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ABSTRACT

EMPIRICAL BAYES ESTIMATION FOR

UNBALANCED MULTILEVEL STRUCTURAL EQUATION MODELS

VIA THE EM ALGORITHM

By

See-Heyon Jo

The question of how to analyze unbalanced hierarchical data generated from

structural equation models has been a common problem for educational researchers

and analysts. Among difficulties plaguing statistical modeling are estimation bias due

to measurement error and the estimation of the effects of hierarchical, social milieu

where education takes place. Over the last two decades, substantial progress in

multilevel structural modeling and estimation techniques has been made for the

balanced sampling design.

This dissertation presents empirical Bayes estimation procedures for the

multilevel structural equation models in the context of unbalanced sampling designs.

The computational procedure is implemented via the EM algorithm. It is particularly

useful for the problem of estimating a large number of parameters in multilevel

structural equation models.

A multilevel structural equation modeling process with an example illustrates

the general principles of the empirical Bayes estimation with the EM algorithm. The

accuracy of the algorithm was tested using a set of artificial data. The numerical

results suggest that this new methodology is a potentially useful means for studying

hypothesized causal relations among latent variables varying at two levels of

hierarchy.
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CHAPTER 1

INTRODUCTION

As a consequence of various theoretical developments and of improvements in

computing, maximum likelihood (ML) estimation has become a viable procedure for

estimating parameters in multilevel structural equation models under the balanced

sampling design. Many ofthese developments were reviewed in detail by Jo (1993).

The initial interest in ML estimation of a multilevel covariance structure model was

noted and developed by Schmidt (1969). Schmidt and Wisenbaker (1986) extended this

work to the structural equation models (Joreskog, 1973) for balanced hierarchical data.

McDonald and Goldstein (1989) derived the likelihood equations and derivatives

for a bilevel structural equation model which allows for variables measured strictly at a

higher level, though no computational approach was made available. They also indicated

that the procedure for computation of ML estimates is currently less well developed for

the unbalanced sampling design.

Recently, based on the balanced-data theory provided by Schmidt (1969) and

McDonald and Goldstein (1989), Muthen (1990) showed that the maximum likelihood

fitting function could be rewritten such that the between and within structural models

could be estimated by means of a multi-population analysis in LISCOMP (Muthen,1987)

or other comparable structural equations software. In the case of balanced data this could

be accomplished by treating the within-group deviations as sampled from one population

and the between-group deviations as sampled from a second population. For the case of
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unbalanced data, each cluster ofgroups which have the same number ofobservations is

treated as one population.

Lee and Poon (1992) also used the strategy of classifying level-2 units into subsets

of level-2 units having equal sample size. They proposed an estimator for such data which,

though not maximum likelihood (ML), has the same asymptotic distribution as the ML

estimator as the number of level-2 units per subset increases without bound.

Computationally this estimator is available using standard software program, such as

LISREL (Joreskog and Sorbom, 1993) or EQS (Bentler, 1989).

More recently, Raudenbush (in press) proposed an alternate approach for the

unbalanced case. He conceptualized the problem in the framework of groups which could

all have the same number of sampled cases but are missing data for some individuals. In

particular, in the M-step (maximization) the method uses the standard program such as

EQS (Bentler, 1989). Vredevooogd (1993) applied this general approach to the global

models (where two indicators for a group-level latent variable are included) in her

dissertation proposal. Jo (1993) also applied the general procedure to a set of linear

structural equation models.

The purpose of this dissertation is to develop empirical Bayes estimation

procedures for computing maximum likelihood (ML) estimates of the parameters in the

multilevel structural equation models in the context of the unbalanced sampling design.

The procedures do not require classifying level-2 units into subsets of level-2 units having

equal sample size. We present a multilevel structural equation modeling process with an
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artificial example, which illustrates the general principles of empirical Bayes estimation

with the EM algorithm.

1.1 The neral Problem

A distinguishing characteristic of the data encountered in many areas of educational,

medical, social science (sociology, econometrics, management, marketing) and genetics

research is that the sampling structure is hierarchical. For instance, students are nested within

schools, workers within firms, patients within some treatment-specific medical programs,

family members in a family tree, or residents within census tracks. Individuals also can take the

role of independently observed groups.

Generally, students are taught in groups by a teacher, several classrooms and teachers

are grouped together into a school, schools into districts and districts are clustered in states.

Then students who attend the same school or classroom are expected to share certain

educational policies and practices. As a result, the educational outcomes for these students will

be, to varying degrees, intercorrelated. These effects of clusters are most validly viewed

within the context of multilevel linear models.

Much of social science data comes from two-, or three- stage sampling designs.

large-scale educational assessment, for example, is typically conducted by drawing a sample of

schools and, fi'om those schools, sampling the students who will take the assessment test. This

hierarchical fashion of sampling is frequently selected in large-scale surveys, such as the

National Longitudinal Study with data gathered regarding the educational aspirations and

attainment ofhigh school seniors of 1972 and the Second International Mathematics Studies
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(SIMS; Crosswhite et al., 1985), and the Third International Mathematics and Science Studies

(TIMSS; Schmidt, 1993). Under the standard assumption ofMD, covariance structure

modeling (Joreskog, 1973) of such data misguides statistical inference by not taking into

account the intracluster correlations which are present in hierarchical data. Hence an important

implication of such structure is that the classical assumption of independence among nested

observations is violated. Ignoring the existence of hierarchy in model building gives rise to

' several methodological and substantive problems and that have been well-documented in the

literature (Burstein,1980).

In the context of the linear modeL statisticians (Lindley and Smith, 1972; Smith, 1973;

Raudenbush, 1984, 1988; Aitkin and Longford, 1986; Goldstein, 1986) developed hierarchical

linear models (HLM) which are appropriate and powerful means ofmodeling hierarchical data.

Many ofthese developments and examples are found in the recent book written by Bryk and

Raudenbush (1992).

It was not until hierarchical modeling techniques (Aitkin and Longford, 1986;

Goldstein, 1986; Mason, Wong and Entwistle, 1984; Raudenbush, 1984; Raudenbush

& Bryk, 1986) were developed that complex relationships among variables across all

levels could be inferred. Such techniques have been widely used for various types of

research topics such as cognitive growth and change (Bryk and Raudenbush, 1987;

Goldstein, 1989), population studies (Mason et al., 1984), meta-analysis (Raudenbush

and Bryk, 1985), and evaluation of educational effectiveness (Aitkin and Longford,

1986; Raudenbush and Bryk, 1986).

However there have been only rare attempts of applying the methodology to
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the structural equation models for hierarchical data. In discussing the empirical Bayes

\

approach, Muthen (1990) also indicated the plausibility of application to the multilevel

structural equation model by estimating each group's factor value under the

assumption of "exchangeability" (deFinetti, 1937; Lindley and Smith, 1972) of

the groups.

The main tasks in this dissertation are (a) to incorporate the effects of two

levels of social organization into statistical models for outcomes measured at the

individual level or/and cluster level; (b) to develop latent variable models that

simultaneously incorporate effects of structural relations and measurement error.

1.2 Qbiectives

The primary objectives of this dissertation are:

(1) To review previous relevant advances in statistiCal modeling and estimation

procedures for the multilevel structural equation model,

(2) To describe a multilevel structural equation model and develop empirical

Bayes estimation procedures for ML estimates via the EM algorithm,

(3) To write a necessary computer program to implement this new estimation

procedure,

(4) To demenstrate by the use of simulated data that this estimation procedure

produces accurate parameter estimates.
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1.3 Brief History of Singlg Level Structural Eguation Models

The measurement of latent constructs with multiple manifest variables began

with the work of Spearman (1904) early in this century. In 1904, Spearman proposed

the method of factor analysis to investigate Galton's theory (Galton, 1883) of

"intelligence" that a single common factor and a specific factor constituted

cognitive ability as measured educational tests. This model evolved to represent

intelligence with a hierarchical structure (Vernon, 1950). Thurstone (1947) extended

Spearman's theory to a multiple factor analysis model. Apart from

Spearman's factor analysis there is the work of Wright (1934), who derived the path

analysis for the research of genetics. Before Lawley's (1943) development of the

maximum likelihood function for factor analysis, the classical method was not based

on the statistical theory of random sampling. While computational methods were not

available at that time, Lawley derived the partial derivatives of the logarithm of the

likelihood function with respect to each element of the covariance matrix. Based on

Lawley's ML estimation theory, Joreskog (1967, 1973, 1977) developed the structural

equation model.

“Linear structural equation modeling (1977) represents an important

combining of the traditions of econometric and psychometric methods producing

a set of procedures that enable researchers to separate the structural part of

the model from the measurement properties of the variables. The structural

part of the model represents hypothesized networks among latent construct variables

imperfectly projected in the observed indicators. This scheme of formulation allows the

separation of issues of measurement error from the assessment of the structural

relationships that embody the actual purposes of the research. This tradition has seen
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many applications in education, psychology, and sociology over the last 20 years.”

(Raudenbush and Schmidt, 1991)

Joreskog (1977) adapted two optimization algorithms of steepest descent and

the Davidon-Flectcher-Powell. Recently he extended LISREL to nonlinear structural

model (Joreskog and Sorbom, 1993). The recent version of LISREL8 with PRELISZ

(Jorekog and Sorbom, 1993) provides user-easy language SIMPLIS for the PC-

window.

As noted by Austin and Wolfle (1991), structural equation modeling is not a

recent development (Bentler, 1983; McDonald, 1978), nor is it the work of any one

individual or disciplinary area. However, there have been other lines of inquiry.

The second line of inquiry is represented by the work of Bock (1960), Bock

and Bargmann (1966), Wiley (1967), and Wiley, Schmidt and Bramble (1973). They

addressed a set of models formally parameterized as the factor analysis model but with

different notions as to the roles of the parameters themselves.

The model for the observed score vector of p tests is :

The model implies that the vector y has a multivariate normal distribution with mean

vector u and covariance matrix 23:



2=A<I>A'+‘P (1.3.2)

the general assumption for the model is (1) (I) is considered as a diagonal matrix, (2)

‘I’ is considered to be 10'2 or heterogeneous, (3) A is completely specified or scaled

by unknown but estimable matrix of scaling factor, F. Wiley (1967) developed a set

of 16 models that can be hypothesized by applying different combinations of

restrictions to the three main components of the general model. These models cover a

number of Joreskog's confirmatory factor analysis models. Wiley, Schmidt and

Bramble (1973) developed the maximum likelihood estimators for eight of these

models using the restrictions : (1) A is completely specified and unscaled, (2) A is

completely specified and scaled by an unknown but estimable matrix of scaling

weights 1".

The third line of inquiry has a different tradition from the other two procedures

of modeling and analysis. Recently the application of the regression component

decomposition (Schonemann and Steiger, 1976) approach is proposed to avoid the

indeterminacy problems in the conventional LISREL model. In the RCD (regression

component decomposition) model, the common factors are defined as linear

combinations of the observed variables and the factor loadings as the regression

coefficients, regressing the manifest variables on the so defined common factors. In

the context of LISREL model, Haaggen and Vittadini (1991) presented a method to

decompose the observed data into components which have analogous properties to

those of the latent variables in the LISREL model.
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1.4 The Prior Work of Multilevel Structural Equation Mgdels

Several articles deal with the analysis of the structural equation model for

hierarchical data. In this section we review the proposed methods for their models

and computational methods.

In Schmidt and Wisenbaker (1986), the measurement and structural models

are:

yzpy+An+Abnb+£+£b (1.4.1)

xsz+F§+Fb§b+w+ rob (1.4.2)

n=An+Br§+9 (1.4.3)

77,, = A, 77,, +Bb§b + 6,, (1.4.4)

The vectors ,uy,px, in the equations (1.4.1) and (1.4.2) are simply the expected

values of y and x respectively. The matrix Acontains coefficients relating the latent

endogenous within-groups variables 77 to the manifest variables, y. Similarly, Ab

relates the true endogenous between-groups variables, 17,, to the observed variables,

y. The vectors a, 8,, are the errors of measurement associated with the within-groups

and between-groups levels respectively. The coefficients matrices, RI}, and the

vectors 4‘, 5,, w, to}, bear similar relationships to the observed vector, x.

Equation (1.4.3) stipulates that the latent within-groups endogenous variables are

expressible as linear functions of themselves and the latent within-groups exogenous

variables. The matrices A and A, must be lower triangular such that (I — A) and

(I — A) are invertible. The vector, 0, contains the errors in structural equation.
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Equation (1.4.4) is composed of parallel constructs dealing with the expression of

the between-groups latent endogenous variables.

By formulating the total variance-covariance as a simple additive function of

the within and between group variance-covariance matrices, the within group

covariance matrix, 2“,, and between group variance covariance matrix, 2,, were

expressed as follows:

we?) = 2, + 2, (1.4.5)

y

where

1‘2,1" + ‘1', 1‘2 ,B' (I - A)" A‘

2.. = . A[(I-- 4)"1 32.311 - A)"]A' (1.4.6)
symmetric

+A[(I — A)“ 2:,(1- A)" ]A' + ‘1',

1324.1“, + ‘11,. 1“,: ,b B', (1 - A,)'1 A',

21, = . Ab[(I_Ab)—1Bb2{,Bb(I-Ab)—IIAI (1.4.7)

symmetric -1 _1 .

+Ab[(l - Ab) 29,,(1- Ab) IAb + \Ps,

with the following definitions:

2;: the variance-covariance matrix of the latent within-group exogenous variables,

AB : the matrix of factor loadings associating manifest variables and latent

variables at the group level.

20: the variance-covariance matrix of the within-groups errors in equations, 19.
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‘1’”: the variance-covariance matrix of the within-groups measurement error

associated with the observed exogenous variables, x.

‘1’; the variance-covariance matrix of the within-groups measurement error

associated with the observed endogenous variables, y.

A : the matrix of factor loadings connecting manifest variables and latent

variables at the individual level.

24‘ : the variance-covariance matrix among the exogenous latent variables at

the group level.

29‘ : the variance-covariance matrix among the endogenous latent variables

at the individual level.

‘1’ : the variance-covariance matrix among the random measurement errors

associated with the observed endogenous variables at the group level

‘I’ : the variance-covariance matrix among the random measurement errors

associated with the observed exogenous variables at the group level

Given the assumption of a multivariate normal distribution, Schmidt and Wisenbaker

derived the log likelihood function;

L(6I) = (—J—"2—J’l)-1n|z,|—%1n|z, +122,|——Jzfltr[z;‘s,]-§tr[(2, +n£,)-'s,] (1.4.8)

where J is the total number of groups while n is the number of level-l units in each



12

group. And S. = 715226 -7,)(y. a)", S. = 320, we; -y>’, and y..- is

the r by 1 observation vector for the i-th individual in the j-th group.

The maximum likelihood estimates for the parameters can be obtained by

setting the first partial derivatives of the log likelihood function with respect to each

parameter equal to zero and solving for the unknowns. Schmidt and Wisenbaker

(1986) adapted the Fletcher-Powell method of optimization. This balanced model

and theory are subsumed in the Muthen's muti-sample analysis (1990) using

LISCOMP. Note that in Schmidt and Wisenbaker’s formulation, all between group

variables are aggregated versions of within-group variables. In Muthen's extension,

variables observed strictly at the group level are included.

Muthen (1990) provided the ML fitting function for the unbalanced case

through which computational strategies are explicitly identical to the multi-sample

analysis in the standard LISREL, LISCOMP and EQS. He also described the

necessary steps of analyzing the multilevel structural equation model.

Muthen (1990) postulated that "in the unbalanced case the number of groups

with distinct group sizes may be rather small in any given application."

The measurement model for within group level is:

ya. =,uJ.+A77,.j+a',j , 8,]. ~N(0,2,,) (1.4.9)

#1: Aban +511} : 491;j "' N(Orzb) (1-4010)
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where 77,]. and m} are p x l vectors of within latent variables and between latent

variables respectively; A and A, are r x p matrices of within-factor loadings and

between-factor loadings for the y variables; and, 8,]. and 8,1 are the vectors of within-

and between-group measurement errors.

Based on the balanced-data theory, Muthen (1990) derived the ML fitting

   

function:

D

2'14““ £21+trl331(5bd +"d (yd ‘nyd —P)T)]} +(N " J)(ln Ew|+tr[2;lSw]) (1-4-11)

4:1

where

2,, =[>:,+n,,z,] (1.4.12)

n J"

de zji‘Zde 'I.d)()7,—d _j7..d)T (1-4-13)

d j=l

1 D J4 ")4 _ _ T

Sw =—Z 2(yijd _y.jd)(yrjd —y.jd) (1-4-14)

N_J d=l j=l i=1

with the following definitions:

id = the sample mean vector for the d-th subset.

y,“ = the outcome vector for the i-th individual in the j-th group classified into the

d-th subset.

Jd = the number of groups of the d-th subset.

,u = the population grand mean vector.
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nd = the total number of individuals in d-th subset, d=1,...,D.

njd = the number of individuals in j-th group classified into the d-th subset.

j = index for the groups classified into a subset of distinct size

N = the total number of individuals in a study.

J = the total number of groups.

531,, = the sample group mean vector for the j-th group.

Note that 1': 1,...,njd. j =1,...,Jd. d=1,...,D

From a structural equation modeling point of view, the multilevel data ML

fitting function can be viewed as corresponding to a simultaneous analysis of

independent observations from D + 1 heterogeneous “populations”. with the D

populations for SM ’5 plus the within-group “population”. All of the parameters

are constrained to be equal across the D between-group populations except for the

scaling factor, nd. In equation (1.4.41) “it should be noted that the between sample

covariance matrices may be singular due to being created by summation over fewer

units than variables. This may prevent the use of certain conventional structural

modeling software where positive definite matrices are assumed.” (Muthen, 1990). To

find the ML estimates one has to set up a command file (see, Muthen, 1990) to run

EQS or LISCOMP program according to the model equations.

By use of the statistical concept of "missing data" (Dempster, Laird, and

Rubin, 1977) Raudenbush (in press) developed a new estimation procedure. In theory

the balanced data is equivalent to the complete data, while unbalanced data is

incomplete data. In the unbalanced case, the E-step computes the conditional
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expectations of the complete data sufficient statistics given observed data and the

current parameter estimates. In the M-step the standard EQS software can be used to

find the ML estimates of the parameters iteratively. Raudenbush (in press) postulates

that "by supposing one has sampled n units within each of J clusters, one can apply

the Muthen's balanced-data method. However, within each group k, only 11,}.

observations are available with n—nU observations missing. Then one might regard

the balanced data as the complete data, the observed unbalanced data as

incomplete data. Consequently the maximization of the complete data likelihood is

the same as the Muthen's balanced data approach for hierarchical data using the

LISCOMP (Muthen, 1986) or EQS (Bentler, 1989) and so on”. The complete data

sufficient statistics can not be observed but can be estimated by means of their

conditional expectations given the observed data and a current estimates at the

parameter values. This process constitutes the E-step.

At level 1 (within cluster) we have p observations on each of n units, collected

in the p by 1 vector ya. These vary randomly around the cluster mean ,u, according to

the model:

yq=flj+eg,eg~N(0,2)
(1.4.15)

The model at level 1 can be written as :

[:lj]=[:lj:lpj +[:”] (1.4.16)

2 2) 21'
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where y”. is pnlj by 1 observed vector, yzj is p122]. by 1 missing vector.

A”. =lm®1p

A2,. =lm®1p

‘1'”. =1,U®2 (1.4.17)

‘11,]. 4,1,8):

"=71” +1221.

At level 2 the model can be written as:

”j : fly +ujruj ~ N(Or Tim)

(1.4.18)

x1. is a vector of group level observed variables.

The expected value of the complete data sufficient statistics for within group variance

covariance matrix given the parameter estimates from the M step of the previous

iteration is:

J O 0

SW = Slw +W(J_ 1)2w +ijnj[Lj +(ylj -y2j)(y_lj _y2j)T] (1419)

j=l

S“, is the usual pooled within-group variance-covariance estimate based on the

observed data;

T" 1420T... (..)
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L1. = (1211.2: +T')“n,j. ;' (1.421)

W __
" n (1.4.22)

W=N2m1

N2 is the total number of missing level-1 units. 57,}. is the observed group mean

vector and 72']. is the posterior mean vector for the missing observed data in each

group.

Y5,- = LT?”- +(1-L‘,'-‘)l'x,- (1423)

r = Tali? (1.4.24)

The expected value of the complete data sufficient statistics for S” given the

parameter estimates from M-step of the previous iteration is:

S... = S... +Z(x,.—r)1w,(y;,- —r...)—W(17;—7.)1’ (1.4.25)

St... = ijifi- - Jfi’ (1.4.26)

The sufficient statistic for Ex, is:

J

Sm =ij f—Jfi’ (1.4.27)

j=l

The expected value of the complete data sufficient statistics for variance

covariance matrix for y given the parameter estimates from the M step of the previous

iteration is:
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S» = 1:27:57; +nwaL}l +JWZW 41.077" —(n/J)Zw12.L;' +172 (1.4.28)

where

7; =(1—wj)y,j +wj'j2‘;j (1.4.29)

y‘ = (1 -W)y, “7?; (1.4.30)

_ 1 J _

yew-21mm,- (1.4.31)

1 i=1

J

N1: Zn”. (1.4.32)

j=l

. 1 J .

Y2 =1—v-Z(n-nl,-)Y2, (1.4.33)

2 j=1

Given the starting values produced by Muthen’s ad hoc estimator, expected

values for the complete data sufficient statistics are calculated by a Fortran program

(Jo, 1993). These estimates will then be used to obtain maximum likelihood estimates

of the parameters using the EQS program. An executive computer program provides

the mechanism to switch on the Fortran program for the E-step and then the packaged

program for the M-step.

The previous work in the field of multilevel structural equation models made

substantial progress. In this dissertation we propose a new approach which does not

require classifying level-2 units into a subset of equal sample size.

In conclusion of this chapter we provide a brief preview of subsequent

chapters. In chapter 2, we present the general structural equation model with an
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example. We also transform the model in terms of mixed model form. And we will

briefly describe some typical research questions that may be addressed by means of

multilevel structural equation models. In chapter 3, empirical Bayes estimation

procedures are developed. The maximum likelihood estimators for the parameters are

given, and we present the observed log-likelihood function. In chapter 4, artificial

data are generated for checking the accuracy of the parameter estimates. The analysis

is carried out by use of a program in Gauss. The index of goodness-of-fit of the model

is presented, and the likelihood ratio for two alternate models is also given. In chapter

5, the summaries of each chapter are given, and the implications of the models are

discussed. And future research questions are also presented.



CHAPTER 2

MULTILEVEL STRUCTURAL EQUATION MODELS

To illustrate how measurement and substantive theory can be integrated between and

within levels in one overall fi’amework, a hypothetical achievement model will be examined as

an example. Consider a model where achievement scores of a mathematics test are believed

to be influenced by a student's attitude toward mathematics, individual characteristics, e.g.,

gender, and class characteristics, e.g., teaching styles. The teaching styles such as discovery-

oriented instruction or expository teaching are believed to influence attitude and achievement

on the classroom level. Gender also is believed to be related to students' attitude and

achievement on the individual level. The path—diagram for this hypothetical achievement

model is shown in Figure 2.1.1. In our example attitudel measures an individual's view

on the usefirlness of mathematics in our life and is based on the sum of scores on the

four attitude items, each of them scaled as a Likert (1932) response with categories:

strongly disagree (1), disagree (2), undecided (3), agree (4), and strongly agree (5).

These items are: l. I can get along well in everyday day life without using mathematics.

2. A knowledge of mathematics is not necessary in most occupations.

3. Mathematics is not needed in everyday day living.

4. Most people do not use mathematics in their jobs.

Attitude2 measuring "Attracted" to mathematics, is based on the sum of the scores on

the five attitude items, each scaled as five-category Likert; strongly disagree (1),

disagree (2), undecided (3), agree (4), and strongly agree (5). These items are:

1. I would like to work at a job that lets me use mathematics.

20
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2. I think mathematics is fun.

3. Working with numbers makes me happy.

4. I am looking forward to taking more mathematics.

5. I refuse to spend a lot of my own time doing mathematics.

The ACHl is the first part composed of basic facts and principles, while the ACH2 is

composed of problem solving questions.

 

 

 

   
 

 

teaching

style

betabl betab)

class class

attitude achievement

alphabl

1.0 Latnbdabl 1.0 LambdabZ

attitudel attitudeZ

ACHI

l .0

Lambdawl I.0 LambdawZ

I ha!

attitude 0 p \

/ achievement

beta]

beta2
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2.1 The Model and the Basic Notation
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A simple item level equation for each individual:

yr] : Anni] +1‘b’7bj+ 81'}

411

y1:)

y31;

_y4tj 

y2t'j

1

  

“‘1

‘-

  

bll 21 l U}\

o ‘ ' 1 o ‘

0 7719' + ’11» 0 F771»):

1 772:; 0 1 Jim):

w2_ .. O 152.1  

+ 82"
33,].

 

(2.1.1)

(2.1.2)

where j=1,2,..,J for classroom, i=1,2,...,nj for students nested in classroom j. The

subscript "w" means the within-level, while "b" means the between-level.

In terms of our educational example, equation (2.1.2) can be expressed as follows :

attitude2 ,1.

ACHr,

 

where 3:1 ~ N(O, 2), a typical form for 2‘. is : 2 =

—attitudel,j _

_ ACH2, _   

attitude”.

achievement”.

].

  

 

attitude“ I.

achievement”).

0 0

a: O

0 0%

O 0 a

].

 

 

Assuming structural linear relationships among constructs, the theoretical

 

' (2.1.3)
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relationships on the within-level depicted at the bottom part ofFigure 2.1.1 can be

expressed through the following structural equation:

”10' = 0 0 Um- filo flzo z"). uuj

[7721!] [an Oiinzyi+ifi30 [340] [220.] +[u2ij]
(2-1-4)

where 11,]. = [uwuw]r, u”. ~ N(O,A), A = Diagonal(5p,p =1,...,P).

In terms ofour educational example, equation (2.1.4) can be expressed as follows :

attitude”. = O O attitude”. + .510 320 1 + ”Ir (2.1.5)

achievement,j a, 0 achievement”. '63,) ,640 gender}, 112,1.

Equation (2.1.4) stipulates that on the individual-level the latent variables are

captured as a structural linear function of themselves and the predictor variable. In our

example, gender is used as a predictor variable. In equation (2.14) 22,]. is gender, while

2“]. is unit value so that the model has intercept terms.

Now we reduce equation (2.1.4) into the equation (2.1.6).

m =1: 1 14° (11411 1 r177211 ‘ar 1 flso 540 2211' _al 1 ”211'

Then the reduced form for the within-level structural equations (2.1.4) is :
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”10

,. 2,. z ,. O O - 7: vi.

'7" = " 2’ 2° + ” (2.1.7)

77211" O 0 21:1" Z;.~,-_ 7’ 30 v20

1.71.40- 

where

  

P750-

-1

”20 =veco[l:1 0] [£10 £201)

”30 —al 1 flso 7640

1’40.

where vec' stacks the transpose ofeach row of a matrix into a vector.

In terms of our educational example equation (2.1.7) Mean be written:

l'fllofi

attitude”. = 1 gender? 0 0 7:20 + V.) (2.1.8)

achievement”. 0 O 1 gender”. - 7:30 v2:1

_”w_  

Now on the between-cluster level, the structural relationships depicted at the upper

part ofFigure 2.2.1 can be expressed as follows :
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[77011:] ___I: 0 0:][771311] + [16“] [WI] + ubu‘ (2.1.9)

77sz ab] 0 77sz b2 "sz

where uh}. = [umum]r, uh]. ~ N(0,A,,), A, = Diagonal(6,,p,p =1,...,P).

In terms of our educational example, equation (2.1.11) can be expressed as follows :

attitude ttit de . .

. bi = O O a. u b’ + p“ [teachingstyle.]+ u,” (2.1.10)
achrevementbj ab, O achievement)”. ’ u,

b2 21'

Equation (2.1.9) is the expression for the structural relationships among latent variables

and the predictor variable on the group level. In equation (2. 1.9) w]. is teaching style. All

of exogenous predictor variables are observed directly Without error, e.g., school location

(rural, urban), school sector (public, nonpublic), religion, gender, ethnicity, family size

(numbers of a household), individual's age in months and years, current membership in a

political party or sports club.

Then we have the reduced form for between-level structural equations (2. 1.9)

m” = l 0 ‘1 flbl 1 0 4 ubli

[771.2,] [—ab, 1] [WNW-FLO!“ 1] [“421] (2.1.11)

We can represent (2.1.11) in the following form:
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77b) = Pyjflbj + Vb): (2.1.12)

w 0 V -[mu]:[ 1 ][”b10]+[ 1’11]
(2.1.13)

’7sz O W]. ”020 vblj

01'

where

Vblj $I\O Vb” :[ 1 0]“ uh”- v.~N(0T )

Vsz "Qbr'l V52" —abl 1 ”b2,- ’ b] , m’ ’

”bro __ 1 0 -1 flu

[flb20]—I:—abl 1] [flbZ]

In terms ofour educational example, equation (2.1.10) can be written as follows :

[ attitude,j ] ___ [teachingstylej O ][nm:l +[Vb1J] (2 1 14)

achrevementbj O teachmgstyle1' am v”).

Representation of the Equations in Matrix Form

We can represent the equation (2.1.1) in matrix form without subscripts:

y=AWn+ABnb +3 (2.2.1)
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where

y : [y111y211y311y411,---,y1n,ly2n,/y3n,1y4n,.l IT: incur emple, 4N by l veCtor~

e = [emememem,...,e,nfl£2,fle3nfle4nf,]r ,in our example, 4N by 1 vector.

N 2 Zn}.

"AW] 0 0 0 ‘

0 Aw, 0 0

AW : 0 0 Aw3 O s

. 0 0 0 A,“

FA”, 0 0 0 I _ 1 O _

0 A”, 0 0
2w, 0

where, A”. = 0 O AM.3 0 , AW. = 0 l

o o 0 Am, L 0 2.9L

"A,l 0 0 0 I _ _

0 A 0 O 1 0
b2 A.“ 0

AB: 0 0 A,, 0 ,Abj- 0 1

0 A

_ 0 0 0 Ade - ”-  

77,1. =[nmnmynmwflnuflf is in our example, a2N by 1 vector



28

77,, = [nbunbww 1),,Jaw? is in our example, a 2] by 1 vector

The matrix form for the equation (2.1.4) without subscripts is:

n: An+Bz+u

where

’A, 0 0

0 A2 0

A = O 0 A3

_ 0 0 0 

 

 

 

 

 

"B, 0 0 0 8,l

0 B, 0 0 0

B: o 0 B3 0 ,8I 0

_0 0 0 B, to

p10 #20] ..

B.= forallor).

" [.330 fi40

(2.2.2)

 

 

u = [u,,,u2”,...,u,,,flu,"1,]7 is in our example, a 2N by 1 vector.
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The matrix form for the equation (2. 1.9) without subscripts is:

    

1],, = Ab 17,, + Bbw + ub (2.2.3)

where

FAbl o o o‘ "A”, 0 0 0'

0 Au 0 o O Ab}.2 O 0

0 0

Ab: 0 O A,3 O ,Abj= 0 0 Ab); 0 ,Abj,=[ ]

ab, 0

_0 0 0 A,” (0 0 0 0 Ab)";

Ab], is a lower triangular matrix with diagonal elements are zeros.

3,, 0 0 0

0 3,, 0 0

B - 0 0 B 0 B —[fl“°] '
b _ b3 s bj — 801088811].

761220

_ 0 0 0 Bud  

u, = [ub,,ub2,,...,uwum]r is in our example a 2] by 1 vector

Now we can express the reduced form equation (2.1.7) in matrix form:

7] = Z7: + v (2.2.4)
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where, 771.). = [n111q2,1,...,n1,,1J 77an,]T is in our example a 2N by 1 vector

_ _:t,,.j 22,]. 0 O

or

1:)" ‘21)“

  

  

V.)- = [vmvm ,...,va1"an ]7 is in our example a 2N by 1 vector.

We can express the between-level reduced form equation (2.1.12) in matrix form:

’71, = Wll'b +Vb (2.2.5)

272* l

where

n, = [nmnb21,..., 7751377sz ]T is in our example a 2] by 1 vector
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W: . , ng_=|:u/IJ 0], 7Tb=|:flblo:|

0 Wu ”1:20

  

3’

vb = [vbllvb2,,...,vmvb2,]" rs in our example a 2M by 1 vector

Table 2.1 Structural parts of the multilevel structural equation model

 

 

Original Form Reduced Form where

Withingroup n=An+Bz+v n=Z7r+v 7r=vec[(Iz—AJ.,.)"BJ,]

Between group 17,, = Abnb + Bbw + vb 771, = Wnb + vb n}, = (12 — Ab], )'1 Bb).

:23 3'1"? d ‘

 

Transforming the Model into the Mixed Model Form

By substituting the structural equations (2.2.4) and (2.2.5) shown in Table 2.1 into

(2.2.1) without subscripts, we have the following combined equation (2.3.1). This

representation pemrits us to develop a special version of the EM algorithm for multilevel

structural equation models.

y =[A,,Z |A,W][:]+[A,|A,][: ]+e (2.3.1)
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In a more compact form we have:

y: AOZn+ Aow+£ (2.3.2)

where

A0 : [AwiAbJ’

N
i

ll

N
I

0

I
—
_
l

 

The model equation (2.3.2) is a special case of the general mixed model (Raudenbush,

1988)

Y=4Q+AQ+E Q3”

.A,=1i,2,

A2 = A0,

Q=w/*”‘” 03%

0, = 713/ i

(7.1 4-1 ‘ ..

Eza't“fli
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In equation (2.3.3),

6, ~ N(0,1"), since our prior knowledge about 6, is assumed null, the

prior precision associated with 6, becomes null.

9.3108,), “2 wear)

T Im®Tn 0

0" 0 1,81,,

E ~ N(0,‘I’).

81:1st,

Based on this general model(2.3.2) I develop the empirical Bayes estimation procedure in

Chapter 3.

In our structural equation model, we consider a population of N level-one units,

indexed k (group) and i (individual). Associated with each level-one unit are three vector-

valued variables y, z and w. The values of the design variables, z and w, are completely

known for all level-one units before observations are carried out, but the values of the

outcome variables, y (the four indicators in our illustrative example), are not known at all.

Design variables are considered fixed and known in our multilevel structural equation

models.

Then the marginal distribution ofy is:

y ~ Noun) (2.3.5)

where

p: AOZn' (2.3.6)
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ch: AOZHAOZ)’ + AOQAf, + z

where

And the conditional distribution ofy given n is:

yl n~ N(Aon,>3)

(2.3.7) -

(2.3.8)

Note that in the model there are not measurement errors at 2 levels that are distinct from the

model residuals. This is a limitation on the illustrative example. To lmve an identifiable model

we restrict the factor loadings for the first indicators of the latent variables to unit, the

variance-covariance matrix 2 to a diagonal matrix, and “A” matrices to be lower triangular. In

our model the total number ofvariance-covariance parameters to be estimated are 16, while the

number ofunique elements ofthe variance structure are 10 for each level.

One can also include the group-level observed variables (global variables) for latent

constructs in the general multilevel structural equation model (2.1.2). For example, in the study

of the United States SIMS data each of the constructs of teaching practices and training and

experience are measured by two indicators (Vredevoogd, 1993). In that case we have the

following form of the item-level equations for each individual:



        

"y,,,‘ ’1 0‘ I1 0 0 ' ”3,,”

y21:: ’1'; (I) r 4'81 0 0 P771)”: 82kt

y3ld 77m 1 0 33k,

ym = O ’12 _772u]+ 0 ’182 0 mm + 84kt (2.3.9)

xw 0 0 0 1 “my: 35,“.

_x2,,,_d _ O 0 _ L O 0 XML fan-J

where x,” ,th are the indicators for the group-level construct, teacher's teaching

practices, which is supposed to influence the class posttest (Vredevoogd, 1993).

Then one can see that this model is a special form subsumed into the general model

(2.3.1).

In the conclusion of this section we note the measurement model specifications. There

are three types of specifications. The first measurement model is implemented by requiring

equal factor loadings for all manifest variables and equal unique variances (Joreskog, 1971).

The second measurement model retains the assumption of identical error variances across

measures, but allows factor loadings to difi‘er. The second model provides a more realistic

description of actual data where observed measures are similar in content but differ in

difficulty. The third measurement model is that the observed measures have identical factor

loadings but have unequal error variances. Of particular importance are the measurement

models in which these measurements have different factor loadings and unequal error

variances, but the manifest variables are highly correlated (i.e., they measure the same thing to

somewhat high degree).



CHAPTER 3

EM ALGORITHM FOR MAXIMUM LH(ELIHOOD ESTIMATES

After a model has been formulated, the statistical problems are to estimate the

parameters in the model and to test the fit of the model to the data. General descriptions

ofthe EM algorithm for the multilevel structural equation models are given in this chapter.

Dempster, Laird and Rubin (1977) presented the EM algorithm as a general iterative

method for computing maximum likelihood estimates fiom “incomplete data”. Wu (1983)

presented it in a more general context, viewing it as a special optimization algorithm. The

EM algorithm is particularly useful when analytic expressions exist for the conditional

expectation of the missing data and for the maximum likelihood estimates (MLE) of the

model parameters given the observed data and missing data. Although in the literature it

has been known as a method for estimating parameters ofa model when observed data can

be regarded as incomplete data, there were early uses of EM notions by Hartley (1958),

Healy and Westmoratt (1956), Baum et al (1970), Brown (1974) and Sundberg (1974). In

Rubin (1991) the essential idea ofEM algorithm is briefly depicted:

“The basic idea behind the EM algorithm is very old and very intuitive and can be

colloquially described follows:

1. Given a problem that is difficult to solve, formulate it so that if missing data were

observed, then the solution would be at hand; in particular, formulate the problem

so that a good estimate (e.g., the maximum likelihood estimate, MLE) of the

36
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parameter 6, 6, would be easy to find if the missing values, Y were observed in
nus ’

addition to the observed values, Y . Notice that ”missing data” is viewed quite

broadly to include, for example, latent variables in psychometric models.

2. Consequently, fill in a set of values for Ym and solve the problem(i.c., find 6).

3. Using this 6, find better values of Y
nris

to fill in, and then repeat Point 2 to find a

new value of 9.

4. Iterate until the values of 9 converge."

Based on this basic notion, one can conceptualize the implementation of the EM

algorithm for the multilevel structural equation model. In section 3.1, we discuss the concepts

of incomplete and complete data as applied to the multilevel structural equation model. We

also develop the posterior distributions of the random vectors in equation (2.1.3). In section

3 .2, we present the iterates for the implementation of EM algorithm. We also present the

maximum likelihood estimates. In section 3 .3, we present the observed-data log likelihood

firnction.

3.1 General Description and Application to the Multilevel Structural Equation

M2191

Through casting the measurement model and the reduced form of the

structural equation for latent variables into the general mixed model (Raudenbush,

1988), we can conceptualize our problem as having complete data and incomplete

data. Note that in the multilevel structural equation model the factor loadings are

parameters rather than observed predictors.
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Then to compute maximum likelihood estimates of the dispersion matrices

for the random vectors in the model (2.3.1), we apply the EM algorithm (Dempster,

Laird and Rubin, 1977). We now discuss the concepts of complete data and

incomplete data, as applied to model (3.1.1)

From Chapter 2 we have the following combined equation:

AWL)I” “t /\b115 “W
L137, 34L, (ll “42 2J1 2'

ya =[AWZ,1|Aw,][:b°o]+A,,6,j+Ab6bj+gv (3,1,1)

In more compact form we have :

{it ' i GU i

J L 91% ,

y, =A0Z71’+A,,w,j +80. (3.1.2)

4" 4141151) ' \

where at“ I" ':

~ 22', O

1A,,=[A,,|A,,], 2,: 0 W“ (3.1.3)

44 4” r“ 4 .31

r 0
7::[59], 7r~N(O,I‘),1“=[l 1.

int ”b9 0 er

Since our prior knowledge about it is assumed null, 1“", the prior precision

(Dempster, Rubin and Tsutakawa, 1981) associated with it, becomes null, that is,

1‘" —> 0. And,
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8,, ~ N(0,>:), 2 =

  

In the model equations,

yo. =A,, ,1. +Ab’hj +531.

%=%%+%

”a =W1”bo+‘9br

O = {A,,A,,,2,Tm, T0} is the set of parameters.

yo,” = {Y,Z,W} is the set of observed data.

c = (no, It”, 6,,, 6,, , .} is the set of missing data.

('J'DC\O‘M

{”91} ‘t i

(3.1.4)
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The conditional probability density function is proportional to-ithe joint probability

, d

density function :

f(49.x...) °C (271)—N'I2IZ3l—m2 “FIFO-5)::2 0’1,- — Aozafl" A0 97.) )T

2" (ya. — AOZVII- A0 my. )] x (270"” |T,,|"‘"2 exp[(-0.5)ZZ(6,:T’l 6 )]
’7 if

x(27t "“2le rm exp[(—O.5)Z(6;T;6bj)]xh(7r) (3.1.5)

where c={ no, 750,6 .,6,,..,e,,.} , G) = {AW,A,,Z,T,,.,T,,}, r=the number of indicators,

p=the dimension of 6,. And s=the dimension of 6b).. The prior distribution h(7r) is

considered a very small constant and it can be ignored while the empirical Bayes

estimators are calculated (Fotiu, 1989; Dempster, Rubin and Tsutakawa, 1981).

If ”e" were observable, some function of "c", t(c) would be a vector of

complete data sufficient statistics for the dispersion matrices. In reality, the vector ”c"

is unobservable; however, the vector y, whose elements are linear functions of the

elements of "c", is observable. In the realm of the EM algorithm, we regard the

elements of "c” as the "missing data" and those of y as the "incomplete" data.

Then we can develop the iterative E-step (expectation step) and M-step

(maximizing step) for computing new parameter estimates. The E-step consists of

estimating t(c), which would be a complete data sufficient statistics [if the vector "c"

of complete data were available, by its conditional mean given the observed data and

current estimates of O. The equations that are solved for parameters in the M-

step can be regarded as an approximation to what would be the likelihood equations
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if the vector "c" of complete data were observable.

From Dempster et a1. (1977),

Each iteration of the EM algorithm solves : £[Q(®,®m)|e=ew, ]= 0

where Q6190") = E(1nlf(C;@)]|Y = 349"")

The necessary posterior location vector and dispersion matrix of the random

vectors in the model (2.3.3) is :

(F

D. = A,‘P“A, +1“l A,‘I’"A2 “= D; c;,,

A,‘I’"A, Ami-'51, +T“ Cg, D;

D; = 14"?" A. - Ai‘I’“A2<Zf/(A{‘P"A2)’]"

D; = Cl +C-'(A;rrI—‘A,)D;(A,'\r-'A,)C-‘

(3;, = —D;A,‘I’"A,C“

Cir = (C9

on “9 9

where

Ci": A,"~I’"A, + r'

Lam (m f n‘ =D;A;(1—~r-‘A,C—‘A;)\P-‘r 9

" 1

(114086" “N L§,=C-IA;‘P-I(Y—A155 '

TV

These posterior distributions given parameters provide point estimates and intervals



(g)
(f)

,f'm‘w1,1194%55"201/51.?f’1/Z 615.111

1°V.::’5/2,215+511/12)?5,1,5.51"2°vm:15«51.1.112

101/I°VUM+1‘51°\/it;L-gL,11+(WIMV1:11-

9355.1.5113.{25.111...55+.517°11.(1:115111-112°1241.11311_.

(:1:/1W51:53°155':1.)(.1/.51.152V..1.1111)_.

E1114.11{KW—“1).155’"V“*5“(50V'0”>

\J5470/1.1+8

10211951:
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needed for inference about the random vectors. These derivations of the posterior

distributions draws heavily on prior research (Raudenbush, 1988).

3.2 Cpmputation of the Iterates

Each iteration of the EM algorithm is composed of two steps, the E-step

(Expectation step) and the M-step (Maximization step). The E-step carries out

estimating complete data sufficient statistics by their conditional expectations given

incomplete data, and the current estimates of parameters. The M-step consists of

solving the complete data log-likelihood function.

To find the ML estimates, we have to maximize the function Q(®“’,®“"’).

By definition Q(@"’,®“"’) =E(log[f(c;®(”)]|1’ = y;®“‘"). As shown in Appendix

3, we have:

0 ,4. ~

Q(o<">,e“1>) = (Nr/2)ln 21t+(-N/2)ln|2|

3 u 1f a 1

+(—Np/2)ln(27r)+(—N/2)ln|T,,1+(-Js/2)ln(27r)+(—J/2)ln|Tl_

-2243((A02,. )D; (A2,!) +0,1);AT)

+§<A2,,c;A1,)+(A,0;;217/151]

_%ZZO’UTAoZ/I
‘—AowJ)’2(ye—A021,”.‘Aowh

a“.
l . 1

’EZerTTJ‘E(6561-’IY=y.®"">)1-§ZtrtT“E(6.flJIY ye“”)1 (3.2.1)

In order to maximize, we take the first derivatives of Q(®‘”,®‘"”) with

respect to Tme, 2,Ao, respectively.
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n

(1 [2T,;‘—D(T,;')] I -i

”’iZZrzTg‘E14011Y:5.9“"’)T;‘001151056111: =y,®“"’>T;‘}1 (3.2-2)

where D means a diagonal matrix (Graybill, 1983). Thus D(T) is a diagonal matrix

with i-th diagonal element equal to the i-th diagonal element of a matrix T. Setting the

derivative equal to null matrix and solving gives the ML estimate (see, Press, 1982;

Magnus and Neudecker, 1986).

Then the ML estimate is :

.. 1 ,

5.. =plzz<6161 +041] (3.2-3)

5Q(@(",@("”)__1_V_ -1_ -1
(2) 51. - 2 [2T,,, D(T,,)]

'lb

+‘i212T;:E(0.0;15 = 100405;: -D{T;.'E(050;IY = 89“”5'1; 51 13-2-4)

Setting the derivative equal to null matrix and solving gives the ML estimate.

Then the ML estimate is :

Tm =%[Z(0‘,,9;f +D;U)] (3.2.5)
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(3) @(®U)a®(i-l)) af

as, 502
I'

= [—%[22-' —D(2‘.")]

1 _ ,._ _ _ _ .
4322122 'E(a,.,a,.f|Y= y,®< ”)2 ‘ —D{2 ‘E(a,.jg,.f|r= y,®( ”)2: 1}]] x1,

0

r 7-.

(3.2.6)

- x J I”

where I: is the column indicator vector which has a 1 in theX—th position and zeros

in other positions. And 2, is a full matrix. Setting the derivative equal to zero and

solving gives the ML estimate,. ea. In appendix 4 we present the ML estimator for

each element of 22.

 

i=DiagonaI(6f,..,6f) (3.2.7)
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_ ._ (3) g @

5Q(®"’,®" 1)) 5A7 = _ -1 ”i 0 _ J“ -1 v ”r
(4) M 0318,, [ [ZZZ AZUCW] [>2 ACWUZU]

Q o “' ® o

4222"AZVDJJHZZ2"ADWUJ

v ‘/ ~

+022 2"yy-n"251+tzi>="yl will-[ZZZ >3“AZ"..-zr‘rr"Z.-I 1
(l ) (l) J

{22E" (Auditqz; +AZJ. 71" wig] —%zZ Z‘lAw; q?%]] x 1:27): (3.2.8)
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90) 90-1))

é’A

where A is a fill matrix. The details of derivation of 6Q( are given in

appendix 5. Setting the derivative equal to zero and solving gives the ML estimate,

28,. In appendix 5 we present the ML estimate for £0.

ii, = [2w]A (3.2.9)

where [askL means placing element as, in the g-th row and k-th column of matrix

A, and zeros elsewhere. In our example, g= 2, 4, k= 1,2,3,4.

In sum the E-steps and M-steps are:

(1) E-step : Find Elog[L(c,o)|y,Tf;-'>],

M-step : Substitute the equation (3.2.3) with these quantities, and then we obtain new

T”, set TS) equal to this new T",

(2) E-step : Find Elog[L(c,®)|y,T,h("”],

M-step : Substitute the equation (3.2.5) with these quantities, and then we obtain new

Tm, set T5,? equal to this new Tab.

(3) E-step : Find Elog[L(c,®)|y, 23 (H) ],

M-step : Substitute the equation (3.2.7) with these quantities, and then we obtain new

23 , set E“) equalto thisnew 2.
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(4) E-step: Find It", 01:, Dz“, 0;, CW“. Notethat these are all fimctions of A‘s").

M-step : Substitute the equation (3.2.8) with these quantities, and then we obtain new

A0, set A? equal to this new A0.

Then here the first iteration of the E and M step is completed. This algorithm proceeds until

some user-specified termination criteria are met. For example, the algorithm might terminated

when successive iterates differ from each other by no more than some number (i.e., = O“5 ).

3.3 Likelihood Function

We conclude this chapter with expressions for the observed log-likelihood

function which is numerically simple to evaluate. Although the EM algorithm does not

require an evaluation of the likelihood function, successive values of the fimction can

be usefial in monitoring the progress of the algorithm toward convergence at each

iteration. And it's used in testing fit of alternate models.

Note the relationship among probability density functions :

=Po’lg’Pw’ 331(y) P(6ly) (..)
 

In the framework of the general mixed linear model, the equation (3.3.1) is rewritten

as:
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P(y|0,‘o,w,A,)P(qo,w,Ao)

P(fly,Q,‘I’,A0)

 P(y|Q,‘P,Ao) = (3.3.2)

The specific expressions for each of the density functions stated in equation (3.3.2):

P(yl9,0,‘P.Ao)=[(27r)“’|‘1’|l"”exv[(-0.5)(y-A@T‘I’“U-A60] (3.3.3)

Hanna/x.)=[(2n)°lm1"”epr-asxsm-‘an (3.3.4)

where

y : the observed outcome vector for an individual

A : the design matrix for the multilevel structural equation model

a: [n1 af ]’

Finally, the denominator part in equation (3.3.2) can be specified as:

P(6|y,fl,‘1’./\o) = t(2n)“ID;n"*’ exp[(-0.5)(6- Wozw— (9')] (3.3.5)

In particular, when 0: 0’, we have:

1301:2311, A0) = (27: 'N’2|D;|"2 |‘I’|"’2 (arm exp[(-0.5)S(0‘)] (3.3.6)

where:

s<€>=y’\r"(y—A.0:—A.6;) (3.3.7)
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Now the log-likelihood fiinction for the structural equation model may be:

LLR(Q, ‘1’, Ao|y) at (-0.5)log|‘I’|+(0.5)|D;|—(O.5)longl—(O.5)S(6' ) (3.3.8)

First we evaluate:

det(‘P) = det(2 8 IN) = [det(2‘. )]”

det<2 )=(of) (oi) ...(of> (3'39)

log(det(‘I’)) = N[log of +logo§+...+logaf] (3.3. 10)

And also:

det(Q) = det(Q,,)det(Q,h)

(3.3.11)

log[det(Q)] = Nlog[det(T,, )] + Jlog[det(Tfl)]

I‘ is considered large but fixed, from Dempster, Rubin and Tsutakawa (1981).

Finally we have:

V11 V12 V13

det(D;) = det V21 V22 V23 = [det(Vu)l[det(V22 - V21V1il 12)][det(d33 — d32d2-21 23)]

V31 V32 V33

(3.3.12)

The second term in equation (3.3.12) is given in appendix 2 as det(Q;'). Let the

third term be det(U")
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where

V V V

d = ” ‘2 d = '3 d =d' = 3.3.13
22 [V21 V22 ]’ 23 V23 ’ 32 [ 23] ,d33 V33 ( )

SW) = ZEUS-24m. -A...- n‘ -A.,.. w; )1 (3.3.14)

Then the log-likelihood function for the structural equation model is :

LLR(‘I’,Q, Aoly) = (N/2)log(det 2) — (N/2)log(detT,,)— (K / 2)log(det T,)

+(1/ 2)log(det V11)+(1/ 2)Z log(detQ; )+ (l / 2): log(det Ug‘)

-ZZ[y£2"(yu -Amfl'-Ame~)l (3.3.15)

At each iteration the algorithm evaluates the log-likelihood function to monitor the

progress of the estimation.



CHAPTER 4

NUMERICAL RESULTS

In this chapter, I use a computer program written in Gauss (Version 2.2) to

compute ML estimates fi'om a set of artificial data. To verify that the produced estimates

ofthe parameters are accurate the data are randomly generated with known

(predetermined) population parameters.

The analysis was done for the balanced case and the unbalanced case. The Gauss

program is designed to use cross-product matrices and initial starting values as input data

and to perform computing over numerous iterations ofthe EM algorithm.

The path diagram for the model is given as a figure 2.1.1. In the example the two

indicators for the ATT (attitude) latent variable are ATTI, ATT2. They are the student-

reported responses to the questions in the attitude scale. The ACHl variable measures

achievement score in the "principle" parts, while the second indicator ACH2 measures

achievement score in "problem solving" part.

4 1 cneratin the Data

Before creating the necessary data we have to consider several issues. For the

balanced data 10 subjects are selected per group. The distribution ofthe number ofgroups

per group size is given in Table 4.1. Due to the heavy computational load

50
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of estimating these model via the EM algorithm, only a single sample data will be

generated.

Table 4.1 Number of Grggps per group Size

 

 

 

Group Size Balanced Data Unbalanced Data

6 10

7 10

8 10

9 20

10 500 450

Total 500 500

To create samples to be fit to the multilevel structural equation model

specified in chapter 2, we modified the covariance structure by setting var( 7:) = 0.

Then the observed outcome vector y is calculated by using equation (4.1.1) :

0.2

y", "1.0 0.0 1.0 0.0“"10 2,, 0.0 0.0 0.0 0.0“ 0.1

y”, 0.82 0.0 0.75 0.0 0.0 0.0 1.0 2,, 0.0 0.0 0.31

y” 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 w. 0.0 0.33

y..,,_ _0.0 0.73 0.0 0.66_L0.0 0.0 0.0 0.0 0.0 w" 0.25

0.35

     
  

'1.0 0.0 1.0 0.0“va a,

. . 0.7 0.0 v.+082 00 5 2,, + a, (4.1.1)

0.0 1.0 0.0 1.0 v,” a,

_0.0 0.73 0.0 0.66JLv,2,_ s,_     
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The values corresponding to the vector 7: in (2.3.2) have determined by using the

formula as shown in Appendix 1. The necessary values for ds and fl's are :

,6l = 0.20,,82 = 0.10,,63 = 025,54 2 0.30,,6,l = 0.25,,B,,2 = 0.30, awl = 0.30, or,l = 0.20.

The values for 220.,w1,12,11,50,“!1.,va131.52.53.84 are generated by the following:

(1) first we generate 5000 "2" variable from a standard normal distribution. Then if

the value is bigger than 0.0 we assign l to it, while the value is less than 0.0, we

assign 0 to it,

(2) do the same for "w" variable for 500 groups,

(3) generate 500 between level random vectors from the population VC (variance

covariance) matrix, Th,

(4) generate 5000 within level random vectors from the population VC matrix, T”,

(5) generate 5000 measurement error vectors from the population VC matrix, 2 ,

(6) then we use the equation (4.1.1) to obtain a balanced raw data.

The IMSL FORTRAN library contains the necessary several subroutines. The

dimension of the observed variables is four (r=4). The dimension of the latent

variables is two (p=2). And then we create an unbalanced data (4890 data points) by

randomly deleting 4 for each of 10 groups, deleting 3 for each another 10 groups, and

deleting 2 for each of another 10 groups, and finally delete l for each of 20 groups.
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Table 4.2 Descriptive Statistigs for ngbles

(1) Balanced Data

TOTAL SAMPLE SIZE = 5000

MEAN

Y1 -0.291

Y2 -0.187

Y3 -0.145

Y4 -0.097

ST.DEV SKEWNESS KURTOSIS MIN

7.735

6.477

7.913

6.055

-0.081

-0.07O

-0.003

-0.021

SAMPLE COVARIANCE MATRIX

Y1 59.824

Y2

Y3 16.487

Y4 1 1. 125

(2) Unbalanced Data

39.570 41.951

12.887

8.927

62.620

35.242

TOTAL SAMPLE SIZE = 4890

MEAN ST. DEV.

Y1 -0.285

Y2 -0.l87

Y3 -0.167

Y4 -0. 100

7.805

6.533

7.957

6.041

-0.075

-0.092

-0.010

-0.017

~0.010

-0.005

-O. 125

-0.085

36.667

0.045

-0.018

-0.029

-O.137

ESTIMATED COVARIANCE MATRIX

Y1

Y2

Y3

Y4

60.922

40.477

16.370

10.376

42.686

13.360

8.746

4.2 Regults 91' the Analysis

63.309

35.342 36.492

-33.444

-23.317

-27.877

-20.807

-29.918

-22.221

-27.866

-21.051

FREQ. MAX FREQ.

y
—
d
—
i
s
—
s
y
—
s

1

1

l

1

27.565

23.612

25.107

24.764

28.897

24.147

26.820

19.738

1

l

1

1

SKEWNESS KURTOSIS MIN FREQ. MAX FREQ.

|
—
|
p
—
I
_
s
_
-
‘

The output of the Table 4.3 and 4.4 are the result of fitting balanced data and
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unbalanced data to the same model. The focus of investigation is in discovering and

testing the estimates of parameters are close to the predetermined population

parameters within some what sampling error.

Table 4.3 Results of Analysis for Balanced Data

 

 

Population Starting Estimated

Parameters Values Parameters

it”, 0.82 0.582 0.857253

4.02 0.73 0.573 0.720532

,1“ 0.75 0.575 0.738310

21,, 0.66 0.566 0.652453

tn“ 30.00 20.000 29.006845

1,," 9.00 7.000 9.432951

11,,22 32.70 20.000 34.328632

tn... 20.00 10.000 18.407147

tam 4.00 3.000 3.528167

1,,m 20.80 10.000 19.754972

of 10.00 8.000 10.851423

0'2 12.00 8.000 11.2542916

a“: 14.00 10.000 13.7741274

oi 16.00 10.000 16.1793495

aw, 0.30 0.350 0.3251942

at,l 0.20 0.300 0.1916734

 

Table 4.3.1 angitibnal gxbggtatibns of regressibn coefficients

 

A 0.20 0.100 0.3550013

fl, 0.10 0.005 0.1492152

B3 0.25 0.100 0.6579540

[34 0.30 0.200 0.1218303

,3“ 0.25 0.100 0.4485403

3,, 0.30 0.100 0.2161860
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Table 4.4 Rgsults of Analysis for Unbalanced Data

 

 

Population Starting Estimated

Parameters Values Parameters

21,, 0.82 0.582 0.855920

,1”, 0.73 0.573 0.719029

’11,, 0.75 0.575 0.736739

2,, 0.66 0.566 0.651504

1,,“ 30.00 20.000 29.563270

t”l2 9.00 7.000 9.569872

t”12 32.70 20.000 34.697681

1%“ 20.00 10.000 18.153446

tam 4.00 3.000 3.465942

t”m 20.80 10.000 19.38584

of 10.00 8.000 10.87648

0': 12.00 8.000 11.29153

0% 14.00 10.000 14.04039

oi 16.00 10.000 16.18727

aw, 0.30 0.200 0.32372

6!“ 0.20 0.150 0.19092

 

Table 4.4.1 Congitibngl gxbegtations of regression coefficients

 

,6, 0.20 0.150 0.29023

6, 0.10 0.500 0.13452

,6, 0.25 0.150 0.74056

6, 0.30 0.200 0.10906

.13.. 0.25 0.150 0.47312

.6... 0.30 0.200 0.27258
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Table 4.5 The Valuea bf tha Observed Log-likelihbod at Convergence

 

 

 

Balanced Data

Iteration 1353 -2902.34724l3

Iteration 1354 -2902.3472410

Iteration 1356 -2902.3472408

Iteration 1357 -2902.3472405

Iteration 1358 -2902.3472402

Iteration 1359 -2902.3472400

Iteration 1360 -2902.3472397

 

T le 4.6 The Values f the serv dL -likelih dat Conve ence

 

Unbalanced Data

Iteration 1321 -2768.5733562

Iteration 1322 -2768.5733550

Iteration 1323 -2768.5733537

Iteration 1324 -2768.5733522

Iteration 1325 -2768.5733511

Iteration 1326 -2768.5733508
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In discussing the results reported in Table 4.3 and 4.4 , we say that the EM algorithm

recovered the population parameters values well. The criterion used for convergence of the

observed log-likelihood is that log-likelihood is smaller than 0.1‘( 5s 10‘6 ). In the 486 IBM

PC with the spwd of 66 mhrz for the convergence it took about 45 hours. For the

unbalanced case the hours spent are about 48 hours. The Table 4.5 and Table 4.6 show the

list oflog-likelihood values at the neighborhood ofconvergence. As the Table 4.4 shows the

number of iterations is very large and the spent hours is very long. The slowness of

convergence ofthe EM algorithm is the repeatedly criticized property ofthe algorithm. This

seems to be caused by the fact that missing information (Meng and Rubin, 1991) is relatively

large in the multilevel structural equation model. To obtain estimates of a' s and ,0 s we

assume that the matrices, A and A, are diagonal matrices. Then as shown in Appendix 1, we

obtain the estimates ofstructural parameters. When we use extremely poor starting values, the

estimates are not similar. But if we use moderately poor starting values, then the results are

very similar (almost same) across various sets ofstarting values.

Afier estimating parameters, the likelihood ratio tests are available to test more and less

complex models. It is known that the statistic, —21n(7:L), has an asymptotic chi-square

distribution, where L1 is the maximum likelihood value of a less complex model and

L2 is the value of a more complex model. The degrees of freedom of chi-square

statistic is the difference of the number of parameters to be estimated in each model.

In our educational example, the model for L, may be constrained as follows.

(I) Tq:Tn.2 (2) szAb

As the Table 4.5 shows the number of parameters of the simpler model is 10 while the
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complex model has 16 parameters to be estimated. The degrees of freedom of chi-

square is 6. The deviance between the two values of -21n(Likelihood) is 662.24. This

value is large enough to reject the adequacy of the simpler model. In this likelihood

ratio test we do not know which of the restrictions is not adequate. Thus for each of

the restrictions we may test the adequacy of the simpler model rather than complex

model.

Table 4.5 Rasults of Analyaia for Unbalanced Data for Restricted Model

 

 

Population Starting Estimated

Parameters Values Parameters

31,, 0.82 0.75 0.841037

21“,, 0.73 0.70 0.692301

11,, 0.75 0.70 0.720219

21,,2 0.66 0.50 4 0.837227

I”" 30.00 15.00 32.647209

1,," 9.00 5.00 10.538582

1,,22 30.00 15.00 36.943765

’21... 20.00 15.00 16.459542

tn... 4.00 5.00 7.358164

1% 20.00 15.00 25.980356

of 10.00 8.00 9.236718

0‘; 12.00 8.00 12.450677

0'; 14.00 8.00 12.120453

0?, 16.00 8.00 13.863560

a”,l 0.30 0.200 0.323054

(1,, 0.20 0.150 0.447046

The value of log-likelihood -3104.68428

 



 

 

,6, 0.20 0.150 0.92709

)3, 0.10 0.500 0.17796

)9, 0.25 0.150 2.05197

,3, 0.30 0.200 1.17230

fl... 0.25 0.150 2.64902

,3... 0.30 0.200 1.48537

 

The multilevel structural equation model postulates that the causal relationship

on the within level and between level are different because the explanatory variable is

different, in our example, gender on the within level, teaching methods on the

classroom level. We may calculate the root mean square residual (Joreskog and

Sorbom, 1993) for an overall goodness of fit measure. In the literature of LISREL,

we found the root mean squared residual can be used to compare the fit of two

different models for the same data.

1

RMQR= [22“,]. 4}”)2 /(r2 +r) 5 (4.2.1)

where sq. is the i th row and j-th column variance-covariance element of the sample

total variance-covariance matrix. And 6,}. is the corresponding element of the model

predicted total variance-covariance matrix,2. RMQR is a measure of the average of

the fitted residuals. The model predicted total variance covariance is given by

iziw+f§b . then we obtain, RMQR = 0.73850 for complex model, RMQR=

5.98066 for simple model. Judged by these index we may conclude that the fit of the

simple model to the hierarchical data is not as adequate as in the complex model. This

conclusion was expected because the data were generated in a hierarchical fashion,
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and the restrictions makes the model a single level structural equation model. Now we

make inferences about It’s in balanced data case. Specifically, from the posterior

variance estimates of 71’s we obtained the standard errors for n’s shown in Table 4.6.

and 4.7. For the balanced data the t-statistics are:

[1.247 0.8373 0.5566 0.8806 1.09108 0.6998]. Thus the expectation of the

“attitude” latent variable for the girl students in classrooms of which instruction style

is expository is significantly different from zero. And expectation of the “ACH” latent

variable for the girl students in classrooms of which instruction style is expository is

not significantly different from zero. The total effect of “gender” on the “ACH” latent

variable is not significantly different from zero. The “gender gap” on the “attitude”

latent variable is not significantly different from zero. The total effect of discovery

teaching style on “ACH” latent variable is not significantly different zero at the

between group level. And the effect of discovery teaching style on the “attitude”

latent variable at the between group level is significantly different from zero.

Table 4.6 Estimates of£3 for Two Sets of Data

 

Balanced Data Unbalanced Data

 

Estimated Standard

Parameters Error

Population Estimated Standard

Parameters Parameters Error

 

7tl 0.20 0.3550 0.28560 0.2902 0.2137

75 0.10 0.1492 0.17818 0.1345 0.1845

75 0.31 0.7734 0.30602 0.8345 0.2827

774 0.33 0.1703 0.19344 0.1526 0.2216

It“ 0.25 0.4485 0.41105 0.5316 0.4363

It),2 0.35 0.3021 0.43176 0.3629 0.5262

 



CHAPTER 5

CONCLUSION

Research in the field of education provides various challenges. For example, the

random assignment of students to a set of conditions is not realistic in most cases. Even in

the experimental setting the outcomes will have a positive intracluster correlations due to

the fact that (1) students do not receive their instruction individually but in groups, (2)

interactions exist between treatments and students (Lumsdaine, 1963). This situation

often makes the application of the linear structural equation models (Joreskog, 1977) to

the real data inappropriate.

As Cronbach (1976) pointed out, many studies in the field ofeducation have

produced inappropriate analysis, especially in the field of evaluation studies because they

failed to recognize the nature ofhierarchical data. The difiiculty of analyzing data arising

from two levels is in assessing the nature of intervariable relationships at both levels

simultaneously. During the last two decades researchers have developed multilevel

structural equation models for hierarchical data. Previous work on the multilevel structural

equation models involved a minimization fitting firnction or /and balanced sampling design.

And most ultilized standard software. These minimization fitting function approaches

have made substantial methodological advances. They require classifying groups into

subsets ofgroups having equal sample size.

This dissertation has shown how multilevel structural equation models can be

formulated for hierarchical data and how they can be analyzed by using empirical Bayes

with the EM algorithm. The model equations are linear at each level, the direct

61
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direct connection between variables is typically specified by the value of the

coefficients as in the LISREL (Joreskog, 1977) or EQS (Bentler, 1983) models.

The major outputs of this thesis are four:

1. I presented the general multilevel structural equation model in the

mode of hierarchical empirical Bayes modeling.

2. I developed the empirical Bayes estimation procedure via the EM

algorithm to find maximum likelihood estimates of the model.

3. A computer program for numerical analysis of hierarchical

data for structural equation models was developed in Gauss.

4. The accuracy of the computing algorithm has been tested across sampling

designs and models.

5.1 Summag, Implications and Conclusiona

I now summarize the major points that emerged in each chapter and discuss

their implications for fitting multilevel structural equation model to hierarchical data.

In chapter one, the problems confronting single level and multilevel structural

equation models were identified. These problems are old ones. Traditional single level

structural equation models do not incorporate the random errors from the multilevel

structure. Therefore reserachers face the dillema "What should be our unit of

analysis?” That is, they have to choose individual level analysis or group level

analysis. Ignoring the inherent hierarchical structure in our data sets results in the

confounding of group level effects with individual level effects. Of course, the
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individual level analysis violates the independence assumption and results in over

estimation of precision. In program evaluation studies, for example, curriculuum

evaluation, we are interested in the interaction effects between the treatments and the

individuals across individual level background information and group level variables.

In chapter two, the multilevel structural equation model and a few basic model

assumptions are presented and then translated into the general mixed model

(hierarchical model of linear equations) on both the cluster level and individual level.

In particular, the model explicitly utilizes the socio-demographic information on both

group and individual levels. We also provided an example for model specification. In

chapter three, empirical Bayes estimation procedure via the EM algorithm was

generalized to the multilevel structural equation model. In the "hierarchical prior

distribution" specification we adopted the MLR (Dempster, Rubin and Tsutakawa,

1981) approach. We also presented the E and M steps for ML estimates.

Much of Chapter four assessed the accuracy of the EM algorithm for an

artificial model for different sampling designs. The results showed that the EM

algorithm for the multilevel structural equation model is quite accurate for the data

generated. The results were drawn from the simulation under the balanced and

unbalanced sampling design.

Ignoring the second level effects can yield a misleading interpretation of the

structure of the causal map among latent constructs under the study. The presented

methodology allows the simultaneous estimation of the prarmeters in the unbalanced

multilevel structural equation models.
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The primary advantage of the EM method for multilevel structural equation

models lies in the three key facts: (1) it does not require the calculation of the 2nd-

order partial derivatives of the maximum likelihood firnction. Even though the models

studied by several researchers are different in terms of balanced or unbalanced

sampling designs, the calculation of partial derivatives are essential for the methods

proposed by Schmidt and Wisenbaker (1986), MacDonald and Goldstein (1989), Lee

and Poon(l992), Raudenbush (press). (2) it does not require classifying level-2 units

into subsets having equal sample size. However it has the shortcoming of slowness of

convergence. Another shortcoming of the EM algorithm is that it does not provide the

standard errors for the estimates of parameters.

When we apply the method to real-world problems we need firrther elaboration

of the models that carefully takes into account the special features of a certain subject

matter. Typical applications of structural equation mOdels involve (1) the development

of a prior model, representing hypothetical causal associations among a set of latent

variables and manifest variables. (2) fitting the prior model to sample data, (3) the

evaluation of the solution in terms of its parameters estimates and goodness of fit, (4)

the modification of the model so as to improve its parsimony and its fit to the data.

This last step has been known "a specification search" or "respecification". During

such a search the researcher alters the model specification in search of substantively

meaningful model that fits the data well. The structural misspecifications are involved

the specification of the elements of matrix A and Ab. It is also closely related to the

identifiable model.
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The purpose of latent variables model is to improve the accuracy and validity

of inferences from empirical data. In order to accomplish this goal, several

assumptions about the structure of the data and the meaning of the associations

between variables must be made. Ideally, each of these assumptions will be based

either on special features of subject-matter application area or on the knowledge,

derived from past empirical evidence.

5.2 Future Work

One of the potential fields to which the mutilevel structural equation model is

extended is the model where the slope for the exogenous variables varies randomly

across groups. Note that there are numerous settings in which multilevel structural

equation models consisting of random slopes for exgenous variables are needed in

order to represent adequately the variance-covariance structure of the data. Thus, for

example, the gender gap in the SAT mathematics test scores can be explained by the

group-level characteristics.

As is well known, the EM algorithm is simple to implement and numerically

stable, but is slow. Recently Jamshidian and Jennrich (1993) developed a conjugate

gradient scheme for accelerating the speed of the EM algorithm. In their ABM

(accelerating EM) algorithm the evaluation of the gradient of the likelihood function

is essential. When the number of parameters is moderate the implementation of the

AEM algorithm seems not so burdensome. To obtain the standard error of the
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maximum likelihood estimates one may apply the SEM (supplemented EM algorithm)

algorithm developed by Meng and Rubin (1991).

The current approach to drawing inferences concerning variance components is

based on large sample theory for ML estimators. When the number of groups is small

the normal approximation will be invalid. For that case, one may apply the Data

Augmentation (Tanner and Wong, 1987) approach.

Future models can be expanded to larger and more complicated models. Also

robustness of the model remain to be studied.
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Appendix 1

For finding the values of,6‘ s and a' s, we have the elementwise algebraic relations :

7n =4 (A.l.l)

7’2 :azrflr‘l’flz (Al-2)

Then we can derive estimates of the structural coefficients from this first within-group

algebraic relations. Especially the identification of a' s is carried out on the base of the

following assumption (A 1 .3) and the second within—group algebraic relationship (A 1 .4).

var(ug.)=A=diag(6p,p=1,...,P) (A.l.3)

(1 -— A)" A(I — 71):" = var(vy.) = T, (A14)

The elementwise relations of(A 1 .4) are:

611:1
'hr

arrazr : 77),,
(A. 1.5)

After finding ’8 from the above algebraic relationship (A l .5), we find the ,8 's from the

first within-group algebraic relationship (A 1.2).
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Similarly the first between-group algebraic relations are:

(I — A,)'1 B, = r1, , (A.l.6)

The corresponding elementwise relationships are:

”6011 = flan

”6021 : abZIflbll +flb21 (A17)

In the same fashion, the identification of a, 's is carried out on the base of the following

assumption (A 1 .8) and the second within-group algebraic relationship (A 1.9).

var(u,j)=A,, =diag(6,,p,p= 1,...,P) (A18)

(1 - 71,):l A,(1 — A, )-" = var(vbj) = Tm (A.l.9)

The elementwise relations of(A 1.9) are:

51>” = Tn...

abllabZI : T (A.l.lO)
0012

After finding a, 's from the above algebraic relationship (A 1. 10), we find the ,6, ' s from the

first between-group algebraic relationship (A 1 .7).
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Appendix 2

For the computational convenience of the necessary posterior expectations and

dispersion matrices for the random vector the equation (3.1.1) without subscript

becomes :

y = A17t+A202 +A393 +8

e~ N(0,I,, ®Z ), N=an

n~ N(0,r)

02 ~ N(0,Q,),

03 ~ N(O$Qq) )

let y = A 6+r

where A = [A,|A,|A,]

’7’1 - F931-

”2 032
fl'

0 = 62 , 71' = ° , 03 = . s

93 ' '

_fll _ L63k    
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92 =[02116212,~-,021,.l,-~, 62K162K2P'W62Knx ]'

t : the dimension of 7:

Q” = subdiag(T )

r2 = subdiagdm)
'10

var(6) =
0
0
"
!

o 0

o, 0

0 o
'10

By using the results of the standard multivariate normal distribution (Searle, 1971),

one obtain the following joint distribution of the multilevel structural equation model

 

y 0 ' 2, 71,1“ 21,9, 7mm"

0, ~N 0 FA; r 0 0

0, o’ (2,,A; 0 a, 0

y,‘ __0_J 94.4; 0 0 a," “J       

where z, = All‘A; + [1,9qu + 74,12,» A; +1, (8 2

The posterior dispersion matrix D; of 0 is translated from A"I’“A +Q“]‘l into the

context of the multilevel structural equation model. The posterior dispersion matrix

can be written as :
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Arr-'71, + r:l A',‘P"A, A',‘I’”‘A,

D; = [A"I’“A + Q“ ] <:> A',‘1”'AI A',‘P"A, + (2;; A',‘I"l A3

A;\P"A, A;\P“A, 74911-24, + (2;:

For the convenience of applying the inversion formula of the partitioned matrix

(Graybill, 1983), one can rewrite the matrix D5:

B L _1 —1'

3.13.1. =[Q- f‘GQ_’.]
. —(GQ 1) U'+GQ'G

where Q=B+ —LU"L' , G =U“L'

B B . . .
where B, {3: 3:] , L =[L,L,]

Q_.=[Q. Q.J“=[R. 1%.]

Q; Q. R; R.

Q, = A,‘I’"A, — A;T-'A,(A;\F-‘A, +9, )-I A,‘P"A,

Q, = A,‘P“A, - A,’\F-‘A,(A;\F-‘A, + o,,)-' A,‘I’“A,

Q3 = A',‘I"'A2 + Q: — A'2‘1"‘A3(A,','-I"’A3 + Q; )‘1 A;‘I’"A,
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RI R, —R,L,U“ - R,L,U“

1);: R, R, —R,L,U-l — R,L,U“

symmetric U“ + U“ (L',R,L + L,R;L, + L’,R,L, + L',R, L, )U"

l 2 3 D; C39 C10,

. = Cfo D1; Coo,

C1,, C5,, 0;,

U
-

D
)

II

_
_
V

5
‘
:

_
_
V
:

N
V
,
3
‘

_
.
V

:
5
1
3
V

,
3
:

Thus in the E-step the needed conditional density of 93,, . 6,, , 8,, given the data and

the parameters, no,ztbo,T,,T,,,Tm,£, have the following locations and dispersion

matrices:

9i = V11[(A2 - QzQi'A'z)‘1’"' (I - Ari/”AS?" )](y)

93 = (V22A2 - Qs-JQ2V11A1)T-JII - A3(A3\P_1A3 + T;,1)"A$‘P"](y)

9; = U"'A$‘1’“[y-(A19i +A29§)]

11 = [Q1 _ Q2Q3-1Q21-l

12 : "'V11Q2 3-I

13 : -[V”A;‘I’-IA3 '1'V12A2ql-l’431U—l

22 : 3-I +Q3-IQ2V11Q2 3-1

23 = “ll/1.2113443 +K2AéT—1A3]U_l

33 = U-l'II/13A1W-1A3 'l'V2'3A2.‘IrlAs]U-l
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Appendix 3

We show the explicit derivation of Q(®“),®“")) defined in chapter 3.

By definition from Dempster, Laird and Rubin (1977),

Q09") . 9“") =E(1081f(C;@“’)]IY = y;®“”").

By applying the theorem on the expectation of the quadratic function we have:

E14T"9-IY = EGO-1)]: ”Washer,"- IY = y;0“—”)1
'l '7

EI9T~T"9r,-IY = y;0"-‘>1 = name... 91,-IY = y;®""”)]
bl 'ls

E[£;2"£,.|Y=y;@“‘”]= tr[2‘.“E(a,j6';|Y =y;®“"’)]

After some algebraic calculations we have:

Q(@(” ,G)“"’) = (-Nr/2)ln 27t+(-N/2)ln| 2 |

+ (—Np / 2) ln(2 71') + (—N / 2) ln|T,,|+(—Js/2)ln(27r) + (-J/ 2)ln| Th]

1 _ ~ . ~ .

"EZZ”[2 1((AoZy)Dx(AoZy)T + (AoDau A70)

+ ( (A,Z,.C;,,u A§)+(A,C,‘;UZ,’TA1,»)

1 ~ . - - " ‘ ‘

-222007/‘020”
—Aowv.)TZ ‘(y0‘-AOZU” _A°w"f)

‘32241T7‘E(4.0;IY=y,®“"’)l-%ZVIT;.‘E(0..0;I
Y=y.®““")1 (3.2.1)
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Appendix 4

In this appendix we provide the formula for the element of 21 is :

A 1 0 t t 0 II

of, = FZZpAme +22mz,,1),,§ +22 w .D T +22,mz,,.D,, +22ngpm. +
bmr 48 J

22,,w 0,12,, + 271ng + 2.1mm“, + 2(22mc;,, + 22,,z,,.C‘ + ,1 w .C‘ +
1 any}; bm J xafc

O O O O O O t 2

Amexafc + AanZZIijafc} + {ynnj — 1m (”f + 221119“)- Awmvcrj — 111,ij ”bf — lbmvbcj}

where m=1,..,4.
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Appendix 5

In this appendix we present the derivations of the elements of the loading matrices.

First by expanding the 8-th term in the right of the equation (3.2.1) we have the

/24:

following five terms: ”,...,?

 

(1)(-2.0)y,’.2-‘A,Z,rr‘

(2)(-2.0)y,’.>:-‘A,nr;

(3)(A,Z,£)’2“A,Z,.rr*

(4%AOZUIBTZ4AOw;

(5)(A.w.;-)’>:*‘A.w;

For each term we take the derivatives with respect to A0. Note that in taking the

derivatives we regard A0 as a full matrix. Then we have:

7 (1)(—2-0)2"y,,7t"Z;

(2)(—2.012“yi"w;"”

(3)1(2.0)z-'A.Z,n'(rr“2;)1 .

(4)2(2’1A010;7r"@3<f4 2“A,Z,.7r‘w
;7) 7"

V
2 .

(5)(2“X.ar;w;’1,4)
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And we take the derivatives of 7-th term in right side of the equation (3.2.1) with

respect to A,. Then we obtain: (1 é) 67 (1;)

2.0 ~39 == Z+r[i"{/\.§,D;ZJ+A DEtAZiGE. +/\. 0672U
8A. (Q a,

(6) up:{A,Z’,.D;(A,z”,)"_ +A,D;A",+A,Zc; ,",C+AC,j,,(A",Z,)"}]

\ F We

60(09 00-") (5'2 ‘9 I
By arranging these six equations we obtain as we write in chapter 3.

5A

a) (1—1)

Let A= @(GaAG ) . [A 111 is the matrix A with zeros inserted in the places of

fixed parameters in A0. Finally by the equation (3.2.?) we obtain the following ML

('5 --\ "1+:~./

estimators for each elements of A0:

=[--2/1.2MW(D111521,). +D112522,]. +Cm051)-2/123(D:,,u13 +sz;mu ,3 +22”(3:00”)

__ ,..-z-r—w‘».

{A”"7”“ . .

+2Q’31; 212,319,711» ‘Az.3grtrsz1,j_7r1 +221j7r2+ 111 ]

mull

"-v._+_d—r

+2C;,,U 11
4211);” + 2221,01:12 + 2221, D;22 +D + 2220C;w,21 + (210' 71’: + 22,.J II; + 6:0.)]]

7 s o

(14.2 = [-244.4‘”, (D 435211,- +D 846221, + C;111,62) ‘,2444(Dau 24 +Zl1'ijU34 +221,C11111044)

. 0 .

+2041, " 214.41”,- ”112 " 14,401.12,- )(7'11, 7’3 +221,: ”4 +9.21, )]

o o 2 o o

x[2[Dx33 +2220Dx34 7'22me + DaUZZ + 2C;turn 32 +2221,Cm, 42 + (211, ”3 'l‘221,7’11'l'21,)2]]l

12.3 = [—12.1191 (2D."52111 + 2D.fl5221,‘ +C;a,,51) “212.1 (D111013 +211,'C;m,,13 +221,'C1:111U23)



”mi

l_[[,("‘:’61+1:1,,1(“R+'9,3M+”"70+”Ia,’M]z]x

[((.02+711.082+21,012)z‘v_{1110(Izqmy!

06eaY06+0M)Z+

"m1 .(anfgmz‘l'finmfofllz+flnfCIY'VYZ‘(Z9,DZ'l'mZW’,CIZ+.firz%,.az)fmz‘vl,_]:0‘01:

l_[[,("‘:’0+'31!’M)z+“""fJ’Mz+“"‘fa+“fG§M]z]x

11.11.11.1>
LL
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