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ABSTRACT

MATHEMATICAL MODELING AND SIMULATION OF
MECHANOELECTRICAL TRANSDUCERS AND NANOFLUIDIC

CHANNELS

By

Jin Kyoung Park

Remarkable advances in nanotechnology and computational approaches enable researchers

to investigate physical and biological phenomena in an atomic or molecular scale. Smaller-

scale approaches are important to study the transport of ions and/or molecules through ion

channels in living organisms as well as exquisitely fabricated nanofluidic channels. Both

subjects have similar physical properties and hence they have common mathematical interests

and challenges in modeling and simulating the transport phenomena. In this work, we first

propose and validate a molecular level prototype for mechanoelectrical transducer (MET)

channel in mammalian hair cells. Next, we design three ionic diffusive nanofluidic channels

with different types of atomic surface charge distribution, and explore the current properties

of each channel.

We construct the molecular level prototype which consists of a charged blocker, a realistic

ion channel and its surrounding membrane. The Gramicidin A channel is employed to

demonstrate the realistic channel structure, and the blocker is a positively charged atom of

radius 1.5Å which is placed at the mouth region of the channel. Relocating this blocker

along one direction just outside the channel mouth imitates the opening and closing behavior

of the MET channel. In our atomic scale design for an ionic diffusive nanofluidic channel, the

atomic surface charge distribution is easy to modify by varying quantities and signs of atomic

charges which are equally placed slightly above the channel surface. Our proposed nanofluidic



systems constitutes a geometrically well-defined cylindrical channel and two reservoirs of KCl

solution.

For both the mammalian MET channel and the ion diffusive nanofluidic channel, we employ

a well-established ion channel continuum theory, Poisson-Nernst-Planck theory, for three

dimensional numerical simulations. In particular, for the nano-scaled channel descriptions, the

generalized PNP equations are derived by using a variational formulation and by incorporating

non-electrostatic interactions. We utilize several useful mathematical algorithms, such as

Dirichlet to Neumann mapping and the matched interface and boundary method, in order to

validate the proposed models with charge singularities and complex geometry. Moreover, the

second-order accuracy of the proposed numerical methods are confirmed with our nanofluidic

system affected by a single atomic charge and eight atomic charges, and further study the

channels with a unipolar charge distribution of negative ions and a bipolar charge distribution.

Finally, we analyze electrostatic potential and ion conductance through each channel

model under the influence of diverse physical conditions, including external applied voltage,

bulk ion concentration and atomic charge. Our MET channel prototype shows an outstanding

agreement with experimental observation of rat cochlear outer hair cells in terms of open

probability. This result also suggests that the tip link, a connector between adjacent stereocilia,

gates the MET channel. Similarly, numerical findings, such as ion selectivity, ion depletion

and accumulation, and potential wells, of our proposed ion diffusive realistic nanochannels

are in remarkable accordance with those from experimental measurements and numerical

simulations in the literature. In addition, simulation results support the controllability of the

current within a nanofluidic channel.
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Chapter 1

Introduction

1.1 Introduction to mechanoelectrical transducer chan-

nel in auditory system

Ion channels are pore-forming membrane proteins which are very permeable and highly

selective and their opening and closing are suitably managed [112]. Ion channels are involved in

diverse physiological functions including altering membrane potentials, controlling electrolyte

movements for cell volume regulation and polarized transport of salt, and generating electrical

signals which are utilized to regulate hormone secretion, neurotransmitter release and muscle

contraction [94]. Traditionally, ion channels are classified and named by their two crucial

properties such as ion selectivity and gating mechanism [94, 98]. Most channels allow only a

few specific ions to penetrate through them although there are exceptions like non-selective

cation channels and, in particular, potassium, sodium, calcium and chloride are four principal

permeable ions. The gating mechanism of an ion channel is classified according to a particular

stimulus which the channel gate react strongly. Typical kinds of stimuli are the voltage

gradient across the transmembrane (voltage-gated), the binding and interaction of ligands

with an ion channel (ligand-gated) and a mechanical force (mechanically-gated). Besides,

other ways to gate ion channels can be triggered by photonic and thermal stimuli.

The mechanoelectrical transducer (MET) channel in hair cells is one of the remarkable ion

1



channel research subjects. Hair cells in the inner ear play a pivotal role in the mechanotrans-

duction for the sense of hearing. Mechanotransduction is the conversion of a mechanical

stimulus into an electrical signal, which is fundamental for the senses of hearing, touch and

balance [88]. The peripheral auditory system, the sensory system for hearing, is mainly

divided into three parts: the outer, middle and inner ear [21]. A wide range of airborne

sound waves enters the external canal of the outer ear and through the middle ear they are

converted to pressure waves which vibrate the basilar membrane in the cochlea of the inner

ear [159]. In the cochlea, basilar membrane vibrations deflect the stereociliary bundles on

the hair cells and hence the sensory cells are depolarized by allowing cations, predominantly

Ca2+, to penetrate into the mechanoelectrical transducer (MET) channels [88].

The human cochlea contains three rows of outer hair cells (OHCs) and one row of inner

hair cell (IHC) with different functions and shapes [175]. OHCs amplify the amplitude

as well as the frequency selectivity of basilar membrane vibrations. IHCs convey acoustic

information to afferent neurons [78, 121]. Each hair cell possess a mechanically sensitive

bundle consisting of a number of actin-filled microvilli, also named stereocilia, on its apical

surface [159]. The stereocilia in a bundle are arranged in rows of increasing height and,

moreover, they are tightly connected to each other by extracellular linkages including tip

links and top-connectors [175]. In particular, it is speculated that the tip link, which extends

from the tip of a stereocilium to the side of an adjacent taller stereocilium, directly opens

the mechanically gated ion channels [121, 175]. Additionally, it is postulated that an elusive

elastic element, a so-called gating spring, contributes to unfasten the channel inlet [121].

The biophysical principles underlying the mechanotransduction process in hair cells have

been intensively investigated in the past few decades. The recently proposed model of

activation and adaptation of the hair cell tranducer channel is composed of three stages
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[121]. It is postulated that deflection of a hair bundle toward the tallest stereocilia, namely

positive deflection, increases the open probability of the MET channel at the lower end of

the tip link. Then Ca2+ ions travel through the channel pore and then contribute to fast

adaptation by binding to a molecule inside or near the channel. Finally, slow adaptation

including channel closure and tension restoration is accomplished by a myosin motor at the

upper end of the tip link. Despite these advances in MET channel study, the molecular detail

of the mechanotransducer machinery has been proved to be elusive. Particularly, there is no

direct structural confirmation for the molecular building blocks of the MET channel.

There have been several studies to elucidate the features of the MET channel such as gating

mechanism, ion conductance, molecular-level structure and location because charactering the

channel is beneficial to comprehend not only hair cell transducer process but also hearing

mechanism [77]. First of all, the MET channel is a non-selective cation channel with a

considerably high permeability of Ca2+ [156]. Then many empirical experiments have been

focused on the localization of this mechanosensitive channel, which is essential to validate

that the channel is gated by mechanical stimuli [62, 109]. Especially, Beurg et al. established

that the MET channels were located only at the bottom of the tip links as indicated by

fast confocal calcium-imaging [16]. In spite of these findings, the MET channel is a notable

example of ion channels whose molecular nature is still obscure, partly due to few channels

per hair cell and few hair cells per organ [159]. Although various potential candidates

including any known mechanosensitive channels and transient receptor potential channels

were compared with the MET channel from biophysical perspectives in the literature, none of

them was perfectly matched with the MET channel [77, 159]. However, Ricci et al. showed

that the conductance of hair cells in the turtle cochlea was tonotopically changed with their

characteristic frequency, which implies that the MET channel might be composed of several
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subunits [165]. Farris and his colleagues measured the dimensions of the MET channel using

various antagonists of the candidate channel classes and simple amine compounds [74]. Then

they found that the minimal pore size was about 12Å and channel length was approximately

31Å [74]. More intrinsic characteristics of the MET channel are yet to be discovered in order

to construct its molecular components.

1.2 Introduction to nanofluidic channels

Nanofluidics, one of the most vibrant scientific research fields, refers to the study and

application of the transport of molecules and/or ions dissolved in a solution as well as fluid

behavior through or past structures with one or more nanometer dimensions [55, 172]. The

nanofluidic studies have been highly motivated by the efforts to design a solid-state DNA

separation system and, moreover, extensive research has been driven by the dramatic advance

in both nanofabrication techniques and theoretical tools to describe fluid motion on the

nanoscale [188]. Another impetus is the discovery of new mechanical and electrochemical

phenomena which are non-existent or less influential in macrofluidic or microfluidic systems

[188]. In a nanofluidic channel, the combination of the remarkably large surface-to-volume

ratio, the electrostatic interactions between the fluid and the charged wall, and the channel’s

characteristic dimension comparable with the size of biomolecules generate unique transport

patterns such as double-layer overlap, ion-current rectification, ion permittivity and diffusion

[68, 223].

The extraordinary transport features of nanofluidics have been received a great deal of

attention in chemistry, physics, biology, material science, medicine and several engineering

fields [172]. In particular, the design and fabrication of nanofluidic devices for molecular
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biology applications is a new interdisciplinary field that takes advantage of precise control and

manipulation of fluids at submicrometer and nanometer scales in order to study the behavior of

molecular and biological systems. Nanofabrication techniques are generally classified into two

groups: top-down and bottom-up methods [151, 160]. The top-down method creates patterns

on a large scale with nanometer lateral dimensions, while the bottom-up method places

the atoms and molecules in nanostructures by using chemical reactions. Sophisticatedly

synthesized nanochannels are applied to biosensing of high-throughput, regulating and

separating ions and molecules and energy harvesting [93]. As the characteristic length

scale of the fluid is comparable with the length scale of the biomolecule and/or the Debye

length, nanofluidics can be applied to a variety of interesting powerful tools for genomics

or proteomics [1, 154]. For example, Han et al. introduced an entropic trapping sieving

mechanism for long DNA molecules [95] and Fu et al. designed and investigated a patterned

anisotropic nanofluidic sieving structure for size-based separation of DNA and proteins as

well as electrostatic separation of proteins [82]. For a protein analysis, nanofilter is used to

maximize protein concentration in a sample [204]. Schoch and his colleagues demonstrated

a pH-controlled diffusional separation of proteins in a nano-scaled channel [171]. Besides,

nanofluidic techniques have been instrumented for macromolecule accumulator [44, 210],

electronic circuits [116, 118, 215], local charge inversion [96], photonic crystal circuits [73]

and nanofluidic dynamic array [202]. Despite rapid development in nanotechnology, it is

still an intriguing challenge for engineers to generate inexpensive nanostructures which are

more feasible in diverse areas, for example biomedical research [154]. Since nanofluidic

device prototyping and fabrication are technically challenging and financially expensive, it is

desirable to further advance the field by mathematical/theoretical modeling and simulation.

One major factor to characterize a nanofluidic system is its structure. The novel nanofab-
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rication skills enable the production of diverse nanofluidic devices from 0, 1 to 2 dimensions,

where the dimension indicates the number of non-nanometer length component of the device

[68]. Generally, 0-D, 1-D, and 2-D nanochannels are also called as nanopores, nanotubes, and

nanoslits, respectively. Another parameter to represent the structure is the ratio of channel

height to width, namely the aspect ratio (AR), and, especially, low AR and near-unity AR

channels are referred to as planar and square channels [1]. Nanopores are usually formed

perpendicularly through diverse substrate materials, and the most well-known nanopore

sensors are pore-forming proteins such as α-hemolysin and silicon nitride membranes with

solid-state pores [196, 223]. Nanopore-based sensing is a cost-effective label-free approach

without amplification at a relatively high speed and it has been promoted to meet the needs

of researchers interested in DNA sequencing [22, 196]. Kasianowicz and his group tried

to detect single-stranded RNA and DNA molecules using α-hemolysin [120] and Li et al.

designed a set of solid-state nanopores in a silicon nitride to observe the folding behavior

of individual double-stranded DNA [134]. Nanochannels whose depth and/or width are

reduced to the nanoscale are eligible to combine with other sophisticated devices and to

demonstrate the transport inside the channel [223]. For example, Perry and his colleagues

designed funnel-shape nanofluidic channels with different taper angles and proved that the

taper angle of the funnel influenced the ion-rectifying effect [161]. Typically, nanochannels

with comparatively longer lateral length have either a cylindrical or a conical geometry [223].

While surface charge and applied external potential predominantly control the counterion

current in a cylindrical channel, the flow direction is also critical to determine the ion con-

ductance patterns through a conical channel. In the work presented here, we will concentrate

more on nanofluidic channels.

The other important property that distinguishes a nanofluidic system from a higher
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dimensional fluid system is its unprecedented transport phenomena. The fluid transport

through a nanoscale channel is explained by three factors: the external driving force generated

by either an electrical potential gradient or a pressure gradient, a variety of molecular-level

interactions, and the friction forces caused by solvent-wall interactions and hydrodynamic

solute-wall interactions [188]. Due to the extraordinary surface-to-volume ratio in nanofluidic

systems, fluid interactions with the wall dominantly induce notable transport behaviors

including ion permselectivity, ion enrichment and depletion, fast mixing and rapid injection

of a small amount of reagent [162]. Especially, steric/hydration interactions, van der Waals

interactions and electrostatic interactions play a central role in nanofluidic systems and

these intermolecular interactions determine the characteristic length scale of nanofluidics [55].

The interactions within a nanoscale fluid system are mostly influenced by its physical and

chemical properties such as geometrical confinement and charge, and flow condition such

as ion composition and concentration. Consequently, microscopic interactions dominate the

solute and solvent transport in nanofluidic structures, but continuum fluid mechanics regulate

it in macrofluidic and microfluidic structures.

Electrostatic distribution in a solution and electrokinetic flow of the solute molecules are

fundamental concepts to understand the transport in nanofluidic devices [172]. Specifically, the

surface charge of the channel wall plays a pivotal role to derive electrostatic interactions and

electrokinetic effects within nanoscale fluidic channels when charged particles are sufficiently

adjacent to the wall [56, 173, 190, 218]. The fixed charge at the channel wall induces

electrostatic interactions with ions dissolved in a solution; hence the wall attracts oppositely

charged ions, but repels ions with the same charge [188]. The interplay between the long-range

electrostatic forces and short-range van der Waals forces creates a screening region, so-called

an electrical double layer (EDL), in an electrolyte solution confined to the nanostructure so
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that this oppositely charged region is able to attain electroneutrality at the interface between

the solid and the liquid [172]. The combination effect between two forces at the charged

solid-liquid interface is well-established by the Derjaguin-Landau-Verwey-Overbeek (DLVO)

theory [63, 197]. The structure of the EDL is described well in the Gouy-Chapman-Stern

model, which suggests three layers of the EDL: the inner Helmholtz plane, outer Helmholtz

plane and diffuse layer [172]. While the inner Helmholtz plane consists of non-hydrated coions

and counterions that are attached to the channel surface, the outer Helmholtz plane contains

bound, hydrated and partially hydrated counterions. Moreover, the part between the inner

and outer Helmholtz planes is called the Stern layer, where the charge and potential are

linearly varied. The diffuse layer, the farthest layer, contains mobile coions and counterions.

In particular, a thorough understanding of the potential variance in accordance with the

structure of the EDL is indispensable because the principal mechanism of the transport is

electrokinetic behavior [162]. The readers can refer to the literature [6, 91, 157] for a more

comprehensive understanding of the EDL.

Characteristic length scale, such as Reynolds number, Biot number and Nusselt number,

is a reference quantity used to explain particular characteristics in a physical system. For

example, Reynolds number, the ratio of inertial forces to viscous ones, is a dimensionless

number to determine flow patterns in fluidic mechanics [105]. One of the most representative

characteristic length scales in nanofluidic structures is the Debye length λD =

√√√√ εε0kBT∑
α

C0
αq

2
α

,

where ε is the dielectric constant of the solvent, ε0 is the permittivity of vacuum, kB is the

Boltzmann constant, T is the absolute temperature, and C0
α and qα are, respectively, the bulk

ion concentration and the charge of ion species α [55]. The Debye length only depends on the

flow conditions, including the solute composition and concentration, and also describes the
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thickness (or, precisely, 1
e th reduction) of the EDL where the potential decays exponentially

[172]. Essentially, ionic fluid behaves like a microscopic flow within the EDL region, but it

acts as a macroscopic flow far beyond the Debye length.

When the internal diameter of a nanochannel is comparable to or smaller than the Debye

length, the electrolyte solution becomes a unipolar solution with a charge of sign opposite to

the channel surface charge [55]. However, this unipolar transport never occurs in microfluidic

systems because the channel pore is much larger than the Debye length. If the EDLs are

overlapped across the channel pore dimension, only the control of counterion flow is possible,

but otherwise the flow of both counterions and coions can be governed [56]. Ion selectivity is

another important feature which enables nano-sized channels to work as an ionic filter and it

is defined as the ratio of the difference between currents of cations and anions to the total

current delivered by both ions [199]. Vlassiouk and his group examined the ion selectivity

of single nanometer channels under various conditions including channel dimension, buffer

concentration and applied voltage.

The rectification of ionic current in nanofluidic devices has been of great interest because

it is possible to control the ionic flow by simple electrical switches [41]. This asymmetry in ion

conductance can be derived by applying the external voltage when the symmetry of surface

charge distribution, bulk concentration, channel geometry or a combination of these is broken

along the longitudinal axis [41]. In order to interpret the rectification phenomena through

nanofluidic systems, several experiments and theoretical modeling have been performed

in various types of structures. For example, Pu et al. conducted experiments to observe

ion-enrichment and ion-depletion effects in 60-nm-deep nanochannels, which usually resulted

in the ion-current rectification [163]. In their design, an applied field gave rise to accumulation

of both cations and anions at the cathode and absence of all ions at the anode of the channels.
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Siwy and her colleagues showed the rectification phenomena in a single conical nanopore and

in a single conical nanotube when the surface was adequately charged [184, 183, 180, 181, 182].

Karnik et al. designed a cylindrical nanofluidic diode with uneven surface charge distribution

[117] and Daiguji et al. theoretically described the ionic transport through such channels

[56].

1.3 Review of current computational models

Channels with nanoscale pores are ubiquitous in biological systems, while recently astonishing

advance in synthesis techniques enables manufacturing such small-sized pore channels for

various applications[153]. Modeling and analyzing the ionic transport and fluidic dynamics

through both natural and artificial nanofluidic channels have been a great challenge and

a crucial task over the past few decades. Membrane channels are obviously different from

solid-state channels. For instance, the ionic selectivity of membrane channels is mainly based

on the sizes of ions and channel pore; in contrast, that of solid-state channels depends on

electrostatic effects [55]. In spite of such differences, ion transport through both types of

nanochannels can be simulated using similar theoretical and computational tools due to

common physical features.

An enormous number of theoretical approaches, from phenomenological to fundamental,

have been proposed and developed in order to elucidate the transport phenomena within

cell membrane channels as well as man-made channels [46, 55, 112, 133, 146, 153, 168]. In

this section, we account for three well-known representative theoretical approaches: all-atom

molecular dynamics (MD), stochastic dynamics and continuum models such as Poisson-

Boltzamann (PB) and Poisson-Nernst-Planck (PNP) equations. Then we discuss the history
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of modeling biological ion channels and introduce several theoretical models and simulations

of ion channels using each model in the literature. Finally, we summarize a list of modeling

and simulation of synthetic nanofluidic channels.

1.3.1 Three representative computational approaches

1.3.1.1 Molecular dynamics

In the MD simulation, the dynamical motions of all the atoms, including ions, water, protein

and lipid in the simulated system, are described via Newton’s second law of motion, and

the empirical force fields express the potential energy under the influence of interatomic

interactions [153].

mi
d2

dt2
ri(t) = Fi(t) = −∇V (ri(t), . . . , rN (t)),

where ri and mi denote, respectively, the position and the mass of the atom i, N the total

number of atoms in the system and Fi the force acting on the atom i that is the gradient of

the potential energy V (ri(t), . . . , rN (t)).

The potential energy is composed of bonded potential and unbonded potential [146].

While the former is related to bond lengths, bond angles, improper dihedral angles and

torsional angles, the latter contains the Coulomb potential for electrostatic interactions and

the Lennard-Jones potential for van der Waals interactions. The widely used molecular

dynamics simulation packages with a set of force fields are CHARMM [23, 143], AMBER

[51, 209], GROMOS [97], and OPLS-AA [113].

The greatest advantage of the MD simulation is to give the most accurate time-dependent

atomic detail of the system of interest which is also comparable with experimental data

[146]. In this respect, it is a powerful theoretical approach for biophysical and biochemical
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analysis. Especially, the MD calculates a valuable parameter, the potential of mean force

(PMF). It is very beneficial to discover the permeation through nanometer pores or channels

and, moreover, it can provide the selectivity sequences of monovalent cations using the

free-energy profiles [48]. Despite such great benefits, the MD has several limitations: the

high computational cost due to microscopic detailedness of description, the wide range of

time scales from femtoseconds over miliseconds to seconds, the difficulty to account for

polarization and pH value, and the difficulty to apply an electrostatic potential across the

system [153]. The abrupt advance of computer powers raises the time scales of simulation up

to 1 microsecond [125]. Ab initio MD framework has progressed to analyze the polarization

effects in biomolecular systems and, for instance, these simulations successfully demonstrate

dissociation of NaCl in water [148, 192]. Many studies have purported to surmount the other

puzzling issue of the availability of the external electrostatic potential in MD simulations

[153]. Since Aksimentiev and Schulten simulated the ion conductance through α-Hemolysin

under the applied external electrostatic field [4], a similar investigation method has been

utilized to study ion transport in a variety of systems [20, 126, 145, 152, 179, 174].

1.3.1.2 Stochastic dynamics

The stochastic dynamics scheme is proposed as a great compromise between two computational

approaches in that it can simulate only a reasonable number of ions explicitly by considering

the solvent molecules implicitly [55]. The simplest and most commonly used form of stochastic

dynamics to explore complex many-body systems is the Brownian dynamics (BD) [48].

Specifically, for the BD simulations of nanofluidic channels, the dynamics depict the behavior

of each solute ion while considering the channel as a rigid structure and the solvent molecules

implicitly under frictional and stochastic forces [146]. By reducing the number of degrees of

12



freedom in calculation, this statistical approach provides very useful computational data such

as current-voltage and conductance-concentration curves at a relatively lower cost [48, 153].

Herein, the Langevin equation is repeatedly solved to detect the random motions of the

individual ions of interest under the influence of the dissipative and fluctuating forces [48]:

mi
d2

dt2
ri(t) = Fi(t, r)−miγiṙi(t)− ξi(t),

where Fi denotes the systematic force including electrostatic forces derived from interactions

between the charged atoms, miγiṙi(t) the frictional force denoting mi the mass, γi the

reciprocal of the relaxation time and ṙi the velocity, and ξi the stochastic force. Two

necessary parameters required to conduct a BD simulation are the diffusion coefficient for

each ion and the force applied to each ion which corresponds to the multi-ion PMF [146].

These two factors are usually obtained from all-atom MD simulations.

In particular, the BD simulations are very valuable for ion channel studies in that

they empower to calculate the current flow and ionic concentrations in the system using a

trajectory analysis and to determine the valence selectivity [48]. Although the BD somewhat

compensates the defects of both the MD and the continuum approaches, this framework

also has critical shortcomings and hence many scholars have extensively researched solutions

to such problems [48, 146, 153]. The stochastic dynamics of the reduced system involves

two major simplifications assuming water as a continuum and protein as a fixed structure,

which are closely involved in the shortcomings of the simulations [133]. Another weakness of

the BD method is using the position-independent dielectric constant for water, but the MD

demonstrates that the polarizability of water is decreased due to confinement in a real system

[48]. Thus, some BD simulations use position-dependent dielectric constants validated by
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MD simulations [107, 131]. For ion channel analysis, the conformational changes of proteins

may have influence on ion permeation, which needs to be discovered using experiments and

MD simulations and, further, to be applied in BD simulations [48].

The dynamic Monte Carlo (DMC) is an alternative statistical theory to simulate non-

equilibrium or relaxation systems [169]. The fundamental principle of the DMC is that the

dynamics of a system can be described by a sequence of states generated by random particle

displacements in time [54, 169]. In this simulation, a randomly-chosen ion of an arbitrary

species is transferred to a randomly-chosen new location within a maximum displacement of

its former location [54]. Csćnyi et al. satisfactorily computed ionic current through a sodium

channel model under nearly physiological bulk ion concentration [54]. A theoretical approach

coupling grand canonical Monte Carlo (GCMC) and Brownian dynamics (BD) is proposed by

Roux and his colleagues in order to incorporate bulk ion concentration and transmembrane

potential in ion channel microscopic simulations [107, 108]. They validated the proposed

algorithm to study ion permeation and selectivity of the OmpF porin of Escherichia coli.

1.3.1.3 Continuum models

In a continuum based simulation, the mathematical theory treats all the components of

a system of interest including ions, water and proteins as a continuous element [48]. The

most well-established continuum models are Poisson-Boltzmann (PB) for electrostatics and

Poisson-Nernst-Planck (PNP) for ion transport [146]. Due to such simplifying approximation,

the continuum approach has a number of limitations; however, it plays a crucial role to

predict structural and physical features from the current-voltage-concentration relation at

high computational efficiency [146].

In the early 1900s, the PB equation was first proposed by Gouy (1910) and Chapman (1913)
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in order to elucidate electrostatic patterns around a biomolecule [29, 90]. It is generalized

as a continuum approach to compute electrostatic free energy of small spherical ions in an

ionic solution by Debye and Hückel in solution chemistry [61]. Since such worthwhile usage

of the PB equation in electrochemistry, this model has been studied and applied in various

research fields as well [139]. For example, it is the foundation of DLVO theory which describes

electrostatic effects in colloid systems [63, 197] and, moreover, it is also utilized in biophysics

[59, 103]. The non-linear PB equation is usually written in the following form:

−∇ · (ε(r)∇Φ(r)) = 4πρm(r) + 4πλ(r)
∑
α

qαC
0
α exp

(
−qαΦ(r)

kBT

)
,

where ε(r) denotes the spatial-dependent dielectric constant, Φ(r) the electrostatic potential

and ρm(r) the fixed charge density of the biomolecule. For each mobile ion species α within

an aqueous solution, C0
α and qα represent, respectively, the concentration at bulk region and

the charge. Moreover, kB is the Boltzmann constant, T is the absolute temperature, and λ(r)

is the characteristic function whose value is 1 in the solvent region which ions can penetrate

through, but whose value is 0 in the biomolecule region impermeable to ions.

The fundamental assumption of the PB model is that the electrostatic potential in an

ionic solution is determined by the Boltzmann distribution of solute charges [81, 146]. The

PB equation is largely solved to compute the electrostatic potential at the solvent-accessible

molecular surface, the reaction rates between molecules in a solution, the free energy of

biomolecular association and its salt dependence and pKa shifts in proteins [81]. Furthermore,

it can be conveniently integrated into molecular mechanics and dynamics to maximize

computational efficiency [81]. Since the PB is involved with a mean-field approximation,

the PB modeling produces several weaknesses [26]. First, the important properties of an
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ion, such as the size and the discrete surface charge, are not considered while the ion is

simply considered as a point charge. Second, the non-electrostatic ion-ion interactions and

ion-solid interactions are ignored. Third, the dielectric constant of the solvent is assumed

to be the same through the system, but in reality the permittivity of the medium can be

altered due to charge distribution near the surface. Such problems notwithstanding, the

PB framework is definitely a useful tool in ion channel studies in that it facilitates the

calculation of the free energy required to move an ion from the bulk region to the channel

inside, the characterization of ion-channel interactions and the description of transmembrane

electrostatic potential distribution [146].

The utmost remarkable continuum theory for ion transport through a nanofluidic channel

is an electrodiffusion model, namely Poisson-Nernst-Planck (PNP) theory, which treats

both solutes and solvent as continuous entities, but describes membrane protein in atomic

detail. Specifically, the PNP model describes the solvent water molecule as a dielectric

continuum, treats ion species by continuum density distributions and, in principle, retains

the discrete atomic detail and/or charge distribution of the channel or pore constitution

[14, 72, 129, 221, 220]. The Nernst-Planck equation (NP) combines two fundamental physical

laws, that is, Ohm’s law and Fick’s law, based on the fact that the flux of ions through a

nanochannel is driven by the potential and concentration gradients [48]. For each solvent ion

species α,

Jα(r) = −Dα(r)

(
∇Cα(r) +

Cα(r)

kBT
∇ (qαΦ(r) + Uα(r))

)
,

with the Boltzmann constant kB and the absolute temperature T . Herein, Jα(r), Dα(r),

Cα(r), qα and Uα(r) are, respectively, the flux density, the diffusion coefficient, the concen-

tration, the charge valence and the sum of potentials induced from interactions with the
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channel for ion species α. Additionally, the electrostatic potential Φ(r) is obtained from the

Poisson equation:

−∇ · (ε(r)∇Φ(r)) = 4πρm(r) + 4π
∑
α

qαCα(r),

where ε(r) and ρm(r) are the position-dependent dielectric constant and the partial charge den-

sity of the nanopore, respectively. By solving the NP and Poisson equations self-consistently

and simultaneously, one can calculate the electrostatic potential, the ionic concentration

and the ionic currents [153]. To simulate the PNP model with a nanofluidic channel, the

required parameters need to be gained empirically or, sometimes, by all-atom simulations

[48, 153]. The parameters include the channel geometry and its surface charge composition,

the dimension and bulk ion concentration at each reservoir, the dielectric constant at each

region, the diffusion coefficients of an ion species and the applied external potential [48].

Although the PNP theory is proved to analyze and predict ion transport at a comparably

small computational cost, it is similar with the PB theory in its limitations. In particular, the

PNP theory is inadequate to describe the transport phenomena through narrow nanochannels

owing to the finite size effects of the ions [114] and short-range non-electrostatic interactions

[52].

The Poisson-Nernst-Planck theory, combined with the density functional theory, is a

useful extension of the PNP model [86, 87]. In this framework, ions are considered as charged

rigid spheres and the density functional theory is employed to calculate the chemical potential

of the ions. Other potent theoretical tools are Poisson-Boltzmann-Nernst-Planck (PBNP),

which simplifies the calculation for multiple ion species with Boltzmann distributions of

ion concentrations [140, 221] and variational multiscale models for charge transport, which

employ diverse variational formulations based on differential geometry theory [208].
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1.3.2 Modeling and simulation of biological ion channels

In 1952, Hodgkin and Huxley designed a voltage clamp experiment technique which is used

to determine the membrane permeability [100]. Using this brilliant idea, they elucidated the

action potential in squid giant axons by analyzing electrical movements of Na+ and K+ through

the ion channels [99]. Similarly, early studies on ion channels were biophysical experiments

to study conductance by measuring voltage and current [19]. Then the understanding

of ion channels at molecular level have been expanded by structural studies [19]. For

example, electron microscopy, nuclear magnetic resonance (NMR) spectroscopy and X-ray

crystallography have been established to reveal atomic-level structural information of ion

channels [112]. The discovery of the crystallized structure of the Streptomyces lividans KcsA

potassium channel by MacKinnon and his collaborators was a remarkable achievement, which

also helps to understand the ion conductance mechanism at atomic basis [67, 144]. As another

good example of the well-studied ion channel structure, the pore and channel molecular

structures of a Gramicidin A (GA) channel have been explored by X-ray crystallographic

and/or NMR spectroscopic methods [201]. The molecular structures of other potassium

channels [135], mechanosensitive channels [9, 28] and a chloride channel [69] have been

discovered. Therefore, the abrupt advance in crystallographic analysis gives rise to atomic-

resolution structures of many ion channels [48]. The detected structures are used to identify

their functions from the essential laws of physics in electrolyte solutions [48].

Parallel to progress in experimental methods, theoretical tools have been so sophisti-

cated that researchers could investigate structure, function, dynamics and transport of ion

channels in electrophysiology, biochemistry, molecular biology, computational chemistry

and bioinformatics from the whole cell studies to single channel studies [112]. Theoretical
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modeling is beneficial to obtain an overall physical description of an ion channel, which

gives several advantages [46, 168]. First of all, it is very effective not only to organize and

visualize experimental data but also to predict physical phenomena. Moreover, it possibly

provides a connection between the structure of an ion channel and its functions. A number of

theoretical frameworks have been proposed and developed to answer the following puzzling

issues: the detailed process of ion permeation, the positions of binding sites in a channel, the

rate-limiting steps in conduction, and the relationship between the molecular composition of

an ion channel and its ion selectivity [153]. Powerful computational approaches including

all-atom molecular dynamics (MD), Brownian dynamics (BD), Poisson-Boltzmann (PB)

model, Poisson-Nernst-Planck (PNP) model, Poisson-Boltzmann-Nernst-Planck (PBNP)

model and variational multiscale models have been established over years to explore ion

channels [112, 146, 153]. Each method has strengths and weaknesses, so a researcher should

choose an appropriate method by considering the computational complexity and cost [146].

MD, a dynamic description of the detailed motions of individual atoms in a system, has

been developed to deal with more complex biological or chemical systems [5, 119, 149]. Since

the first simulation of a folded globular protein, its usage has been extended to account

for dynamic conformational changes and longer time scales [5, 119, 149]. Mackay and

his coworkers applied MD method to observe the transport of four ions (lithium, sodium,

potassium, and cesium) through the GA channel, which was the first MD simulation of

an ion channel [142]. Especially, this theoretical approach elucidates the mechanism of

ion selectivity, for instance, water permeation through human aquaporin-1 [60] and Ca2+

permeation through an L-type calcium channel [7]. BD describes the ions of interest explicitly,

but it treats the solvent molecules implicitly [146]. Chung et al. preformed BD simulations

to study currents of sodium and chloride ions through the designed membrane channel
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whose structure is similar to ACh channel [47]. PB is an equilibrium approach beneficial

to describe the electrostatics around charged biomolecules in a solution, while PNP is a

nonequilibrium approach useful to explore the ion fluxes depending on concentration gradient

and electrostatic potential gradient [146]. Due to high efficiency of computational cost, PNP

has been applied to study diverse ion channels including GA channel [31, 49, 101, 129] and

OmpF porin [3, 107]. Zheng and her colleagues suggested PBNP model in order to simplify

the calculations of Nernst-Planck equations and tested that model with two protein molecules

such as cytochrome c551 and GA [221].

Recently, a variety of differential geometry based multiscale models were introduced

for charge transport by our group [207, 208, 206]. The differential geometry theory of the

molecular surface provides a natural means to separate the microscopic domain of biomolecules

from the macroscopic domain of solvent so that appropriate physical laws are applied to

appropriate domains. Our variational formulation is able to efficiently bridge macro-micro

scales and synergically couple macro-micro domains [206]. One type of our multiscale models

is the combination of Laplace-Beltrami (LB) equation, PB equation and Kohn-Sham equations

to study the molecular mechanism of proton transport [30, 33]. Another type incorporates LB

equation into the generalized PNP equations for the dynamics and transport of ion channels

and transmembrane transportors [208, 206]. The other type alternates MD simulations

and continuum elasticity (CE) descriptions of the solute molecule as well as continuum

fluid mechanics formulation of the solvent [207, 208, 206, 213]. We proposed the theory

of continuum elasticity with atomic rigidity (CEWAR) to treat the shear modulus as a

continuous function of atomic rigidity so that the dynamics complexity of a macromolecular

system is separated from its static complexity [213]. As a consequence, the time-consuming

dynamics is approximated by the CE theory, while the less time-consuming static analysis is
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carried out in atomic level. Efficient geometric modeling strategies associated with differential

geometry based multiscale models have been carried out with both Lagrangian Eulerian

[75, 76] and Eulerian representations [212].

1.3.3 Modeling and simulation of synthetic nanofluidic channels

Nanofluidics has been extensively studied in chemistry, physics, biology, material science,

and many areas of engineering [172]. The modeling and simulation of nanofluidic systems

have been of enormous importance and a fast growing research field in the past decade.

Basically, modeling a fluidic system with one or more dimensions at nanoscale is different

from modeling a microfluidic system in that the liquid confined to such a narrow system

contains fewer molecules and the wall considerably influences on the transport [189]. Thus

the simulation models utilized in microfluidic systems need to be carefully tested if each

model is applicable in nanofluidic analysis [189]. Most microfluidic devices involve a fluid

flow through a microfluidic pore or channel, which has been an interesting concern in the

theoretical modeling. Gad-al-Hak classified the fluidics models as two categories: continuum

models including Euler, Navier-Stokes (NS) and Burnett equations, and molecular models

including molecular dynamics (MD), direct simulation Monte Carlo (DSMC) and lattice-

Boltzmann method (LBM) [83]. The characteristic length scales such as Renolds number

and Debye Screening length are key factors to explore the transport features in nanofluidics

as well as microfluidics [55, 105]. Especially, for a nanofluidic device, if the characteristic

length scale of its pore is greater than 5nm, the PNP equations and Stokes equations well

describe electrokinetics and liquid flow within the device, respectively [55, 189]. Otherwise,

the transport analysis requires the discreteness of substances; thus, in particular, MD is an

efficient tool in this respect [55].

21



In every fluidic system, the transport behavior is determined by the forces between the

individual atoms, which implies that considering all the atomic interactions is the best way

to depict fluid mechanics [70]. In spite of several critical limitations such as time scale, MD is

the foremost modeling tool to study the structural and dynamic characteristics of nanoscale

devices [55]. For nanofluidic analysis, MD simulations have been employed to discover

significant dynamics phenomena such as ion current rectification and charge inversion in

various types of solid-state nanochannels [153]. Lyden-Bell et al. designed a simple cylindrical

channel model to investigate the mobility and solvation of ions and uncharged molecules in

an aqueous solution [141]. This study found the solvation shell of water molecules by means

of the MD simulations. All-atom molecular dynamics simulations have been performed to

delineate the ionic transport and several remarkable phenomena within silica devices [153].

Lorenz et al. investigated ζ-potential, Stern layer conductance, charge inversion and ionic

mobilities using a detailed description of ionic transport, electro-osmotic flow and streaming

currents [136, 137]. Curz-Chu et al. demonstrated the effect of ion-binding spots at the

silica surface on the ionic current rectification [53]. Moreover, Shirono and his colleagues

successfully provided a atomic-scale description of ionic transport within ultra-narrow silica

nanopores with 2nm diameter pore [178]. Although MD is a powerful theoretical approach,

it is inadequate to examine a dilute fluid because the intermolecular interactions have little

influence and hence alternative theoretical approaches are mandatory [105]. For example, a

lattice-Boltzmann method (LBM) based on mesoscopic kinetic equations with microscopic

models has been advanced to simulate not only microfluidic systems but also nanofluidic

systems [37, 105].

The Navier-Stokes (NS) equations have been a famous continuum dynamics model to

elucidate microfluidic phenomena in lap-on-a-chip systems at comparatively less computational
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cost and its simpler version is the Stokes equations [105]. The Navier-Stokes/Stokes equations

have been coupled with various other equations such as PB equations for electrokinetic flow

dynamics and PNP equations for ion transport analysis [105]. Especially, the PNP is the most

renowned model for charge transport in nanofluidics [14, 27, 57, 71]. Daiguji and his coworkers

intensively characterized a variety of transport phenomena through nanofluidic channels

including unipolar solution, energy conversion and ionic rectifying effect by coupling the NS

equations with the PNP equations [57, 58, 56]. Choi et al. investigated the electrokinetic

flow-induced currents through silica nanofluidic channels using the performances of the PB

and PNP models with appropriate boundary conditions [43]. They also validated the proposed

models by comparing with experimental data The BD simulation of ions in a nanopore channel

was combined with the continuum PNP model for regions away from the nanopore channel

[2]. A further simplified model is the Lippmann-Young equation, which is able to predict the

liquid-solid interface contact angle and interface morphology under an external electric field

[186].

1.4 Existing challenges

1.4.1 Existing challenges in mechanoelectrical tranducer channel

Mechanosensitive channel is one of the most famous targets of computational studies, but

the molecular mechanism of mechanosensation is still elusive [146]. For only few simple

mechanosensitive channels, their crystal structures were discovered and they have been studied

to elucidate ion conductance and the mechanism of mechanical gating using simulations

[9, 28, 187, 191]. Since the transduction process of hair cells attracted a great deal of
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attention, many principal physiological properties of a hair cell mechanotranducer have been

demonstrated [79]. These features contain exceptional sensitivity to a mechanical force,

kinetic principles such as activation and adaptation, ion selectivity, and conductance of a

single MET channel. Especially, the channel permeation properties are critical foundations to

build its molecular building blocks [158]. However, the molecular identity of the MET channel

is not confirmed yet because it is fairly formidable to connect properly its physiological

functions to intrinsic cytoarchitecture and accessory proteins [158]. Parallel to this difficulty,

there are two obscure, but essential, questions - whether the transducer channel is activated

by mechanical stimuli through accessory proteins or by the deformation change in the lipid

bilayer and which part of the channel protein calcium ions bind to for fast adaptation [79].

It is one of the most challenging as well as indispensable works to complete the molecular

structure of the MET channel, which will provide more substantial understanding of the

transduction process in hearing.

1.4.2 Existing challenges in nanofluidics

Nanofluidics has been intensively and extensively developed not only in terms of fabrication

skills but also in terms of theoretical studies over the past decades. In nanofluidic modeling,

computation and analysis, there are many standing theoretical and technical problems.

For example, nanofluidic processes may induce structural modifications and even chemical

reactions [115, 195], which are not described in the present nanofluidic simulations. The

PNP model, one of the most widely used theories in nanofluidics, can incorporate atomic

charge details in its pore or channel description, which are vital to channel gating and fluid

behavior. However, atomic charge details beyond the coarse description of surface charge

are usually neglected in most nanofluidic simulations. Although Stern layer and ion steric
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effect are significant for the EDL as discussed earlier, they are not appropriately described

in the conventional PNP model. Furthermore, nanofluidic simulations have been hardly

performed in three dimensional realistic settings with physical parameters. Consequently,

simulation results can only be used for qualitative (i.e., phenomenological) comparison and

not for quantitative prediction. Finally, the material interface induced jump conditions in

the Poisson equation are seldom enforced in nanofluidic simulations with realistic geometries.

Therefore, it is imperative to address these issues in the current nanofluidic modeling and

simulation.
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Chapter 2

Theoretical models and mathematical

algorithms

This chapter contributes to derive a generalized Poisson-Nernst-Planck (PNP) model using a

variational formulation in order to describe the ion transport within not only a biological

ion channel but also a synthetic nanopore channel. In this model, we consider van der

Waals interactions as part of our free energy functional to describe solvent-solute and ion-ion

non-electrostatic interactions. Then we develop Dirichlet to Neumann mapping (DNM) for

dealing with charge singularities and the matched interface and boundary (MIB) method

for material interfaces in order to compute the PNP equations with 3D irregular channel

geometries and singular charges.

2.1 Generalized Poisson-Nernst-Planck (PNP) model

Although the PNP theory is quite standard to describe the dynamics within nanochannels

[14, 35, 36, 45, 50, 110, 194, 199, 200, 203, 206, 222, 225], it does not include non-electrostatic

interactions. In this section, we present a generalized PNP theory by incorporating non-

electrostatic interactions between the solution and the nanoscale channel pore, and between

solvent molecules such as waters and ions. We utilize a variational formulation to derive

generalized PNP equations.
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2.1.1 Computational domain

(a) The molecular-level MET channel prototype (b) Ionic diffusive nanofluidic channel

Figure 2.1: An illustration of the computational domain Ω consisting of Ωm and Ωs. (a) For
the MET channel prototype, the domain is divided into four regions: channel protein, membrane
layers, bulk regions and channel pore. Here, the red circle represents the blocker, a charged atom,
for channel gating effect and the arrow indicates the direction of its movement. (b) For the ionic
diffusive nanofluidic channel, the ion inclusion region Ωs is composed of two reservoirs and the
inside of the cylindrical channel with a static boundary. Here, red circles indicate the charged atoms
around the channel to generate channel surface charge effect.

Let us consider a total computational domain Ω ⊂ R3. We denote Ωm and Ωs respectively

the microscopic channel region (or the ion exclusion region) and the solution region (or the

ion inclusion region). Essentially, we seek continuum descriptions of ions in the solution

domain Ωs, while we consider a discrete atomistic description in the channel structure domain

Ωm. Interface Γ separates two regions Ωm and Ωs so that Ωm
⋃

Γ
⋃

Ωs = Ω. Since biological

channels and artificial channels differ in the specific composition of the domain Ω, the domain

setting is a careful process. Moreover, it is critical, not simple, to determine a well-defined

interface because it is related to the structural features of the channel.

In this work, we simulate two nano-scaled systems: the molecular prototype for the

MET channel and the ionic diffusive nanofluidic channels with atomic surface charge. In the
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following, we will discuss in detail about the computational domain for each channel type.

Biological ion channel domain setting

As depicted in Fig. 2.1(a), the molecule region Ωm consists of channel proteins and membrane

layers, but the solvent region Ωs is composed of channel pore and bulk regions which ions

and molecules travel through. Since in reality, the shape of a protein channel continuously

varies, for example by its interactions with water molecules, identifying a static structure

has been a puzzling issue in a theoretical modeling of a complex macromolecule [166]. The

molecular surface (MS) is one of the standard methods to visualize the molecule-solvent

interface [166, 170]. The minimal molecular surface (MMS) is proposed in order to minimize

the surface free energy [10, 11]. To describe the boundary of our MET prototype, we employ

the hypersurface function S : R3 → R3 from our earlier differential geometry based multiscale

models [207, 208, 206]. Basically, the function S(r) is a solvent-solute characteristic function

whose value is 1 in Ωs and 0 in Ωm, whereas it takes proper values between 0 and 1 near

the boundary of the biomolecule to become a smooth function [206]. Thus, the hypersurface

function determines movable biomolecule-solvent interface whose dynamics is driven by

mechanical and electrostatic forces, for example using the Laplace-Beltrami equation [208].

With this hypersurface function S(r), we can derive a generalized PNP model using the

differential geometry formalism of solvent-solute interface as in [206].

Synthetic nanofluidic channel domain setting

In solid-state channel analysis, the region Ωs is divided into the channel inside and two

reservoirs as in Fig. 2.1(b). Usually, an external field leads ions and molecules to pass

through the channel inside from one reservoir to another. Herein, we introduce a domain
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characteristic function S : R3 → R3 such that Ωm = SΩ and Ωs = (1− S)Ω. Obviously, S

and (1− S) are the indicators for the channel domain and the solution domain, respectively.

Unlike the charge and material transport in biomolecular systems, the charge and material

transport in nanofluidic systems induces a negligible reconstruction of the solid-fluid interface

compared to the system scale. Therefore, the fixed solid-fluid interface is predetermined in

the present model as opposed to using the hypersurface function S(r) in ion channel model.

With this domain characteristic function S(r), we present a new variational derivation of the

PNP model for the solid-state nanofluidic channel in this thesis work.

2.1.2 Energy functional

Generally, a nanochannel, which can be either biological or artificial, system is mainly com-

posed of an ionic solution and a microscopic channel composition. Inter-particle correlations

occur between components of the solution or between the solution component and the channel

component at the channel surface. These interactions are mainly classified to be either

electrostatic or non-electrostatic.

Electrostatic energy functional

Electrostatic interactions are ubiquitous in all biomolecular systems and processes, and

are also the dominating effects for nanofluidic behaviors [55, 81]. Especially, electrostatic

interactions in biomolecules are salient to elucidate the several behaviors such as folding,

binding, conformational stability and enzyme activity [155]. The electrostatic interactions are

typically modeled by a number of theoretical approaches: the Poisson-Boltzmann (PB) theory

[59, 81, 130, 177], the polarizable continuum solvation theory [150, 193] and the generalized

Born model, an approximate continuum solvent model, [8, 66]. Among these methods, the PB
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theory is the most popular in structural and functional analysis of biomolecules. A variation

formulation of this theory was originally introduced by Sharp and Honig in 1990 [176], and

was extended to a multiscale formalism [207, 206] as well as an electrostatic force derivation

[89].

In the present work, we consider the following electrostatic energy functional

Gelectr =

∫ χ [−εm2 |∇Φ|2 + Φρm

]
+ (1− χ)

−εs
2
|∇Φ|2 + Φ

Ns∑
α=1

qαCα

 dr, (2.1)

where Φ is the electrostatic potential, and εs and εm are the dielectric constants of the ionic

solution and channel regions, respectively. ρm =

Nm∑
k=1

Qkδ(r − rk) with Qk denoting the

partial atomic charge at position rk and Nm the total number of fixed charges on the channel

surface. For each ion species α, Cα and qα, respectively, represent the concentration and the

charge valence which is zero for an uncharged solution component, and Ns represents the

number of mobile ion species in the solution domain. Moreover, the function χ(r) in Eq.(2.1)

is the characteristic function to determine the channel-solution interface. This characteristic

function means the hypersurface function S(r) for membrane channel modeling, but the

domain characteristic funciton S(r) for solid-state channel modeling.

Non-electrostatic interactions

The examples of non-electrostatic interactions are van der Waals interactions, dispersion

interactions, ion-water dipolar interactions, ion-water cluster formation or dissociation, steric

effects, and so forth. In particular, these interactions near the solution-channel interface

have a crucial influence on the transport features due to confinement or dilution of solution;

however, continuum approaches ignore such important correlations [12, 26, 52, 114]. This
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simplification may result in problematic discrepancy between simulation predictions and

experimental data and hence the extensions of continuum models including non-electrostatic

correlations have been explored. For example, the PB and PNP, two representative continuum

based theories, have been studied in terms of ionic finite size effects in the past [13, 12, 24,

30, 92, 106, 127, 132, 198].

To account for solvent-channel interactions as well as solvent-solvent interactions, the

non-electrostatic interaction energy functional takes the form

Gnon−electr =

∫
Ωs
Udr =

∫
Ω

(1− χ)Udr. (2.2)

In this modeling, we assume that the aqueous environment has multiple ion species labeled

by α. The non-electrostatic interaction potential U can be obtained by summing all the

pairwise inter-particle interactions within the solution or near the solution-channel interface:

U(r) =
∑
α

Cα(r)Uα(r) =
∑
k

Cα(r)Uαk(r) +
∑
β

Cα(r)Uαβ(r), (2.3)

where Cα(r) is the density of αth ionic component of the solution, which may be either

charged or uncharged, and Uα is a non-electrostatic interaction potential with αth species.

For each α, Uαk(r) is an interaction potential with the kth atom of the channel structure

and Uαβ(r) is a potential for ion-ion or ion-water non-electrostatic interactions with βth

component of the solution.

The solvent-solute interactions in solvation analysis have been represented by the Lennard-

Jones (LJ) potential [40, 38, 39]. The Weeks-Chandler-Andersen (WCA) decomposition [205]
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was utilized to split the LJ potential into attractive and repulsive parts [39, 208]

U
att,WCA
αk (r) =


− εαk, 0 < ‖r− rk‖ < σk + σα,

V LJ
αk , ‖r− rk‖ > σk + σα, and

U
rep,WCA
αk (r) =


V LJ
αk + εαk, 0 < ‖r− rk‖ < σk + σα,

0, ‖r− rk‖ > σk + σα,

(2.4)

where εαk is the depth of the potential well, σk and σα are respectively the radii of the

kth atom in the channel region and the αth ion species in the solvent region, and rk

represents the location of the kth atom in the channel. For the MET channel analysis,

rk represents the position of the partial charge of the channel protein; however, for the

ionic diffusive channel analysis, rk represents that of the atomic surface charge. Here,

V LJ
αk = 4εαk

{(
σ

rd

)12

−
(
σ

rd

)6
}

represents the Lennard-Jones potential for the interaction

between the kth atom in the channel region and the αth ion species in the solvent region

with denoting σ the distance at which the interaction potential is zero and rd the distance

between two particles.

The inter-particle interaction term Uαβ(r) within the solution does not affect the derivation

and the form of other expressions. More detailed description of Uαβ(r) for ion channel

transport can be found in our earlier work [33, 208].

Chemical potential related free energy

Chemical potential related free energy combines a reference homogeneous term and an

entropic term of mobile charges [80], which is essential for the description of mobile charges
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in the nanofluidic system.

Gchem =

Ns∑
α=1

∫ {(
µ0
α − µα0

)
Cα + kBTCα ln

(
Cα
Cα0

)
− kBT (Cα − Cα0)

}
dr, (2.5)

where kB is the Boltzmann constant and T is the temperature. For each αth species, µα0 is

a relative reference chemical potential which implies the difference between the equilibrium

concentrations of different solvent species. µ0
α and Cα0, respectively, represent a reference

chemical potential and its associated ion concentration, given that Φ = Uα = µα0 = 0.

Especially, the term kBTCα ln
(
Cα
Cα0

)
is the entropy of mixing and the term−kBT (Cα − Cα0)

is a relative osmotic term [147].

For each species α, it is standard that the variation of the energy Gchem with respect to

Cα, namely,
δGchem

δCα
, generates the chemical potential as follows [208].

µchem
α = µ0

α − µα0 + kBT ln

(
Cα
Cα0

)
. (2.6)

Note that, at equilibrium, µchem
α is nontrivial, and Cα and Cα0 are not equal due to possible

external electrical potentials, solvent-solute interactions, and charged particles.
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Total free energy functional

The total free energy functional for the nanofluidic system is

GPNP
total [χ,Φ, {Cα}]

=

∫ 
χ(−εm

2
|∇Φ|2 + Φρm

)
+ (1− χ)

−εs
2
|∇Φ|2 + Φ

Ns∑
α=1

qαCα


+(1− χ)

Ns∑
α=1

CαUα

+(1− χ)

Ns∑
α=1

[(
µ0
α − µα0

)
Cα + kBTCα ln

(
Cα
Cα0

)
− kBT (Cα − Cα0) + λαCα

] dr.

(2.7)

This shows three contributions to the total free energy: the electrostatic free energy including

both fixed and mobile charges, the free energy of non-electrostatic interactions, and the

chemical potential related energy. Note that the electrostatic free energy functional is the

same as the polar solvation free energy functional in the literature [38, 39, 206]. Here λα

is a Lagrange multiplier, which is included to ensure appropriate physical properties at

equilibrium [80].

A powerful feature of the present total free energy function formulation (2.7) is to employ

the free energy functional of the non-electrostatic interactions U for nanofluidic dynamics.

Therefore, the present theory is able to deal with a variety of non-electrostatic interactions

and the solvent microstructure near the channel can be predicted correctly as well.

2.1.3 Governing equations

The total free energy functional (2.7) is a function of electrostatic potential Φ and ion

concentration Cα. The governing equations for this thesis work are derived by using the
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variational principles [207, 208, 206].

Generalized Poisson equation

The variation of the total free energy functional (2.7) with respect to the electrostatic potential

Φ results in the classical Poisson equation

−∇ · (ε(r)∇Φ(r)) = χ(r)

Nm∑
k=1

Qkδ(r− rk) + (1− χ(r))

Ns∑
α=1

qαCα(r), r ∈ Ω, (2.8)

where ε(r) = χ(r)εm + (1− χ(r)) εs is the dielectric profile whose value is εm in the channel

domain Ωm and εs in the solution domain Ωs. On the right-hand side, the first term accounts

for the fixed charge density of the channel and the second term represents the mobile charge

density within the solution. Due to the characteristic function χ(r), the Poisson equation

(2.8) can be split into two equations

−∇ · (εm∇Φ(r)) =

Nm∑
k=1

Qkδ(r− rk), r ∈ Ωm (2.9)

−∇ · (εs∇Φ(r)) =

Ns∑
α=1

qαCα(r), r ∈ Ωs. (2.10)

Since the electrostatic potential Φ(r) is defined on the whole computational domain Ω, the

following jump conditions at the solution-channel interface Γ are to be implemented to ensure

the well-posedness of the generalized Poisson equation [85, 102, 217].

[Φ(r)] = Φm(r)− Φs(r) = 0 (2.11)

[ε(r)∇Φ(r)] · n = εm∇Φm(r) · n− εs∇Φs(r) · n = 0, (2.12)
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where n is the outward unit norm of the interface Γ. In Eq. (2.8), the densities of ions Cα

should be determined by the variational principle for the generalized Nernst-Planck equation

in the following subsection.

The boundary conditions of Eq. (2.8) are typically mixed boundary conditions depending

on experimental settings. In our numerical experiments, we use the Dirichlet boundary

condition Φ(r) = Φ0 on ∂Ω and the Neumann boundary condition in other types of boundaries,

where Φ0 is the external voltage applied at electrodes. However, the boundary conditions

except the applied voltages are somewhat irrelevant as long as boundaries are sufficiently far

from the channel pore [220, 221].

Generalized Nernst-Planck equation

For each ion species α, we can derive the relative generalized potential µ
gen
α by the variation

of the total free energy functional GPNP
total with respect to the ion density Cα, that is,

δGPNP
total

δCα
,

µ
gen
α = µ0

α − µα0 + kBT ln

(
Cα
Cα0

)
+ qαΦ + Uα + λα

= µchem
α + qαΦ + Uα + λα.

(2.13)

At equilibrium, we require not µchem
α but µ

gen
α to vanish, which results in

λα = −µ0
α and Cα = Cα0 exp

(
−qαΦ + Uα − µα0

kBT

)
. (2.14)

Consequently, the relative generalized potential µ
gen
α is simplified as

µ
gen
α = kBT ln

(
Cα
Cα0

)
+ qαΦ + Uα − µα0. (2.15)
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We derived a similar quantity from a slightly different perspective in our earlier work [221]. It

is interesting to note that the relative generalized potential µ
gen
α consists of contributions from

the entropy of mixing, the electrostatic potential, the non-electrostatic interaction with αth

ion species and the position-independent relative reference chemical potential. In practice,

the biological or synthetic nanopore system is out of equilibrium due to applied external field

and/or inhomogeneous concentration across the nanofluidic channel, which implies that µ
gen
α

does not vanish.

The Fick’s first law generates the ion diffusive flux

Jα(r) = −Dα(r)Cα(r)∇µ
gen
α (r)

kBT
(2.16)

with Dα denoting the diffusion coefficient of species α and the general conservation law gives

the diffusion equation

∂Cα(r)

∂t
= −∇ · Jα(r) (2.17)

[128]. Therefore, the generalized Nernst-Planck equation is

∂Cα(r)

∂t
= ∇ ·

[
Dα(r)

(
∇Cα(r) +

Cα(r)

kBT
∇(qαΦ(r) + Uα(r))

)]
, α = 1, · · · , Ns, (2.18)

where qαΦ + Uα can be regarded as the potential of the mean field. At the absence of

non-electrostatic interactions, Eq. (2.18) reduces to the standard Nernst-Planck equation. At

the steady state, one has

∇ ·
[
Dα(r)

(
∇Cα(r) +

Cα(r)

kBT
∇(qαΦ(r) + Uα(r))

)]
= 0, α = 1, · · · , Ns. (2.19)
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Herein, Eq. (2.18) does not involve the characteristic function χ because it has already been

restricted to the solution domain Ωs even though the generalized Poisson equation (2.8) is

defined on the whole domain Ω.

Mixed boundary conditions are also applied to the generalized NP equations (2.18) for all

ion species. Since the Nernst-Planck equation is only defined in the ion inclusion region Ωs,

it is enough to consider the boundary ∂Ωs. On ∂Ω∩ ∂Ωs, Cα = C0
α, where C0

α represents the

bulk ion concentration for species α. However, at the interface Γ = Ωm ∩ Ωs, the zero-flux

condition −
[
Dα

(
∇Cα +

Cα
kBT

∇(qαΦ + Uα)

)]
= 0 is required, where 0 = (0, 0, 0) is a null

vector.

2.2 Mathematical algorithms

In the present study, we only solve the standard Poisson-Nernst-Planck equations in a self-

consistent manner with appropriate initial/boundary conditions. To emphasize the primary

effects of atomic charges in both molecular-level prototype for MET channel and ionic diffusive

nanofluidic channel design, we neglect the non-electrostatic interactions U . However, since

non-electrostatic interactions are important for nanoscopic scale systems [13, 12], the situation

that U 6= 0 will be investigated in our future work.

Moreover, it is an indispensable task to establish rigorous numerical schemes and compu-

tational algorithms in the study of realistic biological, physical, chemical and engineering

problems [208]. Therefore, we employ several novel theoretical schemes to obtain more

effective and reasonable calculation results from the PNP model. They are the Dirichlet-to-

Neumann mapping (DNM) technique, the matched interface and boundary (MIB) method,

and the successive over relaxation (SOR)-like iterative procedure

38



First of all, the DNM is a computational technique using the Green’s function in order to

remove charge singularities due to the Dirac delta function δ (r− rk) in the Poisson equation

(2.8) [85, 217, 221, 220]. It decomposes the electrostatic potential Φ(r) into the regular part

Φ̃(r) and the singular part Φ(r), which results in the following equations:

−∇ ·
(
ε(r)∇Φ̃(r)

)
= (1− χ(r))

Ns∑
α=1

qαCα(r), r ∈ Ω, (2.20)

and 
∇2Φ̂(r) = 0, r ∈ Ωm

Φ̂(r) = −Φ∗(r), r ∈ Γ.

(2.21)

This process generates a system of equations which can be numerically well-interpolated

without losing the order of accuracy. For more information, readers may refer to Section A.1.

The MIB scheme has been extensively developed to deal with discontinuous coefficients

and irregular complex geometries [208, 33, 30, 84, 85, 214, 217, 216, 219, 221, 220, 224, 226].

Basically, this method uses fictitious values and auxiliary points to extend the computational

domain so that the desired order of convergence is achieved [217, 216, 226, 219]. Appendix

A.2 outlines the principal ideas of the MIB method and introduces the required discretization

equations. The advantages of this numerical scheme are using standard finite difference

method on a simple rectangular coordinate system, carrying out low order of physical jump

conditions and locally reducing three dimensional interface problem to one dimensional

problem [221]. The standard centered finite difference scheme is implemented to find Φ0

from Eq (2.21) and Cα from Eq. (2.19) without non-electrostatic interaction term Uα away

from the complex boundary. However, careful interpolation is required near the boundary for

both equations [217, 220]. Especially, the MIB method is utilized to solve Eq. (2.20) for Φ̃
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with two jump conditions (2.11) and (2.12). Since these equations are coupled, an iterative

procedure is required to obtain convergent results as explained in detail in Section A.3.
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Chapter 3

Modeling and simulating a

mechanoelectrical transducer (MET)

channel in mammalian hair cells in

molecular level

In this chapter, we introduce a molecular level prototype of a MET channel and computational

studies to explore the mechanoelectrical gating mechanism of the MET channel in mammalian

hair cells. Our channel model consists of a realistic ion channel, a membrane and an additional

charged lip. Our theoretical analysis has been carried out with the standard PNP model

which is able to provide channel current under various experimental conditions, such as bulk

ion concentration, applied voltage, lip charge and lip position. In particular, we examine

the response of total current according to lip displacement. Our results are compared with

experimental data of rat hair bundle displacement and current relation given by Kennedy et

al. [123].

The rest of this chapter is organized as follows. In Section 3.1, the structure of our

molecular level prototype for the MET channel is presented. Since the molecular structure of

the MET channel is unknown, an alternative channel is mandatory to design the channel
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model in microscopic detail. We use the Gramicidin A (GA) ion channel (PDB ID: 1MAG)

for the following reasons. First, the structure of GA is simple so that a blocker can be

added with 100% confidence in the blocker’s geometry. In practice, many other channels

have additional domains and complex composition, which may cause unwanted complication

in the result interpretation. Second, the GA is one of the most studied realistic channels

and its behaviors are well-known [220, 33, 208]. Consequently, the change in fluidic behavior

through this channel can be easily attributed to the blocker effect. A particle-like lip with an

adjustable charge, also called a blocker, is mounted at the mouth region of the GA channel to

enable the mechanoelectrical gating of the channel. Section 3.2 introduces the preparation of

the GA atomic structural data and explains a few important simulation parameters including

the dielectric constants and the diffusion coefficients. Section 3.3 is devoted to the numerical

study of our prototype for the MET channel. We validate our model by analyzing the

electrostatic potential and current under a variety of channel conditions via the second-order

PNP solver recently developed in our lab [220]. Among our computational results, open

probability distributions are compared with experimental data in the literature. This chapter

ends with a conclusion in Section 3.4.

3.1 A molecular level prototype of a MET channel

Howard and Hudspeth [104] proposed the original gating spring model, in which the elastic

component, the so-called gating spring, regulates opening and closing of the transducer

channel. Deflection of a hair bundle toward the tallest row of stereocilia increases the tension

of the spring which is attached to the hypothetical channel gate. As a result, the channel

attains the open state. It was assumed that the tip link acted as a gating spring in the
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beginning. However, recent research findings suggest that the tip link may be too stiff to

express a spring effect and thus an elastic filament may be located at the bottom of the

channel [88, 122, 175]. It is still mysterious how the deflection of a hair bundle gives rise to

opening the MET channels. Several possibilities have been suggested, but none of them is

conclusive owing to the lack of molecular level structural information for the MET channel

and insufficient experimental evidence. Moreover, the channel opening may involve not only

a conformational change but also a complicated molecular interplay [159, 164].

Figure 3.1: An illustration of the MET channel model consisting of GA channel protein, the
artificial membrane, and a positive ion which presents the gating effect.

In this work, we design a molecular level prototype to simulate the MET channel gating

process in a realistic setting. The GA channel (PDB code: 1MAG), one of the most well-

studied ion channels, is employed to represent the channel structure in molecular level. A

positively charged atom of radius 1.5Å, called as a “blocker”, is placed at the mouth region

of the channel so that it behaves as a lip, see Fig. 3.1. Since the GA channel is a cation

channel, it can be effectively blocked by an additional cation with a pertinent charge. The
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computational domain of the MET channel prototype incorporates four different regions such

as channel pore, channel protein, bulk regions and membrane as in Fig. 2.1(a).

The channel pore region is placed along the z-axis. The membrane part is added to the

geometry from z = −15Å to z = 9Å (See Fig. 2.1(a)). To demonstrate the blocker’s gating

behavior, we allow it to move along one direction just outside the channel entry. Then the

displacement of the blocker imitates the deflection of a hair bundle [123]. In order to find

out the optimal position of the blocker, several locations along the channel axis (z-axis)

were tested; as a result, zb = −15.95Å is selected to be the most suitable z-coordinate of

the blocker. We fix the y-coordinate of the blocker at 0.1Å and allow the blocker to move

only along the x-direction from xb = −0.5Å to xb = 0.9Å, which involves the transition

between the open and closed states of the channel model. Additionally, in order to intensify

the efficiency of the blocker role, we vary its charge over a certain range in our numerical

experiments.

3.2 Computational setup for the PNP systems

The standard PNP model, a relatively simple and computationally inexpensive continuum

model, is employed to examine our MET channel prototype, in order to optimize the

computational efficiency and to focus on the gating behavior of the prototype. Our earlier

work already validated that the standard PNP model simulated the GA channel at the second

order accuracy using a number of advanced mathematical techniques, and the simulation

prediction showed a good agreement with experimental result from the literature [220].

Further, the PNP model can incorporate with the structural detail of ion channel proteins. In

the present simulation study, the molecular structural data of the GA channel with a blocker

44



is prepared in the procedure as described in our earlier work [220]. Specifically, for each

atom in the biomolecule, its van der Waals radius is assigned with the CHARMM22 force

field [143] in order to achieve a full all-atom structure. Then partial charges for the channel

protein are calculated by the PDB2PQR software [64, 65], which are accounted in the fixed

charge density in the Poisson equation (2.8) in our computation. However, partial charges in

the membrane layers are neglected to attain a good approximation for ion transport. The

molecular surface of the GA channel is generated by the MSMS program with density 10

and probe radius 1.4Å [170] to identify the channel-solvent interface Γ which separates two

domains Ωm and Ωs.

We need to treat carefully parameters involved in the PNP equations. First, it is necessary

to assign pertinent values for the dielectric constant function ε(r) because the Poisson equation

(2.8) requires the spatial-dependent dielectric constant. In our computation, we set εm = 2

for the biomolecular region impermeable to water or ions and εs = 80 for the aqueous solution

region permeable to water and simple ions. Another significant parameter is the diffusion

coefficient for each ion species of interest in the solvent region. The diffusion coefficient in

bulk region is different from, usually larger than, that in channel pore region. Practically, the

overall diffusion coefficient distribution is intricate to be determined, but the bulk values for

relatively simple biomolecules are possibly available from experiments [221]. Furthermore,

the diffusion coefficient function Dα(r) should be deliberately defined to be differentiable

using the buffering zone between the pore and bulk regions as discussed in our earlier work

[220].

Dα(r) =



D
pore
α , r ∈ Ω

pore
s

D
pore
α +

(
D

pore
α −Dbulk

α

)
f(r), r ∈ Ω

buffering
s

Dbulk
α , r ∈ Ωbulk

s .

(3.1)
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Here, the function f(r) is defined as

f(r) = f(z) = n

(
z − zpore

zbulk − zpore

)n+1

− (n+1)

(
z − zpore

zbulk − zpore

)n
, z ∈

[
zbulk, zpore

]
, (3.2)

where zbulk and zpore, respectively, indicate the bulk region and the channel pore region.

In our computation, we use Dbulk
K+ = 1.96 × 10−5cm2/s and Dbulk

Cl− = 2.06 × 10−5cm2/s.

Additionally, the diffusion coefficient for the pore region is D
pore
α = Dbulk

α /21 for each species

α [220].

3.3 MET channel prototype simulations

In the present simulation work, we mainly study the electrostatic distribution and transport

features of potassium (K+) chloride (Cl−) in our channel prototype. In order to verify our

prototype, the computational results are compared with the experimental findings from the

reference [123].

3.3.1 Experimental data

Experiments were conducted on outer hair cells of Sprague-Dawley rats. At first, the apical

and middle turns of the organ of Corti were excised from rats between 6 and 14 days postnatal

and then chemically treated as previously reported in the literature [17, 18, 123, 124]. The

separated turns were fixed in the experimental chamber and the axial motion of a glass pipette

deflects hair bundles, which activates the MET channels. Currents and bundle motions were

recorded mostly at the beginning of the apical turn and averages of 10 stimuli were calculated

to obtain a standard error of ±1 [123].
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We mainly focus on the MET channel current which reveals the state of the channel.

The time course of the MET channel current can be divided into three steps [123]. The

first step represents that the channels respond to the bundle motions within microseconds,

which proves the direct relationship between bundle motion and channel activation. Then

the second part describes fast adaptation, which indicates the process of the channel closure.

The third part refers to slow adaptation of the MET channel mechanism, which is related to

the restoration of the sensitivity of the hair bundle.

The next significant feature of the MET channel is the normalized current (I/IMax),

which can be regarded as the channel open probability. It is also presented in the literature

[123]. The relation between the normalized current and the displacement of the bundle shows

a nonlinear sigmoidal behavior, which demonstrates the following. The positive deflection

(toward the longest stereocilium) increases the open probability; on the contrary, the negative

deflection (away from the longest sterecilium) decreases the open probability.

3.3.2 Computational results

We explore the behavior of our MET prototype under various conditions including the applied

voltage, bulk ion concentration, and the charge and position of the blocker. One of the

fundamental issues is the electrostatic potential profile projected to the channel direction

(z-direction) at the middle of the channel pore. Except specified, we set the charge of the

blocker as Q = 2ec with an elementary charge ec, the bulk concentrations of both ion species

as C0 = C0
K+ = C0

Cl− = 0.1M (molar) and the applied external voltage at the electrode near

the channel gate as Φ0 = 0.1V. Note that the concentration for both ion species are always

identical at the bulk regions.

We first examine the impact of moving the charged blocker along the x-direction. The
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Figure 3.2: Electrostatic potential profiles at different locations xb of the blocker with charge
Q = 2ec when C0 = 0.1M and Φ0 = 0.1V. The region between two dashed lines indicates the channel
pore region. As the blocker position gets closer to 0.9Å along the x-direction, the blocker produces
a stronger barrier near the channel mouth as shown in the electrostatic potential profile.

goal of this study is to verify whether the proposed MET prototype suitably represents the

MET channel in terms of its mechanically sensitive behavior. We transfer the charged blocker

from xb = −0.5Å to 0.9Å with fixing its y- and z-coordinates. As illustrated in Fig. 3.2, at

locations xb = 0.6Å and xb = 0.9Å, the charged blocker creates a large electrostatic barrier

at the channel mouth region, which hinders the inward flow of the cation K+. Consequently,

the electrostatic potential level inside the channel becomes very lower due to the fact that

the positive ions cannot effectively enter through the channel. Therefore, the proposed MET

prototype shows a desirable gating effect.

Next, we examine the behavior of our channel model in response to the change in bulk

ion concentration C0. We place the blocker with the charge of Q = 2ec at xb = 0.9Å. We

set Φ0 = 0.1V for the applied voltage. Two different bulk ion concentrations C0 = 0.1M

and C0 = 0.2M are tested in our numerical experiments. Fig. 3.3(a) illustrates the response
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(a) Effect of bulk ion concentration (b) Effect of applied external voltage

Figure 3.3: Electrostatic potential profiles along the channel direction for the MET prototype (a)
at different bulk ion concentrations C0 = 0.1M (circles) and C0 = 0.2M (diamonds) under the fixed
applied voltage Φ0 = 0.1V and (b) at different applied external voltages Φ0 = 0.1V (circles) and
Φ0 = 0.2V (diamonds) under the fixed bulk concentration C0 = 0.1M. In both investigations, we
locate the blocker at xb = 0.9Å and set the blocker charge as Q = 2ec. Increase either in the bulk
concentration or in the external voltage creates higher potential within the channel.

of the present model at these two bulk ion concentrations by comparing the electrostatic

potential curve along the channel pore direction. The variance in the bulk ion concentration

has little influence on the electrostatic profile outside of the channel pore region. Especially,

the electrostatic property of the outside part is dominated by the applied voltage and also

reflects the electrical neutralization of cations and anions. However, the increase in the bulk

ion concentration leads a higher concentration of the positive ion to pass through the channel

pore region, which enhances the electrostatic potential within the channel as well.

We further investigate the behavior of our model under two different applied voltages. To

this end, we set xb = 0.9Å, Q = 2ec and C0 = 0.1M. The external voltage applied at the

electrode near the channel mouth is doubled from Φ0 = 0.1V to Φ0 = 0.2V. The electrostatic

potential profiles in response to this change are depicted at Fig. 3.3(b). We see an obvious
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change in the electrostatic potential in the left bulk region near the channel mouth and in

the left part of the channel pore region.

(a) Effect of bulk ion concentration (b) Effect of applied external voltage

Figure 3.4: The total current versus the relative displacement dx of the charged blocker. (a)
Total current behavior under two bulk ion concentrations C0 = 0.1M (circles) and C0 = 0.2M
(diamonds) when Q = 2ec and Φ0 = 0.1V are fixed. (b) Total current behavior under two external
voltages Φ0 = 0.1V (circles) and Φ0 = 0.2V (diamonds) when Q = 2ec and C0 = 0.1M are fixed.
Consequently, increase either in bulk ion concentration or in external voltage induces increase in
channel current.

To show the effectiveness of the blocker, we study the impact of the displacement of the

blocker along the x-direction under the fixed blocker charge Q = 2ec as shown in Figure 3.4.

We analyze the channel current pattern under two bulk ion concentrations C0 = 0.1M and

C0 = 0.2M as shown in Fig. 3.4(a) and under two applied voltages Φ0 = 0.1V and Φ0 = 0.2V

as shown in Fig. 3.4(b). In this numerical experiment, we define a relative displacement dx as

the scaled distance of the blocker from its optimal position. When the relative displacement

is zero, i.e., dx = 0, the blocker locates right on top of the channel mouth, which essentially

blocks the channel and creates the closed state. When dx = 1, there is no blocking effect

and hence the system reaches its normal open state. Clearly, the current across the channel
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gets higher as the relative displacement increases. Meanwhile, the channel current increases

as the bulk ion concentration increases because of permeating more cations through the

channel, which is consistent with the increase in the electrostatic potential within the channel

pore region shown in Fig. 3.3(a). Similarly, the channel current increases as the applied

external voltage increases due to the increase in the electrostatic potential as shown in Fig.

3.3(b). Moreover, these results agree qualitatively with those of hair bundle deflections in the

literature [123, 124].

(a) Electrostatic potential (b) Total current

Figure 3.5: (a) Electrostatic potential profiles and (b) total current profiles for four different
charges Q = 0.5ec (triangles), Q = 1ec (diamonds), Q = 1.5ec (squares) and Q = 2ec (circles) when
C0 = 0.1M and Φ0 = 0.1V are fixed. The region between two dashed lines indicates the channel
pore region in (a). As the blocker charge gets increased, the barrier at the gate of the channel gets
higher. In conclusion, the amplitude of the current curve also gets enlarged.

Having established the importance of the blocker position to the channel open-closed

transition, we are interested in other properties of the blocker that may contribute to its

gating mechanism. Two most relevant properties are the blocker size and charge. In the

present system, the change of the molecular size of the blocker is ineffective in the channel

behavior because the standard PNP model does not consider the finite volume effect [114, 138].
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However, it can be studied how the blocker charge affects the ion conductance through the

MET prototype. To this end, we test our model with a number of different atomic charges,

namely, Q = 0.5ec, Q = 1ec, Q = 1.5ec and Q = 2ec, while set C0 = 0.1M and Φ0 = 0.1V.

Our calculation results are presented in Fig. 3.5. In Fig. 3.5(a), the electrostatic potential

at the entrance of the channel is dramatically influenced by the magnitude of the blocker

charge. A larger charge generates a higher potential barrier, which results in less density of

the cation and a lower electrostatic potential within the channel pore region. In Fig. 3.5(b),

we illustrate the impact of the blocker charge on the relation between the channel current and

the relative blocker displacements dx. It is interesting to notice that only when the atomic

charge reaches an appropriate threshold, the blocker can effectively close the channel gate.

Therefore, an ionic current leakage exists when the blocker does not carry sufficient charge or

is not located at its optimized position.

It is attractive to compare our model prediction with the experimental finding of the

relation between the open probability and the rat hair bundle displacement given in the

literature [123]. To this end, we compute the channel open probability PO at a number

of relative displacement dx with four different atomic charges when we set C0 = 0.1M

and Φ0 = 0.1V. For an explicit comparison, our calculation data are presented in Fig. 3.6

together with experimental data [123]. Amazingly, there is an excellent agreement between

our theoretical prediction and experimental measurement when the blocker charge is Q = 2ec.

Thus we can conclude that Q = 2ec is the optimal charge in our molecular level prototype of

the MET channel. Our simulation result implies that our molecular level prototype is able to

reveal the mechanoelectrical gating mechanism of the MET channel in hair cells.

Finally, our optimal model predictions are obtained with fixed applied voltage and bulk

ion concentration. Obviously, it remains to investigate whether our model prediction is
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Figure 3.6: Open probability PO is plotted against the relative displacement dx under four different
atomic charges Q = 0.5ec (triangles), Q = 1ec (diamonds), Q = 1.5ec (squares) and Q = 2ec (circles)
where C0 = 0.1M and Φ0 = 0.1V are set. The solid dots are experimental data of the normalized
MET current versus normalized rat hair bundle displacement obtained from the literature [123]. At
each blocker charge, the open probability in response to the relative displacement forms a sigmoidal
shape and, especially, the charge Q = 2ec gives a remarkable agreement with the experimental
result.

sensitive to the variance of these two experimental conditions. As shown in Fig. 3.7, although

bulk ion concentration and applied external voltage are doubled in our numerical simulations,

the computational data does not change very much in terms of the open probability. There

is still an outstanding consistency between our MET model prediction and experimental

measurement [123]. This result further validates the robustness of our molecular level

prototype for the rat MET channel.

3.4 Concluding remarks

The auditory system is one of the most significant sensory systems for mammals. Mechano-

electrical transducer (MET) is a principal device in mammalian auditory system for the brain
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(a) Effect of bulk ion concentration (b) Effect of applied external voltage

Figure 3.7: Sensitivity test of the molecular level MET model for the prediction of open-closed
probability according to the relative blocker displacement when (a) the bulk ion concentration is
doubled; (b) the applied external voltage is doubled. Both cases are fairly consistent with the
experimental finding [123].

to perceive sounds. It is generally speculated that hair cell deflections regulate the MET

channels located at the stereocilia on each hair cell top. However, the molecular building

blocks of the MET channel are not yet available to date and hence its gating mechanism is

still evasive. In this work, we construct a molecular level prototype for the mammalian MET

channel in order to elucidate the mechanoelectrical gating mechanism of mechanotransduction

in mammals. Our MET prototype consists of a realistic ion channel, namely, the Gramicidin

A (GA) channel, an additional charged lip, called a blocker, which is positioned at the GA

channel mouth, and membrane layers.

To explore the physical properties of the proposed MET prototype, we employ a well-

tested theoretical model, the Poisson-Nernst-Planck (PNP) model, for three dimensional (3D)

numerical simulations of the MET channel transport. Advanced computational techniques

which have been well-established in our earlier work, such as Dirichlet-to-Neumann mapping

54



(DNM) and matched interface and boundary (MIB) method, are utilized for the present

numerical simulations. We design extensive numerical experiments to analyze in detail the

electrostatic potential and channel current in response to variations of blocker charge, blocker

relative displacement, bulk ion concentration and external voltage applied at the electrode in

the channel entrance region. Finally, we compare our prototype prediction with experimental

measurement from rat outer hair cells [123] in regard to the relation between channel open

probability and relative displacement. Remarkable consistency between two data is observed

under pertinent physical conditions. We further demonstrate that our molecular based model

is insensitive to the change of both ion concentration in bulk region and applied external

voltage. Our numerical findings indicate that hair-cell tip links, which connect hair bundles,

efficiently convey mechanical force to mechanosensitive transduction channels and manage

their opening and closing.
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Chapter 4

Modeling and simulating three types

of ionic diffusive nanofluidic channels

In this chapter, we introduce a nanofluidic system model to analyze a realistic ionic diffusive

nanofluidic channel with atomic charge details and propose a second-order convergent nu-

merical method for nanofluidic problems. First of all, we validate the second-order accuracy

of our proposed numerical solver for Poisson-Nernst-Planck (PNP) equations with ionic

diffusive nanochannels in three dimensional (3D) realistic settings. Next, we investigate

the impact of atomic charge distribution on the fluidic behavior of a few 3D nanoscale

channels. We demonstrate that atomic charges give rise to specific and efficient control of

nanochannel flows. Furthermore, the change of the distribution in atomic surface charges

is orchestrated with the variation of applied external voltage and bulk ion concentration in

order to understand nanofluidic currents. Therefore, we are able to elucidate quantitatively

the transport phenomena of three types of ionic diffusive nano-scaled channels, including a

negatively charged channel, a bipolar channel and a double-well channel. These flow patterns

are examined in terms of electrostatic potential profiles, ion concentration distributions and

current-voltage characteristics.

The rest of this chapter is organized as follows. In Section 4.1, we introduce an atomic

scale nanofluidic structure including a cylindrical channel with atomic charges and two bulk

56



reservoirs. Section 4.2 is devoted to validate the present PNP calculation with synthetic

nanoscale channels. We first test a cylindrical nanochannel with one charged atom at the

middle of the channel length and then examine the channel with eight atomic charges that

are equally placed around the channel. Since PNP equations admit no analytical solution

in general, we design analytical solutions for a modified PNP system, which has the same

mathematical characteristics as the standard PNP system. In Section 4.3, we investigate the

atomic scale control and regulation of cylindrical nanofluidic systems. Three ionic diffusive

nanofluidic channels, such as a negatively charged channel, a bipolar channel and a double-

well channel, are inspected in terms of electrostatic potential, ion concentration and current.

Finally, this paper ends with concluding remarks in Section 4.4.

4.1 Atomic scale design of an ionic diffusive nanofluidic

channel

(a) A 3D view (b) A 2D cross-section view

Figure 4.1: Illustration of a nanofluidic system geometry. (a) A 3D view of a schematic cylindrical
nanochannel whose ends are connected to two reservoirs of KCl solution. (b) A 2D cross-section
view of the cylindrical channel whose diameter is 10Å and length is 49Å in the xz-plane. Here, Φ0

L

and Φ0
R, respectively, represent the external voltage applied at the left and right electrodes, and C0

represents the bulk ion concentration of both K+ and Cl− in two reservoirs.

In the present work, we construct a 16× 16× 56 cuboid nanofluidic system. It contains an
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ionic diffusive cylindrical nanochannel which is placed at the center of the system and whose

both ends are connected to reservoirs of potassium chloride (KCl) solution as illustrated

in Fig. 4.1(a). The radius of the channel pore is 5Å and the length of the channel is 49Å

as depicted in Fig. 4.1(b). In our simulation study, the computational domain Ω is the

nanofluidic system which is mainly divided into ion inclusion region Ωs and ion exclusion

region Ωm as in Fig. 2.1(b). The ion inclusion region contains the region inside the channel

and two reservoirs where ions may penetrate and travel through, while the ion exclusion

region is the rest where there is no mobile ion, but there are fixed charged particles. In

contrast to our differential geometry based multiscale models [207, 208, 206], the interface

Γ between two regions Ωs and Ωm is predetermined by the channel structure and does not

change during our simulation.

(a) A 2D cross-section view (b) A 3D view

Figure 4.2: Illustration of atomic charge distribution. (a) A 2D cross-section view and (b) a 3D
view of schematic diagram consisting of the cylindrical channel and four atomic charges which are
equally placed around the nanochannel at z = 0Å.

A number of properly charged atoms are positioned around the channel at an interval

of about 1.8Å so that the channel flow can be regulated by electrical charges. In reality,

these charged atoms can be realized by appropriate dopants. The z-coordinates of the atoms

along the channel length are determined first. Then at each cross section perpendicular
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to the channel axis, the atomic charges are aligned along a concentric circle whose size is

sufficiently bigger than that of the channel pore. The locations of the atoms are equally

spaced according to the circumference of the circle. Fig. 4.2 shows an example of placing four

negative atomic charges around the cylindrical channel at z = 0Å. In the cross section on the

xy-plane, we divide a concentric circle with radius 6.5Å into four parts and then locate each

anion as described in Fig. 4.2(a). Managing the number, magnitudes and signs of atomic

charges enables generating various types of surface charge distribution on the ionic diffusive

nanofluidic channel.

4.2 Numerical validation

In our earlier work [220], we develop and verify a second order of PNP solver for proteins

and biological ion channels. In this work, we construct analytically solvable solid-state

nanofluidic systems to validate the proposed numerical methods. The analytic solution of

the PNP equations is unknown for realistic geometries. However, it is a standard procedure

to design an analytical solution for slightly modified PNP equations, which share the same

mathematical features with the original PNP equations [220]. Consequently, the numerical

convergence of the designed solution algorithms can be validated.

First, we consider two simple nanochannel examples, one with a single atomic charge,

and the other with eight atomic charges, in order to verify the second order convergence of

our numerical methods. Next, both a negatively charged nanofluidic channel and a bipolar

nanofluidic channel are utilized to further validate the proposed numerical schemes.

In our computation, we match the nanofluidic system with a cuboid which has the size

of [−8, 8] × [−8, 8] × [−28, 28]. We set εm = 1 and εs = 80 in all the numerical tests in
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this section. Therefore, there is a sharp discontinuity in the dielectric coefficient across the

channel-solvent interface.

4.2.1 Analytical solution system

We consider a set of Nm charged atoms, each of which is placed at rk = (xk, yk, zk) in the

microscopic channel region Ωm and possesses a fixed charge Qk, where k = 1, 2, · · · , Nm.

The geometry of the analytically solvable system can be arbitrary in principle. However, one

can refer to the cylindrical geometry described in Fig. 4.1 and the computational domain

illustrated in Fig. 2.1(b). We define the electrostatic potential as follows:

Φ (r) =


cosx cos y cos z +

Nm∑
k=1

Qk

εm
√

(x− xk)2 + (y − yk)2 + (z − zk)2
, r ∈ Ωm

0.4π

3εs
cosx cos y cos z, r ∈ Ωs.

(4.1)

For two mobile ion species, the concentrations are given by

C1(r) = 0.2 cosx cos y cos z + 0.1 and C2(r) = 0.1 cosx cos y cos z + 0.1 (4.2)

for r ∈ Ωs, but C1(r) = C2(r) = 0 for r ∈ Ωm because ions are able to move only in the

solution region Ωs.

This set of solutions (4.1) and (4.2) satisfies the following PNP-like equations



−∇ · (ε(r)∇Φ(r)) = 4π

Nm∑
k=1

Qkδ(r− rk) + 4π [C1(r)− C2(r)] +R(r), r ∈ Ω

∇ · [∇C1(r) + C1(r)∇Φ(r)] = R1(r), r ∈ Ωs

∇ · [∇C2(r)− C2(r)∇Φ(r)] = R2(r), r ∈ Ωs.

(4.3)
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Herein, we set, respectively, the charge of two mobile ion species as q1 = 1 and q2 = −1, and

their diffusion coefficients as D1(r) = D2(r) = 1 for all r ∈ Ωs. Moreover, for every r ∈ Ωs,



R(r) = −3 cosx cos y cos z

R1(r) = −0.6 cosx cos y cos z + 0.4π
3εs
∇ · [(0.2 cosx cos y cos z + 0.1)∇(cosx cos y cos z)]

R2(r) = −0.3 cosx cos y cos z − 0.4π
3εs
∇ · [(0.1 cosx cos y cos z + 0.1)∇(cosx cos y cos z)] .

However, R(r) = R1(r) = R2(r) = 0 for all r ∈ Ωm. The jump conditions at the interface Γ

can be specifically given in the following:


[Φ(r)] = Φ∗(r) +

(
1− 0.4π

3εs

)
cosx cos y cos z

[ε(r)∇Φ(r)] · n = εm∇ [cosx cos y cos z + Φ∗(r)] · n− εs∇
(

0.4π
3εs

cosx cos y cos z
)
· n,

where n is the outward unit normal vector and Φ∗(r) =

Nm∑
k=1

Qk

εm
√

(x− xk)2 + (y − yk)2 + (z − zk)2
.

In order to investigate the convergence order, we apply two error measurements

L∞ = max
i,j,k
| Fnum

i,j,k − F
exact
i,j,k | and L2 =

√√√√ 1

N

∑
i,j,k

(
Fnum
i,j,k − F

exact
i,j,k

)2
,

where Fnum
i,j,k and F exact

i,j,k , respectively, represent the numerical and exact values of a function

F at (xi, yj , zk), and N is the total number of computational nodes.

4.2.2 A cylindrical nanochannel with a single atomic charge

We first test the cylindrical channel with a single atomic charge. The atomic charge is placed

at (6.5, 0, 0) and its charge is −0.08 as shown in Fig. 4.3(a). The set of analytical solutions

(4.1) and (4.2) of the PNP equations introduced in Subsection 4.2.1 is used to compare with
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(a) With a single negative atomic charge (b) With eight negative atomic charges

Figure 4.3: Illustration of the geometries of two simple numerical test cases.

numerical results by solving Eq. (4.3). We calculate the electrostatic potential Φ(r), the

positive ion concentration C1(r) and the negative ion concentration C2(r) at four different

mesh sizes: h = 0.4, h = 0.32, h = 0.2, and h = 0.16. Table 4.1 demonstrates numerical errors

and convergence orders for different number of computational nodes. The computational

result attains a good second order convergence. Moreover, the errors and orders for both

concentrations show little difference.

4.2.3 A cylindrical nanochannel with eight atomic charges

Next, we explore the same dimensional cylindrical nanochannel with eight fixed atoms with

a charge of −0.08 over the channel surface as illustrated in Fig. 4.3(b). Consider two

cross-sections perpendicular to the channel length at z = −11, and z = 11. In order to

maintain the same distance of each atom from the channel surface and the same angle

difference between two adjacent atoms, we employ the polar coordinate system. For each
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Table 4.1: Numerical errors and orders for the cylindrical channel with a single atomic charge.

L∞ L2
Mesh size Error Order Error Order

Φ h = 0.4 1.3742E-2 − 3.1647E-3 −
h = 0.32 8.7238E-3 2.0362 2.0215E-3 2.0088
h = 0.2 3.5614E-3 1.9062 8.7926E-4 1.7712
h = 0.16 2.2282E-3 2.1016 5.3548E-4 2.2224

C1 h = 0.4 3.8661E-3 − 1.0406E-3 −
h = 0.32 2.5648E-3 1.8390 6.4972E-4 2.1106
h = 0.2 8.4896E-4 2.3524 2.5014E-4 2.0309
h = 0.16 5.4286E-4 2.0039 1.5920E-4 2.0250

C2 h = 0.4 2.0352E-3 − 5.3493E-4 −
h = 0.32 1.3130E-3 1.9642 3.2772E-4 2.1958
h = 0.2 4.7824E-4 2.1488 1.3661E-4 1.8617
h = 0.16 2.7990E-4 2.4327 8,0089E-5 2.3930

Table 4.2: Numerical errors and orders for the cylindrical channel with eight atomic charges.

L∞ L2
Mesh size Error Order Error Order

Φ h = 0.4 1.3745E-2 − 3.1649E-3 −
h = 0.32 8.7249E-3 2.0369 2.0214E-3 2.0092
h = 0.2 3.5571E-3 1.9090 8.7894E-4 1.7720
h = 0.16 2.2300E-3 2.0925 5.3564E-4 2.2194

C1 h = 0.4 3.8661E-3 − 1.0406E-3 −
h = 0.32 2.5648E-3 1.8390 6.4972E-4 2.1106
h = 0.2 8.4892E-4 2.3525 2.5015E-4 2.0308
h = 0.16 5.4286E-4 2.0037 1.5920E-4 2.0252

C2 h = 0.4 2.0353E-3 − 5.3493E-4 −
h = 0.32 1.3130E-3 1.9643 3.2772E-4 2.1958
h = 0.2 4.7824E-4 2.1488 1.3659E-4 1.8620
h = 0.16 2.7790E-4 2.4326 8.0091E-5 2.3923
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atomic charge, the distance from the center of the channel pore is always 6.5Å and the

inter-atomic angle is a right angle. Therefore, the central coordinates of these atoms are(
6.5 cos

(π
2
i
)
, 6.5 sin

(π
2
i
)
,−11

)
and

(
6.5 cos

(π
2
i
)
, 6.5 sin

(π
2
i
)
, 11
)

for i = 0, 1, 2, and

3. As a result, we obtain four equally spaced atomic charges at each cross section. We test

this nanofluidic channel system at four different mesh sizes: h = 0.4, h = 0.32, h = 0.2, and

h = 0.16. As shown in Table 4.2, the errors and orders in solving the PNP equations with this

atomic charge setting generate little difference from those with a single atomic charge. This

validation experiment also indicates the second order convergence of our proposed algorithms.

4.2.4 A negatively charged ionic diffusive nanofluidic channel

(a) A negatively charged channel (b) A bipolar channel

Figure 4.4: Surface plot of electrostatic potential profiles on (a) a negatively charged channel and
(b) a bipolar channel. As represented in the color bar, blue colors represent negative values, while
red colors represent positive values. The negatively charged channel surface is mostly blue, but the
color of the bipolar channel surface is changed from red to blue.

Now, we perform another numerical test to verify the convergence and accuracy of the

proposed PNP calculation on a more realistic nanofluidic channel. At first, we design a
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negatively charged nanochannel, or called a unipolar nanochannel. The channel length on

the z-axis is divided into 27 subdivisions and then there are 28 nodes between z = −23, and

z = 23. Thus the distance between two adjacent atoms along the z-direction is about 1.8. On

a circular cross section at each node along the z-axis, eight atoms with a charge of −0.08, all

of which are 1.5 apart from the cylinder surface They are equally spaced in a circular pattern

and so the interatomic angular difference is half a right angle. The x- and y-coordinates of

each atomic charge are calculated by using the polar coordinate system; consequently, The

detailed coordinates of the atomic charge distribution are given in Table 3.

In order to ensure that the channel surface is negatively charged, we first examine colored

surface plot and contour plots of the electrostatic potential Φ(r) by numerically solving Eq.

(4.3). The computational results are demonstrated in Fig. 4.4(a) and Fig. 4.5. The colored

surface plot is useful to understand the effect of the atomic charge on the nano-scaled channel.

Fig. 4.4(a) shows the electrostatic potential profile over the surface of this nanochannel. The

greater part of the channel surface has blue colors with a little different darkness. Since the

blue colors indicate the negative electrostatic potential values, it is obvious that the channel

surface possesses negative charge.

From the boundary line of the channel clearly shown in contour plots in Fig. 4.5, it

is interesting to discern that our proposed PNP solver works very well with ion diffusive

nanofluidic channels. Three contour plots of the electrostatic potential Φ(r) at z = −10,

z = 0 and z = 10 are described in Fig. 4.5. In every picture, we can notice that the right

outside of the channel is dark blue, which implies that the channel surface is negatively

charged.

Then we use the same analytical solutions (4.1) and (4.2) to calculate the numerical

errors and orders at four different mesh sizes: h = 0.4, h = 0.32, h = 0.2 and h = 0.16. The
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(a) Cross section: z = −10 (b) Cross section: z = 0 (c) Cross section: z = 10

Figure 4.5: Three contour plots of electrostatic potential through the negatively charged channel
at z = −10, z = 0 and z = 10 on the xy-plane when the mesh size is h = 0.2. The blue colors just
outside the channel imply the negative surface charge.

calculation results are given in Table 4.3. Through this numerical observation, we confirm

that our proposed PNP numerical schemes achieve the second order accuracy in computing

the potential and ion concentrations for the nano-sized channel with negative atomic charges

on its surface.

4.2.5 A bipolar ionic diffusive nanofluidic channel

We also consider a bipolar nanofluidic channel which functions as a nanofluidic diode. It is a

nano-sized channel whose atomic coordinates are the same as those of the aforementioned

negatively charged nanochannel. However, their charges are altered from positive to negative

or vice versa at the middle of the channel axis [41, 56]. In our ionic diffusive bipolar channel,

the first half cylinder (from z = −23 to z = −0.8519) is affected by atoms with charge of

0.08 and the atomic charges on the other half (from z = 0.8519 to z = 23) are −0.08. Table

4 presents all of the detailed central positions and charges of the atomic charge distribution

of this bipolar nanofluidic channel.

The computational results of the electrostatic potential through the bipolar channel are
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Table 4.3: Numerical errors and orders for the negatively charged channel.

L∞ L2
Mesh size Error Order Error Order

Φ h = 0.4 1.3803E-2 − 3.1672E-3 −
h = 0.32 8.7573E-3 2.0389 2.0218E-3 2.0116
h = 0.2 3.5184E-3 1.9401 8.7433E-4 1.7836
h = 0.16 2.3190E-3 1.8682 5.3538E-4 2.1980

C1 h = 0.4 3.8725E-3 − 1.0406E-3 −
h = 0.32 2.5664E-3 1.8437 6.4976E-4 2.1103
h = 0.2 8.6571E-4 2.3121 2.5037E-4 2.0291
h = 0.16 5.4302E-4 2.0902 1.5936E-4 2.0244

C2 h = 0.4 2.0402E-3 − 5.3508E-4 −
h = 0.32 1.3126E-3 1.9765 3.2767E-4 2.1978
h = 0.2 4.8312E-4 2.1265 1.3660E-4 1.8615
h = 0.16 2.7784E-4 2.4793 8.0291E-5 2.3816

(a) Cross section: z = −10 (b) Cross section: z = 0 (c) Cross section: z = 10

Figure 4.6: Three contour plots of electrostatic potential through the bipolar channel at z = −10,
z = 0 and z = 10 on the xy-plane when the mesh size is h = 0.2. As indicated in the color bar, blue
colors represent negative values, while red colors represent some small positive values. At the cross
section of z = −10 the inside of the channel is blue (i.e., negatively charged solution), whereas at
the cross section of z = 10 the inside of the channel is red (i.e., slightly positively charged solution).

shown in Fig. 4.4(b) and Fig. 4.6 by solving the system of equations (4.3). From Fig. 4.4(b),

we are able to see that the atomic surface charges are changed from positive to negative

along the z-direction. Such properties of the bipolar channel are also clearly manifested in

the cross-sectional results in Fig. 4.6. When we compare the contour plots in Fig. 4.6(a)

and Fig. 4.6(c), it is a little bit difficult to distinguish the colors of the outside of the
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Table 4.4: Numerical errors and orders for the bipolar channel.

L∞ L2
Mesh size Error Order Error Order

Φ h = 0.4 1.3752E-2 − 3.1649E-3 −
h = 0.32 8.7568E-3 2.0227 2.0217E-3 2.0086
h = 0.2 3.5649E-3 1.9121 8.7942E-4 1.7711
h = 0.16 2.2421E-3 2.0782 5.3585E-4 2.2201

C1 h = 0.4 3.8743E-3 − 1.0406E-3 −
h = 0.32 2.5663E-3 1.8458 6.4975E-4 2.1105
h = 0.2 8.5125E-4 2.3479 2.5016E-4 2.0308
h = 0.16 5.4306E-4 2.0143 2.5016E-4 2.0191

C2 h = 0.4 2.0384E-3 − 5.3493E-4 −
h = 0.32 1.3132E-3 1.9706 3.2773E-4 2.1967
h = 0.2 4.8477E-4 2.1203 1.3665E-4 1.8611
h = 0.16 2.7790E-4 2.4935 8.0280E-5 2.3837

bipolar channel. However, the channel inside obviously shows different colors, which indicates

that the variation of atomic charges influences the ion transport through the ionic diffusive

nanochannel.

The validation of our numerical schemes for the bipolar nanofluidic channel is given in

Table 4.4. Again, we compare numerical solutions of Eq. (4.3) and exact solutions (4.1) and

(4.2) in this bipolar channel at four different mesh sizes: h = 0.4, h = 0.32, h = 0.2 and

h = 0.16. As we can see in Table 4.4, the computational result apparently demonstrates a

good second-order convergence for this test problem.

4.3 Nanofluidic simulations

Having validated the numerical convergence of our proposed PNP algorithm, we explore

the nature of charged ionic diffusive nanofluidic channels under various physical conditions

including applied voltage, atomic charge distribution and bulk ion concentration. Specifically,

we investigate the electrostatic distribution and transport features of potassium chloride
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through the nanochannels. Our advanced numerical solver of the standard PNP theory

provides concentration for two ion species K+ and Cl− and electrostatic potential at each

node in the computational domain. Then the obtained values are averaged over the xy-cross

section at each z. Using such calculation process, we investigate ion concentration distributions

and electrostatic potential profile along the channel direction (z-direction). We also illustrate

current-voltage (I-V) curve in which the current at the center of the channel length is given

by Eq. (12). Particularly, ion concentration distribution describes the movements of two

different ion species through a channel in detail and current-voltage characteristic clearly

shows electrical features of a nanochannel. We examine three kinds of nano-scaled channels,

namely a negatively charged channel, a bipolar channel and a double-well channel. We have

used the dielectric constants εm = 2 and εs = 80 for all simulations in this section. For real

physical simulations of biological ion channels and synthetic nanofluidic channels with atomic

detail, it is also important to make use of one unit system [220]. Pertinent units that are

consistent with fundamental physical laws and central physical constants should be employed

so that the computational results can be directly compared with experimental measurements.

Thus, we discuss the units of the PNP model in this simulation work in Chapter B.

4.3.1 A negatively charged ionic diffusive nanofluidic channel

In order to clarify the role of atomic charge in ionic diffusive nanofluidic systems, we first

consider a negatively charged channel described in Subsection 4.2.4 and the atomic charges

of the channel are specified in Table 3. Here, all of the ions placed to generate the atomic

surface charge are anions with the same magnitude of charge. We vary the external voltage

only at the electrode of the right reservoir and keep bulk ion concentrations of both reservoirs

same. Therefore, the applied voltage is a driving force to relocate potassium ions and chloride
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ions via the ionic diffusive nanochannel. The atomic charges determine the ion selectivity of

the nanochannel and the bulk ion concentration affects the current migrated through the

channel.

Effect of applied voltage

(a) Electrostatic potential (b) Ion concentration

Figure 4.7: Effect of applied voltage on electrostatics and dynamics through the negatively charged
nanofluidic channel. (a) Electrostatic potential profiles and (b) ion concentration distributions along
the channel length (z−axis). Here ∆Φ is varied from 0V (squares), 0.2V (triangles), 0.4V (asterisks),
0.6V (diamonds), 0.8V (circles) to 1V (plus signs), where ∆Φ is the difference of the applied voltage
between two electrodes. Each surface atomic charge is Qk = −0.08ec and bulk concentration is
C0 = 0.05M. Two dashed vertical lines indicate the ends of the nanochannel. As the applied voltage
difference gets larger, the potential at the right part of the inner channel is increased. Consequently,
more K+ ions (dashed line) are accumulated at the left part of the inner channel. However, there is
little change in the concentration of Cl− ion (solid line).

First, we study the impact of applied external voltage on behavior of ions traveling within

a negatively charged nanochannel. We set the ion concentrations of K+ and Cl− in both bulk

regions as C0 = 0.05M and each atomic surface charge as Qk = −0.08ec. The voltage applied

at left electrode of the system, Φ0
L, is fixed at 0V and the voltage applied at right electrode

of the system, Φ0
R, is increased gradually from 0V to 1V. The ∆Φ represents the difference
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between Φ0
R and Φ0

L, where ∆Φ = Φ0
R − Φ0

L. Figure 4.7 illustrates the electrostatic potential

and ion concentrations along the z-axis in response to the external voltage difference. In Fig.

4.7(a), as Φ0
R gets increased, the electrostatic potential at the right part of the inner channel

becomes dramatically higher. As a result, more cations are accumulated at the left part of

the inner channel as shown in Fig. 4.7(b). In contrast, the concentration of Cl− shows little

difference from the bulk concentration. This transport phenomenon is originated from the

fact that the negative atomic charges of the channel electrostatically repel anions and attract

cations. This electrostatic effect also makes the solution within the channel almost unipolar,

which can be more obviously observed with current-voltage characteristic.

(a) Qk = 0ec (b) Qk = −0.08ec

Figure 4.8: Ionic current for each ion species versus the applied potential difference ∆Φ through (a)
the uncharged nanochannel (Qk = 0ec) and (b) the negatively charged nanochannel (Qk = −0.08ec).
Here, the bulk ion concentrations at both reservoirs are fixed at C0 = 0.05M. When Qk = 0ec, both
current-voltage graphs are linear and the positive current (squares) is roughly double of the negative
current (triangles). When Qk = −0.08ec, the positive current-voltage graph (squares) is nonlinear
and the negative current-voltage graph (triangles) is almost always zero.

By comparing the current-voltage (I-V) curve of the negatively charged channel with

that of an uncharged channel, we are able to clarify the effect of atomic surface charge
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on a nanometer channel. In these two graphs, the current values are obtained using Eq.

(12) at the circular xy-cross section inside the channel when z = 0Å. The current at every

z-location through the channel is almost constant at steady state and hence the current at

the center of the channel axis is usually chosen to elucidate the current-voltage relation. Fig.

4.8(a) gives the relation between current of each ion species and external voltage within

the same dimensional nanofluidic channel without atomic charges (Qk = 0ec). Both of the

ionic currents are proportional to the applied voltage and, especially, the K+ current is

roughly double of the Cl− current. In this case, the nanochannel obeys the Ohm’s law and is

non-selective. In contrast, the set of negative atomic charges on the channel surface destroys

the linearity of the positive current-voltage characteristic, and also generates a large difference

between two ionic currents as shown in Fig. 4.8(b). This nonlinearity or deviation from

the Ohm’s law is closely related to the non-proportionality between the potential change

within the channel and the applied voltage [57]. Since the negatively charged channel wall

hinders the access of Cl− ions at the channel gate, the negative current is almost zero for

every applied voltage. However, since the negative surface charge strongly attracts K+ ions

and the external potential difference encourages more ions to pass through the channel, the

cation current gets increased. From this numerical observation, we can conclude that an ionic

diffusive nanochannel with unipolar atomic charge distribution generates a charged current

mostly composing of counterions and the current through this channel can be increased by

providing more external voltage.

Effect of atomic charge

Next, we examine the effect of atomic surface charge on ionic flow through the negatively

charged channel. Except for the magnitude of Qk, we fix the bulk ion concentrations for
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Figure 4.9: Effect of atomic surface charge on ionic current through the negatively charged
nanochannel. The ionic currents in response to the change of the atomic charge Qk are depicted.
Six different charges Qk = 0ec, Qk = −0.02ec, Qk = −0.04ec, Qk = −0.06ec, Qk = −0.08ec and
Qk = −0.1ec are simulated under the fixed bulk concentration C0 = 0.05M and applied voltage
difference ∆Φ = 1V. Herein, |Qk| is the magnitude of the charge of the each atom. Stronger atomic
charges amplify the K+ current (squares) sharply, but reduce the Cl− current (triangles) to near
zero.

both ion species at C0 = 0.05M and the applied voltage difference at ∆Φ = 1V. A stronger

negative atomic charge, i.e., a larger value of |Qk|, promotes the accumulation of the cations

inside the channel and prevents the anions from entering the channel gate. As a result, the

K+ current is dramatically increased; however, the Cl− current is decreased to almost zero.

The positive current is not directly proportional to the atomic charge magnitude because of

a stronger ionic diffusion induced by the larger concentration gradient [57]. From this study,

it is interesting to note that the channel current can be controlled by the atomic charge

amplitude. When the amplitude (∆I) of the current reaches a suitable threshold, almost all

ions, which have the same sign of charge with the channel atomic charge, cannot penetrate

through the inlet of the nanochannel. Therefore, our proposed nanofluidic channel possesses

a near perfect ion selectivity.
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Effect of bulk ion concentration

Figure 4.10: Effect of bulk ion concentration on total current through the negatively charged
nanochannel. The graphs of total channel current against the external voltage difference (I-V)
are shown at five different bulk concentrations C0 = 0.01M (squares), C0 = 0.05M (triangles),
C0 = 0.1M (diamonds), C0 = 0.2M (circles) and C0 = 0.4M (plus signs) when Qk = −0.08ec.
As the bulk ion concentration is increased, the total current gets higher and, moreover, the I-V
characteristic becomes near linear.

Another important aspect, which is also necessary to understand the transport within

an ionic diffusive nanofluidic channel, is the bulk ion concentration. The electrical double

layer produces a unique difference between a nanofluidic channel and a microfluidic channel.

The bulk ion concentration is a crucial factor to determine the thickness of the double layer.

When the double layers overlap inside a nanochannel, the aqueous solution confined in the

channel expresses charge opposite to the surface charge of the nanochannel [55]. Fig. 4.10

shows the total current as a function of the applied voltage difference for five different bulk

ion concentrations C0 = 0.01M, C0 = 0.05M, C0 = 0.1M, C0 = 0.2M and C0 = 0.4M. Here,

the atomic charge Qk is assumed to be −0.08ec. The increased bulk ion concentration induces

more cations to penetrate through the channel, which results in the dramatic increase of the
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total channel current. However, a higher bulk ion concentration reduces the double layer and,

additionally, the channel surface becomes neutralized by the pulled counterions within the

layer [57]. Consequently, the I-V curve is almost linear, in other words, obeys Ohm’s law. It

is pretty evident that a charged channel with high bulk ion concentration behaves like an

uncharged channel due to the decrease in the Debye length.

(a) The normalized ionic current (b) The normalized channel current

Figure 4.11: The effect of bulk ion concentration on the normalized current through the negatively
charged nanochannel. (a) The normalized ionic current and (b) the normalized channel current with
respect to the increase in bulk ion concentration when the atomic charge Qk = −0.08ec and the
applied voltage difference ∆Φ = 1V are fixed. The negatively charged channel with a sufficiently
larger bulk ion concentration behaves like a uncharged channel because the normalized values
becomes one.

The normalized current is considered to assure that a higher bulk ion concentration

weakens the role of atomic surface charge. The normalized current is computed by dividing

the current through the negatively charged channel by that through the uncharged channel

so that we can observe the difference between two channels. Excluding the atomic charges,

both channels have the same voltage difference and the bulk ion concentration gets gradually

increased at the same time. We calculate the normalized value of each ion species current and
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then add them together to obtain the total current. Fig. 4.11(a) represents the normalized

ionic current for each ion species and Fig. 4.11(b) shows the normalized total channel current.

In both figures, the normalized values get close to one as the bulk ion concentration is

increased. This feature implies that the charged channel under a high bulk ion concentration

does not demonstrate much atomic charge effect on the nanofluidic transport phenomena.

4.3.2 A bipolar ionic diffusive nanofluidic channel

As the second subject of the nanofluidic simulations, we examine a bipolar ionic diffusive

channel whose dimensions and atomic charge constitution are described in Subsection 4.2.5.

In this channel, the first half of the channel is positively charged and the second half is

negatively charged. Therefore, it is interesting to explore the transport properties of the

bipolar nanochannel because a bipolar channel can behave like a p-n junction.

Effect of applied voltage

We first consider three types of voltage bias across the channel length. One case is called

no bias (∆Φ = 0V) when both electrodes of the system have zero voltage. Another case is

named as a forward bias (∆Φ > 0) when the voltage applied at the right electrode of the

system is greater. The other case, on the contrary, is referred to as a reverse bias (∆Φ < 0)

when the voltage at the left electrode of the system is greater. To see the impact of external

voltage, we fix the bulk ion concentration of KCl at 0.1M, and the atomic charges on left

and right halves, respectively, at 0.08ec and −0.08ec. Fig. 4.12 compares the electrostatic

potential profiles and ion concentration distributions along the z-direction at three applied

voltage differences, including ∆Φ = 0V, ∆Φ = 1V and ∆Φ = −1V.

As shown in Fig. 4.12(i-a), when ∆Φ = 0V, the electrostatic potential is high under the
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(i-a) Electrostatic potential (i-b) Concentration

(ii-a) Electrostatic potential (ii-b) Concentration

(iii-a) Electrostatic potential (iii-b) Concentration

Figure 4.12: (a) Electrostatic and (b) ion concentration profiles of the bipolar nanofluidic channel
along the channel axis at (i) no bias ∆Φ = 0V, (ii) forward bias ∆Φ = 1V and (iii) reverse bias
∆Φ = −1V. Fix the bulk ion concentration C0 = 0.1M and the atomic surface charges |Qk| = 0.08ec.
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positive atomic charges, but it is low under the negative atomic charges. Subsequently, the

ion concentration is plotted in the opposite way as illustrated in Fig. 4.12(i-b). Generating

the potential gap ∆Φ between two ends of the system brings about two peculiar phenomena

within the bipolar ionic diffusive nanochannel. At the forward bias with ∆Φ = 1V, the

electrostatic potential is gradually increased as in Fig. 4.12(ii-a), but at the reverse bias with

∆Φ = −1V, it is sharply decreased as in Fig. 4.12(iii-a). These two results demonstrate

excellent consistency with the ion concentration curves in the way that the flux is invariable

along the channel axis at steady state and thus the main factor altering the potential is the

ion distribution [56]. As plotted in Fig. 4.12(ii-b), under the forward bias, both ion species

are attracted to the junction, so the peak value of the ion concentration is greater than that

under no bias. However, under the reverse bias, both ion species are moved away from the

junction and each one produces a small pile at the atomic surface charge with opposite sign as

presented in Fig. 4.12(iii-b). Accordingly, the forward bias brings about an ion accumulation

zone at the channel junction, whereas the reverse bias creates an ion depletion zone there.

These concentration patterns influence on current-voltage relation of the bipolar nanofluidic

channel.

Figure 4.13 shows the current-voltage relation of each ion species through the bipolar

channel. While both ionic current graphs are almost zero at every reverse bias (∆Φ < 0), they

are monotonically increased under forward bias as the potential difference becomes bigger.

This simulation phenomenon is closely related to the two novel transport phenomena within

a bipolar nanochannel: the ion-depletion zone under reverse bias and the ion-accumulation

zone under forward bias. We already manifest these features in Fig. 4.12(ii-b) and (iii-b),

respectively. The ion-depletion zone terminates the flow inside the bipolar nanochannel,

but the ion-accumulation zone encourages more ions to penetrate through the nanochannel.
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Figure 4.13: Ionic current versus applied voltage difference in the bipolar nanofluidic channel.
The atomic charge |Qk| = 0.08ec and the bulk ion concentration C0 = 0.1M are assumed. Under
reverse bias, both ion species cannot pass through the channel. However, under forward bias, the
currents of both ion species get enlarged. Especially, the cation current (squares) increases faster.

In particular, the positive ionic current enhances more abruptly as in Fig. 4.13. Another

remarkable discovery from the current-voltage characteristic is that a higher applied voltage

reduces the gradient of the curve

(
dI

d(∆Φ)

)
. This feature is relevant to the polarization

caused by the concentration gradient, which is analytically discussed in the literature [56].

To sum up, managing the external voltage facilitates turning on and off the current through

the bipolar nanochannel.

Effect of atomic charge

Next, we consider how atomic surface charge affects the dynamics inside the nano-scaled

channel. Fig. 4.14 depicts the channel currents in response to the applied voltage difference

at three different surface charges |Qk| = 0.04ec, |Qk| = 0.08ec and |Qk| = 0.12ec. In this

numerical experiment, we set the bulk ion concentration at two reservoirs to be 0.1M. In every

case of atomic charge, the total current gets enlarged as ∆Φ gets larger under forward bias,
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Figure 4.14: Effect of atomic surface charge on the current through the bipolar nanofluidic
channel. Three sets of atomic charges, that is, |Qk| = 0.04ec (squares), |Qk| = 0.08ec (triangles)
and |Qk| = 0.12ec (diamonds), are studied. Here, the bulk ion concentration C0 is fixed at 0.1M.
All I-V curves increase when ∆Φ varies from −1V to 1V. Greater magnitude of the atomic charge
results in a higher channel current with forward bias, but insufficient atomic charge may generate a
current leakage because it weakens the depletion zone with reverse bias.

but the rate of change of the current with respect to the voltage difference gets moderated.

The highest atomic charge, that is, |Qk| = 0.12ec, generates the greatest amplitude of the

current curve. In contrast, the lowest atomic charge amplitude, that is, |Qk| = 0.04ec does

not fully draw both ion species to either sides under reverse bias, and subsequently diminishes

the ion-depletion zone at the middle of the channel. Thus, the channel current becomes

nonzero at some negative voltage differences. From this numerical experiment, it is beneficial

to discover that the channel current within a bipolar ionic diffusive nanofluidic channel can

be perfectly regulated if the atomic charges on the channel surface satisfy an appropriate

threshold.
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Figure 4.15: Effect of bulk ion concentration on the channel current through the bipolar nanofluidic
channel. Three sets of bulk ion concentrations, such as C0 = 0.05M (squares), C0 = 0.1M (triangles)
and C0 = 0.2M (diamonds), are explored in terms of the current-voltage relation. The atomic
charges are given by |Qk| = 0.08ec. As the bulk ion concentration gets higher, the amplitude and
gradient of the current-voltage relationship gets maximized.

Effect of bulk ion concentration

We also test our bipolar ionic diffusive channel at two more different bulk ion concentrations,

namely, C0 = 0.05M and C0 = 0.2M, in order to observe the impact of bulk ion concentration

on the transport feature. Then we compare the total current-voltage graphs with that at

C0 = 0.1M as described in Fig. 4.15. Every current-voltage curve nearly vanishes when ∆Φ

is negative, but significantly increases when ∆Φ is positive. As the bulk ion concentration is

doubled, more ions are accumulated at the junction of the bipolar nanofluidic channel under

forward bias, so the total current gets almost doubled. Moreover, the amplitude (∆I) and

gradient of the current alteration with respect to the external voltage difference

(
dI

d (∆Φ)

)
are increased as well. To this end, it is expected to surmise that bulk ion concentration

promotes the quantity of the total current through the bipolar nanochannel. Amazingly,

our computational outcomes are in a good agreement with other numerical studies in the
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literature [56].

4.3.3 A double-well ionic diffusive nanofluidic channel

Finally, we investigate the transport phenomena within a double-well nanofluidic channel,

which is named after the shape of the electrostatic potential curve across the channel length.

The electrostatic potential within a cylindrical nanofluidic channel may have several potential

wells by modifying atomic charge distribution on the channel surface. Actually, the irregular

partial charges of biological ion channel proteins induce electrostatic potential wells. For

instance, Gramicidin A channel, one of the most well-known biological channels, is a double-

well transmembrane ion channel [220]. In this numerical observation, we design a new

cylindrical channel with the same dimensions by varying atomic surface charges so the the

electrostatic potential profile has a double-well structure. As illustrated in Fig. 4.16, only the

middle section (from z = −7.67Å to z = 7.67Å) of the channel axis is positively charged, but

the other parts of the channel are negatively charged. The detailed atomic charge distribution

of this channel is given in Table 5.

Figure 4.16: The schematic diagram of a three-dimensional double-well nanofluidic channel. The
channel length is divided into three parts. The first and last parts are negatively charged, but the
middle part is positively charged. The red dots indicate atoms with negative charge Qk = −0.12ec
and the green dots indicate atoms with positive charge Qk = 0.04ec.
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Effect of applied voltage

(a) Electrostatic potential (b) Ion concentration

Figure 4.17: Effect of applied voltage on electrostatics and dynamics through the double-well
nanofluidic channel. (a) Electrostatic potential profiles and (b) ion concentration distributions
along the channel length (z−axis). Here ∆Φ is varied from 0V (squares), −0.2V (triangles), −0.4V
(asterisks), −0.6V (diamonds), −0.8V (circles) to −1V (plus signs), where ∆Φ is the difference of
the applied voltage between two ends of the system. The bulk concentration is C0 = 0.05M for
both ions K+ and Cl−. Two dashed vertical lines indicate the ends of the cylindrical channel. Each
electrostatic potential graph shows two potential wells, which brings about two piles of K+ ions
along the channel axis. Moreover, higher applied voltage at the left end of the system, Φ0

L, breaks
the symmetry of the potential wells. The left well becomes weaker and the right well becomes
stronger.

At first, we alter only the applied voltage, but fix bulk ion concentration at C0 = 0.05M. In

this study, Φ0
R is set to be 0V and Φ0

L is increased gradually from 0V to 1V. Fig. 4.17 presents

the electrostatic potential profiles and ionic concentration distributions along the channel

length at five different external voltages, that is, ∆Φ = 0V, ∆Φ = −0.2V, ∆Φ = −0.4V,

∆Φ = −0.6V, ∆Φ = −0.8V and ∆Φ = −1V. With no external voltage bias (∆Φ = 0V), the

electrostatic potential has two symmetric wells, which brings about two symmetric piles of

the K+ ions. The increase of the voltage applied at the left end of the system leads for the

electrostatic potential to get dramatically higher on the left hand side of the inner channel.
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As a result, the left potential well is moderated as in Fig. 4.17(a). Parallel to this variation,

the positive ion concentration shows a dramatic change on the left hand side (See Figure

4.17(b)). On the contrary, the light change in the potential at the right hand side of the

channel inside corresponds to the light change in the concentration profile of cation on the

right. The negative atomic charges located around the channel gate electrostatically inhibits

the entering of anions, so the concentration distribution of Cl− is almost always zero as

shown in Fig. 4.17(b).

Effect of bulk ion concentration

Figure 4.18: Effect of bulk ion concentration on the channel current through the double-well
nanofluidic channel. The graphs of total channel current against the external voltage difference (I-V)
are studied at four different bulk concentrations: C0 = 0.01M (squares), C0 = 0.05M (triangles),
C0 = 0.1M (diamonds), and C0 = 0.2M (circles). Higher bulk ion concentration encourages the
total current to increase and the I-V characteristic to become linear.

We preform another numerical test with our designed double-well channel. In this test,

we only change bulk ion concentration, which is already proved to be an important factor to

determine the ion conductance with previous two ion diffusive nanofluidic channels. Herein,
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we compare the current-voltage curves at four different bulk ion concentrations, including

C0 = 0.01M, C0 = 0.05M, C0 = 0.1M and C0 = 0.2M. As in Fig. 4.18, the increase in the

total current through the double-well nanochannel is derived from the increase in the bulk

ion concentration because more ions are passes from the reservoir to the channel inside. Like

the negatively charged channel, the I-V relation becomes linear as the bulk ion concentration

gets multiplied because higher bulk ion concentration weakens the double layer within the

channel.

The numerical observations of the electrostatic potential, concentration and current

through our double-well ionic diffusive nanochannel are qualitatively consistent with those

observed from both numerical simulations [220] and experimental measurements [25] of the

Gramicidin A channel. Therefore, the present study manifests a great possibility of the

atomic design of three dimensional nanofluidic channels in that the synthetic nanofluidic

channels with atomic surface charge distribution can be used to study biological channels,

which is particularly valuable when the structure is not available.

4.4 Concluding remarks

Recently the dynamics and transport of synthetic nanofluidic channels have received great

attention. Parallel to this trend, related experimental techniques and theoretical methods

have been substantially promoted in the past two decades [14, 15, 202]. Nanofluidic channels

are utilized for a vast variety of scientific and engineering applications, including separation,

detection, analysis and synthesis of not only chemicals but also biomolecules. Additionally,

inorganic nanochannels are manufactured to imitate biological channels, which is of great

significance in elucidating ion selectivity and ion current controllability in response to an
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applied field in membrane channels [153, 185]. Molecular and atomic mechanisms are the

key ingredients in the design and fabrication of nanofluidic channels. However, atomic

details are scarcely considered in nanofluidic modeling and simulation, to our knowledge.

Previous simulations of transport in nanofluidic channels have been rarely carried out with

three-dimensional (3D) realistic physical geometry.

Present work introduces atomistic design of 3D realistic ionic diffusive nanofluidic channels.

The proposed mathematical model and numerical methods are employed for 3D realistic

simulations of such nanofluidic systems. Three distinct nanofluidic channels, including a

negatively charged nanochannel, a bipolar nanochannel and a double-well nanochannel, are

constructed to explore the capability and impact of atomic charges near the channel interface

on the channel fluid flow. We design a cylindrical nanofluidic channel of 49Å in length and

10Å in diameter. Several charged atoms of about 1.8Å gap are equally located at 1.5Å

from the channel surface in order to regulate nanofluidic patterns. For a negatively charged

channel, all of the atoms on the channel surface have the negative sign with the same charge,

whereas for a bipolar channel, half of them has the negative sign and the other half has the

positive sign, except that all the charges have the same magnitude. Finally, a double-well

channel has positively charged atoms at the middle and negatively charged atoms on the

remaining part of the channel surface. Each end of the channel is connected to a reservoir

of KCl solution and both reservoirs have the same bulk ion concentration. Asymmetry

in the applied electrostatic potentials at the electrodes gives rise to current through these

three nanochannels. We perform a number of numerical experiments to explore electrostatic

potential, ion concentration and current through each type of ionic diffusive channel under

the influence of applied voltage, atomic charge and bulk ion concentration.

The negatively charged channel generates a unipolar charged current because the negative
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atomic surface charge attracts counterions, but repels coions. The current measure within

this nano-sized channel increases when external voltage, magnitude of atomic charges on the

channel surface and/or bulk ion concentration increase. However, the bulk ion concentration

has a limitation in its growth. A larger bulk ion concentration shortens the Debye length;

thus, the charged channel may behave like an uncharged one showing the Ohm’s law in the

current-voltage relation. The bipolar channel can create accumulation or depletion of both

ions in response to the current direction. When the right electrode has a higher voltage,

namely, with forward bias, both ions are stored at the junction of the channel length. On

the contrary, when the left electrode has a higher voltage, that is, with reverse bias, both

ions are moved away from the junction. External voltage applied at the ends of the system,

atomic surface charge and bulk ion concentration affect the amplitude and gradient of the

current-voltage characteristic. At last, the special atomic charge distribution of the double-

well channel produces the electrostatic potential profile with two potential wells. Increasing

applied voltage at the left hand side of the system results in an obvious change both in the

left potential well and in the left part of the K+ concentration.

The present study concludes that properties and quantity of the current though an ionic

diffusive nanochannel can be effectively manipulated by carefully altering applied voltage,

atomic surface charge and/or bulk ion concentration. Our computational observations

are compared well with those of experimental measurements and theoretical analysis in

the literature. Since the physical size of our channel model is close to that of realistic

transmembrane channels, the proposed nanofluidic model can be utilized not only for ionic

diffusive nanofluidic design and simulations, but also for the prediction of membrane channel

properties when the structure of the channel protein is not available or changed due to the

mutation.
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Chapter 5

Thesis achievements and future work

The primary contributions of this dissertation are the mathematical modeling and simulations

of a mechanoelectrical transducer (MET) channel prototype and three types of ionic diffusive

nanofluidic channels. Both channel models are designed at the microscopic scale and,

especially, the atomic charges are employed to explain the gating or surface charge effect.

The present thesis study mainly focuses on the electrostatic and transport properties of these

channels under several physical conditions, such as applied potential, bulk ion concentration

and properties of an atomic charge. In order to explore the dynamics within both channel

models, we conduct various three dimensional numerical experiments using an electrodiffusion

continuum model, Poisson-Nernst-Planck (PNP) theory. Since these two channel models

have similar physical features, they have common mathematical interests and computational

challenges. At first, we propose the generalized Poisson-Nernst-Planck model to include non-

electrostatic interactions, which are significant factors to determine the transport phenomena

within a small nanometer-sized channel. Furthermore, several excellent computational skills

are employed to overcome singularities and interface problems.

Most of the materials of this dissertation work are based on the following publications:

• Jinkyoung Park, Kelin Xia and Guo-Wei Wei, “Atomic scale design and three-

dimensional simulation of ionic diffusive nanofluidic channels”, submitted to Microflu-

idics and Nanofluidics

88



• Jinkyoung Park and Guo-Wei Wei, “A molecular level prototype for mechanoelectrical

transducer in mammalian hair cells, Journal of Computational Neuroscience, 35, 231-241,

(2013)

5.1 Contributions

5.1.1 On the modeling and simulating a MET channel in mam-

malian hair cells

In ion channel modeling, one of the most difficult, but vigorous, challenges is to obtain

structural information about a target channel in molecular detail. The molecular composition

of a biological ion channel is essential to comprehend its major functions including ion selec-

tivity and gating mechanism. In particular, the computational study of the mechanosensitive

channel in hair cell has several constraints to elucidate the intrinsic principles of mechanical

gating mechanism due to the lack of its molecular building blocks. In this respect, a molecular

level channel prototype, which we propose in the present work, contributes to the studies on

the MET channel in mammalian hair cells with the following aspects.

First of all, it is the first time to design a MET channel prototype in atomic detail, to our

knowledge. In our MET prototype, we incorporate an appropriately charged atom, called

a blocker, into the molecular structure of Gramicidin A (GA) channel. The GA channel

is very suitable to employ as the channel part of our MET prototype because of its well-

established molecular building blocks. Additionally, its structure is comparatively simple and

safe to add an ion without worrying about any unexpected complication. Herein, the blocker

phenomenologically plays a role of the channel gate because its positive charge prevents the
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inward flow of positive ions through this cation channel. The blocker displacement expresses

hair bundle deflection, which is believed to activate the MET channel. This molecular-level

MET channel model gives a great opportunity to account for the gating mechanism closely.

Secondly, we perform realistic three dimensional simulations of the MET channel transport

using the PNP theory. Our group has developed novel mathematical algorithms and useful

simulation skills, including Dirichlet to Neumann mapping and the matched interface and

boundary method, in order to investigate several proteins and ion channels in the past. In this

study, we employ the already proven PNP solver to demonstrate the electrostatic potential

profile and current-displacement characteristic though our MET channel prototype. These

simulation results in three dimensions can explain the gating principles of the MET channel.

Third, our numerical findings confirm that tip links, which connect hair bundles, are

involved in opening and closing the mechanosensitive transduction channels in hair cells. We

conduct a number of numerical experiments to analyze electrostatic potential and current

under the influence of an external voltage, blocker charge and displacement, and bulk ion

concentration. These computational results validate the usefulness and robustness of our

proposed MET channel model. Critically, when we compare our results with experimental

measurements in the literature, there is a remarkable consistency in terms of the relation

between channel open probability and relative displacement. This supports the idea that the

tip link is directly connected to the activation of the channel.
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5.1.2 On the modeling and simulating charged nanofluidic chan-

nels

Nanofluidic channels are studied for diverse scientific and engineering purposes, including

separation, detection, analysis and synthesis of chemicals and biomolecules. Although

molecular and atomic mechanisms are crucial in designing nanofluidic channels, these details

are rarely explained in modeling and simulations to date. In addition, most transport

simulations in nanofluidic systems are carried out in one or two dimensional settings. Thus,

the second subject of the present study contributes to theoretical nanofluidic studies with

the following aspects.

First of all, we introduce the atomistic design of a three dimensional realistic ionic diffusive

nanofluidic channel. In our ionic diffusive nanofluidic system, atomic charges are utilized to

generate the surface charge of a channel. A number of charged atoms with the same size are

equally distributed around the channel structure boundary. One of the greatest strengths of

our nanochannel design is the simplicity to create a variety of surface charge distribution.

Since individual ions are used to express the fixed charges in the channel structure, we only

need to vary the sign and magnitude of each atomic charge. This design method enables

treating the surface charge effect more delicately.

Secondly, we propose a variational multiscale framework to facilitate the microscopic

description of nanochannel structures, including atomic surface charge, and the macroscopic

continuum treatment of the solvent and mobile ions. In this work, we generalize the Poisson-

Nernst-Plank model for solid-state nanofluidic channel simulations. We employ a characteristic

function S to identify the channel-solution interface using the predetermined nanofluidic

channel structure. Then we incorporate the non-electrostatic interaction term U into the
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total energy functional so that the generalized PNP theory is able to simulate very narrow

nanochannel. Further, we demonstrate the second order accuracy of our numerical algorithms

to solve the standard PNP equations with synthetic ionic diffusive nanochannels, including

the negatively charged channel and the bipolar channel.

Finally, we validate the usefulness and great feasibility of our channel model by simulating

three types of nanofluidic channels, namely, a negatively charged channel, a bipolar channel

and a double-well channel. Our simulation results, including electrostatic potential profile, ion

concentration distribution and current-voltage relation through these ionic diffusive channels,

show a great agreement with other observations in the literature. These features are very

helpful not only to understand the physical properties, but also to predict the functions for

each channel type. Especially, the transport behavior through the double-well nanofluidic

channel resembles that through a realistic biological ion channel, Gramicidin A channel. This

finding opens a great possibility to simulate ion channels when their structures are unknown.

5.2 Future work

Although the Poisson-Nernst-Planck theory is the one of the most widely used microscopic

approaches to describe electrokinetic processes in both biological ion channels and artificial

nanofluidic channels, it has several limitations. Especially, it ignores non-electrostatic

interactions between ions, ion-water and ion-protein, and steric effects which are critical to

determine the transport patterns due to a strong confinement or a dilute solution [12, 26,

52, 114]. As much as we understand these inter-particle interactions and atomic physical

features, we are able to design a more reasonable mathematical theory and to simulate ion

transport through a small pore more quantitatively.
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For our future work, modeling and simulation can be substantially developed by incor-

porating the principles of the following well-established frameworks in the literature. For

example, Chen and his colleagues set up the free energy functional of short-range interactions

between proton-proton, proton-other mobile ions, proton-water and proton-protein in order to

describe the generalized correlation in the proton transport [33]. Each interaction is expressed

as a product of the number densities of related particles and the corresponding interaction

kernel. Similarly, we can incarnate non-electrostatic interactions between ions, ion-water and

ion-protein. As another fruitful computational framework, the density functional theory and

its variations have been employed to describe not only equilibrium, but also time-dependent

microscopic dynamics [211]. Especially, the time-dependent density functional successfully

elucidates the steric effects and intermolecular correlations [111]. Further, its combination

with the PNP theory describes well the electrolyte dynamics through a dilute solution [128],

and the chemical potentials of ions and the size selectivity of biological ion channels [87, 167].

By including this powerful mathematical insight to our dynamics model, we can simulate

more realistic nanofluidic systems.
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A Mathematical algorithms

A.1 Dirichlet to Neumann mapping

Numerical treatment of the Dirac delta function in the Poisson equation may reduce the

order of accuracy as well as restrict the mesh size [85]. The Green’s function formulation for

the singular charges has been adopted for a higher-order interface scheme in the literature

[42, 217, 221, 220, 227]. First, the electrostatic potential Φ(r) is divided into the regular part

Φ̃(r) and the singular part Φ(r) so that the delta function is eliminated from Eq. (2.8). Here,

the singular part Φ(r) is composed of an essential solution of the Poisson equation Φ∗(r)

and a harmonic function Φ̂(r) [85]. The singular part is only defined in the ion-exclusion

region Ωm because the fixed charges occur only in this region [221]. Specifically, the Green’s

function is

Φ∗(r) =

Nm∑
k=1

Qk
εm|r− rk|

(1)

and Φ̂(r) satisfies the Laplace equation with a Dirichlet boundary condition


∇2Φ̂(r) = 0, r ∈ Ωm

Φ̂(r) = −Φ∗(r), r ∈ Γ.

(2)

Finally, this decomposition gives the Poisson equation of the regular part Φ̃ (r) without charge

singularities which is

−∇ ·
(
ε(r)∇Φ̃(r)

)
= 4π(1− χ(r))

Ns∑
α=1

qαCα(r), r ∈ Ω, (3)

where a factor of 4π is due to the selection of unit [220].
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Furthermore, the following two jump conditions at the solvent-channel interface Γ should

be enforced in order to ensure the well-posedness of the problem [85].

[Φ̃(r)] = 0 (4)

[ε(r)∇Φ̃(r)] · n = εm∇
(

Φ∗(r) + Φ̂(r)
)
· n, (5)

where n is the outward normal direction from the interface.

A.2 Matched interface and boundary (MIB) method

The resulting equations (2) and (3) from the DNM algorithm involve material interface Γ

and three dimensional irregular geometry. Additionally, their solutions are still non-trivial if

the jump conditions (4) and (5) are to be properly enforced for arbitrarily complex interface

geometries. If the jump conditions are ignored, discontinuous coefficients and complex

geometry may reduce the order of convergence of the numerical scheme to at most one

[220]. Our group has proposed and developed an excellent numerical scheme, the matched

and interface boundary (MIB) method, to treat not only biological ion channels but also

nanofluidic systems with a higher order of accuracy [34, 32, 220]. In this section, we will

briefly elucidate the fundamental principles about the MIB method.

At first, every node in a computation domain is classified as either an irregular point

or a regular point. A point near the interface or boundary is called an irregular point, but

otherwise, it is called a regular point. The standard second order central finite difference

method is enough to interpolate at regular points. However, the application of the seven-point

finite difference scheme at an irregular point may result in divergence or reduce the order of

convergence due to the discontinuity of the functions involved. Thus, we need to carefully
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deal with these points to obtain the convergence at the desired order of accuracy, especially

the second order of accuracy, in this dissertation work. If a discretization of Φ̂ in Eq. (2)

involves any value from the region Ωs, it is replaced by the function value at the intersecting

node between the interface Γ and a Cartesian grid line. The difference scheme of Eq. (2.19)

is precisely modified according to the local geometry and the type of boundary condition and,

additionally, the detailed equations are discussed in the references [217, 220]. To calculate

Φ̃(r) numerically at irregular points from the interface problem (3), the MIB algorithm

employs fictitious values and auxiliary points.

Figure 1: An illustration of the MIB method for an irregular geometry. The kth grid line
intersects the interface at (xi, yo, zk) (star), which involves two irregular points (circle) (xi, yj , zk)
and (xi, yj+1, zk). Here (xi, yo, zk+2) and (xi, yo, zk+1) (square) are two auxiliary points needed to

discretize (εΦ̃z)z and (xi−1, yo, zk) and (xi−2, yo, zk) (square) are two auxiliary points needed to
discretize (εΦ̃x)x. The other points (triangle) indicate the points selected to interpolate Φ̃ along the
y-grid lines at (xi, yo, zk), (xi, yo, zk+1) and (xi, yo, zk+2).

For example, if the interface crosses the kth mesh line as illustrated in Fig. 1, then

(xi, yj , zk) and (xi, yj+1, zk) are irregular points. The discretizations of (εΦ̃y)y at these two

irregular points contain two fictitious values fi,j,k and fi,j+1,k to extend the domain as
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follows:

(εΦ̃y)y =

ε
i,j−1

2 ,k
Φ̃i,j−1,k − (ε

i,j−1
2 ,k

+ ε
i,j+1

2 ,k
)Φ̃i,j,k + ε

i,j+1
2 ,k
fi,j+1,k

(∆y)2
at
(
xi, yj , zk

)
(εΦ̃y)y =

ε
i,j+1

2 ,k
fi,j,k − (ε

i,j+1
2 ,k

+ ε
i,j+3

2 ,k
)Φ̃i,j+1,k + ε

i,j+3
2 ,k

Φ̃i,j+2,k

(∆y)2
at
(
xi, yj+1, zk

)
.

Herein, the fictitious values are determined by the jump conditions (4) and (5) at the point

of intersection (xi, yo, zk) between the interface and the y-mesh line.

Since the normal direction from the interface Γ changes according to the position of the

intersecting point, we employ a local coordinate (ξ, η, ζ) at this point, where ξ is the normal

direction, η is the tangential direction and ζ is the binormal direction. This introduction of a

local coordinate system leads the interface problem to become a one-dimensional problem [217].

At the point (xi, yo, zk), the standard coordinate system is converted to a new coordinate

system using the following matrix equation


ξ

η

ζ

 = T


x

y

z

 =


sinφ cos θ sinφ sin θ cosφ

− sin θ cos θ 0

− cosφ cos θ − cosφ sin θ sinφ




x

y

z

 ,

where φ and θ are, respectively, the azimuth and zenith angles determined by the normal

direction n. This transformation also results in three jump conditions at each direction:

[εΦ̃ξ] = T11(εsΦ̃
s
x − εmΦ̃mx ) + T12(εsΦ̃

s
y − εmΦ̃my ) + T13(εsΦ̃

s
z − εmΦ̃mz ) (6)

[Φ̃η] = T21(Φ̃sx − Φ̃mx ) + T22(Φ̃sy − Φ̃my ) (7)

[Φ̃ζ ] = T31(Φ̃sx − Φ̃mx ) + T32(Φ̃sy − Φ̃my ) + T33(Φ̃sz − Φ̃mz ), (8)
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where Tij is the element in the ith row and jth column of the matrix T . [εΦ̃ξ] is from

the equation (5), but [Φ̃η] and [Φ̃ζ ] are obtained by differentiating the equation (4) [217].

These jump conditions involve six partial derivatives Φ̃sx, Φ̃
s
y, Φ̃

s
z, Φ̃

m
x , Φ̃

m
y and Φ̃mz . When the

geometry is non-smooth or complex, some of them may be quite challenging to calculate. We

obtain four jump conditions from (4) through (8) that we can use, but the number of the

fictitious values we need to find is only two. Therefore, we do not need to find all of the

above six partial derivatives. In this respect, we want to remove two partial derivatives which

are the most difficult to discretize by two jump conditions [217]. In Fig. 1, Φ̃sx and Φ̃sz are

chosen to be eliminated, which leads to

a1[εΦ̃ξ] + a2[Φ̃η] + a3[Φ̃ζ ] = c1Φ̃mx + c2Φ̃my + c3Φ̃sy + c4Φ̃mz , (9)

where a1 = T21T33, a2 = εs(T31T13 − T33T11) and a3 = −εsT13T21. Then the discretizations

of the remaining four partial derivatives require several auxiliary points. Finally, solving a

system of equations (4) and (9) produces the values of fi,j,k and fi,j+1,k. More comprehensive

details are available in the literature [217, 224]. In summary, the MIB scheme manages

interface problems in a well-organized way by using fictitious values, simple Cartesian

coordinate, typical finite difference methods and lower order physical jump conditions [221].

A.3 Iterations of Poisson and Nernst-Planck equations

In our modeling, we employ the following iterative procedure which is also concisely described

in the flowchart (See Fig. 2). First, the boundary value problem of Eq. (2) is required to solve

for Φ̂ only at the first step because this equation does not involve ionic concentrations Cα.

Next, the equations (2.19) and (3) are solved iteratively with suitable boundary conditions of
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Figure 2: Flowchart of the numerical implementation to solve the standard PNP system

applied voltage and bulk ion concentration until the designated tolerances for Φ̃ and Cα are

reached. To ensure that the numerical process is convergent, Φ̃ and Cα are updated by a

successive over relaxation (SOR)-like iterations

Φ̃new =
(
1− wp

)
Φ̃new + wpΦ̃

old (10)

Cnew
α = (1− wc)Cnew

α + wcC
old
α , (11)

where wp and wc are appropriately selected between 0 and 1. This procedure has been already

proved to be efficient for ion channel problems with the second order of accuracy [220].

After the electrostatic potential Φ and the ionic concentration Cα are obtained by solving

Eqs. (2.19), (2) and (3), the electric current is computed at each circular cross section inside
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the channel along the channel axis [220]. For each ionic species α, its current is calculated by

Iα = qα

∫
S
Dα

[
∂Cα
∂z

+
qα
kBT

Cα
∂Φ

∂z

]
dxdy, (12)

where S is the cross section in the xy-plane. Further, the total channel current is the sum of

two ionic currents.
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B Unit system

For real physical simulations with atomic detail, such as biological ion channels and synthetic

nanofluidic channels, the PNP equations cannot be directly treated as a dimensionless

problem [220]. Pertinent units, which are consistent with fundamental physical laws and

central physical constants, should be employed. Consequently, the quantities computed from

the PNP system can be directly compared with experimental observations and measurements.

To this end, we discuss the units of the PNP model in our simulation work.

Table 1: Centimeter-Gram-Second system of units

Abbr. Unit Represents

cm centimeter distance
esu electrostatic unit charge
mol mole quantity
K Kelvin temperature

In electrostatics, the essential units are based on the centimeter-gram-second system

shown in Table 1 [102]. In our work, we employ the Gaussian units introduced in Table 2

so that we construct the dimensionless electrostatic potential u(r) and the dimensionless

charges q̄α and Q̄k [102, 220]. Moreover, the required parameters are Avagadro’s number

NA = 6.0220450×1023, Boltzmann’s constant kB = 1.3806620×10−16 erg/K and elementary

charge ec = 4.80320425× 10−10 esu.

Table 2: Gaussian units

Abbr. Unit Represents Equivalent Expressions

Å angstrom distance 10−8cm

l liter volume cm3

M molar concentration mol/l

dyn dyne force esu2/cm2

erg erg energy dyn·cm
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In our simulation system, the radii of all atoms and the structural dimensions are given

in terms of angstrom (Å). Then the applied voltage is in the unit of volt (V) and the

concentration for each ion species is provided in molar (M).

For the unit conversion as mentioned in our earlier work [220], we define the dimensionless

electrostatic potential u(r) =
ecΦ(r)

kBT
and the dimensionless partial charge Q̄k =

Qk
ec

at kth

atomic component of the channel region. For each ion species α, the dimensionless charge and

the dimensionless concentration are, respectively, defined as q̄α =
qα
ec

and C̄α(r) =
e2
c

kBT
Cα(r).

Then the electrical charges for K+ and Cl− are, respectively, denoted by q̄1 = q̄K+ = 1 and

q̄2 = q̄Cl− = −1. The Dirichlet boundary conditions for the electrostatic potential and ionic

concentration are modified in the following way:

u0
L =

Φ0
Lec

300kBT
, u0

R =
Φ0
Rec

300kBT
and C̄0

α =
C0
αNAÅ

2
e2
c

1000kBT
.

Finally, the PNP equations (3) and (2.19) are transformed into


−∇ · (ε(r)∇ũ(r)) = 4π

Ns∑
α=1

q̄αC̄α(r), r ∈ Ω

∇ ·Dα(r)
[
∇C̄α(r) + q̄αC̄α(r)∇ũ(r)

]
= 0, r ∈ Ωs

(13)

together with the Laplace equation for the microscopic channel composition


∇2û(r) = 0, r ∈ Ωm

û(r) = −u∗(r), r ∈ Γ,

(14)

where u∗(r) =

Nm∑
k=1

Q̄k
εm|r− rk|

. In our simulations of two subjects, i.e. the MET prototype

and ionic diffusive nanofluidic channels, we solve the above three equations with the interface
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jump conditions [ũ(r)] and [ε(r)ũ(r)] from Eqs. (4) and (5), and proper boundary conditions.

In addition, we utilize the dimensionless values of the dielectric function ε(r) which are

empirically determined [102].

ε(r) =


εs = 80, r ∈ Ωs

εm = 2, r ∈ Ωm.

(15)

It is also significant to deal with boundary conditions for the electrostatic potential and

concentrations carefully. Theoretically, the electrostatic potential u (r) satisfies the far field

boundary condition, that is, lim
x→±∞

u (r) = 0. In our computation, we need mixed boundary

conditions. Specifically, the Poisson equation uses Dirichlet boundary condition at two

electrodes of ∂Ω where the external voltage is applied [220], i.e., u(r) = u0
L at anode and

u(r) = u0
R at cathode. Neumann boundary conditions are considered on the other parts of

∂Ω. In practice, the boundary conditions except the applied voltages are somewhat irrelevant

as long as boundaries are sufficiently far from the channel pore [220, 221].

Mixed boundary conditions are also applied to Nernst-Planck equations for all ion species.

Since the Nernst-Planck equation is only defined in the ion inclusion region Ωs, it is enough

to consider the boundary of Ωs. On ∂Ω ∩ ∂Ωs, C̄α = C̄0
α, where C̄0

α represents the bulk ion

concentration for species α. However, at the interface Γ = Ωs∩Ωm, the concentration satisfies

the following zero-flux condition −Dα(r)
[
∇C̄α(r) + q̄αC̄α(r)∇ũ(r)

]
= 0, where 0 = (0, 0, 0)

is a null vector.

104



C Atomic charge distribution

C.1 A negatively charged channel

Table 3: Positions and charges of all atomic charges in the negatively charged channel.

k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec)

1 6.5000 0.0000 -23.0000 -0.08 57 6.5000 0.0000 -11.0741 -0.08 113 6.5000 0.0000 0.8519 -0.08 169 6.5000 0.0000 12.7778 -0.08
2 4.5962 4.5962 -23.0000 -0.08 58 4.5962 4.5962 -11.0741 -0.08 114 4.5962 4.5962 0.8519 -0.08 170 4.5962 4.5962 12.7778 -0.08
3 0.0000 6.5000 -23.0000 -0.08 59 0.0000 6.5000 -11.0741 -0.08 115 0.0000 6.5000 0.8519 -0.08 171 0.0000 6.5000 12.7778 -0.08
4 -4.5962 4.5962 -23.0000 -0.08 60 -4.5962 4.5962 -11.0741 -0.08 116 -4.5962 4.5962 0.8519 -0.08 172 -4.5962 4.5962 12.7778 -0.08
5 -6.5000 0.0000 -23.0000 -0.08 61 -6.5000 0.0000 -11.0741 -0.08 117 -6.5000 0.0000 0.8519 -0.08 173 -6.5000 0.0000 12.7778 -0.08
6 -4.5962 -4.5962 -23.0000 -0.08 62 -4.5962 -4.5962 -11.0741 -0.08 118 -4.5962 -4.5962 0.8519 -0.08 174 -4.5962 -4.5962 12.7778 -0.08
7 0.0000 -6.5000 -23.0000 -0.08 63 0.0000 -6.5000 -11.0741 -0.08 119 0.0000 -6.5000 0.8519 -0.08 175 0.0000 -6.5000 12.7778 -0.08
8 4.5962 -4.5962 -23.0000 -0.08 64 4.5962 -4.5962 -11.0741 -0.08 120 4.5962 -4.5962 0.8519 -0.08 176 4.5962 -4.5962 12.7778 -0.08
9 6.5000 0.0000 -21.2963 -0.08 65 6.5000 0.0000 -9.3704 -0.08 121 6.5000 0.0000 2.5556 -0.08 177 6.5000 0.0000 14.4815 -0.08
10 4.5962 4.5962 -21.2963 -0.08 66 4.5962 4.5962 -9.3704 -0.08 122 4.5962 4.5962 2.5556 -0.08 178 4.5962 4.5962 14.4815 -0.08
11 0.0000 6.5000 -21.2963 -0.08 67 0.0000 6.5000 -9.3704 -0.08 123 0.0000 6.5000 2.5556 -0.08 179 0.0000 6.5000 14.4815 -0.08
12 -4.5962 4.5962 -21.2963 -0.08 68 -4.5962 4.5962 -9.3704 -0.08 124 -4.5962 4.5962 2.5556 -0.08 180 -4.5962 4.5962 14.4815 -0.08
13 -6.5000 0.0000 -21.2963 -0.08 69 -6.5000 0.0000 -9.3704 -0.08 125 -6.5000 0.0000 2.5556 -0.08 181 -6.5000 0.0000 14.4815 -0.08
14 -4.5962 -4.5962 -21.2963 -0.08 70 -4.5962 -4.5962 -9.3704 -0.08 126 -4.5962 -4.5962 2.5556 -0.08 182 -4.5962 -4.5962 14.4815 -0.08
15 0.0000 -6.5000 -21.2963 -0.08 71 0.0000 -6.5000 -9.3704 -0.08 127 0.0000 -6.5000 2.5556 -0.08 183 0.0000 -6.5000 14.4815 -0.08
16 4.5962 -4.5962 -21.2963 -0.08 72 4.5962 -4.5962 -9.3704 -0.08 128 4.5962 -4.5962 2.5556 -0.08 184 4.5962 -4.5962 14.4815 -0.08
17 6.5000 0.0000 -19.5926 -0.08 73 6.5000 0.0000 -7.6667 -0.08 129 6.5000 0.0000 4.2593 -0.08 185 6.5000 0.0000 16.1852 -0.08
18 4.5962 4.5962 -19.5926 -0.08 74 4.5962 4.5962 -7.6667 -0.08 130 4.5962 4.5962 4.2593 -0.08 186 4.5962 4.5962 16.1852 -0.08
19 0.0000 6.5000 -19.5926 -0.08 75 0.0000 6.5000 -7.6667 -0.08 131 0.0000 6.5000 4.2593 -0.08 187 0.0000 6.5000 16.1852 -0.08
20 -4.5962 4.5962 -19.5926 -0.08 76 -4.5962 4.5962 -7.6667 -0.08 132 -4.5962 4.5962 4.2593 -0.08 188 -4.5962 4.5962 16.1852 -0.08
21 -6.5000 0.0000 -19.5926 -0.08 77 -6.5000 0.0000 -7.6667 -0.08 133 -6.5000 0.0000 4.2593 -0.08 189 -6.5000 0.0000 16.1852 -0.08
22 -4.5962 -4.5962 -19.5926 -0.08 78 -4.5962 -4.5962 -7.6667 -0.08 134 -4.5962 -4.5962 4.2593 -0.08 190 -4.5962 -4.5962 16.1852 -0.08
23 0.0000 -6.5000 -19.5926 -0.08 79 0.0000 -6.5000 -7.6667 -0.08 135 0.0000 -6.5000 4.2593 -0.08 191 0.0000 -6.5000 16.1852 -0.08
24 4.5962 -4.5962 -19.5926 -0.08 80 4.5962 -4.5962 -7.6667 -0.08 136 4.5962 -4.5962 4.2593 -0.08 192 4.5962 -4.5962 16.1852 -0.08
25 6.5000 0.0000 -17.8889 -0.08 81 6.5000 0.0000 -5.9630 -0.08 137 6.5000 0.0000 5.9630 -0.08 193 6.5000 0.0000 17.8889 -0.08
26 4.5962 4.5962 -17.8889 -0.08 82 4.5962 4.5962 -5.9630 -0.08 138 4.5962 4.5962 5.9630 -0.08 194 4.5962 4.5962 17.8889 -0.08
27 0.0000 6.5000 -17.8889 -0.08 83 0.0000 6.5000 -5.9630 -0.08 139 0.0000 6.5000 5.9630 -0.08 195 0.0000 6.5000 17.8889 -0.08
28 -4.5962 4.5962 -17.8889 -0.08 84 -4.5962 4.5962 -5.9630 -0.08 140 -4.5962 4.5962 5.9630 -0.08 196 -4.5962 4.5962 17.8889 -0.08
29 -6.5000 0.0000 -17.8889 -0.08 85 -6.5000 0.0000 -5.9630 -0.08 141 -6.5000 0.0000 5.9630 -0.08 197 -6.5000 0.0000 17.8889 -0.08
30 -4.5962 -4.5962 -17.8889 -0.08 86 -4.5962 -4.5962 -5.9630 -0.08 142 -4.5962 -4.5962 5.9630 -0.08 198 -4.5962 -4.5962 17.8889 -0.08
31 0.0000 -6.5000 -17.8889 -0.08 87 0.0000 -6.5000 -5.9630 -0.08 143 0.0000 -6.5000 5.9630 -0.08 199 0.0000 -6.5000 17.8889 -0.08
32 4.5962 -4.5962 -17.8889 -0.08 88 4.5962 -4.5962 -5.9630 -0.08 144 4.5962 -4.5962 5.9630 -0.08 200 4.5962 -4.5962 17.8889 -0.08
33 6.5000 0.0000 -16.1852 -0.08 89 6.5000 0.0000 -4.2593 -0.08 145 6.5000 0.0000 7.6667 -0.08 201 6.5000 0.0000 19.5926 -0.08
34 4.5962 4.5962 -16.1852 -0.08 90 4.5962 4.5962 -4.2593 -0.08 146 4.5962 4.5962 7.6667 -0.08 202 4.5962 4.5962 19.5926 -0.08
35 0.0000 6.5000 -16.1852 -0.08 91 0.0000 6.5000 -4.2593 -0.08 147 0.0000 6.5000 7.6667 -0.08 203 0.0000 6.5000 19.5926 -0.08
36 -4.5962 4.5962 -16.1852 -0.08 92 -4.5962 4.5962 -4.2593 -0.08 148 -4.5962 4.5962 7.6667 -0.08 204 -4.5962 4.5962 19.5926 -0.08
37 -6.5000 0.0000 -16.1852 -0.08 93 -6.5000 0.0000 -4.2593 -0.08 149 -6.5000 0.0000 7.6667 -0.08 205 -6.5000 0.0000 19.5926 -0.08
38 -4.5962 -4.5962 -16.1852 -0.08 94 -4.5962 -4.5962 -4.2593 -0.08 150 -4.5962 -4.5962 7.6667 -0.08 206 -4.5962 -4.5962 19.5926 -0.08
39 0.0000 -6.5000 -16.1852 -0.08 95 0.0000 -6.5000 -4.2593 -0.08 151 0.0000 -6.5000 7.6667 -0.08 207 0.0000 -6.5000 19.5926 -0.08
40 4.5962 -4.5962 -16.1852 -0.08 96 4.5962 -4.5962 -4.2593 -0.08 152 4.5962 -4.5962 7.6667 -0.08 208 4.5962 -4.5962 19.5926 -0.08
41 6.5000 0.0000 -14.4815 -0.08 97 6.5000 0.0000 -2.5556 -0.08 153 6.5000 0.0000 9.3704 -0.08 209 6.5000 0.0000 21.2963 -0.08
42 4.5962 4.5962 -14.4815 -0.08 98 4.5962 4.5962 -2.5556 -0.08 154 4.5962 4.5962 9.3704 -0.08 210 4.5962 4.5962 21.2963 -0.08
43 0.0000 6.5000 -14.4815 -0.08 99 0.0000 6.5000 -2.5556 -0.08 155 0.0000 6.5000 9.3704 -0.08 211 0.0000 6.5000 21.2963 -0.08
44 -4.5962 4.5962 -14.4815 -0.08 100 -4.5962 4.5962 -2.5556 -0.08 156 -4.5962 4.5962 9.3704 -0.08 212 -4.5962 4.5962 21.2963 -0.08
45 -6.5000 0.0000 -14.4815 -0.08 101 -6.5000 0.0000 -2.5556 -0.08 157 -6.5000 0.0000 9.3704 -0.08 213 -6.5000 0.0000 21.2963 -0.08
46 -4.5962 -4.5962 -14.4815 -0.08 102 -4.5962 -4.5962 -2.5556 -0.08 158 -4.5962 -4.5962 9.3704 -0.08 214 -4.5962 -4.5962 21.2963 -0.08
47 0.0000 -6.5000 -14.4815 -0.08 103 0.0000 -6.5000 -2.5556 -0.08 159 0.0000 -6.5000 9.3704 -0.08 215 0.0000 -6.5000 21.2963 -0.08
48 4.5962 -4.5962 -14.4815 -0.08 104 4.5962 -4.5962 -2.5556 -0.08 160 4.5962 -4.5962 9.3704 -0.08 216 4.5962 -4.5962 21.2963 -0.08
49 6.5000 0.0000 -12.7778 -0.08 105 6.5000 0.0000 -0.8519 -0.08 161 6.5000 0.0000 11.0741 -0.08 217 6.5000 0.0000 23.0000 -0.08
50 4.5962 4.5962 -12.7778 -0.08 106 4.5962 -4.5962 -0.8519 -0.08 162 4.5962 4.5962 11.0741 -0.08 218 4.5962 4.5962 23.0000 -0.08
51 0.0000 6.5000 -12.7778 -0.08 107 0.0000 -6.5000 -0.8519 -0.08 163 0.0000 6.5000 11.0741 -0.08 219 0.0000 6.5000 23.0000 -0.08
52 -4.5962 4.5962 -12.7778 -0.08 108 -4.5962 -4.5962 -0.8519 -0.08 164 -4.5962 4.5962 11.0741 -0.08 220 -4.5962 4.5962 23.0000 -0.08
53 -6.5000 0.0000 -12.7778 -0.08 109 -6.5000 0.0000 -0.8519 -0.08 165 -6.5000 0.0000 11.0741 -0.08 221 -6.5000 0.0000 23.0000 -0.08
54 -4.5962 -4.5962 -12.7778 -0.08 110 -4.5962 -4.5962 -0.8519 -0.08 166 -4.5962 -4.5962 11.0741 -0.08 222 -4.5962 -4.5962 23.0000 -0.08
55 0.0000 -6.5000 -12.7778 -0.08 111 0.0000 -6.5000 -0.8519 -0.08 167 0.0000 -6.5000 11.0741 -0.08 223 0.0000 -6.5000 23.0000 -0.08
56 4.5962 -4.5962 -12.7778 -0.08 112 4.5962 -4.5962 -0.8519 -0.08 168 4.5962 -4.5962 11.0741 -0.08 224 4.5962 -4.5962 23.0000 -0.08
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C.2 A bipolar channel

Table 4: Positions and charges of all atomic charges in the bipolar channel.

k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec)

1 6.5000 0.0000 -23.0000 0.08 57 6.5000 0.0000 -11.0741 0.08 113 6.5000 0.0000 0.8519 -0.08 169 6.5000 0.0000 12.7778 -0.08
2 4.5962 4.5962 -23.0000 0.08 58 4.5962 4.5962 -11.0741 0.08 114 4.5962 4.5962 0.8519 -0.08 170 4.5962 4.5962 12.7778 -0.08
3 0.0000 6.5000 -23.0000 0.08 59 0.0000 6.5000 -11.0741 0.08 115 0.0000 6.5000 0.8519 -0.08 171 0.0000 6.5000 12.7778 -0.08
4 -4.5962 4.5962 -23.0000 0.08 60 -4.5962 4.5962 -11.0741 0.08 116 -4.5962 4.5962 0.8519 -0.08 172 -4.5962 4.5962 12.7778 -0.08
5 -6.5000 0.0000 -23.0000 0.08 61 -6.5000 0.0000 -11.0741 0.08 117 -6.5000 0.0000 0.8519 -0.08 173 -6.5000 0.0000 12.7778 -0.08
6 -4.5962 -4.5962 -23.0000 0.08 62 -4.5962 -4.5962 -11.0741 0.08 118 -4.5962 -4.5962 0.8519 -0.08 174 -4.5962 -4.5962 12.7778 -0.08
7 0.0000 -6.5000 -23.0000 0.08 63 0.0000 -6.5000 -11.0741 0.08 119 0.0000 -6.5000 0.8519 -0.08 175 0.0000 -6.5000 12.7778 -0.08
8 4.5962 -4.5962 -23.0000 0.08 64 4.5962 -4.5962 -11.0741 0.08 120 4.5962 -4.5962 0.8519 -0.08 176 4.5962 -4.5962 12.7778 -0.08
9 6.5000 0.0000 -21.2963 0.08 65 6.5000 0.0000 -9.3704 0.08 121 6.5000 0.0000 2.5556 -0.08 177 6.5000 0.0000 14.4815 -0.08
10 4.5962 4.5962 -21.2963 0.08 66 4.5962 4.5962 -9.3704 0.08 122 4.5962 4.5962 2.5556 -0.08 178 4.5962 4.5962 14.4815 -0.08
11 0.0000 6.5000 -21.2963 0.08 67 0.0000 6.5000 -9.3704 0.08 123 0.0000 6.5000 2.5556 -0.08 179 0.0000 6.5000 14.4815 -0.08
12 -4.5962 4.5962 -21.2963 0.08 68 -4.5962 4.5962 -9.3704 0.08 124 -4.5962 4.5962 2.5556 -0.08 180 -4.5962 4.5962 14.4815 -0.08
13 -6.5000 0.0000 -21.2963 0.08 69 -6.5000 0.0000 -9.3704 0.08 125 -6.5000 0.0000 2.5556 -0.08 181 -6.5000 0.0000 14.4815 -0.08
14 -4.5962 -4.5962 -21.2963 0.08 70 -4.5962 -4.5962 -9.3704 0.08 126 -4.5962 -4.5962 2.5556 -0.08 182 -4.5962 -4.5962 14.4815 -0.08
15 0.0000 -6.5000 -21.2963 0.08 71 0.0000 -6.5000 -9.3704 0.08 127 0.0000 -6.5000 2.5556 -0.08 183 0.0000 -6.5000 14.4815 -0.08
16 4.5962 -4.5962 -21.2963 0.08 72 4.5962 -4.5962 -9.3704 0.08 128 4.5962 -4.5962 2.5556 -0.08 184 4.5962 -4.5962 14.4815 -0.08
17 6.5000 0.0000 -19.5926 0.08 73 6.5000 0.0000 -7.6667 0.08 129 6.5000 0.0000 4.2593 -0.08 185 6.5000 0.0000 16.1852 -0.08
18 4.5962 4.5962 -19.5926 0.08 74 4.5962 4.5962 -7.6667 0.08 130 4.5962 4.5962 4.2593 -0.08 186 4.5962 4.5962 16.1852 -0.08
19 0.0000 6.5000 -19.5926 0.08 75 0.0000 6.5000 -7.6667 0.08 131 0.0000 6.5000 4.2593 -0.08 187 0.0000 6.5000 16.1852 -0.08
20 -4.5962 4.5962 -19.5926 0.08 76 -4.5962 4.5962 -7.6667 0.08 132 -4.5962 4.5962 4.2593 -0.08 188 -4.5962 4.5962 16.1852 -0.08
21 -6.5000 0.0000 -19.5926 0.08 77 -6.5000 0.0000 -7.6667 0.08 133 -6.5000 0.0000 4.2593 -0.08 189 -6.5000 0.0000 16.1852 -0.08
22 -4.5962 -4.5962 -19.5926 0.08 78 -4.5962 -4.5962 -7.6667 0.08 134 -4.5962 -4.5962 4.2593 -0.08 190 -4.5962 -4.5962 16.1852 -0.08
23 0.0000 -6.5000 -19.5926 0.08 79 0.0000 -6.5000 -7.6667 0.08 135 0.0000 -6.5000 4.2593 -0.08 191 0.0000 -6.5000 16.1852 -0.08
24 4.5962 -4.5962 -19.5926 0.08 80 4.5962 -4.5962 -7.6667 0.08 136 4.5962 -4.5962 4.2593 -0.08 192 4.5962 -4.5962 16.1852 -0.08
25 6.5000 0.0000 -17.8889 0.08 81 6.5000 0.0000 -5.9630 0.08 137 6.5000 0.0000 5.9630 -0.08 193 6.5000 0.0000 17.8889 -0.08
26 4.5962 4.5962 -17.8889 0.08 82 4.5962 4.5962 -5.9630 0.08 138 4.5962 4.5962 5.9630 -0.08 194 4.5962 4.5962 17.8889 -0.08
27 0.0000 6.5000 -17.8889 0.08 83 0.0000 6.5000 -5.9630 0.08 139 0.0000 6.5000 5.9630 -0.08 195 0.0000 6.5000 17.8889 -0.08
28 -4.5962 4.5962 -17.8889 0.08 84 -4.5962 4.5962 -5.9630 0.08 140 -4.5962 4.5962 5.9630 -0.08 196 -4.5962 4.5962 17.8889 -0.08
29 -6.5000 0.0000 -17.8889 0.08 85 -6.5000 0.0000 -5.9630 0.08 141 -6.5000 0.0000 5.9630 -0.08 197 -6.5000 0.0000 17.8889 -0.08
30 -4.5962 -4.5962 -17.8889 0.08 86 -4.5962 -4.5962 -5.9630 0.08 142 -4.5962 -4.5962 5.9630 -0.08 198 -4.5962 -4.5962 17.8889 -0.08
31 0.0000 -6.5000 -17.8889 0.08 87 0.0000 -6.5000 -5.9630 0.08 143 0.0000 -6.5000 5.9630 -0.08 199 0.0000 -6.5000 17.8889 -0.08
32 4.5962 -4.5962 -17.8889 0.08 88 4.5962 -4.5962 -5.9630 0.08 144 4.5962 -4.5962 5.9630 -0.08 200 4.5962 -4.5962 17.8889 -0.08
33 6.5000 0.0000 -16.1852 0.08 89 6.5000 0.0000 -4.2593 0.08 145 6.5000 0.0000 7.6667 -0.08 201 6.5000 0.0000 19.5926 -0.08
34 4.5962 4.5962 -16.1852 0.08 90 4.5962 4.5962 -4.2593 0.08 146 4.5962 4.5962 7.6667 -0.08 202 4.5962 4.5962 19.5926 -0.08
35 0.0000 6.5000 -16.1852 0.08 91 0.0000 6.5000 -4.2593 0.08 147 0.0000 6.5000 7.6667 -0.08 203 0.0000 6.5000 19.5926 -0.08
36 -4.5962 4.5962 -16.1852 0.08 92 -4.5962 4.5962 -4.2593 0.08 148 -4.5962 4.5962 7.6667 -0.08 204 -4.5962 4.5962 19.5926 -0.08
37 -6.5000 0.0000 -16.1852 0.08 93 -6.5000 0.0000 -4.2593 0.08 149 -6.5000 0.0000 7.6667 -0.08 205 -6.5000 0.0000 19.5926 -0.08
38 -4.5962 -4.5962 -16.1852 0.08 94 -4.5962 -4.5962 -4.2593 0.08 150 -4.5962 -4.5962 7.6667 -0.08 206 -4.5962 -4.5962 19.5926 -0.08
39 0.0000 -6.5000 -16.1852 0.08 95 0.0000 -6.5000 -4.2593 0.08 151 0.0000 -6.5000 7.6667 -0.08 207 0.0000 -6.5000 19.5926 -0.08
40 4.5962 -4.5962 -16.1852 0.08 96 4.5962 -4.5962 -4.2593 0.08 152 4.5962 -4.5962 7.6667 -0.08 208 4.5962 -4.5962 19.5926 -0.08
41 6.5000 0.0000 -14.4815 0.08 97 6.5000 0.0000 -2.5556 0.08 153 6.5000 0.0000 9.3704 -0.08 209 6.5000 0.0000 21.2963 -0.08
42 4.5962 4.5962 -14.4815 0.08 98 4.5962 4.5962 -2.5556 0.08 154 4.5962 4.5962 9.3704 -0.08 210 4.5962 4.5962 21.2963 -0.08
43 0.0000 6.5000 -14.4815 0.08 99 0.0000 6.5000 -2.5556 0.08 155 0.0000 6.5000 9.3704 -0.08 211 0.0000 6.5000 21.2963 -0.08
44 -4.5962 4.5962 -14.4815 0.08 100 -4.5962 4.5962 -2.5556 0.08 156 -4.5962 4.5962 9.3704 -0.08 212 -4.5962 4.5962 21.2963 -0.08
45 -6.5000 0.0000 -14.4815 0.08 101 -6.5000 0.0000 -2.5556 0.08 157 -6.5000 0.0000 9.3704 -0.08 213 -6.5000 0.0000 21.2963 -0.08
46 -4.5962 -4.5962 -14.4815 0.08 102 -4.5962 -4.5962 -2.5556 0.08 158 -4.5962 -4.5962 9.3704 -0.08 214 -4.5962 -4.5962 21.2963 -0.08
47 0.0000 -6.5000 -14.4815 0.08 103 0.0000 -6.5000 -2.5556 0.08 159 0.0000 -6.5000 9.3704 -0.08 215 0.0000 -6.5000 21.2963 -0.08
48 4.5962 -4.5962 -14.4815 0.08 104 4.5962 -4.5962 -2.5556 0.08 160 4.5962 -4.5962 9.3704 -0.08 216 4.5962 -4.5962 21.2963 -0.08
49 6.5000 0.0000 -12.7778 0.08 105 6.5000 0.0000 -0.8519 0.08 161 6.5000 0.0000 11.0741 -0.08 217 6.5000 0.0000 23.0000 -0.08
50 4.5962 4.5962 -12.7778 0.08 106 4.5962 -4.5962 -0.8519 0.08 162 4.5962 4.5962 11.0741 -0.08 218 4.5962 4.5962 23.0000 -0.08
51 0.0000 6.5000 -12.7778 0.08 107 0.0000 -6.5000 -0.8519 0.08 163 0.0000 6.5000 11.0741 -0.08 219 0.0000 6.5000 23.0000 -0.08
52 -4.5962 4.5962 -12.7778 0.08 108 -4.5962 -4.5962 -0.8519 0.08 164 -4.5962 4.5962 11.0741 -0.08 220 -4.5962 4.5962 23.0000 -0.08
53 -6.5000 0.0000 -12.7778 0.08 109 -6.5000 0.0000 -0.8519 0.08 165 -6.5000 0.0000 11.0741 -0.08 221 -6.5000 0.0000 23.0000 -0.08
54 -4.5962 -4.5962 -12.7778 0.08 110 -4.5962 -4.5962 -0.8519 0.08 166 -4.5962 -4.5962 11.0741 -0.08 222 -4.5962 -4.5962 23.0000 -0.08
55 0.0000 -6.5000 -12.7778 0.08 111 0.0000 -6.5000 -0.8519 0.08 167 0.0000 -6.5000 11.0741 -0.08 223 0.0000 -6.5000 23.0000 -0.08
56 4.5962 -4.5962 -12.7778 0.08 112 4.5962 -4.5962 -0.8519 0.08 168 4.5962 -4.5962 11.0741 -0.08 224 4.5962 -4.5962 23.0000 -0.08
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C.3 A double-well channel

Table 5: Positions and charges of all atomic charges in the double well channel.

k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec) k x(Å) y(Å) z(Å) Qk(ec)

1 6.5000 0.0000 -23.0000 -0.12 57 6.5000 0.0000 -11.0741 -0.12 113 6.5000 0.0000 0.8519 0.04 169 6.5000 0.0000 12.7778 -0.12
2 4.5962 4.5962 -23.0000 -0.12 58 4.5962 4.5962 -11.0741 -0.12 114 4.5962 4.5962 0.8519 0.04 170 4.5962 4.5962 12.7778 -0.12
3 0.0000 6.5000 -23.0000 -0.12 59 0.0000 6.5000 -11.0741 -0.12 115 0.0000 6.5000 0.8519 0.04 171 0.0000 6.5000 12.7778 -0.12
4 -4.5962 4.5962 -23.0000 -0.12 60 -4.5962 4.5962 -11.0741 -0.12 116 -4.5962 4.5962 0.8519 0.04 172 -4.5962 4.5962 12.7778 -0.12
5 -6.5000 0.0000 -23.0000 -0.12 61 -6.5000 0.0000 -11.0741 -0.12 117 -6.5000 0.0000 0.8519 0.04 173 -6.5000 0.0000 12.7778 -0.12
6 -4.5962 -4.5962 -23.0000 -0.12 62 -4.5962 -4.5962 -11.0741 -0.12 118 -4.5962 -4.5962 0.8519 0.04 174 -4.5962 -4.5962 12.7778 -0.12
7 0.0000 -6.5000 -23.0000 -0.12 63 0.0000 -6.5000 -11.0741 -0.12 119 0.0000 -6.5000 0.8519 0.04 175 0.0000 -6.5000 12.7778 -0.12
8 4.5962 -4.5962 -23.0000 -0.12 64 4.5962 -4.5962 -11.0741 -0.12 120 4.5962 -4.5962 0.8519 0.04 176 4.5962 -4.5962 12.7778 -0.12
9 6.5000 0.0000 -21.2963 -0.12 65 6.5000 0.0000 -9.3704 -0.12 121 6.5000 0.0000 2.5556 0.04 177 6.5000 0.0000 14.4815 -0.12
10 4.5962 4.5962 -21.2963 -0.12 66 4.5962 4.5962 -9.3704 -0.12 122 4.5962 4.5962 2.5556 0.04 178 4.5962 4.5962 14.4815 -0.12
11 0.0000 6.5000 -21.2963 -0.12 67 0.0000 6.5000 -9.3704 -0.12 123 0.0000 6.5000 2.5556 0.04 179 0.0000 6.5000 14.4815 -0.12
12 -4.5962 4.5962 -21.2963 -0.12 68 -4.5962 4.5962 -9.3704 -0.12 124 -4.5962 4.5962 2.5556 0.04 180 -4.5962 4.5962 14.4815 -0.12
13 -6.5000 0.0000 -21.2963 -0.12 69 -6.5000 0.0000 -9.3704 -0.12 125 -6.5000 0.0000 2.5556 0.04 181 -6.5000 0.0000 14.4815 -0.12
14 -4.5962 -4.5962 -21.2963 -0.12 70 -4.5962 -4.5962 -9.3704 -0.12 126 -4.5962 -4.5962 2.5556 0.04 182 -4.5962 -4.5962 14.4815 -0.12
15 0.0000 -6.5000 -21.2963 -0.12 71 0.0000 -6.5000 -9.3704 -0.12 127 0.0000 -6.5000 2.5556 0.04 183 0.0000 -6.5000 14.4815 -0.12
16 4.5962 -4.5962 -21.2963 -0.12 72 4.5962 -4.5962 -9.3704 -0.12 128 4.5962 -4.5962 2.5556 0.04 184 4.5962 -4.5962 14.4815 -0.12
17 6.5000 0.0000 -19.5926 -0.12 73 6.5000 0.0000 -7.6667 0.04 129 6.5000 0.0000 4.2593 0.04 185 6.5000 0.0000 16.1852 -0.12
18 4.5962 4.5962 -19.5926 -0.12 74 4.5962 4.5962 -7.6667 0.04 130 4.5962 4.5962 4.2593 0.04 186 4.5962 4.5962 16.1852 -0.12
19 0.0000 6.5000 -19.5926 -0.12 75 0.0000 6.5000 -7.6667 0.04 131 0.0000 6.5000 4.2593 0.04 187 0.0000 6.5000 16.1852 -0.12
20 -4.5962 4.5962 -19.5926 -0.12 76 -4.5962 4.5962 -7.6667 0.04 132 -4.5962 4.5962 4.2593 0.04 188 -4.5962 4.5962 16.1852 -0.12
21 -6.5000 0.0000 -19.5926 -0.12 77 -6.5000 0.0000 -7.6667 0.04 133 -6.5000 0.0000 4.2593 0.04 189 -6.5000 0.0000 16.1852 -0.12
22 -4.5962 -4.5962 -19.5926 -0.12 78 -4.5962 -4.5962 -7.6667 0.04 134 -4.5962 -4.5962 4.2593 0.04 190 -4.5962 -4.5962 16.1852 -0.12
23 0.0000 -6.5000 -19.5926 -0.12 79 0.0000 -6.5000 -7.6667 0.04 135 0.0000 -6.5000 4.2593 0.04 191 0.0000 -6.5000 16.1852 -0.12
24 4.5962 -4.5962 -19.5926 -0.12 80 4.5962 -4.5962 -7.6667 0.04 136 4.5962 -4.5962 4.2593 0.04 192 4.5962 -4.5962 16.1852 -0.12
25 6.5000 0.0000 -17.8889 -0.12 81 6.5000 0.0000 -5.9630 0.04 137 6.5000 0.0000 5.9630 0.04 193 6.5000 0.0000 17.8889 -0.12
26 4.5962 4.5962 -17.8889 -0.12 82 4.5962 4.5962 -5.9630 0.04 138 4.5962 4.5962 5.9630 0.04 194 4.5962 4.5962 17.8889 -0.12
27 0.0000 6.5000 -17.8889 -0.12 83 0.0000 6.5000 -5.9630 0.04 139 0.0000 6.5000 5.9630 0.04 195 0.0000 6.5000 17.8889 -0.12
28 -4.5962 4.5962 -17.8889 -0.12 84 -4.5962 4.5962 -5.9630 0.04 140 -4.5962 4.5962 5.9630 0.04 196 -4.5962 4.5962 17.8889 -0.12
29 -6.5000 0.0000 -17.8889 -0.12 85 -6.5000 0.0000 -5.9630 0.04 141 -6.5000 0.0000 5.9630 0.04 197 -6.5000 0.0000 17.8889 -0.12
30 -4.5962 -4.5962 -17.8889 -0.12 86 -4.5962 -4.5962 -5.9630 0.04 142 -4.5962 -4.5962 5.9630 0.04 198 -4.5962 -4.5962 17.8889 -0.12
31 0.0000 -6.5000 -17.8889 -0.12 87 0.0000 -6.5000 -5.9630 0.04 143 0.0000 -6.5000 5.9630 0.04 199 0.0000 -6.5000 17.8889 -0.12
32 4.5962 -4.5962 -17.8889 -0.12 88 4.5962 -4.5962 -5.9630 0.04 144 4.5962 -4.5962 5.9630 0.04 200 4.5962 -4.5962 17.8889 -0.12
33 6.5000 0.0000 -16.1852 -0.12 89 6.5000 0.0000 -4.2593 0.04 145 6.5000 0.0000 7.6667 0.04 201 6.5000 0.0000 19.5926 -0.12
34 4.5962 4.5962 -16.1852 -0.12 90 4.5962 4.5962 -4.2593 0.04 146 4.5962 4.5962 7.6667 0.04 202 4.5962 4.5962 19.5926 -0.12
35 0.0000 6.5000 -16.1852 -0.12 91 0.0000 6.5000 -4.2593 0.04 147 0.0000 6.5000 7.6667 0.04 203 0.0000 6.5000 19.5926 -0.12
36 -4.5962 4.5962 -16.1852 -0.12 92 -4.5962 4.5962 -4.2593 0.04 148 -4.5962 4.5962 7.6667 0.04 204 -4.5962 4.5962 19.5926 -0.12
37 -6.5000 0.0000 -16.1852 -0.12 93 -6.5000 0.0000 -4.2593 0.04 149 -6.5000 0.0000 7.6667 0.04 205 -6.5000 0.0000 19.5926 -0.12
38 -4.5962 -4.5962 -16.1852 -0.12 94 -4.5962 -4.5962 -4.2593 0.04 150 -4.5962 -4.5962 7.6667 0.04 206 -4.5962 -4.5962 19.5926 -0.12
39 0.0000 -6.5000 -16.1852 -0.12 95 0.0000 -6.5000 -4.2593 0.04 151 0.0000 -6.5000 7.6667 0.04 207 0.0000 -6.5000 19.5926 -0.12
40 4.5962 -4.5962 -16.1852 -0.12 96 4.5962 -4.5962 -4.2593 0.04 152 4.5962 -4.5962 7.6667 0.04 208 4.5962 -4.5962 19.5926 -0.12
41 6.5000 0.0000 -14.4815 -0.12 97 6.5000 0.0000 -2.5556 0.04 153 6.5000 0.0000 9.3704 -0.12 209 6.5000 0.0000 21.2963 -0.12
42 4.5962 4.5962 -14.4815 -0.12 98 4.5962 4.5962 -2.5556 0.04 154 4.5962 4.5962 9.3704 -0.12 210 4.5962 4.5962 21.2963 -0.12
43 0.0000 6.5000 -14.4815 -0.12 99 0.0000 6.5000 -2.5556 0.04 155 0.0000 6.5000 9.3704 -0.12 211 0.0000 6.5000 21.2963 -0.12
44 -4.5962 4.5962 -14.4815 -0.12 100 -4.5962 4.5962 -2.5556 0.04 156 -4.5962 4.5962 9.3704 -0.12 212 -4.5962 4.5962 21.2963 -0.12
45 -6.5000 0.0000 -14.4815 -0.12 101 -6.5000 0.0000 -2.5556 0.04 157 -6.5000 0.0000 9.3704 -0.12 213 -6.5000 0.0000 21.2963 -0.12
46 -4.5962 -4.5962 -14.4815 -0.12 102 -4.5962 -4.5962 -2.5556 0.04 158 -4.5962 -4.5962 9.3704 -0.12 214 -4.5962 -4.5962 21.2963 -0.12
47 0.0000 -6.5000 -14.4815 -0.12 103 0.0000 -6.5000 -2.5556 0.04 159 0.0000 -6.5000 9.3704 -0.12 215 0.0000 -6.5000 21.2963 -0.12
48 4.5962 -4.5962 -14.4815 -0.12 104 4.5962 -4.5962 -2.5556 0.04 160 4.5962 -4.5962 9.3704 -0.12 216 4.5962 -4.5962 21.2963 -0.12
49 6.5000 0.0000 -12.7778 -0.12 105 6.5000 0.0000 -0.8519 0.04 161 6.5000 0.0000 11.0741 -0.12 217 6.5000 0.0000 23.0000 -0.12
50 4.5962 4.5962 -12.7778 -0.12 106 4.5962 -4.5962 -0.8519 0.04 162 4.5962 4.5962 11.0741 -0.12 218 4.5962 4.5962 23.0000 -0.12
51 0.0000 6.5000 -12.7778 -0.12 107 0.0000 -6.5000 -0.8519 0.04 163 0.0000 6.5000 11.0741 -0.12 219 0.0000 6.5000 23.0000 -0.12
52 -4.5962 4.5962 -12.7778 -0.12 108 -4.5962 -4.5962 -0.8519 0.04 164 -4.5962 4.5962 11.0741 -0.12 220 -4.5962 4.5962 23.0000 -0.12
53 -6.5000 0.0000 -12.7778 -0.12 109 -6.5000 0.0000 -0.8519 0.04 165 -6.5000 0.0000 11.0741 -0.12 221 -6.5000 0.0000 23.0000 -0.12
54 -4.5962 -4.5962 -12.7778 -0.12 110 -4.5962 -4.5962 -0.8519 0.04 166 -4.5962 -4.5962 11.0741 -0.12 222 -4.5962 -4.5962 23.0000 -0.12
55 0.0000 -6.5000 -12.7778 -0.12 111 0.0000 -6.5000 -0.8519 0.04 167 0.0000 -6.5000 11.0741 -0.12 223 0.0000 -6.5000 23.0000 -0.12
56 4.5962 -4.5962 -12.7778 -0.12 112 4.5962 -4.5962 -0.8519 0.04 168 4.5962 -4.5962 11.0741 -0.12 224 4.5962 -4.5962 23.0000 -0.12
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[174] R. Schulz and U. Kleinekathöfer. Transitions between closed and open conformations
of TolC: the effects of ions in simulations. Biophysical journal, 96(8):3116–3125, 2009.

[175] M. Schwander, B. Kachar, and U. Müller. The cell biology of hearing. The Journal of
cell biology, 190(1):9–20, 2010.

[176] K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear
Poisson–Boltzmann equation. Journal of Physical Chemistry, 94(19):7684–7692, 1990.

[177] K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: theory and
applications. Annual review of biophysics and biophysical chemistry, 19(1):301–332,
1990.

[178] K. Shirono, N. Tatsumi, and H. Daiguji. Molecular simulation of ion transport in silica
nanopores. The Journal of Physical Chemistry B, 113(4):1041–1047, 2009.
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