‘ or: III MK: .i. g 5.....Miizliulh) h“ I!‘!flu<...rox 1:... .. . a... . . 3.7.3.1.... : an...“ 15‘». 3.5.5.; .. x. 3....) 3:25.63! . 1‘}: : 3.2.0.59 z.» I: a mpfimmwxfi ‘ a.» ah.“ ‘ Z... a. ... . may“... {it} , . gr.....s$x%:u. in 3.3!? ‘1. r‘)-R1~R.hwhr. 33:3. a .55.“ «5 I. I)... . tat-.50....Q: ; 1.7.. .1253...) 3 ‘ ... 5.. .10 A......:... ,3 ”wt“? I... .1 1.0.. 32.04:... .s axlt In}: t? .3 t ’1. 5:33.31. .3 all}. I. .3 5‘ )Mll. tun) ti. K3359...) .292. 3.2."; 74 1‘ :9... bflhk \I)?!‘ xi ‘7 .< ..>.. I 4.. 1.51.3}: . ’31:. , s«r‘ifit\ir§.rafix 3.13.: «I ..r:l\>1 .Ilu. 1.3!): l . at..\iasl\t§ . «‘91.»? 1..:!\ 451...!‘2 t. . ‘11!!! I an) i . . ~ i. z I): c \lrs ‘ I .6 .. ( {bu-(x: .c :3... Lion..9|3$\.§\ t‘ w. It. 9 1.133111!!! It: .1 1):... {CI-Kl: ‘7... {filial}. It! RSITY LIBRA llllllllllllllllllllllllllllllllllll 3 1293 010206 This is to certify that the thesis entitled RHEOLOGICAL BEHAVIOR OF CALCIUM CARBONATE-CORN SYRUP MIXTURES presented by Misael L. Miranda-Maldonado has been accepted towards fulfillment of the requirements for Agricultural MLS . degree in Engineering EMF Major professor Date July 22, 1994 0-7 639 MS U is an Affirmative Action/Equal Opportunity Institution LIBRARY Mlchlgan State Unlverslty PLACE ll RETURN Boxwmwowmuflunmm TO AVOID FINES Mum on or More mm. DATE DUE DATE DUE DATE DUE MSU IoAn Nflnndlvo ActloNEqnl Opporumlly lmwon W1 RHEOLOGICAL BEHAVIOR OF CALCIUM CARBONATE-CORN SYRUP MIXTURES by Misael L. Miranda-Maldonado A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Agricultural Engineering Department of Agricultural Engineering 1994 ABSTRACT RHEOLOGICAL BEHAVIOR or CALCIUM CARBONATE-CORN SYRUP MIXTURES by Misael L. Miranda-Maldonado The rheological behavior of calcium carbonate-corn syrup mixtures was studied using mixing viscometry techniques. Materials are found to exhibit power law behavior. Changes in the flow index behavior and consistency coefficient were evaluated as functions of temperature and concentration. Decreases in the consistency coefficient (K) with temperature increases, at a constant concentration, were explained by an Arrhenius model. Temperature had little effect on the flow behavior index. Several exponential models were used to demonstrate the influence of temperature and concentration, both separately and combined, on shear stress-shear rate relationships. ACKNOWLEDGEMENTS Sincere thanks to Dr. James Stefi‘e, my advisor and major professor for his guidance, comments, suggestions, support, encouragement, enthusiasm, friendship, patience and for helping me to go with the flow in the different stages of this study. Thanks to the Chilean government for their financial support that made this work possible. Thanks to my mother Adriana who gave me the reason to further my education. Thanks to my aunt Ita and brother Mario for their support. Thanks to Gloria Bateman, Valerie Geyer and to all the secretaries of the Department of Agricultural Engineering and all the persons that helped me more than once to complete my studies and related activities. Thanks to my friends: Neba Ambe, Habib Chowdhury, Danny Campos, Chris Daubert, Andy Fogiel, Armando Fuji, Mario Fusco, Phil Gerrish, Kevin Kalmbach, George Mungai, Carlos Semidei, James Schaper, Rick Stowell, Wee Tan, Muluken Tilahun and, Andy Wedel. Thanks for making my stay more pleasant here at Michigan State University. Special Thanks to Romelia & Irvin Widders, and to the families Crouch, Mungai, Hudy, and Roberts for they help and friendship. Thanks to Lorena for her support, encouragement and tolerance. And overall, thanks to GOD, who made this accident a reality. iii TABLE OF CONTENTS Chapter Page LIST OF TABLES .............................................. vi LIST OF FIGURES ............................................ vii NOMENCLATURE ............................................ viii I. INTRODUCTION ............................................ 1 II. REVIEW OF LITERATURE .................................... 4 2.1. Rheology Definition and Applications ........................ 4 2.1.1. Fluids, Newtonian and non-Newtonian Fluids ............ 5 2.1.2. Time-dependency ................................ 6 2.2. Types of Measurements and Common Instruments ............... 7 2.3. Mixer Viscometry ...................................... 7 2.3.1. Previous Research in Mixer Viscometry ................ 9 2.4. Properties of Suspensions, Dispersions and Multiphase Systems ...... 9 III. MATERIALS AND METHODS ................................ 14 3.1. Materials ........................................... 14 3.1.1. Sample Preparation .............................. 14 3.1.2. Viscometer Calibration ........................... 14 3.2. Methods ............................................ 15 3.2.1. Equipment Preparation ........................... 15 3.2.2. Data Collection ................................ 15 iv 3.2.3. Analytical Models Used in this Study ................. 15 3.2.4. Shear Stress and Shear Rate Calculations .............. 17 3.2.5. Concentration and Temperature ..................... 18 3.2.6. Temperature Effect .............................. 18 3.2.7. Concentration Effect ............................. 19 3.2.8. Combined Effect of Temperature and Concentration ....... 20 IV. RESULTS AND DISCUSSION ................................. 21 4.1. Temperature Effect at Each Concentration .................... 21 4.2. Concentration Effect on Each Temperature .................... 31 4.3. Effect of Temperature and Concentration ..................... 36 4.4. Summary of Effects .................................... 37 4.5. Use of Calcium Carbonate-Com Syrup Mixture ................ 41 V. CONCLUSIONS ........................................... 43 VI. FUTURE RESEARCH ....................................... 44 BIBLIOGRAPHY ......................................... 45 VII. APPENDIX 1. Prediction of Average Apparent Viscosity at 59.905 1/s ..... 47 VIII. APPENDIX 2. Measurements Performed at 25°C ................... 48 IX. APPENDD( 3. Calculations at 25°C to Fit the Global Model ............ 67 X. APPENDIX 4. Measurements Performed at 40°C ..................... 70 XI. APPENDIX 5. Calculations at 40°C to Fit the Global Model ............ 86 XII. APPENDIX 6. Measurements Performed at 55°C .................... 89 XIII. APPENDIX 7. Calculations at 55°C to Fit the Global Model .......... 108 V LIST OF TABLES 1. Values of flow index behavior, consistency coefficient, and determination coefficient at 25°C .......................................... 22 2. Values of flow behavior index, consistency coefficient, and determination coefficient at 40°C .......................................... 23 3. Values of flow behavior index, consistency coefficient, and determination coefficient at 55°C .......................................... 24 4. Summary of constants obtained from the three main effects under study ...... 40 vi LIST OF FIGURES 1. Haake MV paddle sensor ...................................... 16 2. Influence of temperature on shear stress at 0% ....................... 26 3. Influence of temperature on shear stress at 5% ....................... 27 4. Influence of temperature on shear stress at 15% ....................... 28 5. Influence of temperature on shear stress at 25% ....................... 29 6. Influence of temperature on shear stress at 35% ....................... 3O 7. Influence of concentration on shear stress at 25°C ..................... 33 8. Influence of concentration on shear stress at 40°C ..................... 34 9. Influence of concentration on shear stress at 55°C ..................... 35 10. Effect of temperature and concentration on K ....................... 38 11. Effect of temperature and concentration on n ........................ 39 12. Effect of temperature and concentration on average apparent viscosity at 59.905 1/s ....................................... 42 vii NOMENCLATURE b = impeller blade height, m C = concentration, weight percent CaC03 in corn syrup d = impeller diameter, m E a = flow activation energy, cal/g mole K = consistency coeflicient, Pa s " KC = constant depending on concentration K< £0 = constant depending on Tand C K0 = frequency factor, Pa s Kr = constant depending on temperature k’ = constant for a particular impeller, 1/rad M = torque, N m n 2 flow behavior index, dimensionless n- = average flow behavior index, dimensionless p = power, N m/s P a = power number, dimensionless R = gas constant, cal/K g-mole R2 = determination coefi‘icient, dimensionless T = absolute temperature, K viii a = constant depending on temperature and concentration, dimensionless a0 = fitctor determined by the shape and dimensions, dimensionless 7 = shear rate, s " 70 = average shear rate, 3’1 u = viscosity of Newtonian fluids, Pa s pm or = average apparent viscosity, Pa s “app = apparent viscosity, Pa s u, -- relative viscosity, ratio of the viscosity of suspension to viscosity of suspending liquid, dimensionless p = fluid density. 13/»!3 a = shear stress, Pa 00 = yield stress, Pa 00 = average shear stress, Pa tb = volume concentration, dimensionless 0 = rotational speed of the impeller, rad/s ix CHAPTER I INTRODUCTION Calibration is a basic procedure required to ensure that an analytical method can give accurate results. This process is based on the use of some pre-defined standards which can be oils, solutions, pure substances and basically any system with a well known property that remains constant under certain conditions. It is impossible to calibrate an instrument to an accuracy greater than that of the standard with which it is compared. A rule often followed is that the calibration standard should be about ten times as accurate as the instrument being calibrated (Doebelin, 1983). In flow measurements for example, a flow-rate calibration depends on standards of volume (length) and time, or mass and time. A primary calibration is based on the establishment of steady flow through the flowmeter to be calibrated and subsequent measurement of the volume or mass of flowing fluid that passes through in an accurately timed interval. Any stable and precise flowmeter calibrated by such primary method, then itself becomes a secondary flow-rate standard against which other (less accurate) flowmeters may be calibrated conveniently (Doebelin, 1983). A significant deviation in any calibration from the conditions in which the calibration was performed will invalidate the measurements that can be obtained with such a calibrated instrument. Possible sources of error for example in flowmeters include variations in fluid properties such as density, viscosity and temperature. 2 Green (1949) mentioned that commercial rotational viscometers are calibrated using liquids of known viscosity. These liquids of known properties (Green, 1949) should be Newtonian and not to have a very high viscosity, at the same time the shear rate of the calibrating liquids should be within the shear rate range where the fluid still behaves as a Newtonian substance. These fluids can be oils and, if they present constant properties, can become standard materials. Calibration can be done using established standard oils, however, some polymers, petroleum oils, butene polymers and silicone oils have been used as well. Another potential group of standards is represented by pure compounds and solutions. Also, Rao and Vitali (1974) have noted that calibration of a coaxial cylinder viscometer can be done using constant suspending weights. Pure substances that can be used as standards were mentioned by Hull and Steffe (1992). Some of these fluids are difficult to purify. Others have inherent difficulties. Glycerin, for example, can become hygroscopic at room temperature. There are some certified fluids that are formed by making solutions of different pure fluids. When dealing with a sucrose-water solution at high concentration, a 1% change in sucrose can produce up to 25% in change in the viscosity. This fact means that this solution is inconvenient due to potential error. Corn syrups exhibit a constant viscosity both in steady and dynamic shear conditions that makes them useful as Newtonian calibration fluids when some of the reference standard oils are not suitable (Hull and Steffe, 1992). Corn syrup can present a tendency to dry due to mass transfer with exposure to air. Aging may also create changes. If corn syrups do not suffer these 3 problems they can become useful for different food engineering problems where calibration and process standardization are needed. Some oils and polymers are commonly used to perform day-to-day calibration of rheometers. These standards are based on a well known constant viscosity at a certain temperature and pressure, and these fluids emulate water which is the primary material used as a reference in viscosity calculations (Hull and Steffe, 1992). The suspending weight method to calibrate coaxial viscometers is based on suspending some constant weights from the axis of the sensor and, when the drive is in constant low speed movement, recording the torque readings with increasing weights. Based on these measurements it is possible to compute with confidence the maximum axial torque. This can then be used to compute some rheological properties that depend directly on the axial torque (Castro et al., 1990). A suitable shear-thinning standard fluid, for the food industry does not exist. To address this need, the following objectives were formulated for the current work: 1) Study the shear—thinning behavior of suspensions formed from mixtures of calcium carbonate and corn syrup. 2) Evaluate the influence of temperature and concentration on the behavior of calcium carbonate-corn syrup mixtures. CHAPTER II REVIEW OF LITERATURE 2.1. Rheology Definition and Applications. Definition of Rheology. The term "rheology" was invented by Eugene C. Bingham in 1929 and has since been defined as "the study of the deformation and flow of matter" (Friedrickson, 1964; Tanner, 1985), or as "the study of the manner in which materials respond to applied stress and strain" (Steffe, 1992). All materials have rheological properties and the area is relevant in many fields of study, such as geology and mining (Cristescu, 1989), concrete technology (Tattersal and Banfill, 1983), soil mechanics (Vyalov, 1986; Haghighi et al., 1987), plastics processing (Dealy and Wissbum, 1990), and tribology (study of lubrication, friction and wear). Appflgtions of Rheology. Rheology is useful in the food area for different purposes such as to improve product development, processing methodology and final product quality. Specifically, there are numerous reasons why rheological data are needed in the food industry (Escher, 1983; Steffe, 1992): a. Process engineering calculations for a wide range of equipment such as pipelines, pumps, extruders, mixers, coaters, heat exchangers, homogenizers, calenders, and on-line viscometers. 5 b. Determination of ingredient functionality in product development. c. Regulation of on-process and final product quality control. d. Shelf life correlation. e. Evaluation of food texture by correlation to sensory data. f. Analysis of rheological constitutive equations. Many factors influence rheological properties. Examples include temperature and soluble solids as well as the chemical and biochemical reactions which occur in food products. A knowledge of fluid properties allows one to make economic improvements in a wide variety of processes (Osorio, 1985). 2.1.1. Fluids, Newtonian and non-Newtonian Fluids. Fluids are groups of molecules that exhibit the property of deformation without any change of volume under the action of a force (Sherman, 1990). Fluids are Newtonian if they follow Newton’s law (Equation 1), otherwise they are non-Newtonian and the viscosity coefficient is called apparent viscosity. There are numerous models which represent the behavior of the different fluid systems, however some of the most important models are the Bingham model (Equation 2) and the Herschel-Bulkley model (Equation 3): o=ui (1) o=oo+Ky (2) o=oo+Kw (3) Newtonian fluids possess low concentrations of solids while non-Newtonian fluids generally have a high concentration of solids and may also contain lipids, proteins, carbohydrates and fibers which interact with the flow and produce deviations from Newtonian behavior (Osorio, 1985). Non-Newtonian fluids are characteristically food slurries, pharmaceutical products, gums, biological fluids and oils. (Skelland, 1967). Emulsion and dispersions, especially those encountered in the food industry, are complex systems that exhibit a wide variety range of rheological behavior (Peleg and Bagley, 1983). 2.1.2. Time-Dependency. Fluids whose behavior depends on the time of application of a stress are called time-dependent fluids, otherwise they are time-independent. Time-dependent fluids are thixotropic if apparent viscosity decreases with time or rheopectic if apparent viscosity increases with time (Tanner, 1985; Doublier and Lefevre, 1989). 7 2.2. Types of Measurements and Common Instruments. Fundamental properties are independent of the instrument on which they are measured, so different instruments will yield the same results. This is an ideal concept and different instruments rarely yield identical results. Some examples of instruments which give subjective results include the following (Bourne, 1982); Farinograph, Mixograph, Extensograph, Viscoamylograph and the Bostwick Consistometer. Common Rheological Instruments. Common instruments capable of measuring fundamental rheological properties, may be placed into two categories (Steffe, 1992): - rotational type (parallel plate, concentric cylinder, cone and plate, mixer), - and tube type (glass capillary, pipe). Rotational viscometers may be operated in the steady shear (constant angular velocity) or dynamic (oscillatory) mode. 2.3 Mixer Viscometry. The general principle of measurement used in mixer viscometry is based on the determination of the torque on the shaft of the impeller as a function of its rotational speed (Castell-Perez and Steffe, 1992). This application is based on the power consumption in a vessel for a Newtonian fluid and can be expressed in terms of a power number, P0 = (p/d593p) in the laminar flow region, such as: (4) or dflp (dflp) where: P0 = power number, dimensionless R, = mixing Reynolds number, dimensionless p = power, N m/s (1 = impeller diameter, m (2 = rotational speed of the impeller, rad/s p = density, kg/m3 p = Newtonian viscosity, Pa 5 A = constant depending on system geometry, dimensionless Equation (5) can be used for power law fluids if u is replaced by an apparent viscosity, pm, evaluated at an average rate of shear, 70, which is defined as i, = k’ 0 (6) where 7 = shear rate, s'1 a 9 k / = constant for a particular impeller (Steffe, 1992), 1/rad 2.3.1. Previous Research in Mixer Viscometry. Castell-Perez and Steffe (1990) evaluated established mixer viscometry methods, such as the viscosity matching method and the slope method for average shear rate calculations by agitation of time-independent, non-Newtonian fluids. Their final results showed that the mixer constant, k’ , is not a constant for all ranges of fluid rheological properties, system geometries (cup and impeller) and impeller rotational speeds. Castell-Perez et a1. (1991) were studying a simple and accurate procedure to determine the flow properties of power-law fluids using a paddle type mixer viscometer. They considered the mixer as analogous to a concentric cylinder system and incorporated the end effect in modeling. Data collection is reduced according to these authors because calibration with stande fluids is not necessary to estimate average shear stress and shear rate values. 2.4. Properties of Suspensions, Dispersions and Multiphase Systems. Suspension_s of Paflcles in Newtonian Fluids. a) Generalities. Particles suspended in Newtonian fluids cause additional viscous dissipation during flow and higher viscosities compared to the suspending fluid itself. Also, suspensions of particles in Newtonian fluids usually exhibit one or more of the following properties: i) an unbounded viscosity at low shear rates (shear stress), 10 ii) time and/ or strain dependent properties and shear-thinning (pseudoplasticity), iii) shear-thickening (dilatancy), and iv) normal stresses. These effects are the reflections of the structures generated by particle interactions causing redistribution of particles and their orientations and the net effects of these redistribution processes on the bulk rheological behavior of the system. Dilute suspensions of small particles in Newtonian fluids usually behave as a Newtonian fluid. However, at moderate and high concentrations, the viscosity of the suspension becomes a function of the strain rate applied. Non-Newtonian behavior exhibited by suspensions of particles in Newtonian fluids can be a result of several factors influencing the suspension (Kamal and Mutel, 1985). Non-midrodanamic Forces: The most important forces are brownian forces, electrical forces which arise from the charges on particles, London-van der Waals forces. Non-hydrodynamic forces are dominant in concentrated suspensions of colloidal particles (particles smaller than 1 pm) and the rheological behavior of the suspension is determined by the competition between non-hydrodynamic and hydrodynamic forces. Thus viscosity is a function of the bulk rheological properties of colloidal dispersions in the microstructure. The relevant theories have been reviewed by Mewis (1980). The importance of non-hydrodynamic forces diminishes with increasing size. Generally, for suspensions of particles greater than 10 pm the rheological behavior is mainly determined by the hydrodynamic forces. 11 Particle Interactions: i) Hydrodynamic interactions of particles, cause a change in the velocity distribution in the vicinity of other particles. ii) Direct particle-particle interactions are a significant energy sink and may allow the formation of aggregates and produce the inhibition or promotion of structures by the flow and change in particle orientation distribution with the flow strength as well as anisotropic distribution of particles in some flows. The relative importance of these factors on the bulk rheological properties of a suspension, and hence the value of the particle concentration up to which the suspension behaves as a Newtonian fluid, depends on the nature, shape and dimensions of the solid particles and to a certain extent on the properties of the suspending fluid (Kamal and Mutel, 1985). b) Concentration - Relative Viscosity Relations. Dilute Susmnsions. Hydrodynamic theories for the concentration dependence on relative viscosity of dilute suspensions of particles in a Newtonian matrix have been developed by Einstein (1906 and 1911) (A. Einstein, Ann. Physik., 19, 289, 1906; A. Einstein, Ann. Physik., 34, 591, 1911) for spherical particles, by Jeffrey (G. B. Jeffrey. Proc. Roy. Soc. (London), A102, 161, 1923) for ellipsoids, and by Burgers for cylindrical rods. These theories can be summarized by the following relationship: 12 ur=1+ao¢ (7) where: p, = relative viscosity, defined as the ratio of the viscosity of the suspension to the viscosity of suspending fluid, at volume concentration, o, and 00 = dimensionless factors determined by the shape, dimensions and orientation of the suspended particles. Non-dilute Suspensions. As the concentration is increased above that of the hydrodynamically dilute concentration range, the concentration-relative viscosity relation becomes non-linear, due to particle interactions and non-hydrodynamic forces. Non-linearity has been incorporated into dilute suspension theories in several ways. Some of them have a theoretical basis, while some are totally empirical (Kamal and Mutel, 1985). Maximum packing fraction. This concept can explain the influence of particle concentration on the viscosity of the concentrated suspensions using the so-called maximum packing density. There must come a time, as particles are being added when suspensions "jam up", producing a continuous three-dimensional contact throughout the suspension, thus making flow impossible, i.e., the viscosity tends to infinity. The particle phase volume at which this happens is the maximum packing fraction, and its value will depend on the arrangement 13 of the particles (Barnes et al., 1989). Multiphase Systems. Suspensions, emulsions and pastes are the single most important area of rheological research. These three types of multiphase systems have much in common, although in suspensions the dispersed phase is solid, in emulsions it is another liquid and in pastes the particles are in physical contact. All these systems may have one of the following conditions: a) dilute with no particle interaction (with the exception of pastes), b) stable, as in sterically stabilized paints, c) flocculated with structure fully foamed, d) partially stable with some structure forming and e) sedimenting. CHAPTER III MATERIALS AND METHODS. 3.1 Materials. 3.1.1. Sample Preparation. Corn syrup and calcium carbonate were used as raw materials to prepare different mixtures from which rheological characterization was performed. Calcium carbonate, obtained from Mallinckrodt Co., had a mean particle size of 7-9 pm. Corn syrup was obtained from A.E. Staley. It was a high fructose corn syrup (Isosweet 5500) with a nominal viscosity equal to 0.8 Pa 5 at 25°C. 3.1.2. Viscometer Calibration. A coaxial cylinder viscometer (Haake RV-12) using a M 150 torque sensor, a MV cup, and a MV paddle impeller with a NESLAB RTE-9 refi'igerated circulating bath was used to determine rheological properties of the mixtures over a wide range of concentrations and temperatures. The viscometer was equipped with a built—in water circulator to maintain samples at a constant temperature. In this study the torque sensor was not calibrated using standard oil. The suspending weight calibrating system (Castro et al., 1990) was used to determine the maximum axial torque that the drive produced. The deviation of maximum torque from the value reported by the manufacturer was 2.8 % which is permissible in engineering calculations. Based on this value, all calculations of shear stress and shear rate were performed. 14 1 5 3.2 Methods. 3.2.1. Equipment Preparation. For the preliminary data collection, a traditional concentric cylinder system (MV I sensor and cup) was used. There was no thixotropy in any sample but the existence of settling was found. This settling effect made the resulting data unacceptable; hence new measuring system was needed and the best option for this purpose was mixer viscometry. At this point in the study, an MV paddle impeller (Figure l) and cup were selected to perform the measurements, thus avoiding any influence of settling on measurements to be performed. All subsequent measurements were made using this system. 3.2.2. Data Collection. Eight data points were taken at each of the following impeller speeds (rpm): 1, 2, 4, 8, 16, 32, 64, 128, 256, 128, 64, 32, 16, 8, 4, 2, 1. From these, the average reading was obtained. Using the maximum axial torque attained by the weight suspension calibration, the torque value was obtained, and from the rpm at which the readings were taken, the angular velocity for each measurement was calculated. 3.2.3. Analytical Models Used in this Study. In this study three models were considered: Newtonian, Power-law, and Herschel- Bulkley. The power law model best represented the rheological behavior of calcium carbonate-corn syrup mixtures. 0.127m | 15° pitch blade Figure l. Haake MV paddle sensor. 17 3.2.4. Shear Stress and Shear Rate Calculations. With the values of the angular velocity and the impeller constant kl, taken from the literature as k’ = 4.47 1/rad; (Steffe, 1992), using the Equation (6) the average shear rate values were obtained. The average shear stress values were calculated as: o = —————2M (3) a 1: d3 —b-+—l-] d 3 where : k’= impeller proportionality constant, 1/rad M = torque, N m d = impeller blade diameter, m b = impeller blade height, m The corresponding n and K values were obtained from the linear regression analysis between the shear stress-shear rate values, for each condition studied. 18 3.2.5. Concentrations and Temperature. This study was performed using 5 different concentrations (0, 5, 15, 25 and 35 weight percent) of calcium carbonate. Three different temperatures (25, 40 and 55°C) were used to get measurements of torque at ten different speeds of rotation. Three replications were done for each data set. Angular velocity and the corresponding torque value at each condition was computed and from these numbers the respective flow behavior index and consistency coefficient values were calculated by a regression analysis between the natural log of the angular velocity and torque. Each data set was obtained for each one of the different conditions of temperature and concentration. The different exponential models were fitted for shear-stress and shear-rate, and all the values were combined in a non-linear fitting procedure to get a model which could collectively explain the behavior of shear stress in terms of shear rate, concentration and temperature. 3.2.6. Temperature Effect at Each Concentration. The literature mentions that an Arrhenius-type equation is commonly used to quantify the effect of the temperature on the rheological behavior of fluids (Ibarz, 1993). So, for power-law fluids, the consistency coefficient can be expressed as: K = K. exp [1%] (9) where: 19 K0 = frequency factor, Pa 3 Ba = flow activation energy, cal/g-mole R = universal gas constant, cal/K g-mole T = absolute temperature, K The general analytical model that explains the temperature effect at each concentration has the general expression: a,=f( T. t.) =KTexp[—E1] " R T Y. (10) where: ,7 = average of n values for all temperatures and concentrations. comes from a regression analysis of all the K values at each concentration. Ea KT exp [-R—T' 3.2.7. Concentration Effect at Each Temperature. The proposed model which takes into account the effect of concentration has the following form: a, =f( c. 7,) = K. exp (BC) if (11) where: C = % CaCO3 concentration by weight. ,7 = average of n values for all temperatures and concentrations. 20 and KC exp (BC) comes from a regression analysis from all the K values at each temperature. 3.2.8. Combined Effect of Temperature and Concentration. The general expression for the variation of shear stress as a function of temperature, concentration and shear rate has the form: a, =f(T. c. i) = K.1m exp 7% BCJiZ (12) where the term K( n 0 exp [7% + BC ] (13) is obtained from all the K values, and or either comes from the average of all the n values or may be determined separately as a function of temperature and concentration. CHAPTER IV RESULTS AND DISCUSSION Results of modeling all flow curves using the power law equation are presented in Tables 1, 2 and 3. The average value of n (r? = 0.9101) at all temperatures and concentrations was used in determining the independent effects of temperature and concentration. 4.1. Temperature Effect at Each Concentration. According to the regression analysis from the different values of K at different temperatures and concentrations (Tables 1 to 3) the following prediction equations for K.r have been obtained at different calcium-carbonate concentrations: 0%: 1n KT = -19.53 + 5751.7 (1/T) R2 = 0.7935, number of observations = 9 5%: 1n KT = -14.74 + 4317.4 (1/T) R2 = 0.5287, number of observations =10 15%: In KT -25.75 + 7894.30 (1/T) R2 = 0.9084, number of observations = 9 25%: 1n KT = -25.32 + 7981.6 (l/T) R2 = 0.9151, number of observations =18 35%: In KT = -16.19 + 5544.3 (III) R2 = 0.9706, number of observations = 9 The predictions for the values of KT are as follows: 0%: KT = 3.0E-09 exp(5751.7 IT) 5%: KT = 4.0E-07 exp(43l7.4 IT) 15%: KT = 7.0E-12 exp(7894.3 IT) 25%: KT = 1.0E-11 exp(7981.6 m 35%: KT = 9.0E-08 exp(5544.3 IT), and r? = 0.9101 21 22 Table 1. Values of flow behavior index, consistency coefficient and R2 at 25°C. Flow Index Consistency R2 Behavior Coefficient Concentration dimensionless Pa s” (weight %) 0 0.9560 0.9224 0.9990 1.0032 0.7852 0.9999 1 .0568 0.6547 0.9986 5 0.9581 1.1114 0.9993 0.9662 1.1015 0.9992 1.1338 0.6461 0.9899 15 0.8045 2.3145 0.9491 0.7653 2.3482 0.9479 0.8237 2.0665 0.9523 25 0.9067 4.2554 0.9994 0.9085 4.2800 0.9993 0.8673 4.1873 0.9982 0.8848 4.3843 0.9990 0.9520 3.7893 0.9999 35 0.8479 9.3804 0.9997 0.8152 1 1.2379 0.9994 0.6993 7.5629 0.9623 23 Table 2. Values of flow behavior index, consistency coefficient and R2 at 40°C. Flow Index Consistency R2 Behavior Coefficient Concentration dimensionless Pa sll (weight %) 0 0.9394 0.3071 0.9902 1.164 0.1311 0.9917 0.9737 0.2798 0.9965 5 1 .0205 0.2745 0.9999 0.9911 0.4502 0.9574 1.1581 0.1453 0.9976 15 1.0136 0.4123 0.9988 1.0567 0.3532 0.9977 0.8416 0.8491 0.9883 25 0.8516 1.0246 0.9558 0.9147 0.7961 0.9552 0.8166 1.2540 0.9610 0.8516 1.0246 0.9558 35 0.5421 5.9571 0.81 19 0.5670 4.6503 0.8121 0.5616 4.9264 0.8140 24 Table 3. Values of flow behavior index, consistency coefficient and R2 at 55°C. Flow Index Consistency R2 Behavior Coefficient Concentration dimensionless Pa su (weight %) 0 0.9672 0.1295 0.9761 0.8910 0.1896 0.9581 0.9092 0.1653 0.9706 5 1.0083 0.1244 0.9857 0.9296 0.2039 0.9768 0.8681 0.2230 0.9499 0.6665 0.5706 0.8924 15 0.9798 0.2065 0.9914 0.8935 0.2954 0.9766 1.1106 0.1322 0.9957 25 1.1952 0.1448 0.9697 1.0069 0.3193 0.9986 1 .0345 0.2951 0.9997 0.9624 0.4165 0.9989 0.8711 0.5625 0.9893 0.8745 0.5557 0.9902 0.9092 0.4692 0.9939 35 0.71 14 2.0496 0.9492 0.7422 1.8315 0.9600 0.7370 1 .8097 0.9596 25 and based on these analytical expressions, the following models can be obtained: am,=3.012-09exp[5751mm,“9°91 (14) a(S,,=4.OE-07exp[43174/717,“9°“ (15) 0(15,)=7.0E—12exp[7894.311]?a°3°91 (16) 0(25’)=1.OE—11exp[7981.6l7]va°‘9°91 (17) 0(35,,=9.OE—08exp[5544.3mp,“9°" (18) The data modeled by Equations 14 to 18 are represented in the Figures 2 to 6, respectively. In each line of these figures the slope which represents the average apparent viscosity, is higher as the temperature decreases, which agrees with theory, since it is supposed that at a lower temperature the tendency to flow is lower. 26 120 1- 25C / £52 a / 2'. / .2 // 40 / / K/ 0 50 IN 150 2% 250 Shearrate,lls Figure 2. Influence of temperature on shear stress at 0% CaCO3 Shear stress, Pa 27 120 + 250 10G / 40¢ / 55¢ 80 // f /' 4c / / // / 0 50 100 150 200 250 Shear rate, 1Is Figure 3. Influence of temperature on shear stress at 5% CaCO3 Shear stress, Pa 28 350 + 25 C 300 / 40 C / —B-— 25" / 55 c 2.. // 150 / M ______________._ MM 0 50 100 150 200 250 Shear rate, 1Is Figure 4. Influence of temperature on shear stress at 15%CaO3 Shear stress, Pa 29 700 I 25 C + GOG 40 C + 55 C soc / 3 // 200 / // ._.——a—r 0 50 100 150 200 250 Shear rate, 115 Figure 5. Influence of temperature on shear stress at 25% CaCO3 30 1 + 250 1400 / :0: 12 // :3 g 1000 / a 5... // 400 I 14/ / 20c //r/ // o%/ 0 50 100 150 200 250 Shear rate, 115 Figure 6. Influence of temperature on shear stress at 35% CaCO3 31 4.2. Concentration Effect at Each Temperature. From the regression analysis of the different values of K and concentrations at constant temperatures (Tables 1 to 3) the following prediction equations for Kc have been obtained: 25°C: In KC = -0.268 + 0.0709 C R2 = 0.9499, number of observations = 19 40°C: In KC = -l.751 + 0.0874 C R2 = 0.8638, number of observations = 16 55°C: In KC = -1.993 + 0.054 C R2 = 0.5616, number of observations = 20 The predictions for the values of KC are as follow: 25°C: KC = 0.7650 exp(0.0709 C) 40°C: KC = 0.1736 exp(0.0874 C) 55°C: KC = 0.1362 exp(0.054 C) and ii = 0.9101 and the final models are: om = 0.7650 exp (0.0709 C) 729‘“ (19) a,“ = 0.1736 exp (0.0874 C) 73"“ (20) 055.6 = 0.1362 exp (0.0540 C) 72"“ (21) b“ 32 The Equations 19 to 21 are represented in the Figures 7 to 9, respectively. For each case, the slope which represents the average apparent viscosity is higher as the concentration increases, which again agrees with theory, since it is supposed that at a higher concentration the resistance to flow is greater. Shear stress, Pa 1400 33 3‘; 1200 —nt— // 5% 1000 :53; 2?; 800 / + 35% 600 / m I so 100 150 200 250 She-note, 113 Figure7.lnfluericeotcoricermafiononshearsuessat25099raesCelsius. Shear stress, Pa 34 // / / ’K'J/ / ‘-—:a=——.: so 100 150 200 Stuart-Its, 11s mamammmmmwmw lilil 15% it?” I! Shear stress, Pa 35 Shear rate. 1Is Figure 9. Influence of concentration on shear stress at 55 degrees Celsius. 36 4.3. Effect of Temperature and Concentration. A non-linear model was obtained using SAS (1988) (Statistical Analysis System), by means of the non-linear procedure, NLIN. This procedure was used to get a predictive model which had all the main variables included. To fit a non-linear model a program was written, and the Marquardt method was used, where the variables, range and derivatives of parameters to be estimated must be specified. One of the variables was allowed to be a floating parameter, 0t. This parameter would then be compared with the experimental average flow behavior index (,7) to check out the accuracy of this estimation as a way of validating the obtained model. The result of this modeling procedure using 512 data points (Appendix 1) including all the conditions of temperature, concentration and shear rate was: In a, = -l7.2338 + 391$??— + 0.0550 C + 0.8896 In 70 (22) obtaining a goodness of fit R2 = 0.9588. From this equation the final prediction equation was found to be: 0. = 3.354 exp [50784359 + 0.0550 C J 73“" (23) Hence, it is possible to obtain a predictive equation for the average apparent viscosity: 5078.4359 m = 3.3E-08 exp [T p m + 0.0550 C ] y,‘°°“°‘ (24) 37 4.4. Summary of Effects. A summary of the parameters observed for each effect is presented in Table 4. It is demonstrated that with calcium carbonate-corn syrup mixtures, the higher the concentration, the lower the flow index behavior and the higher the consistency coefficient for the range of temperatures and concentrations under study. The values of the consistency coefficient from Tables 1, 2 and 3 are represented in Figure 10. Here it is demonstrated in a three-dimensional plot that there is a very well known trend for the behavior of the consistency coefficient as concentration and temperature vary. This trend is fairly reasonable, it is expected that as concentration increases the value of the consistency coefficient should go up, and also as temperature increases the value of the consistency coefficient should go down. The values of the flow behavior index from the Tables 1, 2 and 3 are represented in Figure 11. The flow behavior index also exhibits a trend, the higher the temperature the lower the flow behavior index, and the higher the concentration the lower the flow behavior index. Both trends are present for most of the values of the independent variables. 0 Pa . s a. 76 2. 54 4. 92 7. .79 9.68 K. \\ \\ \ \\\:‘\\\\\\\ \ ‘ . i“‘“‘=‘\i‘ii\‘“““ 0 . o“ \\ 85:. \ \\\\\\\\:\§\ e \ 38 ‘ \\ \ \\\‘t\ ‘ \ \ s \ \ \ ~:‘.‘~‘.‘ “.~ \ \“ . \\\ 5.9:‘§i§\i\\\\\\‘\\‘$“ «as '9‘ 9. Q53 5‘? Go Figure 10. Effect of temperature and concentration on K. 0’ {men s (on /953 I n 0.56 6.64 8. 0’) 7.? 9.82 9.90 0.99 i *i 3 d. :1 .1 39 Figure 11. Effect of temperature and concentration on n. 40 Table 4. Summary of constants obtained from the three main effects under study. T C K Err/R B I? or (1 (°C) (weight %) (Pa 8) (K) (1/weight %) (dimensionless) 25-55 0 3.0E-9 5751.7 - ,7 = 0,9101 25-55 5 4015-7 4317.4 - ,7 = 0,9101 25-55 15 7.0E-12 7894.3 - ,7 = 0,9101 25-55 25 1.0E-11 7981.6 - ,7 = 0,9101 25-55 35 9.0E-8 5544.3 - ,7 -.- 0,9101 25 0-35 0.765 - 0.0709 ,7 = 0,9101 40 0-35 0.1736 - 0.0874 :7 = 0.9101 55 035 0.1362 - 0.0540 ,7 -_- 0,9101 25-55 0-35 3.3E-8 5078.4 0.0550 (1 = 0,8896 41 Figure 12 is a representation of the predictive equation for the average apparent viscosity found for a shear rate value of 59.905 Us, for different values of concentration and temperature. In this figure a trend is obvious. This is in agreement with the principle that the higher the concentration, the higher the viscosity at constant temperature, and the higher the temperature, the lower the average apparent viscosity at a constant concentration. 4.5. Use of Calcium Carbonate-Corn Syrup Mixture. The goal of this work was to study calcium carbonate-corn syrup mixtures to determine if they could be used as shear-thinning standards in the food industry. This standard material did not present clear shear-thinning behavior. In others words, with the equipment used, it is not possible to find shear-thinning behavior which was statistically significant. Hence, this calcium carbonate-corn syrup mixture is not a suitable shear- thinning standard for the food industry. . ”fl—7'"! .n—— — 1L 100.5 Figure 12. Effect of temperature and concentration on apparent viscosity at 59.905 s'l 42 . 8 x 8 g V a. 8 8 w 0) N a 811‘, .._ _. 3 ,3 \ \\\\§§§\-_..::;‘.‘. “:::“\ . .. 6, 8‘ v: S ' \ ‘ 0 Q \ \\z} \\\-\\\ “\\\:g ‘0 “\“i\ \“‘ k I" ‘.\:\\\“\‘:\\ s K A ‘ . Q 0' as: a (A 9"” o rm" a! E CHAPTER V CONCLUSIONS In Figures 2 to 6, which are the graphic representations of the Equations 14 to 18, it is demonstrated that the temperature effect at each concentration is fairly well represented with a power law model showing a general trend that the lower the temperature the higher the viscosity. The Equations 19 to 21 are represented in the Figures 7 to 9 respectively, and here it is observed that the higher the concentrations yield higher viscosities. From the combined effect of temperature and concentration on shear stress (Figure 12), it is possible to say that the average apparent viscosity decreases as the temperature increases at a constant concentration. On the other hand, at a constant temperature, the average apparent viscosity decreases as the concentration goes down. The calcium carbonate-corn syrup mixture does not exhibit shear-thinning trends with changes in the calcium-carbonate concentration. Also, these mixtures do not show thixotropic behavior, but do exhibit a problematic settling phenomenon. 43 CHAPTER VI FUTURE RESEARCH A future interesting study would be to determine the influence that the particle size can have on the change of properties, in a system with Newtonian or non-Newtonian fluids, looking for any important dependency on the type of solid as well. For example, some kinds of polymers that are not soluble in the fluid could be investigated. 'Ilr“"“'”“ K1 XIV. BIBLIOGRAPHY. Barnes, H.A., Hutton, J. F. and Walters, K. 1989. An Introduction to Rheology. Elsevier Science Publishing, Co., New York. Boume, M. C. 1982. Food Texture Jand Viscosity: Concept and Measurement. Academic Press, New York. Burgers, J .M. 1938. "The Second Report on Viscosity and Elasticity", p 113, Nordenman, NY. Castell-Perez, M. E., and Steffe, J. F. 1990. Evaluating shear rates for power law fluids in mixer viscometry. J. of Texture Studies 21:439-453. Castell-Perez, M. E., and Steffe, J. F. 1992. Using mixing to evaluate rheological properties. Ch. 10. In Viscoela§tic Properties of Foods. Rao, MA. and Steffe, J.F. (ed). Elsevier Applied Sciences, New York. Castell-Perez, M. E., Steffe, J. F. and Moreira, R. G. 1991. Simple determination of power law flow curves using a paddle type mixer viscometer. J. of Texture Studies 22:303-316. Castro, E. S., Miranda, M.L., Rojo, O.A. 1990. Considerations for calibrating a coaxial cylinder viscometer through suspending weights method. Alimentos 15 (3):19-24. Cristescu, N. 1989. Rock Rheology. Kluwer Academic Pub., Boston. Dealy, J. M. and K. F. Wissbum, 1990. Melt Rheology arnd its Role in Pla__stics Processing. Van Nostrand Reinhold, New York. Doebelin, E. 1983. Measurement Systems, Application & Design, third edition. Mc Graw-Hill Book Company. Doublier, J .L. and Lefevre, J. 1989. Food Properties and Computer Aided Engineering of Food Processing System; Edited by Singh, RP. and Medina, A.G. Kluwer Academic Publishers. Escher, T. 1983. Relevance of rheological data in food processing. Ch. 8. In Physical Properties of Foods. Jowitt R. (Ed.), p. 104. Applied Science Publishers, England. Friedrickson, AG, 1964. Principles and Applications of Rheology. Prentice Hall, Inc. Englewood Cliffs, NJ. Green, H. 1949. Industrigl Rheology and Rheological Structures. John Wiley & Sons, Inc. New York. Haghighi, K., A.K. Srivastava and J .F. Steffe. 1987. The rheological approach to soil modeling. Trans. ASAE 30:1661-1672. 45 46 Hull, M. and Steffe, J .F. 1992. Practical fluids for food rheology and process engineering studies. J. of Process Engineering. 15:199-212. Ibarz, A. 1993. Rheology of salted egg yolk. J. of Texture Studies. 24:63-71. Mewis, J. 1980. Proc. of the International Congress on Rheology, 8th, 1:149-168. Kama], M. R. and Mutel, A. 1985. Rheological properties of suspensions in Newtonian and non-Newtonian Fluids. J. of Polymer Engineering. Vol. 5(4):293-386. Osorio, FA. 1985. Back extrusion of power law, Bingham plastic and Herschel-Bulldey fluids. MS. Thesis, East Lansing, Michigan State University, USA. Peleg, M. and Barley, E.B. (eds). 1983. Physical Prgierties of Food. AVI Publishing, CO., Westport, CT. Rao, M.A. and Vitali, A.A. 1984. Flow properties of low-pulp concentrated orange juice: Effect of temperature and concentration. J. of Food Science. 49:882-888. SAS/STAT User’s Guide 1988. Release 6.03. SAS Institute Inc., Cary, NC, USA. Sherman, F. 1990. Viscous Flow. Mc Graw-Hill, Inc. Skelland, A.A.P., (1967). Non-Newtonian Flow and Hefiat Transfer. John Wiley and Sons., Inc., New York. Steffe, J. F. 1992. Rheological Methods in Food Process Engineering. Freeman Press. East Lansing, MI 48823. Tanner, RI. 1985. Engineering Rheology. Clarendon Press. Oxford. Vyalov, S. S. 1986. Rheological Fundamentals of Soil Mechgnics. Elsevier Science Publishers, New York. VII. APPENDIX 1. PREDICTION OF AVERAGE APPARENT VISCOSITY at 59.905 lls. Predicted average apparent viscosity using the predictive equation, Equation (24) Apparent average average shear Temperature Concentration K n viscosity stress °C % CaCO3 Pa sn dimensionless Pa 3 Pa 25 0 0.9224 0.9560 0.5244 0.0216 25 0 1.2729 1.0032 0.5244 0.0216 25 0 0.6547 1.0568 0.5244 0.0216 25 5 1.1114 0.9581 0.6904 0.0285 25 5 1.1015 0.9662 0.6904 0.0285 25 5 0.6461 1.1338 0.6904 0.0285 25 15 2.3145 0.8045 1.1967 0.0493 25 15 2.3482 0.7653 1.1967 0.0493 25 15 2.0665 0.8237 1.1967 0.0493 25 25 3.7893 0.9520 2.0742 0.0854 25 25 4.2800 0.9085 2.0742 0.0854 25 25 4.2554 0.9067 2.0742 0.0854 25 25 4.3843 0.8848 2.0742 0.0854 25 25 4.1873 0.8673 2.0742 0.0854 25 35 4.2907 0.8479 2.0742 0.0854 25 35 9.3804 0.8152 3.5951 0.1482 25 35 11.2379 0.8283 3.5951 0.1482 25 35 10.7634 0.9022 3.5951 0.1482 40 0 0.3071 0.9394 0.2319 0.0096 40 0 0.1311 1.1640 0.2319 0.0096 40 0 0.2798 0.9737 0.2319 0.0096 40 5 0.2745 1.0205 0.3053 0.0125 40 5 0.4502 0.9911 0.3053 0.0125 40 5 0.1453 1.1581 0.3053 0.0125 40 15 0.4123 1.0136 0.5292 0.0218 40 15 0.3532 1.0567 0.5292 0.0218 40 15 0.8491 0.8416 0.5292 0.0218 40 25 2.2041 0.7528 0.9173 0.0378 40 25 0.7961 0.9147 0.9173 0.0378 40 25 1.254 0.8166 0.9173 0.0378 40 25 1.0246 0.8516 0.9173 0.0378 40 35 5.9571 0.5421 1.5899 0.0655 40 35 4.6503 0.5670 1.5899 0.0655 40 35 4.9264 0.5616 1.5899 0.0655 55 0 0.1295 0.9672 0.1105 0.0046 55 0 0.1896 0.8910 0.1105 0.0046 55 0 0.1653 0.9092 0.1105 0.0046 55 5 0.5706 0.6665 0.1455 0.0060 55 5 0.1244 1.0083 0.1455 0.0060 55 5 0.2039 0.9296 0.1455 0.0060 55 5 0.223 0.8681 0.1455 0.0060 55 15 0.2065 0.9798 0.2522 0.0104 55 15 0.2954 0.8935 0.2522 0.0104 55 15 0.1322 1.1106 0.2522 0.0104 55 25 0.4165 0.9624 0.4370 0.0180 55 25 0.1448 1.1952 0.4370 0.0180 55 25 0.3193 1.0069 0.4370 0.0180 55 25 0.5623 0.8711 0.4370 0.0180 55 25 0.5557 0.8745 0.4370 0.0180 55 25 0.2951 1.0345 0.4370 0.0180 55 25 0.4692 0.9092 0.4370 0.0180 55 35 2.0496 0.7114 0.7576 0.0312 55 35 1.8315 0.7422 0.7576 0.0312 55 35 1.8097 0.7370 0.7576 0.0312 47 VIII. APPENDIX 2. MEASUREMENTS PERFORMED AT 25°C. This appendix contains all the raw data and a summary of the basic calculations done based on the average of the measurements. keeping in mind that the maximum torque value was equal to 1.428716915 N cm. 1.- Mixer viscometry, 0%, 0 9 corn syrup rpm readings Average 1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 2 0.7 0.7 0.7 0.7 0.7 0.6 0.7 0.7 0.6875 4 1.3 1.2 1.3 1.2 1.3 1.2 1.2 1.3 1.25 8 2.5 2.4 2.5 2.4 2.6 2.4 2.5 2.4 2.4625 16 4.9 4.8 4.7 4.6 S 4.8 4.8 4.7 4.7875 32 9.6 9.6 9.5 9.6 9.6 9.5 9.6 9.5 9.5625 64 19.1 19 19 19.1 19 19.1 19 19 19.0375 128 37.9 37.9 37.9 37.9 37 9 37.8 37.8 37.8 37.8625 256 74.9 74.9 75 74.9 75 74.9 74.9 74 9 74.925 128 32.9 32.9 32.9 32.9 32.9 32.8 32.9 32.9 32.8875 64 18 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.0875 32 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 16 5 5 5 4.9 5 4.9 S 4.9 4.9625 8 2.6 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.625 4 1.4 1.5 1.4 1.4 1.4 1.4 1.4 1.5 1.425 2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5125 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.00571 68-05 -0.9801 -4.243 2 0.2094 0.00982 18-04 -0.679 -4.008 4 0.4188 0.01786 0.0002 -0.378 —3.748 8 0.8376 0.03518 0.0004 -0.077 -3.454 16 1.6752 0.0684 0.0007 0.22407 -3.165 32 3.3504 0.13662 0.0014 0.5251 -2.864 64 6.7008 0.27199 0.0027 0.82613 -2.565 128 13.402 0.54095 0.0054 1.12716 -2.267 256 26.803 1.07047 0.0107 1.42819 -1.97 128 13.402 0.46987 0.0047 1.12716 -2.328 64 6.7008 0.25842 0.0026 0.82613 -2.588 32 3.3504 0.13573 0.0014 0.5251 -2.867 16 1.6752 0.0709 0.0007 0.22407 -3.149 8 0.8376 0.0375 0.0004 -0.077 -3.426 4 0.4188 0.02036 0.0002 -0.378 —3.691 2 0.2094 0.01143 0.0001 -0.679 -3.942 1 0.1047 0.00732 78—05 -0.9801 -4.135 Determination of average shear rate shear rate = 4.47 angular velocity b = 0.02692 m viscosity = K shear rate “ (n-l) d = 0.04143 m K: consistency coefficient k'=4.47 average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ Ln KG‘in—l) X Gamma 1/3 1/3 angular average average average averag average average velocit viscosi shear shear Lnshear Lnshear viscos shear shear rpm rad/s Pa.s rate stress stress rate Pa.s stress stress 1 0.1047 1.1675 0.46801 0.7874 -0.2391 -0.759 1.682 0.50297 -0.6872 2 0.2094 1.1063 0.93602 1.3533 0.30255 -0.066 1.446 0.86448 —0.1456 4 0.4188 1.0483 1.87204 2.4605 0.90038 0.627 1.314 1.57178 0.45221 8 0.8376 0.9933 3.74407 4.8473 1.57842 1.3202 1.295 3.0964 1.13024 16 1.6752 0.9412 7.48814 9.4239 2.24325 2.0133 1.259 6.01991 1.79507 32 3.3504 0.8919 14.9763 18.823 2.93509 2.7065 1.257 12.0241 2.48691 64 6.7008 0.8451 29.9526 37.474 3.62365 3.3996 1.251 23.9382 3.17547 128 13.402 0.8008 59.9052 74.53 4.3112 4.0928 1.244 47.6091 3.86302 256 26.803 0.7588 119.81 147.49 4.99373 4.7859 1.231 94.2123 4.54555 1/3 term included Regression Output: K Constant -0.0786 0.9244 Std Err of Y Est 0.06282 R Square 0.99895 Observations 9 Degrees of Freedom 7 x Coefficien 0.956 Std Err of C 0.0117 Model : Ln 3. stress -0.079 + 0.956 s.rate R‘2 = 0.99895 s.stress = 0.9244. s.rate “ 0.956 48 Mixer Viscometry, 256 128 64 32 H Haas-ac» Determination of shear rate 0 U1QIOF‘mtd #ChUJM\Dh)W rad/s omega .1047 .2094 .4188 .8376 .6752 .3504 .7008 .402 .803 .402 .7008 .3504 .6752 .8376 .4188 .2094 .1047 GLDF‘OCDCDO rauchna\¢1001w U~JRJOCD£5 (N cm) M .0042 .0080 .0166 .0334 .0678 .1369 .2727 .5416 .0706 .4709 .2564 .1335 .0687 .035 .0178 .0098 .005 OOOO(DC>OOO<3C>OC KDHLDNJbFJO\U UJQLHJDGDQ 0%, 0 9 corn syrup 0 dadthMLd 0 0 1 2 4 9 19 37 75 33 18 9 4 2 1 0 0 U~JUJ#CDUJ Log Om -0. —0.679 .378 .077 .22407 .5251 .82613 .12716 .42819 .12716 .82613 .5251 .22407 .077 .378 .679 .9801 II I l I OCDCDOCDCDHIHP‘CDOCDCDO -0 average shear rate 4.47 angular velocity K shear rate A(n—l) choef oof consist 2 M / pi b d“2 viscosity = k'=4.47 average shear stress (b/d + 1/3) angular velocit rpm rad/s 1 0.1047 2 0.2094 4 0.4188 8 0.8376 16 1.6752 32 3.3504 64 6.7008 128 13.402 256 26.803 1 Regression Statistics R Square Observations K =1.2729 Interce x1 0.9831 d“2b average average shear shear rate stress 0.468 0.59053 0.936 1.10725 1.872 2.28831 3.7441 4.60122 7.4881 9.35007 14.976 18.8724 29.953 37.5725 59.905 74.6283 19.81 147.51 0.9999 9 Coeffici Standar 0.24127 0.99669 0.0038 261.245 0.0096 KG“(n-1) average viscosi Pa.s .9318 .9172 .9028 .8886 .8747 .861 .8475 .8342 .8211 CJOCDCDOCDCDOCD Log —4. -4. —3 —3 -3. -2. -2 -2. -1. —2. -2. -2. -3. —3 -3 —4. —4. Ln st -0. 0. F*W~JUJH O‘DP‘R’b\O~J&JfihQ\OHDDJOFIOCD w~aatwcna-w\o~au>w~aarhr4oxw 49 M 368 095 .78 .476 168 863 .564 266 97 327 591 874 163 .456 .748 008 301 shear ress 5267 10188 0.82781 fibfiLJRJND‘ .52632 .23538 .9377 .62627 .31252 .99389 Y #~Jh)h\OhHD m th\DUHVO\w Lnshear rate -0 fiuthNIOP‘O 7E-O9 58-17 .759 -0. .627 .3202 .0133 .7065 .3996 .0928 .7859 066 0.218 0.988 HIJ~JUJH CDOrJh)h\DGDNd>~JW\OU1NFJC>O a~qtuuwaah. U3GHOF‘O‘ ithU‘U Sigma/ Gamma 1/3 average average viscos shear Pa.s stress 1.262 0.37723 1.183 0.7073 1.222 1.46175 1.229 2.93922 1.249 5.97275 1.26 12.0555 1.254 24.001 1.246 47.672 1.231 94.228 x t Statis P-value Lower 95% Upper 95% 25.0269 0.26406 1.00571 Ln 1/3 average shear stress -0.9749 -0.3463 .37964 .07815 .78721 .48952 .1781 .86434 .54572 btthNbflF‘C 50 Mixer Viscometry, 0%, 0 9 corn syrup rpm readings Average 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 4 1.1 1.1 1 1.1 1.1 1.1 1 1 1.0625 8 2.3 2.3 2.2 2.3 2.3 2.2 2.2 2.2 2.25 16 4.6 4.7 4.6 4.7 4.8 4.8 4.6 4.7 4.6875 32 9.5 9.4 9.6 9.5 9.4 9.4 9.6 9.5 9.4875 64 19.1 19.1 19 19 19 19 19 19.1 19.0375 128 38 38 38 38 38 38.1 38 38.1 38.025 256 75.5 75.8 75.9 75.8 75.8 75.8 75.7 75.7 75.75 128 38.2 38.1 38.1 38.1 38.1 38.1 38.1 38.2 38.125 64 19.1 19 19.1 19.1 19.1 19 19.1 19 19.0625 32 9.5 9.5 9.6 9.4 9.5 9.4 9.5 9.5 9.4875 16 4.6 4.7 4.7 4.8 4.7 4.7 4.6 4.7 4.6875 8 2.3 2.3 2.2 2.3 2.3 2.3 2.3 2.3 2.2875 4 1.1 1 1 1.1 1.1 1.1 1 1.1 1.0625 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.00286 38-05 -0.9801 -4.544 2 0.2094 0.00714 78-05 -0.679 -4.146 4 0.4188 0.01518 0.0002 -0.378 -3.819 8 0.8376 0.03215 0.0003 -0.077 -3.493 16 1.6752 0.06697 0.0007 0.22407 -3.174 32 3.3504 0.13555 0.0014 0.5251 -2.868 64 6.7008 0.27199 0.0027 0.82613 —2.565 128 13.402 0.54327 0.0054 1.12716 -2.265 256 26.803 1.08225 0.0108 1.42819 -1.966 128 13.402 0.5447 0.0054 1.12716 -2.264 64 6.7008 0.27235 0.0027 0.82613 -2.565 32 3.3504 0.13555 0.0014 0.5251 -2.868 16 1.6752 0.06697 0.0007 0.22407 -3.174 8 0.8376 0.03268 0.0003 -0.077 ~3.486 4 0.4188 0.01518 0.0002 ~0.378 -3.819 2 0.2094 0.00714 7E~05 -0.679 -4.146 1 0.1047 0.00286 3E-05 -0.9801 -4.544 Determination of average shear rate average shear rate = 4.47 angular velocity viscosity = K shear rate ‘ (n-1) b = 0.02692 m k'=4.47 d = 0.04143 m K: consistency coefficient average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ KG‘(n-1) Gamma 1/3 angular average average average average average velocit shear viscosi shear Lnshear Lnshear viscosi shear rpm rad/s rate Pa.s stress stress rate Pa.s stress 1 0.1047 0.468 0.68023 0.3937 —0.9322 -0.759 0.841 0.25148 2 0.2094 0.936 0.71108 0.9842 —0.0159 -0.066 1.051 0.62871 4 0.4188 1.872 0.74334 2.0915 0.73786 0.627 1.117 1.33601 8 0.8376 3.7441 0.77706 4.429 1.48817 1.3202 1.183 2.8292 16 1.6752 7.4881 0.8123 9.227 2.22214 2.0133 1.232 5.89416 32 3.3504 14.976 0.84915 18.676 2.92721 2.7065 1.247 11.9298 64 6.7008 29.953 0.88767 37.474 3.62365 3.3996 1.251 3.9382 128 13.402 59.905 0.92793 74.85 4.31548 4.0928 1.249 47.8135 256 26.803 119.81 0.97002 149.11 5.00468 4.7859 1.245 95.2497 x Regression Statistics R Square Observations K =0.6547 Interce x1 0.99858 Coeffici Standar -0.4236 0.0406 1.05683 0.0151 -10.428 68-06 70.0891 2E-12 -O.52 1.021 t Statis P-value Lower 95% Upper 95% -0.3275 1.09248 Ln 1/3 average shear stress -1. -0. <fiwUNHHC 3804 4641 .28969 .03999 .77396 .47904 .17547 .86731 .5565 51 Mixer Viscometry, 5%, 4.99%. 60.11 g corn syrup, 3 g CaCO3 rpm readings Average 1 0.4 0.5 0.4 0.5 0.4 0.4 0.4 0.4 .425 2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 4 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6125 8 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.15 16 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.125 32 12.2 12.2 12.1 12.2 12.1 12.2 12.1 12.1 12.15 64 24 24.1 24.1 24 24.1 24 24 24.1 24.05 128 47.2 47.3 47.2 47.2 47.2 47 2 47.2 47.1 47.2 256 78 77.9 78 78.1 78.3 78.3 78.4 78.5 78.1875 128 43 42.9 43 42.9 42.9 42.9 42.9 42.8 42 9125 64 22.6 22.5 22.5 22.5 22.5 22.6 22.5 22.6 22.5375 32 11.8 11.9 11.8 11.8 11.8 11.9 11.9 11.8 11.8375 16 6.1 6.1 6 6.1 6 6 6 6.1 6.05 8 3.1 3.1 3 3.1 3.1 3.1 3 3.1 3.075 4 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.5 1.475 2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.00607 68-05 -0.9801 -4.217 2 0.2094 0.01143 0.0001 -0.679 -3.942 4 0.4188 0.02304 0.0002 -0.378 -3.638 8 0.8376 0.045 0.0005 -0.077 -3.347 16 1.6752 0.08751 0.0009 0.22407 -3.058 32 3.3504 0.17359 0.0017 0.5251 -2.76 64 6.7008 0.34361 0.0034 0.82613 -2.464 128 13.402 0.67435 0.0067 1.12716 -2.171 256 26.803 1.11708 0.0112 1.42819 -1.952 128 13.402 0.6131 0.0061 1.12716 -2.212 64 6.7008 0.322 0.0032 0.82613 -2.492 32 3.3504 0.16912 0.0017 0.5251 -2.772 16 1.6752 0.08644 0.0009 0.22407 -3.063 8 0.8376 0.04393 0.0004 —0.077 -3.357 4 0.4188 0.02107 0.0002 -0.378 —3.676 2 0.2094 0.01 0.0001 -0.679 -4 1 0.1047 0.00429 48-05 -0.9801 -4.368 Determination of average shear rate average shear rate = 4.47 k' b = 0.02692 m viscosity = K shear rate A(n 1) d = 0.04143 m K = consistency coefficient k'=4.47 average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ Ln KG“(n-1) Gamma 1/3 1/3 angular average average average average average average velocit viscisi shear shear Lnshear Lnshear viscosi shear shear rpm rad/s Pa.s rate stress stress rate Pa.s stress stress 1 0.1047 1.1281 0.46801 0.8366 0.1784 -0.7593 1.7875 0.534 ~0.6266 2 0.2094 1.1151 0.93602 1.5747 0.4541 -0.0661 1.6824 1.006 0.00592 4 0.4188 1.1023 1.87204 3.1741 1.15503 0.62703 1.6955 2.028 0.70685 8 0.8376 1.0896 3.74407 6.2006 1.82464 1.32017 1.6561 3.961 1.37647 16 1.6752 1.0771 7.48814 12.057 2.48962 2.01332 1.6101 7.702 2.04144 32 3.3504 1.0647 14.9763 23.917 3.17457 2.70647 1.59? 15.28 2.72639 64 6.7008 1.0524 29.9526 47.341 3.85737 3.39962 1.5805 30.24 3.4092 128 13.402 1.0403 59.9052 92.91 4.53163 4.09276 1.551 59.35 4.08346 256 26.803 1.0283 119.81 153.91 5.03635 4.78591 1.2846 98.31 4.58817 X Y Regression Statistics R Square 0.99932 Observations 9 Coeffici Standar t Statis P-value Lower 95% Upper 95% K =1.1114 Interce 0.10562 0.0255 4.13761 0.0033 0.045 0.16598 x1 0.9581 0.0095 101.105 18—13 0.936 0.98051 52 Mixer Viscometry, 5%, 5%, 60.84 g corn syrup, 3.04 g CaCO3 rpm readings Average 1 0 4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 2 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8125 4 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.625 8 3 3 3.1 3.2 3.1 3.1 3.1 3.2 3.2 3.1625 16 6.3 6.3 6.4 6.2 6.3 6.3 6.3 6.3 6.3 32 12.5 12.4 12.4 12.5 12.5 12.5 12.4 12.4 12.45 64 24.7 24.7 24.7 24.7 24.7 24.7 24.6 24.7 24.6875 128 47.2 47.3 47.2 47.2 47.3 47.3 47.3 47.3 47.2625 256 79.3 79.2 79.6 79.6 80.1 80.4 80.1 79 8 79.7625 128 42.9 42.9 42.8 42.8 42.9 42.9 42.8 42 9 42.8625 64 22.9 22.9 22.9 22.8 22.9 22.8 22.9 22.9 22.875 32 12.2 12.3 12.2 12.2 12.2 12.2 12.3 12.2 12.225 16 6.4 6.4 6.4 6.4 6.4 6.5 6.4 6.5 6.425 8 3.3 3.3 3.2 3.3 3.4 3.3 3.4 3.3 3.3125 4 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.8 1.75 2 0.9 0.9 1 1 1 0.9 0.9 1 0.95 1 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.6 0.55 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.00571 68-05 -0.9801 -4.243 2 0.2094 0.01161 0.0001 -0.679 -3.935 4 0.4188 0.02322 0.0002 -0.378 -3.634 8 0.8376 0.04518 0.0005 -0.077 -3.345 16 1.6752 0.09001 0.0009 0.22407 -3.046 32 3.3504 0.17788 0.0018 0.5251 -2.75 64 6.7008 0.35271 0.0035 0.82613 -2.453 128 13.402 0.67525 0.0068 1.12716 -2.171 256 26.803 1.13958 0.0114 1.42819 -1.943 128 13.402 0.61238 0.0061 1.12716 -2.213 64 6.7008 0.32682 0.0033 0.82613 -2.486 32 3.3504 0.17466 0.0017 0.5251 -2.758 16 1.6752 0.0918 0.0009 0.22407 -3.037 8 0.8376 0.04733 0.0005 -0.077 -3.325 4 0.4188 0.025 0.0003 -0.378 —3.602 2 0.2094 0.01357 0.0001 -0.679 -3.867 1 0.1047 0.00786 88-05 -0.9801 -4.105 Determination of average shear rate averageshear rate = 4.47 k' b = 0.02692 m viscosity = K shear rate“(n-1) d = 0.04143 m k'=4.47 = consistency coefficient average shear stress = 2 M / pi b d‘2 (b/d + 1/3) 0.9831 Sigma/ KG“(n-1) Gamma 1/3 angular average average average average average velocit viscosi shear shear Lnshear Lnshear viscos shear rpm rad/s Pa.s rate stress stress rate Pa.s stress 1 0.1047 1.3635 0.46801 0.7874 -0.2391 -0.759 1.682 0.50297 2 0.2094 1.3086 0.93602 1.5994 0.4696 -0.066 1.709 1.02166 4 0.4188 1.2559 1.87204 3.1987 1.16275 0.627 1.709 2.04331 8 0.8376 1.2053 3.74407 6.2252 1.8286 1.3202 1.663 3.9766 16 1.6752 1.1568 7.48814 12.401 2.51779 2.0133 1.656 7.92176 32 3.3504 1.1102 14.9763 24.507 3.19896 2.7065 1.636 15.6549 64 6.7008 1.0655 29.9526 48.596 3.88354 3.3996 1.622 31.0426 128 13.402 1.0226 59.9052 93.033 4.53296 4.0928 1.553 59.4289 256 26.803 0.9814 119.81 157.01 5.05629 4.7859 1.31 100.295 x Regression Statistics R Square 0.99919 Observations 9 Coeffici Standar t Statis P-value Lower 95% Upper 95% K =1.1015 Interce 0.0967 0.0281 3.44444 0.0088 0.03 0.16309 x1 0.96621 0.0104 92.7094 ZE—l3 0.942 0.99085 Ln 1/3 average shear stress -0. 0. Kbawwwpo 6872 02142 .71457 .38043 .06961 .75078 .43536 .08478 .60812 Mixer Viscometry. rpm 1 2 4 8 128 Determination of average shear rate viscosity k'=4.47 k: average shear stress (b/d + 1/3) angular velocit rpm rad/s 1 0.1047 2 0.2094 4 0.4188 8 0.8376 16 1.6752 32 3.3504 64 6.7008 128 13.402 256 26.803 04th memdfiH‘OQNUIN rad/s omega .1047 .2094 .4188 .8376 .6752 .3504 .7008 .402 .803 .402 .7008 .3504 .6752 .8376 .4188 .2094 .1047 R>H mumwpoooo 13 (3000me 5%, Mdfiwm UQOWH \DUU‘IN (N cm) .00196 .0075 .01804 .04018 .08483 .17234 .34807 .69561 .3696 .69346 .34718 .17305 .08483 .04161 .02018 .00893 .00375 OOCDCDCDCDC>CDl-‘C>OCDCDC>C>C>O3 Regression Statistics R Square Observations K =0.6461 Interce x1 me‘ WHNMHQ§ \DQWU‘H (N m) M 2E-05 88-05 .0002 .0004 .0008 .0017 .0035 .007 .0137 .0069 .0035 .0017 .0008 .0004 .0002 9E-05 48-05 OOOOOOOOOOOOO consistency coefficient wane-tn NUU'U‘QU \DQWO‘H NO‘UW‘OHDO‘U‘Q‘H \INUIH Log Om -0 —0. -0. —0 OOOHHHOOO -0 —O. -0. -0. .9801 679 378 .077 .22407 .5251 .82613 .12716 .42819 .12716 .82613 .5251 .22407 .077 378 679 9801 average shear rate 4.47 angular velocity K shear rate ‘(n=1) 2 M / pi b d“2 0.9831 KG“(n-1) average average viscosi shear Pa.s rate 0.744 0.46801 0.7981 0.93602 0.8562 1.87204 0.9186 3.74407 0.9855 7.48814 1.0572 14.9763 1.1342 29.9526 1.2168 59.9052 1.3054 119.81 0.98993 9 Coeffici Standar -0.4368 1.1338 1 average shears stress 0 1 2 5. 11. 23 47 95 88 0.1164 0.0432 .2707 .0334 .4852 5362 688 .744 .956 .838 .7 4.5 0.1 0.6 1.3 2.9 5.9 12.1 1 24.4 2 48.7 4 95.5 9 48.5 4 24.3 2 12.1 1 5.9 3 1.4 0.6 0.2 Log M -4.707 -4.125 -3.744 -3.396 -3.071 -2.764 —2.458 -2.158 -1.863 -2.159 -2.459 -2.762 -3.071 -3.381 -3.695 -4.049 -4.426 b d Lnshear stress -1.3069 0.03288 0.91033 1.71131 2.45853 3.16734 3.87028 4.56266 5.24015 5%, 90.23 9 corn syrup, 53 1 Ln 1/3 average shear stress -1.7551 -0.4153 0.46216 .26314 .01035 .71916 .11449 .79198 g CaCO3 Sample in storing Average 2 0.1 0.1375 .5 0.5 0.525 3 1.2 1.2625 8 2.9 2.8125 9 6 5.9375 12.1 12.0625 .3 24.4 24.3625 .7 48.7 48.6875 .5 95.5 95.8625 .6 48.5 48.5375 .3 24.3 24.3 .2 12.1 12.1125 .9 6 5.9375 .9 2.9 2.9125 .5 1.4 1.4125 .6 0.7 0.625 2 0.3 0.2625 = 0.02692 m = 0.04143 m Sigma/ Gamma 1/3 average average Lnshear viscosi shear rate Pa.s stress -0.759 0.578 0.1729 -0.066 1.104 0.66015 0.627 1.328 1.5875 1.3202 1.479 3.5365 2.0133 1.561 7.46594 2.7065 1.585 15.1677 3.3996 1.601 30.6339 4.0928 1.6 61.2207 4.7859 1.575 120.54 x 0.0056 5E-09 -0.71 1.032 1 -O t Statis P-value Lower 95% Upper 95% —3.7527 26.2387 .1616 .23598 1 2 2 3.42211 4 4 Y 7. 54 Mixer Viscometry, 15%, 60.72 9 corn syrup, 9.11 g CaCO3 rpm readings Average 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 2 1.6 1.6 1.5 1.5 1.6 1.5 1.6 1.6 1.5625 4 2.8 2.9 2.9 2.8 2.8 2.8 2.8 2.8 2.825 8 5.3 5.3 5.2 5.3 5.3 5.2 5.3 5.2 5.2625 16 10.2 10.2 10.3 10.2 10.2 10.1 10.2 10.2 10.2 32 20.3 20.2 20.1 20.1 20.1 20.1 20.2 20.1 20.15 64 39.6 39.5 39.7 39 5 39.5 39.6 39.9 39.5 39.6 128 77 77 77 77.3 77.1 77 77 77 77.05 64 39.6 39.7 39.6 39.6 39.5 39.5 39.8 39.8 39.6375 32 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 16 10.3 10.3 10.3 10.5 10.4 10.3 10.3 10.3 10.3375 8 5.4 5.4 5.4 5.3 5.3 5.4 5.4 5.4 5.375 4 2.9 2.9 3 2.9 3 3 2.9 2.9 2.9375 2 1 7 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.625 1 1 1 1 1 1 1 1 1 1 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.01286 0.0001 -0.9801 -3.891 2 0.2094 0.02232 0.0002 —0.679 -3.651 4 0.4188 0.04036 0.0004 -0.378 -3.394 8 0.8376 0.07519 0.0008 -0.077 —3.124 16 1.6752 0.14573 0.0015 0.22407 -2.836 32 3.3504 0.28789 0.0029 0.5251 -2.541 64 6.7008 0.56577 0.0057 0.82613 -2.247 128 13.402 1.10083 0.011 1.12716 -1.958 256 26.803 0.56631 0.0057 1.42819 -2.247 128 13.402 0.2886 0.0029 1.12716 -2.54 64 6.7008 0.14769 0.0015 0.82613 -2.831 32 3.3504 0.07679 0.0008 0.5251 -3.115 16 1.6752 0.04197 0.0004 0.22407 ~3.377 8 0.8376 0.02322 0.0002 -0.077 ~3.634 4 0.4188 0.01429 0.0001 —0.378 -3.845 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m viscosity = K shear rate“(n—1) d = 0.04143 m k'=4.47 K: consistency coefficient average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ KG“(n-1) Gamma 1/3 angular average average average average average veloc1t viscosi shear shear Lnshear Lnshear viscosi shear rpm rad/s Pa.s rate stress stress rate Pa.s stress 1 0.1047 2.0248 0.46801 1.7716 0.57188 -0.759 3.785 1.13168 2 0.2094 1.7434 0.93602 3.0757 1.12353 -0.066 3.286 1.96472 4 0.4188 1.5011 1.87204 5.5608 1.71575 0.627 2.97 3.55222 8 0.8376 1.2925 3.74407 10.359 2.33785 1.3202 2.767 6.61718 16 1.6752 1.1128 7.48814 20.078 2.99963 2.0133 2.681 12.8257 32 3.3504 0.9581 14.9763 39.664 3.68044 2.7065 2.648 25.337 64 6.7008 0.825 29.9526 77.95 4.35607 3.3996 2.602 49.7939 128 13.402 0.7103 59.9052 151.67 5.02169 4.0928 2.532 96.8843 256 26.803 0.6116 119.81 78.024 4.35702 4.7859 0.651 49.8411 x Regression Statistics R Square 0.94913 Observations 9 Coeffici Standar t Statis P—value Lower 95% Upper 95% K =2.314S Interce 0.8392 0.1896 4.4253 0.0022 0.391 1.28762 x1 0.8045 0.0704 11.428 38-06 0.638 0.97097 Ln 1/3 average shear stress .1237 .67535 .26757 .88967 .55145 .2322? .90789 .57352 .90884 K UfiUWNl-‘HOO 55 Ln 1/3 average shear stress .22906 .69907 .23153 .82339 .45233 .10826 .77796 .45114 .77796 KibssunuhiHrac>o Mixer Viscometry, 15%, 15%, 61.4 9 corn syrup THIS IS THE FIRST WITH THE SAMPLE 9.19 g CaCO3 rpm readings Average 1 1 1 1 1 1 1 1 1 1 2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 2.7 2.7 2.8 2.7 2.7 2.8 2.7 2.7 2.725 8 4.9 4.9 4.9 5 4.9 5 4.9 4.9 4.925 16 9.3 9.2 9.2 9.2 9.3 9.2 9.3 9.2 9.2375 32 17.9 17.8 17.8 17.8 17.7 17.8 17.8 17.8 17.8 64 34.8 34.7 34.7 34.8 34.8 34.8 34.8 34.8 34.775 128 68.2 68.2 68.3 68.1 68.2 68.1 68.2 68.1 68.175 64 34.8 34.8 34.7 34.8 34.7 34.8 34.8 34.8 34.775 32 17.7 17.6 17.7 17.6 17.7 17.6 17.7 17.7 17.6625 16 9 8.9 8.9 8.9 9 8.9 9 8.9 8.9375 8 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1 0.7 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7375 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.01429 0.0001 -0.9801 -3.845 2 0.2094 0.02286 0.0002 -0.679 -3.641 4 0.4188 0.03893 0.0004 -0.378 -3.41 8 0.8376 0.07036 0.0007 ~0.077 -3.153 16 1.6752 0.13198 0.0013 0.22407 -2.879 32 3.3504 0.25431 0.0025 0.5251 -2.595 64 6.7008 0.49684 0.005 0.82613 -2.304 128 13.402 0.97403 0.0097 1.12716 -2.011 64 6.7008 0.49684 0.005 0.82613 -2.304 32 3.3504 0.25235 0.0025 0.5251 -2.598 16 1.6752 0.12769 0.0013 0.22407 -2.894 8 0.8376 0.06572 0.0007 -0.077 -3.182 4 0.4188 0.03429 0.0003 -0.378 -3.465 2 0.2094 0.01857 0.0002 -0.679 -3.731 1 0.1047 0.01054 0.0001 -0.9801 -3.977 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m viscosity = K shear rate“(n-1) d = 0.04143 m k'=4.47 K = consistency coefficient average shear stress = 2 M / pi b d‘2 (b/d + 1/3) 0.9831 Sigma/ KG“(n-1) Gamma 1/3 angular average average average average average velocit viscosi shear shear Lnshear Lnshear viscosi shear rpm rad/s Pa.s rate stress stress rate Pa.s stress 1 0.1047 0.3775 0.46801 1.9684 0.67724 -0.759 4.206 1.25742 2 0.2094 0.3534 0.93602 3.1495 1.14724 -0.066 3.365 2.01187 4 0.4188 0.3309 1.87204 5.364 1.67971 0.627 2.865 3.42647 8 0.8376 0.3098 3.74407 9.6945 2.27156 1.3202 2.589 6.1928 16 1.6752 0.29 7.48814 18.183 2.90051 2.0133 2.428 11.6154 32 3.3504 0.2715 14.9763 35.038 3.55644 2.7065 2.34 22.3821 64 6.7008 0.2542 29.9526 68.452 4.22614 3.3996 2.285 43.7268 128 13.402 0.238 59.9052 134.2 4.89932 4.0928 2.24 85.7247 256 26.803 0.2228 119.81 68.452 4.22614 4.7859 0.571 43.7268 x Regression Statistics R Square 0.94793 Observations 9 Coeffici Standar t Statis P—value Lower 95% Upper 95% K =2.3482 Interce 0.85365 0.1826 4.67438 0.0016 0.422 1.28549 x1 0.76534 0.0678 11.2891 38—06 0.605 0.92565 9. Mixer Viscometry, rpm 1 0.8 2 1.4 4 2.5 8 4.8 16 9.4 32 18.5 64 36.8 128 76 64 39.2 32 20 16 10.2 8 5.3 4 2.9 2 1.6 1 0.9 rad/s rpm omega 1 0.1047 2 0.2094 4 0.4188 8 0.8376 16 1.6752 32 3.3504 64 6.7008 128 13.402 64 6.7008 32 3.3504 16 1.6752 8 0.8376 4 0.4188 2 0.2094 1 0.1047 15%. readings 0.8 0 1.4 1 2.6 2 4.9 4. 9.3 9. 18.7 18 36.8 37 76 76 39.2 39 20 20 10.3 10 5.3 5 2.9 2 1.6 1 1 1 (N cm) M 0.01143 0.02 0.03625 0.06911 0.13448 0.26592 0.52755 1.08654 0.56006 0.28574 0.14626 0.07572 0.04072 0.02286 0.01375 O’t‘OUN NH O‘DOU‘I‘Q 15.1%. \DbNi—‘O NUQUH OVOO‘O‘Q 01me N «amateur-ha: H HHNU‘C (N m) M .0001 .0002 .0004 .0007 .0013 .0027 .0053 .0109 .0056 .0029 .0015 .0008 .0004 .0002 .0001 OOOOOOOOOOOOOOO 56 61.17 g corn syrup. HNUJQWH OHMU‘OO‘DO‘QQH’DNHO \DO‘CDUN NHWGMQG‘Q Log Om -0 -0. .378 -0. .22407 .5251 .82613 .12716 .82613 .5251 .22407 .077 -0 OOOHOOO -0 -0. -0. -0. .9801 679 077 378 679 9801 Determination of average shear rate average shear rate K viscosity k'=4.47 K average shear (b/d + 1/3) angular velocit rpm rad/s 1 0.1047 2 0.2094 4 0.4188 8 0.8376 16 1.6752 32 3.3504 64 6.7008 128 13.402 256 26.803 Regression St R Square Observations K =2.0665 Interce x1 4. 47 shear rate“(n-1) consistency coeffiicient stress = 2 M / pi b d“2 0.9831 KG‘(n-1) average average average viscosi shear shear Pa.s rate stress 2.33525 0.468 1.57475 2.21219 0.936 2.75581 2.09562 1.872 4.99491 1.98519 3.7441 9.52231 1.88058 7.4881 18.5279 1.78148 14.976 36.6375 1.68761 29.953 72.6845 1.59868 59.905 149.7 1.51443 119.81 77.1627 atistics 0.95233 9 Coeffici Standar 0.72586 0.82366 0.1876 0.0696 3.86882 Log -3. —3. -3 -3. -2 -2 -1. -2 -2. -2 -3. -3. -3 -3. angular velocity Lnshear ra I I XbbUNNHOOO 11.8259 Hmouw NHmmhmOhm M 942 699 .441 .871 .575 .278 964 .252 544 .835 121 .641 862 te .759 .066 .627 .3202 .0133 .7065 .3996 .0928 .7859 0.0047 2E—06 HNUJQUH OHMU‘IOOWO‘QQVDth-‘O 9.23 g CaCO3 Average 8 0.8 0.8 4 1.4 1.4 5 2.5 2.5375 9 4.8 4.8375 5 9.4 9.4125 .7 18.6 18.6125 .1 37.1 36.925 76.1 76.05 .2 39.2 39.2 20 20 2 10.2 10.2375 .3 5.3 5.3 8 2.8 2.85 .6 1.6 1.6 .9 1 0.9625 = 0.02692 m = 0.04143 m Sigma/ Ln Gamma 1/3 1/3 average average average viscosi shear shear Pa.s stress stress 3.365 1.00594 0.00592 2.944 1.76039 0.56554 2.668 3.19071 1.16024 2.543 6.08278 1.80546 2.474 11.8355 2.4711 2.446 23.4038 3.1529 2.427 46.4303 3.83795 2.499 95.6269 4.56045 0.644 49.2909 3.89774 Y 0.282 0.659 t Statis P—value Lower 95% Upper 95% 1.16951 0.98835 57 10.- Mixer Viscometry, 25%, 25%, 65.91 9 corn syrup, 16.47 g CaCO3 rpm readings Average 1 1.5 1.4 1.4 1.5 1.5 1.5 1.4 1.5 1.4625 2 2.9 2.8 2.8 2.9 2.8 2.9 2.8 2.8 2.8375 4 5.5 5.4 5.5 5.5 5.4 5.4 5.4 5.5 5.45 8 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.5 10.5125 16 20.7 20.7 20.7 20.6 20.7 20.6 20.7 20.7 20.675 32 40 39.9 40 40 40 40 39.9 40 39.975 64 76.2 76.1 76 75.9 76 76 75.9 75.9 76 32 39.7 39.7 39.7 39.7 39.7 39.7 39.6 39.7 39.6875 16 20.7 20.6 20.7 20.6 20.7 20.7 20.6 20.7 20.6625 8 10.8 10.9 10.9 10.8 10.9 10.9 10.8 10.9 10.8625 4 5.8 5.8 5.8 5.8 5.8 5.8 5.9 5.8 5.8125 2 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.2 3.1625 1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.02089 0.0002 -0.9801 -3.68 2 0.2094 0.04054 0.0004 -0.679 -3.392 4 0.4188 0.07787 0.0008 -0.378 -3.109 8 0.8376 0.15019 0.0015 -0.077 —2.823 16 1.6752 0.29539 0.003 0.22407 -2.53 32 3.3504 0.57113 0.0057 0.5251 -2.243 64 6.7008 1.08582 0.0109 0.82613 -1.964 32 3.3504 0.56702 0.0057 0.5251 -2.246 16 1.6752 0.29521 0.003 0.22407 -2.53 8 0.8376 0.15519 0.0016 -0.077 -2.809 4 0.4188 0.08304 0.0008 -0.378 -3.081 2 0.2094 0.04518 0.0005 -0.679 -3.345 1 0.1047 0.02572 0.0003 —0.9801 -3.59 Determination of average shear rate average shear rate = 4.47 angular velocity viscosity = K shear rate“(n-1) b = 0.02692 m k’=4.47 d = 0.04143 m K = consistency coeffiicient average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ Ln KG*(n—1) Gamma 1/3 1/3 angular average average average averae average average velocit viscosi shear shear Lnshear Lnshear viscosi shear shear rpm rad/s Pa.s rate stress stress rate Pa.s stress stress 1 0.1047 4.6545 0.46801 2.8788 1.05739 -0.759 6.151 1.83898 0.60921 2 0.2094 4.4252 0.93602 5.5854 1.72016 -0.066 5.967 3.56793 1.27199 4 0.4188 4.2071 1.87204 10.728 2.37286 0.627 5.731 6.85295 1.92468 8 0.8376 3.9998 3.74407 20.693 3.0298 1.3202 5.527 13.2186 2.58163 16 1.6752 3.8027 7.48814 40.697 3.70616 2.0133 5.435 25.9972 3.25799 32 3.3504 3.6154 14.9763 78.688 4.36549 2.7065 5.254 50.2654 3.91732 64 6.7008 3.4372 29.9526 149.6 5.00797 3.3996 4.995 95.5641 4.5598 X Y Regression Statistics R Square 0.99997 Observations 7 Coeffici Standar t Statit P-value Lower 95% Upper 95% K =3.7893 Interce 1.33219 0.0041 321.076 68-14 1.322 1.34286 x1 0.95196 0.0022 439.214 98—15 0.946 0.95753 58 DUPLICATE AT THIS CONDITIONS TO CHECK SAMPLE RECOVERY, THIS WAS DONE AT 25 % WEIGHT, AFTER 15 MINUTES 10:53 am 11:3 am 12 min rpm readings Average 1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.1 3.1875 4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 8 10.9 10.8 10.9 10.8 10.9 10.8 10.8 10.8 10.8375 16 20.7 20.6 20.7 20.6 20.6 20.7 20.6 20.6 20.6375 32 39.9 40 40 40 40 40 49.9 40.1 41.2375 64 76.5 76.5 76.4 76.3 76.3 76.2 76.3 76.2 76.3375 32 39.5 39.6 39.6 39.5 39.6 39.5 39.6 39.6 39.5625 16 20.5 20.6 20.5 20.6 20.6 20.6 20.6 20.5 20.5625 8 10.7 10.8 10.8 10.8 10.7 10.8 10.7 10.8 10.7625 4 5.7 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.7375 2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.02572 0.0003 -0.9801 -3.59 2 0.2094 0.04554 0.0005 -0.679 -3.342 4 0.4188 0.08287 0.0008 -0.378 —3.082 8 0.8376 0.15484 0.0015 -0.077 -2.81 16 1.6752 0.29485 0.0029 0.22407 -2.53 32 3.3504 0.58917 0.0059 0.5251 -2.23 64 6.7008 1.09065 0.0109 0.82613 -1.962 32 3.3504 0.56524 0.0057 0.5251 -2.248 16 1.6752 0.29378 0.0029 0.22407 -2.532 8 0.8376 0.15377 0.0015 -0.077 -2.813 4 0.4188 0.08197 0.0008 -0.378 —3.086 2 0.2094 0.04429 0.0004 -0.679 —3.354 1 0.1047 0.02429 0.0002 -0.9801 —3.615 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m viscosity = K shear rate“(n-1) d = 0.04143 m k'=4.47 K = consistency coeffiicient average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ Ln KG‘(n-1) Gamma 1/3 1/3 angular average average average average average average velocit viscosi shear shear Lnshear Lnshear viscosi shear shear rpm rad/s Pa.s rate stress stress rate Pa.s stress stress 1 0.1047 4.9393 0.46801 3.5432 1.26503 -0.759 7.571 2.26336 0.81685 2 0.2094 4.6403 0.93602 6.2744 1.83648 -0.066 6.703 4.00803 1.3883 4 0.4188 4.3593 1.87204 11.417 2.4351 0.627 6.099 7.29305 1.98692 8 0.8376 4.0954 3.74407 21.333 3.06025 1.3202 5.698 13.6273 2.61208 16 1.6752 3.8475 7.48814 40.624 3.70435 2.0133 5.425 25.95 3.25617 32 3.3504 3.6145 14.9763 81.173 4.39659 2.7065 5.42 51.8529 3.94841 64 6.7008 3.3957 29.9526 150.27 5.0124 3.3996 5.017 95.9884 4.56423 x y Regression Statistics R Square 0.99925 Observations 7 Coeffici Standar t Statis P—value Lower 95% Upper 95% K = 4.28 Interce 1.45395 0.0213 68.292 78-10 1.399 1.50868 x1 0.90847 0.0111 81.6859 28-10 0.88 0.93705 59 AFTER 35 MINUTES CHECK THESE TWO LINE rpm readings Average 1 1.8 1.8 1.8 1.8 1.8 1.7 1.8 1.8 1.7875 2 3.2 3.2 3.2 3.1 3.2 3.2 3.1 3.1 3.1625 4 5.8 5.8 5.8 5.8 5.7 5.7 5.8 5.8 5.775 8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 16 20.6 20.7 20.7 20.6 20.7 20.7 20.7 20.7 20.675 32 39.9 40 39.9 40 40 40.1 40.1 40 40 64 76 75.9 75.9 76 75.9 75.9 76 75.9 75.9375 32 39.7 39.6 39.6 39.6 39.5 39.6 39.6 39.6 39.6 16 20.5 20.6 20.5 20.5 20.6 20.6 20.5 20.6 20.55 8 10.8 10.7 10.7 10.8 10.7 10.8 10.8 10.7 10.75 4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.02554 0.0003 -0.9801 -3.593 2 0.2094 0.04518 0.0005 -0.679 -3.345 4 0.4188 0.08251 0.0008 -0.378 -3.084 8 0.8376 0.1543 0.0015 -0.077 -2.812 16 1.6752 0.29539 0.003 0.22407 -2.53 32 3.3504 0.57149 0.0057 0.5251 —2.243 64 6.7008 1.08493 0.0108 0.82613 -1.965 32 3.3504 0.56577 0.0057 0.5251 -2.247 16 1.6752 0.2936 0.0029 0.22407 —2.532 8 0.8376 0.15359 0.0015 -0.077 -2.814 4 0.4188 0.08144 0.0008 ~0.378 -3.089 2 0.2094 0.04429 0.0004 -0.679 -3.354 1 0.1047 0.02429 0.0002 -0.9801 -3.615 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m viscosity = K shear rate“(n-1) d = 0.04143 m k'=4.47 K = consistency coeffiicient average shear stress = 2 M / pi b d‘2 (b/d + 1/3) 0.9831 Sigma/ KG‘(n-1) Gamma 1/3 angular average average average average average velocit viscos. shear shear Lnshear Lnshear viscosi shear rpm rad/s Pa.s rate stress stress rate Pa.s stress 1 0.1047 4.9271 0.46801 3.5186 1.25806 -0.759 7.518 2.24764 2 0.2094 4.6247 0.93602 6.2252 1.8286 —0.066 6.651 3.9766 4 0.4188 4.3408 1.87204 11.368 2.43078 0.627 6.072 7.26161 8 0.8376 4.0743 3.74407 21.259 3.05679 1.3202 5.678 13.5802 16 1.6752 3.8242 7.48814 40.697 3.70616 2.0133 5.435 25.9972 32 3.3504 3.5894 14.9763 78.737 4.36612 2.7065 5.257 50.2969 64 6.7008 3.3691 29.9526 149.48 5.00715 3.3996 4.99 95.4855 x Regression Statistics R Square 0.99942 Observations 7 Coeffici Standar 1.44818 0.0186 0.90672 0.0097 t Statis P-value Lower 95% Upper 95% 77.7103 38-10 1.4 1.49608 93.1423 18-10 0.882 0.93174 K =4.2554 Interce x1 Ln 1/3 average shear stress .80988 .38043 .9826 .60861 .25799 .91794 .55897 wawNHHo 60 11.- Mixer Viscometry. 25%, 25%, 74.08 9 corn syrup, 18.54 g CaCO3 rpm readings Average 1 1.9 .9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.3 3.25 4 5.8 5.8 5.9 5.9 5.8 5.8 5.8 5.8 5.825 8 10.7 10.7 10.8 10.7 10.7 10.8 10.6 10.7 10.7125 16 20.2 20.3 20.2 20.4 20.3 20.3 20.3 20.3 20 2875 32 38.7 38.7 38.8 38.9 38.8 38.8 38.8 38.8 38 7875 64 73.7 73.7 73.6 73.5 73.4 73.3 73.3 73.2 73 4625 32 38.3 38.2 38.2 38.1 38.2 38.2 38.1 38.1 38.175 16 19.9 20 19.8 19.9 19.9 19.9 19.9 19.9 19.9 8 10.6 10.5 10.6 10.6 10.5 10.6 10.6 10.5 10.5625 4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 1 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.02715 0.0003 -0.9801 -3.566 2 0.2094 0.04643 0.0005 -0.679 -3.333 4 0.4188 0.08322 0.0008 -0.378 -3.08 8 0.8376 0.15305 0.0015 -0.077 -2.815 16 1.6752 0.28985 0.0029 0.22407 —2.538 32 3.3504 0.55416 0.0055 0.5251 -2.256 64 6.7008 1.04957 0.0105 0.82613 -1.979 32 3.3504 0.54541 0.0055 0.5251 -2.263 16 1.6752 0.28431 0.0028 0.22407 -2.546 8 0.8376 0.15091 0.0015 -0.077 -2.821 4 0.4188 0.08144 0.0008 -0.378 -3.089 2 0.2094 0.04572 0.0005 -0.679 -3.34 1 0.1047 0.02715 0.0003 -0.9801 -3.566 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m viscosity = K shear rate“(n-1) d = 0.04143 m k'=4.47 K = consistency coeffiicient average shear stress = 2 M / pi b d“2 (b/d + 1/3) 0.9831 Sigma/ KG‘tn-l) Gamma 1/3 angular average average average average average velocit viscosi shear shear Lnshear Lnshear viscosi shear rpm rad/s Pa.s rate stress stress rate Pa.s stress 1 0.1047 5.229 0.46801 3.74 1.31909 -0.7593 7.9914 2.389 2 0.2094 4.8122 0.93602 6.3974 1.85589 -0.0661 6.8347 4.087 4 0.4188 4.4286 1.87204 11.466 2.4394 0.62703 6.125 7.324 8 0.8376 4.0756 3.74407 21.087 3.04865 1.32017 5.6321 13.47 16 1.6752 3.7507 7.48814 39.935 3.68724 2.01332 5.3331 25.51 32 3.3504 3.4518 14.9763 76.351 4.33534 2.70647 5.0981 48.77 64 6.7008 3.1766 29.9526 144.61 4.97401 3.39962 4.8278 92.37 x Regression Statistics R Square 0.99902 Observations 7 K =4.3843 Interce x1 Coeffici Standar t Statis P-value Lower 95% Upper 95% 1.53906 0.91664 1.47802 0.88476 0.0237 0.0124 62. 71. 2507 3354 1E-09 5E-10 0.853 1.417 Ln 1/3 average shear stress 0.87092 1.40772 .99122 .60047 .23907 .88716 .52584 K hJJCALJH 12.- Mixer Viscometry, rpm HUGUH HMUI‘OQ‘QU‘QWWWH wamD-‘QU‘hUIOUID-‘D rad/s omega .1047 .2094 .4188 .8376 .6752 .3504 .7008 .3504 .6752 .8376 .4188 .2094 .1047 0000l—‘UO‘UH0000 25%, readings 1.9 3.1 3 5.4 5 9.9 9 18.5 18 35.4 35 67.4 67 34.8 34 18.1 18 9.6 9 5.2 5 3 2 1.7 1 (N cm) M 0.02679 0.04429 0.07787 0.14073 0.26431 0.50523 0.96153 0.49701 0.25878 0.13716 0.07447 0.04161 0.02429 1. 4053014090900me 61 25 %, 65.09 9 corn syrup, (N m) M .0003 .0004 .0008 .0014 .0026 .0051 .0096 .005 .0026 .0014 .0007 .0004 .0002 0000000000000 \JVDUJMHQUDUJGUIHCD \JKONUINQUhUI‘OUID-‘m Log Om -0.9801 -0.679 -0.378 -0.077 0.22407 0.5251 0.82613 0.5251 0.22407 -0.077 -0.378 -0.679 -0.9801 Determination of average shear rate average shear rate viscosity k'=4.47 K average shear stress (b/d 16 32 64 + 1/3) angular velocit rad/s .1047 .2094 .4188 .8376 .6752 .3504 .7008 Otto-1140000 K shear rate‘(n-1) Regression Statistics R Square Observations K =4.1873 Interce x1 consistency coeffiicient 2 M / pi b d‘2 0.9831 KG‘(n-1) average average average viscosi shear shear Pa.s rate stress 4.8927 0.46801 3.6908 4.4782 0.93602 6.1022 4.0988 1.87204 10.728 3.7516 3.74407 19.389 3.4337 7.48814 36.416 3.1428 14.9763 69.609 2.8766 29.9526 132.48 0.99821 7 QWNQHQNDmmbl—‘W Log M -3.572 —3.354 -3.109 —2.852 -2.578 -2.297 —2.017 —2.304 -2.587 -2.863 -3.128 —3.381 -3.615 4.47 angular velocity Lnshear stress 1.30585 1.80864 2.37286 2.96471 3.59501 4.24289 4.8864 x HUGO-1H Hummmqummmwp 16.27 g CaCO3 Ave .9 1.9 1.8 .1 3.1 3.1 4 5.4 5.4 8 9.8 9.8 5 18.5 18 .3 35.3 35 .2 67.1 67 .7 34.8 34 .1 18.1 18. .6 9.6 9. .2 5.2 5 .9 2.9 2 .7 1.7 1 = 0.02692 m = 0.04143 m Sigma/ Gamma average Lnshear viscosi rate Pa.s —0.759 7.886 -0.066 6.519 0.627 5.731 1.3202 5.179 2.0133 4.863 2.7065 4.648 3.3996 4.423 rage 75 5 5 .5 .3625 .3 .7875 1125 6 .2125 .9125 .7 1/3 average shear stress .35767 .89801 .85295 .3856 .2623 .4656 .6245 Coeffici Standar t Statis P-value Lower 95% Upper 95% 1.43206 0.86728 0.0314 0.0164 45. 52. 5906 8559 7E—09 3E-09 1.351 0.825 1. 0. 5128 90946 Ln 1/3 average shear stress .85767 .36047 .92468 .51653 .14683 .79472 .43822 anwwwwo 62 13.- Mixer Viscometry, 35%, 35%, 76.16 9 corn syrup, 26.67 g CaCO3 rpm readings Average 1 3.9 4 4 4 4.1 4 4 4.1 4.0125 2 7 7 7.1 7 7 7 7.1 7.1 7.0375 4 12.4 12.4 12.3 12.4 12.5 12.3 12.5 12.5 12.4125 8 22.5 22.3 22.3 22.4 22.3 22.5 22.4 22.4 22.3875 16 41.1 41.3 41.1 41 41 41 41.1 41.2 41.1 32 75.8 75.8 75.7 75.8 75.7 75.6 75.5 75.7 75.7 16 41.4 41.6 41.6 41.6 41.6 41.4 41.4 41.6 41.525 8 23.1 23.3 23 23.3 23.1 23.1 23.1 23 23.125 4 13.2 13.1 13.3 13.3 13.2 13.1 13.1 13.3 13.2 2 7.8 7.7 7.8 7.8 7.7 7.8 7.7 7.7 7.75 1 4.8 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7125 rad/s (N cm) (N m) rpm omega M M Log 0m Log M 1 0.1047 0.05733 0.0006 -0.9801 -3.242 2 0.2094 0.10055 0.001 -0.679 -2.998 4 0.4188 0.17734 0.0018 -0.378 —2.751 8 0.8376 0.31985 0.0032 -0.077 -2.495 16 1.6752 0.5872 0.0059 0.22407 -2.231 32 3.3504 1.08154 0.0108 0.5251 -1.966 16 1.6752 0.59327 0.0059 0.22407 -2.227 8 0.8376 0.33039 0.0033 -0.077 -2.481 4 0.4188 0.18859 0.0019 -0.378 -2.724 2 0.2094 0.11073 0.0011 -0.679 -2.956 1 0.1047 0.06733 0.0007 -0.9801 -3.172 Determination of average shear rate average shear rate = 4.47 angular velocity viscosity = K shear rate“(n-1) b = 0.02692 m k'=4.47 d = 0.04143 m K = consistency coeffiicient average shear stress = 2 M / pi b d‘2 (b/d + 1/3) 0.9831 Sigma/ Ln KG‘(n-1) Gamma 1/3 1/3 angular average average average average average average velocit viscosi shear shear Lnshear Lnshear viscosi shear shear rpm rad/s Pa.s rate stress stress rate Pa.s stress stress 1 0.1047 12.389 0.46801 7.8984 2.06665 —0.759 16.88 5.0454 1.61848 2 0.2094 10.944 0.93602 13.853 2.62849 -0.066 14.8 8.84911 2.18032 4 0.4188 9.6672 1.87204 24.433 3.19594 0.627 13.05 15.6077 2.74777 8 0.8376 8.5395 3.74407 44.068 3.78574 1.3202 11.77 28.1505 3.33757 16 1.6752 7.5434 7.48814 80.903 4.39325 2.0133 10.8 51.68 3.94507 32 3.3504 6.6635 14.9763 149.01 5.00402 2.7065 9.95 95.1868 4.55584 Regression Statistics R Square 0.99967 Observations 6 K =9.3805 Interce x1 Coeffici Standar 2.23863 0.84793 0.0118 0.0077 189.857 110.221 8E—11 1E—09 2.206 0.827 t Statis P—value Lower 95% Upper 95% 2.27137 0.86929 63 14.- Mixer Viscometry, 35%, 35%, 71.35 9 corn syrup, 24.98 g CaCO3 rpm readings Average 1 4.8 5 4.9 4.9 5 4.9 4.9 5 4.925 2 8.4 8.3 8.4 8.3 8.3 8.4 8.4 8.5 8.375 4 14.5 14.7 14.5 14.6 14.5 14.5 14.7 14.5 14.5625 8 25.5 25.8 26 25.6 25.9 26.2 25.9 26.1 25.875 16 46.9 47.2 47 48.9 46.7 47.4 46.8 47.2 47.2625 32 85.5 85.4 85.2 85.4 85.5 85.3 85.4 85.5 85.4 16 47.4 47.4 47.5 47.5 47.3 47.5 47.6 47.4 47.45 8 26.5 26.6 26.6 26.7 26.6 26.6 26.7 26.7 26.625 4 15.5 15.4 15.3 15.2 15.4 15.4 15.3 15.2 15.3375 2 9.1 9 9 9.1 9.1 9.1 9.1 9.1 9.075 1 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.5 5.5875 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.07036 0.0007 -0.9801 -3.153 2 0.2094 0.11966 0.0012 -0.679 -2.922 4 0.4188 0.20806 0.0021 -0.378 -2.682 8 0.8376 0.36968 0.0037 -0.077 -2.432 16 1.6752 0.67525 0.0068 0.22407 —2.171 32 3.3504 1.22012 0.0122 0.5251 -1.914 16 1.6752 0.67793 0.0068 0.22407 -2.169 8 0.8376 0.3804 0.0038 —0.077 -2.42 4 0.4188 0.21913 0.0022 -0.378 —2.659 2 0.2094 0.12966 0.0013 -0.679 -2.887 1 0.1047 0.07983 0.0008 -0.9801 -3.098 Determination of average shear rate average shear rate = 4.47 angular velocity viscosity = K shear rate“(n-1) b = 0.02692 m k'=4.47 d = 0.04143 m K = consistency coeffiicient average shear stress = 2 M / pi b d‘2 (b/d + 1/3) 0.9831 Sigma/ KG“(n—1) Gamma 1/3 angular average average average average average velocit viscosi shear shear Lnshear Lnshear viscosi shear rpm rad/s Pa.s rate stress stress rate Pa.s stress 1 0.1047 14.87 0.46801 9.6945 2.27156 -0.7593 20.714 6.193 2 0.2094 12.973 0.93602 16.486 2.80249 ~0.0661 17.613 10.53 4 0.4188 11.318 1.87204 28.665 3.35569 0.62017 15.312 18.31 8 0.8376 9.874 3.74407 50.933 3.93052 1.32017 13.604 32.54 16 1.6752 8.6142 7.48814 93.033 4.53296 2.01332 12.424 59.43 x Regression Statistics R Square 0.99939 Observations 5 t Statis P-value Lower 95% Upper 95% 179.206 68-09 2.376 2.46225 70.2701 28—07 0.778 0.85216 Coeffici Standar K =11.238 Interce 2.41929 0.0135 x1 0.81524 0.0116 Ln 1/3 average shear stress .82339 .35431 .90751 .48234 .08478 00 -0. -0 -0. -0. -0 -0 -0 -0 -0 -0 0(3C>00 .041 .041 .041 041 .041 .041 .041 .041 .041 .041 k 164 164 164 164 164 164 164 164 164 164 .7903 .7903 .7903 .7903 .7903 .7903 .7903 .7903 .7903 .7903 228 .228 228 228 .228 .228 .228 .228 .228 .228 .2263 .2263 .2263 .2263 .2263 .2263 .2263 .2263 .2263 .2263 T 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 313. 15 15 15 15 15 15 15 15 15 15 .15 15 15 15 15 15 15 15 15 15 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 0¢3C>043C>0<3C>0 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 0<3C>0<3C>0<3C>0 1/T .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 0<3C>0C3C>00 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 00<3C>0<3C>0 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 0<3C>00<3C>0 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 0CDC>00CDC>0 srate .468 .936 .8721 .7441 .4882 .976 .953 .906 .81 .62 srate .468 .936 .8721 .7441 .4882 .976 .953 .906 .62 srate 119 239. .468 .936 .8721 .7441 .4882 .976 .953 .906 .81 62 srate .468 .936 .8721 .7441 .4882 .976 .953 .906 119. 239. 81 62 srate 119 239 .468 .936 .8721 .7441 .4882 .976 .953 .906 .81 .62 srate .468 .936 .8721 .7441 .4882 .976 .953 .906 .81 .62 srate -0.759 -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 (”@bbtdk>NP*C> srate -0.759 -0.066 0.627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 Lflfibhtflkle‘ 1n srate -0.759 -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 LflfiHhUJNIOF‘O 1n srate -0.759 -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 Ifl‘bbcthNhi0 1n srate -0.759 -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 Ln#uthN!0F‘0 srate -0.759 -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 WlbhlthNFJC 88 In 40-25-4 1n sstres sstress k lnk T 1/T C srate srate 0.3903 -0.941 1.0245 0.0242 313.15 0.0032 25 0.468 -0.759 0.9107 -0.094 1.0245 0.0242 313.15 0.0032 25 0.936 -0.066 1.6913 0.5255 1.0245 0.0242 313.15 0.0032 25 1.8721 0 627 3.3176 1.1992 1.0245 0.0242 313.15 0.0032 25 3.7441 1.3202 6.4238 1.86 1.0245 0.0242 313.15 0.0032 25 7.4882 2.0133 12.604 2.534 1.0245 0.0242 313.15 0.0032 25 14.976 2.7065 24.443 3.1963 1.0245 0.0242 313.15 0.0032 25 29.953 3.3996 47.178 3.8539 1.0245 0.0242 313.15 0.0032 25 59.906 4.0928 84.582 4.4377 1.0245 0.0242 313.15 0.0032 25 119.81 4.7859 43.226 3.7664 1.0245 0.0242 313.15 0.0032 25 239.62 5.4791 In 40-35-1 1n sstres sstress k lnk T 1/T C srate srate 2.911 1.0685 5.9571 1.7846 313.15 0.0032 35 0.468 -0.759 4.5535 1.5159 5.9571 1.7846 313.15 0.0032 35 0.936 -0.066 7.2206 1.9769 5.9571 1.7846 313.15 0.0032 35 1.8721 0.627 12.002 2.4851 5.9571 1.7846 313.15 0.0032 35 3.7441 1.3202 21.207 3.0543 5.9571 1.7846 313.15 0.0032 35 7.4882 2.0133 37.957 3.6365 5.9571 1.7846 313.15 0.0032 35 14.976 2.7065 68.628 4.2287 5.9571 1.7846 313.15 0.0032 35 29.953 3.3996 124.73 4.8262 5.9571 1.7846 313.15 0.0032 35 59.906 4.0928 68.628 4.2287 5.9571 1.7846 313.15 0.0032 35 119.81 4.7859 37.307 3.6192 5.9571 1.7846 313.15 0.0032 35 239.62 5.4791 ; ln 40-35-2 1n sstres stress k lnk T 1/T C srate srate } J 2.0816 0.7331 4.6503 1.5369 313.15 0.0032 35 0.468 -0.759 3.464 1.2424 4.6503 1.5369 313.15 0.0032 35 0.936 -0.066 5.8546 1.7672 4.6503 1.5369 313.15 0.0032 35 1.8721 0.627 10 018 2.3044 4.6503 1.5369 313.15 0.0032 35 3.7441 1.3202 17.873 2.8833 4.6503 1.5369 313.15 0.0032 35 7.4882 2.0133 33.908 3.5236 4.6503 1.5369 313.15 0.0032 35 14.976 2.7065 60.774 4.1072 4.6503 1.5369 313.15 0.0032 35 29.953 3.3996 105.74 4.661 4.6503 1.5369 313.15 0.0032 35 59.906 4.0928 58.058 4.0614 4.6503 1.5369 313.15 0.0032 35 119.81 4.7859 32.005 3.4659 4.6503 1.5369 313.15 0.0032 35 239.62 5.4791 in 40-35-3 ln sstres sstress k lnk T 1/T C srate srate 2.2117 0.7938 4.9264 1.5946 313.15 0.0032 35 0.468 -0.759 3.6428 1.2928 4.9264 1.5946 313.15 0.0032 35 0.936 —0.066 6.2449 1.8318 4.9264 1.5946 313.15 0.0032 35 1.8721 0.627 10.798 2.3794 4.9264 1.5946 313.15 0.0032 35 3.7441 1.3202 19.157 2.9527 4.9264 1.5946 313.15 0.0032 35 7.4882 2.0133 33.908 3.5236 4.9264 1.5946 313.15 0.0032 35 14.976 2.7065 60.774 4.1072 4.9264 1.5946 313.15 0.0032 35 29.953 3.3996 110.5 4.7051 4.9264 1.5946 313.15 0.0032 35 59.906 4.0928 60.66 4.1053 4.9264 1.5946 313.15 0.0032 35 119.81 4.7859 33.338 3.5067 4.9264 1.5946 313.15 0.0032 35 239.62 5.4791 XII. APPENDIX 6. MEASUREMENTS PERFORNIED AT 55°C. 1.- Mixer Viscometry, 0%, 0%, 0 9 corn syrup, T = 55°C. rpm readings Average 1 0.1 0 0.1 0.1 0.1 0.1 0 0.1 0.075 2 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1125 4 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1875 8 0.3 0.2 3.3 0.3 0.2 0.3 0.3 0.3 0.2375 16 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.5375 32 1 1 1 1 1 1 1 1 1 64 2.2 2.1 2.2 2.1 2.1 2.1 2.1 2.1 2.125 128 4.7 4.8 4.7 4.7 4.7 4.7 4.7 4.7 4.7125 256 11.7 11.7 11.6 11.7 11.7 11.7 11.7 11.7 11.687 512 33.1 33.1 33.1 33.1 33.1 33.1 33 33 33.075 256 11.6 11.6 11.6 11.6 11.6 11.7 11.6 11.6 11.612 128 4.7 4.7 4.7 4.7 4.7 4.7 4.6 4.7 4.6875 64 2.1 2.1 2.1 2.1 2.1 2.1 2 2.1 2.0875 32 1 1 1 1 1 1 1 1 1 16 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.6 0.55 8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.125 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0011 lE-OS -0.98 —4.97 2 0.2094 0.0016 zE-OS —0.679 -4.794 4 0.4188 0.0027 3E—05 -0.378 -4.572 8 0.8376 0.0034 3E-05 —0.077 -4.469 16 1.6752 0.0077 8E-05 0.2241 -4.115 32 3.3504 0.0143 0.0001 0.5251 -3.845 64 6.7008 0.0304 0.0003 0.8261 -3.518 128 13.402 0.0673 0.0007 1.1272 -3.172 256 26.803 0.167 0.0017 1.4282 -2.777 512 53.606 0.4725 0.0047 1.7292 -2.326 256 26.803 0.1659 0.0017 1.4282 -2.78 128 13.402 0.067 0.0007 1.1272 -3.174 64 6.7008 0.0298 0.0003 0.8261 -3.525 32 3.3504 0.0143 0.0001 0.5251 -3.845 16 1.6752 0.0079 8E—05 0.2241 —4.105 8 0.8376 0.0043 48-05 -0.077 -4.368 4 0.4188 0.0029 3E-05 -0.378 -4.544 2 0.2094 0.0018 ZE-OS -0.679 -4.748 1 0.1047 0.0014 1E-05 -0.98 —4.845 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k’ 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M l ( ( pi d‘3* b/d + 1/3 = 0.9831 shear stress: M 9106.2 Se$103 angular average average velocit shear shear Lnshear rpm rad/s rate stress rate 1 0.1047 0.468 0.0976 —0.759 2 0.2094 0.936 0.1464 -0.066 4 0.4188 1.872 0.2439 0.627 8 0.8376 3.7441 0.309 1.3202 16 1.6752 7.4881 0.6993 2.0133 32 3.3504 14.976 1.301 2.7065 64 6.7008 29.953 2.7647 3.3996 128 13.402 59.905 6.131 4.0928 256 26.803 119.81 15.206 4.7859 512 53.606 239.62 43.031 5.4791 X Regression Statistics R Square 0.9761 Observations 10 Coeffic St 0.1295 Interce -2.044 0. 0.9672 x1 0.9672 0. x u u andar t Stati P-value Lower 95% Upper 95% 1651 -12.38 0535 18.089 (b/d + 1/3) ) ) Lnshear stress -2.327 -1.922 -1.411 «1.174 -0.358 .2631 .0169 .8134 .7217 .7619 UNHHO 89 63-07 2E-08 Sigma/ Gamma viscos .2085 .1564 .1303 .0825 .0934 .0869 .0923 .1023 .1269 .1796 0000000000 -2.425 0.8439 -l.663 1.0905 . h— a..— Mixer Viscometry, rpm HUH oo OOHNbHUHhNHOOOOO ww quwmm HabNHH Hid rad/s omega 0.1047 0.2094 0.4188 0.8376 1.6752 3.3504 6.7008 13.402 26.803 53.606 26.803 13.402 6.7008 3.3504 1.6752 0.8376 0.4188 0.2094 0.1047 \IGHO‘O‘H QbNNH HHNUU‘ (N cm) M .0014 .002 .0029 .0129 .0091 .0146 .0291 .0659 .1666 .4722 .1666 .0668 .0295 .0141 .0075 .0043 .0029 .0016 .0014 0000000000000000000 O‘DNHH thh‘ 00000HNDHWH§NH00000 HNNWQ HO‘N‘ ~10. ONO-#00000 quwuawwuawww HHNUU‘I 0%, 9 corn syrup, T = bNt-‘00000 HHNDJU'IVDHQOH‘JO‘H O‘DNNH wt» hiH H OOOOOONbH Log Om -0.98 .679 .378 .077 .2241 .5251 .8261 .1272 .4282 .7292 .4282 .1272 .8261 .5251 .2241 —0.077 -0.378 —O.679 -0.98 I I I 000HHHHH000000 Determination of average shear rate average shear rate = 4.47 angular velocity average apparent viscosity = shear stress/ shear k' 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( Di d‘3* b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 angular average average velocit shear shear Lnshear rpm rad/s rate stress rate 1 0.1047 0.468 0.1301 -0.759 2 0.2094 0.936 0.1789 ~0.066 4 0.4188 1.872 0.2602 0.627 8 0.8376 3.7441 1.1709 1.3202 16 1.6752 7.4881 0.8294 2.0133 32 3.3504 14.976 1.3335 2.7065 64 6.7008 29.953 2.6508 3.3996 128 13.402 59.905 6.0009 4.0928 256 26.803 119.81 15.173 4.7859 512 53.606 239.62 42.999 5.4791 x Regression Statistics R Square 0.9581 Observations 10 Coeffic K = 0.1896 Interce -1.663 0.2033 -8. n = 0.891 x1 0.891 0.0659 13. 9O 55°C thh‘ HCJF‘DOOF‘OCDCJOCD Htaaawtn H-J~J 4hd\ ~Jb!0k*H 00000HNfi Log M -4.845 -4.707 -4.544 -3.891 -4.041 -3.834 —3.536 ~3.181 -2.778 -2.326 -2.778 -3.175 -3.531 -3.851 -4.125 -4.368 -4.544 -4.794 -4.845 P‘w Ht» H HbNI—‘OOOOO 00000HNA HHNUO‘ O‘hNNH ‘10 thb* Htura d: (b/d + 1/3) ) ) Lnshear stress -2.039 -1.721 -1.346 0.1578 —0.187 .2878 .9749 .7919 .7195 .7612 WNHOO Sigma/ Gamma viscos Pa.s 0.278 0.1911 0.139 0.3127 0.1108 0.089 0.0885 0.1002 0.1266 0.1794 00000HN|§ DNH00000 HHNUU’I Hum ~14 O‘fiNHH -2.132 0.7392 Average .1375 .6375 .025 .0375 .6125 .662 33.05 11.662 .675 .0625 .9875 .525 H HhND—‘00000 .1125 000000N0 0.02692 m 0.04143 m Standar t Stati P-value Lower 95% Upper 95% 178 28-05 531 3E-07 -1.194 1.0429 91 Mixer Viscometry, 0%, 65.4 9 corn syrup, T = 55°C rpm readings 1 0.1 0.1 0.1 0.1 0.1 0.1 2 0.2 0.1 0.2 0.2 0.1 0.1 4 0.2 0.2 0.2 0.2 0.2 0.2 8 0.3 0.4 0.3 0.4 0.3 0.4 16 0.7 0.6 0.6 0.6 0.6 0.6 32 1 1 1 1 1 1 64 2.1 2.1 2 2 2.1 2 128 4.6 4.6 4.7 4.6 4.5 4.6 256 11.5 11.5 11.6 11.5 11.5 11.5 1 512 32.8 32.8 32.7 32.8 32.8 32.8 3 256 11.5 11.5 11.6 11.5 11.5 11.5 1 128 4.6 4.6 4.7 4.6 4.6 4.7 64 2 2.1 2 2.1 2 2.1 32 1 1 1 1 1 1 16 0.6 0.5 0.5 0.5 0.5 0.5 8 0.3 0.4 0.3 0.3 0.3 0.3 4 0.2 0.1 0.2 0.2 0.1 0.2 2 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0014 lE-OS -0.98 -4.845 2 0.2094 0.0021 ZE-OS -0.679 -4.669 4 0.4188 0.0029 38-05 -0.378 -4.544 8 0.8376 0.005 58-05 -0.077 -4.301 16 1.6752 0.0088 9E-05 0.2241 -4.058 32 3.3504 0.0143 0.0001 0.5251 —3.845 64 6.7008 0.0293 0.0003 0.8261 -3.533 128 13.402 0.0657 0.0007 1.1272 -3.182 256 26.803 0.1645 0.0016 1.4282 -2.784 512 53.606 0.4683 0.0047 1.7292 -2.33 256 26.803 0.1647 0.0016 1.4282 ~2.783 128 13.402 0.0661 0.0007 1.1272 -3.18 64 6.7008 0.0291 0.0003 0.8261 -3.536 32 3.3504 0.0143 0.0001 0.5251 -3.845 16 1.6752 0.0073 7E-05 0.2241 -4.135 8 0.8376 0.0045 4E-05 -0.077 -4.35 4 0.4188 0.0023 23—05 -0.378 -4.634 2 0.2094 0.0014 lE-OS -0.679 -4.845 1 0.1047 0.0014 13-05 -0.98 -4.845 Determination of average shear rate average shear rate = 4.47 angular velocity average apparent viscosity = shear stress/ shear k’ = 4.47 K = consistency coefficient, Pa.s“n H NHIbND-‘00000 00000HND .1 0. .2 0. 2 0. 3 0. 6 0. 1 1 2 6 4. .5 11. .7 32 .5 11 6 4. 2 1 5 0. 3 0. 1 0. 1 0. 1 0. b: d: average shear stress = 2 M I ( ( pi d‘3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 angular average average velocit shear shear Lnshear Lnshear rpm rad/s rate stress rate stress 1 0.1047 0.468 0.1301 -0.759 —2.039 2 0.2094 0.936 0.1952 -0.066 -1.634 4 0.4188 1.872 0.2602 0.627 -1.346 8 0.8376 3.7441 0.4554 1.3202 -0.787 16 1.6752 7.4881 0.7969 2.0133 -0.227 32 3.3504 14.976 1.301 2.7065 0.2631 64 6.7008 29.953 2.6671 3.3996 0.981 128 13.402 59.905 5.9847 4.0928 1.7892 256 26.803 119.81 14.978 4.7859 2.7066 512 53.606 239.62 42.641 5.4791 3.7528 X Y Regression Statistics R Square 0.9706 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% K = 0.1653 Interce —1.8 0.1726 —10.43 3E—06 = 0.9092 x1 0.9092 0.0559 16.262 68-08 Sigma/ Gamma viscos Pa.s .278 .2085 .139 .1216 .1064 .0869 .089 .0999 .125 .178 0000000000 mmmmm O‘hND—‘H HHNwU‘ ~2.l98 0.7803 Average .1 .15 .2 .35 .6125 .05 .6 .513 .775 .525 .625 .0375 .5125 .3125 .1625 .1 .1 F‘U3H OOOOOHNhHNHhNHOOOOO 0.02692 m 0.04143 m -1.402 1.0381 92 Mixer Viscometry, 5%, 4.9685%, 74.67 9 corn syrup, Tue, fe, T = 40°C, 3.71 g CaCO3 rpm readings Average 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.5 0.575 4 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.7 0.6375 8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 16 1 1 1 1 1 1 1 1 1 32 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 64 2.9 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.725 128 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 256 13.8 13.8 13.7 13.7 13.7 13.7 13.7 13.7 13.725 512 38 38 38 38 38 38 38.1 38.1 38.025 256 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 128 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 64 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 32 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.45 16 0.9 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8625 8 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 4 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.425 2 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.3625 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0071 7E-05 -0.98 -4.146 2 0.2094 0.0082 8E-05 -0.679 -4.085 4 0.4188 0.0091 9E-05 -0.378 -4.041 8 0.8376 0.0114 0.0001 -0.077 —3.942 16 1.6752 0.0143 0.0001 0.2241 -3.845 32 3.3504 0.0214 0.0002 0.5251 -3.669 64 6.7008 0.0389 0.0004 0.8261 -3.41 128 13.402 0.0814 0.0008 1.1272 -3.089 256 26.803 0.1961 0.002 1.4282 -2.708 512 53.606 0.5433 0.0054 1.7292 —2.265 256 26.803 0.1957 0.002 1.4282 -2.708 128 13.402 0.0829 0.0008 1.1272 -3.082 64 6.7008 0.0386 0.0004 0.8261 -3.414 32 3.3504 0.0207 0.0002 0.5251 -3.684 16 1.6752 0.0123 0.0001 0.2241 -3.909 8 0.8376 0.0086 9E—05 -0.077 —4.067 4 0.4188 0.0061 6E-05 -0.378 -4.217 2 0.2094 0.0052 SE-OS -0.679 -4.286 1 0.1047 0.0043 4E-05 -0.98 -4.368 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d‘3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.6505 -0.759 -0.43 1.3899 2 0.2094 0.936 0.7481 ~0.066 —0.29 0.7992 4 0.4188 1.872 0.8294 0.627 -0.187 0.443 8 0.8376 3.7441 1.0408 1.3202 0.04 0.278 16 1.6752 7.4881 1.301 2.0133 0.2631 0.1737 32 3.3504 14.976 1.9515 2.7065 0.6686 0.1303 64 6.7008 29.953 3.5453 3.3996 1.2656 0.1184 128 13.402 59.905 7.4158 4.0928 2.0036 0.1238 256 26.803 119.81 17.856 4.7859 2.8824 0.149 512 53.606 239.62 49.471 5.4791 3.9014 0.2065 X Y Regression Statistics R Square 0.8924 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.5706 Interce -0.561 0.2527 -2.221 0.0535 -1.144 0.0215 0.6665 x1 0.6665 0.0818 8.1447 28—05 0.4778 0.8552 :3 II II 93 Mixer Viscometry, 5%, 5.0342%, 71.71 g corn syrup, T = 40°C, 3.61 g CaCO3 rpm readings Average 1 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 4 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 16 0.6 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.575 32 1.2 1.1 1 2 1.1 1.2 1.1 1.2 1.1 1.15 64 2.4 2.4 2 4 2.4 2.4 2.4 2.4 2.4 2.4 128 5.4 5.3 5.4 5.3 5.4 5.3 5.3 5.3 5.3375 256 13.1 13.2 13.1 13.2 13.1 13.21 13.2 13.1 13.151 512 37.1 37.1 37.2 37.1 37.1 37.2 37.1 37.1 37.125 256 13.1 13.2 13.1 13.2 13.1 13.2 13.1 13.2 13.15 128 5.4 5.4 5.3 5.4 5.4 5.4 5.3 5.4 5.375 64 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 32 1.1 1.1 1.2 1.1 1.2 1.2 1.1 1.2 1.15 16 0.6 0.6 0.5 0.6 0.5 0.6 0.6 0.6 0.575 8 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.2875 4 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.15 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 omega (N cm) (N m) rpm rad/s M M Log Om Log M 1 0.1047 0.001 lE-OS -0.98 —5.021 2 0.2094 0.0014 lE-OS —0.679 —4.845 4 0.4188 0.0024 2E-05 -0.378 -4.623 8 0.8376 0.0043 4E-05 -0.077 -4.368 16 1.6752 0.0082 8E—05 0.2241 -4.085 32 3.3504 0.0164 0.0002 0.5251 -3.784 64 6.7008 0.0343 0.0003 0.8261 —3.465 128 13.402 0.0763 0.0008 1.1272 -3.118 256 26.803 0.1879 0.0019 1.4282 -2.726 512 53.606 0.5304 0.0053 1.7292 -2.275 256 26.803 0.1879 0.0019 1.4282 -2.726 128 13.402 0.0768 0.0008 1.1272 -3.115 64 6.7008 0.0343 0.0003 0.8261 -3.465 32 3.3504 0.0164 0.0002 0.5251 -3.784 16 1.6752 0.0082 8E-05 0.2241 -4.085 8 0.8376 0.0041 4E—05 —0.077 -4.386 4 0.4188 0.0021 28-05 -0.378 -4.669 2 0.2094 0.0014 lE-OS -0.679 -4.845 1 0.1047 0.001 lE-OS -0.98 -5.021 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s‘n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.0867 -0.759 -2.445 0.1853 2 0.2094 0.936 0.1301 -0.066 -2.039 0.139 4 0.4188 1.872 0.2168 0.627 -1.529 0.1158 8 0.8376 3.7441 0.3903 1.3202 -0.941 0.1042 16 1.6752 7.4881 0.7481 2.0133 -0.29 0.0999 32 3.3504 14.976 1.4962 2.7065 0.4029 0.0999 64 6.7008 29.953 3.1224 3.3996 1.1386 0.1042 128 13.402 59.905 6.9442 4.0928 1.9379 0.1159 256 26.803 119.81 17.11 4.7859 2.8397 0.1428 512 53.606 239.62 48.3 5.4791 3.8774 0.2016 X Y Regression Statistics R Square 0.9857 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.1244 Interce -2.084 0.1327 -15.71 88-08 -2.39 -1.778 1.0083 x1 1.0083 0.043 23.468 ZE-O9 0.9092 1.1074 74 II II 94 Mixer Viscometry, 5%, 4.9701%, 61.77 9 corn syrup, T = 40°C, 3.07 g CaCO3 rpm readings Average 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 4 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.2625 8 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4125 16 0.7 0.7 0.8 0.7 0.8 0.8 0.7 0.8 0.75 32 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2625 64 2.6 22.6 2.6 2.5 2.6 2.5 2.6 2.6 5.075 128 5.7 5.6 5.7 5.6 5.7 5.7 5.6 5.6 5.65 256 13.5 13.5 13.5 13.4 13.5 13.5 13.5 13.5 13.488 512 37.8 37.9 37.8 37.9 38 37.9 37.9 38 37.9 256 13.5 13.6 13.5 13.5 13.5 13.6 13.6 13.6 13.55 128 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.6 5.65 64 2.6 2.5 2.5 2.5 2.6 2.5 2.5 2.6 2.5375 32 1.3 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.225 16 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 8 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.275 4 0.1 0.1 0.1333 0.1333 0.1333 0.1333 0.1667 0.1333 0.1292 2 0.0333 0.0667 0.0333 0.0667 0.0667 0.0667 0.0667 0.0667 0.0583 1 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0014 lE-OS -0.98 -4.845 2 0.2094 0.0029 3E-05 -0.679 -4.544 4 0.4188 0.0038 4E-05 -0.378 -4.426 8 0.8376 0.0059 6E-05 -0.077 -4.23 16 1.6752 0.0107 0.0001 0.2241 -3 97 32 3.3504 0.018 0.0002 0.5251 —3 744 64 6.7008 0.0725 0.0007 0.8261 -3 14 128 13.402 0.0807 0.0008 1.1272 -3 093 256 26.803 0.1927 0.0019 1.4282 -2 715 512 53.606 0.5415 0.0054 1.7292 -2 266 256 26.803 0.1936 0.0019 1.4282 —2 713 128 13.402 0.0807 0.0008 1.1272 -3 093 64 6.7008 0.0363 0.0004 0.8261 -3 441 32 3.3504 0.0175 0.0002 0.5251 -3 757 16 1.6752 0.0086 9E-05 0.2241 -4 067 8 0.8376 0.0039 4E-05 -0.077 -4.406 4 0.4188 0.0018 28-05 -0.378 -4.734 2 0.2094 0.0008 88-06 -0.679 —5.079 1 0.1047 0.0005 5E-06 -0.98 -5.322 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k’ = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.1301 -0.759 -2.039 0.278 2 0.2094 0.936 0.2602 -0.066 -1.346 0.278 4 0.4188 1.872 0.3415 0.627 -1.074 0.1824 8 0.8376 3.7441 0.5367 1.3202 -0.622 0.1433 16 1.6752 7.4881 0.9758 2.0133 -0.025 0.1303 32 3.3504 14.976 1.6425 2.7065 0.4962 0.1097 64 6.7008 29.953 6.6026 3.3996 1.8875 0.2204 128 13.402 59.905 7.3507 4.0928 1.9948 0.1227 256 26.803 119.81 17.547 4.7859 2.8649 0.1465 512 53.606 239.62 49.308 5.4791 3.8981 0.2058 X Y Regression Statistics R Square 0.9768 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% = 0.2039 Interce -1.59 0.1564 —10.17 3E—06 -1.951 -1.229 n = 0.9296 x1 0.9296 0.0507 18.348 28-08 0.8127 1.0464 95 Checking the values of 5%.. rpm readings Average 1 0.1667 0.1667 0.1667 0.2 0.2 0.1667 0.1667 0.1667 0.175 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 4 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.25 8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 16 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.6 0.6375 32 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.15 64 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 128 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 256 13.4 13.4 13.5 13.3 13.4 13.4 13.4 13.4 13.4 512 38 38 38 38 38 38 38 38 38 256 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 128 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 64 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 32 1.2 1.1 1.2 1.1 1.1 1.1 1.2 1.1 1.1375 16 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.6 0.525 8 0.3 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.25 4 0.1333 0.1333 0.1333 0.1333 0.1333 0.1467 0.1333 0.1333 0.135 2 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 1 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0025 3E-05 -0.98 —4.602 2 0.2094 0.0029 3E-05 -0.679 -4.544 4 0.4188 0.0036 4E-05 -0.378 -4.447 8 0.8376 0.0057 6E-05 -0.077 —4.243 16 1.6752 0.0091 9E-05 0.2241 -4.041 32 3.3504 0.0164 0.0002 0.5251 -3.784 64 6.7008 0.0343 0.0003 0.8261 -3.465 128 13.402 0.0786 0.0008 1.1272 -3.105 256 26.803 0.1914 0.0019 1.4282 —2.718 512 53.606 0.5429 0.0054 1.7292 —2.265 256 26.803 0.1929 0.0019 1.4282 -2.715 128 13.402 0.0786 0.0008 1.1272 —3.105 64 6.7008 0.0343 0.0003 0.8261 -3.465 32 3.3504 0.0163 0.0002 0.5251 -3.789 16 1.6752 0.0075 BE-OS 0.2241 -4.125 8 0.8376 0.0036 4E-05 —0.077 -4.447 4 0.4188 0.0019 2E—05 —0.378 -4.715 2 0.2094 0.001 1E-05 -0.679 -5.021 1 0.1047 0.0005 58—06 -0.98 —5.322 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.2277 -0.759 -1.48 0.4865 2 0.2094 0.936 0.2602 —0.066 -1.346 0.278 4 0.4188 1.872 0.3253 0.627 -1.123 0.1737 8 0.8376 3.7441 0.5204 1.3202 -0.653 0.139 16 1.6752 7.4881 0.8294 2.0133 -0.187 0.1108 32 3.3504 14.976 1.4962 2.7065 0.4029 0.0999 64 6.7008 29.953 3.1224 3.3996 1.1386 0.1042 128 13.402 59.905 7.1556 4.0928 1.9679 0.1194 256 26.803 119.81 17.434 4.7859 2.8584 0.1455 512 53.606 239.62 49.439 5.4791 3.9007 0.2063 X Y Regression Statistics R Square 0.9499 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% K = 0.223 Interce -1.501 0.2175 —6.899 7E-05 -2.002 -0.999 n = 0.8681 x1 0.8681 0.0704 12.322 6E-07 0.7056 1.0305 96 7.— Mixer Viscometry, 15%, 15.005%, 70.31 g corn syrup, T = 40.8°C, 10.55 g CaCO3 rpm readings Average 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.15 4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 8 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.6 0.5375 16 1 1 1 0.9 0.9 1 1 1 0.975 32 1.9 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.825 64 3.8 3.7 3.7 3.7 3.7 3.7 3.8 3.7 3.725 128 7.9 8 7.8 7.8 7.9 7.8 7.9 7.8 7.8625 256 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 512 49 48.9 49 48.9 49 48.9 49 48.9 48.95 256 18.1 18.2 18.2 18.1 18.2 18.1 18.1 18.1 18.138 128 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.8875 64 3.7 3.7 3.6 3.7 3.7 3.7 3.7 3.7 3.6875 32 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 16 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 8 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.45 4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.0667 0.0667 0.0667 0.1 0.1 0.1 0.0667 0.1 0.0833 rad/s (N cm) (N m) rpm omega M M Log 0m Log M 1 0.1047 0.0014 lE-OS —0.98 -4.845 2 0.2094 0.0021 28-05 -0.679 -4.669 4 0.4188 0.0043 4E-05 -0.378 —4.368 8 0.8376 0.0077 8E-05 -0.077 -4.115 16 1.6752 0.0139 0.0001 0.2241 -3.856 32 3.3504 0.0261 0.0003 0.5251 -3.584 64 6.7008 0.0532 0.0005 0.8261 -3.274 128 13.402 0.1123 0.0011 1.1272 -2.949 256 26.803 0.2586 0.0026 1.4282 -2.587 512 53.606 0.6994 0.007 1.7292 -2.155 256 26.803 0.2591 0.0026 1.4282 -2.586 128 13.402 0.1127 0.0011 1.1272 -2.948 64 6.7008 0.0527 0.0005 0.8261 -3.278 32 3.3504 0.0257 0.0003 0.5251 —3.59 16 1.6752 0.0129 0.0001 0.2241 -3.891 8 0.8376 0.0064 6E-05 -0.077 -4.192 4 0.4188 0.0029 3E-05 -0.378 -4.544 2 0.2094 0.0014 1E-05 -0.679 -4.845 1 0.1047 0.0012 1E-05 -0.98 -4.924 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.026 92 m average apparent viscosity = shear stress/ shear d = 0.041 43 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d‘3' (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.1301 -0.759 -2.039 0.278 2 0.2094 0.936 0.1952 -0.066 -1.634 0.2085 4 0.4188 1.872 0.3903 0.627 -0.941 0.2085 8 0.8376 3.7441 0.6993 1.3202 —0.358 0.1868 16 1.6752 7.4881 1.2685 2.0133 0.2378 0.1694 32 3.3504 14.976 2.3744 2.7065 0.8647 0.1585 64 6.7008 29.953 4.8463 3.3996 1.5782 0.1618 128 13.402 59.905 10.229 4.0928 2.3252 0.1708 256 26.803 119.81 23.548 4.7859 3.1591 0.1965 512 53.606 239.62 63.685 5.4791 4.1539 0.2658 X Y Regression Statistics R Square 0.9914 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.2065 Interce —1.577 0.0997 —15.83 7E-08 -1.807 -1.348 0.9798 x1 0.9798 0.0323 30.35 28—10 0.9053 1.0542 ’4 II II Mixer Viscometry, 15%, 15.02%, 71.53 9 corn syrup, T= 40°C, 10.75 g CaCO3 rpm readings Average 1 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.1625 2 0.2667 0.2667 0.2667 0.2333 0.2667 0.2667 0.2667 0.3 0.2667 4 0.3667 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3958 8 0.6333 0.6333 0.6333 0.6333 0.6333 0.6333 0.6333 0.6333 0.6333 16 0.9667 0.9333 0.9667 0 9667 0.9667 0 9667 0.9667 0.9667 0.9625 32 1.8333 1.8333 1.8333 1 8333 1.8333 1 8333 1.8333 1.8333 1.8333 64 3.7333 3.7667 3.7333 3 7333 3.7 3.7333 3.7 3.7 3.725 128 7.9333 7.9667 7.9333 7.9333 7.9333 7.9333 7.9333 7.9333 7.9375 256 18.4 18.433 18.433 18.433 18.467 18.467 18.5 18.5 18.454 512 49.9 50.1 50.2 50.1 50.1 50.1 50.2 50.1 50.1 256 18.7 18.6 18.6 18.6 18.6 18.7 18.6 18.7 18.638 128 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 64 3.7 3.7 3.7 3.7 3.7 3.8 3.7 3.8 3.725 32 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 16 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 8 0.4667 0.4333 0.4333 0.4333 0.4333 0.4333 0.4333 0.4333 0.4375 4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2 0.1 0.0667 0.1 0.0667 0.0667 0.0667 0.0667 0.1 0.0792 1 0.033 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0023 28-05 -0.98 -4.634 2 0.2094 0.0038 4E-05 -0.679 -4.419 4 0.4188 0.0057 6E-05 -0.378 -4.248 8 0.8376 0.009 9E-05 -0.077 -4.043 16 1.6752 0.0138 0.0001 0.2241 —3.862 32 3.3504 0.0262 0.0003 0.5251 -3.582 64 6.7008 0.0532 0.0005 0.8261 -3.274 128 13.402 0.1134 0.0011 1.1272 -2.945 256 26.803 0.2637 0.0026 1.4282 -2.579 512 53.606 0.7158 0.0072 1.7292 -2.145 256 26.803 0.2663 0.0027 1.4282 -2.575 128 13.402 0.1157 0.0012 1.1272 -2.937 64 6.7008 0.0532 0.0005 0.8261 -3.274 32 3.3504 0.0257 0.0003 0.5251 -3.59 16 1.6752 0.0129 0.0001 0.2241 -3.891 8 0.8376 0.0063 6E-05 -0.077 -4.204 4 0.4188 0.0029 3E—05 -0.378 -4.544 2 0.2094 0.0011 1E-05 -0.679 -4.947 1 0.1047 0.0005 5E-06 —0.98 -5.322 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.2114 -0.759 -1.554 0.4517 2 0.2094 0.936 0.3469 -0.066 -1.059 0.3707 4 0.4188 1.872 0.515 0.627 -0.664 0.2751 8 0.8376 3.7441 0.824 1.3202 -0.194 0.2201 16 1.6752 7.4881 1.2522 2.0133 0.2249 0.1672 32 3.3504 14.976 2.3852 2.7065 0.8693 0.1593 64 6.7008 29.953 4.8463 3.3996 1.5782 0.1618 128 13.402 59.905 10.327 4.0928 2.3347 0.1724 256 26.803 119.81 24.009 4.7859 3.1784 0.2004 512 53.606 239.62 65.181 5.4791 4.1772 0.272 X Y Regression Statistics R Square 0.9766 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.2954 Interce -1.219 0.151 -8.074 2E—05 -1.S68 -0.871 0.8935 x1 0.8935 0.0489 18.269 2E-08 0.7807 1.0063 :3 II II 98 Mixer Viscometry, 15%, 14.99%, 60.7 9 corn syrup, T = 40.2°C, 9.1 g CaCO3 rpm readings Average 1 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 4 0.2667 0.2667 0.2667 0.2667 0.2333 0.2667 0.2667 0.2667 0.2625 8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 16 1 1 1 1 1 1 1 1 1 32 2 2 2 2 1.9 1.9 2 1.9 1.9625 64 4 4 4 4 4 4 4 4 4 128 8.4 8.4 8.4 8.4 8.4 8.5 8.4 8.4 8.4125 256 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 512 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 256 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 128 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 64 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 32 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 16 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2 0.0667 0.0667 0.0667 0.0667 0.0667 0.0667 0.1 0.1 0.075 1 0.0333 0.0333 0 0.0333 0.0333 0.0333 0.0333 0 0.025 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0005 SE—06 -0.98 -5.322 2 0.2094 0.0014 lE-OS -0 679 -4.845 4 0.4188 0.0038 4E-05 -0.378 -4.426 8 0.8376 0.0071 7E-05 -0.077 -4.146 16 1.6752 0.0143 0.0001 0.2241 -3.845 32 3.3504 0.028 0.0003 0.5251 —3.552 64 6.7008 0.0571 0.0006 0.8261 —3.243 128 13.402 0.1202 0.0012 1.1272 -2.92 256 26.803 0.2743 0.0027 1.4282 -2.562 512 53.606 0.7258 0.0073 1.7292 -2.139 256 26.803 0.2743 0.0027 1.4282 -2.562 128 13.402 0.12 0.0012 1.1272 -2.921 64 6.7008 0.0557 0.0006 0.8261 -3.254 32 3.3504 0.0271 0.0003 0.5251 -3.566 16 1.6752 0.0129 0.0001 0.2241 -3.891 8 0.8376 0.0057 68—05 -0.077 -4.243 4 0.4188 0.0029 3E-05 -0.378 -4.544 2 0.2094 0.0011 1E-05 -0.679 -4.97 1 0.1047 0.0004 4E-06 -0.98 -5.447 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M l ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.0434 —0.759 -3.138 0.0927 2 0.2094 0.936 0.1301 -0.066 -2.039 0.139 4 0.4188 1.872 0.3415 0.627 -1.074 0.1824 8 0.8376 3.7441 0.6505 1.3202 -0.43 0.1737 16 1.6752 7.4881 1.301 2.0133 0.2631 0.1737 32 3.3504 14.976 2.5532 2.7065 0.9374 0.1705 64 6.7008 29.953 5.2041 3.3996 1.6494 0.1737 128 13.402 59.905 10.945 4.0928 2.3929 0.1827 256 26.803 119.81 24.979 4.7859 3.2181 0.2085 512 53.606 239.62 66.092 5.4791 4.191 0.2758 X Y Regression Statistics R Square 0.9957 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% K = 0.1322 Interce -2.024 0.0796 -25.41 lE—09 —2.207 -1.84 n = 1.1106 x1 1.1106 0.0258 43.053 lE-ll 1.0511 1.17 10.- Mixer Viscometry, 25%, 24.94%, 70.29 9 corn syrup, T: 40.8°C, 17.53 g CaCO3 rpm readings Average 1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 2 0.3 0.3333 0.3 0.3 0.3 0.3 0.3 0.3333 0.3083 4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 16 2.1 2.1 2.1 2.1 2.1 2.1 2 2.1 2.0875 32 4 4 4 4 4 4 4 4 4 64 7.9 7.9 7.9 7.9 7.8 7.9 7.9 7.9 7.8875 128 16 16 16 16 16.1 16 16 16 16.013 256 32.8 32.8 32.8 32.7 32.6 32.6 32.6 32.6 32.688 512 70.7 70.7 70.7 70.6 70.6 70.5 70.5 70.5 70.6 256 31.1 31.1 31.2 31.2 31.2 31.2 31.2 31.2 31.175 128 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.3 15.213 64 7.7 7.7 7.7 7.6 7.6 7.7 7.7 7.7 7.675 32 4 3.9 3.9 3.994 3.9 4 3.9 4 3.9493 16 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1375 1 0.0333 0.0667 0.0333 0.0667 0.0333 0.0333 0.0333 0.0667 0.0458 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0024 2E—05 -0.98 -4.623 2 0.2094 0.0044 4E-05 -0.679 -4.356 4 0.4188 0.0086 9E-05 ~0.378 -4.067 8 0.8376 0.0157 0.0002 —0.077 -3.804 16 1.6752 0.0298 0.0003 0.2241 -3.525 32 3.3504 0.0571 0.0006 0.5251 -3.243 64 6.7008 0.1127 0.0011 0.8261 -2.948 128 13.402 0.2288 0.0023 1.1272 -2.641 256 26.803 0.467 0.0047 1.4282 —2.331 512 53.606 1.0087 0.0101 1.7292 -1.996 256 26.803 0.4454 0.0045 1.4282 -2.351 128 13.402 0.2173 0.0022 1.1272 -2.663 64 6.7008 0.1097 0.0011 0.8261 -2.96 32 3.3504 0.0564 0.0006 0.5251 -3.249 16 1.6752 0.0271 0.0003 0.2241 -3.566 8 0.8376 0.0129 0.0001 -0.077 -3.891 4 0.4188 0.0057 68—05 -0.378 -4.243 2 0.2094 0.002 2E-05 -0.679 -4.707 1 0.1047 0.0007 7E-06 -0.98 -5.184 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m = 0.04143 m average apparent viscosity = shear stress/ shear d k' = 4.47 K = consistency coefficient, Pa.s‘n l average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.2169 -0.759 -1.528 0.4634 2 0.2094 0.936 0.4011 -0.066 -0.913 0.4286 4 0.4188 1.872 0.7806 0.627 -0.248 0.417 8 0.8376 3.7441 1.4311 1.3202 0.3585 0.3822 16 1.6752 7.4881 2.7159 2.0133 0.9991 0.3627 32 3.3504 14.976 5.2041 2.7065 1.6494 0.3475 64 6.7008 29.953 10.262 3.3996 2.3284 0.3426 128 13.402 59.905 20.832 4.0928 3.0365 0.3478 256 26.803 119.81 42.527 4.7859 3.7501 0.355 512 53.606 239.62 91.852 5.4791 4.5202 0.3833 X Y Regression Statistics R Square 0.9989 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.4165 Interce —0.876 0.0346 -25.34 lE-09 -0.955 -0.796 0.9624 x1 0.9624 0.0112 85.977 2E-14 0.9365 0.9882 :3 II II 100 11.- Mixer Viscometry, 25%, 25.01%, 71.54, 9 corn syrup, T = 40°C, 17.89 g CaCO3 rpm readings Average 1 0.0667 0.0667 0.1 0.0667 0.0667 0.0667 0.0667 0.0667 0.0708 2 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 4 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 0.2667 8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.725 16 1.7 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.65 32 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.55 64 7.1 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.1375 128 14.7 14.6 14.6 1.5 14.5 14.5 14.6 14.5 12.938 256 30 5 30.5 30.5 30 5 30.5 30.4 30.3 30.4 30.45 512 69 69.1 69 69 69 69 69 69.1 69 025 256 29 6 29.6 29.7 29.6 29.7 29.6 29.6 29.7 29.638 128 14.1 14.2 14.1 14.2 14.2 14.1 14.1 14.2 14.15 64 7 6.9 6.9 7 7.1 7 7 7 6.9875 32 3.5 3.5 3.5 3.6 3.5 3.5 3.6 3.5 3.525 16 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 4 0.3333 0.3333 0.3667 0.3 0.3333 0.3667 0.3667 0.3667 0.3458 2 0.1 0.1 0. 0.1 0.1 0.0667 0.1 0.1 0.0958 1 0.0333 0 0.0333 0 0 0 0 0 0.0083 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.001 1E-05 -0.98 -4.995 2 0.2094 0.0005 5E-06 -0.679 -5.322 4 0.4188 0.0038 4E-05 -0.378 -4.419 8 0.8376 0.0104 0 0001 -0.077 -3.985 16 1.6752 0.0236 0 0002 0.2241 -3.628 32 3.3504 0.0507 0 0005 0.5251 -3.295 64 6.7008 0.102 0 001 0.8261 -2.992 128 13.402 0.1848 0 0018 1.1272 -2.733 256 26.803 0.435 0.0044 1.4282 -2.361 512 53.606 0.9862 0.0099 1.7292 -2.006 256 26.803 0.4234 0 0042 1.4282 -2.373 128 13.402 0.2022 0 002 1.1272 -2.694 64 6.7008 0.0998 0 001 0.8261 -3.001 32 3.3504 0.0504 0 0005 0.5251 -3.298 16 1.6752 0.0243 0 0002 0.2241 —3.615 8 0.8376 0.0114 0.0001 -0.077 -3.942 4 0.4188 0.0049 SE-OS -0.378 -4.306 2 0.2094 0.0014 lE-OS —0.679 -4.864 1 0.1047 0.0001 1E-06 -0.98 -5.924 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d‘3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.0922 -0.759 -2.384 0.1969 2 0.2094 0.936 0.0434 -0.066 —3.138 0.0463 4 0.4188 1.872 0.3469 0.627 -1.059 0.1853 8 0.8376 3.7441 0.9432 1.3202 -0.058 0.2519 16 1.6752 7.4881 2.1467 2.0133 0.7639 0.2867 32 3.3504 14.976 4.6186 2.7065 1.5301 0.3084 64 6.7008 29.953 9.286 3.3996 2.2285 0.31 128 13.402 59.905 16.832 4.0928 2.8233 0.281 256 26.803 119.81 39.616 4.7859 3.6792 0.3307 512 53.606 239.62 89.803 5.4791 4.4976 0.3748 X Y Regression Statistics R Square 0.9697 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.1448 Interce -1.932 0.2307 —8.377 2E—05 —2.464 -1.4 1.1952 x1 1.1952 0.0747 15.998 68—08 1.0229 1.3675 :3 II II 101 12.— Mixer Viscometry, 25%, 0.25%, 70.88 g corn syrup 17.72, 22.1 g CaCO3 rpm readings Average 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.25 4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8 1 1 1 1 1 1 1 1 1 16 1.9 1.9 1.9 1.9 1.9 1.8 1.9 1.9 1.8875 32 3.6 3.6 3.5 3.5 3.5 3.5 3.5 3.6 3.5375 64 7 7 7 7 7.1 7 7.1 7 7.025 128 14.3 14.3 14.3 14.3 14.4 14.4 14.3 14.3 14.325 256 29.7 29.7 29.7 29 6 29.7 29.7 29.6 29.5 29.65 512 66.2 66.3 66.3 66 3 66.3 66.3 66.4 66.4 66.313 256 28.5 28.5 28.5 28 6 28.5 28.5 28.5 28.5 28.513 128 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.65 64 6.9 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8125 32 3.5 3.5 3.5 3.5 3.4 3.5 3.5 3.5 3.4875 16 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7 1.7125 8 0.8 0.9 0.9 0.9 0.8 0.9 0.8 0.9 0.8625 4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1875 1 0.1 0.1 0.1 0.6667 0.1 0.1 0.6667 0.1 0.2417 rad/s (N cm) (N m) M rpm omega M Log Om Log M 1 0.1047 0.0014 lE-OS -0.98 -4.845 2 0.2094 0.0036 4E-05 -0.679 -4.447 4 0.4188 0.0071 7E—05 -0.378 -4.146 8 0.8376 0.0143 0.0001 -0.077 -3.845 16 1.6752 0.027 0.0003 0.2241 -3.569 32 3.3504 0.0505 0.0005 0.5251 -3.296 64 6.7008 0.1004 0.001 0.8261 -2.998 128 13.402 0.2047 0.002 1.1272 -2.689 256 26.803 0.4236 0.0042 1.4282 -2.373 512 53.606 0.9474 0.0095 1.7292 -2.023 256 26.803 0.4074 0.0041 1.4282 -2.39 128 13.402 0.195 0.002 1.1272 —2.71 64 6.7008 0.0973 0.001 0.8261 -3.012 32 3.3504 0.0498 0.0005 0.5251 -3.303 16 1.6752 0.0245 0.0002 0.2241 -3.611 8 0.8376 0.0123 0.0001 -0.077 -3.909 4 0.4188 0.0057 6E-05 -0.378 -4.243 2 0.2094 0.0027 3E-05 -0.679 -4.572 1 0.1047 0.0035 38-05 —0.98 —4.462 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s‘n average shear stress = 2 M / ( ( pi d‘3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.1301 -0.759 -2.039 0.278 2 0.2094 0.936 0.3253 -0.066 -1.123 0.3475 4 0.4188 1.872 0.6505 0.627 —0.43 0.3475 8 0.8376 3.7441 1.301 1.3202 0.2631 0.3475 16 1.6752 7.4881 2.4557 2.0133 0.8984 0.3279 32 3.3504 14.976 4.6023 2.7065 1.5266 0.3073 64 6.7008 29.953 9.1396 3.3996 2.2126 0.3051 128 13.402 59.905 18.637 4.0928 2.9252 0.3111 256 26.803 119.81 38.575 4.7859 3.6526 0.322 512 53.606 239.62 86.274 5.4791 4.4575 0.36 X Y Regression Statistics R Square 0.9986 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% K = 0.3193 Interce —1.142 0.0409 -27.92 SE—10 -1.236 —1.047 = 1.0069 x1 1.0069 0.0132 76.03 68—14 0.9763 1.0374 102 12 a.- Mixer Viscometry, 25%, 0.25%, 70.52 9 corn syrup, 55°C, 17.63, 22.1 g CaCO3 rpm readings Average 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 2 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.4625 4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 8 1.1 1.2 1.2 1.1 1.2 1.1 1.2 1.1 1.15 16 2 2 2 2 2 2 2 2 2 32 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 64 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 128 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 256 30.6 30.6 30.6 30.6 30.7 30.7 30.7 30.7 30.65 512 68 67.8 67.8 67.8 67.8 67.8 67.8 67.8 67.825 256 29.9 29.9 29.9 29.9 29.9 29.8 29.8 29.9 29.875 128 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 64 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 32 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 16 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 8 1.1 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1375 4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0043 4E-05 -0.98 -4.368 2 0.2094 0.0066 7E—05 -0.679 -4.18 4 0.4188 0.01 0.0001 -0.378 -4 8 0.8376 0.0164 0.0002 -0.077 -3.784 16 1.6752 0.0286 0.0003 0.2241 -3.544 32 3.3504 0.0543 0.0005 0.5251 -3.265 64 6.7008 0.1057 0.0011 0.8261 -2.976 128 13.402 0.2115 0.0021 1.1272 -2.675 256 26.803 0.4379 0.0044 1.4282 -2.359 512 53.606 0.969 0.0097 1.7292 -2.014 256 26.803 0.4268 0.0043 1.4282 -2.37 128 13.402 0.2072 0.0021 1.1272 -2.684 64 6.7008 0.1057 0.0011 0.8261 -2.976 32 3.3504 0.0557 0.0006 0.5251 -3.254 16 1.6752 0.03 0.0003 0.2241 -3.523 8 0.8376 0.0163 0.0002 -0.077 -3.789 4 0.4188 0.01 0.0001 -0.378 ‘4 2 0.2094 0.0057 6E-05 -0.679 -4.243 1 0.1047 0.0043 4E-05 -0.98 -4.368 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.3903 -0.759 -0.941 0.834 2 0.2094 0.936 0.6017 -0.066 -0.508 0.6428 4 0.4188 1.872 0.9107 0.627 -0.094 0.4865 8 0.8376 3.7441 1.4962 1.3202 0.4029 0.3996 16 1.6752 7.4881 2.602 2.0133 0.9563 0.3475 32 3.3504 14.976 4.9439 2.7065 1.5981 0.3301 64 6.7008 29.953 9.6275 3.3996 2.2646 0.3214 128 13.402 59.905 19.255 4.0928 2.9578 0.3214 256 26.803 119.81 39.876 4.7859 3.6858 0.3328 512 53.606 239.62 88.241 5.4791 4.4801 0.3683 X Y Regression Statistics R Square 0.9893 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% 0.5625 Interce -0.575 0.0987 —5.828 0.0003 -0.803 -0.348 0.8711 x1 0.8711 0.032 27.243 6E-10 0.7974 0.9448 3 II II 103 12 b.- Mixer Viscometry, 25%, 0.25%, 71.39 9 corn syrup, 55°C, 17.85, 22.1 g CaCO3 rpm readings Average 1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2875 2 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.4625 4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 8 1.1 1.2 1.2 1.1 1.2 1.1 1.2 1.1 1.15 16 2 2 2 2 2 2 2 2 2 32 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 64 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 128 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 256 30.6 30.6 30.6 30.6 30.7 30.7 30.7 30.7 30.65 512 68 67.8 67.8 67.8 67.8 67.8 67.8 67.8 67.825 256 29.9 29.9 29 9 29.9 29.9 29.8 29.8 29.9 29.875 128 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 64 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 32 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 16 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 8 1.1 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1375 4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0041 4E-05 -0.98 -4.386 2 0.2094 0.0066 7E—05 —0.679 -4.18 4 0.4188 0.01 0.0001 -0.378 -4 8 0.8376 0.0164 0.0002 -0.077 —3.784 16 1.6752 0.0286 0.0003 0.2241 -3.544 32 3.3504 0.0543 0.0005 0.5251 -3.265 64 6.7008 0.1057 0.0011 0.8261 ~2.976 128 13.402 0.2115 0.0021 1.1272 -2.675 256 26.803 0.4379 0.0044 1.4282 -2.359 512 53.606 0.969 0.0097 1.7292 -2.014 256 26.803 0.4268 0.0043 1.4282 -2.37 128 13.402 0.2072 0.0021 1.1272 -2.684 64 6.7008 0.1057 0.0011 0.8261 —2.976 32 3.3504 0.0557 0.0006 0.5251 -3.254 16 1.6752 0.03 0.0003 0.2241 -3.523 8 0.8376 0.0163 0.0002 -0.077 -3.789 4 0.4188 0.01 0.0001 -0.378 —4 2 0.2094 0.0057 6E-05 -0.679 -4.243 1 0.1047 0.0043 4E-05 -0.98 —4.368 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.374 -0.759 -0.983 0.7992 2 0.2094 0.936 0.6017 -0.066 -0.508 0.6428 4 0.4188 1.872 0.9107 0.627 -0.094 0.4865 8 0.8376 3.7441 1.4962 1.3202 0.4029 0.3996 16 1.6752 7.4881 2.602 2.0133 0.9563 0.3475 32 3.3504 14.976 4.9439 2.7065 1.5981 0.3301 64 6.7008 29.953 9.6275 3.3996 2.2646 0.3214 128 13.402 59.905 19.255 4.0928 2.9578 0.3214 256 26.803 119.81 39.876 4.7859 3.6858 0.3328 512 53.606 239.62 88.241 5.4791 4.4801 0.3683 X Y Regression Statistics R Square 0.9902 Observations 10 Coeffic Standar t Stati P—value Lower 95% Upper 95% K = 0.5557 Interce -0.588 0.095 -6.185 0.0002 -0.807 -0.368 n = 0.8745 x1 0.8745 0.0308 28.42 4E-10 0.8035 0.9454 104 13.- Mixer Viscometry, 25%, 0.3501%, 71.13 g corn syrup, 55°C, 24.9, 22.1 g CaCO3 rpm readings Average 1 0 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 .1 2 0 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4625 8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 16 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 32 3 8 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.8375 64 7.5 7.6 7.6 7.5 7.6 7.6 7.5 7.6 7.5625 128 15.3 15.3 15.3 15.3 15.4 15.4 15 4 15.4 15.35 256 31.3 31.3 31.3 31.3 31.3 31.2 31.3 31.3 31.288 512 65.4 65.4 65.4 65.4 65.4 65.4 65.5 65.4 65.413 256 30.7 30.7 30.8 30.7 30.8 30.8 30.8 30.9 30.775 128 14.9 14.9 14.9 14.9 14.9 14.9 14.9 15 14.913 64 7 5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 32 3 8 3.8 3.9 3.8 3.9 3.9 3.8 3.9 3.85 16 2 2 2 2 2 2 2 2 2 8 1 1 1.1 1 1.1 1 1 1.1 1.0375 4 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.55 2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1375 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0014 lE-OS -0.98 -4.845 2 0.2094 0.0029 3E—05 -0.679 -4.S44 4 0.4188 0.0066 7E-05 -0.378 -4.18 8 0.8376 0.0129 0.0001 -0.077 —3.891 16 1.6752 0.0271 0.0003 0.2241 -3.566 32 3.3504 0.0548 0.0005 0.5251 -3.261 64 6.7008 0.108 0.0011 0.8261 -2.966 128 13.402 0.2193 0.0022 1.1272 -2.659 256 26.803 0.447 0.0045 1.4282 -2.35 512 53.606 0.9346 0.0093 1.7292 -2.029 256 26.803 0.4397 0.0044 1.4282 -2.357 128 13.402 0.2131 0.0021 1.1272 -2.672 64 6.7008 0.1072 0.0011 0.8261 -2.97 32 3.3504 0.055 0.0006 0.5251 -3.26 16 1.6752 0.0286 0.0003 0.2241 -3.544 8 0.8376 0.0148 0.0001 -0.077 -3.829 4 0.4188 0.0079 8E-05 -0.378 —4.105 2 0.2094 0.0043 4E-05 -0.679 -4.368 1 0.1047 0.002 ZE-OS -0.98 -4.707 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s‘n average shear stress = 2 M / ( ( pi d03' (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.1301 —0.759 —2.039 0.278 2 0.2094 0.936 0.2602 -0.066 -1.346 0.278 4 0.4188 1.872 0.6017 0.627 -0.508 0.3214 8 0.8376 3.7441 1.1709 1.3202 0.1578 0.3127 16 1.6752 7.4881 2.4719 2.0133 0.905 0.3301 32 3.3504 14.976 4.9926 2.7065 1.608 0.3334 64 6.7008 29.953 9.8389 3.3996 2.2863 0.3285 128 13.402 59.905 19.971 4.0928 2.9943 0.3334 256 26.803 119.81 40.705 4.7859 3.7064 0.3397 512 53.606 239.62 85.103 5.4791 4.4439 0.3552 X Y Regression Statistics R Square 0.9997 Observations 10 Coeffic Standar t Stati P—value Lower 95% Upper 95% K = 0.2951 Interce -1.221 0.0193 -63.31 3E-13 -1.265 -1.176 = 1.0345 x1 1.0345 0.0062 165.67 5E—17 1.0201 1.0489 105 13 a.- Mixer Viscometry, 25%, 0.3501%, 71.13 9 corn syrup, 55°C, 24.9, 22.1 g CaCO3 rpm readings Average 1 0.2333 0.2333 0.2333 0.2333 0.2333 0.2333 0.2333 0.2333 0.2333 2 0.3333 0.3667 0.3667 0.3667 0.3667 0.3333 0.3667 0.3667 0.3583 4 0.6333 0.6333 0.6 0.6 0.6 0.6 0.6 0.6 0.6083 8 1.1 1.1 1 1.1 1 1.1 1 1.1 1.0625 16 2 1.9 1.9 1.9 1.9 2 1.9 1.9 1.925 32 3.7 3.7 3.7 3.6 3.7 3.7 3.7 3.6 3.675 64 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.1 7.1375 128 14.3 14.3 14.3 14.3 14.4 14.3 14.4 14.3 14.325 256 29.7 29 6 29.6 29.6 29.6 29.6 29.6 29.6 29.613 512 66.8 66 7 66.8 66.8 66.8 67 67 67.2 66.888 256 28.8 28.9 28.8 28.9 28.8 28.8 28.9 28.9 28.85 128 13.9 13.9 13.9 13.8 13.9 13.9 13.9 13.8 13.875 64 7 7.1 7 7.1 7 7 6.9 7 7.0125 32 3.7 3.6 3.7 3.6 3.7 3.7 3.6 3.6 3.65 16 1.9 1.9 1.8 1.9 1.9 1.8 1.9 1.9 1.875 8 0.9 1 9 1 0.9 1 1 1 1.975 4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2625 1 0.1667 0.1667 0.1667 0.2 0.1667 0.1667 0.1667 0.1667 0.1708 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0033 3E-05 -0.98 -4.477 2 0.2094 0.0051 SE-OS —0.679 -4.291 4 0.4188 0.0087 9E-05 -0.378 -4.061 8 0.8376 0.0152 0.0002 -0.077 -3.819 16 1.6752 0.0275 0.0003 0.2241 —3.561 32 3.3504 0.0525 0.0005 0.5251 -3.28 64 6.7008 0.102 0.001 0.8261 -2.992 128 13.402 0.2047 0.002 1.1272 -2.689 256 26.803 0.4231 0.0042 1.4282 -2.374 512 53.606 0.9556 0.0096 1.7292 —2.02 256 26.803 0.4122 0.0041 1.4282 -2.385 128 13.402 0.1982 0.002 1.1272 -2.703 64 6.7008 0.1002 0.001 0.8261 -2.999 32 3.3504 0.0521 0.0005 0.5251 -3.283 16 1.6752 0.0268 0.0003 0.2241 -3.572 8 0.8376 0.0282 0.0003 —0.077 -3.549 4 0.4188 0.0071 7E-05 -0.378 -4.146 2 0.2094 0.0038 4E-05 -0.679 -4.426 1 0.1047 0.0024 2E-05 -0.98 -4.612 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s‘n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.3036 -0.759 —1.192 0.6486 2 0.2094 0.936 0.4662 -0.066 -0.763 0 4981 4 0.4188 1.872 0.7915 0.627 -0.234 0 4228 8 0.8376 3.7441 1.3823 1.3202 0.3238 0 3692 16 1.6752 7.4881 2.5045 2.0133 0.9181 0 3345 32 3.3504 14.976 4.7812 2.7065 1.5647 0.3193 64 6.7008 29.953 9.286 3.3996 2.2285 0.31 128 13.402 59.905 18.637 4.0928 2.9252 0.3111 256 26.803 119.81 38.526 4.7859 3.6513 0 3216 512 53.606 239.62 87.022 5.4791 4.4662 0 3632 X Y Regression Statistics R Square 0.9939 Observations 10 Coeffic Standar t Stati P—value Lower 95% Upper 95% = 0.4692 Interce -0.757 0.078 —9.704 SE—O6 —0.937 —0.577 n = 0.9092 x1 0.9092 0.0253 35.998 SE-ll 0.8509 0.9674 106 14.- Mixer Viscometry, 35%, 35%, 62.2 9 corn syrup, 21.7 g CaCO3 rpm readings Average 1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 2 1.4 1.3 1.4 1.3 1.4 1.4 1.3 1.4 1.3625 4 2.3 2.4 2.3 2.4 2.3 2.3 2.3 2.3 2.325 8 4 4 4 4 4 4 4 4 4 16 6.9 6.9 7 6.9 6.9 7 6.9 7 6.9375 32 12.2 12.3 12.3 12.2 12.2 12.2 12.3 12.2 12.238 64 22 21.9 22 21.9 21.9 22 21.9 22 21.95 128 40.3 40.1 40 40.1 40 40 39.9 39 8 40.025 256 72.4 72.3 72.3 72.2 72.1 72 72 72 72.163 128 33.7 33.7 33.7 33.7 33.7 33.7 33.8 33.7 33.713 64 20.3 20.3 20.2 20.1 20 20.1 20 20 20.125 32 11.5 11.4 11.4 11.4 11.4 11.4 11.5 11.4 11.425 16 6.6 6.5 6.6 6.5 6.6 6.5 6.6 6.5 6.55 8 3.7 3.7 3.7 3.8 3.7 3.7 3.6 3.7 3.7 4 2.1 2.1 2.1 2.1 2 2.1 2 2.1 2.075 2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.65 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.0114 0.0001 -0.98 -3.942 2 0.2094 0.0195 0.0002 -0.679 -3.711 4 0.4188 0.0332 0.0003 -0.378 —3.479 8 0.8376 0.0571 0.0006 -0.077 -3.243 16 1.6752 0.0991 0.001 0.2241 -3.004 32 3.3504 0.1748 0.0017 0.5251 -2.757 64 6.7008 0.3136 0.0031 0.8261 -2.504 128 13.402 0.5718 0.0057 1.1272 -2.243 256 26.803 1.031 0.0103 1.4282 -1.987 128 13.402 0.4817 0.0048 1.1272 -2.317 64 6.7008 0.2875 0.0029 0.8261 -2.541 32 3.3504 0.1632 0.0016 0.5251 -2.787 16 1.6752 0.0936 0.0009 0.2241 -3.029 8 0.8376 0.0529 0.0005 -0.077 —3.277 4 0.4188 0.0296 0.0003 -0.378 -3.528 2 0.2094 0.0171 0.0002 -0.679 -3.766 1 0.1047 0.0093 9E-05 -0.98 -4.032 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient. Pa.s“n average shear stress = 2 M l ( ( pi d‘3' (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 1.0408 -0.759 0.04 2.2239 2 0.2094 0.936 1.7726 -0.066 0.5725 1.8938 4 0.4188 1.872 3.0249 0.627 1.1069 1.6158 8 0.8376 3.7441 5.2041 1.3202 1.6494 1.3899 16 1.6752 7.4881 9.0258 2.0133 2.2001 1.2053 32 3.3504 14.976 15.921 2.7065 2.7676 1.0631 64 6.7008 29.953 28.557 3.3996 3.3519 0.9534 128 13.402 59.905 52.073 4.0928 3.9526 0.8693 256 26.803 119.81 93.884 4.7859 4.5421 0.7836 512 53.606 239.62 43.86 5.4791 3.781 0.183 X Y Regression Statistics R Square 0.9492 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% = 2.0496 Interce 0.7176 0.1796 3.9948 0.0031 0.3034 1.1319 n = 0.7114 x1 0.7114 0.0582 12.227 7B—07 0.5772 0.8456 107 15.- Mixer Viscometry, 35%, 35%, 65.5 9 corn syrup, T = 40.8°C, 22.9 g CaCO3 rpm readings Average 1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 4 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.15 8 3.7 3.7 3.8 3.7 3.7 3.8 3.8 3.8 3.75 16 6.7 6.6 6.7 6.6 6.7 6.7 6.7 6.7 6.675 32 11.9 12 12 11.9 11.9 11.9 12 11.9 11.938 64 21.7 21 5 21.7 21.6 21.6 21.5 21.7 21.6 21.613 128 39.2 39 3 39.2 39.1 39.2 39 38.9 39 39.113 256 71.2 71.6 71.4 71.4 71.2 71.2 71.1 71.2 71.288 128 38 38 37.9 38.1 38.1 38.1 38.1 38 38.038 64 20.9 20.9 20.9 20 9 21 21 21 20.9 20.938 32 11.7 11.6 11.6 11.6 11.6 11.7 11.6 11.6 11.625 16 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4625 8 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.6625 4 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6625 rad/s (N cm) (N m) rpm omega M M Log Om Log M 1 0.1047 0.01 0.0001 -0.98 -4 2 0.2094 0.0171 0.0002 -0.679 -3.766 4 0.4188 0.0307 0.0003 -0.378 -3.513 8 0.8376 0.0536 0.0005 -0.077 -3.271 16 1.6752 0.0954 0.001 0.2241 -3.021 32 3.3504 0.1706 0.0017 0.5251 —2.768 64 6.7008 0.3088 0.0031 0.8261 -2.51 128 13.402 0.5588 0.0056 1.1272 —2.253 256 26.803 1.0185 0.0102 1.4282 -1.992 128 13.402 0.5434 0.0054 1.1272 -2.265 64 6.7008 0.2991 0.003 0.8261 -2.524 32 3.3504 0.1661 0.0017 0.5251 -2.78 16 1.6752 0.0923 0.0009 0.2241 -3.035 8 0.8376 0.0523 0.0005 -0.077 -3.281 4 0.4188 0.03 0.0003 -0.378 -3.523 2 0.2094 0 0171 0.0002 —0.679 -3.766 1 0.1047 0.0095 9E-05 —0.98 —4.024 Determination of average shear rate average shear rate = 4.47 angular velocity b = 0.02692 m average apparent viscosity = shear stress/ shear d = 0.04143 m k' = 4.47 K = consistency coefficient, Pa.s“n average shear stress = 2 M / ( ( pi d“3* (b/d + 1/3) ) ) b/d + 1/3 = 0.9831 shear stress: M 9106.2 $e$103 Sigma/ angular average average Gamma velocit shear shear Lnshear Lnshear viscos rpm rad/s rate stress rate stress Pa.s 1 0.1047 0.468 0.9107 -0.759 -0.094 1.9459 2 0.2094 0.936 1.5612 -0.066 0.4455 1.6679 4 0.4188 1.872 2.7972 0.627 1.0286 1.4942 8 0.8376 3.7441 4.8788 1.3202 1.5849 1.3031 16 1.6752 7.4881 8.6843 2.0133 2.1615 1.1597 32 3.3504 14.976 15.531 2.7065 2.7428 1.037 64 6.7008 29.953 28.118 3.3996 3.3364 0.9388 128 13.402 59.905 50.886 4.0928 3.9296 0.8494 256 26.803 119.81 92.746 4.7859 4.5299 0.7741 512 53.606 239.62 49.487 5.4791 3.9017 0.2065 X Y Regression Statistics R square 0.9600 Observations 10 Coeffic Standar t Stati P-value Lower 95% Upper 95% K = 1.8315 Interce 0.6051 0.1654 3.6587 0.0052 0.2237 0.9866 = 0.7422 x1 0.7422 0.0536 13.855 2E-07 0.6187 0.8658 XIII. APPENDIX 7. CALCULATIONS AT 55°C TO FIT THE GLOBAL MODEL. These calculations were used to fit a model using the values coming from the three different temperatures. MIX55-1.WK1 ln 55-0-1 ln sstres sstress k lnk T l/T C srate srate 0.0976 -2.327 0.1295 -2.044 328.15 0.003 0 0.468 -0.759 0.1464 -1.922 0.1295 -2.044 328.15 0.003 0 0.936 -0.066 0.2439 -1.411 0.1295 -2.044 328.15 0.003 0 1.872 0.627 0.309 -1.174 0.1295 -2.044 328.15 0.003 0 3.7441 1.3202 0.6993 -0.358 0.1295 -2.044 328.15 0.003 0 7.4881 2.0133 1.301 0.2631 0.1295 —2.044 328.15 0.003 0 14.976 2.7065 2.7647 1.0169 0.1295 -2.044 328.15 0.003 0 29.953 3.3996 6.131 1.8134 0.1295 -2.044 328.15 0.003 0 59.905 4.0928 15.206 2.7217 0.1295 -2.044 328.15 0.003 0 119.81 4.7859 43.031 3.7619 0.1295 -2.044 328.15 0.003 0 239.62 5.4791 In 55—0-2 1n sstres sstress k lnk T l/T C srate srate 0.1301 -2.039 0.1896 -1.663 328.15 0.003 0 0.468 —0.759 0.1789 —1.721 0.1896 -1.663 328.15 0.003 0 0.936 -0.066 0.2602 -1.346 0.1896 -1.663 328.15 0.003 0 1.872 0 627 1.1709 0.1578 0.1896 -1.663 328.15 0.003 0 3.7441 1 3202 0.8294 —0.187 0.1896 —1.663 328.15 0.003 0 7.4881 2.0133 1.3335 0.2878 0.1896 -1.663 328.15 0.003 0 14.976 2.7065 2.6508 0.9749 0.1896 -1.663 328.15 0.003 0 29.953 3 3996 6.0009 1.7919 0.1896 -1.663 328.15 0.003 0 59.905 4 0928 15.173 2.7195 0.1896 -1.663 328.15 0.003 0 119.81 4 7859 42.999 3.7612 0.1896 -1.663 328.15 0.003 0 239.62 5 4791 In 55-0-3 ln sstres sstress k lnk T 1/T C srate srate 0.1301 —2.039 0.1653 -1.8 328.15 0.003 0 0.468 -0.759 0.1952 -1.634 0.1653 -1.8 328.15 0.003 0 0.936 -0.066 0.2602 -1.346 0.1653 -1.8 328.15 0.003 0 1.872 0.627 0.4554 -0.787 0.1653 -1.8 328.15 0.003 0 3.7441 1.3202 0.7969 -0.227 0.1653 -1.8 328.15 0.003 0 7.4881 2.0133 1.301 0.2631 0.1653 -1.8 328.15 0.003 0 14.976 2.7065 2.6671 0.981 0.1653 -1.8 328.15 0.003 0 29.953 3.3996 5.9847 1.7892 0.1653 -1.8 328.15 0.003 0 59.905 4.0928 14.978 2.7066 0.1653 -1.8 328.15 0.003 0 119.81 4.7859 42.641 3.7528 0.1653 -1.8 328.15 0.003 0 239.62 5.4791 In 55—5—1 1n sstres sstress k lnk T l/T C srate srate 0.6505 -0.43 0.5706 -0.561 328.15 0.003 5 0.468 -0.759 0.7481 -0.29 0.5706 -0.561 328.15 0.003 5 0.936 -0.066 0.8294 -0.187 0.5706 -0.561 328.15 0.003 5 1.872 0.627 1.0408 0.04 0.5706 -0.561 328.15 0.003 5 3.7441 1.3202 1.301 0.2631 0.5706 -0.561 328.15 0.003 5 7.4881 2.0133 1.9515 0.6686 0.5706 -0.561 328.15 0.003 5 14.976 2.7065 3.5453 1.2656 0.5706 -0.561 328.15 0.003 5 29.953 3.3996 7.4158 2.0036 0.5706 -0.561 328.15 0.003 5 59.905 4.0928 17.856 2.8824 0.5706 -0.561 328.15 0.003 5 119.81 4.7859 49.471 3.9014 0.5706 -0.561 328.15 0.003 5 239.62 5.4791 In 55—5-2 1n sstres sstress k lnk T 1/T C srate srate 0.0867 -2.445 0.1244 —2.084 328.15 0.003 5 0.468 -0.759 0.1301 -2.039 0.1244 -2.084 328.15 0.003 5 0.936 -0.066 0.2168 -1.529 0.1244 -2.084 328.15 0.003 5 1.872 0.627 0.3903 —0.941 0.1244 -2.084 328.15 0.003 5 3.7441 1.3202 0.7481 -0.29 0.1244 -2.084 328.15 0.003 5 7.4881 2.0133 1.4962 0.4029 0.1244 -2.084 328.15 0.003 5 14.976 2.7065 3.1224 1.1386 0.1244 -2.084 328.15 0.003 5 29.953 3.3996 6.9442 1.9379 0.1244 -2.084 328.15 0.003 5 59.905 4.0928 17.11 2.8397 0.1244 -2.084 328.15 0.003 5 119.81 4.7859 48.3 3.8774 0.1244 -2.084 328.15 0.003 5 239.62 5.4791 ln 55-5—3 1n sstres sstress k lnk T 1/T C srate srate 0.1301 -2.039 0.2039 -1.59 328.15 0.003 5 0.468 -0.759 0.2602 -1.346 0.2039 -1.59 328.15 0.003 5 0.936 -0.066 0.3415 -1.074 0.2039 -1.59 328.15 0.003 5 1.872 0.627 0.5367 -0.622 0.2039 -1.59 328.15 0.003 5 3.7441 1.3202 0.9758 —0.025 0.2039 -1.59 328.15 0.003 5 7.4881 2.0133 1.6425 0.4962 0.2039 —1.59 328.15 0.003 5 14.976 2.7065 6.6026 1.8875 0.2039 —1.59 328.15 0.003 5 29.953 3.3996 7.3507 1.9948 0.2039 -1.59 328.15 0.003 5 59.905 4.0928 17.547 2.8649 0.2039 -1.59 328.15 0.003 5 119.81 4.7859 49.308 3.8981 0.2039 -1.59 328.15 0.003 5 239.62 5.4791 108 109 In 55-5-4 1n sstres sstress k lnk T 1/T C srate srate 0.2277 -1.48 0.223 -1.501 328.15 0.003 5 0.468 -0.759 0.2602 -1.346 0.223 -1.501 328.15 0.003 5 0.936 -0.066 0.3253 -1.123 0.223 -1.501 328.15 0.003 5 1.872 0.627 0.5204 -0.653 0.223 -1.501 328.15 0.003 5 3.7441 1.3202 0.8294 -0.187 0.223 -1.501 328.15 0.003 5 7.4881 2.0133 1.4962 0.4029 0.223 -1.501 328.15 0.003 5 14.976 2.7065 3.1224 1.1386 0.223 -1.501 328.15 0.003 5 29.953 3.3996 7.1556 1.9679 0.223 -1.501 328.15 0.003 5 59.905 4.0928 17.434 2.8584 0.223 -1.501 328.15 0.003 5 119.81 4.7859 49.439 3.9007 0.223 -1.501 328.15 0.003 5 239.62 5.4791 In 55-15-1 ln sstres sstress k lnk T 1/T C srate srate 0.1301 -2.039 0.2065 -1.577 328.15 0.003 15 0.468 -0.759 0.1952 -1.634 0.2065 -1.577 328.15 0.003 15 0.936 -0.066 0.3903 -0.941 0.2065 -1.577 328.15 0.003 15 1.872 0.627 0.6993 -0.358 0.2065 -1.577 328.15 0.003 15 3.7441 1.3202 1.2685 0.2378 0.2065 -1.577 328.15 0.003 15 7.4881 2.0133 2.3744 0.8647 0.2065 -1.577 328.15 0.003 15 14.976 2.7065 4.8463 1.5782 0.2065 -1.577 328.15 0.003 15 29.953 3.3996 10.229 2.3252 0.2065 -1.577 328.15 0.003 15 59.905 4.0928 23.548 3.1591 0.2065 -1.577 328.15 0.003 15 119.81 4.7859 63.685 4.1539 0.2065 -1.577 328.15 0.003 15 239.62 5.4791 In 55-15-2 1n sstres sstress k lnk T 1/T C srate srate 0.2114 -1.554 0.2954 -1.219 328.15 0.003 15 0.468 -0.759 0.3469 -1.059 0.2954 -1.219 328.15 0.003 15 0.936 -0.066 0.515 -0.664 0.2954 —1.219 328.15 0.003 15 1.872 0 627 0.824 -0.194 0.2954 -1.219 328.15 0.003 15 3.7441 1 3202 1.2522 0.2249 0.2954 -1.219 328.15 0.003 15 7.4881 2.0133 2.3852 0.8693 0.2954 -1.219 328.15 0.003 15 14.976 2.7065 4.8463 1.5782 0.2954 -1.219 328.15 0.003 15 29.953 3 3996 10.327 2.3347 0.2954 -1.219 328.15 0.003 15 59.905 4 0928 24.009 3.1784 0.2954 -1.219 328.15 0.003 15 119.81 4 7859 65.181 4.1772 0.2954 -1.219 328.15 0.003 15 239.62 5 4791 In 55-15-3 1n sstres sstress k lnk T 1/T C srate srate 0.0434 —3.138 0.1322 -2.023 328.15 0.003 15 0.468 -0.759 0.1301 -2.039 0.1322 -2.023 328.15 0.003 15 0.936 -0.066 0.3415 -1.074 0.1322 -2.023 328.15 0.003 15 1.872 0.627 0.6505 —0.43 0.1322 -2.023 328.15 0.003 15 3.7441 1.3202 1.301 0.2631 0.1322 -2.023 328.15 0.003 15 7.4881 2.0133 2.5532 0.9374 0.1322 -2.023 328.15 0.003 15 14.976 2.7065 5.2041 1.6494 0.1322 -2.023 328.15 0.003 15 29.953 3.3996 10.945 2.3929 0.1322 -2.023 328.15 0.003 15 59.905 4.0928 24.979 3.2181 0.1322 -2.023 328.15 0.003 15 119.81 4.7859 66.092 4.191 0.1322 -2.023 328.15 0.003 15 239.62 5.4791 ln 55—25-1 1n sstres sstress k lnk T 1/T C srate srate 0.2169 -1.528 0.4165 -0.876 328.15 0.003 25 0.468 -0.759 0.4011 —0.913 0.4165 -0.876 328.15 0.003 25 0.936 -0.066 0.7806 -0.248 0.4165 -0.876 328.15 0.003 25 1.872 0.627 1.4311 0.3585 0.4165 -0.876 328.15 0.003 25 3.7441 1.3202 2.7159 0.9991 0.4165 -0.876 328.15 0.003 25 7.4881 2.0133 5.2041 1.6494 0.4165 -0.876 328.15 0.003 25 14.976 2.7065 10.262 2.3284 0.4165 -0.876 328.15 0.003 25 29.953 3.3996 20.832 3.0365 0.4165 -0.876 328.15 0.003 25 59.905 4.0928 42.527 3.7501 0.4165 -0.876 328.15 0.003 25 119.81 4.7859 91.852 4.5202 0.4165 -0.876 328.15 0.003 25 239.62 5.4791 In 55-25-2 1n sstres sstress k lnk T 1/T C srate srate 0.0922 -2.384 0.1448 -1.932 328.15 0.003 25 0.468 -0.759 0.0434 -3.138 0.1448 -1.932 328.15 0.003 25 0.936 -0.066 0.3469 -1.059 0.1448 -1.932 328.15 0.003 25 1.872 0.627 0.9432 -0.058 0.1448 -1.932 328.15 0.003 25 3.7441 1.3202 2.1467 0.7639 0.1448 -1.932 328.15 0.003 25 7.4881 2.0133 4.6186 1.5301 0.1448 -1.932 328.15 0.003 25 14.976 2.7065 9.286 2.2285 0.1448 -1.932 328.15 0.003 25 29.953 3.3996 16.832 2.8233 0.1448 -1.932 328.15 0.003 25 59.905 4.0928 39.616 3.6792 0.1448 -1.932 328.15 0.003 25 119.81 4.7859 89.803 4.4976 0.1448 -1.932 328.15 0.003 25 239.62 5.4791 sstres 0.1301 0.3253 0.6505 1.301 2.4557 4.6023 9.1396 18.637 38.575 86.274 sstres .3903 .6017 .9107 .4962 .602 .9439 .6275 19.255 39.876 88.241 \Dle-‘000 sstres .374 .6017 .9107 .4962 .602 .9439 .6275 19.255 39.876 88.241 \Dle-‘000 sstres .1301 .2602 .6017 .1709 .4719 .9926 .8389 19.971 40.705 85.103 \DbNO-‘000 sstres .3036 .4662 .7915 .3823 .5045 .7812 .286 18.637 38.526 87.022 \OONHOOO sstres 1.0408 1.7726 3.0249 5.2041 9.0258 15.921 28.557 52.073 93.884 ln sstress -2.039 -1.123 -0.43 .2631 .8984 .5266 .2126 .9252 .6526 .4575 h4d83NtJC>0 1n sstress -0.941 -0.508 -0.094 .4029 .9563 .5981 .2646 .9578 .6858 .4801 #UNNHOO 1n sstress -0.983 -0.508 —0.094 .4029 .9563 .5981 .2646 .9578 .6858 .4801 htflh’Nr‘CDO 1n sstress —2.039 —1.346 -0.508 .1578 .905 .608 .2863 .9943 .7064 .4439 waNt-‘OO ln sstress -1.192 -0.763 -0.234 .3238 .9181 .5647 .2285 .9252 .6513 .4662 DIABJNFJCDO 1n sstress .04 .5725 .1069 .6494 .2001 .7676 .3519 .9526 .5421 DNUNNHHOO 5-25-3 .3193 .3193 .3193 .3193 .3193 .3193 .3193 .3193 .3193 .3193 5-25-4 .5625 .5625 .5625 .5625 .5625 .5625 .5625 .5625 .5625 .5625 U" I N U‘ I U! .5557 .5557 .5557 .5557 .5557 .5557 .5557 .5557 .5557 .5557 U1 00000000003‘111 0000000000”!!! 0000000000WUI U‘ I N U1 I 0" .2951 .2951 .2951 .2951 .2951 .2951 .2951 .2951 .2951 .2951 5-25-7 .4692 .4692 .4692 .4692 .4692 .4692 .4692 .4692 .4692 .4692 5-35-1 .0496 .0496 .0496 .0496 .0496 .0496 .0496 .0496 .0496 NNNNNNNNNWU’I 0000000000WU’I 00000000002‘ lnk -1.142 -1.142 -1.142 -1.142 -1.142 -1.142 -1.142 -1.142 -1.142 —1.142 lnk -0.575 —0.575 -O.575 —0.575 -0.575 -0.575 —0.575 -0.575 —0.575 —0.575 lnk -0.588 -0.588 ~0.588 -0.588 -0.588 —0.588 -0.588 -0.588 -0.588 -0.588 lnk -1.22 -1.22 -1.22 -1.22 -1.22 -1.22 -1.22 -1.22 -1.22 -1.22 lnk -0.757 -0.757 -0.757 -0.757 -0.757 -0.757 -0.757 -0.757 -0.757 -0.757 .7176 .7176 .7176 .7176 .7176 .7176 .7176 .7176 .7176 000000000 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. 328. .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 0000000000 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 0000000000 1/T .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 0000000000 1/T .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 0000000000 .003 .003 .003 .003 .003 .003 .003 .003 .003 .003 0000000000 1/T .003 .003 .003 .003 .003 .003 .003 .003 .003 000000000 srate 0.468 0.936 1.872 3.7441 7.4881 14.976 29.953 59.905 119.81 239.62 srate 0.468 0.936 1.872 3.7441 7.4881 14.976 29.953 59.905 119.81 239.62 srate 0.468 0.936 1.872 3.7441 7.4881 14.976 29.953 59.905 119.81 239.62 srate 0.468 0.936 1.872 3.7441 7.4881 29.953 59.905 119.81 239.62 srate 0.468 0.936 1.872 3.7441 7.4881 14.976 29.953 59.905 119.81 239.62 srate 0.468 0.936 1.872 3.7441 7.4881 14.976 29.953 59.905 119.81 ln srate -0.759 —0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 U'lfiubUNND-‘O 1n srate -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 U'llthNND-‘O ln srate -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 Uihfib-INNHO 1n srate ~0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 .4791 mbbUNNi-‘O srate -0.759 -0.066 0.627 1.3202 2.0133 2.7065 3.3996 4.0928 4.7859 5.4791 srate -0.759 -0.066 .627 .3202 .0133 .7065 .3996 .0928 .7859 thNND—‘O 1n 55-35-2 1n sstres sstress k lnk T l/T C srate srate 0.9107 -0.094 1.8315 0.6051 328.15 0.003 35 0.468 -0.759 1.5612 0.4455 1.8315 0.6051 328.15 0.003 35 0.936 -0.066 2.7972 1.0286 1.8315 0.6051 328.15 0.003 35 1.872 0.627 4.8788 1.5849 1.8315 0.6051 328.15 0.003 35 3.7441 1.3202 8.6843 2.1615 1.8315 0.6051 328.15 0.003 35 7.4881 2.0133 15.531 2.7428 1.8315 0.6051 328.15 0.003 35 14.976 2.7065 28.118 3.3364 1.8315 0.6051 328.15 0.003 35 29.953 3.3996 50.886 3.9296 1.8315 0.6051 328.15 0.003 35 59.905 4.0928 92.746 4.5299 1.8315 0.6051 328.15 0.003 35 119.81 4.7859 In 55-35-3 1n sstres sstress k lnk T 1/T C srate srate 0.9107 -0.094 1.8315 0.6051 328.15 0.003 35 0.468 -0.759 1.5612 0.4455 1.8315 0.6051 328.15 0.003 35 0.936 -0.066 2.7972 1.0286 1.8315 0.6051 328.15 0.003 35 1.872 0.627 4.8788 1.5849 1.8315 0.6051 328.15 0.003 35 3.7441 1.3202 8.6843 2.1615 1.8315 0.6051 328.15 0.003 35 7.4881 2.0133 15.531 2.7428 1.8315 0.6051 328.15 0.003 35 14.976 2.7065 28.118 3.3364 1.8315 0.6051 328.15 0.003 35 29.953 3.3996 50.886 3.9296 1.8315 0.6051 328.15 0.003 35 59.905 4.0928 92.746 4.5299 1.8315 0.6051 328.15 0.003 35 119.81 4.7859 In 55-35-4 1n sstres sstress k lnk T l/T C srate srate 0.9107 -0.094 1.8097 0.5932 328.15 0.003 35 0.468 -0.759 1.5775 0.4558 1.8097 0.5932 328.15 0.003 35 0.936 -0.066 2.7321 1.0051 1.8097 0.5932 328.15 0.003 35 1.872 0.627 4.6837 1.5441 1.8097 0.5932 328.15 0.003 35 3.7441 1.3202 8.359 2.1233 1.8097 0.5932 328.15 0.003 35 7.4881 2.0133 15.173 2.7195 1.8097 0.5932 328.15 0.003 35 14.976 2.7065 27.338 3.3083 1.8097 0.5932 328.15 0.003 35 29.953 3.3996 49.097 3.8938 1.8097 0.5932 328.15 0.003 35 59.905 4.0928 90.42 4.5045 1.8097 0.5932 328.15 0.003 35 119.81 4.7859 "11m1111111“