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ABSTRACT

A CONDENSED FINITE ELEMENT ANALYSIS

OF MICROIRRIGATION HYDRAULICS

INCLUDING PIPE COMPONENTS

By

Philip Gerrish

The hydraulic design of microirrigation systems is a tedious and time-

consuming task. It was the goal of this research to simplify the design of

microirrigation systems in order to conserve energy and water. Numerical

solutions to microirrigation hydraulics are problematic because ofthe prohibitive

number of network nodes which need to be analyzed. The erdsting finite element

solutions for pipe networks represent pipe components as separate elements,

thereby increasing an already formidable number of nodes. In this research, a

partial differential equation was developed which incorporates the effect of pipe

components at nodes rather than in separate elements. The equation further

condenses the network matrices by making use of the virtual node concept in

which laterals with evenly spaced emitters are considered single elements with

derivative boundary conditions. Results are strongly correlated with existing

finite element solutions which show strong correlation with empirical data. Due

to the reduced number of nodes, the solution converges rapidly in few iterations.

A large network was solved using the condensed finite element analysis developed

in this research; where previous methods would require over 12,000 nodes to solve

this network, the method developed here required only 80 nodes. Results



correlate strongly to those obtained using the Backstep method.

A development is proposed for a two-dimensional equation describing

irrigated sub-plots with evenly spaced laterals as single, two-dimensional elements

with derivative boundary conditions. Some preliminary results were obtained and

found to be promising.
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I. Introduction

The Preclassic Period, starting around 2500 B.C., marks the beginning of the

development of farming communities on this continent. This date corresponds to the

rudimentary origins of irrigation practice worldwide. As population densities grew,

the development of more sophisticated techniques of water management became

necessary. Today, with high-tech irrigation and sophisticated methods of analysis, we

struggle more than ever to keep up with the growing number of mouths to feed. While

doomists point out the trends in population increase and the seeming impossibility of

feeding all these mouths, scientists and engineers collaborate in an attempt to outwit

nature, pointing out that man’s wit is in fact a part ofnature. Irrigation technology

is one of the most dramatic examples of man’s intelligence affecting the course of

nature.

In affecting nature’s course, man must be aware of its limits. Because the

earth’s total area of suitable cropland and freshwater resources are limited, there has

been a push for more efficient use of existing cropland and water resources--in other

words, a preference in the development of intensive as opposed to extensive agriculture.

It has been estimated that by the year 2000, the area of cropland in use will be double

the area in use in 1985 (Power, 1986; Holy, 1981), pushing to its limits the world’s

supply of suitable cropland.

Development of intensive agriculture, however, is not without some costs to the

environment. The amount of top-soil decreases more rapidly under intensive

Page 1
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cultivation. Increases in chemical application are often paralleled by an increase in

groundwater and runoff contamination. The soil, physically and chemically, is

fatigued more rapidly. Any way of reducing these costs to the environment must be

investigated thoroughly if we are to look to our future, near and far.

A fine case for the use of environment-friendly intensive agriculture can be

made by pointing to the Mayan Civilization-~one of the greatest pre-columbian empires

of this continent. The case of the Maya is a classic example of the rise and fall of an

irrigation society. Their rise is due in great part to the extensive development of

sophisticated irrigation systems and practices (Turner and Harrison, 1983). Their fall,

although still a great mystery, is thought by many to be related to environmental

decay as a result of their highly intensive agriculture (Wiseman, 1989). This history

and others like it must affect our thinking today, lest we lose "the ability to

understand recorded historical materials." (Okosun, 1993).

The case for more efficient use of water is made simply by noting that, on a

worldwide average, our present efficiency is around 37%. Add to that the fact that

80% of all freshwater resources in use today are being used for irrigation, and the case

for water efficiency becomes urgent (Power, 1986).

One requirement for the improvement of water efficiency is the improved

control of water application. This is one of the many benefits of microirrigation.

Other benefits include zero runoff, reduced labor costs, ease of chemical and fertilizer

injection, and higher salinity tolerance due to stable moisture conditions.

Microirrigation is highly efficient and environment-friendly; it is therefore a good

candidate for future-oriented agriculture.

The design of microirrigation systems is tedious and capital costs are high;
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these are the two most prohibiting factors in most cases. While capital costs cannot be

changed, it is the aim of this research to facilitate design by improving computer

models of the hydraulics involved.

A. Scam and Objectives

Hydraulic networks have traditionally been solved using the backstep, Hardy-

Cross, Newton-Raphson, and Linear Theory methods. Bralts and Segerlind (1985)

first put linearized flow equations into Finite Element formulation. Wood (1981) and

Finkel (1982) point out that pressure losses across pipe components such as elbows,

tees and valves may significantly afi‘ect pressure heads in a network. These minor

losses were put into Finite Element formulation by Haghighi et al. (1988).

A drip irrigation system is well designed if the water is applied uniformly

throughout. As a measure of uniformity, the Statistical Uniformity Coefficient was

introduced for microirrigation by Bralts, et al.(1987); it is defined as one minus the

coefficient of variation of emitter outputs. The objective of computer models developed

for micro irrigation design, therefore, is to accurately predict the output of each

emitter and give the uniformity coefficient as an indication of the design’s quality. A

shortcoming of existing models is the awkwardness with which pipe components are

handled; inclusion of pipe components in the network analysis makes solution

cumbersome and unstable because new nodes are added to the system.

The overall goal of this research is to conserve water, chemicals and energy

used for plant growth through improved hydraulic design of micro irrigation systems.

More specifically, the focus of this research will be to develop an improved finite
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element formulation of pipe network systems in order to facilitate design. The specific

objectives are as follows:

1. Assess the effect of pipe components such as tees, elbows, crosses,

expansions, and contractions on the solution of a hydrach network

2. Develop a condensed finite element formulation for the incorporation of

pipe components which would not increase the number of nodes.

3. Include the virtual node concept in the finite element analysis, thereby

further condensing the network to be analyzed.

4. Apply the condensed finite element formulation to the design of

microirrigation systems, and compare the results with those of other

methods.



II. Review of Theory and Literature

An irrigation system is characteristically a "tree" hydraulic network system (no

closed loops) with a main as the "trunk", submains as primary "branches" and laterals

as secondary "branches" (see Figure 1). Along the length of each lateral are the

emitters which are water outlets. The emitters are where the water is applied directly

to the plant in a drip irrigation system. In a sprinkle irrigation system, the water

outlets are sprinklers.

A. Hydraulics of Irfiggtion

1. Equation Governing Emitter Flow

For the purposes of this study, all water outlets will be called emitters. The

equation describing flow in an emitter is:

qe = kh" (1)

where q, = emitter discharge

k = emitter discharge coefficient

h = pressure head

x = emitter discharge exponent

Equation (1). in general, describes orifice flow to the atmosphere (Wu, et al., 1979).

Page 5
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The coefficient and exponent characterize the emitter and are different for different

emitters. For a pressure-compensating emitter, for example, the value of x is close to

or equal to zero, as flow does not depend on pressure head. The value of x, in other

cases, is indicative of the flow regime in the emitter. A value of 0.5 indicates fully

turbulent flow, whereas a value of 1 indicates laminar flow.

2. Equations Governing Pipe Flow

A generally accepted form of the differential equations governing fluid flow is

the Navier-Stokes equation:

Pg—Z=-Vp+pe+uV2V (2)

where; v = Laplacian operator,

p = pressure,

p = density,

g = acceleration due to gravity,

u = viscosity,

V = velocity,
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The particular solution of the Navier-Stokes equation for pipe flow is the Darcy-

Weisbach equation:

= E .23 3AH, f D 29 l l

where AH, = pressure head loss due to pipe friction

f = friction factor

L = length of pipe

D = diameter of pipe

V = velocity of fluid

g = acceleration due to gravity

The fi'iction factor, f, in the above equation is a dimensionless wall shear, f= t° 1 .

_ V3
89

It is found to be f=%: (where Re = Reynold’s number) for laminar flow. This value,

however, is not so nicely defined in the transition and turbulent flow regimes. To

determine f in these flow regimes, it is common practice to refer to a chart called the

Moody diagram. Some empirical equations have been derived and are successful in

approximating the friction factor, f.

Another equation which may be used to calculate head loss due to pipe friction

is the Blasius equation:

= 8(4lba 4:224:

ht. W—gv DS+bL (4)
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where; v = kinematic viscosity

q = flow rate

L = length of pipe

D = pipe diameter

a = constant

b = constant

g = acceleration due to gravity

For PVC pipe, the values of a and b were determined by von Bernuth and Wilson

(1989) to be: a = 0.316 and b = -0.25. Hence the equation,

hr. = KLvo.2sq1.7SD-4.7s (5)

An empirical equation often prefered for its simplicity is the Hazen-Williams

 

equation:

- ksysL 1.952

AHD- Cfiasthmq
(6)

where k,,, = 4.73 for English units (D and L in feet)

km = 10.7 for International System of units

q = flow

Cm, = Hazen-Williams roughness coefficient

This equation approximates head-loss over a limited range of Reynolds numbers, a

drawback which should be considered especially when working in laminar or
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transition flow regimes.

While any of the above pipe flow equations may be used, the algebraic

development which follows uses the Hazen-Williams equation. This equation will be

used for the sake of comparison with other methods which use the same equation.

3. Equations for Approximating Lateral Flow

Flow in a microirrigation lateral line (a pipe with emitters) can be

approximated by constructing a dimensionless energy gradient curve (Wu and Gitlin,

1975). Basic assumptions are (a) flow from all emitters along the lateral is the same,

and (b) emitters along the lateral are evenly spaced. Dimensionless head drop

(AH/AH) is plotted against dimensionless length (x/L) and the curve derived is an

exponential decay function:

R1=i—P:;-=1-(1-i)m*1 (7)

where, AH, = head drop at point i

AH = total head drop in lateral

i = x/L, where x = distance from origin, and L = total length of lateral.

m = 1.852 from Hazen-Williams equation
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Figure 2. Approximation of pressure head along a lateral.
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Head at any point i along the lateral can then be described as:

h, = Ho — R1AH a: Ri'AH' (8)

where, H0 = head at i = 0

RAH = head loss due to pipe friction at point i

R1’AH’ = head loss or gain due to elevation at pointi

The curve described by equation (8) is shown graphically in Figure 2. With emitter

flow described by q = kh", and constant emitter flow along the lateral, flow at point i

along the lateral is:

a, = k(h,)" = km, - 12,1111 :1: Ri'AH')‘ (9)

Or, substituting the equality, q, = kHo" for flow from the first emitter on the lateral

gives an equation for flow fiom the lateral at any point i along the lateral:

(11 = qoll - R1(AH/Ho) 2t R1'(AH'/Ho)]“ (10)

4. Equation Governing Component Head Loss

An abrupt change in pipe geometry causes turbulence. Where turbulence

occurs, energy is lost. Pipe components (tee’s, elbows, valves, etc.) present abrupt

changes in pipe geometry. Their presence therefore implies loss of energy. A pump,

the exception of course, would increase energy. The energy lost1 at a pipe component

 

1Note here that the terms energy and head are used

interchangeably. This is because in hydraulics, total energy is

commonly expressed in potential form. 'Refer to next section under

the heading, Conservation of Energy.
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is equal to some fraction of the fluid’s kinetic energy at that point:

2

AHc=kc2Lg (11)

where AH, = pressure head loss due to pipe component

V = the velocity of the fluid

g = acceleration due to gravity

ke = a constant peculiar to the component used

2

The velocity head of water, 2V3 , is the water’s kinetic energy expressed as potential

energy (head).

B. Analysis of Hydraulic Networks

As with any physical system, both conservation of mass and conservation of

energy must be satisfied. These dictate the continuity equations throughout the

system.

1. Conservation of Mass

The conservation of mass of a fluid implies that flow in equals flow out:

2 q1n=2 gout: (12)

When this continuity is met at several points in a system, the result is a system of



Page 14

simultaneous equations.

2. Conservation of Energy

The conservation of energy of a fluid is expressed by Bernoulli’s equation:

2

{—g + h + z + h1, = constant (13)

where V = velocity

g = acceleration due to gravity

h = pressure head

2 = elevation

h, = head loss due to fiiction

Simply stated, this equation says that the sum of the kinetic energy (in potential

2

form), 2V3 , plus the potential energy, h+z, plus the heat energy lost due to fiiction

(in potential form), 111., is equal to the total energy and must therefore be constant

throughout the system.

3. Choice of Unkown

The set of simultaneous equations describing a hydraulic network can be

expressed in terms of either hydraulic head (potential energy) or flow as the unknown.

Choosing flow as the unkown has the advantage that many of the equations in

the set of simultaneous equations will be linear (Jeppson, 1976). In fact, if no closed
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loops exist (i.e. a tree network, as commonly encountered in irrigation systems), all of

the equations will be linear. While this is clearly a great advantage, it is countered by

the disadvantage that the boundary conditions are expressed in terms of potential

(head). A pump, for example, will deliver a certain hydraulic head, the outflow of

which depends on the solution of the entire network. Also, the derivative boundary

condition described later as the Virtual Node concept is a potential (head) gradient.

The great disadvantage of choosing potential as the unkown is that the

resulting equations are non-linear. The attractiveness of this choice, however, is due

to (a) the systemmatic facility with which the set of equations is formed, and (b) the

ability to apply boundary conditions essential for solution.

Note that the unkown chosen in this research is potential energy which, as

stated earlier, is the sum of elevation and pressure head, 2 + h. This sum is also

refered to in this thesis as hydraulic head, and is denoted simply by h for hydraulic

head within an element and H for hydraulic head at a node.

4. Notation

 

The network analysis technique used

in this thesis is called the Finite Element

Method. The use of Finite Element notation

throughout this section will facilitate

presentation of the different network analysis i j

techniques and will assure consistency of   
 

. , Figure 3. A generic element

notation throughout this thesis. The reader,

therefore, will be acquainted with Finite Element notation at this point.
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Figure 3 shows a generic element--a one-dimensional element as defined by

Segerlind (1984). The element, (e), lies between two nodes, i and j. In the case of

hydraulic network systems, an element refers to a length of pipe. A node must be

assigned to every point at which (a) head is known, (b) head is to be calculated, or (c)

there is an abrupt change ("discontinuity") in head. For example, to calculate emitter

flow, it is necessary to know hydraulic head at that point; so a node is assigned to that

point.

A variable with a superscript in parenthesis pertains to an element, whereas a

variable with a subscript pertains to a node. The variable, q"), for example refers to

flow through pipe element 7, while q, refers to flow through emitter node 5.

Equations developed here are non-linear and their solution is numerical.

Throughout this thesis, the subscript, n, denotes the number of the current iteration.

Likewise, n-l refers to the previous iteration.

C. Some Methods of Network Analysis

1. The Backstep Method

For a string of emitters (a lateral), where one end represents a source with

known pressure, the Backstep Method can be used to calculate the pressure heads at

each of the emitter nodes along the lateral. In Figure 4, for example, node 1

represents a known head while nodes 2 through 8 represent emitters at which head is

to be calculated.

To begin the solution, an initial guess is made for head at node 8. Next, the
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head at node 7 is calculated by satisfying the conservation of mass at node 8. That is,

flow out of node 8 (emitter flow) is set equal to flow in (pipe flow). Pipe flow is

calculated by rearranging the Hazen-Williams equation,

 

ql7>=( i:§a)T;—53 (14)

where,

km: ksysL (15)

1.852CH" 04.87

L = length of pipe element 7

CW = Hazen-Williams roughness coefi'icient for element 7

D = diameter of pipe element 7

For example, the equation expressing conservation of mass at node 8 is:

q(7) _ qa : o (16)

Substituting equations ? and (14) into equation (16) gives:

_ 1

I—i—

where, H - z = hydraulic head minus elevation = pressure head.
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With the initial guess for H8, H7 is calculated. From the expression for

conservation of mass at node 7, H, is calculated, and so on until Hl is calculated.

This value for H1 is then compared with the known value for head at that point. If

these values are within a specified error interval, then the procedure is finished;

otherwise, the initial guess for h, is incremented, and calculations are repeated. The

solution is thereby arrived at iteratively as shown in Figure 5.

The advantage of the backstep method is its straight-forward nature and hence

its facility of formulation. The great disadvantage it has is the long convergence time

required due to the large number of iterations required. Of the three methods

presented in this section, this is by far the slowest.

2. The Newton-Raphson Method

This method is based on a truncation of the Taylor series which takes the form,

R (x -1)

x12 arm1 R’( "-1) ( l

where x = the unknown

R(x) = the residual equation

11 = the number of current iteration

This is an iterative solution to the equation R(x) = 0. An equation of this form is

known as a residual equation. In the example of a string of emitters (Figure 4), a

residual equation and its first derivative must be written for each node. The residual

equation for any node in a pipe network system is simply, mm = qin - q“, = 0, where h
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(head) is now the unknown. Written for all nodes as a system of equations, the matrix

formulation takes the following form:

{ha} ={h,,-1} - [D] '1{R(h,,-1) } (19)

where [D] = the Jacobian matrix of derivative elements

{R(h)} = the residual vector

{h} = the vector of unknowns (head)

 

 

'8121 are, 8121‘
a—h'; 6—112 0 e e "a—II';

BE 2‘12 332
[D] = ah, ah, an, (20)

812,, 812,, 812,,

_'d’IT, an, 517:2.  

Determining the Jacobian matrix makes this method rather cumbersome when

seeking a generic formulation for networks. Also, a disadvantage of this method is its

instability, especially when the unknown is head. (Greater stability is achieved when

flow is the unknown.) Because of its instability, this method depends greatly on the

accuracy of the initial guess. Otherwise, this method has the great advantage of

quadratic convergence, which means rapid solution.
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3. The Linear Theory Method

This method sets up a system of linear equations by "linearizing" the flow

equations (Jeppson, 1976). This is achieved by observing that,

-o.«

(H1 -HJ ) "'1 and k (s) = kSYUL .

(k(0))0.54 ’ Cfiésssz,”

 

q‘.) =C‘C’ (Hi-Hj)n’ where C(‘lg
 

The term, 0‘", is treated as a constant and its value can be determined because

(Hi-H1) rm is known. (Note that n-l refers to the previous iteration.)

Linearization of the emitter flow equation in terms of hydraulic head is

achieved by noting that,

q, = k,(H-z)" = (k,‘—H"—?II>H (21)

sothat q, = Cfin , where C,, = krfl'fiz—E

n-l

The conservation of mass at node 6, for example, is now expressed in the

following form:

c151 (HS-H6) -c‘°’ (Hg-H7) -c,H,=o (22)

Again, notation is important. 0‘" refers to the linearizing constant for pipe element

flow. C, refers to the linearizing constant for emitter node flow.

This method in general is quite stable and is not highly dependent on the

accuracy of the initial guess. The solution converges in relatively few iterations.
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4. Finite Element Formulation of Linear Theory Method

One-dimensional Finite Element notation (Segerlind, 1984) is used to number

nodes and elements of a hydraulic network system (Bralts et al., 1987). Figure 4 and

Figure 6 show examples of this numbering system. A network numbered in this

fashion is readily put into matrix form by adding the contribution of each element to

the global system of equations.

The global system of equations takes the form,

[K] {H} ={F} (23)

which can be written in residual form as,

{R}=[K] {HI-{F}={0} (24)

where {R} = global residual vector.

[K] = global stiffness matrix.

{H} = global vector of unknown heads.

{F} = global force vector.

The element stifl'ness matrix represents an element’s contribution to the global

stiffness matrix. The element stiffness matrix, in this case, consists of the linearizing

constant pertaining to an element:

(25)

(e) .. (e)

[klel]=[c C ]

-Cle) C(e)
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where; C") = linearizing constant,

k“) = element stiffness matrix.

The element force vector is an element’s contribution to the global force vector. When

minor losses are not accounted for, it equals zero.

The procedure by which element vectors and matrices are added to the global

matrices is called the Direct Stifi‘hess Method (Segerlind, 1984). The generic form of

an element stiffness matrix is,

2.1 k2.2

m = ' ' (26)
[k l [k 1

This matrix is then added to the global stiffness matrix as follows:

k1.1 is added to KL:

k1.2 is added to Kid

ls,’1 is added to 1%,

k.” is added to K”.

where, k = value in element matrix

K = value in global matrix

Emitters may be incorporated into the global stiffness matrix by considering

them to be separate elements (Bralts et al., 1987).
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q=Cg(H1-Hacm) (27)

where Hm is equal to zero (atmosphere) and C, is the linearizing constant for the

emitter flow equation. The result is that, C. is added to K“; emitter contributions and

up on the diagonal of the global stifl‘ness matrix.

The global stiffness matrix which results is a banded symmetric matrix. The

iterative solution of the resulting system of equations was written in computer code by

Bralts and Segerlind (1985).

An advantage of the Finite Element formulation for the solution of hydraulic

network systems is its systematic simplicity. Because of this, it is well suited to the

development of a universal network solver. Bralts and Segerlind (1985) list several

other advantages.

Accomodating Pipe Components.

The cummulative efi‘ect of several pipe components in a hydraulic network is

often substantial. While losses due to pipe wall friction often dominate, the "minor

losses" due to turbulence in pipe components is seldom negligible. As pointed out by

Villemonte (1977), the term "minor losses" is often a misnomer as their effect is

frequently "major".

Haghighi et al. (1988 and 1989) proposed that pipe components may be added

to the system of equations as separate elements. This is done by adding an element

matrix of linearized component coefficients to the global stiffness matrix for each pipe

component. The component head loss in a component element is calculated by:
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Va 8 3
AH: 3 H1 ' H: ‘ I‘d—2'3 ' kch-ga

This can be linearized and rearranged to form,

q 3 Cc(H1 " H1)

fladl

where C, = 8kg 1

c n-

The element matrix for a pipe component is then added to the global stiffiiess matrix

by the Direct Stifiness Method. The component element matrix is similar in form to

those for pipe elements:

Cc 'ce
(cl .

[kn ] 'Cc Cc

  

The above development works only for certain two-node components such as elbows

and valves. A tee, however, is a component with three "fittings"; it is represented by

an element with three nodes (Haghighi et al., 1989). This approach has the

advantage that the equations are assured global continuity of zeroth order, C°,

meaning that discontinuities do not exist at nodes (see discussion of continuity in

Results and Discussion section). The additional nodes added by pipe components,

however, mean additional equations, which means increased computer time and

memory requirements.
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D. The Finite Element Method

One way of approximating the solution to an equation is to multiply its

residual form by a weighting function and set the integral of the product equal to zero.

This procedure is especially useful in the solution of differential equations. While

there are several weighting functions to choose from, the weighting function employed

in Galerkin’s method is perhaps the most widely used.

Consider the equation,

0%‘94’4'0'0 (28)

Employing the product rule for derivatives together with Greene’s theorem, the

second-derivative term can be broken down into two first-derivative terms, one of

which represents the intra-element residue which should go to zero (refer to Segerlind,

1984 or Dhatt and Touzot, 1984). The function is multiplied by its weighting function

(or shape function) and integrated over an element at each node of the element. A

linear element has two nodes, i and j; the integration at node 1 yields:

1’: 341139 11 3:

fD-a—x- axd" -fc1v,¢dx +IQN1dx =- 0

X1 11 ’1

where Ni = shape function at node i.
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Integration at nodej yields:

x, SN ’9 "1

£03353}!th - £aNjodx + imam: -- o

where Nj = shape function at nodej

An element’s contribution, therefore, to the global system of equations is written in

matrix form:

x, a [N] r X: x, 29

- r r =Inwadx learn ¢dx+foINI dx 0 r )

1 1 I

where [N] = [N, Ni] = shape function matrix for element (e)

Shape functions are derived so that,

¢lel = [N] {Qlel}

Linear shape functions, therefore, satisfy the following:

¢(°) = N101 + N101

where potential, ¢‘°’, is a straight line connecting nodes i and j. Hence they take the

form:

3

l
l '
3 l ><

“
2 l
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where Xi=xatnodei

Xj=xatnodej

L = length of element

While this research employs linear shape functions only, the same concepts

developed here can be used in conjunction with shape functions of higher-degree

polynomials to achieve more accurate results.

Continuity Requirements.

From equation (29), note that a first derivative term is integrated. The first

derivative of the function must therefore be defined, requiring continuity of first order,

0‘, throughout an element. Also, interelement continuity of zeroth order, C°, is

required, meaning that the value for nodej of an element must equal the value for

node i of the next element. In the case of linear elements, the first derivative is

undefined at the nodes.

The Virtual Node Technique.

A way to reduce the size of the global stiffness matrix is by merging the effect

of a string of several emitters into a single element. This is achieved by considering

the efi‘ect of these emitters to be continuous throughout a single element, thus having

the effect of a derivative boundary condition along the element. The nodes of such an

element are called virtual nodes or virtual emitters (Kelly, 1989; Bralts et al., 1993).

This technique considerably reduces the number of nodes in a system and hence the

size of the global stifl'ness matrix.



Page 31

The implementation of this technique requires that the flow equations be

rearranged to describe head as a residual equation in differential form. This equation

is then solved simultaneously for all nodes in the system using the Finite Element

Method.



III. Methodology

When applying the Finite Element formulation of the Linear Theory Method to

the analysis of a medium-size microirrigation system, a problem which arises is the

prohibiting size of the global stiffness matrix. A drip~irrigated plot of one hectare, for

example, with emitters spaced one meter apart and laterals spaced 1.5 meters apart

would contain 6,600 emitters and would require 6,667 nodes for head calculations.

The size of the global stiffness matrix would then be 6,667 x 6,667. Depending on the

arrangement, this number could be increased up to two fold due to the presence of

pipe components. Such a matrix would prohibit the use of conventional personal

computers. Also, when pipe components are taken into account, an elaborate "first

guess" procedure is necessary to initialize iterations. In this research, a formulation

will be developed to eliminate the extra nodes added by pipe components and thereby

eliminate the need to closely approximate nodal values for the solution to converge.

A. Research Approach

The objectives of this research are restated below, each followed by the research

approach employed in its development.

1. Assess the cumulative effect of pipe components such as tees, elbows,

crosses, expansions and contractions on the solution of a hydraulic

Page 32
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network.

This objective will be addressed by using an existing pipe-network program

called ANALYZER (Haghighi et al., 1988, 1992; Mohtar et al., 1991; Shayya et al.,

1988) to compare the solution of a hydraulic network not including pipe components to

the solution which includes the effect of pipe components.

2. Develop a condensed finite element formulation for the incorporation of

pipe components without increasing the number of elements.

This will be accomplished by developing a formulation in which a pipe

component is represented at a node rather than as a separate element. Because a

node at a junction is needed anyway, no new node is added as a result of a component

at that junction. The efl'ect of a pipe component will be accounted for in pipe elements

downstream of that component.

3. Include the virtual node concept in the finite element analysis, thereby

further condensing the network to be analyzed.

A string of evenly spaced emitters (a lateral) will be considered a single

element with a derivative boundary condition describing out-flow as a continuous

function along the length of the element. This way, where previous methods required

a node at each emitter along a lateral, this method requires only two nodes (one

element) to represent the entire lateral or lateral segment.
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4. Apply the condensed Finite Element formulation to the design of

microirrigation systems and compare the results with those of other

methods.

A pipe network will be analyzed and the results will be compared to those of

ANALYZER and KYPIPE (Wood, 1980; Wood and Charles, 1972, 1973; Wood and

Rayes, 1981).

B. Effect of Commnents on Network Solution

The effect of pipe components on the solution of a hydraulic network is often

substantial. The following scenario emphasizes the need to include the effect of pipe

components if the solution is to be meaningful. Figure 7 shows a hydraulic network;

for now, consider only the first diagram in the figure. The solution to this network is

achieved using the ANALYZER program. In Figure 8 and Figure 9, two solutions are

compared: the solution not including pipe components is compared with the solution

which includes the effect of pipe components.

Note that if the effect of pipe components is not included, the head calculated at

node 1 is not significantly difl‘erent than zero, because the error produced by not

including pipe components is greater that the head at node 1. It is apparent here that

the solution which does not include the effect of pipe components has limited meaning.

Now consider the second diagram in Figure 7. This shows the same network

but with pipe components represented by nodes instead of elements. The total number

of nodes is reduced from 40 to 27--about two thirds!



Page 35

 

Network In lthh 0 (mt ls

mpresmted by m elemt

Nelmkl Ihld1 i

representedn Wow 5

  

  

 

 
 

Figure 7 Two ways of analyzing the same network.
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The above observations demonstrate the benefits of developing a simple and

efficient method for including the effect of pipe components in hydraulic network

analysis without increasing the number of nodes.

C. Alggbraic Development

The development which follows will result in an algebraic solution for pipe

network analysis. Because the residual equations must be linearized, the solution to

the resulting system of equations is therefore iterative. This formulation will include

the minor losses2 due to components such as tees, elbows, and crosses. Component

head loss3 will be calculated as a drop in hydraulic head in the elements immediately

downstream of a component. An advantage of this formulation is noted in the fact

that no new elements are added to the network, thereby adding no new equations to

the system.

1. Linearization of Flow Equations including Minor Losses

Node i in Figure 10 represents a tee at a pipe junction. Any node such as node

i which represents a pipe component will from here on be called a component node.

Flow from node i to node j will be called positive flow. If flow is positive, then the

 

2 Note here that the term minor losses refers to the

cumulative effect of head loss due to components in an entire

network.

3 Note here that the term component head 1088 refers to the

hydraulic head loss in a particular pipe element due to the

presence of a component attached to the upstream side of the

element.
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total head difi'erence between i andj is:

AHT = H1 - Hj _ AHC (30)

where AHc = head loss due to the pipe component,

AH... = total head loss due to pipe friction

H, = head at node i

H). = head at nodej

Head loss at a component node is presented in Figure 11 as a sharp drop, or

discontinuity, in the energy grade line; here, the logic leading to equation (30) is

visually apparent. The energy grade line is a graphic representation of total energy--

kinetic plus potential--and is given in terms of hydraulic head. Thus, the general

equation describing the relationship between flow and head difi‘erence in an element

is:

H1 .. H1 - AHc = kle)q1.852 (31)

or, rearranging slightly,

H1 _. Hj = klelq1.852 + AHc (32)

While equations (31) and (32) appear trivially different, they are quite different in

terms of global formulation and stability. The two methods shall be discussed

separately as Method 1 (equation (31)) and Method 2 (equation (32)).
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 Figure 11. Energy Grade Line of downstream element.
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Method 1.

Rearranging equation (31) gives an expression for flow:

0.54

quI=[H1’HJ'AHc) (33)
k (a)

This flow equation can then be linearized by observing that

q" = (H1'HJ‘AHC) ”C(e) (34)

where CM = (Hr‘Hj‘AHclfagiflikm)'0'“

Method 2.

Equation (32) is rewritten as follows:

2

H1 _ H] = klelql.852 + k _V_

Substituting Q/A for V,

H1 .. H: = klelq1.852 + kc
 

H1 _ Hj = (kIquo.852 + T‘9’q)q

where k‘°’= 4'73L
0&352D6J‘7
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(e) = 8
and T kc “204 

Or, in linearized form,

qn = (H1_Hj)ncle) (35)

 where C ‘°’ = 1

k (C) q:::52 +T (G) qn-1

2. Calculation of Component Head Loss.

The component head loss term requires that velocity be known. The velocity

head will therefore be based on hydraulic heads calculated in the previous iteration.

Note here that at least one iteration must be performed before component head loss is

taken into account. This has the advantage of automatically approximating nodal

values before including the effects of components. Because continuity is expressed in

terms of flow, equation (11) will be rearranged by replacing velocity with flow over

 

area:

= i. = aqzAHc kc ngz kc 91:sz (36)

where A is the cross-sectional area of the component

Di is the inside diameter of the component

The diameter, D,, in the above equation refers more specifically to the inside
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diameter of the component (see Figure 12) where the pipe element and component are

joined. In the case of positive flow, this occurs at node i of the element, hence the

subscript. It is important to note that this diameter is specific to the pipe element and

not to the component node. The component diameter data is therefore stored as part

of the element data file for the computer program discussed in a later section.

Method 1.

Substituting Q from equation (33) into equation (36), we get:

 

 

 

2

He - Cr 2 I kle)

9'" D1

3 H -H -AH 1'“

AHC = kc: 2 I[ 1 kjle) C) (37)

97‘ D:

This equation must be solved numerically for AH... but a first approximation can be

made by noting that the exponent is approximately equal to one (1.08 s 1). Setting

the exponent equal to one and solving for AHc yields:

c (38)
(1((9) +T)

 

where T, = k 

91:le
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Equation (38) can then be used as a first approximation to solve for AH, in equation

(37). The numerical method employed here is the Newton-Raphson method, chosen for

its rapid convergence.

Method 2.

While component head loss is not incorporated as a separate head loss term, it

is accounted for by the T‘"q term. Again, the resulting equation must be solved

numerically for flow:

__ (Hi-H1) n-1

k (e) gist-1952 +Tle) gm1

 

11-1 (39)

A first approximation is made by setting qua“ = q‘. q can then be solved for:

q = ML.
k (9) +T(O)

 

This first approximation is then used as a seed value for the Newton-Raphson

numerical solution of equation (39).

3. Algebraic Incorporation of Component Head Loss

The global system of equations is made up of several element contributions. An

element is affected by a component only if it is located immediately downstream of a

component node. For every node which represents a component, therefore, the

computer algorithm must first locate all elements touching the node and then

determine which of these elements are downstream of the node.
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Elements downstream ofa component node.

The elements found to be immediately downstream of a component node will

from here on be called simply downstream elements (see Figure 10). These elements

are treated differently than other elements. First, for each downstream element, the

component head loss, AHc, is calculated as indicated in equation (11). Component

head loss is based on the heads calculated as a result of the previous iteration and is

treated as a known in the current iteration. This head loss, AH” is incorporated in the

linearized coefficients (C‘°”s) for downstream elements as seen in equation (7).

Method 1.

Component head loss contributes to both the linearized coefficients as in

equation (34) and to the right-hand side of the equations as follows. The equation

describing conservation of mass at node i of a downstream element has the constant,

C ‘" T1, added to the right-hand side. Added to the right side at nodej is -C "’ T1.

In matrix formulation, this is expressed as a contribution to the forcing vector:

6 - c(elT1 4

{f()}-{_C(.)T1}
( 0)

The above equation applies only to the condition of positive flow as previously defined.

When flow is negative (i.e. when flow is from node j to node i) and nodej represents a

component, the element contribution is then:
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_C(e) T

{f(e)}={C(°) T11} (41)

Method 2.

Component head loss is incorporated only in the linearized coefficient, 0‘", as

defined in equation (35).

Selection ofComponent Coefficient, 12,.

A computer program called ALGNET was written based on the preceding

algebraic development. The algorithm used for selecting a component’s loss coefficient

is described here.

For a component with only two fittings, e.g. a coupling or an elbow, only one

coefficient is needed, whereas a component with more than two fittings, e.g. a tee or a

cross, requires at least two coefficients for the calculation of minor losses. The nodal

data file for the computer program, ALGNET, contains two coeficient values for each

component node. The first value, kcm, is used if an element exists upstream of the

component node which lies in a straight line (180 degrees) with the element under

scrutiny. The second value, km, is the default value. If no upstream element exists at

180 degrees, then the coefficient, k,, is assigned the value of kw. In Figure 13, for

example, the pipe component coefficient chosen for downstream element (2) is km,

because an upstream element exists, element (1), which lies between 160° and 200°

from element (2). The coefficient chosen for element (3) is k,90 because no upstream



Page 49

 

 

(3)

 ‘-}§;5 (2)

2

o : 20 degrees

 

Figure 13. Selection of component coefficient.
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element exists between 160° and 200° from element (3). See also Figure 12.
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D. Development of Partial Differential Quation

Consider the pipe element depicted in Figure 14. Conservation of mass dictates

that flow at x equals flow at x+dx plus the out-flow from the section, dx. As

discussed in the literature review, a virtual node approach requires that the out-flow

be considered a continuous function of x. The flow lost per length along a section of

pipe can be formulated as a constant flow gradient:

Zia. .. ”#557” (42)
6:: L

 

where n. = number of emitters on lateral

k = emitter constant (same for all emitters on lateral)

h = average head along lateral (see Appendix C for calculation)

2 = average elevation along lateral

L = length of lateral

Conservation of mass for the pipe element in Figure 14 requires that:

qx 3 qxedx + aaqx‘dx (‘3)
 

Equations relating head loss to flow can be given the general form,

Ah 2 aq‘x
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Figure 14. Pipe element with elbow and several emitters.
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where, ab = head loss due to pipe friction

x = length of pipe

m = exponent: 1.852 for Hazen-Williams or 2 for Darcy-Weisbach.

 a = coefficient:A for Hazen-Williams or f 16 for Darcy-

CA106 . 87 1; 3D5

Weisbach (see lit. review)

Over a distance, dx, this equation takes the form,

612
5?:dx = aqmdx

Solving for flow,

. = e a)'3

and linearizing the partial derivative,

q = 0%};

where,

Substituting into equation (43) gives,

ahah

D a.

aq.

xx +
= D

x x+dx 8::
X

dx (45) 
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where,

 

 

 

  

db = _8_I3 62h

Dxa—x x+dx 0" B): x + Dx axzdx (46)

Substituting equation (46) into equation (45) gives,

all: 3a. = 4.,
x5; + ax 0 ( l

where 232'- can be treated as a constant gradient, Q:

x

_ aq. _ n,k(H-§)‘ (43)

o " “a? ' L

or as a linearized function of h, Gh:

G h = aq. = (flak (17:31,, (49)

6x I. h

Results of both approaches are compared in the Results and Discussion section.

Equation (47) is the governing equation for lateral flow which is was the equation

presented by Bralts et. al (1993). This equation, however, does not account for the

presence of pipe components.
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1. Incorporation of pipe components

The fundamental problem of pipe components is the energy discontinuity which

they present. This becomes especially problematic when a component is treated as a

part of its downstream element. As a result, the energy grade line (Figure 11)

contains a discontinuity within an element as shown in Figure 15‘. Intra-element

discontinuities are often prohibitive because their derivatives are undefined; however,

this one can be dealt with because it occurs at a node. Again, two approaches shall be

considered.

Method 1.

The first approach accommodates the discontinuity in the head equation, using

a linear shape function to weight the residuals and employing Galerkin’s method.

Essentially, the function shown in Figure 15 is a linear function with the following

boundary conditions:

The equation for head is then derived as a linear function of s:

h = (Hi—AHC) +( Hj-H2+AHC)S

 

 

‘Note here that the coordinate system has been changed from

the global system, x, to the local system, s. Because scale

remains the same, derivatives are not changed.
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The linear shape functions are:

Integration at node i for the second-partial-derivative term (or D-term) then yields:

dN

fDd51‘ %h-ds= €(H1-HJ-AHC)

and at nodej:

dN dh
[Dial d—sds= (—-H1+HJ+AHC)

Equation (50) and equation (51) combine to take on the matrix form,

dINIT db D 1 '1 1 _ D 1

fD—ds dads: L[-—1 1E3} 'L'AH°{-1}

or, in matrix notation,

 

L

a [N] T ah = (e) (e) _ (e) (e)
{a as Eds [kn 1w } If, lAHc

(50)

(51)

(52)

(53)
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Likewise, integration of the G~term yields:

folNl Th ds =-%—L[: :Jgj} - Est-A343

(54)

= [kéfll {Hm} - {fé°)lAHé°’

And integration of the Q-term yields:

‘ 1
[om Tds = 9f:{ } = {11"} (55)
o 2 1

If emitter flow is considered a linearized function of head (in other words, if emitter

flow is expressed in the G-term), the following residual equation results for element,

(e):

{R W} = ( mg") + [ké‘H ) {Hm} - mi" } AHé" (56)

Otherwise, if emitter flow is treated as a constant (in other words, if emitter flow is

expressed in the Q-term), the residual equation is:

{em} = [kg°’1 {HM} - affixing" - {153"} (57)

Method 2.

The second approach accommodates the energy discontinuity again by adding
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pipe head loss, AI'IP, to component head loss, chz

AHé" = mg” + AHé"

Total head loss over length, L, (Figure 14) takes the form:

92. = m 2 58ex aqL+Tq (I

Site

de‘

 where T = as in the algebraic development.

L = length of element

Equation (58) can be solved for linearized flow as follows:

gfiL = (agfi’ffiL + Tgn_1)qn

L .33

aqg‘IfL + an,1 3"

 

q”:

 

Similar logic to that depicted in equations (45) through (47) results in the following

general equation:

62h
D +Gh-Q=o (59) 

where,

 D:

X

 

L

aq‘HL + TqL.1
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Equation (59) is the general form of a second-order partial differential equation. The

coefficients, D,, G, and Q are listed in Table I for both methods.
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Table 1: List of coefficients for four different approaches.

  

D G

 

Method 1:
1 db (71(1)

n

 0'1

midi-115) "
 

 
n-1

 

 

 

n-J.

 

 

 

 

L

aq‘HL + Talus

midi-a "
 

n-1

 

    
 

 

L

aq‘HL + TqL.1

  
n.k (IT-ax

L E
n-1  
 

It is worth noting that the results of the algebraic development are in

agreement with the equations developed in this section.

 

Each method’s contribution to the global stiffness matrix and forcing vector is

listed in table II.
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Table 11: Element contributions to global system.

  

 

 

 

  
 

 

Stiffness Forcing

Matrix Vector

Meth°d1= mg") {133"} + {$th
3c. _ 0

3::

Method 1: [kg-I] + [kéell {3.)}AH‘5-I + {falel}AHéei

aq, - o h
6::

Method 22 [1:30)] {fold}

ac. ,_

'3; 9

MethOdz [kD(.)] + [ka‘Ol] 0

3g, - G h

3:?    
 

The vectors and matrices are listed below:

 

(.) I 2 1 '1

[kn 1 Ll-l 1]

(0) .fl2 1[kg] 6L 2]

(e) = CL 1

m .2 1if. l L{_1}

(e) 3 GL 2u... .41}



IV. Results and Discussion

A. Evaluation of Solution without Virtual Nodes

The effect of pipe components in a hydraulic network system is incorporated in

the ALGNET and DIFNET computer programs (see Appendix A for code). ALGNETI

encodes method 1 as described in the Algebraic Development section; ALGNETZ

encodes method 2. The results of both ALGNET programs were compared with the

ANALYZER and KYPIPE programs. ANALYZER makes use of the Finite Element

Method and incorporates pipe components as separate elements. KYPIPE uses the

Linear Theory method and includes pipe components by adding their effect to the pipe

elements. Both ANALYZER and KYPIPE programs have been empirically tested and

found to be accurate. Several different hydraulic networks were analyzed by these

three programs, and the results were found to be very strongly correlated in all cases.

As an example, a hydraulic network system is shown in Figure 16 and

Figure 17. Figure 16 depicts how the network would be labelled for analysis by the

ANALYZER program, whereas Figure 17 shows the same network labelled for analysis

by the ALGNET program. Note here the reduction in the number of nodes to be

analyzed, from 12 to 6. A full explanation of how ALGNET data files are set up for

this same network is given in Appendix B.

The hydraulic head values calculated by ALGNET are compared to the values
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Figure 16 Network labeled for analysis by ANALYZER
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Figure 17 Network labeled for analysis by ALGNET
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Figure 18 Regression plotted.
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Figure 19 Regression plotted.
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demonstrated here.

hedcdcdalicm

ANALYZE ALGNET DIFNETI DIFNETZ

nodes nodes man mmsrz ANALYZE KYPIPE

12 0 231.00 231.00 231.00 231.00

10 1 212.51 212.51 212.34 212.50

8 2 200.81 200.81 200.57 200.82

6 3 188.80 188.80 188.60 188.83

4 4 176.79 176.79 176.64 176.84

1 5 157.73 157.73 157.74 157.74

ALGNETI-anidale ALGNETz-dependstnvaiahle

ANALYZER-WM ANALYZER-WM

mm mm

Conant 0 Germ 0

StiEncIYEst 0.105699 SUErroIYEsI 0.105625

NW 0.999964 RSquaed 0.999984

new 6 No.0IObsetvsticns 6

DeucesolFteetbm 5 Deg'eesolFteedom 5

X Confident“) Im0632 X Coefficians) 1.0(XJ637

86 End Cost. 003022 St! Err oICost. 0.00022

ALGNETI adspermnwuiabls ALGNETZ-depsmbntvaiable

KYPIPE-WW6 KYPIPEaindspendsmvsndale

Regesdcnomut ngeubnOquut

Comm 0 Consist 0

StIEIroIYEsI 0.023208 suEnoIYEst 0.02227

Rsmered 0.999999 RSquaed 0.999999

Nectweewes'om 6 No.0!0beervat‘cns 6

Dagmadfieedom 5 DegeesoIFnaedom 5

X Coefia'enls) 0.999925 X Coefficienqs) 0.99993

St! Err of Coal. 4.83E-05 SI! Err of Coal. 4646-05

Figure 20 The strong correlation between methods is
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calculated by ANALYZER and KYPIPE in Figure 20. Comparison of the two methods

is somewhat complicated by the fact that ANALYZER takes pipe components as

separate elements while ALGNET does not. The effect of a component in ALGNET is

incorporated into the downstream element; as a result, the ANALYZER nodes chosen

for comparison with ALGNET should be nodes situated "upstream" of components.

The strong correlation (Figure 20) between a method which accommodates pipe

components as separate elements and a method which accommodates pipe components

as energy discontinuities within elements indicates that the error introduced as a

result of the discontinuities is negligible for practical purposes.

B. Evaluation of Solutions with Virtual Nodes

The computer code, DIFNETl, incorporates the virtual node concept using

Method 1 as defined in the Theoretical Development; DIFNET2 incorporates this

concept using Method 2. The network shown in Figure 21, for example, is reduced

to the network shown in Figure 22 by incorporation of the virtual node concept.

DIFNET takes each lateral to be a single linear element, thus greatly reducing the

number of nodes--in this case, from 21 nodes to 9 nodes. A complete explanation of

how DIFNET data files are set up for the same network is found in Appendix B.

1. Error introduced by virtual node concept

While the number of nodes in a network is greatly decreased by using virtual

nodes, error is slightly increased. Results, however, seem still quite acceptable.

Figure 23 shows a strong correlation between DIFNET and ALGNET. If greater
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Figure 21. Network labeled for analysis by ALGNET.
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Figure 22. Network labeled for analysis by DIFNET.
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node ALGNET DIFNET2 residuals

0 100.00 100.00 0.00 Regressoon Output:

1 73.11 71.92 4.20 Constant 0

2 54.10 60.27 6.17 Std Err of Y Est 2.649425

3 37.56 35.51 -2.05 R Squared 0.991964

4 27.64 29.61 . 1.96 No. of Observations 9

5 24.12 21.99 -2.13 Degrees at Freedom 8

6 17.68 18.27 0.59

7 20.87 18.75 -2.12 X Coefficiento) 1.0065

8 15,28 15.55 038 Sod Err at Cool. 0.017858

average at residuals . 0.168767

mmelevation of residuals - 2.512838

an: nemnmmmsnhumnu

0 100.00 100.00 0.00 Regression Output:

1 73.11 71.52 -l.59 Cancun: O

2 54.10 59.99 5.89 Std Err 01 Y Est 2.509788

3 37.56 36.04 - l .52 R Squared 0.992619

4 27.64 30.08 2.44 No. 01 Observations 9

5 24.12 22.65 — l .47 Doomed 01 Freedom 8

6 [7.68 18.84 I .16

7 20.87 19.40 - l .47 X Coefficient“) 11178183

8 15% 16.12 0.84 Std Err of Coot. 0.016917

average of residuals - 0.476142

mndard deviation of residuals - 2.352907

 
 

 
 

        
    
  

  
 

Figure 23 Assessment of Virtual Node technique by comparing

DIFNET against ALGNET. Note that results are slightly

different for DIFNETl and DIFNET2.
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accuracy is desired, error can be reduced by subdividing the laterals into two or more

linear elements. Figure 24 shows the effect which partitioning the laterals has on the

total error. Note that the error in this graph seems to approach an asymptote which

is not zero. The fact that total error does not approach zero with an increasing

number of partitions is largely due to the error inherent in apprordmating a discrete

function (emitters on a lateral) with a continuous function (derivative boundary

condition)--refered to in this thesis as continuization error. Another strategy for error

reduction, perhaps a little closer to the true nature of flow in pipe networks, is the use

of quadratic elements in place of linear elements. This strategy was used by Kelly

(1989) and Bralts et al. (1993).

C. Reducing a large network to a 9mg, manaflble size

What follows is a demonstration of the benefits of the concepts developed in

this thesis. Figure 25 shows the system to be analyzed, a medium sized submain unit

consisting of 20 laterals and 600 emitters per lateral for a total of 12,000 emitters in

an area of 1.37 acres. A one-percent slope goes downhill from the submain.‘ Previous

methods would require over 12,000 nodes for analysis of this network. The methods

developed in this research require only 80 nodes for analysis, about 0.7 percent of

12,000. (This is achieved by partitioning each lateral into three virtual elements as

seen in Figure 25.) A great reduction in computer time and memory requirements is

evident as a result of this drastic reduction of nodes. Figure 26 compares the solution

to the Backstep solution on the last lateral. Values between virtual nodes are

calculated by interpolation. Correlation between the two solutions was calculated
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rigure 25. A large submain unit consisting of 20 laterals

spaced 5 ft. apart and 600 emitters per lateral

spaced 1 ft. apart. Previous methods would

require 12,060 nodes for analysis. Here, only 80

nodes are used.
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Figure 26. The head calculations along a single lateral are

compared; The Backstep solution and DIFNET

solution are plotted together.
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using all 600 data points; R-squared = 0.998.

D. Stability

1. Methods 1 and 2

Stability is a problem with the solution derived by Method 1 (see Appendix D).

This is most likely due to the fact that the energy discontinuities at component nodes

are incorporated into the forcing vector. The system of equations is more sensitive to

values in the forcing vector than to values in the stiffness matrix. Although stability

is a problem with Method 1, the solution has eventually converged in every case

tested. Method 2 proves to be the more practical of the two methods.

2. Collective emitter flow in virtual node concept

When the flow of several emitters is incorporated into a single element using

the virtual node concept, their treatment as a constant, Q, in the difl'erential equation

caused instability. Again, this is because, as a constant, their effect ends up all in the

forcing vector. If treated as a function of head Gh, however, instability ceases to be a

problem because their effect is incorporated into the stiffness matrix. The instability

caused by treating collective emitter flow as a constant, Q, was great enough to cause

divergence in some cases.
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3. The Newton Raphson Method

The computer program, NEWTON, was written to explore the possibilities of

using the Newton-Raphson method so as to achieve faster convergence. This proved to

be impractical, however, due to instability (see Appendix D).

E. Continuity mun—nments

As seen in Figure 15, the intra-element function is discontinuous at node i.

The discontinuity, however, does not prohibit solution for the following reasons. The

discontinuity exists at a node. The derivative at that node is therefore undefined.

The derivative of a linear element without this discontinuity, however, is

discontinuous at both nodes i and j. The only difference, therefore, lies in the size of

the jump; the jump in both cases is finitely defined as the difi‘erence in slope between

the two adjacent elements. In the case of the discontinuity, however, the jump goes to

negative infinity and back in the process. Still, the final result in both cases is a finite

jump.

Continuity of first order, 0‘, is conserved throughout an element because 4H,, is

treated as a constant and therefore does not appear in the derivative. Also, continuity

of zeroth order, C°, is conserved because head at node j of one element is equal to head

at node i of the next element. So in practice, the continuity requirements for solution

of a second-order partial differential equation by the Finite Element Method are met.
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F. Discussion

For most practical purposes, the accuracy of the DIFNET programs should be

sufficient. Where this level of accuracy is not sumcient, the laterals can be broken

down into two or more segments, increasing the number of segments to increase

accuracy; or, another way to increase accuracy would be to implement higher order

shape functions.

G. Ideas for further investigation

The equations developed in this thesis describe flow through a pipe element in

one dimension. The virtual node concept converts a series of discrete flow losses (a

series of emitters) to a continuous derivative boundary condition, thereby reducing a

lateral with several emitter nodes to one element.

Perhaps the virtual node concept could also be applied in two dimensions where

a derivative boundary condition is applied to a surface. Or for that matter, why not

include the third dimension to incorporate infiltration into the soil, making the model

complete.

1. Some ideas for a two dimensional development

Consider, for example, a rectangular field with a submain and several laterals as

shown in Figure 27. The thicker lines represent pipes whereas the thin lines

represent the boundaries of the rectangular field. The larger dots represent the nodes
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Figure 27 Sub-plot of irrigated field with nodes numbered

for two-dimensional analysis using rectangular

Lagrangian element.
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of a two-dimensional rectangular Lagrangian element. The Lagrangian element has

nine nodes; its polynomial is second degree. The shape functions for a rectangular

Lagrangian element are listed in table IV. These shape functions are given in the

Natural Coordinate System (see Segerlind, 1984).
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Table III: Shape functions for nine-node Lagrangian element.

 

 

 

 

 

 

 

 

 

  

Node Shape Function

1 551(5-1) (11-1)

2 «21 (11-1) (9-1)

3 551 (5+1) (11-1)

4 --§ (5+1) (1.2-1)

5 5} (5+1) (n+1)

6 --'21(n+1) (53-1)

7 551 (5-1) mm

8 -—§ (e-l) (113-1)

9
(53-1) (113-1) 
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Figure 28. Differential conservation of mass as continuous

function in two dimensions.
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It may be possible to approximate a hydraulic head topology of the surface shown in

Figure 27 by considering its discrete function to be continuous.

As an extension to this research, a partial differential equation was developed

to describe in two dimensions this topology created by an irrigation network. This was

achieved by formulating conservation of mass as a continuous function in two

dimensions. Initial observations are presented in Figure 28. Conservation of mass

then dictates that flow into the control "volume" equal flow out:

' aq aq
qx_d7x + qy- £2! a”? qy. 32; —ade —aydy

Or, shifting the point (my) to the lower left corner of the control ”volume",

a, + q, - am, - cm, - g-gdx - ggdy = o (60)

where,

q. = ngfi x (61)

and as before,

qmdx = Dig; x + D‘s—fgdx (52)

The same applies in the y-direction. Substituting equations (61) and (62) into

equation (60) gives the desired partial differential equation:
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5311
D _

x 6::2 6y 6x
dx+D,—a“—’:dy-iqu-—g—3dy=o (53)

where '3ng + ggdy can be considered either a constant, Q, or a function of head,

Gh:

axdx + ggdy " 0 ”wish:

or,

am 2..., - ab = (”fir

where n, = number of emitters per lateral

n1: number of laterals

L = length of element

W = width of element

The general form of equation (63) is:

063114.196“):
x-gt-S yW-Gh-Q=O

(64)

(55)

(56)

In this form, the operators D, and D, resemble conductivity of heat transfer problems.

Here they represent the conductivity of pipe flow in a two-dimensional grid. Their
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determination is not straight-forward and is likely the key to solving this problem.

Some observations are (1) the conductivity, Dy, looks like it should be the sum of the

lateral conductivities divided by the length of the element‘:

D = :11 1 (db)‘%.'“

Y dx2—_f d—y (67)

5

a1

and (2) the conductivity, D” depends on the position in y. The second observation

becomes obvious with a glance at Figure 29. Water at point (x,y) to get to point

(x+dx,y) must first go back to the main through a lateral (distance, y), then through a

piece of the main (distance, dx), and then back through a lateral (distance, y). The

conductivity of this route is then calculated by adding resistances. The total resistance

is equal to the sum of the resistances in each segment:

rx=rzy+rm+rzy

where r, = resistivity“ in x-direction at any point (x,y)

r,0 = resistivity in x-direction at any point (x,0) (in other words,

resistivity of main)

R, = resistance in y-direction (over length y)

Or, in terms of conductivity,

 

5Note that one over dx is squared. The extra dx comes from

the division of dxdy in equation (63). Likewise, the equation for

I% has one over dy in it.

‘Resistivity is the inverse of conductivity; resistance is

resistivity times length. Here, resistivity in the x-direction is

equal to the resistivity of the main plus the resistance in the y-

direction (a function of y).
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Figure 29 Flow path for water to get from x to C1: in

irrigated sub-plot.
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._1_=_:.L_+_2_.y

Dx D by

  

D = 1 i

" _1_ .21 dy <58)
Dxa Dy

where,

:(a—xh”(—-1)

where, 3,0 = constant, a, for main

and D, is as previously defined.

Integration of equation (66) times the shape functions is facilitated by recalling

that g = [N](M. So the integration,

Zamrggdx

xdx

becomes,

 

5
8
1
2
‘

Q
)

E
.

Q
)

T [N] dx{¢‘°’}

x5
?

m
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The integration of equation (66) looks like:

 

_a___[N1 aw] . aIMT aw] .
[De ———dA{O"} +fn an an dAiO"}

- [GEMTIMdAWml - [lemma = o

-1 -1

(69)

The fact that Dll is a function of y makes integration messy. The resulting

equations, while quite messy indeed, were found to have four basic forms. This made

computer coding of the 9 x 9 stifl‘ness matrix feasible. The results of these

integrations are encoded in the computer program LAGRANGE, found in Appendix A.

A typical output of this program is plotted in Figure 30.

While results are known to be "in the ball park" of the correct values, time did

not allow for a thorough development and evaluation of these ideas. Hence, the

preliminary results achieved at this point are inconclusive. If continuization error is

significant, perhaps similitude modeling techniques could be used to correct for this

error.

2. Adding the third dimension

A topology of hydraulic head is easily converted to a topology of flow. Described

in terms of flow, the two-dimensional analysis could be expanded to include the third

dimension, modeling infiltration as well as distribution. Such a model would be based

on Darcy’s equation for flow through porous media:
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 Figure 30 A hydraulic topology produced by LAGRANGE program
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g= —KVH

where, q = flow

K = hydraulic conductivity

.6}! +6}! +6}!
AH—E—{I .3333 82‘

The hydraulic topology created by the irrigation system would then be applied as a

boundary condition on the soil surface. The concepts used in the development of the

FINDIT computer program (Kunze and Shayya, 1990) would be essential to the

development of such a model. A complete three dimensional model would have many

obvious benefits in the design and evaluation of an irrigation system, not to mention

applications to environmental studies. Figure 31 shows the geometry of a possible

three-dimensional finite element grid for modeling distribution and infiltration.
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Figure 31 Example of 3-D Finite Element grid in situ.



V. Conclusions and Recommendations

Conclusions of this research are listed below:

The cumulative efi'ect of pipe components in a hydraulic network is significant.

Neglecting the efi‘ect of pipe components may introduce error large enough to

misguide the design of a microirrigation system. Existing pipe-network

programs which include components were found to significantly increase the

number of nodes necessary for analysis.

A partial differential equation was developed which incorporates pipe

components at nodes rather than as separate elements. Galerkin’s weighted

residual method was employed in the Finite Element solution of this equation.

This solution was found to agree with an algebraic development of the Linear

Theory method.

The virtual node concept was successfully incorporated in the partial

difi'erential equation to further reduce the number of nodes required for

analysis.

The results of these developments were compared with those of existing pipe-

network analysis programs, namely ANALYZER and KYPIPE. Correlation

among all methods was found to be very strong. As expected, some error was
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introduced by the virtual node concept. While this error was small (certainly

negligible), it was found to be further reduced by partitioning the laterals (the

"virtual elements") into two or more segments.

Some recommendations for further investigation follow:

The Ideas for Further Investigation section in Chapter N outlines a possible

development of a two-dimensional flow equation which describes a

microirrigation system as having a continuous topology of hydraulic head. This

development is supplemented by an alternative approach outlined in Appendix

E. A thorough evaluation of these ideas was not performed as a part of this

research and would be a logical next step. The reader is encouraged to explore

and improve upon the possibilities opened up by these developments.

Also included in the Ideas for Further Investigation section is a suggestion that

one might apply the two-dimensional topology of hydraulic head as a boundary

condition to a three-dimensional porous-media flow equation in order to model

flow of irrigated water through soil.

The benefits of the equations derived in this thesis will only be realized when

they are incorporated into a presentable, user-fi'iendly computer program.



Appendix
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Appendix A: Computer Code

The computer language used is Quick Basic version 4.5.

ALGNETl

0

'T T T Program to solve for pipe network (low T T T
I

DECLARE SUE 8Ccalc (Natrixlt). RHSNatrixl(). NunRCt, BCnodett). knownvall1), NunNodeO)

DECLARE SUD Nelton (T1. Nil, Lot. al. kl)

DECLARE SUB ConstSortZ (iit(). jjtl). alt). y!(). it. Cq90!(). Cq160!(). qu. NunElent)

DECLARE SUB ConstSortl (11.1). 3391). Eli). yll). it. Cq90lt). quOOlil. qu. NunEle-t)

DECLARE SUB Cachength (x!(). y!(). alt). 1191). jj‘l). ElLenqthl, it)

DECLARE SUB Stats (NunArrayl1). countt. Neanl, Radiant. StanDevl. Ninl. Naxl)

DECLARE SUB NatSave (NatriaAlt). Natriasiret)

DECLARE SUB AddSqusre (Nit. Lot. valuet. Nattialt). NunNodet)

DECLARE SUB NatShou (NstrixAlt). Natriasizet)

DECLARE SUB NatAdd (NattixAll). Matrixatt). NatrixCl(). Matrixsiret)

DECLARE SUB AddDiagonal (positiont, valuel. Nstrialtl. NunNodet)

DECLARE FUNCTION Deternl (NstriaAltl. Nstriasiretl

DECLARE SUB DoDst (Ternl. Ni. kt. NatriaAl1), Donet1). ValDeternl. Natriasiret)

DECLARE SUB GetReply (Firsts. Lasts, Replys)

DECLARE SUB KeyZArr (NunZArrayl(). RceCountt)

DECLARE SUD NatInv (HatriRAll). MatrixBli). Matrixsirei, OK A3 INTEGER)

DECLARE SUB Natuult (HatrixAli). Matrix81(). HetrixCl(). Matrixsizet)

DECLARE SUB Shoe2Arr (NunZArrayl(). RoeCountt. N9. N9. NumColunnst)

DECLARE SUE NaitNey (1
6

CL!

PRINT ”Program to calculate heads of hydraulic network system"

PRINT

INPUT "Enter name of element data file: ', elements

INPUT "Enter name of nodal coordinate data file: ", nodes

INPUT "Enter name of boundary conditions tile (<ENTER) if none): ”. bcs

IF hes <> " THEN

INPUT ”Enter number of boundary conditions: '. NumBCt

DIN knownvall1NunBC6), acnodettNunact)

END IF

INPUT ”Enter value for initial head. 810) (m): ". H0!

'T T T start timer T T T

Stertrine! - TIMER

vsseeeeseseee

I

'T T T read data files T T T
0

OPEN elementt FOR INPUT A8 .1

INPUT 01. NunElent

it - NumElemt

Dru elenttit). 11.11.). 330(10). dial(i§), st(1e), idial(i§). jdial1it)

FOR ii - 0 TO NumElemi

INPUT .1. elen8118). 119119), jj‘(i§). dial(i§). HN‘(i§), idial(ib). jdiel(i§)

NEXT it

CLOSE (1)

OPEN node8 FOR INPUT A5 .1

INPUT .1. NunNode‘

it - NumNodst

DIN nodettit). xzris). ysrit), 2111‘). ctype9(i§). eq1s0111e1. Cq901(i§)

FOR it - 0 TO NunNodet

1 INPUT 01. nodettit). xllit). yltit). 21111). ctypot111). Cq1s011111. Cq90l(i§)
t

CLOSE”)

I! be: <> "” THEN

OPEN bc$ FOR INPUT AS 01

FOR it - 1 TO NumBC‘

INPUT .1. BCnodettit). knownval!(i§)

NEXT 18

CIDSEU)

END IF

'T T T dimension arrays T T T

DIN kl(NumElem| + l), kel(NunNode9), kstarl(NumElemt + I). H!(NunNodet)

DIN NatrixltNunNodet. NumNodet). RHSHatrixltNumNodet. NumcheO)

DIN InvertedNatrixl(NumNodet. NunNodet), AnswerNatrixltNumNodet. NunNodet)

DIN NunArrayltNunNode‘)
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DIN OltNumEIemt + 1)

DIN flouttNumElemt). CompTermltNumElemt)

DIN OK AS INTEGER

0

counter\ - 1

'T T T constants T T T

HItO) - H01

gl - 32.2 'acc. due to gravity ft/s‘2

pil - 3.1415926540

NumItert - 2 'Number of iterations before including effect of components

HNconstl - 4.73

'T T T calculate constant, k T T T

0

FOR it - 0 TO NumElemt

CALL Cachengthtalt). yltl. :lt). ii‘t). jj\(). ElLengthl. it)

kill.) - HHconeti ' ElLengthl I (HN‘tl‘) “ 1.852 T dial(l§) ‘ 4.87)

NEXT i.

'T T T initialize head values T T T

0

FOR it - 1 TO NumNodet

Hltit) - NltO) - it

NEXT 1‘

I

LOCATE 10. 301 COIDR 31. 0: PRINT "-- Converging --": COLOR 7, O

:T T T Start iterative procedure T T T

Again:

:T T T First few iterations do not include effect of components T T T

IF counter. <- NumItert THEN

FOR it - 0 TO NumElemO

IF Hltiittitl) - Hltjjttitl) - 0 THEN

kstarltit) - 0

ELSE

kstsrltii) - (Asstflltiittitl) - Hltjjttitllll T -(1 - l / 1.652) T kltit) T -(1 / 1.852)

END IF

NEXT it

GOTO skipl

END IF

'T T T reset values T T T

FOR it - 0 To NumElemt

flovttit) - 0

CompTermltit) - 0

NEXT it

'T T T Calculate new values for component head-loss terms T T T

FOR it - 0 TO NunNode.

IF ctype‘ti‘) - 2 THEN

FOR 3! - 0 TO NunElen‘

IF 11‘111) - it AND ultiitrjsl) - H!(jj\tjt)) > 0 runs

flouttjt) - l ' 1 - positive flow

CALL ConstSortitiitt). jj‘t). alt). ylt). j:. Cg90|(). Cq180!t). qu. NumElemi)

r! - qu - s / (g . pi! . 2 - idialtjt) *

CompTermltjtl - T! T (H!(iit(jt)) - Hltjjttjtlll I (kltj‘) + T!)

CALL NewtontTl, H!tiittjt)). Hltjjttjtl). CompTermltjt). k11j91)

'PRINT "Left: ”: CompTermltjt)

'PRINT "Right: ”: T! T ((Hltiittjtll - Hltjjttjtl) - CompTermlt191) / kl(i\)) T 1. 06

ELSEIF jj‘tjt) - it AND H!(jj§tj§)) ’ Hltiittjt)) > 0 THEN

flowttjt) - -l ' -1 - negative flow

CALL ConstSortztiittl. jjtl). alt). yltl. 3:. Cq90lt). qulOlt). qu. NumElemO)

r1 - qu - s / (gl - pi! ~ 2 - jdialtjt) *

CompTermltjt) - (T! T (Hltjj‘tj 9)) - H!(ii§tjt))) / kltji)) / (1 t T! I kltjt))

cart NevtontTl, Hl(jjt(j§)). Hittittjtll. CompTermltjt). k!(j9))

END IF

NEXT jt

NEXT 19

'T T T calculate new kstar's T T T

FOR it - 0 TO NumElemt

IF Hltiittitll - Hltjjttitl) - 0 THEN

kstarltit) - 0

ELSEIF flouttit) - 1 THEN

kstarltit) - (H!(iitti§)) - Hltjjttitl) - CompTerm!(it)) T -(1 - 1 / 1.852) T k!(i\) T -(1 / 1.852)

ELSEIF flouttit) - -1 THEEN

kstarltit) ' (Hltjj\tit)) - Hltiittitl) - CompTerm!ti!)) T -(1 - 1 / 1.852) T kltit) T -11 / 1.852)

ELSE

kstarlti‘) ' (ABS(Hl(ii‘(i§)) - H!(jj§(i§)))) ‘ -(1 - l / 1.852) T kltit) T -(1 / 1.852)

NEXT 1‘

pkiplr

:T T T Calculate new values for emitter constants T T T

FOR it - 1 TO NumNodet

IF ctypetti‘) - 1 THEN

x1 - eq1s0111t)

x! - Cq90ltit)

Netti.) - k! T (Nitit) - rl(i\)) T x! / H!(i§)

END IF

NEXT ii

0

'T T T Set Up Global Stiffness Matrix T T T

0
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FOR it - 1 TO NumNodet

FOR 3‘ - 1 TO NumNodet

Matrixltit. j!) - 0

NEXT 19

NEXT 18

TECOO!IIIIIOICOIIIIIIIIIOIOOOIODIIIOIICC...

'T Add element matrices T

'OOIOIIIOOIOOIIIOOOI-CIIIOIIIOOIOOOOIOOIOO.

FOR it - 1 TO NumElemt

valuel - kstarlti‘)

Hi9 - jjttia)

Lot - iittit)

CALL AddSquaretHit. Lot. valuel, Natrixl(), NumNodet)

NEXT 1.

l

'T Add emitter constants to diagonal of matrix T

'IIOOIIIIIIOIIIOOIIO.ICCIIIDIIOIIIOIIIIIIIIII...

0

FOR it - i To NumNodet

IF ctypetti!) - 1 THEN

valuel - -l T keltit)

CALL AddDiagonaltit. valuel. Matrixlt), NumNodet)

ND IF

NEXT 18

l

'TTT Add hmainltO) to position 11.1) TTT

I

value! - -l T kstarltO)

CALL AddDiagonaltl, valuel. Nstrialt). NumNodet)
F

'T T T set up forcing vector as matrix T T T

0

FOR 3. - 1 TO NumNodet

FOR kt - 1 TO NumNode6

RHSNatrialtjt. ht) - 0!

NEXT kt _

NEXT 3!

F

'T T T include boundary conditions T T T
I

If ch <> " THEN

CALL BCcalctNatrixlt). RHSNatrialt). NumBC9. BCnodett). knovnvallt), NumNodet)

END IF

I

'T T T first time thru. don't include effect of components T T T
I

IF countsrt < NumItert THEN COTO skipz

0

'T T T effect of components in forcing vector T T T
0

FOR )9 - 0 TO NumElemt

IF flovttjt) - 1 THEN

RHSHatrixltiittji). I) - RHSNatrixltiiitjt). l

RHSHatrixltjjttjt). l) - RHSNatrixltjjtht). l

ELSEIr flow‘tj‘) - '1 THEN

RHSHatrixltjjttjt). 1) - RHSNatrixltjjttj‘). l) - CompTermltj\) T kstarltjt)

nusnatrixltiietjt), 1) - RHsNatrixltiie(jt). 1) + CompTermltjt) T kstarltjt)

v - CompTermltjt) T kstarltjt)

+ CompTermltjt) T kstarltjt)‘
0

an IF

urxr je

skipZ:

l

'T T T add initial head Boundary Condition to forcing vector T T T
0

RHSNAtrixltl. 1) - RHSNatrlxltl. 1) - kstar!(0) ‘ Hl(0)

I

' OIIIIOIOIIIIIIIIOIICO...01......

'T solve simultaneous equations T

' IIIOIIOOIIIIICOO-ICIIOIOCOIICCOI

I

CALL HatInvtNatrixlt). InvertedNatrialtl. NumNodet. OR)

IF NOT ON THEN

BEEP

PRINT "Bad input. no solution is possible."

END

END IF

CALL NatNulttInvertedNatrixlt). RHSNatrialt). AnswerHatrix!(). NumNodet)

'OOIOII.

cnte - 0

FOR it - 1 TO NumNodet

IF ABStAnsverNatrixlti‘. l) - Hlti§)) > .01 THEN

GOTO OtraVer

END IF

NEXT 1.

'T T T stop timer T T T

TotalTime! - TIMER - StartTimel

00.090.900.90

FOR it - 1 TO NumNodet

Hltit) - AnseerNatrialti‘. 1)

NumArrsyltit) - Hltitl

NEXT 1‘

I

'T T T calculate coefficient of uniformity T T T

CALL StatstNumArraylt), NumNodet. Neanl. Hedianl, StanDevl. Hinl. Max!)

Ul - 100 T (l - StanDev! / Mean!)

'T T T print results T T T

F

CLS : LOCATE I. 1

it - 0

PRINT "Head at Node 1': it: "): "; Hltit)

FOR it - 1 TO NumNodet
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PRINT "Read at Node ("r 1‘: ")2 ": H!(i.)

NEXT 19

PRINT

PRINT "Coefficient of Uniformity - ": U1: ".”

PRINT "Converged after ”; counter.: ” iterations."

PRINT ”Total time of convergence - ”: TotalTimel: " seconds"

PRINT
0

'T T T save data in DIFNET format for comparison T T T

'T T T (save only those points which correspond to DIFNET output T T T
0

biggestyl - 0

FOR 1. - 0 TO NumNode.

IF ylti.) > biggesty! THEN

biggesty! - ylti.)

outfilel - "a:anl_' + NID$(node8. 7. l) + ”.out"

OPEN outfile! FOR OUTPUT A3 01

FOR 1. - 0 TO NumNode.

IF ylti.) - 0 THEN

PRINT .1. Hitl.)

ELSEIF ylti.) - biggestyl THEN

PRINT .1. Hill.)

END IF

NEXT 1‘

CLOSE (1)

I

'T T T save all data points 7? T T T

I

INPUT "Save results 7 (y/n) ”. ans:

IF UCASEstansS) - ”Y" THEN

INPUT ”Enter name of output file: ", filenames

OPEN filename’ FOR OUTPUT AS 01

i. - 0

PRINT 01. ”Read at Node 1”: 1.: ”): ": Hlti.)

PRINT 01.

FOR 1. - 1 TO NumNode.

PRINT .1. "Head at Node 1": 1.: "): "; Hlti.)

NEXT 1.

PRINT 01.

PRINT .1. "Coefficient of Uniformity - ”: U1: "."

PRINT .1. "Converged after ”: counter.: " iterations."

PRINT .1. "Total time of convergence - ": TotalTimel: ” seconds"

END IF

END

OtraVeax

FOR i. - 1 TO NumNode.

Nlti.) - Answerflatrialti.. 1)

NEXT 1.

LOCATE 15, 20: PRINT "Number of Iterations: ": counter.

counter. - counter. + l

GOTO Again

SUD AddDiagonal tposition.. valuel. Natrixlt). NumNode.)

Natrixltposition., position.) - Hatrialtposition., position.) + valuel

END SUE

SUD AddSquare (Hi.. Lo.. valuel, Natriattl. NumNode.)

'T T T adds square element matrix to global stiffness matrix T T T
0

NatrixltHi.. Lo.)

Natria!(Lo.. Hi.)

NatrixltLo.. Lo.)

Nattixltflib. Ni.)

END SUE

NatrixltHi.. Lo.) + valuel

Natrix!1Lo.. Hi.) + value!

Nattix!(Lo.. Lo.) - valuel

NatrialtHi.. Hi.) - valuel

SUE DCcalc (Natrixlt). RHSNatrixltl, NumBC.. BCnode.t). knownvallt), NumNode.)

I

'T T T include known values in matrices T T T

0

FOR 1. - 1 TO NumBC.

son J. - 1 TO NumNode.

IF 3. <> BCnode.ti.) THEN

RHSHatrixltj.. 1) - RHSNatrixltj.. 1) - Natrix!(j., BCnode.ti.)) T knownvallti.)

Hatria!tj.. BCnode.ti.)) - 0

Natrix!tBCnode.(i.), j.) - 0

ELSE

RHSHatria!(j.. 1) - Nattix!tj., BCnode.(i.)) T knownvallti.)

END IF

NEXT 3

NEXT 1.

END SUD

SUE Cachength (alt). yltl. 211). ii.(), jj.(), ElLengthl, i.)
I

'T T T calculate length of element T T T

F

xtemp! - x1tjj.(i.)) - x!(ii.ti.))

ytemp! - yltjj.(i.)) - y!(ii.(i.))

rtempl - rllji.ti.)) - r!(ii.(i.))

ElLengthl - (atemp! T 2 + ytemp! T 2 + ztempl T 2) T .5

END SUD

SUB ConstSortl (ii.(). jj.(). xlt). ylt). 1.. Cq90lt). Cq160!t). qu, NumElem.)
O

'T T T sort out which constant applies T T T

roe 3s - 0 re NumElem.

IF 11.11.) - jj.tj.) rues

IF ta!(ii.(j.)) - x!(jj.(i.))) on (yltii.tj.)) - yltjj.ti.))) rssn



Page 99

qu - quSOltii.(i.))

EXIT SUB ' 180 - degree constants have preference

ELSEIF x!tii.(j.)) - xlt j.(j.)) on x!(ii.(i.)) - xltjj.(i.)) THEN

Cq! - Cq90ltii.( .))

ELSEIF ABSltyltii.tj.)) - yltjj.tj\))) I txltii.tj‘)) - xltiJthtll) - 1y1<111¢1Tll - Y‘liiTli‘)ll /
(xltii.(i.)) - xltjj.(i.)))) < .5 THEN

qu - CgllOltii.ti.))

ELSE

qu - CgSOltii.(i.))

END 1?

ELSEIF ii.(i.) - 11.111) AND 33.11.) <> jj.(j.) THEN

1r txltjjitjtll - xltjjttitlll on (ylljjtliTll - yiljittit))) THEN

qu - Cq180)(ii.(i.))

EXIT SUB ' 180 - degree constants have preference

ELSEIF x!(ii.(j.)) - xltjj.tj.)) on xl(ii.(i.)) - x1133111.)) THEN

Cq! - Cq90!tii.(i.))

ELSEIF Aasttyltii.tj.)) - y!(jj.(j.))) I (x. (11.13.)) - xlliitljtlll - (ylliiiliill ' Y'lfii‘l1T’l’ /
txltii.ti.)) - xl(jj.(i.)))) < 5 rue3N

qu - Cgl.0|tii.(i.))

ens:

qu - CqSOltii.(i.))

END It

can xr

urxr 3.

END sue

SUD ConstSortz (ii.(). jj.t). alt). ylt). i.. Cq90lll. Cq160!(). qu. NumElem.)
l

'T T T sort out which constant applies T T T

FOR 3. - 0 TO NumElem.

IF 13.11.) - 11.13.) THEN

IF xltii.(i.)) - xltjj.( 1.)), OR y!tii.ti.)) - yltjj.(j.)) THEN

qu - quSOltjj. ti.)

EXIT SUB

rtsrxr xltii.tj.)) - alttjj.(j.)) on xltii.ti.)) - x!(jj.ti.)) THEN

Cq! - Cq901tjj.(i.))

rtsrxr A85ttyltii.tj.)) - y!(jj.(j.))) / (x!tii.(j.)) — xl(jj.(j.))) - (Yltii.(i.)) - y!(jj.ti.))) /

(x!(ii.ti.)) - a!(jj.(i.)))) < 5 TH”8

qu - Cq1801tjj.(i.))

ELSE

qu - CqSOltjj.(i.))

ELSEIF jj.(i.) - 32.tj.) AND ii.(i.) <> ii.(j.) THEN

I: xltii.t s1) - xl(ii.(j.)) on yltii.(i.)) - yltii.(j.)) THEN

qu - qu.01(jj.ti.))

EXIT SUD

ELSEIF x!(ii.(j.)) - xltjj.tj.)) on xltii.ti.)) - xltjj.ti.)) THEN

Cq! - Cq90!tjj.(i.))

stsrxr A881ty!tii.tj.)) - yltjj.(j.))) / (x!tii.tj.)) - xltjj.(j.))) - (yltii.(i.)) - yltjj.ti.))) /

(Xltii.(i§)) - X!(jj.ti|)))) < .5 THEN

qu - Cq160!(jj.ti.))

ELSE

qu - CqSOItjj.(i.))

END IF

END IF

NEXT 1

END SUD

FUNCTION Determl (MatrixAt). Matrixsize.)

l

'T T T evaluate determinant of matrix T T T

F

CONST False - 0

CONST True - NOT False

DIN Done.(HstrixSize.)

FOR 3. - 1 To NatrixSize.

Done.(j.) - False

urxr j.

Vleeterm! - 0!

CALL DoDettll. 0, 1, NatrixAlt), Done.t), ValDeterml. HatrixSize.)

Determl - Vleeterml

END FUNCTION

SUD DoDet (Terml. N.. k., HatrixAlt), Done.t), ValDeterml, MatrixSire.)

I

'T T T evaluate determinant of matrix T T T

I

CONST False - 0

CONST True - NOT False

IF k. > HatrixSire. THEN

Sign. - -1

IF (N. NOD 2) - 0 THEN Sign. - l

ValDeterml - ValDeterml + Sign. T Term!

E

IF Term! <> 0! THEN

N. - 0

FOR j. - HatriXSize. TO 1 STEP -1

IF Done.tj.) THEN

N. - N. + 1

ELSE

Done.tj.) - True

a1! - Term! - NatrixA!(k.. j.)

A2. - H. + N.

A3. - k. + 1

A4. - Hatrixsise.

CALL DoDettAll. A20, A39. HetfiXAlt). Done.(). ValDeterml. A4.)

Done.(j.) - False

END IF

NEXT 3.

END IF

END IF

END SUD
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SUB GetReply (Firsts. Lasts. Reply:)

La: - LEFT$(First8. 1)

His - LEFT$(Last$. 1)

IF L03 > H18 THEN SNAP L03. H13

PRINT USING "Enter reply from a to I": Los: His

00

Reply! - INKEY!

LOOP UNTIL (Reply: >- L03) AND (Reply: <- H15)

END SUB

SUB KeyzArr (NumZArrayll). RouCount.)

CONST EndNumber! - 10101 ’Nod. 01

Rowsize. - UBOUND(Num2Array!.1)

ColSize. - UBOUND!Nun2Array!. 2)

' PRINT '--- Enter data for 2-dimensional array. ---' 'Nod. 02

' PRINT '--- Naximun array size -": RouSize.: ” rows. --" 'Hod. .2

' PRINT '--- There are ": Colsize.: ' columns per row. ---" 'Hod. 02

' PRINT '--- Enter ": EndNunberl: " to end data entry. ---' 'Mod. 02

IF RovCount. >- RovSiae. THEN

PRINT CHR$(7)

PRINT "--- RovCount. too large. ---”

EXIT SUD

END IF

DO NHILE RovCount. < RovSize.

RowCount. - RovCount. + 1

PRINT "<<< Row number": RovCount.: ">>>'

IF RovCount. - Rousize. THEN PRINT ”TTT Last row TTT“

ColCount. - 0

DO WHILE ColCount. < ColSize.

ColCount. - ColCount. + 1

PRINT ” Entry 1”: RouCount.: ".": ColCount.: ”):":

INPUT ' ', Entry!

IF Entry! - EndNunber! THEN

IF ColCount. - 1 THEN

EXIT DO

ELSE

PRINT CHR$(7):

PRINT "TTT Cannot end now. Please reenter number. TTT”

ColCount. - ColCount. - 1

END IF

ELSE

Nun2Arrayl1RovCount.. ColCount.) - Entry!

END IF

IDOP

IF Entry! - EndNumber! THEN

RovCount. - RovCount. - 1

EXIT DO

END IF

LOOP

PRINT '---": RovCount.: 'rovs entered. ---'

PRINT "--- Data entry complete —~-”

END :03

SUB NatAdd (MatrixAlt). Natrix8!(). NatrixC!(). Matrixsize.)

l

'T T T matrix addition subroutine T T T
I

FOR 1. - I TO Natrixsize.

FOR 3. - I TO NatrixSire.

NatrixC!(i.. j.) - NatrixAl1i.. j.) + NatrixB!(i.. j.)

err 3.

NEXT 1.

END SUB

SUD NatInv (HALFIXAI‘). NatrixD!(). HALFixSiEOQ. OK AS INTEGER)

I

'T T T matrix inversion subroutine T T T

l

CONST ErrorBound! - .0000000010 'Hod. 01

CONST False - 0

CONST True - NOT False

DIN NatrixC!(NatrixSize.. Matrixsize.)

FOR 1. - 1 TO NatrixSize.

FOR 3. - I TO NatrixSize.

NatrixC!(i.. j.) - HatrixA!(i.. j.)

1r 1. - 3. THEN

Natrixal(i.. j.) - 1!

LEE

NatrixBl(i.. j.) - on

END 1r

FORij. -jl TO Natrixsire.

. - .

NHILE ABS(NatrixC!(i.. 3.)) < ErrorBoundl

IF 1. - HatrixSize. THEN

OR - False

EXIT SUD

END I?

i. - i. + l

NEND

FOR k. - I To NatrixSIze.

SNAP NatrixC!(i.. x.). NatrixC!(j.. k.)

SNAP NatrixB!(i.. k.). NatrixE!(j.. k.)

NEXT k.

Factor! - l! I HatrixC!(j., j.)

FOR k. - I TO Natrixsize.

NatrixC!(j.. k.) - Factor! T MatrixC!(j.. k.)

NattixB!(j.. k.) - Factor! T NatrixB!(j., k.)

NEXT k.

FOR N. - I TO Matrixsize.

IF H. <> j. THEN

Factor! - -HatrixC!(N., j.)

FOR I. - I TO NatrixSize.
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HatrixC!(H.. k.) - MatrixC!(H.. k.) 0 Factor! T HatrixC!!j.. k.)

HatrixB!(H.. k.) - HatrixB!(H.. k.) 9 Factor! T Hatrix8!(j.. k.)

NEXT k.

END IF

NEXT N.

NEXT 1.

OK - True

END SUB

SUE NatNult (NatrixAl!). NatrixB!(). MatrixC!(). Matrixsize.)

I

‘T T T matrix multiplication subroutine T T T
0

FOR 1. - 1 TO NatrixSize.

FOR 1. - 1 TO NatrixSize.

TempSum! - 0!

FOR X. - 1 TO Matrixsize.

TempSum! - TempSum! + NatrixAl1i.. k.) T Hatrix8!(k.. 3.)

NEXT x.

HatrixC!(i.. j.) - TempSum!

NEXT 3.

NEXT 1.

END SUB

SUB NatSave (MatrixA11). NatrixSize.)

OPEN ”a:natrix.dat” FOR OUTPUT AS 01

HetFormatS - ” 00.0““” 'Hod. 01

FOR 1. - 1 TO NatrixSize.

FOR 3. - 1 TO HatrixSire.

PRINT .1. USING NatFormats: NatrixAl(i.. 3.):

NEXT 3.

PRINT .1.

NEXT 1.

PRINT .1.

CLOSE (1)

END SUB

SUE NatShov (NatrixAlt), NatrixSize.)

NatFormatS - " 00.0TTTT"

FOR 1. - 1 TO NatrixSize.

FOR 1. - 1 TO Matrixsize.

PRINT USING NatFormats: MatrixA!(i.. j.):

NEXT 3.

PRINT

NEXT 1.

PRINT

END SUD

'Mod. 01

SUE Newton (T!. Hil. Lol. XI. k!)

0

'T T T solve for deltah 1x! here) using Newton-Raphson method T T T

DO

F! - T! T ((Hi! - Lo! - x!) I k!) ‘ (2 I 1.052) - x!

dF! - 1.0. T T! T ((Hi! - Lo! - x!) / k!) T (2 / 1.052 - 1) T (-1 / k!) - 1

nevxl - x! - Fl / dF!

x! - nevxl

LOOP UNTIL Fl / dF! < .01 T x!

END SUB

SUB ShowZArr 1Num2Array!(). RowCount., N., H., NumColumns.)

NumRovs. - 20 'Hod. .1

IF (RovCount. < 1) OR (N. < 0) OR (N. < 0) OR (NumColumns. < 1) THEN

BEEP

PRINT ”--- Parameter error in ShowZArr ---"

EXIT SUB

END IF

CoISize. - UEOUND(Num2Array!. 2)

LastElement. - RouCount. T ColSize.

PageSize. - NumRovs. T NumColumns.

ElementCount. - 0

NumOnPage. - 0

IndexFormat. - "(6.E)"

IF N. - 0 THEN

NumFormatS - ' 00." T STRINGS(H.. "0") T "““"

ELSE

NumFormatS - STRING$(N.. "0”) + ".” T STRING$!N.. "0")

END IF

IF N. - 0 THEN

ColNidth. - 27

L8E

Collidth. - N. + N. + 10 ’Hod. 02

ND IF

CLS

FOR j. - 1 TO RowCount.

StrJO - RIGHT$(STR$(j.). LEN!8TR$(1.)) - 1)

FOR X. - I TO Colsize.

StrKS - RIGHT$(STR$!N.). LEN(STR$(k.)) - 1)

RovLoc. - (NumOnPage. \ NumColumns.) o 1

ColLoc. - (NumOnPage. HOD NumColumns.) T ColNidth. + 1

LOCATE RovLoc.. ColLoc.

PRINT USING IndexFormatS: StrJS: StrKS:

PRINT USING NumFormats: NumZArray!(j.. k.) ’Nod. 02

ElementCount. - ElementCount. + 1

NumOnPaqe. - ElementCount. NOD Pagesize.

IF (NumOnPaqe. - 0) OR (ElementCount. - LastElement.) THEN

PRINT "-- Press a key to continue --"

DO

LOOP UNTIL INKEYS <> "'

IF ElementCount. <> LastElement. THEN

CLS

LSE

PRINT

END IF

END IF
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NEXT k.

NEXT 3.

END sun

SUB Stats (NumArray!(), count.. Mean!. Median!. StanDev!. Min!, Max!)

IF count. < 1 THEN EXIT SUB

FOR 3. - 2 TO count.

Temp! - NumArray!(j.)

k. - j. - 1

DO NHILE ((Temp! < NumArray!(k.)) AND (N. > 0))

NumArray11k. + 1) - NumArray!(k.)

k. - x. - 1

10°F

NumArrayl(X. + 1) - Temp!

NEXT 3.

FOR j. - 1 TO count.

ValueSum! - ValueSum! + NumArrayl(j.)

SquareSum! - SguareSum! + NumArrayl(j.) T 2

NEXT 3.

Min! - NumArray!(1)

Max! - NumArray!(count.)

IF ((count. + l) \ 2) - count. \ 2 THEN

Mid. - count. \ 2

Median! - (NumArray!(Mid.) + NumArray!(Mid. + 1)) / 2!

ELSE

Median! - NumArray!((count. + 1) \ 2)

END IF

Mean! - ValueSum! / count.

IF count. - 1 THEN

StanDev! - 0!

ELSE

StanDev! - SOR((SguareSum! - count. T Mean! T Mean!) / (count. - 1))

END IF

END SUD

SUB NaitRey

PRINT 'Mod. 01

PRINT ”--- PRESS ANY KEY TO CONTINUE ---"

DO

WP WHILE INKEYS ' '"'

END SUB
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ALGNETZ

I

""Programtoaolveforflawinpipenetworks'"

DKILARB sun BCcalc Mauro, Memo, Numncs, acnodeso, kmnvaflo. NumNodes)

DmstmmmI-w,w, 11,111)

DECLARE sun mason: amo, fixo, x10, yto, 115, 01900, Cqmmo, Cq1, NumElerni)

DECLARE sun Con-sum (no, uso, x10, yio, 1s, Cq9010, quso1o,Cq!, NumElemS)

DECLARE sun CakLength 1x10. ylo, :10, 11110, i750. Eflmgthl, 1s)

DECLARE sun 9m (NumAmle, cams, Meanl. Medias-ll, 5mm Min), Max!)

omSUB Mafiave NITHXMO. Karim)

DELARE SUB AddSquare (HIS, L05, valuel, Man-1x10, NumNodaN)

DKZLARE SUB MatShow (MEMO, MatrlehES)

DKZLARE SUB W1!W0. Man-1:810, MatrhCIO, MattixSIuN)

0mm; SUB Adleagonal (poduonfi, valuel, MatTiXIO. NumNodai)

DKZLARB FUNCTION Deccan! Wan-M10,W5)

DKZLARB SUB DoDet (Tamil, MN, 11%, W10, Doneflo, ValDeunnl, MatrixSIni)

OmSUB Cahply (Fm. DIS. Reply!)

DKZLARE SUB KeyZAn NumZAmyIO,W)

DKZLARE SUB Madnv (Man-MO, Man-1x310, MatuxSInfi, 0K AS INTEGER)

omSUB MatMult Natl-(NAM. MatrixBIO, MattiaCIO,WW)

omSUB ShowZArr (NumZAI-rayio,W,NS, MS, NunColuTnnsS)

DKZLARE SUBWW0

(18

PENT'PTopImtooalmlata heads 1! hydraulic natural: aymm"

PRINT

INPUI'Enmnameofelemdataflle: ”,aletnen!‘

INPUT ”Enter name at nodal modulate data file: ', nodeS

INPUI'EnMnanIofbwndaryoDndiumfllakENIEIanone): ”.136

11' b6 0 "' THEN

INPUT 'Enter number :1 baandary audition: ", NumBC$

DIM kmnvallmumxfl. BCnodeMNumKfi)

END IF

MUI'EnmnhebrWMHw) (m): CHI!

neemmeae

“nail-m

"OIOOOIIOOOI

l

"“Teaddatafllea'T'

OPEN elem-us TOR INPUT AS SI

INPUT II. NumElcmi

1% - NumEleTni

DIM elemfiufi), 111.0%), ififlfi). dialai), HW‘OE), MINCE). )dhKiS)

IOR 1% - 0 TO NumElemi

INPUT .1, elemfiufi). UNIS), 1550‘), dlaw‘b), HWNUN), 1111-1115), idialfls)

NEXT 1%

cwsa (1)

OPEN node. TOR INPUT AS .1

INPUT .1. NumNod¢$

1% - NumNodei

DIM mum), x1015), was), 21111.), was), quaaos), 019011115)

10R 1% - 0 TO NumNodeS

INPUT II, node‘OS), 110%), ”(1%), 210%). WON), (21180105), C490!(1%)

NEXT 1%
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CLOSE (1)

IF b6 <> "' THEN

OPEN ch RJR INPUT AS '1

ICE i% - 1 TO NumBC%

INPUT ll, K1no:k%(i%), kmnvaii(i%)

NEXT i%

CLOSE (1)

END IF

I

'T'Tdinmnsionarraya'"

DIM ki(NumElem% + I), hiWumNodefl, kstariNunEiem% + 1), Hi(NumNode%)

DIM Mauixi(NunNoda%, NumNode%), W!!NumNoda%. NumNod¢%)

DIM InvertedMatdxiONumNodd. NumNode%), AnswethbixiWumNodeE NumNode%)

DIM NumAmyimumNode”

DIM QiNumBJam% + 1).“NW + 1)

DIN flow%Nuanlam\%). CompTarnuaNumElemfl

DIM OK AS INTEGER

mam-I

0

I. O Om0 O O

HIM-HG

g! - 32.2 ’am. due to gravity In/sTI

pi! -3.14IS92650

Numlm - 5 ’Nunber of iterations baton including effect of components

NumIter% - Numlm + 1

Wound-.13

OeeeeeeeeeeemMm'keee

”klfi-OTOW

CALLCMMWOI ”0: d0: “‘0: ”‘0; mafia“. 1‘)

HONMI mei'wI (HW‘O‘) O 1.852. dUU‘) " (.37)

NEXT“

"'Tinitiaiiaheadvahea'"

K)Rl%-1TONumNode%

main-Hm.“

NEXT1%

mm10. I): COIDR 31. 0: PRINT '- Converging -": COLOR 7, 0

'"Taaniteaadvepmaduu'"

Again:

l

"T'Puetiawmsdonotmmeihaofmponents'"

IF counters < Numltefi THEN

10R 1% - 0 TO NumElem%

IF mamas» - Hi(i%(i%)) - 0 THEN

was) - 0

ELSE

Maria” - (ABSO-Iiai%(i%)) - I-I!(jj%0$)))) “ -(1 - l / 1.852) ' ”(1%) " -(1 / 1.852)

END 11'

NEXT 1%

0010 skipl

END IF

MOOmmOOO

IORi%-0TONuTnElem%

MOM-0

NEXT!%

""Caioalaunewvaheaioroomponent head-bastanns'"

RDR 1% - 0 TO NumNode%

mwas) - 2 THEN

ma )1. - 0 To NumElem%

n: 1111115) - 1% AND mamas» - waxes» > 0 THEN

mom-1 '1 -poailivei|o\v

CALI. ConsiSou-t1(ii%0, fi%0, x10, yio, i%, Cq90|0, quBGO, qu, NumElem%)

non-qu-a/ (si'pil TZTHwQ'NMQ

010%) - «HURON» - Pumas)» / (”0%) + 116%)» T 5

IP 010%) > 0 TI-iEN
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CALI. Newtonmofl, 111(11%(1%)). H1(]j%(j%)). 030%). 1110‘”)

END IF

EISEIF ij%(j%) - 1% AND H!(jj%(j%)) - H101%(j%)) > 0 THEN

flow%(j%) - -l ' .1 - negattve flow

CALL 01113150112050, jj%0, x10, y10, j%, Cq9010, CqISOEO, 01!. Nuchm%)

‘1‘1(j%)- qu ’ 8 / (31’ p11 A 2 ' jdh1(j%) " 4)

0105) - «11101505» . H101%(j%))) / (1110” + 110%)» " 5

IF 010%) > 0 THEN

CALL Nmnfl!(j%), I'I1(jj%(j%)). H1050”). 010%). 111115))

END IF

END IF

NEXT 1%

END IF

NW 1%

'- - - cummw. - - -

10R 1% - 0 ‘10Nam

11: mama» - missus» - 0 THEN

was» - o

EISEIF flow%(1%) - 1 THEN

Inc-rum - 1 I was) ' was) A 352 + 110%) ' 010%»

mnow%(1%) - -1 ‘IHEN

WU” - l / (”(1%) ' 010%) A .852 + 110%) ' 0105))

3153

was) - 01350110111011» . mason») A -(1 - 1 / 13521' was) A 41 I135»

END 11?

NEXT 17.

“cpl:

“"Calmhumnhufamm"'

ED: 115 - 1 '10 NumNodc%

mwas) - 1 THEN

1a - Cq1w1(1%)

11 - quaas)

h10%)- u - was) - z1(1%)) A :1 / was)

END 1?

NEXT 1%

M-saupcmlsumum-H

 

 

IO! 1% - I TO NumNodo%

R)! 1% - 1 IO Nuu'Noda

WK“. 1‘) - 0

NEXT 1%

NEXT 1%

" Add claim mafia: ’

NR 1% - I TO NumEIcm%

vahul - macs)

I-I1% - fi%(1%)

1.0% - 11%(1%)

CALI. AddSqunnG-Il%, Lo%, valuel, Mun-11110, NumNode%)

NEXT 1%

 

"AddmmbdhgomldM'

 

0

m3 1% . I TO NumNodc%

IF dypc%(1%) - 1 THEN

valud - -I ' halt“)

CALL AddDhgomKfl. valuel, Man-1:110, NumNode%)

END IF

NEXT 1%

"" Add W0) to 96111011 (1,1) "°

valuel - ol ‘ WM)

CALL AddDhgomKl, valuel, Macaw, NumNodc%)

""utupfcrdngvmuautux'“

903511-1me¢“
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NE k% - 1 IO NumNode%

Wm10%, 11%) - 01

NEXT 11%

NEXT 1%

" ' ' 111:de bwnduy common ' ‘ '

IF b6 <> "' THEN

CALL Kammxw,W10,NumBC%, BCnode%O, knawnvallo, NumNodc%)

END IF

""addInmnlhud BmxduyCdetIontofwdngvectot'"

W0.1) - W10. I) - knuKO) ' 111(0)

 

"tolwlmuhmoqum'

 

CALLWNMIO,Wmlo,NumNod¢%, 010

IF NOT OK THEN

BEEP

PEINT '30:! Input, no Iduuon b potable.“

END

END IF

CALLWWmIO,Wan-NO, Wuhan-1:10, NumNode%)

I. O O O I 0 0

cat% - 0

NE 1% - I TO NumNodc%

IFWHIKI‘, 1) - H1119) > .01 THEN

GOIO Ctr-Va

END IF

NEXT 1%

'0 O 0MmD O O

Tot-maul - TIMER - Stuffing!

"0.0.0.0....

NE 1% - I TONam

I-Il(1%) - W10%, 1)

NumAmyl0%) - mass)

mm as

M-mummotuwmcy-H

CALLWWyIO, NumNod¢%, Metal, Medhnl, StanDevl, M1111, Max!)

UI-IW'fl-W/Munl)

"DOW”...

CLS:IDCATE8,I

1%-0

PEM'HnddNoch';1%;'):';I-I1(1%)

IOE1%-ITONumNode%

PEINT'Had ItNodc C'; 1%:"):";I-11(1%)

NEXT“

PRINT

PEWTWfldcmdUnflomRy-‘;U1;‘%'

PEINT‘Conm'pd 31h: ';countcr%;' mun:

PEINT'I'oqumofconvmu - ";'1'oul'l'1nu1;' seconds"

PEINT

l

"“uwdmInDIFNEl’mfam‘"

""hwoflypdnbmpofikghmww0"'

-o

Poms-010W

IPle%)>b1WTI—IEN

WWW”

ENDIF

Nmm

outfits - "13:12: + MIDSCnodeS, 7, I) + "an"

OPEN and!!! ICE OUTPUT AS 01

NE 1% - 0 TO NumNodd

IF ”(1%) - 0m

PEINT II, I-I1(1%)

EISEIF yKM) - 13W THEN

PRINT II, ”0%)

END IF
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NET“

m0)

”"uwandahpdnhflu'

INPUT “Save vault: 7 (y/n) “, nus

IPIXIASBQM) - ”Y'TIEN

INPUT “Enact nun: {or wtput file: '; 111cm

OPEN 11km RDE OUTPUT AS II

1% - 0

PRINT II, 'Hud at Node 1"; 1%; "): ‘; Hum)

PEINTDI,

RJE 1% - ITO NumNodc%

PRINT II, 'I-Iud at Node (';1%;'):";HI(1%)

NEX'T1%

PRINT”.

PENTII,WdUnlmy-';U1;'%'

PEINT II, ‘Convupd after '; mm; " Random!

PEINTOL'TDnIUmdmm -';ToulTluu1;'oecondo"

c1053 (1)

ENDIF

END

OmVa:

TOE 1% - I TO NumNodc%

I-I!(1%) - Mouth-NOE I)

NEXT 1%

LCXIATE 15, mzPEINT'NunMoflmn: "; mum

mm-mm +1

0010 A3111!

SUB AddDhgoul (podtba%, valuel, Mal-1:110, NumNode%)

WMEm5)-mmzms.W”+ value!

END SUB

sun Addsqum aim. IA%, valuel, mo, NuaNM)

wens. 1.0%) - Matt-111015. 1.0%) + «111.1

muons. Hm - 11.111.111.95, 111%) + mm

was, 1.0%) - umzaos, Lo%) - valuel

mamas,Hm - mums,Hm - mm

END sun

SUB BCaIc Man-1:110, ”W10. NumBC%, Knodc%0, knownvaflo, NumNode%)

NE 1% - I TO NumK:%

ICE 1% - 1 'IO NumNode%

IF j% o BCnode%(1%) THEN

W10%, 1) - W105 I) - Matux1(j%, BCnodc%(1%)) ' knownval!(1%)

mm, BCnod¢%(1%)) - O

WWO”,is) - o

m

W10%, 1) -mm, BCnode%(1%)) ' knownvnl!(1%)

END 11'

NEXT 1%

NEXT 1%

END SUB

SUB Calling“: 0:10, y10, 210, 11%0, fi%0, Ella-3:111, 1%)

W - x1(jj%a%)) - 111(11%(1%))

ytunpl - y1(fi%(1%)) . y1(11%(1%))

W- d(jj%0%)) - 21(11%(1%))

w-W*2+ml*2+aanpl*2)*5

ENDM

SUB ComtSDttI (11%0, i%0, x10, y10, 1%, Cq9010, CqIBOIO, Cq1, NumElem%)

TOE 1% - 0 IO NumEch

IF 11%(1%) - 11%(1S) THEN

IF (x101%(j%)) - x1(i%(1%))) OR 01050”) - y1(ji%0%))) THIN

Cq! - qu”(1509)

EXITSUB 'Im-degrummnuhnveprcfenna

mx1(11%(j%)) - x1(ij%(1%)) OE x1(11%(1%)) - x1(jj%(1%)) THEN

Cq! - Cq901(u%0%))

WABS((y!(11%(j%)) - y1(ij%(j%))) / (Id(11%(j%)) - x1(jj%(j%))) - 01(11%(1%))- y1(jj%(1%))) I (xl(11%(1%)) - x1(jj%(1%)))) < .5 ITEN
qu - cqmmamas»

ELSE

c4: - cmmax»

END 11:

EISEIF uses) - 1mm AND fi%(1%) o 1150*) THEN

112 moms» - x1(ij%(1%)))OE (y!(fi%(i%)) - y1(i%(1%)))T1-IEN

\
5

\
§



\
\

\
~
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Cq! - Cq1801(11%(1%))

DOT SUB ’ 180 - degree comm: have peeferenoe

ELSE]1 x1(11%(1%)) - x1(jj%(j%)) OR x1(11%(1%)) - x1(jj%(1%)) THEN

qu - Cq901(11%(1%))

ELSEIP A86((y1(11%(1%)) . y1(11%(1%))) / (x1(11%(j%)) - x1(1j%(j%))) - (y!(11%(1%)) - y1(jj%(1%))) / (x1(11%(1%)) - x1(ij%(1%)))) < 5 THEN

Cq! - OqIK)!(11%(1%))

qu - 01190101505»

END IF

END 111

NEXT1%

ENDsun

SUB Con-190112 (11%0, 1%0, x10, y10,1%, Cq9010, quBflO, Cq1, NumEIem%)

10E 1% - 0 TO NumElem%

Q
Q

‘
\

h
\

\
\

m was) - 11%(1%)'1'HEN

111 110111015» - 11(i%(1%))OE muses» - y1(11%(1%))m

qu - 0113011115015»

EXIT sun

m11mm» - «was» on 111011.05» - 11135051111131

qu - Cq901(i%(1%))

mABSWK11%(1%)) - y1(fl%(1%)))/ mums» - noises») - mamas» - ytwsw» / (x1111%(1%)) . xiqisosn» < .5 “mm

c4: - (11110111511111)

Cq1 - qumisas»

m

m3505) - 11%(1%)AND mas) 0 mos)mm

111 muses» - muses» on y1(11%(1%)) - y1(11%(1%)) THEN

Cq! - quw1(11%0%))

EXIT sun

m310505)) - x1(11%(1%)) OE x1(11%(1%)) - x1(jj%(1%)) TIM

Cq1 - Cq90|(i%(1%))

mABS((y1(11%(1‘l» - ”01‘0”” / WONG”) - XKfl‘G‘») - M050”) - y1(jj%(1%))) / (x1(11%(1%)) - x1(11%(1%)))) < .5 THE!

qu . Cqu101%0%))

qu - 01190105011»

END IF

END 11!

NEXT1%

ENDSUB

mmDatum! ammo. Metrbflze%)

CONST Pelee . 0

CONST True - NOT Pelee

DIN Done%0htfllsm%)

ICE 1% - I '10W%

Doae%(1%) - Fake

NEXT 1%

VelDeterml - (I

CALL DoDeKIL 0, 1, Mlh'IxA10, Done%0, VaIDetermL MIMXSlu%)

Dew - VelDetu-ml

END FUNCTKDN

SUB DoDet (Tami. 34%, 11%, MEMO, Done%0, VelDeterml, MetflxSln%)

(IJNSTPnlne-O

(DNST'True-NOI'Fahe

mk%>Methh%II-EN

Slum-d

IFN%MODZ)-0THENSIgn%-I

ValDetemi-VelDetez-znl+515n%"reml

ELSE

IFTeunIOOITI-EN

N% - 0

ICE 1% - MAWTO I STEP -1

IF Done%(1%) THEN

N%-N%+I

EISE

Done%(1%) - True

A11 - Term! ' Man-11AM“. 1%)

A2% - 51% + N%

A3% - 11% + I

M% -New

CALL DoDet(A11, A2%, A3%, MMXAIO, Done%0, ValDeterml, A4%)

Done%(1%) - False

END IF

NEXT 1%

ENDIF
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ENDIF

ENDSUE

sun Geflleply (Fm has. EeplyS)

Ills-WA)

HIS-ma,”

IFIAS>HBTIENSWAPIA£HB

PENTUSIM'Enmanyfm5tok';L¢-fisffl5

IX)

EeylyO-W

IDOPUN'TILCEeplys>-I.OS)ANDCEep)y$<-I*fl$)

ENDSUB

MWWle.W%)

CONSTEndNuubefl-IOIOI ’ModJI

W—UMUNDNWJ)

CoISUe%-UBOUND(NumZAmyL2)

'PENT'-EnterdmfoTZ-d1membm)emy.—' 'Mosz

'PEINT'mMquumemyehe-flmfl‘mJ ’ModJZ

’ '—Tbenue ';Co)Sln%;'wh1mperm.—' 'ModJZ

' '-Enter';EndNuabet1;‘toeMdatnemy.—' ’ModJZ

IFanCwnt%>-Enwflze%m

PEINTCHESU)

PEINT'-— Mama too Inge. —"

EXITSUB

DIDIF

wWanCmm%<Eow51a%

WM-Wfi+l

PENT'<<< Earl mafia"; Watt '>>>"

UWnfi-WDENPENT“L¢1DW“

W%-0

WWI-TEECDIOount%<Co&a%

Com-ColCount%+I

PRINT " Entry 1";Wk',"; Com“: "):";

INPUT",Enhy1

H’Enu'fi-EadNuMTI-EN

IFCoKant%-IITEN

mm

EIS

PEINTGIESCI);

PEIN'T""Cennaendm. Pleuenentetmnber.“

CdCounfi-Coflmfi-I

ENDIP

ESE

NunfiArnleIaownfi, Cancun“) - Entry1

ENDIP

woe

IFEuTyl-EndNunbd‘fl-EN

WM-Wnfi-I

sunma (Memo,W10, memo.Was)

Fox 115 - 1 Tomm

mis - 1 10mm

W105. 1s) - Matrle!(1%, 1s) + mates, )5)

NEXT 15

NEXT m

END SUB

SUBWV 011111111110, MxBIO,WkOK AS INTIAISEE)

CONSTWad! - 900000001: ’Mod. 01

CONST False - 0

CONST True - NOT Pelee

DIMmmmm,MIMxShe%)

Fox 15 - 1 TD MatflxShe%

1011 115 - 1 To Mann-sues

Matthews, is) - was, 15)

IF 1% - is THEN

mums, 1%)- 11

Hummus, 111) - on

m
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Nm1%

NEXT 1%

P011 1* - 1 TDW11

1% - 11.

WHILEWm,1%)) < ExmrBound!

1P 1% - Men-1:51a% I'm-N

ox - False

901' SUB

END IP

11. -1s + 1

WEND

102 11% - 1 ‘10 111111111512“

SWAP Mamas, k%), Madam. u)

SWAP males, 11%), Man-11181111.. 117.)

NEXT 11%

Fund - 11 / W105, 1%)

108 11% - I TOW

W10%, 11%) - Faced ' MatrbCKfi, 11%)

males, 11%) - Ema ° mamas, 11%)

NEXT 11%

Pen 11% - 1 ToMAW

1P N11 0 111 THEN

Fm - «1111110045, 15)

FOR 11% - 1 TOMW

was, 11%) - WM%, 11%) + Emu ' Man-111C1(1%, 11%)

Mammals, 11$) - mums, 1151+ Emu ° Menu-810%, u)

NEXT 11%

END IF

NEXT 11%

NEXT 11.

OK - True

ENDM

SUBWk(Men-MO, “111111310, W10, him-1:151:29

ICE 1% - I '10W

m1% - I '10W

TequSuuu - 01

TOE k% - I TO Mlhibee%

Tm- TempSuml + MK“, 11%) ' Men-1118105. 1%)

NEXT 11%

W115. 115) - Tempfiunl

NEXT 1%

NEXT 1%

END SUB

SUB Mats-w W10. Men-1x512”

OPEN'mma- ICE OUTPUT AS '1

W- " MJMM' 'Mod. #1

POE 1% - I ‘10 Mauixsue%

[OR 1% - I '10mm

PRINT .1, mm MntFomts;Metr1xA10%. 1%);

NECT 1%

PRINT 01,

NEXT 1%

PRINT II.

CW (‘1)

END SUB

mammamams)

mm- ' «3AM» ’Mod. 111

Poms-110mm

mars-110W

mmummmagm;

NEXT1%

PRINT

NEX'T1%

PRINT

ENDSUB

SUBNewanTLHLLoLxLH)

DO

n-crm-uwwunmununm

dR-ol’G'Ifl-Lol)'(.852'k1'x1"-.I48+TI)/011’x1“.852+'l‘1'x!)"2-I

mxI-XI-Fl/dPl

x1-newx1

LmPUNTILH/dm<m'x1

ENDSUB
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SUB ShowZArr (NumZAmyIO, Wu“, N%, N%, NuuColumm%)

NumEowe% - 20 'Mod. '1

WWnfi<I)OR1N%<0)OEN%<0)OR(N11mCoh1m%<I)'ITEN

BEEP

PRINT '-— Parameterm In ShowZAn —'

Pap5m% - NumEowe% ' NuuCoInm%

EmmCoum% . 0

NqunPage% - 0

IndeaForuuu - ”(Lt)”

IF N% - 0 THEN

Nanak-mats - " H.‘ + STRINGSME ‘0') 4» "AMA"

ELSE

NW1! -ms,'1") + "." 4»Wk'0')

END IF

IF N% - 0 THEN

OolWldth% - 27

m

ColWIdth% - N% + 14% + 10 'Mod. #2

END IF

C13

ICE 1% - I '10W

at]! - EDI-m9. LEN(STES(1%)) - I)

n 11% - I '10 COISM

m -W9.LENGTESOIH) - 1)

MM - (NunOnPage% \ Nun-Column” + I

Com - NqunPage% MODWm”' CoIW1d1h% + 1

mmMM,ColI.oc%

PRINT UENG IndexFornuS; Skis: sun:

PEINT UENGNam; NumZAmyKfi, 11%) ’Mod. .2

MW“- BeuuntCounfl + I

NunOnPage% - Elenmqunfi MODPam

WWW-QWW-Wflfl-EN

PRINT '— Prue a key to manna -'

DO

1m? UNTIL INKEYS o ""

IF Elethounm 0mmTHEN

CLS

BIS

PEIN'T

END IF

END IF

NM 11%

NEXT 1%

END SUB

SUBMNumAmfiO, m,Mean1,Medlan1, StanDevL M1n1, Max!)

Em1%<II'I-ENDOTSUB

K)E1%-2'IOcount%

Tenpl-NuMmfifi)

k%-1%-I

[DWI-11131131113“ NumAmy10:%))AND(k% )0»

W05+ I)-NumAmy101%)

k%-k%-I

woe

Nun1Amy1(k%+I)-Temp1

NEXT1%

TOEfl-ITOM

Valuefiunl - Valuefiuml + NumAmy1(1%)

SquamSumfl-W+NumAmy10%)“2

NEX'T1%

M1111 - NumArnyKl)

Maud - NumAmy11cmnt%)

IF((aunt%+I)\1)-munt%\2TI-EN

Mk“ - “111% \ 2

Medhnl - (Nua1Amy11M1d%)+ NumAmyKMM% + 1)) / 21

ELSE

Medan! - NumAmy1((munt% + I) \ 2)

END IF

Mean! - VaIueSuml / aunt%

IF mun“ - I THEN

aanDevl - 01

m

sum - ”(Squatefimfl . count% ' Mean! ' Mean!) / (count% . 1))

END IF



ENDSUB

SUBWaltKly

PRINT 'ModJI

PRINT'—PRESSANYI(EY‘IOCONTINUE—'

DO

wopmeEINxEn-“

ENDSUB
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DIFNETl

0

""WNmkpmgnmm‘pmungvmualnodemhmqua'"

0

0mSUB Maflww (MINING, MatrIxS1u%)

OmSUB WaltKey 0

DKMRB SUB Kale (Mattixlo, RHSMatrlxlO, NumBC%, K311011150, hwnvallo, NumNode%)

DKILARB SUB MatAdd (Man-M0, Matt-11:810. MatrhClO, Matt-1215129”

DEZLARB SUB Madnv (MamMO. Matrth10, Matux51n%, 0K AS IN'IECHI)

OmSUB MatMult (MamaMO, MatflxBIO. Max:100. Mam”

DKZLARE SUB Newton m. a1, d111, dxl. ml. dehahl)

0mSUB ConnSonl (11%0. iii-0. :10. >40. 1%, 019010, Cq18010, C41. NumElem%)

DECLARE SUB Confionl (11%0. jj%0, x10, y10, 1%, Cq9010, Cq18010, qu, NumElem%)

omSUB Caldmflh 0‘10, y10, 210. 11%0, i%0, Ellangthl, 1%)

COMMONmm m1, 5:, p11

common 51mm mo

N...amm...

I

CLS

INPUT “Enactm 01 elem data 111:: ", clemflle‘

INPUT 'Entu mm of nodal data 111:: ', 11011111195

PRINT 'Entumpal-am "

INPUT ' k - '; b1

INPUT " x - '; tel

INPUT "Enter 1n111al head, H10). (3.): ", HOI

OPEN 01¢!!fo m1! INPUT AS II

OPEN 11011211105 1011 INPUT AS '2

INPUT II, NumElcm%

DIM clem%(NumElem%). 11%(Nuchm%). fi%(NumE1¢m%), d1a1(NumBem%), HW%(NumElem%), 1d1a1(NumElem%), flhlcNumEkmfl,

NumEm1t%(NumE1¢m%)

K311 1% - 0 TO Numflenfi

INPUT '1, elem%(1%), 11%(1%), jj%(1%), d1al(1%), HW%(1%), 1d1a1(1%), )d1a1(1%), NumEm11%(1%)

Nm 1%

INPUT '2. NumNodd

DIM noddmuwNode%), xlwumNode%). y1(NumNod¢%). 21(NumNode%), dype%(NumNode%), Cq1801(NumNode%). Cq901(NumNode%)

FDR 1% - 0 TO NumNodc%

INPUT .2. nod¢%(1%). 110%). MG”. 210%). dyp¢%(1%). Cq18010%). Cq901(1%)

NEXT 1%

CIDSE (1)

CLOSE a)

mud-I

DIM H!(NumNodc%), DI(NumElan%), WINumEIeM)

DIM DMatrlxlmumNodd, NumNod¢%), WMleumNode%, NumNod¢%), KMatflxKNumNode%, NumNode%)

DIM HnWWumNodc%, NumNodfi), FMatrleWuuNodek NumNode%)

DIM anaKNumNode%, NumNode%)

DIM al(NumF.1¢a\%), dleumElcm%), d111¢NumElem%)

DIM flw%(NumElcm%), Q11NumEl¢m%), deltammuuflem‘b)

""comm‘u

0

111(0) - 1'10!

51 - 32.2

p11 - 11415926540

HWconau - 4.73

IN - 1.852
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I

""calculataelemfllcngth,dx.andmnatant,a"'

10R 11. - 0 TO NumElcm%

CALL Calcbangthwo, M0, 210, 11150, jj%0, ElLengfld, m

was) - mum:

a10%) - 11me / (stas) A ml - d1a10%) A 437) "1.166

NEXT 1s

M-mmmuhudnhmu-

NR 1% - 1 TO NumNodc%

H10%) - HMO) - 1%

NEXT 1%

“"atanwerattvepmdun'"

Nextltentlon:

'0 O OM “1mm D O I

no: 11. - 0 '10mm

an is - 0 1o NumNodev.

DMatdx10%. 1%)- o

mamas, is) - 0

mm, is) . 0

names, 11;) - 0

NEXT 191

m as

"“calculaudh‘"

non m - 0 1o NumElem%

was) - mums» - racism»

NEXT as

“"Calmlaudeltah"'

10R 1% - 0 TO NumElem%

1P dype%01%(j%)) - 2 AND dh1(j%) > 0 THEN

MW) - I ’ I - poatdve flow

CALL Conan-11050, fi%0. x10. y10. 1%. 01900. (3418010. 011. Nummcmfl

T1-qu'8/(d'p11‘2'1d1a10fl‘0

CALI. Newtonfl'l, a16%), dh1(j%), dx1Q%). ml. deltahlfi”)

mctypc%(jj%(i%)) - 2 AND dth%) < 0 THEN

M09 - -I ' -1 - negaflva flow

CALL Conusonzwso, jj%0, x10, y10, is, Cq9010, quauo, cqt, NumElem%)

‘1'1-Cq1'8/(g1'p11‘2'1d1a10%)*1)

CALL Nmnm, a1(j%), ABS(<11\10%)). dx1(j%), ml, deltah!(j%))

use

ddtah!(j%) - 0

END 117

NEXT j%

NOOWQhuD.IOI

IO! 1% - 0 TO NumEleufl

010%) - l / a10%) " (I / ml) ' A351(dh10%) - deltahl0%)) / dx10%)) " (1 l m! - 1)

NEXT 1%

""CalmlahM‘aandQ'a"'

103 1% - 0 TONam

11' NumEmK%0%) > 0 THEN

Havd - (I / (m1 + 1)) ' (H!01%0%)) - deltah10%)) + (l - I / (ml 4» 1)) ' H!(jj%0%))

Zavd - (21(11%0%)) + 21(ij%0%))) / 2

MMK1%) - NumEtMt%0%) ' 1:21 ' (Havel - Zave1) " xel / Have! / dx1(1%)

010%) - NumEmlt%0%) ‘ b1 ‘ (Have! - lave!) " u! / dx!(1%)

ELSE

WK“) - 0

010%) - 0

END IF

NEXT 1%

"' ' ' Construct Global Stiffness Matt-1x ‘ ' '

l
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'° ’ - Add 012mm conciliation to 0mm: ' ° °

FOR 1s - om NumElem%

DMau-1x101%0%). uses» - DMm-uuuses), uses» + mes) / dx1(1%)

DMau-lx1(ij%0%), jjses» - DMatux1(jj%0%). uses» + D10%)/ dx10%)

Duauurelses), jj%(1%)) - Dummuses), 11%0%)) . mes) / dx1(1%)

omnmses), uses» - Dummses), uses» - 010%) / dx10%)

NEXT 1s

""AddclmflmtflbuflmtoM-Matflx"'

mk1% - 0 TO NumElem%

W1(11%0%), 11%0%)) - MMatrlxKll%0%). 11%0%)) + W10%) ' dxl0%) / 3

563181111631“). ”(1%” - MMatrlx1(i%(1%), i%(1%)) + MM!(1%) ' dx!0%) / 3

menses), fi%(1%)) - MMItrlxl01%0%), jj%0%)) + MM1(1%) ' dx!(1%) I 6

Wl(i%0%), 11%0%)) I MMJWl(jj%0%). 11%0%)) 4* MM1(1%) ' dx1(1%) / 6

NEXT 1%

""adddlammlnultyammmdontofmvedor'"

FOR 1s - 0 TO NumElcm%

muses). a) - mewses), 0) + D1(1%)' deltah1(1%) / dx10%)

Wmses), 0) - FMatrIx1(fi%0%), 0) - mes) ' deltah!0%) / dx1(1%)

NEXT 1s

""adddhman-WfloatOM-Maut'"

1011 as - o 10 News

mmses), a) - maximises), 0) + mes) - dx10%)' deltah10%) / 3

W(fl%(1%), 0) - mmxmses), 0) + MMIes) ' dx10%) ' deltah10%) / 6

NEXT 1s

'0 I Imh a.” O D 0

CALL MathODMau-wo, MMaMxIO, man-1x10, NumNodeM

" ‘ ' add boundary conduct: Oman value at node I) ' ' '

NumKZ% - I

BCnOdc%0) - 0

knownvalta) - 1110’)

CALLMWIO,Nah-1:10. NumBC%, BCnOde%0, knownvallo, NumNOd¢%)

'00.

I

CALL Mauveoumo, Khwio, NumNOde%, 01(%)

m NOI‘ OK% THEN

BEEP

PRINT ”No ”mun pea-able.-

END

END 11'

CALL Mummvzo, memo, analo, NumNodc%)

"OOMl‘ymb...

CLS

R31! 1% - 0 TO NumNod¢%

PRINT 1%, anal0%, 0)

NEXT 1%

:'"d1eckagamatpmlous1tcraum"'

1011 1% - I TO NumNod¢%

IF ABSO'H0%) - anal0%, 0)) > .01 “II-LN

1011 is - 1 '10 NumNod¢%

11101:) - IMKfi. 0)

NEXT 1%

CD10 thmeon

END IF

Nm 1%

PRINT "done“

I

"00mm”...

'INPIJT'Savcnmluwln)‘;m-p$

’IFIXZASEKMPQO'N‘THEN

’INPUI'Entatnamofomputflle: “,Outflld

outflleI-‘aadnl_”+WMJ,I) +‘.Out"
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OPEN outfits IUR OUTPUT AS 83

NR 1% - 0 T0 NumNOde%

PRINT '3, an|10%. 0)

NEXT 1%

CLOSE 9)

'END IF

END

SUB BCcalc M10,mm,NumBC%, BCnOde%0, knownvallo, NumNOde%)

"“mhmuflutohdudaknownvahua'"

ICE 1% - I TO NumBC%

103 1% - 0 IO NnmNod0%

IF 1% o BCnodc%0%) THEN

WK“, 0) - W101», 0) - Mmmqs, BCnOde%0%)) ' knmva110%)

Matdx1(1%, Knodc%0%)) - 0

Matflx1m0%). 1‘) - 0

mm,0) - Matdx1(1%, BCnOde%(1%)) ‘ knownvalKII’.)

sunawetc, we #0. 11%0.1j%0. £11:th 1%)

""ubmflutocalmlau lengthotclam'"

W1 - x1(11%0%)) - x101%(1%))

m1 - y1(jj%0%)) - y101%0%))

Mp1 - 11%0%)) - 2101%0%))

Engagihl-(xuu'lp152+yumpl"2+amp1*2)* 5

END SUB

SUBComm (11%0, i%0. x10, y10,1%, Cq9010, Cq18010, qu, NumElem%)

""aubmflutoaouwhldt Wantappuu'“

10R 1% - 0 TO NumElem%

IF 11%(1%) - 11%(1%) THEN

11' (x!01%(i%)) - x1(fi%(1%))) OR (yi01%(1%)) - y1(1j%0%))) “II-{EN

th - Cq180101%0%))

EXITSUB 'Iw-depucomnuhavapufamca

ELSEIF x101%(i%)) - x!(jj%(1%)) OR x101%0%)) - x1(1j%0%)) THEN

Cq! - Cq901111%0%))

EISEIF ABS((yl01%(i%)) - y111i%0%))) / (x!01%(1%)) - x1(1j%(1%))) - 0101%0%)) - y101%0%))) / (x!(11%0%)) - x1(jj%0%)))) < .5 THE!

Cq! . Cq1w101%0%))

Cq! - 0190050”)

END IF

ELSEIF 11%(1%) - 11%(1%) AND 11%0%) <> 11%0%1 THEN

11' 01101509) - 31(11%(1%))) OR (lej%(1%)) - y1(11%(1%))) THEN

qu - Cqu101%0%))

EXITSUB ’Iw-degreeeomlm have pnfcnnce

ELSEF x101%(j%)) - x1(jj%(1%)) OR x1(11%(1%)) - ”(11%0%)) THEN

qu - Cq91l01%0%))

ELSEIF ABS((yl01%(1%)) - y1(ij%(1%))) I (xl(11%(1%)) - x1(11%(j%))) - M01%0%)) - y1(jj%0%))) / (1101%0%)) - xlfij%0%)))) < 5 THEN

qu - Cq1w101%0%))

m

Cq! - Cq901(fl%0%))

END IF

END 11'

NEXT 1%

END SUB

\
‘

\
\

SJB Cameos-12 (11%0, i%0, x10, y10, 1%, Cq9010, CqIBOlO, qu, NumElem%)

""ubmflutoaonwhlchmantappllu"'

9011 is - 0 TO Nunflems

m 11%0%) - uses) THEN

I? x101%0%)) - x1(i%(1%)) on y101%(1%)) - y1(1j%(j%)) THEN

Cq! - Cq1801(jj%0%))

am sun

5155117 x101%(1%)) - x1(1j%(j%)) OR muses» - muses»m

0;: . Cq901(i%(1%))

£15m ABS((yl01%(1%)) - y111j%(1%))) / memes» - x!(ij%(js))) - ezetses» - y1(ij%0%))) / euuses» - xze'iwwv < 5 “EN
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0;: - quoijses»

qu - Cq901(i%(1%))

IF

EISEIF uses) - 11%U%) AND uses) 0 uses) THEN

1F muses» - muses» OR y101%0%)) - y1(11%(1%)) THEN

Cq1 - Cq1801(1j%(1%))

EXIT sun

ELSEIF xxelses» - x1(1j%(1%)) 0R muses» - x1(jj%0%)) THEN

qu - quouises»

ELSEIF ABS((y101%(i%)) - News») / muses» - noises)» - Moises» - y!(jj‘7o(i%))) / creases» - 11(jj%0%)))) < 5 THEN

qu - quw1(11%0%))

Cq1 - Cq901(i%(1%))

END 112

ENDIF

NEXT1%

\
Q

~
\

END SUB

SUB W11W0, Man-1x310, Man-b100, MatrszIuM

""1111Ub1addkbnauhmt1u"'

3311 as - 0 TO mums

EOE 1s - 0 TD MatrIxSlu%

W10%, 1s) - MatrIxA!(1%, 1s) + Man-1113115, 1s)

m 1s

Nm 1s

END sun

SUB Mann (Memo, MatrixBlO. Mutant 0K AS INTEGER)

""mmvmubmtm"'

CONST ErmrBautdl -WI 'Mod. 81

CONST Pale - 0

CONST Tmc - NOT Fall!

DIMWWWEW%)

EOE 1s - o ‘10W%

EOE 1s - 0 TDTums

muncxes, is) - Names, is)

1F1% - 1% THEN

annexes. 1s) - u

Man-111310%. 1%) - (1

END IF

NEXT 1%

NEXT 1%

1011 1% - 0 ID ”613%

1s - is

WHILE ABS(Ma1:111C10%, 1%)) < EnorBoundl

IF 1% - Man-ban% THEN

OK - Falu

EXIT SUB

END IF

1% - 1% + I

WEND

10R 11% - 0 '10 Mata-IxSIn%

SWAP memes, ks), luau-1200*, ks)

SWAP Man-111810%, 11%). Man-1,1810%, 11%)

NEXT 11%

Factofl - 11 / MatrtsC!(j%, 1%)

1011 11% - 0 TO MatrIxSIn%

MatrGC1(j%, 11%) - Faded ' MaUhC!(i%, 11%)

MatruBKfi, 11%) - Factod ' Matrle!(j%, 11%)

NEXT 11%

RR 111% - 0 'IO MatrleLn%

IF 111% <> 1% THEN

Faaofl - MatflxC!(m%, 1%)

R311 11% - 0 “PO Matrixsm

W10“, 11%) - Man-1:001“, 11%) + Factofl ' MatrIxC!(j%, 11%)

Man-111811115, 11%) - Manxmens, 11%) + Emu-1 ‘ Man-1.111310%, 11%)

NEXT 11%

END IF

NW 111%

NDCT 1%
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OK- True

ENDSUB

SUB MatMult «guano, Mauxazo, MatrIxCIO, MatrixSlzc%)

" ' ' matrlx nultIpUcauon subroutine ' ' '

FOR 1% - 0 IO MatrixSlu%

10R 1% - 0 TO MatrIxSIu%

TempSuml - 01

R311 11% - 0 TO Man-1.116122%

TempSuml - TempSuI-nl + MatthA10%, 11%) ' Matr1x8101%, 1%)

NEXT 11%

MacuC10%. 1%) - TempSuml

NEXT 1%

NET 1%

END SUB

SUB MatShow NatflxAlo, MatflxSIu%)

""auhtouunnodbphy 111-1111““

him-“NM“ - 'MOdJI

poms-omrmmsms

mkfi-oma'wmxsms

PEINI'USINGMatFm-Ims; MattIxAI(1%.1%);

Nm1%

PRINT

NExrts

PRINT

ENDSUB

SUB Newton (11. Il. 11111, 11111, 1111, deltahl)

""auluoudno toalmlau dehh unlng Newton-Raphson method'"

«ham-NI

DO

Fl-TI'O/a1‘(d111-de11ahl)ldx1)*a/ml)-d¢11a111

dnc-I'TI/ml/al/dxd'a/a1'(dhl-dcltal\1)/dx1)"Q/ml-I)-I

mxl-dduhl-Flldm

dame-news!

ImPUNlnFl/dfi<.01'd¢11a111

ENDSUB

SUBWaIdCcy

PRINT 'MOdJI

PRM‘—PE1~33ANYI<EYTDCONm~IUE—'

DO

IDOPWI-MINKE‘a-“

ENDSUB
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DIFNET2

I

""IrflytionNmkptoyImknplemndngvimdnodetechmque'"

vacuum sun Mam «ammo, Mamas)

omsun WahKey 0

cmsun Beale (Mm-11:10, mum, NumBC%. BCnode%0, knownvauo, NumNod¢%)

DECLARE sun MatAdd (Mame, Mmumo, Man-1:00, Manama

0msun mum (Mm-two, MntrlelO. Mums, ox as INTEGER)

omsun Matuult (Mm-12mm, Mmumo, Man-1:00, mums)

omsun Newton m. u, dh1,dx1, ml,de1uh1)

Omsun Con-son: «no. who. no. me. u, Cq9010,Cq1w10,Cq1. NumElem%)

Omsun Con-sou: (11%0. use. 1110. y10, 1%,Cq9010.Cq1&)10. C41. NW)

omsunam 0110, y10, 210. uso, no, 5mm 1!.)

COMMONmIN, 51, p11

COMMONS-MEDHIO

N I Omm0 I D

CLS

INPUT 'Enurmof elem data 111:: ', elemfilcs

INPUT'EnurumoInodnldm 111:: ", nodeflks

PRINT ‘Entummmm"

INPUT " k - '; 1:11

INPUT " x - '; u!

INPUT 'Entct 1n1t111 head, 8(0), (11.): ", HO1

OPENelmDR INPUT AS 01

OPEN nodcflld IO! INPUT AS ’2

INPUT I], NumBem%

DIM chm%(NumEIcm%), 11%(NumEIem%), jj%0~lum£l¢m%), d1aI(NumE1em%), HW%(NumEl¢m%), 1d1a11NumEl¢m%). 'flNWumEIcm%),

Nummunflcmfl

RJR 1% - 0 TO NumEIcm%

INPUT '1, ckm%(1%), 11%(1%), jj%(1%), dhwfi), HW%(I%), 1d1nl(1%), jdu!(1%), W%(1%)

NEXT 1%

INPUT '2. NumNodd

DIM nod¢%(NumNod¢%), x1(NumNode%), yl(NumNode%), z!0NIumNode%), ctype%(NumNode%), Cq1801(NumNod¢%), Cq911(NumNode%)

NR 1% - 0 TO NumNode%

INPUT '2, nod9%(.l%), x1(1%), y1(1%), 210%), dypc%(1%), Cq180!(1%), Cq90!(1%)

NEXT 1%

CIDSE (1)

C1058 (2)

mum - l

DIM WMmNodd), DI(NumElan%). MMIWumEk-m%)

DIM DMatdxlNumNodd, NumNode%), MMatflXIONIumNOdQE NumNode%), KMatrlxlmumNodek NumNodc%)

DIM KInvl(NumNodc%, NumNod¢%), FMMflmumNodeE NumNod¢%)

DIM maKNumNode%, NumNode%)

DIM dCNumEIem%), dx!(NumEkm%), dh!(NumEIcm%)

DIM flw%WumEhm%). QKNumEIcm%), dehathunflem%)

DIM q¢1NumElcm%). “(Nunflemv

"Dim...

Hum-H1!

g1 - 32.2

pu - 3411592650
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HWmnlfl - 6.73

In! - 1.852

O

""akuhtcelomkngthdnmdmnmna'"

FOR 15 - 0 T0 NumElem%

CALL Cddgngthodo. y10, no, uso, jj%0, mam, 1%)

was) - ElLength!

310%) - HWoonnt! / (stus) A m! - <1111(1%)A 43?) ’1.166

NEXT 1s

""1n1t1111nhudva1uu'"

m2 1% - 1 TO NumNodo%

HIO%) - HKO) - 1%

Nm 1%

""mmmPI-ocduu‘"

chtltmuon:

""mctallmntrbn'"

XOR 1% - 0 TO NumNode%

R311 1% - 0 TO NumNode%

01111111165, j%) - 0

W11“, j%) - 0

WK“. 1%) - 0

MIME 1‘) - 0

NEXT 1%

NEXT 1%

""almhudh"'

you «s - om NumElcm%

max) - mums» - tug-1505»

NEXT m

""Calcuhudeltah"’

101! is - o '10 Nummemas

IF dype%(11%(1%)) - 2 AND “109 > 0 THEN

mason-1 '1 -po.mv¢aow

CALL ComtSonl(11%0, ij%0, x10, y10, is, Cq9oxo, cqmmo, Cq1, NumElzm%)

Tram-qua/ (31'p11 Az-mmqvu)

CALL Newton(n(j%). 110%), amass), dx1(i%),ml, qe1(j%))

51.5511: dype%(jj%(j%)) - 2 AND was) < 0 mm

nowws) - -1 ' -1 - negative flow

CALI. Con-1501121150. ij%0. x10, yIO. is. wow, qusao, qu, NumI-‘Jcm%)

non-cw“ (gi'pfl *2'jdh10%)“0

CALL Nmnmqs), mm, dh1(j%), was), m1, qetos»

ELSE

«1%)-(dh109/ dos) / duos» A (1 I ml)

ms) - 0

END 11:

NEXT :11

“magnum"-

ma 1% - 0 TO NumElem%

010%) - dxl(1%) / was) ° qe1(1%) A (m1 - 1) ° dx10%) + ms) ' qc!(1%))

NEXT 1%

""CalmhuM'o'"

NR 1% - 0 TO NumEIcM

IF NumEnut%(1%) > 0mm

Havel - 1'1101%(1%)) ’ 011(11%(1%)) + 3 ' HKjfiO'n)» / ‘

WK“) - NumEm11%(1%) ' 1:21 ‘ O-Iavcl - lave!) " u! I Hive! I dx!(1%)

010%) - Mama” ' 1:21 ‘ (Have! - lave!) " xel / dx1(1%)

ELSE

WK“) - 0

Qlas) - 0

END IF

NEXT 1%

“"Conmaclobalsuffnunuamx"'
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I

" ' ’ Add elemnt contflbutiom to D-Matnx ‘ ' '

RDR 1s - 0 T0 MmEIem%

Dumwwses), uses» - DMau'ix1(11%(1%), uses» + D1(1%) / dx1(1%)

DMmmejses). uses» - DMunxujjses), uses» + mes) / dx1(1%)

Duauwcuses), fi%(1%)) - DMatrlx1(u%(1%), jj%(1%)) - mes) / dx!(1%)

DMmuquses), uses» - Dummses), uses» - 010%) / dues)

Nm 1s

""AddochmtflbudmtoM—Mnflx'"

FDR 1s - 0 T0 NumEIcm%

mauses). uses» - mwswses), uses» + Limes) - dx1(1%) / 3

menses), ises» - MMmuises), ises» + MM1(1%) - dx!(1%) / 3

mmuuses). ijses» - Wretses). jj%(1%)) + mes) ' dx1(1%) / 6

Wmuises), uses» - mwmjses), uses» + mes) ' dx1(1%) / 6

NEXT 1s

'0 0 Om {a W O I 0

CALLMdmmlo, 1101111111110, KMm-lxlo, NumNode%)

""hdudcbwnduymndfiommwnnhuaMO'"

NumK% - 1

80101150) . 0

knownvwfl) - 111(0)

CALL EQKKMIWIO, Eula-1110, NumBC%, BCnode%0, knownvauo, NumNode%)

I...

I

CALLMWO,IGIMO. NumNodd, 0107.)

IF NOT OK% THEN

BEEP

PRINT ”No uoluthn pou1bk.‘

END

END IF

CALI. MaMultGOIMO. FMmhdo, undo, NumNode%)

'OOOdwhymb...

(:18

RM! 1% - 0T0 NumNodd

PRINTuIIKM, 0)

NEXT1%

""checkagunnpnvbuuwenum'"

10R 1% - 1 TO NumNodd

IF ABSGfl0%) . alt-10%, 0)) > .01 THEN

RJR 1% - 1 TO NumNode%

I-I!(j%) - |m10%, 0)

NW j%

GOTO Mather-don

END IF

NEXT 1%

PRINT “done“

I

'ODQWMII.

outfits - "uan_" + MIDSOIodeflles, 8, I) + ".out“

OPEN 0136116 Kill OUTPUT AS ‘3

MR 1% - 0 TO NumNod¢%

PRINT 03, 111.10%, 0)

NE“ 1%

CLOSE 9)

END

SUB BCalc Man-1x10, RHSMItrde, NumBC%, Knode%0, knownvallo, NumNode%)

""mchudekmnvfluulnmtrm'"

ICE 1% - I TO NumBC%

R38 1% - 0 TO NumNode%

IF 1% o BCnode%(1%) THEN

Wigs, a) - Wmujs, a) - Matr1x1(j%, BCnode%(1%)) ' knownval!(1%)

Mumlfifl Knode%0%)) - 0
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Matt-1:1(BCmde%(1%), 1%) - 0

mees, 0) - Mdrlij%, BCnode%(1%)) ' knownval1(1%)

SUB Caldength (x10, y10, :10, 11%0, 11%0, Bungthl,1%)

""eubmuunetocalmhte lemhofelemeut'"

new» - x1(jj%(1%)) - x101%(1%))

yumpl - y1(11%(1%)) . y1(11%0%))

m1 - z1(jj%(1%)) - z!(11%(1%))

EMQN-(xhutpl‘2+yump1*2+aanp1*2)“ .5

END SUB

SUB Con-150m (11%0, i%0, x10, y10, 1%, Cq9010, qusolo, Cq1, NumElem%)

""munwhkhmuuuapplb'"

ICE 1% . 0 TO NumElem%

IF 11%(1%) - 11%0%)‘1'HEN

IF (x101%Q%)) - 11(i%(1%))) OR 01(11%(1%)) - y1(jj%(1%))) THEN

Cq! - qufi)!(11%(1%))

EXIT SUB ‘ 1w - degree content: have preference

ELSEIF x1111%(1%)) - x!(11%(1%)) 0R x1(11%(1%)) - x1(1j%(1%)) THEN

Cq1 . Cq901(11%(1%))

Elm ABS((yl(l1%(1%)) - y1(ij%(i%)» / (x1(11%(i%)) - x1(1j%(1%))) - 04(11%(1%)) - y1(11%(1%))) / (x!(11%(1%)) - x1(1j%0%)))) < 5 THEN

Cq1 - Cq1w1c11%(1%))

Cq1 - anouuses»

112

muses) - uses) AND uses) 0WW THEN
m clauses» - muses») on muses» - 140115015)» WEN

Cq1 - anmwses»

EXITSUB 'lw-degnemu have preference

ELSEIF menses» - muses» on muses» - uejses»m

0.1 - cqoouuses»

mABS((yi(11%(1%)) - y1(11%(1%))) / (xKusew - muses») - M01950“) - Ylfiiwv» / WWW") ' "(WWW ‘ 5 ““5"
C111 - equenses»

qu - eqoamses»

END IF

END 11:

NM 1s

END sun

SUB Confined (11%0, 5%0, x10, y10, 1%, Cq9010, Cq18010, Cq1, NumElem%)

""mmWMMepplb"‘

XOR 1% - 0 TO NumElem%

IF 11%0%) - 11%(1%) THEN

IF x!(11%(1%)) - x1(i%(1%)) OR y1(11%(1%)) - y1(1j%(1%)) THEN

qu - Cq1w1(1j%(1%))

EXIT SUB

EISEIP x1(11%(1%)) - x!(1j%(1%)) OR muses» - x!(1j%(1%)) THI-N

qu - cq90uises»

mABS((y1(11%(j%)) - y1(jj%(1%))) / muses» . muses)» - (y!(11%(1%)) - y1(jj%(1%))) / muses» - x1fij%(1%)))) < 5 THEN

Cq1 - Cq1801(11%(1%))

qu - mousse”)

END 1?

81.881? 11%(1%) - ij%(1%) AND uses) 0 uses) mm

D: x1(11%(1%)) - muses» on yuuses» - y1(11%(j%))THEN

Cq! - Cquejses»

Exrr SUB

ELSEIP menses» - x1(jj%(j%))OR x1111%(1%)) - x1(11%(1%)) THEN

Cq! - Cq901(1i%(1%))

ELSEIF ABS((y!(11%(j%)) - y1(1i%(1%))) / (x!(fl%(j%)) - xuijses») - etetses» - yun'ses») I muses» - x!(jj%(1%)))) < 5 THEN

th - cqwoxqjses»

ELSE

Cq! - Cq901(ji%(1%))

END IF

END IF
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END SUB

SUB MltAdd (MltflxAIO, MIMXBIO, MatrixCIO, MmSM‘I»)

" ‘ ' matrix edd1t1on subroutme ' ' '

FOR 1% - 0 TO Matr1x512e%

10R 1% - 0 '10 Metr1xS1ze%

MetrhC!(1%, 1%) - Metr1xA1(1%, 1%) + MetrixBl(1%, 1%)

ND‘T 1%

NWT 1%

END SUB

SUB MethwW0, Max:310,WkOK AS INTEGER)

""mtrtxlnvenknmbmtlne'"

CONST ErrorBound! - nooooooou 'Mod. 01

CONST Pelee - 0

CONST True - NOT Pike

DIMMIMIW,Mettquem

Fox 1s - o “no MetrkSlu%

RJR 1s - 0 TO MatrixSlze%

Machetes, 1s) - MetrtxA!(1%, is)

1? 1s - 1s THEN

hummus. 1s) - e

ELSE

mates. 1%) - 0:

END IF

NEXT 1s

NEXT 1s

Eon 1s - o ‘10 Mums

1s - is

WHILEWres, is» < EmrBoundl

117 1s - humans THEN

101! k% - 0 TO Metr1x$12e%

SNAP 51111111015, 11%), MetflxCI(1%, 1:1.)

SWAP Mltfbt3w%, 11%), MetrIxB1(1%, 11%)

NEXT 1t%

Pm“ - 11 / MetrbCKfi, 1%)

1m k% - 0 TOMam

MIMNC10%, 11%) - Factor! ' MetrhC!(1%, 11%)

Mate-1x811”, 11%) - Fmfl ' MmB:(1%, 1t%)

NEXT 1t%

R311 121% - 0 TD Metr1x512e%

IF m% <> 1% THEN

Factor! - -Metr1xC1(m%, 1%)

ICE k% - 0 TD Metflxsm‘l

MetrGC!(m%. 11%) - Mun-1110015, 11%) + Peder! ‘ MetflxC!(1%, k%)

WNW, 11%) - Metrlx310n%, 11%) + Faded ‘ MmBKj‘l, 11%)

NEXT k%

END 1?

NEXT m%

NEXT 1%

OK - True

END SUB

SUB MetMultW0,Mauxmo, Men-Milo, Men-12151216)

""uutrixuulttpllaumeubmune'"

10R 1% - 0 TO Metr1xStze%

103 1% - 0 TO Mate-1.612%

Tempamtl - 1!

10R 11% - 0 TO Metr1xSlze%

Tempfiam! - TempSuml + Matrle!(1%, 1t%) ’ MatflxB1(k%, 1%)

NE“ k%

MetflxCKlS i5) - TempSuml

NEXT 1%

NEXT 1%

END SUB
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SUB MatShow Men-11AM, MatrhrStze%)

"OOdWhymu-u...

mm- "uMM - ’Mod. an

R)RI%-0108’Metrbz$lu%

R311 15 - 0 To a ' Metrthbe%

PRINT USING Moms; Mamms, 1%);

Nm 115

PRINT

NEXT 15

PRINT

END sun

SUBNewton m, e1, dhl, dxl, m1, qel)

""edveiotqeuetngNewm-Repheoumhod'"

gel-m

DO

F1-e1'qe1"ml'dx1+'fl'qe1*2-dh1

dH-ml'el'dxl'qel“(,ml-l)+2'T!'qe1

newxl-qel-H/dfl

(pl-nan!

WPUNFEABSG’l/dFD<.OI'ABS(qu

ENDSUB

suawmxcy

PRINT ’ModJl

PRM'—PRBSSANYKEY'IOCONTINUB—"

Do

wormmmm-*

BNDSUB
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LAGRANGE

I

" ° ' program {at common 0! 2-D hydraulic topography mg Lagranghn element

0mSUB MatXCoM M10, Nubian-1:10, kl, MatSlu%)

OmSUB Methane (Matteo, Mambo, Matrthtu%)

OmSUB Matsub (Matqu, Matrlxbo, W10, Manama”

OmSUB Matuult (Memo. Mambo. W10,mans)

DmSUB Madnv (Mata-Inc, Mambo,We,0K AS MEET!)

OmSUB MatAdd (bun-mo, Macaw. W10, Martian”

0mSUBMr 0. 1:. F10)

DKIIARB SUB Ky (I. 13. KDle)

DELARE SUB K: (a, b, KDKIO, Dad, Dy1)

DmSUB K3 (8. b. (310)

DmSUB MatShow (Memo, MatrixSlu%)

OmSUB BCalc W10, RHSMnuxlO, NumBC%, BCnode%0, knownvallo, NumNodc%)

W- 9

DIM01W,W), NewGIMaQSln%, WW)

DIM KDRKMIW,W), NuKDxIOdatShe%, MatSlu%)

DIM KDleMatSlze%, MM), NewKDyKMMSluE MatSluS)

DIM Humans, MatShe%), NWRW,W)

DIM mamas-s. Ma”). KDIannSM, W%). aneKMatSlufi MatSlu%)

”Oiwuau...

CLS

W'Enfierlengthdelemt: ”,Ll

INPUT'BMetwidthoCeleumn: “,Wl

'GO‘IOaklp

INPUT'Entetmateedlatex-ala: ',NumLat%

W'Enutmntetdemepalaml: “,NumEmM

PRM'Encermpat-anuum '

INPUT"k-';ld

INPUT'x-";xl

INPUT'Enmdlamdmaln: “,MalnDla

INPUT 'Enter 11W. coefficient Iceman: ',HWma1n%

INPUT 'Entetdlamdlaterab: “,LatDla

INPUT "Enter HAN. coefficient for laterals: ", HWlat%

lNPUT'Enmmlheadlnfieet: “,Hla)

"" mutant: ""

p1! - 3.14159

Ween-t1 - 3.027

mm-mmmnz-pu/a

Ala!!-LatDla*2'p11/6

FOR 1% - 2 TO MatSlu%

”(1%) - HM) - 1%

NEXT 1%

ex! - HWanltl / Wailn% " 1.852 ' MalnDla " 1.166)

Iyl - HWcoM / 0M“ 5 1.852 ' LatDla “ 1.166)

“CalculauhgrangiandeMMue”

W
b-Ll/Z

a-W1/2

CALLKguhcm)

CALLKy(a.b.KDy10)

CALLPvedoflab.F!0)

""3mb pmdunnmhen'"
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Nextlteranon:

Dxl-l /axl*54'(ABSO'Il(1)-1'fl(3))/L!)*~.(6

Dy1-1/ay1*54'(ABSG'fl(1)+wo)-1~11(S)-H1(7))/2/W1)“-4.6

IFH1(9)>0'IHEN

Geonn1-Nurdat%'NumEn'ut%'kl'H1(9)"(xl-1)/L1/W1

Qe1--1'NuM'NuM'U'H(9)*x1/Ll/W1

Qd-ol'Gconed

ELSE

Guam-0

Qel-O

Qd-O

ENDIP

'“CalmlatemvahxeeforKDxmu-lx“

I

CALL Kan. b. KDxlo, 0x1, Dy1)

"“Calmlate mvahwaforothernutrue“

Kd-Geonetl’a'b/ZZS

CALL MatXConeflCHO, NewGlO, Kd, Mafln%)

Kd-l /(2‘a)

CALL MnXCoMtKDxlO, NewKDxlO. Kd.MatSlu%)

Kd-Dyl'b/Oo'dla'b)

CALLWWO.NewKDy10, Rd, mans)

Kd-O 'Qe1'a'b/9 "'Kd-OwhenuelngCOI)

CALLMnXCoMG-TO. NewFlo. Kd. Mafia” "' ' (Q - 0)

’“SolveMau-leqIL‘“

CALLMdeKDalO, NewKDyIO, K010, MatSlu%)

CALL MathKDlo, NewGlO, K010, MatSlu%)

" ' ' add boundary condltlon Omawn value at node 1) ' ' '

NumBC% - 1

801011611) - 1

knmvwa) - H10)

CALL BCalcO<D10, NewFlo, NumBC%, BCnode%0, knownvallo, MatSlze%)

".0

CALL MatlnvOCD10, KDIIMO, Mat51n%, 01(%)

IF NOT 0K% THEN

BEEP

PRINT ”Bad luput. No eolution 1a poeeible"

END

END 11‘

CALL MatMultKDIIMO. NewFlo, aru10, Mafia”

CLS

PRINT “Head Calmlatione: "

PRINT

1011 1% - 1 TO Mafilze%

PRINT art-10%, 1)

NE‘T 1%

WHILE INKEYS - "': WEND

R33 1% - 1 TO Maw

11’ ABS(ane10%. l) - 110%» > .01 THEN

0010 TryAgaln

1?

NEW 1%

PRINT 'Done“

END

TryAgIln:

NR 1% - 1 To MISIZQ%

110%) - lluKl%. 1)

NEXT 1%

6010 Nexfltenrlon

SUB BCalc 04mm, Wan-1:10, NumBC%, BCnode%O, knownvallo, NumNode%)

" ' ' um euhrouune evaluatee man-lea to helude known valuee ‘ ’ '

KJR 1% - 1 TO NumBC%

H38 1% - 1 '10 NurnNode%

1P 1% o BCnode%(l%)TH'B\1
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RI-xsumms, 1) - ”15141me 1) - Matr1x1(1%, BCnode%(1%)) ° knownva11(1%)

Matrlx1(1%, BCnode%0%)) - 0

MatrixKBCnode%(1%), 1%) - 0

W10%, 1) - Matrile%, BCnodc%(l%)) ' knownval!(l%)

ENDIP

NEGfi

NEG“

ENDSUB

SUB Pvector (a. b, F10)

”"thlamhrwmaetamnetamamfordngvector'"

I

P10.1)- 1

F10. 1) - 6

p10,”- 1

P1“. 1) - 6

P16.1)- 1

Fm. 1) - 6

F117.1)- 1

P10. 1) - 6

131(9, 1) - 16

10Rl%-1TO9

Roars-2109

mam-o:

Name

NEXTl%

ENDSUB

sun K; a. b. 610)

""thhmhwflneeeueonetantalnG-mm‘"

Cl“, 1) u 16

CKL 2) - 6

Cl“: 3) - 4

GIG, 6) - '2

G10, 5) - 1

C1“. 6) - -2

GIG, 7) - -6

610. 5) - 8

Cl“, 9) - 6

01(2. 2) - 66

010. 3) - 8

61(2, 6) - 6

010. 5) - -2

(:10. 6) - -16

61(2. 7) - -2

GIG. 8) II 6

GIG, 9) - 32

(310. 3) - l6

GIG. 6) - 3

01(3. 5) - -6

61(3, 6) I- -2

010, 7) - 1

GIG. 8) - -2

G10, 9) - 6

61(6, 6) - 66

Cl“, 5) - 8

Cl“. 6) - 6

01(6. 7) - -2

Cl“, 8) - -16

61(6. 9) - 32

CNS, 5) - 16

CNS. 6) - 8

GIG, 7) - -6

61(5, 3) - -2

616, 9) - 6

(“(6. 6) - 66

01(6. 7) - 8

01(6, 8) - 6

(51(6. 9) - 32

01(7, 7) - 16

61(7, 3) - 6

6117. 9) - 6

(3118. 3) - 66
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01(8, 9) - 32

61(9, 9) - 256

'“mpyvaluatobottomhalfofnutfixm

FOR 195 - 1 To 9

R)R1% - 1% TO 9

cross. m - cm. 1%)

NEXT 11;

NEXT 1%

ENDSUB

SUBKxub,KDx10.DxLDY')

:"'thbeuhrwt1neevahramer-mau'lx"'

1304MB)

Z". calculate c1 m a for Weflmm) “'

c1-1/Dx1

c2-2/Dy1

'“Mquaflonewerefaumitocomelnburbaakfom”

""Theaeforuu are calculated below. "°

lnIM-6'a'c1"3'd+30'a"2'c1"2'd‘2+50'a"3'c1'c2“3

MQ-w'a’u'd’HaJ’cl*6'1m1e1)+18’a'c1*3'd'bOG(cl)

lnlO)-39'a*2'clA2'c2"2'Lm(cl)+36‘a"3’c1'd"3'106(c1)

1110(0-12'a‘6'c2"6'Lm(cl)-3'cl*6'IDC(c1+2'a'c2)

lan)--18'a'cl"3'c2'Lm(c1+2'a'c2)

lnl(6)--39'a"2’c1*2'd‘2’1061c1+2'a'c2)

wm-fi-ua-a-aaa-mcmnan-a)

lnl“)--12‘a*6'c2*6'100(c1+2'a'c2)

Abram-U

10115-1108

Ame-anmas)

ND‘T1%

M0)-6'a'c1"2'd+12’a*2'¢1‘d*2+2'a*3'c2"3

MQ-S'cl*3'LOG(c1)+9'a'c1*2'd'wC(cl)

1MG)-6'a"2'c1'd‘Z‘lDle)-3'cl*3'1m(c1+2'a'c2)

le-o9'a'c152'd'1mm+2'a'a)

lMQ--6'a*2'c1'd‘Z’lDGk1+2'a'c2)

Marni-(l

10115-1105

Bforrrl-Bforrrl+1ni(1%)

NEXT1%

1M0)-6'a'c1“3'a+18'a*2'c1"2'c262+8'a"3‘c1'c2"3

lMQ-4'a"6'd"6+3'c1“6'Lm(c1)+12'a'c1"3‘c2‘IDC(c1)

1M0)-12'a"2'c1"2'c2‘2'LGKcD-3'c1*6'100(c1+2'a'd)

1M(6)-~12'a'c1*3'c2'1.m(c1+2'a‘c2)

lMG)--12'a*2°c1"2‘c2"2’1.06(c1+2‘a’c2)

Chm-OI

EDEN-1105

Cforui qurrIi+ woe)

NEXT1%

1M0)-6'a'c1"3'd+6'a“2'c1*2'd2“2+2'a"3'c1'c2"3-2'a‘6'c2"6

MQ-3‘c1*6'IDC(c1)+6'a'c1“S’Q'IDCKCD

WG)-3'a"2'cl*2'd"2'106(c1)-3'c1"6'IDG(c1+2'a'c1)

1M(0--6'a'c1"3'c2'IDG(c1+2‘a'c2)

MQ-J'a’W'cl"2'c2‘2'L(X?(c14-2’a'c2)

Diem-N

R3111%-1T05

DfouM-Dfomi+1r\6(1%)

NEXT1%

"" Valuo are now calculated for the upper trhngle matrix "‘

XDxla,”--7'Aforui/(72'a*6'b'c2“5)

KDR10,2)-Afomi/(9'a“6'b'c2"5)

KDI!(1,3)--1'Aforrrl/(72'a"6'b'c2"5)

KDx1(1,6)-(cl+2'a'cD'BfornI/G6'a06'b'c2‘5)

KDxlO.5)--(cl+I'C2)'BforTM/(72'a"6'b'c2"5)

KDxlO,6)-(c1+a'Q'anM/(9'a‘6'b'd‘5)

KDX!(1,7)--7'(c1+a'd)'Bforrri/(72‘a“6'b‘c2"5)

KDx10,8)-7'(CI+2‘a'd)’BforrM/(36'1“6'6'405)

KDxKl,9)--2'(c1+2'a'Q'Bfonrl/(9'a‘6'b'c2‘5)
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KDx!Q.D--2'A10rml/(9'a“6'b'c2“5)

KDx!O.3)-Morrri/(9'a"6’b'd"5)

KDx1C2,0--2‘(cl+2'a'cb'BfonM/G'a‘6‘b'c2‘5)

KDx1Q5)-(c1+a'cfl'BfonM/(9'a‘6'b'd‘5)

KDx1a.6)--2'(c1+a'Q'BfoM/(9’a‘6'b'd‘5)

KDx1O.7)-(cl+a'cm‘BfonM/(9'a06'b'd05)

KDlefl-d'kl+2'a‘c2)'Bfoml/(9'a*6'b'c2"5)

KDlefl-2'(c1+2'a'a)'Bfor-ul/(9'a06'b'c255)

KDle.3)--7'Abrrri/02'a“6'b'c2“5)

KDle,6)-7'(e1+2'a'c2)'Bfor-ui/06'a66'b'c265)

KDx1G,5)--7'(c1+a'cD'Bbmi/(fl'a‘6‘b'd‘5)

KDxlafl-(cl+a'Q'BW/(9'a‘6'b'd‘5)

KDle,7)--1'(c1+a'w‘3bml/(72'a66'b'c265)

KDx1G,8)-(e1+2'a'c2'BW/G6'a‘6'b‘d65)

KDR!G,9)--2'(c1+2'a'cb'Bbrui/O‘a‘6'b'd05)

KDx1(66)--7'Cfom0/(18'a‘6'b'd‘5)

KDx1(6,5)-7'c1'Bfomi/(36'a‘6'b’c205)

KDx1(6.6)--2'c1'Bforrri/(9'a‘6'b'c2‘5)

KDx1(6.7)-c1'Bfarri/66'a*6‘b'd"5)

KDxl(L8)--1'CforrrI/(18‘a*6'b'c2“5)

KDxl(6,9)-6'Cbrrrl/(9'a"6'b'c2"5)

KDle,S)--7'Dfomi/(72'a"6'b'd"5)

KDle,6)-Dbmfl/G’a*6'b’d"5)

KDle,7)--1'Dforui/(72'a*6'b'd"$)

KDx!G,8)-c1'Bfor-ui/Gb'a‘l'b‘d‘S)

KDx!G,9)--2'c1'BfomilG'a66'b'd05)

KDxl(6.6)--2'Dforui/(9'a06'b'd05)

KDxl(6,7)-Dfomi/(9'a“6'b'd“5)

KD:1(6.8)--2'c1'Bfor-ui/(9‘a‘6‘b‘c2‘5)

KDxl(6,9)-6‘¢1'Bluui/O'a’fl'b'dAS)

KDx10,7)--7'Dforu*/02'a*6‘b'd‘5)

KD:1(7,8)-7'c1'BfauI/(36'a*6'b'a*5)

KDI10,9)--2'e1'Bfoml/(9'a56'b'c265)

KDx1(B.B)--7'C£onri/(18'a“6'b'c2*5)

KDx1mfl-6'Cbml/O'a66'b'd65)

KDx10,9)--8'CforrrI/(9'a*6'b‘c2*5)

"“eopyvahaeecolwertrungleofmamm

Roma-nos:

mus-195109

mos, 1%)-1(Dx1(1%, 11.)

NEXT];

NEX'I'1%

mason

SUBKy(a.h.KDy10)

""thbeubrwflneeetaconeranumDy-M'"

KDYKL 1,-2.8

KDy1(1.2)-14

tummy--7

mam-a

KDy10,5)--1

KDyta.6)-z

KDy10.7)-6

Rowan-.32

KDy!(1.9)--16

KDy10.2)-112

KDy10.3)-16

KDy1(2.6)--16

KDMQ.5)-2

wee-16

KDy1C2.7)-2

KDy1C2.8)--16

mam-.123

mam-23

KDy16.6)--32

wee-4

mama-2

mom-.1

mom-s

KDylG,9)--16

KDy116.0-66

KDy1(6.5)--32

KDyl(6.6)--16
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KDyM. 7) - a

10th s) - .15

Roma 9) - 32

KDy1c5, 5) - 23

KDyKS. 6) - u

KDyIG, 7) - .7

KDyKS, s) - a

KDyKS, 9) - -16

1(Dy1(6. 6) - 112

Rome, 7) - u

KDyKG. a) - -16

W16. 9) - 423

amen-u

we. a) - -32

W0. 9) - 46

mm. s) - a

nmmw-u

we. 9) - 256

'“mpyvahanbhottomhaflofmmx’”

Roms-ITO9

10R1%-1%'109

W115.1%)-1<Dy10%, 1%)

mp

Nmus

END SUB

SUB MatAdd (Matrixao, Matrlxbo, Man-1:00, Man-ban”

""rrutflxaddkbnmbrwtuu"'

m3 1% - 1 '10WW

”I 1% - 1 ‘10W

MatrhClcm, 1%) - Matrlxa(1%, 1%) + Mat“xh(1%, 1%)

NEXT 1%

NEXT 1%

END SUB

SUB Math“! Metrlan, Matflxbo. Matrlelze%, OK AS INTEGER)

""rrvetrlxlnvenbnmbmtme"'

CONSTBnoIBaundI-m ’Mod. '1

CONSTFalee - 0

CONSTTrue - NOTPalae

DIMMatrhC!(Mau-lx51n%, MatrixStu%)

103 1% - 1 '10W%

1011 1% - 1 ‘10 Matrixsue%

MautaC!(1%, 1%) - Matrixa(1%, 1%)

IF 1% - 1% THEN

Matrixhflh 15) - 11

ELSE

W15, 15) - 0)

END 11'

NEXT 1%

NEXT 1%

1011 1% - 1 '10W!-

1% - 15

WHILEWK“. 1%)) < ErrorBoundl

1P 1% - Matrlelu% THEN

OK - False

EXIT SUB

BID IF

1% - 1% + 1

WEND

1011 11% - 1 ‘10W

SWAP MatrGCKN, k%), Marx-100%, k%)

SWAP MatrubOE k%), Matrixbfit k%)

NEXT k%

Factor-1 - 11 / MatrixC1(1%, 1%)

FOR 11% - 1 '10Mam

MatrbC1(1%, k%) - Faded ‘ MatrixC!(1%, k%)

Matrlbe%, k%) - Factor! ' Matrkbfifl 11%)

ND“ k%

101! 34% - 1 T0 MatrIxSUe%



Page 131

[F M% o 1% THEN

Packed - .Mamcxaus, 1%)

NR k% - 1 TO Maxim

Man-111C1(M%, k%) - MatrixC!(M%, 11%) + Faded ' MarflaC1(1%, k%)

Matrlbe%, 11%) - Matrtxbmt k%) + Faded ‘ Matrixb(1%, k%)

NEXT k%

END 1?

NW M%

NEXT 1%

0K - True

END SUB

SUB M11 (Men-mo, Mambo. MatrixC10, Wu%)

" ' ' mam: rrnltipllauen eubmtine ' ' '

NR 1% -1'10W

N111% - 1'10 Matrlelu%

TempSum! - 01

NR k% - 1T0Matr1xS12e%

Tempfiunl - Tempaunl + unmask, 11%) ' Man-nuts, is)

NEXTk%

MatrlICIG%, 1%) -Temp6um1

NEX'1'1%

NEXT“

ENDSUB

SUB MatShew Martino. Matrthlze%)

"" euhreudnetedbplay mam: "'

Lam-man“ - 'Med.“

NR1% -1‘IOMau1xS1ze%

NR1% - l mmuusma

PRINT USING MatFoM Matrixa(1%,1%):

NEXT1%

PRINT

Nmm

PRINT

ENDSUB

SUB MatSub Marmo, Mar-1x60, MauuCIO, MatrIxSIzes)

""matrtxubtraaimeuhrwune'“

NR 1% - 1 '10 Mau'uSIu%

NR 1% - l '10 Matrlelze%

WK“, 1%) - Matr'1xa(1%, 1%) - Matrlxb(1%, 1%)

NEXT 1%

NW 1%

END SUB

SUB Mat‘l‘rana (Mano. Maximo, MatrIxSIze%)

""uhmflnetotnnepeeeamtru'"

FOR 1% - 1 10mm

FOR 1s - 1 ToMaw

Mauibe%,1%) - Mae-Ixa(1%, 1%)

NEXT 15

NEXT 1%

END sun

SUB MatXComt (memo, NewMater, k1, MatSlu‘l)

""mbmdnetomldplyuufltxbyamam'"

NR 1% - 1 TO MnSlze%

NR 1% - 1 '10 MatSlu%

NewMaMx10%, 1%) - Max-was, 1%) ' 1:!

NEXT 1%

NEXT 1%

END SUB
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Appendix B

A hydraulic network and its data file format for ALGNET

 

  

 

  

 

Figure 1b Network labeled for analysis by ALGNET
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Elenent Unto Flle

 

 

 

llnber of Elements node I node [1 ,—\5
l [111 U I 1] J

0 0 l .167 150 .167 .167

1 1 2 .167 150 .167 .167

Elenents 2 2 3 .167 150 .167 .167

3 3 4 .167 150 .167 .167

4 4 5 .167 150 .167 .167

5 1 4 .133 150 .1113 .133

I Nodal [Into File

llnber of Nada caponmt

x

_\5
Y 2 type Km Km

0 0 0 0 0 0 0

1 1111 0 0 2 .03 1.4

Nodes 2 2111 0 0 2 0 .312

3 2111 100 0 2 0 .312

4 1m 1m 0 2 .32 .5

5 0 1111 0 1 .01875 .5  
 

Figure 2b Input data files for ALGNET from the network in Figure 1b.



A hydraulic network and its solution with ALGNET
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$ ‘—:J (4) c (5) Ll

5 6

(3) (10)

(0) l’r—Ll (l) (2) 1"

0' LLP 2 3L.

(6) (9)

L— (7) (8) _l

e 9

(0.0) 7 8 g X

Figure 3b A hydraulic network labeled for solution with ALGNET.

Demonstrated here is ALGNET’s ability to handle components

with more than three fittings (note the cross at node 1).
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Element Data File

10

O 0 1 .167 140 .167 .167

1 1 2 .167 140 .167 .167

2 2 3 .167 140 .167 .167

3 1 4 .167 140 .167 .167

4 4 5 .167 140 .167 .167

5 5 6 .167 140 .167 .167

6 1 7 .167 140 .167 .167

7 7 8 .167 140 .167 .167

8 8 9 .167 140 .167 .167

9 3 9 .167 140 .167 .167

10 3 6 .167 140 .167 .167

Nodal Data File

9

0 O 20 0 0 0 0

1 40 20 0 2 .6 1.2

2 60 20 0 1 .05 .5

3 80 20 O 2 6 1.2

4 4O 40 0 2 .6 l 2

5 60 40 0 1 .05 .5

6 80 40 O 2 6 1.2

7 40 O O 2 .6 1.2

8 60 O 0 1 .05 .5

9 80 0 O 2 6 1.2

Boundary Condition File

8 40

Data files for use with ALGNET. Boundary Conditions file specifies that

head is 40 at node 8. See Figure 1c in Appendix C for explanation of files.
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Output from ALGNET not including Boundary Condition

Head at Node ( 0 ): 100

Head at Node ( 1 ): 32.48771

Head at Node ( 2 ): 23.80511

Head at Node ( 3 ): 23.44133

Head at Node ( 4 ): 28.25964

Head at Node ( 5 ): 23.18241

Head at Node ( 6 ): 23.32144

Head at Node ( 7): 28.25959

Head at Node ( 8 ): 23.18239

Head at Node ( 9 ): 23.32143

 

Coefficient of Uniformity = 86.73108 %

Converged after 14 iterations.

Total time of convergence = 2.580078 seconds

Note that the appropriate symetry is calculated:

H4 = H7

H5 = Ha

Ha = H9  



Page 137

Output from ALGNET including Boundary Condition

Head at Node ( 0 ): 100

Head at Node ( 1 ): 45.09686

Head at Node ( 2 ): 37.48613

Head at Node ( 3 ): 37.5452

Head at Node ( 4 ): 40.83437

Head at Node ( 5 ): 35.71997

Head at Node ( 6 ): 36.708

Head at Node ( 7 ): 42.77199

Head at Node ( 8 ): 40

Head at Node ( 9 ): 38.99974

Coefficient of Uniformity = 92.27956 %

Converged after 12 iterations.

Total time of convergence = 2.860352 seconds

Note that the Boundary Condition is met: H8 = 40
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A hydraulic network and its solution with DIFNET

 

 

   

      

 

 

Emitters

 

 

;

if. i Q

0 1 5 7

Figure 4b Network labeled for analysis by DIFNET
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Element data file

Number of emitters along element

.0. 2. i

.25 .

.25 .

.25

.25 .

.25

.25 .

.25 .

.25 .

Ct 15130590

0

.8

5 .5

.8

.05 .5

.8

152001.055

20002.5 .8

202001.055

h
0
4
>
o
¢
>
0
4
>
o

Except for the last column,

this data file has the same

format as that for ALGNET.

Nodal data file

This data file has the same format

as that for ALGNET
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—

Output from DIFNm

Head at node (0):

Head at node (1):

Head at node (2):

Head at node (3):

Head at node (4):

Head at node (5):

Head at node (6):

Head at node (7):

Head at node (8):

Head at node (0):

Head at node (1):

Head at node (2):

Head at node (3):

Head at node (4):

Head at node (5):

Head at node (6):

Head at node (7):

Head at node (8):

100

71.52046

59.9921 1

36.04306

30.07906

22.65207

18.83755

19.40233

16.1 1636

Output from DIFNET2

100

71 .91549

60.27168

35.51284

29.61253

21 .98885

18.26993

18.74747

15.55783
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Appendix C

Calculation of average head along a lateral

The shape of the energy grade line along a lateral element may be

approximated by the equation developed by Wu and Gitlin (1975):

11,—).
 = 1 - (1 - 1)”
111-HI L

where, Hi = head at node i (upstream node)

I-lLj = head at nodej (downstream node)

h = head at any point along the lateral element

3 = position on lateral element (local coordinate)

L = length of lateral element

m = velocity exponent (1.852 for Hazen-Williams, 2 for Darcy-Weisbach)

Solving for h gives:

1: = H, - (11,-1.1)[1 -(1 «Er-:1]

 

 



Page 142

Average head is then solved for by letting u = 1 - i- and integrating from u=0 to

u=1:

3
‘

1

ll

9
‘
“

  hdu =11 H,+[1- 11H,
0 n+1 n+1
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Appendix D

A comparison of stability

 
In this section, the stability of each method is evaluated by inspection of its

convergence curve. These curves which rapidly approach an asymptote represent

methods with rapid convergence. Those which oscillate before converging represent

methods which are unstable. A convergence curve for each method follows.

 

CONNIOICO Of laet MC.

 

.L 1
 

 

1V .1
1.: ‘

1 \‘

 

 

 

Overehoot

IJ 

 I-HWWWWWWW

—*Neaseanasenseseeeasaeeeeeaeasa

Ider of Iteration 
  
Figure 1d Convergence of last node in an irrigation network of 36 nodes, using

ALGNET1. Note slight oscillation before convergence; this method

is somewhat unstable for larger networks.
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Figure 2d Effect of averaging values from previous two iterations to calculate

linearizing constants for current iteration. Oscillation is not damped

much and convergence is slower.
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ANACONV.XLC

Analyzer Convergence

l
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n
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  0 t 1 t t : i : : : t t t t t t t L l

1 2 3 4 5 8 7 I 9 10 11 12 13 14 15 18 17 10 19
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Figure 3d Convergence of ANALYZER is rapid.
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Figure 4d. Convergence of Newton-Raphson method for the last node in a 20-node

network. While this method is highly unstable, it did eventually converge

in this case.
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Appendix E

An alternative development for the two-dimensional flow problem

Perhaps it makes sense to look at the two-dimensional flow problem in terms of

velocity. Continuity then takes the form,

E+ivz+am

X By 32

I'0 

where velocity in the x-direction is defined as,

 

 

and a ' 1%). k
C's-”D (6 . 87 -2al)

The head difference between point (x,y) and (x+dx,y) may then be thought of as

dependent on the flow path joining these points:

Ah, = ‘3ng = axv:dx + 2ayvy'y

or, rearranging and solving for V,"

so that,
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1

V . i 3}; ZaIEV;y T-

x 61,752? axdx

de g 1 1 _d£1_ 2axv;y 1"“ 331;

.55? max a, 6x axdx 8x3

  

Substituting the equality,

yields,

2 6h (%-1)

av: . 1 6h_ 3h

'3; "_m1/‘n' ax dx

Derivation of the y-term is straight forward:

so that,

_[_a_h.,<--n 63h
mag/In
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The z-term from the continuity equation will represent the "velocity" with which water

is leaving the system through the emitters (total flow out of the system divided by the

system’s surface area). This term will be taken to he the total flow from the element

divided by the element’s area:

av: a qu a nonlkh'x

'3? A dxdy

Again, the resulting equation takes the general form,

6'!) 3'1)

  

 

D— ‘o-Dy— + G h + =

’82:“ ’dy’ 0

where,

23 ‘71:")

D 1 db __ d

X

was" 6* dx

6h (--1)

=a1/n[ay

and,

G = n‘nlkihrll

dxdy n-1
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or,

12,111ka

dxdy
n-1

These results were encoded in computer program LAGRANGZ which utilizes the

Lagrangian element.

Maclaurin expansion of Dx

Integration of the Dll term from Chapter IV may be facilitated by replacing D,

by its Maclaurin expansion. Consider the expansion:

1 a §xk

l-x o

 

D, can be rearranged to take the appropriate form:

. on 1 a _on
D, dyl 11,) where p Dyy

so that,

D N

D = _59. k

x 32:?"

This series would then be truncated at an appropriate k so as to approximate Dll with

reasonable accuracy. Because this expansion has the constraint, |p| < 1 , the Natural
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Coordinate System must be chosen and DN must be less than or equal to D,. If Dx0 is

greater than D,, which is unfortunately the case for conventional irrigation systems,

the integration limits must be changed.
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