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ABSTRACT 

 

INTEGRATED MODELING AND CONTROL OF FLEXIBLE AIRCRAFT WINGS 

By 

Dagmara Anna Wehr 

Structural control for vibration reduction has important applications in many research 

areas, including the effect of earthquakes on buildings and aerodynamic forces on aircraft 

stability and performance.  Both passive and active control techniques have been implemented, 

with the best solution usually involving a passive approach followed by an active one.  This 

thesis presents an integrated modeling and controller design approach.  Modal Cost Analysis 

(MCA) and Output Covariance Constraint (OCC) control are used to reduce a high-order 

aeroelastic wing model to establish the best controller for the reduced-order model, with a 

constraint on the covariance of the vibration outputs.  MCA seeks to keep the modes that have 

the highest contribution to a given cost function.  Using iterations on the two processes will 

allow a lower-order controller to be designed and result in the same performance. 

The OCC and MCA methods and their respective algorithms are presented, and an 

approach to integrate the two procedures is given.  NASA’s model used in this thesis is applied 

to the MCA and OCC algorithms using MATLAB.  A 40
th

-order wing model is derived.  The 

model reduction technique initially reduces the system to a 12
th

 order one.  A simulation of the 

OCC algorithm is performed on the reduced-order model and applied to the full-order model.  

The controller resulting in the best closed-loop performance is shown to significantly reduce the 

vibrations due to wind.  A corresponding weighting matrix used in OCC is then used for a 

second round of MCA to further reduce the model to an 8
th

 order model.  A lower-order 

controller designed for this second model is shown to similarly reduce the output vibrations.
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CHAPTER 1: INTRODUCTION 

 

1.1 Structural Control for Vibration Reduction 

 Structural control for vibration reduction has been employed in various fields including 

civil and aerospace structures to protect against the possibly devastating effects of vibrations 

caused by natural forces such as wind and earthquakes.  With the invention of structures with 

newer designs, using modern materials and shapes, comes the increased need for methods that 

reduce vibrations caused by environmental or other forces.  To achieve this, the control design 

should consider both passive and active control.  The following sections discuss different types 

of control, as well as their traditional and recent applications. 

 1.1.1 Passive Control 

 Passive control can refer to two kinds of vibration suppression.  One describes passive 

actuators, traditionally used in building designs, and the other to “structural redesign”, in which 

system parameters, such as those corresponding to damping, are modified to improve 

performance [1], [2]. 

In the first case, passive control describes the use of devices that do not use external 

energy sources to reduce vibrations of structures.  As opposed to active controllers, they reduce 

vibrations without any sensors or feedback.  Passive controllers, such as tuned liquid dampers 

and tuned mass dampers (TMDs), have been widely used for civil engineering applications, 

especially as a means to counteract the effects of earthquakes.  These devices have the ability to 

control high-amplitude forces reliably and cost-effectively [1].  Purely passive TMDs, also 

referred to as tuned vibration absorbers (TVAs), have been applied to tall buildings, bridges, 

offshore platforms, and pipelines, each of which experience one of more forces from winds, 
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earthquakes, or sea waves.  Aerospace applications include helicopter rotor hubs, and noise 

radiation from structural resonance vibrations such as cabin noise [3].  [4] also discusses passive 

control methods for various sources of aircraft vibration suppression.  The author presents a 

method consisting of “fuselage double-partition constructions with acoustic insulation coating” 

for noise vibration reduction.  He also describes actuators mounted on the fuselage skin or frame 

to minimize vibrations [4]. 

In the second definition of passive control, system redesign is used in structures as a 

means to minimize the active control needed [2].  Therefore, it involves system design rather 

than direct control techniques.  Often, changes to the plant can improve the system’s 

performance beyond what can be achieved by feedback control, and these changes can be 

implemented more easily than designing a new controller.  Plant and controller design are a 

related process, because controllers are designed to modify the dynamics of a system which 

could otherwise be modified by a change in plant parameters [2].  For this reason, [2] proposes 

an iterative technique to simultaneously design the plant and controller.  When the plant and 

controller are redesigned in subsequent iterations, the goal is to maintain the desired performance 

while minimizing the control energy [2].  This structural redesign approach is also applied in [5] 

to a cantilever beam as a means to control vibrations of structures that resemble cantilevers. 

1.1.2 Active Control 

 Active control is often necessary and allows going beyond passive control by efficiently 

applying an appropriate control force at each moment to counteract structural vibrations, using 

sensors and actuators.  This type of control allows moderating multiple vibration modes at once 

with one device.  So, it is an effective method for controlling structures with several vibration 

modes that contribute to unwanted structural dynamics.  Furthermore, active controllers are 
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versatile and can be completely stable if collocated control is used.  However, active control 

techniques are expensive, as a result of a higher level of technology and required maintenance.  

Additionally, often large control devices and power supply systems are needed [1].  Reliability 

problems arise in civil structures if the power to a building is cut, which is possible during an 

earthquake [6]. 

The use of active mass dampers for buildings is mentioned in [7].  [1] also applies active 

controllers in the form of active mass dampers to a 3 story building model and a real footbridge, 

as well as an active bracing system to the building model.  Applications of active TMDs can 

include classical control, fuzzy logic, and neural networks [3].  Active control in the form of 

active velocity feedback is demonstrated for a cantilever beam in [8] to reduce its first 3 

vibration modes.  [9] describes the use of active control to reduce structural vibrations in a 

blended wing-body type aircraft for ride comfort and improved handling qualities. 

 1.1.3 Combining Passive and Active Control 

 Due to the advantages and disadvantages of both passive and active controllers, the two 

techniques are often combined in the form of structural redesign (Section 1.1.1), semi-active 

control, or hybrid control.  Use of passive techniques is frequently used to supplement the 

necessity of active controllers.  Therefore, when considering control techniques, passive control 

should be considered first, then improved upon using active control approaches. 

In an aircraft, aeroelasticity is determined by the aircraft’s structural, damping, and mass 

characteristics, not only by the external forces.  Therefore, considering passive control in the 

sense of model redesign is extremely beneficial.  This way, an efficient and simpler active 

controller can be designed to an already properly-damped system.  Since plant and controller 

design problems are not independent, basic changes in the plant can also often result in great 
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improvements in performance and robustness over just using feedback control [2].  In [2], an 

iterative technique for plant and controller redesign is proposed to make control of the system 

easier. 

Semi-active control refers to using a passive device that can be controlled actively [6].  

Semi-active, sometimes called adaptive, control devices have advantages over fully active 

systems.  Passive controllers have their advantages, but can lose their effectiveness over time.  It 

is therefore useful to be able to modify, or adapt, these devices actively to changing operating 

and environmental conditions.  The disadvantage of semi-active systems lies in their many 

components which may need continual maintenance [3].  The use of semi-active TMDs is 

mentioned for several applications in [3].  Semi-active control is also studied in the context of 

building vibration control as a solution that offers higher energy-efficiency than active devices 

and is more effective at reducing seismic vibrations than passive devices [10].  In [10], a 

controller is developed to adjust the damping of a type of semi-active control called a 

magnetorheological damper, which changes its damping based on changing the viscosity of a 

fluid using a magnetic field.  [6] also mentions the use of semi-active control in the form of 

hydraulic dampers, fluid viscous dampers, variable-orifice dampers, variable-friction dampers, 

electrorheological, and magetorheological devices.  The main advantage of semi-active 

controllers is that they run on battery power and are not destabilizing [6].  [7] mentions the use of 

a semi-active hydraulic damper on a bridge. 

Both [6] and [7] discuss hybrid control, such as a hybrid mass damper in [8], which uses 

a combination of passive actuators and active control devices.  Since a passive device is used, 

less control energy is needed for the active component.  Along with semi-active control, hybrid 

control techniques are more reliable against power failures, as they can support some level of 
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damage prevention over purely active control systems in this case [7].  Many active TMDs are 

actually hybrid, consisting of passive devices as well.  In the context of a building, the active 

device would be used for small vibrations due to wind, and passive for stronger reactions caused 

by earthquakes [3]. 

1.2 Related Research 

 1.2.1 Related Applications 

 This research is closely based on the work in [11].  In [11], the authors simultaneously 

consider modeling and controller design of flexible aircraft wings.  Modal Cost Analysis (MCA) 

is used to reduce the high-order finite-dimension state-space model for a desired output 

covariance, with the output consisting of displacement and rates of points on the wing.  A 

reduced-order model is used to design a dynamic output feedback controller using Output 

Covariance Constraint (OCC) control.  The controller is then evaluated with the full-order model 

to confirm handling performance requirements have been met, and the wing fluttering motion 

has been almost completely eliminated [11]. 

 Active flutter suppression of the NASA Benchmark Active Controls Technology (BACT) 

wing using a gain-scheduled controller utilizing a linear fractional transformation is studied in 

[12].  The goal of [12] is to increase disturbance rejection and the stable operating range.  Since 

the wing section varies with Mach and dynamic pressure changes, the controller is made as a 

function of the two changing dynamics.  As a comparison, a linear controller is also designed 

using D-K iteration.  The performance is analyzed with maximum singular value plots and time 

simulations.  The gain-scheduled controller is found to be stable over the specified operating 

range, and have significant performance improvement [12]. 

 Generalized Predictive Control (GPC) for a wind-tunnel wing model for flutter 
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suppression is presented in [13].  The control technique minimizes a cost function consisting of 

the sum of the mean square output and the square rate of change of the control input.  The 

algorithm uses the model output to predict an arbitrary input’s effect on plant dynamics.  A 

BACT plant is reduced using an auto-regressive moving-average model.  The cost function is 

modified to account for the output being invariant to low-frequency inputs caused by a drift in 

the control input.  Simulations including the wind-tunnel test confirm flutter suppression robust 

to a wide range of conditions and modeling errors [13]. 

 1.2.2 Model Reduction Methods 

There are several model reduction techniques that have been developed for large-

dimensioned systems.  In [14], the author mentions several such methods appropriate to his 

application of large space structures including the Internal Balancing Method, Component Cost 

Analysis (CCA), Modal Cost Analysis (MCA), and the Canonical Correlation Analysis Method.  

The Internal Balancing Method is based on measures of controllability and observability, 

removing the least controllable and least observable parts to form a reduced-order model.  CCA 

and MCA (which is a special case of CCA), and their variations, Weighted Component Cost 

Analysis (WCCA) and Weighted Modal Cost Analysis (WMCA), take into account the system’s 

different components to reduce them separately.  CCA considers any system as made up of 

components, and reduces it based on the different components’ contributions to some quadratic 

cost functional.  MCA is a special case of CCA, which uses the system described by its modes.  

The weighted versions of these two methods are used when input dynamics are considered, 

instead of just white noise input.  The Canonical Correlation Analysis Method also uses a 

system’s components, as well as their interactions, to rank the components by their canonical 

correlation coefficients and delete the smallest ones to form the reduced-order model [14].  The 
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methods applied in [14] are WMCA and a combination of CCA with Canonical Correlation 

Analysis.  MCA is also used in [15] and [16] for aerospace applications. 

 Several other model reduction methods are considered in [6] and [17], which are divided 

into three types: nodal truncation, singular value decomposition (SVD)-based methods, and 

Krylov-based methods.  Nodal truncation algorithms, including Guyan reduction, truncates 

nodes (from finite element methods) based on their influence on the structure’s mass and 

stiffness matrices.  The standard approach used in industry for civil structure applications is 

modal truncation, since higher modes usually have less influence on the system response than 

lower modes.  However, this method has high computational costs.  The SVD-based methods, 

including balanced model reduction, rely on the system’s Hankel singular values and balancing 

of the system to determine the contribution of each state.  However, this method is 

computationally demanding for large-scale systems.  Finally, the Krylov methods rely on 

moment matching to iteratively match moments of original and lower-order models [6].  [6] 

presents these methods in the context of civil structure modeling and control, and [17] mentions 

an application to the International Space Station. 

1.3 Objective and Problem Statement 

 With the development of modern materials, their use in new airplane wing designs has 

been studied in recent years [11], [18].  Using materials that are more lightweight and flexible 

leads to more energy-efficient aerodynamic designs, improving cruise efficiency and lowering 

drag [11]–[13], [18].  Materials such as composites are less rigid than in previous-generation 

designs, while preserving the necessary load-carrying capacity.   The Boeing 787 Dreamliner 

aircraft is an example of the highly-flexible wing structure.  The concept is that the flexible wing 

surfaces are shaped during flight to change the angle of attack in a way that drag can be reduced, 
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resulting in lower fuel burn during cruise [18].  With increased structural flexibility, however, 

come increased effects of aerodynamic forces on the aircraft’s stability and performance [11]. 

 The objective of this work was to combine model reduction and controller design to 

actively suppress the wing vibrations of a NASA aircraft model.  Model reduction and controller 

design was done together and iteratively to produce the best controller for the reduced-order 

model, and again, the best reduced model for the chosen controller.  Output Covariance 

Constraint (OCC) control was used for controller design, and Modal Cost Analysis (MCA) was 

used for model reduction.  It was expected that the controller designed using OCC for the design 

model could significantly reduce the wing vibrations due to a random wind input.  In addition, 

through an iteration of model reduction and controller design, the closed-loop performance could 

be matched with a lower-order controller than the initial reduced-order model. 

 MCA and OCC was an appropriate choice of model reduction and controller design 

methods due to their interaction, to achieve the goal of better performance by coupling the two 

design steps.  MCA is effective for reducing large models that can be expressed by a sum of their 

vibration modes.  In MCA, a cost is found for each mode to an output covariance cost function, 

and the lowest-cost modes are truncated.  The performance requirements for aeroelastic aircraft 

wings vibrating due to wind can also be expressed in terms of output covariance [11].  A 

physical interpretation of OCC can be given by a bound on the peak magnitude of the time 

response [15].  If the output covariance constraint is expressed by  , and if there is a constraint 

         , 

then the peak magnitude of the time response of the output      in the presence of bounded 

energy disturbances,    and  , is bounded such that [15]: 

    
      

    
 

 
 . 
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The OCC problem seeks to find a proper weighting matrix that leads to a controller which 

minimizes the control effort while meeting constraints on output covariance [11].  This 

weighting matrix is in turn used in MCA. 

 The work of this thesis is based on [11], which uses MCA and OCC to control vibrations 

of a flexible wing structure.  However, it goes a step further by iterating on the model reduction 

and controller design steps for a second time, as mentioned previously.  By choosing an 

appropriate weighting matrix found in the first iteration of the OCC control design, this 

weighting is used to better determine the significant modes that contribute to the output.  This 

allows an even lower-order controller to be designed with very similar performance. 

1.4 Thesis Outline 

 The rest of this thesis consists of three chapters.  In Chapter 2, the methods used in the 

research are presented.  First, the definition and algorithm of the OCC problem is presented.  

Next, MCA is discussed as a method for model reduction.  Finally, the importance of coupling 

model reduction and controller design is discussed. 

Chapter 3 presents the application, mentioned above, of the methods given in Chapter 2.  

The model of the aircraft is derived and the simulation parameters are given.  Next, details of 

how the reduced model was found using MCA is presented.  A comparison of the full-order and 

reduced-order model is shown with their impulse responses.  Section 3.3 summarizes the steps 

taken to carry out the OCC control design algorithm with the reduced-order model.  The output 

variances are plotted against the trace of the input (control) covariance, and a time response 

comparing open and closed-loop systems is presented.  Afterward, the iteration on MCA and 

OCC is given, and the model is taken through a second round of model reduction and controller 

design.  Similar plots as in the first iteration are shown. 
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The third and final chapter presents the conclusions. 
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CHAPTER 2: REVIEW OF METHODS 

 

2.1 Output Covariance Constraint (OCC) Control 

2.1.1 Output Covariance Constraint Control Problem 

Consider a continuous linear time-invariant system, 

     =               (2.1a) 

         (2.1b) 

          ,  (2.1c)      (2.1c) 

with white noise signals    and   of intensities   and  , respectively, and a strictly proper full-

order dynamic controller, 

             (2.2a) 

       . (2.2b) 

 

The closed-loop system that results from applying the controller (2.2) to the plant (2.1) is 

           (2.3a) 

     ,  (2.3b) 

 

where 

 

    
  

  
  (2.4a)  

     
  

 
  (2.4b) 

     . (2.4c) 

 

Substituting Equations (2.1) and (2.2) into (2.3), Equation (2.3) can be expressed as: 

 

  
   
   

   
     

     
  

  

  
   

   

  
  

  

 
  (2.5a) 

         
  

  
            

  

  
 . (2.5b) 

 

Then, let 

     
  
  

 . (2.6) 
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If    represents the closed-loop controllability Gramian from the disturbance input   , then 

   satisfies 

                . (2.7) 

The following is the definition for the Output Covariance Constraint (OCC) problem: Find a 

controller to minimize the cost function, 

                  , (2.8) 

 

where     is a diagonal weighting matrix, subject to the system Equations (2.1) to (2.5) above,  

and 

          
     

             , (2.9) 

 

where   is the dimension of the output y,    
              ),       

    
      

  , and 

                  
     

       
  .  This means that the OCC problem is to minimize the 

weighted control energy with certain constraints on the block diagonal matrix 

                         consisting of the output variances [19], [20]. 

 Suppose that          is an optimal solution to the OCC problem.  Then there exists a 

semi-definite matrix, 

                                      , (2.10) 

such that 

               (2.11a) 

         
    (2.11b) 

       
      (2.11c) 

     
           

    
     

     (2.11d) 

            
      

               
  (2.11e) 

                             (2.11f) 

                                
  , (2.11g) 

 

where                         is the closed-loop covariance of   and   is the covariance of 
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output   [19], [20]. 

2.1.2 OCC Algorithm 

An algorithm for finding the optimal solution of the OCC problem discussed above is 

described as follows [19], [20]: 

Given                       initial     , and tuned parameters     and        let 

    and proceed to 1). 

1) Compute   and    by solving (2.11c) and (2.11e). 

2) Compute      and      by solving 

     
                    

    
        

        (2.12) 

            
     . (2.13) 

 

3) Compute      by solving 

                                        . (2.14) 

4) Compute                 
  ,          . 

5) Let                                         and 

                                      .    is defined below. 

If                     , where   is some specified tolerance, stop.  Otherwise, go back to 

step 2 with      . 

 When the algorithm above ends, the dynamic controller 

                       (2.15a) 

       , (2.15b) 

 

is an optimal solution to the OCC problem [19], [20]. 

The operator   used in step 5 of the algorithm above is defined in the following way 

[15]: Let   represent a real, symmetric matrix that can be written in the Schur decomposition 

form as follows: 



14 

 

                          
  

  
 , (2.16) 

where    and    are diagonal and consist of the positive and non-positive eigenvalues of  , 

respectively, and  
  

  
  is a unitary orthogonal matrix.  Then, 

       
                          

        
                  

  . (2.17) 

 A MATLAB program used in Section 3.3 for the simulation implementing the OCC 

algorithm is given in the Appendix. 

2.2 Model Reduction Using Modal Cost Analysis 

 There are several ways to design a reduced-order controller for a high-order system, for 

which a full-order controller has implementation limitations due to a computational limitation of 

the real-time microcontroller.  One method is to directly design a fixed-order controller.  Another 

approach is to design a full-order controller and then conduct a controller order reduction to get 

the reduced-order controller.  Lastly, the method used in this thesis is to first reduce the system 

model, and then design a full-order controller for the reduced model [16].  One advantage of 

using this approach is that the designed reduced-order control at least stabilizes the reduced-

order model.  However, the quality of the reduced-order controller is heavily dependent on the 

accuracy of the model reduction.  One such model-reduction approach presented here, Modal 

Cost Analysis (MCA), can be used to reduce a high-order system model, especially for a 

structure system model, when it is expressed in its modal coordinates.  MCA takes into account 

the modes of the system, finding and truncating those modes that have the lowest contribution to 

the output.  This method calculates each modal contribution,   , to the weighted cost function 

               
 
    , (2.18) 

where    is the expectation operator,   is the output vector,   is the number of modes in the 



15 

 

system, and   is the weighting matrix for modal cost analysis which could be from Equation 

(2.10) [15].  The function corresponds to the weighted output variance with respect to the white 

noise input [16].   

 Recall the system Equations (2.1).  If the state-space parameters were transformed into 

their modal coordinates,               , then the Lyapunov equation, 

                    , (2.19) 

gives the solution   , where   is as in Equation (2.6).  Then, the modal costs can be calculated 

by 

                      ,           (2.20) 

where   is the number of modes.  The resulting modes can be ranked as 

                 , 

where    now corresponds to the highest modal cost, not necessarily to the first mode.  The 

modes corresponding to the lowest modal costs    are then truncated to give a lower-order model 

[11]. 

2.3 Integration of Controller Design and Model Reduction 

 When designing a controller for a reduced-order model, model reduction and controller 

design is an integrated process.  Using this method of designing a controller for a reduced-order 

model, the neglected dynamics of the system will have an effect on how well the controller 

works with the actual, full-order model [16].  Since the controller designed for the reduced 

model may not be the best for the full-order model that it has to control, an iterative approach is 

used in [15], [16] with an application to space structures.  During this process, the best controller 

is designed for a reduced-order model, after which the model reduction process is repeated to 

produce the best model for the current controller [16]. 
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 The weighting matrix   introduced in Equation (2.10) of section 2.1.1 is the same one 

used in both MCA and the beginning of OCC.    is a diagonal matrix, with relative higher-

valued elements emphasizing certain system outputs.  In this way, the choice of   affects the 

modal costs, and therefore the resulting model reduction.    also affects the output variance 

calculations.  Combining the model reduction and controller design processes allows   to 

represent the most significant outputs and retain the most significant modes [11]. 

 A diagram of what will be referred to as the   Loop in Chapter 3 is presented in Figure 

2.1.  As the figure shows, the chosen   from the OCC controller design is used in another 

iteration of model reduction using MCA.  

A software package in MATLAB including the algorithms for the integration of model 

reduction and controller design are used in [15], [16] and is described in [21]. 

 

 

 

 

 

Figure 2.1.  Q Loop Diagram 
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CHAPTER 3: AIRCRAFT WING MODEL AND SIMULATION 

 

3.1 Modeling Description 

The aircraft wing model is described in [11] by combining the aeroelastic and rigid body 

aircraft dynamics with wind turbulence and actuator dynamics.  The aircraft dynamics are 

described by the following equations: 

                               
  
  

  (3.1a) 

                                  
  
  

 , (3.1b) 

where                        
  are the bending and torsional displacements of the 20 

aeroelastic modes,           are the rigid body states (angle of attack and pitch rate),    is the 

elevator deflection angle,    is the flap deflection, and    is the slat deflection.  Equation (3.1) 

can be written in state-space form as follows: 

               (3.2) 

where               
  ,              

 
, 

     
   

   
       

       
    

      

  (3.3a) 

 

     

   
   

      
    

      

 . (3.3b) 

A turbulence model is then added to the above to include the effect of random wind gust 

dynamics.  It is assumed to be in the following form: 

               (3.4a) 

             , (3.4b) 

with states   , random wind gust    modeled by zero-mean white noise with intensity  , and 
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   the total random wind input to the wing model.  Combining the turbulence model with the 

wing dynamics model gives the following representation: 

                 . (3.5) 

The input    that comes from the actuators follows a system: 

              (3.6a) 

          , (3.6b) 

with states    and control command  . 

 To obtain the complete open-loop state-space system, Equations (3.4-3.6) are combined 

to give 

            , (3.7) 

where             , 

    

        

    
    

  (3.8a) 

    
 
 
  

  (3.8b) 

    
    

   
  

  . (3.8c) 

Then, the performance outputs   and measurement outputs   are given by 

      (3.9a) 

        , (3.9b) 

where   is the zero-mean white noise of the sensors, with intensity  .  Combining the previous 

two equations with Equation (3.7) gives the open-loop state-space representation of the whole, 

full-order system, which was provided by NASA.  This system will be referred to as the 

evaluation model: 
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             (3.10a) 
      (3.10b) 
        (3.10c) 

 

where                              and 

                               
           .  The first two states of   represent angle of 

attack and pitch rate, the next 20 states the 10 bending and 10 torsional states, the following 20 

states the rates of the 10 bending and 10 torsional states, and lastly the 3 turbulence states.  

However, to simplify the simulation, the rigid body mode and turbulence states were removed 

after transforming the model to its modal coordinates (discussed in Section 3.2), leaving only the 

40 aeroelastic states.  This simplified model assumes all forces are applied to the wings. 

 After simplification, the control outputs are                 where       are 

bending displacement measurements (in feet) at 5 locations and       are the torsional 

displacement measurements (in radians) at those locations.  The measurement outputs   

                 
                 are the bending and torsional deflections along with their 

corresponding rates at 10 locations.  Figure 3.1 below, provided by NASA, shows the locations 

of the measurements and control outputs – 10 equally spaced points along the wing with the last 

one being on the wingtip for the measurements, and the last 5 of these coinciding with the 

control outputs [11].  The controls include an elevator, 6 flaps, and 6 slats.  The random wind 

gust   is     ft/s, which gives          .    is the random measurement noise, chosen as 

5% of  .  Therefore,                for each measurement. 
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Figure 3.1.  Locations of Measured and Control Outputs 

3.2 Model Reduction 

 To use MCA (described in Chapter 2), the model in Equation (3.10) is transformed into 

modal coordinates using a transformation matrix  .  The system matrices are then described by 

              (3.11a) 
           (3.11b) 
         (3.11c) 
         (3.11d) 
           (3.11e) 

 

with    block diagonal – the first 3x3 block corresponding to turbulence, the next 2x2 block 

corresponding to the rigid body mode, and lastly the 20 aeroelastic modes.  So, for the simplified 

model, the first 5x5 block was removed. 

 The algorithm described in Chapter 2 was used to perform MCA on the full-order model 

in Equation (3.10) in modal coordinates.  The weighting matrix   was chosen to be equal to the 

identity matrix.  6 modes with the highest modal costs were kept, producing a 12
th

 order reduced-

order model, which will be referred to as the design model: 

                (3.12a) 
       (3.12b) 
         . (3.12c) 

 

 Table 3.1 below gives the modal costs of the evaluation model [21]. 
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Table 3.1.  Modal Cost Analysis 

 

 

Figures 3.2a and 3.2b show a comparison of the impulse responses from the sixth input to 

the fourth output and from the fourth input to the fifth output, respectively.  The plots show that 

the responses after model reduction vary only slightly in the first half second, and are nearly 

identical afterward.  Therefore, the 12
th

 order design model is a good lower-order representation 

of the full-order evaluation model. 
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Figure 3.2a.  Impulse Response of Evaluation and Design Models: 6

th
 Input to 4

th
 

Output 

 

 
Figure 3.2b.  Impulse Response of Evaluation and Design Models: 4

th
 Input to 5

th
 

Output 

 

3.3 Simulation Study 

3.3.1 Simulation Set-up 

 The evaluation model described in Section 3.1 and the design model described in 3.2 was 

input into a MATLAB script that performed the OCC algorithm (given in the Appendix).  First, 
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the variables that do not depend on the weighting matrix  ,   and    from Equations (2.11c and 

2.11e), were calculated.  The program includes two loops: the outer loop iterates on the output 

covariance constraint    , which is decreased, and an inner loop that corresponds to the OCC 

algorithm presented in Section 2.1.2.  

 At the beginning of the outer loop,     is calculated based on the following equation: 

                                                  , (3.13) 

where                
             ,   is initially 0.95 and is decreased by 0.05 each iteration 

of the outer loop, and      is solved from the following equation: 

                                        , (3.14) 

where                    
   (           and     is solved by  

            
      

 . (3.15) 

This loop continues as long as   is above 0.  The purpose of this loop is to find a sequence of 

OCC controllers with control effort from low to high. 

The inner loop goes through the OCC algorithm, calculating        and   .  For each 

inner loop iteration, the convergence condition given in Step 3 of the OCC algorithm is tested 

with   chosen as 10
-6

.  If it fails, a new   is calculated according to the equation for        in 

Step 5.  For this model, the values       and       were used, resulting in convergence for 

all     conditions besides the last one corresponding to       .  Then, the inner loop continues 

with this updated   value.  If the condition in Step 3 passes (convergence), then the inner loop is 

exited. 

The block diagonal matrix consisting of the output variances for the evaluation model is 

then computed: 

                                , (3.16) 
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where                   
             ,            , and the closed-loop state     is the 

solution to  

                
          

 , (3.17) 

where 

               (3.18) 

and     and     following from Equation (2.5) in Chapter 2 as: 

      
   

    
  , (3.19) 

where 

               (3.20a) 

      
       

      
 . (3.20b) 

For plotting the results, the input covariance    , which corresponds to the control energy, is 

also calculated: 

                  
 
 , (3.21) 

where                  and   is the value from the last iteration of the inner loop.  At the end 

of the outer loop,   is decremented, and the loop iterates, with the last iteration at       . 

3.3.2 Simulation Results 

The following two plots were generated by the MATLAB program described in Section 

3.3.1.  Figure 3.3 shows the output variances with respect to the design model and the output 

variances with respect to the evaluation model, against iteration of the outer loop.  The 18 

iterations that converged are included (excluding when       ), and the 18 points each 

correspond to a designed controller.  The design model is plotted with a solid line and the 

evaluation model in a dashed line.  However, the overlap of the design and evaluation model 
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variances in most of the plot results in the appearance of only the design model being plotted.  

The variances of each of the 10 outputs are plotted separately.  Therefore, the plot includes 20 

lines, 10 with respect to each of the models.  Only 5 outputs can be easily seen however, because 

the remaining ones are much closer to 0.   

 
 

Figure 3.3.  Output Variances vs. Iteration Number 

 

Figure 3.4 shows the same output variances, but plotted against the input covariance, 

described in Equation (3.21).  Again, each point corresponds to a controller designed for a given 

output covariance constraint.  The shape of the plot and the spacing of the points reveal the 

tradeoff between output variance and control energy used to achieve that output variance.  As 

output variance of each output decreases, input covariance increases.  This means that as 

performance increases, control energy increases, and at a faster rate.  The ideal controller would 

then be chosen by considering the desired performance and level of control, with the best 

controller generally corresponding to one of the points in the lower left side of the plot (lower 

output variance and input covariance). 
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Figure 3.4.  Output Variances vs. Input Covariance 

Figures 3.5a and 3.5b show a comparison of the open-loop and closed-loop impulse 

response from the 16
th

 iteration of the outer loop of the controller design.  This controller was 

chosen based on a reasonable tradeoff between performance and control energy.  The response is 

from the wind gust input to the fifth and seventh outputs, respectively.  The plots verify that the 

designed controller reduces the amplitude of the aeroelastic modes to nearly zero, such that the 

amplitude cannot easily be seen on the plot, compared to the much larger open loop response. 

 
 

Figure 3.5a.  Impulse Response of the Open and Closed-Loop Systems from Wind 
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Figure 3.5b.  Impulse Response of the Open and Closed-Loop Systems from 

Wind Input to 7
th

 Output 

 

 Figures 3.6a and 3.6b show the bending displacements of each measured point on the 

wing for the open and closed-loop situations, respectively.  The controller used in the closed-

loop case is again that from the 16
th

 iteration of the outer loop of the controller design (also used 

in Section 3.3.3 for the next round of MCA and OCC).  If Figure 3.1 corresponds to the side 

view of the wing with no forces applied, the following plots show the shape of the wing for 3 

time steps to an impulse response on the wind input.  As in Figure 3.1, the rightmost point 

corresponds to that of the wing tip, and the 5 rightmost points are the control outputs.  The lines 

in Figure 3.6b are nearly horizontal on the same scale, showing that the bending vibrations have 

been significantly reduced. 
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Figure 3.6a.  Open-Loop Wing Deformation with Time 

 

Figure 3.6b.  Closed-Loop Wing Deformation with Time 

3.3.3 Iteration on OCC and MCA 

In the previous section, an optimal controller was found for the 12
th

 order design model, 

and was shown to significantly reduce the amplitude of the impulse response with the evaluation 

model.  The next step was to iterate once again on the model reduction algorithm and controller 

design to achieve a similar performance output with a lower-order controller.  The goal of this 

section is to describe the iteration process and show the results of the second simulation. 
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18 weighting matrices,   , were found after completing the OCC algorithm described in 

Section 3.3.1.  As discussed in the last section, one of the latter   values, that from the 16
th

 

controller, was chosen.  As mentioned in Section 2.2, this   relates to the most significant modes 

of the system.  Therefore, a modified version of this   was used in the second round of model 

reduction, which will be referred to as Q Loop 1 (Q Loop 0 is the initial model reduction and 

controller design.  See Figure 2.1).  In order to capture the effect of the new  , it was multiplied 

by a large scalar (specifically, 10
8
), so that the effect of the 10 control outputs could be seen over 

the weighting of the measured outputs, which remained unchanged in the second iteration of 

MCA (Q Loop 1).  Using this scaled   value, the same 6 modes had the highest modal costs.  

However, the scaling shows that the relative difference between the 4 highest-cost modes and the 

two immediately lower ones increased.  This indicates that the new   value further allowed the 

model to be reduced to its 4 most significant modes, resulting in an 8
th

 order system.  The results 

of MCA are shown below in Table 3.2.  The table shows the larger difference between modes 5 

and 6 as compared to 2, 4, 3, and 1. 
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Table 3.2 Modal Cost Analysis for Q Loop 1 

 

Again, two impulse responses were plotted, as in Figures 3.2a and 3.2b, this time to 

compare the evaluation model to the 8
th

 order reduced model.  The result is plotted in Figures 

3.7a and 3.7b, and shows the validity of this further reduced model. 

 
 

Figure 3.7a.  Impulse Response of Evaluation and 8
th

 Order Design Models: 6
th
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Figure 3.7b.  Impulse Response of Evaluation and 8
th

 Order Design Models: 4
th

 

Input to 5
th

 Output 

 

The OCC algorithm was then run using the original evaluation model and the new design 

model.  Instead of beginning the algorithm with   equal to identity, the   value that was found 

before scaling for the model reduction was used to start.  The same plots as in the first   loop 

were produced, which are shown below in Figures 3.8a and 3.8b.  The dashed lines correspond to 

the evaluation model.  The plots show that the output variance values decrease as before.  

Additionally, for all but the topmost output, the variance values are below or very close to those 

in the first OCC iteration, Q Loop 0. 
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Figure 3.8a.  Output Variances vs. Iteration Number for Q Loop 1 

 

 
 

Figure 3.8b.  Output Variances vs. Input Covariance for Q Loop 1 

 

 Lastly, Figures 3.9a and 3.9b show the open-loop vs. closed-loop responses made again 

with the 16
th

 controller of Q Loop 1.  The plots show that the vibrations are once again reduced 

significantly. 

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration

O
u

tp
u

t 
V

a
ri

a
n

c
e

s

0 0.5 1 1.5 2 2.5 3

x 10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

Input Covariance

O
u

tp
u

t 
V

a
ri

a
n

c
e

s



33 

 

 
 

Figure 3.9a.  Open vs. Closed-Loop Impulse Response of Wind to 5
th

 Output for Q 

Loop 1 

 

 
 

Figure 3.9b.  Open vs. Closed-Loop Impulse Response of Wind to 7
th

 Output for Q 

Loop 1 

 

 Figure 3.10 corresponds to Figure 3.6b, and shows the bending displacement of the whole 

wing at 3 time points using the 16
th

 controller designed in Q Loop 1.  By comparing to the open-

loop plot in Figure 3.6a, it can be seen that the bending displacements are reduced equally 

effectively using the lower-order 8
th

 order controller as with the 12
th

 order controller from Q 

Loop 0. 
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3.10.  Closed-Loop Wing Deformation with Time for Q Loop 1 
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CHAPTER 4: CONCLUSION 

 

In this work, control for vibration reduction is applied to modern, elastic aircraft wings.  

With increased structural flexibility comes a greater interaction with aerodynamic forces, which 

increases the need and challenge for an effective controller design.  The aircraft physical system 

is often very high-order and must be reduced.  This work presented an integrated controller 

design and model reduction method to realize the natural coupling of the two steps.  MCA was 

used to first reduce the order of the model to a certain level that would allow a practical 

controller to be designed and implemented.  After that, the OCC control design algorithm was 

implemented to produce a controller for the reduced-order model, which was verified for the 

full-order model.  A second iteration on the model reduction and controller design process used 

the weighting matrix found in the first iteration to show that an even lower-order model can be 

used in the OCC algorithm, and a new controller was again verified for the full-order model. 

Using plots of the variance values of the bending displacement and rates outputs, as well 

as a comparison between open and closed-loop impulse responses to a random wind input, it was 

shown that the controllers designed in both Q-loop iterations were successful in significantly 

reducing wing vibrations, with the lower-order controller performing equally effectively. 
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APPENDIX 
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OCC PROGRAM CODE 

 

%   load design model 
['load cdmodel_' int2str(Q_loop) '.mat'];  
eval(ans); 

  
%   load evaluation model 
load cemodel_0.mat 

  
%   load some parameters 
if Q_loop==0 
    load weight.mat  
else 
    ['load weight' int2str(Q_loop) '.mat']; 
    eval(ans); 
end 

  
%   for subsequent Q loop iterations 
if Q_loop>0 
    Q=Qred; %   Q is that from the last Q loop iteration 
end 

  
%   define more parameters 
epsi = 1*10^-6; 
Beta = 0.8; %   0<Beta<1 
alpha = .2; %   alpha>0 
gamma = 0.95; 
count = 1; %    gamma iteration 
N = 500; 
num_iter(1:19)=0; 

  
Q1 = Q; 

  
%   ititialize to 0 
Yd_i = zeros(10,19); 
Ye_i = zeros(10,19); 
Yd_norm = zeros(1,18); 
Ye_norm = zeros(1,18); 

  
[sr,sc]=size(EMd0); 
[X_tilde,L,G] = 

care(EAd0',EMd0',EDd0*W*EDd0',V,zeros(sc,40),eye(length(EAd0))); 

  
F = X_tilde*EMd0'/(V); 

  
X_OL = lyap(EAd0,EDd0*W*EDd0'); 

  
Yb_OL=diag(diag(ECd0*X_OL*ECd0')); 

     
while gamma >= 0 
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    Yb_bar = eye(10)*norm(gamma*Yb_OL) + diag(diag(ECd0*X_tilde*ECd0')); 

     
    %   recalculate Q with new Yb_bar (after initial iteration when we start 

with Q=I 
    if count ~= 1 
        M = Q + alpha*(Yb-Yb_bar); 
        %   Schur decomposition on M: 
        [U,T] = schur(M); 
        %   then make negative diag == 0 
        for k=1:10 
            if T(k,k)<0 
                T(k,k)=0; 
            end 
        end 
        P = U*T*U'; 
        Q = Beta*Q+(1-Beta)*P; 
        eval(['Q' int2str(count) '=Q;']); 
    end 

  
    for j=1:N  %    however long you want to allow to converge (get below 

epsi) 
        num_iter(count) = num_iter(count)+1; 
        %   for each changing Q: 
        [sr,sc]=size(EBd0); 
        [K,blah,blahh] = 

care(EAd0,EBd0,ECd0'*Q*ECd0,R,zeros(sr,13),eye(length(EAd0))); 

  
        G = -inv(R)*EBd0'*K; 

  
        X = lyap(EAd0+EBd0*G,F*V*F'); 

  

  
        %   for design model 
        Yb = diag(diag(ECd0*(X_tilde+X)*ECd0')); 

  
        test = norm((Yb-Yb_bar)*Q); 
        if test < epsi 
            disp(['Converged after ', num2str(num_iter(count)), ' iterations 

when gamma = ', num2str(gamma)]); 
            break % BREAK 1 
        elseif j==N 
            disp(['Did not converge for gamma = ', num2str(gamma)]); 
            break % BREAK 1 
        end 

  
        %   Else update Q 
        M = Q + alpha*(Yb-Yb_bar); 
        %   Schur decomposition on M: 
        [U,T] = schur(M); 
        %   then make negative diag == 0 
        for k=1:10 
            if T(k,k)<0 
                T(k,k)=0; 
            end 
        end 
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        P = U*T*U'; 
        Q = Beta*Q+(1-Beta)*P; 
        Qnorm(j,count) = norm(Q); % supposed to go up 
        eval(['Q' int2str(count) '=Q;']); % could be outside loop 

  
    end 
    %   BREAK 1 goes to here 

  
    %   For design model 
    Yd_i(:,count) = diag(ECd0*(X_tilde+X)*ECd0'); % gives column vector 
    Yd_norm(count) = norm(diag(diag(ECd0*(X_tilde+X)*ECd0'))); 

     
    %   For evaluation model 
    %   Output Covariance Ye for evaluation model 
    Ac = EAd0+EBd0*G-F*EMd0; 
    A_CL = [EA0  EB0*G ; F*EM0 Ac]; 
    [sr,sc]=size(ECd0); 
    C_CL = [EC0 zeros(10,sc)]; 
    D_CL = [ED0 zeros(length(ED0),40) ; zeros(length(EAd0),1) F]; 
    W_bar = [W zeros(1,40) ; zeros(40,1) V]; 
    Xe_CL = lyap(A_CL,D_CL*W_bar*D_CL'); 

     
    %   Save every closed-loop system 
    ['save CLsys' int2str(Q_loop) '_' int2str(count) ' A_CL C_CL D_CL']; 
    eval(ans); 

  
    %   Input Covariance U_CL 
    Cu_CL = [zeros(13,length(EA0)) G]; 
    U_CL = Cu_CL*Xe_CL*Cu_CL'; 
    U_CL_plot(count) = trace(U_CL); 

  
    Ye_i(:,count) = diag(C_CL*(Xe_CL)*C_CL'); % gives column vector 
    Ye_norm(count) = norm(diag(diag(C_CL*(Xe_CL)*C_CL'))); 

  
    gamma = gamma - 0.05; 
    count = count+1; %  gamma changes 
end 

  
%   Plot results 
figure 
plot(Yd_i(:,1:(end-1))','.-') 
hold on 
plot(Ye_i(:,1:(end-1))','--.') 
xlabel('Iteration') 
ylabel('Output Variances') 

  
figure 
plot(U_CL_plot(1:(end-1)),Yd_i(:,1:(end-1))','.-') 
hold on 
plot(U_CL_plot(1:(end-1)),Ye_i(:,1:(end-1))','--.') 
xlabel('Input Covariance') 
ylabel('Output Variances') 
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