.3312... .xe. « v v. :kfi: . h F... .1 :11 .1: \ .\ v: 1" “y’all... : . al . Ii. .. l. . Lav. . .1 y! ‘h‘w..| :3. .(I. .33) finds: 3!: \ . y . ? L33... ..,. 1..-, 4 ,. Acnwvu .mmwagi ‘ . \ MICHIGAN STATE uu mm llllllllllllll llllllllllll N 31293 010201717 l This is to certify that the thesis entitled THE EFFECT OF SOIL MOISTURE ON THE OZONATION OF PYRENE IN SOILS presented by James E. Day has been accepted towards fulfillment of the requirements for M.S. Environmental degree in Engineering / éajor professor Date ' 11/18/94 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State Unlverslty rues u serum ao'x'to and}. mi. checkout m your mom. TO AVOID FINES mum on or More data duo. DATE DUE DATE DUE DATE DUE v.1 \L'lt MSU I. An Namath. ActloNEqual Oppommlty Initiation WSW-9.1 THE EFFECT OF SOIL MOISTURE ON THE OZONATION OF PYRENE IN SOILS By James Edward Day AN ABSTRACT OF A THESIS Submitted to Michigan State University in partial fiilfilhnent of the requirements for the degree of MASTER OF SCIENCE Depanment of Civil and Environmental Engineering 1994 Dr. Susan J. Masten ABSTRACT THE EFFECT OF SOIL MOISTURE ON THE OZONATION OF PYRENE IN SOILS By James E. Day This study demonstrates the feasibility of imsjm ozone vapor shipping The ability to satisfy the ozone demand of several soils was demonstrated, and the effect of soil moisture on the oxidation of pyrene was studied. OzonebreakthroughwasachievedinOttawasandandaNIeteasoilfiom Michigan) inexperiments conductedin lOcm. soil columns. Theozonedemandforthese systems could be satisfied as the effluent ozone concentration fi'om the soil column increased fi'om zero to the ozone concentration in the influent line. The results obtained from the experiments conducted in pyrene contaminated soils suggest tint the decomposition ofozone, and the degradation ofpyrene, is dependent on the surface area coverage of the soil particles. The oxidation of 100 ppm pyrene contaminateddryMeteasoil usinganozonemassof28 mgwasdemonstratedby 82% removal of the contaminant. In moist soil systems, it was demonstrated by the removal of 57% of the pyrene using an ozone mass of 29 mg. The moisture content of the system was approximately 3%, and the experiments were ozone limited batch reactions. These results suggest that the oxidation of pyrene in dry and moist soil systems is the result of the direct reaction of ozone with the surface adsorbed pyrene. There is no quantifiable improvement in the treatment efficiency due to an indirect reaction mechanism involving OH radieals generated by the reaction of ozone and soil moisture. Iwouldliketoextendmysincereappreciafiontoeverybodywhopmvidedme with guidance through the duration of this study. I have encountered numerous people with the knowledge and patience necessary to aid me in my experiences. In particular, IwouldliketothankDr. SusanJ.Masten,whosepatienceandtmderstandingwas instrumental in my completion of this work, and whose professional guidance brought me through the dificulties in conducting and completing laboratory work. IalsowouldliketothankDr. SimonDavies forhis guidanceandexpertisewith analytical instruments, as well as many helpful suggestions with the direction and foam of my work Also, I would like to extend my appreciation to my final committee member, Dr. Roger Wallace, who provided me with encouragement with my laboratory work, and through numerous aeademic courses. This research was supported through the US. EPA omce of Exploratory Research, Contracts R-816922-Ol-O, and R-816922-02-0, and the State of Michigan Research Excellence Fund: Hazardous Substances and Biorernediation. Finally, I would like to thank my family and fiiends for the encomagement that Ireceivedfltroughmyentireedueational experience. Also,Iwanttothankthemost importantpersoninmylife, Esther,whosepatience, mderstandingandlovemakesthe most signifieant contribution to my experience. iii List of Tables vi List of Figures vii List of Abbreviations viii I. Introduction 1 I]. Background 5 2.1 Ozone Reaction in an Aromatic System 5 2.2 Ozone Decomposition in Water 6 2.3 Ozone Reaction with Organic Matter 10 2.4 Surface Adsorption of Organic Chemicals 11 2.5 Field Applieation of In-situ Ozonation 12 III. Materials and Methods 14 3.1 Materials 14 3.2 Analytical Meflrods 17 3.3 Experimental Methods 21 3.4 E)q)erimental Design 26 IV. Ozone Transport Study 32 4.1 Ottawa Sand Ozone Transport 32 Experiments 4.2 Modification of Ottawa Sand System 34 4.3 Metea Soil Ozone Transport 36 Experiments V. Reaction Kinetics 40 5.1 Ozone Auto-decomposition in the 40 Circulating Batch System 5.2 Pyrene Contaminated Media - No Organic 44 Matter 5.3 Metea Soil 49 iv VI. Discussion and Conclusions 57 6.1 Surface Coverage of Pyrene 57 6.2 Surface Coverage of Water 60 6.3 Implications for Imsim Ozone Vapor 61 Stripping 6.4 Further Research 62 List of References 64 Appendices 67 A. Ozone Transport Study 68 B. Kinetic Rate Constant Data 76 C. Extraction Data 109 D. Example Calculations 133 3.1 3.2 4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6.1 Em Soil Characteristics Results ................................. 17 Gas Chromatography Operating Conditions ...................... 19 Ozone Transport in Ottawa Sand Colurmrs ...................... 33 Ozone Transport in Modified Ottawa Sand Columns ............... 35 Natural Soil Ozone Transport Experiments ...................... 37 Energy Consumption Calculations ............................ 39 Ozone Decomposition in Empty System ........................ 41 Ozone Decomposition in Clean Glass Beads ..................... 43 Ozone Decomposition in Ottawa Sand ......................... 43 Ozone Decomposition - Pyrene Coated Glass Beads ................ 45 Ozone Decomposition - Pyrene Coated Ottawa Sand ............... 47 EmactionData-PyreneCoatedOttawaSand .................... 49 Pyrene Coated Dry Natural Soil .............................. 52 Pyrene Coated Moist Natural Soil ............................ 56 Summary of Experimmtal Results ............................ 58 vi 1.1 2.1 2.2 3.1 3.2 3.3 3.4 3.5 4.1 4.2 5.1 5.2 5.3 5.4 5.5 5.6 Bag: Conventional Vapor Extraction System ......................... 3 Proposed Reaction Pathway of Pyrene ......................... 7 Reactions of Aqueous Ozone in the Presence of Solutes ............. 9 Diagram of Semi-Continuous Flow System ...................... 22 Diagram of Column Saturation Technique ....................... 23 Diagram of Colurrm Drainage Technique ....................... 23 Circulating Batch Treatment System ........................... 25 Relative Humidity vs. pF .................................. 3O Ozone Breakthrough in Ottawa Sand System ..................... 32 Ozone Breakthrough in the Metea Soil System ................... 36 Ozone "Auto-degradation" .................................. 42 250 ppm Pyrene Contaminated Ottawa Sand ..................... 46 Rate Constant Determination - Ottawa Sand ..................... 48 Rate Constant Determination - Metea Soil ....................... 50 250 ppm Pyrene Contaminated Metea Soil ...................... 51 System Response to Moist Contaminated Soil .................... 54 vii PAHs EPA VOCs HPLC ASTM BET UV/VIS QA/QC tBuOH NaOH K2804 DI SCFM kWh SE SE OM LISIDEABBREYIA’IIQNS I1 . . Polycyclic Aromatic Hydrocarbons Environmental Protection Agency Solutes Organic Radical Volatile Organic Compounds Potassium Iodide High Performance Liquid Cinematography Am. Society for Testing & Materials Brunauer, Emmet, and Teller Ultraviolet/Visible Flame Ionization Detector Gas Chromatography Quality Assmance/Qrality Control Tertiary-Butyl Alcohol Sodium Hydroxide part per million Potasium Sulfate De-Ionized Molarity Standard Cubic Feet per Minute kilowatt-hour Standard Error of the Estimate Coeflicimt of Determination Standard Error Organic Matter Relative Humidity viii CHARTER} INTRODUCTION The environmental importance of polycyclic aromatic hydroearbons (PAHs) is madeapparentbymanydifl‘erentfactors. Thesefactorsincludethepathwaysof muodrmfionunoflremvimnmermflreenmtmwhichdreyphysieaflyexistmflre environment, and the biodegradability and carcinogenicity of these compounds. PAHs mehmwwedmmflremvimnmanflmughnmynannalpmcessegaswellasflnough anthropogenic processes. Sources of naturally occurring PAI-Is are volcanic eruptions and natural wildfires, and anthropogenic sources are primarily fossil fuel combustion processes, such as automobiles, coking plants, and manufacturing processes (1). PAI-Is have been detected in food, water, soil, and air, where long-range atmospheric transport and deposition of these pollutants have implications for each of these eategories (1,2,3). ThedetectionofPAHs insoilshasbemdoammtedandtheresultsofonestudyshowed their presence in urban and rural, as well as in forest soils (1). The biodegradability of PAHshassemhnfitedsurdy,Mflrsigrfifiemnresrfltswnfinedprimmflymflrose compounds with fewer than three rings (4,5). The higher molecular weight PAHs are partially degraded by only a few isolated bacterial strains. Fm‘thermore, the bioacannulafionofPAHshasbeardoannmtedinavmietyofsedhnaflandwata‘ residing organisms (5,6). Finally, the US. EPA has identified 16 unsubstituted PAHs as priority pollutants, with eight typically considered as possible or probable carcinogens (1). The determination of quantities of PAHs in each of the sources mentioned above has proven to be a formidable task in terms of the ability to isolate these compounds from 2 naturalenvironmentalsarnples. Forflreeaseofsoflsdredetectedlevelsappeartobe highly dependent on the location of sampling, with higher concentrations occurring in the vicinity of the PAH source (3). Relatively uniform concentrations of PAHs have been found in surface soils (1,3), which can be attributed to atmospheric deposition. From data compiled at site investigations by Menzie et a1. (1992), the median concentratiom of earcinogenicPAHsencomrteredintheforesLurban, andrural soilstested,rangedfi’om 50 ppb to 1000 ppb. Thepmposeoftheresearehdescribedinthispaperistoevaluateflreuseof gaseous ozone for the oxidation of pyrene, under increasingly complex environmental conditions. Previousworkwith PAHsbyYao (7)has shownthat inthepresenceofdry Metea soil, surface adsorbed PAHs can be significantly degraded using a continuous flow ofgaseous ozone through a soil column system. Furthermore, work with chlorinated compomdsbyMastm(8),hasshownflratmflrepresmceofhunficmataiaLozone degrades to form secondary oxidants. However, it is uncertain from the surface adsorbed PAHexpaimartswhethe'itisadireaozoneoxidafionofthetargetconmomd, orifthe degradationofthetarget compoundisduetosecondary oxidationbyaradical species, such as the OH radieal. Theozonewouldbeappliedinthe fieldthreughtheuseofamodifiedvacrnnn extraction system. Figure 1.1 shows the conventional vapor extraction apparatus. The ozonewouldbe intreducedintothetmsaturatedzone throughtheuseofan injectionwell, and the flow ofozone can be induced using an extraction well. Because ofthe relative reactivityandinstability ofO3, itisnecessarytogeneratetheozoneonsite. Thepresence ofasignifieantquantity ofreducedrnaterials inthesubsurfaceenvirenmentwill exerta 3 significantozonedemand. Thenattnalorganicmatterisalsoofconcemwhm Carbon adsorber Induced-draft tan Forced—draft lniection manifold Sampling and I ‘L Extraction manifold metering ‘— r.._. Figure 1.1: Conventional Vapor Extraction System considering the feasibility of ozone vapor stripping The ozone demand exerted by these materialsmaybethedeterminingfactorinthecostofremediation. Furthermore, itis necessary to study finther the effect of soil moisture on the ozone demand of soils, as well as the effect of moisture content on the removal of surface adsorbed PAHs. The decomposition of ozone in water is known to produce hydroxyl radicals, which are powerful and less selective oxidants. This suggests that the presence of moisture may improve the removal efficiencies of some more reealcitrant PAHs, through the indirect reaction of hydroxyl radicals with the surface adsorbed PAH. The question of utilizing other treatment techniques to further rernediate the site following ozone treatment will not be directly addressed in this research However, it is entirely feasible that nutrients could be provided to the site following initial oxidation of the target contaminants to stimulate the biological oxidation of the remaining 4 contaminants. Itmaybenecessarytoreinoculateflreafl‘ectedareawiflrpopulations of native microorganisms due to the disinfection capabilities of ozone. Once a population of microorganisms is established, the initially oxidized products of ozonation may be biodegraded further to enhance the overall removal of the PAHs. QIAEIERJI BACKGROUND Ozonehasbeenusedasmrorddizingagentforyemsinwaterandwastewatcr treatrnart. Itisaverysuongoxidant(Eo=2.06V)thatismorepowerfirlflranmost oxidants commonly used in We and wastewater treatment. 210 B|°°Il! I'SI The reaction of ozone with aromatic compounds has been well documented, however, the precise medmnisms are not well understood (10,11). The rmjority of organic compounds for which kinetic data is available and which react with ozone appreciably contain unsaturated carbon-carbon bonds (9). IngmeraLflrecarbon-embondoublebondsmaromaficcompomtkaremuchless reactive with ozone than the double bonds of olefinic compounds (10). This result is attributable to the eflects of conjugation present in aromatic compounds, as well as conjugated di- and trialkenes (9). There are two primary mechanisms of interest for the attack ofozone in the aromatic system. The two pathways involved in the direct ozone attack mechanism are electrophilic substitution, and 1,3-dipolar cycloaddition. The electrophilic reaction is restricted to sites with strong electronic densities. Dore and Legube (1983) demonstratedthat, as a general rule, simple aromatic products fall intothe following two categories: 1) those with electron-donating groups (OH, NH?) react readily with ozone, and 2) those with electron-withdrawing groups (NOZ, Cl), which react much more slowly. The electron donating groups demonstrate a much stronger electronic density at the molecular site where the ozone attack occurs. The 1,3- dipolar 6 cycloaddition reaction involves the reaction of the dipolar ozone molecule with unsaturated earbon bonds. The benzene molecule is the classic example of aromaticity. The degree of substitution of the benzene molecule has an important effect on the ability of ozone to attackthecompound Thepresenceofalkylandothefimctionalgroupsontheberzme ring facilitate the electrophilic attack by ozone. The mechanism by which benzene and substitutedbenzenecompormdsreactwiflr ozoneisnotwell understood. ForPAHs, the reactivities and mechanisms of these compounds vary considerably; consequently, the draracteristiesofpyrenewillonlybediscussedindetail. Theproposedreactionpathway fortheozonationofpyrereisshowninFigureZ.l. InpyreretypePAHs,theatomoflowestatom—loealizationeregyisnotapartofthe bond of lowest bond-localization elegy. Therefore, thee is competition for the position of initial ozone attack for this reaction. In an aqueous tert-butyl alcohol solution, the reaction of pyrene with ozone resulted in a monomeric monozonide (3). The intermediates in this step are earbonyl oxides (2,4), which are similar to the biphenyl earbonyl oxide structure resulting from the ozonation of phemnthrene (29. Furthe prodrwtsresmtedfiomueamreuwiflrexcessomnem.Prodwtsisolatedfiomflre ozonation of pyrene indieate initial cleavage of the 4,5 bond, which is the bond of lowest bond-localimtion energy. For pyrene, there is no evidence that indieates ozone attack of the atoms of lowest atom-loealimtion energy (11). 22 0 D 'I' . MI | Anoflreimportantreactionpertainingtoozonechemisuyinvolvesthe decomposition of ozone in water. In environmental systems, water will most likely be Figure 2.1: Proposed Reaction Pathway for the Ozonation of Pyrene 8 present. Inaqueoussysterrscontainingirnptmfies,flredecmrrposifionofozonewin resultinflrefmmafionofsecondaryorddants,flrennstimpmtambeingOH. Inthese systems, ozone can directly oxidize the target compound, or the hydroxyl radicals, OH', (generated by the decomposition of ozone) can react with the target compound (12). The decomposition of ozone is affected by the pH of the solution, with the rate of decomposition increasing with increasing pI-I. Furthermore, as first suggested by Weiss, the decomposition of ozone can be accelerated by a radical-type chain reaction which can be initiated, promoted, or inhibited by the presence of various solutes in a nonpure solution (13). The interaction of radieals, ozone, and substitrrents of an "impure" water is an extremely complex mechanism. Figure 2.2 shows the reactions ofaqueorm ozone in the presence of solutes and the interaction of these radical-type chain reactions. The assmnptions andmechanisms forthesereactions wee outlinedby StaehelinandHoigné, 1985 (12). The first step in the initiation reaction involves the reaction of ozone with CH ions leading to the formation of one superoxide anion ('Oz') and one hydroperoxyl radieal (I-IOZ°), which are in acid-base equilibrium (pK,=4.8). Solutes (M) may also react with ozone directly, thereby consuming the ozone or producing an ozonide ion radieal,(’03‘). Thisradieal ioneanbeprotonated, anditwilldecomposetoforrnhydroxylradiealswhich reactfirrthewithsolutes,M Organicsolutes,l\/I,thatactaspromotes,willreactwith the hydroxyl radicals to form an organic radical, R', which with addition of 02 will eliminate (’HOZ)/('Oz') in a base catalyzed reaction. This formation of ('02) will react firrtherwithozoneinwhatmaypromoteachainreaction. Thisiskrrownasthe propagation step. The termination step involves rmny other inorganic or organic Figure 2.2: Reactions of Aqueous Ozone in the Presence of Solutes 10 substrates which react with the hydroxyl radicals and do not produce appreciable amounts of (Hog/(0;). These substrates are ealled radical scavengers.1 The presence of subshates(e.gcarbmatemdbiembonate)inflresystenmaybdraveasmdical scavengers, and thereby consume hydroxyl radicals. In system which the direct ozone reacfionpredonfinates,flremdiedseavergemecharfismnnysevethepmposeof improving the removal efficiency of specific target compounds in the system, by consuming radicals that would otherwise lead to furthe decomposition of ozone. Thereactionofozonewiflrnatmally occurringorganicmatteisanotheimportant reaction in ervimnmertal systems. Soil organic matte is largely comprised of hurnic and organic acids that form stable complexes with iron and manganese ions. The structure of the hurnic acid component of hurnic substances is of primary importance in ozone chemistry, beeause of its principally aliphatic and aromatic composition randomly linked ina'backbone' or'core' structure(l4). Ozonewill oxidizethesecomponertsofhumic acids,aswellasflremxfl)mdmmrganese(fl)presenmsofl,dreebypromfingflre decomposition of ozone. The implieations of the consumption of ozone by a nurnbe of substancesthatexistinnatural soils areofprimaryirnportanceinassessingthefeasibility ofimsitnozonation. Themostirnportantfactoristheabilitytotransportozonean "acceptable" distance fiom the injection well to oxidize target compounds within a treatmentarea. ‘ Foramecompleedeseipfimofflremechanismdeseibedaboveseerefeerce 12. The accessibility of an organic chemieal to ozone in the subsurface environment isdependertonthephaseinwhichthechemical resides. Inothewords, theinteface atwhichadsorptionoccurswithinthesoil matrixafl‘ectstheaccessibility ofozonetothe organic molecule. Research suggests that many organic chemicals, including PAHs, bind onto organic macromolecules such as fulvic acid, humic acid, and organic matte (14). More hydrophobic compormds are readily adsorbed to lipophilic organic nurtte in soils and, theefore, become relatively immobile (16). This Menism is commonly refered to as hydrophobic bonding, and for PAHs, it is an important mechanism for describing their fateinsoil systems. Formorevolatileorganicchernicals, theportionofthecompormd that partitions, or dissolves, into the soil organic matte will be increasingly dificult to remove by the vapor extraction mechanisms. The question arises whethe partitioning is the primary mechanism responsible for sorption of organic chemicals. Most active surfaces on soil are negative; howeve, for the case of dry soil, the surface contains both positive arnd negative charges. The surface of organic molecules contain small fluctuating dipoles, with no permanent electrostatic polarization on the molecule. The net result of the close proximity of the molecule to the soil surface is momentary electrostatic polarimtions, and an attraction between the moleculeandthesoilsurface(16). Consequently,thepeserceofchargedsurfacesothe thanorganicmatteeanafi'ectflredistributionoftheorganicchenieal onthesoil surface. Theefi'ectofwateinflresoilsystemonthe distribmionoftheorganicchemieal is the final condition that will be briefly discussed In the ease of hydrophobic molecules, 12 waspyrmeflrecmcematimmflreaqueomphasecmbecmmideednegligible. Howeve, the coating of srn'faces of the soil with wate will affect the available sites for adsorptionofthechenical. Studieshavesuggestedthat, duetocycles ofwettingand rewetting of soil surfaces, the polar parts of organic molecules may become oriented mwedsmewflmnficeWMgmdlesspolepartsbecomeoneuedawayfiomn (17). Consequently, available sites for adsorption on the soil surface become increasingly inaccessible to the organic molecule. Furthermore, the uniform monolaye distribution of the organic molecule will increasingly yield clumps of the chenieal on available sites. 25E”! l' I' [I 'I Q |° Thememsforuansporfingair,oroxyge1,incorwerfionalvaporsuippingis idenficaltoflreproposednemnsforumspmfingozmeflnoughflnesubsmface environment. Injection wellsintrorhrcefreshair,oroxygen,intothesubsurlace mvhmmmtmdwrrpledwimmeemacfimweflsmchweanflowfluoughdnemgims of maximum concentration of contamination. These vapor stripping systerrns are effective for volatile, or semi-volatile contaminants only. Howeve, the extent to which these systemsaretmly efi‘ectivehasrecertly conneintoquestion. It has been suggested that vapor stripping as a means for removing volatile organic wmpomds(VOCs)fiomflnembswfaceewimneuisnaasefl‘ecfiveaspreviomly thought. Atsiteswheecontaminafionocamedlongagomsignifiearfifiactionofthe VOCsadsmbmflnesofidsrrfaceandevemraflybeconeuappedmsideflnesoflnmix Thisfiaeimofmecmtmnmmnisesseuiallynmccessiblemrmovalbyvapmexhacfim (15). The most susceptible portion of the volatile contaminant to volatilimtion is the smfaceadsmbedwmpmmtmewmpmenwhichisdissolvedmwate,mrdflratwhidr 13 exists as a separate phase. Theneedfortheuseofozonetoorddizetargecompomdsisapparentfiomflne above discussion. The ability to transport ozone a significant distarnce between injection arnd extraction wells has economic implieations for the feasibility of ozone vapor stripping; additionally, the consumption of ozone by soil orgarnic rrnatte has treatrnernt efliciency implications as well. Imam: ozone treatment nary be economically infeasible as an all encompassing treatmert tedmology; howeve, the feasibility of employing ozone treatment togethe with conventional vapor stripping and/or biorerrnediation is a distinct possibility. MATERIALS AND METHODS The feasibility of ozone vapor stripping Inns been previously demonstrated in a limited capacity (7), and this study seves as a continuation of previously completed work. The complexity of the soil system in which these experiments wee executed nnade it necessary to devise a system wheeby the study of ozone decomposition could be accomplished Themaingoalofexperimentationwastoexaminetheefi‘ect ofozoneon the degradation ofthe target connpournd in the presence offield moisturized Metea soil. The field moisture saturation of the soil is between 0-20%. arms-rials 314W The production of ozone was accomplished using an ozone geneator (Model T- 408, Polymetrics, Inc., San Jose, CA). The generator was wate cooled, arnd a recirculatingwatebathwasmaintainedatatempeauneconespondingto 10°C forthis purpose. As a precaution, any excess ozone in the effluent gas from the soil colurnrn was trapped using Potassium Iodide (KI) traps. Stock solutions of the target compournd, pyrene, as well as the internal standard compound, fluorene, wee prepared in dichloromethane (Mallinckrondt, HPDC grade). Each solution was prepared at a concentration corresponding to 200 ppm, arnd dilutiorns were performed as needed 14 The6mmglassbeadsweecoatedwith250ppmpyreneasdeseibedinthe following procedure. Thedernandofozonebyanyorgarnic nnateials adsorbedtothe smfaceofflneglassbeadswaseliminatedbysoaldngthebeadsfor>24hrsinasolution ofNochromix‘”,whichisaninorganiconddizer,andsu1finicacid Thebeadswerethen rinsedwithrevese osmosis/activatedcarbonfilteed, R.O.,wate>10times,andbaked in a firmace at approximately 400°C in orde to remove any residual orgarnic materials. Theentirevolume ofthe sample colunnrnwasfilled withcorntanninatedglass beach. 110 gofglassbeadswasusedforeachexpeiment. Theglassbeadsweecorntaminatedin batchtominimizenonnmifonncoatingofthecontaminant. Apyrenesolution(Sigma, 99% pure)waspreparedusing I-IPICgradedichloromethanecontaining275 mg pyrene. ThissolutionwasthernaddedtotlnecleanglassbeadsinaIOOOmlerexbeake. To mfifonflycoatflnebeadsalargebeakewasusedmmdemcmuaeflnepyrenesolufim with a single laye of glass beads. The solvent was allowed to volatilize, arnd the glws beads wee mixed togethe thoroughly. Ottawa sand has a vey uniform arnd homogeneous particle size. The particle diamee was determined by means of a sieve analysis. The results showed that 25% of the samplewas retained on the US. sieve #30, which has asieve opening of 0.60 mm, and63% of the rennaindewas retainedonthe U.S. sieve #40., whichhasasieve opening of 0.425 mm (Draft, 1993)(18). Theefore, the particle size distribution of the Ottawa sandusedincalculationswasO.42—O.60mm. Thesarndwascorntarninatedinannarnrne sunflm‘mflnemmedmwntmnmatefleglassbeadsexceptflnatalargemms ofOuawasandwasinitiallyprepared. TheOttawasandwasnotsoakedinNochromix" 16 solufiorrbrfiwasinsteadozonatedfor>8hrs.,rmtilthedecompositionofozone approached the rate of self-decomposition previously detennined for the purpose of rate constarnt ealculations. ThesoilsusedweeacquiredfiomflnesomheastsideoftheMichiganState Univesity earnpus on research farm property near the Engineering Research Complex. ThesoflwasrenovedfiomflneBhofizmrwhichwasapproxinmtely4—5 ft belowthe surface. Thesoilwasspreadoutandallowedtoairdryforapprordnatelyonemonfln Following air drying the soil was sieved tlnrough a seies of sieves with a minimum diarrnete of1.19 mm, which corresponds to anASTM sieve #16. Thepreparedsoil was sampled for analysis of physical and chemical characteristics by the Michigan State Univesity Soils Testing laboratory, as shown in Table 3.1. Additiornally, a blarnk soil sarnplewasextractedtodeteminethelevelofPAHcontaminationpresentatthetimeof sampling The concentration of PAHs inn the sample was negligible. A soil sample was alsosubmittedforatotalsnn'faceareadeterminationusingthe2700 BETsurfacearea analysis (19). The ealculations fiom the analysis are given irn the appendix, arnd the total surface area determination was 36.34 mz/g Usingthepreparedsoil, annassofpyrenewasweighedcorresporndingtothe concentrationdesiredinthesoil system Forinstarnce, 62.5 mgpyrernewasweighedarnd dissolved irnto 400 ml dichloromethane. After complete dissolution of the pyrene, the volume of pyrene solution was applied to 250 g of metea soil in a large glass jar. As thee was an excess volrnne of solution irn the jar, the soil was effectively slurried. The glassjmwascappedandrotatedonamechanicalrotatorfor>24hmat30rev/mirn. 17 Table 3.1: Soil Characteristics Results Orgarnic Matte (%) Imam) Manganese (ppm) Lime Index 71 % Sand 78.9 % Silt 12.5 % Clay 8.6 i 0.71 Following rotatiorn, the glass jar was opened and the solvent was allowed to volatilize. Thesoilwasthentansferredtoanalmninmnpan,wheeitwasallowedtoairdryfor24 hrs. W 3.21MB: The concentration of ozone was monitored using a 0.2 cm. patlnlength spectrophotometric flow cell and a UV/VIS Spectrophotonnete (Model # UV 160, Shimadm, Kyoto, Japan). The concentration of ozone was ealculated according to Beer’s Law, with use of an extinction coeflicient of E = 2900 L Mol"cm" at a wavelength of 18 258 nm (20). The analysis of pyrene was conducted using a UVNIS Spectrophotorrnete (Model # UV 160, Shirrnadzu, Kyoto, Japan) or (Model # 8452A, Hewlett Packard, Palo Alto, CA) following extraction fiorn the glass beads arnd the Ottawa sand. This form of analysis was chosen for highe sensitivity, and for ease of analysis, when the media contained no orgarnic matte. The wavelength of analysis was chosen by searnrning a wavelength range fiom 250-800 nm arnd 338 nm was chosen for the analysis. 323El' °!l' [E TTnemmlysisofmeseofenmaeswaswndrmtedmaIMnescenceSpecuonete (Model # LSSO, Pekin Elrnne, Norwalk, CT), as a comparative analysis with the UVNIS spectrophotometric analysis. The excitation arnd emission wavelengths wee determined to be 270 nm and 374 nnn, respectively. This forrn of analysis allows highe sensitivity thantheUV/VIS spectrophotomete,andit independentlycornfinmtheresults ofthe spectrophotometric analysis. azmmmmmccmmmm Pyrene was also analyzed (in extracts containing organic matte) using GC/FID. The GC was equipped with a cross-link HPS, 5% Phenyl-Silicone Gum Phase colurnrn withdimensions of30me.53 mmx2.65 um. Heliurnwasusedastheearriegas. The samples wee injected using the GC direct injection autosannple. Quantification of flnepeakareaswaspefmrnedushnganuntegrator(0rnegaAnnosystenCormol, Pekin Elme,Norwalk, CI')or(Turbochrom, PENelson, Norwalk, CT). Anirntemal standard methodwasusedwithfluoreneastheintemalstandard, arndexternalstandardsolutions 19 ofeithe every three samples, or every six samples, for quality assurance/ quality corntrol (QA/QC). Apyrenestandardwasnmpriortoeachsetofamlyses forveifieationof optimal operating conditions. The opeating conditions of the GC are shown in Table 3.2. Table 3.2: Gas Girornatograplry Operating Conditions Flanne Iornizatiorn Detector Temperature 290°C Hydrogen Flow Rate 50 ml/min Air Flow Rate 400 ml/min Injector Irnjectiorn Volume 1 11L Temperatnn'e 250°C Oven Conditiorns arnd Pnognarrnrnning Equilibration Time 1 min. Irnitial Temperature 170°C Terrnperature Program Ramp Rate 10°/ min Firnal Temperature 290°C 3 2 5 S '1 E . I l . Conventional soxhlet extraction techniques wee utilized as developed by the EPA (21,22) for the soil extractions in this study. Sarnnple preparation arnd cleanup was minimizedduetotheloworganicearboncontentofflnesoil. Asimilarrrnethodforthe soil extraction was used as developed by Yao (7). Asoflmassongwasusedfortheexnacdonarndthesamplesweeweighed directlyintoaceHnnlosetlnimbleandfieezedriedat<-40°Carndat lOmicronng 20 vacrrumfor>12hrs. Triplieatesamplesweretakenfiomthetreatedandmnueatedsoils. This allowed for any variability in the time of extraction, or the extraction conditiorns. Following the freeze drying, the samples wee trarnsfered to the extraction flask of the soxlnlet apparatus. The solvent system used for the extraction was a 10% methanol/dichlorometharne mixture. Thetotal volume ofthe solventsusedwas 200ml,with20ml ofmethanol, arnd 180 ml dichloromethane. The methanol/dichloromethane mixture was used due to the hydrophobicity of PAI-I‘s, which tend to adsorb readily to mineal surfaces. The methanol Mucoatflneminealsmfaces,andflnswfllallowmoreflneoughcontactofflne dichloromethanewiththemediaonwhichthePAHsareadsorbed. Previousworkhas shown that this will ineease the recoveabilities of the pyrene. The extraction was allowed to proceed for >18 hrs. Following completion of the extraction, the extracts wee initially concentrated usingthesoxhletapparatus, andtherntransferredfiomthesordnlet extraction flasktoa Kudena—Danish concentrating apparatus using a quarntitative rinse. The extracts wee evaporatedtonearcompletion, andthennitrogenwasusedtodrytherernaindeofsolvent from fine sample. Following complete evaporation, 10 ml of 100 ppm fluorere internal standardwasaddedtoeachettract, andthentriplieatesamplesweepreparedforGC analysis. 3 2 i I I . C E . . The soil moisture content was determned' by oven drying the nnoist soil at 90- 100'C for 24 hrs. The sample was weighed before and afie oven drying Upon renoval of the soil samples fiom the oven, the samples wee allowed to cool in a desiccator 21 corntaining drying agents to prevent the trarnsfe of atrnospheic moisture to the soil samples. W W The detemination of the ability to trarnsport ozone througln the subsurface environment is an extremely important consideation. Ozone trarnsport studies have been wndwtedmordewevaluateflneefi‘ecfivmesswiflnwhichomneeanbeumsponed urnder a variety of conditions. A glass column apparatus was employed in these transport studies to study the effects of soil organic matte, iron, arnd soil moisture on the ability to transport ozone. Aschernatic diagramofthesystemthatwasusedfortheozonetransportstudies is shown inn Figure 3.1. Spectrophotometric flow cells (Mockl # 170-QS, Hellrna, Germany) arnd a UVNIS spectrophotomete (Model # 8452A, Hewlett Packard, Palo Alto, CA) wee used for the ozone analysis. The soil colunm apparatus was comprised of a 10 crnn. glass column with a 5.5 cm inside diarnete. Stainless steel caps wee used along withTeflon" o-rings inordetosealthecolurmns against leakage, arndtoavoid nnateial that will eithe adsorb pyrene, or exert an ozone demand. Teflon” or stainless steel tubing was used because they exert no ozone denand Thesoil colmrmwaspreparedfirstbypacldngthecolmnnwithflnesoil ofirnteest using a laboratory scale driving nnass (hammer). The column was then saturated using the teclnrnique shown in Figure 3.2. Initially, the column was de-aired urnde a vacuum of approximately 500 mbar. Afie 30 nninutes, the valve was released to allow the wate solution to completely saturate the packed colunnrn. Once the column was saturated, the 02 Cylinder Ozone Generator Iltfl “a" O Circulating Water Bath I ’3 Effluent V ’ (To Hood) Spectrophotometer Sample Column Flow Cell Figure 3.1 : Diagram of Semi-Continuous Flow System Water (Solution) Reservoir Packed Soil Column Figure 3.2 : Diagram of Column Saturating Apparatus Water (Solution) Reservoir To Vacuum Figure 3.3 : Diagram of Column Draining Apparatus 24 column was drained to a 0-20% residual saturation level (See Figme 3.3). The initial colurmn expeiments wee conducted using Ottawa sarnd, which contains noorgarnicmatter. Controlerqneimentsweenmtoexaminetheozonedemandofdry Ottawasand. Subsequently, moistmewasaddedtoexaminetheefl‘ectofwate'onthe ozone denand The effect of tetiary butyl alcohol, a hydroxyl radical scavenger, was studiedforcomparativepm'poses. Thiswasanattempttodecreasetheozone consumption by inan the clnain reaction of involved in the deconnposition ozone arnd hydroxyl radicals. The final expeiment was conducted using iron (Fey) solutions, arnd Fe1+ -tertiary butyl alcohol solutions in orde to examine the effect of likely constituents of the subsurface environment on ozone denarnd. Feric sulfate, Fez(SO4)3, was dissolved in aqueous solution arnd, subsequently, precipitated irnto solution by raisirng the pH of the solution using sodium hydroxide, NaOH. This solution was then used to satnnatetlnesoil column, and, subsequently, thecolmnnwasdrainedtoresidual saturation. The degradation of pyrene by ozone was studied using the circulating batch system showninFigure 3.4. Theseexpe'iments wereconductedinbatchconditions inorderto closely study the rates of ozone decomposition unde' varying environmental conditions. The systen shown was constructed using chronnatography colunms, with a 271 ml rese'voir column (Model # 420830-1520, Kontes, Vmeland, NJ), arnd a 74 ml sample column (Model # 420830-1510, Kontes, Vmelarnd, NJ). The sample column inside diameterwasZfi cm, andtheheiglntofthe colunnrnwas 15 cm. Adiaphrampump(Model #7553-20, Cole-Panne', Chicago, IL) was used as the circulating purrnp, which has a maximmnpumpingrateof800 ml/min, and itwasopeatedatapproximately 500 ml/min. 839$ «5839:. 5:5 meta—=25 " Wm charm Edam noun—RED HmOtomOM 0:80 Mb 88$ ob O O “Gun—Ema k 38883350on m~>\>D O I a weeafioeo C an; e O 1 331.6 all... ecufleeomv oeono t. o o. 26 Furthemore, the ozone concentration was monitored using 2 spectrophotometric flow cells, as described previously, and a UVNIS spectrophotomete (Model # 1201, Shimadzu,Kyoto, Japarn). Irnitially, the system was opeated in orde to optimize the performance criteia; for exannple, the optimal rate of circulation was quantified. For purposes ofanalysis, it was necessary to nninimize the consunnption ofozone across the sample column; ideally, the charnge irn the concentration of ozone should be negligible. This was feasible with Ottawa sand, but it was dificult to achieve with the introduction ofMeteasoilintothesamplecolurmn. Furthemore,thelossofozoneby1eakage throughoutthesystenwasmirnimizedoreliminated. ThiswaSachie-vedwithuseof helium gas arnd a leak detector (Model # 21-150, GOW MAC Instruments 00., Bridgewate, NJ), which opeates on the principle of thernal conductivity of gases. A leak test experiment was conducted following each contaminated media expeiment in ordetove'itythepeformanceofthesysten. Theseeqneinnentsweecondnrctedove apeiodoftinneontlneordeoftheexpe'imentthatwasconducted.2 3.4Experimentalesign The initial experiment that was conducted was the quantifieation of the auto- decomposition of ozone unde circulatory conditions within the sample loop. It was nwessarymdeemhneflfismordetodisfingtdshbeweenflnemno-decomposifionof ozone, arnd the consumption of ozone by contaminants, orgarnic matte, and moisture. The 2 Anmifialleaktestwascondueedpriortoflneinuodwfionofflnesmnplecolmm 'Ihechangein absebanceWrespeemfinewasdeenfinedmndmmparedmpreviousexpeimem. Fromtlnis nmnbe,adeemumfionwasmadeconcerfingdneinmducfionofflnesmnplecolmmn Theentire expeimentfieminitialtofinalleaktestconstitnmedonedataset. 27 nmss(cencemafion)ofozonewasvmiedinordetoexamineflnedependenceofflne irnitialconcentratiorninthesystenonozonedeconnposition. Itwasassmnedthattherate of decomposition of gaseous ozone was dependent on the initial concentration of ozone irnthesystem, accordingto (1) _d23 =k1 [03] This hypothesis is consistent with the result previously obse'ved by Tonniyasu, et. al. 1985,feaqueousozonesoltnionawhichisthatdneedeofreacfimispserdofimtorde with respect to the concentration of ozone in the systenn (i.e. -d[O,]/dt = k'[O,]). The pseudo-first orde rate constarnt, k', accounts for the concentration of hydroxyl radieals geneated by the decomposition ofozone irn wate. Howeve, for these gaseous ozone reactions without the presence of wate, the concentration of hydroxyl radicals can be neglected. Asdnedegnadafionofozoneisafiectedbythepresenceofuluavioletlight, the glass ozone resevoir and sample colunm wee wrapped with aluminum foil to reflect anylightwhichmayafi‘ectthereaction. Fomditfeertnmssesofozoneweeexamined, withatriplieatenmofaninternediatenmssinordetoensmetherenroducibilityofthe results. Thedegradationofpyrenewasinitiaflystudiedwiflnflneuseof6nnndiamee solidglassbeads. Theuseofglassbeadsallowedforflnestudyofthesm'facecatalyzed reactionofozoneudthpyrenefinasystenndflnomflneorgmucmauepreseu). Ithas been hypothesized that the reaction rate of PAHs, for higlne than monolaye coveage, isindependentoftheinitialamomtofPAH(23).Thisimpliesthatthereactionrateis 28 dependentonflnesmfaceareaofthemediamndeconsideation. Fomdiffeentmasses ofozoneweestudied,withatriplieatenmofanintemediatemassinordetocheckthe reproducibility of fine results. The extraction of pyrene fiemthe glass beads was achieved byasolventwashofthebeadsin35mlcentrifingetubesusingdichloromethane. The hypothesis concening the dependence of ozone decomposition on the surface areaofcontactbetweenozoneandpyrenewastestedusingamateialofdifl‘eentparticle diarnete. ThemateialdnosenfetesfingflnehypoflnesiswasOdanvasmndwhichisan inetsilicasarndcontainingnoorganicmatte. TheparticlediameteofOttawasandis apprexirnately0.5mrn. ThisexpeimentwasconductedintriplieateatZSOppmpyrene, arnditwasalso conductedathOppmpyrene. Thedeconnpositionofozoneinthepresenceofdryh'leteasoilwasstudiedusing uncontaminated soil. Erqneimertalconditionsweeiderticaltothatusedinprevious erqneiments.Thesoflwasflnencmtmmnatedwid1250pprnmnd100ppmpyrene.In mdetoefiminateairsuippmgasapossiblecontanfinarurenovalmedmisrnmn enqneimeuwasmndueedusngSOppmpyrmewnMnunatedsoiLwheebyoxygenwas circulatedtlnrouglntheloop. Thecontaminatedsoilexpeimentsweeconductedinan identicalmanneastheprocedmeusedinthecontmlexpeiment. Fourdifl'eentmasses ofozoneweeexmnmedandmninternediatemassofozmewasnminuipfieatemede to veify the reproducibility of the results. Following soil treatment, the pyrene was extracted from the soil using soxhlet extraction. Arr oveall rate expression can be developedtodescribethereactionofozoneandpyreneinthepresenceofdrysoilusing the results fi'om the ozone auto-decomposition expeiment, and the decomposition of 29 ozoneinthepresenceofsm'faceadsorbedpyrene. The decomposition ofozonewasexaminedinthepresenceofmoistmizedMetea soilcontanninatedwitlnpyrene. Thesoilwasmoisturizedasdeseibedpreviouslyin section 3.3.1, using the column apparatus and a pressure plate. The reproducibility of the moisturecontentofthesoilwasassmedwithflneuseofadesiceatorcontainingasalt solution which maintained a constant relative humidity within the desiceator. Irfifially,flnecolunmwaspackedudflnpyrenecomaminatedMeeasoiLand, subsequently, saturatedwitln DI wate. The colmnnwasthendrainedtotheapprondrmte residual wate saturation level. Following suflicient drainage, the moist soil was subdivided, with a triplicate sample taken for soil moisture deteminatiorn. Twelve moisturized soil sarrnples wee placed in the desiceator, which contained a saturated aqueous solution of potassium sulfate, K2804. The saturated solution was prepared by weiglning and dissolving 150 g K2SO4 in 1000 ml of D1 wate. The solution was heated arndstirredurntil complete dissolutionoftlne solidhadoccurred. AccordingtoGreenspan (24), this salt solution corresponds to a relative humidity of 97.88 :1: 0.49 % at a ternpeature of 25°C. According to Figure 3.5, the use of a solution corresponding to a higln relative humidity should result in a moisture content comparable to the original moisture content upon placenent irnto the desiccator. It is desirable to nnairntain cornditions vvitlfinflnedesiccatorsuchtlnatflnesoilsuction,ln,exetedondnesofl sarnplesishigh enough to maintain the residual saturation conditions of the soil samples. Howeve, it is alsonecessarytopreventthecondensafionofwatewithinthedesiceator, arndthiswas acconnplished with high relative hurnidities. 3O Pfiaai‘iiume ” _ HWIotflstoo% ” l- '5 3 u - C «‘1' . son ). E so - 3 2 . 33 ‘° ' '3'. 2! no -‘ no - '0 " P‘s-M1 RELAIIVE MOIY-O -" o l l 1 1 1 n r _1 n 2 3 I. s s 7 I s '10 "Pt: Figure 3.5: Relative Humidity vs. pF The pF is the logarithm to the base 10 of the soil suction (25). The higlner relative humidity values conespond to lowe soil suction values. The potassium sulfate solution con‘esponds to a relative humidity of 98% and should provide enough soil suction to maintain the soil samples at or near the residual saturation value. The vacuum desiccator will be vacated using a vacuum pump at 25-30 in Hg, or approximately 900 mbars. The tempeature will be monitored on a daily basis, as well as the pressure within the desiceator using a hand held tensirnete. Upon equilibration of the systen, the soil moisture content will be determined from excess soil samples available for soil moisture detemination. When equilibration of the soil samples has been reached, samples will be renoved immediately for soil moisture detemination, arnd samples will be renoved for expeimentation as needed It is possible that the moistm'e content from sample to sample 31 willdecreaseovethecomseofexpeimentation,anditisforthisreasonthatasample will be renoved from each individual 25 g soil sample for a moisture content detennination. Itwillalsobenecessarytoconducttheseexpeimentsrapidlyinordeto minimize the ability for wate to evaporate fiem the samples. Each individual moistmizedsoilerqneimentwillbeconductedinanidentical marnnetotheprevious expeiments. Upon completion of the expeiment, the sample will be removed, arnd immediately weighed and placed irnto a cellulose extraction thimble used for soxhlet extractions. The thimbles will be placed irnto a freeze-drying vessel (Model # 7750000, Iabconco, Karnsas City, MO), arnd the sarrnples will be freeze dried for >18 hrs. A control expeiment conducted on moisturized soil samples detemined that this is sufficieutimetoremoveflnemoisnneinpreparationforexnactionandgas chromatography analysis, as previously described 3§Mlll° [E . IIR II The deveth ofkinetic rate expressions has been pursued in a limited scope for these expeiments. The complexity of the systen being studied limits the ability to developarateequationwhichdescribestherateofdegradationofpyrene. Kineticrate constants for the deconnposition of ozone will be detemined using the data fiom the batch expennnen' ts, and a kinetic rate expression will be developed from the proposed expenments' . From this expression, an oveall rate expression will be developed as a means to detemine the decomposition of ozone unde similar expenmental' conditiom. OZONE TRANSPORT STUDY Inanaunalsoflsystenflneearemmnyconsfimensflnatudflreactwiflnozone. Itisnecessarytoattenpttomndestandtheefl‘eesofavmieyofconditims,andto detemine the most signifieant contribution to the decomposition of ozone within the DryOuawasandcolmmnsestablishflne'hackgromnd"ozonedenandofdne brealdlnougheuveinamediawiflnmfifonnandhomogeneouscharacteisfics. Following dreseirfifialecpeiments,saunated0uawasmdcolmmnsweenmatmdifi‘eeu saturationlevelsinordetoestablishtheefi‘ectofresidualsaunafionmnflneconsumption ofozone. AcomparativegraphofthesethreeexpeinnentsisshowninFigure4.l. 0 all «no mo Clll “III um um I“ III! time (s) "o—DIyOItawaSand +Wet0¢m3m¢12$$ —°—wuoums.n¢3m Figure 4.1: Ozone Breakthrough in the Ottawa Sand System 32 33 The consumption of ozone was quarntified using nurneieal irntegration techrniques. The massflmrfordneexpeimeuswasdetenninedusingflneozoneconcemationas detemined fiemthe absorbance, atarnypointinfimeusingBee’s Law, andtheflowrate as deternined using a digital flow mete (Model # 1463, J&W Scientific, Folson, CA). Theflowrateofozonefortheerpeimentswas 120ml/min. Theresultsofthese expeiments, as well as the results ofthe iron (III) expeiment are shown in Table 4.1. Table 4.1: Ozone Transport in Ottawa Sand Columns *n GSAT. OZONE CONSUMED (%) (%) (%) Mm (mmol/kg soil) Dry 25 0 6.3 0.76 We #1 27 12 8 1.0 We #2 26 37 11 1.3 Fe3+ 30 NA. 19 2.26 81.8 0.46 *Porosity calculated using G,=2.65 $Satmationealculatedas%ofporevolumewheer=55ml rTime ratio: (5% Recovey of Co / 50% Recovey of Co) In orde to define the breakthrough of ozone finrthe, the % recoveed column in Table 4.1 corntains ness and time relevarnt information. The % recovey of nnass is defined as the pecentage of the influent ozone concentration recoveed in the eflluent. Additionally, the%recoveyoftimeistheratioofthetimetorecove5%oftheinfluentozone 34 concemafiontothefimetorecove50°Anoftheinflueuozoneconcennation Thisparamete establishes the rate ofozone breakthrough for the respective soil column condition. Uponexaminationofthedata,itisevidentthatforanozoneflmrofSSOmg/hrmed feflnedryandmoistOuawasandcolmms,flneozoneconsnmnpfionineeasethh increasing degree of saturation. The background ozone denarnd of 0.76 mmol/kg soil for the dry Ottawa sand ineeased 30% to 1.0 mmol/kg soil for 12% saturation, arnd it ineeased70°/ofor37°/osaturation. Thetimeparameteindicatestheshapeofthe breakthroughcurves forthesethreeconditiorns. Theeisnosignificantefi'ectontheslnpe ofthe breakthrough curve for the range ofsaturations studied. Wiflntheintroductionof400ppmiron(1]1)intothesoilcolmnn,arndusingaslightly lowe ozone flux of 530 mg/hr, the consumption of ozone increased dranntically. Furthemore, for the peiod of ozonation ofthe iron(III) systen, the eflluent ozone concentration reached only 82% of the influent ozone corncentratiorn, which suggests tlnat theozonedenandofthesystenwasnotmet. ThetimeratioforflneirorflII)expe-iment issigrnificarntlylowetlnarntlnatobsevedforflnechyanndwetOttawasarndcolmrnrnawhich is the result of a slowe recovey of 50% of the eflluent concentration. This result is confinnedbyflnesigrfificammeeasemtheozonedenandascompmedtodnedrymnd wet Ottawa sand columns. Inanauenptmdmeifflnemassofozoneconsmnedcouldbereducedbysofl amendments, the soil columns wee saturated with a hydroxyl radical scavenge, a 0.08M tetiary-butyl alcohol (tBuOH) solution at a pH = 2. The expeinnents wee conducted 35 usingaflowrateoleOml/min,arndtheozoneconsmnptiondatawascalculatedin anidenticalmarmeasthepreviousOttawasandexpeiments. Theresultsoftlnese expeiments are shown inTable 4.2. Table 4.2: Ozone Transport in Modified Ottawa Sand Columns (mmol/kg soil) 1.4 *Porosity calculated using G,=2.65 $Satnnationcalculatedas%ofporevolmnewheer=55 ml rTime ratio: (5% Recovey of Co / 50% Recovey of Co) Theewas no appreciable reductionintheconsmnptionofozone forthetetiary-butyl alcohol expeiment, as well as the iron(III)-tetimy butyl alcohol expeinnent. The tBuOH expeiment resulted in 94% recovey of the influent concentration which is comparable totlnepreviousexpeiments, andtheimn(1]I)—tBuOHexpeimentshowed86%recovey of the influent concentration, which is also comparable to the previous iron(III) expeiment. FmflnennomflnefimeratiodataforflnetBuOHeqneimentisflnesameas theratiosdeteminedforthedryandwet Ottawasandcolurnrns. Howeve, thetimeratio data for the Fé*-tBuOH expeiment is significantly lowe than the previous iron(III) expeiment Thedmafimoffineneededmreadnozonebrealdluoughwassubsmnfiallylmgefe tlneMeteasoilsysterrascomparedtothatrequiredinOttawasand. Theresults ofthe dry Metea soil column expeiment wee inconclusive due to experimental difliculties. Howeve, the ozone breakthrough curve was conducted successfirlly for the residual saturation soil colunnrn, as well as the 0.08 M tBuOH residual saturation soil column. Figure 4.2 shows the ozone breakthrough curve for the residual wate saturated Metea soil colunnrn. Thee is evidence in this figure of short-churning, or fingering, which may be due to small scale heteogeneities in the packing of the soil colunm (26). Figure 4.2: Ozone Breakthrough in the Metea Soil System The results of tlne residual saturation Metea soil expeinnents are shown in Table 4.3. An ozone mass consumption of 30 mmol/kg soil arnd 62 mmol/ kg soil for wate arnd tBuOH, respectively, irndicates a greate ozone denand by the tBuOH systen. The peeent 37 recovey ofthe influent ozone concentration was nearly connplete for each expeiment The recovey time ratios of 0.025 and 0.27 for wate and tBuOH, indicates a much quicke recovey of the influent concentration for the tBuOH saturated coltnnn as comparedtothewatesatmatedcolumn. Therecoveyof5%oftheinfluent Table 4.3: Metea Soil Ozone Transport Experiments *n “SAT OZONE CONSUMED '% RECO (%) (%) (%) Mass Mass ‘Time (mrnol/kg soil) Wet 32 35 11 75.8 99.7 0.025 I tBuOH 34 25 33 160 97.8 0.27 l *Porosity calculated usirng Gs=2.65 GBSaturation calculated as % ofpore volume whee Vv = 55 ml :Time ratio: (5% Recovey of Co / 95% Recovey of Co) concemafionoccmredsooneinflneweMeeasoileqneimemmaninflnetBuOH expeiment Howeve, the time to reach 50% recovey of tlne influent concentration in the efiluent firm the column took considerably longer in the wet Metea soil expeiment thaninthetBuOHexpeiment. This suggeststhatalargeirnitial ozonedenarndisneeded toestablishbreaktlnrough inthetBuOH soil column, as comparedtothewetMeteasoil colurnrn. Andoncetheozonedenandismdflnereultsuggeststhatozoneuansport occursmorereadilyinthetBuOHsystemthaninthewatesysten 38 ThennstsigrfificmuresultofflneseMeeasoflozoneMponexpeimentsfiesmdne recoveability of the ozone concentratiorn in the eflluent of the soil colurrms. The wet Meteasoilsystenexetedavey signnificantozonedenand,asevidencedbythevey gradual breakthrougln of ozone in the soil column eflluent. Furtlnemore, the difliculty irn reaching 100% recovey of the irnfluent ozone concentration represents an "infinite" dennarnd by the Metea soil systen. This tailing effect has negative irnplicatiorns for trarnsporting ozone tlnrougln soil system that contain much greate than 0.5% orgarnic Capitalcostsarndflneexpenseofgeneatingozoneonsitearetwoofflnemost irnportarnt cost consideations in the desigrn of mm ozone venting systens. The data fortheconsmnptionofozonecanbeusedtocalculatethecostmsociatedwith trarnsportingozonethroughthesubsurfaceenvironment. Thecostofproducingozoneisdependentontheairflowrateusedirnventingsystens. Theairflowrateof vapor extraction systenscanrarnge fiom 50-300 flJ/min (15,27). The opeatirngpararnetes ofa site located irn Michigan utilized an air flow rate of 130 SCFM, which is approximately the aveage of the values associated with the liteature. Usingthispararnete, the ozonemassfluxwascalculatedas 140 lb O3/day, whichwas basedm1%ozonemair.Tomeeflneserequirenents,thepowedemndfeanozone geneator witha 1501b OJ/day capacity wouldbe 1800 kWh/day. Thecostfigurescarn becaledatedusmgflnesenmnbes,aswellasflneexpeimenalozonecemmmfien numbers. The results are shown below in Table 4.4. 39 Table 4.4: Energy Consumption Calculations Material Energy cost/tonne of soil ( $ / tonne )‘ Ottawa Sand (12% Sat.) 0.08 Ottawa Sand (37% Sat) 0.11 Metea Soil (50% Sat.) 2.45 * Ernegy calculations based on $0.06/kWh Theenegycosts associatedwithimsinmzoneventing, forthesoils cornsideed inthese expeiments, are relatively inexpensive when compared to the cost of $50-100/tonne for typical soil renediation projects (27). Howeve, the effects of tailing may have a substantial efiectontheopeatingcostsofafirfl-scaleinflozoneueauneusysten REACTION KINETICS The most sigrnificarnt contribution to the consumption of ozone in a natural soil systen is an irrnportant consideation to be rrnade when designing the treatment systen. This detenninationcanbemadeusingldneticdatawhichreveals tlnerateofdegradation of ozone by various constituents of the subsurface environment. The "auto—decomposition" of ozone in the circulating batch systen was detemined tobeafrmctionofbothtlneauto—degradationofgaseousozone,andofsnnall amountsof leakage in the systen. It was necessary to quanntify the "auto-decomposition" of ozone inavariety ofconditionsinordertobecetainthatthesystemwasopeatingmnde similar circurrnstances. The "auto-decomposition" of ozone was monitored in the circulating batch systen following each experiment The rate of decomposition of ozone was quarntified fi'om a number of these experiments, in which ozone decomposition was detemined in an ennpty soil column. The rate of decomposition is proportional to the ozone concentration, according to the following equation, (2) jigs = kg, [03] 41 this expression can be integrated to yield, (% 3o (3) -ln( )=k03t C) For the graph of -lrn(C/Co) vs. t, the relationship should be linear with a slope of km. The results of these expeiments are shown below in Table 5.1. The standard eror of the estimate (S.E.E.), the coefficient of detemination, r2, arnd the standard eror of 12 (SE), are given for comparative purposes. From this data, the aveage rate constarnt was detemined as km = (4.99 i: 0.037) x 10“5 s’1 for the rate of ozone self-decomposition in anenptysystern Table 5.1: Ozone Decomposition in Empty System Experiment Rate Constant sea :2 SE. (8") 5.02x105 2.57x107 2.66xl03 2 4.97x105 3.43x107 0.9987 3.54an3 3 4.49x105 1.65x107 0.9992 4.74x10'3 4 4.83x10'5 1.56x107 0.9994A 4.51x103 5 5.05x10-5 1.74x10'7 0.9997 1.71x10’3 The quantification of the rate of self-decomposition of ozone in the presence of clearn glass beads yielded virtually identical results as that detemined in the ennpty systen. The response of the empty system unde circulatory conditions connpared to the response oftlne systen containing clean glass beads is shown in Figure 5.1. O omWVV I T T I I I V I “-0) —°-—m-tte£qty —*—hnnm:£-pty —°—m-u:tau +hII-nechu spun Sm Beds aut- Figure 5.1: Ozone "Auto-degradation" Therateconstantwascalculatedinthe samemanneasdoneinflnepreviousexpeiments, and the results are shown below in Table 5.2. The high 1'2 values indicate that the rate of ozone decomposition is linear with respect to the ozone concentration in the system with the colunrm packed with clearn glass beads. The aveage rate constant for the experiments was km = (4.96 $0.436) x 10" s“. 43 Table 5.2: Ozone Decomposition in Clean Glass Beads (8") 5.13x10'5 8.21x10’7 . 5.69x10’3 4.70X10Vs 4.74x10'7 . 3.28x10‘3 4.74><10'5 4.86x10'7 . 3.23x10'3 Therateofozone decompositionwasalsodetennninedintlnesysternwithtlne colunm packed with Ottawa sand. The results inTable 5.3 showaslight irncrease inthe rateofozonedeconnposition, andtheincreasemaybeduetoanumbeofreasons. The nnost likely reason for the increase in ozone decomposition is that thee was a increase intheamourntofleakageinthesystem Ieaktestsusingahelimnleakdetectorwee Table 5.3: Ozone Decomposition with Ottawa Sand I Experiment Rate Constant S.E.E. r1 (8") E:—jf_i_:'—___——_______——_————__—._—__ __‘———__—__':T T___ AT . T u I 1 7.36x105 3.85x10 0.9988 2 8.18x10‘5 2.84XI0‘7 0.9996 . I 3 6.28><10'5 l.68><10' 7 0.9997 1 _ __ _ _ __ __________ 4.4 conducted on the systen prior to expeimentation, and following completion of each expeiment. The results have consistently shown rate constant values close to the aveage value of k0, = (7.28 i 0.954) x 105 s". Furthemore, the variability in the data, as irndicatedbytheineeaseinthestandarddeviation, maybeexplainedbyasrnallozorne denandexetedbytheOttawasand These expeiments establish the efl‘ect of surface adsorbed pyrene on the decomposition of ozone, as well as the removal of the target contaminant by ozone. The results show dependence of the rate of ozone decomposition on the surface coveage of pyrene, whichfortlne0.425mmdiarneteOttawasandis2.6timesthatofflne6mm diarnete glass beads. Alebic-Juretic and Klasine (1992) hypothesized that the rate of decomposition of ozone is dependent on the surface area coveage of pyrene, and for this systentherateexpressioncanbewritten, 1110,] (4) -( dt ) = 19,310,] + k’10,1 k' is a pseudo first orde rate constant comprised of the followinng relationship, (5) k’ = kpy(S.A.)p,, whee kW = firstorderateconstarntforpyrene (S.A)Py = surfaceareacoveage of pyrene 52W The glass bead experiments wee all conducted at a pyrene concentration of250 ppm (mg pyrene/kg soil), which corresponds to a pyrene mass of 27.5 mg in 110 g of 45 beads. Thesurfaceareacoveagewascalculatedusingtlnediameteofthe glassbeads, as shown irn the appendix, by assuming a uniform, monolaye coveage of pyrene on the glassbeads. Thesurfaceareaofpyrenewas420cm’. Theresultsofozone decomposition are shown in Table 5.4. The extraction results will not be reported hee due to expeimental difficulties irn recoveing the pyrene following the treatments. These difficulties have been attributed to the inability to adequately coat the glass beads with Table 5.4: Ozone Decomposition - Pyrene Coated Glass Beads F nment Ozone Mass Rate Constant (8") ll I (mg) Overall Adjusted i L_-_ Ww-___-__ -_-_ ---- J I 1 11.3 2.50x10“ 2.00x10“ i l l 2 10.8 2.28X10'4 1.78X10'4 E 1 3 7.44 2.18x10“ 1.68x10" I 4 4.43 2.28><104 1.78X10" 5 4.61 4.66le 4.16X10'4 6 4.50 3.23le 2.73le a urnifonn surface coveage, and, tlneefore, the inability to obtain a representative sample. Theoveallrateconstantisnmconected, andthe adjustedrateconstantaccounts forthe rate of ozone self-decomposition detemined previously as k03 = 4.96x10'5 s". 46 The aveage adjusted rate constannt was calculated as k' = (2.36 10.963) x 10" s". Thevariability intheresultasmeasmedbythestandarddeviationcanbeattributed primarilytoexpeimentS, andtlne glass beadextractionconespondingtothatexpeiment indicates the higlnest original concentration of pyrene. Consequently, this suggests that the surface coveage of pyrene for this expeiment my have been highe, which would result in a faste rate of deconnposition of ozone. Negating this result, the aveage adjusted ozone deconnposition rate is k' = (1.99 i 0.43) x 10“ s". illbmeflatedfltamfiand Thesurfaceareaofthe Ottawasandwascalculatedasfortlneglassbeads, arnd the result for a particle size distribution of 0.425-0.60 mm is an area of 750-1070 cmz. For an aveage particle diamete of 0.51 mnn, the surface area is 890 cm’. Figure 5.2 shows the system response to 250 ppm pyrene contaminated Ottawa sarnd. I l l I j V 1 I I I t I I I 1 Time (s) _°—Emuent *Wm Figure 5.2: 250 ppm Pyrene Contaminated Ottawa Sand 47 Thedecmnposifionofozonehasmeeasedasevidencedbydnedifl‘eencebeween influent arnd eflluent concentrations. The surface area hypothesis was tested using two difleent nnasses of pyrene. The rate of ozone self-decomposition used for these calculations was k0, = 7.28x105 s“. The ozone decomposition results are shown in Table 5.5. Table 5.5: Ozone Decomposition-Pyrene Coated Ottawa Sand Exp Ozone Mass (mg) Pyrene Rate Constant (8") Conc. Overall 2 12.5 250 5 1.75X10" l 02le 3 23.6 250 5 1.76x10“ 1.03x10" 4 31.0 100 2 1.63XIO" 9.02x10’5 Uponexarnhningflnedatatherateconstantthatconespondstoapyrene wncemationofIOOppmisappmximatelythesameasflnemteceBtmucmesponding toapyreneconcentrationof250ppm Thisresultprovidesevidencethattheozorne deconnposition is dependent on surface area coveage of pyrene, ratlne than the concentration of pyrene. Furthemore, a graph of -ln(C/Co) vs. time for all four Ottawa 48 sarnderpeimentsisshowninFigmeS.3.Theplotthatrepresensflne100ppm pyreneexpeiment shows two distinct linear ranges. Peforming a linear regression on finesetwodisfinerangesresultsin(l)anhnfialrateconstmudeennnafiondnat cerespmdsmflnatwhichismbmeedaboveandamratewnsteRmehidn corresponds to the rate of self-decomposition of ozone. na 15 1.4 3': \ .,-.. Boa _,.,.-,".’-"‘ €05 04 _..»l 02 " II v 3 3 1 i i 5 v 0 11m 2000 31m «Ill 5000 m 7000 m 90110 Time (s) #25031: #30an +250”: —°—nmp-: 03193 81403 M1193 9mm figure 5.3: Rate Constant Determination - Ottawa Sand By considering the rate constants as calculated for all four expeiments, the aveage adjustedratecornstarnt for the decomposition of ozoneisk'=(1.04 :l:0.136)x 10“ s". Theexuactiondataaceumflatedinfineseenqneimentswasmeecensisteuflnan flneglassbeadMacfionawlfichmaybeduemmefaeMameerepesenafivesanmle sizewasusedintheextraction. Thismayalsobeduetoamoremniformsurface coveageofpyreneduetothesmalleparticlesize,asconnparedtotheglassbeadsurface coveage. The results of these extractions are tabulated below. 49 Table 5.6: Extraction Data - Pyrene Coated Ottawa Sand Experiment Treatment Efficiency (%) ll Concentration # Spectrophotometer Fluorimete i: 250 ppm 1 67.6 59.6 2 64.3 - - - - 3 69.98 - - - - 100 ppm 4 89.9 92.9 The renoval efficiencies for pyrene in the 250 ppm expeimerts are vey consistent The aveage rennoval efficiency for pyrene in these expeiments is 67.3 :1: 2.86 %, and it is likely that with more available ozone, the removal efliciencies would be highe. To test tlnishypotlnesis, arnenqneimentwasconductedwithozoneinexcess. Asexpectedinthe expeiment using 100 ppm pyrene, the removal efliciency of pyrene increased dramatically. Using the spectrophotometric results, the increase in pyrene renoval was 35%. Finally, the analysis of the extracts using the fluorimee, a more sensitive instrument, confirm the results acquired using the spectrophotomete. W891] Initially, an expeiment using a sample of uncontaminated metea soil was conducted in orde to examine the effect of the soil on the decomposition of ozone. Agairn, a linear regression was performed on the natural log trarnsfonned data as shown in Figure 5.4. 50 -ln(C/Co) y—e In osoonooonsoozooozsoosooossootooottsoo 'Ilme(s) Figure 5.4: Rate Constant Determination - Metea Soil Uponexarninationoftlnisgraph, itisapparernttlnattherateofdecorrnposition increasesdrarnatically fi'omits initial rate. Thisnnaybetlneresultofthefonnationof ozone denandingby-products fiomtheoxidation oforgarnicmattepresent inthenatural soil, althoughnoattenptwasmadetoveitythisassetion. Consequently,alinear regression was performed on the linear range of this relationship which occurred ove the initia12100softheexpeiment, inordetoascertaintlneirnitialrateofdecompositionof ozone. Thepsendo-firstorderateconstarntwhichhasbeenadjustedforflneself- decomposition of ozone, is k'oM= 4.33x10“ s'l with a S.E.E.= 4.35x10" arnd r2= 0.9990. Theinuoducfionofsoilorganicmaueuuoflnesystenhadadramaficefl'ecton tlnedegradationofozone. ThesystenresponsetoZSOppmcontaminatedMeteasoil comparedtotheresponseforZSOppmcontaminatedOttawasandisshowninFigure5.5. 51 Theegmficnnaueconsmnesasigrfificeuamomuofflneozmepreseuindnesysten mm mm com A sum 0 30m mm mm om . . : : : : t : J. . 0 100 300 300 «no 500 son 700 III] M lllll Time (s) —°—mutnt —°—tntnuont —°-mrueneumt +mumn Soil 8011 Figure 5.5: 250 ppm Pyrene Contaminated Metea Soil The variability fi'om sample to sample in the characteisties oftlne Metea soil, particularly the organic matte content, poses expeimental difficulties in reproducing kinetic rate constants. Howeve, consideing the variability in the glass bead expeinnents, the pyrene contaminated metea soil expeiments yielded comparatively cornsistent results. Table 5.7 summarizes the expeimental conditions and the results. The results of the uncontaminated natural soil experiment are included in this table for comparative purposes. Furthennore, the results of the control expeiment using oxygen indicated that the pyrene is not strippable, and these results are also tabulated irn Table 5.7. The rate expression can be fornnulated using equation 3, as described above, by assuming that the pyreneadsorbstotheorganicnnatte,suchthattheirnitialrateisafi'ectedonlybypyrene. 52 Table 5.7: Pyrene Contaminated Natural Soil Exp. Ozone Pyrene Cone. M38 Treatment Efficiency (%) 2.33x10'3 2 24.3 250 5 59.2 2.30x103 2.23x103 3 23.8 250 5 67.6 2.00x10'3 1.93x103 4 27.5 250 5 60.4 1.60x103 1.53x103 5 20.3 250 5 65.9 1.64x103 1.57x10'3 6 28.0 100 2 81.6 1.62x10'3 1.55x10‘3 53 The rennoval efficiencies of the pyrene for the 250 ppm expeiments show an aveage value of 63.6 i: 3.55 %. The removal efficiency is not sensitive to small changes in the initial ozone mass present in the system. Consequently, the results have been aveaged ove all five expeiments. This lack of sensitivity may be due to the variability of the soil extraction results. Furthemore, it is likely that the extent of rennoval of pyrene is ozone limited for these expeiments, arnd with the introduction of a large nnass of ozone, or by providing a continuous flow system, the renoval efliciency would increase. This obsevation is supported by the extent ofrenoval for the 100 ppm pyrene expeiment. By providing an excess of ozone, the rennoval efficiency ineeased approximately 30%. This is consistent with the result obseved in the 100 ppm pyrene contaminated Ottawa sand experiment, whee the removal efficiency increased 35% The presenceoftwo distinct linearregions inthe gnaphof-ln(C/Co)vstwasnotevident irn the 100 ppm contaminated Metea soil expeiments, as obseved in the 100 ppm contaminated Ottawa sand. Therateconstendatawascaledatedmflnesamemmmeasdeseibedpreviwsly. The rate of decomposition of ozone increased dramatically during late times, arnd the reaction orde deviates fi'om the first orde assunnption. Howeve, the initial rate of decomposition approaches the first orde assumption, and the results of these calculations are tabulated above. The immediate effect of the addition of moisture irnto the soil systen is denonstrated in Figure 5.6. The ozone introduced into the column was almost connpletely consumeduponcontactingthe moist soil. This effect is mostprobablyduetothennass 54 transfeofmeomozoneintotheaqueousphasepresentinthesysten. Theratecornstarnt deteminationrevealstlnattlnerateofozonedeconnpositionislinear. Theresultsoftlnese calculatiom are tabulated below in Table 5.8. Time (s) —°—r-:ann.nt-n-::p.1 —°—Irnflueat:&p.l +mfiap3 —°—nnamt-atp.3 Figure 5.6: System Response to Moist Contaminated Soil Therenoval efliciencyofpyreneappearstobeafitnctionoftheozonemass presentintlnesystenn, aswellastlnemoisturecontentoftlnesoil. Themoisturecorntent has the effect of reducing the renoval efiiciency for ineeasing moisture levels (See Expeiments 1,2arnd3 inTable 5.8). Themassofozoneusedintheseerpeimentsis comtant. The renoval efficiency of pyrene was obseved to increase with decreasing moisturecontent Furthemore, anineeaseinthemassofozoneataconstantmoistme content yielded an ineease in the renoval efiiciency (See expeiments 3,4,6,7 arnd 8 in Table 5.8). This result supports the hypothesis that the reaction is ozone limited. Firnally, by providing excess ozone (See expeinnents 9 and 10 irn Table 5.8), the renoval 55 efliciency ineeased dramatically which is the same effect as that obseved for dry soil. Theefore, the renoval efficiency for these expeiments was ozone limited. The rate of ozone decomposition was constant ove all of the expeiments. The aveage rate constant can be calculated as k' = (4.5231128) x 10'3 s", with the largest contributiontotlnedeviationcomingfi‘omexpeimentZ. Thisrateisassurnedtobe pseudo-first orde, although it is difiicult to ascetain the exact mechanism for the ineeased rate of ozone decomposition The most likely mechanism is the dissolution of gaseousozoneintotlneaqueousphasepresentintlnesysten. Table 5.8: Moisturized Metea Soil 56 Mam Cone. Content Efiiciency (%) (mg) (ppm) (%) 0m“ mm 250 4.4 4.7 W_ 41 2 23.7 250 3.5 22.2 5.28><10‘3 5.21><10‘3 3 23.6 250 2.9 29.9 4.51 ><10F3 4.44x10'3 4 27.6 250 2.8 23.5 4.70X10'3 4.63XI0'3 5 20.5 250 2.4 17.5 4.3OX10' 3 4.23 x10' 3 6 32.6 250 2.9 35.5 4.43 x10' 3 4.36x10'3 7 33.1 250 3.1 36.6 4.42X10'3 4.35x10'3 8 32.4 250 3.0 37.3 4.52><10'3 4.45x10'3 9 28.7 100 ~ 3 58.2 4.38x10'3 4.3 1 x10'3 10 29.3 100 ~ 3 56.8 4.67><10’3 4.60x10'3 CHAHERXI DISCUSSION AND CONCLUSIONS The formulation of the results of this study into a connprehensive predictive model has proven to be difficult This is due to the mncetainty involved in quantifying the surface characteristics of the adsorption of the organic contaminant, and the nature of tlne surface coveage of the wate. Table 6.1 summarizes the expeimental results for refeence in the rennainde of the discussion and conclusions. W The quantification of the decomposition of ozone is dependent on knowledge of the endent ofsurface coveage ofpyrene. The mass ofpyrene necessary for monolaye coveagecanbeapproxirnated forthe mediaconsideedintlnisstudy. Thetotal surface area of a pyrene molecule was approximated as 250 ”(28) By assuming that between 50-100% of tlne surface adsorbed molecule would be exposed to ozone, a rarnge of pyrene masseswascalculated Theapproximatemassesofpyrenenecessaryfornnonolaye coveage are 0.026-0.090 pg, 0.058023 rig, and 390-1560 rig for glass beads, Ottawa sarnd, and Metea soil, respectively. In each case, tlnee was sufiicient rmss of pyrene present on the nnateial surface for monolaye coveage. The nnass of pyrene tlnat was available in the 250 ppm experiments was 5 mg for botln the Ottawa sand arnd the Metea soil. In the 100 ppm expeiments, tlnee was 2 mg of pyrene available for surface coveage on the Ottawa sarnd and the Metea soil. A 105 g sample size of glass beads was used, theefore, thee was 26.25 mg pyrene available in the 250 ppm expeiment, arnd 10.5 mg of pyrene available for surface coveage in the 100 ppm expeiment. The uniformity 57 Table 6.1: Summary of Experimental Results 58 Treatment Standard Experiment Average Rate Deviation Efficiency Deviation ““8”" C. (%) Empty 5.0x10S 3.7x107 NA. NA NA. Clean Glass 5.0x10ts 4.4x10*S NA. NA. NA. Beads Clean Ottawa 7.3x10t5 9.6x10*S NA. NA. NA. Sarnd Dry Meea Soil 4.3x10‘4 NA. NA. NA. NA. Contaminated 2.4x10“ 9.6x105 NA. NA. NA. Glass Beads Contaminated 1.0x10“ 1.4x10‘5 250 68 2.9 100 90 NA. Contaminated 1.9x10'3 36le 250 64 3.6 I'm 8°" 100 82 NA. Contaminated 4.5><1(T3 2.8x10“ 250 36 1.6 Moist Metea , 100 58 1.5 $011 59 ofenfacewveageisnotgumanteedhoweve,whichmemnsdnatadequmemassof pyrene available is not sufficient for the monolaye assurnptiorn. The assumption of monolaye coveage can be utilized to calculate the rate constarnt for the decomposition of ozone inn the presence of pyrene, kw. Howeve, the resnfltsofflneserateconstantcaleflationsforglassbeadsmndOuawasendme innconclusive. The two mateials may have diffeernt surface characteistics, which would leadtoadifl‘eentnmnbeofactiveadsorptionsitespemnitareaofnmteial. Fmthemeeflnisdiseepancymaybeduemdnemehodofwnmminafingdnenmwials, arndtlnee isevidence ofthis inthevariability associatedwiththeglassbeadendraction results. The most conclusive evidence which supports the surface coveage hypothesis istheresultsofflne250ppmand100ppmpyreneexpeiments. Theseresultsrevealarn identical rate of ozone deconnposition for two diffeent masses of adsorbed pyrene. Theresultsofthissundysuggestthatthemonolayecoveageassmnpfion enployed irn formulating the rate expression for the decomposition of ozone in the presenceofsurfaceadsorbedpyrenedoesnothold Fmtlnernoreanaccurate quanfificafionofflneswfaceareaofadsorbedpyreneisnecesseyformodefing consideations. Howeve, evidence supports the hypothesis that the rate of decomposition ofozonemndflneeforetherateofpyrenedegradation, isdependentonthesurfacearea of pyrerne.3 3. DnresulBofdwmmmmntdeemhmfimexpeimmfeglassbeadSMOuawasmdslm inTable6.1,supportthesurfaceareadependencehypothesis. Identicalconcentrationsofpyrene meadmmedmnwdiapossessmgsignificanflydifieenmfaceareagefldnresuhwas substantially difi'eent rate constant calculations. W Therateofozonedecompositionduetothepresenceofwateinasubsm'facesoil system is dependent on the extent of surface coverage. Assuming monolaye surface coveage of wate, the rate of decomposition of gaseous ozone will depend on the solubility of ozone in wate. The adequacy of this assumption for the soil consideed in this study, arnd the attainment ofthis condition in the laboratory, as well as in the natural environment, is contingent on a nurnbe of consideations. The non-volatile arnd hydrophobic nature of pyrene, and the soil contamination procedure enployed in this study, lead to the assurrnption of complete adsorption of the contaminant to the soil surface. Consequently, the dissolution of the gaseous ozone irnto the aqueous phase present in the soil system accournts for the decomposition of ozone as monitored during this study. 6088 (29) showed that the sorption of volatile and semi-volatile organic compormds is dependent on the relative humidity (RH), as well as the tempeature, of the systen being studied For expeiments conducted in quartz sand systens (i.e. Ottawa sarnd), a mornolaye surface coveage of wate would have occurred at a RH of 26%. This correspondedtoamassof0.l8mgofwate/gofsorbent. Intheseexpeiments,theefore, the mininnurn mass of wate necessary for a monolaye coveage was 3.6 mg. With a 3% moisture content in the expeiments, thee was 600 mg ofwate available, which far exceeds the minimum amount of wate required for monolaye coveage. For the soil consideed in this study, the mineal component of the soil will affect the sorption of wate to the soil surface. The wate uptake oftlne Metea soil will increase consideably duetotlnepolarinteactions ofwateandmineal surfaces, aswellasthehighintenal 61 surface area of nnineal surfaces which can act as a wate-holding resevoir (30). Theefore, the RH necessary for a monolaye of wate to exist on the Metea soil is higlne thanforthequartzsandsystem Expeiments conductedonadryWoodbum soilby Clniou arnd Shoup (31) suggest that for a soil containing a high mineal content, monolaye coveage ofwate occurred at a RH of 90% Their expeiment showed that the soil uptake of volatile organic compounds decreased with increasing relative hunnidities. These studies suggest that the monolaye wate assumption should hold for Metea soil at 3 RH between 26-90%. The moisturization of the Metea soil samples, as discussed inthemateials andmethods sectionoftlnispape, occurredinavacmrmdesiccatorusing a salt solution previously determined to correspond to a RH of approxinnately 98%. This evidence suggests that the conditions existing in preparing the soil samples far exceed the conditions necessary to insme a monolaye coveage of wate, althougln the relative humidity in the desiccator was not monitored Consideing the above discussion, the results of the moist Metea soil expeiments suggest that the decomposition of ozone corresponds to the dissolution of ozone into the aqueous phase. The aqueous phase ozone subsequently reacted with the surface adsorbed pyrene. The implications of this study suggest the feasibility of imsitu ozone vapor stripping The trarnsport of ozone irn residually saturated Metea soil was denonstrated, as well as the oxidation of pyrene in the presence of soil moisture. The transport of ozone in residually satrnated soils urnder a variety of conditiorns wasdenonstrated TheozonedemandofanatmalMeteasoil systenwasmet,and preliminary cost calculations of the results show competitiveness with alternative soil 62 renediationtechniques. Theozone denandofanOttawasandsystencontaining200 ppm iron(III) was not achieved, altlnougln breakthrough of ozone in the effluent of the colurrnrn was accomplished The environmental significance of such a system has not been denonstrated, astheconcentrationofironusedwashiglnethanthatfourndinsoils. The degee of wate saturation was shown to affect the ozone demand of soil system, as revealed by the residually saturated Ottawa sand systens. The degadation of surface adsorbed pyrene was achieved, althougln a significarnt improvenent in the treatment efficiency was not denonstrated for moisturized soil systens. The results suggest that the pyrene (in air-dried systems) reacts directly with ozone. Furthemore, anaqueousphase reactionofozoneandpyreneissuggestedbytlne results of the moist soil expeiments.4 The production of radical species, such as hydroxyl radicals, had no apparent beneficial effect on the renoval of pyrene in the system W The conclusions reached in these experiments suggest a nurnbe of possible research topics. One such topic involves the study of difl‘eernt PAHs to detemine the role of indirect reactions by radical species due to the presence of soil moisture. Anothe extrennely irnportarnt topic involves the identification of oxidation byproducts, arnd the characteistics of these compournds in terms of toxicity, biodegadability, and mobility. The concens raised regarding the characteistics of tlnese byproducts may ultimately deternine the feasibility of ozone treatment of soils. 4. Theevidence supportingthedirect reactionmechanismisthecomparabletreatmenteflicienciesfor tlnecontarrninated OttawasandandMeteasoil(SeeTable6.l). Furthemoretheglassbeadand Ouawasmndexpeimenmdemmmmeefieeofflmdheereacfimnechanienbemmefln production of radical species is urnlikely. 63 As a continuation of these expeiments, tlne effect of varying moisture content on the degadation of PAHs, with carefirl attention to the monolaye consideations put forth in tlnese expeiments, should be pursued Finally, the results of tlnese experiments suggest the necessity of formulating the results of continued moisture experimentation irnto a connpetitive kinetic model. LISLDEREEERENCES Menzie, Charles A, Bonnie B., and Joseph Sarntodonato, (1992). "Enqnosme to Carcinogenic PAH's in the Environment" Environmental Science arnd Technology. 26:1278-1284. Fazio, Thomas, and John W. Howard,(l983). Polycyclic Aromatic Hydrocarbom m Foods. Food and Drug Adrninistratiorn, Washington, DC In; .Ed Bjorseth, A., Marcel Dekke, Inc. New York and Basel, pp.461-506. Bjorseth, A. and B. S. Olufson,(1983). Long-Range Transport of Polycylic Aromatic Hydrocarbons. Central Institute for Industrial Research, Oslo, Norway Basel. In._Handbm1LQf BolycxclieAmmatiaflxdmrhons. Ed Bjorsetln. A. Marcel Dekke, Inc. New York arnd Basel, pp. 507-524. Cripps, RE. and R.J.Watkinson,(1978). Polycyclic Aromatic Hydrocarbons: Metabolism arnd Environmental Aspects. Shell Biosciernces laboratory, Sittingbourac, U. K. . .. . Watkinson, R.J., Applied Science Publishes, Ltd London, pp. 113-134. Bomefi; J., arnd H. Kunte,(l983). "Polycylic Aromatic Hydrocarbons 1n Rive arnd Lake Wate, Biota, and sediments." Institute of Hygiene, Mainz, Fedeal RepublicofGemany. ' ,- . . = ..- . Ed Bjorseth, A., Marcel Dekke, Inc. New York and Basel, pp. 629-652. Eadie, B..,J W.R. Faust, P..F Landrum, and NR. Morelnead Factors Afl‘ecting Bioconcentration of PAH by the Dominant Bentlnic Organisms of the Great Lakes. InLPolnmurleLAmmaticHydnxarbons; MmhmsmMethsm Metabolism Ed Cooke, M and D. Antlnony, Batelle Press, Columbus, OH. pp.363-378. Yao, J..J ,.(1991) on... IfldmcarlxmsQAHs). Masters Thesis, Mchigan State Univesity,East Lansing, MI. Masten, S.J.,(1991). "Ozonation of VOCs irn the Presence of Hurnic Acid", Ozone: Science and Engineeing. 13:287-312. Atkinson, R. and Carte, W.P.L.,(1984). Kinetics arnd Mechanisms of the Gas Phase Reactions of Ozone with Orgarnic Compounds urnde Atmospheic Conditions. Chemical Reviews. 84:437-470. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 65 Horvath, M, L. Bilitsky, arnd J. Huttne. sze. Elsevie Science Publishing Co., New York, 1985, pg 55. Bailey, P. S. ,.(1982) 01.0 I -.. ' Commands. Academic Press, New York, pp. 21-22. Staelnlirn, J., arnd J. Hoigne,(1985). Decomposition of Ozone in Wate in the Presence of Orgarnic Solutes Acting as Promotes and Inhibitors of Radical Chain Reactions. Environmental Science and Technology. 19: 1206-1213. Weiss, J.,(1935). Investigations on the Radical H02 in Solution. Journal Trans. Faraday Soc., 31:668-681. \ Hayes, MH.B. and G. H. Bolt,(1991). "Soil Colloids arid the Soil Solution." In:_1nteraeions_at_the_Soil_Collm'd- SQlSthtionlntefam. Eds. G. H. Bolt, MF. DeBoodt and others, Kluwe Acadenic Publishes, Nethelarnds, pg.21. Travis, CC. and J.M Macinnis,(1992). Vapor Extraction of Orgarnies fi‘orn Subsurface Soils: Is it Elfective? Environmental Science arnd Teclnrnology. Vol. 26(10):]278-1284 . Dragun, J.,(1988). TheSoilfihenistnLofHazardousMateials. Hamdous Mateials Control Research Institute, Maryland pg. 223. Hayes, MH.B., arnd U.1vfingelgin,(1991)."1nteactions between Small Organic Chemicals and Soil Colloid Constituents. " InLInteractronaatJheijC‘ellmd: SoiLSolnaiannteface. Ed GH Bolt, MF. DeBoodtarndotlnesKluwe Academic Publishes, Nethelands, pp. 186-187. Michigan State Univesity,Drafi. Brurnaue, S., P.H. Emmett, and E. Teller,(1938). "Adsorption of Gases irn Multi-molecular Layes". Journal of the Ameican Chenical Society. Vol. 60, pg. 309. Bade, H and J. Hoigne,(1982). Deternination ofOzone irn Wate by the Indigo Method; A Submitted Standard Method Ozone: Science arnd Engineeing, 4:169-176. "Method 8100 - Polynuclear Aromatic Hydrocarbons," EPA Method Report, Rev. 0, Sep. (1986). 23. 24. 25. 26. 27. 28. 29. 30. 31. 66 "Method 3540 - Soxhlet Extraction," EPA Method Report, Rev. 1, Dec. (1987). Alebic-Juretic, A., T. Cuitas, and L. Klasine,(1992). Ozonolysis of PAHs- Connparison of Wate Solution vs. Reaction Rates on Silica Gel Surfaces. Ozone News, Nov/Dec, pp.20-26. Grennspan, L.,(1977). "Humidity Fixed Points of Binary Saturated Aqueom Solutions". Journal of Research of the Natioml Bureau of Starndards-A. Physics arnd Chenistry. 81A(1):89-96. Ghildyal, BR and RP. Tripatlni,(1987). SQiLPhxsm. John Wiley arnd Sons, New York, pg.249. Freeze, R.A., arnd JA. Chery,(1979). W. Prentice-Hall, Inc., New Jersey, 98400- Kolturniak, D.L.,( 1986). "Irn-situ Air Stripping Cleans Contarnirmted Soil" Chenical Erngineeing, McGraw-Hill, August 18. pp.30-31. R. Schwartzenbach, P. Gschwend, arnd D. Imboden,(l993). Emdrmmenal W. J. Wiley, New York. 0088, Kai-Uwe,(1992). "Effects of Tenpeatme arid Relative Humidity on the Sorption of Organic Vapors on Quartz Sand". Environmental Science arnd Teclmology, 26 (11):2287-2295. Farme, “(390973) "Water on Particle Surfaces" - ' - Comments. Ed D]. Greenland and MHB. Hayes. John Wiley and Sons, Chester. England, pp.415-4l7. Chiou, Cary T. arnd Thomas D. Shoup, (1985). "Soil Sorption of Organic Vapors arnd Effects of Humidity on Sorptive Mechanism and Capacity". Environmental Science arnd Technology, 19(12):1199-1205. Ozone Trarnsport Study A.1 Ottawa SarndExpeiments A.2 Modified Ottawa SandExpeinnents A.3 MeteaSoilExpeiments Kinetic Rate Constant Data 3.1 Pyrene Contaminated Glass Beads 82 Pyrene Contaminated Ottawa Sand B.3 Pyrene Contaminated Dry Metea Soil B.4 Pyrene Contamimted Wet Metea Soil 35 Ozone Leak Test Example Extraction Data C.1 Glass Bead Extraction Data C.2 Ottawa Sand Extraction Data C.3 Dry Metea Soil Extraction Data CA We Metea Soil Extraction Data Example Calculations D.1 Surface Area Calculations D2 2700 BET Surface Area Analysis D.3 Calculations of Enegy Consumption 67 68 APPENDIX A: Ozone Transport Study Table A.1-l Treatment of Ottawa Sand: DRY Breakthrough Breakthrough (cont) time Final del t time Final del t (s) Avg.(ABS) (5) Area (5) Avg.(ABS) (s_) Area Initial 0 0 10 0 1060 0.893410493 60 53.60463 avg(ABS) 10 0 10 0 1 120 089818523 60 53.891 1 1 0.92500459 20 0 10 0 1 180 0.902864082 60 54.17184 0.92458956 30 000355988 10 0.0356 1240 0.906201 17 60 54.37207 0.92473907 40 0.073 22387 10 0.7322 1300 0.908193462 60 54.49161 0.92450869 50 0.25085603 10 2.5086 1360 0.90877203 60 54.52632 0.92415009 60 0.44962004 10 4.4962 1420 0.90861029 60 54.51662 092380372 70 0.59947509 10 5.9948 1480 0.908168802 60 54.49013 0.9234558] 80 0.69282989 10 6.9283 1540 0.905418145 60 54.32509 0.92303619 90 0.74641 1 12 10 7.4641 1600 0.903464762 60 54.20789 0.92261505 100 0.77706605 10 7.7707 1660 0.906297159 60 54.37783 0.92240906 1 10 0.7955536 10 7.9555 0.92196197 120 0.80790558 10 8.0791 SUM: 1426.38 0.92157136 130 0.81445314 10 8.1445 0.9210724 140 0.82083282 10 8.2083 Area= 96.0921 0.9202362] 150 0.8267502 10 8.2675 Mass Ozone consumed- 0.000757 091989288 160 0.83212282 10 8.3212 % Consumed= 6.311583 0.91972962 170 0.83657532 10 8.3658 0.9195053] 180 0.84058837 10 8.4059 (ABS)f/(ABS)i= 98.28072 0.919458 190 0.84435273 10 8.4435 0.91914028 200 0.84767 10 8.4767 210 0.85068055 10 8.5068 0.92215157 220 0.85322113 10 8.5322 280 0.86666108 60 52 340 0.87726237 60 52.636 400 0.8855929] 60 53.136 460 0.8917638] 60 53.506 520 0.89583258 60 53.75 580 089790244 60 53.874 640 0.89777451 60 53.866 700 0.89642615 60 53.786 760 0.8952764 60 53.717 820 0.89283779 60 53.57 880 0.88964387 60 53.379 940 0.88718415 60 53.231 1000 0.888633% 60 53.318 69 Table A.l-2 Treatment of Ottawa Sand: RO Water #1 Breakthrough time Final del t time Final del t (s) Avg.(ABS) (5) Area (s) Avg.(ABS) (s) Area Initial 10 QWSUG 10 0.017548 1310 095515697 60 54.3094179 avg(ABS) 20 0.00195923 10 0.019592 1370 0.90604528 60 54.362717 0.93253327 30 0.00204163 10 0.020416 1430 0.90762381 60 54.4574283 0.93218995 40 0.00215607 10 0.021561 1490 0.90932439 60 54.5594634 0.9318161] 50 0.03185883 10 0.318588 1550 091041006 60 54.6246033 0.93124695 60 0.17624206 10 1.762421 1610 091150412 60 54.690247 0.93094788 70 0.36964113 10 3.69641] 1670 0.9119568 60 54.717408 093077543 80 0.52869417 10 5.286942 093044587 90 0.62970123 10 6.297012 SUM: 1404.39071 093020629 100 0.68724213 10 6.872421 092965851 110 0.72080232 10 7.208023 Area= 129.85 092923432 120 0.7418915 10 7.418915 Mass Ozone consumed= 0.00103 mol/kgsoil 092890016 130 0.75650026 10 7.565003 %Consumed= 8.46345 0.92859193 140 0.76736909 10 7.673691 092831116 150 0.7761489? 10 7.76149 (ABS)f/(ABS)i= 98.1359 092743989 160 0.78364868 10 7.836487 092735596 170 0.79011383 10 7.901138 092688142 180 0.795578 10 7.95578 092676699 190 0.8005432 10 8.005432 092664185 200 0.8050705] 10 8.050705 092636618 210 0.8091903? 10 8.091904 220 0.8130127] 10 8.130127 092927948 230 0.81654663 10 8.165466 290 0.82646535 60 49.58792 350 0.83964743 60 50.37885 410 0.8505305 60 51.03183 470 0.86033555 60 51.62013 530 0.8683815] 60 52.10289 590 0.87448375 60 52.46903 650 0.87876766 60 52.72606 710 0.88203049 60 52.92183 770 0.8851738 60 53.11043 830 0.8879720] 60 53.27832 890 0.89120789 60 53.47247 950 0.89468436 60 53.68106 1010 0.8970225] 60 53.82135 1070 0.89915416 60 53.94925 1130 090099794 60 54.05988 1 190 0.90241471 60 54.14488 1250 090393626 60 54.23618 Table A.l-3 70 Treatment of Ottawa sand: R0 Water #2 Initial avg(ABS) 0.92275391 0.92234956 0.92243805 092196809 0.92151797 0.921 1258 092074584 0.92053834 0.92062532 092042085 092067564 092060241 0.9205017] 092043763 092024689 092004091 091997833 091985933 0.91991002 092088087 Breakthrough Breakthrough (cont.) time Final del t time Final del t (s) Avg.(ABS) (5) Area (s) Avg.(ABS) (5) Area 10 0 10 0 1010 0.86884487 60 52.1306919 20 0 10 0 1070 0.8696935] 60 521816104 30 0 10 0 1 130 0.87092159 60 52.2552954 40 0 10 0 1 190 0.87158483 60 52.2950898 50 0.00208282 10 0.02083 1250 0.87284698 60 52.370819 60 0.08246765 10 0.82468 1310 0.8745636 60 52.473816] 70 0.26354676 10 2.63547 1370 0.87527212 60 52.5163274 80 0.42017975 10 4.2018 1430 0.87707393 60 52.6244358 90 0.51899262 10 5.18993 1490 0.87820868 60 52.6925207 100 0.57870943 10 5.78709 1550 0.878531 15 60 52.71 18687 110 0.61760255 10 6.17603 1610 0.8781779] 60 52.6906746 120 0.64586794 10 6.45868 1670 0.87816444 60 52.6898663 130 0.66780854 10 6.67809 140 0.68593902 10 6.85939 SUM: 1350.01401 150 0.70137634 10 7.01376 160 0.71460725 10 7.14607 Area= 170.36 170 0.7262665 10 7.26267 Mass Ozone consumed= 0.00135 mol / kgsoil 180 0.73671417 10 7.36714 %Consumed= 11.2052 190 0.74606629 10 7.46066 200 0.75443727 10 7.54437 (ABS)f/(ABS)i= 95.3614 210 0.761849% 10 7.6185 220 0.7686615] 10 7.68662 230 0.77480316 10 7.74803 290 0.79257966 60 47.5548 350 0.8]502558 60 48.9015 410 0.83021546 60 49.8129 470 084023082 60 50.4138 530 0.84742432 60 50.8455 590 0.85198695 60 51.1192 650 0.8544215 60 51.2653 710 0.85739314 60 51.4436 770 0.86010438 60 51.6063 830 0.86287892 60 51.7727 890 0.86546669 60 5 1.928 950 0.86729254 60 52.0376 71 Table A.2-l Treatment of Ottawa Sand: Fe 3+ Breakthrough time Final del t time Final del t (s) Avg.(ABS) (s) Area (5) Avg.(ABS) (s) Area Initial 10 0 10 0 1070 0.?5269318 60 45.1615909 av8(ABS) 20 0 10 0 1 130 0.75148036 60 45.0888215 090753021 30 0.02510834 10 0.25108 1190 0.74961??? 60 449770664 0.9079773 40 0.15196838 10 1.51968 1250 0.?4765498 60 44.8592989 090857087 50 0.33? 14752 10 3.37148 13 10 0.7457908? 60 44.7474524 090883026 60 0.49527435 10 4.95274 1370 0.7443334 60 44.6600039 090921938 70 0.59756929 10 5.97569 1430 0.7441253? 60 44.6475222 090941466 80 0.65783997 10 6.5784 1490 0.7437004] 60 44.622024? 0.90970614 90 0.693 16407 10 6.93164 1550 0.743421 1? 60 44.6052704 0.910031 13 100 0.7148224 10 7.14822 1610 074367244 60 44.6203465 091013337 1 10 0.7289505 10 7.28951 1670 0.74415238 60 44.6491426 091046753 120 0.?3834229 10 7.38342 091083679 130 0.74465179 10 7.44652 SUM: 1218.056]? 091084595 140 0.7486206] 10 7.48621 091120911 150 0.75111848 10 7.51118 Area= 284.392 091081696 160 0.75235292 10 7.52353 Mass Ozone consumed= 0.00228 mol/ kgsoil 091092988 170 0.75283356 10 7.52834 % Consumed= 18.9286 0.9106460? 180 0.75291442 10 7.52914 091089174 190 0.?5272522 10 7.52725 (ABS)f/(ABS)i= 81.7729 0.91 1 16333 200 0.75263215 10 7.52632 0.91 122098 210 0.7522934 10 7.52293 220 0.7521 1 183 10 7.521 12 0.91002325 230 0.7522232] 10 7.52223 290 0.75291545 60 45.1749 350 0.75553666 60 45.3322 410 0.75847474 60 45.5085 470 0.?6030324 60 45.6182 530 0.761 15316 60 45.6692 590 0.7621488 60 45.7289 650 0.7621821] 60 45.7309 710 0.76107179 60 45.6643 770 0.75957414 60 45.5744 830 0.758131 16 60 45.4879 890 0.7561863 60 45.3712 950 0.75467275 60 45.2804 1010 0.75383276 60 45.23 72 Table A.2-2 Treatment of Ottawa Sand: t-BuOH Breakthrough Breakthrough (cont.) time Final del t time Final del t (s) Avg.(ABS) (3) Area (5) Avg.(ABS) (8) Area Initial 10 0 10 0 1070 0.84644089 60 50.7864536 avg(ABS) 20 0 10 0 1130 0.84531836 60 50.?191014 091083069 30 0 10 0 1 190 084461035 60 50.676620? 0.910536]? 40 0.00060883 10 0.00609 1250 084475352 60 50.68521 14 090998231 50 0.06309662 10 0.63097 1310 0.84491476 60 50.6948854 090955964 60 0.2277343? 10 2.27734 1370 0.84515483 60 50.7092899 0.9088379 70 0.40740968 10 4.0741 1430 084649684 60 50.7898104 0.908461 80 0.53881686 10 5.38817 1490 084716188 60 508297125 090832978 90 0.61962129 10 6.19621 1550 0.8484883? 60 509093023 090786286 100 0.6672561? 10 6.67256 1610 084993414 60 509960486 090774842 110 0.69657899 10 6.96579 1670 085043453 60 51.0260718 090754242 120 0.71603394 10 7.16034 090729372 130 0.73001709 10 7.3001? SUM: 13308834 090710298 140 0.74113005 10 7.41 13 090691375 150 0.7499237] 10 7.49924 Area- 167.73 0.9064895? 160 0.?5724944 10 7.57249 Mass Ozone consumed= 0.0014 mol/kgsoil 090621339 170 0.76383668 10 7.63837 %Consumed- 11.1924 0.9060653? 180 0.76948853 10 7.69489 090591889 190 0.77430878 10 7.74309 (ABS)f/(ABS)i= 93.6911 090546723 200 0.7788437 10 7.78844 090515308 210 0.78269349 10 7.82693 220 0.7861328] 10 7.86133 090770048 230 0.78921356 10 7.89214 290 0.79812013 60 47.8872 350 0.80931779 60 48.5591 410 0.8170384? 60 49.0223 470 0.8237732 60 49.4264 530 082875265 60 49.7252 590 083287965 60 49.9728 650 0.8360545 60 50.1633 710 083893942 60 50.3364 770 0.841 14304 60 50.4686 830 0.84340185 60 50.6041 890 084546968 60 50.7282 950 0.84629543 60 50.7777 1010 084649659 60 50.7898 73 Table A.2-3 Treatment of Ottawa sand: Fe 3+ and (t-BuOH) Breakthrough Breakthrough (cont.) time Final del t time Final del t (s) Avg.(ABS) (5) Area (3) Avg.(ABS) (s) Area Initial 10 4.5776E-05 10 0.00046 1070 0.72583949 60 43.5503696 avg(ABS) 20 0.10625459 10 1.06255 1 130 0.72669398 60 43.6016388 089820099 30 0.36092071 10 3.60921 1 190 0.727675 12 60 43.6605074 089777985 40 0.52445373 10 5.24454 1250 0.72753933 60 43.652359? 089759523 50 0.61431885 10 6.14319 1310 0.7281924 60 43.6915442 089719391 60 0.67138214 10 6.71382 1370 0.72910488 60 43.7462926 089690095 70 0.70941 165 10 7.09412 1430 0.72933655 60 43.?601932 0.8966614 80 0.73406982 10 7.3407 1490 0.7297589? 60 43.7855382 089618529 90 0.75023499 10 7.50235 1550 0.?2936478 60 43.?618868 0.89594575 100 0.76074524 10 7.60745 1610 0.72875825 60 43.7254949 0.8956955 1 10 0.76740724 10 7.6740? 1670 0.72803675 60 43.6822052 0.89563143 120 0.?7155764 10 7.71558 089526978 130 0.77410431 10 7.74104 SUM: 1211.25114 0.8947876 140 0.7?543792 10 7.75438 0.8944046 150 0.?7607424 10 7.76074 Area= 267.078 089414826 160 0.77646789 10 7.76468 Mass Ozone consumed= 0.00226 mol / kgsoil 089354553 170 0.77651521 10 7.76515 % Consumed= 18.0662 089343719 180 0.7?642061 10 7.76421 089331358 190 0.77619476 10 7.76195 (ABS)f/(ABS)i= 86.7069 089303589 200 0.775795 10 7.75795 0.89313762 210 0.7755218? 10 7.75522 220 0.??546692 10 7.75467 089541423 230 0.7753570? 10 7.7535? 290 0.7763862? 60 46.5832 350 0.?8482259 60 47.0894 410 0.7837066? 60 47.0224 470 0.7699496 60 46.197 530 0.7494512 60 44.9671 590 0.72848485 60 43.7091 650 0.? 1798478 60 43.0791 710 0.71525065 60 42.915 770 0.7158544 60 42.9513 830 0.71706874 60 43.0241 890 0.72020016 60 43.212 950 0.72279053 60 43.3674 1010 0.72457505 60 43.4745 Table A.3-1 74 Natural soil: R0 water lnitial Avg(ABS) 0.903822 0.90367 0.903755 0.903708 0.903448 0.903444 0.903046 0.90256 0.902217 0.901892 0.901407 0.901 163 0.900784 0.9 0.899406 0.89897 0.898557 0.89852 0.896679 0.901424 Breakthrough Breakthrough (cont.) Time Final del t Time Final del t (s) Avg(ABS) (5) Area (3) Avg(ABS) (s) Area 10 0 10 0 1510 0.323623 60 19.4173742 20 0 10 0 1570 0.3287 60 19.7219855 30 0 10 0 1630 0.334284 60 20.0570523 40 0 10 0 1690 0.33951 60 20.370621 1 50 1225-05 10 0.000122 1750 0.344755 60 20.6853028 60 0.002686 10 0.026855 1810 0.349826 60 20.9895788 70 0.0078 10 0.078003 1857 0.3539 47 16.6332984 80 0.013301 10 0.13301] 5577 0.439225 3720 1633.91601 90 0.018904 10 0.189041 91?? 0.581912 3600 2094.88496 100 0.024187 10 0.241867 12??? 0.609931 3600 2195.751 11 110 0.029413 10 0.294128 1637? 0.638644 3600 2299.1 19 120 0.034592 10 0.345917 19977 0.662219 3600 238398744 130 0.039574 10 0.39573? 2357? 0.706701 3600 2544.12326 140 0.044452 10 0.444519 2717? 0.728756 3600 2623.52054 150 0.049075 10 0.490753 3077? 0.778376 3600 2802.15454 160 0.053783 10 0.53782? 3437? 0.814068 3600 2930.64422 170 0.058371 10 0.58371 37977 0.856693 3600 3084.09394 180 0.062959 10 0.629593 4157? 0.88402 3600 3182.47103 190 0.067484 10 0674835 4517? 0.917516 3600 3303 .05605 200 0.071962 10 0.71962 4877? 0.933025 3600 33588895 210 0.076273 10 0.762726 5237? 0.946693 3600 3408.09449 220 0.080659 10 0.806595 5597? 0930506 3600 3349.821 16 230 0.084886 10 0.848862 5957? 0.911208 3600 3280.34821 290 0.099075 60 5.944489 6317? 0.914169 3600 3291.00954 350 0.121743 60 7.30458 64017 0.898812 840 755.001957 410 0.142016 60 8.520935 470 0.160343 60 9.62056 SUM: 64017 48952.3935 530 0.176716 60 10.60294 590 0.19183 60 11.50978 Area= 8754.043 650 0.205579 60 12.33475 Mass Ozone consumed= 0.075818 mol / kg soil 710 0.21826 60 13.09561 %Consumed= 16.72151 770 0.230107 60 13.80644 830 0.240917 60 14.455 (ABS)f/(ABS)1= 99.71026 910 0.252521 80 20.20168 970 0.263247 60 15.79483 1030 0.271984 60 16.31903 1090 0.280291 60 16.81746 1150 0.287835 60 17.2701 1 1210 0.294483 60 17.66898 1270 0.300346 60 18.02077 1330 0.305874 60 18.35242 1390 0.311958 60 18.71745 1450 0.317829 60 19.06976 75 Table A.3-2 Natural soil: t-BuOH Breakthrough Time Final del t Time Final del t (5) Avg (ABS) (s) Area (5) Avg (ABS) (5) Area 600 0 600 0 61800 0.91376318 3720 3399.199 1200 0 600 0 65400 0.92066777 3600 3314.404 1800 0.001515 600 0.9091 69000 0.92205737 3600 3319.407 2400 0.01255 600 7.5302 72720 0.93103494 3720 3463.45 3000 0.024049 600 14.43 3600 0.035103 600 21.062 SUM: 72720 50336.57 4200 0.045872 600 27.523 58080 36840.11 4800 0.057591 600 34.555 Area= 18431.72 5400 0.071629 600 42.978 Mass Ozone consumed= 0.159637 mol/kg soil 6000 0.084412 600 50.647 %consumed= 33.34912 6600 0.097899 600 58.739 7200 0.1094? 600 65.682 (ABS)f/(ABS)in= 97.83376 7800 0.126274 600 75.764 8400 0.143742 600 86.245 9000 0.162129 600 97.278 9600 0.180392 600 108.24 10200 0.200974 600 120.58 10800 0.222182 600 133.31 11400 0.240312 600 144.19 12000 0.265115 600 159.07 12600 0.281465 600 168.88 13200 0.302689 600 181.61 13800 0.323085 600 193.85 17400 0.393179 3600 1415.4 21000 0.521895 3600 1878.8 24600 0.634821 3600 2285.4 28200 0.744016 3600 2678.5 31800 0.824618 3600 2968.6 35400 0.8665 3600 3119.4 39000 0.8912 3600 3208.3 42600 0.912446 3600 3284.8 46200 0.899871 3600 3239.5 49800 0.907997 3600 3268.8 54600 0.930914 4800 4468.4 58080 0.928479 3480 3231.1 Table B.1-l APPENDIX B: Kinetic Rate Constant Data 76 250 ppm Pyrene Contaminated Glass Beads (Experiment 4 1) Slope y-intereept 0.000228502 0.019298167 S.E.E. 1.09627E-06 0.001550292 r"(2) 0.998804533 0.009104699 43445.65257 52 I Co- 10.39 ] time time C (5) (hrs) (mg/L) In C C I Co . In C I Co 0 0 10.39 2.341275161 1 0 10 0.00277778 10.35 2.337286325 0996019108 0.00398883? 20 0.00555556 10.34 2.335686324 0.994426752 0.00558883? 30 0.00833333 10.30 2.331675088 0.99044586 0.009600074 40 0.01 1 1 1111 10.20 2.322793318 0981687898 0018481844 50 0.01388889 1021 2.323604019 0.982484076 0.017671143 60 0.01666667 10.17 2.319543924 0.978503185 0.021731237 70 0.01944444 10.08 2.3 105 53263 0969745223 0.030721899 80 0.02222222 10.08 2.310553263 0.969745223 0.030721899 90 0.025 10.06 2.30808717 0967356688 0.033187991 100 0.02777778 10.00 2.302309193 0.961783439 0.038965969 1 10 003055556 9.97 2.29982266 0959394904 0.041452501 120 0.03333333 9.94 2.296497636 0956210191 0044777525 130 0.0361 1 1 l 1 9.93 2.29566465 0955414013 0.04561051 1 140 003888889 9.91 2.293996593 0.953821656 0047278568 150 0.04166667 9.86 2.288136384 0948248408 0053138778 160 004444444 9.82 2.284772209 0945063694 0056502952 170 004722222 9.79 2281396678 0941878981 0059878483 180 0.05 9.77 2.278857532 0.939490446 006241763 190 0.05277778 9.75 2.277161 179 0937898089 0.0641 13983 200 0.05555556 9.70 2.272054785 0.933121019 0069220377 210 005833333 9.69 2271201 178 0932324841 0070073983 220 0.061 1 11 1 1 9.69 2.271201178 0932324841 0070073983 230 006388889 9.69 2271201 178 0932324841 0.070073983 240 0.0666666? 9.67 2268635978 0929936306 0072639184 250 006944444 9.57 2258308864 0920382166 0082966298 260 007222222 9.56 2.257443437 0.919585987 0.083831724 270 0.075 9.53 2253974223 0916401274 0087300938 280 007777778 9.52 2253105036 0915605096 0088170126 290 008055556 9.48 2249620712 0912420382 009165445 300 008333333 9.48 2249620712 0.912420382 009165445 310 0.08611 1 1 1 9.48 2.249620712 0.912420382 0.09165445 320 008888889 9.42 2242615429 0.906050955 0098659732 330 0.09166667 9.38 2239094299 0902866242 0.102180863 340 009444444 9.35 2.235560726 0.899681529 0.105714435 350 009722222 9.34 2234675379 089888535 0 106599783 500 0 13888889 9.02 2. 19952079 0867834395 0 141754372 700 0.19444444 8.60 2.151601805 0827229299 0.189673356 900 0.25 8.21 2.105310922 0.789808917 023596424 1100 030555556 7.80 2.053593089 0.75 ‘ 0287682072 1300 0.361 1 11 1 1 7.51 2.015730264 0722133758 0325544897 1500 041666667 7.14 1.966002505 0687101911 0375272656 1700 047222222 6.78 1913671898 0652070064 0427603263 1900 052777778 6.54 1.87762076 0628980892 0463654402 2100 058333333 6.26 1.833629191 0601910828 0.507645971 2300 063888889 5.98 1.788997037 0575636943 0552278125 2500 069444444 5.77 1.752373225 0554936306 0588901936 2700 0.75 5.50 1.703869964 052866242 0637405198 2900 080555556 5.28 1.663926098 0507961783 0677349064 3100 0.86111111 5.04 1.617406082 0484872611 0723869079 3300 091666667 4.81 1.570338571 0462579618 077093659 3500 0.9?222222 4.63 1.531737288 0445063694 0809537874 3700 1.02777778 4.44 1.489721975 0.426751592 0.851553186 3900 1.08333333 4.25 1.44586366 040843949 089541 1502 Table 3.1-2 T7 250 ppm Pyrene Contaminated Glass Beads (E‘periment 82) Slope y-intereept 0000465697 0002901616 S.E.E. 2.027878-06 0.0030547 r“(2) 0998996042 0018063616 52738.079 53 Co- 10.32 ] Time Time C (5) (hrs) (mg/L) In C C / Co - In Cl Co 0 0 10.32 229982266 1 0 10 0.0027778 10.27 2294830969 0.995 1 895 77 000482203 20 0.0055556 10.22 2289814236 0990379155 0009667424 30 0.0083333 10.18 2.285614314 0986370469 0.013723265 40 0.01 1111 1 10.16 2283085868 0983965258 0.016164689 50 0.0138889 10.09 2.276311922 0977551361 0022704445 60 0.0166667 10.08 2275461943 0976749624 002352493 70 00194444 10.04 2.271201178 0972740939 0027637482 80 0.0222222 9.99 2.26606418 0.967930516 0032594975 90 0.025 9.90 2256577261 0.9591 11408 004174804 100 0.0277778 9.86 2252235092 0.955102723 0045936381 1 10 0.0305556 9.83 2.249620712 0952697511 0048457833 120 0.0333333 9.74 2239975744 0943878403 0057757931 130 0.0361 11 1 9.69 2234675379 0939067981 0062867406 140 0.0388889 9.64 2.2284559 0933455821 0068861643 150 0.0416667 9.59 2223093957 0928645398 0.074028316 160 00444444 9.55 2219503289 092543845 0077487654 170 0.0472222 9.50 2.214092996 0.920628027 0082699203 180 0.05 9.49 2.212283041 0.919024553 008444244 190 0.0527778 9.42 2205010282 0912610656 0091445934 200 0.0555556 9.34 2.195844315 0904593285 0100269845 210 0.0583333 9.33 2.19492308 0.903791548 0.101 156533 220 0.0611111 9.25 2.185663755 0.895774177 0.110066932 230 0.0638889 9.24 2.184733089 089497244 0.1 10962354 240 0.066666? 9.20 2.180066725 0890963755 0.115451532 250 0.0694444 9. 13 2. 172554953 0884549858 0.122676398 260 0.0722222 9.13 2.172554953 0.884549858 0122676398 270 0.075 9.08 2.16688386 0879739435 0.12812951 1 280 0.0777778 9.01 2.159272025 0873325539 0.135446896 290 0.0805556 8.97 2.154485037 0.869316853 0140047602 300 0.0833333 8.97 2.153524883 0.8685151 16 0.140970289 310 0.0861111 8.90 2.145810283 0862101219 0.148382591 320 0.0888889 8.88 2. 143 872298 0860497745 0.150244284 330 0091666? 8.86 2.14095826 0858092534 0.153043337 340 0.0944444 8.83 2.138035706 0855687323 0.155850247 350 0.0972222 8.78 2132164848 0.8508769 0.161487814 500 0.1388889 8.19 2.058886908 0793151829 0.231740614 700 0.1944444 7.53 1 .971779529 0729814598 0.314964752 900 0.25 6.89 187762076 0667279105 0404546873 1 100 0.3055556 6.29 1.782057383 0609554034 0495027681 1300 0.3611111 5.76 1.688695166 055824286 0.582961179 1500 0.4166667 5.27 1.592467134 0.510138634 0673072759 1700 0.4722222 4.82 1.497156954 046684483 0761758345 1900 0.5277778 4.44 1.408123332 0429964924 0844051646 2100 0.5833333 4.02 1.301412377 0389878069 0941921232 2300 0.6388889 3.66 1 . 197052361 0.3 5460 1 637 1.036760269 2500 0.6944444 3.35 1.099990649 0324937364 1.12412284 2700 0.75 3.02 0983240138 029286788 1228033692 2900 0.8055556 2.?7 0.88234161? 026801403 1.316715948 3100 0.8611 1 1 1 2.47 0750765259 0.239151495 1.430658058 3300 0.916666? 2.21 0621688217 0214297645 1.540389366 3500 0.9722222 2.01 0508892722 0195055955 1.634468815 3700 1.0277778 1.81 0.376071809 0.175012527 1.742897724 3900 1.0833333 1.59 0.216223108 0.154167363 1.869716496 Table B.l-3 78 250 ppm Pyrene Contaminated Glass Beads (Experiment #3) Slope y-intercept 0000323431 00052344 S.E.E. 1.3027SE-06 0.0020839 r"(2) 0999124668 0.0124028 6163690655 54 L Co- 10.78 1 Time Time C (5) (hrs) (mg/L) InC C / Co -In CI Co 0 0 10.78 2.38 1 0 10 0002777778 10.77 2.38 0.99923195 0000768344 20 0005555556 10.70 2.37 099308756 0006936444 30 0008333333 10.68 2.37 099078341 0009259325 40 0.0111 11 11 1 10.62 2.36 0.9854070? 0014700458 50 0.013888889 10.58 2.36 0.98156682 0.018605188 60 0.016666667 10.54 2.35 097772657 0022525224 70 0019444444 10.54 2.35 0.9777265? 0.022525224 80 0022222222 10.48 2.35 097235023 002803922 90 0.025 10.48 2.35 0.97235023 0.02803922 100 0027777778 10.42 2.34 096697389 0033583789 1 10 0030555556 10.36 2.34 096159754 0039159271 120 0033333333 10.39 2.34 096390169 0036765971 130 0.036111111 10.34 2.34 095929339 0.041558313 140 0038888889 10.30 2.33 0.95 5453 15 0045569549 150 0.041666667 10.30 2.33 0.95 5453 15 0.045569549 160 0044444444 10.26 2.33 095238095 0048790164 170 0047222222 10.26 2.33 0.95238095 0.048790164 180 0.05 10.21 2.32 094777266 0053640618 190 0052777778 10.20 2.32 094700461 005445132 200 0055555556 10.16 2.32 0.94316436 0.058514714 210 0058333333 10.15 2.32 094162826 0060144706 220 0.0611 1 1 1 1 1 10.12 2.31 093932412 0062594687 230 0063888889 10.08 2.31 093548387 0.066691374 240 0066666667 10.06 2.3 1 093394777 006833476 250 0.069444444 10.06 2.31 093317972 0069157467 260 0072222222 10.02 2.30 093010753 0072455079 270 0.075 9.98 2.30 092626728 0076592445 280 0077777778 9.95 2.30 0.92319508 0.079914708 290 0080555556 9.93 2.30 092165899 0.081579987 300 0083333333 9.91 2.29 092012289 0.083248044 310 0.08611 1 11 1 9.87 229 091628264 0087430401 320 0088888889 9.83 229 0.9124424 0091630323 330 0091666667 9.83 2.29 0.9124424 0.091630323 340 0094444444 9.77 2.28 0.906298 0098387105 350 0097222222 9.76 2.28 090552995 0099234922 500 0138888889 9.34 2.23 086635945 0143455391 700 0.194444444 8.78 2.17 081490015 0204689684 900 0.25 828 2.1 1 076804916 0.263901544 1100 0305555556 7.72 2.04 071658986 0333251622 1300 0.361 111 11 1 7.18 1.97 066666667 0.405465108 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500 4700 4900 5100 5300 5500 5700 5900 6100 6300 6500 6700 6900 7100 7300 7500 7700 7900 8100 8300 8500 8700 8900 9100 9300 9500 9700 0.416666667 0472222222 0527777778 0583333333 0638888889 0694444444 0.75 0805555556 0.861 11 1 1 1 1 0916666667 0972222222 1.027777778 1.083333333 1 . 138888889 1.194444444 1.25 1.3 05555556 1.361 111 1 1 1 1.416666667 1.472222222 1.527777778 1.583333333 1.638888889 1.694444444 1.75 1.805555556 1.861 1 1 1 1 1 1 1.916666667 1.972222222 2.027777778 2.083333333 2.138888889 2.194444444 2.25 2.305555556 2.361 1 11 11 1 2.416666667 2.472222222 2.527777778 2.583333333 2638888889 2.694444444 6.71 6.23 5.82 5.35 4.98 4.67 4.43 4.15 3.91 3.72 3.48 3.33 3.12 2.94 2.76 2.64 2.43 2.34 2.18 2.06 1.93 1.82 1.73 1.64 1.51 1.45 1.38 1.32 1.23 1.16 1.07 1.00 0.94 0.87 0.81 0.76 0.70 0.67 0.60 0.54 0.50 0.43 1.90 1.83 1.76 1.68 1.61 1.54 1.49 1.42 1.36 1.3 1 1.25 1.20 1.14 1.08 1.02 0.97 0.89 0.85 0.78 0.72 0.66 0.60 0.55 0.49 0.41 0.37 0.32 0.28 0.21 0.15 0.07 0.00 -0.06 -0. 14 -0.21 -0.27 -0.36 -0.40 -0.50 -0.62 -0.68 ~084 062288786 0.5783410! 053993856 0.49615975 046236559 0.433 17972 0.4109063 038556068 0.3625 192 034485407 032334869 030875576 028955453 027265745 025652842 024500768 022580645 0.21735791 020276498 0.19124424 0.17895545 0. 16897081 0.16052227 0.15207373 0.13978495 0.1344086 0.12826421 0.12288786 0.1 1443932 0.10752688 009907834 009293395 0.0875576 008064516 007526882 007066052 0.06451613 0.06221 198 0.05606759 0.0499232 0.046851 003993856 0473388769 0.547591595 0.61629993 1 0.7008573 19 0.771 399377 0836602571 0889390076 0953056703 1 .014677837 1 .064633935 1 . 129023989 1 . 175204734 1 .23941 1635 1 .2995 39033 1.3605 1583 1.40646572 1 .488077055 1 .526209925 1 .59570772 1 .654203926 1 .720618369 1 .778029276 1.829322571 1.8833 89792 1.967650136 2.006870849 2.05366301 2.096483008 2.1677105 17 2.2300144 2.3 1 1844418 2.375866277 2.435458374 2.517696473 2.586689344 2.649868246 2.740840024 2.777207668 2.881 1973 82 2.997269553 3 .060782959 3.220413 104 Table B.l-4 250 ppm Pyrene Contaminated Glass Beads (Experiment 84) Slope J-iutercept 0.00021825 0.009578863 1.9305E.06 0.003088136 0.99579242 0.018379742 127799842 54 [ Co- 18.45 time time C (3) (hrs) (mg/L) IIC C lCo -1||CI Co 0 0 18.45 2.91489615 1 0 10 000277778 18.46 291534468 1.000448632 -0000448531 20 000555556 18.37 2.91085029 0995962315 0004045859 30 0.00833333 18.28 2.90588302 0991027367 000901313 40 001111111 18.27 290543022 0.990578735 0009465926 50 001388889 18.28 290588302 0.991027367 0.00901313 60 001666667 18.17 2.89998062 0985195155 0014915531 70 0.01944444 18.11 2.89633098 0981606101 001856517 80 002222222 18.11 2.89633098 0.981606101 0.01856517 90 0.025 18.04 2.89266797 0978017048 0022228178 100 002777778 18.02 2.89129088 0976671153 0023605272 110 003055556 17.95 2.88760933 0.9730821 0027286823 120 003333333 17.86 2.88252496 0968147151 0032371188 130 003611111 17.89 288437681 0969941678 0030519335 140 003888889 17.84 2.88159775 0967249888 0033298401 150 0.04166667 17.74 2.87601634 0961866308 0038879811 160 0.04444444 17.73 2.87508307 0960969044 0039813082 170 0.04722222 17.68 2.87227801 0.958277254 0042618133 180 0.05 17.69 2.87274607 0958725886 0042150078 190 005277778 17.57 286617328 0952445043 0048722872 200 005555556 17.57 2.86617328 0.952445043 0.048722872 210 005833333 17.56 286570213 0951996411 0049194014 220 006111111 17.50 286239791 0948855989 0052498242 230 006388889 17.49 2.86145183 0947958726 0053444316 240 006666667 17.36 2.8543276 0941229251 0.060568544 250 006944444 17.39 2.85575652 0942575146 0.059139633 260 007222222 17.34 285289665 0939883356 0.061me 270 0.075 17.27 2.84907072 0936294302 0065825426 280 007777778 17.25 284763222 0934948407 0067263931 290 008055556 17.20 284474899 0932256617 0070147162 300 008333333 17.15 284185742 0929564827 007303873 310 008611111 17.11 283992505 0927770301 0074971098 320 008888889 17.11 2.83992505 0.927770301 0.074971098 330 009166667 17.08 283798894 0925975774 0076907207 340 009444444 16.97 283118289 091969493 0083713261 350 009722222 17.00 2.8331322 0921489457 0081763943 500 013888889 16.33 2.79289832 0885150292 0121997827 700 019444444 15.53 2.74301785 0842081651 0171878297 900 0.25 14.68 2.68657998 0795872589 0228316171 1100 030555556 13.99 2.63866316 075863616 0276232984 1300 036111111 13.27 258521997 0719156572 0329676181 1500 041666667 12.63 253599303 0684611934 0378903122 1700 047222222 12.13 2.4958807 0657694033 0419015451 1900 052777778 11.64 245409189 0630776133 0460804261 2100 058333333 11.14 241048032 0603858232 0504415823 2300 063888889 10.71 237108129 0580529385 0543814858 2500 069444444 10.34 233648664 0560789592 0578409503 2700 0.75 9.93 229566465 0538358008 0619231498 2900 080555556 9.55 225657726 0517720951 0658318886 3100 086111111 9.19 2.2186036 0498429789 0696292544 3300 091666667 8.90 218566375 0482279049 0729232393 3500 097222222 8.57 2.14774452 0464333782 0767151628 3700 102777778 8.32 211833063 0450874832 0796565513 3900 4100 4300 4500 4700 4900 5100 5300 5500 5700 5900 6100 6300 6500 6700 6900 7100 7300 7500 7700 7900 8100 8300 8500 8700 8900 9100 9300 9500 9700 9900 10100 10300 10500 10700 10900 1 1 100 1 1300 1 1500 1 1700 1 1900 12100 12300 12500 12700 12900 13100 13300 13500 13700 13900 14100 14300 14500 14700 14900 15100 15300 15500 15700 15900 16100 1.08333333 1 . 13888889 1 . 19444444 1.25 1.30555556 1.361 1 1 1 1 1 1.41666667 1.47222222 1.52777778 1.58333333 1.63888889 1.69444444 1.75 180555556 1.861 1 1 1 11 191666667 197222222 2.02777778 2.08333333 213888889 2.19444444 225 230555556 2.361 1 111 1 2.41666667 247222222 252777778 2.58333333 263888889 269444444 2.75 280555556 2.861 111 I 1 291666667 297222222 3.02777778 3.08333333 3.13888889 3.19444444 3.25 3.30555556 3.3611 1 11 1 3.41666667 3.47222222 3.52777778 3.58333333 3.63888889 3.69444444 3.75 3.80555556 3.861 111 1 1 391666667 3.97222222 402777778 4.08333333 4.13888889 4.19444444 4.25 4.30555556 4.361 1 1 1 1 1 4.41666667 4.47222222 8.04 7.77 7.55 7.29 6.82 6.60 6.41 6.22 5.82 1.51 1.42 1.33 1.27 1.20 1.16 1.10 1 .00 0.97 0.95 0.88 0.83 0.81 0.74 0.70 0.65 0.60 0.55 0.50 0.47 0.46 81 2.08494362 2.05040329 2.0212278 1.98664544 195434736 1 .91975834 1 88769641 1 .85715969 1 .82699347 1.79863235 1.76094471 1 .73061747 1 .68869517 1 .65130763 1.6141 1661 1 .59246713 1.55995786 1 .5281 5305 1.48785456 1.44975472 1 .40406653 1.35832051 1.3 1038105 1.25767698 1 .20947488 1 . 16659315 1. 137833 1.0889102 1 .04913223 1 .01672881 097702894 092589959 0.88916758 082598868 0.77010822 0.69864926 0.65232519 059465954 0.54312589 0468278 0.41507397 0.35308229 0.28699218 023602574 0 18232156 0.14723024 009593694 0.05761808 0.00137836 0.0322383 00494801 -0. 1309731 -0189242 -0.2094447 -0.3057758 -03517609 04377034 0.5039527 -0.5897196 0.6835383 -0.7513609 -0.7690605 0436069987 0.421265141 0.409152086 0395244504 0.382682817 0369672499 0358008075 0.347240915 0336922387 0.327501 122 0.315388066 0305966801 0.2934051 14 0282637954 0.272319426 0.266487214 0.257963212 0249887842 0.240017945 0.231045312 0220726783 0.210856886 020098699 0 190668461 0 181695828 0. 174069089 0.169134141 0.161058771 0.154777927 0. 149842979 0. 144010767 0 13683266 0. 131897712 0 123822342 0 1 17092867 0 109017497 0 104082548 0098250336 0.093315388 0.086585913 0082099596 0.077164648 0072229699 0068640646 0.065051593 0062808434 0.059668013 0057424854 0.054284432 0052489906 0.051592642 0047554957 0.044863167 0.043965904 0.039928219 0.038133692 0034993271 0.0327501 12 0030058322 0027366532 0025572005 0.025123374 0829952529 0864492854 0893668343 0928250707 0960548786 0.995137803 1 .027199736 1 05773646 1087902682 1. 1 16263799 1 . 153951442 1 . 184278676 1226200982 1 .263588514 1 .300779542 1.322429014 1.354938293 1.386743093 1.427041586 1 .465141433 1.510829617 1.556575639 1.604515101 1.657219164 1.705421266 1.748302994 1 .777063 146 1.825985945 1.865763916 1 .89816734 1.93786721 1988996557 2025728566 2088907468 2.144787926 2.21624689 2262570962 2.320236604 2.371770254 2446618144 2.499822181 2.56181 3857 2.627903968 2.678870412 2.732574591 276766591 1 2.818959205 2857278069 2.913517788 2.947134399 2.964376205 ’ 3045869239 3. 104138147 3124340855 3220671964 3266657077 3.352599507 3.418848892 3.504615714 3598434469 3.666257066 3.683956643 Table B.l-5 250 ppm Pyrene Contaminated Glass Beads (Experiment #5) Slope y-intercept 0.0002276 0002344689 S.E.E. 196215-06 0003138739 l"(2) 0.9960023 001868092 13453.748 54 [ Co- 27.38 time time C (5) (hrs) (mg/L) In C C I Co - In C l Co 0 0 27.38 3.3099891 1 0 10 0.0027778 27.33 3.3078714 0997884557 0.002117683 20 0.0055556 27.32 3.3075685 0997582351 0002420576 30 0.0083333 27.20 3.3033184 0993351466 0006670734 40 0.0111 1 1 1 27.20 3.3033184 0.993351466 0.006670734 50 0.0138889 27.22 3.3039267 0993955878 0006062462 60 0.0166667 27.05 3.2978272 0.98791 1756 0.012161%! 70 0.0194444 27.02 3.2966029 0986702931 0013386266 80 0.0222222 26.95 3.2941496 0984285283 0015839503 90 0.025 26.98 3.2950703 0.985191901 0.014918834 100 0.0277778 26.86 3.2907666 0980961015 001922256 1 10 0.0305556 26.86 3.2907666 0.980961015 0.01922256 120 0.0333333 26.75 3.2864442 097673013 0023544888 130 0.0361 1 11 26.74 3.2861348 0976427924 0023854342 140 0.0388889 26.62 3.2817923 0.972197038 0.028196781 150 0.0416667 26.59 3.2805482 0970988214 0029440949 160 0.0444444 26.54 3.278679 0.969174977 0.031310108 170 0.0472222 26.42 3.2739908 0964641886 0035998349 180 0.05 26.40 3.273364 0.964037474 0.036625112 190 0.0527778 26.38 3.2724231 0963130855 0037565994 200 0.0555556 26.27 3.2683357 0959202176 0041653407 210 0.0583333 26.21 3.2661279 0957086733 0043861261 220 0.0611 1 1 1 26.19 3.2654961 0956482321 0044492973 230 0.0638889 26.09 3.2616975 0952855848 0048291648 240 0.0666667 25.97 3.2569287 0948322756 0053060375 250 0.0694444 26.01 3.2585209 0949833787 0.05 1468271 260 0.0722222 25.90 3.2540566 0945602901 0055932564 270 0.075 25.83 32514966 0.943185252 0058492566 280 0.0777778 25.83 3.2514966 0943185252 0.058492566 290 0.0805556 25.68 3.2457125 0937745542 0064276643 300 0.0833333 25.65 3.2444226 0936536718 006556655 310 0.0861 1 1 1 25.53 3.2398948 0932305833 0070094372 320 0.0888889 25.50 3.2385973 0.931097008 0.071391809 330 0.0916667 25.50 3.2385973 0.931097008 0.071391809 340 0.0944444 25.42 3.2353463 0928074947 0074642787 350 0.0972222 25.37 3.2337169 0926563917 0076272248 500 0.1388889 24.36 3.1927726 0889392566 0.11721656 700 0.1944444 22.99 3.1350743 0839528558 0174914785 900 0.25 21.84 3.0837432 079752191 0226245971 1 100 0.3055556 20.76 3.0332274 0.7582351 16 0276761762 1300 0.361 11 1 1 19.64 2.9774981 0717135086 0332491051 1500 0.4166667 18.70 2.9287079 0682985796 0381281216 1700 0.4722222 17.86 2.882525 0652160774 0427464162 1900 05277778 17.02 2.8345917 0621637957 0475397418 2100 0.5833333 16.30 2.7913766 0595346026 0518612486 2300 0.6388889 15.61 2.7478013 0569960713 0562187845 2500 0.6944444 15.01 2.7088774 0548201874 0.601 11 1677 2700 2900 3 100 3300 3500 3700 3900 4100 4300 4500 4700 4900 5100 5300 5500 5700 5900 6100 6300 6500 6700 6900 7100 7300 7500 7700 7900 8100 8300 8500 8700 8900 9100 9300 9500 9700 10100 10300 10500 10700 10900 11100 11300 11500 11700 11900 12100 12300 12500 12700 12900 13100 0.75 0.8055556 0.8611 1 1 1 0.9166667 0.9722222 1.0277778 1.0833333 1. 1388889 1.1944444 1.25 1.3055556 1.361 1 1 11 1.4166667 1.4722222 1.5277778 1.5833333 1.6388889 1.6944444 1.75 1.8055556 1.861 1 1 1 1 1.9166667 1.9722222 2.0277778 2.0833333 2.1388889 2.1944444 225 2.3055556 2.361 1 1 1 1 2.4166667 2.4722222 2.5277778 2.5833333 2.6388889 2.6944444 2.75 2.8055556 2.861 1 1 1 1 2.9166667 2.9722222 3.0277778 3.0833333 3.1388889 3.1944444 3.25 3.3055556 3.361 1 1 1 1 3.4166667 3.4722222 3.5277778 3.5833333 3.6388889 14.42 13.90 13.40 12.90 12.42 12.00 1 1.58 1 1.23 10.84 10.52 10.17 9.86 9.58 9.25 8.97 8.66 8.42 8.18 7.90 7.66 7.43 7.28 7.02 6.81 6.55 6.40 6.17 5.95 5.77 5.57 5.40 5.21 5.00 4.85 4.68 4.53 4.38 421 4.03 3.87 3.72 3.60 3.39 3.25 3.10 2.97 2.84 2.67 2.57 2.47 2.30 2.18 2.10 2.668377 2.6321369 2.5951518 2.5573877 2.5194746 2.4849066 2.4491008 2.4186195 2.3833702 2.3531471 2.3195439 2.2881364 2.2591735 2.2248845 2.194001 2.159272 2. 1302002 2.1022821 2.0672992 2.0353816 2.0057579 1.9855097 1.9484685 1 .918544 1.8788858 1.8558669 1.8203134 1.7834492 1.7523732 1.7173331 1.6856324 1.6497191 1.609162 1.5789076 1.5441819 1.5100366 1.4765762 1.4380358 1.3938519 1.3540561 1 .3148354 1 2809338 1.221745 1.1793974 1.1298436 1.0889102 1.0433183 0.9832401 0.9453807 0.9026813 0.8332089 0.7815369 0.7429221 0526443034 0507706256 0.489271683 0.471 1393 1 7 0.45361 1363 0.438198852 042278634 0.4 10093684 0395889997 0.384 103959 0.37141 1303 0359927471 0349652463 0337866425 0.3275914 1 7 0.3 16409791 0307343608 0.298881837 028860683 0279540647 0.27 138 1082 0.26594 1 372 0256270777 0248715624 0239045029 0.2336053 19 0225445754 0.217286189 0210637655 0203384708 0.19703838 0.19008764 0 182532487 0 177092777 0 171048655 0 165306739 0.159867029 0 153822907 0 1471 74373 0 141432457 0.135992747 0 1 3 1459655 0 123904503 0.1 18766999 0 1 13025083 0 108491992 0.103656694 0.097612572 0093986099 0.0900574 19 0.084013297 0.079782412 007676035 1 0.64161215 1 0677852236 0.714837354 0.752601439 0.7905 14476 0825082473 0860888333 0.891369648 0.926618892 0956842037 0.990445 198 1.021852739 1 .050815581 1.085 104654 1 .1 15988126 1 . 150717097 1 . 179788912 1207706976 1242689967 127460757 1.30423124 1.3244794 1.361520672 1891445107 1.431 10334 1.454122259 1.489675708 1.52653995 1.557615897 1.592655978 1.624356746 1.660270051 1.7008271 1 1.73 1081518 1.76580723 1.799952505 1.833412876 1.871953291 1.916137185 1 .955933012 1.995153725 2029055277 2.088244148 2.130591696 2.18014551 1 2.221078919 2266670861 2.326748985 2364608396 2.407307821 2.476780194 2.528452205 2567067041 Table 3.1-6 84 250 ppm Pyrene Contaminated Glass Beads (Experiment #6) Slope y-intereept 000024954 0061878868 S.E.E. 201368-06 0009648095 r"(2) 099662552 0042781598 15357.7924 52 I Co- 2606 I time time C (31 (hrs) (myL) lnC ClCo -laCI Co 0 0 26.06 3.26042804 1 0 10 000277778 26.09 3.26169747 1001270245 0001269438 20 000555556 25.95 3.2562912 0995871705 000413684 30 000833333 25.83 325149656 0991108288 0008931479 40 001111111 25.91 325469554 0.9942839 0.0057325 50 001388889 25.68 324571248 0985392188 0014715557 60 001666667 25.74 3.24796582 0987615116 0012462216 70 001944444 25.73 3.24764422 0987297555 0012783811 80 002222222 25.64 324409984 0983804382 0.0163282 200 005555556 24.36 3.19277256 0934582407 0067655473 400 011111111 22.26 3.10288429 0854239441 0157543749 600 016666667 20.89 303918804 0801524293 0221239997 800 022222222 19.37 296349402 0743093045 0296934013 1000 027777778 18.35 290949802 0704033026 0350930011 1200 033333333 17.13 28408917 065735154 0419536335 1400 038888889 16.24 278730745 0623054938 0473120581 1600 044444444 15.35 273122779 0589075897 0529200246 1800 0.5 14.68 268657998 0563353446 0573848058 2000 055555556 13.94 2.63510866 0535090505 0625319378 2200 061111111 13.22 258209594 0507462687 0678332095 2400 066666667 12.66 253861083 048586853 0721817207 2600 072222222 12.09 249246423 0463956812 0767963809 2800 077777778 11.50 244192716 044109241 0818500878 3000 083333333 11.05 240227439 0423944109 085815365 3200 088888889 10.43 234445481 0400127024 0915973221 3400 094444444 9.98 230065219 0382978723 0959775844 3600 1 9.61 2.2626248 0368688473 0997803239 3800 105555556 9.19 2.2186036 0352810416 1041824431 4000 1.11111111 8.79 217349702 0337249921 1086931019 4200 1.16666667 8.38 212527166 0321371864 1.135156371 4400 122222222 8.04 208494362 0308669419 ”7548“” 4600 1.27777778 7.66 203538155 0293744046 1225046484 4800 1.33333333 7.36 199568505 0282311845 1264742986 5000 1.38888889 7.03 1.95082416 0269926961 1.309603872 5200 1.44444444 6.74 190877593 0258812321 1.351652108 5400 1.5 6.46 186488173 0247697682 1395546301 5600 1.55555556 6.13 181358844 0235312798 1446839596 5800 1.61111111 5.88 1.77085278 0225468403 1.489575251 6000 1.66666667 5.58 1.71881793 0214036202 1.54161011 6200 1.72222222 5.35 1.67638732 020514449 1.584040717 6400 1.77777778 5.09 1.62721008 0195300095 1.633217953 6520 181111111 4.91 1.59078221 018831375 1.669645822 6720 186666667 4.68 1.54418189 0.1797396 1.716246143 6920 192222222 4.44 1.4915859] 0170530327 1.768842127 7120 197777778 4.26 1.44975472 0163543982 181067332 7320 203333333 4.06 1.39999321 0155604954 1.86043483 7520 208888889 3.84 1.34547237 0147348365 1914955669 7720 214444444 3.65 1.29463269 0140044459 1965795346 7920 2.2 3.45 1.23867404 0132422991 2021753999 8120 225555556 3.28 1.18700203 0125754208 207342601 8320 231111111 3.08 1.12448167 0118132741 2135946367 8520 236666667 2.94 1.0777056 0112734201 2182722432 8720 2.42222222 2.80 102863371 0107335662 2231794326 8920 247777778 2.65 097390881 0101619562 2286519225 Table B.2-l 85 250 ppm Pyrene Contaminated Ottawa Sand (Experiment #1) Slope y-intercept 0000196299 -00121 199 S.E.E. 4042451307 0001533389 r"(2) 0999677798 0010040343 2358008811 76 Co= 29.46 I time time C (s) (hrs.) (mg/L) In C C / Co - In C I Co 0 0 29.46 3.383 103638 1 0 10 0.002778 29.75 3.392887085 1.009831461 0009783446 20 0.005556 29.34 3.378881253 0.995786517 0004222385 30 0.008333 29.58 3.3870285! 1003932584 0003924872 40 0.01 1 1 1 1 29.47 3.383384498 1000280899 0000280859 50 0.013889 29.57 3.386748672 1003651685 0003645034 60 0.016667 29.29 3.377187295 0.994101 124 0.005916344 70 0.019444 29.35 3.379445269 0.996348315 0003658369 80 0.022222 29.52 3.385068 1.001966292 «0001964362 90 0.025 28.98 3366677327 0983707865 001642631 1 100 0.027778 29.29 3377187295 0.994101124 0005916344 1 10 0.030556 29.19 3373790745 0990730337 0.009312894 120 0.033333 29.1 1 337123574 0988202247 0.01 1867899 130 0.0361 11 28.87 3362958256 098005618 0020145383 140 0.038889 28.84 3.36181 1 138 0978932584 0021292501 150 0.041667 28.83 3.361524152 0.978651685 0021579486 160 0.044444 28.76 3358937572 0.976123596 0024166066 170 0.047222 28.78 3.359512946 0976685393 0023590692 180 0.05 28.71 3.357209461 0.97443 8202 0.025894177 190 0.052778 28.58 3.352586512 096994382 0030517126 200 0.055556 28.48 334910522 0966573034 0033998418 210 0.058333 28.53 3350847381 0968258427 0032256257 220 0.061 11 1 28.34 3344444565 0962078652 0038659073 230 0.063889 28.44 3.347651097 0.965168539 0035452541 240 0.066667 28.24 3340641723 0958426966 0042461915 250 0.069444 28.16 3 338000489 0955898876 0.045103149 260 0.072222 28.00 3.332105983 0950280899 0050997655 270 0.075 28.33 3.343 860453 0.961516854 0.039243 185 280 0.077778 28.1 1 3.336235783 0954213483 0046867856 290 0.080556 28.06 3334467956 095252809 0048635682 300 0.083333 28.02 3332992377 0.951 123596 0.0501 1 1261 310 0.0861 1 1 28.03 3333287667 0.951404494 0.049815971 320 0.088889 27.79 3324688652 0943258427 0058414986 330 0.091667 27.82 3.325581642 0.944101 124 0.057521996 340 0094444 27.82 3.325 879 128 0.9443 82022 005722451 350 0.097222 27.70 3.321407516 0.940168539 0.061696123 500 0.138889 26.96 3294456604 0.915168539 0088647035 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900 4100 4300 4500 4700 4900 5100 5300 5500 5700 5900 6100 6300 6500 6700 6805 7005 7205 7405 7605 7805 8005 8205 8405 8605 0.194444 0.25 0.305556 0.3611 1 1 0.416667 0.472222 0.527778 0.583333 0.638889 0.694444 0.75 0.805556 0.8611 1 1 0.916667 0.972222 1.027778 1.083333 1.138889 1.194444 1.25 1.305556 1.361 1 1 1 1.416667 1.472222 1.527778 1.583333 1.638889 1.694444 1.75 1.805556 1.861 1 11 1.890278 1.945833 2.001389 2.056944 2.1 125 2.168056 2.22361 1 2.279167 2.334722 2.390278 25.90 24.87 23.99 23.28 22.26 21.54 20.81 20.08 19.18 18.50 17.78 17.15 16.67 15.81 15.19 14.74 14.10 13.55 12.91 12.53 1 1.94 11.59 1 1.1 1 10.54 10.21 9.79 9.47 9.05 8.57 8.36 7.95 7.80 7.52 7.22 6.88 6.65 6.36 6.12 5.82 5.64 5.40 86 3254376098 3 .213620661 3.177708943 3.147594623 3.102884287 3070007719 3.03 56 1 5897 2.999586904 2954047838 2.917584321 2.87788027 2.841857418 2.813465888 2.760446335 2.7203 87575 2.6905 18098 2.646321522 2606208392 2.558028915 2528098248 2480067373 2.450529361 2.407504132 2355504651 2.323604019 2.281396678 2247873986 2202269303 2.14774452 2.123293424 2073562223 2053593089 2.017932909 1.97752337 1.928217609 1.895 187084 1.849377548 1 .810885735 1.760944706 1 .730617472 1.685632376 0.879213483 0.844101 124 0.814325843 0790168539 0.755617978 0.73 1 179775 0706460674 0.681460674 0.651 123596 0627808989 0603370787 0582022472 0565730337 0.536516854 0.515449438 0500280899 0.478651685 0.459831461 0438202247 0425280899 0405337079 0393539326 0376966292 0.357865169 0346629213 0332303371 0.321348315 0307022472 0290730337 0283707865 026994382 0264606742 0255337079 0.245224719 0233426966 0225842697 0.215730337 020758427 0.19747191 0.191573034 0.183146067 0.12872754 0.169482977 0205394695 0.235509015 0.280219351 0.3 13095919 0347487741 0.383516734 0.4290558 0.4655193 17 0505223368 0.54124622 056963775 1 0622657303 0.662716063 0692585541 0.7367821 16 0776895246 0825074724 085500539 0903036265 0932574278 0975599506 1.027598988 1.059499619 1.10170696 1.135229652 1.180834336 1.2353591 18 1 .259810214 1.309541415 1.329510549 1.36517073 1 .4055 80268 1.454886029 1.487916555 1.533726091 1 .572217903 1 .622158932 1.652486166 1.697471262 87 Table 3.2-2 250 ppm Pyrene Contaminated Ottawa Sand (Experiment #2) Slope y-intercept 0000175161 0005610804 S.E.E. 2.1 122713-07 000090638 r"(2) 099991421 0004693824 6876643635 59 Co- 31.07 time time (hrs) C (5) (mg/L) In C C I Co - in C I Co 0 0 31707 3.386188762 1 o 20 000555556 30.98 3388147078 0997069792 0002934509 40 0.01 1 1 1 111 30.89 338394598 0994139584 0005877655 60 001666667 30.80 3.381 13541 0.991475759 000856078 80 002222222 30.70 338394598 0988279169 0.01 1790062 100 002777778 30.51 3.3 80290697 0.982152371 0.018008819 120 003333333 30.38 3370951447 097789025 0022357834 140 003888889 30.25 336781888 097362813 0026725845 160 004444444 30.12 3368389168 096936601 0.031 1 1302 180 0.05 30.02 3.356921 152 0966169419 0034416078 200 005555556 29.92 3354033481 0962972829 0037730083 220 0.0611 11 1 1 29.75 3.350847381 0957645178 0043277947 240 006666667 29.70 3346194857 0956046883 0044948326 260 0.07222222 29.53 3340641723 095045285 0050816723 280 007777778 29.44 3342106066 0947522643 0053904445 300 008333333 29.35 3338588033 0944858817 0056719762 320 008888889 29.17 3334467956 0938998402 0062941502 340 0.09444444 29.12 332439081 1 0.937400107 006464508 360 0.1 29.03 3.329738418 0934469899 0067775864 510 0.1416666? 28.25 3292920741 0909163559 0095230268 710 0.19722222 27.19 3.262965303 0875066596 0. 133455286 910 025277778 26.21 3.226186964 0843633458 0170037171 1110 030833333 25.30 3.189368883 0.81433138 0205387895 1310 0.363 88889 24.34 3.154679314 0.783431007 0244072279 1510 041944444 23.54 3.110660664 0.757591902 0277610426 1710 0.475 22.76 3078804869 0.732551945 0.31 1221026 1910 053055556 21.89 3044719463 0704581779 0350150873 2110 0.58611111 21.18 3.010247111 0681672882 0383205381 2310 064166667 20.43 297791939 0657698455 0419008728 2510 069722222 19.76 2.9397091 18 063612147 0452365743 2710 075277778 19.08 2.903163161 0.614278103 0.487307516 2910 080833333 18.41 2866644197 0592434736 0523514562 3110 086388889 17.84 2835563521 0574320725 0554567285 3310 091944444 17.26 2796439938 0555407565 0588053083 3510 0.975 16.65 2771381097 0535961641 0623692686 3710 103055556 16.07 273606781 0517314864 0659103568 3910 4110 4310 4510 4710 4910 5110 5310 5510 5710 5910 6110 6310 6510 6710 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 1.0861 1 1 1 1 1.14166667 1.19722222 1.25277778 1.30833333 1.36388889 1.41944444 1.475 1.53055556 1.5861 1 1 l l 1.64166667 1.69722222 1.75277778 1.80833333 1.86388889 1.88888889 1.94444444 2 205555556 2.1 1 1 1 1 1 11 2.16666667 222222222 227777778 233333333 238888889 15.53 15.05 14.57 14.06 13.56 13.10 12.66 12.30 1 1.83 1 1.41 10.99 10.66 10.22 9.88 9.55 9.40 9.07 8.76 8.47 8.18 7.83 7.61 7.36 7.08 6.84 88 2700574048 2.663197104 2633921009 2.595 151768 2.561867691 2.53 1395317 2497924991 2.461 179089 243034122 2.3917321 19 2.353147086 2.322793318 2.2872964 2.253974223 2.218603604 2.202269303 2.167831279 2.1203 18707 2.0921 19457 2058886908 2027785205 198664544 1.953174341 1.918544015 1.878885782 0.5 0.4845498 14 0468833245 0.4525 8391 0436600959 0.42168353 8 0407565264 0.395 844433 0.3 80660629 0.36734 1 502 0353755994 0.343 100693 0.3289824 19 0.3 1 8060735 0307405434 0.3026 10549 0.29 1955248 0.28 18327 12 0272775706 0.2634523 1 8 0.25 1997869 0.245071923 0.2368 14065 0228023442 0.22003 1966 0.693147181 0724535039 0.757508129 0792782095 0828735638 0.863500157 0897554203 0926733992 0965847039 1.001463339 1 .039147887 1.06973 13 1 1.1 1 1750968 1.1455 12923 1 . 17958777 1.195308618 1.23 1 15475 1266441605 1 .299105412 1.333882886 1378334648 1.406203547 1.440479982 1.478306841 1.513982444 Table 3.2-3 89 250 ppm Pyrene Contaminated Ottawa Sand (Experiment #3) Slope y-intercept 000017625 0002261435 S.E.E. 1.4557E-07 000062463 r"(2) 099995975 0003234737 146593735 59 I Co- 58.92 I time time C (5) (hrs) (mg/L) InC C/Co - In C/ Co 0 0 5892 4.03890475 1 o 20 000555556 58.78 403963346 099747191 0002531291 40 001111111 58.69 403334918 0996067416 0003940337 60 001666667 58.38 403802961 0.990730337 0009312894 80 002222222 58.25 402805739 0988623596 0011441611 100 002777778 58.08 402835211 0985674157 0014429448 120 003333333 57.73 402273744 0979775281 0020432039 140 003888889 57.38 401947237 0973876404 0026470878 160 004444444 57.18 401738904 0970365169 0030082816 180 0.05 56.90 400991293 0965589888 0035016082 200 005555556 56.71 400328739 0.9625 0038221213 220 006111111 56.52 400268289 0959129213 0041729475 240 006666667 56.23 399859291 0.954213483 0.046867856 260 007222222 56.03 399631344 0950842697 0050406638 280 007777778 55.76 398576047 0946348315 005514458 300 008333333 55.67 398591421 0944803371 0056778446 320 008888889 55.51 398468363 0941994382 0059755968 340 009444444 55.26 3.9805192 0937780899 0064238941 360 0.1 55.08 3.9805192 0934691011 0067539274 510 014166667 53.54 394704393 0908567416 0095886188 710 019722222 51.60 391158153 0875702247 0132729146 910 025277778 49.74 3.87309577 0844101124 0169482977 1110 030833333 48.11 3.8373589] 0816432584 0202810937 1310 036388889 46.54 380233128 0789747191 0236042396 1510 041944444 44.89 3.76966459 0761797753 0272074175 1710 0.475 43.37 3.73193894 0735955056 0306586227 1910 053055556 41.84 3.69623167 071011236 0342332069 2110 058611111 40.43 3.6649400] 0686095506 037673844 2310 064166667 39.06 3.6300076] 0662921348 0411098926 2510 069722222 37.69 3.59381062 0639606742 0446901758 2710 075277778 36.49 3.5588493] 0619241573 0479259819 2910 080833333 35.24 3.52408613 0598033708 0514108159 3110 086388889 34.01 3.48655221 0577247191 0549484697 3310 091944444 32.86 3.45437855 0557724719 0583889773 3510 0.975 31.76 3.4186985] 0539044944 0617956328 3710 103055556 30.62 337577347 0519662921 0654574906 3910 4110 4310 4510 4710 4910 5110 5310 5510 5710 5910 6110 6310 6510 6710 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600 1.0861 1 l 1 1 1.14166667 1.19722222 1.25277778 1.30833333 1.36388889 1.41944444 1.475 1.53055556 1.5861 1 1 11 1.64166667 1.69722222 1.75277778 180833333 186388889 188888889 194444444 2 205555556 2.1 1 1 1 1 11 1 2.16666667 222222222 227777778 233333333 238888889 29.59 28.66 27.61 26.62 25.74 24.84 23.98 23.17 22.32 21.56 20.81 20.04 19.42 18.71 18.02 17.71 17.09 16.48 15.94 15.34 14.82 14.33 13.80 13.32 12.87 3.351 13745 3.3 12403 85 3.28085936 3.24216122 3.20895087 3.170091 18 3.1390262 309990588 305647048 3.0256258 298964482 295404784 2.9189257 2.88159775 2.85146364 2.83 1 18289 2.7939] 149 275730003 272038757 268770674 265508582 262076292 258459594 254382596 250200108 0.502106742 0.486376404 0.468539326 0451825843 0.436797753 0.421629213 0.406882022 0393258427 0.378792135 0.365870787 0353230337 0340168539 0.329494382 031755618 0.305898876 0300561798 029002809 0.279634831 0.270505618 0.260393258 0251544944 0.2431 17978 0234129213 0.226123596 0.218398876 0688942549 072077246 0.758135241 0794458477 0828284999 0863628992 0899232007 0933288308 0.970767681 100547505 1040634922 1.07831408 1.1 10195975 1.147100532 1.184500701 1.202101896 1.237777499 1.2742707 1.307462412 1345562258 1.380133602 1.414208449 1.45 1882122 1.486673546 1.52143218 Table 3.2-4 91 100 ppm Pyrene Contaminated Ottawa Sand Initial Linear Range Final Linear Range Slope y-1ntereept Slope y-intereept 7.44205E-05 0.618542927 0.00016312 0.006214249 S.E.E. 5.90124E-07 0.001 130181 2.70416E-06 0.002749999 r"(2) 0.998994958 0.002480892 0.996167244 0007573829 15903.73598 16 3638.723668 14 [ Co- 74.73 ] time time (5) (hrs) C In C C I Co ~11: C/ Co 0 0 74.73 4.260793689 1 0 20 0.005555556 74.57 4.261727505 0997785161 0002217296 40 0.01111111 1 74.18 4.248810463 099269103 0007335811 60 0016666667 73.92 4.247864501 0989147287 0.010912033 80 0.022222222 73.51 4.241812866 098372093 001641303 100 0.027777778 73.21 4240025981 0.979623477 0020586988 250 0069444444 71.05 4208534945 0.950719823 0050535873 450 0.125 68.57 4.175892767 0.917607973 0.085985024 650 0180555556 66.19 4.13661103 0885714286 0.121360857 850 0.236111111 63.90 4.10913125 085503876 0.156608478 1050 0291666667 61.88 4.075126592 0828017719 0188720725 1250 0.347222222 60.38 4.048625539 0807973422 0.213226115 1450 0402777778 58.45 4017537992 0782170543 0245682477 1650 0458333333 56.75 3.994028772 0.759357697 0275282339 1850 0.513888889 5520 3.971202364 0.738648948 0302932508 2050 0569444444 53.92 3.946884097 0721483942 0.326445157 2250 0.625 52.58 3.921 13994 0703543743 0.351625225 2450 0680555556 51.41 3.902599432 0687929125 0374069462 2650 0.7361 1 1 11 1 50.26 3.880126577 0672535991 0.396699651 2850 0791666667 49.38 3.864106942 0660797342 0414308079 3050 0.847222222 4829 3.839496805 0646179402 0436678102 3250 0.902777778 47.31 3.819363104 0.633111849 0457108175 3450 0958333333 46.58 3.808224488 0623366556 0472620561 3650 1.013888889 45.72 3.789504638 0.611849391 049126912 3850 1069444444 44.90 3.768327821 0.600775194 0509534468 4050 1.125 44.09 3.752922163 0590033223 0527576434 4250 1.180555556 43.22 3.733127298 0578294574 0547671897 4450 1.2361 1 1 1 1 1 42.48 3.714950427 0568438538 0564862084 4650 1.291666667 41.71 3.69787337 0.558139535 0.583146285 4850 1.347222222 41.09 3.682167323 0549833887 0.59813907 5050 1.402777778 40.34 3.663243293 0539756368 0.616637412 5250 1.458333333 39.86 3.650855266 0533333333 0628608659 5450 1.513888889 39.10 3.631542525 0.523255814 0647684806 5650 1.569444444 38.51 3.616753601 0515282392 0663040195 5850 1.625 37.95 3.607594596 050786268 0677544183 6050 1.680555556 37.34 3.583978603 0499667774 0.693811853 6250 1.736111 111 36.73 3.571492892 0491472868 0.710348543 6450 1.791666667 36.20 3.556962521 0.484385382 0724874445 6540 1.816666667 35.92 3.549379546 0480620155 0732678019 6740 1.872222222 35.50 3.536451428 0475083056 0744265634 6890 1.913888889 34.88 3.521154298 0466777409 0761902776 7090 1.969444444 34.42 3.506613068 0460575858 0775277707 7240 2.01 1 1 11111 33.89 3.491353235 0453488372 079078565 7440 2066666667 33.37 3.476880467 0.44651 1628 0806289837 7590 2.108333333 32.95 3.462454663 0440974529 0818768162 7790 2.163888889 32.51 3.449396238 0434994463 0.832421977 7940 2205555556 32.12 3.44147854 042978959 0844459515 8140 2.261 1 11 11 1 31.63 3.426528983 0423255814 0859778522 Table B.3-l 92 250 ppm Contaminated Natural Metea Soil (Experiment #1) Slope yointercept 0.0023836 0013223051 S.E.E. 1.507E-05 0003066486 r"(2) 0.9986432 0009391803 25025039 34 [ Co- 38.07 1 time time (s) (hrs.) C In C C I Co - In CI Co 0 0 38.07 2.8581335 1 0 10 0.0027778 37.18 2.7816852 0.976521739 0023758267 20 0.0055556 36.37 2.7682691 0955434783 0045588772 30 0.0083333 35.69 2.730149 0937608696 0064422586 40 0.01 1 1 11 1 34.91 2.7398161 0916956522 0086695221 50 0.0138889 34.19 2.7398161 0898043478 0.107536795 60 0.0166667 33.52 2.6285591 0880434783 0.127339422 70 0.0194444 32.76 2.6746717 0860652174 0150064835 80 0.0222222 32.01 2.6683 77 0840869565 0.1733 18726 90 0.025 3 1.23 2.6550858 0820434783 0.197920857 100 0.0277778 30.55 2.6141 184 0802391304 0.220158879 1 10 0.0305556 29.78 2.6261667 0782391304 0245400274 120 0.0333333 29. 10 2.6086489 0764347826 0268732324 130 0.0361 1 11 28.39 2.4965626 0745869565 029320454 140 0.0388889 27.74 2.497925 0728695652 0.316499121 150 0.0416667 27.05 2.5067356 0710652174 0341572176 160 0.0444444 26.38 2.4252299 0693043478 0366662543 170 0.0472222 25.79 2.3970171 0677391304 0389506175 180 0.05 25.19 2.4281538 066173913 0412883863 190 0.0527778 24.63 2.387 1798 0646956522 0.43 5476 1 87 200 0.0555556 24.1 1 2.1232934 063326087 0456872826 210 0.0583333 23.54 2.1 183306 0.61826087 0480844792 220 0.061 1 1 1 1 22.97 2.294831 0603478261 0505045261 230 0.0638889 22.48 2.159272 0590434783 0526896094 240 0.0666667 21.92 2.2158997 0575869565 0551874093 250 0.0694444 21.45 2.2329023 0563478261 0573626525 260 0.0722222 20.96 2.0921195 0550652174 0596651932 270 0.075 20.43 2.00241 15 053673913 0622243093 280 0.0777778 19.95 2.131 183 0.524130435 0646014704 290 0.0805556 19.40 2.0212278 0509565217 0674197432 300 0.0833333 18.97 1.9063189 049826087 0696631505 310 0.0861 11 1 17.98 2.0450643 0472173913 0750407901 320 0.0888889 17.59 1.974081 0462173913 0771814024 330 0.0916667 17.16 1.7580957 0450652174 079705947 340 0.0944444 17.16 1.7217809 0.450652174 0.79705947 350 0.0972222 16.65 1.8428458 0437391304 0826927051 500 0.1388889 10.82 1.135177 0284130435 1258321869 700 0.1944444 5.77 0.3235816 0151521739 1887026172 900 0.25 2.74 05897196 0071956522 2.631693207 1 100 0.3055556 1.16 -1.9611988 0030434783 3.49216916 1300 0.361 1 1 1 1 0.46 ----- 0.01 1956522 4.426478397 1500 0.4166667 0.11 ----- 0002826087 5868862225 1700 0.4722222 0.04 ----- 0001086957 682437367 1900 0.5277778 0.00 ----- 0 ----- Table 3.3-2 93 250 ppm Pyrene Contaminated Natural Metea Soil (Experiment #21 Slope y-intereept 0002019899 0042224744 S.E.E. 2635251305 0008273216 r‘(2) 0993405594 0034344912 5875.103285 39 Co- 41.83 ] time time C (5) (hrs) (mg/L) In C C I Co - In CI Co 0 0 41.83 3.733523102 1 0 10 0.0027778 41.05 3.714748834 0981400871 0.0187743 20 00055556 40.24 3.694792969 0962010289 0.0387301 30 0.0083333 39.59 3.6786201 1 0946576969 0.054903 40 0.0111111 38.94 3.661968866 0930945786 0.0715542 50 0.0138889 38.31 3.645683955 0915908192 0.0878391 60 0.0166667 37.69 3.629349061 0901068461 0.104174 70 0.0194444 37.06 3.612519612 0886030867 0.1210035 80 0.0222222 36.44 3.59562922 0.871 191 136 0.1378939 90 0.025 35.83 3.578910635 0856747131 0.1546125 100 0.0277778 35.15 3.5595 55945 0840324495 0.1739672 1 10 0.0305556 34.56 3.542696944 0.826276217 0.1908262 120 0.0333333 33.93 3.524330067 0.81 1238623 0.209193 130 0.03611 11 33.31 3.505868004 0796398892 0.2276551 140 0.0388889 32.74 3.488576507 078274634 0.2449466 150 0.0416667 32.14 3.469951 144 0768302335 0.263572 160 00444444 31.55 3.451497079 0754254056 0.282026 170 0.0472222 31.02 3.434565458 0741590819 0.2989576 180 0.05 30.45 3.415984069 0727938267 0.317539 190 0.0527778 29.90 3.397881546 0714879304 0.3356416 200 0.0555556 29.40 3.381 13541 0.703007519 0.3523877 210 00583333 28.89 3.363531321 0690740008 0.3699918 20 0.061 1 1 11 28.38 3.34561 1767 0678472497 0.38791 13 230 0.0638889 27.86 3.327365234 0666204986 0.4061579 240 0.0666667 27.37 3309384527 0654333201 0.4241386 250 0.0694444 26.92 3.292920741 0643648595 0.4406024 260 0.0722222 26.42 3274304007 063177681 0.4592191 270 0.075 25.96 3256610023 0620696478 0.4769131 280 0.0777778 25.51 3239246242 0.610011872 04942769 290 0.0805556 25.12 3223554518 0600514444 0.5099686 300 0.0833333 24.67 3205601908 0.589829838 0.5279212 310 0.0861111 24.22 3.187321101 0579145231 0.546202 320 0.0888889 23.80 3.169743533 0569054214 0.5637796 330 0.0916667 ‘ 23.34 3.150079978 0557973882 0.5834431 340 0.0944444 22.94 3.132912175 0548476454 0.6006109 350 0.0972222 22.55 3.115811521 053917689 0.6177116 500 0.1388889 16.54 2.805489774 0395330431 0.9280333 600 0.1666667 13.35 2.591438892 0319153146 1.1420842 700 0.1944444 10.60 2.360984116 0253462604 1.372539 800 02222222 8.23 2.107325021 0.1966759 1.6261981 900 0.25 6.26 1833629191 0149584488 1.8998939 1000 0.2777778 4.62 1 .529946777 0 1 10407598 2.2035763 1 100 0.3055556 3.38 121930297 0080925999 2.5142201 1200 0.3333333 2.42 0882341617 0057776019 28511815 1300 0.361 11 1 1 1.65 0498892639 0039374753 3.2346305 1400 0.3888889 1. l6 0 147230237 0027700831 3.5862929 1460 0.4055556 0.94 0058213737 0022556391 3.7917368 1560 0.4333333 0.64 0450606764 0015235457 4.1841299 1660 0.4611 1 1 1 0.43 0843168467 001028888 4.5766916 1760 0.4888889 0.32 4.130850539 000771666 4.8643736 1860 0.5166667 0.26 4328676283 0006331619 5.0621994 Table 3.3-3 94 250 ppm Pyrene Contaminated Natural Metea Soil (Experiment #3) Slope y-Intereept 0.0022907 0060921723 S.E.E. 3.525E-05 0012212929 r"(2) 0.9906154 005304087 4222.3126 40 I Co- 39.78 ] time time C (5) (hrs) (mg/L) In C C I Co - In Cl Co 0 0 39.78 3.0419576 1 0 10 0.0027778 39.06 3.0984133 0.981901394 0.018264389 20 0.0055556 38.31 3.1021405 0962970668 0037732327 30 0.0083333 37.63 3.0451134 0945912211 0.055605514 40 0.01 11 l 1 1 36.98 3.0513953 0929685875 0.072908519 50 0.0138889 36.26 3.0757538 0.91 1587269 0092567948 60 0.0166667 35.59 3.0462943 0894736842 0.1 1 1225635 70 0.0194444 34.93 3.0232133 0878094446 0.130001 122 80 0.0222222 34.28 3.01 10624 0861660079 0.148894426 90 0.025 33.59 3.0008227 0844393593 0.169136551 100 0.0277778 32.99 2.9867263 0829207406 0 187284967 110 0.0305556 32.35 2.9766549 0813189099 0206791602 120 0.0333333 31.72 2.9440759 0797378823 0226425403 130 0.0361 1 l 1 31.1 1 2.8990695 0781984606 0245920224 140 0.0388889 29.98 2.8788109 0753484502 0283046829 150 0.0416667 29.43 2.8788109 0739754525 0301436871 160 0.0444444 28.87 2.8699344 0725608488 0320744683 170 0.0472222 28.42 2.8316706 071437487 0336347426 180 0.05 27.94 2.7739671 ‘ 0702309133 0353381612 190 0.0527778 27.45 2.6955587 0690035365 0371012429 200 0.0555556 26.97 2.6591497 0677969628 0388652789 210 0.0583333 26.47 2.71 163 066548783 0407234928 220 0.061 1 1 1 I 26.06 2.7269058 0655086332 0422988247 230 0.0638889 25.58 2.7061173 0643020595 0441578526 240 0.0666667 25. 12 2.6427942 0631370917 0459861764 250 0.0694444 24.61 2.6780886 061868109 0480165341 260 0.0722222 24. 16 2.6433829 0607239442 0498832097 270 0.075 23.64 2.6219663 0594133555 0.520651 144 280 0.0777778 23.20 2.5726649 0583107968 0539382917 290 0.0805556 22.78 2.5820959 057270647 0557381963 300 0.0833333 22.29 2.53271 1 1 0560224672 0579417375 310 0.0861 1 I 1 21.88 2.4917795 0.550031204 0597780267 320 0.0888889 21.50 2.5060606 0540461827 0615331271 330 0.0916667 21.04 2.4625905 0528812149 0637122016 340 0.0944444 20.61 2.4200922 0517994591 0657790478 350 0.0972222 19.42 2.4281538 0488038278 0717361439 500 0.1388889 14.80 2.0057579 0371957562 0988975512 600 0.1666667 11.68 1.5703386 0293530268 1225774516 700 0.1944444 8.99 1.3126107 0225920533 1.487571967 800 02222222 6.76 0.96133 0.169960474 1.772189373 900 0.25 4.93 0.533464 0123985854 2087587801 1000 0.2777778 3.51 0.0576181 0088204701 2428095013 1 100 0.3055556 2.46 01992923 0.061784897 2.784096329 1200 0.3333333 1.69 06200249 0.042438111 3.159708474 1300 0.361 1 1 1 l 1.13 -1 0567426 0028500104 3.557847542 1400 0.3888889 0.77 -1.2390641 0019346786 3.945228975 1460 0.4055556 0.46 -1.360425 0.01 1649678 4.452476777 1560 0.4333333 0.46 -1.5363156 0.011649678 4.452476777 1660 0.4611111 0.33 -1.6163584 0.008321198 4.788949014 1760 0.4888889 0.28 4.658918 0007073019 4.951467943 1860 0.5166667 0.23 -1.658918 0005824839 5.145623958 Table B.3-4 95 250 ppm Pyrene Contaminated Natural Metea Soil (Experiment #4) Slope y-intereejt 0.00159973 -0.05797119 S.E.E. 2. 193913-05 0.012726375 R"(2) 0.99142225 0064745993 5316.71461 46 Co- 49.51 j time time C (5) (hrs) (mg/L) In C C I Co - In C I Co 0 0 49.51 3.48705 867 1 0 10 000277778 48.92 3.52408613 0987965903 0.012107093 20 000555556 48.32 3.42760425 0.975931807 0024362565 30 000833333 47.50 3.45254585 0959217784 0041637135 40 0.01 1111 I 1 46.93 3.49009204 0947852248 0053556645 50 001388889 46.38 3.4580339 0936653853 0065441486 60 0.01666667 45.86 3.4039522 0.926291 158 0076566668 70 001944444 45.40 3.37577347 0.916931305 0086722722 80 002222222 44.76 3.41080624 0.904061508 0.100857882 90 0.025 44.13 3.44650036 0.89119171 0.115195712 100 002777778 43.66 3.38814708 0.881664717 0.125943435 1 10 003055556 43.04 3.39093804 086929634 0.1400712 120 003333333 42.44 3.42948319 0.857095103 0.154206395 130 0.03611 111 42.02 3.42518327 0848738091 0.164004631 140 003888889 41.38 3.33594136 0.835701153 0.179484202 150 0.04166667 40.93 3.31961326 0826675581 0.190342945 160 004444444 40.33 329261329 0814474344 0205212351 170 0.047222 39.65 3.35432262 0800768845 0222182957 180 0.05 39.05 3.33976209 0788734748 0237325202 190 005277778 38.49 327242313 0.777369213 0251839864 200 005555556 37.93 3.32290028 0766003677 0266568309 210 005833333 37.36 3.30392666 0754471001 0281738436 220 0.061 11 1 1 l 36.90 324280785 0745278288 0293997589 230 006388889 36.38 3.20694284 0734748454 0308227078 240 006666667 35.88 3.1903912 0.7245529 0322200504 250 006944444 35.30 3.2288125 0712853084 0338479933 260 007222222 34.84 3.25149656 0703660371 0.351459467 270 0.075 34.47 3.18834552 0696139061 0362205839 280 007777778 33.96 3.18355591 0685776366 0377203701 290 008055556 33.58 3.19751833 0678087916 038847833 300 008333333 33.10 3.18936888 0668560923 0402627753 310 0.0861111 1 32.71 3.10214052 0660705332 041444733 320 008888889 32.42 3.08412201 0654855424 0423340795 330 0.09166667 31.99 307498953 0645996991 0436960432 340 009444444 31.63 3.12239531 0638809962 ' 0.448148269 350 009722222 31.20 3.10214052 0.63011867 0.461847113 500 0.13888889 25.44 2.84571099 0.513789069 0665942469 600 0.16666667 22.39 2.62316822 0.452281464 0793450585 700 0.19444444 19.30 2.49656259 0.389771018 0.942195846 800 022222222 16.48 2.38337023 0.332776199 1 . 100285089 900 0.25 13.81 218286916 0278957045 127669747 1000 027777778 11.99 1.9136719 0.242186194 1.418048451 1100 030555556 9.69 1.65763677 0.19572121 1.63106403 1200 033333333 8.10 1.35832051 0.163630286 1.810145751 1300 036111111 6.60 1.12448167 0133210764 2015822715 1400 038888889 5. 14 099554799 0. 103794083 226534631 1 1500 041666667 4.25 071497615 0085910079 2.454454128 1600 044444444 3.15 0.48879154 0063680428 2.753878018 1700 047222222 2.52 00582137 005097777 2.976365617 1800 0.5 1.99 00237276 0.040113655 321603847 Table 133-5 96 250 ppm Pyrene Contaminated Natural Metea Soil (Experiment #5) Slope y-Intereept 0001643732 0009972714 S.E.E. 1.57717E-05 0009079041 r"(2) 0995782886 0046055382 10861 .93476 46 Co'- 32.71 ] time time C (3) (hrs) (mg/L) In C C I Co - In C I Co 0 0 32.71 3.487817878 1 0 10 0.0027778 31.90 3.462454663 097495573 0.025363214 20 0.0055556 31.23 3.44147854 0.954717936 0046339337 30 0.0083333 30.78 3.426797908 0940804452 0.061019969 40 0.011 1 I 1 1 30.17 3.40697377 0.922337465 0080844108 50 0.0138889 29.76 3.39316521 0.909688844 0094652668 60 0.0166667 29.30 3.377752266 089577536 0.1 1006561 1 70 0.0194444 28.94 3365248551 0884644574 0.122569326 80 0.0222222 28.56 3.352007137 0873007842 0.13581074 90 0025 28.1 1 3.336235783 0.859347331 0.151582095 100 0.0277778 27.62 3.318415293 0844168986 0 1694025 85 1 10 0.0305556 27.14 _ 3.301 186516 0829749557 0.186631362 120 0.0333333 26.77 3287372021 0818365798 0200445856 130 0.0361 1 1 1 26.33 3.270538706 0804705287 0217279172 140 0.0388889 25.99 3.257884314 079458639 0229933564 150 0.0416667 25.58 3241837757 0.781937769 0245980121 160 0.0444444 25.18 3.226186964 0769795092 0.261630913 170 0.0472222 24.82 3.21 1621993 0758664306 0.276195885 180 0.05 24.43 3.195826 0746774602 0291991878 190 0.0527778 24.04 3.179776484 0734884898 0308041394 200 0.0555556 23.70 3.165562342 0.724513028 0322255535 210 0.0583333 23.40 3.152559172 0715153048 0335258706 220 0.0611111 23.02 3.136153669 0.703516317 0.351664209 230 0.0638889 22.73 3.1238525 0694915254 0363965377 240 0.0666667 22.34 3.106224427 0682772578 038159345 250 0.0694444 22.05 3093171846 0.673918543 0394646032 260 0.072222 21.63 3074224709 0661269922 0413593169 270 0.075 21.24 3 056080995 0.649380218 0.431736882 280 0.0777778 20.93 3.041167061 0639767265 0446650817 290 0.0805556 20.56 3023213257 0628383506 046460462 300 0.0833333 20.22 3006569886 0.61801 1637 0481247992 310 0.0861 1 1 1 19.88 2.989644817 0607639767 0.498173061 320 0.0888889 19.51 2.971 156895 0596508981 0.516660982 330 0.0916667 19.32 2.961354984 0590690615 0526462893 340 0.0944444 19.09 2.949291073 0583607387 0538526805 350 0.0972222 18.83 2.935323146 0.575512269 0552494732 500 0.1388889 14.98 2.706669939 0457880091 0.781 147939 600 0.1666667 13.10 2.572664874 040045535 0.915153003 700 0 1944444 1 1.35 2.428883494 0346825196 1.058934384 800 0.2222222 9.67 2.268635978 0.295471794 1.2191819 900 0.25 8.09 2090074466 024715406 1.397743411 1000 0.2777778 7.08 1.957858191 0216544397 1.529959687 1100 0.3055556 5.78 1.753806917 0.176574753 1.734010961 1200 03333333 4.81 1.570338571 0.14697698 1.917479306 1300 0.361 1 1 11 3.89 1358320509 0.1 1889704 2.129497369 1400 0.3888889 3.19 1. 161425184 0097647356 2.326392694 1460 0.4055556 2.86 1.049132231 0087275487 2.438685646 1560 0.4333333 2.04 0714976151 0062484189 2.772841727 1660 0.461 11 1 1 1.60 0468278003 0048823678 3019539874 1760 0.4888889 1.18 0.161414872 0035922084 3.326403006 1860 0.5166667 1.01 0009608859 0030862636 3.478209019 Table B.3-6 250 ppm Pyrene Contaminated Natural Metea Soil 97 (Experiment #6) Slope y-Intereept 0.00162 1.813357276 S.E.E. 239115-05 0012766769 r"(2) 0.9982596 0021721287 4588,6649 8 [ Co- 51.41 1 time time C (3) (hrs) (mg/L) In C C I Co - In C l Co 0 0 51.41 3.4809642 1 0 10 0002777778 50.94 3.4364314 0990824211 0009218146 20 0005555556 50.22 3.3658203 097681906 0023453844 30 0008333333 49.50 3.4624547 0962813909 0037895127 40 0.01 11 1 11 11 48.90 3.4575125 0951223439 0050006293 50 0013888889 48.30 3.4246445 093947199 0062437275 60 0016666667 47.64 3.4353656 0926754668 0.0760664 70 0019444444 47.00 3.4438604 0914198326 0089707744 80 0022222222 46.27 3.4334977 0.900032196 0 105324743 90 0.025 45.74 3.4069738 0889729556 0.1 16837732 100 0027777778 45.10 3.383946 0.877173213 0.1310508 1 10 0030555556 44.47 3.3788813 0865099807 0.144910395 120 0033333333 43.85 3.3749242 0853026401 0.158964782 130 0.0361 11 111 43.40 3.3359414 0844172569 0.169398339 140 0038888889 42.99 3.2984388 083628461 0.178786281 1 50 0.041666667 42.48 3.2950703 0826303928 0 190792622 160 0044444444 41.90 3.3273652 0815035415 0204523712 170 0047222222 41.47 3.3423987 080666452 0214847409 1 80 0.05 40.97 3.3380005 0797005795 0226893329 190 0052777778 40.44 3.333878 0786542176 0240108932 200 0055555556 39.97 3.2546955 0777527366 0.251636438 210 0058333333 39.44 3.2421612 0767224726 0264975527 220 0.0611 1 1 11 1 38.95 3.261063 0757566001 0277644615 230 0063888889 38.47 3.3081742 0748229234 0290045886 240 0066666667 38.08 3.2827245 0740663232 0300209234 250 0069444444 37.71 3.2301227 0733580167 0309818393 260 0072222222 37.34 3.1732146 0726336124 0.319742391 270 0.075 36.88 3.1951483 0.717321314 0.332231403 280 0077777778 36.33 3.1975183 0706696716 0347153678 290 0080555556 35.98 3.2562912 069977463 0356996953 300 0.083333333 35.50 3.2149509 0690598841 0370196172 310 0.08611 1 1 l 1 35.30 3.2052664 0686574372 0376040724 320 0088888889 34.78 3.1927726 067643271 1 0390922303 330 0.091666667 34.30 3.1924327 0667095943 0.4048214 340 0094444444 33.87 3.2005573 0658886027 0417204708 350 0097222222 33.63 3.1223953 0654217643 0424315195 500 0.138888889 28.27 3.012691 1 0549903413 0598012629 600 0.166666667 25.22 2.8945012 0490663232 0.71 1997267 700 0.194444444 22.61 2.7873075 0439793947 0.821448964 800 0222222222 20.28 2.674101 1 0394397939 0930394881 900 0.25 17.91 2.5353375 0348358017 1054524544 1000 0277777778 15.79 2.4022744 0307147457 1.180427332 l 100 0305555556 13.93 2.2469995 0270927238 130590499 1200 0333333333 12.41 2.1053109 0241307147 1.421684686 1300 0.3611 1 1 l 1 1 10.77 1.9786682 0209433355 1.563349706 1400 0388888889 9.53 1.7903792 0185286542 1.685851776 1460 0405555556 8.15 1.7083779 0.15856407 1.841596543 1560 0433333333 7.05 1.5477092 0.137153896 1.986651657 1660 0461111111 6.18 1.3258852 0120251127 2.118172999 1760 0488888889 5.30 1.1819387 0103026401 2272770008 1860 0.516666667 4.47 1.0577903 0086928525 2.442669045 Table B.4-l 98 250 ppm Pyrene Contaminated Moist Soil (Experiment #1) Slope y-Intereept 0.0046966 0.025596095 S.E.E. 1.8651505 0003796277 r"(2) 0.9994639 0.01 1626951 63390211 34 r Co- 32.09 I time time C (s) (hrs) (mg/L) In C C I Co - In C I Co 0 0 32.09 0.1891944 1 0 10 0.0027778 30.86 0.2360257 0961578133 0039179456 20 0.0055556 29.52 0.0494801 0919804023 008359465 30 0.0083333 28.30 0.3703738 0881640021 0125971446 40 0.01 11 1 1 1 27.16 0.2554438 0.846312532 0.166866564 50 0.0138889 26.03 0.1500213 0810985044 0209505667 60 0.0166667 24.87 0.0497749 0774883961 0255041989 70 00194444 23.79 0.0339016 0741361527 0299266883 80 0.0222222 22.74 0.2425404 0708612687 0344446182 90 0.025 21.72 0.1823216 0676895307 0390238661 100 0.0277778 20.73 0.0939318 0.645951521 0437030822 1 10 0.0305556 19.77 0.1614149 0616039195 0484444688 120 0.0333333 18.90 0.0418697 0588963383 0529391265 130 0.0361 1 1 1 17.96 0.2946025 0559566787 7 0580592389 140 0.0388889 17.18 0.399963 0535327488 0624876592 150 0.0416667 16.34 0.0237276 0509283136 0.674751158 160 0.0444444 15.60 00322383 0486075297 0721391736 170 0.0472222 14.93 0.1215834 0465188241 0.765313135 180 0.05 14.22 0.3755716 0.44301 1862 0.814158733 190 0.0527778 13.56 0.3755716 0422640536 0861233257 200 0.0555556 12.97 0.3057758 0404074265 0906156593 210 0.0583333 12.39 0.4377034 0386023724 0951856451 220 0.061 1 111 1 1.79 0.5749045 0367457452 1.001 147743 230 0.0638889 1 1.18 0.4506068 0348375451 1054474498 240 0.0666667 10.83 0.75 13609 0.337545126 108605607 250 0.0694444 10.34 -10332121 0322073234 1.132976326 260 0.0722222 9.83 0.8431685 0306343476 1.183048336 270 0.075 9.39 0.6200249 0292676637 1228686906 280 0.0777778 8.90 0.7690605 0277204745 1282998895 290 0.0805556 8.45 0.5897196 0263280041 1334537018 300 0.0833333 7.98 0.6835383 0248581743 1391983541 310 0.0861 1 1 1 7.61 0.6835383 0236977824 1.439788713 320 0.0888889 7.22 0.7513609 0.2251 16039 1.491 13928 330 0.0916667 6.89 -1.1308505 0214801444 1.538041 194 340 0.0944444 6.55 -1.2680517 0.203971 1 19 1.589776868 350 0.097222 6.18 -1. 1308505 0.192625064 1.647009651 500 0.1388889 2.66 -1.360425 0083032491 2.48852329 600 0.1666667 1.42 -1.2979046 0044352759 3.115580359 700 0.1944444 0.83 -2.3095055 0025786488 3.65790465 800 0.2222222 0.54 -2.0218235 0016761217 4088687566 900 0.25 0.37 -2.3095055 0.01 160392 4.456412346 1000 0.2777778 0.29 -2.4918271 0009025271 4.707726774 1 100 0.3055556 0.26 -2.3965169 000799381 1 4.829087631 1200 0.3333333 0.32 -2.3095055 001005673 4.59951319 1300 0.361 1 1 1 1 0.32 00026527 0.01005673 4.59951319 1400 0.3888889 0.26 4.7944122 0.00799381 1 4.829087631 Table 3.4—2 99 250 ppm Pyrene Contaminated Moist Soil (Experiment #2) Slope y-intereept 0005276602 0043535806 S.E.E. 3405161505 0006929875 r"(2) 0998586059 0021224298 2401226121 34 [ Co- 28.87 1 time time C (5) (hrs) (mg/L) In C C I Co - In C I Co 0 0 28.87 3.362958256 1 0 10 0.0027778 27.57 3.316615653 0.954714818 0046342603 20 0.0055556 26.37 3.272109305 0.913155632 0090848951 30 0.0083333 25.19 3226515533 0872456291 0136442722 40 0.01 1 1 1 1 1 24.02 3.178743248 0.83175695 0184215008 50 0.0138889 22.84 3.128573773 079105761 0234384482 60 0.0166667 21.73 3.078804869 0.752651 189 0.284153386 70 0.0194444 20.82 3036013432 0.721 123531 0326944823 80 0.022222 20.00 2.995870195 0692748639 036708806 90 0.025 19.00 2.94451 1572 0.658068214 0.418446684 100 0.0277778 18.07 2.894501151 0625967326 0468457104 1 10 0.0305556 1720 2.844748986 0.595586128 0.51820927 120 0.0333333 16.37 2.795429327 056692462 0567528929 130 0.0361111 15.57 2.745146644 0539122958 0.617811612 140 0.0388889 14.74 2690518098 0.51046145 0672440158 150 0.0416667 13.97 263688749 0483806248 0726070766 160 0.0444444 13.32 2588955961 0.461 163657 0774002294 170 0.0472222 12.60 2533368353 0436228146 0829589903 180 0.05 11.93 2479374132 0.41329894 0883584123 190 0.0527778 11.20 2415667443 0387790198 0947290813 200 0.0555556 10.69 2369534499 0370306678 0993423757 210 0.0583333 10.12 2.31464995 0350530238 1048308305 220 0.0611 1 1 1 9.53 2.253974223 0329893952 1.108984032 230 0.0638889 9.03 2.2004378 0312697048 1.162520455 240 0.0666667 8.57 2.14774452 0296646604 1215213735 250 0.0694444 8.16 2099244169 0282602465 1263714087 260 0.0722222 7.70 2040772401 0266552021 1.322185855 270 0.075 7.32 1.990044877 0253367727 1372913379 280 0.0777778 6.89 1.930621457 0238750358 1.432336799 290 0.0805556 6.51 1.873816063 0225566065 1.489142193 300 0.0833333 6.17 1.818972033 0213528232 1.543986223 310 0.0861 1 1 1 5.77 1.752373225 0.199770708 1.61058503 320 0.0888889 5.41 1.688695 166 0 18744626 1.67426309 330 0.0916667 5.16 1.641738183 0178847807 1.721220073 340 0.0944444 4.87 1.582314762 0168529665 1.780643493 350 0.0972222 4.58 1.520945816 0158498137 1.84201244 500 0.1388889 1.57 0.45261 1887 0054456864 2.910346369 600 0.1666667 0.73 0.3 1 707 5371 0.025222127 3.680033627 700 0.1944444 0.46 0.769060495 0016050444 4.13201875 800 0.222222 0.35 -1.056742567 0012037833 4.419700823 900 0.25 0.26 4360424981 0008885067 4.723383237 1000 0.2777778 0.29 -1.239064124 0.010031528 4.60202238 1100 0.3055556 0.22 -1.49857532 0007738607 4.861533575 1200 0.3333333 0.22 -1.536315648 0.007451992 4.899273903 1300 0.361 11 1 1 0.1 1 -2.229462828 0003725996 5.592421084 1400 0.3888889 0.22 -1.5363 15648 0.007451992 4.899273903 1500 0.4166667 0.94 0.058213737 0.0326741 19 3.421 171993 100 Table 3.4—3 250 ppm Pyrene Contaminated Moist Soil (Experiment #3) Slope y-intereept 0.0045062 0010404435 S.E.E. 1.7461205 0003552684 r"(2) 0.99949 0010880894 66632761 34 [ Co- 31.76 ] time time C (5) (hrs) (mg/L) In C C I Co - In CI Co 0 0 31.76 4.4622077 1 0 10 0.0027778 30.43 4.4985753 0.958051068 0.042854195 20 0.0055556 28.98 4.4622077 0912454403 0091617164 30 0.0083333 27.78 4.2979046 087467431 013390368 40 0.011 1 1 11 26.47 4.4622077 0833507035 0.1821 13137 50 0.0138889 25.44 21849743 0800937989 0.221971752 60 0.0166667 24.36 24918271 076706618 0265182197 70 0.0194444 23.40 24918271 0.736842105 030538165 80 0.0222222 22.43 22294628 0706096925 0348002763 90 0.025 21.43 4.9040404 0674570089 0393679697 100 0.0277778 20.67 4.7498897 0650859823 0429460986 110 0.0305556 19.82 4.360425 0624022929 0471568167 120 0.0333333 18.97 - 1 .7986799 0.597186034 0.5 15526599 130 0.0361 1 1 1 18.02 4.7498897 0567483064 0566544373 140 0.0388889 17.18 4.9040404 0540906722 0614508432 150 0.0416667 16.38 4.5363156 0.515633142 0662359731 160 0.0444444 15.69 23095055 0494007295 0705204994 170 0.047222 15.03 23965169 0.473163106 0.7483151 17 180 0.05 14.38 20218235 0452840021 0792216371 190 0.0527778 13.75 4.7986799 0432777488 0.837531567 200 0.0555556 13.13 4.7986799 0413496613 0883105956 210 0.0583333 12.54 4.7498897 0394736842 0929535959 220 0.061 1 1 1 1 1 1.98 22294628 0.377019281 097545895 230 0.0638889 11.44 20218235 0360083377 1021419672 240 0.0666667 10.92 4.7986799 034392913 1067319661 250 0.0694444 10.47 25971876 0329598749 1.109879275 260 0.0722222 10.00 4.9611988 0314747264 1.155985298 270 0.075 9.51 23965 169 0299374674 1 206059399 280 0.0777778 8.68 24918271 0.273319437 1.2971 14068 290 0.0805556 8.68 22294628 0.273319437 1.297 I 14068 300 0.0833333 8.33 22294628 0.2621 15685 1.338969326 310 0.0861 1 11 7.91 -1 .961 1988 0249088067 1.389948764 320 0.0888889 7.60 23965169 0.239187077 1.430509286 330 0.0916667 7.25 23095055 0228243877 1.477340586 340 0.0944444 6.88 4.658918 021651902 1.530076882 350 0.0972222 6.56 4 .961 1988 0.20661803 1.576883455 500 0.1388889 3.15 4.7944122 0099270453 2309907301 600 0.1666667 1.93 23095055 0060708702 2801668223 700 01944444 1.20 23965169 0037780094 3275972934 800 0.2222222 0.76 23095055 0023970818 3.7309181 900 0.25 0.59 22294628 0018499218 3.9900268 1000 0.2777778 0.37 4.658918 0.011724857 4.446044187 1 100 0.3055556 0.32 23965169 0.010161542 4.58914503 1200 0.3333333 0.46 4.7944122 001433038 4245373491 1300 0.361 1 1 11 0.40 4.7944122 0012506514 4381505666 1400 0.3888889 0.32 23965169 0010161542 4.58914503 Table 3.4-4 101 250 ppm Pyrene Contaminated Moist Soil: (Dessicator #1) (Experiment #4) Slope y-Intereept 0.0046987 0024902476 S.E.E. 1.444E05 0.00293 8583 r"(2) 0.999679 0009000071 105888.66 34 [ Co= 40.19 I time time C (5) (hrs) (mg/L) In C C / Co - In CI Co 0 0 40.19 0.8431685 l 0 10 0.0027778 38.67 0.1500213 0.962314662 0.03841379 20 0.0055556 37.26 0.084882 0927100494 007569331 1 30 0.0083333 35.69 0.189242 0888179572 0.118581336 40 0.01 l 1 1 11 34.09 0.0759133 0848228995 0.164604638 50 0.0138889 32.53 0.0959369 0.809514003 0.21 1321207 60 0.0166667 31.02 0.0339016 0771828666 0258992689 70 0.0194444 29.58 0.7513609 0735996705 0306529637 80 0.0222222 28.25 0.4377034 0702841845 0352623384 90 0.025 27.04 0.3057758 0672775947 0396342921 100 0.0277778 25.86 0.3635954 0643533773 0440780771 1 10 0.0305556 24.65 0.4377034 0613467875 048862738 120 0.0333333 23.54 0.2405353 0585667216 0535003542 130 0.0361 11 1 22.52 0.7690605 0560337727 0579215594 140 0.0388889 21.57 0.92321 12 0536655684 0622398575 150 0.0416667 20.58 0.8823892 0512149918 0669137889 160 00444444 19.60 0.6200249 0487644152 0718169337 170 0.0472222 18.74 0.8054281 0466227348 0763081893 180 0.05 17.91 0.7513609 0445634267 0808256693 190 0.0527778 17.07 0.7000676 0424835255 085605382 200 0.0555556 16.30 0.787079 040568369 0.90218151 1 210 0.0583333 15.51 4 .4622077 0385914333 0.95213987 220 0.061 1 1 11 14.80 4.2390641 0368204283 0.999117377 230 0.0638889 14.04 4.1308505 034946458 1051353068 240 0.0666667 13.33 0.92321 12 0.33175453 1 . 10335995 250 0.0694444 12.77 0.92321 12 0.317751236 1 . 14648648 260 0.0722222 12.22 4.1308505 0303953871 1.190879328 270 0.075 1 1.50 0.8431685 0286037891 1.25163099 280 0.0777778 10.99 0.9877497 0.2734761 12 1.296541003 290 0.0805556 10.48 4.3286763 0260708402 134435273 300 0.0833333 9.98 4.4622077 0248352554 1392905955 310 0.0861 1 1 1 9.52 4.4985753 0236820428 1.4404531 1 1 320 0.0888889 9.10 4.6163584 0.226317957 1.485814378 330 0.0916667 8.68 4.9611988 0216021417 1.532377724 340 0.0944444 8.28 -1 .7986799 0205930807 1.580215054 350 0.0972222 7.86 4.4985753 0.195634267 1.631508348 500 0.1388889 3.91 22294628 0.097199341 2.330991347 700 0.1944444 2.30 4.101265 0057248764 2860349219 900 0.25 1.27 -3. 1849743 0.031507414 3.45753241 1 1 100 0.3055556 0.76 0.4081178 0018945634 3.966181756 1300 0.3611111 0.41 ----- 001009061 4.596150035 1500 0.4166667 0.23 ----- 0005766063 5.155765823 1700 0.4722222 0 17 ----- 0004324547 5.443 447895 1900 0.5277778 0.15 ----- 0003706755 ----- Table B.4-5 102 250 ppm Pyrene Contaminated Moist Soil: (Dessicator #1) (Experiment #5) Slope y-intereept 0004302772 0.029051503 S.E.E. 2386971505 0.00485775 r"(2) 0998954743 001487795 32493.8781 34 [ Co- 28.23 ] time time C (s) (hrs) (mg/1.) In C C l Co - In CI Co 0 0 28.23 3340348597 1 0 10 0.0027778 27.19 3302709745 0963060686 0037638851 20 0.0055556 26.15 3.263915121 0.926414541 0076433476 30 0.0083333 25.18 3226186964 0.89211375 0.114161633 40 0.0111111 24.21 3.186637574 0.857519789 0.153711023 50 0.0138889 23.34 3.150079978 0826737027 0.190268618 60 0.0166667 22.38 3.108075252 0792729405 0232273345 70 0.0194444 21.51 3068469849 0.761946643 0271878748 80 0.022222 20.63 3026829898 0730870712 0.313518699 90 0.025 19.87 298922841 1 0.70389915 0.351 120186 100 0.0277778 19.00 2.94451 1572 0.673116388 0395837025 110 0.0305556 18.31 2907692154 0648783348 0.432656442 120 0.0333333 17.54 2864759182 0621518616 0475589415 130 0.03611 11 16.84 2823838912 0596599238 0.516509685 140 0.0388889 16.07 2777061463 0569334506 0563287134 150 0.0416667 15.44 2737140196 054705365 0603208401 160 0.0444444 14.75 2691079422 0.522427441 0649269174 170 0.0472222 14.19 2652756174 0502785107 0687592423 180 0.05 13.60 2609866932 0.481676928 0730481664 190 0.0527778 13.01 2565691787 0460861917 0774656809 200 0.0555556 12.46 2522800223 0441512753 0817548374 210 0.0583333 12.00 2.48490665 042509528 0855441947 220 0.061 1 11 1 1 1.40 2433976266 0.403987101 0.906372331 230 0.0638889 10.93 2.391732119 0387276459 0948616478 240 0.0666667 10.40 2.34207 1023 0.368513632 0998277574 250 0.0694444 9.95 2297329929 0.352389329 1043018667 260 0.0722222 9.52 2.25 3 105036 0337144532 1087243561 270 0.075 9.16 2214996747 0324538259 1.12535185 280 0.0777778 8.70 2163085185 0308120786 1.177263412 290 0.0805556 8.36 2123293424 029610085 1217055173 300 0.0833333 7.96 2074602265 0282028731 1265746332 310 0.0861 111 7.67 203754138 027176781 1302807217 320 0.0888889 7.23 1.97866819 0256229845 1361680407 330 0.0916667 6.93 1.935411885 0245382586 1.404936712 340 0.0944444 6.55 1.878885782 0231896804 1.461462815 350 0.0972222 6.18 1.821653 0218997361 1.518695597 500 0.1388889 2.47 0.902681301 0087364409 2437667296 600 0.1666667 1.24 0.216223108 0043975374 3.124125488 700 0 1944444 0.63 0.463678845 0022280856 3.804027442 800 0.2222222 0.40 0.92321 1 I75 001407212 4263559772 900 0.25 0.27 4 297904624 0009674582 4.63825 3221 1000 0.2777778 0.14 4 .961 198842 0004983876 5 .301 547438 1100 0.3055556 0.17 4 .798679912 0005863383 5.139028509 1200 0.3333333 0.14 4 .961 198842 0.004983876 5301547438 1300 0.361 1 1 1 I 0.19 4 .65891797 0006742891 4.999266566 1400 0.3888889 0.17 4 .798679912 0.005863383 5.139028509 1460 0.4055556 2.42 0.882341617 0085605394 245800698 Table 3.4-6 103 250 ppm Pyrene Contaminated Moist Soil: (Dessieator IIZ) (Experiment 81) Slope y-Intereept 00044338 0009372022 1.431E05 0.00291 1291 0.9996462 0008916484 96061.425 34 [ Co- 42.95 time time C (5) (hrs) (mg/L) In C C I Co - In C I Co 0 0 42.95 0.8431685 1 0 10 0.0027778 41.15 0.3170754 0957996146 0.042911524 20 0.0055556 39.46 0.7513609 0918689788 0084806767 30 0.0083333 37.63 0.9657708 0.8761079 0.132266022 40 0.01 1 1111 36.03 0.6200249 0838921002 0.175638734 50 0.0138889 34.49 0.8054281 0802890173 0219537345 60 0.0166667 33.00 0.8054281 0768208092 0263694629 70 0.0194444 31.63 0.6672778 0.736416185 0305959851 80 0.0222222 30.31 0.787079 0705780347 0348451213 90 0.025 28.96 0.6200249 0.6741811 18 0394256484 100 0.0277778 27.88 0.787079 0649132948 0.4321 17733 1 10 0.0305556 26.59 4.1055327 0.619075145 0479528617 120 0.0333333 25.60 4.3286763 0595953757 0517592203 130 0.03611 11 24.47 4 .1308505 0.569749518 0562558456 140 0.0388889 23.54 0.9657708 0547976879 0.601522185 150 0.0416667 22.56 4 . 1308505 0525240848 0643898364 160 0.0444444 21 .63 4 2979046 0503660886 0685852082 170 0.0472222 20.65 0.8823892 0480732177 0732444968 180 0.05 19.86 4.0567426 0462427746 0.77126496 190 0.0527778 18.91 42979046 044026975 0820367673 200 0.0555556 18.03 42680517 0419845857 0867867641 210 0.0583333 17.30 0.9877497 0402890173 0909091277 220 0.0611111 16.52 4.1308505 0384585742 0955588519 230 0.063 8889 15.67 4.1055327 0364739884 1008570825 240 0.0666667 15.05 4 .4622077 0350481696 1048446798 250 0.0694444 14.27 4 .4622077 0.332177264 1.102086525 260 0.0722222 13.68 4 .1308505 031849711 1.144141878 270 0.075 13.10 4.2390641 0305009634 1.187411916 280 0.0777778 12.54 4.5363156 0.291907514 1.231318258 290 0.0805556 1 1.94 4 360425 0278034682 1.280009417 300 0.0833333 1 1.44 4.0567426 0.26628131 1323201972 310 0.0861111 10.92 42390641 025433526 1369101961 320 0.0888889 10.35 4 .360425 0241040462 1.422790466 330 0.0916667 9.97 4.6163584 0232177264 1.46025413 340 0.0944444 9.43 4.4985753 0.219653179 1.515705435 350 0.0972222 9.07 4 .658918 0.211175337 1.555066509 500 0.1388889 3.87 4.5363156 0.09017341 240602068 600 0.1666667 1.95 23095055 0045472062 3.090657171 700 0.1944444 0.95 4.6163584 0022157996 3.809556848 800 0.2222222 0.55 4 .658918 0012909441 4349796357 900 0.25 0.45 4.9611988 0010404624 4.565 50493 1000 0.2777778 0.35 22294628 0008092486 4.816819358 1100 0.3055556 0.29 4.5363156 0006743738 4.999140915 1200 0.3333333 0.22 4 .658918 0005009634 5296392438 1300 0.3611111 0.32 23095055 0007514451 4.89092733 Table B.4-7 104 250 ppm Pyrene Contaminated Moist Soil: (Dessieator #2) (Experiment #2) Slope y-intereept 0004418754 0009186324 S.E.E. 1.605E05 0003266348 r“(2) 0.999551632 0.010003924 75796.6481 1 34 Co- 44.44 time time C (5) (hrs) (mg/L) In C C I Co - In C I Co 0 0 44.44 3.794171002 1 0 10 0.0027778 42.62 3.752339808 0.959031657 0.041831 194 20 0.0055556 40.89 3.710910833 0.9201 11732 0083260169 30 0.0083333 39.05 3.664940006 087877095 0.129230996 40 0.01 1 1 111 37.52 3.624947645 0844320298 0.169223356 50 0.0138889 35.98 3.583059063 0809683426 0.21 11 1 1939 60 0.0166667 34.34 3.536210435 0772625698 0257960567 70 00194444 32.83 3.491353235 0738733706 0302817767 80 0.0222222 31.32 3.44438898 0.704841713 0349782022 90 0.025 29.98 3400369453 0674487896 0.393801549 100 0.0277778 28.66 3355478359 0644878957 0438692643 1 10 0.0305 556 27.43 3.311499012 0617132216 048267199 120 0.0333333 26.33 3270853023 059255121 0523317979 130 0.0361111 25.18 3225858287 0566480447 0.568312715 140 0.0388889 24.11 3182526571 0542458101 0.611644431 150 0.0416667 23.15 3.141890508 052085661 1 0652280494 160 0.0444444 2223 3.101396191 050018622 069277481 170 0.0472222 2136 3.061520014 0480633147 0732650988 180 0.05 20.50 3020391244 0461266294 0773779758 190 0.0527778 19.68 2979602892 044283054 081456811 200 0.0555556 18.76 2931800465 0422160149 0862370537 210 0.0583333 18.03 2892209149 0405772812 0901961853 220 0.061 1 1 11 17.25 2847632217 0388081937 0946538785 230 0.0638889 16.44 2799969057 0370018622 0994201945 240 0.0666667 15.78 275887442 0.355121043 1035296582 250 0.0694444 15.03 2709979374 0.338175047 1084191628 260 0.072222 14.33 266204237 0322346369 1.132128632 270 0.075 13.66 2.6141 18381 030726257 1 . 180052621 280 0.0777778 13.02 2566327717 029292365 1227843284 290 0.0805556 12.46 2.522800223 0280446927 1.271370779 300 0.0833333 11.82 2469617957 0265921788 1324553045 310 0.0861 1 1 1 1 1.31 2.425961651 0254562384 1368209351 320 0.0888889 10.76 2375707358 0242085661 14184636“ 330 0.0916667 10.30 2.331675088 0.23 I 6573 56 1.462495914 340 0.0944444 9.83 2.285614314 0.22122905 1.508556688 350 0.0972222 9.34 2.234675379 0210242086 1.559495623 500 0.1388889 3.99 1.383531928 0089757914 2410639073 600 0.1666667 1.94 066090893 0043575419 3133262072 700 0.1944444 0.98 0023727561 0.021973929 3817898563 800 0.2222222 0.68 0387692938 0.015270019 4.18186394 900 0.25 0.46 0.787079 0.010242086 4.581250002 1000 0.2777778 0.36 4 03321207 0008007449 4.827383072 1 100 0.3055556 0.33 4 . 105532732 000744879 4.899703733 1200 0.3333333 0.29 4239064124 0006517691 5033235126 1300 0.3611 1 11 0.28 4 268051661 0006331471 5062222663 1400 0.3888889 0.20 4 .616358355 0004469274 5.410529357 1500 0.4166667 0.27 4 .297904624 0006145251 5092075626 1600 04444444 0.26 4360424981 0005772812 5.154595983 1700 0.472222 0.22 4 .536315648 0004841713 5330486649 1800 05 0.22 4.536315648 0.004841713 5.330486649 1900 0.5277778 0.26 4 360424981 0.005772812 5.154595983 Table B40 105 250 ppm Pyrene Contaminated Moist Soil: (Dessicator #2) (Experiment II3) Slope y-Intereept 0.0045234 0.021955195 S.E.E. 1.607E05 0.003271 122 r"(2) 0.9995709 0010018545 79196.16 34 r Co- 4338 ] time time C (s) (hrs) (mg/L) In C C I Co -In C I Co 0 0 43.38 0.3755716 1 0 10 0.0027778 41.65 0.8054281 0960129721 0040686877 20 0.0055556 39.91 0.9232112 0919877909 0.083514325 30 0.0083333 38.18 0.6200249 0880198398 0.127607945 40 0.01 I 111 1 36.80 0.8823892 0848340328 0164473393 50 0.0138889 35.17 0.9232112 0810759252 0.209784122 60 0.0166667 33.82 0.9877497 0779473483 0249136609 70 0.0194444 32.36 0.7000676 0745898512 0293165731 80 0.0222222 31.03 0.5749045 0715185044 0335213967 90 0.025 29.72 4.0332121 0685043876 037827239 100 0.0277778 28.38 0.6835383 0654139641 0424434431 1 10 0.0305556 27.19 4 . 1308505 0626859977 0467032085 120 0.0333333 26.06 0.8823892 0600724914 0509618163 130 0.0361111 24.89 0.9025919 0573636017 0555760201 140 0.0388889 23.74 0.8823892 0547310187 0602739568 150 0.0416667 22.68 0.787079 0.522701259 0.648745185 160 0.0444444 21.72 0.8054281 0500763068 0.691622209 170 0.0472222 20.78 4 .1308505 0.479015643 0736022025 180 0.05 19.80 0.9877497 0456505151 0784155296 190 0.0527778 18.98 4.0332121 0437619229 0826406086 200 0.0555556 18.13 4.1055327 041797024 0872345044 210 0.0583333 17.31 4 0332121 0.399084319 0918582559 220 0.0611 1 1 1 16.53 4 . 1055327 0380961465 096505705 230 0.0638889 15.73 4.0332121 0362647844 1014323041 240 0.0666667 15.03 4.0567426 0346432659 1060066825 250 0.0694444 14.36 4 .2979046 0330980542 1 . 105695692 260 0.0722222 13.74 4.2680517 0.316673026 1.149885503 270 0.075 13.04 4.1055327 0300648607 1.201813113 280 0.0777778 12.55 4.1308505 0289202594 1.240627818 290 0.0805556 I 1.88 4 . 1308505 0.273941244 1294841634 300 0.0833333 1 1.36 4 .4985753 026192293 1339704978 310 0.0861 1 I 1 10.82 4.2680517 0.249332316 138896867 320 0.0888889 10.30 4.2979046 0.237314002 1.438371 1 11 330 0.0916667 9.87 4.4622077 0227584891 1.480231962 340 0.0944444 9.38 4.2680517 0216138878 1.531834123 350 0.0972222 8.97 4.658918 0206791301 1.576045202 500 0.1388889 4.02 4 .658918 0.092712705 237824976 600 0.1666667 2.24 4.6163584 0051697825 2962339563 700 0.1944444 1.20 4 .360425 0.027661 198 3587724641 800 0.2222222 0.74 4.5363156 0017169019 4064648714 900 0.25 0.51 4 .6163584 0.011827547 4.437323999 1000 0.2777778 0.46 4.4985753 0010682945 4.539106693 1100 0.3055556 0.40 4.658918 000915681 4.693257373 1200 0.3333333 0.37 4 3286763 000858451 4.757795894 1300 0.361 1 11 I 0.35 42390641 0008012209 4.826788766 1400 0.3888889 0.29 4 .5363 156 0006676841 5.0091 10322 1500 0.4166667 0.29 4.2680517 0.006676841 5.009110322 1600 0.4444444 0.29 4 .4985753 0.006676841 5.0091 10322 1700 0.4722222 0.35 4.5363156 0.008012209 4.826788766 1800 0.5 0.31 4.658918 0007249142 4.926872224 1900 0.5277778 0.28 4 .7986799 0006486074 5038097859 Table 3.4-9 106 100 ppm Pyrene Contaminated Moist Soil: (Basicator #2) (Experiment #4) Slope y-intereept 0.0043784 0015939866 S.E.E. 1.7661505 0003594741 r"(2) 0.999447 0.01 1009701 61443993 34 Co- 39.46 ] time time C (3) (his) (mg/L) In C C I Co - In CI Co 0 0 39.46 0.6393098 1 0 10 0.0027778 37.80 0.5946595 0958053691 0.042851457 20 0.0055556 36.28 0.8077066 0919463087 008396538 30 0.0083333 34.78 0.6037505 0881291946 0126366327 40 0.0111111 33.24 0.2931841 0842491611 0171391574 50 0.0138889 31.91 0.1034276 0808724832 0.212296553 60 0.0166667 30.62 0.468278 0776006711 025359411 70 0.0194444 29.42 0.0939318 0745595638 0.293571867 80 0.0222222 28.23 0.1400617 0.715394295 0.334921426 90 0.025 27.19 0.0959369 0.688968121 0372560278 100 0.0277778 25.95 0.1400617 0657718121 0418978827 110 0.0305556 24.89 0.1034276 0630662752 0460984026 120 0.0333333 23.93 0.2618127 0606333893 0500324467 130 0.0361 1 1 1 22.85 0.2726236 0579068792 0546333997 140 0.0388889 22.01 0.1500213 0557676174 0583976818 150 0.0416667 21.10 0.5897196 0534605705 0626225804 160 0.0444444 20.18 0.2094447 0.511325503 0670748899 170 0.0472222 19.33 0.4903471 0489932886 0713486865 180 0.05 18.53 0.2946025 0469588926 0755897592 190 0.0527778 17.71 0.3057758 0448825503 0.801 121101 200 0.0555556 16.92 0.4636788 0428901007 084652914 210 0.0583333 16.19 0.5897196 0410234899 0891025358 220 0.061 1 1 1 1 15.42 0.5897196 0390729866 0939738838 230 0.0638889 14.74 0.9025919 0.373531879 0.984751925 240 0.0666667 14.05 0.8054281 0356124161 1032475842 250 0.0694444 13.45 0.9657708 0340813758 1.0764191 14 260 0.0722222 12.90 0.787079 0326971477 1.11788234 270 0.075 12.30 0.92321 12 0.31 1661074 1.165838983 280 0.0777778 11.76 4.156826 0298028523 1210566081 290 0.0805556 11.23 0.8823892 0284605705 1256650549 300 0.0833333 10.68 0.9657708 0270553691 130728471 1 310 0.0861 1 1 1 10.25 -1 .7986799 0259647651 1348429756 320 0.0888889 9.80 42979046 0248322148 1393028393 330 0.0916667 9.33 42390641 023636745 1.442367695 340 0.0944444 8.89 4.6163584 0225251678 1.490536934 350 0.0972222 8.48 4.4622077 0214974832 1.537234317 500 0.1388889 3.72 24918271 0094169463 2362659321 700 0.1944444 1.98 4.7944122 0050125839 2993218657 900 0.25 0.98 -34081 178 0024748322 3698997584 1100 0.3055556 0.61 4.101265 0015520134 4.165617116 1300 0.361 I 1 I 1 0.43 40026527 001090604 4.51843849 1500 0.4166667 0.37 ----- 0009437919 4.663019719 1700 0.4722222 0.28 ----- 0007130872 4.943321684 1900 0.5277778 0.23 ----- 0.005 872483 5.137477699 2100 0.5833333 0.26 ----- 0006501678 5035695004 2300 0.6388889 0.19 ----- 0004823826 5334187993 Table 3.4-10 107 100 ppm Pyrene Contaminated Moist Soil: (Dessieator #2) (Experiment #5) Slope y-intereept 0004665956 0.0253649 S.E.E. 211664505 0004307598 r"(2) 099930082 0.013192985 485943967 34 Co- 38.09 I time time C (s) (hrs) (mg/L) In C C I Co - In C I Co 0 0 38.09 3.640051358 1 0 10 0.0027778 36.56 3599030198 095980882 0.041021 16 20 0.0055556 35.06 3557198565 0920486639 0082852793 30 0.0083333 33.58 3.514033335 0.881598957 0.126018023 40 0.0111111 32.14 3.469951144 0843580274 0170100214 50 0.0138889 30.73 3425183269 0806647838 021486809 60 0.0166667 29.38 3380290697 077123615 0259760661 70 0.0194444 28.09 333535226 073734521 0304699098 80 0.0222222 26.95 329414962 0707582012 0345901739 90 0.025 25.73 3247644224 0675429068 0392407134 100 0.0277778 24.64 3204259175 0.6467521 18 0435792183 1 10 0.0305556 23.59 3.160662088 0619161416 0479389271 120 0.0333333 22.57 3.1 16545197 0592439713 0523506161 130 0.0361 1 1 1 21.55 3070391818 056571801 056965954 140 0.0388889 20.56 3.023213257 0539648056 0616838101 150 0.0416667 19.68 2.979602892 0.516619596 0660448467 160 0.0444444 18.69 2927822559 0490549642 0712228799 170 0.0472222 17.93 2886686816 0470779926 0753364542 180 0.05 17.11 2.83992505 0449272214 0800126308 190 0.0527778 16.29 2790360892 0427547252 0849690466 200 0.0555556 15.60 2747270914 0409515533 0892780444 210 0.0583333 14.85 2697790857 0.389745818 0942260501 220 0.061 I 11 1 14.15 2649836464 037149685 0990214894 230 0.0638889 13.55 2.606208392 0355637628 1.033842966 240 0.0666667 12.89 2556746041 0338474908 1083305317 250 0.0694444 12.3 1 2.51077603 0323267434 1. 1292753 28 260 0.072222 11.71 2460472624 0307408212 1.179578734 270 0.075 1 1.08 2.40526616 0290897241 1.234785198 280 0.0777778 10.63 2363323299 0.278948512 127672806 290 0.0805556 10.09 2.31 1373944 0264827287 1.328677414 300 0.0833333 9.48 2.249620712 0248968064 1390430647 310 0.0861 1 1 1 9.08 2205922275 0238322833 1.434129084 320 0.0888889 8.69 2162133258 0.228112101 1.477918101 330 0.0916667 8.18 2102282146 0214859874 1.537769212 340 0.0944444 7.82 2056772742 0205300891 1.583278616 350 0.0972222 7.47 2.01 1310368 0.196176407 1.62874099 500 0.1388889 3.08 1 . 124481669 0.080816859 2.51556969 600 0.1666667 1.56 0447334829 0041060178 3192716529 700 0.1944444 0.83 0.189242 0021724962 3829293358 800 0.222222 0.55 0.589719566 0014555725 4229770924 900 0.25 0.40 0.92321 1 175 0010427982 4.563262533 1000 0.2777778 026 4328676283 0006951988 4.968727641 1 100 0.3055556 0.27 4 .297904624 0.007169237 4.937955982 1200 0.3333333 0.27 4297904624 0007169237 4.937955982 1300 0.361 11 1 1 0.23 4 .462207675 0006082989 5.102259034 1400 0.3888889 0.26 4.328676283 0.006951988 4.968727641 1460 0.4055556 0.22 4.49857532 000586574 5.138626678 Table E5 108 Leak Test Data: (Following Moist Soil Experiments 4 & 5 from Dessieator #1) Time Absorbanee Concentration Mass of Ozone dellMIIdt -InCICo (S) (mg/L) (mg) 0 .8582 71.02 21.69 0 218 0.8402 69.53 21.23 0002086364 002119721 436 0.8229 68.10 20.79 0002005228 004200249 654 0.807 66.79 20.39 0001842955 0.0615135 872 0.7922 65.56 20.02 0001715455 008002329 1090 0.7778 64.37 19.65 0001669091 009836775 1308 0.7628 63.13 19.27 0001738637 0.1178413 1526 0.7491 61.99 18.93 0001587955 013596469 1744 0.7356 60.88 18.59 0001564773 015415068 1962 0.7229 59.83 18.27 0001472046 017156627 2180 0.7131 59.02 18.02 0001135909 018521551 2398 0.6993 57.87 17.67 0001599546 020475734 2616 0.6866 56.82 17.35 0.001472046 022308529 2834 0.6766 55.99 17.10 0001159091 023775692 3052 0.6643 54.98 16.79 0001425682 025610332 3270 0.6543 54.15 16.53 0.001159091 027127121 3488 0.644 53.30 16.27 0001193864 028713845 3706 0.6339 52.46 16.02 0001170682 030294596 3924 0.6249 51.72 15.79 0001043182 031724554 4142 0.614 50.81 15.51 0001263409 033484224 4360 0.6055 50.11 15.30 0000985227 034878261 4578 0.5953 49.27 15.04 0001182273 036577169 4796 0.5861 48.50 14.81 0001066364 038134675 5014 0.5778 47.82 14.60 0000962046 039560938 5232 0.5688 47.07 14.37 0.001043182 041130829 5450 0.5625 46.55 14.21 0000730227 042244604 5668 0.5515 45.64 13.94 0.001275 044219533 5886 0.545 45.10 13.77 0000753409 045405138 6104 0.5354 44.31 13.53 0001112727 047182304 6322 0.528 43.70 13.34 0000857727 048574089 Slope y-intereept 7.57692E05 0016562519 S.E.E. 6.5288E07 0002403474 r"(2) 0997925381 0006747454 13468.45218 28 Look Test 0.5 r- 0.4 A A A A A 8 A A A A ‘ 0.3 A A A A 3 0.2 A A A A ° 5 A . 0.1 A A A A A o u A 0 1 000 2000 3000 4000 5000 6000 Time Is) 109 APPENDIX C: Extraction Data Thbh:(ll Glass Bead Extraction Data: Standard Ratio 8 Area Cone. Slope y-inter 1 0.94302 1 0.94857 0.0026666 2 0.71311 0.75 S.E.E. 0.00684 0.0046843 3 04716 0.5 r‘121 09999 00038247 4 0.23304 0.25 19222 2 Calibration Curve for GC Analysis: Py I F o is ’ ' ° 6 . ,---' 3 3-2 .--~-"° 5 0.2 ",--"’<> < O , " ’ -0-20 0.2 0.4 0.6 0.8 1 Cone. Ratio Experiment #1: 6I28I93: TREATED UNTREATED Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 70.01 75.74 73.93 72.95 84.80 99.06 68.90 72.98 73.99 74.98 86.66 102.72 67.87 74. 18 73.96 76.36 90.26 106.41 AVG: 68.93 74.30 73.96 72.40 74.76 87.24 102.73 88.24 ST DEV 1.07 1.39 0.03 3.01 1.71 2.77 3.68 14.01 RSTD: 1.55 1.87 0.04_ 4.16 2.29 3.18 3.58 15.88 I Removal Elfieieney: 17.96 96 1 Experiment #2: 7I7I93: TREATED UNTREATED Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 71.00 76.86 88.27 98.37 1 14.05 71.98 74.81 87.75 100.21 113.52 ----- 78.65 94.00 98.02 109.43 AVG: 71.49 76.77 90.01 79.42 98.87 1 12.33 105.60 ST DEV 0.70 1.92 3.47 9.54 1.17 2.53 9.52 RSD: 0.97 2.50 3.85 12.01 1.19 2.25 9.02 [ Removal ElTieieney: 24.79 V. ] Experiment #3: 7I8/93: TREATED UNTREATED Sample 1 Sample 2 Saner 3 Sample 4 Sample 5 84.83 96.98 81.26 93.22 74.07 84.82 93.77 83.12 90.19 7050 83.00 94.15 82.13 91.31 71.48 AVG: 84.21 94.97 89.59 89.59 91.57 72.02 81.80 STD: 1.06 1.75 7.60 5.38 1.53 1.85 20.16 RSD: 1.25 1.84 8.49: 6.00 1.67 2.57 21.92 I Removal Ellieieney: 0.53 % ] Experiment #4: 7I12I93: TREATED UNTREATED Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 79.19 65.71 67.98 90.51 63.05 97.32 80.10 66.66 68.61 90.90 64.94 97.44 80.08 67. 14 68.40 90.08 6044 98.27 AVG: 79.79 66.50 73.15 73.15 90.50 62.81 97.68 83.66 STD: 0.52 0.72 9.39 6.64 0.41 2.26 0.52 18.41 RSD: 0.65 1.09 12.84 9.08 0.45 3.59 0.53 22.01 F Removal Efficiency: 12.57 % j 110 Table C2-la Ottawa Sand Extraction Data: (Experiment #1) Spectrophotometer Analysis: Shimadzu UVNIS Cone. (ppm) Absorbance slog x-intcr. 0.11 0.039 0.199 0.01422 0.23 0.063 SE. 0.005 0.00286 0.34 0.08 r“(2) 0.998 0.00401 0.46 0.104 1627 4 0.57 0.122 1.14 0.244 Correlation Coefficient: 0.998773 Calibration Curve: Pyrene 1.2 1 G 1 r g 0.8; 0.6 7 E g 0.4.1 a C < 0.2 f g D 0 0 0.05 0.1 0.15 0.2 0.25 Cone-(pm) Final Concentration of Pyrene: Sample II Absorbance Average 08031a 0.066 0.066 0.066 0.066 080311) 0.071 0.07 0.07 0.070333 08031c 0072 0.072 0.072 0.072 AVG: 0.069444 [PY]= 65.0845 ppm SD: 0.003097 RSD: 4.459955 08032a 0.067 0.066 0.067 0.066667 080321: 0.064 0.064 0.065 0.064333 08032c 0.063 0.063 0.063 0.063 AVG: 0.064667 [PY]- 59.4539 ppm AVG: 61.8109 SD: 0.001856 SD: 2.9251 RSD: 2.869982 RSD: 4.73234 08033:: 0.066 0.066 0.066 0.066 080336 0.066 0.066 0.066 0.066 08033c 0.065 0.066 0.066 0.065667 AVG: 0.065889 [PYl- 60.8943 ppm SD: 0.000192 RSD: 0.292083 OriginalCooeentration of Pyrene: 08034a 0.125 0.125 0.125 0.125 080341: 0.119 0.119 0.119 0.119 08034:: 0.117 0.117 0.117 0.117 AVG: 0.120333 [PY]= 187.32 ppm SD: 0.004163 RSD: 3.459833 08035a 0.125 0.125 0.125 0.125 080351: 0.11 0.11 0.11 0.11 080350 0.116 0.116 0.116 0.116 AVG: 0.117 [PYl- 181.435 ppm AVG: 190.915 SD: 0.00755 SD: 11.7 RSD: 6.45285 RSD: 6.12839 08036a 0.128 0.128 0.128 0.128 08036b 0.131 0.132 0.131 0.131333 Removal 08036c 0.13 0.13 0.13 0.13 Efficiency: 67.62395 AVG: 0.129778 [PY]- 203.991 ppm SD: 0.001678 RSD: 1.29278 111 Table C.2-lb Ottawa Sand Extraction Data: (Experiment #1) Florimeter Analysis: Hewlett Packard Cone. (ppm) intensity slope y-intereept 0.11 189.2036 1233.7 66.190777 0.23 369.1099 5.13. 58.235 22.054121 0.34 494.7644 0.9934 21.180294 0.46 608.377 448.77 3 0.57 779.0576 Correlation Coefficient: 0.9967 1 Florimeter Calibration Curve 1 I BooI a 1 g. 600 | D g o s 400 D 1 5 200 0 i 0 a O 0.2 0.4 0.6 I Cone. (ppm) 1 Final Concentration of Pyrene: Sample 11 l-‘loreseence 08091a 463.3508 080916 460.733 08091:: 473.822 AVG: 465.9686 [PY]= 75.938 ppm SD: 6.926047782 RSD: 1.486376503 08092a 447.644 08092b 486.911 08092c 492.1466 AVG: 475.5672 [PY]= 77.761 ppm AVG: 73.83817138 SD: 24.32348044 SD: 5.294498502 RSD: 5.1 14625322 RSD: 7. 17040848 080931: 416.2304 08093b 424.0838 08093c 429.3194 AVG: 423.2112 [PY]=- 67.816 ppm SD: 6.587985528 RSD: 1.556666158 Original Concentration of Pyrene: 08094a 737.1728 080941) 735.5497 08094: 712.0419 AVG: 728.2548 [PY]= 188.37 ppm 81): 14.0642173 RSD: 1.931222053 08095a 678.534 080951) 686.91 1 08095c 712.0419 AVG: 692.4956333 [PY]= 178.2 ppm AVG: 182.9112824 SD: 17.43806003 SD: 5.127636256 RSD: 2.518147291 RSD: 2.803346075 08096a 703.6649 080961: 695.288 Removal 08096c 720.4188 Emeieney: 59.63 17021 AVG: 706.4572333 [PY]= 182.17 ppm SD: 12.79598067 RSD: 1.81 1288789 l 12 Table (3.2-2 Ottawa Sand Extraction Data: (Experiment 112) Spectrophotometer Analysis: Shimadu UVNIS Cone. (ppm) Absorbance slope y-inter 0.11 0.039 0.1988385 0.014 0.23 0.063 SE. 0.0049295 0.003 0.34 0.08 r"(2) 0.9975475 0.004 0.46 0.104 1627.0206 4 0.57 0.122 1.14 0.244 Correlation Coefficie 0.998773 Calibration Curve: Pyrene 1.2 o 3 " 0.8 1 0.6 i O 8 0.4 1 C D 2 0.31 a 0 0 0.05 0.1 0.15 0.2 0.25 Cone-(pan) Final Concentration of Pyrene: Samfle I! Absorbance Average 08041:: 0.067 0.067 0.067 6705-02 080411) 0066 0.066 0.066 6.60E-02 08041c 0.069 0.068 0.069 6.87E-02 AVG: 6725-02 [PY]=- 62.47 ppm SD: 13513-03 RSD: 2.00 08042:: 0,065 0,065 0.065 6.50E-02 080421: 0.069 0 069 0.069 6.90E-02 08042:: 0.071 0.071 0.071 7.10E-02 AVG: 6.83E-02 [PYl- 63.78 ppm AVG: 63.60 SD: 3.06E-03 SD: 1 .06 RSD: 4.47 RSD: 1.66 08043a 0.067 0 067 0.067 6.7OE-02 080431) 0 07 0.07 0.07 7.00E-02 08043c 0.07 0.07 0.07 7.00E-02 AVG: 6.90502 [PY'I- 64.56 ppm SD: 1.73E-03 RSD: 2.51 Original Concentration of Pyrene: 08044:: 0.164 0.163 0.163 0.16 080446 0.163 0.163 0.163 0.16 08044c 0.166 0.166 0.166 0.17 AVG: 0.16 [PY]= 176.65 ppm SD: 1.64E-03 RSD: 1.00 O8045a 0.164 0.164 0.164 0.16 080451: 0167 0.168 0.167 0.17 08045c 0.164 0.164 0.164 0.16 AVG: 0.17 [PY]- 177.83 ppm AVG: 178.18 SD: 1 .92E-03 SD: 1 . 73 RSD: 1.17 RSD: 0.97 08046! 0.165 0.165 0.165 0.17 08046b 0.167 0.167 0.167 0.17 08046c 0.169 0.169 0.169 0.17 Rum AVG: 0.17 [PY]= 180.05 ppm analog: 64.31 SD: 2005-03 RSD: 1.20 113 Table C2-3 Ottawa Sand Extraction Data: (Experiment #3) Final Concentration of Pyrene: Sample # Absorbance Average 081 1 la 0.062 0.062 0.062 0.062 081 1 lb 0.063 0.063 0.063 0.063 081 11c 0.065 0.065 0.065 0.065 AVG: 6.33E-02 [PY]= 57.8825 ppm 511): 1.531e-03 RSD: 2.41 081 128 0.062 0.062 0.062 0.062 081 12b 0.062 0.062 0.062 0.062 081 12c 0.063 0.063 0.063 0.063 AVG: 6.238-02 [PY]= 56.704 ppm AVG: 57.23 STD: 5.77E-04 STD: 0.60 RSD: 0.93 RSD: 1.05 081 138 0.062 0.062 0.062 0.062 081 13b 0.062 0.062 0.062 0.062 081 13c 0.064 0.064 0.064 0.064 AVG: 6.27E-02 [PY] = 57.0968 ppm STD: 1.15E-03 RSD: 1.84 Oringinal Concentration of Pyrene 08114:: 0.176 0.176 0.176 0.176 081146 0.176 0.176 0.176 0.176 08114c 0.177 0.177 0.177 0.177 AVG: 0.18 [PY]= 191.054 ppm STD: 5771-3-04 asp: 0.33 08115a 0.18 0.18 0.18 0.18 081156 0.177 0.177 0.177 0.177 08115c 0.179 0.178 0.179 0.18 AVG: 0.18 [PY]= 193.673 ppm AVG: 190.66 STD: 1.5013-03 STD: 3.23 RSD: 0.84 RSD: 1.69 08116a 0.172 0.172 0.172 0.172 081166 0.174 0.174 0.175 0.17 08116c 0.173 0.173 0.173 0.173 AVG: 0.17 [PY]= 187.257 ppm STD: 1.17E-03 RSD: 0.68 Removal Efficiency: 69.9846 l 14 Table C2-4a Ottawa Sand Extraction Data: (Experiment #4) 100 ppm Pyrene Spectrophotometer Analysis: Shlmadza UVNIS Cone. (ppm) Absorbance slog z—inter 0.57 0.112 0.20721 -0.0065 0.428 0.083 5.15. 0.00376 0.0013 0.285 0.051 0.99901 0.0016 0.143 0.022 3032.03 3 0.057 0.007 Correlation Coefficient: 0.99951 Calibration Curve: Pyrene 0.6 O .51 5 0.4 0 3 0.3 I a 0.2 1 < 0.1; .. a 01 — 0 0.02 0.04 0.06 0.08 0.1 0.12 Cone-(pm) Original Concentration of Pyrene: Sample 11 Absorbance Average__ 09281a 0.041 0.041 0.041 4. 1015-02 092816 0.039 0.04 0.04 3.97E-02 09281c 0.041 0.04 0.041 4.07E-02 AVG: 4.04E-02 [PY]= 79.45 ppm SD: 69415-04 RSD: 1.72 09282a 0.041 0.041 0.041 4.10E-02 092826 0.041 0.041 0.041 4.10E—02 09282:: 0.043 0.043 0.043 43013-02 AVG: 4.17E-02 [PY]- 81.52 ppm AVG: 79.64 SD: 1.15E-03 SD: 1.80 RSD: 2.77 RSD: 2.25 092838 0.041 0.041 0.041 4.10502 092836 0.039 0.04 0.04 3.97E-02 09283c 0.038 0.038 0.038 3.80E-02 AVG: 3.96E-02 [PY]- 77.95 ppm SD: 1.50E-03 RSD: 3.80 Final Concentration of Pyrene: 09284a 0.014 0.014 0014 1405-02 092846 0.014 0.014 0.014 1.40E-02 09284c 0.014 0.014 0.014 1.40E-02 AVG: 1.40E-02 [PY]- 7.78 ppm SD: 0.00 RSD: 0.00 09285a 0.014 0.014 0.014 1.40E-02 092856 0.015 0.015 0.015 1.50502 09285c 0.016 0.016 0.016 1.60802 AVG: 1.505-02 [PY]= 8.16 ppm AVG: 8.07 SD: 1 .00E-03 SD: 0.26 RSD: 6.67 RSD: 3.27 092861: 0.015 0.015 0.015 1.50E-02 092866 0.015 0.015 0.015 1.505-02 09286c 0.016 0.016 0.016 1.605-02 Ema! AVG: 1.53E-02 [PY]= 8.29 ppm W 89.86 SD: 5.77E-04 RSD: 3.77 Table C.2-4b 115 Ottawa Sand Extraction Data: (Experiment #4) 100 ppm Pyrene Florimeter Analysis: Hewlett Packard CW 0.428 985.8 0.285 646.2 5.5. 0.143 363.9 0.057 165 Correlation Coefficie slope y-inter 2186.6301 41.13 56.439987 15.15 0.9986693 15.94 1500.986? 2 0.9993344 Fluorimeter Calibration Curve 1000: 5 8001 :3 600; o e 3 400: a 5 200g 0 . o 9 0 0.1 0.2 0.3 0.4 0.5 Cone. (ppm) 1 Original Concentration of Pyrene: Sample 4 Florescence 09281a 479.1 480 481.9 480.33 092816 467 472.2 471.9 470.37 09281c 467.3 461.8 463.2 464.10 AVG: 471.60 [PYl' 69.10 ppm SD: 8.19 RSD: 1.74 092820 480.5 480.8 485.4 482.23 092826 505.9 516.1 515.2 512.40 09282c 494 492.2 501.2 495.80 AVG: 496.81 [PY]- 73.15 ppm AVG: 69.69 SD: 15.11 SD: 3.21 RSD: 3.04 RSD: 4.60 092838 453.8 455.4 453.2 454.13 092836 455.7 457 460.7 457.80 09283c 458.3 458.2 463.8 460.10 AVG: 457.34 [PY]- 66.81 ppm SD: 3.01 RSD: 0.66 Final Concentration 01’ Pyrene: 09284a 173.8 172.3 172 172.70 092846 183.4 183.7 180.3 182.47 09284c 176.9 174.3 177.8 176.33 AVG: 177.17 [PY]- 4.90 ppm SD: 4.94 RSD: 2.79 09285a 182.4 181.4 183.2 182.33 092856 187.7 184.9 182.6 185.07 09285c 185.5 182.7 184.1 184.10 AVG: 183.83 [PY]= 5.14ppm AVG: 4.97 SD: 1.39 SD: 0.15 RSD: 0.75 RSD: 2.95 092868 179.6 183.5 181.7 181.60 092866 165.8 166.8 168.5 167.03 09286c 181.7 180.9 179.4 180.67 [imam AVG: 176.43 [PY]= 4.87 ppm W 92.86 SD: 8.15 RSD: 4.62 1 16 Table C.3-l Pyrene Contaminated Dry Metea Sojil Original Concentration of Contaminant in Soil: (Experiment # l) CONC. (mg/L) AREA SAMPLE Pyrene Fluorene Pyrene Std. 1 104.7 56907 58053 01028 130.3 63312 80351 Average - 132.1 01026 131.5 85444 109401 Standard Deviation - 2.16 0102c 134.3 64040 83785 Rel. St. Deviation - 1.64 01018 115.1 61476 68916 Average= 114.7 01016 1 14.1 78314 87001 Standard Deviation - 0.53 0101c 114.9 68116 76230 Rel. St. Deviation - 0.46 01038 108.3 58050 61239 Average - 109.4 01036 107.7 58821 61713 Standard Deviation - 2.39 0303c 112.1 70611 77061 Rel. St. Deviation - 2.18 Std. 2 103.6 56560 57047 01018 1 1308 59105 65493 Average -= 114.4 01016 111.6 57542 62552 Standard Deviation - 3.20 0101c 117.9 57323 65819 Rel. St. Deviation - 2.80 01028 135.5 59127 78040 Average - 136.4 01026 139.8 58692 79928 Standard Deviation -= 3.01 01020 134 56047 73159 Rel. St. Deviation =- 2.21 01038 113.5 59509 65796 Average - 113.8 01036 114.1 64112 71212 Standard Deviation a 0.30 01030 113.7 55028 60956 Rel. St. Deviation - 0.25 Std. 3 110.5 50290 54131 01038 1 13.7 55605 61546 Average - 114.3 01036 114.9 60452 67759 Standard Deviation - 0.60 0103c 113.7 55028 60956 Rel. St. Deviation - 0.52 01018 115.7 116.4 119.8 Average- 117.3 01016 116.4 57631 65311 Standard Deviation - 2.19 0101c 119.8 63941 74589 Rel. St. Deviation - 1.79 01028 138.5 63524 85707 Average - 137.7 01026 140.1 62399 85142 Standard Deviation - 2.77 0102c 134.7 57212 75044 Rel. St. Deviation - 2.01 % % % % % % °/o % Final Concentration of Contaminant in Soil: (Experiment #1) CONC. (mg/L) AREA SAMPLE Pyrene F luorene Pyrene Std.4 109.9 56693 60697 117 01058 42.8 67630 28190 01056 42.3 61798 25460 0105c 43 .2 52889 22242 01068 63.3 63187 38939 01066 62.1 57127 30902 0106c 61.6 52560 31688 01048 30.6 60819 18114 01046 30.6 57191 17049 0104c 30.2 69698 20484 Std. 5 107.8 55427 58190 01048 29.2 57759 16423 01046 29.3 57356 16389 0104c 30.5 66072 19652 01058 41.9 54511 22258 01056 42.8 63408 26414 0105c 42.2 56461 23221 01068 60.8 56654 33540 01066 62.7 52244 31889 0106c 63.1 65360 40158 Std. 6 11 1.1 77565 83936 01068 62.9 54951 33682 01066 61.2 72060 42928 0106c 62 59907 36170 01058 42.8 53870 22477 01056 43.5 59551 25231 0105c 43.1 53749 22589 01048 30.2 54469 16031 01046 29.5 55427 15920 0104c --------------- Extract Avg. Cone. S.D. R.S.D. 1 fl 115.5 1.59 1.38 2 135.4 2.93 2.16 3 112.5 2.7 2.4 4 30 0.42 1.4 5 42.7 0.4 0.94 6 62.2 0.2 0.32 Extraction Efficiency = 96.90% Average = Standard Deviation =- Rel. St. Deviation - Average =- Standard Deviation = Rel. St. Deviation = Average =- Standard Deviation = Rel. St. Deviation = Average = Standard Deviation = Rel. St. Deviation -= Average = Standard Deviation - Rel. St. Deviation .- Average - Standard Deviation - Rel. St. Deviation - Average = Standard Deviation = Rel. St. Deviation =- Average - Standard Deviation - Rel. St. Deviation = Average = Standard Deviation = Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation 8 Average = Standard Deviation = Rel. St. Deviation == Treatment Efficiency = 42.7 0.45 1.05 62.4 0.76 l .22 62.4 0.76 1 .22 62.4 0.76 1.22 62.4 0.76 1.22 62.4 0.76 1 .22 62 0.85 1.37 43.1 0.35 0.81 29.9 0.49 1.64 121.1 12.4 10.2 44.5 16.2 36.4 % % °/o % % % °/o % % % % 63.2 % Table C.3-2 118 Average =- Standard Deviation = Rel. St. Deviation - Average =- Standard Deviation = Rel. St. Deviation - Average - Standard Deviation - ReL St. Deviation - Final Concentration of Contaminant in Soil: (Experiment # 2) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 108.1 72533 68914 02028 109.2 69484 65348 02026 11 1 102555 94841 0202c 106.5 72807 70184 Std. 2 110.6 76828 71318 02018 61.9 43142 71592 02016 59 44241 76968 02010 62 45080 74661 Std. 3 108.3 75640 71685 02038 26.3 15887 62003 02036 26.7 15936 61 183 02030 26.8 16636 63744 Average =- Standard Deviation =- Rel. St. Deviation -= Original Concentration of Contaminant in Soil: (Experiment #2) Std. 4 107.2 02068 86.6 02066 89.1 02060 87.2 Std. 5 105.4 02058 113.8 02056 113.9 0205c 116.3 Std. 6 109.4 02048 120.5 02046 119.8 0204c 118.3 Extraction Efficiency = 80754 50326 53523 57508 61818 77851 66441 83032 65163 68046 68738 84261 85.8 % 77344 59674 61669 60630 60237 70222 59881 73308 61190 57976 58919 73119 Average - Standard Deviation '- Rel. St. Deviation - Average =- Standard Deviation =- Rel. St. Deviation 3 Average = _ Standard Deviation - Rel. St. Deviation - Average - Standard Deviation =- Rel. St. Deviation :- Treatment Efficiency = 108.9 2.26 2.08 61 1.7 2.79 109.4 2.39 2.18 43.8 24.3 55 87.6 1.3 1.48 114.7 1.42 1.24 119.5 1.12 0.94 107.3 17.2 16 % % % % % % % % 59.2 °/o Table C.3-3 119 Average = Standard Deviation = Rel. St. Deviation = Average =- Standard Deviation -= ReL St. Deviation - Average - Standard Deviation =- Final Concentration 01' Contaminant in Soil: (Experiment # 3) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 112.7 68203 62162 03038 28.2 15046 54736 03036 29.1 15503 54740 0303c 29.9 15667 53783 Std. 2 110.2 64372 60006 03028 36 19204 54826 03026 33.9 18222 55737 0302c 3 5.1 20293 59388 Std. 3 111.7 64619 59390 03018 45.2 24736 56222 03016 46.8 26161 57369 0301c 46.1 24981 55586 Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Original Concentration of Contaminant in Soil: (Experiment #3) Std. 4 110.6 03068 127.4 03066 126.5 0306c 128.1 Std. 5 114.8 03058 119.5 03056 120.3 0305c 122.1 Std. 6 1 11 03048 91.5 03046 92.6 0304c 92.8 Extraction Efficiency = 67297 62505 96836 78031 85586 69485 69892 56038 97790 87484 64840 55725 65299 55737 73621 61893 62259 57620 50215 56379 51386 57007 51939 57439 9CL7'96 Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation =- Average - Standard Deviation = ReL St. Deviation =- Average - Standard Deviation = Rel. St. Deviation - Treatment Efliciency = 29.1 0.85 2.92 35 1.05 46 0.8 1.74 36.7 8.58 23.4 127.3 0.8 0.63 120.6 1.33 1.1 92.3 0.7 0.76 11.34 18.6 16.4 % % % % % % % 67.6 % 120 Table C34 Final Concentration of Contaminant in Soil: (Experiment # 4) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 116.2 71987 63613 04028 27 14494 55020 Average 8 27.4 04026 26.5 13715 53133 Standard Deviation - 1.15 0402c 28.7 15292 54697 Rel. St. Deviation - 4.2 % Std. 2 108.6 78554 74272 04018 40 22653 58148 Average = 40 04016 40.3 23014 58683 Standard Deviation - 0.35 0401c 39.6 21868 56684 Rel. St. Deviation = 0.88 % Std. 3 116.6 82345 72491 04038 74 37398 51873 Average - 74 04036 75 41888 57339 Standard Deviation - 0.95 0403c 73.1 41229 57886 Rel. St. Deviation - 1.28 °/o Average - 47.1 Standard Deviation -= 24.3 Rel. St. Deviation - 55 % Original Concentration of Contaminant in Soil: (Experiment # 4) Std.4 113.7 71213 64305 04068 108.1 56521 53682 Average - 108.7 04066 108.8 57597 54376 Standard Deviation = 0.51 0406c 109.1 56935 53594 Rel. St. Deviation - 0.47 % Std. 5 114.9 70130 62672 04058 140.6 74154 54147 Average 8 142.1 04056 141.8 74243 53756 Standard Deviation = 1.62 0405c 143.8 74408 53127 Rel. St. Deviation a 1.14 % Std. 6 115.6 83221 73922 04048 104.8 59085 57883 Average = 105.9 04046 105.8 56228 54560 Standard Deviation - 1.15 0404c 107.1 55279 52999 Rel. St. Deviation - 1.09 % Average = 1 18.9 Standard Deviation - 17 .2 Rel. St. Deviation = 16 % Extraction Efficiency = 95.1 % Treatment Efficiency = 60.4 % 121 Table C.3-5 Original Concentration of Contaminant in Soil: (Experiment # 5) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 111.7 71384 65627 05038 108.2 66015 62635 Average = 109.1 05036 110.2 59821 55726 Standard Deviation = 1.01 0503c 108.9 57568 54304 Rel. St. Deviation - 0.92 % Std. 2 1 14 75175 67700 05028 105.9 57276 55559 Average = 106.97 05026 108 63536 60429 Standard Deviation - 1.05 0502c 107 58124 55762 Rel. St. Deviation - 0.98 % Std. 3 1 15.8 90830 80573 05018 98.3 55632 58128 Average - 98.8 05016 99 54881 56924 Standard Deviation = 0.47 0501c 99.2 54296 56217 Rel. St. Deviation - 0.48 °/0 Average = 105 Standard Deviation - 5.42 Rel. St. Deviation - 5 .2 % Final Concentration of Contaminant in Soil: (Experiment # 5) Std. 4 1 15.2 75750 67494 03068 43.5 23796 56177 Average - 43.8 03066 44.3 23482 54468 Standard Deviation =- 0.46 0306c 43.5 25881 61111 Rel. St. Deviation - 1.05 % Std. 5 114.6 72647 65082 03058 22.2 1 1962 55347 Average - 20.9 03056 20.2 10464 53267 Standard Deviation - 1.15 0305c 20.2 10464 53267 Rel. St. Deviation B 5.51 % Std. 6 119.2 85730 73836 03048 42.1 23867 58269 Average = 42.7 03046 41.4 22332 55413 Standard Deviation = 1.74 0304c 44.7 23826 54780 Rel. St. Deviation - 4.07 % Average = 35.8 Standard Deviation a 12.9 Rel. St. Deviation - 36.1 % Extraction Efficiency = 84 % Treatment Efficiency = 65.9 % 122 Table C.3-6 Original Concentration of Contaminant in Soil: (Experiment # 6) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 N.A. N.A. N.A. 06028 77.7 59138 44777 Average - 77.6 06026 78.2 60406 46011 Standard Deviation - 0.71 0602c 76.8 57322 42890 Rel. St. Deviation = 0.92 °/o Std. 2 114.9 68893 61548 06018 84.4 55992 46001 Average - 83.2 06016 83.2 59617 48307 Standard Deviation = 1.2 0601c 82 56042 44728 Rel. St. Deviation - 1.44 % Std. 3 112.2 79919 73146 06038 81.2 56581 44764 Average - 81.2 06036 81.6 56629 45020 Standard Deviation - 0.4 0603c 80.8 56667 44585 ReL St. Deviation = 0.49 % Average - 80.67 Standard Deviation - 2.84 ReL St. Deviation - 3.52 % Final Concentration of Contaminant in Soil: (Experiment # 6) Std. 4 110.4 74469 69237 06068 14.8 54967 7929 Average - 13 06066 12.4 58105 7013 Standard Deviation = 1.55 0606c 11.9 57744 6719 Rel. St. Deviation - 11.9 % Std. 5 108.4 91084 86305 06058 18.1 54963 9671 Average - 20.2 06056 21.9 78186 16697 Standard Deviation - 1.93 0605c 20.6 60139 12038 Rel. St. Deviation - 9.55 % Std. 6 108.2 83878 79614 06048 1 1.6 58369 6589 Average - 1 1.3 06046 12.4 58105 7013 Standard Deviation - 0.3 0604c 11.3 68516 7511 ReL St. Deviation - 2.65 % Average - 14.83 Standard Deviation - 4.72 ReL St. Deviation - 31.85 % Extraction Efficiency = 96.8 % Treatment Efficiency = 81.6 % Table C4-l 123 Moist Soil Experimental Data: (Dessicator #1_) Final Concentration of Contaminant in Soil: (Experiment # l) CONC. (mg/1..) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 96.6 58616 62290 01038 94.4 57558 62625 01036 94.1 55922 61044 01030 95.1 56599 61109 01028 82.4 50248 62610 01026 83 50750 62784 01020 84 52321 63930 Std. 2 99.7 60638 62472 01018 98.9 59513 61759 01016 99.4 60046 62030 0101c 99.6 60456 62353 Average - Standard Deviation = Rel. St. Deviation = Average - Standard Deviation - Rel. St. Deviation - Average =- Standard Deviation - Rel. St. Deviation = Average = Standard Deviation =- Rel. St. Deviation =- Original Concentration of Contaminant in Soil: (Experiment # 1) 01068 102 01066 102.6 01060 102.6 Std. 3 97.9 01058 92.9 01056 95.2 01050 93.9 01048 96.6 01046 97.6 01040 97.4 Extraction Efficiency = 61789 62230 62088 62138 61 183 61235 59360 62249 59746 66030 76210 82174 56633 61958 57982 61662 60973 64166 5801 1 61 176 76.96 % Average = Standard Deviation =- Rel. St. Deviation - Average = Standard Deviation = Rel. St. Deviation = Average -= Standard Deviation - ReL St. Deviation *3 Average -= Standard Deviation = Rel. St. Deviation =- Treatment Efficiency = " Calculations have been adjusted for slight variations in the mass of dry soil *Adjusted 94-3 0.14 0.15 °/. 83-1 0.81 0.97 % 99-3 0.36 0.36 °/. 97-9 4.24 8.90 4.33 9.71 % *Adjusted 102.4 0.35 0.34 V. 94 1.15 1.22 % 97.2 94.7 0.53 0.55 % 97-9 4.24 4.3 4.33 4.47 % 4.68 % Table C42 124 Moist Soil Experimental Data Final Concentration of Contaminant in Soil: (Experiment # 2) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene 02028 81 48050 57821 02026 81.8 46814 58785 02020 81.2 46529 58862 Std. 1 99.1 59570 61712 02018 86.4 49205 58495 02016 85.7 50598 60635 02010 86.5 50441 59856 02038 86.9 48955 57821 02036 87.2 50332 59254 02030 87 48103 56754 Average - Standard Deviation - Rel. St. Deviation = Average - Standard Deviation =- Rel. St. Deviation - Average - Standard Deviation = Rel. St. Deviation =- Average - Standard Deviation - Rel. St. Deviation - Original Concentration of Contaminant in Soil: (Experiment # 2) Std. 2 98.7 02068 1 19.6 02066 122.5 02060 1 19.9 02058 1 1 5. 1 02056 1 12.7 02050 1 17 Std. 3 99.2 02048 95.8 02046 95.9 02040 100.2 Extraction Efficiency = 61869 70269 70337 92307 62422 66142 65504 62906 56629 56929 56245 85.76 % 64360 60321 58945 79056 55697 60266 57475 65122 60710 60978 57653 Average =- Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation = Average = Standard Deviation =- Rel. St. Deviation = Average - Standard Deviation - Rel. St. Deviation =- Treatment Efficiency = *Adjnsted 79.7 81.3 0.42 0.52 % 86.2 0.44 85.5 E °/o 87 0.15 0.17 % 84.83 3.09 3.64 3.20 3.84 % *Adjusted 120.1 1.59 1.32 114.9 2.15 1.87 /0 110.7 /o 97.3 2.51 2.58 /o 1 10.77 1 1.95 10.79 107.2 1 1.3 10.54 °/o 22.2 °/o 125 Table C4-3 Moist Soil Experimental Data Original Concentration of Contaminant in Soil: (Experiment # 3) Final Concentration of Contaminant in Soil: (Experiment # 3) 03068 66 03066 66.4 03060 66.1 Std. 3 99.2 03058 77.9 03056 73.5 03050 77.5 03048 76.4 03046 77 03040 77.5 Extraction Efficiency = 39995 41805 39706 62906 45298 46428 60363 48301 46955 59826 84% 62219 64662 61639 65122 59671 64855 79995 64877 62579 79279 Average - Standard Deviation - Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation - Average = Standard Deviation = ' Rel. St. Deviation - Average =- Standard Deviation = Rel. St. Deviation = Treatment Efficiency = ‘ Calculations have been adjusted for slight variations in the mass of dry soil CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 99.2 83312 86270 *Adjusted 03038 109 58705 55318 Average - 109.3 03036 109.6 59063 55338 Standard Deviation - 0.31 03030 109.4 59886 51225 Rel. St. Deviation - 0.28 % 03028 98.9 53427 55471 Average - 98.7 03026 99.5 54446 56161 Standard Deviation - 0.92 03020 97.7 54252 56994 ReL St. Deviation = 0.93 % Std. 2 101.7 65671 66286 03018 107.2 59047 56555 Average - 107.1 03016 106.5 56040 54038 Standard Deviation - 0.51 03010 107.5 58928 56265 Rel. St. Deviation - 0.48 % Average - 105 Standard Deviation - 5.59 5.84 Rel. St. Deviation = 5.32 5.26 % *Adjusted 0.21 0.32 % 76.3 2.43 3.18 % 77 80.4 0.55 0.71 % m 6.04 6.4 8.25 8.38 % 29.9 % 'Ikdbie (28444 1215 Moist Soil Experimental Data Final Concentration of Contaminant in Soil: (Experiment # 4) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene 04028 86.8 48081 56861 04026 87.1 48666 57342 04020 87 47546 56103 Std. 1 102.7 63146 63137 04018 80.2 45726 58557 04016 81.9 53046 66499 04010 79.5 45572 58832 04038 88.9 65307 75472 04036 88 48859 57019 04030 87.9 48828 57014 Average - Standard Deviation - ReL St. Deviation - Average =- Standard Deviation - Rel. St. Deviation B Average - Standard Deviation - Rel. St. Deviation =- Average - Standard Deviation - Rel. St. Deviation - Original Concentration of Contaminant in Soil: (Experiment # 4) Std. 2 99.1 04068 1 12.3 04066 1 12.4 04060 1 13 04058 1 18.9 04056 1 19.7 04050 1 19.7 Std. 3 101.8 04048 101 04046 106.3 04040 106.6 Extraction Efficiency = 65348 63462 64496 61610 62754 64543 64064 61415 66848 58831 56591 92.2 % 67683 58003 58937 55979 54177 55376 54941 61950 67959 56818 54528 Average - Standard Deviation =- Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation = Average =- Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Treatment Efficiency = *Adjusted 87 015 1117 96 88;3 (155 L44 8045 123 153 .9 I g I 85.30 88.1 4.18 3.18 4.90 3.60 % *Adjusted 1 12.6 0.38 0.34 % 1 19.4 0.46 0.39 /0 104.6 3.15 3.01 °/o 107.4 1 12.20 7.41 7.61 6.60 6.60 °/o 23.5 % Table C4-5 127 Moist Soil Experimental Data Final Concentration of Contaminant in Soil: (Experiment # S) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 95.1 66378 71644 05038 91.6 54354 60946 05036 93.4 53809 59129 05030 ’ 94 53160 58078 05028 81.1 46237 58571 05026 82.3 45432 56691 05020 82.2 46817 58465 Std. 2 98.3 84109 87881 05018 84.2 49803 60740 05016 85.3 48593 58475 05010 85.9 47696 56998 Average =- Standard Deviation - Rel. St. Deviation = Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation = Rel. St. Deviation - Average = Standard Deviation - Rel. St. Deviation '- Original Concentration of Contaminant in Soil: (Experiment # 5) 05068 97.4 05066 96.1 05060 97 Std. 3 98.1 05058 1 10.8 05056 1 1 1.8 05050 1 1 1.1 05048 107.5 05046 107.7 05040 107.5 Extraction Efficiency = 53870 56795 65624 70104 53217 56309 64572 67584 61314 56846 62575 57448 61124 56477 62494 59683 61013 58158 60386 59682 86J£i96 Average - Standard Deviation - Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation = Average =- Standard Deviation = Rel. St. Deviation =- Treatment Efficiency = " Calculations have been adjusted for slight variations in the mass of dry soil *Ad j usted 93 1.25 1.34 °/o 81.9 84.6 0.67 0.82 % 85.1 86.7 0.86 1.01 /o 86.7 88.8 5.71 5.50 6.59 6.19 % *Adj usted 96.8 0.67 0.69 % 111.2 0.51 0.46 % 107.6 109.8 0.12 0.11 % 105.2 107.7 6.04 6.4 5.74 5.94 % 17.5 % Table C46 128 Moist Soil Egerimental Data: (Dessicator #2) Final Concentration of Contaminant in Soil: (Experiment # 1) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene 01028 67.5 35978 54752 01026 68.5 35009 52465 01020 68.1 33684 50754 Std. 1 100 50920 52291 01018 68.5 36169 54232 01016 69.9 36159 53098 01010 69.7 34954 51482 01038 71.5 36157 51906 01036 70.8 36640 53128 01030 71.7 35539 50927 Average = Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average = Standard Deviation a Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation = Original Concentration of Contaminant in Soil: (Experiment # 1) Std. 2 101.8 01068 106 01066 106 01060 107 01058 110.1 01056 111.1 01050 111.6 Std. 3 104 01048 101.4 01046 103.2 01040 102.8 Extraction Efficiency = 55372 55864 52954 51314 55659 53908 54488 52291 53885 50276 57391 53065 57983 53365 52094 51458 51810 52446 50640 50408 51042 50988 851M196 Average - Standard Deviation =- Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation - Average - Standard Deviation =- Rel. St. Deviation =- Treatment Efficiency = 106.60 *Adjusted 68 67.1 0.5 0.74 % 69.4 68.6 0.76 1.44 % 71.3 70 2 0.47 0.66 % 69.60 68.6 1.66 1.55 2.38 2.26 % *Adjusted 106.3 105.7 0.58 0.55 % 1 10.9 0.76 0.69 % 102.5 0.94 0.92 % 102.9 4.21 3.68 3.95 3.46 % 35.5 % Table C.4-7 129 Moist Soil Experimental Data Final Concentration of Contaminant in Soil: (Experiment # 2) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene F luorene Std. 1 92.7 61127 65994 02038 65.3 37730 57859 02036 64.7 39434 60954 02030 65.1 36952 56817 02028 62 37100 59913 02026 60.9 36932 60691 02020 60.6 35920 59362 Std. 2 93.4 72808 77984 02018 59.3 33001 55676 02016 59.9 32796 54780 0201 c 60. 1 36609 60964 Average =- Standard Deviation =- Rel. St. Deviation = Average - Standard Deviation = Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation - Average - Standard Deviation = Rel. St. Deviation = Original Concentration of Contaminant in Soil: (Experiment # 2) 02068 98.5 02066 99.5 02060 100.1 Std. 3 91.6 02058 100.2 02056 100.7 0205c 101.3 02048 92.7 02046 92 02040 93.2 Extraction Efficiency = 58876 58132 60287 57855 56313 58885 60435 52205 53078 53376 79.44 % 59807 58441 60269 63193 56238 58514 59710 56366 57753 57311 Average =- Standard Deviation = Rel. St. Deviation =- Average = Standard Deviation = Rel. St. Deviation 8 Average '- Standard Deviation - Rel. St. Deviation = Average - Standard Deviation =1 Rel. St. Deviation 3 Treatment Efficiency = “ Calculations have been adjusted for slight variations in the mass of dry soil *Adj usted 65 0.31 0.48 % 61.2 0.74 1.21 8° 59.7 0.38 °/o '8 62 62.9 2.73 2.27 4.41 3.61 % *Ad j usted 99.4 0.81 0.81 % 100.7 102.8 0.55 0.55 °/o 92.6 0.6 0.65 % 97.6 4.35 4.46 4.03 4.05 % 36.5 % Table C.4-8 130 Moist Soil Experimental Data: (Dessicator #2) Original Concentration of Contaminant in Soil: (Experiment # 3) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene 03028 56.6 31902 55250 03026 57.1 32725 57362 03020 --------------- Std. 1 93.2 56699 60866 03018 70.1 37628 53756 03016 71.1 39387 55401 03010 71.5 40435 56594 03038 61.4 33913 55250 03036 61.1 46581 76300 03030 60.5 42881 70951 Average = Standard Deviation =- Rel. St. Deviation = Average = Standard Deviation =- Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average =- Standard Deviation - Rel. St. Deviation - Final Concentration of Contaminant in Soil: (Experiment # 3) Std. 2 93.5 03068 1 12.8 03066 1 12.2 03060 113.2 03058 89.6 03056 89.6 03050 90.1 Std. 3 93.2 03048 100.5 03046 100.8 03040 101.4 Extraction Efficiency = 55197 65641 61535 59944 51132 49975 48883 58859 58615 57180 55555 83.52 % 59078 58225 54884 52977 57103 55790 54303 63216 58341 56773 54813 Average 8 Standard Deviation - Rel. St. Deviation '3 Average =- Standard Deviation = ReL St. Deviation - Average = Standard Deviation - Rel. St. Deviation = Average = Standard Deviation - Rel. St. Deviation =- Treatment Efficiency = *Adjusted 56.8 0.35 0.62 % 70.9 0.72 73.4 % E 61 0.46 0.75 % 62.90 7.24 1 1.51 7.19 10.98 % *Adjusted 112.7 P c g 'u. 9 /o 89.8 0.29 0.32 % 100.9 0.46 0.46 % 101.10 11.45 11.33 10.94 10.48 % 37.3 % 131 Table C.4-9 Moist Soil Experimental Data Final Concentration of Contaminant in Soil: (Experiment # 4) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene F luorene Std. 1 91.4 60471 66217 *Adjusted 0403: 29.1 16186 55567 Average =- 29.4 04036 29.7 22965 77415 Standard Deviation = 0.31 04030 29.3 15216 51896 Rel. St. Deviation = 1.05 % 04028 27.5 15503 56460 Average - 28.1 04026 28.9 15341 53173 Standard Deviation - 0.74 04020 27.8 19558 70290 Rel. St. Deviation = 2.63 % Std. 2 92.6 58995 63733 04018 28.8 16209 56288 Average = 28.1 04016 28 16074 57518 Standard Deviation - 0.61 04010 27.6 15064 54684 Rel. St. Deviation - 2.17 % Average - 28.5 Standard Deviation = 0.75 0.46 ReL St. Deviation - 2.63 1.57 % Original Concentration of Contaminant in Soil: (Experiment # 4) *Adjusted 04068 69.6 37876 54462 Average = 70.3 04066 69.6 37876 54462 Standard Deviation = 1.21 04060 71.7 38842 54219 ReL St. Deviation - 1.72 % Std. 3 91.6 57855 63193 04058 68.8 37337 54330 Average = 70.5 71.6 04056 69.8 38243 54800 Standard Deviation = 2.08 04050 72.8 39153 53823 ReL St. Deviation = 2.95 % 04048 67.4 35807 53142 Average = 67.9 04046 67.7 35414 52334 Standard Deviation = 0.57 04040 68.5 50724 74060 Rel. St. Deviation - 0.84 % Average - 69.4 Standard Deviation = 1.45 1.79 ReL St. Deviation - 2.08 2.54 % Extraction Efficiency = 84.603 % Treatment Efficiency = 58.2 % ‘ Calculations have been adjusted for slight variations in the mass of dry soil Table C.4—-10 132 Moist Soil Experimental Data: (Dessicator #2) Final Concentration of Contaminant in Soil: (Experiment # 5) CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene 05028 32 16562 51741 05026 31.7 17681 55798 05020 17389 173 89 53423 Std. 1 95.3 70104 73638 05018 28.7 15651 54613 05016 27.4 10304 55891 05010 29.6 21461 72488 05038 27.4 14665 53601 05036 27 14995 55491 05030 27.4 14077 51493 Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Original Concentration of Contaminant in Soil: (Experiment 11 5) Std. 2 93.4 05068 70.8 05066 71.2 0506c 71.3 05058 60.5 05056 60.6 05050 60.4 Std. 3 95.9 05048 73 05046 71 05040 71.6 Extraction Efficiency - Control Experiment Extraction Data 59781 64070 37981 53703 37914 53318 37594 52772 33076 54751 31608 52225 33143 54896 55066 57483 36446 49966 39039 55039 38666 54020 8411396 Final Concentration of Contaminant in Soil: CONC. (mg/L) AREA SAMPLE Pyrene Pyrene Fluorene Std. 1 94.3 58643 62220 C038 133.2 77326 58097 C036 133.9 70157 52414 C030 133.9 70853 52963 C028 109.2 84401 77347 C026 109.3 58047 53149 C020 109.9 61403 55910 Std. 2 97.9 89537 91486 C018 121.4 63066 52008 C016 122.1 84556 69282 C010 122.8 64338 52446 Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Treatment Efficiency - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - Average - Standard Deviation - Rel. St. Deviation - 'Adjusted m 0.46 1.43 % 2... 1.11 1.44 % 27-3 0.23 0.84 % 29.32 2.48 2.52 8.46 8.36 % 'Ad usted 71-1 1.03 1.45 % ..,. 0.1 0.17 % m 1.03 1.43 % ms 6.36 7.26 9.38 6.96 % 56.8% 133.67 0.4 0.30 % 109.5 0.38 0.35 °/o 122.1 0.7 0.57 % 121.8 12.09 9.93 °/o 133 APPENDIX D: Example Calculations D.l: 50W GlassBeads: d = 6m = 0.60m M,= 110g p = 2.65 g/cm3 81 6M, = 681419.) = 415.1cm2 pd (2.65)x(0.6) Ottawa Sand: (1 = 0.6mm = 0.060m d' = 0.425 mm = 0.0425 cm M1 = 20 g p = 2.65 g/cm3 32 = m = _6_ X 1291 = 75457131112 p d (2.65)><(0.06) 52: m = _6_x (29) = 106601112 p d (2.65)x(0.0425) SurfaceAreaRatios: Sz=1541=1.8 Sz=lm§_=2.6 81 415.1 81 415.1 D.2: WM 134 Date: 11/4/93 Sample: Metea Soil Weight of Sample and Holder ............... 9.0584 g Weight of Holder ................................. 9.0347 g Weight of Sample ................................ 0.0237 g Atmospha'ic Pressure (mmHg) ............... 740 Absolute Temperature (K) ..................... 293.6 Table D.2-l: R1111 Temperature Desired Mole % 5 10 20 30 Ratio Setting 0.53 1.11 2.50 4.29 II p. Flow Rate (ml/min) 1.2 2.4 5.2 8.7 II Total Flow Rate (ml/min) 21.3 22.5 25.3 28.8 II Calibration Gas Vol. (ml) 0.5 0.5 0.5 0.5 II Calibration Gas Area 1.56 1.54 1.26 1.02 II Adsorbed Gas Area 0.60 0.58 0.55 0.54 "Attenuation(xlorx10) x1 x1 x1 x1 Recorder Range (mV) 20 20 20 20 Chart Speed (cm/min) l l l 1 _._ s _s_|,'s‘-s ._ s _L________ _ 1 51*? 7!.__”_ i __ ' _ 1 s Pn = = 4169 1111an (21.3) Pn = = 78.93 mmHg (22.5) Pn = = 152.1 mmHg (25.3) Pn = = 223.5 mmHg (28.8) 135 Table D.2-2: Calculated Values y-intercept = 0.03 slope = _LQS_-_LQ = 5 0.19 - 0.18 Vm = __L = 0.198 (0.04 + 5) Total Surface Area: ”ISA = = 36.34 mz/g (0.0237) 136 D.3: CalculatiansaLEnergLCansumuhan UsingtheldealGasLaw; pV = nRT where, R = 0.0821 L atm/mol K T = 293K p = latm 2.}: V RT 31 = latm V Lam: (293 K)(0.0821 W 2 = 4.1571: 10'2 M V L Therefore, the air mass flux through the system; 3 lb - = fi PE 11'. 42 = _ Atr (130 )(60 hr)(24 day)(7.48x 10 fl?) 14,000 day For 1% ozone in air, lb lb Oz ne = 0.01 140,000 —) = 140 — o ( )( 1 day Therefore, a 150 lb/day ozone generator is sufficient. Calculation of Cost per tonne of Metea soil: mol 1x103 kgsoil( mol )(flg-X 1 lb )(80.06)( 1800 kth day _ $6.20 kg soil tonnesoil 100071171101 mol 454 g kWh day 140 1603 tonne soil (76 "‘11111111111111