

This is to certify that the

dissertation entitled

Characterization of a voltage-gated potassium channel gene from Schistosoma mansoni.

presented by

Eunjoon Kim

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Pharmacology and Toxicology

1994

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE	DATE DUE
		•

MSU Is An Affirmative Action/Equal Opportunity Institution c/c/rc/datedus.pm3-p.1

CHARACTERIZATION OF A VOLTAGE-GATED POTASSIUM CHANNEL GENE FROM SCHISTOSOMA MANSONI

by

Eunjoon Kim

A DISSERTATION

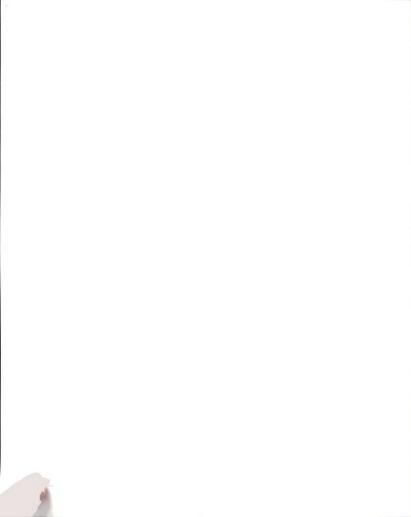
Submitted to Michigan State University in partial fulfillment of requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Pharmacology and Toxicology

1994

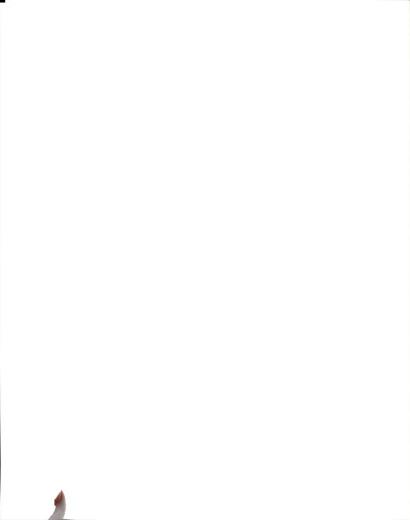
ABSTRACT

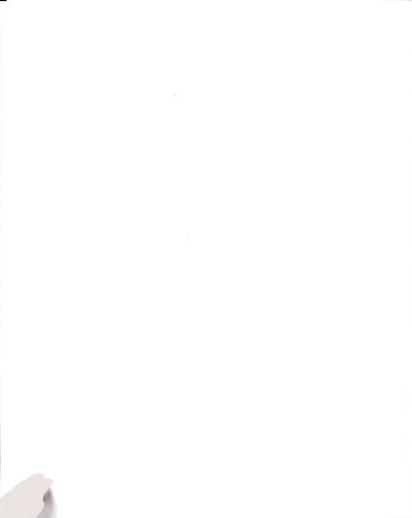

CHARACTERIZATION OF A VOLTAGE-GATED POTASSIUM CHANNEL GENE FROM SCHISTOSOMA MANSONI

by

Eunjoon Kim

Voltage-gated K^{\dagger} channels modulate the excitability of many cells including neurons and muscle cells. In contrast to vertebrates and higher invertebrates, very little is known about the structure and diversity of voltage-gated K^{\dagger} channel genes in lower invertebrates. More information from these lower invertebrates would provide useful information on the evolution of K^{\dagger} channel genes and the nervous system.

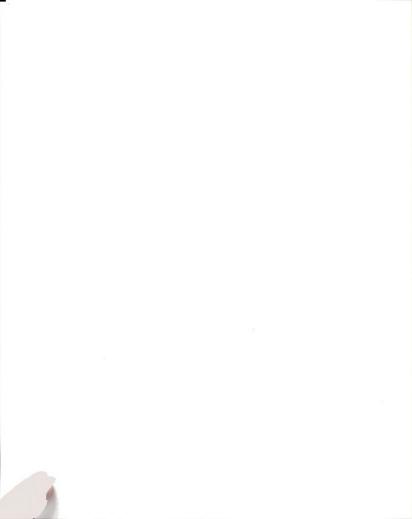

Using Schistosoma mansoni, a parasitic flatworm that shows a centrally localized nervous system and many organs for the first time in the evolutionary pathway, we have isolated a cDNA (SKv1.1) encoding a Shaker-related voltage-gated K* channel. The deduced amino acid sequence (512 aa, 56.5 kDa) contains regions that are commonly found in other voltage-gated K* channels. SKv1.1 is grouped in the Shaker family, but forms a unique branch within this family, on the basis of dendrogram analysis. SKv1.1 shows significant sequence identity (64-74%) with most other Shaker channels in the core region (S1-S6), but not at the N- and C-terminal regions. Northern blot analysis detected a single primary transcript of 2.8 kb, indicating alternatively spliced transcripts of SKv1.1 gene may not exist. Southern blot analysis indicated that SKv1.1 is present as a single copy


in the genomic DNA of S. mansoni.

Expression of SKv1.1 in Xenopus oocytes produces a rapidly activating and inactivating outward K⁺ current which is highly sensitive to 4-aminopyridine, but is insensitive to tetraethylammonium, mast cell degranulating peptide, dendrotoxin and charybdotoxin. Immunohistochemistry using SKv1.1-specific antibody (ASK1) demonstrated the expression of SKv1.1 gene in isolated muscle fibers. These results, in combination with the results of electrophysiological characterization, suggest that A-type currents that are measured in isolated muscle fibers are directed by the SKv1.1 gene. Immunohistochemistry on paraffin sections has also demonstrated that SKv1.1 proteins are expressed in the nervous system in a much higher density compared with the expression in muscle fibers and tubercles.

The presence of a Shaker homologue in Schistosoma suggests that the gene duplication event that generated four Sh subfamilies happened at least before the emergence of Schistosoma. The existence of a Shaker homolog in Schistosoma implies that Sh subfamilies may exist in other lower invertebrates as well as platyhelminths.

To Kyeonghee



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. James L. Bennett and coadvisor, Dr. Ralph A. Pax for their generous support and guidance through my graduate study. Their balanced and unique way of guiding me has been invaluable education to me.

I would also like to thank my graduate committee members, Dr. Kenneth E. Moore and Dr. James J. Galligan, for generously providing a lot of their times and ideas.

Special thanks to Dr. Tim A. Day who introduced me to the world of electrophysiology, and to Helen Cirrito and Dr. George Chen who helped me all the time with their constant smiles and kindness.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST FIGURES	i
LIST OF ABBREVIATIONS	x
INTRODUCTION]] 2
II. K channels	8 8 10 12
OBJECTIVES	21
I. Molecular cloning and characterization A. Screening of a DNA fragment of a K channel gene by PCR B. Screening of S. mansoni cDNA library C. Subcloning and sequence determination D. Northern and Southern blot analyses II. Electrophysiology A. In vitro transcription B. Occyte injection and recording III. Immunohistochemistry A. Antibody production B. In vitro translation and immunoprecipitation C. Isolation of muscle fibers D. Immunohistochemistry	24 24 24 25 25 26 27 28 28 29 30
I. Molecular cloning and characterization A. Molecular cloning of a Shaker-related K channel cDNA B. Sequence analysis of SKv1.1 C. Northern and Southern blot analyses II. Electrophysiology	32 32 32 38 57 60 64 69

D. Recovery of SKvl.1 current from	
inactivation	72
E. Pharmacology of SKv1.1 current	75
III. Immunohistochemistry	78
A. Immunoprecipitation	78
B. Immunohistochemistry on isolated muscle	
fibers	82
C. Immunohistochemistry on paraffin	
sections	85
DICCUCCION	00
DISCUSSION	89
I. Molecular cloning	89
A. What does the existence of a Shaker	
channel gene in Schistosoma mean in an	
evolutionary sense?	89
B. What does the analysis of SKv1.1 gene	
say about the diversity of K channel	
currents in Schistosoma?	91
C. Does the SKv1.1 have a potential to be	
a novel target for drug development for	
schistosomiasis?	94
II. Electrophysiology	96
A. Why does SKv1.1 current show a fast	
inactivation?	96
B. Why is the voltage dependences of	
activation of SKv1.1 current and	
native muscle current shifted to	
the right edge of the normal range	
along the voltage axis when compared	
with other Shaker channels?	99
C. Why is SKv1.1 current resistant to	
external TEA and CTX?	103
D. Is the expression of A-type current	
measured in isolated muscle fibers	
directed by SKv1.1 gene?	107
III. Immunohistochemistry	110
A. What is the function of SKv1.1 protein in	
the nervous system and the neuromuscular	
system?	110
SUMMARY	113
BIBLIOGRAPHY	115

LIST OF TABLES

Table 1.	Amino acid sequence identity between SKv1.1 and other Shaker K channels	42
Table 2.	Amino acid sequence identity between SKv1.1 and other Sh K^{\uparrow} channels	45
Table 3.	Comparison of amino acid sequences of the S4 segment between SKv1.1 and other voltage-gated ion channels	50
Table 4.	Leucine zipper motif in SKv1.1 and other Sh K channels	51
Table 5.	Correlation between external TEA sensitivity and the presence of a particular amino acid in the H5 region of voltage-gated K channels	54
Table 6.	Functional properties of the current mediated by SKv1.1 compared to those of a native current in muscle fibers of S. mansoni	68

LIST OF FIGURES

Figure	1.	Diagram showing the nervous system of S. mansoni	4
Figure	2.	Restriction map of SKv1.1 gene	35
Figure	3.	Nucleotide sequence and predicted amino acid sequence of SKv1.1	37
Figure	4.	Amino acid sequence comparison between SKv1.1 and Shaker channel from Aplysia	44
Figure	5.	Dendrogram analysis of SKv1.1 gene	47
Figure	6.	Hydropathy profile and a putative membrane topology of SKv1.1	49
Figure	7.	Amino acid sequence around the pore-forming region (H5) of SKv1.1 for binding CTX and external TEA	53
Figure	8.	Amino acid sequence comparison between SKv1.1 and other <i>Sh</i> subfamilies in the regions corresponding to the inactivation ball and the receptor structure	56
Figure	9.	Northern and Southern hybridization analyses of SKv1.1	59
Figure	10.	Expression of SKv1.1 protein in Xenopus oocytes	63
Figure	11.	. Voltage dependence of activation and steady-state inactivation of SKv1.1 current	67
Figure	12.	Activation and inactivation kinetics of SKv1.1 current	71
Figure	13.	Recovery of SKv1.1 current from inactivation	74
Figure	14.	Pharmacological properties of SKv1.1 current	77
Figure	15.	In vitro translation and immunoprecipitation of SKv1.1 protein	81
Figure	16.	Immunolocalization of SKvl.1 protein in isolated muscle fibers of S. mansoni	84

Figure	17.	Immunolo	ocalizatio	on of	SKv1.1	protein	in	
	1	paraffin	sections	of S .	manson	ni		87

LIST OF ABBREVIATIONS

4-AP 4-aminopyridine

BSA Bovine serum albumin

CTX Charybdotoxin

DMEM Dulbecco's modified eagle's medium

DTX Dendrotoxin

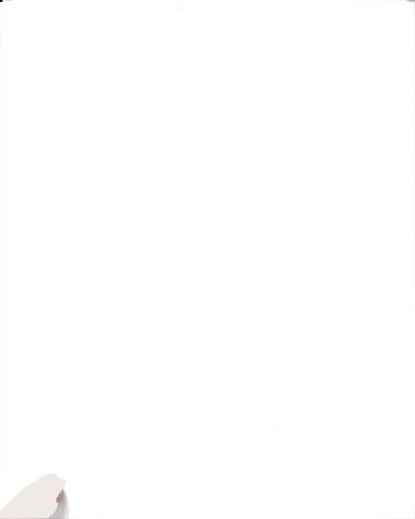
EDTA Ethylenedinitrilo tetraacetic acid

EGTA Ethyleneglycol tetraacetic acid

KLH Keyhole limpet hemocyanin

MCDP Mast cell degranulating peptide

PAGE Polyacrylamide gel electrophoresis


PBS Phosphate buffered saline

PBT Phosphate buffered saline with 0.3% Triton X-100

SDS Sodium dodesyl sulfate

TEA Tetraethylammonium

UTR Untranslated region

INTRODUCTION

I. General background information on schistosome

A. Introduction

Schistosoma, a trematode flatworm (fluke), is the causative agent for schistosomiasis which is second only to malaria the world's most important tropical disease.

Currently two hundred million people are infected resulting in 200,000 deaths every year, and the lives of 500-600 million people are currently at risk.

There are three important species of Schistosoma for human infection: S. mansoni, S. haematobium and S. japonicum differing in the regions of occurrence. S. mansoni occurs in Africa, Latin America and the Eastern Mediterranean while S. haematobium and S. japonicum occur in Africa and South-East Asia, respectively. The adult worms, female and male, of S. mansoni live primarily in the branches of the superior mesenteric vein and lay several hundred eggs every day. These eggs are trapped in the liver leading to the formation of granulomas in the liver and finally to liver failure which is the major cause of death in infected people. The eggs laid in the capillary vessels along the intestinal wall, by penetrating the wall of intestine, are excreted in the feces. Upon contact with water, eggs hatch into miracidia and infect snails which are the intermediate host. In the infected snail, the miracidium grows into a cercaria by asexual development, which takes about a month. Released

cercaria again find a human host by chemotaxis and active swimming, penetrate the skin and grow into adult worms.

In order to control the disease, research activities have been focused on the development of vaccines and chemotherapeutic drugs. Since adult worms easily escape the host immune system, current efforts on vaccine development are focused on minimizing the death caused by liver failure rather than completely blocking infections. Therefore, chemotherapy is the most important method to control schistosomiasis. To find new antischistosomal drugs, it is fundamental to identify novel targets by studying the basic biology of Schistosoma including the nervous system, neuromuscular system, digestive system, osmoregulation, reproduction, development and tegumental metabolism.

B. Nervous system

The nervous system of *S. mansoni* follows the general pattern of trematodes as described by Fripp (1967). Male and female worms have, anatomically, the same configuration (Figure 1). Two pairs of anterior ganglia, ventral and dorsal, interconnected by the central commissure are located in the anterior region of the worm. From the anterior ganglia, two pairs of longitudinal nerve cords, ventral and dorsal, extend anteriorly and posteriorly. Anterior nerve cords end near the oral sucker. Posterior nerve cords run down along the entire body and form a 'ladder' type

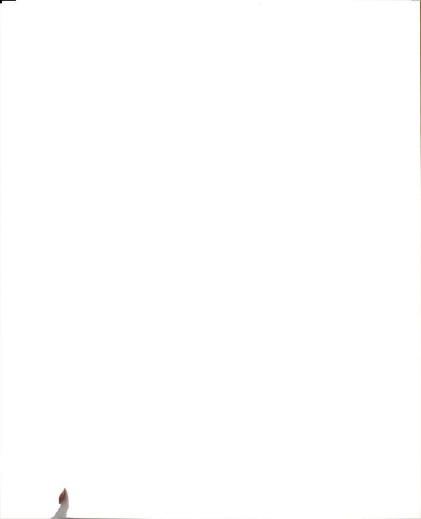
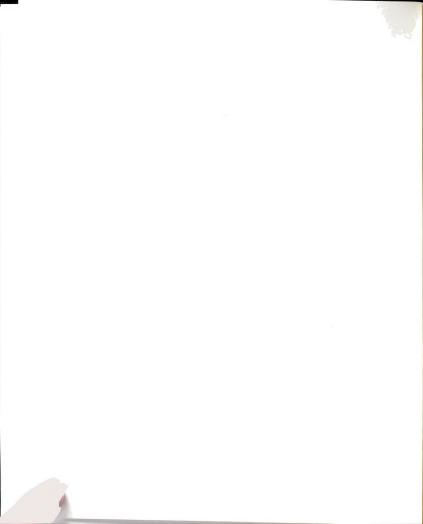


Figure 1. Diagram showing the central and peripheral nervous system of S. mansoni. (A) Longitudinal section of male worm. (B) Transverse section in the middle of the body of male worm. AG (anterior ganglia), CC (central commissure), OS (oral sucker), VS (ventral sucker), NC (nerve cord), T (tubercle), G (gut), DNC (dorsal nerve cord), VNC (ventral nerve cord), DNN (dorsal nerve net) and VNN (ventral nerve net).

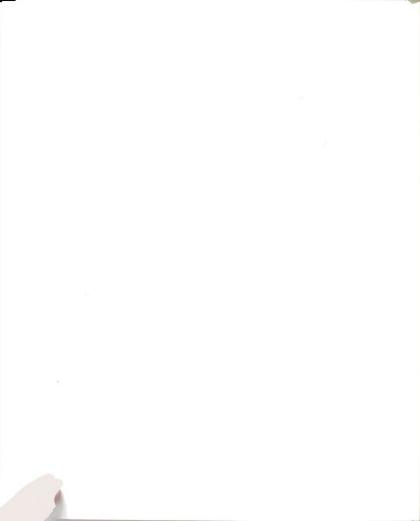
Nerve plexuses of nerve cell bodies and nerve fibers emanating from the nerve cords comprise the peripheral nervous system and innervate many structures such as the oral and ventral suckers, gastrodermis and reproductive organs.


The ultrastructure of the nervous system including sensory structures has been well described by Silk and Spence (1969a). In the anterior ganglia or central ganglia, cell bodies with large nuclei and many organelles are found. Axons of these cell bodies are not myelinated. The closely packed axons in the central commissure vary considerably in shape, size and content. Adjacent axolemmas are separated by a uniform layer of cement substance which is approximately 12.5 nm wide. In the electron-lucent axoplasm, many inclusions are found including at least four types of synaptic vesicles and related structures such as granules resembling α -glycogen, mitochondria, microtubules Types of synaptic vesicles found in nerve and filaments. terminals include clear synaptic vesicles (type 1, 20-50 nm in diameter), dense osmiophilic granules (type 3, 32-90 nm), neurosecretory larger dense granules (type 4, 100-160 nm) and clear axoplasmic vesicles (type 5, 50-150 nm). Axons in the nerve cords contain fewer inclusions than axons in the anterior ganglia. Axo-axonal synapses are observed in the central commissure and in other regions. Nerve processes

packed with a variety of vesicles are also observed in the neuromuscular junctions.

Sensory nerve endings have been found around the tubercle in the tegument (Silk and Spence, 1969a). The structure of the nerve ending consists of a bulbous sac of nerve tissue and a single cilium extending into the apical side. The innervation of sensory receptors by peptidergic nerve fibers has been demonstrated by immunohistochemistry (Skuce et al., 1990; Basch and Gupta, 1988; Gustaffson, 1987).

The nervous system of S. mansoni has many neurotransmitters and neuropeptides. The presence of acetylcholine has been reported by staining for acetylcholine esterase (Bueding et al., 1967; Fripp, 1967). Biogenic amines such as 5-hydroxy tryptamine (5-HT), dopamine and norepinephrine have been shown to exist by biochemical, fluorescence immunohistochemistry and autoradiography (Bennett et al., 1969; Bennett & Bueding, 1971; Chou et al., 1972; Machado et al., 1972; Gianutsos & Bennett, 1977; Dei-Cas et al., 1979; Dei-Cas et al., 1981; Gustafsson, 1987). Also, a variety of neuropeptides in S. mansoni include leu-enkephalin, FMRFamide, gastrin-17, luteinizing hormone releasing hormone, substance P, cholecystokinin, growth hormone releasing factor, pancreatic polypeptide, peptide YY and neuropeptide Y (Skuce et al., 1990; Bash & Gupta, 1988; Gustafsson, 1987). Acetylcholine,


dopamine and norepinephrine are generally known as inhibitory neurotransmitters in *Schistosoma* while 5-HT is believed to be an excitatory neurotransmitter (Baker et al., 1966; Hillman, 1983; Mellin et al., 1983; Pax et al., 1984; Semeyen et al., 1982; Tomosky et al., 1974).

C. Neuromuscular system

Three types of muscle fibers, circular, longitudinal and radial, have been described by Silk and Spence (1969b). Circular muscle fibers are located beneath the basement membrane of the tegument. Longitudinal muscle fibers are most abundant and located under the circular muscle fibers. Radial muscle fibers are disposed radially around the circular and longitudinal muscle fibers.

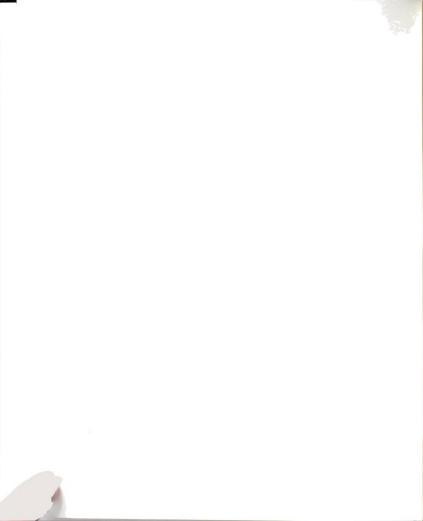
The arrangement of myofilaments is that of typical invertebrate smooth muscles in which thick filaments are surrounded by 8-14 thin filaments (Lowy & Hanson, 1962; Lumsden & Bryam, 1967). There is no evidence of striation in any region. There are no transverse invaginations of sarcolemma, and the sarcoplasmic reticulum is poorly developed. At the neuromuscular junction, axolemma and sarcolemma were closely apposed (10 nm). In the presynaptic nerve terminal, several synaptic vesicles are observed.

Muscle cells of Schistosoma have two peculiar features (Pax & Bennett, 1992; Silk & Spence, 1969b). First, the cell body of the muscle cell (myocyton), containing the

nucleus, is located more deeply and separately from the myofibril bundles, being connected together by one or more narrow cytoplasmic bridges. Electrical coupling between adjacent myocytons appears to be more prominent than that between myofibrils. Secondly, non-contractile cytoplasmic arms from the myofibril reach out to nerve fibers to make neuromuscular junction although this type of structure is best described in cestodes (Webb, 1987).

Motor activity of the whole worm is enhanced by exogenously applied 5-HT (Baker et al., 1966, Fetterer et al., 1977), phorbol ester (Blair et al., 1994) and inhibited by dopamine (Tomosky et al., 1974). Contractions of isolated muscle fibers have also been shown to be modulated by the invertebrate peptide, FMRFamide (Day et al., 1994b), 5-HT (Day et al., 1994a) and glutamate (C. Miller, unpublished observation). However, little is known about the mechanisms underlying in vivo spontaneous contractions or contractions induced by neurotransmitters in isolated muscle fibers (Blair et al., 1994; Day et al., 1994a; Day et al., 1994b).

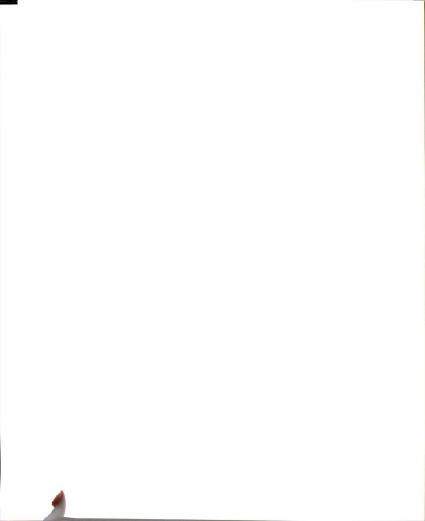
II. K channels


A. Types and functions of K channels

 K^{\dagger} channels are roughly divided into four groups: voltage-gated K^{\dagger} channels, calcium-activated K^{\dagger} channels, receptor-coupled K^{\dagger} channels and other K^{\dagger} channels (Watson &

Abbott, 1992). Voltage-activated K⁺ channels include delayed rectifiers, A-type channels, slow delayed rectifiers, inward rectifiers, sarcoplasmic reticulum channels and the muscarinic-inactivated K⁺ channel (M channel). Calcium activated K⁺ channels are further divided into three groups based on their conductance, either high, intermediate or small. Receptor-coupled K⁺ channels include the atrial muscarinic-activated K⁺ channel and the 5-HT inactivated channel (S channel). Other K⁺ channels include an ATP-sensitive channel, a Na⁺-activated channel, a cell-volume-sensitive channel, and a K⁺ channel opener-sensitive channel.

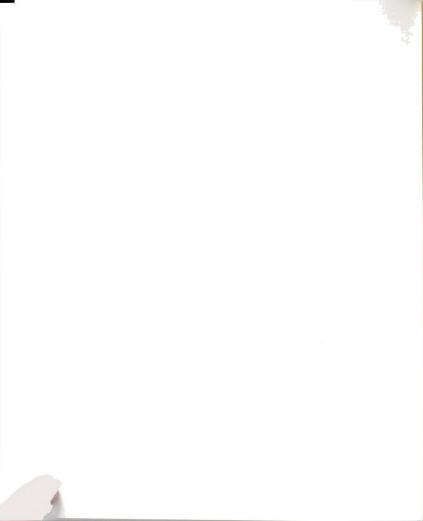
More accurate classification of K⁺ channels is becoming possible due to isolation of various K⁺ channel genes. One example is the finding of four types of genes, Shaker-related subfamilies, that are responsible for currents formerly classified only into two groups, the delayed rectifiers and A-type currents. Except for the relatively extensively studied Shaker-related voltage-gated K⁺ channel genes, sequences of other genes are only beginning to emerge. Original isolation of genes in each category include Shaker (Kamb et al., 1987; Papazian et al., 1987; Schwarz et al., 1988; Pongs et al., 1988), slow delayed rectifier (Takumi et al., 1988), Ca²⁺-activated K⁺ channel (Atkinson et al., 1991), inward rectifier (Kubo et al., 1993; Ho et al., 1993), atrial muscarinic-activated K⁺



channel (Kubo et al., 1993; Dascal et al., 1993) and ATPsensitive K^{\dagger} channel (Ashford et al., 1994).

K channels are found in most excitable cells including neurons and muscles, as well as non-excitable cells such as lymphocytes (Douglass et al., 1990). K channels have very diverse functions, reflecting their diversity of structure (Hille, 1992; Rudy, 1988). In general, K channels stabilize the membrane potential, thereby, regulating the excitability of the cell. In excitable cells, K channels set the resting membrane potential, decrease the duration of the action potential, regulate the frequency of action potential, regulate the efficiency of excitatory input and are involved in learning and memory (Nelson and Alkon, 1992). In secretory cells, K channels regulate the secretion of hormones by modulating the excitability of the cell (Philipson et al., 1991). In glial cells, K channels act as ion transporters to remove extracellular K ions away from neighboring neurons.

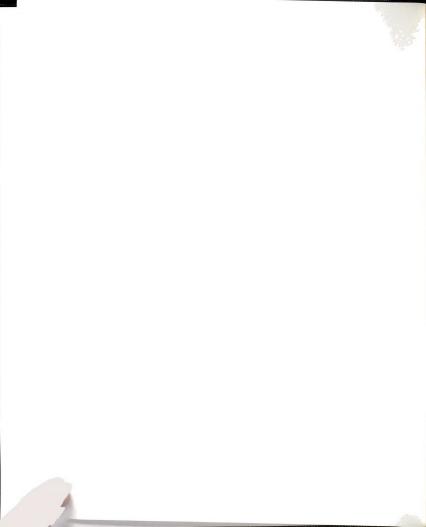
In particular, the rapidly inactivating A-type K channel is known to be involved in controlling the frequency (Segal et al., 1984) and duration (Sah and McLachlan, 1992) of the action potential, modulation of synaptic efficacy (Kaang et al., 1992) and postsynaptic excitability (Cassell et al., 1986).


B. K channels in S. mansoni

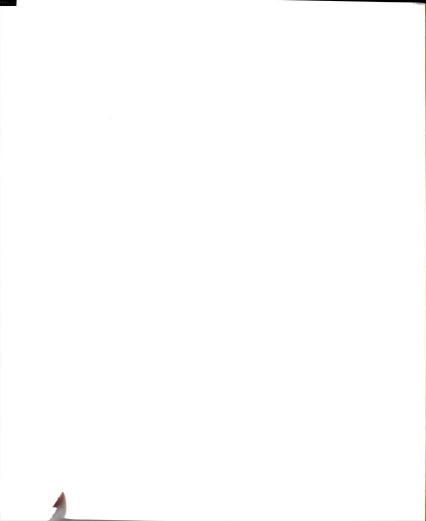
Lower invertebrates show a remarkable diversity of ion channels that is comparable to that of vertebrates and higher invertebrates (Hille, 1992). A variety of voltage-gated K⁺ currents have been detected in lower invertebrates including nematodes (Martin et al., 1992), platyhelminths (Day et al., 1993), coelenterates (Hagiwara et al., 1981) and protozoa (Eckert & Brehm, 1979; Deitmer, 1989).

Several types of ion channels have been observed in Schistosoma. A calcium-activated K⁺ channel with a large conductance (195 ps) has been measured in isolated muscle fibers (Blair et al., 1991). A non-specific cation channel with high conductance has been detected in the outer tegument of the worm (Day et al., 1992). Also, two types of voltage-gated K⁺ channels have been observed in isolated muscle fibers (Day et al., 1993). One is a delayed rectifier that shows very slow inactivation, while the other type is an A-type K⁺ channel that shows very fast inactivation.

Electrophysiological studies of voltage-gated K⁺ currents from lower invertebrates, including those from Schistosoma, have shown that these currents are essentially similar to those in higher phyla such as deuterostomes (Chordata and Echinodermata) and protostomes (Annelid, Mollusc, and Arthropod) (Hille, 1992). The existence of voltage-gated K⁺ currents in lower invertebrates much like those of higher organisms could be due to the stable



establishment of the voltage-gated Sh subfamilies in these organisms. However, molecular evidence for the existence of any member of Sh subfamilies in these more primitive phyla is limited. A Shaw-related K⁺ channel gene has been mentioned to exist in Caenorhabditis elegans (Wei et al., 1991), but the sequence has not been published. This lack of data is in contrast to the large number of K⁺ channel genes that have been cloned and analyzed from vertebrates and higher invertebrates, such as Drosophila, Aplysia (Pfaffinger et al., 1991) and leech (Johansen et al., 1990).


C. Molecular biology of voltage-gated K channel genes

Molecular analysis of voltage-gated K⁺ channel genes started from the finding of a *Drosophila Sh* (*Shaker*) mutant that showed a violent shaking behavior when under ether anesthesia (Kaplan & Trout III, 1969). In the *Sh* mutant, nerve fibers showed an increased duration of action potentials (Tanouye et al., 1986), and the neuromuscular junction exhibited prolonged neurotransmitter release (Jan et al., 1977; Tanouye & Ferrus, 1985). Single channel and voltage-clamp analysis in larval muscle fibers of *Drosophila* indicated that the *Shaker* mutant has no, reduced or altered transient A-type K⁺ channel current (Solc et al., 1987; Wu & Haugland, 1989).

By extensive genetic analysis, several groups have independently isolated the Shaker channel gene (Kamb et al.,

1987; Papazian et al., 1987; Schwarz et al., 1988; Pongs et al., 1988). The structure of the Shaker gene is roughly divided into three regions: the intracellular N- and Cterminal domains and the core region that contains six membrane spanning domains (S1-S6) and one pore forming domain (H5) (Figure 6) (Jan & Jan, 1994; Jan & Jan, 1992; Pongs, 1992). The S4 domain contains several positively charged and hydrophobic amino acid residues that are thought to be involved in voltage sensing and gating (Bezanilla et al., 1991; Liman et al., 1991; Logothetis et al., 1992; MacCormack et al., 1991; Papazian et al., 1991; Stühmer et al., 1991; Lopez et al., 1991). The H5 domain, tucked into the membrane but not completely spanning the membrane, is involved in the formation of the pore of the channel, determining the selectivity, conductance and pharmacology (Hartmann et al., 1991; Yellen et al., 1991; Yool & Schwarz, The N-terminal of the Shaker gene has been proposed to form a ball structure for the rapid inactivation of the channel (Hoshi et al., 1990; Zagotta et al., 1990; Baldwin et al., 1991). Also, a receptor region for the ball structure has been proposed to be located in the cytoplasmic mouth of the pore around the S4-S5 intracellular loop (Isacoff et al., 1991). Post-translational modification of the extracellular loops of K channels by the N-linked glycosylation has been demonstrated (Shen et al., 1993; Rosenberg & East, 1992). Also, cytoplasmic loops have many

sites for phosphorylation by protein kinases such as protein kinase A, protein kinase C and tyrosine kinase.

Using the Drosophila Shaker channel gene as a probe, other Shaker-related subfamilies (Shal, Shab and Shaw) have also been isolated from Drosophila (Butler et al., 1989, 1990; Wei et al., 1990; Covarrubias et al., 1991). These genes share about 40% amino acid sequence identity in the highly conserved core region and display distinct electrophysiological and pharmacological characteristics (Salkoff et al., 1992). However, they share little sequence identity at the N- and C-terminal regions, implying functional importance of the core region in the K⁺ channel function.

A functional K⁺ channel is made by the assembly of four identical or different subunits. The tetrameric nature of the K⁺ channel has been supported by sequence comparison to Na⁺ or Ca²⁺ channels, analysis of heteromultimer made of subunits with different pharmacology (MacKinnon, 1991; Liman et al., 1992) and analysis of a channel made of tandomly linked subunits (Liman et al., 1992). Formation of heteromultimeric channels have been demonstrated by observing the hybrid behavior of channels when two electrophysiologically or pharmacologically distinct subunits are expressed together in Xenopus oocytes (Christie et al., 1990; Isacoff et al., 1990, Ruppersburg et al.,

heteromultimers has been demonstrated recently by using antibodies that are specific to certain subunits (Wang et al., 1993; Sheng et al., 1993). However, the subunits from different subfamilies do not form heteromultimers (Covarrubias et al., 1991).

After the discovery of the Sh subfamilies in Drosophila, numerous mammalian homologs have been isolated. Analysis of mammalian homologs revealed the presence of more than one member in a given subfamily, indicating the expansion of each subfamily by gene duplication during mammalian evolution. The plethora of mammalian K⁺ channel genes has led to a suggestion for a standardized system of nomenclature (Chandy et al., 1991; Gutman & Chandy, 1993). This nomenclature assigns names in the form of 'Kv3.1', in which 'K' means a K⁺ channel, 'v' means voltage-gated and '3.1' means the first member of third group (Shaw-related).

Since K⁺ channels are very diverse (Rudy, 1988), many mechanisms for the generation of diverse K⁺ channels have been suggested. More than ten different K⁺ channels can be generated by alternative splicing in the *Drosophila Shaker* channel (Iverson and Rudy, 1990; Jan and Jan, 1990; Kamb et al., 1988; Schwarz et al., 1988; Stocker et al., 1990; Timpe et al., 1988; Timpe et al., 1988). Other mechanisms for the generation of diverse channels are the presence of subfamilies (Wei et al., 1990), gene duplication within a subfamily in mammalian K⁺ channels (Stühmer et al., 1989),

the formation of heteromultimers (Isacoff et al., 1990;
MacKinnon et al., 1991; McCormack et al., 1990; Ruppersberg
et al., 1990), the density of channels in the membrane
(Guillemare et al., 1992; Honoré et al., 1992; Moran et al.,
1992) and the presence of a K⁺ channel ß subunit (Scott et
al., 1994; Rettig et al., 1994).

The activity of voltage-gated K⁺ channels are regulated by a variety of protein kinases. The fast inactivation of the Shaker channel is accelerated by protein kinase A and slowed by phosphatase (Drain et al., 1994). Phorbol ester, an activator of protein kinase C, has been reported to suppress several K⁺ currents (Attali et al., 1992; Payet & Dupuis, 1992; Aiyar et al., 1993). The phosphorylation site for protein kinase C has been found in almost all voltage-gated K⁺ channels. Recently, a tyrosine kinase-dependent suppression of a delayed rectifier K⁺ channel by the G protein-coupled m1 muscarinic acetylcholine receptor has been reported, indicating the presence of a novel mechanism by which neurotransmitters can modulate membrane excitability (Huang et al., 1993).

Since there are multiple members of mammalian K^{\dagger} channels in each subfamily, temporal and tissue-specific regulation of expression of these channels has become an important topic in mammalian K^{\dagger} channel research (Drewe et al., 1992). Modulators that have been reported to regulate the expression of K^{\dagger} channels include the H-ras oncogene

(Hemmick et al., 1992; Perney et al., 1992), depolarizing pulses (Perney & Kaczmarek, 1993), basic fibroblast growth factor (Perney & Kaczmarek, 1993), dexamethasone (Levitan et al., 1991; Takimoto et al., 1993), cAMP (Mori et al., 1993), pentylenetetrazole (Tsaur et al., 1992), nerve growth factor (Rudy et al., 1992), heat shock or free radicals (Kuo et al., 1992).

D. Significance of molecular analysis of a K channel in S. mansoni

Molecular cloning of an ion channel allows sequence comparison among channels from *Schistosoma* and the host, which helps to assess the potential of the gene as a novel target for drug development for schistosomiasis. It also makes it possible to attempt drug screening by stably expressing the channel in a heterologous system such as an animal cell line.

Expression of the gene in a heterologous system provides a homogeneous population of the channel, which is difficult to obtain in conventional cell preparations due to contaminated currents. It also permits the study of K[†] channels that are not accessible by conventional methods due to the small size of cells and the difficulty of isolating intact cells, which is true for the neurons of *Schistosoma*.

Modulation of the channel can be studied. Putative modulation sites by protein kinases can be identified from

the amino acid sequence of the clone and expression and modulation analysis of the clone in a heterologous system can confirm the modulation. Furthermore, modification of the motifs in K^{\dagger} channel recognized by protein kinases by site-directed mutagenesis can provide convincing evidence.

Molecular analysis of the K⁺ channel provides useful information for the correct classification of K⁺ channels. Conventionally, voltage-gated outward K⁺ currents have been classified into two groups, the rapidly inactivating (A-type) current and the non-inactivating (delayed rectifier) current. However, the molecular nature of the K⁺ channel genes that underlie diverse potassium currents were not understood until the amino acid sequences of the *Shaker* and related genes became available.

Mechanisms for the generation of diverse K⁺ channels in vivo can be studied by molecular analysis. The presence of more than eight different K⁺ channels in cardiac cells (Carmeliet, 1989) is a simple example of the diversity of the K⁺ channels. Little is known about the diversity of K⁺ channels and the mechanisms underlying the diversity in Schistosoma and other lower invertebrates. However, once a K⁺ channel gene becomes available, molecular analyses such as Southern and Northern hybridization and the cloning of related genes, will make it much easier to address questions on diversity.

Amino acid comparison among schistosome K channels and

other K⁺ channels also provides useful information on the evolution of ion channels. Most of the Sh K⁺ channel genes have been isolated from higher organisms such as frog, mouse, rat, human and plant (Arabidopsis). In invertebrates, Sh-related K⁺ channels have been cloned only from higher invertebrates such as Drosophila and Aplysia (Pfaffinger et al., 1991; Quattrocki et al., 1994). Therefore, there is no molecular evidence to answer questions, for instance, about when the gene duplication event that generated the four Sh subfamilies happened.

Immunological analysis of the K⁺ channel has been used to study the *in vivo* distribution of the channels (Hwang *et al.*, 1993; Schwarz *et al.*, 1990). An antibody specific only to a certain subtype or to one of the alternatively spliced products can be raised by carefully designing a synthetic peptide based on the amino acid sequence of K⁺ channels. Recently, immunohistochemical evidence for the segregation of two different K⁺ channels at the subcellular level has been reported (Sheng *et al.*, 1992). Also, the formation of heteromultimers *in vivo* has recently been reported by using subunit specific antibodies (Sheng *et al.*, 1993; Wang *et al.*, 1993).

Expression of a cloned K⁺ channel of *Schistosoma* in a heterologous system, frog oocytes or mammalian cell lines, would be a good model system for attempting the expression cloning of ion channels or receptor genes of *Schistosoma*.

The expression cloning technique has recently become a useful tool to isolate genes with very low homologies to the analogous genes of other species. Schistosoma, as one of the most primitive animals, is expected to have many genes with low homologies to the others, which makes it difficult to clone genes based on the PCR based cloning. fundamental requirement for successful expression cloning is that the genes or mRNAs introduced into the heterologous system should be functionally expressed. To date, there have been few attempts to functionally express schistosomal mRNAs in heterologous systems such as Xenopus oocytes (Skelly et al., 1993), monkey kidney cell (Hong et al., 1993) and in an in vitro translation system (Crews and Yoshino, 1991; Eschete and Bennett et al., 1990; Felleisen and Klinkert, 1990). Therefore, the expression of the K channel in a heterologous system will provide useful information for future attempts to express schistosomal genes or mRNAs in heterologous system for expression cloning.

OBJECTIVES

Since voltage-gated K⁺ channels have been observed in isolated muscle fibers of *S. mansoni*, the genes for the K⁺ channels are expected to exist in the schistosome. The existence of these genes permit several questions: (1) How primitive are they? (2) How diverse are they? (3) How different are they compared to those of human host? (4) What are their functions?

There are three major goals of the present study: (1) understanding of the evolution of voltage-gated K⁺ channel genes (2) assessment of a voltage-gated K⁺ channel protein as a target protein for drug development for schistosomiasis (3) understanding of the functions of voltage-gated K⁺ channel proteins in *Schistosoma*.

Firstly, determination of the structure of voltage-gated K⁺ channels of *S. mansoni* will provide useful information about the evolution of voltage-gated K⁺ channels and should help to answer the following questions. When did the gene duplication event that generated the four *Sh* subfamilies occur? How diverse are K⁺ channel genes in lower invertebrates? Are the mechanisms that generate diverse K⁺ channels in higher invertebrates or vertebrates the same as those in lower invertebrates? Since no structural information is available on any type of ion channel in lower invertebrates, results of the present study will provide the first molecular evidence on these

questions.

Secondly, the cloning of a K⁺ channel gene is important for drug development for schistosomiasis. Historically, the nervous and neuromuscular system of helminths have been important targets for drug development (Geary et al., 1992). K⁺ channels are one of the most important components in the nervous and neuromuscular system. Cloning of a K⁺ channel gene initially proves the presence of the channel. It also allows a direct amino acid sequence comparison between those from Schistosoma and host in addition to providing practical tools to try massive drug screening by stably expressing the gene in a heterologous system.

Thirdly, results of the present study will provide useful information on the functions of voltage-gated K⁺ channel proteins in *S. mansoni*. Voltage-gated K⁺ channels modulate the excitability of many cells, being tightly regulated by a variety of neurotransmitters and neuropeptides. Therefore, in *Schistosoma*, K⁺ channels are expected to be involved in many physiological processes such as the sensory and motor system, digestion, reproduction and development. The electrophysiology and immunolocalization of the channel will help to understand the diverse functions of K⁺ channels in *Schistosoma*.

Specifically, the first goal will be an isolation of a Shaker-related voltage-gated K^{\dagger} channel gene from $Schistosoma\ mansoni$. The sequence of the gene will be

determined, analyzed and compared to other K* channel genes. The presence of alternatively transcribed transcripts of the gene will be tested by restriction mapping and sequencing of several clones as well as Northern blot analysis. Southern blot analysis will be employed to study the presence of multiple copies of the gene. For a better understanding of the function of the channel gene, functional expression in Xenopus occyte and electrophysiological characterization of the K* channel gene will be attempted. Also, the distribution of the channel by the use of channel-specific antibody will be examined.

MATERIALS AND METHODS

I. Molecular cloning

A. Screening of a DNA fragment of a K channel gene by PCR

Poly(A*) RNA was purified from adult *S. mansoni* using the Fast Track mRNA isolation kit from Invitrogen, and used to make primary cDNA for PCR. Two oligonucleotide primers were designed and synthesized based on multiple sequence alignment of other *Shaker* K* channels: primer 1 (aa 387-393 in Figure 3), 5'-ACNGTNGGNTA(T/C)GGNGA(T/C)AT-3'; primer 2 (aa 425-431 in Figure 3), 5'-

TC(G/A)TA(G/A)AA(G/A)TA(G/A)TT(G/A)AA(G/A)TT-3'. The first-strand cDNA was used for PCR in which 40 cycles of 40 sec at 94 °C, 2 min at 46 °C and 2 min at 72 °C were used. The condition for PCR was initially set by Oligo 4.0 program and optimized empirically. After visualization and elution on agarose gel, DNA fragments were subcloned into pCRII vector (Invitrogen) and sequenced.

B. Screening of S. mansoni cDNA library

Two non-degenerate inner oligonucleotides were synthesized using the sequence information from the amplified PCR fragment: primer 3 (nt 1526-1545 in Figure 3), 5'-ATGCGACCGGTTACTGTATG-3'; primer 4 (nt 1595-1614 in Figure 3), 5'-ATCACAGGAACAGGAAGTGC-3'. Chemiluminescent probes (Genius kit, Boehringer Mannheim) for screening of the cDNA library were prepared by random primed labeling or

by PCR (Lanzillo, 1990) using the two inner oligonucleotides. The cDNA library of adult *S. mansoni* (Davis et al., 1988) was kindly provided by Dr. Davis at San Francisco State University. PCR with the two inner oligonucleotides was used as a first step to screen positive plates (Yu & Bloem, 1993). The positive plates were then used to isolate positive plaques by in situ hybridization. The plaque lift was incubated in 5x SSC/ 1% (w/v) blocking reagent (BM, Indianapolis)/ 0.1% N-lauroylsarcosine/ 0.02% SDS at 56 °C overnight and washed twice, 15 min per wash, with 2x SSC containing 0.1% SDS at room temperature followed by two final washing in 0.5x SSC containing 0.1% SDS at 58 °C for 15 min.

C. Subcloning and sequence determination

Lambda gtll forward and reverse primers were used to amplify cloned genes from positive lambda phages. The amplified PCR products were ligated to pCRScript (Stratagene) or pCRII (Invitrogen) and used for restriction mapping and sequence analysis. Nested deletions of the m13 single strands containing the clones in both directions were generated for sequence determination (Shen & Waye, 1988). Sequence analyses were carried out using the Genetics Computer Group software.

D. Northern and Southern blot analyses

Three micrograms of poly(A) RNA from adult worms were resolved on a 1% formaldehyde gel, blotted to a positively charged nylon membrane. An in vitro transcribed message (1 ng) of SKv1.1 was used as a positive control. An SKv1.1specific probe corresponding to the 3'-untranslated region of the cDNA (nt 2033-2703 in Figure 3) for both Southern and Northern blot was generated by PCR and labeled with $[\alpha^{-32}P]$ dCTP by the random primer DNA labeling method. We also made a bigger probe containing the whole region of SKv1.1 for Northern blot to investigate a possibility of alternative splicing. The membrane was hybridized at 42 °C in 5x SSC/ 2% blocking reagent/ 0.1% N-lauroylsarcosine/ 0.02% SDS/ 50% formamide and washed in 0.5x SSC/ 0.1% SDS at 50 °C. For Southern blot analysis, 10 μ g of genomic DNA were restricted with EcoRI or HindIII and resolved on a 0.8% agarose gel and blotted on membrane. The membrane was hybridized at 65 °C in 5x SSC/ 1% blocking reagent/ 0.1% N-lauroylsarcosine/ 0.02% SDS and washed in 0.5x SSC/ 0.1% SDS at 50 $^{\circ}$ C.

II. Electrophysiology

A. In vitro transcription

In order to increase the efficiency of expression, the pBTG plasmid containing the 5'- and 3'-untranslated regions of the β -globin gene of *Xenopus* was used to make SKv1.1 mRNA (Guillemare et al., 1992). Also, a sequence of six nucleotides (GCCACC) that is highly conserved in the region

around the translational start sites of eukaryotic mRNAs was added in the upstream region (nt -6 to -1) of the start codon of SKv1.1 (Kozak, 1991). A change of a nucleotide, T to G at nt +4 in the coding region resulting in Ser to Ala substitution of the second amino acid residue, was made in order to increase the efficiency of translation (Kozak, 1991). The coding sequence of SKv1.1 was amplified by PCR using two primers containing a BglII restriction site at the 5'-end: primer 5, 5'-GGAGATCTGCCACCATGTCCACCTTATCAGGAACAGC-3'; primer 6, 5'-CCAGATCTTTACTTTTTTATTGTAATGGAAT-3'. The PCR product was digested with BglII and inserted into the pBTG to make pBTGSK1. The pBTGSK1 was linearized with BamHI and used for in vitro transcription by T3 RNA polymerase to make capped mRNA for injection.

B. Oocyte injection and recording

Mature female Xenopus laevis were anesthetized in 0.15% 3-aminobenzoic acid ethyl ester followed by surgical removal of ovarian lobes. After incubation of segments of lobes in Ca²⁺-free ND-96 containing 2 mg/ml collagenase (Sigma, type II) for 30 min, individual oocytes were manually removed from the follicle cell sac. Mature oocytes at stage V and VI (Dumont, 1972) were used for injection and incubated in ND-96 for 48 hours before recording.

Each oocyte was injected with 50 nl of mRNA (0.1 μ g/ μ l) and maintained in ND-96 supplemented with horse serum (Quick

et al., 1992) for two days before recording. Oocyte currents were recorded using the two-electrode voltage-clamping method (model OC-725B oocyte clamp, Warner Instrument Corp.). Both electrodes (1-2 M Ω) were filled with 3 M KCl and used to impale oocytes in ND-96. Stimulation, data acquisition and analyses were done using pClamp 5.5 software (Axon Instruments).

III. Immunohistochemistry

A. Antibody production

A synthetic oligopeptide (22 amino acid residues, LETDDDDITNKEQHINTKVRC) was made based on the sequence of the cytoplasmic side of the protein, aa 447-466 of SKv1.1 (512 aa and M.W.=56.5 kDa). The last amino acid (Cys), which is not in the original sequence, was added to facilitate the linking of the peptide to the carrier protein. The synthetic oligopeptide was coupled to keyhole limpet hemocyanin (KLH) using the NHS-Ester-Maleimide heterobifunctional crosslinker (Sulfo-MBS, Pierce) and injected into rabbits. Rabbits received 500 µg of the peptide-carrier conjugate followed by booster injections of 250 µg every three weeks. Test serum was collected 10 days after each booster injection and tested with a dot hybridization using the BSA-peptide conjugate as a target antigen.

An affinity column was used to isolate the SKv1.1-

specific antibody from the antiserum. The synthetic peptide was immobilized on a SulfoLink Gel affinity column (Pierce) and used to isolate peptide-specific antibody from the rabbit serum. The eluted antibody was named as ASK1 and dissolved in PBS at the concentration of 0.66 mg/ml.

For control reaction, the IgG fraction was isolated from preimmune serum using a protein A and protein G agarose column (Sigma). The concentration of preimmune IgG was 1.45 mg/ml.

B. In vitro translation and immunoprecipitation

A SKv1.1 protein, labeled with [35] methionine, was made using rabbit reticulocyte lysate (BRL) and in vitro transcribed mRNA from pBTGSKl. The SKv1.1 protein (5 μl) was diluted 25-fold in 1% Triton buffer (50 mM Tris [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 10 mg/ml bovine serum albumin) and incubated with ASKl (3 μg/ml) for 1 hr at 0 °C. The antigen and antibody complex was precipitated by adding 10 μl of protein A sepharose (BRL) and incubating for 1 hr at room temperature.

Immunoprecipitates were resolved on 10% SDS polyacrylamide gel. For control reaction, ASKl was preincubated with an excess amount of free peptide for 1 hr before immunoprecipitation.

C. Isolation of muscle fibers

Muscle fibers were isolated from adult S. mansoni

(Puerto Rican Strain) by the method described by Day et al.

(1993). Adult female and male worms (20-30 pairs) were

coarsely minced with a razor blade. The small pieces were

incubated in the Dulbecco's Modified Eagle's Medium (DMEM,

Sigma, St. Louis) supplemented with 1 mM EGTA, 1 mM EDTA,

0.1% bovine serum albumin and 1 mg/ml papain (Sigma) at 37

°C for 45 min. The worm pieces were then incubated in the

papain-free supplemented DMEM for 10 min, followed by

pipetting up and down 75 to 100 times to break up the pieces

into a cell suspension.

D. Immunohistochemistry

Isolated muscle fibers were attached to glass slides preincubated with 1 mg/ml poly-L-lysine, fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 15 min and permeabilized in 0.2% Triton X-100 in PBS for 10 min. The permeabilized muscle fibers were then incubated with ASK1 (3 μ g/ml) in PBS containing 3% bovine serum albumin (BSA) for 20 min at room temperature followed by washing three times in PBS, 1% Triton X-100 for 5 min. For visualization of immunoreactivity, a goat anti-rabbit secondary antibody conjugated with, a red fluorescence dye, Cy3 (Jackson Immuno Research) was used at a dilution of 1:1000. After incubating with the secondary antibody in PBS containing 3% BSA for 30 min at room temperature, the muscle

fibers were washed three times in PBS, 1% Triton X-100 and observed on fluorescent microscope.

For immunohistochemistry of paraffin sections, a modified method described by Basch and Gupta et al. (1990) was used. Adult worm pairs were fixed in 10% neutral buffered formalin (NBF) for 3 hr at room temperature. Specimens were embedded in paraffin, and 2 μ m sections were obtained on poly-L-lysine-coated slide glasses. sections were de-paraffinized by incubating in xylene for 20 min and rehydrated by incubating in 100% and 95% ethanol. After equilibration in PBS containing 0.3% Triton X-100 (PBT) for 20 min, slides were blocked by incubating in PBT containing 5% normal goat serum and 0.1% bovine serum albumin for 20 min. Specimens were incubated in primary ASK1 antibody (3 μ g/ml) in PBT containing 2% normal goat serum and 0.1% bovine serum albumin for 30 min at room temperature followed by washing in PBT for 10 min. sections were again incubated with a secondary goat antirabbit antibody conjugated with Cy3 (1:1000 dilution) in PBT containing 2% normal goat serum and 0.1% bovine serum albumin for 30 min at room temperature followed by washing in PBT for 10 min.

RESULTS

I. Molecular cloning

A. Molecular cloning of a Shaker-related K channel cDNA

A DNA fragment with high sequence identity to other Shaker channels was isolated by PCR using two oligonucleotides based on highly conserved regions (H5 and S6) of other Shaker channels and using primary cDNA from schistosomal poly(A[†]) RNA as a template. Southern hybridization of the DNA fragment to genomic DNA of S. mansoni indicated the PCR fragment (134 bp, nt 1508-1641 in Figure 3) was from schistosomal cDNA. Also, the codon usage table of the PCR fragment fit well with the typical codon usage of schistosomal cDNA, which is highly biased (Meadows & Simpson, 1989). The G+C mol% of the PCR fragment was 41%, close to the typical G+C mol% (40%) of the schistosomal cDNAs. Two non-degenerate inner oligonucleotides, based on the sequence of the PCR fragment, were used to generate a K channel-specific probe (89 bp, nt 1526-1614 in Figure 3) for cDNA library screening.

A total of six full length DNAs (clones 9, 30, 31, 56, 67 and 77) were isolated after screening of 8 x 10⁵ plaques. The sizes of the inserts of the six clones were very similar, ranging from 2.7 - 2.8 kb. All six had identical restriction patterns for *HindIII* and *VspI* except for small differences in length at the 5'-ends. In order to differentiate the clones and to investigate the possibility

of alternative splicing, we subcloned and sequenced the three clones that showed different restriction patterns (clones 56, 67 and 77). The results indicated that clone 56 and 67 were identical, but that clone 77 contained an extra stretch of about 100 nt at the 5'-end, which could be due to multiple transcriptional initiation of the SKv1.1 gene. The longest cDNA (clone 77) was named SKv1.1 and used for further analyses (Figure 2).

Figure 2. Restriction map of SKv1.1 gene. Sites for restriction endonucleases are marked by vertical bars. A black box in the middle of the gene indicates the putative coding region of SKv1.1. 5' and 3' untranslated regions are shown as white boxes on both ends.

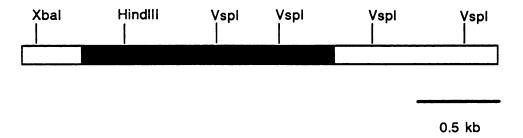


Figure 3. Nucleotide sequence and predicted amino acid sequence of SKV1.1. The deduced amino acid sequence is shown below the nucleotide sequence. The numbers of the nucleotides and amino acids are given on both side of the sequence. The termination codon at the end of the open reading frame is marked by an asterisk. Six putative membrane spanning regions (S1 - S6) and the pore-forming region (H5) are underlined. Putative N-linked glycosylation sites are indicated under the corresponding amino acids by open circles (0). Putative sites for phosphorylation by protein kinases are also indicated under the corresponding amino acids: protein kinase C (m); casein kinase II (a); tyrosine kinase (*). The nucleotide sequence has been submitted to the GenBank (EMBL Data Bank with the accession number L26968.

```
271 ACAAAAAATTTTGTTAAATAATGAGATAATTACCTTGGTCATGTAAACACATAAAATGAGCACAATTAAACTTTTCAC
1 M S T L S G T A S T L L L P H G T L A Y C N R K I N Q N
                                                      28
 434 CTGGAAGAGGAAACAGGAATCGATCAACTCACTTCAGATGAAATATTTCGTCCGGAAATTGAAAGTGAAAGATTAGTAATCAAT
 29 LEEET GID QLT SDEIFRPEIESERLVIN
57 V S G L R F E T Q A Q T V N Q F P D T L L G N P N K R N
602 CATTATTATGATCCGTTAAGAAATGAATATTTTTTCGACAGAAATCGATCAAGCTTTGACGGTATACTTTATTTTTATCAAAGC
                                                     685
 85 HYYDPLRNEYFFDRNRSSFDGILYFYQS
                                                      112
 686 GGTGGAAGACTTCGACGACCTGTTAATGTACCAATAGATGTATTCAATGAAGAAATTAAATTCTATGAATTAGGTGAAGAGGCA
113 G G R L R R P V N V P I D V F N E E I K F Y E L G E E A
770 TTGGCTAAATATCGTGAAGAAGAAGGATTTATTAAGGAGGAACCAAAAATTCTACCAAGAAATCGTTTTCAACGTAAAGTTTGG
141 LAKYREEEGFIKEEPKILPRNRFQRKVW
854 CTTTTATTTGAATACCCAGAAAGTTCATTAGCTGCACGTATACTAGCTATTGGTTCAGTATTTGTTATTCTCTTATCAATTATA
                                                     937
169 L L F E Y P E S S L A A R <u>I L A I G S V F</u>
197 <u>I F C L</u> E T L P H F R R Y K I I N N L N S T L C Y E E L
1022 ACTITTGAAGAAGATGATTTACCAACAATTGATCAACCATTITTTATCATTGAAACATTITGTATAGTATGGTTTAGTTGTGAA 1105
225 T F E E D D L P T I D Q P <u>F F I I E T F C I V W F S C E</u> 252
253 L L V R F A S S P K K F E F F K V L M N V I D
                                                      280
                                                   <u>53</u>
1190 CCATATTTCATAACACTTGGTGCTGTAATTATCGATGATCCGAAACAAATTAATCAGACAACATCACTAGCTGTACTAAGAGTT 1273
281 PYFITLGAVII DDPKQINQTTSLAVL<u>RV</u> 308
1274 ATTCGTCTTGTTCGCGTTTTTCGTATATTCAAATTATCAAGACATTCAAAAGGACTACAAATTTTAGGACAAACACTAAGAGCA 1357
                 <u>IFKLSRHSK</u>GLQILGQTLRA 336
1358 AGTGTTCGAGAATTAGGATTATTAGTATTCTTTTTACTGATTTGTGTTATTCTCTTTTCATCAGCTGTATATTTTGCTGAAGCT 1441
337 S V R E L G L L V F F L L I C
                               <u>ILFSSAVYFA</u>EA 364
1442 GATGCTGACACTTCATTATTTCGTAGTATACCTGATGGATTTTGGTGGGCTGTTGTAACAATGACCACAGTTGGTTATGGAGAT 1525
365 D A D T S L F R S I P D G F W W A
                                     T M T T V G Y G D 392
                                      H5
393 <u>M R P</u> V T V W G K <u>L I G S L C A I A G V L T I A L P V P</u> 420
1610 GTGATTGTATCAAACTTTAATTATTTCTATCGTGGAAACAGAATCAGATGATATTTCACATTCTATTTCTTCATCTTTAGAA 1693
421 <u>V I V</u> S N F N Y F Y H R E T E S D D I S H S I S S S L E
449 T D D D D I T N K E Q H I N T K V R S I T Y N I N S S G 476
1778 AGTAGTAAATCCATAAAAACAATGTCACATAACGAGAGTATTGTTAATAGTCAATATGATACAACTATAACCAGTGCCTTGAAA 1861
477 S S K S I K T M S H N E S I V N S Q Y D T T I T S A L K
1862 CAAAATTCCATTACAATAAAAAAGTAATCATATACTCTC 1900
505 Q N S I T I K K *
1901 GGTTTTCTTCTTATAACATTGTGTTTTTTTCCATCAATTCATGAATCCTTCTAAAAATCAATTTCGTTTAATCAATATTATGCTCAAAAAT
1991 TAAACCAACTACAAATATAGAGAACAGTCAAATATCTTATTCACCATACAGAATACACATTTACATATTTTATCAACATAATGAACTATA
2261 TATACTACTAATCGATCAAGTTATATAATAATCATTGTATAAACATTGGTTGATAATGCTAAGAGCCATATTCATATTTTCATCAAGAACC
2531 CTTCATTATTAAATCATTCAGTTGTAGAGCTAATAAACTAATATACTTTATATATGATACTTTATATGATGACAAAAATGTCATGTTGTA
2711 GGATCTTTCATGTAAAACAATAAAAAAAATAAATATTTTAAATATGT
```



B. Sequence analysis of SKv1.1

The full nucleotide (nt) sequence of SKv1.1 is shown in Figure 3. The start and stop codons of the structural gene were assigned by primary sequence, amino acid sequence comparison, codon preference analysis and in vitro translation analysis using rabbit reticulocyte lysate (Figure 15A). The region a few nt upstream from the ATG start codon did not conform to the consensus sequence of other eukaryotic cDNAs (Kozak, 1991). Also, the last three amino acids of SKv1.1 (Ile-Lys-Lys) did not agree with the residues (Thr-Asp-Val) that are commonly found at the carboxyl terminal end of the voltage-gated K channels from Aplysia, Drosophila and mammals. The open reading frame of SKv1.1 (nt 350-1888) encoded a protein of 512 aa with a calculated molecular weight of 56.5 kDa, and it was placed between the 5'-untranslated region (nt 1-349) and a long 3'untranslated region (nt 1889-2757) containing two poly(A⁺) signals (nt 2729-2734 and 2737-2742). The G+C mol% of the structural gene and of the flanking non-coding regions were 32% and 25%, respectively, which is lower than the average value of 40% and 30% in schistosomal cDNA genes (Meadows & Simpson, 1989). Therefore, the third bases of codons in the channel are thought to be occupied preferentially by nucleotide A or T.

SKv1.1 showed very high overall as sequence identity with Shaker channels from invertebrates and vertebrates

(Table 1), for instance, showing 64% sequence identity to the Shaker K channel (AkOla) from Aplysia (Figure 4). sequence identity was even higher in the core region including the six membrane spanning regions, ranging from 64-70% when compared to other Shaker channels from Xenopus, Drosophila, mouse, rat and human (Table 1). However, at the N-terminal and C-terminal ends, SKv1.1 showed little homology to other Shaker channels. Higher sequence similarity in the core region, not at the N- and C-terminal ends, is commonly observed amongst other Shaker channels, reflecting essential functions of various domains such as pore formation and voltage sensing. Interestingly, the highest sequence identity was observed in the region that is involved in the tetramerization of four subunits to form a functional K channel (Li et al., 1992; Shen et al., 1993). This indicates that the domain for subunit assembly is as important as other domains involved in K channel functions.

When SKv1.1 was compared to other *Sh* subfamilies such as *Shab*, *Shal* and *Shaw* from a variety of species, much lower sequence identities (40-50%) were observed in the core region (Table 2). This is consistent with the notion that there is about 70% sequence identity in the core region within a given subfamily (e.g. *Shaker*) while only about 40% sequence identities are observed among different subfamilies (*Shaker*, *Shab*, *Shal* and *Shaw*) (Salkoff et al., 1992). In addition, the sequence comparison of the tetramerization

domain of SKv1.1 to other Sh K † channels exhibited much lower sequence identities (15-38%) supporting the fact that heteromultimers are not formed between subunits from different Sh subfamilies.

A dendrogram was constructed based on multiple sequence alignment of SKv1.1 and other K⁺ channel genes (Figure 5).

SKv1.1 was clearly grouped in the Shaker subfamily, not in any of the other Sh subfamilies. Also, within the Shaker subfamily, SKv1.1 formed a unique branch, which is in good accordance with the fact that schistosomes are among the most primitive organisms in the animal kingdom and are quite different from vertebrates and other highly developed invertebrates such as flies and snails.

Structural features that are commonly found in other voltage-gated K⁺ channels were observed in the deduced amino acid sequence of SKv1.1. Six membrane-spanning domains (S1-S6) and one pore-forming domain (H5) were identified based on the hydropathy profile of SKv1.1 (Figure 6) (Kyte & Doolittle, 1982). Seven basic amino acids occurring at every third position were found in the S4 segment (Figure 6B and Table 3), which is thought to be involved in voltage sensing and gating current. A typical leucine-heptad, with the occurrence of a leucine residue at every seventh position, was found in the region spanning the S4 domain, S4-S5 loop and S5 domain (Table 4). An arginine residue, Arg394, is located around the outer mouth of the pore-

forming domain (Figure 7 and Table 5), predicting high resistance of SKv1.1 to external tetraethylammonium (TEA[†]) (Kavanaugh et al., 1991; MacKinnon & Yellen). Some positively charged amino acids and hydrophobic leucines were found at the N-terminal end implying the rapid inactivation of the SKv1.1 channel (Figure 8A). In the S4-S5 loop, the five important residues that have been suggested to form a putative receptor for the inactivation ball structure (Isacoff et al., 1991) were well conserved compared with other Sh subfamilies (Figure 8B).

Two potential N-linked glycosylation sites (Asn216 and Asn298) were located in the extracellular loops (S1-S2 and S3-S4). A N-myristoylation site was detected at the N-terminal end (Gly6) of the channel. Several putative sites for phosphorylation by a variety of protein kinases were located on the intracellular side of the channel (Figure 3): seven sites for protein kinase C, ten sites for casein kinase II and one site for tyrosine kinase. However a site for phosphorylation by cAMP-dependent protein kinase A, which has been found in AkOla of Aplysia (Pfaffinger et al., 1991), is not seen in SKvl.1.

Table 1. Amino acid sequence identity between SKv1.1 and other $\textit{Shaker}\ \text{K}^{^{\perp}}$ channels.

	Overall (aa 1-512)	Core region (aa 182-423)	Tetramerization domain (aa 51-181)
Kvl.1	54	65	76
Kvl.2	54	65-66	75 - 76
Kvl.3	54	65-66	73
Kvl.4	52-55	63-66	72-73
Kvl.5	55 - 58	56	72-74
Kvl.6	57	56	69-71
Kvl.7	59	69	73
Invertebrate			
Shaker Al	59	69	78
Ak01a	64	74	84

Figure 4. Amino acid sequence comparison between SKv1.1 and AkOla from Aplysia (Pfaffinger et al., 1991). Putative membrane spanning domains (S1-S6) and the pore forming domain (H5) are underlined. Vertical lines indicate identical amino acids between the two sequences. Gaps introduced to maximize the alignment are indicated by periods.

SKv1.1 1	MSTLSGTASTLLLPHGTLAYCNRKINQNLEEETGIDQL	38
Ak01a 4	MAGIEGNGGPAGYRDSYHSSQRPLLRSSNLPNS.RSFPKLSEEDNANENG	52
39	TSDEIFRPEIESERLVINVSGLRFETQAQTVNOFPDTLLGNPNKRNHYYD	88
53	MGVPGSDYDCSCERVVINVSGLRFETQLKTLNGFPDTLLGNPQKRNRYYD	102
89	PLRNEYFFDRNRSSFDGILYFYGSGGRLRRPVNVPIDVFNEEIKFYELGE	138
103	PLRNEYFFDRNRPSFDAILYFYGSGGRLRRPVNVPLDVFSEEIKFYELGE	152
139	EALAKYREEGFIKEEPKILPRNRFGRKVÜLLFEYPESSLAARILAIGSV	188
153	NAFERYREDEGFIKEEEKPLPQNEFQRRVWLLFEYPESSAAARLCAIFSV	202
189	FVILLSIIIFCLETLPHFRRYKIINNLNSTLCYEELTFEEDDLPTIDQPF	238
	- S1	
239	FIIETFCIVWFSCELLVRFASSPKKFEFFKVLMNVIDVVŠIIPYFITLGA	288
250	FİİÉTCÖİ IWFTFÉLLÜRFASCPEKLGFFKNIMNCIDIVA İİPYFİTLĞT	299
289	VIIDDPKQINGTTSLAVLRVIRLVRVFRIFKLSRHSKGLQILGQTLRASV	338
300	VVADQSKSNNGAMSLAILRVIRLVRVFRIFKLSRHSKGLQILGQTLKASM	349
	\$4	
339	RELGLLVFFLLICVILFSSAVYFAEADADTSLFRSIPDGFWWAVVTMTTV	388
350		399
389	GYGDMRPVTVWGKLIGSLCAIAGVLTIALPVPVIVSNFNYFYHRETESDD	438
400	GYGDMRPIGVWGKLVGSLCAIAGVLTIALPVPVIVSNFNYFYHREGESTD	449
-	\$6	
439	ISHSISSSLETDDDDITNKEQHINTKVRSITYNINSSGSSKSIKTMS	485
450	KGQYKHVQSCPNYPEKKDSLDSECGSDIMEMEEGNHSTPLTEKVKE.N	498
486	HNESIVNSQYDTTITSALKONSITIKK* 512	
497	HAIKANNPGSDYGLETDV* 515	

Table 2. Amino acid sequence identity of SKv1.1 to other $\mathit{Sh}\ \text{K}^{^{+}}$ channels.

(Overall (aa 1-512)	Core region (aa 182-423)	Tetramerization domain (aa 51-181)
Vertebrate			
Shab			
Kv2.1	30	40	15
Shaw			
Kv3.1	24	43	27
Kv3.2	27	45	38
Kv3.3	25	45	25
Kv3.4	24-25	43	36
Shal			
Kv4.1	30	36	34
Kv4.2	29	37	31
Invertebrate			
droShab	35	46	33
droShaw	7 26	46	26
dro <i>Shal</i>	34	40	38

Figure 5. Dendrogram analysis of SKv1.1. The amino acid sequences of SKv1.1 and other Sh K channels were clustered by the unweighted pair-group method using arithmetic average (UPGMA) described by Sneath & Sokal (1973). Each pairwise alignment was done by the method of Needleman & Wunsch (1970). The 'pileup' program of the Genetics Computer Groups software was used to align amino acid sequences and to generate the dendrogram. Standard names of K channels (Chandy, 1991) followed by source organisms and gene names are given on the right side of the dendrogram. The standard name for Drosophila Shaker K channels is not available. References: RCK1 (Baumann et al. 1988); RCK2 (Grupe et al. 1990); RCK3, RCK4 and RCK5 (Stühmer et al. 1989); KV1 (Swanson et al. 1990); DRK1 (Frech et al. 1989); Kv4 (Luneau et al. 1991); RK5 (Roberds & Tamkun, 1991).

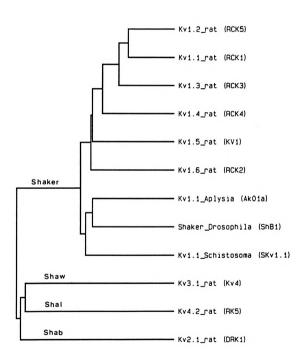
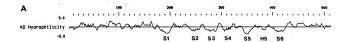



Figure 6. (A) Hydrophilicity profile of SKv1.1 generated by the method of Kyte and Doolittle (1982). Six hydrophobic membrane spanning domains (SI-S6) and a pore-forming domain (H5) are indicated. (B) Putative membrane topology of the SKv1.1 K channel based on the hydrophilicity profile of SKv1.1.

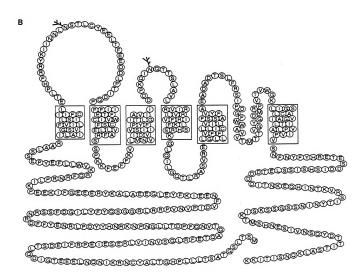
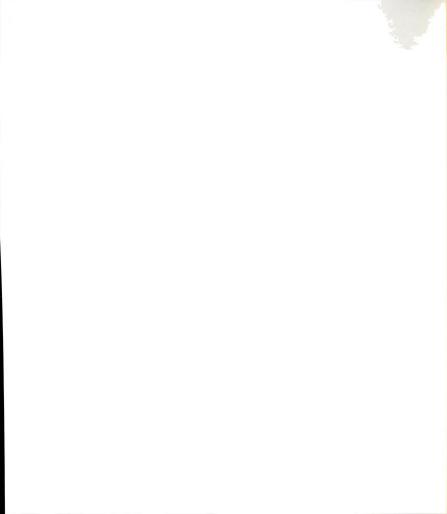
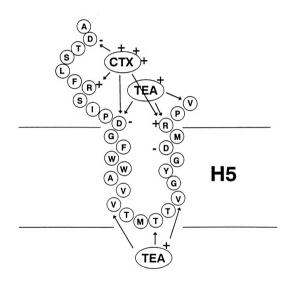


Table 3. Comparison of amino acid sequence of the S4 segment in SKV1.1 to other voltage-gated ion channels. References: $Drosophila \ K^*$ channels (Kamb et al., 1988; Schwarz et al., 1988, Wei et al., 1990), sodium channel (Noda et al., 1984), calcium channel (Tanabe et al., 1987).

K channels			_	1	_	1	_		_		_	1		1
SKv1.1	R	VI	R	LL	R	VF	R	IF	K	LS	R	HS	K	GL
Shaker	R	VI	R	LV	R	VF	R	IF	ĸ	LS	R	HS	ĸ	GL
Shab	Q	VF	R	IM	R	IL	R	VL	ĸ	LA	R	HS	Т	GL
Shaw	E	FF	s	II	R	IM	R	LF	к	VT	R	HS	S	GL
Shal	F	VT	R	VF	R	VF	R	IF	к	FS	R	HS	Q	GL
Na channel	s	AL	R	TF	R	VL	R	AL	к	TI	s	VI	P	GL
Ca channel	s	VL	R	CI	R	LL	R	LF	К	IT	K	YW	Т	SL




Table 4. Leucine-zipper motifs in SKv1.1 and other $\mathit{Sh}\ \text{K}^{^{+}}$ channels.

	L1	_	և 2]	_3	. 1	L 4	. 1	<u>.</u> 5
SKv1.1	KL	SRHSKG	L	QILGRT	L	RASVRE	L	GLLVFF	L
Shaker	KL	SRHSKG	L	QILGRT	L	KASMRE	L	GLLIFF	L
Shab	KL	ARHSTG	L	QSLGFT	L	RNSYKE	L	GLLMLF	L
Shaw	ĸ v	TRHSSG	L	KILIQT	F	RASAKE	L	TLLVFF	L
Shal	K F	SRHSQG	L	RILGYT	L	KSCASE	L	GFLNFS	L
	;	S4 —						S5	

Figure 7. Amino acid sequence around the pore-forming region (H5) of SKV1.1. Putative binding sites for charybdotoxin (CTX) and tetraethylammonium (TEA) are indicated.

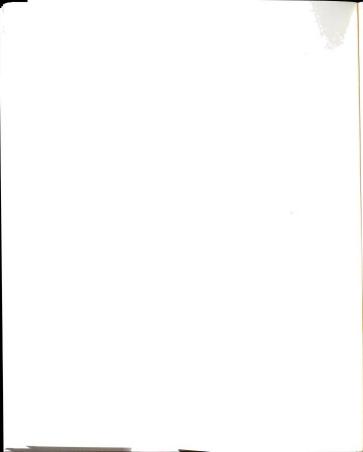


Table 5. Correlation between external TEA sensitivity and the presence of a particular amino acid in the H5 region of voltage-gated $\textbf{K}^{^{\intercal}}$ channels.

1	20	Channel	TEA ^a (mM)	Ref.		
PDAFWWAVVS	MTTVGYGDMYP	RCK1	0.6	Tempel et al. (1988)		
.IGT	Y.	Raw3	0.3	Schroter et al. (1991)		
.ASTIT	IY.	mShab	5	Pak et al. (1991)		
.ASTIT	IY.	DRK1	6	Frech et al. (1989)		
T	Y.	RCK2	7	Grupe et al. (1990)		
T	LT.	Shaker	17	Hoshi et al. (1990)		
.EAGIT	IC.	Shab	10	Wei et al. (1990)		
T	R.	RCK7	>40	Betsholtz et al. (1990		
T	н.	RCK3	50	Stuhmer et al. (1989)		
T	K.	RCK4	>100	Stuhmer et al. (1989)		
s		RCK5	129	Christie et al. (1990)		
T		Ak01a	>100	Pfaffinger et al. (1991		
GT	R.	SKv1.1	>100	,		

 $^{^{\}rm a}{\rm Concentration}$ of external TEA for 50% inhibition (IC $_{\rm 50})$ of the current.

Figure 8. (A) N-terminal amino acid sequence of SKv1.1 and other Sh K channels. Basic residues are underlined. (B) Amino acid sequences in the 84-85 loop region of SKv1.1 and other Sh K channels. Five residues involved in fast inactivation are boxed. Dots indicate the same amino acid residues as SKv1.1 at the corresponding positions. References; Shaker (Hoshi et al., 1990), Shab, Shal and Shaw (Butler et al., 1989).

(A)

SKv1.1 MSTLSGTASTLLLPHGTLAYCNRKINQN

Shaker MAAVAGLYGLGEDRQHRKKQQQQQQHQKEQL

Shal MASVAAWLPFARAAAIGWVPIATHPLPPPPMPKDRRKTDDEKLL

Shaw MNLINMDSENRVVLNVGGIRHETYKATLKKIPATRLSRLTEA

(B)

			1		1	$\overline{}$	1		ı
SKv1.1	GLQI	L	GQ	Т	LRA	s	VR	EL	G
Shaker			.R		.K.		Μ.		
Shab	s		.F		N		YK		
Shal	s		.Y		.KS	С	AS		
Shaw	K.	•	I.	•	F	•	AK		Т
		1				i		1 !	

C. Northern and Southern blot analysis

Northern blot analysis using adult schistosome poly(A⁺) RNA and a probe that is specific to the 3'-untranslated region of SKv1.1 detected a single transcript of 2.8 kb, which is comparable to the size of SKv1.1 gene (Figure 9A). In order to preclude the possibility that the probe targeting the 3'-untranslated region is detecting only one form of alternatively spliced transcripts showing variation in the 3'-untranslated region, a Northern blot analysis using a probe containing the whole region of SKv1.1 (2.8 kb), rather than the 3'-untranslated region, has been tried. Again, only single band has been observed in the blot indicating the SKv1.1 mRNA may occur as a single transcript in adult S. mansoni, not as multiple alternatively spliced transcripts. Southern blot analysis also suggested that the SKv1.1 gene exists as a single copy in the whole genomic DNA of S. mansoni (Figure 9B).

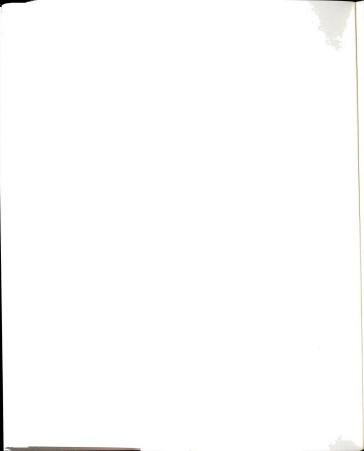
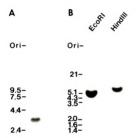
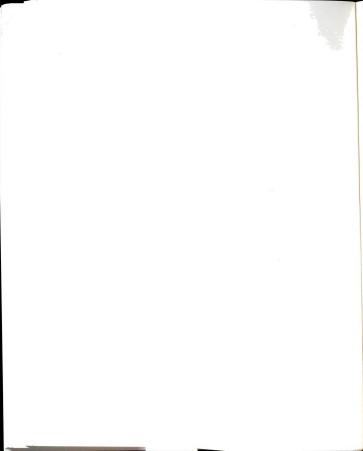
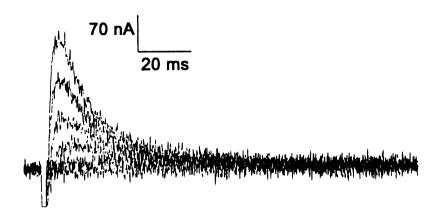
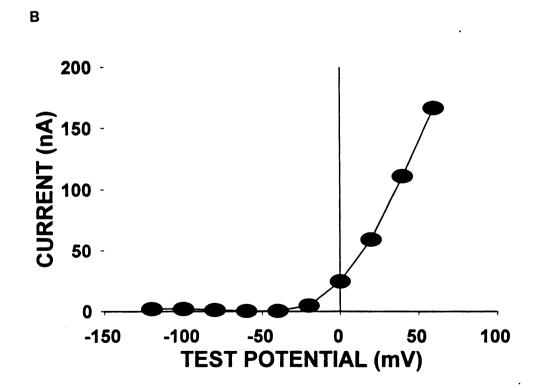




Figure 9. Hybridization analyses of SKV1.1. (A) Northern blot analysis of SKV1.1. Three micrograms of poly(A) RNA isolated from adult S. mansoni were fractionated on 1% formaldehyde gel. blotted and hybridized with a probe derived from the 3'-untranslated region of SKV1.1. Hybridization conditions are described in Materials and Methods. Size markers are indicated in kb. (B) Southern blot analysis of SKV1.1. Then micrograms of genomic DNA were digested with EcoRI (E) and MindIII (H) and resolved on a 0.8% agarose gel. The blotted membrane was hybridized with the same probe that was used in Northern blot. Size markers are indicated on left in kb.

II. Electrophysiology

A. Expression of SKv1.1 protein in Xenopus occytes


For the expression of SKv1.1 gene in Xenopus oocytes, we have initially made SKv1.1 mRNA without any modification. however, the injection of the mRNA did not result in a functional expression. Nor did the introduction of the Kozak's motif (Kozak, 1991) and a poly adenylated tail into SKv1.1 mRNA by the method described by Cestari et al. (1993). In order to maximize the functional expression of SKv1.1 gene in oocytes, two major modifications were made on SKv1.1 mRNA. Firstly, the coding region of SKv1.1 was placed between the 5' and the 3' untranslated regions (UTRs) of ß-globin gene of Xenopus (Melton et al., 1984), in order to increase the stability or the translation efficiency of SKv1.1 mRNA. Secondly, in addition to introducing Kozak's motif, the fourth nucleotide (C) was changed to G in order to increase the translation efficiency of SKv1.1 mRNA. These two modifications increased the expression of SKv1.1 to a level which was high enough to be detected by occyte voltage clamp.


Injection of SKv1.1 mRNA into Xenopus oocytes produced a rapidly inactivating outward potassium current (Figure 10). Expression of a rapidly inactivating A-type current is commonly observed in oocytes by injecting Shaker channel mRNAs from invertebrates such as Drosophila, Aplysia (Pfaffinger et al., 1991). A-type currents have also

observed in some mammalian *Shaker* channels such as RCK4 (Stühmer et al., 1989). However, most mammalian voltagegated K⁺ channel genes express the slowly inactivating delayed rectifiers. The putative structural motifs that are related with the fast inactivating current of SKv1.1 will are discussed in the discussion section.

Figure 10. Expression of SKv1.1 protein in <code>Xenopus</code> oocytes. (A) Currents evoked by depolarizing voltage steps from -80 mV to test potentials of -40 to +60 mV in 20 mV increments. (B) Current-voltage relationship averaged from 9 oocytes.

A

B. Voltage dependence of SKv1.1 current

The current mediated by SKv1.1 was voltage-dependent, with a threshold of activation near -20 mV (Figure 10). Although the conductance was not saturated at +60 mV, test pulses to more positive potentials produced other, non-ohmic currents that confounded the isolation of the SKv1.1 component (Figure 11). Therefore, for the purpose of analysis, the conductance at +60 mV was considered to be G_{\max} .

The V_{50} for activation was +20 mV, with a gentle slope factor, a number mV required for an e-fold change of the relative conductance value, of 15 mV. When compared with other cloned voltage-gated K^{\dagger} channels, the V_{50} (+20 mV) of SKv1.1 current is located on the right edge of the normal range along the voltage axis. Most known Shaker channels have V_{50} s for activation ranging from -30 mV to +5 mV. The slope factor (15 mV) does not appear to be placed on the extreme edge, showing significant similarities to those measured from other Shaker currents (Papazian et al., 1991).

The SKv1.1 current also displayed a voltage-dependent steady-state inactivation (Figure 11). The V_{50} for inactivation was -40 mV and the slope factor was 4 mV, which is steeper than that of voltage-dependent activation. Both the V_{50} and the slope factor for steady-state inactivation of SKv1.1 current fall into the normal range that are commonly observed in other *Shaker* channels. Voltage-

dependent activation and steady-state inactivation showed little overlap.

In the native A-type current measured from the isolated muscle fibers, a similar voltage dependence was observed (Day et al., 1993; Table 6). The $\rm V_{50}$ for activation was +5 mV with a slope factor of 12 mV, the $\rm V_{50}$ for steady-state inactivation was -50 mV with a slope factor of 14 mV. This similarity strongly supports the idea that the expression of A-type current measured in muscle fibers is directed by SKV1.1 gene.

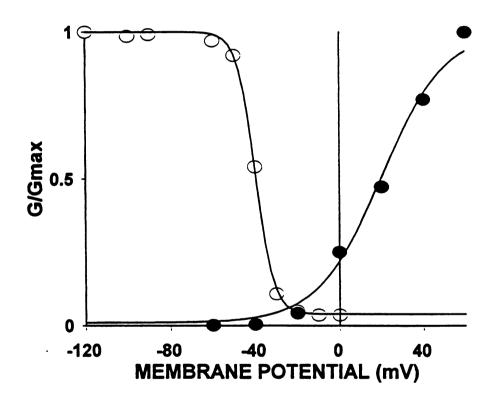
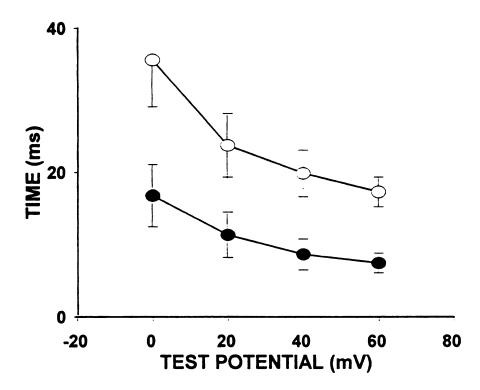


Table 6. Functional properties of the current mediated by SKvl.1 compared to those of a native current in muscle fibers of *S. mansoni* (Day et al., 1993; Day et al., 1994).

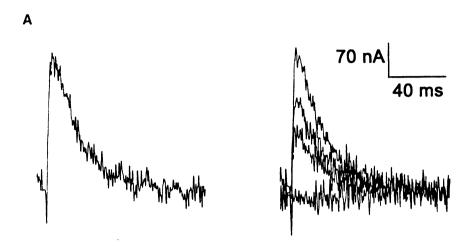

	SKv1.1	current	muscle current		
Activation					
Threshold	-20	mV	-30	O mV	
Time to peak	8	ms	8	ms	
V ₅₀	+20	mV	+5	mV	
Slope factor	-15	mV	-12	2 mV	
Inactivation					
V ₅₀	-40	mV	- 50	O mV	
Slope factor	4	mV	14	mV	
Time constant	17	ms	13	ms	
Recovery from inactiva	ation				
Time constant	7:	s			
Pharmacology (IC ₅₀) ^a					
4-AP	0.2	mM	1	mM	
TEA [†]	>100	mM	30	mM	
DTX	>300	nM	>300	nM	
MCDP	>300	nM			
CTX	>100	nM			

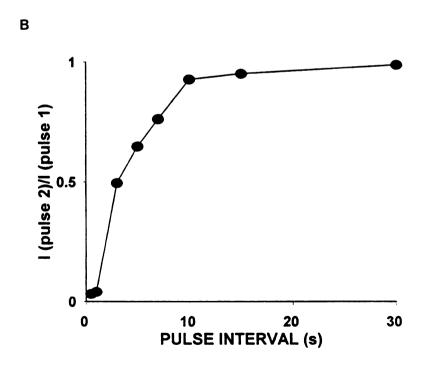
^{*}Concentration of blockers for 50% inhibition of the current.

C. Kinetics of SKv1.1 current

The currents mediated by SKv1.1 were rapidly activated and inactivated with a time to peak of 8 ms and a time constant of inactivation of 17 ms in response to a test pulse to +60 mV from a holding potential of -80 mV (Figure 12). Inactivation of the current fit well with a single exponential. Both activation and inactivation were voltage-dependent, becoming faster at more positive potentials. The time to peak and the time constant of inactivation of SKv1.1 were similar to those from other A-type currents as well as the native A-type currents of isolated muscle fibers (Table 6).

Figure 12. Time to peak $(\bullet, n=4)$ and the time constant of inactivation $(\circ, n=4)$ of the SKvl.1 current. The holding potential was -80 mV and the time constants of inactivation were derived by fitting the data to the equation $I=A(1-e^{t/\tau})^n$, where t=time, $\tau=time$ constant and with the single exponential n=2. Error bars indicate standard deviations.

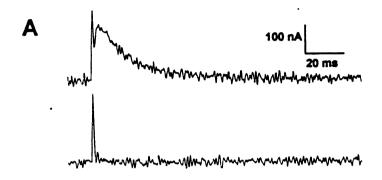


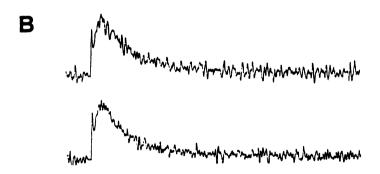

D. Recovery of SKv1.1 current from inactivation

Recovery from inactivation was measured using two consecutive pulses with different intervals. The ratio of the amplitude of the second peak current to that of the first peak current was plotted against the duration of intervals. (Figure 13). The time course of recovery fit well with a single exponential with a time constant of 5 sec.

SKv1.1 showed a very slow recovery from inactivation. The slow recovery from inactivation has also been observed form the *Aplysia Shaker* channel (time constant of 2.3 sec) and the mammalian RCK4 channel with a time constant in the range of seconds (Pardo et al., 1992).

Figure 13. Recovery of SKv1.1 current from inactivation (n=10). (A) Current traces show a control current at a +60 mV test potential, followed by currents elicited by the same pulse following variable intervals. Shown are intervals of 1s, 3s, 5s and 15s. (B) The amplitude of SKv1.1 current induced by a step to a test potential of +60 mV against the interval between the two pulses.





E. Pharmacology of SKv1.1 current

The SKv1.1 current was extremely sensitive to block by external 4-aminopyridine (4-AP) (Figure 14A). The current was reduced 93±5% (n=5) by 1 mM 4-AP. The current was strikingly resistant to external TEA⁺, with 100 mM TEA⁺ producing no discernable blockade (n=4) (Figure 14B). Insensitivity to external TEA⁺ was predicted by the amino acid sequence analysis of the SKv1.1 channel, which showed the presence of Arg394 in the outer pore region. The current was not sensitive to 100 nM Charybdotoxin (CTX), which would also be predicted by the presence of the positively charged Arg394 in the pore region. The current was insensitive to mast cell degranulating peptide (MCDP) and dendrotoxin (DTX) at concentrations as high as 300 nM.

Figure 14. Pharmacological properties of the currents mediated by SKv1.1. The blockers were applied by perfusing the chamber with ND-96 containing the blockers (1-2 ml/min). A voltage step to +60mV was given to oocytes from the holding potential of -80 mV. (A) SKv1.1 current before (top) and after (bottom) the application of 1 mM external 4-aminopyridine. (B) SKv1.1 current before (top) and after (bottom) the application of 100 mM external tetraethylammonium.

III. Immunohistochemistry

A. In vitro translation and immunoprecipitation

A synthetic oligopeptide based on the amino acid sequence of the cytoplasmic domain (aa 447-466) near the C-terminal end of SKv1.1 was made. Since different Sh subfamilies have unique amino acid sequences in the region around the N- and C-terminals, an antibody raised against the unique region of the Shaker protein would be expected to recognize only the Shaker channel protein and not other Sh family proteins in Schistosoma. After immunization, a SKv1.1 protein-specific antibody (ASK1), was purified using an affinity column in which the synthetic oligopeptide was immobilzed. The purified ASK1 was highly specific to the oligopeptide motif, not to the carrier proteins such as BSA and KLH.

In vitro translation of the SKv1.1 gene was used to test the specificity of the ASK1 antibody to its target protein by immunoprecipitation analysis. In addition, the in vitro translation was employed to test the expression of SKv1.1 gene in a heterologous system and to measure the molecular weight of the protein. The SKv1.1 mRNA for in vitro translation was prepared by in vitro transcription using linearlized pBTGSK1 as a template. The in vitro translation product of SKv1.1 mRNA showed a molecular weight of 55 kDa, which is close to the predicted molecular weight of 56.5 kDa based on the amino acid sequence of SKv1.1

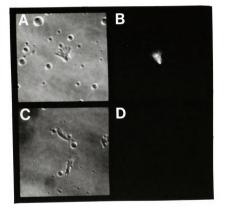
(Figure 15A).

Immunoprecipitation analysis showed that ASK1 can precipitate the *in vitro* translation product of SKv1.1 (Figure 15B, lane 2). On the other hand, the preimmune serum and the ASK1 preincubated with an excess amount of oligopeptide were unable to precipitate the SKv1.1 protein (Figure 15B, lane 1 and 3).

Western blot analysis has also been tried using both the *in vitro* translation product of SKv1.1 and membrane proteins of *S. mansoni* as target proteins. No specific band was found in the Western blot membrane, indicating that the peptide motifs in the SKv1.1 protein that are recognized by ASK1 without any problem in a non-denaturating condition may be completely denatured by the presence of SDS, resulting in the loss of their native configuration. This has been observed in some peptide-specific antibodies (Sheng et al., 1992). However, since most conditions that are used in immunohistochemistry, except for Western blotting, do not eliminate the native configuration of target proteins, ASK1 has been shown to successfully recognize the target protein in immunohistochemistry on isolated muscle fibers and tissue sections.

Figure 15. In vitro translation and immunoprecipitation of SKV1.1 protein. (A) Autoradiograph of in vitro translation products of SKV1.1 protein. The mRNAs from SKV1.1 gene were added to the rabbit_3reticulocyte lysate in vitro translation system containing [5S]-methionine. Lane 1, water was used instead of mRNA as a negative control; lane 2, SKV1.1 mRNA. Translation products were resolved on 10 % SDS PAGE gel. (B) Immunoprecipitation of in vitro translation product by ASKI antibody. Lane 1, preimmune antibody as a negative control; lane 2, immunoprecipitation with ASKI; lane 3, ASKI was preincubated with an excess amount of free peptide before the immunoprecipitation.

A 1 2	В	1	2	3
	205-			
	116- 97-			
66-	66-		_	
45-	45-			
25-	29-			


B. Immunohistochemistry on isolated muscle fibers

Since native A-type currents were initially measured from isolated muscle fibers of S. mansoni (Day et al., 1993), we, by immunohistochemistry, tested whether SKv1.1 protein is expressed in the isolated muscle fibers of S. mansoni. During this analysis, we have focused on finding the expression of SKv1.1 protein only in muscle fibers, not in any other cells, because the morphology of muscle fibers is relatively well characterized compared with other cell types. The expression of SKv1.1 gene in other cell types was studied using immunohistochemistry on paraffin sections.

Among three types, frayed, crescent and spindle, of isolated muscle fibers of schistosome, strong immunoreactivities were observed in the most abundant frayed fibers and in the crescent fibers, where A-type currents were originally measured. ASK1 specifically recognized its target protein (Figure 16A and B) while the ASK1 preincubated with free peptide did not identify the target (Figure 16C and D). Also, the preimmune serum did not show any specific binding to the muscle preparation. This result, together with the results from the electrophysiology of SKv1.1, provides strong evidence that the expression of A-type currents measured in the frayed and the crescent muscle fibers are directed by the SKv1.1 gene.

Figure 16. Immunolocalization of SKv1.1 protein in the isolated muscle fibers. Light (A and C) and fluorescent (B and D) microscopy of the isolated frayed muscle fiber stained with ASK1 (A and B) and with the ASK1 preincubated with an excess amount of free peptide (C and D).

C. Immunohistochemistry on paraffin sections

In order to study the expression of SKv1.1 protein in tissues other than muscle fibers, paraffin sections (2 μ m) of adult female and male worms were immunostained with ASK1 antibody.

Strong immunoreactivities were observed in the central and peripheral nervous system of both female and male worm (Figure 17). In the head region of the male worm, ASK1 strongly stained the anterior ganglia and the central commissures from which longitudinal nerve cords extend out both anteriorly and posteriorly (Figure 17A). On the other hand, preabsorbed ASK1 did not recognize these structures (Figure 17B). Also, strong immunoreactivities were localized in the longitudinal nerve cords in the body region of both female and male worms (Figure 17C). Fine nerve fibers that emanate from main nerve cords were observed (Figure 17D). Relatively strong immunoreactivities were also observed in the nervous system innervating the oral sucker (Figure 17E), the ventral sucker (Figure 17F) and the tail region (Figure 17G).

In addition to the nervous system, tubercles as well as muscle fibers including longitudinal, circular and ventral muscle fibers were mildly stained (Figure 17H).

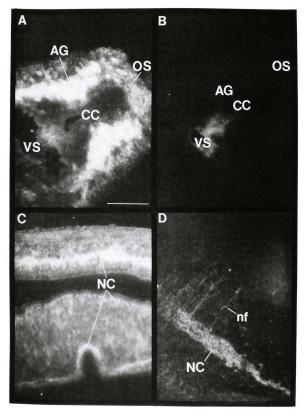



Figure 17. Immunolocalization of SKv1.1 protein in paraffin sections of S. mansoni (x400). Scale bar: 50 µm. (A) Head region of male showing strong immunoreactivity in the anterior ganglia (AG) and the central commissure (CC). Oral sucker (OS), ventral sucker (VS). (B) Negative control. Head region of male in an adjacent section in which ASK1 antibody was inactivated by incubating with an excess amount of free peptide. The fluorescence around the ventral sucker is an autofluorescence. Oral sucker (OS), ventral sucker (VS), anterior ganglia (AG) and central commissure (CC). (C) Longitudinal nerve cords (NC) of female (bottom) and male (top) worm located in the middle of the body. (D) Fine nerve fibers (nf) emanating from the main nerve cords (NC). (E) Oral sucker (OS) in the head region of male. Anterior ganglia (AG). (F) Ventral sucker (VS) in the head region of male. (G) Tail region of the male showing immunoreactivity in the main nerve cords (NC). (H) Tubercles (TB), longitudinal muscle fibers (LM) and circular muscle fibers (CM) in the dorsal surface of male.

DISCUSSION

I. Molecular cloning

A. What does the existence of a Shaker channel gene in Schistosoma mean in an evolutionary sense?

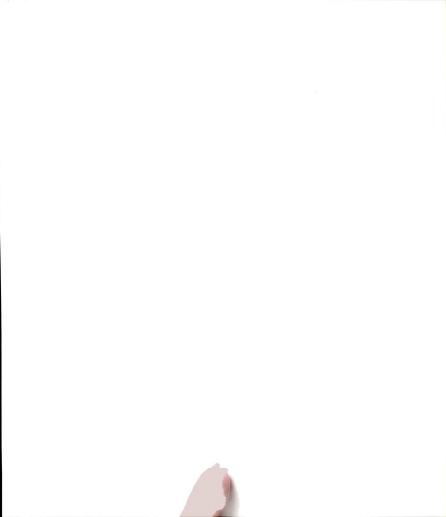
The first organisms that show the presence of a nervous system are coelenterates such as hydra and jelly fish. The Phylum Platyhelminthes, including Schistosoma emerged soon after the coelenterates in the evolutionary pathway about 600 million years ago, and the platyhelminths are the first that show both central and peripheral nervous system and multiple organs. Since ion channels are one of the most important constituents of the nervous system, ion channels have evolved in parallel with the evolution of the nervous system.

Based upon the comparative analysis of amino acid sequences of various ion channels, it appears ancient duplications gave rise to three groups of ion channels: sodium and calcium channels, potassium channels and nucleotide-binding channels (Strong et al., 1993). K channels have further evolved into several groups including voltage-gated and calcium-activated K channels, generating much more diverse channels compared with other types of ion channels. Again, voltage-gated K channels have evolved into several families such as the Sh family (six membrane-spanning domains), inward rectifiers (two domains), and slow

K channels (one domain).

In the Sh family, a common ancestor has given rise to four subfamilies (Shaker, Shal, Shab and Shaw) by a gene duplication event, and each subfamily again has undergone a considerable expansion by another gene duplication during the evolution of mammalian species. For example, there are seven Shaker K channel genes in mammals. When did the first gene duplication event that generated the four Sh subfamilies happen? Before the cloning of the SKv1.1 gene, the most primitive Shaker channels that have been cloned were those from Drosophila and Aplysia, which are highly developed invertebrates. Also it was not clear whether the duplication happened before or after the divergence of deuterostomes (Chordata and Echinodermata) and protostomes (Annelid, Mollusc, and Arthropod) which occurred approximately 570 million years ago. Therefore, the presence of a Shaker homologue in Schistosoma indicates the gene duplication happened at least before the emergence of Schistosoma about 600 million years ago.

Another interesting question arises when we consider the fact that the gene duplication event that generated the four *Sh* subfamilies happened before the emergence of *Schistosoma*. If the gene duplication event happened before the emergence of schistosome, do other *Sh* subfamilies such as *Shal*, *Shab* and *Shaw* exist in *Schistosoma* and contribute to the diversity of schistosomal K⁺ currents? They might

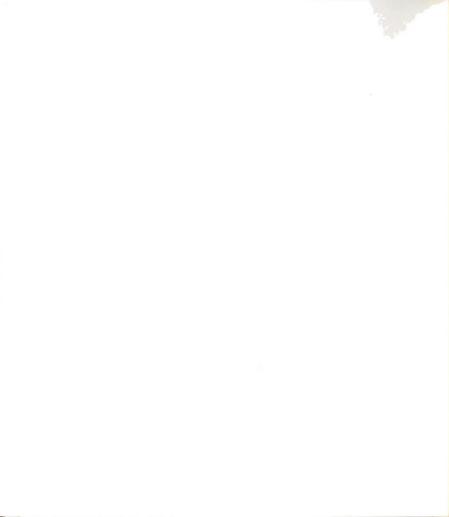


exist in modern *Schistosoma* unless these genes were lost in the evolutionary pathway. One possible way to prove it is to try to screen other *Sh* subfamilies in the schistosomal cDNA library using the SKvl.1 as a probe using a lowstringency hybridization condition.

Do Sh subfamilies exist in other phyla of lower invertebrates? Theoretically, Sh subfamilies should be found in organisms of any higher phyla such as nematodes. Indeed, a Shaw homolog was found in C. elegans (Wei et al., 1991), but the full sequence of the gene has not been published. Do Sh subfamilies exist in more primitive phyla such as protozoa, sponges, coelenterates? A variety of voltage-gated K⁺ currents that have properties similar to mammalian channels have been detected in these phyla including coelenterates (Hagiwara, Yoshida & Yoshii, 1981) and protozoa (Eckert & Brehm, 1979; Deitmer, 1989), supporting the idea that these currents might be directed by Sh subfamilies.

B. What does the analysis of SKv1.1 gene say about the diversity of K channel currents in Schistosoma?

With limited molecular and physiological data, it is not easy to discuss the diversity of K[†] channel currents in *Schistosoma*. There are several mechanisms for the generation of diverse K[†] channels in the *Sh* family: the presence of subfamilies (Wei et al., 1990), the formation of


heteromultimers (Isacoff et al., 1990; MacKinnon et al., 1991; McCormack et al., 1990; Ruppersberg et al., 1990), alternative splicing (Iverson and Rudy, 1990; Jan and Jan, 1990; Kamb et al., 1988; Schwarz et al., 1988; Stocker et al., 1990; Timpe et al., 1988; Timpe et al., 1988), gene duplication within a subfamily (Stühmer et al., 1989) and the level of expression (Guillemare et al., 1992; Honoré et al., 1992; Moran et al., 1992).

Are there multiple copies of SKv1.1 gene in Schistosoma? Southern hybridization analysis has been tried, and the result shows that there is only a single copy of SKv1.1-related gene in the schistosomal chromosome. This suggests that, in contrast to mammalian K⁺ channel genes, multiple copies of identical or closely related genes for a given channel do not exist in invertebrates as also reported in Drosophila and Aplysia.

In general, invertebrates employ alternative splicing as a primary mechanism to generate diverse K⁺ channels while mammals use extensive gene duplication in a given Sh subfamily even though alternative splicing has also been reported in some mammalian Shaker (Attali et al., 1993) and Shaw channels (Rettig et al., 1992; Luneau et al., 1991a; Luneau et al., 1991b). This has led us to investigate the presence of alternatively spliced transcripts of the SKv1.1 gene. However, evidence for the existence of alternatively spliced transcripts of the found.

The six positive clones showed the same restriction patterns. Three of the six clones contained the same nucleotide sequence in the coding region. Also, Northern blot analysis detected only a single primary transcript with a small size (2.8 kb), which may not be long enough to allow the generation of diverse alternatively spliced transcripts.

What does the lack of alternative splicing and multiple copies of SKv1.1 mean? Does this mean Schistosoma might have a relatively simple profile of voltage-gated K channel genes? Although no conclusion can be drawn at this point due to the lack of data, Schistosoma appears to have diverse types of excitable tissues that may need diverse K channels. Schistosoma, as a member of the Phylum Platyhelminthes, is the first organism that shows multiple organs, tissue layers and primitive central and peripheral nervous system. In addition to several ion channels that have been measured in schistosomes (Blair et al., 1991; Day et al., 1992; Day et al., 1993), Schistosoma respond to a variety of neurotransmitters and neuropeptides that may be directly or indirectly related to K channels (Baker et al., 1966; Hillman 1983; Mellin et al., 1983; Pax et al., 1984; Bennett et al., 1969; Bennett and Bueding, 1971; Chou et al., 1972; Dei-Cas et al., 1971; Dei-Cas et al., 1981; Gianutsos and Bennett, 1977; Gustafsson, 1987; Machado et al., 1972; Tomosky et al., 1974; Basch and Gupta, 1988; Gupta and Bash, 1989).

Therefore, if any further diversity of voltage-gated K^{\dagger} channels exists in the schistosome, it could results from the presence of other Sh subfamilies, alternative splicing in other Sh subfamilies, the formation of heteromultimers or the density of channels in the membrane.

C. Does the SKv1.1 have a potential to be a novel target for drug development for schistosomiasis?

The availability of SKv1.1 gene provides several advantages for drug development. It permits to compare the amino acid sequence of SKv1.1 to that of the host. The expression of SKv1.1 channel protein in a heterogenous system also permits a high volume screening for drug development.

The nervous system and the neuromuscular system of helminths are attractive targets for drug development (Geary et al., 1992). Many anthelminthic drugs act on receptors and ion channels in the nervous system. In order for SKvl.1 to be considered as a target for drug development, the following questions need to be answered. Does SKvl.1 protein exist in the nervous or neuromuscular system of S. mansoni? Is the function of SKvl.1 protein important enough to make the chemotherapeutic intervention of SKvl.1 protein valuable? Is the amino acid sequence of the SKvl.1 protein significantly different from that of the host?

Several lines of evidence in the present study show

that SKv1.1 proteins exist in the nervous system and the neuromuscular system of *S. mansoni*. The expression of SKv1.1 protein in the nervous system has been demonstrated by immunohistochemistry on paraffin sections of *Schistosoma*. Also, immunohistochemistry on isolated muscle fibers using the antibody raised against SKv1.1 shows SKv1.1 proteins are indeed expressed in these muscle fibers.

The functions of SKv1.1 in Schistosoma are not obvious from current data. The fact that SKv1.1 shows a A-type current implies that, if this channel is present in neurons, it may regulate the frequency and shape of action potentials. On the other hand, the function of SKv1.1 protein in muscle fibers is difficult to investigate due to technical problems such as the lack of a specific blocker for the channel and the small size of the muscle fibers. However, the presence of sites for phosphorylation by protein kinase C or tyrosine kinase in SKv1.1 gene suggests that SKv1.1 channel might be modulated by many neurotransmitters and neuropeptides participating in the regulation of cellular excitability.

The comparison of the amino acid sequence of SKv1.1 to other mammalian Shaker channels shows that, despite the evolutionary distance between the Schistosoma and mammals, they share high amino acid sequence identity in the middle of the channel including the tetramerization domain, the six membrane spanning domains and the pore-forming domain.

However, the N-terminal (aa 1-50) and C-terminal (aa 430-512) ends show almost no sequence identity to other Shaker channels, making this region a possible novel target.

Nonetheless, the presence of highly variable regions at both ends, not in the middle, of the gene holds several disadvantages for drug development. Most K channel blockers target the pore-forming domain (H5) in the middle of the channel, where almost all Shaker channels share high amino acid sequence identities (Pongs, 1992). Also, the diversity of the K channel blockers is far less than that of K channels. Another problem arises from the fact that both N- and C-terminal regions of the channels are located intracellularly, so any drugs targeted against these region would have to penetrate the cell membrane. However, the Nor C-terminal ends are targeted in drug development, there are some possibilities that novel drugs might be found, for instance, a drug interfering with the inactivation of the channel because the N-terminal is involved in the rapid inactivation of channel.

II. Electrophysiology

A. Why does SKv1.1 current show a fast inactivation?

The injection of SKv1.1 mRNA into *Xenopus* oocytes results in the expression of a fast inactivating current. What are the structural elements that are responsible for the fast inactivation of SKv1.1 current?

Fast inactivating currents have been observed in various Shaker channels from Drosophila, Aplysia and some mammals. Mechanisms underlying the fast inactivation of some Shaker channels have been very well characterized by deletion and mutation analysis. The fast inactivation of the channel appears to be the result of an interaction between the ball structure at the N-terminal end and the receptor structure in the intracellular S4-S5 loop. Application of an oligopeptide mimicking the N-terminal sequence of the channel gene accelerated the inactivation of the current (Ruppersberg et al., 1991). Deletion of the Nterminal sequence also slowed down inactivation of mouse Shal current (Pak et al., 1991). Deletion of three basic amino acid residues (aa 35 - 37) in the ball structure also slowed down inactivation of rat Shal current (Baldwin et al., 1991). At the N-terminal end, in addition to the positively charged amino acids, the importance of a hydrophobic residue has been demonstrated by replacing the seventh leucine residue with a hydrophilic residue. This substitution inhibits the fast inactivation almost completely. At the receptor region in the S4-S5 loop, five important amino acids including one glutamate interact with the inactivation ball (Isacoff et al., 1991).

In SKv1.1, the N-terminal region contains two positively charged amino acid residues (Arg-Lys, aa 23-24) and four hydrophobic leucines (aa 4, 11-13). The receptor

region at the S4-S5 loop contains all five amino acids that are highly conserved in other rapidly inactivating Shaker channels. Therefore, these structural features of SKv1.1 provide possible explanations for the rapid inaction of SKv1.1 current although deletion or site-directed mutagenesis analysis of the N-terminal and the receptor structure of SKv1.1 will give direct evidence for this possibility.

In addition to the fast inactivation currents (N-type) described above, a slow inactivation (C-type) has been observed in some A-type currents. No slowly inactivating currents could be observed in SKv1.1 after leak-subtraction. In other Shaker channels, some channels show only the N-type inactivation, while others show both the N- and C- type inactivations. Alanine in the S6 domain is an important determinant of slow inactivation as shown by site-directed mutagenesis study (Wittka et al., 1991). Based on the sequence comparison between SKv1.1 and Shaker channels, SKv1.1 current is expected to show both the N-type and the C-type inactivation. The reason for the absence of C-type inactivation in SKvl.1 current is not clear. possibility is that the amplitude of the slowly inactivating current is very small compared with that of the rapidly inactivating (N-type) current. Another possibility is that there are determinants other than the Ala residue in the S6 domain, for the slowly inactivating component of the

currents.

Another interesting question that needs to be answered is whether there is a B-subunit in SKvl.1. Most of the mammalian Shaker channels show very slow inactivations when expressed in frog oocytes. However, when coexpressed with the β -subunit, the α and β complex show an altered inactivation. For instance, the RCK1, which normally shows a slow inactivation when expressed alone, exhibits a fast inactivation when expressed together with the B-subunit (Rettig et al., 1994). A more surprising result is that RCK4, which normally shows a fast inactivation even when expressed alone, exhibited a faster rate of inactivation by the coexpression. Is there a B-subunit of SKv1.1 in Schistosoma? Unfortunately, the fact that SKv1.1 alone can make a fast inactivating channel does not necessarily give any clue for the presence of a B-subunit because the inactivation of a fast inactivating channel can also be accelerated by the presence of a B-subunit as shown in mammalian Shaker channels.

B. Why is the voltage dependence of activation of SKv1.1 current and native muscle current shifted to the right edge of the normal range along the voltage axis when compared with other Shaker channels?

In SKv1.1 current, the V_{50} of the relative conductance vs. voltage relationship is +20 mV, being placed in the

right extreme edge of the normal range. Native A-type current from isolated muscle fibers also shows a very high V_{50} of +5 mV. What are the structural features that underlie this unique voltage-dependence of schistosomal A-type current?

Several regions that are involved in the voltagedependence have been suggested by extensive site-directed
mutagenesis studies combined with electrophysiological
studies. The first region is the S4 membrane spanning
domain or the S4 segment. This domain is well known as a
voltage-sensor which detects voltage changes in the membrane
and initiates the conformational change of the protein for
the opening of the channel. In most Shaker channels, the S4
segment contains seven positively charged amino acid
residues which occur at every third position. Their
movement toward the extracellular side is thought to be
responsible for the gating current that is observed during
the opening of the channel (McCormack et al., 1994).

The importance of positively charged amino acid residues of the S4 segment in determining the voltage-dependence of the channel has been studied by substituting all the basic residues in the S4 segment with non-charged glutamines or with other conserved basic residues (Papazian et al., 1991). These mutant channels exhibit a wide range of changes in their voltage-dependences, indicating the importance of positively charged residues. This study also

showed that every positively charged amino acid does not contribute equally to the voltage-dependence of the channel. Detailed mechanisms for these changes have also been studied using single channel analysis of mutant channels (Shao & Papazian, 1993).

The importance of hydrophobic amino acids, in addition to positively charged amino acids, in the S4 segment has also been investigated by site-directed mutagenesis analysis (Lopez et al., 1991). In the S4 segment, conservative mutations of hydrophobic residues, for instance, Leu to Ala, Leu to Val or Ala to Leu, that cause slight changes in the hydrophobicity of each residue resulted in large shifts of voltage-dependence of the current, indicating the importance of hydrophobic amino acids in determining the voltage-dependence.

In addition to the S4 segment, the S4-S5 loop structure has been shown to play an important role in determining the voltage-dependence (McCormack et al., 1991). A leucine zipper motif, with the occurrence of a Leu at every seventh position, is present in this loop structure. The leucine zipper is a motif commonly found in transcription factors and participates in protein-protein interaction, however, this motif in K* channels has not been proven to be participating in the assembly of the K* channel subunits. When each Leu is substituted by Val, these mutations cause significant changes in the voltage-dependence such as

voltage-dependent activation and steady-state inactivation.

In order to determine if the sequence of SKv1.1 has any unique features, amino acid sequences of the S4 segment and the S4-S5 loop structure containing the leucine zipper motif were compared to the corresponding regions of other Shaker channels. Surprisingly, the sequence of the S4 segment of SKv1.1 was identical to the corresponding regions of Shaker channels from Drosophila, Aplysia and most mammals which obviously show a wide range of Vso's of voltage-dependence of activation. This suggests that, although the S4 segment is an important determinant for the voltage-dependence, the S4 segment may not be the element that is responsible for the various voltage-dependences observed in many K channels. On the other hand, when the S4-S5 loop structure of SKv1.1 containing the leucine zipper was compared to other sequences, differences were observed in three amino acid residues (Arg335, Val338 and Val345), which are non-Leu residues located within the leucine zipper motif.

Unfortunately, no data are available for the possible effects of mutations of non-Leu residues in the leucine zipper motif on the voltage-dependence. An interesting experiment will be to make mutations of these three residues to highly conserved residues and observe if there is a leftward shift of the voltage-dependence of SKv1.1 along the voltage axis.

Another possible explanation for the extreme voltage-

dependence of activation of SKv1.1 is that the voltage-dependence may be affected by regions other than the S4 segment and leucine zipper motif. Supporting evidence comes from the sequence comparison between SKv1.1 and the Aplysia K^{\dagger} channel (Ak01a). Ak01a has an identical amino acid sequence both in the S4 segment and leucine zipper motif, but, it displays a different voltage-dependence of activation in a more negative position (V_{50} of +5 mV) compared with that of SKv1.1 (V_{50} of +30 mV).

C. Why is SKv1.1 current resistant to external TEA and CTX?

The current mediated by SKv1.1 is highly sensitive to 4-AP, but highly resistant to external TEA, CTX, DTX and MCDP. In general, the amino acid residues that are responsible for the sensitivity of voltage-gated K⁺ currents to external TEA and CTX, but not for 4-AP, DTX and MCDP, are relatively well characterized. In order to understand the structural bases for the pharmacology of SKv1.1 current, the amino acid sequence of the pore region of SKv1.1 gene was compared with those from other Shaker channel genes.

For external TEA, the residue at position 19 in Table 5 appears to be the most important residue in determining the sensitivity of the channel to external TEA. The channel shows a high sensitivity to external TEA when the residue is Tyr or Phe. The presence of Thr or His at this position gives the channel a medium sensitivity to external TEA.

However, when the residue is a positively charged residue (Arg or Lys), the channel shows a high resistance to external TEA.

The importance of residue 19 has also been studied by extensive site directed mutagenesis. A Thr to Tyr mutation makes the Shaker channel current highly sensitive to TEA while mutations from Thr to positively charged residues (Arg or Lys) make the channel highly resistant to TEA (MacKinnon & Yellen, 1990). In rat brain Shaker channels, a mutation (Val to Tyr) increases the TEA sensitivity of the channel while the reverse mutation (Tyr to Val) decreases the sensitivity (Kavanaugh et al., 1991).

Further evidence for the importance of residue 19 comes from an experiment using heteromultimers that are made of subunits with different pharmacology. When the channel pore is blocked by external TEA, all four subunits participate in binding one molecule of TEA (Kavanaugh et al., 1992; Heginbotham & MacKinnon, 1992). This cooperative interaction of four subunits to bind one TEA has been proven by demonstration a linear relationship between the number of Tyr-containing subunits and the sensitivity of the channel to external TEA.

SKv1.1 contains an Arg (amino acid 394) at the corresponding position, which makes it possible to predict a high resistance of the SKv1.1 channel to external TEA.

Indeed, the SKv1.1 current was highly resistant to external

TEA when expressed in *Xenopus* oocytes, proving the importance of the Arg residue at position 19 in determining the sensitivity of the channel to external TEA.

SKvl.1 current was highly resistant to CTX, being insensitive to as much as 100 nM of CTX. CTX is a scorpion venom toxin, from Leiurus quinquestriatus, that block Ca²⁺-activated K* channels (Miller et al., 1985) as well as voltage-gated K* channels (Garcia-Calvo et al., 1992). The amino acids that mediate molecular recognition between CTX and Shaker K* channel have been well characterized by site directed mutagenesis analysis of all the amino acid residues of both CTX and the receptor region in the channel (Goldstein et al., 1994).

Mutations of amino acid residues in the receptor region, especially on the two extracellular loop regions of S5-H5 and H5-S6 (Figure 8B), revealed five important residues for the determination of the sensitivity of the channel to CTX. When these amino acids are compared with the corresponding residues of SKv1.1, two differences in the SKv1.1 sequence were detected: L (370) rather than G in the S5-H5 loop and R (394) rather than T in the H5-S6 loop. Both differences provide reasonable explanations why SKv1.1 channel is resistant to CTX.

Firstly, the presence of a bigger side chain, L rather than G, at the first position (370) gives a clue for the resistance of SKV1.1 to CTX. In the Shaker channel, when

the Gly residue was mutated to other residues with increasing sizes of the side chain, for instance from Gly to Ala, Val, Leu and Phe, the affinity of the toxin to the receptor was inversely related with size of the side chain (Goldstein et al., 1994). This implies that bigger side chains are sterically hindering CTX from fitting into the receptor site of the channel. For example, the Gly to Leu mutation decreased the affinity of CTX to the receptor by 2000-fold.

Secondly, in position 394, the presence of a positively charged residue (Arg) probably results in the resistance of SKV1.1 current to CTX. Other Shaker channels, rat KV1.5 and Aplysia AkOla, that have Arg at this position are highly resistant to CTX (Pak et al., 1991; Pfaffinger et al., 1991). When the Thr residue at this position in the Drosophila Shaker channel is mutated to a positively charged Lys, the channel becomes extremely resistant to CTX, implying an electrostatic repulsion between the toxin and the receptor although an electrostatic repulsion has not been demonstrated experimentally. Taken altogether, the resistance of SKV1.1 channel to CTX appears to be due to the presence of two amino acid residues (Leu370 and Arg394) around the pore region.

It is interesting to note that the residue 394, Arg in SKv1.1, is known to be an important determinant for both TEA and CTX sensitivity. These two blockers bind to the pore in

a mutually exclusive manner (Miller, 1988; Goldstein and Miller, 1993). This residue is also important in determining the requirement of external K* for channel opening (Pardo et al., 1992). The rKv1.4 channel, which has a positively charged Lys at this position, shows an extreme requirement of the presence of external K* for channel opening, but the dependence disappears when the Lys is replaced by Tyr. Since SKv1.1 has an Arg at this position, one would expect it to require the presence of external K* for channel opening. However, this hypothesis has not been tested in this study.

Only limited information is available for the molecular mechanisms for the blocking actions of 4-AP (Kirsch et al., 1993; Yao & Tseng, 1993), DTX (Hurst et al., 1991) and MCDP. Amino acid sequence comparison among SKvl.1 and other Shaker channels has not been attempted for these blockers.

D. Is the expression of A-type current measured in isolated muscle fibers directed by SKvl.1 qene?

The easiest way of addressing this question is to compare the electrophysiological and pharmacological properties of SKvl.1 current to those of native A-current. The electrophysiological properties of SKvl.1 current are much like those of the rapidly inactivating outward current that has been measured from the isolated muscle fibers of S. mansoni (Table 6) (Day et al., 1993; Day et al., 1994). In

terms of voltage-dependence, the SKv1.1 current and the native current share very similar V₅₀'s for both activation and inactivation and a similar slope factor for activation. In terms of kinetics, SKv1.1 current and the native current display very similar time constants of activation and inactivation. The most apparent difference between the SKv1.1 current and the native muscle current is their pharmacological properties. The current mediated by SKv1.1 is almost completely blocked by 1 mM 4-AP, while the native current requires 30 mM 4-AP for complete blockade. Whereas the SKv1.1 current was not blocked by 100 mM TEA*, 30 mM TEA* produced a 50% inhibition of the native current.

There are several factors that make the direct comparison between oocyte current and native current difficult. Firstly, one-electrode patch clamping has been employed to measure native current in isolated muscle fibers while two-electrode recording has been used to measure SKv1.1 current in oocytes. Secondly, the native currents are contaminated by other currents, making it difficult to isolate a pure current. Thirdly, different cells provide different environments for the expression as well as the modulation of the channel.

There are some examples in which the same channel gene, when expressed in different cells, shows different properties including conductance, kinetics and pharmacology.

When rat Kvl.1 channel gene is expressed in frog occytes and

in a fibroblast cell line, the channel shows different conductances (Stühmer et al., 1988; Koren et al., 1990). The time course of inactivation is much slower in oocytes compared with the expression in a mammalian cell (Grissmer et al., 1992). Also, when rat Kv1.3 channel is expressed in frog oocytes and the pharmacology of the current is compared to the native lymphocyte current, different sensitivities to external TEA, quinine and verapamil have been observed (Douglas et al., 1990).

Some possible mechanisms for these differences have been suggested. Different cells have different abilities to express the channel protein resulting in a different amount of the channel protein in the cell membrane. Although the exact mechanism has not been revealed, the level of expression determines the electrophysiology and pharmacology of the channel (Guilemare et al., 1992; Honore et al., 1992). The sodium channel, when expressed in frog oocytes and in Electophorus electroplax, exhibits different sensitivity to CTX, which proves to be due to a different posttranslational modification, the glycosylation of the channel (Thornhill & Levitan, 1987). There are also many modulatory factors that affect the properties of the channel in different cells including the presence of different cytoplasmic factors (Marom et al., 1993), B-subunit of K channel (Rettig et al., 1994) or functionally associated protein kinases (Esquerra et al., 1994).

The SKv1.1 current measured from frog occytes displayed characteristics similar to native muscle current except for the pharmacology. Further evidence comes from the immunohistochemistry on the isolated muscle fibers in which SKv1.1-specific antibody (ASK1) specifically labels two types of muscle fibers from which A-type currents were originally measured. Therefore, based on results from both electrophysiological and immunohistochemical studies, the expression of A-type currents in isolated muscle fibers appears to be directed by SKv1.1 gene.

III. Immunohistochemistry

A. What is the function of SKv1.1 current in the nervous system and the neuromuscular system?

Strong immunoreactivity to SKv1.1 has been observed in many excitable cells including neurons and muscle fibers.

A-type currents modulate the excitability of neurons. In axons, A-type currents modulate the onset, duration and frequency of action potentials (Connor and Stevens, 1971; Segal et al., 1984; Storm, 1987; Kaang et al., 1992). In nerve terminals, A-type currents also regulate neurotransmitter release and synaptic efficacy (Shimahara, 1981; Jan et al., 1977; Kang et al., 1992). A-type currents also modulate postsynaptic excitability (Cassell and McLachlan, 1986).

Consistent with their diverse functions, A-type

currents are localized in various regions of neurons including dendrites, axon fibers and nerve terminals. Recently, subcellular segregation of various types of mammalian Shaker channels have been demonstrated in vivo indicating differential roles of K⁺ channels depending on different subcellular locations (Sheng et al., 1992; Sheng et al., 1994). Obviously, determination of subcellular localization of SKv1.1 protein in the nervous system of S. mansoni could be useful for understanding the detailed functions of SKv1.1 protein in neurons.

The function of SKv1.1 protein in muscle fibers is not clear. Neither oscillation of membrane potentials nor the firing of action potential have been observed in the isolated muscle fibers of *S. mansoni*.

In addition to the distribution of SKv1.1 protein, the voltage-dependence of SKv1.1 may help to understand the function of SKv1.1 in the regulation of action potentials.

A-type channels modulate the excitability of excitable cells in three ways. First, they delay the initiation of the action potential. Secondly, they decrease the duration of action potentials by facilitating the repolarization of the membrane potential. Thirdly, they, activated by an afterhyperpolarization following action potential repolarization, delay the onset of the next action potential, decreasing the frequency of action potentials.

The V_{50} of the steady-state inactivation of SKv1.1

is -40 mV. The resting membrane potential of isolated or in situ (Bricker et al., 1982) muscle fibers is around -30 mV. At this membrane potential, only about 10% of SKv1.1 channels are available, not providing enough channels for the first and second functions described above. Therefore, it is more likely that SKv1.1 protein, activated by afterhyperpolarization, may modulate the frequency of action potentials rather than the onset or duration, unless there is some mechanism that cycles the membrane potential and recruits more SKv1.1 channels without hyperpolarization.

Based on the sequence comparison, the SKv1.1 channel is expected to require extracellular K* for channel opening like mammalian RCK4 channel (Pardo et al., 1992). Higher extracellular K* concentration also increases the amplitude of the current mediated by RCK4. Therefore, it is possible that SKv1.1 may regulate the excitability of many cells in an activity-dependent manner, being more active when the surrounding concentration of K* increases as a result the activity of neighboring cells.

SKv1.1 also contains many putative sites for phosphorylation by protein kinases such as protein kinase C, tyrosine kinase and casein kinase II. Isolated muscle fibers react to many neurotransmitters and neuropeptides that may be linked to the modulation of the SKv1.1 channel. This indicates that SKv1.1 may modulate the excitability of cells in combination with other receptors.

SUMMARY

- 1) A cDNA (SKv1.1) encoding a Shaker-related K channel has been isolated from an adult cDNA library of the human parasitic trematode Schistosoma mansoni.
- 2) The deduced amino acid sequence (512 aa, 56.5 kDa) contains structural features that are common to other voltage-gated K^{\dagger} channels.
- 3) Dendrogram analysis shows that SKv1.1 is classified in the Shaker family. The presence of a Shaker channel in Schistosoma supports the conclusion that the gene duplication event that generated four Sh subfamilies happened before the emergence of Schistosoma.
- 4) SKv1.1 shows significant sequence identity with most other Shaker channels, with 64-74% identity in the core region (S1-S6), but not at the N- and C-terminal ends.
- 5) Evidence for the presence of alternative transcripts of SKv1.1 was not found. Northern blot analysis detected a single primary transcript of 2.8 kb. Southern blot analysis indicated that SKv1.1 is present as a single copy in the genomic DNA of *S. mansoni*.
- 6) Expression of SKv1.1 in *Xenopus* oocytes produced a rapidly activating and inactivating outward K⁺ current which is highly sensitive to 4-AP, but is insensitive to external TEA, MCDP, DTX and CTX.
 - 7) Immunohistochemistry on isolated muscle fibers using

antibody specific to SKv1.1 demonstrated the expression of SKv1.1 gene in frayed fibers and crescent fibers where A-type currents have been measured. In combination with the results of the electrophysiological characterization, A-type currents in the isolated muscle fibers appear to be directed by SKv1.1 gene.

8) Immunohistochemistry on paraffin sections of S.

mansoni has demonstrated the presence of SKv1.1 proteins in
neurons as well as muscle cells. Much stronger
immunoreactivity was found in the central and peripheral
nervous system of female and male worms including the
anterior ganglia, the central commissure, the longitudinal
nerve cords, the nerve plexus and many cell bodies in the
head region and the body. Mild immunoreactivities have been
observed in the longitudinal, circular and ventral muscle
fibers as well as tubercles of male worm.

BIBLIOGRAPHY

- Aiyar, J., Grissmer, S. & Chandy, K. G. (1993). Full-length and truncated KV1.3 potassium channels are modulated by 5HT1c receptor activation, and independently, by protein kinase C. American Journal of Physiology 265, C1571-8.
- Ashford, M. L. J., Bond, C. T., Blair, T. A. & Adelman, J. P. (1994). Cloning and functional expression of a rat heart K₁₇₀ channel. *Nature* 370, 456-9.
- Atkinson, N. S., Robertson, G. A. & Ganetzky, B. (1991). A component of calcium-activated potassium channels encoded by the *Drosophila slo* locus. *Science* 253, 551-5.
- Attali, B., Lesage, F., Ziliani, P., Guillemare, E., Honoré, E., Waldmann, R., Hugnot, J-p., Mattéi, M-g., Lazdunski, M. & Barhanin, J. (1993). Multiple mRNA isoforms encoding the mouse cardiac KV1-5 delayed rectifier K channel. Journal of Biological Chemistry 268, 24283-9.
- Attali, B., Honore, E., Lazdunski, M. & Barhanin, J. (1992). Regulation of a major cloned voltage-gated K channel from human T lymphocytes. FEBS letters 303, 229-32.
- Baker, L. R., Bueding, E., Timms, A. R. (1966). The possible role of acetylcholine in *Schistosoma mansoni*. British Journal of Pharmacology. **26**, 656-65.
- Baldwin, T. J., Tsaur, M.-L., Lopez, G. A., Jan, Y. N. & Jan, L. Y. (1991). Characterization of a mammalian cDNA for an inactivating voltage-sensitive K* channel. Neuron 7, 471-83.
- Basch, P. F. & Gupta, B. C. (1988). Immunocytochemical localization of regulatory peptides in six species of trematode parasites. *Comparative Biochemistry and Physiology* **91**, 565-70.
- Baumann, A., Grupe, A., Ackermann, A. & Pongs, O. (1988). Structure of the voltage-depdendent potassium channel is highly conserved from *Drosophila* to vertebrate central nervous systems. *EMBO Journal* 7, 2457-63.
- Bennett, J. & Bueding, E. (1971). Localization of biogenic amines in Schistosoma mansoni. Comparative Biochemistry and Physiology 39, 859-67.
- Bennett, J., Bueding, E., Timms, A. R. & Engstrom, R. G. (1969) Occurrence and levels of 5-hydroxytryptamine in Schistosoma mansoni. Molecular Pharmacology 5, 542-5.

Betsholtz, C., Baumann, A., Kenna, S., Ashcroft, F. M., Berggren, P. O., Grupe, A., Pongs, O., Rorsman, P., Sandblom, J. & Welsh, M. (1990). Expression of voltage-gated K' channels in insulin-producing cells. FEBS letters 263, 121-6.

Bezanilla, F. & Armstrong, C. M. (1977). Inactivation of the sodium channel. II. Gating current experiments. *Journal* of *General Physiology* **70**, 567-90.

Bezanilla, F., Perozo, E., Papazian, D. M. & Stefani, E. (1991). Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254, 679-83.

Blair, K. L., Bennett, J. L. & Pax, R. A. (1988). Schistosoma mansoni, Evidence for protein kinase-C-like modulation of muscle activity. Experimental Parasitology 66, 243-52.

Blair, K. L., Bennett, J. L. & Pax, R. A. (1994). Schistosoma mansoni: myogenic characteristics of phorbol ester-induced muscle contraction. Experimental Parasitology 78, 302-16.

Blair, K. L., Day, T. A., Lewis, M. C., Bennett, J. L., & Pax, R. A. (1991). Studies on muscle cells isolated from Schistosoma mansoni: a Ca' dependent K channel. Parasitology 102, 251-8.

Bricker, C. S., Pax, R. A. & Bennett, J. A. (1982). Microelectrode studies of the tegument and subtegumental compartments of male *Schsitosoma mansoni*: anatomical location of sources of electrical potentials. *Parasisotology* 85, 149-61.

Bueding, E., Schiller, E. L. & Bourgeois, J. G. (1967). Some physiological, biochemical and morphologic effects of Tris (p-aminophenyl) carbonium salts (TAC) on Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 16, 500-15.

Butler, A, Wei, A., Baker, K. & Salkoff, L. (1989). A family of putative potassium channel genes in *Drosophila*. Science **243**, 943-7.

Calmeliet, E. (1989). K^{\star} channels in cardiac cells: mechanisms of activation, inactivation, rectification and K^{\star} sensitivity. Pfugers Archives of European Journal of Physiology 414, s88-s92.

Cassell, J. F., & McLachlan, E. M. (1986). The effect of a transient outward current ($I_{\mathtt{A}}$) on synaptic potentials in

- sympathetic ganglion cells of the guinea pig. Journal of Physiology 374, 273-88.
- Cestari I. N., Albuquerque E. X. & Burt, D. R. (1993). A PCR shortcut to oocyte expression. Biotechniques 14, 404-6.
- Chandy, K. G., Douglass, J., Gutman, G. A., Jan, L., Joho, R., Kaczmarek, L., MaKinnon, D., North, R. A., Numa, S., Philipson, L., Ribera, A. B., Rudy, B., Salkoff, L., Swanson, R. A., Steiner, D., Tanouye, M. & Tempel, B. L. (1991). A simplified gene nomenclature. Nature 352, 26.
- Chou, T-C. T., Bennett, J. & Bueding, E. (1972). Occurrence and concentrations of biogenic amines in trematodes. *Journal of Parasitology* **58**, 1098-1102.
- Christie, M. J., North, R. A., Osborne, P. B., Douglass, J. & Adelman, J. P. (1990). Heteropolymeric potassium channels expressed in *Xenopus* oocytes from cloned subunits. *Neuron* 7, 763-73.
- Connor, J. A. & Stevens, C. F. (1971). Voltage clamp studies of a transient outward current in gastropod neural somata. Journal of Physiology 213, 21-30.
- Covarrubias, M., Wei, A. & Salkoff, L. (1991). Shaker, Shal, Shab and Shaw express independent K^{\star} current systems. Neuron 7, 763-73.
- Crews, A. E. & Yoshino, T. P. (1991). Schistosoma mansoni: influence of infection on levels of translatable mRNA and on polypeptide synthesis in the ovotestis and albumen gland of Biophalaria glabrata. Experimental Parasitology 72, 368-80.
- Dascal, N., Schreibmayer, W., Lim, N. F., Wang, W., Chavkin, C., DiMagno, L., Labarca, C., Kieffer, B. L., Gaveriaux, R. C., Trollinger, D., Lester, H. A. & Davidson, N. (1993). Atrial G protein-activated K channel: expression cloning and molecular properties. Proceedings of National Academy of Science, USA 90, 10235-9.
- Davis, R. E., Davis, A. H., Carroll, S. M., Rajkovic A. & Rottman, F. M. (1988). Tandomly repeated exons encode 81-base repeats in multiple, developmently regulated Schistosoma mansoni transcripts. Molecular and Cellular Biology 8, 4745-55.
- Day, T. A., Bennett, J. L. & Pax, R. A. (1992). Schistosoma mansoni: patch-clamp study of a nonselective cation channel in the outer tegumental membrane of females. Experimental Parasitology 74, 348-56.

- Day, T. A., Bennett, J. L. & Pax, R. A. (1993). Voltagegated currents in muscle cells of Schistosoma mansoni. Parasitology 106, 471-7.
- Day, T. A., Bennett, J. L. & Pax, R. A. (1994a). Serotonin and its requirement for maintenance of contractility in muscle fibers isolated from Schistosoma mansoni. Parasitology (in press).
- Day, T. A., Kim, E., Bennett, J. L. & Pax, R. A. (1994). Kinetic and voltage-dependence analysis of transient and delayed K currents in muscle fibers isolated from the flatworm Schistosoma mansoni. Comparative Biochemistry and Physiology. (in press).
- Day, T. A., Maule, A. G., Shaw, C., Halton, D. W., Moore, S., Bennett, J. L. & Pax, R. A. (1994b). Platyhelminth FMRFamide-related peptides (FaRPs) contract *Schistosoma mansoni* (Trematoda: Digenea) muscle fibres in vitro. Parasitology (in press).
- Dei-Cas, E., Dhainaut-Courtois, N., Dhainaut, A. & Vernes, A. (1979). Ultrastructural localization of tritiated 5-HT in adult Schistosoma mansoni. A preliminary report. Biology and Cell 35, 321-24.
- Dei-Cas, E., Dhainaut-Courtois, N. & Biguet, J. (1981). Contribution à l'étude du système nerveus des formes adultes et larvaires de Schistosoma mansoni Sambon, 1907 (Trematoda Degenea). II. Role de lla serotonine et de la dopamine. Ann. Parasitol. Hum. Comp. 56, 271-84.
- Deitmer, J. (1989). Ion channels and the cellular behavior of Stylonychia. In Evolution of the First Nervous System, NATO ASI series A, Life Sciences Vol. 188 (ed. Anderson, P. A. V.), pp. 255-65. New York: Plenum.
- Douglas, J., Osborne, P. B., Cai, Y. C., Wilkinson, M., Christie, M. J. & Adelman, J. P. (1990). Characterization of RGK5, a genomic clone encoding a lymphocyte channel. *Journal of Immunology* **144**, 4841-50.
- Drain, P., Dubin, A. E. & Aldrich, R. W. (1994). Regulation of *Shaker* K^{*} channel inactivation gating by the cAMP-dependent protein kinase. *Neuron* 12, 1097-109.
- Drewe, J., Verma, S., Frech, G. & Joho, R. (1992). Distinct spatial and temporal expression patterns of K channel mRNAs from different subfamilies. *Journal of Neuroscience* 12, 538-48.
- Dumont, J. N. (1972). Oogenesis in Xenopus laevis (Daudin).

- I. Stages of oocytes development in laboratory maintained animals. *Journal of Morphology* 136, 153-79.
- Eckert, R. & Brehm, P. (1979). Ionic mechanisms of excitation in Paramecium. Annual Review of Biophysics and Bioengineering 8, 353-83.
- Esguerra, M., Wang, J., Foster, C. D., Adelman, J. P., North, R. A. & Levitan, I. B. (1994). Cloned ${\rm Ca}^*$ -dependent K channel modulated by a junctionally associated protein kinase. Nature 369, 563-5.
- Eshete, F. & Bennett, J. L. (1990). Schistosoma mansoni: biochemical characteristics of the antischistosomal effects of Ro 15-5458. Experimental Parasitology 71, 69-80.
- Felleisen, R. & Klinkert, M. Q. (1990). In vitro translation and processing of cathepsin B of Schistosoma mansoni. EMBO Journal 9. 371-7
- Feng, D. F. & Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25, 351-60.
- Fetterer, R. H., Pax, R. A. & Bennett, J. L. (1980). Praziquantel, potassium and 2,4-dinitrophenol: Analysis of their action on the musculature of Schistosoma mansoni. European Journal of Pharmacology 64, 31-8.
- Frech, G. C., Vandongen, A. M. J., Schuster, G., Brown A. M. & Joho, R. H. (1989). A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. *Nature* 340, 643-5.
- Fripp, P. J. (1967). Histochemical localization of esterase activity in schistosomes. *Experimental Parasitology* **21**, 380-90.
- Garcia-Calvo, M., Leonard, R., Gianggiacomo, K., MaManus, O. B., Kaczrowski, G. J. & Garcia, M. L. (1992). Identification of a toxin from Leurius quinquestriatus venom that blocks a Shaker K channel. Biophysical Journal 61, A377.
- Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. & Thompson, D. P. (1992) The nervous system of helminths as target for drugs. *Journal of Parasitology* 78, 215-30.
- Gianutsos, G. & Bennett, J. L. (1977). The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology 58, 157-9.

Goldstein, S. A. N., Pheasant, D. J. & Miller, C. (1994). The Charybdotoxin receptor of a Shaker K channel: peptide and channel residues mediating molecular recognition. Neuron 12, 1377-88.

Goldstein, S. A. N. & Miller, C. (1993). Mechanism of charybdotoxin block of a *Shaker K'* channel. *Biophysical Journal* **65**, 1613-9.

Grissmer, S., Ghanshani, S., Dethlefs, B., McPherson, J. D., Wasmuth, J. J., Gutman, G. A., Cahalan, M. D. & Chandy, K. G. (1992). The Shaw-related K channel gene on human chromosome 11 encodes the type I K channel in T cells. Journal of Biological Chemistry. 267, 20971-9.

Grupe, A., Schröter, K. H., Ruppersberg, J. P., Stocker, M., Drewes, T., Beckh, S. & Pongs, O. (1990). Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family. EMBO Journal 9, 1749-56.

Guillemare, E., Honoré, E., Pradier, L., Lesage, F., Schwetz, H., Attali, B., Barhanin, J. & Lazdunski, M. (1992). Effects of the level of mRNA expression on biophysical properties, sensitivity to neurotoxins, and regulation of the brain delayed-rectifier K channels Kv1.2. Biochemistry 31, 12463-8.

Gupta, B. C. & Basch, P. F. (1989). Human chorionic gonadotropin-like immunoreactivity in schistosomes and Fasciola. Parasitology Research 76, 86-9.

Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of *Schistosoma mansoni*. Parasitology Research **74**, 168-74.

Gutman, G. A. & Chandy, K. G. (1993). Nomenclature for vertebrate voltage-gated K^{\star} channels. Seminars in Neurosciences 5, 101-6.

Hagiwara, S., Yoshida, S. & Yoshii, M. (1981). Transient and delayed potassium currents in the egg cell membrane of the coelenterate, Renilla koellikeri. Journal of Physiology 318, 123-41.

Hartmann, H. A., Kirsch, G. E., Drewe, J. A., Taglialatela, M., Joho, R. H. & Brown, A. M. (1991). Exchange of conduction pathways between two related K channels. *Science* 251, 942-4.

Heginbotham, L. & MacKinnon, R. (1992). The aromatic binding

- site for tetraethylammonium ion on potassium channels. Neuron 8, 483-91.
- Hemmick, L. M., Perney, T. M., Flamm, R. E., Kaczmarek, L. K. & Birnberg, M. C. (1992). Expression of the H-ras oncogene induces potassium conductance and neuron-specific potassium channel mRNAs in the AtT20 cell line. Journal of Neuroscience 12, 2007-14.
- Hille, B. (1992). Evolution and diversity. In *Ionic Channels* of *Excitable Membranes*, 2nd edn. pp. 525-44. Sunderland: Sinauer Associates Inc.
- Hillman, G. R. (1983). The neuropharmacology of schistosomes. Pharmacology and Therapeutics 22, 103-15.
- Ho, K., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V. & Hebert, S. C. (1993). Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. *Nature* 362, 31-8.
- Hong, Z., LoVerde, P. T., Thakur, A., Hammarskjold, M. L. & Rekosh, D. (1993). Schistosoma mansoni: a Cu/Zn superoxide dismutase is glycosylated when expressed in mammalian cells and localizes to a subtegumental region in adult schistosome. Experimental Parasitology 76, 101-14.
- Honoré, E., Attali, B., Romey, B., Lesage, F., Barhanin, J. & Lazdunski, M. (1992). Different types of K channel current are generated by different levels of a single mRNA. EMBO Journal 11, 2465-71.
- Hoshi, T., Zagotta, W. N. & Aldrich, R. W. (1990). Biophysical and molecular mechanisms of *Shaker* potassium channel inactivation. *Science* 250, 533-8.
- Hurst, R. S., Busch, A. E., Kavanaugh, M. P., Osborne, P. B., North, R. A. & Adelman, J. P. (1991). Identification of amino acid residues involved in dendrotoxin block of rat voltage-dependent potassium channels. *Molecular Pharmacology* 40, 572.
- Huang, X. Y., Morielli, A. D. & Peralta, E. G. (1993). Tyrosine kinase-dependent supression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. *Cell* **75**, 1145-56.
- Hwang, P. M., Fotuhi, M., Bredt, D. S., Cunningham, A. M. & Snyder, S. H. (1993). Contrasting immunohistochemical localizations in rat brain of two novel K channels of the Shab subfamily. Journal of Neuroscience 13, 1569-76.

- Isacoff, E. Y., Jan, Y. N. & Jan. L. Y. (1990). Evidence of the formation of heteromultimeric potassium channels in Xenopus occytes. Nature 345, 530-4.
- Isacoff, E. Y., Jan Y. N. & Jan, L. Y. (1991). Identification of a putative receptor for the cytoplasmic inactivation gate in the *Shaker K'* channel. *Science* **353**, 86-90.
- Iverson, L. E. & Rudy, B. (1990). The role of divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the *Shaker* gene of *Drosophila*. *Journal of Neuroscience* 10, 2903-16.
- Jameson, B. A. & Wolf, H. (1988). The antigenic index: a novel algorithm for predicting antigenic determinants. Computational Applied Bioscience 4, 181-6.
- Jan, L. Y. & Jan. Y. N. (1990). How might the diversity of potassium channels be generated? Trends in Neuroscience 13, 415-9.
- Jan, L. Y. & Jan, Y. N. (1992). Structural elements involved in specific K channel functions. *Annual Review of Physiology* **54,** 537-55.
- Jan, L. Y. & Jan, Y. N. (1994). Potassium channels and their evolving gates. *Nature* 371, 119-22.
- Jan, Y. N., Jan, L. Y. & Dennis, M. J. (1977). Two mutations of synaptic transmission in Drosophila. Proceedings of Royal Society of London Biological Science 198, 87-108.
- Johansen, K., Wei, A. G., Salkoff, L. & Johansen, J. (1990). Leech gene sequence homologous to *Drosophila* and mammalian *Shaker-K'* channels. *Journal of Cell Biology* 111, 60a.
- Kaang, B. K., Pfaffinger, P. J., Grant, S. G., Kandel, E. R. & Furukawa, Y. (1992). Overexpression of an Aplysia Shaker K channel gene modifies the electrical properties and synaptic efficacy of identified Aplysia neurons. Proceedings of National Academy of Science, USA. 89, 1133-7.
- Kamb, A., Tseng-crank, J. & Tanouye, M. A. (1988). Multiple products of the *Drosophila Shaker* gene may contribute to potassium channel diversity. *Neuron* 1, 421-30.
- Kamb, A., Iverson, L. E. & Tanouye, M. A. (1987). Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50, 405-13.
- Kaplan, W. D. & Trout, W. E. (1969). The behavior of four

neurological mutants of Drosophila. Genetics 61, 399-409.

Kavanaugh, M. P., Varnum, M. D., Osborne, P. B., Christie, M. J., Busch, A. E., Adelman, J. P. & North R. A. (1991). Interaction between tetraethylammonium and amino acid residues in the pore of rat-cloned voltage-dependent potassium channels. *Journal of Biological Chemistry* 266, 7583-7.

Kavanaugh, M. P., Hurst, R. S., Yakel, J., Varnum, M. D., Adelman, J. P. & North R. A. (1991). Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron 8, 493-7.

Kirsch, G. E., Shieh, C. C., Drewe, J. A., Vener, D. F. & Brown, A. M. (1993). Segmental exchanges define 4-aminopyridine binding and the inner mouth of K^{\star} pore. Neuron 11, 1-20.

Koren, G., Liman, E. R., Logothetis, D. E., Nadal-Ginard, D. & Hess, P. (1990). Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells. *Neuron* 2, 39-51.

Kozak, M. (1991). Structural features in eukaryotic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry 266, 19867-70.

Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. (1993). Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. *Nature* **364**, 802-6.

Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. (1993). Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127-33.

Kuo, S. S., Saad, A. H., Koong, A. C., Hahn, G. M. & Giaccia, A. J. (1992). Potassium-channel activation in response to low doses of gamma-irradiation involved reactive oxygen intermediates in nonexcitatory cells. Proceeding of National Academy of Science, USA 90, 908-12.

Kyte J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. *Journal of Molecular Biology* **157**, 105-35.

Lanar, D. E., Pearce, E. J. & Sher, A. (1985). Expression in Escherichia coli of two Schistosoma mansoni genes that encode major antigens recognized by immune mice. Molecular Biochemical Parasitology 17, 45-60.

- Lanzillo, J. J. (1990). Preparation of digoxigenin-labeled probes by the polymerase chain reaction. *Biotechniques* 8, 620-2.
- Lesage, F., Attali, B., Lazdunski, M. & Barhanin, J. (1992). Developmental expression of voltage-sensitive K channels in mouse skeletal muscle and C_2C_{12} cells. FEBS Letters 310, 162-6.
- Levitan, E. S., Hemmick, L. M., Birnberg, N. C. & Kaczmarek, L. K. (1991). Dexamethasone increases potassium channel messenger RNA and activity in clonal pituitary cells. *Molecular Endocrinology* 5, 1903-8.
- Liman, E. R., Hess, P., Weaver, F. & Koren, G. (1991). Voltage-sensing residues in the S4 region of a mammalian K channel. *Nature* **353**, 752-6.
- Liman, E. R., Tytgat, J. & Hess, P. (1992). Subunit stoichiometry of a mammalian K channel determined by construction of multimeric cDNAs. Neuron 9, 861-71.
- Logothetis, D. E., Movahedi, S., Satler, C., Lindpaintner, K. & Nadal-Ginard, B. (1992). Incremental reductions of positive charge within the S4 region of a voltage-gated K[†] channel result in corresponding decreases in gating charge. Neuron 8, 531-40.
- Lopez, G. A., Jan, Y. N. & Jan, L. Y. (1991). Hydrophobic substitution mutations in the S4 sequence after voltage-dependent gating in Shaker K channels. Neuron 7, 327-36.
- Lowy, J. & Hanson, J. (1962). Ultrastructure of invertebrate smooth muscles. *Physiological Review Supplemental* 5, 34-47.
- Lumsden, R. D. & Bryam, J. III. (1967). The ultrastructure of cestode muscle. *Journal of Parasitology* **53**, 326-42.
- Luneau, C., Williams, J. B., Marshall, J., Levitan, E. S., Oliva, C., Smith, J. S., Antanavage, J., Folander, K., Stein, J. S., Swanson, R., Kaczmarek, L. K. & Bushrow, S. (1991b). Alternative splicing contributes to K channel diversity in the mammalian central nervous system. Proceedings of the National Academy of Sciences, USA 88, 3932-6.
- Luneau, C., Wiedmann, R., Smith, J. S. & Williams, J. B. (1991a). Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. FEBS Letters 288, 163-7.
- Machado, C. R. S., and Machado, A. B. M. & Pellegrino, J. (1972). Catecholamine-containing neurons in *Schistosoma*

- mansoni. Zeitschrift Zellforschung 124, 230-7.
- MacKinnon, R. (1991). Determination of the subunit stoichiometry of a voltage activated potassium channel. *Nature* 350, 232-5.
- MacKinnon, R. & Yellen, G. (1990). Mutations affecting TEA blockade and ion permeation in voltage-activated K channels. Science 250, 276-9.
- Marom, S., Goldstein, S. A. N., Kupper, J. & Levitan, I. B. (1993). Mechanism and modulation of inactivation of the Kv3 potassium channel. Receptors and Channels 1, 81-8.
- Martin, R. J., Thorn, P., Gration, K. A. & Harrow, I. D. (1992). Voltage-activated currents in somatic muscle of the nematode parasite Ascaris suum. Journal of Experimental Biology 173, 75-90.
- McCormack, K., Joiner, W. J. & Heinemann, S. H. (1994). A characterization of the activating structural rearrangements in voltage-dependent Shaker K channels. Neuron 12, 301-15.
- McCormack, K., Lin, J. W., Iverson, L. E. & Rudy, B. (1990). Shaker K channels subunits from heteromultimeric channels with novel functional properties. Biochemistry and Biophysics Research Communication 171, 1361-71.
- McCormack, T., Tanouye, M. A., Iverson, L. E., Lin, J. W., Tamashami, M. McCormack, T., Pampanelle, J. T., Mathew, M. K., & Rudy, B. (1991). A role for hydrophobic residues in the voltage dependent gating Shaker K channels. Proceedings of National Academy of Science, USA. 87, 2931-5.
- Meadows, H. M. & Simpson, A. J. G. (1989). Codon usage in Schistosoma. Molecular and Biochemical Parasitology 36, 291-3.
- Mellin, T. N., Busch, R. D., Wang, C. C. & Kath, G. (1983). Neuropharmacology of the parasitic trematode. Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 32, 83-93.
- Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K. & Gree, M. R. (1984). Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12, 7035-56.
- Miller, C., Moczydlowski, E., Latorre, R. & Phillips, M. (1985). Charybdotoxin, a protein inhibitor of single Ca²⁺-activated K channels from mammalian skeletal muscle. *Nature*

313, 316-8.

Miller, C. (1988). Competition for block of a $Ca^{2^{2}}$ -activated K^{t} channel by charybdotoxin and tetraethylammonium. Neuron 1, 1003-6.

Moran, O., Schrebmayer, W., Weigl, L., Dascal, N. & Lotan, I. (1992). Level of expression controls modes of gating of a K channel. FEBS Letters 4, 21-5.

Mori, Y., Matsubara, H., Folco, E., Siegel, A. & Koren, G. (1993). The transcription of a mammalian voltage-gated potassium channel is regulated by cAMP in cell-specific manner. Journal of Biological Chemistry 268, 26482-93.

Needleman, S. B. & Wunsch, C. D. (1970). A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. *Journal of Molecular Biology* 48, 443-53.

Nelson T. J. & Alkon, D. L. (1992). GTP-binding protein and potassium channels involved in synaptic plasticity and learning. *Molecular Neurobiology* **5**, 315-28.

Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kanayo, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Raferty, M. A., Hirose, T., Inayama, S. & Numa, S. (1984). Primary structure of Electrophorus electicus sodium channel deduced from cDNA sequence. Nature 312, 121-7.

Pak, M. D., Covarrubias, M., Ratcliffe, A. & Salkoff, L. (1991). A mouse brain homolog of the *Drosophila Shab K* channel with conserved delayed-rectifier properties. *Journal of Neuroscience* 11. 869-80.

Pak, M. D., Baker, K., Covarrubias, M., Butler, A., Ratcliffe, A. & Salkoff, L. (1991). MShal, a subfamily of Atype K* channel cloned from mammalian brain. Proceedings of National Academy of Sciences, USA 88, 4386-90.

Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N. & Jan, L. Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237, 749-53.

Papazian, D. M., Timpe, L. C., Jan, Y. N. & Jan, L. Y. (1991). Alteration of voltage-dependence of *Shaker* potassium channel by mutations in the S4 sequence. *Nature* **349**, 305-10.

Pardo, L. A., Heinemann, S. H., Terlau, H., Ludewig, U., Lorra, C. Pongs, O. & Stuhmer, W. (1992). Extracellular K

- specifically modulates a rat brain potassium channel. Proceedings of National Academy of Science, USA. 89, 2466-70.
- Pax, R. A., Bennett, J. L. & Fetterer, R. H. (1978). A benzodiazepine derivative and praziquantel: Effects on musculature of Schistosoma mansoni and Schistosoma japonicum. Naunyn-Schmiedeberg's Archives of Pharmacology 304, 309-15.
- Pax, R. A., Siefker, C. & Bennett, J. L. (1984). Schistosoma mansoni: differences in acetylcholine, dopamine and serotonin control of circular and longitudinal parasite muscles. Experimental Parasitology 58, 314-24.
- Payet, M. D. & Duplis, G. (1992). Dual regulation of the ntype K channel in Jurkat T-lymphocytes by protein kinase-A and Kinase-C. Journal of Biological Chemistry 267, 18270-83.
- Perney, T. M., Marshall, J., Martin, K. A., Hockfield, S. & Kaczmarek, L. (1992). Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. Journal of Neurophysiology 68, 756-66.
- Perney, T. M. & Kaczmarek, L. (1993). Expression and regulation of mammalian K channel genes. Seminars in the Neurosciences 5. 135-45.
- Pfaffinger, P. J., Furukawa, Y., Zhao, B., Dugan, D. & Kandel, E. R. (1991). Cloning and expression of an Aplysia K[†] channel and comparison with native Aplysia K[†] currents. Journal of Neuroscience 11, 918-27.
- Philipson, L. H., Hice, R. E., Schaeffer, K., Lamendola, J., Bell, G. I., Nelson, D. J. & Steiner, D. F. (1991). Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet cell potassium channel. Proceedings of the National Academy of Sciences, USA 88, 53-7.
- Pongs, O., Kecskemmethy, N., Müller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S. & Ferrus, A. (1988). Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO Journal 7, 1087-96.
- Pongs, O. (1992) Structural basis of voltage-gated K^{*} channel pharmacology. *Trends in Pharmacological Sciences* 13, 359-65.
- Quattrocki, E. A., Marshall, J. & Kaczmarek, L. K. (1994). A Shab potassium channel contributes to action potential broadening in peptidergic neurons. Neuron 12, 73-86.

Quick, M. W., Naeve, J., Davidson, N. & Lester, H. A. (1992). Incubation with horse serum increases viability and decreases background neurotransmitter uptake in *Xenopus* occytes. *Biotechniques* 13, 357-61.

Rettig, J., Heinemann, S. H., Wunder, F., Lorra, C., Parcej, D. N., Dolly, J. O. & Pongs, O. (1994). Inactivation properties of voltage-gated K* channel altered by presence of B-subunit. Nature 369, 289-94.

Rettig, J., Wunder, F., Stocker, M. Lichting-Hagen, R., Mstiaux, F., Beckh, S., Kues, W., Pedarzani, P., Schröter, K. H., Ruppersberg, J. P., Veh, R. & Pongs, O. (1992). Characterization of a Shaw-related potassium channel family in rat brain. EMBO Journal 11. 2473-86.

Roberds, S. L. & Tamkun, M. M. (1991). Cloning and Tissuespecific Expression of Five Voltage-gated Potassium Channel Cdnas Expressed in Rat Heart. Proceedings of the National Academy of Sciences, USA 88, 1798-802.

Rosenberg, R. L. & East, J. E. (1992). Cell-free expression of functional Shaker potassium channels. Science 360, 166-8.

Rudy, B., Lau, D., Lin, J. W., Pollack, J. & Kentros, C. (1992). DRK1 mRNA is induced by NGF in rat pheochromocytoma PC12 cells. Society for Neuroscience Abstract 18, 77.

Rudy, B. (1988). Diversity and ubiquity of K channels. Neuroscience 25, 729-49.

Ruppersberg, J. P., Schröter, K. H., Sakmann, B., Stocker, M., Sewing, S. & Pongs, O. (1990). Heteromultimeric channels formed by rat brain potassium channel proteins. *Nature* 345, 535-7.

Ruppersberg, J. P., Stocker, M., Pongs, O., Heinemann, S. H., Frank, R. & Koenen, M. (1991) Regulation of fast inactivation of cloned mammalian $I_{\kappa}(A)$ channels by cystein oxidation. Nature 352, 711-4.

Sah, P. & McLachlan, E. M. (1992). Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motorneurons. *Journal Neurophysiology* 68, 1834-41.

Salkoff, L., Baker, K., Butler, A., Covarrubias, M., Pak, M. D. & Wei, A. (1992). An essential 'set' of K channels conserved in flies, mice and humans. *Trends in Neuroscience* 15, 161-6.

Schröter, K. H., Ruppersberg, J. P., Wunder, R., Rettig, J.,

- Stocker, M. & Pongs, O. (1991). Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain. FEBS Letters 278, 211-6.
- Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. (1988). Multiple potassium-channel components are produced by alternative splicing at the *Shaker* locus in *Drosophila*. *Nature* 331, 137-42.
- Schwarz, T. L., Papazian, D. M., Carretto, R. C., Jan, Y. N. & Jan. L. Y. (1990). Immunological characterization of K channel components from the *Shaker* locus and differential distribution of splicing variants in *Drosophila*. Neuron 4, 119-27.
- Scott, V. E. S., Rettig, J., Parcej, D. N., Keen, J. N., Findlay, J. B. C., Pongs, O. & Dolly, J. O. (1994). Primary structure of a β subunit of α -dendrotoxin-sensitive K channels from bovine brain. Proceedings of National Academy of Science, USA 91, 1637-41.
- Segal, M., Rogawski, M. A., & Barker, J. L. (1984). A transient potassium conductance regulates the excitability of cultured hippocampal and spinal neurones. *Journal of Neuroscience* 4, 604-9.
- Shao, X. M. & Papazian, D. M. (1993). S4 mutations alter the single-channel gating kinetics of Shaker K channels. Neuron 11, 343-52.
- Shen, W. & Waye, M. Y. (1988). A novel method for generating a nested set of unidirectional deletion mutants using mixed oligodeoxynucleotides. *Gene* 70, 205-11.
- Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. J. (1993). Deletion analysis of K channel assembly. *Neuron* 111, 67-76.
- Sheng, M., Tsaur, M. -L., Jan, Y. N. & Jan, L. Y. (1992). Subcellular segregation of two A-type K channel proteins in rat central neurons. *Neuron* 9, 271-82.
- Sheng, M., Liao, Y. J., Jan, Y. N. & Jan L. Y. (1993). Presynaptic A-current based on heteromultimeric K channels detected in vivo. Nature 365, 72-5.
- Sheng, M., Tsaur, M. L., Jan, Y. N. & Jan L. Y. (1994). Contrasting subcellular localization of the Kv1.2 K channel subunit in different neurons of rat brain. *Journal of Neurosceince* 14, 2408-17.
- Shimahara, T. (1981). Modulation of snaptic output by the

- transient outward potassium current in Aplysia. Neuroscience Letters 24, 139-42.
- Silk, M. H. & Spence, I. M. (1969b). Ultrastructural studies of the blood fluke-Schistosoma mansoni. II. The musculature. South African Journal of Medical Science 34, 11-20.
- Silk, M. H. & Spence, I. M. (1969a). Ultrastructural studies of the blood fluke-Schistosoma mansoni. III. The nerve tissue and sensory structures. South African Journal of Medical Science 34, 93-104.
- Skelly, P. J., Kim, J. W., Cunningham, J. & Shoemaker, C. B. (1993). Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. Journal of Biological Chemistry 269, 4247-53.
- Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990). Immunoreactivity of the pancreatic polypeptide family in the nervous system of the adult human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573-81.
- Semeyen, D. R., Pax, R. A. & Bennett, J. L. (1982). Surface electrical activity from *Schistosoma mansoni*: A sensitive measure of drug action. *Journal of Parasitology* **68**, 353-62.
- Sneath, P. H. A. & Sokal, R. R. (1973). In *Numerical Taxonomy*, Pp. 230-4. San Francisco: W. H. Freeman and Company.
- Solc, C. K., Zagotta, W. N. & Aldrich, R. W. (1987). Single channel and genetic analyses reveal two distinct A-type potassium channels in *Drosophila*. Science 236, 1094-8.
- Stocker, M., Stühmer, W., Wittka, R., Wang, X., Müller, R. Ferrus, A. & Pongs O. (1990). Alternative Shaker transcripts express either rapidly inactivating or noninactivating K channels. Proceedings of the National Academy of Sciences, USA 87, 8903-7.
- Storm, J. F. (1987). Action potential repolarization and a fast afterhyperpolarization in rat hippocampal pyramidal cells. *Journal of Physiology* **385**, 733-59.
- Strong, M., Chandy, K. D. & Gutman, G. A. (1993). Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. *Molecular Biology and Evolution* 10, 221-42.
- Stühmer, W., Conti, F., Stocker, M., Pongs, O. & Heinemann,

S. H. (1991). Gating currents of inactivating and noninactivating potassium channels expressed in *Xenopus* occytes. *Pfluegers Archives* **418**, 423-9.

Stühmer, W., Ruppersberg, J. P., Schröter, K. H., Sakmann, B., Stoker, M., Giese, K. P., Perschke, A., Baumann, A. & Pongs, O. (1989). Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. *EMBO Journal* 8, 3235-44.

Swanson, R. A., Marshall, J., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., Luneau, C. J., Antanavage, J., Oliva, C., Buhrow, S. A., Bennett, C., Stein, R. B. & Kaczmarek, L. K. (1990). Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in brain. Neuron 4. 929-39.

Tanabe, T., Tekeshima, H., Mikami, A., Flockerzi, C, Takahashi, H., Kangawa, K, Kojima, M., Matsuo, H., Hirose, T. & Numa, S. (1987). Primary structure of the receptor for calcium channel blockers from skeletal msucle. Nature 328, 313-8.

Takimoto, K., Fomina, A. F., Gealy, R., Trimmer, J. S. & Levitan, E. S. (1993). Dexamethasone rapidly induces Kv1.5 K* channel gene transcription and expression in clonal pituitary cells. *Neuron* 11, 359-69.

Takumi, T., Ohkubo, H. & Nakanishi, S. (1988). Cloning of a membrane protein that induces a slow voltage-gated potassium current. *Science* 242, 1042-5.

Tanouye, M. A., Salkoff, L., Kamb, C. A. & Iverson, L. E. (1986). Genetics and molecular biology of ionic channels in Drosophila. Annual Review of Neuroscience 9, 255-76.

Tanouye, M. A. & Ferrus, A. (1985). Action potentials in normal and Shaker mutant Drosophila. Journal of Neurogenetics 2, 253-71.

Tempel, B. L., Jan, Y. N. & Jan, L. Y. (1988). Cloning of a probable potassium channel gene from mouse brain. *Nature* 332, 837-9.

Thornhill, W. B. & Levitan, S. R. (1987). Biosynthesis of electroplax sodium channels in *Electrophorus* electrocytes and *Xenopus* occytes. *Biochemistry* **26**, 4381-8.

Timpe, L. C., Jan, Y. N. & Jan, L. Y. (1988). Four cDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron 1, 659-67.

- Timpe, L. C., Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. (1988). Expression of functional potassium channels from *Shaker* cDNA in *Xenopus* oocytes. *Nature* 331, 143-5.
- Tomosky, T., Bennett, J. L. & Bueding, E. (1974). Tryptaminergic and dopaminergic responses of *Schistosoma mansoni*. Journal of Pharmacology and Experimental Therapeutics 190, 260-71.
- Tomosky-Sykes, T. K., Mueller, J. F. & Bueding, E. (1977). Effects of putative neurotransmitters on the motor activity of Spirometra mansonoides. Journal of Parasitology 63, 492-4.
- Tsaur, M-L., Sheng, M., Lowenstein, D. H., Jan, Y. N. & Jan, L. Y. (1992). Differential expression of K channel mRNA in the rat brain and down regulation in the hippocampus following seizures. Neuron 8, 1055-67.
- Wang, H., Kunkel, D. D., Martin, T. M., Schwatzkrolin, P. A. & Tempel, B. L. (1993). Heteromultimeric K channels in terminal and juxtaparanodal regions of neurons. *Nature* 365, 75-9.
- Watson, S. & Abbott, A. (1992). Receptor nomenclature. Trends in Pharmacological Sciences 13, s32-4.
- Webb, R. A. (1987). Innervation of muscle in the cestode Hymenolepis microstomum. Canadian Journal of Zoology 65, 928-35.
- Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M. & Salkoff, L. (1990). K current diversity is produced by an extended gene family conserved in *Drosophila* and mouse. Science 248, 599-603.
- Wei, A., Jegla, T. & Salkoff, L. (1991). A *C. elegans* potassium channel gene with homology to *Drosophila*, mouse and humans. *Society for Neuroscience Abstract* 17, 1281.
- Wittka, R., Stocker, M., Boheim, G. & Pongs, O. (1991). Molecular basis for different rates of recovery from inactivation in the *Shaker* potassium channel family. *FEBS letters* **286**, 193-200.
- Wu, D. -F. & Haugland, F. N. (1989). Voltage clamp analysis of membrane currents in larval muscle fibers of *Drosophila*: alteration of potassium currents in *Shaker* mutants. *Journal* of *Neuroscience* 5, 2626-40.
- Yao, J. A. & Tseng, G-N. (1993). Removing inactivation of an

A-type channel (RHK1) potentiates block by 4-aminopyridine (4-AP). Biophysical Journal 64, A313.

Yu, L. & Bloem, L. J. (1993). Use of polymerase chain reaction to screen phage libraries. In *PCR Protocols*, Current Methods and Applications (ed. White, B. A.), pp 211-5. Totowa: Humana Press.

Yellen, G., Jurman, M., Abramson, T. & MacKinnon, R. (1991). Mutations affecting internal TEA blockade identify the probable pore-forming region of a K* channel. Science 251, 939-41.

Yool, A. J. & Schwarz, T. L. (1991). Alteration of ionic selectivity of a K channel by mutation of the H5 region. Nature 349, 700-4.

Zagotta, W. N., Hoshi, T. & Aldrich, R. W. (1990). Restoration of inactivation in mutants of *Shaker* potassium channels by a peptide derived from ShB. *Science* **250**, 568-71.

