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ABSTRACT

A MULTIVARIATE MIXED LINEAR MODEL
FOR META-ANALYSIS

By

Hripsime A. Kalaian

Meta-analysts often encounter data sets with multiple
effect sizes from each primary study in the review either
because of multiple measures or multiple treatments. Having
these correlated multiple effect sizes requires the use of
multivariate analytical techniques which take into account the
intercorrelations among these multiple effect sizes.

In the present study, the multivariate mixed-effects
model for meta-analysis is developed and presented. This
multivariate model takes into account three important
characteristics which often arise in meta-analysis. The first
is having multiple correlated effect sizes. The second is
that different studies can have different subsets of effect
sizes depending on the design of the primary study. The third
is that these multiple effect sizes may be random realizations

from a population of possible effect sizes. Using the






proposed model enables meta-analysts to obtain multivariate
empirical Bayes estimates of the parameters in the model
without excluding studies when some of the effect sizes are
missing.

The application of the multivariate mixed-effects model
is illustrated using multivariate artificial effect sizes
(generated from the multivariate normal distribution) and a
real data set. The real data set involves Scholastic Aptitude
Test (SAT) coaching studies evaluating the effects of coaching
on the two SAT subtests (SAT-Verbal and SAT-Math). Also, the
fixed-effects model parameter estimates obtained from
analyzing the transformed GLS model are compared to the mixed-
effects model parameter estimates obtained from the HIM
program.

In conclusion, the multivariate mixed-effects model using
the HLM program can be applied to multivariate meta-analysis
studies with missing effect sizes to obtain empirical Bayes
estimates. Also, the proposed model can be used to perform
multivaraite fixed-effects analysis. Finally, the findings of
the present study can be generalized to studies with more than
two outcomes (effect sizes) and at the same time within-study

characteristics can be incorporated in these applications.
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CHAPTER 1

INTRODUCTION

1. META-ANALYSIS IN EDUCATIONAL AND SOCIAL SCIENCES

In the 1last two decades there has been a surge of
interest among educational and social researchers in applying
quantitative methods for synthesizing and aggregating the
results of primary related studies. The goals of research
synthesis are accumulating and combining research evidence
from many studies testing the same research hypothesis and
also generating new evidence which helps to formulate new
research hypotheses and plan future research studies. In
other words, meta-analysis is, potentially, a powerful tool
for synthesizing existing knowledge, criticizing the design of
existing research, and stimulating more meaningful
interdisciplinary research.

Various quantitative methods for research synthesis have
been developed and applied within the last twenty years. One

way of synthesizing and summarizing the research findings from
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previous investigations is by aggregating effect magnitudes

using meta-analysis statistical techniques. The term "meta-
analysis" was first introduced and popularized to the social
science 1literature by Glass (1976), and has also been
developed by others, such as Rosenthal (1978) and Rosenthal
and Rubin (1979). Pillemer and Light (1980) and Cooper (1982)
provided a conceptual framework for research synthesis.
Cooper (1982, 1984) developed a systematic approach (five-
stage model) to carry on a research synthesis and an
integrative research review. Hedges (1981, 1982, 1983), and
Hedges and Olkin (1985) introduced the technical statistical
methods for meta-analysis. Rosenthal (1978) presented a
collection of statistical procedure for combining significance
levels from primary research.

Meta-analysis can be defined as the statistical
analysis of a large collection of primary research studies
which focus on the same research question for the purpose of
accumulating previous findings and consequently generating new
research evidence. The most popular meta-analysis technique
is first calculating an effect size for each primary study in
the sample of collected studies in the review and then finding
an overall effect-size estimate (here we assume that the
effect sizes from the primary studies share a common
population effect size). Thus, for treatment-control studies,
effect size can be defined as the standardized mean difference

between the experimental and control groups from each study in






the integrative review.

2. META-ANALYSIS IN MEDICAL SCIENCES

Since the mid-1980s the application of meta-analysis
techniques for research review purposes spread from social and
behavioral sciences through many other disciplines, especially
medical sciences and health care disciplines. Meta-analyses
of clinical trials (e.g., Yusuf et. al., 1987; Havens et. al,
1988) and epidemiologic studies (e.g. Longnecker et. al,\1988;
Shinton and Beevers, 1989; Berlin and Colditz, 1990;
Greenland, 1993) have been used frequently as an attempt to
improve on traditional methods of narrative review. As in
educational and behavioral sciences, the aim of the meta-
analysis in health-care disciplines 1is systematically
aggregating and summarizing data from the primary clinical
trial studies to obtain a quantitative estimate of the overall
effect of a particular treatment or clinical procedure on a
defined outcome. Many meta-analysts have reviewed and
examined the methodology of meta-analysis as applied to
clinical problems especially to randomized controlled trials
(Ottenbacher and Petersen, 1983; DerSimonian and Laird, 1986;
L'Abbee', Detsky, and O'Rourke, 1987; Sacks et. al, 1987;

Jenicek, 1989; Thacker, 1988; Greenland, 1987). Gerberg and






4
Horwitz (1988) presented guidelines for conducting meta-
analysis for clinical studies. Huque (1988) defines meta-
analysis as a statistical analysis which combines or
integrates the results of several independent clinical trials

considered by the meta analyst to be integrable.

3. MULTIPLE DEPENDENT EFFECT SIZES

Educational and social researchers often try to examine
and explain a behavioral phenomenon by collecting multiple
measurements from each individual in the study. As a result
of having multiple measurements, primary research studies are
not always so simple to integrate and summarize. Thus, meta-
analysts usually calculate multiple measures for the effect of
the experimental treatment depending on the number of the
outcome variables in each study in the review.

Some of these studies compare different treatment groups
to a single control group and are called multiple treatments
studies. Other studies compare a single treatment group to a
single control group, but instead of obtaining a single
outcome measure, multiple outcome measures are obtained where
there are several subscales in the outcome measure or test.

These will be referred to as multiple measures studies.
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Moreover, another set of studies, which can be characterized
as pretest-posttest study designs, compare a single treatment
group to a single control group and multiple pretest and
posttest outcome measures are obtained from each study. These
type of studies are referred to as pre-post multiple measures

studies.

4. MULTIVARIATE STATISTICS

Having these correlated multiple effect magnitudes from
each primary study in the review requires multivariate
procedures of analygis (Hedges & Olkin, 1985; Raudenbush,
Becker & Kalaian, 1988). Multivariate analysis refers to a
collection of descriptive and inferential methods that have
been developed for situations where we have more than one
outcome variable and these outcome variables are correlated.
Using multivariate procedures for analyzing meta-analysis data
sets with multivariate <characterization has various
advantages. For example, (a) it provides us with better
parameter estimates because it handles the multiple effect
sizes simultaneously, taking into account the interdependence
among the outcome variables, (b) it controls Type I error
rates, (c) it also facilitate statistical comparisons among

outcomes.






5. PURPOSE OF THE PRESENT STUDY

This thesis will present a multivariate mixed-effects
model (multivariate hierarchical 1linear model) for meta-
analysis that considers the multiple effect sizes from
multiple-outcome studies or multiple-treatment studies from
each study as random, and then models these effect sizes or
the correlation coefficients as a function of study
characteristics plus random error. Thus, this multivariate
model takes into account three important characteristics of
this type of data which often arise in meta-analysis. The
first is having multiple effect sizes based on multiple
dependent variables from each study. The second important
characteristic is that different studies can have different
subsets of dependent variables and consequently different
numbers of effect sizes and correlations for each study. The
third characteristic is that the effect sizes and the product-
moment correlation coefficients from several studies are often
viewed as random realizations from a population of possible
effect sizes and correlation coefficients.

The application of the proposed multivariate mixed-
effects model will be evaluated and examined empirically
using artificial and real data sets. The artificial multiple

effect sizes will be generated from the multivariate normal
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distribution with specified mean vector and variance-
covariance matrix. These effect sizes will be analyzed and
compared by using the Hierarchical Linear Model (HLM) program
(designed for analyzing multi-level data) and the V-Known
routine (designed for meta-analysis purposes when the within-
study variance-covariance matrices are known).

The real data set represents the Scholastic Aptitude Test
(SAT) coaching studies. These multiple effect sizes represent
the effects of coaching on SAT-Verbal and SAT-Math scores.

These effect sizes will be evaluated by using the HLM program.

6. ADVANTAGES OF USING MULTIVARIATE MIXED MODEL

The estimates and hypothesis-testing procedures generated
by using the multivariate mixed-linear model are fully
multivariate techniques since they take into account the
correlations among the multiple effect sizes from each study
and meanwhile have several important properties. They allow

one:

1. To distinguish between variation in the true multiple
effect size parameters for each study, and the sampling

covariation which results because effect sizes are
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estimated with error. That is

Total Effect Size Parameter Error
Covariation Covariation + Covariation

2. To examine the differential effects of the treatment on

the multiple outcome measures;

3. To test hypotheses about the effects of study

characteristics and features on multiple study outcomes;

4. To estimate the variance-covariance matrix of the
multiple random effects and test the hypothesis of no
variation-covariation among the multiple effect size

parameters;

5. To find improved empirical Bayes estimates of multiple
effect sizes and multiple product-moment correlation

coefficients in each study;

6. To include in the analysis different numbers of outcomes
from each study as well as different predictors for the

different outcome measures;

7. To provide more precise and stable parameter estimates.






7. ORGANIZATION OF THE PRESENT STUDY

This study contains eight chapters dealing with the
theory and the application of the multivariate mixed-effects
model for meta-analysis and research integration. Chapter two
will review the existing 1literature on the statistical
approaches and methods of meta-analysis.

Chapter 3 will present a description of the notation and
the statistical terms used for the multivariate hierarchical
linear model. Also, the theoretical background and notation
for meta-analysis will be reviewed in this chapter.

The multivariate mixed-effects model for meta-analysis
will be introduced and developed in Chaptef 4. First, the
unconditional model (with no predictor in ﬁhe model) will be
illustrated. Second, the conditional 'ﬁodel (where the
variations among the multiple effect sizes‘are explained by
some study predictors) will be explained.

Chapter 5 will deal with the estimation of the
multivariate mixed-effects model that proposed in this study.
Also, the maximum likelihood method of estimation and the EM
algorithm will be presented in order to obtain empirical Bayes
estimates of the parameters in the model.

In Chapter 6, an artificial multivariate effect-size data

set will be generated using FORTRAN and IMSL subroutines. The
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results of applying the proposed model to these generated data
using the HLM program for analyzing multi-level data and the
V-Known routine for analyzing effect-size data will be
compared. The findings of this chapter will help us to pursue
the use of the HLM program for meta-analysis purposes,
especially when there are missing effect sizes in the data
set.

Chapter 7 will present empirical results of applying the
proposed multivariate mixed-effects model to Scholastic
Aptitude Test (SAT) coaching data. The results and the
conclusions based on fitting unconditional and conditional
hierarchical linear models will be documented. Also, in this
chapter, the applicability of the proposed multivariate mixed-
effects model to obtain multivariate fixed-effects parameter
estimates of the effects of the SAT coaching will be
illustrated and these parameter estimates will be compared to
those estimates from the multivariate mixed-effects model.

Finally, in Chapter 8, a concluding statement on the
results of applying the proposed model to the artificial
generated data and the SAT coaching studies will be presented.
Also, the implications of the findings for further research
related to multivariate effect-size meta-analysis will be

discussed.






CHAPTER 11

REVIEW OF THE LITERATURE

There has been much research and development progress in
meta-analysis techniques in the 1last two decades. The
developments have included tests of homogeneity of the effect
sizes, modeling heterogeneity using fixed-effects and random-
effects models for univariate effect sizes and correlation
coefficients, and modeling multivariate effect sizes for
fixed-effects cases. In this chapter the statistical
techniques used previously to analyze data from studies that

have multiple outcome measures are reviewed.

1. UNIVARIATE APPROACHES

Despite the multivariate characterization of the
situations of multiple outcome variables from each study, the

most frequently used procedure is to treat the multiple effect

11
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sizes separately, with one meta-analysis for each outcome
measure (e. g., Giaconia & Hedges, 1982; Kulik & Kulik, 1984;
Rosenthal & Rubin, 1978; White, 1976). This practice of
dealing with multiple outcome effect sizes and correlation
coefficients individually inflates Type I error rates for
quantitative review results, which in turn decreases the
future replicability of the research findings. Moreover,
conducting a separate meta-analysis for each outcome measure
limits the kinds of research questions that the meta analyst
can address. For example, the research questions 'Does a
specific treatment have differential effects on the multiple
outcomes?' or 'Does a specific study characteristic have
differential effects on the multiple product-moment
correlation coefficients?' cannot be answered precisely and
accurately using univariate meta-analysis procedures.

Another common method of meta-analysis is to combine the
estimates of the multiple effect sizes such as by averaging or
summing the effect sizes for the multiple outcomes or the
multiple correlation coefficients (e. g., Iaffaldano &
Muchinsky, 1985). Employing this pooling procedure may
result in losing important information about variation between
the multiple effect sizes because a single treatment may have
different effects on different outcome measures. This
procedure is more appropriate when the outcomes represent or
measure the same construct. Hedges and Olkin (1985) proposed

a test for homogeneity of multiple effect sizes within each
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study and a pooling procedure under the assumption that the
multiple outcomes are measures of a single construct.
Univariate statistical theories for synthesizing research

studies are described below.

1.1 Univariate Fixed-Effects

This approach stresses the estimation of a fixed and
common population effect of the treatment across a series of
studies which test the same research hypothesis (Glass, 1976;
Hedges, 1981). The method involves the calculation of an
estimate of effect size from each single study. The average
of effect-size estimates across studies for each outcome
measure is used as an index of the overall effect size for
each of the multiple outcome measures. Hedges (1982a)
developed a test of homogeneity of effect-size estimates.
This test examines whether the observed effect-size estimates
vary by more than would be expected if all studies shared a
common underlying population effect sizes.

Further, if the test of homogeneity fails, the meta-
analyst tries to construct a weighted least squares regression
model or a categorical model by regressing effect size
estimates on various known study features (Hedges, 1982b).

The main reason to use a regression model is to explain the
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variability among the effect-size estimates from different

studies by using known study characteristics as predictors.

1.2 Univariate Random-Effects

Contrary to the fixed-effects model, which assumes that
there 1is a single underlying population effect of the
treatment across all studies or that all the variation between
studies can be explained by known study characteristics, the
random-effects model assumes that the values of the effect
sizes are sampled from a distribution of effect-size
parameters. In other words, in the random-effects model there
is no single true population effect. The true effects are
from a distribution of effects.

Thus, by using the random-effects models, we can estimate
the variance components of the distribution of the population
of effect-size parameters as well as the variance components
of the sampling distribution of the effect sizes. In other
words, there are two sources of variation in the observed
effect sizes (variability in the population effect-size
parameter distribution and the variability in the effect-size
estimates about the true parameter values.

Rubin (1981) suggested a random-effects model to

summarize the results from parallel randomized experiments.
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He used: Bayesian and empirical Bayesian techniques to obtain
improvedl estimates of the treatment effects in each
experiment. Thus, his -model views study effects as being
gandpmﬁrealizgéiqnsqfapopulation of treatment gffegtg.
Moreover, this model enables the researcher to estimate the
variance of the treatment effect parameters. However, since
the parallel randomized experiments have the same outcome
measure, he did not incorporate the standardized effect-size
estimates in his model. Also, he did not model the variation
among the parallel experiments as a function of experiment
characteristics.

DerSimonian and Laird (1983) used the univariate random
effects model in their meta-analysis to estimate an overall
average effect of SAT coaching. Also, they obtained empirical
Bayes estimates of the individual study and program effects as
well as their estimated variances via the EM algorithm using

the maximum likelihood estimation procedure. Their outcome

was not the effect size, d, rather they looked at raw mean

differences.

Hedges (1983) developed the statistical theory for the
random-effects model for effect sizes. In this model the
effect sizes are not assumed fixed but instead are viewed as
sample realizations from a distribution of possible population
effect size parameters with a mean and variance to be
estimated via methods of moments. Thus, by using this model,

the observed variance among treatment effects can be
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decomposed into two components (a) sampling error or
conditional variability of the estimated effect sizes around
its population effect sizes and (b) random variation of the
individual study effect sizes around the mean population

effect size.

1.3 Univariate Mixed-Effects

The mixed-effects model corresponds to a setup with both
fixed and random treatment effects. The random effects are
the residuals (effect parameters\minus predicted values) and
the fixed effects are the effects of between study predictors.

Raudenbush and Bryk (1985), building on the work of
Rubin, provided a statistical theory for a univariate
hierarchical linear model (mixed-effects model) for meta-
analysis. Their model views the effect sizes are random and
models the variation among the effect sizes as a function of
study characteristics plus error. Also, their model enables
the meta-analyst to find improved empirical Bayes estimates of
individual effect sizes.

Raudenbush (1988) reformulated the hierarchical 1linear
model as the general mixed-model. This model allows
estimation of the random and fixed effects when the within-

group predictor matrices are less than full rank.
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2. MULTIVARIATE APPROACHES

We characterize a procedure as being "multivariate" when
we have multiple effect sizes on the basis of having multiple
dependent measures or multiple treatment groups compared to a
common control group for each study. Consequently, we
analyze this kind of data simultaneously by taking into
account the intercorrelations among the multiple outcomes or
the multiple treatments. That is, we consider a procedure as
being multivariate where several measurements or treatments

are modeled jointly.

2.1 Multivariate Fixed-Effects

Hedges and O0Olkin (1985) ©proposed a multivariate
statistical theory for summarizing the results from different
studies with multiple outcome measures. Their approach
requires that all studies use the same number of outcome
measures. However, they didn't provide a statistical model to
explain the variability in multiple effect sizes as a function
of study features and experimental conditions.

Rosenthal and Rubin (1986) presented another method for
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combining and comparing research results from studies having
multiple effect sizes based on multiple dependent variables.
They provided a method for obtaining a single summary effect
size estimate from multiple effect sizes and a technique for
testing this composite effect size. Also, they described a
procedure for estimating the magnitude of the effect for a
contrast among the multiple effect sizes of an individual
study and for testing the significance of this contrast effect
size. Their proposed meta-analytic procedures do not allow
different predictors for the various dependent variables.
They also did not provide a model to explain the variability
in multiple effect sizes as a function of study
characteristics.

Raudenbush, Becker, and Kalaian (1988) proposed
generalized least squares (GLS) regression to model the
variation Dbetween studies and to account for the
interdependence among multiple outcomes within studies. Their
approach allows the meta-analyst to include in the analysis
different numbers of outcome measures from each study and
different sets of predictors for each outcome measure. They
view study effects as fixed, which means that (;}}‘_the
variation among the multiple study effects other than sampling
variance and covariance can be explained as a function of

study characteristics.
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3. SUMMARY OF PREVIOUS META-ANALYSIS TECHNIQUES

Four main techniques have been used previously to deal
with studies that have multiple outcomes and consequently
multiple effect sizes. The first and the most commonly used
approach is the univariate fixed-effects model where the meta-
analyst conducts a separate meta-analysis for each outcome
measure. The basic assumption of this model is that the
treatment and control populations share a common effect size,
and the existing differences among these effect sizes can be
determined through the knowledge of some study characteristics
(Glass, 1976; Hedges, 1981). The univariate random-effects
model is the second approach where the investigator also deals
with the multiple outcomes separately. By using this approach
the researcher assumes that there is a distribution of true
effects for the experimental and control populations (Rubin,
1981; Hedges, 1983).

The third approach is the univariate mixed-effects
approach (Raudenbush & Bryk, 1985; Raudenbush, 1988) where the
estimated effect sizes can be modeled as a function of study
characteristics plus random error. These univariate
approaches all assume that multiple outcomes from each study
are independent.

The fourth approach is the multivariate fixed-effects

model (Raudenbush, Becker & Kalaian, 1988; Gleser & Olkin,
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1993) which assumes that the study effects are fixed and
considers all the variation-covariation among the standardized
multiple study effects other than sampling variances and
covariances to be explainable as a function of study
characteristics (study design, treatment conditions, contexts,
etc.).

In summary, these previous meta-analysis techniques
either didn't account for the intercorrelations between the
multiple outcome measures (univariate procedures) or assumed
that the size of the multiple effects reported in each study
depend strictly on known study characteristics and all of the
variation between these studies can be explained by these

known predictors.
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CHAPTER III

NOTATION FOR MULTIVARIATE MIXED LINEAR MODEL

Here we should distinguish between three kinds of
studies, multiple measures, multiple treatments, and pre-post
multiple measures studies. In multiple measures studies a
single treatment group is compared to a single control group
in each study and multiple outcome measures are obtained from
each study. On the other hand, in multiple-treatments
studies, multiple treatment groups are compared to a common
control group in each study on a single outcome variable or
multiple treatment group means are contrasted in each study.

As in multiple measures studies, in the third kind of
study, a single treatment group is compared to a single
control group in each pretest-posttest study and multiple
pretest and posttest outcome measures are obtained from each
study. This differentiation is made because (a) the estimated
effect sizes and their variances for pre-post study designs
are different from the other two kinds of studies, and (b) the
formulas for estimating the covariances between the estimated
effect sizes are different for the three kinds of studies.

Thus, each type of study must be separately considered.

22
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1. MULTIPLE MEASURES FOR EACH STUDY

The model for multivariate mixed meta-analysis for

multiple measure studies assumes that we have K studies each
comparing an experimental treatment (E) to a control condition (C)

on one or more of p; outcome measures (in study 1i).
Where i =1,2,....,K studies.

Let the outcome measures Xﬁp and Yﬁp for person j on
outcome p in study i be normally distributed with means

E . . .
pi, and uf,, respectively and with common variance ¢%,. Thus,

we assume that

E E 2
Yijp -~ N(p'_iplojp) ’

C C 2
Yijp ~ N(p.ip,in) .
where,

.,nf subjects, or j =1,2,....,nf subjects,

Q
L}
=
®

i=1,2,....,K studies, and
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p=1,2,....,P; outcome measures.

1.1 Glass’s Estimate of Effect Size

Glass (1976) proposed that the standardized mean
difference between the experimental and control groups for the

pth outcome measure, Y, in the ith study is

ip/’

SE _ oC
— Y.ip Yip
gjp ’
ip

where ff and f; are the ith experimental and control group

means respectively for the pth outcome measure, Y;,. Also
S, is the pooled within-groups estimate of the sample

variance which can be calculated as

gz - (nf -1 (Si? + (nf - 1) (Sip)?
i ’
? nf+nf -2
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where Sif; and Sif, are the experimental and control group

standard deviations, respectively.

1.2 Population Effect Size

Hedges (1981) developed the distribution theory for the

effect size. He indicated that g;, estimates a population

effect size for the pth outcome measure for the ith study.

The parameter 6ip can be represented as

E C
- Bip = Bip

ip

where o0,;, is the pooled within-groups population standard
deviation and pj, and pj, are the ith experimental and control

population means for the pth outcome measure, respectively.
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1.3 Unbiased Estimate of Effect Size

Hedges (1981) also indicated that Glass's estimatorgm
is a biased estimator of the population effect-size 3;, and he
derived the minimum variance unbiased estimator, d;,, which is

approximately

where

- E [
m; =ni; +n; -2,

and c(m;) is approximated by

1]
=
!

c(my)

1.4 Distribution of Multiple Effect Sizes

For fixed values of § Hedges (1981) showed that this

ip 1

standardized effect-size estimator, d, is asymptotically

ip 1’
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normally distributed with mean &;, and variance ¢?(§;,) , which

can be represented as

g2(d,) = 2~ _ .
® nf nf 2(nj + ny)

Since §,, is not known, Hedges (1982a) provided the large
sample approximation of oz(ﬁn) by substituting d;, for §&,,.
Thus, estimating oz(dm) for the pth outcome measure in the
ith study requires one to replace Gi,by its estimate d& in

the previous equation, or

Given that this model allows different numbers of effect
sizes based on different numbers of outcome measures for each

study, the total number of comparisons between experimental

and control groups is P, where P = Xp; . As noted above p;
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denotes the number of outcome measures in study i.
Because the measurements for any subject within a study

are correlated, the estimated multiple effect sizes will also

be correlated. The correlations between the effect sizes,
dijpy P=1,2,...,p; in study i, depend upon the correlations

between the outcome measures for subjects in the experimental
and control groups. However, not all studies report sample
correlations among the outcome measures, which force us to
imppte values for the population correlations from other
sources (published test manuals, other studies, etc.). Thus,

the covariances between the effect sizes of any two outcome
measures ;)_and_p' in a study can be calculated using the
correlation coefficient between the outcome measures (puw,),

the population effect sizes for the pairs of outcome measures,
and the sample sizes for the experimental and control groups.

Gleser & 0Olkin (1994) derived the large sample covariance

o(d;,, d;,) between d;, and d,,, which can be calculated as
follows
1 2
= &, 6., Pin ir/
1 l 2 1p 1p 1p,1p
o(d.ip' dip’) = (—E-' + C) pip,ip/ + E

Y {

|

~—
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Estimating o(d,,,d;,) requires us to replace the effect
sizes §,, by their estimates d,, and to replace p;, ;, by

either the calculated sample correlations from each study or

the imputed values r;, ;. Thus,
1 2
=d;p, dipr ITi o
A 1 1 2 i Tipdp
a(d,d/) = (— + —) r. .., +
ip 1p I'liE Ilic ip,ip nl-B N nic

Thus, having estimated the variances and the covariances

of the effect sizes for each study, we obtain the estimated

variance-covariance matrix 21 for each study. Its diagonal

elements are the variances and the off-diagonal elements are

the covariances. By "stacking up" these K covariance matrices

along the diagonal of a matrix we get the estimated covariance

matrix, £, of the sampling errors. So,\E isa P px/P‘ﬁatrix
with Ej's stacked along the diagonal, and all off-diagonal
block matrices are zero because we assume that the individual

studies are independent. Thus, the matrix £ can be

represented as
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(2. 0 .. .0]

o Z . o}
s -

o 0 2,

2. PRE-POST MULTIPLE MEASURES FOR EACH STUDY

Another method for estimating effect sizes is using the
standardized mean-change measure for pretest-posttest designs
outlined by Becker (1988). For multiple outcome measures from
each study, the standardized mean-change measure is estimated
separately for each of the multiple outcomes for experimental
and control samples. For instance, a study with one
experimental and one control group for each outcome measure
would have two standardized mean changes for each outcome,
each computed as the difference in mean performance between
the posttest and pretest divided by the pretest standard

deviation.
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2.1 Estimated Standardized Mean-Change Measure

For each of the X (i =1,2,....,K) studies, let giﬁ andgl-g

denote the standardized mean change measures for the
experimental and control groups, respectively and can be

represented as

YE - xE (YS - X5)
giﬁ = ( ip 1p) and gl,g = ip - ip
S

E 4
Sip

where )?li and )?lf, represent the pretest means for the

experimental and control groups, respectively. Zf, andfi;
represent the posttest means for the experimental and control

groups respectively. Sf; and Sifp represent their respective

pretest standard deviations. For each of the multiple outcome
measures, separate standardized mean-change measure were

computed for the experimental and control groups.

2.2 Unbiased Standardized Mean-Change Measure

Becker (1988) indicated that these standardized mean
change measures are slightly biased estimates of the

population standardized mean-change parameters and she derived
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the unbiased estimates of these standardized mean change

measures. The unbiased estimates of the experimental and

control standardized mean changes are

E
gE - Alnip-2) (Yg - X5
1p E E ’
4n1-p -5 Sip
and
g - 4(n5-2) (YS - XS
1p c C ’
4n1-p -5 Sjp

where nf; and nif, are the sample sizes for the experimental and

control groups.

2.3 Distribution of Standardized Mean-Change Measure

For fixed values of population standardized mean-change

measures, the estimated experimental and control standardized
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mean-change measures (dif, and dif,) are asymptotically normally
distributed with mean 61-5;, and 61% and variances ¢2(8;) and
62(d5,) , respectively.

Thus, the estimated variances of diﬁ and dif, are

4(1 - ) +(dfE)?

2n1-f,

Var (di,)

’

and

4(1 - 5 +(dS)?
Var(dig) _ ( Ixy)c+ ( .lp) .
2n1-p

2.4 Effect Size Estimate

The estimated effect sizes, A for each outcome measure

ip?
are the differences between the experimental and control

unbiased standardized mean-change measures for each of the
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outcome measures within each of the K studies and is denoted

as

3' = dli - d_ig.

ip

Thus, studies that examine the effects of experimental

treatment on p outcome measures will have p effect sizes.

2.5 Distribution of Effect Sizes

For fixed values of A; , the estimate of the asymptotic

variance of each of the estimated multiple effect sizes, ﬁip,

is

4(1-5f) +(dip)? | 4(1-z1;5) +(df)?

var(A.) =
B 21’11'?; 2n1-g

’

where ry; and r,; are the estimates of the pretest-posttest
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correlations for the experimental and control groups,
respectively.

The covariance between ﬁip and Aiﬂ is estimated as

Cov(B,, . B) = ry . LWVdE) V(dE) + Vdg) V(di) 1,

where r ; 1s the estimated correlation coefficient between

ip,ip
the pairs of the correlated outcome measures within study 1.
As with multiple measures studies, having the estimated

variances and the covariances of th effect sizes for each

study, we obtain the estimated variance-covariance matrix 21

for each study. Its diagonal elements are the variances and
the off-diagonal elements are the covariances. Stacking up

these K covariance matrices along the diagonal of a matrix
produces the estimated covariance matrix, £, of the sampling

errors. This $ variance-covariance matrix has the same

structure as variance-covariance matrix for multiple measures

studies developed in the previous section in this chapter.
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3. MULTIPLE TREATMENTS FOR EACH STUDY

The model for multivariate mixed meta-analysis for
multiple treatment studies assumes that we have K studies each

comparing T experimental treatment groups (Eg),

g=1,2,....,T, to a common control group (C). It is
important to note that this basic model for multiple
treatments can be generalized to situations where we are
contrasting T experimental treatment groups without control-

group comparisons.

3.1 Population Effect Size

Let the outcome measures Y3, and Y5 be normally

distributed with means pj, and p§ respectively and a common

standard deviation of. The corresponding population effect

sizes for the treatments within each study are



E c
6' = p'.iq p’l
1qQ ojc
where,
i=1,2,....,K studies
and
g=1,2,....,T treatment groups.

3.2 Sample Effect Size

The effect sizes §,, can be estimated by replacing

pfq and p$ by their sufficient statistics 171*;; and 1—/;0 and

substituting 6§ for o$. The estimated effect size is

YE - YF
gig = e i

(=]
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Here 8¢ is the control group standard deviation for study

3.3 Distribution of Effect Sizes

For fixed values of §;, and when the homogeneity of the

variances for the multiple treatment groups and the control
group holds, the large sample variance of each of the

estimated multiple effect sizes d;; (Gleser and 0Olkin, 1994)

is
1 g2
1 1+ 8l
02(d,,) = +
19 E c
niq n.l

And the population covariances between these correlated

multiple effect sizes (Gleser and Olkin, 1994) is
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o(d,;

iq!?

d,;

1q/) fod

These variances and covariances depend on the effect

sizes §;, and can be estimated by substituting d;, for

(Gleser & 0Olkin, 1994) and can be calculated as

1 ;2

" 1 1+ 5 diq

62(d;y) = Var(dplé;) = — + = ,

niq n;
and
1
_ 1 + —5 dlq d_iq’
6 (d.iq' diq/) = )

P

q
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Here we assumed that the variances for the treatment
groups and the control group are homogenous. In situations
when the homogeneity assumption does not hold, the reader
should refer to the article by Gleser and Olkin (1994).

As with multiple measures and pre-post multiple measures
studies, having the estimated variances and the covariances of

the estimated effect sizes for each study, we end up with the

estimated variance-covariance matrix 21 for each study. Its

diagonal elements are the variances and the off-diagonal
elements are the covariances. Stacking up these K covariance
matrices along the diagonal of a matrix produces the estimated
covariance matrix, £, of the sampling errors. This2
variance-covariance matrix has the same structure as the
variance-covariance matrix for multiple measures and pre-post
multiple measures studies developed in the previous sections

in this chapter.



CHAPTER IV

MULTIVARIATE MIXED LINEAR MODEL

As mentioned earlier, Raudenbush and Bryk (1985)
developed a univariate empirical Bayes estimation procedure
for meta-analysis as an alternative to 1least squares
estimation for the linear model within the formulation of two-
stage hierarchical modeling having a prior distribution.
Also, Raudenbush, Becker, and Kalaian (1988) developed a
multivariate procedure for fixed-effects meta-analysis by
using generalized least squares regression to account for the
intercorrelations among the multiple outcome measures.
Moreover, Raudenbush (1988) reformulated the hierarchical two-
stage linear model as a general mixed model where we have
missing values in the data set. For instance, not all the
studies included in the research synthesis may have the same
number of dependent variables or contrasts among treatment
groups and the control group because the research interest is
different from study to another. In this situation, the
studies with missing dependent variables or treatment groups
would have to be excluded from the meta-analysis and we would

41
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limit the meta-analysis to studies with complete data in order
to be able to perform previously developed multivariate
statistical meta-anslysis procedures. The alternative
analytic method used by reviewers is to use the wunivariate
meta-analysis techniques in order to include and use all the
data in the review. As mentioned earlier this practice limits
the kind of research questions asked and at the same time
inflates Type I error rates.

In this study the univariate empirical Bayes estimation
method, the multivariate fixed-effects generalized 1least
squares procedure, and the general mixed model where the data
are not of full rank (missing dependent variables in the data
set) are combined and extended to the general situation where
we have multiple random effect sizes based on multiple
dependent variables, multiple correlation coefficients, or
multiple treatment groups within each study. The empirical
Bayes estimation method will be used to estimate the
parameters of the model. The multivariate mixed-effects model
is viewed as a two-stage model. At the first stage, the
"within-study model" for each individual study having multiple
effect sizes is formulated. At the second stage, the
parameters of the within-study model are viewed as varying
randomly across different studies and some of this variation

is thought to be explainable by known study characteristics.
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1. WITHIN-STUDY MODEL:

In the within-study model for multivariate mixed meta-
analysis, we assume that the observed vector of multiple

effect sizes, d,, of study 1, is equivalent to a vector of
population effect sizes Qi plus a vector of errors, e,, for

each study. Here the within study variances and covariances
are assumed to vary from study to study. Thus, the basic

within study model for study I can be represented as

where,

d. is a vector with (p;x1) elements,
9. is a vector of (mx1l) elements,
e, is a vector of (p;x1) elements,

and,

X, is a matrix of (p; x m) elements of response indicators
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for the elements of d, with X; = 1 when d; is observed and

X, = 0 when d; is missing.

Here, m (p; <m) is the maximum number of outcome

measures across studies assuming that there are no missing

effect sizes in the data.

1.1 Illustrative Example

To illustrate the within-study model with missing effect
sizes, suppose a reviewer has K studies and most of these
studies have two outcome measures. However, some of these
studies have only one of the outcome measures and not the
other. Thus, this reviewer is faced with the problem of
missing data in the research synthesis, especially when trying
to build statistical models to explain the variation in these
effect sizes. The within-study model for a hypothetical set

of K studies can be expressed as follows
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study 2: [dy] =[1

study 3: [d;;] = [0
dg; [1

study K: =
dy, 0

where for example

* €]

0 621
] 622

* [@s2] 4

1 631
] 632
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But the distribution of errors for the second study is

2
€, ~ N(0,02%),

and for the third study it is

2
832 -~ N(0,032)-

Stacking the d. vectors for all the X studies, produces

a single vector, d, containing all the effect sizes. The

complete within-study model can be represented as

d, [ x. 0000 0 5, e,
d, 0 X,000 0 3, e,
_|ooo0o.00 o0 .

0000.0 O
: 00000. O .
d, 000000 X | |3, e
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which in turn can be expressed 1in more compact and

unsubscripted matrix form as

where

e ~ N(O, X).

Here d is a Pxl1 vector where P=Y p,, & is akmx1

vector, X is P x Km matrix of 1's and 0's, and e is aPxP

matrix. We further assume that the errors, e,, are P-variate

normally distributed with a zero mean vector and variance-

covariance matrix Ej. Thus, X is the sampling variance-

covariance matrix of the effect sizes for the multiple
dependent variables or multiple treatment groups. The
formulas for estimating this sampling covariance matrix are

shown in Chapter 3 (sections 1.4, 2.4, and 3.3).
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1.2 GLS Within-Study Model

The basic within-study model given above can be
reformulated as a generalized least squares within-study model

(Raudenbush, Becker, and Kalaian, 1988) by factorizing the

estimated variance-covariance matrix for each study,,ﬁj which

is a positive definite matrix, into the product of a
triangular matrix and its transpose (Finn, 1974). This

Cholesky decomposition can be represented as

= /
L, =EF, .

As an illustration, suppose the variance-covariance
matrix for study i, for the bivariate example given in section

1.2, is

67 (d,,) 6(d,,. d;,)

6(d;z, d;;) 6% (d,,)
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Here &(d;,,d;,) = 6(d;,,d;;) is the covariance of the two
effect sizes in study i, while 82(d;;) and &2%(d;,) are the

respective variances of the two effect sizes.
The resulting Cholesky or triangular factor for the ith

study is

8 (d;,) 0

=

8(dy,. dyy) /8 (dyy) VBT (d,,) ~ (82 (dy,. dp) /67 (dyy)

F;,, can be recognized as the conditional standard

deviation of d;, given d;;. Thus, the conditional standard

deviations, holding the other effect sizes constant, are the
diagonal elements of the Cholesky factor matrix. The off-
diagonal elements are the conditional covariances, given the

other variables or effect sizes.

Premultiplying the within-study model for each study byE‘i1

yields a set of uncorrelated multiple effect sizes for each

study. This can be written as
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Eld, = EJXb, +FEle,

which in turn can be represented as

where,

e, ~N(O,I).

Here e;, the error vector of the transformed uncorrelated

multiple effect sizes for each study, is asymptoticly normally
distributed (Hedges, 1981) with mean 0 and identity variance-

covariance matrix I,. I, consists of 1's in the diagonal and

O's in the off-diagonal.
This within-study model can be rewritten in more general

and unsubscripted matrix form as

d* = X*'8 +e*,
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where

e* ~N(0,I)

Here the matrix I is a block diagonal matrix with

identity submatrices in the diagonal.

2. BETWEEN-STUDIES MODEL.:

At the second stage, the between-studies model can be
formulated into two forms. The first is the unconditional
model, where we assume that the multiple effect-size

parameters ﬁi vary around a grand mean vector plus error. The

second is the conditional model, where we assume that the

multiple effect-size parameters Qi depend on known study

characteristics plus error.

2.1 Unconditional Between-Studies Model

In this simple basic model, the multiple effect-size
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parameters ﬁi vary as a function of a grand mean vector (one

element for each outcome measure or each treatment group) and
random error. The between-studies model for each study can be

represented as

8, = A + U, u, ~ ~N(Q, 1),

where Qi and U, are (mx 1) vectors, and A is a vector of

grand mean parameters.
The multivariate between-study model for the
illustrative example (given in section 1.2) with maximum of

m=2 outcome measures for each study can be represented as

[an [1 O} [Yol Ui1
study 1: = ’
d,, 0 1] Yo Ui,
study 2: [6211 _ [1 0] Yo1 Uy, ,
d,, 0 1 Yo U,







where,
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y

Yo1
Yo2

R
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By stacking all the between-study vectors from all the K
studies we will have the complete between-study model for all
the studies which should be included in the meta analysis.

This complete model can be written as

Ql [I] U
S, I U,
= A <+
Qﬂ :L ﬂk

This can be rewritten in more general form as

where

I, Q) T .

u ~nN(, T, T
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and

a = 10r1,.

This multivariate linear model allows a different number
of outcome measures for each study. When by experimental
design not all the m outcome variables are measured in each
study, we still can obtain efficient empirical Bayes estimates
for the parameters in the model as well as imputed values of

the missing d's.

2.2 Conditional Between-Studies Model

In this model, which can be considered an expansion of
the unconditional model, we use information about study
characteristics (study contexts, study design, treatments, and
subject characteristics from each study) to account for the
variation among the effect sizes. 1In other words, we try to
explain the variations in the effect-size parameters by
knowing methodological and contextual variations in the

primary studies in the review under consideration. This
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between-study model can be written in the following form

8. = W,y + U_, U - NOQ, 1),

1 1

where _Qi and U, are vectors having m x K (m=maximum p;)
elements, W, is a m x g matrix of known study characteristics

and y is a g x 1 vector of between-studies parameters. Here,

we assume that ﬂ; has a multivariate normal distribution with

mean vector Q0 and covariance matrix z.

To illustrate this model we use the illustrative example
given in section 1.2 where we have two outcome variables for
each study. Here we hypothesize that the two outcome
variables in the example are the SAT-Verbal and SAT-Math
effect sizes from SAT coaching studies (these SAT coaching
studies and the coaching effect sizes are described in detail
in Chapter VII). For illustrative purposes, we further
hypothesize that the amount of coaching time in hours
influences the size of the coaching effect. Thus at the
second stage 1in this conditional model we incorporate
information about the number of coaching hours for SAT-Math
and SAT-Verbal subtests to explain the variation among the

effect sizes from the various SAT coaching studies. This






57
conditional multivariate between-studies model may be written

as

Yo1
5, 1 W, 0 0]||Yyn, U,
study 1: = p
3, 0 0 1 Wy |[Yoz U,
Y22
Yo1
study 2: 621] _ 1 W, 0 0]|Yy, N 7% '
8., 0 0 1 Wy (Yo U,,
Y22
Yo1
study 3: 531] = NECIR U P
85, 0 0 1 Wy (Yo U;,

Y22
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Yo1
0 s 1 Wy, O O)lYy, U
study K: s = 00 1 W vl
K2 x2] |Yo2 X2
Y22
where
2
U;; N [0] Tiz Tiz2
U; 0 Tin Tz

Here W;, and W,, represent hours of coaching in studyi
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for the SAT-Verbal and SAT-Math outcome measures,
respectively.

By stacking all the Qi vectors for all the studies we

will have the complete conditional between-studies model which

can be represented in the form

.'é'l - -Hl - -'Ul -

Q2 'WZ 'UZ
= x +

Q KJ 'WK. _'UK.

This can be rewritten in more general and unsubscripted

matrix form as

S = Wy + U ,
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where

g ~ N(,T

Therefore, T = I,®t, is the conditional covariance

matrix of the multiple effect sizes. In other words, it is the
amount of unexplained parameter variation and covariation left
after knowing the effects of coaching hours. From the Bayesian
point of view, this second stage model is considered the prior

distribution of §.

3. WITHIN-STUDY AND BETWEEN-STUDIES MODELS

COMBINED

Combining the within and between study models for each

individual study, we get
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The transformed combined model for each study can be

written as

4 = XK,y + X, U, + e, .,

which in turn can be rewritten in more general matrix form as

d = XWy + XU + E°

In this combined model we assume that U and E* are

independent and can be considered as a specific case of the

general mixed linear model which can be represented as

d* = 24,0, + 4,0, + R ,
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where d* 1is a vector of the uncorrelated multiple effect

sizes, 0, is a vector of unknown fixed effects parameters, 6,
is a vector of unknown random effects parameters, A, and A,

are known matrices of study characteristics, and R is a block

diagonal matrix of error terms.

In this mixed linear model, the Bayesian view is to
assume that the fixed effects parameters as having prior
distribution that is normal with 2zero mean vector and

variance-covariance matrix T. Also, I' is assumed to be

infinitely large. Thus, I'! is close to 0. That is

8, -~ N(0,T)

Further, we assume that the vector of the random effects
parameters are normally distributed with zero mean vector and

variance-covariance matrix T. That is

32 -~ N(O/T) ’
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and

R ~ N(0,Z)

Also, we assume that the parameters 6,, 6,, and R are

mutually independent vectors.
Comparing the two stage linear model and the general

mixed linear model we can see that

Consequently these two models can be considered as a
special case of a single general Bayesian linear model which

can be written as
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d* = A6 + E* ' E* ~ N(O, ¥) ,

where d* is the outcome vector, A is the predictor matrix, 6

is the parameter vector, and we assume that the prior

distribution of 0 is

9 ~ N(HIQ)I
where
't o
Q = .
A

Now comparing this general linear model with the mixed

linear model and the two stage linear model we can see that



or
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CHAPTER V

ESTIMATION OF THE MULTIVARIATE MIXED MODEL

This chapter provides a description of the estimation of
the parameters of the multivariate mixed-effects model for
effect-size meta-analysis and research reviews. Also, in this
chapter the posterior means and variance-covariance matrices
for the parameters in the model are presented.

In the second section of this chapter, the maximum
likelihood estimates of the dispersion matrices for
multivariate effect-size data are presented. These maximum

likelihood estimates are obtained using the EM algorithm.

1. ESTIMATION WHEN T AND = ARE KNOWN

The two-stage multivariate linear model for effect sizes

developed in the previous chapter is

66
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Within-study model:

d* =X'8 +e° e’ ~ NO,D .

Between-studies model:

& =Wy + U, U ~ NO,T) .

Combined-model:

d* = X'Wy + X*U + e"* .

Here,

vard™) = X' T X'+ ,
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and

[var@)1?! = I - X'(X"'x* +ThHx”.

Given the above two-stage multivariate linear model, the

Bayesian point of view considers the second stage to be the

prior distribution for & and adds another stage which
specifies the prior distribution of y as being normal with
mean vector 0 and variance-covariance matrix I'. We further

assume that I' is infinitely large. Thus, I''! is approximately

0.

1.1 Posterior Distribution of 6=(y,U)’

Given the above assumptions and the fact that the data
are not of full rank (because of missing outcome variables),

the formulas derived by Raudenbush (1988) apply here. Thus,
the posterior distribution of O=(y,UY given d, T, I is

normal with posterior mean vector



and posterior dispersion

where,
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(variance-covariance) matrix

b C,

’
* *
CYU DU

D = D(y!d",T) = [WX"X'W - WX'X'(X"X" + T xx Wy

=[W/(X‘/ « _ Xt Xt(xtlxt + T—])_lxtlxt)W]—l ,

= [W/{I-ANX X W]
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= [W/AT-I W]—l

here,

A = X'x* + TYHYX'X* .

DIUId*T)y = C'+ C“‘X"X‘WD(W’X"X‘C"

o
Q»
]

c'+ AWDY‘W/A’.,

where,

ct=x'x+1TH!.

c.,' = —Dy“W’X"X‘C"
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= -D:WIN .,

and

Cy,' = (Cw‘)’

Now after finding the estimates of the posterior

variance-covariance matrix we can find the estimates of the

posterior expectations of y and U which are

Y' = E(yld,T) = D][WX'd - wix'x'cx"d"

D 'W(-X"X'Chx"d"

D W (I-N) x*'ad*
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U = EWUI!d,T) = CX'@'-X*Wy".

1.2 Posterior Distribution of &

From the above estimates, the posterior expectation of

8" = EMB|d4T) = E[Wy +Uld,T]

= X'Wy* + X°C'X'd"-X"Wy")

Last, the posterior dispersion matrix of &' is
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D,. = D(ld*,T) = D(Wyld*,T) + D(UId*,T) + cow(Wy,Uld*) + cowU*,Wy

= Cl'+ I-MNX'D, WX U-AY .

2. M.L.E. ESTIMATION OF THE DISPERSION MATRICES VIA EM

The empirical Bayes estimation procedure discussed above

assumed that the covariance matrices ¥ and T are known. But

in real situations this is not the case. Consequently §; andy

cannot be estimated using the formulas above because their
maximum likelihood estimates do not exist in closed form
especially in the unbalanced case and data sets with missing
data points (Dempster, Laird, & Rubin, 1977). Thus, from the
empirical Bayes point of view, point estimates of the
dispersion parameters are first calculated. Then these point
estimates are substituted into the formulas for calculating
the posterior expectation and dispersion matrices. Typically,

these dispersions are estimated by means of maximum
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likelihood, so that they will be asymptotically efficient with

known large sample normal distributions as K-« (Raudenbush,

1988) .

Dempster, Laird, and Rubin (1977) and Little and Rubin
(1987) suggested the use of EM algorithm as a numerical
approach to compute maximum likelihood point estimates of the
unknown variance and covariance components from incomplete
data. Pigott (1992, 1994) outlined the EM algorithm
procedure to obtain the maximum likelihood estimates for
effect-size data with missing predictor data points.

In this study we consider the case of the multivariate
data to be incomplete and missing (ignorable nonresponse)
because individuals in the primary research studies are
observed on different subsets of the complete set of variables
(Little and Rubin, 1987). Here, the EM algorithm developed by
Dempster, Laird, and Rubin is used to obtain the maximum
likelihood estimates of the parameters. Using this method of

estimation, we assume that the population effect size vector

8 is known. Further, we assume that the errors of the
between-study model, U, have been observed. Given these

assumptions, the covariance matrix T can be estimated by

T = k'Y uu.
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The basic idea of the EM algorithm is to estimate the

"complete data" sufficient statistics (E:LQU/) and then find

the maximum likelihood estimates of T based on the estimates
of the sufficient statistics. Of course, estimation of the
sufficient statistics requires initial estimates of the
covariance matrix, T by using, for example, ordinary least
squares estimates of the residuals from within-study and
between- studies models. Thus the goal of the EM procedures
is to find parameter estimates based on the expected values
for the sufficient statistics of the statistical model.

The EM algorithm is an iterative procedure where each
iteration consists of two steps (estimation and maximization
steps). I next illustrate how the two step process of this

algorithm works.

2.1 E-Step (Expectation Step)

Given the initial estimates of T and the effect size
estimates, we can find the posterior expectation of the

sufficient statistic }:CQUZ of the model as
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EQUU 1dT) = YU'U + XX + T+ Y AWDI WA, .

Here T refers to the initial estimate of T, we also

assume that the multiple effect sizes have a multivariate
normal distribution. This multivariate normal distribution
has sufficient statistics which are the sums and the sums of
the crossproducts of the observations in the data.
Conditional expectations of these sufficient statistics are
used to estimate the mean vector and the variance-covariance

matrix of the multivariate normal distribution.

22 M-Step (Maximization Step)

Based on the expected values of the sufficient statistics

from the E-step, new estimates of the elements of the
covariance matrix T are computed. At the end of the iterative
process (estimation and maximization steps) the estimate of
the matrix T converges to local maximum (Dempster, Laird, and

Rubin, 1977; Little and Rubin, 1987; Pigott, 1994). This new
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T matrix estimate can be substituted in the formulas for
finding the posterior mean vector and variance-covariance
matrices of 8, y, and U.

In summary, the E-step of the EM algorithm produces the
posterior expectations of the complete data sufficient

statistics at each stage of the iteration. This expected

value of the sufficient statistic (E(E U,-’U,.)) can be used to

find new estimates of T.

Once this new covariance matrix is found, it can be

substituted in the formulas for finding the posterior mean
vectors and dispersion matrices of 8, y, and U. Then, these

new posterior values can be substituted in the formula for
finding the expected value of the sufficient statistics to

yield a new posterior expectation (E-step). This new

posterior expectation produces a new posterior estimate ofT

(M-step). The resulting value of T is then used as input for

the next E-step. The process iterates back and forth until
convergence to the maximum likelihood estimates at a required

degree of accuracy is attained.



CHAPTER VI

EMPIRICAL APPLICATION OF

MULTIVARIATE HIERARCHICAL LINEAR MODEL

The proposed multivariate hierarchical linear model and
estimation theory are applied in this chapter. The study
involves the analysis of generated multivariate normal data
set with pre-specified parameter values using FORTRAN program
and IMSL (Version 10) subroutines.

The main rationale for using an artificial data set in
this study was to validate the multivariate estimation
procedures using the HLM computer program for analyzing multi-
level data sets versus using the V-known program which is part
of the HIM program. The V-Known program was designed for
analyzing effect-size sets for research-synthesis purposes and
it can be used for univariate (one effect-size from each
study) and complete multivariate (multiple correlated effect
sizes from each study with no missing effect sizes) meta-
analyses. In other words, the'existing V-known program can be

used for multivariate meta-analysis when we have the same

78
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number of multiple correlated effect sizes from each study in

the review. However, this is typically not the case.

1. INTRODUCTION TO THE HLM COMPUTER PROGRAM

The hierarchical linear model (HLM) program (Bryk et al.,
1986) applies the EM algorithm to provide restricted maximum
likelihood (RML) estimates of the variance-covariance
components (Dempster, Laird, and Rubin, 1977). Consequently,
these estimates of the variances and the covariances can be

used to obtain empirical Bayes estimates of the linear model

parameters.
This program (Bryk et al., 1986) 1is available to
researchers from different disciplines. It constitutes a

general analytic method for studying multi-level data with
hierarchical characterization and analyzing effect-size data
sets for meta-analysis and research review purposes.

Using the HIM program for meta-analysis and research
synthesis typically involves the application of the V-Known
routine (Bryk et al., 1986) within the HLM computer program.
The V-Known routine is a general multivariate regression

routine for univariate and multivariate effect-size data
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sets(data with the same number of effect sizes for each study)
and assumes that the sampling variance-covariance matrix among
these multiple effect-size parameters is known. However, the
V-Known routine for analyzing research-synthesis data cannot
handle multivariate data sets with missing effect sizes for
some of the studies and complete data for the rest of the
studies.

In this study, the HLM program for analyzing multi-level
hierarchical data is used to estimate the parameters of the
multivariate mixed-effects model for meta-analysis with
missing data points. Before applying the HIM program, the
within-study model is reformulated as a weighted least-squares
within-study model by wusing the Cholesky factorization
principle.

The procedure for reformulating the within-study model
involves the following steps. First, each of the estimated
variance-covariance matrices for the vector of estimated
multiple effect sizes from each of the primary studies in the
review should be factorized to a Cholesky triangular matrix.
Second, the components of the within-study model (in this case
the vectors of the multiple effect sizes and the identity
matrices) are premultiplied by the inverse of the resulting
Cholesky triangular factors. After these two reformulation
steps, the HILM program for multi-level data (not the V-Known

program) can be used to fit the specified statistical model
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and obtain empirical Bayes estimates of the parameters in the

model.

2. MULTIVARIATE EFFECT-SIZE DATA GENERATION

The proposed multivariate mixed-effects model which was

presented in previous chapters allows for K studies with

p; effect sizes from each study. In other words, it allows

different numbers of multiple effect sizes and different
number of predictors from each study.
Previous research in meta-analysis suggested values and

ranges for the parameters of the generated data in this study.

A. Number of Studies

In fact, not many published meta-analysis deal with
multivariate effect sizes because of the complexity of the
data and the statistical analysis for such data. The reviews
of the SAT coaching studies (Becker, 1990; Kalaian &
Raudenbush, 1994) reported 20 studies and 47 samples with SAT-

Verbal and SAT-Math effect sizes. Based on these reviews, the
number of studies chosen for this simulation study was K =

50.
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B. Sample Sizes for each Study

Hedges and Olkin (1985) used for their simulation studies

sample size values ranging from 10 to 100 for each of the
experimental and control groups in each of the K studies. On

the other hand, the SAT coaching studies reviewed previously
(Becker, 1990; Kalaian & Raudenbush, 1994) contained eight
studies with sample sizes larger than 100 for the coached and
uncoached groups.

Based on these findings, 50 sample sizes ranging from 10

to 150 were generated from a uniform distribution (10 , 150).

C. Multiple Effect Sizes

For simplicity of interpreting the results from applying
the hierarchical linear model to multivariate effect sizes,
a data set with bivariate effect sizes was chosen in this data
generation. However, the procedure and data analysis can be
generalized to data sets with more than two effect sizes in
each study.

The artificial bivariate effect sizes (two outcome
variables or effect sizes from each study) for this study was
generated from the multivariate normal distribution with zero

mean vector and the following variance-covariance matrix
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5 - 0.0800  0.0528
¢ 00528  0.0800

The values of these variances were chosen based on: (a)
the results of previous simulation research in meta-analysis.
For instance, Hedges and Olkin (1985) reported the variance of
effect sizes when the sample size is 100 as being equal to
0.083 (TABLE 3, P.84) and (b) the results of synthesizing SAT
coaching effectiveness studies. For example, Kalaian and
Raudenbush (1994) synthesized SAT coaching data set, where the
average of the variances of the effect sizes was about 0.07.
This chosen variance of 0.08 corresponds to a standard
deviation of about 0.28. So about 95% of the effect sizes
would be between -0.6 and 0.6 if the mean of the effect sizes

is zero.

Then, based on these values of the variances, the
covariances between the effect sizes were calculated using the
formula given in Chapter 3. In calculating these covariances,
a value of 0.66 was used as the correlation between the two
correlated effect sizes. Again, this value was chosen because
the actual correlation between SAT-Verbal and SAT-Math scores

is 0.66.
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3. RESULTS

In order to validate the workability and the
appropriateness of using the HIM computer program instead of
the V-Known program for research synthesis purposes, the V-
known and the HLM program were applied to the artificial
generated bivariate data. These artificial bivariate effect
sizes, sample sizes for the experimental and control groups,
and the estimated variances and covariances of these effect

sizes are listed in Table 2.

3.1 DESCRIPTION OF THE GENERATED DATA

The values of the set of generated effect sizes for the
50 samples (Table 2) ranged from -0.71 to 0.65 in standard
deviation units with an overall average of 0.03 and a variance
of 0.07, while the second set of effect sizes ranged from 0.63
to 0.47 with an overall average of -0.04 and variance 0.068.
Thus, the average effect sizes for both generated effect-size
sets appear to be quite similar and equal to the elements of
the population mean vector of the bivariate normal

distribution (which was set to zero).
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3.2 THE V-KNOWN PROGRAM RESULTS

APPENDIX A contains the listing of the computer output
from applying the V-Known program to these generated
artificial data. The results of fitting the unconditional
regression model to the generated multiple effect sizes using

the V-Known program show that the average of the first set of

effect sizes (labeled V in Table 6.1) is 0.04 (p = 0.276) and
it is -0.02 (p = 0.320) for the second set of effect sizes

which is labeled M.

Furthermore, the findings show that the estimated
variance-covariance matrix of the random effects part of

fitting the unconditional hierarchical linear model is

5 . [oos4L 002010
002010  0.03614

Finally, the results show that both of these variance

components are significant (p < 0.000). These findings



86
indicate that the V and M effect sizes are inconsistent across

the 50 studies.

3.3 THE HLM PROGRAM RESULTS

APPENDIX B documents the computer output of applying the
HIM program and the proposed multivariate mixed linear model
to these generated data (bivariate effect-size data set). The
results of fitting the unconditional hierarchical linear model

to these generated data using the HLM program show that the
average effects of V is 0.04 (p = 0.276) and it -0.02 (p =

0.320) for M. These results are identical to those from the
V-Known routine.

Also, these results indicate that the estimated variance-
covariance matrix of the random effects part of fitting the

unconditional hierarchical linear model is

A - 0.05411 0.02010
0.02010 0.03614
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Finally, the results show that both of these variance
components are significantly different from zero (p < 0.000).

These findings indicate that the V and M effect sizes are

inconsistent across the 50 studies.

4. CONCLUSIONS

The results of applying the V-Known and the HLM programs
to the same generated artificial data set yielded exactly the
same parameter estimates. The fixed and random-effects
parameter estimates of the proposed hierarchical linear model
in this study were exactly the same.

In summary, we learned from these two applications is
that the HIM program, which is designed for analyzing multi-
level data sets, can be used for multivariate meta-analysis
purposes. Consequently, this HILM program application can be
used to analyze multivariate effect-size data sets with
missing data points using the mixed-effects model developed in

chapter 4.
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Table 2

STUDY nf n® \Y% M v(V) cov(V,M) v(M)
study 1 28 28 017 027 0.07 0.05 0.07
study 2 80 80 07 0.26 0.03 0.02 0.03
study 3 105 105 0.46 0.35 0.02 0.01 0.02
study 4 110 110 0.30 0.28 0.02 0.01 0.02
study § 40 40 0.34 021 0.05 0.03 0.05
study 6 64 64 20.23 0.19 0.03 0.02 0.03
study 7 91 91 -0.01 0.1 0.02 0.01 0.02
study 8 47 47 017 027 0.04 0.03 0.04
study 9 85 85 0.23 047 0.02 0.02 0.02
study 10 52 52 0.20 0.07 0.04 0.03 0.04
study 11 137 137 -0.14 0.00 0.01 0.01 0.01
study 12 48 48 0.14 0.26 0.04 0.03 0.04
study 13 70 70 0.22 -0.19 0.03 0.02 0.03
study 14 47 47 0.38 0.33 0.04 0.03 0.04
study 15 7 72 -0.19 -0.09 0.03 0.02 0.03
study 16 148 148 -0.12 -0.19 0.01 0.01 0.01
study 17 38 38 0.31 0.16 0.05 0.03 0.05
study 18 47 47 0.17 0.46 0.04 0.03 0.04
study 19 34 34 -0.18 043 0.06 0.04 0.06
study 20 52 52 -0.02 0.01 0.04 0.03 0.04
study 21 146 146 0.24 0.09 0.01 0.01 0.01
study 22 46 46 0.15 0.63 0.04 0.03 0.05
study 23 12 12 -0.09 -0.59 0.17 0.11 0.17
study 24 128 128 043 0.37 0.02 0.01 0.02
study 25 67 67 0.26 -0.19 0.03 0.02 0.03
study 26 140 140 0.10 0.09 0.01 0.01 0.01
study 27 9% 94 0.13 0.29 0.02 0.01 0.02
study 28 32 32 0.19 0.02 0.06 0.04 0.06
study 29 105 105 0.65 031 0.02 0.01 0.02
study 30 91 91 0.22 0.18 0.02 0.01 0.02
study 31 106 106 043 0.19 0.02 0.01 0.02
study 32 111 111 0.04 0.31 0.02 0.01 0.02
study 33 2 22 0.02 0.12 0.09 0.06 0.09
study 34 29 29 0.04 -0.05 0.07 0.05 0.07
study 35 65 65 0.22 0.07 0.03 0.02 0.03
study 36 141 141 .05 0.11 0.01 0.01 0.01
study 37 145 145 045 -0.16 0.01 0.01 0.01
study 38 50 50 -0.46 0.02 0.04 0.03 0.04
study 39 7 72 -0.00 0.08 0.03 0.02 0.03
study 40 139 139 0.15 -0.26 0.01 0.01 0.01
study 41 19 19 -0.08 0.09 0.11 0.07 0.11
study 42 14 14 0.29 -0.14 0.14 0.09 0.14
study 43 88 88 0.17 0.02 0.02 0.02 0.02
study 44 132 132 -0.40 -0.38 0.02 0.01 0.02
study 45 14 14 0.19 0.00 0.14 0.09 0.14
study 46 137 137 -0.39 -0.30 0.01 0.01 0.01
study 47 143 143 0.18 0.20 0.01 0.01 0.01
study 48 88 88 0.04 0.23 0.02 0.01 0.02
study 49 14 14 023 -0.43 0.14 0.10 0.1
study 50 144 144 0.10 0.24 0.01 0.01 0.01




CHAPTER VII

SAT-COACHING EFFECTIVENESS:
A META-ANALYSIS USING

MULTIVARIATE HIERARCHICAL LINEAR MODEL

SAT coaching studies are used in this chapter to
illustrate the application of the multivariate mixed-effects
linear model for meta-analysis with missing effect sizes.
This model was developed in chapter 4 and tested using
generated bivariate effect sizes (chapter 6). The purposes of
the present application is (a) to show the applicability of
the proposed model to educational research and multivariate
meta-analysis with missing data points, and (b) to compare the
results and parameter estimates of applying the multivariate
mixed-effects linear model to SAT coaching studies with the
results of applying the multivariate fixed-effects model to

this data set.

89
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1. INTRODUCTION

In 1926 the Scholastic Aptitude Test (SAT) was first
introduced into the College Board's admissions testing program
(Dyer, 1987). Nearly a thousand of the nation's colleges and
universities now require the SAT examination, and each year
approximately a million high school students take the SAT as
one of their main college admission requirements. As a result
of the importance of the SAT for college entrance, some
secondary schools have been importuned by students, parents,
and school counselors to provide SAT coaching sessions and
test-preparation courses. At the same time, commercial
coaching schools have promised the public to increase
students' SAT scores dramatically within a short period of
time through their special coaching programs (Kalaian &
Becker, 1986).

Over the last forty years a great deal of controversy has
emerged about the effectiveness of coaching for the Scholastic
Aptitude Test. The Educational Testing Service (ETS), which
has been developing and administering the SAT, claims that
coaching and training programs have little effect in raising
students' SAT scores. Their argument relies on the fact that
aptitude tests measure cognitive and intellectual skills such

as quantitative problem solving and verbal reasoning skills
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which develop gradually over the years as a result of various
experiences (in-school, out-of-school, and in the home).
Consequently, they say that SAT scores do not depend upon a
specific course of study or highly focussed verbal and
mathematical content teaching. Commercial coachers, on the
other hand, claim that special SAT coaching classes, test
preparation manuals, instruction in test-taking strategies,
drill and practice on SAT test items, and test familiarization
can yield significant increases in the mastery of the
cognitive and analytical skills tested by the SAT and

consequently increases in a students' SAT scores.

2. DESCRIPTION OF THE SCHOLASTIC APTITUDE TEST (SAT)

The Scholastic Aptitude Test (SAT) is "a multiple-choice
test of how well one has acquired the ability to reason
expeditiously with the kind of verbal and mathematical facts
and concepts one has presumably acquired in elementary and
secondary schools" (Dyer, 1987). It consists of an 85-item
verbal subtest (SAT-V) and a 60-item mathematics subtest (SAT-
M). The verbal subtest measures vocabulary, reading
comprehension, and verbal reasoning. On the other hand the
mathematics subtest measures mathematical reasoning and
comprehension abilities in the areas of arithmetic, algebra,

and geometry and problem solving skills (Comras, 1984).
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3. PAST RESEARCH ON SAT COACHING EFFECTIVENESS

In the last 13 years, six studies have reviewed and
summarized the results from primary SAT coaching effectiveness
studies. The first review was by Slack and Porter (1980), who
reviewed 10 reports published prior to 1968. They calculated
the mean gain scores for SAT-V and SAT-M subtests separately
and compared the results for studies which had used either
experimental or statistical controls to those studies without
comparison groups. The average gain score for the controlled
studies was 16 points for the SAT-V and 12 points for the SAT-
M. When the results of all the studies (controlled and
uncontrolled studies) combined, the average gains were 29
points for the SAT-V and 33 points for the SAT-M. Clearly the
uncontrolled studies in their review produced greater gains
than did experimentally or statistically controlled studies.
Consequently Slack and Porter concluded that coaching can
effectively help students to raise their scores and they
stated that "there is ample evidence that students can
successfully train for the SAT and that the more time students
devote to training, the higher their scores will be" (p. 164).

The second review was conducted by Messick and Jungeblut
(1981) , who included SAT primary coaching studies published
prior to 1980, but excluded two SAT-M and two SAT-V studies

used by Slack and Porter. They studied the relationship
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between the number of coaching hours and the size of coaching
effects using regression analyses and they concluded that
logarithmically transformed student contact hours were
linearly related to coaching effects (gain scores). But the
slope coefficient for the regression of SAT-M gain scores on
logarithmic transformed contact time was steeper than the SAT-
V slope coefficient. In their review they also distinguished
between controlled and uncontrolled studies. The average gain
scores for experimental (coached) groups weighted by the group
sample sizes were 14.3 for SAT-V and 15.1 for SAT-M. Contrary
to the experimental studies, the average gain scores in all
studies, both experimental and non-experimental (weighted by
the control-group sample sizes) were 38 points for the SAT-V
and 54 points for the SAT-M.

Dersimonian and Laird (1983) conducted a third review in
which they incorporated all the studies used by Slack and
Porter and Messick and Jungeblut. Their approach differed
from those of the two previous reviews because it involved the
use of a random-effects model to estimate the effects of
coaching and explain the variability in the coaching effects
across studies. That is, they separated the true variation in
coaching effectiveness from the within-study sampling
variation. They reported that uncontrolled studies had gain
scores three times larger than controlled studies and five
times larger than matched or randomized studies for both SAT-V

and SAT-M subtests. Consequently, they concluded that
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coaching has positive effects on SAT scores, but the size of
the coaching effect is too small to be practically important.

The fourth synthesis was by Kulik et al. (1984), who
reviewed only the controlled studies (a total of 14 studies).
They calculated standardized mean differences (effect sizes)
for each study and concluded that coaching raised SAT scores
by 0.21 standard deviation units in four randomized studies
versus 0.12 standard deviations for non-randomized studies.

Kalaian and Becker (1986) conducted the fifth review in
which they utilized multivariate techniques to analyze the
SAT coaching studies. Their results showed considerable
variability of effect sizes among SAT coaching studies and
that duration of coaching and sponsorship by the Educational
Testing Service (ETS) predicted effect size. Their
multivariate findings indicated that the effect of coaching is
to increase SAT-Math scores by about 18 points and SAT-Verbal
scores by 17 points.

The sixth and the last review was by Becker (1990), who
reviewed 23 coaching effects —reports utilizing the
standardized mean-change measure for pretest-posttest research
together with the generalized least-squares (GLS) approach for
modeling multivariate study outcomes (SAT-V and SAT-M). In
this review, studies without control groups are included. The
results showed stronger coaching effects for the SAT
mathematical subtest. Furthermore, regression models based on

published research showed nonsignificant residual variance
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with coached groups exceeding control groups by 0.09 standard
deviations on SAT-V and 0.16 on SAT-M.

In summary, although each of the previous reviews
examined different sets of studies and used different
quantitative methods to summarize the results of the coaching
effectiveness studies, they also shared common conclusions.
For example: (a) Studies without a control group have higher
coaching effects than controlled studies; (b) There is a
remarkable amount of variation in outcomes of SAT coaching
studies; (c) Duration of coaching intervention is strongly
related to coaching effects; (d) There is a differential
effect of coaching on SAT-V and SAT-M subtests.

This review considers the controlled primary studies
reviewed previously and more recent primary studies using
multivariate mixed-effect approach for meta-analysis (Kalaian,

1994). By using this approach I will be able to

1. investigate and model the variation in the multiple
outcomes (SAT-V and SAT-M) simultaneously as a function

of study, sample, and coaching characteristics;

2. estimate the variance-covariance of the multiple random
effects and test the hypothesis of no variation-

covariation among the multiple effect size parameters;
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3. estimate the relationships between study characteristics

and the multiple study outcomes;

4. include in the analysis the primary studies that coached
for both SAT subtests (verbal and mathematical) as well
as studies that coached for only one of the subtests and

not the other; and

5. include in the analysis different predictors for the SAT-
V and SAT-M outcomes. For example, different contact

coaching hours for SAT-V and SAT-M within a single study.

6. to use the GLS transformed within-study model (proposed
in Chapter 4 to perform multivariate fixed-effects

statistical analysis.

4. METHODOLOGY

4.1 Studies in the Review

The set of primary studies reviewed here include those
studies examined by previous reviews plus new studies
retrieved through a search of the Educational Resources
Information Center (ERIC) database. However, our analysis

uses only the randomized, matched, and statistically
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controlled studies. The studies without control groups were
excluded from this synthesis for two reasons: (1) Previous
reviews showed much higher coaching effects for uncontrolled
studies than controlled studies; (2) The effect sizes from the
uncontrolled studies in previous reviews showed considerable
variability and sometimes more than twice the variability in
the controlled studies; (3) Such studies 1lack internal
validity. Uncontrolled studies by Coffin-second experiment
(1987), Johnson (1984), Coffman & Parry (1967), Marron (1965),
Pallone (1961) are excluded. Also, in this review we consider
only the results for the subtest for which coaching and
instruction was provided because some studies coached and
provided instruction for only one SAT subtest but examined the
subjects on both subtests (for example, French, 1958).

Furthermore, many primary studies reported results of
coaching effects from different schools or used different
coaching programs (e.g., Alderman & Powers, 1980; Evans &
Pike, 1973). Because different subgroups of students were
involved 1in the comparisons between coached and control
groups, we have treated the effect-size estimates calculated
from separate schools within each study as distinct and
independent samples. As a result, we identified 39 samples in
which SAT-Verbal subtest is coached and tested and 28 samples
examining SAT-Math. Only 20 from these two groups examined

coaching effects for both SAT subtests (Table 3).
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4.2 Study Features

Study characteristics may be coded as part of any meta-
analysis technique in order to explain the sources of the
variations in the effect sizes. Here, these characteristics
included experimental design, context, and subject
characteristics. Table 4 lists and summarizes the features
and the characteristics of the studies considered in this

review.

4.3 Statistical Procedures

The pre-post multiple measures procedure for pretest-
postttest designs outlined in the second section of Chapter 3
is used in this review to measure the effectiveness of SAT
coaching. The standardized mean change measure is computed
separately for each of the SAT-V and SAT-M coached and
uncoached samples. For instance, a study with one coached and
one uncoached group for each SAT subtest (SAT-V and SAT-M)
would have two satandardized mean changes for each outcome,
each computed as the difference in mean performance between
the posttest and pretest divided by the pretest standard

deviation.
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Let gf and gf denote the standardized mean change

measures for coached and uncoached groups respectively for
each of the K studies, i=12,..,K, in the review and can

represented as

YS - x© Y - xY
g - W X)L gt - W A

where X‘c and X,U represent the pretest SAT means for the

coached and uncoached groups. KC and nv represent the

posttest SAT means for «coached and wuncoached groups

respectively. Sf and Sf represent their respective pretest

standard deviations. For each of the two SAT subtests,
separate standardized mean change measures were computed for
coached and uncoached groups.

In this review, the unbiased estimates of standarized
mean changes are calculated for coached and uncoached groups
for both SAT-V and SAT-M subtests. The unbiased estimates of

the coached and uncoached standardized mean changes are
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an -2 [¥°-x°

and

an? -2 (¥ -x7

where nf and nf are the coached and uncoached groups sample

sizes.

The estimated variances of df and 4” are

a1 - r+@d>y

ZnF

3

1]

Vard))

’

and

a1 - ry+@’

2n,-U

Var(d,”)
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The coaching effect-size, Al, is the difference between

the coached and uncoached unbiased standardized mean change
measures for each of the SAT subtests within each of the K

studies and is denoted as

Thus, studies that examine the effects of coaching on

both SAT-M and SAT-V will have two effect sizes (Ar for the

SAT-V standardized mean-change difference and Af'fbr'the SAT-

M subtest).

~

The estimated variance of A‘ is calculated as follow

. 41-rS)+@5? 41 -roy+(d)?
Var(A,) _ XYC (] + X}'u i ,
2n; 2n;

where I;; and l;; are the estimators of the pretest-posttest

correlations for the coached and uncoached groups

respectively. 1In this review, the value of 0.88 was used to
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represent the pretest-posttest correlation for coached and
uncoached samples for both SAT-V and SAT-M (DerSimonian and

Laird, 1983).

The estimated covariance between Af'and Af’is calculated

as

Conh[, AlY = ry WV Vid™ + ™ Vd™1,

where r,, is the correlation between the SAT-Math and the SAT-

Verbal subtests. Here we used the value of 0.66 to represent
this correlation (Kalaian & Becker, 1986).
Thus, the estimated variance-covariance matrix for each study

can be represented as

Var(A ) Cov(A[,A})

o>
n

CowA?, A% Var(A¥) |
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Finally, these multiple coaching effect sizes are
analyzed and modeled by utilizing a multivariate mixed-effects
model for meta-analysis outlined in Chapter 4. In this
conceptualization, the multiple effect sizes are viewed as
varying randomly across the different coaching studies and the
variation among the multiple coaching effect size is modeled
simultaneously as a function of study characteristics plus
random error. Thus, this procedure allows one to have two
effect sizes (SAT-V and SAT-M) from some of the studies as
well as single effect sizes (either SAT-V or SAT-M) from the

rest of the studies in the review.

5. RESULTS

The values of the SAT-Verbal effect sizes for the 39
samples ranged from -0.35 to 0.72 in standard deviation units
with an overall weighted average coaching effect of 0.12 and
standard deviation 0.22, while the 28 SAT-Math effect sizes
ranged from -0.49 to 0.60 with an overall weighted average of
0.11 and standard deviation 0.28 (Figure 1). Thus, the
average effect of coaching on SAT-Verbal and SAT-Math gains
appear to be quite similar. Note that the SAT-Math average
effects are smaller than in previous reviews but the SAT-

Verbal effects are about the same. Although most of the
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coaching effect sizes are positive, the magnitudes of the

coaching effects appear quite variable for both subtests.

FIGURE 1

Frequency Distribution of SAT Effect Sizes

o o
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The first question I tried to answer with the application
of the Multivariate Hierarchical Linear Model to SAT coaching
studies was the degree of consistency of the effect sizes for
both subtests and the multivariate empirical Bayes estimates
of the average of these effect sizes. The results of fitting

an unconditional hierarchical linear regression model (Table

5) show that the average SAT-Verbal effect size is 0.12 (p <
0.000) and it is 0.13 (p < 0.004) for SAT-Math. Contrasting

the SAT-Verbal and SAT-Math regression coefficients show that






105
there 1is no significant differences between the two

coefficients. Furthermore, the findings show that SAT-Math

samples are more variable than SAT-Verbal samples (t%-= 0.006,p

= 0.027 Vs Ty = 0.03, p = 0.000).

As a result of the inconsistency in the coaching effects
for both subtests across the studies, I consider study
characteristics (duration of coaching, year of publication,
ETS sponsorship, and study quality) as explanatory variables
to explain some of this inconsistency. For the 28 SAT-Math
and the 39 SAT-Verbal data points in this review, the student
contact hours ranged from 4 to 93 hours for both subtests with
an average coahing hours of 15 for SAT-Math and 17 for SAT-
Verbal and most of the data points are clustered at the low
end of the number of hours dimension (see Table 6). For this
reason and the fact that there are diminishing returns in both
SAT subtests' scores (Messick and Jungeblut, 1981), we used in
the analysis the logarithmic tranformation of the hours of
coaching dimension. Logarithmically transformed contact hours
provides more accurate representation of the functional
relationships between coaching effect and the number of
coaching hours. The results show that SAT coaching effect
sizes is moderlately related (0.5 for SAT-Verbal and 0.4 for

SAT-Math) to duration of contact hours (see Figure 2).
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FIGURE 2

Relationships between SAT Effect Sizes and Log (Contact Time)
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The results of fitting conditional hierarchical linear
model (Table 7) show that the logarithmically transformed
duration of coaching has a significant positive effect on SAT-

Math coaching effect sizes even after controlling for other
variables in the model (f = 0.15, p = 0.04). As we can see

in Table 7, no other variables studied in this review had a
significant effect on SAT scores. Also, the results show that
after accounting for some of the study characteristics, still

considerable and significant variability left in the coaching

effect sizes (r% = 0.008, p = 0.03 and ti,= 0.03, p = 0.000).
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Furthermore, the results show that the estimated covariance

between SAT-Verbal and SAT-Math effect sizes is about -0.01.

6. FIXED-AND-MIXED-EFFECTS MODELS COMPARED

Although the fixed-effects approach is statistically
developed (Raudenbush, Becker, and Kalaian, 1988; Gleser and
Olkin, 1994), the actual analytical procedure is complex and
needs a special computer skills from meta-analysts in order to
perform a meta-analytic review. Thus, in this section, the
multivariate fixed-effects model is carried out by applying
multiple regression analysis, using the available standard
statistical packages (SPSS-PC, SAS, SYSTAT,...etc.), on the
transformed GLS within-study model which is developed 1in
Chapter 4. Additionally, the parameter estimates of this
application (multivariate fixed-effects model) to SAT coaching
data set is compared to the parameter estimates obtained from
applying the multivariate mixed-effects model which is
developed in Chapter 4.

From the findings of the application of the multivariate
mixed-effects model to SAT coaching data in the previous
section, I learned that duration of coaching was the only

significant explanatory varaiable. Thus, for comparison
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purposes, the number of coaching hours is considered in this
section as predictor variable in the model.

The results of fitting the conditional multivariate
mixed-effects model show that the logarithmically transformed
duration of coaching has a significant positive effect on SAT-
Math coaching effect sizes (Table 8). On the other hand, the
results of fitting the conditional multivariate-fixed model
(Table 8) show that the logarithmically transformed coaching
hours is not statistically significant. Also, from these
results, we can see that the multivariate fixed-effects model
yielded standard errors for the beta coefficients smaller than

the mixed effects model.

7. DISCUSSION

The results of the multivariate hierarchical linear model
for coaching effect sizes showed that both SAT coaching
programs, on averade, had positive effects of about 0.11 of a
standard deviation or about six points for both SAT-Verbal and
SAT-Math scores. Also, the results indicated that the average
SAT-Verbal effect sizes is not significantly different from
the average SAT-Math efféct sizes. However, although we found

great variability for the effects of coaching for both
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subtests, the coaching effects for SAT-Math were more variable
than the SAT-Verbal coaching effects. When we modeled the
variability of the effect sizes as a function of study
features, student contact hours was the only significant
predictor (especially for SAT-Math effect sizes) even after we
controlled for the other predictors in the model. This result
agrees with the previous findings of Messick and Jungeblut
(1981) and Kalaian and Becker (1986) who found that duration
of coaching had a strong effect on SAT scores. I also
discovered that the design of the study, the publication year,
and whether or not the coaching program is sponsored by
Educational Testing Service did not have significant effects
in explaining the variability in coaching studies.

In comparing the results of analyzing the SAT coaching
effect sizes using the multivariate mixed-effects model and
the multivariate fixed-effects model, the logarithmically
transformed coaching hours yielded significant positive effect
on SAT-Math effect sizes using the multivariate mixed-effects
model. These results prove the existance of parameter
variability in the coaching studies that should be accounted

for by using the mixed-effects models.
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Table 3

Effect Sizes of SAT Coaching Studies

Study Year n° n* A v A x Hour ETS Study Home
s Type Work
Randomized Studies

Alderman & Powers (A) 1980 28 22 0.22 . 7 1 1 1
Alderman & Powers (B) 1980 39 40 0.09 . 10 1 1 1
Alderman & Powers (C) 1980 22 17 0.14 . 105 1 1 1
Alderman & Powers (D) 1980 48 43 0.14 . 10 1 1 1
Alderman & Powers (E) 1980 25 74 -0.01 . 6 1 1 1
Alderman & Powers (F) 1980 37 35 0.14 . N 1 1 1
Alderman & Powers (G) 1980 24 70 0.18 . 11 1 1 1
Alderman & Powers (H) 1980 16 19 0.01 . 45 1 1 1
Evans & Pike (A) 1973 145 129 0.13 0.12 21 1 1 1
Evans & Pike (B) 1973 72 129 0.25 0.08 21 1 1 1
Evans & Pike (C) 1973 71 129 0.31 0.09 21 1 1 1
Laschewer 1986 13 14 0.00 0.08 89 0 1 0
Roberts & Oppenheim (A) 1966 43 37 0.01 . 75 1 1 0
Roberts & Oppenheim (B) 1966 19 13 0.67 . 75 1 1 0
Roberts & Oppenheim (D) 1966 16 11 -0.66 . 75 1 1 0
Roberts & Oppenheim (E) 1966 20 12 -0.21 . 75 1 1 0
Roberts & Oppenheim (F) 1966 39 28 0.31 . 7.5 1 1 0
Roberts & Oppenheim (G) 1966 38 25 . 0.26 75 1 1 0
Roberts & Oppenheim (H) 1966 18 13 . -041 715 1 1 0
Roberts & Oppenheim (I) 1966 19 13 . 0.08 75 1 1 0
Roberts & Oppenheim (J) 1966 37 22 . 0.30 75 1 1 0
Roberts & Oppenheim (K) 1966 19 1 . -0.53 7.5 1 1 0
Roberts & Oppenheim (L) 1966 17 13 . 0.12 75 1 1 0
Roberts & Oppenheim (M) 1966 20 12 . 0.26 75 1 1

Roberts & Oppenheim (N) 1966 20 13 . 0.47 75 1 1 0

Zuman (B) 1988 16 17 014 05l 24 0 1 1



Table 3 (cont)

Effect Sizes of SAT Coaching Studies
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Study Year c U av a2m Hours ETS Study Home
" " A A Type  Work
Matched Studies
Burke (A) 1986 25 25 0.50 50 0 2 1
Burke (B) 1986 25 25 0.74 50 0 2 1
Coffin (A) 1987 8 8 -0.20 0.37 18 0 2 0
Davis 1985 22 21 0.14 -0.14 15 0 2 0
Frankel 1960 45 45 0.13 0.35 30 0 2 0
Kintisch 1979 38 38 0.14 20 0 2 1
Whitla 1962 52* 52* 009  -0.11 10 1 2 1
Nonequivalent Comparison Studies
Curran (A) 1988 21 17 6 0 3 0
Curran (B) 1988 24 17 6 0 3 0
Curran (C) 1988 20 17 6 0 3 0
Curran (D) 1988 20 17 6 0 3 0
Dear 1958 60 526 002 021 15 1 3 1
Dyer 1953 225 193 0.06 027 15 1 3 1
French (B) 1955 110 158 0.06 45 1 3 1
French (C) 1955 161 158 0.20 15 1 3 1
FTC (A) 1978 192 684 0.34 0.31 40 0 3 0
Keefauver 1976 16 25 0.19 -20 14 0 3 0
Lass 1961 38 82 0.03 0.11 1 3 1
Reynolds & Oberman 1987 93 47 004 059 63 0 3 1
Teague 1992 10 15 0.40 18 0 3 0
Zuman (A) 1988 21 34 056 059 27 0 3 1

* The sample sizes for SAT-V were R €-5adn? - s
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Table 4

Characteristics and Features of SAT Coaching Studies

Characteristic Coded Values
Randomized Study (1) yes (0) no
Student Voluntariness (1) yes (0) no
Presence of Verbal Coaching (1) yes (0) no
Presence of Math Coaching (1) yes (0) no
Assignment of Homework (1) yes (0) no
ETS Sponsored Research (1) yes (0) no
Publication Year last two digits of the year

Coaching Duration log (hours)




113

Table 5

Frequency Distribution of Student Contact Hours

Categories (in hours) SAT-V Samples SAT-M Samples
45-10 18 15

10.5 - 20 10 6

20.5 - 30 6 6

30.5 - 40 1 1

40.5 - 50 3 0

> 50.5 1 1

Mean 17.2 15.4

S. D. 144 12.8

Total 39 28
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Table 6

Fitting Unconditional Model Results

Fixed and Coefficient Standard t-ratio P-value
Random Error
Effects
For SAT-V
Intercept 0.118 0.021 5.51 0.00
t2 - estimate 0.006
For SAT-M
Intercept 0.125 0.039 3.18 0.004
72 - estimate 0.03
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Table 7

Fitting Conditional Model Results

Fixed and Coefficient Standard t-ratio P-value
Random Error
Effects
For SAT-V
Intercept 0.099 0.049 2.06 0.06
Year 0.002 0.004 0.48 0.39
Log (hours) 0.075 0.002 1.94 0.13
ETS 0.079 0.118 0.68 0.36
Randomized 0.003 0.089 0.03 0.38
tz,, - estimate 0.008
For SAT-M
Intercept 0.057 0.32 0.77 0.29
Year -0.000 0.39 -0.19 0.39
Log (hours) 0.15 0.04 247 0.02
ETS -0.016 0.39 -0.12 0.39
Randomized 0.07 0.34 0.63 0.32
0.03

2 .
Ty - estimate
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CHAPTER VIII

DISCUSSION AND IMPLICATIONS

In preceding chapters, the multivariate mixed-effects
model was first developed. Second, the empirical Bayes
estimates of the parameters for the model were derived.
Finally, the applicability of the proposed model to artificial
and real data sets was illustrated. Additionally, the
parameter estimates from applying the multivariate mixed-
effects and the multivariate fixed-effects models were
compared. Although the concluding statements about these
analyses were provided in the previous two chapters, some
important conclusions will be restated in this chapter.

I learned from the application of the V-Known routine and
the Hierarchical Linear Model (HLM) program to the artificial
data set that the HIM program can be used instead of the V-
Known routine for research-synthesis purposed to obtain
empirical Bayes parameter estimates using the multivariate
mixed-effects model. Since the proposed model can be used to
model effect-size data with missing values, the HLM program

can be used to analyze multiple correlated effect sizes for

117
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each study in the meta-analysis with missing effect sizes from
some of the studies.

The results of applying the multivariate mixed-effects
model to Scholastic Aptitude Test (SAT) coaching effects
studies showed that the HLM program can be applied
appropriately to multivariate meta-analysis with missing
effect-size data points. This evidence of the applicability
of the HIM program for analyzing multivariate effect-size data
with or without missing effect sizes can help us to carry more
design-oriented meta-analyses. For instance, we can use HLM
to take into account and incorporate within-study
characteristics in the multivariate mixed-effects model.

Another significant contribution of the proposed model
(multivariate mixed effects model) is its practical use to
perform multivariate fixed-effects model statistical analysis.
I illustrated the use of the proposed multivariate mixed-
effects model to obtain multivariate fixed-effects parameter
estimates by using standard statistical computer packages as
well as multivariate mixed-effects parameter estimated by
using the HLM computer software.

Given the importance and the seriousness of the "missing
effect-sizes problem" in meta-analysis and research synthesis,
the effects of missing effect sizes in multivariate data sets
should be further explored and examined more closely using
simulation studies. Also, the behavior of the empirical Bayes

estimates when specific percentages (e.g. 5%, 10%, 15% and
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25%) of the effect sizes are missing should be further
studied.

In this study, the application of the HLM program and the
proposed multivariate mixed-effects model was illustrated
using bivariate artificial and real data sets. As substantive
future research, the application of the illustrated
methodology should be applied to meta-analysis studies with
more than two outcomes, with or without missing effect sizes.
Also, these new applications should consider taking into
account the within-study characteristics and incorporating
them in the multivariate mixed-effects model. Furthermore,
the robustness of violating the assumptions of the proposed

model should be studied.
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APPENDIX A

V - KNOWN COMPUTER OUTPUT



EERKEKKEEKKKERKERKKKKREEKR KRR KK KK RKKKEKKKKKKRKKRKKKKK KKKk KKK XX

E x

* H HL M M 22 *

* H HL MM MM 2 2 *

* HHHHH L MMM 2 Version 3.01 *
* H HL M M 2 *

* H HLLLLL M M 2222 *

EEKRE KRR KRR R KRR R KRR KKK R R R KRR KRR Rk KRR KRR KRR KRR KRR R KKK

SPECIFICATIONS FOR THIS HLM RUN Sat May 28 11:44:50
1994

Problem Title: Multivariate HLM for Generated Data (No Predictors)

The data source for this run = siml.ssm
Output file name = output

The maximum number of level-2 units = 50
The maximum number of iterations = 3000
Weighting Specification

Weight
Variable
Weighting? Name Normalized?
Level 1 no no
Level 2 no no
The outcome variable is EF
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The model specified for the fixed effects was:

Level-1 Level-2
Coefficients Predictors

V slope, B1 INTRCPT2, G10
M slope, B2 INTRCPT2, G20

The model specified for the covariance components was:

Sigma squared (constant across level-2 units)
Tau dimensions

V slope
M slope

Summary of the model specified (in equation format)

Level-1 Model

Y = B1*(V) B2*(M) + R

Level-2 Model

B1 = G10 + Ul
B2 = G20 + U2
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Level-1 OLS regressions

Level-2 Unit V slope M slope

The average OLS level-1 coefficient for
The average OLS level-1 coefficient for

0.02581
-0.03986

2 <

STARTING VALUES

sigma(0) squared =

1.00000
Tau(0)
\Y 0.03319 0.00707
M 0.00707 0.02643
The outcome variable is EF

Estimation of fixed effects

(Based on starting values of covariance components)

Fixed Effect = Coefficient Standard Error T-ratio P-value
For V slope, Bl

INTRCPT2, G10 0.037941 0.035791 1.060  0.225
For M slope, B2

INTRCPT2, G20  -0.021686 0.033678 -0.644

0.321
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The value of the likelihood function at iteration 1 = -1.989962E + 002
The value of the likelihood function at iteration 2 = -1.982290E + 002
The value of the likelihood function at iteration 3 = -1.978401E+ 002
The value of the likelihood function at iteration 4 = -1.976544E + 002
The value of the likelihood function at iteration S = -1.975194E + 002
The value of the likelihood function at iteration 7 = -1.975023E + 002
The value of the likelihood function at iteration 8 = -1.975010E + 002

The value of the likelihood function at iteration 9 = -1.975006E + 002
The value of the likelihood function at iteration 10 = -1.975004E + 002
Iterations stopped due to small change in likelihood function

XEkKXXRXX ITERA'I'ION 11 XRkKXKX XX

Sigma_squared = 1.00000

Tau
A\ 0.05411 0.02010
M 0.02010 0.03614

Tau (as correlations)
V 1.000 0.454
M 0.454 1.000
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Random level-1 coefficient Reliability estimate

V, B0 0 0.622
M, B1 0.535

The value of the likelihood function at iteration 11 = -1.975004E + 002

The outcome variable is EF

Final estimation of fixed effects:

Fixed Effect Coefficient Standard Error T-ratio P-value

For V slope, B1

INTRCPT2, G10 0.035176 0.041652 0.845  0.276
For M slope, B2

INTRCPT2, G20  -0.023977 0.036768 -0.652  0.320

Final estimation of variance components:

Random Effect Standard Variance  df Chi-square P-value
Deviation = Component

V slope, U0 0.23262 0.05411 49  153.90418 0.000
M slope, Ul 0.19011 0.03614 49  116.82539 0.000
level-1, R 1.00000 1.00000

Statistics for current covariance components model

Deviance =  395.00079
Number of estimated parameters = 4



APPENDIX B

HLM COMPUTER OUTPUT



EEXXEXEKREXXREREEE AKX KRR KKK X KR E R K KRE KRR KK RXRKKRKE KRR KRR KKK K KKK XX

x *

* H HL M M 22 *

* H HL MM MM 2 2 *

* HHHHH L MMM 2 Version 3.01 *
* H HL M M2 *

* H H LLLLL M M 2222 *

x x

KEKREREKKRKRERR KRR KRR KRR KRR KRR R KRR KRR R KRR KRR KRR KRR KRR K KX

SPECIFICATIONS FOR THIS HLM RUN Tue May 31 10:59:04
1994

Problem Title: Multivariate V-Known for Generated Data (No Predictors)

The data source for this run = c:\dis\d1l.ssm
Output file name = outputl

The maximum number of level-2 units = 50
The maximum number of iterations = 3000

Note: this is a v-known analysis

The model specified for the fixed effects was:

Level-1 Level-2
Effects Predictors

V, Bl INTRCPT2, G10
M, B2 INTRCPT2, G20
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The model specified for the covariance components was:

Variance(s and covariances) at level-1 externally specified
Tau dimensions

\%
M

Summary of the model specified (in equation format)

Level-1 Model

Y1 = Bl + E1
Y2 = B2 + E2

Level-2 Model

B1 = G10 + U1
B2 = G20 + U2

STARTING VALUES

Tau(0)
\Y 0.03263  0.00659
M 0.00659  0.02602



127

Estimation of fixed effects
(Based on starting values of covariance components)

Fixed Effect Coefficient Standard Error T-ratio P-value

INTRCPT2, G10 0.038054 0.035615 1.068  0.223
INTRCPT2, G20  -0.021578 0.033540 -0.643  0.322

The value of the likelihood function at iteration 1 = -2.144441E + 002

The value of the likelihood function at iteration 2 = -2.128138E + 002
The value of the likelihood function at iteration 3 = -2.119697E + 002
The value of the likelihood function at iteration 4 = -2.115597E + 002

-2.112609E + 002

The value of the likelihood function at iteration S

The value of the likelihood function at iteration 7 = -2.112178E + 002
The value of the likelihood function at iteration 8 = -2.112146E + 002
The value of the likelihood function at iteration 9 = -2.112135E + 002
The value of the likelihood function at iteration 10 = -2.112129E + 002

Iterations stopped due to small change in likelihood function
KKK KKXX ITERATION 11 LEE R E R 23

Tau
\Y% 0.05411 0.02010
M 0.02010 0.03615
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Tau (as correlations)
V 1.000 0.454
M 0.454 1.000

Random level-1 coefficient Reliability estimate

V, Bl 0.622
M, B2 0.535

The value of the likelihood function at iteration 11 = -2.112129E + 002

Final estimation of fixed effects:

Fixed Effect  Coefficient Standard Error T-ratio P-value

INTRCPT2, G10 0.035177 0.041652 0.845 0.276
INTRCPT2, G20  -0.023977 0.036769 -0.652  0.320

Final estimation of variance components:

Random Effect Standard Variance  df Chi-square P-value
Deviation = Component

v, Ul 0.23261 0.05411 49  153.90286 0.000
v, U2 0.19012 0.03615 49  116.82497 0.000

Statistics for current covariance components model

Deviance =  422.42582
Number of estimated parameters = 4
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