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ABSTRACT

ENERGIES, POLARIZATION, AND POLARIZABILITIES OF MOLECULES
INTERACTING AT LONG OR INTERMEDIATE RANGE

by

Xiaoping Li

This thesis presents results for the energies, interaction-induced polarization and
polarizabilities of a set of molecules (two or three) interacting at long or intermediate
range.

Collision-induced dipoles and polarizabilities have been determined for pairs of
centrosymmetric linear molecules interacting at long range. The analysis is complete to
order R’ in the intermolecular separation for collision-induced dipoles and to order RS
for collision-induced polarizabilities. For each of the polarization mechanisms, angular
momentum algebra has been used to obtain compact results in terms of 6-j and 9-j
symbols. Numerical results have been obtained for the polarizabilities of the pairs
H,---H,, Hy---N,, and N5---N,.

The nonlocal polarizability density o(r,r’;@) and hyperpolarizability densities such
as B(r,r’,r"”;0,,0,) play an important role in this research. The linear response tensor
a(r,r’;o) gives the polarization P(r,®) induced at point r in a molecule by the electric
field F(r’,0) acting at another point r’. The hyperpolarizability density
B(r,r',r";o,,0,) describes the distribution of the hyperpolarizability in molecules. A
method of computing the B hyperpolarizability density has been developed based on its

connection to a set of auxiliary functions d)ti'{(k,co) that determine van der Waals
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interaction energies. For the hydrogen atom in the 1s state, the method yields analytical
expressions for the  hyperpolarizability density. The results have been used to compute
the damped dispersion-induced dipole in one hydrogen atom, due to its interactions with
a sec.ond.

Three-body energies and the interaction-induced polarization for molecules
interacting at long or intermediate range have been analyzed, assuming that
intermolecular exchange effects are negligible. The analysis is complete to third order in
the interactions. Distinct polarization mechanisms that contribute to three-body energies
and polarization have been identified and clear physical interpretations have been
established. These include dispersion, induction, and combined dispersion-induction
effects. The induction effect further contains three different polarization mechanisms: the
static reaction field, third-body field, and hyperpolarization. Both reaction-field theory
and perturbation analysis are used to derive the equations for three-body energies and
polarization, giving equivalent results. Polarizability density and hyperpolarizability
densities are employed to characterize the nonlocal response of a molecule to the fields
from its interacting partners. Thus the results include the direct modifications of the
lowest-order electrostatic, induction, and dispersion effects, due to overlap of the
molecular charge distributions.

The three-body dispersion energy is calculated for a model system, interacting ‘
ground-state hydrogen atoms, to illustrate how overlap modifies three-body interactions.
An analytical expression for the damped triple-dipole dispersion energy is obtained and
the results are compared to those from the long-range Axilrod-Teller-Muto expression. It
is shown that the damped dispersion energy converges as interatomic distances approach
zero, while the Axilrod-Teller-Muto equation diverges. The angular dependence of the
three-body dispersion energy is also changed appreciably, due to overlap of the charge

distributions among interacting hydrogen atoms.
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CHAPTERI1

INTRODUCTION

This thesis is concerned with the theory of intermolecular forces and the interaction-
induced changes in molecular properties such as dipoles and polarizabilities.

The work focuses on two or three molecules interacting at long or intermediate
range. The intermolecular separation is assumed to be sufficiently large that overlap
between molecular charge distributions is weak and the effects due to exchange of
electrons between molecules are negligible. Changes in the energy, polarization, and
polarizability of the interacting molecules are analyzed.

In Chapter II, the collision-induced dipoles are determined for pairs of centro-
symmetric linear molecules interacting at long range. The analysis is complete to order
R in the intermolecular separation. Through this order, the collision-induced dipoles are
determined by quadrupolar [1] and hexadecapolar induction [2-5] , effects of
nonuniformity in the local fields [3-5], back-induction [4], and dispersion [4, 6-8]. For all
of these polarization mechanisms, spherical tensor analysis yields the dipole coefficients in
terms of 6-j and 9-j symbols. The results are expected to be useful in simplifying collision-
induced line shape analyses.

Chapter III gives the long-range contributions to the collision-induced polarizability
Aa for pairs of centrosymmetric linear molecules through order R, including the first-
and second-order dipole-induced-dipole (DID) interactions [9], higher-multipole
induction, effects of the nonuniformity of the local fields [10, 11], hyperpolarization [12],
and dispersion [12-16]. The results have been obtained using spherical tensor analysis and
they are given in terms of 6-j and 9-j symbols. The polarization mechanisms included in
this work give rise to isotropic rototranslational Raman scattering and to simultaneous

rotational transitions on two interacting molecules; both are collision-induced phenomena.
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Transitions with AJ up to +4 are produced by the R~ and R polarization mechanisms
treated in this work. For the pairs H,---H,, H,---N,, and N,---N,, ab initio results for
multipole moments and susceptibilities have been used to evaluate the classical induction
contributions to Aa., and a constant ratio approximation [4, 12, 14] has been used to
estimate the dispersion contributions. The relative contributions to Aa from different
polarization mechanisms are discussed for R values ~0.5 — 1 a.u. outside the isotropic van
der Waals minimum of the pair potential.

Chapter IV presents a method of calculating the 8 hyperpolarizability density and the
B hyperpolarizability density, which determine the damped dispersion-induced pair dipole
and quadrupole of interacting molecules, respectively [17]. These densities are connected
to a set of auxiliary functions denoted by <D£A(k,co) that have been determined via a
quantum mechanical variational method [18-21]. For the hydrogen atom in the 1s state,
the work yields analytical results for the § and B hyperpolarizability densities.

In Chapter V, the damped dispersion-induced dipoles and quadrupoles are computed
for pairs of S-state atoms. It is shown that the equations for damped dispersion dipoles
and quadrupoles are convergent as the interatomic separation R goes to zero, while they
reduce to the corresponding equations from the multipole expansion at long range. Using
the results given in Chapter IV, analytical expressions are obtained for the leading term in
the local dispersion dipole x7D,R " and the leading term in the local dispersion
quadrupole ¢ M6R'6 for a pair of ground-state hydrogen atoms; here D, and M are
the leading long-range dipole and quadrupole coefficients [22-26], respectively, and
and y¢ are the damping functions. The functions y; and y are distinct, but both of them
drop to ~0.85 at the van der Waals minimum for H, in the triplet state (R = 7.85 a.u.).
The leading three dispersion dipole coefficients and the leading three dispersion
quadrupole coefficients are also estimated and they compare well with the results from ab

initio calculations [24-26].



Chapt:
the interacti
interactions
that contriby
mduction. a
hvperpolan:
nonuniform
accounts fo
dispersion ¢
body force.
body force
denvatiyeg
29.30] F,
dispersion f
of that ny|
that is, the,
charge disy
Conjectyre
Contragy 1
Onanyelg

OfB ang

In(
for three.
Mlaineg

Fir

Meracy;,



Chapter VI contains an analysis of nonadditive three-body interaction energies and
the interaction-induced polarization. The analysis is complete through third order in the
interactions. A reaction-field method is used to identify various polarization mechanisms
that contribute to three-body energies and polarization. These include dispersion [27, 28],
induction, and combined dispersion-induction effects. The polarizability density and
hyperpolarizability densities are used to describe the nonlocal response of a molecule to a
nonuniform external field or a local field due to neighboring molecules. Thus this approach
accounts for the direct modifications of the lowest-order electrostatic, induction, and
dispersion effects due to overlap of the molecular charge distributions. Nonadditive three-
body forces are also analyzed in this chapter. An electrostatic interpretation of the three-
body forces acting on nuclei is given based on a chain of relations between property
derivatives with respect to nuclear coordinates and linear and nonlinear response tensors
[29, 30]. For a group of three molecules A, B, and C, it is shown that the three-body
dispersion force acting on a nucleus in molecule A results from the electrostatic attraction
of that nucleus to the dispersion-induced polarization of the electrons in molecule A itself,
that is, the three-body dispersion force on a nucleus in A depends only on the perturbed
charge distribution of molecule A. This generalizes Hunt's proof [31] of Feynman's
conjecture [32] on the origin of two-body dispersion forces to three-body forces. In
contrast to the dispersion forces, the three-body induction and induction-dispersion forces
on a nucleus in A depend not only on the perturbed charge density of A, but also on that
of Band C.

In Chapter VII, the time-independent perturbation theory is used to derive equations
for three-body energies and polarization. The results are shown to be equivalent to those
obtained in Chapter VI from the reaction-field method.

Finally, in Chapter VIII the three-body dispersion energy [27, 28] is calculated for

interacting ground-state hydrogen atoms. The calculation includes the direct effects of
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short-range charge overlap but not exchange. The damped triple-dipole dispersion energy
[33] is obtained as an analytical function of the interatomic distances and the geometry of
the three atoms. The radial and angular dependence of the dispersion energy is

determined.
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CHAPTERII

COLLISION-INDUCED DIPOLES FOR PAIRS OF CENTROSYMMETRIC
LINEAR MOLECULES AT LONG RANGE

2.1 Introduction

When two molecules collide, transient dipole moments are induced within each
molecule because of the distortion of the charge distributions. These collision-induced
dipoles are responsible for infrared [1-3] and far-infrared [4-7] absorption observed in
compressed gases and liquids composed of D, molecules, though such absorption is
single-molecule forbidden [8]. For quantum mechanical line shape analyses of interaction-
induced rototranslational absorption, the net dipole of a pair of molecules A and B is

needed in the symmetry adapted form [9, 10]
umR) =(4m)% /Y3 3Dy 550 (RIY (@MY (P ™(QF)
x(Ap Apmy mg|Am){(ALmM - m|1M) )]

in terms of the spherical harmonics of the orientation angles Q* and QP for the molecular
axes r” and rB, and the angles Q for the vector R from A to B. In Eq. (1), the
summation runs over A,, Ag, A, L, m,, mg, and m; M denotes the spherical tensor
component of the dipole moment (M = 1, 0, or -1) and (A; A, m; my|A;m;) isa
Clebsch-Gordan coefficient. In Eq. (1), the bond lengths in molecules A and B are fixed at
the vibrationally averaged values.

Values have been given earlier for the coefficients D, , ,; due to long-range

polarization mechanisms through order R~ [9-15]. In this work, angular momentum
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algebra is used to obtain the coefficients Dy apaL in terms of 6-j and 9-j symbols. The

work explains interrelations among coefficients with different values of A5, A, A and L,
for each of the polarization mechanisms, and provides compact new expressions for the

coefficients D, , ;. in order to simplify line shape analyses.

2.2 A Spherical Tensor Analysis

For two D, molecules A and B interacting at long range, the net dipole is
determined by induction [9-15] and dispersion [14, 16-18, 20]. Through order R, the

induction term in the dipole of molecule A is
WA =1/3083Ty5 (R)O% +1/105 ahp Ty 50 (R) Dy
+1/45 E% 5,5 Tpy00 (R) O —1/3 aap Ty, (R) o3 Ty (R) %, ()

where T,g..  (R)=V,Vg---V, (R™!), with R the vector from the origin of A to the origin

of B. The Einstein convention of summation over repeated Greek subscripts is used in
Eq. (2) and below. The induction contribution to the net pair dipole is given by
|J.(izl =(1- goAB )uL’A, where goAB permutes the labels of molecules A and B. The first two
terms in Eq. (2) represent quadrupolar [9] and hexadecapolar [12-15] induction,
respectively. The third term represents the effects of nonuniformity in the local field acting
on molecule A [13-15]: the second gradient of the quadrupolar field due to B induces a
dipole in A via the dipole-octopole polarizability E [19]. The final term in Eq. (2)
represents back-induction [14]: The field from the quadrupole of A induces a dipole in B;
this produces a reaction field at A, thus inducing a dipole at second order in the A-B
interaction.

At order R™7, dispersion also contributes to the net pair dipole, for centrosymmetric

molecules [14, 16-18, 20]. Both the reaction field method [14, 17] and the third-order,
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two-center perturbation theory [20] show that the dispersion dipole depends upon the
polarizability and the dipole-dipole-quadrupole hyperpolarizability B of each molecule,

integrated over imaginary frequencies:

ug =1/3m (1-p™)[” do T,s(R)af, (0T, (R) BEy 50 (0,i0). 3)
0

The leading term in the induced dipole of molecule B, —1/3 aSBTBYS(R)G‘YA‘S, stems

from the dipole induced in B at first order in the dipole-quadrupole interaction between A

and B. This term in the dipole is given by

T = -1/3 1+ C) ¥, |n® G ug T,p, (R)OF, | ¥y) (4)
in terms of the wavefunction ‘¥, for the A-B pair in the absence of interactions, the
reduced resolvent G = (1| ¥, X'¥ [{(Ho — Eq) ™' (1-| ¥, ¥, |) for the pair, and the

complex conjugation operator C. The quantity pa apy (R) 9137 in Eq. (4) is related to the
direct product [13’ ® (T @ Q)] by

e T, (R)OR, = —V42/2 [ & (TP ©0P)©, (5)

where the relation between the spherical tensor components T1(>3) (R) (p=413,£2, £1, or
0) and the Cartesian tensor components T,g, (R) is assumed to be identical to that of the
first-order dipole hyperpolarizability f [21]. Equation (5) has been obtained following the

observation that both sides of the above equation are scalar so that they can differ only by

a constant. Substitution of Eq. (5) into Eq. (4) gives
T = V42 /6 (1+ C)(¥ (1Y ® G {u{ [T(R)D @ 0D 13O 10| ;)
= Va2 /6(1+C)(‘I’(§3’[u(1) ®GP () ®[T(R)D @R M@ ](‘)l‘P()B) (6)

In Eq. (6), ‘P(? and GPB denote the unperturbed wavefunction and reduced resolvent,

respectively, for molecule B; 6(2) is the permanent quadrupole moment of molecule A.
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10

Use of the tensor-operator methods treated in Refs. 21-23 (and applied to collision-

induced polarizabilities in Refs. 24-26) transforms Eq. (6) into

110 ,
T = Jﬁ/szng{ }{[T(R)‘” 2021V ®(1+C)
” 1 1¢g
(¥ (P ©GPuP)®) | ¥ )V
110
=J5/6Zn8{1 : g}{[T(R)“’®®g’;,3]“>®ag‘>}<‘>
8
3 21
=~/i?/6211m{ 1 k}(—l)*{[@&’@a‘gﬂ)l‘”®T(R)<3>}“>, )

Agh Ap

where I, =[(2a+1)(2b+1)---(2c+ 1)]/1/1;-. For linear molecules, when the only
nonvanishing component of the spherical tensor y(P in the molecule-fixed frame is

v(p,0), the tensor components y(p, q) in the space-fixed frame are given by [23]

Y(p.@)=[47/(2p+ 1) 7(p,0) Y3 (). ®)

Equations (7) and (8) imply

3 1
D3 23 =30 /30(—1)1nx{

A B
Ap 1 ).}@ (2,0)a”(Ag,0)T(3,0)

1

_ 1yt 1A 3
=BEDM A+ {)‘B -

}@A aB(Ag,0)0R™, ©)

where a(0,0)= -3, (2,0)=2/v6 (aq —a, ), and T(3,0) = -3/IOR™. This result
is consistent with earlier work [9-15]. The corresponding coefficients for the polarization

of A by the permanent quadrupole of B are given by

D53 = (- "B DY 5. (10)
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Similar analysis gives the coefficients for hexadecapolar induction term [12-15] in the form

DI a5 =V5(- 1)“‘(2x+1)“{ l}@“aB(xB,O)R*, (11)

1 A
where ®* = ®2 . an de 415—( DM ABD“ as- The E-tensor term [13-15]

satisfies

A

A
DE®,, s = Va2(2r +1)%{ A
XA 2AS ( ) s 1 3

}EA(AA,O)(')BR‘é (12)

with E(2,0) = -1/v21 3E,,, —8E, o )» E(4,0)=2/47 (E,,, +2E, ), and

DSE, 5 = (-1)**' 9*BDE,, ;. For back-induction [14],

1 21
D} s =15V14 [1+ (=DM A1 3 (MY 2g+ DI 1 3 2
8 An L g
A
(8 s TR As A 0jag0)(2300]L0)
a 1 2)11 L g
xa (A,0)aB(a,0008 R (13)

with a = 0 or 2. Finally, the coefficients for the dispersion term are given by

Df jar =15V14 A/ R77(2300[L0) [1+(-1)**' ]Z( y*ateta

1 21
g+l 1 3 248 *a MJAs Ak
*(2g+ DIl a 1 2|1 L g
Ap L g
x_[:dmB(“)(XA,O;O,ico)aB(kB,O;ico). (14)

InEq. (14),a=0, 1, or 2, and
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B®(0,0,0,i0) =2/+/30 [B,, ,,(0,i0) + 2B, (0,i®) + 2B, ,, (0,i0)

+Byy 2z (0,i0) + 4By 1 (0,i0)], (15a)
B(2,0,0,i0) = -1//3 [B,, ,,(0,i0 ) + 2B, ,, (0,iv)], (15b)
BN (2,0,0,i0) = 2/4/3 [By 4, (0,i0) — By, 1, (0,i0)], (15¢)

B (2,0;0,i0) = 2/+21 [-B,, ,(0,i0) - B,y (0,i®) — By 1 (0,i0)

+3Byx 22 (0,10 ) + 4B x (0,i0)], (15d)

B (4,0,0,i0) = 2/+/105 [3B,, ,(0,i0) - 4By, ,, (0,i0) — 4B, ,, (0,i0)
~2B 522 (0,i0) + 2B,y 1 (0,i0)]. (15€)

Equations (13) and (14) for the back-induction and dispersion coefficients are structurally
similar, because both involve a dipole-dipole interaction between A and B, a dipole-
quadrupole interaction, and a dipole expectation value. In Eq. (13), the operators pX, pX,
and ©% (X = A or B) are coupled to produce ax(a,O)G)x, while in Eq. (14) the same
operators are coupled to yield B(a)(XX,O;O, io). The results given by Egs. (9)-(14) also
apply to atom-D,;, molecule interactions, with the index A 5 for the atom always equal to

zero [27].

2.3 Summary and Discussion

Angular momentum coupling algebra has been used to derive equations for the
dipole coefficients D, , ,; in terms of 6-j and 9-j symbols. The results explain the
interrelations among coefficients with different A, , A, A, and L, for each of the

polarization mechanisms, and yield compact expressions that simplify line shape analyses.
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Mechanisms giving nonvanishing coefficients D AahgAL Can produce rototranslational
transitions with AJ up to A, for A and AJ up to +A for B with an isotropic pair
potential. The algebraic expressions for the coefficients given by Egs. (9)-(14) above are
consistent with Eqs. (9)-(12), (15)-(19), (24)-(29) and Tables I-IV in Ref 14, obtained by
a direct integration method.

The numerical evaluation of the coefficients due to classical induction effects
requires only the multipole moments and static multipole polarizabilities, which are
available from ab initio calculations for a number of species including H, and N,. In
order to determine the dispersion contributions to the coefficients given by Eq. (14),
however, it is necessary to obtain the B hyperpolarizability tensor (as well as a tensor) as
a function of imaginary frequency. For H,, values of the imaginary-frequency B tensor
components have recently been computed with high accuracy [28], and the dispersion
dipole coefficients have been evaluated numerically for pairs containing H, [28]. For
heavier species such as N,, where accurate values for B(0,io ) are not yet available , Hunt
and Bohr [14, 27] have developed a constant ratio approximation that relates the
dispersion dipole coefficients to the static multipole polarizability, static hyperpolarizability
B, and dispersion energy coefficients (the constant ratio approximation has also been used
to estimate dispersion contributions to pair polarizabilities; see Ref. 29 and the next
chapter).

Bohr and Hunt have used ab initio results for permanent multipole moments and
polarizabilities to evaluate the classical induction contribution to D, ; 4; for pairs
H,---H,, H,---N,, and N,---N, in Ref. 14. They have estimated the dispersion dipole
coefficients based on the constant ratio approximation and discussed the relative
contributions of different polarization mechanisms to the collision-induced dipoles of these

pairs.
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CHAPTER I

COLLISION-INDUCED POLARIZABILITIES FOR PAIRS OF

CENTROSYMMETRIC LINEAR MOLECULES AT LONG RANGE: THEORY
AND NUMERICAL RESULTS FOR H,---H,, H,---N,, AND N,---N,

3.1 Introduction

Collision-induced changes Aa. in polarizabilities occur on the subpicosecond time
scale. These changes are detected experimentally in collision-induced Rayleigh and
rototranslational Raman scattering [1-4], subpicosecond induced birefringence [5-8],
impulsive stimulated scatteriﬁg [9-12], and measurements of the density dependence of
dielectric properties [13, 14] and refractivity [15-17]. The purpose of this work is to
provide general, symmetry-adapted equations for the induction and dispersion
contributions to Aa, complete to order R in the intermolecular interactions, and to
provide numerical results for H,---H,, H,-:-N,, and N,---N,. These pairs were selected
because collision-induced light scattering (CILS) spectra have been obtained in
experiments on hydrogen and its isotopic variants [18-28] and nitrogen [29-35] over a
wide range of densities and temperatures; and because the multipole moments,
susceptibilities, and van der Waals energy coefficients--needed as input parameters for the
work--have been evaluated in ab initio calculations for these species [36-48].

The calculations are complete to order R in the intermolecular separation between
a pair of Dy, molecules. To this order, Aa is determined by first- and second-order
dipole-induced-dipole (DID) interactions [49], higher-multipole induction by the laser
field, dipole induction due to nonuniformities in the local field [35, 50, 51], hyperpolari-
zation [52], and dispersion [52-56]. These polarization mechanisms suffice to predict

types of scattering that are single-molecule forbidden, such as isotropic rototranslational

16
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Raman scattering by centrosymmetric linear molecules during AJ = +2 and AJ = +4
transitions, and depolarized rototranslational Raman scattering with AJ = 4. These
mechanisms also yield simultaneous rotational transitions on each of the colliding
molecules, with AJ up +4 for one molecule and +2 for its collision partner.

In this work spherical-tensor analysis and angular momentum coupling algebra have
been used, as suggested by Samson and Ben-Reuven [57] and by Bancewicz, Glaz,
Kazmierczak, and Kielich [58-61; see also 62, 63] to separate the terms in Aa according
to their transformation properties under rotation of the molecular axes and the
intermolecular vector R. This casts the results into the symmetry-adapted form needed for
line shape analysis [64-67].

This work provides the first full set of results for the dispersion terms Aa®™P in the
collision-induced polarizability of a pair of linear, centrosymmetric molecules. Here A 8P
has been determined by use of reaction-field theory to find the change in the dispersion
energy at second order in an applied field [55], but identical results are obtained from a
two-center perturbation treatment taken to fourth-order overall [54]. Two distinct
physical effects contribute to Aa 4P (1) each molecule is hyperpolarized by the applied
field and the fluctuating field of its neighbor [53], and (2) the applied field alters the
correlations in the spontaneous quantum mechanical fluctuations of the charge density in
each of the molecules, thus affecting the van der Waals interaction energy [55]. Exact
analytical results are obtained for the dispersion effects, as integrals over imaginary
frequency; terms in the integrands contain the polarizability a(io) of one molecule
multiplied by the second hyperpolarizability y(io, 0, 0) of the other. For H,, both a.(io)
and y(io, 0, 0) have been determined with high accuracy using explicitly correlated wave
functions [39]. For numerical applications to larger molecules, a constant ratio
approximation [52, 54, 68, 69] is used to relate Aa%*P 1o the static polarizability, static y
hyperpolarizability, and dispersion energy coefficients, which are more widely available

than y(i®,0,0). Comparisons of the approximation with ab initio results for H:--H,,
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He---H,, and H,---H, [39, 70] show that the rms error in the approximation is
approximately 20-25%. In the current work on H,---H,, H,-:-N,, and N,---N,,

dispersion is shown to contribute significantly to the collision-induced change in scalar

polarizability Aag, which determines the spectra for isotropic collision-induced Rayleigh
and rototranslational Raman scattering [24]. In fact, if Aag is averaged isotropically over
the orientations of each of the interacting molecules and the intermolecular vector, at long
range dispersion accounts for ~55% of the total value for H,---H,, 40% for H,---N,,
and 30% for N,---N,, based on current estimates. The dispersion terms in the anisotropic
polarizability Aa%" are much smaller for the pairs studied in this work, because the y
hyperpolarizability shows little anisotropy for H, and N, [39, 41].

In addition to dispersion terms--which are purely quantum mechanical--the
calculations include classical induction mechanisms treated in earlier work: First-order
DID interactions [49, 71] give the leading R™3 terms in Act, and hence the dominant
contribution to depolarized, collision-induced scattering by pairs of linear molecules [21-
35]. Second-order DID terms have been cast in symmetry-adapted form by Bancewicz
[58]. Their effects on line shapes and depolarized scattering intensities have been analyzed
in molecular dynamics simulations by Ladanyi and Geiger [72, 73].

E-tensor terms vary as R [50], and two types contribute to Aa.: The applied field
induces a dipole in each molecule; this creates a nonuniform field that induces a dipole in
the collision partner, via its dipole-octopole polarizability E [74]. In addition, the applied
field induces an octopole in each molecule via E, and the octopolar field polarizes its
collision partner. Buckingham and Tabisz [50] have shown that E-tensor induction
accounts in part for rotational Raman transitions observed in the far wings of the
depolarized scattering spectrum of compressed SFy in the gas phase. Bancewicz, Teboul,
and Le Duff have analyzed scattering by N, [35], with frequency shifts out to 700 cm™!,
where the contribution from pressure-broadened allowed transitions is negligible. The

region of the spectrum between 300 and 700 cm~! cannot be fit within the DID model for
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Aa [35]. Inclusion of the E terms in Aa gives the observed line shape, but the fourth-rank
component of E determined by fitting the spectra is ~2.5 times the ab initio value [75].
The hyperpolarization terms, which depend to leading order on the dipole-dipole-
quadrupole hyperpolarizability B [74], tend to be smaller than the E terms (for species
studied thus far); but like the E terms, they vary as R™>. The B-tensor terms account for
the dipole induced by the external field, acting together with the field gradient of the
permanent molecular quadrupole of a neighboring molecule.

The results for Aa apply in the outer part of the van der Waals potential well, where
overlap between the charge distributions is small. At shorter range, overlap damping,
exchange, orbital distortion and charge transfer contribute significantly to Aa. Short-range
effects are not yet well characterized for H,---H,, H,---N,, and N,---N, since the ab
initio studies to date [76, 77] have employed basis sets that are small by present standards,
and have neglected correlation. Calculations on pairs of inert gas atoms show that the
results are very sensitive to the size and quality of the basis [78]. The results given here
should be useful in carrying out later ab initio work, because they provide the correct
limiting form of Aa at intermolecular distances where numerical cancellation and Gaussian
truncation error make it difficult to obtain accurate results ab initio [79]. Additionally, this
work identifies single-molecule property tensors (a, ®, E, B, and y) that must be
reproduced in a basis-set calculation, in order to obtain accurate results for Aa..
Comparison of the observed scattering spectra with the calculated form based on the
induction and dispersion terms in Aa (given here) should yield predictions about the short-
range quantum terms that can be tested in later ab initio work. The short-range quantum
terms in Aa are expected to be important in determining scattering in high-frequency
spectral wings [18-35, 78], and in cases where the leading long-range contributions to Aa
vanish by symmetry [78]. In other cases, the scattered intensity may depend predominantly
on Aa at intermediate to long range; e.g., this applies to scattering by solid hydrogen and

its isotopic variants [80-82], because the separation between H, molecules in solid
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hydrogen is slightly larger [80, 83] than R = 6.5 a.u., the isotropic van der Waals minimum
of the gas-phase pair potential. Hence long-range models can predict interesting
phenomena such as zero-phonon, double transitions in solid HD [27].

This work should be useful in analyzing the experimental light-scattering data that
has been obtained for H, [18-28], N, [29-35], O, [84, 85], Cl, [86], CO, [87-89], and
CS, [90, 91], in order to obtain information on intermolecular dynamics, as well as short-
range polarization effects. In the gas phase, collision-induced scattering contributes to a
broad, asymmetric background superimposed on pressure-broadened, allowed lines [92].
In H,, the first rotational lines are sufficiently well separated in frequency from the origin
(the frequency of the incident radiation) that purely translational, collision-induced
Rayleigh scattering spectra can be obtained experimentally [18-28]. In this case, potential
high-frequency contributions from short-range polarization mechanisms are effectively cut
off at ~300 cm"l, because the pressure-broadened wing of the allowed J =0 — 2
transitions at Y = 354 4 cm™! appears in this region [25]. Nearer to the origin, the spectra
for ortho-hydrogen show structure that is not found for para-hydrogen at low
temperatures [21]: in ortho-hydrogen, the collision-induced scattering is superimposed on
the pressure-broadened wing of the allowed Q (1) rotational Raman transition [93].

In the liquid phase, the interaction-induced changes in polarizability determine local-
field factors for allowed scattering [94], and also generate collision-induced components in
the polarizability which transform differently from the single-molecule tensors under
rotation of the molecular framework [94-97]. For liquids containing light molecules such
as N,, O,, Cl,, and CO,, molecular dynamics simulations show [71-73, 98-101] that the
allowed and collision-induced (CI) components of the polarizability are not well separated
in time scale, with the result that significant interference occurs. Collision-induced

scattering is predicted to increase the second moment of the depolarized Raman bands for

liquid N, and O, by ~20-30% [71-73], with larger effects expected for Cl, and CO,.
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Experiments using pulsed lasers with 100-femtosecond and shorter time resolution
probe Aa directly in the time domain [5-12]. In subpicosecond induced birefringence
experiments [5-8], a high-intensity laser pulse induces optical anisotropy in the sample,
and a weaker, time-delayed pulse probes differences in the refractive index for
polarizations parallel or perpendicular to the pump field (the optical Kerr effect, or OKE).
In impulsive stimulated scattering (ISS) experiments [9-12], two ultrashort excitation
pulses overlap inside a sample, and typically the mean-square scattered probe field is
measured. Both OKE and ISS experiments show collision-induced effects on a for liquid
CS,, on the time scale t < 500 fs [12, 102]. Finally, collisional effects appear in the second
and third refractivity virial coefficients, recently obtained in high-accuracy experiments on
H, and N, [17]: Aa determines the second refractivity virial coefficients of compressed
gases, and contribute to the second dielectric virial coefficients [103].

Sec. 3.2 of this chapter contains the symmetry analysis for the collision-induced
polarizability. Sec. 3.3 gives equations for the coefficients appearing in the scalar
component of Aa, and Sec. 3.4 gives the coefficients for the anisotropic component.
Additionally, the implications for rototranslational Raman spectra are discussed in Sec. 3.3
(isotropic scattering) and 3.4 (depolarized scattering). Section 3.5 describes a method of
estimating the dispersion contributions to collision-induced polarizabilities in terms of van
der Waals energy coefficients, static polarizabilities, and static hyperpolarizabilities.
Section 3.6 contains a set of numerical results for H,---H,, H,---N,, and N,---N, pairs.

Sec. 3.7 provides a brief summary and discussion.
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3.2 Changes in Polarizability Induced by Long-Range Interactions Between Two
Centrosymmetric Linear Molecules

In this section, the collision-induced electronic polarizability Aa is determined for a
pair of centrosymmetric linear molecules interacting at long range. The results are
complete to order R % in the intermolecular separation R, and to this order Aa is a sum of
induction and dispersion terms.

To obtain the induction term Aa'™, the effective multipole moments of two

interacting D, molecules A and B in the external field F° are determined self-

consistently, and then Aa™ is derived from the equation
Iimre_’oa(p.ﬁ +uBy/ OFg = aﬁﬁ + agﬁ + Aag‘g . ¢))

The static local field F polarizing A is related to F°,and to the dipole puB, quadrupole
P

©B, and octopole QP of molecule B by
F, = FS + T,a(R)up +1/3 Top, (R)OF, +1/15 Typ s (R)Qps +---, ()

where R is the vector from the origin in molecule A to the origin in molecule B,

T,s(R) =V Vg(R™), T,g, (R)=Vo VgV, (R™), and T,p 5(R) =V, V¥, V5(R™").
The Einstein convention of summation over repeated Greek suffixes is followed in Eq. (2)
and below. For a molecule of D, symmetry in the local field F, the induced dipole

moment is related to the field and field gradients at the molecular center of symmetry by
He = aaBFB +1/6 YaﬁYSFBF‘Y F5 +1/15 Ea,BySF[;'yS +1/3 Ba.ﬁ,ySFBF;S +---, (3)

where a is the dipole polarizability of the isolated (unperturbed) molecule, v is the second
hyperpolarizability, E is the dipole-octopole polarizability [74], and B is the dipole-dipole-
quadrupole hyperpolarizability [74]. The quadrupole and octopole moments of the

molecule satisfy
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Oup = @25 +CopysFrs +1/2 By 5 opF, Fs +:-, (4)

QaBy = ES,aBy Fs +---. &)
In Eq. (4), 929 denotes the permanent molecular quadrupole moment, and C is the

quadrupole polarizability. The self-consistent solution of Egs. (1)-(5) yields the induction
term [52]

Aoid = (1+ ") [ad, Ts(R)ozy +ady Ts(R)og Toy(R)ogs
+1/15 0% Tscp (R)Epscy + 1/ 15ES 5. Tys0s (R) 0ty

~1/9Bf 5,5 T,500 (R) O 1. (6)

where o8 permutes the labels of molecules A and B in the expression that follows. The
first two terms in Eq. (6) give the first- and second-order dipole-induced-dipoles. As
noted in Section 3.1, the E-tensor terms in Eq. (6) stem from higher-multipole induction
and nonuniformity in the local field, while the B-tensor terms stem from hyperpolarization.
The first-order DID terms vary as R , E and B terms as R , and second-order DID
terms as R™°.

At order R™®, dispersion forces also contribute to Aa., because the dispersion energy

of the A---B pair changes in the field F°:

AP =

5 O*EYP(F®)/ oF; OF. ™

IimF -0
According to the reaction-field theory for EY*P [104-106], spontaneous, quantum
mechanical fluctuations in the charge density of molecule A produce a field that polarizes
B; the induced polarization of B then creates a reaction field at A. The resulting energy
change in A depends upon correlations of the fluctuating polarization within A, which are
related to the imaginary part of the polarizability density [104] of A via the fluctuation-

dissipation theorem [107]. Similarly, fluctuations in the charge density of B polarize A,
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leading to a reaction field at B, and a second term in the energy change. The external field
affects the dispersion energy because F€ alters the response of each molecule to the
fluctuating field of its neighbor, due to hyperpolarization effects [53]; and F° also alters
the correlations of the spontaneous charge-density fluctuations in each molecule [55]. To

leading order, the dispersion term in Aa is

I 0 . .
Aal? =n/2m(1+ pAB)jodm T,s(R)Y 505 (i0,0,0) Ty (R)py (i), (8)

where a(in) is the polarizability at the imaginary frequency io, and y(io, 0, 0) is the
imaginary-frequency hyperpolarizability. Through order R™®, the total interaction-induced
change in polarizability is the sum of Aa™ from Eq. (6) and Aa®® from Eq. (8).

The polarizability of the interacting molecules A and B is a second-rank Cartesian

tensor, with spherical tensor components of ranks 0 and 2. The components are related by

[108, 109]:
Aad =1/3 (Aayxy +Acyy +Adzz), )
A =1/6 (28 ;7 — Aoy — Actyy), (10)
Aol = F1/2[(Aoyz +Aazx ) +i(Acyy + Adzy)], (11)
and
Aod? =1/2 [(Aoxy — Acyy) £i(Aayy + Aayy)]. (12)

In quantum mechanical line shape analyses of collision-induced Rayleigh and
rototranslational Raman scattering, the pair polarizability Aa is needed in a symmetry-
adapted form in terms of the spherical harmonics of the orientation angle Q® of the
intermolecular vector R and the orientation angles Q” and QP of the axes of molecules A

and B. Since Aag is a scalar, it must be obtained by scalar coupling of spherical tensor

functions of Q*, QB, and QR [71, 93, 110]:
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A (rA,rB R) = (41)2 /3 3 Agy 50 (2, 1B R)YA (@)Y (0P)

xYL™(QR)(Ap Apmy mg|Am)(ALm —m|00),  (13)

where the summation runs over A5, Ag, A, L, m,, mg, and m. Similarly [71, 93, 110]
3
Ay (k2 rB R) = (47) 2 /Y3 3 Ay o (4L rB ROYA QM) Y2 (QP)

Y™ (QR) (Mg Agmp mg|AmALmM-m|2M)  (14)

with the summation running over the same indices as in Eq. (13). In these equations, the
Clebsch-Gordan coefficients are denoted by (A; A, m; m, |A3m;), and M in Eq. (14)
ranges from -2 to 2. This work gives the dependence of A, ,; 1 and Ay, ; ; onthe

intermolecular separation R, with the bond lengths held fixed at the vibrationally averaged
values [111].

To cast Aa from Egs. (6) and (8) into symmetry-adapted form, it is necessary to
separate the multipoles and polarizabilities of A and B into components of different

spherical tensor ranks [112, 113]. The polarizability and quadrupole satisfy
aaﬁ=68aﬁ+1/3(aﬂ—al)(3fafp—8aﬁ) (15)
and
9‘1[3:1/2 ®(3fafﬁ—6a[3)’ (16)

in terms of the direction cosine T, between the molecular symmetry axis  and the a axis
of the space-fixed frame; o, is the polarizability for fields along the molecular axis T, o |
for fields perpendicular to the molecular axis, and a = (oq +2a;)/3. The susceptibilities

E, B, and y are fourth-rank Cartesian tensors, and each has the form [52, 68]
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Pupys = P18ap8ys + Py (Bay Ops + 045 8py ) + P3 (37, T —84p)dys
+P4 (31, T5 —8,5)84p + Ps[(3Ty Ty —8y )Ops + (3T 5 —805)dpy ]
+P[(3Tg f, —Opy )Bys +(3Tp Ts —Ops)day ]
+P7[35T, T Ty T —5(Tq Tp 8,5 + T Ty Bps + 1o T5 Oy +1p Ty 85
+ip T50qy +1y T 8up)+8p 8,5 +80y Bps +84s5 0y - (17)
E has spherical tensor components of ranks 2 and 4 only, but B and y have spherical tensor

components of ranks 0, 2, and 4. For y(io0,0,0) of a linear molecule, the seven

coefficients P; = vy, (i®,0,0) through Py = y,(i®,0,0) are linear combinations of the six

independent components of the hyperpolarizability in the molecule-fixed frame:
Y;(10,0,0) = 2 Y 5,5, (10,0,0) + b; ¥ 70 (10, 0,0) + C; ¥y, (1@, 0,0)

+d; ¥ xzxz (1@, 0,0) + €; ¥ xyy (10,0,0) + £ ¥ yuxx (i@, 0,0) (18)
with expansion coefficients a;-f; listed in Table 3.1.
Similarly, the seven coefficients P; = B, through P, = B, are linear combinations of

the four independent components of the static B tensor in the molecule-fixed frame for

linear molecules:

szasz,Zﬂ+bjBx,z,xz +CjBX,X,IZ +dj Bx,x’xx (19)
with expansion coefficients listed in Table 3.2. For both y and B, Ps = P, but this does not
hold for the dipole-octopole polarizability E. For linear molecules, E satisfies Eq. (17)
Wlth El = E2 = 0,

E;=Es=1/63(8E4 xxx ~3E;2z). (20a)

E4 =Eg = 5/126(3E, ,; ~8E, xoex)» (20b)
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Table 3.1. Expansion coefficients for y-tensor components, Eq. (18).

Yj a b

Y1 1/15 4/15 4/15 -4/15 173 1/15

Y, 1/15 -1/15 -1/15 2/5 -1/6 7/30
Y3 1/21 2/7 -1/21 -4/21 -1/3 1/21
Y4 1/21 -1/21 2/7 -4/21 -1/3 1721
Ys 1/21 -1/21 -1/21 1/7 1/6 -5/42
Y¢ 1/21 -1/21 -1/21 1/7 1/6 -5/42
Yq 1/35 -1/35 -1/35 -4/35 0 1/35

Table 3.2. Expansion coefficients for B-tensor components, Eq. (19).

Y] a; b; < d;

B, -1/15 -4/15 -1/15 -4/15
B, 1/10 25 1/10 2/5

B, 2121 -4/21 27 8/21
B, 1/14 -4/21 13/21 8/21
B, 1/14 1/7 -3/14 -2/7
B, 114 177 -3/14 217

B, 3/70 -4/35 -1/35 1/35
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and
E; =1/14(E, .z +2Ex xx)- (20c)

For each of the polarization mechanisms in Aa., this work has yielded relations
among the terms in the coefficients A, ; 51 and Aj; ; 1 by use of angular momentum
algebra, as in the work by Bancewicz [58] on DID interactions. The analysis is illustrated
for the E-tensor term aﬁy Tses EEM’ which stems from the dipole-octopole interaction
between molecules A and B, and interactions of both A and B with the external field. For
clarity in Eqs. (21)-(23) below, only the spherical-tensor recoupling scheme is shown for
the multipole operators of A and B, and the T tensor. The contribution of the a-E term to

the Jth rank part of Aa transforms as
T, = [pAD @ AN @ (T @ QBR[O @ B ), @1)
where ® denotes the direct product. Then
Top = 2D /3 P @ A0 [TV 0 ") D e VW00 22
h

with the notation IT,,..., =[(2a+1)(2b+1)---(2z+ 1)]%. Further analysis in terms of the
6-j and 9-j symbols gives

4 3 1

T =YY T 1/43
“E{‘Eh“‘/_{lhk

}[uA“) ® A @ T @ eBK) (), ())

4 3 1|11 1 j :
- %Z%nhjk (_I)J'*'h{l " k}{h ] :}{aA(J)®[T(4)®€B(k)](h)}('])
J

ey Ey @bl 3 N i koA
"hj?f( M GOy k(a7 1[la 7 b

x{[aA(j) @eB(k)](l) ® T(4)}(J)
i1
=Zzznjkl(—l)j k 3 1 {[aA(j)®eB(k)](l)®T(4)}(J), 23)
bk A 4]
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where a2 denotes (p.A(l) ® uA(l))(j), and ¢2¥) denotes (QB(3) ® p.B(l))(k) . In deriving
Eq. (23), Egs. (4.3), (4.9), (4.19), and (4.24) of Ref. 109 have been used. Equation (23)
for the operator structure corresponds to an expression for Aa obtained by inserting the
reduced resolvent operators, the ground-state bra and ket, and a numerical prefactor, and
accounting for different operator-ordering possibilities. In the equation for Ac, 2" and
B0 become o*@ and EBKR), respectively.

For species of D, symmetry, when the q = 0 components of the spherical tensors
P(k,q) are the only nonzero components in the molecule-fixed frame, the spherical tensor

components P(k,q’) in the space-fixed frame satisfy [see, e.g., Ref. 109]

P(k,q')=Dkq P(k,q=0)=[4n/(2k + 1) YI' (6,6)P(k,q = 0), (24)

*
where Dg,o is the conjugate of the Wigner rotation matrix.

From Egs. (23) and (24), the a-E term in Aa?’( satisfies

i1
T@E)=Y 33T (4n)2 ¢, (-1)/3{k 3 1ta?(j,0)EP(k,0)
Ik Apop A 4 ]

xT(4,0)YP (0%,0%) Y[2 (6°,6%) Y- PP) (08 9%

x(jk Py Pa| A (P +P2))A4(p) +P2)[IM—(p; +p2)]| I M). (25)

In Eq. (25), a?(0,0)=-v3a? and a® (2,0)=2/ Jg(aﬁ - aﬁ ). The relation for
a? (2,0) is consistent with Eq. (10); but ah (0,0) differs from Eq. (9), where ag is
defined by 1/+/3 ., . This reflects the phase difference between the ordinary scalar

product Cc®.D® of two tensors C and D of rank k, vs. the rank 0 component of the

direct product [109]:

[C®@DEO = (—1)k(2k +1)™2 CK) . &), (26)
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The components of the E-tensor in Eq. (25) satisfy E2(0,0)= 0, EB(2,0)=3V21E2, and
EB(4,0)=4J7E2. Also T(4,0)=6V70R >, and ¢ = —c3E = -/10/5. The ratio of
—1 between cSE and c5E stems from the phase difference noted above. Then from

Eq. (25), the a® —EB contributions to the polarizability coefficients A%EM are given by

i 11
Abm_4\f2_1(2)HL1)5’2(—1)‘+J’2 k 3 1}a®(j,0)EB(k,0)R™>. (27)
A 4]

In deriving Eq. (27), it has been assumed that j is even, for nonzero ah (j,0); i.e, the
antisymmetric part of the polarizability tensor has been neglected. The E” _oB

contributions are given by

nqm =(-1)* &’ABAJJUA (28)

The results for the E-tensor terms are consistent with those of Bancewicz, Glaz, and
Kielich [60]; the coefficients depending on the second-rank part of the E-tensor agree with
results given by Borysow and Moraldi [S1].

A similar analysis for the first-order DID terms gives

j 11
2 =6V2Z A+ D2k 1 110l (,0)a Bk, 0R . (29)
A 2]

Equation (29) is identical to the result derived by Bancewicz [58].

The B - @B terms satisfy

AR = —VA2[@A+1)/ T+ 1)) (- 1)“”2{ x}B.A(J;j,omBR'S, (30)

4 J 2

where the B-tensor components BA(J; j,0) are given by
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B*(0,2,0)=-2//3 (3B} +4B%), (31a)

B*(2;0,0)=2v10/3B%, (31b)

B”(2;2,0)=—-4/3421B%, (31c)
and

B*(2;4,0) = 140/+/105 B. (31d)

Equations (31a)-(31d) follow from the observation that the tensor operators which appear
in BA (J;3,0) have the structure [(uA(l) ® uA(]))(J ) ®®A(2)](j). The ©” - BB coefficients

satisfy
A%?M = (-1 @ABAE?M’ (32)

The second-order DID and dispersion terms are both derived from perturbation

expressions with an underlying tensor-operator structure exemplified by

TAAB _ {HA(I) ®[{[NA(]) ®(T(2) ®UB(I))(1)](O) ®[uA(1) ®(T(2)
®HB(1))(])](0)}(O) ®“A(l)l(l)}(1)‘ (33)

Coupling the four dipole operators for molecule A to produce two factors of polariza-
bility of A gives a second-order DID term, while coupling to produce the hyperpolariza-
bility of A gives a dispersion term.

B

The coefficients for the second-order DID terms of the type araPo? are given by

Afor = (=D 30333 3 (2n +1)I,, (ab00]j0)(2200|L0)

a b n
1 1 2)(1 1 a),.
xJ1 1 2H1 1 b{i l; :}aA(a,O)aA(b,O)aB(k,O)R"6; (34)
k n L]|ln J j

A

correspondingly, the coefficients for the aBa”o® terms satisfy



The sec.

te

and

using 1
Expliciy

fesults f



32
AR =(- I)AQABAJJH.L (35)

The second-order DID coefficients agree with the results of Bancewicz [58].

For the yA -aB dispersion coefficients, the result is

2 1 1
i k A
AL = (DM 1s33 (I, /)2 1 1{L ; a}(zzoo]w)
a L k a
xh/nj:yA(a,J;j,onm,o,O) oB(k,0;i0) do R™®, (36)
where
A . : _ Ay Ayg:
¥~ (0,0;0,0|i0,0,0) =377 (10,0,0) +2v5 (i»,0,0), (37a)
v4(2,2;0,0li0,0,0) = 2J/5 75 (i0,0,0), (37b)
v*(2,0;2,0li0,0,0) = -v2 [37% (iv,0,0) + 47£ (i0,0,0)], (37¢)
v%(0,2;2,00i0,0,0) = -v2 [374 (i0,0,0) + 47£ (i0,0,0)], (37d)
vA(2,2;2,0i0,0,0) = —24/14 7% (i0,0,0), (37¢)
and
v4(2,2;4,0/i0,0,0) = 2470 y% (i0,0,0). (379

In Eq. (36), aB(k,O; i) is the (k, 0) spherical component of aB(ico). The results in Eqs.
(37a)-(37f) for yA (a,J;),0]im,0,0) have been obtained from the dipole operator coupling
AV @ A O @ @AM @AM The o™ -yB dispersion terms satisfy

ARl =D pAPAT (38)

The coefficients in Eqs. (13) and (14) have been evaluated by direct integration
using Mathematica [114], and by use of Eqs. (27)-(38), with identical results. In Sec. 3.3,

explicit expressions for Aag are given and their spectroscopic implications are discussed;

results for Aag“ and their spectroscopic implications are given in Sec. 3.4.
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3.3 Collision-Induced Changes in Scalar Polarizabilities

This section provides results for the coefficients Ay, , ;; that determine the
induced changes in scalar polarizabilities. Since Aag in Eq. (13) contains terms with
nonzero A, and/or A, isotropic rototranslational Raman scattering with AJ = +2 and +4
can occur as a purely collision-induced phenomenon.

For a pair at a fixed separation R, the change in effective polarizability averaged over

the orientations of #*, #2, and R is A gggo/3. Through order R™®, there are two

contributions to Ao, one from second-order DID interactions and the other from

dispersion
Aoooco = (1+ 0 B) (6T TPGM +4/3 (af —a})aP(af -ab)
+3h/1tf:dm O_tB(iCD)[3Yi\(im,0,0)+279(im,O,O)]}R‘G_ (39)

Both DID and dispersion effects increase the effective polarizability of the pair. The

coefficient A yy0o accounts for isotropic, collision-induced Rayleigh scattering [24].

Isotropic scattering with a change in the rotational state of one or both molecules is
produced by the polarization effects in nine other coefficients, through order R™. The

coefficient A ,02, is associated with transitions on molecule A only
Agaozz =4V5 /5 aP(af —a} )R +2J5/5a°(af —af)@at +a®)R™®
+235/15(af —a)[@B(af -at)+2/3(af -af)*IR™®
+/5h1(5m) {j:dm [3yP(i0,0,0) +275(i0,0,0)][af (i0) - a4 (i0)]
+3 J':dm 372 (i0,0,0) + 4y (in,0,0)]aB(io )} R ™. (40)

The set of coefficients A,,;;, with L=0, 2, or 4 can produce "double transitions", i.e.,

simultaneous transitions in the rotational Raman spectrum [110]; for these coefficients, the
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associated selection rules are AJ = +2 for each molecule (if the anisotropic terms in the

interaction potential are neglected). The coefficients A,,;; satisfy

Agrr, = (1+ ") [-V14 /158 (aff —af ) (af —a )R +270/55,,
[2/21(af —a})(BED,,, -8ED ) -©"°(3B} +4B)|R >
+c, {2/9(0(‘1?‘ —af )(a% —alf_)[6 ah +(aﬁ —aM)]
+h/m [ do [374 (i0,0,0)+ 475 (i0,0,0)][af (i0) - o} (i@)} R ]

(41)
with cg =+/5/25, ¢, =+/14/35, and ¢, = 1870 /175.

The E-tensor polarization mechanisms give the only nonzero contributions to the

coefficients Ay, ;1 , through order R®

Agsoss =8/3 TP(EL,, +2E2 R, (42)
Agras = —4VT7163 (af -al YER,, +2ES OR™. (43)

To order R™® there are three other nonvanishing coefficients in Equation (13) given by
AB AB AB
A2z = 9" A02022> Aooaas = 0" Apgoas, and Agpgaq = 97 Aggag-
First-order DID effects generally dominate in collision-induced light scattering

spectra, unless the DID coefficients vanish due to symmetry. For changes in the scalar

polarizability, first-order DID terms appear in A0, Ag222, and Aggyo only; Az
and Ay,,, are associated with single transitions with AJ = 12 for either molecule A or B
and A,,,, with double transitions having AJ = +2 for both molecules (neglecting the
anisotropy of the pair potential). Second-order DID and dispersion effects also appear in

A2022> Ap2222, and Ay, . Hence the net contribution of these terms to the scattering

intensity is enhanced by the existence of cross-products with the first-order DID effect. E-

tensor terms in Aag contribute significantly to scattering in the spectral wings [35],
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because they produce transitions with AJ = +4 for one molecule and AJ up to +2 for the
other. These effects should be easier to distinguish in the isotropic scattering spectra than
effects of the other R™> or R™® polarization mechanisms. The leading long-range
contributions to isotropic, pure translational (Rayleigh) scattering stem from second-order

DID and dispersion terms. Experimental spectra are expected to show substantial short-

range overlap contributions to A0, particularly for lighter, less polarizable species.

3.4 Collision-Induced Changes in Anisotropic Polarizabilities

The collision-induced change in the second-rank tensor component of the
polarizability Aotg‘d determines the spectra for depolarized rototranslational Raman
scattering by A---B pairs. Through order R™®, Aotg'1 depends on a total of 38 coefficients
A2dghphL-

The collision-induced depolarized Rayleigh spectrum (pure translational light
scattering) is determined by the collision-induced anisotropic polarizability Aag'{, averaged

isotropically over the orientations of molecules A and B. The averaging gives
1

Aoy = (41/3)" Aoy Y21 (QF) (44)
with

Asoo0z = 6310750 aB R 73 +(1+ pAB)[3410/5 a?aBa? +/10/75

x(af —af)aB(af -at)+3J10/5n/n
x j: do v4 (i0,0,0)aB(i0) JRS. (45)

From Eq. (45), the first-order DID interactions give the dominant long-range contribution

to the polarizability anisotropy of a colliding pair, averaged over the orientations of ¥

and 2.
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The remaining coefficients in Aa%’l are categorized below according to the selection

rules for rotational transitions they generate, if the anisotropy of the interaction potential is

neglected. Three coefficients A,,(,; generate rotational transitions of molecule A only,

with AJ limited to +2. These are given by:

Agsoar, = —2¥7158, a8 (af —af )R> +44/35/3568,[aB(BEL,,, —8EA )

- 7B @A%R™ +{(af -af )@ [a a” +b a® +cp (af —al)]
+dp (@f ~af)(af —al)(af -af)}R
+e h/m j: do v5 (i0,0,0)[a} (i0) - ot (i0)]R ™

+him J':dm[9JE/ 58,072 (i0,0,0)+f, 2 (i0,0,0)]aB(i0)R S,

(46)
with the coefficients a; - f; listed in Table 3.3.
Two coefficients generate single-molecule transitions of A, with AJ up to +4
Assons =[12435/175 @B (af ~af)? +6V35k/(5T)
x["do v4 (i0,0,0a>(i0) IR, @7)
and
Assons = 2154 /21 0B (E2,,, +2E2 R (48)

The coefficients A,,,;; are associated double transitions, with selection rules of AJ up to

12 for molecule A and simultaneously AJ up to +2 for molecule B

Apyr =8 (af —ad )af —aB )R +[(-D* + pAP1[b, Bf O

¢y (@f 0} )BER,; —8EL IR +[(-)* + ")



with ¢
ass0c]

satish

with |
coefTi
A::m
Make {

(4,

AR
molec,
Moleg,
In the
With

B-teng
Mech,

AM-\.

Ll

Tema;,




37

x{(af ~al)(af —al)dy Tt +e (af ~al)]

+him [ do (6,074 (0,0,0)+ g, ¥4 (i0,0,0)][0f (i0) -af (i@)FR ™,
(49)
with coefficients a,; -g,; listed in Table 3.4 (for L=0, 2 or 4). Double transitions are also
associated with A,,,,; ; in this case, AJ up to +4 for molecule A, and the coefficients

satisfy
Agapy = [(-D* by BEOP +(-1)* g5y (@f —aB)(ED,, +2E2 OIR™®
+H(-* {5 (af —a)? (@ —aB)+t, h/m j:dm v4 (i0,0,0)
x[af (i) -af (i0)}RC, (50)

with h,; , q;1, S;1., and t,; given in Table 3.5, for L=0, 2, and 4. The remaining nonzero
coefficients are Agpr = 9"PAggyr (L=0,2, 4), Agpuar, = Az (L=2, 4), and
Apar =D 0™ Mg

First-order DID effects appear in Ajg002, A22022, A20222> and A,55;,, and thus
make the leading contributions to collision-induced depolarized Rayleigh scattering
(A,0002), and to collision-induced depolarized Raman scattering involving either single-
molecule rotational transitions with AJ of +2, or double transitions with AJ of +2 for each
molecule in a pair. The first-order DID effects generally dominate in each of these terms.
In the isotropic induced spectrum, only the E-tensor mechanism gives rise to transitions
with AJ = +4 (through order R™®), but in the depolarized scattering spectrum, E-tensor,

B-tensor, second-order DID and dispersion terms can all generate AJ = +4: the E-tensor

mechanism determines Aj4044 and Ajq444, and all four effects appear in A,5054, Azg224-

Az2034> Arg2ya- and Aysy, 4. Second-order DID and dispersion effects determine the

remaining nonzero coefficients.
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Table 3.3. Coefficients for A,,(,;. in Eq. (46).

L aL bL CL dL eL fL
0 4J10/5 J10/25 2410715 J10/1125 J10/25 12410/5
2 “2J7/5 247735 2J7/105 24771575 2J7/35 -6J7/5
4 0 364/35/175 0 4/35/875 364/35/175 0

Table 3.4. Coefficients for A,,,,; in Eq. (49).

AL ay L CiL dyL e fiL BiL

20 0 0 0 -2J7/75  2J7/1575 0 -2471/25
02 2J2/75 0 0 242175 1642/1575 342/25 242725
12 0 0 0 J6/25 J6/105  3J6/25 34J6/25
2 2-2J10/75 0 0 31410/525 194/10/2205 3410/25 31410/175
32 0 0 0 12414 /175 2414/245 3414/25 36414/175
4 2 1242/25 0 0 242 /175  344/2/1225 94J2/25 7242/175
2 4 0  8J2/5 442/105 -2442/175 8J2/1225 0 -7242/175
3 4 0  4435/5 2435/105 —124/35/175 4+4/35/1225 0 -36435/175
4 4 0  4455/5 2455/105 —124/55/175 4+4/55/1225 0 -36V55/175
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Table 3.5. Coefficients for A,4,,; in Eq. (50).

A L h,p q)L SiL tiL

2 0 0 0 4J35/875 2J35/25
2 2 0 0 84J2/1225 442/35
3 2 0 0 4435/1225 24/35/35
4 2 0 0 4455/1225 2455/35
2 4 2J10/45 2410/315 4410/6125 2410/175
3 4 2J14/9  4J14/315 41471225 2414/35
4 4 2J2  —842/315 364271225 18y2/35
5 4 144J22/9 -2422/45 4J22/175 24J22/5
6 4 28V26/9 8J26/45 8J26/175 4J26/5

3.5 Approximations for Dispersion CoefTicients

The leading dispersion contributions to Ay, ; ;1 and Ay, ; ;1 can be evaluated

either from the values of a and y as functions of imaginary frequency for each of the
interacting molecules, using Eq. (39)-(50), or from sum-over-states calculations of the
dispersion-induced changes in polarizability for interacting pairs. At present, accurate
quantum mechanical results are available for H,---H, for coefficients with A, or Ag
equal to zero [39], but not for other cases or other pairs; values for y(i®,0,0) are not
generally available. Therefore, to estimate the dispersion terms for larger molecules, a
"constant ratio" approximation [52, 54, 68, 69] has been developed, it employs the van der
Waals energy coefficients CL"‘LBM, static polarizabilities, and static hyperpolarizabilities.
For example, to find the dispersion term in Ay, (represented by Agoooo)
yi((im,o, 0)/ ax (in) and y%‘(ico,o, 0)/ ax (i) for molecule X are approximated by the

frequency-independent ratios If( and I%(. Then

(51)

Aoo00 = —CX0(1+ pAB)BIP +213)RS,

where cg"" is the isotropic van der Waals coefficient for the A---B pair,
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C2 = 3n/n j:a"(im )aB(io)do . (52)

X

It is further assumed that the relationship between IJX and the zero-frequency values of ]

and aX is the same as in the Unséld approximation, which gives

I =1/277(0,0,0)/@*(0). (53)
The Unsold approximation is used only to generate Eq. (53); with Eq. (51) it yields the
estimate

Ads00 = -1/2 CLORS(1+ pAB){[3y£(0,0,0)+27%(0,0,0) ]/ a@*}. (54)

The coefficient Agoooz is estimated similarly in terms of C2°, by

Aoonz = —v10/10 C§PR™[y$(0,0,0)/a* +75(0,0,0)/a"]. (55)

To extend the approximation to other coefficients, the anisotropic dispersion energy
coefficients CkALBM are needed for two centrosymmetric linear molecules. These
coefficients fix the long-range dispersion energy AEY*P [75, 115],

min(L, .Lp)

AEYP(R,0,.05.08.05)=Y. 3 3 = chaleMp

n=6 L,,Lg  M=0

xP (cos0, )P{ (cosOp)cosM(da — ), (56)

where P{"i(cose) denotes the associated Legendre function, (6,,¢, ) and (6g,¢5)
specify the orientations of r, and ry with respect to a fixed axis system, and R lies along

the z axis of this system. The coefficients Cﬁ ALsM are given by Eq. (52) and
C2% =-rz/nK[aﬁ(im)—ai(im)]aB(im)dm, (57)

Ce¥ = p"°Ci, (s8)

and
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CZM =ayh/ = | [of (i0) - ot (@) [af (@) -o? (o)) do (59)

withag =-1,a,=2/9,and a, = -1/36.
With these relations and the analog of Eq. (53), the dispersion contributions to the

remaining isotropic polarizability coefficients are approximated by
Ad2 = —V5/10CEOR[(BY] +2v3) /@B +3(3y5 +4v8)/(af —al)],  (60)

Adpry = b CEORC(1+p*B)3y8 +4v8)/ (0] —ab), (61)

with by = —+/5/50, b, = —+/14/70, and b, = 9470 /175.

Similarly, the constant ratio approximation for the dispersion contributions to the

remaining anisotropic polarizability coefficients with A, and Az <2 yields

A%r020 = —V10/50 C2OR[y3 /@B +15(375 +4v5)/ (af —a'b)], (62)

ASr022 = —VT135CRO[y 2 /a® -21v8 /(af o)), (63)
ASyo0q = —184/35/175C2OR Sy B /5B, (64)
Agon, = ~1/2CERCIC-I) +p"P1(F, 75 +80¥8 )/ (0f —ab), (65)

with f,; and g,; given in Table 3.4. To estimate the dispersion terms with A, =4 or Ay
=4, the van der Waals coefficients Cé‘ al8M are required. The coefficients C%ALBO with
L, or Ly equal to 4 are related to the fourth-rank tensor invariant of the quadrupole
polarizability C,

C4(i0)=1/35[2C,, ,,(10)-4Cy, , (10) + Cyy «(i0)], (66)
and to E,(i0), the fourth-rank part of the dipole-octopole polarizability E, by

Ci% = 20n/n j: [3CA (i) +2EA (i0)]aB(i0 ) do, (67)

and
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Ca=-hn/n I:[88C4A(im)+ 152/3 E4 (i0)][af (i0) -k (i0)]do . (68)

Equations for CQZM with M # 0 are given in Ref. 68; C** and C§40 are obtained by

interchanging the molecule labels A and B in Eqgs. (67) and (68).

The anisotropic dispersion coefficients with L , or Ly equal to 4 have been
estimated in terms of the anisotropic van der Waals interaction energy coefficients cgo",
c‘8’4°, ngo, and C%“O, the fourth-rank part of the static y hyperpolarizability tensor from

Table 3.1, and the static values of C, and E, with the results:

A0 = -3V35/100 CgORSy4 / (3CH +2ED), (69)
Al =3/16 ()M Ci¥0t, RS2 /(33C4 +19E%), (70)

in terms of the coefficients t,; given in Table 3.5. The remaining coefficients are given by
Afoaaz = 9 P ASs0az and Agpypp = (-1 p"PAG 4

For small molecules, values of the permanent susceptibilities and dispersion energy
coefficients appearing in Egs. (54), (55), and (60)-(70) are available from ab initio
calculations [38-48]. Table 3.6 gives the values of o and y used to estimate the dispersion
polarizability coefficients for H, and N,, and Table 3.7 gives the dispersion energy
coeflicients used. Coefficients not listed and not derivable by symmetry arguments (cg‘“’
and C§4° for H,---N,, and cg"", c2“°, ngo’ and C§40 for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>