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ABSTRACT

DYNAMIC TIME STEP ESTIMATES FOR

TRANSIENT FIELD PROBLEMS

By

Rabi Hassan Mohtar

Parabolic equations govern a variety of time dependent problems in science and

engineering. Space integration of the field equation produces a system of ordinary

differential equations. A common problem during the numerical solution of these

equations is specifying a time step that is small enough for accurate and stable results and

still reasonable for economic computations. This is a challenging mathematical problem

that is yet to be solved.

This study presents an experimental approach to estimate the time step that

integrates the field equation within 5 % of the exact solution. Time step estimates were

determined and evaluated for one-dimensional and two-dimensional linear square ele-

ments. A section is also included on the effect of shape and size of two-dimensional

quadrilateral elements on numerical stability.

Time step estimates were determined for four numerical schemes for one-dimen-

sional problems and three finite element, and three finite difference schemes for two-

dimensional problems. Comparisons between finite element and finite differences as well

as correlations with the Froude number were conducted. The time step estimates are



functions of grid size and the smallest eigenvalue M. For some problem an initial mesh

is required to evaluate M.

The results indicates that the finite element and finite difference methods are

identical in one-dimensional problems and have similar time step estimates. These two

methods had similar accuracy two-dimensional problems. The central difference schemes

were superior to the other schemes as far as the flexibility in allowing a larger time step

while maintaining good accuracy. Backward difference and forward difference schemes

were very close in their accuracy; the difference between the two schemes was attributed

to the stability requirement of the forward difference scheme.

The dynamic time step estimate for the central difference method was:

A, A N"18 = 1.13 for the one-dimensional problems, and A, A N055 = 1.6 for two—

dimensional problems, where N is the number of nodes in the domain.

The Froude number equivalence is defined as the Froude number that gives a time

step equal to the one computed using the presented regression equations. For the range

of problems presented in this work and for the central difference scheme the Froude

number equivalence ranges from 0.5 to 2.7 in the one-dimensional problems and 0.46

to 9.13 in two-dimensional problems.



Copyright by

Rabilkwsm1hdohmu

1993



DEDICATION

This work is dedicated to a person that gave and was never given, to my mother who is

still around me praying for my success and savior.

To the soul of

WADAD SAID MOHTAR

To her memory I write this arabic poem

azalfituuan.

éED‘DJHJaémJS‘WD.‘

Jagchlluflldamlul

éflkéésoéhwc

Wdeiié‘ach

wmajuéz

3e)!“ W J 3ft” 11-51.)?

gal u an. 3J5...» “J t,

1.1., 02.3.33 L. any“;

gauze-2 £13:- 31 L. J55

9-3; uh“; 4,313.49 'wuu'' ‘1

This is also dedicated to my beloved father Hassan and the rest of my dear family

Sami, Samia, Asia, Salma, Nadia, Ramzi, Rifaat, Jihan, Lina, Hazar, David, Yasmeen,

and Samer.

Last but not least, a dedication to all who are suffering from oppression all over

the world particularly in the Arab nation.



ACKNOWLEDGMENTS

A special thanks to all of the smiling faces at MSU. A special appreciation to

those who help in ways they do not know about. To all of those I say keep it up folks.

A very special thank to Dr. Larry Segerlind for being a guide and a friend. Dr.

Segerlind was more than that. His exceptional cheerful personality is infectious to those

who work with him. His knowledge, wisdom and smile had a great impact on me.

Thank you Dr. Segerlind.

A great appreciation to all members of my guidance committee for their continual

support and trust in me. Thanks goes to Dr. Bralts for the time he spent advising me,

for his financial support during the first three years of my studies at MSU and for his

suggestions to ground my work to the agricultural areas. Thanks to Dr. Merva for

believing in me and for his teachings and the time spent correcting the dissertation. A

special thanks to Dr. Kunze for the long hours he spent with me teaching and researching

soil and water problems and for his in-depth comments on my research.

Appreciation to all friends, faculty and staff at the Agricultural Engineering

department especially Dr. von Bemuth, Lilian, Clara and all GSAG folks.

I would like to show gratitude to Gladis for her friendship and her successful

effort in keeping my faith in God healthy.

A special thank you to the I-Iarriri Foundation for providing me with financial and

moral support to come to the USA to continue my graduate work. Without their support

this was not possible.

A list of those that need to be thanked fills many pages, to all of you friends and

family a warm thank you, you are all in my heart.

vi



TABLE OF CONTENTS

CHAPTER ONE (INTRODUCTION)

Introduction

Application to the Agricultural Problems

CHAPTER Two (JUSTIFICATION)

Justification

CHAPTER THREE (OBJECTIVES)

Objectives

CHAPTER FOUR (ONE-DIMENSIONAL PROBLEMS)

Analytical Solution

Numerical Solution

Methodology

Time Step Estimate

Evaluation of the Time Step Estimates

Effect of Element Size on Accuracy

Comparison With Froude Number

New Scheme

CHAPTER FIVE (TWO-DIMENSIONAL SQUARE GRID)

Analytical solution

Numerical solution

Methodology

Finite Element and Finite Difference

Accuracy Ratio

Time Step Estimation Process

Results

Discussion

Finite Element and Finite Difference

Sensitivity of the Error to Time Step

Effect of Element Size on Accuracy

Comparison With Froude Number

Evaluation of the Time Step Estimates

CHAPTER SIX (THE EFFECT OF SHAPE AND SIZE ON STABILITY ...)

Mathematical Background

Methodology

Results and Discussion

CHAPTER SEVEN (SUMMARY AND CONCLUSION)

Recommendations

Future Research

REFERENCES

vii

page 1

page 1

page 3

page 3

page 5

page 16

page 16

page 20

page 22

page 24

page 25

page 29

page 38

page 46

page 49

page 53

page 56

page 57

page 58

page 59

page 60

page 62

page 68

page 69

page 79

page 79

page 86

page 87

page 87

page 92

page 106

page 106

pagelll

page 115

page 128

page 134

page 134

page 135



LIST OF TABLES

Table 4-1 Froude number equivalence for various A, values. page 54

Table 5-1 Number of eigenvalues and degrees of freedom for the various grid sizes

used in the derivative boundary condition problem page 97

viii



Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-11

Figure 4-10

Figure 5-1

Figure 5-2

Figure 5-3

LIST OF FIGURES

Graphical representation of boundary and initial condition for the step

change problem. page 27

Variation in the error ratio as a function of the time step and the number

of nodes for the central difference scheme. page 31

Actual and regression curves for the data points that gave accurate numeri-

cal results as good as ANODE for the central difference

scheme. page 33

Actual curves for the data points that gave accurate numerical results as

good as ANODE all schemes. page 35

A logarithmic plot representation of the data shown in

Figure 4-4. page 36

Performance of the estimated time step for the CD scheme and N=16 grid

problem for three different problems. page 44

Performance of the estimated time step for the derivative boundary condi-

tion 2 problem for the various schemes and N=16 grid. page 45

Effect of element size on accuracy represented by the variation in error

ratio as a function of number of nodes. page 48

Comparison between estimated time step and Froude Number for the

Galean scheme. page 51

Froude number equivalence changes with A. page 52

Calculated time step performance for the step change problem and theta

= 0.333. page 55

Changes of the error as a function of time step for GCD scheme and a

grid size corresponding to 1089 total number of nodes. page 70

Changes of the error as a function of time step for various mesh sizes

under GFD scheme. page 71

Changes of the error as a function of time step for various mesh sizes

under GCD scheme. page 72

ix



Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 5-11

Figure 5-12

Figure 5-13

Figure 5-14

Figure 5-15

Figure 5-16

Figure 5-17

Changes of the error as a function of time step for various mesh sizes

under GBD scheme. page 73

Changes of the error as a function of time step for various mesh sizes

under FFD scheme. page 74

Changes of the error as a function of time step for various mesh sizes

under CFD scheme. page 75

Changes of the error as a function of time step for various mesh sizes

under BFD scheme. page 76

Computed optimal time step as a function of N for the six

schemes. page 77

Computed optimal time step changes as a function of the number of nodes

for GFD and FFD schemes. page 81

Computed optimal time Step changes as a function of the number of nodes

for GCD and CFD schemes. page 82

Computed optimal time step changes as a function of the number of nodes

for GED and BFD schemes. page 83

Computed time step variations with the number of nodes for the three

finite element schemes. page 84

Computed time step variations with the number of nodes for the three

finite difference schemes. page 85

Computed time step variations with the number of nodes for GFD and

GBD schemes. page 88

Computed time step variations with the number of nodes for FFD and

BFD schemes. page 89

Finding a Froude number equivalence through best fitting the GCD time

step estimate equation and the Fr. time step estimate for a fixed boundary

condition and material properties i.e. fixed A]. page 91

Froude number equivalence changes as a function of A, for the six

schemes. page 93



Figure 5-18

Figure 5-19

Figure 5-20

Figure 5-21

Figure 5-22

Figure 5-23

Figure 5-24

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6—7

Figure 6-8

Figure 6-9

Figure 6-10

Froude number equivalence changes for the different schemes and

different values of A,. page 94

Error propagation with the time step for GFD scheme. Time steps are

reported as ratios of actual time step to the estimated one for the specific

scheme and grid used. page 98

Error propagation with the time step for FFD scheme. page 99

Error propagation with the time step for GCD scheme. page 100

Error propagation with the time step for CFD scheme. page 101

Error propagation with the time step for GBD scheme. page 102

Error propagation with the time step for BFD scheme. page 103

Shape parameter definition. page 113

Shape parameters values for some selected quadrilaterals. page 114

Effect of area on the largest eigenvalue for a square element. page 116

Effect of area on the largest eigenvalue for a trapezoidal

element. page 117

Effect of shape on the largest eigenvalue for a unit area. page 119

Effect of shape on the largest eigenvalue for an area of four. page 120

Comparative chart for some selected shapes as to their maximum

eigenvalue. page 121

Practical example 1 : dividing a rectangle into squares and

triangles. page 123

Practical example 2 : dividing a trapezoid into triangles. page 124

Comparison between a quadrilateral and a triangular element. page 127

xi



CHAPTER ONE

INTRODUCTION

A variety of time-dependent problems in the science and engineering fields are

governed by a class of equations called Parabolic Equations. In the engineering

literature they are often referred to as Difl‘icsion Equations. These equations have the

general form:

6U
_ = V. (1-1)cm k (VU)

where c is the capacitance coefficient, k is the conductivity coefficient and U is the

unknown variable: temperature, moisture content, pressure head, etc.

Equation 1-1 applies to transient heat conduction in solids, gas diffusion, flow of fluids

and transport of solutes in porous media, to name a few. The derivation of this equation

is included in almost every engineering and mathematics book dealing with the solution

of the above problems. Powers (1987), Ozisik ( 1980), Patankar (1980), and Churchill

(1987) are a few examples. Applying numerical methods, finite elements (FE) or finite

differences (FD) to (1-1), will change the time and space-dependent partial differential

equation (PDE) into a time-dependent system of ordinary differential equations (ODE’s).

This conversion is discussed in many books dealing with numerical solution of PDE;

Segerlind (1984), Smith (1985), and Narasimhan (1978). The ODE has the general form



[dig—l?- +[K]{U}—{F}={0} (14)

where [C] is the capacitance matrix coming from the transient term in the PDE, [K] is

the stiffness matrix coming from the second partial derivative with respect to space in the

PDE, and {F} is the forcing function. Since there is no source term in the PDE this

vector is zero before the boundary conditions are incorporated.

Finite element or finite difference methods are used to solve (1-2) in the time

domain. Although the FE methods shows clear advantages over FD methods in the space

domain for solving (1-1), this advantage does not extend to the time domain.

There are many schemes available in the literature for solving (1-2) in the time

domain. Many criteria are used to test these schemes including stability, oscillation, and

accuracy. Despite the fact that many authors have presented and discussed solution

procedures for the system of ODE’s in (1-2), there is a lot of art and experience involved

in selecting the proper scheme and the time step that is needed to reach an accurate and

stable solution particularly in two- and three-dimensional problems.
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APPLICATION TO AGRICULTURAL PROBLEMS

The process of diffusion is well grounded in the biosystem processes. This

section will briefly introduce some of the processes that are governed by the diffusion

convection field (1-1). These problems include but are not limited to:

Salt movement and accumulation around micro-irrigation emitters This is important

where the irrigation water contains salt that moves through the soil and eventually

accumulates at the fringe of the wetted region. The problem escalates where the

water used to flush the soil is limited. The same physical phenomena governs the

movement of solutes through the porus media to and through the ground water.

Water infiltration through the soil The fundamental water flow equation in the

unsaturated soil region is governed by a parabolic type equation known as

Richard’s equations.

Grain drying is also governed by diffusion The system here is governed by heat as

well as moisture transfer. Accurate numerical schemes are critical in the optimal

design of grain dryers. Parameters such as the time needed to dry the grain and

the rate of drying are critical in determining the dryer specification. The same

can be said about drying manure and other organic products.

Odor transport from animal housing bins The diffusion of odor through air is

parabolic. This is becoming more important as urbanization is expanding in to

existing farm land. The concentration of sulfur in the air as affected by structure-

induced turbulence in the flow is one good example.
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DOCUMENT LAYOUT

This dissertation consists of discrete chapters. Each chapter is a separate entity

containing introduction, methodology, results, and discussion. Literature citations for

all chapters are at the end of the dissertation. A general literature review (justification)

and conclusion for each chapter is included in the separate chapters.



CHAPTER TWO

JUSTIFICATION

There are more names than there are things

Anonymous

A complete literature search of published work on numerical solution of PDE and

their implementation is a huge task. The aim in this section is to show that among the

extensive published resources on the subject, there is a question that the authors have not

answered. This question is ”What is the time step value used in their numerical solution

to ensure stability, eliminate numerical oscillation, and ensure an accurate solution.

Although numerical solution of (1-1) and (1-2) are presented in numerous books

and technical articles, none of these publications explicitly answer the question stated

above. This section discusses some of the literature over the last thirty years. Citations

are concentrated on the finite element and finite difference literature.

The solution of the time dependent field problems using the finite element method

was discussed only briefly in early finite element books. Heubner (1975), discusses the

derivation of the capacitance matrix [C], for transient heat transfer but never discusses

the solution of the resulting system of ODE’s. Zienkiewicz (1971) and Segerlind (1976)

discuss the numerical solution of the system of ODE’s but do not discuss any of the

problems that can arise during the solution process and they do not compare the different

types of elements.
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More recent books give the time dependent problem greater coverage but could

be misleading to the inexperienced analyst. Allaire (1985), for example, concentrates

most of his discussion on Eulers’s single step explicit method with one-dimensional

problems because the calculations are easily detailed. This method is known to be

unstable (which Allaire discusses) and is not the most accurate of the single step

methods. Allaire dose not discuss any solution in two or three dimensions and makes

no comparison between linear and quadratic elements in the one-dimensional case.

Segerlind (1984) discusses some aspects of the numerical oscillations and physical

reality problems that can arise during the solution procedure. He warns the reader to

avoid using the quadratic elements because of physical reality problems but does not

detail whether the numerical problems are long term or short term and whether the errors

are significant.

Until recently, most application oriented books in heat transfer and groundwater

flow centered their discussion of numerical solutions on finite difference methods. Base

and length of presentations are in favor of the later method. Jaluria and Torrence (1986)

discuss the three node triangular finite element for solving heat transfer problems but do

not make any comparisons with a two dimensional finite difference solution. These

authors do not discuss any of the other types of two-dimensional elements. Their

discussion could lead one into thinking that the three node triangle is the most appropriate

for a numerical scheme. Segerlind (1984) indicated that the four node quadrilateral

element is superior to the three node triangle. The presentation in Jaluria and Torrence

(1986) can be contrasted with Patankar (1980) who limits the discussion of the finite
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element method to two pages and does not give any equations for the method. Patankar

also recommends the use of the backward difference scheme due to its ”friendliness" for

all values of time and grid size.

Shih (1984) has a chapter on accuracy and error bounds. Most of his discussion

analyzes the error bounds for different orders of the finite element method. Shih does

not discuss any estimate for At when solving time dependent problems. He also has a

chapter on the comparison of the finite difference and finite element methods. He covers

smoothness of the basis function, numerical instabilities, higher order accurate

discretization schemes and the incorporation of mixed boundary conditions. Shih does

not give any numerical results and concludes with the statement, "Much work remains

in comparing these two powerful methods in a rigorous and conclusive manner”. Shih

(1984), Jaluria and Torrence (1986) and Segerlind (1984) avoid explicit numerical

evaluation of the time step. They discuss stability and numerical oscillation problems but

none give a procedure for estimating the time step as it relates to the accuracy of the

computation. The typical scenario is to present a numerical solution procedure and

compare it with an analytical solution of the PDE using one or more time step values.

The authors, however, never said how they determine what numerical value of time step

to use. Dhat and Touzot (1984) comment that the time step value that eliminates stability

and numerical oscillations may not produce accurate calculations. They also do not give

any suggestions of how to select the time step value.

Gear (1971) and Seer and Bulirsch (1980) discuss the mathematical approaches

to determine a time step value. They define an error as being the difference between two
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solutions with time steps of At and At/2 to determine an appropriate step size. This

approach however, does not give much information on how to select a starting value for

At.

Myers (1977) discusses the critical time step for two dimensional heat conduction

transient problems. His discussion, however, centers on estimating the maximum

eigenvalue for use in the Euler stability criterion or the Crank-Nickolson oscillation

criterion of (At 5 2/maximum eigenvalue). Myers does not discuss the determination

of At as it relates to the accuracy of the integration.

Another approach for selecting At is to limit the maximum change in any nodal

value to a certain percent of its previous value. This approach is used in some

commercial finite element software when solving nonlinear problems. This method

suffers from the need to repeat the calculations if the time step is too large and also does

not give any information on how to select a starting value for At.

Reddy (1984) has a section on time dependent problems that is consistent with

much of the mathematics literature. Reddy describes the stability in terms of the roots

of the characteristic equations and the eigenvalues of the global system. Roots of that

equation should be bounded by one to avoid oscillations. For a structural dynamics

problem, he included an estimate for At that gives accurate solution: At = Tum/1', where

Tmill is the smallest period of natural vibration associated with the approximate problem.

According to Reddy, another estimate to At can be obtained from the condition that the

smallest eigenvalue of the characteristic equation be less than one.

Smith (1985) discusses the explicit Euler’s method for solving the non-
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dimensional form of (1-1). Smith rearranged the difference equation and defined a term

r = cit/(bx)? During the discussion of stability Smith stated that the explicit method is

stable for r values less than 0.5. The implicit Crank-Nickolson has the advantage of

being stable for all values of r. Smith recommends r=1 for an accurate solution for the

Crank-Nickolson method and discussed convergence and stability for some time stepping

schemes and gave time step expression that satisfy both criteria. There was no criteria

for selecting time step based on the accuracy. The term r defined by smith does not

include material properties since cp/k term was defined as one.

Allaire (1985) called Smith’s r term the Courant number. Allaire’s variable

included the material properties. In addition to illustrating stable and non-stable

schemes, Allaire defined an oscillatory stable scheme as having spatial oscillation that

eventually dies out with the solution converging to the correct steady state values.

Allaire showed the following criteria to be true for the single step methods:

0 < r S 0.25 No oscillation

0.25 < r s 0.5 Oscillatory and stable

0.5 < r Unstable (Euler’s method only)

The solutions given by Allaire have no indication of instability for values of r < 0.5.

Allaire discussed the weighted explicit implicit scheme. For Theta = 0, the scheme

reduces to the explicit method and has stability criterion of r < 0.5. He showed that the

Crank-Nickolson method and the fully implicit method are accurate for values of r up to

1.335.

Jaluria and Torrance (1986) defined Allaire’s (1985) Courant number as the
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Froude number, Fo. These authors suggested using values of F0 < 0.5 for the implicit

method although lower values gave better accuracy. They never give any example of

what the lower values should be.

One limitation to the use of Courant (Froude) number or the r term defined by

Smith (1985) is that the parameter does not change with the boundary conditions. Each

of the authors, Allaire (1985), Jaluria and Torrence (1986) and smith (1985) solved the

heat equation for a different boundary and initial conditions. They recommended

different values of the Courant (Froude) numbers.

Patankar (1991) presented a heat transfer computer program (CONDUCT). This

program uses the backward difference scheme to integrate, but Patankar never discusses

selecting a time step.

Wood (1990) gives an extensive list of time stepping schemes. His list included

most of the known schemes and some new one’s. He studied stability, consistency, and

oscillations where the term "time step" was mentioned at several places. For many of

these schemes numerical results were tabulated using various time steps and the

corresponding error was presented. The author showed that these methods were

consistent with the analytical solution. Wood also refers to the use of time step

adjustment where the time step changes every time step but never give any formula for

determining time step.

The mathematical literature introduces the concept of consistency as a prerequisite

condition to be satisfied by any scheme in order to be mathematically sound. Briefly,

this states that as At approaches zero, the error between the actual and simulated
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solutions should go to zero. What they do not tell us is how small At has to be in order

to satisfy a certain accuracy criteria.

Ortega (1990) defined and discussed three types of errors that are all associated

with the time Step: a) discretization (global) error, b) convergence error, and c)

rounding error. He did not indicate how to define the numerical value for the time step

that will minimize these errors.

Rushton and Tomlinson (1971) used the alternating direction approach as a

numerical scheme. They studied stability and found that for different boundary

conditions the Courant number, C, that generate accurate time steps changes. For a

sudden change of pressure head on the boundary, C should be less than 1.0. For a draw

down at a well C should be less than 0.05. For sudden change in discharge at a well,

C should be less than 0.5. The authors though, suggest a trial and error procedure for

selecting the optimal At value.

Henrici (1977) had an extensive discussion about the error propagation for the

difference methods in solving the PDE. His theoretical treatment did not include

discussion of the time step for accurate results.

Williams (1980) and Fried (1979) both studied the numerical solutions of PDE

and used the time step criteria that satisfied stability requirements. Williams used a term

equivalent to the Courant number and stated that it should be less than 0.5. Fried used

the stability criteria (At 5 2/maximum eigenvalue).

Haghighi and Segerlind (1988) solved the coupled heat and mass transfer

equations using the finite element method. They used Maadooliat’s (1983) non
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oscillation criteria as well as the physical reality conditions that Segerlind (1984)

discussed in his book.

Nripendra and Kunze (1991) presented a finite element solution for temperature

distribution in a storage bin. They used the Crank-Nickolson scheme for the time

domain. They presented comparisons between numerical and exact solutions. There was

no mention of time step in their paper

Irudayaraj (1991) and Irudayaraj et. a1. (1990) applied the finite element method

to the solution of a coupled heat and mass transfer problem. Both papers used the

stability criteria for selecting the time step. There was no check whether this time step

ensured accurate results. The authors’ result did not agree with experimental data in the

literature. The stability criteria of was used by Liu et. a1. (1984). These authors used

a modified Runga Kutta method to solve the parabolic system. Their work did not

discuss solution accuracy.

Peraire et. a1. (1988) studied finite element solution of fluid flow. They used the

Courant stability criteria of (At 5 K*he/u+c), where c is local sound speed, he is the

average element length, u is the velocity of fluid, and K is a constant.

Alagusundaram et. a1. (1991) applied the finite element method to model the

diffusion of carbon dioxide in grain bins. Their results were off compared to the

measured values. They listed several reasons for this discrepancy. They did not mention

how they determined the time step. They did not even state what time step value they

use. They did not state whether the size of the time step might be one reason for the

inaccuracy of their calculation.



13

Wood and Lewis (1975) studied seven different finite difference time marching

schemes. They compared methods based on an accuracy criteria. The authors related

accuracy to oscillations and stability. They determined the critical non oscillatory time

step for the Crank-Nickolson (C-N) based on the maximum eigenvalue. They showed

numerically that when increasing the time step beyond the critical time step oscillations

occurred. Wood and Lewis observed inaccurate values in backward difference scheme

for some time step values. They did not state that accuracy is a separate consideration

in numerical solution of parabolic equations and needed to be addressed and that the time

step needed to be adjusted accordingly.

Cleland and Earle (1984) studied the freezing time of food material using six

finite difference methods. They ensured accuracy by reducing the time step until the

numerical results converge to a consistent value. They encountered a stability problem

and a physical reality violation that they called "jumping" of the latent heat peak.

Although there is evidence of accuracy in their solutions, there is no evaluation of a time

step expression that could be translated to other problems.

Abdalla and Singh (1985) simulated the thawing of food using the finite element

method. They presented comparisons between analytical and predicted values. However

they did not state what time step value they used.

Segerlind and Scott (1988) were among the first to deal with the time step

estimates from the accuracy perspective. They presented a time step estimate for one-

and two-dimensional problems that produce accurate results. They did not give any

derivation for their estimate and stated that much of it is based on their experience.
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They did not Show any evidence that their time step estimate really works. However,

they have stated an important observation that the oscillation criteria is too conservative.

The time step requirement is excwded by a factor of two before oscillation were

observed.

Ne-Zheng Sun (1989) studied numerical solutions for the coupled groundwater

flow and advection-dispersion equation. He applied a variation of the linear finite

element method and compared his solution with analytical ones. No indication was given

as to what time step was used in his analysis.

Scientists reporting new time stepping schemes seem to discuss stability, and

oscillations only. Accuracy is an important criteria in numerical solutions and was not

given enough, if any, attention. Yu and Heinrich (1987), Segal and Praagman (1986),

Fong and Mulkey (1990), Riga] (1990), and Schreyer (1981) used the stability time step

requirement (At < C h2/2), where C is the thermal capacitance when performing a

numerical solution for the heat conduction equation.

Shu-Tung Chu and Hustrulid (1968), and DeBaerdemaeker et. a1. (1977) did not

define a time step estimate when they discussed numerical solution of the diffusion

equation. Scott (1987) uses the following arbitrary accuracy criteria At=(time to steady

state)/100. In other words Scott assumes that running the problem for 100 time steps

should be sufficient to ensure stability and accuracy. Although this estimate might be a

good starting point for some problems, there is no justification for its use nor any

experimental work that back this claim was given.

Maadoliat (1983) studied stability and physical reality oscillations of the finite
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element numerical solution. He concluded with a set of conditions that must be satisfied

in order to avoid both numerical problems and recommends a time step estimate

accordingly. He did not consider the accuracy criteria.



CHAPTER THREE

OBJECTIVES

Based on a review of the literature, there is a compelling need for establishing a

sound estimate of the time step value that satisfy stability, non oscillations, as well as

accuracy criteria. This should eliminate the trial and error procedure in attaining a

reliable numerical solution.

The most known about the theoretical error estimate is the order of its power

relation which is method dependent. In other words, the error is the product C h”, where

C is a constant, p is the order of accuracy of the integration scheme, and h is the grid

size. Theoretically and for single step methods, p is two for central difference and one

for the other schemes. Practically, these values of p might be far from those theoretical

values and they change during the course of computations (Baker 1993). Without an

analytical expression that quantifies C and its variation with time step this relation is

useless. A complete analytical approach to finding time step estimate that is practical and

applicable to a variety of problems is a tedious and may be an impossible task. Some

of the approaches discussed in chapter two focusing on evaluating a theoretical error term

could be a challenging and probably an amusing mathematical exercises but are not

functional engineering tools to evaluate a time step. This research uses an experimental

route that may not be at the same level of sophistication as the mathematical approaches

but sufficient to yield applicable and far more useful estimate for a time step that

16
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accurately integrates the PDE in (1-1). This ability to estimate an accurate time step

becomes extremely important for a non-experienced user that has limited physical

understanding of the problem being solved.

The parameters and/or factors that will affect the numerical solutions of (1-1) are

numerous and all need to be considered. Some of these factors and/or parameters are:

- the dimension of the problem: one, two or three.

- the level of time stepping scheme/s: two, three, or four.

- the time stepping schemes for a particular level.

- the type of capacitance matrix: lumped or consistence.

- the space and time discretization: finite element or finite difference.

- type of element: linear, quadratic,

- problem selection including appropriate initial and boundary conditions.

The other important parameters that affect the dynamics of the transient solution

are space and time steps, number of nodes, number of elements, minimum and maximum

eigenvalues, time to steady state, shape of element for two or more dimensions.

The number of options are numerous and need to be narrowed down in order to

manage the problem. Some authors have shown that two level finite difference time

marching schemes are superior to three or four level time schemes. Wood and Lewis

( 1975) and Shayya et. a1. (1991), Segerlind (1987) and (1992) are examples.

Segerlind (1987) performed a preliminary study on selecting a time step value.

His findings are the basis for redefining the objectives of this research. Segerlind studied

the accuracy of determining the global system of ODE’S eigenvalues. He studied two
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types of oscillations; amplification factor oscillations, and physical reality oscillations.

Segerlind then studied accuracy and gave a rough estimate for the time step. The main

concepts learned from his study are:

- accuracy of eigenvalues does not imply a solution accuracy. This observation put less

value on the need to accurately estimate the full set of eigenvalues.

- when solving time dependent problems, the linear element is preferred to a quadratic

element.

- lumped capacitance matrix is superior over the consistent matrix formulation.

- finite difference time discretization is superior to the Galean finite element time

discretization.

The following restrictions were incorporated in this study:

- use finite difference two level (single step) time marching schemes: Euler, Crank-

Nickolson, Galerkin, and backward difference.

- use lumped capacitance matrix.

- use linear elements in one-dimensional problems.

- use square bi-linear elements in two-dimensional problems.

The following initial and boundary conditions were considered:

Initial conditions: sine wave, linear variation, and uniform value with a step change at

each end at time zero.

Boundary conditions: Dirichlet type and derivative boundary condition.
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The overall objective of this research was to develop a time step estimate for

solving (1-2) that satisfies an accuracy criteria, satisfies stability requirements and

to recommend a numerical scheme to be used for this equation.

The specific objectives for the study are:

1. Develop a time-step estimate for each numerical scheme that satisfies an accuracy

criteria for one-dimensional linear elements and two-dimesional square elements.

2. Develop recommendations on the solution of the parabolic partial differential equation

based on the first objective.

3. Compare and analyze the time step estimate of objective one with a commonly used

time step criteria such as the Courant or Froude numbers.

4. Compare the accuracy of the finite element and finite difference space formulations

for two-dimensional problems.

5- Study the effect of element size and shape on the maximum eigenvalue for two-

dimensional four nodes quadrilateral elements. Comparisons with the three node

triangular elements and recommend which elements to use in transient two-

dimensional field problems.



CHAPTER FOUR

ONE-DIMENSIONAL FIELD PROBLEMS

Parabolic differential equations governs a variety of time-dependent problems in

science and engineering. One-dimensional field problems have the following general

form

122 =1) 1‘]. (4.1)

" 6X2 ‘ at

Equation (4-1) applies to a transient heat conduction in solids, gas diffusion in air,

flow of fluids and transport of solutes in porous media, to name a few. U is the

temperature in a heat conduction problem, pressure in a flow problem, or concentration

in a solute transport problem. The material properties D, and Dt could be lumped into

one variable (D, / D.) commonly referred to as the thermal diffusivity in heat transfer

problems, 0:.

Applying numerical procedures such as the finite element (FE) or the finite

difference methods (FD) to (4-1) with its boundary and initial conditions changes the time

and space-dependent partial differential equation (PDE) into a time-dependent system of

ordinary differential equation (ODE’s) as in Equation (4-2).

where {U} is the vector set of the unknown nodal values, [K] is the stiffness matrix, and

20
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mag” + [K].{U} - {F} = {0} (4,2) 

comes from the second partial of U with respect to x, [C] is the capacitance matrix, and

comes from the time dependent term in the PDE, while {F} is the force vector, comes

from the source term in the PDE as well as the boundary conditions. All matrices are

global and built from element matrices using the standard stiffness procedure, Segerlind

( 1984).

The global matrices [C] and [K] are positive definite symmetric matrices. [K] is

singular before boundary conditions are imposed. The matrices [C] and [K] are built

from element contributions whose coefficients depend on the type of interpolation

function used to solve the problem. Two types of capacitance matrices, [c‘°’], and the

stiffness matrix, [k‘°’], for the linear one-dimensional element are summarized in (4-3).

The lumped capacitance matrix comes from using a weighing coefficient in the Galean

derivation of [c‘°’] different from the one used to develop [k‘°’]. The same weighing

functions are used to obtain both [c‘°’] and [k‘"] in the consistent formulation. Although

many investigators indicated that both capacitance matrices have comparable accuracy,

there are some disadvantages associated with the consistent formulations pertaining to the

stability of the numerical solution, Visser (1965), Wilson and Nickell (1966), Brocci

(1969), and Zienkiewicz (1977). Other capacitance matrices have been proposed, the

average and the optimum, Segerlind (1987).
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Linear Element Matricies

Capacitance

Consistent - [cm] _ D, h 2 1

' 6 1 2

_D'h 1 0
(4-3)

Lumped
: [C (e)] =

O 1

Stifi‘ness

D 1 -1
(e) = 1

[k 1 T [-1 1]

Analytical Solution of the System of Ordinary Differential Equations

The system in (4-2) can be solved analytically using modal analysis, Cheney and

Kincaid (1985) and Potter and Goldberg (1987), a summary of which is presented here.

The method was programmed and used to compare the analytical solution of PDE and

the numerical solution of the system of ODE’s.

Multiplying (4-2) by [C]'1 gives:

3f}? + [K']{U} - {F'} = {0} (*4) 

where:

[K'] = [C]'1 [K]

{F'} = [C]" {F}

The solution of (4-4) is obtained by assuming a solution of the type:

{Um} = {a} e'“ (*5)

and substituting it into (4-4). The result is the standard eigenproblem
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([K'] - A [11) {U} = {0} “'6’

where A is the eigenvalue and {U} the associated eigenvector. Since [C] and [K] are

symmetric and positive definite all the eigenvalues are real, positive and distinct and the

associated eigenvectors are also real and linearly independent.

If we define [E] as a matrix whose columns are the eigenvectors of

([K‘]-A[I]){U} ={0}, then [B]1 [K’][E] = [A] , a diagonal matrix whose values are the

eigenvalues of [K‘], Strang (1976). The [E] matrix is used to uncouple the system of

differential equations.

Define a new vector of nodal values {Z} as {U} = [E]{Z}, then 3{U}/6t = [E]

6{Z}/6t. Substitution into (4-4) and multiplying by [E]1 yields

{2'} + [A] {z} - {F‘}={0} (*7)

Since [A] is a diagonal matrix, the system of linear differential equations has been

uncoupled in the new variable {Z}. An individual equation in (4-7) has the form

Zr+xin-fr=0 (4.8)

with a solution of

z,(:) = b; ‘V + {:1 (4-9)

1

where bi is determined using the transformed initial conditions, {2(0)} = [E]" {U(0)}.

The final solution is a linear combination of the Z,(t) solutions
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(1,0) = Ele(t) + 15,2220) +... + Efinzno) (4—10)

the modal analysis approach is seldom used because of its extensive computations. It is

used in this study to evaluate the analytical solution of the system of ODE’S.

Numerical Solution of the System of Ordinary Differential Equation

Numerically, finite element or finite difference methods can be used to solve (4-2)

in the time domain. Although the finite element method shows clear advantages over the

finite difference method in the space domain this advantage does not extend to the time

domain, Segerlind (1984). There are many time domain schemes available in the

literature for each method. Several criteria are used to test these schemes including

stability, oscillation, and accuracy.

The numerical solution for the ODE’s is usually confined to the single step

schemes defined by

([Cl+04t[K]){U}2 = (IO-<1—0)Ath1){U}.+At(0{d.+<1-0){F}.) (4'11)

where

0 = O is the Euler scheme

0 = 0.5 is the central difference scheme

0 = 0.67 is the Galean scheme

0 = 1.0 is the backward difference scheme

0 = 0, 0.5, and 1 are associated with the finite difference method, while 0 = 0.6667 is

associated with the finite element method, Segerlind (1984).
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The central difference (CD) or the Crank-Nickolson scheme is second order

accurate in time compared to the other single step schemes that are only first order

accurate in time, Gear ( 1971). The central difference scheme has been shown by many

authors to be an accurate and stable scheme for solving (4-12).

The Objectives for the One-Dimensional Study are:

1. Develop a time-step estimate for each numerical scheme, of (4-1 1), that satisfies an

accuracy criteria.

2. Develop recommendations on the solution of the parabolic partial differential

equation based on the first objective.

3. Compare and analyze the time step estimate of objective 1 with a commonly used

time step criteria such as Courant or Froude numbers.

METHODOLOGY

The main criteria for the numerical schemes used in this research was accuracy.

Stability and oscillations were not a direct primary part of the study. The accuracy

criteria must satisfy any stability requirement for the numerical scheme under

consideration. This section will present the methodology for developing a time step

estimate equations that will integrate the ODE accurately.

The analytical and numerical solutions of the system of ODE’s were compared

to the analytical solution of the PDE for the unit step change problem. The step change

problem was selected because its analytical solution contains all the frequency
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components and has the shortest time to steady state.

The initial conditions for the step change problem are

u(x,0) = 1 0 S. x s 1 (4-12)

with the end points satisfying the boundary conditions

u(0,t) = u (l,t) =0 t > 0 (4-13)

These conditions are shown in Figure 4-1.

The analytical solution for the step change problem is

on

u(x,t) = [42 1 (sin(2n+1)wx)e“(2’“”"")]

1.0 (MI)

(4.14)
 

The comparisons between the numerical and analytical solutions were made using

an accuracy error ratio, e, defined by

 

)3 2 INoDE, -APDEU|

e = j-l M (4.15)

2 )3 IAODEg-APDEyI

j-l i-l

where NODE is the numerical solution for the system of ODE’s, APDE is the analytical

solution for the PDE, AODE is the analytical solution for the system of ODE’S, n is the

sampling point in the space domain, m is the sampling point in the time domain. The

accuracy ratio is based on the assumption that the numerical solution of the system of

ODE’s must be as good as analytical solution of the ODE’s.



27

U(x,0) = 1, 0 <= x <= 1

U(0,t) = U(1,t) = 0, t > 0

Initial Values 1
 

   

Figure 4-1. Graphical representation of boundary and initial condition for the step

change problem.
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The accuracy ratio in (4-15) is a ratio of two L1 norms where each norm is

evaluated for a set of points in the space-time domain. Other definitions of the error

ratio were studied including the L2 and the Lou norm. These ratios resulted in a less

accurate estimation of the time step through out the process of defining a time step

estimate. The infinity norm was less conservative than the L1 norm in some cases, but,

underestimated the time step in other cases.

The sampling point locations in the space dimension were at each node. The

sampling point locations in the time dimension were at or very near 2.5, 5, 10, 20, 40,

and 80 percent of the time to steady state (t,,) where t,, was defined as

t = (416):3.
rs A,

where Al is the lowest eigenvalue for the system. This eigenvalue was evaluated

numerically (JACOBI method) or analytically when an analytical solution was available.

The definition in (4-16) comes from e’“, the first term in the analytical solution

which lasts the longest as t increases; when Alt = 4, e4 = 0.018, and over 98% of

the transient has been completed.

An existing one dimensional finite element program was modified for the use in

this investigation, Segerlind (1987). The computer program evaluated the analytical and

numerical solutions for the PDE and the ODE’S as well as the eigenvalues for the

eigensystem of (4-6). The program evaluates four different capacitance matrices

including the lumped and the distributed (consistent) matrices. The lumped formulation

and a linear element was used in the current investigation. The analytical solutions of
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the PDE (APDE) as well as the numerical solution of the ODE (NODE) were checked

against similar problems found in the literature Smith (1985) as well as hand calculations.

All tests indicated that the computer programs used in this investigation were

programmed correctly.

Time Step Estimates

The specification of the time step to overcome oscillations and physical reality

problems has been addressed by many authors, Segerlind and Scott ( 1988), Ortega

(1990), and Ortiz and Nour-Omid (1986). The time step specification is complicated by

its dependency on the grid, boundary and initial conditions. It also changes with the time

stepping scheme used. In order to estimate the time step nwded to numerically integrate

the PDE accurately, a numerical experiment was conducted. In this experiment the step

change problem with the linear lumped capacitance matrix and D, = D, = 1, were used.

Eight different uniform grids, each with a different number of nodes (N) in the region

[0,1] were analyzed. For each N, the time step was allowed to vary generating a series

of numerical scenarios. Each scenario was characterized by time step, N, initial and

boundary conditions, material properties, and the numerical scheme. The L1 norm for

the difference between the APDE and NODE for all nodes at each sampling point was

computed. A similar L1 norm for the difference between APDE and AODE for all

nodes at each sampling point was also computed. Each L1 norm was the sum of 6 by

N values of the difference between APDE and either AODE or NODE. The value of

six comes from the fact that there are six sampling points in the time domain, and N is
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the number of sampling points in the space domain. The error ratio defined earlier in

(4-15) and used in this investigation is the ratio of these Ll norms. Each case, defined

earlier in this section, produced one error ratio value. Varying N and time step for a

certain case creates a set of points that fits a parabolic distribution curve. A sample

curve for the CD scheme is shown in Figure 4-2. Similar graphs were generated for the

other three single step schemes of (4-11). A common feature among these results is that

as the size of the time step was increased for a particular N, the error ratio increased.

In other words, the accuracy of any scenario improves as the time step gets smaller.

Nevertheless, there is a time step below which the accuracy improvement for any

scenario does not justify the extra computation generated by reducing the time step. The

time step at which the computation is considered at an acceptable accuracy was set at 5 %

error level. This means that the NODE solution is allowed to deviate 5% from the

AODE. The time step corresponding to this accuracy point was found from direct

numerical experimentation values and could be recognized from a blown up version of

Figure 4-2. This figure shows that as N increases the time step should decrease to stay

accurate. It also shows that the relation between time step and accuracy for a certain

mesh is a non-linear power function.

The time step value that gives numerical results that are as good as the AODE

within the 5 % error tolerance was recorded for each case. The data sets corresponding

to N and the time step were found to be fitting a power function of the form At=aN",

where a and b are parameters to be determined.
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Changes in Error Ratio As A function of Time Step And

Number Of Nodes For Theta = 0.5
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Figure 4-2. Variation in the error ratio as a function of the time step and the number

of nodes for the central difference scheme.
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The power relation can be linearized by taking the natural logarithm of both sides. The

variables N and At were then regressed to find a best estimate for the time step as a

function of N. The linear regression equation was then transformed into its non linear

power form by taking the exponential of both sides of the regression equation.

Since the time to steady state is related to the smallest eigenvalue, this eigenvalue

was incorporated as part of the regression equation. This means that instead of

regressing the time step against N, the product of At and A, was regressed against N.

This allows the time step estimate to vary with the boundary conditions as well as the

material properties. Including such parameters into the At estimates makes this estimate

dynamic.

Figure 4-3 shows the set of data points, corresponding to the time steps that gave

numerical results as accurate as the AODE, along with the time step prediction regression

equation (4-18) for the central difference scheme. It shows that for N > 7 the relation

between N and time step can be considered linear. There are two regions separated by

the N = 7 that can be regressed linearly and independently. This means separate

equations for each region. Two independent time step prediction equations for each

scheme depending on the mesh is not appealing from the application point of view. In

addition, since the objective was to obtain a single estimate two separate equations was

not desirable. A similar regression equation was developed for each scheme. The

division at N=7 was noticed for all schemes. Furthermore, the AODE solution was not

accurate for N < 7. Therefore, the time step estimate was developed only for N > 7.
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Time Step That Give Numerical Results As Good As
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Figure 4-3. Actual and regression curves for the data points that gave accurate numerical

results as good as AODE for the central difference scheme.
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Figure 4-4 shows a plot of the set of data points corresponding to the time steps

that gave numerical results as accurate as the AODE for the four schemes. The central

difference scheme was able to accommodate a larger time step for a particular problem

and still maintain high accuracy. This is not true for N < 7 where the Galerkin schemes

is superior. Due to scaling factors the other three schemes appear to be lumped together.

A closer look of the figure shows that the Galerkin scheme is next best in allowing larger

time steps for a certain problems and while maintaining a certain accuracy. The other

two schemes, backward difference and Euler show comparable behaviors.

Figure 4-5 shows a natural logarithmic scale of the data in Figure 4-4. It was

included to show the parallel trends in the 0 > 0.5 and 0 < 0.5 schemes. Euler and

central difference scheme have similar powers that makes them run parallel lines on a

log-log scale. They have different coefficients. Similarly, the backward difference and

Galerkin schemes run parallel but with different coefficients. This behavior may or may

not have any significance. 1

The time step prediction equations that were developed as described above for

the step change problem using the four single step integration schemes are shown in (4-

17) through (440).
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Time Step Values For Numerical Results That Are As

Accurate AS Analytical ODE
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Figure 4-4. Actual curves for the data points that gave accurate numerical results as

good as AODE all schemes.
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Time Step Values For Numerical Results That Are As Accurate As

Analytical ODE
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Figure 4-5. A logarithmic plot representation of the data shown in'Figure 4-4.
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Euler Scheme _ .27N-1.6

At - x, (447)

Central Difference _ 1.13N'1-‘8

A’ ‘ ———>\l (4-18)

Galerkin Scheme _ 70N '3-79

A’ ‘ A, (4.19)

Backward Difference _ 30.6N'3-9‘

A’ ‘ —>\1 (4.20)

These prediction equations are the basis for further investigations and satisfy the

main objective in this study.

Unlike the Froude, Courant, and r values reviewed earlier, the above equations

are dynamic. The time step estimate changes with the boundary conditions, and material

properties. These changes are captured by the smallest eigenvalue. In addition, the time

step estimate varies with the mesh size.

The above time step estimates, (4-17) through (4-20), have been developed based

on a lumped error defined in (4-15). These estimate define a time step that will give

overall accurate results and not at any particular time. It was shown that error

distribution is not linear through out the time domain. The error is highest at small time

values and dies out as time increases. The error distribution also changes with the

integration scheme. Some schemes are more accurate than others at the same point in

the time domain. The fact that the error is highest at small time values might explain

why in the central difference scheme increasing the time step did not reduce the
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accuracy. In the later scheme, the inaccuracies present at small time values will not be

included for large values of the time step. On the other hand smaller time steps capture

the numerical error present at small time values.

EVALUATION OF THE TINIE STEP ESTIMATES

After developing the time step estimates using the unit step change problem, the

equations were used to estimate the time step needed to solve other problems with

different initial and boundary conditions. The main objective of this section is to show

that the time step estimate equations, (4-17) through (4-20) developed in the previous

section, are applicable for a different set of problems within the range of meshing used

to develop them, 5 < N < 17, in the domain [0,1]. These equations were developed

using the most rigorous problem, a step change. Applying the time step estimate to other

problems should provide a conservative estimate.

The four evaluation problems were

a) Sine Wave

u(x,0) = Sin 1rx, 0 S x s l

u(0,t) = u(1,t) = 0, t > 0

where the analytical solution, u, consists of a single term, is given by the following

u(x,t) = e("1l'10(81n1rX) (4'21)

Even though the complete set of eigenvalues exist for this problem, An = nzrrz, all of the
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coefficients of the analytical solution except the first are zero. It is important to observe

that the eigenvalues, A“, expression is shared by problem b below, as well as the step

change problem in the previous section. This is because all of these problems has the

same zero boundary conditions.

b) Ling Vao'ag'on

u(x,0) = 2x, 0 s x S 1/2

u(x,0) = 2(1-x), 1/2 5 x S 1

u(0,t) = u(l,t) = 0, t > 0

where the analytical solution, u, is given by the following

u(x,t) = f: i2(sinfl)(sinmrx)e“""”’ 14-22).3.

«Ina. n 2

Note that since sin nw/2 = 0 for n = even, only odd numbered eigenvalues enter

into the solution. The discontinuity at x = 1/2 produces the largest error at that point, this

error will decrease with time as long as the boundary conditions remain constant, Smith

( 1985). The coefficient l/n2 goes to zero faster than l/(2n+ 1) in the step change

problem, thus faster convergence occurs with the analytical solution.

c) Envativo Boundary Conditions 1

u(x,0)=1, 05x51

au(0,t)/ax = u, t > 0

6u(l,t)/6x = - u, t > 0
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This is equivalent to

6u(0,t)/8x Mu - S, t > 0

6u(l,t)/8x = - Mu - S, t > 0

where M = l, S = 0 are the parameters that are used in the finite element formulation,

Segerlind (1984).

The analytical solution is

 u(x,t) = 42 secan cos2an(x -0.5)e‘"‘“"" (4-23)

”-1 (3 +403)

where the eigenvalues 011,, are the solutions of a tan a = 0.5, Smith (1985).

d)W

u(x,0)=1, 05x51

6u(0,t)/6x = 0, t > 0

6u(l,t)/ax = -H2 u, t > 0

This is equivalent to

6u(0,t)/6x = 0, t > 0

au(l,t)/8x = - Mu - S, t > 0

where M = H2, S = 0

The analytical solution is

 

°° e ’“fl-I‘H, 00ng
= 2 (4-24

u(x’t) 2u°,,., “139322sz cosB L )

where Bm’s are positive roots of 6,, tan BmL = H2, Ozisik (1980).
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The first two problems a) and b), have the same A, as the step change problem,

of 9.87 and the time to steady state of 0.4053 sec. The same sampling points time

domain were used for these three problems and were 0.01, 0.02, 0.04, 0.08, 0.16, and

0.32 seconds. Problem c) has a A, = 1.707 and a time to steady state of 2.343 sec. The

time domain sampling points were .06, .12, .24, .48, .96, and 1.92 sec. Problem d) has

A, = 2.04 and the time to steady state is 0.98 sec. The time sampling points were .025,

.05, .1, .2, .4, and .8 sec. Time sampling points for all of the four problems were at

or near 2.5, 5, 10, 20, 40, and 80 percent of time to steady state.

The end goal in any numerical computation is to achieve accurate results that are

as close to the analytical PDE as possible. For that reason a different accuracy ratio was

defined as:

)3 NODE,

e = L.— (4-25)

2APDE,

M

where the sum in both the numerator and denominator is over the number of nodes, N

and the sampling points in the time domain. The time step was evaluated for the five

problems defined earlier, including the step change, for two mesh sizes, using the four

single step scheme time step estimate equations (4-17) through (4-20). Multiples of this

time step, one-half, twice, three times, were computed to define a series of numerical

runs whose list constitute the complete combination of the following parameters:

- numerical scheme where 0 takes values of 0, 0.5, .6667, or 1.

- Number of nodes, N, was: 8 or 16 in the interval [0,1].
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- Problem initial and boundary conditions were as follows: sine wave, linear variation,

and step change initial conditions. Two different derivative boundary conditions

where M = 1 = H2, S=0 for both conditions.

- Time step At: estimated from (4-17) through (4-20) and its multiples.

For each of the above scenarios, the accuracy ratio ,e ,in (4-25) was computed

at each of the six time domain sampling points. The ratio, e, was less or greater than

one and any deviation from one was considered a deviation from accuracy. Values of

e > 1 means that the sum of the numerical nodal values of U at any time domain

sampling point is greater than the APDE. Conversely, e < 1 means that the sum of the

numerical nodal values of U at any time domain sampling point is less than the APDE.

For that reason the sum of the absolute deviation from one for all the six sampling points

in the time domain was computed. This sum was defined as the sum of the deviation.

The average of this sum across the six sampling points was also computed. This average

deviation is in a sense the error in the computation for that problem. Thus each scenario

produced a single number representing the numerical error or deviation from the APDE

solution. Starting from our development of the time step estimates, this error should be

less than 5% for the computed time step. The error should increase beyond 5% for

some multiples of that computed time step. The half computed time step value solution

is expected to have an accuracy comparable to the solution at the computed time step.

The number of calculated time steps is a new parameter that was introduced to study the

performance of the estimated time step. It is a non-dimensional parameter and

represented the actual time step used in the computation scaled by the estimated time step



43

for that problem. A value of two, for example, represents a different time value for

different problems. This parameter was only used as an evaluation criteria for the

estimated time step for each combination. It is used to prove that the criteria works for

various problems and not for a comparison between problems.

Figure 4-6 shows the performance of the central difference scheme for N= 16 and

three different initial conditions. Figure 4-7 shows the calculated time step performance

for the second derivative boundary condition problem for the four different single step

schemes. Similar curves were generated for other scenarios. The x-axis in these Figures

was labeled as the number of calculated time step which is the ratio of the time step and

the estimated time step from (4-17) - (4-20). The y-axis is the average deviation which

is the decimal error of the NODE compared to the APDE. Both figures Show that as the

number of calculated time steps increased beyond a value ranging from 1.0 to 4.0 the

calculations become inaccurate.

Figure 4-6 shows that the time step estimate is accurate for the step change

problem and conservative for the sine wave and the linear variation problem. As the

time step used in numerical computation exceeds twice the estimated time step, solution

for step change problems become less accurate. The other initial condition problems

accommodate larger time steps before they show inaccuracy. For all problems the figure

shows that reducing the time step below the calculated time step did not improve

accuracy.
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Calculated Time Step Performance Theta = 0.5, N = 16
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Figure 4-6. Performance of the estimated time step for the CD scheme and N=16

grid problem for three different problems.
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Calculated Time Step Performance for The Derivative Boundary

Condition Problem 11:10, S=O at X=1 , N=16
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Figure 4-7. Performance of the estimated time step for the derivative boundary condition

2 problem for the various schemes and N= 16 grid.
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Figure 4-7 shows that for 0=0.6667 and 1, time steps larger than the estimated

value produce inaccuracies. For 0=0 time steps larger than the calculated were unstable.

For the central difference scheme it took a time step of four times the estimated value

to produce inaccuracies. Time steps below the calculated value did not improve the

accuracy for the central difference scheme.

In conclusion, (4-17) through (4-20) produce time step values that produce

accurate numerical results when compared with analytical solutions. Although the time

step estimate was somewhat conservative for a few problems, it gave good results for all

the problems analyzed. It is of great importance to note that the time step estimate not

only ensures accuracy but was also below the stability and oscillation requirements which

confirm the belief that Ifoscillations occur in the calculated values, the time step is too

large for accurate results.

Effect of Element Size on Accuracy

The mesh size 6x and the time step 6t are two interdependent variables. What has

been studied so far is to how to estimate the time step that produces accurate results for

a certain mesh. The mesh size was fixed and the time step was optimized. Another

approach to accuracy is to select the proper mesh that produce accurate results for a fixed

time step. This approach may not be feasible, but, the impact of the grid size on the

numerical accuracy was studied hoping to increase the understanding of this variable.

The effect of element size on the solution accuracy was investigated by solving

the step change problem defined earlier with a constant time step of 0.005 seconds while
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changing the number of elements on the [0,1] interval from 3 to 21. The linear lumped

element was used with D, = D, = 1.

The same error ratio criteria defined in (4-15) was used in this investigation. For

each scheme the L1 norm was computed, as the sum of the deviation from APDE as well

as AODE (at 5t=0.005 for various N values in [0,1]), for all nodes and each sampling

point. The error ratio was then determined as the ratio of the two norms. Note that

AODE solution is independent of the time step, therefore it needed to be evaluated only

once for each grid size.

The error ratio as related to the number of elements for the four schemes is

shown in Figure 4-8. The results show that all schemes become less accurate relative

to the AODE as the element size decreases. The figure also shows that the central

difference scheme is more tolerant than the rest of the schemes to decreasing element size

while maintaining a constant (St.

The Galerkin scheme was second best followed by the forward and backward

difference schemes which have about the same accuracy. The important conclusion here

is that to maintain a high level of accuracy, the time step should decrease as grid is

refined.
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Changes In Error Ratio As A Function 0f Element Size For The Four

Methods; Time Step Was Fixed To 0.005; Step Change Problem
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Figure 4-8. Effect of element size on accuracy represented by the variation in error ratio

as a function of number of nodes.
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Comparisons With Froude or Courant Number

The time step estimates of (4-17) through (4-20) are compared with the Froude

or Courant Numbers. Both numbers are defined as

Froude N0. = kAt 1426)

pch2

 

where k, c, and p are given parameters in the PDE. The three variables are often taken

as unity for simplicity.

The Froude number is a function of grid size, time step, and material property.

It does not change with the boundary condition. Therefore the time step criteria

developed using the Froude number does not change if the boundary conditions of the

problem are changed. The boundary conditions have an impact on the dynamics of the

problem. The speed at which the problem moves to steady state is a function of the

boundary conditions. The time to steady state is a function of the eigenvalues that

depend on the boundary conditions.

The comparison of the time step estimate (4-17) through (4-20) and the Froude

number has to be based on a fixed value of A,. Using a cartesian coordinate with N

being the x-axis, and the time step as the y-axis, the Froude number equation plots as a

series of curves similar in Shape to the time step (4-17) through (4-20). A regression

fit was performed for each scheme and the Optimal Froude number was determined for

a fixed value of A,. This optimal Froude number reduces the difference between the time

step estimate using (4-26) and the time step estimates using (4-17) through (4-20) to zero.

The corresponding Froude number was defined as the Froude number equivalence.
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Results of this regression for A, =9.8 are shown in Figure 4-9 for the central difference

scheme. Similar results were produced for the other three schemes and various A,

values. Each scheme yielded different and distinct Froude number equivalences which

are given in Table 1.

The Froude number equivalence of the backward difference and Euler schemes

were the same. This suggests that the two schemes have comparable accuracy. This

result is not a surprise from the theoretical point of View since both schemes stand at

equal distances and opposite sides from the center of the approximation domain. The

values also confirm an earlier observation that the Euler and backward difference

schemes run with parallel accuracy and there is no real advantage in using the backward

difference scheme. It is inaccurate in the region where Euler scheme is unstable.

Except for the central difference scheme, the optimal Froude numbers are quite

different from the values given in the literature.

Figure 4—10 shows the Froude number equivalence as a function of 0 (scheme) for

three different values of A,. The distribution for each curve is symmetric about 0=0.5

(central difference). Although there is an infinite series of such curves the figure Shows

important features and characteristic of the comparison between the two time step

estimate approaches . The figure shows that the central difference scheme is superior

to the other schemes. The difference between central difference scheme and the other

schemes is significant. The other important feature is that the Froude number

equivalence is not a fixed parameter and is not sufficient to describe the dynamic

behavior of the time dependent solution of the parabolic equation.
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Predicted Time Step Compared to Froude Number
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Figure 4-9. Comparison between estimated time step and Froude Number for the

Galerkin scheme.
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Froude Numer Equilelance Changes With the Smallest

Eigenvalue
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Figure 4-10. Froude number equivalence changes with A.
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In addition, The difference between Froude number equivalence for each A, value is

significant.

The Single Step Scheme 0 = 0.33

Given a function U(t) and the interval [a,b], the mean value theorem for

differentiation can be used to develop an equation for U(t). This theorem states that

there is a value of t, call it C, such that ¢(b)-4>(a)=(b-a) d6/dt(¢), where c=a

corresponds to the Euler’s scheme, c=b corresponds to backward difference scheme.

In both cases the mean value theorem, the basic principle behind all single step schemes,

approximates the value of U(t) at the center of the domain [a,b] or at At/2 by its value

at either a (for Euler) or at b (for backward difference). Since the function is symmetric,

the error associated by either schemes is the same. Although (4-17) and (4-20)

corresponding to 0=0 and 1 respectively give different time step values, the calculated

values are not significantly different. The mean value theorem is explained in Cheney

and Kincaid (1985), Potter and Goldberg (1987), and Kreyszic (1962).

From the discussion of the mean value theorem, if we define another single step

scheme with 0:.333, this scheme should have accuracy comparable to the Galerkin

scheme. To test our hypothesis a numerical experiment was conducted. The experiment

uses the step change problem defined in the methodology section, two different mesh

sizes N=8, and 16, 0:.333, and time step estimates computed by the Galerkin scheme,

(4-19).
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The objective is to show that the same time step estimate could be used for both

schemes 0=.6667 and 0.333. The same procedure of evaluating the average deviation

was followed as in the evaluation section above. The results are seen in Figure 4-11.

This figure shows that the time step estimate of 0:0.6667, (4-19) can be used when

0=0.333. For the case of N= 16, the time step estimate was somehow conservative, it

become inaccurate only after 10 multiples of the estimated time step was exceeded. For

N=8, time step values greater than twice the estimated time step yield inaccurate results.

Similar to all the cases analyzed, the finer mesh (N= 16) resulted in improved accuracy

(compared to N=8).

The optimal Froude number equivalence values for each scheme (0: 0, 0.333,

0.5, 0.6667, and 1) and for three different values of A, are listed in Table 4-1.

Table 4-1. Froude number equivalence for various A, values:

 

 

 

 

 

 

 

THETA x, = 9.8 x, = 2.707 x, = 1.7

0 0.05 0.2 0.3

0.333 0.2 0.5 0.7

0.5 0.5 2.0 2.7

0.6667 0.2 0.5 0.7

1 0.05 0.2 0.3     
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Calculated Time Step Performance Theta = 0.3

for the Step Change Problem
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Figure 4-11. Calculated time step performance for the step change problem and

0:0.333



CHAPTER FIVE

TWO-DIMENSIONAL SQUARE GRIDS

Parabolic differential equations governs a variety of time-dependent problems in

science and engineering. The two-dimensional field equation have the following general

form:

2 2

Dfl+Dfl+GU+Q=DaU (5-1)

" 3X2 ’ 3Y2 ‘ E

where the second partial of U with respect to X or Y are the diffusive term, Q is the sink

or source term and the partial of U with respect to time is the transient term.

Equation 5-1 can be applied to a transient heat conduction in solids, gas diffusion

in air, flow of fluids and transport of solutes in porous media, to name a few. U is the

temperature in a heat conduction problem, pressure in a flow problem, or concentration

in a solute transport problem. For isotropic media, the material properties D,, Dy and

D, could be lumped into one variable (D/ D,) commonly referred to the thermal

diffusivity in thermal problems, a, where D,=D,=D.

Integrating (5-1) with its boundary and initial conditions over space coordinates

using the finite element (FE) or finite difference (FD) methods yields the time dependent

system of ordinary differential equations (ODE’s):

56



57

am}
[Cl—at ” (”(1. + [Kly 1‘ [KlG) {U} - {F} = {0} (52)

where {U} is the set of the unknown nodal values, [K], is the stiffness matrix, arising

from the second partial of U with respect to x, [K]y is the stiffness matrix, arising from

the second partial of U with respect to y, [K]G is the stiffness matrix, arising from the

G term in the PDE (5-1), [C] is the capacitance matrix, arising from the time dependent

term in the PDE and {F} is the force vector, arising from the source term in the PDE

as well as the boundary conditions. The term [K] will be used to denote the matrix sum

[K],+[K],+[K]G. The matrices [C] and [K] are positive definite symmetric matrices.

[K] is singular before the boundary conditions are imposed. The matrices [C], [K], and

{F} are global and built from element contributions, using standard stiffness procedure

described by Segerlind (1984), whose coefficients depend on the type of interpolation

function used to solve the problem, for example, linear or quadratic.

Analytical Solution of the System of Ordinary Differential Equation

The system in (5-2) can be solved analytically using modal analysis described in

Chapter 4. The technique is identical to the one-dimensional case and is not discussed

here. In one-dimensional problems, the analytical solution of the system of ODE

(AODE) was used to test the accuracy of the numerical scheme. Using this technique

beyond the developmental phase was not recommended. It requires large memory

storage space and intensive computations. In addition, the technique is not suitable for

problems where the initial condition is zero. Which are common in the heat transfer
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literature. During the computations the initial condition end up in the denominator and

a division by zero causes the computations to cease. For these reasons, the AODE

solution was not included in the accuracy criteria used in two-dimensional problem

methodology below.

Numerical Solution of the System of Ordinary Differential Equation

Numerically, finite element or finite difference methods can be used to solve (5-2)

in the time domain. Although the finite element method shows clear advantages over

the finite difference method in the space domain this advantage does not extend to the

time domain, Segerlind (1984). There are many time domain schemes available in the

literature for each method. Many of these were introduced in Chapter two. Several

criteria are used to test these schemes including stability and oscillation. The current

study will explore finite element and finite difference space discretization and three time

discretization schemes corresponding to 0 values of: 0, 0.5, and 1; a total of six schemes:

1. Galerkin Forward Difference GFD: Galerkin finite element in space, forward finite

difference in time.

2. Galerkin Central Difference GCD: Galerkin finite element in space, central finite

difference in time.

3. Galerkin Backward Difference GBD: Galerkin finite element in space, backward

finite difference in time.

4. Forward Finite Difference FFD: Explicit finite difference in space, forward finite

difference in time.
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5. Central Finite Difference CFD: Explicit finite difference in space, central finite

difference in time.

6. Backward Finite Difference BFD: Explicit finite difference in space, backward finite

difference in time.

The Objectives of the Two-Dimensional Study are:

1. Develop a time-step estimate for six numerical schemes given above that satisfies an

accuracy and stability criteria.

2. Develop recommendations to the solution scheme for the parabolic partial differential

equation based on the first objective.

3. Compare and analyze the time step estimate of objective one with a commonly used

time step criteria such as Courant or Froude numbers.

4. Compare the accuracy of the two methods of space discretization, finite element and

finite difference.

METHODOLOGY

The methodology is briefly described in the paragraph below and will be detailed

later in the section. An engineering problem governed by (5-1) and its boundary and

initial conditions is solved using one of the six schemes and several time steps. For each

time step the error between exact and approximate solution is computed. For this series

of solutions a response line of time step against error is generated. As the value of time
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step increases the error is expected to grow. There exists a time step that will accurately

integrate the problem within a certain accuracy level. Time step below this value will

produce results that are below the defined accuracy limits but too small for efficient

computations. Time steps above this step produce error too large for accurate integration

and could induce oscillations (in case of Euler’s scheme). The numerical problem above

is solved using several grid sizes generating a relation between grid size and optimal time

step for the particular problem being solved. Results are summarized in regression

equations that are used for time step estimate. The procedure is repeated for the other

six schemes. The time step estimate equations were verified using a different set of

initial and boundary conditions to make sure the results are valid for a variety of

problems.

Finite Element and Finite Difference Comparison:

There is a major difference between the finite element and the finite difference

methods. Each method uses a different approximation or integration scheme to develop

the element matrices. The finite element method uses the Galerkin’s weighted residual

formulation and a set of Shape functions in the integration process. As a result of this

space integration the initial PDE is transformed to a system of ODE’s. A similar

integration is carried out in the time domain. The finite difference on the other hand

approximates the slope of the function between two nodes using the Taylor’s expansion

series. In finite difference, the space and time integration is done simultaneously so the

ODE’S intermediate step is seldom presented. The end result is that the element stiffness
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matrix for each method is different.

In one-dimensional problems the finite element and finite difference methods have

the same element stiffness matrices. For this reason a discussion of the differences

between the two methods was not done. In two dimensions, the frnite element derivation

is given in many finite element books, Segerlind (1984), Reddy (1984). The derivation

of the finite difference element matrix is not a common presentation in the literature.

The element capacitance matrix for the finite element method over a rectangular

element is
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where A is the element area and the element stiffness matrix for the finite element

method over a rectangular element is
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where a and b are the side lengths of the rectangle. A square element is obtained by

allowing a=b and adding the two matrices in (5-4).

The finite difference stiffness matrix was derived by Segerlind (1989) and is

p

 

2 -10 -1'

[km] =2 ’1 2 ’1 0 (55)

2 0-12-1

_-10 -12j 

The finite difference capacitance matrix is lumped and is identical to (5-3). The force

vector for both methods is zero when Q is zero otherwise the QL2 term is evenly

distributed over the four nodes.

Accuracy Ratio

The accuracy ratio is a measure that was defined to quantify how well the

numerical solution approximates the exact solution. The accuracy measure used with the

two-dimensional problems was different than the measure used in the one-dimensional

problems. In the former analysis the hypothesis was that the numerical solution for the

system of ODE’s (NODE) could be as accurate as the analytical solution of the system

of ODE’s (AODE). The one-dimensional analysis proved that this hypothesis is good

when the number of nodes exceeds 7. For a grid that is coarser than 7 nodes in [0,1],
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both the AODE as well as the NODE were inaccurate for all time step values. A 5%

error or less could be misleading because the solution could still be far from the exact

solution. The difference between NODE and APDE could be very large in the case of

a coarse grid irrespective of the time step. This fact is hidden in the accuracy ratio

definition (4-15). In addition, the APDE term is redundant Since it is being used in the

norm computations in the numerator as well as the denominator of the error ratio

formula (4-15).

This issue become more critical in two dimensional analysis. The minimum

number of nodes to yield accurate results increases geometrically when going from one

to two dimensions. Based on preliminary calculations over a square domain, numerical

integration results are accurate only when the total number of nodes exceeded 25 for any

time step value. In addition, the AODE solution was computationally demanding both

in time as well as storage and was difficult to handle on a micro computer.

For those reasons, the AODE was eliminated from the accuracy term and the

NODE and APDE were compared directly. This change in the error criteria eliminated

the coarse grid from consideration and made the computations more efficient.

The comparisons between the numerical ODE and analytical PDE solutions were

made using an error ratio defined by

Z": 2'": | NODE,-APDE, |

NODE, 15-6)
j-l i-l

 

e:
 

mn

where NODE is the numerical solution for the system of ODE’s, APDE is the analytical

solution for the PDE, m is the number of sampling points in the space domain, and n is
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the number of sampling points in the time domain. Other definitions could be used such

as the L2 norm instead of the L1 norm, that is, the absolute value of the difference of

NODE and APDE can be replaced by sum square of the difference.

Problem Statement

The unit step change problem was used in this section for the determination of

time step estimate equation. The unit step change problem is numerically more difficult

to solve and it has the full set of eigenvalues in the APDE solution. This study is based

on the rationale that if the time step estimate produced accurate results for a step change

problem, that time step will be sufficient for other problems when the grid and material

properties are the same and the time to steady state increases.

The step change problem is defined as:

Initial conditions : u(x,y,0) = 1 ; t = 0

Boundary conditions : u(0,y,t) = u(1,y,t) = u(x,0,t) (5'7)

=u(x,l,t)=0;t20,0$x,y$l

In other words, the initial values of u are one. When t > 0 the values of u on

the boundary are set to zero.

The analytical solution of the above problem is:

"(1050’- 1—622 (2n+1)1(2m 1)([sin(2n+1)1rx][sin(2m+1)-uy])e401M?«an-0
111558)

lln'o III-0

This information was generated from information provided by Ozisik (1980). Due to

 

Sylnmetry about x = y = 0, the problem could be solved over one quadrant of the
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domain. The actual problem that was solved is defined

flu

an

u(0,y,t) = u(x,0,t) = 0 t > 0

=0 atx=y=1t20

(5-9)

u(x,y,t) =1 t =0

The analytical solution of the above equation is:

,: , ,1), smA, x srnAm y
= on on -(

u(x,y,t) 4E£e A,.)».

two m-O

 

(5-10)

where A =M

" 2

Determination of Eigenvalues

By definition the eigenvalues of the system are the solution of

det{1K1 - A 161} = 0 ‘5‘“)

The eigenvalues, A’s, can be determined analytically for few problems and numerically

for any problem using the Jacobi. The Jacobi method will determine the complete set

of eigenvalues. Other methods can be used to determine only the first and the last

eigenvalues which correspond to the smallest and the largest values.

Numerical computation of eigenvalues requires meshing the space domain and

building the global system of equations comprising of [K] and [C]. The total number of

eigenvalues equals the total number of nodes in the mesh minus the nodes with known

Values of u(x,y,t), which are the boundary nodes in this study. The Jacobi’s method was

used once for each set of boundary conditions using a coarse grid. During the

Computation the eigenvalues are sorted lowest to highest. The effect of the grid on the
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lowest eigenvalue was found to be negligible. In addition, the finite element and finite

difference methods gave A, within 2% from each other. In the current problem A, was

evaluated using a grid of 25 nodes. The lowest eigenvalue is reported since it is needed

in the computation of the time to steady state. The largest eigenvalue was used in the

stability criteria in Euler’s scheme.

The lowest eigenvalue A, is a parameter that captures the changes in boundary

conditions as well as material properties. It does not change with initial conditions. The

time to steady state is not affected by initial conditions as long as the boundary conditions

are the same. For this reason A, is used in the time step estimate equation that are

discussed in a later section to characterize the different problems. A, for the current step

change problem is computed to be 4.76.

Time to Steady State

The response of the parabolic equation to a certain initial and boundary condition

is considered to have reached steady state when the variable u(x,y,t) does not change

with time. The time to steady state (t,,) was defined as

4
t =_ 5-12,, A] r 1

where A, is the lowest eigenvalue for the system.

This definition comes from the analytical solution of the PDE. At steady state

only the first term contributes to the solution, and for e", 98% of the exponential term

representing steady state solution is reached. The time to steady state was used to
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determine for how long the computation nwded to be continued as well as sampling point

location in the time domain. The time to steady state for the current step change

problem was 0.84 sec.

Time Domain Sampling Points

The sampling points for the time domain for the step change problem were:

0.08, 0.16, 0.24, 0.32, 0.4, 0.48, 0.56, 0.64, 0.72, and 0.8 seconds corresponding to

9.5, 19, 28.6, 38.1, 47.6, 57.1, 66.7, 76.2, 85.7, and 95.2% of t,, , respectively.

An exception was made for the time step = 0.1 where the sampling points were at:

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 seconds corresponding to 12, 24, 36, 48, 60, 71,

83, and 95% of t“ , respectively.

Also when the time step was of 0.16 sec the sampling points were at 0.16, 0.32, 0.48,

0.64, and 0.8 seconds corresponding to 19, 38, 57, 76, and 95% of t,, , respectively.

Space Discretization or Griding

The step change problem defined earlier was solved for six different grids. Each

grid was identified by the total number of nodes (N) over the entire domain x,y (0,1).

The nodes were equally spaced in both directions to generate square elements. The

square element was selected because this shape allowed an easy and direct way of

comparing the finite difference and finite element methods, and also the square element

i 3 considered the most accurate four node quadrilateral element. The square domain was

divided into 1, 2, 4, 8, 16, and 32 divisions in each direction giving rise to grids with
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a total of 4, 9, 25, 81, 289, and 1089 nodes, respectively.

Time Step Fstimation Process

The posed problem was solved for each of the six meshes and the six numerical

schemes. For each of the schemes and mesh sizes a series of time steps were used and

a corresponding error value was generated. This value represented a point on a time step

versus error graph. The graph for a certain mesh and numerical scheme shows a time

step value below which there is no significant gain in accuracy. This point was chosen

to be at 5% accuracy level. For each of the numerical schemes and mesh combination,

a set of accurate time steps or points exist. Since A, is discussed earlier to be a problem

dependent parameter and captures the variations among different problems and is

independent of the grid size, including it in any general time step estimate equation is

necessary. Therefore, the product of time step and A, was regressed against N for the

six schemes. These equations are meant to be used as a time step criteria to satisfy

numerical accuracy, stability, and oscillations. These equations are presented as a

problem dependent estimates and were tested against a different set of initial and

boundary conditions in order to prove their validity for other than the step change

problem.



69

RESULTS

The time step estimate regression equations for the six schemes are presented in

this section. These estimates will be evaluated in the next section.

The data generated from the numerical experiments correspond to optimal time

steps for each of the six grids and the six numerical schemes. These points were

generated from the numerically evaluated response curves similar to the one in Figure

5-1. This figure shows the response line of the error as a function of time step for the

finite element central difference scheme. The curve crosses the 0.05 error at a time step

of 0.017 seconds. Response lines were generated for all other mesh size and scheme

combinations, Figures 5-2 through 5-7. These figures show the response lines of the

error against time step for various meshes. Figure 5-8 show the computed optimal time

step as a function of N for the six schemes. The optimal time steps shown in this figure

were multiplied by A, which is evaluated to be 4.75 for the step change problem. The

data were then best fitted by the power model: AtA, =aN’° where a and b are parameters

to be determined for each of the six schemes. These were determined using the linear

programming tool "Solver Function" available in MicroSoft Excel for Windows version

4.0. The sum of the differences between actual and estimated AtA, was reduced to zero

by changing the value of the two parameters a and b. The "Solver" iterates by changing

the initial values of a and b until it converts.

Another regression approach was followed by linearizing the above model to

log(AtA,) = log(a) + b log(N). The linear model was then regressed using Lotus 123
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GALARKIN CENTRAL DIFFERENCE N = 1089

0.2
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TIME STEP

Figure 5-1. Changes of the error as a function of time step for GCD scheme and a grid

size corresponding to 1089 total number of nodes.
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spreadsheet version 3.0 where log(a) and b were evaluated. Both approaches gave results

with insignificant differences. The grid with four nodes was excluded from the

regression because numerical integration of the ODE was at best 25 % in error compared

to analytical PDE irrespective of the time step used. This particular information would

not have been evident if an error criteria involving comparison of NODE and AODE had

been used. The error in the grid with four nodes was not due to numerical integration

in the time domain, it was due to space discretization. The regression equation each of

which for the six different schemes shown in Figure 5-8 are

Galerkin Forward Dtfierence At = KIT—$07 N 2 25 (5-13)

Galerkin Central Dlfierence At = NIT?” 2 25 (5-14)

Galerkin Backward Dzfierence At = ANTI—5‘” N 2 25 (5-15)

Forward Finite Dzfierence At = _l'_19_ N 2 9 (5-16)
AlNl'm
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Central Finite Drfi’erence At = _19_ N 2 9 (5-17)
*1No.55

Backward Finite Difl’erecne At = Yogi N 2 9 (5-18)

1

DISCUSSION

The time step equations as related to various problems and grids as well as the

Froude or Courant number are discussed in this section.

Finite Element and Finite Difference Methods

The element matrices for the two methods were quite different. Although the two

methods could be forced to match by selecting a regular grid pattern (Zienkiewicz 1977)

the intent here is to compare the two methods on a basis that they normally exist.

Comparison of the two methods suggests that the two are identical in terms of accuracy

as Shown by the identical time steps for both schemes. This statement is a generalized

fact that might not apply exactly to all cases. The finite difference method showed some

superiority over the finite element method for coarse grids as well as for small At. This

feature did not carry on for finer grids and larger time steps. In fact the differences were

not enough to show up in the regression equations. Although the regression equations
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for the two schemes are very similar, the finite difference method showed acceptable

accuracy for 9 node grids while finite element method rejected this grid as being

inaccurate. In general the two schemes were identical and this is confirmed in a later

section during comparisons with the Froude number. Figures 5-9 through 5-11 show the

computed optimal time step variation as a function of the number of nodes N for the

forward, central and backward difference schemes, respectively. Figure 5-9 shows that

the two forward difference schemes, GED and FFD, compare well for large N. Some

differences were seen for coarse grids. The central differences schemes compared in

Figure 5-10 shows that GCD and CFD schemes produce identical results. Figure 5-11

shows a similar trend for the backward differences. The slight differences between the

GBD and BFD diminishes at large N. The finite difference method shows superiority

at small N for the backward difference scheme.

Comparison of Numerical Schemes

This section will highlight some of the major features of each scheme and how

it compare with the others. The central difference schemes show superiority in terms of

allowing a larger time step for any particular solution while still maintaining a high

accuracy. This is true for both the finite element and the finite difference methods,

Figures 5-12 and 5-13.

Comparing the two forward and the two backward difference schemes shows that

the backward difference schemes are more accurate for both the finite element and the

finite difference schemes, Figures 5-14 and 5-15.
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This could be due to the stability problem that the forward difference scheme

exhibits especially for fine grids (large N). It was impossible from an experimental point

of View to separate the effect of stability on the forward difference schemes. Note that

Figures 5-14 and 5-15 show comparable optimal time step for the two schemes at small

N values

Sensitivity of the Error to Changes in Time Step

The response of the optimal time estimates to the different grid sizes changes with

the particular scheme. Central difference schemes, both finite element and finite

difference, show a clear point at which the slope changes. This is where a larger time

step produces a larger error. The curve below this point is very well behaved, Figures

5-1, 5-3, and 5-6. The backward difference schemes, both the finite element and the

finite difference methods, do not show any point of change in slope. Figures 5-4 and 5-7

show that the smaller the At the smaller the error. This could be explained by the fact

that central difference schemes are more accurate and reach a high level of accuracy at

relatively large At compared to the backward difference schemes. The Galerkin forward

difference scheme, GFD, in Figure 5-2 did not show a change in slope point where the

forward finite difference scheme FFD in Figure 5-5 does show. This could also be

explained by the same accuracy argument especially for small time steps although the

overall conclusion is both schemes are on the same accuracy level.
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Effect of Element Size on Accuracy

The general trend that was observed in one-dimensional problems repeats itself

in the two-dimensional schemes. As the grid is refined (larger N) the time step required

to maintain accuracy within a fixed limit (5%) must be smaller, Figures 5-2 through 5-

15. The degree of sensitivity changes with the scheme. The forward difference

schemes, both the Galerkin and the finite difference formulations, are more sensitive to

grid size than the backward difference schemes. A major observation found is the

insensitivity of the backward difference scheme to the grid size. Figure 5-11 shows no

change in optimal time step as N grows. Unlike other schemes backward difference time

step equations did not Show sensitivity to changes in N. This feature could be either at

a advantage for large N, or a disadvantage for small N.

Comparisons with Froude or Courant Number

The Froude number is a common criteria used in the selection of time step in

transient problems. It is mostly used in transport problems particularly in heat transfer.

Chapter three discusses some of the literature that uses this number as a criteria for

selecting time steps.

The Froude or Courant Number is defined as

kAt

pcAa:2

 Froude N0. = (5-19)

where k, c, and p are given parameters in the PDE. The three variables are often take

as unity for simplicity.
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This analysis revealed that a non-oscillation criteria such as the Froude number

is a very conservative. It was originally designed for the conditionally stable explicit

schemes (Smith 1985). It has been widely used to estimate time step for all other

schemes including the unconditionally stable schemes. Furthermore, it could be

computationally very inefficient for an accurate scheme such as central difference. It

could be used for the forward or backward difference schemes where it would still be

conservative. There is experimental evidence that Euler’s scheme is always accurate

when its stability requirements are satisfied. On the other hand, the backward difference

schemes are not accurate for time step above those of the Euler’s stability criteria.

The time step estimates (5-13) through (5-18) corresponding to the six schemes

were correlated against the Froude number. The Froude number equivalence was

determined by solving for the Froude number that minimizes the sum of absolute

differences between the two time steps estimates (5-13) through (5-18) and (5-19).

Figure 5-16 shows the regression fit between the GCD scheme and (5-19) in order to find

the Froude number equivalence, the Froude number that produce a time step estimate

equivalent to the respective Equations (5-13) through (5-18). The comparison in this

figure is for a fixed set of boundary conditions. The time step equations are dynamic

and change with problem boundary conditions as well as grid size and material

properties. These changes are captured by A, and the N. On the other hand, the time

step estimate using the Froude number (5-19) is static and changes only with material

properties and mesh size. This suggests that for every A, there exists a different Froude

number equivalence.
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Comparison between Froude number and time step estimate

0.07 --

0.06 ~-

0.05 -—

0.04 ~~

0.03 ~»

0.02 -- '

0.01 -- ._

I
e
p

fl
m
e

 
0 200 400 600 800 1000 1200

Number of nodes

 

—'_GCD +FRII

  
 

Figure 5-16. Finding a Froude number equivalence through best fitting the GCD time

step estimate equation and the Fr. time step estimate for a fixed boundary

condition and material properties i.e. fixed A,.
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A study was conducted where A, was allowed to vary and the regression

procedure above was repeated. Results of the study are shown in Figures 5-17 and 5-18.

These figures representing different views of the same data and suggest the following:

- The finite element and finite difference methods have very similar Froude number

equivalence and hence similar accuracy.

- The central difference schemes have the largest Froude number equivalence and hence

more accurate than the other schemes.

- The backward difference and forward difference schemes produce similar Froude

number equivalence suggesting similar accuracy.

- The backward difference and forward difference schemes are clustered together and can

almost be lumped into a single Froude number equivalence number that is

independent of the problem type. Where the central difference scheme is more

sensitive to the problem type and could only be represented by an equation

through regressing Froude number equivalent and A,. The variation are too large

to be captured in a single number as in the case of backward and foreword

difference schemes.

EVALUATION OF THE TIME STEP ESTIlVIATES

The previous section presented estimates for optimal time step from an accuracy

point of View for three finite element schemes and three finite differences schemes. This

section will validate the use of these estimates on a problem that was not used to
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Comparison between estimated time step and Froude number

for various Lambda values

 

   

101'

as 80
.D

g 6.,
c

8 4-
3

2
u. 21-

0 M;
r . f 4 . : ‘8

0 2 4 6 8 10 12 14 16 18 20

Lambda

 

  

GBD —°—'FFD —*——CFD —¢—"BFD—'— GFD —O"_ GCD ’

 
 

Figure 5-17. Froude number equivalence changes as a function of A, for the six

schemes.

 



F
r
o
u
d
e
n
u
m
b
e
r
e
q
u
i
v
a
l
e
n
t
f
o
r
t
h
e

s
i
x
m
e
t
h
o
d
s

,—

1

O 0 00 l\ ~O ID V ('3 N

Jaqwnu epnorj

94

 
 

 

 
M
e
t
h
o
d

 

 
O
 

—
'
—

l
a
m
b
d
a
=
1

—
D
—
—

I
a
m
b
d
a
=
3

l
a
m
b
d
a
=
4
.
7
4
—
°
—

l
a
m
b
d
a
=
7

—
—
*
—

I
a
m
b
d
a
=
2
0

 

F
i
g
u
r
e
5
-
1
8
.
F
r
o
u
d
e
n
u
m
b
e
r
e
q
u
i
v
a
l
e
n
c
e
c
h
a
n
g
e
s

f
o
r
t
h
e
d
i
f
f
e
r
e
n
t
s
c
h
e
m
e
s
a
n
d

d
i
f
f
e
r
e
n
t
v
a
l
u
e
s
o
f

A
,
.



95

determine these estimates. The procedure is similar to that used in the methodology.

The process starts with the problem definition, moves to eigenvalue computation, time

to steady state determination, error evaluation, and then scheme validation.

Problem Definition

A rectangular region 0 s x S a, 0 _<_ y s b, is initially at uo. For time (t)

greater than zero, the boundaries x=0, and y=0 are insulated, and the x=a, y=b

boundaries dissipate convective flow into an environment at u=0 at a rate of H.

The solution to the problem is, Ozisik (1980)

 

= °° °° Hze'W-“P' 008(BJ) 0080,3’) (5-20)

u(x’y’t) “it? 2; [a(B,,’ +112) +1111 [b(A,2 +112) +50] cos(Bma) cos(Anb)

where

tanA,b = H

taana = H

>‘n

3..

The first 25 eigenvalues were evaluated using a simple Newton Raphson based

computer program. The summation up to 25 terms was not needed fort > 0, since most

of the contribution to the solution is in the first six terms. This is particularly true at

large values of time. Nevertheless, the 25 terms solution improved fitness of the solution

to the initial conditions. The value of H was taken to be 10.
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First Eigenvalue and Time to Steady State Computations

A square grid of 25 nodes was generated to numerically evaluate the first

eigenvalue. Different grids give similar values A, that was determined to be 3.4. The

time to steady state was then computed using (5-12) and was 1.18 sec.

Sampling Points

The error determination procedure was the same as in the methodology section.

The error is determined at specific intervals of time for all nodes in space. For the

derivative boundary problem the error was evaluated at 0.08, 0.16, 0.24, 0.32, 0.4,

0.48, 0.56, 0.64, 0.72, 0.8, and 0.88 corresponding to 6.8, 14, 20, 27, 34, 40, 47, 54,

61, 68, and 75 % of t,,, respectively.

Space Discretization

The following table gives information about the relation of the grid to actual

eigenvalues computed and the degrees of freedom that each grid exhibit. The number

of degrees of freedom is defined as the number of independent unknown variables.

Nodes of known values or those duplicated from symmetry are not included. Only

results for the 81 node grid are presented in this section.
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Table 5-1. Number of eigenvalues and degrees of freedom for the various grid sizes used

in the derivative boundary condition problem

 

 

 

 

 

 

 

   

II N No. of Eigenvalues Degrees of Freedom

.7 4 4 3

9 9 6

25 25 15

81 81 45

289 289 153

1089 1089 l 122

 

Evaluation of Results

The derivative boundary condition problem presented above was solved over a

grid with 64 elements and 81 nodes for each of the six schemes. The time step estimate

was evaluated for each problem. Several runs were made for each scheme using

multiples and fractions of the time step estimate. Results are shown in Figures 5-19

through 5-24 for all of the schemes. Results of finite element and finite difference

schemes are identical and are discussed together.

The graphs in these figures are plotted as number of calculated time steps in the

x-axis and the error in the y-axis. The x-axis is computed as the actual time step used
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Estimated time step performance under a DBC problem: GFD

method
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Figure 5-19. Error propagation with the time step for GFD scheme. Time steps are

reported as ratios of actual time step to the estimated one for the specific scheme

and grid used. DBC is abbreviation of derivative boundary condition.
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Estimated time step performance under a DBC problem: FFD

method
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Figure 5—20. Error propagation with the time step for FFD scheme.
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Estimated time step performance under a DBC problem: GCD

method
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Figure 5-21. Error propagation with the time step for GCD scheme.
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Estimated time step performance under a DBC problem: CFD

method
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Figure 5-22. Error propagation with the time step for CFD scheme.
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Estimated time step performance under a DBC problem: GBD

method
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Figure 5-23. Error propagation with the time step for GBD scheme.
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Estimated time step performance under a DBC problem: BFD

method
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Figure 5-24. Error propagation with the time step for BFD scheme.
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in the computation divided by the estimated time step drawn from (5-14) through (5-19)

for each of the respective schemes. A value of one means that the same time step as the

estimated value was used. The x-axis is scaled to each scheme and differs from one

scheme to the other since each scheme has a different estimated time step for the same

grid and problem specification.

Forward Difference Schemes

Figures 5-19 and 5-20 show the error propagation with the time step for the

forward difference schemes (GFD and FFD schemes, respectively). Both schemes are

shown to be unstable for At greater than the estimated time step. For time steps less than

or equal to the estimated time step both schemes were very accurate. This indicates that

they are always accurate when stability criteria is met. Therefore, the stability

requirement would be a good criteria to use for an optimum time step when using the

forward difference scheme. Galerkin forward difference shows a point of change in

slope which is not present in forward finite difference. This was discussed in an earlier

section.

Central Difference Schemes

Both central difference schemes, GCD and CFD have a clear point where the

slope changes, Figures 5-21 and 5-22. These figures show that for At less or equal to

the estimated time step the schemes are accurate to within 5 %. As At grows beyond the

estimated time step, accuracy starts to decrease and the error increases above the 5%
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mark. Both central difference schemes are very similar and have almost identical

responses.

Backward Difference schemes

Neither the finite element or finite difference formulations Show any sign of

change in slope point, that is, the smaller the time step, the smaller the error. This was

observed in the one-dimensional study and was attributed to the lack of accuracy

inherited in the scheme. This is shown in Figures 5-23 and 5-24. Time steps equal or

below the estimated resulted in numerical solution within 5% error. For larger time

steps, numerical solution diverge from the reference solution and the error grow with the

value of the time step.

In summary, the validation procedure provides an evidence that the time estimates

work for each of the six schemes. The time step estimate were not conservative in

several of the methods, therefore, it is recommended that the values be round down to

nice clean numbers.



CHAPTER SIX

THE EFFECT OF SHAPE AND SIZE ON STABILITY

FOR TWO-DIMENSIONAL QUADRILATERAL ELEMENTS

USING THE MAXIMUM EIGENVALUE

This part of the study compares lumped and consistent formulations of the

capacitance matrix relative to their maximum eigenvalue and analyzes the effect of

element size and shape on the maximum eigenvalue for the two-dimensional four node

quadrilateral element. The primary focus is on the four node quadrilateral element, but

a comparisons is made with the three node triangular element and a recommendation of

which element to use in transient two-dimensional field calculations is made.

MATHEMATICAL BACKGROUND

The analytical and numerical solution of a system of ordinary differential equation

requires a knowledge of eigenvalues for the eigenproblem

([K] - A [C] ){U} = 0 (6-1)

where [C] is the global capacitance matrix, [K] is the global stiffness matrix, {U} is the

unknown vector and A is an eigenvalue.

106
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The above general eigenvalue problem has received limited discussion in

literature. Most of the mathematics literature, Boyce and Diprima(1986), Johnson et.al.

(1989), Leon (1986) discuss the standard eigenproblem

( [C‘] [K] - A [11 ){U} = 0 (6-2)

The discussion of the general eigenproblem centers around a transformation that converts

(6-1) into (6-2). From there on the problem is solved using the many available tools for

the standard eigenproblem.

The general eigenproblem of (6-1) arises in several areas of engineering, most

notably, mechanical and structural vibrations, elastic stability of continuous bodies and

heat transfer. The best discussion of the direct solution of (6-1) occurs in an engineering

oriented book by Bathe and Wilson (1976). The authors present several methods for the

direct solution of the eigenvalues that eliminate the nwd to transform it to the standard

problem.

The generalized Jacobi transformation technique was used in this study because

it calculates all the eigenvalues in a straight forward fashion that is easily implemented

on the digital computer. Computer code provided by Bathe and Wilson (1976) was

modified for use with a standard finite element program.

The largest eigenvalue of the generalized eigenproblem of (6—1) is needed for the

determination of stability and whether amplification factor oscillations will occur. An

excellent method for estimating Am, exists when using the finite element method. The

method and its proof are discussed by Fried (1979). The estimate goes as follows: Let

A") be the largest eigenvalue for the element eigenproblem
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([k‘°’] - >\‘°’[<>‘°’1){ll"”} (6-3)

then

M 5 Km“) (6-4)

The largest eigenvalue for the element is an upper bound for the largest

eigenvalue of the entire system. Equation (6-4) is an excellent estimate when the

problem is solved using a uniform grid. It becomes very conservative when the grid

contains a mixture of element lengths (Fried, 1979). Equation 6-4 reduces the study

from the entire system to one element.

Stability and Oscillations

Stability is the study of the numerical behavior if a small error is introduced to

the solution scheme. If the error grows then the system is unstable. Conversely, if the

error remain bounded then the system is stable.

When oscillations occur the numerical value appear on both sides of the correct

solution. The oscillations criteria for the single step methods is

Ats — (65)

where c = l, 2 and 3 for 0 = 0, 0.5, and 0.6667 respectively. The backward

difference scheme never oscillates.

The factors affecting A,., are mesh geometry (size and shape), initial and

boundary conditions, and the material properties. For a given problem, the only

parameters that can be changed are those pertaining to the element geometry, changing
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the other parameters changes the problem under consideration. The question is how to

keep A,“x at a small in order to avoid numerical difficulties.

The element matrices [k] and [c] are easily evaluated for a triangle, rectangle and

square. The analytical evaluation for a four nodal quadrilateral element is not possible.

Gauss-Legendre numerical integration scheme is required, Segerlind (1984) and Bathe

and Wilson ( 1976). The following listing gives the [CM] and [10"] matrices for the

various elements used in the current investigation:

For a triangular element [cm] is

2 1 1

Consistent: [em] = BIL/1 1 2 l

1 l 2 (6-6)

1 0 0

Lumped: [c“’] = 93—14 0 l 0

0 0 1

For a rectangular element [CM] is
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“4212'

36

 L2124_

D,A

.
p A
I
S
’

  

Consistent: [c “’] = '

Lumped: [c“’] = —

The stiffness matrix for a triangular element is

D b} b, b]. b, b,

[k“’] = fi b, b, bf b, b,

b, b, b] b, bf

where:

a=nn-RE

aj = kai ’ xiYk

at "' Xin ' ijI

bi = Y] ' Yk

bi = Yk ' Y1

bk = Yi ' Yj

Ci = 'Xj + X,

CI = -Xk ‘1' xi

ct = 'Xi + Xj

and

- 1 X, Y,-

A = det 1 X} Y}

_ l X, Y”  

Km and Your are x and y coordinates of the nodes i, j, and k, respectively.

2421

1242

 
'1000'

0100

0010

_0001‘  

  

(6-7)

(6-8)
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The stiffness matrix for a rectangular element is

  

'2-2-11' '21-1-2‘

[km] = D: a ’2 2 1 "1 + Dyb 1 2 "2 "1 (6'9)

6b -112-2 6a -1-221

L1-1-224 .‘2‘112.    

where a and b are the sides of the rectangle. A square element is derived by allowing

a=b.

METHODOLOGY

A numerical experiment was designed to study the effect of capacitance matrix,

and element geometry on Am. In addition, practical examples were solved to gain an

understanding of the impact of meshing on Am. The numerical experiment that lead to

defining the research objectives is presented in this section.

A FORTRAN code computer program by Bathe and Wilson was modified for use

to determine the eigenvalues for the various scenarios. The respective eigenvalues were

used as the criteria for comparing the various scenarios. The goal was to reduce Am, by

changing the element shape. Elements with lower eigenvalues are superior than those

with higher eigenvalues.

The parameters involved in the experiment were the shape and size of the four

node quadrilateral element, and type of capacitance matrix. Triangular elements were

modeled as three and four node elements. The fourth node in the later element was

floating along one of the sides. More detailed discussion on the triangular elements is
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in a later section.

The effect of area on Am, was studied by selecting two element shapes, a square

and a trapezoid. For each of the two element shapes, the two capacitance matrices, and

various element sizes, Am, was computed.

The effect of the element shape on A,., was also studied. For a fixed element

area the shape was varied and the corresponding Am was computed. Two different

element areas were considered, 1 and 4 area units (L), and two [cm] matrices, lumped

and consistent.

Two of the practical examples commonly encountered in the mesh generation

process were considered. Those pertain to dividing a certain element into two or more

elements. Original element geometries of rectangular and trapezoidal shapes, and further

dividing these elements into triangles and squares is investigated. Finally, modeling a

three node triangle using the four node quadrilateral is analyzed.

Shape Parameter (Sp)

In order to study the effect of element size on the maximum eigenvalue the area

was taken as a strong measure of the size. There is a need to develop a measure for the

element shape on the basis of which elements are compared. The shape parameter, Sp,

Figure 6-1 was found to be a useful parameter and was used as a measure of the element

shape. Figure 6-2 displays four different shapes and their Sp values. A square has the

least Sp value among the four nodal quadrilaterals. As the square is deformed, its angles

are no longer 90" and its Sp value becomes larger.
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Shape Parameter

m

Sp = (im/ik) + (mj/ki)

 

i .
Sp = (ratio of sides) + (ratio of diagonals)

All ratios are largest ever smallest

Figure 6-1. Shape parameter definition for a four node quadrilateral element.
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Shape Parameter Values for Unit Area Shapes
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Figure 6-2. Shape parameters values for some selected quadrilaterals
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RESULTS AND DISCUSSION

The effect of the capacitance matrix, size and shape of the element on Ann, is

discussed here.

Effect of Element Size

The effect of element size on the maximum eigenvalue is shown in Figures 6-3

and 6-4. Figure 6-3 shows a plot of the area against the maximum eigenvalue for a

square element and the two [CM] formulations. The figure shows that the maximum

eigenvalue varies as a linear reciprocal function of the element area. This is true for

both lumped and consistent formulations. As the area increases the maximum eigenvalue

decreases which will increase the time step requirement to satisfy the stability

requirement of (6-5).

Figure 6-4 shows the same trend as Figure 6-3 for a trapezoidal element. The

slope of the line is still -1 which yields the relation

A“, = f(Area)" (6-10)

The regression equations for the lines in Figures 6-3 and 6-4 are shown in (6-11).

25.70 A " : Square Consistent

03.98 A‘1 : Square Lumped

m“ 48.60 A " : Trapizoid Consistent

£08.24 A '1 : Trapizoid Lumped 1

(6—11)

  

where A is the element area.
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Area Effect on the Largest Eigenvalue

Square Element
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Figure 6-3. Effect of area on the largest eigenvalue for a square element
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Area Effect on the Largest Eigenvalue

Trapezoidal Element
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Figure 6-4. Effect of area on the largest eigenvalue for a trapezoidal element
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Effect of Element Shape

The effect of element shape on the maximum eigenvalues is shown in Figures 6-5

through 6-7. Figure 6-5 plots the shape parameter Sp against the maximum eigenvalue

for a unit area and the two [CM] formulations. Figure 6—5 shows that maximum

eigenvalue increases with Sp. The maximum eigenvalue for the lumped formulation

shows less sensitivity to Sp than the consistent formulation. On the other hand, the

maximum eigenvalue for the consistent formulation varies linearly with Sp. The

difference between the two formulations increases as Sp gets larger. Figure 6-6 shows

the same effect for an area value of four. Figure 6-7 is a comparative chart for some

selected shapes all with a unit area. For all elements with four nodes, the square has the

lowest eigenvalue. As the shape becomes deformed and its Sp value gets larger, the

maximum eigenvalue increases. That increase is considerable and affects the behavior

of the entire system. The triangular element is a unique case and could plot any where

in the range of shapes presented.

The regression equations for the lines in Figures 6-5 and 6-6 are shown in 6-12).

6.02 + 9.24 Sp : Area=1 Consistent

A = 2.77 + 1.38 Sp : Area=l Lumped (5.12)

m 1.51 + 2.31 Sp : Area=4 Consistent

0.69 + 0.34 Sp : Area =4 Lumped

The regression equations show the same trend in both element areas. The

correlation coefficient for the linear regression of the lumped formulation curve for both

areas was relatively low (R2 = 0.53) compared to the consistent formulation (R2 =

0.99). The actual results indicated that the maximum eigenvalue for the lumped
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Figure 6-5. Effect of shape on the largest eigenvalue for a unit area
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Shape Effect on the Largest Eigenvalue
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Figure 6-6. Effect of shape on the largest eigenvalue for an area of four
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Comparative Chart for Selected Shapes

Unit Area

Eigenvalue
 

 
   

 

Square Trapeziodz Rhombus Trapezoid 4 Trapezoid 3 Rectangle trapezoidf
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Figure 6—7. Comparative chart for some selected shapes as to their maximum eigenvalue
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formulation did not grow for Sp values beyond 15 as was indicated earlier.

Effect of [cm] Formulations

For all geometries that were studied, the lumped formulation had a lower

maximum eigenvalue than the consistent formulation. The difference between the two

formulations is significant in all cases especially for large values of Sp as shown in

Figures 6-5 and 6-6.

The lumped formulation is also shown to be less sensitive to changes in element

shape. As the element shape is deformed, the maximum eigenvalue changes more slowly

than the change with the consistent formulation. This is another advantage to the lumped

formulation. The maximum eigenvalue for the consistent formulation increases linearly

with Sp. The lumped formulations results were assumed linear although there was no

increase in km beyond Sp of 15. The linear fit of the lumped was very poor compared

to the consistent formulation.

Practical Examples

Figures 6-8 and 6-9 present a common problem in the grid generation process.

Figure 6—8 shows a rectangle that is split into two squares each of which is further split

into two triangles. The consistent formulation results shows that splitting the rectangle

into the squares will increase the maximum eigenvalue by about 30%. Further splitting

of the square into two triangles will reduce the maximum eigenvalue by about 30%
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Dividing a Rectangle into

Squares and Triangles

(1,1)

(0.1) - (2.1)

(0,0) (1.0) (2.0)

Max. Eigenvalue

Consistent Lumped

Rectangle 16.09 4

Square ' 25.75 4

Triangle 12 9

 

Figure 6-8. Practical example 1 : dividing a rectangle into squares and triangles
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‘ Dividing a Trapezoid into Triangles

(1,2)

(0.1) (1.2.1)

(1.0)

Max. Eigenvalue

Consistent Lumped

Trapezoid 43.75 7.422

Triangle 1 1.7 6.407

 

Figure 6-9. Practical example 2 : dividing a trapezoid into triangles
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below the original Am of the rectangle. That indicated that when using a consistent

formulation, cutting a rectangular element into squares is not favorable. On the other

hand cutting that square into two triangles is desirable. Therefore, when using the

consistent formulation, triangles close to an equilateral shape are more desirable than a

square element. The square element remains the best of the four node elements.

The lumped formulation has the opposite results. Cutting the rectangles into

squares did not change the maximum eigenvalue. This could be explained by the fact

that reducing the area was offset by the enhancement in the element shape. Cutting the

resulting square into triangles increases the maximum eigenvalue by more than double.

Therefore, when using the lumped formulation, square elements are the desirable

element shape. Changing these squares into triangles is not desirable. The only

exception is when equilateral triangles are used. The later are shown to be the best

elements for reducing the maximum eigenvalue. A three node equilateral triangle with

a unit area has a km of 3.36 which is around 15% less than a four node square element.

This will in fact be in favor of equilateral triangles as a superior meshing element.

Figure 6-9 presents a similar problem encountered on curved boundary. For both

consistent and lumped formulations, dividing the trapezoid into two triangles reduces the

maximum eigenvalue by about 75% and 15%, respectively. Therefore, it is

recommended to use triangles over a curved boundaries on the condition they be as close

to equilateral triangles as possible.

This is explained by the fact that no element having interior angles exceeding 90°

is desirable. This result is in agreement with Segerlind (1984).
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What is Unique About a Triangle

A triangle can be approximated as a four node quadrilateral. In that case there

is a fourth node that is floating and needs to be defined for the evaluation of element

matrices. Figure 6—10 describes a case where the triangle shown has been treated as a

three node triangular element and as a four node quadrilateral element. Equation 1 has

three and four solution points for three and four nodes element, respectively. This by

itself brings an advantage of triangular elements over a four node element. The above

conclusion is clear looking at the results shown in Figure 6-10. The maximum

eigenvalue for a three node triangle is less than the maximum eigenvalue for a

quadrilateral element. This is true for lumped as well as consistent formulations.
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Comparison of a Quadrilateral and a Triangular Element

  

(0.4)

Max. Eigenvalue

Element Type Consistent Lumped

Qaudrilateral 73.04-33.32 9.6-4.55

Triangular 6.45 1.614

(0.0) (2.0)

In the quadrilateral case the hypotenous

has an extra floating node

 

Figure 6-10. Comparison between a quadrilateral and a triangular element

 



CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

This study presented a functional estimate for the time step to be used in the

numerical solution of diffusion problems using the single step schemes. The estimate

equations were developed for the unit step change function through a numerical

experimental procedure by varying the problem mesh size and finding the optimal time

step that accurately integrated the problem. These points were fitted by a power function

and a regression equation determined the unknown coefficients. The process was

repeated for three schemes; the forward difference, central difference, and backward

difference in time. A coarse grid was generated over the solution domain to determine

the numerical value of the lowest eigenvalue. This parameter was used to estimate the

time to steady state and time domain sampling points used to collaborate an error term.

The time step estimate equations were then checked against other problems not used in

its development.

The time step estimates developed in this work were correlated to a well known

criteria, the Froude number. A major observations made during this correlation process

was that the Froude number is problem independent. It only changes with the mesh size

and material property. On the other hand, the time step estimate of this study changes

for each problem boundary condition as well as mesh size and material properties. These
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later characteristics were captured by the smallest eigenvalue. Therefore, any particular

correlation between the Froude number and the time step estimates changes with the

problem being solved. A regression fit between the two time step estimates for various

problems ( M) was presented.

As a conclusion for this work, the most important observation was that the two-

dimensional results were an extension of the one dimensional analysis. In fact, most of

the findings and observations found to be true for the one—dimension problem were also

true for the two-dimensional problem.

The time step estimate equations for the one-dimensional problems are

 

 

Euler Scheme At = .27N-us

Al

Central Difference 1.13N-1Js

At =_

xl

Galerkin Scheme 70N -3.79

At =

A1

Backward Difference At = 30.6N‘3‘9‘

Al

In each case N is the number of nodes and should be greater than seven
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The time step estimates for the two-dimensional problems are

 

 

Galerkin Forward Dzfierence At = 1'8 N 2 25
x1N104

Galerkin Central Dtfierence At = 1'6 N 2 25
x1No.55

Galerkin Backward Dzflerence At = fit)?“ 2 25

1

Forward Finite Difference At = L?— > 9
x1NLOI

Central Finite Drfi'erence At = _1_°6_ 9
x1No.55

. . . _ 0.05
Backward lete Drflerecne At - A N“ N 2 9

l

The most important conclusions from the one-dimensional study are:

-Time step criteria equations are valid for problems other than those included in their

development. The estimated time step value ensures accuracy as well as stability

for all problems tested. The use of each equation should be limited to the mesh

sizes that fall in the region under which they were developed. For most problems

found in the literature this region seems to be inclusive.

- For a fixed number of elements, the central difference schemes is less sensitive to

increasing time step than the other schemes.
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For a fixed time step the central difference scheme is less sensitive to increasing the

number of nodes.

- For a particular problem and a certain accuracy level the central difference scheme

allows a larger time step than the other schemes

The backward difference scheme is no better than Euler’s scheme. For larger time

steps where Euler’s scheme is unstable the backward difference scheme is

inaccurate.

- The Froude number that gives accurate results changes with the boundary conditions

as well as the single step scheme used.

The finer meshes (N = 16), produced smaller error (compared to N=8), provided the

proper time step values were used.

The specific conclusions for the two-dimensional study are:

Analytical solution of the system of ordinary differential equations is not practical

calculation in two dimensions. This is due to the large size of the matrices and

the number of computations involved.

Applying the element matrices and stiffness procedure to the finite difference method

increases the efficiency of the method computations and allowed using the same

code that is used in the finite element analysis. This gives the finite difference

method the same advantages that have been attributed to the finite element method

such as: writing a general code (problem independent code), ease of handling

boundary conditions, etc.
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- The error ratio that was used for the one—dimensional problems could not be used with

two-dimensional problems. Another error criteria was developed. The former error

ratio formulation assumed that the numerical solution of the system of ordinary

differential equations could be at best equivalent its counterpart the analytical solution of

the system of ODE. The danger of the approach is in using it for coarse grids where the

analytical ODE solution is not acceptable due to large space discretization error.

- The time step estimate equations prove to work satisfactorily for problems that were

not used in the determination of the estimate.

- The two numerical methods, finite elements and finite differences gave time estimates

that are very close to each other suggesting a similar accuracy. The finite

difference method was more accurate for a coarse grid. This slight superiority

did not carry for finer meshes and was not significant enough to be detected in

the regression equations.

- The central difference scheme was the most accurate single step scheme.

The backward difference scheme were more accurate than forward difference scheme.

This superiority was not significant and was attributed to the instability of the

forward difference scheme for many of the time step values.

The backward difference scheme time step estimate shows less sensitivity to the grid

size than the other schemes.

Central difference scheme shows a clear point where the slope changes rapidly in the

optimal time step vs. grid size curve. The other schemes, namely the backward

and forward differences, did not. This was attributed to the accuracy of the
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scheme.

- For all schemes the optimal time step changes with the mesh size. The rate at which

it changes varies with the scheme.

- Comparison of the time step estimate equations with the Froude number shows

that for each problem there exists a Froude number equivalence that will give a

time step equivalent to the presented time step estimates. This equivalence

changes as A, of the problem changes.

- Central difference schemes exhibit large variations in Froude number equivalence

corresponding to different A, compared to the other schemes.

The element size and shape are two important mesh parameters that affect the

dynamic behavior of numerical solutions of transient systems. Some of conclusions of

this part of the study are:

- In all cases studied, the lumped formulation had a lower Am than the consistent

formulation.

- The shape parameter, Sp, was a good measure of how the shape of the element

behaves because km grows with Sp, km for consistent formulation grows

linearly with Sp. The km for the lumped formulation is less sensitive to the

element shape. As the shape is deformed, km does not increase as much as the

km for consistent formulation does.

- km = f(A"), as the area increases Am decreases and the minimum acceptable time

step gets larger. This is true for both lumped and consistent formulations.

- For a four-node element with a fixed area, the square has the lowest hm. Depending
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on the element shape a three-node triangle may have a lower km than a square.

- Dividing an element into two or more elements can increase or decrease Am,

depending on type of formulation used for the capacitance matrix and the

original shape.

RECOMMENDATIONS

Based on the results presented above the following major recommendations are made:

Use the time step estimates presented for the particular scheme when solving the

parabolic diffusion problem.

Use either finite element or finite difference methods for space discretization.

Use central difference scheme for time discritization.

FUTURE RESEARCH

The following research needs to be addressed in the future:

- Study the effect of element shape on the time step.

Use the methodology to find regression equations for three-dimensional and

axisymmetric problems.
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