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ABSTRACT

A CONDENSED FINITE ELEMENT ANALYSIS
OF MICROIRRIGATION HYDRAULICS
INCLUDING PIPE COMPONENTS

By

Philip Gerrish

The hydraulic design of microirrigation systems is a tedious and time-
consuming task. It was the goal of this research to simplify the design of
microirrigation systems in order to conserve energy and water. Numerical
solutions to microirrigation hydraulics are problematic because of the prohibitive
number of network nodes which need to be analyzed. The existing finite element
solutions for pipe networks represent pipe components as separate elements,
thereby increasing an already formidable number of nodes. In this research, a
partial differential equation was developed which incorporates the effect of pipe
components at nodes rather than in separate elements. The equation further
condenses the network matrices by making use of the virtual node concept in
which laterals with evenly spaced emitters are considered single elements with
derivative boundary conditions. Results are strongly correlated with existing
finite element solutions which show strong correlation with empirical data. Due
to the reduced number of nodes, the solution converges rapidly in few iterations.
A large network was solved using the condensed finite element analysis developed
in this research; where previous methods would require over 12,000 nodes to solve

this network, the method developed here required only 80 nodes. Results



correlate strongly to those obtained using the Backstep method.

A development is proposed for a two-dimensional equation describing
irrigated sub-plots with evenly spaced laterals as single, two-dimensional elements
with derivative boundary conditions. Some preliminary results were obtained and

found to be promising.
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I. Introduction

The Preclassic Period, starting around 2500 B.C., marks the beginning of the
development of farming communities on this continent. This date corresponds to the
rudimentary origins of irrigation practice worldwide. As population densities grew,
the development of more sophisticated techniques of water management became
necessary. Today, with high-tech irrigation and sophisticated methods of analysis, we
struggle more than ever to keep up with the growing number of mouths to feed. While
doomists point out the trends in population increase and the seeming impossibility of
feeding all these mouths, scientists and engineers collaborate in an attempt to outwit
nature, pointing out that man’s wit is in fact @ part of nature. Irrigation technology
is one of the most dramatic examples of man’s intelligence affecting the course of
nature.

In affecting nature’s course, man must be aware of its limits. Because the
earth’s total area of suitable cropland and freshwater resources are limited, there has
been a push for more efficient use of existing cropland and water resources--in other
words, a preference in the development of intensive as opposed to extensive agriculture.
It has been estimated that by the year 2000, the area of cropland in use will be double
the area in use in 1985 (Power, 1986; Holy, 1981), pushing to its limits the world’s
supply of suitable cropland.

Development of intensive agriculture, however, is not without some costs to the

environment. The amount of top-soil decreases more rapidly under intensive
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cultivation. Increases in chemical application are often paralleled by an increase in
groundwater and runoff contamination. The soil, physically and chemically, is
fatigued more rapidly. Any way of reducing these costs to the environment must be
investigated thoroughly if we are to look to our future, near and far.

A fine case for the use of environment-friendly intensive agriculture can be
made by pointing to the Mayan Civilization--one of the greatest pre-columbian empires
of this continent. The case of the Maya is a classic example of the rise and fall of an
irrigation society. Their rise is due in great part to the extensive development of
sophisticated irrigation systems and practices (Turner and Harrison, 1983). Their fall,
although still a great mystery, is thought by many to be related to environmental
decay as a result of their highly intensive agriculture (Wiseman, 1989). This history
and others like it must affect our thinking today, lest we lose "the ability to
understand recorded historical materials.” (Okosun, 1993).

The case for more efficient use of water is made simply by noting that, on a
worldwide average, our present efficiency is around 37%. Add to that the fact that
80% of all freshwater resources in use today are being used for irrigation, and the case
for water efficiency becomes urgent (Power, 1986).

One requirement for the improvement of water efficiency is the improved
control of water application. This is one of the many benefits of microirrigation.

Other benefits include zero runoff, reduced labor costs, ease of chemical and fertilizer
injection, and higher salinity tolerance due to stable moisture conditions.
Microirrigation is highly efficient and environment-friendly; it is therefore a good
candidate for future-oriented agriculture.

The design of microirrigation systems is tedious and capital costs are high;
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these are the two most prohibiting factors in most cases. While capital costs cannot be
changed, it is the aim of this research to facilitate design by improving computer

models of the hydraulics involved.

A. Scope and Objectives

Hydraulic networks have traditionally been solved using the backstep, Hardy-
Cross, Newton-Raphson, and Linear Theory methods. Bralts and Segerlind (1985)
first put linearized flow equations into Finite Element formulation. Wood (1981) and
Finkel (1982) point out that pressure losses across pipe components such as elbows,
tees and valves may significantly affect pressure heads in a network. These minor
losses were put into Finite Element formulation by Haghighi et al. (1988).

A drip irrigation system is well designed if the water is applied uniformly
throughout. As a measure of uniformity, the Statistical Uniformity Coefficient was
introduced for microirrigation by Bralts, et al.(1987); it is defined as one minus the
coefficient of variation of emitter outputs. The objective of computer models developed
for micro irrigation design, therefore, is to accurately predict the output of each
emitter and give the uniformity coefficient as an indication of the design’s quality. A
shortcoming of existing models is the awkwardness with which pipe components are
handled; inclusion of pipe components in the network analysis makes solution
cumbersome and unstable because new nodes are added to the system.

The overall goal of this research is to conserve water, chemicals and energy
used for plant growth through improved hydraulic design of micro irrigation systems.
More specifically, the focus of this research will be to develop an improved finite
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element formulation of pipe network systems in order to facilitate design. The specific

objectives are as follows:

1. Assess the effect of pipe components such as tees, elbows, crosses,

expansions, and contractions on the solution of a hydraulic network.

2. Develop a condensed finite element formulation for the incorporation of

pipe components which would not increase the number of nodes.

3. Include the virtual node concept in the finite element analysis, thereby
further condensing the network to be analyzed.

4, Apply the condensed finite element formulation to the design of

microirrigation systems, and compare the results with those of other

methods.



I1. Review of Theory and Literature

An irrigation system is characteristically a "tree" hydraulic network system (no
closed loops) with a main as the "trunk", submains as primary "branches" and laterals
as secondary "branches" (see Figure 1). Along the length of each lateral are the
emitters which are water outlets. The emitters are where the water is applied directly
to the plant in a drip irrigation system. In a sprinkle irrigation system, the water

outlets are sprinklers.

A, Hydraulics of Irrigation

1. Equation Governing Emitter Flow
For the purposes of this study, all water outlets will be called emitters. The

equation describing flow in an emitter is:

g, = kh* (1)

where q, = emitter discharge
k = emitter discharge coefficient
h = pressure head
x = emitter discharge exponent

Equation (1), in general, describes orifice flow to the atmosphere (Wu, et al., 1979).
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The coefficient and exponent characterize the emitter and are different for different
emitters. For a pressure-compensating emitter, for example, the value of x is close to
or equal to zero, as flow does not depend on pressure head. The value of x, in other
cases, is indicative of the flow regime in the emitter. A value of 0.5 indicates fully

turbulent flow, whereas a value of 1 indicates laminar flow.

2. Equations Governing Pipe Flow
A generally accepted form of the differential equations governing fluid flow is

the Navier-Stokes equation:

p%=—Vp+pg+pWV (2)

where; v = Laplacian operator,
p = pressure,
p = density,
g = acceleration due to gravity,
B = viscosity,

V = velocity,
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The particular solution of the Navier-Stokes equation for pipe flow is the Darcy-

Weisbach equation:
=rL V2 3
AH=f & 25 (3)
where aH,, = pressure head loss due to pipe friction

f = friction factor

L = length of pipe

D = diameter of pipe

V = velocity of fluid

g = acceleration due to gravity

To

The friction factor, f, in the above equation is a dimensionless wall shear, f= I .
=pV?
8

It is found to be f=%4é. (where Re = Reynold’s number) for laminar flow. This value,

however, is not so nicely defined in the transition and turbulent flow regimes. To
determine f in these flow regimes, it is common practice to refer to a chart called the
Moody diagram. Some empirical equations have been derived and are successful in
approximating the friction factor, f.

Another equation which may be used to calculate head loss due to pipe friction

is the Blasius equation:

- 8(4)2a__,g*?
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where; v = kinematic viscosity
q = flow rate
L = length of pipe
D = pipe diameter
a = constant
b = constant
g = acceleration due to gravity
For PVC pipe, the values of a and b were determined by von Bernuth and Wilson

(1989) to be: a=0.316 and b =-0.25. Hence the equation,

h, = KLv®-25g1-75D~¢.75 (5)

An empirical equation often prefered for its simplicity is the Hazen-Williams

equation:
- kSYSL 1.852
AHD— W q (6)
where k,,, = 4.73 for English units (D and L in feet)

k,,, = 10.7 for International System of units
q = flow
Cyw = Hazen-Williams roughness coefficient
This equation approximates head-loss over a limited range of Reynolds numbers, a

drawback which should be considered especially when working in laminar or
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transition flow regimes.
While any of the above pipe flow equations may be used, the algebraic
development which follows uses the Hazen-Williams equation. This equation will be

used for the sake of comparison with other methods which use the same equation.

3. Equations for Approximating Lateral Flow

Flow in a microirrigation lateral line (a pipe with emitters) can be
approximated by constructing a dimensionless energy gradient curve (Wu and Gitlin,
1975). Basic assumptions are (a) flow from all emitters along the lateral is the same,
and (b) emitters along the lateral are evenly spaced. Dimensionless head drop

(AHyAH) is plotted against dimensionless length (x/L) and the curve derived is an

exponential decay function:
JAH L yaa 7
Ry= 22 =1-(1-1) (7)
where, AH, = head drop at point i

AH = total head drop in lateral
i = x/L, where x = distance from origin, and L = total length of lateral.

m = 1.852 from Hazen-Williams equation
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Figure 2. Approximation of pressure head along a lateral.
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Head at any point i along the lateral can then be described as:

hy; = Hy - R,AH ¢ R,"AH' (8)

where, Hy=headati=0

RAH = head loss due to pipe friction at point i

R/AH’ = head loss or gain due to elevation at point i
The curve described by equation (8) is shown graphically in Figure 2. With emitter
flow described by q = kh*, and constant emitter flow along the lateral, flow at point i
along the lateral is:

q; = k(h))* = k(H, - R,AH + R;"AH")* (9)

Or, substituting the equality, q, = kH,* for flow from the first emitter on the lateral

gives an equation for flow from the lateral at any point i along the lateral:

@y = @1 - R,(AH/H,) + R,' (AH'/H,)1* (10)

4. Equation Governing Component Head Loss

An abrupt change in pipe geometry causes turbulence. Where turbulence
occurs, energy is lost. Pipe components (tee’s, elbows, valves, etc.) present abrupt
changes in pipe geometry. Their presence therefore implies loss of energy. A pump,

the exception of course, would increase energy. The energy lost! at a pipe component

INote here that the terms energy and head are used
interchangeably. This is because in hydraulics, total energy is
commonly expressed in potential form. "Refer to next section under
the heading, Conservation of Energy.
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is equal to some fraction of the fluid’s kinetic energy at that point:

AHc=kczl; (11)

where aH, = pressure head loss due to pipe component
V = the velocity of the fluid
g = acceleration due to gravity

k. = a constant peculiar to the component used

The velocity head of water, 21; , is the water’s kinetic energy expressed as potential

energy (head).
B. Analysis of Hydraulic Networks

As with any physical system, both conservation of mass and conservation of
energy must be satisfied. These dictate the continuity equations throughout the

system.

1. Conservation of Mass

The conservation of mass of a fluid implies that flow in equals flow out:

Y @10=Y Tou (12)

When this continuity is met at several points in a system, the result is a system of
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simultaneous equations.

2. Conservation of Energy

The conservation of energy of a fluid is expressed by Bernoulli’s equation:

2
-zv_g + h+ z + h, = constant (13)

where V = velocity
g = acceleration due to gravity
h = pressure head
z = elevation
h, = head loss due to friction

Simply stated, this equation says that the sum of the kinetic energy (in potential

2
form), ZLg , plus the potential energy, h+z, plus the heat energy lost due to friction

(in potential form), h,, is equal to the total energy and must therefore be constant

throughout the system.

8. Choice of Unkown

The set of simultaneous equations describing a hydraulic network can be
expressed in terms of either hydraulic head (potential energy) or flow as the unknown.

Choosing flow as the unkown has the advantage that many of the equations in

the set of simultaneous equations will be linear (Jeppson, 1976). In fact, if no closed
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loops exist (i.e. a tree network, as commonly encountered in irrigation systems), all of
the equations will be linear. While this is clearly a great advantage, it is countered by
the disadvantage that the boundary conditions are expressed in terms of potential
(head). A pump, for example, will deliver a certain hydraulic head, the outflow of
which depends on the solution of the entire network. Also, the derivative boundary
condition described later as the Virtual Node concept is a potential (head) gradient.

The great disadvantage of choosing potential as the unkown is that the
resulting equations are non-linear. The attractiveness of this choice, however, is due
to (a) the systemmatic facility with which the set of equations is formed, and (b) the
ability to apply boundary conditions essential for solution.

Note that the unkown chosen in this research is potential energy which, as
stated earlier, is the sum of elevation and pressure head, z + h. This sum is also
refered to in this thesis as hydraulic head, and is denoted simply by h for hydraulic

head within an element and H for hydraulic head at a node.

4, Notation

The network analysis technique used
in this thesis is called the Finite Element
Method. The use of Finite Element notation

throughout this section will facilitate

presentation of the different network analysis i J

techniques and will assure consistency of

. . Figure 3. A generic element
notation throughout this thesis. The reader,

therefore, will be acquainted with Finite Element notation at this point.
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Figure 3 shows a generic element--a one-dimensional element as defined by
Segerlind (1984). The element, (e), lies between two nodes, i and j. In the case of
hydraulic network systems, an element refers to a length of pipe. A node must be
assigned to every point at which (a) head is known, (b) head is to be calculated, or (c)
there is an abrupt change ("discontinuity”) in head. For example, to calculate emitter
flow, it is necessary to know hydraulic head at that point; so a node is assigned to that
point.

A variable with a superscript in parenthesis pertains to an element, whereas a
variable with a subscript pertains to a node. The variable, q, for example refers to
flow through pipe element 7, while g5 refers to flow through emitter node 5.

Equations developed here are non-linear and their solution is numerical.
Throughout this thesis, the subscript, n, denotes the number of the current iteration.

Likewise, n-1 refers to the previous iteration.

C. Some Methods of Network Analysis

1. The Backstep Method

For a string of emitters (a lateral), where one end represents a source with
known pressure, the Backstep Method can be used to calculate the pressure heads at
each of the emitter nodes along the lateral. In Figure 4, for example, node 1

represents a known head while nodes 2 through 8 represent emitters at which head is
to be calculated.

To begin the solution, an initial guess is made for head at node 8. Next, the
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Figure 4. A lateral with seven emitters.
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head at node 7 is calculated by satisfying the conservation of mass at node 8. That is,
flow out of node 8 (emitter flow) is set equal to flow in (pipe flow). Pipe flow is

calculated by rearranging the Hazen-Williams equation,

q(7)=(%7HTe) 1.:52 (1‘)
where,
k(M= ksysL (15)

.85
Cl}w 2D4.81

L = length of pipe element 7
Cuw = Hazen-Williams roughness coefficient for element 7
D = diameter of pipe element 7

For example, the equation expressing conservation of mass at node 8 is:

qa? -qg,=0 (16)
Substituting equations ? and (14) into equation (16) gives:

- 1
A e o

where, H - z = hydraulic head minus elevation = pressure head.



Page 19
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Figure 5. Flow chart for Backstep Method.
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With the initial guess for H,, H, is calculated. From the expression for
conservation of mass at node 7, Hy is calculated, and so on until H, is calculated.
This value for H, is then compared with the known value for head at that point. If
these values are within a specified error interval, then the procedure is finished;
otherwise, the initial guess for h, is incremented, and calculations are repeated. The
solution is thereby arrived at iteratively as shown in Figure 5.

The advantage of the backstep method is its straight-forward nature and hence
its facility of formulation. The great disadvantage it has is the long convergence time
required due to the large number of iterations required. Of the three methods

presented in this section, this is by far the slowest.

2. The Newton-Raphson Method
This method is based on a truncation of the Taylor series which takes the form,

_ Rxp,)

X, = X -
R(X,.)

n n-1

(18)

where x = the unknown

R(x) = the residual equation

n = the number of current iteration
This is an iterative solution to the equation R(x) = 0. An equation of this form is
known as a residual equation. In the example of a string of emitters (Figure 4), a
residual equation and its first derivative must be written for each node. The residual

equation for any node in a pipe network system is simply, R(h) = q;, - q,, = 0, where h
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(head) is now the unknown. Written for all nodes as a system of equations, the matrix
formulation takes the following form:

{h}={h,,} - (D] *{R(Ah, )} (19)
where [D] = the Jacobian matrix of derivative elements

{R(h)} = the residual vector
{h) = the vector of unknowns (head)

[9R, OR, aR, ]
?h-; a—hz o« s @ m
9R, OR, R,

T ah, (20)
oR, OR, R,

Determining the Jacobian matrix makes this method rather cumbersome when
seeking a generic formulation for networks. Also, a disadvantage of this method is its
instability, especially when the unknown is head. (Greater stability is achieved when
flow is the unknown.) Because of its instability, this method depends greatly on the
accuracy of the initial guess. Otherwise, this method has the great advantage of

quadratic convergence, which means rapid solution.



Page 22

3. The Linear Theory Method
This method sets up a system of linear equations by "linearizing” the flow

equations (Jeppson, 1976). This is achieved by observing that,

-0.46
q(.) =C(.) (HI-Hj) o’ where C (@) = (Hi -_L ) n-1 , and k (e) = kSZIL .
(k(c))O.SC C}}".OSZD‘.°7

The term, C, is treated as a constant and its value can be determined because

(Hy-H,) ., is known. (Note that n-1 refers to the previous iteration.)

Linearization of the emitter flow equation in terms of hydraulic head is

achieved by noting that,

g, = ky(H-2)% = (kA2 g (21)

so that g, = C_H, , where C, = k, (H-z)*
H n-1
The conservation of mass at node 6, for example, is now expressed in the

following form:

C'®) (H,-H,) -C'®) (H,~H,) -CgH,=0 (22)

Again, notation is important. C® refers to the linearizing constant for pipe element
flow. C, refers to the linearizing constant for emitter node flow.
This method in general is quite stable and is not highly dependent on the

accuracy of the initial guess. The solution converges in relatively few iterations.
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4. Finite Element Formulation of Linear Theory Method

One-dimensional Finite Element notation (Segerlind, 1984) is used to number
nodes and elements of a hydraulic network system (Bralts et al., 1987). Figure 4 and
Figure 6 show examples of this numbering system. A network numbered in this
fashion is readily put into matrix form by adding the contribution of each element to
the global system of equations.

The global system of equations takes the form,

(K] {H}={F} (23)

which can be written in residual form as,

{R}=[K] {H}-{F}={0} (24)

where {R} = global residual vector.
[K] = global stiffness matrix.
{H) = global vector of unknown heads.
{F) = global force vector.
The element stiffness matrix represents an element’s contribution to the global
stiffness matrix. The element stiffness matrix, in this case, consists of the linearizing

constant pertaining to an element:

(25)

o -
(k] =[C . cm]
-cle e
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where; C® = linearizing constant,
k® = element stiffness matrix.
The element force vector is an element’s contribution to the global force vector. When
minor losses are not accounted for, it equals zero.
The procedure by which element vectors and matrices are added to the global
matrices is called the Direct Stiffness Method (Segerlind, 1984). The generic form of

an element stiffness matrix is,

2,1 k2.2

(@71 * ' (26)
[k(®] [k ]

This matrix is then added to the global stiffness matrix as follows:
k,, is added to K;;
k,; is added to K;;
k,, is added to K;;
k,; is added to K;;

where, k = value in element matrix

K = value in global matrix

Emitters may be incorporated into the global stiffness matrix by considering
them to be separate elements (Bralts et al., 1987).



Page 26

q=Ce(H1‘H,m) (27)

where H,, is equal to zero (atmosphere) and C, is the linearizing constant for the
emitter flow equation. The result is that, C, is added to K;;; emitter contributions end
up on the diagonal of the global stiffness matrix.

The global stiffness matrix which results is a banded symmetric matrix. The
iterative solution of the resulting system of equations was written in computer code by
Bralts and Segerlind (1985).

An advantage of the Finite Element formulation for the solution of hydraulic
network systems is its systematic simplicity. Because of this, it is well suited to the
development of a universal network solver. Bralts and Segerlind (1985) list several

other advantages.

Accomodating Pipe Components.

The cummulative effect of several pipe components in a hydraulic network is
often substantial. While losses due to pipe wall friction often dominate, the "minor
losses" due to turbulence in pipe components is seldom negligible. As pointed out by
Villemonte (1977), the term "minor losses" is often a misnomer as their effect is
frequently "major".

Haghighi et al. (1988 and 1989) proposed that pipe components may be added
to the system of equations as separate elements. This is done by adding an element
matrix of linearized component coefficients to the global stiffness matrix for each pipe

component. The component head loss in a component element is calculated by:
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v 8q?
AH‘. = Hi - Hj = k¢2—g = kc-;;‘g-d—‘

This can be linearized and rearranged to form,
qg= Cc(Hi - Hj)

EZdl

where C, =
8Kk Qp-y

(-4
The element matrix for a pipe component is then added to the global stiffness matrix
by the Direct Stiffness Method. The component element matrix is similar in form to
those for pipe elements:

C. -C.

(o) .
o™ -C. C.

The above development works only for certain two-node components such as elbows
and valves. A tee, however, is a component with three "fittings"; it is represented by
an element with three nodes (Haghighi et al., 1989). This approach has the
advantage that the equations are assured global continuity of zeroth order, C°,
meaning that discontinuities do not exist at nodes (see discussion of continuity in
Results and Discussion section). The additional nodes added by pipe components,
however, mean additional equations, which means increased computer time and

memory requirements.
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D. The Finite Element Method

One way of approximating the solution to an equation is to multiply its
residual form by a weighting function and set the integral of the product equal to zero.
This procedure is especially useful in the solution of differential equations. While
there are several weighting functions to choose from, the weighting function employed
in Galerkin’s method is perhaps the most widely used.

Consider the equation,

D%“E-cqng-o (28)

Employing the product rule for derivatives together with Greene’s theorem, the
second-derivative term can be broken down into two first-derivative terms, one of
which represents the intra-element residue which should go to zero (refer to Segerlind,
1984 or Dhatt and Touzot, 1984). The function is multiplied by its weighting function
(or shape function) and integrated over an element at each node of the element. A

linear element has two nodes, i and j; the integration at node i yields:

Xy N Xy x4

1 0¢ . _ -
,fD_a_x_ 2 ax IGNﬁdx + [onydx = 0
1 f] Xy

where N, = shape function at node i.
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Integration at node j yields:

%ﬁri-g&dx fGN,¢dx+foN, =0

where N; = shape function at node j

An element’s contribution, therefore, to the global system of equations is written in

matrix form:
Xy 3N T Xy Xy 9
- T, Ty = 9
)[DT%dx ;[G[N] ¢dx+xfo[N1 dx = 0 (29)
4 3 4
where [N] = [N; N;] = shape function matrix for element (e)

Shape functions are derived so that,

¢(o) = [N] {Q(o)}

Linear shape functions, therefore, satisfy the following:
¢ = NO®, + NO,

where potential, ¢, is a straight line connecting nodes i and j. Hence they take the

form:

=
"
>
t
X
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where X, =xatnodei
X; = x at node j

L = length of element

While this research employs linear shape functions only, the same concepts
developed here can be used in conjunction with shape functions of higher-degree

polynomials to achieve more accurate results.

Continuity Requirements.

From equation (29), note that a first derivative term is integrated. The first
derivative of the function must therefore be defined, requiring continuity of first order,
C!, throughout an element. Also, interelement continuity of zeroth order, C°, is
required, meaning that the value for node j of an element must equal the value for
node i of the next element. In the case of linear elements, the first derivative is

undefined at the nodes.

The Virtual Node Technique.

A way to reduce the size of the global stiffness matrix is by merging the effect
of a string of several emitters into a single element. This is achieved by considering
the effect of these emitters to be continuous throughout a single element, thus having
the effect of a derivative boundary condition along the element. The nodes of such an
element are called virtual nodes or virtual emitters (Kelly, 1989; Bralts et al., 1993).
This technique considerably reduces the number of nodes in a system and hence the

size of the global stiffness matrix.



Page 31

The implementation of this technique requires that the flow equations be
rearranged to describe head as a residual equation in differential form. This equation
is then solved simultaneously for all nodes in the system using the Finite Element

Method.



II1I. Methodology

When applying the Finite Element formulation of the Linear Theory Method to
the analysis of a medium-size microirrigation system, a problem which arises is the
prohibiting size of the global stiffness matrix. A drip-irrigated plot of one hectare, for
example, with emitters spaced one meter apart and laterals spaced 1.5 meters apart
would contain 6,600 emitters and would require 6,667 nodes for head calculations.
The size of the global stiffness matrix would then be 6,667 x 6,667. Depending on the
arrangement, this number could be increased up to two fold due to the presence of
pipe components. Such a matrix would prohibit the use of conventional personal
computers. Also, when pipe components are taken into account, an elaborate "first
guess" procedure is necessary to initialize iterations. In this research, a formulation
will be developed to eliminate the extra nodes added by pipe components and thereby

eliminate the need to closely approximate nodal values for the solution to converge.

A. Research Approach

The objectives of this research are restated below, each followed by the research

approach employed in its development.

1. Assess the cumulative effect of pipe components such as tees, elbows,

crosses, expansions and contractions on the solution of a hydraulic

Page 32
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network.

This objective will be addressed by using an existing pipe-network program
called ANALYZER (Haghighi et al., 1988, 1992; Mohtar et al., 1991; Shayya et al.,
1988) to compare the solution of a hydraulic network not including pipe components to

the solution which includes the effect of pipe components.

2. Develop a condensed finite element formulation for the incorporation of

pipe components without increasing the number of elements.

This will be accomplished by developing a formulation in which a pipe
component is represented at a node rather than as a separate element. Because a
node at a junction is needed anyway, no new node is added as a result of a component

at that junction. The effect of a pipe component will be accounted for in pipe elements

downstream of that component.

3. Include the virtual node concept in the finite element analysis, thereby

further condensing the network to be analyzed.

A string of evenly spaced emitters (a lateral) will be considered a single
element with a derivative boundary condition describing out-flow as a continuous
function along the length of the element. This way, where previous methods required
a node at each emitter along a lateral, this method requires only two nodes (one

element) to represent the entire lateral or lateral segment.
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4. Apply the condensed Finite Element formulation to the design of

microirrigation systems and compare the results with those of other

methods.

A pipe network will be analyzed and the results will be compared to those of
ANALYZER and KYPIPE (Wood, 1980; Wood and Charles, 1972, 1973; Wood and
Rayes, 1981).

B. Effect of Components on Network Solution

The effect of pipe components on the solution of a hydraulic network is often
substantial. The following scenario emphasizes the need to include the effect of pipe
components if the solution is to be meaningful. Figure 7 shows a hydraulic network;
for now, consider only the first diagram in the figure. The solution to this network is
achieved using the ANALYZER program. In Figure 8 and Figure 9, two solutions are
compared: the solution not including pipe components is compared with the solution
which includes the effect of pipe components.

Note that if the effect of pipe components is not included, the head calculated at
node 1 is not significantly different than zero, because the error produced by not
including pipe components is greater that the head at node 1. It is apparent here that
the solution which does not include the effect of pipe components has limited meaning.

Now consider the second diagram in Figure 7. This shows the same network
but with pipe components represented by nodes instead of elements. The total number
of nodes is reduced from 40 to 27--about two thirds!
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The above observations demonstrate the benefits of developing a simple and
efficient method for including the effect of pipe components in hydraulic network

analysis without increasing the number of nodes.

C. Algebraic Development

The development which follows will result in an algebraic solution for pipe
network analysis. Because the residual equations must be linearized, the solution to
the resulting system of equations is therefore iterative. This formulation will include
the minor losses? due to components such as tees, elbows, and crosses. Component
head loss® will be calculated as a drop in hydraulic head in the elements immediately
downstream of a component. An advantage of this formulation is noted in the fact
that no new elements are added to the network, thereby adding no new equations to

the system.

1. Linearization of Flow Equations including Minor Losses
Node i in Figure 10 represents a tee at a pipe junction. Any node such as node
i which represents a pipe component will from here on be called a component node.

Flow from node i to node j will be called positive flow. If flow is positive, then the

2 Note here that the term minor losses refers to the

cumulative effect of head loss due to components in an entire
network.

3 Note here that the term component head loss refers to the
hydraulic head loss in a particular pipe element due to the
presence of a component attached to the upstream side of the
element.
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Figure 10. A schematic diagram of a pipe component.
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total head difference between i and j is:

AH, = H, - H; - AH, (30)

where AH, = head loss due to the pipe component,
AH,; = total head loss due to pipe friction
H, = head at node i
H; = head at node j

Head loss at a component node is presented in Figure 11 as a sharp drop, or
discontinuity, in the energy grade line; here, the logic leading to equation (30) is
visually apparent. The energy grade line is a graphic representation of total energy--
kinetic plus potential--and is given in terms of hydraulic head. Thus, the general

equation describing the relationship between flow and head difference in an element

is:

Hi - HJ - AHc = k(e)ql.asz (31)

or, rearranging slightly,
Hy - Hj = k(c)ql.esz + AHc (32)
While equations (31) and (32) appear trivially different, they are quite different in

terms of global formulation and stability. The two methods shall be discussed

separately as Method 1 (equation (31)) and Method 2 (equation (32)).
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Method 1.

Rearranging equation (31) gives an expression for flow:

0.54
q® =( Her‘AHc) (33)
k (@

This flow equation can then be linearized by observing that

Q, = (H;-H,~AH_) ,C'® (34)

where Cc'® = (H-H,~AH_) ;2% (k(®) 03¢

Method 2.

Equation (32) is rewritten as follows:

2
Hi - Hj = k(a)ql.asz + kC'ZLg

Substituting Q/A for V,

2

Hy - Hj = k(o)qj..asz + kc

H, - Hj = (k(a)qo.asz + T(e)q)q

where k (@ =_4.73L
C,}.;aszD‘ .87
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(o) = 8
and T =k, oniDt
Or, in linearized form,
qQ, = (Hy-H,),C'® (35)
where cle = -

0.852
kg *+Tq,

2. Calculation of Component Head Loss.

The component head loss term requires that velocity be known. The velocity
head will therefore be based on hydraulic heads calculated in the previous iteration.
Note here that at least one iteration must be performed before component head loss is
taken into account. This has the advantage of automatically approximating nodal
values before including the effects of components. Because continuity is expressed in

terms of flow, equation (11) will be rearranged by replacing velocity with flow over

area:
=k L = 82
AH_ = k, Y k. pce (36)
where A is the cross-sectional area of the component

D, is the inside diameter of the component

The diameter, D,, in the above equation refers more specifically to the inside
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Figure 12. An explanation of references to component
diameters.
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diameter of the component (see Figure 12) where the pipe element and component are
joined. In the case of positive flow, this occurs at node i of the element, hence the
subscript. It is important to note that this diameter is specific to the pipe element and
not to the component node. The component diameter data is therefore stored as part

of the element data file for the computer program discussed in a later section.

Method 1.

Substituting Q from equation (33) into equation (36), we get.:

2
Hc T Pey 21é k (@
gn“Dy
8 (H,~H,~AH_\'°®
AHr: = kcx 2 4( : kj(o) c) (37)
gn“Dy

This equation must be solved numerically for AH,, but a first approximation can be
made by noting that the exponent is approximately equal to one (1.08 = 1). Setting

the exponent equal to one and solving for AH, yields:
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Equation (38) can then be used as a first approximation to solve for AH, in equation
(37). The numerical method employed here is the Newton-Raphson method, chosen for

its rapid convergence.

Method 2.

While component head loss is not incorporated as a separate head loss term, it
is accounted for by the T®q term. Again, the resulting equation must be solved
numerically for flow:

- (Hi -H_L) n-1
k'® q:_-1353 +T (@ o

n-1

(39)

A first approximation is made by setting q°** = q. q can then be solved for:
‘ H,-H
q= —_ 7
k (@) +T (o)

This first approximation is then used as a seed value for the Newton-Raphson

numerical solution of equation (39).

3. Algebraic Incorporation of Component Head Loss

The global system of equations is made up of several element contributions. An
element is affected by a component only if it is located immediately downstream of a
component node. For every node which represents a component, therefore, the
computer algorithm must first locate all elements touching the node and then

determine which of these elements are downstream of the node.
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Elements downstream of a component node.

The elements found to be immediately downstream of a component node will
from here on be called simply downstream elements (see Figure 10). These elements
are treated differently than other elements. First, for each downstream element, the
component head loss, AH,, is calculated as indicated in equation (11). Component
head loss is based on the heads calculated as a result of the previous iteration and is
treated as a known in the current iteration. This head loss, AH,, is incorporated in the

linearized coefficients (C*”s) for downstream elements as seen in equation (7).

Method 1.
Component head loss contributes to both the linearized coefficients as in
equation (34) and to the right-hand side of the equations as follows. The equation

describing conservation of mass at node i of a downstream element has the constant,

c'® 1, added to the right-hand side. Added to the right side at node j is -C* T;.

In matrix formulation, this is expressed as a contribution to the forcing vector:

(e
{£(e} ={-C") Ti} (40)

The above equation applies only to the condition of positive flow as previously defined.
When flow is negative (i.e. when flow is from node j to node i) and node j represents a

component, the element contribution is then:
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- (e)
{f(e)}={CCmT7;z} (41)

Method 2.
Component head loss is incorporated only in the linearized coefficient, C, as

defined in equation (35).

Selection of Component Coefficient, k..

A computer program called ALGNET was written based on the preceding
algebraic development. The algorithm used for selecting a component’s loss coefficient
is described here.

For a component with only two fittings, e.g. a coupling or an elbow, only one
coefficient is needed, whereas a component with more than two fittings, e.g. a tee or a
cross, requires at least two coefficients for the calculation of minor losses. The nodal
data file for the computer program, ALGNET, contains two coefficient values for each
component node. The first value, k.4, is used if an element exists upstream of the
component node which lies in a straight line (180 degrees) with the element under
scrutiny. The second value, k,, is the default value. If no upstream element exists at
180 degrees, then the coefficient, k., is assigned the value of kg, In Figure 13, for
example, the pipe component coefficient chosen for downstream element (2) is k.,
because an upstream element exists, element (1), which lies between 160° and 200°

from element (2). The coefficient chosen for element (3) is k., because no upstream
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(3)

(2)

a = 20 degrees

Figure 13.

Selection of component coefficient.
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element exists between 160° and 200° from element (3). See also Figure 12.
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D. Development of Partial Differential Equation

Consider the pipe element depicted in Figure 14. Conservation of mass dictates
that flow at x equals flow at x+dx plus the out-flow from the section, dx. As
discussed in the literature review, a virtual node approach requires that the out-flow
be considered a continuous function of x. The flow lost per length along a section of
pipe can be formulated as a constant flow gradient:

9q, | nk(h-2)* (42)
ox L

where n, = number of emitters on lateral
k = emitter constant (same for all emitters on lateral)
h = average head along lateral (see Appendix C for calculation)
z = average elevation along lateral
L = length of lateral

Conservation of mass for the pipe element in Figure 14 requires that:

Qe = Tvax * %‘f;dx (43)

Equations relating head loss to flow can be given the general form,

Ah = ag™x
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Figure 14.

Pipe element with elbow and several emitters.
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where, ah = head loss due to pipe friction
x = length of pipe

m = exponent: 1.852 for Hazen-Williams or 2 for Darcy-Weisbach.

a = coefficient: A’L for Hazen-Williams or f—25_ for Darcy-
C ,;.D‘ .87 weps

Weisbach (see lit. review)

Over a distance, dx, this equation takes the form,

6h , _ . m
E‘dx aqg dx

Solving for flow,
o[22}
and linearizing the partial derivative,
=08

where,

x 1
a m
Substituting into equation (43) gives,
oh| . p Oh dq, 45
Drax x Drax x,dx+ axd" (43)
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Energy grade line for element with component.
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where,

oh

p.oh ___Dah +Daanx
*0X |gedx

*ox |,  *ox?

Substituting equation (46) into equation (45) gives,

ﬂ+ aq’

* ox? ax °

aq. 3 .
where B can be treated as a constant gradient, Q:

0= 2 . nk(h-z)*
“ox L

or as a linearized function of h, Gh:

_ 0q, _(nk (h-z)=
Gh-ax-(L h h

Results of both approaches are compared in the Results and Discussion section.

(46)

(47)

(48)

(49)

Equation (47) is the governing equation for lateral flow which is was the equation

presented by Bralts et. al (1993). This equation, however, does not account for the

presence of pipe components.
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1. Incorporation of pipe components

The fundamental problem of pipe components is the energy discontinuity which
they present. This becomes especially problematic when a component is treated as a
part of its downstream element. As a result, the energy grade line (Figure 11)
contains a discontinuity within an element as shown in Figure 15%. Intra-element
discontinuities are often prohibitive because their derivatives are undefined; however,
this one can be dealt with because it occurs at a node. Again, two approaches shall be

considered.

Method 1.

The first approach accommodates the discontinuity in the head equation, using
a linear shape function to weight the residuals and employing Galerkin’s method.
Essentially, the function shown in Figure 15 is a linear function with the following
boundary conditions:

The equation for head is then derived as a linear function of s:

h = o o BErAR)

‘Note here that the coordinate system has been changed from
the global system, x, to the local system, s. Because scale
remains the same, derivatives are not changed.
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The linear shape functions are:

and at node j:

Equation (50) and equation (51) combine to take on the matrix form,

d(NT dh p|1 -1{H{ D 1
fD ds ds% ~ L[—l 1]{2} 'ZAHC{-l}

or, in matrix notation,

fDa[m Bds = U1 {H@) - (£} AR

(50)

(51)

(52)

(53)
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Likewise, integration of the G-term yields:

L
o g o) - o
[G[N]hds 6[121 RS

(54)
= [kd(.)] {H(g)} - {fg(.)}AHé.)
And integration of the Q-term yields:
y 1
[otmds = ﬂ{ } = (£} (55)
o 2 |1

If emitter flow is considered a linearized function of head (in other words, if emitter
flow is expressed in the G-term), the following residual equation results for element,
(e):

(RO} = ([kp®] + [k¢¥1) {(H®} - {£5”1AH® (56)
Otherwise, if emitter flow is treated as a constant (in other words, if emitter flow is
expressed in the Q-term), the residual equation is:
(RO} = [k {H'@} - {£52 AR - {£47) (57)

Method 2.

The second approach accommodates the energy discontinuity again by adding
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pipe head loss, aH, to component head loss, aH.:
AH® = AHS® + AH®

Total head loss over length, L, (Figure 14) takes the form:

ahn

- m 2 58
axL ag”™L + TqQ (58)

8k,

where T = as in the algebraic development.
L = length of element
Equation (58) can be solved for linearized flow as follows:

%L = (aq::llL + an-l)qn

L dh
an= %

agiiL + Tq,, ox

Similar logic to that depicted in equations (45) through (47) results in the following

general equation:
pER L ch-0=0 (59)
odx?
where,
L
D, =|l—
* lag®™iL + TqL_1
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Equation (59) is the general form of a second-order partial differential equation. The

coefficients, D,, G, and Q are listed in Table I for both methods.
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Table I: List of coefficients for four different approaches.

L
agq™iL + TCIL.1

It is worth noting that the results of the algebraic development are in
agreement with the equations developed in this section.
Each method’s contribution to the global stiffness matrix and forcing vector is

listed in table II.
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Table II: Element contributions to global system.

Stiffness Forcing
Matrix Vector
Method 1: [ké')] {f:;.)} + {fI;.)}AHé.)
| aq. = Q
| ox
|
% Method 1: [ké.)] + [ké.)] {fgo)}AHéc) + {fa(.,}AHc(.)
| aq. =
| “ox Gh
Method 2: [k;;.)] {fp(.)}
aq‘ = Q
|  Tox
\
Method2: [ké.)] + [ka(.)] 0
| aQ.

The vectors and matrices are listed below:

(o) = D 1 -1
(o™ E[-l 1]

(k{1 = ﬂ[z 1]

{£5°}

n
~[Q
ey
[

{£5°}

']
=l
t‘_h
]
U
e pmnd —— ey et

2
(£} = 9‘3{1



IV. Results and Discussion

A. Evaluation of Solution without Virtual Nodes

The effect of pipe components in a hydraulic network system is incorporated in
the ALGNET and DIFNET computer programs (see Appendix A for code). ALGNET1
encodes method 1 as described in the Algebraic Development section; ALGNET2
encodes method 2. The results of both ALGNET programs were compared with the
ANALYZER and KYPIPE programs. ANALYZER makes use of the Finite Element
Method and incorporates pipe components as separate elements. KYPIPE uses the
Linear Theory method and includes pipe components by adding their effect to the pipe
elements. Both ANALYZER and KYPIPE programs have been empirically tested and
found to be accurate. Several different hydraulic networks were analyzed by these
three programs, and the results were found to be very strongly correlated in all cases.

As an example, a hydraulic network system is shown in Figure 16 and
Figure 17. Figure 16 depicts how the network would be labelled for analysis by the
ANALYZER program, whereas Figure 17 shows the same network labelled for analysis
by the ALGNET program. Note here the reduction in the number of nodes to be
analyzed, from 12 to 6. A full explanation of how ALGNET data files are set up for
this same network is given in Appendix B.

The hydraulic head values calculated by ALGNET are compared to the values
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Figure 16

Network labeled for analysis by ANALYZER
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]

Figure 17

Network labeled for analysis by ALGNET
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Figure 18 Regression plotted.
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head calculations
ANALYZE ALGNET DIFNET1 DIFNET2
nodes nodes ALGNET1 ALGNET2 ANALYZE  KYPIPE
12 0 231.00 231.00 231.00 231.00
10 1 212.51 212.51 212.34  212.50
8 2 200.81 200.81 200.57  200.82
6 3 188.80 188.80 188.60 188.83
4 4 176.79 176.79 176.64 176.84
1 5 157.73  157.73 157.74 157.74
ALGNET1 = dependent variable ALGNET2 = dependent variable
ANALYZER = independent variable ANALYZER = independent variable
Regression Output: Regression Output:
Constant 0 Constant
S Errof Y Est 0.105509 Sx Emrof Y Est 0.105825
R Squared 0.999084 R Squared 0.999064
No. of Observations 6 No. of Observations 6
Degrees of Freedom 5 Degrees of Freedom 5
X Cosfficient(s) 1.000632 X Coefficient(s) 1.000837
S Err of Coef. 0.00022 S Err of Coef. 0.00022
ALGNET1 = dependent variable ALGNET2 = dependent variable
KYPIPE = independent variable KYPIPE = independent variable
Regression Output: Regression Output:
Constant 0 Constant 0
S Emof Y Est 0.023208 S Errof Y Est 0.02227
R Squared 0.999099 R Squared 0.990990
No. of Cbservations 8 No. of Observations 8
Degrees of Freedom 5 Degrees of Freedom 5
X Coefficient(s) 0.999925 X Coefficient(s) 0.99893
S Err of Coe. 4.83E-05 S« Err of Coet. 464E-05
Figure 20 The strong correlation between methods is

demonstrated here.
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calculated by ANALYZER and KYPIPE in Figure 20. Comparison of the two methods
is somewhat complicated by the fact that ANALYZER takes pipe components as
separate elements while ALGNET does not. The effect of a component in ALGNET is
incorporated into the downstream element; as a result, the ANALYZER nodes chosen
for comparison with ALGNET should be nodes situated "upstream"” of components.

The strong correlation (Figure 20) between a method which accommodates pipe
components as separate elements and a method which accommodates pipe components
as energy discontinuities within elements indicates that the error introduced as a

result of the discontinuities is negligible for practical purposes.

B. Evaluation of Solutions with Virtual Nodes

The computer code, DIFNET1, incorporates the virtual node concept using
Method 1 as defined in the Theoretical Development; DIFNET2 incorporates this
concept using Method 2.  The network shown in Figure 21, for example, is reduced
to the network shown in Figure 22 by incorporation of the virtual node concept.
DIFNET takes each lateral to be a single linear element, thus greatly reducing the
number of nodes--in this case, from 21 nodes to 9 nodes. A complete explanation of

how DIFNET data files are set up for the same network is found in Appendix B.

1. Error introduced by virtual node concept
While the number of nodes in a network is greatly decreased by using virtual
nodes, error is slightly increased. Results, however, seem still quite acceptable.

Figure 23 shows a strong correlation between DIFNET and ALGNET. If greater
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node ALGNET DIFNET2| resduals
] 100.00 100.00 0.00 Regression Output:
1 73.11 71.92 -1.20 Constant 0
2 54.10 6027 6.17 Std Err of Y Est 2.649425
3 37.56 35.51 -2.05 R Squared 0.991964
4 27.64 29.61. 1.98 No. of Observations 9
5 24.12 21.99 -2.13 Degrees of Freedom 8
6 17.68 18.27 0.59
7 20.87 18.75 2.12 X Coefficient(s) 1.0085
8 15.28 15.56 028 Std Err of Coeft. 0.017858

average of residuals : 0.168767
standard deviation of residuals « 2.512838

node ALGNET DIFNETI |[residuals;

o 100.00 100.00 | 0.00 Regression Output
1 73.11 71.52 -1.59 Constant 0
2 54.10 59.99 5.89 Std Err of Y Est 2.509788
3 3758 38.04 | -1.52 R Squared 0.992619
4 2764 30.08 244 No. of Observatons 9
] 24.12 22.65 -1.47 Degrees of Freedom 8
6 1768 18.84 1.1
7 20.87 19.40 -1.47 X Coefficient(s) 1.008183
8 1528 168,12 0.84 Std Err of Coef. 0.016917

average of residuals = 0.476142

standard deviation of residuals = 2.352907

Figure 23 Assessment of Virtual Node technique by comparing
DIFNET against ALGNET. Note that results are slightly
different for DIFNET1 and DIFNET2.
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accuracy is desired, error can be reduced by subdividing the laterals into two or more
linear elements. Figure 24 shows the effect which partitioning the laterals has on the
total error. Note that the error in this graph seems to approach an asymptote which
is not zero. The fact that total error does not approach zero with an increasing
number of partitions is largely due to the error inherent in approximating a discrete
function (emitters on a lateral) with a continuous function (derivative boundary
condition)--refered to in this thesis as continuization error. Another strategy for error
reduction, perhaps a little closer to the true nature of flow in pipe networks, is the use
of quadratic elements in place of linear elements. This strategy was used by Kelly
(1989) and Bralts et al. (1993).

C. Reducing a large network to a small, manageable size

What follows is a demonstration of the benefits of the concepts developed in
this thesis. Figure 25 shows the system to be analyzed, a medium sized submain unit
consisting of 20 laterals and 600 emitters per lateral for a total of 12,000 emitters in
an area of 1.37 acres. A one-percent slope goes downhill from the submain. Previous
methods would require over 12,000 nodes for analysis of this network. The methods
developed in this research require only 80 nodes for analysis, about 0.7 percent of
12,000. (This is achieved by partitioning each lateral into three virtual elements as
seen in Figure 25.) A great reduction in computer time and memory requirements is
evident as a result of this drastic reduction of nodes. Figure 26 compares the solution
to the Backstep solution on the last lateral. Values between virtual nodes are

calculated by interpolation. Correlation between the two solutions was calculated
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Figure 25. A large submain unit consisting of 20 laterals

spaced 5 ft. apart and 600 emitters per lateral
spaced 1 ft. apart. Previous methods would
require 12,060 nodes for analysis. Here, only 80
nodes are used.
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Figure 26. The head calculations along a single lateral are
compared; The Backstep solution and DIFNET
solution are plotted together.
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using all 600 data points; R-squared = 0.998.

D. Stability

1. Methods 1 and 2

Stability is a problem with the solution derived by Method 1 (see Appendix D).
This is most likely due to the fact that the energy discontinuities at component nodes
are incorporated into the forcing vector. The system of equations is more sensitive to
values in the forcing vector than to values in the stiffness matrix. Although stability
is a problem with Method 1, the solution has eventually converged in every case

tested. Method 2 proves to be the more practical of the two methods.

2. Collective emitter flow in virtual node concept

When the flow of several emitters is incorporated into a single element using
the virtual node concept, their treatment as a constant, @, in the differential equation
caused instability. Again, this is because, as a constant, their effect ends up all in the
forcing vector. If treated as a function of head Gh, however, instability ceases to be a
problem because their effect is incorporated into the stiffness matrix. The instability
caused by treating collective emitter flow as a constant, Q, was great enough to cause

divergence in some cases.
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3. The Newton Raphson Method

The computer program, NEWTON, was written to explore the possibilities of
using the Newton-Raphson method so as to achieve faster convergence. This proved to

be impractical, however, due to instability (see Appendix D).

E. Continuit ments

As seen in Figure 15, the intra-element function is discontinuous at node i.

The discontinuity, however, does not prohibit solution for the following reasons. The
discontinuity exists at a node. The derivative at that node is therefore undefined.

The derivative of a linear element without this discontinuity, however, is
discontinuous at both nodes i and j. The only difference, therefore, lies in the size of
the jump; the jump in both cases is finitely defined as the difference in slope between
the two adjacent elements. In the case of the discontinuity, however, the jump goes to
negative infinity and back in the process. Still, the final result in both cases is a finite
jump.

Continuity of first order, C', is conserved throughout an element because aH, is
treated as a constant and therefore does not appear in the derivative. Also, continuity
of zeroth order, C°, is conserved because head at node j of one element is equal to head
at node i of the next element. So in practice, the continuity requirements for solution

of a second-order partial differential equation by the Finite Element Method are met.
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F. Discussion

For most practical purposes, the accuracy of the DIFNET programs should be
sufficient. Where this level of accuracy is not sufficient, the laterals can be broken
down into two or more segments, increasing the number of segments to increase
accuracy; or, another way to increase accuracy would be to implement higher order

shape functions.

G. Ideas for further investigation

The equations developed in this thesis describe flow through a pipe element in
one dimension. The virtual node concept converts a series of discrete flow losses (a
series of emitters) to a continuous derivative boundary condition, thereby reducing a
lateral with several emitter nodes to one element.

Perhaps the virtual node concept could also be applied in two dimensions where
a derivative boundary condition is applied to a surface. Or for that matter, why not
include the third dimension to incorporate infiltration into the soil, making the model

complete.

1. Some ideas for a two dimensional development

Consider, for example, a rectangular field with a submain and several laterals as

shown in Figure 27. The thicker lines represent pipes whereas the thin lines

represent the boundaries of the rectangular field. The larger dots represent the nodes
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Figure 27

Sub-plot of irrigated field with nodes numbered
for two-dimensional analysis using rectangular
Lagrangian element.
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of a two-dimensional rectangular Lagrangian element. The Lagrangian element has
nine nodes; its polynomial is second degree. The shape functions for a rectangular
Lagrangian element are listed in table IV. These shape functions are given in the

Natural Coordinate System (see Segerlind, 1984).
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Table III: Shape functions for nine-node Lagrangian element.

Node Shape Function
1 %'l (§-1) (n-1)
2 -3 (n-1) (g2-1)
3 1 (g41) (n-1)
4 - % (£+1) (n-2)
5 21 (g+1) (n+2)
6 -1 (n+1) (E2-1)
7 21 (g-1) (n+1)
8 - % (E-1) (n7-1)
9 (§2-1) (n2-1)

I
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Figure 28. Differential conservation of mass as continuous
function in two dimensions.
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It may be possible to approximate a hydraulic head topology of the surface shown in
Figure 27 by considering its discrete function to be continuous.

As an extension to this research, a partial differential equation was developed
to describe in two dimensions this topology created by an irrigation network. This was
achieved by formulating conservation of mass as a continuous function in two
dimensions. Initial observations are presented in Figure 28. Conservation of mass

then dictates that flow into the control "volume" equal flow out:

' - . - %a4, - 924, -
qx_%x+qy_gzz qx,de qy.gzx axdx aydy 0

Or, shifting the point (x,y) to the lower left corner of the control "volume",

dx * Qy =~ Dxedx ~ Qyody - %dx - ggdy =0 (60)
where,
g = D, (61)
X
and as before,
on D i’ldx (62)

Dxeax = Dx ox . x Ax?

The same applies in the y-direction. Substituting equations (61) and (62) into

equation (60) gives the desired partial differential equation:
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&n &h iy - gy - gy -

where ggdx + %g dy can be considered either a constant, @, or a function of head,

Gh:
or,

%gdx + %gdy = Gh = (n—'ni—lf:’:)h (65)
where n, = number of emitters per lateral

n, = number of laterals
L = length of element
W = width of element

The general form of equation (63) is:

p.&h , &n

x 53 yF'Gh'Q=O (66)

In this form, the operators D, and D, resemble conductivity of heat transfer problems.

Here they represent the conductivity of pipe flow in a two-dimensional grid. Their
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determination is not straight-forward and is likely the key to solving this problem.
Some observations are (1) the conductivity, D,, looks like it should be the sum of the
lateral conductivities divided by the length of the element®:

1
p =21 _1 (dh)‘;.'l’

v T @ i\dy (67)

E

a;

and (2) the conductivity, D,, depends on the position in y. The second observation
becomes obvious with a glance at Figure 29. Water at point (x,y) to get to point
(x+dx,y) must first go back to the main through a lateral (distance, y), then through a
piece of the main (distance, dx), and then back through a lateral (distance, y). The
conductivity of this route is then calculated by adding resistances. The total resistance
is equal to the sum of the resistances in each segment:
I, =R, + Iy +R,

where r, = resistivity® in x-direction at any point (x,y)

r,, = resistivity in x-direction at any point (x,0) (in other words,

resistivity of main)

R, = resistance in y-direction (over length y)

Or, in terms of conductivity,

Note that one over dx is squared. The extra dx comes from
the division of dxdy in equation (63). Likewise, the equation for
D, has one over dy in it.

‘Resistivity is the inverse of conductivity; resistance is
resistivity times length. Here, resistivity in the x-direction is
equal to the resistivity of the main plus the resistance in the y-
direction (a function of y).
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| Laterals i

Figure 29 Flow path for water to get from x to dx in
irrigated sub-plot.
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D = 1 i
| L.,y |dy (68)
Dy, Dy
where,

L (3R\(3-

Pro = =33
xo

where, a,, = constant, a, for main

and D, is as previously defined.
Integration of equation (66) times the shape functions is facilitated by recalling

that ¢ = [N](®}. So the integration,

farwgg

T ox ox

becomes,

Xy
d[NIT A[N] (e
!T_ax dx{®1)
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The integration of equation (66) looks like:

+1
- fG[N']"[NJdA{O“’} - fQ[N]"dA =0
-1 -1

jo CICLE I TR nya[N]Ta[Nl dA{®@)
5 o (69)

The fact that D, is a function of y makes integration messy. The resulting
equations, while quite messy indeed, were found to have four basic forms. This made
computer coding of the 9 x 9 stiffness matrix feasible. The results of these
integrations are encoded in the computer program LAGRANGE, found in Appendix A.
A typical output of this program is plotted in Figure 30.

While results are known to be "in the ball park" of the correct values, time did
not allow for a thorough development and evaluation of these ideas. Hence, the
preliminary results achieved at this point are inconclusive. If continuization error is
significant, perhaps similitude modeling techniques could be used to correct for this

€error.

2. Adding the third dimension

A topology of hydraulic head is easily converted to a topology of flow. Described
in terms of flow, the two-dimensional analysis could be expanded to include the third
dimension, modeling infiltration as well as distribution. Such a model would be based

on Darcy’s equation for flow through porous media:
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Figure 30 A hydraulic topology produced by LAGRANGE program
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g=-kKVH

where, q = flow

K = hydraulic conductivity
. OH oH oH

The hydraulic topology created by the irrigation system would then be applied as a
boundary condition on the soil surface. The concepts used in the development of the
FINDIT computer program (Kunze and Shayya, 1990) would be essential to the
development of such a model. A complete three dimensional model would have many
obvious benefits in the design and evaluation of an irrigation system, not to mention
applications to environmental studies. Figure 31 shows the geometry of a possible

three-dimensional finite element grid for modeling distribution and infiltration.
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| Infiltration

Figure 31 Example of 3-D Finite Element grid in situ.



V. Conclusions and Recommendations

Conclusions of this research are listed below:

The cumulative effect of pipe components in a hydraulic network is significant.
Neglecting the effect of pipe components may introduce error large enough to
misguide the design of a microirrigation system. Existing pipe-network
programs which include components were found to significantly increase the

number of nodes necessary for analysis.

A partial differential equation was developed which incorporates pipe
components at nodes rather than as separate elements. Galerkin’s weighted
residual method was employed in the Finite Element solution of this equation.
This solution was found to agree with an algebraic development of the Linear
Theory method.

The virtual node concept was successfully incorporated in the partial
differential equation to further reduce the number of nodes required for
analysis.

The results of these developments were compared with those of existing pipe-
network analysis programs, namely ANALYZER and KYPIPE. Correlation

among all methods was found to be very strong. As expected, some error was

Page 93



Page 94

introduced by the virtual node concept. While this error was small (certainly
negligible), it was found to be further reduced by partitioning the laterals (the

"virtual elements") into two or more segments.

Some recommendations for further investigation follow:

The Ideas for Further Investigation section in Chapter IV outlines a possible
development of a two-dimensional flow equation which describes a
microirrigation system as having a continuous topology of hydraulic head. This
development is supplemented by an alternative approach outlined in Appendix
E. A thorough evaluation of these ideas was not performed as a part of this
research and would be a logical next step. The reader is encouraged to explore

and improve upon the possibilities opened up by these developments.

Also included in the Ideas for Further Investigation section is a suggestion that
one might apply the two-dimensional topology of hydraulic head as a boundary
condition to a three-dimensional porous-media flow equation in order to model

flow of irrigated water through soil.

The benefits of the equations derived in this thesis will only be realized when

they are incorporated into a presentable, user-friendly computer program.
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Appendix A: Computer Code

The computer language used is Quick Basic version 4.5.

ALGNET1

‘s ¢ ¢ Program to solve for pipe network flow * ¢ o
.

DECLARE SUB BCcalc (Matrix! (), RHSMatrix! (), NumBCS, BCnodeS(), knownvall(), NumNode$)
DECLARE SUB Newton (T!, Hi!, Lo!, x!, ki)

DECLARE SUB ConstSort2 (1i8(), 3380, x!(), y!(), 4%, €q90!(), Cql80!(), Cq!, NumElem®)
DECLARE SUB ConstSortl (1i8(), 3380), x! (), y!(), 1§, €q901(), Cql80!(), Cq!, NumElem§)
DECLARE SUB Calclength (x!(), y!(), z!(), 118(), 33%(), Ellengtht, iW%)

DECLARE SUB Stats (NumArray!(), count§, Mean!, Median!, StanDev!, Min!, Max!)

DECLARE SUB MatSave (MatrixA!(), Matrixsizes)

DECLARE SUB AddSquare (HiV, LoS%, value!, Matrix!(), NumNode$)

DECLARE SUB MatShow (MatrixA!(), MatrixSize®)

DECLARE SUB MatAdd (MatrixAl(), MatrixB!(), MatrixC!(), MatrixsSizes)

DECLARE SUB AddDiagonal (position§, value!, Matrix! (), NumNode®)

DECLARE FUNCTION Determ! (MatrixAl(), Matrixsized)

DECLARE SUB DoDet (Term!, MS, k&, MatrixA!(), Doned(), ValDeterm!, Matrixsizes)

DECLARE SUB GetReply (First$, Last$, Reply$)

DECLARE SUB Key2Arr (Num2Array! (), RowCount®)

DECLARE SUB MatInv (MatrixAl(), MatrixB!(), MatrixSize$, OK AS INTEGER)
DECLARE SUB MatMult (MatrixA!(), MatrixB! (), MatrixC!(), MatrixsSizes)
DECLARE SUB Show2Arr (Num2Array! (), RowCount$%, N&, MV, NumColumns$)
chu\u SUB WaitKey ()

CLS
PRINT "Program to calculate heads of hydraulic network system”
PRINT
INPUT "Enter name of element data file: ", element$
INPUT "Enter name of nodal coordinate data file: ", node$
INPUT "Enter name of boundary conditions file (<ENTER> if none): ", bc$
IF bc$ <> "" THEN
INPUT “Enter number of boundary conditions: *~, NumBCS%
DIM knownval! (NumBC%), BCnode® (NumBCS)
END IF
INPUT "Enter value for initial head, H(0) (m): ™, HO!

‘e e ¢ gtart timer * * ¢
StartTime! = TIMER

‘e ¢ ¢ read data files * * ¢
'

OPEN element$ FOR INPUT AS ¢}
INPUT ¢1, NumElen$
iy = NumElenms
DIM elen® (i8), 1i8(i%), 3J38(48), diai(iV), HWS(4i8), idial(iV), jdial(iw)
FOR iV = 0 TO NumElem$
INPUT #1, elenr$(i8), 1i8(i8), Jis(is), diatl(is), HWa(is), idia!(iw), jdial (i%)
NEXT i%
CLOSE (1)
OPEN node$ FOR INPUT AS §1
INPUT ¢1, NumNode$
i% = NumNode$
DIM node$ (18), x!(1i8), y!(i8), z!(i8), ctype€(iV), Cql80!(i%), Cq90!(i¥)
FOR i§ = 0 TO NumNode$
. INPUT #1, noded(i8), x!(18), y!(iV), z!(iV), ctype®(is), Cql801! (i), Cq90! (iW)
1 ]

CLOSE (1)
IF bc$ <> "™ THEN
OPEN bc$ FOR INPUT AS ¢1
FOR i% =« 1 TO NumBC%
INPUT #1, BCnodeS(i%), knownval! (i%)

NEXT
CLOSE (1)
END IF
.

e o ¢ dimension arrays * * *
'

DIM k! (NumElem$ + 1), ke!(NumNode$), kstar! (NumElem$ + 1), H! (NumNode$)
DIM Matrix! (NumNode$, NumNode%), RHSMatrix! (NumNode$, NumNodesd)

DIM InvertedMatrix! (NumNoded, NumNode$), AnswerMatrix! (NumNode®, NumNode$)
DIM NumArray! (NumNode$)
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DIM Q! (NumElem§ + 1)

DIM flowS (NumElem8), CompTerm! (NumElem§)
DIM OK AS INTEGER

.

counter$ = 1
v

‘® ® ¢ constants * * *

HI(0) = HO!

g! = 32.2 ‘acc. due to gravity ft/s*2

pi! = 3.141592654¢

NumIter$ = 2 ‘Number of iterations before including effect of components

HWconst! = 4.73

.

‘e ¢ ® calculate constant, k * * *
.

FOR i8 = 0 TO NumElem$

CALL CalcLlength(x!(), y!(), z!(), 1i8(), J3I%(). EllLength!, i¥)

k! (i8) = HWconst! * ElLength! / (HWS(i8) * 1.852 * dia!(i%) ~ 4.87)
NEXT 1%
’

‘e ¢ o jnitialize head values * ¢ ¢
’
FOR i% = 1 TO NumNode$
HI(18) = H!(0) - 4%
NEXT 1%
.

POCAT! 10, 30: COLOR 31, 0: PRINT "-- Converging =--": COLOR 7, 0

:' ® ¢ sStart iterative procedure * * *

,qnin:

:' * * First few iterations do not include effect of components * * *

IF counter$ <= NumIter$ THEN
FOR {8 = 0 TO NumElem$
IF HI(418(48)) - HI(JIN(i8)) = O THEN
kstar!(i8) = 0
ELSE
kstar! (48) = (ABS(H!(L48(18)) - HI(JI8(18)))) ~ =(1 - 1 / 1.852) * ki(48) ~ -(1 / 1.852)
END IF
NEXT 1%
GOTO skipl
END IF

‘e * ¢ reset values * ¢ ¢

.

FOR 18 = 0 TO NumElem$
flows (i8) = 0
CompTerm! (i8) = 0

NEXT 1§

‘e ¢ ¢ Calculate nev values for component head-1loss terms * ¢ o
.

FOR i§ = 0 TO NumNode®
IF ctype€(i8) = 2 THEN
FOR j8% = 0 TO NumElen$
IF 148(38) = 16 AND H! (118(3%)) - H!(J3%(JV)) > O THEN
flows (38) = 1 ‘1 - positive flow
CALL Constsortl (1i8(), 3is0), xi0), y!(Q), ji. €q90!(), Cql80!(), Cq!, NumElem®)
T! =Cq! * 8/ (¢! * pi! ~ 2 * {idiat(3jy) =
CompTerm! (38) = T! * (H!(118(38)) - H'(jj!(j\))) / (k1(38) + TY)
CALL Newton(T!, H!(118(3%)), H!(3I%(JV)), CompTerm! (38), k! (3%))
‘PRINT “Left: *: CompTerm! (jV)
‘PRINT "Right: “: T! ® ((HI(118(3J8)) - H!(JI¥(38)) - CompTerm!(j8)) / k!(i%)) ~ 1.08
ELSEIF JJN(38) = 1% AND H!(J38(3%)) - H!(148(3%)) > O THEN
flow8(38) = -1 ’ -1 - negative flow
CALL ConstSort2(ii8(), 33%0), x! (), y!' (), j\, €q90! (), Cql80!(), Cq!, NumElem$)
TI =Cql * 8/ (gl * pil ~ 2 » jaial(is) =
CompTerm! (38) = (T! * (HI(33%(38)) - uv(11\(1|)!) /7 X1(3%)) / (1 + TL / KkI(3%))
CALL Newton(T!, H!(33%(3%)), H!(148(3¥)), CompTerm! (3¥). k! (3%)
END IF
NEXT 3%
END IF
NEXT 18

‘e & ¢ calculate new kstar’'s * * ¢

FOR {8 = 0 TO NumElem$
IF HI(448(18)) - H!(338(i8)) « O THEN
kstar! (i8) = 0
ELSEIF flows (i) = 1 THEN
kstar! (18) = (H!(148(48)) - H!(JIV(4V)) - CompTerm! (i8)) ~ -(1 - 1 / 1.852) * k! (i%) ~ -(1 / 1.852)
ELSEIF flowM(i8) = -1 THEN
kstar! (18) = (HI(3IN(48)) - H!(118(4V)) - CompTerm!(i%)) ~ -(1 - 1 / 1.852) * k!(i%) ~ -(1 / 1.852)
ELSE

kstar! (i8) = (ABS(H!(L18(48)) - H!(338(4i%)))) ~ -(1 - 1 / 1.852) * k!(i%) ~ -(1 / 1.852)
NEXT 1%

skipls

’

‘e * ¢ Calculate new values for emitter constants * * ¢
.

FOR i8% = 1 TO NumNode$
IF ctype8(i%) = 1 THEN
k! = Cql80!(1i%)
X! = Cq90! (1iW)
ke! (18) = k! * (HI(i8) =~ z!(4%)) ~ x! / H!(iW)
END IF
NEXT 1%
)

‘e ® » Set Up Global Stiffness Matrix * * «
.



FOR i% =« 1 TO NumNode$®

FOR j§ = 1 TO NumNode®

Matrix!(iy,
NEXT 3%
NEXT 1%

V) =0
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‘eRESRNNRNNC eI RN A RERRERERRARRRRANCEE

‘e Add element matrices
TSR0 RN RN RERRCEeRResRARERARRRRRRAORRSR

FOR i% = 1 TO NumElem$
value! = kstarl(iy)
HiV = §38(iW)
Lod = ii%(iw)
CALL AddSquare(HiS,
NEXT 4%
B

Los, value!,

Matrix! (), NumNodes®)

P 00N E NNt eNNetRANNcRNeeetetsRnNtetteReRetaRRRS

‘* Add emitter constants to diagonal of matrix ¢
P8RS RRRANRRRORRNEIRSEERRARRARRARRERERRRRRRERTS

FOR i% = 1 TO NumNode®d

IF ctypes (i) = 1 THEN
value! = -1 * ke!(i%)

CALL AddDiagonal (4¥,

r
NEXT 1%
'

teee Add kmain! (0) to position (1,1) *ee
.

value! = -1 * kstar!(0)

valuel!,

CALL AddDiagonal(l, valuel, Matrix! (), NumNode$)
v

‘e o ¢ get up forcing vector as matrix * * ¢

0

FOR 38 = 1 TO NumNode®d
FOR k§ = 1 TO NumNode®

RHSMatrix! (j8, k%) = 0t

NEXT k%
NEXT 3%
)

‘e ¢ ¢ include boundary conditions * * ¢
.

IF bcs <> "™ THEN

CALL BCcalc(Matrix!(
END IF
'

), RHSMatrixi (), NumBCS, BCnode®(

‘e e ¢ first time thru, don’t include effect of components *

IF counter$ < NumIter$ THEN GOTO skip2
.

‘e » ¢ gffect of components in forcing vector * ¢ *
'

FOR j§ = 0 TO NumElem$

IF flowd(j%) = 1 THEN

RHSMatrix! (118%(38),
RHSMatrix! (338 (3V),
ELSEIF flow8()8) = -1 THEN
RHSMatrix! (338 (38),
RHSMatrix! (118 (3V),

ND IF
NEXT I8
,

skip2:
.

‘e & ¢ add initial head Boundary Condition to forcing vector * * ¢
.

-

1) =
1) =

RHSMatrix! (1i8(3%),
RHSMatrix! (338(3V),

RHSMatrix! (J38(38),
RHSMatrix! (1i8(3%),

RHSMatrix! (1, 1) = RHSMatrix!(l, 1) - kstar!(0) * H!(0)
'

faseeteesnaneetRRtscettdnene
‘e sol
I R R R R XX )
'

multaneous equations *

CALL MatInv(Matrix!(), InvertedMatrix!(),

IF NOT OK THEN
BEEP

NumNode$, OK)

PRINT "Bad input, no solution is possible."”

END
END IF

1)
1

1)

Matrix! (), NumNode$®)

knownval! (), NumNode$®)

+

+

CompTerm! (}%)
CompTerm! (3%)

CompTerm! (3§)
CompTerm! (}%)

CALL MatMult (InvertedMatrixi(), RHSMatrix! (), AnswerMatrix! (), NumNode$)

‘e & & 2 8 a0

cnty = 0

FOR i§ = 1 TO NumNode$
IF ABS (AnswerMatrix!

GOTO OtravVez

END IF

NEXT i%

‘e & ¢ gtop timer ¢ ¢ ¢

(1s,

TotalTime! = TIMER - StartTime!

FOR 18 = 1 TO NumNode®

1) = HI(4i8)) > .01 THEN

HI(i8) = AnswerMatrix! (iW,
NumArray! (i8) « H! (i8%)

NEXT 1%
’

1)

‘e e ¢ calculate coefficient of uniformity * *
'

CALL Stats(NumArray!(), NumNodeS, Mean!, Median!, StanDev!, Min!, Max!)
Ul = 100 * (1 - StanDev! / Mean!)

‘e ¢ ¢ print results * * ¢
.

CLS :
is =0
PRINT "Head at Node (": i%;
FOR i% = 1 TO NumNode®

LOCATE 8, 1

HI(18)

kstar! (38)
kstar! (J%)

kstar! (3%)
kstar! (398)
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PRINT "Head at Node (":; 4%: ™): ": H!(i%)
NEXT 1%
PRINT
PRINT “"Coefficient of Uniformity = ": Ul: "\"
PRINT "Converged after ":; counter$:; " iterations.™
PRINT "Total time of convergence = "; TotalTimei; " seconds”
PRINT
'

‘e ¢ ¢ gave data in DIFNET format for comparison L]
‘e * ¢ (save only those points which correspond to DIFNET output * * *
.

biggesty! = 0
FOR i% = 0 TO NumNode%
IF y! (i8) > biggesty! THEN
biggesty! = y!(i%)

outfile$ = "a:anl_" + MIDS(node$, 7, 1) + “.out"
OPEN outfile$ FOR OUTPUT AS #1
FOR 1§ = 0 TO NumNode®
IF y!(i8) = 0 THEN
PRINT #1, HI(1W)
BLSEIF y! (i8) = biggesty! THEN
PRINT #1, H!(i%)
END IF
NEXT 1%
CLOSE (1)
’

‘% ®= ¢ save all data points 2?7 * * ¢
.

INPUT "Save results ? (y/n) ", ans$

IF UCASES$ (ans$) = "Y" THEN

INPUT "Enter name of output file: ~, filename$
?Pt" filename$ FOR OUTPUT AS ¢1

s =0
PRINT #1, "Head at Node ("; 1i8; "): “; H!(iW)
PRINT 41,
FOR i8 = 1 TO NumNode®

PRINT ¢#1, "Head at Node ("; 4i8%; "): "; H!(i%)

NEXT i%
PRINT {1,
PRINT ¢#1, "Coefficient of Uniformity = "; U!; "
PRINT #1, "Converged after "; counter$; " iterations.”
PRINT 41, "Total time of convergence = ": TotalTime!: " seconds"
END IF
END

Otravez:

FOR i§ = 1 TO NumNode®
HI(48) = AnswerMatrix! (is, 1)

NEXT i%

LOCATE 15, 20: PRINT "Number of Iterations: "; counter$

counter$ = counter$ + 1

GOTO Again

SUB AddDiagonal (positionS, value!, Matrix! (), NumNode$®)
Matrix! (position8, position8) = Matrix!(positions, position%) + value!
END suUB

SUB Addsquare (HiS, Los, value!, Matrix!(), NumNode$)

'

‘e ¢ ¢ adds square element matrix to global stiffness matrix * » ¢
.

Matrix! (HiS, Lo%) = + valuel
Matrix! (LoV, Hi%) = Matrix!(Lo%, HiV) + value!
Matrix!(Lo%, Lo%) = Matrix!(Lo§, Lo%) - value!
Matrix! (Hi8, Hi8) « Matrix! (HiS, Hi8) - value!
END sSUB

Matrix! (Hi8, Lo§)

SUB BCcalc (Matrix! (), RHSMatrix!(), NumBCW, BCnode%(), knownval!({), NumNode$%)
v

‘e * ¢ {nclude known values in matrices * * ¢

.

FOR i% = 1 TO NumBCS%
FOR J% = 1 TO NumNode$
IF j% <> BCnode&(i%) THEN
RHSMatrix!(j%, 1) = RHSMatrix!(j%, 1) - Matrix!(j%, BCnoded(i8)) * knownval! (i%)
Matrix!(j%, BCnodeS(is)) = 0
Matrix! (BCnodet(i%), j%) = 0
ELSE
RHSMatrix! ()%, 1) = Matrix!(j§, BCnode%(i%)) * knownval! (i%)
END IF
NEXT J
NEXT {8
END SUB

SUB Calclength (x!(), y!(), z!(), 1i%(), 3jj%(), ElLength!, iV%)
’

‘e = ¢ calculate length of element * * »

.

xtemp! = x!(338(i8)) - x!{(ii8(i¥))

X
ytemp! = y! (338(i%)) - y! (ii8(4iW))
ztemp! = 2! (J3%(18)) - z!(ii8(iw))
ElLength! = (xtemp! * 2 + ytemp! ~ 2 + ztemp! ~ 2) ~ .5
END SUB

SUB ConstSortl (4i%(), 3j3%(), x! (), y!(), i%, cq90!(), Cql180!(), Cq!, NumElems)
'

‘e ¢ ¢ gort out which constant applies = * *
.
FOR j% = 0 TO NumElemt%
IF 418(18) = J3j%(J8) THEN
IF (x!(118(38)) = x!(JIN(L%))) OR (y!(1418(3%)) = y! (338 (i%))) THEN
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Cq! = Cqle0! (1i8(iV))
EXIT SUB ‘ 180 - degree constants have preference
ELSEIF x! (118(38)) = x1(338(38)) OR x!(118(18)) = x! (338 (48)) THEN
cq! = Cq90! (1is(i%))
ELSEIF ABS((y!(1i8(38)) = y!(3I8(38))) / (x!1(118(38)) = x!1(II8(IN))) = (y! (118(4%)) - yl(33v(in))) /
(x1(118(¢4%)) - x1(338(4%)))) < .S THEN
cq!l = qulOl(tL\(i!))

cq! = Cq901 (118(i8))

IF
ELSEIF 11\(1\) = 118(J8) AND 338(1i8) <> % (J¥) THEN

IF (x1(33%(3%)) = x!(338(48))) OR (y!(33%(I8)) = y!(3JNV(i8))) THEN
Cq! = Cqle0! (118(iy))
EXIT SUB ‘ 180 - degree constants have preference

ELSEIF x!(448(3%)) = x1(JIV(38)) OR x! (118(18)) = x!(33%(i%)) THEN
Cq! = Cq90!(1i8(iw))

ELSEIF ABS((y‘(Li\(j\)) = YHIINOIN)) 7 (xEAA8(IN)) - xI(IININ))) - (Y (118 (d8)) - yr(3INdN))) /
(X1 (148(18)) = x1(JIN(48)))) < .5 THEI

cq!l = qulOl(iil(i\))

ELSE

ELSE
cql = €q901 (11i%(iv))
END 1P
END IF
NEXT 3%
END SUB

SUB ConstSort2 (iis(). 33% (), x! (), y!(), 1%, €q90!(), Cql80!(), Cq!. NumElems§)
v

‘e e ¢ sort out which constant applies * * ¢
.
FOR j% = 0 TO NumElem$
IF J3s(i8) = 118(3%) THEN
IF x1(11%(4%)) = x! (338 (3%)) on y!(148(18)) = yI(33%(3%)) THEN
Cq! = Cql80! (33v(iv)
EXIT SUB
ELSEIF x!(118(38)) = x!( jjl(jl)) OR x!(118(18)) = x!(JJ%(48)) THEN
Cq! = Cq90!(3is(iy)
ELSEIF ABS((yl(ii!(j\)) - y'(jj'(jt)l) /O (xU(LAN(IN)) - xE(IIN(IN))) - (y! (148 (18)) - y!(IIN(iN))) /
(x!(148(18)) - x!(J3%(1%)))) < .5 THE
cql = qulOl(ij(i!))
ELSE
cq! = cq90!(3js(in))

END I
ELSEIF 334 (i%) = 33%(3%) AND 1i8(i%) <> 1i8%(JV) THEN
IF x1(148718)) = x1(L18(38)) OR y!(118(i%)) = y((118(JV)) THEN
cq! = Cq1801(338(iV))
XIT SUB
ELSEIF xl(ii!(j!)) = x1(338(I%)) OR x!(118(18)) = x!(J38(i%)) THEN
cqt = Cq90! (338 (1id))
ELSEIF ABS ((y! (148(3%)) = y!1(JIN(IN)) / (x! (148(3%)) - x!(II8(I0))) - (y! (148¢18)) - y!(3I8(i8))) /
(x1 (118(180)) - x1(33%(i%)))) < .S THEN
Cq! = Cq180! (338 (i%))
ELSE

cq! = Cq90!(Jjs(iy))
END IF

NEXT

END SUB

YUNCTION Determ! (MatrixA(), Matrixsizes)
:' * * gvaluate determinant of matrix * « ¢

CONST False = 0
CONST True = NOT False
DIM Done$% (MatrixsSize
FOR j% = 1 TO MatrixSize®
Done$ (j8) = False
NEXT 1%
ValDeterm! = 0!
CALL DoDet (1!, 0, 1, MatrixA!(), Done%(), ValDeterm!, MatrixSizes)
Determ! = ValDeterm!
END FUNCTION

SUB DoDet (Term!, M%, k%, MatrixAl(), Done8(), ValDeterm!, Matrixsizes)
v

‘e * ¢ gvaluate determinant of matrix * * ¢

.

CONST False = 0

CONST True = NOT False

IF k§ > MatrixsizeSs THEN
Signd = -1
IF (MV MOD 2) = 0 THEN Sign§ = 1
ValDeterm! = ValDeterm! + Sign$% * Term!
E

IF Term! <> 0! THEN
NS = 0

FOR j% = MatrixsSizes TO 1 STEP -1

IF DoneS(3%) THEN
NS = N§ + 1

ELSE
DoneS (j%) = True
Al! = Term! * MatrixA!(k%, 3%)
A2% = MS + N
A% = k% + 1
A4S = MatrixSizes
CALL DoDet (Al!, A28, A3%, MatrixA!(), DoneVN(), ValDeterm!, A4S)
Done% (3JV) = False

END IF
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SUB GetReply (First$, Last$, Reply$)
Lo$ = LEFTS(First$, 1)
Hi$ = LEFTS(Last$, 1)
IF Lo$ > Hi$ THEN SWAP Lo$, HiS$
PRINT USING "Enter reply from & to &": Lo$: Hi$
DO

Reply$ = INKEYS
LOOP UNTIL (Reply$ >= Lo$) AND (Reply$ <= Hi$)

END sSUB

SUB Key2Arr (Num2Array! (), RowCounts)
CONST EndNumber! = 10101 ‘Mod.
RowSize$ = UBOUND(Num2Array!{, 1)
ColSizeN = UBOUND(Num2Array!, 2)
‘ PRINT "--- Enter data for 2-dimensional array. ---" ‘Mod.
* PRINT “"--- Maximum array size ="; RowSizeV: ™ rows. --" 'Mod.
* PRINT "--- There are ": ColSized; " columns per row. ---" 'Mod.
’ PRINT "--- Enter ":; EndNumberli; " to end data entry. ---" ‘Mod.

IF RowCount$ >« RowSize® THEN
PRINT CHR$(7)
PRINT "--- RowCountd too large. =---"
EXIT suB
END IF
DO WHILE RowCount$ < RowSize®
RowCount$ = RowCount$ + 1
PRINT "<<< Row number™: RowCount$: ">>>"
IF RowCount$ = RowSizeS THEN PRINT "*** Last row *e*®
ColCounts = 0
DO WHILE ColCount$ < ColSize$
ColCount$ = ColCount§ + 1
PRINT * Entry (":; RowCount$: ™,": ColCount§; ™):":
INPUT " ", Entry!
IF Entry! = EndNumber! THEN
IF ColCount% = 1 THEN
EXIT DO
ELSE
PRINT CHRS$(7):
PRINT %“**e Cannot end now. Please reenter number. ***~
ColCount8 = ColCount$ - 1
END IF
ELSE
Num2Array! (RowCount§, ColCount$) = Entry!
END IF
LooP
IF Entry! = EndNumber! THEN
RowCount$§ = RowCount$ - 1

EXIT DO
END IF
Loop
PRINT "---"; RowCount§: “rows entered. ---"
PRINT "--- Data entry complete ---"
END SUB

SUB MatAdd (MatrixA!(), MatrixB!(), MatrixC!(), MatrixSizes)
N

‘e ¢ ¢ natrix addition subroutine ¢ ¢ »

’

FOR i% = 1 TO MatrixSizes
FOR j8% = 1 TO MatrixSized
MatrixC! (18, J8) = MatrixAl (1%, 3%) + MatrixB!(i8, 3%)
NEXT 3j8
NEXT 1%
END SUB

SUB MatInv (MatrixAl(), MatrixB!(), MatrixSize\, OK AS INTEGER)
v

‘e * ¢ matrix inversion subroutine * * ¢
.
CONST ErrorBound!{ = .000000001¢ ‘Mod.
CONST False = 0
CONST True = NOT False
DIM MatrixC! (MatrixSizes, MatrixSizes)

FOR i8% = 1 TO MatrixsSizes
FOR j% = 1 TO MatrixSize®
MatrixC!l(i8, 3J8) = MatrixAl(i%, %)
IF 4% = j§ THEN
MatrixB! (1%, %) = 1}
Lse

MatrixB! (18, %) = 0!
END IF
NEXT 3%

1y

. = 1 TO Matrixsizes
L]
WHILE ABS(MatrixC! (18, 3%)) < ErrorBound!
IF i8 = Matrixsize® THEN
OK = False
EXIT sSuB
END IF
iV = 48 + 1
WEND
FOR k8§ = 1 TO Matrixsizesd
SWAP MatrixC! (1%, k%), MatrixC! (3%, k%)
SWAP MatrixB!(i%, k%), MatrixB!(js, k%)
NEXT k%
Factor! = 1! / MatrixcC! (4%, 3§%)
FOR k§ = 1 TO Matrixsize®
MatrixC! (38, k§) = Factor! * MatrixC! (3j%, k%)
MatrixB! (3%, k8) = Factor! * MatrixB!(3j%, k%)
NEXT k&
FOR M$ = 1 TO Matrixsizes
IF M§ <> j§ THEN
Factor! = -MatrixC!(M§, 3%)
FOR k% = 1 TO MatrixsSizes

[ B}
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MatrixC! (MV, k§) = MatrixC!(MS, k%) ¢ Factor!
MatrixB! (M8, k%) = MatrixB!(MS, k%) ¢ Factor!
NEXT k§
END IF
NEXT M§
NEXT 3%
OK = True
END sSUB

SUB MatMult (MatrixAl(), MatrixB!(), MatrixC!(), Matrixsize®)
v
‘e * o matrix multiplication subroutine * * ¢
.
FOR {8 = 1 TO MatrixsSize®
FOR j8% = 1 TO MatrixSize®

TempSum! = 0!
FOR k% = 1 TO MatrixsSizes

TempSum! = TempSum! + MatrixA!(i%, k§) * MatrixB!(k$,

NEXT k%
MatrixC! (i, j§) = TempSum!
NEXT 3%
NEXT 1%
END SUB

SUB MatSave (MatrixA!(), Matrixsizes)
OPEN "a:matrix.dat”™ FOR OUTPUT AS ¢1
MatFormat$ = " 4. 4~~~~" ‘Mod.
FOR 1% = 1 TO MatrixSizes
FOR j% = 1 TO MatrixsSizes
PRINT 01, USING MatFormat$: MatrixAl (i, 38):
NEXT 3%
PRINT #1,
NEXT 1%
PRINT ¢1,
CLOsSE (1)
END SUB

SUB MatsShow (MatrixA!(), Matrixsizes)
MatFormat$ = " 4. 4~~~=" ‘Mod.
FOR {8 = 1 TO MatrixsSizes
FOR j% = 1 TO MatrixSizes
PRINT USING MatFormat$: MatrixA! (is, j%);
NEXT 3%
PRINT
NEXT 1%
PRINT
END SUB

SUB Newton (T!, Hil, Lo!l, xI, k!)
.

* MatrixC!(j¥,
* MatrixB! (J§,

[ 29

[ 3%

v

‘e s ¢ golve for deltah (x! here) using Newton-Raphson method * ¢ ¢
.

DO
FIl « Tl ¢ ((Hil - Lol = x!) / k!) ~ (2 / 1.852) - x!
dF| = 1.08 * T!{ * ((Hil - Lo! - x!) / k!) ~ (2 / 1.852 = 1) »
newx! = x{ - Fl / dF!
x! = newx!
LOOP UNTIL FI / dFI < .01 * x|
END SUB

SUB Show2Arr (Num2Array!(), RowCount§, N8, M§, NumColumns$)
NumRows$ = 20

k%)
k%)

(-1 / xt)

‘Mod.

IF (RowCount$ < 1) OR (N§ < 0) OR (M§ < 0) OR (NumColumns$% < 1) THEN

BEEP
PRINT "--- Parameter error in Show2Arr ---"
EXIT SUB
END IF
ColSize$ = UBOUND (Num2Array!, 2)
LastElementd = RowCount$ * ColSized
PagesSize$ = NumRows$ * NumColumnsh
ElementCountd = 0
NumOnPage$ = 0
IndexFormat$ = "(§,6)"
IF NV = 0 THEN
NumFormat$ = ™ $4." + STRINGS(M§, "@%) ¢+ "~san~n
ELSE
NumFormat$ = STRINGS(NS, "#") + "." + STRINGS(MN, "¢~)
END IF
IF NV = 0 THEN
ColWidths = 27
Lse
ColWidthS = N& + MS + 10
ND IF

CcLs
FOR j% = 1 TO RowCount$
StrJ$ = RIGHTS(STRS(J%), LEN(STR$(3V)) - 1)
FOR k8§ = 1 TO ColSizes
StrK$ = RIGHTS (STR$ (k¥), LEN(STRS$(kS)) - 1)
RowlLoc% = (NumOnPage$% \ NumColumns$) ¢+ 1
ColLoct = (NumOnPage$ MOD NumColumns$) * ColWidths +
LOCATE RowLock, Colloch
PRINT USING IndexFormat$: StrJ$: Strk$:
PRINT USING NumFormat$: Num2Array!(3js, k%)
ElementCount$ = ElementCount$ + 1
NumOnPage$ = ElementCount$ MOD PageSized

1

IF (NumOnPage$ = 0) OR (ElementCount$ = LastElement$) THEN

PRINT "-- Press a key to continue --"
DO

LOOP UNTIL INKEY$ <> "~
IF ElementCount$ <> LastElementt® THEN
CLs
LSE
PRINT
END IF
END IF

‘Mod.

‘Mod.

"

42

42

1
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NEXT k%
NEXT 3%
END SUB

SUB Stats (NumArray!(), count$, Mean!, Median!, StanDev!, Min!, Maxl!)
IF count$ < 1 THEN EXIT SUB
FOR 3% = 2 TO count$
Temp! = NumArray!(j%)
kS = 38 - 1
DO WHILE ((Temp! < NumArray!(k§)) AND (k% > 0))
NumArray! (k$ + 1) = NumArray! (k%)
kY = k¢ -1

Loop
NumArray! (k8 + 1) = Temp!
NEXT 3%
FOR j% = 1 TO count$
ValueSum| = ValueSum! + NumArray! (3%)
SquaresSum! = Squaresum! + NumArray!(j%) ~ 2
NEXT 3%
Min! = NumArray! (1)
Max! = NumArray! (counts)
IF ((count% + 1) \ 2) = count$ \ 2 THEN
MidS = counts \ 2
Median! = (NumArray! (MidV) + NumArray!(Mid%¢ + 1)) / 2!
ELSE
Median! = NumArray!((count% + 1) \ 2)
END IF
Mean! = ValueSum! / counth®
IF count§ = 1 THEN
StanDev! = 0!

ELSE
StanDev! = SQR((SquareSum! - count% * Mean! * Mean!) / (count§ - 1))
END IF
END SUB
SUB WaitKey
PRINT ‘Mod. ¢1

PRINT "--- PRESS ANY KEY TO CONTINUE ---"
DO

LOOP WHILE INKEYS$ = **
END SUB
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ALGNET2

.

“® © * Program to solve for flow in pipe networks * * *

DBECLARE SUB BCaalc (Matrixt0, RHSMatrix!0, NumBC%, BCnode%0, knownvall0, NumNode%)
DBECLARE SUB Newton (T, Hil, L, x!, ki)

DBCLARE SUB ConstSort2 (11%0, j%0, x10, y10, i%, Cq9010, Cq18010, Cg!, NumElem%)
DBCLARE SUB ConstSort] (11%0, {j%0, !0, y10, i%, Cq9010, Cq18010, Cq!, NumElem%)
DBCLARE SUB CalkcLength (x!0, y10, 210, i%0, j%0, EILengthl, %)

DBCLARE SUB Stats (NumArrayl0, count%, Meanl, Medianl, StanDev1, Minl, Max!)

DBCLARE SUB MatSave (MatrixA!0, MatrixSize%)

DBCLARE SUB AddSquare (Hi%, Lo%, valuel, Matrix!0, NumNode%)

DBECLARE SUB MatShow (MatrixAlQ, MatrixSize%)

DBCLARE SUB MatAdd (MatrixA!0, MatrixB0, MatrixC!0, MatrixSize%)

DBCLARE SUB AddDiagonal (position%, valuel, Matrix!0, NumNode%)

DBECLARE FUNCTION Determ! (MatrixAlQ, MatrixSize%)

DBCLARE SUB DoDet (Termi, M%, k%, MatrixA!0, Done%0, ValDeterm!, MatrixSize%)

DBECLARE SUB GetReply (First$, Last$, Reply$)

DBCLARE SUB Key2Arr (Num2Arrayl0, RowCount%)

DBECLARE SUB Matinv (MatrixAlQ, MatrixB!0, MatrixSize%, OK AS INTEGER)
DBCLARE SUB MatMult (MatrixA!Q, MatrixB!0, MatrixC10, MatrixSize%)
DBCLARE SUB Show2Arr (Num2Array!0, RowCount%, N%, M%, NumColumns%)
DBCLARE SUB WaitKey 0

CLs
PRINT "Program to calculate heads of hydraulic network system”
PRINT
INPUT “Enter name of element data file: “, element$
INPUT “Enter name of nodal coordinate data file: *, node$
INPUT “Enter name of boundary conditions file (<ENTER> if none): ", bc$
IF be$ <> ™ THEN
INPUT “Enter number of boundary conditions: “, NumBC%
DIM knowavall(NumBC%), BCnode% (NumBC%)
END IF
INPUT “Enter value for initial head, H(0) (m): “, HOt

e geart timer®®®
StartTime! =« TIMER

/mesesesnceee
’

7% read data files** *

OPEN element$ FOR INPUT AS #1
INPUT #1, NumElem%
i% = NumElem%
DIM elem%(i%), U%(I%), j%(1%), dia!(%), HWR(I%), idial(%), jdial(1%)
FOR {% = 0 TO NumElem%
INPUT #1, elem%(1%), 4%(1%), jj% (%), dial(%), HVR (%), idlal(i%), dial(%)
NEXT i%
CLOSE (1)
OPEN node$ FOR INPUT AS #1
INPUT #1, NumNode%
{% = NumNode%
DIM node%(i%), x!(i%), yl(%), zI(1%), ctype%(i%), Cq1801(%), CqI01(%)
FOR % = 0 TO NumNode%
INPUT #1, node% (%), xI(i%), ylU%), z2i(%), ctype%(i%), Cq1801(1%), Cqo01(i%)
NEXT 1%
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CLOSE (1)
IF be$ <> = THEN
OPEN bc$ FOR INPUT AS ©1
FOR {% = 1 TO NumBC%
INPUT #1, BCnode%(1%), knownvall(i%)
NEXT i%
CLOSE (1)
END IF

:'"dlnmbnlmy-'“

DIM ki(NumElem% + 1), ke!l(NumNode%), kstar!(NumElem% + 1), H{NumNode%)

DIM Matrix!(NumNode%, NumNode%), RHSMatrix!((NumNode%, NumNode%)

DIM InvertedMatrix!(NumNode%, NumNode%), AnswerMatrixI(NumNode%, NumNode%)
DIM NumArrayl(NumNode%)

DIM QI(NumElem% + 1), TI(NumElem% + 1)

DIM flow % (NumElem%), CompTerm!(NumElem%)

DIM OK AS INTEGER

counter® « 1

’

N.lmlll

HI(0) = HOt

gl =322 ‘acc. due to gravity m/sA2

pil = 3.1415926548

Numiter® = § ‘Number of iterations before including effect of
Numiter® = Numliter® + 1

HWoconst! = 473

mnlnnn-non'kannn
FOR 1% = 0 TO NumElem%

CALL Calclength(x0, yl0, 20, 4%0, jj%0, ElLength!, i%)

ki(i%) = HWconst! * ElLength! / (HWS (%) A 1.852 * dial(i%) A 4.87)
NEXT i%

** %% inittalize head values ** *
.

FOR {% = 1 TO NumNode%
HI(%) = H(OD - 1%
NEXT i%

LOCATE 10, 30: COLOR 31, 0: PRINT "~ Converging —": COLOR 7, 0
°*© * Start iterative procedure * * *

Again:

.

"* © © First faw iterations do not include effect of components * * *
.

IF counter% < Numiter® THEN
FOR i% = 0 TO NumElem%
IF HIW% (%)) - H(j%(1%)) = 0 THEN
kstari(i%) = 0
ELSE
ketarl(1%) = (ABSHIGI%A%)) - HI(%U%))) A -(1 -1 / 1.852) * KII%) A (1 / 1.852)
END IF
NEXT i%
GOTO skipl
END IF

9% raget values * * *

FOR {% = 0 TO NumElem%
flow%(i%) = 0

NEXT i%

“® * * Calculate new values for component head-loss terms * * *

FOR i% = 0 TO NumNode%
IF ctype%(%) = 2 THEN
FOR {% = 0 TO NumElem%
IF %(j%) = 1% AND HIG%(j%)) - HI%G%)) > 0 THEN
flow%(j%) = 1 1 - positive flow
CALL ConstSort1(1i%0, j%0, x10, y10, %, Cq9010, Cq18010, Cql, NumElem%)
TIGR) = Cql * 8 / (g1 * pit A 2* dial(%) A 4)
QIG%) = (FIURIR)) - HIGRGEN) / (KG%) + TIGR)) A 5
IF QU(j%) > 0 THEN
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CALL Newton(T!(j%), HIl%(j%)), HI(ji%(j%), Q!(j%), K!(j%))
END IF
ELSEIF ji%(j%) = i% AND HI(jj% (%)) - H!(li%(j%)) > 0 THEN
flow%(j%) = -1 * -1 - negative flow
CALL ConstSortXi%0, jj%0, x!0, y!0, j%, Cq90t0, Cq180*0, Cq!, NumElem%)
TIj%) = Cql * 8 / (g1 ° pil A 2* jdial(j%) » &)
Q!(j%) = (HI(jj%(j%)) - HIU%G%)) / (K(%) + TIj%)) » S
IF Qi(j%) > 0 THEN
CALL Newton(T!(j%), H!(j% (%)), H!(i%(j%)), Q!(j%), k!({%))
ENDIF
END IF
NEXT 1%
END IF
NEXT i%

" *° calculate new katar's **

FOR {% = 0 TO NumElem%
IF HIdi%d%)) - H(j%(%)) = 0 THEN
kstari(i%) = 0
ELSEIF flow%(%) = 1 THEN
ketari(1%) = 1 / (I(%) * QIU%) A .852 + TIU%) * Q%))
ELSEIF flow%(i%) = -1 THEN
ketarl(i%) = 1 / (I(%) * QIU%) A .852 + TIG%) * Q!U%))
ELSE
ketarl(i%) = (ABSCHI(1% (%)) - HI(j%(%))) A -(1 -1 / 1.852) * KI(i%) ~ (1 / 1.852)
END IF
NEXT i%

skipl:

.

‘¢ ¢ * Calculate new values for emitter constants * * *

FOR I% = 1 TO NumNode%
IF ctype®(%) = 1 THEN
K = Cq18010%)
x1 = Cq0I(1%)
kel0%) = Kl * HION) - ZG%) A x1 / HIO%)
END IF
NEXT 1%

* ® ¢ Set Up Global Stiffness Matrix * * *

FOR {% = 1 TO NumNode%

FOR j% = 1 TO NumNode%

Matrix!(i%, %) = 0

NEXT 1%
NEXT i%
o Add element matrices .
FOR {% = 1 TO NumElem%

value! = kstarl(i%)

Hi% = jj%3i%)

Lo% = U%(I%)

CALL AddSquare(Hi%, Lo%, valuel, Matrix!), NumNode%)
NEXT 1%

** Add emitter constants to diagonal of matrix *

.

FOR {% = 1 TO NumNode%
IF ctype%(%) = 1 THEN
valuel = -1 * kel(i%)
CALL AddDiagonal(i%, value!, Matrix!0, NumNode%)
END IF
NEXT i%

e** Add kmaini(0) to position (1,1) ***

value! = -1 * ktari(0)
CALL AddDiagonal(1, valuel, Matrixi0, NumNode%)

* * * get up forcing vector as matrix * * *

FOR i% = 1 TO NumNode%
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FOR k% = 1 TO NumNode%
RHSMatrix!(j%, k%) = 0f
NEXT k%
NEXT %

" ** include boundary conditions * * *

IF be$ <> ™ THEN
CALL BCcalc(Matrix!0, RHSMatrix!0, NumBC%, BCnode%(, knownval!0, NumNode%)
END IF

® % ¢ add initial head Bou Condition to forcing vector * ® *
s 8

RHSMatrix!(1, 1) = RHSMatrixi(1, 1) - kstari(0) * HI(0)

‘* solve simultansous equations *

CALL Matlnv(Matrix!0, InvertedMatrix!0, NumNode%, OK)
IP NOT OK THEN
BEEP
PRINT “Bad input, no solution is possible.”
END
END IF
CALL MatMult(InvertedMatrix!(, RHSMatrix!0, AnswerMatrix!0, NumNode%)
LEX NN NN
cnt% = 0
FOR i% = 1 TO NumNode%
IF ABS(AnswerMatrix!(1%, 1) - H!(%)) > 01 THEN
GOTO OtraVez
END IF
NEXT i%
".'mml..
TotalTime! = TIMER - StartTimel
REAZ AN NN AN NN ]
FOR i% = 1 TO NumNode%
HIA%) = AnswerMatrix!(i%, 1)

NumAmayl(i%) = HI(G%)
NEXT 1%

* ¢ * aalculate coefficient of uniformity * * *

CALL Stats(NumArraylQ, NumNode%, Mean!, Median!, StanDevt, Min!, Max!)
Ul =100 * 1 - StanDevi / Mean!)

Ni.mm'.'

CLS: LOCATE S, 1

i%=0

PRINT "Head at Node (; i%; 7: = HI(I%)

FOR {% = 1 TO NumNode%
PRINT “Head at Node (*; i%; *): = HI(i%)

NEXT 1%

PRINT

PRINT “Coefficient of Uniformity = *; UY; "%

PRINT “Converged after *; counter%; " iterations.”

PRINT “Total time of convergence = *; TotalTime!; * seconds"

PRINT

.

’* * * save data in DIFNET format for comparison * * *
“** ¢ (save only points correspond ing to DIFNET output) * * *

=0
FOR 1% = 0 TO NumNode%
IP yl(%) > biggesty! THEN
biggesty! = yl1%)
END IF

NEXT i%

outfile$ = “a:an2 " + MID$(node$, 7, 1) + ".out”
OPEN outfile$ FOR OUTPUT AS #1
FOR i% = 0 TO NumNode%
IF yl4%) = 0 THEN
PRINT #1, H!I(%)
ELSEHIF yl(i%) = biggestyl THEN
PRINT #1, HI(i%)
END IF
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NEXT i%
CLOSE (1)

**** save all data points 77 * *

INPUT “Save results ? (y/n) “, ans$
IF UCASES(ans$) = “Y" THEN
INPUT “Enter name for output file: *; fllename$
OPEN filename$ FOR OUTPUT AS #1
i% =0
PRINT #1, "Head at Node (%; i%; ): *; HI(i%)
PRINT M,
FOR i% = 1 TO NumNode%

PRINT #1, “Head st Node (5; i%; %): % HI(%)
NEXT 1%
PRINT M,
PRINT #1, "Coefficlent of Uniformity = *; Ul; *%"
PRINT #1, “Converged after *; counter%; * iterations.”
mﬁ,Tmlumdmmm-‘;Tmﬂluﬂ;'mndf
CLOSE (1)
END IF
END

OtraVez:
FOR i% = 1 TO NumNode%
HI(%) = AnswerMatrixi(i%, 1)
NEXT %
LOCATE 15, 20: PRINT "Number of Iterations: *; counter%
counter® = counter% + 1
GOTO Again

SUB AddDiagonal (position%, value!, Matrixi(), NumNode%)
Matrix!(position%, pasition®%) = Matrix!(position%, position%) + value!
END SUB

SUB AddSquare (Hi%, Lo%, valuel, Matrix!Q, NumNode%)
Matrixi(HI%, Lo%) = MatrixiGHi%, Lo%) + vahue!
Matrix!(Lo%, Hi%) = Matrix!(Lo%, Hi%) + value!
Matrix!(Lo%, Lo%) = Matrixi(Lo%, Lo%) - valuel
Matrixi(Hi%, Hi%) = MatrixI((Hi%, HI%) - value!

END SUB

SUB BCaale (Matrix!Q, RHSMatrix!0, NumBC%, BCnode%0, knownvall0, NumNode%)
FOR I% = 1 TO NumBC%
FOR /% = 1 TO NumNode%
IF j% © BCnode%(i%) THEN
RHSMatrix!(j%, 1) = RHSMatrixI(j%, 1) - Matrix!(%, BCnode%(1%)) * knownvall(%)
MatrixI(j%, BCnode%(i%)) = 0
Matrix!(BCrode% (%), j%) = 0
ELSE
RHSMatrix!(%, 1) = MatrixI(%, BCnode%(i%)) * knownvall(%)
END IF
NEXT %

END SUB

SUB Calclength (x!0, y10, 20, %0, [j%0, ElLength!, i%)
xtemp! = x!([j%A%)) - xIH%NI%))
ytempl = yl(j%31%)) - yl(i%(1%))
ztemp! = A([jRAK)) - 2I1RU%))
ElLength! = (xtemp! A 2 + ytempl A 2 + ztempl A2) A 5
END SUB

SUB ConstSortl (%0, §%0. xI0, y10, 1%, Cq9010, Cq18010, Cq!, NumElem%)
FOR {% = 0 TO NumElem%
IF 4% (%) = ji%({%) THEN
IF (QI%(%)) = x!(%(1%)) OR (YUK %) = yl([j%0%)) THEN
Cq! = Cq1801(11% (%))
BEXIT SUB * 180 - degree constants have preference
ELSEIF xI(i%(j%)) = x!([j%(%)) OR x{(U%(i%)) = x!(jj% (%)) THEN
Cqt = CqoOl(U%RI%))
ELSEIF ABS((y!Ui% (%)) - yl({i% (%)) / ((U%(%)) - xIGRGR)) - YI01%A%)) - yl[RA%)) / IUKAR)) - x!([j%U%)) < S THEN
Cql = Cq1801(i% (%))

Cql = CqIOURA%))
END IF

ELSEIF fi%(i%) = %(j%) AND ji%(%) © j%(%) THEN
IF (xI({i%(}%)) = x!(ji%(1%))) OR (yi(j% (%)) = yl(§%(i%))) THEN

~ s s e
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Cqt = Cq1801H%G%))
EXITSUB 180 - deg have pref

ELSEIF xl(i%(j%)) = x!(i%(%)) OR x!(1i%(1%)) = x!(jj%(i%)) THEN
Cq! = CqO(URI%))

ELSEIF ABS((yl(i% (%)) - Y% (%)) / (d(%(%)) - xI(%GEN) - (U%A%)) - yIGi%Ra%)) / IURA%) - xI(j%U%N) < 5 THEN
Cql = Cq1801(i% (%))

Cql = Cq0l(U%A%))
END IF

END IF
NEXT 1%
END SUB

DY

SUB ConstSort2 %0, j%0, x10, y10, 1%, Cq9010, Cq180t0, Cq!, NumElem%)
FOR {% = 0 TO NumElem%
IF j%0%) = i%(j%) THEN
[P xl(% (%)) = x!(j%(}%)) OR ylUti%(%)) = yi(jj%(j%)) THEN
Cql = Cq180i({i% (%))
EXIT SUB

ELSEIF xI(i%(j%)) = x!(ji%(%)) OR x!(1%(i%)) = x!({j%3%)) THEN
Cqt = CqPAUFRA%))

ELSEIF ABS((yl(1%(%)) - YI([f%(j%)) / ((U%(/%)) - xIGi%[%)) - (FIUI%AR)) - y!({%A%)) / (<HUKUAK)) - x!([%U%))) < 5 THEN
Cql = Cq1801G%U%))

ELSB

Cql = CEOURA%)
¥

ELSEIF [f%(i%) = {j%(%) AND 1i%(i%) < %({%) THEN
IF xi(i% (%)) = x!(ii%([%)) OR ylli%(U%)) = yl(i%(j%)) THEN
Cql = Cq1801(j% (%))
EXIT SUB

ELSEIF x!(1i%(j%)) = x!(jj%(%)) OR x!(i%(i%)) = x!(jj% (%)) THEN
Cqt = CION(%U%)

ELSEIF ABS((y!(i%(%)) - yI({i%(j%))) / (d(Ui%(j%)) - x![{%(%)) - (F1i%0A%)) - y!([F%RU%))) / (x!(U%AE%)) - x!({RG%))) < S THEN
Cqt = Cq180!([j%a%))

ELSE

Cql = COOGRA%Y
END IF

END IF
NEXT j%

ISR

ISP NERN

END SUB

FUNCTION Determ! (MatrixAQ, MatrixSize%)
CONGST False = 0
CONST True = NOT False
DIM Done’ (MatrixSize%)
FOR % = 1 TO MatrixSize%
Done%(j%) = False
NEXT j%
ValDeterm! = O
CALL DoDet(11, 0, 1, MatrixA!0, Done%0, ValDeterm!, MatrixSize%)
Determi = ValDeterm!
END FUNCTION

SUB DoDet (Terml, M%, k%, MatrixA!Q, Done%0, ValDeterm!, MatrixSize%)
CONST False = 0
CONST True = NOT False
IF k% > MatrixSize% THEN

Sign®% = -1
IF (M% MOD 2) = 0 THEN Sign% = 1
ValDeterm! = ValDetermd + Sign% * Term!
ELSE
IF Term! © 0! THEN
N% =0
FOR {% = MatrixSize% TO 1 STEP -1
IF Done%(j%) THEN
N% =N% +1
ELSE
Done%(j%) = True
All = Term! * MatrixA!(k%, j%)
A2% = M% + N%
AX=k% +1
M$% = MatrixSize%
CALL DoDet(A1!, A2%, A3%, MatrixA!Q, Done%(, ValDeterm!, Ad%)
Done%(j%) = False
END IF
NEXT {%
ENDIF
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END IF
END SUB

SUB GetReply (Firsts, Lant$, Reply$)

Lo$ = LEFTS(First$, 1)

HIS = LEFTS(Last$, 1)

IF Los > His THEN SWAP Lo$, Hi$

PRINT USING "Enter reply from & to &"; Los; His

Do

Replys = INKEY$

LOOP UNTIL (Reply$ >= Lo$) AND (Reply$ <= Hi$)
END SUB

SUB Key2Arr (Num2A rray!0, RowCount%)
CONST EndNumberi = 10101 ‘Mod. #1
RowSize% = UBOUND(Num2Arrayl, 1)
ColSize% = UBOUNDNum2Amayl, 2
* PRINT "~ Enter data for 2-dimensional arnay. —" ‘Mod. 12
* PRINT "— Maximum array size ="; RowSize%; " rows. =" ‘Mod. #2
‘ PRINT "— There are “; ColSize%; " columns per row. —" ‘Mod. #2
* PRINT "— Enter *; EndNumber!; “ to end data entry. —" ‘Mod. #2
IF RowCount% >= RowSize% THEN

DO WHILE RowCount% < RowSize%
RowCount% = RowCount% + 1
PRINT "<<< Row number”; RowCount%; “>>>"
IF RowCount% = RowSize% THEN PRINT ~** Last row ****

PRINT CHR&(7);
PRINT ™* Cannot end now. Please reenter number. **"
ColCount% = ColCount% - 1
END IF
ELSB
Num2Arrayl(RowCount%, ColCount%) = Entryl
ENDIF
LooP
[P Entry! « EndNumber! THEN
RowCount% = RowCount% - 1
B4T DO
ENDIF
LOOP
PRINT "—"; RowCount%; "rows entered. —"
PRINT “— Data entry complete —"
END SUB

SUB MatAdd (MatrixAl0, MatrixB10, MatrixC10, MatrixSize%)
FOR i% = 1 TO MatrixSize%
FOR {% = 1 TO MatrixSize%
MatrixCIG%, %) = MatrixAl(%, |%) + MatrixBI(%, {%)
NEXT j%
NEXT i%
END SUB

SUB Matinv (MatrixA!0, MatrixB0, MatrixSize%, OK AS INTEGER)
CONST ErrorBound! = .000000001# ‘Mod. #1
CONST False = 0
CONST True = NOT False
DIM MatrixCi(MatrixSize%, MatrixSize%)

FOR {% = 1 TO MatrixStze%
FOR % = 1 TO MatrixSize%
MatrixCIG%, j%) = MatrixAl(%, {%)
IF 1% = j% THEN
MatrixBIG%, j%) = 11
ELSE
MatrixBI(%, j%) = O1
ENDIF
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NEXT j%
NEXT {%
FOR % = 1 TO MatrixSize%
1% =%
WHILE ABS(MatrixC!(i%, %)) < ErrorBound!
IF % = MatrixSize% THEN
OK = False
EXIT SUB
ENDIF
%=i1%+1
WEND
FOR k% = 1 TO MatrixSize%
SWAP MatrixCl(i%, k%), MatrixCl(j%, k%)
SWAP MatrixB!(%, k%), MatrixB!(j%, k%)
NEXT k%
Factorl = 11 / MatrixCI(j%, j%)
FOR k% = 1 TO MatrixSize%
MatrixCI(%, k%) = Factor! * MatrixCI(j%, k%)
MatrixBI(%, k%) = Factor! * MatrixBI(%, k%)
NEXT k%
FOR M% = 1 TO MatrixSize%
FM% © % THEN

Factor! = -MatrixCI(M%, j%)

FOR k% =1 TO MatrixSize%
MatrixCIM%, k%) = MatrixCI(M%, k%) + Factor! * MatrixC!(j%, k%)
MatrixBIOM%, k%) = MatrixBIOM%, k%) + Factor! ® MatrixB!(j%, k%)

NEXT k%

END IF
NEXT M%
NEXT i%
OK = True
END SUB

SUB MatMult (MatrixA!0, MatrixB!Q, MatrixC!0, MatrixSize%)
FOR i% = 1 TO MatrixSize%
FOR j% = 1 TO MatrixSize%
TempSum! = O
FOR k% = 1 TO MatrixSize%
TempSumi = TempSum! + MatrixAl(%, k%) * MatrixB!(k%, j%)
NEXT k%
MatrixCI(%, %) = TempSum!
NEXT j%
NEXT 1%
END SUB

SUB MatSave (MatrixA10, MatrixSize%)
OPEN “w:matrix.dat” FOR OUTPUT AS #1
MatRormat$ = “ #8.8AAAA" ‘Mod. #1
FOR % = 1 TO MatrixSize%
FOR {% = 1 TO MatrixSize%
PRINT #1, USING MatFormat$; MatrixAl(%, |%);
NEXT j%
PRINT #1,
NEXT i%
PRINT #1,
CLOSE ()
END SUB

SUB MatShow (MatrixAl0, MatrixSize%)
MatFormat$ = = HLAAAAAY ‘Mod. #1
FOR 1% = 1 TO MatrixSize%
FOR % = 1 TO MatrixSize%
PRINT USING MatFormat$; MatrixAl(S, j%);
NEXT j%
PRINT
NEXT i%
PRINT
END SUB

SUB Newton (T1, Hi!, Lo, xd, ki)

DO
R=Hi-lo)/(K*x!A852+TN"xl)-
dRl=-1*GHit-Lol)*(852° KI*xIA-148 + TN / (I*xI A~ 852+ TI*x) A 2-1
newx! = xl - F1 / dR
x| = newx|

LOOP UNTIL Pt / dFl < .01 * x!

END SUB
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SUB Show2Arr (Num2Amayl0, RowCount%, N%, M%, NumColumns%)
NumRows% = 20 ‘Mod. #1
IF RowCount% < 1) OR (N% < 0) OR (M% < 0) OR (NumColumns% < 1) THEN
BEEP
PRINT "— Parameter error in Show2Arr —*
EXIT SUB
END [F
ColSize®% = UBOUNDNNum2Arrayl, 2
LastElement% = RowCount% * ColSize%
PagsSize% = NumRows% * NumColumne%
ElementCount® = 0
NumOnPage% = 0
IndexFormat$ = “(&.&)"
IF N% = 0 THEN
NumFormat$ = * #." + STRINGSM%, “#") + "AAAA®
ELSB
NumFormat$ = STRINGS(N®, “¥) + “." + STRINGSM%, ")
ENDIF
IF N% = 0 THEN
ColWidth% = 27
ELSE
ColWidth% = N% + M% + 10 ‘Mod. #2
ENDIF
CLs
FOR {% = 1 TO RowCount%
Str]$ = RIGHTS(STRS(j%), LEN(STRS(j%)) - 1)
FOR k% = 1 TO ColSize%
Strk$ = RIGHT$(STR$(k%), LEN(STR$(k%)) - 1)
Rowloc% = (NumOnPage% \ NumColumne%) + 1
ColLoc% = (NumOnPage% MOD NumColumns%) * ColWidth% + 1
LOCATE RowLoc%, ColLoc%
PRINT USING IndexFormat$; Strj$; Strks;
PRINT USING NumFormat$; Num2Asrayi(j%, k%) ‘Mod. #2
EementCount% = ElementCount® + 1
NumOnPage% = ElementCount% MOD PageSize%
IF (NumOnPage% = 0) OR (ElementCount% = LastElement%) THEN
PRINT “~ Press a key to continue -*
DO
LOOP UNTIL INKEY$ © =
IF BlementCount® <> LastElement®% THEN
CLs
ELSE
PRINT
END IF
ENDIF
NEXT k%
NEXT j%
END SUB

SUB Stats (NumArrayl(, count%, Mean!, Median{, StanDevi, Min!, Max!)
IF count% < 1 THEN EXIT SUB
FOR % = 2 TO count®
Templ = NumArrayi(j%)
k% =% -1
DO WHILE ((Temp! < NumArrayl(k%)) AND (k% > 0))
NumArrayl(k% + 1) = NumArmayl(k%)
k% =k%-1

Looe
NumArrayi(k% + 1) = Temp!
NEXT j%

FOR % =1 TO count®
ValueSum! = ValueSumd + NumArmayl(j%)
SquareSum! = SquareSum! + NumArray!(j%) ~ 2

NEXT j%

Min! =« NumArrayi(1)
Maxi = NumArrayl(count%)
IF ((count® + 1) \ 2) = count® \ 2 THEN
Mid% = count® \ 2
Median! = NumArray!(Mid%) + NumArrayl(Mid% + 1)) / 21
ELSE
Median! = NumArrayl((count% + 1) \ 2)
END IF
Mean! = ValueSum! / count%
IF count®% =« 1 THEN
StanDev! = 0t
ELSE
StanDev! = SQR((SquareSum{ - count% * Mean! * Meanl) / (count% - 1))
END IF



END SUB

SUB WaitKey
PRINT Mod. #1
PRINT *— PRESS ANY KEY TO CONTINUE —"
Do
LOOP WHILE INKEYS = *

END SUB

Page
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DIFNET1

.

*® * ¢ Irrigation Network program implementing virtual node technique * * *
DBCLARE SUB MatShow (MatrixAlQ, MatrixSize%)

DBCLARE SUB WatKey 0

DECLARE SUB BCcalc (Matrixi(, RHSMatrix!0, NumBC%, BCnode%0, knownvall0, NumNode%)
DECLARE SUB MatAdd (MatrixAl0, MatrixB!0, MatrixC10, MatrixSize%)

DECLARE SUB Matnv (MatrixA!0, MatrixBI0, MatrixSize%, OK AS INTEGER)
DECLARE SUB MatMult (MatrixAl0, MatrixB10, MatrixClQ, MatrixStze%)

DECLARE SUB Newton (T1, a!, dh!, dxi, m!, dektah)

DECLARE SUB ConstSort2 (%0, jj%0, x10, y10, 1%, Cq900, Cq18010, Cgl, NumElem%)
DBECLARE SUB ConstSort1 (%0, {j%0, x10, Y10, 1%, Cq9010, Cq18010, Cgl, NumElem%)
DBCLARE SUB CalcLength (x!0, y10, 210, %0, j%0, ElLengthl, i%)

COMMON SHARED m, g!, pil
COMMON SHARED HI0

meegnterdata®®®
.

CLs
INPUT “Enter name of element data file: “, elemfile$
INPUT “Enter name of nodal data file: “, nodefile$
PRINT “Enter emitter parameters: *
INPUT* k=" kel
INPUT* x == xel
INPUT “Enter initial head, H(0), (): =, HO!
OPEN elemfile$ FOR INPUT AS #1
OPEN nodefiles FOR INPUT AS 2
INPUT #1, NumElem%
DIM elem% (NumElem%), i%(NumElem%), jj%NumElem%), dla!{(NumElem%), HW%NumElem%), idia!(NumElem%), idta!{(NumElem%),
NumEmit%(NumElem%)
FOR 1% = 0 TO NumElem%
INPUT #1, elem%(i%), U%(i%), jj%(1%), dial(%), HW%(%), idia!(%), jdial(%), NumEmit%(i%)
NEXT 1%
INPUT #2, NumNode%
DIM node%(NumNode%), x!(NumNode%), y!(NumNode%), z(NumNode%), ctype%(NumNode%), Cq180!(NumNode%), Cq90{(NumNode%)
FOR i% = 0 TO NumNode%
INPUT #2, node%(1%), x!(%), yl(%), 2!(%), ctype%(i%), Cq18011%), Cq90I(i%)
NEXT i%
CLOSE (1)
CLOSE @

counter® =1

DIM HI(NumNode%), Di(NumElem%), MM!(NumElem%)

DIM DMatrixi(NumNode%, NumNode%), MMatrix!(NumNode%, NumNode%), KMatrix!(NumNode%, NumNode%)
DIM KinvilNumNode%, NumNode%), FMatrix!(NumNode%, NumNode%)

DIM ans!(NumNode%, NumNode%)

DIM a!(NumElem%), dx!(NumElem%), dh!(NumElem%)

DIM flow% (NumElem%), Q!(NumElem®%), deltah!(NumElem%)

“*®° constants * * *
.

HI(0) =« HO!

gl =322

pil = 3.1415926548
HWconst! = 473
ml = 1.852
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.

’* * * calculate element length, dx, and constant, a * **

FOR 1% = 0 TO NumElem%
CALL CalcLength(xi0, y10, 20, 4%0, {j%0, ElLength!, %)
dxi(i%) = ElLength!
al(%) = HWconst! / (HW% (%) A ml * dial(%) A 4.87) ‘1166
NEXT i%

*** ¢ initialize head values ***

FOR i% = 1 TO NumNode%
HI(G%) = H(O) - i%
NEXT i%

‘¢ ¢ * gtart fterattve procedure * * *
Nextlteration:

"'.Mluﬂ\lm"'
FOR {% = 0 TO NumNode%
FOR {% = 0 TO NumNode%
DMatrix!(%, {%) = 0
MMatrix!(i%, j%) = 0
KMatrix!(%, j%) = 0
FMatrixi(i%, %) = 0
NEXT %
NEXT i%

e cakulate dh * * *

FOR {% = 0 TO NumElem%
dh(i%) = HI(li%(%)) - HI{i%0%))
NEXT i%

%% Calculate deltah * **

FOR j% = 0 TO NumElem%
IP ctype%(i%(j%)) = 2 AND dh!(j%) > 0 THEN
fow%(j%) =1 * 1 - positive flow
CALL ConstSort1(1i%0, %0, x!0, y10, j%, Cq900, Cq180!0, Cql, NumElem%)
TI=Cql*8 /(g °pil »2°idial(j%) A 4)
CALL Newton(T}, al(j%), dhi(j%), dx!(j%), m!, deltah!(§%))
ELSEIF ctype%(jj%(j%)) = 2 AND dhi(%) < 0 THEN
flow%(j%) = -1 * -1 - negative flow
CALL ConstSort2(i%0, jj%0, x!0, y10, j%, Cq90t0, Cq18010, Cq!, NumElem%)
T=Cql*8/ (g *pil A 2° [ial(j%) A 4)
CALL Newton(T!, al(j%), ABS(dh!(j%)), dx!(j%), m!, deltahi(j%))
ELSE
deitahl(%) = 0
END IF
NEXT /%

“eeeCalculate D's***

FOR % = 0 TO NumElem%
DIG%) = 1 / al(%) A (1 / ml) * ABS((dhI(i%) - deltahl(%)) / dx!(%) A (1 / m! - 1)
NEXT i%

e Calculate M's and Q's* **
FOR i% = 0 TO NumElem%
IF NumEmt%(%) > 0 THEN
Havel = (1 / (m! + 1)) * (HIGIRA%)) - deltah!G%) + (1 - 1 / (m! + 1)) * HIG%A%))
Zave! = URAR) + ZIGRARD) / 2
MMIG%) = NumEmitk(%) * kel * (Havel - Zave!) A xel / Have! / dx{(i%)
QI0%) = NumEmit®(%) * kel * (Havel - Zavel) A xel / dx!(%)
ELSE
MMIi%) = 0
Q%) =0
END IF
NEXT i%

* * * Construct Global Stiffness Matrix * * *
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* %2 Add element contributions to D-Matrix * * *

FOR i% = 0 TO NumElem%
DMatrix!(% (%), §%0%)) = DMatrix!(i%(%), 1%A%) + DII%) / dxI(%)
DMatrix!(j% (%), j%1%)) = DMatrixI(i%d%), jj%RU%) + DIG%) / dxI(%)
DMatrixI%0%), j%3%)) = DMatrixi(U%(i%), jf%(1%)) - DIG%) / dxI(i%)
DMatrixI(j% (%), 1i%(%)) = DMatrixi(jj%(1%), 4%(1%)) - DIG%) / dxi(%)

NEXT i%

‘e * ¢ Add element contributions to M-Matrix * * *

FOR I% = 0 TO NumElem%
MMatrix|(i%0%), 1%3%) = MMatrixI(%0%), 4%3A%) + MMIG%) * dxIG%) / 3
MMatrix!(F%(1%), J%(1%)) = MMatrixI(§%(1%), j%(1%) + MMIG%) * dxI(%) / 3
MMatrix|(H%0%), j%(1%)) = MMatrix(i%0%), j%0%)) + MMI(%) * dxi(i%) / 6
MMatrixl(§%(1%), E%1%)) = MMatrix!(%0%), 1%0%) + MMI(I%) * dxI(%) / 6
NEXT i%

® ¢ * 3dd discontinuity’s contribution to force vector * * *

FOR % = 0 TO NumElem%
FMatrix(i%(i%), 0) = FMatrixi(li%(1%), 0) + DI(1%) ® dektah!(i%) / dx!(%)
PMatrixi(jj%(i%), 0) = FMatrix!(jj% (%), 0) - DI(%) * deltah!(%) / dx!(i%)
NEXT i%

* © * add discontinuity’s contribution to M-Matrix * * ¢

FOR 1% = 0 TO NumElem%
FMatrixd(%(1%), 0) = FMatrixi(i%(1%), 0) + MMI(i%) * dx!(1%) ¢ deltah!(i%) / 3
FMatrixd(jj%(1%), 0) = FMatrix!({j% (%), 0) + MM!(i%) * dx!(i%) ¢ deltah!(i%) / 6
NEXT 1%

oo &M h a.n een
CALL MatAdd (DMatrix!0, MMatrix!0, KMatrix!0, NumNode%)
‘¢ ¢ ¢ add boundary condition (known value at node 1) * * *

NumBC% = 1

BCnode%(1) = 0

knownwvall(l) = H!(0)

CALL BCcalc(KMatrix!0, FMatrix!), NumBC%, BCnode%(, knownvallQ, NumNode%)

LXX]

CALL Matlnv(KMatrix(Q, Kinvi), NumNode%, OK%)
IF NOT OK% THEN
BEEP
PRINT "No solution possible.”
END
END IF
CALL MatMult(KInvi0, FMatrix!0, ans!0, NumNode%)

""dhphyluuh"'

CLs

FOR {% = 0 TO NumNode%
PRINT i%, ans!(i%, 0)

NEXT i%

® * * check against previous fteration * * ¢

FOR i% = 1 TO NumNode%
IF ABS(H!I(%) - ansl(i%, 0)) > .01 THEN
FOR j% = 1 TO NumNode%
HI(%) = ans!(j%, 0)
NEXT j%
GOTO Nextlteration
END [F
NEXT %
PRINT “done”

"'Qmmh...

‘INPUT "Save results (y/n)"; resp$

‘IF UCASE¥(resp$) © "N THEN

“INPUT “Enter name of output file: *, outfile$
outfile$ = “axdnl_" + MID$(nodefile$, 8, 1) + “.out”
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OPEN outfile$ FOR OUTPUT AS #3

FOR i% = 0 TO NumNode%
PRINT #3, ans!(i%, 0)

NEXT i%

CLOSE G)

‘END IF

END

SUB BCcalc (Matrix!Q, RHSMatrix!0, NumBC%, BCnode%0, knownvall), NumNode%)

mee Y to tnctude ki m L X ]
FOR 1% = 1 TO NumBC%
FOR % = 0 TO NumNode%
IF {% © BCnode%(%) THEN
RHSMatrix!(j%, 0) = RHSMatrix!(j%, 0) - Matrixi(j%, BCrode%(i%)) * knownvall(i%)
Matrix!(j%, BCnode% (%)) = 0
MatrixI(BCnode% (%), i%) = 0

RHSMatrix!(j%, 0) = Matrix!(j%, BCnode% (%)) * knownval!(i%)

SUB CalcLength (x!0, y10, 20, %0, {j%0, ElLength, i%)
¢ * subroutins to calculate length of element * * *

xtemp! = xI(%A%)) - xI%A%))

ytempl = yl(%0%)) - ylU%(%)

Ztempl = Z(HRA)) - ZIURE%)

ElLength! = (xtempl A 2 + ytempl A 2 + templ A2) A §
END SUB

SUB ConstSortl (%0, j%0, x!0, y10, i%, Cq9010, Cq18010, Cq!, NumElem%)
‘* * ¢ subroutine to sort which constant applies * * *

FOR j% = 0 TO NumElem%
IF i%(i%) = jj%(j%) THEN

IF (dG1% (%)) = x!(jj%(1%)) OR (ylUi%([%)) = yl([j% (%)) THEN
Cqt = Cq1801(l%(1%))
BIT SUB * 180 - degree constants have preference

ELSEIF x!(li%(j%)) = x!(jj%({%)) OR x(L%(i%)) = x!(j% (%)) THEN
Cqt = Cq90l(li% (%))

ELSEIF ABS((y!(1%(j%)) - yX({j%(%))) / (x!(i%(j%)) - x!(j%([%))) - (yI(i%0U%)) - yl([j%U%))) / xI(L%UK)) - xI([j%A%)) < 5 THEN
Cql = Cq1801(1% (%))

Cqt = Cq901(li% (%))
END IF
ELSHIF i%(i%) = i%(j%) AND ji%(%) < jj%(j%) THEN
IF (x!(jj% (%)) = x!(ji%(1%))) OR (y1(jj% (%)) = y1(j%(i%))) THEN
Cql = Cq1801(1i% (%))
EXIT SUB ‘ 180 - degree constants have preference
ELSEIF x!l%(j%)) = x!(jj% (%)) OR x!(li%(i%)) = x!(jj% (%)) THEN
Cql = Cqo0I(U%U%))
ELSEIF ABS((y!(1% (%)) - yl({%(%))) / (d(UB(%)) - x!([%RG%)) - (IAU%A%)) - ylI(%RA%)) / <IUKA%)) - x!([i%A%)N) < 5 THEN
Cql = Cq1801(1i % (%))
ELSE
Cql = Cqo01(Li% %))
END IF
END IF
NEXT j%
END SUB

ISR

SUB ConstSort2 (1i%0, §%0, x!0, y10, i%, Cq9010, Cq18010, Cq!, NumElem%)
“* * ¢ subroutine to sort which constant applies * * ¢

FOR {% = 0 TO NumElem%
IF jj%0%) = i%(j%) THEN

IF xIU%A%)) = xI(%(%)) OR yl(%A%)) = yl(j% (%)) THEN
Cql = Cq1801(i%a%))
EXIT SUB

ELSEIF x!(i%(j%) = x!(j%(%)) OR x(i%(I%)) = x1(j%0%)) THEN
Cql = Cqo0I(%(1%)

ELSEIF ABS((y!(1%(%)) - yI(i% (%)) / (xKU%G%)) - xIGRGHN) - (UIKA%D) - yIGi%RA%)) / GIUKAER)) - x!i%RA%M) < 5 THEN
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Cql = Cq1801G%A%)

Cql = CEHANGRAR)
END IF
ELSETF j%(1%) = jj%(j%) AND Li%(%) < i%(j%) THEN
IF xI(U%A%) = xI(%G%) OR ylU%G%)) = yl(i% (%)) THEN
Cq! = Cq1801(i% (%))
EXIT SUB
ELSEIF xI\%(j%)) = xIGi%{%)) OR xi(U%(i%)) = x1(j%1%)) THEN
Cql = CqoOH(R (%)
ELSEIF ABS((y!(i% (%)) - !(i%(%)) / (X(UKR) - x!(GRGEN) - ('Gi%U%)) - y([i%G%)) / (xIU%E%)) - x!GRA%N) < 5 THEN
Cql = Cq1801G{%0%))

Cqt = Cq90UFR %)
END [F

END IF
NEXT %

END SUB
SUB MatAdd (MatrixAlQ, MatrixB!0, MatrixC!0, MatrixSize%)
‘® * * matrix addition subroutine * * ¢

FOR I% = 0 TO MatrixSize%
FOR {% = 0 TO MatrixSize%
MatrixClU%, %) = MatrixAl(i%, j%) + MatrixBIG%, j%)
NEXT |%
NEXT i%
END SUB

SUB Matlnv (MatrixAlQ, MatrixB!0, MatrixSize%, OK AS INTEGER)
* ¢ * matrix inversion subroutine * * *

CONST ErrorBound! = .000000001# ‘Mod. 11
CONST False = 0

CONST True = NOT False

DIM MatrixC!(MatrixSize%, MatrixSize%)

FOR i% = 0 TO MatrixSize%
FOR j% = 0 TO MatrixSize%
MatrixCI(I%, %) = MatrixAl(1%, j%)
IF i% = j% THEN
MatrixBI(I%, %) = 1l
ELSE
MatrixBl(%, j%) = O
ENDIF
NEXT j%
NEXT i%
FOR % = 0 TO MatrixSize%
% =%
WHILE ABS(MatrixC!(i%, j%)) < ErrorBound!
IF I% = MatrixSize% THEN
OK = False
EXIT SUB
ENDIF
1% =1%+1
WEND
FOR k% = 0 TO MatrixSize%
SWAP MatrixCl(i%, k%), MatrixCl(j%, k%)
SWAP MatrixB!(i%, k%), MatrixB!(j%, k%)
NEXT k%
Factor! = 11 / MatrixC!(j%, j%)
FOR k% = 0 TO MatrixSize%
MatrixC!(j%, k%) = Factor! * MatrixCl(j%, k%)
MatrixB!(j%, k%) = Factor! * MatrixB!(j%, k%)
NEXT k%
FOR m% = 0 TO MatrixSize%
[F m% <> j% THEN

Factor! = -MatrixCl(m%, j%)

FOR k% = 0 TO MatrixSize%
MatrixCi(m%, k%) = MatrixC!(m%, k%) + Factor! * MatrixC!(j%, k%)
MatrixBli(m%, k%) = MatrixBl(m%, k%) + Factor! * MatrixB!(j%, k%)

NEXT k%

ENDIF
NEXT m%
NEXT j%
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OK = True
END SUB

SUB MatMult (MatrixA!Q, MatrixB!0, MatrixC!0, MatrixSize%)

* * ¢ matrix multiplication subroutine * * *
FOR {% = 0 TO MatrixSize%
FOR j% = 0 TO MatrixSize%
TempSumi = O
FOR k% = 0 TO MatrixSize%
TempSum! = TempSum! + MatrixA!(%, k%) * MatrixB!(k%, j%)
NEXT k%
MatrixCI(%, %) = TempSum!
NEXT j%
NEXT i%
END SUB

SUB MatShow (MatrixA!Q, MatrixSize%)
* ¢ * subroutine to display matrix * * *

MatFormat$ = "MAAAA = ‘Mod. 11
FOR i% = 0 TO 8 * MatrixSize%
POR {% = 0 TO 8° MatrixSize%
PRINT USING MatFormat$; MatrixAl(i%, j%);
NEXT j%
PRINT
NEXT 1%
PRINT
END SUB

SUB Newton (T, al, d, dx!, m!, deltah!)

“* ¢ * subroutine to calculate deitah using Newton-Raphson method * * *
deltah! = 001
DO
FleTI*(1/ al® (dN! - dekahl) / dx) A 2 / m!) - deltah!
dRl«2°T1/mi/al/dxl*(1/al®(dhl -deltah]) /dx) A Q / mi-1)-1
newx! = deltah! - F1 / dF1
deitah! = newx!
LOOP UNTIL F1 / dF! < .01 * deltah!
END SUB

SUB WattKey
PRINT ‘Mod. #1
PRINT "~ PRESS ANY KEY TO CONTINUE —
Do
LOOP WHILE INKEYS = ~

END SUB



Page 119

DIFNET?2

# ¢ * ¢ Irrigation Network program implementing virtual node technique **
DBCLARE SUB MatShow (MatrixA!0, MatrixSize%)

DECLARE SUB WaitKey 0

DECLARE SUB BCaalc (Matrix!0, RHSMatrix!0, NumBC%, BCnode%0, knownvall0, NumNode%)
DECLARE SUB MatAdd (MatrixA!0, MatrixB!0, MatrixCI0, MatrixStze%)

DECLARE SUB Matinv (MatrixA!0, MatrixBIO, MatrixSize%, OK AS INTEGER)
DBCLARE SUB MatMult (MatrixAl0, MatrixBI0, MatrixCl0, MatrixSize%)

DBCLARE SUB Newton (T}, a!, dhl, dxl, m!, deltahl)

DECLARE SUB ConstSort2 (%0, jj%0, x10, y10, i%, Cq900, Cq18010, Cqt, NumElem%)
DBCLARE SUB ConstSort] (%0, j%0, x10, y10, 1%, Cq900, Cq18010, Cgl, NumElem%)
DECLARE SUB CalcLength (x10, y10, 210, %0, j%0, ELengthl, i%)

COMMON SHARED mv, g, pi!
COMMON SHARED HIQ

LAX] enter d‘“ eee
CLs
INPUT “Enter name of element data file: °, elemfile$
INPUT “Enter name of nodal data file: *, nodefile$
PRINT “Enter emitter parameters: *
INPUT® k=" kel
INPUT" x =" xel
INPUT “Enter initial head, H), (R.): *, HOt
OPEN elemfile$ FOR INPUT AS M1
OPEN nodeflle$ FOR INPUT AS #2
INPUT #1, NumElem%
DIM elem% (NumElem%), i%(NumElem%), jj%NumElem%), dial(NumElem%), HW % (NumElem%), idia!(NumElem%), dial(NumElem%),
NumEmit% NumElem%)
FOR 1% = 0 TO NumElem%
INPUT #1, elem%(1%), U%(1%), [j%(1%), dial(i%), HV%(%), idial(i%), jdial(i%), NumEmit%(i%)
NEXT 1%
INPUT #2, NumNode%
DIM node%(NumNode%), xi(NumNode%), yitNumNode%), z!(NumNode%), ctype%(NumNode%), Cq180!(NumNode%), Cq90!(NumNode%)
FOR % = 0 TO NumNode%
INPUT #2, node% (%), x!(i%), yl(i%), z!(i%), ctype% (%), Cql180!(i%), Cq90!(i%)
NEXT 1%
CLOSE (1)
CLOSE @
counter® = 1
DIM H!(NumNode%), Di(NumElem%), MM!(NumElem%)
DIM DMatrixi((NumNode%, NumNode%), MMatrixi((NumNode%, NumNode%), KMatrix!(NumNode%, NumNode%)
DIM KinvilNumNode%, NumNode%), FMatrixt(NumNode%, NumNode%)
DIM ans!(NumNode%, NumNode%)
DIM al(NumElem%), dx!(NumElem%), dh!(NumElem%)
DIM flow%(NumElem%), Qi(NumElem%), deitah!(NumElem%)
DIM qe!(NumElem%), TI(NumElem%)

".lmll'
HI() = HO

8 - 322

Pl = 3.1415926548
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HWoonst! = 4.73
ml = 1.852

‘* ¢ ¢ calculate element length, dx, and constant, a ®**
,

FOR i% = 0 TO NumElem%
CALL CalcLength(xi0, y10, 20, %0, %0, ElLength!, %)
dxi(1%) = ElLength!
al(%) = HWconst! / (HW(%) A m! * dial(%) A 4.87) 1.166
NEXT 1%

** %@ initialize head values * * *

PFOR i% = 1 TO NumNode%
HIU%) = HO - 1%
NEXT i%

 * ® start iterative procedure * * *

Nextlteration:

‘® ¢ reset all matrices * * *

FOR {% = 0 TO NumNode%
FOR j% = 0 TO NumNode%
DMatrixi(i%, %) = 0
MMatrixi(i%, j%) = 0
KMatrixl(i%, j%) = 0
FMatrix(i%, j%) = 0
NEXT %
NEXT i%

~*calulatedh ***

FOR i% = 0 TO NumElem%
dN3%) = H(U%1%)) - HI(jj%0%))
NEXT i%

%% Calculate deltah ***
’

FOR j% = 0 TO NumElem%
IF ctype%(i%(j%)) = 2 AND dh!(j%) > 0 THEN
flow%(j%) =1 ‘1 - positive flow
CALL ConstSort1(1i%0, jj%0, x!0, y10, j%, Cq9010, Cq18010, Cq!, NumElem%)
TI%) = Cql * 8 / (g1 * pil A2 idial(j%) A 4)
CALL Newton(T1(j%), al(j%), dh!(j%), dx!(j%), mi, qel(j%))
ELSEIF ctype%(jj%(j%)) = 2 AND dh!(j%) < 0 THEN
flow%h(j%) = -1 -1 - negative flow
CALL ConatSort2(1i%0, jj%0, x!0, y10, j%, Cq9010, Cq18010, Cq!, NumElem%)
TIG%) = Cql * 8 / (gt * pit A 2° jdial(j%) » &
CALL Newton(TI(j%), al(j%), dhI(i%), dx!(j%), mi, qel(%))
ELSE
qel(j%) = (dhi(j%) / al(%) / dx!(j%)) A (1 / mi)
TI%) = 0
END IF
NEXT 1%

"+ Calculate D's ***

FOR 1% = 0 TO NumElem%
D1(%) = dxI(i%) / (al0%) * qe!(%) A (m! - 1) * dxt(U%) + TI(%) * qe!(%))
NEXT %

=% Calculate M's * **
.

FOR {% = 0 TO NumElem%
IF NumEmit% (%) > 0 THEN
Havel = HI(1%3%)) ‘ HIAW%U%)) + 3 * HI(j%A%) / 4
MMI(1%) = NumEmit% (%) * kel * (Have! - Zave!) A xe! / Have! / dx!(i%)
QI4%) = NumEmit% (%) * ket * (Have! - Zave!) A xel / dx!(i%)
ELSE
MMKi%) = 0
Ql4%) =0
END IF
NEXT i%

¢ ¢ Construct Global Stiffness Matrix * * *
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’

‘*** Add element contributions to D-Matrix * * *

FOR i% = 0 TO NumElem%
DMatrix!(i% (%), U%(1%)) = DMatrix!(U% (%), 4%U%)) + DI(i%) / dx!(1%)
DMatrix!(jj% (%), jj%(1%)) = DMatrix!(jj% (%), jj%(1%)) + DIG%) / dx!(i%)
DMatrix!li% (%), j% (%)) = DMatrixi(i%(i%), jj%(i%)) - DI(%) / dx!(1%)
DMatrix!(ji% (%), i%(%)) = DMatrixi(jj%(1%), 4%(1%)) - DIi%) / dx!(%)
NEXT i%

’* ¢ * Add element contributions to M-Matrix * * *

FOR i% = 0 TO NumElem%
MMatrix!(% (%), 1%(%)) = MMatrix!(%(%), % 31%)) + MMIG%) * dxI(%) / 3
MMatrix!(§R(I%), j%(1%)) = MMatrix!(§% (%), j%(i%)) + MMI(%) * dx!(%) / 3
MMatrix|(% (%), [%(1%)) = MMatrixI(1i%A%), j%0%) + MMI(%) * dx(i%) / 6
MMatrix|(j% (%), U%(1%)) = MMatrixI([j% (%), U%A%)) + MMI(1%) * dxI(i%) / 6
NEXT i%

" '.wv' h H e
CALL MatAdd (DMatrix!0, MMatrix!0, KMatrix!0, NumNode%)
‘* * ¢ include boundary condition: known value at node 0 * * *

NumBC% = 1

BCnode%(1) = 0

knownvali(1) = H!(0)

CALL BCcalc(KMatrix!Q, FMatrix!0, NumBC%, BCnode%(), knownval!l0, NumNode%)

XX}

.

CALL Matinv(KMatrixd0, KInvi0, NumNode%, OK%)
IF NOT OK% THEN

BEEP

PRINT “No solution posaible.”

END

END [F
CALL MatMult(KInvi0, FMatrix!0, ans!Q, NumNode%)

""dhplayluub"'

CLs

FOR {% = 0 TO NumNode%
PRINT ansi(i%, 0)

NEXT i%

“® ¢ ° check against previous iteration * * *

FOR i% = 1 TO NumNode%
IF ABS(HI(%) - ansl(i%, 0)) > .01 THEN
FOR % = 1 TO NumNode%
H!(j%) = ans!(j%, 0)
NEXT %
GOTO Nextiteration
END IF
NEXT i%
PRINT "done”

g

mee gave results **

outflle$ = “axdn2_" + MIDS$(nodefile$, 8, 1) + “.out”
OPEN outfile$ FOR OUTPUT AS #3
FOR i% = 0 TO NumNode%
PRINT #3, ans!(i%, 0)
NEXT 1%
CLOSE @)
END

SUB BCcak (Matrix!Q, RHSMatrix!(), NumBC%, BCnode%(, knownvall), NumNode%)
* ** include known values in matrices * * *

FOR i% = 1 TO NumBC%
FOR j% = 0 TO NumNode%
IF j% © BCnode%(i%) THEN
RHSMatrix!(j%, 0) = RHSMatrix!(j%, 0) - Matrix!(j%, BCnode%(i%)) * knownval!(i%)
Matrix!(j%, BCnode% (%)) = 0
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Matrix!(BCnode%(i%), j%) = 0

RHSMatrix!(j%, 0) = Matrix!(j%, BCnode% (%)) * knownval!(i%)

SUB CalcLength (x!0, y10, 0, %0, jj%0, ElLength!, i%)
“* © * subroutine to calculate length of element * * *

xtemp! = x!(jj% (%)) - x!U%1%))

ytemp! = yi(ji%(i%)) - yl(ii%(1%))

ztempl = Z([j%A%)) - ZIUKA%))

ElLength! = (xtemp! A 2 + ytemp! A 2 + Ztempl A 2) A 5§
END SUB

SUB ConstSortl (%0, j%0, x!0, y!0, 1%, Cq9010, Cq1800, Cq!, NumElem%)
* ® * sort out which constant applies * * *

FOR % = 0 TO NumElem%
IF 4%(i%) = jj% (%) THEN

P (x!(1% (%) = xI(F%(I%)) OR (yl1U%([%)) = yl([j% (%)) THEN
Cqt = Cq1801(1i% (%))
EXIT SUB ‘180 - deg; have prefi

ELSETF x!(1i%(j%)) = x!(jj%(j%)) OR x}(i%(i%)) = x!(jj%(i%)) THEN
Cql = Cqo0(U%U%))

ELSEIF ABS((y10i% (%)) - yi(ji% (%)) / (x/(U%(j%)) - x!(j% (%)) - (y1(i%A%)) - yI[i%u%)) / (<I(U%I%)) - x!([j%RU%))) < S THEN
Cqt = Cq180IURU%))

Cql = Cqo0(11% (%))
END IF
ELSEIF #%(i%) = i%(j%) AND jij%(%) < jj%(j%) THEN
IP (I(%(%)) = x!({§%(1%))) OR (yl({i% (%)) = yi(j%(1%))) THEN
Cq! = Cq18010i% (%))
BEXIT SUB ‘ 180 - degree constants have preference
ELSEIF x1(li%(j%)) = x!(jj%({%)) OR x(li%(%)) = x!(j% (%)) THEN
Cqt = Cq0U(U%I%))
ELSEIF ABS((ylt1% (%)) - yX({i%(%)) / (xKU%(%)) - xI(i%G%)) - (FIU%A%)) - yli%U%)) / (<I(U%RIR)) - xI([%E%))) < 5 THEN

Cqt = Cq1801%4%))
Cqt = CqoOHURA%))
END IF
END IF
NEXT j%
END SUB

SUB ConstSort2 (li%0, j%0, x!0, y!0, 1%, Cq9010, Cq18010, Cq!, NumElem%)
* * © sort out which constant applies * * *

FOR % = 0 TO NumElem%
IF i%4%) = U%(j%) THEN

IF xI@%(U%)) = x!(j%(j%)) OR yl(i%a%)) = yi(j% (%)) THEN
Cql = Cq1801(j% %))
EXIT SUB

ELSETF x!(li%(j%)) = x!(jj%(j%)) OR x(%(1%)) = x!(j% (%)) THEN
Cql = CQR0I(F%(I%)

ELSEIF ABS((y!4I% (%)) - yK{i%G%)) / (xI(U%(%) - xIGRGEN) - (FHI%AR)) - yI%a%)) / <IU%A%) - xIGRA%M) < 5 THEN
Cql = Cq180!(j% (%))

Cqt = CIOGRA%N)
END IF

ELSHIF % (%) = jij%(%) AND {i%(%) < 1%(j%) THEN
IF xIU%0%)) = xI(1%([%)) OR yl(%(%)) = yl(1% (%)) THEN
Cqt = Cq1801(j% (%))
EXIT SUB

ELSEIF x1(ii%(j%)) = x!(jj%(%)) OR x(U%(i%)) = x!(j% (%)) THEN
Cqt = CqO(FRU%)

ELSEIF ABS((yl(i% (%)) - yI(i%G%)) / (xI(U%G%) - xIGRGEN) - (%R - yIRA%)) / GIUKAR)) - xIG%ARN) < 5 THEN
Cq! = Cq1801(i% (%))

Cql = CqI0RU%)
END P
END [P
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END SUB
SUB MatAdd (MatrixA!Q, MatrixB!0, MatrixC!0, MatrixSize%)
“* * * matrix addition subroutine * * *

FOR i% = 0 TO MatrixSize%
FOR j% = 0 TO MatrixSize%
MatrixCIG%, %) = MatrixAl(i%, j%) + MatrixBI(%, %)
NEXT j%
NEXT 1%
END SUB

SUB Matinv (MatrixA!0, MatrixB!0, MatrixSize%, OK AS INTEGER)
°* * * matrix inversion subroutine * * *

CONST ErrorBound! = .000000001# ‘Mod. #1
CONST False = 0

CONST True = NOT False

DIM MatrixC!(MatrixSize%, MatrixSize%)

FOR I% = 0 TO MatrixSize%

FOR j% = 0 TO MatrixSize%
MatrixCI(%, {%) = MatrixAl(i%, j%)
IFi% = j% THEN

MatrixBIG%, j%) = 1!
ELSE

MatrixBI(%, j%) = Of
ENDIF
NEXT j%
NEXT i%
FOR % = 0 TO MatrixSize%
i% =%
WHILE ABS(MatrixC!(i%, j%)) < ErrorBound!
[P i% = MatrixSize% THEN
OK = False
EXIT SUB
ENDIF
K=i%+1
WEND
FOR k% = 0 TO MatrixSize%
SWAP MatrixCl(i%, k%), MatrixCI(j%, k%)
SWAP MatrixBI(%, k%), MatrixB!(j%, k%)
NEXT k%
Factor! = 11 / MatrixCI(%, j%)
FOR k% = 0 TO MatrixSize%
MatrixC1(j%, k%) = Factor! * MatrixCI(j%, k%)
MatrixB!(j%, k%) = Factor! * MatrixB!(j%, k%)
NEXT k%
FOR m% = 0 TO MatrixSize%
IF m% <> j% THEN

Factor! = -MatrixCl(m%, j%)

FOR k% = 0 TO MatrixSize%
MatrixCl(m%, k%) = MatrixC!/(m%, k%) + Factor! * MatrixCl(j%, k%)
MatrixBl(m%, k%) = MatrixBlI(m%, k%) + Factor! * MatrixBI(%, k%)

NEXT k%

END IF
NEXT m%
NEXT j%
OK = True
END SUB

SUB MatMult (MatrixA10, MatrixB!0, MatrixCI0, MatrixSize%)
** * matrix multiplication subroutine * * *

FOR 1% = 0 TO MatrixSize%

FOR {% = 0 TO MatrixStze%
TempSum! = 0
FOR k% = 0 TO MatrixSize%
TempSum! = Ti pSt ‘0“““Al(li,kﬁ)'MatﬂlBl(k*,i*)
NEXT k%
MatrixCI(%, j%) = TempSum!
NEXT j%
NEXT i%

END SUB



SUB MatShow (MatrixA!Q, MatrixSize%)
n"dwhy“mxlll

MatFormat$ = "WIAAAA * ‘Mod. #1
FOR i% = 0 TO 8 * MatrixSize%
FOR {% = 0 TO 8° MatrixStze%
PRINT USING MatFormat$; MatrixAl(i%, j%);
NEXT j%
PRINT
NEXT i%
PRINT
END SUB

SUB Newton (T\, ai, dN, dx!, ml, qel)
* * ¢ solve for qe using Newton-Raphson method * * ¢

Qe! = .00001

DO
Fleal®qel Ami®dxd + T *qel A 2-dN
dPl = mi®al*dxl®qel A (mi-1)+2° T1* el
newxi = qel - F1 / dP
qel = newx!

LOOP UNTIL ABS( / dFD < .01 * ABS(qe!)

END SUB

SUB WattKey
PRINT ‘Mod. #1
PRINT *— PRESS ANY KEY TO CONTINUE —*
DO
LOOP WHILE INKEYS = =

END SUB
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LAGRANGE

.

‘® @ * program for construction of 2-D hydraulic topography using Lagrangian element

DBCLARE SUB MatXConst (Matrix!Q, NewMatrix!(), ki, MatSize%)
DBCLARE SUB MatTrans (MatrixaQ, Matrixb0, MatrixSize%)
DBCLARE SUB MatSub (Mi 0, Matrixb(, MatrixC!0, MatrixStze%)
DBCLARE SUB MatMult (Matrixa0, Matrixb(, MatrixC!0, MatrixStze%)
DBCLARE SUB Matinv (Matrixa(, Matrixb(, MatrixSize%, OK AS INTEGER)
DECLARE SUB MatAdd (MatrixaQ, Matrixb(, MatrixCI0, MatrixSize%)
DBCLARE SUB Fvector (a, b, F10)

DBCLARE SUB Ky (a, b, KDy!0)

DBCLARE SUB Kx (a, b, KDx!10, Dxi, Dy!)

DBCLARE SUB Kg (@, b, G!0)

DBCLARE SUB MatShow (Matrixa(, MatrixSize%)

DECLARE SUB BCcalc (Matrix!(), RHSMatrix!Q, NumBC%, BCnode%(, knownvall), NumNode%)

MatSize% = 9

DIM GI(MatSize%, MatSize%), NewGl(MatSize%, MatSize%)

DIM KDx!(MatSize%, MatSize%), NewKDx!(MatSize%, MatSize%)

DIM KDy!(MatSize%, MatSize%), NewKDy!(MatSize%, MatSize%)

DIM Fi(MatSize%, MatSize%), NewFI(MatSize%, MatSize%)

DIM KDI(MatSize%, MatSize%), KDinviMatSize%, MatSize%), ans!(MatSize%, MatSize%)

L X X indats®*®*
’ hy

CLS

INPUT “Enter length of element: *, L!

INPUT “Enter width of element: =, W1

‘GOTO skip

INPUT “Enter number of laterals: °, NumLat%
INPUT “Enter number of emitters per lateral: “, NumEmit%
PRINT "Enter emitter parameters:

INPUT "k = "; kI

INPUT "x = ; x!

INPUT “Enter diameter of main: °, MainDia

INPUT "Enter H.W. coefficlent for main: °, HWmain%
INPUT “Enter diamster of laterals: “, LatDia

INPUT “Enter H.W. coefficient for laterals: ", HWlat%
INPUT “Enter initial head in feet: ", HI(1)

% constants **
pit = 3.14159
HWconst| = 3.027

Amain! = MainDia A 2° pit / 4
Alat! = LatDia A 2° pil / 4

FOR 1% = 2 TO MatSize%
HI(%) « H(1) - 1%
NEXT i%

ax! = HWconst! / (HWmain% A 1.852 * MainDia * 1.166)
ayl = HWconst! / (HWlat% A 1.852 * LatDia * 1.166)

’*s* Cakulate Lagrangian element matrices **

skip:

b=L1/2

a=Wl/2

CALL Kg(a, b, G10)
CALL Ky(a, b, KDy!0)
CALL Fvector(a, b, F10)

¢ ° fterative procedure starts here * * *
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Nextlteration:
Dxl e 1 /axt A 54 ° (ABS(H!(1)- HI3)) / L) A - 46
Dyl =1 7 ayt A 54 * (ABSCH!(1) + HIG) - HIS) - HI()) / 2 / WD) A -46
[F H!®) > 0 THEN
Goonst! = NumLat% * NumEmit% * k! * HI(9) A (x!-1) / Ll / W!
Qel = -1 * NumLat% * NumEmit% * ik *HI(9) A x! / L1 / W1
QZ = -1 * Geonst!
ELSE
Geonst! = 0
Qel=0
Qz -0
END IF

*** Calculate new values for KDx matrix **

.

CALL Kx(a, b, KDx!0, Dx!, Dyl)
“*** Cakculats new values for other matrices ***

Kd =Geoonsti *a *b / 225

CALL MatXConst(G!0, NewG!0, Kdi, MatSize%)

Kd=1/Q%a)

CALL MatXConst(KDx!0, NewKDx!0, Kc, MatSize%)
Kd=Dyl*b/(®0°a)/Q°*b)

CALL MatXConst(KDy!0, NewKDy!0, Kd, MatSize%)

Kd=0 ‘Qel*sa®*b/9 ***Kd = 0 when using G(h)
CALL MatXConst(FI0, NewF10, Kd, MatSize%) “***(Q = 0)

*** Solve Matrix Eqn. ***

CALL MatAdd(NewKDx!0, NewKDy10, KD!0, MatSize%)
CALL MatAdd(KDIO, NewG10, KD!0, MatSize%)

“* ¢ * add boundary condition (known value at node 1) * * *

NumBC% = 1

BCnode%(1) = 1

knownval!(l) = H!(1)

CALL BCalc(KD!0, NewF10, NumBC%, BCnode%(, knownvallQ, MatSize%)

nee
.

CALL Matlnv(KD!0, KDinvl0, MatSize%, OK%)
IF NOT OK% THEN
BEEP
PRINT "Bad input. No solution is possible”
END

END [F
CALL MatMult(KDInviQ, NewF10, ans!0, MatSize%)
CLs
PRINT “Head Cakulations: *
PRINT
FOR i% = 1 TO MatSize%
PRINT ansl(i%, 1)
NEXT i%
WHILE INKEY$ = ~: WEND
FOR i% = 1 TO MatSize%
IF ABS(ans!(i%, 1) - HA%)) > .01 THEN
GOTO TryAgain
END IF

NEXT i%
PRINT “Done”
END

TryAgain:

FOR i% = 1 TO MatSize%
H%) = anst(i%, 1)

NEXT i%

GOTO Nextlteration

SUB BCaalc (Matrix!0, RHSMatrix!(), NumBC%, BCnode%0, knownvall0, NumNode%)

e ¢ this sub V! trices to include ) values***
.

FOR i% = 1 TO NumBC%
FOR {% = 1 TO NumNode%
IF j% < BCnode%(i%) THEN



Page 127

RHSMatrix|(j%, 1) = RHSMatrix!(j%, 1) - Matrix!(j%, BCnode%(i%)) * knownvall(i%)
Matrix!(j%, BCnode%(i%)) = 0
Matrix|(BCnode%(1%), j%) = 0
ELSE
RHSMatrix!(j%, 1) = Matrix!(%, BCnode%(1%)) * knownval!(%)
END IF
NEXT j%
NEXT i%
END SUB

SUB Fvector (a, b, F10)

‘¢ ** this sub sets in forch °er."
.

Fa, 1) =1
FQ. =4
FIQ, =1
Fid, 1) =4
FIG, 1) =1
FI6, 1) = 4
R, 1) =1
FI8, 1) =4
FIO, 1) = 16
FOR{% =1TO9
FOR % =2TO9
FI4%, {%) = 0!
NEXT j%
NEXT i%

END SUB
SUB Kg @, b, G!0)
‘% ¢ ¢ this subroutine sets constants in G-matrix * * *

G, 1) =16
G(1,D =8
G, 3) =4
GI(1, © = 2
GKL S =1
GI(L, 6) = -2
GI(1, M) =4
Gi(1, 8 =8
G, 9 =4
Gi2, D =64
G2, 3) =8
Gl24)=¢
GI2, 5) = -2
GI(2, 6) = -16
G2, 7) = -2
G2 8) =4
G, 9) = 32
G!i3,3) = 16
GIG3, 40 =8
GI3,9) =4
GI3, 6) = -2
Gl3, 7N =1
GI3, 8) =2
GI3,9) =4
Gl4 0 =64
Gl(4,5) =8
Gl4, 6) =4
G4 7 =-2
Gl4, 8 =-16
G4, 9 =32
GI(5, 5) = 16
GI(5, 6) = 8
GI5, N =4
GI(S, 8) = -2
GI5, 9 =4
GI(6, 6) = 64
Gl6, 7 =8
GG, 8) =4
GKe6, 9) = 32
GI7,7) =16
Gi(7,8) =8
Gi(7,9) =4
GI(8, 8) = 64
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Gl(8, 9) = 32
Gl(9, 9) = 256

“*** copy values to bottom half of matrix ***

FORI% =1TO9
FOR j% = i% TO 9
Gl(%, 1%) = GI(i%, j%)
NEXT j%
NEXT i%

END SUB
SUB Kx @&, b, KDx10, Dxl, Dy

“*** this subroutine evaluates Dx-matrix * **
DIM Ink@®)

= calculate c1 and 2 for D(efiective) ==

cl=1/Dxt
@-2/Dyl

**** The equations were found to come in four basic forma. **
“*** These forme are calculated below. el

IM1) =6°a®c1A3°2+30%°a22°c172°272+50%a~3%c1*243
I =30%a*4°c244+3°c1A4°LOG(c1) +18°a®cl A 3°* 2 * LOG(cl)
In#@3) =39°a”2°c1A2%c242°LOG(c1) +36%° a2 3%c1* @2 A3 * LOG(cl)
Inf@) = 12°2a24° 22 4°LOG(c])-3°c1 A4 °LOG(cl +2°a* 2)
IndG5) =-18°2%¢c1A3°2°LOG(cl +2%a*<c?)
In#(6) =-29°aA2°c1 A2°2422°LOG(K1 +2%a* D
In#(7) =-36°a~3°c1*223°LOG(c1 +2%a° D)
In#(B) = -12°a24°274°LOG(cl +2%a* D)
Afornd = 08
FORi%=1TO8
Afornd = Aformd + In#(i%)
NEXT i%
Ind(1) =6%a*clA2°2+12%°a72%c1°Q272+2%aA3°Q273
Id@ =3"cl1 A3°LOG(cI) +9*a®clA2* @ *LOG(cl)
INNG)=6°a”2°c1°222°LOG(K])-3%c1A3°LOG(cl +2%a* @)
IM@=-9°a°c142°2°LOG(cl +2%a*2)
IMG) =-6"a”r2%c1*222°LOG(K1 +2%a* Q)
Bformd = OF
FORiI%=1TOS
Bform# = Bform# + Ink(i%)
NEXT 1%
(1) =6%a*c123°2+18%ar2%c172°Q2A2+8%ar3°cl*QA3)
In#@) = 4°274°2724+3°c1A4°LOG(c) +12°a*cl A 3° 2 * LOG(cl)
In#@) =12°a”2%c1A22°c242°LOG(c1)-3°c1 A4°LOG(cl +2°a* )
Ind@) =-12°2°c123°2°LOG(cl +2°%a*¢c2)
IndG) =-12°a242°c122°2722°LOG(c1 +2%a* 2
Cormét = OF
FORI% =1TOS
Cformé# = Cforn# + Ln#(i%)
NEXT 1%
In#(1) =6°a°clA3°c2+6°a72°c1A2°2A2+2%aA3%cl*c27A3-2a74° QA4
Ind@ =3°c1 A4°LOG(c1) +6%a®cl A 3°2*LOG(cl)
@) =3%aA2°c142°2722°LOG(c1)-3°cl A4°LOG(cl +2°a* )
Infl) = 6°2a"clA3°2°LOG(c]l +2%a°2)
IndG) = 3°aA2°c1A2°2722°LOG(c1 +2%a* Q)
Dform# = 08
FORi% =1TOS
Dform# = Dform# + In#(i%)
NEXT 1%

“*** Values are now calculated for the upper triangle matrix **

KDxI(1, 1) = -7 * Aform# / (72°a~4°b* 24 5)

KDx!(1,2) = Aform# / 9 *a A 4°b*Q2A5)

KDx!(1, 3) = -1 * Aform# / 72*a~4°b* 27 5)

KDxI(l, ) = (c1 +2%a°c2) *Bform# / B6%a A 4°b°Q2A5)
KDx!(1, 5) = -(c1 +a*c2)*Bform# / 72*aA4°b°275)
KDx!(1, 6) = (cl +a*c2) *Bform# / (9*aA4°b* 2 "5)
KDxi(1,7) =-7°(cl +a° 2 *Bform# / (72*a 7 4°b* 24 5)
KDxI(, 8) =7°(cl1 +2%a*2)*Bform# / 36°aA4°b*2A5)
KDx(1,9) =-2°(cl +2°a*c) *Bform# / @ *ar4°b° Q27 5)



KDx!@, 2 =-2° Aform# / 9°a~4°b°Q2A5)

KDxI@, 3) = Aform# / 9°aA4°b*2A5)

KDx!Q ) =-2°(c1 +2°a*c2) *Bform# / 9*a~4°b*245)
KDx!@, 5) =(cl +a*c2)*Bform# / (9°a~A4°b*°2A5)
KDx!@, 6) = -2°(c1 +a°c2) *Bform# / (9*a~4°b° Q27 5)
KDx!@, N =(cl+a°*c2)*Bform# / (9°a~4°b*Q2"5)
KDxIQ, 8) = -2°(c1 +2°a°*cD) *Bform# / O°*aA4°b*245)
KDxIQ2 9)=2°(c1+2°a*2)*Bform# / 9*a*4°b° 245
KDxI@3, 3) = -7° Aform# / 72°a~4°b° 2~ 5)

KDxIG, 0 =7%(c1+2%°2°c2)*Bforn# / 36°a~4°b* 24 5)
KDx!@3,5) =-7"(cl1 +a° D *Bform# / (722~ 4°b°* Q245
KDxIG, 6) = (cl +a°*c2) *Bform# / (9°aA4°b°Q2+5)
KDxIQ, Ne-1°(cl +a°* D *Bform# / (72°a~4°b*245)
KDx!@, 8) = (c1 +2°%a*c) *Bform# / 36°a A 4°b° 27 5)
KDxIG, 9)=-2°(cl1 +2%a*c)*Bforn# / 9°ar4°b*Q2A"5)
KDx!(4, 4) =-7°Cform# / (18*a 2 4°b°2 "5

KDx!4, ) =7°cl *Bform# / (36*a~4°b° Q27 5)

KDxl(4, 6) =-2°cl *Bforn# / 9*a”r4°b* 24 5)

KDx!(4, 7) = cl * Bform# / 36°aA4°b*2A5)

KDx(4, 8) = -1°Cformdt / (18°a 2 4°b* 24 5)

KDx!4, 9) =4 °Clormd# / ®*a*4°b*215)

KDxI(5, 5) = -7 * Dform# / (72*aA4°b* QA5

KDx!(5, 6) = Dform# / 9 *a A4°b°245)

KDxI(5,7) = -1 * Dforn# / (72°a 2 4°*b° 27 5)

KDxi(5, 8) = cl * Bform# / 36°a~4°b* Q2 A5)

KDxI(5, 9) = -2°cl1 * Bforméd / 9°a~4°b* Q27 5)

KDx!(6, 6) = -2* Dformé# / 9 *a A4°b° Q2 A5)

KDx!(6, 7) = Dform# / @ *aA4°b* Q2 A5)

KDx!(6, 8) =-2°c1 *Bfornd / 9*a 2 4°b° 245

KDx!(6, 9)=4°cl *Bformé# / (9°aA4°b°Q2A5)

KDx!(7, 7) = -7 * Dform#t / 72°a A 4°b° Q275

KDx!(7, §) »7°cl1 *Bformd# / 36 °a A 4°b* 2 AS)

KDx!(7, 9) = -2°cl *Bforr# / O *a”A4°b* 2475

KDx!(8, 8) = -7°* Cfornw# / (182 A 4°b* 27 5)

KDx!(®8, 9) =4 *Cform# / O *a r4°b*275)

KDx!(9, 9) = -8°Cform# / (9% a*4°b°245)

*** copy values to lower triangle of matrix ***

FORI% =1TO9
FOR j% = 1% TO 9
KDx!(%, 1%) = KDx(%, {%)
NEXT %
NEXT i%

END SUB
SUB Ky (a, b, KDyl0)
‘® ¢ ¢ this subroutine sets constants in Dy-matrix * * *

KDy, 1) = 28
KDy!(l, 2) = 14
KDy!(1, 3) = -7
KDyld, 4 = 8
KDyl 5) = -1
KDyl 6) =2
KDyl(l, 7) = 4
KDyid, 8 = 32
KDyl(1, 9) = -16
KDyi@, 2 = 112
KDyi@, 3) = 14
KDy!@, &) = -16
KDylQ, 5) = 2
KDy!@, 6) = 16
KDy!Q, 7) =2
KDylQ, 8) = -16
KDyl@, 9) = -128
KDyi@, 3) = 28
KDy!@, & = -22
KDy!G, 5) = 4
KDyi@, 6) = 2
KDyi@, 7) = -1
KDyl@, 8 = 8
KDyl@, 9) = -16
KDyl4, © = 64
KDyl 5) = -32
KDyld, 6) = -16
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KDy!4, 7) = 8
KDyl(4, 8) = -16
KDyl4, 9) = 32
KDy!G, 5) = 28
KDy!(5, 6) = 14
KDy!G, 7) = -7
KDy!(5, 8) = 8
KDyiG, 9) = -16
KDyl(6, 6) = 112
KDyl(6, 7) = 14
KDyl(6, 8) = -16
KDyl(6, 9) = -128
KDyl(, 7) = 28
KDyl(7, 8) = -32
KDyl@, 9) = -16
KDyl@®, 8) = 64
KDyl!@®, 9) = 32
KDyl®, 9) = 256

7%%* copy values to bottom half of matrix ***

FORi%=1TO9
FOR {% = 1% TO 9

KDyl(j%, 1%) = KDy!(%, j%)
NEXT %
NEXT i%
END SUB
SUB MatAdd (Matrixa(), MatrixbQ, MatrixC!0, MatrixSize%)
“* % * rratrix addition subroutine * * *

FOR {% = 1 TO MatrixStze%
FOR {% = 1 TO MatrixSize%
MatrixClU%, %) = Matrixa(i%, %) + Matrixb(i%, %)
NEXT j%
NEXT 1%
END SUB

SUB Matinv (MatrixaQ, MatrixbQ, MatrixSize%, OK AS INTEGER)
® ¢ * matrix inversion subroutine * * *

CONST ErrorBound! = .0000001 ‘Mod. #1
CONST False = 0

CONST True = NOT False

DIM MatrixC!(MatrixSize%, MatrixSize%)

FOR i% = 1 TO MatrixSize%
FOR {% = 1 TO MatrixSize%
MatrixCl(%, {%) = Matrixa(i%, %)
IF i% = j% THEN
Matrixb(i%, %) = 11
ELSE
Matrixb(i%, %) = 01
ENDIF
NEXT {%
NEXT i%
FOR j% = 1 TO MatrixSize%
1% =i%
WHILE ABS(MatrixCI(i%, j%)) < ErrorBound!
TF I% = MatrixSize% THEN
OK = False
EXIT SUB
ENDIF
1% =i%+1
WEND
FOR k% = 1 TO MatrixSize%
SWAP MatrixCI(i%, k%), MatrixCl(j%, k%)
SWAP Matrixb(i%, k%), Matrixb(j%, k%)
NEXT k%
Factor! = 1! / MatrixCI(%, j%)
FOR k% = 1 TO MatrixSize%
MatrixC1(%, k%) = Factor! * MatrixCI(j%, k%)
Matrixb(j%, k%) = Factor! * Matrixb(j%, k%)
NEXT k%
FOR M$% = 1 TO MatrixSize%
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FM% < % THEN
Factor! = -MatrixCI(M%, j%)
FOR k% = 1 TO MatrixSize%
MatrixC!I(M%, k%) = MatrixCI(M%, k%) + Factor! * MatrixCI(j%, k%)
MatrixbM%, k%) = Matrixb(M%, k%) + Factor! * Matrixb(j%, k%)
NEXT k%
ENDIF
NEXT M%
NEXT j%
OK = True
END SUB

SUB MatMult (Matrixa(, Matrixb(, MatrixC10, MatrixSize%)
* * * matrix multiplication subroutine * * ¢

FOR 1% = 1 TO MatrixSize%

FOR j% = 1 TO MatrixSize%
TempSum! = Ot
FOR k% = 1 TO MatrixSize%

TempSum! = TempSum! + Matrixa(i%, k%) * Matrixb(k%, j%)

NEXT k%
MatrixCI(%, j%) = TempSum!

NEXT j%

NEXT i%

END SUB

SUB MatShow (Matrixa(, MatrixSize%)
* ¢ * subroutine to display matrix ** *

MatFormat$ = “MIAAAA = ‘Mod. #1
FOR i% = 1 TO MatrixStze%
FOR {% = 1 TO MatrixSize%
PRINT USING MatFormat$; Matrixa(i%, j%);
NEXT j%
PRINT
NEXT i%
PRINT
END SUB

SUB MatSub (MatrixaQ, Matrixb(, MatrixC!0, MatrixSize%)
* @ * matrix subtraction subroutine * * *

FOR {% = 1 TO MatrixSize%
FOR j% = 1 TO MatrixSize%
MatrixCIG%, j%) = Matrixa(i%, %) - Matrixb(i%, %)
NEXT j%
NEXT i%
END SUB

SUB MatTrans (Matrixa0, Matrixb(, MatrixSize%)
’® ¢ * subroutine to transpose a matrix * * ¢

FOR i% = 1 TO MatrixSize%
FOR {% = 1 TO MatrixSize%
Matrixb(j%, 1%) = Matrixa(i%, %)

SUB MatXConst (Matrix!), NewMatrix!0, ki, MatSize%)
® ¢ * subroutine to multiply matrix by a constant * * ¢

FOR 1% = 1 TO MatSize%
FOR % = 1 TO MatSize%
NewMatrixI(i%, %) = Matrix(i%, %) * k!
NEXT /%
NEXT i%
END SUB
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Appendix B

A hydraulic network and its data file format for ALGNET

1)

“r
7
1 I
0

[S—

Figure 1b Network labeled for analysis by ALGNET
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Elenent Data File
Nunber of Elenents node | node D
—\5 ] cm
0 0 1 1%
1 ] 2 J67 190
Elenents 2 2 3 J67 190
3 3 4 J67 190
4 4 5 J67 190
5 ] 4 08 190
Noda! Data File
Nunber of Nodes conponent
\ X Y y4 tym
5
0 0 0 0 0
] 10 0 0 2
Nodes 2 20 0 0 2
3 20 100 O 2
4 10 100 0 2
9 0 10 0 1

Figure 2b Input data files for ALGNET from the network in Figure 1b.
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A hydraulic network and its solution with ALGNET

! |
A 4 (4) . (3) ILI_
-
§ b
(3) (10)
(0) [_I— _L| (1) (2) =
\ RS
1 (6) (9)
l (7 (8) —
< =
(0,0) 7 8 g X
Figure 3b A hydraulic network labeled for solution with ALGNET.

Demonstrated here is ALGNET's ability to handle components
with more than three fittings (note the cross at node 1).
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Element Data File

10

0 0 1 167 140 167 .167

1 1 2 167 140 167 .167

2 2 3 167 140 167 .167

3 1 4 167 140 167 .167

4 4 5 167 140 167 .167

5 5 6 d67 140 167 .167

6 1 7 167 140 167 .167

7 7 8 167 140 .167 .167

8 8 9 167 140 .167 .167

9 3 9 167 140 167 .167

10 3 6 167 140 167 .167

Nodal Data File

9

0 0 20 0 0 0 0

1 40 20 0 2 6 1.2

2 60 20 0 1 05 5

3 80 20 0 2 6 1.2

4 40 40 0 2 6 1.2

5 60 40 0 1 05 5

6 80 40 0 2 6 12

7 40 0 0 2 .6 1.2

8 60 0 0 1 05 5

9 80 0 0 2 .6 1.2
Boundary Condition File

8 40

Data files for use with ALGNET. Boundary Conditions file specifies that
head is 40 at node 8. See Figure 1c in Appendix C for explanation of files.
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Output from ALGNET not including Boundary Condition

Head at Node ( 0): 100

Head at Node ( 1): 32.48771
Head at Node ( 2 ): 23.80511
Head at Node ( 3 ): 23.44133
Head at Node ( 4 ): 28.25964
Head at Node ( 5): 23.18241
Head at Node ( 6 ): 23.32144
Head at Node ( 7 ): 28.25959
Head at Node ( 8 ): 23.18239
Head at Node ( 9 ): 23.32143

Coefficient of Uniformity = 86.73108 %
Converged after 14 iterations.
Total time of convergence = 2.580078 seconds

Note that the appropriate symetry is calculated:
H,=H,
H; = H,
He = H,
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Output from ALGNET including Boundary Condition

Head at Node ( 0): 100

Head at Node (1 ): 45.09686
Head at Node ( 2 ): 37.48613
Head at Node ( 3 ): 37.5452
Head at Node ( 4 ): 40.83437
Head at Node ( 5): 35.71997
Head at Node ( 6 ): 36.708
Head at Node ( 7 ): 42.77199
Head at Node ( 8 ): 40

Head at Node (9 ): 38.99974

Coefficient of Uniformity = 92.27956 %

Converged after 12 iterations.
Total time of convergence = 2.860352 seconds

Note that the Boundary Condition is met: Hg = 40
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A hydraulic network and its solution with DIFNET

Enitters

..,
-
—
-
—
-
—

Figure 4b Network labeled for analysis by DIFNET
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Element data file

Number of emitters along element
D D!

25
25
25
25
25
25
25
25

SRR HHH
w OO O O

Except for the last column,
this data file has the same
format as that for ALGNET.

Nodal data file

This data file has the same format
as that for ALGNET
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_
Output from DIFNET1

Head at node (0): 100

Head at node (1): 71.52046
Head at node (2): 59.99211
Head at node (3): 36.04306
Head at node (4): 30.07906
Head at node (5): 22.65207
Head at node (6): 18.83755
Head at node (7): 19.40233
Head at node (8): 16.11636

Output from DIFNET2

Head at node (0): 100

Head at node (1): 71.91549
Head at node (2): 60.27168
Head at node (3): 35.51284
Head at node (4): 29.61253
Head at node (5): 21.98885
Head at node (6): 18.26993
Head at node (7): 18.74747
Head at node (8): 15.55783
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Appendix C

Calculation of average head along a lateral

The shape of the energy grade line along a lateral element may be
approximated by the equation developed by Wu and Gitlin (1975):

H-h

H-H,

=1 -=(1 - Sy=a
1-Q L)

where, H, = head at node i (upstream node)
H; = head at node j (downstream node)
h = head at any point along the lateral element
s = position on lateral element (local coordinate)
L = length of lateral element

m = velocity exponent (1.852 for Hazen-Williams, 2 for Darcy-Weisbach)

Solving for h gives:

h = H, - (H-H)[1-(1 -%)-*11
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Average head is then solved for by letting u =1 - and integrating from u=0 to

s
L

1
m+1

h“=zha=[ H,+[1-1]H,

m+1
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Appendix D

A comparison of stability

In this section, the stability of each method is evaluated by inspection of its
convergence curve. Those curves which rapidly approach an asymptote represent
methods with rapid convergence. Those which oscillate before converging represent

methods which are unstable. A convergence curve for each method follows.

Convergence of last node
.

!..: ——

o~

1 a3

Overshoot
0.3

0 HHH
TR 2RNORSEIRRTeeNBBETICRRRRYEEBEBE
Number of iterations

Figure 1d Convergence of last node in an irrigation network of 36 nodes, using
ALGNETI1. Note slight oscillation before convergence; this method
is somewhat unstable for larger networks.
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CONV3.XLC

Comparison of Coavergence

g

. k
‘ -

3 */ HCn) = [HCR-1) + HCR-2)] / 2

T
i‘\

Page 1

Figure 2d Effect of averaging values from previous two iterations to calculate
linearizing constants for current iteration. Oscillation is not damped
much and convergence is slower.
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ANACONV . XLC

Analyzer Convergence

+

H) 6 7 8 9 410 11 12 1
Nusber of Iterations

Page 1

14

15

18

7

10

19

Figure 3d

Convergence of ANALYZER is rapid.
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Convergence of Newton—Raphson Method

200
150

100 -
50 T

aece cecucloa
o
vd
[ /V/

lterations

Figure 4d. Convergence of Newton-Raphson method for the last node in a 20-node
network. While this method is highly unstable, it did eventually converge
in this case.
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Appendix E

An alternative development for the two-dimensional flow problem

Perhaps it makes sense to look at the two-dimensional flow problem in terms of

velocity. Continuity then takes the form,

ﬂ"bﬂ,l-o-av‘

x dy az.O

where velocity in the x-direction is defined as,

w3 gt

C;'D (4.87-2m)

The head difference between point (x,y) and (x+dx,y) may then be thought of as

dependent on the flow path joining these points:

Ah, = -g—f-‘dx = a,Vidx + 2a,Vy

or, rearranging and solving for V,,

so that,
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12
V. = 1n _ ZaXV,?y =
* |a,ox a,dx
[ 1
, _ 1|1 ahn Zal:V;yhi'” Ph
Ox ma,a,ox a,dx ax32

Substituting the equality,
V® = _1_ dh
y ay‘g;,
yields,
oh\. Jtd-1n
v, . 1 |an _ 2 " #n
Ox  mai/mox dx ax3
Derivation of the y-term is straight forward:
y ayT’r
so that,
Wy . 1 famdm @n

oy ma;/ | 9y dy?
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The z-term from the continuity equation will represent the "velocity” with which water
is leaving the system through the emitters (total flow out of the system divided by the
system’s surface area). This term will be taken to be the total flow from the element
divided by the element’s area:

avx = Eqa = ncnlkh'x
9z A ~ dxdy

Again, the resulting equation takes the general form,

&h  p&h L chig=0

* ax3 Y gy3?

where,
2 oh (%-1)
D. = 1 |oh _ d
X
AL e
on1(:-u
1/n[
and,
G = n‘nlkE(x-l)

dxdy n-1
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or,

nn,kh*
dxdy |p-y

These results were encoded in computer program LAGRANG2 which utilizes the

Lagrangian element.

Maclaurin expansion of D,
Integration of the D, term from Chapter IV may be facilitated by replacing D,

by its Maclaurin expansion. Consider the expansion:
1 = k
— B x
% "

D, can be rearranged to take the appropriate form:

o Dxof_1 = - Dy
D, dy(l-p) where p D,y

so that,

D, = —l‘;—’;,!;op"

This series would then be truncated at an appropriate k so as to approximate D, with

reasonable accuracy. Because this expansion has the constraint, |p| < 1, the Natural
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Coordinate System must be chosen and D,, must be less than or equal to D,. If D, is
greater than D,, which is unfortunately the case for conventional irrigation systems,

the integration limits must be changed.
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