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AN ABSTRACT OF A THESIS

SIMPLE MEANS OF FLOW PREDICTION IN A VANELESS

DIFFUSER

By

Ezzat Salama Ayad

In designing vaneless diffusers, designers need a fast accurate way to

predict the flow physics parameters without the need to go to complicated

three dimensional computer codes.

The work studies the simple means of predicting the flow properties in

a vaneless diffuser, and assessing the validity of the assumptions in trying to

solve simultaneously a series of equations relating the properties of the

diffuser to the radius by using the computer softwares, Excel and MATLAB.

The study focuses on the change in the properties through a vaneless

diffuser with respect to the radius. Relations of all the properties are

developed.

The theoretical relations are determined under specified boundary

conditions of aerodynamic and thermodynamic conditions.
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LITERATURE SURVEY

Due to the widespread use of the vaneless diffuser for centrifugal

pumps and compressors, computational techniques for the vaneless diffuser

emerged early. One of the earliest efforts to predict the performance of the

vaneless diffuser was reported by Brown. In this work a modified Bernoulli

equation Was written in the direction of the streamline for a constant area

vaneless diffuser, and a skin friction coefficient was introduced. By

comparing the measured wall static pressures with predicted results, a

suitable value for skin friction was established. This work showed

reasonable agreement between the theoretical model and measured results

and could be considered a one-dimensional single parameter model .

In subsequent work, Stanitz(1952), introduced a comprehensive

treatment of the vaneless diffuser( Fig.1), and published a correct set of one-

dimensional equations for the radial momentum, tangential momentum,

conservation of mass, conservation of energy, and the equation of state. In

this case a single empirical parameter was still employed but was introduced

independently to both the radial and tangential momentum equations.

Calculations of this type were reported by Johnston and Dean (1965). A

further comparison of this computational approach was reported by Japikse.

Fauldres (1954) reported results that showed that the skin friction

coefficient in the inlet (developing) region of a vaneless diffuser is quite

high compared to fully developed flow, but the fully developed flow level is

x



  

    

/
Vaneless difquEr

   

Fig. 1

Vaneless Diffuser



approximately correct near the end of the vaneless diffuser. Thus the

process is quite similar to pipe or channel flow where large values are to be

expected in the inlet region, and the fully developed value only applies well

downstream. Average values, as implemented as industrial standards, tend

to fall higher than the fully developed flow level.

W. Traupel (1977) has taken this analysis procedure further and has

introduced a two-parameter modeling system which adds the mechanical

energy equation to the system of equations established by Stanitz.

Dean and Senoo developed a theory for the radial impeller discharge

mixing process including wall friction, friction between wake and jet, and

reversible work exchange. In their flow model, the flow out of each impeller

passage was divided into two regions, the wake and the jet. The relative

velocity was constant in each region with a high velocity for the jet and a

low velocity for the wake. The mixing process of the jet and the wake was

calculated by solving the momentum and the continuity equations for the jet

and the wake simultaneously. They showed that a large part of the loss at

the vaneless diffuser inlet was due to wall friction loss of an asymmetric

flow. They also concluded that the asymmetric flow pattern became uniform

rapidly by the reversible work exchange between jet and wake.

Johnston and Dean presented a simple analysis based on an

assumption of sudden expansion. In their flow model, the wake and the jet

were mixed up at the inlet to the diffuser by by the sudden expansion. They

compared their calculations for various sudden expansion and the flow was

thereafter assumed axially symmetric in the diffuser. The large total

pressure loss at the vaneless diffuser inlet was attributed to the mixing loss

centrifugal blower outlet flows with those based on the Dean and Senoo

model. Their simple model gave very similar predictions of total pressure

xii



loss to those predicted by the more precise method over a wide range of

compressor parameters.

Senoo and Ishida found that the flow at the exit of a centrifugal

blower is artificially distorted so that decay of the asymmetric flow in the

vaneless diffuser is experimentally examined. It is concluded that the shear

force between the wake zone and the jet zone does not play the major role

for the behavior of flow in the vaneless diffuser, and the behavior is mainly

controlled by the reversible work exchange.

Based on the above survey, we will present in this work a

documentation of some simple means of flow predictions in a vaneless

diffuser. Due to time limitations, we will only present a one-dimensional

approach using computer software packages Excel and Matlab.



CHAPTER ONE

Introduction

The design of turbomachinery is dominated by diffusion-the

conversion of velocity or dynamic head into stream pressure. Every blade

row in a typical axial compressor is a collection of parallel diffusers. In

most centrifugal compressors both the rotor and the radial diffuser are

limited by the diffusion capabilities of the flow channels.

1.1 The impact of diffusers on turbomachinery performance

In the first decade of this century a strong debate raged in the

academic society as to the practical utility of placing an exhaust diffuser

downstream of a hydroelectric turbine. Experts argued back and forth

whether the exhaust diffuser would, or would not, improve the performance

of the turbine. The counter arguments essentially maintained that the fluid

had already left the turbine and little good could be done; the proponents

recognized the importance of increasing the expansion ratio across the

turbine rotor by the reduction in rotor back pressure with the use of a well-

designed diffuser.

Today' 5 arguments and concerns over the role of the diffuser are

significantly more advanced. Nonetheless, the details of the diffuser design

and performance are in some instances as vague as the early debate on

1
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diffuser application for hydroturbines.

Fluid machinery is conveniently divided into positive displacement

and turbomachinery categories. The distinction follows directly along the

lines of Newton' 5 Second Law of motion as applied either in Cartesian

coordinate system or in cylindrical coordinate system. In the Cartesian

coordinate system, Newton' 3 Second Law indicates that the force applied to

an object will be equal to the change in linear momentum which is the basic

principle behind positive displacement equipment. In the cylindrical

coordinate system, Newton' 5 Second Law expresses the torque being

proportional to the change in angular momentum. This principle leads

directly to the Euler turbomachinery equation which expresses the energy

transfer through turbomachinery as the change in UCu. Thus, the inherent

function of turbomachinery involves the exchange of significant levels of

kinetic energy in order to accomplish the intended purpose. As a

consequence, very large levels of kinetic energy frequently accompany the

work input and the work extraction processes, often on the order of 10-50%

of the total energy transferred. Thus efficient diffusers are absolutely

essential for good turbomachinery performance. With kinetic energy

intensities of this level at the exit of the impeller; it is not hard to appreciate

that the performance of a diffuser influences the overall efficiency level of a

turbomachine. Thus the detailed processes that occur in diffusing

elements must be carefully understood and thoroughly optimized if good

turbomachinery performance is to be achieved.

The range of diffuser performance levels can be appreciated by

considering Fig 1.1. This diagram (by Japikse) presents a loss map which

plots the loss coefficient K in a typical diffusing element versus the pressure

recovery for the same diffuser. Maps of this type serve to focus many
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important facts concerning diffuser performance in a compact fashion. One

can immediately realize the impact of area ratio on diffuser performance,

and high level of recovery will only be obtained if the area ratio is

sufficiently high. There is also the implicit requirement that the diffuser

must be designed so that the effectiveness is quite high.

1.2 Types of diffusers

1.2. 1. Overview

In chapter 4, it will be shown that the basic equations of motion reveal

the importance of both geometric and aerodynamic parameters on the

ultimate performance of a diffuser. The specification of a wide variety of

geometric and aerodynamic parameters is essential before the performance

of a diffuser is uniquely given. In this section, the various geometric

parameters are first reviewed for all classes of diffusers. A general

definition of the different aerodynamic parameters is given in the next

section.

1.2.2 Geometric Parameters:

1.2.2.1 Channel diffuser geometric specification

The geometric specification of a channel diffuser is, at first appearance,

comparatively straightforward. A simple schematic of a channel diffuser is

shown in Fig 1.2.1, and the essential parameters which must be considered

are defined in this figure. From these different geometric parameters,

dimensionless parameters are formed as follows :

W1=throat width, b =throat depth
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L =centerline length, 20=divergence angle

At=throat area=bW1, Ae=exit area=bW2

  

 

Sketch of Channel Diffuser

Fig. 1.2.1.

non-dimensional length W 1

aspect ratio AS = b 1/W 1

area ratio AR = A2/A1

Not all these geometric parameters are independent. There is a fixed

relationship (correlation) between the area ratio and the other geometric

parameters as follows :

AR = l + 2 (W1) tan 9

1.2.1.3 Conical diffusers

The definition of the basic geometric parameters for conical diffusers is

quite similar to that given previously for a channel diffuser, as illustrated

below in Fig 1.2.2. Again, it is possible to define various dimensionless

parameters as follows:



D=throat diameter

L=centerline length

29=divergence L

angle

At=throat area

Ae=exit area 5

._+I

 

  
 

throat

exit

Sketch of Conical Diffuser

Fig. 1.2.2.

dimensionless length [JD 1

area ratio AR = A2/A1

The area ratio for a conical diffuser is, of course, dependent on other

geometric variables. The dependence is given as follows :

0AR=(1+2(L/D)tan® )2

1.2.1.4 Annular diffusers

It is more difficult to define the essential geometric parameters for

annular diffusers since the number of independent variables has increased.

Here the essential variables are:
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fl
' h

“01— BM___________

fl

Straight Core Annular

Fig. 1.2.3.

 

 

non-dimensional length UAr or L/h1

area ratio AR = A2/A1

Consider Fig 1.2.3, where the types of straight wall annular diffusers are

shown. For the equi-angular case, the geometry is specified by:

AR = 1+2 (L/h) sin 9

For the straight core (constant hub) case the equation is more complex and

becomes:

r 11/4 V
1 _ 1

2LsinO L2 sin2 9 ( 0 j

R. + 112 f R. N
h 1+ )4 1+ %

0 K 0/,L

AR=1+ 

    
and for more complex, but more common, case of independent changes in

6 land 6-) 2 one obtains:

sinO +Iysin9 l—Iy (sinZO -sin2(~) )

Ml ._
h [1+%] hz (”1%)

Unfortunately, many annular diffusers are even more complex and include

  

curved walls. For such cases, the AR to L/h relationship must be derived for

each specific case.
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1.3 Examples of Common Diffusing Systems for centrifugal pumps or

compressors

 

Fig 1.3.1

Volute diffuser

VOLUTE--used for low pressure ratio, mostly for single stage, and has

radial thrust at off design flow. Even though widely used, still needs

researching.

 

Fig 1.3.2

Vaneless diffuser

VANELESS DIFFUSER--tolerates large range of flow angles (60-80

degrees); simple annular channel, but bulky.



 

Fig 1.3.3

Return channel

RETURN CHANNEL--employed in multistage applications, yet much is not

known about its performance.

E

Fig 1.3.4

Straight channel

STRAIGHT CHANNEL/WEDGE—-has simple geometry, easy to

manufacture ; very popular, but large in size.



E
?

3

Fig 1.3.5

Straight plate

STRAIGHT PLATE-has large number of vanes, Z>30, and not so good

pressure recovery.

 

Fig 1.3.6

Vaned island

VANED ISLAND-is a refined straight channel for high pressure ratio and

Mc3>1; has good pressure recovery, but again large in size.



11

Fig 1.3.7

Circular arc

CIRCULAR ARC--has simple geometry, but no outstanding aerodynamic

characteristic.

 

Fig 1.3.8

Cambered diffuser

CAMBERED/AEROFOIL--used for transonic and subsonic applications,

small size and good pressure recovery. Its design is based on axial cascade

data.
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l

_ _I

Fig 1.3.9

Twisted diffuser

I WISTED--is a refined cambered vane to produce good efficiency, wide

range and high pressure ratio.

l

_I

Fig 1.3. 10

Multiple cascade

MULTIPLE CASCADEnis a cambered van in cascade for higher efficiency

with more manufacturing process.

 

Fig 1.3.11

Conical diffuser
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PIPE/CONICAL--used for higher pressure ratio and transonic applications,

large in size, but with good pressure recovery.

\

Fig 1.3.12

Low solidity diffuser

LOW SOLIDITY—-used for low flow angles, but with good pressure

recovery and range. Currently of great interest.



CHAPTER TWO

ESSENTIAL PARAMETERS OF DIFFUSER PERFORMANCE

In this section we will refer to general types of diffusers, Radial diffusers

will be discussed in section 2.3.

2.1 Overall Performance Parameters

2.1.1 Ideal Pressure Recovery

The pressure recovery of a diffuser (actual or ideal) is most frequently

defined as the static pressure rise through the diffuser divided by the inlet

dynamic head; in other words:

Cp=(p2—%>2‘P1)

which is a very simple way of thinking about the fundamental purpose

of a diffuser. An ideal pressure recovery can be set if the flow is assumed to

be isentropic and the Bernoulli equation is used both in the numerator and

the denominator to reduce the expression to a velocity in and a velocity out.

Then, by employing the conservation of mass, the relationship can be

converted to an area ratio for incompressible flow. We obtain the following:

0 = - 2 2 = _ 2

Cp 1 vexit/vinlet ”MR

14
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This expression is very well known to most engineers, and it does show the

ideal pressure recovery as a useful reference level. However, it can also be

used to deduce some very important functional relationships.

For example, in an annular diffuser, a number of different variables can

influence the variation of pressure recovery under the conditions of swirling

flow. Thus if we write a general expression for the ideal pressure recovery

in an annular diffuser, with inlet swirl, one obtains:

2 2 2 2
tan a1+ b1 /b2

tan2a1+l

This equation shows that diffuser inlet to diffuser outlet radius ratio is very

r1

r2

Cpi=1~  

  

important if high recovery is to be achieved. It also shows that the inlet to

exit passage depth ratio plays a role. The swirl term, in practice, can only be

suppressed by designing a diffuser with large radius ratio; another way of

saying the same thing is to realize that the swirl component must be

recovered in accordance with the law of conservation of angular momentum:

9=constant. The above expression shows maximum recovery with

respect to swirl angle (an/aal = 0) when b1/b2=1; this result is

independent of a. In fact when b1/b2<l (Fig 2.1.1), (common case) the

ideal recovery will continue to decrease with increasing swirl. This trend

has often been observed in annular diffuser data. For the particular case

where b1/b2=1, the equation reduces simply to the form of

Cp = 1- (1/AR2), the same as for the no-swirl problem. The ideal pressure

recovery coefficient often illustrates important trends which may be found in

actual data.

2.1.2 Static Pressure Recovery and Effectiveness
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Ideal pressure recovery coefficient vs

swirl angle
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The static pressure recovery coefficient was defined in simple terms in

the preceding section. The most common definition is simply the one given

above, namely the percent of inlet kinetic energy which is converted to a

static pressure rise through the diffuser. However, other forms have also

been employed. Most forms use the static pressure rise through the diffuser

as the numerator, but the denominator occasionally varies. In some

instances, the difference between the inlet and outlet dynamic heads is used

in the denominator instead of simply the inlet dynamic head. In other cases,

the denominator may actually be the pressure recovery achieved through a

sudden expansion (Borda—Carnot) of the same area ratio. The latter has

been used but is not too common. Fortunately , the first convention,

described in the preceding section, is by far the most common convention. It

is also the easiest to work with and the most revealing for modeling.

The diffuser effectiveness is simply the relationship between the actual

recovery and the ideal pressure recovery. One can write:

. II = Cp/Cpideal

2.1.3 Total Pressure Loss

In addition to pressure recovery, the designer must be concerned about

the loss in total pressure through the diffuser. This loss coefficient, in order

to serve any useful and practical purpose, must refer to the entire flow field

since the diffuser is a basic fluid dynamic element in some larger system.

Thus, one must be concerned with some integrated value of total pressure

loss including all stream tubes through the diffuser. The most common

definition of loss coefficient is as follows:

' K = (901‘ p02)/(p01’ 1’1)
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In this case, integrated mass average parameters are used across the diffuser

inlet and outlet. It is important to emphasize that detailed measurements are

required across the inlet and outlet, with suitable numerical averaging across

the entire flow field, in order to establish an accurate level of the total

pressure loss for a diffuser.

2.1.4 Distortion

An additional performance parameter is the distortion level leaving a

diffuser. This parameter is essential only if the flow into the combustor is to I

be well understood, or the flow into any other critical element such as a heat

exchanger core or regenerator. Unfortunately, the industry has not

established a common standard and some of the techniques used have not

been documented. The basic concept is to show how the velocity field or the

total pressure distribution departs from some type of norm at the exit of the

diffuser.

2.2 Aerodynamic Parameters of Machine Performance

Virtually all of the controlling aerodynamic parameters are manifest at

the inlet to the diffuser. In early periods of diffuser research, these

parameters were largely ignored but, with time, it was found that different

aerodynamic parameters became crucial; to specifying the performance of

the diffuser, depending on the type of diffuser involved. In the following

subsections, the different parameters are outlined, definitions as used in this

text are given and examples where the parameter has been found to be

important are presented.
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2.2.1 Aerodynamic Blockage

The basic boundary layer equations, reveal the importance of the

displacement thickness as a characteristic length scale of the inlet

(momentum deficient) boundary layer flow. In the early 1960, Stratford and

Tubbs (1965) and Bragg recognized the importance of boundary layer

displacement thickness to the diffuser recovery process. From their

experiments they deduced that thin inlet boundary layers should be

beneficial to high diffuser recovery and that longer and longer diffusers

would be required to achieve higher levels of recovery as the inlet boundary

thickness increase.

The boundary layer displacement thickness was used informally by

various investigators until it was conveniently put into a parameter by

Sovran and Klomp called the (aerodynamic) blockage parameter. The

blockage is simply the friction, or percentage, of the inlet passage area which

is occluded by the boundary layer displacement thickness on all walls.

Frequently, the displacement thickness is taken as equal on all surfaces and

then the following relationships ensue:

- B = 2 5*IW1 (for channel diffusers with high aspect ratio, i.e.,

neglecting end walls)

- B = 4 8*ID1 (for conical diffusers with uniform inlet boundary

layers)

0 B = 2 8*lh1 (for annular diffusers with inlet passage height of h1)

These definitions were proven to be effective and simple to use.

However, if complex inlet flows are involved (or lower aspect ratios for

channel diffusers), then the assumption of equivalent or equal boundary

layers on the different inlet surfaces will fail and a more complex approach

and specification is necessary.
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In addition to the inlet aerodynamic blockage discussed above, mention is

occasionally made in the literature of diffuser exit blockage. Sovran and

Klomp developed a relationship that included the pressure recovery, area

ratio and inlet blockage, and the exit blockage of the diffuser. In order to

derive the equation, it was assumed that an isentropic core passes through

the diffuser. The pressure recovery of a diffuser can be computed if the exit

blockage, area ratio and inlet blockage are known. Sajben, et a1. (1976)

were able to deduce these necessary parameters and then compute the

pressure recovery as a dependent variable.

2.2.2 Reynolds Number Dependence

‘ Viscosity is clearly recognized as an important parameter in any fluid

dynamic process. Typically, diffusers are characterized by a Reynolds

number based on an inlet hydraulic diameter. Studies suggest that the

Reynolds number is a comparatively weak parameter as long as the flow is

in the fully turbulent regime (exception: very low aspect ratio channel

diffusers). Very little data is available for the performance of diffusers in

laminar or transitional regimes.

2.2.3 Inlet Mach Number

During the early years of diffuser research, the Mach number at the inlet

to the diffuser was thought to be important at values of approximately 0.7

and performance was held to fall off past this point. This early belief was

erroneous and it was based on incomplete measurements.

Now, it is clearly established by the work established by Dean that one must

pass a Throat Mach number of 1.0 before developing any significant

dependence on Mach number. Thus for unstalled flows, the Mach number
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is a comparatively mild parameter. The early error resulted from using a

wall static pressure rather than a core static pressure. Hence streamline

curvature suppressed the wall static pressure giving a misrepresentative

Mach number.

2.2.4 Inlet Turbulence Intensity

The turbulence intensity is most frequently defined for all diffusers as

follows:

1 2 0.5

- [3(u’2 + v’2 + w’ )] /U

where the RMS turbulence intensity of all components is considered here.

This is the most frequently employed parameter to specify the overall level

of inlet turbulence intensity. It will be found, however, that the problem of

inlet turbulence is more complex, and under various conditions it will be

desirable to have a more detailed description of the turbulence structure

(intensity and scale) entering a diffuser.

2.2.5 Inlet Velocity Profiles

No convention has been developed to specify the inlet velocity profile to

a diffuser. However, various research programs have shown the effect to be

significant. Both simply skewed inlet profiles and highly distorted inlet

profiles have been considered and reported. Frequently, an integral scale

defined as:

- oi° = Eu3dA / (63A)

is used to define profile shape or distribution.
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2.2.6 Inlet Swirl

Swirling flow into the inlet of a diffuser implies that there is a component

of velocity in the tangential direction as the flow enters the diffuser. This

effect has been considered most often for conical and annular diffusers, but

probably is relevant also for channel diffusers as employed in various pumps

and compressors. Most frequently, an inlet swirl angle is specified (the

symbol a is often employed) to establish the level of inlet swirl.

2.3 Radial Flow (Vaneless) Diffusers

2.3.1 Overview

The radial inflow/ radial outflow (r/r) diffuser, also frequently known as a

vaneless diffuser as it is employed for centrifugal compressors and

centrifugal pumps, is similar in many regards to the channel, conical and

NA (axial inlet! axial outlet) annular diffusers. It is also quite different in

several important regards. Extensive experimental research has been carried

out for the conical, channel and NA annular diffuser as a discrete element;

that is, it has been extensively researched as an individual element, quite

apart from its frequent role in turbomachinery performance. The vaneless

diffuser, that is the R/R annular diffuser, has received proportionally less

attention as a discrete flow element and substantially more attention in the

particular context of its turbomachinery application. In addition, engineers

have been much more prone to calculate the approximate first-order

performance of the vaneless diffuser than to employ empirical data bases. . In

fact, when the use of the vaneless diffuser is considered from the particular

perspective of compressor or pump design, the necessary data bases are

considerably weaker.
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2.3.2 Passage Divergence and Length (Area Ratio); Zero Swirl

The R/R annular diffuser has been studied at zero swirl by four different

groups. The most commonly cited reference is Feiereisen (1971) . Review

of Feiereisen's work shows that the inlet region flow was strongly

accelerated prior to entering the radial diffuser section. As a consequence,

the overall recovery of the vaneless diffuser plus the axial inlet section was

negligible and often comprised an accelerating system when both parts were

taken together. It was found in this work that when the point of minimum

pressure shifted from the radial outflow portion into the inlet bend, then

separation was imminent. In fact separation was a complete total separation

from the bend side and transitory stall was never observed, as found for

many of the previous diffuser types. The mode of separation for this case

was steady.

This question of flow separation takes an added significance when other

earlier and subsequent investigations are considered. Moller (1965a, 1965b)

studied a similar configuration but kept the axial inlet portion under close

scrutiny, as well as the radial portion. In his design work, Moller

deliberately attempted to limit diffusion in the inlet bend region and spent a

considerable amount of time in that sector. Furthermore, he deliberately

considered both low inlet aerodynamic blockage and a fully developed inlet

profile. For his case, he found peak pressure recovery for the entire A/R

system of 0.88 and 0.82 for the low blockage and the high blockage cases

respectively. Moller was able to adjust the depth of the diffuser and found

an optimum spacing equal to approximately 15% of the inlet pipe diameter.

Not surprisingly, his results showed that separation occurred shortly after the

inlet flow ceased to be accelerating or constant pressure. Clearly, the

existence of diffusion in the bend region, where flow over convex surfaces is
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involved, becomes most difficult.

In his 1971 paper, de Krasinski evaluated a similar configuration (an

axial inlet and a radial parallel diffuser) but allowed the inlet bend contour to

rotate at various speeds. Best performance was found in a spacing-to-

diameter ratio of 0.15, with appreciable rotation. Rotation helped to control

the boundary layer in this critical region and, once again, an accelerating

flow in the bend region, or a spin stabilized flow, was necessary to obtain

good diffuser performance.

Finally, Yahya and Gupta (1975) conducted the fourth principal study of

the radial diffuser at zero swirl. Their case was a bit different in that the

diffuser diverged by 10 degrees. Various area ratios were considered and

good traverse results were available. The authors carefully studied the

traverse data and integrated the profiles to obtain a mass average total

pressure at inlet and at outlet. With such data, it is possible to obtain loss

coefficients, pressure recovery, and effectiveness data.

2.3.3 Wall Contouring

Virtually every study of the vaneless diffuser has considered parallel

walls or, pinched diffusers were employed for enhanced stability. The

principal reason is that modifying only the diffuser passage width

appreciably changes the meridional (radial) component of velocity which

must be retained as a design variable for stability considerations for

compressors and pumps. Thus little attention has been given to the

deliberate modification of the passage depth for performance enhancement.

However, the study by Yahya and Gupta (1975), cited above, did consider a

diffuser with a 10 degree divergence.
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2.3.4 Aerodynamic Blockage

Aerodynamic blockage played a key role in the performance of the

channel, conical and straight centerline annular diffusers. The aerodynamic

inlet conditions to the R/R annular diffuser are important, but comparatively

little data is available as a systematic guide to understanding the level of

inlet aerodynamic blockage for R/R diffuser performance.

2.3.5 Swirl

The influence of swirl was demonstrated to be quite significant for the

conical diffuser and the NA annular diffuser. In these preceding diffusers,

several different effects were involved. For the conical and the annular

diffusers whose centerline is very close to the axial direction, swirl provides

essentially a stabilization of the boundary layer region and a very modest

variation the core flow conditions. For diffusers with a substantial increase

in radius from inlet to outlet, the angular momentum conservation applies

and a good deal of recovery of the swirling kinetic energy is obtained. For

the R/R annular diffuser, the conservation of angular momentum principle is

inherent in the performance of the diffuser and substantial recovery is

obtained simply by radius ratio in the recovery of the tangential , swirling

velocity component. In this case, the direction of tangential velocity

component and the orientation of the surfaces is such that a stabilization of

the wall layers does not result; and, instead, the possibility exists that a

boundary layer may be skewed in an undesirable direction. Thus the

principle effect of swirl is changed so that it works extremely well in the

core flow angular momentum exchange, but it is a disadvantage in the wall

shear layers.

Wheeler and Johnston (1971) reported the first detailed, and perhaps
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only, study of the calculation of boundary layers in an R/R annular diffuser

using a finite difference calculation method and various eddy viscosity

mixing length modeling techniques. The investigation showed that first-

order modeling of the basic integral parameters of the boundary layer could

be achieved but that the calculation was extremely sensitive to the iteration

between the core flow and the boundary layer, that is to the value of core

pressure distribution.

2.3.6 Inlet Distortion

Inlet distortions have a pronounced effect on the performance of the

vaneless diffuser. Inlet distortions include both distortions in the shape of

the steady flow velocity field (either the tangential or meridional velocity

components) and also variations with time. From the study by Senoo, et a1.

(1977), It may be observed that the shape of the initial velocity profile

distortion is propagated well into the diffuser and has a significant impact on

the onset of back flow or a skewed boundary layer separation.

2.3.7 Reynolds Number Influence

Comparatively little data has been achieved showing the impact of

Reynolds number on the R/R radial annular diffuser performance.

2.3.8 Inlet Mach Number Effect

Only limited data showing performance of the R/R annular diffuser at

different Mach number levels has been obtained. The data from Faulders

suggests that the fall-off of Mach number is mild up to and including modest

transonic Mach numbers.
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2.3.9 Inlet Turbulence Intensity

No studies have been located on the R/R annular diffuser where the inlet

turbulence intensity has been measured and/or systematically varied. Ellis

did present a very brief paper arguing that induced vorticity at the inlet to the

vaneless diffuser explains the shifting of stall zones from one side of the

diffuser to the opposite side. By considering some velocity triangle

distributions and the implied inlet vorticity, the author attempted to explain

why the stall zones shift from one side to the other.



CHAPTER THREE

One-Dimensional Inviscid method

for Flow physics prediction

. /
u *le r3

Diffuser

Impeller r

Fig. 3.1

Elementary view of flow velocities in vaneless diffuser

From the above figure, we see that the vaneless diffuser is the space

between the compressor rotor exit and the compressor discharge opening.

The flow leaving the compressor impeller has a high kinetic energy and

29
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since we are interested in the pressure delivered from the compressor, we

use the vaneless space to transform the high kinetic energy into an additional

pressure.

To estimate the change in the different parameters involved we can use

different methods ranging from very simple (classroom) to 3-Dimensional

computer modeling. We shall start by presenting one of the simple methods

in this chapter and then move on to more complicated methods.

In the simplest approach to one-dimensional methods, the introductory

(classroom) method is the most simple and less accurate method.

3.1 Classroom Method

we start with the conservation of angular momentum equation

Cu r = cons tan t

As we expect from the compressor behavior, that the tangential velocity

decreases as the radius increases and pressure increases respectively from r2

to r3. This equation can be easily plotted given a range of the radius from 1

to 2 and an initial tangential velocity of 80. The result is shown in figure

3.2. To predict the change in the radial velocity, we have from the above

 

figure that

C

tan or = —“—

r

or, rearranging

C

c = u
1' tan 0t

a plot for this relation is shown in Figure 2. As shown from Figure 2, from

the continuity equation

pCrA = constant
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Radial velocity vs. the area
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as the area increases and the density increases the radial velocity decreases

respectively and the kinetic energy transforms to pressure energy.

3.2 Point (*) approach:

Another approach for the one dimensional method is to specify a point

(*) in the vaneless diffuser passage at which place the flow has a sonic

velocity i.e. Mach number=1,

We denote the radial position at which M=1 by r* and all properties at this

position by (*)

C r = C cos 0t

continuity equation

prC cosot = p*r*C* cos (1*

Angular momentum equation

rCsin = r*C* sin of“

From appendix (B), we obtain

_L

tan (1* = tanoc[—2——(l + (1:)M2 ”7-1 (1)

7+1 2

which is a relation between the angle alpha, alpha*, and the Mach number .

a*can be evaluated by substituting or = or and M = M which are set at

2 2

design.

Further substitution renders

1

at: . a: ——

- 2r srna =M 2 (“(7 lezj (2)

r srn or y + 1 2

to determine r* substitute r=r2 and M=M2,

In Figure 3.3, we have a relation between r*/r vs. the Mach number. From

this figure, we can deduce that as the radius increases over the sonic position
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Radius ratio vs. Mach number
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(*) the Mach number drops and the flow becomes subsonic, which results in

the conversion of kinetic energy into pressure energy.

also Figure 3.4 shows the change of the angle alpha with the Mach number,

we have a change of about 30 degrees over a Mach number range of 1, as we

can see from the figure starting from our initial condition that the angle

alpha increases drastically as the Mach number decreases that is in the

vaneless space.

3.3 Integration of the momentum equation approach :

Another approach is that starting with the equations of momentum in

the r and 9 directions and the equation of state

CraCr _ Si 1 ar

8r r p 8r

B__Cu Cu
Cr 791:— + Cr +1 = O

by combiningrthese equations we obtain

c.a—S: =-%%—‘§
which becomes

a: + crrac + cuacu =

Assuming the flow is adiabatic and frictionless we deduce from appendix(1)

 

-1.

[1:]? a_p+cracr+cmacu =

P2 P2 RT2
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Change in angle alpha vs. Mach number
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which by integrating yields the following equation:

I

—1
P 7—1 2 C2 Y
— = l+—M l——

(P2) [ 2 2[ 02]]

Figure 3.5 gives the result of plotting this equation, and as we can see that

the pressure drops as the velocity increases or vice versa, which is expected

in a diffuser since the main purpose is to increase the pressure at the account

of the Kinetic energy.

By using the velocity triangle relations and substituting into the above

equation we obtain

7 — 1

’Y _

[i] =1+12—1M2(1—rzsin2a 2
__ —2
AD cos a2)

P 2 2

2

when plotting this equation we have too many parameters, we can eliminate

one by assuming incompressible flow so that the change in density is

negligible and Tau=1

we plot this relation for a radius ratios of 1.4 and 1.6.

From Figure 6 and 7 we can see that the more space in the vaneless diffuser

the more pressure recovery at the diffuser exit for different flow angles.

Also, the higher the inlet Mach number (impeller exit) the higher the kinetic

energy and hence the higher the conversion into pressure head.
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CHAPTER 4

ONE DIMENSIONAL VISCOUS APPROACH

In radial and mixed-flow centrifugal compressors, the vaneless diffuser is

an annulus duct immediately following the impeller and of increasing radius;

in the direction of flow. The high tangential velocity of the fluid entering

the vaneless diffuser from the impeller decreases with increasing radius and,

because the tangential velocity is generally the largest velocity component at

the impeller discharge, the vaneless diffuser is an effective means of

diffusing the fluid, that is, of converting the velocity head to static pressure.

The principle by which this conversion is affected is demonstrated by the

case for frictionless flow in the absence of heat transfer. For this case, and

assuming that flow conditions are uniform in the tangential direction, the

moment of momentum of the fluid is constant so that

Cu r = constant (1)

from which as the radius (r) increases the tangential velocity (Cu) decreases

and therefore the pressure rises.

Among the advantages of vaneless diffusers is the fact that choke occurs

only if Cr (radial velocity component) is sonic. This condition usually

corresponds to such high flowrates that choke flow occurs in the impeller,

instead of the diffuser as is the usual case for vaned diffusers. The

40
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compressor operating range is therefore wider with vaneless diffusers.

Another, and perhaps the most important advantage of the vaneless

diffuser is the fact that if the tangential velocity at the impeller discharge is

supersonic, the tangential velocity decelerates from supersonic to subsonic

velocities without shock losses.

In order to analyze the performance of vaneless diffusers and in order to

design these diffusers for optimum performance, it is necessary to have

adequate theoretical methods to predict the variation in flow characteristics

through the diffusers. These methods should include the effects of diffuser

geometry, compressibility, heat transfer.

Differential equations are developed that relate the change in dependent

variables with radius to the design and operating characteristics of the

vaneless diffuser.

Velocity components:

The velocity (C) at a point on the mean surface of revolution is tangent to

the surface and has components Cu and Cr in the r and 9 directions

respectively.

C= i/Cfi + C? (2)

The flow direction 0!on the mean surface of revolution is related to Cu and

Cr as follows:

C

tanor = C—‘r‘ (3)

from which

Cu = Csinor (4a)

CI = Ccosoc (4b)

Fluid particle

A fluid particle on the mean surface of revolution has the dimensions
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rd 9 and dr on the surface of revolution and the height b normal to the

surface.

Method of Solving

The state of the fluid at any point (r and 9) on the mean surface of

revolution is described by three thermodynamic properties, by the fluid

velocity and the flow direction. These five properties can be determined

from five fundamental relations:

Continuity.

Equilibrium in the direction of Cr (radial equilibrium).

Equilibrium in the direction of Cu (tangential equilibrium).

Equation of state.

The heat transfer equation.

In addition to these five fundamental relations certain definitions are

required to express the resulting equations in terms of the desired properties.

The properties that will be used in this analysis to describe the state of the

fluid will be the static pressure p, the static density p , the total temperature

To, the local Mach number M, and the flow direction or.

Mach number

The local Mach number M is defined by

C2

rR*T

where 7is the ratio of specific heats, R* is the gas constant and T is the local

M2: (5)

static temperature. By differentiating equation (1) we obtain

1dM2__l_dC2__1_d_T (5a)

M2 dr (32 dr Tdr
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Total temperature

The total temperature To is defined by

2

To = T + C— (6)
2Cp

where Cp is the specific heat at constant pressure. By differentiating

equation (3), we obtain

7-1 2

142-111.. ( 2 )M 1 Mr 

 

__ 2 (6a)

To dr Tdr (1+7 1M2)M d’

from equations (2) and (4), we obtain

2 2
1 dC_= 1 1 dM +_1 d_To (6b)

(37 dr l+7;le M2 dr Todr

Continuity equation

The continuity equation for compressible flow in vaneless diffuser

pCrrb = constant

from which

1 _c_l_p+1 (1C, 1 1 db

pdrC dr+r+bdr=0 (7)

Equilibrium Equations

Radial equilibrium

The equation for radial equilibrium of a fluid particle in the direction

of Cr is obtained from a balance of the pressure forces, shear forces and

 

inertia forces(Appendix 2).

2
_1_ dP+ CfC COS“ =c2 —C d_C_ (8)

pdr+ b r r dr

Tangential equilibrium

The equation for equilibrium of a fluid particle in the tangential
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direction is obtained from a balance of the shear forces with the force

required for acceleration(Appendix 2).

2 .

c C srna

f dCu+CuCr
 

— b = Cr dr r (9)

Equation of state

The perfect gas equation or the equation of state is as follows:

P =pRT (10a)

from which we get after differentiation

1dP_1dT+1d_p (10b)

FE—TE 5 dr

Heat transfer equation

The heat transfer rate to the diffuser must equal the heat transfer rate from

the fluid. The heat transfer rate from the diffuser casing is given by

dQ=2h'(rw —To)2rm1r (11a)

where h' is the coefficient of heat transfer, Tw is the wall temperature and

dQ is the heat transfer rate.

The heat transfer rate from the fluid is given by

dTO

dQ=pCr27trbcp—d;—dr (11b)

equating both equations together we obtain

dT I T

__L__0= 2h W_1 (110)

T0 dr pCrbcp TO

 

an approximate value for h' can be obtained from Reynolds' analogy between

friction and heat transfer

h’ _ C_f

cppC 2

 

substituting for h' into equation (11c) we obtain
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l dTO_CfseCa Tw_1 (12)

7? dr — b TO

which gives the change in total temperature with radius as a function of the

skin-friction coefficient and the ratio.

A review of the equations up to this point indicates nine unknowns and nine

equations for the analysis method.

The unknowns are P,p, T, TO’M’ C, Cu,Cranda

We will combine the nine equations to obtain three equations involving three

unknowns; T0, M and Of. These three differential equations can be

combined to solve for T0, M and a successively.

Auxiliary differential equation

An auxiliary differential equation for the pressure P in terms of To, M anda

is obtained from the equilibrium equations

1 dP 1 6C2 Cfsew
 

 
  

——=-——-—-- (13a)

2 P 2 r 2
but C =—C x—= M 13bP RT 7 VP ( )

1 dP __7M2 1 1 sz 1 (”0 2};

prz dR* 2 1+Y-%M2 M2 dR* TO dR* Hcosa

(13c)

where

r

§=cf[—T-] (13d)

bT

P=———

p0

R*=—f—

r'r

where P0 is the compressor inlet total pressure, rT is the impeller tip radius
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and bT is the effective diffuser height at the impeller tip.

  

  

Total temperature

dT ' T r

1 2 = 2h W - 1 —T— (14a)

using Reynolds' analogy

dT T

1 0 = E W — 1 (14b)
T0 dR* H cos or T0

Mach Number

In order to determine the differential equation for the Mach number squared

it is first necessary to express the second term of the continuity equation (7)

in terms of known variables. From radial equilibrium equation (8) together

with equations (4) and (13b).

1 dCr _ tanza _ secza l dP Cf seca

”Crdr r YMZPdr b

  (15a)

from continuity equation we express the first term as a function of known

variables by the equation of state together with equation (6a)

total temperature equation

— 1

1 (”0 ldT Y AMZ 1dM2

“'r_dr=7r’E+ 7—1 2 2 dr0 1+ /2M M

Equation of state

 

—1
1dp_1dP 1dT0+ 7 5M2 1dM2

pdr Pdr T dr ”Pl/210,2 M2 dr

 (15b)

which after substituting into the continuity equation yields
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F

7-1M2 1

2 1 dM2_ 1 (”0

1 dP —7M2 1+1;M2 M2 dR* TOdR’l‘

PdR* 7M2 —sec20t

 

 

E 1 dH secza

— +— +

_ Heosoc HdR* R*

   

  

 

which combined with equation (13) to eliminate fl)- *

dR

 (1+7M2 —tan2 or

—1 2
1 dM2_—2(1+Y /2M)

M2 CIR," M2 —sec2 or

 

 

 
(15c)

This equation determines the change in Mzwith radius R along the mean

dT

surface of revolution in terms of ——9—, which is known from equations

0

(14a) and (14b).

Flow direction

The differential of the flow direction is obtained from equation (4a)

1 (1 tan a _ 1 dcu _ 1 dc 1'

tan or dr Cu dr C r dr

  

which from the tangential equilibrium equation (9) and equation (15a)
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becomes

1 dtanor_se02011dP _se020t

”tana dR* — 7M2 FdRa: Rat:

  

and from equations (13c) and (150)

  

 

  

_ dT ‘

(1+1—1MZJ—L—%+

1 dtanor_ secza 2 TOdR >

tanOt dR* Mz—secza 2 1; 1 dH M2

1+ —1 M ) -—-————
.( (Y ) Hcosa H dR* R* J

Equations (14a), (14b) and(15c) are three differential equations that can be

solved

simultaneously for T , Mzand or.

0

Pressure

After the variations in T0’ M2and or with radius R* are known, the pressure

P can be obtained from the continuity equation

[31C1 cosorerbT = pC cosarb

where the subscript 1 refers to known conditions at the diffuser inlet. From

the equation of state and from the definition of Mach number

P

_1_ -2
T M1 T1 cosorerbT — TMx/Tcosoub

1

finally from equations (6) and (13e)

7-1 2

C080. M T0(1+ M1)

33—: 1 1 1 2 (17b)
:1: _.

P1 RHcosa M T (1+7 1M2)

01 2

 

 

Equation (17b) determines P from the known conditions at the diffuser inlet

and from the known values of T0, M2and or determined by the

simultaneous solution of equations (14a), (14b), (15c) and (16).
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Flow Path

The flow path on the mean surface of revolution in the vaneless diffuser can

be obtained from the known variation in tana with R* given by the solution

 

 

of equation (16).

R*do
tan or = dR*

or (K: = tan or (18)

dR R*

because the angle alpha is a known function of R, equation (18) determines

the flow path.

Influengs ggeffisient

In some analysis problems it may be convenient or desirable to solve

directly for one or more of the other dependent quantities rather than To,

M"2, and alpha. Also, in the design problem, it may be desired to specify

one of these quantities as a function of R and solve for the required value of

1/I-l*dH/dR. For these cases the change in the dependent variables P, Rho,

T, C, Cr and Cu with radius R along the mean surface of revolution, as well

as the change in To, M"2, and alpha, must be expressed in terms of the

known quantities 1/T0*dT0/dR, g —1— 9g —1- which quantities are

H cosa ’ H dR ’ R

multiplied by influence coefficients. Thus, if X is any one of the dependent

 

 

variables,

(MZ—secza)l§=l (1+1'—1M2)—1—d—T—9+1 g
XdR 1 2 To dR 2Hcosoc

ldH 1

+1 ——+1 —

3HdR 4R

where 11 through 14 are influence coefficients that are determined in the

same way that equations (15c) and (16) were developed. The influence

coefficients for various dependent variables X are given in the following
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table:

Tabble l-Influence coefficients

x Influence Coefficients

Ir I2 13 14

2

P 7” 11+ <7-1>M217M '7”: ‘Wzmz"

p secza A42 (7secza- tanza) —M2 -Mzsecza

M2
_ _ 2T 1&2“ (y_ 1)M2(7M2_m2G) (7 1)M2 —(7- l)M286c a

2 2 _ 911 (7-1) 2 (7— 1)
M tana 1 2(1: 2 M2) 2(l+—2—M") 2(l+—2—M2)

4M2 (1.. mm) 5.3.

c:2 —2 2 [maze-7M2) 2 2 secza

q -secza Mzban‘a—7seczaj secza secza-i-Mltanza

Cu 0 sec a-—M2 0 seczot—M2

tana seczot sec‘a[1+(7—1)M2] -secza —Mzsecza      

Small stage efficiency

mean surface of revolution in a vaneless diffuser is defined as the ratio of the

ideal (ignoring friction and heat transfer) to the actual differential change in

static enthalpy with radius required to accomplish the actual differential

change in static pressure with radius. This definition leads to the following

The small stage or polytropic efficiency at a given radius R on the

expression for the small-stage efficiency 11.
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1‘13.

.1: PdR 2 (20a)

PdR 7—1 2 To dR Hcosor

Equation (20a) indicates that in the absence of heat transfer (dTo/dR=0) and

friction (§=0), the small-stage efficiency is 100 percent. Also, for heat

transfer from the fluid to the diffuser walls, (1/T0*dT0/dR) is negative and

therefore results in an apparent increase in the small-stage efficiency. Thus,

in the presence of heat transfer, the small-stage efficiency, as just defined, is

not a good measure of the performance of vaneless diffusers in that it is not

a measure of the magnitude of the losses involved. In the absence of heat

transfer (dTO/dR=0) and equation (20a) reduces to

1";(M2 - sec2 or)

 n = 1 — (20b)

 

2
2 2 ) dH Hsec or

7M —tan or —cos0t +

g( [dR R J

Numerical Procedure

In the analysis problem , the variation in fluid properties with R are

determined for a specified geometry of the vaneless diffuser. In the design

problem, the variation with R in one of the fluid properties is prescribed and

the remaining fluid properties together with the variation in diffuser height H

with radius R are determined.

In both approaches we shall use MATLAB to solve for the different

parameters, given the three unknown equations (14a) or (14b), (15c) and

(16). We shall first solve for the three unknowns To, M"2 and the angle

alpha.

For this numerical example R varies from a value of 1 to a value of 2.
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After the distribution of To, M"2 and the angle alpha with R Have

been determined the distribution of P, p , T, C, Cu and Cr can be determined

from equation (17b) and (4), (5), (6) and the equation of state (10a).

MThe flow path on the mean surface of revolution in the

vaneless diffuser is given by e as a function of R along the surface.

Because tanoc is a known function of R, the flow path (O=(~)(R)) can be

determined by the integration of equation (18) assuming 6:0 at R=1.0.

Design Problem

In the design method, the variation in effective diffuser wall spacing

with radius is determined for a prescribed variation in one fluid property.

For efficient diffuser designs the selection of the one fluid property and its

optimum prescribed variation will depend on viscous flow effects that are

considered in boundary-layer studies.

In the design problem the variation in H with R is unknown and must be

determined to satisfy a specified variation in one characteristic of the flow

(Cr, for example) with R.

For this specified variation in one characteristic of the flow fig can

be determined. Again using Matlab, we solve for H as a function of R, with

H=1 at R=1.

Numerical Examples

The numerical examples are divided into two groups:

1- effects of some operating conditions

2- vaneless diffuser design problem

The first group of numerical examples shows the effects of heat

transfer and friction on the flow in vaneless diffusers. Three numerical

examples are given:
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- Isentropic compressible flow

- Compressible flow with friction

- Compressible flow with friction and heat transfer.

t n ' ' n :

For the first group of numerical examples the flow conditions at the diffuser

inlet (R=1.0) are:

P1 = 3.022

M12 = 1.37

(To)1= 941 °R

(tan «)1: 3.829

These conditions were estimated for the following design and operating

conditions of the impeller :

Compressor flow coefficient, (1) 0.75

Impeller tip Mach number, MT 1.5

Impeller slip factor, 11 0.9

Impeller polytropic efficiency, 11 0.9

Compressor stagnation inlet temperature, To, ° R 520

Diffuser gesign:

The design characteristic of the diffuser are :

Passage height 1/R

Wall temperature, Tw 750

Friction parameter, E 0.03

Results

The results of the first group of three numerical examples are given in figure

(4.1). In Figure (a) the change in Mzwith R is shown for the three

numerical examples. The effect of friction is to reduce Mzat each R, and
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the effect of heat transfer from the fluid is to increase M2 slightly (primarily

because of the reduced speed of sound at the lower temperature) for the

magnitudes of To and Tw involved in these examples.

In Figure (b) the change in P with R is shown. As expected the

effect of friction is to reduce P at each radius (primarily because of the

decreased values of Cu, which require a smaller pressure gradient for

equilibrium). The effect of heat transfer from the fluid is to raise P slightly

or the magnitudes of To and Tw involved in these examples.

In Figure (c) the change in flow direction awith R is shown. The

effect of friction is to reduce or because Cu is reduced and Cr is increased to

satisfy continuity with lower density due to lower P. The effect of heat

transfer from the fluid is to increase or slightly because of the reduced value

of Cr resulting from the increased value of p.

In Figure (d) the flow path in the vaneless diffuser is shown. The

effect of friction is to shorten the flow path because Otis decreased (figure

(c)) . The effect of heat transfer is to lengthen the path slightly.

A Vaneless Diffuser Design Problem

The second part of the section on numerical examples is a simple

vaneless diffuser design problem. The design variable in a vaneless diffuser

is H: H(R), and the design problem will be to determine H(R) for a

prescribed variation in Cr.

For purposes of demonstrating the design method it is assumed that the

deceleration of Cr, is the criterion for boundary-layer separation in a

vaneless diffuser , so that a safe rate of deceleration is
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5 dC

——L = —0. 05
C dr

r

where 8 is proportional to the boundary-layer thickness. For purposes of the

design example we assume 5 is equal to b/2, which is the effective thickness

of a fully developed boundary layer in the vaneless diffuser. Thus,

mm“,
 

Cr dR rT

and

1 dCr_ 1

"CTR“?

r

if b—T is equal to 10. Because of the assumption involved, this specified

T

dC

variation in j— with H may have no practical significance with regard to

vaneless diffuser performance and has been selected only to demonstrate an

application of the design method. It should be pointed out that design

variations in H affect primarily the velocity component Cr and through this

component the flow direction or.

Inlet cgng'tigns

The impeller design and operating conditions are the same as for the first

group of numerical examples and so the diffuser inlet conditions are the

same

P1 = 3.022

M12 = 1.37

(TO)1= 941 o R

(tan (1)1: 3.829
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mm

The variation in H with R is to be determined. Heat transfer effects are

neglected, and the value of the friction parameter is the same as for the first

group of numerical examples(0.03).

Mtg

The results of the design problem are given in Figure (4.2). In the figures is

shown the variations in H, -Cl— an, M2 , P, on and n with radius R. as

r

dC

specified , E—at is equal to -1/H. In order to accomplish this variation,

r

H at first decreases with increasing R and then increases to approximately its

initial value at R eqUal 2. The variation in on with R was slightly more than

3 degrees so that the flow path is approximately a logarithmic spiral.
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CHAPTER FIVE

Order of Magnitude analysis

&

Validity of the one-dimensional model

In this chapter, we shall present the full set of equations and conduct

an order of magnitude analysis, to determine whether the terms canceled

based on our previous assumptions could affect the solution.

We shall first start by presenting the continuity, r-momentum and

G-momentum including the unsteady term due to the start-up:

Mass equation a a

1 l

;$(rcr)+;%(cu)=o.o

r-momentum

 

 

 

a la 192Cr
2 _ __ rC _

3%....(3 £+Cu acr_Cu =_§£+ ar(rar( r))+r2 392

at I' at 1' 89 I' at 2 ac

__ u

_ r2 89 

66

 



67

B-momentum

   

 

 

we non-dimensionalize the equations with the following scaling

Cu*=Cu/2 nan)

t*=t/ts

R=r/b 0 *= 92 1t

Cr*=Cr/Cs P*=P/Ps

we need to use the equation to tell us Cs,Ps

Substituting into mass we obtain

 

 

C81 6 121mm1 au
___( v) _ _ =

b RaR b 21: 1139*

01'

C *

Ali RV*)+iau =0

awRBR R80*

to keep both terms we must have

C:s
— as 0(1)

are

which gives

C =aco

s

Now substituting into r-momentum
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a0) 8v + aza)2 3v + 21ta2m2 11 av 41t2a2m2 u2 1 PS BP*
  

tsar* b vaR 21th Rae b R pb 3R

vfli(li( V} am 32v_2a(o21t13u

b2 3R RBR 41:21)2 392 2an R2 39*

 

  

we now divide by 4n2a2m2 /b

bavlavluavu2 P331”
+ v +— — —

41t2acotsat* 41t2 3R 41:2Rae R 41:22:2me 3R

6 [ii(Rv))+;§3:_;i
8R R311 4,,2 392 R2 39*

  

+ v

41t203ab

 

 

Now let us look at the B-momentum

21mm Bu 21ta2m2 8v +411:2a2(o2 u Bu

——+

ts at’“ b vaR 21th R39

F21mm) 3(1 3 ) 1

+

  

 

-—(RU)

+2na2w2vu PS BP“ b 3R
RBR

_— +V 2

b R 21tpr 39 21mm 3 u 2am 8v

2 2 2 + 2'5“
-41: b as 2R1tb 9-

21ta2rl)2

 

 

  

Now divide this equation by

b an 3.. u an vu PS aw
—+ —+——+—=— +

acotsat“ Van R39 R mzpmzR ae

  

(nab 8R RBR 4,,2 392 2an ae

 

Now to decide on which equation to use to scale the pressure and the time.

First note that each momentum equation would give us a different

expression for ts and Ps if we simply set the coefficients equal to one.
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In the O-direction we would expect that the time rate of change of

momentum would be balanced with inertia and viscous forces, but not

necessarily the pressure. Since the inertia terms are of order one we make

 is of order one and t = b

arms
3 A0)

1

We note that the last two terms of the viscous term are of order—-—2, and

41;

can be neglected.

For Ps, we consider the r-momentum equation, and note that inertia can be

balanced with the pressure term. Then

Ps 2 2
2 $2 isoforderoneand PS=41t a pa)

41: a pro

 

l .

note that the transient term becomes of order—2, and all the VISCOUS terms

41;

of order %n , %{e so they can all be neglected.

Our scaled equations become :

continuity:

18u_
Rv

R1315")+ R86

r-momentum:

i_ a_P
R ER

G-momentum :

at vaR Rae R=ReBR RaR

From these scaled equations, we can see that our previous assumption

that there is no variation of any of the properties with time(steady state),

proved to be partially wrong and that there is a time dependency of the
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tangential velocity which will affect our results to a certain degree.

Also our assumption of asymmetric flow, there is a variation of the

tangential velocity with the 6 direction which also adds some inaccuracy in

our model.

Further study in that area is recommended to investigate to what extent

our one dimensional model' s results vary from that of a two dimensional

that includes all the time and tangential variations that were not previously

included in our model.



CHAPTER SIX

Summary of Results and Conclusions

This chapter concludes the work with a summary of the findings and a

statement of the conclusions.

Summary

The work shows some simple means for flow predictions, some of the

methods presented earlier in this work are very simple because most of the

affecting terms were eliminated by assumptions and are only good for

classroom purposes.

In later chapters,analysis methods have been developed for one dimensional

model that takes into account the compressibility, friction, heat transfer, and

area changes in vaneless diffusers. In the analysis method, the variation in

fluid properties, including the velocity and flow direction can be determined

as a function of radius for a prescribed variation in diffuser height with

radius. In the design method, the variation in diffuser height and all fluid

properties except one can be determined as a function of radius for a

prescribed variation in the one fluid property. For efficient diffuser designs

the selection of the one fluid property and its optimum prescribed variation

will depend on viscous flow effects that are considered in boundary-layer

7 1
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studies.

Three groups of numerical examples are presented in which the effects

of friction, heat transfer, and diffuser height are investigated; and a simple

design problem is presented. As a result of these examples it is concluded

that:

1- Heat transfer from the fluid has the opposite effect of friction on

pressure rise in vaneless diffusers and is therefore to be desired. On the

other hand, heat transfer to the fluid has the same effect as friction and is to

be avoided.

2- If the friction coefficient is unaffected by the diffuser height, and if

flow separation does not occur, the diffuser efficiency is slightly improved

by increasing the diffuser height.

3— With relatively low friction coefficients and neglecting mixing

losses at the impeller tip, the friction losses in most vaneless diffuser designs

are considerable, as indicated by computed diffuser efficiencies in the low

80's , and these losses result from the usually large ratio of wetted surface to

flow area in vaneless diffusers.
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APPENDIX A

Momentum in the r-direction

Cracr _ C3 _ 1 aP

8r r par

Momentum in the (*)-direction

 

8C C

Cr ‘51; + CI —I'l1- =

_C_u _ dCu

r _ ar

reduces to

911 _ _ acu

r - 3r

Substitute (1) into (2)

BC BC 1 3p
__1' J= __

Cr 81- + Cu at at

which becomes

8P
F+cracr + cuacu = 0

the flow is adiabatic and frictionless then ds=0, and
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or

1

p2 =_RT2 P2

Substitute into (3) to obtain

but we have

cracr + CuBCu = %d(C? + (2121) = %d(C2) = CdC

Integrate from P/P2=1 to P/P2, and from C2 to C

P

r— _l C
I2(1>)yd(1>)=_ICdC

_=1 2

P2

evaluate at the end points

_ 'Y _ 1 _

_L _P_ Y _ ___1_ 2_ 2
y-l (P2) 1 ‘ 2RT2(C C2)

  

Further reduced

 



with

C
M:—

w/yRT

finally becomes

7 1

L - Y__-_1 2 C2 Y—(P2)_[l._2 M,[. 3]] .1.

Recall from velocity triangle

~C2=C2+C2

. C2 = C2 + c2
2 r2 U2

also from continuity equation with the diffuser thickness (b) as a constant

-C = ——(3 =rC

r 9 r2 r2

 

D

where l. = _r_

D r

2

from the velocity triangle at the impeller exit (diffuser inlet)

0 Cr2 = C2 smut2

0 Cu2 = C2 cosor2

substituting into equation (8) we get

7 _

i. =1+——Y1M2(1-‘I:2 sin2 or - 7:2 cos2 0t )
1:2 2 2 2 2

Consider the vaneless space between r2 and r3, with a constant b
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from Continuity

prCr = const

Angular momentum conservation

Cur = const

Usually the flow leaving the impeller is supersonic M2>1, and the flow

leaving the vaneless diffuser is subsonic M3<1.

Denote the radial position at which M=1 by r* and all properties at this

position by (*)

Cr =Ccosoc

continuity equation

prC cosor = p’r‘C' cosa'

Angular momentum equation

rC sina = r*C* sinr

Dividing (3) by (2)

tan or = tan or’“

*

o 9

Assuming frictionless adiabatic flow ds=0

Talc p* Y-1

7%?)

 

From the energy equation

 

for the case of M=1



2T

T = ——0
y + 1

back to

Tar: par: 7‘1

_T— = [—9—]

rearranging

_L

p- -

1 2 7—1 ]
1+— —1M

p 7+1 TO

l... ..

  

  

Recall

 

substituting (3) into (7) we get

_1_

tanor = tana*[i[1+[Y—_—1)M2 H151 (8)
7+1 2

(1*can be evaluated by substituting or = or 2 and M = M2 which are set at

design

also from (3)
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substituting for T/T*

1
3k . 3k _—

— 2

——rSin“ =M —2(H(L1)M2] (9)
rsmor 7+1 2

to determine r* substitute r=r2 and M=M2

to determine or 3 from a known M3 use equation (8)

to determine r3 from a known M3 and 0t 3 use equation (9)



APPENDIX B

By definition of the Mach number

2

M2 = C... (5)
7R T

Differentiating both sides of the equation with respect to r

2
:1: (1C :1: 2dT

T———— c —

dr 2

 

 

(WT)

Dividing both sides by C"2

2
*

(YR T) M2 _ 7R*T dc2 _ 7R*Td_T

(:2 dr (:2 dr T dr

  

weget

1 sz 1 dc2 ldT
 

= _ __
5a

M2 a. C2 dr T dr ( )

By definition of the total temperature

To=T(1+Y—2——1M2) (6)

Differentiating both sides of the equation with respect to r

 

_ _ 2

fl=(1+—71MZJd—T+1‘(Y 1) 1 W
dr 2 dr 2 M2 dr

79
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Dividing both sides by T(l + 'Y_;1_ M2 )

(7-1) 2
—— M

_1__dT° = ld_T + 2 (6a)

_ 2Todr Tdr (1+71M2)M dr

 

from 5

 

 

  

from6a

7-1 2
— M

_1_d_T_1dTo (2) 1c1M2

‘77—" _ 2Tdr Todr (1+71M2JM dr

2

from5,6a

7-1 2
— M

1dC2_1dM2+idT_o_(2) lsz

c2 dr M2 dr Todr (1+y_;_l_M2)M2 dr

rearranging

( (7-1)2\

1c1C2 1dM21_ 2 M +11110

2 _ 2 -
C dr M dr \ (1+7 1M2) To dr

)

 

  

 

simplifying

_1__d£2_= 1 1 “War—Lg (6b)
C2 dr ”YT—IMZ M2 dr To dr

From continuity equation we have

pCrrb = constant

Differentiating both sides of the equation with respect to r
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d(pC,.rb) = 0

dc

%rE(rCrb) + —dr_r(prb) + $(pCrr) + pCrb = 0

Dividing both sides by pCrrbwe obtain

dC

ld_p+_l__£.+.l_+-l__d_b.=0 (7)

pdr c dr r bdr

The differential pressure forces (opposed to the direction of Cr) are equal to

the differential change on the end forces on the particle minus the

component of the differential side forces on the particle in the direction of

Cr.

dP
Differential pressure forces = (P + Edrjrdeb - Prd8!)

= 21: rdrdGb

dr

where the component of the differential side forces in the direction of C1-

(last term in the equation) is equal to the pressure P multiplied by the

projected area (in the direction of Cr) of the side surface of the particle.

The differential shear stress (1') on a diffuser wall is opposed to the direction

of C and is given by

2

T = C EC—

f 2

where cf is the skin friction coefficient. The differential shear forces in the

radial direction on the fluid particle in Fig. are opposed to the direction of

Cr and act on both walls of the diffuser.

Differential shear forces = 2Trd®drcosa

 

2
= 6 PC

f 2

= przrdercosa

2rd®drcosa
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The acceleration of the fluid particle in the direction opposed to Cr is made

2
C

up of: 0 the component of the centripetal acceleration _u_

I'

dC

0 the negative of the acceleration 7r-

differentiating with respect to r instead of t

. dCr =dCr gzc dCr

dt dr dt T dr

The differential force required for acceleration of the fluid particle becomes

 

-=mxa

- =pV x a

(23 dcr . . .
- =pbrd®dr — — CrF (drfferentlal force requrred for

r

acceleration in a direction opposed to Cr).

the sum of the differential pressure force and the shear forces must equal the

force required for acceleration

 

2
C dC

' l-d—Pbrd(-9dr + c pC2rd®dr cosa = pbrd®dr[—u — Cr _r]

p dr f r dr

dividing both sides by (brder)

we get the equation of radial equilibrium

p dr b r r dr

To get the tangential equilibrium equation

the differential shear forces = 2trd®dr sin or

substituting for the shear coefficient

2

9: 2rd®dr sin or 

Cf

which gives
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cprZrdersinor

the tangential acceleration of the fluid particle opposed to the direction of Cu

consists of

0 the negative of the tangential acceleration

C

dt r

0 the negative of the Coriolis equation

 

 

2C C

u r

r

But

E El}. -ldcu_gu_$

dt r r dt r2 (it

changing the dependency of the right hand side of the equation to r instead

of t

1[C0]=lfc_u$_529£
dt r

rearranging

d C C dC C

_ __u_ = r u _ u

dt r r dr r

substituting into the equation

d [Cu] 2Cucr {Cr dcu _ CrCu ]_ 2CuCr

  

  

 

dt r r r dr r2 r

rearranging

d C 2C C dC C C

...1-_ __L1. ___1l_£_=_c __i- u f

dt r r r dr r

Acceleration is defined as

mxa
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or pV x a

   

   

substituting for each term

C

—pbrd®dr[ r r ]

equating the accelerationtoCthe differential shear force

—pbrd@dr[Crd:—+—urcr]=cpr2rd®dr sinoc

we finally get

2 .
c C sm or dC C C

_ f = C u + u r (9)

b r dr r

Equation of state

P = pRT
(10a)

differentiating with respect to r

dP =de—T+TRd—p

dr dr dr

Dividing both sides by pRT

we get the differential form of the equation of state

1 dP _ 1 (IT +_1d_p

35-5-7; p dr “0")

Heat transfer equation:

The hate Transfer rate to the diffuser casing is given by:

dQ = 2h’(Tw — TO)27rrdr (11a)

where (h') is the coefficient of heat transfer, Tw is the wall or diffuser casing

temperature, and dQ is the heat transfer rate.

The heat transfer rate from the fluid is given by:

dT

dQ= pC 21trbc ——0dr (11b)
p dr

equating both equations together
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dT

 

 

, _ _ 0
2h (TW T0)211rdr—pCr21trbcp _dr dr

rearranging terms

1%: 2h’ Tw -1
TO dr pCrbcp TO

substituting (h') from Reynolds's analogy

I C

h = _f_

cppC 2

from which the equation becomes

1 dT0 =cf seca[Tw _1]

0

  

TOdr b T

developing an auxiliary equation

from radial equilibrium equation

 

rearrange

C r = C cos 0:

we have

C

-—11—=sinor

C

rearrange

Cu =Csinoc

substitute into the equation

(11c)

(12)
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f

. ldP c C2cosa_C2

”pdr b r

- 2
sm d_Ccosad(Ccos0t)
 

 

from tangential equilibrium

2 .
—ch smut=C dCu+CuCr

b r dr r

substituting for the velocities

c C2 sinoc . 2 .
_ f =Ccosord<csma)+c smorcosor

b dr r

Dividing by : sin or cos (x

  

   

we get

2

_ch _Lsfigfi
bcosa 2 dr r

from the radial equilibrium equation

sin2 0: 1 2 C2

——cos 0t—

dr

 

l_d_P_+ch2 COS“ _C2

p dr b r

dividing by : sin2 a

2
1 (IF CfC C080. C2 1 2 dC2

  

  

  

2 — 2 -———cot 0t—

psin 0rdI bsin or r 2 dr

C2

substituting for — from the radial equilibrium equation

r

2 2
1 dP ch costx ch 1dC2 1 2 dC2

—+ =——-—————cot or—

psinzordr bsinzor bcosa 2 dr 2

xsinzaweget

2 2 - 2
1 dP CfC COS“. CfC Sln a _ldcz Sin2 a 1 2 dcz

   ——cos 01——

p dr b bcosor 2 dr 2 dr
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rearranging

1dp ch2cosa ch2sin2a 1dC2 .2 2

——=— - - (sm oc+cos a)

pdr b bcosa

simplifying

._1_£__°r02( 1 )_1d<12
”pdr b cosoc 2 dr

dividingbyC"2

1 dP 1 dC2 Cfsecoc

_f_z— 2 - (13a)

pC (11' 2C dr b

but

2 P 2 Y 2
C =—C x—= M 13b

. 1 £__ 1 (1C2-cfsec0t

YpM2 dr 2C2 dr b

from equation (3)

de2_ 1 1dM2+LdTO

2 _ -1 2 2 dr T drC dr 1+Y /2M M 0

substituting

1 dP 1 1 1 sz 1 dTo cfseca

2_=" -1 2 2dr+T—dr _ b7PM dr 2 1+7! /2M M o

rearranging ,we obtain

1 dP 7M2 1 1 sz 1 (”0 2g

——*‘=-— _1 2 2 * + * + (13c)

PdR 2 1+1! /2M M (1R TO dR Hcosa

$04111] (13d)
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Total temperature

1 dTo = 211' [Tw 41:11]

To dR* pCrHcp TO bT

using Reynolds' analogy

11’ =31

cppC 2

1 (”0: E Tw_1

TO dR* Hcosa TO

  

 

  

Mach number

from the continuity equation

2 2

C 33; = 81.313. Cfc “’5“
r dr r p dr b

 

 

r df r P df bcosza

dividing by Cr

1 dCr _ tanza _ 1 dP _cfsecoc

Crdr r pcgdr b
  

but, from the equation of state

P

zifi

and expressing pC? = pC2 cos2 CL = yPM2 cos

we get

1 dCr _ tan2a_sec20t1dP cfseca

”CI. dr 1‘ YMZPdr b

  

(13e)

(14a)

(14b)

(15a)
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Total temperature equation

1

_1_dT__o__ _1_d_T 7/M2 1dM2

TO dr Tdr 1+Y-/M2 M2 dr

equation of state

1 dP_ l dp+ l_d_T

substituting into the total temperature equation

7%M2 1 dM2

T dr -Pdr pdr+1+Y—1/2M2 M2 dr

dT 7’1 M2 2

/2 1 M (15b)

continuity equation

ldp 1 dC ldb +1
+—

pdr Crdr bdr r

 
 

 

ldp 1 dCr
substituting for—— and —— into the continuity equation

pdr Cr dr

1

_1_§§__1___“0 Y/2M2 1dM2+tan20t_sec2a_l_d_P_

Pdr TO dr01+'Y—%M2 M2 dr r 7M2 Pdr

c seca

f _1_d_b+l=0

b bdr r

grouping terms together



 

b

to get the final result

.1 «IF _ -vM2

PdR* yMZ—secza

 L

‘Y-_}é;hdflz

1+Y“%M2 M2 dR* To dR*

_ i +
Hcosa HdR*

 

-

1 dTO
1 M2

 

8602 (X

R*

1cm
  

 
which combined with equation (13) to eliminate é—dgz, finally gives

dR

_ v—1 21 dM2_ 2(1+ /2M)

M2 dR* M2 —sec2 on

  

Flow direction

C

taunt:—u

 

F-

 

dT

- tan2 a
 (1+1IM2 )2T0 dR

é
 

+(yM2 — tan2 a)
 

(150)

  

  

 



  

 

 

from equation — f = u r u

b I dr r

dC c C2 sinoc C C

u =__ 1 f + r u

dr C b r

1 dtana_sec20tl dP _seczoc

"tan“ dR* YMZ PdR* Ran:

_ dT

(”lszli—Q

  

1 dtana _ sec2 at 2
._ 2 E _l_ dH M

tana dR* Mz—secza +(1+(Y—1)M )Hcosa_HdR* _ R*

  

 

 
(16)

To find an expression for pressure

plC1 cosonerbT = pC cosarb

substituting

P

_1_ -3
T1M1 T1 cosozerbT — TMx/Tcosarb

 

 

 

wefmallyget

P_ 1 coson1 M1 TO(1+1‘;_1M12)

F1_-R"‘H 008“ M T01(1+1;—1M2) (17b)

FlowPath

was“?

d9 :30:
 dR* R* (18)
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