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ABSTRACT

MATHEMATICAL MODELING AND SIMULATION OF
MECHANOELECTRICAL TRANSDUCERS AND NANOFLUIDIC
CHANNELS

By

Jin Kyoung Park

Remarkable advances in nanotechnology and computational approaches enable researchers
to investigate physical and biological phenomena in an atomic or molecular scale. Smaller-
scale approaches are important to study the transport of ions and/or molecules through ion
channels in living organisms as well as exquisitely fabricated nanofluidic channels. Both
subjects have similar physical properties and hence they have common mathematical interests
and challenges in modeling and simulating the transport phenomena. In this work, we first
propose and validate a molecular level prototype for mechanoelectrical transducer (MET)
channel in mammalian hair cells. Next, we design three ionic diffusive nanofluidic channels
with different types of atomic surface charge distribution, and explore the current properties
of each channel.

We construct the molecular level prototype which consists of a charged blocker, a realistic
ion channel and its surrounding membrane. The Gramicidin A channel is employed to
demonstrate the realistic channel structure, and the blocker is a positively charged atom of
radius 1.5A which is placed at the mouth region of the channel. Relocating this blocker
along one direction just outside the channel mouth imitates the opening and closing behavior
of the MET channel. In our atomic scale design for an ionic diffusive nanofluidic channel, the
atomic surface charge distribution is easy to modify by varying quantities and signs of atomic

charges which are equally placed slightly above the channel surface. Our proposed nanofluidic



systems constitutes a geometrically well-defined cylindrical channel and two reservoirs of KCl
solution.

For both the mammalian MET channel and the ion diffusive nanofluidic channel, we employ
a well-established ion channel continuum theory, Poisson-Nernst-Planck theory, for three
dimensional numerical simulations. In particular, for the nano-scaled channel descriptions, the
generalized PNP equations are derived by using a variational formulation and by incorporating
non-electrostatic interactions. We utilize several useful mathematical algorithms, such as
Dirichlet to Neumann mapping and the matched interface and boundary method, in order to
validate the proposed models with charge singularities and complex geometry. Moreover, the
second-order accuracy of the proposed numerical methods are confirmed with our nanofluidic
system affected by a single atomic charge and eight atomic charges, and further study the
channels with a unipolar charge distribution of negative ions and a bipolar charge distribution.

Finally, we analyze electrostatic potential and ion conductance through each channel
model under the influence of diverse physical conditions, including external applied voltage,
bulk ion concentration and atomic charge. Our MET channel prototype shows an outstanding
agreement with experimental observation of rat cochlear outer hair cells in terms of open
probability. This result also suggests that the tip link, a connector between adjacent stereocilia,
gates the MET channel. Similarly, numerical findings, such as ion selectivity, ion depletion
and accumulation, and potential wells, of our proposed ion diffusive realistic nanochannels
are in remarkable accordance with those from experimental measurements and numerical
simulations in the literature. In addition, simulation results support the controllability of the

current within a nanofluidic channel.
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Chapter 1

Introduction

1.1 Introduction to mechanoelectrical transducer chan-

nel in auditory system

Ion channels are pore-forming membrane proteins which are very permeable and highly
selective and their opening and closing are suitably managed [112]. Ion channels are involved in
diverse physiological functions including altering membrane potentials, controlling electrolyte
movements for cell volume regulation and polarized transport of salt, and generating electrical
signals which are utilized to regulate hormone secretion, neurotransmitter release and muscle
contraction [94]. Traditionally, ion channels are classified and named by their two crucial
properties such as ion selectivity and gating mechanism [94, 98]. Most channels allow only a
few specific ions to penetrate through them although there are exceptions like non-selective
cation channels and, in particular, potassium, sodium, calcium and chloride are four principal
permeable ions. The gating mechanism of an ion channel is classified according to a particular
stimulus which the channel gate react strongly. Typical kinds of stimuli are the voltage
gradient across the transmembrane (voltage-gated), the binding and interaction of ligands
with an ion channel (ligand-gated) and a mechanical force (mechanically-gated). Besides,
other ways to gate ion channels can be triggered by photonic and thermal stimuli.

The mechanoelectrical transducer (MET) channel in hair cells is one of the remarkable ion



channel research subjects. Hair cells in the inner ear play a pivotal role in the mechanotrans-
duction for the sense of hearing. Mechanotransduction is the conversion of a mechanical
stimulus into an electrical signal, which is fundamental for the senses of hearing, touch and
balance [88]. The peripheral auditory system, the sensory system for hearing, is mainly
divided into three parts: the outer, middle and inner ear [21]. A wide range of airborne
sound waves enters the external canal of the outer ear and through the middle ear they are
converted to pressure waves which vibrate the basilar membrane in the cochlea of the inner
ear [159]. In the cochlea, basilar membrane vibrations deflect the stereociliary bundles on
the hair cells and hence the sensory cells are depolarized by allowing cations, predominantly
Ca®*t, to penetrate into the mechanoelectrical transducer (MET) channels [88].

The human cochlea contains three rows of outer hair cells (OHCs) and one row of inner
hair cell (IHC) with different functions and shapes [175]. OHCs amplify the amplitude
as well as the frequency selectivity of basilar membrane vibrations. IHCs convey acoustic
information to afferent neurons [78, 121]. Each hair cell possess a mechanically sensitive
bundle consisting of a number of actin-filled microvilli, also named stereocilia, on its apical
surface [159]. The stereocilia in a bundle are arranged in rows of increasing height and,
moreover, they are tightly connected to each other by extracellular linkages including tip
links and top-connectors [175]. In particular, it is speculated that the tip link, which extends
from the tip of a stereocilium to the side of an adjacent taller stereocilium, directly opens
the mechanically gated ion channels [121, 175]. Additionally, it is postulated that an elusive
elastic element, a so-called gating spring, contributes to unfasten the channel inlet [121].

The biophysical principles underlying the mechanotransduction process in hair cells have
been intensively investigated in the past few decades. The recently proposed model of

activation and adaptation of the hair cell tranducer channel is composed of three stages



[121]. Tt is postulated that deflection of a hair bundle toward the tallest stereocilia, namely
positive deflection, increases the open probability of the MET channel at the lower end of
the tip link. Then Ca2T ions travel through the channel pore and then contribute to fast
adaptation by binding to a molecule inside or near the channel. Finally, slow adaptation
including channel closure and tension restoration is accomplished by a myosin motor at the
upper end of the tip link. Despite these advances in MET channel study, the molecular detail
of the mechanotransducer machinery has been proved to be elusive. Particularly, there is no
direct structural confirmation for the molecular building blocks of the MET channel.

There have been several studies to elucidate the features of the MET channel such as gating
mechanism, ion conductance, molecular-level structure and location because charactering the
channel is beneficial to comprehend not only hair cell transducer process but also hearing
mechanism [77]. First of all, the MET channel is a non-selective cation channel with a
considerably high permeability of Ca2t [156]. Then many empirical experiments have been
focused on the localization of this mechanosensitive channel, which is essential to validate
that the channel is gated by mechanical stimuli [62, 109]. Especially, Beurg et al. established
that the MET channels were located only at the bottom of the tip links as indicated by
fast confocal calcium-imaging [16]. In spite of these findings, the MET channel is a notable
example of ion channels whose molecular nature is still obscure, partly due to few channels
per hair cell and few hair cells per organ [159]. Although various potential candidates
including any known mechanosensitive channels and transient receptor potential channels
were compared with the MET channel from biophysical perspectives in the literature, none of
them was perfectly matched with the MET channel [77, 159]. However, Ricci et al. showed
that the conductance of hair cells in the turtle cochlea was tonotopically changed with their

characteristic frequency, which implies that the MET channel might be composed of several



subunits [165]. Farris and his colleagues measured the dimensions of the MET channel using
various antagonists of the candidate channel classes and simple amine compounds [74]. Then
they found that the minimal pore size was about 12A and channel length was approximately
31A [74]. More intrinsic characteristics of the MET channel are yet to be discovered in order

to construct its molecular components.

1.2 Introduction to nanofluidic channels

Nanofluidics, one of the most vibrant scientific research fields, refers to the study and
application of the transport of molecules and/or ions dissolved in a solution as well as fluid
behavior through or past structures with one or more nanometer dimensions [55, 172]. The
nanofluidic studies have been highly motivated by the efforts to design a solid-state DNA
separation system and, moreover, extensive research has been driven by the dramatic advance
in both nanofabrication techniques and theoretical tools to describe fluid motion on the
nanoscale [188]. Another impetus is the discovery of new mechanical and electrochemical
phenomena which are non-existent or less influential in macrofluidic or microfluidic systems
[188]. In a nanofluidic channel, the combination of the remarkably large surface-to-volume
ratio, the electrostatic interactions between the fluid and the charged wall, and the channel’s
characteristic dimension comparable with the size of biomolecules generate unique transport
patterns such as double-layer overlap, ion-current rectification, ion permittivity and diffusion
(68, 223].

The extraordinary transport features of nanofluidics have been received a great deal of
attention in chemistry, physics, biology, material science, medicine and several engineering

fields [172]. In particular, the design and fabrication of nanofluidic devices for molecular



biology applications is a new interdisciplinary field that takes advantage of precise control and
manipulation of fluids at submicrometer and nanometer scales in order to study the behavior of
molecular and biological systems. Nanofabrication techniques are generally classified into two
groups: top-down and bottom-up methods [151, 160]. The top-down method creates patterns
on a large scale with nanometer lateral dimensions, while the bottom-up method places
the atoms and molecules in nanostructures by using chemical reactions. Sophisticatedly
synthesized nanochannels are applied to biosensing of high-throughput, regulating and
separating ions and molecules and energy harvesting [93]. As the characteristic length
scale of the fluid is comparable with the length scale of the biomolecule and/or the Debye
length, nanofluidics can be applied to a variety of interesting powerful tools for genomics
or proteomics [1, 154]. For example, Han et al. introduced an entropic trapping sieving
mechanism for long DNA molecules [95] and Fu et al. designed and investigated a patterned
anisotropic nanofluidic sieving structure for size-based separation of DNA and proteins as
well as electrostatic separation of proteins [82]. For a protein analysis, nanofilter is used to
maximize protein concentration in a sample [204]. Schoch and his colleagues demonstrated
a pH-controlled diffusional separation of proteins in a nano-scaled channel [171]. Besides,
nanofluidic techniques have been instrumented for macromolecule accumulator [44, 210],
electronic circuits [116, 118, 215], local charge inversion [96], photonic crystal circuits [73]
and nanofluidic dynamic array [202]. Despite rapid development in nanotechnology, it is
still an intriguing challenge for engineers to generate inexpensive nanostructures which are
more feasible in diverse areas, for example biomedical research [154]. Since nanofluidic
device prototyping and fabrication are technically challenging and financially expensive, it is
desirable to further advance the field by mathematical /theoretical modeling and simulation.

One major factor to characterize a nanofluidic system is its structure. The novel nanofab-



rication skills enable the production of diverse nanofluidic devices from 0, 1 to 2 dimensions,
where the dimension indicates the number of non-nanometer length component of the device
[68]. Generally, 0-D, 1-D, and 2-D nanochannels are also called as nanopores, nanotubes, and
nanoslits, respectively. Another parameter to represent the structure is the ratio of channel
height to width, namely the aspect ratio (AR), and, especially, low AR and near-unity AR
channels are referred to as planar and square channels [1]. Nanopores are usually formed
perpendicularly through diverse substrate materials, and the most well-known nanopore
sensors are pore-forming proteins such as a-hemolysin and silicon nitride membranes with
solid-state pores [196, 223]. Nanopore-based sensing is a cost-effective label-free approach
without amplification at a relatively high speed and it has been promoted to meet the needs
of researchers interested in DNA sequencing [22, 196]. Kasianowicz and his group tried
to detect single-stranded RNA and DNA molecules using a-hemolysin [120] and Li et al.
designed a set of solid-state nanopores in a silicon nitride to observe the folding behavior
of individual double-stranded DNA [134]. Nanochannels whose depth and/or width are
reduced to the nanoscale are eligible to combine with other sophisticated devices and to
demonstrate the transport inside the channel [223]. For example, Perry and his colleagues
designed funnel-shape nanofluidic channels with different taper angles and proved that the
taper angle of the funnel influenced the ion-rectifying effect [161]. Typically, nanochannels
with comparatively longer lateral length have either a cylindrical or a conical geometry [223].
While surface charge and applied external potential predominantly control the counterion
current in a cylindrical channel, the flow direction is also critical to determine the ion con-
ductance patterns through a conical channel. In the work presented here, we will concentrate
more on nanofluidic channels.

The other important property that distinguishes a nanofluidic system from a higher



dimensional fluid system is its unprecedented transport phenomena. The fluid transport
through a nanoscale channel is explained by three factors: the external driving force generated
by either an electrical potential gradient or a pressure gradient, a variety of molecular-level
interactions, and the friction forces caused by solvent-wall interactions and hydrodynamic
solute-wall interactions [188]. Due to the extraordinary surface-to-volume ratio in nanofluidic
systems, fluid interactions with the wall dominantly induce notable transport behaviors
including ion permselectivity, ion enrichment and depletion, fast mixing and rapid injection
of a small amount of reagent [162]. Especially, steric/hydration interactions, van der Waals
interactions and electrostatic interactions play a central role in nanofluidic systems and
these intermolecular interactions determine the characteristic length scale of nanofluidics [55].
The interactions within a nanoscale fluid system are mostly influenced by its physical and
chemical properties such as geometrical confinement and charge, and flow condition such
as ion composition and concentration. Consequently, microscopic interactions dominate the
solute and solvent transport in nanofluidic structures, but continuum fluid mechanics regulate
it in macrofluidic and microfluidic structures.

Electrostatic distribution in a solution and electrokinetic flow of the solute molecules are
fundamental concepts to understand the transport in nanofluidic devices [172]. Specifically, the
surface charge of the channel wall plays a pivotal role to derive electrostatic interactions and
electrokinetic effects within nanoscale fluidic channels when charged particles are sufficiently
adjacent to the wall [56, 173, 190, 218]. The fixed charge at the channel wall induces
electrostatic interactions with ions dissolved in a solution; hence the wall attracts oppositely
charged ions, but repels ions with the same charge [188]. The interplay between the long-range
electrostatic forces and short-range van der Waals forces creates a screening region, so-called

an electrical double layer (EDL), in an electrolyte solution confined to the nanostructure so



that this oppositely charged region is able to attain electroneutrality at the interface between
the solid and the liquid [172]. The combination effect between two forces at the charged
solid-liquid interface is well-established by the Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory [63, 197]. The structure of the EDL is described well in the Gouy-Chapman-Stern
model, which suggests three layers of the EDL: the inner Helmholtz plane, outer Helmholtz
plane and diffuse layer [172]. While the inner Helmholtz plane consists of non-hydrated coions
and counterions that are attached to the channel surface, the outer Helmholtz plane contains
bound, hydrated and partially hydrated counterions. Moreover, the part between the inner
and outer Helmholtz planes is called the Stern layer, where the charge and potential are
linearly varied. The diffuse layer, the farthest layer, contains mobile coions and counterions.
In particular, a thorough understanding of the potential variance in accordance with the
structure of the EDL is indispensable because the principal mechanism of the transport is
electrokinetic behavior [162]. The readers can refer to the literature [6, 91, 157] for a more
comprehensive understanding of the EDL.

Characteristic length scale, such as Reynolds number, Biot number and Nusselt number,
is a reference quantity used to explain particular characteristics in a physical system. For
example, Reynolds number, the ratio of inertial forces to viscous ones, is a dimensionless
number to determine flow patterns in fluidic mechanics [105]. One of the most representative

characteristic length scales in nanofluidic structures is the Debye length A\p =

where ¢ is the dielectric constant of the solvent, ¢ is the permittivity of vacuum, kg is the
Boltzmann constant, 7" is the absolute temperature, and Cg and g are, respectively, the bulk
ion concentration and the charge of ion species v [55]. The Debye length only depends on the

flow conditions, including the solute composition and concentration, and also describes the



thickness (or, precisely, %th reduction) of the EDL where the potential decays exponentially
[172]. Essentially, ionic fluid behaves like a microscopic flow within the EDL region, but it
acts as a macroscopic flow far beyond the Debye length.

When the internal diameter of a nanochannel is comparable to or smaller than the Debye
length, the electrolyte solution becomes a unipolar solution with a charge of sign opposite to
the channel surface charge [55]. However, this unipolar transport never occurs in microfluidic
systems because the channel pore is much larger than the Debye length. If the EDLs are
overlapped across the channel pore dimension, only the control of counterion flow is possible,
but otherwise the flow of both counterions and coions can be governed [56]. Ion selectivity is
another important feature which enables nano-sized channels to work as an ionic filter and it
is defined as the ratio of the difference between currents of cations and anions to the total
current delivered by both ions [199]. Vlassiouk and his group examined the ion selectivity
of single nanometer channels under various conditions including channel dimension, buffer
concentration and applied voltage.

The rectification of ionic current in nanofluidic devices has been of great interest because
it is possible to control the ionic flow by simple electrical switches [41]. This asymmetry in ion
conductance can be derived by applying the external voltage when the symmetry of surface
charge distribution, bulk concentration, channel geometry or a combination of these is broken
along the longitudinal axis [41]. In order to interpret the rectification phenomena through
nanofluidic systems, several experiments and theoretical modeling have been performed
in various types of structures. For example, Pu et al. conducted experiments to observe
ion-enrichment and ion-depletion effects in 60-nm-deep nanochannels, which usually resulted
in the ion-current rectification [163]. In their design, an applied field gave rise to accumulation

of both cations and anions at the cathode and absence of all ions at the anode of the channels.



Siwy and her colleagues showed the rectification phenomena in a single conical nanopore and
in a single conical nanotube when the surface was adequately charged [184, 183, 180, 181, 182].
Karnik et al. designed a cylindrical nanofluidic diode with uneven surface charge distribution
[117] and Daiguji et al. theoretically described the ionic transport through such channels

[56).

1.3 Review of current computational models

Channels with nanoscale pores are ubiquitous in biological systems, while recently astonishing
advance in synthesis techniques enables manufacturing such small-sized pore channels for
various applications[153]. Modeling and analyzing the ionic transport and fluidic dynamics
through both natural and artificial nanofluidic channels have been a great challenge and
a crucial task over the past few decades. Membrane channels are obviously different from
solid-state channels. For instance, the ionic selectivity of membrane channels is mainly based
on the sizes of ions and channel pore; in contrast, that of solid-state channels depends on
electrostatic effects [55]. In spite of such differences, ion transport through both types of
nanochannels can be simulated using similar theoretical and computational tools due to
common physical features.

An enormous number of theoretical approaches, from phenomenological to fundamental,
have been proposed and developed in order to elucidate the transport phenomena within
cell membrane channels as well as man-made channels [46, 55, 112, 133, 146, 153, 168]. In
this section, we account for three well-known representative theoretical approaches: all-atom
molecular dynamics (MD), stochastic dynamics and continuum models such as Poisson-

Boltzamann (PB) and Poisson-Nernst-Planck (PNP) equations. Then we discuss the history
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of modeling biological ion channels and introduce several theoretical models and simulations
of ion channels using each model in the literature. Finally, we summarize a list of modeling

and simulation of synthetic nanofluidic channels.

1.3.1 Three representative computational approaches

1.3.1.1 Molecular dynamics

In the MD simulation, the dynamical motions of all the atoms, including ions, water, protein
and lipid in the simulated system, are described via Newton’s second law of motion, and
the empirical force fields express the potential energy under the influence of interatomic
interactions [153].

d2
mi—a¥i(t) = Fi(t) = =VV(ri(t), ..., xn (1)),

where r; and m; denote, respectively, the position and the mass of the atom ¢, N the total
number of atoms in the system and F; the force acting on the atom 4 that is the gradient of
the potential energy V(r;(t),...,ry(t)).

The potential energy is composed of bonded potential and unbonded potential [146].
While the former is related to bond lengths, bond angles, improper dihedral angles and
torsional angles, the latter contains the Coulomb potential for electrostatic interactions and
the Lennard-Jones potential for van der Waals interactions. The widely used molecular
dynamics simulation packages with a set of force fields are CHARMM [23, 143], AMBER
[51, 209], GROMOS [97], and OPLS-AA [113].

The greatest advantage of the MD simulation is to give the most accurate time-dependent
atomic detail of the system of interest which is also comparable with experimental data

[146]. In this respect, it is a powerful theoretical approach for biophysical and biochemical
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analysis. Especially, the MD calculates a valuable parameter, the potential of mean force
(PMF). It is very beneficial to discover the permeation through nanometer pores or channels
and, moreover, it can provide the selectivity sequences of monovalent cations using the
free-energy profiles [48]. Despite such great benefits, the MD has several limitations: the
high computational cost due to microscopic detailedness of description, the wide range of
time scales from femtoseconds over miliseconds to seconds, the difficulty to account for
polarization and pH value, and the difficulty to apply an electrostatic potential across the
system [153]. The abrupt advance of computer powers raises the time scales of simulation up
to 1 microsecond [125]. Ab initio MD framework has progressed to analyze the polarization
effects in biomolecular systems and, for instance, these simulations successfully demonstrate
dissociation of NaCl in water [148, 192]. Many studies have purported to surmount the other
puzzling issue of the availability of the external electrostatic potential in MD simulations
[153]. Since Aksimentiev and Schulten simulated the ion conductance through a-Hemolysin
under the applied external electrostatic field [4], a similar investigation method has been

utilized to study ion transport in a variety of systems [20, 126, 145, 152, 179, 174].

1.3.1.2 Stochastic dynamics

The stochastic dynamics scheme is proposed as a great compromise between two computational
approaches in that it can simulate only a reasonable number of ions explicitly by considering
the solvent molecules implicitly [55]. The simplest and most commonly used form of stochastic
dynamics to explore complex many-body systems is the Brownian dynamics (BD) [48].
Specifically, for the BD simulations of nanofluidic channels, the dynamics depict the behavior
of each solute ion while considering the channel as a rigid structure and the solvent molecules

implicitly under frictional and stochastic forces [146]. By reducing the number of degrees of
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freedom in calculation, this statistical approach provides very useful computational data such
as current-voltage and conductance-concentration curves at a relatively lower cost [48, 153].
Herein, the Langevin equation is repeatedly solved to detect the random motions of the
individual ions of interest under the influence of the dissipative and fluctuating forces [48]:
d2
mi—aTi(t) = Fi(t,x) —miyiti(t) — &(1),

where F; denotes the systematic force including electrostatic forces derived from interactions
between the charged atoms, m;~;1;(t) the frictional force denoting m; the mass, 7; the
reciprocal of the relaxation time and r; the velocity, and §; the stochastic force. Two
necessary parameters required to conduct a BD simulation are the diffusion coefficient for
each ion and the force applied to each ion which corresponds to the multi-ion PMF [146].
These two factors are usually obtained from all-atom MD simulations.

In particular, the BD simulations are very valuable for ion channel studies in that
they empower to calculate the current flow and ionic concentrations in the system using a
trajectory analysis and to determine the valence selectivity [48]. Although the BD somewhat
compensates the defects of both the MD and the continuum approaches, this framework
also has critical shortcomings and hence many scholars have extensively researched solutions
to such problems [48, 146, 153]. The stochastic dynamics of the reduced system involves
two major simplifications assuming water as a continuum and protein as a fixed structure,
which are closely involved in the shortcomings of the simulations [133]. Another weakness of
the BD method is using the position-independent dielectric constant for water, but the MD
demonstrates that the polarizability of water is decreased due to confinement in a real system

[48]. Thus, some BD simulations use position-dependent dielectric constants validated by
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MD simulations [107, 131]. For ion channel analysis, the conformational changes of proteins
may have influence on ion permeation, which needs to be discovered using experiments and
MD simulations and, further, to be applied in BD simulations [48].

The dynamic Monte Carlo (DMC) is an alternative statistical theory to simulate non-
equilibrium or relaxation systems [169]. The fundamental principle of the DMC is that the
dynamics of a system can be described by a sequence of states generated by random particle
displacements in time [54, 169]. In this simulation, a randomly-chosen ion of an arbitrary
species is transferred to a randomly-chosen new location within a maximum displacement of
its former location [54]. Csényi et al. satisfactorily computed ionic current through a sodium
channel model under nearly physiological bulk ion concentration [54]. A theoretical approach
coupling grand canonical Monte Carlo (GCMC) and Brownian dynamics (BD) is proposed by
Roux and his colleagues in order to incorporate bulk ion concentration and transmembrane
potential in ion channel microscopic simulations [107, 108]. They validated the proposed

algorithm to study ion permeation and selectivity of the OmpF porin of Escherichia coli.

1.3.1.3 Continuum models

In a continuum based simulation, the mathematical theory treats all the components of
a system of interest including ions, water and proteins as a continuous element [48]. The
most well-established continuum models are Poisson-Boltzmann (PB) for electrostatics and
Poisson-Nernst-Planck (PNP) for ion transport [146]. Due to such simplifying approximation,
the continuum approach has a number of limitations; however, it plays a crucial role to
predict structural and physical features from the current-voltage-concentration relation at
high computational efficiency [146].

In the early 1900s, the PB equation was first proposed by Gouy (1910) and Chapman (1913)
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in order to elucidate electrostatic patterns around a biomolecule [29, 90]. It is generalized
as a continuum approach to compute electrostatic free energy of small spherical ions in an
ionic solution by Debye and Hiickel in solution chemistry [61]. Since such worthwhile usage
of the PB equation in electrochemistry, this model has been studied and applied in various
research fields as well [139]. For example, it is the foundation of DLVO theory which describes
electrostatic effects in colloid systems [63, 197] and, moreover, it is also utilized in biophysics
[59, 103]. The non-linear PB equation is usually written in the following form:

—V - (e(r)VO(r)) = 4mpm (r) + 47A(r) Y qaCl exp ( kT

where €(r) denotes the spatial-dependent dielectric constant, ®(r) the electrostatic potential
and py,(r) the fixed charge density of the biomolecule. For each mobile ion species o within
an aqueous solution, (]8 and g, represent, respectively, the concentration at bulk region and
the charge. Moreover, kp is the Boltzmann constant, 7" is the absolute temperature, and A(r)
is the characteristic function whose value is 1 in the solvent region which ions can penetrate
through, but whose value is 0 in the biomolecule region impermeable to ions.

The fundamental assumption of the PB model is that the electrostatic potential in an
ionic solution is determined by the Boltzmann distribution of solute charges [81, 146]. The
PB equation is largely solved to compute the electrostatic potential at the solvent-accessible
molecular surface, the reaction rates between molecules in a solution, the free energy of
biomolecular association and its salt dependence and pKa shifts in proteins [81]. Furthermore,
it can be conveniently integrated into molecular mechanics and dynamics to maximize
computational efficiency [81]. Since the PB is involved with a mean-field approximation,

the PB modeling produces several weaknesses [26]. First, the important properties of an
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ion, such as the size and the discrete surface charge, are not considered while the ion is
simply considered as a point charge. Second, the non-electrostatic ion-ion interactions and
ion-solid interactions are ignored. Third, the dielectric constant of the solvent is assumed
to be the same through the system, but in reality the permittivity of the medium can be
altered due to charge distribution near the surface. Such problems notwithstanding, the
PB framework is definitely a useful tool in ion channel studies in that it facilitates the
calculation of the free energy required to move an ion from the bulk region to the channel
inside, the characterization of ion-channel interactions and the description of transmembrane
electrostatic potential distribution [146].

The utmost remarkable continuum theory for ion transport through a nanofluidic channel
is an electrodiffusion model, namely Poisson-Nernst-Planck (PNP) theory, which treats
both solutes and solvent as continuous entities, but describes membrane protein in atomic
detail. Specifically, the PNP model describes the solvent water molecule as a dielectric
continuum, treats ion species by continuum density distributions and, in principle, retains
the discrete atomic detail and/or charge distribution of the channel or pore constitution
(14, 72, 129, 221, 220]. The Nernst-Planck equation (NP) combines two fundamental physical
laws, that is, Ohm’s law and Fick’s law, based on the fact that the flux of ions through a
nanochannel is driven by the potential and concentration gradients [48]. For each solvent ion

species «,

Cu(r)

Ja(r) = —Da(r) (V0a<r) + k?BT

V (ga®(r) + Ua<r>>) ,

with the Boltzmann constant kg and the absolute temperature 7. Herein, Jo(r), Dq(r),
Ca(r), qo and Uy (r) are, respectively, the flux density, the diffusion coefficient, the concen-

tration, the charge valence and the sum of potentials induced from interactions with the
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channel for ion species a. Additionally, the electrostatic potential ®(r) is obtained from the

Poisson equation:

—V - (e(r)V(r)) = 4mpm(r) + 47 Y gaCalr),

where €(r) and py,(r) are the position-dependent dielectric constant and the partial charge den-
sity of the nanopore, respectively. By solving the NP and Poisson equations self-consistently
and simultaneously, one can calculate the electrostatic potential, the ionic concentration
and the ionic currents [153]. To simulate the PNP model with a nanofluidic channel, the
required parameters need to be gained empirically or, sometimes, by all-atom simulations
[48, 153]. The parameters include the channel geometry and its surface charge composition,
the dimension and bulk ion concentration at each reservoir, the dielectric constant at each
region, the diffusion coefficients of an ion species and the applied external potential [48].
Although the PNP theory is proved to analyze and predict ion transport at a comparably
small computational cost, it is similar with the PB theory in its limitations. In particular, the
PNP theory is inadequate to describe the transport phenomena through narrow nanochannels
owing to the finite size effects of the ions [114] and short-range non-electrostatic interactions
[52].

The Poisson-Nernst-Planck theory, combined with the density functional theory, is a
useful extension of the PNP model [86, 87]. In this framework, ions are considered as charged
rigid spheres and the density functional theory is employed to calculate the chemical potential
of the ions. Other potent theoretical tools are Poisson-Boltzmann-Nernst-Planck (PBNP),
which simplifies the calculation for multiple ion species with Boltzmann distributions of
ion concentrations [140, 221] and variational multiscale models for charge transport, which

employ diverse variational formulations based on differential geometry theory [208].
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1.3.2 Modeling and simulation of biological ion channels

In 1952, Hodgkin and Huxley designed a voltage clamp experiment technique which is used
to determine the membrane permeability [100]. Using this brilliant idea, they elucidated the
action potential in squid giant axons by analyzing electrical movements of Na™ and K™ through
the ion channels [99]. Similarly, early studies on ion channels were biophysical experiments
to study conductance by measuring voltage and current [19]. Then the understanding
of ion channels at molecular level have been expanded by structural studies [19]. For
example, electron microscopy, nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystallography have been established to reveal atomic-level structural information of ion
channels [112]. The discovery of the crystallized structure of the Streptomyces lividans KesA
potassium channel by MacKinnon and his collaborators was a remarkable achievement, which
also helps to understand the ion conductance mechanism at atomic basis [67, 144]. As another
good example of the well-studied ion channel structure, the pore and channel molecular
structures of a Gramicidin A (GA) channel have been explored by X-ray crystallographic
and/or NMR spectroscopic methods [201]. The molecular structures of other potassium
channels [135], mechanosensitive channels [9, 28] and a chloride channel [69] have been
discovered. Therefore, the abrupt advance in crystallographic analysis gives rise to atomic-
resolution structures of many ion channels [48]. The detected structures are used to identify
their functions from the essential laws of physics in electrolyte solutions [48].

Parallel to progress in experimental methods, theoretical tools have been so sophisti-
cated that researchers could investigate structure, function, dynamics and transport of ion
channels in electrophysiology, biochemistry, molecular biology, computational chemistry

and bioinformatics from the whole cell studies to single channel studies [112]. Theoretical
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modeling is beneficial to obtain an overall physical description of an ion channel, which
gives several advantages [46, 168]. First of all, it is very effective not only to organize and
visualize experimental data but also to predict physical phenomena. Moreover, it possibly
provides a connection between the structure of an ion channel and its functions. A number of
theoretical frameworks have been proposed and developed to answer the following puzzling
issues: the detailed process of ion permeation, the positions of binding sites in a channel, the
rate-limiting steps in conduction, and the relationship between the molecular composition of
an ion channel and its ion selectivity [153]. Powerful computational approaches including
all-atom molecular dynamics (MD), Brownian dynamics (BD), Poisson-Boltzmann (PB)
model, Poisson-Nernst-Planck (PNP) model, Poisson-Boltzmann-Nernst-Planck (PBNP)
model and variational multiscale models have been established over years to explore ion
channels [112, 146, 153]. Each method has strengths and weaknesses, so a researcher should
choose an appropriate method by considering the computational complexity and cost [146].

MD, a dynamic description of the detailed motions of individual atoms in a system, has
been developed to deal with more complex biological or chemical systems [5, 119, 149]. Since
the first simulation of a folded globular protein, its usage has been extended to account
for dynamic conformational changes and longer time scales [5, 119, 149]. Mackay and
his coworkers applied MD method to observe the transport of four ions (lithium, sodium,
potassium, and cesium) through the GA channel, which was the first MD simulation of
an ion channel [142]. Especially, this theoretical approach elucidates the mechanism of
ion selectivity, for instance, water permeation through human aquaporin-1 [60] and Ca2t
permeation through an L-type calcium channel [7]. BD describes the ions of interest explicitly,
but it treats