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AN ABSTRACT OF A THESIS

SIMPLE MEANS OF FLOW PREDICTION IN A VANELESS
DIFFUSER

By

Ezzat Salama Ayad

In designing vaneless diffusers, designers need a fast accurate way to
predict the flow physics parameters without the need to go to complicated

three dimensional computer codes.

The work studies the simple means of predicting the flow properties in
a vaneless diffuser, and assessing the validity of the assumptions in trying to
solve simultaneously a series of equations relating the properties of the

diffuser to the radius by using the computer softwares, Excel and MATLAB.

The study focuses on the change in the properties through a vaneless
diffuser with respect to the radius. Relations of all the properties are
developed.

The theoretical relations are determined under specified boundary

conditions of aerodynamic and thermodynamic conditions.
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p Static pressure
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R* radius ratio, r/rT
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T static temperature
Tw  Wall temperature
Greek
o  flow angle
0 tangential direction, half-divergence angle of conical or channel
diffusers
20  Full divergence angle
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r radial direction
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LITERATURE SURVEY

Due to the widespread use of the vaneless diffuser for centrifugal
pumps and compressors, computational techniques for the vaneless diffuser
emerged early. One of the earliest efforts to predict the performance of the
vaneless diffuser was reported by Brown. In this work a modified Bernoulli
equation was written in the direction of the streamline for a constant area
vaneless diffuser, and a skin friction coefficient was introduced. By
comparing the measured wall static pressures with predicted results, a
suitable value for skin friction was established. This work showed
reasonable agreement between the theoretical model and measured results
and could be considered a one-dimensional single parameter model .

In subsequent work, Stanitz(1952), introduced a comprehensive
treatment of the vaneless diffuser( Fig.1), and published a correct set of one-
dimensional equations for the radial momentum, tangential momentum,
conservation of mass, conservation of energy, and the equation of state. In
this case a single empirical parameter was still employed but was introduced
independently to both the radial and tangential momentum equations.
Calculations of this type were reported by Johnston and Dean (1965). A
further comparison of this computational approach was reported by Japikse.

Fauldres (1954) reported results that showed that the skin friction
coefficient in the inlet (developing) region of a vaneless diffuser is quite

high compared to fully developed flow, but the fully developed flow level is
X
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approximately correct near the end of the vaneless diffuser. Thus the
process is quite similar to pipe or channel flow where large values are to be
expected in the inlet region, and the fully developed value only applies well
downstream. Average values, as implemented as industrial standards, tend
to fall higher than the fully developed flow level.

W. Traupel (1977) has taken this analysis procedure further and has
introduced a two-parameter modeling system which adds the mechanical
energy equation to the system of equations established by Stanitz.

Dean and Senoo developed a theory for the radial impeller discharge
mixing process including wall friction, friction between wake and jet, and
reversible work exchange. In their flow model, the flow out of each impeller
passage was divided into two regions, the wake and the jet. The relative
velocity was constant in each region with a high velocity for the jet and a
low velocity for the wake. The mixing process of the jet and the wake was
calculated by solving the momentum and the continuity equations for the jet
and the wake simultaneously. They showed that a large part of the loss at
the vaneless diffuser inlet was due to wall friction loss of an asymmetric
flow. They also concluded that the asymmetric flow pattern became uniform
rapidly by the reversible work exchange between jet and wake.

Johnston and Dean presented a simple analysis based on an
assumption of sudden expansion. In their flow model, the wake and the jet
were mixed up at the inlet to the diffuser by by the sudden expansion. They
compared their calculations for various sudden expansion and the flow was
thereafter assumed axially symmetric in the diffuser. The large total
pressure loss at the vaneless diffuser inlet was attributed to the mixing loss
centrifugal blower outlet flows with those based on the Dean and Senoo
model. Their simple model gave very similar predictions of total pressure

xii



loss to those predicted by the more precise method over a wide range of
compressor parameters.

Senoo and Ishida found that the flow at the exit of a centrifugal
blower is artificially distorted so that decay of the asymmetric flow in the
vaneless diffuser is experimentally examined. It is concluded that the shear
force between the wake zone and the jet zone does not play the major role
for the behavior of flow in the vaneless diffuser, and the behavior is mainly
controlled by the reversible work exchange.

Based on the above survey, we will present in this work a
documentation of some simple means of flow predictions in a vaneless
diffuser. Due to time limitations, we will only present a one-dimensional

approach using computer software packages Excel and Matlab.



CHAPTER ONE

Introduction

The design of turbomachinery is dominated by diffusion-the
conversion of velocity or dynamic head into stream pressure. Every blade
row in a typical axial compressor is a collection of parallel diffusers. In
most centrifugal compressors both the rotor and the radial diffuser are
limited by the diffusion capabilities of the flow channels.

1.1 The impact of diffusers on turbomachinery performance

In the first decade of this century a strong debate raged in the
academic society as to the practical utility of placing an exhaust diffuser
downstream of a hydroelectric turbine. Experts argued back and forth
whether the exhaust diffuser would, or would not, improve the performance
of the turbine. The counter arguments essentially maintained that the fluid
had already left the turbine and little good could be done; the proponents
recognized the importance of increasing the expansion ratio across the
turbine rotor by the reduction in rotor back pressure with the use of a well-
designed diffuser.

Today' s arguments and concerns over the role of the diffuser are
significantly more advanced. Nonetheless, the details of the diffuser design
and performance are in some instances as vague as the early debate on

1
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diffuser application for hydroturbines.

Fluid machinery is conveniently divided into positive displacement
and turbomachinery categories. The distinction follows directly along the
lines of Newton' s Second Law of motion as applied either in Cartesian
coordinate system or in cylindrical coordinate system. In the Cartesian
coordinate system, Newton' s Second Law indicates that the force applied to
an object will be equal to the change in linear momentum which is the basic
principle behind positive displacement equipment. In the cylindrical
coordinate system, Newton's Second Law expresses the torque being
proportional to the change in angular momentum. This principle leads
directly to the Euler turbomachinery equation which expresses the energy
transfer through turbomachinery as the change in UCy. Thus, the inherent
function of turbomachinery involves the exchange of significant levels of
kinetic energy in order to accomplish the intended purpose. As a
consequence, very large levels of kinetic energy frequently accompany the
work input and the work extraction processes, often on the order of 10-50%
of the total energy transferred. Thus efficient diffusers are absolutely
essential for good turbomachinery performance. With kinetic energy
intensities of this level at the exit of the impeller; it is not hard to appreciate
that the performance of a diffuser influences the overall efficiency level of a
turbomachine. Thus the detailed processes that occur in diffusing
elements must be carefully understood and thoroughly optimized if good
turbomachinery performance is to be achieved.

The range of diffuser performance levels can be appreciated by
considering Fig 1.1. This diagram (by Japikse) presents a loss map which
plots the loss coefficient K in a typical diffusing element versus the pressure

recovery for the same diffuser. Maps of this type serve to focus many
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important facts concerning diffuser performance in a compact fashion. One
can immediately realize the impact of area ratio on diffuser performance,
and high level of recovery will only be obtained if the area ratio is
sufficiently high. There is also the implicit requirement that the diffuser

must be designed so that the effectiveness is quite high.

1.2 Types of diffusers

1.2.1. Overview

In chapter 4, it will be shown that the basic equations of motion reveal
the importance of both geometric and aerodynamic parameters on the
ultimate performance of a diffuser. The specification of a wide variety of
geometric and aerodynamic parameters is essential before the performance
of a diffuser is uniquely given. In this section, the various geometric
parameters are first reviewed for all classes of diffusers. A general
definition of the different aerodynamic parameters is given in the next

section.

1.2.2 Geometric Parameters:
1.2.2.1 Channel diffuser geometric specification

The geometric specification of a channel diffuser is, at first appearance,
comparatively straightforward. A simple schematic of a channel diffuser is
shown in Fig 1.2.1, and the essential parameters which must be considered
are defined in this figure. From these different geometric parameters,
dimensionless parameters are formed as follows :
Wil=throat width, b =throat depth
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L =centerline length, 20=divergence angle
At=throat area=bW1, Ae=exit area=bW2

11 W2 20 1

Sketch of Channel Diffuser

Fig. 1.2.1.
non-dimensional length L/W1
aspect ratio AS=b1/W]
area ratio AR =A2/A1

Not all these geometric parameters are independent. There is a fixed
relationship (correlation) between the area ratio and the other geometric
parameters as follows :

AR=1+2(L/W1l)tan®

1.2.1.3 Conical diffusers

The definition of the basic geometric parameters for conical diffusers is
quite similar to that given previously for a channel diffuser, as illustrated
below in Fig 1.2.2. Again, it is possible to define various dimensionless

parameters as follows:



D=throat diameter

L=centerline length
20@=divergence L
angle

At=throat area

Ae=exit area 3__‘
- |

throat

20

Sketch of Conical Diffuser

Fig. 1.2.2.

dimensionless length L/D}
area ratio AR = A2/A1
The area ratio for a conical diffuser is, of course, dependent on other

geometric variables. The dependence is given as follows :
* AR = (1+2 (L/D) tan® )2

1.2.1.4 Annular diffusers

It is more difficult to define the essential geometric parameters for

annular diffusers since the number of independent variables has increased.

Here the essential variables are:

exit
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Straight Core Annular

Fig. 1.2.3.

non-dimensional length L/Aror L/h}

area ratio AR = A2/Al
Consider Fig 1.2.3, where the types of straight wall annular diffusers are
shown. For the equi-angular case, the geometry is specified by:

AR = 142 (L/h) sin ©

For the straight core (constant hub) case the equation is more complex and

1- 1
2Lsin® +L2sin2(~) ( o]
R. h2 R.

h| 1+ /lé 1+ 1
0 0)]

becomes:

AR = 1+

and for more complex, but more common, case of independent changes in
© 1and O 2 one obtains:

sin®. + 9/ sin© 1-V (sin2@ —sin2@© )
L 1t /RS9 2 R, 1 2

AR=1+2—( + =
ICARCE 7

Unfortunately, many annular diffusers are even more complex and include

curved walls. For such cases, the AR to L/h relationship must be derived for

each specific case.
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1.3 Examples of Common Diffusing Systems for centrifugal pumps or

compressors

Fig 1.3.1
Volute diffuser

VOLUTE--used for low pressure ratio, mostly for single stage, and has
radial thrust at off design flow. Even though widely used, still needs

researching.

Fig 1.3.2
Vaneless diffuser

VANELESS DIFFUSER--tolerates large range of flow angles (60-80
degrees); simple annular channel, but bulky.



Fig 1.3.3

Return channel

RETURN CHANNEL--employed in multistage applications, yet much is not

known about its performance.

(&

Fig 1.3.4
Straight channel

STRAIGHT CHANNEL/WEDGE--has simple geometry, easy to

manufacture ; very popular, but large in size.



Fig 1.3.5
Straight plate

STRAIGHT PLATE--has large number of vanes, Z>30, and not so good

pressure recovery.

Fig 1.3.6
Vaned island

VANED ISLAND--is a refined straight channel for high pressure ratio and

Mc3>1; has good pressure recovery, but again large in size.
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Fig 1.3.7

Circular arc

CIRCULAR ARC--has simple geometry, but no outstanding aerodynamic

characteristic.

Fig 1.3.8

Cambered diffuser

CAMBERED/AEROFOIL--used for transonic and subsonic applications,
small size and good pressure recovery. Its design is based on axial cascade
data.
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(&

Fig 1.3.9
Twisted diffuser
TWISTED--is a refined cambered vane to produce good efficiency, wide

I

Fig 1.3.10

Multiple cascade

)

range and high pressure ratio.

MULTIPLE CASCADE--is a cambered van in cascade for higher efficiency

with more manufacturing process.

Fig 1.3.11
Conical diffuser
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PIPE/CONICAL--used for higher pressure ratio and transonic applications,

large in size, but with good pressure recovery.

~

Fig 1.3.12
Low solidity diffuser

LOW SOLIDITY--used for low flow angles, but with good pressure

recovery and range. Currently of great interest.



CHAPTER TWO
ESSENTIAL PARAMETERS OF DIFFUSER PERFORMANCE

In this section we will refer to general types of diffusers, Radial diffusers

will be discussed in section 2.3.

2.1 Overall Performance Parameters
2.1.1 Ideal Pressure Recovery

The pressure recovery of a diffuser (actual or ideal) is most frequently
defined as the static pressure rise through the diffuser divided by the inlet

dynamic head; in other words:

Cp _p, ‘%z )

which is a very simple way of thinking about the fundamental purpose
of a diffuser. An ideal pressure recovery can be set if the flow is assumed to
be isentropic and the Bernoulli equation is used both in the numerator and
the denominator to reduce the expression to a velocity in and a velocity out.
Then, by employing the conservation of mass, the relationship can be

converted to an area ratio for incompressible flow. We obtain the following:

«Cp=1-v2 2 _1-1/AR2
Cp=1 Vexit/ Vinlet I-I/AR

14
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This expression is very well known to most engineers, and it does show the
ideal pressure recovery as a useful reference level. However, it can also be

used to deduce some very important functional relationships.

For example, in an annular diffuser, a number of different variables can
influence the variation of pressure recovery under the conditions of swirling
flow. Thus if we write a general expression for the ideal pressure recovery
in an annular diffuser, with inlet swirl, one obtains:
2r. 2 2 /12

tan” 0., +b% /b7

h

)

Cpi = 1-

tan2a1+l

This equation shows that diffuser inlet to diffuser outlet radius ratio is very
important if high recovery is to be achieved. It also shows that the inlet to
exit passage depth ratio plays a role. The swirl term, in practice, can only be
suppressed by designing a diffuser with large radius ratio; another way of
saying the same thing is to realize that the swirl component must be
recovered in accordance with the law of conservation of angular momentum:
B=constant. The above expression shows maximum recovery with
respect to swirl angle (dCp/da] = 0) when b1/b2=1; this result is
independent of . In fact when b1/b2<1 (Fig 2.1.1), (common case) the
ideal recovery will continue to decrease with increasing swirl. This trend
has often been observed in annular diffuser data. For the particular case
where b1/b2=1, the equation reduces simply to the form of
Cp = 1- (1/AR2), the same as for the no-swirl problem. The ideal pressure
recovery coefficient often illustrates important trends which may be found in

actual data.

2.1.2 Static Pressure Recovery and Effectiveness



Ideal pressure recovery (Cpi)

0.78

0.77 4
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Angle of swirl (alpha)
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Ideal pressure recovery coefficient vs

swirl angle
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The static pressure recovery coefficient was defined in simple terms in
the preceding section. The most common definition is simply the one given
above, namely the percent of inlet kinetic energy which is converted to a
static pressure rise through the diffuser. However, other forms have also
been employed. Most forms use the static pressure rise through the diffuser
as the numerator, but the denominator occasionally varies. In some
instances, the difference between the inlet and outlet dynamic heads is used
in the denominator instead of simply the inlet dynamic head. In other cases,
the denominator may actually be the pressure recovery achieved through a
sudden expansion (Borda-Carnot) of the same area ratio. The latter has
been used but is not too common. Fortunately , the first convention,
described in the preceding section, is by far the most common convention. It
is also the easiest to work with and the most revealing for modeling.

The diffuser effectiveness is simply the relationship between the actual

recovery and the ideal pressure recovery. One can write:
" N=CP/CPigeal

2.1.3 Total Pressure Loss
In addition to pressure recovery, the designer must be concerned about
the loss in total pressure through the diffuser. This loss coefficient, in order
to serve any useful and practical purpose, must refer to the entire flow field
since the diffuser is a basic fluid dynamic element in some larger system.
Thus, one must be concerned with some integrated value of total pressure
loss including all stream tubes through the diffuser. The most common

definition of loss coefficient is as follows:
+K = (8o, =Py )/ (Poy ~Py)
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In this case, integrated mass average parameters are used across the diffuser
inlet and outlet. It is important to emphasize that detailed measurements are
required across the inlet and outlet, with suitable numerical averaging across
the entire flow field, in order to establish an accurate level of the total

pressure loss for a diffuser.

2.1.4 Distortion

An additional performance parameter is the distortion level leaving a
diffuser. This parameter is essential only if the flow into the combustor is to
be well understood, or the flow into any other critical element such as a heat
exchanger core or regenerator. Unfortunately, the industry has not
established a common standard and some of the techniques used have not
been documented. The basic concept is to show how the velocity field or the

total pressure distribution departs from some type of norm at the exit of the
diffuser.

2.2 Aerodynamic Parameters of Machine Performance

Virtually all of the controlling aerodynamic parameters are manifest at
the inlet to the diffuser. In early periods of diffuser research, these
parameters were largely ignored but, with time, it was found that different
aerodynamic parameters became crucial; to specifying the performance of
the diffuser, depending on the type of diffuser involved. In the following
subsections, the different parameters are outlined, definitions as used in this
text are given and examples where the parameter has been found to be

important are presented.
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2.2.1 Aerodynamic Blockage

The basic boundary layer equations, reveal the importance of the
displacement thickness as a characteristic length scale of the inlet
(momentum deficient) boundary layer flow. In the early 1960, Stratford and
Tubbs (1965) and Bragg recognized the importance of boundary layer
displacement thickness to the diffuser recovery process. From their
experiments they deduced that thin inlet boundary layers should be
beneficial to high diffuser recovery and that longer and longer diffusers
would be required to achieve higher levels of recovery as the inlet boundary
thickness increase.

The boundary layer displacement thickness was used informally by
various investigators until it was conveniently put into a parameter by
Sovran and Klomp called the (aerodynamic) blockage parameter. The
blockage is simply the friction, or percentage, of the inlet passage area which
is occluded by the boundary layer displacement thickness on all walls.
Frequently, the displacement thickness is taken as equal on all surfaces and
then the following relationships ensue:

eB=28%W 1 (for channel diffusers with high aspect ratio, i.e.,
neglecting end walls)

*B=4 8*/D] (for conical diffusers with uniform inlet boundary
layers)

¢ B =238"/h1 (for annular diffusers with inlet passage height of h1)

These definitions were proven to be effective and simple to use.
However, if complex inlet flows are involved (or lower aspect ratios for
channel diffusers), then the assumption of equivalent or equal boundary
layers on the different inlet surfaces will fail and a more complex approach

and specification is necessary.
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In addition to the inlet aerodynamic blockage discussed above, mention is
occasionally made in the literature of diffuser exit blockage. Sovran and
Klomp developed a relationship that included the pressure recovery, area
ratio and inlet blockage, and the exit blockage of the diffuser. In order to
derive the equation, it was assumed that an isentropic core passes through
the diffuser. The pressure recovery of a diffuser can be computed if the exit
blockage, area ratio and inlet blockage are known. Sajben, et al. (1976)
were able to deduce these necessary parameters and then compute the

pressure recovery as a dependent variable.

2.2.2 Reynolds Number Dependence

Viscosity is clearly recognized as an important parameter in any fluid
dynamic process. Typically, diffusers are characterized by a Reynolds
number based on an inlet hydraulic diameter. Studies suggest that the
Reynolds number is a comparatively weak parameter as long as the flow is
in the fully turbulent regime (exception: very low aspect ratio channel
diffusers). Very little data is available for the performance of diffusers in

laminar or transitional regimes.

2.2.3 Inlet Mach Number
During the early years of diffuser research, the Mach number at the inlet
to the diffuser was thought to be important at values of approximately 0.7
and performance was held to fall off past this point. This early belief was
erroneous and it was based on incomplete measurements.
Now, it is clearly established by the work established by Dean that one must
pass a Throat Mach number of 1.0 before developing any significant

dependence on Mach number. Thus for unstalled flows, the Mach number
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is a comparatively mild parameter. The early error resulted from using a
wall static pressure rather than a core static pressure. Hence streamline

curvature suppressed the wall static pressure giving a misrepresentative
Mach number.

2.2.4 Inlet Turbulence Intensity
The turbulence intensity is most frequently defined for all diffusers as

follows:
0.5
. [l(u’2 +v'2 + w2 )] /U
3

where the RMS turbulence intensity of all components is considered here.
This is the most frequently employed parameter to specify the overall level
of inlet turbulence intensity. It will be found, however, that the problem of
inlet turbulence is more complex, and under various conditions it will be
desirable to have a more detailed description of the turbulence structure

(intensity and scale) entering a diffuser.

2.2.5 Inlet Velocity Profiles

No convention has been developed to specify the inlet velocity profile to
a diffuser. However, various research programs have shown the effect to be
significant. Both simply skewed inlet profiles and highly distorted inlet
profiles have been considered and reported. Frequently, an integral scale

defined as:

ca’= l(j:u3dA / (ﬁ3A)

is used to define profile shape or distribution.
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2.2.6 Inlet Swirl
Swirling flow into the inlet of a diffuser implies that there is a component
of velocity in the tangential direction as the flow enters the diffuser. This
effect has been considered most often for conical and annular diffusers, but
probably is relevant also for channel diffusers as employed in various pumps
and compressors. Most frequently, an inlet swirl angle is specified (the

symbol a is often employed) to establish the level of inlet swirl.

2.3 Radial Flow (Vaneless) Diffusers
2.3.1 Overview

The radial inflow/ radial outflow (r/r) diffuser, also frequently known as a
vaneless diffuser as it is employed for centrifugal compressors and
centrifugal pumps, is similar in many regards to the channel, conical and
A/A (axial inlet/ axial outlet) annular diffusers. It is also quite different in
several important regards. Extensive experimental research has been carried
out for the conical, channel and A/A annular diffuser as a discrete element;
that is, it has been extensively researched as an individual element, quite
apart from its frequent role in turbomachinery performance. The vaneless
diffuser, that is the R/R annular diffuser, has received proportionally less
attention as a discrete flow element and substantially more attention in the
particular context of its turbomachinery application. In addition, engineers
have been much more prone to calculate the approximate first-order
performance of the vaneless diffuser than to employ empirical data bases. - In
fact, when the use of the vaneless diffuser is considered from the particular
perspective of compressor or pump design, the necessary data bases are

considerably weaker.
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2.3.2 Passage Divergence and Length (Area Ratio); Zero Swirl

The R/R annular diffuser has been studied at zero swirl by four different
groups. The most commonly cited reference is Feiereisen (1971) . Review
of Feiereisen's work shows that the inlet region flow was strongly
accelerated prior to entering the radial diffuser section. As a consequence,
the overall recovery of the vaneless diffuser plus the axial inlet section was
negligible and often comprised an accelerating system when both parts were
taken together. It was found in this work that when the point of minimum
pressure shifted from the radial outflow portion into the inlet bend, then
separation was imminent. In fact separation was a complete total separation
from the bend side and transitory stall was never observed, as found for
many of the previous diffuser types. The mode of separation for this case
was steady.

This question of flow separation takes an added significance when other
earlier and subsequent investigations are considered. Moller (1965a, 1965b)
studied a similar configuration but kept the axial inlet portion under close
scrutiny, as well as the radial portion. In his design work, Moller
deliberately attempted to limit diffusion in the inlet bend region and spent a
considerable amount of time in that sector. Furthermore, he deliberately
considered both low inlet aerodynamic blockage and a fully developed inlet
profile. For his case, he found peak pressure recovery for the entire A/R
system of 0.88 and (.82 for the low blockage and the high blockage cases
respectively. Moller was able to adjust the depth of the diffuser and found
an optimum spacing equal to approximately 15% of the inlet pipe diameter.
Not surprisingly, his results showed that separation occurred shortly after the
inlet flow ceased to be accelerating or constant pressure. Clearly, the

existence of diffusion in the bend region, where flow over convex surfaces is
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involved, becomes most difficult.

In his 1971 paper, de Krasinski evaluated a similar configuration (an
axial inlet and a radial parallel diffuser) but allowed the inlet bend contour to
rotate at various speeds. Best performance was found in a spacing-to-
diameter ratio of 0.15, with appreciable rotation. Rotation helped to control
the boundary layer in this critical region and, once again, an accelerating
flow in the bend region, or a spin stabilized flow, was necessary to obtain
good diffuser performance.

Finally, Yahya and Gupta (1975) conducted the fourth principal study of
the radial diffuser at zero swirl. Their case was a bit different in that the
diffuser diverged by 10 degrees. Various area ratios were considered and
good traverse results were available. The authors carefully studied the
traverse data and integrated the profiles to obtain a mass average total
pressure at inlet and at outlet. With such data, it is possible to obtain loss

coefficients, pressure recovery, and effectiveness data.

2.3.3 Wall Contouring

Virtually every study of the vaneless diffuser has considered parallel
walls or, pinched diffusers were employed for enhanced stability. The
principal reason is that modifying only the diffuser passage width
appreciably changes the meridional (radial) component of velocity which
must be retained as a design variable for stability considerations for
compressors and pumps. Thus little attention has been given to the
deliberate modification of the passage depth for performance enhancement.
However, the study by Yahya and Gupta (1975), cited above, did consider a
diffuser with a 10 degree divergence.



26
2.3.4 Aerodynamic Blockage
Aerodynamic blockage played a key role in the performance of the
channel, conical and straight centerline annular diffusers. The aerodynamic
inlet conditions to the R/R annular diffuser are important, but comparatively
little data is available as a systematic guide to understanding the level of
inlet aerodynamic blockage for R/R diffuser performance.

2.3.5 Swirl

The influence of swirl was demonstrated to be quite significant for the
conical diffuser and the A/A annular diffuser. In these preceding diffusers,
several different effects were involved. For the conical and the annular
diffusers whose centerline is very close to the axial direction, swirl provides
essentially a stabilization of the boundary layer region and a very modest
variation the core flow conditions. For diffusers with a substantial increase
in radius from inlet to outlet, the angular momentum conservation applies
and a good deal of recovery of the swirling kinetic energy is obtained. For
the R/R annular diffuser, the conservation of angular momentum principle is
inherent in the performance of the diffuser and substantial recovery is
obtained simply by radius ratio in the recovery of the tangential , swirling
velocity component. In this case, the direction of tangential velocity
component and the orientation of the surfaces is such that a stabilization of
the wall layers does not result; and, instead, the possibility exists that a
boundary layer may be skewed in an undesirable direction. Thus the
principle effect of swirl is changed so that it works extremely well in the
core flow angular momentum exchange, but it is a disadvantage in the wall
shear layers.

Wheeler and Johnston (1971) reported the first detailed, and perhaps
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only, study of the calculation of boundary layers in an R/R annular diffuser
using a finite difference calculation method and various eddy viscosity
mixing length modeling techniques. The investigation showed that first-
order modeling of the basic integral parameters of the boundary layer could
be achieved but that the calculation was extremely sensitive to the iteration
between the core flow and the boundary layer, that is to the value of core

pressure distribution.

2.3.6 Inlet Distortion

Inlet distortions have a pronounced effect on the performance of the
vaneless diffuser. Inlet distortions include both distortions in the shape of
the steady flow velocity field (either the tangential or meridional velocity
components) and also variations with time. From the study by Senoo, et al.
(1977), It may be observed that the shape of the initial velocity profile
distortion is propagated well into the diffuser and has a significant impact on

the onset of back flow or a skewed boundary layer separation.

2.3.7 Reynolds Number Influence
Comparatively little data has been achieved showing the impact of

Reynolds number on the R/R radial annular diffuser performance.

2.3.8 Inlet Mach Number Effect

Only limited data showing performance of the R/R annular diffuser at
different Mach number levels has been obtained. The data from Faulders
suggests that the fall-off of Mach number is mild up to and including modest

transonic Mach numbers.
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2.3.9 Inlet Turbulence Intensity

No studies have been located on the R/R annular diffuser where the inlet
turbulence intensity has been measured and/or systematically varied. Ellis
did present a very brief paper arguing that induced vorticity at the inlet to the
vaneless diffuser explains the shifting of stall zones from one side of the
diffuser to the opposite side. By considering some velocity triangle
distributions and the implied inlet vorticity, the author attempted to explain

why the stall zones shift from one side to the other.



CHAPTER THREE

One-Dimensional Inviscid method

for Flow physics prediction

u *M=1 r

Diffuser

Impeller r

Fig. 3.1

Elementary view of flow velocities in vaneless diffuser

From the above figure, we see that the vaneless diffuser is the space
between the compressor rotor exit and the compressor discharge opening.
The flow leaving the compressor impeller has a high kinetic energy and
29
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since we are interested in the pressure delivered from the compressor, we
use the vaneless space to transform the high kinetic energy into an additional
pressure.
To estimate the change in the different parameters involved we can use
different methods ranging from very simple (classroom) to 3-Dimensional
computer modeling. We shall start by presenting one of the simple methods
in this chapter and then move on to more complicated methods.

In the simplest approach to one-dimensional methods, the introductory

(classroom) method is the most simple and less accurate method.

3.1 Classroom Method
we start with the conservation of angular momentum equation
C o f =cons tant
As we expect from the compressor behavior, that the tangential velocity
decreases as the radius increases and pressure increases respectively from r2
to r3. This equation can be easily plotted given a range of the radius from 1
to 2 and an initial tangential velocity of 80. The result is shown in figure

3.2. To predict the change in the radial velocity, we have from the above

figure that
C
tano = —%
r
or, rearranging
C
c =—14
I tano

a plot for this relation is shown in Figure 2. As shown from Figure 2, from

the continuity equation
pC . A =constant
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Radial velocity vs. the area
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as the area increases and the density increases the radial velocity decreases

respectively and the kinetic energy transforms to pressure energy.

3.2 Point (*) approach:
Another approach for the one dimensional method is to specify a point

(*) in the vaneless diffuser passage at which place the flow has a sonic
velocity i.e. Mach number=1,
We denote the radial position at which M=1 by r* and all properties at this
position by (*)

C,=Ccosa
continuity equation

prCcosa = p*r*C* cosa™
Angular momentum equation

rCsin=r"C*sina*

From appendix (B), we obtain

1
tan o = tan —2——(1+(Y—_1)M2) LAt
Y+1 2

which is a relation between the angle alpha, alpha*, and the Mach number .
o can be evaluated by substituting o =0, and M =M | which are set at

2 2
design.
Further substitution renders
1
* .k —_
- 2
r ana M 2 (1+('y l)Mz) @
rsinQ Y+1 2

to determine r* substitute r=r2 and M=M?.

In Figure 3.3, we have a relation between r*/r vs. the Mach number. From

this figure, we can deduce that as the radius increases over the sonic position
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(*) the Mach number drops and the flow becomes subsonic, which results in
the conversion of kinetic energy into pressure energy.
also Figure 3.4 shows the change of the angle alpha with the Mach number,
we have a change of about 30 degrees over a Mach number range of 1, as we
can see from the figure starting from our initial condition that the angle
alpha increases drastically as the Mach number decreases that is in the

vaneless space.

3.3 Integration of the momentum equation approach :
Another approach is that starting with the equations of momentum in

the r and © directions and the equation of state
C3C; C& 1P

or r p or

dCy Cu _
C r T + CI' < - 0
by combining these equations we obtain
aC oC 1 oP
I —u__ -7
o TS TTha
which becomes
oP

F+Cr8Cr +Cu8Cu =0

Assuming the flow is adiabatic and frictionless we deduce from appendix(1)

_1
[ p ] Y op +cracr+cuacu _o
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which by integrating yields the following equation:

Y

-1
P Y-1,2 c2 |7
= |=[1+1=-M3|1-=
(Pz) [ 2 2[ C%H

Figure 3.5 gives the result of plotting this equation, and as we can see that
the pressure drops as the velocity increases or vice versa, which is expected
in a diffuser since the main purpose is to increase the pressure at the account
of the Kinetic energy.

By using the velocity triangle relations and substituting into the above

equation we obtain
Y-1

Y _
P =1+—Y—1M2(1—12sin2a
P, 2 2

when plotting this equation we have too many parameters, we can eliminate

=2 2
’ A’D cos az)

one by assuming incompressible flow so that the change in density is
negligible and Tau=1

we plot this relation for a radius ratios of 1.4 and 1.6.

From Figure 6 and 7 we can see that the more space in the vaneless diffuser
the more pressure recovery at the diffuser exit for different flow angles.
Also, the higher the inlet Mach number (impeller exit) the higher the kinetic

energy and hence the higher the conversion into pressure head.
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CHAPTER 4

ONE DIMENSIONAL VISCOUS APPROACH

In radial and mixed-flow centrifugal compressors, the vaneless diffuser is
an annulus duct immediately following the impeller and of increasing radius;
in the direction of flow. The high tangential velocity of the fluid entering
the vaneless diffuser from the impeller decreases with increasing radius and,
because the tangential velocity is generally the largest velocity component at
the impeller discharge, the vaneless diffuser is an effective means of
diffusing the fluid, that is, of converting the velocity head to static pressure.
The principle by which this conversion is affected is demonstrated by the
case for frictionless flow in the absence of heat transfer. For this case, and
assuming that flow conditions are uniform in the tangential direction, the
moment of momentum of the fluid is constant so that

Cu r = constant 1)
from which as the radius (r) increases the tangential velocity (Cu) decreases
and therefore the pressure rises.

Among the advantages of vaneless diffusers is the fact that choke occurs
only if Cy (radial velocity component) is sonic. This condition usually
corresponds to such high flowrates that choke flow occurs in the impeller,
instead of the diffuser as is the usual case for vaned diffusers. The

40



41
compressor operating range is therefore wider with vaneless diffusers.

Another, and perhaps the most important advantage of the vaneless
diffuser is the fact that if the tangential velocity at the impeller discharge is
supersonic, the tangential velocity decelerates from supersonic to subsonic
velocities without shock losses.

In order to analyze the performance of vaneless diffusers and in order to
design these diffusers for optimum performance, it is necessary to have
adequate theoretical methods to predict the variation in flow characteristics
through the diffusers. These methods should include the effects of diffuser
geometry, compressibility, heat transfer.

Differential equations are developed that relate the change in dependent
variables with radius to the design and operating characteristics of the
vaneless diffuser.

Velocity components:

The velocity (C) at a point on the mean surface of revolution is tangent to
the surface and has components Cu and Cr in the r and © directions
respectively.

C=C2+C2 2)
The flow direction @on the mean surface of revolution is related to Cy and

G as follows:

C
tang = C—‘r‘ ?3)
from which
C, =Csina (4a)
C, =Ccosa (4b)
Fluid particle

A fluid particle on the mean surface of revolution has the dimensions
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rd © and dr on the surface of revolution and the height b normal to the
surface.
Method of Solving

The state of the fluid at any point (r and ©) on the mean surface of
revolution is described by three thermodynamic properties, by the fluid
velocity and the flow direction. These five properties can be determined
from five fundamental relations:

Continuity.

Equilibrium in the direction of Cr (radial equilibrium).

Equilibrium in the direction of Cy (tangential equilibrium).

Equation of state.

The heat transfer equation.
In addition to these five fundamental relations certain definitions are
required to express the resulting equations in terms of the desired properties.
The properties that will be used in this analysis to describe the state of the
fluid will be the static pressure p, the static density p, the total temperature
To, the local Mach number M, and the flow direction o..
Mach number
The local Mach number M is defined by

c2

R*T
where ¥is the ratio of specific heats, R* is the gas constant and T is the local

M2 = )

static temperature. By differentiating equation (1) we obtain

1 aM?_1.4c? 14T 58
M2 d&r (2 dr Tadr
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Total temperature

The total temperature To is defined by
2
To=T+ C— (6)
2Cp

where Cp is the specific heat at constant pressure. By differentiating

equation (3), we obtain
Y-1\,,2
1dlo_1dT, Y.

6
To dr T dr (1+ 7-1M2)M2 dr (62)
2
from equations (2) and (4), we obtain
1 dc2 1 1 dM? 1 dTo
2 ar |01 2 dar  To dr (6b)
cs dr 1+72M2M dr To dr
Continuity equation

The continuity equation for compressible flow in vaneless diffuser
pC,rb=constant

from which

ldp, 1dC, 1 1db_

par ' Car a0 @
Equilibrium Equations
Radial equilibrium

The equation for radial equilibrium of a fluid particle in the direction

of Cr is obtained from a balance of the pressure forces, shear forces and

inertia forces(Appendix 2).
2
.ld_P_l_CfC cosa=Cg_C dc, ®
p dr b r Tdr
Tangential equilibrium

The equation for equilibrium of a fluid particle in the tangential
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direction is obtained from a balance of the shear forces with the force

required for acceleration(Appendix 2).

2.
c Csina
f dCu+CuCr

- b =Cr dr r ©
Equation of state
The perfect gas equation or the equation of state is as follows:

P=pRT (10a)
from which we get after differentiation

1dP_1dT+1d_p (10b)

Pdr Tdr padr
Heat transfer equation

The heat transfer rate to the diffuser must equal the heat transfer rate from

the fluid. The heat transfer rate from the diffuser casing is given by

dQ=2'(T,, - T, Jomrdr (11a)

where h' is the coefficient of heat transfer, T is the wall temperature and
dQ is the heat transfer rate.

The heat transfer rate from the fluid is given by
@y
dQ= pCan‘rbcp o dr (11b)

equating both equations together we obtain

1 dTg  2n’ Tw _,

(11¢c)

an approximate value for h' can be obtained from Reynolds' analogy between

friction and heat transfer
h" C_f
cppC 2

substituting for h' into equation (11c) we obtain
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dT.. € seca
- f ;,W—l (12)
0o b (Yo

which gives the change in total temperature with radius as a function of the
skin-friction coefficient and the ratio.

A review of the equations up to this point indicates nine unknowns and nine
equations for the analysis method.

The unknowns are P,p,T, T M,C,C ,C.ando

We will combine the nine equations to obtain three equations involving three
unknowns; TQ, M and . These three differential equations can be
combined to solve for TQ, M and « successively.

Auxiliary differential equation

An auxiliary differential equation for the pressure P in terms of T, M and

is obtained from the equilibrium equations
1 dp 1 dc2 cgseca

1 dp_ - (13a)
pC2 dr 2C2 dr b
2_P 2.7 2
but c2=-L ¢ M 13b
u pPC =T Y =P (13b)
1 dp M2 1 1 aM2 1 dTo 28

= +
yPMz drR* 2 1+'Y—%M2 M2 dr* TO dr* Hcosa

(13¢)
where
r
E=cs [—T—] (13d)
b
T
p=L_
Po
R*=L
I't

where P( is the compressor inlet total pressure, r is the impeller tip radius
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and b is the effective diffuser height at the impeller tip.

Total temperature
dT ’ r
tZo__ 2 Iw ,|.T (14a)
using Reynolds' analogy
dT T
L70__& |“w_, (14b)
T 0 dr* Hecosa| T 0

Mach Number

In order to determine the differential equation for the Mach number squared
it is first necessary to express the second term of the continuity equation (7)
in terms of known variables. From radial equilibrium equation (8) together

with equations (4) and (13b).
. 1dC; tan2 ot _ sec2o 1 dP CpSeco

"C,dr  r  yMZPd b

(15a)

from continuity equation we express the first term as a function of known
variables by the equation of state together with equation (6a)

total temperature equation
-1
1 9Ty _aar [ YTAM? )1 am?

T, dr Tdr 1+Y—%M2 M2 dr

Equation of state

— = + (15b)

which after substituting into the continuity equation yields
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Y-1..2
> MT 1 am2 1 9T,

Y—1,2 [M2 dR* T, dR*

- = 1+
PdR* 7M2 —sec2a

3 1 dH sec?o
- +—= +
| Hcosaa HdR* R *

dP

*

which combined with equation (13) to eliminate %
dR

i dT
(1 +yM2 — tan2 )L 0
2T 0 dr*

_ Y-1 2
| am? 2(1+ m ) :

2
= ) £ 1 dH sec“a
M2 drR* M2 —sec? a +(YM ~ tan a) H -

Hcosaa Hg4r* Rr*

(15¢)

This equation determines the change in M2 with radius R along the mean

dT

surface of revolution in terms of — —Q-, which is known from equations

0
(14a) and (14b).
Flow direction

The differential of the flow direction is obtained from equation (4a)
1 dtana _ 1 dC u 1 dC r
tano dr Cu dr Cr dr

which from the tangential equilibrium equation (9) and equation (15a)




48

becomes

1 dtana_se02a1 dP _secza

“tano gr* - 'YM2 FdR* R*

and from equations (13c) and (15¢)
( _ dT
(1 + y—IM2 )—1——% +
1 dtano sec? a 2 T, dr

tano. gR* M2 —sec? o 2
(1+(y—1)M2) & _1di M

Hcoso HgJr* R*
Equations (14a), (14b) and(15c) are three differential equations that can be
solved

simultaneously for T ,M2and o.

0

Pressure

After the variations in T 0’ MZ2and o with radius R* are known, the pressure

P can be obtained from the continuity equation

pIC1 cosocerbT = pCcosourb

where the subscript 1 refers to known conditions at the diffuser inlet. From

the equation of state and from the definition of Mach number

P
1 _P
Tl Ml /Tl cosozlr,l,bT = TM\/Tcosocrb

finally from equations (6) and (13e)

y-1..2
P 1 cosolel T0(1+—2 Ml)

I -
P, R*H cosa M T01(1+Y le)

(17b)

Equation (17b) determines P from the known conditions at the diffuser inlet

and from the known values of T 0’ M2and o determined by the

simultaneous solution of equations (14a), (14b), (15¢c) and (16).
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Flow Path
The flow path on the mean surface of revolution in the vaneless diffuser can

be obtained from the known variation in tana with R* given by the solution

of equation (16).
R*de
tan o = e
or d@l = fan & (18)
dR R*

because the angle alpha is a known function of R, equation (18) determines
the flow path.
en efficient

In some analysis problems it may be convenient or desirable to solve
directly for one or more of the other dependent quantities rather than To,
M2, and alpha. Also, in the design problem, it may be desired to specify
one of these quantities as a function of R and solve for the required value of
1/H*dH/dR. For these cases the change in the dependent variables P, Rho,
T, C, Cr and Cu with radius R along the mean surface of revolution, as well
as the change in To, M”2, and alpha, must be expressed in terms of the

known quantities 1/TO*dTO0/dR, § 1dH 1 which quantities are

Hcoso.' HdR' R
multiplied by influence coefficients. Thus, if X is any one of the dependent

variables,
(Mz—seCZa)ig=I (1+7—_1M2)—1-1T-‘—’+1 §
XdrR 1 2 To dR 2 Hcoso
1 dH 1
+I, ——+1
3HJR 4 R

where 1] through I4 are influence coefficients that are determined in the
same way that equations (15c) and (16) were developed. The influence

coefficients for various dependent variables X are given in the following
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table:
Tabble 1-Influence coefficients

) ¢ Influence Coefficients

ll 12 13 I‘

2
P e g-omliym |- M sec’a
P secza M2 (‘YSCC‘Q— tanza) —Mz -, secza
M e 2

L T YV T PO nM - (- DM sec’e

2(1+%1M2J

2(1+L21)M2)

2(1+L21)M2)

B (Y sec’e
c? -2 2 (tan‘a-'yMz) 2 2 sec’a
C -sec’a. Mz(tan‘a—ysecza) sec’a sec‘a+M2tan2a
C |0 sec‘u-M2 0 secloz-M2
tana secza sec‘a[l + (y- l)M2] -secza -Mzsecza

Small stage efficiency

The small stage or polytropic efficiency at a given radius R on the
mean surface of revolution in a vaneless diffuser is defined as the ratio of the
ideal (ignoring friction and heat transfer) to the actual differential change in
static enthalpy with radius required to accomplish the actual differential

change in static pressure with radius. This definition leads to the following

expression for the small-stage efficiency 1.
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1 dP

e PldR 1 dT. 2 .
PdR +yzl(l+y2 MZJE dRo * Iﬁlosi
Equation (20a) indicates that in the absence of heat transfer (dTo/dR=0) and
friction (£=0), the small-stage efficiency is 100 percent. Also, for heat
transfer from the fluid to the diffuser walls, (1/T0*dT0/dR) is negative and

therefore results in an apparent increase in the small-stage efficiency. Thus,

in the presence of heat transfer, the small-stage efficiency, as just defined, is
not a good measure of the performance of vaneless diffusers in that it is not
a measure of the magnitude of the losses involved. In the absence of heat
transfer (dT0/dR=0) and equation (20a) reduces to
&(M2 —sec? a)

n=1- (20b)

2
2 .2\ dH Hsec”a
&(yM tan oz) coso{dR + = ]

Numerical Procedure

In the analysis problem , the variation in fluid properties with R are
determined for a specified geometry of the vaneless diffuser. In the design
problem, the variation with R in one of the fluid properties is prescribed and
the remaining fluid properties together with the variation in diffuser height H
with radius R are determined.
In both approaches we shall use MATLAB to solve for the different
parameters, given the three unknown equations (14a) or (14b), (15¢) and
(16). We shall first solve for the three unknowns To, M*2 and the angle
alpha.

For this numerical example R varies from a value of 1 to a value of 2.
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After the distribution of To, M*2 and the angle alpha with R Have
been determined the distribution of P, p, T, C, Cu and Cr can be determined
from equation (17b) and (4), (5), (6) and the equation of state (10a).

Flow Path The flow path on the mean surface of revolution in the
vaneless diffuser is given by © as a function of R along the surface.
Because tana is a known function of R, the flow path (©=0(R)) can be
determined by the integration of equation (18) assuming ©=0 at R=1.0.

Design Problem

In the design method, the variation in effective diffuser wall spacing
with radius is determined for a prescribed variation in one fluid property.
For efficient diffuser designs the selection of the one fluid property and its
optimum prescribed variation will depend on viscous flow effects that are
considered in boundary-layer studies.

In the design problem the variation in H with R is unknown and must be
determined to satisfy a specified variation in one characteristic of the flow
(Cr, for example) with R.

For this specified variation in one characteristic of the flow %% can

be determined. Again using Matlab, we solve for H as a function of R, with
H=1 at R=1.
Numerical Examples
The numerical examples are divided into two groups:
1- effects of some operating conditions

2- vaneless diffuser design problem

The first group of numerical examples shows the effects of heat
transfer and friction on the flow in vaneless diffusers. Three numerical

examples are given:
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* Isentropic compressible flow
» Compressible flow with friction
* Compressible flow with friction and heat transfer.
t conditions:
For the first group of numerical examples the flow conditions at the diffuser
inlet (R=1.0) are:

P1 =3.022

M2 =137
(To);=941 °R
(tano) = 3.829
These conditions were estimated for the following design and operating

conditions of the impeller :

Compressor flow coefficient, @ 0.75

Impeller tip Mach number, MT 1.5

Impeller slip factor, p 0.9

Impeller polytropic efficiency, M 09

Compressor stagnation inlet temperature, To, °R 520
Diffuser design:

The design characteristic of the diffuser are :

Passage height 1/R

Wall temperature, Tw 750

Friction parameter, & 0.03
Results

The results of the first group of three numerical examples are given in figure
(4.1). In Figure (a) the change in M2 with R is shown for the three

numerical examples. The effect of friction is to reduce MZat each R, and
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the effect of heat transfer from the fluid is to increase M2 slightly (primarily
because of the reduced speed of sound at the lower temperature) for the
magnitudes of To and Tw involved in these examples.

In Figure (b) the change in P with R is shown. As expected the
effect of friction is to reduce P at each radius (primarily because of the
decreased values of Cu, which require a smaller pressure gradient for
equilibrium). The effect of heat transfer from the fluid is to raise P slightly
or the magnitudes of To and Tw involved in these examples.

In Figure (c) the change in flow direction a.with R is shown. The
effect of friction is to reduce o because Cu is reduced and Cr is increased to
satisfy continuity with lower density due to lower P. The effect of heat
transfer from the fluid is to increase a slightly because of the reduced value
of Cr resulting from the increased value of p.

In Figure (d) the flow path in the vaneless diffuser is shown. The
effect of friction is to shorten the flow path because ais decreased (figure

(c)) . The effect of heat transfer is to lengthen the path slightly.

A Vaneless Diffuser Design Problem
The second part of the section on numerical examples is a simple

vaneless diffuser design problem. The design variable in a vaneless diffuser
is H= H(R), and the design problem will be to determine H(R) for a
prescribed variation in Cr.

For purposes of demonstrating the design method it is assumed that the
deceleration of Cr, is the criterion for boundary-layer separation in a

vaneless diffuser , so that a safe rate of deceleration is
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§ dC
——L=_0.05
C dr
r
where 8 is proportional to the boundary-layer thickness. For purposes of the
design example we assume 9 is equal to b/2, which is the effective thickness
of a fully developed boundary layer in the vaneless diffuser. Thus,
H/)dC (b

C dR|T
r

T
and
1 dCr R
C &R H
if :;—T is equal to 10. Because of the assumption involved, this specified
T

variation in % with H may have no practical significance with regard to
vaneless diffuser performance and has been selected only to demonstrate an
application of the design method. It should be pointed out that design
variations in H affect primarily the velocity component Cr and through this
component the flow direction a..

nlet condition
The impeller design and operating conditions are the same as for the first

group of numerical examples and so the diffuser inlet conditions are the

same
P, =302
Mf =137

(To);=941 °R
(tanot);= 3.829
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Diffuser design
The variation in H with R is to be determined. Heat transfer effects are
neglected, and the value of the friction parameter is the same as for the first
group of numerical examples(0.03).
Results
The results of the design problem are given in Figure (4.2). In the figures is

shown the variations in H, CLEI’ M2, P, o and m with radius R. as
r

dC
specified , EL _Kr is equal to -1/H. In order to accomplish this variation,

r

H at first decreases with increasing R and then increases to approximately its
initial value at R equal 2. The variation in o with R was slightly more than
3 degrees so that the flow path is approximately a logarithmic spiral.



Height

1.02

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84 d L | 1 1
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Radius

Figure 4.2.a
Change in diffuser height vs. radius ratio

for a design problem

61



1.4

1.2

Mach number*2
o
[o-]

o
(=)

0.4

1 Il 1 1

0.2
1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Radius

Figure 4.2.b
Change in Mach number”2 vs. radius ratio

for a design problem

62




Alpha angle

79.5

79

S

~N
~

~
o
0

~
(=2

75.5

1 1 ' 1

1 I\ 1 J

75
1

11 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Radius

Figure 4.2.c
Change in angle alpha vs. radius ratio

for a design problem

63




Pressure

1.5
Radius

Figure 4.2.d
Change in pressure vs. radius ratio

for a design problem

64




1

90,
120 60

TR
K

210

Figure 4.2.¢
Change in flow path vs. radius ratio

for a design problem

65

330



CHAPTER FIVE

Order of Magnitude analysis

&

Validity of the one-dimensional model

In this chapter, we shall present the full set of equations and conduct

an order of magnitude analysis, to determine whether the terms canceled

based on our previous assumptions could affect the solution.

We shall first start by presenting the continuity, r-momentum and

0-momentum including the unsteady term due to the start-up:
Mass equation

%%(‘Q)*;%(Cu)”o

r-momentum

aC

L+cC

dC_ C_dC
r,_u_r

C2
u

ot

rar r 98 r

=——+u

66

or

3%C
0190 1 r
ar(r ar(rcf))+ 2

002
P

2 98
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0-momentum

212 we,))

we non-dimensionalize the equations with the following scaling

R=r/b 0*=02~n
Cr*=Cr/Cs P*=P/Ps

we need to use the equation to tell us Cs,Ps

Cu*=Cu/2tam
t*=t/ts

Substituting into mass we obtain

C
__s__l_i(Rv)+l2na0)l du _
b RJR b 2n RJO*
or
Cs1 0 1 du*

s
— ——(Rv*)+———=0
a® R dR ) R 00 *
to keep both terms we must have
C
—= as0(1)

aw
which gives
C =am

S

Now substituting into r-momentum
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am ov +a2(a)2 ov +21ta2(02 3&_4n2a2m2 ul _liaP*

v
tg at* b dR 2ntb R 96 b R pb dR

aw 0 (1 0 aw 92V 2a02m 1 du
T T L A W I B B TY"
b< dR\RJR 4n“b~ 90 2mb“ R< 00

we now divide by 4n2aw2 /b
b av+1 S, 1 oudv ut_ Po op»

v 3 (13 1 02V 1 ou
+ (Rv) |+ -
4x2@ab| R \R 3R 4n? 392 R2 00*
Now let us look at the 6-momentum
27a® du N 21ta2a)2 v ov N 41t2a2(n2 u Bu
ts ot * b JdR 27nb Rae

[21ta 0 (
sma2o2va  P. ap* | b OR\ROR

- T ° (Ru)) +

+v 2
b R  2rnbpR 00 2ma® 0“u  2am ov
2.2 2 " 238
| 4T“b“ 00 2Rnb< 99 |
2.2
Now divide this equation by @;bi

b u_ _du udu vu_ P ap+
+V—t+——+—=-— +
apt _dt*  dR R0 R 2mapw?R 90

v|ao 1 3%u 1 v
(R ) |+ + —

Now to decide on which equation to use to scale the pressure and the time.
First note that each momentum equation would give us a different

expression for ts and Ps if we simply set the coefficients equal to one.
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In the O-direction we would expect that the time rate of change of
momentum would be balanced with inertia and viscous forces, but not

necessarily the pressure. Since the inertia terms are of order one we make

is of orderoneand t =1
aa)t S A(D

1
We note that the last two terms of the viscous term are of order —— — and
47

can be neglected.
For Ps, we consider the r-momentum equation, and note that inertia can be
balanced with the pressure term. Then
P
is of order one and P_ = 41t2a2p0)
41t2a2 S
pw

note that the transient term becomes of order 12 , and all the viscous terms
4T
of order %n , %le so they can all be neglected.

Our scaled equations become :

continuity
1du_
Rv
R aR( )+ R3O
r-momentum:
v’ _ P
R OoR

0-momentum :

du du udu vu 13(1a(Ru))

% 'R R R RedR

From these scaled equations, we can see that our previous assumption
that there is no variation of any of the properties with time(steady state),

proved to be partially wrong and that there is a time dependency of the
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tangential velocity which will affect our results to a certain degree.
Also our assumption of asymmetric flow, there is a variation of the
tangential velocity with the 0 direction which also adds some inaccuracy in
our model.

Further study in that area is recommended to investigate to what extent
our one dimensional model' s results vary from that of a two dimensional
that includes all the time and tangential variations that were not previously

included in our model.



CHAPTER SIX

Summary of Results and Conclusions

This chapter concludes the work with a summary of the findings and a

statement of the conclusions.

Summary

The work shows some simple means for flow predictions, some of the
methods presented earlier in this work are very simple because most of the
affecting terms were eliminated by assumptions and are only good for
classroom purposes.
In later chapters,analysis methods have been developed for one dimensional
model that takes into account the compressibility, friction, heat transfer, and
area changes in vaneless diffusers. In the analysis method, the variation in
fluid properties, including the velocity and flow direction can be determined
as a function of radius for a prescribed variation in diffuser height with
radius. In the design method, the variation in diffuser height and all fluid
properties except one can be determined as a function of radius for a
prescribed variation in the one fluid property. For efficient diffuser designs
the selection of the one fluid property and its optimum prescribed variation
will depend on viscous flow effects that are considered in boundary-layer

71
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studies.

Three groups of numerical examples are presented in which the effects
of friction, heat transfer, and diffuser height are investigated; and a simple
design problem is presented. As a result of these examples it is concluded
that:

1- Heat transfer from the fluid has the opposite effect of friction on
pressure rise in vaneless diffusers and is therefore to be desired. On the
other hand, heat transfer to the fluid has the same effect as friction and is to

be avoided.

2- If the friction coefficient is unaffected by the diffuser height, and if
flow separation does not occur, the diffuser efficiency is slightly improved

by increasing the diffuser height.

3- With relatively low friction coefficients and neglecting mixing
losses at the impeller tip, the friction losses in most vaneless diffuser designs
are considerable, as indicated by computed diffuser efficiencies in the low
80's , and these losses result from the usually large ratio of wetted surface to

flow area in vaneless diffusers.
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APPENDIX A

Momentum in the r-direction
CdC; CZ& 10

or r p or

Momentum in the ©-direction

C, agu v, Suog
Cu_ oCu
r  or
reduces to
Cu__dCu
r or
Substitute (1) into (2)
aC oC 1 oP
r —ua__10%
Cr 3 + Cu 3 5
which becomes
0

;’+cac +C3C,

the flow is adiabatic and frictionless then ds=0, and
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or
1

==~—P
P2 =RT, "2
Substitute into (3) to obtain
-1
(LJ Ya_P CraCr+CuaC:u=O

but we have

C;aC; +CydCy =5d(C2 +C2)=7d(C2)=cdC

Integrate from P/P2=1 to P/P2, and from C2 to C

2 1
GOKOSE
L-l P, P, C, RT,
P2_
evaluate at the end points
Yy-1
YR} el (c2_c2
-1 (PZ) l=-2rr;(c*-})
Further reduced
Y-1




with
C
M=—
\JYRT
finally becomes
! 1
Pl e o
(PZ)_[H 2 Mz(l 2 W
2
Recall from velocity triangle
«C?=c?+c?
r u
ec?2=c2 4+c2
2 r?2 ul
also from continuity equation with the diffuser thickness (b) as a constant

eC =|—=|C . =1C
r p r2 r2

also from conservation of momentum
° C - r_2 C = Cu2
u r u2 A

where A =L
D r2

from the velocity triangle at the impeller exit (diffuser inlet)
. Cr2 =C2 sin et
. Cu2 = C2 coso.,

substituting into equation (8) we get

P|Y _  y-l. a2 2.2 2.2
(P—] —1+TM2(1—1 sin az—}»D cos a2)

2

Consider the vaneless space between r2 and r3, with a constant b



76
from Continuity
prC . =const

Angular momentum conservation
C, 1 = const

Usually the flow leaving the impeller is supersonic M2>1, and the flow
leaving the vaneless diffuser is subsonic M3<1.

Denote the radial position at which M=1 by r* and all properties at this
position by (*)

Cr =Ccoso

continuity equation
prCcosa=p'r’'C’ coso’
Angular momentum equation
rCsino.=r1"C” sin
Dividing (3) by (2)
tano _ tana
- *

P p

Assuming frictionless adiabatic flow ds=0

™ p* v-1
Tz(?J

From the energy equation

for the case of M=1



2T
T=—20
Y+1
back to
T* P* 'Y"l
T'(?J
rearranging
1

substituting (4) and (5) for T and T* in (6)
1
1 2 |y-1 1
* [2T. 1+=(y-1)M _ _
P _|Z0, 2 = L(H(Y_IJMZ) -1 )
p Y+1 TO Y+1 2

Recall
tano _ tana’
- *

P p
substituting (3) into (7) we get

1

m:ma*[i(n(v_-l)Mz)]v-l ®)
Y+1 2

o* can be evaluated by substituting o0 = o 2 and M=M ) which are set at

design
also from (3)
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substituting for T/T*
1
* . %k -
- 2
LR =M[—2 (1+(—Y I)Mz)] ©
rsino Yy+1 2

to determine r* substitute r=r2 and M=M?2

to determine a3 from a known M 3 use equation (8)

to determine r3 from a known M3 and o 3 use equation (9)



APPENDIX B

By definition of the Mach number
2
M2 =5 )
YWR'T
Differentiating both sides of the equation with respect to r

2
*,, dC x 2 dT
sz_YR T—-YRC° —

dr dr
2
(e
Dividing both sides by CA2

2
*

(R'T)” am2 ®*Tac? wR*Tdr
c2 d (2 dr T dr

we get
1 dM2 1 dc? 14T

- el Sa
M2 dr (2 d& Tadr ©2)
By definition of the total temperature

To=T(1+YT_1M2) ©6)

Differentiating both sides of the equation with respect to r

_ _ 2
@=(1+—7 1M2)£+T(Y 1) LM
dr 2 dr 2 JMm2 dr

79



from 5
1 dc2 1 aM? 14T
7 & a2 T
c2 dr M2 dr dr
from 6a

5 )7 1 ar
1dT _ 1 dTo 2 1 dM

Tdr To dr ( Y- )Mzdr
2

from 5, 6a

Y-1Y\, 2

I M
1dC2_1dM2+1dTo (2) 1 dm2
c2 dr M2 dr To dr (Hv Mz)MZ dr

rearranging

1 dc2 1 dm? L (YTI)Mz 1 dTo

c? d M2 dr (HY_-le) To dr
2

simplifying

1 dc? _ 1 1 dM? 1 dTo

= +— 6b
C‘7 dar 1+}'2—1M2 M2 dar To dr ( )

From continuity equation we have
pC rb=constant

Differentiating both sides of the equation with respect to r
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d(pC,rb)=0

dp dC db
E(rCrb)+?r(prb)+a(pcrr)+pcrb=O
Dividing both sides by pC rbwe obtain

dC
1Q+L_T+l+l@=0 7
pdr C. dr r bdr

The differential pressure forces (opposed to the direction of Cr) are equal to
the differential change on the end forces on the particle minus the
component of the differential side forces on the particle in the direction of
Cr.

dP

Differential pressure forces = (P + Edr)rd@b —PrdOb

- rdrd®b
dr

where the component of the differential side forces in the direction of Cr

(last term in the equation) is equal to the pressure P multiplied by the
projected area (in the direction of Cr) of the side surface of the particle.

The differential shear stress ( 7) on a diffuser wall is opposed to the direction

of C and is given by
2
T=¢C &
f 2
where ¢ ¥ is the skin friction coefficient. The differential shear forces in the

radial direction on the fluid particle in Fig. are opposed to the direction of

Cr and act on both walls of the diffuser.

Differential shear forces = 27rdBdrcosa
2

- &
c f 2 2rdOdrcos o

= fpc2rd@drcosa
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The acceleration of the fluid particle in the direction opposed to Cr is made

2
C
up of: » the component of the centripetal acceleration —

r

* the negative of the acceleration — - 3 t

differentiating with respect to r instead of t
dC, dC dr dC,
. =C

dt drdt I' dr

The differential force required for acceleration of the fluid particle becomes

e=mXa

*=pV Xxa
cz 4| . ,
*=pbrd®dr| —-C_ a4 (differential force required for
r

acceleration in a direction opposed to Cr).
the sum of the differential pressure force and the shear forces must equal the

force required for acceleration

1 dP 5 cz dc,
¢ —— brd@dr + ¢ .pC~rd@dr cos o = pbrd@dr| —& — C, —L
p dr f r dr
dividing both sides by (brd®dr)
we get the equation of radial equilibrium
2 2
c.C%cosa dc
.1dP +1 =4 _c¢c L (8)

p dr b r I' dr
To get the tangential equilibrium equation
the differential shear forces = 21rd®drsin o

substituting for the shear coefficient
pc?

C £ 2rd®drsin o

which gives
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cpr2rd6dr sin o
the tangential acceleration of the fluid particle opposed to the direction of Cu
consists of

* the negative of the tangential acceleration

C
dt| r

* the negative of the Coriolis equation

2Cucr
r
But
d Cu 1 dCu C g dr
a(—;] TR 2a
changing the dependency of the right hand side of the equation to r instead
of t
d Cu 1 dCu dr Cu dr
B?(TJ rodr dt 2 dt
rearranging

sl

substituting into the equatmn

d C 2C C 2C C
4| _u u __ur
dt| r r

rearranging
i€ 2C C dC CcC
-1 — u — ur =_C u - u r
dt{ r r I dr r

Acceleration is defined as

mxa
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or pV xXa

substituting for each term
dC CC
—pbrd@dr|C — % + -9 T
r dr r

equating the acceleration to the differential shear force

dC CC 5
—pbrd@dr| C —% + Y L |=¢_pC*rdOdrsinc
r dr r f

we finally get
2 .
c.C”sina dc C.C
f _ u u-r
% "%g T @
Equation of state
P=pRT (10a)

differentiating with respect to r
dr dr dr

Dividing both sides by pRT

we get the differential form of the equation of state
1dP _1dT + 1dp

Pdr Tadr pdr (10b)
Heat transfer equation:

The hate Transfer rate to the diffuser casing is given by:

dQ = 2h’(Tw - To)zmdr (11a)

where (h') is the coefficient of heat transfer, Tw is the wall or diffuser casing
temperature, and dQ is the heat transfer rate.

The heat transfer rate from the fluid is given by:
dT
_ 0
dQ pCl.21|:rbcp ™ dr (11b)

equating both equations together
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dT

, _ 0
2°(T,, - T J2medr =pC, 2mebe, —Lar
rearranging terms

1 dTO _ 2h/ TW —l
TO dr pC,.bcp TO
substituting (h') from Reynolds's analogy
’ (o)
h _f
cppC 2

from which the equation becomes

1 dT0 =cf seca[Tw _1]
0

TOdr b T

developing an auxiliary equation
from radial equilibrium equation
1 dP ch2 cos Ot C% dc

+ -c, —L
p dr b r I dr

rearrange
C r = Ccosa

we have

C
u

— =sinQ
C
rearrange

Cu=Csina

substitute into the equation

(11c)

(12)
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2

1dp €€ cosa 2,2 d(Ccosa)

= —Ccosog ———=
p dr b r dr

from tangential equilibrium

2 .
_ch s1n0L=C dCu+CuCr

b I' dr r
substituting for the velocities
c C2 sin O

: 9 .
_f =Cc0s0Ld(CsmoL)_’_C sin oL cos o

b dr r

Dividing by : sino.cos O
we get
2
_ch _ldC2+C2
bcosaa 2 dr r

from the radial equilibrium equation

sin2 a 1 1 C2
— —cos“ o0 ——
dr

1 dP ch2cosa c2
__.+ =
p dr b r
dividing by : sin2 o

2
1 dp ch cos Ot C2 1 9 dc2
— — = - —cot“ o—
psin“ o 4 bsin® « r 2 dr

2

substituting for ¢ from the radial equilibrium equation
r

2 2
1 dP CfC Cosa— CfC _ldcz _ 1 ) dC2

5 T > =~ —cot
psin“ o dr  bsin® a bcosow 2 dr 2
xsinzaweget
2 2 .2
1£+°fc cosoc__ch sin a_ldCZ Sinza_lcoszadcz
p dr b bcosa 2 dr 2
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rearranging
l-d—P=—chZ cosa_cfcz sinza_ld ? (sin2(>c+cos2 a)
p dr b bcosa 2 dr
simplifying
l@-_cfcz( 1 )_lﬁ
p dr b \cosa/ 2 dr
dividing by C*2
Ld_P=_ 1 dc2_cfseca 13
pc2 dr  2c? dr b
but >
pC? =Ei;C2 x ¥ = ypm2 (13b)
.1 dp_ 1 dc2_cfseca
M2 & pc? dr b
from equation (3)
1dC2=( 1 ]1dM2+1dTO
c? dr | 14¥- Y M2 M2 & Ty dr
substituting
;_dﬁ,.l[ 1 } 1 dM2+ 1 dT, _ cg seca
M2 a2 14 M2 M2 dr Ty ar b
rearranging ,we obtain
Fa =—YM2 ( 1 ) 1 dM2+ : dTO* 25 \130)
PaR* 2 |{1+7" /M2 M2 dR® T, dR" Hecoso

r
S=ct (EL) (13d)
T
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Total temperature

v ot o )
Ty dr* pCl-Hcp Ty by
using Reynolds' analogy

h” _°f

cppC 2

19Ty & Tw _,
Ty dR* Hcosa| T,

Mach number

from the continuity equation

2 2
c 9C _Cy 1dp_¢C cosa
I dr r pdr b

substituting for the tangential velocity

C

T dr ~ r —EE_ bcos2a
dividing by Cr
ldCr_tanzot 1 dP CfSCC(I

C, dr r  pc2dr b

r

but, from the equation of state
P

"RT

and expressing pC% = pC2 cosZ oL = yPM2 cos

we get

. 1dC, _ tanza_secza 1dp Cpseca

dr r .YMZ P dr b

Cr

2
dc, _ C% tanZa 1 dp ¢ Cy cosa

(13e)

(14a)

(14b)

(15a)
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Total temperature equation

19Ty 14r (YyMz}lsz
TOdI T Tdr 1+7 yMz M2 dr
equation of state

IdP_ldp 1dT

substituting into the total temperature equation

1 9Ty 1ap 1dp , Y-UM2 ) 1 am2
1+7- Y m2 JM2 dr

(15b)

continuity equation

1dp 1dC, 1db 1
-t ——+ +
pdr C. dr bdr r

substituting for— — and — —— into the continuity equation
p dr C, dr

1
1ap 1 9Ty (V7 /M2 1 am? n?o sec’aldp_
P dr TOdr 1+Y— yMZ M2 dr r yM2 P dr
c.seca 1db 1
——+-=0
b bdr r

f
grouping terms together
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