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ABSTRACT

ON THE DOMINATION NUMBER OF A DIGRAPH

BY

Changwoo Lee

A subset S of vertices of a digraph D is a dominating set of D if every vertex

not in S is adjacent from a vertex in S, and the domination number of D is the

number of vertices in any smallest dominating set of D. A subset I of vertices of

D is an independent set of D if no two vertices of I are joined by an arc in D.

The independence number of D is the number of vertices in any largest independent

subset of vertices of D. If D has an independent and dominating set, the independent

domination number of D is the number of vertices in any smallest independent and

dominating subset of vertices of D.

We first establish bounds for the domination numbers of various types of digraphs

and determine the domination number of a random digraph.

Next we study the relations among the domination number, the independent dom-

ination number, and the independence number of an oriented tree and a binary tree,

respectively, and we estimate their bounds. We then derive a formula for the ex-

pected independent domination number of random binary trees and determine the

asymptotic behavior of the expectation.

Finally we establish bounds for the domination number of tournaments and the

Paley tournament, and we determine the domination number of a random tourna-

ment.
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Introduction

The earliest ideas of dominating sets, it would seem, date back to the origin of the

game of chess, in which one studies sets of chess pieces that cover or dominate various

opposing pieces or various squares of the chess board [HeL90(a)]. In more recent time,

dominating concepts were raised in the form of the Five Queens Problem by Kbnig in

1936 [K036]. Finally the topic of domination was given formal mathematical definition

in the books by Berge [B658] in 1958 and Ore [Or62] in 1962. But relatively little had

been done on this topic until Cockayne and Hedetniemi published a survey article

[CoH77] in 1977. Since then over 500 papers have been published on the subject

(see, for example, [HeL90(b)]). Among them there are many about the domination of

undirected graphs but almost nothing for the domination number of directed graphs.

In this thesis we will develop theory for the domination number of directed graphs.

In his book [Or62], which is the first graph theory book written in English, O. Ore

says that a graph G = (V,E) with no isolated vertices has domination number at

most %|V|. W. McCuaig and B. Shepherd lowered this upper bound of the domination

number to §|V| for connected graphs with minimum degree at least 2 except for seven

specific graphs [McS89]. B. Reed lowered it to glVl for graphs with minimum degree

at least 3 [Re9x]. Moreover, using an elegant application of the probabilistic method,

N. Alon and J. Spencer [A1892] proved that any graph with minimum degree 6 has

domination number at most figfiiillll/l. However, there has been no corresponding

study of the domination number for digraphs.
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The main goal of this thesis is to study the domination number for various types

of digraphs and random digraphs.

We first establish an upper bound for the domination number of digraphs with

minimum indegree 6' at least one by applying the probabilistic method. This bound

is good for large 6’ but quite loose for small 6‘. Finding a vertex disjoint star cover

of D, we determine a sharp upper bound for the case 6‘ = 1. We then determine

the domination number of a random digraph using the first and the second moment

methods. The domination number of a random digraph turns out to be one of two

consecutive numbers.

Next, we study the relations among the domination number, the independent

domination number, and the independence number of an oriented tree and a binary

tree, respectively, and we determine bounds. We then derive a formula for the ex-

pected value of the independent domination numbers of random binary trees and find

the asymptotic behavior of the expectation.

Finally, using an algorithmic method, we establish an upper bound for the dom-

ination number of tournaments, which is a function of the number of vertices. To

investigate the sharpness of this bound, we first find the domination number of a

random tournament which is also one of the two consecutive numbers and next find

bounds for the domination number of the Paley tournament, which is a typical quasi-

random tournament.

Here are some of the basic definitions we need from graph theory. Those not

included may be found in the books [B085], [HaNoC65], and [Pa85]. A directed graph

(or digraph) D consists of a finite set of vertices, V(D), together with a set of arcs,

E(D), which are ordered pairs of vertices. Usually an arc (u,v) is denoted by no.

The cardinality of V(D) is the order of D and the cardinality of E(D) is the size of



D. We will use the convention that n = |V(D)|. If a = uv is an arc of a digraph D,

then u is said to be the initial vertex of a and v the terminal vertex of a. We also

say that a is an outgoing are from u and that a is an incoming arc to 2). We further

say that a is incident from u and that a is incident to v, while u is incident to a and

v is incident from a. Moreover, it is said to be adjacent to v and v is adjacent from

u. The outdegree odD(v) of a vertex v in a digraph D is the number of vertices of D

that are adjacent from v, and the indegree idD(v) of v is the number of vertices of D

adjacent to v. The minimum indegree (or outdegree) of a digraph D, denoted 6“(D)

(or (V(D)), is the minimum indegree (or outdegree) of a vertex in D, respectively.

The open in-neighborhood of a set S Q V(D) is defined by N5(S') 2 {v E V(D) — S

| v is adjacent to some it E S } and the open out-neighborhood of a set S Q V(D)

is defined by NE(S) = {v E V(D) — S | v is adjacent from some it E S }, while the

closed in-neighborhood of a set S (_I V(D) is defined by N5 [S] = N5(S) U S and the

closed out-neighborhood of a set S Q V(D) is defined by NEW] 2 NETS) U S.

A walk in a digraph D is a sequence vl,u2,...,vm of vertices such that v,- is

adjacent to vi+1 for i = l to m — 1. If v1 = vm, the walk is called closed. A path in D

is a walk in which no vertex is repeated. If there is a path from u to u, then 2) is said

to be reachable from u. The length of a path is the number of arcs in it. The distance

between two vertices is the length of any shortest path between them. A cycle is a

walk with at least two vertices in which the first and the last vertices are the only

ones repeated. We denote a cycle of order m by Cm and a path of order m by Pm.

Each walk is directed from the first vertex to the last vertex. We also need a

concept which does not have this property of direction and is analogous to a walk in

a graph. A semiwalk is again a sequence '01, v2, . . .,vm of vertices, but either 22,--122,

or vim--1 is an arc for i = 2,. .. ,m. A semipath, semicycle, and so forth, are defined

as expected.





A digraph D is strong if every two vertices are mutually reachable and D is

unilateral if for any two vertices at least one is reachable from the other. We say that

D is weak if every two vertices are joined by a semipath. A digraph is disconnected

if it is not even weak.

A subdigraph H of a digraph D is a digraph such that V(H) Q V(D) and E(H)

is a subset of those arcs in E(D) that are incident with only the vertices in V(H).

The subdigraph H of D induced by a set S <_: V(D) is a subdigraph such that if

u, v E V(H) and uv is an arc of D then uv is also an arc of H. For a set S Q V(D),

D[S] will represent the subdigraph of D induced by S. A subdigraph H of D spans

D if V(H) = V(D). A maximal, weak subdigraph of D is called a weak component

of D.

Let {an} and {bu} be sequences of real numbers. Then an —-+ L means limnnoo an =

L. The big-O and little-o notation is defined as usual: an 2 0(bn) means that there

are constants K and N such that Ianl g K|bn| for all n > N, and an 2 0(bn) means

limnnoo Ian/bn| = 0. If an 2 (1 + 0(1))bn, we say that an and bn are asymptotically

equivalent and we write an N bn.

We use [ch to denote the greatest integer that is at most 3:, while [:13] denotes

the least integer that is at least :13. For any positive integer n, [n] denotes the set

{1, 2, - - - ,n}. For any number n and positive integer k, < n >k denotes the falling

factorial < n >k= n(n — 1)--- (n — k +1) and < n >0: 1 for any n.



Chapter 1

Digraphs

1.1 Definitions and Preliminary Results

Let D be a digraph of order n. A subset S of V(D) is a dominating set of

D if for each vertex v not in S there exists a vertex u in S such that (u,v) is an

arc of D. Note that V(D) itself is a dominating set of D. A minimal dominating

set is a dominating set such that no proper subset dominates. A dominating set

having smallest cardinality among all dominating sets of a given digraph D is called

a minimum dominating set of D. The cardinality of a minimum dominating set of D

is the domination number of D. We will reserve a(D) or just a for the domination

number of D. For example, it is easily seen that 01(Pn) = [g] and a(Cn) = [g] by

choosing every other vertex for a minimum dominating set. Note that if we add a new

arc to a digraph D, then the domination number of the resulting digraph is at most

that of D and that if we remove an arc of a given digraph D, then the domination

number of the resulting digraph is at least that of D. For subsets S and T of V(D),

we say that S dominates T if S is a dominating set of D[S U T].

For an undirected graph G, a subset S of V(G) is a dominating set of G if for

every vertex v not in S there exists a vertex u in S such that {u, v} is an edge of G.

The domination number of G is the minimum cardinality of all dominating sets of G.

5



A minimal dominating set of G, a minimum dominating set of G, and so forth, are

defined as expected.

We are now ready to state some results in [Or62].

Theorem 1.1.1 ([Or62]) Let G be a directed or undirected graph. A dominating

set S is a minimal dominating set if and only iffor each vertex v in S one of the two

following conditions holds:

(1) v is not adjacent from any vertex in S.

(2) There exists a vertex u not in S such that v is the only vertex in S adjacent

ton.-

Theorem 1.1.2 ([Or62]) Any undirected graph G without isolated vertices has a

dominating set S such that its complement S is also a dominating set.

Proof: Let S be a minimal dominating set of G. Every vertex in S must be adjacent

to some vertex in S, or S would not be minimal. Thus S is also a dominating set. I

This theorem implies that any undirected graph of order n without isolated ver-

tices has domination number at most 17. /2. However, the corresponding theorem for

digraphs does not hold as we can see, for example, in the case of a directed 3-cycle.

A set S of vertices of an undirected graph G is called an independent set of G

if there are no edges between any of its vertices. The independence number of G,

denoted ,8(G), is the maximum cardinality taken over all independent sets of G.

An independent set and the independence number of a directed graph are defined

analogously.

Now we state a useful theorem relating the domination number of a graph G to

the independence number of G.



Theorem 1.1.3 ([Or62]) An independent set of an undirected graph G is maximal

if and only if it is a dominating set. I

This theorem implies that a(G) _<_ 6(G) for undirected graphs G. For directed

graphs, however, it does not hold. A directed 3-cycle is an example.

1.2 The Domination Number of a Digraph

In this section we will establish bounds for the domination number of digraphs with

minimum indegree at least one. In a graph, every isolated vertex must belong to any

dominating set. Similarly, in a digraph, every vertex with indegree zero must belong

to any dominating set. Therefore, it is quite natural to concentrate on digraphs with

minimum indegree at least one.

Let X be a random variable on a probability space (I, and let E[X] be the ex-

pectation of X. Then we know that if E[X] g c for some constant c, there is

an s E it such that X(s) S c. Let X1,X2,...,X,, be random variables, and let

X = c1X1 + - - - + Can, where ci’s are constants. Linearity of expectation states that

E[X] = c1E[X1] + + an[Xn]. The power of this property comes from the fact

that there are no restrictions on the dependence or independence of the Xi’s.

Using these simple observations, we prove the following theorem.

Theorem 1.2.1 Let D be a digraph with order n and minimum indegree 6‘ Z I.

Then D has a dominating set of size at most

{1—(1j,_)t—+< 1 Han.  

Proof: Fix p with 0 < p < I. Let us select, randomly and independently, each

vertex in V = V(D) with probability p. Let S be the random set of all vertices



selected, and let T be the random set of all vertices not in S that do not have any in-

neighbors in S. Then the expectation E[IS I] of the random variable IS I is E [IS I] = np

since IS I has a binomial distribution with parameters n and p. To find E [ITI], we let

ITI = ZUEV Xv) where Xv = I if v E T and Xv = 0 otherwise. Note that

P(v E T) = P(v and its in—neighbors are not in S)

_ (1 _ p)1-I-id(v)

3(1-er

for each v E V. Thus, we have

EWH=MZMFXWM]

vEV UEV

= Z P(v E T) g n(l — p)1+6-.

vEV

Therefore, we have

EWfl+fltSnP+M1-MHV- (LU

Using elementary calculus, we minimize the right side of (1.1) with respect to p.

Then the minimum value of it is

I 1 1 1+6—

{1_(1+6—
)6_—}na

  

which is attained when

1 )f3.

1 + 5‘

 
p=1—(

This means that there is at least one choice of S such that

1 m 1 fl

1+siilli+sjé }”

 

 

|S|+|T|S{1—(

The set S U T is clearly a dominating set of D whose cardinality is at most

I 1 1 1+6—

1+6“

 

U—(
  



This theorem gives us a good upper bound for the domination number of a digraph

with large minimum indegree. The coefficient of this upper bound goes to zero when

the minimum indegree 6— goes to infinity. See Table (1.1).

Table 1.1: Constants in upper bounds for domination number

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5—0.5 “statuary—>1? I.“
1 .7500 .5000 .6666

2 .6150 .5643 .6000

3 .5275 .5246 .5714

4 .4650 .4772 .5555

5 .4176 .4349 .5454

6 .3802 .3988 .5384

7 .3498 .3682 .5333

8 .3245 .3421 .5294

9 .3031 .3197 .5263

10 .2847 .3002 .5238

102 .0545 .0554 .5024

103 .0078 .0078 .5002

104 .0010 .0010 .5000      
Remark: Let G be an undirected graph with order n and minimum degree 6. Then,

using the same argument as in Theorem 1.2.1, we can show that the domination

number of G is at most

>%+(#)1—‘E—“}n. (1.2)
{1_( 1+6

 

1 + 6

L. Lovasz showed in [L075] that the domination number of G is at most

l+ln6
 1+ 6 n, (1.3)

and N. Alon and J. Spencer found a similar upper bound

1 l 6 l

+ “( + )n (1.4) 

1+6
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(see [A1392]). It is easily checked that these three upper bounds for the domination

number of an undirected graph are asymptotically the same but our result (1.2) is

smaller than (1.3) and (1.4) for 6 Z 4. See Table (1.1).

It is easy to see that the domination number of a digraph D is the sum of the

domination numbers of all weak components of D. But note that this is not true for

unilateral or strong components. Since every vertex of indegree zero must belong to

any dominating set, we consider weak digraphs with minimum indegree at least one.

Then, what is the domination number of a digraph in which every vertex has indegree

one? Such a digraph is called a contrafunctional digraph.

A vertex v of a digraph D is called a source of D if every vertex is reachable from

v, and a tree from a vertex (or arborescence) is a digraph with a source but with no

semicycles. A (directed) star S1, is a digraph on n vertices consisting of a center v

and a set of arcs from v to V(Sn) — {v}.

Lemma 1.2.2 ([HaNoC65]) A weak digraph is a tree from a vertex if and only if

exactly one vertex has indegree zero and every other vertex has indegree one. I

We need the above lemma to prove the following.

Theorem 1.2.3 Every tree T from a vertex v has domination number

I

1 3 am 3 I§|V(T)II-

Moreover, the bounds are sharp.

Proof: We shall state an algorithm which finds a dominating set for a tree T from

a vertex v. This algorithm begins by selecting a largest star that is the farthest from

the source v. Then we put the center of the star into a dominating set. Next we
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remove the vertices in the star from T to get a new tree from a vertex and repeat

this process.

Algorithm: Let T1 = T be the given tree from the vertex v, and let S0 = (t. Put

i = 1 and go to (I).

(1) Take a vertex v,- with maximum distance from v in T,.

(2) If v, = v, then let S = Si_1 U {v} and stop. If v, 7é v (i.e., idT,(v,-) = I), let u,-

be the vertex of T,- that is adjacent to v,- and go to (3).

(3) If odT,(u,-) = 1 and u,- = v, then let S = Si-1 U {u,-} and stop. If odT,(u,-) = 1

and u.- 7t v, then let S,- = S,_1 U {ui} and T,“ = T,- — {u,-,v,-} and next return to (1)

putting i = i + 1. If odT,(u,-) 2 2, go to (4).

(4) If u,- = v, then let S = S;_1 U {v} and stop. If u,- 79 v, then let S,- = S,_1 U {ui}

and TH] = T,- — N+[u,-], and next return to (1) putting i = i + 1.

From this algorithm, it is easily seen that S is a dominating set for T and that

ISI S I§IV(T)I] since in each step except (possibly) the last, we take at least two

vertices and put only one vertex into S that dominates the rest of them.

Extremal digraphs are a star Sn on n vertices and a path Pn on n vertices. I

Here we note that the complexity of this algorithm is 0(n2), where n = IV(T)I.

Lemma 1.2.4 ([HaNoC65]) The following statements are equivalent for a weak

digraph D.

(1) D is contrafunctional.

(2) D has exactly one cycle G and the removal of any one arc ofG results in a

tree from a vertex. I

The removal of any arc in a given digraph never decreases its domination num-

ber. Therefore, combining Theorem 1.2.3 and Lemma 1.2.4, we have the following
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corollary.

Corollary 1.2.5 Every weak contrafunctional digraph D has domination number

1

1 S 0(D) S I§|V(D)|I-

Moreover, the bounds are sharp.

To see the latter, we construct a digraph D as follows. We add one new vertex u

to a star Sn_1 and add two new arcs between u and the center of Sn_1. Then D is an

extremal digraph, and a cycle 0,, will do for the other extreme.

If a digraph D has a spanning subdigraph H of D such that H is a disjoint union

of stars, then H is called a vertex disjoint star cover (vds-cover) of D.

Theorem 1.2.6 Let D be a digraph with order n and minimum indegree 6‘ 2 I.

Then we have

 
lg a(D) 3

Proof: It is easy to see that D has a vds-cover H, namely, take H as the empty

digraph on V(D). Among all such vds-covers of D, let H* be one with minimum

number of copies of S1. For each h = 1,2,..., let H}: be the subdigraph of H“

consisting of weak components that are isomorphic to Sk and let hk denote the number

of weak components in H1:-

The subdigraph of D induced by V(Hf) has no arcs from vertices in Uk¢3 H,2" to

vertices in Hf because otherwise, H* violates the minimality. However, each vertex in

Hi“ is the terminal vertex of at least 6‘ arcs. Hence these arcs must be incident from

vertices in H;. Let uv be a star in H; with center it. Then, because of the minimality

of H*, u is not adjacent to any vertex in Hi“ and v is adjacent to at most one vertex

in Hf. Since each vertex in Hf has indegree at least 6‘, we have hz 2 6‘h1.
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Now let S be the set of all centers of the stars in H*. Then S is a dominating set

of D and ISI 2 2,21 hi. Note that

 

 

   

6'+l >I>I

26’+1_2 — z

fori=3,4,...andthat

6‘+1 h2—6‘h1

— h =—> .26‘+1(h1+2h2) (hl‘l' 2) 26"+1 _0

Since

IV(D)I 2' n = Zihi,

2'21

wehave

6_+1 6—+1 6—-I-1,

= h 2h h,-

26—+1” 26-+1(1+ 2”Zn-+12
£33

2 (h1+h2)+Zhi= ISI l

2'33

This theorem gives a better upper bound for the domination number of a digraph

with 6“ = 1 or 2 than that of Theorem 1.2.1. See Table (1.1).

Corollary 1.2.7 Let D be a weak contrafunctional digraph. Then we have the fol-

lowing:

(1) a(D) = gIVI if and only ifD 2 G3.

(2) a(D) < §IVI if and only ifD 75 G3.

Here, G3 denotes a directed 3-cycle.

Proof:(1) The sufficiency is trivial. For the necessity, first note that for integer

n 2 2, 3n _<_ I3] iff n = 3. Suppose that a(D) — 2IVI. Then §IVI = a(D) S I§IVII
_ 5

by Corollary 1.2.5 and so IVI = 3 by the note. Moreover, G3 is the only digraph on

3 vertices whose domination number is 2. This completes the proof of the first part.
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IVI

O
D
I
N

(2) Since a weak contrafunctional digraph D has 6' = 1, we have a(D) _<_

by Theorem 1.2.6, and so the second part follows. I

Theorem 1.2.8 Let D be a contrafunctional digraph. Then we have the following:

(I) a(D) = §IVI if and only ifD is a disjoint union of 3—cycles.

(2) a(D) < §IVI if and only ifD is not a disjoint union of 3—cycles.

Proof: (1) The sufficiency is trivial. To prove the necessity, let a(D) = §IVI and

let {H1, H2, - - - ,Hl} be the set of weak components of D. Suppose that there exists

a component that is not a 3—cycle. Then by Corollary 1.2.7, we have

2 2

31V] = 0(1)): 20432) < Z: fill/(Hill = 31V],

which is a contradiction. Thus every weak component of D is a 3—cycle and hence D

is a disjoint union of 3-cycles.

(2) Suppose that D is not a disjoint union of 3—cycles and let {H1, H2, - - . ,Hz} be

the set of weak components of D. Then all H,’s are weak contrafunctional digraphs,

and H.- # G3 for some i. Hence

M) = Zulu) < ; §IV(H.)I = 2M
ii

and so the sufficiency has been established.

To prove the necessity, we let a(D) < gIVI and assume D is a disjoint union of

3-cycle Zfs. Then we have

which contradicts a(D) < §IVI. Therefore D is not a disjoint union of 3-cycles. I

The bound in Theorem 1.2.6 can be sharpened for weak digraphs with 3k vertices

as follows.
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Theorem 1.2.9 Let D be a weak digraph with minimum indegree 6‘ = 1 and let

IV(D)I = n. Then we have the following:

(1)Ifn E 0 (mod 3) andn Z 6, then 1 S a(D) S %n — 1.

(2) Ifn 51 (mod 3) and n 2 4, then I f a(D) g IZnI.

(3) Ifn E 2 (mod 3) and n 2 2, then 1 S a(D) g Ign].

Moreover, all bounds are sharp.

Proof: Since (2) and (3) are the same as Theorem 1.2.6, it suffices to prove (I).

For each vertex in D, color one incoming arc green and the others red and next

choose only green arcs. Then we have a spanning contrafunctional subdigraph H

of D. First, consider the case that H is not a disjoint union of 3-cycles. Clearly,

a(D) _<_ a(H) < gn by Theorem 1.2.8 and hence a(D) S gn — 1. Next, consider the

case that H is a disjoint union of 3-cycles. Since D is weak but H is not, the arc set

E(D) of D consists of E(H) and some arcs not in H. In addition, if we add some arcs

in E(D) — E(H) to H, then the resulting digraph has a strictly smaller domination

number than that of H. Therefore, a(D) < a(H) = 2n and hence a(D) _<_ gn — I.
3

This completes the proof of (I).

For the sharpness of the lower bound in all cases, we take a digraph D as follows:

V(D) = {v1,v2, . . . ,vn},

E(D) = {222211, ’01’02,’01’U3,. ..,v1vn}.

For an extremal digraph of the case (1), we define a digraph D as follows: Take a

disjoint union of k 3-cycles Z1, Z2, . . . , Zk, and let v,- be a vertex in Z,- for each i. Add

k — I new arcs vivl for i = 2,3,. . . , k, and let D be the resulting digraph. Next, for

an extremal digraph of the case (2), we define a digraph as follows: Take a disjoint

union of k 3-cycles Z1, Z2, . . . , Z. and a new vertex u. Let v,- be a vertex in Z,- for each
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i. Add k new arcs via and let D be the resulting digraph. Finally, for an extremal

digraph of the case (3), we define a digraph D as follows: Take a disjoint union of k

3-cycles Zfs and a 2—cycle 02. Let u be a vertex in 02 and v,- in Z,. Add k new arcs

vgu and let D be the resulting digraph. I

Every unilateral digraph has at most one vertex of indegree zero and at most one

vertex of outdegree zero, while every strong digraph has the minimum indegree at

least one and the minimun outdegree at least one. Therefore we do not need any

more degree restrictions for unilateral or strong digraphs.

Theorem 1.2.10 Every unilateral digraph D has

I

1 3 am) 3 I§|V(D)II-

Moreover, the bounds are sharp.

Proof: Let D be a unilateral digraph. Then D has at least one source (p.99,

[HaNoC65]). We consider a spanning tree T from the source. Then

am) 3 aIT) s Iélvam = I%|V(D)II.

Let Sn be a star with center u, and let v be another vertex in Sn. We construct

a unilateral digraph D as follows:

V(D) = V(Sn),

E(D) = E(Sn) U {wu I w E V(Sn) - {u,v}}.

Then D is an extremal unilateral digraph, and P7, will do for the other extreme. I

Corollary 1.2.11 Every strong digraph D has

1

1 s 041?) s I§|V(D)|I-

Moreover, the bounds are sharp.
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Proof: Since every strong digraph is weak, it suffices to prove the sharpness of the

bounds. Extremal digraphs are a symmetric star and a cycle. I

1.3 The Domination Number of a Random Di-

graph

In this section we will determine the domination number of a random digraph.

To do this, we describe probability models commonly used in the study of random

digraphs or random graphs and explain the first and the second moment methods.

For each positive integer n and each number p with 0 < p < 1, the probability

space Dnm of digraphs is defined as follows: Each point in the space is a digraph with

vertex set V 2 {1, 2, . . . , n} having no loops or multiple arcs, and the probability of a

given digraph D with l arcs is given by P(D) 2 p’(l —p)"(”—1)". In other words, each

arc is present with probability p, independently of the presence or absence of other

arcs. In particular, if p 2 1/2, then each digraph is assigned the same probability,

namely I/Dn, where D7, is the total number of digraphs on V. On the other hand,

the probability space gm, of graphs is defined analogously and so the probability of

a given graph G with l edges is given by P(G) 2 p’(l — p)(3)_l.

In the study of random digraphs (or graphs), we cannot conclude anything about

individual digraphs but what we do study are properties of sets of digraphs. Let Q

be a property of digraphs. If A is the set of digraphs of order n with property Q and

the probability P(A) of A has limit I as n ——> 00, then we say almost all digraphs

have property Q or a random digraph has property Q almost surely. We are studying

a sequence of probability spaces and the limit of a sequence of probabilities.

The first and the second moment methods are important tools from probabil-

ity theory which are used frequently in the study of random digraphs (or graphs).
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Suppose X is a nonnegative integer-valued random variable. Let E[X] denote the ex-

pected value of X and let P(A) denote the probability of the event A. Then we have

P(X Z l) S E[X] from Markov’s inequality. Thus if E[X] —+ 0, then P(X Z 1) —> 0

and therefore P(X 2 0) —> 1. On the other hand, if E[X] 75 0, then we have

P(X 2 0) S E[XQI/EIX]2 — I from Chebyshev’s inequality. Thus E[Xz] ~ E[X]2

implies P(X 2 0) —> 0 and therefore P(X Z I) —> 1.

In what follows log denotes the logarithm with base 1/(1 — p) and In denotes the

logarithm with base e.

K. Weber determined the domination number for almost all graphs as follows.

Theorem 1.3.1 ([We81I) For p fixed, 0 < p < 1, a random graph Gn 6 gm, has

domination number either

Ik*] + 1 or Ik*] -+- 2

almost surely, where

k’“ 2 log, n — 2 log, log, n + log,, logb e

and log, denotes the logarithm with base b 2 Up.

Using the same techniques as in [We8l] for analyzing the first and the second

moments, we establish a similar result for digraphs.

Theorem 1.3.2 Forp fixed, 0 < p < 1, a random digraph Dn E 13,”, has domination

number either

Ik*] + 1 or I16] + 2

almost surely, where

k'“ 2 log n — 2 log log n + log log e

and log denotes the logarithm with base I/(I — p).
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Proof: Let X be a nonnegative random variable such that X(Dn) is the number

of dominating k-sets in Dn for each Dn 6 DW. Since

P(a fixed vertex v does not dominate another fixed vertex u) 2 l — p :2 q,

we have

P(a fixed k-set K Q V does not dominate a fixed vertex in V — K) :- qk

and hence

P(a fixed k-set of vertices is a dominating set) 2 (l — qk)"‘k.

Therefore, we have

Tl - _

u=#(k)=E[Xl= (k)(1-q")” k- (1.5)

It is convenient to change the notation by setting q 2 I/r in (1.5), and we thus have

a = (:)(1— r-kr-k. (1.6)

Note that

k
n nk (n)k n

(,I = 7&7 = (1+ 0(1))? (1.7)

when k —> 00 and k2 2 o(n). Substituting (1.7) in (1.6) and applying Stirling’s

formula for kl, we have

u = (1+ «Wig—,1

when k —+ 00 with k2 2 o(n). By taking the In of both sides of (1.8), we get

 (1 — r-kr-k, (1.8)

Inn 2 k-I—klnn—klnk—éln27r—élnk (1.9)

+(n — k) ln(l -— r’k) + ln(1 + 0(1))

when k —> 00 with k2 2 o(n). The term ln(1 — r‘k) in (1.9) becomes

ln(1 —r—k) 2 —————————— . (1.10)
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Substituting (1.10) in (1.9) and rearranging, we have

11w=.klnn—nr-k—klnk+k—%lnk+0(1) (1.11)

when k —> 00 with k2 2 o(n) and n 2 o(r2k). Converting In in (1.11) to log, we have

logu 2 klogn — nr‘k log e — klog k + klog e — glog k + (9(1) (1.12)

when k ——> 00 with k2 2 o(n) and n 2 o(er). Note that the function (1.8) is defined

for integer k such that k —> 00 as n —> 00 and k2 2 o(n). But we may regard (1.8) as

a function defined for any real number k such that k —> 00 as n —> 00 and k2 2 o(n).

Let

log log n

k2 k“+eand 6: O( ). (1.13)

log n

Then k satisfies k —> 00, k2 2 o(n), and n 2 o(r2k) and thus it follows from the

definition of k*, (1.12), and (1.13) that

log u 2 (log n)2(1 — r") — 2(log n)(log log n) — k* log k* + O(log n) (1.14)

Note that

——c 1 _ e—elnr

2 1— (1 — elnr + C(62))

2 elnr—O(62) as e—>0. (1.15)

Substituting (1.15) and the definition of k* in (1.14) and rearranging, we have

log ,u 2 (ln r)(log n)2e — 3(log n)(log log n) + (9(log n)

elogn
  —3loge+0(2 (lnr)(log n)(loglogn){1 )}. (1.16)

og log n log log n

Therefore, we have

f

—00 if limsup—‘J—‘lgl < 3loge and e 2 0(M)

 

n—+oo loglogn 108'”

log}; —> <

00 if liminf—il-‘lg—TL— > 3loge and e 2 00351—053)
( n—+oo loglogn 108”
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and thus

' 0 if limsuplflfln— < 3loge and e 2 (KM)

n—+oo 08108” logn

#--+<

. . . l
— 1 l

L 00 1f llgglflsg?§:n > 3loge and e — O(——°fi)g°gn). 

It follows easily by observing the logarithmic derivative of the term

(en/19V

\/27T—k

in (1.8) that if k —> 00 as n —> 00 and k2 2 o(n), then u is asymptotic to an increasing

(1 _ r—k)'n—k
 

function of k when n -—> 00. Hence, for any such real sequence k at all, we have

’ 0 if limsupW < 3loge

 K 00 if limian > 3log e.
—k

n—+oo 108108

Now, it is easy to see that

0 if kzIk*I

WI
00 if k2 Ik*I+2.

This means that for any k S Ik*], a random digraph has no dominating k-sets almost

surely.

We have shown that u 2 E[X] —> 00 for k 2 Ik*] + 2. Thus, using the second

moment method, we want to show that P(X Z I) —+ 1 for k 2 Ik*] + 2. To do this,

it suffices to show that E[Xz] ~ #2 for k 2 Ik*] + 2.

Let us estimate E[X2] — #2 for k 2 I_k*I + 2. Let as be the number of ordered

pairs (K, K') of k-sets of vertices with IK fl K’I 2 s, and let P, be the probability

that two fixed k-sets K and K’ with IK fl K’I 2 s are dominating sets. Then

k

E[Xz] 2 Z asPs.

20
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We want to estimate asPs up to the values of 3. Now we have three cases to consider.

Case 1: Since ak denotes the number of k-subsets of vertices and Pk the probability

that a fixed k-subset of vertices is a dominating set, it follows that

akPk2u2o(u2) as u—>oo.

Case 2: Since

P0 S P(all vertices not in K U K’ are dominated by K and K’)

= {(1 _ 7‘_k)2}n_2k

and

n n—k n 2

2 <

:0 (III ,. I—Ik)’
wehave

0.0130 S (n>2(1—T—k (—n—2k)

k

2 (2)2:4c1—T—k ”_k)(1—r_k)"2’°

= #2(1+0(1)))62"”‘k

2 u2(1+o(1))(1+2kr"“)

= u2(1+ OHM—’9)-

Therefore, we have

aoPo — H2 = #2OIk7‘_k) = 0042)-

Gase 3: Let K and K’ be two fixed k-sets of vertices with IK fl K’I 2 s,

1 S s S k — 1, and let P(v) be the probability for afixed vertex v E V—(KUK’) :2 R

to be dominated by both K and K’. Then P(v) 2 P((K (I K’ dominates v)V (both
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sets K — S and K’ — S dominate v and K (I K’ does not dominate 12)).

Thus

P(v) = (1— 7‘”) + (l — r‘k+s)27~‘5

2 l— r‘2k(2rk — r3).

Therefore, we have

P, S P(both sets K and K’ dominate R)

2 (1— r—Zk(2r’c — rs))"—2k+s :2 b,.

It is easily checked that

 a. = (2) (f) (I: : f) 5 (1+ 0(1)) (2)25:

Let

Cs : n—s(1 _ T_k)—2(n—k)k2s+lbs.

Then, using (1.17) and (1.18), we have

k—l k—l n 2k2s

zip. s (1+o(1>>2(,) _.
.921

s

321 TI.

 

lC-l 23 n

= (1 + 0(1))Zns(1 _k,._li:)2(n—k) (
s21

 

 

k—l k2s+1bs n

S (1 + 0(1)):=:1 (k _1)ns(1_ r—k)2(n—k)(

k—I CSMZ

: (1 170(1))ng _1

S (1+ o(I))max{cs I I S s S k —1}u2.

2

k) (1 __ T—k)2(n—k)

2

k) (1 _ ,r—k)2(n—k)

(1.17)

(1.18)

(1.19)

(1.20)

Next, we will show c, ——> 0 for 1 S s S k — 1. To do this, we estimate In cs.

Substitute (1.17) for b, in (1.19) and next take the In of the both sides of (1.19).
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Then we have

1110. = —slnn + (n — 2k + s)ln(l — r-2k(27~k _ ,3»

—2(n—k)ln(l—r"“)+(2s+1)lnk. (1.21)

Expand two In terms containing r in (1.21) and rearrange it. Here we need to recall

k 2 Ik*] + 2. Then (1.21) becomes

In cs 2 —s Inn + nr‘2k+s + 0(3 ln k)

[I —s Inn + nr‘sz + 0(3 log log n) (1.22)

Subcase I: Let s 2 o(log n) Using k 2 Ik*] + 2 Z k*, we have

_ ‘

rsnr 2k

,. (10s 70“

n(log e)2

,r—2k-I-s

l
/
\

n

log n)4
clogn (

n(log e)2’

|
/
\

where0<c<1

z %= 0(1). (1.23)

Hence, from (1.22) and (1.23), we have

In C, 2 —slnn + nr‘z’c“ + 0(slog log n)

2 —slnn + (9(sloglogn) ——+ —00

and therefore

C‘s—+0.

Subcase 2: Let

s 2 logn —t and t 2 o(log n). (1.24)
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Recall that k 2 [16*] + 2 and 1 S s S k — 1. Using (1.24) and the definition of k*, we

have

k 2 s-I—12logn—(t—l) and

k _>_ k’“ 2 logn — (2loglogn — logloge)

and hence

k Zlogn—min{t—1,2loglogn—logloge}. (1.25)

Now we evaluate a new term which will be used later:

_ _ 2 __ .___
n27, 2k tzrlogn 7. 2]. t

= r2<1°8“-k>-1. (1.26)

From (1.25), we have

2(log n — k) S 2min{t—1,2loglogn — log log e}.

Hence the utmost right side of (1.26) has an upper bound

T2min{t—-1,2loglogn—1081083}—t.
(1.27)

Ift S 210g log n — log log e + l, (1.27) has an upper bound

Ift > 210g logn — log log 6 + 1, (1.27) has an upper bound

7,2(2 loglog n—log log e)—(2 log log n—log log e+1)

In both cases, (1.27) has an upper bound

 

(ln r)(log n)2.

7‘

7'2 log log n—log log e—-1 :

(1.28)



26

Combining (1.26) through (1.28), we have

n2T—2k—t < (ln r)(log ”)2

_ 7" .

 
(1.29)

Substituting (1.24) for s in (1.22), we have

In C, = —(-log n — t) lnn + nr-2k+(l°5”_t) + (log n — o(log n))(log log n)O(1). (1.30)

Simplifying (1.30), we have

In c, = ——(lnr)(log n)2 + n2r_2k—t + tlnn + O((logn)(loglogn)). (1.31)

Substituting (1.29) in (1.31), we have

In C, S —(ln r)(logn)2 + 1(1n r)(log n)2

r

+0(log n)lnn + C((log n)(log log 71)). (1.32)

Simplifying (1.32), we finally have

 In C, S _r;1(lnr)(logn)2 + 0((log n)2) ——> —00.

Therefore,

cs—>0 for 1SsSk—1

and hence

k—l

Z asPs S (1+ 0(1))max{cs| 1S 3 S k —1},a2 = o(pQ).

3:1

So far, we showed the following:

Case 1: akPk = o(uz).

Case 2: aoPo — a2 = 0(a2).

Case 3: 2k”1 asPs = 0(a2).
3:1
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Therefore, for k = [16*] + 2, we have

Elel-u2
P(X =0) 3 y,

21:20 asPs _ [“2

#2

 

(aoPo — #2) + akPk + 2’3: M.

#2

 

= 0(1).

This implies that for any k 2 L1c*_| + 2, a random digraph has a dominating k-set

almost surely. Therefore a random digraph should have domination number either

|_1c*j + 1 or [19*] + 2. This completes the proof. I

Remark: (1) We have shown in Theorem 1.3.2 that a —+ 0 if k = [16*] and that

a ——> oo ifk = [19*] +2. What ifk = (16*) +1? We let 1c 2 (12*) +1 and for

computational convenience take the probability p = 5 When n —> oo in such a way

that n = 22‘ fori: 1,2,... ,we havek—k* :1—logloge > 0.4- and so ,u —> 00 as

i—-> 00. When n ——> oo in such a way that n = (221+11n2_| for i = 1,2, . .. , we have

k — k“ = C(fi) as i —> 00 and so ,u —> 0 as i —> 00. In Theorem 1.3.2, we analyzed

the second moment under the condition that k = [W] + 2 but it is easily checked

that the same result holds for k = |_1c*j +1 if )a —> 00. Therefore almost every Dn has

domination number [16*] +1 (or Lk*j + 2) when p = % and n —> oo in such a way that

n = 22‘ (or n = L22i+11n2‘|), respectively. This means that the result of Theorem

1.3.2 is best possible.

(2) The independence domination number a’(D) of a digraph D is the minimum

cardinality of all independent and dominating sets of D. Tomescu showed in [T090]

that the independence domination number oz’ of every digraph in the model Dml/Z
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satisfies

log2 n — log2 log2 n — 1.43 S a’ S log2 n — log2 log2 n + 2.11

almost surely and hence 0’ takes at most four distinct consecutive values. We have

shown that the domination number oz of every digraph in DWI/2 is either

[_log2 n — 210g2 log2 n + log2 log2 e + 1] or [log2 n — 210g2 log2 n + log2 log2 e + 2].

Note that it is easy to see a S 01’ whenever an independent dominating set exists.

The two results are consistent with the fact that oz S a’.



Chapter 2

Oriented Trees

2.1 The Domination Number of an Oriented Tree

In this section we study the relations among the domination number, the inde-

pendent domination number, and the independence number of an oriented tree and

establish their bounds.

An oriented tree is a tree in which each edge is assigned a unique direction and

an oriented forest is defined analogously. A kernel of a digraph D is an independent

and dominating set of vertices of D and the independent domination number of D,

denoted by a’(D), is the minimum cardinality of all kernels of D. A 3—cycle has no

kernel and a 4—cycle has two kernels. But J. von Neumann and O. Morgenstern showed

[NeM44] that every digraph without cycles has a unique kernel, and M. Richardson

showed [Ri53] that every digraph without odd cycles has a kernel. The proofs were

long and involved. However, for oriented forests (and hence oriented trees), we have

the following short algorithmic proof.

Theorem 2.1.1 Every oriented tree T has a kernel.

Proof: It is sufficient to prove this theorem for oriented forests and so we shall

state an algorithm which finds a kernel for an oriented forest T. The algorithm begins

29
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by putting vertices with indegree zero into a kernel. Next we remove the vertices that

are already in the kernel together with their out—neighbors to get a new oriented forest

and repeat this process for the new oriented forest.

Algorithm: Let T1 = T be the given oriented forest and let K0 : a3. Put i = 1

and go to (1).

(1) Choose the set S,- of all vertices with indegree zero in the oriented forest Ti

and let K,- = Ki_1 U 5,.

(2) Let Ti+1 be the induced oriented forest T,[V — N+[K,-]]. If T,“ is an empty

digraph, let K = K, and stop. Otherwise, return to (1) putting i = i + 1. I

Let T’ be an oriented tree with n vertices. Then the average indegree of T’ is

(Z indeg(v))/n : n —1 <1.

UET’ n

 

Thus there is a vertex v of T’ with indegree zero. This implies that the above algorithm

terminates after finitely many steps.

It is obvious that K is a dominating set of T. To show that K is an independent

set, we let u and v be in K. Assume there is an arc between u and i), say, an in T.

Then, by (1), u and i) cannot be chosen for K in the same step. If u were chosen

for K in an earlier step than the step in which i) was chosen, then 1) would not be in

K. Therefore 1) must be chosen for K in an earlier step i than the step in which it is

chosen for K. For this, u should have been deleted in an earlier step than the step i.

Thus u is not in K, which contradicts the fact that u is in K. I

We note that the complexity of this algorithm is C(n2).

Theorem 2.1.2 Every oriented tree T has a unique kernel.

Proof: Suppose that T has two distinct kernels K and L. Then any one of K and

L cannot be a proper subset of the other. Otherwise, one of them contains an arc
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and cannot be independent. Let v1 be a vertex in K — L. Then there is a vertex 122 in

L — K that dominates v1 and next there is a vertex v3 7é v1 in K — L that dominates

'02. Repeat this argument in turn. Then we have a sequence {12,-} of vertices such

that v, 75 12,-”. Let j be the smallest integer such that v, = 2);, for some k < j. Then

2);, = 1),, vj_1, . . . , 2);, is a semicycle of length at least 3. This contradicts that T is an

oriented tree. I

Theorem 1.1.3 implies o(G) S ,6(G) for undirected graphs G. But it does not

hold for directed graphs as we have already seen in a directed 3-cycle. However, for

oriented trees, it still is true.

Corollary 2.1.3 Let T be an oriented tree. Then we have

1S a(T) S o/(T) S E(T) S n — 1

and

MT) 2 71/2-

Proof: The first part is immediate from the definitions. For the second part,

observe that the independence number of an oriented tree is the same as that of the

underlying unoriented tree. I

Here is an example that shows that the three invariants need not be equal. Let

n 2 4 be an integer and let T be an oriented tree with V = {211,- - - ,un,v1,- - - ,vn}

and E = {(111,113) I j = 2,---,n} U {(211,123) |j= 2,---,n} U {(u1,v1)}. Then it is

easy to see that o(T) = 2, oz’(T) = n + 1, and fl(T) : 2n — 2. Therefore we have

a(T) < a’(T) < MT).

Let oz, 01’, fl, and n be positive integers satisfying 1 S a S oz’ S B S n — 1 and

E _>_ n/2. Then can we construct an oriented tree T of order n having oz(T) = a,

a’(T) 2 oz’, and ,8(T) = fl? By checking all oriented trees with four vertices, we know
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that all possible outcomes of (a, a’, fl) are (1, 1, 3), (2, 2, 2), (2, 3, 3), and (3, 3, 3).

Thus there are no oriented trees of order 4 having, for example, the outcome (1,2,3).

Theorem 2.1.4 Let n 2 2 be an integer. Then for any oz such that 1 S oz S n — 1,

there is an oriented tree T of order n whose domination number is a.

Proof: We construct T as follows. The vertex set of T is V = [n] and the arcs

consist of (i,n) for i = 1,2,...,a—1 and (n,j) forj = oz,a+1,...,n— 1. Then T is

an oriented tree and {1, 2, . . . , a — 1, n} is a minimum dominating set of T. Therefore

T has domination number a. I

Theorem 2.1.5 Let n 2 2 be an integer. Then for any a’ such that 1 S a’ S n -— 1,

there is an oriented tree T of order n whose independent domination number is a’.

Proof: We construct T as follows. The vertex set of T is V = [n]. If 01’ Z (n— 1) /2,

then the arcs consist of (i,n) fori = 1,2, . . . , a’ and (j,j+a’) forj = 1,2, . . . ,n—a’—1.

If oz’ < (n —1)/2, then the arcs consist of (i,n) for i = 1,2,...,a’, (j,j + a’) for

j = 1,2, . . . ,a’, and (a,k) for k = 2a + 1,... ,n — 1. Then T is an oriented tree and

{1,2, . . . , oz’} is the kernel of T. Therefore T has independence domination number

01’. I

2.2 The Domination Number of a Binary Tree

In this section we study relations among the domination number, the independent

domination number, and the independence number of a binary tree and establish

their bounds.

A binary (search) tree is an oriented tree which enjoys the following properties

(see [KON73] ):
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(1) There is a unique vertex v0 (called the root) such that for any vertex 1) distinct

from 120 there is one and only one path starting at v0 and ending at v.

(2) For each vertex v the number of arcs beginning with v is zero or two. In the

former case v is called a leaf while in the latter case it is called an interior vertex.

(3) The set of arcs is partitioned into two sets L and R (the left and right arcs,

respectively). For each interior vertex there is precisely one left arc and one right arc

starting with this vertex.

Equivalently (see [MeM77]), a binary (search) tree may be defined as an oriented

rooted tree that consists either of a single vertex or is constructed from an ordered

pair of smaller binary trees by joining their roots from a new vertex that serves as

the root in the tree thus formed. The vertices are not labeled, although the root

is distinguished from the remaining vertices, and two such trees are regarded as the

same if and only if they have the same ordered pair of branches with respect to their

roots. Notice that every vertex is incident with either zero or two arcs that lead away

from the root; this fact implies that such trees must have an odd number of vertices.

Let T be a binary tree on 2n + 1 vertices. Then T has n interior vertices and

n + 1 leaves. Let IO, 11, 12 be the sets of interior vertices with zero leaves, only one

leaf, two leaves, respectively. It is of interest to observe that [Igl : |Iol + 1 since

110|+|11|+|12| = n and 111|+ 2|12| = 7. +1.

Let T be a binary tree. The level number of a vertex v in T is the length of the

unique path from the root to v in T and the height of T is the maximum of the level

numbers of the vertices of T. A binary tree of height h is balanced if every leaf has

distance h or h — 1 from the root, while it is fully balanced if every leaf has distance

h from the root.

Now we can state the main theorem of this section.
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Theorem 2.2.1 Let T be a binary tree on 2n + 1 vertices. Then we have

(1) 0(T) S 0/(T) S MT),

(2) r2”; 11 Samm, 

2(2n+1)+1

3

 

(3) n+1Sfl(T)SL 1-

Proof: Corollary 2.1.3 implies (1). To prove (2), observe that every vertex in

T dominates at most three vertices and that the set of all interior vertices of T is

a dominating set for T. This establishes (2). The set of all leaves of T forms an

independent set of cardinality n + 1 and hence n + 1 S 3(T)

Now we want to prove the last inequality. Let |T| be the underlying tree of the

binary tree T. Suppose S = {u1,u2, - - - ,m.} is any independent set in |T|. For each

i = 2, - . - , k, there is a unique ul — u,- path in |T|. Let R be the set of all predecessors

of u,- in the paths for i = 2, - - -,k. Since the set R is disjoint from the set S', we

have [RI S (2n + 1) — k. In addition, since every vertex in |T| has degree at most

3, we have (k —1)/2 S IRI. Therefore we have (k —1)/2 S (2n +1) — k and hence

k _<_ [2(2n+1)+1]/3. .

Here is an example that shows the three invariants in (1) need not be equal. Let

n be an odd integer. Consider any binary tree of order 2n + 1 and height n. Such a

tree always has a leaf adjacent from the root. Now attach two new vertices to this

leaf. The resulting oriented tree T is a binary tree of order 2n + 3. It is easily seen

that oz(T) = n +1, a’(T) = n + 2, and ,3(T) = n + 3.

Now let us consider the sharpness of the bounds of (2) and (3) in Theorem 2.2.1

and let T3 denote the binary tree of order 3.

The bounds in (2) are sharp. Let T be any binary tree of height n. Then the

set of all interior vertices of T is a minimum dominating set for T and so a(T) : n.
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Hence the upper bound in (2) is sharp.

To see the sharpness of the lower bound of (2), there are three cases to consider.

Case 1: 2n + 1 = 3k. Consider k copies of T3. Put one of these copies with

the root at the bottom and stack the remaining k — 1 copies one by one from left

to right by joining the leaf of the bottom copy to the roots of two stacking copies.

Observe that k -— 1 is even in this case and hence this stacking is always possible. It

is easy to see that the resulting binary tree has order 2n + 1 and domination number

k = (2n +1)/3.

Case 2: 2n + 1 = 3k + 1. Consider k copies of T3 and a single vertex. Put the

single vertex at the bottom, which will serve as a root, and stack two copies by joining

the root at the bottom to the roots of two stacking copies. Next stack the remaining

k — 2 copies one by one from left to right by joining the leaf of the bottom to the roots

of two stacking copies. Observe that k is even in this case and hence this stacking is

always possible. It is easy to see that the resulting binary tree has order 2n + 1 and

domination number k + 1 = [(2n + 1)/3l.

Case 3: 2n+1 = 3k+2. Consider k copies of T3 and two vertices. Put one of these

copies with the root at the bottom and stack the remaining k — 1 copies one by one

from left to right by joining the leaf of the bottom to the roots of two stacking copies.

Now join the remaining two vertices from any one of the leaves of the binary tree

already constructed. Observe that k — 1 is even in this case and hence this stacking

is always possible. It is easy to see that the resulting binary tree has order 2n + 1

and domination number k + 1 = [(2n + 1)/31.

The lower bound in (3) is sharp. A binary tree of order 2n + 1 and height n has

independence number n + 1.

There is a binary tree whose independence number attains the upper bound in (3)
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for infinitely many n. For example, a fully balanced binary tree of even height will

do.

2.3 The Expected Independent Domination Num-

ber of Random Binary Trees

In this section we shall derive a formula for the expected value u(2n + 1) of the

independent domination number of a random binary tree with 2n + 1 vertices and we

shall determine the asymptotic behavior of u(2n + 1) as n goes to infinity.

Let T be a binary tree. If we remove the root r of T, along with all arcs incident

from r, we obtain a (possibly empty) ordered pair of disjoint binary trees, or 1-

branches, whose roots were originally joined from r. Let y2n+1 denote the number of

binary trees with 2n + 1 vertices. Clearly, y1 = 1 and we know that

y2n+1 = Zyiyj (2.1)

for n 2 1, where the sum is over all i and j such that i and j are odd and i+j = 2n.

If we let

y = y(:v) = Z y2n+1wzn+1

n=0

be the ordinary generating function for binary trees, then it follows from equation

(2.1) that

00

2 1

y = Zy2n+1$n+

n=0

OO

2 1
= y1$ + Z y2n+1zv N

n=1

= a? + 2(2 y,y,~)x2”+1
n=1

2 .3 + x :(zwxwv)
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= :r(1+ yz) (2-2)

1

=——1—1—421/2 2.2,1 ( a: > 1 < 3)

°° (2:)
= Z $2n+1, (2.4:)

n=0 n + 1

where the inner sums are over all i and j such that i and j are odd and i + j = 2n.

This, of course, is a well-known argument (see [Ca58] or [M083]).

On the other hand, we may find the generating function y for binary trees using

slightly different approach. Let T be a binary tree with order at least 3 and root r

and let T3 denote the binary subtree of T with 3 vertices and the same root r. If we

remove T3 of T, along with all arcs incident with vertices in T3, we obtain an ordered

4-tuple (B1, 82, B3, B4) of disjoint binary trees, or 2-branches, satisfying the following

three conditions:

(i) Both B1 and B2 are either empty binary trees or both non-empty binary trees.

(ii) Both B3 and B4 are either empty binary trees or both non-empty binary trees.

(iii) The roots of B1 and B2 were originally joined from the left leaf of T3 and the

roots of B3 and B4 from the right leaf of T3.

Now, using the same technique used to derive equation (2.2), we have

y = a: + x3(1+ 23,2 + 31“) (2-5)

which is equivalent to y = :c(1 + y2).

Lemma 2.3.1 Let T be a binary tree. Then the independent domination number of

T is one more than the sum of the independent domination numbers of all 2-branches

ofT.

Proof: This follows immediately from the algorithm in Theorem 2.1.1. I



38

For 1 S k S 2n + 1, let y2n+1,;.c denote the number of binary trees of order 2n + 1

whose independent domination number is exactly k. Let

Y = Y(w, z) 2 £8331 y2n+1‘kzk):z:2”+1.

n=0 k=1

It follows by a slight extension of the argument used to establish equation (2.5)

that

Y = 23: + 2x3(1+ 2Y2 + Y4). (2.6)

The factor 2 is present in equation (2.6) because of Lemma 2.3.1. Here we note that

y = Y($,1).

Theorem 2.3.2 Let n(2n +1) denote the expected value of the independent domina-

tion numbers of the y2n+1 binary trees with 2n + 1 vertices and define

M : M($) : Z [1(21’1, +1)y2n+1$2n+1.

71:0

Then we have

y
M =—. 2.7

1— 4:;r2y2 ( )

Proof: It is easy to see that

M : M($) : : n(2n +1)y2n+1:r2"+1 = Yz(:c,1).

71:0

If we differentiate both sides of equation (2.6) with respect to 2, set 2 = 1, appeal to

the fact that equations (2.2) and (2.5) are equivalent, and solve for Yz(:c,1), we find

the required result. I

Of course M(m) is the ordinary generating function for the total sum of the inde-

pendent domination numbers of binary trees. Therefore, using Maclaurin expansion

of M(:r), we could find directly the expected value ,u(2n + 1) of the independent

domination numbers of binary trees for small n. Actually, using (2.3), we have

2x

MW 2 \/1— 4$2(1+ \/1— 4x2)(2 - \/1— 4352),

(2.8)
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and routine use of Mathematica produces

Mm = x + x3 + 6:135 +1717 + 6629 + 234.211 + 876213

+3265a:15 + 123301?” + 467663019 + - - - .

Here is a table for ,u(2n + 1) and u(2n +1)/(2n +1). The entries for 2n +1 S 9

were verified by drawing all of the diagrams for binary trees with up to 9 vertices.

Table 2.1: Values of ,u(2n +1) and u(2n +1)/(2n +1)

2n+1 +1

 

Furthermore, we can derive a reasonably explicit formula for ,u(2n + 1) as follows.

Corollary 2.3.3 The expected value of the independent domination numbers of bi-

nary trees of order 2n + 1 is

< n >k

2 1 = k 1 2k—, 2.9u<n+> Z<+> <27». H

where the sum is over all even integers k such that 0 S k S n.

Proof: The following identity appears in [Wi90]:

(1;__”1‘41: " — :0: Mm,“ (210)

2r ) k=0 kl(k+n)l
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for integer n 2 1. Using (2.3) and (2.10), we have

y(2my)n :: Znyn+1$n

1—\/1—43:2
)n+1$n

 

 

: 2"

( 2:1:

= 2n(1_ V 1 — 432 )n+l$2n+1

2:1:2

 

2211((i(n+1)('2k+n)$2k)$2n+1

k___0 kl(lk+n+1)

 

°° 2k+1—n 33%“

= 12" —. 2.11
("J”) E( k+1 )2k+1—n ( )

Hencewehave

_ 31

MM _ 1—4zc2y2

= L‘s/(2%)“
1n:0

°° °° 2k+1—2m 12k“
= 2 122m , . 2.12
E(er) k§m( k+1 )2k+1-—2m ( )

Therefore, by equating the coefficients of 51.3"“ in both sides of (2.12), we have

(2”) (*2. k)k n

“antllmf 21“”m

and hence

< 2n >k

n(2n +1) = 2(k +1)

where the sums are over all even integers k such that 0 S k S n. I

We have seen that M(:r) is the ordinary generating function for the total sum of

the independent domination numbers of binary trees. On the other hand, it is easily

seen from the algorithm in Theorem 2.1.1 that M(:13) counts the number of vertices at
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even levels of binary trees. We now want to find the ordinary generating function for

the numbers of vertices at odd levels of binary trees. For 0 S k S 2n + 1, let w2n+1,k

denote the number of binary trees of order 2n + 1 in which the number of vertices at

odd levels is exactly k. Let

oo 2n+1

W : W(:I:, z) = Z( Z w2n+1,kzk):z:2"+1.

n:0 k:0

By the same argument used to establish equation (2.6), we have

W = x + 223:3(1+ 2W2 + W4). (2.13)

Here we note that y = W(:c,1).

Theorem 2.3.4 Let A(2n + 1) denote the expected number of vertices at odd levels

of the y2n+1 binary trees with 2n + 1 vertices and define

00

N : N(.’II) = Z: A(2n + I)y2n+1.’l}2n+1.

n:0

Then we have

N(:z:) — 2W2 (214)
_ 1 — 41:23)? '

Proof: It is easy to see that

N = N(;I:) = Z A(2n +1)y2n+1:r2"+1 = Wz(:v,1).

n:0

If we differentiate both sides of equation (2.13) with respect to 2, set 2 = 1, appeal

to the equations (2.2) and (2.5), and solve for Wz(:c, 1), we find the required result. I

From (2.9) and the fact that u(2n + 1) + A(2n + 1) = 2n + 1, we have a formula

for A(2n +1):

A(2n+1):(2n+1)—Z(k+1) <2n >1.’ (2.15)

where the sum is over all even integers k such that 0 S k S n.

We also have a useful alternate formula for )1(2n + 1).
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Corollary 2.3.5 The expected value of the number of vertices at odd levels of binary

trees of order 2n + 1 is

<n>k

2.16

< 2n >k ( )

A(2n +1) = :(k +1)2k

for all n 2 1, where the sum is over all odd integers k such that 0 S k S n. We, of

course, have /\(1) = 0.

Proof: We apply to (2.14) the same procedure as in Corollary 2.3.3. Then we have

2k<2n—k>n

<2n>n

 /\(2n +1) 2 :01 +1) , (2.17)

where the sum is over all odd integers k such that 0 S k S n. It is easy to check that

<2n—k>n_ <n>k

<2n>n <2n>k'

 

Therefore we have (2.16) from (2.17). I

To determine the asymptotic behavior of n(2n + 1) / (2n +1), we need the following

technical lemma, which is a slight modification of Theorem 2 in [Be74].

Lemma 2.3.6 Let A(u) 2 20:0 anu” and B(u) = 2210 bnu" be power series with

radii of convergence p1 _>_ p2, respectively. Suppose that A(u) converges absolutely

at u = p1. Suppose that bn > 0 for all n and that bn_1/bn approaches a limit b as

n —+ 00. If Z3220 cnu” = A(u)B(u), then c,, N A(b)bn.

Proof: It suffices to show that cn/bn ~ A(b). Notice that en 2 22:0 akb,,_1c and

2 p2. By repeated application of the triangle inequality, we have

IA<b>—;—: = (n(n—$162+ i czar—bat)
1C:I{+1

 

 

K b —k

+2....(1k_ g; )l
k:0 n
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n n b”—

s |A(b)-Zakb’°1+ Z lakl(|b’°|+l ka>
k:0 k:K+1 n

K k bn—k

+Zlak(b ——)l. (2.18)

16:0 b”

for any K such that 0 S K < n. As n goes to infinity, the first term of (2.18) goes

to zero because A(u) converges at u 2 p2 = b. As n goes to infinity, the second

term becomes the tail of a convergent series because A(u) converges absolutely at

u = p2 = b and bunk/b7, ~ bk. As n goes to infinity, the third term goes to zero

because bn_k/bn ~ bk. Letting K become large, we obtain the lemma. I

Recall that our generating function M(:c) has alternate zero coefficients. To elim-

inate these, we substitute u for 11:2 and define

Md“) 2 Z ”(2” + 11y2n+1un-

n=0

Now we can state the main result of this section.

Corollary 2.3.7 The expected value of the independent domination numbers of bi-

nary trees of order 2n + 1 is

1

,u(2n +1) ~ 5(2n +1)

and the expected value of the number of vertices at odd levels of binary trees of order

2n + 1 is

/\(2n +1) ~ %(2n +1).

Proof: It quickly follows from (2.8) that M...(u) becomes

 

2

MM) 2 ./1— 4u(1+ 1/1— 4u)(2 —W)

Now we let

A(u) = 2 

(1+ ./1- 4u)(2 — ./1— 411)’
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and

1

B(u) : ———\/1___417

Note that A(u) can be rewritten as:

  
2 1—./1~4u 2 1

A(U) — §(————4u + 3 +411 + 3+4u 1/1 —4u),

which has a power series expansion in u with radius of convergence 1 /4. Moreover, it

is not too hard to see this power series converges absolutely at u = 1/4 using the fact

that V1 — 4u has a power series expansion in u with radius of convergence 1/4 which

converges absolutely at u = 1/4 (see, for example, p.426, [Kn90]). On the other hand,

we have

1 °° —1

B(u) =— — Z<—4)“( )u
_0

for lu|<1/4. If we let

it is easy to check that

 

as n —> 00 and that b), > 0 for all n. Note that M..(u) : A(u)B(u). Therefore from

Lemma 2.3.6 we have

I

(”(271 +1)y2n+1 N Alllbn = bn

and hence

  
b, _1

u<2n +1) ~ = (—4)”( 2
y2n+1

1

This completes the proof of the first part of the lemma. The second part of the lemma

comes immediately from the fact that /\(2n + 1) : (2n + 1) — u(2n + 1). I
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A. Meir and .1. Moon showed (see [MeM73] or [MeM75]) that the expected inde-

pendence number z/(2n + 1) of binary trees of order 2n + 1 is

V(2n +1) ~ (.585786--)(2n +1).

We observed in Theorem 2.2.1 that 01’ (T) S B(T) for any binary tree T. Our result

u(2n +1) ~ (.5)(2n +1)

is consistent with these two facts.



Chapter 3

Tournaments

3.1 The Domination Number of a Tournament

In this section we will investigate domination numbers of specific digraphs, known

as tournaments. A tournament is a diraph in which every pair of distinct vertices has

exactly one arc. A transitive tournament is a tournament such that if no and vw are

arcs then uw is also an arc.

First we introduce an algorithm which finds a dominating set of a given tourna-

ment. This algorithm is greedy in the sense that it selects a vertex that covers a

maximum number of yet uncovered vertices in each step.

Algorithm 3.1.1 Let T1 = T be the given tournament of order n and let So 2 (13.

Put i =1 and go to (1).

(1) Choose a vertex v,- with largest outdegree in T,- and let S,- : S,_1 U {vi}.

(2) Let Ti+1 be the subtournament of T,- induced by V(T,) — N+[v,~].

(3) If T,“ is an empty tournament, then let S = S,- and stop. Otherwise, put

i: i +1 and return to (1) I

We note that the complexity of this algorithm is 0(n2). But we will see shortly

that this estimate can be improved.

46
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Let T be a tournament of order n. Then we know that there exists a vertex v

in T with od(v) Z (n — 1)/2 since Evev od(v) = n(n — 1)/2 and hence the average

outdegree over all vertices is (n— 1) /2. In addition, every subdigraph of a tournament

induced by a subset of V(T) is also a tournament.

Using these simple observations, we prove the following theorem.

Theorem 3.1.2 Let T be a tournament of order n. Then Algorithm 3.1.1 terminates

after at most ]_lg(n + 1)] steps and S is a dominating set for T. Therefore we have

1 s cm s 11801 +1)1.

Here, lg denotes the logarithm with base 2.

Proof: Step 1: Let T1 = T and choose a vertex v1 of T1 having maximum

outdegree.

Step 2: Let T2 be the subtournament of T1 induced by V(Tl) — N}; [121]. Since

 

 

n—l n+1

INilvlllZT+1:
2 ’

we have

+ n—1

n2 ;: IV(T2)] = 71 _ INT] [”1“ S 2 '

Choose a vertex 122 of T2 having maximum outdegree.

Step 3: Let T3 be the subtournament of T2 induced by V(Tg) — N£[v2]. Since

n +1

wanna—2, .

wehave

n —1 — 1+2

n3 :2 IV(T3)| = n; — |N£[v2]l S L2— S%2

Choose a vertex v3 of T3 having maximum outdegree. We continue this process up to

step k.
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Step k: Let Tk be the subtournament of Tk_1 induced by V(Tk_1) — [Vi—1 [vk_1].

Then

me 1: IV(Tk)| = 711—1 — |1V'1,._1 [Wk—Ill

’nk_1 — I.

_ 2

n_(20+21+.._+2k—2)

— 211—1 '

 

Choose a vertex v), of Tk having maximum outdegree.

After step k, the number of vertices in T that are not yet covered by {121, v2, . . . , vk}

nk—I

2

|
/
\

n), — lNilvkll

< n_(20+21+_..+2k—1)

_ 21c

 . (3.1)

We want to find the minimum value k’ of k that makes (3.1) zero. It is easy to see

that k’ S lg(n + 1). Clearly, {v1,v2,...,vk1} is a dominating set of T. I

Now we can see from Theorem 3.1.2 that the complexity of Algorithm 3.1.1 is

O(n log n).

We will discuss the sharpness of the upper bound in the above theorem later. The

lower bound is sharp. Any transitive tournament will do.

J. Moon stated in [M068] that ngn — 21g lg n] S 01(T) S [lg(n + 1)] if n 2 2,

a result which was attributed to L. Moser. But this lower bound is incorrect as we

have already shown.

It is easily seen that every tournament is unilateral and that every strong tourna-

ment has at least three vertices.
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Corollary 3.1.3 Let T be a strong tournament of order n. Then we have

2 S a(T) S [lg(n + 1)].

Moreover, the lower bound is sharp.

Proof: We know that a tournament is strong if and only if there exists a spanning

cycle of the tournament. Therefore any strong tournament has no vertices of outde—

gree n — 1 and so a(T) Z 2. For the sharpness, we construct T as follows. Take an

n-cycle Cu and let v be a fixed vertex of C7,. Join v to all possible vertices of Cu and

choose the other arcs arbitrarily. Then the resulting tournament T is strong since it

has a spanning cycle and a(T) = 2. I

A tournament T is called reducible if it is possible to partition its vertex set V(T)

into two nonempty sets V1 and V2 in such a way that every vertex in V1 dominates

all the vertices in V2. Of course, a tournament is irreducible if it is not reducible. It

is well-known that a tournament T is irreducible if and only if it is strong and that a

tornament of order n is reducible if and only if 21:1 od(v)) = (’2") for some k < n.

Now we need the following definition.

Definition 3.1.4 A minimum subtournament, denoted m(T), of a reducible tourna-

ment T is the subtournament T[V1] induced by V1 satisfying the following properties:

(1) V(T) is partitioned into two nonempty sets V1 and V2 in such a way that every

vertex in V1 dominates all the vertices in V2.

(2) V1 has the minimum cardinality for which property (1) holds.

This definition says that only the arcs in T[V1] play an important role in the sense

of domination. Therefore we have the following theorem.
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Theorem 3.1.5 Let T be a reducible tournament with a minimum subtournament

m(T). Then we have

a(T) : a(m(T)).

Proof: Let V1 2 V(m(T)) and V2 2 V(T) — V1. Then V1 and V2 are nonempty

sets of vertices such that each vertex of V1 dominates all vertices in V2. Let S be a

minimum dominating set of m(T) Then S is clearly a dominating set of T and hence

0(T) S 01(m(T))-

Let R be a minimum dominating set of T. Then R cannot be a subset of V2 and

hence R intersects V1. Therefore R 0 V1 is a dominating set of T and so R is a subset

of V1. Moreover, R is a dominating set of m(T). Thus a(m(T)) S n(T). I

3.2 The Domination Number of a Random Tour-

nament and the Paley Tournament

Let us consider the probability space 7;, consisting of random tournaments on the

vertex set V = {1,2, . . . ,n}. By a random tournament we mean here a tournament

on V obtained by choosing, for each 1 S i < j S n, independently, either the arc i]

or the arc ji, where each of these two choices is equally likely. Observe that all the

2(3) possible tournaments on V are equally likely.

Theorem 3.2.1 A random tournament T E 7;, has domination number either

|_k,,.] +1 or ]_k,.] + 2,

where

k... = lgn—2lglgn+lglge

and lg denotes the logarithm with base 2.
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Proof: For each T E Tn, let X(T) be the number of dominating k-sets of T. If K

is a fixed k-set of vertices, then

P(K dominates a fixed vertex in V — K) = 1 — 2"“

and

P(K dominates all vertices in V — K) = (1 — 2"“)""°.

Therefore, we have

E[X] = (Z)(1— 2*)“.

The rest of this proof is exactly the same as the proof of Theorem 1.3.2 once we take

r=2.I

Now let us consider the sharpness of the upper bound of theorem 3.1.2. Theorem

3.2.1 says that not only do tournaments of order n with a = (1 + 0(1)) lg n exist, but

when n is large, the overwhelming majority of tournaments will have a domination

number near lg n. Can we construct such a tournament?

The proof of Theorem 3.1.2 strongly suggests that a quasi-random tournament has

a large domination number (see [ChG91]). Then do quasi-random tournaments really

have domination number very close to the upper bound [lg(n + 1)] for n sufficiently

large? A well—known example of a quasi-random tournament is the so—called Paley

tournament Qp(Zp,E). For a prime p E 3 (mod 4), the vertices of (2,, consist of

integers modulo p. A pair (i,j) E E iff i —j is a non—zero quadratic residue modulo

p, i.e., iff (1%) = 1, where we use the familiar Legendre symbol. Then (2,, is a well-

defined (p— 1) /2—regular quasi—random tournament (see [ChG91]). It is easily checked

that a(Qp) = |_lg(p +1)] for p = 3,7,11, and 19. But a(Q31) S 4 < (lg(31+1)]

since {1,2,4,5,7,8,9,10,14,16,18,l9,20,25,28} is the set of all non—zero quadratic

residues modulo 31 and hence {0, 27, 29,31} is a dominating set for Q31. This shows

that a(Qp) = [lg(p + 1)] does not hold for some p. What if p is large enough? Now
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we consider Schiitte property. We say that a tournament has (Schiitte) property 5;, if

for every set of k vertices there is one vertex that dominates them all. For example,

a directed 3-cycle has property 51.

The following lemma is in [GrS71], but it was used to find a lower bound of p for

Q], to have property Sk.

Lemma 3.2.2 ([GrS71]) Ifk satisfies the inequality

1) — {(k — 2)2k-1 +1}\/p7 — 2“—1 > 0,

then the Paley tournament 6),, has property 5),.

Proof: It is easily seen that 62,, has property 5;. if and only if for all a1, . . . ,an E V

there exists an x E V such that

x—a,

( )=1 for 1SiSk.

Set x(a) = (g) and let A = {(11, . . . ,ak} denote a set of k arbitrary fixed vertices of

Qp. Define

k

f(A) = Z H{1+X(IB -aj)}-
xEV—A j=1

Then f(A)2~llc counts the number of vertices that dominate all the vertices in A. Now

define

p—l k

9(A) = 2 H{1 + X(‘13 - (11)}.

x=0j=1

MA) = Z Hf1+ x(a. — (11)}-
i:0 j::1

Then we have f(A) = g(A) — h(A). Expanding the inner terms of g(A), we have

p—l kp—l p—l k

9(A)=21+ZZX($—01)+ZZ Z X(w—aj1)"'X($—aj.)-

21:0 112:0 j=1 1720 3:2 j1<"'<.ls
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The first two terms of this are p and 0, respectively. To estimate the remaining terms

we use the result of Burgess (Bu62]:

1:111 — a..)~-x<x — a1)! 3 (s — 1w

for (1,1,. . .,aJ-s distinct. Thus we have

k 12-1

lg(A)—pl S El: 2 X($—aj1)"'X($—aj.)|
5:2 z=0 j1<"‘<js

|
/
\

sir—w2

(k — 2)2’°-1 +1},/,3.

E
l
:

||

A
:

Therefore, we have

9(A) Z P — {(1C - ”2“] + 1}\/13-

Now consider h(A). If h(A) 7’: 0, then for some i0, Hf=1{1 + )((a,~0 — a,)} is nonzero.

Thus, for all j, )((a,-0 — a,) 75 1 so that for allj 7Q i0, )((a,'O — a,) = 1. But this implies

x(aj — (1,-0) = —1 for allj 75 i0 and consequently

k . .
. . _ 0 for 2 7f i0

g{1+x(a.—ag)}—{ 2..-. ,0, ,2,

Therefore, in any case, we have

Thus, we have

2 p—{(k—2)2k-1+1)./23—2H

and hence Q, has property 5;, if p — {(k — 2)2"“‘1 +1}yp — 2’“1 > 0. I

Now we are ready to state the following theorem.
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Theorem 3.2.3 The domination number of the Paley tournament 6),, satisfies

an.) > (1+ 0(1))1181».
2

Proof: Suppose Qp satisfies property Sk. Then for every set S of k vertices there

exists a vertex not in S that is dominated by S and hence every dominating set must

have more than k vertices. Consequently, 01(Qp) > k if Qp satisfies property Sk.

Now we know that (2,, satisfies S), if

{(k — 2)2k-1 + 1),/1.7+ 2k-1 < p (3.2)

and hence we want to find the maximum value k’ of k satisfying (3.2) when p is large.

But it is easy to check k’ < lg(p + 1) and so we let

k=clgp—dlglgP+1, c>0andd20.

Then the left side of (3.2) becomes

pc—l/Z pc i pc—l

“(lgpr 1320112)” + up + (18p)d}' (3'3)

To make the second factor of (3.3) smaller than 1 when p —) 00, we must have c S 1/2.

But the maximum value k’ of k can be obtained when c = 1 /2 and d > 0. Therefore

, 1

k = Elgp—dlglgp+ 1, d> 0

and so

an.) > k'= (1+ 0(1)); 1817- -



Open Problems

This thesis covers only a portion of the topic of domination for graphs and digraphs.

But we believe that many more results will be forthcoming in the near future. In the

course of our researches, we struggled with many difficult questions. Among them,

we would like to state the following unsolved problems.

(1) We have shown that a digraph D with order n and minimum indegree 6‘ Z 1

has domination number

MD) 3 L26- +1

 
n1

in Theorem 1.2.6 and that this upper bound is sharp for infinitely many n when

5” = 1 in Theorem 1.2.9. For 6‘ = 2, can we either sharpen this upper bound or

 construct a digraph with order n and 6— = 2 whose domination number is (266:1; n] ?

(2) Regarding binary trees as undirected graphs, A. Meir and J. Moon showed in

[MeM77] that the expected domination number of a random binary tree with 2n + 1

vertices is asymptotic to (.3782---)(2n + 1). What about the asymptotics of the

expected domination number of a random binary tree in our sense, that is, if we

regard binary trees as directed away from the root? The details will be published

elsewhere.

(3) What is the asymptotic behabior of the expected domination number and the

expected independent domination number of a random oriented tree? This seems

to be a difficult problem even for the simplest families of oriented trees, such as

55



56

orientations of the paths of order n.

(4) We have shown that a tournament T of order n has domination number

(X(T) S [lg(n +1)l

in Theorem 3.1.2. Here lg denotes the logarithm with base 2. Can we either sharpen

this upper bound or construct a tournament with n vertices whose domination number

is this upper bound?

(5) Can we find the domination number of the Paley tournament 6),, as a function

of p? What about the asymptotics for the domination number of Qp?

(6) Finally, we want to state a conjecture, which is not unrelated to the main

topic of this thesis.

Conjecture: Let C be a connected cubic (or 3-regular) graph with n vertices. Then

a(G) : 1333).

The author encountered the same conjecture in [Re9x] but our conjecture was

established independently due to the following clues. First, it is true for connected

cubic graphs with order up to 14. We checked 621 diagrams in [ReW9x] for unlabeled

connected cubic graphs with up to 14 vertices. Second, Robinson and Wormald

showed in [ROW92] that almost all cubic graphs are hamiltonian. Since we know

that a cycle of order n has domination number [n/3], it follows that almost all cubic

graphs satisfy the conjecture.

In addition, this conjecture is best possible. To see this, consider a cubic graph

G with 6n vertices consisting of the cycle 'Ul’Ug - --v6nv1 and the edges Ufii+106i+4,

v6i+2vsi+5, and v6i+3vsi+6 for i = 0,. . . , n — 1. Since G contains a Hamiltonian cycle,

a(G) S [6n/3] = 2n. On the other hand, any dominating set of C must contain at

I.  
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least two of the six vertices U614.“ - - - ,v6,+6 for each i and hence a(G) 2 2n. Therefore

a(G) = 2n = [6n/3].

We note that the conjecture requires that all vertices of G should have degree

exactly three rather than at least three. To see this, we consider a cubic graph H

with 8 vertices consisting of the cycle vovl - - - mm and the edges mm, mm, v2v5, and

v3v6. Next construct a graph G from 3n disjoint copies of H by adding an edge

between all pairs of vertices both of which are labeled v0. Then it is easily checked

that oz(G) = 9n > 8n = HVl/3].
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