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ABSTRACT

EMPIRICAL BAYES ESTIMATION FOR
UNBALANCED MULTILEVEL STRUCTURAL EQUATION MODELS

VIA THE EM ALGORITHM

By

See-Heyon Jo

The question of how to analyze unbalanced hierarchical data generated from
structural equation models has been a common problem for educational researchers
and analysts. Among difficulties plaguing statistical modeling are estimation bias due
to measurement error and the estimation of the effects of hierarchical, social milieu
where education takes place. Over the last two decades, substantial progress in
multilevel structural modeling and estimation techniques has been made for the
balanced sampling design.

This dissertation presents empirical Bayes estimation procedures for the
multilevel structural equation models in the context of unbalanced sampling designs.
The computational procedure is implemented via the EM algorithm. It is particularly
useful for the problem of estimating a large number of parameters in multilevel
structural equation models.

A multilevel structural equation modeling process with an example illustrates
the general principles of the empirical Bayes estimation with the EM algorithm. The
accuracy of the algorithm was tested using a set of artificial data. The numerical
results suggest that this new methodology is a potentially useful means for studying
hypothesized causal relations among latent variables varying at two levels of

hierarchy.
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CHAPTER 1

INTRODUCTION

As a consequence of various theoretical developments and of improvements in
computing, maximum likelihood (ML) estimation has become a viable procedure for
estimating parameters in multilevel structural equation models under the balanced
sampling design. Many of these developments were reviewed in detail by Jo (1993).

The initial interest in ML estimation of a multilevel covariance structure model was
noted and developed by Schmidt (1969). Schmidt and Wisenbaker (1986) extended this
work to the structural equation models (Joreskog, 1973) for balanced hierarchical data.

McDonald and Goldstein (1989) derived the likelihood equations and derivatives
for a bilevel structural equation model which allows for variables measured strictly at a
higher level, though no computational approach was made available. They also indicated
that the procedure for computation of ML estimates is currently less well developed for
the unbalanced sampling design.

Recently, based on the balanced-data theory provided by Schmidt (1969) and
McDonald and Goldstein (1989), Muthen (1990) showed that the maximum likelihood
fitting function could be rewritten such that the between and within structural models
could be estimated by means of a multi-population analysis in LISCOMP (Muthen,1987)
or other comparable structural equations software. In the case of balanced data this could
be accomplished by treating the within-group deviations as sampled from one population

and the between-group deviations as sampled from a second population. For the case of
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unbalanced data, each cluster of groups which have the same number of observations is
treated as one population.

Lee and Poon (1992) also used the strategy of classifying level-2 units into subsets
of level-2 units having equal sample size. They proposed an estimator for such data which,
though not maximum likelihood (ML), has the same asymptotic distribution as the ML
estimator as the number of level-2 units per subset increases without bound.
Computationally this estimator is available using standard software program, such as
LISREL (Joreskog and Sorbom, 1993) or EQS (Bentler, 1989).

More recently, Raudenbush (in press) proposed an alternate approach for the
unbalanced case. He conceptualized the problem in the framework of groups which could
all have the same number of sampled cases but are missing data for some individuals. In
particular, in the M-step (maximization) the method uses the standard program such as
EQS (Bentler, 1989). Vredevooogd (1993) applied this general approach to the global
models (where two indicators for a group-level latent variable are included) in her
dissertation proposal. Jo (1993) also applied the general procedure to a set of linear
structural equation models.

The purpose of this dissertation is to develop empirical Bayes estimation
procedures for computing maximum likelihood (ML) estimates of the parameters in the
multilevel structural equation models in the context of the unbalanced sampling design.
The procedures do not require classifying level-2 units into subsets of level-2 units having

equal sample size. We present a multilevel structural equation modeling process with an
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artificial example, which illustrates the general principles of empirical Bayes estimation

with the EM algorithm.

1.1 The General Problem

A distinguishing characteristic of the data encountered in many areas of educational,
medical, social science (sociology, econometrics, management, marketing) and genetics
research is that the sampling structure is hierarchical. For instance, students are nested within
schools, workers within firms, patients within some treatment-specific medical programs,
family members in a family tree, or residents within census tracks. Individuals also can take the
role of independently observed groups.

Generally, students are taught in groups by a teacher, several classrooms and teachers
are grouped together into a school, schools into districts and districts are clustered in states.
Then students who attend the same school or classroom are expected to share certain
educational policies and practices. As a result, the educational outcomes for these students will
be, to varying degrees, intercorrelated. These effects of clusters are most validly viewed
within the context of multilevel linear models.

Much of social science data comes from two-, or three- stage sampling designs.
Large-scale educational assessment, for example, is typically conducted by drawing a sample of
schools and, from those schools, sampling the students who will take the assessment test. This
hierarchical fashion of sampling is frequently selected in large-scale surveys, such as the
National Longitudinal Study with data gathered regarding the educational aspirations and

attainment of high school seniors of 1972 and the Second International Mathematics Studies
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(SIMS; Crosswhite et al., 1985), and the Third International Mathematics and Science Studies

(TIMSS; Schmidt, 1993). Under the standard assumption of L.1.D, covariance structure
modeling (Joreskog, 1973) of such data misguides statistical inference by not taking into
account the intracluster correlations which are present in hierarchical data. Hence an important
implication of such structure is that the classical assumption of independence among nested
observations is violated. Ignoring the existence of hierarchy in model building gives rise to
~ several methodological and substantive problems and that have been well-documented in the
literature (Burstein, 1980).

In the context of the linear model, statisticians (Lindley and Smith, 1972; Smith, 1973,
Raudenbush, 1984, 1988; Aitkin and Longford, 1986; Goldstein, 1986) developed hierarchical
linear models (HLM) which are appropriate and powerful means of modeling hierarchical data.
Many of these developments and examples are found in the recent book written by Bryk and
Raudenbush (1992).

It was not until hierarchical modeling techniques (Aitkin and Longford, 1986;
Goldstein, 1986; Mason, Wong and Entwistle, 1984, Raudenbush, 1984; Raudenbush
& Bryk, 1986) were developed that complex relationships among variables across all
levels could be inferred. Such techniques have been widely used for various types of
research topics such as cognitive growth and change (Bryk and Raudenbush, 1987,
| Goldstein, 1989), population studies (Mason et al., 1984), meta-analysis (Raudenbush
and Bryk, 1985), and evaluation of educational effectiveness (Aitkin and Longford,
1986; Raudenbush and Bryk, 1986).

However there have been only rare attempts of applying the methodology to
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the structural equation models for hierarchical data. In discussing the empirical Bayes
\

approach, Muthen (1990) also indicated the plausibility of application to the multilevel
structural equation model by estimating each group's factor value under the
assumption of "exchangeability" (deFinetti, 1937; Lindley and Smith, 1972) of
the groups.

The main tasks in this dissertation are (a) to incorporate the effects of two
levels of social organization into statistical models for outcomes measured at the

individual level or/and cluster level, (b) to develop latent variable models that

simultaneously incorporate effects of structural relations and measurement error.

1.2 Objective
The primary objectives of this dissertation are:

(1) To review previous relevant advances in statistical modeling and estimation
procedures for the multilevel structural equation model,

(2) To describe a multilevel structural equation model and develop empirical
Bayes estimation procedures for ML estimates via the EM algorithm,

(3) To write a necessary computer program to implement this new estimation
procedure,

(4) To demonstrate by the use of simulated data that this estimation procedure

pl‘OdUCCS accurate parameter estimates.
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1.3 Brief History of Single Level Structural Equation Models

The measurement of latent constructs with multiple manifest variables began
with the work of Spearman (1904) early in this century. In 1904, Spearman proposed
the method of factor analysis to investigate Galton's theory (Galton, 1883) of
"intelligence" that a single common factor and a specific factor constituted
cognitive ability as measured educational tests. This model evolved to represent
intelligence with a hierarchical structure (Vernon, 1950). Thurstone (1947) extended
Spearman's theory to a multiple factor analysis model. Apart from
Spearman's factor analysis there is the work of Wright (1934), who derived the path
analysis for the research of genetics. Before Lawley's (1943) development of the
maximum likelihood function for factor analysis, the classical method was not based
on the statistical theory of random sampling. While computational methods were not
available at that time, Lawley derived the partial derivatives of the logarithm of the
likelihood function with respect to each element of the covariance matrix. Based on
Lawley's ML estimation theory, Joreskog (1967, 1973, 1977) developed the structural

equation model.

“Linear structural equation modeling (1977) represents an important

combining of the traditions of econometric and psychometric methods producing

a set of procedures that enable researchers to separate the structural part of

the model from the measurement properties of the variables. The structural

part of the model represents hypothesized networks among latent construct variables
imperfectly projected in the observed indicators. This scheme of formulation allows the
separation of issues of measurement error from the assessment of the structural

relationships that embody the actual purposes of the research. This tradition has seen
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many applications in education, psychology, and sociology over the last 20 years.”

(Raudenbush and Schmidt, 1991)

Joreskog (1977) adapted two optimization algorithms of steepest descent and
the Davidon-Flectcher-Powell. Recently he extended LISREL to nonlinear structural
model (Joreskog and Sorbom, 1993). The recent version of LISREL8 with PRELIS2
(Jorekog and Sorbom, 1993) provides user-easy language SIMPLIS for the PC-
window.

As noted by Austin and Wolfle (1991), structural equation modeling is not a
recent development (Bentler, 1983; McDonald, 1978), nor is it the work of any one
individual or disciplinary area. However, there have been other lines of inquiry.

The second line of inquiry is represented by the work of Bock (1960), Bock
and Bargmann (1966), Wiley (1967), and Wiley, Schmidt and Bramble (1973). They
addressed a set of models formally parameterized as the factor analysis model but with
different notions as to the roles of the parameters themselves.

The model for the observed score vector of p tests is :

y =u+Aé+e (1.3.1)

The model implies that the vector y has a multivariate normal distribution with mean

vector 1 and covariance matrix X:



Z=A04 +¥ (1.3.2)

the general assumption for the model is (1) ® is considered as a diagonal matrix, (2)
¥ is considered to be Io* or heterogeneous, (3) A is completely specified or scaled

by unknown but estimable matrix of scaling factor, I'. Wiley (1967) developed a set
of 16 models that can be hypothesized by applying different combinations of
restrictions to the three main components of the general model. These models cover a
number of Joreskog's confirmatory factor analysis models. Wiley, Schmidt and
Bramble (1973) developed the maximum likelihood estimators for eight of these
models using the restrictions : (1) A is completely specified and unscaled, (2) A is
completely specified and scaled by an unknown but estimable matrix of scaling
weights I".

The third line of inquiry has a different tradition from the other two procedures
of modeling and analysis. Recently the application of the regression component
decomposition (Schonemann and Steiger, 1976) approach is proposed to avoid the
indeterminacy problems in the conventional LISREL model. In the RCD (regression
component decomposition) model, the common factors are defined as linear
combinations of the observed variables and the factor loadings as the regression
coefficients, regressing the manifest variables on the so defined common factors. In
the context of LISREL model, Haaggen and Vittadini (1991) presented a method to
decompose the observed data into components which have analogous properties to

those of the latent variables in the LISREL model.
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1.4 The Prior Work of Multilevel Structural Equation Models

Several articles deal with the analysis of the structural equation model for
hierarchical data. In this section we review the proposed methods for their models
and computational methods.

In Schmidt and Wisenbaker (1986), the measurement and structural models

are:
y=u,+An+tA,n, +e+¢, (1.4.1)
x=u +Té+T ¢ + o+ w, (1.4.2)
n=An+B&+ 6 (1.4.3)
n, =An, +B,¢&, +6, (1.4.4)

The vectors u,,u,, in the equations (1.4.1) and (1.4.2) are simply the expected

values of y and x respectively. The matrix A contains coefficients relating the latent

endogenous within-groups variables 7 to the manifest variables, y. Similarly, A,
relates the true endogenous between-groups variables, 7,, to the observed variables,
y. The vectors ¢, &,, are the errors of measurement associated with the within-groups
and between-groups levels respectively. The coefficients matrices, I',I,, and the
vectors &, &, w, w, bear similar relationships to the observed vector, x.

Equation (1.4.3) stipulates that the latent within-groups endogenous variables are
expressible as linear functions of themselves and the latent within-groups exogenous
variables. The matrices A and A4, must be lower trizngular such that (/ - 4) and

(I - A,) are irvertible. The vector, @, contains ihe errors in structural equation.
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Equation (1.4.4) is composed of parallel constructs dealing with the expression of
the between-groups latent endogenous variables.

By formulating the total variance-covariance as a simple additive function of
the within and between group variance-covariance matrices, the within group
covariance matrix, Z,, and between group variance covariance matrix, X,, were

expressed as follows:

var(x) =%, +3, (14.5)
Yy
where
Izl +¥, IZ,B(I-A)"A
3 = _ A(I-A)'BZ,B(I-A)"A (1.4.6)
symmetric

+A[I-A)"'Z,(d-A)"A + P,

r,,ngl“; +¥,, FbE;.B'b(I—Ab)_'A'b
Z, = . AI-A) BbE;,B;(I'Ab)_l 1A, (1.4.7)
symmetric ,
+A, - A,) " 2, (I-A) A, + ¥,

with the following definitions:
Z,: the variance-covariance matrix of the latent within-group exogenous variables,
A, : the matrix of factor loadings associating manifest variables and latent

variables at the group level.

Z,: the variance-covariance matrix of the within-groups errors in equations, 6.
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¥, : the variance-covariance matrix of the within-groups measurement error

associated with the observed exogenous variables, x.

Y. : the variance-covariance matrix of the within-groups measurement error

associated with the observed endogenous variables, y.
A : the matrix of factor loadings connecting manifest variables and latent
variables at the individual level.

Z, : the variance-covariance matrix among the exogenous latent variables at

¢
the group level.

I, : the variance-covariance matrix among the endogenous latent variables

at the individual level.
¥, : the variance-covariance matrix among the random measurement errors
associated with the observed endogenous variables at the group level
¥, : the variance-covariance matrix among the random measurement errors

@y

associated with the observed exogenous variables at the group level

Given the assumption of a multivariate normal distribution, Schmidt and Wisenbaker

derived the log likelihood function;
L= (—'{:2£an| 2w|——'i,—ln| z, +nZ,,|—%tr[E;‘S,]—gtr[(Ew +nZ,)"'S, ] (1.4.8)

where J is the total number of groups while n is the number of level-1 units in each
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1 LS _ _ N )
group. And S, = ;ZZ()&, -y, -¥). S, =7Z(y, -¥)(F,-¥y), and y, is
Jj=1

j=1 il
the r by 1 observation vector for the i-th individual in the j-th group.

The maximum likelihood estimates for the parameters can be obtained by
setting the first partial derivatives of the log likelihood function with respect to each
parameter equal to zero and solving for the unknowns. Schmidt and Wisenbaker
(1986) adapted the Fletcher-Powell method of optimization. This balanced model
and theory are subsumed in the Muthen's muti-sample analysis (1990) using
LISCOMP. Note that in Schmidt and Wisenbaker’s formulation, all between group
variables are aggregated versions of within-group variables. In Muthen's extension,
variables observed strictly at the group level are included.

Muthen (1990) provided the ML fitting function for the unbalanced case
through which computational strategies are explicitly identical to the multi-sample
analysis in the standard LISREL, LISCOMP and EQS. He also described the
necessary steps of analyzing the multilevel structural equation model.

Muthen (1990) postulated that "in the unbalanced case the number of groups
with distinct group sizes may be rather small in any given application."

The measurement model for within group level is:

Yi=u,+An, +¢;, g;~N(,Z,) (1.4.9)

,“j=Ab77b,+5bj , &, ~N(0,Z,) (1.4.10)



13

where 7, and 7, are p x 1 vectors of within latent variables and between latent

variables respectively; A and A, are r x p matrices of within-factor loadings and

between-factor loadings for the y variables; and, ¢, and &,, are the vectors of within-

and between-group measurement errors.
Based on the balanced-data theory, Muthen (1990) derived the ML fitting

function :

D
ZJ, {In
d=1

25 LE3 (Spa +1a (s = 1T = 19+ (N = J)(In

Z[+r(Z)8,]) (1.4.11)

where
2, =[Z,+n,2,] (1.4.12)
S =S G- - 1.4.13
W_J_Z(y.jd V)V u-Va) (1.4.13)
d j=l
1 D Ja Py _ o
Sy=—=2220u 7)) (1.4.14)
N_J d=1 j=1 i=1

with the following definitions:

y ; = the sample mean vector for the d-th subset.

Y,a = the outcome vector for the i-th individual in the j-th group classified into the
d-th subset.

J, = the number of groups of the d-th subset.

u = the population grand mean vector.
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n, = the total number of individuals in d-th subset, d=1,...,D.

n,, = the number of individuals in j-th group classified into the d-th subset.

j = index for the groups classified into a subset of distinct size
N = the total number of individuals in a study.
J = the total number of groups.
¥ 4 = the sample group mean vector for the j-th group.
Notethati=1,..,n,. j=1,.,J,.d=1,.,D

From a structural equation modeling point of view, the multilevel data ML
fitting function can be viewed as corresponding to a simultaneous analysis of
independent observations from D + 1 heterogeneous “populations”. with the D
populations for S,,’s plus the within-group “population”. All of the parameters
are constrained to be equal across the D between-group populations except for the
scaling factor, n,. In equation (1.4.41) “it should be noted that the between sample
covariance matrices may be singular due to being created by summation over fewer
units than variables. This may prevent the use of certain conventional structural
modeling software where positive definite matrices are assumed.” (Muthen, 1990). To
find the ML estimates one has to set up a command file (see, Muthen, 1990) to run
EQS or LISCOMP program according to the model equations.

By use of the statistical concept of "missing data" (Dempster, Laird, and
Rubin, 1977) Raudenbush (in press) developed a new estimation procedure. In theory
the balanced data is equivalent to the complete data, while unbalanced data is

incomplete data. In the unbalanced case, the E-step computes the conditional
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expectations of the complete data sufficient statistics given observed data and the
current parameter estimates. In the M-step the standard EQS software can be used to
find the ML estimates of the parameters iteratively. Raudenbush (in press) postulates
that "by supposing one has sampled n units within each of J clusters, one can apply

the Muthen's balanced-data method. However, within each group k, only n;
observations are available with n—n,; observations missing. Then one might regard

the balanced data as the complete data, the observed unbalanced data as
incomplete data. Consequently the maximization of the complete data likelihood is
the same as the Muthen's balanced data approach for hierarchical data using the
LISCOMP (Muthen, 1986) or EQS (Bentler, 1989) and so on”. The complete data
sufficient statistics can not be observed but can be estimated by means of their
conditional expectations given the observed data and a current estimates at the
parameter values. This process constitutes the E-step.

At level 1 (within cluster) we have p observations on each of n units, collected

in the p by 1 vector y,. These vary randomly around the cluster mean u; according to

the model:

yij-_—pj+eij’eU,~N(O,Z) (1.4.15)

The model at level 1 can be written as :

Yy |_ Au €;
L[] oo
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where y,; is pn,; by 1 observed vector, y,; is pn,, by 1 missing vector.

4,=1, ®I,

4, =1, ®I,

¥, =1, ® (1.4.17)
¥, =1, ®F

n=n; +nzj

At level 2 the model can be written as:

Hi=H, +uj’uj ~ N(0, TI'lll)
(1.4.18)

x; is a vector of group level observed variables.

The expected value of the complete data sufficient statistics for within group variance
covariance matrix given the parameter estimates from the M step of the previous

iteration is:
J L] L]
Sw = Slw +w(/-DZ, +ijnj[Lj +(ylj _72;')(5’-11 —ij)T] (1.4.19)
Jj=1

S,,, is the usual pooled within-group variance-covariance estimate based on the

observed data;

Let T ] (1.4.20)

I
L un—
SN
N
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L=mZ,)+T")Y'nZ] (1.4.21)
=y
Yi=7, (1.4.22)
w=N,/nJ

N, is the total number of missing level-1 units. y,; is the observed group mean

vector and J,, is the posterior mean vector for the missing observed data in each

group.
¥, =Ly, +(I-L)Ix, (1.4.23)

r=7.7 (1.4.24)

The expected value of the complete data sufficient statistics for S, given the

parameter estimates from M-step of the previous iteration is:

Syz = Sl,w: +Z(xj _f)[wj(y;j —ylj)_W(yZ. _yl)]T (1-4~25)

Sl,uzzxjylrj_‘lx_ylr (1.4.26)

The sufficient statistic for Z , is:
J
S, =2 xx] — KX (1.4.27)
J=1

The expected value of the complete data sufficient statistics for variance
covariance matrix for y given the parameter estimates from the M step of the previous

iteration is:
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S, =n) V7, +nQ wiL' + WE, -ny'y" -(n/ )Y wL'+WE (1.4.28)
where
¥, =(-w)y, +w,y;, (1.4.29)
¥ =(1-w)y, +wy, (1.4.30)
_ 1Y
2 =FZn,,-?., (1.4.31)
1 j=1
J
N=Xn, (1.4.32)
j=1
* 1 J L ]
V=—2 (n—n,)y;, (1.4.33)
Nz Jj=1

Given the starting values produced by Muthen’s ad hoc estimator, expected
values for the complete data sufficient statistics are calculated by a Fortran program
(Jo, 1993). These estimates will then be used to obtain maximum likelihood estimates
of the parameters using the EQS program. An executive computer program provides
the mechanism to switch on the Fortran program for the E-step and then the packaged
program for the M-step.

The previous work in the field of multilevel structural equation models made
substantial progress. In this dissertation we propose a new approach which does not
require classifying level-2 units into a subset of equal sample size.

In conclusion of this chapter we provide a brief preview of subsequent

chapters. In chapter 2, we present the general structural equation model with an
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example. We also transform the model in terms of mixed model form. And we will
briefly describe some typical research questions that may be addressed by means of
multilevel structural equation models. In chapter 3, empirical Bayes estimation
procedures are developed. The maximum likelihood estimators for the parameters are
given, and we present the observed log-likelihood function. In chapter 4, artificial
data are generated for checking the accuracy of the parameter estimates. The analysis
is carried out by use of a program in Gauss. The index of goodness-of-fit of the model
is presented, and the likelihood ratio for two alternate models is also given. In chapter
5, the summaries of each chapter are given, and the implications of the models are

discussed. And future research questions are also presented.



CHAPTER 2

MULTILEVEL STRUCTURAL EQUATION MODELS

To illustrate how measurement and substantive theory can be integrated between and
within levels in one overall framework, a hypothetical achievement model will be examined as
an example. Consider a model where achievement scores of a mathematics test are believed
to be influenced by a student's attitude toward mathematics, individual characteristics, e.g.,
gender, and class characteristics, e.g., teaching styles. The teaching styles such as discovery-
oriented instruction or expository teaching are believed to influence attitude and achievement
on the classroom level. Gender also is believed to be related to students' attitude and
achievement on the individual level. The path-diagram for this hypothetical achievement
model is shown in Figure 2.1.1. In our example attitudel measures an individual's view
on the usefulness of mathematics in our life and is based on the sum of scores on the
four attitude items, each of them scaled as a Likert (1932) response with categories:
strongly disagree (1), disagree (2), undecided (3), agree (4), and strongly agree (5).
These items are: 1. I can get along well in everyday day life without using mathematics.

2. A knowledge of mathematics is not necessary in most occupations.
3. Mathematics is not needed in everyday day living.
4. Most people do not use mathematics in their jobs.

Attitude2 measuring "Attracted" to mathematics, is based on the sum of the scores on
the five attitude items, each scaled as five-category Likert; strongly disagree (1),

disagree (2), undecided (3), agree (4), and strongly agree (5). These items are:

1. I would like to work at a job that lets me use mathematics.

20
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2. I think mathematics is fun.

3. Working with numbers makes me happy.
4. I am looking forward to taking more mathematics.

5. I refuse to spend a lot of my own time doing mathematics.

The ACHL is the first part composed of basic facts and principles, while the ACH2 is

composed of problem solving questions.

teaching
style

betabl betab2
class class
attitude achievement
alphabl
1.0 Lambdabl 1.0 Lambdab2
attitudel attitude2
1.0
Lambdaw!l Lambdaw2

Iphal

attitude ap \

/ achievement
betal
beta2

gender

Fi 2.1.1 A Path Diagram for Multi c tion Model
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2.1 The Model and the Basic Notation

A simple item level equation for each individual:

Yi=An; +Amy, +e, (2.1.1)
S A T N TEN

Wiij 1 0 1 0 &y

Yy | _ An 0 7y + A O | Ty, &y 2.12)
Vi 0 1 {7y 0 1 |7y &

y4q 0 le 0 A’bZ 84"1'

where j=1,2,.,J for classroom, i=1,2,..,n, for students nested in classroom j. The

subscript "w" means the within-level, while "b" means the between-level.

In terms of our educational example, equation (2.1.2) can be expressed as follows :

attitudel,, 1 0 1 0 £,
attitude2, | |4, 0 [ attitude, ] Ay O [ attitude,, }L &1
ACH1, 0 1 | achievement, 0 1 [achievement,,,

ACH2, 0o 2, 0 A4, £,y

(2.1.3)

. 20 0

where ¢, ~ N(0,Z), atypical formfor L is: X = %2 o
0,

0 0 0 o

Assuming structural linear relationships among constructs, the theoretical
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relationships on the within-level depicted at the bottom part of Figure 2.1.1 can be

expressed through the following structural equation:

ﬂw = 0 0 7'",- ﬂlo ﬂzo zllj uw
|:772i/:| |:a, 0] [”2q’j| * [ﬂso ﬂw] |:7,2,,j:| +[u2'jj| (2.14)

where u, =[u,u,,1", u,~N(0,A), A= Diagonaks,,p=1,..,P).

In terms of our educational example, equation (2.1.4) can be expressed as follows :

attitude, | 10 0 attitude,; N B P 1 R
achievement - a, 0]|achievement, By B | | gender, Uy, (2.15)

Equation (2.1.4) stipulates that on the individual-level the latent variables are
captured as a structural linear function of themselves and the predictor variable. In our

example, gender is used as a predictor variable. In equation (2.1.4) z,, is gender, while
z,; is unit value so that the model has intercept terms.

Now we reduce equation (2.1.4) into the equation (2.1.6).

BRERF R T
N2 -a, 1 B Buwl |22 -a, 1 Uy

Then the reduced form for the within-level structural equations (2.1.4) is :
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Ty
Ty || B 0 07y + i (2.1.7)
N2y 0 0 zy zy |7y | |V

T s

where

v 1 0] '[u
{ WH ] Ul W NOT)
Vo —a, 1] [y

o
2 =vecou 1 0]_1 |:ﬂlo pzoD
T30 -a, 1 B Bu
a0

where vec” stacks the transpose of each row of a matrix into a vector.

In terms of our educational example equation (2.1.7) i¥.can be written:

o
attitude, _ 1 gender, 0 0 T30 N vy 2.18)
achievement, 0 0 1 gender; | my, | |Vyy
7 a0

Now on the between-cluster level, the structural relationships depicted at the upper

part of Figure 2.2.1 can be expressed as follows :
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Moj | _ 0 Of]|my; B Uy,
[nbu] [au O] [ﬂsz:I ¥ |: 62:| [wi] +|:usz:| (2.1.9)

where u,; = [u,u,,,1", 4, ~N(0,A,), A, = Diagonak$,,,p=1,..., P).

In terms of our educational example, equation (2.1.11) can be expressed as follows :

ttitude ttitude,, .
a. w00 a' udey || Po [teachingstyle‘]+ o (2.1.10)
achievement,; | | @, 0 ||achievement, | |B,, 1w,

2j

Equation (2.1.9) is the expression for the structural relationships among latent variables
and the predictor variable on the group level. In equation (2.1.9) w; is teaching style. All
of exogenous predictor variables are observed directly without error, e.g., school location
(rural, urban), school sector (public, nonpublic), religion, gender, ethnicity, family size
(numbers of a household), individual's age in months and years, current membership in a
political party or sports club.

Then we have the reduced form for between-level structural equations (2.1.9)

My | | 1 O ! B, 1 ol uy,
I:'IszJ —[—abl 1] [ bz] [Wj] +[‘ab| 1] lium} (2.1.11)

We can represent (2.1.11) in the following form:
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My =W,y + vy (2.1.12)

w, 0 Vo
{nbU:l:l: J ][”bw]_{ bu:l (2.1.13)
Ms2; 0 w, |7y Vo2,

or

where

v,,,, Tﬁ v,,,, 1 o]“ W NOT )
Vbz, —Qy vbz; abl 1] |4y ’ Y T
-l
[”blo] _ [ 1 0:| |:ﬂbl :l
Ty —ay, 1 b2

In terms of our educational example, equation (2.1.10) can be written as follows :

attitude,, _ teachingstyle, 0 oo | Vi, (2.1.14)
achievement,, 0 teachingstyle Vi o

20

Representation of the Equations in Matrix Form

We can represent the equation (2.1.1) in matrix form without subscripts:

y=Ayn+Agn, +& (22.1)
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where
Y= D’myznyzn)’-m:---n.Vxn,J}’2n,J}’3n,Jy4n,J]T, in our example, 4N by 1 vector.
€= [8111821153118411’---agln,ngn,Jgsn,J84n,1 ]T ,in our example, 4N by 1 vector.
N=>n,
—Awl 0 0 O i
0 A, O 0
A,=| 0 0 A, 0 |,
| 0 0 0 Ayl
(A, 0 0 0 ] o
0 /\“,.2 0 0 A 0
where, A, =| 0 0 Ay o 0 ) A= (')" :
0 0 0 A, 0 1,
[A,, 0 O 0]
1 0
0 A, O 0
A, O
Ay=| 0 0 A, 0 ’Ab,_ 0 ,
o A
| 0 0 0 Ay | b2

My =Mumas-s M T2a, I is in our example, a 2N by 1 vector
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My =My Mpars--» Moy Meay 1™ IS in our example, a 2J by 1 vector

The matrix form for the equation (2.1.4) without subscripts is:

n=An+Bz+u 222)
where
(4, 0 0 0] (4, 0 0 0]
0 4, O 0 0 4, O 0
0 0 4 0 0 0
A=|{0 0 A4, 01],4,= i ,Aﬁzal 0
|0 0 0 A, | I 0 0 0 0 4,

(B, 0 © 0] (B, 0 0 0
0 B, 0 0 0 B, 0 0
B=|0 0 B 0|B=0 0 B, 0 |,
(0 0 0 B, | |0 0 0 0 B,]|

Bio ﬂzo] .
B, = for all (j 1).
<[a

u = [t uy,,...,4, 4, ;] is in our example, a 2N by 1 vector.
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The matrix form for the equation (2.1.9) without subscripts is:

My = Ayl + Byw +u,

where
(4, 0 O 0 (4, 0 0O 0 ]
0 4, O 0 0 4, O 0
Ab =1 0 0 Ab3 0 s Abj = 0 0 A[,j; 0
0 0 0 4, |0 0 0 0 4,
A,; is a lower triangular matrix with diagonal elements are zeros.
B, 0 O 0 ]
0 B, O0 0
B,={0 0 B 0|, B -['B ”'°] j
b = b3 s Dy = across all j.
ﬂbZO
| 0 0 0 B, |

u, =[u,,u,,,,...,U4,,4,,]" is inour example a 2J by 1 vector

Now we can express the reduced form equation (2.1.7) in matrix form:

n=~Zr+v

(2.2.3)

0
’ Abjl = abl

(2.2.4)

0
0

|
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where, 7, = [nmrym,...,r]l,,Jan,,J,]r is in our example a 2N by 1 vector

z=| . |, Z".=z“f 2y 00 ,
4 0 0 z, z,

Vi = [ViuVaise-s Vi, Van,s I is in our example a 2N by 1 vector.

We can express the between-level reduced form equation (2.1.12) in matrix form:

M =Wr, +V, (2.2.5)
27r 1

where

My = [Mo1Ms215-» MorsMe2s 17 18 in our example a 2J by 1 vector
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w=| . | szliwu 0], ”b=|:7rb10:|
0 W, T p20

J
Vo = [Vo11Voz15+-»VorsVozs I” IS in our example a 2K by 1 vector

Table 2.1 Structural parts of the multilevel structural equation model

Original Form Reduced Form where
Withingroup 7= An+Bz+v n=Zrx+v r=vec[(1,-A,)"'B,]
Betweengroup 7, = 4,1, +Bw+v, n,=Wn,+v, m=(,-A,)"'B,
2y it 4

Transforming the Model into the Mixed Model Form

By substituting the structural equations (2.2.4) and (2.2.5) shown in Table 2.1 into
(2.2.1) without subscripts, we have the following combined equation (2.3.1). This
representation permits us to develop a special version of the EM algorithm for multilevel

structural equation models.

y =[A,z |A,,W][’Z]+[A,|A,,]|:: ]+s (23.1)
b
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In a more compact form we have:

y=AJZrn+A,o+¢ (2.3.2)

where

Ao =[AIA,],

N
]
NI
o
T

The model equation (2.3.2) is a special case of the general mixed model (Raudenbush,

1988):
Y=46,+4,06,+F (23.3)

A=A2Z,
4,= A,,
6,=w"'"" " (2.3.4)
6=m
s b L
E=g 'V
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In equation (2.3.3),

6, ~ N(O,I"), since our prior knowledge about 6, is assumed null, the
prior precision associated with 6, becomes null.

6,~N(0,Q,), Q, =\.§‘/u\bﬁ1i\a§(\7;),

r [T, o
°7l o 1,8T,

-
E~N(,¥),

¥Y=1,8%,

Based on this general model(2.3.2) I develop the empirical Bayes estimation procedure in
Chapter 3.

In our structural equation model, we consider a population of N level-one units,
indexed k (group) and i (individual). Associated with each level-one unit are three vector-
valued variables y, z and w. The values of the design variables, z and w, are completely
known for all level-one units before observations are carried out, but the values of the
outcome variables, y (the four indicators in our illustrative example), are not known at all.
Design variables are considered fixed and known in our multilevel structural equation
models.

Then the marginal distribution of y is:

y~Nu,o) (23.5)
where

u=ANZr (2.3.6)
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®=AZT(AZ)" + A QAT +Z (23.7)

where

And the conditional distribution of y given 7 is:

Yn~N(A,nX) (2.3.8)

Note that in the model there are not measurement errors at 2 levels that are distinct from the
model residuals. This is a limitation on the illustrative example. To have an identifiable model
we restrict the factor loadings for the first indicators of the latent variables to unit, the
variance-covariance matrix X to a diagonal matrix, and “A” matrices to be lower triangular. In
our model the total number of variance-covariance parameters to be estimated are 16, while the
number of unique elements of the variance structure are 10 for each level.

One can also include the group-level observed variables (global variables) for latent
constructs in the general multilevel structural equation model (2.1.2). For example, in the study
of the United States SIMS data each of the constructs of teaching practices and training and
experience are measured by two indicators (Vredevoogd, 1993). In that case we have the

following form of the item-level equations for each individual:



84T 10 0 E ki
Yk A, 0 Ay O 0 _77 LYY
- blk
ySH — 0 1 nlkl :| + o 0 ”bZk + 835 (239)
Yani 0 A, | 7w 0 4, O €4k
x| [0 0 0o o 1 [Td g
[ x| LO O] | O 0 A, ] | €6t

where x,,,,x,,, are the indicators for the group-level construct, teacher's teaching
practices, which is supposed to influence the class posttest (Vredevoogd, 1993).
Then one can see that this model is a special form subsumed into the general model
(2.3.1).

In the conclusion of this section we note the measurement model specifications. There
are three types of specifications. The first measurement model is implemented by requiring
equal factor loadings for all manifest variables and equal unique variances (Joreskog, 1971).
The second measurement model retains the assumption of identical error variances across
measures, but allows factor loadings to differ. The second model provides a more realistic
description of actual data where observed measures are similar in content but differ in
difficulty. The third measurement model is that the observed measures have identical factor
loadings but have unequal error variances. Of particular importance are the measurement
models in which those measurements have different factor loadings and unequal error
variances, but the manifest variables are highly correlated (i.e., they measure the same thing to

somewhat high degree).



CHAPTER 3

EM ALGORITHM FOR MAXIMUM LIKELIHOOD ESTIMATES

After a model has been formulated, the statistical problems are to estimate the
parameters in the model and to test the fit of the model to the data. General descriptions
of the EM algorithm for the multilevel structural equation models are given in this chapter.
Dempster, Laird and Rubin (1977) presented the EM algorithm as a general iterative
method for computing maximum likelihood estimates from “incomplete data”. Wu (1983)
presented it in a more general context, viewing it as a special optimization algorithm. The
EM algorithm is particularly useful when analytic expressions exist for the conditional
expectation of the missing data and for the maximum likelihood estimates (MLE) of the
model parameters given the observed data and missing data. Although in the literature it
has been known as a method for estimating parameters of a model when observed data can
be regarded as incomplete data, there were early uses of EM notions by Hartley (1958),
Healy and Westmoratt (1956), Baum et al (1970), Brown (1974) and Sundberg (1974). In

Rubin (1991) the essential idea of EM algorithm is briefly depicted:

“The basic idea behind the EM algorithm is very old and very intuitive and can be
colloquially described follows:

1. Given a problem that is difficult to solve, formulate it so that if missing data were
observed, then the solution would be at hand; in particular, formulate the problem

so that a good estimate (e.g., the maximum likelihood estimate, MLE) of the

36
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parameter 6, b, would be easy to find if the missing values, ¥ _,were observed in

> “mus?

addition to the observed values, Y, . Notice that "missing data" is viewed quitc

broadly to include, for example, latent variables in psychometric models.
2. Consequently, fill in a set of values for Ym and solve the problem(i.c., find b).
3. Using this @, find better values of ¥, to fill in, and then rcpeat Point 2 to find a

new value of 6.

4. Iterate until the values of & converge."

Based on this basic notion, one can conceptualize the implementation of the EM
algorithm for the multilevel structural equation model. In section 3.1, we discuss the concepts
of incomplete and complete data as applied to the multilevel structural equation model. We
also develop the posterior distributions of the random vectors in equation (2.1.3). In section
3.2, we present the iterates for the implementation of EM algorithm. We also present the
maximum likelihood estimates. In section 3.3, we present the observed-data log likelihood

function.

3.1 General Description and Application to the Multilevel Structural Equation

Model

Through casting the measurement model and the reduced form of the
structural equation for latent variables into the general mixed model (Raudenbush,
1988), we can conceptualize our problem as having complete data and incomplete
data. Note that in the multilevel structural equation model the factor loadings are

parameters rather than observed predictors.
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Then to compute maximum likelihood estimates of the dispersion matrices
for the random vectors in the model (2.3.1), we apply the EM algorithm (Dempster,
Laird and Rubin, 1977). We now discuss the concepts of complete data and
incomplete data, as applied to model (3.1.1)

From Chapter 2 we have the following combined equation:

A\;\j?—i)‘r\ 0 v /\b\i‘J;')“‘O\)

Gl a3y 4Y r2 e 20!

¥y =[AZ, 1AW, ][ ::o

4x ! b0

\

]+A,0,j+Ab0,,j+s,.j 3.1.1)

Gry 24 gryr )

In more compact form we have :

5oy
_ iy IL ,}b) B
Yi=AZim+Aw, +e, (3.1.2)
4')(' 4'“(‘4")\;”‘ \
where ru b

- Z'i} 0
A=[AJA) Z,=1%0 (3.1.3)

hry Hrwr 4 2.1

r o
zz=[5f?], z~N(@,T), r=[ v 0]
by ! ””0 0 FZJ

Since our prior knowledge about x is assumed null, ', the prior precision
(Dempster, Rubin and Tsutakawa, 1981) associated with ©, becomes null, that is,

" -0. And,
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ol 0 0 O
0 o2 0 O

g, ~N(,ZX), = 2

y ~ N(0,Z), o 0
0 0 0 o
In the model equations,
Yi=A.n; +Any, +s,
ny =2Z,m+6, (3.1.4)

Ty = W, 0 + 6

0 ={A,,A,,L,T, T} is the set of parameters.

Vo = {Y,Z,W} is the set of observed data.

¢ = {m, 7y,06,,6,,%} is the set of missing data.
/“
J

'V\?%\

Y6 ,.,-\()\ amn
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The conditional probability density function is proportional to the joint probability

.4

density function :

[(cl©,y)x(2x NN exp[(-0. S)Z Z O, - AoZu‘”_ A, o, )
Iy = AoZym= Ao, ]x (22) (T, exp[(-0.5) 3 3 (6/T,'6,)]

x(27)72|T,, |/ exp[(-0.59) Y (& T, 6, )] x h(x) (3.1.5)

where ¢={m),7m,,6,,6,,¢,}, 0= {A,,A,,Z, T,h, T,}, r=the number of indicators,
p=the dimension of ;. And s=the dimension of 6. The prior distribution h(7) is

considered a very small constant and it can be ignored while the empirical Bayes
estimators are calculated (Fotiu, 1989; Dempster, Rubin and Tsutakawa, 1981).

If "¢" were observable, some function of "c", t(c) would be a vector of
complete data sufficient statistics for the dispersion matrices. In reality, the vector "c"
is unobservable; however, the vector y, whose elements are linear functions of the
elements of "c", is observable. In the realm of the EM algorithm, we regard the
elements of "c" as the "missing data" and those of y as the "incomplete" data.

Then we can develop the iterative E-step (expectation step) and M-step
(maximizing step) for computing new parameter estimates. The E-step consists of
estimating t(c), which would be a complete data sufficient statistics lif the vector "c"
of complete data were available, by its conditional mean given the observed data and
current estimates of ®. The equations that are solved for parameters in the M-

step can be regarded as an approximation to what would be the likelihood equations
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if the vector "c" of complete data were observable.

From Dempster et al. (1977),

Each iteration of the EM algorithm solves : %[Q(@,@"’)Ie=e(o, ]=0

where  0(©,0“) = E(In[f(c;®)]Y = y,0)
The necessary posterior location vector and dispersion matrix of the random
vectors in the model (2.3.3) is :

O"’A
/ 4

D._[A,"P"A,H““ AV 4, ]_l=|:D; c,‘,,]
AY'A  AY'4,+T'| |C. D]

D, =[4¥" 4~ A¥ 4C AT  4) T
D, =C" +C(AY " 4)D(A¥Y"4,)C"
C,=-DAY 4,
Cx=(Cp

oT "9 @ :
where

C== AY'4,+T
Lialin o =DIAUI-¥4C 4)¥'Y

, O
(Yelor o) | 6 =C4¥" (V- 4%)

i
LK

These posterior distributions given parameters provide point estimates and intervals
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needed for inference about the random vectors. These derivations of the posterior

distributions draws heavily on prior research (Raudenbush, 1988).

3.2 Computation of the Iterates
Each iteration of the EM algorithm is composed of two steps, the E-step
(Expectation step) and the M-step (Maximization step). The E-step carries out
estimating complete data sufficient statistics by their conditional expectations given
incomplete data, and the current estimates of parameters. The M-step consists of
solving the complete data log-likelihood function.
To find the ML estimates, we have to maximize the function Q(@®,0¢™").
By definition Q(@“,0/™) = E(log[ f (c; ®")]Y = y;0¢ ™). As shown in Appendix
3, we have:
D N
0©%,0") = (-Nr/2)In 2r+(-N/2)In|Z |

73 vy r 9/

+ (-Np/2)In(27) + (-N /2)In| T, |+(~Js/ 2)In(27) + (-J / 2) In| T, |

-—Zer[z {(A Z,)D;(A,Z,)" +(A,D;, AY)
+(~(A Zc:, A’)+(A cr 2z A’)}]
_%ZZ(}’U—AOZ]” - Owij) " (yy‘AoZy”._Aow.;)

70
1 4 1 .
—5 L2, E6,6/1Y = y,0")] -7 2T, E6,6,1Y =»,0“")]  (3.2.1)

In order to maximize, we take the first derivatives of Q(@®,0°") with

respect to T,,,T,,‘,E,Ao, respectively.
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-, - A 77}

2©,0") | Niprs por
() Em =S - (T

n

%ZZIZTJ‘E(%IY =y,0“")T;! - D(T,'E(6,6]|Y = y,0")T,"}] (3.2.2)

where D means a diagonal matrix (Graybill, 1983). Thus D(T) is a diagonal matrix
with i-th diagonal element equal to the i-th diagonal element of a matrix T. Setting the
derivative equal to null matrix and solving gives the ML estimate (see, Press, 1982;
Magnus and Neudecker, 1986).

Then the ML estimate is :
ol 1 *
T, =+ [ZXEd +D,)] (3.2.3)

Q0,0 _ N pepo
(2 T =-— (2T, - D(T,)]

L

+%Z[2T;‘E(0,,,0[,|Y = y,0U )T - DT E(6,6|Y = ,0")T;'}] (3.2.4)

Setting the derivative equal to null matrix and solving gives the ML estimate.

Then the ML estimate is :

T, =[G +D5)] (3.2.5)
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Q(O°,0") &, [ X .
) Z, ao, —[227 -D(Z7)]

r

G

1
+EZZ[22"E(£ &, 1Y =y,0"")Z - DT E(g,6]|Y = y,0 )% }]} xI”

(3.2.6)

- J )"
where I is the column indicator vector which has a 1 in the J:th position and zeros

in other positions. And I is a full matrix. Setting the derivative equal to zero and

solving gives the ML estimate,. o>. In appendix 4 we present the ML estimator for

each element of X .

3 = Diagonak &?,...,5%) (3.2.7)
. s 7 @ i\ ®
@(9('),@0 l)) A =|_ -1 v-IA T 5T
@) T [FX X 2"AZ,Cl 1-[E7ACT, 2]

ol e
22 TAZ,DZ]1-12. 2 27AD,, ]
DR ATZIHE Y Ty, a1 rzzz VRIS

(

D> (AT Z] +AZ,.I.7r'wD] QZZZ Ao, @} )(]]xl . (3.2.8)

4 ) 5
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(@(i) , @(H))
oA

where A is a full matrix. The details of derivation of 22

are given in

appendix 5. Setting the derivative equal to zero and solving gives the ML estimate,

ig,‘. In appendix 5 we present the ML estimate for Ao.
A, = [,1‘,,‘]A (3.2.9)

where [ag,Ir ]A means placing element a,, in the g-th row and k-th column of matrix

A, and zeros elsewhere. In our example, g= 2, 4, k= 1,2,3 4.

In sum the E-steps and M-steps are:
(1) E-step : Find Elog[L(c,®)|y,T¢ ™1,
M-step : Substitute the equation (3.2.3) with these quantities, and then we obtain new
T,, set T’ equalto thisnew T,,
(2) E-step : Find Elog[L(c,®), T, ‘],
M-step : Substitute the equation (3.2.5) with these quantities, and then we obtain new
T,,.set T, equal to thisnew T, .
(3) E-step: Find Elog[L(c,®)[y,Z “],
M-step : Substitute the equation (3.2.7) with these quantities, and then we obtain new

T, set  equalto thisnew I.
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4) E-step:Find 77, @, D, , D;,C., . Notethat these are all functions of A}™.

M-step : Substitute the equation (3.2.8) with these quantities, and then we obtain new

A,, set AY equal to this new A,.

Then here the first iteration of the E and M step is completed. This algorithm proceeds until
some user-specified termination criteria are met. For example, the algorithm might terminated

when successive iterates differ from each other by no more than some number (i.e, = 07°).

3.3 Likelihood Function

We conclude this chapter with expressions for the observed log-likelihood
function which is numerically simple to evaluate. Although the EM algorithm does not
require an evaluation of the likelihood function, successive values of the function can
be useful in monitoring the progress of the algorithm toward convergence at each
iteration. And it's used in testing fit of alternate models.

Note the relationship among probability density functions :

_Polore 33.1
O) P(dy) (3.3.1)

In the framework of the general mixed linear model, the equation (3.3.1) is rewritten

as:
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P(Y16.Q,¥,A)P(AQ,¥,A,)
P(qy!as\P:Ao)

P(YIQ,Y,A,) = (3.3.2)

The specific expressions for each of the density functions stated in equation (3.3.2):

PGIGQY,A,) =[27)" I P expl(-0.5) (- 46" ¥ (y-49]  (33.3)

P(AQ,¥,A,) =[(2m)° |1 exp[(-0.5)(6 Q' 9)] (3.3.4)
where

y : the observed outcome vector for an individual

A : the design matrix for the multilevel structural equation model

o=[7 o
Finally, the denominator part in equation (3.3.2) can be specified as:

P(8y,Q,%,A,) =[20)°|D;|IP exp[(-0.5)(6- &) D;(6- 6)] (3.3.5)
In particular, when 8= ¢, we have:

P(le, W,A,)=22) "D 1P 1Y exp[(—0.5)S(6)] (3.3.6)

where:

S(8) =y (y- 46 - 4,6) (3.3.7)
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Now the log-likelihood function for the structural equation model may be:
LLR(Q,¥, A,|y) « (=0.5)log|¥|+(0.5)| D, |-(0.5)log|Q—(0.5)S(6") (3.3.8)

First we evaluate:

det(¥) = det(S ®1,)=[det(Z )]* 339

det(Z )=(a}) (a3) ...(a}) o

log(det(¥)) = N[log o’ +log o’ +...+log 67 (3.3.10)
And also:

det(Q) = det(Q,) det(Q,, )
(3.3.11)

log[det(Q2)] = N log[det(T, )]+ Jlog[det(T,)]

I" is considered large but fixed, from Dempster, Rubin and Tsutakawa (1981).

Finally we have:

M Vo Vs
det(D;) =det{V,, V,, Vi |= [det(Vn)][det(sz - VZIVI;I 12)][det(d33 - dszdz-zl 1))
Va Vi Vi

(3.3.12)

The second term in equation (3.3.12) is given in appendix 2 as det(Q;'). Let the

third term be det(U™)
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where
V. V V.
d,=| " "],d =["],d =[dy].dy; =V. (3.3.13)
22 I:Vzl V2 ) 23 V23 32 23 33 33
S@) =2 Dl Oy~ Aun - 4, a,,)] (3.3.14)

Then the log-likelihood function for the structural equation model is :

LLR(Y,Q, A, |y) = (N /2)log(det £)— (N / 2)log(det T,) - (K / 2)log(det T,)
+(1/2)log(det¥;,)+(1/2)3 log(det 0;')+(1/2)Y " log(det U;")

22 O~ A~ Ay wy,)] (3.3.15)

At each iteration the algorithm evaluates the log-likelihood function to monitor the

progress of the estimation.



CHAPTER 4

NUMERICAL RESULTS

In this chapter, I use a computer program written in Gauss (Version 2.2) to
compute ML estimates from a set of artificial data. To verify that the produced estimates
of the parameters are accurate the data are randomly generated with known
(predetermined) population parameters.

The analysis was done for the balanced case and the unbalanced case. The Gauss
program is designed to use cross-product matrices and initial starting values as input data
and to perform computing over numerous iterations of the EM algorithm.

The path diagram for the model is given as a figure 2.1.1. In the example the two
indicators for the ATT (attitude) latent variable are ATT1, ATT2. They are the student-
reported responses to the questions in the attitude scale. The ACH1 variable measures
achievement score in the "principle" parts, while the second indicator ACH2 measures

achievement score in "problem solving" part.

4.1 Generating the Da
Before creating the necessary data we have to consider several issues. For the
balanced data 10 subjects are selected per group. The distribution of the number of groups

per group size is given in Table 4.1. Due to the heavy computational load

50
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of estimating these model via the EM algorithm, only a single sample data will be

generated.

Table 4.1 Number of Groups per Group Size

Group Size Balanced Data Unbalanced Data
6 10
7 10
8 10
9 20
10 500 450
Total 500 500

To create samples to be fit to the multilevel structural equation model
specified in chapter 2, we modified the covariance structure by setting var(7)=0.

Then the observed outcome vector y is calculated by using equation (4.1.1) :

0.2
ys] [10 00 10 00710 z, 00 0.0 0.0 00] o1
Y| |082 00 075 0000 00 10 z, 00 00[031
yy| (00 10 00 10[00 00 00 00 w, 00033
Y| |00 073 00 06600 0.0 0.0 00 00 w,|0.25

0.35)

10 00 10 o007v,] [s
Jo8z 00 075 00w | e
00 10 00 10[wv,]| |&
0.0 073 00 066]v, | |&

(4.1.1)
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The values corresponding to the vector 7z in (2.3.2) have determined by using the

formula as shown in Appendix 1. The necessary values for a's and f's are :

B, =0.20,8, =0.10,8, = 0.25,5, = 0.30,4,, =0.25,8,, =0.30,a,, =0.30,2,, = 0.20.

The values for z,,,w v,V ,V,1,,V;,,,6, €, &, €, are generated by the following:

(1) first we generate 5000 "z" variable from a standard normal distribution. Then if
the value is bigger than 0.0 we assign 1 to it, while the value is less than 0.0, we
assign 0 to it,

(2) do the same for "w" variable for 500 groups,

(3) generate 500 between level random vectors from the population VC (variance
covariance) matrix, T,

(4) generate 5000 within level random vectors from the population VC matrix, T,,

(5) generate 5000 measurement error vectors from the population VC matrix, Z,

(6) then we use the equation (4.1.1) to obtain a balanced raw data.

The IMSL FORTRAN library contains the necessary several subroutines. The
dimension of the observed variables is four (r=4). The dimension of the latent
variables is two (p=2). And then we create an unbalanced data (4890 data points) by
randomly deleting 4 for each of 10 groups, deleting 3 for each another 10 groups, and

deleting 2 for each of another 10 groups, and finally delete 1 for each of 20 groups.
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Table 4.2 Descriptive Statistics for Sample

(1) Balanced Data
TOTAL SAMPLE SIZE = 5000

MEAN ST.DEV SKEWNESS KURTOSIS MIN FREQ. MAX FREQ.

Y1 -0.291 7.735 -0.081 -0.010 -33.444 1 27.565 1
Y2 -0.187 6.477 -0.070 -0.005 -23.317 1 23.612 1
Y3 -0.145 7913  -0.003 -0.125 -27.877 1 25.107 1
Y4 -0.097 6.055 -0.021 -0.085 -20.807 1 24764 1

SAMPLE COVARIANCE MATRIX

Y1l 59.824

Y2 39.570 41.951

Y3 16487 12.887 62.620

Y4 11.125 8927 35.242 36.667
(2) Unbalanced Data
TOTAL SAMPLE SIZE = 4890

MEAN ST.DEV. SKEWNESS KURTOSIS MIN FREQ. MAX FREQ.

Y1l -0.285 7.805 -0.075 0.045 -29918 1 28.897 1
Y2 -0.187 6.533 -0.092 -0.018 -22.221 1 24.147 1
Y3 -0.167 7.957 -0.010 -0.029 -27.866 1 26.820 1
Y4 -0.100 6.041 -0.017 -0.137 -21.051 1 19.738 1

ESTIMATED COVARIANCE MATRIX
Y1 60.922
Y2 40.477 42.686

Y3 16370 13.360 63.309
Y4 10376 8.746 35342 36.492

4.2 Results of the Analysis

The output of the Table 4.3 and 4.4 are the result of fitting balanced data and
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unbalanced data to the same model. The focus of investigation is in discovering and
testing the estimates of parameters are close to the predetermined population

parameters within some what sampling error.

Table 4.3 Results of Analysis for Balanced Data

Population Starting Estimated
Parameters Values Parameters
A 0.82 0.582 0.857253
A, 0.73 0.573 0.720532
Ay, 0.75 0.575 0.738310
Ay, 0.66 0.566 0.652453
L, 30.00 20.000 29.006845
t, 9.00 7.000 9.432951
t, 32.70 20.000 34.328632
Lo 20.00 10.000 18.407147
t. 4.00 3.000 3.528167
t.. 20.80 10.000 19.754972
o 10.00 8.000 10.851423
o’ 12.00 8.000 11.2542916
o’ 14.00 10.000 13.7741274
o’ 16.00 10.000 16.1793495
a,, 0.30 0.350 0.3251942
a, 0.20 0.300 0.1916734

Table 4.3.1 nditional expectations of regression coefficient

Ji 0.20 0.100 0.3550013
JiA 0.10 0.005 0.1492152
iR 0.25 0.100 0.6579540
B, 0.30 0.200 0.1218303
B, 0.25 0.100 0.4485403

B 0.30 0.100 0.2161860
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Table 4.4 Results of Analysis for Unbalanced Data

Population Starting Estimated

Parameters Values Parameters
A, 0.82 0.582 0.855920
A, 0.73 0.573 0.719029
A 0.75 0.575 0.736739
Ay 0.66 0.566 0.651504
L, 30.00 20.000 29.563270
L, 9.00 7.000 9.569872
‘. 32.70 20.000 34.697681
L, 20.00 10.000 18.153446
Lo 4.00 3.000 3.465942
Lo 20.80 10.000 19.38584
o 10.00 8.000 10.87648
o’ 12.00 8.000 11.29153
o’ 14.00 10.000 14.04039
o’ 16.00 10.000 16.18727
a, 0.30 0.200 0.32372
a, 0.20 0.150 0.19092
Table 4.4.1 Conditional expectations of regression coefficients
B 0.20 0.150 0.29023
B, 0.10 0.500 0.13452
B 0.25 0.150 0.74056
B. 0.30 0.200 0.10906
By 0.25 0.150 0.47312
B2 0.30 0.200 0.27258
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bserved Log-likelihood a

Balanced Data

Iteration 1353
Iteration 1354
Iteration 1356
Iteration 1357
Iteration 1358
Iteration 1359
Iteration 1360

-2902.3472413
-2902.3472410
-2902.3472408
-2902.3472405
-2902.3472402
-2902.3472400
-2902.3472397

le 4.6 The Values of the

served L

-likelihood at

Unbalanced Data

Iteration 1321
Iteration 1322
Iteration 1323
Iteration 1324
Iteration 1325
Iteration 1326

-2768.5733562
-2768.5733550
-2768.5733537
-2768.5733522
-2768.5733511
-2768.5733508

nvergence

nvergence
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In discussing the results reported in Table 4.3 and 4.4 , we say that the EM algorithm

recovered the population parameters values well. The criterion used for convergence of the
observed log-likelihood is that log-likelihood is smaller than 0.1°( §<10°). Inthe 486 IBM
PC with the speed of 66 mhrz for the convergence it took about 45 hours. For the
unbalanced case the hours spent are about 48 hours. The Table 4.5 and Table 4.6 show the
list of log-likelihood values at the neighborhood of convergence. As the Table 4.4 shows the
number of iterations is very large and the spent hours is very long. The slowness of
convergence of the EM algorithm is the repeatedly criticized property of the algorithm. This
seems to be caused by the fact that missing information (Meng and Rubin, 1991) is relatively
large in the multilevel structural equation model. To obtain estimates of a@'s and s we
assume that the matrices, A and A, are diagonal matrices. Then as shown in Appendix 1, we
obtain the estimates of structural parameters. When we use extremely poor starting values, the
estimates are not similar. But if we use moderately poor starting values, then the results are
very similar (almost same) across various sets of starting values.

After estimating parameters, the likelihood ratio tests are available to test more and less

complex models. It is known that the statistic, —2 ln(ﬁ-), has an asymptotic chi-square

distribution, where L, is the maximum likelihood value of a less complex model and
L, is the value of a more complex model. The degrees of freedom of chi-square

statistic is the difference of the number of parameters to be estimated in each model.

In our educational example, the model for L, may be constrained as follows.
(1) TrlzTn.a (2) szAb

As the Table 4.5 shows the number of parameters of the simpler model is 10 while the



58

complex model has 16 parameters to be estimated. The degrees of freedom of chi-
square is 6. The deviance between the two values of -2In(Likelihood) is 662.24. This
value is large enough to reject the adequacy of the simpler model. In this likelihood
ratio test we do not know which of the restrictions is not adequate. Thus for each of
the restrictions we may test the adequacy of the simpler model rather than complex

model.

Table 4.5 Results of Analysis for Unbalanced Data for Restricted Model

Population Starting Estimated

Parameters Values Parameters
A 0.82 0.75 0.841037
A, 0.73 0.70 0.692301
. 0.75 0.70 0.720219
Ay 0.66 0.50 0.837227
t,, 30.00 15.00 32.647209
t, 9.00 5.00 10.538582
t, 30.00 15.00 36.943765
Lo 20.00 15.00 16.459542
Lo 4.00 5.00 7.358164
. 20.00 15.00 25.980356
of 10.00 8.00 9.236718
o 12.00 8.00 12.450677
a§ 14.00 8.00 12.120453
o 16.00 8.00 13.863560
a, 0.30 0.200 0.323054
a,, 0.20 0.150 0.447046

The value of log-likelihood -3104.68428
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Table 4.5.1 nditional expectations of regression coefficient

B, 0.20 0.150 0.92709
B, 0.10 0.500 0.17796
B, 0.25 0.150 2.05197
B, 0.30 0.200 1.17230
B 0.25 0.150 2.64902
Bz 0.30 0.200 1.48537

The multilevel structural equation model postulates that the causal relationship
on the within level and between level are different because the explanatory variable is
different, in our example, gender on the within level, teaching methods on the
classroom level. We may calculate the root mean square residual (Joreskog and
Sorbom, 1993) for an overall goodness of fit measure. In the literature of LISREL,
we found the root mean squared residual can be used to compare the fit of two

different models for the same data.

RMQR:[ZZ(s,j —o,)t 1@+ “2.1)
where s is the i th row and j-th column variance-covariance element of the sample
total variance-covariance matrix. And o, is the corresponding element of the model
predicted total variance-covariance matrix,2. RMQR is a measure of the average of
the fitted residuals. The model predicted total variance covariance is given by
izi,-&»ib . then we obtain, RMQR = 0.73850 for complex model, RMQR=
5.98066 for simple model. Judged by these index we may conclude that the fit of the

simple model to the hierarchical data is not as adequate as in the complex model. This

conclusion was expected because the data were generated in a hierarchical fashion,
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and the restrictions makes the model a single level structural equation model. Now we
make inferences about 7's in balanced data case. Specifically, from the posterior
variance estimates of 7's we obtained the standard errors for #'s shown in Table 4.6.
and 4.7. For the balanced data the t-statistics are:

[1.247 0.8373 0.5566 0.8806 1.09108 0.6998]. Thus the expectation of the

“attitude” latent variable for the girl students in classrooms of which instruction style
is expository is significantly different from zero. And expectation of the “ACH” latent
variable for the girl students in classrooms of which instruction style is expository is
not significantly different from zero. The total effect of “gender” on the “ACH” latent
variable is not significantly different from zero. The “gender gap” on the “attitude”
latent variable is not significantly different from zero. The total effect of discovery
teaching style on “ACH” latent variable is not significantly different zero at the
between group level. And the effect of discovery teaching style on the “attitude”

latent variable at the between group level is significantly different from zero.

Table 4.6 Estimates of ﬂ for Two Sets of Data

Balanced Data Unbalanced Data
Population  Estimated Standard Estimated Standard
Parameters Parameters Error Parameters Error
m, 0.20 0.3550 0.28560 0.2902 0.2137
A 0.10 0.1492 0.17818 0.1345 0.1845
A 0.31 0.7734 0.30602 0.8345 0.2827
7, 0.33 0.1703 0.19344 0.1526 0.2216
7, 0.25 0.4485 0.41105 0.5316 0.4363

n, 035 0.3021 0.43176 0.3629 0.5262




CHAPTER §
CONCLUSION

Research in the field of education provides various challenges. For example, the
random assignment of students to a set of conditions is not realistic in most cases. Even in
the experimental setting the outcomes will have a positive intracluster correlations due to
the fact that (1) students do not receive their instruction individually but in groups, (2)
interactions exist between treatments and students (Lumsdaine, 1963). This situation
often makes the application of the linear structural equation models (Joreskog, 1977) to
the real data inappropriate.

As Cronbach (1976) pointed out, many studies in the field of education have
produced inappropriate analysis, especially in the field of evaluation studies because they
failed to recognize the nature of hierarchical data. The difficulty of analyzing data arising
from two levels is in assessing the nature of intervariable relationships at both levels
simultaneously. During the last two decades researchers have developed multilevel
structural equation models for hierarchical data. Previous work on the multilevel structural
equation models involved a minimization fitting function or /and balanced sampling design.
And most ultilized standard software. These minimization fitting function approaches
have made substantial methodological advances. They require classifying groups into
subsets of groups having equal sample size.

This dissertation has shown how multilevel structural equation models can be
formulated for hierarchical data and how they can be analyzed by using empirical Bayes

with the EM algorithm. The model equations are linear at each level, the direct
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direct connection between variables is typically specified by the value of the
coefficients asin the LISREL (Joreskog, 1977) or EQS (Bentler, 1983) models.
The major outputs of this thesis are four:
1. I presented the general multilevel structural equation model in the
mode of hierarchical empirical Bayes modeling.
2. I developed the empirical Bayes estimation procedure via the EM
algorithm to find maximum likelihood estimates of the model.
3. A computer program for numerical analysis of hierarchical
data for structural equation models was developed in Gauss.
4. The accuracy of the computing algorithm has been tested across sampling

designs and models.

5.1 Summary, Implications and Conclusions

I now summarize the major points that emerged in each chapter and discuss
their implications for fitting multilevel structural equation model to hierarchical data.
In chapter one, the problems confronting single level and multilevel structural
equation models were identified. These problems are old ones. Traditional single level
structural equation models do not incorporate the random errors from the multilevel
structure. Therefore reserachers face the dillema "What should be our unit of
analysis?” That is, they have to choose individual level analysis or group level
analysis. Ignoring the inherent hierarchical structure in our data sets results in the

confounding of group level effects with individual level effects. Of course, the
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individual level analysis violates the independence assumption and results in over
estimation of precision. In program evaluation studies, for example, curriculuum
evaluation, we are interested in the interaction effects between the treatments and the
individuals across individual level background information and group level variables.

In chapter two, the multilevel structural equation model and a few basic model
assumptions are presented and then translated into the general mixed model
(hierarchical model of linear equations) on both the cluster level and individual level.
In particular, the model explicitly utilizes the socio-demographic information on both
group and individual levels. We also provided an example for model specification. In
chapter three, empirical Bayes estimation procedure via the EM algorithm was
generalized to the multilevel structural equation model. In the "hierarchical prior
distribution" specification we adopted the MLR (Dempster, Rubin and Tsutakawa,
1981) approach. We also presented the E and M steps for ML estimates.

Much of Chapter four assessed the accuracy of the EM algorithm for an
artificial model for different sampling designs. The results showed that the EM
algorithm for the multilevel structural equation model is quite accurate for the data
generated. The results were drawn from the simulation under the balanced and
unbalanced sampling design.

Ignoring the second level effects can yield a misleading interpretation of the
structure of the causal map among latent constructs under the study. The presented
methodology allows the simultaneous estimation of the prarmeters in the unbalanced

multilevel structural equation models.
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The primary advantage of the EM method for multilevel structural equation
models lies in the three key facts: (1) it does not require the calculation of the 2nd-
order partial derivatives of the maximum likelihood function. Even though the models
studied by several researchers are different in terms of balanced or unbalanced
sampling designs, the calculation of partial derivatives are essential for the methods
proposed by Schmidt and Wisenbaker (1986), MacDonald and Goldstein (1989), Lee
and Poon(1992), Raudenbush (press). (2) it does not require classifying level-2 units
into subsets having equal sample size. However it has the shortcoming of slowness of
convergence. Another shortcoming of the EM algorithm is that it does not provide the
standard errors for the estimates of parameters.

When we apply the method to real-world problems we need further elaboration
of the models that carefully takes into account the special features of a certain subject
matter. Typical applications of structural equation models involve (1) the development
of a prior model, representing hypothetical causal associations among a set of latent
variables and manifest variables. (2) fitting the prior model to sample data, (3) the
evaluation of the solution in terms of its parameters estimates and goodness of fit, (4)
the modification of the model so as to improve its parsimony and its fit to the data.
This last step has been known "a specification search" or "respecification". During
such a search the researcher alters the model specification in search of substantively
meaningful model that fits the data well. The structural misspecifications are involved

the specification of the elements of matrix A and 4,. It is also closely related to the

identifiable model.
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The purpose of latent variables model is to improve the accuracy and validity
of inferences from empirical data. In order to accomplish this goal, several
assumptions about the structure of the data and the meaning of the associations
between variables must be made. Ideally, each of these assumptions will be based
either on special features of subject-matter application area or on the knowledge,

derived from past empirical evidence.

5.2 Future Work

One of the potential fields to which the mutilevel structural equation model is
extended is the model where the slope for the exogenous variables varies randomly
across groups. Note that there are numerous settings in which multilevel structural
equation models consisting of random slopes for exgenous variables are needed in
order to represent adequately the variance-covariance structure of the data. Thus, for
example, the gender gap in the SAT mathematics test scores can be explained by the
group-level characteristics.

As is well known, the EM algorithm is simple to implement and numerically
stable, but is slow. Recently Jamshidian and Jennrich (1993) developed a conjugate
gradient scheme for accelerating the speed of the EM algorithm. In their AEM
(accelerating EM) algorithm the evaluation of the gradient of the likelihood function
is essential. When the number of parameters is moderate the implementation of the

AEM algorithm seems not so burdensome. To obtain the standard error of the
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maximum likelihood estimates one may apply the SEM (supplemented EM algorithm)

algorithm developed by Meng and Rubin (1991).

The current approach to drawing inferences concerning variance components is
based on large sample theory for ML estimators. When the number of groups is small
the normal approximation will be invalid. For that case, one may apply the Data
Augmentation (Tanner and Wong, 1987) approach.

Future models can be expanded to larger and more complicated models. Also

robustness of the model remain to be studied.
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Appendix 1

For finding the values of #'s and a's, we have the elementwise algebraic relations :

T, =B, (A.1.1)

7, =ayup,+p, (A1.2)

Then we can derive estimates of the structural coefficients from this first within-group
algebraic relations. Especially the identification of a's is carried out on the base of the

following assumption (A.1.3) and the second within-group algebraic relationship (A.1.4).

var(u,) = A =diag(d,,p=1,...,P) (A.13)

(I-A)'Ad-A)" =var(v,)=T, (A.14)

The elementwise relations of (A.1.4) are:

5“ = T"ll

onay =1, (A.1.5)

After finding ’s from the above algebraic relationship (A.1.5), we find the §'s from the

first within-group algebraic relationship (A.1.2).
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Similarly the first between-group algebraic relations are:

(I-4,)"'B,=11,, (A.1.6)

The corresponding elementwise relationships are:

Tyonr = Bon

Tyon = @By + By (A.17)

In the same fashion, the identification of a,'s is carried out on the base of the following

assumption (A.1.8) and the second within-group algebraic relationship (A.1.9).

var(u, ) = A, =diag(6,,,p=1,...,P) (A.1.8)

U-4)"'A,(I-4)" =var(v,) =T, (A19)

The elementwise relations of (A.1.9) are:

O = L

Oy = Ty, (A.1.10)

After finding @,'s from the above algebraic relationship (A.1.10), we find the B,'s from the

first between-group algebraic relationship (A.1.7).
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Appendix 2

For the computational convenience of the necessary posterior expectations and
dispersion matrices for the random vector the equation (3.1.1) without subscript

becomes :

y=An+A4,6,+A4,0,+¢

e~N(,I,®Z), N=) n,
7~ N(,I)

6,~N(,Q,),

6,~N(0,Q,),
let y=A6+r
where A=[4|4,]4,]
(7, ] 6, ]
x 7y 0y,
0=(6,| ,n=| |[.0,=]| |,
6, : :
_”' J _931'_




70
gz :[62116212""!02ln|""’02K102K2""’62Kn‘ r

t : the dimension of 7

r o o
_ Q = subdlag(T )
var()=|10 Q, QO Q:’n = subdiag('l”,,,)
0 o0

By using the results of the standard multivariate normal distribution (Searle, 1971),

one obtain the following joint distribution of the multilevel structural equation model

y ol 2, Al 49, 49,
0, N of| T4, T 0 0
6, of|Q,4, 0 Q 0
6, oj|,4 0 0 Q

where I,=AT4+4Q 4 +4Q, 4 +], O

The posterior dispersion matrix D, of O is translated from A'¥"'4+Q']" into the

context of the multilevel structural equation model. The posterior dispersion matrix

can be written as :
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AY'A, +T A YA, AY'4,
D;=[A"Y'A+Q '] A YA, AY'A, +Q; A, ¥4,
AV A, AYA, AV 4, + Q)

For the convenience of applying the inversion formula of the partitioned matrix

(Graybill, 1983), one can rewrite the matrix Dj:

Bl B2 Ll -1 N
B' B = Q _(GQ )
> L, —~(G0™") U'+GQ'G
L L, U
where Q=B,-LU'L, G=U"'L
Bl Bz (] (] ’
=, , L=
where B, [ B, Ba] (L,L]

Q_,z[Ql Qz]lz[Rl &]
Q; QJ R'; R3

0 =AY 4 - A¥ A4V 4,+Q, ) 4¥4
Q=AY 4 - AY ALY 4,+Q, )" 4, Y74,

0, = A,¥'A, +Q; - ALY A4 4,+ Q) ) 4¥A,
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R R -RLU-RLU"
Di=| R, R R, LU -R,LU"
symmetric U™ +ULRL+LR,L +LR,L, + L,R,L,)U""

W Vo Vi D, C, C,
=\Vy Vyp V| = C:o D, Cg,
Vs Vi Vi C:o, CoTo. D,

Thus in the E-step the needed conditional density of 8,,, , 6,, , &,, given the data and

the parameters, 7,,m,,T,,T,,T,,Z, have the following locations and dispersion

matrices:
g =V, [(A, - 0,0;'A)Y ' (1- AU 4, 7))

6, = (VoA - Q5 OV AN Y I- 4, (ALY 4, + T, ) 4,¥710)

G =U"4¥Y " y-(A G +A,6))

n =0 _QzQs—lQ; ]_]
2=V, 3_I

3= '[VuA;‘P-lAJ +V12A;\P—1A3 ]U_l
n= 3—]+Q3_lQ;Van 3-l
n = VA 4, +V, 97 4,07

5= U VY 4,4V ¥ 4,107
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Appendix 3

We show the explicit derivation of Q(©“,0¢ ") defined in chapter 3.
By definition from Dempster, Laird and Rubin (1977),

0(0“,0") = E(loglf (¢;0)]Y = y;0").
By applying the theorem on the expectation of the quadratic function we have:

E[o‘l‘T—leulY - y’ @(i—l)] — tr[T;lE(euy‘l'ly - y’ @(i-l))]

von

E[6T;'6,|Y = ;0] = tr[T; E(6, 6 |Y = y;0 )]

b Ty

E[E,,T-E-lg,_j|Y =y, @(-’—n)] = tr[x_‘E(%fﬂY — y;e(:_n))]

After some algebraic calculations we have:
0©%",0% ") = (-Nr/2)In 2r+(-N/2)In|Z |

+ (-Np/2)In(27) +(-N /2)In|T,|+(~Js/2)In(27) + (-J /2)1n| T, |
-%ZZ#[::“((AOZ,, )D,(AZ,) +(A,D; AY)

+ ((AoZyCrg, AY) +(ACri Zi A7))]

-%Zz(yﬁ =N Z,w = Aa)) 27y, - A Z,m - Ay ,)

‘%ZZ"[T;'E(Q,%IY=y,®""’)]-%zir[T;,'E(0b,0;|Y=y,®"'“’)] (.2.1)
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In this appendix we provide the formula for the element of £ is :

A 1 . . . * *
o, = WZZ[LL.,.D;;; +22 20y Dige + 22, W D +22,,2,, Dy +22,,2,, D, +

bm™ g i

224, W, D0z, +24,,D, +22,.D, ,+2{24,,Crp. +22,2,,Cro + 2, W, Crop. +

bm"" j

. . . . . . . 12
;l'bmquc + A'bmzﬂjqu'c} + {ymij - lwm (”j‘ +zz.y ”f) - A’wmva'j - A’bmwj ﬂbf - ﬂ‘bmqu' }

where m=1,..,4.
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In this appendix we present the derivations of the elements of the loading matrices.
First by expanding the 8-th term in the right of the equation (3.2.1) we have the

a4z
following five terms: e

()(-2.0)y; =N Z,n"
(2)(=2.0)y;27'A,a;

y

GYNAZ,D TN Z, 2™
(42@\02,,;?5’2-'/\0@;

()(A,@)) I A, m

For each term we take the derivatives with respect to A,. Note that in taking the

derivatives we regard A, as a full matrix. Then we have:

J ()(-2.0027y,zTZ]

M, . T
@)(-2.0Z"y o

ONQR.0EAZ, 7 (£ Z)]

2 \ > s @ 7
@A, 7T TN 7 w)

v

2
(5)(2"1{0 w, wfﬁ)
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And we take the derivatives of 7-th term in right side of the equation (3.2.1) with

respect to A,. Then we obtain: & & ©
o "\c ;\\\‘ _
(6) tr[Z7{AZ, D (AZ,) + A DA + A Z,Cry + A Cor(N5Z,)7}]

e

I

P#¢

20(0,0%) G2é

By arranging these six equations we obtain A as we write in chapter 3.

) @¢-NH
Let A= 2@ 9
an

: [A ]A is the matrix A with zeros inserted in the places of
[

fixed parameters in A,. Finally by the equation (3.2.9) we obtain the following ML
ey

estimators for each elements of A:

A= [_2’12,3“'1(1)“'521,1 +D.'2522y "'C;ausn) _212,3(D;‘,13 +zlijC;m‘,13 +22ijc;m‘,23)

— -

s .

+2Q’5f/_ 22,,W,m,, - '12,301:11 )(zxy_”l tz,7,+ 9;,,- ]
N

x[2[D}, +22,, D}, + 23, D + Dy, +2C,

w1l

+222,-1C'

-1
. . 2
xw,21 +(zlij7tl +22u”2 + 01.11) ]]

Agr = ['2/14,4”',' (D‘ﬂﬁznj + D"“ﬁzz:j + C;mu62) 2244 (D;uu + zlqc:muu +zleC;w044)
+2()’4.'j —24,,W j ”;2 —A4a gbz,- )(7'1.-; ”; +2y ”: + 9.2:1 )]

-1
. . 2 e . . . . 2
X[ 20D} + 22,y Dipy + 23D + Dy +2Cg 10 + 223, Crgy i + (2,73 + 22,7 + 6,,) ]

Ay =[-A W, (ZD“'SZUJ +2D.‘2522ij +C;wu51) =24, (D;uls +zwc;q,13 +22qc;wuzs)



77

‘*‘2(”’;”;1 + 0;1; )(2'2.1(210'”1. +2y 7, + 6‘:1) +.Yz.-,-]

- . . . -1
X[Z[WIZD,” + Da033 + zchmuss +2(w;m, + 9;11)2]]

Aya =[=Ay oW, (2D w62, +2D w2y, +2C g 0) —225( D24 + 2 Crgy s + 22, Crogy )

120w, 7y + 63 Yy = A (27, + 23y 7y + 6,)]

] xw,y 64

L . . . -1
X[zlwam + Dy 65 +2W,Crp o0 +2(W, Ty, + e'sz)z]]
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