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ABSTRACT

A MULTIVARIATE MIXED LINEAR MODEL

FOR NIETA—ANALYSIS

By

Hripsime A. Kalaian

Meta-analysts often encounter data sets with multiple

effect sizes from each primary study in the review either

because of multiple measures or multiple treatments. Having

these correlated multiple effect sizes requires the use of

multivariate analytical techniques which take into account the

intercorrelations among these multiple effect sizes.

In the present study, the multivariate mixed-effects

model for meta-analysis is developed and presented. This

multivariate model takes into account three important

characteristics which often arise in meta-analysis. The first

is having multiple correlated effect sizes. The second is

that different studies can have different subsets of effect

sizes depending on the design of the primary study. The third

is that these multiple effect sizes may be random realizations

from a population of possible effect sizes. Using the





proposed model enables meta-analysts to obtain multivariate

empirical Bayes estimates of the parameters in the model

without excluding studies when some of the effect sizes are

missing.

The application of the multivariate mixed-effects model

is illustrated using multivariate artificial effect sizes

(generated from the multivariate normal distribution) and a

real data set“ The real data set involves Scholastic Aptitude

Test (SAT) coaching studies evaluating the effects of coaching

on the two SAT subtests (SAT-Verbal and SAT-Math). Also, the

fixed-effects model parameter estimates obtained from

analyzing the transformed GL8 model are compared to the mixed-

effects model parameter estimates obtained from the HLM

program.

In conclusion, the multivariate mixed-effects model using

the HLM program can be applied to multivariate meta-analysis

studies with missing effect sizes to obtain empirical Bayes

estimates. Also, the proposed model can be used to perform

multivaraite fixed-effects analysis. Finally; the findings of

the present study can be generalized to studies with more than

two outcomes (effect sizes) and at the same time within-study

characteristics can be incorporated in these applications.
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CHAPTER I

INTRODUCTION

1. META—ANALYSIS IN EDUCATIONALAND SOCIAL SCIENCES

In the last two decades there has been a surge of

interest among educational and social researchers in applying

quantitative methods for synthesizing and aggregating the

results of primary related studies. The goals of research

synthesis are accumulating and combining research evidence

from many studies testing the same research hypothesis and

also generating new evidence which helps to formulate new

research hypotheses and plan future research studies. In

other words, meta-analysis is, potentially, a powerful tool

for synthesizing existing knowledge, criticizing the design of

existing research, and stimulating more meaningful

interdisciplinary research.

Various quantitative methods for research synthesis have

been developed and applied within the last twenty years. One

way of synthesizing and summarizing the research findings from





2

previous investigations is by aggregating effect magnitudes

using meta-analysis statistical techniques. The term "meta-

analysis" was first introduced and popularized to the social

science literature by Glass (1976), and has also been

developed by others, such as Rosenthal (1978) and Rosenthal

and Rubin (1979). Pillemer and Light (1980) and Cooper (1982)

provided a conceptual framework for research synthesis.

Cooper (1982, 1984) developed a systematic approach (five-

stage model) to carry on a research synthesis and an

integrative research review. Hedges (1981, 1982, 1983), and

Hedges and Olkin (1985) introduced the technical statistical

methods for meta-analysis. Rosenthal (1978) presented a

collection of statistical procedure for combining significance

levels from primary research.

Meta-analysis can be defined as the statistical

analysis of a large collection of primary research studies

which focus on the same research question for the purpose of

accumulating previous findings and consequently generating new

research evidence. The most popular meta-analysis technique

is first calculating an effect size for each primary study in

the sample of collected studies in the review and then finding

an overall effect-size estimate (here we assume that the

effect sizes from the primary studies share a common

population effect size). Thus” for treatment-control studies,

effect size:can.be defined as the standardized mean difference

between the experimental and control groups from each study in



 



the integrative review.

2. IVIETA-ANALYSIS IN NIEDICAL SCIENCES

Since the mid-19805 the application of meta-analysis

techniques for research.revieW'purposes spread from social and

behavioral sciences through many other disciplines, especially

medical sciences and health care disciplines. Meta-analyses

of clinical trials (e.g., Yusuf et. al., 1987; Havens et. al,

1988) and epidemiologic studies (e.g. Longnecker et. al, 1988;

Shinton and Beevers, 1989; Berlin and Colditz, 1990;

Greenland, 1993) have been used frequently as an attempt to

improve on traditional methods of narrative review. As in

educational and behavioral sciences, the aim of the meta-

analysis :hi health-care disciplines :hs systematically

aggregating and summarizing data from the primary clinical

trial studies to obtain a quantitative estimate of the overall

effect of a particular treatment or clinical procedure on a

defined outcome. Many meta—analysts have reviewed and

examined the methodology of meta-analysis as applied to

clinical problems especially to randomized controlled trials

(Ottenbacher and Petersen, 1983; DerSimonian and Laird, 1986;

L'Abbee', Detsky, and O'Rourke, 1987; Sacks et. al, 1987;

Jenicek, 1989; Thacker, 1988; Greenland, 1987). Gerberg and
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Horwitz (1988) presented. guidelines for' conducting :meta-

analysis for clinical studies. Huque (1988) defines meta-

analysis as a statistical analysis which combines or

integrates the results of several independent clinical trials

considered by the meta analyst to be integrable.

3. MULTIPLE DEPENDENT EFFECT SIZES

Educational and social researchers often try to examine

and explain a behavioral phenomenon by collecting multiple

measurements from each individual in the study. As a result

of having multiple measurements, primary research studies are

not always so simple to integrate and summarize. Thus, meta—

analysts usually calculate multiple measures for the effect of

the experimental treatment depending on the number of the

outcome variables in each study in the review.

Some of these studies compare different treatment groups

to a single control group and are called multiple treatments

studies. Other studies compare a single treatment group to a

single control group, but instead of obtaining a single

outcome measure, multiple outcome measures are obtained where

there are several subscales in the outcome measure or test.

These will be referred to as multiple measures studies.
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Moreover, another set of studies, which can be characterized

as pretest-posttest study designs, compare a single treatment

group to a single control group and multiple pretest and

posttest outcome measures are obtained from each studyu These

type of studies are referred to as pre-post multiple measures

studies.

4. MULTIVARIATE STATISTICS

Having these correlated multiple effect magnitudes from

each primary study in the review requires multivariate

procedures of analysis (Hedges & Olkin, 1985; Raudenbush,

Becker & Kalaian, 1988). Multivariate analysis refers to a

collection of descriptive and inferential methods that have

been developed for situations where we have more than one

outcome variable and these outcome variables are correlated.

Using multivariate procedures for analyzing meta-analysis data

sets with multivariate characterization has various

advantages. For example, (a) it provides us with better

parameter estimates because it handles the multiple effect

sizes simultaneously, taking into account the interdependence

among the outcome variables, (b) it controls Type I error

rates, (0) it also facilitate statistical comparisons among

outcomes.





5. PURPOSE OF THE PRESENT STUDY

This thesis will present a nufltdvariate mixed-effects

model (multivariate hierarchical linear model) for meta-

analysis that considers the multiple effect sizes from

multiple-outcome studies or multiple-treatment studies from

each study as random, and then models these effect sizes or

the correlation coefficients as a function of study

characteristics plus random error. Thus, this multivariate

model takes into account three important characteristics of

this type of data which often arise in meta-analysis. The

first is having multiple effect sizes based on multiple

dependent variables from each study. The second important

characteristic is that different studies can have different

subsets of dependent variables and consequently different

numbers of effect sizes and correlations for each study. The

third.characteristic.is that.the effect sizes and the product-

moment correlation coefficients from several studies are often

viewed as random realizations from a population of possible

effect sizes and correlation coefficients.

The application of the proposed multivariate mixed-

effects model will be evaluated and examined empirically

using artificial and real data sets. The artificial multiple

effect sizes will be generated from the multivariate normal
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distribution with specified mean vector and variance-

covariance matrix. These effect sizes will be analyzed and

compared by using the Hierarchical Linear Model (HLM) program

(designed for analyzing multi-level data) and the V-Known

routine (designed for meta-analysis purposes when the within-

study variance-covariance matrices are known).

The real data set represents the Scholastic Aptitude Test

(SAT) coaching studies“ 'Ehese:multiple effect sizes represent

the effects of coaching on SAT-Verbal and SAT-Math scores.

These effect sizes will be evaluated by using the HLM program.

6. ADVANTAGES OF USING MULTIVARIATE MIXED MODEL

The estimates and hypothesis-testing procedures generated

by using the multivariate mixed-linear model are fully

multivariate techniques since they take into account the

correlations among the multiple effect sizes from each study

and meanwhile have several important properties. They allow

one:

1. To distinguish between variation in the true multiple

effect size parameters for each study, and the sampling

covariation which results because effect sizes are
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estimated with error. That is

Total Effect Size Parameter Error

Covariation = Covariation + Covariation

2. To examine the differential effects of the treatment on

the multiple outcome measures;

3. To test hypotheses about the effects of study

characteristics and features on multiple study outcomes;

4. To estimate the variance-covariance matrix of the

multiple random effects and test the hypothesis of no

variation-covariation among the multiple effect size

parameters;

5. To find improved empirical Bayes estimates of multiple

effect sizes and multiple product-moment correlation

coefficients in each study;

6. To include.in the analysis different numbers of outcomes

from each study as well as different predictors for the

different outcome measures;

7. To provide more precise and stable parameter estimates.





7. ORGANIZATION OF THE PRESENT STUDY

This study contains eight chapters dealing with the

theory and the application of the multivariate mixed-effects

model for meta-analysis and research integration. Chapter two

will review the existing literature on the statistical

approaches and methods of meta—analysis.

Chapter 3 will present a description of the notation and

the statistical terms used for the multivariate hierarchical

linear model. Also, the theoretical background and notation

for meta-analysis will be reviewed in this chapter.

The multivariate mixed-effects model for meta-analysis

will be introduced and developed in Chapter 4. First, the

unconditional model (with no predictor in the model) will be

illustrated. Second, the conditional .model (where the

variations among the multiple effect sizes are explained by

some study predictors) will be explained.

Chapter 5 will deal with the estimation of the

multivariate mixed-effects model that proposed in this study.

Also, the maximum likelihood method of estimation and the EM

algorithm will be presented in order to obtain empirical Bayes

estimates of the parameters in the model.

In Chapter 6, an artificial multivariate effect-size data

set will be generated using FORTRAN and IMSL subroutines“ The
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results of applying the proposed model to these generated.data

using the HLM program for analyzing multi-level data and the

V—Known routine for analyzing effect-size data will be

compared” The findings of this chapter will help us to pursue

the use of the lHLM jprogram for :meta-analysis purposes,

especially when there are missing effect sizes in the data

set.

Chapter 7 will present empirical results of applying the

proposed multivariate mixed-effects model to Scholastic

Aptitude Test (SAT) coaching data. The results and the

conclusions based on fitting unconditional and conditional

hierarchical linear models will be documented. Also, in this

chapter, the applicability of the proposed multivariate mixed-

effects model to obtain multivariate fixed-effects parameter

estimates of the effects of the SAT coaching will be

illustrated and these parameter estimates will be compared to

those estimates from the multivariate mixed-effects model.

Finally, in Chapter 8, a concluding statement on the

results of applying the proposed model to the artificial

generated data and the SAT coaching studies will be presented.

Also, the implications of the findings for further research

related to multivariate effect—size meta-analysis will be

discussed.



  



CHAPTER II

REVIEW OF THE LITERATURE

There has been much research and development progress in

meta-analysis techniques in the last two decades. The

developments have included tests of homogeneity of the effect

sizes, modeling heterogeneity using fixed-effects and random-

effects models for univariate effect sizes and correlation

coefficients, and modeling multivariate effect sizes for

fixed-effects cases. In this chapter the statistical

techniques used previously to analyze data from studies that

have multiple outcome measures are reviewed.

1. UNIVARIATE APPROACHES

Despite the multivariate characterization of the

situations of multiple outcome variables from each study, the

most frequently used procedure is to treat the multiple effect

11
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sizes separately, with one meta-analysis for each outcome

measure (e. g., Giaconia & Hedges, 1982; Kulik & Kulik, 1984:

Rosenthal & Rubin, 1978; White, 1976). This practice of

dealing with multiple outcome effect sizes and correlation

coefficients individually inflates Type I error rates for

quantitative review results, which in turn decreases the

future replicability of the research findings. Moreover,

conducting a separate meta-analysis for each outcome measure

limits the kinds of research questions that the meta analyst

can address. For example, the research questions 'Does a

specific treatment have differential effects on the multiple

outcomes?‘ or 'Does a specific study characteristic have

differential effects on the multiple product-moment

correlation coefficients?‘ cannot be answered precisely and

accurately using univariate meta-analysis procedures.

Another common method of meta-analysis is to combine the

estimates of the multiple effect sizes such as by averaging or

summing the effect sizes for the multiple outcomes or the

multiple correlation coefficients (e. g., Iaffaldano &

Muchinsky, 1985). Employing this pooling procedure may

result in losing important information about variation between

the multiple effect sizes because a single treatment may have

different effects on different outcome measures. This

procedure is more appropriate when the outcomes represent or

measure the same construct. Hedges and Olkin (1985) proposed

a test for homogeneity of multiple effect sizes within each





13

study and a pooling procedure under the assumption that the

multiple outcomes are measures of a single construct.

Univariate statistical theories for synthesizing research

studies are described below.

1.1 Univariate Fixed-Effects

This approach stresses the estimation of a fixed and

common population effect of the treatment across a series of

studies which test the same research hypothesis (Glass, 1976;

Hedges, 1981). The method involves the calculation'of an

estimate of effect size from each single study. The average

of effect-size estimates across studies for each outcome

measure is used as an index of the overall effect size for

each of the multiple outcome measures. Hedges (1982a)

developed a test of homogeneity of effect—size estimates.

This test examines whether the observed effect-size estimates

vary by more than would be expected if all studies shared a

common underlying population effect sizes.

Further, if the test of homogeneity fails, the meta-

analyst.tries toiconstruct.a1weighted least squares regression

model or a categorical model by regressing effect size

estimates on various known study features (Hedges, 1982b).

The main reason to use a regression model is to explain the
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variability among the effect-size estimates from different

studies by using known study characteristics as predictors.

1.2 Univariate Random—Effects

Contrary to the fixed-effects model, which assumes that

there is a single underlying population effect of the

treatment across all studies or that all the variation between

studies can be explained by known study characteristics, the

random-effects model assumes that the values of the effect

sizes are sampled from a distribution of effect—size

parameters. In other words, in the random-effects model there

is no single true population effect. The true effects are

from a distribution of effects.

Thus, by using the random-effects models, we can estimate

the variance components of the distribution of the population

of effect-size parameters as well as the variance components

of the sampling distribution of the effect sizes. In other

words, there are two sources of variation in the observed

effect sizes (variability in the population effect-size

parameter distribution and the variability in the effect-size

estimates about the true parameter values.

Rubin (1981) suggested a random-effects model to

summarize the results from parallel randomized experiments.
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He usengayesian and empirical Bayesian techniques to obtain

improvedi estimates of the' treatment effects in each

experiment. Thus, his/model views study effects as being

{andpmnrealizsimnset a Population of treatment fife???-

Moreover, this model enables the researcher to estimate the

variance of the treatment effect parameters. However, since

the parallel randomized experiments have the same outcome

measure, he did not incorporate the standardized effect-size

estimates in his model. Also, he did not model the variation

among the parallel experiments as a function of experiment

characteristics.

DerSimonian and Laird (1983) used the univariate random

effects model in their meta-analysis to estimate an overall

average effect of SAT coaching; .Also, they obtained empirical

Bayes estimates of the individual study and program effects as

well as their estimated variances via the EM algorithm using

the maximum likelihood estimation procedure. Their outcome

was not the effect size, 4, rather they looked at raw mean

differences.

Hedges (1983) developed the statistical theory for the

random-effects model for effect sizes. ID1 this model the

effect sizes are not assumed fixed but instead are viewed as

sample realizations from a distribution of possible population

effect size parameters with a :mean and ‘Variance to be

estimated via methods of moments. Thus, by using this model,

the observed variance among treatment effects can be
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decomposed into two components (a) sampling error or

conditional variability of the estimated effect sizes around

its population effect sizes and (b) random variation of the

individual study effect sizes around the mean population

effect size.

1.3 Univariate Mixed-Effects

The mixed-effects model corresponds to a setup with both

fixed and random treatment effects. The random effects are

the residuals (effect parameters minus predicted values) and

the fixed effects are the effects of between study predictors.

Raudenbush and Bryk (1985), building on the work of

Rubin, provided a statistical theory for a univariate

hierarchical linear model (mixed-effects model) for meta-

analysis. Their model views the effect sizes are random and

models the variation among the effect sizes as a function of

study characteristics plus error. Also, their model enables

the meta-analyst to find.improved.empirical Bayes estimates of

individual effect sizes.

Raudenbush (1988) reformulated the hierarchical linear

model as the general mixed-model. This model allows

estimation of the random and fixed effects when the within-

group predictor matrices are less than full rank.
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2. MULTIVARIATE APPROACHES

We characterize a procedure as being "multivariate" when

we have multiple effect sizes on the basis of having multiple

dependent measures or multiple treatment groups compared to a

common control group for each study. Consequently, we

analyze this kind of data simultaneously by taking into

account the intercorrelations among the multiple outcomes or

the multiple treatments. That is, we consider a procedure as

being multivariate where several measurements or treatments

are modeled jointly.

2.1 Multivariate Fixed-Effects

Hedges and Olkin (1985) proposed a multivariate

statistical theory for summarizing the results from (iifferent

studies with multiple outcome measures. Their approach

requires that all studies use the same number of outcome

measures. IHowever, they didn't.provide a statistical model to

explain the variability in multiple effect sizes as a function

of study features and experimental conditions.

Rosenthal and Rubin (1986) presented another method for
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combining and comparing research results from studies having

multiple effect sizes based on multiple dependent variables.

They provided a method for obtaining a single summary effect

size estimate from multiple effect sizes and a technique for

testing this composite effect size. Also, they described a

procedure for estimating the magnitude of the effect for a

contrast among the multiple effect sizes of an individual

study and for testing the significance of this contrast effect

size. Their proposed meta-analytic procedures do not allow

different predictors for the various dependent variables.

They also did not provide a model to explain the variability

in multiple effect sizes as a function of study

characteristics.

Raudenbush, Becker, and. Kalaian (1988) proposed

generalized least squares (GLS) regression. to :model the

variation between studies and to account for the

interdependence among multiple.outcomes within studies. 'Eheir

approach allows the meta-analyst to include in the analysis

different numbers of outcome measures from each study and

different sets of predictors for each outcome measure. They

/

view study effects as fixed, which means that (all the

variation among the multiple study effects other than sampling

variance and covariance can be explained as a function of

study characteristics.
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3. SUMIVIARY OF PREVIOUS META-ANALYSIS TECHNIQUES

Four main techniques have been used previously to deal

with studies that have multiple outcomes and consequently

multiple effect sizes. The first and the most commonly used

approach.is the univariate fixed-effects model where the meta-

analyst conducts a separate meta-analysis for each outcome

measure. The basic assumption of this model is that the

treatment and control populations share a common effect size,

and the existing differences among these effect sizes can be

determined through the knowledge of some study characteristics

(Glass, 1976; Hedges, 1981). The univariate random-effects

model is the second approach where the investigator also deals

with the multiple outcomes separatelyu By using this approach

the researcher assumes that there is a distribution of true

effects for the experimental and control populations (Rubin,

1981; Hedges, 1983).

The third approach is the univariate mixed-effects

approach (Raudenbush & Bryk, 1985; Raudenbush, 1988) where the

estimated effect sizes can be modeled as a function of study

characteristics plus random error. These univariate

approaches all assume that multiple outcomes from each study

are independent.

The fourth approach is the multivariate fixed-effects

model (Raudenbush, Becker & Kalaian, 1988; Gleser & Olkin,
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1993) which assumes that the study effects are fixed and

considers all the variation-covariation among the standardized

multiple study effects other than sampling variances and

covariances to be explainable as a function of study

characteristics (study design, treatment conditions, contexts,

etc.).

In summary, these previous meta-analysis techniques

either didn't account for the intercorrelations between the

multiple outcome measures (univariate procedures) or assumed

that the size of the multiple effects reported in each study

depend strictly on known study characteristics and all of the

variation between these studies can be explained by these

known predictors.
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CHAPTER III

NOTATION FOR MULTIVARIATE MIXED LINEAR MODEL

Here we should distinguish between three kinds of

studies, multiple measures, multiple treatments, and pre-post

multiple measures studies. In multiple measures studies a

single treatment group is compared to a single control group

in each study and multiple outcome measures are obtained from

each study. CH1 the other' hand, in. multiple-treatments

studies, multiple treatment groups are compared to a common

control group in each study on a single outcome variable or

multiple treatment group means are contrasted in each study.

As in multiple measures studies, in the third kind of

study, a single treatment group is compared to a single

control group in each pretest-posttest study and multiple

pretest and posttest outcome measures are obtained from each

study: This differentiation is made because (a) the estimated

effect sizes and their variances for pre-post study designs

are different from the other two kinds of studies, and (b) the

formulas for estimating the covariances between the estimated

effect sizes are different for the three kinds of studies.

Thus, each type of study must be separately considered.

22
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1. MULTIPLE MEASURES FOR EACH STUDY

The model for multivariate mixed meta-analysis for

multiple measure studies assumes that we have K studies each

comparing an experimental treatment (E) to a control condition (C)

on one or more of P1 outcome measures (in study 1).

Where i =142,....,K studies.

Let the outcome measures Yig-p and Yigp for person j on

outcome p in study i be normally distributed with means

E I e e 2

tap and pi” respectively and With common variance 03” Thus,

we assume that

E E 2

Yijp ~ N(|J'jplojp) I

c c 2

Yijp ” NWIPIinL

where,

j =1q2,....,nf subjects, or j =1q2,....,nf subjects,

1 = 1,2,....;K studies, and
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£3: 1,2,....,Pi outcome measures.

1.1 Glass’s Estimate of Effect Size

Glass (1976) proposed that the standardized mean

difference between the experimental and control groups for the

pth outcome measure, Y. in the ith study is
1p!

‘1 _'_C

= Yip Yip

91p —— .

ip

where 171.3 and 171-; are the 1th experimental and control group

means respectively for the pth outcome measure, 13p. Also

.3? is the pooled within—groups estimate of the sample

variance which can be calculated as

S? = (nf’ - 1) (3,32 + (nf - 1) (3,5,)-2
l I

p nf'+IyF-2
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where Si‘; and Si; are the experimental and control group

standard deviations, respectively.

1.2 Population Effect Size

Hedges (1981) developed the distribution theory for the

effect size. He indicated that g1.p estimates a population

effect size for the pth outcome measure for the 1th study.

The parameter 51p can be represented as

E C

_ “nip - pip

ip"‘——-———— ,
in

where 01;) is the pooled within—groups population standard

deviation and p§,and u§,are the ith experimental and control

population means for the pth outcome measure, respectively.
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1.3 Unbiased Estimate of Effect Size

Hedges (1981) also indicated that Glass's estimatorgip

is a biased estimator of the population effect-size 61p and he

derived the minimum variance unbiased estimator, dip, which is

approximately

dip = C(mi) gip'

where

E_ C

mi—ni +111 ‘2,

and C(mi) is approximated by

4m.-1°

1.4 Distribution of Multiple Effect Sizes

For fixed values of 51p , Hedges (1981) showed that this

standardized effect-size estimator, d is asymptotically
ip'
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normally distributed with mean. 53,and variance 02(63), which

can be represented as

 

Since 53,is not known, Hedges (1982a) provided the large

sample approximation of 02(61-p) by substituting dip for 61p.

Thus, estimating ozbdm) for the pth outcome measure in the

131; study requires one to replace 6%,, by its estimate dip in

the previous equation, or

 

Given that this model allows different numbers of effect

sizes based on different numbers of outcome measures for each

study, the total number of comparisons between experimental

and control groups is P, where I): Spy . As noted above pi
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denotes the number of outcome measures in study 1.

Because the measurements for any subject within a study

are correlated, the estimated multiple effect sizes will also

be correlated. The correlations between the effect sizes,

d3” 19: 1,2,...,pi in study i, depend upon the correlations

between the outcome measures for subjects in the experimental

and control groups. However, not all studies report sample

correlations among the outcome measures, which force us to

impute values for the population correlations from other

sources (published test manuals, other studies, etc.). Thus,

the covariances between the effect sizes of any two outcome

__,.r-L-—.,_

measures p _andmpf (in a study can be calculated using the

correlation coefficient between the outcome measures (pum,),

the population effect sizes for the pairs of outcome measures,

and the sample sizes for the experimental and control groups.

Gleser'& Olkin (1994) derived the large sample covariance

 
 

a (dip, dipz) between all]p and dip/, which can be calculated as

follows

1 2
— 5 ' 5 I p . . /

l 1 2 1P 1P 1p,1p

O (dip’ dipI) = (-—‘E- + 'C) pip,ip/ + 'E

I“!

l
x.)
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Estimating 0(d3fldhp) requires us to replace the effect

sizes 61p by their estimates all.p and to replace pip,.ip’ by

either the calculated sample correlations from each study or

 

the imputed values Inmn¥° Thus,

1 2

A l l —2' dip dip’ rip, ip/

o(dip,dip/) — <—.: + ——C> rips-DI + E C
Hi 111' 111' + 1'11

Thus, having estimated the variances and the covariances

of the effect sizes for each study, we obtain the estimated

variance-covariance matrix 21 for each study. Its diagonal

elements are the variances and the off—diagonal elements are

the covariances. By "stacking up" these K covariance matrices

along the diagonal of a matrix we get the estimated covariance
~-.._

\\

matrix, 2, of the sampling errors. So, 2 is a P by/P matrix

with 21's stacked along the diagonal, and all off-diagonal

block matrices are zero because we assume that the individual

studies are independent. Thus, the matrix 2 can be

represented as
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rElla n

9.82 .0.

2 =

Q Q .laK  

2. PRE—POST MULTIPLE IVIEASURES FOR EACH STUDY

Another method for estimating effect sizes is using the

standardized.mean-change measure for pretest-posttest designs

outlined by Becker (1988). For multiple outcome measures from

each study, the standardized mean-change measure is estimated

separately for each of the multiple outcomes for experimental

and control samples. For instance, a study with one

experimental and one control group for each outcome measure

would have two standardized mean changes for each outcome,

each computed as the difference in mean performance between

the posttest and pretest divided by the pretest standard

deviation.
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2.1 Estimated Standardized Mean-Change Measure

For each of the K (i = 1,2. . - - UK) studies, let 91f; andgii

denote the standardized mean change measures for the

experimental and control groups, respectively and can be

represented as

( EH _ £3) ( 17C _ EC)

gig = 1p E 1p and 91'; = 1p c 119

Sip Sip

  

I

where f3 and fl: represent the pretest means for the
1?

experimental and control groups, respectively. 171‘; andlE-g

represent the posttest means for the experimental and control

groups respectively. Si, and 55, represent their respective

pretest standard deviations. For each of the multiple outcome

measures, separate standardized mean-change measure were

computed for the experimental and control groups.

2.2 Unbiased Standardized Mean-Change Measure

Becker (1988) indicated that these standardized mean

change measures are slightly biased estimates of the

population standardized mean-change parameters and she derived
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the unbiased estimates of these standardized mean change

measures . The unbiased estimates of the experimental and

control standardized mean changes are

and

 

 

where I'll-i and 121-; are the sample sizes for the experimental and

control groups.

2.3 Distribution of Standardized Mean-Change Measure

For fixed values of population standardized mean-change

measures, the estimated experimental and control standardized
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mean-change measures (c113:) and dig) are asymptotically normally

distributed with mean of}; and 619;, and variances 02(63) and

02(612) , respectively.

Thus, the estimated variances of dig and dig are

4(1 — 1,3,) +(di§)2
Var(dii) = E

Znip

 
I

and

4 1 - C + d-C 2
Varmii) - ( “QC ( 1P) .

Znip

 

2.4 Effect Size Estimate

The estimated effect sizes, A for each outcome measure
ip'

are the differences between the experimental and control

unbiased standardized mean-change measures for each of the
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outcome measures within each of the K studies and is denoted

as

3- = dig ’ dig.

1P

Thus, studies that examine the effects of experimental

treatment on p outcome measures will have p effect sizes.

2.5 Distribution of Effect Sizes

For fixed values of Aip' the estimate of the asymptotic

variance of each of the estimated multiple effect sizes, Aip'

is

4 (1mg) + (c1132 + 4(1—rx$>+(dif.)2
var(3.) =

1p 2n; 2mg

  

I

where 13% and I}; are the estimates of the pretest-posttest
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correlations for the experimental and control groups,

respectively.

The covariance between 51p and 319 is estimated as

  

Cov(Aip, ipl) = ripiip, [\/V(d,f,) V(dl.f;,) + \/V(d1-f,) V(d1f,/) ] ,

where r / is the estimated correlation coefficient between
ipJp

the pairs of the correlated outcome measures within study 1.

As with multiple measures studies, having the estimated

variances and the covariances of th effect sizes for each

study, we obtain the estimated variance-covariance matrix.21

for each study. Its diagonal elements are the variances and

the off-diagonal elements are the covariances. Stacking up

these K'cpvariance matrices along the diagonal of a matrix

produces the estimated covariance matrix, 2, of the sampling

errors. This 2 variance-covariance matrix has the same

structure as variance-covariance matrix for multiple measures

studies developed in the previous section in this chapter.
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3. MULTIPLE TREATMENTS FOR EACH STUDY

The model for multivariate mixed meta-analysis for

multiple treatment studies assumes.that.welhave K studies each

comparing T’ experimental treatment. groups (E3),

<g==1,2,....,73 to a common control group (C). It is

important to note that this basic model for multiple

treatments can be generalized to situations where we are

contrasting T'experimental treatment groups without control-

group comparisons.

3.1 Population Effect Size

Let the outcome measures Yi'j-q and Y1? be normally

distributed with means ufi7anui pf respectively and a common

standard deviation of. The corresponding population effect

sizes for the treatments within each study are



E C

5 Fig I11

iq ‘ —C—— r

01'

where,

i = 1,2, . . ..,K studies

and

q = 1,2, . . ..,T treatment groups.

3.2 Sample Effect Size

The effect sizes 61g, can be estimated by replacing

pfq and pf by their sufficient statistics 17;: and 17;“

substituting (if for of. The estimated effect size is

and
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Here 6E’is the control group standard deviation for study

3.3 Distribution of Effect Sizes

For fixed values of 91g and when the homogeneity of the

variances for the multiple treatment groups and the control

group holds, the large sample variance of each of the

estimated multiple effect sizes (fig (Gleser and Olkin, 1994)

is

And the population covariances between these correlated

multiple effect sizes (Gleser and Olkin, 1994) is
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0(d.
1q'

d.
iq’) C
 

These variances and covariances depend on the effect

sizes 91:; and can be estimated by substituting dig for big

(Gleser & Olkin, 1994) and can be calculated as

 

 

1 l +3611
02 (dig) = VaI(dl-qul-q) = n}; + T I

1g 1

and

1 + a- dig dig]

6(d1'q' diql) —
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Here we assumed that the variances for the treatment

groups and the control group are homogenous. In situations

when the homogeneity assumption does not hold, the reader

should refer to the article by Glaser and Olkin (1994).

As with multiple measures and pre—post multiple measures

studies, having the.estimated variances and the covariances of

the estimated effect sizes for each study, we end up with the

estimated variance—covariance matrix 21 for each study. Its

diagonal elements are the variances and the off-diagonal

elements are the covariances. Stacking up these K covariance

matrices along the diagonal of'a matrix produces the estimated

covariance matrix, 2, of the sampling errors. ThisE

variance-covariance matrix has the same structure as the

variance-covariance matrix for multiple measures and pre-post

multiple measures studies developed in the previous sections

in this chapter.



CHAPTER IV

MULTIVARIATE MIXED LINEAR MODEL

As mentioned earlier, Raudenbush and Bryk (1985)

developed a univariate empirical Bayes estimation procedure

for meta-analysis as an alternative to least squares

estimation for the linear model within the formulation of two-

stage hierarchical modeling having a prior distribution.

Also, Raudenbush, Becker, and Kalaian (1988) developed a

multivariate procedure for fixed-effects meta-analysis by

using generalized least squares regression to account for the

intercorrelations among the multiple outcome measures.

Moreover, Raudenbush (1988) reformulated the hierarchical two-

stage linear model as a general mixed model where we have

missing values in the data set. For instance, not all the

studies included in the research synthesis may have the same

number of dependent variables or contrasts among treatment

groups and the control group because the research interest is

different from study to another. In this situation, the

studies with missing dependent variables or treatment groups

would have to be excluded from the meta-analysis and we would

41
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limit the meta-analysis to studies with complete data in order

to be able. to perform. previously developed. multivariate

statistical meta-anslysis procedures. The alternative

analytic method used by reviewers is to use the univariate

meta-analysis techniques in order to include and use all the

data in the reviewx .ASImentioned earlier this practice limits

the kind of research questions asked and at the same time

inflates Type I error rates.

In this study the univariate empirical Bayes estimation

method, the multivariate fixed-effects generalized least

squares procedure, and the general mixed model where the data

are not of full rank (missing dependent variables in the data

set) are combined and extended to the general situation where

we have multiple random effect sizes based on ‘multiple

dependent variables, multiple correlation coefficients, or

multiple treatment groups within each study. The empirical

Bayes estimation method will be used to estimate the

parameters of the model. The multivariate mixed-effects model

is viewed as a two-stage model. At the first stage, the

"within-study model" for each individual study having multiple

effect sizes is formulatedm At the second stage, the

parameters of the within-study model are viewed as varying

randomly across different studies and some of this variation

is thought to be explainable by known study characteristics.
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1. WITHIN-STUDY MODEL:

In the within-study model for multivariate mixed meta-

analysis, we assume that the observed vector of multiple

effect sizes, di, of study i, is equivalent to a vector of

population effect sizes 61 plus a vector of errors, 31' for

each study. Here the within study variances and covariances

are assumed to vary from study to study. Thus, the basic

within study model for study i can be represented as

where,

.d is a vector with (pfxl) elements,

Q. is a vector of (mxl) elements,

a. is a vector of (pixl) elements,

and,

X2 is a matrix of (pixrm) elements of response indicators



44

for the elements of 511' with Xi = 1 when d1. is observed and

Xi = 0 when d1. is missing.

Here, 111 (p1 s m) is the maximum number of outcome

measures across studies assuming that there are no missing

effect sizes in the data.

1.1 Illustrative Example

To illustrate the within-study model with.missing effect

sizes, suppose a reviewer has K studies and most of these

studies have two outcome measures. However, some of these

studies have only one of the outcome measures and not the

other. Thus, this reviewer is faced with the problem of

missing data in the research synthesis, especially'when trying

to build statistical models to explain the variation in these

effect sizes. The within-study model for a hypothetical set

of K studies can be expressed as follows
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621

study 2: [d21] = [1 0] 6 + [e21] ,

22

631

study 3: [d32] = [0 1] 5 + [e32] ,

32

 

study K:

   

where for example
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But the distribution of errors for the second study is

621 ~ N(0I 031) I

and for the third study it is

2

e32 ” N(0, 032) -

Stacking the di vectors for all the K studies, produces

a single vector, LL containing all the effect sizes. The

complete within-study model can be represented as

  

igl ixlooooo 81 e1

d2 0x20000 :12 £2

= 000.000 +

0000 0 0

00000 0 .

410 000000 xx .5310 .512      
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which in turn can be expressed in more compact and

unsubscripted matrix form as

d == X6 +19,

where

e - N'U), 2).

Here d is a le vector where P=Zpi, 5 is aKmxl

vector, X is Pme matrix of 1's and 0's, and e is anP

matrix. We further assume that the errors, 31, are P-Variate

normally distributed with a zero mean vector and variance-

covariance matrix Xi. Thus, 2 is the sampling variance-

covariance matrix of ‘the effect sizes for the ‘multiple

dependent variables or multiple treatment groups. The

formulas for estimating this sampling covariance matrix are

shown in Chapter 3 (sections 1.4, 2.4, and 3.3).
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1.2 GLS Within-Study Model

The basic within-study model given above can be

reformulated as a generalized least squares within-study model

(Raudenbush, Becker, and Kalaian, 1988) by factorizing the

estimated variance-covariance matrix for each study,.21 which

is a positive definite matrix, into the product of a

triangular matrix and its transpose (Finn, 1974). This

Cholesky decomposition can be represented as

— /
2. —E1.Ei

As an illustration, suppose the variance-covariance

matrix for study i, for the bivariate example.given in section

1.2, is

62(d.) a<d,,,d,2)
l

Wail-2,0711) 62(d12)
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Here 6(d1-1,di2) = 6(d1-2,d1.1) is the covariance of the two

effect sizes in study 1, while 62(d11) and 62(d12) are the

respective variances of the two effect sizes.

The resulting Cholesky or triangular factor for the ith

study is

L?
”

 

6 (d... at.) /6 (d...) 76%...) — <62 (at-pd.» /62 (at-1)

-Emz can be recognized as the conditional standard

deviation of Caz given cal. Thus, the conditional standard

deviations, holding the other effect sizes constant, are the

diagonal elements of the Cholesky factor matrix. The off-

diagonal elements are the conditional covariances, given the

other variables or effect sizes.

Premultiplying the within-study model for each study byE;1

yields a set of uncorrelated multiple effect sizes for each

study. This can be written as
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which in turn can be represented as

d“. = X511. +e“. ,

where,

.e"1.~N(0 . 11.).

Here a} , the error vector of the transformed uncorrelated

multiple effect sizes.for'each.study, is asymptoticly normally

distributed (Hedges, 1981) with mean 0 and identity variance-

covariance matrix 11. 11 consists of 1's in the diagonal and

0's in the off—diagonal.

This within-study model can be rewritten in more general

and unsubscripted matrix form as

d‘ = X‘b+e‘,
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where

e. "N(OII)

Here the matrix I is a block diagonal matrix with

identity submatrices in the diagonal.

2. BETWEEN-STUDIES MODEL:

At the second stage, the between-studies model can be

formulated into two forms. The first is the unconditional

model, where we assume that the multiple effect-size

parameters 5-1 vary around a grand mean vector plus error. The

second is the conditional model, where we assume that the

multiple effect-size parameters 01. depend on known study

characteristics plus error.

2.1 Unconditional Between-Studies Model

In this simple basic model, the multiple effect-size
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parameters fii vary as a function of a grand mean vector (one

element for each outcome measure or each treatment group) and

random.erroru The between-studies model for each study can be

represented as

35.. =A+IZ.. U.~N(Q.1),

where Qi and 111. are (mxl) vectors, and A is a vector of

grand mean parameters.

The multivariate between—study model for the

illustrative example (given in section 1.2) with maximum of

1n=2 outcome measures for each study can be represented as

    

[511] [1 O] Y01 U11

study]; = ,

612 O 1 702 U12

5 1 0 Y U

study 2: [ 21] =[ ] 01 21 .

622 O 1- 702 552
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study3- 531 - l O 701 + U31

. 632 0 1 702 U32

5 1 0 Y Ustudy K: K1] = [ J 01 + K1

6K2 0 1 702 sz

where,

U11 0 Til 1:112

U N N 0 ’ 2
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By stacking all the between-study vectors from all the K

studies we will have the complete between—study model for all

the studies which should be included in the meta analysis.

This complete model can be written as

    

. i '

é1 [I LE

"Q2 I U2

: A +

4.1 14 UK.  

This can be rewritten in more general form as

where
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and

A = 1,381,".

This multivariate linear model allows a different number

of outcome measures for each study. When by experimental

design not all the m outcome variables are measured in each

study, we still can obtain efficient empirical Bayes estimates

for the parameters in the model as well as imputed values of

the missing d's.

2.2 Conditional Between-Studies Model

In this model, which can be considered an expansion of

the 'unconditional model, we ‘use information. about study

characteristics (study'contextsg study'design, treatments, and

subject characteristics from each study) to account for the

variation among the effect sizes. In other words, we try to

explain the 'variations. in the effect-size parameters .by

knowing methodological and contextual variations in the

primary studies in the review under consideration. This
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between-study model can be written in the following form

Q. = If..l + LI., LI. ” lVUl, I) I
l 1

where 51. and 111. are vectors having mXK (m=maximum pi)

elements, _Wi isaalnACQ'matrix:of known study characteristics

and 1 is a g X 1 vector of between—studies parameters. Here,

we assume that L5 has a multivariate normal distribution with

mean vector Q and covariance matrix 1.

To illustrate this model we use the illustrative example

given in section 1.2 where we have two outcome variables for

each study. Here we hypothesize that the two outcome

variables in the example are the SAT-Verbal and SAT-Math

effect sizes from SAT coaching studies (these SAT coaching

studies and the coaching effect sizes are described in detail

111 Chapter ‘VII). For illustrative jpurposes, we further

hypothesize that the amount of coaching time in hours

influences the size of the coaching effect. Thus at the

second stage in this conditional model we incorporate

information about the number of coaching hours for SAT-Math

and SAT-Verbal subtests to explain the variation among the

effect sizes from the various SAT coaching studies. This
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conditional multivariate between-studies model may be written

as

    

  

    

  

    

F701-

511 1 W11 0 0 Y11 U11

study 1: = .

612. 0 0 1 W12 702 U12

.7222.

F701“

study 2: [521] = 1 W21 0 O 711 + U21 I

622 O O 1 W22 702 U22

.722.

P701.

study 3: 531] = 1 W31 0 O Yii U31 ,

532 O 0 1 W32 702 U32

.722.  



58

    

  

’Yor

61a 1 Wm O O 711 UKl

study K: 5 = O 0 U ,

x2 1 FG2 7% x2

.722.

where

6&1 [0] 111 t112
N N 1 2

  

Here ifil and 5&2 represent hours of coaching in studyi
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for the SAT-Verbal and SAT-Math outcome measures,

respectively.

By stacking all the fij vectors for all the studies we

will have the complete conditional between-studies model which

can be represented in the form

 

"111' 1171' "121‘

52 412 112

: 1 4-

8x1 WK. .flx.     

This can be rewritten in more general and unsubscripted

matrix form as

0
' II hly -+ U' ,
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where

U ~ 1V(0 .73

Therefore, T = rch, is the conditional covariance

matrix of the multiple effect sizes. In other words, it is the

amount of unexplained parameter variation and covariation left

after knowing the effects of coaching hours. From the Bayesian

point of view, this second stage model is considered the prior

distribution of 6.

3. WITHIN-STUDY AND BETWEEN-STUDIES MODELS

COMBINED

Combining the within and between study models for each

individual study, we get
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The transformed combined model for each study can be

written as

51*. = x11“ + x3111. + 12*. ,
J. .1 l

which in turn can be rewritten in more general matrix form as

d‘ = ZSIVY' + XVII + E?

In this combined model we assume that U and E‘ are

independent and can be considered as a specific case of the

general mixed linear model which can be represented as
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where d‘ is a vector of the uncorrelated multiple effect

sizes, 01 is a vector of unknown fixed effects parameters, 02

is a vector of unknown random effects parameters, A1 and A2

are known matrices of study characteristics, and R is a block

diagonal matrix of error terms.

In this mixed linear model, the Bayesian view is to

assume that the fixed effects parameters as having prior

distribution that is normal with zero mean vector and

variance-covariance matrix I‘. Also, I‘ is assumed to be

infinitely large. Thus, I"1 is close to 0. That is

61 N N(OIF)

Further, we assume that the vector of the random effects

parameters are normally distributed with zero mean vector and

variance-covariance matrix T. That is

62 " N(OIT) r
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and

R *'.N(O.E)

Also, we assume that the parameters 01, 62, and I? are

mutually independent vectors.

Comparing the two stage linear model and the general

mixed linear model we can see that

Consequently these two models can be considered as a

special case of a single general Bayesian linear model which

can be written as
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d‘=A9+E‘ , E‘~N(O,T),

where d‘ is the outcome vector, A is the predictor matrix,0

is the parameter 'vector, and we assume that the prior

distribution of 0 is

where

Now comparing this general linear model with the mixed

linear model and the two stage linear model we can see that



or
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CHAPTER V

ESTIMATION OF THE MULTIVARIATE MIXED MODEL

This chapter provides a description of the estimation of

the parameters of the multivariate mixed-effects model for

effect-size meta-analysis and research reviews. .Also, in this

chapter the posterior means and variance—covariance matrices

for the parameters in the model are presented.

In the second section of this chapter, the maximum

likelihood estimates of the dispersion matrices for

multivariate effect-size data are presented. These maximum

likelihood estimates are obtained using the EM algorithm.

1. ESTIIVIATION WHEN T AND 21 ARE KNOWN

The two-stage multivariate linear model for effect sizes

developed in the previous chapter is

66
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Within—study model:

d’ = X’b + e‘, e" ~ N(0,I).

Between-studies model:

6 =‘WW +17, l/~.N«LT).

Combined-model:

d“ =X‘Wy +X*U+e*.

Here,

var(d‘) = X‘ T X“ + I ,
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and

[var(d')]’1 = I — x*(x:’ : + T")'1X".

Given the above two-stage multivariate linear model, the

Bayesian point of View considers the second stage to be the

prior distribution for 6 and adds another stage which

specifies the prior distribution.cflf‘y as being normal with

mean vector 0 and variance-covariance matrix T. We further

assume that T is infinitely large. Thus, I"1 is approximately

0.

1.1 Posterior Distribution of 6=(y,U)’

Given the above assumptions and the fact that the data

are not of full rank (because of missing outcome variables),

the formulas derived by Raudenbush (1988) apply here. Thus,

the posterior distribution of 0=(y,U)’ given d, T, I is

normal with posterior mean vector
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and posterior dispersion (variance-covariance) matrix

CrU DUw

where,

D7' = DH ld‘.T) = [W’X"X*W - w’x*x*(x*’x* + T")"x*’x*W]“

=[W/(Xt/ It _ Xt/X*(X*’X* + T-l)-1X*/X*)W]_1
,

= [W’(I-A’)x:’x* W]-1
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= [W’A'l"1W]‘1

here,

A = (x*’x* + T‘l)‘1X‘l :.

D(U I d“,T) = C"‘ + C"1X‘/X*WDY*W’X*/X*C"U

c
a
n
»

H

C“ + AWDY*W/A’.,

where,

C‘1 = (x*’x* + T“)'1 .

* _ _ # #It-l

CW — DYW’XXC
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= -D;WIA' .,

and

Cu, It : (CYUI'),

Now after finding the estimates of the posterior

variance-covariance matrix we can find the estimates of the

posterior expectations of y and.lY which are

7: E(y I d*,T) = DY*[W’X*’d* - W/x*’x*C'1x*’d*]

Dy“ w’(1-x*’x*c-1)x*’d:

DY*W’ (I-A’) X"d’
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U" = E(U|d“,T) = C"X"/(d*—X“Wy‘).

1.2 Posterior Distribution of 5

From the above estimates, the posterior expectation of

a: = E(5 ld,T) = E[(Wy + U) I d*,T]

= X‘Wy‘ + X‘C“X"(d‘-X‘Wy‘)

Last, the posterior dispersion matrix of 5* is
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D5. = D(6|d‘,T) = D(Wy|d“‘,’I‘) + D(U|d*,T) + c0v(Wy,U|d“) + cov(U*,Wy

= C" + (I-A)x*D*W/x:’(1—A)/.
Y

2. M.L.E. ESTMATION OFTHE DISPERSION MATRICES VIAEM

The empirical Bayes estimation procedure discussed above

assumed that the covariance matrices 2 and T are known. But

in real situations this is not the case. Consequently birandy

cannot be estimated using the formulas above because their

maximum likelihood estimates do not exist in closed form

especially in the unbalanced case and data sets with missing

data points (Dempster, Laird, & Rubin, 1977). Thus, from the

empirical Bayes point of view, point estimates of the

dispersion parameters are first calculated. Then these point

estimates are substituted into the formulas for calculating

the posterior expectation and dispersion matrices. Typically,

these dispersions are estimated by means of maximum
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likelihood, so that they will be asymptotically efficient with

known large sample normal distributions as K¥w (Raudenbush,

1988).

Dempster, Laird, and Rubin (1977) and Little and Rubin

(1987) suggested the use of EM algorithm as a numerical

approach to compute maximum likelihood point estimates of the

unknown variance and covariance components from incomplete

data. Pigott (1992, 1994) outlined the EM algorithm

procedure to obtain the maximum likelihood estimates for

effect-size data with missing predictor data points.

In this study we consider the case of the multivariate

data to be incomplete and missing (ignorable nonresponse)

because individuals in the primary research studies are

observed on different subsets of the complete set of variables

(Little and Rubin, 1987). Here, the EM algorithm developed by

Dempster, Laird, and Rubin is used to obtain the maximum

likelihood estimates of the parameters. Using this method of

estimation, we assume that the population effect size vector

6 is known. Further, we assume that the errors of the

between-study model, U, have been observed. Given these

assumptions, the covariance matrix T can be estimated by

T = K‘IZUiUi’.
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The basic idea of the EM algorithm is to estimate the

"complete data" sufficient statistics (23LQU!) and then find

the maximum likelihood estimates of T based on the estimates

of the sufficient statistics. Of course, estimation of the

sufficient statistics requires initial estimates of the

covariance matrix; If by using, for example, ordinary least

squares estimates of the residuals from within-study and

between- studies models. Thus the goal of the EM procedures

is to find parameter estimates based on the expected values

for the sufficient statistics of the statistical model.

The EM algorithm is an iterative procedure where each

iteration consists of two steps (estimation and maximization

steps). I next illustrate how the two step process of this

algorithm works.

2.1 E-Step (Expectation Step)

Given the initial estimates cm IT and the effect size

estimates, we can find the posterior expectation of the

sufficient statistic 23L4UX of the model as
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Hz U,U,’ I d*,T) = Z U,*’U,‘ + 2(X,X{ + T")'1 + SAM/,1); WiA’, .

Here T refers to the initial estimate of T, we also

assume that the multiple effect sizes have a multivariate

normal distribution. This multivariate normal distribution

has sufficient statistics which are the sums and the sums of

the crossproducts of the observations in the data.

Conditional expectations of these sufficient statistics are

used to estimate the mean vector and the variance-covariance

matrix of the multivariate normal distribution.

2.2 M-Step (Maximization Step)

Based on the expected values of the sufficient statistics

from the E-step, new estimates of the elements of the

covariance matrix T are computed” .At the end of the iterative

process (estimation and maximization steps) the estimate of

the matrix T converges to local maximum (Dempster, Laird, and

Rubin, 1977; Little and Rubin, 1987; Pigott, 1994). This new



77

T matrix estimate can be substituted in the formulas for

finding the posterior mean vector and variance-covariance

matrices of 6, 'y, and (I.

In summary, the E-step of the EM algorithm produces the

posterior expectations of the complete data sufficient

statistics at each stage of the iteration. This expected

value of the sufficient statistic (HZ: U,’U,)) can be used to

find new estimates of T.

Once this new covariance matrix is found, it can be

substituted in the formulas for finding the posterior mean

vectors and dispersion matrices of 6, y, and UL Then, these

new posterior values can be substituted in the formula for

finding the expected value of the sufficient statistics to

yield a new posterior expectation (E-step). This new

posterior expectation produces a new posterior estimate ofT

(M—step). The resulting value of T is then used as input for

the next E-step. The process iterates back and forth until

convergence to the maximum likelihood estimates at a required

degree of accuracy is attained.



CHAPTER VI

EMPIRICAL APPLICATION OF

MULTIVARIATE HIERARCHICAL LINEAR MODEL

The proposed multivariate hierarchical linear model and

estimation theory are applied in this chapter. The study

involves the analysis of generated multivariate normal data

set with pre-specified parameter values using FORTRAN program

and IMSL (Version 10) subroutines.

The main rationale for using an artificial data set in

this study was to validate the multivariate estimation

procedures using the HLM computer program for analyzing multi-

level data sets versus using the V—known program which is part

of the HLM program. The VeKnown program was designed for

analyzing effect-size sets for research-synthesis purposes and

it can be used for univariate (one effect-size from each

study) and complete multivariate (multiple correlated effect

sizes from each study with no massing effect sizes) meta-

analyses. In other words, the existing V—known program can be

used for multivariate meta-analysis when we have the same

78
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number of multiple correlated effect sizes from each study in

the review. However, this is typically not the case.

1. INTRODUCTION TO THE HLM COIVIPUTER PROGRAM

The.hierarchical linear model (HLM) program (Bryk.et al.,

1986) applies the EM algorithm to provide restricted maximum

likelihood (RML) estimates of the variance-covariance

components (Dempster, Laird, and Rubin, 1977). Consequently,

these estimates of the variances and the covariances can be

used to obtain empirical Bayes estimates of the linear model

parameters.

This program (Bryk et al., 1986) is available to

researchers from different disciplines . It constitutes a

general analytic method for studying multi—level data with

' hierarchical characterization and analyzing effect-size data

sets for meta-analysis and research review purposes.

Using the HLM program for meta-analysis and research

synthesis typically involves the application of the V-Known

routine (Bryk et al., 1986) within the HLM computer program.

The V-Known routine is a general multivariate regression

routine for univariate and multivariate effect-size data
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sets(data with the same number of effect sizes for each study)

and assumes that the sampling variance-covariance matrix among

these multiple effect-size parameters is known. However, the

V-Known routine for analyzing research-synthesis data cannot

handle multivariate data sets with missing effect sizes for

some of the studies and complete data for the rest of the

studies.

In this study, the HLM program for analyzing multi—level

hierarchical data is used to estimate the parameters of the

multivariate mixed—effects model for meta-analysis with

missing data points. Before applying the HLM program, the

within-study model is reformulated as a weighted least-squares

within-study model by using the Cholesky factorization

principle.

The procedure for reformulating the within—study model

involves the following steps. First, each of the estimated

variance-covariance matrices for the vector of estimated

multiple effect sizes from each of the primary studies in the

review should be factorized to a Cholesky triangular matrix.

Second, the components of the within-study model (in this case

the vectors of the multiple effect sizes and the identity

matrices) are premultiplied by the inverse of the resulting

Cholesky triangular factors. After these two reformulation

steps, the HLM program for multi-level data (not the V-Known

program) can be used to fit the specified statistical model
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and obtain empirical Bayes estimates of the parameters in the

model.

2. MULTIVARIATE EFFECT-SIZE DATA GENERATION

The proposed multivariate mixed-effects model which was

presented in previous chapters allows for K studies with

1% effect sizes from each study. In other words, it allows

different numbers of multiple effect sizes and different

number of predictors from each study.

Previous research in meta-analysis suggested values and

ranges for the parameters of the generated data in this study.

A. Number of Studies

In fact, not many published meta-analysis deal with

multivariate effect sizes because of the complexity of the

data and the statistical analysis for such data. The reviews

of the SAT coaching studies (Becker, 1990; Kalaian &

Raudenbush, 1994) reported 20 studies and 47 samples with.SAT-

Verbal and SAT—Math effect sizes. Based on these reviews, the

number of studies chosen for this simulation study was KT==

50.
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B. Sample Sizes for each Studv

Hedges and Olkin (1985) used for their simulation studies

sample size values ranging from 10 to 100 for each of the

experimental and control groups in each of the K studies. On

the other hand, the SAT coaching studies reviewed previously

(Becker, 1990; Kalaian & Raudenbush, 1994) contained eight

studies with sample sizes larger than 100 for the coached and

uncoached groups.

Based on these findings, 50 sample sizes ranging from 10

to 150 were generated from a uniform distribution (10 , 150).

c. Multiple Effect Sizes

For simplicity of interpreting the results from applying

the hierarchical linear model to multivariate effect sizes,

a data set with bivariate effect sizes was chosen in this data

generation. However, the procedure and data analysis can be

generalized to data sets with more than two effect sizes in

each study.

The artificial bivariate effect sizes (two outcome

variables or effect sizes from each study) for this study was

generated from the multivariate normal distribution with zero

mean vector and the following variance-covariance matrix
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l

_ 0.0800 0.0528

0.0528 0.0800

The values of these variances were chosen based on: (a)

the results of previous simulation research in meta-analysis.

For instance, Hedges and Olkin (1985) reported the variance of

effect sizes when the sample size is 100 as being equal to

0.083 (TABLE 3, P.84) and (b) the results of synthesizing SAT

coaching effectiveness studies. For example, Kalaian and

Raudenbush (1994) synthesized SAT coaching data set, where the

average of the variances of the effect sizes was about 0.07.

This chosen 'variance of 0.08 corresponds to a standard

deviation of about 0.28. So about 95% of the effect sizes

would be between -0.6 and 0.6 if the mean of the effect sizes

is zero.

Then, based on these values of the variances, the

covariances between the effect sizes were calculated using the

formula given in Chapter 3. lkicalculating these covariances,

a value of 0.66 was used as the correlation between the two

correlated effect sizes. .Again, this value was chosen.because

the actual correlation between SAT-Verbal and SAT-Math scores

is 0.66.
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3. RESULTS

In order to validate the workability and the

appropriateness of using the HLM computer program instead of

the V-Known program for research synthesis purposes, the V-

known and the HIM program were applied to the artificial

generated bivariate data. These artificial bivariate effect

sizes, sample sizes for the experimental and control groups,

and the estimated variances and covariances of these effect

sizes are listed in Table 2.

3.1 DESCRIPTION OF THE GENERATED DATA

The values of the set of generated effect sizes for the

50 samples (Table 2) ranged from -O.71 to 0.65 in standard

deviation units with an overall average of 0.03 and a variance

of 0.07, while the second set of effect sizes ranged from 0.63

to 0.47 with an overall average of —0.04 and variance 0.068.

Thus, the average effect sizes for both generated effect-size

sets appear to be quite similar and equal to the elements of

the population mean vector of the hdvariate normal

distribution (which was set to zero).
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3.2 THE V-KNOWN PROGRAM RESULTS

APPENDIX A contains the listing of the computer output

from applying the V-Known program to these generated

artificial data. The results of fitting the unconditional

regression model to the generated multiple effect sizes using

the V—Known program show that the average of the first set of

effect sizes (labeled V in Table 6.1) is 0.04 (p = 0.276) and

it is -0.02 (p = 0.320) for the second set of effect sizes

which is labeled M.

Furthermore, the findings show that the estimated

variance—covariance matrix of the random effects part of

fitting the unconditional hierarchical linear model is

T _ 0.05411 0.02010

0.02010 0.03614

Finally, the results show that both of these variance

components are significant (p < 0.000). These findings
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indicate that the V and M effect sizes are inconsistent across

the 50 studies.

3.3 THE HLM PROGRAM RESULTS

APPENDIX B documents the computer output of applying the

HLM program and the proposed multivariate mixed linear model

to these generated data (bivariate effect-size data set). The

results of fitting the unconditional hierarchical linear model

to these generated data using the HLM program show that the

average effects of V is 0.04 (p = 0.276) and it -0.02 (p =

0.320) for M. These results are identical to those from the

V-Known routine.

Also, these results indicate that the estimated variance-

covariance matrix of the random effects part of fitting the

unconditional hierarchical linear model is

'1‘ _ 0.05411 0.02010

0.02010 0.03614
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Finally, the results show that both of these variance

components are significantly different from zero (p < 0.000).

These findings indicate that the V and M effect sizes are

inconsistent across the 50 studies.

4. CONCLUSIONS

The results of applying the V—Known and the HLM programs

to the same generated artificial data set yielded exactly the

same jparameter estimates. inns fixed and random-effects

parameter estimates of the proposed hierarchical linear model

in this study were exactly the same.

In summary, we learned from these two applications is

that the HLM program, which is designed for analyzing multi-

level data sets, can be used for multivariate meta-analysis

purposes. Consequently, this HLM program application can be

used, to analyze :multivariate effect-size data sets with

missing data points using the mixed-effects model developed in

chapter 4.
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Table 2

 

STUDY uE 11C v M v(V) cov(V,M) v(M)

study 1 28 28 0.17 0.27 0.07 0.05 0.07

study 2 80 80 .0.71 -0.26 0.03 0.02 0.03

study 3 105 105 0.46 0.35 0.02 0.01 0.02

study 4 110 110 0.30 -0.28 0.02 0.01 0.02

study 5 40 40 -034 .021 0.05 0.03 0.05

study 6 64 64 -023 0.19 0.03 0.02 0.03

study 7 91 91 -001 -011 0.02 0.01 0.02

study 8 47 47 -017 -027 0.04 0.03 0.04

study 9 85 85 0.23 0.47 0.02 0.02 0.02

study 10 52 52 0.20 -007 0.04 0.03 0.04

study 11 137 137 -0.14 -0.00 0.01 0.01 0.01

study 12 48 48 0.14 0.26 0.04 0.03 0.04

study 13 70 70 -022 -019 0.03 0.02 0.03

study 14 47 47 0.38 0.33 0.04 0.03 0.04

study 15 72 72 -019 -009 0.03 0.02 0.03

study 16 148 148 -012 -019 0.01 0.01 0.01

study 17 38 38 0.31 -0.16 0.05 0.03 0.05

study 18 47 47 0.17 0.46 0.04 0.03 0.04

study 19 34 34 -0.18 0.43 0.06 0.04 0.06

study 20 52 52 -002 0.01 0.04 0.03 0.04

study 21 146 146 0.24 0.09 0.01 0.01 0.01

study 22 46 46 -015 -0.63 0.04 0.03 0.05

study 23 12 12 -0.09 -0.59 0.17 0.11 0.17

study 24 128 128 0.43 0.37 0.02 0.01 0.02

study 25 67 67 0.26 -0.19 0.03 0.02 0.03

study 26 140 140 0.10 0.09 0.01 0.01 0.01

study 27 94 94 -013 -029 0.02 0.01 0.02

study 28 32 32 0.19 0.02 0.06 0.04 0.06

study 29 105 105 0.65 0.31 0.02 0.01 0.02

study 30 91 91 0.22 0.18 0.02 0.01 0.02

study 31 106 106 0.43 0.19 0.02 0.01 0.02

study 32 111 111 0.04 0.31 0.02 0.01 0.02

study 33 22 22 0.02 -012 0.09 0.06 0.09

study 34 29 29 0.04 -005 0.07 0.05 0.07

study 35 65 65 -022 -007 0.03 0.02 0.03

study 36 141 141 -005 0.11 0.01 0.01 0.01

study 37 145 145 0.45 -0.16 0.01 0.01 0.01

study 38 50 50 -0.46 -002 0.04 0.03 0.04

study 39 72 72 -0.00 0.08 0.03 0.02 0.03

study 40 139 139 0.15 -0.26 0.01 0.01 0.01

study 41 19 19 -0.08 0.09 0.11 0.07 0.11

study 42 14 14 0.29 014 0.14 0.09 0.14

study 43 88 88 -017 -002 0.02 0.02 0.02

study 44 132 132 -040 -0.38 0.02 0.01 0.02

study 45 14 14 0.19 0.00 0.14 0.09 0.14

study 46 137 137 -039 -030 0.01 0.01 0.01

study 47 143 143 0.18 -020 0.01 0.01 0.01

study 48 88 88 0.04 -023 0.02 0.01 0.02

study 49 14 14 -023 -043 0.14 0.10 0.15

study 50 144 144 0.10 0.24 0.01 0.01 0.01

 



CHAPTER VII

SAT-COACHING EFFECTIVENESS:

A META-ANALYSIS USING

MULTIVARIATE HIERARCHICAL LINEAR MODEL

SAT coaching studies are used in this chapter to

illustrate the application of the multivariate mixed-effects

linear model for meta-analysis with missing effect sizes.

This model was developed in chapter 4 and tested using

generated.bivariate effect sizes (chapter 6). 1mmzpurposes of

the present application is (a) to show the applicability of

the proposed model to educational research and multivariate

meta—analysis with.missing data points, and (b) to compare the

results and parameter estimates of applying the multivariate

mixed-effects linear model to SAT coaching studies with the

results of applying the multivariate fixed-effects model to

this data set.
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1. INTRODUCTION

In 1926 the Scholastic Aptitude Test (SAT) was first

introduced into the College Board's admissions testing program

(Dyer, 1987). Nearly a thousand of the nation's colleges and

universities now require the SAT examination, and each year

approximately a million high school students take the SAT as

one of their main college admission requirements. As a result

of the importance of the SAT for college entrance, some

secondary schools have been importuned by students, parents,

and school counselors to provide SAT coaching sessions and

test-preparation courses“ .At ‘the same time, commercial

coaching schools have promised the public to increase

students' SAT scores dramatically within a short period of

time through their special coaching' programs (Kalaian &

Becker, 1986).

Over the last forty yearsta great deal of controversy has

emerged about the effectiveness of coaching for the Scholastic

Aptitude Test. The Educational Testing Service (ETS), which

has been developing and administering the SAT, claims that

coaching and training programs have little effect in raising

students' SAT scores. Their argument relies on the fact that

aptitude tests measure cognitive and intellectual skills such

as quantitative problem solving and verbal reasoning skills
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which develop gradually over the years as a result of various

experiences (in-school, out-of—school, and in the home).

Consequently, they say that SAT scores do not depend upon a

specific course of study or highly focussed verbal and

mathematical content teaching. Commercial coachers, on the

other hand, claim that special SAT coaching classes, test

preparation manuals, instruction in test-taking strategies,

drill and practice on SAT test items, and test familiarization

can yield significant increases in the mastery of the

cognitive and analytical skills tested by the SAT and

consequently increases in a students' SAT scores.

2. DESCRIPTION OF THE SCHOLASTIC APTITUDE TEST (SAT)

The Scholastic Aptitude Test (SAT) is "a multiple-choice

test of how well one has acquired the ability to reason

expeditiously with the kind of verbal and mathematical facts

and concepts one has presumably acquired in elementary and

secondary schools" (Dyer, 1987). It consists of an 85-item

verbal subtest (SAT-V) and.a 60-item mathematics subtest (SAT-

M). The verbal subtest measures vocabulary, reading

comprehension, and verbal reasoning. On the other hand the

mathematics subtest measures mathematical reasoning and

comprehension abilities in the areas of arithmetic, algebra,

and geometry and problem solving skills (Comras, 1984).
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3. PAST RESEARCH ON SAT COACHING EFFECTIVENESS

In the last 13 years, six studies have reviewed and

summarized the results from primary SAT coaching effectiveness

studies. The first review was by Slack and Porter (1980), who

reviewed 10 reports published prior to 1968. They calculated

the mean gain scores for SAT-V and SAT—M subtests separately

and compared the results for studies which had used either

experimental or statistical controls to those studies without

comparison groups. The average gain score for the controlled

studies was 16 points for the SAT-V and 12 points for the SAT—

M. When the results of all the studies (controlled and

uncontrolled studies) combined, the average gains were 29

points for the SAT-V and 33 points for the SAT-M. Clearly the

uncontrolled studies in their review produced greater gains

than did experimentally or statistically controlled studies.

Consequently Slack and Porter concluded that coaching can

effectively help students to raise their scores and they

stated that "there is ample evidence that students can

successfully train for the SAT and that the more time students

devote to training, the higher their scores will be" (p. 164).

The second review was conducted by Messick and Jungeblut

(1981), who included SAT primary coaching studies published

prior to 1980, but excluded two SAT-M and two SAT-V studies

used by Slack and Porter. They studied the relationship
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between the number of coaching hours and the size of coaching

effects using regression analyses and they concluded that

logarithmically transformed student contact hours were

linearly related to coaching effects (gain scores). But the

slope coefficient for the regression of SAT-M gain scores on

logarithmic transformed contact time was steeper than the SAT-

V slope coefficient. In their review they also distinguished

between controlled and uncontrolled studies. The average gain

scores for experimental (coached) groups weighted by the group

sample sizes were 14.3 for SAT-V and 15.1 for SAT-M; Contrary

to the experimental studies, the average gain scores in all

studies, both experimental and non-experimental (weighted by

the control-group sample sizes) were 38 points for the SAT-V

and 54 points for the SAT—M.

Dersimonian and Laird (1983) conducted a third review in

which they incorporated all the studies used by Slack and

Porter and Messick and Jungeblut. Their approach differed

from.those of the two previous reviews because it involved the

use of a random-effects model to estimate the effects of

coaching and explain the variability in the coaching effects

across studies. That is, they separated the true variation in

coaching effectiveness from the within-study sampling

variation. They reported that uncontrolled studies had gain

scores three times larger than controlled studies and five

times larger than matched or randomized studies for both.SAT-V

and SAT-M subtests. Consequently, they concluded that
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coaching has positive effects on SAT scores, but the size of

the coaching effect is too small to be practically important.

The fourth synthesis was by Kulik et a1. (1984), who

reviewed only the controlled studies (a total of 14 studies).

They calculated standardized mean differences (effect sizes)

for each study and concluded that coaching raised SAT scores

by 0.21 standard deviation units in four randomized studies

versus 0.12 standard deviations for non-randomized studies.

Kalaian and Becker (1986) conducted the fifth review in

which they utilized multivariate techniques to analyze the

SAT coaching studies. Their results showed considerable

variability of effect sizes among SAT coaching studies and

that duration of coaching and sponsorship by the Educational

Testing Service (ETS) predicted effect size. Their

multivariate findings indicated that the effect of coaching is

to increase SAT-Math scores by about 18 points and SAT-Verbal

scores by 17 points.

The sixth and the last review was by Becker (1990), who

reviewed 23 coaching effects reports utilizing the

standardized mean-change measure for pretest-posttest research

together with.thetgeneralized least-squares (GLS) approach for

modeling multivariate study outcomes (SAT-V and SAT-M). In

this review, studies without control groups are included. 'Ehe

results showed stronger coaching effects for the SAT

mathematical subtest. Furthermore, regression models based on

published research showed nonsignificant residual variance
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with coached groups exceeding control groups by 0.09 standard

deviations on SAT-V and 0.16 on SAT-M.

In summary, although each of the previous reviews

examined different sets of studies and used different

quantitative methods to summarize the results of the coaching

effectiveness studies, they also shared common conclusions.

For example: (a) Studies without a control group have higher

coaching effects than controlled studies; (b) There is a

remarkable amount of variation in outcomes of SAT coaching

studies; (c) Duration of coaching intervention is strongly

related to coaching effects; ((1) There is a differential

effect of coaching on SAT-V and SAT-M subtests.

This review considers the controlled primary studies

reviewed previously and more recent primary studies using

multivariate mixed-effect approach for meta—analysis (Kalaian,

1994). By using this approach I will be able to

1. investigate and model the variation in the multiple

outcomes (SAT-V and SAT-M) simultaneously as a function

of study, sample, and coaching characteristics;

2. estimate the variance-covariance of the multiple random

effects and test the hypothesis of no variation-

covariation among the multiple effect size parameters;
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3. estimate the relationships between study characteristics

and the multiple study outcomes;

4. include in the analysis the primary studies that coached

for both SAT subtests (verbal and mathematical) as well

as studies that coached for only one of the subtests and

not the other; and

5. include.in the analysis different.predictors for the SAT-

V and SAT—M outcomes. For example, different contact

coaching hours for SAT-V'and SAT-M within a single study.

6. to use the GLS transformed within-study model (proposed

in Chapter 4 to perform multivariate fixed-effects

statistical analysis.

4. METHODOLOGY

4.1 Studies in the Review

The set of primary studies reviewed here include those

studies examined by previous reviews plus new studies

retrieved through a search of the Educational Resources

Information Center (ERIC) database. However, our analysis

uses only the randomized, matched, and statistically
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controlled studies. The studies without control groups were

excluded from this synthesis for two reasons: (1) Previous

reviews showed much higher coaching effects for uncontrolled

studies than controlled studies; (2) Theteffect sizes from the

uncontrolled studies in previous reviews showed considerable

variability and sometimes more than twice the variability in

the controlled studies; (3) Such studies lack internal

validity. Uncontrolled studies by Coffin-second experiment

(1987), Johnson (1984), Coffman & Barry (1967), Marron (1965),

Pallone (1961) are excluded” .Also, in this review we consider

only the results for the subtest for which coaching and

instruction was provided because some studies coached and

provided instruction for only one SAT subtest but examined.the

subjects on both subtests (for example, French, 1958).

Furthermore, many primary studies reported results of

coaching effects from different schools or used different

coaching programs (e.g., Alderman & Powers, 1980; Evans &

Pike, 1973). Because different subgroups of students were

involved in the comparisons between coached and control

groups, we have treated the effect-size estimates calculated

from separate schools within each study as distinct and

independent samples. lmsa.result, we identified.39 samples in

which SAT-Verbal subtest is coached and tested and 28 samples

examining SAT-Math. Only 20 from these two groups examined

coaching effects for both SAT subtests (Table 3).
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4.2 Study Features

Study characteristics may be coded as part of any meta-

analysis technique in order to explain the sources of the

variations in the effect sizes. Here, these characteristics

included experimental design, context, and subject

characteristics. Table 4 lists and summarizes the features

and the characteristics of the studies considered in this

review.

4.3 Statistical Procedures

The pre-post multiple measures procedure for pretest-

postttest designs outlined in the second section of Chapter 3

is used in this review to measure the effectiveness of SAT

coaching. The standardized mean change measure is computed

separately for each of the SAT—V and SAT—M coached and

uncoached samples. For instance, a study with one coached and

one uncoached group for each SAT subtest (SAT-V and SAT-M)

would have two satandardized mean changes for each outcome,

each computed as the difference in mean performance between

the posttest and pretest divided by the pretest standard

deviation.
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Let. gf and. 3;, denote the standardized. mean. change

measures for coached and uncoached groups respectively for

each of the K studies, i=l,2,....,K, in the review and can

represented as

fC_iC fU-X—U

giC = (g g) and 810 = (i i),
 

where Xic and XI” represent the pretest SAT means for the

coached and uncoached groups. Yic and it, represent the

posttest SAT means for coached and uncoached groups

respectively. Sf and S? represent their respective pretest

standard deviations. For each of the two SAT subtests,

separate standardized mean change measures were computed for

coached and uncoached groups.

In this review, the unbiased estimates of standarized

mean Changes are calculated for coached and uncoached groups

for both SAT-V and SAT-M subtests. The unbiased estimates of

the coached and uncoached standardized mean changes are
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and

where hf and hf are the coached and uncoached groups sample

sizes.

The estimated variances of df and d? are

4(1 — rfy) + (tiff

211.0
l

H

 

IVattdf)

and

 

4(1 - r5.) +(d,”)2

2n.”
3

V644,”)
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The coaching effect-size, A1, is the difference between

the coached and uncoached unbiased standardized mean change

measures for each of the SAT subtests within each of the K

studies and is denoted as

Thus, studies that examine the effects of coaching on

both SAT-M and SAT-V will have two effect sizes (A: for the

SAT-V standardized mean-change difference and A?! for the SAT-

M subtest).

A

The estimated variance of A! is calculated as follow

. 4(1-rc)+(d 2 4(1-r")+(d")2
'WmtAp :: xyc l + x7”, i I

2n, 2n.

  

where r5, and ryg, are the estimators of the pretest-posttest

correlations for the coached and uncoached groups

respectively. In this review, the value of 0.88 was used to
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represent the pretest-posttest correlation for coached and

uncoached samples for both SAT-V and SAT-M (DerSimonian and

Laird, 1983).

The estimated covariance between A? and A? is calculated

as

  

60144,”. 41") = rm [t/thf") thf“) + (It/(45”) V(dt‘"‘)1,

where rm is the correlation between the SAT-Math and the SAT-

Verbal subtests. Here we used the value of 0.66 to represent

this correlation (Kalaian & Becker, 1986).

Thus, the estimated variance-covariance matrix for each study

can be represented as

Var(A f) Cov(Z\ £131")

h
’ 11

Cov(A {,33’) Var(£\ 1“) '
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Finally, these multiple coaching effect sizes are

analyzed and modeled by utilizing a multivariate mixed-effects

model for meta—analysis outlined in Chapter 4. In this

conceptualization, the multiple effect sizes are viewed as

varying randomly across the.different.coaching studies and the

variation among the multiple coaching effect size is modeled

simultaneously as a function of study characteristics plus

random error. Thus, this procedure allows one to have two

effect sizes (SAT-V and SAT—M) from some of the studies as

well as single effect sizes (either SAT-V or SAT-M) from the

rest of the studies in the review.

5. RESULTS

The values of the SAT-Verbal effect sizes for the 39

samples ranged from -0.35 to 0.72 in standard deviation units

with an overall weighted average coaching effect of 0.12 and

standard deviation 0.22, while the 28 SAT-Math effect sizes

ranged from —0.49 to 0.60 with an overall weighted average of

0.11 and standard deviation 0.28 (Figure 1). Thus, the

average effect of coaching on SAT-Verbal and SAT-Math gains

appear to be quite similar. Note that the SAT-Math average

effects are smaller than in previous reviews but the SAT-

Verbal effects are about the same. Although most of the
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coaching effect sizes are positive, the magnitudes of the

coaching effects appear quite variable for both subtests.

FIGURE 1

Frequency Distribution of SAT Effect Sizes
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The first question I tried to answer with the application

of the Multivariate Hierarchical Linear Model to SAT coaching

studies was the degree of consistency of the effect sizes for

both subtests and the multivariate empirical Bayes estimates

of the average of these effect sizes. The results of fitting

an unconditional hierarchical linear regression model (Table

5) show that the average SAT—Verbal effect size is 0.12 (p <

0.000) and it is 0.13 (p < 0.004) for SAT-Math. Contrasting

the SAT—Verbal and SAT-Math regression coefficients show that
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there is no significant differences between the two

coefficients. Furthermore, the findings show that SAT-Math

samples are more variable than SAT-Verbal samples (12,, = 0. 006,}:

= 0.027 vs 3,, = 0.03, p = 0.000).

As a result of the inconsistency in the coaching effects

for both subtests across the studies, I consider study

characteristics (duration of coaching, year of publication,

ETS sponsorship, and study quality) as explanatory variables

to explain some of this inconsistency. For the 28 SAT-Math

and the 39 SAT-Verbal data points in this review, the student

contact hours ranged from 4 to 93 hours for both subtests with

an average coahing hours of 15 for SAT-Math and 17 for SAT-

Verbal and most of the data points are clustered at the low

end of the number of hours dimension (see Table 6). For this

reason and the fact that there are diminishing returns in both

SAT subtests' scores (Messick and.Jungeblut, 1981), we used in

the analysis the logarithmic tranformation of the hours of

coaching dimension. Logarithmically transformed contact hours

provides more accurate representation of the functional

relationships between coaching effect and the number' of

coaching hours. The results show that SAT coaching effect

sizes is moderlately related (0.5 for SAT—Verbal and 0.4 for

SAT-Math) to duration of contact hours (see Figure 2).
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FIGURE 2

Relationships between SAT Effect Sizes and Log (Contact Time)
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The results of fitting conditional hierarchical linear

model (Table 7) show that the logarithmically transformed

duration of coaching has a significant.positive effect on SAT-

Math coaching effect sizes even after controlling for other

variables in the model (B = 0.15, p = 0.04). As we can see

in Table 7, no other variables studied in this review had a

significant effect on SAT scores. .Also, the results show that

after accounting for some of the study characteristics, still

considerable and significant variability left in the coaching

effect sizes (I? = 0.008, p = 0.03 and €;-= 0.03, p = 0.000).
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Furthermore, the results show that the estimated covariance

between SAT-Verbal and SAT-Math effect sizes is about -0.01.

6. FIXED-AND-MIXED-EFFECTS MODELS COMPARED

Although the fixed-effects approach is statistically

developed (Raudenbush, Becker, and Kalaian, 1988; Gleser and

Olkin, 1994), the actual analytical procedure is complex and

needs.a special computer skills from meta-analysts in order to

perform a meta-analytic review. Thus, in this section, the

multivariate fixed-effects model is carried out by applying

multiple regression analysis, using the available standard

statistical packages (SPSS-PC, SAS, SYSTAT,...etc.), on the

transformed GLS within—study model which is developed in

Chapter 4” Additionally, the parameter estimates of this

application (multivariate fixed-effects model) to SAT coaching

data set is compared to the parameter estimates obtained from

applying the multivariate mixed-effects model which is

developed in Chapter 4.

From the findings of the application of the multivariate

mixed-effects model to SAT coaching data in the previous

section, I learned that duration of coaching was the only

significant. explanatory 'varaiardsn Thus, for’ comparison
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purposes, the number of coaching hours is considered in this

section as predictor variable in the model.

The results of fitting the conditional multivariate

mixed-effects model show that the logarithmically transformed

duration of coaching has a significant positive effect on SAT-

Math coaching effect sizes (Table 8). On the other hand, the

results of fitting the conditional multivariate-fixed model

(Table 8) show that the logarithmically transformed coaching

hours is not statistically significant. Also, from these

results, we can see that the multivariate fixed-effects model

yielded standard errors for the beta coefficients smaller than

the mixed effects model.

7. DISCUSSION

The results of the multivariate hierarchical linear model

for' coaching’ effect. sizes showed. that. both. SAT tcoaching

programs, on average, had positive effects of about 0.11 of a

standard deviation or about six points for both SAT-Verbal and

SAT-Math scores. .Also, the results indicated that the average

SAT-Verbal effect sizes is not significantly different from

the average SAT-Math effect sizes“ IHowever, although we found

great variability for the effects of coaching for both
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subtests, the coaching effects for SAT-Math were more variable

than the SAT-Verbal coaching effects. When we modeled the

variability of the effect sizes as a function of study

features, student contact hours was the only significant

predictor (especially for SAT-Math effect sizes) even.after’we

controlled for the other predictors in the model. This result

agrees with the previous findings of Messick and Jungeblut

(1981) and Kalaian and Becker (1986) who found that duration

of coaching had a strong effect on SAT scores. I also

discovered that the design of the study, the publication year,

and whether or not the coaching program is sponsored by

Educational Testing Service did not have significant effects

in explaining the variability in coaching studies.

In comparing the results of analyzing the SAT coaching

effect sizes using the multivariate mixed-effects model and

the: multivariate fixed-effects :model, the .logarithmically

transformed coaching hours yielded significant positive effect

on SAT-Math effect sizes using the multivariate mixed-effects

model. These results prove the existance of’ parameter

variability in the coaching studies that should be accounted

for by using the mixed-effects models.
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Table 3

Effect Sizes of SAT Coaching Studies

 

 

Study Year r1c n“ A V A 3. Hour ETS Study Home

5 Type Work

Randomized Studies

Alderman & Powers (A) 1980 28 22 0.22 . 7 1 1 1

Alderman & Powers (B) 1980 39 40 0.09 . 10 1 1 1

Alderman & Powers (C) 1980 22 17 0.14 . 10.5 1 1 1

Alderman & Powers (D) 1980 48 43 0.14 . 10 1 1 1

Alderman & Powers (E) 1980 25 74 -0.01 . 6 1 1 1

Alderman & Powers (F) 1980 37 35 0.14 . 5 1 1 1

Alderman & Powers (G) 1980 24 70 0.18 . 11 1 1 1

Alderman & Powers (H) 1980 16 19 0.01 . 45 1 1 1

Evans & Pike (A) 1973 145 129 0.13 0.12 21 1 1 1

Evans & Pike (B) 1973 72 129 0.25 0.08 21 1 1 1

Evans & Pike (C) 1973 71 129 0.31 0.09 21 1 1 1

Laschewer 1986 13 14 0.00 0.08 8.9 0 1 0

Roberts & Oppenheim (A) 1966 43 37 0.01 . 7.5 1 1 0

Roberts & Oppenheim (B) 1966 19 13 0.67 . 7.5 1 1 0

Roberts & Oppenheim (D) 1966 16 11 -0.66 . 75 1 l 0

Roberts & Oppenheim (E) 1966 20 12 -0.21 . 7.5 1 1 0

Roberts & Oppenheim (F) 1966 39 28 0.31 . 7.5 1 1 0

Roberts & Oppenheim (G) 1966 38 25 . 0.26 75 1 1 0

Roberts & Oppenheim (H) 1966 18 13 . ~0.41 7.5 1 1 0

Roberts & Oppenheim (I) 1966 19 13 . 0.08 7.5 1 1 0

Roberts & Oppenheim (J) 1966 37 22 . 0.30 7.5 1 1 0

Roberts & Oppenheim (K) 1966 19 11 . -O.53 7.5 1 1 0

Roberts & Oppenheim (L) 1966 17 13 . 0.12 7.5 1 1 D

Roberts & Oppenheim (M) 1966 20 12 . 0.26 7.5 1 1 0

Roberts & Oppenheim (N) 1966 20 13 . 0.47 7.5 1 1 0

Zuman (B) 1988 16 17 0.14 0.51 24 O 1 1
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Effect Sizes of SAT Coaching Studies
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Study Year c U . V A M Hours ETS Study Home

n n A A Type Work

Matched Studies

Burke (A) 1986 25 25 050 50 0 2 1

Burke (B) 1986 25 25 0.74 50 0 2 1

Coffin (A) 1987 8 8 -0.20 0.37 18 0 2 0

Davis 1985 22 21 0.14 -0.14 15 0 2 0

Frankel 1960 45 45 0.13 0.35 30 0 2 0

Kintisch 1979 38 38 0.14 20 0 2 1

Whitla 1962 52* 52‘ 0.09 -0.11 10 1 2 l

Nonequivalent Comparison Studies

Curran (A) 1988 21 17 6 0 3 0

Curran (B) 1988 24 17 6 0 3 0

Curran (C) 1988 20 17 6 0 3 0

Curran (D) 1988 20 17 6 0 3 0

Dear 1958 60 526 -0.02 0.21 15 1 3 1

Dyer 1953 225 193 0.06 0.27 15 1 3 1

French (B) 1955 110 158 0.06 4.5 1 3 1

French (C) 1955 161 158 0.20 15 1 3 1

FTC (A) 1978 192 684 0.34 0.31 40 0 3 0

Keefauver 1976 16 25 0.19 -.20 14 0 3 0

Lass 1961 38 82 0.03 0.11 1 3 1

Reynolds & Oberman 1987 93 47 -0.04 0.59 63 0 3 1

Teague 1992 10 15 0.40 18 0 3 O

Zuman (A) 1988 21 34 0.56 0.59 27 0 3 l

 

* The sample sizes for SAT-V were I: C = 52 and n U = 52.
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Table 4

Characteristics and Features of SAT Coaching Studies

 

 

Characteristic Coded Values

Randomized Study (1) yes (0) no

Student Voluntariness (1) yes (0) no

Presence of Verbal Coaching (1) yes (0) no

Presence of Math Coaching (1) yes (0) no

Assignment of Homework (1) yes (0) no

ETS Sponsored Research ( 1) yes (0) no

Publication Year last two digits of the year

Coaching Duration log (hours)
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Table 5

Frequency Distribution of Student Contact Hours

 

 

 

Categories (in hours) SAT-V Samples SAT-M Samples

4.5 - 10 18 15

10.5 - 20 10 6

20.5 — 30 6 6

30.5 - 40 1 1

40.5 - 50 3 0

> 50.5 1 1

Mean 17.2 15.4

S. D. 14.4 12.8

 

Total 39 28
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Table 6

Fitting Unconditional Model Results

 

 

Fixed and Coefficient Standard t-ratio P-value

Random Error

Effects

For SAT-V

Intercept 0.118 0.021 5.51 0.00

1'2 - estimate 00%

For SAT-M

Intercept 0.125 0.039 3.18 0.004

12 - estimate 0'03
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Table 7

Fitting Conditional Model Results

 

 

z .

r u - estlmate

Fixed and Coefficient Standard t-ratio P-value

Random Error

Effects

For SAT-V

Intercept 0.099 0.049 2.06 0.06

Year 0.002 0.004 0.48 0.39

log (hours) 0.075 0.002 1.94 0.13

ETS 0.079 0.118 0.68 0.36

Randomized 0.003 0.089 0.03 0.38

1:2,, - estimate mm;

For SAT-M

Intercept 0.057 0.32 0.77 0.29

Year -0.000 0.39 -0.19 0.39

log (hours) 0.15 0.04 2.47 0.02

ETS -0.016 0.39 -0.12 0.39

Randomized 0.07 0.34 0.63 0.32

0.03
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CHAPTER VIII

DISCUSSION AND IMPLICATIONS

In preceding chapters, the multivariate mixed-effects

model was first developed. Second, the empirical Bayes

estimates of the parameters for the model were derived.

Finally, the applicability of the proposed model to artificial

and real data sets was illustrated” .Additionally, the

parameter estimates from applying the multivariate mixed-

effects and the multivariate fixed-effects models were

compared. Although the concluding statements about these

analyses were provided in the previous two chapters, some

important conclusions will be restated in this chapter.

I learned from the application of the V-Known routine and

the Hierarchical Linear Model (HLM) program to the artificial

data set that the HLM program can be used instead of the V-

Known routine for research-synthesis purposed to obtain

empirical Bayes parameter estimates using the multivariate

mixed-effects model. Since the proposed model can be used to

model effect-size data with missing values, the HLM program

can be used to analyze multiple correlated effect sizes for

117
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each study in.the:meta-ana1ysis with missing effect sizes from

some of the studies.

The results of applying the multivariate mixed-effects

model to Scholastic Aptitude Test (SAT) coaching effects

studies showed that the HLM program can be applied

appropriately to multivariate meta-analysis with missing

effect-size data points. This evidence of the applicability

of the HLM program for analyzing multivariate effect-size data

with or without.missing effect sizes can.help us to carry more

design-oriented meta-analyses. For instance, we can use HLM

to take into account and incorporate within-study

characteristics in the multivariate mixed—effects model.

Another significant contribution of the proposed model

(multivariate mixed effects model) is its practical use to

perform multivariate fixed-effects model statistical analysis.

I illustrated the use of the proposed multivariate mixed-

effects model to obtain multivariate fixed-effects parameter

estimates by using standard statistical computer packages as

well as multivariate mixed-effects parameter estimated by

using the HLM computer software.

Given the importance and the seriousness of the "missing

effect—sizes problem" in meta-analysis and research synthesis,

the effects of missing effect sizes in multivariate data sets

should be further explored and examined more closely using

simulation studies. .Also, the behavior of the empirical Bayes

estimates when specific percentages (e.g. 5%, 10%, 15% and
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25%) of the effect sizes are missing should be further

studied.

In this study, the application of the HLM program and the

proposed multivariate mixed-effects model was illustrated

using bivariate artificial and real data sets. .As substantive

future research, the application of the illustrated

methodology should be applied to meta-analysis studies with

more than two outcomes, with or without missing effect sizes.

Also, these new applications should consider taking into

account the within-study characteristics and incorporating

them in the multivariate mixed-effects model. Furthermore,

the robustness of violating the assumptions of the proposed

model should be studied.



APPENDICES



APPENDIX A

V - KNOWN COMPUTER OUTPUT



*****t********************it****************************

"‘ H H L M M 22 *

* H H L MM MM 2 2 *

* HHHHH L M M M 2 Version 3.01 *

* H H L M M 2 *

* H H LLLLL M M 2222 *

************************8******************************

SPECIFICATIONS FOR THIS HLM RUN Sat May 28 11:44:50

1994

 

Problem Title: Multivariate HLM for Generated Data (No Predictors)

The data source for this run = simlssm

Output file name = output

The maximum number of level-2 units = 50

The maximum number of iterations = 3000

Weighting Specification

 

Weight

Variable

Weighting? Name Normalized?

Level 1 no no

Level 2 no no

The outcome variable is EF
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The model specified for the fixed effects was:

 

Level-1 Level-2

Coefficients Predictors

 

V slope, B1 INTRCPT2, G10

M slope, B2 INTRCPT2, G20

The model specified for the covariance components was:

 

Sigma squared (constant across level-2 units)

Tau dimensions

V slope

M slope

Summary of the model specified (in equation format)

 

Itvel-l Model

Y = B1*(V) B2*(M) + R

Level-2 Model

Bl = G10 + U1

B2 = G20 + U2
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Level-1 OLS regressions

Level-2 Unit V slope M slope

 
The average OLS level-1 coefficient for

The average OLS level-1 coefficient for

V = 0.02581

M = ~0.03986

STARTING VALUES

sigma(0)_squared = 1.00000

Tau(0)

V 0.03319 0.00707

M 0.00707 0.02643

The outcome variable is EF

Estimation of fixed effects

(Based on starting values of covariance components)

 

 

Fixed Effect Coefficient Standard Error T-ratio P-value

For V slope, B1

INTRCPT2, G10 0.037941 0.035791 1.060 0.225

For M slope, B2

INTRCPT2, G20 -0.021686 0.033678 -0.644 0.321
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The value of the likelihood function at iteration 1 = -1.989962E+002

The value of the likelihood function at iteration 2 = -1.982290E+002

The value of the likelihood function at iteration 3 = -1.978401E+ 002

The value of the likelihood function at iteration 4 = -l.976544E+002

The value of the likelihood function at iteration 5 = -1.975194E+002

The value of the likelihood function at iteration 7 = -l.975023E+ 002

The value of the likelihood function at iteration 8 = -1.975010E+002

The value of the likelihood function at iteration 9 = -l.975006E+002

The value of the likelihood function at iteration 10 = -1.975004E+ 002

Iterations stopped due to small change in likelihood function

******* ITERATION 11*******

Sigma_squared = 1.00000

Tau

V 0.05411 0.02010

M 0.02010 0.03614

Tau (as correlations)

V 1.000 0.454

M 0.454 1.000
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Random level-1 coefficient Reliability estimate

 

v, BO ' 0.622

M, B1 0.535

The value of the likelihood function at iteration 11 = -1.975004E+002

The outcome variable is EF

Final estimation of fixed effects:

 

Fixed Effect Coefficient Standard Error T-ratio P-value

 

For V slope, B1

INTRCPT2, G10 0.035176 0.041652 0.845 0.276

For M slope, B2

INTRCPT2, G20 -0.023977 0.036768 -0.652 0.320

Final estimation of variance components:

 

Random Effect Standard Variance df Chi-square P-value

Deviation Component

 

V slope, U0 0.23262 0.05411 49 153.90418 0.000

M slope, U1 0.19011 0.03614 49 116.82539 0.000

level-1, R 1.00000 1.00000

Statistics for current covariance components model

 

Deviance = 395.00079

Number of estimated parameters = 4



APPENDIX B

HLM COMPUTER OUTPUT



88******¥*38338********88*¥**************3***8***#*****

* H H L M M 22 *

* H H L MM MM 2 2 *

“ HHHHH L M M M 2 Version 3.01 *

* H H L M M 2 *

* H H LLLLL M M 2222 *

*********************#**¥******************************

SPECIFICATIONS FOR THIS HLM RUN Tue May 31 10:59:04

1994

 

Problem Title: Multivariate V-Known for Generated Data (No Predictors)

The data source for this run = c:\dis\d1.ssm

Output file name = outputl

The maximum number of level-2 units = 50

The maximum number of iterations = 3000

Note: this is a v-known analysis

The model specified for the fixed effects was:

 

Level-1 Level-2

Effects Predictors

 

V, B1 INTRCPT2, G10

M, B2 INTRCPT2, G20
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The model specified for the covariance components was:

 

Variance(s and covariances) at level-1 externally specified

Tau dimensions

V

M

Summary of the model specified (in equation format)

 

Level-1 Model

Y1=B1+El

Y2=B2+E2

Level-2 Model

B1= G10 + U1

B2 = G20 + U2

STARTING VALUES

Tau(0)

V 0.03263 0.00659

M 0.00659 0.02602
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Estimation of fixed effects

(Based on starting values of covariance components)

 

Fixed Effect Coefficient Standard Error T-ratio P-value

 

INTRCPT2, G10 0.038054 0.035615 1.068 0.223

INTRCPT2, G20 -0.021578 0.033540 -0.643 0.322

The value of the likelihood function at iteration 1 -2.144441E+002

The value of the likelihood function at iteration 2 -2.128138E+002

-2. 1 19697E + 002The value of the likelihood function at iteration 3

-2.115597E + 002The value of the likelihood function at iteration 4

-2.112609E + 002The value of the likelihood function at iteration 5

-2.112178E + 002The value of the likelihood function at iteration 7

The value of the likelihood function at iteration 8 = -2.112146E+002

The value of the likelihood function at iteration 9 = -2.112135E+002

The value of the likelihood function at iteration 10 = —2.112129E+002

Iterations stopped due to small change in likelihood function

*******I'I‘ERA’I'ION11*******

Tau

V 0.05411 0.02010

M 0.02010 0.03615
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Tau (as correlations)

V 1.000 0.454

M 0.454 1.000

 

Random level-1 coefficient Reliability estimate

 

V, B1 0.622

M, B2 0.535

The value of the likelihood function at iteration 11 = -2.112129E+002

Final estimation of fixed effects:

 

Fixed Effect Coefficient Standard Error T-ratio P-value

 

INTRCPT2, G10 0.035177 0.041652 0.845 0.276

INTRCPT2, G20 -0.023977 0.036769 —0.652 0.320

Final estimation of variance components:

 

Random Effect Standard Variance df Chi-square P-value

Deviation Component

 

V, U1 0.23261 0.05411 49 153.90286 0.000

V, U2 0.19012 0.03615 49 116.82497 0.000

Statistics for current covariance components model

 

Deviance = 422.42582

Number of estimated parameters = 4
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