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ABSTRACT

ENERGIES, POLARIZATION, AND POLARIZABILITIES OF MOLECULES

INTERACTING AT LONG OR INTERMEDIATE RANGE

by

Xiaoping Li

This thesis presents results for the energies, interaction-induced polarization and

polarizabilities of a set of molecules (two or three) interacting at long or intermediate

range.

Collision-induced dipoles and polarizabilities have been determined for pairs of

centrosymmetric linear molecules interacting at long range. The analysis is complete to

order R‘7 in the intermolecular separation for collision-induced dipoles and to order R”6

for collision-induced polarizabilities. For each of the polarization mechanisms, angular

momentum algebra has been used to obtain compact results in terms of 6-j and 9-j

symbols. Numerical results have been obtained for the polarizabilities of the pairs

H2...H2, qu-Nz, and N2---N2.

The nonlocal polarizability density 0t(r, r';(o) and hyperpolarizability densities such

as B(r, r', r";co 1,0) 2) play an important role in this research. The linear response tensor

a(r,r';co) gives the polarization P(r,oa) induced at point r in a molecule by the electric

field F(r',co) acting at another point r'. The hyperpolarizability density

B(r, r’, r";(o 1 ,co 2) describes the distribution of the hyperpolarizability in molecules. A

method ofcomputing the B hyperpolarizability density has been developed based on its

connection to a set of auxiliary functions (DLM(k,m) that determine van der Waals
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interaction energies. For the hydrogen atom in the Is state, the method yields analytical

expressions for the B hyperpolarizability density. The results have been used to compute

the damped dispersion-induced dipole in one hydrogen atom, due to its interactions with

a second.

Three-body energies and the interaction-induced polarization for molecules

interacting at long or intermediate range have been analyzed, assuming that

intermolecular exchange effects are negligible. The analysis is complete to third order in

the interactions. Distinct polarization mechanisms that contribute to three-body energies

and polarization have been identified and clear physical interpretations have been

established. These include dispersion, induction, and combined dispersion-induction

effects. The induction effect fiirther contains three different polarization mechanisms: the

static reaction field, third-body field, and hyperpolarization. Both reaction-field theory

and perturbation analysis are used to derive the equations for three-body energies and

polarization, giving equivalent results. Polarizability density and hyperpolarizability

densities are employed to characterize the nonlocal response of a molecule to the fields

from its interacting partners. Thus the results include the direct modifications of the

lowest-order electrostatic, induction, and dispersion effects, due to overlap ofthe

molecular charge distributions.

The three-body dispersion energy is calculated for a model system, interacting ‘

ground-state hydrogen atoms, to illustrate how overlap modifies three-body interactions.

An analytical expression for the damped triple-dipole dispersion energy is obtained and

the results are compared to those fiom the long-range Axilrod-Teller-Muto expression. It

is shown that the damped dispersion energy converges as interatomic distances approach

zero, while the Axilrod-Teller-Muto equation diverges. The angular dependence ofthe

three-body dispersion energy is also changed appreciably, due to overlap of the charge

distributions among interacting hydrogen atoms.
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CHAPTER I

INTRODUCTION

This thesis is concerned with the theory of intermolecular forces and the interaction-

induced changes in molecular properties such as dipoles and polarizabilities.

The work focuses on two or three molecules interacting at long or intermediate

range. The intermolecular separation is assumed to be sufficiently large that overlap

between molecular charge distributions is weak and the effects due to exchange of

electrons between molecules are negligible. Changes in the energy, polarization, and

polarizability of the interacting molecules are analyzed.

In Chapter II, the collision-induced dipoles are determined for pairs of centro-

symmetric linear molecules interacting at long range. The analysis is complete to order

R'7 in the intermolecular separation. Through this order, the collision-induced dipoles are

determined by quadrupolar [1] and hexadecapolar induction [2-5] , effects of

nonuniformity in the local fields [3-5], back-induction [4], and dispersion [4, 6-8]. For all

ofthese polarization mechanisms, spherical tensor analysis yields the dipole coefficients in

terms of 6-j and 9-j symbols. The results are expected to be usefirl in simplifying collision-

induced line shape analyses.

Chapter 111 gives the long-range contributions to the collision-induced polarizability

A01 for pairs of centrosymmetric linear molecules through order R'6, including the first-

and second-order dipole-induced-dipole (DID) interactions [9], higher-multipole

induction, effects ofthe nonuniformity ofthe local fields [10, 11], hyperpolarization [12],

and dispersion [12-16]. The results have been obtained using spherical tensor analysis and

they are given in terms of 6-j and 9-j symbols. The polarization mechanisms included in

this work give rise to isotropic rototranslational Raman scattering and to simultaneous

rotational transitions on two interacting molecules; both are collision-induced phenomena.
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Transitions with A] up to i4 are produced by the R"5 and R"6 polarization mechanisms

treated in this work. For the pairs H2---H2, H2---N2, and Nz-HNZ, ab initio results for

multipole moments and susceptibilities have been used to evaluate the classical induction

contributions to A01, and a constant ratio approximation [4, 12, 14] has been used to

estimate the dispersion contributions. The relative contributions to Act from different

polarization mechanisms are discussed for R values ~0.5 - 1 a.u. outside the isotropic van

der Waals minimum ofthe pair potential.

Chapter IV presents a method of calculating the B hyperpolarizability density and the

B hyperpolarizability density, which determine the damped dispersion-induced pair dipole

and quadrupole of interacting molecules, respectively [17]. These densities are connected

to a set of auxiliary functions denoted by <I>LM(k,co) that have been determined via a

quantum mechanical variational method [18-21]. For the hydrogen atom in the Is state,

the work yields analytical results for the B and B hyperpolarizability densities.

In Chapter V, the damped dispersion-induced dipoles and quadrupoles are computed

for pairs of S-state atoms. It is shown that the equations for damped dispersion dipoles

and quadrupoles are convergent as the interatomic separation R goes to zero, while they

reduce to the corresponding equations from the multipole expansion at long range. Using

the results given in Chapter IV, analytical expressions are obtained for the leading term in

the local dispersion dipole x7D7R'7and the leading term in the local dispersion

quadrupole x6 M6R'6 for a pair ofground-state hydrogen atoms; here D-, and M6 are

the leading long-range dipole and quadrupole coefficients [22-26], respectively, and x7

and x6 are the damping firnctions. The functions 31-, and x6 are distinct, but both ofthem

drop to ~0.85 at the van der Waals minimum for H2 in the triplet state (R = 7.85 a.u.).

The leading three dispersion dipole coefficients and the leading three dispersion

quadrupole coefficients are also estimated and they compare well with the results fi'om ab

initio calculations [24-26].
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Chapter VI contains an analysis of nonadditive three-body interaction energies and

the interaction-induced polarization. The analysis is complete through third order in the

interactions. A reaction-field method is used to identify various polarization mechanisms

that contribute to three-body energies and polarization. These include dispersion [27, 28],

induction, and combined dispersion-induction effects. The polarizability density and

hyperpolarizability densities are used to describe the nonlocal response of a molecule to a

nonuniform external field or a local field due to neighboring molecules. Thus this approach

accounts for the direct modifications ofthe lowest-order electrostatic, induction, and

dispersion effects due to overlap of the molecular charge distributions. Nonadditive three-

body forces are also analyzed in this chapter. An electrostatic interpretation ofthe three-

body forces acting on nuclei is given based on a chain of relations between property

derivatives with respect to nuclear coordinates and linear and nonlinear response tensors

[29, 30]. For a group of three molecules A, B, and C, it is shown that the three-body

dispersion force acting on a nucleus in molecule A results from the electrostatic attraction

of that nucleus to the dispersion-induced polarization ofthe electrons in molecule A itself;

that is, the three-body dispersion force on a nucleus in A depends only on the perturbed

charge distribution of molecule A. This generalizes Hunt's proof [31] ofFeynman's

conjecture [32] on the origin oftwo-body dispersion forces to three-body forces. In

contrast to the dispersion forces, the three-body induction and induction-dispersion forces

on a nucleus in A depend not only on the perturbed charge density of A, but also on that

ofB and C.

In Chapter VII, the time-independent perturbation theory is used to derive equations

for three-body energies and polarization. The results are shown to be equivalent to those

obtained in Chapter VI from the reaction-field method.

Finally, in Chapter VIII the three-body dispersion energy [27, 28] is calculated for

interacting ground-state hydrogen atoms. The calculation includes the direct effects of
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short-range charge overlap but not exchange. The damped triple-dipole dispersion energy

[33] is obtained as an analytical function of the interatomic distances and the geometry of

the three atoms. The radial and angular dependence of the dispersion energy is

determined.
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CHAPTER II

COLLISION-INDUCED DIPOLES FOR PAIRS OF CENTROSYMMETRIC

LINEAR MOLECULES AT LONG RANGE

2.1 Introduction

When two molecules collide, transient dipole moments are induced within each

molecule because ofthe distortion of the charge distributions. These collision-induced

dipoles are responsible for infrared [1-3] and far-infrared [4-7] absorption observed in

compressed gases and liquids composed of D001, molecules, though such absorption is

single-molecule forbidden [8]. For quantum mechanical line shape analyses of interaction-

induced rototranslational absorption, the net dipole of a pair of molecules A and B is

needed in the symmetry adapted form [9, 10]

11111121441012 1.5 2DtAiBttmwfie (01111118103th “'“(QRi

x<AA2thA mB|Km)<}thM-m|1M) (l)

in terms ofthe spherical harmonics ofthe orientation angles QA and QB for the molecular

axes rA and r8, and the angles Q for the vector R from A to B. In Eq. (1), the

summation runs over AA, AB, A, L, mA , m3, and m; M denotes the spherical tensor

component ofthe dipole moment (M = 1, 0, or -1) and (113.2 m1m2|2t3 m3) is a

Clebsch-Gordan coefficient. In Eq. (1), the bond lengths in molecules A and B are fixed at

the vibrationally averaged values.

Values have been given earlier for the coefficients DlAXBXL due to long-range

polarization mechanisms through order R'7 [9-15]. In this work, angular momentum
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algebra is used to obtain the coefficients DtAaBAL in terms of 6-j and 9-j symbols. The

work explains interrelations among coefficients with different values of 3A, AB, 71 and L,

for each of the polarization mechanisms, and provides compact new expressions for the

coefficients 134,443}L, in order to simplify line shape analyses.

2.2 A Spherical Tensor Analysis

For two D001, molecules A and B interacting at long range, the net dipole is

determined by induction [9-15] and dispersion [14, 16-18, 20]. Through order R’7, the

induction term in the dipole of molecule A is

11;" = 1/ 3 egg”, (109?, + 1/ 105 agfirfimm) c135,,

+1 /45 E2,B18TB15£¢(R)®SB¢ — 1 / 3 aQBTB, (R)a$5r5,, (meg, (2)

where To“)...e (R) = Vavfin - V8(R'1), with R the vector from the origin ofA to the origin

ofB. The Einstein convention of summation over repeated Greek subscripts is used in

Eq. (2) and below. The induction contribution to the net pair dipole is given by

u}, = (l — goAB )1131’A , where pAB perrnutes the labels of molecules A and B. The first two

terms in Eq. (2) represent quadrupolar [9] and hexadecapolar [12-15] induction,

respectively. The third term represents the effects of nonuniformity in the local field acting

on molecule A [13-15]: the second gradient ofthe quadrupolar field due to B induces a

dipole in A via the dipole-octopole polarizability E [19]. The final term in Eq. (2)

represents back-induction [14]: The field fiom the quadrupole ofA induces a dipole in B;

this produces a reaction field at A, thus inducing a dipole at second order in the A-B

interaction.

At order R’7, dispersion also contributes to the net pair dipole, for centrosymmetric

molecules [14, 16-18, 20]. Both the reaction field method [14, 17] and the third-order,
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two-center perturbation theory [20] show that the dispersion dipole depends upon the

polarizability and the dipole-dipole-quadrupole hyperpolarizability B of each molecule,

integrated over imaginary frequencies:

1111, = h/sn (111218)], dco Tastkiae, (reinsetkiBEts. (0,16 ). (3)

The leading term in the induced dipole of molecule B, —1 / 3 QEBTBYS(R)@¢5, stems

from the dipole induced in B at first order in the dipole-quadrupole interaction between A

and B. This term in the dipole is given by

T9“ =—1/3(1+C)(\110|ttBGn2r,B,(R)og,|\P0) (4)

in terms ofthe wavefunction To for the A-B pair in the absence of interactions, the

reduced resolvent G = (1—|‘I’0>(‘I’0 |)(H0 — E0 )'1 (1 - | L1’0 )(‘I’O I) for the pair, and the

complex conjugation operator C. The quantity its Tam (R)O‘§y in Eq. (4) is related to the

direct product [11%) <8) (TO) 81 Off) )](0) by

11311111111911, = 435 / 2 1111;) ed“) 699531110). (5)

where the relation between the spherical tensor components T1?)(R) (p = :3, i2, i1, or

0) and the Cartesian tensor components T6137 (R) is assumed to be identical to that of the

first-order dipole hyperpolarizability B [21]. Equation (5) has been obtained following the

observation that both sides of the above equation are scalar so that they can differ only by

a constant. Substitution ofEq. (5) into Eq. (4) gives

T9“ = J5 / 6 (1 +0011, mtg) ®G (pg) ®[T(R)(3) cat-of) 1“) )9) 104%)

= J43 /6 (1 + (2)011? 11111;) @013 (pg) ®[T(R)(3) @6533WW” 10)] 8’63). (6)

In Eq. (6), ‘11? and GB denote the unperturbed wavefunction and reduced resolvent,

respectively, for molecule B; (982,] is the permanent quadrupole moment of molecule A.
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Use ofthe tensor-operator methods treated in Refs. 21-23 (and applied to collision-

induced polarizabilities in Refs. 24-26) transforms Eq. (6) into

1 1 0 ,

T9“ = s/Z2/6ZII8{ }{[T(R)<3> e037,) 1“) ®(1+C)

8 1 1 g

><<‘1’1§3](HB®GBHB)(g)I‘Pd’>}“)

1 l 0

=sf42/6ZITS{1 1 Jame“)®®121D®a<§>19

8

3 2 1

=11? 1e $118,]A 1 detritogflea‘ge’i‘“Manon“). (7)

3.8). B

where Hague = [(2a +1)(2b +1)---(20 +1)]/1/2/. For linear molecules, when the only

nonvanishing component of the spherical tensor 79’) in the molecule-fixed frame is

y(p, 0), the tensor components y(p, q) in the space-fixed frame are given by [23]

1m):r4n/(2p+1)11”2’1160111310). (8)

Equations (7) and (8) imply

3 1
D9381, = 736/30(—1)1n,,{

A B
AB 1 7&}® (2,0)01(}tB,0)T(3,0)

l3
_ 1+1 1/1
-4/ _ 1 .

3(1) (21+) {AB 1 A}o" 63(AB,0)R““, (9)

where 01(0, 0) = —\/3’01, 01(2,0) = 2 / J6 (011T —01i), and T(3,0) = —3\/1_0R‘4. This result

is consistent with earlier work [9-15]. The corresponding coefficients for the polarization

ofA by the permanent quadrupole ofB are given by

a
Difzm = (‘1) +1 JOAB Diafgm- (10)
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Similar analysis gives the coefficients for hexadecapolar induction term [12-15] in the form

5 l

Digits=\/§(-1)}‘+1(24+1)i2{x8 1 )1}¢AGB(XB,O)R_6, (11)

where (DA 2 (D212, and Di‘fus = (—l)“1 goABfoBls. The E-tensor term [13-15]

satisfies

7»a
Diff,x5 = JEE(271+1)V2{ 5A 3 }EA(AA,O)®B R‘6 (12)

with E(2,0) = —1/Jfi (352.222 - ataxm ), E(4,0) = 2N? (Ezm +2Exm ), and

D3215 = (—1)“1 gaABDEfm. For back-induction [14],

1 2 1

DEA,“=157m]+(—1)*+'gaAB]Z(—1)’“+8+‘(2g+1)n,, 1 3 2

a’g AA L 8

a 1 a a a
x{8 B HA B }(a200|aBo)(2300|Lo)

a 1 2 1 L g

x01A(}tA,0)01B(a,O)®BR'7 (13)

with a = 0 or 2. Finally, the coefficients for the dispersion term are given by

Dim“, =15Jfi h/ It R'7(2300|L0) [1+(—1)1+1 goAB]Z(-1)’“A+g+a

3’8

1 2 1

21n13zgi‘AlexAx+

X” )1“ a 1 2 1 L g

413 L 8

°° (a) . B .
Xlo doaB (AA,0;O,10))01 (33,030))- (14)

In Eq. (14), a = O, 1, or 2, and
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B(Z)(0,O;0,i0)) = 2 / J3_o [Bn,,,(o, 1(1)) + 23mm (0, 1(1) ) +2B,,,,,(o,i6)

+13,“22 (0,10))+ 413,0,”(036 )], (15a)

B(O)(2,0;0,ico) = -1/J§ [Bu,n(0,i0) ) +2B,,,,(0,im)], (15b)

B“>(2,o;o,im) = 2 / J3 [13,W (0,160 ) — sz‘xz(0,iu))], (150)

B(Z)(2,0; 0,16) = 2 / Jfi {-Bzm(o,i6) — sz,xz(0,i(o)— 13“,,(036)

+3Bxx,ZZ (0,ico)+4Bmxx (0,160 )], (15d)

3(2)(4,o; 0,103) = 2/ J105 [3Bn’zz(0,i0))—4sz’xz(0,ico)—4Bzx,xz(0,ico)

—2Bm(o,im)+23m,(o,im)]. (15e)

Equations (13) and (14) for the back-induction and dispersion coefficients are structurally

similar, because both involve a dipole-dipole interaction between A and B, a dipole-

quadrupole interaction, and a dipole expectation value. In Eq. (13), the operators 11X, 11X ,

and OX (X = A or B) are coupled to produce 01x(a, O)Ox, while in Eq. (14) the same

operators are coupled to yield B“)(1x00, 10)). The results given by Eqs. (9)-(14) also

apply to atom-Dag,1 molecule interactions, with the index 21A for the atom always equal to

zero [27].

2.3 Summary and Discussion

Angular momentum coupling algebra has been used to derive equations for the

dipole coefficients Dixie“; in terms of 6-j and 9-j symbols. The results explain the

interrelations among coefficients with different AA , AB, 71 , and L, for each of the

polarization mechanisms, and yield compact expressions that simplify line shape analyses.
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Mechanisms giving nonvanishing coefficients D11119114 can produce rototranslational

transitions with AJ up to iAA for A and AJ up to ikB for B with an isotropic pair

potential. The algebraic expressions for the coefficients given by Eqs. (9)-(14) above are

consistent with Eqs. (9)-(12), (15)-(19), (24)-(29) and Tables I-IV in Ref. 14, obtained by

a direct integration method.

The numerical evaluation of the coefficients due to classical induction effects

requires only the multipole moments and static multipole polarizabilities, which are

available from ab initio calculations for a number of species including H2 and N2. In

order to determine the dispersion contributions to the coefficients given by Eq. (14),

however, it is necessary to obtain the B hyperpolarizability tensor (as well as 01 tensor) as

a firnction of imaginary frequency. For H2 , values of the imaginary-frequency B tensor

components have recently been computed with high accuracy [28], and the dispersion

dipole coefficients have been evaluated numerically for pairs containing H2 [28]. For

heavier species such as N2, where accurate values for B(0,ico )are not yet available , Hunt

and Bohr [14, 27] have developed a constant ratio approximation that relates the

dispersion dipole coefficients to the static multipole polarizability, static hyperpolarizability

B, and dispersion energy coefficients (the constant ratio approximation has also been used

to estimate dispersion contributions to pair polarizabilities; see Ref. 29 and the next

chapter).

Bohr and Hunt have used ab initio results for permanent multipole moments and

polarizabilities to evaluate the classical induction contribution to DKAKBLL for pairs

Hz-nHz, Hz-HNZ , and N2---N2 in Ref. 14. They have estimated the dispersion dipole

coeflicients based on the constant ratio approximation and discussed the relative

contributions of different polarization mechanisms to the collision-induced dipoles of these

pairs.
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CHAPTER III

COLLISION-INDUCED POLARIZABILITIES FOR PAIRS OF

CENTROSYMMETRIC LINEAR MOLECULES AT LONG RANGE: THEORY

AND NUMERICAL RESULTS FOR H2---H2, H2---N2, AND N,.--N2

3.1 Introduction

Collision-induced changes A01 in polarizabilities occur on the subpicosecond time

scale. These changes are detected experimentally in collision-induced Rayleigh and

rototranslational Raman scattering [1-4], subpicosecond induced birefiingence [5-8],

impulsive stimulated scattering [9-12], and measurements ofthe density dependence of

dielectric properties [13, 14] and refractivity [15-17]. The purpose of this work is to

provide general, symmetry-adapted equations for the induction and dispersion

contributions to A01, complete to order R‘6 in the intermolecular interactions, and to

provide numerical results for H2 - - -H2, H2 . - -N2 , and N2 - - -N2. These pairs were selected

because collision-induced light scattering (CILS) spectra have been obtained in

experiments on hydrogen and its isotopic variants [18-28] and nitrogen [29-35] over a

wide range of densities and temperatures; and because the multipole moments,

susceptibilities, and van der Waals energy coeflicients--needed as input parameters for the

work--have been evaluated in ab initio calculations for these species [36-48].

The calculations are complete to order R'6 in the intermolecular separation between

a pair of Dooh molecules. To this order, A01 is determined by first- and second-order

dipole-induced-dipole (DID) interactions [49], higher-multipole induction by the laser

field, dipole induction due to nonuniforrnities in the local field [3 5, 50, 51], hyperpolari-

zation [52], and dispersion [52-56]. These polarization mechanisms suffice to predict

types of scattering that are single-molecule forbidden, such as isotropic rototranslational

16
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Raman scattering by centrosymmetric linear molecules during AJ = i2 and A] = i4

transitions, and depolarized rototranslational Raman scattering with AJ = i4. These

mechanisms also yield simultaneous rotational transitions on each ofthe colliding

molecules, with A] up i4 for one molecule and $2 for its collision partner.

In this work spherical-tensor analysis and angular momentum coupling algebra have

been used, as suggested by Samson and Ben-Reuven [57] and by Bancewicz, Glaz,

Kazmierczak, and Kielich [58-61; see also 62, 63] to separate the terms in A01 according

to their transformation properties under rotation of the molecular axes and the

intermolecular vector R. This casts the results into the symmetry-adapted form needed for

line shape analysis [64-67].

This work provides the first firll set of results for the dispersion terms A01diSp in the

collision-induced polarizability of a pair of linear, centrosymmetric molecules. Here A01di5p

has been determined by use of reaction-field theory to find the change in the dispersion

energy at second order in an applied field [55], but identical results are obtained from a

two-center perturbation treatment taken to fourth-order overall [54]. Two distinct

physical effects contribute to Aotdis": (1) each molecule is hyperpolarized by the applied

field and the fluctuating field of its neighbor [53], and (2) the applied field alters the

correlations in the spontaneous quantum mechanical fluctuations ofthe charge density in

each of the molecules, thus affecting the van der Waals interaction energy [55]. Exact

analytical results are obtained for the dispersion effects, as integrals over imaginary

frequency; terms in the integrands contain the polarizability 01(ico) ofone molecule

multiplied by the second hyperpolarizability 700), 0, 0) ofthe other. For H2 , both 01(ioo)

and 760), 0, 0) have been determined with high accuracy using explicitly correlated wave

functions [39]. For numerical applications to larger molecules, a constant ratio

approximation [52, 54, 68, 69] is used to relate A01disP to the static polarizability, static y

hyperpolarizability, and dispersion energy coeflicients, which are more widely available

than 760), 0, 0). Comparisons ofthe approximation with ab initio results for H- "H2 ,
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He- - -H2, and H2 - - - H2 [39, 70] show that the rms error in the approximation is

approximately 20-25%. In the current work on qu-Hz, Hz-uNz , and Nz-o-Nz ,

dispersion is shown to contribute significantly to the collision—induced change in scalar

polarizability A018, which determines the spectra for isotropic collision-induced Rayleigh

and rototranslational Raman scattering [24]. In fact, if A018 is averaged isotropically over

the orientations of each of the interacting molecules and the intermolecular vector, at long

range dispersion accounts for ~55% ofthe total value for H2 - --H2, 40% for H2---N2 ,

and 30% for N2 ~ - - N2 , based on current estimates. The dispersion terms in the anisotropic

polarizability A018I are much smaller for the pairs studied in this work, because the y

hyperpolarizability shows little anisotropy for H2 and N2 [39, 41].

In addition to dispersion tenns--which are purely quantum mechanical--the

calculations include classical induction mechanisms treated in earlier work: First-order

DID interactions [49, 71] give the leading R’3 terms in A01, and hence the dominant

contribution to depolarized, collision-induced scattering by pairs of linear molecules [21-

35]. Second-order DID terms have been cast in symmetry-adapted form by Bancewicz

[58]. Their effects on line shapes and depolarized scattering intensities have been analyzed

in molecular dynamics simulations by Ladanyi and Geiger [72, 73].

E-tensor terms vary as R’5 [50], and two types contribute to A01: The applied field

induces a dipole in each molecule; this creates a nonuniform field that induces a dipole in

the collision partner, via its dipole-octopole polarizability E [74]. In addition, the applied

field induces an octopole in each molecule via E, and the octopolar field polarizes its

collision partner. Buckingham and Tabisz [50] have shown that E-tensor induction

accounts in part for rotational Raman transitions observed in the far wings ofthe

depolarized scattering spectrum ofcompressed SF6 in the gas phase. Bancewicz, Teboul,

and Le Duffhave analyzed scattering by N2 [35], with frequency shifts out to 700 cm’l,

where the contribution from pressure-broadened allowed transitions is negligible. The

region ofthe spectrum between 300 and 700 cm”1 cannot be fit within the DID model for
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A01 [3 5]. Inclusion ofthe E terms in A01 gives the observed line shape, but the fourth-rank

component of E determined by fitting the spectra is ~2.5 times the ab initio value [75].

The hyperpolarization terms, which depend to leading order on the dipole-dipole-

quadrupole hyperpolarizability B [74], tend to be smaller than the E terms (for species

studied thus far); but like the E terms, they vary as R's. The B-tensor terms account for

the dipole induced by the external field, acting together with the field gradient ofthe

permanent molecular quadrupole of a neighboring molecule.

The results for A01 apply in the outer part ofthe van der Waals potential well, where

overlap between the charge distributions is small. At shorter range, overlap damping,

exchange, orbital distortion and charge transfer contribute significantly to A01. Short-range

effects are not yet well characterized for H2---H2, H2---N2 , and N2---N2 since the ab

initio studies to date [76, 77] have employed basis sets that are small by present standards,

and have neglected correlation. Calculations on pairs of inert gas atoms show that the

results are very sensitive to the size and quality ofthe basis [78]. The results given here

should be useful in carrying out later ab initio work, because they provide the correct

limiting form of A01 at intermolecular distances where numerical cancellation and Gaussian

truncation error make it difficult to obtain accurate results ab initio [79]. Additionally, this

work identifies single-molecule property tensors (01, O, E, B, and 7) that must be

reproduced in a basis-set calculation, in order to obtain accurate results for A01.

Comparison ofthe observed scattering spectra with the calculated form based on the

induction and dispersion terms in A01 (given here) should yield predictions about the short-

range quantum terms that can be tested in later ab initio work. The short-range quantum

terms in A01 are expected to be important in determining scattering in high-fiequency

spectral wings [18-35, 78], and in cases where the leading long-range contributions to A01

vanish by symmetry [78]. In other cases, the scattered intensity may depend predominantly

on A01 at intermediate to long range; e. g., this applies to scattering by solid hydrogen and

its isotopic variants [80-82], because the separation between H2 molecules in solid
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hydrogen is slightly larger [80, 83] than R = 6.5 a.u., the isotropic van der Waals minimum

ofthe gas-phase pair potential. Hence long-range models can predict interesting

phenomena such as zero-phonon, double transitions in solid HD [27].

This work should be useful in analyzing the experimental light-scattering data that

has been obtained for H2 [18-28], N2 [29-35], 02 [84, 85], C12 [86], CO2 [87-89], and

C82 [90, 91], in order to obtain information on intermolecular dynamics, as well as short-

range polarization effects. In the gas phase, collision-induced scattering contributes to a

broad, asymmetric background superimposed on pressure-broadened, allowed lines [92].

In H2 , the first rotational lines are sufficiently well separated in frequency from the origin

(the fiequency ofthe incident radiation) that purely translational, collision-induced

Rayleigh scattering spectra can be obtained experimentally [18-28]. In this case, potential

high-frequency contributions from short-range polarization mechanisms are effectively cut

off at ~300 cm'l, because the pressure-broadened wing ofthe allowed J = 0 —> 2

transitions at y = 354.4 cm"1 appears in this region [25]. Nearer to the origin, the spectra

for ortho-hydrogen show structure that is not found for para-hydrogen at low

temperatures [21]: in ortho-hydrogen, the collision-induced scattering is superimposed on

the pressure-broadened wing ofthe allowed Q0(1) rotational Raman transition [93].

In the liquid phase, the interaction-induced changes in polarizability determine local-

field factors for allowed scattering [94], and also generate collision-induced components in

the polarizability which transform differently from the single-molecule tensors under

rotation ofthe molecular framework [94-97]. For liquids containing light molecules such

as N 2, 02, C12, and C02, molecular dynamics simulations show [71-73, 98-101] that the

allowed and collision-induced (CI) components of the polarizability are not well separated

in time scale, with the result that significant interference occurs. Collision-induced

scattering is predicted to increase the second moment ofthe depolarized Raman bands for

liquid N 2 and Oz by ~20-30% [71-73], with larger effects expected for C12 and C02.
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Experiments using pulsed lasers with 100-femtosecond and shorter time resolution

probe A01 directly in the time domain [5-12]. In subpicosecond induced birefiingence

experiments [5-8], a high-intensity laser pulse induces optical anisotropy in the sample,

and a weaker, time-delayed pulse probes differences in the refractive index for

polarizations parallel or perpendicular to the pump field (the optical Kerr effect, or OKE).

In impulsive stimulated scattering (ISS) experiments [9-12], two ultrashort excitation

pulses overlap inside a sample, and typically the mean-square scattered probe field is

measured. Both OKE and ISS experiments show collision-induced effects on 01 for liquid

CS2, on the time scale t < 500 fs [12, 102]. Finally, collisional effects appear in the second

and third refractivity virial coefficients, recently obtained in high-accuracy experiments on

H2 and N2 [17]: A01 determines the second refractivity virial coefficients of compressed

gases, and contribute to the second dielectric virial coefficients [103].

Sec. 3.2 of this chapter contains the symmetry analysis for the collision-induced

polarizability. Sec. 3.3 gives equations for the coefficients appearing in the scalar

component of A01, and Sec. 3.4 gives the coefficients for the anisotropic component.

Additionally, the implications for rototranslational Raman spectra are discussed in Sec. 3.3

(isotropic scattering) and 3.4 (depolarized scattering). Section 3.5 describes a method of

estimating the dispersion contributions to collision-induced polarizabilities in terms ofvan

der Waals energy coefficients, static polarizabilities, and static hyperpolarizabilities.

Section 3.6 contains a set of numerical results for H2---H2, Hz-s-Nz , and Nz-nNz pairs.

Sec. 3.7 provides a brief summary and discussion.



22

3.2 Changes in Polarizability Induced by Long-Range Interactions Between Two

Centrosymmetric Linear Molecules

In this section, the collision-induced electronic polarizability A01 is determined for a

pair of centrosymmetric linear molecules interacting at long range. The results are

complete to order R’6 in the intermolecular separation R, and to this order A01 is a sum of

induction and dispersion terms.

To obtain the induction term A01ind , the effective multipole moments oftwo

interacting Dooh molecules A and B in the external field F6 are determined self-

consistently, and then Aamd is derived from the equation

limF,_’06(u2 + [.12 ) / OPS = 012]} + 0125 + A0188l . (1)

The static local field F polarizing A is related to F°,and to the dipole uB, quadrupole

OB , and octopole QB of molecule B by

F, = F; +T,,,,,(R)tt],3 +1/3 Tam (megY +1/15 T,,,[,,5(R)Qf,’,8 +--., (2)

where R is the vector from the origin in molecule A to the origin in molecule B,

Ta, (R) = VaVB(R"), Tam (R) = VQVBV7(R"1), and T,B,5(R) = V.,VBV,\75(R“l ).

The Einstein convention of summation over repeated Greek suffixes is followed in Eq. (2)

and below. For a molecule of Dooh symmetry in the local field F, the induced dipole

moment is related to the field and field gradients at the molecular center of symmetry by

[la 3 aaBFB + 1/6 YQBYSFBF'Y F8 '1‘ I / 15 EasBYSFé'YS + I / 3 Ba,B,78FBF‘):5 '1" ° °, (3)

where 01 is the dipole polarizability ofthe isolated (unperturbed) molecule, 7 is the second

hyperpolarizability, E is the dipole-octopole polarizability [74], and B is the dipole-dipole-

quadrupole hyperpolarizability [74]. The quadrupole and octopole moments ofthe

molecule satisfy
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®GB = @243 'i' CUB,75F‘}:5 +1/2 B‘Y,8,G-BF‘Y F5 ‘1" H, (4)

QQBY = E59437 F3 +"'. (5)

In Eq. (4), @843 denotes the permanent molecular quadrupole moment, and C is the

quadrupole polarizability. The self-consistent solution of Eqs. (1)-(5) yields the induction

term [52]

13an = (1 + gaAB)[0127 T,5(R)et§[, +613, T,5(R)a§8 T8,,(R)et[,‘B

B B

+1 / 15 613735,, (R) 13%,, +1/ 15 E2,758T758¢(R)01¢B

—1 / 9 133,3,5858, (R)o‘,’f]. (6)

where goAB perrnutes the labels of molecules A and B in the expression that follows. The

first two terms in Eq. (6) give the first- and second-order dipole-induced-dipoles. As

noted in Section 3.1, the E-tensor terms in Eq. (6) stem from higher-multipole induction

and nonuniformity in the local field, while the B-tensor terms stem from hyperpolarization.

The first-order DID terms vary as R'3 , E and B terms as R"5 , and second-order DID

terms as R'6.

At order R‘6, dispersion forces also contribute to A01, because the dispersion energy

ofthe A---B pair changes in the field F“:

disp _ __ -

A0104} — 1""er oZEdiSPwe) / or; org. (7)

According to the reaction-field theory for Edis" [104-106], spontaneous, quantum

mechanical fluctuations in the charge density ofmolecule A produce a field that polarizes

B; the induced polarization ofB then creates a reaction field at A. The resulting energy

change in A depends upon correlations ofthe fluctuating polarization within A, which are

related to the imaginary part ofthe polarizability density [104] ofA via the fluctuation-

dissipation theorem [107]. Similarly, fluctuations in the charge density ofB polarize A,
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leading to a reaction field at B, and a second term in the energy change. The external field

affects the dispersion energy because F° alters the response of each molecule to the

fluctuating field of its neighbor, due to hyperpolarization effects [53]; and F° also alters

the correlations ofthe spontaneous charge-density fluctuations in each molecule [55]. To

leading order, the dispersion term in A01 is

A8331 z Iz/ZTC (1 + ggAB) [Odes T,5(R)y§,a[,(i6,o,0)T,,(R)a:3, (im), (8)

where 01(i10) is the polarizability at the imaginary frequency ico, and y(ico, 0, 0) is the

imaginary-frequency hyperpolarizability. Through order R'6, the total interaction-induced

change in polarizability is the sum of A01ind from Eq. (6) and AadiSp from Eq. (8).

The polarizability ofthe interacting molecules A and B is a second-rank Cartesian

tensor, with spherical tensor components of ranks O and 2. The components are related by

[108, 109]:

A618 =1/J3(A01XX+A01YY+A01ZZ), (9)

Au? = 1/J6 (21161ZZ —A01xx —A01YY), (10)

Act;l = $1/2[(A01XZ + Aazx)ii(A01YZ + AaZY)], (11)

and

A639- =1/2[(AetXX — Aayy)ii(A01xy + Aotyx)]. (12)

In quantum mechanical line Shape analyses of collision-induced Rayleigh and

rototranslational Raman scattering, the pair polarizability A01 is needed in a symmetry-

adapted form in terms ofthe spherical harmonics of the orientation angle OR ofthe

intermolecular vector R and the orientation angles (2A and QB ofthe axes of molecules A

and B. Since A018 is a scalar, it must be obtained by scalar coupling of spherical tensor

functions of QA, QB, and OR [71, 93, 110]:
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A618 (rA, rB, R) = (471)3/5 /J'3 ZAWE,L (rA , rB, my]? (OA )Yf;B (OB)

xYflm(QR)(AA AB mA mBIAmXALm —m|00), (13)

where the summation runs over AA, AB, A, L, mA, m3, and m. Similarly [71, 93, 110]

A6112“ (rA,rB,R) = (411)9’5 /J3 Z A21A[8u(rA,rB,R)Y}I:A(QA)Y;:;B(QB)

xvii—WOW“ AB mA mBIAmXALm M—mIZM) (14)

with the summation running over the same indices as in Eq. (13). In these equations, the

Clebsch-Gordan coefficients are denoted by (21112 m1 m2 [A3 m3), and M in Eq. (14)

ranges from -2 to 2. This work gives the dependence of AOKAKBKL and AZAAABAL on the

intermolecular separation R, with the bond lengths held fixed at the vibrationally averaged

values [11 1].

To cast A01 from Eqs. (6) and (8) into symmetry-adapted form, it is necessary to

separate the multipoles and polarizabilities ofA and B into components of different

spherical tensor ranks [112, 113]. The polarizability and quadrupole satisfy

01a];=OEOQB+U3(an—ai)(3fafB—5a[3) (IS)

and

Oapzl/ZOOfafB—Oafi), (16)

in terms ofthe direction cosine fa between the molecular symmetry axis 1 and the 01 axis

ofthe space-fixed frame; 01“ is the polarizability for fields along the molecular axis f, 01]

for fields perpendicular to the molecular axis, and a 2 (an + 201i ) / 3. The susceptibilities

E, B, and y are fourth-rank Cartesian tensors, and each has the form [52, 68]
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PaByS = P1504, 578 + P2 (6a, 5135 +6a5 Spy ) + P3 (3 fa fB —5a‘3)575

+P4 (3?, f5 -575)8a[3 +P5[(3’r‘a ’r‘y -—5ay)635 +(3?0L f5 ’5a6)5137]

+P6[(3 fB fy _SBY)5a6 +(3 f5 f5 —6[35)5ay]

+P7[35i‘*a q, f7 f5 — 50,1}, 578 Hi, i, 5B5 + fa is 5W +fB r7 60,5

+fB is 50w + i} is aafiflaafi 575 +5ay 5% +5,1L8 51371‘ (17)

E has spherical tensor components of ranks 2 and 4 only, but B and y have spherical tensor

components of ranks 0, 2, and 4. For 700) , O, O) of a linear molecule, the seven

coefficients P1 2 71(im, O, 0) through P7 5 77(ia), O, 0) are linear combinations ofthe six

independent components of the hyperpolarizability in the molecule-fixed frame:

yj(ico,0,0) = aj ym(iw,0,0)+bj ym(iw,0,0)+cj yxxzz(ico,0,0)

+dj 7W(iw,0,0)+ ej yxxyy (ico,0, O)+fj yxxxx(iw,0,0) (18)

with expansion coefficients aj-fj listed in Table 3.1.

Similarly, the seven coefficients P1 5 B1 through P7 5 B7 are linear combinations of

the four independent components of the static B tensor in the molecule-fixed frame for

linear molecules:

Bj : aj BZZJZ + bj BX,Z,XZ + 0j BX,X,ZZ + dj Bx,x,xx (19)

with expansion coefficients listed in Table 3.2. For both 7 and 8, P5 2 P6, but this does not

hold for the dipole-oct0pole polarizability E. For linear molecules, E satisfies Eq. (17)

With E1 = E2 = 0,

E3 :13, =1/63(8Ex,m—3Ez,m), (20a)

E4 = E6 = 5/126(3Ezm —81~:xm), (20b)
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Table 3.]. Expansion coefficients for y-tensor components, Eq. (18).
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Y1 a1 bj “1 dj 61' fr

7] 1/15 4/15 4/15 .4/15 1/3 1/15

72 1/15 -1/15 -1/15 2/5 -l/6 7/30

73 1/21 2/7 -1/21 -4/21 -1/3 1/21

74 1/21 -1/21 2/7 -4/21 -1/3 1/21

y, 1/21 -1/21 -1/21 1/7 1/6 -5/42

7, 1/21 -1/21 -1/21 1/7 1/6 -5/42

77 1/35 -1/35 -1/35 .4/35 0 1/35
 

Table 3.2. Expansion coefficients for B-tensor components, Eq. (19).

 

 

 

Yj 31' hr 01 <11

31 -1/15 -4/15 -1/15 -4/15

132 1/10 2/5 1/10 2/5

B3 -2/21 4/21 2/7 8/21

134 1/14 -4/21 13/21 8/21

135 1/14 1/7 -3/14 -2/7

B6 1/14 1/7 -3/14 -2/7

B7 3/70 -4/35 -1/35 1/35
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and

E7 =1/14(Ezm +2Exm). (20c)

For each of the polarization mechanisms in AOL, this work has yielded relations

among the terms in the coefficients AOlAlBu and AzxAkBu by use of angular momentum

algebra, as in the work by Bancewicz [58] on DID interactions. The analysis is illustrated

for the E-tensor term a2}, TYSQEEM’ which stems from the dipole-octopole interaction

between molecules A and B, and interactions ofboth A and B with the external field. For

clarity in Eqs. (21)-(23) below, only the spherical-tensor recoupling scheme is shown for

the multipole operators ofA and B, and the T tensor. The contribution ofthe a-E term to

the Jth rank part of AOL transforms as

TaE = [LIA-(1) ®{[HA(I) ®(T(4) @933))(1)](0) ® p'B(l)}(1)](1), (21)

where (8 denotes the direct product. Then

Tag = Emu—1)“ /3 [NW 69 (W) ®[(T“” @0305“) ® uB‘"1“‘>}“)1‘” (22)
h

with the notation Has-.2 = [(23 +1)(2b +1)---(22 + 1)]"1/2. Further analysis in terms ofthe

6-j and 9-j symbols gives

431
1 h Jul/m) ® WAG) ®[T(4) ® eB(k)](h)}(1)](J)

TaE :Zznhkl/‘fj{

h k

4 3 1 1 1 j .
:§Z§thk(_l)~l+h{l h k}{h J 1}{aA(J)®[T(4)®eB(k)](h)}(-I)

J

_ (2h+1)H' _1j43111jjk7t

'3'}??? Jk’*()1hkth4Jh

x{[aA(-i) ® 6300100 ® T(4)}(J)

j 1 l

:Zzznjfl(_l)j k 3 l {[aA(J)®eB(k)]O\-)®T(4)}(J), (23)

1' 1‘ ’~ A 4 J
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where 3A”) denotes (uAm ® uA(1))(j), and e300 denotes (03(3) ‘8 LLB(1))(k). In deriving

Eq. (23), Eqs. (4.3), (4.9), (4.19), and (4.24) of Ref. 109 have been used. Equation (23)

for the operator structure corresponds to an expression for AOL obtained by inserting the

reduced resolvent operators, the ground-state bra and ket, and a numerical prefactor, and

accounting for different operator-ordering possibilities. In the equation for AOL, aAm and

e300 become (1A0) and EB“), respectively.

For species of Dooh symmetry, when the q = 0 components of the spherical tensors

P(k, q) are the only nonzero components in the molecule-fixed frame, the spherical tensor

components P(k,q') in the space-fixed fi'ame satisfy [see, e. g., Ref. 109]

P(k,q') .—. D3,; P(k,q = 0) = [41: / (2k +1)]‘/5Y§'(e,¢)1>(k,q = 0), (24)

t

where D390 is the conjugate of the Wigner rotation matrix.

From Eqs. (23) and (24), the a-E term in Aug“ satisfies

j 1 1

T(a-E)=ZZZZZMnflcfi‘Eflfi—Djm k 3 laA(j,0)EB(k,0)

j k 9» P1 P2 2» 4 J

xT(4,0)Y,P‘(6A,¢A)Y,:’2(eB,¢B)Y}‘“PI+p2>(eR,¢R)

><(jkp1r>2l7~(p1+p2))(7»4(p1+pz)[M—(p1+p2)]|JM)- (25)

In Eq. (25), (1A (0,0) 2 -J3EA and (1A (2, 0) = 2 / Jam? - a: ). The relation for

(1A (2, 0) is consistent with Eq. (10); but orA (O, O) differs from Eq. (9), where a8 is

defined by 1/ J5ass. This reflects the phase difference between the ordinary scalar

product C(k) - D00 oftwo tensors C and D of rank k, vs. the rank 0 component of the

direct product [109]:

[C00 ®D(k)](0) = (—1)k(2k +1)"/2 C(k) - D“). (26)
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The components ofthe E-tensor in Eq. (25) satisfy EB(0,O) = O, EB(2, O) = BM15133, and

EB(4,O) = 4J7 E173. Also T(4,0) = 6J7O R‘S, and c313 = -c‘;E = 4%/ 5. The ratio of

—1 between cgE and cgE stems from the phase difference noted above. Then from

Eq. (25), the (1A — EB contributions to the polarizability coefficients A3534 are given by

j 1 1

A3334=4Jfi(2x+1)}’2(—1)‘+J’2 k 3 laA(j,0)EB(k,O)R'5. (27)

J. 4 J

In deriving Eq. (27), it has been assumed that j is even, for nonzero (1A (j, 0); i.e., the

antisymmetric part of the polarizability tensor has been neglected. The BAA - (13

contributions are given by

AkaM=(”k 63ABAer-t4 (23)

The results for the E-tensor terms are consistent with those ofBancewicz, Glaz, and

Kielich [60]; the coefficients depending on the second-rank part of the E-tensor agree with

results given by Borysow and Moraldi [51].

A similar analysis for the first-order DID terms gives

j 1 1

,Jm_6~/'(21.+1)/2(1)‘+J’2 k 1 1 aA(j,0)aB(k,0)R‘3. (29)

2. 2 J

Equation (29) is identical to the result derived by Bancewicz [58].

The BA - 93 terms satisfy

A333,,=_,/—2[(2;.+1)/(21+1)1%(_ 1)‘+“2{ x}BA(J;1,0)@BR-5, (3o)
4J2

where the B-tensor components BA (J; j, 0) are given by
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BA(O;2,0)=—2/J3(3B4A +413?) (31a)

BA(2;0,0)=2J1_07§BA, (31b)

BA(2;2,0)=—4/3JEBA, (31c)

and

BA(2;4,0)-—- MOM/105 B9. (31d)

Equations (31a)-(31d) follow from the observation that the tensor operators which appear

in BA(J;j,0) have the structure [(uA(1)® 11A“))(J ) ®®A(2)](j). The (DA —BB coefficients

satisfy

A%?M =("1)l SOABAfig4- (32)

The second-order DID and dispersion terms are both derived fi'om perturbation

expressions with an underlying tensor-operator structure exemplified by

TAAB ={“A(1)®[{[“A(l) @(TQ) ®“B(1))(1)](0) ®[RA(1) @(TQ)

®“31))(1)](0)}(0) ®“A(1)](1)}(J). (33)

Coupling the four dipole operators for molecule A to produce two factors of polariza-

bility ofA gives a second-order DID term, while coupling to produce the hyperpolariza-

bility ofA gives a dispersion term.

B

The coefficients for the second-order DID terms ofthe type aAa (1A are given by

Afl = (—1)“‘*”2 ”£2229“ +1)n,b, (ab00|j0)(2200|Lo)

a b n

1 1 2 1 1 a ,

x1 1 2 1 1 b{1{ 1; :}aA(a,O)aA(b,O)aB(k,0)R'6; (34)

k n L n J '

A
correspondingly, the coefficients for the aBa 0L8 terms satisfy
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BAB 1. AB ABA
AkaxL=(—1) p AijiL- (35)

The second-order DID coefficients agree with the results ofBancewicz [58].

For the 7A - a8 dispersion coefficients, the result is

2 1 1 ,

1J/2 J k 7»
A}f‘m=(—1)+ 15J32(r1,,/rr,) 2 1 1{L J a}(2200|LO)

a L k a

xh/ nJ:yA(a,J;j,0|iw,0,O) aB(k,O;im) d0) 11:6, (36)

where

A . - _ A ~ A -

Y (0,0,0,0|1(0,0,0)—3Y1(1CD,0,0)+2'YZ(1CD,0,0), (37a)

JA(2,2;0,Oliw,0,0) = 2319mm), (37b)

7A(2,0;2,Oli0>,0.0)=- 2 [31?(iw,0,0)+41’s‘(iw,0,0)1, (37C)

v"(o,2;2,orico,o,o> = 45 [37?(ico,0,0)+47§‘(iw,0,0)], (37d)

yA(2,2;2,0|im,O,O) = —2Jfiyg‘(im,o,0), (37c)

and

v"(2,2;4,01im,o,0)=2J76v’7‘(im,o,0). (371)

In Eq. (36), aB(k,0;iw) is the (k, 0) spherical component of aB(iw). The results in Eqs.

(37a)-(3 7f) for W" (a, J; j, 0| 1w , 0, 0) have been obtained from the dipole operator coupling

{[HA(1)® uA(')](a) ®[uA(l) ® uA(l)](J)}(j). The aA -yB dispersion terms satisfy

Ail)“. = (-1)* BAH/315111.. (38)

The coefficients in Eqs. (13) and (14) have been evaluated by direct integration

usingMathematica [114], and by use of Eqs. (27)-(38), with identical results. In Sec. 3.3,

CXplicit expressions for Aug are given and their spectroscopic implications are discussed;

results for mg“ and their spectroscopic implications are given in Sec. 3.4.
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3.3 Collision-Induced Changes in Scalar Polarizabilities

This section provides results for the coefficients AOAAXBKL that determine the

induced changes in scalar polarizabilities. Since Aug in Eq. (13) contains terms with

nonzero AA and/or AB, isotropic rototranslational Raman scattering with A] = i2 and t4

can occur as a purely collision-induced phenomenon.

For a pair at a fixed separation R, the change in effective polarizability averaged over

the orientations of ii" , FE, and R is Aooooo/3- Through order R'6, there are two

contributions to Aoooooa one from second-order DID interactions and the other fi'om

dispersion

Aooooo = (1+50AB){6EAEBEA +4/3(ai1‘ -ai)EB(aii -ai)

+3h/1r Lida)680w)[3Yf‘(iw1020)+279(i®,0,0)]}R—6.
(39)

Both DID and dispersion effects increase the effective polarizability ofthe pair. The

coefficient Aooooo accounts for isotropic, collision-induced Rayleigh scattering [24].

Isotropic scattering with a change in the rotational state of one or both molecules is

produced by the polarization effects in nine other coefficients, through order R‘6. The

coefficient A02022 is associated with transitions on molecule A only

14.02022 = 4J§/ 5 53mg —a1‘)R‘3 +2J§ / 5 53m? —ot':)(2aA +EB)R‘6

+2J§l15(afi‘ —afi)[aB(afi —a1‘)+2/3(afi —orfl3_)2]R'6

+Jgh/(51r) {face [3y{3(iw,0,0)+27§(i(o,0,0)][0t‘fi‘(ico)—0t3‘_(i(o)]

+3 face [379001,0,0)+4y§‘(im,0,0)]EB(i(o)}R'6. (40)

The set of coefficients A022LL with L=0, 2, or 4 can produce "double transitions", i.e.,

Simultaneous transitions in the rotational Raman spectrum [110]; for these coefficients, the
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associated selection rules are A] = :2 for each molecule (if the anisotropic terms in the

interaction potential are neglected). The coefficients A022LL satisfy

A022LL = (1 +50AB)l-\/17/ 15 51.2613 ‘01:)(0li)3 ‘0‘?)11‘3 + 2%” 8L4

[2/21(afi -ai)(3E§m —8EEm)—®AO(3B§ +4B,B)]R'5

+1:L {2/9(afi —a$)(afi —6E)[6 EA +(afi —or‘: )1

4.12/71]de [3y’3°‘(iw,0,0)+4y?(iw,0,0)][a11?(iw)—afl3_(i(o)]}R—6]

(41)

with CO =J§/25, 02 =J17/35, and c4 =18J76/175.

The E-tensor polarization mechanisms give the only nonzero contributions to the

coefficients A0413“: , through order R-6

A04044 = 8/3 518(an +2EQm)R‘5, (42)

A04244 = —4J77‘ / 63 (61}? — a‘ixEQm + 25f,"m )R‘S. (43)

To order R"6 there are three other nonvanishing coefficients in Equation (13) given by

AB AB AB

A00222 = 60 A02022, A00444 = 60 A04044, and A02444 = 50 A04244-

First-order DID effects generally dominate in collision-induced light scattering

spectra, unless the DID coefficients vanish due to symmetry. For changes in the scalar

pOIanZability, fifSt-Ofder DID terms appear in Aozozz, Aozzzz, and A00222 only, A02022

and A00222 are associated with single transitions with A] = i2 for either molecule A or B

and A02222 with double transitions having A] = :2 for both molecules (neglecting the

anisotropy ofthe pair potential). Second-order DID and dispersion effects also appear in

A02022a A0322, and A00222- Hence the net contribution of these terms to the scattering

intensity is enhanced by the existence of cross-products with the first-order DID effect. E-

tensor terms in Aug contribute significantly to scattering in the spectral wings [3 5],
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because they produce transitions with A] = :4 for one molecule and AJ up to :2 for the

other. These effects should be easier to distinguish in the isotropic scattering spectra than

effects ofthe other R“5 or R'6 polarization mechanisms. The leading long-range

contributions to isotropic, pure translational (Rayleigh) scattering stem from second-order

DID and dispersion terms. Experimental spectra are expected to show substantial short-

range overlap contributions to Aoooooa particularly for lighter, less polarizable species.

3.4 Collision-Induced Changes in Anisotropic Polarizabilities

The collision-induced change in the second-rank tensor component of the

polarizability A002"1 determines the spectra for depolarized rototranslational Raman

scattering by A- - -B pairs. Through order R'6, A0112“ depends on a total of 38 coefficients

A21.AthL-

The collision-induced depolarized Rayleigh spectrum (pure translational light

scattering) is determined by the collision-induced anisotropic polarizability A06", averaged

isotropically over the orientations of molecules A and B. The averaging gives

1

Aal‘ = (4n / 3)/2 A2000: YthaR) (44)

with

A20002 = 64/10 / 5 #613 R'3 +(1+ goAB)[3J16/ 5 #536" + J1_o/ 75

x(a’fi —ai)6EB(afi‘ —a’:)+3\/I0/5 h/ 1:

3(de y9(im,o,0)aB(iw)]R*5. (45)

From Eq. (45), the first-order DID interactions give the dominant long-range contribution

to the polarizability anisotropy of a colliding pair, averaged over the orientations of FA

and FE.
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The remaining coefficients in Aetg”I are categorized below according to the selection

rules for rotational transitions they generate, if the anisotropy ofthe interaction potential is

neglected. Three coefficients A2202L generate rotational transitions of molecule A only,

with A] limited to :2. These are given by:

A2202L = 4J7”51.2 a3 (at? —a’j)R‘3 +4J'3_5 /35 5L4[aB(3 133m 4133,“)

— 7353 o“) ]R’5 + {(63 mi )aer‘orA +bL6EB +cL(afi‘ mi )]

+dL(a1‘i-a3)(afi‘ —a’:)(a1‘?—aEJJR*‘

+eLh/ n I: do 7280a) ,o,0)[afi (ico)— a’:(iw)]R_6

+h/1tI:d(D[9\/l—O/5 amyf,‘(im,o,0)+fL y?(im,0,0)]6iB(ico)R'6,

(46)

with the coefficients aL - fL listed in Table 3.3.

Two coefficients generate single-molecule transitions of A, with AJ up to i4

A24042 =[12J'33/175 63013—63)? +6JEh/(5n)

A - —-B - —6
xJcho Y7 (rco,0,0)a (10))]R , (47)

and

A24044 = —2J154 /21 a3 (132”, + 2’3me )R’S. (48)

The coefficients A222,,“ are associated double transitions, with selection rules of AJ up to

i2 for molecule A and simultaneously AJ up to i2 for molecule B

A2221.L = 31L (0‘11? “13W? — (1113.)R_3 +[(—1))‘ + f9AB1[bJ.LB?®BO

— carat? —a1‘ X31327... 4152,... )1R‘5 +1(—1)’~ + W1
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><{(af? —<x’1)(ocl?—oc‘i)tdtL EA Murat? —a’: )1

+12 / 1r I: (10) [r,Ly§(ico,o, 0)+ guy? (103,0, 0)][afi(iw ) —aE(iw)]}R‘6,

(49)

with coefficients an - ng listed in Table 3.4 (for L=0, 2 or 4). Double transitions are also

associated with A242“; in this case, AJ up to :4 for molecule A, and the coefficients

satisfy

A24m = [(—1)’“‘1 h,LB’7‘oB° +(—1)‘ q,L (61f,3 —aE)(EQm +213§§,,,,,;)]R"5

+(—1)"{sAL(afi‘ —01‘:)2 (or? —aIi3)+t;‘Lh/n Eda) 7’9 (10,0,0)

xrafiom ) - aE(iw)]}R‘6, (so)

with hu , qu, SAL, and tau. given in Table 3.5, for L=O, 2, and 4. The remaining nonzero

coefficients are A2022L = goABAZZOZL (L=O, 2, 4), A2044L = goABA24O4L (L=2, 4), and

A224AL = (“Dx JOABAmrtL-

First-order DID effects appear in A20002a A3022, A20222, and A222”, and thus

make the leading contributions to collision-induced depolarized Rayleigh scattering

(16320002); and to collision-induced depolarized Rarnan scattering involving either single-

molecule rotational transitions with A] of:2, or double transitions with A] of i2 for each

molecule in a pair. The first-order DID effects generally dominate in each ofthese terms.

In the isotropic induced spectrum, only the E-tensor mechanism gives rise to transitions

with A] = :4 (through order R'6), but in the depolarized scattering spectrum, E-tensor,

B-tensor, second-order DID and dispersion terms can all generate A] = :4: the E-tensor

mechanism determines A24044 and A204“, and all four effects appear in A22024, A20224,

A222“, A242“, and A224t4- Second-order DID and dispersion effects determine the

remaining nonzero coefficients.
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Table 3.3. Coefficients for A2202L in Eq. (46).

 

 

dL eL fL
 

L 3L bL

o 4M5 fins

2

4 o 36Jfi/175

2M/15 JE/rrzs JE/zs 12JT6/5

-2J7/5 2fi/35 2fi/105 2J7/1575 2J7/35 -6J7/5

4J3—5/875 36J3/175 o

 

Table 3.4. Coefficients for A22th in Eq. (49).

 

 

 

k L 33L be CAL dtL CAL fo ng

2 o o o o —2J7/75 2J7/1575 o —2J7/25

o 2 242/75 0 o 2J2/75 16J2/1575 342/25 245/25

1 2 o o o JE/zs JE/ros 3J3/25 3J6/25

2 2 —2Jfi/75 o o 31Jfi/525 19Jfi/2205 3JT6/25 31JI6/175

3 2 o o o 12M/175 2J1_4/245 3M/25 36JTZ/175

4 2 1245/25 0 o 24J2/175 34J2/1225 9J2/25 72/2/175

2 4 o 8J2/5 4J2/105 —24J§/175 8J2/1225 o —72J2/175

3 4 0 4455/5 NEE/105 —12J§/175 45/1225 0 ~36J3—5/175

4 4 o 4J5_5/5 2J5_5/105 423/175 4483/1225 0 —36J§/175
 



Table 3

ll

(
‘
3

I
o
t
m
b
w
r
g
b
u
a
t
-
J
l
)
‘

 

“her6

 



39

Table 3.5. Coefficients for A24ZAL in Eq. (50).

 

 

 

A L th QxL SAL in

o o 4J3_5/875 2463/25

0 o 8J2/1225 445/35

0 o 4Jfi/ 1225 2J3—5/35

o 4J§§/1225 245/350

Nib/45 2M/315 4Jl_O/612S LIE/175

2M/9 4JT4/315 4J1—4/1225 2M/35

2J2 —8J2/315 3642/1225 1842/35

14mm 442/45 4J5/175 2J27/5

23J26/9 sfims NEE/175 4J2—6/5O
M
A
W
N
A
W
N
N

b
-
b
A
-
t
h
N
N
O

 

3.5 Approximations for Dispersion Coefficients

The leading dispersion contributions to A01/.13“: and ARAB“; can be evaluated

either from the values of or and y as functions of imaginary frequency for each ofthe

interacting molecules, using Eq. (39)-(50), or fiom sum-over-states calculations ofthe

dispersion-induced changes in polarizability for interacting pairs. At present, accurate

quantum mechanical results are available for H2- - -H2 for coefficients with AA or AB

equal to zero [39], but not for other cases or other pairs; values for 700) , 0, O) are not

generally available. Therefore, to estimate the dispersion terms for larger molecules, a

"constant ratio" approximation [52, 54, 68, 69] has been developed; it employs the van der

Waals energy coefficients C1,;ALBM, static polarizabilities, and static hyperpolarizabilities.

For example, to find the dispersion term in Aooooo (represented by Agoooo)

y? (i0),0,0)/ Ex (ico) and y? (ico, O, O)/ Ex(i0)) for molecule X are approximated by the

frequency-independent ratios If and I? Then

A3000, =—C200(1+59AB)(3If‘ +21§)R‘6, (51)

where C200 is the isotropic van der Waals coefficient for the A- - - B pair,
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c200 = —3h/ 7: ]:5A(im)aB(im)d6. (52)

X
It is firrther assumed that the relationship between I]X and the zero-frequency values of y j

and EX is the same as in the Unsold approximation, which gives

1,3:1/2 yj‘(o,o,0)/ax(0). (53)

The Unsiild approximation is used only to generate Eq. (53); with Eq. (51) it yields the

estimate

A3000, = —1 / 2 chORm + BAB){[3ylA(o,o,0)+2y§(o,0,0)1/EA}. (54)

The coefficient 16130002 is estimated similarly in terms of C200, by

A3000, = 45/10 (320°1?fl[y§‘(o,0,0)/aA +y§(o,o,0)/EB]. (55)

To extend the approximation to other coefficients, the anisotropic dispersion energy

coefficients CL‘ALBM are needed for two centrosymmetric linear molecules. These

coefficients fix the long-range dispersion energy AEdisP [75, 115],

min(LA 9L8)

AEdiSp (R’eA9¢A’eB’¢B): Z Z Z CEALBM R—n

n=6 LA»LB M=0

xpfi’; dosage]: (cosOB)cosM(¢A —¢B), (56)

where PgI (cosO) denotes the associated Legendre firnction, (6A , ¢A) and (OB,¢B)

specify the orientations of rA and r3 with respect to a fixed axis system, and R lies along

the z axis ofthis system. The coefficients CL‘ALBM are given by Eq. (52) and

C200 = —h / 1r [:[afi (rm—a] (16)]a’3(im)d6, (57)

C220 = BABC330", (58)

and



 
with a
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ngM = aMh/ 1r j:[afi(im)—ai(ic0)][afi(im)—a§(ico)]dco
(59)

with a0 =—1, a1: 2/9, and a2 = —1/36.

With these relations and the analog ofEq. (53), the dispersion contributions to the

remaining isotropic polarizability coefficients are approximated by

Agzozz = —f5/10C%°°R‘61(3t13”rib/finer? +4Y?)/(0tii —a’i)1, (60>

A322LL = bLngoR—6U HOAB X313A +4'Y?)/(0L'fi\ ‘06), (61)

with h0 = 45/50, h2 = -t/1—4'/70, and b4 = -9m/175.

Similarly, the constant ratio approximation for the dispersion contributions to the

remaining anisotropic polarizability coefficients with AA and AB £2 yields

Agzozo = 413 /50 C§00R_6[Yi3 HuiB +15<3v2t High/(at? —at)1, (62)

A3202 = 47 /35 CE‘X’Rih? EB — 217? Mai? —aj‘_)1, (63)

A3202, = —18J'3_5/ 175 CéOOR‘6y2B /at'B, (64)

A322“. = —1 / 2 C22°R*51(—1>’~ + #310111? with? your? mi), (65)

with fo and gm given in Table 3.4. To estimate the dispersion terms with AA=4 or AB

=4, the van der Waals coefficients C§ALBM are required. The coefficients Cg‘ALBO with

LA or LB equal to 4 are related to the fourth-rank tensor invariant ofthe quadrupole

polarizability C,

C4 <in = 1/35 [2 (imam) —4sz,xz(iw)+cxx,.o.<ico>1, (66)

and to E7(ic0 ), the fourth-rank part ofthe dipole-octopole polarizability E, by

(3:00 = —20 rt / 1t [3" [3 c1: (i6)+ 2 B9 (10) )]a‘Bam )dco, (67)

and
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(3320 = -h/1t [:[88c9(io)+ 152/3 B? (ic0)][a11T3(ic0)—0tE(ic0)]d0). (68)

Equations for CQZM with M ¢ 0 are given in Ref. 68; C340 and C3340 are obtained by

interchanging the molecule labels A and B in Eqs. (67) and (68).

The anisotropic dispersion coefficients with LA or LB equal to 4 have been

estimated in terms of the anisotropic van der Waals interaction energy coefficients C300,

€340, c320, and C3340, the fourth-rank part of the static y hyperpolarizability tensor from

Table 3.1, and the static values of C4 and E7 , with the results:

#214042 = —3J3'5 / 100 CQOOR‘W’; /(3 Cf +2134 ), (69)

Aé‘ott = 3/ 16 (—1)“‘C§2°tttR*t’-? /(33Cfi +1959), (70)

in terms ofthe coefficients t(L given in Table 3.5. The remaining coefficients are given by

d AB d d A AB d

A20442 = 69 A24042 and A224J.L = (‘1) 50 A2421L‘

For small molecules, values of the permanent susceptibilities and dispersion energy

coefficients appearing in Eqs. (54), (55), and (60)-(70) are available from ab initio

calculations [3 8-48]. Table 3.6 gives the values of or and 7 used to estimate the dispersion

polarizability coefficients for H2 and N2, and Table 3.7 gives the dispersion energy

coefficients used. Coefficients not listed and not derivable by symmetry arguments (C340

and C§40 for Hzn-Nz, and C300, C340, C320, and C?” for N2---N2) have been set to

zero in the calculations. This is equivalent to dropping the dispersion contributions

associated with the fourth-rank part ofthe y hyperpolarizability for N2; these are expected

to be small compared to the contributions from 7 components of ranks O and 2. Table 3.8

provides a test of the constant ratio approximation, by comparison ofthe estimates for the

dispersion contributions to AJAAABAL for a pair of interacting H2 molecules with the

accurate ab initio results recently obtained by Bishop and Pipin [3 9]. For H- - - H2,

He- - -H2, and H2 - - - H2, the rms error in the dispersion polarizability coefficients with

AA = 0 or AA = 2 for H2 is ~20% [39-70]. The rrns error for the pair H2---H2 with AA
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Table 3.6. Molecular properties (in a.u.) used to calculate collision-

induced polarizabilities.

 

 

 

Property H2 N2

(9° 0.4828a -1. 1 1318

a 5.3966" 11.6756

ot1T -aJ_ 1.9793" 4.64se

ym, 743.86c 1 172e

7m; 621.05c 639e

ym, 229.616 319"

Cu,ZZ 6.3926" 34.61‘3

mez 4.4441" 26.856

me 5.2032" 19.296

132m 4.4424" 38.283

Em, -1.7740" -2200"

d f
Bzm -97.671 -174

d f
me -63.417 -102

wa 36.746d 67f

B,“x -71250‘1 -119.5f

 

aRef. 36, value interpolated to r(H2) = 1.449a.u. in Ref. 37.

bRef. 38.

cRef. 39; values ofthe static y hyperpolarizability at r(H2) = 1. 449 a.u. were supplied by

D. M. Bishop, personal communication.

dRef. 40; static B values from D. M. Bishop, personal communication.

eRef. 41; Ref. 42 gives a = 11.616 a.u. and an —oti = 4.654 a.u.; properties of N2 at

SCF level are given in Refs. 43-45.

fRef. 44; for B values, see also Ref. 45.
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Table 3.7. Dispersion energy coefficients (in a.u.) used to calculate

collision-induced polarizabilities.

 

 

 

 

Coefficient H2 - --H2 H2 ~ --N2 N2 - - -N2

C20" 42.0583 -29.28° -738"

C300 -1 .219a 288“ -782"

C220 -1219" 3.59" -7.82°

C330 -0390" -1. 12c -267"

C30" -138" -322" —

C§20 -0.57" -1.62° —

aRef. 38.

bRef. 46 with isotropic C8 coefficient for H2 pairs from Ref. 47.

cRef. 46.

"Ref 48.

Table 3.8. Test of the constant ratio approximation for dispersion polariza-

bility coefficients by comparison with accurate ab initio results (Ref. 39) for

H2 - - ~H2. Results in a.u. for the coefficients of R'6.

 

 

 

Coefficient Ab initio Constant ratio approximation

ASOOOO 2960.8 2471.5

A32022 90.6 75.9

A‘Z‘0002 354.8 312.6

A‘Z‘2020 41.6 31.5

A‘Z‘2022 -234 2.99

A3202, 38.7 30.4

d
A24042 -12 -O.6
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or AB equal 4 ranges fi'om ~50% - 60%. This may be due to limitations of the

approximation. On the other hand, the terms in the fourth-rank component ofy for H2

nearly cancel, leading to a very small value for 77 and high sensitivity to its frequency

dependence. In fact, the most recent ab initio calculation in Ref. 39 gives a different sign

for 77 than found in Ref. 116, though both calculations are ofhigh accuracy overall. For

more anisotropic molecules, such near-cancellation is not expected.

3.6 Numerical RCSIIItS for H2°"H2, H2"'N2, and N2"'N2

Table 3.9 lists the contributions to the collision-induced polarizabilities Aug, Aug,

and A062 from first- and second-order DID effects, E-tensor terms, B-tensor terms, and

dispersion, for H2---H2, Hzn-Nz, and N2 ---N2 in collinear and T-shaped

configurations. For each ofthe molecular configurations studied, the intermolecular vector

points along the z axis. Molecule pairs are listed as A- --B. In the T configurations,

molecule A points along the x axis and B along 2; hence results differ for H2 - - -N2 and

N2- - -H2 in T shapes. As shown in Table 3.9, first-order DID interactions increase a8 and

org for these configurations, but decrease or? for T-shaped pairs. Second-order DID and

dispersion effects increase 018 and org , and or? in each case. E terms are positive in org"I

for collinear pairs, but for T-shaped pairs the E terms are negative in Aug and nonuniform

in sign for Aug". The signs of the B-tensor terms are nonuniform, because the quadrupoles

of H2 and N2 are opposite in sign.

The long-range polarization effects have been compared numerically for H2 - - - H2 at

R=7.5 a.u. (approximately 1 a.u. outside the van der Waals minimum in the isotropic pair

potential), for qu-Nz at 8.0 a.u., and for N2 ---N2 at 8.5 a.u. (0.5-0.7 a.u. outside the

isotropic van der Waals minimum). The results are summarized below, first for the change

in scalar polarizability Aug and then for the anisotropic polarizability A0112“.
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Table 3 .9. Long-range contributions to collision-induced polarizabilities Aug, A013 ,

and A031 for H2"'H2, H2"'N2, and N2"'N2 .8

 

 

 

 

 

 

 

AOL?" Configuration A---B DID-l DID-2 E tensor B tensor Dispersion

A68 Collinear H2---H2 52.4 R'3 1645 R'6 120 R'5 81 R'5 1640 R’6

H2---N2 118.4 R'3 5747 R‘6 362 R'5 -26 R'5 3320 R'6

Nzu-Nz 267.3 R'3 17290 R"6 1110 R'5 -308 R'5 6420 R'"

T, Attx qu-Hz 10.8 R'3 1175 R'6 -55 R'5 .40 R"5 1470 R'6

H2---N2 27.7 R'3 4226 R‘6 -349 R'5 13 R'5 2980 R'6

N2---H2 20.9 R'3 3845 R'6 -244 R'5 13 R'5 2680 R‘6

N2---N2 54.3 R'3 11950 R‘6 -1312 R'5 154 R'5 5230 R’6

hog Collinear 112-an2 184.0 R"3 1805 R"6 500 R‘5 636 R"5 631 R'6

Hz...N2 402.4 R'3 6382 R'6 2910 R"5 -163 R'5 1460 R'6

Nz-nNz 880.3 R'3 19370 R'6 10300 R'5 -2630 R“5 3200 R'6

T, Alix H2 ~H2 148.2 K3 954 R’6 93 R‘5 108 R'5 449 R'6

H2---N2 323.2 R'3 3701 R'6 1770 R'5 -901 R'5 1080 R'6

N2---H2 318.4 R'3 2892 R‘6 -834 R‘5 814 R'5 716 R’6

N2---N2 694.4 R’3 9797 R'6 1540 R‘5 —375 R'5 1730 R‘6

Act;2 T, Atlx qu-Hz -94 R'3 76 R’6 9 R'5 5 R'5 29 R‘6

qu-N2 -20.0 R‘3 216 R'6 -125 R‘5 89 R'5 53 R'6

N2---H2 -22.0 R'3 326 R‘6 135 R'5 -109 R'5 125 R'6

N2---N2 .471 R'3 824 R'6 -50 R‘5 19 R'5 234 R’6

 

aResults are tabulated in a.u.
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First-order DID interactions (DID-1) make the dominant contribution to Aug for the

pairs and distances selected: for collinear pairs, the DID-l terms give 82%-84% ofthe

total Aug, and for T-shaped pairs, 66%-82% ofthe total. Other polarization mechanisms

are significant, however: for the T-shaped pairs, second-order DID interactions (DID-2)

amount to 17%-29% ofthe total, and dispersion terms constitute 13%-21% ofthe total.

E-tensor terms vary substantially in importance: they amount to less than 1% of Aug for

T-shaped Hz- . - H2, but 27% for T-shaped N2 -- -N2. B terms are generally small, not

exceeding 3%-4% of Aug. The corrections to DID-l are smaller for collinear pairs, but

still significant: DID-2 terms account for 6%-9% ofthe total, E terms for 3%-5%, B terms

for ~l%-2%, and dispersion for 3%-6%. Generally the DID-2 terms are larger for the

heavier pairs, in both absolute and relative magnitude, while the dispersion terms are

larger in absolute magnitude but smaller in relative magnitude for the heavier pairs.

The first-order DID interactions give better approximation to A0112“ than to Aug.

For collinear pairs, the DID-1 terms account for 86%-88% ofthe total, and for the T-

shaped pairs studied, the errors in the first-order DID approximations for AmiVI do not

exceed 6% in any case. DID-2 and dispersion interactions appear to be highly isotropic,

with the result that DID-2 terms contribute ~1.5%-3% to A032“, and dispersion ~1% or

less. The E- and B-tensor contributions to Aorg'1 are larger: E terms contribute 4%-14% to

AOL? of collinear pairs (largest for N2 - - -N2), 1%-8% to AOL? for T-shaped pairs, and

1.5%-10% to A0112t2 for T-shaped pairs. B terms range from ~1% to 8% of A0112“. In the T

configurations, both E and B terms are more important for the unlike molecule pairs than

for the like pairs.

As a general trend, the DID-1, DID-2, E, and dispersion terms increase in absolute

value in the order H2-~H2<N2 - ”H2 <(or E) H2 - ~-N2 <N2 - - -N2. Exceptions are

observed for DID-2 and dispersion terms in Aazfl, where the values are appreciably larger

for N2 ---H2 than for H2---N2. An exception is also found for the E terms in A013 and

Aorzi2 ofthe T configurations, where the values for H2 - - ~N2 are larger than for N2 - - -N2.
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The B terms show different trends in absolute value. In A018 for collinear and T

configurations, and in AOL? for collinear configurations, B terms are larger for the like

pairs than for the unlike pairs; in contrast, in Actg’1 for T-shaped pairs, the B terms are

larger for the unlike pairs. For the cases studied, the largest relative contribution from

DID-2 terms occurs for Aug for the N2 - - ~N2 pair in the T shape, where DID-2 terms are

29% ofthe total. For E terms, the largest relative contribution is -27%, also for A018 of

N2- - -N2 in the T shape; the largest relative contribution from dispersion is 21% of Aug

for H2" -H2 in the T shape; ofthe B terms, the largest is 8%, for Aorizt2 of N2 - - -H2 in the

T shape.

3.7 Summary and Discussion

Equations (13) and (14) give the general, symmetry-adapted form ofthe collision-

induced changes in polarizabilities Ace?) and A082“ needed to analyze line shapes for

Rayleigh and rototranslational Raman scattering, both isotropic and anisotropic [18-35].

Contributions to the polarizability coefficients AOAAABAL and AzaAtBAL from first-order

dipole-induced-dipole interactions [49, 71] are given in Eq. (29); from octopolar induction

and local field nonuniformities [50, 51] in Eqs. (27) and (28); from hyperpolarization [52]

in Eqs. (30)-(32); from second-order DID interactions [58] in Eqs. (34) and (35); and

fi'om dispersion in Eqs. (36)-(3 8). These equations have been obtained using spherical

tensor analysis, and they are given in terms of 6-j and 9-j symbols. Explicit expressions for

the coefficients are analyzed in Sec. 3.3 and 3.4.

Isotropic rototranslational Raman scattering with A] = i2 or i4 is forbidden for

isolated molecules, but it can be produced by the polarization mechanisms treated in this

work, because A018 in Eq. (13) contains terms with AA or AB equal to 2 or 4.

Simultaneous rotational transitions [109] on each ofthe interacting molecules are
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produced in both the isotropic and depolarized rototranslational Raman spectra. The

polarization mechanisms that vary as R’5 and R”6 contribute to scattering with higher AJ

and greater shifis from the incident frequencies than the first-order DID terms.

Numerical results are given in Table 3.9 and in Sec. 3.6. For the classical induction

mechanisms, the results have been obtained directly with ab initio values for the

permanent multipole moments and susceptibilities [36-48]. For dispersion effects, a

constant ratio approximation [52, 54, 55, 69] has been used to express the results in terms

ofthe static or values, the static 7 values, and the van der Waals energy coefficients, since

these are available for a broad class of molecules. The 7 hyperpolarizabilities at imaginary

frequency have been computed in ab initio work on H, He, and H2 [39]. For these pairs, a

test of the constant ratio approximation against the accurate ab initio results shows the

rrns errors of~20% for the coefficients with AA and AB equal to O or 2 [39, 70].

The leading contributions to Aug and AOL? for both collinear and T configurations

come from the first-order DID interactions, which range from ~66% to ~106% of the

long-range total for H2---H2 at R=7.5 a.u., H2---N2 at R=8.0 a.u., and Nz-o-Nz at

R=8.5 a.u., outside the van der Waals minima in the isotropic pair potentials by ~0.5-l .0

a.u.. Deviations ofthe total from the first-order DID results tend to be largest for Aug of

the T-shaped pairs. The largest relative contributions from second-order DID terms

exceed 20%; this also holds for the E-tensor terms and dispersion. When the change in

scalar polarizability Aug is averaged isotropically over the orientations of the interacting

molecules and the intermolecular vector R, all long-range terms except second-order DID

and dispersion drop out. As a consequence, dispersion accounts for an estimated 55% of

the total, isotropically averaged for H2---H2, 40% for H2---N2 , and 30% for Nzn-Nz at

long range.

The results in this work should prove usefiJl in analyzing the observed two-body

Rayleigh and Raman line shapes for H2 and N2 [18-35]. The mechanisms in Eqs. (39)-

(50) contribute to single-molecule rotational transitions with A] up to i4, and to double
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transitions with A] = :4 on one molecule and AI = :2 on the other (neglecting the

anisotropies in the pair potential [83]). Cross terms with the leading first-order DID

effects are possible for both second-order DID and dispersion terms, thus enhancing their

net contributions to the collision-induced scattering intensity. Comparison ofthe

experimental spectra with calculated spectra, based on this work and quantum line shape

calculations [64-67], should permit an accurate characterization of electronic overlap

effects on collision-induced polarizabilities for pairs containing H2 and N2.
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CHAPTER IV

CALCULATIONS OF CONTRACTED HYPERPOLARIZABILITY DENSITIES

4.1 Introduction

The nonlocal polarizability density 01(r, r';r0) is a linear response tensor that gives

the polarization P(r,(0) induced at point r by the perturbing field F(r',0))acting at the

point r' [1-6]. It represents the hill linear response of a molecule to external fields or local

fields due to the neighboring molecules: 01( r, r';c0) not only determines the induced dipole

moment, but also all the induced higher multipole moments in a field, within linear

response [5]. Hyperpolarizability densities such as B(r, r', r";(0 ',c0 ") describe the effects

of nonlinear response: B(r, r', r";03 ',0) ") is the first-order nonlinear response tensor that

determines the polarization P(r,c0 ' + 0) ") induced at point r by the perturbing fields

F(r',0)') and F(r",(0") at other two points r' and r" [6]. Both 01(r,r';c0) and

B(r, r', r";c0 ',c0 ") are fundamental molecular properties. They have applications in

theories of local fields and light scattering in condensed media [1-3], and in

approximations for dispersion energies [5], collision-induced dipoles, and collision-

induced polarizabilities for two weakly overlapped molecules [6-8]. Integration of

01(r, r';(0) over all space with respect to r and r' gives the linear polarizability 01(c0 ), and

integration of B(r,r',r";0r ',c0 ") over all the space with respect to r , r', and r" yields the

first-order hyperpolarizability [3(a) ',c0 ") that is responsible for the nonlinear optical effects

such as second-order harmonic generation or frequency doubling [9-12].

Recently, Hunt, Liang, Nimalakirthi, and Harris [13] have shown that the

hyperpolarizability density B(r, r', r";c0 ,0) also determines the derivatives of

polarizability tensor components with respect to nuclear coordinates, and thus the
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vibrational Raman intensities within the Placzek approximation [14]:

60157 ((0 ) / (7R:1 = ZI Idr dr’dr" Tas (RI , 0135‘” (r, r', r";c0,0) , (1)

where ZI is the charge on nucleus 1, and Tab“, r') is the dipole propagator:

I r I "1

TaB(r,r)=TaB(r-r )=VaVB(|r—r| ). (2)

With information on B(r, r', r";w ,0), Eq. (1) can be used to identify the regions in the

electronic charge distribution that make the principal contributions to vibrational Raman

intensities for isolated molecules.

A nonlocal polarizability density model based on 01(r, r’;03 ), B(r, r', r";co ',(0 ") and

higher-order response tensors can also be used to approximate collision-induced dipoles

and polarizabilities for a pair ofweakly overlapped molecules [6]. This model allows for

the continuous distribution ofthe polarizability within the interacting molecules. Thus

equations for collision-induced dipoles and polarizabilities within the nonlocal polariza-

bility density model include the direct modifications of electrostatic, induction, and

dispersion interactions due to overlap ofthe molecular charge distributions. For example,

this approach gives the dispersion-induced dipole for an A- - -B pair [6, 8]:

Apéfiisp = rt/(21t)7 [3° d0) [[dk dk' (1 + (JAB) {o§,(k,k';io)fi§a(—k,—k',io,0)

xexpritkwaRBr" 1} Tittk'JTsntk) (3)

In Eq. (3 ), gJAB perrnutes the labels A and B in the expression that follows; 01A (k, k'; ion)

is the spatial Fourier transform of 01A (r, r';iro), and [3301, k'; i0), 0) is the contracted

hyperpolarizability density, obtained by integrating over all space with respect to the

coordinate r" in B(r, r', r";ic0,0) and then Fourier transforming; TaB(k) = -4rr kakB /k2

is the dipole propagator in k-space.
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From the form ofEq. (3), only the longitudinal component of 01(k, k';(o) and the

longitudinal component of 13(k, k';c0, 0) are required. These longitudinal parts are related

to the corresponding susceptibility densities by [5]

038(k,k';co) = 12.. 1213x(k,k';w)/kk', (4)

131413743240: 12.. i2], 137(k,k';w,0)/kk'. (5)

In these equations, x(k, k';c0) denotes the linear charge-density susceptibility [5, 15, 22]

and 137(k, k';0) ,0) represents the 7 component ofthe contracted B susceptibility density

defined by Eq.(6) below.

Given an accurate ground-state wavefirnction, the charge-density susceptibility

x(k, k';c0) can be obtained by use of pseudo-state techniques [15], a variational principle

[16-20], or the Unsold approximation and molecular structure factors [21, 22]. For

example, x(k, k';c0) has been determined accurately for the hydrogen atom in the 1s state

[15] and approximately for helium, argon, and xenon atoms [23-26]. In reference 27,

Linder and Kromhout have noted a need for methods of calculating nonlinear charge-

density susceptibilities such as 13a(k, k';c0, 0). However, no such calculations have been

reported so far. In this work, a method has been developed for computing [3a(k, k';0) , 0)

via its connections to the auxiliary functions denoted by (DLM (k, k';0)) [16], which can be

determined variationally. The same functions (1)11?i (k, k';0)) also fix the charge-density

susceptibility x(k, k';03) [15, 16, 22] and the contracted susceptibility density

BaB(k, k';0) , 0) that determines the dispersion-induced quadrupole for an A. - -B pair [see

Chapter V].

Section 4.2 ofthis chapter presents a method of calculating the contracted

hyperpolarizability densities 80,01, k';c0, 0) and Bafi(k, k';c0, 0). In Sec. 4.3, this method

is applied to the hydrogen atom in the Is state to obtain analytical results for these

densities. Sec. 4.4 provides a brief summary and discussion.



60

4.2 A Method of Calculating Contracted Susceptibility Densities

The contracted susceptibility density Ba (k, k';0) , 0) is defined by [6]

fia(k,k';co,0)= 11+C(w —+ —<o)]><

[<01 mo 6(4) u: G(w)p(k')10>

+<01 p00 6(a)) p(k'>° 9(0) no. 10>

+(01uo 0(0) 900° G(w)P(k')|0)l (6)

based on the general form for nonlinear response tensors given by Orr and Ward [28].

Damping has been neglected in Eq. (6); C(co —> -c0 ) denotes the operator for complex

conjugation and replacement of to by -(0; 11a is the or component ofthe molecular dipole

operator; p(k) is the Fourier component ofthe charge density operator:

p(k) = Idr exp(ik-r)2qj 5(r — rj) = qu exp(ik-rj) (7)

i 1'

with q j the charge of particle j, and

G(m)=(1—tao)(H—Eo —hco)“(1—tan), (8)

 
where 500 is the ground-state projection operator IO) (0 ; also, in Eq. (6)

p(k)° a p(k)—(O| p(k)|0), and similarly for p(k')° and [.13.

The expression for the contracted susceptibility density BaB(k, k';(t), 0) is given by

Eq. (6) with the dipole operator ua replaced by the molecular quadrupole operator @0113'

Thus BaB(k, k';c0,0) and 13a(k, k';c0 ,0) are two separate contracted susceptibility

densities, but they are different contractions of a single, underlying hyperpolarizability

density B(r,r',r";0),0). Contraction of P(r") in B(r,r',r";c0 ,0) into the dipole operator

11a and then spatially Fourier transforming gives 80, (k, k';(0 ,0), while contraction of
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P(r") into the quadrupole operator @0113 and Fourier transforming yields the density

BaB(k, k';(o,0).

To simplify Eq. (6), the density Ba (k, k’;(0, O) is expanded in terms ofthe spherical

harmonics ofthe orientation angles ofthe vectors k and k' by substitution of Eq. (7) into

Eq. (6) and use ofthe Rayleigh expansion for exp(ik - rj):

(:0 L co
A L' I .

Ba(k,k';w,0)=z Z Z ZCLCL'YIV(9,¢)Y1¥(9'J¢')

L=O M=—L L’=0 M’=—L'

XBWMKMWO),

where

oL = (—i)L2LL!/(2L)! [41t/(2L+1)]‘/5,

and

8m;(k,k';o,0)= [1+C(c0 —+ —o)] x

[<01p1‘(k)G(m)u3 G(m)p£4'(k')‘ 10>

+<01 pM(k)G(w>p1.4 (k')°G(o>ua10>

+<01 no. G(OJpLM(k)° G(w>p14'(k')‘ 10)]

with the generalized multipole moment operator p?‘(k) given by

% m 21 11.

PIm=(k) qu'(21:1) Y1 (9],9j)£3;fi)—Jz(krj),

In Eq. (12), j ,(krj) denotes the lth spherical Bessel function.

(9)

(10)

(11)

(12)

Bwak, k’;0),0) is a first-rank Cartesian tensor, with spherical tensor components

ofrank 1. The components are related by
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"1.1.30()(k, k'; (0 ,=0) BLUl(k, k', (0 ,,0) (13a)

13L"?I(f1)(k, k', 0) ,0:) +1/J‘[BLLx(1<,1r',o,0)+13LL;,(k, k', (0 ,0)]. (13b)

If the auxiliary functions <D?‘(k,c0) are defined by [16]

|<I>i“(k,m)) = G(—co)pi“(k>10>. (14)

then fi'om Eqs. (11) and (13),

1

)(91(k'o)|°|<1>1‘(kw))) (15)

BLL(r(k,k';o,0)= [1+C(w —+ —w)]((<1>1| p309”        

+<<I>14'(k',o)|p1.‘(k)°    

with q equal to -1, 0, or 1. In Eq. (15), or are the spherical multipole moment operators

given by

of =quer14n/(2L+1)1%Yr§‘(9,-,¢j), (l6)

1'

and the firnctions (DLM are defined by

|¢1.‘)=G(0)p1410>. (17)

The susceptibility density BOLL(k, k';(0, 0) has an expansion similar to Eq. (9),

00 L 00 L'

Bae(k,k';w,0)= Z Z Z thcirYt:‘(e,¢)Y14(ez¢')‘
L=0 M=—L L'=0 M'=-L'

xBL’tLrflLB(k,k';co,O), (18)

where ngzflk, k';(0, O) are second-rank Cartesian tensor components, related to the

spherical tensor components by

BLL,(2o)(k, k’, (0 ,=0) BLB’LJMfl(k, k'; 0) ,,0) (19a)

BLMSJ,(+1)(k, k'; 0) ,=0) +,/2/[/3BLLXZ(k, k'; 0) 0,):BLLMM;,L(k,k';00,0)], (19b)
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and

Bwégz)(k,k';m,0) = 1 /,/6[BL1§‘L¥§,,L(k,k';o,0)— Bfifl‘f'yy(k,k';o,0)

aziBfihflymmgobn. (19c)

The components Bflégfik, k';(0,0) (q = -2, -l, 0, 1, or 2) are given by the right side of

Eq. (15) with (I):l replaced by og and p? replaced by pg.

(1);" (k, (0) from Eq. (14) can be approximated by the function ‘1’ which makes the

following functional minimum [16, 17-20],

1;“(41): (‘I’lHo — E0 + ’10)l‘Pl—(OIPWKY1‘1’)*(‘*’lpin(k)|0) (20)

subject to the conditions (0| ‘1’) = 0 and 0) 2 0. In Eq. (20), H0 is the Hamiltonian of the

unperturbed molecule, and E0 is the energy of its ground state.

Eq. (15) and the corresponding expressions for the densities Big/{(3 )(k, k';(o , 0) are

the principal results of this section. They express these densities in terms ofthe

variationally determined firnctions (1)}“(k,01) that also fix the linear charge-density

susceptibility [15, 16, 22]. In the next section, these results are employed to calculate the

contracted B and B susceptibility densities for the hydrogen atom in the Is state.

4.3 Application to Hydrogen Atoms

To illustrate the method given in Sec. 4.2, the z-component of the contracted B

susceptibility density and zz-component ofthe contracted B susceptibility density are

calculated in this section for the ground-state hydrogen atom. The results will be used to

evaluate the damped dispersion-induced local dipole 142 and quadrupole On for a H- - -H

pair in the next chapter.



64

Using a trial firnction ofthe form

I‘P>= Mk,co)G(0)pi‘10> (21)

and then applying the variational principle (20) to find A(k,(t) ), Koide [16] has determined

the filnctions <I>£4(k,01) for the hydrogen atom in the Is state:

  

<I>1.‘(k,w)s(¢1“1 pt¥(k)10)[(<1>1‘| pi.“ IO)+9(<I>1‘|<I>1‘)[1 91.” (22)

with

1/ —r

(1)}:d = (2:1)" YL“(0,<1))[£L:1 +5367;— (23)

Atomic units are used in Eqs. (22), (23) and below.

For the z-component ofthe B density of the hydrogen atom in the Is state, only the

elements BLWur are nonzero [29]. They are given by

pml(k,k';o,0)=om. (1L0M|L:1M)(1L00|L:10)BLLL,(k,k';o,0), (24)

where (L1 L2 M1M2|L M) is a Clebsch-Gordan coefficient, and

20) a a d

BL L¢1(k,k';03,0)= 2 L 1‘; [fL(k)gL:(k')—M_fL(k)fL:l(k')]

wL-w mL—mLfl

 

+-2°°—Lfliuirfttr(k')htt(k)-—i—L31£~fr<k)ft:r(k'>l

 

(DELL—(02 wL’thr

(25)

With L 2 1 for BL L+l and L 2 2 for BL L-l’ and

20) a

Primates): 2 ' ‘2 f1(k') h0+(k), (26)
031 —0)

2(0 a

136(k,k';co,0)= ‘ ‘ f1(k)81—(k')- (27)
 

ref—652
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In equations (25)-(27), the functions 60 L , aL and IL (k) have been given by Koide [16]

(91‘1pi‘l0): L(L+1)(L+2)(2L+1)

(91.1914) L4+11L3+18L2+10L+2’

 

(0L:

2

K911418410) _ (2L)1(L+1)(L+2)2(2L+1)2

(oblwi‘l 22L+‘(2L“+11L3+18L2 +10L+2)’

 

3L:

and

fL(k)= (oiMIMI” IO-> 2L/(2L+1) kLX,L+2(X-1-1/2L)

(“WIMILTZ

The firnctions new in this work are dLi, gLL(k), and hLi(k); they are given by

 

 
, Pi l0?)

pend 10)

= —22L+3[(L +3)(2L +4)r]‘l (2L4 +17L3 + 46L2 +43L + 9),

M

<®L+l

M,

<®L+l

 dL,= [(1L0M|L+1M)(1L00|L+10)]‘l
M

PL+1
  

<¢L—1|Plo|®LM>
-1

dL':(9>t-r|ptt|0)(¢1:‘|pi‘10)[<1LOMlL—1M><1LOO|L_IO>] 

= —22L [(2L —1)(L +1)(L + 2)(2L)r]'1 (2L4 + 9L3 + 7L2 - 6L — 3),

8L+(k)=<0<<1>MoMrM|0)

= —(L+3)/4 kL+1xL+3[2L(L+4)x2 +(3L+2)x+1],

 
        

0) [(1L0M|L+1M)(1L00|L+10)]‘1

I
-
fi9° pitta)” |0> -1

gL_(k).-: (oMlpM10) [(1L0MlL—1M)(1L00|L—10)]
L L

  

(28)

(29)

(30)

(31)

(32)

(33)

= —1 / 2 kL‘1xL+2[(L +2)(2L -1)(2L +1)]‘l [4L(L +2)(L +3)(L +4)x3

—4(L + 2)(L + 3)(2L —1)x2 — (L + 2)(13L + 4)x — 3(L + 3)]+ 43 / 6 5L1x2,

(34)
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®M+ pM(k)000 -

hL+(k):<(Lt"ant‘n 0;)[(1LOMIL+1M)(1L00|L+10)] 1

  

= —1/2 kL xL+31(L +3)(2L +1021“ 14(L +1)(L +3)(L +4)(L + 5)x3

—4(L +3)(L +4)(2L +l)x2 —(L +2)(13L+17)x —3(L +4)]+43/186L0x2,

 
 

(35)

and

n_(t)= 0(LiTL§)°|:)‘)I<IL0MIL-1 M><1L00|L-10>1‘1

= —(L+2)(2L+1)/4(2L—1) it" xL+2[2(L-1)(L+3)x2 +(3L—1)x+1],

(36)

where x a 4 / (k2 +4).

The zz-component ofthe B susceptibility density ofthe ground-state hydrogen atom

has nonzero elements Bwfl and BIL/$4, which satisfy

Bm'n(k,k';o,0) = 6m. (2L0M|L+n M)(2L00|L+n 0)

XBLL+n(k,k';(D,O), (37)

where n equals -2, 0 or 2, and

20) a a D ,

BL L:2(kak';0),0)= 2 L L2 [fL(k) ALL:2(k')_—Li—2—L£2"fL(k) fL:2(k )]
(BL-(0 (BL-(015:2

 

20) a a D ,

+——_2Li2L132 [fL:2(k')CLL:2(k)+—¢2—'f1](k)fLfl(k )] (38)

("Liz “"3 "3L _(DL:2

with L 2 1 for BLL+2 and L 2 3 for BLL_2, and

 

 

20) a

B02(k,k';00,0)= 2 2 2, f2(k')C02(k), (39)

(Dz-'03

203 a

B20(k,k';03,0)= 2 2 2, f2(k)A20(k'), (40)

(02 —CD
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and

20) a

BLL(k,k';®,0) = fig— [fL(k) ALL(k')+ fL(k')CLL (10]
L _

2 2 2

+2aLDLL(w‘a;2‘° )ft(k)ft(k'). (41)
 

(mi—w

In equations (38)-(41), the functions DLL+n, AL L+n(k) and CL L+n(k) (n = -2, O, or 2)

satisfy

  D = ((DLM” 93W) [(2L0M|L+2 M)(2L00|L+2 0)]"1
”+2 (on an |0)(91‘o are. 0)

   

= 42143 (2L +3)[(L +4)(2L+ 5)(2L +4)r]‘l

x(2L4 +23L3 +86L2 +110L +20), (42)

M 0 M
(QL—ZIPZIOL

D =

<‘DL I PL 'OX‘DL—zl PL—z

 2LOM|L—2 M)(2L00|L—2 0)]-1
a)“

 

=(2L+1)/(2L-3) DL-ZL’ (43)

("WI I011?) —1
DLL= [(2L0M|LM)(2L00|L0)]

p3

<41 410i

= -22L+l (2L + 3)[(L +2)(2L +1)(2L +2)1]‘l

x(2L4 +15L3 + 31L2 + 14L + 2), (44)

<03
  

pLM+2(k).o '0?)

[(2 LOM|L+2 M) (2 LOO|L+2 0)]—l
ALL+2(k) : (WI Pi" '0)

= —(L +3)(L +4)(2L +3)/ 24 kL+2XL+4

x[4L(L + 5)x2 +4(L + l)x +1], (45)
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93' pifiztk)” 91") L

ALL_2(k)= ("WM") [(2LOMlL—2 M) (2L00|L—2 0)]—
 
 

= —1/6[(2L —1)(2L - 3)(L + 2)(2L +1)]'1 kL'ZxL+2[16L(L + 2)(L + 3)

x(L +4)(L+ 5)x4 +16(1—8L)(L +2)(L +3)(L+4)x3 +48(L +2)(L+3)

  

  

  

  

x(3L — 2)x2 +60(L + 2)(2L + 1)x +15(L + 4)]+107/12 5L2x2, (46)

9° PM(k)'° M

ALL(k)== 2 L: M "BL > [(2 L 0M|L M) (2 L 0 0|L 0)]"1

(a, 1 m 10)

= -1 / 12 (2L +1)‘1 kaL+3[8L(L +3)(L+4)(L + 5)x3 —4(L+3)(L +4)

x(5L — 2)x2 —6(L +3)(3L + 2)x —3(L +4)], (47)

0&2 DIRK)“, I‘Di}

CLL+2(k)-—= M M [(2L0M|L+2 M)(2L00|L+2 0)]-l

(‘Duz PL+2 0)

=(2L+l)/(2L+5) AL+2L, (48)

CLL (k) = ALL(k)a (49)

and

("iii-2 Pit/100‘o 0(2)

CLL_2(k)= [(2L0M|L—2 M)(2L00|L—2 0)]-1
M M

("h—2| PL—z IO)

= (2L +1)/(2L — 3) AL—ZL' (50)
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4.4 Summary and Discussion

This work has shown that the contracted susceptibility densities [3a (k, k';co , O) and

1304306, k';co , O) are related to the variationally determined fimctions <1>fid(k,co) that have

been used to evaluate the linear charge-density susceptibility x(k, k';oo) [14, 15, 22]. For

the hydrogen atom in the ls state, the work yields analytical expressions for these

susceptibility densities. The results will be used in later computational work on the

damped local dispersion dipole and quadrupole of a H- --H pair (see Chapter V).

The method developed in this work can be extended to the S-state atoms with

multiple electrons. In the extension [3a (k, k’;co , O) is still given by equations (9), (24)-

(27); but the functions (0L, aL, dLi, fL(k), gLi(k), and hLi(k) appearing in Eqs. (24)-

(27) cannot be evaluated analytically as in the case of the hydrogen atoms. Instead these

fiJnctions are obtained from the one-electron transition density matrices DA and DB

analogous to the matrices DA01 and DB01 introduced by Krauss and Neumann in the

calculations of the charge-density susceptibilities x(k, k';(o) for inert gas atoms [23]:

(0L 2 aL /{2 Tr[DA(L,L)S]}, (51)

aL = afi /{4 Tr[DA(L,L)S]}, (52)

fL(k) = 2/aL ZZDBJ-i (L)(<I>i1 lpl‘ml w?) (53)

i j

 
gri<k)=2/aLZZDAfi (L,1)(<I>l lpfimk)” ¢})c“, (54)

i j

 

hLi(k) = 2/aLi1ZZDAji(1,Li1)<<Dillpfid(k)° o}) c“, (55)

i ,-

dLi = 4 / (6,6thl )ZZDAJ-i (L,L i1)<<l>} |p?|<1>} ) c". (56)

i ,-
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In equations (51)-(56), aL is the static polarizability of order L; {(1)9} and {<D}} are the

zeroth- and first-order basis sets [23], respectively, and the matrices S, DA and DB are

given by

sij =(¢}|<1>}),

DA<L1,L2>= M“p<L1)Ap(L2)*(M")+,

DB<L> = Ap(I.)“(M‘1 )t

where A is the density matrix for the ground state, and p (L) and M are defined by

oil-(L) = (D? In? |<I>§-’),

and

M,,- = (ch?
 

H0 — E0 lo} >

In Eqs. (54)-(S6), the coefficient c satisfies

c:(lLOMlLilM)(1LOO|Li10).

(57)

(58)

(59)

(60)

(61)

(62)
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CHAPTER V

DISPERSION DIPOLES AND QUADRUPOLES FOR PAIRS OF ATOMS:

EFFECTS OF OVERLAP DAMPING

5.1 Introduction

Interactions between colliding molecules in gases and liquids distort the charge

distributions ofthe collision partners, producing transient dipole moments in the molecular

pair. Collision-induced changes in dipole moments give rise to the single-molecule

forbidden infrared and far-infrared absorption by nondipolar species such as H2 [1-2], N2

[3-5], and inert-gas mixtures [2, 6], and contribute to allowed absorption. In line shape

analyses of light absorption spectra, the collision-induced dipoles are needed as functions

of intermolecular separation and relative orientation.

For molecules interacting at long range, only classical induction and dispersion

effects contribute to collision-induced dipoles; they are given in terms of permanent

multipole moments, multipole polarizabilities, and hyperpolarizabilities of isolated

molecules [7-12]. Long range dipoles of inert-gas heterodiatoms have been determined

accurately in quantum perturbation calculations [9]. The net dipoles for pairs involving H,

He, H2 , and N2 are known to a good approximation at long range [11, 12].

At shorter range, when overlap and exchange effects are significant, ab initio

methods can be used to compute pair dipoles. Because large basis sets are often required

in pair property calculations, accurate ab initio calculations (including correlation effects)

for pair dipoles have been limited to small systems such as He- --H [13, .14], He- - - Ar [15],

Hen-H2 [16, 17], and H2~--H2 [18, 19]. This prompts interest in developing long-range

models that include overlap effects and yield good results in the regions near to the van

der Waals minima. In these regions it is often diflicult to obtain accurate results ab initio

73
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due to numerical cancellation and basis limitations. Therefore, long-range models,

corrected for overlap damping, complement ab initio calculations at short range.

Additionally, these models can be compared with experimental results or ab initio

calculations to extract useful information on the short-range exchange effects on pair

pnnxnfies

A nonlocal polarizability density model developed by Hunt [20] serves this purpose.

In the model the distribution of polarizable matter in the interacting molecules is

represented by means ofthe linear response tensor a(r, r';0) ), the nonlinear response

tensor B(r, r',r";oa ',m —co '), and higher-order tensors. These tensors give the a) -

frequency component ofthe polarization induced at point r in a molecule by a perturbing

field acting at other points. Earlier, Hunt [20] has used this model to derive equations for

induction and dispersion contributions to collision-induced dipoles and polarizabilities,

with overlap effects included. The equations have been applied to a H- - - H pair to evaluate

analytically the lowest-order damped induction contributions to local dipoles, quadrupoles,

and pair polarizabilities [20]. However, no calculations of damped dispersion dipoles have

been reported so far because a method of obtaining the required [3 susceptibility density

has not been available until recently. In Chapter IV, the B susceptibility density has been

shown to be related to a set of variationally determined auxiliary functions (DLM(k,co ). For

a ground-state hydrogen atom, analytical results have been obtained for the B susceptibility

density. The purpose of this chapter is to derive equations for the damped dispersion

dipoles for atomic pairs, and to provide numerical values for the atomic dipole and pair

quadrupole of a H- --H pair, based on the results given in the last chapter.

The dispersion contribution to the dipole for an A- - -B pair is related to the

dispersion energy between A and B in the presence of a static, uniform applied field F

by [21]

An?" = ‘5AEdisp / 51:6 |F=o- (1)
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The dispersion interaction results from the correlations in the fluctuating charge

distributions of molecules A and B: The spontaneous, fluctuating charge density of

molecule A polarizes B; the induced polarization in B gives rise to a reaction field at A,

causing an energy change in A. The reaction field at B associated with the fluctuating

charge distribution ofB determines the energy change in B, the second term in the total

energy change in the pair. Two distinct physical effects contribute to Audi”: (1) Each

molecule is hyperpolarized by the simultaneous action ofthe applied field and the

fluctuating field due to its neighbor, and (2) the applied field changes the correlations in

the fluctuating charge distribution of each ofthe molecules, thus affecting the van der

Waals interaction energy. The dispersion contribution to the pair dipole depends on the

polarizability density of one molecule and the contracted B susceptibility density ofthe

other, both taken at imaginary frequencies [22]:

A633,” 2 h/(21t)7 [O dco [[dk dk' (1 +5.2“)(org,(k,k';iw)[3§w(—k,—k';i6,0)

xexpri<k'—k)RB*A1}T,.(k')‘r55(k) (2)

The above equation is equivalent to the expression for the dispersion dipole obtained by

Linder and Kromhout [23], using second-order perturbation theory.

Equation (2) is valid for any interacting molecules with arbitrary symmetry, but the

work in this chapter is restricted to interacting S-state atoms. In Sec. 5.2, partial wave

analysis is used to analyze dispersion dipoles and quadrupoles. It is shown that the

equations for damped dispersion dipoles and quadrupoles are convergent at short range,

while they approach the inverse power series ofthe multipole expansion at long range.

Sec. 5.3 contains a numerical application to a pair ofground-state hydrogen atoms. The

leading term in the local dispersion dipole ( i.e., the dispersion dipole of one H atom in the

pair) and the leading term in the local dispersion quadrupole for the pair H- - - H are

obtained as analytical functions of the interatomic distance R.
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5.2 Damped Dispersion Dipoles and Quadrupoles

The dipole induced in A by dispersion interactions with B is given by the term

generated by goAB in Eq. (2). It can be recast into a computationally useful form

Auémsp = h/(81t)5_[dk exp(—ik-RAB)k'2 [ dk' exp(ik'-RAB)k'_2

xJ:D d0) )(B(k,k';i0)) [32 (-k,-k';i60.0), (3)

where x(k, k’; its) is the imaginary-fiequency charge-density susceptibility,

Ba (—k, —k’;i03 , O) is the contracted susceptibility density defined by equation (6) in

Chapter IV, and RA13 is the vector from the center of symmetry of molecule A to the

center of symmetry of molecule B.

In order to simplify Eq. (3), x(k, k';co) and [3a(—k, —k';co, O) are first resolved into

partial waves [24, 25]:

no 1 co 1'

x(k,k';co)=z Z Z ZCICF'YIWQMYIIP'(9',¢')‘a;?'mi(k,k';03), (4)

[=0 m=-l l'=0 m’=-l'

and

co L 00 L'

éa(—k,-k';w,0)=z Z Z ZcicL.Y#(e,¢)’Y1¥'(e',¢')

L=0 M=-L L'=O M'=—L'

xpwgkxgmor. (5)

In Eqs. (4) and (5), Y)" (6,¢) denotes the Spherical harmonic fiinction, cL and

[SE/flak, k';0),0) are given by Eqs. (4.10) and (4.11) (in Chapter IV), respectively, and

ailm'(k,k';w)=2/42wno(wio—w2)“<01pl“(k)'In><nlp}?"(k')I0> (6)
Into

with the generalized multipole moment operator p? (k) given by Eq. (4.12).

Specialized to a pair of S-state atoms, equations (4) and (5) simplify because
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BIIYEYfA(k,k';co,0)=6MM[5LL41Bwl,a(k,k';co,0)+6w_lamgmzwn,

(7)

and

afi.m'(k,k';(o) = 5,1, 6mm. a,(k,k';co). (8)

Substitution ofEqs. (4) and (5) into (3) and use ofEqs. (7) and (8) gives

Aufitdisp =2 2 [Au+(I.L)+Au"(I.L)] (9)
I L

with

Attia, L) = may? [6,6112 [dk exp(—ik-R)k'2 Idk'exp(ik'-R)k"2

m m r I * M F M r r

XYI (9,¢)Y1 (9 db) YL (9,45) YL:I:1(e ,¢ )

x]: dco a?(k,k';im) Blbffi(l‘:)(k,k';ico,0), (10)

where R s RAB, and the z axis is chosen to be along the interatomic vector R. It should

be noted that the x and y components ofthe dispersion dipole vanish for a pair of

spherically symmetric atoms.

Equation (10) can further be simplified by substitution of the Rayleigh expansions

for exp(—ik-R) and exp(ik'-R)

exp(ik-R)=Z[4n(2L+1)1% ii Y?(e,¢)ji(kR>, (11)
J

and integration with respect to the polar angles (6,¢) and (9',¢’). This gives

it L+1 Ltl+l ”I 2 co . .

A” (1, L) 2 pm. 2 Z q,,, (2/n) [0 dk1)(kR)J:dk' JJ.(k'R)

J=|L-I| J'=[Ltl-l‘

xii/2n [:dm a?(k,k';im) BfLi1(k,k';im,O), (12)

where
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2th1 1 2
2 [211] L!(L:1)! (13)
  

plLi:(21+1)(2L+l) (21)! (2L)!(2Li2)!’

qfi'i = (—i)’i‘iJ'(2J +1)(2J’+ 1)(1 L o OlLil o)(J lO 0|L O)(J' Li 1 o 0|10)

xZXILOMlLilMXJlOMILM)(J'LilOMllM), (14)

M

and

BLLi1(k,k';i(D,0) = pml(k,k';im,0)[(1 L o M|Li1MX1L o 0|Li10)]’1. (15)

In Eqs. (14) and (15), (L1 L2 M1 M2 |L3 M3) denotes a Clebsch-Gordan coefficient.

Next the limiting expressions for Apia, L) are derived as the interatomic separation

R approaches zero and infinity: Use ofthe expansion

jJ(kR)=21J1/(21+1)!(kR)J+O(RJ+2), (16)

gives

Aui(1,L)~RJ+" as R——>O (17)

with the consequence that the dispersion dipole vanishes at zero separation R. In the limit

as R —) 00, Eq. (12) reduces to

Apia,” : Di(l’L)R—(21+2L+2il)’ (18)

after use ofthe relation

4/1:2 dejj(kR)[:dk'jJ(k'R)a,(k,k';ico)BLLfl(k,k';ico,0)

= 6,,+L51.,+Li1 (21+2L)1(21+2L:2)1[22’+2Li‘(1+L)1(1+L :1)1]‘l

xa,(i(o)BLLil(ico,O)R'(2l+2L+2fl) as R —> 00, (19)

where
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DiU, L) = p114: (I‘M) (”Lin (21 +2L)!(21+ 2L:2)![22'+2Lfl (1+ L)!(l+ Li 1):]—1
[Li

xii/21c [:66 a,(im)BLLfl(ico,0), (20)

(11(16) ) = limbo Iimk,_,0 a,(k, k';ico)k"k"’ , (21)

and

BLLi1(iO),O) = limk_,0 Iimk._,0 BLLfl (k, k';l(D , O)k‘Lk"(Lfl). (22)

Equation (19) has been derived by an analysis similar to that given in Appendix 1 of

reference 24.

Eq. (18) gives the long-range form ofthe dispersion-induced dipole for a pair of

distinct, spherically symmetric atoms,

Ap=D7R‘7+D9R‘9+D“R‘“+-... (23)

The coefficients D7, D9 , D11, and higher-order coefficients can be computed from

Eq. (20) for Di(l, L). For example, the leading dispersion dipole coefficient D7 is given

by

D7 = Wu, 1) + D+(2,0) + D’(l,2)+ D'(2, 1). (24)

The quadrupole moment induced in A by dispersion interactions with B satisfies

Aofimisp = h/(81t)5 [dk exp(—ik~R)k"2 [dk' exp(ik'-R)k’_2

4: d6 xB(k,k';i6)1§QB(-k,—k';iw,0), (25)

where

00 L 00 L'

Baa<k,k';w,0)=2 Z Z Z CLCL'Y1§4(9,¢)Y1¥(9',¢')'
L=0 M=—-L L'=0 M’=—L'

x ngflwxgcob) (26))

with Bmédk, k';w, 0) given by Eqs. (4. 19a)-(4. 19c) and an equation analogous to
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Eq. (4.15).

For simplicity, only the zz—component of the dispersion-induced quadrupole for a

pair of S-state atoms is considered here. Then only the components B51321 and Bwflfl

in Eq. (26) are nonzero. By an analysis similar to the derivation that led to equations (9)

and (10), the following results are obtained:

AG’Z‘stp = Z Z [A®_2 (1, L) + A90 (1, L) + A®_2 (1, L)], (27)

l L

where

L+l L+a—l

A®a(l,L)=sj‘L Z Z tiff!(2/n)2[(‘)‘21kj1(kR)jodk'jy(k'R)

J=|L-l| J’=|L+or—l|

  

xii/21: [:dco aP(k,k';iw)Bfim(k,k';iw,0) (28)

with or = O, i 2. The coefficients st and til?“ satisfy

2

s“ _ 22““ 2’1! L!(L+or)! (29)

’L (21+1)(2L+1) (21)! (2L)1(2L+2a)!’

tiff =(—i)J+°‘iJ'(2J+1)(2J'+1)(2L00|L+a 0X1 lOO|LO)(J'L+a oo|lo)

xZ(2LOM|L+or MXJIOMIL M)(J'L+aOM|1M), (30)

M

and

BLLm(k,k';ico,O) = me(k,k';im,0)[(1Lo M|L+a m)(1 L OO|L+a 0)]“‘.

(31)

It can be shown that A90, (l,L) vanishes as R —> 0. As R —) 00, an analysis similar

to that leading to Eqs. (18) and (20) gives:

AG), (1, L) = Ma(l,L)R‘(21+2L+2+°‘) (32)

with
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Ma(l, L) = s31tfi’IfL)(’+L+°‘)°‘(21+2L)1 (21+ 2L+2a)! [22’+2L+°‘(1+ L)!(l+ L+a)!]—l

xii/27: [:ch 0t,(ico)BLL+a(ico,O), (33)

where a = O,i 2, and

BLLmUm, 0) = Irmkg0 Iimk,_,0 BLLm(k,k';i(1), O)k’Lk"(L+°‘). (34)

Equation (32) gives the long-range form of the local dispersion quadrupole in an

atomic pair:

on =M6 R’6+M8 R"8+M10 R‘1°+..-, (35)

where the coefficients M6, M8, can be obtained from Ma (l,L) given by Eq. (33). For

example, the leading local dispersion quadrupole coefficient M6 satisfies

M6 = M_2(1,2) + M_2(2,1)+M0(1,1)+M0(1,O). (36)

5.3 Application to Hydrogen Atoms

For the hydrogen atom in the Is state, the z-component of the B susceptibility

density and the zz-component ofthe B susceptibility density have been determined in

Chapter IV. They satisfy

, 20) a , a d ,

BL Li1(k,k .6,0)=——2L—‘3-[f1(k) grid )-—Lt‘—Li—fr(k)fw(k )1

mL“0 wL—wLfl

26) a a d

+———2“‘”2‘ [fLi1(k')hth(k)_—‘I“—Li—'fL(k)fLir(k')] (37)

mun“o mL—wLil

WlthL Z 1 for BLL+1 311d L 2 2 for BLL-l’ and

26) a

2 I ‘2 f1(k')h0+(k), (38)

C0] ‘0)

 

[301(k3k';0>30)=

260 a

310(k,k';w,0)= (”2 ‘(0‘2 f1(k>g1-(k'), (39)
1-
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and

, 263 a , aLiZDLLiZ ,

BLLiZ(kak ;(‘020) z 2 L L2 [fL(k) ALLiZ(k )——fL(k) fLfl(k )]

(0L —(0 03L _(°Li2

26) a , aLDLLiZ ,

+ zLfl ”‘22 [fLiZ(k )CLL:2(k)+—— f1.(k) fLiz(k )]
(Gun '0) col. _0)LiZ

(40)

with L 2 1 for BLL+2 and L 2 3 for BLL_2, and

20) a

802(k,k';co,0) = 2 2 22 f2(k')coz(k), (41)
032 —(0

20) a

820(k.k';w.0)= 2 2 22 f2(k)A20(k'), (42)
(1)2 -(D

and

.. 2031. 3L , ,
BLL(k’k ,Q),O)= 2 2 [fL(k) ALL(k )+fL(k )CLL(k)]

(DL —(D

23% DLL (wifioz)
f (k)f (k'). (43)

(mi _m2)2 1‘ L

The linear charge—density susceptibility in Eqs. (12) and (28) has been obtained by

Koide [24]:

20) a ,

a1(k,k';co)= 2 ’ ’2 W)W ). (44)
CD] —(0

The fimc’tions (”Li 3L, fLU‘): dLi’ 813:“), hulk), DLL+na ALL+n(k)’ and CLL+n(k)

(n= -2, O, or 2) appearing in Eqs. (3 7)-(44) have been evaluated analytically and they are

given by Eqs. (4.28)-(4.36) and (4.42)-(4.50).

From Eqs. (20) and (33), the leading three local dipole coefficients (D7, D9 , and

D11) and the leading three local quadrupole coefficients (M6 , M8, and M10) have been

obtained for a pair ofground-state hydrogen atoms. The results are listed in Table 5.1.
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The ab initio values for D7, D9, and M6 [26-29] are also given in Table 5.1 for

comparison. Table 5.1 shows that the relative error is 6% for D7, 5% for D9 , and 12%

for M6. These errors stem from the approximations introduced in obtaining the function

¢[‘(k,m) from Eq. (4.22).

Table 5.1. Local dispersion dipole coefficients and quadrupole coeffi-

cients (in a.u.) for H(1s)- - -H(1s).

 

 

 

 

Coefficients This work Ab initio calculations

D7 -416.4 -394513 -394.5106b -393.5°

D9 -13420 -12800d

1311 -544000

M6 -58.3 -522"

148 -5873

M10 -257000

aRef. [26].

bRef. [27].

cRef. [28].

dRef. [29].
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Substitution oqu. (37) for BLLfl(k, k';03,0) and Eq. (44) for or,(k, k';c0) into

Eq. (12) gives the dipole induced in one hydrogen atom by dispersion interactions with

the second, with direct charge-overlap effects included:

L+I Lil+I 0°

40*(1,L)=4/nzpzri Z Z qii2ralar(co,+cor>“[0 dij(kR)f,(k)fL(k)

J=[L—l| J'=|Ld:l—l|

le dk'lJ'(k'R)f1(k')gLi(k')‘aL:1dLi((DL ‘09 Lid—1

xf dk'jy<k'R>f1(k')fw(k')1

+2113132181)! “DMD—II: dk'jy(k'R)f1(k')fLfl(k')

x1If,” dkjl(kR)fz(k)hLi(k)+ardri(wL wow)"

x1: dij(kR)f,(k)fL(k)1} (45)

with/2 1, L 21 for u*(1,L), and I 2 1, L 2 2 for u‘(l,L), and

[+1

Alv‘u,0)=-4/n2 p10 2 qlé’a1a1(o>1+co,>“[;° dk11(kR)f,(k)h0+(k)

J’=Il-l|

xEdk'j1.(k'R)fl(k')f,(k'), (46)

[+1 00

All-(1,1):4/712P11— Z qi,’_a1a,(col+w,)“[0 dij(kR)f1(k)f,(k>
1:11-11

x[:dk'jz(k'R)t1(k')gl-(k'). (47)

In deriving Eqs. (45)-(47), the intergral identity

fdmab(a2+m2)'l(b2+m2)—l=1t/2(a+b)-1 (48)

has been used for a, b > 0.

The lowest-order contribution to the local dispersion dipole in the pair H- - - H is the

sum oftwo terms, Au+(l,0) and Air-(1,1). From Eq. (18), both of these terms might be

expected to lead an R’5 behavior as R ——) 00. Thus this contribution is denoted by p.5(R):
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115(R) = Au+(l,0) + Al~l_(1,1)- (49)

The long-range coeflicient D5 vanishes, so [.15 (R) is purely an overlap effect. This is

consistent with the fact that the leading term ofthe long-range dispersion dipole for an

atomic pair varies as R'7. u5(R) can be evaluated analytically as a function ofthe

interatomic separation R, as shown in Appendix A. It is plotted against R in Figure 5.1.

Similarly, the function p.7(R) that reduces to the leading R’7 term as R -> 00 is the

sum offour terms:

117(13): 40*(1, 1) + Au+(2, 0) + Art—(1,2) + All—(2, 1) = x7(R)D7 R‘7 (50)

with D7 listed in Table 5.1. u7(R) is also given analytically in Appendix A, and it is

plotted in Figure 5.1. The damping fiinction x7(R) is shown in Figure 5.2.

The local dispersion quadrupole of H---H pair, which approaches the leading R—6

term at long range, includes three terms:

®6(R) = A®0(1,1)+ A6920, 0) + A®_2(1, 2) = x6(R)M6 R‘6, (51)

where M6 is listed in Table 5.1, and A90 (1,1), A®2(l,0), and A®_2 (1,2) are obtained by

substitution of Eqs. (40)-(44) into Eq. (28) and use ofthe identity (48), as well as the

identity

I:dwm2(az+w2)-l(b2+m2)—2 =n/4 b"(a+b)‘2 (52)

for a, b> O. This yields

46900.1):4/82 sf] 2 Z tlf'Orai/(zwmfi dij(kR)fE<k)
J=0,2 J'=O_,2

xf dk'jy(k'R)f1(k')An(k')

+[f’ dk'jy(k’R)ffi(k')[f koJ(kR)f1(k)C11(k)]

+2110“/<4co%)[;°dkjr(kR)f3(k)[g° dk'jy(k'R)ff(k')), (53)
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4920.0):4/82 5120 Z tlfizal 32/(601+(°2) [0 dklr(kR)f1(k)C02(k)
J'=1,3

x]: dk'jJ,(k'R)f1(k')f2(k'), (54)

and

A®_2 (1,2) = A®2(1,0) (55)

The function ®6(R) is evaluated analytically in Appendix A. It is plotted in Figure

5.3. The corresponding damping function x6 (R) is plotted in Figure 5.2.

The net quadrupole of the H- - - H pair with respect to the center ofmass satisfies

®?*(R)=2®6<R)—2Ru7(k). (56)

The dependence of @g‘H (R) on R is illustrated in Figure 5.4.

Figure 5.2 shows that the dispersion dipole and quadrupole are damped differently,

but both x6 and x7 drop to ~0.85 at van der Waals minimum (R = 7.85 a.u.) for H2 in the

triplet state.
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Figure 5.1. The dipole moment induced in one hydrogen atom by dispersion

interactions with a second, displaced by a distance R along the z axis. (1) u5(R)

defined by Eq. (49), and (2) u7(R) defined by Eq. (50).
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R(a.u.)

Figure 5.2. The damping functions x6(R) and x7 (R) defined by Eq. (51) and

Eq. (50), respectively. (1) x6 (R), and (2) x7 (R).
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Figure 5.3. The leading term in the local quadrupole moment ()6 induced in one

hydrogen atom by dispersion interactions with a second, displaced by a distance R

along the z axis.
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Figure. 5.4 The leading term in the pair quadrupole moment of a H- . - H pair

given by Eq. (56).
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CHAPTER VI

NONADDITIVE THREE-BODY ENERGIES, DIPOLES, AND FORCES:

AN APPROACH BASED ON NONLOCAL RESPONSE THEORY

6.1 Introduction

Effects of nonadditive three-body forces [1, 2] can be detected experimentally in

measurements ofthird virial coefficients [3-8], binding energies of rare-gas crystals at

lower temperatures [8-11], collision-induced far-infiared absorption by compressed gases

[12-15], and rotational and vibrational spectra ofvan der Waals trimers [16-27]. The

purpose of this work is to analyze the nonadditive three-body energies and polarization for

molecules interacting at intermediate or long range where intermolecular exchange effects

are negligible.

The analysis is based on a nonlocal response theory. In the theory, the polarizability

density or(r,r') and hyperpolarizability densities such as B(r,r',r") and y(r,r’,r",r'")

[28-31] are used to describe the nonlocal response of a molecule to external fields or local

fields due to its interacting partners. Thus equations for three-body energies and

polarization within the nonlocal response theory include the direct modifications ofthe

lowest-order induction and dispersion effects due to overlap ofthe electronic charge

distributions ofthe interacting molecules. These equations reduce to those from the

multipole expansion at long range, while at short range they are substantially damped.

The analysis is complete to third order in the intermolecular interactions. To this

order, dispersion [1, 2, see also 32-39], classical induction, and combined induction-

dispersion effects all contribute to the total interaction energies.

In Sec. 6.2, polarizability densities are used to analyze three-body dispersion

energies. The analysis establishes a simple physical picture ofthree-body dispersion
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interactions. In this picture, the spontaneously fluctuating polarization of one molecule

polarizes a second, polarizing a third, and producing a reaction field at the first molecule.

The resulting energy change ofthe first molecule depends on the correlation ofthe

fluctuating polarization. There are similar energy changes associated with their

polarization fluctuations in the second and third molecules. The sum ofthe energy changes

in all three molecules gives the three-body dispersion energy.

In addition to dispersion interactions, the work also identifies other polarization

mechanisms that contribute to nonadditive three-body energies. Induction energies, arising

from polarization of molecules due to the fields from permanent molecular charge

distributions, appear at second order as well as at third order. Combined induction-

dispersion effects occur at third order. They reflect the perturbation oftwo-body

dispersion interactions by the static field due to the permanent charge distribution ofthe

third body. These are treated in Sec. 6.3.

Sec. 6.4 contains an analysis ofthe three-body interaction-induced polarization. The

three-body polarization P(3) (r) is obtained by first finding the change in the three-body

energy AE(3)due to the application of a static, spatially nonuniform external electric field

Fe(r), and then calculating the firnctional derivative —5AE(3) /6Fe(r). The results are

expressed in terms offundamental molecular properties such as the permanent

polarization, polarizability density, and hyperpolarizability densities. Spatial integration of

P(3)(r) over all space gives the three-body interaction-induced dipoles [13-15, 40-44].

Three-body dipoles (as well as three-body potentials) are responsible for the component in

collision-induced far-infrared spectra of compressed gases that is proportional to the third

power ofthe density ofthe gas [13].

In Sec. 6.5, the forces acting on the nuclei in molecule A due to its interactions with

B and C are calculated. An electrostatic interpretation of nonadditive three-body forces on

nuclei is given based on a chain of relations that connect property derivatives with respect
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to nuclear coordinates, linear response tensors, and nonlinear response tensors [45-47]. It

is proven explicitly that the three-body dispersion force on a nucleus in molecule A results

fi'om the classical electrostatic attraction ofthe nucleus to the three-body dispersion-

induced polarization ofthe electrons on molecule A itself. This generalizes Hunt's proof

[48] ofFeynman's conjecture [49] about the origin oftwo-body dispersion forces to three-

body dispersion forces. In contrast to the dispersion forces, the classical induction and

induction-dispersion forces on a nucleus in A depend not only on the interaction-induced

polarization of electrons on A, but also on B and C.

6.2 Nonadditive Three-body Dispersion Energy

In this section, the three-body dispersion energy is analyzed using nonlocal

polarizability densities to account for the distribution of polarizable matter in a set of

interacting molecules A, B, and C. The analysis includes the effects of direct charge

overlap on the dispersion energy, but not the effects due to exchange or charge transfer.

The nonadditive three-body dispersion energy A532,, results fiom correlations in the

fluctuating polarization of molecules A, B, and C. The instantaneous polarization P“ (r,c0)

of molecule 1 polarizes molecule 2, which in turn polarizes molecule 3; the reaction field

fi'om molecule 3 acts on molecule 1, to produce an energy shift. AEffis)‘, is the sum of six

energy-shift terms, generated by all permutations of A, B, and C among the molecule

labels 1, 2, and 3. The three-body component of the reaction field Ff? (rv,0)) at molecule

A, due to fluctuations Pfl(r,c0) originating in A, is given by

1730-26)) = (1 +goBC)[dr---driv T(rv,riV)-ac(riv,r'";(0)

-T(r'", r")-aB(r", r';00 )- T(r', r)- Pf? (r,co ), (1)
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where 503C perrnutes the labels B and C in the expression that follows, and T(r, r') is the

dipole propagator,

Tamar) = T8130 - r') = Vavgdr— r1")

= [3(r0L — r2; )(rB — ré)—8afi|r— r'l2 ]/ (Ir— r'|5)— 41: / 3 60B 5(r— r') (2)

with retardation effects neglected. The energy shifi of molecule A in the field Ff? (rv,0)) is

ABS) =—1/2[drV<P§(rV,t)-F§(rv,t)). (3)

Substitution of the frequency Fourier representations for Pfi‘(rv, t) and Ft? (rv, t) gives

ABS) : —1/2 (1+gaBC)I: (100 I: dco '[dr---drV<P{? (rv,0) ')

-T(rv, riv ) - ac (riv, r'";00 )-T(r"', r")- aB(r", r';00)

-T(r', r)- P3 (r,c0 )> exp[—i(03 + 0) ')t]. (4)

The term given explicitly in Eq. (4) represents the polarization route A —> B —> C —> A,

and the term generated by 508C represents the route A —> C —> B —> A. Similar

expressions for AES’) and ABE?) are obtained by finding the reaction fields acting on B

and C.

The average energy change AES’) depends on the correlation in the fluctuating

polarization of molecule A at points r and r". According to the fluctuation-dissipation

theorem [50, 51], the correlation is related to the imaginary part of the nonlocal

polarizability density OLA" (r, r";c0) by

1/2<P,{¢(r,m)r>&a(rv,m ')+ P&a(rv,00 ')P&,(r,m ))

zit/21c ax(r,rv;0))8(0) +m') coth(hco /2kT). (5)

To illustrate the quantum mechanical nature ofthe fluctuations given by Eq. (5), the limit

as T —) 0 is considered, with infinitesimal damping; then ago, (r, r" ;c0) for the molecular

ground state IO) is given by [52]
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aga(r,rv;m) = NH: 2 [(0|P¢(r)|m)(m|Pa(rv)|0)6((0 —03m0)

m¢0

—(0|P¢(r)|m)(m|Pa(rV)|0)5(m +com0)], (6)

assuming for simplicity that the states lm) are real. As T —> 0 , coth(h0) /2kT) —) [0(03)

—0(—c0)], where 0(0)) is the Heaviside step function. Thus Eq. (5) gives

1/2 (PM) (r,0) )PtLa (rv, (0 ') + Pflg (rv ,0) ')PflA) (r, 00 )>

=1/2 Z (0|P¢ (r)|m)(m|Pa(rv)|0)[6(co —(0m0)+5((0 +com0)]8(co +0)') (7)

m¢0

or equivalently

l/2<Pfl’¢(r,t)Pfl’a(rv,t') +Pfl,a(rv,t’)Pfl,¢(r,t)>

= 1/2 2 (0qu> (r)|m)(m|Pa (rv)|0) {exp[—i(o m0(t—t')]+exp[i0) m0(t-t')]}. (8)

man

A direct computation ofthe dynamical correlations of the fluctuating polarization in the

ground state yields

1/2 (PM (r,t)Pfl,a(rv ,t') + p212, (rv,t') Pfl,¢,(r,t)>

=1/2(0|{exp(iI-lt/h)P¢(r)exp[-iI-I(t—t')/h]Pa(rv)exp(—th')

+exp(th' / h) P02 (r”)exp[—iH(t' — t)/ h]P¢ (r)exp(—th)}| 0)

-(0| P¢(r)|0)(0|Pa(rV)|0). (9)

In equation (9), the static polarization product has been subtracted from the expression;

static reaction field effects are treated separately in Sec. 6.3. Eqs. (8) and (9) are

equivalent. The fluctuation correlations persist in the limit as T —> 0 , where they are

determined by the intrinsic, quantum mechanical fluctuations ofthe polarization in the

molecular ground state.

Substitution of Eq. (5) into Eq. (4) gives
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AB?) = -h/41t (1+ gaBC)‘l‘j’odaijdr---drv Tr[T(rV ,ri")-0tC (riv ,r'";0))

~T(r"',r")~aB(r",r';(0)-T(r',r)-orA"(r,rv;0))]coth(hco/2kT), (10)

where

Tr[T(rV,riV)-ac(ri",r"';c0)-T(r"',r")-0LB(r",r’;(o)-T(r',r)-orA" (r,r";(0)]

a T0250" ,riv )org1r (riv,r"';c0)T,,2~,(r"',r")or§,38 (r",r';0))

xT.¢(r',r)a£;(-,r";co), (11)

and the Einstein convention of summation over repeated Greek subscripts is followed in

Eq. (11) and below. Then in the limit T —) 0,

AEEE) = —h/21t (1+ 5013C)RefdooIdru-drv Tr[T(r",ri")-orC (riv,r"’;0))

-T(r’",r")-0tB(r",r';0))-T(r',r)-0tA"(r,r";0))], (12)

where Re denotes the real part ofthe expression that follows. Use of

lims__,0[(x—(0)—ie]-l =P(x—w)’1+in5(x—0)) (13)

and the Kramers-Kronig relation [53] between the real and imaginary parts of the

polarizability density

a'(r,r';co)= l/1t P_[1:0dxor"(r,r';x)(x—co)'l (14)

(where P denotes the Cauchy principal value ofthe integral) gives

a(r, r';00) = or'(r, r';(0)+ ia"(r, r';(0)

= Iim8_,0 l/TE I: dxor"(r,r';x)(x -(o — ire)—l

=1im,_,02/n [:dxxou'(r,r';x)[x2 -(CD +18)2 1“. (15)

In the transformation between the second and third lines of Eq. (15), use has been made of

the fact that or"(r, r';x) is an odd firnction of the frequency x. From Eqs. (12) and (15),
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ABS) = —2h/1c3 (1+ 563C) 1im,_,0 [:dxfdyj: dzRe{x [x2 — (2+18)2 1“

xy [y2 — (z+ir»;)2 ]'1}J‘dr---drv Tr[T(rv,riV)-ac" (riv,r"'; x)

B.. A» v
-T(r'",r")-or (r",r';y)-T(r',r)-or (r,r ;z)] . (16)

Adding the corresponding expressions for ABE?) and AE(C3) to Eq. (16) and taking the

limit as 8 —> 0 yields

Asggp = —2h/1t3 [:dx [5° dy [: dz (x +y + z)(x + y)“(y + z)“(z+ x)"1

x Idr-ndrv {Tr[T(rv,riv)-ac" (riv,r'";x)-T(r"',r")

.613" (r",r';y)-T(r',r)-orA" (r,r”;z)]

+Tr[T(r" , riv ) - orB" (riv , r'"; y) - T(r'", r")

~orC" (r",r’;x)-T(r', r)-orA" (r,r"; z)]}. (17)

Use ofthe Born symmetry of the nonlocal polarizability density [28, 30],

oraB(r,r';co)=orBa(r',r;0)), (18)

and the symmetry ofthe T tensor, T(r, r’) = T(r', r), transforms Eq. (17) into

ABS; 2 —4h/7r3 dejo dy‘[(<:)dz(x+y+z)(x+y)_1(y+z)-1(z+x)_1

x Idr- --drv Tr[T(rv,riv)-orc" (riv, r'"; x) - T(r'", r")

B" n r r A" V

«1 (r ,r ;y)-T(r ,r)-a (r,r ;2)]. (19)

The frequency integrals over x, y, and 2 can be converted into independent quadratures

using the identity

(x + y + z)(x + y)"1 (y + z)_1(z + x)-1

: 2/1:[;°c16xyz(x2 +002)_1(y2 +62)“‘(z2 +62)*‘. (20)
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From Eq. (6), which holds in the limit of infinitesimal damping,

Edzz(22 +c02)_1a:é(r,rv;z)

= TE/h 260mg ((03,,0 +002)'1(0|Pa(r)|m)(m|PB(rv)|0)

m¢0

=n/2aQB(r,rV;im). (21)

Equations ( l 9)-(21) imply

AEES;p = —h/ n J: d0) [dru-dr" Tr[T(rV,riV)-ac(riv,r"';i(0).T(r"',r")

-orB(r", r'; i0) ) - T(r',r) - 01A (r,r";i0) )] . (22)

Equation (22) gives the principal result ofthis section; it expresses the nonadditive,

three-body dispersion energy as a tensor product ofthe dipole propagators and the

imaginary-frequency nonlocal polarizability densities ofthe three interacting molecules A,

B, and C. Within the nonlocal response model, AEg’gp has a simple physical interpretation

in terms of polarization fluctuations and the energy of polarization in the reaction field: A

spontaneous fluctuation in the polarization on molecule A polarizes B, which in turn

polarizes C; the induced polarization in C produces a reaction field acting at A. This

polarization route e.g. A —> B —+ C —-) A gives one term in the energy shift of A, with the

second term generated by the route A —> C —> B —) A. Similarly, there are energy shifts of

B and C associated with the polarization fluctuations in these molecules. The net three-

body dispersion energy is the sum ofthe energy shift of A, the energy shift of B, and the

energy shift of C.
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6.3 Nonadditive Induction and Induction-Dispersion Energies

Three-body nonadditivity appears at second order in the intermolecular interactions.

At this order, the three-body energy is the sum ofthree induction terms,

2 2 2 2
AE( >=AEggB+AEggC+AEggA, (23)

where AEEZAB represents the energy change in molecule A due to the static fields from the

permanent polarization ofB and C,

AEgXB-t —Idr-- ~~dr'"P0C(r'")T(r'", r') 01A(r',r) T(r, r”)- P63 (r"), (24a)

mac = ewe... <24)»

and

A533,, =pACAE8) (24c)

Equivalently, AE(C2) can be viewed as the interaction energy between P8: (r’”) and the

polarization induced in A by POB(r") (or similarly, with the roles ofB and C

interchanged). 1312533322 and AEggA represent the energy changes in B and C, respectively,

in the fields due to the permanent polarization of their interaction partners.

At third order, the total nonadditive three-body energy is the sum ofthe dispersion

energy from Eq. (22), the classical induction energy, and a combined induction-dispersion

term:

2113(3)=AE§§§p“mfg;+1359)d (25)

The classical three-body induction terms can be fiirther categorized into three groups,

according to their physical origins. These terms stem from (1) static reaction fields, (2)

third-body fields, and (3) hyperpolarization:

3 3

AE§3, —_AE§,3 + A1133} + AE(hy)p . (26)
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The static reaction-field effects correspond to the dynamic reaction field effects

considered in Sec. 6.2, but they originate in the permanent molecular polarization, rather

than the fluctuating polarization treated in Sec. 6.2. The static field due to the permanent

polarization of molecule A polarizes B; the induced polarization ofB sets up a field that

polarizes C, and C in turn produces a reaction field at A, causing an energy shift that

depends on the scalar product of the reaction field with the permanent polarization ofA

(and similarly, with the roles of A, B, and C interchanged). The static reaction field term

associated with the permanent polarization of molecule A is

ABS-2.4 = *ldr-"drv P6‘ (r)-T(r,r')-aB(r', r")-T(r".r"'

C m iv iv v A v

or (r ,r -T(r ,r )-P6 (r ). (27)

The net contribution to AE‘” fiom static reaction-field effects is obtained by adding

Angrif),A from Eq. (27) and the terms associated with the permanent polarization ofB and

C:

3 __ (3 (3) (3

458% - 41582.8 + ABM + 4135.36 (28)

The quantity ABS,2 can be viewed as lowest-order screening term. From Eq. (27), this

interpretation for AESr‘f),A holds as follows: the induction energy of molecule B, due to its

polarization in the field from P6A (r), is altered by the presence of C, since C is also

polarized by P6‘(r). The simultaneous action ofthe direct field from P6" (r) and the

screened field from the polarization induced in C by A causes an energy change in B. The

same interpretation holds with the roles ofB and C interchanged, due to the symmetry of

the T tensor. Equivalently, A5332 can be viewed as the interaction energy ofthe dipoles

induced in B and C at first order, by P6“ (r).

Third-body field and reaction field effects are related, but the polarization routes that

contribute to the third-body field terms begin and end at different molecules: as an

example, the route C —> A —> B —> A is considered; that is, C polarizes A, which polarizes
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B, producing a field at A and changing the energy. The term in AEB) associated with this

route is

AEingAB = —I dr---drv P6C(r)- T(r,r')-01A (r',r")'T(r",r'"

-orB(r"',riv -T(riv,rv)-P6" (rv). (29)

The net contribution to AEO) from third-body field effects is the sum of 135131.083 from

Eq. (29) and five additional terms from the remaining permutations of A, B, and C in the

polarization route:

(3) _ (3) (3) (3) (3)

AEtbf — AEtbf,CAB + AEtbfABC + AEtbf,BCA + AEtbfACB

(3) (3)

+AEtbf,CBA + AEtbf,BAC' (3 0)

In this equation, AEigixu denotes the right hand side of Eq. (29), after the label changes

C—>X, A—+Y, and B—)Z.

The third group of induction terms stem fi'om static hyperpolarization. For example,

the hyperpolarization energy ofA due to the concerted action of the fields from the

permanent polarization ofB and C is

£13261 2 —(1 + 5'.9BC)1/2J'dr---drv BA(r,r',r")E[T(r,r"’)-P63(r"')]

x1T(r',r“)-P1?(r“)1[T(r",r‘)-P§(r”)1. (31)

The net hyperpolarization contribution is

(3) _ (3) (3) (3)
111Ehyp — AEhmA + A1311“),B + AEhwfi, (32)

and the fiill three-body, third-order classical induction energy is the sum of AESQ from

Eq. (28), A513,} from Eq. (30), and 131313,), from Eq. (32).

Nonadditive combined induction and dispersion effects also appear at third order.

The dispersion energy between molecules A and B is altered by the presence of a third
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molecule C, because the permanent polarization ofC acts as the source of a static field

that perturbs the A-B interaction. An applied static field F° affects the A-B dispersion

interaction in two ways [31, 54]: First, each ofthe molecules A and B is hyperpolarized by

the simultaneous action of Fe and the fluctuating field fi'om its partner (A or B). This

effect is represented by use of an external-field dependent polarizability density

01(r, r';0), Fe) to describe the response of each molecule to the field from its neighbor.

Second, the correlations of the spontaneous, quantum mechanical fluctuations in the

polarization ofA and B are changed by F°. For example, the application of an external

field to a centrosymmetric molecule introduces correlations between dipolar and

quadrupolar charge density fluctuations; these correlations vanish in the absence ofthe

applied field. The applied field also alters the correlations of the fluctuating dipoles, at first

order for non-centrosymmetric molecules and at second order for centrosymmetric

molecules. To account for this effect, the field-dependence ofthe imaginary part ofthe

polarizability density is included in the fluctuation-dissipation relation:

1/2<P6f4> (r,0) )Pfifa (rv,0) ') + P6202 (rv,0) ')Pffid, (r,ro )>F°

= h/21t012;(r,rv;co,F°)6((o +(1)')c0th(h(o /2kT). (33)

Previously, Hunt and Bohr [54] have developed a theory for the dispersion dipole of

an A-B pair, based on the change in the dispersion energy due to a uniform, static external

field. After modification to allow for the nonuniformity of the field F6j due to the

permanent charge distribution of C, the same analysis applies here, with the external field

replaced by FOC. Then the nonadditive induction-dispersion energy associated with

polarization fluctuations in A and B is

AEgianc = —(1 +gaAB)h/21r I: dco‘fdrmdrv Bfiya(r’,r",r; 103,0)T75(r",r"'

X 61,32 (r'", riv ;ico )Tep (riv , r')Ta¢ (r, r" )ngb (r“), (34)
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and the nonadditive, three-body induction-dispersion energy at third order is

(3) _ 3) (3) (3) .

AEH-d — AEEA-nBy—C + AE(B---C)<—A + AE(C.~A)<—Ba (35)

that is, A5931 is the sum ofthe change in the A- - - B dispersion energy due to the

permanent polarization of C, the change in B- - -C dispersion energy due to the permanent

polarization of A, and the change in C- - - A dispersion energy due to the permanent

polarization ofB.

6.4 Nonadditive Dispersion Dipoles, Classical Induction, and Induction-Dispersion

Dipoles

In this section, nonlocal response tensors and reaction field theory are used to derive

the nonadditive three-body polarization induced in molecules A, B, and C. The method is

illustrated with the calculation ofthe dispersion polarization; then the results for the

classical induction and induction-dispersion polarization are summarized.

The three-body dispersion polarization P295}, (r) is determined by the firnctional

derivative of AE(3) with respect to a static external electric field F“, which may be
disp

spatially nonuniform:

Pégs)p(r) = —6 AEggp /6Fe(r)|F2=0. (36)

As noted in the previous section, application of an external field alters the dispersion

energy via hyperpolarization and via field-induced fluctuation correlations. These effects

are treated by allowing for the F° -dependence ofboth the real and the imaginary parts of

the nonlocal polarizability densities. Then the same analysis that led to Eq. (22) gives

11133322,, = 4m: [:66 jar-“<11.v Tr[T(r",riV)-orC(riV,r"';i(0,F°)oT(r"',r"

oaB(r",r'; i0) ,Fe)-T(r', r)oorA(r,rv;i0) ,Fe)]. (37)
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The polarization 12633,, (r) is the sum ofthree terms, the polarization Pdisp (r)A"B’C

induced in A by the dispersion interactions with B and C, and the polarization induced in

B and C by dispersion:

3 3 3 3Péigp“) ___ P((fis)p(r)A<—B,C +P§is)p(r)B+—A,C +1,((fis)p(r)C<—A,B_ (38)

(r)A(—B,C

The polarization P62, specific to molecule A is obtained by allowing for the

external-field dependence of the properties ofA alone. Thus, Péi)1,(r)A"B’C satisfies

P(s)disp (r)A(—B.C : h/K I: do) Idr'...drVi Tr[T(rV'l ,rV).aC (rV’er;iw).T(riV,rm

.aB(r"',r";iw)-T(r',r)-66A(r',r“;im,Fe)/5F6(r)|l,,:0] .(39)

Expanding 01A (r', rVi;i0), Fe) as a series in powers of F°(r) gives [31]

aA(r',rVi;i(0,Fe) zaA(r',rVi;i(0)+-[dr BA(r',rVi,r;i03,O)oFe(r)+---. (40)

Therefore

eaffiozrVHicore)/5F§(r)|,,=0=Bfifiaugrvtnimb), (41)

and

P(Egzfisp(r)’l“—B’C = h/tt [godm Idr'---dr"i T6Y(r"i,rv)a$5(rv,riv;i(0)T5€ (riv,r"')

B m n.’ n r A r Vi .'

xa8¢(r ,r ,10))T¢;2(r ,r)Bwa(r ,r ,r,1c0,0). (42)

Equation (42) gives a key result: the polarization induced in molecule A by its dispersion

interactions with B and C depends on the imaginary-frequency hyperpolarizability density

BA(r, r', r";ico, 0) ofA and the polarizability densities orB(r, r';ico) and are (r, r';ico) ofB

and C, integrated over frequency.

The nonadditive three-body dispersion dipole is obtained fi'om Eqs. (38), (42), and

the corresponding equations for the dispersion-induced polarization ofB and C, by

integrating P534, (r) over all space with respect to r.
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The three-body, classical induction contribution to the polarization ofA is obtained

fi'om Eqs. (23)-(32) and the analog ofEq. (36), by allowing for the F° -dependence ofthe

polarization P6“ (r) and susceptibility densities 01’“ (r, r’) and B’“(r, r', r") of molecule A

alone. At second order, the induction contribution is

Pigg(r)A(—B,C : Idl’" . 'dl'iv BA (I',I",l'")I[T(I", rm) _ P§(I’"’)][T(l’",l‘iv)- P€(riv)]

+(1+1(.9BC)J'dr'---driv 01’“ (r, r')-T(r', r") -orB(r",r'")

.T(r"',r“’)-P§(ri"). (43)

The first term in Eq. (43) gives the lowest order of the polarization induced in A due to

the simultaneous action ofthe fields from the permanent polarization ofB and C. The term

given explicitly in the second line ofEq. (43) represents the polarization induced in A due

to the field from B, which is polarized by the permanent charge density of C.

The induction contribution from third-order effects is the sum of three terms:

1,1863%") = T1 + T2 + T3, (44)

separated according to the highest order ofthe susceptibility of molecule A contained in

the term. The T] term depends on the linear response tensor of molecule A; it is given by

T1 = (1+ (013C)J‘dr'---drVi {01A (r,r')-T(r',r")-0tB(r",r"' °T(r"',riv)

.aC(rIV,rV).T(rV,er).P0A(rVI)

A r I n B n m "I 1V C 1V V V V1 B VI

+01 (r,r)-T(r,r )-or (r ,r -T(r ,r )-or (r ,r )-T(r ,r )~P6 (r )

+aA(r,r')-T(r',r")'orB(r",r"' -T(r"’,ri")-01A (riv,rv)-T(rv,rVi)-P6C(r"i)

A r I n B n M iv . m V A V 1" VI C V1

+a (r.r)-T(r,r )1) (r ,r ,r ).1T(r ,r )‘1’0(r )11T(r ,r )‘Po (r )1

+1/2 or’“(r,r')-T(r',r")-BB(r",r"',riv):[T(r"',rv)-P6:(rv)]

x1T(r“',r"i)-P§(r"‘)1). <45)
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The first three terms in Eq. (45) give the polarization induced in A due to sequential linear

response to the permanent polarization of A, B or C. The polarization routes represented

by the first three terms given explicitly in Eq. (45) are A —> C —> B —-> A,

B —-) C —-> B —-) A, and C —-> A —> B —) A, respectively. The final two terms listed in

Eq. (45) give the polarization induced in A by linear response to the hyperpolarization of

B, either bilinear in P6“ and POC (fourth term) or quadratic in P6: (fifth term). The operator

(08C perrnutes B and C in the five terms given explicitly, completing the set of induction

mechanisms that involve linear response by molecule A.

The field at A due to the permanent polarization ofB (or C) and the field at A due to

the induced polarization in B (or C) act together, to polarize A via its static [3 hyperpolari-

zability density, BA(r, r’, r"). The T2 term represents this effect:

r2 = (1+ 6%)] dr'---dr"i {BA(r,r',r”):[T(r',r"’)-P63(r"')]

X [T(r", er ) .aC (rill, rV). T(rV, rVi ). POB(rVI )]

A r n . r m B m n iV C iv V

+(3 (r,r,r )-[T(r,r )-1’o(r )1[T(r ,r )‘a (r ,r)

-T(r",r"i)-P5‘(r"‘)]

A r n . r m B m n iv 13 iv V

+13 (r,r,r ).[T(r,r )-1’o(r )][T(r ,r )‘a (r ,r )

-T(rv,r"‘)-P§<r“)1). (46)

The terms given explicitly in Eq. (46) account for the effects due to P63 (r'") and an

induced polarization. In these terms, the induced polarization in C stems either from the

field of P63 or fi'om the field of P6“; the induced polarization in B stems from P5. A

corresponding term with the integrand B‘“ (r,r',r"):[T(r',r"') - P63(r'")][T(r", riv

-orB(riv , rv ) - T(rv , rVi ) . P6“ (rVi )] is not included here, because it represents a third-order,

two-boob) effect.
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The third classical induction term T3 in the polarization ofA reflects the y hyper-

polarization ofA by the simultaneous action of the fields due to P63 and POC :

T3 = (1 +goBC)1/2 Idr'mdr“ y‘“(r,r',r",r"')E[T(r',riv)-P630” )]

x [T(r", r"). 1,630" )][T(r'", .-"i)-P0C (.-"i )1. (47)

In deriving Eq. (47), the following relation has been used [47]:

SBA(r,r',r";0)1,(02,F°)/6F°(r"')|Fc___0 : y'“(r,r',r",r'”;(01,602,0). (48)

The final component ofthe polarization ofA is the induction-dispersion term,

obtained from Eqs. (34), (3 5), and the analog ofEq. (36):

P62,” (r) = (1 +goBC)h/21t I: dmIdr'u-dr‘d

x[y€78a(r',r",r'",r;i(0,0,0)TY€ (r",riv)agB¢(riV,r";i0))T¢B(rV,r’)

xT5n(r"',rVi)P6Cn(rVi)

+31%?) (r',r",r"';ico,0) Tys(r",riv)B‘:‘¢a(riv,rv,r;i0),O)T¢B(rV,r')

xr2,,,(r'",r"i )P§n(r"‘)

+86% (r',r",r'";ic0,0)TY8 (r",riv)org¢ (riv,rv;i(0)T¢B(rv,r')

Xqu (r'",rVi )afia (rVi ,r;0)]. (49)

The terms in Eq. (49) are interpreted by comparison with the result for the polarization of

A due to dispersion interactions with B in the absence ofC [48]:

P226733“) = h / 2n fdedr"-odr"i B3702 (r',r",r;ico ,0) T75 (r",r'")

xa§(r"',r“';im)'rgp(r“’,r'). (50)

Thus, the first term gives the change in the dispersion polarization ofA due to the lowest-
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order static field from C acting on A. The second term gives the change in P6237513 (r) due

to the same field acting on B. The third term gives the polarization induced in A by the

field from P337; (r), that is, the polarization induced in B by two-body dispersion

interactions between B and C.

6.5 The Electrostatic Interpretation of Nonadditive Three-body Forces on Nuclei

The nonadditive three-body force on nucleus K in molecule A is obtained by

differentiating AEO') and AB“) with respect to the coordinate RK ofK:

1312me = «3135(2) / 6R5, (51)

[31:53) = —6AE(3) / 611$, (52)

where AEC") is given by Eq. (23), and AB”) is given by Eq. (25). To find the derivatives

with respect to RK , use is also made of a chain of relations that link the permanent

polarization, linear response tensors, and nonlinear response tensors [45-47]:

apgg(r)/0R§ = zK [dr'aay (r,r';0)TYB(r',RK), (53)

adafi(r,r';0))/ 611$ = ZKIdr"Ba65(r,r',r";co,0)T8Y (r",RK ), (54)

and

I H. K _ K "I I H I". I" K

0022,63 ,r ,0)],(02)/5R5 —Z Idr ya6fi(r,r ,r ,r ,0)],602,0)T85(l‘ ,R ).

(55)

In these equations, ZK represents the charge on nucleus K, and P61 (r) denotes the

electronic component ofthe permanent polarization. A common explanation holds for

Eqs. (53)-(55): When a nucleus shifts within a molecule, the electrons respond to the

resulting change in the nuclear Coulomb field via the same polarizability densities that

characterize the response to external fields.
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First the third-order forces AFKO) are evaluated. AFKG) can be categorized into

dispersion, induction, and induction-dispersion forces according to the terms in ABC” with

which the forces are associated. The three-body dispersion force on nucleus K in molecule

A is obtained from Eqs. (52) and (54):

AFOESEP =h/ 1t ZKI: dcoJ'dr-ndrVi T131 (rVi,rv)a$5(rv,riv;i03)T58(riV,r"')

x 01,3, (r'", r"; i0) ) Tim (r", r30?!“ (r', rVi , r; i0) , 0) TM (r, RK ). (56)

A comparison of Eq. (56) and Eq. (42) for ngg’c (r) shows that the three-body

dispersion force on nucleus K in molecule A is the classical Coulomb force of attraction of

nucleus K to the three-body, dispersion polarization ofthe electrons on the same

molecule:

151763;) 2 sz'drT(RK,r) r3310“). (57)

To leading order, the dispersion force on a nucleus in A depends on the perturbed

electronic charge density ofA alone, not on the charge densities ofB or C. This proves

that Feynman's statement about the origin oftwo-body dispersion forces between atoms in

S states generalizes to three-body dispersion forces among molecules, without restrictions

on symmetry [48, 49].

The nonadditive induction-dispersion force on nucleus K in molecule A is

“fig” 2 szdrT(RK, r)-[P,’_‘,d (r) + ngcu) + 12530)], (58)

where 123;;9 (r) denotes the polarization induced in B by its two-body dispersion

interactions with C. In deriving Eq. (58), the transformation

j-dr" 6P6m°(A)(rv)/ 0RK T(r,r") = ZKT(r,RK), (59)

has been used. In Eq. (59), P6‘“c(‘“)(rv) represents the nuclear contribution to the

permanent polarization of A. Equation (58) contrasts with Eq. (57): the induction-
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dispersion force involves not only the attraction of nucleus K to the electrons of A, but

also to those ofB and C.

Similarly, the third-order induction force on nucleus K in molecule A is

15173333) : zK I dr T(RK,r)-[P§§3>(r)+ P332>(r)+ P.C,f,2>(r)], (60)
11

where P113330) denotes the classical polarization induced in B by interactions with A and

C at second order. P3530) satisfies

P3330) = Idr“ - - driv [orB(r, r')- T(r', r”)-01C (r", r'" -T(r'", riv)- P6“ (riv)

+aB(r,r')-T(r',r")-a’“(r",r'" .T(r"',riV).P§(riV)

+aB(r,r')-T(r',r")-aC(r",r"' -T(r"',riv)-P(?(riv)]

+I dr'---driv BB(r,r',r"):[T(r",riv)-P6: (riv)]

x [T(r',r"')-P6“(r"')+1/2T(r',r"')-P63(r"')]. (61)

The nonadditive three-body force on nucleus K in A at second order is obtained

from equations (23) and (51):

“352) = zK [ drT(RK, r)-[Pi(n2d)(r)’“‘_B’C + 125,130?“ + piggoft-B], (62)

where Pf;6(r)B"C is the polarization induced in B by the permanent polarization of C, at

first order:

Pfgg(r)B‘—C = [ dr' dr"a (r, r') - T(r', r")- P63 (r"). (63)

Eqs. (57), (58), (60), and (62) provide an electrostatic interpretation of all ofthe

nonadditive three-body forces on nuclei in interacting molecules A, B, and C.
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6.6 Summary and Discussion

Nonadditive three-body dispersion interactions appear at third order; they result

from the correlations of the spontaneous, quantum mechanical fluctuations in the

polarization of the three interacting molecules A, B and C. The three-body dispersion

energy is given by Eq. (22) as a tensor product ofthe dipole propagators and imaginary-

frequency polarizability densities of molecules A, B, and C, integrated over frequency.

Unlike the three-body dispersion energy, which is a third-order effect, the classical

nonadditive three-body induction energy includes a contribution from second order. The

second-order induction energy is the sum of ABEZAB, [£ch , and AEgéA, where AEgiiz

represents the lowest-order energy change in Y due to the static fields from the permanent

polarization ofX and Z. AEEZAB is given by Eq. (24a). At third order, the classical

induction energy contains three types of terms: (1) a static reaction field term AB“), (2) a

third-body field term ABS}, and (3) a hyperpolarization term AB(h3y)p. The mechanism that

gives rise to AES} is related to the dynamic reaction field effects in the dispersion

interaction, but it originates in the permanent polarization, rather than the fluctuating

polarization. The static field due to the permanent charge density of molecule A polarizes

B, which then polarizes C, and the polarization induced in C produces a reaction field at

A. The resulting energy change in A depends upon the permanent polarization ofA and

the polarizability densities ofB and c. This term 181333,, is given by Eq. (27), and the total

energy ABS]? fi'om this mechanism is obtained by adding ABS},A to additional two terms

ABffr’f),B and ABSEC , the energy changes in B and C originating in the permanent charge

distributions ofB and C, respectively. The third-body field terms depend on the permanent

polarization oftwo molecules, rather than one molecule as in the static reaction field
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terms, because the polarization routes that contribute to ABE}? begin and end at different

molecules. One representative term is defile“, given by Eq. (29). The polarization route

associated with this term is C —> A —> B —> A; that is, C polarizes A, polarizing B,

producing a field at A and changing the energy. ABg} includes five additional terms

obtained from the remaining permutations of A, B, and C. In addition to the static

reaction-field and third-body field effects, hyperpolarization also contributes to the pure

induction energy at third order. In this mechanism, the concerted action ofthe fields due

to the permanent polarization of molecules B and C produces an energy change in A via

the B hyperpolarizability density of A. The hyperpolarization energy ofA £13618 satisfies

Eq. (31), and the total hyperpolarization energy is the sum of AE‘QP’A, £13;th and

Anyhc. Nonadditive effects of induction and dispersion also occur at third order. For

example, the dispersion energy between molecules A and B is changed by the static field

from the permanent polarization of C. The induction-dispersion energy AEE‘S",,‘)NB)(_C

depends on the scalar product of the static field from POC (r) and the dispersion-induced

polarization in each of the molecules A and B. The expression for ABEQUBFC is given by

equation (34), and the net contribution from the induction-dispersion effects is obtained by

adding AEiiiu-By—C to additional two terms AEEQCFA and AEE%)A)2_B.

The three-body polarization 15(3)(r) is derived based on the change in the three-body

energy due to a static external electric field F°, which may be spatially nonuniform:

P(3)(r) is obtained from the fiinctional derivative of AB“) with respect to F‘. The three-

body polarization 15(3) ( r) can also be categorized into dispersion, classical induction, and

induction-dispersion terms, depending on the term in the interaction energy with which

P(3)(r) is associated. The dispersion polarization P621:)(r) induced in molecule A by its

interaction with B and C is given by Eq. (42), which depends on the imaginary-frequency

B hyperpolarizability density ofA and the imaginary-frequency polarizability densities ofB
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and C. Two distinct physical effects contribute to Pfigkr): (1) the applied field changes

the response of a molecule to the local fields from the neighboring molecules, due to

hyperpolarization effects, and (2) the external field also alters the correlations of the

spontaneous polarization fluctuations in the molecules because the imaginary part of the

polarizability density depends on the applied field.

The three-body, classical induction contribution to the polarization ofA is obtained

by allowing for the Fc -dependence ofthe permanent polarization P6“ (r), the polarizability

density 01’“ (r, r'), and the hyperpolarizability density B’“( r, r', r"). This yields a total of 9

terms, given by Eqs. (45)-(47). Finally, the induction-dispersion contribution to the

polarization ofA satisfies Eq. (49).

The three-body dispersion force acting on nucleus K in molecule A is given by

Eq. (56) or equivalently by Eq. (57). Eq. (57) shows that this force can be understood as

the electrostatic attraction of the nucleus K to the three-body dispersion-induced

polarization of the electrons in molecule A itself. This provides the generalization of

Hunt's proof [48] ofFeynman's conjecture [49] about the origin oftwo-body dispersion

forces to three-body dispersion forces.

In the next chapter, time-independent perturbation theory is used to analyze

nonadditive three-body energies and polarization through third order in the intermolecular

interactions. By proving the equivalence with the results given in this chapter, the

reaction-field method and the perturbation analysis are unified.

This work should prove useful in later computational work on the long-range

contributions to nonadditive three-body potentials. From equations (22)-(35) and (42)-

(49), it is easy to derive the corresponding long-range expressions for three-body

interaction energies and dipoles. The results are obtained in terms of single-molecule

properties such as permanent multipole moments, polarizabilities, and

hyperpolarizabilities. Given ab initio values for these properties, the long-range model

should yield accurate three-body potentials and dipoles at large intermolecular distances
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where numerical cancellation and basis limitations make it difficult to obtain accurate

results from an ab initio approach. Additionally, usefirl information on short-range

exchange effects [SS-60] may be obtained by comparison of long-range models and ab

initio calculations [61-66] or experimental data. Experiments that are relevant to three-

body interactions include measurements ofthird virial coefficients of compressed gases [3-

8], binding energies ofrare-gas crystals at low temperature [8-11], collision-induced far-

infrared absorption by dense gases [12-15], and rotational and vibrational spectra ofvan

der Waals trimers [16-27].
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CHAPTER VH

NONADDITIVE THREE-BODY INTERACTION ENERGIES AND DIPOLES:

PERTURBATION ANALYSIS

7.1 Nonadditive Three-body Interaction Energy at Second Order

For three interacting molecules A, B, and C, the Hamiltonian is

HzHA+HB+HC+VAB+VBC+VCA:H0+V’ (1)

where HX is the Hamiltonian for molecule X when isolated, the unperturbed Hamiltonian

H6 is the sum HA + HB + HC , VAB is the perturbation due to interaction between A and

B, (similarly for VBC and VCA), and V = VAB + VBC + VCA. Here the intermolecular

exchange effects are neglected, and thus the eigenstates of H6 can be written as direct

products |klm) ofeigenstates |k) of HA, |l) of HB, and |m) of HC.

At second order, the change in the ground state energy ofthe interacting molecules

A, B, and C is [l]

A130) =—(‘P6|VGV|‘P6). (2)

In Eq. (2) I‘I’O) denotes the three-body ground state |000), and G is the reduced resolvent

operator, given by

G=(1—1aooo)(Ho —Eo)“‘(I—eooo), (3)

where 59000 is the ground-state projection operator, 69000 = |000)(000|, and B6 is the

unperturbed ground state energy. For a set of interacting molecules A, B, and C, G can be

split into 7 terms, to reflect different possible molecular excitation patterns:

120
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G = GArooBtofi + 68898508 + Genital?

+GA$BQS + GAEBCgog + GBeBCgJS‘ + GAeBec. (4)

In Eq. (4), G‘“ is the reduced resolvent for an isolated molecule A, and 50‘6“ is its ground-

GAGE

state projection operator. 506: contains the terms in the sum-over-states expression

ofEq. (3) with both molecules A and B in excited states, but C in the ground state, while

GA®B€+3C contains the terms with all three molecules excited.

Substituting V = VAB + VBC + VGA and then expanding the sum in Eq. (2) gives 9

terms. Ofthese, there are three additive two-body terms, — (W6 | VAB G VAB I‘I’O),

—(‘I’6 I VBC G VBC Nb), and -(‘P6 | VCA GVCA I‘Po). The remaining 6 terms give the

nonadditive three-body energy. All of the nonadditive terms are treated here. First the two

terms involving the perturbation operators VAB and VCA are analyzed:

‘(TOIVAB GVCA lw0)_<‘PO|VCA GVABiqu)

= _<\PO|VAB GASOgJOgVCAIT01‘<‘P0|VCA GAME)3 698 VABWO)

= —I dr'- --dr'" a, (r, r”)P6§Y (r")TBS(r', r”')P6CS(r"')

><1<OIPi‘(r)GA Pic-'10) 401111006“ P301011

= —jdr'- --dr'"aaB(r, t-')r2,Y (r, mpg, (r")rB2,(r', r"')P0C5(r”’), (5)

where the Einstein convention of summation over repeated Greek subscripts has been used

in Eq. (5) and below, and the perturbation VAB has been written in the form

vAB = -[drdr'1>:(r)ra[,(r, r')PBB(r') (6)

with Pa(r) denoting the a-component ofthe polarization operator and

TaB(r,r') = VaVB(|r — r'l'1 ), the dipole propagator. In Eq. (5), P6a(r) a (OlPa(r)|0),

and the nonlocal polarizability density (1360, r') is defined by
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aésw') = (OIP:(r)GA $0010) +<01Pi“(r') 6" P3010). (7)

Eq. (5) is equivalent to Eq. (6.24a) for AEng because ofthe symmetry of the T-tensor

Tag (r, r') = T130: (r', r) and the Born symmetry [2, 4] of the polarizability density

“are“: r') = a6a(r’, r). It gives the lowest-order energy change in molecule A due to the

fields from the permanent polarization ofB and C. Equivalently, equation (5) can be

viewed as the interaction energy between P62 (r’") and the polarization induced in A by

P630") (or similarly, with the roles ofB and C interchanged). The sum ofthe two terms

containing operators VAB and VBC is identical to Eq. (6.24b) for ABSQC , and the sum of

the two terms containing operators VBC and VGA is equivalent to Bq.(6.24c) for AngA.

7.2 Nonadditive Three-body Energy at Third order: "Circuit" Terms

At third order, the change in the ground state energy ofthe interacting molecules A,

B, and C is given by [l]

AE‘3)=(‘I’6|VGV°GV|‘P6), (8)

where V° = V — (000|V|000).

Substituting V = VAB + VBC + VCA and then expanding Eq. (8) gives 27 terms. Of

these, there are three additive two-body terms, in which a single perturbation operator

such as VAB appears three times; the remaining 24 represent the nonadditive three-body

terms. All ofthese three-body terms are considered here; but in this section, attention is

focused on the six terms with interactions of "circuit" type. These terms contain the

operators VAB , VBC , and VCA, each appearing once. A representative term of this set is

(W6 | VAB G Vfic G VCA I‘I’O). From Eq. (4) for G, retaining only the nonzero terms yields
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(‘1’6|VAB GVB°C GvCA [810)

2 (W0 IVAB GA6903 $90: VBC GAeC 5008 VCA We)

+(‘POIVAB 58503 690C V130 GC 98 903 VCA 1W0)

+(‘P0 l VAB GAGBB 690: VBC GA 691113 693 VCA W0)

+0110 lVAB GAGBB {Joc Vrgc GA®C 6903 VCA ITO) (9)

The sum of the "circuit" terms in ABC” is

ABS} = (1 +5.9AB +5.913C +5.;AC +goABC +60ACB)<"P6 |vAB 6ng GVCA [810), (10)

where goAB interchanges the molecule labels A and B, pABC permutes the labels

A —-) B —) C —> A, and similarly for the remaining permutation operators. In ABE? ,

induction and dispersion effects are separate and additive. The first three terms in Eq. (9)

and the terms into which they transform under the permutations in Eq. (10) represent

induction, while the fourth term and its transforms represent dispersion. This follows from

an expansion ofEq. (10) into its component matrix elements, using Eq. (6) for VAB , its

analogs for VBC and VCA, and a sum-over-states representation ofG from Eq. (4).

From Eq. (10), the terms that contain ground-state matrix elements ofthe

polarization operator for molecule A, and transition matrix elements for molecules B and

C are selected, and they are denoted by AESBA. For simplicity, it is assumed that the

molecular eigenstates may be taken as real. Then

AE‘ci’n = -[dr---dr"<0IP:(r)10><0IPt(rV)I0)

x Z '(0|PBB(r')| k)(k| 1>,’3(r")|0)(0|1>2~,C (r'")

k,m

x<mlP§(r"’)IO>12 4134;} +2Ai‘mr + Am)‘1

 m)

+2 A305,, + Am)‘1]TaB(r,r')T75(r",r'")T2¢(r'V,rV). (11)
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The prime on the summation in Eq. (11) implies that k = 0 and m = 0 are excluded from

the sum; Ak denotes Bk - B6, the difference in the energies ofthe unperturbed states k

and 0 for molecule B (and similarly for Am ). Following algebraic simplification and using

Eq. (7) for the definition ofthe nonlocal polarizability density, Eq. (1 l) transforms to

ABQA = —Jdr-- -drv P6: (1') 1160;301:337 (r', r")TY5 (r", r'"

C I" IV 1V V A V

xor522(r ,r )T8¢(r ,r )P6¢(r ). (12)

Equation (12) shows that the three-body "circuit" induction can be understood as a static

reaction-field effect, where the permanent polarization ofA polarizes B, polarizing C,

giving a reaction field back at A, with an energy shift that depends on the permanent

polarization of A. Eq. (12) is identical to Eq. (6.27) from the reaction-field method. The

net contribution to the induction energy from the "circuit" terms is given by

ABS:A + AEQ’)B + AE(3) which is equivalent to Eq. (6.28).
on , cir,C ’

The final component of ABE? comes from the fourth term in Eq. (9) and the

corresponding terms generated by the permutations in Eq. (10). It represents the

nonadditive three-body dispersion effects. This component is denoted by AEEfi’S)p ; in matrix

element form

Anggp = —J'dr---drv x 2'(0|P:(r)lj><iji‘(r'>|0>

j,k,m

x<0|PBB(r') m)<m|P8C (r'V)|0)
 1<)(k|1’yB (r")IOXOIPs? (r'")  

x[2(AJ~ +Ak)"(Aj +Am)”' +2(Aj +Ak)'1(Ak +Am)“

+2(Aj +Am)‘1(Ak + Am)"]ra[,(r,r')r,5(r",rm)r2,(r”,rV). (13)

The quantity in brackets in Eq. (13) simplifies to 4(Aj + Ak + Am)(Aj + Ak )"1 (AJ-

+13,,,)“(Ak + Am)". Then with Eq. (6.20), Eq. (13) transforms to
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AES‘ZP = —h / 7: J: dco [dr-udr" Tr[T(r",r'V)-ac(r"’ ,r"';i0))-T(r"',r")

~aB(r",r';im)-T(r',r)-a’“ (r,rv;ico )] . (14)

This is identical to the dynamical reaction-field result for the dispersion energy given by

Eq. (6.22); in this case, the fluctuating polarization ofA acts as the source ofthe field

polarizing B, which polarizes C, giving a dynamic reaction field at A, and an energy shift

depending on the correlations in the fluctuating polarization of A. The results from Eqs.

(12) and (14) thus give a unified physical picture ofthe "circuit" terms in AE(3), as a

combination of static and dynamic reaction-field effects.

7.3 Third-body Perturbation of Two-body Interactions

Next, the remaining three—body contributions to the interaction energy AB“) are

analyzed from Eq. (8). In Sec. 7.2, the 6 terms in which VAB, VBC, and VCA each appear

once have been calculated; here 18 terms are evaluated in which one of the perturbations

appears twice, one appears once, and the third perturbation does not appear. The sum of

terms given by

AE(3)(AB, AB, AC) = (we |vAB GVXB GVAC|~110)+()110|vAB GVXC GVAB pro)

+(WOIVACGVXBGVABIW6) (15)

is representative ofthis set. By permuting the molecule labels in Eq. (15), 15 other distinct

terms, in 5 sets of 3, are generated. The set AB(3)(AB, AB, AC) can be categorized as the

perturbation of the two-body A-B interactions, due to C acting on A.

From Eq. (4) for the reduced resolvent operator,

(810 IVAB GVXB GvAC I812)

: (‘1’0 I VAB GAME); {.23 V23 6AM? 898 VAC W0)
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+010le (38603 508 VXB GAQii 691C) VAC 1‘90)

+(‘I’o I VAB $653108 VXB GA“? 108 VAC I‘I’o), (16)

and

(WC |vAB GVXC GvAB M)

= (‘I’o I VAB 6%? tog VXc 6A8)? 508 VAB | To)

+(‘I’0 IVAB GB @3603 VXC GAGBB 50% VAB I‘Po)

+0110 iVAB GAGBB 698 VXC GB 693590: VAB 1W0)

+0140 | vAB GA613 5.93 vXC (#93198 vAB I‘I’O). (17)

(‘PO |VAC GVXB G VAB |‘I’6) is the complex conjugate of (‘PO |VAB G VXB GVAC I‘I’O)

fiom Eq. (16).

AB(3)(AB, AB, AC) can be separated into 3 sets S1 — S3:

AE(3)(AB, AB, AC) = s] + 82 +83, (18)

according to the types of matrix elements appearing in each. S, terms are given by

51 =<T01VAB 94591113690 VXB GASOii 600C VAC ”0)

+(‘P01VAC 0A8??? 1.58 VXB CAM? 690C VABI‘PO)

+0110 IVAB 6AM? 690: VXC GAf'Jii 690: VAB 1‘10), (19)

In matrix element form,

81 = —[dr---dr"_z" 1<OIP:(r)Ii><jIPi’A (r')ll><1|P;‘(r")|0>

J.

0) +<olPi‘<r")lj><ilP:A(0100111?(r')
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 +<0|P5<r1|1><JIP$A(r">ll><lIPé‘ (r') 08474?

xpg35(r"')1>5-’j,(r“’ )pg, (rv )ras (r, r"')r[,2(r', ri" )r,¢(r", rv ). (20)

From the definition of the B hyperpolarizability density [3],

Bum“, r',r";—0)o;(01,0)2)

=[1+C(c01—>-001,0)2 —)—002,0)O —>—(00)]

x [(Ol Pa (r)G((0 c,)1’(§’(l")G((JD 2)Py("")10>

 0)

+(0l Py (r")G’ (—0>2)P§(r)G(<D 1)P13(I")

+<0lPa(r)G(coa)P2°(r")G(w1)Pr(r')

 
0)], (21)

Eq. (20) transforms to

S1 = —1/2j'dr...drv 13A (r,r',r";0;0,0)5[T(r,r'")-P63(r"')]

x1T(r',r“)-Pr?(r‘”)1[T(r",r”)-P§(rV)1. (22)

In equation (21), (06 a (01+c02; C(col -—> —031,032 -—) «02,002I —) —coo) denotes the

operator for complex conjugation and replacement of (01 by —(0 1, 0) 2 by —(02, and (0 o by

— co c,; the frequency-dependent reduced resolvent operator G((0) is given by

6(a)) = (1—I0><OI)(Ho — Eo — he )"(I —I0><OI). (23)

The S] term from Eq. (22) reflects the hyperpolarization of A by the fields from the

permanent polarization ofB (taken twice) and the permanent polarization of C.

S2 terms satisfy

S2 = (1+C)[<\P0iVAB 58598 605 VXB 04601113598 VAC ”’01

+(‘P01VAB GB @8330: VXC GA®B fJOC VAB l ‘10)]

0><0|PsB(r'")  k) =-1dr-«w P86):'1<oIPi<r'>IJ><JIPr"<r">
j,k
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x(k|P2B(r‘V)|0)][2A;‘A;‘ +2(Aj +15.)1 111115360”)

xTa5 (r,r'")TBS(r',r"’)TY¢(r",rv). (24)

The S2 terms firrther separate into two sets. In the first, designated 82,1216, the field from

the unperturbed charge density ofC polarizes A, which in turn polarizes B; the induced

polarization in B produces a field at A, giving rise to an energy shift that depends on the

scalar product of this field and the permanent polarization of A. 82,ind satisfies

SZ,ind : —J dr. . .drv P6: (r) , T(r, r!) '(XA (r', r"). T(r',, r",

-orB(r"',riv -T(r'v,rV)-P6“ (rv). (25)

The second set of 82 terms gives one part ofthe contribution to the induction-dispersion

energy, as discussed below. This part is 82 — Sum]; in matrix element form

82 — s2,ind = Idr-udr" P5), (02 '(0|P6‘ (r')| j)(j|1>$(r")|0) (0|P53(r'")

j,k

 k)

x(k|Pg3(r‘V)|0) [2133Mj +Ak)"]1>(§,(r”)

x Tas (r, r"')T[38 (r',riv )TY¢(r",rV). (26)

83 contains the remaining terms,

53 = (“P0 I VAB GAEBB fore) VXB GASOiJB 600: VAC I‘P0>

+(‘i’oIVAC GAME); Pi)2 VXB GAeB p63 VAB I‘Po)

+0110 I VAB GAGE $00: VXC GAEBB 608 VAB I‘Po) (27)

The matrix element form of S3 is given by

s3 = —[dr---derZ’;"[2(o|P:(r)|j)(j|1>§(r')|1)(1|1>;‘(r")

+<0|Pi?(r)|1>(i|1>;’A (r")

0) (Aj +Ak)"A7‘
 

 I><I|P§(r')|o>(42 +4..)“(Ar +40")
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X(OIP§3("")Ik><kIPsB(riV)I0)P§¢(FV)T68(|‘J"')

xTBS(r’,r'V)T6(r", r V). (28)

Adding S2 — S2ind from Eq. (26) to S3 converts the element (j I P6“ (r')|l) in the first line

ofEq (28) into (j |P°A(r')II). This gives

S2 — 82,ind + S3 = —l'z/27t I: d(1)_Idr---drv Bfiya(r',r",r;—i(0;ico,0) T65(r',r'”)

xor220’"; ;i03)T.{8 (r", r'V)TO2¢,(r, rVV)P6:¢(r ), (29)

afier use ofthe integral identities

[:dxpam2 +x2)-‘][2b(b2 +x2)-‘] = 2n (a+b)“‘, (30)

and

I: dx23(a2 +x2 )—1[(b ’Lix)-l(c+ix)—1 +(b —ix)_1(C—ix)—11

:2n(a+b)‘1(a+c)
—1

(31)

for a, b, c > 0.

Earlier, Hunt [4, 5] has shown that the two-body dispersion interactions between A

and B produce a change in the polarization ofA given by

Pas-182(r): h/ZTCI: dCDJ'dr" 'vdr BBY
a(r" r" r; —i0)i0) O)TBO(r

'rm)

xaB52(r'",riv;ico)T,,,2(r",ri"); (32)

A<—B

that iS,PPadisp (r) depends on the imaginary-frequency hyperpolarizability density ofA and

the imaginary-frequency polarizability density ofB. A comparison of Eq. (3 2) and (29)

gives

S—821nd+s3:__[drdrPéd‘TsBp(r)Taa'B(rr)POB(r) (33)
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The right side ofEq. (33) represents the electrostatic interaction between the unperturbed

polarization of C and the dispersion-induced change in polarization of A, which is due to

the two-body interactions between A and B. This energy term is denoted by Sim. Then

from Eq. (33),

S2 + 83 2 S2,,“ + SM. (34)

The quantity AE(3)(AB, AB, AC) is the sum of S1 from Eq. (22), Sum from Eq.

(25), and Sim from Eq. (29). The 18 third-body perturbation terms covered in this section

sum to give

mag; = AE‘3)(AB, AB, AC) + AE(3)(AB, AB,BC) + AB<3>(AC, AC, AB)

+AB<3>(AC, AC, BC) + AE(3)(BC,BC, AB) + AE(3)(BC,BC, AC), (3 5)

which is identical to the results for ABS} + AEIEJP + AEEiZ, from the reaction-field analysis

in Sec. 6.3 of Chapter VI. The fill] third-order interaction energy is

3 3 3
AE( ) = 13ng + A136,; (36)

with ABS!) given in Sec. 7.2.

7.4. Three-body Polarization at Second Order

In this section, the nonadditive components ofthe three-body polarization at second

order are evaluated. The second-order term in an arbitrary property 9 is obtained from

9 : (‘1’6 +‘I’, +‘I’2+---IS|‘I’6 +‘l’1+‘l’2+-~)/

(‘1’6+‘I’l+‘P2+---|‘P6+‘P1+‘I’2+m) (37)

as

9(2) = (WOI,9IW2)+<‘P2 I9I‘I’o)+<‘*’1ISI‘I’rI'i‘PoISI‘i’oIi‘PrI‘m, (38)
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where ‘1’] and ‘13 are first- and second-order corrections to ‘1’6 due to the perturbation V,

‘11] = —GV‘PO, (39)

and

‘112 = Gv°va0. (40)

In equation (40) v° e v (110 |V|‘I’6). From Eqs. (38)-(40),

9(2) =(‘I’OISGV°GV|‘I’6)+(‘I’6|VGV°G3|‘I’6)

+0110|vcscv|w0)—(\PO|s|\1'0)()1'0|v0 GVI‘PO)

=(‘I’OISGV°GV|‘I’6)+(‘I’6|VGV°GSI‘I’O)+(‘I’6|VGS°GVI‘PO). (41)

With substitution V = VAB + VBC + VCA, equation (41) expands to yield 27 terms. Of

these, there are 9 additive two-body terms, in which the same perturbation operators such

as VAB appears twice. The remaining 18 terms represent the nonadditive three-body

interactions. All these 18 terms are considered here. The operator 9 is taken as P6“ (r)

and P6“ (r) is abbreviated by PA in the following equations. First the sum ofthe six terms

containing operators VAB and VCA is calculated,

Q1 -_-(\110|PA GVXBGVCA [)110)+(\1I0|PA 0ng GVABI‘I’O)

+(‘I’6IVABG ng GP’“ |\110)+()r'0|vCA GVXB GPA I810)

+(\1(2|v,,2,GP°A GvCA |)1(,)+()110|vCA (31>0A GVAB m2)

= (‘POIPA GAfi’iiffioC VXB (#8903500 VCA Iq’oi

+(‘I’o IPA 6A9? 10% V84 GAsot‘i 508 Van I‘I’o)

+(‘I’o IVABGAa-JE :98 V8a 6%? 108 P“ I‘I’o)

+(‘I’o IVcn 6A1??? 108 VXB GAB? 1:28 P" I‘I’o>
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+<WOIVABGA5903 603 POA GAIOO £00 VCA I‘POI

+(‘I’olvcn (War? 508 P°A GAsor? 508 Van I‘I’o) (42)

The matrix element form ofEq. (42) is

Q1 : Idr'...driv TB5(r':rm)T‘ye (rII rIV)P06(rm)P($8(er)

xZ'1<01P:<r)I’)(1'Pé’l(r)I n><nIPi<r")I0>
],n

)0)

)n (nIP:(r)|0)

+ 0|P§(r)|1'i)( |P°A(r")| n)<n       

+ 0|Pg‘(r')|)(j |P°A(r")
 

 

)

)anIPA(r)|0)

(n 0) + 01111 6111018801 n) Ives")

<

<

+<0|Pf(r")|1')(i|Pé’

<

<+ 0|P§“(r")
 
j)(j|1>gA (r)|n)(n|P6A (r')|0)]A}1A;1. (43)

Equation (43) is equivalent to

Q1 2 Idr’mdri" [33670,r',r")T65(r',r”')P6%(r"')TYS(r",r“’)P02(r”) (44)

where 83137 (r, r', r”) -=- 33137 (r, r',r"; 0; 0,0). The Q term represents the lowest-order

hyperpolarization of molecule A due to the simultaneous action ofthe static fields from

the permanent charge densities of molecules B and C.

The sum ofthe six terms containing operators VAB and VBC is given by

Q2 = ()1!0 IPA vaB (ivBC |\r(,)+()110|r’A (3ng GVABI‘I’O)

+(‘I’OIVABGVfic GP‘“ |W0)+()110|VBC GVXB GP’“ my)

+(lrlo|vAB (31>0A GvBC |l110)+(\1'0|v23C GP°A GVAB | l1'0)
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= (‘POIPA 6%.)? 508 VXB GAgo63 gag VBC I‘PO)

+(‘1onPA GAP? 505 VBC GMBB 5.28 VAB I‘POI

+0110 IVAB GAGBB £93 VBC GA“? 93 PA I W0)

+<W0IVBC GB .593 MC) VXB GAfe’hIi 691C)j PA ILP0>

+0110 I VAB GA®B 598 POA GB 803 £915 VBC IWOI

+(‘1’0IVBC GB 600 659i): POA GAeB 690: VAB ITO), (45)

or in a matrix element form,

Q2 = I dr'u-driv TB,(r',r")r2~,,2(r"',riv )P(§f,(riv)

XZ '<0|Pi‘ (r)l1><jIP1§' MW) 2 ' (OIP2B<r")Ik><kIPsB(r"')

.I k

-1 —1 -1 —-l -l -1 —1 -—l

X[Aj Ak +A] (AI +Ak) +Aj (AI +Ak) +A] Ak

 0)

+A}'(Aj + A)1 + A}1(Aj + Ak )“1

2 4I dr'- - ~driv T137 (r', r")T5£ (r'", ri")P6C8 (riv)

X Z ' <0le (r)| Milli? (r')|0)Z ' (0| PrB(r”>Ik>(k| PoB(r"')|0) AE'AI' (46)

i k

Equation (46) can be recast into the form

Q2 = Idr'- --dr'v a36(r,r')T67 (r',r")a?5 (r",r"’)Tg>8 (r"’,r"’)P&3 (riv) (47)

in terms of the polarizability densities of molecules A and B.

The Q2 term gives the lowest-order three-body component ofthe polarization

induced in A due to the field from the permanent charge distribution ofC. The fiJll second-

order, three-body polarization ofA is given by < P6? (r) >(2) = Q] + (1 + goBc)Q2.
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7.5 Three-body Polarization: "Circuit" Terms

In this section, the "circuit" contributions (third-order effects) to the three-body

polarization are calculated; they are analogous to the "circuit" terms in the energy

analyzed in Sec. 7.2. The third-order term in an arbitrary property 9 is obtained from

S : (‘1’6 +‘I’1+‘I’2 +‘I’3+---ISI‘I’6 +‘I’1+‘I’2 +‘I’3+---)/

(8’0qu+W2+W2+-..|w0+\r1+W2+l113+-.-) (48)

as

9(3) = (1+C)[<‘P0I9I‘P3)+(‘Pr ISI‘P21“<‘P1I‘P1><‘P0I9I‘P1>

-<‘I’i I‘I’2)<‘I’ol9|‘1’o)] (49)

assuming that all of the corrections ‘13- to the wavefirnction are orthogonal to T6. The

corrections ‘1’] and )112 are given by Eqs. (39) and (40), respectively, and w, is given by

\112 =—GV°GV°GV‘I’6+(‘P6IVGVI‘I’6)GGV‘P6. (50)

Then

8‘” =(1+C)[—(‘P6ISGV°GV°GVI‘I’O)—(‘1’6IVGS°GV°GV I‘I’O)

+(wolvcv I‘I’OX‘I’OISGGVI‘I’6)+(‘P6IVGGVI‘I’OX‘POISGVI‘I’Ofl.

(51)

With the substitution V = VAB + VBC + VCA , each ofthe terms in Eq. (51) expands to give

27 terms. In this section, the sets of 6 of "circuit" type, which contain VAB , VBC , and

VGA, each appearing once, are analyzed. As used in the last section, the a-component of

the polarization operator for molecule A, P: (r), is taken as 8 , and P6“ (r) is abbreviated

as P’“ in the following equations.
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A representative circuit term from Eq. (51) is (‘I’O IPA GVXB GVB°C GVCA I‘I’O)

With Eq. (4) for G, a direct expansion of (‘PO IPA G VXB GV§C GVCA I‘I’O) generates 73

terms; but ofthese, only 4 are nonzero and

(r0 |r>A GVXB GVB°C (3vCA I110)

=(‘1’oIPA GA 891113108 VXBGA @3103 Vfic GAGDCQEVCA I'l’o)

+ (“’0 I PA GA 601113608 VXBGBQQ £93 VBC GC 603 £953 VCA I W0)

+ ("’0 I PA GA 5963 506C VXBGMBB poo V36GA 5.363 5.98 VCA I‘PO)

+<WOIPA GA (903600: VXBGAGBB 500C VBCGAQBC 5903 VCA IW0)- (52)

The fit]! expansion ofthe terms within square brackets in Eq. (51) yields 68 nonzero

"circuit" terms. These can be grouped into four sets T1 — T4 , which are given explicitly in

Appendix B, so that

3

(119(0),): Tl + T2 + T3 + T4. (53)
Cll’

From Eqs. (B1) and (BS)-(B10) for the T1 term,

T. = 2Idr'---dr"i 2'1<0IP:(r)|i><i| P§A(r')l1)<ll P;‘(r")IO>

j,l,m

 0)

+(0lP£(r)lj>(1'lPr°A(r")I1><1|Pt‘s“(r')|0)l ‘

+<0|Pi <r'>lj><ilP:A (r) II><II P10")

x p0%(r'") POEM ) (0| Pf(rV) | m)(m| P¢C(r"' ) |0)

x 2 A;‘A7'A;,} 1 r‘,2~,(r',r"')rg2(riv , rV)r¢,, (rvi ,r")

: Idr""dI‘Vi BA (r, rl’r"; O;O, O) TB8(r'arm)P(?5 (rm)

0437

><1‘,,,,(r",r"i)otg2,(r"i ,rV)r22(rV,r‘V)POE(r‘V). (54)
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These terms represent the hyperpolarization ofA by the direct field from the unperturbed

charge density of B, acting together with the field from the polarization induced in C by

P6B (riv). The analogous hyperpolarization contribution associated with the unperturbed

BC T],
charge density ofC is given by 5) where goBC perrnutes the molecule labels B and

C.

In Appendix B, the linear induction contribution Tlmd is separated out from T3;

here Tlmd satisfies

T3,ind = (l + 598C )I dr'- - - drVi (1213 (r, r') T135 (r', r"')oc§‘a (r'", riv

x T.2(riv,r")a$i(rv,r”‘ m2 (r:i ,r")Pi*2 (r"), (55)

or in matrix element form

T3,ind = 2(1 +5230) 2......228 2'<01P5(r)|i><iIPA(r')IO>PoA20")
. k B
J, ,m

x (OIPsB(r"')I k><kIPic-“)10><0IP1C<rV>Im><mIPf(--Vi )|0>

x 4 Ag‘Ai‘ A}; 1125(r', r'")r2,, (riv ,r" )rY2 (r", r"i . (56)

The dispersion contribution to P:(r) is given by Tdisp = T4 + (T3 — T3316). It satisfies

rdisp = 2Idr'...dr‘" . 121: {[(OIP: (r)Ij)(jIPI”“ (r")|1)(1|1>g‘ (r')|0)

j, , .m

+<OlP£<r>Ii><1lPiA<r>   
1)(1|1>;‘(r") 0)]f4a(Aj,A,,Ak,Am)

+(0IP6“(r')
  i)<i|P:A(r)|1)<IIP;“ 0") o>fa(A,-.Ai,Ai,Am))

x(0|P2,B(r"') k)(k|P,B(r‘V)|0)(0|Pf(r")|m)(m|1>f (r‘“)Io)
 

xr,,2,(r',r'")r24,(riv,r")r,2(r",rvi , (57)

where f4a(Aj,A1,Ak,Am) iS given by EC]. (814), and
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f4c(Aj)AlvAkaAm) = (Aj + Ak)_1(Al + Ak)—](Al + Am)—l

+(Aj +4..)“(41 +Ai)“(Ai +4...)-l

+(Aj +Ak)"(Aj +A,,,)"(AI +Am)'1

+(Aj+Am)'1(Ak +Am)“(A,+Am)“. (58)

Eq. (57) can be recast in terms ofthe B hyperpolarizability density ofA and the

polarizability densities ofB and C, taken at imaginary frequencies. To prove this, complex

contour integration methods are used to write

f48(Ai’AIrAkrAm) = M
aj: dxA}‘A,(A2,+x2)“1Ak(

A2k+x2)—1Am(A2m “(2)—r,

(59)

and

f4c(Aj,A,,Ak,Am)=4/7tI:dx[(Aj+ix)(A,+ix)+(Aj —ix)(A,—ix)]

xAk(A2k +x2)"Am(A2m +x2)“‘. (60)

Then Eq. (5 7) transforms to

Tdisp = h/rt Igodm _Idr'mdr‘" TBg(r',r"')or63£(r"',riv;ico)T8¢(r"’,r")

x0126 (r",rVi ;i0))T;2y (r",r”) B$6a(r",r’,r;ioo,0), (61)

which is equivalent to Eq. (6.42) for Pfizfis}p (r)'““3’C obtained by the reaction-field

method in Sec. 6.4 of Chapter VI.



138

7.6 Three-body Polarization: "Noncircuit" Terms

This section presents the analysis ofthe remaining 18 nonadditive terms in the

polarization induced in A by its interactions with B and C. In these terms, one ofthe three

perturbations VAB , VBC , and VGA appears twice, the second appears once, and the third

does not appear. These can firrther be categorized into three distinct sets, according to the

perturbation operators involved. The first set contains operators VAB , VAB , and VBC , the

second contains VBC, VBC, and VAB, and the third contains VAB,VAB, and VAC. The first

set ofterms are first analyzed. A representative term in this set is — (‘11, I P’“ G VXB G VXB

G VBC I‘I’O). Substitution ofEq. (4) for G into this yields three nonzero terms

-()110|1>A GVXBGVXBGVBCI‘I’O)

= ‘(Wo IPA GA 3903 608 VAB GA 508691? VAB GB 693 £03 VBC IWO)

-(‘I’oIPA GA @3108 V23 GB 526‘ (08 V23 GB (08108 Vacl‘Po>

"(WOIPA GA 100350th GAGBB 608 VXB GB 600“ 508 VBC I‘Po) (62)

The firll expansion in Eq. (51) gives 27 terms ofthis type. These can be grouped into three

sets U1 - U3 so that

3

(P:(r)>( ) = Ul + U2 +U3, (63)

where the terms U1, U2, and U3 are analyzed in Appendix C. The matrix element form of

U1 is given by Eq. (C2). The U1 term contains an induction term Uhmd, which satisfies

Ul,ind : IdI'" ' -drVior2I3 (1')“)pr (r', “313123580", I'm, riv)

xTSAUWJV)P$t(rv)Ten(riv,TVi)chIO'Vi)~ (64)

In matrix element form,
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Una = 4I dr'---dr"i Priitr")<OIP£(r)Ii><iIPi‘tr')IO>

x1<0IPiB<r") k><kIP§B<rm>Im><mIPf<r“)lo> 

+<0IPf(r"> k><kIPSB<r")Im><mlPsB<r"')l0> 

+(011230")II<><l<lPi’B(r")Im><ml1>sB<rm>I0)]

x P6Cn(r"')A'JTIA}1A;I TBy (r',r")r52 (r'", rV)T8n(r'V,rVi ). (65)

In ULmd, the fields fi'om the permanent polarization ofA and C hyperpolarize B; the

induced polarization in B gives rise to a field that polarizes A. The dispersion contribution

to the polarization from the U1 term is U1 — Ulmd.

The U2 term given by Eq. (C6) contains the permanent polarization ofB and C. It

reflects the hyperpolarization ofA by the simultaneous action of the direct field from

P630) and the field fi'om the polarization induced in B by P6: (r). This effect is designated

by UZJnd, which is given by

U2,ind = Idr'.--dr"i 133520, r', rV)TBY (r', mp6: (r”)

x Tm(rv,r"')or§e(r"', riv )Tsn(r"’,r"' )1>OC,,(r"i )

= 4Idr'---dr"‘ Izk' [(01119(r)li><jIP§A(r')II><IIPi‘(r010)

1.,

+(0IPoi‘(r)IJ')(J'IPfA(r”)I’)<’IP1i“(r')I0)

+<o|P1i (r')|j)(j|P§A(r)ll)<1|Pf <r”)lO>1

x (0| 1>g3(r'")|1r)(1t|1>2'3(riv )|0)P5’, (r")P6Cn(rVi)

x A-j‘AilAi‘ TB, (r', r")'1‘2~,2 (r'",r" )"r2,](riv , rVi ). (66)

The dispersion contribution to the polarization from the U2 term is U2 — Uzmd.
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The dispersion component in the polarization Udisp is U1 — Upmd + U2

—' U2,ind ‘1‘ U3, and Udisp SfltlSfiCS

uni = I dr'---dr" j IZKZEKOIPi‘ <r")l1><ilPi”‘ <r')II><IIP: (010)

+0111? (r') i><ilPiA(r”)IIXIlPio-Hon 

x [(o| P§3(r"’)
 
1<)(1r|13;’B(r")|m)(m|P2B(r“’)|0)A;'A;,‘,(Aj + Ak)"‘

+(0I P2130”)
 k><k|P:B(r")lm><mlP2B(-")  

0) A‘,"(Aj + Ak)"(AJ-+Am)'1

+(0IPf(r")Ik)(kIP§B(r"')Im)(mIP30")I0)A]1A:,I(Aj + Ak)'1]

+<0lPiA(r”)|i><JIP:A(r)II><IIPi' (r010)

x[(0|P2,B(r'")
 k><kIP?B(r")Im>(mlPeB(r")|0)(Ai +Ar)"(Ar +Ai)"A;l

0)

x<<42 +4..)“(Ar +41)"‘(Ar + Am)" +(A, +4..)“(Aj mm)"

 
+(0I P§3(r"')I k>(kIP2‘2’B(riv )I m)(mI P330")

x(A,+Am)-1)

+<OI PYB(r")I k) (k I P§B(rm)

 mlimIPeBO'iv )IO>(Aj + Ak )-1(A1 + Ak )_1 A—ni 1}

x p§n(rvi)rfi,(r',r")r82(r"',rv)r2n(r”,rV‘). (67)

Equation (67) can be recast in terms ofthe B hyperpolarizability densities ofA and B, both

taken at imaginary frequencies:

Udisp = h/27t 'I‘godoxIdr'ondrVi B63622 (r",r’,r;i(0,0)T6Y (r',r")

X 1338“,", r", er ;10.) , 0) T8}, (rm, rV ) Ten (riV ’rvi )P§n(rVi ), (68)

after use ofthe integral identity Eq. (31) and
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I:dx[(a+ix)—1(b +ix)‘l +(a—ix)"(b—ix)“]

x[(c+ix)“(d+ix)-'+(c—ix)‘1(d-ix)“]

= 27: [(a + d)"(b + c)"(b + d)" +(a + c)"(a + d)"(b + c)“], (69)

where a, b, c, d > 0.

Equation (68) for Udisp represents the effect of the perturbation of the two-bony

dispersion interactions between A and B due to the presence ofthe third body C;

specifically, Udisp gives the change in the dispersion-induced polarization ofA in the

A- - - B pair due to the lowest-order static field from C acting on B.

Next, the set of terms that contain the perturbation operators VAB , VBC , and VBC

are evaluated. A representative term ofthis set from Eq. (51) is — (‘1’6 I PA G VXB G Vfic

G VBC I‘I’O). Substitution of Eq. (4) for G into this yields three nonzero terms

-(\i'0|1>A (3v);B G vgc GVBCI‘I’O)

= -<‘I’o IPA GA (063198 VXB GB 506* 508 Vfic 08108198 Vac I‘I’o)

"(WOIPA GA 591113 690C VAB GB 600 630: VBC GC 690A 6903 VBC I‘Vo)

—(LP0IPA GA {903 @0C VAB GB 690A 570: VBOC Gm 898 VBC I‘POI- (70)

The full expansion in Eq. (51) gives 34 terms of this type. These can be grouped into four

sets W1 — W4 so that

(PA (3)

a 0)) =wr+wa+ws+w4, (71)

where the terms W] — W4 are analyzed in Appendix D. The W, term is given by Eqs. (D2)

and (D3),

 
w] = 2Idr'mdr‘" Z'(0IP§(r)|j)(j|P,§‘(r') 0)(0|P2,B(r"')|k)(k|P,B(r")|0)

j,k,m

x 1361M)(0|1>,,C(rV)|m)(m|1>f(ri")|0)[2A3'A;,I(Ak + Am)"
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+2 AglAijAjgnBy (r',r")'r2,,(r"',riv )Twrhrvi ). (72)

The W1 terms reflect the linear polarization of molecule A due to the field from the

permanent charge density ofB via the polarization route B —-> C —> B ——) A; that is, the

permanent charge density ofB polarizes C, which then polarizes B, producing a change in

the polarization in A. This effect is denoted by Wund, which satisfies

Wund = Idr'- - - drVi 0126 (r, 1")TI3y (r', r")01;35(r", r'”

XTse (r'", riv )agb (riv, r")T¢k (rv, I,vi )P&(r"')

= 8I dr'---dr"i @1011): (r)li><iIPi‘(r')10> (01880")!k><klPsB(-"')10>
1, .m

x H30" )(OI Pf (r'v)I m)(mIP§(rV)I0) AEIALIA'HI

XTBY (r',r")Tg€(r"',r'V)T¢l(rv,rVi). (73)

W] also contains one part ofthe dispersion contribution to the polarization; it is given by

W1 ' W1,ind-

 

Equations (D5)-(D11) give the W2 term in the form:

W2 : 2‘Idr'mdrVi Z '(OIP: (r)Ij)(jIP6“ (r') 0)

j,k,m

><[2(0|1’1§3(r'")|l<)(k|1’i’B(r"i )lm)(m|PI3(r")|0)

+(0Ir’2~,B(r"')I1r)(1<|1>;’B(r")|m)(m|r>{3(rvi )|0)] A3‘A11Aj;

x ng:3 (riv ) P6C¢ (rV)Tfiy (r', r")T2~,e (r'", riv )Tw' (rV , rVi ). (74)

Equation (65) can be converted into an equivalent form in terms ofthe static polariza-

bility density ofA and the static B hyperpolarizability density of B,

_ I VI A I I II B II III Vl

W2—1/2Idr-udr aaB(r,r)TfiY(r,r )Bygfir ,r ,r )

xr52(r"',r“’)POC2(r‘V)r2,(rV‘,rV)P§,(rV). (75)
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The W2 term represents the three-body component in the induced polarization in A due to

the permanent charge density of C; specifically, the field from the permanent polarization

ofC hyperpolarizes B, and the induced polarization in B gives rise to a static field that

polarizes A.

Terms that contain the matrix elements P0138 (r'"), P6310"), and P63Y (r") are grouped

into W3. These terms cancel out so that W3 = 0, as shown in Appendix D.

The remaining dispersion terms are grouped into W4, and it satisfies Eq. (D16). The

dispersion contribution to the polarization desp is W4 + W1 — Wmd, given by

 
Wasp =2Idr'mdr‘" 2' (0|P:(r)|j)(j|1>§(r') 0)

j’k9m7l

x12<0lPsB(r'") k><klPiB(-"‘)Im>(mlPiB(r")|0>A‘,-'A:.1(Ai +41)“ 

+(0IP53(r"')|k)(k|P;’B(r") m)(m|P2B(rV‘)|0)
 

x 43‘ (4.. +41)" (4... + Air‘l

x(0|Pf(rV)|1)(l|Pf(r")|0)rl,,(r',r")r2,2(r"',ri")r¢2(r",r“). (76)

Equation (76) is equivalent to

Wdispz h/21t‘Idr'u-dr" a26(r,r')I:dco B632», (r"',r"i,r";i0), O) ag¢(r'v,rv;im)

xrBy (r', r")T&(r"',riv )T,2 (r”, r"i ); (77)

Wdisp gives the polarization induced in A due to the static field from the polarization

induced in B by the two-body dispersion interactions between B and C.

Finally, the set of terms that contain the operators VAB , VAB , and VAC are

calculated. A representative term of this set from Eq. (51) is — (‘16 I P’“ G VXB G VXB

x G vAC pro). Use ofEq. (4) for G yields
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-()r(2|1>A GVXBGVXBGVAC Ira)

= -(‘I’o IPA GA 106823 VXB GA (053108 VXB GA 825108 Vacl‘l’o)

-(‘I’oIPA GA (01113590: VXB GB 196‘ 108 VXB GA (953 108 Vac I‘I’o)

-(‘I’oIPA GA 195’ 198 VXB 0“” 108 VXB GA 193898 Vac I‘I’o) (78)

The firll expansion in Eq. (51) gives 33 terms of this type. These can be grouped into four

sets X1 — X4 , which are given explicitly in Appendix B, so that

A (3)

(P2, (r)> = x1 + x2 + x3 + x4. (79)

The matrix element form of X, is given by Eq. (E2). It can be recast in terms of the static

y hyperpolarizability density ofA

X1 =1/2‘Idr'mdrVi yQBYg(r,r',r",r"';0,0,0)Tm(r',riv)P£(riv)

me(r", rV)P63n(rv )T& (r'", rvi )POC, (rvi ), (80)

assuming all the eigenstates can be taken as real. The 7 hyperpolarizability density is

defined by [3]

7.26250,r',r",r"';-wc;w1,wz,O)

=[1+C((01—> -(l)],c02 —-)-(1)2,(1)0 —> —to2,)]

>< {(OlPa(r)G(wo)

X{P§ (r')G(<o 2 )[P20 (r")G(0)Pa(r"') + Pt? (r"')G(co 2 )PY (r")]

+P2°(r")G(co1)[Pé’(r')G(0)P8(r"') + Pé’ (r"’)G(w 1)Pp(r')]

+P§(r"')G(wo)[P§(r')G(co2)P2(r")+P§’(r")G(wi)PB(r')]}|0)

+(0l Pp(r')G'(-wi)Pr§’ (r)G(wz )[ Pf (r")G(0)Ps(r"')

+1>2S,’(r"')G(o2)1>y (r")]IO)
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+<0I P7 (I"')(‘I"(-(D 2)P§(r)G(<D1)[P§(I")G(0)P5(r"')

0)

+<0lPs(r'")G(0)P:(r)G(m.,)1P§(r')G(oaz)P2(r")

 +P§(I‘"’)G(031)Pp(r')1

+ PI’(r")G(031)PB(r')]I0)

—<OIPot(r)G((Do)G((°1)PB(|")I0I

X [<0I P7 (r")G(0) P5 (r'") I 0) + (OI P5 (r'") G(C° 2 ) Py (r") I 0)]

— (OI Pa (r)G(<Do)G(0)2)Py (r")IOI

 
x[(0|P,,(r')G(0)Pg(r"') 0) +(OIPg(r"')G(co 1)PB(r')IO)]

—(0|Pa(r)G(o>a)G(0)Ps(r'")lo)

><[(0|1>I,(r')G(to2)PY (r")I0)+(0IP7 (r")G(c01)P6(r’)IO)]

—(OIPa(r)G((01)PB(r')IO)

x[(0|P, (r")G‘(—c)2)G(0)P5(r"')

0)

><[(0IPp(I")G'(—<D1)G(0)P8(r'")

 
0)]

 0)+<OIP5(T'")G(0)G(C°2)Py(r")

 - (OIPa (r)G(C°2 ) P7 0'")

 
0>+(0IPg(r'")G(O)G(co1)P6(r')I0>]

—(0IPa(r)G(0)P8(r"')I0)

x[(0IP6(r')G'(—0)1)G((02)P7 (r")I0)+(0IP7(r")G'(—0)2)G(c01)P6(r')I0)]},

(81)

where coo —:— 031+coz, and C(m1—) —(01,0)2 —) —coz,(06 —> —0)6) denotes the operator

for complex conjugation and replacement of (01 by —co 1, (02 by —(02, and 0025 by —0)o,

and

G(m)=(1-too)(H—Eo —hco)"(1—roo). (82)
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Specializing to the case co, = 032 = 0, Eq. (81) yields YorByS (r,r',r”, r"';0,0,0).

The X1 terms represent the hyperpolarization effects due to the fields from the

permanent charge density of molecules B and C: The fields from the permanent polariza-

tion of molecule B and C hyperpolarize A to produce a change in the polarization ofA via

721311503 r',r", r"';0,0, 0); the field from P63 (r) acts twice at A, and the field from POC (r)

acts once at A.

The matrix element form of X2 is given by Eq. (E4). In part, it reflects the

hyperpolarization of molecule A due to the fields from the permanent polarization ofA

and C: The field from the polarization induced in B by the permanent charge density ofA

acting together with the field directly from the permanent polarization ofC hyperpolarizes

A to produce a polarization via BA(r, r', r"'). This term is labeled by szd:

X2,“ = Idr'---dr"i BQBg(r,r',r'")T6;_(r',riv)a;l?n(riv,rv)

x an (r‘“,r")1>6‘7 (r")rg, (r'", rvi )1>(§E,(rvi )

= 4Idr'n-dr‘" Z'[(0|1>2;‘}(r)|j)(j|1>§A (r')In)(nIP6“ (r'")

j,n,k

+(0111i<r)11'><ill>i"‘<r"')1n><nIPi<r')lo>

 0)

+<0|P1§‘(r') 1)(J'l1’o'2A (r)ln>(nIPr§‘(r"')  
0)]

XPA II (OIPB 1V k k PB V O AflA-lA-l

Mr) is )1 ><12<r)1>. .1.

x P620" )Tm(r',r'v)Tm(r",rv)T58(r’",rVi ). (83)

X2 also contains one part of the dispersion contribution to the polarization.

Terms containing the permanent polarization of molecule C alone are grouped into

X3. These terms reflect the linear polarization of molecule A due to the field from the

permanent polarization of C: The permanent polarization ofC polarizes A, which in turn
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polarizes B; the induced polarization in B gives rise to a field that polarizes A. This

induction term is given by

Ximd = Idr’mdrwaa’“B(r, r’)T1310'" r"’)agnh”, r")Tfly (rv,r")

X 0'98 (r", r!!!)Tsc (rfllr Vi )Poe (er)

:811.4.111 Z'<0|Poi(r)|1“><1'lPé'(r'>10><0|Pr"(r")|n><an§‘(r"'110>
j,n,k

XIO'Pfl'W”k><k|Pi(r")|0)P§a(r"‘)A‘i‘Ai‘Ai'

X11310"rw)T7(rvrl‘")T8e(|‘"',l'Vi). (84)

The contribution to the dispersion term fiom X3 is X3 — X3,ind'

The remaining dispersion terms are contained in X4. The matrix element form of X4

satisfies Eq. (E7). The dispersion contribution to the polarization Xdisp is given by

X4 + X2 — X2316 + X3 - X3,ind- Regrouping the terms in Xdisp yields

 x11=21drdr 2 t<olpi<1111><1181(1)1><I|P1A<r")ln><nlpi(r'") 0)
jIn It

xAglA;,‘(A,+Ak)‘l

n) (nIPf (r")
 0) +<01P£(r)|1><1|Pi’(r)|><llP§"(r"')

x 4‘30» +Ar)“(An +111)“

 111118: (r')ln><n|Pi‘ (r") 0) +<0|Pi (r)11“><1“|Pi’A (r'")

x A;‘A;‘(An +Ak)"

+(OIP6' n)(n|P;‘(r")

x14]- +4..)“(Ar + 4..)“(An +41)“

 ') 0011):"(r)|I><I|P§A(r"') 0)    

 0) +<°|P€<r>l1><1|PiA<r11><I1P°A<r~nn>< 11i
n»)

x A;,‘(Aj +Ak)"(A, +Ak)"
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+ (OI Pg" (r'")
  0)1><11P3A<r111><I|PiA<r')1n><nIP1A<r">

x A;‘A7‘(An +Ak)‘1

  
—(0|P§(r)|j)(j|1>g"(rm) 0)(0|P§(r')|n)(n|1>;‘(r") o)

x[A;?-(An + Ak)“+A}1(An + Ak)’2]

 0)n)(nIP6“ (r’”)
 -<0|P;‘.‘ (0100111? (r') o><011>2A (r")  

x A'J.‘A;,‘[(An + Ak )‘1 +(Aj + Ak )-1

+(A, +4..)“(An +4)-‘01,- +An +4151)

x (0|P2?(r‘V)|k)(k|1>,',3(r”)|0)1>§,(r"i)

x Tar.(r'.r‘V)Tn2 (rvrr")Toe(r'"rl'Vi ), (85)

or equivalently,

Xdisp = h/ 21: Idr'mdr‘" Igodor 7375a (r',r",r"’,r;ior,0,0) T133» (r',ri")

x (133110", r";i(0)Tfly (rv, r")T&(r"', rVi )POC8 (rVi ), (86)

where the following integral identities have been used

I:dx2a(a2 +18)" [(b —ix)‘2 +(b+ix)'2] = 2n (a+b)‘2, (37)

and

I:dx2a(a2 +x2)’1[(b—ix)'1(c—ix)‘l(d—ix)'1+(b+ix)"1(c+ix)’1(d+ix)'l]

=2n(a+b)"'(a+c)“‘(a+d)“, (88)

and the y hyperpolarizability density 767569,, r", r"', r; i0) , 0, 0) is obtained fi'om Eq. (81)

with or] replaced by —ico and co 2 replaced by its .

The Xdisp term represents the change in the dispersion-induced polarization of

molecule A in the A- - - B pair due to the presence ofthe third body C. Here C acts as the
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source of a static field that perturbs the dispersion interactions between A and B. Eq. (86)

gives the lowest-order change in the dispersion polarization ofA ofthe A- - - B pair due to

the static field from C acting on A.

The total contribution from the "noncircuit" terms to the third-order polarization

induced in A is

<Po’,“(r)> if =(1+g.)BC)(U1+U2 +U3+W1+W2 +W4

(3)

none

+X1+X2+X3+X4), (89)

and the full third-order polarization ofA satisfies

P3‘3)(r)=(P:(r)):f +(P:(r))‘3' (90)
noncir

with (P: (0):) given by Eq. (44).

The results fiom the perturbation analysis in this section are identical to the

corresponding results obtained from the reaction field method in Sec. 6.4 of Chapter VI.

This establishes the validity of the reaction-field results, subject to the assumptions of the

perturbation analysis.
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CHAPTER VIII

EFFECTS OF OVERLAP DAMPING ON THREE-BODY DISPERSION

ENERGIES

8.1 Introduction

In Chapters VI and VII, both reaction-field methods and perturbation theory are

used to analyze nonadditive three-body energies and dipoles. The analysis identifies

different polarization mechanisms that contribute to three-body interactions. These include

induction, dispersion, and combined induction-dispersion effects. Induction effects are

classical, resulting from the polarization of a molecule by the fields fiom the permanent

molecular charge distributions. For molecules interacting at long range, induction effects

are determined simply by the permanent molecular multipole moments, the static

polarizabilities, and the static hyperpolarizabilities. Dispersion interactions, however, are

purely quantum mechanical in origin, stemming from correlations between the

spontaneously fluctuating charge distributions. Dispersion effects are important, because

they are present in a variety of interactions, including molecule-molecule, molecule-atom,

atom-atom, and molecule-surface interactions [1-9]. Moreover, in such cases as

interactions of three spherically symmetric atoms at long range, only the dispersion effects

survive at third order. The three-body dispersion energy is the subject of this chapter.

The leading term in the three-body dispersion energy for S-state atoms A, B, and C

interacting at long range was first derived by Axilrod and Teller [1], and independently by

Muto [2]:

AEE,I(1,1,1) = (3 coseA coseB cos0C + 1)C111 (RAB RBC RCA)‘3, (1)

where RAB denotes the distance between atom A and atom B, 0A is the angle between

RAB and RCA, and C] 11 is a coefficient related to the first-order imaginary-frequency
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polarizabilities 01100)) of A, B, and C by

C111 =3h/71I:aI“(i(0)aI3(im)a1C(ioo)d(0. (2)

Eq. (1) is valid at long range when the multipole expansion ofthe interaction

potential holds. At shorter range, the dispersion energy is damped due to modifications of

charge-overlap effects. The damped dispersion energy can be derived within the nonlocal

response theory that uses polarizability densities to describe the nonlocal response of a

molecule to the fields from its interaction partners. The theory gives the three-body

dispersion energy as an integral ofimaginary-frequency polarizability densities of the

interacting molecules [see Eq. (22) of Chapter VI]. The purpose of this chapter is to study

how overlap modifies three-body dispersion energies. In Sec. 8.2, the damped three-body

dispersion energy for interacting S-state atoms is analyzed. It is shown that at long-range

the equations for damped dispersion energies reduce to a multipole series, in which the

leading term is the triple-dipole energy fiom Eq. (1). Sec. 8.3 contains a numerical

application to a model system, interacting ground-state hydrogen atoms. An analytical

expression for the damped triple-dipole dispersion energy is derived, and the radial and

angular dependence ofthe dispersion energy is investigated.

8.2. Dispersion Energy for Three Interacting S-state Atoms

In this section, the nonadditive three-body dispersion energy is calculated for

interacting S-state atoms. The calculation includes the effects of direct charge-overlap on

the dispersion energy, but not the effects due to intermolecular exchange or charge

transfer.

In Chapter VI, a nonlocal response theory is used to derive an expression for the

nonadditive three-body dispersion energy of interacting molecules A, B, and C. The theory

yields a simple physical interpretation for the dispersion energy in terms of the induced
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polarization and the energy of polarization in a reaction field. The spontaneous, fluctuating

polarization in molecule A polarizes B, which in turn polarizes C. The induced

polarization in C produces a reaction field at A. This polarization route A—)B—)C—>A

gives one term in the energy shift of A, with the second term generated by A—>C—-)B—)A.

Both terms depend upon the correlation in the polarization fluctuations at two points

within A, which are related to the imaginary part ofthe nonlocal polarizability density ofA

via the fluctuation-dissipation theorem. Similar energy shifts occur on molecules B and C,

giving the second and third terms in the total energy change of the three interacting

molecules. The theory gives the nonadditive three-body dispersion energy

AEffizp = -h / it I: don Idr dr' dr" dr'" driv dr" 01360, rV;i(0 ) T131 (rv , r")

x 01550" , r"'; i0) ) T3,c (r"’, r0013 (r", r'; im)T¢a (r', r), (3)

in terms of the tensor product ofthe imaginary-frequency nonlocal polarizability densities

013,550, r';ico) (X = A, B or C) and the dipole propagators TaB (r, r')

Ta6(r,r') = raga — r') = VaV6(Ir — r' )
 

5)-471:/3 501135“ — r')
 

: [3(r0L -r(;)(rB — r6)—5a6Ir—r'I2]/(Ir—r'

(4)

The Einstein convention of summation over repeated Greek subscripts has been used in

Eq. (3) and below.

An expression equivalent to equation (3) can be obtained by first using the standard

perturbation theory to find the interaction energy for three molecules A, B, and C at third

order, then selecting terms that are purely of dispersion origin [see Sec. 7.1 of Chapter

VII]. The result can be cast into the computationally useful form
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AB“)asp = Ir/(8n7) deo I dkexp(ik-RAB)k‘2 I dk'exp(ik'-RBC)(k')'2

xIdk"exp(ik"-RCA)(k")_2 x’“(k,k";ico)xB(k',k;ico)xC(k",k';i00), (5)

where RXY is the vector from the origin in molecule X to the origin in Y (X, Y = A, B or

C) and 3((Ig k'; 1(0) is the imaginary-fiequency charge-density susceptibility,

x(k,k';i<o)= 211129100130 +92)“<01p(—k)1n><n1p(k')10>, (6)

nan

In Eq. (6), a) n0 is the transition fiequency between the ground state I0) and the excited

state In), and p(k) is the k Fourier component of the charge density operator:

p(k) = Idrexp(ik~r)2qj 6(r— rj) = qu exp(ik-rj) (7)

r 1

with q J- the charge of particle j.

To evaluate the dispersion energy given by Eq. (5), the charge-density susceptibility

x(k,k’;co) is needed as a function of k, k', and 0). Given an accurate ground state

wavefunction, x(k, k';(0) can be determined from Koide's method [10]. In this method,

x(k, k';co) is expanded in terms ofthe spherical harmonics ofthe orientation angles ofthe

vectors k and k' by substitution ofEq. (7) into (6) and use of the Rayleigh expansion for

exp(i k - rj):

co 1 co 1' ,

1101,1211) = 1:0 15:1 12.0 “Er c7. Yl‘“(e,¢) Yrt'(9',¢')‘a;‘;f" (k. k';w), (8)

where

c, : (—i)1 2’ 11/(21)1,I4n/(21+ 1), (9)

and [10]

ai‘if“'<k,k';co)=2/thno(coio—w2)"‘<01pi“(k)“1n><n11>1¥"<k')10> (10)
natO

with the generalized multipole moment operator pI“ (k) given by
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(21+1)!

2l 1!

 

m 47: ’1/2 m .

PI (k)=ZqJ-( I Y1 (9139]) 110(5), (11)
j 21+1

where j,(krj) denotes the 1th spherical Bessel function.

If the auxiliary functions <DI"(k,co) are defined by [10]

ICDI“(k,0))>=l/hzmno+00)-1In)<nIpIn(k)I0), (12)

n¢0

then from Eq. (10),

amines): (0|p1“(k)‘
 

¢?'(k',o)+q>;?'(k',—o)). (13)

(1);“ (k, (0) can be approximated by the function ‘1’ which minimizes the fiJnctional

[11, 12]

JI“(‘I’) = (‘I’IHO - E6 +1161|\P)—(0|p;“(k)‘|)11)—()P|p;“(k)|0) (14)

subject to the conditions (0| ‘1’) = 0 and (0 2 0. In Eq. (14), H6 is the Hamiltonian of the

unperturbed molecule, and E6 is the energy of its ground state.

For spherically symmetric atoms, orW‘Yk, k';co) takes a simple form [13]:

ai‘im’lk, kw ) = 611 6mm «10430). (15)

Substitution of Eq. (8) into (5) and use ofEq. (15) yields

xIdk"exp(ik"-RCA)(k")’22 Z Z Z Z Z Ic, c1. c," I2

l m l
I ml 1" m"

x6819.4)“Y,m(e,¢)Y;£‘"(e',¢')' YIP’ (9',¢')Y,m(e",¢")‘Y1?" (6".11")

xor?(k,1r";io)otI?(k',k;io)or[5.(k",train). (16)

The value of AE(3) must be independent ofthe choice ofthe coordinate frame

because it is a scalar. For convenience in the subsequent analysis, a coordinate (X, Y, Z)
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is used in which atom A is located at the origin, B on the positive Z-axis, and C in the X-

Z half-plane with nonnegative X coordinate. Then use ofthe Rayleigh expansion for

exp(iktR) yields

exp(ik‘RAB) = 2141(2L+1)1% iLYB(e,¢)ii(kRAB). (17)

L

exp(ik-REC) = Z Z(—i)L'4nYL/(0',¢')Y{4' (03,1t)' jL. (k'RBC), (18)

L' M'

and

exp(ik - RCA) = Z Z(-i)L"4rt Y5!" (0",¢")Y1'ji" (0A,0)“ [LunchCA ), (19)

L" M"

where 0A is the angle between RAB and RCA, and 0B is the angle between RAB and

RBC .

Inserting Eqs. (17)-(19) into (16) and integrating with respect to the polar angles

(0,4)), (0',d)') and (0",¢)") gives the dispersion energy in the form:

AE(3) = Z Z ZAE(3)(I,I',1"), (20)

l I' l"

where

AE<3>(1,1',1")=h/(2n6)§§§afifinjo dorI: de: dk'IO dk"ot;‘(k,lr";io)

xal?(k'.k;ico)afi(k",kuic)irlkRABnplk'RBo)ip.(k"RoA)

(21)
. III I" .

wrth an,” glven by

I II . . I II ' H I); 2 _ I

311.11» =1L(-1)L +1: (2L+1)1(2L +1)(2L +1)1-crch1»l ZZZYL'M (98,“)
m m" MI

I" m")

 

”51(9),,0)(L10M|1'm)(L100II'0)(L'1'M'm
 

x(L'l'00
 

l"0)(L" 1" —M'm"Ilm) (L" 1"00|10), (22)
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where (1'1" m' m" I] m) denotes a Clebsch-Gordan coefficient. In order to simplify the

notation, the subscript "disp" is dropped in Eqs. (20) and (21) and below.

AE(3)(I, l', 1") represents the energy of interactions among the 21-pole of A, the 2" -

pole of B, and the 2’" -pole of C, with the inclusion of the short-range overlap effects. This

can be shown by examining the asymptotic behavior ofEq. (21) in the long-range limit.

Use of the theorem on integrals involving spherical Bessel firnctions given in Appendix 1

ofRef. 10 gives

I: dkforI: dk"orf“(k,k";i(0) or}?(1rt,k,im ) ag,(k~,kr;iw)

 

X jL(kRAB )JL'(k'RBC)JL"(k"RCA)

= n32'2<’+”+’">+3 (21+ 21')1(21'+ 21")! (21+ 21~)1[(1+1')1(1'+1")1 (1+1")1]'1

X51M 511141" 5L~1+1" 01;“ (i03 )ai? (ice )are" (iO) ) 132-($1M) Rg‘c’"’"“’ 12314141)

(23)

for RAB —> 90, RBC —+ co, and RCA —> oo. With this, Eq. (21) yields the three-body

dispersion energy at long range in the form

AESIUJ'J") = b, ,. ,1 [3° do 01;“ (io)otI?(io )6?" (ico ) 1129"“) Rggt’"“) 1135“”,

(24)

where

2 l-I-II-I” 11'1" I I II II

x [(1+1')1 (1' +1")! (1 + 1")1]“. (25)

In Eqs. (23) and (24), 01,000) is the imaginary-frequency multipole polarizability of order

1, related to or,(k, k';i(0) by

ot,(io) =11mk_,011mk._,O or,(k,k';i0) ) k” dr')" . (26)
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Specializing to I = 1' =1" = 1, Eq. (24) recovers the long-range triple-dipole dispersion

energy given by Eq. (1). The dipole-dipole-quadrupole dispersion term is obtained by

setting I: 1' =1, and l" = 2 in Eq. (24),

451310.12) = 311(1611)vna<ea,ea,eo)[0 ai<iw)a?(iw)a§(iw)dw

ngfB R53, R232; (27)

where

7112 (9A,GB,ec)= 18COS(9A ”GB)—9COS(9A +GB)+25COS(39A +398)

+15cos(30A +0B)+15cos(0A +303), (28)

and similar expressions for ABSII(1,2,1) and AEI3II(2,1,1).

8.3. Application to Interacting Hydrogen Atoms

Using a trial function of the form

IT):Mkim)21/0n0(“IPinIOII"I (29)

n¢0

and then applying the variational principle (14) to find A(k,co ), Koide [10] has detemiined

01,(k, k';0)) for the hydrogen atom in the Is state:

 

 

2a 0)

or,“(k,k';o)= 2’ ’2f1(k)f,(k'), (30)

C01 -(1)

where

l(l+1)(l+2)(21+1)
: , 31

(0’ 214+lll3+l812+101+2 ( )

1 2 2
a, (21).(l+1)(l+2) (21+1) (32)
 

: 2”“(214 +1113 +1812 +101+2)’

and
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21 [I 4 IMI 4 1)
f k = k +—. 33

’() 21+1 k2+4 k2+4 21 ( )

   

In Eq. (29), pI“ is the usual spherical multipole operator. Atomic units are used in Eqs.

(29)-(33) and below.

Substitution of Eq. (30) into (21) and integration with respect to the frequency 03

yields

AEmu/'11") = 2/7‘5 41211314601“131'+031")I(C01“010(91'+031")(031+0310]-1

xgggai’ifinI:f><k>fr(k)1'i(kRAB)de:frvtk')f1~(k')1'o(k'RBo)dk'

x]:liar")f1~(k")1'r.~(k"RoA)dk", (34)

where the integral identity

[3"(a2 +602)"](b2 +1112)"(c2 +c02)"1d0)

=1t/2 (a+b+c)[abc(a+b)(b+c)(a+c)]‘l (35)

has been used for a, b, c > 0.

The integrals in Eq. (34) can be evaluated analytically using contour integration

techniques. For example, from Eqs. (30)-(34) the damped triple-dipole dispersion energy

(I = 1' =1" = 1 in Eq. (34)) has been obtained as an analytical firnction of the interatomic

distances RAB, REC, and RCA:

AB<3>(1, 1,1) = 21871344 [f(RAB)f(RBC)f(RCA)+(3c082 0C — 1)

Xf(RAB)8(RBC)g(RCA)+(3 COSZGA —1)g(RAB)f(RBo)g(RoA)

+(3 cosz0B — 1) g(RAB)g(RBC)f(RCA ) + (3 0030A coseB cos0C +1)

Xg(RAB)8(RBC)8(RCA )1, (36)

where the functions f(x) and g(x) are defined by



160

f(x) = e‘z"[89/1152+(89/576)x+(119/864)x2 +(5/72) x3 +(1 11540) x4

+(1 / 324) x5 +(1 / 5670) x6], (37)

g(x) = 3/(2x3)—e"2"[2+3/(2x3)+3/x2 +3/x+x+(l699/4320) x2

+(259/216O)x3+(197/7560)x4+(19/5670)x5+(l/5670)x6]. (38)

For RAB —> oo, REC —) 00, and RCA —3 00, Eq. (36) reduces to

ABI31>2(1,1,1)= cm (3 cos0A c0503 cos0C + 1) R33 Rg3c RE?A (39)

with the coefficient c1 11 = 59049 / 2752 E 21. 4568, in good agreement with the accurate

value 21.6425 [14].

To illustrate how overlap modifies the dispersion energy, the results from Eq. (36)

are compared with those from Eq. (3 9). Figure 8.1 gives the dispersion energies as

firnctions ofR for the geometry of an equilateral triangle, where R denotes the separation

between the hydrogen atoms. The damping function x111 is plotted against R in Figure

8.2.; here x1” is given by

11111 = AE(3)(1,1,1)/AEIJ3&(1,1,1). (40)

Figure 8.1 and Figure 8.2 show that including the charge-overlap effects appreciably

reduces the rate of increase ofthe dispersion energy with decrease of the interatomic

distance R. In fact, at vanishing R, Eq. (36) gives a finite value for the dispersion energy,

while’Eq. (39) goes to the limit of infinity. The same effects are present in two-body

interactions, which have been studied extensively [10, 13, 15-21].

The inclusion of charge-overlap effects also modifies the angular dependence ofthe

three-body dispersion energy. To illustrate this, three interacting ground-state hydrogen

atoms in the geometry ofan isosceles triangle are considered. In Figure 8.3, the damped

and undamped dispersion energies are plotted as functions ofthe angle 0 between the two
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equal sides (R) of the isosceles triangle, for fixed values of R. Two values R = 3, and R =

4 have been selected. For all values ofR, the long-range three-body dispersion energy is

repulsive for 0 < 117.2 , while it is attractive for 0 > 117.2. With R = 4, the damped three-

body dispersion energy from Eq. (36) is only attractive for 0 > 156.7, and it is repulsive

for all values of 0 when R = 3. These results agree qualitatively with those obtained by

O'Shea and Meath, using a formal partial wave analysis and pseudo-state techniques [22,

23].
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Figure 8.1 The triple-dipole dispersion energy of interacting ground-state

hydrogen atoms in the geometry ofan equilateral triangle with R the length

of a side. (1) the damped dispersion energy from Eq. (36), and (2) the undamped

form from Eq. (39).
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Figure 8.2 The damping function x111 for the triple-dipole dispersion energy of

interacting ground-state hydrogen atoms in the geometry ofan equilateral triangle.
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60 00 100 120 140 160

Figure 8.3 The triple-dipole dispersion energy for interacting ground-state hydrogen

atoms in the geometry ofan isosceles triangle, as a function ofthe angle 0 between

the two equal sides R. (1) AE(3)(1,1, 1) with R = 3, (2) AB<3>(1,1, 1) with R = 4, and

(3) ABfigm, 1) with R = 4 [24].
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Appendix A

By means of contour integration techniques, the functions u5(R), u7(R), and

(96(R) given by Eqs. (49), (50), and (51) of Chapter V, respectively, are evaluated

analytically:

115(k) ——- 410062" - tame“, (A1)

117(R)=97 R”+<13(R)e‘2R —¢4(R)e‘4R, (A2)

and

(96(R) = M6 R‘6 +11),(R)e‘2R —¢6(R)e"4R. (A3)

In Eqs. (Al)-(A3),

 

_ _ 107571969

D7 — 258344 ’ (A4)

_ 40095

M6 ‘ T 688 1 (A5)

__ 124101 28431 —2 28431 —1 29331 3267 2

¢1(R)‘ 110080+44032R +22016R + 55040R+ 24080R

1923 3 257 4 1 5

+ 96320 R + 144480 R + 14448 R , (A6)

_. 275283 28431 —2 2843] -1 176070249 279868959 2

¢2(R)‘ 55040 +44032R +11008R + 28180480 R+ 49315840 R

1188219827 3 56994281 4 204673009 5 61303057 6

+ 295895040 R +24657920R +184934400R +138700800R

+ 181250911 R7+ 11949733 R8+ 955321 R9+ 4009973 R10

12483072000 312076800 121363200 . 3276806400

+ 456077 R” + 143 R12 + 2._1_2 R13 +__1R14 (A7)
3276806400 13003200 409600800 81920160 ,

-11219260329 107571969 —7 107571969 —6 107571969 —5

¢3(R)‘ 578690560 + 129172 R + 64586 R + 64586 R

35857323 —4 35857323 —3 73127134197 -2 11930636277 -1

+ 32293 R + 64586 R + 330680320 R + 165340160 R

153760947 5402517 2 998061 3 808739 4 6163 5

+ 36168160 R+7233632R +10333760R +108504480R +27126120R , (A8)

166



and

167

:311621667759 107571969 —7 1075719691 —6 107571969 —5

¢4(R) 231476224 + 258344 R + 64586 R + 32293 R

143429 92 -4 4 4 9 9 -3 1174664096757 —2

+ 32293 R + 32293 R + 330680320 R

195520130037 R" + 296563134494651 R + 32416131852059 R2

82670080 444434350080 1 1 1 108587520

63098078603249 R3 + 16520765448167 R4 + 3466717350289 R5

555542937600 416657203200 277771468800

+ 148048034867 R6 + 2999482556923 R7 + 346045385663 R8

41665720320 3281 175475200 1640587737600

84623425049 9 18626834567 10 7894399 11

+ 1968705285120 R + 2460881606400 R + 7031090304 R

+42$8233§J_R12+_2§242LR13+ £854.31 R14

9228306024000 214611768000 4614153012000

1217 15 16

+ 26826471000 R + 958088250 R 2 (A9)

_ 1414961361 40095 -6 40095 -5 40095 —4 337949577 -3

d’5(R)‘ 82670080 + 344 R + 172 R + 172 R + 2066752 R

_ _ 7
+ 97058817 R 2 + 7485399441 R 1+ 268721181 R + 6273129 R-

1033376 165340160 57869056 7233632

4302§§7 3 2495753 4 1178543 5 11271 6

+ 36168160 R + 180840800 R + 994624400 R + 248656100 R ’ (A10)

¢6(R) : 16944372081+ 40095 R—6 + 40095 R-5 + 4080695 R“4 + 1301512617 R—3

41335040 688 172 2066752

337959577 —2 92616153201 —1 150493937751 15957391370551 2

+ 516688 R + 165340160 R + 578690560 R+ 111108587520 R

+ 1921075957543 R3 + 8085289847027 R4 + 24607739770651 R5 + 15948903098831 R6

27777146880 277771468800 2291614617600 4583229235200

+ 1135044714739 R7 +17828O75669207R8+ 4835951926759 R9 + 905293545841 R10

1 145807308800 72185860544400 90232325568000 90232325568000

+ 108448476469 Rll-i- 14581137517 R12+ 404737297 R13+ 1712983 R14

67674244176000 67674244176000 16918561044000 805645764000

12211 15 211 16 1 17

+ 85447278000 R + 32787909000 R + 7025980500 R ' (A1 1)



Appendix B

Fully expanded, Eq. (51) gives 68 nonzero "circuit" terms. These terms can be

grouped into four sets T1 — T4 according to the types of matrix elements appearing in

each. TI is given by

Tl =(1+C){—(‘I’0|PA GA 52598

X [VXB GA 6953 floc (V130 GMBC $53 VCA + VgA GC $8 6053 VBC)

+ Vé’A GAGBC to? (Vfic GA 5953 508 VAB + VXB GC 596‘ £053 Vec)

GAEBC 5053(V8A GA to? 598 VAB + VXB (Gctoé pt?+V§C

+6Aec JOEWCAHI‘PO)

—<%IVAB GAtoEtoS P°A GAtJEtofiwge GAEBCfJgVCA

+ VSAGC 503‘ ngBcWI’o)

-<‘1’o|VBcGCsa€ta§ P°A GA®C to}? (VSA GAtaS’loS VAB

+VXBGC98 5053 VCA + VXBGAGBC @gVCA W110)

—<% I veA (60:28 to? Mime?) P"A GA®C to}? (V130 GAtJEtoS VAB

+VXBGC608 £9lll3VBc)l‘{’0>

+0110IPAGAKJgSOOCGAngSVABI‘P0)(1+C)(W0|VCAGC693608VBclq'o)

+(‘I’o IPA GA {053695 VAB ITO) (1 +C)<‘I’0 I VBCGCSOOA 59(1)3 GC 608 §)(E)3VCA|\PO>}°

(Bl)

The T1 terms reflect the hyperpolarization ofA by the simultaneous action of the direct

field from P530) and the field from the polarization induced in c by P§(r). The
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corresponding set of 20 fully expanded terms, with A hyperpolarized by P6: (r), is

contained in T2:

T2 = 5ch T1, (132)

where pBC perrnutes the labels A and B.

Terms containing the permanent polarization ofA are grouped into T3:

T3 : (1 +C)(1 +£JBC){-(‘1’0|PA GA 6053 :28

Will; GB 98 p8 (V130 0% to}? Vet + VBAGWtas‘ VBC)

+V§C GMBBEBC VXB GC 5.98 595’ VCA ]|'~I’0)

- (‘I’o IVAB GA698 508 P°A GBm‘ raocwfic Get??? ngCA

+V8AGB€BC 693 VBC )| Yo)

-(‘1’o|VCA GC 506‘ p3 P°A GAec tat? (VBC GA®B£00C VAB

+VXBGB€BC 693 VBC)|‘I’0>

" (“’0 I VBCGB€BC 500A PM GAQBGBC VXB GC 93‘ 5953 VCA I ‘I’ofi- (B3)

T3 subsumes the static induction effects that involve sequential linear response.

Specifically, the permanent polarization ofA induces a polarization in B, which polarizes

C, giving a reaction field back at A, thus polarizing A; and the same polarization

mechanism applies with B and C interchanged. T3 also contains one part of the dispersion

contribution to the polarization. The remaining dispersion terms are contained in T4:

T4 = (1+C)(1+50I3(3){—(‘I’(,|PA GA 5053 508

X [VSAGAec K353 (VlgC GA®B 69g VAB + VXB 086C 698 VBC)

+ VlgC GA®B®C VSAGAeBiJOC VAB 1|W0>
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—(‘P0 I VAB GA®B MC) POA OWE“? (VIgC GAEBC 6953 VCA

+ VgAGBGC 698 VBC )I‘Po)

‘(q’oIVBCGBecWQ POA GMBBGBC VSA GAGBBSOOC VABIWOBt (B4)

To analyze these contributions, T1 — T4 are converted into matrix element form. For T1,

T1 = 2j dr'-~drvi lj‘lgm' «(oil’s (r)|j)<J|Pt§’A (r')ll><llP$(r")I0>

+<ol§d<v>ll><jlva<r>l1><IIP¢<r”>lo>lrt<Al-,A1,Am>

+(0|P: (r)|j)(j|P;‘(r")|1)(1|1>§(r')|o)f1b(Aj,A,,Am)}

+jzt1n'<0IP:(r)lj><jIPg‘tr')I0>P5:(r")flctAJ-Amn

xPéumlPéio-‘V)(0IPf(rV)Im><mle<rvi)I0>

”950-3r"')"r,,4,(r“’,r")r,,(r",r"i (135)

assuming all the molecular eigenstates can be taken as real. In Eq. (B5),

fla(AJ-,A,,Am)= A}‘A‘;‘(A, +Am)’1 +A31A71Ajg

+A;‘(Aj + Ana-RA, +Am)“ +A31<Aj +Am)“(Al + Am)“, (136)

f1b(AJ-,A,,Am) = A}'A;‘(A, +Am)" +A;‘A‘,,}(A, +Am)"

+A;‘ ;‘(Aj +Am)‘1+A]'A}}(Aj+Am)'1, (B7)

and

flc(AJ-,Am)= A}‘A;,1(Aj mm)" +A}‘A},{(Aj +Am)‘1 +A‘,§(Aj mm)“

+A',3,(Aj +Am)“ 4133213}: —2A3‘A;,;’-. (B8)

The energy denominators in Eq. (BS)-(B8) are given directly in the form generated by

Eq. (B1); the expressions simplify to
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f,,(Aj,A,,Am)= flb(AJ-,A,,Am)= 2A}‘A;‘A" (B9)
m

and

flc(Aj,Am): —2A;2A;,,‘. (1310)

With this simplification, the T1 terms yield Eq. (54) in Chapter VII. Similarly the T2 terms,

representing hyperpolarization by the permanent charge density of molecule C, can be

obtained fi'om Eqs. (BZ) and (B5)-(B10). In matrix element form, the T3 terms reduce to

T3 : 2(1 +59BC )J'dr'u-drVi Z (0|P3(r)|j)(j|P§(r')|0)P5: (r")

j,k.m

><<0IPeBtr"')Ik><klP§(r“>10><01Pf(r”)lm><mIPf(r“‘>10)

xf3(Aj,Ak,Am)T55(r',r”')T8¢(riv,rV)Tyx(r",rVi (311)

with

f3(AJ-,Ak,Am)= Ag‘Af/i; +A}‘A}‘(Ak +Am)’l +A}‘A;,}(Aj +Ak mm)“

+A;,}(Aj+Ak)“(Aj+Am)"+A;‘A;,1(Aj+Ak)-1

+A:,1(A,- +Am)“<At +Am)" +A1‘(A,~ +At)“(Ak mm)“

+A;,}(Ak+Am)“(Aj+Ak+Am)“

=2AT‘A“A“+A“(A.+A )‘l(A-+A )"+A“A"(A.+A )-1
J k m m j k j m k m j k

+A’n:(AJ-+Am)‘1(Ak+Am)’l+A}'(Aj+Ak)“(Ak+Am)“l. (1312)

The T4 terms are given by

 
T4 = 2(1+gJBC)Idr'---dr"i . Z'[(0|P:(r)|j)(jlp;‘ (r") 1)(1|P[;‘(r')|o)

j,I,k,m

Xf4a(Aj,A1,Ak,Am)
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+<0IP§<r'>Il><1IP:A<r>l1><IIPf<r">l0>

Xf4b(Aj,A1,Ak,Am)]

B "I B W C V C Vi

><(Oll’t (r )|k><k|Pe (r )|0><0IP¢. (r >lm><mlPt (r W)

xTB5(r',r"')T8¢(riv,rv)TYx(r",rVi , (313)

where

f4a(A,-,A,,At,Am>= A;‘<A1+Am)"(Al +At)" + A]‘(A1+Am)“(At + Am)“

+A;‘(Aj +Ak +Am)'1(A, +Ak)“ +(A, +Ak)'1(Ak +Am)‘l

><(AJ-+A,(+A,,,)‘1

= 2A;‘(Ai +At + AmXA, + Akr‘mt +Am)"(A1+ Am)",

(814)

and

f4b(Aj,A,,Ak,Am) = (Aj +Ak)‘1(A, +Ak)"(A, +Am)‘l

+(Aj+Ak)’1(A,+Ak)"(Ak +Am)"1. (315)

The linear induction contribution to the polarization P: (r) is denoted by Thad. The

quantity T3,ind is identical to the right side of Eq. (B11), except that f3(AJ-, Ak, Am) is

replaced by

f3,tnd(A,-,A1,Am) = 4A}‘A}‘A},}. (816)

T3,,“ is related to the nonlocal polarizability densities of molecules A, B, and C by

Eq. (55) in Chapter VII. The dispersion contribution to the polarization PO? (r) is given by

Tdisp 2 T4 + (T3 — T3,ind)- The effect of adding (T3 — Tim) to T4 from Eq. (313) is to

replace (“mt-om by <j|P:A<r")  
I), because
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f3(Aj,Ak,Am)—4A3‘A;'A;} = -f4,(Aj,Aj,Ak,Am). (317)

That is

Tdisp =2(1+go‘3c)jdr'mdrvi Z'[(0|P§(r)|j)(j|P;’A(r")|1)(1|1>§(r')|o)

j,l.k,m

xf48(AJ-,A1,A1,Am>

 
+(o|3;‘(r')

 l><JIP3A<r>II><IIP$<r"> 0)

x f4b(Aj,A,,Ak,Am)]

><<0|PeB(r”')l1<><k|Pt~.B(r‘V)|0>(0lP50”)!nr1)(nrlle(rVi )l0>

xTB5(r’,r'")T8¢(riv,rv)Tyl(r",rVi . (B18)

After label changes j <—> l, k (—-> m, B <—> y, e <—> d), 6 <——> X, r' <—-) r", r’" (-) r“', and

rv <——> rVi in the term generated by 503C in Eq. (B18) and summation with the expression

given explicitly in the same equation, Eq. (57) of Chapter VII is obtained.



Appendix C

The full expansion in Eq. (51) yields 27 terms of(VAB , VAB, VBC) type. They can

be grouped into three sets U1 — U3, according to the different types of matrix elements

appearing in these terms. U1 is given by

U1 =(1+C){-(‘P0|PA GA 506’ tog

x [VXB GB £26 508 (VXB GB 506‘ 500C V3C + Vfie GB (26‘ :98 VAB)

+ Vlgc GAGEB 698 VXB GB 6’93 60:): VAB]I W0)

-(‘Po I VAB (GB 506 508 P°A GA613 (08 +(3A6313 508 P°A GB 596‘ 598)

X V2.3 GB 898 600C VBC ”0)

—(\110 I VA3 GB 649854951)“ GAGBB 608 Vigc (GA 5963 608

+ GWB gag )vAB I‘i’o)

—<‘POI(VAB GAGBB 93 PM GB 608 503 VlgC + VBC GB .698 5031)“

x cm e8 32ch e3 e8 vie 1%)

+0110 IPA GA @133 508 VABI‘Po) (1+C)

x(‘1’oI(VAB GB 506‘ :08 GB 506(98Vecl‘1’o». (C1)

In matrix element form,

Ul =2jdr'u-dr"i Z'(O|P:(r)|j)<j|P§‘(r')|O)P(’f3v(r")

j,k,m

x {(0|P,B(r")
 k><k|P§B<r'")lm><mlPE(r")Io)gta(Aj,At,Am)

+(OIP,B(t-") k)(k|P§B(riV)|m)(m|P§3(r"')|o)g,b(Aj,Ak,Am)
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+(o|1>53(r'")
 
k)(k|1>;’B(r")

 mIImIPEO'iV)IO>81a(AthkiAm)}

x 3,2,0“)pr(r',r")r&(r'",t-Vyrmu“,r‘“) (C2)

with

gla<Aj,At,Am)= Ag‘Ai‘AII +AL‘A;I(Aj mt)“, (C3)

and

g'bmrAkaAm) = AE‘AI‘AIJ +A1‘AI,I(AI mt)“

+A’l-T}(Aj+
Ak)—1(Aj+Am

)-l'

(C4)

In U1 terms, the fields from the permanent polarization of molecules A and C

hyperpolarize B; the induced polarization in B produces a static field at A to induce a

polarization. U1 also contains one part ofthe dispersion contribution to the polarization

A (3)

(P... m) .

The U2 terms satisfy

U2 = (1 +C){—(\110|1>A GA 353 gig

X [ V723 GA 60133 60% (V23 GB 600A 600C V3c + V130 GAGE 608 VAB)

+(va GA®B gag v"BC +v§C GA®B gag v,‘§B)GA go}? 565 VAB]|‘P0)

‘(q’o I VA3 GA 6053593: POA GA JOE'SOOCWXB (38508 590C V3C

+ V130 GAEBBJ‘JOC VA3)I‘P0)

’ (“’0 I (VAB GAGBBQOC POA GMBB 693 V130 + VBC (38693 593

x P°A GAQBrJoC VXB)GAta€ta8 VABI‘POI

+(‘1’oIPA GA 506398 GA (963508 VAB I‘Po)(1+C)

X (910 I VAB (38898 898 V3C I‘Yo» (C5)
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The matrix form of U2 is

I)<IIPi‘(r”>I0> 
U2 —_— 2Idr'---drvi '{[(o|1>;}(t-)|j)(j|1>[§’A (r')

j,l,k

 +<0IP:(r)I1)<jIPi’A(r“)II)<IIPi‘(r') 0)]82603).A1,At)

+<0IP,;‘(r')Ii)<lIP:A(rII)<IIPf(r”)Io)gzb<A,-,A,,At)

—<0|P6‘(r>ll><JIPtA(r')I0>Pi%(rV)gzc(AJ-,At))

x(OIPtsB(r"') k><klPeB(r")I0>Po‘3(r")PSntn-V‘) 

x TB,(r',r")r5,(r"',r")rm(r‘“,rV‘) (C6)

with

823(Aj1 Ala Ak ) = AEIAIIAEI + AEIAIIMI + Alt )4, (C7)

gem-Amt) = AEIAI'A1‘+A]‘A7‘(A1+ At)“

+A3‘(Aj +Ak)“(A, +Ak)'l, (C8)

and

gzc(Aj,At)=A;‘A1‘(Aj +At)“. (C9)

U3 contains the remaining dispersion terms,

U3 =(1+C){—(‘I’6IPA GA 5063 500C

X [VXB GAEBB 690C (VXB GB 503 693 V3C + V130 GAGE £98 VA3)

+V§e 6"“ (:28 Vie Gm 508 VABII We)

— (“'0 I VAB GAGBB 500C POA GAGBB 59% (V23 GB 598 pg V3C

+ Vigc GAeBB 593 VA3)I‘¥0>

+16 I V3C GB (at? tag P°A GAeB 508 Vie GAG?B :98 VAB I ‘16)). (C10)
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In matrix element form, the U3 terms reduce to

U3 = zjdr'...dr"‘j IZRZJ<O|P5(r)|j)(j|Pé°‘(r')|l)<1|Pf(r")|0)

x[(o|r>;3(r") k)(k|1>53(r"') m)(m|1),‘3(hiv )|o)
  

xA]1(A,+Ak)'1A_n}

k)(k|Pe°B(r“’)lm)<mIPaB(r"')  
+(0IP,B(t-") o)

xA3‘(A1+At)“(A,+Am)“

+(O| P§3(r’") k)(k | P? (r")] m)(m| P8130iv )IO)
 

XA]‘(A1+At)"A}I]

—<0IP:<r>Il)<lIPi‘<r“>I0)<0IPeB<r"'>Ik)<kIPE<-“>Io)

x P§,(r')P§,(r")A1‘(Aj+Ak)‘2

+<0IP6(r') J><J|P§A(r)|1><lle(r")I0) 

x [(0] PYB(r”) k) (k I P§3(r"') m) (ml PSB(riv )IO)
  

x(AJ- +Ak)'1(A,+Ak)"1A;I

+<0|Pi3(r")lk)(kIP§B(r”)Im><mIPeB(r"')  0)

x(Aj +Ak)‘1(A, +Ak)‘1(A, +Am)'1]}

x 3,910“ )T‘3y (r',r")Tm (r"',lt-")r,,,(r“’,r"i ). (C11)

Adding (U1 — Ulmd) and (U2 — Ulmd) to U3 from Eq. (C11), and using the fact that

simultaneously interchanging the operators P‘f‘o") and Pf(rv), and P.,B(r") and P§3(r"’)

does not affect the result, Eq. (67) of Chapter VII is obtained.

 



Appendix D

For (VAB , VBC , VBC) terms, the full expansion of Eq. (51) generates four sets

W1 — W4, according to the different types of matrix elements appearing in each of these.

W1 is given by

W = (1+C) {—(‘I’OIPA GA (96' (08

X [VIgC GAEBC 50:13 (Vlgc GAEBB 500 VAB + VAB Gm 593 VBC)

+(V§C GMBBEBC V23 +VX3 GB 93‘ 600C VBC)GC Mi 60(1)3 VBCII‘Yo)

“(TOIVBC GC @0 500BPOA GAGBC 503(V13C GAEBB Pg V

+ V213 GBEBC 603 VBC)I‘I'0>

-(‘I’oI(VAB GMB (00C P°A GB 506‘ 500C Vfic + Vee GBE‘13C (6

x P°" Gm”C VXB)GC tot? 600 Vac I‘Po>} (D1)

or in matrix element form,

k><kIPI3<r">|0> 
w1 = zjdr'u-dr"i Z '(oIP:(r)|j)(j|P§(r')|o)(o|1>53(r"')

j,k,m

xPain")(0|Pf(r")|m)(m|1>§(r“)|o)h1(Aj,Ak,Am)

xTB,(r',r")rs,,(r'",ri")r¢,(r",r“) (D2)

with

h1(AJ-,Ak,Am)=A;‘(Aj+A,,,)“(AJ.+Ak)"+A;‘(AJ.+A,,,)“(Ak+Am)‘1

—l -l -l —1 -l —l

+Aj Am(Aj +Ak +Am) +AJ- AkAm

+A:(Aj+Ak)‘l(AJ-+Am)"+A;1(Aj+Am)‘1(Ak+Am)‘l

+A“m(Ak+Am)(A +Ak+Am)‘1+(A +Ak)‘A'1A';n

=2A71A’1M(AR+A )"+2A"A"A;,,l (D3)
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In the W1 terms, the field from the permanent polarization of molecule B polarizes C,

which then polarizes B, and produces a field that polarizes A.

W2 is given by

w2 = (1+C) {—(‘I’OIPA GA gag gag

x [Vt‘éc GA6313 (08 Vfic (GA (063 (08 + GA®B (06C) VAB

+(V13C GAGEB £08 VXB + VXB GB 533 595 V§C)GB 598 £98 VBCII‘P0>

-(‘Po I V3C GB (06‘ (08 P°A GA613 (03 V1‘§c(GA (963508

+GA®B 60%)VA3I‘POI

—(‘PoI(VBc GB (96‘ (00C P°A GA6313 598 VXB + VAB GAGBB (08

x P°A GB 536‘ (98 Vt‘ic)GB (06(98V3cl‘1’o>

+(‘I’o IPA GA 5053 500C GA 5053 98 VABI‘POX‘PO IVBC GB 598 608 V3C I‘I'o)

+(‘F0IPA GA 953 500C VAB I‘I’OX‘POIVBC GB $3 603 GB 603 600C VBC IWOI-

(D4)

The matrix element form of the W2 term satisfies

w. = zldr'---dr" ,kz'wlpmelioIPitr') 0)
1. .m

x [(o|I>g3(r'")|lt)(lt|r>f‘3(rvi )| m)(m| 3,90")

 

 O>h2a(AjaAltaAm)

+<0IPsB(r"'>Ik)<kIP,B(-")Im><mIPi3(rV‘)I0)h2t(A,-,At,Am)

+<0IPeB(r"') k)<kIPtB(r"‘)Io)P,%(r")hzc(A,-,At)IP&(r‘V)P§¢(rV) 

x TB,(rat-")3,(r"',r‘V)"r,,,,((r",t-"i ), (1)5)

where
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h2,(Aj,Ak,Am) = A;‘(Aj +Ak)'1(Aj +Am)“ +A;‘A;‘A;,1

+A11(Aj+Ak)‘1(AJ-+Am)‘l+ A‘k‘A',,}(Aj +Am)“,

h2b(Aj,Ak,Am)= A;‘A‘,,§(Aj +Ak)‘1 +A;JA';,1(Aj +Ak)‘1,

and

h20(AJ-,Ak ) = A;3(Aj + Ak)"1— A}2A;1+ A;‘A‘k'(Aj + Ak )‘1 —A;‘A;3.

Afier algebraic simplification,

h2,(Aj,Ak,Am) = 2A;‘A;‘A;,},

h2b(Aj,Ak,Am)= Ag‘Ag‘Agl,

and

h2c(Aj,Ak)= -A}‘A;2.

With this simplification, Eq. (D5) yields Eq. (74) in Chapter VII.

Terms containing the matrix elements 33%, (r'"), P3310Vi ), and P5; (r”) (with

molecule B in the ground state) are grouped into W3,

W3 = (1+ C){- (‘I’olPA GA (263 (08 Vfic GA“ (963

X (Vgc GA 6053 600C VAB + VXB GC 893 63g V3c)I‘P0>

+(‘1onPA GA 6353608 GA 6053608 VABI‘Po)

XIWOIVBC GC 603 6053 VBCI‘Po)

‘(q’o I V3c GO 698 5053 POA GAGBC 39(1)3

x (Vfic GA (063 (08 VAB + VXB GC (96 (063 Vec)l‘1’o)

+(‘Po IPA GA 5953 600C VABI‘POX‘PO I V30 GC 598 698

X GC (9'3 6053 V3C ITO»-

(D6)

(D7)

(D3)

(D9)

(D10)

(D11)

(1)12)
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or in matrix element form

w3 = ZIdr'mdrVi Z '(o|1>3(r)| j)(j|1>[;‘(r')|o)1>035(r"')1>(§(r“)Pgi (r")

Jim

x(oIPf(rV)|m)(m|Pf(r‘V)|o)h3(Aj,Am)

xTBY(r',r")T&(r"',riV)T¢;V(rv,rVi), (D13)

where

_ -2 -1 -1 -1 -1 —2 —l
h3(Aj,Am)—Aj (Aj+Am) +AjAm(AJ-+Am) —Aj Am

_2 —1 —l -l —1 —1 -2

+Am(Aj+Am) +Aj Am(Aj+Am) -Aj Am. (314)

The W3 term vanishes because h3(AJ-, Am) = 0.

W4 contains the remaining dispersion terms,

W4 =(1+C){-<‘P6IPA GA to}? (08

x [Vie Gm”C Vie (GA (25' (.28 +GA$B (98mg

+(Vl‘3c OMB“ VXB + VXB GB (16‘ 598 VEC)GB®C (26‘ VBCII‘Po)

—(‘*'o I V3C GB®C 603 POA GAGBBEBC Vrgc (GA 5053 690C +GA®B $98 ) VA3 I‘I’OI

-(‘P0 |(vBC G363C 503‘ 1>°A GA$BGBC v38 + vAB GA6313 33

x P°A GB 526‘ 506C Vficmm (06‘ V3c I‘I’o)

+(‘Po IPA GA 6053 («"3 GA 50(1)3 695 VABIWOX‘PoIVBC GBEBC 608 V3c I LP0>

+(‘Po IPA GA 8953 603 VAB I‘POX‘I’OIVBC GBEBC £08 GBEBC 500A V3c I “10»-

(D15)
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The matrix element form of Eq. (D15) is

W4 = ZJ'dr'u-drVi - k2 'I(OIP: (r)|j)(j|Pé‘ (r')|0)

J! rm,

x[(0|1>53(r'") k)(k|Pf(rV‘)|m)(m|P,B(t-") 0) h4,(Aj,Ak,Am,A,)
  

m)<mIP)E3(rVi)I0)h4b(AjaAk’Aval) 
k)(lt|P,B(r")

 
+(OIPaB(r"')

+<0|PeB(r"') twain-“>133? (r")hewI-AWI 

x(0|Pf(rv)|1)(I|P8C(riv)|O)Tfiy(r',r")T58(r'",riv)T¢x(rv,r"i), (D16)

where the fact has been used that simultaneously interchanging the operators P8C (r”) and

Pf (rv ), and P? (r’") and P? (r“) leaves the result unchanged, and

h4a(Aj,Ak,Am,A,)= A}‘(Aj +Ak +A,)’1(Aj+Am)‘1+A]1(Ak +A,)“A;,}

+(Aj+Ak +A,)“(Ak +A,)"(Aj+Am)"

+(Ak +A,)‘1A:,}(Aj+Am)‘1

=2A‘J."A;,}(Ak +A,)", (1)17)

h4b(Aj,Ak,Am,A,)=A}1(Aj +Ak +A,)“(Am +A,)'1

+(Aj+Ak +A,)“(Ak +A,)“(Am +A,)'1

= A;‘(Ak +A,)"(Am +A,)", (D18)

and

h4c(Aj,Ak,A,)= A;2(Aj +Ak +A,)‘1 —A}2(Ak +A,)'1

+A}‘(Aj + Ak +A,)“(Ak +A,)‘1 — A‘j'(Ak +A,)'2

=—A}‘(Ak +A,)‘2. (319)



Appendix E

The full expansion in Eq. (51) gives 33 terms of(VAB , VAB , VAC) type. These can

be split into four sets X] — X4 , according to the types of the matrix elements appearing in

each. X1 is given by

X1=(1+C){—(‘I’oIP"GA 60535-98

leXB GA (063 :38 (VXB GA (063 (08 VAC + VXc GA (963 (98 VAB)

+VXc GA (063 (08 V23 GA (063 (28 VABII‘I’o)

—<% I VAB GA (063 (00C P°A GA (963 508 (VXB GA (063 (.28 VAC

+VXC GA 6053 600C VA3)I‘I’0>

(110 | vAC GA 505350813“ GA 5053 500C vXB GA 353 5.28 vAB |‘P0)

+(‘I’oIPA GA (063 508 GA 506’ 500C VABI‘I’o)

X (‘1’0 I(VAB GA 6053 398 VAC + VAC GA 5053 698 VA3)I‘1’0)

+(‘I’oIPA GA (063 (08 GA 508508 VAC I‘I’o><‘1’oIVAl_>,GA (063508 VABI‘I’O)

+0110 |1>A GA 5e? 3,0 VABI‘PO)(‘I’0 I(VAB GA (05’ (08 GA (063 (08 VAC

+th G" 506’ 508 GA (06' 508 VAB)I‘Po)

“LIWOIPA GA Qt? SOS VAC ILPOXWOIVAB GA 6063 503 GA 5.953 KJoC VABI‘i’o),

(El)

or in matrix element form,

 0)x1 = zjdr'mdr"i z ' {[(0|P:(r)| j)(j|1>(;A (r')|l)(l|Py°A (r")|n)(n|Pg‘ (r'")

J,l,n

+<0IP:(r)Ij><JIPiA(r'>II><IIP§A(r'") 0)  
n)(n|1>,A (r”)

183
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n) (anf‘ (r")|0>

0)

n)(n|Pf‘ (r")IO)

+<0IP:(r)|j)<jIP§A(-'") 1)(IIP§A(r')

  +<°IP? (r") JXJIPS" (r)I 1)(1IP§A (r')| n)(nlp§(..m)

+(O|P§ (r')
 1)(1IP33"(r)II><IIP(~§’A (r'") 

+(0IP§(r'")| j)(j|P§A (t-)|1)(1|1>,;’A (r')|n)(nIPf(r")Io)] AglAylAj,‘

~21 12 (OII’6‘(-')li)(i|Pt’sA (r')I0><0|1’4A (r")|n><n|P6‘(r"')|0>
Ln

+<0I1’6‘(r)ll'>(J'lPt‘sA (r"')IOXOIPt’i‘(1")ln)<n|P,A (r")  
0)]

x Poi.(r‘")1>321(r”)Poi(r"i )(AfAi‘ + ATM?»

x Tm(r',riV)Tm(r”,rv)T5€(r'", rvi ). (E2)

The X2 terms are given by

X2 = (1+C){—(‘P0|PA GA 5053 600C

x (Vie GAaaB (08 Vie + Vie GA (2%? (.28 VXB)GB (06‘ (8 VABI‘Po)

“(9’0 I VAB GB 508 508 POA GAQB 600C (V133 GA 59:13 (Joe VAC

+ VXC GAeBB 600C VAB)I To)

—<‘I’oI(VAe GA (1338 1>°A GA ()5 (a8 Vie + VAB GA6913 (8

X POA G'WB 608 VXC )GB 600A 608 VABI‘Po», (E3)

or in matrix element form

x2 = 2Idr'u-dr“ Pg; (r") Z'{(o|1>:(r)|j)(j|P§(r')|n)(n|Pg‘ (r"')|o)

j,n,k

x[A;‘A;‘(A,, + Ak)‘1 + A;,‘A;J(Aj +Ak)“]

+l<oIP:(r)Il><1IP(°A(r'")In><nIPi“<r'>I0>

 +<0IPi(r'>I1><lIP:"(r)In><nIPé*(r"'> 0)]
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x[A;‘A;,‘A;‘ +A;‘(Aj +Ak)'1(An + Ak)'1]}

(<(o|1>{3(riv )|k)(k|3§(rv)|o)3&(r")

xTm(r’,ri")Tm(r",r")T5€(r'",r“ ). (E4)

Terms containing the permanent polarization of molecule C alone are grouped into

X3:

X3 = (1+ C) {-(‘I’o I(PA GA (063 (98 V23 GB (96‘ (98 + VXB GAQB (98

x P°A GB (06‘ (90C)(VXB GA (063 (08 VAC + VXc GAQB (08 VAB)I‘P0)]

= 2Jdr'~~dr" Zk'<0lP£(-')IJ)<JIP6‘(r'>|0><0|P(A(r">|n><ané‘(r"')I0>
1,",

x(0|Pi3(r“)Ik>(k|Pf(rV)I0)P&(r“)

x[A3‘A;,‘A;‘ +A;1 11(An +Ak)‘1+A],1A](1(AJ-+Ak)‘l

+A1‘(Aj +A..)“(A,. +At)"1

x Tm(r',riv)Tm(r",rv)T58(r"',rVi ). (35)

X4 contains the remaining dispersion terms,

X4 = (1+C)(—<‘I’6|PAGA (263 (8

x [V2.3 GAGE (98 (V23 GA (063 (08 VAC + VXc GAEBB (soC VAB)

+ VXc G" (a?)3 (08 V23 GA6313 (08 VABII‘I’o)

+0110 IPA GA 6053 595 GA 60g (of): VAC ITO)

X10110 I VAB GB 633 500C VAB I To>+(‘P0IVA3 GAGBB 698 VAB I‘P0)]

-(‘Po I VAB GAEBB (98 P°A GA$B (28 (VXB GA (963 (98 VAC

+VXC GAeB $08: VA3)I‘P0>
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—<‘P0 I VAB GB (93 £98 POA GAEBB 600C VXC GB 508 605 VAB I lPo)

-(‘I’o I VAC GA (95’ (06C P°A GA (063 (08 V23 GA6913 (08 VABI‘PO)

+0110 IPA GA 6053 600C VAC I‘llo) [(WOIVAB GB (JOA 60%)3 GB 698 895 VAB [1110)

+ (W0 IVAB GAeB 508 GAGBB 690C VAB IWO)” , (E6)

or in matrix element form,

X4 = ZJ‘dr'n-drVi ‘ IZ;{(O|P§‘ (r)|j)(j|P§ (r')|l)(l|P;A (r")|n)(n|P§(r"')|O)

1, (n,

xA31A‘,,1(A, +Ak)‘1

 0) +<0|Poi<r>|1><JlP€(“NIX/IR?" (r'") n><n|P(A (r")

x A'J-‘(A, +Ak)'1(An +Ak )-1

+<0IP:(r)Ii><1IP§A(r'")II><IIP(A(r'>In><nIP;‘(r")lo>

x A;‘A;'(An +Ak)"

 0)n)(n| P5: (r'")
 +<0|P(§‘(r')I1><jIP:A(r)II)<IIP;‘(r")

X A;1(Aj +Ak)-1(A’ + Ak)~1

 +<0|1’6‘(r'>li><J|Po?"(r)|1><1IPt§’A (r’") n><nIP(A (r") 0) 

((A1. +A..)"(A, +AI.)"(A,. + AR)"

+<OI PSA (rm)

 0) 1><1IP:A(r>II)<IIP(“ (r'>In)<nIP(" (r")

x A;‘A;‘(An +Ak)‘1

 -<0IP:(r)Ij><jIP§(r'") o)P56(r')P6§(r")

x [Angg‘ +A;‘A;3 - f-(Aj +Ak )"1

 0)  
—<0|P: (r)Ij)<j|P§ (r'") 0) (0| P; (r') n)<n|P§A (r")
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XIA}2(A.. + A)" + A3‘(A.. + A.. )‘21}

x (0|3,130“)|k)(lt|1>,§3(r")|o)1>(§(r"‘)

x Tm(r',riv)Tm (r",r")r6,(r"',r"i ). (37)

Adding X2 — Xund and X3 — X3,ind to X4 and grouping the terms according to the types

ofthe matrix elements yields

X4 + X2 — x2,ind + X3 — x3,ind

= Zjdr“ - 0dr“ Tm(r', riV)Tm (rv, r"')Tg,c (r"', r“)

x Z'(oIPf(r‘V)|lt)(k|P,’,3(r")|o)POC,(rVi)

j,l,n,k

X[Y1+Y2+Y3+Y4+Y5+Y6+Y7+Y8], (E8)

where

Y1 = <0IP: (r)I1><jIP(;‘ (r')II)<IIP;‘(r")ln><nIP(A(r'")I0>A}‘A:.‘(A( +A )—1

 
n)(n|1>g‘(r"') mpg; (r")A]'A‘,,‘(An + Ak)‘1

 —<0IP:(r)IJ><JIP€(r'>

 40ng (">|i><i|Pf‘(r") n><nIP§(r"')I0>P66(r')A3‘A:.‘(A,- +AI.)"

 
+(o|1>;‘ (r)| j)(j|P5A (r'") o)P§B(t-')Pg; (r") [Ang‘k1 — A‘j'A‘kz

+A;2(Aj+Ak)“]

 = (Oll’o’?(r)|1‘><j|Pt‘s’A (r') I)<I|P§”‘(r">ln><n|P§‘ (r"')l0>

x A;‘A;,‘(A, +Ak)‘1, (39)

0)  Y2 = (oil’s?(r>IJ><jIP€(r'>II><IIP§A (r'") n><nIP$<r">

x A}‘(A, +Ak)"1(An +Ak)’l

 
om, (r")

 —<0IP:(r)Ij><iIP§A(r"') n)<nIP§‘(r')
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x A;‘A‘,,‘(Aj + Ak)’1(An +Ak)'l(Aj +An +Ak)

= (OIPA?(-~)Il)<jIPi’A (r')II><IIP§A(r"')In)<nIP;‘(r")Io)

x A31 (A, + Ak)’1(An + Ak )—1

-(o|1>: (r)| j)(j| PgA (r"')|n)(n|P,g‘(r')|o)Pg; (r")

  

xA‘j‘Aj,‘(An +Ak)"1, (310)

3 = (01?: (r)|j><JIP§A (r'")IIXIIPé‘U') n><nIP¢ (r") 0)

xA'j'A]'(An +Ak)'1, (311)

Y4 = (OIP§(r')I1><lIP:A(r)II)<IIP§A(r"')In><nIP;‘(r")I0>

x(Aj +Ak)’1(A, +Ak)‘1(An +Ak)“, (312)

Y5 = (OIP€(r')ll><jIP§" (r)|1><l|P(" (r")In><nIP§ (r"')lO)

X Ah1(Aj + Ak )_1(AI + Ak )—1

 —<0IPé‘(r'>Ii><1IP3A(r>In><nIP8(r"'> 0380")

x A'JT'AI,1(AJ-+Ak)"(An +Ak)“(Aj +An +Ak)

= (OlPé‘(r'>IJ><jIP§A(r)|l>(1|P(°A<r">|n><n|Pé‘(r"')|0)

x A;,‘(Aj +Ak)‘1(A, +Ak)"

 
—(o|1>g‘(r')|j)(j|P§A(r)|n)(n|P§(r'") o)1>(§§(r")

><A}‘A;,‘(Aj +Ak)“, (313)

Y6 =(o|1>g‘(r"')
 1><1IP:A(r>II><IIPi‘(r'> n><nIP:‘(r">I0> 

xA‘j‘A;‘(An +Ak)'1, (314)
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  0)

>([A;2(An +Ak)‘1+A}‘(An +Ak)"2], (315)

Y7 = —(o|1>:(r)|j)(j|1>g‘(r"') o)(o|P§(r')|n)(n|Pf(r")

and

Y3 =—<oIP:(r>Ij><jIPé‘(r')I0><0IP4‘(r">ln><nIP8(r'">Io>

x A‘lej,1[(An + Ak)’1+(AJ-+ Ak)’1+(Aj+ A!)1

((An +Ak)"1(Aj +An +Ak)]. (E16)

Adding the second term of Eq. (E10) to Eq. (El 1), and adding the second term of

Eq. (E13) to Eq. (E14) converts the matrix element (1| P6“ (r')| n) in Eqs. (E11) and (E14)

to (1| PEA (r')| n). This transforms Eq. (E8) into Eq. (85) of Chapter VII.
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