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ABSTRACT

STABILITY AND DYNAMICS

OF

LOW-DIMENSIONAL SYSTEMS

By

Seong Gon Kim

Understanding the structure and dynamics of physical systems has been one

of the major tasks of condensed matter physics. In this thesis, I study this issue

on four different physical systems: A superconductor connected to an external

current source, random networks under tensile stress, carbon fullerenes in contact

with an external heat bath and ferrofluid particles subject to an external field or

heat source.

The critical current density of the superconductor depends on the distribution

of its current density. For superconductors with defects, the critical current den-

sity will depend on how these defects enhance the local current densities. The

numerical simulation results as well as analytic predictions on the dependence of

critical current density on the geometry of the defects is presented.

The mechanical response of materials can be modeled by networks of nodes

and bonds. Tuning the energy functional of the bond deformation, I analyze the

 





strength of the system and simulate the fracture process. A scaling theory is also

presented.

Carbon is one of the most favored elements of scientists because of the many

remarkable properties it possesses. Discovery of carbon fullerenes spurred even

more interest in carbon clusters. I studied the thermal disintegration of fullerenes

within the framework of tight-binding molecular dynamics. Not only the melt-

ing temperature but also many intermediate structures including a previously

unknown “pretzel” phase have been identified.

A ferrofluid is a magnetic colloid made of magnetite particles suspended in

a liquid, usually a petroleum oil. When a. magnetic field is applied, they form

well defined structures. Our study indicates that these particles show interesting

structures even in zero-field. We also find that the ring structure is very stable

and it should be observed in carefully controlled experiments.
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Chapter 1

Introduction

The major task of theoretical physics is to understand the fundamental laws which

govern nature, use them to explain observed phenomena and predict the properties

of new physical systems. The subjects of interest for theoretical condensed matter

physics are electronic, magnetic, structural and dynamical properties of solids and

liquids. The most fundamental technique to address most of these problems from

first principles is the ab initio Density Functional Theory (DFT) [Lund83] in the

Local Density Approximation (LDA) [Hohe64, Kohn65], which has been shown to

describe the ground state properties of solids with high accuracy.

The heavy computational requirement associated with ab initio methods such

as the LDA, however, limits the range of its applicability to relatively small sys-

tems with a high symmetry. In order to describe the dynamical behavior of large

systems with low symmetry or disordered systems, we need to use somewhat less

demanding approximation schemes. In this thesis, I use the Tight-Binding (TB)

method, or parameterized Linear Combination of Atomic Orbitals (LCAO) for-

malism to study the dynamics and stability of carbon fullerenes. TB method

conveniently parametrizes ab initio LDA results for structures as different as C2,

 

 





 

carbon chains, graphite, and diamond [Toma91].

This method is much more efficient in terms of the computational effort and has

the essential quantum mechanical features still in the formalism. TB method can

be made yet more efficient and fast by adopting the recursion technique [Zhon93]

in diagonalizing the Hamiltonian matrix. With an exact numerical diagonalization

of the Hamiltonian matrix, the CPU requirement scales as N3, for N the number

of particles. Using the recursive method makes the computational load scale as

N. This factor makes a huge difference when we put more than a few hundred

atoms in the system. Furthermore if you need to do a Molecular Dynamics (MD)

study of these systems the benefit of a linearly scaling numerical method will let

us afford to simulate large systems for a sufficiently long time span.

When the object of our study becomes bulk materials, such as a piece of

superconductor connected to an external current source or a piece of metal bar

clamped in a tensile-test machine, however, there are too many particles in the

system to be analyzed or simulated by even the TB method. Moreover, when

these bulk materials have random defects it would be hopeless to treat them as the

collection of individual atoms or molecules. For systems like a dielectric medium

or a superconductor, I use the continuous medium approximation and simply solve

the relevant equations of state parameters such as Maxwell’s equations and/or the

London equation.

For mechanical stability calculations, many systems can be modeled by net-

works of nodes and bonds. A node denotes a point fixed in the bulk material and

a bond represents the interaction between these nodes. By postulating the energy

functional for these bonds and tuning the parameters therein this network model





 

 

 

can reproduce the mechanical response of the bulk materials reasonably well. In

the studies included in this thesis, I use one of the simplest energy functions, the

“simple harmonic oscillator” model. The bond between nodes is represented by a

linear Hooke’s spring. The strength of the material is represented by the strength

of the springs and the defect can be introduced easily by modifying individual

spring constants. The external stress or deformation is specified by setting the

pr0per boundary conditions. The optimum configuration of the system is obtained

by minimizing the total energy of the network using the Conjugate-Gradient (CG)

method. For this method to be successful, the number of nodes should be suf-

ficiently big and it is usually a couple of orders of magnitude bigger than the

number of atoms we can deal with in tight-binding MD or similar methods.

During my years of training for completion of the Doctoral degree, I have

worked on four major different subjects. Each subject is in a separate chapter

and each chapter has its own introduction and conclusion. In the following, I

introduce each chapter and its subject briefly.

1.1 Cracks and critical current

In Chapter 2, the effect of defects on the critical current density of superconductors

is studied.

After Kamerlingh Onnes reported the first observation of superconductivity in

April of 1911, superconductivity became one of the most researched subjects in

the science community. There has been vast developments in terms of discover-

ing more and more superconducting materials and enhancing the quality of the

superconductors. It is a well known fact that superconducting materials are not

 

 

 





 

 

 

always superconducting. They need to have very special conditions to be super-

conducting. One of these conditions is the so-called “critical current density”,

jc, of a superconductor. There is a maximum current density a superconductor

can support. Thus when you have an inhomogeneous current density distribution

in the superconducting medium, the location where it has the maximum current

density is the most vulnerable to this transition. It is well known that cracks (of

width, w > £,) are effective in enhancing local current density.

In this chapter I calculate the size of these hotspot supercurrents as a function

of the crack length, a, and the London penetration depth, A, using 2D London

theory. The current density enhancing factor for a given crack size is studied as a

function of the penetration depth and the intensity of vortex pinning. We argue

that large local supercurrents near a surface crack nucleate vortex creation. If

flux pinning is weak enough these vortices flow under the influence of the large

local Lorentz force. The dissipation so produced can lead to a reduction in ob-

served critical current. If flux pinning is moderate, the first additional vortices

nucleated near the crack tip are pinned, in a region we label p, the flux pinning

zone. In the case of a through crack in a thin film, we then argue that jc(a)

reduces as jc(a)/jc(0) ~ (p/a)‘ (for a/L << 1), where L is the film width and

z = 1/2 for the simplest London theory. We compare this theory with the Bean

(critical state) model which predicts that the critical current is (approximately)

determined by the cross-section available for supercurrent, so that in a film con-

taining a crack, jc(a)/jc(0) ~ 1 — a/L (ignoring self field effects). We argue that

superconductors with sufficiently weak pinning should obey the hotspot theory,

while sufficiently hard superconductors should obey the critical state model, and

suggest experiments that should illustrate these two limiting cases.
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1.2 Elasticity and fracture of disordered net-

works

In Chapter 3 I discuss the elasticity and mechanical failure of random spring

networks.

Many alloys and composites are disordered. In fact no material is perfect and

the strength of a given material is very much dependent on these minor flaws

or defects. Thus understanding the effects of random defects and their statistics

is very crucial in analyzing material strength. The effective elastic properties

of these materials can be calculated using effective medium theory and other

“homogenization” methods. Due to the fact that fracture is initiated in regions of

high stress, it is to be expected that homogenization methods, unless they focus

in the crack growth region, should be poor predictors of the effect of disorder on

failure strength.

Random networks with “realistic” interatomic and many body potentials

are now routinely simulated on a computer. Recently, detailed analytic and

numerical analysis of idealised disordered microstructures have been performed

[Herr90, Sahi91]. Along with new scaling theories specifically taking into account

the extreme statistics of brittle fracture[Duxb87a, Duxb91, Bea188], these simula-

tions have lead to new insights into the fracture of materials. In this chapter, we

discuss the use of these methods to study fracture of brittle materials.
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1.3 Melting of carbon fullerenes

Chapter 4 contains the work I did for carbon fullerenes. Carbon fullerenes, such

as Can [Krot85], are intriguing molecules with a hollow soccer ball structure and a

large range of interesting properties [Bi1193]. Due to the high structural stability of

these systems [Cur188], almost no information is available about their equilibrium

phases at temperatures close to and exceeding the melting point of graphite.

We expect the phase diagram of these strongly correlated structures to be very

interesting and to consist of several well identifiable “molten” phases.

A second reason to study the high-temperature behavior of fullerenes is re.

lated to their formation. While bulk quantities of fullerenes can now be rou-

tinely synthesized in a carbon arc [Krat90], the microscopic mechanism of their

aggregation from the gas phase is still the subject of a significant controversy

[Waka92, Waka93, Ebbe92, Kern92, Held93, Hunt94]. During the formation pro-

cess, fullerenes will be created from many different intermediate structures. They

also will have many unsuccessful trials and to form such a high symmetry struc-

ture from the gas phase will require a tremendous amount of encounters between

even correctly matching parts of the structures. Therefore to simulate the forma-

tion of fullerenes we will have to have many carbon atoms in a simulation box

and wait for a long time to have some closed structures, without even counting

the number of atoms in the cluster. As an alternative approach, we hope that a

detailed study of the annealing process may shed new light on this controversy,

since intermediate structures, which occur during thermal quenching in the rare 
gas atmosphere, may also be observed while heating up these structures to high

temperatures.

  

 





 

A third motivating reason for this study are recent collision experiments which

indicate that fullerene molecules are extremely resilient and only fragment at en-

ergies exceeding as 200 eV [Camp93]. Since in the collision process the kinetic

energy is transferred into internal degrees of freedom as “heat”, additional infor—

mation about the intermediate structures of colliding fullerenes could be obtained

by investigating those of the superheated molecules.

In an attempt to elucidate the above three problem areas, we performed a

detailed molecular dynamics (MD) study of the melting and evaporation pro-

cess of three prototype fullerenes, namely 020, 060, and 0240. In our simula-

tion, we investigated the response of a canonical ensemble of fullerenes to grad-

ually increasing heat bath temperatures using Nose-Hoover molecular dynamics

[Nose84, Hoov85, Alle90], complementing recent microcanonical ensemble simu-

lations on Cso and Cm [KimE93]. Of course, the quality of simulation results

depends primarily on the adequacy of the total energy formalism applied to the

fullerenes. Since our simulation also addresses the fragmentation under extreme

conditions, the formalism used must accurately describe the relative stability of

fullerenes with a graphitic structure and their fragments, mostly short carbon

chains. The corresponding transition from .3}:2 to sp bonding can only be reliably

described by a Hamiltonian which explicitly addresses the hybridization between

02.9 and 02p orbitals. A precise evaluation of interatomic forces is required to

obtain the correct long-time behavior of the system. On the other hand, the long

simulation runs necessary to equilibrate the small systems during the annealing

process, and the large ensemble averages needed for a good statistics, virtually

exclude ab initio techniques as viable candidates for the calculation of atomic

forces.

  





 

 

For this reason, we base our force calculation on a Linear Combination of

Atomic Orbitals (LCAO) formalism which conveniently parametrizes ab initia

Local Density Approximation (LDA) [Hohe64, Kohn65] results for structures as

different as C2, carbon chains, graphite, and diamond [Toma91]. We use an adap-

tation of this formalism to very large systems, which is based on the fact that forces

depend most strongly on the local atomic environment and which has been imple-

mented using the recursion technique [Zhon93]. The force calculation can be per-

formed analytically to a large degree. This not only speeds up the computations

significantly, but also provides an excellent energy conservation AE/E 5.. 10‘10

between time steps in microcanonical ensembles, and a linear scaling of the com-

puter time with the system size. Most importantly, forces on distant atoms can

be efficiently calculated on separate processors of a massively parallel computer.

Using MD simulation, we heat up carbon fullerenes and monitor the changes

in various structural and thermodynamic responses of the system. We identified

many well defined intermediate structures of fullerenes. Among others, we found

a most dramatic transition to a previously unknown “pretzel” phase to occur at

a high temperature of 132.4000 K. The temperature where fullerenes disintegrate

into carbon chains is explained using quantitative results for the entr0py.

1.4 Stability of Magnetic Dipole Structures in

Ferrofluids

Chapter 5 contains the work on ferrofluids. A ferrofluid is a magnetic colloid

made of magnetite particles suspended in a liquid, usually a petroleum oil [Rose85,

Wang94]. A typical electrorheological (ER) fluid consists of a suspension of fine

 



   



dielectric particles in a liquid of low dielectric constant [TaoR92, Bloc87, Fili88].

The aggregation of these particles has been the subjects of many experiments

and numerical simulations. Experiments find that upon application of an electric

field, dielectric particles in ER fluids rapidly form chains which then aggregate

into thick columns [Hal590, Chen92, Mart92, Gind92]. Magnetic ferrofluids forms

a Similar structure of chains and thick columns. The dependence of the periodicity

of columns on the sample thickness has been recently studied using the magnetite

colloids [ng94]. Also many numerical simulations using the molecular dynamics

(MD) [Hass89, Klin89, Kusa90, Bonn92, TaoR94] has been carried out to find the

orientational ordering in ER liquid crystals.

Even though a few MD simulation results have been published for ferroelectric

dipole liquids [WeiD92a, WeiD92b], almost no MD simulation results are available

for the magnetic ferrofluid systems except a few simulations using the Monte Carlo

technique[Wei393, Stev94]. There is one fundamental difference between ER fluids

and magnetic ferrofluids even though they have many common properties. In ER

fluids, the dipoles are induced by an applied electric field and they are always along

the field. The strength of their dipole moments depends on the local electric field

and therefore they do not show any interesting properties in the absence of the

external field. On the contrary, the magnetic particles in ferrofluids have their

own pre-assigned magnetic moments. This means that in general they are not

obliged to be aligned with the external field and we have to consider the rotations

of these particles as well as their positions. Also we should expect that these fluids

have some non-trivial structures even in the absence of the external field.

In this chapter I will discuss the early stages of colloidal aggregation in fer-

rofluids and the stability of the ring structure of these particles. We found that

9
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the ring is more stable for ferrofluid particles in low field and low temperature as

long as it has more than 4 particles per ring. An estimation of the energy barrier

between the ring structure and chain structure is presented along with the melting

temperature in an external magnetic field.
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Chapter 2

Cracks and critical current

In superconductors, cracks (of width, 1.0 > 5,) are effective in enhancing local

supercurrent, and we calculate the size of these supercurrent hotspots as a function

of the crack length, a, and the London penetration depth, A, using 2D London

theory. In the A —-> oo limit and constant injected current density, we show

that this 2D solution is also exact for the current flow in a thin film containing

a through crack. We argue that large local supercurrents near a surface crack

nucleate vortex creation. If flux pinning is weak enough these vortices flow under

the influence of the large local Lorentz force. The dissipation so produced can

lead to a reduction in observed critical current. If flux pinning is moderate, the  
first additional vortices nucleated near the crack tip are pinned, in a region we

 label p, the flux pinning zone. In the case of a through crack in a thin film, we

then argue that jc(a) reduces as jc(a)/j¢(0) ~ (p/a)‘ (for a/L << 1), where L

is the film width and a: = 1/2 for the simplest London theory. We compare this

theory with the Bean (critical state) model which predicts that the critical current

is (approximately) determined by the cross-section available for supercurrent, so

that in a film containing a crack, jc(a)/jc(0) ~ 1 —a/L (ignoring self field effects).

We argue that superconductors with sufliciently weak pinning should obey the
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hotspot theory, while sufliciently hard superconductors should obey the critical state

model, and suggest experiments that should illustrate these two limiting cases.

This chapter contains materials which have appeared in the following publica-

tion:

0 [KimSQl] S.G. Kim and RM. Duxbury, Cracks and critical current, J. Appl.

Phys. 70,3164 (1991).

2.1 Introduction

In the Bean[Bean64] (critical state) model of hard type II superconductors, the

supercurrent flows in shells in which the current is at its critical current level, and

the remaining parts of the superconductor carry no current. The macroscopic

critical current occurs when the “local” critical current flows throughout a cross—

section of the sample. This model predicts that the observed critical current is

relatively insensitive to extended defects such as cracks (critical current is reduced

roughly according to the cross-section of the extended defect). In this paper we

show that if pinning is sufficiently weak, a crack can cause a much more rapid

reduction in observed critical current due to the nucleation and flow of vortices

from the crack tip.

We initiate a study of the origins and consequences of large local supercur-

rents, by studying the effect of a crack on supercurrent flow in thin film super-

conductors. This is a natural starting point, as it is known from the study of

electrical[Duxb87a, Duxb87b] and mechanical failure[Kell86] that cracks or crack

shaped flaws are very efficient at enhancing current or stress. As the simplest non-

trivial illustration of the effect, we use 2D London theory to show that a crack

12

 





 

 

can lead to large local supercurrents. This effect is demonstrated analytically in

Sec. [2.2] and the analytic calculations are supported by numerical solutions to

the London equation in Sec. [2.3]. In the limit A H 00, we show that the 2D

London theory is exact for a thin film containing a through crack.

In Sec. [2.4] we consider the effect of large local supercurrents on critical cur-

rent. We argue that large local supercurrents act as nucleation sites for vortex

creation. Once created, the vortex lines will flow and cause dissipation, if the local

flux pinning is insufficient to resist the Lorentz force on the vortex line. We thus

argue that large local supercurrents degrade critical current most in weak pinning

superconductors where flux lines can be depinned by the additional Lorentz force

due to large local supercurrents. Using these ideas in combination with the Lon-

don theory calculations of Sec. [2.2], we make some specific predictions for the

dependence of the critical current of a superconducting film on the length of a

(lithographically drawn) through crack in the film. These predictions are com-

pared with the results one would expect using the simplest critical state model.

Sec. [2.5] contains a summary of the main results of this study.

2.2 Supercurrent enhancement at a crack tip

2.2.1 The Model

To illustrate the effect of crack on supercurrent flow, we use 2D London the-

ory. London theory is known to provide a good semi-quantitative description of

strongly type II superconductors away from Te [Tink65, Duze81, Ti1186, Orla91].

In particular the London model does a fairly good job of predicting the field profile

and current flow near vortex lines. A crack can be modelled as a line of vortices,
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so we expect that London theory will also provide a good first approximation in

this problem. We must keep in mind though that the theory is incorrect on length

scales shorter than 5..

Although the 2D theory is only strictly valid for an infinitely thick film con-

taining a through crack, we show later in this section, that in the A —+ co limit, it

is also exact for the current flow pattern in a thin film containing a through crack.

In the 2D geometry, current flow is in the z-y plane, so that only the z-component

of magnetic field is finite. This reduces the London theory to a scalar Helmholz

equation for the z-component of the magnetic field, B:

V2805?) = 3(1” y)/’\2' (2'1)

Here B is a function of :c and y, and the current is found from B via the Maxwell

equation,

C

4WV x [0,0,B(z,y)]. (2.2)j:

Using Eqs. (2.1) and (2.2), we will calculate the current flow in the geometry

shown in Fig. 2.1.

We wish to calculate the current flow pattern using as a boundary condition

lbw) = [0,joexp(-z/z\)] as y '4 ioo' (2‘3)

This is achieved by imposing the field boundary condition,

_ B(z,y) = 30(3) = Aoexp(-z/A) as y —» ice. (2.4)

with

41Ajo

A0 = . (2.5)
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Figure 2.1: A superconductor with elliptic defect used in the analytic calculations.
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Another boundary condition we impose is that there is no current normal to the

surfaces of the superconductor (including the surfaces of the crack-like ellipse).

Note that since we are solving for a problem with constant current boundary

conditions inside the film and zero current outside the film, we in principal solve

for the current pattern inside the film first and then generate the magnetic field

patterns interior and exterior from it. It turns out that it is mathematically

convenient to still work in terms of the magnetic field, but the physical geometry

should be kept in mind when thinking about the solution. To satisfy the boundary

conditions at the crack surface, it is convenient to use to elliptic coordinates

(£217)[Mors53] as illustrated in Fig. 2.2. In this coordinates an ellipse defined by:

2:2/a2 + yz/b2 = 1 (2.6)

using the usual elliptic variables,

2 = Ccoshécosn
(2.7)

y = C sinhfsinn

where

a = C cosh 60

b = C sinh £0
(2.8)

0 =m

Physically, f and n are the radial and angular coordinates respectively and the

surface of an ellipse is generated by fixing f = £0 and allowing 1) to vary between

—1r/2 and 1r/2.

Separation of variables:

B(£,n) = f(£)g(n)
(2.9)
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Figure 2.2: Elliptic coordinates.





leads to

22.9.dnz + (s + 2q cos 21])g = 0 (2.10)

and

at2

32% — (s + 2q cosh 2£)f = 0 (2°11)

where q = (C'/2A)2 and s is a separation constant. Equations (2.10) and (2.11)

are the original and modified Mathieu equations[McLa46, Abro72, Grad80] and

arise in a variety of quantum and classical scattering problems[Bowm87, McLa47]

(note though that the sign of q is opposite that occurring in such problems). To

include the boundary condition of Eq. (2.4), we write

B(£.n) = 30(3) + 3105.17) (2.12)

and we choose radial solutions to Eq. (2.11) that ensure that 31 (6,1)) goes to zero

at large 5.

2.2.2 Exact solution as a/A —-» 0

Equations (2.10) and (2.11) do not yield to simple closed form solution, so it is

instructive to consider the limit a/A -> 0 where a closed form solution is straight-

forward (this limit is also relevant to thin films where the effective penetration

depth is large). In this limit, the boundary condition

30(2) = Ao(l - z/A) for y -r :l:oo (2.13)

leads to

B(z,y) = 1400-3”)

+Ao(a//\) exp(-[£ - fol) cos 17 (2-14)

18

 



:2"

 
 



 

 

for the magnetic field exterior to the ellipse. From this solution it is straightfor-

ward to calculate the supercurrent pattern in the film using Eq. (2.2). The results

je(£.17) = (fa/THC coshtsin 1) - aexpl-(t — (0)] sin 17} (2-15)

and

13.03.17) = (fie/THC sinh t cos n + aexpl-(t - £01608 71} (2-16)

where

1'2 = 02(sinh2£ + sinzn). (2.17)

A detailed study of these solutions near the crack tip shows that there is a large

enhancement in the current density in the y direction at the crack tip. The current

density may be calculated as a function of distance (in the z-direction - see Fig.

2.1) from the crack tip (on the central axis of the crack) by evaluating the current

in the 1) direction as a function of f: Using f = cosh-1(z/C') at n = 0 and taking

a: = a+r, we find the current behavior presented in Fig. 2.3 (the result is identical

to that found in a classical conductor containing an insulating inclusion[LiYS89]).

The behavior of Fig. 2.3 can be asymptotically summarized as follows:

1 + (a/2p)1/2 if r < p;

J'.(r)/jo ~ 1+ (er/2r)”2 if p < r < a; (2-18)

1+a2/(2r2) ifr >> a;
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Figure 2.3: The magnitude of current density as a function of distance (in the

z-direction) from the crack tip when A > a and a/b = 1000. The asymptotic

behaviours predicted by the analytic calculation of Eqs. (2.18) are clearly evident.
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where p = b2 /2a is the crack tip curvature. One important feature of this result

is that the magnitude of current in a region of size p near the crack tip is

 
_I_t_ip_ : fop jy(r)dr

Io f0” J'o exp (-2=/Dds

~ 1 + (a/2p)1/'-’. (2.19)

The crack tip current increases as the square root of the crack length and becomes

very large for large a.

Now consider a film of finite thickness in the z-direction, which has the same

cross-section (that of Fig. 2.1) for every value of z. The current solution found

above solves this problem also, as there is no z-direction current, and the boundary

conditions in the z-y plane are the same as for the 2D case. Every plane of the

film thus has the same current pattern as the 2D problem, and there is no :-

dependence to the magnetic field pattern inside the film. Of course outside the

film there is a very strong z-dependence in the magnetic field generated by the

current sources in the film. The magnetic field exterior to the film thus has :c,y,

and 2 components that depend on 2,3] and 2. We are interested in the effect of

the current pattern inside the film on critical current, and will concentrate on the

interior solution for the remainder of this chapter.

For finite A, the interior current pattern problem is truly three dimensional.

We also expect the current enhancement effect [see Eqn. (2.19)] to be reduced,

as current is already concentrated in a region of thickness A near the surface of

the superconductor. In fact, the reader may intuitively expect that for a >> A,

It“, should saturate at large a. This intuition turns out to be correct, and we

have quantified this “saturation effect” by developing asymptotic series for 1,3,, as

a/A -> 00. We use 2D London theory, and so that the results we will derive are
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only rigorously valid for infinitely thick films. We do however expect that they

will also provide a good first approximation for thin films when A is large, as we

know from the above exact solution, that as A -—> co the 2D solution becomes

exact .

2.2.3 Saturation Effect as a/A —-> 00

In this limit, the angular function is rapidly decaying in 17. In addition, we are

interested in the limit b/a —> 0 so that 60 = tanh‘1(b/a) ~ b/a is small. It thus

makes sense to expand Eqs. (2.10) and (2.11) for small 1) and 5 and to use these

expansions to develop approximate solutions for the magnetic field at the crack

tip. A second order expansion in both 6 and 7] leads to

3217—3- + (k — h2n2)g = 0 (2-20)

and

g — (i: + 11262))“ = 0. (2-21)

Choosing

I: = (2n + 1)). and h = 0/1 (2.22)

we find that g and f are given by

9(a) = eXP(-hn’/2)Hz..(\/7m) (2.23)

f(6) = Y(2n+1/2.~/2_h£) (2-24)

where H..(:c) is a Hermite polynomial of order n, and Y(n, z) is a parabolic cylinder

function[Abro72, Grad80] of order n [We have chosen the even Hermite polyno-

mials to ensure the correct symmetry about 1) = 0]. Both of these solutions can
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be chosen to be rapidly decaying, which suggests that they will provide a useful

representation of the true solutions near the crack tip. (Further mathematical

justification for the truncation leading to Equations (2.20) and (2.21) may be

obtained from a Sturm-Liouville analysis[Mors53].) Using these functions as our

basis set and satisfying the boundary conditions, we find,

8(8) ll) ~ 30(2)

Mini3,.eXp(—hn2/2)Hgn(\/hq)Y(4n;1,x/2—h£) (2.25) 

0:0

with

 £22"(2n)!r(4"2+ 1,\/2h£o)3n =

/: exp(-hnz/2)Hzn(\/l;n)[l — exp(—§ cos 11)]. (2.26)

Here we have extended the angular integration to infinity with negligible error, as

311(1)) is rapidly decaying in 1]. In the limit a/A —-> co, the integral on the right

hand side of Eq. (2.26) reduces to

[0° CXP(‘hTIz/2)Hzn(‘/Xfl)dfl = 3,15%“ (2-27)

We then find that for a/A —1 00,

B(£.n) ~ 30(3)
.0 2 ex,,(.1”)?/2)1E12..(x/iin)Y[(4"

+ 1V2, flit] (2.28)
 

 

+A° ”2:; 22"n!Y[(4n + 1)/2, V5360)

and hence

MM = 0) ~ 2'06““
, °° Y’[(4n + 1)/23 MC] (229)

+J° 2;, E"Y[(4n + 1)/2, J2—hto]
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where

fi(—1)n(2n)z

with

Z e, = 1. (2.31)

n=0

Exactly at the crack tip, the series (2.30) is very slowly convergent (~ 11‘3/2

at large n) and 100,000 terms are required to achieve 3 figure accuracy for B

right at the crack tip. For any finite distance, p from the crack tip, however,

the series (2.28) is slowly convergent only up to terms N" ~ A/p, after it is

exponentially convergent. In a similar way, the current density series (2.29) is

poorly convergent (marginally convergent at best) right at the crack tip, but is

exponentially convergent for large 12 provided p is finite. In applying our results

to experiment, or in comparing with the numerical work described in Sec. [2.3],

we must introduce a cut-off or coarse graining into the continuum theory. A study

of the series (2.29) integrated up to a cut-off or lattice spacing A yields

12 N Bee.» = 0) — 8m = o) (2.32)
Io Bo(z = 0) —- Bo(:c = A)

where {0 ~ b/a and {c = cosh’1 (a + A)/C. Since A > A, the parabolic cylinder

function may be approximated by its asymptotic behavior. We thus find,

Itip _ Isat

73w) _. co) = 10

1 — 23;. e.exp{—\/(4n + 121/MU + 2a)“ — 1]}

'” 1 «xx—13pm '

 (2.33)
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Here we have written A = ,8p, and fl is the only free parameter in comparison

with the numerical simulations of the next section. Finally, the scaling behavior

of Eq. (2.33) for p < A < a is found to be

’7': ~ (AM/211 + Calos(«\/P)l (234)

where 63 is a constant of order 1.

2.3 Numerical Simulation

We have used numerical simulations to test the analytic theory of the previous

section, and to calculate the current and field profiles around the crack tip. We use

a L X L square lattice, finite difference representation of the Laplacian operator,

and put the two line defects of length a lattice spacings and width 1 lattice spacing,

symmetrically at the both sides of the 2-dimensional array (see Fig. 2.4). The

symmetry of the system allows us to work with a system 1 /2 the size of the actual

one. We inject current into the system from the bottom in the y direction. When

there is no defect the field and current profiles can be solved analytically and the

solutions are

sinhuL — 21/11
B = A° sinh(L/A)

. (2-35)

j = frigid/1A); Al 17-
(2.36)

To simulate the effect of a crack, we ensure that the magnetic field a long

Way from the crack is that of Eqn. (2.35). We also for the magnetic field at

surface lattice sites and at the surfaces of the crack. This ensures that no current
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Figure 2.4: A superconducting square lattice with line defect used in the numerical

calculations.
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flows across these boundaries. With these boundary conditions, the magnetic field

profile is calculated using the conjugate gradient method (For more details about

the method, see Ref. [Pre586]).

The square lattice for our numerical simulation is depicted in Fig. 2.4 and

the numerical result showing the magnetic field profile and magnitude of the

current density are plotted in figures 2.5 and 2.6. The magnetic field profile has

an exponential decay away from the crack tip (although it is faster than at a free

surface). The current, however shows a marked peak near the crack tip. This

current crowding near the crack tip is the effect of primary interest here, and

was calculated analytically in the previous section, Eqs. (2.18), (2.19), (2.33) and

(2.34) [Current is calculated from the difference of the magnetic field at adjacent

sites - the lattice version of Eq. (2.2)]. We plot the current at the crack tip for

various penetration depths and crack sizes in Fig. 2.7.

In this figure, the current is normalized to that occurring in a bond at the

free surface a long way from the crack. For large A, and a. < L, the current

enhancement obeys the square root increase of Eq. (2.19). When a gets close in

size to L, finite lattice effects lead to a sharp rise in the current enhancement. For

smaller A, the current enhancement saturates for A < a < L, and again shows a

sharp increase as a approaches L due to finite size effects. The value at which the

current enhancement saturates (for a < L) is presented in Fig. 2.8.

In this figure, we also plot the predictions of Eq. (2.34) with ,6 = 1. It is seen

that the theory of the previous section provides an excellent fit to the numerical

data, and this justifies the use of the equations (2.19) and (2.34) in the scaling

analysis of critical current presented in the next section.
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Figure 2.5: The profile of the magnetic field near a crack, found using numerical

simulations on 200 x 120 square lattice array for the case of A/A = 10, a/A = 30

and b/A = 1.
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Figure 2.6: The profile of the magnitude of the current density near a crack, found

in same numerical simulations for Fig. 2.5.
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Figure 2.8: The saturation current (1.») at the crack tip (see text) when A <

a < L. The solid line is obtained using Eq. (2.33).
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2.4 The Effects of a Crack on Critical Current

In this section, we use the theory of Sections [2.2] and [2.3] to predict the effect

of a crack on the observed critical current of a superconducting film. In all cases,

we consider current injected into the film in a direction perpendicular to the long

axis of a crack (see Fig. 2.9), that extends all the way through the film (a through

crack). We first consider the prediction that the simplest critical state model

makes for this geometry. We then go on to a discussion of the critical current

reduction to be expected, if the large local supercurrent at the crack tip initiates

the dominant dissipative mechanism.

2.4.1 The critical state model

In the critical state model[Bean62, Bean64] of hard superconductors, the critical

current occurs when the current density is at its critical value all the way across

the sample. At lower values of external field or current, the critical current density

only flows in a shell near the surfaces of the film as depicted for a 2D geometry

in Fig. 2.9.

As the external current is increased, the current shells increase in size until they

fill the smaller cross-section extending outwards from the crack tip. Still ignoring

self-field corrections, the film case is also straightforward. Current shells now occur

on all edges of the film, and there is a z-dependence to the magnetic field and

current flow, but the total current carrying capacity of the film is still proportional

to the smallest crossection available for superflow. The critical current reduction

  



 

 
 

 

 
 

 

   
 

 
f INPUT CURRENT
 

Figure 2.9: The Bean model (schematic). Current flows in the shaded region.

Here we have rounded the sharp edges inherent in the model on a length scale of

A, as is expected on physical grounds.
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due to a through crack in the geometry of Fig. 2.9 is then given by

%% ~ 9—2—9 (2.37)

ignoring self-field effects. This result shows a very weak dependence on crack

length compared to that of the hotspot theory discussed below. Including self-field

corrections (for example within the Kim model[KimY62, Ande62]) does modify

the result (2.37) and makes the supercurrent patterns more complex [Bean64] but

the crack sensitivity of the model is still weak.

2.4.2 Hotspot theory

We wish to put forward an alternative perspective on the effect of a crack on

critical current. Consider the limit of weak pinning, and slowly increase the current

injected into the film containing the crack (again the direction of current flow is

perpendicular to the long axis of the crack). Due to the current enhancement

effect at the crack tip [see Eqns. (2.18) and (2.34)] vortex nucleation will first

occur at the crack tip. If flux pinning is weak, the vortices so nucleated will flow

causing dissipation. (This has been explicitly seen in simulations of current flow

in the closely related problem of a crack in a 2D Josephson junction containing

a crack [XiaW89]). As pinning increases, the first vortices nucleated at the crack

tip will be pinned, and the film will support a higher external current before

dissipation sets in. As pinning increases further, a larger number of the newly

nucleated vortices remain pinned in the nucleation zone near the crack tip. We

label the zone in which these vortices reside the pinning zone, and ascribe to it

a radius p (note that we assume that there is no difference between the pinning

strength of the superconductor at the crack tip compared to elsewhere in the
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material). In the pinning zone, the system is in a critical state, with supercurrent

density at the critical value. The pinning zone mitigates the current enhancing

effect of a crack by producing an effective crack tip radius of curvature of size p.

Provided p << a, we can combine the concept of a pinning zone with the explicit

calculations of Secs. [2.2] and [2.3] to predict the effect of a crack on critical

current. Using Eqs. (2.19) and (2.34) of Sec. [2.2] we thus find (for p < a < L

and ignoring logarithmic corrections)

jc(a) ~ 61(p/a)1/2, if p < a < A (2 38)

jc(0) c2(p/z\)1/2, if a >> A > p. '

where c; and c2 are undetermined constants that are independent of a. As is seen

from Eqn. (2.38), the main trend for jc(a)/jc(0) is that it reduces as the inverse

of the square root of crack size or penetration depth, whichever is smaller. This

prediction breaks down when pinning becomes sufficiently strong that the flux

pinning zone p becomes of order a, or L — a, whichever is smaller. When p is of

order L the critical state region extends across the sample, and we return to the

critical state model prediction of Eqn. (2.37).

The above predictions may be tested experimentally using superconducting

films. We suggest an experiment where a controlled crack of length a. is introduced

into a high quality thin film (one in which we can control the pinning strength

relatively well, and which contains no extended defects which might compete with

the controlled crack). The crack can be drawn lithographically and the transport

critical current should be measured as a function of the crack length. We predict

that Eqn. (2.37) should apply if the film has sufficiently strong pinning (e.g.

highly polycrystalline Nb), while equation (2.38) should apply if the pinning is

weak (e.g. amorphous NbaGe).

 

 





 

Before closing this section, we make some comments concerning the effect

of finite film thickness and the attendant z-dependent current intensity on the

prediction (2.38). It is known that in films of finite thickness, there is both a z-

dependence and an z-dependence in the current density [Tink65, Duze81, Till86,

Orla91]. We are interested in the ratio jc(a.)/jc(0), and we thus ask whether these

effects make a significant modification to the simplest estimates of this ratio.

Firstly the z-dependence. This is due to the complex form of the magnetic field

lines around the thin film, and may be calculated either within the Bean model

or within London theory. This effect will only modify (2.38) if the field profile

around the film is significantly different for a film containing a crack than it is for

a film without a crack. If the crack is much smaller than the film width (this is

the limit that we are primarily interested in), then this external field correction

is negligible, as can be qualitatively seen by considering the dependence of the

demagnetisation factor on crack length. This implies that the form of the z-

dependence of the current density is, at most, weakly dependent on the addition

of the crack. Assuming that the dominant part of the supercurrent is in the 23-3;

plane (as is expected for a thin film with current injected in the y direction and

the thin axis in the z-direction), we can use the theory of Secs. [2.2] and [2.3]

to estimate the current enhancement due to the crack, albeit with a 7. dependent

boundary field. Now, note that since the z-dependence is, to first order, only in ’

jg, the z-dependence drops out in ratio (2.18), and hence in (2.38).

A second possible complication for thin films is that there is an z-dependence

in the current density which is not given by the simple London form, but rather is

well approximated by j(z) ~ j(0)[1 — (z/L)2]1/2, for a: >> A and by an exponential

form for .1: < A. Since L is large compared to the 2 range (of order a) that we
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are considering, we can consider the current flow to be essentially uniform for

the purposes of our calculations. This implies again, that the result (2.38 should

. provide a useful first estimate for a thin film, but now with a large effective A.

2.5 Conclusions

We have argued that there is a strong enhancement of supercurrent near cracks

which have a width greater than 6,, and length a >> width. We have illustrated

the effect using 2D London theory where a crack of length, a, leads to a strong

current enhancement as given in Eqs. (2.18),(2.19), (2.33) and (2.34). The main

scaling behavior contained in these equations is that the supercurrent increases

as the square root of the crack length, a, or the penetration depth, A, whichever

is smaller. Cracks can thus lead to large local current enhancements, especially

in geometries where the effective A is large.

We have also discussed the effect of large local supercurrents on critical current

measurements. We argued that large local supercurrents act as nucleation sites

for vortex penetration, and that these vortices feel a Lorentz force that tends

to make them move and hence cause dissipation. Balancing this, is the pinning

strength of the material. If the pinning is sufficiently weak, dissipation (vortex

nucleation and flow) is initiated by the large supercurrent at the crack tip. In

this case equation (2.38) should apply, and the superconducting material, is very

crack sensitive. If pinning is sufficiently strong, the vortices nucleated by the large

supercurrent at the crack tip are pinned and resist the strong local Lorentz force

at the crack tip. In this case the critical state model applies [see e.g. equation

(2.37)], and the superconductor is relatively crack insensitive.
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To test these predictions, we propose that experiments which measure the

critical current as a function of the size of a controlled crack of length, a, and

width, to > 6., should provide a new and useful measure of the current carrying

capacity and reliability of superconductors. The thin film geometry (thickness

5 A) may be most useful, as there, current flows almost uniformly throughout the

cross-section of the film. A crack perpendicular to the direction of current flow

will cause a large amount of supercurrent to be channeled around the crack tip,

leading to strong enhancement effects as predicted by equations (2.18) and (2.34).

In addition, in thin films, the crack may be drawn in a controlled manner using

lithographic techniques. For weak pinning films, the simplest London theory [see

Eqn. (2.38)] predicts that the critical current reduces as the square root of the

crack length or penetration depth, whichever is smaller, provided 0 < L. For

experiments over a broader range of crack lengths, the square root law of Eqn.

(2.38) may need to be replaced by a more general exponent (i.e. 2: as defined

in the abstract not equal to 1/2). Experiments comparing crack effects in weak

pinning films (e.g. NbaGe), where the hotspot theory [e.g. Eqn. (2.38)] should

apply; with strong pinning films (e.g. highly polycrystalline Nb) where the critical

state model [e.g. Eqn. (2.37)] should apply, would be especially useful.

Finally, we note that the ideas of this study have many analogies in mechan-

ical fracture. Vortices are analogous to dislocations, and the pinning zone near

the crack tip is analogous to the process zone near the tip of a mechanical crack.

Controlled notch testing is standard in fracture and is analogous to the controlled

crack test proposed above. The analogy between mechanical fracture and critical

current in superconductors becomes closer as supercurrents become more inhomo-

geneous, and the pinning becomes weaker. In this limit, the current flow patterns
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and critical current develop an extreme defect sensitivity that is characteristic of

fracture and other breakdown problems.
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Chapter 3

Elasticity and fracture of

disordered networks

3.1 Introduction

Many alloys and composites are disordered. In fact no material is perfect and

the strength of a given material is very much dependent on these minor flaws or

defects. Thus understanding the effects of random defects and their statistics is

very crucial in analyzing the material strength. The effective elastic properties of

these materials can be calculated using effective medium theory and other “ho-

mogenization” methods. Random networks with “realistic” interatomic and many

body potentials are now routinely simulated on a computer. In combination with

perturbation theory near the pure limit, rigorous bounds, and scaling analysis in

the case of fractal geometries, there is now a well defined set of tools to accu-

rately predict the elastic properties of many random materials. With this success

there has been a growing desire to extend our understanding to the effect of ran-

dom microgeometries on the non-linear elastic response and especially the failure

strength of alloys and composites. It is known from the classic work of Griffith,

that penny shaped voids can act as nucleation sites for fracture. However, the way
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in which crack nucleation and growth is affected by a disordered microstructure

is still poorly understood.

During the last few years, researchers, predominantly from the statistical me-

chanics and solid state physics communities, have introduced several new ideas

into the study of fracture. Firstly, the idea of a fractal geometry was applied to

fracture. surfaces[Mand84, Unde86, Mech89]; secondly fracture patterns were stud-

ied using the ideas of non-equilibrium growth [Taka86, Term86, Loui87, Meak88,

Hinr89]; and thirdly the methods of disordered systems were used to calculate the

average strength and statistics of random materials.

Due to the fact that fracture is initiated in regions of high stress, it is to be

expected that homogenization methods, unless they focus in the crack growth

region, should be poor predictors of the effect of disorder on failure strength.

Recently it has been shown that in random networks, failure strength is singu-

lar in the pure limit[Duxb87a, Duxb91, Bea188], so perturbation theory, in the

conventional sense, is unable to probe strength behavior. Useful bounds on ten-

sile strength have not been developed, probably because standard bounds lead

to strength limits that are so far apart that they offer no useful information.

Understanding of failure is then based on Griffith’s “single crack” ideas, ex-

tended in myriad ways, attempts to homogenize the microstructure (probably

incorrect in most systems) and more recently, detailed analytic and numerical

analysis of idealised disordered microstructures[Herr90, Sahi91]. Along with new

scaling theories specifically taking into account the extreme statistics of brittle

fracture[Duxb87a, Duxb91, Bea188], these simulations have lead to new insights

into the fracture of materials.

 



    



 

 

In Sec. [3.2] the central force networks are discussed. The networks consist of

nodes and bonds. The nodes are connected by the simple harmonic springs (or

Hooke’s springs). The theory of elasticity based on the effective medium theory is

reviewed in Sec. [3.2.1] and the numerical simulation results using the conjugate-

gradient method is presented in Sec. [3.2.2]. In Sec. [3.3] the scaling behaviour

of the tensile fracture stress is developed based upon these results.

For some materials, such as graphene layers, the central force network can not

model the mechanical behaviour of the materials properly. In Sec. [3.4) I con-

sider the bond bending networks and their mechanical response by the numerical

simulation on honeycomb networks.

In Sec. [3.5] I summarize this chapter and draw conclusions.

This chapter contains materials which have appeared in the following three

publications:

0 [Duxb90a] RM. Duxbury and S.G. Kim, Scaling theory and simulations of

fracture in disordered media, Proc. ASME (1990).

o [Duxb91] P.M. Duxbury and S.G. Kim, Scaling theory of elasticity and frac-

ture in disordered networks, Mat. Res. Symp. Proc. 207, 179 (1991).

e [Duxb94b] P.M. Duxbury, S.G. Kim and PL. Leath, Size efl'ect and statistics

offiacture in random materials, Mat. Sci. and Eng. A176, 25 (1994).

3.2 Central force networks

Consider a regular lattice containing N central force springs which connect the

nearest neighbor sites of the lattice. Randomly remove volume fraction, f, of the
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springs. As f increases, the elastic moduli decrease, upto the rigidity percolation

point[Thor87], f. (z 0.33 for the triangular lattice), at which the elastic moduli

vanish. If the springs are allowed to break when strained beyond a threshold

value, cc, the network maybe used to study damage evolution. In this case we

slowly increase the strain, allowing local spring rupture until the damage spreads

across the network and catastrophic failure occurs. The total energy, E, of a

spring configuration is given by

E = Z: ékijaij “10)2 (3'1)

where leg,- is the normalized Young’s modulus (spring constant) between adjacent

sites of the lattice, 151‘ is the length of the spring connecting the sites i and j, and

lo is the natural length of the springs (assumed constant). Disorder is introduced

through kg, which in the case of dilution are either 0 or he.

3.2.1 Effective medium theory for elasticity

The simplest estimate of p. = 1 — f. is found using a constraint counting

argument[Feng87, Thor83]. When the bond occupation probability, p, is small

the system consists of disconnected pieces and hence has many zero frequency

modes. The number of such modes being approximated by the number of degrees

of freedom (Nd) minus the number of constrains (zNp/2). Here, d is the spatial

dimension and z is the nearest neighbor co-ordination number of the lattice. Thus

the effective medium theory estimate of the fraction of zero frequency mode is

 

zsz—ZNp/2=1—f£

Nd 2d. (3.2)
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When a: —-> 0, the network is no longer “floppy”, and this defines the rigidity

threshold to be,

p. = 1 — f... z 2d/z (33)

Effective medium theory has been used to find effective elastic properties on ap-

proach to f... The spirit of the theory is to replace the random network with

a regular lattice having an effective spring constant km on each bond. This as-

sumes that the macroscopic symmetry is unaltered by disorder. Several different

methods have been used to estimate km and they all lead to the result

a"! _ .
km '1 p p (3.4)

where ng are the elastic constants of the network, and the subscript or superscript,

m, denotes the effective medium value. Numerical simulations on triangular and

fcc lattice show that Eq. (3.4) provides an excellent approximation for the elastic

properties of random but rigid networks, for all but a very small region near the

rigidity percolation point (see also Fig. 3.6 for a comparison with the triangular

lattice result).

The tensile fracture stress of spring networks has also been recently studied,

and it is useful to first review the algorithm used in these calculations. It turns

out that there are many possible algorithms, and the choice of algorithm strongly

affects the final pattern of fractures springs. In contrast, the fracture strength

appears to be robust, and this is due to the fact that these networks are brittle.

 

 





 

 

3.2.2 Numerical simulation of damage and fracture

We apply an external strain to the networks and relax them using a conjugate

gradient method, with a convergence criterion of 10‘8 in the energy. When one

of the springs is strained beyond a critical strain, cc == (1;,- — lo)/lo 2 10‘4, the

spring breaks (we set its kg,- to zero). In the results to. be described below, we

take a diluted triangular spring network, and slowly increase the external tensile

strain. At each external tensile strain we relax the network to minimize the total

energy of the system, Eq. (3.1) and check the strain in each bond against the

spring rupture criterion. If at a given external strain, a spring breaks, we fix

the external strain at that level, and continue relaxing the network and breaking

the spring carrying the largest strain (provided it is greater than cc) until either

catastrophic failure occurs, or until no more springs break. We call this the

hottest bond algorithm. We then slowly increase the external strain until it is

just large enough to break another spring in the network and again iterate the

hottest bond procedure described above. The stress—strain relationship of a single

spring, along with the stress-strain behavior found from these simulations on a

50x50 triangular network are shown in Fig. 3.1 and 3.2. It is seen from Fig. 3.2

that a catastmphic event usually occurs very soon after the first spring in the

network breaks. We call the stress at which this event occurs 01(f) A second

important stress is the stress required to rupture the entire network. This is the

maximum stress in the stress strain curve, and we label this 05(f) In networks

with small dilution (f small), a1(f) 52 05(f) while at larger dilution this is not

always the case. Here, as in previous works[Bea188, HassS9], we concentrate on

0'1(f), as this models the brittle fracture of the networks. The large strain behavior
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Figure 3.1: The stress strain behavior of a single spring.
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Figure 3.2: The stress strain behavior of 50x50 triangular network with f=0.1
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involves a great deal of bond rotation, and is probably not relevant to either brittle

or ductile fracture. To illustrate the model network response, we show in Fig. 3.3

to 3.5 three snapshots of the microstructural evolution of damage and fracture

in a 50x50 lattice. The initial catastrophic event (usually at 01(f)), leads to a

path of broken bonds across the network, but not total fracture. Final fracture

occurs at much larger strain, though the final fracture path is often close to the

path of catastrophic event, and is usually preceded by bond rotation along the

fracture path. There are exceptions to this rule however, and crack branching

events do sometimes occur. As the initial f increase, the crack path becomes

more tortuous, though the structure of crack path is dependent on the model and

damage evolution algorithm used. The fracture strength however is more robust

and its scaling behavior appears to be fairly model independent[Bea188, HassS9]

This makes the use of simple models most valid for the calculation of strength

and strength statistics, while the crack topologies found using these models are

only valid for the specific loading condition and microstructure that applies to the

model.

3.3 Scaling theory of tensile fracture stress

Since for small f, a1(f) e: 05(f) we can approximately calculate the fracture stress

from the relationship

660') N 00

05(0) ’ mm (3'5)

where 00 is the applied stress. amu(f) is the stress in the spring with the largest

strain, prior to any band fracture. Eq. (3.5) uses the (small strain) linearity of

the system to extrapolate from a linear elasticity calculation of am(f) to deduce
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Figure 3.3: The the network configuration after the first catastrophic event at

01(f). The simulation were on 50x50 lattices with f (initially) = 0.10
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Figure 3.4: An intermediate configuration just before the second major peak in

   

 



  



 

 
 

Figure 3.5: The final fracture configuration. Full line from one node to its neigh-

bors represent the connected bonds while the truncated lines represent the bonds

which were initially present but which broke in the damage evolution process.

  

 





 

 

a7,(f). The problem now reduces to estimating am.x(f) for the initial disorder in

the network.

It is well known that cracks lead to large local stress enhancements. In dilute

networks, crack-like flaws are unlikely, but do occur with finite probability some-

where in the networks. It is these unlikely flaws that dominate the strength of the

networks. The simplest crack-like flaw contains n adjacent removed bonds. The

probability of occurrence of such a configuration is approadmately

P(n) c: Ldf" as n,L -+ co and f -—> 0 (3.6)

where L is the linear dimension of the networks in lattice units. The largest such

configuration that occurs with finite probability is estimated from

Ldf'm'" 2 1 (3.7)

which implies

nm 2 —dln L/ln f. (3-8)

Such a crack-like defect configuration has a stress intensity at its tips that scales

as (for —1nL/1nf large);

”Li—Q 2 1 + Km(-d1n L/ln n”? (3.9)

where K... is an unknown constant that depends on the curvature of the crack tip

and the size of a plastic zone (this is the continuum elasticity result for tensile

loading of a through crack).

In two dimensions (and for cracks for fixed finite separation), it is known that

two adjacent cracks enhance the stress between them by a factor approximately
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proportional to crack length[LiY887]. In this case the exponent in (3.9) is changed

to 1 [Bea188, HassSQ]. From these arguments and (3.5) we then find;

ab(f) ~ 1

do _ 1+Km(—dlnL/1nf)5’

for —dlnL/lnf —-> co and f —* 0 (3.10)

 

where 1/2(d — 1) _<_ 3 S 1. Eq. (3.10) also applies to the tensile fracture stress of

three dimensional system, with only minor modifications of Km and fl. Eq. (3.10)

contains two interesting affects:

1. At fixed f, a logarithmic size effect in fracture stress occurs.

2. the fracture stress is rapidly decreasing for small 1", and in fact is singular

asf—sO.

Eq. (3.10) is only strictly valid for —dln L/ In f —+ 00, which does not apply to

the lattice sizes available for simulations. Despite this, the general trends outlined

in points 1. and 2. above are present in the numerical data presented in Fig. 3.6

and 3.7. For comparison the Young’s modulus which in this limit is linear in

dilution and clearly non-singular. The difference in dilute limit scaling behavior

of the Young’s modulus and the tensile fracture stress is clearly evident in Fig. 3.6

 
with the theoretical prediction (3.10) suggests that the scaling behavior of small

system may be well represented by the form;

«(fl ~ 1

00 -1+B|1nf|-fl

 
 (3.11)

where 5 and B are system size dependent parameters. A test of this form using

the tensile fracture data of Fig. 3.6 is presented in Fig. 3.7. It is seen from Fig.

3.7 that fl = 1.7 :l: 0.1 gives an excellent fit to the data in the singular region
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 Figure 3.6: The Young’s modulus, Y(El), and tensile fracture stress, 01(f)(<>) of

L = 60 central force networks. Each point is an average over 40 configurations.
The solid line is from Eq. (3.4) applied to the triangular lattice.
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f < 0.10. We thus suggest that Eq. (3.11) provides a useful representation of the

strength of the dilute random networks for a wide range of system sizes and that

B only lies in the range 1/2(d - 1) 5 fl 5 1 in the infinite lattice limit. We expect

that in the dilute limit, models with bond bending forces should show a behavior

similar to the central force networks. This may be understood if we consider a

lattice constructed of blobs of central force elements. Since the lattice is rigid on

most length scales near pure limit, most of these central force blobs are rigid. We

can thus renormalize the problem on to an effective model with bond bending

forces. In contrast, the behavior of the bond bending and central force problems

are very different at higher f. The bond bending problems lose rigidity at fc, the

connectivity percolation point, while the central force networks lose rigidity at f.

(f. < fc) [Thor87].

In bond bending problems, 0;,( f) exhibits the critical scaling;

Mg (f. __ fy, (3.12)
‘70

Several workers have placed bounds on as, though its precise value is as yet un-

known. A node links and blobs picture[Guyo87] which states that the problem

may be replaced by a network with effective lattice constant £ (the percolation

correlation length) implies the upper bound,

05(f) < sou; — f)("“)" (3.13)

where u is the critical exponent for £. If the effective lattice constant, 6, acts as

a rigid moment arm on a given bond, the fracture stress will be greatly reduced.

This leads to the lower bound;

0'6”) > 00(fc — fldu- (3.14)
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We thus deduce that z in Eq. (3.12) lies in the range (d — 1)u < a: < du. We

do not at present have any bounds on 2 for the central force problem, but it is

evident from Fig. 3.6, that :s is nearly 1 for f quite close to f... Some experiments

have been attempted to find 2:. Using a 2mm thick aluminum sheet with holes

drilled to form a triangular lattice, Sieradzki and Li [Sier86] found a: = 1.7 :l: 0.1.

This value lies within the bounds given above (with u = 4/3 in 2-D). It must

be remembered though that the experiment is not truly in 2-D, the aluminum is

ductile and the lattice size is small (20x20) so this agreement may be fortuitous.

A second interesting feature of the Sieradzki and Li paper (see Fig. 2 of [Sier86])

is that it shows some experimental evidence of the qualitative difference between

dilute limit scaling of the elastic modulus and that of the fracture stress, despite

the small system size. A second experiment to find a: was published by Benguigui

et al [Beng87] who randomly punched holes in a copper sheet. They used a square

lattice and found a: z 2.5 :l: 0.4. This also lies within the bounds given above but

is also subject to the caveats stated above.

3.4 Bond Bending Netvvorks

3.4.1 Background

In carbon fibers, the basic building blocks of the fibers are planar networks

made up of connected benzene rings. These graphene layers are imperfect

[Ke1181, Dres88, Donn90], and contain many vacancy and vacancy cluster de-

fects. In this and following chapter we attempt to assess the effect of atomic scale

defects on the in plane strength of graphite sheets and tubes. The recent reports

of “buckytubes”, which appear to be composed of nanoscale graphite tubes, lends
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further impetus to this effort [Iiji91]. The model we use only considers the elastic

energy of the graphite sheets, and ignores the re-hybridization and charge transfer

that occurs near defects. The purely elastic model provides a reference against

which later calculations, which include these effects, will be compared.

The model and algorithm we use is as follows. The lattice is assigned an elastic

energy given by the Kirkwood energy;

1

E = '2- Z 0000' — 19,-)2

u

1

+5 2: flgjflcosagjk - 6039?“)2 (3.15)

as

i, j label nodes of a honeycomb lattice, while 1;,- (lg) is the length (equilibrium

length) of the bond between i and j and a5,- is the central force spring constant

between nodes i and 1'. 9.3;, is the angle subtended by nodes ijk, and ,6ng is the

angular spring constant associated with deviations in this angle from its equilib-

rium value 991'? This potential is similar to the Keating potential, which has been

successfully applied to covalently bonded materials and illustrates the points we

make in this work[Keat66, Kirk39]. We choose the Kirkwood potential for our

initial study, as previous studies of the effect of bond defects on the elasticity of

honeycomb structures have used this potential, and provide a check on our anal-

ysis [Zab086]. The change to a Keating potential will only make small changes to

the numbers calculated here.

For pure graphite, the ratio fi/a ~ 1/4, and this is the value that we use in

our simulations. We assume that bond rupture only occurs in tension, and that

the strain at which this bond rupture occurs is 20%, as found from calculation

of the strain at the peak of the force-displacement curve of the carbon-carbon
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bond (other strong atomic bonds have a similar value for the strain at the peak

force). When a bond exceeds this tensile strain, it is removed from the network.

No deformation is allowed out of the plane of the graphite sheet (no buckling),

and in the fracture simulations, the tube maintains the same average diameter

(Poisson ratio = 0).

To simulate tensile fracture, we carry out the following algorithm [Arca85,

Sahi86, Duxb87a, Duxb91, Bea188]:

1. Increment the applied tensile strain by a small amount.

2. Search through the bonds in the network to see if any bond carries a tensile

strain which is larger than the critical value of 20%. If any bonds exceed

this value, remove the one carrying the largest strain. Then return to the

start of 2. and iterate until no further bond failure occurs.

3. If no bond carries a strain larger than the threshold value, return to 1.

Practically, we find that it is possible to predict the applied strain at which the

next bond will fail from the previous relaxation, so the applied strain increments

are variable. This leads to a large increase in the efficiency of the algorithm. The

fracture algorithm is based on our ability to find the equilibrium strain configura—

tion for a honeycomb lattice described by the strain energy (3.15), with arbitrary

defect configurations. To find this lowest energy state, we use a non-linear conju-

gate gradient technique. This is composed of successive linear conjugate gradient

steps, with non-linear interpolation after each linear conjugate gradient step. The

relaxation is stopped when the largest residual force in the lattice is 10", which

corresponds to a residual energy which is always less than 10‘8. Relaxation of
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a 400 node lattice typically takes 1 minute of CPU time on a Convex CX240

processor.

The fracture algorithm described above is “quasi-static” because after each

bond failure, the network elastic energy is relaxed completely. The corresponding

experiment would have a very low applied strain rate. Use of a network and the

lattice energy (3.15) restricts the calculation to brittle materials, as no atomic

sliding is allowed in the model (no plasticity or dislocation creation). This is

complimentary to the molecular dynamics (MD) technique which corresponds to

very high strain rates (a typical MD simulation runs for less than a nanosecond),

but which does allow bond sliding and the plasticity associated with it.

3.4.2 Simulations of honeycomb networks

The elastic properties of the model represented by Eq. (3.15) on honeycomb

lattices, have been previously studied in some detail [Zabo86], and it is known that

the behavior near the percolation point is given by 011 ~ )1. ~ (fc — f)T, where a

is the shear modulus and T = 3.96 £0.04. For the bond diluted honeycomb lattice

pc = 1—2 sin(1r/18) ~ 0.6527 (f6 = l—pc). Most simulations have been performed

for small ratios of fl/a which are convenient to emphasize the difference between

the behavior of rigid lattices (e.g. triangular) and non-rigid lattices (e.g. square

and honeycomb). For fl/a = 1/4 as is typical for graphite and related materials,

the dependence of the elastic moduli on random bond vacancies is presented in

Fig. 3.8

Using the failure algorithm, we find the stress-strain curve for a sheet with 5%

random bond defects to be as shown in Fig. 3.9. 06 is the tensile fracture stress of

this random honeycomb. The stress-strain curve of this disordered tube is close
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to linear elastic up to 03,. In Fig. 3.10 and 3.11 the initial defect configuration

used to produce Fig. 3.9, and the final fracture configuration produced by the

simulation are presented.

The simulations are carried out with periodic boundary conditions, so the

simulations are for tubes. Since f is small, the fracture path is almost linear,

as there is little crack deflection to take advantage of pre-existing flaws. Despite

this fact, the fracture stress is reduced appreciably from its pure lattice value.

From Fig. 3.9, it is seen, for example, that the fracture stress, ac is 2.52, as

compared to the pure lattice value of about 5.924. It is known that bulk graphite

. fails at a strain 6,, ~ 0.1 — 0.3%, while carbon fibers have failure strains that vary

from 1% (high modulus graphite fibers) to 5% (low modulus carbon fibers that

are composed predominantly of graphene sheets)[Ke1181, Dre588, Donn90]. As we

shall discuss below, random defects cause 6., and ac to decrease as the lattice size

(sample size) becomes larger.

To illustrate the effect of atomic defect clusters on fracture, we show in Fig.

3.12, the response of a graphite sheet at 20% external strain, to a crack like defect

cluster containing 10 missing bonds. The stress enhancement in the bonds at the

ends of the defect cluster is 2.56. The applied strain required to break this flawed

tube is then reduced from its pure lattice value by this factor.

When bond defects randomly occur in a graphite sheet, the strength is reduced

by infrequently occurring large defect clusters. To calculate the average value of

this reduction for our honeycomb lattices, we average the value of 0., found from

curves such as Fig. 3.9 over many configurations. Results for (IC for various values

of N and f are presented in Fig. 3.13.
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Figure 3.12: The response of a graphite sheet containing a crack-like defect cluster,

at applied strain of 20%
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Figure 3.13: The average fracture stress as a function of void volume fraction,f, for

networks containing 100(x), 400(0) and 900(0) nodes. Each point is an average

over 20 configurations at fixed f.
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It is seen from Fig. 3.13, that there is a rapid drop in tensile strength at small

f for all values of N. A scaling analysis that we have previously applied to other

failure problems in both electrical and mechanical systems may be used for this

problem [Duxb87a, Duxb91, Bea188]. We find that as N —> 00, with f finite but

small,

0’c(f,N) 1

«72 ~ 1+ k(—1nN/1nf)a (3.16)

where k is a constant, typically in the range 0.1 - 0.6, while a is an exponent that

lies in the range 1/2(d — 1) < a < 1. The analytic analysis [Duxb87a, Duxb91,.

Bea188] shows that 0,; is logarithmically singular as f -> 0, although the system

size must be large for the analysis to apply. Another very important feature of

both the numerical and analytic analysis is that 0., decreases logarithmically with

N. In fact as N -> 00, are = 0. However, because the decrease is only logarithmic,

even with N = Avogadro’s number, the reduction in ac from its pure lattice

value, is only about a factor of 100. Nevertheless this factor of about 100 is

vitally important in the consideration of materials for structural applications. It

is also important to note that from a theoretical vieWpoint, the thermodynamic

limit (N = 00) is meaningless in brittle failure problems as there a}, = 0. In the

theoretical analysis N must always be finite, and often the interesting analysis is

the behavior at large N. Note that in the limit f —-> 0, (and large N), 011 is linear

in f (and obviously non-singular).

Fracture behavior as a function of flaw volume fraction is thus markedly differ-

ent than that of elastic moduli, and this difference has been related to the different

scaling behavior of the moments of the bond stress distribution[LiY889].

It is difficult to test the theoretically predicted logarithmic size dependence
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in these graphite sheets as we are only able to simulate samples over two orders

of magnitude in N. Work on simpler models however allows a more detailed

theoretical and numerical analysis [Duxb87a, Duxb91, Bea188, Phoe92], which

confirms the logarithmic size effect, and suggests that it should be present in

models like that treated in our study. The analytic analysis also shows that

the variability in the mean of 0;, should be anomalous. In contrast, the elastic

moduli, for example the Young’s modulus, for two configurations at the same 1‘ of

a sheet with N nodes have values which are nearly the same: E1(N) ~ E2(N) +

0(1/\/N). However the same two configurations can have do values which show

much more scatter, and typically, 02(N) ~ 02(N) + 0(1/ In N). Thus although

0., self-averages to a unique value as N -> 00 it does so only logarithmically. In

contrast, the elastic modulus (away from pc) self-averages like a Gaussian random

variable.

3.5 Conclusions

A comparison of the elasticity and fracture of random networks illustrates the

different scaling behavior of these properties in the presence of disorder. Eqs.

(3.3) and (3.10) along with Fig. 3.6, show that the elastic constants are non-

singular except near special points such as the rigidity or connectivity percolation

points. In contrast, the brittle fracture stress exhibits the following features.

1. There is a dilute limit singularity in tensile strength (see Fig. 3.6, which

is well represented by Eq. (3.11). A dilute limit singularity is present in

some published experimental works (see e.g. Fig. 2 of [Sier86]), though

the specific form (3.11) has not been tested experimentally. It should be
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emphasized that experiments on fracture strength trends must be performed

on several samples, as sample to sample variations can mask the predicted

trends in average strength. This is illustrated for example in the analogous

problem of dielectric breakdown in metal loaded dielectrics where the trend

analogous to Eq. (3.11) was observed, but about 10 samples at each value of

f were required to reliably see the trendICopp89, Duxb90b]. A logarithmic

size effect also occurs in the dilute limit [see Eq. (3.10].

. The statistics of fracture in the dilute limit obey a modified Gumbel form

rather than the usual Weibull distribution. Although many hundreds of

samples are required to differentiate between Weibull and modified Gumbel

statistics [Duxb87a, Bea188, Hass89], extrapolations to a reliabilities of order

10'6 leads to design predictions that can differ by order of 30%.
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Chapter 4

.Melting of carbon fullerenes

4.1 Introduction

Recent success in synthesizing Cso “buckyball” clusters in macroscopic quantities

by Kritschmer et al. [Krat90] triggered enormous interest of physicists, chemists

and materials scientists alike in search of new man-made materials with unusual

properties. The uncommon “hollow soccer ball” (or “fullerene”) structure was

originally postulated for carbon cluster by Kroto et al. [Krot85]. For carbon alone,

a whole spectrum of structures has been proposed (An extensive survey of carbon

cluster literature up to 1989 has been given by Welter and Van[Welt89]), ranging

from giant hollow fullerenes (A good review of fullerenes has been presented in Ref.

[Cur191]) to elongated “bucky tube” or “nanotube” [Iiji91] and three-dimensional

graphitic membranes with “plumber’s nightmare” structures [Len092, Vand92].

Some of these structures are illustrated in Fig. 4.1. The icosahedral Can, called

“buckminsterfullerenes” or “buckyball”, is the most spherical molecule in nature.

Each of the 60 carbon atoms that are located at the vertices of the truncated

icosahedron are equidistant from the center-of-mass of the “buckyball”. The 0120

isomer in Fig. 4.1 can also be considered to be a short carbon nanotube: extension

71

 



[I

 

 

 

 



 

72

Figure 4.1: Carbon fullerenes. Cw “buckyball”, Cm; and Cm) isomers.
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along the long axis of symmetry would yield a carbon nanotube similar to those

actually produced and studied by transmission electron microscopy (TEM) [Iiji91].

Due to the high structural stability[Cur188] and strong bonds with light mass,

carbon fullerenes have many unique properties that make them technologically

important as well as scientifically fascinating. Despite extensive studies over past

few years, almost no information is available about their equilibrium phases at

temperatures close to and exceeding the melting point of graphite. We expect the

phase diagram of these strongly correlated structures to be very interesting and

to consist of several well identifiable “molten” phases.

A second reason to study the high-temperature behavior of fullerenes is

related to their formation. While bulk quantities of fullerenes can now be

routinely synthesized in a carbon arc [Krat90], the microscopic mechanism of

their aggregation from gas phase is still the subject of a significant controversy

[Waka92, Waka93, Ebbe92, Kern92, Held93, Hunt94]. Since the fullerenes are pro-

duced in the high temperature processes, such as are burning or laser vaporization

of graphite, knowledge of the thermal stability will be useful for controlling the

synthesis of fullerenes. We also believe that a detailed study of the annealing

process may shed new light on this subject, since intermediate structures, which

occur during thermal quenching in the rare gas atmosphere, may also be observed

while heating up these structures to high temperatures.

A third motivating reason for this study are recent collision experiments which

indicate that fullerene molecules are extremely resilient and only fragment at en-

ergies exceeding z 200 eV [Camp93]. Since in the collision process the kinetic

energy is transferred into internal degrees of freedom as “heat”, additional infor-
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mation about the intermediate structures of colliding fullerenes could be obtained

by investigating those of the superheated molecules.

In an attempt to elucidate the above three problem areas, we performed a

detailed molecular dynamics (MD) study of the melting and evaporation pro-

cess of three prototype fullerenes, namely Czo, 050, and 0240. In our simula-

tion, we investigated the response of a canonical ensemble of fullerenes to grad-

ually increasing heat bath temperatures using Nosé-Hoover molecular dynamics

[Nose84, Hoov85, Alle90], complementing recent microcanonical ensemble simu-

lations on 060 and C70 [KimE93]. Of course, the quality of simulation results

depends primarily on the adequacy of the total energy formalism applied to the

fullerenes. Since our simulation also addresses the fragmentation under extreme

conditions, the formalism used must accurately describe the relative stability of

fullerenes with a graphitic structure and their fragments, mostly short carbon

chains. The corresponding transition from sp2 to sp bonding can only be reliably

described by a Hamiltonian which explicitly addresses the hybridization between

02.9 and 02p orbitals. A precise evaluation of interatomic forces is required to

obtain the correct long-time behavior of the system. On the other hand, the long

simulation runs necessary to equilibrate the small systems during the annealing

process, and the large ensemble averages needed for a good statistics, virtually

exclude ab initio techniques as viable candidates for the calculation of atomic

forces.

For this reason, we base our force calculation on a Linear Combination of

Atomic Orbitals (LCAO) formalism which conveniently parametrizes ab initio

Local Density Approximation (LDA) [Hohe64, Kohn65] results for structures as

different as 02, carbon chains, graphite, and diamond [Toma91]. We use an adap-
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tation of this formalism to very large systems, which is based on the fact that forces

depend most strongly on the local atomic environment and which has been imple-

mented using the recursion technique [Zhon93]. The force calculation can be per-

formed analytically to a large degree. This not only speeds up the computations

significantly, but also provides an excellent energy conservation AE/E f. 10'10

between time steps in microcanonical ensembles, and a linear scaling of the com-

puter time with the system size. Most importantly, forces on distant atoms can

be efficiently calculated on separate processors of a massively parallel computer.

In Sec. [4.2] I will introduce the tight-binding method as the simplified LCAO

method. I will summarize the LCAO formalism as well as the parameters used

for carbon.

In Sec. [4.3] I will review the recursion method as used for carbon clusters

and present the implementation to carbon tight-binding formalism. I will also

demonstrate the accuracy of this technique.

Sec. [4.4] is devoted to the molecular dynamics formalism. Nose-Hoover canon-

ical dynamics method will be briefly summarized.

Sec. [4.5] contains my main simulation results. Using the tight-binding

molecular dynamics with the recursion method, I simulate the melting of car-

bon fullerenes. I present snapshots of the intermediate phases and investigate

the fundamental driving force for the “melting” by analyzing the entropy. I will

identify a previously unknown “pretzel” phase of 060.

In Sec. [4.6] I draw conclusions of the simulations and summarize.

This chapter contains material of the following two separately published

manuscripts:
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s [Kim894a] Seong Gon Kim and David Tomanek, Melting the fullerenes: A

molecular dynamics study, Phys. Rev. Lett. 72, 2418 (1994).

s [Kim894b] S.G. Kim, W. Zhong and D. Tomanek, Synthesizing Carbon

F‘ullerenes, preprint (1994).

4.2 The tight-binding potential for carbon

The total energy functional for carbon which we used for the fullerene melting

process was proposed by Tomanek and Schluter [Toma91] and its implementation

using the recursion approach was fully discussed in Refs. [Zhon93] and [Kim394b].

It is briefly summarized in this and the following sections.

Recently, ab initio molecular dynamics simulations of liquid and amorphous

carbon with 54 atoms have been carried out using the Car-Parrinello method

[Gall89a, Gall89b]. Nevertheless, first-principles studies are at present still lim-

ited by their heavy demand on computational effort, especially to do the detailed

molecular dynamics simulation in the thermal disintegration process of fullerenes.

The strong covalent nature and environment dependence of interactions between

carbon atoms make the classical potential approach very difficult. With two-body

and three-body interactions included, the Tersoff potential or similar approximate

schemes [Ters88, Ball90, Che191] have been tuned to reproduce graphite and di-

amond structures and dynamical properties very accurately. But such potentials

will have difficulties dealing with fullerene melting or collision process which in-

volves both high coordination number environments (graphite or diamond like)

as well as less coordinated structures like linear chains and the 02 molecule. The

tight-binding approach, which includes electronic structure explicitly in the Hamil-
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tonian, has proven to be more successful in this respect[Toma91, XuCH92].

In LCAO methods[Root51, Root60, Mull49a, Mull49b], introduced to crystal

calculations by Bloch[Bloc29], the one-electron wave functions are expanded in a

basis of atomic orbitals {1%)}

I'M = gem |¢al (4.1)

with

H |¢a> = 6:: |¢al - (4.2)

The one-electron Hamiltonian for the electron systems can then be written as

H = Z CacIana + Z tgajgcjacj'g. (4.3)

in: iaifi

Here cl“ is the operator to create an electron orbital kg) at site i and tgajp is the

hopping integral describing the hopping of an electron from orbital l¢a> at site i

to orbital lei/3) at site j.

Slater and Koster have shown that the hopping integrals between two given

orbitals can be simply represented as a combination of h0pping integrals with a,

r, and 5 symmetry, hence reducing the number of independent quantities [Slat54].

Moreover, it has proven useful to restrict intersite hopping to the nearest neigh-

 bors only, in the tight-binding approximation. The tight-binding method is much

simpler than ab initio calculations, yet preserves the basic physics by allowing mix-

ing and intersite hopping of s and p electrons. Instead of computing the various

hopping integrals by first determining the true crystal potential using an ab initio

technique, we treat them as disposable constants chosen to fit accurate ab initio
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calculations for selected structures at restricted symmetry points of the Brillouin

zone. In the following, we will use the tight-binding technique with Slater-Koster

parameters as an “intelligent interpolation” technique between results obtained

using ab initio techniques such as LDA. We adopt the hopping integrals from Ref.

[Toma91].

We have found it useful to separate the cohesive energy of the system (with

respect to isolated atoms) into two parts [Fou189], as

_ coh = Ebs + Erepo (4-4)

The first energy contribution, Eb” is the electronic band-structure energy, which is

nonlocal by nature and reflects the hybridization in the system. The second term,

Emp, contains the internuclear repulsion and all other corrections to Eb. such

as the closed-shell repulsion, exchange—correlation and energy double—counting

corrections. As shown previously [Toma91], the one—electron spectra of different

carbon structures can be obtained to a sufficient accuracy by mapping ab initio

LDA band structures for the corresponding systems onto a tight-binding Hamil-

tonian. In this procedure, the essential information about the electronic structure

and many-body effects in the system is kept intact.

The one—electron band—structure energy is given by

E5. = :3 U: IBM-(E) as — game. . (4.5)

Here, the summation extends over all atomic sites i, N;(E) is the local electronic

density of states, and EF is the Fermi energy which is a global quantity. The

reference energy of an isolated atom is expressed in terms of the energy levels ea
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and the corresponding occupation numbers nm which satisfy the condition

Er

an = f... N,(E)dE. (4.6)

With this definition, Eb, is zero for both empty and full bands.

For carbon systems, we base our electronic structure calculation on a

Slater-Koster parametrized [Slat54] four-state (s, p2, pg, pz) tight—binding

Hamiltonian[Toma91]. The diagonal elements of the Hamiltonian are s— and

p-level energies E, and Ep. The off—diagonal matrix elements are the hopping

integrals with an exponential distance dependence

V500“) = VXSW‘U) (4-7)

where 6 labels the hopping parameter. S(r) is a scaling function of interatomic

distance r

as) = exp {up [1 — (3)] } exp {up [(3% 453%} (4.8)

where r0 is the equilibrium nearest-neighbor distance in bulk diamond[Kitt86].

Unlike the previous scaling functions [Good89, XuCH92], n5 is not necessarily

same for different hopping parameters and we replaced the power-law dependence

of leading factor by the exponential to remove the divergence at small distances.

In our Hamiltonian, we consider those atoms as first nearest neighbors which are

closer than the cutoff distance (16 and we include interactions up to second nearest

neighbors. The parameters involved in the band structure energy are listed in

Table 4.1.

The second term in Eq. (4.4), Er», contains the internuclear repulsion and all

other corrections to E5. such as the closed-shell repulsion, exchange-correlation
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Table 4.1: Parameters for the band structure energy
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and energy double—counting corrections. We approximate Erep by a sum of “quasi-

pairwise” functions E,,

I

Erep = Z: E,(r,-,-, 2,). (4.9)

"J

I used the word “quasi” because it is not really pairwise. There is a small contribu-

tion from coordination number [see Eq. (4.10)] which introduces a deviation from

a pairwise form. But in most cases, this deviation is negligible. In the summation,

each pair of nearest neighbor sites i and j is counted twice. The function E, can

be written as the sum of major contributions from the interatomic separation and

a small coordination number dependent contribution

E,(r.',-,z.-) = [E1(r,-,-) + E2(z.-)]¢(r.-,-). (4-10)

Here ¢(r) is another distance scaling function with the form:

pm = exp [—m<1)'"° — (9%] (4.11)
To Tc

and z,- in Eq. (4.10) is the effective coordination number of atom 1' defined by

. _ ___1___. 4.12

z, _ g 1 + exp['r(r,-,-/r, — 1)] ( )

E1 is given by an exponential function of r and E2 is a function of z,

E1(r) = VI exp(—r/r1)+ Vg exp(—r/r2) + V3exp(—-r/r3) (4.13)

Ego) = E§(1 — 71-3). (4-14)

The parameters involved in the repulsive energy are listed in Table 4.2. This

repulsive energy will ensure correct total energies for Cg, carbon chain, graphite,
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and diamond structures with a large range of bond lengths, if the band structure

energies are calculated exactly. It guarantees a smooth transition between different

structures and thus is suitable for molecular dynamics simulations.
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Table 4.2: Parameters for the repulsive energy

 

 

 

 

  

171. me 1' 7

2 11 50 0.474

V1 V2 v3 E3

10.34 eV 317.41 eV 5.0 x 109 eV -0.42 eV

7'1 7‘2 1‘3 Tr

0.9 A 0.35 A 0.05 A 1.95 A
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4.3 The recursion method

The inclusion of electronic degrees of freedom allows for accurate and physically

more insightful calculations at the expense of a heavier computational load. Typ-

ically the most expensive part of the calculation is the diagonalization of the

total Hamiltonian matrix, which increases rapidly with increasing system size

N. The typical scaling is N3 or N2 log N, which makes calculation of a large

system very expensive. This computational requirement is not acceptable when

studying the dynamics of very large structures or performing molecular dynamics

simulations of the aggregation process. However, in a covalent system, a local

disturbance will only affect neighboring atoms, and its effect will decrease expo-

nentially with increasing distance. On the other hand, local properties are affected

mainly by the neighboring atoms. Most linearly scaling methods to compute the

electronic structure such as the recursion techniques[Hayd80] and the density ma-

trix approach[LiXP93], are based on this fact. In this Section we present a new

approach to calculating the electronic structure, which scales as N rather than as

N3.

The most difficult part of the total energy evaluation is an efficient scheme to

determine the local density of states. While N;(E) in Eq. (4.5) should contain the

essential physics associated with the nonlocality of bonding, the exact function

is not very important since the band structure energy, given by Eq. (4.5), is an

integral quantity of N;(E).

As mentioned above, the idea underlying this approach is that the interactions

between two sites do not depend significantly on the bonding topology far away.

This approach has been used successfully in the calculation of the electronic struc-
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ture of amorphous semiconductors [Joan74]. It has been proven [see, for example,

Eqs. (1.11) to (1.17) of Ref. [Hein80]] that the local density of states at the site

i = 0 can be given by

N0(E) = lim) (é) macaw + is). (4.15)

The Goo element of the Green function matrix is given by the Dyson equation as

(pip)...

E - do —bl 0

—bl E — a1 —b2

 

000(3)

-l

 

 

 

= 0 -bz E-a2

00

= 1 b, . (4.16)

E—ao- 1 b2

E_a1—E—a:—...

The continued fraction coefficients an and b3, are related to energy moments pa, =

1m dEE°No(E) of the local density of states at the site i = 0. These coefficients

are obtained by tridiagonalizing the Hamilton matrix of the system,

(4.17)

But if only the first few recursion coefficients are needed, it is more convenient

to use their recursion relations[Hein80, Kell80, Luch87]. The method involves

setting up a new orthonormal basis set la"), n == 0, 1,2, ..., the first of which lug),

we choose as the particular atomic orbital l‘l’a) or linear combination of orbitals
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for which we want the local density of states or the the atomic orbital of the atom

being considered. With given I110) and

lu-I) = 0

b3 = (uoluo) = 1 (4.18)

we generate for i = 0, 1, 2, . . .;

as = (“3" Hrs Ins) ,

lui-H) = (HTS - 6;) lui) - 5? Ins-1) ,

63.. = (ppm...) / (use). (419)

Charge transfer between inequivalent sites in the structure is reduced by an on-

site Coulomb interaction which, in the mean-field approximation, can be mapped

onto a crystal potential. Variations of the crystal potential impose, to a leading

order, a rigid shift on the local densities of states. This shift of the core and

valence levels does not affect the crystal cohesion, yet is reflected in different core

level binding energies. In our calculation, we determine this shift by imposing a

local charge neutrality condition Eq. (4.6).

The main advantage of using the recursion method is that in most cases, we

only need the first few recursion coefficients to have a reasonable local density of

states from Eqs. (4.15) and (4.16). Furthermore we can increase our accuracy by

BimPly including more levels in the continued fraction.

Carbon is the one of the most computationally demanding elements in terms of

the number of recursion coefficients needed, due to the complexity of its bonding.

Directional bonding, i.e. the preference for definite bond angles for sp, sp2 or sp3

type bonding, requires that at least the four lowest moments pa be included in
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the continued fraction. Furthermore, it is essential to treat the s, 11,, p, and p2

subbands in the density of states separately in order to represent correctly the

bond stretching and bond bending forces.

The fifth moment of the density of states depends only on the first and sec

ond neighbors of any given site. The corresponding information, contained in the

recursion coefficients an, and bin: = 0, 1,2, is determined by tridiagonalizing the

corresponding small submatrix of the Hamilton matrix. Truncation of the contine

ued fraction after b3 would lead to a set of 5—functions for the density of states,

corresponding to a small isolated cluster with many dangling bonds[Luch87]. A

physically more reasonable approach to describe very large structures is to embed

the small cluster in an averaged environment with similar bonding. This can be

achieved by attaching a Bethe lattice to the cluster [Joan74] which, to a large

degree, is equivalent to using

53

E — a” - t(E)’

 1(3) = (4.20)

giving the square root terminator t(E) [Beer82] in the continued fraction in

Eq. (4.16). The terminating coefficients a” and b3 are easily determined in the

bulk limit from the lower and upper band edges. In our calculation, these val-

ues are taken from the linear chain, the graphite monolayer or bulk diamond,

depending on the local coordination of the site i = 0.

The essential information for the calculation of defamation energies is con-

tained in the recursion coefficients an, b3, with n S 17, 1] z 2. Attaching a square

root terminator to the continued fraction of Eq. (4.16) at this point would mean

to ignore the specific bonding topology and the corresponding connected loops

Which modify the higher moments and continued fraction coefficients beyond 1).
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We have found it useful to consider continued fraction coefficients beyond 1) = 2 in

the expression for the density of states. Rather than calculating these coefficients

explicitly by tridiagonalizing an accordingly much larger Hamilton submatrix, we

use pre-tabulated coefficients an, bf, (32,1123) for the bulk structures as a “patch”

which we splice onto the continued fraction. The set of coefficients is taken from

the graphite structure. In order to avoid strong oscillations in the density of

states due to this “patch” and the square root terminator, we mix in the “patch”

coefficients with an, b3, and the terminating coefficients au, bf, so that no strong

discontinuities occur in an and b3, at n = 1] and n = u [Luch87]. The continued

fraction coefficients in the “patch” 1) < n < V are given by

E: - 1[(1—' 13) +(1+sinzr£)a]n —- 2 srn 2 an 2 u

- 1 1m 1m
2 _ _ _ . _ 2 . _ 2

bn — 2 [(1 sin 2 )5» + (1+s1n 2 )bu] (4.21)

with a = (2n - 1) - V)/(V — 17). While the above procedure gives an improved

description of the density of states, the higher “patched” coefficients do not affect

the lower moments of the density of states and hence have a small effect on the

band structure energy. It should be pointed out that our method of termination

is tolerant of a possible inaccuracy in the terminating coefficients and does not

induce unphysical oscillations in the local density of states. With this terminator,

the local density of states can be written

1 1
 52 (4.22)

E " a0 " 1 bf

E—a1_E-02-tiEi

The validity of our formalism has been demonstrated by W. Zhong and et al.

 

[Zhon93],, as shown in Fig. 4.2. The densities of states for three most common
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carbon structures, obtained using the recursion method, are compared with the

results of conventional tight-binding band-structure calculations which diagonalize

the Hamiltonian matrix directly. Electronic local density of states N(E) (solid

lines), integrated density of states If; JEN(E) (dashed lines), and the band

structure energy —Eb.(Ep) as a function of band filling (dotted lines) is plotted for

different carbon structures. Results of a tight-binding band-structure calculation

for an infinite carbon chain (bondlength doc = 1.286 A) (a), a graphite monolayer

(doc = 1.418 A) (b) and bulk diamond (doc = 1.546 A) (c) are compared with

the results obtained with our simplified recursion method in (d), (e) and (f),

respectively. Even though the recursion method misses some of the details in

the local density of states, it is very evident that the integrated quantities, such

as the band structure energies, are reproduced within excellent agreement. The

interested reader should be referred to Ref. [Zhon93] for a more complete list of

examples which demonstrate the sound basis for using the recursion method for

carbon clusters.

4.4 Molecular dynamics

Once the total potential energy calculation scheme is constructed using the recur-

sion method, the next step is to find the equations of motion according to which

the system evolves.

The dynamics of an isolated (microcanonical) N~particle system in three-

dimensional space is governed by the Lagrangian

N 1

L = 23 5mm? - V({q.-})- (4.23)
i=1

Here, q.- is the position vector of atom i in the system and V({q.-}) is the total po-
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Figure 4.2: Comparison of recursion method vs. conventional tight-binding
method. Electronic local density of states N(E) (solid lines), integrated density of
states If; JEN(E) (dashed lines), and the band structure energy -Eb.(EF) as a
function of band filling (dotted lines) for different carbon structures. Results of a
tight-binding band-structure calculation for an infinite carbon chain (bondlength
doc = 1.286 A) (a), a graphite monolayer (dcc = 1.418 A) (b) and bulk dia-
mond (doc = 1.546 A) (c) are compared with the simplified recursive results in
(d), (e) and (f). The energy zero coincides with the Fermi level for a half-filled
band, corresponding to neutral carbon. (Fig. 1 from Ref. [Zhon93] used with the
permission from the authors.)

90

   

[
o
a
t
/
A
0
]
m
a
-

'
s
o
a
r
a
n
d
o
m

 





 

tential energy of the system. In present case it is given by the tight-binding Hamil-

tonian. The dynamical evolution of the system is described by Euler-Lagrange

equations derived from the above Lagrangian. This procedure yields statistics for

a microcanonical ensemble. Since we are studying the melting process of carbon

fullerenes, we want to fix the “temperature” of the system to a given heat bath

temperature. We define the temperature in such a small system by its instanta-

neous kinetic energy. We need to adapt molecular dynamics algorithm so as to

sample a constant-temperature ensemble. Several different methods of prescrib-

ing the temperature in a molecular dynamics simulation exist. A recent review

[Ande84] has attempted to summarize these methods and highlight their advan-

tages and disadvantages. Here I will discuss only one of these which I used for

melting the fullerenes.

We used the extended system method, or so-called Nosé—Hoover method. This

method treats the dynamics of a system in contact with a thermal reservoir by

including an extra degree of freedom which represents that reservoir. I carried

out a simulation of this ‘extended system’. Energy is allowed to flow dynamically

from the reservoir to the system and back; the reservoir has a certain ‘thermal

inertia’ associated with it, and the whole technique is rather like controlling the

volume of a sample by using a piston which has certain mass.

Nosé achieved a major advance in this method by showing that the canoni-

cal distribution can be generated with smooth, deterministic, and time-reversible

trajectories[Nose84]. To do this he introduced a time-scaling variable s, its con-

jugate momentum p,, and a parameter (Nose—Hoover parameter) Q. Nosé wrote

  

 



 

   

an augmented Hamiltonian

HNosé = 2P2/2m32+V({qa})

+pf/2Q + (X +1)kT1n s, (424)

where X is the total number of degrees of freedom of the system. This Hamil-

tonian contains a nonlinear collective potential in which the time-scale variable .9

oscillates. Thus the system is coupled to a heat bath (described by the variables

s and p.). Nosé proved that the microcanonical distribution in the augmented set

of variables is equivalent to a canonical distribution of the variables q,p’, where

the p’ are the scaled momenta p/s. Thus the Hamiltonian (4.24) generates the

canonical probability distribution independent of the values chosen for HNose’ and

Q.

The equations of motion from Nosé Hamiltonian (4.24) are

i = P/ma2

:3 = F(q)

5 = p./Q

p‘. = sz/msa—(X-l-IMT/s. (4.25)

Hoover made a great improvement in implementing Nosé’s method computa-

tionally, by deriving a simpler form of the above coupled first-order differen-

tial equations[Hoov85]. He noted that if the time scale is reduced by s, then

dtold = “It“... All of the rates given in Eq. (4.25) can then be expressed as

derivatives with respect to tn" (for which we will still use the superior dot nota-

tion)

q = p/ms
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15 = sF(q)

5 = spa/Q

p'. = 2:112/ms2 — (X +1)kT. (4.26)

The somewhat inconvenient variable s can then be eliminated from Eq. (4.26) by

rewriting the coordinate time evolution equations in terms of q,q, and 5:

31' = fi/ma -(1r’/TM)5/e‘J

= F/m—éps/Q

F(p)/m— 44. (4.27)

The thermodynamic friction coefficient C E p,/Q, which appears in the second-

order Eqs. (4.27), evolves in time according to a first-order equation

6: [2 7nd” _ (X + 1)kT] /Q (4.28)

To have set of first-order equations, we redefine p E mq’ and replace Nosé’s X + 1

beobtaining

ti = p/m

15 = F(9)-(p

C = [sz/m—XkT] /Q. (4.29)

This is the so-called Nose-Hoover equations of motion. Hoover proved that the dis-

tribution resulting from Eqs. (4.29) is canonical in the variables q and p [Hoov85].

It can be shown easily that we can arrive at the above equations by generalizing

the microcanonical Lagrangian (4.23) to the augmented Lagrangian

N 1
L = 2 57124420.? — V({q.-}) + $052 — (X + 1)Tln , (4.30)

i=1
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and applying Euler-Lagrange equations:

.4. 2L. _ ab _ 0
dt 89's}: 394a — ,

%(%€-)-(%?) = ..
The parameter Q controls how fast the system explores the available phase

 

space. For a large Q the trajectories gradually fill the phase space as expected

for an ergodic system, and for a small Q the trajectories develop more singular

turning points in phase space. For very large Q these equations simply reproduce

the microcanonical behavior. The proper range of Q values should be determined

by actual simulations for the given system at hand.

4.5 Simulation and Results

In our molecular dynamics simulations, we use the leapfrog technique to integrate

the equations of motion over time steps At = 5 x 10"16 s. We found that the

temperature of the system is controlled reasonably well when we use the value for

the Nosé—Hoover parameter Q = 1/250 (amu-A). This value corresponds, in crude

sense, to using imaginary thermal particles which are almost 3,000 times lighter

than carbon atoms as the mediator or carrier of the heat between the system and

the heat reservoir.

We begin each MD run by equilibrating the particular fullerene for over sev-

eral thousand time steps at a temperature T.- = 200 K, after the directions of

the initial atomic velocities have been randomized according to the Maxwell-

Boltzmann velocity distribution at that temperature. We increase the temper-

ature of the heat bath in steps of AT = 400 K from T.- to the final temperature
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T, = 10,000 K, and let the fullerenes equilibrate for 800 time steps at each new

temperature. Each simulation run consists of more. than 20,000 time steps and

takes several hours of CPU time on a high-speed single-processor workstation.

Statistical (time-averaged) data for the structure and energetics are collected af-

ter the system has adjusted to the new temperature, which occurs typically after

400 time steps following a temperature increase. This procedure is necessary to

remove any undesired oscillation in the data due to the sudden increase of the

heat bath temperature. A separate ensemble averaging at each temperature is

necessary since ergodicity is not guaranteed especially in very small systems. We

perform ensemble averaging over 50 complete runs with different initial states of

020, 50 runs for Ceo, and 15 runs for 0240. This reflects the decreasing fluctuations

of thermodynamic quantities with increasing system size.

In Fig. 4.3, we present results for the temperature dependence of the total

energy E per atom for the 060 molecule. We observe a steady increase of the total

energy E with increasing temperature, with a well-formed step at T m 4,000 K

indicative of a “phase transition”. To get a better understanding of the structural

transformations in this and other fullerenes, we investigated the specific heat

not only of the Can, but also the 020 and the 0240 molecules. The calculated

temperature dependence of the specific heat per atom of these systems, obtained

from cv .= dE/dT, is shown in Fig. 4.4.

In the temperature range addressed in this study, we found significant devia-

tions'from the classical value cv = 3kg to occur only for Th2,000 K. We found

all features in the rich structured cv(T) to be reproducible from run to run up

to a temperature of T z 6,000 K. Individual peaks in cv reflect the latent heat

of transition between different “phases”. As we discuss in the following, these
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Figure 4.3: Temperature dependence of the total energy E per atom for the 060

fullerene (solid line). The data points in the E(T) curve for the fullerene mark

the discrete steps of the heat bath temperature used, and the dashed lines with a

slope of 3153 are guides to the eye.
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“phases” can be characterized by their topology and atomic binding energy dis-

tributions. In contrast to phase transitions in solids, the analogous transitions in

fullerenes are not sharp owing to the finite size of these systems.

Due to the similarity of the cv(T) results for the different fullerenes, we con-

centrate in the following on the 060 molecule. Each peak in the cv(T) curve

corresponds to the transition from one intermediate “phase” to next one. In order

to identify the characteristics of its individual “phases”, we first take the “snap

shots” of the 060 molecule at selected heat bath temperatures as shown in Fig. 4.5.

To have some quantitative criterion to characterize the “phase” we also plot the

atomic binding energy distribution in Fig. 4.6 at the temperatures chosen for Fig.

4.5. The atomic binding energy for a given atom is defined as the contribution of

the given atom to the total cohesive energy of the whole system. Thus the cohesive

energy in Eq. (4.4) can be written as

N

Ecoh = 2:1 Eb“) (4-32)

where the binding energy of atom i is given by

135(5) = [[l: EN;(E) dE - $115,060 + 2,13,.(1‘53', 2;), (4.33)

with E,(r,-j,z,-) defined in Eq. (4.9). We find the binding energy distribution

to provide a better signature of the different “phases” than topological quantities

(such as coordination numbers) which depend on the definition of cutoff distances.

We also monitored the change in the distribution of bond lengths for each atom

and plotted them in Fig. 4.7 at the same temperatures as in the previous two

figures. Only the atom pairs within the cutoff distance (2.0 A in this case) were
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(a) Solid phase (b) Floppy phase (c) Pretzel phase
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Figure 4.5: “Snap shots” illustrating the geometry of a 060 cluster at temperatures
corresponding to the different “phases” discussed in the text.
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Figure 4.6: Atomic binding energy distribution in a Cw cluster at temperatures

characteristic of the different “phases” discussed in the text and in Fig. 4.5. For

each structure, the average binding energy is given by the dotted line.
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considered in Fig. 4.7. In Fig. 4.8, we plot the distribution of bond angles at

the selected temperatures. If an atom is connected to more than one neighbor

within the cutoff distance, the angles between these bonds were calculated and

their distribution is collected. As the final monitoring quantity, we calculated the

mass spectrum of the fragments of the C60 molecule at selected time steps. The

atoms are considered to be part of the same cluster when they are connected by

bonds within the cutoff distance (2 A). The changes of the mass spectrum as a

function of the heat bath temperature are depicted in Fig. 4.9. When the system

consist of one (connected) cluster, this spectrum will show only one peak at the

value of the total mass. When the structure is fragmented into smaller pieces,

several peaks will occur at lower mass values.

In the solid phase, occurring at T32, 400 K and depicted in Fig. 4.5(a), the 060

is intact. As shown in Fig. 4.6(a), the binding energy of all atoms is approximately

the same, but decreases gradually with increasing temperature due to thermal

expansion. The bond length distribution shows a very prominent single peak

around 1.46 A [Fig. 4.7(a)]. The experimental values of two bond lengths for 060

at ground state are 1.40 A (double bonds) and 1.45 A (single bonds) [Yann91].

A peak in the ev(T) curve at T as 2,400 K indicates the gradual onset of

the floppy phase, depicted in Fig. 4.5(b). While the system is topologically intact

in this phase, as documented by a relatively narrow bond length distribution

[Fig. 4.7(b)], we observe the bond angle distribution to spread out [Fig. 4.8(b)],

resulting in a significantly broadened binding energy distribution [Fig. 4.6(b)].

Assisted by local shear motion, carbon pentagons and hexagons tilt easily with

respect to the surface normal especially in large fullerenes with flat faces. In 060,

this floppy motion creates a distribution of carbon sites which are either closer to

101

 

 

 

 

 



 

 (b) Floppy phase (e) Pretzel éhese

r-sooo K E r-ssoo I ' '

   
r-rono I

(d) naked ehelns (e) transmits

r-sosex : r-ssoex :

P
r
o
b
a
b
i
l
i
t
y
D
i
s
t
r
i
b
u
t
i
o
n

      Jab II IILIIILIJL‘ I:L Ajl

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

Bond Length [A]
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0f the different “phases” discussed in the text and in Fig. 4.5. For each structure,
the average bond length is given by the dotted line.
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Figure 4.8: Bond angle distribution in a Cm cluster at temperatures characteristic

of the different “phases” discussed in the text and in Fig. 4.5.
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or further away from the optimum graphitic bonding geometry than the average

structure. We found that the local shear motion leads to substantial cluster shape

deformations.

Above T as 4,000 K, we observe a dramatic transition to the pretzel phase,

consisting of interconnected carbon rings and depicted in Fig. 4.5(c). They are still

all one single connected body as depicted by a single peak in mass spectrum [Fig.

4.9(c)]. A similar, yet not as complex structure has recently been proposed as a

high temperature phase of On clusters based on diffusion data [Held93, Hunt94].

In our calculation, we find this structure to be initiated by the rupture of a sin-

gle bond connecting a pentagon to a hexagon, which creates a large Opening at

the surface. As temperature approaches to this transition temperature, this bond

opening is amplified and propagates in a “zipper” motion through the molecule.

Suddenly the closed structure “unwraps” to become a “pretzel” structure. As

shown in Fig. 4.3, the transition from a (two-dimensional) fullerene to a (one-

dimensional) linked chain structure is clearly reflected in a sharp increase of the

entropy towards a value characteristic of a (metastable) Cm chain. The ener-

getically less favorable sp bonding of a growing number of two-fold coordinated

atoms in the “pretzel” phase is reflected in the broadening of the binding energy

distribution especially towards lower values. This is shown in Fig. 4.6(c) for a

fully developed “pretzel” at T = 4,200 K. One thing to note about this distri-

bution is that it has two major peaks. The atoms which are part of the chain

is mainly two-fold coordinated and has smaller binding energies and responsible

for the peak at lower value. On the other hand, the atoms which are part of the

connecting joints of the rings have three or even higher coordination numbers and

contribute to the peak at the higher binding energy value. The specific heat data
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of Fig. 4.3 suggest that the critical temperature shifts upward with increasing

fullerene size. The bond angle distribution shows a lot of new peaks over 150

degrees representing the chain structure [Fig. 4.8(c)].

Closed carbon chains of the Geo “pretzel” Open up at T2.5,000 K, as shown

in Fig. 4.5(d). The number of structural constraints in this linked chain phase

decreases, allowing individual atoms to relax. This leads to a smaller number of

inequivalent sites and more pronounced peaks in the binding energy distribution,

depicted in Fig. 4.6(d).

Starting at T m 6,000 K, we observe fragmentation of all fullerenes which

we studied. The mass spectrum finally shows split peaks at the values other

than 60 [Fig. 4.9(e)]. Typical fragments, such as those shown in Fig. 4.5(e) for

T = 5, 400 K, have “pretzel” and “linked chain” structures discussed above. Above

this temperature, the thermodynamics of the system is that of fullerene fragments;

strong run-to-run fluctuations are caused by the differences in the specific heat of

the individual fragments. While the binding energy range is similar to that in the

“linked chain” phase, the distribution is smoother at this higher temperature, as

shown in Fig. 4.6(e). Finally, at temperatures close to T m 10, 000 K, a conversion

to a chain gas is completed, as illustrated in Fig. 4.5(f). The mass spectrum shows

many peaks at the small mass numbers [Fig. 4.9(f)].

The temperature scale relevant to structural transitions in fullerenes can be

linked to well established thermodynamic data for graphite [WeasQO]. We find

the “floppy phase” of fullerenes to occur at temperatures close to the melting

point of graphite, Twp, = 3,823 K [Weas90]. On the other hand, the calculated

fragmentation temperature T as 5, 400 K lies close to the observed boiling point
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of graphite, Tgp, = 5, 100 K [Wea590].

In order to understand the rich “phase diagram” of fullerenes, we have to in-

vestigate the free energy F as a function of temperature. It is intuitively clear

that the more “floppy” chain structures have a larger entropy and hence should

be preferred over the more compact fullerene structures at sufficiently high tem-

peratures. As mentioned above, we have determined the entropy per atom S(T)

from MD simulation runs of C50 fullerenes and metastable Cso chains. Our re-

sults, shown in Fig. 4.10, indicate that the entropy values are equal at very high

temperatures where also the fullerenes have converted to linear structures. Prior

to the conversion, we find for the entropy difference

S(Cao chain) - 5(060 fullerene) a: 2153. (4.34)

This allows us immediately to estimate the conversion temperature from fullerenes

to chains from low temperature data. Noting at the moment of conversion

F(chain) — F(fullerene) = [E(chain) - E(fullerene)]

-—Tc[S(cha1n) - S(fullerene)]

= 0, (4.35)

we have

T, = AE/AS. (4.36)

Using the result obtained previously[Toma91]

AE = E(chain)-E(fullerene)

z. 1 eV (4.37)
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and assuming that the values for AE and AS = S(chain) -— S(fullerene) are

nearly temperature independent, we obtain Tc x 5,800 K for the fullerene-to-

chain conversion. This is in remarkable agreement with our simulation results

considering the crude arguments we have used in this estimate.

It is interesting to note that the open fullerene phases, which were identified

in our simulation, also occur during energetic collisions between fullerenes. In

particular, the final state of a Coo cluster undergoing an inelastic collision with a

0240 cluster at 300 eV center-of-mass kinetic energy heats up during the collision

process to temperatures close to 5,000 K and shows a final structure similar to

that presented in Fig. 4.5(d) [KimS94b].

Our results shed new light also on the formation process of fullerenes from

the gas phase. While time reversal of the evaporation process studied here would

provide one possible aggregation path, the general formation mechanism is clearly

more complex. We expect that many structures which occur during the frag-

mentation also reoccur during the aggregation. Of course, most of the “random”

aggregation paths will not lead immediately to a closed fullerene, yet are likely to

contain stable structural elements such as chains and rings. Once such a “linked

chain” or “fragmented pretzel” structure is formed, the aggregation dynamics will

be governed by many unsuccessful attempts to reversibly “roll up” the chains to

a fullerene, followed by one successful attempt to create an inert structure. This

picture agrees with the fullerene formation mechanism suggested in Ref. [Hunt94]

and the isotope scrambling results of Ref. [Ebbe92] suggesting that gas phase

assembly of fullerenes starts from atoms and very small carbon clusters.

109

 
 



 

 

4.6 Conclusions

We presented the new and efficient recursion method applied to the tight-binding

molecular dynamics for carbon atoms. The ’carbon potential parameters fitted to

LDA calculations have been presented and the reliability of the recursion technique

treatment has been demonstrated. Finally, we presented molecular dynamics sim-

ulation results of the melting and evaporation of the carbon fullerenes C20, Ceo,

and 0240. Among others, we found a most dramatic transition to a “pretzel” phase

to occur at a high temperature of TZAOOO K. The temperature where fullerenes

disintegrate into carbon chains was explained using quantitative results for the

entropy.
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Chapter 5

Stability of Magnetic Dipole

Structures in Ferrofluids

5.1 Introduction

A ferrofluid is a magnetic colloid composed of magnetite particles suspended in a

liquid, usually a petroleum oil [Rose85, ng94]. In many ways, ferrofluids be-

have similar to electrorheological (ER) fluids which consist of a suspension of fine

dielectric particles in a liquid of low dielectric constant [TaoR92, Bloc87, Fili88].

The aggregation of particles in ferrofluids and ER fluids has been the subjects

of many experiments and numerical simulations. It has been observed that the

aggregated Co particles, produced by inert-gas evaporation in Ar, show very dif-

ferent fractal dimensions depending on the strength of the magnetic interactions

between the particles[Nick88]. Remarkable labyrinthine patterns are formed when

a droplet of ferrofluid is trapped between two horizontal glass plates in a vertical

magnetic field [ng92, Dick93]. The effective viscosity of an ER fluid increases

dramatically if an electric field is applied, and when the field exceeds a critical

value, the ER fluid turns into a solid. Experiments also find that upon applica-

tion of electric fields, dielectric particles in ER fluids rapidly form chains which

111

 



then aggregate into thick columns [Hals90, Chen92, Mart92, Gind92]. Magnetic

ferrofluids form similar structures of chains and thick columns [Wang94]. The de-

pendence of the periodicity of columns on the sample thickness has been recently

studied using magnetite colloids [Wang94]. Also many numerical simulations us-

ing molecular dynamics (MD) [Hass89, Klin89, Kusa90, Bonn92, TaoR94] have

been carried out to find the orientational ordering in ER liquid crystals.

Even though a few MD simulation results have been published for ferroelectric

dipole liquids [WeiD92a, WeiD92b], almost no MD simulation results are available

for the magnetic ferrofluid systems except a few simulations using the Monte Carlo

technique[WeisQ3, Stev94]. Although ER fluids and magnetic ferrofluids have

many common properties there is one fundamental difference. In ER fluids, the

dipoles are induced by applied electric field and they are always aligned with the

field. Consequently, the dipole moments vanish in the absence of a local electric

field and therefore do not show any interesting behaviour in that situation. In

contrast to this, the magnetic particles in ferrofluids have their own pre-assigned

magnetic moments. This means that in general case they are not necessarily

aligned with the external field, and we have to consider the rotations of these

particles as well as their positions. Also, we should expect that these fluids have

some non-trivial structures even in the absence of the external field.

In this Chapter, I will discuss the early stages of colloidal aggregation in a

ferrofluid and the stability of the ring structure of these particles. In an ER

fluid it is very unlikely to observe such a ring structure for the reasons I give in

the previous paragraph. As I will show in later sections, a ring is the most stable

configuration in zero-field, where it is established by the dipole-dipole interactions.

In an ER system such interactions only occur upon applying an external field.
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In Sec. [5.2] I will describe the theoretical model used to simulate the mag-

netic ferrofluid. The interaction potentials for these colloidal particles will be

introduced. Since the magnetic colloidal particles have permanent magnetic mo-

ments pointing in a particular direction, we need to treat their rotational degrees

of freedom properly, as well as translational. Sec. [5.3] will be devoted to the

techniques involved in doing MD simulations for rigid bodies, especially spheri-

cal tops. Since the standard equations of motions for the Euler angles which are

used to represent the rotation of rigid bodies, have a well-known singularity, the

quaternion formalism is introduced in Sec. [5.4] as a better alternative. Before we

use all these techniques and start the MD simulations, in Sec. [5.5] the stability of

the chains and rings made of magnetic dipoles is discussed under various physical

conditions with static or energy minimization method. The dynamical response

of the magnetic dipole structures is the subject of Sec. [5.6]. The phase diagram

of the ring configuration will also be presented. The ongoing projects in ferrofluid

will be briefly described in Sec. [5.7] and in Sec. [5.8] I summarize this chapter

and draw conclusions.

This chapter contains material of the following two separately published

manuscripts:

0 [Jund94] P. Jund, S.G. Kim, D. Tomanek and J. Hetherington, Stability of

Magnetic Dipole Structures in Ferrofluids, preprint (1994).

0 [KimS94c] S.G. Kim, P. Jund, D. Tomének and J. Hetherington, Structure

Formation in Ferrofluids, in preparation (1994).
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5.2 Modeling of the ferrofluid

The physical system we attempt to simulate in this study is very much related

to the ferrofluid system used in Ref. [Wahg94]. The sample used by Wang et

al is a magnetic colloid made of magnetite particles coated with oleic acid and

suspended in n-eicosane. The volume fraction of magnetic particles is 12% with

mean diameter of particles 89 A. The thickness of the coated surfactant layer is

about 20 A.

Based on these experimental data, we choose 100 A for the diameter of parti-

cles. From the density of the magnetite, 5.2 g/cc, and their size we also set the

mass of our magnetic dipoles to be 1.64 x 106 amu. Using the magnetization of

magnetite and the volume of the particles, we can estimate the magnetic moment

of these particles by assuming that they have a single magnetic domain. We take

2.1 X 104143, with 143 being Bohr magneton, to be the amplitude of the magnetic

moments of all particles.

In this calculation, the ferrofluid particles are modeled by soft spheres of di-

ameter a and carrying a magnetic dipole moment ii = pail. We take no to be

constant for all dipoles and it is the unit vector along the magnetic dipole moment.

The potential energy of the system of these dipoles can be written as

U=2 [440034011] (51)
be

where the pair potential between particles i and j is

u(tj) = 1109(5).) + usc(‘lj). (5.2)
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The first term in Eq. (5.1) is the field energy

48(5) = —;z.- . 5 (5-3)

gained by each particle when an external magnetic field, B is applied.

The magnetic interaction between the particles is

upo(ij) = firm/7.3,--3(fii'fijl(fij‘fijl/rij

= $73 [in 711' — 3011 4.3-Mp,- 4.3)] (5.4)

51'

which is the usual dipole-dipole interaction[Jack75]. Here ii,- and F.- are the dipole

moment and position vector of particle i, respectively. Obviously, 7"},1 = i", - 1"},

and n,- is the magnitude of 1"},- and 2%,- is the unit vector along 1%,. Using the

magnetic moments and diameter of the particles the energy scale of the dipole-

dipole interaction is

2

”5% g 2.368 x 10‘2eV. (5.5)

There has been a significant amount of efforts to measure the pair interaction

potential between the colloidal particles [Cald94, Croc94]. In this study we use

following general form for soft-core potential

uscat) = 62(1'5/0') (55)

with

  <I>(r) = 01 [exp (J. p.10) - exp (‘1. go” , P1 < P2- (5-7)
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This functional form is similar to the one suggested by Tejero et al. [Teje94]

except the 1/r factor which is in their potential. Here 6 fixes the energy scale of

this potential and o is the distance where

usc(a) = 0 (5.8)

and defines the length scale of the soft-core. The three parameters (a,p1,p2) of

Eq. (5.7) are seen to determine the steepness of the repulsion (p1), the range of

the attraction (p2), and the well depth (a). If we fix the well depth to be s,

@(ro) = -—1 (5'9)

with 70 denoting the position of the minimum of <I>(r), viz.

<I>’(ro) = 0. (5.10)

This condition will fix a = a(p1, p2) for given p2 and pg

1

(2091/0241) .. (fl)92/(PI‘P1) °

PI PI

 

a: (5.11)

To simulate the effect of surfactant layer in ferrofluid, we choose the depth of the

potential well to be about 10% of the dipole-dipole interaction, or 2.0 x 10‘3 eV

and the range of two exponential terms to be p1 = 2.5 A, p2 = 5.0 A. These

parameters gives a = 4 and generates the potential which decays to 10% of its

depth, at the distance of surfactant layer thickness, 20 A, away from the particle

diameter a, 100 A. Fig. 5.1 is a plot of uso(r) with this set of parameters. The

maximum of the plot is 2.0 x 10"2 eV which is the typical value for the dipole-

dipole interaction.
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For completeness, I summarize the units and conversion factors between these

units in Table 5.1. All the units with tilde are the units used in our numerical

calculations. In Table 5.2, the actual physical quantities used and the typical

values we need to deal with in this study are listed.

The dipole-dipole interaction in Eq. (5.4) has two terms competing each other.

The first term, it.- 41,-, tends to make the dipoles anti-parallel each other and favors

anti-ferromagnetic arrangement. On the contrary, the second term, —3(fi.- -r,-,)(f1,- .

1%,), tends to make the dipoles align themselves and favors a head-to-tail “chain”

structure. Since the second term has a three times bigger prefactor, it is easy

to understand why the chain structure is most commonly observed in ferrofluids

and other strongly interacting dipole fluids. Suppose we have two parallel dipoles

whose positions are fixed along r-axis and make angle 6 with z-axis as in Fig. 5.2.

The first term in Eq. (5.4) is fixed to unity while the second term changes as we

vary the angle 9. When 9 is small the dipole-dipole interaction is attractive, but

above a certain angle, 9c, the interaction becomes repulsive. This angle satisfies

1 — 3cos2 9,; = 0 (5°12)

which yields 9., = cos‘1 1/3 or 547°. This effect will be seen again when we

consider the breaking of the rings of these particles.

The formulation is exactly the same as for electrorheological fluids [TaoR94].

There the particles have electric dipole moments, p}, and are subject to an external

electric field, E. One simply needs to replace all [[38 with 131’s and B with E. But

in this latter case, the electric dipole moments are not fixed, but rather induced

by the applied field.
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Table 5.1: Units and conversion factors of physical quantities related to the present

model of ferrofluids.

 

 

 

 

 

 

 

 

 

 

 

  

Physical quantity Symbol Value

Length A 100 A

Mass arhu 106 amu

Energy ell 10" eV

Time =AW 1.02 x 10‘7 S

Magnetic moment p}; 1.3647 x 103 p3

Magnetic Field é 12.6592 G

Temperature K 1.16049 K

Dipole-dipole energy [[32/A3 ell

Dipole-field energy it};C elf

Thermal energy kBK ell   
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Table 5.2: Physical parameters and typical values of some quantities used in

ferrofluid study.

  

  

 

 

 

 

 

 

 

 

 

Physical quantity Symbol Value

Length 0 1.0 A

Mass m 1.64 amu

Magnetic Field B 10.0 ("1

Magnetic moment no 15.388 p'g

Dipole-dipole energy 143/0'3 236.8 eV

Dipole-field energy [‘03 153.88 eV

Soft-core energy 6 20.0 eV

Soft-core repulsion range p1 2.5 A

Soft-core attractive range p2 5.0 A     
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Figure 5.2: Two dipoles on e-axis.
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5.3 Molecular dynamics of spherical tops

Since we are modeling ferrofluid particles by spheres carrying a dipole moment

each particle has not only positional coordinates, but also orientational coordi-

nates. The former set of coordinates is very common in any molecular dynamics

simulation, but the latter requires some careful considerations[Alle90]. The orien-

tation of a rigid body specifies the relation between an axis system fixed in space

and one fixed in that body. Usually the ‘principal’ body-fixed system in which the

inertia tensor is diagonal is chosen. In our case we choose the third axis along the

dipole moment and the other two axes on the sphere’s equator plane. Any unit

vector 5' may be expressed in terms of its components in body-fixed or space-fixed

frames: we thus use the notation é" and 5', respectively. The rotation matrix A

relates these components by

at = A . 5.". (5-13)

The nine components of the rotation matrix are the direction cosines of the body-

fixed axis vectors in the space-fixed frame, and they completely define the molecu-

lar orientation. In fact there is substantial redundancy in this formula: only three

independent quantities (generalized coordinates) are needed to define A. These

are generally taken to be the Euler angles (MW in a suitable convention (See Fig.

5.3 and [Gold80]). Then,

A = . .

- ' ' ' w+cos¢cos0sin¢ sin981n1b 5.14

3:23:13 -s;ri1n¢¢c::89;::;/J1), .8131:“;:isn 1p + cos (b cos 9 cos w sin 0 cos 1b ( )

sin 45 sin 0 — cos 4’ Sin 9 cos 9
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Figure 5.3: Definition of Euler angles.
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Clearly, if Eis a vector fixed in the particle body-frame (such as the dipole moment

vector), then é” will not change with time. In spaceefixed coordinates, though, the

components of 3' will vary. This is a special case of the general equation linking

time derivatives in the two coordinate systems[Gold80]

é=é+5xr=aUdfi an)

The time derivative of the angular velocity vector 13 is dictated by the torque

ii acting on the dipole. Although the torque is most easily evaluated in space-

fixed axes, it is most convenient to make the connection with 13, via the angular

momentum l: We use the Newtonian equation

I", ___ 1.1:.
(5.16)

and obtain, after applying Eq. (5.15), the expression

i;=ll”+t3' Xi.”
(5'17)

01'

s+rxr=e. mm)

Eq. (5.18) is thus the appropriate form of the Newtonian equation of motion

relative to the body axes. The ith component of Eq. (5.18) can be written as

ii + 6,31,01,11, = 11,-, (5.19)

(Repeated indices imply summation.)

where the “body” superscript has been dropped. If now the body axes are taken
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as the principal axes relative to the reference point, then the angular momentum

components are l.- = Igwg. Equation (5.19) then takes the form

1.1.ng + 6‘1"]:ijka = 11;, (5.20)

since the principal moments of inertia are, of course, time independent. For

spherical tops, such as our spherical dipole moments, all three principal moments

of inertia have same values I and the cross product term in Eq. (5.20) yields

636 = “/1. (5.21)

Conversion between the space-fixed and the body-fixed system is handled by the

analogues of Eq. (5.13), i.e.

a“ = A .11" (5.22)

a" = A" .obznT-o'b (5.23)

since the inverse of A is its transpose. To complete the picture, we need an

equation of motion for the particle orientation itself, i.e. for its rotation matrix

A. We may write down the equations of motion of the Euler angles [Gold80]

 

. _ ‘sincbcos9 ,COB¢C°39 ,

4’ — —w: sin9 " sin9 ’

é = w;cos¢+w;sin¢

. _ .sinvfi- ,cosd

1“ — w’sin9 w”sin9° (5.24)

These equations would apply to each dipole separately to obtain its own new

rotation matrix A. In principle, Eqs. (5.14) with (5.21)-— (5.24), may be solved

in a step-by-step fashion, just as we deal with translational equations of motion.

They, however, suffer from a serious drawback. The presence of the sin 9 terms
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in Eqs. (5.24) means that a divergence occurs whenever 9 approaches 0 or 11'.

The molecular motion is of course, unaffected when this occurs but, because of

our choice of axes, the angles 05 and 1]) become degenerate. Thus the equations

of motion are unsatisfactory when written in this form. One way to cope with

this would be to reduce the time step, so as to deal with the more rapidly varying

quantities, whenever any molecule approached the critical values 9 z 0 or 1r.

This would be very expensive and awkward. A slightly more satisfactory solution

was employed by Barojas, Levesque, and Quentrec[Baro73]: two alternative sets

of space-fixed axes for each molecule were used, and whenever the angle in one

system approached 0 or 1r, a switch over to the other set was made.

In recent years, a much more elegant and straightforward solution to the prob-

lem of divergence in the orientational equations of motion has been proposed.

Recognizing that singularity-free equations could not be obtained in terms of three

independent variables, Evans [Evan77a] suggested the use of four quaternion pa-

rameters as generalized coordinates. Quaternions fulfil the requirements of having

well-behaved equations of motion. The four quaternions are linked by one alge-

braic equation, so there is just one ‘redundant’ variable. The basic simulation

algorithm has been described by Evans and Murad[Evan77b]. In the following

section, I will briefly summarize the theory of quaternion parameters adapted in

our molecular dynamics simulations.

5.4 Quaternion molecular dynamics

The procedures to utilize the quaternion parameters in molecular dynamics has

been summarized beautifully by M.P. Allen [Alle84].
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A quaternion Q is a set of four scalar quantities, or a combination of a scalar

and a three-component vector

Q = (Q0,91,92,Q3) = (QO’qj' (525)

The “quaternion product” of two quaternions P and Q is defined via the combi-

nation of the usual scalar product 13' - (f and vector product 15' x q" as

P*Q=(poQo—i-§',poi+qoi+i><<f)- (5-26)

One thing to note is that there is a sign mistake in Allen’s definition [ Eq. (B2) in

[Alle84]] which could confuse many readers. As I verified in Eq. [Evan77a] (5.26)

is correct. Of course, the scalar product of two quaternions is still defined in the

usual way

P-Q=poQo+i-é'- (5-27)

The quaternion product is associative

P*Q*R=P*(Q*R)=(P*Q)*R, (5.28)

but not commutative

P*Q aé Q*P. (5.29)

The conjugate of Q is defined as

Q = (909 “-6): (5'30)

so that

6* Q = q. Q = (IQI’fi), (5.31)

  

 

 





 

 

 

where IQI2 = Q - Q is the norm of Q. The quaternions of interest here satisfy the

constraint

IQI2 = <13 + s? + 43 + 43 = 1- (532)

Therefore Q is the same as Q“, the inverse of Q, since the quaternion (1, 6) acts

as an identity element in the quaternion product. The way in which a quaternion

with unit norm may represent the orientation of a rigid body is discussed in Sec.

4-5 of [Gold80]. For example, the transformation between body-fixed vectors 136

and space-fixed vectors 17' may be expressed as

R” = our“), (5.33)

where R" = (0,1‘") and R‘ = (0,13).

The equations of rotational motion for each particle are advantageously ex-

pressed in quaternion form as

.1.20' i: Q, (5.34)

. 1

Q= §Q*nb=

where 0" = (0,65) and 0‘ = (0,6)“). Here, Gib is the body-fixed, «3' the space-

fixed, angular velocity. For a spherical top, following Eq. (5.21), the angular

velocities evolve according to

fl“ = Nb/I or (5‘ = N‘/I, (5.35)

where I is the moment of inertia, N" = (0,175), N‘ = (0,1'1"), and ii" and it" are

respectively the torque in the body-fixed and space-fixed frame.

These first-order differential equations can be integrated in time by various

standard methods[Alle90]. But calculating the torque directly from the molecular
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orientations is not simple when many dipole moments are present. It would be

nice if we could express the torques in terms of a “quaternion gradient” of the

potential energy. At this point, we will eliminate the angular velocities from these

equations. Differentiating Eq. (5.34) with respect to time we get

- 1 . b 1 . b

Q=§Q*n +§Q*n. (5.36)

Using Eq. (5.34) we note

1 b " ‘

5n = Q * Q. (5.37)

Taking derivatives of both side of Eq. (5.31) and applying the quaternion product

of Q* from the left, we get

Q s Q * Q = —IQI2Q- (5-38)

Combining these results we arrive at the second order differential equation

” ‘ 2 1 5 39Q=-IQ|Q+ZN/I, (- )

where

N = 2Q *N" = 2N‘ * Q. (5-40)

The elegant feature of this procedure is that N can be expressed directly in terms

of quaternion parameters[Alle84]:

N = —(¢9U/6qo,6U/6q1,6U/0q2,6U/6q3).
(5.41)

Here U is the potential energy of the system as a function of the quaternion

parameters of all the particles, and we differentiate with respect to the quater-

nions of the particle under consideration. These derivatives should really be taken
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subject to the constraint, Eq. (5.32), but then it would be impractical to use Eq.

(5.41) to solve the equation of motion. Fortunately,-however, it is possible to treat

the quaternions as independent parameters, and take unconstrained derivatives,

if the consequent motion off the constant-IQI2 hypersurface is projected out. This

correction should be performed at every step in the following procedure [Alle84]:

[Step 1] After calculating N from Eq. (5.41), we subtract the quantity

(Q - N)Q, which yields

N' = N — (Q - N)Q. (5.42)

[Step 2] Using N’ obtained in [Step 1], calculate N" or N‘ from Eq. (5.40)

Nb: Q*N’ or N'=%N'*Q. (5.43)

N
I
H

These quantities are used in Eq. (5.35) to get new fl" or fr.

[Step 3] Advance (2" or 0' one time step to get their new values, using

the result of [Step 2].

[Step 4] After calculating Q from Eq. (5.34), the quantity (Q - Q)Q is

subtracted, yielding r

c’z’=Q-(Q-Q)Q. <5-44)

[Step 5] Advance Q one time step using Q’ obtained in [Step 4] to get

new quaternion parameters.

[Step 6] Renormalize this new Q to have unit norm.
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Note that after these corrections N’ and Q’ are perpendicular to Q, yielding

Q-N’ _ o

Q-Q' = 0. (5.45)

so that

Q - Q’ = -IQI’. (5.46)

In the above procedure, the [Step 1], [Step 4] and [Step 6] are the critical steps

to keep our quaternion parameters on the constant-IQI2 hypersurface. We can

understand this more clearly by expanding Q over the time domain. Suppose

that we have normalized Q at time t,

|Q(t)l’ = 1. (5.47)

At time t + 6t,

Q(t + 5) = Q(t) + Q’(t)5t + éQ’(t)6t2 + 0(6t3). (5.48)

The the norm of Q becomes

IQ(t + 6t)!” = IQ(t)I2 + 2Q(t) - Q’(t)at + IQ’(t)I’6t’ + Q -W + 0(6t3)

= 1 + 0(5t3). (5.49)

Thus previous correction procedures guarantee us conservation of the norm of Q

up to the second order in 6t without renormalizing.

Another important reason to implement this correction comes from the self-

consistency of the formalism. By definition, the 0-th (or “scalar”) component [See
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definition in Eq. (5.25)] of Nb or N‘ should vanish. From Eqs. (5.42) and (5.43)

N' = §IN*Q—(Q-N)Q*QJ

= éiNaeQ—(Q-NXLO'N. (5-50)

Recalling the definition of Q, we can easily show that the O-th component of

N‘ vanishes. Futhermore we need to note that the correction [Step 1] not only

eliminates the O-th component of N' but also it is the only modification it makes

as far as N‘ is concerned. Thus we could skip the correction [Step 1] and do the

[Step 2] and simply discard the O-th component of N" or N‘. A similar argument

can be used to show that the correction [Step 4] eliminates the O-th component

of (1" or 0‘ if we have to calculate them by inverting Eq. (5.34) to

0" = 2Q * Q’ or 0' = 2Q'*Q. (5.51)

In the Euler angle convention of Fig. 5.3 and Eq. (5.14), it is most convenient

to define

qo = cos $0 cos $035 + 1/1)

q1 = sin %0 cos $0!) - 111)

q; = sin %9 sin %(¢ - 1/1)

q; = cos -;-9 sin %(¢ + 1,0). (5.52)

Then the rotation matrix becomes

2(91‘12 - (1093) 95 "' 9i + 9i " Qi 2(9293 + 9091)

I 43 + 9? - 9% - «1% 2(4192 + 9043) 2(9193 - 9092)

A = , (5.53)

2(9193 + ¢1092) 2(9293 - «1041) 93 - 9i - 9% + 93

which is obtained by converting Eq. (5.33) into matrix equation. Similarly the
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equation of motion for quaternions for each particle, Eq. (5.34), can also be

converted to the simple matrix equation

do qo -ql ‘92 —93 0

91 = _1_ 91 90 _q3 Q2 w: (5 54)

92 2 92 93 9o "91 w; '

93 93 —92 91 90 01,

As we expected, the equations of motion, Eq. (5.54) with Eq. (5.21), contains no

unpleasant singularities, if the transformation matrix (5.53) is used, to transform

between space-fixed and body-fixed coordinates.

5.5 Rings and chains

Fig. 5.4 depicts the structure of a chain and ring of 10 magnetic dipoles. The

directions of magnetic dipoles are represented by two hemispheres. Blue (dark)

and orange (light) color represents the north and south pole of the dipoles, re-

spectively.

Due to the dipole-dipole interaction, described in Eq. (5.4), the magnetic

dipoles want to align. For a small number of dipoles in the absence of exter-

nal field, a chain structure is the most stable configuration. As the number of

dipoles increases, ring configurations become more favorable over chains, since

the increase of the energy due to bending of the aligned dipoles will be more

than compensated by joining two ends. The potential energy per particle for the

chain (open diamond) and ring (solid square) configuration as a function of the

number of the magnetic dipoles is plotted in Fig. 5.5. Each energy is obtained

as a result of complete structure optimization using the conjugate gradient (CG)

method [Pres86]. There is no external field applied. We note that for the number
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Figure 5.4: 10 ferromagnetic spheres in a (a) chain and (b) ring structure. The

directions of magnetic dipoles are represented by two hemispheres. Blue (dark)

and orange (light) color represents the north and south pole of the dipoles, re-

spectively.
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of dipoles, N is bigger than 4, rings are always more stable than chains. The more

dipoles are in the ring, the smaller is the bending angle and energy. It also should

be noted that the difference in energy is maximum around N 2 9 and is getting

smaller as N increases. This behaviour can be understood easily with very simple

arguments. Consider a N dipoles ring as in Fig. 5.6. Since we have N dipoles,

the angle between two neighboring dipoles is

9 = 21r/N (5.55)

From the figure we can easily see that neighboring dipole 1 and 2

fix #12 = cos 9

[11 ° {'12 = C08 59

= [22 ° F12 (5.56)

and the dipole-dipole interaction between them is

2 3 9

U12(9)=-2%(—H‘1°—) (5.57)

We know that the distance between the dipoles d will change for each different N

to minimize the energy. In our simple argument we assume that it is independent

of particle number N and set to their diameter 0. Furthermore we will neglect the

details of the higher-order neighbor interactions and simply say that the energy

for N particle system is

Um(N) z a,NU12(9) (5.58)

where a, is the constants to be determined and independent of N and contains

the information on the soft-core potential. Thus the energy per particle becomes

Ufin5(N) ~ pg 3 + cos(21r/N)

T_ —2a.— 4 ] (5.59)
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Figure 5.6: A vector representation of ring of 10 magnetic dipoles. The directions

of magnetic dipoles are represented by the arrows.

   

 





 

 

 

and with similar arguments for linear chain

Uchain(N) pgN—l

N _ —2aca3 N

_ _ _#_3( n)._ Zaca’3 1 N (5.60)

By matching the values from Eq. (5.59) and Eq. (5.60) to the ones obtained from

full energy-optimized calculation at large N, say 25, we can set the values of a, and

ac. The solid and dotted lines in Fig. 5.5 are the plots of Eq. (5.59) and Eq. (5.60)

with a,=1.20 and ac=1.18. The analytic curves represent the numerical data very

well except a little deviation in small N region. This is a remarkable agreement,

considering how simple and crude our arguments are. We may also notice that it

even predicts correct N value to make the ring more stable, which is 4. Also from

these analytic expression, we can get the scaling behaviour for large N

«’1
, 2

_ . . . . 5.61N + ) < )

Thus the energy per particle for the ring decays as 1/N2 while the energy per

particle for the chain decays as l/N.

.1 Now let us apply an external magnetic field to these systems. The chains will

obviously align with the external field to minimize the energy. The behaviour of

the ring is not very trivial when subject to an external field. They would like

to align with the field but then half of them have to be “anti-parallel” to the

field. This increases the total energy , resulting no net energy gain if they remain

a perfect circle. The rings can gain energy slightly by distorting their structure

from the perfect circle. Fig. 5.7(a) is a 20 particle ring forced to remain parallel

to the field. The external field is applied horizontally and is represented by an

arrow in the figure. We used the same coloring convention for the dipoles and the
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field. The dipoles in Fig. 5.7(a) are allowed to adjust their positions in the plane

of the ring. The ring makes an “egg-shape” which has a flatter side and a pointed

tip. Having the flatter side makes the ring accommodate “more” dipoles parallel

to the field. The pointed tip, however, costs a lot of energy because of the sharp

turn of the dipole direction and becomes very vulnerable as the field increases.

Above a certain critical magnetic field, this tip becomes too sharp and the ring

can not support the stress any more. The ring breaks at this tip and becomes a

chain or fragments to little pieces, depending on the surrounding medium.

It turned out, however, that the rings can stand much higher fields without

breaking by being perpendicular to the field, as shown in Fig. 5.7(b). In the

figure the field is pointing out of the paper, as represented by the head of the

cylindrical arrow. It should be noted that their positions remain on a perfect

circle, yet the dipoles show a tendency to align with the field. In figure, you

see more blue (dark) colors for each sphere meaning that they are facing toward

you. The decreasing dipole-dipole interaction within the ring is compensated by

the field-dipole interactions. Above a certain critical field, these dipoles rotate

sufficiently out of the ring plane to become nearly parallel to each other, and their

mutual interaction vanishes. At this moment the ring flies apart into individual

particles.

Therefore in the following discussions I will focus only on the chains parallel

to the external field and rings perpendicular to the external field. The energies

per particle of a chain and a ring of 10 dipoles are plotted in Fig. 5.8. As seen

in Fig. 5.5, at zero field, the ring structure has the lower energy. As the field

increases, the energy per dipole of the chain decreases linearly in the external

field. In contrast to this, the energy per dipole of the ring structure remains almost
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Figure 5.7: Rings of 20 magnetic dipoles in an external field which is (a) parallel

(300 G) and (b) perpendicular (500 G) to the ring plane. The external field is

represented by the arrows, and has the same coloring convention as the magnetic

dipoles, used in Fig. 5.4.
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Figure 5.8: Energy per particle of a chain (open diamonds) and a ring (solid
squares) of 10 magnetic dipoles as a function of the external field.
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constant at low fields and decreases very slowly at higher fields. At a relatively

- low field value, about 37 G for N = 10, these two curves cross and the chain

structure becomes energetically more favorable. Once the ring structure is formed,

however, the ring does not break into a chain at this external field. The ring is

in a local energy minimum in the multi-dimensional coordinates space and there

is an activation barrier to overcome. We can go over this barrier dynamically by

pumping energy into the system and increase the kinetic energies of the particles.

When the added total energy added exceeds the height of the barrier, the system

will find the saddle point in phase space and move into the lower minimum. This

is the subject I discuss in following sections using the molecular dynamics study.

The alternative way of finding the lower (local) energy minimum is to lower the

barrier by changing the external field. When we increase the external field, we are

changing the contour of the energy surface in multi-dimensional coordinates space.

Increasing the magnetic field will lower the energy barrier for a certain geometry,

which will result in a saddle point pathway leading from the higher local energy

minimum of ring structure to the lower energy minimum of chain structure. For

10 dipoles ring, this energy barrier is removed at external fields exceeding 750 G,

as shown in Fig. 5.8.

Therefore, from Fig. 5.8 and the preceeding arguments we can define two

critical fields for the rings of a given number of dipoles. The lower critical field,

Bel , is the field above which a chain becomes energetically more favorable. The

upper critical field, 3.32, is the field at which the energy barrier between the chain

and ring structure disappears. Fig. 5.9 is the plot of Bel for a given magnetic field.

The results obtained from conjugate gradient method (squares) are compared with
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the analytic predictions (curve) using Eq. (5.59) and Eq. (5.60)

U____chain(N) _U—_ring(N)

 

 

floBcl = N

2 2"—°M] —a.) +N—°+a.c°s(2":N) - 1]. (5.62)

And for large N

a¢_ (1,12

#0361: 2—a:[(—a, ac) +—N— 2N2 + ~ - ] . (5.63)

This analytic expression predicts correct l/N scaling behaviour for large N and

even predicts correct N to have maximum Ber, which is 9. Fig. 5.10 is the plot of

BC: for a given magnetic field obtained from conjugate-gradient energy optimiza-

tion. BC: is related to the height E‘ of the barrier between the minimum energy

configuration for the ring and that of chain. We can estimate E" using

E‘ N FOBc‘b (5.64)

as the amount of energy needed to break a ring into a chain or another lower

symmetry structure in the absence of the external field. One thing to note is that

these estimates are the result of straight energy minimization calculations with

absolutely no dynamics. In next Section we will consider the stability of dipole

rings with the full dynamics.

5.6 Molecular dynamics study

We studied the stability of the magnetic dipoles by considering the ground state

energies of ring and chain structure. This study, however, only gives the estimation

of the energy barrier in zero field. If we want to know the stability of the ring for
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Figure 5.9: Lower (Bel) critical field for magnetic dipole rings as a function of the

number of particles. Results from energy minimization (squares) are compared to

analytic expression (curve) from Eq. (5.62).
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a given field, we need to do the dynamics study. For MD simulation we integrate

the equations of motion, such as Eq. 4.29, with fourth-order Runge-Kutta method

[Pre586]. The equations of motion include the quaternion parameters to represent

the rotation of the dipoles. We use an adaptive step-size control in which the time

step 9t varies according to the moves of particles. Two criteria, 6rd and Ere; are

specified. If the largest position change among all particles, firm“, is smaller than

6rd, the time step «it in the subsequent integration will be increased. When 57:5“,

is bigger than 5122, the time step 5t decreases. Otherwise we keep the current time

step 5t. All of the MD results in this chapter are generated with the initial time

step 6t = 5.0 x 10‘11 S, 9rd = 0.8 A and 9rd = 1.2 A.

For a given field, we first obtain the optimized configuration using the

conjugate-gradient method. We then give a small kinetic energy corresponding to

a temperature of 1 K. The velocities and angular velocities are generated randomly

according to the Maxwell-Boltzmann velocity distribution of given temperature.

We use the step-wise microcanonical MD simulation meaning that we pump en-

ergy into the system at one time and keep the system isolated for a sufficiently

long time. The system will explore the multi-dimensional phase space available

within that given total energy. If the barrier is lower than the total energy the

system will eventually find the pathway leading to other local minimum. After

a suficiently long time, if ring is still intact, it usually means that the barrier is

higher than the total amount of energy pumped in. After then we increase the

total energy of the system by heating up the particles (scaling of velocities) and

repeat above simulation steps until we have a broken ring. The amount of energy

we pump in at each step will determine the resolution of energy scale of our study.

In Fig. 5.11, we plot the variation of the energy barrier, E‘, as a function of the
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applied field, B. To generate the data we run MD simulations for an isolated

system (microcanonically) at each given total energy for 1.0 X 10'6 S. We add

3.0 x 10"3 eV of energy into kinetic energy if the ring is not broken until that

time.

E‘ is the amount of total energy you need to put in to break a ring of ferrofluid

particles at given magnetic field. In the region below this curve, once you have

a ring of ferrofluid particles, you will have a stable ring. When the total energy

difference from the optimized configuration is more than this value, the ring will

disintegrate into chains or smaller pieces. According to the “equipartition theo-

rem” [Reif65a], the average kinetic energy, I? of a ferrofluid system which has 6

degrees of freedom per particle (3 translational and 3 rotational) is

- 1

K = 6 - 2kBT = 3k3T. (5.65)

Fig. 5.12 is the plot of the estimation of melting temperature TX, as a function of

magnetic field. T15! is calculated from Eq. (5.65) using the average kinetic energy

of the system when the ring breaks.

5.7 Ongoing work

The ferrofluid as well as an electrorheological fluid is a system of dipole parti-

cles immersed in a viscous fluid. It is well known that these sufficiently small

macroscopic particles exhibit a random type of motion, so—called “Brownian mo-

tion” [Reif65b]. If we consider the effect of this Brownian motion, the governing

equation of motion becomes the “Langevin equation”

mid; = y: _ 112 + F’(t). (5.66)
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Figure 5.11: Energy barrier E" of ferrofluid rings as a function of applied field B.
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Figure 5.12; Estimation of melting temperature T5, of ferrofluid rings as a function

of applied field B.
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.7: is the force that we have without the Brownian motion, such as the one from

the dipole-dipole interaction. The frictional coefficient 7 is given by “Stoke’s law”

[Page52, Joos58]

7 = 31r110' (5.67)

where 17 is the viscosity of the surrounding fluid and a is the diameter of the

particles. The magnitude of the Brownian force depends on the temperature T

and the viscosity 1] of the fluid. To simulate the effect of Brownian motion we

generate the random force F’(t) which has the Gaussian distribution with zero-

mean and the width

 

fl = \/61rk3To'n/1' (5.68)

where 1' is an adjustable parameter and has the dimension of a time [TaoR94].

With given values of the state parameters, we can tune 1' so that it generates

ensemble of systems with the average temperature matching the heat bath or fluid

temperature. We have very preliminary MD simulation results with this model of

Brownian motion and it will be part of our next paper. Also, we are simulating

the aggregation of many of these ferrofluid particles into chains and branched

structures. Fig. 5.13 shows one of our preliminary results on the aggregation of

64 magnetic dipoles in the absence of the field. At the start of the simulation,

64 magnetic dipoles are perturbed randomly by 10% of the lattice constant, 173

A, from their 4 x 4 x 4 cubic lattice structure and only the top layer is seen

clearly. After about 1.0 x 10"8 S, the particles aggregate into two rings and one

giant “snake”. One exciting fact is that this aggregation was done in zero-field.

Many simulations and experiments have been performed in rather high-field and
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Figure 5.13: Aggregation of 64 magnetic dipoles. (a) Initial configuration and (b)

final configuration. In (a) 64 magenetic dipoles are perturbed randomly by 10%

of the lattice constant, 173 A, from their 4 x 4 x 4 cubic lattice structure and only

the top layer is seen clearly.
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that might explain why almost no literature discusses about the ring structure in

ferrofluids.

5.8 Conclusions

In this work we tried to study the early stages of the colloidal aggregation in

ferrofluid and the stability of the ring structure of these particles. We found that

the ring is the most stable structure for ferrofluid particles in low field and low

temperature as long as it has more than 4 particles. Based on simple arguments,

we derived an analytic expression for the energy of the ring and chain structure.

Two critical fields, Ba and Egg, are defined and their values from the conjugate-

gradient method was obtained. Performing the molecular dynamics simulation

including the quaternion parameters to represent the rotation of the dipoles, we

found the energy barriers, E‘, and the estimation of melting temperature TX, to

break a ring structure into lower symmetry ones as a function of applied field.

Our result indicates that in zero-field the ring structure should be observed in

carefully controlled experiments.
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