

This is to certify that the

thesis entitled

Abundance, Structure and Biomass of Nearshore Zooplankton of Northeastern Lake Michigan

presented by

Glenn Lee Barner

has been accepted towards fulfillment of the requirements for

Master of Science degree in Fisheries and Wildlife

Dile R. Keven-Major professor

Date May 4, 1994

MSU is an Affirmative Action/Equal Opportunity Institution

0-7639

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.

DATE DUE	DATE DUE DATE DUE						
MACIO 2							

MSU is An Affirmative Action/Equal Opportunity Institution ctoircidatedus.pm3-p.1

ABUNDANCE, STRUCTURE, AND BIOMASS OF NEARSHORE ZOOPLANKTON OF NORTHEASTERN LAKE MICHIGAN

Ву

Glenn Lee Barner

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Fisheries and Wildlife

1993

ABSTRACT

ABUNDANCE, STRUCTURE AND BIOMASS OF NEARSHORE ZOOPLANKTON OF NORTHEASTERN LAKE MICHIGAN

By

Glenn Lee Barner

Biotic changes to Lake Michigan and abiotic differences of the northeastern part of Lake Michigan define a need for basic research of these nearshore waters.

Zooplankton were sampled at 10 and 30 meters, at four sites in northeastern Lake Michigan from July to November. Abundances in both individuals⁻² and individuals⁻³ were measured. Principle component analysis was used to evaluate community structure to the observed variables, depth, month and site. Dry weight biomass was estimated using three methods; counting of instars, length-weight regressions, and volume estimates.

The zooplankton community was dominated by Diaptomus sp., Cyclops sp., and Bosmina longirostris. Principle component analysis found site an insignificant variable, and although month was significant, species associations could only be split satisfactorily by the first principal component with the depth variable. Biomass was dominated by species that were the most abundant, except for Bythotrephes cederstroemi which averaged 8.4% of the biomass and only 0.1% of the abundance.

ACKNOWLEDGMENTS

I want to acknowledge my appreciation to all the people who have supported me throughout this project. In particular, to my major professor, Dr. Niles Kevern, who believed in my abilities and gave me this opportunity, to Dr. Alan Tessier who provided suggestions and guidance with the analysis, and to Dr. Darrell King for his valuable critique of the manuscript. I also want to thank Dr. John Lehman of the University of Michigan for his suggestions, particularly with the sampling methods and to his graduate student, Donn Branstrator for his valuable assistance with identification. I am also grateful to my fellow students who helped with the collection of data, Jay Hesse, and Jay Wesley and especially Robert Elliott whose own research project and ambition fostered this study. Thanks is also extended to the Holland Steelheaders, and the Ludington Charterboat Association, who assisted in the collection of data.

My sincere gratitude to my parents and family who have nurtured me with love and support for a lifetime, including through the difficult times of college and this endeavor. And most importantly to my wife Clifena Yellowfox, who I am eternally grateful to for her encouragement, love, and support.

This research was supported by grants in part from: the Fisheries Division of the Michigan Department of Natural Resources, Sport Fish Restoration Act, Study 472, Project F-53-R, Michigan; the Michigan

Agricultural Experiment Station; Wildlife Unlimited of Allegan and Ottawa Counties; the Native American Institute at Michigan State University; and the Ludington Charterboat Association.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
INTRODUCTION
STUDY SITES
METHODS
Field Sampling
Temperature Profiles
Zooplankton Groups
Zooplankton Abundance
Principal Component Analysis
Correlation Coefficients of PCA
Multiple Regressions of PCs on Environmental Variables 1
Verification of Zooplankton Environmental Trends on PC's 1
Species Partitioning
Zooplankton Dry Weight Methods
Zooplankton Measurements
Bythotrephes Dry Weight Estimation
RESULTS and DISCUSSION
Zooplankton Abundance
Principal Component Analysis
Correlation Coefficients for PC 1
Correlation Coefficients for PC 2
Regressions and ANOVA of Principal Components
Zooplankton Community Trends - Areal
Zooplankton Community Trends - Cubic
Zooplankton Community Biplots
Verification of Zooplankton Environmental Trends
Areal Abundance Verification
Cubic Abundance Verification 6
Verification of Correlated Species 6
Species Groups
Areal Species Groups
Cubic Species Groups

Species Associations							78
The Littoral Species Association							84
Limnetic Non-persistent Species Association							84
Limnetic Persistent Species Association							85
Estimations of Dry Weight Biomass							86
Volume Estimations of Biomass							86
Length-Weight Regression Estimations							88
Bythotrephes Biomass Estimations							91
Total Biomass - All Locations (mg/m ²)							91
Ludington Seasonal Biomass Trends							9
SUMMARY		•				•	100
Zooplankton Abundance							100
Species Associations							100
Dry Weight Biomass							10
Grand Traverse Bay Biomass							10
Bythotrephes cederstroemi							102
Copepod Dominance							10
APPENDIX A. Temperature Profiles			•				109
APPENDIX R R cederstroemi: counts of instars and tempe	. ~ :	a † 1	124	. c	(c)	100

LIST OF TABLES

Table	1.	Taxonomic explanation of abbreviations of species and families used in tables and figures
Table	2.	Length-dry weight regressions
Table	3.	Zooplankton areal abundances $(\#/m^2)$ at two depths (10 and 30 m) and four sites in northeastern Lake Michigan in 1991. 22
Table	4.	Zooplankton cubic abundances $(\#/m^3)$ at two depths (10 and 30 m) and four sites in northeastern Lake Michigan in 1991. 25
Table	5.	Correlation coefficients of principle components 1 - 4, using areal abundance data
Table	6.	Correlation coefficients of principle components 1 - 4, using cubic abundance data
Table	7.	Regression and ANOVA of principle components 1 and 2 using transformed areal abundance data
Table	8.	Regression and ANOVA of principle components 3 and 4 using transformed areal abundance data
Table	9.	Regression and ANOVA of principle components 1 and 2 using transformed cubic abundance data
Table	10.	Regression and ANOVA of principle components 3 and 4 using transformed cubic abundance data
Table	11.	Unverified estimates of mean dry weight (ug), standard error, and 95% confidence intervals of Diaptomus sp., and Cyclops sp
Table	12.	Unverified estimates of mean dry weight (ug), standard error, and 95% confidence intervals of Bosmina coregoni, and Daphnia galeata
Table	13.	Unverified Estimates of mean dry weight (ug), standard error, and 95% confidence intervals of Daphnia retrocurva, Epischura lacustris, and Limnocalanus macrurus 90

Table 14.	Estimated dry weight biomass (ug) of three instars, neonates, and broken spine animals of Bythotrephes cederstroemi at two depths and four sites in northeastern Lake Michigan in 1991
Table 15.	Unverified estimated biomass (mg/m^2) of measured species at two depths (10 and 30 m) and four sites in Northeastern Lake Michigan in 1991
Table 16.	Counts of three instars, neonates and broken spine animals of Bythotrephes cederstroemi at two depths and four sites in northeastern Lake Michigan in 1991
Table 17.	Temperatures (°C) used to estimate dry weight biomass (ug) of three instars and neonates of Bythotrephes cederstroemi based on Burkhardt's (1991) linear regression of mean dry weight on epilimnetic temperatures in Lake Michigan 111

LIST OF FIGURES

Figure	1.	Zooplankton sampling sites on Lake Michigan in 1991 7
Figure	2.	Scree diagrams showing percent of variance explained by each component for both areal and cubic abundance data, and the cutoff lines for number of principle components analyzed. 30
Figure	3.	Category plots by month of principal components 1 (a), and 2 (b) using areal abundance estimates
Figure	4.	Category plots by depth of principal components 1 (a), and 2 (b) using areal abundance estimates
Figure	5.	Category plot by site of principal component 3 using areal abundance estimates
Figure	6.	Category plots by month of principal components 1 (a), 2 (b), and 4 (c) using cubic abundance estimates 43
Figure	7.	Category plots by depth of principal components 1, (a) 2 (b), and 4 (c) using cubic abundance estimates 44
Figure	8.	Biplot of first two principal components using areal zooplankton abundance data from Northeast Lake Michigan in 1991 (axes are unitless)
Figure	9.	Biplot of first two principal components using cubic zooplankton abundance data from Northeast Lake Michigan in 1991 (axes are unitless)
Figure	10.	Illustration of the significantly correlated variables, depth and month, of principle component 1, expected to influence a species position on both the areal and cubic abundance biplots
Figure	11.	Illustration of the significantly correlated variables, depth and month, of principle component 2, expected to influence a species position on the areal abundance biplot50
Figure	12.	Biplot illustrating species that are significantly correlated with principle components 1 and 2 using areal abundance data.

rigure 13.	D. retrocurva for the months of July through November in 1991
Figure 14.	Log transformed (ln) areal abundances of Daphnia galeata and D. retrocurva at two depths, 10 and 30 meters 55
Figure 15.	Log transformed (ln) areal abundances of Chydorus sphaericus for the months of July through November in 1991 56
Figure 16.	Log transformed (ln) areal abundances of Chydorus sphaericus at two depths, 10 and 30 meters
Figure 17.	Log transformed (ln) areal abundances of Daphnia galeata and Epischura lacustris for the months of July through November in 1991
Figure 18.	Log transformed (ln) areal abundances of Daphnia galeata and Epischura lacustris at two depths, 10 and 30 meters 59
Figure 19.	Log transformed (ln) areal abundances of Daphnia retrocurva and Chydorus sphaericus for the months of July through November in 1991
Figure 20.	Log transformed (ln) areal abundances of Daphnia retrocurva and Chydorus sphaericus at two depths, 10 and 30 meters. 62
Figure 21.	Log transformed (ln) cubic abundances of Bythotrephes cederstroemi for the months of July through November in 1991
Figure 22.	Log transformed (ln) cubic abundances of Bythotrephes cederstroemi at two depths, 10 and 30 meters
Figure 23.	Illustration of the significantly correlated variables, depth and month, of principle component 2, expected to influence a species position on the cubic abundance biplot
Figure 24.	Log transformed (ln) cubic abundances of Daphnia retrocurva and Chydorus sphaericus for the months of July through November in 1991
Figure 25.	Log transformed (ln) cubic abundances of Daphnia retrocurva and Chydorus sphaericus at two depths, 10 and 30 meters. 68
Figure 26.	Log transformed (ln) cubic abundances of Epischura lacustris and Daphnia galeata for the months of July through November in 1991
Figure 27.	Log transformed (ln) cubic abundances of Daphnia galeata and Epischura lacustris at two depths, 10 and 30 meters 70

Figure 28.	Biplot illustrating species that are significantly correlated with principle components 1 and 2 using cubic abundance data
Figure 29.	Illustration of significantly correlated species of the areal abundance biplot. Verified species and their responses to hypothetical expectations related to month and depth in the verification process (circled), and unverified species (uncircled) within proposed species associations or quadrants
Figure 30.	Log transformed (ln) abundances of the significantly correlated quadrant I groups, Cyclops sp. and Diaptomus sp., for the months of July through November in 1991 74
Figure 31.	Log transformed (ln) abundances of the significantly correlated quadrant I groups, Cyclops sp. and Diaptomus sp., at two depths, 10 and 30 meters
Figure 32.	Log transformed (ln) abundances of the significantly correlated quadrant I species, Daphnia pulicaria and the quadrant II species, Leptodora kindti for the months of July through November in 1991
Figure 33.	Log transformed (ln) abundances of the significantly correlated quadrant I species, Daphnia pulicaria and the quadrant II species, Leptodora kindti at two depths, 10 and 30 meters
Figure 34.	Illustration of significantly correlated species of the cubic abundance biplot. Verified species and their responses to hypothetical expectations related to month and depth in the verification process (circled), and unverified species (uncircled) within proposed species associations or quadrants
Figure 35.	Log transformed (ln) cubic abundances of the significantly correlated quadrant I species, Leptodora kindti, Daphnia retrocurva, and Eubosmina coregoni for the months of July through November in 1991
Figure 36.	Log transformed (ln) cubic abundances of the significantly correlated quadrant I species, Leptodora kindti, Daphnia retrocurva, and Eubosmina coregoni at two depths, 10 and 30 meters
Figure 37.	Log transformed (ln) cubic abundances of the significantly correlated quadrant II species, Daphnia galeata, Diaptomus sp., and D. pulicaria for the months of July through

	x
Figure 38.	Log transformed (ln) cubic abundances of the significantly correlated quadrant II species, Daphnia galeata, Diaptomus sp., and D. pulicaria at two depths, 10 and 30 meters 83
Figure 39.	Comparison of Ludington total zooplankton cubic abundances $(\#/m^3)$ between this study (1991) and Duffy's (1974) 99
Figure 40.	Temperature (°C) profile at 30 meter depth at Ludington on August 16, 1991
Figure 41.	Temperature (°C) profile at 30 meter depth at Ludington on September 13, 1991
Figure 42.	Temperature (°C) profile at 30 meter station (over 110 m of water) at West Grand Traverse Bay on August 26, 1991 107
Figure 43.	Temperature (°C) profile at 30 meter station at Manitou Passage on August 27, 1991

INTRODUCTION

Biotic changes to Lake Michigan and abiotic differences of the northeastern part of Lake Michigan define a need for basic research of these nearshore waters. Abundance, community structure and biomass of northeastern Lake Michigan zooplankton are the components of this study.

This study focuses on the zooplankton community of the nearshore waters (<30 meter depth) of northeastern Lake Michigan. Evans et al. (1980) examined relationships between zooplankton abundance (#/m³) with depth or season. From mid-spring to mid-autumn, zooplankton densities (#/m³) were strongly related to depth. Maximum densities occurred between the 20 and 30 meter contours, and minimum densities between the 5 and 10 meter contours.

I examined the zooplankton community at two depth contours, 30 meters and 10 meters, from July to November 1991, at four locations so as to assess the influences of these observed variables on zooplankton abundance, structure, and biomass.

The nearshore waters of Lake Michigan tend towards higher productivity than those of the offshore waters because of local inputs that are not readily circulated into the deeper basins of the lake because of water movement differences. The nearshore (<20 m) waters are in a system of currents that run parallel to shore, while the offshore waters are essentially an open lake gyre system separated from the

nearshore (Gannon 1972).

Duffy (1975) studied the vertical distribution and abundance $(\#/m^3)$ of nearshore zooplankton off of the Ludington Pumped Storage near Ludington, Michigan.

Other Lake Michigan nearshore studies have focused on the more eutrophic waters of Lake Michigan. Gannon studied the horizontal distribution and abundance of Lake Michigan zooplankton in a cross-lake transect from Milwaukee, Wisconsin to Ludington, Michigan (1975, 1972) and found less distinct inshore and offshore differences off of Ludington (the primary sampling site of this study), than off of Milwaukee.

Roth and Stewart (1973) studied zooplankton abundance (#/m³) and biomass (mg/m³) in a study near the of Cook Nuclear Power Plant in southeastern Lake Michigan. Abundances off of Cook were much greater than those near the Ludington Pumped Storage project (Duffy 1975). Waters warmed by the Cook Power plant may be a significant factor in the higher concentrations of zooplankton and the subsequent higher biomass found in that study.

Although total phosphorus concentrations have declined since the early 1970's (Scavia et.al. 1986), it is likely that southern Lake Michigan is still more productive than the northern portions of the lake (Roth and Stewart 1973). Point source inputs of nitrogen and phosphorus from sewage treatment plants and industrial wastes, as well as non-point sources from runoff of animal wastes and storm sewers are more likely to increase phytoplankton growth in the more densely populated southern portion of Lake Michigan, than the sparsely populated northern and northeastern parts.

Biologically, the Great Lakes have been under constant change ecologically for over four decades. The introduction of exotic species has affected the food-web, and changed the species interactions at all trophic levels, including the zooplankton community.

Two invading species, the alewife (Alosa pseudoharengus) a planktivorous fish and Bythotrephes cederstroemi, a large voracious predatory cladoceran have both, more than any other species, affected the zooplankton community of Lake Michigan.

Alewife can have profound effects on the size-structure of zooplankton communities (Brooks & Dodson 1965), and the alewife directly affected the composition of zooplankton by selectively feeding on the largest zooplankton (Wells 1970).

The alewife is a planktivore throughout its life and is most important to nearshore populations of zooplankton because here they remain primarily a zooplanktivore. In the summer the planktivorous larvae dominate the inshore region of southeastern Lake Michigan (Nash & Geffen 1991), and smaller fish (<140 mm) diets are at least 90% zooplankton (Wells 1980).

Although the bloater chub (Coregonus hoyi) can be considered a zooplanktivore, the species generally does not reside in the shallow waters. The bloater was found in the nearshore in southeastern Lake Michigan (Evans and Jude 1986) and has increased in abundance to help replace the forage base (Jude & Tesar 1985), but this species does not spawn or inhabit the nearshore (<30 m) for long periods of time (Crowder 1980). The bloater was found in 20 to 30 meter deep waters off of Saugatuck, Big Sable Point and Ludington only for a few weeks in early July before returning to deeper waters (>40 m) (Rasmussen 1973).

Yellow perch (Perca flavescens) were more likely to contribute to zooplanktivory in the nearshore as a result of long residence times in the nearshore waters.

Yellow perch spawn in the very shallow waters (<5 m) in mid-June and the young-of-the-year remain there throughout the summer. Yellow perch inhabit a zone from 0 to 40 meters, but concentrate their activities in 0-25 m depths (Rasmussen 1973).

Yellow perch are more zooplanktivorous when young (<10.2 cm), and increasingly eat more Mysis and Pontoporeia as they get larger. As adults, yellow perch target B. cederstroemi when abundant in both Ludington (Peterson 1993) and in northern Lake Michigan (Schneeberger 1991).

The other species to greatly affect Lake Michigan zooplankton is an invertebrate predator. In 1986 the spined palearctic cladoceran, Bythotrephes cederstroemi was first detected in Lake Michigan (Lehman 1987, Evans 1988). The B. cederstroemi invasion has coincided with depressed populations of Leptodora kindti, another predatory cladoceran, and a subsequent increase of Bosmina longirostris populations in the offshore waters off of Grand Haven, Michigan (Branstrator & Lehman 1991). B. cederstroemi has also altered the Daphnia assemblage by preying on the smaller Daphnia retrocurva, and has further suppressed the already declining, larger-sized, D. pulicaria (Lehman & Caceres 1993).

This study had four sampling locations. Three were in northeastern Lake Michigan: Ludington, Manitou Passage (part of Sleeping Bear Dunes National Lakeshore), and West Grand Traverse Bay. The fourth location, Holland, was in southeastern Lake Michigan.

The northeastern waters of Lake Michigan from Ludington to Manitou Passage (Carr 1971), and the deep protected waters of West Grand Traverse Bay (Lauff 1957), are cooler, than those of southeastern Lake Michigan. Roth and Stewart (1973) found differences in concentrations of individuals and biomass between their offshore southeastern Lake Michigan study site (11.2 km offshore at 40 m depth) and Gannon's (1972) offshore station, (16 km offshore at 60 m depth) off the coast from Milwaukee. They suggested the difference was because of the less productive waters of northern Lake Michigan.

Zooplankton abundances in Lake Erie have been suggested to vary most with heat content and eutrophication (Patalas 1972), and large scale differences appear to be north-to-south gradients of abundance on lakes Ontario and Erie (Patalas 1969).

This study had two major objectives, first, identify zooplankton community trends with respect to the observed variables: season (month), depth (30 or 10 m), and location. Secondly, look for possible species associations to describe trends within this community. The study utilized the estimation of areal (individuals/m²) and cubic (individuals/m³) abundances of each species, principle component analysis (PCA) of the community, and total biomass (mg/m²) to evaluate both the trends and species associations of the zooplankton community of northeastern Lake Michigan. Vertebrate planktivore populations were not assessed, but B. cederstroemi abundance was estimated and its contribution to the zooplankton structure and biomass is described.

STUDY SITES

Four nearshore locations were selected. Three are in northeastern Lake Michigan: Ludington, Manitou Passage, and West Grand Traverse Bay; and one is in southeastern Lake Michigan located off of Holland (Figure 1). Ludington is located in the northwestern part of the State of Michigan. Holland is approximately 140 km south of Ludington and North Manitou Island is about 145 km north of Ludington. The West Grand Traverse Bay location was about 40 km southeast of the Manitou Passage location, over the Leelanau Peninsula.

The study design was to sample at the 10 meter and 30 meter contour at each location. However, because of the steep morphometry of the West Grand Traverse Bay basin, the deeper contour was taken over 110 m of water to allow for a reasonable spatial difference.

The Ludington (LU) 30 m contour (43°:53':71"N longitude, 86°:31':09"W latitude) was approximately 10 km southwest of Ludington and the 10 m contour (43°:55':09"N, 86°:27'W) site was approximately 1.25 km off shore near Butterfield Park. The Ludington sites were the primary sampling sites and were sampled eight times between July 17, and November 14, 1991 (7/17; 7/30 & 8/1; 8/16; 8/29; 9/13; 10/3; 10/18; and 11/14).

The West Grand Traverse Bay (TC) 30 m site (44°:52'N, 85°:36') was about 1.75 km west off of Marion (Power) Island on the east shore and the 10 m (44°:57'N, 85°:36'W) was located about 4 km NNE off of Lee's Point on the west shore.

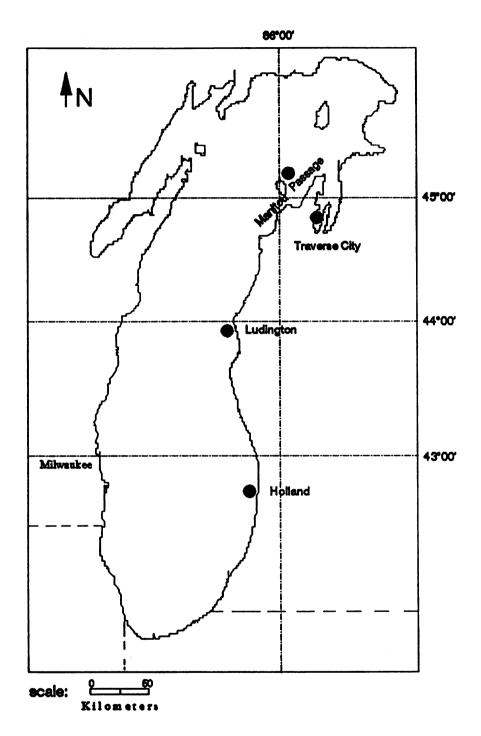


Figure 1. Zooplankton sampling sites on Lake Michigan in 1991.

Both the Manitou Passage (MP) 30 m (45°:04':50"N, 85°:58':39"W) and 10 m (45°:04':50"N, 85°:58':61"W) locations were approximately 25 km NW of Leland. And both were within 1.25 km of the NE side of North Manitou Island.

Each of the West Grand Traverse Bay, and Manitou Passage sites were sampled on two dates in August (8/6 and 8/26) and (8/9 & 8/10 and 8/27) respectively.

The Holland (HO) 30 m (42°46'N,86°14'30") was approximately 2 km offshore of Holland and the 10 m (42°46'N,86°13'20") was about 1 km from shore. Both were sampled only once (8/28).

METHODS

Field Sampling

Vertical tows were taken using a one meter mouth diameter, 153 um mesh Puget Sound closing net (Research Nets, Bothell WA) with a 5:1 length to mouth ratio. The polyethylene cod end had approximately a 5 x 8 cm window of the same mesh. The net has a semi-permeable collar slightly greater than one meter, designed to increase efficiencies by reducing backflow. The towing mechanism was a hydraulically powered drum mounted on the boat deck of the RV Smolt. The net was lowered to the desired depth, just above the sediments (about 1 m). At least a five second delay was allowed (and if necessary, the boat would be repositioned directly above the net) before the net was towed vertically at approximately 0.5 m/sec. After each of the three replicate tows, samples were put in sample jars, preserved with formalin (5-10% by volume), and labeled.

Sampling was mostly during daylight hours, except for July 17, 1991, when sampling took place in the evening before midnight. Patalas (1969) found the capture of zooplankton in Lake Ontario to be unaffected by time of day of sampling. One possible exception was Limnocalanus macrurus, which may be reduced in number when sampled in the daylight hours (Balcer et al. 1984).

Temperature Profiles

In August, water temperature profiles (see Appendix A) were taken at each location (except Holland). Temperatures were taken at the surface and at one foot intervals using a thermistor to a depth of about

15 meters. Profiles were again taken at Ludington in September, but to a depth of 30.5 meters.

Surface temperatures were taken at almost every sampling location throughout the study using a hull mounted thermistor.

Surface temperatures detected no upwellings in northeastern Lake
Michigan in 1991. Upwellings are caused by sustained winds either from
the north or south (Carr 1971). Upwellings cause the colder hypolimnetic
waters to surface. An upwelling causes summer epilimnetic temperatures
to drop. In 1954, a large upwelling covering several hundred miles of
eastern Lake Michigan, dropped surface temperatures from 22°C to only
5°C in less than 3 days (Carr 1971). Such changes in temperature will
affect zooplankton abundance, growth, and biomass.

Zooplankton Groups

Fifteen species/groups were counted and converted to numerical abundances. A taxonomic explanation of the abbreviations used in the tables and figures is in Table 1. The rarest species were not estimated and include: Holopedium gibberum, Polyphemus pediculus, Pontoporeia hoyi, Latona setifera, and a harpactacoid copepod, probably Canthocamptus sp.

The original intent of this study allowed for the grouping of the many species of both Diaptomus sp. and Cyclops sp. Because of these groupings, the dominance by these species groups for the duration of the season may conceal the dominance of one species. The groupings may also conceal a dominance by several species of each grouping, each at different times of the season.

The Diaptomus genus, has been split into two genera Leptodiaptomus and Skistodiaptomus (Balcer et al. 1984), but will be reported here by

Table 1 Taxonomic explanation of abbreviations of species and families used in tables and figures.

CLADOCERANS

Abbreviation	Species	Family
BYT	Bythotrephes oederstroem	ni
BOS	Bosmina longirostris	
GAL	Daphnia galeata mendota	Ð
RET	D. retrocurva	
PUL	D. pulicaria	
EUB	Eubosmina coregoni	
LEP	Leptodora kindti	
APH	Diaphanosoma sp.	
SPH	Chydorus sphaericus	
CHY		Chydoridae
		(excluding C. sphaericus)
CYCLOPOI	D COPEPODS	
CYC	Cyclops sp.	Cyclopidae
CALANOID	COPEPODS	•
EPI LIM EUR	Epischura lacustris Limnocalanus macrurus Eurytemora affinis	·
DIA	Diaptomus sp.	Diaptomidae
	•	•

the conventional names used by other Great Lakes researchers. In Lake Michigan the genus Diaptomus includes up to five possible species: D. ashlandi, D. minutus, D. sicilis, D. siciloides, and D. oregonensis.

The Cyclops sp. group may include the species: Diacyclops thomasi,
Acanthocyclops vernalis, Mesocyclops edax, and Tropocyclops prasinus
mexicanus.

Except for one species of the Chydoridae family, Chydorus sphaericus, this family was rare and grouped. The remaining Chydoridae family was dominated by members of the Alona genus, and included the Alonalla and Acroperus genera as well. Species identified included: Alona rectangula, Alona intermedia, Alona guttata, Alona costata, Alonopsis aureola, and Acroperus harpae. The remaining groups in Table 1 are all species and not groups of species.

Numbers of zooplankton are reported both in individuals/m³, and individuals/m². Density abundances are used to facilitate comparisons of total population sizes at sites of differing water depth. Areal abundances are reported because it is assumed that the distribution of zooplankton are primarily in the metalimnion and epilimnion after the establishment of a thermocline. Thermoclines did develope at both Ludington and West Grand Traverse Bay by mid-August. Mean values estimated by dividing these areal abundances by depth will severely underestimate peak densities, and may report a density that does not exist (Lehman 1991).

Zooplankton Abundance

Abundances as both individuals⁻² $(\#/m^2)$ and individuals⁻³ $(\#/m^3)$ were measured for use in both the principle component analysis and the biomass estimates.

Previous to subsampling, B. cederstroemi were counted and removed from samples for exact abundances and biomass estimates.

In cases where zooplankton density was high, a Folsom plankton splitter was used. Further sub-sampling was done by first bringing the sample up to a known volume, then drawing off a smaller sub-sample using a transfer macro-pipette (1-5 ml).

Each numerous group of animals (in most cases, Diaptomus sp., Cyclops sp., and B. longirostris) were counted until at least 100 animals were enumerated. Additional subsamples were taken so that approximately 800-1000 animals were examined, to count the rare taxa.

Samples were enumerated using a plexiglas counting tray, to allow the manipulation of the animals to identify them without dissection. A binocular microscope with a zoom lens (magnification 1-7x), with 15x ocular lenses was used throughout the study.

Identification of zooplankton was made primarily according to Balcer et al. (1984). Brooks (1957) was referenced in the identification of Daphnia to species. Brooks (1959) was used for the identification to species of Chydoridae and other rare zooplankton. Chydoridae were mounted on slides in glycerin and identified to species using a compound microscope.

Principal Component Analysis

Description of the zooplankton community was be done by the multivariate statistical technique, principal component analysis (PCA). Pielou (1984), describes PCA as revealing the "real pattern", of the joint responses of groups of species to persistent features of the environment, separating out the "capricious", unrelated responses of a few individual members of a few species to environmental accidents of

the sort that occur sporadically (such as upwellings in the Great Lakes), and have only local and temporary effects.

The purpose of performing a PCA is to reduce the dimensionality of the data matrix, and find the structure of the matrix, without the sacrifice of eliminating data from the matrix. Structure is here defined as, any systematic pattern that would indicate that species tended to occur together, or that the sampling units, when appropriately arranged, would exhibit a gradual, continuous trend in their species compositions. The chief consequence of a PCA, is the first principle axis is so oriented to make the variance of the first principle component scores as great as possible (and the second PC, second greatest) (Pielou 1984).

Analysis was carried out using the statistical package, SYSTAT 5.02 (Wilkinson 1990). An introductory description of this technique can be found in Sprules (1977), Pielou (1984), and Ludwig & Reynolds (1988).

The matrix of covariances between species was calculated, thus standardizing the normalized abundances by subtraction of species transformed means from the transformed abundances. This preserves the variability of individual species. PCA summarizes the information in the covariance matrix in terms of new components, a small number of which account for most of the variation. From this simplification one can formulate hypotheses about the causes of variation in the system. This reduces the species-quadrat matrix to a species-component matrix (Sprules 1977).

Each component, a linear compound of the transformed proportionate abundances, has an associated eigenvalue giving the amount of variation in species accounted for by each component of the matrix, and eigenvectors (not reported) of component coefficients giving the

weighting of each species in the linear compound (Sprules 1977).

This study had 76 separate samples (quadrats) with abundances ($\#/m^2$) of 15 species, each with the three observed environmental variables of date (month), location, and depth (30m or 10m). Each individual sample is one of the n data points (76) each with s (15 species) coordinates. Each coordinate of each point is a function of the species abundance ($\#/m^2$) in the quadrat represented by that point. This produces a 15-dimensional plot, or "swarm" of data points (Pielou 1984). Plotted on the 15 coordinates, the PCA aligns and centers the first principle component (PC) axis where the largest variation occurs.

Before analysis the fifteen species abundances ($\#/m^2$ and $\#/m^3$) were first transformed by $\ln(\#/m^0+1)$. This transformation was used to decrease the dependence of taxa variance on taxa abundance. The transformation allowed rare and abundant taxa to be potentially equal in importance in the analysis while still retaining numerical differences in abundances. Use of the variance-covariance matrix was possible because all abundances had the same measurement units (Pielou 1984).

Correlation Coefficients of PCA

Correlations between principle components (1-4) and the transformed species abundances, species (1-15) were calculated to assist with the interpretation of the PCs. A species was positively correlated with a principle component if the coefficient was >.230, or negatively correlated if the coefficient was < -.230 (df=70, alpha = 0.05).

Multiple Regressions of PCs on Environmental Variables

To determine any environmental interpretation of observed variables, multiple linear regressions of PCs 1 through 4 on month, depth, and site, were performed to determine if there was a hypothetical

trend with these variables and the zooplankton community along the PC ordination axes (Ludwig & Reynolds 1988).

Verification of Zooplankton Environmental Trends on PC's

Transformed abundances of species positively and negatively correlated to both PC 1 and PC 2 were plotted by each significant variable to verify if the species abundance responds in the manner as hypothesized by the regressions and correlations.

Species Partitioning

There are numerous methods for classifying ecological data. The type used here is classified as an ordination-space partitioning method, and is adequate for most, if not all ecological applications (Pielou 1984). Lefkovitch's partitioning method is the most straightforward method for divisively splitting the PCA ordination (Pielou 1984). The data are first ordinated using principle component analysis, then split divisively into positive and negative groups on the first then the second principle component (Pielou 1984). The result of using only the first two PC's, is a two-dimensional partitioning of species into each of the four quadrants of the two axis plot, also called a biplot.

The initial grouping of species into associations was done only for species that were found to be significantly correlated with both components, either positively or negatively on the areal, or cubic biplot.

Zooplankton Dry Weight Methods

It is emphasized that the biomass estimates of this study were not verified. The animals were not weighed, and the accuracy of the estimates are unknown. Therefore the following dry weight estimates are only relative estimates within this study, and can not be applied to

other zooplankton populations.

Aliquots of replicates were mixed and a small subsample was taken for measurement. Measurements of taxon were performed for each month, depth, and location. To reduce the number of measurements of samples, when a sampling occurred within the same month, and at the same location and depth, the measurements of one sample (a combination of three replicates) were applied to taxon within that same month (months began and ended mid-month). Measurement of a species was not done when abundances were low.

Dry weight biomass was estimated only for the most numerous groups found during counting; Diaptomus sp., Cyclops sp., B. longirostris, Daphnia galeata, and Epischura lacustris. Three other species, L. macrurus, D. retrocurva, and B. cederstroemi, whose average abundance was less than one percent of all species/groups over the year, were measured because of their relatively larger size.

Dry weight estimation methods followed three courses of measurement: the counting of instars, length-dry weight regressions, and a volume to dry weight method.

A length-dry weight regression already exists for B. cederstroemi (Garton and Berg 1990), but Burkhardt (1991) developed linear regressions of mean dry weights of each of the three instars of B. cederstroemi on epilimnetic temperature. Species specific length-dry weight regressions exist for B. longirostris, D. galeata, D. retrocurva, Epischura lacustris, and L. macrurus and were used. The volume to dry weight method was used for Diaptomus sp. and Cyclops sp. because these were groupings of many species.

Zooplankton Measurements

Zooplankton dimensions were measured using an ocular micrometer to within 0.02 mm (20 um). Individuals in a sample were measured consecutively as encountered to obtain a random sampling of the population. Those animals that were obviously contorted were not measured.

Copepod length measurements were made from the furthest projection of the head to the insertion of the caudal setae. Lengths of B.

longirostris were measured from the furthest projection of the head process to the point of insertion of the caudal spine. The cyclomorphotic D. retrocurva and D. galeata were measured from the eye to the base of the tail spine, or standard length, (Lawrence et al., 1987).

Volume to Dry Weight Estimation

Lawrence et al.(1987) developed estimates of biomass of zooplankton using geometric formulas, and conversion factors to convert volume to dry weight.

Diaptomus sp. and Cyclops sp. were measured volumetrically, because they are groupings of several congeneric species. Volume estimates were made by measuring length, width and depth and entering these measurements into formulas, where a-0.5 length, b-0.5 width, and c-0.5 depth:

Cyclops sp. volume- (4/3)abc*pi

Diaptomus sp. volume- (4/3)ab(1.25c)*pi

The volumes were then converted to dry weight by multiplying the average volume of a combined sample by 0.07 (Lawrence et al.1987).

Ninety five percent confidence intervals of the volume measured

species, Diaptomus sp. and Cyclops sp., were calculated using the dry weight values (0.07*volume).

Length-Dry Weight Regression Estimation

Species specific length-dry weight regressions (Table 2) used were from: Culver et al. (1985), for B. longirostris and both daphnids, D. galeata and D. retrocurva; Conway (1977), for L. macrurus; and Lawrence et al. (1987), for E. lacustris.

Biomass estimates from length-dry weight regressions followed the guidelines of Bird and Prairie (1985), except for the use of the bootstrap variance. The bootstrap was performed on 30 dry weights of the most variable species Diaptomus sp., and the resulting confidence interval was nearly symmetrical and differed from both upper and lower limits by less than 0.005 mm. It was decided that the variances using the estimated dry weights would suffice.

Table 2 Length-Dry Weight Regressions

Species	L-W Regression (W in ug)	Range (mm)	r ²
B. longirostris	Ln W= 2.8756+(2.2291LnL)	(.2243)	.98
D. galeata	Ln W= 2.3917+(1.5202LnL)	(.36-1.81)	.99
D. retrocurva	Ln W- 2.0213+(2.7552LnL)	(.33-1.45)	.99
L. macrurus	Log ₁₀ W- (0.98L) - 0.79	(1.10-2.83)	.70
E. lacustris	Ln W- 1.4670+(2.4741LnL)	(1.43-2.04)	.86

Bythotrephes Dry Weight Estimation

Burkhardt (1991) developed a linear regression of mean dry weight of the three instars $(r_1-.927, r_2-.883, r_3-.930)$ of B. cederstroemi on

epilimnetic temperatures in Lake Michigan (1990 and 1991). The instars are distinguished by the number of lateral spines extending from the caudal spine.

Neonates have no lateral spines, and none were found after August.

Average surface temperatures of this study in July and August 1991

ranged from 19.2°C to 21.1°C, and an approximation of 70 ug was used

from Burkhardt's (1991) data for neonates at 18°C.

Counts of instars and neonates were done in entirety on every sample to reduce sampling bias. Instars with broken spines were multiplied by the average of the three regression values in order to salvage some estimate of biomass of these animals.

RESULTS and DISCUSSION

Zooplankton Abundance

Abundances are reported as both individuals⁻² or areal abundances (Table 3) and as individuals⁻³ or cubic abundances (Table 4). Each reporting method has it's advantages. Areal abundances allow for the detection of peak abundances, and density abundances allow for direct comparisons of population abundances at different contours. The density abundance is appropriate when the water column lacks a hypolimnion, because hypolimnetic waters may have low numbers of zooplankton that would artificially lower the zooplankton abundances. The primary sampling location, Ludington, and West Grand Traverse Bay each developed a hypolimnion in August and cubic abundances from that time on should be considered cautiously.

Abundances calculated as $\#/m^2$ were dominated by the four taxon groups; Diaptomus sp., Cyclops sp., Bosmina longirostris, and Daphnia galeata (Table 3).

Average areal abundances over the entire sampling season were as follows: Diaptomus sp. (61.1%), Cyclops sp. (21.8%), B. longirostris (8.5%), and D. galeata (5.7%). Less abundant species areal abundances were, E. lacustris (1.5%), D. retrocurva (0.7%), and B. cederstroemi (0.1%), and the remaining species account for the rest (0.6%).

Total zooplankton areal abundance from a single sample at the 30 meter contour peaked on August 29, 1991 for Ludington (>469,000/m²: 15,645/m³), on August 27 for Manitou Passage (>931,000/m²: 31034/m³), and on August 26 for West Grand Traverse Bay (>1,222,000/m²: 40742/m³)

Table 3. Zooplankton areal abundance (#/m?) at two depths (10 and 30 m) and four sites in northeastern Lake Michigan in 1991.

TOTAL	237718	198815	343587	108959	128777	90895	427653	149473	236922	35360	49147	66337	453924	193102	17871	10993	9774	9680	199249	176110	140153	46660	32905	25133	331928	255330	371424	51873	146233	10000
۳	0	0	0	0	0	0	0	0	0	5	₹	22	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
E E																									0		0	0	0	
1																									0					
됩	0	0	432	8	8	133	0	0	0	52	52	8	0	0	0	6	೪	0	0	0	0	0	0	0	0	0	692	0	0	•
																									2935					
																									0					
- 1																									734					
																									1468					
																									801					
ĔŢ	1359	1204	3057	413	409	340	752	854	834	5	4	52	0	8	0	6	0	0	0	92	82	0	0	0	0	0	0	127	364	
- 1		_	_	_	_		_				_					_	_								85350					
BOS	1601	3121	2177	4395	3490	5452	1444	5	2335	15338	18115	31210	2155	801	1076	1092	1077	1237	3456	2763	2208	1110	1070	386	3676	2965	5180	8471	30064	
DIA	126879	95287	263949	60382	83312	42803	237962	68280	154140	11771	22930	21758	336917	177962	64204	8503	7813	6879	152739	159745	110064	38726	22828	16140	229554	139763	245860	26879	90446	
CAC	28025	13248	11720	42803	37834	40255	142166	51465	45401	6837	6650	11146	109656	12178	10043	974	611	1219	37274	8548	18684	2994	4251	3626	7097	71937	8025	14522	20764	
BYT	530	510	736	189	191	287	19	4	14	23	31	25	745	157	284	74	22	80	223	113	366	2	e	2	312	271	282	111	149	
7	30	30	30	9	9	9	30	30	30	9	10	9	30	30	30	9	9	9	30	30	30	10	9	9	30	30	30	10	9	
DATE	07/17/91	07/17/91	07/17/91	07/17/91	07/17/91	07/17/91	07/30/91	07/30/91	07/30/91	08/01/91	08/01/91	08/01/91	08/06/91	08/06/91	08/06/91	08/06/91	08/06/91	08/06/91	08/10/91	08/10/91	08/10/91	08/09/91	08/09/91	08/09/91	08/16/91	08/16/91	08/16/91	08/16/91	08/16/91	
COC	23	3	3	n	3	3	2	13	3	3	23	13	2	2	2	2	2	2	MP	d N	MP	MP	MP	MP	2	2	2	13	13	0

Table 3. (cont'd)

TOTAL	681933	1222250	901899	152972	207050	242229	661000	829864	931020	144878	244448	91015	315304	354965	316818	19934	40023	21661	298108	469335	392207	14983	33531	12415	207711	229273	195852	18720	31369	40682
æ	0	•	•	0	0	0	•	•	•	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	c
SPH E	0	0	0	0	0	0	0	0	0	255	0	7	0	0	0	42	8	0	0	0	0	0	389	495	0	0	0	0	0	•
놙	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42	96	0	0	0	0	0	495	389	0	0	0	0	0	•
APH	0	0	0	0	0	0	0	0	0	0	0	0	573	0	210	2	8	0	0	0	8	24	7	0	0	0	0	0	0	c
M	0	•	0	0	0	0	0	0	0	764	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1058	2501	0	0	0	4
ם	< S				143																									
90					0																									
딥					1003																									
- 1					143																									
RET	0	0	0	0	0	0	0	0	956	535	212	283	35828	22987	34480	2	446	99	12484	20382	7389	122	142	0	902	83	1627	16	46	900
GAL	138726	376051	131975	2912	13901	12611	60875	37809	57441	4841	13588	4034	9745	20212	8183	21	127	0	3567	2860	9427	0	0	0	13052	15843	11835	512	459	1011
- 1		£	٠.		47236																									
DIA	279745	437962	440510	109045	128408	131274	361444	518981	596178	95414	164331	57962	149045	192611	183694	13248	25478	15287	174777	206879	189045	6316	15499	5202	46213	142166	131847	14910	25452	70000
CYC	130701	162038	160510	10919	16194	28949	189146	194395	180042	25732	42948	20382	88280	80255	64204	4222	8747	4624	90955	203312	153376	3742	8201	3468	136433	60191	44609	2644	4540	9000
BYT	8	8	23	g	22	32	74	65	80	=	4	ო	18	Ξ	31	8	g	g	19	36	ន	37	65	3	19	56	1	4	-	•
7	30	8	30	9	유	우	30	30	30	9	우	2	8	8	8	9	9	9	8	8	စ္က	9	우	9	8	8	8	9	9	:
DATE	08/26/91	08/26/91	08/26/91	08/26/91	08/26/91	08/26/91	08/27/91	08/27/91	08/27/91	08/27/91	08/27/91	08/27/91	08/28/91	08/28/91	08/28/91	08/28/91	08/28/91	08/28/91	08/29/91	08/29/91	08/29/91	08/29/91	08/29/91	08/29/91	09/13/91	09/13/91	09/13/91	09/13/91	09/13/91	00/00
					2																									

Table 3. (cont'd)

TOTAL	163426	111786	90137	21111	73093	59731	82232	175409	139243	335362	154916	211927	203069	62673	39320	55482
SPH EUR	0 223	0 235	0	34 0	153 0				306 0							
CHY St	100	0	0	0	0				0							
APH (0.000	0	0	0	0	0	0									
M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	255	0	0	0		8										
EUB	0	235	0	0	0	0	0	0	0	0	0	0	0	8	0	0
				22	1325	2684	1605	1949	1172	459	3325	1656	1911	414	382	764
PUL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GAL	3864	2259	238	প্ল	357	178	8	0	0	0	374	1121	1728	8	51	88
BOS	6242	8299	8204	2955	5588	3686	981	1011	5231	20178	1168	561	420	977	0	127
DIA	85962	41376	43873	12433	44764	40662	59567	127338	85605	225605	90803	151618	135363	43312	26599	44841
CYC	39236	37452	37809	5401	20866	12365	19439	44943	46726	88841	59134	56892	63618	17707	12153	8662
BYT	-	4	14	35	8	19	381	169	152	279	113	88	28	<u>8</u>	135	003
2	90	30	30	9	9	9	9	9	9	9	30	8	30	9	9	9
				10/03/91												
LOC	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	23

Table 4. Zooplankton cublc abundance $(\#/m^2)$ at two depths (10 and 30 m) and four sites in northeastern Lake Michigan in 1991.

TOTAL	7924	6627	11453	10896	12878	6806	14255	4982	7897	3536	4915	6634	15131	6437	2579	1099	776	896	6642	5870	4672	4666	3291	2513	11064	8511	12381	5187	14623	7802
EUR	0	0	0	0	0	0	0	0	0	2	14	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
SPHE	0	0	0	သ	115	51	0	0	0	0	0	œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
CHY	7	0	0	18	131	28	0	0	0	ო	8	18	0	0	0	7	4	7	0	0	0	0	0	0	0	0	0	4	က	c
APH	0	0	14	6	œ	=	0	0	0	9	9	က	0	0	0	-	က	0	0	0	0	0	0	0	0	0	83	0	0	c
Σ	47	38	14	0	œ	17	138	0	61	0	0	0	0	0	0	0	0	0	4	9	52	က	0	0	86	0	46	0	0	O
EP	0	36	0	0	0	0	0	0	0	0	8	œ	0	0	0	0	0	0	2	-	0	0	N	0	0	0	0	0	0	c
EUB	15	9	14	14	g	9	31	20	0	0	9	50	4	0	-	-	-	-	7	က	2	က	0	0	24	12	R	30	18	10
EPIE	10	6	14	0	œ	0	138	122	102	20	31	25	51	13	9	ო	æ	2	36	21	66	7	9	20	49	25	92	7	41	33
JU.	0	=	20	0	0	7	0	20	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	27	0	18	0	0	C
_	45																								0					
GAL	2565	2650	1987	35	51	09	1138	969	944	98	69	92	85	25	25	27	9	22	101	96	139	369	494	477	2845	1309	3533	96	382	318
BOS	ន	\$	23	439	349	545	48	37	78	1534	1811	3121	72	27	36	109	108	124	115	85	74	=	107	33	133	66	173	847	3006	2306
DIA	4229	3176	8628	8038	8331	4280	7932	2276	5138	1177	2293	2176	11231	5932	2140	850	781	889	5091	5325	3669	3873	2283	1614	7652	4659	8195	2688	9045	3261
CYC	934	442	391	4280	3783	4025	4739	1715	1513	684	999	1115	3655	406	335	97	61	122	1242	285	623	599	425	383	237	2398	268	1452	2076	1860
BYT	18	17	22	19	19	59	-	0	0	8	ო	ო	22	2	6	7	9	-	7	4	22	-	0	-	£	6	6	Ξ	15	14
7	30	8	8	우	9	9	8	30	30	9	9	우	30	30	30	9	9	9	30	30	30	9	유	9	30	90	30	9	9	10
DATE	07/17/91	07/17/91	07/17/91	07/17/91	07/17/91	07/17/91	07/30/91	07/30/91	07/30/91	08/01/91	08/01/91	08/01/91	08/06/91	08/06/91	08/06/91	08/06/91	08/06/91	08/06/91	08/10/91	16/01/80	08/10/91	08/09/91	08/09/91	08/09/91	08/16/91	08/16/91	08/16/91	08/16/91	08/16/91	08/16/01
00																									19					

TOTAL	22731	40742	3008	15297	20705	24223	22033	27662	31034	14488	24445	9101	10510	11832	10561	1993	4002	2166	9937	15645	13074	1498	3353	1241	6924	7642	6528	1872	3137	4068
Œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SPH EUR							4						Ε,												33	ţŵ		0		
CHY 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	우	0	0	0	0	0	20	ဓ္ဌ	0	0	0	0	0	0
APH (0	0	0	0	0	0	0	0	0	0	0	0	<u>ග</u>	0	~	~	က	0	0	0	Ŋ	~	7	0	0	0	0	0	0	0
M																												0		
J.							13												Ą						97			ထ		
																									*					
EUB																												0		
EPI	195	255	139	0	<u>8</u>	0	815	1427	957	0	234	202	9	377	42	8	223	73	42	42	161	0	4	7	0	0	0	57	တ	55
PUL	139	<u>쫎</u>	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R	0	0	0	0	0	0	0	N	0	0
RET	0	0	0	0	0	0	0	0	31	8	21	88	1194	992	1149	9	45	7	416	629	246	5	4	0	24	88	ጃ	~	လ	83
GAL	4624	12535	4399	23	1390	1261	2029	1260	1915	<u>\$</u>	1359	<u>ද</u>	325	674	273	~	ಧ	0	119	195	314	0	0	0	435	228	39 4	51	46	161
BOS	4089	22	5271	3006	4724	9269	88	1165	2224	1732	2081	616	698	73	902	<u>8</u>	261	8	501	985	841	462	828	255	34.	243	1 82	4	2	176
DIA	9325	14599	14684	1090 400	12841	13127	12048	17299	19873	9541	16433	5796	4968	8 428	6123	1325	2548	1529	5826	9689	830 1	83	1550	220	1540	4739	4395	1491	2545	3006
O C C	4357	5 5	5350	1092	1619	2895	8305	848 88	89 1	2573	4295	88 88 88 88	294 3	2675	2140	422	875	462	3032	2229	5113	374	820	34	4548	2008	1487	264	454	83
BYT	က	က	N	က	~	ო	7	~	က	-	-	0	-	0	-	4	က	က		-	•	4	9	က	•	•	~	0	0	-
7	೫	ဓ္ဌ	ဓ္က	2	2	2	ဓ္ဌ	ස	ဓ္က	9	e	9	ဓ္က	റ്റ	ဓ္က	9	6	9	ဓ္က	ဓ္ဌ	ဓ္က	9	9	우	8	ဓ္ဌ	ස	e	9	9
DATE	16/97/80	08/26/91	08/26/91	08/26/91	08/26/91	08/26/91	08/27/91	08/27/91	08/27/91	08/27/91	08/27/91	08/27/91	08/28/91	08/28/91	08/28/91	08/28/91	08/28/91	08/28/91	08/29/91	16/67/80	16/62/80	08/29/91	08/29/91	08/29/91	09/13/91	09/13/91	09/13/91	09/13/91	09/13/91	09/13/91
<u>ဗ</u>														•					7								7	3	3	3

Table 4. (cont'd)

6448 3726 3005 3005 2111 7309 6273 8223 17541 13924 13924 5164 6769 6267 3932 5548 E/80000000000000 000000000000000 mascocccccccc 000000000000000 2865 1379 1462 1243 1476 4476 4066 5957 12734 8561 8561 8561 4512 4512 4484 DATE 10,003/81 10,003/81 10,003/81 10,103/81 10,118/81 10,118/81 11,14/81 11,14/81 11,14/81 11,14/81 11,14/81 11,14/81 11,14/81 822223333333233333

Table 4. (cont'd)

(Table 3).

Maximum abundance at the 10 meter contour was on the same dates in late August (27 and 26 respectively) for Manitou Passage (>244,000/ m^2), and West Grand Traverse Bay (>242,000/ m^2), while at Ludington the maximum 10 meter contour abundance was on October 18th (>335,000/ m^2 : 33.536/ m^3) (Table 3).

Obvious differences in areal abundances between the two depths was apparent. For most species, abundance was greater at the 30 meter contour. Much of the difference may be a result of the greater volume of water at the 30 m contour. Areal abundance at the deeper stations was greatest for all three daphnids: D. pulicaria (77 X), D. retrocurva (43 X), and D. galeata (20 X), and a large calanoid copepod, L. macrurus (21 X). The daphnid and L. macrurus estimates are much greater at the deeper contour than can be explained alone by three times as much volume.

The greater abundance of daphnids at the 30 meter contour than at the 10 meter may be caused by increased predation in shallower waters.

Daphnia sp. are some of the largest opaque zooplankton found in the Great Lakes and is targeted by visually feeding planktivores.

It is possible that Bythotrephes cederstroemi, alewife, or yellow perch, visually feeding predators, may be contributing to the smaller population abundances of daphnids found at the shallower depths.

Greater numbers of *L. macrurus* at the 30 meter contour may be a result of the species affinity to colder waters (Balcer et al. 1984). *L. macrurus* is a cold-water stenotherm that is generally restricted to the hypolimnion (Wells 1960), and is seldom found in waters warmer than 14°C (Balcer et al. 1984).

Differences between seasons are not readily apparent from abundance

estimates alone, and must wait for the following PC analysis.

Principal Component Analysis

A scree diagram is a subjective method of deciding the number of principal components to analyze. The scree diagram (Figure 2) illustrates the declining percent of total variance explained by subsequent principal components. The number of principle components to be analyzed, 4, is one less than the point where the curve flattens at PC 5. This cut off point at PC 4 can also be explained intuitively. Dividing the 15 principle components into 100%, results in 6.66%. If all the variance was random, each component would have no more than 6.66% of the total variance. In both cases, PC 5 explained less than 6.66% for both the areal (6.5%) and the cubic (6.3%) abundance data.

The first four PC's from the areal and cubic abundance data of 15 species account for more than 66% of the total variance in both cases. The first component, PC 1 accounts for 26.1% of the areal and 26.9% of the cubic abundance variance. Principle component 2 accounts for an additional 17.3% of the areal, and 17.2% of the cubic variance. The third accounts for 12.8% areal, and 13.3% cubic variance; and the fourth accounts for 10.1% areal, and 9.4% cubic variance.

The first four principle components were analyzed with multiple regressions and transformed abundances were plotted on each of the significant variables (depth and month) to show slope. However, only the first two PCs were verified and plotted on the two-dimensional biplot.

Because the biplot was necessary for the method chosen for species partitioning, correlation coefficients and verification beyond the first two principle components was not done.

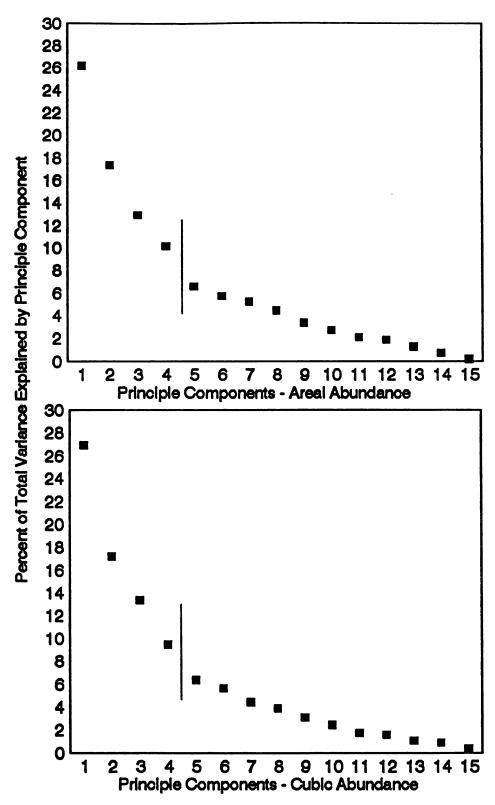


Figure 2. Scree diagrams showing percent of variance explained by each component for both areal and cubic abundance data, and the cutoff line for principle components analyzed.

Correlation Coefficients for PC 1

Correlation coefficients that were significant to each of the principle components of the transformed areal abundances are shown in Table 5. Ten species were positively correlated with PC 1. The species were: Cyclops sp., Diaptomus sp., B. longirostris, D. galeata, D. retrocurva, D. pulicaria, E. lacustris, E. coregoni, L. kindti, and L. macrurus (Table 5). Only one species, Chydorus sphaericus, had a significant negative correlation with the first component.

The cubic abundance data had the same ten positively correlated species, and *C. sphaericus* was joined by *B. cederstroemi* as the only negatively correlated species (Table 6).

Correlation Coefficients for PC 2

Five species were positively correlated with PC 2 of the areal PCA.

The species were: Cyclops sp., Diaptomus sp., D. galeata, D. pulicaria, and E. lacustris. Species negatively correlated to the areal abundance PCA include: D. retrocurva, L. kindti, Diaphanosoma sp., Chydorus sp., and C. sphaericus (Table 5).

With the cubic PCA, except for two species, Cyclops sp. and

Eubosmina coregoni, all species reversed significant correlations from

negative to positive and from positive to negative (Table 6). Cyclops

sp. was significant only with the areal PCA (positively) (Table 5) and

E. coregoni only with the cubic PCA (Table 6).

Regressions and ANOVA of Principal Components

As would be expected with principle component analysis, the regression of the first principle component had the best fit (multiple r^2 -.689) (Table 7), and the fourth PC had the worst fit (multiple r^2 -.029) (Table 8). The same was true for the cubic abundance data

Table 5. Correlation coefficients of principle components 1 - 4, using areal abundance data. *

75				
SPECIES	PC 1	PC 2	PC 3	PC 4
Bythotrephes	0.036	0.070	0.423 *	0.393 *
CYCLOPS SP.	0.469 *	0.250 *	229 *	034
DIAPTOMUS SP.	0.611 *	0.463 *	058	027
BOSMINA	0.404 *	0.017	306 *	0.046
DAPHNIA GALEATA	0.802 *	0.431 *	0.083	116
D. RETROCURVA	0.674 *	608 *	140	212
D. PULICARIA	0.392 *	0.335 *	0.165	0.056
EPISCHURA	0.229	0.542 *	443 *	0.425 *
EUBOSMINA	0.597 *	117	0.161	0.656 *
LEPTODORA	0.344 *	293 *	707 *	080
LIMNOCALANUS	0.509 *	063	0.667 *	165
DIAPHANOSOMA	0.152	546 *	0.063	0.425 *
CHYDORUS SP.	135	606 *	0.183	0.449 *
C. SPHAERICUS	330 *	478 *	0.072	0.303 *
EURYTEMORA	095	0.033	178	0.268 *

^{*} Coefficient is significant (α = .05) either positively (> .230) or negitively (< -.230) with the principle components.

Table 6. Correlation coefficients of principle components 1 - 4, using cubic abundance data. *

		7.0		
SPECIES	PC 1	PC 2	PC 3	PC 4
BYTHOTREPHES	293 *	0.083	163	0.265 *
CYCLOPS SP.	0.359 *	077	0.477 *	0.149
DIAPTOMUS SP.	0.502 *	323 *	0.176	0.186
BOSMINA	0.400 *	0.067	0.523 *	0.662 *
DAPHNIA GALEATA	0.889 *	321 *	209	0.144
D. RETROCURVA	0.599 *	0.667 *	0.119	349 *
D. PULICARIA	0.411 *	265 *	121	0.183
EPISCHURA	0.156	587 *	0.539 *	364 *
EUBOSMINA	0.500 *	0.287 *	0.013	0.016
LEPTODORA	0.332 *	0.254 *	0.550 *	170
LIMNOCALANUS	0.375 *	0.149	673 *	057
DIAPHANOSOMA	0.065	0.540 *	0.092	0.179
CHYDORUS SP.	164	0.595 *	0.102	0.393 *
C. SPHAERICUS	299 *	0.437 *	0.232 *	0.364 *
EURYTEMORA	089	072	0.237	0.078

^{*} Coefficient is significant (α = .05) either positively (> .230) or negatively (< -.230) with the principle components.

Table 7. Regression and ANOVA of principle components 1 and 2 using transformed areal abundance data.

	Prin	cipal Co	mpor	nent 1		
	R	egressi				
N: 76 Multiple Standard error of	R: 0.830 of estimate:	•			Adj. Multiple F able: Factor(
Variable C	cefficient	Std. en	ror S	Std. coef.	T	P (2 tall)
CONSTANT	11.586	2.628	3	0.000	4.410	0.000
DEPTH	0.284	0.030)	0.618	9.372	0.000 **
MONTH	-2.044	0.275	5	-0.507	-7.433	0.000 **
SITE	0.059	0.313	3	0.013	0.190	0.850
	An	alysis o	f Varia	ance		
Source	Sum-of-Sq	uares l	DF	Mean-Squa	re F-ratio	P
REGRESSION	1101.92	28	3	367.30	9 53.184	0.000 **
RESIDUAL	497.25	57	72	6.90	6	
N: 76 Multiple		cipal Co legressi Multip	on .		Adj. Multiple F	R²: 0.236
Standard error of		•			•	
Variable C	oefficient	Std. er	ror s	Std. coef.	Т	P (2 tail)
CONSTANT	-13.445	3.28	5	0.000	-4.092	0.000
DEPTH	0.151	0.038	3	0.404	3.989	0.000 **
MONTH	1.189	0.344	4	0.363	3.458	0.001 **
SITE	0.287	0.392	2	0.077	0.732	0.466
	An	alysis o	f Vark	anoe		
Source	Sum-of-Sq	uares	DF	Mean-Squa	are F-ratio	P
REGRESSION	282.58	98	3	94.19	6 8.727	0.000 **
RESIDUAL	777.18	31	72	10.79	4	

^{** -} significant at alpha = .05

Table 8. Regression and ANOVA of principle components 3 and 4 using transformed areal abundance data.

	Princ	ciple C	Comp	onent 3		
N: 76 Multiple Standard error o	e R: 0.387		ple R	•	. Multiple F e: Factor(
Variable C	oefficient	Std. e	orror	Std. ooef.	T	P (2 tall)
TAATEMOO	7.836	3.0	46	0.000	2.573	0.012
DEPTH	-0.005	0.0	35	-0.015	-0.134	0.894
MONTH	-0.675	0.3	19	-0.239	-2.118	0.038
SITE	-1.204	0.3	63	-0.373	-3.315	0.001 **
	An	alysis	of Va	riance		
Source	Sum-of-Squ	uares	DF	Mean-Square	F-ratio	P
REGRESSION	117.62		3	39.207	4.226	0.008 **
RESIDUAL	668.04	5	72	9.278		
•	R: 0.170	egres Multi	slon Iple R	•	. Multiple F	•
Standard error of				•		•
	cefficient	Std. €		Std. coef.	T	P (2 tail)
CONSTANT	4.174	2.8		0.000	1.446	0.152
DEPTH	-0.018	0.0		-0.062	-0.529	0.599
MONTH	-0.407	0.3		-0.162	-1.346	0.183
SITE	-0.239	0.3	44	-0.084	-0.694	0.490
	An	alysis	of Va	rlance		
Source	Sum-of-Sq	uares	DF	Mean-Square	F-ratio	P
REGRESSION	17.86	32	3	5.954	0.715	0.546
RESIDUAL	599.78	34	72	8.330		

^{** -} significant at alpha = .05

except PC 4 had a better fit than PC 2 and PC 3 (Table 9 and Table 10).

Month, depth and site were regressed on the transformed areal abundance principle components (1-4)(Table 7 and Table 8). Month and depth were found significant (p<.05) for PC's 1 and 2 (Table 7). Site was found significant for only PC 3 of the areal data (Table 8). Sites 1, 2, and 3 are Ludington, Manitou Passage, and West Grand Traverse Bay, respectively. Site 4 was Holland, and this site was the only location sampled only once in 1991. Site 4 had a much reduced abundance compared to the other three sites. Because Holland was the only site with a significantly different abundance, and because of the lack of samples from Holland, the site variable was dropped from the verifications and species partitioning sections reported later in the text.

The multiple regressions of the cubic abundance data were significant for PCs 1, 2, and 4 (p<.05) for both depth and month, and site was not significant for any of the principle components (Table 9 and Table 10).

Zooplankton Community Trends - Areal

Transformed abundances (ln[# + 1]), of both areal and cubic abundances of the significant variables in the multiple regression models were plotted both temporally (month) and spatially (at different depth contours) to examine trends of significantly correlated species within the zooplankton community.

It is expected, that the zooplankton community would decline in abundance with season (after peaking earlier in the season), or had a negative slope with the month variable. For PC 1 this is true (Figure 3a), but unexpectedly the slope reverses to a positive slope for PC 2 (Figure 3b).

Table 9. Regression and ANOVA of principle components 1 and 2 using transformed cubic abundance data.

	Princ	iple Com	ponent 1		
N: 76 Multiple	e R: 0.751	•	R²: 0.563	Adj. Multiple I riable: Factor	
Variable C	cefficient	Std. error	Std. ooef.	Т	P (2 tail)
CONSTANT	8.124	2.057	0.000	3.950	0.000
DEPTH	0.152	0.024	0.502	-6.260	0.000 **
MONTH	-1.347	0.215	-0.506	6.433	0.000 **
SITE	0.149	0.245	0.049	0.607	0.546
	Ana	alysis of V	ariance		
Source	Sum-of-Squ	uares DF	Mean-Sq	uare F-ratio	P
REGRESSION	392.88	0 3	130.9	60 30.965	0.000 **
RESIDUAL	304.50	6 72	4.2	29	
N: 76 Multiple		egression Multiple		Adj. Multiple	R²: 0.175
Standard error	of estimate:	•		•	
Variable C	cefficient	Std. error	Std. coef.	Т	P (2 tail)
CONSTANT	8.995	2.213	0.000	4.065	0.000
DEPTH	-0.065	0.025	-0.266	-3.677	0.013 **
MONTH	-0.852	0.232	-0.401	-2.533	0.000 **
SITE	-0.331	0.264	-0.136	-1.255	0.214
	An	alysis of V	'ariance		
Source	8um-of-Squ	uares DF	Mean-Sq	uare F-ratio	P
REGRESSION	92.78	60	30.9	6.316	0.001 **
RESIDUAL	352.52	7 72	2 4.8	196	

^{** -} significant at alpha = .05

Table 10. Regression and ANOVA of principle components 3 and 4 using transformed cubic abundance data.

Principle Component 3

				onent 3		
N: 76 Multiple Standard error	e R: 0.319	•	ple R	_	. Multiple F e: Factor	
Variable C	Coefficient	Std. e	rror	Std. coef.	T	P (2 tail)
CONSTANT	-2.684	2.07	7 6	0.000	-1.293	0.200
DEPTH	-0.038	0.02	24	-0.177	1.353	0.119
MONTH	0.294	0.21	7	0.157	-1.580	0.180
SITE	0.552	0.24	18	0.258	2.230	0.029
	An	alysis d	of Va	riance		
Source	Sum-of-Squ	uares	DF	Mean-Square	F-ratio	P
REGRESSION	35.21		3	11.739	2.724	0.051
RESIDUAL	310.33	5	72	4.310		
	Prin	ciple C	Comp	oonent 4		
•	R e R: 0.464	egress Multip	ilon ple R	² : 0.216 Adj	. Multiple F	
Standard error	R e R: 0.464 of estimate:	egress Multip	ilon ple R De	² : 0.216 Adj	•	(4)
Standard error	R e R: 0.464 of estimate:	egress Multip 1.633	ilon ple R De rror	a²: 0.216 Adj ependent Varlabl	e: Factor	
Standard error of Variable	R e R: 0.464 of estimate: Coefficient	egress Multip 1.633 Std. e	slon ple R De rror	a ² : 0.216 Adj ependent Variabl Std. coef.	e: Factor T	(4) P (2 tall)
Standard error of Variable CONSTANT	Re R: 0.464 of estimate: Coefficient 6.092	egress Multip 1.633 Std. e	slon ple R De rror 33	2: 0.216 Adj ependent Varlable Std. coef. 0.000	e: Factor T 3.730	(4) P (2 tall) 0.000
Standard error of Variable C CONSTANT DEPTH	Re R: 0.464 of estimate: Coefficient 6.092 -0.060	egress Multip 1.633 Std. e 1.63	slon ple R De rror 33 19	2: 0.216 Adj ependent Variabl Std. coef. 0.000 -0.333	e: Factor T 3.730 -2.941	(4) P (2 tail) 0.000 0.002 **
Standard error of Variable C CONSTANT DEPTH MONTH	Re R: 0.464 of estimate: Coefficient 6.092 -0.060 -0.503 -0.406	egress Multip 1.633 Std. e 1.63 0.01	slon ple R De rror 33 19 71	2: 0.216 Adj ependent Variable Std. coef. 0.000 -0.333 -0.319 -0.225	e: Factor T 3.730 -2.941 -3.180	(4) P (2 tall) 0.000 0.002 ** 0.004 **
Standard error of Variable C CONSTANT DEPTH MONTH	Re R: 0.464 of estimate: Coefficient 6.092 -0.060 -0.503 -0.406	egress Multip 1.633 Std. ea 1.63 0.01 0.17 0.19	slon ple R De rror 33 19 71	2: 0.216 Adj ependent Variable Std. coef. 0.000 -0.333 -0.319 -0.225	e: Factor T 3.730 -2.941 -3.180	(4) P (2 tall) 0.000 0.002 ** 0.004 **
Standard error of Variable C CONSTANT DEPTH MONTH SITE	Re R: 0.464 of estimate: Coefficient 6.092 -0.060 -0.503 -0.406	egress Multip 1.633 Std. ei 1.63 0.01 0.17 0.19 alysis cuares	slon ple R De rror 33 19 71 95	c ² : 0.216 Adj ependent Variable Std. coef. 0.000 -0.333 -0.319 -0.225	e: Factor T 3.730 -2.941 -3.180 -2.084	(4) P (2 tall) 0.000 0.002 ** 0.004 ** 0.041

^{** -} significant at alpha = .05

For the depth variable, it would intuitively be expected that the slope would be positive if the zooplankton community inhabits all the volume of water at both the 10 and 30 meter contours. The community does have a positive slope for PC 1 (Figure 4a) and PC 2 (Figure 4b) for the areal abundance data.

The site variable was significant only with PC 3 (p<.05)(Table 8)(Figure 5).

It is hypothesized that species positively correlated with PC 1 will either tend to decrease markedly with season or be more abundant at the 30 meter depth. Because of the reversal of the seasonal trends between the first and second PC, it is hypothesized that species that are positively correlated with PC 2 will either not be greatly affected by season (because of the reversal of the month trend of PC 2) or more abundant at the 30 meter contour.

Zooplankton Community Trends - Cubic

The expectation that the zooplankton community would decline in abundance with season is also true for the cubic abundance data.

Principle components 1, 2, and 4 were all significant and they all had negative slopes as well (Figure 6).

The reporting of the zooplankton community measured as a cubic or volumetric abundance, would not necessarily show an increased abundance at the deeper contour as was expected with the areal abundance data unless the abundances were actually greater at the 30 meter contour.

Principle component 1 has a positive slope (Figure 7a), and PCs 2 and 4 have a negative slope (Figure 7b and Figure 7c).

It is hypothesized that species positively correlated with PC 1 of the cubic abundance data will respond in the same way to both depth and

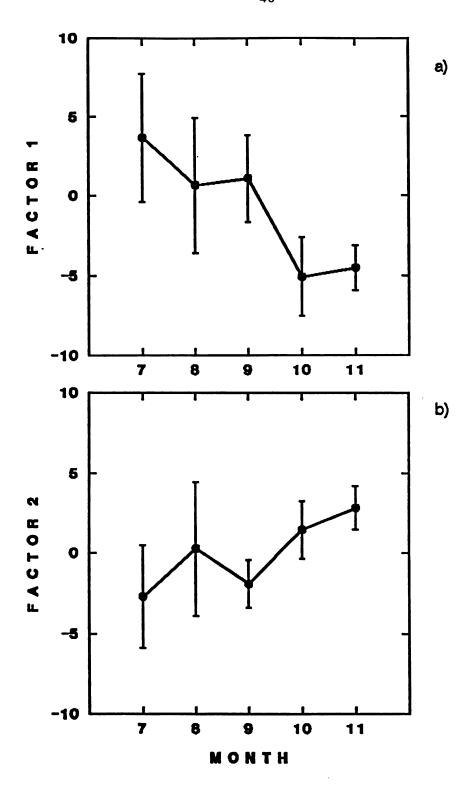


Figure 3. Category plots by month of principle components 1 (a) and 2 (b) using areal abundance estimates.

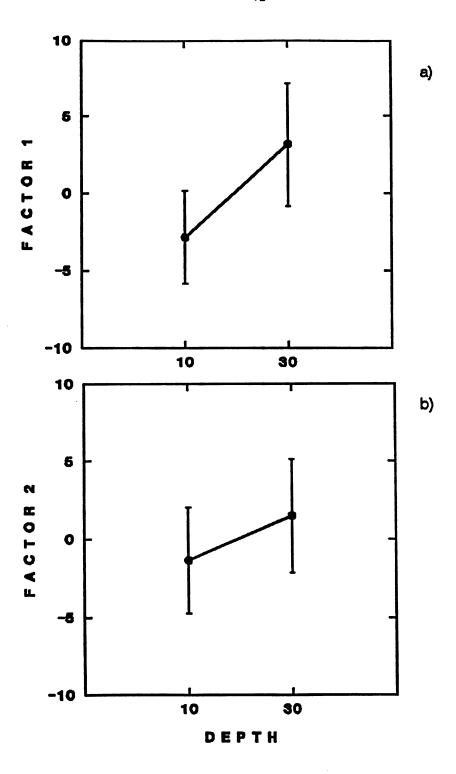


Figure 4. Category plots by depth of principle components 1 (a) and 2 (b) using areal abundance estimates.

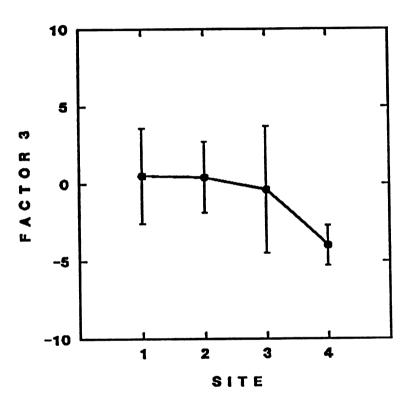


Figure 5. Category plot by site of principle component 3 using areal abundance estimates.

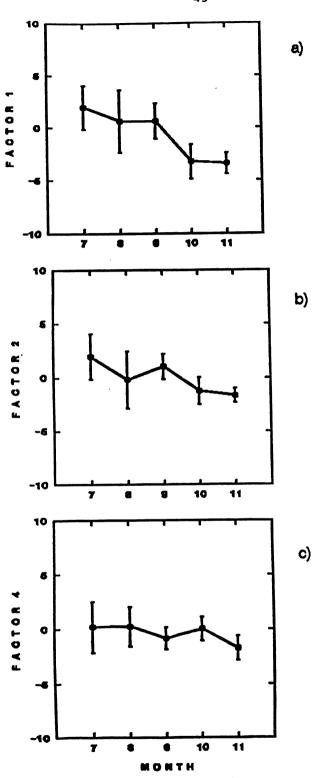


Figure 6. Category plots by month of principle components 1 (a), 2 (b), and 4 (c) using cubic abundance estimates.

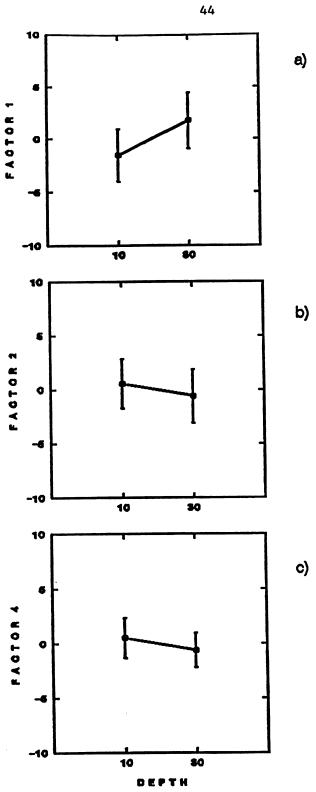


Figure 7. Category plots by depth of principle components 1 (a), 2 (b), and 4 (c) using cubic abundance estimates.

month as with the areal abundance data. In other words, a species positively correlated with PC 1 would be expected to either decline markedly with season or be more abundant at the 30 meter depth.

However, the differences between PC 2 of the cubic PCA are opposites of the seasonal and depth trends of PC 2 of the areal PCA.

The month variable of the cubic abundance PCA does not reverse slope from PC 1 to PC 2, as was the case with the areal abundance PCA. And the other variable, depth, unlike the areal PCA, reverses from a negative to a positive slope.

The result is that a species negatively correlated with PC 2 of the cubic PCA ordination would be hypothesized to respond in a like manner (to both the month and depth variables), as a species positively correlated with PC 2 of the areal PCA ordination.

Zooplankton Community Biplots

Each principle component, is a linear compound of the transformed abundances, and has an associated eigenvector of each component coefficient giving the weighting of each species in the linear compound (Sprules 1977). The biplot uses the first two eigenvectors as (x,y) coordinates of the original variables. These coefficients are unitless and the first two principle components of the zooplankton community are plotted on the areal (Figure 8) and cubic (Figure 9) biplots.

Distance and direction of the specie component coefficient has meaning, and species plotting close to the origin would not be expected to have their abundances influenced by the significant variables depth or month, and species abundances plotting far from the origin would be expected to be influenced by these variables.

The biplots use the component coefficients of the principle

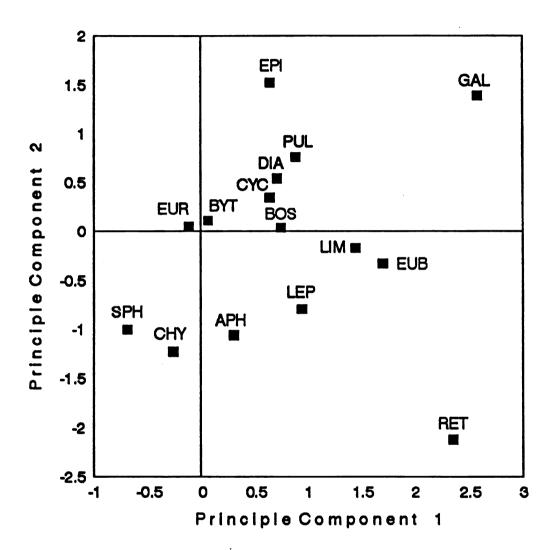


Figure 8. Biplot of first two principle components using areal zooplankton abundance data from Northeastern Lake Michigan in 1991 (axes are unitless).

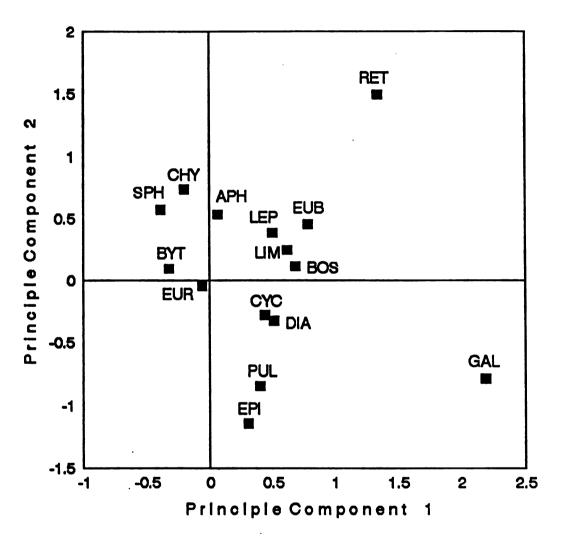


Figure 9. Biplot of first two principle components using oublo zooplankton abundance data from Northeastern Lake Michigan in 1991 (exes are unitless).

components, and the species were assigned correlation coefficients of these components. They both respond in similar intensities either positively or negatively. Because of this, the use of a biplot will visually aid in the verification process and later, in the splitting of the zooplankton community into species associations.

Verification of Zooplankton Environmental Trends

The variables, month and depth, may or may not represent meaningful ecological relationships, and the synthetic principle component variables must now be closely scrutinized. This scrutiny requires that the community trends of the principle components accurately portray the trends of positively correlated species, and that an inverse of the trends is portrayed by the negatively correlated species of the areal abundance data (Table 5), and the cubic abundance data (Table 6).

The regression of the variables depth and month were both significant when regressed on PC 1 with the areal abundance data (Table 7). The hypothetical trends month (Figure 3a) and depth (Figure 4a) of these variables on the zooplankton community with respect to PC 1 is illustrated in Figure 10. These same variables were also significant when regressed on PC 2 and the hypothetical trends of month (Figure 3b) and depth (Figure 4b) are illustrated in Figure 11.

Species significantly correlated with a principle component either positively or negatively would be expected to be influenced (by relative abundance) by one or both of the variables found significant in the regressions. Species that were not correlated with both principle components may or may not be influenced, and for this reason the uncorrelated species of both PC 1 and PC 2 will not be used in the verification process or the delineation of species into species

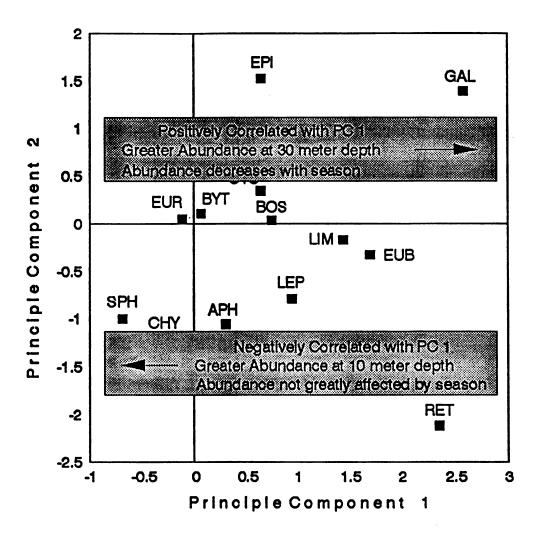


Figure 10. Illustration of the significantly correlated variables, depth and month, of principle component 1, expected to influence a species position on both the areal and cubic abundance biplots.

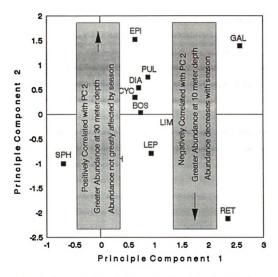


Figure 11. Illustration of the significantly correlated variables, depth and month, of principle component 2, expected to influence a species position on the areal abundance biplot.

associations. Figure 12 illustrates only those species that were significantly correlated with both PC 1 and PC 2 (Table 5).

Following are the areal, then the cubic abundance verifications.

Because it is unknown which variable, either month and depth (or both),
is affecting the relative abundance of a species, each species
transformed abundance will be plotted by both month and depth.

Verification of each component will first plot the transformed
abundances of one or two of the most positively correlated species by
first month then depth. Then one or two of the most negatively
correlated species by first month than depth.

Areal Abundance Verification

Most species correlated both positively and negatively with the areal abundance data (Table 5) were also correlated in the same manner as with the cubic abundance data (Table 6). Only B. cederstroemi was correlated (negatively) with the cubic abundance data, and not correlated with the areal abundance data. Therefore, except for B. cederstroemi, verification of PC 1 for the areal abundance data will also represent the verification of the cubic abundance data as well.

The first two plots are the log transformed abundances of the two species with the highest positive correlation with PC 1, D. galeata and D. retrocurva (Table 5). It is hypothesized that these species would either decrease in abundance with season, or be in greater abundance at the 30 meter contour (Figure 10). A plot of these two species by month (Figure 13) shows that only D. retrocurva is much affected by season. D. retrocurva was no longer found in the community after September, while D. galeata was present in abundances similar to samples taken in July, and was present until November. The graph of these two species plotted

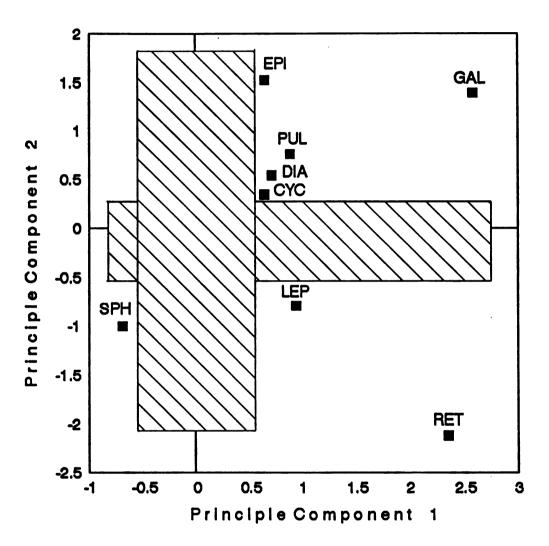


Figure 12. Biplot illustrating species that are significantly correlated with principle components 1 and 2 using the areal abundance data.

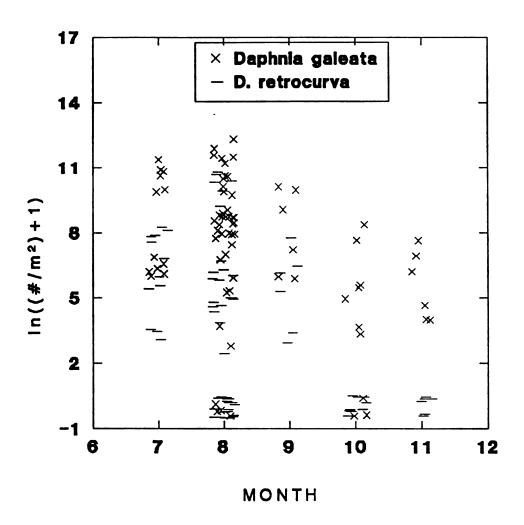


Figure 13. Log transformed (In) areal abundances of Daphnia galeata and D. retrocurva for the months of July through November in 1991.

by depth (Figure 14) shows both species appear to have greater abundances at the 30 meter contour. Many samples for both species had absences, however, D. galeata was absent only at the 10 meter contour which may indicate the species is more affected by depth than by season.

The only species with a significant negative correlation to PC 1 was C. sphaericus. It is hypothesized that this specie's abundance would either not differ much throughout the season or has a greater abundance at the 10 meter contour (Figure 10). When this species was plotted against month (Figure 15), the species does not appear to follow the seasonal trend of PC 1. However, abundances were highest in August and October and absent in September. It appears that this species is indeed not greatly affected by season. A plot of this species by depth (Figure 16) clearly shows that C. sphaericus corresponds very well with the second part of the hypothesis, that it is more abundant at the 10 meter contour. The species was totally absent at the 30 meter depth.

The next two plots are the log transformed abundances of the two species with the highest positive correlation with PC 2, D. galeata and E. lacustris. It is hypothesized that these species would either decline markedly with season or have greater abundance at the 30 meter depth (Figure 11). The first plot, is the graph of the two species by month (Figure 17). Neither species shows decline in the later months and both are present in all samples in November. The next plot of the two species is by depth (Figure 18), and it appears that both species are present at greater abundances at the 30 meter contour.

The next two plots are of the two species most negatively correlated with PC 2, D. retrocurva and C. sphaericus. It is hypothesized that these two species would declined markedly with season

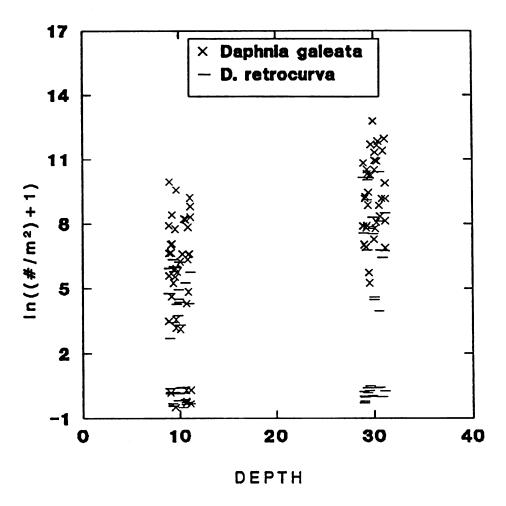


Figure 14. Log transformed (in) areal abundances of Daphnia galeata and D. retrocurva at two depths, 10 and 30 meters.

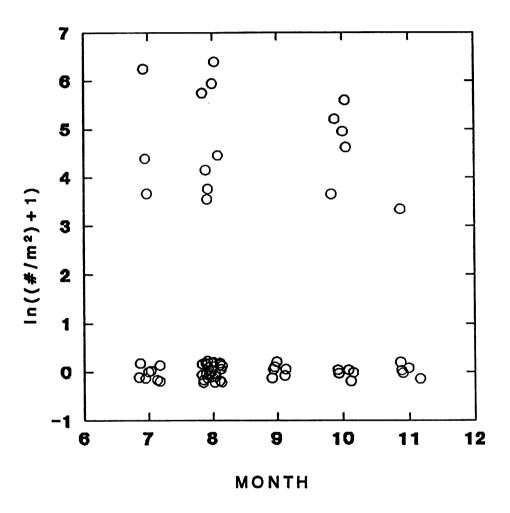


Figure 15. Log transformed (In) areal abundances of Chydorus sphaericus for the months of July through November in 1991.

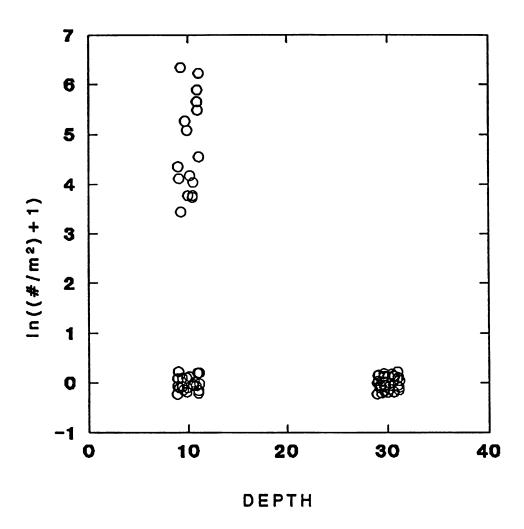


Figure 16. Log transformed (in) areal abundances of Chydorus sphaericus at two depths, 10 and 30 meters.

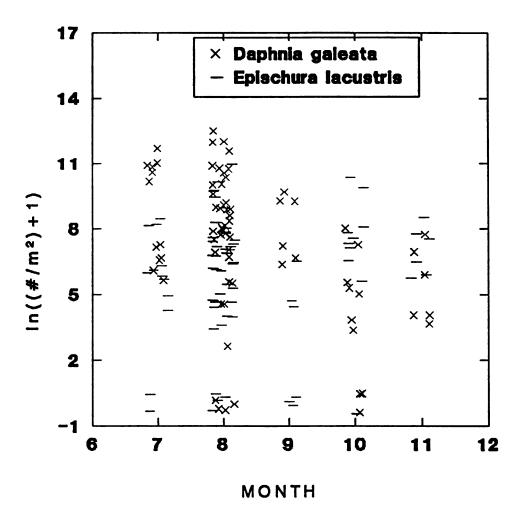


Figure 17. Log transformed (In) areal abundances of Daphnia galeata and Episcura lacustris for the months of July through November in 1991.

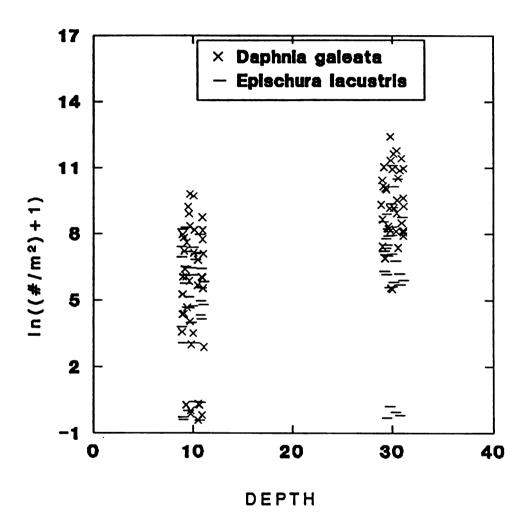


Figure 18. Log transformed (in) areal abundances of Daphnia galeata and Episcura lacustris at two depths, 10 and 30 meters.

or have a greater abundance at the 10 meter depth (Figure 11). The plot of the two species by month (Figure 19) shows that only *D. retrocurva* decreases with season and is absent in the samples after September. The plot of the two species by depth (Figure 20) shows that only *C.* sphaericus is more abundant at the 10 meter contour.

Cubic Abundance Verification

As was mentioned above, the only species whose correlation coefficient was found significant in the cubic and not in the areal abundance, was B. cederstroemi. This species was negatively correlated with PC 1 of the cubic abundance data (Table 6). It is hypothesized that this species either does not decline markedly with season or it is more abundant at the 10 meter contour (Figure 10). When B. cederstroemi was plotted by month (Figure 21) the species showed no decline with season, instead the species was absent in the September samples then in October and November rebounded to areal abundance levels similar to July and August. When B. cederstroemi was plotted by depth (Figure 22), it showed no greater abundance at either the 10 or the 30 meter contour.

Hypotheses of the species responses to principle component 2 of the cubic abundance data (Figure 23) are reversals of the PC 2 areal abundance hypotheses (Figure 11). In other words, most species in the upper two quadrants on the areal biplot (Figure 8) will be in the bottom two quadrants of the cubic biplot (Figure 9) and vice versa. However, positively and negatively correlated species from PC 2 of the cubic PCA (Table 6) also reverse direction (positive to negative and vice versa) from the areal (Table 5). This results in both biplots grouping many of the same species into groups with hypothetically similar responses to both month and depth, or species associations. Therefore the following

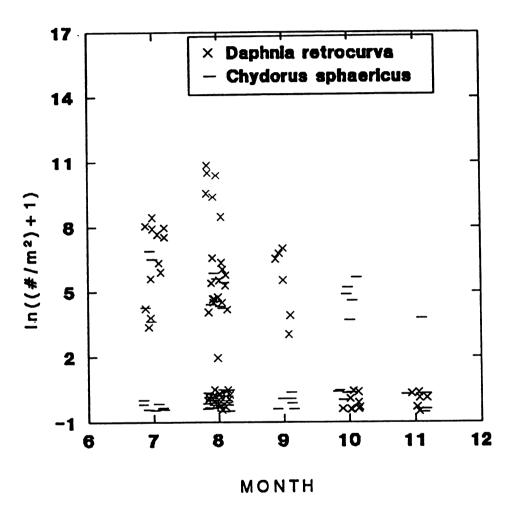


Figure 19. Log transformed (in) areal abundances of Daphnia retrocurva and Chydorus sphaericus for the months of July through November of 1991.

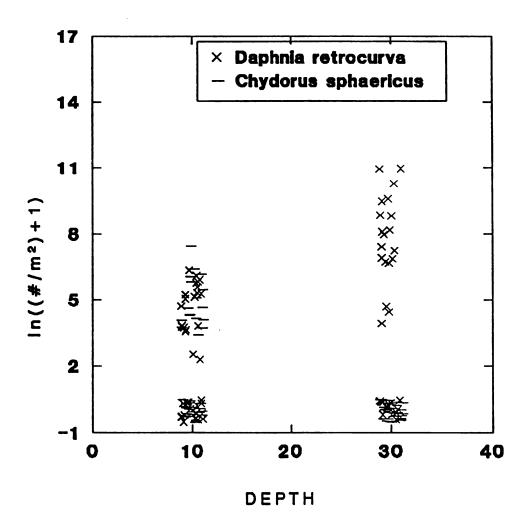


Figure 20. Log transformed (In) areal abundances of Daphnia retrocurva and Chydorus sphaericus at two depths, 10 and 30 meters.

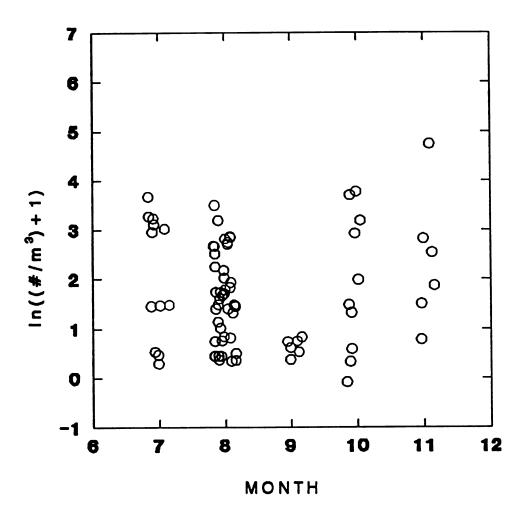


Figure 21. Log transformed (in) cubic abundances of Bythotrephes cederstroemi for the months of July through November in 1991.

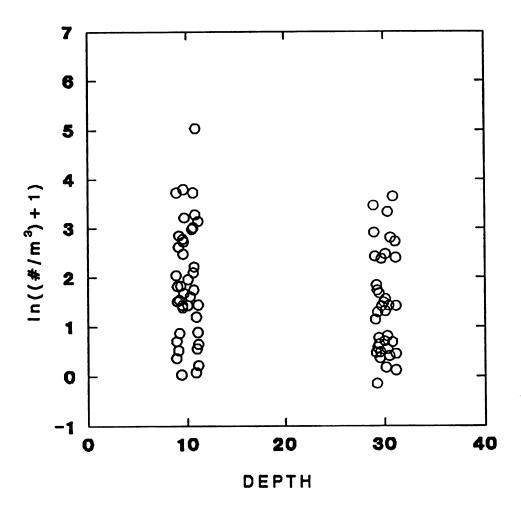


Figure 22. Log transformed (in) cubic abundances of Bythotrephes cederstroemi at two depths, 10 and 30 meters.

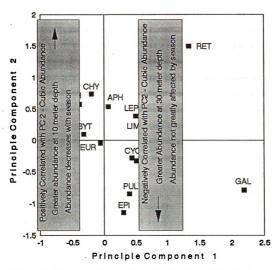


Figure 23. Illustration of the significantly correlated variables, depth and month, of principle component 2, expected to influence a species position on the cubic abundance biplot.

verifications of the cubic abundance environmental trends need only be compared to the areal abundance verifications to ensure that the significantly correlated species respond in a like manner.

The next two plots (month and depth) are of the most positively correlated species to PC 2 of the cubic abundance PCA, D. retrocurva and C. sphaericus. These species are the same as the two most negatively correlated to PC 2 with the areal abundance PCA. The response of the cubic (Figure 24) and the areal abundance (Figure 19) of the two species to season are very similar, except that the cubic measurement is less marked than the areal. Next is the comparison of these same two species response to the different depth contours, and again the cubic response (Figure 25) is very similar to the areal response (Figure 20). The two most negatively correlated species to PC 2 of the cubic PCA are D. galeata and E. lacustris. Comparison of the cubic responses to both month (Figure 26 and Figure 17) and depth (Figure 27 and Figure 18) are also similar.

Verification of Correlated Species

If the grouping of species into species associations is reduced to using only the significantly correlated species of the first two principle components, then the two types of species associations, will differ by only a few species (Figure 12 and Figure 28). In other words, Cyclops sp. and E. lacustris are in the proposed areal association illustration but not the cubic, and E. coregoni is in the cubic association illustration, but not in the areal.

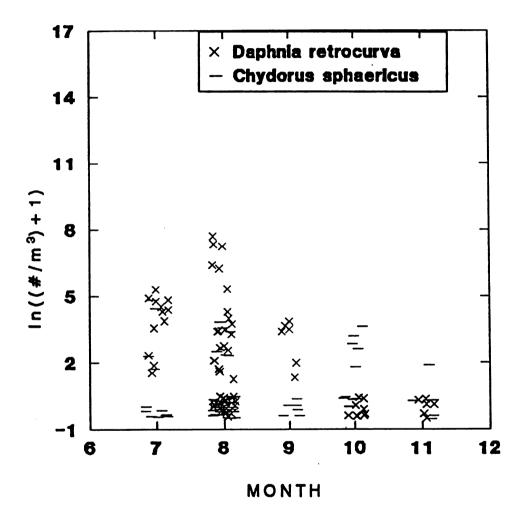


Figure 24. Log transformed (In) cubic abundances of Daphnia retrocurva and Chydorus sphaericus for the months of July through November of 1991.

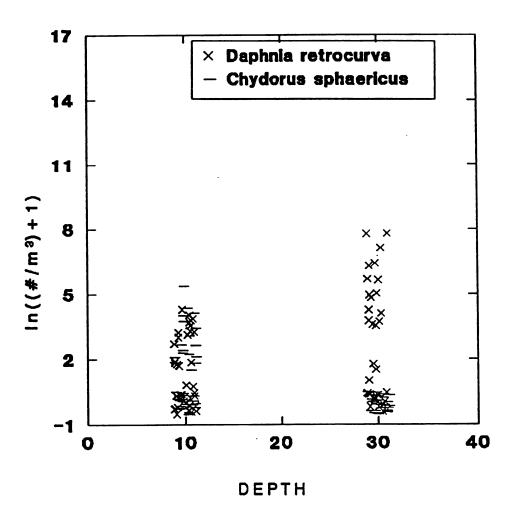


Figure 25. Log transformed (in) cubic abundances of Daphnia retrocurva and Chydorus sphaericus at two depths, 10 and 30 meters.



Figure 26. Log transformed (In) cubic abundances of Daphnia galeata and Epischura lacustris for the months of July through November in 1991.

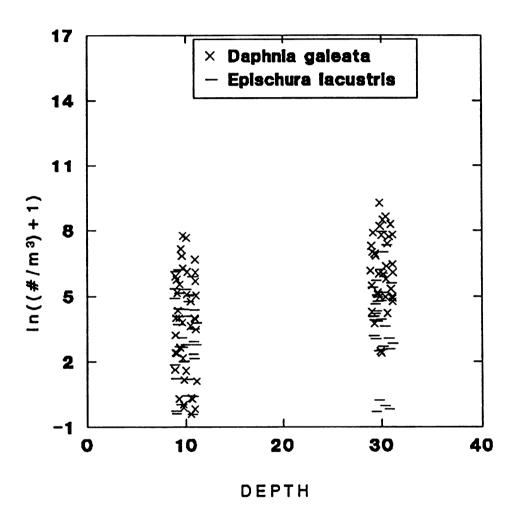


Figure 27. Log transformed (In) cubic abundances of Daphnia galeata and Epischura lacustris at two depths, 10 and 30 meters.

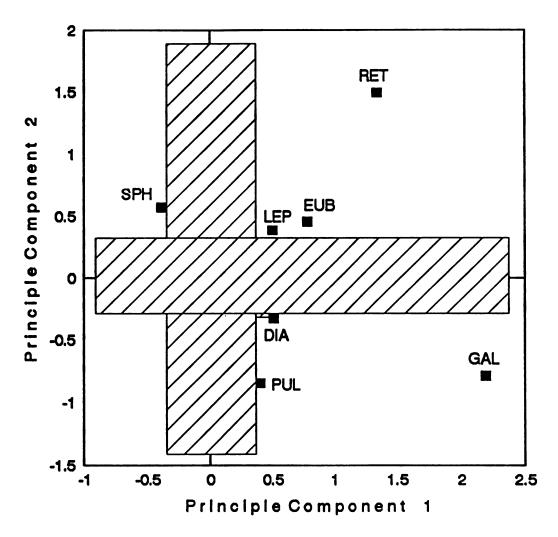
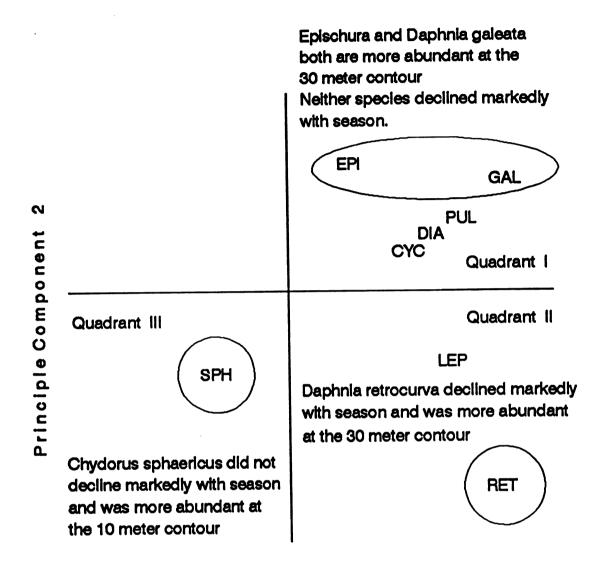


Figure 28. Biplot illustrating species that are significantly correlated with principle components 1 and 2 using cubic abundance data.

Species Groups


Areal Species Groups

Species will first be assembled into quadrants until the actual species associations are described later in the text.

Figure 29 illustrates the species that are hypothesized to be in the areal species associations. Each quadrant has text that describes what the hypotheses are for each quadrant and the responses of the verified species to each of the variables of the hypotheses. The unverified species (uncircled) are species that are significantly correlated to both PC 1 and PC 2.

The verified quadrant I species of the areal PCA, E. lacustris and D. galeata were both more abundant at the 30 meter contour and did not decline markedly with season. It is therefore hypothesized that D. pulicaria, Diaptomus sp. and Cyclops sp. will respond in a similar manner and the species could then be characterized by these environmental trends. Both Diaptomus sp. and Cyclops sp. did not decline markedly with season (Figure 30), and were more abundant at the 30 meter contour (Figure 31). D. pulicaria differed from the other quadrant I species with respect to month and declined with season and was absent from the samples by October (Figure 32). However, D. pulicaria did respond similarily to the depth variable (Figure 33).

The verified quadrant II species of the areal PCA, D. retrocurva declined markedly with season and was more abundant at the 30 meter contour. The other hypothesized quadrant II species, L. kindti also declined with season and was absent from four of six samples in October and totally absent by November (Figure 32). Like D. retrocurva, L. kindti when present in the samples, was more abundant at the 30 meter

Principle Component 1

Figure 29. Illustration of significantly correlated species of the areal abundance biplot. Verified species and their responses to hypothetical expectations related to month and depth in the verification process (circled), and unverified species (uncircled) within proposed species associations or quadrants.

Figure 30. Log transformed (in) abundances of the significantly correlated quadrant I groups, Cyclops sp. and Diaptomus sp., for the months of July through November in 1991.

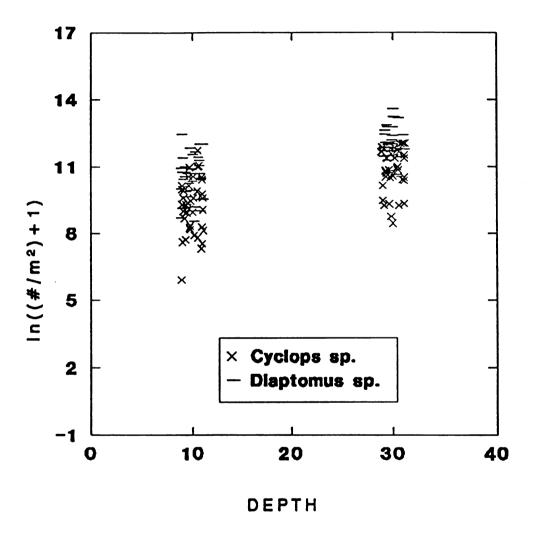


Figure 31. Log transformed (in) abundances of the significantly correlated quadrant I groups, Cyclops sp. and Diaptomus sp., at two depths, 10 and 30 meters.

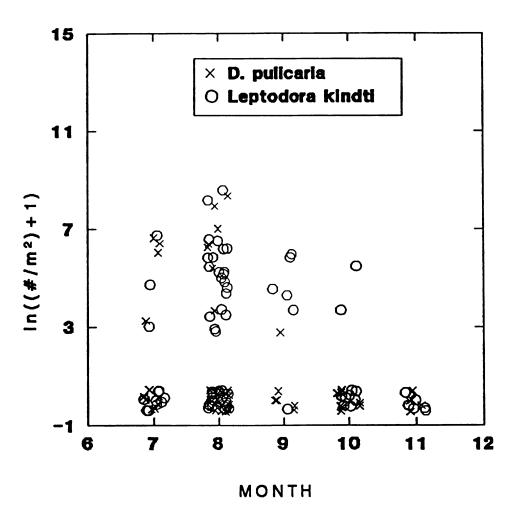


Figure 32. Log transformed (in) abundances of the significantly correlated quadrant I species, Daphnia pulicaria and the quadrant II species, Leptodora kindti for the months of July through November in 1991.

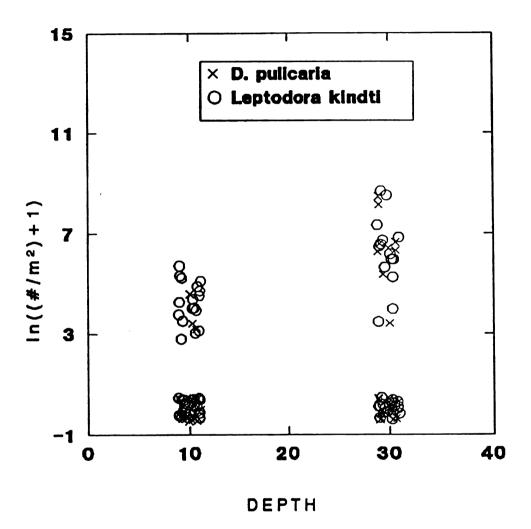


Figure 33. Log transformed (in) abundances of the significantly correlated quadrant I species, Daphnia pulicaria and the quadrant II species, Leptodora kindti at two depths, 10 and 30 meters.

contour.

Quadrant III contains only *C. sphaericus* and this species declined with season (Figure 15), but not as drastically as other species such as *D. retrocurva*, *D. pulicaria* or *L. kindti*. This species placement on the left side of the biplot is more likely because of the remarkable characteristic of having a greater abundance at the 10 meter contour.

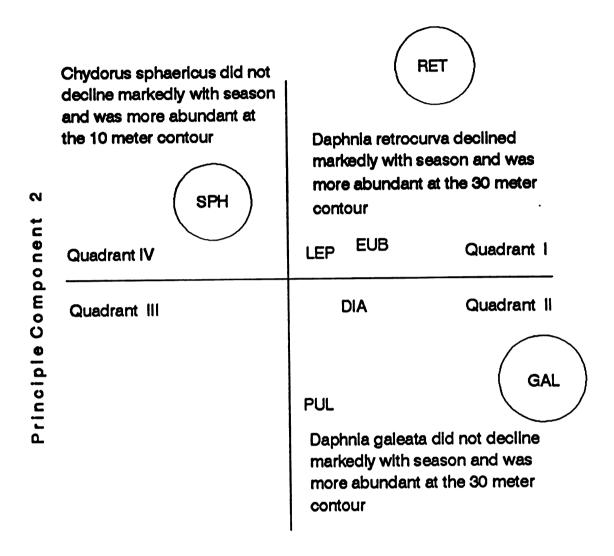

Cubic Species Groups

Figure 34 illustrates the species that are hypothesized to be in the cubic species associations. The unverified quadrant I species, L. kindti and E. longirostris are hypothesized to decline markedly with season and be more abundant at the 30 meter contour (Figure 34). L. kindti declines gradually. In September and October, two of six samples, then four of six samples lack this species, respectively, and in November the species was totally absent from the samples (Figure 35). E. coregoni also declined, but not gradually. It was totally absent in September, and one in six samples had the species present in both October and November (Figure 35). Both species, when present, were more abundant at the 30 meter contour (Figure 36).

The unverified quadrant II species, D. pulicaria and Diaptomus sp. are hypothesized to not decline markedly with season and be more abundant at the 30 meter contour. Only Diaptomus sp. responded in this manner to both season (Figure 37) and to depth (Figure 38). D. pulicaria, when present, was more abundant at the 30 meter depth (Figure 38), but declined significantly with season and was absent by September.

Species Associations

Only two variables, month and depth, were significant in the regressions of the principle components on the zooplankton community.

Principle Component 1

Figure 34. Illustration of significantly correlated species of the cubic abundance biplot. Verified species and their responses to hypothetical expectations related to month and depth in the verification process (circled), and unverified species (uncircled) within proposed species associations or quadrants.

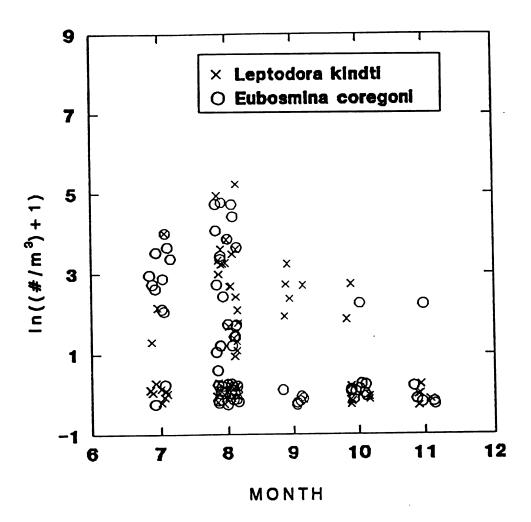


Figure 35. Log transformed (in) cubic abundances of the significantly correlated quadrant I species, Leptodora kindti, and Eubosmina coregoni for the months of July through November in 1991.

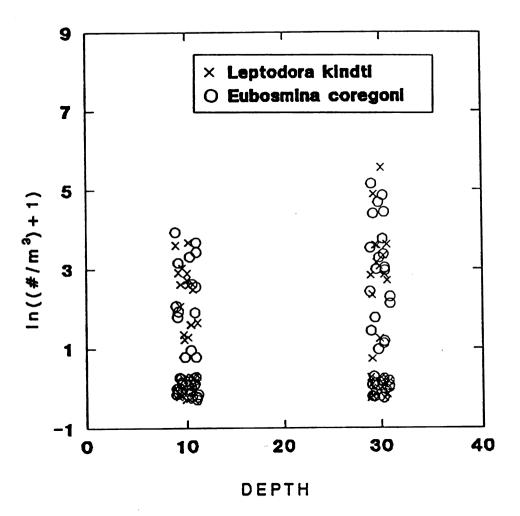


Figure 36. Log transformed (in) cubic abundances of the significantly correlated quadrant I species, Leptodora kindti, and Eubosmina coregoni at two depths, 10 and 30 meters.

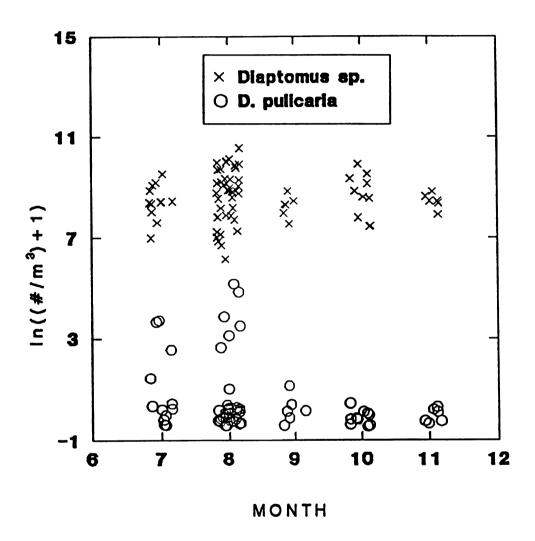


Figure 37. Log transformed (In) cubic abundances of the significantly correlated quadrant II species, Diaptomus sp, and D. pulicaria for the months of July through November in 1991.

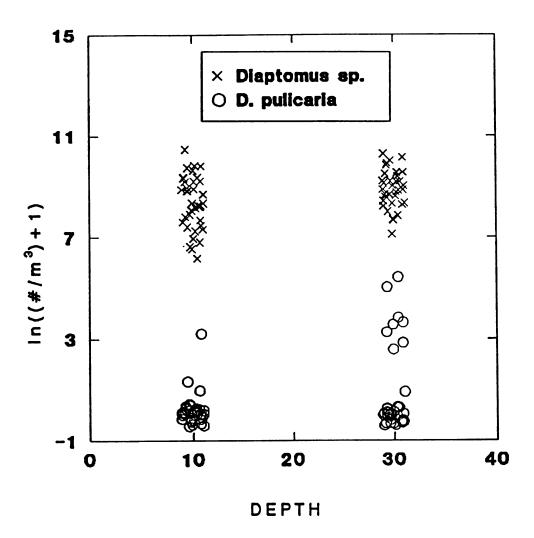


Figure 38. Log transformed (in) cubic abundances of the significantly correlated quadrant II species, Diaptomus sp, and D. pulloaria at two depths, 10 and 30 meters.

Following are the three proposed species associations. Species significantly correlated to the first two principle components can hypothetically be grouped together in these associations as a means of describing the groups of species within the zooplankton community.

The Littoral Species Association

There was one species, *C. sphaericus*, that showed a negative correlation to both PC1 and PC2. In both the areal and the cubic PCA the species had abundances greater at the 10 meter contour, and was never found at the 30 meter contour (Table 3 and Table 4). The rest of the *Chydoridae* family, though not significantly correlated with PC 1 in both the areal (Table 5) or the cubic PCA (Table 6), was significantly correlated with PC 2. The species was in the same quadrant as *C. sphaericus* in both biplots (Figure 8 and Figure 9), and was absent at the 30 meter depth in all but one sample in July (Table 3 and Table 4).

It is proposed that these two species be grouped in a species association on the basis of their affinity to the shallower depths in the Great Lakes (Balcer et al. 1984).

The seasonal trends of the pair differ. Both groups had their highest abundance in July. *C. sphaericus*, although rare, was found in the samples until November, and *Chydorus sp.* was no longer found in the samples after August. The known life history and habitat preferences for the sediment and littoral zones of both species conforms with this association (Balcer et al. 1984).

Limnetic Non-persistent Species Association

It was hypothesized from both the areal and cubic abundance PCA's that because D. retrocurva was in greater abundance at the 30 meter depth and declined significantly in the fall months, that the other

species included within a quadrant with this species would also react similarily to the variables.

- L. kindti was in this quadrant for both the areal and cubic PCA. L. kindti both declined gradually with season (Figure 32) and was more abundant at the 30 meter depth (Figure 33). Another species, E. coregoni found significant only in the cubic PCA, though more abundant at the 30 meter depth (Figure 36) persisted in one of six samples in both October and November (Figure 35).
- D. pulicaria is another species that should be included in this grouping although the species was never placed in the same quadrant as D. retrocurva. In each of the biplots, D. pulicaria was placed on the other side of the x-axis, in the quadrant that is proposed to be the persistent species.

For the areal PCA, D. retrocurva, L. kindti, and D. pulicaria; and in the cubic PCA, D. retrocurva, L. kindti, E. coregoni, and D. pulicaria are grouped in the limnetic non-persistent species association.

Limnetic Persistent Species Association

It was hypothesized from both the areal and cubic abundance PCA's that because D. galeata (and E. lacustris in the areal PCA), was in greater abundance at the 30 meter depth and persisted into the fall months, and that the other species included within a quadrant with this species would also react similarily to the variables. As mentioned above, D. pulicaria was included within these quadrants, yet declined appreciably with season.

The other two species within the respective quadrants, Diaptomus sp. in both biplots, and only Cyclops sp. in the areal biplot, did

however persist. However, it is impossible to tell what is happening with both of these large groupings of species with respect to season. It may be many species peaking at different times within the genus, or one species dominating over the entire season.

For the areal PCA, D. galeata, Diaptomus sp., Cyclops sp., and E. lacustris; and in the cubic PCA, D. galeata, Diaptomus sp., and E. lacustris are grouped in the limnetic non-persistent species association.

Estimations of Dry Weight Biomass

Volume Estimations of Biomass

Mean dry weights (ug) (used to estimate biomass), and 95% confidence intervals (n=30) for the volume estimated species *Diaptomus* sp. and *Cyclops sp*. are shown in Table 11.

Both of these species dry weight estimates were based on both length and either depth or width measurements. Because of this, size differences of many different sized adults and copepodid stages can give widely differing dry weight estimates. Compounding these variations is that both the *Diaptomus sp.* and *Cyclops sp.* groupings are composed of different sized species.

The significantly smaller dry weight average estimates of Diaptomus sp. and Cyclops sp. at the 10 meter contour in West Grand Traverse Bay on 8/26/91 (Table 11) was because the population was dominated by the shorter and thinner early copepodid stages. Diaptomus sp. lengths ranged from 0.38-0.64 mm, and Cyclops sp. from 0.34-0.60 mm. These measured lengths were less than half the measured dimensions of Diaptomus sp. and Cyclops sp. on comparable dates at Ludington on 8/29 and at Manitou Passage on 8/27 (Table 11). This lag in development was expected because

Table 11. Unvertied estimates of mean dry weight (μ g), standard error, and 95% confidence intervals for Diaptomus sp. and Cyclops sp.

		•		10 00 mm				
LOC.	DATE	Z	Mean	SE	CI (n=30)	Mean	SE	CI (n=30)
5	07/17/91	30	3.9636	0.501	(2.980,4.947)	2.2304	0.243	(1.752,2.708)
2	07/17/91	9	4.8217	0.401	(4.036, 5.606)	2.8891	0.262	(2.373,3.404)
٦,	07/30/91	30	3.9636	0.501	(2.980,4.947)	2.2304	0.243	(1.752,2.708)
2	08/01/91	10	4.8217	0.401	(4.036, 5.606)	2.8891	0.262	(2.373,3.404)
5	08/06/91	30	1.8086	0.220	(1.377,2.239)	1.1114	0.101	(0.914,1.308)
ပ	08/06/91	9	2.0496	0.608	(0.857, 3.242)	0.9938	0.114	(0.769,1.219)
A P	08/10/91	30	2.8853	0.537	(1.889,2.885)	1.3110	0.186	(0.947, 1.675)
A P	08/09/91	10	2.3865	0.254	(1.832, 3.938)	4.1827	1.753	(0.745, 7.620)
ב	08/16/91	30	3.1849	0.429	(2.344,4.023)	2.0995	0.971	(0.196,4.003)
⊃.	08/16/91	9	2.7573	0.294	(2.180,3.334)	1.2696	0.181	(0.914, 1.624)
ပ	08/26/91	30	2.4532	0.220	(2.021, 2.885)	1.7381	0.208	(1.329,2.147)
ပ	08/26/91	10	0.9466	0.083	(0.783,1.110)	0.8895	0.067	(0.758, 1.021)
٩	08/27/91	30	2.0913	0.241	(1.619, 2.563)	1.1684	0.151	(0.873,1.464)
٩	08/27/91	10	1.7573	0.208	(1.350, 2.164)	0.8451	0.084	(0.681,1.009)
0	08/28/91	30	2.1378	0.339	(1.473, 2.802)	1.1472	0.155	(0.843, 1.452)
0	08/28/91	9	1.8402	0.193	(1.461,2.219)	0.9183	0.043	(0.835, 1.002)
٦.	08/29/91	30	3.1849	0.429	(2.344,4.023)	2.0995	0.971	(0.196,4.003)
٦.	08/29/91	9	2.7573	0.294	(2.180,3.334)	1.2696	0.181	(0.914,1.624)
٦.	09/13/91	30	5.4913	1.264	(3.013, 7.969)	0.7973	0.119	(0.565, 1.030)
٦.	09/13/91	9	1.6961	0.226	(1.253,2.140)	1.0322	0.139	(0.759, 1.305)
⊃	10/03/91	30	5.4913	1.264	(3.013,7.969)	0.7973	0.119	(0.565,1.030)
٦.	10/03/91	9	1.6961	0.226	(1.253,2.140)	1.0322	0.139	(0.759, 1.305)
٦.	10/18/91	9	3.6026	0.411	(2.796,4.409)	1.0466	0.114	(0.823,1.270)
רמ	11/14/91	30	3.9796	0.589	(2.826,5.132)	0.7528	0.075	(0.606,0.899)
=	11/14/91	-	3.2603	0.602	(2.081.4.440)	1.2455	0.300	(0.847, 1.644)

of observed differences in both temperature and zooplankton abundances between Grand Traverse Bay and other locations on Lake Michigan the previous year (Barner unpub. data). In addition, the previous sample at West Grand Traverse Bay (8/6/91) contained the largest proportion of nauplii of all the samples. It was suspected to be an important component to the total biomass, but estimates found the estimated weight to be insignificant (922 ug), or less than 0.2% of the total biomass for that sample.

Length-Weight Regression Estimations

Dry weights were split into two tables because B. longirostris and D. galeata, in most cases, had at least 30 animals measured and there is a higher degree of confidence in the length measurements than in the case of D. retrocurva, E. lacustris, and L. macrurus.

Mean dry weights (ug) used to estimate biomass from length-dry weight regressions, the number of animals measured (n), standard error and 95% confidence intervals are shown in Table 12 for B. longirostris and D. galeata, and Table 13 for D. retrocurva, E. lacustris, and L. macrurus.

The biomass weights of this study are similar to those estimated by Hawkins and Evans (1979). The exception, was the weight of *D. galeata*, which averaged from 3.7 to 9.6 ug per individual in this study, and just 4.0 ug in the Hawkins and Evans (1979) study.

The discrepancy may be explained by the differing methods of estimation. Hawkins and Evans (1979) estimates should be the most accurate because they were done directly using a microbalance, whereas in this study they were only estimated by a length-dry weight regression and unverified.

Table 12. Unverified estimates of mean dry weight (ug), standard error, and 95% confidence intervals of Bosmina coregoni and Daphnia galeate.

	-	' '	:	:				:		
LOC.	DATE	7	Mean	z	SE	5	Mean	z	SE	ō
2	07/17/91	30	1.2464	30	0.071	(1.11,1.39)	8.6719	30	969.0	(7.31,10.04)
רח	07/17/91	10	1.2508	30	0.075	(1.10,1.40)	9.6331	89	0.651	(8.36,10.91)
F	07/30/91	30	1.2464	30	0.071	(1.11,1.39)	8.6719	30	969.0	(7.31,10.04)
רח	08/01/91	10	1.2508	30	0.075	(1.10,1.40)	9.6331	89	0.651	(8.36,10.91)
TC	08/06/91	30	1.2481	21	0.121	(1.10,1.40)	4.0213	28	0.131	(3.88,4.16)
TC	08/06/91	10	1.0678	30	0.052	(0.96, 1.17)	3.9326	17	0.252	(2.95, 4.92)
MP	08/10/91	30	1.8909	23	0.203	(1.49,2.29)	5.7113	35	0.240	(4.15,5.09)
MP	08/09/91	10	1.2971	30	0.085	(1.13,1.46)	4.6217	30	0.366	(4.99,6.43)
-	08/16/91	30	2.1844	16	0.257	(1.68, 2.69)	8.5142	30	0.552	(7.43,9.60)
רח	08/16/91	10	1.2140	30	0.090	(1.04, 1.39)	5.4933	23	0.243	(5.02,5.97)
10	08/26/91	30	1.9105	30	0.168	(1.58,2.24)	5.0360	O	0.337	(4.38,5.70)
TC	08/26/91	10	1.5681	30	0.126	(1.32, 1.81)	3.7216	6	0.208	(3.31,4.13)
MP	08/27/91	30	1.0329	22	0.054	(0.93,1.14)	4.1203	30	0.162	(3.80,4.44)
MP	08/27/91	10	0.9467	30	0.050	(0.85,1.05)	4.1948	30	0.196	(3.81,4.58)
9	08/28/91	30	1.3847	30	0.082	(1.22, 1.55)	5.6220	30	0.325	(4.99,6.26)
ОН	08/28/91	10	0.8922	11	0.059	(0.781,1.01)				
רח	08/29/91	30	2.1844	16	0.257	(1.68, 2.69)	8.5142	30	0.552	(7.43,9.60)
רח	08/29/91	10	1.2140	30	0.090	(1.04, 1.39)	5.4933	23	0.243	(5.02,5.97)
07	09/13/91	30	1.1253	7	0.107	(0.91,1.34)	6.4845	22	0,493	(5.52,7.45)
רח	09/13/91	10	1.0532	7	0.098	(0.86, 1.24)	5.3452	17	0.551	(4.26, 6.43)
רם	10/03/91	30	1,1253	7	0.107	(0.91, 1.34)	6.4845	22	0.493	(5.52,7.45)
רח	10/03/91	10	1.0532	7	0.098	(0.86, 1.24)	5.3452	17	0.551	(4.26, 6.43)
רח	10/18/91	10	1.2164	12	0.048	(1.12,1.31)				
27	11/14/91	30					8.3894	N		
Ξ	11/14/91	10	1 4914	45	0 103	(1 29 1 69)				

Table 13. Unverified estimates of mean dry weight (µg), standard error, and 95% confidence intervals for Daphnia retrocurva, Epiechura iscuestis and Umnocalanus macrurus.

LOC.	DATE	N	Mean	z	SE	σ	Mean	z	SE	ਠ	Mean	z	N SE	σ
3	07/17/91	30	1,5832	4	0.199	(1,19,1,97)	10.0544	4	4,646	(0.95,19.16)	41,1655	12	4.232	4.232 (33.87,49.46)
3	07/17/91	9	4.1967	6	1.138	(0.26,3.10)	8.8251	a						
2	07/30/91	8	1.5832	4	0.199	(1.19,1.97)	10,0544	4	4.646	(0.95,19.16)	41.1655	12	4.232	4.232 (33.87,49.46)
3	08/01/91	9	4.1967	6	1.138	(0.26,3.10)	8.8251	Q						
TC	08/06/91	8	1.0158	Ø			2.3767	4	0,477	(1.44,3.31)				
TC	08/06/91	9					1.4086	9	0.233	(0.46,2.36)				
MP	08/10/91	30					7,6190	7	1.036	(5.59,9.65)	28.0967	13	4.730	4,730 (18,83,37,37)
MP	08/09/91	9					7.5603	4	0.559	(6.46,8.66)	18.4850	a		
3	08/16/91	8					9.1133	4	1,485	(6.20,12.02)	16,1173	ဇ		
3	08/16/91	9					5.4209	N						
10	08/26/91	30					7.1789	-						
70	08/26/91	9					2.0586	-						
MP	08/27/91	8					4.2458	14	0,522	(3.22,5.27)				
MP	08/27/91	9					2.5318	ო						
9	08/28/91	90	2.5749	30	0.212	(2.16,2.99)	6,1754	8	0.963	(4.29,8.06)				
오	08/28/91	9					7.3832	-						
3	08/29/91	30	2.8003	23	0.425	(1.97, 3.63)	6.3129	9	0.864	(4.62,8.01)				
2	08/29/91	9					5.4209	a						
3	09/13/91	30	1.2261	8			7,9071	a			31,3584	7	6.854	6.854 (17.93,44.79)
3	09/13/91	9	3.1956	N			4.5001	13	0.680	(3.17,5.83)				
בי	10/03/91	30	1.2261	N			5,1328	39	0.446	(4.26,6.01)				
2	10/03/91	10	3.1956	N			4.5001	13	0.680	(3.17,5.83)				
רח	10/18/91	9					4.9543	Ξ	0.403	(4.16,5.74)				
2	11/14/91	30					9.0211	8	0.312	(8.41,9.53)				
3	11/14/91	10					8.4914	12	0.584	(7.35,9.64)				

Bythotrephes Biomass Estimations

Bythotrephes dry weights (ug), derived from regressions of instar weights on epilimnetic temperatures (Burkhardt 1991) are reported in Table 14. Weights are reported for each instar, and neonates. Animals that had broken spines could not be aged and were multiplied by the average of all instar weights of the sample. Counts of instars and temperatures (°C) used are in APPENDIX B.

Total Biomass - All Locations (mg/m²)

Biomass (mg/m²) for each contributing species, from all three methods are combined in Table 15. Total biomass for individual samples ranged from 24 mg/m² to 3782 mg/m². Total biomass for each location, date, and depth, (averaged over replicates), ranged from a low of 53 mg/m² in Ludington on both August 29th and September 13th to a high of 2691 mg/m² in West Grand Traverse Bay on August 26th.

Copepods dominated the biomass over the entire season. Diaptomus sp. averaged 60.5% of the total biomass, followed by Cyclops sp. with 11.1%. The third most abundant species, Bosmina longirostris, ranked fifth in total biomass (4.8%), and the fourth most abundant, D. galeata ranked third in total biomass (10.5%).

B. cederstroemi was only 0.1% of the total abundance, yet it was ranked fifth in biomass with 8.4% of the total biomass. The remaining species measured for biomass were: E. lacustris 3.0%, L. macrurus 0.8%, and D. retrocurva 0.7%.

Both Manitou Passage and West Grand Traverse Bay increased at the 30 meter depth, and decreased in average biomass at the 10 meter depth in August of 1991. Grand Traverse Bay began at a very low average biomass (210 mg/ m^2) on August 6th at the deeper station, and increased

Table 14. Estimated dry weight blomass (µg) of three instars, neonates, and broken spine animals of Bythotrephes cederstroemi at two depths and four sites in northeastern Lake Michigan in 1991.

					Instar				
Loc.	Date	Z	#/m ²	3rd	2nd	1st	neonate		total (mg
LU	07/17	30	530	96800	31565	14840	70	11808	155.
LU	07/17	30	510	88000	36580	10360	1190	11480	147.
LU	07/17	30	736	112750	42480	17920	1960	19352	194
LU	07/17	10	287	63800	14455	3780		8856	92
LU	07/17	10	191	34650	7965	4900		5576	53
LU	07/17	10	189	25300	7965	7000	210	4264	44
LU	07/30	30	4	0	0	100	0	542	0
LU	07/30	30	19	5170	490	100		0	5
LU	07/30	30	14	2350	735	200		271	3
LU	08/01	10	25	4230	245	900		0	5
LU	08/01	10	31	5640	1225	700	0	0	7
LU	08/01	10	22	4700	735	100	0	813	6
TC	08/06	30	157	22000	10325	5880	0	1968	40
TC	08/06	30	745	134750	40120	23240	490	11480	210
TC	08/06	30	284	50600	17700	7280	70	4920	80
TC	08/06	10	57	7150	3540	1400	350	2296	14
TC	08/06	10	74	8800	4720	1820	280	1312	16
TC	08/06	10	8	550	885	0	0	656	2
MP	08/10	30	113	26950	5015	2240		1968	36
MP	08/10	30	366	107250	14455	2800	70	6560	131
MP	08/10	30	223	66550	10325	1820	140	1640	80
MP	08/09	10	5	1650	0	0	0	328	2
MP	08/09	10	5	1650	295	0		0	- 1
MP	08/09	10	3	1100	0	0	0	0	1
LU	08/16	30	271	32775	17325	11250	0	4056	65
LU	08/16	30	312	54625	16695	11500	0	5070	87
LU	08/16	30	282	41400	12915	10500		5070	70
LU	08/16	10	138	25875	8820	2625		3718	41
LU	08/16	10	149	27600	13545	1750	0	3718	46
LU	08/16	10	111	24150	7245	1250		3380	36
TC	08/26	30	73	16875	4550	1485		1850	24
TC	08/26	30	84	21875	5600	2565		740	30
TC	08/26	30	80	16250	4900	1620	0	3700	26
TC	08/26	10	22	5000	1750	540		0	7
TC	08/26	10	33	10000	1400	270			13
TC	08/26	10	32	10625	350	405		740	12
MP	08/26	30	80	8750	3150	3915		740	16
MP	08/27	30	65	11875	4900	2160		1480	20
MP	08/27	30	74	9375	5250	2835		740	18
MP	08/27	10	3	0	350	135			0
MP	08/27	10	14	3125	1400	270		ŏ	4
MP	08/27	10	11	625	1750	135			3
НО	08/28	30	11	023	2820	525		740	3
НО	08/28	30	18	2340	2350	700			6
НО	08/28	30	31	7020	2820	1050		950	11

Table 14. (cont'd)

					Instar				
Loc.	Date	Z	#/m2 -	3rd	2nd	1st	neonate	broken*	total (mg)
НО	08/28	10	33	6240	3760	1050	0		13.0
HO	08/28	10	43	6240	6110	1575	0		15.8
HO	08/28	10	33	3120	6580	1050	0		11.7
LU	08/29	30	23	4800	1320	650	0	353	7.1
LU	08/29	30	36	9000	660	1300	0		11.7
LU	08/29	30	19	3600	990	260	0	1412	6.3
LU	08/29	10	65	18600	2310	1300	0		23.6
LU	08/29	10	37	12000	660	780	0	353	13.8
LU	08/29	10	31	5400	1650	780	0	1412	9.2
LU	09/13	30	17	940	0	800	0	813	2.6
LU	09/13	30	25	1880	245	1200	0	813	4.1
LU	09/13	30	19	2350	490	400	0	1084	4.3
LU	09/13	10	8	940	0	300	0	271	1.5
LU	09/13	10	1	470	0	0	0	0	0.5
LU	09/13	10	4	1410	0	0	0	0	1.4
LU	10/03	30	4	0	85	150	0	0	0.2
LU	10/03	30	1	265	0	0	0	0	0.3
LU	10/03	30	14	265	85	400	0	133	0.9
LU	10/03	10	19	265	425	300	0		1.4
LU	10/03	10	39	2650	510	600	0	532	4.3
LU	10/03	10	32	1590	595	400	0	532	3.1
LU	10/18	10	169	16100	2220	855	0	999	20.2
LU	10/18	10	381	22080	4800	1980	0	6660	35.5
LU	10/18	10	152	3220	2580	1260	0	3552	10.6
LU	10/18	10	279	6210	4140	2565	0	6993	19.9
LU	11/14	30	113	1900	2080	165	0	416	4.6
LU	11/14	30	80	1000	1400	90	0		3.1
LU	11/14	30	28	200	640	30	0	104	1.0
LU	11/14	10	103	3900	680	90	0		5.1
LU	11/14	10	135	3900	1600	60			6.4
LU	11/14	10	1003	14400	9600	1440			39.8

Table 15. Unverified estimated biomass (mg/m²) of measured species at two depths (10 and 30 m) and four

Avg (mg)		1523			492			512			65			210	M		220			236			1149			1469			238	
Tot (mg) Av	m	1302	1813	470	929	429	759	349	142	24	28	24	288	165	176	453	547	561	187	227	293	209	1068	1771	1817	1629	961	382	187	444
Σ	89	45	48	0	0	0	0	0	0	0	0	0	0	-	0	43	33	37	0	0	0	0	75	170	22	47	0	0	0	•
EPI	က	က	4	0	-	0	4	-	0	0	0	0	2	0	•	23	2	80	8	9	က	37	3	4	22	13	7	7	-	•
RET	2	7	s O	7	7	-	4	2	ო	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
GAL	299	689	517	က	2	9	Ξ	9	9	-	-	0	22	1	21	24	16	17	6	6	7	181	245	296	902	727	334	2	17	
BOS	2	4	က	2	4	7	က	-	-	-	-	-	-	٠	٠	4	2	7	19	39	23	-	က	2	F	8	9	36	28	
DIA	503	378	1046	291	402	206	609	322	116	14	17	16	39	92	54	318	461	441	57	105	Ξ	271	611	943	783	731	445	249	90	
S	63	30	26	124	109	116	23	14	Ŧ	-	-	-	15	33	18	54	=	49	20	32	19	115	101	317	17	15	151	56	24	
ВУТ	155	148	194	45	54	92	9	-	4	9	80	2	210	40	81	17	15	7	80	36	131	8	-	7	26	88	17	47	56	0
7	30	30	30	9	9	9	8	30	30	9	10	9	30	30	90	9	9	9	90	30	30	10	9	9	30	30	30	9	9	4
Date	07/17/91	07/17/91	07/17/91	07/17/91	07/17/91	07/17/91	07/30/91	07/30/91	07/30/91	08/01/91	08/01/91	08/01/91	08/06/91	08/06/91	08/06/91	08/06/91	08/06/91	08/06/91	08/10/91	08/10/91	08/10/91	08/09/91	08/09/91	08/09/91	08/16/91	08/16/91	08/16/91	08/16/91	08/16/91	20100100
9	8	3	3	3	3	3	2	3	2	2	2	3	2	2	ည	ဥ	ဥ	2	ΝP	ИР	ď	ΑP	ΝP	d P	2	3	3	3	3	

Table 15. (cont'd)

(mg) Avg (mg	37.7	782	915	271	184	318	901	376	707	412	148	529	611	783	650	25	87	20	118	27.7	960	9	45	87	023	847	497	73	25	33
10	CA	с,	Ī						Ī																					
E	0	•	•	0	0	0	-	•	0	0	0	0	0		•	0	0	0			Ü	0	0	_	2		33	_	_	_
ם	56	55	42	7	0	0	122	104	182	9	2	0	7	20	8	7	16	2	31	8	8	0	0	0	0	0	0	7	0	-
Η	o	0	0	0	0	0	0	0	0	0	0	0	92	59	89	0	0	0	21	57	35	0	0	0	-	2	-	-	0	c
GAL	665	1894	669	52	Ξ	47	237	251	156	57	17	8	55	114	46	0	-	0	80	20	30	0	0	0	103	77	85	6	7	c
ROS	302	447	234	74	47	109	69	26	36	8	9	16	36	33	29	-	7	-	55	65	33	က	9	9	8	9	12	7	-	•
DIA	1081	1074	989	13	103	124	1247	756	1085	583	102	168	319	412	393	24	47	28	602	629	557	14	17	43	781	724	254	51	43	90
2	279	282	227	14	9	56	210	221	227	38	17	22	5	92	74	4	80	4	322	427	191	4	2	9	48	36	109	7	2	•
BYI	25	3	56	7	14	12	17	18	20	သ	0	က	9	3	12	16	13	12	7	12	9	6	14	24	7	e	4	7	0	•
7	30	30	30	9	9	9	30	30	30	9	9	9	30	30	30	9	9	9	30	30	30	9	9	9	30	30	30	9	10	4
Date	08/26/91	08/26/91	08/26/91	08/26/91	08/26/91	08/26/91	08/27/91	08/27/91	08/27/91	08/27/91	08/27/91	08/27/91	08/28/91	08/28/91	08/28/91	08/28/91	08/28/91	08/28/91	08/29/91	08/29/91	08/29/91	08/29/91	08/29/91	08/29/91	09/13/91	09/13/91	09/13/91	09/13/91	-	10100
00	ပ္	ပ	ပ	ည	ည	2	d P	Д	鱼	Ψ	AP.	AP.	9	우	우	우	우	우	3	=	2	13	3	Ξ		2	13	13	3	

Table 15. (cornt'd)

Avg (mg)		454			83				537			580			163	
Tot (mg) A	283	678	400	116	100	34	280	537	380	952	674	445	620	174	112	204
Σ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
딢	0	142	121	9	12	-	ω	9	9	8	15	30	11	4	ო	9
RET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GAL	2	52	12	7	-	0	0	0	0	0	6	က	14	-	0	-
BOS	6	7	7	9	4	က	-	-	9	52	-	2	-	-	0	0
DIA	241	472	227	9/	69	21	215	459	308	813	603	361	539	141	87	146
ည	30	34	30	55	13	9	20	47	49	93	43	45	48	55	15	=
BYT	-	٥	0	4	-	က	36	20	=	20	က	2	-	2	9	40
7	30	30	30	9	9	9	9	9	9	9	30	30	30	9	9	10
Date	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91	10/18/91	10/18/91	10/18/91	10/18/91	11/14/91	11/14/91	11/14/91	11/14/91	11/14/91	11/14/91
Po	2	3	3	3	2	2	3	2	2	2	97	3	27	2	2	2

mg/m² on August 26th (Table 15). The large increase in both abundance (Table 3 and Table 4) and average biomass over replicates (Table 15) may illustrate that Grand Traverse Bay lags behind Lake Michigan in the timing of plankton blooms and that this study was able to capture the first population peak of zooplankton in Grand Traverse Bay in the 1991 season. It may also demonstrate that Grand Traverse Bay, like other embayments in Lake Michigan, may have a higher productivity than the other nearshore waters of Lake Michigan.

In 1990, the year previous to the study, nearshore water temperatures at numerous sites on Lake Michigan had already increased above 4 °C by the end of April, and Grand Traverse Bay was still at 4°C throughout the water column in the shallow nearshore waters at the southern end of the bay, where the first warming of the bay would be expected. Warming of Grand Traverse Bay is inhibited by depth and a lack of water movement with the open waters of Lake Michigan (Lauff 1957). Spring mixing, and the subsequent primary and secondary production, occurs much later in Grand Traverse Bay than in Lake Michigan (Lauff 1957).

Ludington Seasonal Biomass Trends

Ludington was the only station that was sampled more than twice and will be used to examine seasonal community biomass trends in 1991.

The 30 meter contour at Ludington showed the greatest seasonal decline in biomass. The first samples taken (on 7/17/91) was the season high average biomass (over replicates) for the 30 meter site with 1523 mg/m². The low for Ludington was on October 3rd (454 mg/m²) and the last sample on November 14th, the average biomass rose slightly to 580 mg/m²

(Table 15).

The 10 meter contour at Ludington also declined in biomass as the season progressed. An outlier to this declining seasonal trend was the highest average biomass at the shallower station in Ludington on October 18th (537 mg/m²). On that day, Diaptomus sp., Cyclops sp., B. longirostris, and B. cederstroemi all greatly increased in abundance from the previous sample at the site just 15 days earlier (Table 3 and Table 4). The increase was too sudden to be explained by growth or reproduction in the cold waters (13 °C), and most likely reflects a combination of offshore and nearshore animals that were concentrated by stormy weather that day, because the 30 meter sample could not be taken that day because of high seas.

The decreasing average biomass in Ludington reflects the decrease in abundance of all species (Table 3 and Table 4). This decline may indicate that the 1991 field season either started at peak productivity or some time after maximum abundance.

In 1974, Duffy (1975) studied the nearshore zooplankton adjacent to the Ludington Pumped Storage facility. The sampling for that study started in June and the numbers of zooplankton (#/m³) were similar to the present study except the samples in June found about ten times as many Cyclops sp. than in any other samples of Duffy's, or this study. This considerable increase to the zooplankton community from a single species suggests that the Duffy (1975) study may have sampled the spring peak of zooplankton abundance and the present study did not (Figure 39).



Figure 39. Comparison of Ludington total zooplankton cubic abundances (#/m 3) between this study (1991), and Duffy's (1974).

SUMMARY

Zooplankton Abundance

The zooplankton community was dominated by three species/groups,

Diaptomus sp., Cyclops sp., and Bosmina longirostris. However, because

Diaptomus and Cyclops were groups of possibly many species, it can only

be concluded that the two families, Diaptomidae and Cyclopoidae and one

species, B. longirostris dominated.

Abundances of species/groups were found in greater number at the deeper contour even if the zooplankton were measured as individuals⁻³. When replicates were averaged, and same day comparisons made between depths, the 30 m:10 m ratio was 7.81 for the areal abundance and 2.60 for the cubic abundance.

The daphnids, D. galeata, D. retrocurva, D. pulicaria, and one copepod Limnocalanus macrurus were found at much greater abundances at the deeper station.

Species Associations

The proposed species associations utilized the first two PC's. Although the first PC of to both PCA's, #/m² and #/m³, were significantly correlated to both month and depth, the split appears to be more influenced by depth than by month. All of the positively correlated species of PC 1 are more abundant at the 30 meter contour and negatively correlated species, more abundant at 10 meters.

The second PC split was less definitive and involved different degrees of relative abundance as the season progressed and water temperatures became cooler. One group included the species, D.

retrocurva and L. kindti, (and E. coregoni only with the cubic PCA) which were characterized as declining markedly as the season progressed.

The other group was characterized as having abundances that did not decline rapidly with season. All the species except one, *D. pulicaria*, did not decline appreciably as the season progressed. *D. pulicaria* declined precipitously with season. Because of this *D. pulicaria* could not be included in the limnetic persistent species association.

Regarding the attempt to twice split the species into groups, it is deduced that the second split is inconclusive, and only the first split is acceptable.

Differences between the analyses of the areal and cubic data were minor, and because of this the analysis could have been done adequately with one measurement or the other.

Dry Weight Biomass

In almost every case the 30 meter contour total biomass (mg/m^2) is at least 3 times that of the 10 meter contour. A declining seasonal trend is also evident at both contours. The total biomass at the 10 meter stations declines very gradually. The 30 meter contour decline is much steeper (Table 15), and between August 16 (1469 mg/m²), and October 3 (83 mg/m²), the decline is sharp.

Grand Traverse Bay Biomass

Peak zooplankton biomass values at Grand Traverse Bay exceeded peak biomasses at both Ludington and Manitou Passage, but were less than the biomass peaks of other nearshore studies (Evans et al. 1980, Roth and Stewart 1973, Gannon 1972) in southern Lake Michigan. This indirectly supports the generalization by Stoermer et al. (1972), that the primary productivity and phytoplankton standing stock in Grand Traverse Bay were

intermediate between high values of inshore waters in Lake Michigan and those of the offshore.

Bythotrephes cederstroemi

In 1987, on Lake Michigan (Lehman 1991), Bythotrephes was characterized as more abundant (#/m²) offshore (>40 m) than inshore. Lehman suggested that a gradient of fish planktivory exists from inshore to offshore, and that this factor may be responsible for the lower abundances nearshore. It is of interest that this new invading species, could not be characterized by PCA as occurring in greater numbers at the deeper stations.

High abundances (>100/m²) occurred sporadically from mid-July to mid-August, particularly at the deeper station at Ludington, Manitou Passage, and West Grand Traverse Bay (Table 3). High abundances were also found at the shallower station in October and November.

A possible explanation for the similarity of abundances (>100/m²) between the nearshore of this study and the offshore (Lehman 1991) may be that wave and wind actions concentrate the animals in the nearshore, and sampling was done before the dispersal of the physically developed swarm. In July 1991 samples were taken when waves were 2-4 feet, and winds were out of the southwest at 5-15 knots. Wave and wind action, however cannot explain the high average abundances at 30 meters in mid-August at Manitou Passage (234/m² on 8/10) when waves were 1-2 feet and the wind was only 0-5 knots.

Another proposed suggestion may be that in 1987, B. cederstroemi might not have reached equilibrium yet, or that the species had not yet increased to the point where the predation by fish could no longer control the population in the nearshore region.

Bythotrephes also could not be characterized as having a seasonal gradient from July to November, or a summer maximum density. Sprules et.al. (1990) reported maximum densities of B. cederstroemi in Lake Michigan in 1987 as 29/m³ during August and September, and Mordukhai-Boltovskaya (1958) reported August maximum densities in Rybinsk reservoir in the USSR as 44.3/m³. The maximum values at the two depths of this study were found not in mid-summer, but at the beginning and end of the sampling season. Densities were averaged over replicates, and resulted in 20.0/m³ on July 17 at 30 meters, and 42.6/m³ on November 14 at 10 meters (Table 4). Densities in August and September were for the most part much lower in these months. Except for mid-August at Ludington, and at 30 m in early August at Manitou Passage and West Grand Traverse Bay, densities were less than 5/m³.

Also of interest is the large proportion of biomass Bythotrephes is estimated to contribute. Bythotrephes abundance, on average, was less than 0.1% of the total abundance, yet was fifth highest in average biomass, comprising 8.4% of the total biomass.

Copepod Dominance

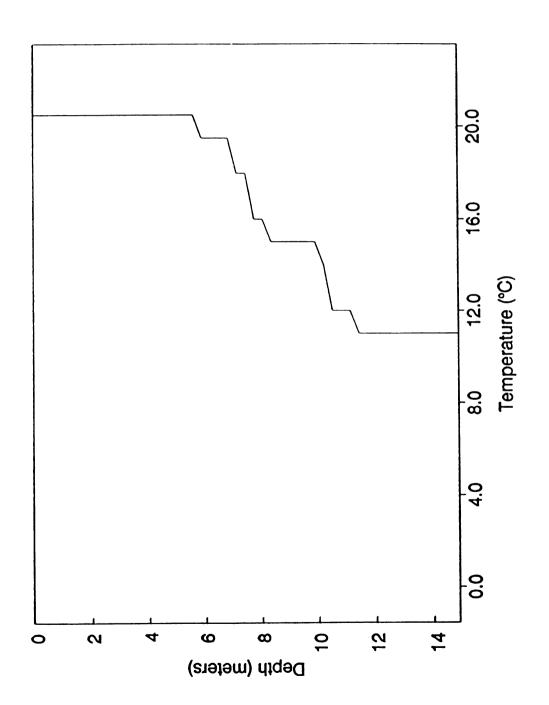
Cladocerans, primarily the smaller cladoceran Bosmina longirostris, reached summer maximums and dominated over all species in southeastern Lake Michigan (Evans et.al. 1980, Roth & Stewart 1973), and off of Milwaukee Wisconsin (Gannon 1972).

Dominance by Bosmina may be the result of a more prolific nearshore phytoplankton population. Nearshore phytoplankton standing stocks were reported to be higher than offshore in southeastern Lake Michigan by Ayers & Siebel (1973), and inshore carbon fixation (measured as mgC/m³/hr), is twice that of the offshore (Schelske and Callender 1970).

Gannon (1975) described Bosmina as the best adapted organism to rapidly respond to nutrient loading conditions in the nearshore waters.

Diaptomus sp. dominated over Bosmina, or at the least, copepods dominated over cladocerans in both abundance (Table 3 and Table 4) and biomass (Table 15) at both depths and throughout the season in 1991. In the earlier study (1974) at Ludington (Duffy 1975), this same dominance by copepods also existed. Although Bosmina dominated once on July 1, 1974 at the shallower station (12 m), the seasonal peak in Ludington that year was attributed to a large abundance of the copepod Cyclops sp., not Bosmina.

Diaptomids use chemoreception (smell) and are more selective than cladocerans, preferring phytoflagellates over the less edible blue-green and green algae (Sterner 1989). Cladoceran morphology, with their appendages enclosed in a carapace, is a source of interference that limits their selectivity. Cladocerans use their thoracic legs to produce a constant current of water between the valves of the carapace (Pennak 1989), and has a much higher ingestion rate of phytoplankton than do the Diaptomids (Scavia et.al. 1988). Theoretically, these differences in preferences and feeding rates can affect the seasonal succession of phytoplankton (Sterner 1989).


B. longirostris responds to local conditions of temperature and food abundance that controls growth rate and fecundity (it determines a monocyclic or dicyclic reproductive pattern) (Balcer et al. 1984).

Therefore, low abundance of phytoplankton will result in lower abundances of cladocerans, particularly Bosmina.

APPENDICES

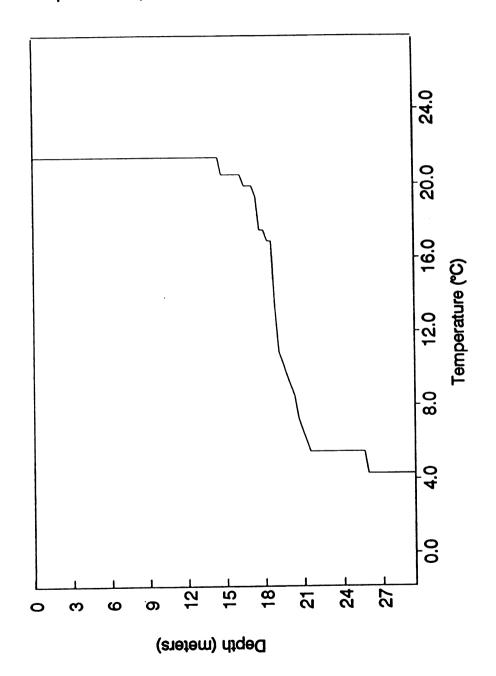

APPENDIX A. Temperature Profiles.

Figure 40. Temperature (°C) profile at 30 meter depth at Ludington on August 16, 1991.

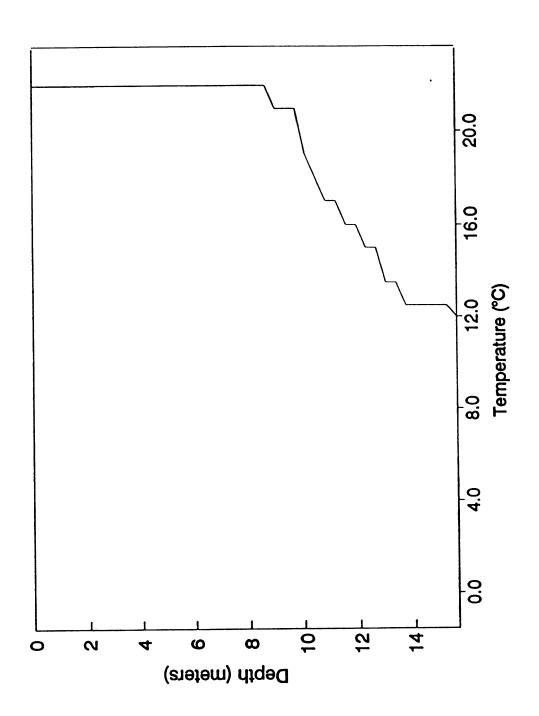

APPENDIX A Temperature Profiles.

Figure 41. Temperature (°C) profile at 30 meter depth at Ludington on September 13, 1991.

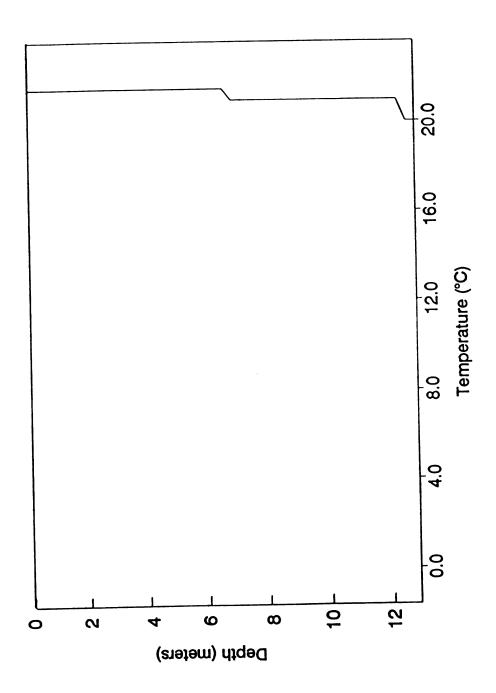

APPENDIX A. Temperature Profiles.

Figure 42. Temperature (°C) profile at 30 meter station (over 110 m of water) at West Grand Traverse Bay on August 26, 1991.

APPENDIX A. Temperature Profiles.

Figure 43. Temperature (°C) profile at 30 meter station at Manitou Passage on August 27, 1991.

APPENDIX B

Table 16. Counts of three instars, neonates, and broken spine animals of Bythotrephes cederstroemi at two depths and four sites in north-eastern Lake Michigan in 1991.

					Instar	,			
Loc	Date	Z	#/m² ·	3rd	2nd	1st	neonate	hroken	total
LU	07/17	30	530	176	107	106	1	36	416
LU	07/17	30	510	160	124	74	17	35	400
LU	07/17	30	736	205	144	128	28	59	578
LU	07/17	10	287	116	49	27	22	27	225
LU	07/17	10	191	63	27	35	8	17	150
LÜ	07/17	10	189	46	27	50	3	13	148
LU	07/30	30	4	0	0	1	0	2	3
LU	07/30	30	19	11	2	1	Ö	ō	15
LÜ	07/30	30	14	5	3	2	Ö	1	11
LU	08/01	10	25	9	1	9	1	Ö	20
LU	08/01	10	31	12	5	7	ò	Ŏ	24
LU	08/01	10	22	10	3	1	0	3	17
TC	08/06	30	157	40	35	42	Ö	6	123
TC	08/06	30	745	245	136	166	7	35	585
TC	08/06	30	284	92	60	52		15	223
TC	08/06	10	57	13	12	10	5		45
TC	08/06	10	74	16	16	13	4		58
TC	08/06	10	8	1	3	0	ò		6
MP	08/10	30	113	3	Ö	Ö	Ŏ		4
MP	08/10	30	366	3	1	0	0		4
MP	08/10	30	223	2	ò	Ö	Ŏ		2
MP	08/09	10	5	49	17	16	3		89
MP	08/09	10	5	195	49	20		20	287
MP	08/09	10	3	121	35	13			175
LU	08/16	30	271	57	55	90			213
LU	08/16	30	312	95	53	92			245
LU	08/16	30	282	72	41	84			221
LÜ	08/16	10		45	28	21	Ö		108
LÜ	08/16	10	149	48	43	14			117
LÜ	08/16	10	111	42	23	10			87
TC	08/26	30	73	27	13	- 11	Ŏ		57
TC	08/26	30	84	35	16	19			66
TC	08/26	30	80	26	14	12			63
TC	08/26	10		8	5	4			17
TC	08/26	10		16	4	2			26
TC	08/26	10		17	i	3			25
MP	08/26	30		14	9	29			63
MP	08/27	30		19	14	16			51
MP	08/27	30		15	15	21			58
MP	08/27	10		0	1	1			2
MP	08/27	10		5	4	2			11
MP	08/27	10		1	5	1			9

APPENDIX B

Table 16. (cont'd)

					Instar	•			
Loc	Date	Z	#/m ²	3rd	2nd	1st	neonate	broken	total
НО	08/28	30	11	0	6	3	0	0	9
HO	08/28	30	18	3	5	4	0	2	14
HO	08/28	30	31	9	6	6	0	2	24
HO	08/28	10	33	8	8	6	0	4	26
HO	08/28	10	43	8	13	9	0	· 4	34
HO	08/28	10	33	4	14	6	0	2	26
LU	08/29	30	23	8	4	5	0	1	18
LU	08/29	30	36	15	2	10	0	2	28
LU	08/29	30	19	6	3	2	0	4	15
LU	08/29	10	65	31	7	10	0	4	51
LU	08/29	10	37	20	2	6	0	1	29
LU	08/29	10	31	9	5	6	0	4	24
LU	09/13	30	17	2	0	8	0	3	13
LU	09/13	30	25	4	1	12	0	3	20
LU	09/13	30	19	5	2	4	0	4	15
LU	09/13	10	8	2	0	3	0	1	6
LU	09/13	10	1	1	0	0	0	0	1
LU	09/13	10	4	3	0	0	0	0	3
LU	10/03	30	4	0	1	3	0	0	3
LU	10/03	30	1	1	0	0	0	0	1
LU	10/03	30	14	1	1	8	0	1	11
LU	10/03	10	19	1	5	6	0	3	15
LU	10/03	10	39	10	6	12	0	4	31
LU	10/03	10	32	6	7	8	0	4	25
LU	10/18	10	169	70	37	19	0	9	133
LU	10/18	10	381	96	80	44	0	60	299
LU	10/18	10	152	14	43	28	0	32	119
LU	10/18	10	279	27	69	57	0	63	219
LU	11/14	30	113	19	52	11	0	8	89
LU	11/14	3 0	80	10	35	6	0	11	63
LU	11/14	30	28	2	16	2	0	2	22
LU	11/14	10	103	39	17	6	0	9	81
LU	11/14	10	135	39	40	4	0	17	106
LU	11/14	10	1003	144	240	96	0	276	787

APPENDIX B

Table 17. Temperatures (°C) used to estimate dry weight biomass (µg) of three instars and neonates of Bythotrephes cederstroemi based on Burkhardt's (1991) linear regression of mean dry weight on epilimnetic temperatures in Lake Michigan.

				[nstar		
Loc.	Date	℃ -	3rd	2nd	1st	0 t	roken
TU	07/17	20.0	550	295	140	70	328
LU	07/30	18.5	470	245	100	70	271
TC	08/06	20.0	550	295	140	70	328
MP	08/10	20.0	550	295	140	70	328
LU	08/16	20.5	575	315	125	70	338
TC	08/26	22.0	625	350	135	70	370
MP	08/27	22.0	625	350	135	70	370
HO	08/28	25.0	780	470	175	70	475
LU	08/29	21.3	600	330	130	70	353
LU	09/13	18.5	470	245	100	70	271
LU	10/03	14.0	265	85	50	70	133
LU	10/18	13.5	230	60	45	70	111
LÜ	11/14	10.3	100	40	15	70	52

LITERATURE CITED

LITERATURE CITED

- Ayers, J.C., and Seibel, E. 1973. Benton Harbor power plant limnological studies. Part XIII. Cook plant preoperational studies 1972. Univ. of Michigan, Great Lakes Research Div. Special Report No. 44, Ann Arbor, Michigan.
- Balcer, M.D., Korda, N.L. and L.I. Dodson. Zooplankton of the Great Lakes. Univ. of Wisconsin Press, Madison WI, 1984.
- Bird, D.F., and Y.T. Prairie. 1985. Practical guidelines for the use of zooplankton length-weight regression equations. Journal of Plankton Research. 7(6):955-960.
- Branstrator, D.K., and J.T. Lehman. 1991. Invertebrate predation in Lake Michigan: Regulation of Bosmina longirostris by Leptodora kindtii. Limnol. Oceanogr. 36(3):483-495.
- Brooks, J.L. 1957. The systematics of North American Daphnia. Memoirs of the Connecticut Academy of Arts and Sciences. 13:1-180.
- Brooks, J.L. 1959. Cladocera. In Fresh-water biology, 2nd ed., W.T. Edmondson, ed., pp. 587-656. John Wiley and Sons, New York.
- Brooks, J.L., and S. I. Dodson. 1965. Predation, body size, and the composition of the plankton. Science 150:28-35.
- Burkhardt, S. 1991. Phosphorus turnover, prey consumption, and size variation of the predatory cladoceran Bythotrephes cederstroemi. M.S. thesis, Univ. of Michigan.
- Carr, J.F., J.W. Moffett and J.E. Gannon. 1973. Thermal characteristics of Lake Michigan, 1954-1955. U.S. Bureau of Sport Fish and Wildlife Technical Report No. 69. 143p.
- Conway, J.B. 1977. Seasonal and depth distribution of *Limnocalanus*macrurus at a site on western Lake Superior. J. Great Lakes Res. 3(1-2):15-19.
- Crowder, L.B. 1980. Alewife, rainbow smelt and native fishes in Lake Michigan: competition or predation? Env. Biol. Fish. 5(3):225-233.
- Culver, D.A., M.M. Boucherle, D.J. Bean, and J.W. Fletcher. 1985.

 Biomass of freshwater crustacean zooplankton from length-weight regressions. Can. J. Fish. Aquat. Sci. 42:1380-1390.

- Duffy, W.G. 1975. The nearshore zooplankton of Lake Michigan adjacent to Ludington Pumped Storage Reservoir. M.S. thesis, Michigan State University. 135 p.
- Evans, M.S. 1988. Bythotrephes cederstroemi: It's new appearance in Lake Michigan. J. Great Lakes Res. 14(2):234-240.
- Evans, M.S., B.E. Hawkins, and D.W. Sell. 1980 Seasonal features of zooplankton assemblages in the nearshore area of southeastern Lake Michigan. J. Great Lakes Res. 6(4):275-289.
- Evans, M.S., and D.J. Jude. 1986. Recent shifts in *Daphnia* community structure in southeastern Lake Michigan: a comparison of the inshore and offshore regions. Limnology and Oceanography. 31:56-67.
- Gannon, J.E. 1972. A contribution to the ecology of zooplankton Crustacea of Lake Michigan and Green Bay. Ph.D. thesis, Univ. of Wisconsin. 257 p.
- Gannon, J.E. 1975. Horizontal Distribution of crustacean zooplankton along a cross-lake transect in Lake Michigan. J. Great Lakes Res. 1(1):79-91.
- Garton D.W., and D.J. Berg. 1990. Occurrence of Bythotrephes cederstroemi (Schoedler 1877) in Lake Superior, with evidence of demographic variation within the Great Lakes. J. Great Lakes Res. 16:148-152.
- Hawkins, B.E., and M.S. Evans. 1979. Seasonal cycles of zooplankton biomass in southeastern Lake Michigan. J. Great Lakes Res. 5(4):256-263.
- Jude, D.J., and F.J. Tesar. 1985. Recent changes in the inshore forage fish of Lake Michigan. Can. J. Fish. Aquat. Sci. 42:1154-1157.
- Lauff, G.F. 1957. Some aspects of the physical limnology of Grand Traverse Bay. Univ. Michigan, Great Lakes Research Division, publ. 2. 56 p.
- Lawrence, S.J., D.F. Malley, W.J. Findlay, M.A. MacIver, and I.L. Delbaere. 1987. Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Can. J. Fish. Aquat. Sci. 44(Suppl. 1):264-274.
- Lehman, J.T. 1987. Palearctic predator invades North American Great lakes. Oecologia 74:478-480.
- Lehman, J.T. 1991. Causes and consequences of cladoceran dynamics in Lake Michigan: Implications of species invasion by Bythotrephes. J. Great Lakes Res. 17(4):437-445.
- Lehman, J.T., and C.E. Caceres. 1993. Food web responses to species invasion by a predatory invertebrate: Bythotrephes in Lake Michigan. Limnol. Oceanogr. (in press).

- Ludwig, J.A., and J.F. Reynolds. 1988. Statistical Ecology. John Wiley and Sons, New York.
- Mordukhai-Boltovskaya, E.D. 1958 Preliminary notes on the feeding of the carnivorous cladocerans Leptodora kindtii and Bythotrephes.

 Doklady Akad. Nauk. SSSR 122:828-830.
- Nash, R.D.M., and A.J. Geffen. 1991. Spatial and temporal changes in the offshore larval fish assemblage in southeastern Lake Michigan. J. Great Lakes Res. 17(1):25-32.
- Patalas, K. 1969. Composition and horizontal distribution of crustacean plankton in Lake Ontario. J. Fish. Res. Board Can. 26:2135-2164.
- Patalas, K. 1972. Crustacean plankton and eutrophication of St. Lawrence Gret Lakes. J. Fish. Res. Board Can. 29:1451-1462.
- Pennak, R.W. 1989. Fresh-water invertebrates of the United States, 3rd ed. John Wiley and Sons, New York.
- Peterson, D.L. 1993. The diet of yellow perch (<u>Perca flavescens</u>) in Lake Michigan near Ludington. M.S. thesis, Michigan State Univ. (in press).
- Pielou, E.C. 1984. The interpretation of ecological data. John Wiley and Sons, New York.
- Rasmussen, G.A. 1973. A study of the feeding habits of four species of fish Alosa pseudoharengus, Coregonus hoyi, Perca flavescens, and Osmerus mordax, at three sites on Lake Michigan, as compared to the zooplankton, phytoplankton and water chemistry of those sites. Ph.D. thesis, Michigan State Univ.
- Roth, J.C., and J.A. Stewart. 1973. Nearshore zooplankton of southeastern Lake Michigan, 1972. Proc. 16th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res. pp. 132-142.
- Scavia, D., G.L. Fahnenstiel, M.S. Evans, D.J. Jude, and J.T. Lehman. 1986. Influence of salmonine predation and weather on long-term water quality trends in Lake Michigan. Can. J. Fish. Aquat. Sci. 43:435-443.
- Scavia, D., G.A. Lang, and J.F. Kitchell. 1988. Dynamics of Lake Michigan plankton: A model evaluation of nutrient loading, competition, and predation. Can. J. Fish. Aquat. Sci. 45:165-177.
- Schelske, C.L. and E. Callender. 1970. Survey of phytoplankton productivity and nutrients in Lake Michigan and Lake Superior. Proc. 13th Conf. Great Lakes Research, International Assoc. Great Lakes Research, 93-105.
- Schneeberger, P.J. 1991. Seasonal incidence of Bythotrephes cederstroemi in the diet of yellow perch (ages 0-4) in Little Bay De Noc, Lake Michigan, 1988. J. Great Lakes Res. 17(2):281-285.

- Sprules, W.G. 1977. Crustacean zooplankton communities as indicators of limnological conditions: an approach using principal component analysis. J. Fish. Res. Board Can. 34:962-975.
- Sprules, W.G., H.P. Riessen, and E.H. Jin. 1990. Dynamics of the Bythotrephes invasion of the St. Lawrence Great Lakes. J. Great Lakes Res. 16(3):346-351.
- Sterner, R.W. 1989. The role of grazers in phytoplankton succession. In Plankton ecology, Ulrich Sommer, ed. pp.107-170. Springer-Verlag, Berlin.
- Stoermer E.F., C.L. Schelske, M.A. Santiago and L. E. Feldt. 1972.

 Spring phytoplankton abundance and productivity in Grand Traverse
 Bay, Lake Michigan, 1970. Proc. 15th Conf. Great Lakes Research,
 International Assoc. Great Lakes Research, 181-191.
- Wells, L. 1960. Seasonal abundance and vertical movements of planktonic Crustacea in Lake Michigan. U.S. Fish Wildlife Serv. Fish. Bull. 60:343-369.
- Wells, L. 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnol. Oceanogr. 14:556-565.
- Wilkinson, L. 1990. SYSTAT: the system for statistics. Evanston IL: SYSTAT, Inc.

