis has made a significant contribution in the research area of offset

alignment. The mathematical framework has been constructed to model the inter-
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relationship between offset alignment and data reference. The cost of data shift
communication has been estimated based on different types of data reference. In
particular, the piecewise linear function is introduced to represent the cost of data
shift movement with regard to multiple distinct instances of the same array which
are accessed in the same statement. This cost model solved the accuracy problem in
measuring the quantity of data shift movement, an unresolved problem left by other
work in this area. Based on this cost model, the optimal post-alignment algorithm has
been first proposed to exceed the limitation of the owner-computes rule and minimize
the amount of data shift movement in each FORALL assignment after offset alignment
is determined. Data reference graph model has been proposed to model the prob-
lem of offset alignment and develop efficient spanning tree algorithms. Like the base
alignment analysis, the RHS expression evaluation and dataflow optimizations have
been incorporated with the proposed offset alignment algorithms.

The thesis has done extensive research in the area of data distribution. The open
problem of the efficient distribution type has been resolved to a great extent by this
research. Segment distribution has been proposed to resolve the conflict between
reducing data shift movement and increasing processor workload balance. Regarding
to a particular dimension in the template array, segment distribution minimizes the
impact of data shift movement by allocating elements consecutively to processors
and balances the processor workload by varying the size of the segment assigned to
different processors. The concept of the density function is introduced to estimate
the computation load at compilation time. An optimal processor allocation algorithm
has been proposed to minimize the overall cost of data shift communication across
multiple dimensions of the template array. The segment distribution and optimal
processor allocation proposed in this thesis provide the best data distribution support
for most data parallel programs.

We have demonstrated the effectiveness of the proposed algorithms on the nCUBE-
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2 commercial multiprocessors. The performance results have shown that the proposed
algorithms are superior to the approaches presented by other research. We believe
that our framework of the data decomposition analysis will serve to optimize data
decomposition for increasingly popular data parallel programs with greater fidelity

than exists in the current state of the art.

6.2 Directions of Future Work

The data decomposition framework presented in this thesis establishes a foundation
for future study but needs to be extended in several ways.

The algorithmic results proposed in this research are considered for paralleliz-
able loops. However, a real application program is a mixture of different types of
subprogram structures including parallelizable loops, DOACROSS loops, and intrinsic
loops. Some preliminary approaches have been proposed [71] to estimate the amount
of communication for intrinsic loops with respect to different types of data alignment
and data distribution. An integration of data decomposition information for different
subprogram structures is highly demanded.

A good framework for data redistribution and data realignment is still an open is-
sue in the research area of the data decomposition analysis. Data arrays are required
to be re-aligned for different computing structures in different subprogram phases.
Moreover, based on the data distribution analysis proposed in this research, the tem-
plate may be re-distributed not for the requirement of data re-alignment but for the
purpose of balancing processor workload instead. This condition brings additional
complexity into the process of finding a good framework for data redistribution and
data realignment.

Finally, the data decomposition framework presented in this research is proposed

for compilation-time optimization. However, certain programming characteristics are
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unknown until run-time, in particular, the information for processor workload balance
[60]. In this case, the framework design for static data decomposition should be

incorporated with the run-time support.
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