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AUBSTJIAITT

INDEPENDENT INCREASES IN RISK AND

THEIR COMPARATIVE STATICS

BY

Helei Qu

This paper introduces a special type of Rothschild and

Stiglitz increases in risk. This is prompted by the fact

that Rothschild and Stiglitz increases in risk are too

broadly defined to generate determinate comparative statics

in most decision models. Typically very severe restrictions

on the utility functions are needed in order for the

comparative static effect to be determinate. An alternative

is to further restrict the increases in risk. Many cases of

special Rothschild and Stiglitz increases in risk have thus

been proposed and examined. We introduce our own increase

in risk in this paper.

An independent increase in risk further restricts a

Rothschild and Stiglitz increase in risk by requiring E to

be independent of E. Random variable y is an independent

increase in risk from random variable § if

Si=4 E + E,

where E is independent of E and E(E) = 0. An independent

increase in risk is a special Rothschild and Stiglitz

increase in risk as E(E) = E(E|x) = 0.



Under an independent increase in risk, the distribution

of random variable E is the same no matter what realized

value of random variable E is. The distribution of E is

independent of x. This uniform property makes the

comparative static effect of an independent increase in risk

determinate in many instances.

Like a strong increase in risk, an independent increase

in risk is also a generalization of an introduction of risk.

An independent increase in risk can, however, generate any

Rothschild and Stiglitz increases in risk, when the initial

random variable E is degenerate at a point.

An independent increase in risk imposes no restrictions

on the two distribution functions in the center of the

supports. The two CDF’s may cross many times. The support

of F(x) is, however, contained inside the support of C(y).

The conditions for generating comparative statics are

acceptable for an independent increase in risk. The

independent increases in risk have a wide range of

applications. Background risk, savings and uncertainty,

asset proportion, portfolio problem and the output level of

a competitive firm are few examples.
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CHAPTER 1

INTRODUCTION

In economics there are many unknowns. For instance,

the determinants of supply and demand and therefore the

market price have significant stochastic components. Like

any other science, economics takes these into consideration.

Including randomness enriches the content of economics.

Explaining the impact of uncertainty is an important aspect

of economic theory. Risk and uncertainty theory is the

branch of economics that deals with these issues.

Risk, uncertainty or lack of information is represented

by including random variables as parameters in a decision

model. A random variable has a probability distribution

function (PDF) and a cumulative distribution function (CDF).

These describe all the possible outcomes and the likelihood

that each of the outcomes occurs. We will use the PDF and

CDF to describe the risk and uncertainty.

Von Neumann and Morgenstern (1944) place conditions on

preferences over the random outcomes. These conditions,

known as expected utility theory, imply that the ranking of

random alternatives is given by the expectation of the

utility of the possible outcomes.

An economic agent’s preferences can be classified into

risk averse, risk loving or risk neutral according to their
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attitude towards risk. Some economic agents buy lottery

tickets as well as insure their properties. That is, there

are agents who do not belong to any of the above groups,

they are both risk averse and risk loving.

Different economic agents have different attitudes

toward risk, some are more risk averse than others. Risk

neutral economic agents are those who are indifferent

between taking a random outcome and taking the certain

expected value of the random outcome. Risk averters are

those who prefer the expected value of a random outcome to

the random outcome itself. Risk lovers are those who prefer

a random outcome to the certain expected value of the random

outcome. These attitudes are reflected in the shape of the

utility function. Risk averters have a concave utility

function, risk lovers have a convex utility function, and

risk neutral economic agents have a linear utility function.

Concave utility functions are usually best suited to the

maximization of expected utility.

An economic agent's attitude toward risk can be

measured. Arrow (1965) and Pratt (1964) use absolute and

relative risk aversion to measure the curvature of the

utility functions. Absolute risk aversion is defined as

A(z) = -u"(z)/u’(z), and relative risk aversion is defined

as R(z) = -z-u"(z)/u’(z) = z-A(z), where u is the utility

function, z is the outcome parameter. A(z) 2 0 is for the

risk averters, A(z) s 0 for the risk lovers and A(z) = 0 for
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the risk neutral economic agents.

Risk aversion depends on the level of the outcome

parameter. When A(z) decreases as 2 increases, this is

referred to as decreasing absolute risk aversion (DARA).

Increasing absolute risk aversion (IARA) occurs when A(z)

increases as 2 increases. Finally, constant absolute risk

aversion (CARA) prevails when A(z) does not change as 2

changes. Arrow (1965) argues that absolute risk aversion

A(z) is a decreasing function (DARA) of z where z is wealth.

Similar definitions apply to relative risk aversion.

Arrow (1965) argues that the relative risk aversion R(z) is

an increasing function (IRRA) of wealth. IRRA means that if

both the wealth and the size of the random variable are

increased in the same proportion, the willingness to accept

the risk should decrease.

When one group of economic agents prefer one random

variable to another, this generates the definition of

dominance among the random variables, or stochastic

dominance. Hanoch and Levy (1969) define dominance for all

agents with non-decreasing utility functions and also for

those with non-decreasing and concave utility functions.

Radar and Russell (1969) also give these definitions and

call them first order stochastic dominance (FSD) and second

order stochastic dominance (SSD), respectively. Hanoch and

Levy, Radar and Russell prove that a distribution F(x) FSD a

distribution G(x) if and only if all economic agents whose



4

utility function is non-decreasing in x prefer F(x) to G(x).

Similarly F(x) SSD G(x) if and only if all economic agents

whose utility function is non—decreasing and concave in x

prefer F(x) to G(x).

Stochastic dominance is a unanimous preference concept.

FSD is for the group of non-decreasing utility functions,

including risk averters, risk lovers and risk neutral

economic agents. SSD applies to non-decreasing and concave

utility functions, that is only risk averters are in this

group.

A related concept defined by Rothschild and Stiglitz

(R—S) (1970) is a Mean Preserving Spread (MPS) increase in

risk. Rothschild and Stiglitz give three definitions of a

risk change. They consider unanimous preference for all

economic agents with concave utility functions.

Distribution G(x) is a Rothschild and Stiglitz increase in

risk from F(x) if the risk averters prefer F(x) to G(x) and

F(x) and G(x) have the same means. Note that u(x) is not

required to be increasing or decreasing.

The most commonly studied decision model contains only

one random variable. Often this is presented in a one

random variable, one Choice parameter and one outcome

parameter (1-1-1) format, Choi (1992). In this model, the

final outcome is a function of the random variable, the

choice parameter and possibly other exogenous parameters.

This is the model used in much of the research in risk and
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uncertainty theory. The model is employed in chapters 2 and

3 and the notation will be introduced at that time.

Both the stochastic dominance and the Rothschild and

Stiglitz increase in risk definitions allow two particular

comparative static questions to be posed in this decision

mode. When the random variable undergoes an FSD, SSD or

Rothschild and Stiglitz risk change, how does expected

utility change, and how does the decision made by the agent

change? These comparative static questions are an important

part of risk and uncertainty analysis over the past twenty

years.

This dissertation is organized as follows. In chapter

2, we will review the literature on different approaches to

changes in randomness and their comparative statics and the

findings which have been published so far. Changes in

randomness are usually represented as CDF changes. The

initial and the final CDF are specified and their difference

is restricted. The comparative static question this

dissertation focuses on concerns the change in the optimal

choice parameter as the CDF changes. This change will

always have an already known effect on expected utility.

The general MPS, FSD or SSD changes are often too broad to

generate determinate comparative static results. Much

research therefore has focused on how to generate special

types of changes in randomness to obtain determinate

comparative static results. These special types of changes
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in randomness and their comparative static results are also

reviewed in chapter 2.

Chapter 3 introduces an independent increase in risk,

which is the main focus of this dissertation. An

independent increase in risk changes a random variable by

adding an independent random variable to it. This generates

a special type of Rothschild and Stiglitz increase in risk

for which determinate comparative static results can be

demonstrated.

Associated with independent increases in risk are

Independent Mean Preserving Spreads (IMPS). An IMPS is a

set of MP8 that differ from one another by linear shifts.

In chapter 3 we connect independent increases in risk and

IMPS.

The last chapter is devoted to comparative statics. To

get determinate comparative statics after all is the purpose

of introducing the independent increases in risk. An

independent increase in risk indeed generates determinate

comparative statics under quite general conditions. We will

see this and examples of applications in chapter 4.



CHAPTER 2

LITERATURE REVIEW

In this chapter we will review the literature on

changes in randomness and their comparative statics.

Stochastic dominance and Mean Preserving Spread (MPS)

increases in risk are perhaps the two most important

concepts in the risk and uncertainty literature, we

therefore start with these concepts.

In this paper the notations and assumptions are as

follows, E and E represent the random variables with CDF’s

F(x) and G(y) respectively, F(x) has bounded support [b,B]

and G(y) [a,A], a s b s c s C s B s A, c and C are two

points inside the supports. A and E represent the exogenous

non-random parameters, a represents the choice parameter, u

is the utility function. Thus a 1-1-1 model is Eu[z(x,a)],

where z is the outcome. Economic agents choose a to

maximize expected utility. To guarantee an interior

solution, erx,a) = 0 for a finite a V x e [a,A] is assumed.

zwxx,a) < 0 is also assumed to guarantee the second order

condition for maximization is satisfied.

Hanoch and Levy (1969) and Hadar and Russell (1969)

define first order stochastic dominance (FSD) and second

order stochastic dominance (SSD) as follows.
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Definition 2.1 (Hanoch and Levy, Hadar and Russell):

(1). CDF F(x) is said to be at least as large as CDF G(x)

in the sense of FSD if and only if G(x) 2 F(x) V x e [a,A];

(2). CDF F(x) is said to be at least as large as CDF G(x)

in the sense of SSD if and only if S§[G(x) - F(x)]dx 2 0 V y

e [a,A].

These definitions of stochastic dominance are for CDF’s not

for random variables. Hanoch and Levy and Hadar and Russell

also show that the dominating distribution is unanimously

preferred to the other distribution by a certain group of

economic agents. F(x) FSD G(x) if and only if all economic

agents with an increasing utility function prefer F(x) to

G(x). F(x) SSD G(x) if and only if all economic agents with

an increasing and concave utility function prefer F(x) to

G(x). Thus the impact of a CDF change on expected utility

is known, the impact on the choice variable is of concern

here.

Rothschild and Stiglitz (1970) give three definitions

of an increase in risk and prove that these definitions are

equivalent. We state this result as a definition:

Definition 2.2 (Rothschild and Stiglitz): The following

three definitions of an increase in risk are equivalent.

(1). Every risk averter prefers random variable E to random

variable E, that is” Sfiu(x)dF(x) 2:Sfiu(x)dG(x),



where u" s 0;

(2). Random variable E is equal in distribution to random

variable E plus some noise E. That is, E =4 E + E, where E

satisfies E(E|x) = 0 and "=fi’" represents "is equal in

distribution to";

(3)- (a) SZ[G(x) ‘ 1‘71!)de Z 0, V Y 6 [8111];

(b) Sfi[G(x) - F(x)]dx = 0, where [a,A] contains the supports

of E and E.

These definitions define an MP8 increase in risk and

definition (3) is often referred to as the integral

conditions of an MP8 increase in risk. An MP8 increase in

risk moves probability mass from the center of a

distribution to its two tails while preserving the mean.

This change produces a new distribution which has the same

mean as the original distribution and is defined to be a

risk increase. Definition (1) shows the impact on expected

utility. Rothschild and Stiglitz also provide the framework

for determining the impact of a risk change on the decision

made by an expected utility maximizing agent. The method of

defining a risk change and determining its comparative

static effect focuses on the integral conditions in

definition (3). Rothschild and Stiglitz (1971) use this CDF

approach and most have followed ever since.

An alternative method of representing a change in the

riskiness of a random variable involves transforming the
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random variable and has been used by Sandmo (1969, 1970,

1971) and others, and it is formalized under the name

deterministic transformation by Meyer and Ormiston (1989).

A deterministic transformation changes the random variable

and hence the CDF by deterministic function t(x), which maps

every realization value of random variable E into a new

point. Appropriate restrictions on t(x) will generate MPS,

FSD or SSD changes in randomness. This method has proven to

be a simple and effective way to represent a random variable

change, we will review this method in section 2.

Over the years economists have found that a general

Rothschild and Stiglitz increase in risk or an FSD or SSD

change in randomness is too broad to yield determinate

comparative static results. Typically very severe

restrictions on utility functions are needed in order for

the comparative static results to be determinate. An

alternative is to further restrict the change in randomness.

Many subsets of these FSD, SSD and Rothschild and Stiglitz

changes in randomness have thus been proposed and examined,

these changes and their comparative static results are

reviewed next.

2.1 CDF Approach to Risk Change and its Comparative Statics

CDF approach to comparative static analysis specifies

the initial and the final CDF's and then compares the

optimal values for the choice parameter under the two CDF's.
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The change in the optimal values is the comparative static

effect of the CDF change. In this section, we shall

investigate the comparative static effect of CDF changes

referred to as strong increases in risk, relatively strong

increases in risk, relatively weak increases in risk and

monotonic likelihood ratio risk changes and stochastic

dominance.

5 2.1.1 An Impossibility Theorem

For an expected utility maximizer Eu[z(x,a)], his

optimal choice parameter a satisfies first order condition

(FOC) Eu’[z(x,a)]-z;cx,a) = 0 in the 1-1-1 model. By the

first definition of an MP8 increase in risk, if

u’[z(x,a)]-z;Lx,a) is concave in E, Rothschild and Stiglitz

then conclude that an MP8 increase in risk will decrease a.

Rothschild and Stiglitz continue to explore what this

condition implies in specific economic models. Concavity of

u'[z(x,d)]-z;(x,a) is a general requirement, it is very

restrictive when translated into conditions on utility

function u(z) and payoff function z(x,a).

Meyer and Ormiston (1983) ask when an arbitrary

Rothschild and Stiglitz increase in risk causes all risk

averse economic agents to adjust their optimal choice

parameters in the same direction in a 1-1—1 model.

Unfortunately the answer to this question is negative, they

have the following theorem regarding this problem.
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Theorem 2.1 (Meyer and Ormiston): Rothschild and Stiglitz

increases in risk cause all risk averse economic agents to

decrease optimal choice parameter a if and only if there

exists a do such that za(x, a0) = 0 V x e [a,A].

Result concerning the same problem with regarding to FSD is

in the following corollary.

Corollary 2.2 (Meyer and Ormiston): All changes in a CDF

such that the final CDF is dominated in the sense of FSD by

the initial CDF cause all risk averse economic agents to

decrease the choice parameter if and only if there exists a

(10 such that za(x,a0) = 0 V x e [a,A].

An SSD shift is a combination of an FSD and an MP8 shifts,

Hadar and Sec (1990). A similar result can thus be derived

for an SSD change in randomness.

The implication of condition za(x,a0) = 0 for all x is

that optimal choice parameter¢%,does not depend on random

variable E. Obviously this restriction eliminates all

interesting models. A general Rothschild and Stiglitz

increase in risk does not yield determinate comparative

static results for all risk averse economic agents in any

meaningful 1-1-1 model. This leaves us two choices. One is

to further restrict the utility function such as requiring

it to be DARA. The other choice is to restrict the change
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in randomness. Most literature on this subject defines

special types of changes in randomness. These special types

of changes in randomness and their comparative statics are

reviewed next.

5 2.1.2 Strong Increases in Risk

Meyer and Ormiston (1985) introduce a strong increase

in risk. A strong increase in risk transfers probability

mass from the original interval [b,B], which contains the

support of initial CDF F(x), to intervals [a,b] and [B,A].

Definition 2.3 (Meyer and Ormiston): CDF G(x) is a strong

increase in risk from CDF F(x) if their difference G(x) -

F(x) satisfies the following conditions.

(a)- 52mm - F(x)de 2 o, v y e [a,AJ;

(b). mam - F(xudx =0 ;

(C). G(x) - F(x) is non-increasing in interval (b,B).

A strong increase in risk is a generalization of an

introduction of risk, which is an increase in risk from an

initial non-random situation. Note that the two CDF’s only

cross once in the case of a strong increase in risk. The

opposite is however not true. Not all CDF pairs which cross

once are strong increases in risk.

Meyer and Ormiston (1985) have the following theorem

regarding a strong increase in risk.
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Theorem 2.2 (Meyer and Ormiston): Assume that decision

makers choose a to maximize Eu[z(x,a)], where u’ 2 0, u" s

0, then all risk averse economic agents, when faced with a

strong increase in risk, will decrease the optimal value of

a if

(a). z,‘ 2 0 and Zen 5 0 Vx e [a,A];

(b). z“, 2 0, 3m s 0 Vx e [a,A].

Condition z,2:0 together with u’ 2 0 guarantees that the

higher values of random variable are preferred to the lower

values. The case where %:S 0 can be treated the same way

with minor modifications. The conditions 2” 2 0 and.zgu:s 0

are restrictions needed to generate the comparative static

results, they are conditions on the payoff function.

5 2.1.3 Relatively strong Increases in Risk

A relatively strong increase in risk is proposed by

Black and Bulkley (1989) to be less restrictive than a

strong increase in risk. A relatively strong increase in

risk allows some of the probability mass that is transferred

to intervals [a,b] and [B,A] in the case of a strong

increase in risk to stay inside interval [b,B] and yet

preserves the comparative static result associated with a

strong increase in risk.
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Definition 2.4 (Black and Bulkley): CDF G(x) is a relatively

strong increase in risk from CDF F(x) if:

(a). mean - F(x2de = o;

(b). For all points in interval [c,C], G(x) - F(x) is non-

increasing; For all points outside this interval, G(x) -

F(x) is non-decreasing, where c and C are two points inside

[b,B] and c s C;

(c). f(x)/g(x) is non-decreasing in interval [b,c);

(d). f(x)/g(x) is non-increasing in interval (C,B].

Conditions (c) and (d) relax a strong increase in risk. A

relatively strong increase in risk allows the density

function of the riskier random variable to be bigger than

that of the less riskier random variable in intervals [b,c)

and (C,B].

Assume a, and a6 are the optimal choice parameters

under distributions F(x) and G(x) respectively. Black and

Bulkley (1989) have the following theorem concerning a

relatively strong increase in risk.

Theorem 2.3 (Black and Bulkley): The sufficient conditions

for aai<¢y,for all risk averse economic agents are:

(a). G(x) represents a relatively strong increase in risk

from F(x);

(b). 2x20, zm20,z SOandzm<0forallxandcu
w
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This theorem requires no more conditions on utility function

than those required by a strong increase in risk.

The difference between a strong increase in risk and a

relatively strong increase in risk is that density function

f(x) is bigger than density function g(x) on entire interval

[b,B] under a strong increase in risk, but under a

relatively strong increase in risk density function f(x) may

be smaller than g(x) in intervals [b,c] and (C,B].

5 2.1.4 Relatively Weak Increases in Risk

Dionne, Eeckhoudt and Gollier (1993) propose a

relatively weak increase in risk when studying a special

type of payoff function. They study models with a payoff

function that is linear in both random variable and choice

parameter. This group of payoff functions satisfies the

restrictions on payoff functions required by a relatively

strong increase in risk.

The model Dionne et al. use is a general linear model

z(x,a) = a(x-A) + 5, where A and £ are the exogenous

parameters. There are two cases a 2 0 and a s 0. In an

application, the sign of a is usually known. We only

consider a 2 0, for a s 0 can be handled with minor

modifications. The conditions on the payoff function are

> 0, zm = z,“ = zw = 0. These stronger conditions on

z(x,a) allow one to relax some restrictions on the type of

changes in randomness. We start with the definition of a
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relatively weak increase in risk, assume two density

functions cross at two points c and C.

Definition 2.5 (Dionne, Eeckhoudt and Collier): CDF G(x)

represents a relatively weak increase in risk from CDF F(x)

if for parameter 7

(i). When 7 e [c,C],

(a) ”(G(x) ' F(X)]dx = 0;

(b) For all points in interval [c,C], G(x) - F(x)

is non-increasing; For all points outside the

interval, G(x) - F(x) is non-decreasing;

(ii). When 7 e [b,c), then besides conditions (a) and (b)

one needs the following conditions;

(6) f(X)/g(X) S f(7)/9(7). b s X s 7; f(X)/9(X) 2

f(7)/9(7), 7 S x < c;

(iii). When 7 e (C,B], then besides conditions (a) and (b)

one needs the following conditions;

(d) f(x)/g(x) 2 f(7)/9(7)z C < X S 7; f(X)/9(X) S

f(7)/g(v). 7 s x s B.

7 plays a critical role in this definition, different

conditions are needed when 7 belongs to different intervals.

On intervals [b,c) and (C,BJ a relatively strong increase in

risk imposes condition on f(x)/g(x) on the entire intervals,

while a relatively weak increase in risk imposes condition

on f(x)/g(x) relative to point 7, or f(7)/g(7).
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The comparative static result for a relatively weak

increase in risk is in the following theorem.

Theorem 2.4 (Dionne, Eeckhoudt and Gollier): Suppose that

cy.and Co are the optimal choice parameters under CDF’s F(x)

and G(x) respectively and.a¢ is an interior solution. Then

the sufficient conditions for a6:5¢y,for all strictly risk

averse economic agents are:

(a). G(x) represents a relatively weak increase in risk

from F(x);

(b). Payoff function z(x,a) is a linear function of both

random variable E and choice parameter a, zu = 2m,= 0.

This theorem depends on parameter 7, if 7 is in different

intervals, the required conditions are different.

5 2.1.5 Monotone Likelihood Ratio Changes in Randomness

Ormiston and Schlee (1991) use Monotone Likelihood

Ratio (MLR) stochastic dominance which is a subset of FSD to

study the tradeoff between restricting the utility function

and restricting the types of changes in randomness.

Ormiston and Schlee specify a set of economic agents whose

behavior is known under certainty, then they investigate the

behavior of these economic agents under uncertainty. For a

class of economic agents whose preferences under certainty

are such that the optimal choice parameter increases with
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the increase of non-random variable x, what type of CDF

change for E when E is random causes all economic agents in

this class to increase optimal choice parameter a under

uncertainty?

CDF F(x) has a support of [b,A] and CDF G(x) has a

support of [a,B]. m(x) is a non-negative and non-decreasing

function. H(x) is the difference between the two CDF’s H(x)

= G(x) - F(x). Ormiston and Schlee have the following MLR

definition.

Definition 2.6 (Ormiston and Schlee): CDF G(x) is MLR

dominated by CDF F(x) if there exists a non-negative and

non-decreasing function m(x) defined in interval [b,B] and

the following conditions are satisfied.

(a). H(x) = G(x) in [a,b);

(b). dH(x) = [1-m(x)]dG(x) in [b,B], where dH(x) is the

derivative of H(x), dG(x) is the derivative of G(x);

(c). H(x) = -F(x) in (B,A].

Ormiston and Schlee consider model Eu(x,a), where E is

the random variable, a is the Choice parameter. They deal

with random variable and choice parameter directly without

payoff function z. If a, and a6 maximize the expected

utility function Eu(x,a) under CDF's F(x) and G(x)

respectively, then
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Theorem 2.5 (Ormiston and Schlee): The following conditions

are equivalent.

(a). CF 2 aa whenever CDF G(x) is MLR dominated by CDF

F(x);

(b). um(x,a) 2 0 whenever uafix,a) = 0.

Condition um(x,a) 2 0 whenever uaLx,a) = 0 is a condition

under certainty. This theorem says that whenever economic

agents increase their optimal choice parameters under

certainty, they will increase their optimal choice

parameters under uncertainty if facing an MLR risk shift.

5 2.1.6 Summary: Relationship Among Different Type of

Changes in Randomness

It is important to see the relationship among these

special types of changes in randomness. In terms of

density function, a strong increase in risk requires that

the density function g(x) of the riskier random variable,

Figure 2.1, to be smaller than that of the less risky random

variable in interval [b,B], the riskier random variable also

distributes in intervals [a,b] and [B,A]. A relatively

strong increase in risk allows the density function of the

riskier random variable be bigger than that of the less

riskier random variable in two intervals [b,c) and (C,B].

But in interval [b,c), f(x)/g(x) is non-decreasing; And in

interval (C,B], f(x)/g(x) is non-increasing. The MLR
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1'igure 2.1. f(x) is the density function of the initial

random variable, g(x) is the density function

of the final random variable.
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requires that the support of the dominated random variable

is somewhere lower than that of the dominating random

variable, and d[G(x)-F(x)] = [1-m(x)]dG(x) is satisfied in

interval [b,B], where m(x) is a non-negative and non-

decreasing function.

We can see that a strong increase in risk is the most

restrictive type of increase in risk. It implies a

relatively strong increase in risk which in turn implies a

relatively weak increase in risk. A relatively strong

increase in risk and a relatively weak increase in risk have

different restrictions in intervals [b,c) and (C,B].

2.2 Deterministic Transformation Approach

The deterministic transformation approach changes the

initial random variable and hence the CDF by mapping each

possible outcome of the random variable into a new value.

Meyer and Ormiston (1989) define deterministic function t(x)

as deterministic transformation function which transforms

random variable E into a new random variable. Deterministic

function t(x) is a non-decreasing, continuous and piecewise

differentiable function. The non-decreasing assumption

combined with the monotonic preferences for outcomes ensures

that the transformation does not reverse the preference

ordering over the various possible outcomes of the original

random variable. A special group of deterministic

transformations are simple transformations. We will review
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the comparative static result for simple transformations.

5 2.2.1 Deterministic Transformations

To study the marginal risk change effect of price,

Sandmo (1971) transforms random variable E into a new random

variable (7E + 0), where 7 is the multiplicative shift

parameter and 0 is the additive shift parameter. A change

in 0 will only change the mean of the random variable,

Sandmo gives the following result regarding the changes in

parameter 0. The model is Eu[ax+k(a)+§].

Theorem 2.6 (Sandmo): The decreasing absolute risk aversion

(DARA) is a sufficient condition for optimal choice

parameter a to increase with an increase in parameter 0.

This result is a local one, it has to be evaluated at 7 = 1

and 0 = 0.

A change in 7 (from point 7 = 1 and 0 = 0) will change

the mean of random variable E. We however only need a mean

preserving increase in risk, Sandmo therefore reduces 0

simultaneously. To restore the mean we need d0/d7 = -u,

where u is the mean of random variable E. Ishii (1977)

proves a comparative static result for a change in

parameter 7.
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Theorem 2.7 (Ishii): Decreasing absolute risk aversion

(DARA) is a sufficient condition for optimal choice variable

a to decrease with an increase in parameter 7.

The transformation Sandmo uses is a prototype of a

deterministic transformation. Meyer and Ormiston (1989)

prove that a general deterministic transformation is a

fourth characterization of a Rothschild and Stiglitz MPS

increase in risk. They have the following theorem

concerning transformation function t(x).

Theorem 2.8 (Meyer and Ormiston): Deterministic

transformation t(x) represents a Rothschild and Stiglitz

increase in risk for the random variable given by CDF F(x)

if function k(x) = t(x) - x satisfies the following

conditions:

(a)- I: k(x2dF(x) 0, where [a,A] is the support of E;

(b). I: k(X)dF(X) I
A

0, V y e [a,A].

The advantage of deterministic transformation is that

the changes in randomness can be restricted in different

ways from that under the CDF approach. Restricting function

t(x) beyond those in theorem 2.8 will generate special

changes in randomness. Meyer (1989) uses deterministic

transformation to define an FSD change.
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Theorem 2.9 (Meyer): Transformed random variable t(x)

dominates initial random variable E in the sense of an FSD

if and only if [t(x)-x]-f(x) 2 0 V x e [a,A].

The FSD dominating CDF lies below the initial CDF, it

generates a greater expected utility for all economic agents

with non-decreasing utility functions.

For SSD risk changes, Meyer has:

Theorem 2.10 (Meyer): Transformed random variable t(x)

dominates initial random variable E in the sense of an SSD

if and only if S§[t(x)-x]f(x)dx 2 0, V y e [a,A].

Recall that SSD changes in randomness yield a higher

expected utility for all economic agents with a non-

decreasing and concave utility function.

5 2.2.2 Simple Increases in Risk and Comparative Statics

One way to further restrict t(x) so that determinate

comparative static results can be obtained is to restrict

the difference between the two random variables, k(x) = t(x)

- x. Simple transformations require k(x) to be a monotonic

function. A simple transformation produces a special

Rothschild and Stiglitz increase in risk. A simple increase

in risk is the case where k’(x) 2 0 if k(x) differentiable,

it implies that there exists a value.f'6'[a,A] such that
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the values of E to the right or to the left of XEIare moved

away from x’ as the risk increases. The original random

variable is stretched out around particular value xd'to get

the new random variable.

The economic agents maximize expected utility function

Eu[z(x,a)]. The comparative static result from the simple

transformation is in the following theorem.

Theorem 2.11 (Meyer and Ormiston): The economic agents

choosing a to maximize Eu[z(x,a)] will decrease optimal

choice parameter a when the random variable undergoes a

simple increase in risk, if

(a). Utility function u(z) displays decreasing absolute

risk aversion (DARA);

(b). 2x20, znso, zm20andzmso.

This is a generalization of Sandmo and Ishii’s results for

the competitive firm. Condition DARA is widely used and

accepted.

The simple transformation, like the general

deterministic transformation, can generate FSD and SSD

stochastic dominate changes in randomness. Comparative

statics for these FSD and SSD changes are also possible.

Ormiston (1990) defines a simple FSD transformation as

following.
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Definition 2.7 (Ormiston): The random variable given by

simple transformation t(x) first degree stochastically

dominates (FSD) random variable E if and only if function

k(x) = t(x) - x satisfies k(x) 2 0 V x e [a,A].

The comparative static result for this FSD simple

transformation is in the following theorem.

Theorem 2.12 (Ormiston): The optimal value of the choice

parameter increases for any simple FSD transformation if

(a). u’ > 0, u“ s 0 and A’ s 0;

(b). zx>0, znsOandzw20;

(c). k(x) > 0 and k’(x) s 0.

A simple SSD change in randomness is an SSD shift

generated from a simple transformation which is defined as

the following.

Definition 2.8 (Ormiston): The random variable given by

simple transformation t(x) second degree stochastically

dominates (SSD) random variable E if function k(x) = t(x) -

x satisfies.5§.k(x)dF(x) 2 0 V y e [a,A].

The comparative static result for a simple SSD

transformation is in the following theorem.
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Theorem 2.13 (Ormiston): The optimal value of the choice

parameter increases for any simple SSD transformation if

(a). u’ > 0, u" s 0 and A’ s 0;

(b). z>0,z so, zm20andzwso;

(c). k’(x) s o and I; k(x)dF(x) 2 o v y e [a,A]_.

A simple SSD transformation requires not only that 2; be

monotonically increasing in random variable E, but also it

requires that 2;.be concave in the random variable. A

relaxation of the restriction on the transformation requires

an extra condition on the payoff function, that is 2;“ s 0.

This highlights the tradeoff between the restrictions on the

payoff function and the restrictions on the types of changes

in randomness.

We have reviewed strong increases in risk, relatively

strong increases in risk and relatively weak increases in

risk. All these are subset of MP5. We also reviewed the

alternative approach to comparative statics, the

transformation approach. In chapter three we will introduce

a new increase in risk, an independent increase in risk.



CHAPTER 3

INDEPENDENT INCREASES IN RISK

In this Chapter we will introduce a special type of

increase in risk, an independent increase in risk. A random

variable E is said to be an independent increase in risk

from the random variable E if E =4 E + E, where E is

independent of E and E(E) = 0. Here, " =4 " represents "is

equal in distribution to". Independent increases in risk

can produce determinate comparative statics in the 1-1-1

models which will be discussed in chapter 4. In this

chapter, section 1 discusses stochastic transformations and

defines independent increases in risk. In section 2, we

will provide a method to recover the independent random

variable given the distribution of E and E.

3.1 Independent Increases In Risk

The second of Rothschild and Stiglitz's three

definitions of an increase in risk is that random variable E

is riskier than random variable E if

d

9=§+z,

where

29
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E(Elx) = 0.

An independent increase in risk further restricts the

Rothschild and Stiglitz's definition by requiring E to be

independent of E.

Definition 3.1: A random variable E is an independent

increase in risk from the random variable E if

3i=¥ E + E,

where E is independent of E and E(E) = 0.

To better understand what an independent increase in

risk is, we shall examine the conditions placed on the CDF's

for E and E for the special case of discrete random

variables with a finite number of mass points. The supports

of all the random variables are assumed to be contained in

compact intervals on the real line. Assume that random

variable E has probability function f(x) and CDF F(x) with

support [b,B]. The probability function f(x) has mass p,==

f(x,) at x, < :r2 < - - - < x". Let E be a random variable with

the probability function h(e) and CDF H(e) on [gush]. We

assume E is independent of E and E(E) = 0. The probability

function 11(6) has mass g, = h(ej) at e, < 52 < < em so

that E(E) =J§1qj.ej = 0. Note that e, = 0 for some j is

possible. Suppose g(x) and G(x), respectively, are the
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probability function and CDF of the random variable E which

is defined by

E="E+E.

Then the probability function g(x) has mass pi]. = p,-qj = g(xy.)

at x9. , where

3*
:

Il
l

x,+ e}. fori =1, ”-11, j =1, H, m.

We may denote the support of the random variable E by [a,A].

Let s(x) be the difference between the two probability

functions g and f:

S(1‘!) = g(x) " f(X)-

Also, let S(x) be the difference between the two

corresponding CDF’s:

S(x) = G(x) - F(x).

According to the Rothschild and Stiglitz, since E is an R-S

increase in risk from E, s(x) can be decomposed into the sum

of a number of MPS’s.

In the following analysis we will examine the

properties of s(x) in details. Specifically, we first

concentrate on the behavior of s(x) over a subinterval of

its support and then extend the analysis to the entire

support. Initially to simplify the analysis, we make an

important assumption about the "noise" random variable E: we
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assume the support [6,, 6",] of E is relatively narrower in

comparison with the support [b,B] of E. In particular, if

we define

>
< II
I

E, + 6, and x; 5x, + Em, for 1' = 1, on, n,

then the subintervals [x,',X;], i = 1, on, n, do not overlap.

That is, the length of the support [6,, GM] of E is shorter

than the distance between any two adjacent points x, and EN.

(The analysis without such a restriction is in Appendix A.)

Since E(E) = 0, we have 6, < 0, 6 > 0, and x,' < x, < x,7, for

all 1'. Moreover, we have x, a x, + 6, 6 [x,’,x;], for all i and

'j, which implies the support of E, as well as that of s(x),

are included in 1Q1[x,',x,'].

Given the non-overlapping subintervals [x,',x;],

i = 1, no, n, let us define s,(x) to be the restriction of

s(x) on [x,',x;]. That is,

_ {3(x), for x 6 [x,/,x,”];

0, otherwise.

A careful inspection of the density function g(x) and the

definition of s(x) reveals that the mass of discrete

function s,(x) are all positive except at point x, and the

sum of all the mass is always zero. So each s,(x) is an MP8

function. Moreover the shapes of all s,(x), 1' = 1, no, n,

are all proportional to each other with p, being the

n

proportionality factors. Finally, we note s(x) = £15,.(x) .
1:
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To further explore the property that the shapes of

54x) are proportional, we introduce the following

definition of linear shift.

Definition 3.2: The discrete MPS sJX) is a linear shift

from s,(x) if

Si(x) = >‘i°SI(X+Ei)I for X 5 [XI/Xi] and X + 5i 5 [Xi/Xi]:

where

A,- = pi/pll

£1“ = (X, - X,),

are referred to as the linear shift parameters.

Since s,(y) = s,(y-£,) />\, with y = x + 5,, s,(x) is also a

linear shift of s,(x) if s,(x) is a linear shift of s,(x) .

Let us examine the relationships among a set of MP8

which differ by linear shifts.

Definition 3.3: A discrete Independent Mean Preserving

Spread (IMPS) for the discrete random variable E is a set of

discrete MPS's {sdxj,i = 1, ---, n} in which 5417 are

linear shifts of each other.

The IMPS is the key concept in determining the integral

conditions for an independent increase in risk.



34

Define cumulative function s,(x) from s,(x) as follows.

SI“) 3 fax-5'1“)“ = Esrixy)s

x,“

where x, a x. + 6.. Note that s,(x) are step functions.

Since

St“) = 231“,” = E 11510;; + 5:) = E APIN-W) = A75105 + 51):

’u“ ‘0“ 311‘“!

s,(x) is also a linear shift of s,(x) . In fact all s,(x),

i = 1, --- n, are linear shifts of each other. Since
I

n

s(x) 32:12.00. sac) = I: smdt and 5.0:) = I: s.(t)dt, we

:2

have S(x) =iE=1S‘(x) . S(x) is also a step function.

Now, let us define T(x) as

w) = fa’S(t)dt = [jam - F(t) 1dr.

Note the Rothschild and Stiglitz’s conditions for G(x) to be

an MP8 increase in risk from F(x) are

5* [G(t)-F(t)]dt _>_ o, for x e [a,A];(1) T(X)

(2) TM) I: [G(t)-F(t)]dt 0.

where [61,11] is the support of G(x) - F(x) . Define T,(x) by

Tm = fjsxndx. for x e Ix.’.x.”1.

n

so T(x) =1221T,(x) . Note that T(x) and T,(x) are all

continuous functions. Since s,(x) is an MP8, we have T,(x) 2

0, for x 6 [X;,X,7], and T,(x;) = 0 by the Rothschild and
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Stiglitz's conditions. Moreover, since

Tux) = (fund:

= fjA.S.(t+£.)d(r+e.)

=fx+€lA‘S1(Z)dzl z = t +51

mi,

= *1 T1(x + £1):

!n(x), i = 1, ---, n, are also linear shifts of each other

if s,(x), i = 1, ---, n, are.

For an IMPS increase in risk, T(x) can be decomposed

into T(x) =l§1T,(x), where T,(x) are linear shifts of each

other with the shift parameters determined by the

probability distribution of E. Note that iffn(x) are

linear shifts of each other, then 34x) are also linear

shifts of each other, and so are sdx7.

The relationship between the independent increases in

risk and the independent mean preserving spreads is

presented in the following theorem:

Theorem 3.1: Given two discrete random variables E and E,

the following two statements are equivalent.

Statement 1:

T(x) ==Sj [G(t)-F(t)]dt satisfies the following three

conditions:

11. T(x) 2 0. for x 6 [6,11];
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12. T(A) = 0,-

I3. T(x) can be decomposed into

B

Tm = 1.211300.

where

Ti(x) = >‘I'°TI(X+EI')'

for x 6 [x,',x,7], for x + E, 6 [x,',x,'], A, = p,/p,, and

E, = (x, - X,). Also T,(x) 2 0 and T,(x,7) = 0.

Statement II:

E =4 E + E, where E is discrete and independent of E

and E(E) = 0.

Proof: I implies II. Assume that T(x) = S: [G(t)-F(t)]dt

satisfies the three integral conditions. Then S(x) =

11:15,“) and s,(x) = A,-S,(x+£,); that is, s,(x) differ from each

other by linear shifts. Note that G(x) - F(x) = S(x) =

11:15,”) .

Define F, (x) = F(x) + s,(x) , then F, (x) is a discrete

MPS increase in risk from F(x). Therefore, there exits a

random variable E, such that E(E,|x) = 0, E has a CDF F(x) ,

and E + E, has a CDF F, (x) according to the Rothschild and

Stiglitz's conditions. s,(x) contains all the information

needed to determine the random variable E,. Since S, (x) is

non-zero only in the interval [X1316], F,(x) and F(x) differ
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on [x[,X,'], as shown in Figure 3.1.

 

s,(x), x1’sx<x1;

F1(x)=‘f(x1)+ 81m. x. s x < x1”:

_F(x), x1’lsx 3A.

The joint CDF of E and E, is F,(x) = F(x) ~H,(x) , where H,(x)

is the conditional CDF of E, given E = X,.

I /

f(x1)H1(x) . x1 5 x < x1];

F105) = //

FUL x1sst.

Hence,

Em, x, s x < x1,

f(x1)

”1“) =‘

S1(x) //

1 + —, x, s x s x, .

f(x1) 

Define F,(x) = F(x) + s,(x) , then F2(x) is an MP5

increase in risk from F(x). Again, there exists a random

variable E2 such that E(E,|x,) = 0, E has a CDF F(x) , and E +

E2 has a CDF F2(x) according to the Rothschild and Stiglitz’s

conditions. s,(x) = S, (x+£2) -f(x,) /f(x,) contains all the

information needed to determine the random variable E2.

Since s,(x) at 0 only when x 6 [x,',x;], F,(x) and F(x) differ

on [xz'fié], as shown in Figure 3.2.
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F(x)

  

  

 

«Figure 3.1. F,(x) and F(x) differ on [x,',x,'].
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F(x)

I

J d

F,(x)

_I _-

F

x1 x2, x2 x2" x3

F1Quite 3.2. F,(x) and F(x) differ on [x,',x§].
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r1111), x1 sx<x1:;

f(t1)+32(x). xésx<x2i

172(1) 3* ,,

f(x1) +f(x2) +Sa(x). xasx<x2;

,F(x), xélsst.

The joint CDF of E and E, is F,(x) = F(x) ~H,(x) , where H,(x)

is the conditional CDF of E, given X,.

 

ff(x1)s x15x<lei

F2(x) = Ma) +f(x2)H2(x). x; s x < xé’;

,F(x), xzflsst.

Hence,

g(x)-.ftx.) for.) ' ”2““2’
2 _

S2(3) St (x + 52) //
1+—=1+—, .

_ f(x2) f(x1) "2 ”“2 

Thus we have H,(x) = H, (x+£,) , for x 6 [x,',x,] and for

x + f, 6 [x,,x,']; that is, the two conditional CDF's H, and H,

are the same. These random variables therefore have the

same conditional distributions E,|x, =" E,|x,.

By repeating the same process, we then have H,(x) =

H, (x+£,) , for all i, which implies that Ei and E, have the

same conditional distributions E,|x, =4 E,|x,, for all 1'. Let

Ebe
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then E is independent of E and E(E) = 0.

Define G(x) = F(x) +i§15,(x), then G(x) differs from

F(x) by a sequence of MPS's which differ by linear shifts.

From SJE), i = 1, ---, n, we could determine the random

4 E + E, where E is independent of Evariable E such that E =

and E(E) = 0.

II implies I. As to the proof of the inverse part, we

note the previous argument that leads to the IMPS conditions

in the first part of this section is actually a proof of

this. Q.E.D.

Example 3.1: Consider a random variable E

Then E + E is

1 1

_6: "9. -4: _; .2:

i 8 8

which is an IMPS increase in risk from E. Note that the

assumption x,’ < x,” is not imposed in this example. In this

example, G(x) - F(x) changes signs from positive to negative

twice and there are four MPS's as shown in Figure 3.3. The
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. 600
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A»
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FigurI 3.3. G(x) differs from F(x) by four MPS’s and G(x)

is an IMPS increase in risk from F(x).
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four MPS's are over the subintervals {-6,-2], [~4,0], [0,4]

and [2,6], respectively. All four MPS's are linear shifts

of each other. Actually the four MPS’s are identical in

this example since Xi==1 for all i.

3.2 Recovering the Independent Random Variable

Theorem 3.1 establishes the equivalence between an IMPS

and an independent increase in risk for a discrete random

variable. It does not, however, show how to find the

independent random variable E given the two random variables

E and E. Constructing such an independent random variable

without imposing the condition 1:} < Xi,“ is the subject of

this section.

Suppose that we have two random variables E and E with

the CDF's G(y) and F(x), respectively, as shown in Figure

3.4. At each xi, F(x) increases by pn- = f(x,), for i = 1,

~--, n, where xiare ordered as xi<th4. G(y) has steps at

Y]. with height p”. = g(yj), for j = 1, ---, m, where Y} are

ordered as yj < y)“.

Suppose E is an IMPS increase in risk from E. We now

demonstrate how to recover the independent random variable E

from the two density functions f(x) and g(y). It is easy to

see that the support of E is [Yr-x1, ym-xn] and the mass of

the random variable E at y, - x, is necessarily g(y,) /f(x,) by

the independence assumption. Therefore, the first mass

point of the random variable E is {yI-XI, g(y,) /f(x,)}.
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F J

yl 3’2 x1 y3 y4 x2 y5

Figure 3.4. How to find the CDF of independent random

variable E from two CDF’s.
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By subtracting f(x,.)g(y,) /f(x,) from g(y) at

(x, + y, - XI) for every 1 to get rid of y,, we are left with

a new function which can be denoted as g”. This new

function g' has at most (111 - 1) mass points at, say,

y; < < y;-

We will repeat the same procedure to guy?) as we did to

g(y) to get the second mass point of E. Since gflj”) at y;

is derived from f(x) at.xy, the second mass point of E is

therefore {YE-x1, g‘ (YE) /r (x1) } -

By subtracting f(x,.) g°(y;) /f(x,) from g'(y°) at

(x, + y; - x,), we then have another new function which will

be denoted as g". It has at least one point fewer than 9'

does. Again we can get the third point of E which is

{y;‘-x,. g“ (y?) /f (x1) }.

Continuing this process until all the mass points of

g(y) are deleted, at which we then recover all the mass

points of the random variable E. Note that if any of the

above steps fails, we can infer that E is not an IMPS

increase in risk from E.

Example 3.2: Assume a random variable E has the CDF F(x)

and the density function f(x) as in Figure 3.5. So E is

I 2

_; 1’ _ I

{0’ 3 3}

If a random variable E has a CDF G(y) and a density function



46

 

  

 
 

F(x)

....................... ,_._.|

r — '— _ G(y)

.F —

| .

-2 4 0 1 2 3 4

Figure 3.5. G(y) is an IMPS increase in risk from F(x),

G(y) can be broken into two parts in this

example, the dotted line.
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g(y), and is defined by

1 3 2

_2: —; ‘1: -1. —{ 9 9 “ :il;££.

9.}9

Then it can be verified that G(y) is an MP8 increase in risk

from F(x). By assuming G(y) is an IMPS increase in risk

from F(x), we should be able to find a random variable E

such that E is independent of E, E(E) = 0, and E =" E + E.

Since the mass of E at -2 is derived from E at 0, the

probability mass of the independent random variable E is

(1/9)/(1/3) = 1/3 and the first point of E is {-2, 1/3}. By

subtracting f(xJ/3 at x,-2 from g(y), that is, subtracting

1/9 at -2 and 2/9 at -1 from g(y), we get 9H3?)

'1: l; 0) 2; 3: l; 4: "' 0

9 9 9 9

9H3”) at -1 is derived from f(x) at 0, So the second point

of E is {-1, 1/3}. By subtracting f(xJ/3 at x,-1 from

9W3”), that is, subtracting 1/9 at -1 and 2/9 at 0 from

9711'). we have 9"(y")

391:4,Z}'{ 9 9

g”(y") at 3 is derived from f(x) at 0 and the third point of

E is {3, 1/3}. By subtracting f(xJ/3 at x,+-3 from g”(y”),

that is, subtracting 1/9 at 3 and 2/9 at 4 from g"(y”), we

‘then have g”'=={0}. Consequently we have recovered the
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random variable E

'which is mean preserving, and E(E) = 0. We have shown that

(3(y) is indeed an independent increase in risk from F(x).



APPENDIX
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Appendix

In this appendix we relax the non-overlapping condition

x; < xi}, and show that the proof of Theorem 3.1 still holds

with some minor modifications.

Suppose s, (x) is a discrete function at points

{x,+e,, ..., xii-em} and S”, (x) a discrete function at points

{Em-+6" no, x,+,+e,,,}. Let us assume x, + a} = x,“ + 6,, or

Xawu for some positive integers j and k, then s(x) atxg=

Now, let us assumethis point is equal to s(xy) + sum”) .

s (Xmuk) 0 when we define s,(x) , and s(xg-) = 0 when we

With such redefinitions, both s,(x) anddefine s,“ (x) .

Therefore,s,+,(x) still have the same properties as before.

S, (x) and T,(x) also have the same properties as before.

With the non-overlapping restriction, if x e [x,;,x,:] for

Some positive integer k, then

n

sat) =i§1s.m = smu-

That is, if x is in subinterval [xg,x,;] of [a,A], then s,(x)

= O fori¢k.

Without the non-overlapping restriction, for some

p°Sitive integers k and j, x may be in j > 1 subintervals,

When x E [x,,',x,,], on, x e [x,2+j,x,;+j], then

n

50‘) = E 530‘) = SM") +

That is, these j subintervals overlap.
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S(x) and T(x) also have the same interpretations as

s(x) does without the non-overlapping condition. That is,

for some positive integers k and j, when x e [xpdfi], --- x
I

e [x,;+j,x;+j], because s,(xm) = 0, we have

n

5(X) =i§13;(x) = 5k“) + + Sm“)-

For T(x), we have, for some positive integers k and j, when

x e [x,;,x;], no, x e [x;+j,x,:+j], because Ti(xim) = O.

n

Tm =i§1T.-(X) = Tax) + + T..,-(x)-

n

Theorem 3.1 remains true except that T(x) = 231T,(x) has
1:

a different interpretation.



CHAPTER 4

COMPARATIVE STATIC RESULTS

In chapter 3, we introduced independent increases in

risk and IMPS, now we will study the comparative statics of

the independent increases in risk. An independent

stochastic transformation can also be used to generate first

order stochastic dominance (FSD) and second order stochastic

dominance (SSD) changes in randomness, we will consider the

comparative statics for these changes in randomness as well.

We first provide a comparative static result for an

independent increase in risk in section 1, and then proceed

to consider its applications in section 2. The comparative

statics is presented in a one random variable, one choice

parameter and one argument (1-1-1) model. The 1-1-1 model

can be written as Eu[z(x,a)], where E is the random

variable, a is the choice parameter and z is the argument.

An economic agent chooses a to maximize the expected utility

Eu[z(x,a)].

4.1 Comparative Statics

This section concentrates on the comparative statics of

1-1-1 models. The increases in risk (changes in randomness)

aare accomplished by the independent transformation. A

51
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random variable E is transformed into (E + E), where E is

independent of E and E(E) = 0. When E has a non-positive

support, E FSD E + E, and E SSD E + E when E(E) s 0.

Before our main theorem, we prove the following

corollary.

Corollary 4.1: Assume:

(a). Random variable E has a support [a,A] and a density

function h(e) and CDF H(e);

(b). W(€) and v(e) are two continuous and differentiable

functions of e, w’(e) s 0 and v’(e) 2 0;

Then Ew(e) -v(e) s EW(€) -EV(€) .

Proof: Let W(e) = w(e) - Ew(e) and V(e) = v(e) - Ev(e), we

then need to prove E W(e)-V(e) s 0. Let dK(e) = V(€)°dH(6),

we have K(e) = S; V(t) ~dH(t) + K(a) and

5: We) 'V(6) ~dH(e)

5: WE) -dK(e)

W(e)-K(e) I: - S: K(a)-Wm ~de

W(6)°[S.‘. V(t)-dH(t)+K(a)J I:

- S: W'm ~[Sz V(t) -dH(t)+K(a)J-de

- I: two-(S; V(t)-dHrtn-de s 0-

'The last inequality is because W'(e) = w'(e) s 0, and since

5;: V(t)-dH(t) = o and v'(t) = v’(t) 2 0 then 5; V(t)-dH(t) s

(D. This completes the proof. Q.E.D.
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We now prove our main theorem of the chapter concerning

the comparative static effect of an independent increase in

risk.

Theorem 4.1: Assume:

(a). Utility function u satisfies u’ 2 0 and u" s 0, A’(u)

s 0 and P’(u) s 0, where A(u) = -u"/u’, P(u) = -u”’/u";

(b). 2 20, z
x

m S 0, zour 2 0, 2w 5 0 and A’(z) s 0, where

11(2) = 43/2,;

(c). E is replaced by E + E, where E is independent of E

and E(E) = 0;

An economic agent maximizing Eu[z(E,a)] will decrease

optimal choice parameter a.

Proof: The FCC after the independent increase in risk is

Edi u’[z(x+e,a)]'z;(x+e,a).

Since u’[z(x+e,a)] is a decreasing function of E and

z;Lx+e,a) is an increasing function of E, the following

inequality follows

E,u’[z(x+e,a)]°za(x+e,a)

S E,u’[z(x+e,a)J-Ecza(x+e,a)

s E,u’[2(x+e,a)]'za(x,a) .

The last inequality is because za(x+e,a) is concave in E.

Let v(x+e) = -u’[z(x+e,a)], where a is the constant

1:hat maximizes the expected utility before the independent



>
4
6
!
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increase in risk. Since

v’(x+e) = -u"[z(x+6,a)]'zx(x+e,a) 2 0,

v"(x+e) = -u”’[z(x+e,a)]°zf(x+e,a)

- u"[z(x+e,a)]'zn(x+e,a) 5 0,

therefore v(x+e) is an increasing and concave function of E.

Define risk premium ¢(x,e) for risk E under function V(X+6)

as E‘v(x+e) = v[x-¢(x, 6)], (ME, 6) is then positive.

Let A(v) = -v"(x+e) /v’(x+e), then

A(v) = -u”’[z(x+e,a)]'zx(x+e,a)/u”[z(x+e,a)]

- zn(x+e,a) /zx(x+e,a)

P(u)-zx(x+e,a) + A(z) 2, 0,

A’(V) ov’(x+e) = P’(u) -u'[z(x+e,a)]-zf(x+e,a)

+ P(u) 'zn(x+e,a) + A’(z) 'zx(x+e,a) S 0.

Hence we conclude A’(V) s 0 and therefore ¢x(x, e) s 0 by

Pratt (1964).

Now the FCC after the independent increase in risk can

be written as

E115, u’[z(x+e,a)]°za(x+e,a)

s E,.E, u’[z(x+e,a)]°za(x,a)

= -E,,.EI V(x+e) °za(x,a)

= -E. var-w -z.,(x.a)

= E. U’[2(X-¢.a)J-Z.(x,a)

= Ex {u’[z(x-¢,a)]/u’[z(x,a)]}ou’[Z(x,a)]°za(x,a)

S 0,

Lf D = u’[z(x-¢,a)]/u’[z(x,a)] is positive and decreasing in

’5': Exu’[z(x,a)]°za(x,a) = 0 is the FCC before the



‘
d
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independent increase in risk.

Next we prove that D is positive and decreasing in E.

D is positive obviously. The derivative of D with respect

to E has the same sign as the numerator of the derivative,

which is

u"[z(x-¢,a)] 'z,(x-¢,a) ' (1"l’.) 'U’[Z(Xza)]

' U'[Z(X'¢za)]'u"[z(xra)I'zdxla)

‘1"[Z(X'¢ra)]'zx(xta)”17200001I
A

- u’[Z(x-¢.a)]°U"[Z(X.a)J'Z.(X.a)

= u’[z(x‘¢:a)]°zx(xza)'u’[Z(Xra)]'

{u"[2(x-¢,a)]/u’[z(x-¢,a)] ‘ u"[z(x,a)]/u’[z(x,a)]}

= u’[Z(X'¢,a)J'zx(xla)'U’[Z(X,a)]°{A(u[z(xpa)])

' A(u[z(x-¢,a)])}

s o, if A’(u) s o.

¢,(x,e) s 0 if A’(v) S 0. P’(u) s 0 and A’(z) s 0 are

sufficient conditions for A’(v) s 0.

Thus the FCC after the independent increase in risk is

.negative. In order to maximize the expected utility, a has

‘to'be decreased. This completes the proof. Q.E.D.

For a Rothschild and Stiglitz increase in risk, the

(itistribution of random variable E may be different for

different values of random variable E. The distribution of

‘2? (iepends on x. As the random variable E moves across its

Support, it may be a different 2' that is added to 3?. Under

an independent increase in risk, the distribution of random



'
I
‘
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variable E is the same no matter what realized value random

variable E takes. The distribution of E is independent of

x. The increase in risk is the same for different value of

random variable E. This uniform property makes the

comparative statics for an independent increase in risk

attractive.

Like a strong increase in risk, an independent increase

in risk is also a generalization of an introduction of risk.

An independent increase in risk, however, generates a

general Rothschild and Stiglitz increase in risk, when the

initial random variable is degenerate at a point.

An independent increase in risk imposes no restrictions

on the two distribution functions in the center of the

supports. The two CDF's may cross many times. The support

of F(x) is however contained in the support of G(y) for an

independent increase in risk. A strong increase in risk, a

:relatively strong increase in risk and a relatively weak

:increase in risk all require that F(x) - G(x) is non-

decreasing in the center of the supports, and is non-

.iJucreasing at the two ends of the supports.

P(u) = -u ’"/u" in our proof is termed absolute prudence

lDd?’ Kimball (1990) who first introduces it in a precautionary

Eial‘ling problem. Kimball defines precautionary premium

¢ (W, x) as the quantity satisfying

u ' [w-¢ (wt) J = E.u ' (w+x2 .
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where w is the final wealth and E is the random variable.

It can be showed that ¢(w,x) is approximately equal to

-(1/2)-0241”7u", where qzis.the variance of random variable

E and P(u) = -u ”’/u" is the absolute prudence.

There are some basic assumptions about the absolute

prudence. Kimball argues that the absolute prudence is the

propensity to prepare oneself in the face of uncertainty.

The absolute prudence is assumed to be a decreasing function

of the initial wealth and it is greater than the absolute

risk aversion measure if the utility function is decreasing

absolute risk averse (DARA). A positive absolute prudence

is a necessary condition for DARA, A’(u) = A(u)-[A(u) -

P(u)]. Note that in our proof ¢(x,e) is the risk premium

under function V(x+e) and is the precautionary premium under

utility function u[z(x+e,a)].

Eeckhoudt, Gollier and Schlesinger (1992) use absolute

prudence in their background risk study. An economic agent

has a utility function u(w), where w = E + a-E is the final

wealth. Random variable E is an exogenous and unavoidable

background risk whose CDF is initially GHQU. There is a

second source of uncertainty due to the existence of an

independent and endogenous risk E with CDF F(x). 0 is the

choice parameter. Eeckhoudt, Gollier and Schlesinger

consider the impact on optimal choice parameter a when an

agent faces a change in the distribution of unavoidable risk
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E from CDF G, (y) to G2(y) .

The method Eeckhoudt, Gollier and Schlesinger use is

independent transformation. When initial random variable E

first order stochastically dominates (FSD) E + E, where E

has CDF G,(y) and E + E has CDF Gz(y) and E is the

independent noise, the optimal choice parameter decreases if

the utility function is DARA. When random variable E second

order stochastically dominates (SSD) E + E, the optimal

choice parameter decreases if the utility function is

standard risk aversion, Kimball (1993). A utility function

is standard risk aversion if it is DARA (A’(u) s 0) and

decreasing absolute prudence (DAP) (P’(u) s 0).

If independent random variable E has a non-positive

support, random variable E FSD random variable (E + E). We

have the following theorem regarding this FSD change in

randomness.

Theorem 4.2: Assume:

(a). Utility function u satisfies u’ z 0, u" s 0 and A’(u)

S 0;

(b). 2,20, ZnSOandszO;

(c). E is replaced by E + E, where E is independent of E

and E has a non-positive support;

Then an economic agent maximizing Eu[z(x,a)] will

decrease optimal choice parameter a.
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Proof: The FCC after an FSD change in randomness is

ErE, u'[z (x+e,a) ] -za(x+e,a) .

Since E has a non-positive support and zm(x,a) 2 0, we have

za(x+e,a) s za(x,a), therefore

E,u’[z(x+e,a)]-za(x+e,a)

S Etu’[z(x+e,a)]-za(x,a).

The FCC can be written as

15.3,)?!¢ u’[z(x+e,a)]-za(x+e,a)

s E,.E. u'[2(x+e.a)J-z.(x.a)

E,{E,u’[z(x+e,a)]/u’[z(x,a)J}-u’[z(x,a)j-za(x,a).

The expression Egu’[z(x+e,a)]/u'[z(x,a)] is positive and

decreasing in E. It is obviously positive. Its first order

derivative with respect to E has the same sign as its

numerator which is

u’[z(x,a)J-E,u"[z(x+e,a)]-zx(x+e,a)

- u"[z(x,a)]-zx(x,a) ~E,u'[z(x+e,a)]

I
A

1173090)]'E.U"[Z(X+E,a)]'zx(xra)

' u"[2(x,a)]-zx(x,a)~Etu’[z(x+e,a)]

= u’[z(x,a)]'zx(xra)'E.U’[Z(X+€,a)]'

{u"[z(x+e,a)]/u’[z(x+e,a)] ' u"[z(x,a)]/u’[z(x,a)]}

= u’[z(x,a)]-z,(x,a)~E,u’[z(x+e,a)]-{A(u[z(x,a)])

" A(u[Z(X+€,a)J)}

u’[z(xta)]'zx(xra)'E.U’[Z(X+€,a)]°{A(UIZ(X,0)J)

‘ E,A(u[z(x+e,a)])}

so, if A’(u) s 0.

I
A
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The last inequality is because u’[z(x+e,a)] is decreasing in

E and A(u[z(x,a)]) - A(u[z(x+e,a)]) is increasing in E. Now

we have

E.{E.U’[Z(X+€.a)J/U’[Z(X,a)]}°U’[Z(X,a)J-Z.(X,a) s 0.

That is, the FCC is negative. In order to maximize the

expected utility, a has to be decreased. Q.E.D.

An FSD change in randomness is stronger than an MP8

increase in risk, it therefore needs less restrictive

conditions on the utility functions than an MP8 increase in

risk does. A similar comparative static result is also

available for an SSD change in randomness. An SSD shift is

a combination of an FSD and an MP8 shifts, Hadar and Sec

(1990). The comparative static result is then easily

obtained. The comparative static result is in the following

theorem.

Theorem 4.3: Assume:

(a). Utility function u satisfies u’ 2 0 and u" s 0, A’(u)

S 0 and P’(u) S 0, where A(u) = -u"/u’, P(u) = -u”’/u";

(b). 2 2 0, z < 0, z 2 0, z s 0 and A’(z) _<_ 0, where
x XX _ at at:

11(2) = -zn/zx;

(c). E is replaced by E + E, where E is independent of E

and E(E) s 0;

An economic agent maximizing Eu[z(x,a)] will decrease
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optimal choice parameter a.

Proof: Combining the proofs of Theorems 4.1 and 4.2, we can

prove this theorem. Q.E.D.

An SSD change in randomness is the least restricted

change in randomness of the three and it thus needs the most

restrictive conditions on the utility functions. This shows

the tradeoff between the restrictions on the changes in

randomness and the restrictions on the utility functions.

4.2 Examples of Applications

In this section, we will examine some applications of

the independent increases in risk theorem. Rothschild and

Stiglitz (1971) have discussed the savings and uncertainty,

portfolio, a firm's production, the output level of a

competitive firm and multi-stage planning models, we will

consider these models here.

5 4.2.1 Savings and Uncertainty

Rothschild and Stiglitz (1971) consider an economic

agent who has a given wealth W0 which he wishes to allocate

between consumption today and consumption tomorrow. The

savings today yields a random return e tomorrow, the

expected utility is Eu(C“C§), where C,is the consumption in

period 1, i = 1,2. This is a two period consumption model.
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Rothschild and Stiglitz assume that the utility

function is strictly increasing, strictly concave and

separable,

E'WCuCz) = 11(0)) + (1'6)°EU(02).

where C, = (1-s)-W0 and C2 = s-Wo-e, s is the savings rate, 6

is the time discount rate. The first order condition (FOC)

is

u’[(l-s) .w0] = Eu’ (s-Wo-e) . (1-6) -e.

Rothschild and Stiglitz then conclude that an increase in

risk in the sense of MP8 will increase or decrease the

optimal savings 5 depends on the concavity of u’(s-W0-e) . (1-

6)-e.

Sandmo (1970) studies a two period consumption model

without assuming the separable utility function. The first

period budget constraint facing the economic agent is I,==Cy

+ 3,, where I, is the income in the first period, S, is the

savings and C, is the consumption. The second period

consumption is C2 = I2 + 5,-5, where E is the rate of return,

1} is the income in the second period. The economic agent

maximizes the utility function u[C,,I,+(I,-C,)£], where C, is

the choice parameter.

Sandmo assumes that the second period income is a

random variable. Replacing I2 with E, he rewrites the model

as Eu[a,x+(x-a)£], where a -cy is the choice parameter, A
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and E are the exogenous parameters and E = I, is the random

variable. To study the comparative static effect of the

random variable, Sandmo replaces the random variable with 7

+ O-E, where 7 is the additive shift parameter, 0 > 0 is the

multiplicative shift parameter. The comparative static

result concerning an increase in parameter 7 is in the

following theorem.

Theorem 4.4 (Sandmo): Assume:

(a). Utility function u satisfies u’ 2 0, u" s 0 and

an ' £4122 > 01'

(b). 70 is replaced by 7,, and 'y, 2 70;

(c). Eu[a,, (y,+0x)+(}\-a,)£] is maximized at a,, 1' = 0,1;

Then a, > do if the utility function is decreasing

absolute risk aversion (DARA).

This result is a local one, because it has to be evaluated

at point 0 = 1, 7 = 0.

Dardanoni (1988) discusses the same problem. Instead

of taking the consumption in the first period as the choice

parameter, Dardanoni takes the savings in the first period

as the choice parameter. The model becomes Eu[k-a,x+a£].

Dardanoni considers a Rothschild and Stiglitz increase in

risk for the additive shift random variable. The

comparative static result is stated in the following

theorem.
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Theorem 4.5 (Dardanoni): Assume:

(a). Utility function u satisfies u’ 2 0, u" s 0 and

11,2 - E-u22 > 0;

(b). E0 is replaced by E’, where E1 is a Rothschild and

Stiglitz increase in risk from E”;

(c) . Eu[)\-a,,x"+a,£] is maximized at a,, i = 0,1;

Then a, 2 do if the absolute risk aversion, A2 =

-un/u2, is non-increasing in a.

The assumption that A,is non-increasing in a means

that: (1) . A, decreases when the random component of the

utility function increases; (2)..A,increases when the

certain component of the utility function increases. The

random component is the second argument and the certain

component is the first argument. This assumption was used

by Sandmo (1969).

Dardanoni also considers a multiplicative shift

problem. The model is Eu[A-a,£+ax]. He limits the choice

variable a 2 0. The comparative static result is in the

following theorem.

Theorem 4.6 (Dardanoni): Assume:

(a). Utility function u satisfies u’ 2 0 and u" s 0 and

u” - E-u,2 > 0;

(b). a is an increasing function of x under certainty;

(c) . E0 is replaced by E’, where E’ is a Rothschild and
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Stiglitz increase in risk from E”;

(d). Eu[)\-a,,x‘a,+£] is maximized at 02,, i = 0,1;

Then a, 2 do, if E = 0 and the relative risk aversion is

non-decreasing in a.

The relative risk aversion is defined as

R(uz) = -ax-u22()\-a, ax) /u,()\-a, ax) .

For E ¢ 0, the comparative static result will still hold,

after replacing the relative risk aversion R(uz) with the

proportional risk aversion P(ufl. The proportional risk

aversion is defined as

P(uz) = -ax-u22()\-a,£+ax) /u2()\-a,£+ax) .

The savings and uncertainty model is a two argument model,

and it is actually presented in a one random variable, one

choice parameter and two argument format (1-1-2), Choi

(1992).

Now we will study a general savings and uncertainty

model, Eu[X-a,z(x,a)], where z is the second argument, a is

the choice parameter. When random variable E undergoes an

independent increase in risk, the comparative static result

is presented in the following theorem.
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Theorem 4.7: Assume:

(a). Utility function u is increasing and concave in both

arguments and 11,2 2 0, 11,22 5 0, 1.1222 2 0;

(b).

"
N 2 o, 2

xx
so,zzo,za s 0, z 2 0;

ca w

~

(c). x is replaced by E + E, where E is independent of E

and E(E) = 0;

Then an economic agent maximizing Eu[A-a,z(x,a)] will

increase the optimal choice parameter a.

Proof: The first order condition (FOC) before the

independent increase in risk is

-Eu,[)\-a,z(x,a)] + Eu2[>.-a,z(x,a)]°za(x,a) = 0.

The second order condition (SOC) is

E11,, - z-Eun-za + Eun'zi + EUZ'ZM s 0.

The FCC after the independent transformation is

-E,E,u,[>\-a,z(x+e,a)] + ErE,u2[)\-a,z(x+e,a)]-za(x+e,a) .

The first term in the above expression, C(e) ==-1y[x-

a,z(x+e,a)], is convex in 6, because

C’ = -un°a,s 0,

_ _ . 2 _ .

C" ’ 11122 Z: ”12 Zn 3 0°

Therefore

Eruzn-a. z (X+e, 02)] 2 WMk-a. z (x, a) J -
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The second term, D(e) = u2[)\-a,z(x+e,a)]oza(x+e,a) , is

also convex in 6, because

D’ = uzfzx-za + u2°z s 0,
(I!

— e 2e e e . . e e

(XII-

So that

E,u2[X-a,z(x+e,a)]-2a(x+e,a) 2 u2[)\-a,z(x,a)]-za(x,a) .

Thus we have

-E,E,u,[)\-a, z (x+e, a) ] + E,E,u,[k-a, z (x+e, a) ] -za (x+e, a)

Z -E,U,[)\-a,z(x,a)] + Exu,[)\-a,z(x,a)]oza(x,a) = 0°

The FCC after the independent transformation is

positive under the old optimal choice parameter, to maximize

the expected utility, the choice parameter thus has to be

increased. Q.E.D.

The comparative static result for an FSD independent

transformation is also possible. We present it in the

following theorem.

Theorem 4.8: Assume:

(a). Utility function u is increasing and concave in both

arguments and u” 2 0,19” s 0;

(b). 2
1
20,2 20,2,“50;

a

(c). E is replaced by E + E, where E is independent of E



68

and E has a non-positive support;

Then an economic agent maximizing Eu[X-a,z(x,a)] will

increase the optimal choice parameter a.

Proof: The first order condition (FCC) and the second order

condition (SOC) are the same as those in theorem 4.7. The

FCC after the transformation is

-E,E,u,[)\-a,z(x+6,a)] + ErE,u2[)\-a,z(x+6,a)]-za(x+6,a) .

The first term, C(6) = flh[A-G,Z(X+6,a)], is decreasing

in E, because C' = -un'a,s 0. Thus

E.-U,[>\-a. z (we. a) J .>. win-a. z (X. a) J .

The second term, D(6) ==Lb[k-a,2(x+6,a)]-zg(x+6,a), is

decreasing in E, because 0' = ufl°agza-+z§°z s 0. So that

E¢u2[x-alz(x+6la)J°za(X+Ela) Z u2[x-alz(xla)]oza(xla)’

Therefore we have

-E,E,u,[>‘-a,z(x+6,a)] + E,E,u2[k-a,z(x+6,a)]~za(x+6,a)

2 -E,u,[)\-a,z(x,a)] + Exu2[>s-a,z(x,a)]-za(x,a) = 0.

This proves that the FCC is positive, to maximize the

expected utility, the choice parameter thus has to be

increased. Q.E.D.
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5 4.2.2 Asset Proportion

Rothschild and Stiglitz (1971) consider a one safe and

one risky asset portfolio model. An economic agent

allocates his asset in money, which yields zero return, and

a risky asset, which yields a random return of e. The final

wealth is W(a):=lfiy(a-e+1), where a is the proportion held

in the risky asset. The expected utility is Eu[W(a)] and

the FCC for maximization is

WO-Eu’[W(a)]-e = 0.

And the comparative statics of an increase in risk once

again depends on the concavity of u’[W(a)]-e.

Hadar and Sec (1988) discuss an asset proportion

problem in a two risky asset portfolio model. There is a

correlation term in two random variable models. When one

random variable changes, the correlation term often changes,

too, which introduces a new dimension into the models. This

makes the two random variable models very difficult to

study. To avoid this problem, many models assume

independence between the two random variables.

When a risk averse agent diversifies between two risky

assets, the proportion held in the FSD, SSD or MP8

dominating asset is not necessarily greater than half. For

the case of FSD, Hadar and Sec (1988) offer the following

intuitive explanation. When random variable E FSD random

variable E, not only risk averse agents prefer E to E, but
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also the risk loving agents prefer E to E. That is, E has

some characteristics which make it attractive to both risk

loving agents and risk averse agents. Thus risk averse

agents may invest more in E.

The economic agent is assumed to maximize the expected

utility function Eu(z), where z = aE + (1-a)E is the final

wealth, E and E are the two random variables representing

the returns of the two risky assets, a is the proportion

held in asset E. The two random variables are assumed to be

independent and have CDF's F(x) and G(y) respectively, the

joint CDF then is H(x,y) = F(x)-G(y).

Hadar and Sec has the following regarding FSD and Mean

Preserving Contraction (MPC).

Theorem 4.9 (Hadar and Seo): Assume:

(a). Utility function u satisfies u’ > 0, u" s 0 and u’” 2

0 (for MPC only);

(b). E and E are stochastically independent;

(c). Eu[ax+(1-a)y] is maximized at am;

Then (10 2 1/2 for E FSD E if and only if u’(z) -z is

non-decreasing in z 2 0.

Then an 2 1/2 for E MPC E if and only if u'(z) -z is

concave in z 2 0.

It is worth to mention that the payoff function z is linear

in both random variables.
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Assume that in a two random variable model,

Eu[z(x,y,a)], the independent random variable is added to

random variable E, and it is independent of both E and E.

First we have the following property regarding the

independent transformation.

Theorem 4.10: An independent random variable E transforms

random variable E in a two random variable model

Eu[z(x,y,a)] and it is independent of both E and E, then the

independent transformation does not alter the covariance

between random variables E and E.

Proof: The covariance after the independent transformation

is COV(E+E,E), the covariance before the transformation is

COV(E,E). COV(E+E,E) = cov(E,E) + cov(E,E) = cov(E,E).

Q.E.D.

Now we are ready to consider the asset proportion

problem using the independent transformation. The expected

utility function is EU[ax+(1-a)y], where a is the choice

parameter. Assume short term buying and selling is not

allowed, 0 s a s 1, and E and E are stochastically

dependent, the joint cumulative density function is H(x,y).

If one random variable is an independent transformation of

the other one, then the proportion held in the less risky

asset is greater than 1/2. We state this result in the

following theorem.
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Theorem 4.11: Assume:

(a). Utility function u satisfies u' > 0 and u" s 0;

(b). Random variable E is obtained from E by adding an

independent random variable E where E(E) = 0;

(c). .Eu[ax+(1-a)y] is maximized at aa;

Then 00 2 1/2.

Proof: It is sufficient to show that the first order

condition for a 2 1/2 is greater than zero. The FCC is

Equ’[ax+(1-a)y]-(x-y)

= Euu’[ax+(1-a)(x+6)]-(-6)

= Efizu’[(x+(1-a)6)]-(-6).

Let a 2 1/2, then

Eeu'[x+(1-a)6]o (-6)

2 1.‘.',u'[Jir+(1-oz)6]-£.'¢ (-6) = 0,

since u’[x+(1-a)6] is decreasing in 6 and (-6) is decreasing

in 6. So that E;u’[x+(1-a)6]-(-6) 2 0 for a 2 1/2.

Q.E.D.

Note that the above proof is independent of a, FOC 2 0

if a = 1. Thus we can say that the maximization occurs at

a=1.

Similarly, we have the results for FSD changes in

randomness, which is presented the following theorem.
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Theorem 4.12: Assume:

(a). Utility function u satisfies u’ > 0 and u" s 0;

(b). Random variable E is obtained from E by adding an

independent random variable E, where E has a non-positive

support;

(c). Eu[ax+(1-a)y] is maximized at do;

Then do = 1.

Proof: It is sufficient to show the FCC is greater than

zero for a = 1. The FOC is

Equ’[ax+(1-a)y]-(x-y)

= Euu’[ax+(1-a)(x+6)]-(-6)

ExE,u’[(x+(1-a) 6)]-(-6) 2 0.

The FOC is greater than 0 for a = 1. To maximize the

expected utility, a has to be set to one. Q.E.D.

5 4.2.3 More Applications

In this part, we will consider more applications: a

firm’s production problem, the choice of output level for a

competitive firm and a multi-stage planning problem, all of

which have been studied by Rothschild and Stiglitz (1971).

A firm’s production problem is this: the output level Q

for next period is uncertain and the firm wishes to minimize

the expected cost of producing Q. The cost consists of

labor (L) and capital (K), the cost function, C(L,K), is
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c = r-K + w-L(K,Q) ,

where r is the cost of capital and w that of labor. Capital

can not vary in the short run. L(K,Q) is the labor required

to produce Q given capital K, which is convex in Q if the

production function is concave. Hence, an increase in risk

always leads to an increase in the expected cost.

What happens to the optimum level of K when the output

level Q changes to random? This is a standard expected

utility function model, except that we are to minimize the

expected cost instead of maximization. The FOC is

.L.=E§!E&§L

w 6K

So that, a sufficient condition for decreasing K when faced

with an increase in risk is the concavity of dL/dk.

Writing this model in our notations, we have

z(x,a) = a-r + w-L(x,a),

where E is the output level, a is the capital. Given the

convexity of L(x,a), we have the convexity of z(x,a). By

the comparative statics theorem in section 1, an independent

increase in risk in the output will increase the capital

needed.

A related problem is the competitive firm's output

problem. Rothschild and Stiglitz (1971) assume that a firm

chooses the output level for tomorrow, although the price p



75

of output Q is uncertain. The firm is assumed to maximize

the expected utility of profit, Eu(n), where the profit is

n = p'Q - C(Q)I

where C(Q), as before, is the cost function and is assumed

to be convex, p is the random price. The FOC is

Eu’(")°[P’C’(Q)J = 0-

Since the concavity of utility function, there is always

less output under uncertainty than under certainty.

Sandmo (1971) and Ishii (1977) study the comparative

statics of the same problem using linear transformation.

They replace the price p with (7-p + 0), where 7 > 0 is the

multiplicative shift parameter and 0 is the additive one.

Changes in parameter 7 generate special Rothschild and

Stiglitz increases in risk and changes in parameter 0

generate special FSD changes in randomness. Decreasing

absolute risk aversion is a necessary and sufficient

condition for increasing of output when there is an increase

in parameter 0. DARA is a sufficient condition for

decreasing of output when there is an increase in parameter

7.

This model, in our notations, is z(x,a) = a-x - C(a).

Given the convexity of C(a), z(x,a) is concave. Therefore

by Theorem 4.1, an independent increase in risk will

decrease the choice parameter a, that is, the output level
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will decrease when the firm is faced with an increase in

risk.

We consider our last application next, the multi-stage

planning problem of Rothschild and Stiglitz’s (1971). In a

simple economy, the final consumption good is produced by

labor and an intermediate commodity y:

Q = P(LZIY) I

while y is produced by labor alone:

Y = M(Ll) + e,

where e is the random variable associated with the

production of y. The constraint on labor is L = L,-+.Lr

The social planner's problem is to allocate the labor

between the two sectors efficiently. The FOC is

E(Pl -P2°M’) = 00

If e becomes riskier in the sense of Rothschild and Stiglitz

increases in risk, what happens to the allocation of labor

between the two sectors depends on the sign of

P122 ‘ MI°P222°

Rewriting this model in our notations, we have

Eu[>.-a,z(x,a)] = EP[L-L,,M(L,)+e].

This is a two argument model as in the savings and
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uncertainty problem. Thus the results (theorem 4.7) we got

from the savings and uncertainty problem are also applicable

here.

We have considered the savings and uncertainty, asset

proportion, a firm's production, output level of a

competitive firm and multi-stage planing problems. It can

be seen that the independent transformation is a useful tool

in a wide range of applications. It is nice in generating

determinate comparative statics.
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