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ABSTRACT

Task Scheduling and Communication Support

for Parallel and Distributed Real-Time Systems

By

Jong-Pyng Lz'

Real-time applications are increasing in their complexity of control and compu-

tational demands. Parallel and distributed systems provide cost-efficient computing

power and higher degree of fault tolerance that make these Systems attractive com-

puter systems for the next generation of real-time systems. As real-time systems

move from uniprocessor systems to parallel and distributed systems, the design of

real-time systems becomes more complex and new techniques are required.

This dissertation provides new approaches for solving two closely related prob—

lems on designing parallel and distributed real-time systems: dynamic scheduling

of tasks with precedence relations and communication support for wormhole routed

networks. The task scheduling algorithm combines task graph partitioning, least—

laxity-first scheduling and branch-and-bound task allocation techniques to provide

required real-time performance. Performance analysis show that the algorithm can

efficiently schedule precedence-constrained tasks with low scheduling overhead. The

parameters that affect the performance and hardware costs are studied to provide



system designers with the means for fine tuning the algorithm for different system

configurations.

The flow control scheme of a direct network manages the network resources and

directly relates to the system performance. Several flow control schemes are de-

veloped to support real-time communication on wormhole networks. The schemes

differ in their priority mapping, priority adjustment, arbitration and message drop-

ping strategies. A priority mapping scheme encodes the timing property of a message

into a priority, which can be represented in a small number of digits. As the timing

property of a message changes, a priority adjustment method modifies the priority to

reflect the current status of the message. An arbitration function decides how to allo-

cate bandwidth. Messages that miss their deadlines and lose their value are removed

from the network by a message dropping method. With simple modifications to the

existing wormhole routers and small additional costs, the flow control schemes deliver

messages in a timely fashion to support real-time communication. The performance

of the schemes is studied in environments in which the communication traffic is static

or dynamic. The performance study verifies that the flow control schemes outperform

the conventional flow control scheme implemented in most wormhole routers.
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CHAPTER 1

Introduction

A real-time system can be characterized as a system of which both the correctness

of logical results and the timing constraints to obtain the results must be satisfied.

Otherwise, severe consequences may damage the system, properties or human lives.

Examples of real-time systems are autopilots for aircraft, automatic production lines

of manufacturing factories, control systems of nuclear power plants, process con-

trol facilities and avionics systems of space shuttles [1, 2, 3, 4]. A typical real-time

system consists of two subsystems: a controlling subsystem and a controlled subsys-

tem. Humans are the controlling subsystems in traditional real-time systems. As the

controlled job becomes complicated and the reaction time becomes short, a human

cannot adequately control a job. Therefore, computers are replacing humans as the

controllers of real-time systems. For example, real-time computers are commonly

used in aircraft for flight control [5].

An increasing number of real-time applications operate in environments that re-

quire complicated control and flexibility to comply to the changing environment [6].

As the rapid advances in parallel and distributed systems continues, these systems

are emerging as the new generation of real-time systems [7]. Parallel and distributed

systems, which execute tasks concurrently, can efficiently handle complicated tasks

by partitioning one task to several simple subtasks. The subtasks can be executed



on different processors. Also, parallel and distributed systems have a higher degree

of fault tolerance than uniprocessor systems. These advantages of parallel and dis-

tributed systems make them the computer systems for the new generation of real-time

systems.

1.1 Design Issues of Real-Time Systems

The complexity of designing a real-time system increases as we move from unipro-

cessor systems to parallel and distributed systems. New problems for building a

real-time system are introduced, e.g., synchronization and communication, which do

not exist in the traditional real-time systems. Also, the existing design principles may

not be appropriate for the new systems. For example, task scheduling algorithms for

uniprocessors cannot be directly ported to parallel and distributed systems.

Design issues of parallel and distributed real-time systems include specification,

communication, programming languages, task scheduling, resource management, fault

tolerance and architectures [1, 5, 8].

Specification: The specification of a real-time system is based on the properties

of the environment and the required performance, so that the specified system can

provide guaranteed performance. A system might deviate from its assumed properties

under faulty conditions, a specification scheme should provide means for predicting

the possible failures. A general purpose system becomes difficult to specify as par-

allelism is incorporated. The difficulty increases further as real-time constraints are

introduced. Real-time systems not only require correct logical results, but also the

timely execution of tasks. Specification techniques for general purpose systems are

insuficient for real-time systems.

Communication: Parallel and distributed systems are the computers for to-

morrow’s real-time systems. The processors of such computers are distributed and



communicate by means of communication networks. The communication network of

a real-time system should deliver messages in a timely fashion such that the com-

munication delays will not cause tasks to violate their timing constraints. Specific

real-time protocols and flow control schemes should be developed for different net-

works. The bus, the token ring and the direct network are examples of different types

of networks.

Programming language support: A task is a software module that performs a

certain function. Beside the functionality of describing parallelism and task synchro-

nization, programming languages for parallel and distributed real—time systems should

provide means for measuring the timing properties of tasks. Real-time applications

perform in controlled environments such that the timing properties of tasks are pre-

dictable. Examples of timing properties of tasks include the computation demands,

the deadline and the resources required for execution. The computation demands of

tasks must be predictable so that the tasks can be scheduled before their deadlines.

The features to support the timing controls of tasks are important requirements for

real-time programming languages. New techniques are also required to verify and

test the demands of the tasks.

Scheduling: Task scheduling is critical in real-time system design. Scheduling

algorithms for real-time systems must guarantee that a scheduled task can meet its

deadline. Therefore, the performance of scheduling algorithms for real-time systems

is measured in terms of the task guarantee ratio instead of throughput as is done

for general purpose systems [4]. Real-time tasks can be classified into three cate-

gories: critical, essential and unassential [9]. A catastrophe will occur if a critical

task misses its deadline. Critical tasks are statically scheduled such that the required

resources are reserved in advance of their submissions. A larger number of tasks that

sporadically arrive at the system are classified as essential tasks. Essential tasks have

timing constraints, and the system performance will seriously degrade if the timing



constraints of these tasks are not met. Since the arrival time of an essential task is

not known beforehand, essential tasks are dynamically scheduled. Unessential tasks

may or may not have timing constraints. These tasks execute when they do not affect

critical or essential tasks. Any failure to meet a deadline associated with an unessen-

tial task is not crucial to the performance of the system. In practice, these three

types of tasks may co-exist in the same system such that task scheduling becomes a

very hard problem.

Fault tolerance: Real-time systems require fault tolerant ability in both hard-

ware and software. Fault tolerance is usually statically built in real-time systems

during the design phase to ensure tasks can be reliably executed. However, static

fault tolerance means high cost and is inflexible with respect to the environment.

The new generation of real-time systems requires the systems to adapt to the chang-

ing environment. Thus, new approaches, which dynamically adjust to the faulty

conditions, are required.

Architecture: Real-time systems are usually special purpose systems, so the

architectures to support the systems are specifically designed for the problems. Real-

time capability and fault tolerance are the important features that are seldom found

in general purpose systems. These features must be designed into the real-time sys—

tems. Examples of real-time capability include a short context switch time and timing

control facilities. In most systems, hardware fault tolerance is achieved by using re-

dundant components. For example, a redundant system may have several processors

that perform as one unit and execute the same code. The results produced by the

processors are compared to ensure the correctness. However, redundancy introduces

an extra cost in building a system. Off-the—shelf components can be used to trim

cost as long as the components serve the required functions. Recent development of

reconfigurable parallel and distributed architectures [10, 11] enables real-time systems

to automatically reconfigure to keep the system functioning under faulty conditions.

 



The use of the reconfigurable architectures also reduces the hardware cost.

1.2 Direction of The Thesis

Our interest in designing parallel and distributed. real-time systems is concentrated

on two closely related problems: dynamic scheduling of tasks with precedence con-

straints and communication support. Dynamic scheduling for tasks with precedence

constraints on parallel and distributed systems has not received much attention, which

is much needed for the next generation of real-time systems. We developed a new

scheme for efficiently solving the dynamic task scheduling problem. This scheme com—

bines several techniques, task graph partitioning, branch-and—bound and least-laxity-

first, to reduce the complexity of the scheduling to linear order. Due to the different

design considerations of distributed systems and parallel multiprocessors, the scheme

is specialized for different computer systems. In this dissertation, we present the

algorithms for both distributed systems and mesh-connected multiprocessors.

In parallel and distributed systems, tasks communicate to-achieve a common goal.

When scheduling tasks, we must consider the communication cost for interchanging

massages among tasks distributed to different sites. In general purpose systems,

communication subsystems are designed to achieve higher message throughput. The

timely delivery of real-time messages is not directly supported in such communica-

tion systems. In order to estimate communication cost, real-time communication

subsystems must be specifically designed to meet the timing constraints of messages.

Otherwise, scheduled tasks may violate their deadlines due to unpredictable message

delays. As a result, real-time systems cannot provide guaranteed performance. To

achieve the required performance of a real-time system, a communication subsystem

that supports real-time message transmission is needed.

Direct networks are the communication subsystem found in most parallel systems.



Conventional communication schemes implemented in general direct networks cannot

satisfy real-time requirement, i.e., delivering messages in a timely fashion. The worm-

hole network is a promising switching mechanism for direct networks that adopted by

many of the new parallel systems. The advantage of the wormhole network include

simple router design and cost-efficient routers. We develop several priority based flow

control schemes and a message dropping scheme for wormhole networks to support

real-time communication. The flow control schemes can be easily implemented by

simple modification of the existing wormhole routers. The message dropping scheme

efficiently reduces the network contention by removing messages that miss deadlines

and lose their value.

1 .3 Thesis Organization

In this chapter, we overview the design issues of parallel and distributed real-time sys-

tems and the direction of our research work. The rest of the dissertation is organized

in seven chapters and an appendix. The motivation and the detailed description of

the research are presented in Chapter 2. Chapter 3 surveys related work of real-time

scheduling and communication problems.

Chapter 4 studies a scheme for dynamic scheduling real—time tasks on distributed

systems and the factors that affect the efficiency of the scheduling algorithm. Chap-

ter 5 presents a dynamic scheduling scheme for mesh connected multiprocessors.

Chapter 6 describes the new flow control schemes for the wormhole network. The

performance of the schemes in static environment is also discussed in the chapter.

Chapter 7 considers the flow control schemes in dynamic environment and presents

a massage dropping scheme which removes messages that miss their deadlines from

the network. Chapter 8 concludes the dissertation and layouts the future plan for

enhancing the current work.



Appendix A is a tool, DRMS, that we designed to assist real-time system de-

signers to schedule periodic tasks on distributed systems. In addition to scheduling

tasks, DRMS can also be used to evaluate feasibility of assigning periodic traffic to

networks. The extensive usage of DRMS for scheduling periodic tasks with commu-

nication requirements is described.



CHAPTER 2

Motivation and Problem

Statement

Task allocation, which is a non-existent problem in uniprocessor scheduling, needs

to be integrated with new scheduling algorithms. A large number of existing real-

time scheduling algorithms are static and give optimal solutions. However, the next

generation of real-time systems must handle those tasks that arrive sporadically in

the changing environment which cannot be scheduled by static algorithms. Dynamic

scheduling algorithms are required for the next generation of real-time systems.

In addition to the ability of handling sporadical arrivals, real-time systems are

increasing in their complexity of control, and thus the demand of computing capacity

is increased. Parallel and distributed systems that provide high computing power

become attractive computer systems for the new generation of real-time applications.

One advantage of parallel and distributed systems is that tasks are executed at sep-

arate sites to achieve a high performance. The hardware costs of such systems are

low in comparison with those of traditional supercomputers that provide the same

computing capacity.

The communication subsystems of parallel and distributed real-time systems must

support timely message transmission. In parallel and distributed systems, tasks ex-



ecuted at different sites exchange information to achieve a common goal. Efficient

communication subsystems are required for parallel and distributed systems to pro-

vide the desired performance. The performance measures for general purpose systems

and real-time systems are different. Instead of throughput as in general purpose sys-

tems, the performance of real-time systems is measured by the ratio of the task

arrivals that can be executed before their deadlines. Thus, real-time communication

subsystems must deliver messages in a timely fashion. Otherwise, tasks may violate

their deadlines, and the system performance degrades drastically. Due to the different

performance requirement from general purpose systems, communication support for

parallel and distributed real-time systems must be studied as a separate problem.

In the following discussion, we describe the problems of dynamic scheduling for

parallel and distributed systems and communication support for wormhole networks.

Our approaches for solving the problems are briefly discussed.

2.1 Dynamic Scheduling on Distributed Real-

Time Systems

Dynamic scheduling for real-time tasks on systems with more than one processors

is a difficult problem. Even with independent tasks of identical execution time, the

problem is NP-hard [12, 13]. Since we are scheduling tasks with precedence con-

straints, the problem becomes naturally computational intractable. Thus, to solve

the problem, efficient heuristic algorithms with low run-time cost are needed.

One possible approach to reduce the scheduling cost is to partition a task group

into subgroups and schedule one subgroup in one stage. In our dynamic scheduling

approach, a group of tasks is partitioned into several subgroups such that tasks in

the same subgroup are independent. The scheduling of a group occurs in several

stages. A subgroup of tasks is scheduled at each stage. The scheduling of a group
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occurs in several stages to ensure that the scheduling overhead does not increase dra-

matically with linear increases in group sizes. By limiting the maximum number of

tasks in a subgroup, the scheduling complexity of a subgroup is bounded and the

scheduling overhead increases linearly as the number of subgroups grows. Our task

group partitioning strategy is different from the strategy described in [14]. In [14],

a task group is analyzed and partitioned into task clusters. Tasks in a cluster have

precedence relations and are allocated to the same processor for execution. Although

the scheduling algorithm in [14] minimizes inter-task communication, the parallelism

of the tasks is also minimized. Our scheduling algorithm considers both maximizing

the parallelism of task execution and minimizing the communication traffic among

tasks. In our algorithm, tasks are the basic scheduling units, and tasks in a subgroup

are distributed to diflerent processors for concurrent execution. Our task graph par-

titioning strategy is simple and the preprocessing overhead needed for scheduling a

task graph is minimized.

An important issue for partitioning a group of tasks is the maximum size of each

subgroup. In the simplest case, we can limit a subgroup to contain only one task. One

scheduling step is required if we only consider distributing the task to one processor.

However, if we schedule each task in a group separately, we are not considering the

parallelism embedded in the group. When there is more than one independent task in

a subgroup, the tasks can be scheduled to execute in parallel. By scheduling as many

independent tasks as possible in one stage, we increase the efficiency of distributed

systems. The drawback of scheduling a large number of tasks in one substage is

that the scheduling overhead for each substage may be so overwhelming that the

tasks waiting to be scheduled may be rejected due to a missed deadline even before

they are scheduled. Therefore, we study the effect of the size of a subgroup on the

performance of the scheduling algorithm.

In our scheduling approach, each node has a scheduling coprocessor to offload the
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scheduling overhead from the processor. A coprocessor initially schedules a group

of tasks on the local processor where they arrived. The tasks that cannot be 10-

cally scheduled are distributed to other processors in the system using a branch-and-

bound (BB) algorithm. The benefit of the BB algorithm is its ability to search for

an optimal schedule for a given set of tasks and available processors. Nevertheless,

BB algorithms are generally restricted to static scheduling due to the high compu-

tation cost of the algorithm. If we limit the number of tasks and processors in each

scheduling stage, then the required scheduling steps for each stage are upper bounded

by a constant. As the number of subgroups for a given group increases linearly, the

scheduling overhead also increases linearly. Although a BB algorithm is used for

describing task distribution in this report, we are not restricted to this particular

algorithm for global scheduling. Other optimal static scheduling algorithms exist to

solve the same problem.

2.2 Dynamic Scheduling on Mesh Connected

Multiprocessors

The problem of task scheduling on parallel multiprocessors is different from that of

distributed systems. In parallel systems, the number of I/O ports is limited and each

scheduler in the system may take the responsibility of scheduling tasks on more than

one processor. Nevertheless, the processors of a distributed system have their own

I/O channels, i.e., each processor has a scheduler that schedules the locally invoked

tasks.

The other issues that differ for the design of scheduling algorithms for parallel and

distributed systems are the cost of the hardware and the extra communication load

introduced by the algorithms. Since the cost of a processor is only a small portion

of the total cost of a node in a distributed system, the cost of adding one scheduling
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coprocessor to each node is relatively inexpensive. However, in a parallel system,

processors contribute to a major part of the price to build the system. As the sizes of

new parallel systems scaling upward, adding one coprocessor to each node of a parallel

system becomes financially infeasible. In addition, the performance of communica-

tion subsystems of parallel systems are sensitive to network load. Suppose tasks are

scheduled in each individual node of a parallel system, a scheduling coprocessor needs

to exchange messages with the other nodes to accurately schedule tasks to remote

processors. The extra messages introduced by the scheduling algorithm may increase

the network load and prolong message delays. The prolonged message delays can

cause tasks to violate their deadline and drastically degrade the performance of the

system.

We consider the problem of dynamic scheduling tasks with precedence constraints

on mesh connected systems. Our approach for solving the problem is modified from

the scheduling algorithm for distributed systems. The approach groups processors

into clusters and associates one scheduling coprocessor to each cluster. The schedul-

ing coprocessors first attempt to schedule tasks to their local processors. The BB

algorithm is used for local scheduling. Since scheduling coprocessors have the most

current states of their local processors, there is no message exchange required for the

local scheduling. As the number of scheduling coprocessors required in a system is

greatly reduced, hardware cost is also reduced.

The task graph partition scheme employed in the scheduling algorithm is differ-

ent from the strategy for the distributed systems. The strategy for mesh-connected

multicomputers is to select the ready tasks with the shortest scheduling laxity first.

A ready task is a task that all of its descendent are successfully scheduled. This

strategy guarantees that all the tasks in a subgroup are independent. A subgroup is

first locally scheduled by the BB algorithm. If there are tasks that cannot be locally

scheduled, a global scheduling process is invoked to distribute the tasks to remote
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clusters. The global scheduling algorithm is a simple procedure that chooses remote

sites with the lightest loads and the shortest distances for task distribution. This

global scheduling algorithm minimizes message exchange and the extra load added to

the network.

2.3 Real-Time Flow Control for Wormhole Net-

works

In parallel and distributed real-time systems, tasks exchange messages. When

scheduling cooperating tasks, a scheduling algorithm must consider the communi—

cation cost of different task allocations. In order to estimate the communication

cost of a task allocation, the communication subsystem should deliver messages in

a timely fashion. Otherwise, the unpredictable transmission time of a message may

cause tasks to violate their timing constraints. However, the communication subsys-

tems designed for general purpose systems cannot guarantee the timely delivery of

messages. Communication subsystems specifically designed for real-time systems are

required.

The communication system that we study is the wormhole network. The wormhole

network is a popular communication subsystem for parallel systems. The benefits of

wormhole networks, which include simple router designs and small buffer sizes, make

them attractive for large-scale parallel systems. The use of virtual channels in worm-

hole networks increases the throughput and bandwidth utilization [15]. The work of

Dally [16] showed that increasing the number of virtual channels can increase band-

width utilization and reduce message delays. However, the conventional flow control

scheme, first-comefirst-served, is insufficient to support real-time communication.

Dally also suggested that a flow control scheme based on the timing properties of

messages can improve real-time performance.
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Directly carrying timing information with messages in order to make flow control

decisions is infeasible for wormhole networks. First, the large buffers required to store

the timing information contradict the design principle of wormhole routers. Second,

the hardware for making flow control decisions is complicated to implement and

increases the cost of building such networks dramatically. The most important reason

is that a very complicated mechanism, which requires both software and hardware

support, is needed to maintain the correctness of the timing information. For example,

the laxity of a message, which is the time before the message deadline, changes and

needs to be modified constantly. To keep the laxity carried within the message current,

clock synchronization and message exchanges among nodes are involved.

In order to support real-time communication in wormhole networks, a priority

based flow control scheme, which include a time encoding technique and a priority

adjustment method, is needed. A time encoding technique maps timing information

into a priority, which can be represented in a small number of bits. If a priority em-

bedded within a message only requires a small buffer, it will not complicate wormhole

router design. A priority adjustment method, which adjust the priority of a message

without message exchange, can maintain the correctness of the timing property rep-

resented by the priority.

We propose several priority based flow control schemes to support real-time com-

munication and a message dropping method to relief the load contributed by the mes-

sages that miss their deadlines from the network. The proposed flow control schemes

modifies the implementation of general purpose wormhole routers. With small addi-

tional hardware costs, the schemes provide the desired real-time performance. The

real-time flow control schemes that we study include: tightest deadline first (TDF),

least laxity first (LLF), priority climbing (PC), enhanced priority climbing (EPC), rate

monotonic scheduling (RMS) and one-bit. The TDF and LLF schemes map deadline

tightness and laxity, respectively, of a message to a. priority. The wormhole routers
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make flow control decisions based on the priority carried in the message header. The

PC and EPC schemes enhance the TDF and LLF schemes by dynamically adjusting

the priority of a message. As a message is being transmitted, the timing property

of the message changes. The dynamic priority adjustment of PC and EPC schemes

improves the performance from the TDF and LLF schemes. The RMS and one-bit

schemes are derived from the RMS task scheduling algorithm [17] for static real-time

systems. The two schemes require an off-line analysis of the task properties, such as

the frequency of the message generation. This enables the schemes to have higher

performance than the other schemes. Since tasks arrive to real-time systems can

be either static or dynamic, we study the performance of the proposed flow control

schemes in both environments. In a static environment, task arrival times are known

at the system design time. In contrast, tasks arrive randomly in a dynamic envi-

ronment. We conduct simulation experiments to compare the performance of the

schemes and the conventional first-come-first-serve (FCFS) scheme.

A message dropping method can be used in conjunction with both the PC and

the EPC schemes. The hardware needed to support the method is a one-bit flag for

each virtual channel. The message dropping correctly drops messages that miss their

deadlines without message exchanges and a complicated mechanism. Performance

studies show that the message dropping method further improves the performance

from the PC and the EPC schemes.



CHAPTER 3

Background Review

The objective of a real-time scheduling algorithm is to find a feasible schedule for a

given set of tasks. A schedule is feasible if the successfully scheduled tasks can be

executed and meet their requirements. The requirements for executing a task include

a timing constraint (deadline), resource requirements and precedence constraints. In

a schedule, some tasks might be rejected due to the fact that one or more of their

requirements cannot be satisfied. Therefore, the task rejection ratio is a major metric

for measuring the performance of a scheduling algorithm. When a real-time system

is operating in a distributed or parallel environment, the scheduling algorithm must

estimate the communication overhead between two tasks that are allocated to separate

sites. Since tasks exchange information in such an environment to achieve a common

goal, a task scheduling algorithm for a distributed or parallel real-time system must

consider communication overhead.

Scheduling algorithms for real-time systems can be either static or dynamic. Static

scheduling algorithms are designed for those systems that have perfect knowledge of

the tasks, and the set of tasks to be executed is fixed. Task scheduling of these systems

is done during the system initialization phase, thus the overhead of the scheduling

algorithms do not affect the system performance. The results of static scheduling algo-

rithms can be optimal. If there exists a feasible schedule for a given set of tasks, then

16
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an optimal scheduling algorithm can find the solution. However, static scheduling is

expensive and inflexible. When adding new tasks to the system, we have to stop the

system and redo the scheduling to accommodate the new tasks. In some systems, e.g.,

nuclear power plants, the cost to shut down the system is extremely expensive such

that static scheduling is not suitable. Dynamic scheduling algorithms are designed for

those systems that task arrival times are unpredictable. Dynamic scheduling gener-

ates schedules when there is a new task arrival. Unlike static scheduling algorithms,

dynamic scheduling algorithms do not need perfect knowledge of the tasks before

task arrivals. For those applications that operate in a changing environment, dy-

namic scheduling algorithms are used instead of static algorithms. Nevertheless, the

run time cost of dynamic scheduling is high and the scheduling overhead of dynamic

scheduling algorithms directly affects the system performance.

Since real-time tasks have deadlines to meet, the message transmissions between

any two tasks are time constrained. In other words, the communication subsystem

must guarantee that messages are delivered before the estimated transmission time.

Real-time researchers have developed real-time protocols and flow control schemes

for various types of communication networks. Examples of these networks include

multiple access networks, and point-to-point interconnection networks.

In the remainder of this chapter, we overview the research results for both task

scheduling and communication support for real-time systems that operate in parallel

and distributed environments.

3.1 Static Scheduling Algorithms

Most of the conventional real-time systems operate in a static environment. Static

scheduling algorithms for these systems are designed to serve two task arrival models:

periodic and aperiodic. The set of tasks that executed in both of the two models are
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known at design phase. In the periodic model, tasks are executed at fixed intervals.

In contrast, the aperiodic model is used for tasks that arrive at irregular intervals. A

new task model, which is called imprecise computing, divides a task into two parts

and schedules the two parts separately. This model is attracting increasing interest

among researchers. In this section we survey the research results of static scheduling

algorithms for uniprocessor, parallel and distributed systems.

3.1.1 Static Scheduling on Uniprocessors

Liu and Layland [17] developed a rate-monotonic algorithm that assigns fixed priori-

ties to a set of periodic tasks for preemptive execution. The tasks with shorter periods

are assigned higher priorities. They showed that this scheme is optimal among all

the fixed-priority scheduling algorithms. The feasibility test for a schedule in Liu

and Layland’s algorithm is a simple function that checks the utilization of the task

set. The least upper bound of processor utilization for a given set of fixed priority

order tasks is m(21/"‘ — 1), where m is the number of tasks. Later, Sha et al. [18]

extended the rate-monotonic algorithms to adjust the priorities of critical tasks. In

their algorithm, when critical tasks with long periods are rejected, periods of these

critical tasks are transformed into shorter ones so that they can receive higher priori-

ties and be successfully scheduled. Lehoczky et al. [19] proposed an analysis scheme,

which gives insight to the characteristics of task execution, and the scheme achieves

a higher utilization using the rate-monotonic scheduling algorithm. Liu and Layland

assumed that the deadlines of the tasks are equal to their period. Leung and White-

head [20] considered a problem in which the deadlines are shorter than the period, and

a deadline monotonic algorithm was proposed. This problem was further addressed

in [21, 22, 23]. The detail information of the RMS technology is given in Section A.1.

In previous algorithms, the tasks are assumed independent and preemptable. In

practice, tasks might require resources for execution. Consequently, high priority
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tasks can be blocked by low priority tasks. For example, if a non-preemptable resource

is occupied by a low priority task and a high priority task requires that particular

resource to execute, the high priority task is blocked. Sha et al. developed a priority

ceiling protocol [24] that synchronizes tasks and their resource requirement to prevent

resource conflicts. The proposed priority ceiling protocol can be used in conjunction

with the rate monotonic scheduling algorithm.

A new task model, which is called imprecise computation, was introduced

in [25, 26, 27]. The imprecise computation model assumes that each task consists

of two subtasks: mandatory and optional. The mandatory part of a task performs

the major computation of the task and delivers the imprecise result. The completion

of the optional subtask delivers the precise result of the task. During scheduling,

the mandatory subtasks are first scheduled. If a feasible schedule for the mandatory

subtasks is found, the optional subtasks are then scheduled. Scheduling algorithms de-

veloped for imprecise computation are proposed in [27, 28]. Both of these algorithms

are based on the next-fit algorithm [29], which is extended from the rate monotonic

algorithm.

Horn [30] developed an earliest-deadline-first scheduling algorithm for aperiodic

tasks on uniprocessors. The tasks with earlier deadlines are executed preemptively

before the task with later deadlines. The complexity of Horn’s algorithm is 0(n2),

where n is the number of tasks.

3.1.2 Static Scheduling on Distributed Systems and Paral-

lel Multiprocessors

Scheduling tasks on parallel and distributed systems is more complicated than that on

uniprocessors. In [30], Horn developed an 0(n3) preemptive algorithm, where n is the

number of tasks, based on the network flow method. The system of his approach is
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modeled as a distributed system with homogeneous processors. Martel [31] extended

Horn’s algorithm to consider a distributed system with heterogeneous processors.

The resulting complexity of the algorithm is 0(m2n4 + n5), where m is the number

of processors.

One approach of scheduling periodic tasks is to partition the tasks into groups

based on the earliest-deadline scheme or rate monotonic scheme. Bannister and

Trivedi [32] proposed a best-fit algorithm for partitioning the tasks. This best-fit al-

gorithm is simple and can be used together with earliest deadline and rate monotonic

schemes. Dhall and Liu [29] modified the rate monotonic algorithm and proposed a

next-fit algorithm for task partition. Davari and Dhall [33] presented a suboptimal

bin-packing algorithm, based on the next-fit algorithm, with earliest deadline scheme

to partition the tasks into groups. The resulting complexity is 0(n).

If the task execution is nonpreemptive, then the problem becomes NP-hard [12]

even with restricted assumptions. Several optimal nonpreemptive scheduling algo-

rithms, which have polynomial complexity, for tasks with identical execution times

are proposed in [34, 35, 36, 37].

Static scheduling algorithms for tasks with precedence relations have been studied

in [38, 39, 40, 41, 42, 43, 44]. In [40, 41, 43], Branch-and-Bound algorithms are used

for allocating tasks to processors. These algorithms provide optimal schedules for a

given set of tasks. A task graph modeling and analysis technique is proposed [42] that

provides a means of maximizing the concurrency of task executions. A preemptive

scheduling algorithm that uses a graph algorithm to efficiently utilize multiprocessors

is presented in [38].
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3.2 Dynamic Scheduling Algorithms

In static scheduling algorithms, the scheduling steps required to schedule a group of

tasks increases dramatically when the size of a group of tasks increases linearly. For

dynamic scheduling, a system’s performance would degrade severely if the scheduling

algorithm demands high overhead. Therefore, existing static scheduling algorithms,

which have high computational complexities, cannot be directly applied to the dy-

namic scheduling problem.

Hong and Leung [45] proved that there is no optimal algorithm for scheduling

a set of independent tasks on m > 1 identical processors unless the tasks have a

common deadline. And an optimal algorithm for dynamic scheduling tasks with a

common deadline is proposed. Mok and Dertouzos [13, 46] showed that there can be

no optimal scheduler without apriori knowledge of the start times of the tasks.

Dertouzos [3] proposed an earliest deadline algorithm for dynamic scheduling in-

dependent tasks on uniprocessors. However, the scheduling overhead is not addressed.

Ramamritham and Stankovic [47] developed a dynamic algorithm based on the earli-

est deadline scheme and scheduling overhead is accounted in their performance anal-

ysis. Zhao et al. [48] presented a backtracking scheme for scheduling nonpreemptive

tasks with resource constraints. The scheme was extended for scheduling preemptable

tasks [49].

Several dynamic scheduling algorithms [50, 51, 52, 53] have been proposed for

distributed real-time systems. Stankovic et al. proposed a flexible algorithm [50] that

combines focus addressing and bidding scheduling algorithms. The flexible algorithm

schedules independent tasks for distributed real-time systems. Ramamritham et al.

presented an 0(a) algorithm [51] for multiprocessor systems. The algorithm uses

the greedy method and a heuristic function to evaluate the feasibility of schedules.

Shin and Chang [52] used preferred lists for task distribution. Preferred lists are or-
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dered lists of processors assigned to each processor during the system initialization

phase. Blake and Shawn [53] described a bin packing algorithm for dynamic schedul-

ing independent tasks on multiprocessor systems. Since these algorithms consider the

problem of scheduling individual tasks, they are unsuitable for the problem of schedul-

ing groups of tasks. Cheng et al. [14] proposed a dynamic algorithm for scheduling

groups of tasks with precedence constraints. The algorithm breaks a task graph into

clusters of tasks. Each cluster consists of a group of tasks with precedence relations,

and the algorithm distributes the clusters as basic units among the processing nodes

in the system. The flexible algorithm is used for distributing the clusters.

3.3 Real-Time Communication Protocols and

Flow Control

Communication support for parallel and distributed system has been addressed for

multiple access networks, and point-to-point interconnection networks. In this section,

we survey the research results on real-time communication protocols and flow control

schemes.

3.3.1 Multiple Access Networks

A multiple access network is an environment that all the sites of the network are

communicating over a single communication channel and only one message can be

successfully transmitted over the channel at any time [54]. If more than one message

is simultaneously transmitted on the channel, these messages collide with each other.

In such a case, none of the receivers receive these messages correctly. For the reason

that all the sites of the network can monitor the communication channel, a message

sent on the channel can be detected by all the sites. The satellite network and the
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bus are examples of the multiple access networks. The multiple access network is also

known as one of the broadcast networks.

Real-time protocols for multiple access networks can be classified into two cat-

egories: controlled-access and contention-based [54]. Controlled-access protocols are

the protocols that provide collision-free channel access. By imposing ordering on the

channel access rights to the sites, this type of protocol guarantees that no two sites

will transmit messages simultaneously. Unlike controlled-access protocols, contention-

based protocols support real—time communication by resolving contentions.

Controlled-access protocol: The controlled-access protocols can be further

categorized into predetermined channel allocation (PCA) and demand adaptive pro-

tocols. PCA protocols statically allocate the channel to the sites. In other words,

the PCA protocols do not adjust channel assignments according to the changing de-

mands of the sites. Demand adaptive protocols dynamically allocate the channel to

the sites that require the service. The most common strategy for PCA protocol that

serves in the general purpose network is the time division multiple access (TDMA).

TDMA protocols allow each site periodically use the channel for a fixed amount of

time for transmission. In a fixed time period, the time is divided into equal length

frames. The number of time frames is equal to the number of sites connected to the

network. Each site is assigned to one time frame and can transmits messages only

in its own time frame. A slot-switched TDMA technique [55, 56, 57, 58], which is

a variation of the pure TDMA, was proposed to serve real—time communication in a

centralized environment. In such an environment, messages are generated by several

sources and collected by a central station. The messages are time-multiplexed onto a

single outgoing channel by the central station. Maglaris and Lissack [59] investigated

a slot-switched TDMA protocol that serves in a distributed environment. The MARS

project [60] uses a simple TDMA protocol to support real—time communication.

Demand adaptive protocols, as PCA protocols, offer channel access rights to sites
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in some order. The order can be determined off-line or dynamically by the sites

that requiring the rights. In demand adaptive protocols, when there is no message to

transmit, a site give up the channel access rights to the other sites that have messages

waiting in their transmission queues. Two schemes are commonly used to determine

the access order: reservation and token passing schemes.

In reservation schemes, there are reservation periods and transmission periods. A

reservation period is further divided into a number of slots as many as the number of

sites. Each site is associated with one reservation slot. During a reservation period,

a site sends a burst of noise in its slot when there is a message to transmit. The sites

that reserve the channel are granted the channel access rights in an order determined

by their priorities. The sites that have the access rights transmit messages during the

transmission periods [61]. Valadier and Powell [62] proposed a waiting room protocol

that can serve in both centralized and decentralized environments. The waiting room

protocol is also studied in [63] for general purpose networks. Lui et al. [64] proposed

a reservation based protocol for dual-link networks.

In token passing protocols, one token is circulated among sites. A site can trans-

mit message when it possesses the token. Strosnider et al. [65] applied the RMS

task scheduling algorithm [66] to IEEE 802.5 token ring scheduling. Token passing

protocols were also studied in [67, 68, 69]. Sevick and Johnson [70] analyzed the per-

formance of the token passing scheme for the fiber-distributed-data-interface (FDDI)

protocol. Shin and Hon [71] presented an analytical analysis of time-constrained

CSMA/CD and token based protocols.

Contention based protocol: Unlike controlled-access protocols, contention

based protocols allow all sites to transmit messages without channel access rights.

When message interferences occur, a collision resolution process is used to determine

which site has the channel access rights.

Kurose et al. [72, 73] purposed a window protocol for time constrained communica-
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tion in multiple access networks. The window protocol resolves collisions by selecting

the sites that have messages transmitted in an initial interval (window) for retrans-

mission. If more than one site transmits messages in the initial window, the window

size is reduced. This process repeats until only one site is selected. In [72, 73], the

laxity before message deadlines is assumed identical. Panwar et al. [74] proposed a

window protocol that releases the assumption. Zhao et al. [75, 76] extended the basic

window protocol to improve the performance.

Zhao et al. [77, 78] proposed a collision based protocol, which is based on the

virtual time CSMA protocol [79], for hard real-time communication. In the virtual

time protocol, each site maintains two clocks: a real clock and a virtual clock. A site

sends a waiting message when the time of the virtual clock is equal to some parameter

of the message. Malcolm and Zhao [80] studied the virtual time protocol to be used

in an environment that each message has several versions.

3.3.2 Point-to-Point Interconnection Networks

In point-to-point interconnection networks, sites are connected by individual links

among the sites. A link between between a pair of sites is dedicated to the two

sites. Point-to—point interconnection networks can be characterized by the switching

mechanisms. Example of switching mechanisms are store-and-forward, virtual-cut-

through, circuit switching [81] and wormhole routing [15].

Anderson et al. [82] proposed a message scheduling algorithm, which employs the

RMS task scheduling algorithm, to support real-time communication for continuous

media for the DASH project [83]. The switching mechanism of the DASH project is

the store-and—forward scheme. Anderson [84] devised a metascheduling algorithm for

continuous media. The metascheduling algorithm combines CPU scheduling, network

flow control and file system management to guarantee real-time performance. Ferrari

and Verma [85] investigated a message scheduling algorithm, which is based on the
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earliest-deadlinefirst task scheduling algorithm [66], for wide-area networks. Kandlur

et al. [86] combined deadline and fixed priority scheduling for real-time communication

in multi-hop networks. Leung et al. [87] proposed a dynamic routing algorithm for

store-and-forward networks to support real-time communication.

In the HARTS system [88], the system is a hexagonal-mesh-connected parallel

real-time system. The switching mechanism for the network is virtual-cut-through.

Ramanathan and Shin [89] proposed a multiple copy approach to support real-time

communication in an environment such as HARTS. A reliable broadcast algorithm

has been presented by Kandlur and Shin [90] for HARTS.

Most of the new parallel systems adopt wormhole routing [15] as their switching

mechanisms. However, real-time communication support for wormhole networks has

not been widely addressed until recent years. Shukla and Agrawal [91] described a

scheduled routing scheme for wormhole networks. The scheduled routing scheme,

which schedules and allocates tasks during compile time, was designed to serve peri-

odic real-time applications. Mutka [92] proposed a flow control scheme for wormhole

networks that is based on the RMS task scheduling algorithm. The scheme is designed

to support systems in which message arrivals can be modeled as a linear bound arrival

process [93].



CHAPTER 4

Dynamic Scheduling for

Distributed Real-Time Systems

An algorithm for dynamically scheduling tasks with precedence constraints on dis-

tributed real-time systems is presented in this chapter. The algorithm partitions the

scheduling of a group of precedence related tasks into subgroups. The maximum num-

ber of tasks in each subgroup is limited. The subgroups are scheduled independently

in stages using a branch-and-bound (BB) algorithm. The overhead of the BB algo-

rithm grows exponentially as the number of tasks being scheduled increases linearly.

By limiting the number of tasks in a subgroup below a maximum number, which is

a constant, the overhead of scheduling one subgroup can be considered a constant.

The task group partitioning strategy reduces the overhead of scheduling a group to

linear time.

If we partition a group of tasks to subgroups, we do not have a global view of the

task relations as we would if we scheduled the entire group simultaneously. In other

words, we can construct better schedules by increasing subgroup sizes. The tradeoff

of the maximum subgroup size and the quality of schedules is studied. Simulation

results are presented to study various parameters affecting the system performance.

The proposed scheduling algorithm is a general scheme that can be easily ported to

27
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different types of distributed and parallel systems.

4.1 The System Model

A description of the characteristics of a group of tasks is necessary to illustrate our

model. Tasks arrive to the system in groups. Individual task groups arrive indepen-

dently at each processor as a Poisson process. A deadline is associated with each

group of tasks. A task group is modeled as an acyclic graph where directed edges are

precedence relations among tasks. A task sends a message or a signal at the end of

its execution to subsequent tasks. An example of a group with 10 tasks is given in

Figure 4.1.
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Figure 4.1. An example task graph of a task group.

The level of a task t is determined by the length of the longest path from the

source tasks to t. A source task is a task without predecessors. Since task graphs
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are acyclic, tasks at the same level are independent. The level of a task graph is

the length of the longest path in the graph. Figure 4.1 illustrates the levels of tasks

in a task graph. The number of tasks in a group is assumed to be exponentially

distributed. The computational demands of tasks are assumed to be identical, which

is similar to the demands modeled by Kar et al. [94]. This assumption can be easily

generalized to non-identical demands by using a modified task group partitioning

strategy illustrated in Section 5.2. The BB algorithm does not constrain the demands

of tasks to be identical. Since we study how to appropriately control the cost of the

scheduling algorithm while effectively using its power, the task model enables us to

focus on the effects of the searching costs. More specific or complex task models are

not needed for this examination but would be needed if well-defined real-time task

workloads are given for specific problems.

In order to evaluate the tradeoff between the maximum size of subgroups and

the efficiency of the scheduling algorithm, we devise a model of a loosely coupled

distributed system that consists of N homogeneous processing nodes. Figure 4.2

illustrates the model. Each node contains a scheduling coproceSsor to off-load the

scheduling overhead from the task processor. This model corresponds to investigations

of other researchers who study architectural issues of distributed real-time systems

that have multiple processors in each node [90].

A scheduling coprocessor consists of two major components: the local scheduler

and the load distribution scheduler. Initially, an attempt is made to schedule a newly

arrived task group at the local task processor by the local scheduler. Tasks that

cannot be executed locally are distributed by the load distribution scheduler. A local

scheduling list is maintained by each scheduling coprocessor. Every scheduled task

has an entry in the local schedule list of the processor on which it is scheduled. An

entry of a local schedule list contains the task identification, group identification, start

execution time, worst case execution time of the task, and processor identifications
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Figure 4.2. The system model.

of the locations of its immediate successors.

Every processor logs its own system status information, which is not necessarily the

same as the information kept in other processors. To maintain accurate system status

information, processors are responsible for broadcasting their load changes to the

other processors. This status change broadcasting scheme was first proposed by Shin

and Chang [52]. A processor can be in three states, available, medium loaded and busy.

A processor broadcasts its load change when its status changes from available/busy

to busy/available. This scheme can minimize the number of messages needed to

maintain system status information kept at the processors. Although the model of

the communication subsystem is a point-to-point communication network and no

other assumptions need to be made for the topology, we investigate a system with

communication delays that models a hypercube topology [95].
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4.2 Task Group Preprocessing

Some processing of a task group is needed prior to the scheduling of the tasks. The

scheduling of a task group is done in stages that a subgroup is scheduled in each

stage. The task graph partitioning strategy extracts-independent tasks of a group

and separates them into subgroups. The scheduling of a task requires the knowledge

of the deadlines of the tasks and the earliest time the tasks can start execution. The

task group partitioning and estimating timing properties of tasks are discussed in this

section.

4.2.1 Task Graph Partitioning

In order to maximize the parallelism of task execution, independent tasks are sched-

uled simultaneously for concurrent execution. The task graph partitioning strategy

divides a task group into several subgroups such that tasks within the same subgroup

are independent. There must not be precedence relations between tasks at the same

level. By partitioning tasks into subgroups according to their levels, we are ensured

of independence between tasks in the same subgroup.

The number of levels of a random task graph can be any number from one to the

size of the task group. We divide each subgroup into smaller subgroups such that

the maximum size of each subgroup is a constant S. Selection of the constant 5' is

not a trivial issue since the size of 5 directly relates to the number of scheduling

steps required for a subgroup. If the underlying scheduling algorithm has nonlinear

computational complexity, a relatively large 3 may cause excessive scheduling over-

head such that the task rejection ratio becomes unacceptable. We study the relation

between S and the time required for each scheduling step.
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4.2.2 Estimating Task Deadlines and Earliest Start Execu-

tion Time

When a group of tasks arrives, a deadline is associated with the group. A group of

tasks is successfully scheduled if all the tasks are scheduled to finish execution to meet

the group deadline. During scheduling, each task must have a specific deadline as well

as an earliest start execution time (ESET). A task deadline is determined such that

the subsequent tasks have enough slack time to be executed before their deadlines.

The ESET of a task is calculated as the time required for the predecessor tasks can

finish execution.

Our scheduling algorithm schedules tasks from the highest level to the lowest level.

When scheduling a task, all of its immediate successors are successfully scheduled. A

task must be scheduled such that it is guaranteed to finish before any of its successors

starts execution. The deadline of a task is chosen as the earliest starting point of all

its immediate successors. The deadline of a task t is calculated as

D(t) = MIN{Ea:ectime(s,-),Vs.- E Child(t)},

where D(t) is the deadline of t, Exectime(s,-) is the scheduled execution time of task

3;, and Child(t) is the set of all the children of t. Sink tasks have no children, so the

deadline of a sink task is the group deadline. We introduce another term, latest start

execution time(LSET), to simplify later discussions. The LSET of a task specifies

the latest time that the task must start execution, so the task can finish execution

and sends messages to its children before the task deadline. The LSET of task t is

determined as

LSET(t) = D(t) — Demand(t) — ComCost(t),

where Demand(t) is the computation demand of the task and ComCost(t) is the
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worst cast communication time needed to send a signal to its children. The LSET of

a task is calculated at the time the task is being scheduled.

The value of the ESET of a task is fixed during the scheduling, and it specifies

the earliest time the task can start executing. The ESET of a task t is computed as

ESET(t) = clock + MAX{Demand(P,-),Vp,~ 6 PathSet(t)},

where clock is the current time, P,- is a path from a source task to the task t,

Demand(R) is the total demand of the tasks on the path and PathS'et(t) is the

set of all the paths from source tasks to t. The execution of a task must be scheduled

to start at a time within the period from the ESET to the LSET.

4.3 Selecting Processors for Task Allocation

Tasks can be either allocated to their local task processors or distributed to the other

remote processors in the system. When tasks are considered for [global distribution,

the number of destination processors must be equal to or greater than the number of

tasks in a subgroup to maximize the parallelism of task execution.

The set of processors selected for task distribution in a scheduling stage is called

a preferred set. The processors in a preferred set are selected from the available

processors in the preferred list of the scheduling processor. Each processor has a

unique preferred list, which is an ordered list of all the other processors in the system.

The order of a processor in a preferred list is determined by the geographic distance

from the processor to the owner of the preferred list. The uniqueness of preferred

lists minimizes the chance that two or more processors are simultaneously dumping

their loads to the same processor. The construction of preferred lists is architecturally

dependent as described by the algorithm for k-ary n-cubes in [52]. An example of
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preferred lists for a binary 4-cube is given in Table 4.1.

Table 4.1. An example preferred list for a binary 4-cube.

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I Processor [] Preferred List ]

0 1 2 4 8 3 5 9 6 10 12 7 11 13 14 15

1 0 3 5 9 2 4 8 7 11 13 6 10 12 15 14

2 3 0 6 10 1 7 11 4 8 14 5 9 15 12 13

3 2 1 7 11 0 6 10 5 9 15 4 8 14 13 12

4 5 6 0 12 7 1 13 2 14 8 3 15 9 10 11

5 4 7 1 13 6 0 12 3 15 9 2 14 8 11 10

6 7 4 2 14 5 3 15 0 12 10 1 13 11 8 9

7 6 5 3 15 4 2 14 1 13 11 0 12 10 9 8

8 9 10 12 0 11 13 1 14 2 4 15 3 5 6 7

9 8 11 13 1 10 12 0 15 3 5 14 2 4 7 6

10 11 8 14 2 9 15 3 12 0 6 13 1 7 4 5

11 10 9 15 3 8 14 2 13 1 7 12 0 6 5 4

12 13 14 8 4 15 9 5 10 6 0 11 7 1 2 3

13 12 15 9 5 14 8 4 11 7 1 10 6 0 3 2

14 15 12 10 6 13 11 7 8 4 2 9 5 3 0 1

15 14 13 11 7 12 10 6 9 5 3 8 4 2 1 0                 
 

The size of a preferred set is directly related to the scheduling overhead. Suppose

we consider all the processors in the system for task distribution. If the number of

processors in the system is large, the scheduling overhead is unacceptable even if

the size of the task group is small. However, if the size of a preferred set is smaller

than the number of tasks being distributed, we do not explore the possibilities of

concurrently executing independent tasks.

We examine four preferred set expansion strategies, exact, plus-4, binary and

Fibonacci methods. The exact method scans from the head of the preferred list to

find available processors to add to the preferred set. The preferred set expansion

process terminates when there are exactly the same number of processors in the

preferred set as the number of tasks to be distributed. The plus-4 method scans
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four processors from the preferred list. If the number of processors included to the

preferred set is less than the number of tasks, then 4 more processors are scanned.

The process repeats until there are at least as many processors in the preferred set

as the number of tasks. The binary method initially scans a number k (= 25, j Z 0)

processors from the head of the preferred list. The value k is a power of two that is

the smallest number equal to or larger than the number of tasks. When the number

of available processors in the preferred set is smaller than the number of tasks to be

distributed, additional processors in the preferred list are scanned such that the total

number of scanned processors is 2k (2 2"“). The Fibonacci method increases the

number of scanned processors following a Fibonacci sequence.

The exact method includes exactly the same number of processors in the preferred

set as the number of tasks, so that the scheduling overhead is minimized. However,

due to the inaccuracy of system status information, some processors in the preferred

set might be busy and the tasks are rejected. The plus-4, binary and Fibonacci

strategies include more processors than the number of tasks and increase the chance of

successful scheduling. Nevertheless, these three methods introduce higher scheduling

overhead than the exact method. The tradeoff between scheduling overhead and task

rejection rate is studied in Section 4.5. Simulation results show that the Fibonacci

method has the best performance when the system is heavily loaded.

4.4 The Scheduling Algorithm

The scheduling of a task group is done in stages. Higher level tasks are scheduled

in earlier stages than lower level tasks, i.e., task scheduling proceeds from sink tasks

to source tasks. If lower level tasks are scheduled before higher level tasks, there

is a chance that lower level tasks start execution before all the tasks are scheduled.

However, some higher level tasks might be rejected, and the tasks that already have
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started execution need to be withdrawn from the system. The process of withdrawing

tasks that have started execution complicates the system design. Our scheduling

strategy ensures that tasks are executed only if the whole task group is successfully

scheduled.

The tasks scheduled in each stage are selected from the remaining unscheduled

tasks at the highest level. The tasks in each subgroup must be at the same level to

ensure the independence of the tasks. A subgroup of tasks are first considered for

local execution by the local scheduler at the site to which they arrived. If some of the

tasks in the subgroup cannot be locally scheduled without violating their deadlines,

these tasks are globally distributed by the load distribution scheduler. When any of

the tasks cannot be scheduled either locally or globally, the group of tasks is rejected.

An execution time and a location are associated with each task if they are successfully

scheduled.

4.4.1 Local Scheduling

A local scheduler is invoked when new tasks arrive or when other processors are

confirming their global task distributions. In the case that there are task arrivals, the

local scheduler searches the local schedule list to find free slots for the tasks. The free

slot for a task must satisfy the condition that the task can start execution later than

its ESETs and earlier than its LSETs. Therefore the task is guaranteed to meet its

deadline when executing in the free slot. The tasks that have free slots assigned for

them are locally scheduled, and the entries for the tasks are inserted into the local

schedule list. If the local scheduler cannot find free slots for some of the tasks in the

subgroup, these unscheduled tasks are considered for global distribution by the load

distribution scheduler.

When a scheduling coprocessor receives task distribution messages from other

processors, the local scheduler processes the messages in the following way. The local
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scheduler searches the local schedule list to find free slots as specified by the messages

for the globally distributed tasks. If free slots are found for the globally distributed

tasks, the slots are reserved for the tasks and an accept message that contains the

execution time for the task is returned to the sender of. the task distribution message.

Otherwise, a reject message is dispatched to the sender.

4.4.2 Global Scheduling

The load distribution schedulers are invoked when tasks cannot be locally scheduled.

Using the number of tasks marked for global distribution, a preferred set of processors

is selected from the preferred list. Global distribution lists are generated using a BB

algorithm. The details of the BB algorithm is presented in the later discussion of this

section. The BB algorithm assigns the tasks to the preferred set of processors such

that each task is allocated to a different processor. Then task distribution messages

are sent to the destination processors to confirm the global distribution lists. A task

distribution message contains the ESET, the LSET and the computational demand of

the task. If all of the destination processors respond with an accept message, the tasks

are transferred to those destination processors. Otherwise, a second distribution list

is selected and confirmed with the destination processors. This confirmation process

repeats until either one of the distribution lists is accepted or some of the tasks’

deadlines are passed. If some tasks miss their deadlines, the group of tasks is rejected

and withdraw messages are sent to the processors where tasks of this task group were

scheduled. Since the algorithm schedules tasks from the highest level to the lowest

level, we are ensured that tasks of a group can start execution only if all the tasks are

successfully scheduled. When local schedulers receive withdraw messages, the entries

for the scheduled tasks from the group are simply removed from the local schedule

lists.
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4.4.3 The BB algorithm

A BB algorithm is a depth first search of a tree with bounding conditions. The

computational complexity of the search is 0(n‘), where n is the number of avail-

able processors in the preferred set and t is the number of tasks to be distributed.

Figure 4.3 is an example of a task assignment tree. The edge between two vertices

represents the assignment of one task to a processor. The label within the square

near the edge is the processor to which the task is assigned. For example, if the label

of edge (v1, v2) is 1 then task t1 is assigned to processor p1. The directed arrows with

each edge represent the search directions and their labels are the search steps. When

the search reaches a leaf of the tree, one complete distribution list is constructed.
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Figure 4.3. A task assignment tree.

When the search reaches a vertex, the LSET of the current distribution list is

evaluated and the bounding condition is checked. The LSET of a list 1 is evaluated
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LSET(I) = MIN{LSET(t), Vt e I},

where LSETU) is the LSET of l and t is a task in l. Intuitively, we want to distribute

tasks to processors that provide longer scheduling periods for the tasks. Since the

ESETs of tasks are fixed values, the LSETs of tasks determine the periods during

which the tasks can be scheduled. The bounding condition is that the LSET of the

current list should be later than the previous LSETs of the previously constructed

lists. If the bounding condition is not matched, the sub-tree rooted at the vertex is

not searched. For example, in Figure 4.3 the sub-tree of vertex us is not searched

because an assignment of task t1 to processor pg will produce a list with an earlier

LSET than the previously constructed lists.

An outline of the BB algorithm is given in the pseudocode listed in Table 4.2.

Suppose there are n available processors in the preferred set and t tasks to be

scheduled. One task is first assigned to an available processor, and the LSET of the

task is evaluated. Since the LSET of a task is determined by the execution time of its

successors and the communication delays with its successors, we evaluate the LSET of

a task whenever it is distributed to a different processor from its successors. If there

are other unscheduled tasks, then these tasks are considered for distribution. This

procedure continues until all potential distribution lists are constructed. The LSET

of the list is updated while assigning tasks to processors. The process of constructing

a list is aborted if the LSET of the list is earlier than the earliest LSET among

previously saved lists. For simplicity of illustration in Table 4.2, we save the best

list and its LSET. The BB algorithm limits the number of lists that it saves.‘ The

procedure of constructing a list repeats until all alternatives of task assignments have

been considered.

 

‘We save at most 5 schedules in our experiments.
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Table 4.2. The Branchend-Bound algorithm.

procedure Branch-and-Bound( preferredset, n, dist_set,t)

//prefemd.set[1:n] is the array of processors in the preferred set //

//dist.set[1:t] is the set of tasks to be distributed //

var

LSET[1:t] : real; //army of LSET for each task//

LLET : real; // the LSET of the current list//

Best.LLET : real; // the latest LLET among all lists //

taskindx : integer; // index to the tasks //

list[1:t] : integer; //array for storing the list //

bestJist[1:t] : integer // array for storing the best list//

subprocedure Search( taskindx, LLET)

var

preferredset[1:n] : External;

dist_set[1:t] : External;

LSET[1:t]: External;

temp.LLET : real;

procjndx : integer; // index to the processing nodes //

BEGIN

for proandx = 1 to n

BEGIN

LSET[taskJndx]r—MIN(”execution time of taskta,k_,nd,’s successors”

- ”communication delay”) — task demand;

if(LSET[task_indx] < LLET ) temp.LLET<—LSET[task.indx];

else temp.LLETi—LLET; '

if( temp.LLET > Best.LLET ) then

BEGIN

list[taskjndx]+—proc.indx;

if( taskindx < t ) then Search(task_indx+1, temp.LLET);

else

BEGIN

BestJistr—list;

Best.LLETi—tempLLET;

END

END

END

END

BEGIN

Best.LLETi—O;

LLET<— oo

taskindm—l;

Search(task.indx, LLET);

END.
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4.5 Performance Studies

We developed a simulator to evaluate the cost and power of our dynamic scheduling

algorithm. We show that significant improvements are obtained by scheduling a sub-

group of tasks simultaneously in comparison to a scheme that distributes one task at

a time. Nevertheless, the costs of the searching steps of the scheduling algorithm can

be significant and can impose limits on the appropriate size of a distribution subset.

The results of the simulation experiments show the performance of the algorithm as

it is affected by the maximum size of the distribution subset, the scheduling overhead

and the preferred set expansion strategies.

4.5.1 The Simulation Model

The simulated system is composed of sixteen homogeneous processing nodes. Each

processing node consists of a processor and a scheduling coprocessor. The communi-

cation subsystem is a point-to-point network using the store-and-forward switching

mechanism. Therefore, the message delay and task transfer delay between each pair

of nodes are determined by the path length between the two nodes. The interconnec—

tion topology of the network is modeled as a hypercube. Since our study emphasizes

the effect of maximum size of the distribution subset and the scheduling overhead,

we do not include the communication overhead caused by network contention in the

message delay and the task transfer delay. The message delay between two nodes

that are separated by a single hop is 5 units of scheduling time.

It is often the case in real-time systems that the task demands are known at the

system initialization phase, or at least at the arrival times. In order to reduce the

task transfer overheads, it might be feasible to store a code for each task at several

nodes (or perhaps all nodes). Therefore, a task transfer implies a message with the

identity of the task and the required input for the task. To simplify the simulation,
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we assume that the task transfer delay is twice the message delay between the sender

and the receiver.

Task groups arrive at each node as a Poisson process, which is independent from

the arrivals at the other nodes. The arrival rates for all the nodes are identical. The

number of tasks in a group is exponentially distributed with a mean of 6 units, which is

a suitable number of tasks for the given size of the system. Task graphs are generated

randomly such that they are acyclic random graphs. Computation demands of tasks

are chosen to be 100 units. We study the effect of scheduling overhead by varying the

cost of each scheduling step from 1-10 units, therefore each scheduling step is 1-10%

of a task demand. The task transfer cost to an adjacent node is twice the message

delay, such that the task transfer cost per hop is 10% of a task demand. Since the

number of scheduling steps grows as the size of a task group increases, the scheduling

time can overwhelm the task demands. In addition, the cost of tasks transferred to

nodes across several hops can exceed the demands of the tasks.

The deadline tightness of each group affects the performance of a task scheduling

algorithm. Deadlines are evaluated by assigning a deadline tightness factor to each

group. A group deadline is calculated as the computation demand of the group plus

the product of the demand and the deadline tightness factor. Suppose the deadline

tightness factor of a group is 0.3. The group deadline is the arrival time plus the

product of 1.3 and the sum of computation demands of the tasks in the group. Note

that it is reasonable to investigate a system with the deadline tightness factor set to

0.0 as long as some tasks in a group can be executed in parallel.

The values of the two thresholds, T1 and Th, that are used to distinguish the states

of a node are 0.3 and 0.7 of the system load, respectively. The system load is the

average of the individual node loads kept locally at each node. The time period W for

calculating the load of a node is 10,000 time units. The load of a node is computed as

the ratio of the number of tasks scheduled at the node to W. The manner of choosing
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the values of T1, T}. and W is itself an interesting research topic. The values for our

studies are chosen to minimize the message overhead for exchanging state information

while keeping accurate state information in each node for load distribution.

4.5.2 Relationship between Maximum Subgroup Size and

Rejection Ratio

We compare the performance of our algorithm to a baseline algorithm. The group

rejection ratio measures the performance of the task scheduling algorithms. The base-

line algorithm distributes a task group along its critical path in the task graph. The

scheduling is done in stages. At each stage, one task is selected from the highest

level, which has tasks unscheduled, for scheduling. When distributing a task, the

baseline algorithm looks for the first available processing node from the beginning of

the preferred list and distributes the task to that node. The baseline algorithm ap-

pears to be a special case of our algorithm when the maximum size of the distribution

subset is equal to l. The difference is that our algorithm uses a BB algorithm for task

distributions and constructs one or more load distribution lists from the preferred set.

Figure 4.4 shows the performance comparison between our algorithm and the

baseline algorithm. We varied the maximum size of the distribution subgroups of

our algorithm with values from 2 through 6. The unit scheduling time is 1 and the

deadline tightness factor is 0.0 in this experiment.

The system load of a well designed real-time system generally does not exceed a

specified limit under normal operating conditions. From the fault-tolerance point of

view, one advantage of distributed and parallel systems is that the performance of

these systems degrades gracefully under node failures. Therefore, the load of a system

may exceed the specified limit when there are faulty nodes, and it is worthwhile to

examine the stability of the scheduling algorithm subject to very high loads. The
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Figure 4.4. Performance of the group scheduling algorithm and the baseline algorithm.

results of our studies show that our version of the scheduling algorithm offers stable

performance under very high system loads, as shown in Figure 4.4. The stability

is due to the choices made by the BB algorithm for rejectinggroups that cannot

be sCheduled. Note that the x-axis in Figure 4.4 presents the load offered to the

system. We can consider very large offered loads since some groups will be rejected.

By making good choices for rejections, the overall rejection rate is low and stable.

The effective system load will be lower than the offered load.

A primary constraint of the BB algorithm is its computational complexity. The

scheduling overhead of the BB algorithm increases exponentially when the number of

tasks and the available processors in the preferred set increases. If we constrain the

number of tasks in a distribution subgroup to a small number, then the scheduling

overhead is limited to a reasonable range. The results presented in Figure 4.4 show

that the rejection ratio decreases when the maximum size of distribution subgroups

increases from 2 to 4. Nevertheless, the rejection ratio of size 5 and 6 increases and is
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significantly higher than that of sizes 2, 3 and 4. Although larger subgroup sizes can

be useful for finding good schedules for off-line scheduling, the larger sizes consume a

significantly larger number of scheduling steps. The scheduling time can become the

bottleneck of the system causing more rejections.

4.5.3 Effects of Scheduling Overhead

We examined the effect that the scheduling overhead has on the group rejection ratio

as we varied the distribution subset size. For example, we looked at the effect when

the maximum size of the distribution subgroup ranged from 2 to 4 and the unit

scheduling times were 1, 5 and 10 units. The deadline tightness factor for each group

was 0.0. Simulation results are shown in Figures 4.4, 4.5(a) and 4.5(b).

These experiments used very large values for the unit scheduling time in compar-

ison to the execution time of a task. The ratio of execution time of a task to the

unit scheduling time can be interpreted as either the granularity of tasks or the ratio

of the speed of the processor to the speed of the scheduling coprocessor. Suppose

the ratio of task execution time to unit scheduling time reprments the granularity

of tasks. The values of unit scheduling time used in our studies represent very fine

grained tasks. In practice, tasks would likely have larger computational demands

than the values we studied. It is expected that the unit scheduling time would be

smaller than 1% of a task execution time. As advances continue in electronic and

VLSI technologies, inexpensive special purpose coprocessors will become available.

The speed of the coprocessors will be relatively high compared to the processors they

support. The use of scheduling coprocessors for high performance real-time systems

becomes a reasonable assumption.

The performance of the scheduling algorithm can be sensitive to the unit schedul-

ing time. The simulation results show that the scheduling algorithm successfully

schedules task groups when the unit scheduling time is 1% of the execution time of a
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Figure 4.5. Sensitivity of the rejection ratio to the maximum distribution subset size.
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task (the results for sizes 2-4 are presented in Figure 4.4). The scheduling algorithm

has reasonable performance even if the unit scheduling time is as expensive as 5% of

the execution time of a task (see Figure 4.5(a)). However, the algorithm should not

be used when each scheduling step is very expensive (e.g., 10% of the execution time

of a single task as in Figure 4.5(b)).

4.5.4 Comparison of Preferred Set Expansion Strategies

The number of processors in a preferred set and the manner in which the set expands

has a significant impact on the performance of the BB algorithm. In order to explore

the impact, we compared four different preferred set expansion techniques: the binary,

Fibonacci, plus-4 and exact methods. The results of the comparison are shown in

Figure 4.6(a) and (b).

To highlight the impact of the methods for expanding preferred sets, we experi-

mented with a system of 64 nodes. The average number of tasks in a group is 16.

The unit scheduling time was 5 units, the deadline tightness factor was 0.5, and the

system load was 0.8. The results in Figure 4.6(a) show that the binary, Fibonacci

and plus-4 methods have significantly lowered rejection ratios than the exact method

when the system is heavily loaded. The performance of the three methods improved

more rapidly than the exact method when we increased the maximum distribution

subset size from 1 to 6. Since the three methods may have more processors in the

preferred set than the number of tasks in the distribution set, the BB algorithm can

produce better distribution lists from the enlarged search space. When the system

is heavily loaded, it is likely that the local information in the node is inaccurate be-

cause some of the processors marked available in the preferred set have become busy.

Therefore, a larger number of processors in the preferred set in comparison to the

number of tasks in the distribution subgroup can help reduce the rejection ratio of

the system.
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Figure 4.6(b) shows a detailed comparison of the binary, Fibonacci and plus-4

techniques. The maximum distribution subgroup size shown in this figure varies from

3 to 6. The figure indicates that the Fibonacci method performs better than the bi-

nary and plus-4 methods when the maximum distribution subset size is larger than 4.

The Fibonacci method does a better job of balancing the tradeoff between producing

good quality schedules and minimizing the scheduling overhead in comparison to the

binary and plus-4 methods. The rejection ratio obtained when using the Fibonacci

method is nearly half of the ratio obtained when using the binary and plus-4 meth-

ods. The binary method, in general, includes more processors in the preferred set

than Fibonacci method. Therefore, the search space of the binary method is larger

than Fibonacci method, i.e., the binary method provides better quality schedules.

However, the resulting scheduling overhead of the binary method is larger, which it-

self can cause task groups to miss their deadlines. The plus-4 method includes fewer

processors in the preferred set. As a result, the scheduling overhead is less than of

the Fibonacci method. Nevertheless, the plus-4 method has a higher rejection ratio

because the quality of the generated schedules is poorer than the schedules generated

by the Fibonacci method.

‘ 4.6 Summary

An algorithm for dynamic scheduling of cooperating tasks on distributed systems is

presented in this chapter. The majority of previous on-line algorithms schedule in-

dependent tasks to meet their deadlines. However, high-level real-time jobs usually

consist of tasks with precedence constraints. An efficient algorithm that schedules

cooperating tasks must consider the order of task execution. Otherwise, the compu-

tational capacity of processors can be underutilized.

The scheduling algorithm dynamically schedules a task group. When a task group
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arrives at a node, the tasks are first scheduled to the local processor. If there are tasks

that cannot be locally scheduled without violating their deadlines, a global scheduling

algorithm is invoked to distribute the tasks to remote processors. The task allocation

scheme for the global scheduling algorithm is the BB algorithm.

By limiting the search space of the algorithm, the scheduling overhead is reason-

able for on-line scheduling. The search space is limited in two ways. First, scheduling

is partitioned into stages, and only a subset of independent tasks is scheduled at each

stage. A scheduling subset is further divided into smaller distribution subsets. The

maximum number of tasks of a distribution subset is a constant. Second, the distri-

bution of a subset is limited to a preferred processor set. The preferred processor set

is a subset of all the processing nodes. Therefore, the scheduling overhead of each

stage is upper bounded by a constant. Since the complexity of scheduling one stage

can be considered as a constant, the number of steps required to schedule a task

group grows as the same rate as the size of the group increases. The overhead of the

scheduling algorithm is suitable for on-line scheduling.

We developed a simulator to examine the power and cost of the proposed algo-

rithm. Simulation studies showed that the BB algorithm performs very well even

when the cost of unit scheduling overhead is relatively high. One interesting observa-

tion is that the BB algorithm provides good performance when scheduling task groups

with tight deadlines. This is due to the precision of the load distribution schedules

generated by the BB algorithm. Since we consider both the locations and the execu-

tion times for tasks distribution, we are ensured that the execution of the tasks of a

task group follow the precedence order. Therefore, the computational capacity of the

processors is efficiently utilized.

 



CHAPTER 5

Scheduling Mesh Connected

Multiprocessors

As the availability of inexpensive and powerful microprocessors, the design and devel-

opment of parallel multiprocessors with large number of processors has gathered in-

creasing attention from computer researchers. Several topologies have been proposed

to interconnect these processors, which include the tree, the hypercube and the mesh.

The mesh is a very popular topology for the new generation of multiprocessors since

it has low connectivity and high scalability. Mesh connected multiprocessors provide

high reliability and efficient communication mechanisms that make them ideal can-

didates for real-time applications. We developed a distributed scheduling algorithm

for mesh connected multiprocessors. The scheduling algorithm dynamically schedules

cooperating tasks to the processor mesh.

The scheduling algorithm presented in Chapter 4 can be directly ported to parallel

systems. However, the cost of associating one scheduling coprocessor to each node

is unacceptable when the size of a system becomes large. The other issue is that

the messages required for scheduling increase the load of the network and thus cause

contention and message delays. The scheduling algorithm described in this chapter

is specifically designed for parallel multiprocessors. The scheduling algorithm groups
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processors in a system into clusters and associates one scheduling coprocessor to each

processor cluster. The number of scheduling coprocessors in the system is greatly

reduced. In the algorithm, a scheduling coprocessor does not require any message ex-

change to schedule tasks to the processors in its local cluster. The network contention

is reduced. Furthermore, the scheduling algorithm employs a revised task graph par-

titioning strategy from the previous algorithm. The task graph partitioning strategy

enables the scheduling algorithm to serve a non-identical task demand model.

5.1 The System Model

The system is modeled as a mesh with m X m processors. The processors are further

grouped into clusters, and each cluster is a a x a submesh, where a S m. In

addition to the processors, each cluster has a scheduling coprocessor to offload the

scheduling overhead from processors. Each scheduling coprocessor has two major

components: a local scheduler and a global scheduler. The local scheduler maintains

the status of the processors in its cluster and schedules tasks to these processors. The

global scheduler generates global distribution lists for those tasks which cannot be

locally scheduled. The global distribution lists are confirmed by the global scheduler

with remote scheduling coprocessors. Scheduling coprocessors are interconnected by

another layer of a mesh network. Figure 5.1 describes the model of the system.

The messages for scheduling and exchanging system status are transmitted

through the coprocessor network to reduce communication traffic from the proces-

sor network. The processor and coprocessor meshes are wormhole routed. The time

for transmitting messages between any pair of nodes is assumed identical. This as-

sumption is particle, if the communication subsystem can transmit messages to meet

their timing constraints. The communication support to achieve the required system

performance is an important issue. However, it is not within the scope of this chap-
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Figure 5.1. The system model of the mesh connected multiprocessor

ter. Communication support for real-time wormhole networks to deliver messages

in a timely fashion is addressed in Chapter 6 and 7. Sensors, which collect inputs,

are attached to the scheduling coprocessors, i.e., task groups arrive to scheduling co-

processors. Task groups are scheduled by the scheduling coprocessors to which they

arrived.

Task groups arrive to scheduling coprocessors as independent Poisson processes.

Each task group consists of a group of tasks with precedence relations. The precedence

relations of the tasks can be represented as an acyclic graph as described in Section 4.1.

The execution demands of tasks are normally distributed with mean a and variance

0’. The number of tasks in a task groups is drawn from an exponential distribution

with parameter t. Each task group has a deadline, and the tightness of deadlines are

decided by the deadline tightness factor (DTF). The deadline of a task group j is
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computed as

deadline(j) = clock + demand(j) * (DTF(j) + 1),

where deadline(j ), demand(j ) and DTF(j ) are the deadline, total computation de-

mand and DTF of task group j, respectively, and clock is the arrival time of task

group j. Task deadlines, ESETs and LSETs of tasks are calculated as described in

Section 4.1.

5.2 The Scheduling Algorithm

A new task group arrives at a scheduling coprocessor is scheduled in stages. In each

stage, a scheduling subset is selected from the ready list for scheduling. The ready list

of a task group, which is maintained by the scheduling coprocessor, contains the set

of all the ready tasks. A task is ready if all of its successors are scheduled. Initially,

the ready list of a task group consists of the sink tasks. A ready task is removed from

the ready list if it is successfully scheduled. When a task is successfully scheduled,

the predecessors of the tasks are notified. If all the successors of a task are scheduled,

the task is ready and inserted to the ready list. The number of tasks in a scheduling

subset must be less than or equal to the maximum scheduling subset size S. When

selecting a scheduling subset, the task with the shortest scheduling window is chosen

first. The scheduling window of a task is the period from the current time to its

LSET, i.e., the task must be scheduled and transferred to a processor for execution

in its scheduling window. The rest of the scheduling subset are selected in the same

manner until there are S tasks in the subset or all the tasks in the ready list are

selected. The subset is first considered for local scheduling. If there are tasks in the

subset which cannot be scheduled, these tasks are globally distributed to the other
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clusters.

5.2.1 Local Scheduling

The scheduling subset is distributed to a preferred set of processors using the BB

algorithm described in Section 4.4.3. The preferred set is selected from the local

processors which have the lightest loads in the cluster. The number of processors in

the preferred set is p (= 2"), which is the least number greater than or equal to the

size of the scheduling subset. Because the processors in the preferred set are local

to the scheduling coprocessor, the coprocessor has the perfect information of these

processors. Therefore, the schedules generated by the BB algorithm have the exact

execution times for the tasks rather than the approximated times as in Section 4.4.2.

5.2.2 Global Scheduling

The global scheduler of a cluster is invoked when some of the tasks in the scheduling

subset cannot be locally scheduled. During the global scheduling phase, the global

scheduler first selects a remote cluster from the preferred cluster list. The construction

of the preferred cluster lists is the same as the method described for the preferred lists

in Section 4.3. The only difference between preferred lists and preferred cluster lists

is that preferred cluster lists are ordered lists of clusters rather than processors as in

preferred lists. The preferred cluster list of a cluster is ordered by the distances from

the cluster to remote clusters. When selecting a remote cluster for task distribution,

the clusters with distance 1 are first scanned. If there are available clusters within 1

hop, then the cluster with the lightest load among these clusters is selected. If there is

no available cluster within distance 1, the clusters with distance 2 are scanned. This

procedure repeats until one available cluster is found, or all the clusters in the list are

scanned. In the case that there is an available cluster, a message is sent to that cluster
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with all the information regarding the unscheduled tasks in the scheduling subset.

When receiving such a message, the remote cluster tries to schedule these tasks to its

local processors. If the tasks can be scheduled, then an accepted message containing

the execution times for the tasks is sent to the cluster. which globally distributes the

tasks. Otherwise, a rejected message is sent to that coprocessor. Suppose there is

no available cluster in the preferred cluster list, the cluster with the lightest load is

chosen for task distribution. The same procedure of confirming the distribution is

performed. If the tasks are successfully scheduled at a remote site, then the ready

list is updated and the tasks are transferred to the remote site. Otherwise, a second

cluster is selected from the preferred cluster list for global distribution. The process

’ of global distribution terminates if either one remote site accepts these tasks or the

task group is rejected. A task group can be rejected under two conditions: all the

remote clusters reject the globally distributed tasks, or one of the LSETs of the tasks

is reached. If a task group is rejected, then the already scheduled tasks are withdrawn

from the scheduling lists of the processors at which they are scheduled.

5.3 Performance Analysis

A simulator is developed to study the performance of the scheduling algorithm. In

addition to the task group rejection ratio, we study the relationship between the local

rejection ratio and scheduling overhead. A task group is locally rejected if one of the

tasks’ LSETs is reached. We discuss the parameters that affect the local rejection

ratio and the tradeoff of hardware costs and system performance.

5.3.1 The Simulation Model

The model of the simulated system is a 16x16 mesh connected multiprocessor with

homogeneous processors. Each 4x4 submesh forms a cluster, and a scheduling co-
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processor is associated with each cluster. The scheduling coprocessor and the 16

processors communicate through a local bus. A layer of the mesh network intercon-

nects the scheduling coprocessors. The communication delay for transmitting one

message is 1 unit time. The task transfer time is 2 units. It is reasonable to assume

that all tasks submitted to a real-time system are known before their arrivals, so that

we can store codes representing the tasks in each cluster. Thus, a task transfer means

a message is sent with the task identification and the required input to initiate the

task execution. Task groups arrive at scheduling coprocessor cp; as a Poisson process

with parameter A5.

The number of tasks in a task group is exponentially distributed with an average

of 6 tasks. The task graph of a task group is randomly generated such that it is

an acyclic graph. The computation demands of tasks are normally distributed with

the mean of 100 units and the standard deviation as 1. The load of a processor is

calculated as the ratio of total demands in the load window W to the length of W.

The load window W is the period from current time to the next 10,000 unit times,

which is a fixed window length. The two load thresholds T1 and Th, which distinguish

the state of a cluster, are 0.3 and 0.7, respectively. The maximum scheduling subset

size is fixed to 4, which is a suitable number for the simulation model.

5.3.2 Relationship between The Rejection Ratio and

Scheduling Overhead

The scheduling overhead of the algorithm directly relates to the unit scheduling time.

The unit scheduling time directly relates to the scheduling overhead of a task group.

The unit scheduling time is the overhead for assigning one task to one processor.

We vary the unit scheduling time from 0 to 7 units and compare the performance

of the system. When the unit scheduling time is zero, the scheduling overhead of



58

the algorithm is zero. As we increase the unit scheduling time, the overhead of

scheduling one task group becomes higher as does the rejection ratio. Figure 5.2 is

the simulation result. The average deadline tightness factor (DTF) of the experiment

is 5. The rejection ratio of unit scheduling time 0 is thelowest among all the results, as
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Figure 5.2. Task group Rejection Ratio for Different Unit Scheduling Time; DTF=5.

expected. Although unit scheduling time 1 and 2 units are rather large in comparison

with the task processing demands, the scheduling algorithm can achieve a similar

performance compared to the case of no scheduling overhead. The main reason for

achieving this low rejection ratio is that the scheduling overhead is overlapped with

the task processing. However, as the unit scheduling time increases linearly, the

rejection ratio changes dramatically. If the unit scheduling time is greater than 2

units, the performance of the system becomes unacceptable.
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5.3.3 Local Rejections

A task group is rejected if one of its tasks cannot be scheduled to any processor or one

of the tasks’ LSET is reached before its is successfully scheduled. In the latter case,

the task group is locally rejected. We now focus on the question of the location of

the scheduling bottleneck. Does it occur due to local rejections or remote rejections?

The local task group rejection ratios for unit scheduling times from 0-7 units

are presented in Figure 5.3. The results show that when the unit scheduling time

is greater than 1 unit, the scheduling overhead greatly increases the local rejection

ratios. When the unit scheduling time is large, the scheduling overhead incurred
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Figure 5.3. Comparisons of local rejection ratios with different unit scheduling time;

DTF=5.

for scheduling a task group with large number of tasks becomes unacceptable. In

the experiment, the number of tasks in a task group is drawn from an exponential

distribution such that there is a certain portion of the task groups with a large number

of tasks. These large task groups are rejected with very high probabilities. Also, the
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effect of the scheduling overhead encountered by one large task group may propagate

to the schedulability of the task groups that arrive later.

Rejection ratios increase as system load becomes higher; however, system load

does not affect the local rejection ratios. Figure 5.4 shows the percentage of local

rejections in all the rejected task groups. It is clear that system load is not a factor

for local rejections. Instead, large unit scheduling time is the cause of the high local

rejection ratios. In other words, when unit scheduling time is large, a large portion

of the rejected task groups are rejected before they are completely scheduled. The
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Figure 5.4. Percentage of local rejections; DTF=5.

unit scheduling time can be interpreted as the processing capacity of the scheduling

coprocessor. One may choose to reduce hardware costs by using scheduling coproces-

sors that have less computing capacity than the task processors. Nevertheless, the

coprocessors may become the bottleneck of the system if their computing capacity is

too much smaller than the task processors. The overhead of our scheduling increases
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linearly as the number of tasks in a task group increases. Unless the overhead of a

scheduling algorithm increases less than this linear rate, the speed of the scheduling

coprocessor is an important factor when designing a system.

Another parameter affects the efficiency of the algorithm is the tightness of the

task group deadlines. In Figure 5.5, we compare the local rejection ratios for DTF

of 2, 5, 10 and 100 with system load fixed at 0.8. If the task groups submitted

to the system have loose deadlines, the scheduling window for each task is larger.

As a result, the impact of scheduling overhead on the system performance is not so

obvious when the task groups have loose deadlines. In addition, using fast scheduling
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Figure 5.5. Local rejections ratios for DTF=2, 5, 10, 100; system load=0.8.

coprocessors can reduce the impact of the deadline tightness on the performance. As

shown in Figure 5.5, when unit scheduling time is 1 unit, the rejection ratios for tight

and loose deadlines are similar.
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5.4 Summary

A dynamic scheduling algorithm for tasks with precedence constraints on mesh-

connected multiprocessors is presented in this chapter. The scheduling algorithm

partitions a group of precedence related tasks into subgroups of independent tasks

and schedule each subgroup individually. Instead of dividing a task group by lev-

els, the task group partitioning strategy selects tasks from the ready list to form the

scheduling subgroups. This partitioning strategy enables the scheduling algorithm to

serve models in which tasks have non-uniform demands.

The scheduling algorithm is different from the algorithm for distributed system

described in the previous chapter. The processors are divided into clusters such

that each cluster is a physically connected submesh. A scheduling coprocessor is

responsible of scheduling tasks groups on the cluster. The BB algorithm is used for

the local scheduling instead of the global scheduling. Tasks which cannot be locally

scheduled are globally distributed using a simple task distribution scheme. The task

distribution scheme selects remote clusters with lightest loads and shorter distances

from the preferred cluster list.

The performance of the proposed scheduling algorithm is analyzed through sim-

ulation results. The results show that the algorithm performs very well even if the

scheduling coprocessors are moderately slow. The reasons of the task rejections and

the parameters that affect the system performance are discussed.



CHAPTER 6

Virtual Channel Flow Control for ,

Static Traffic

A dynamic scheduling algorithm for parallel systems is described in Chapter 5. One

problem that arises for parallel systems is the communication subsystem support

for real-time requirements. A real-time communication subsystem must deliver mes-

sages in a timely fashion to guarantee the deadlines of task executions. This chapter

addresses the issue of communication support for wormhole netWorks.

Most modern large-scale parallel multicomputers adopt direct networks as their

communication subsystems. A direct network is a network with point-to-point in-

terconnections among the processing nodes. Direct networks can be characterized

by their interconnection topologies and switching mechanisms. In addition, the to-

tal communication bandwidth of a direct network increases as the number of nodes

increases. The mesh, the hypercube and the tree are examples of topologies for inter-

connecting direct networks. The switching mechanism of a network determines the

means of message buffering and transmission. Virtual-cut-through, circuit switch-

ing [81] and wormhole routing [15] are examples of switching mechanisms for parallel

systems. The benefits of wormhole networks, which include simple router designs and

small buffer sizes, make them attractive for large-scale parallel systems.
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Virtual channels were proposed to provide efficient communication and deadlock

free routing for multiprocessors [96]. The use of virtual channels in wormhole networks

increases the throughput and utilization of network bandwidth [16]. Flow control in

wormhole networks manages two types of resources: virtual channels and bandwidth

of the physical links. In general purpose wormhole networks, first-come-first-serve and

round-robin are the most common service strategies for virtual channel assignment

and bandwidth allocation, respectively. Nevertheless, real-time systems require mes-

sages to be transmitted before their deadlines. The conventional flow control schemes

cannot directly support real-time requirements.

Dally [16] suggested that decisions for flow control that are based on the timing

properties of messages can improve the real-time performance. The performance of

soft real—time systems is measured in terms of the deadline miss ratio. However, the

capability to carry the timing property of a message in the message header requires

large buffers that greatly increase the hardware complexity and the cost of a wormhole

router. To provide real-time performance without complicating the wormhole router

design, we need an efficient method to map the timing property of a message to a

priority, which can be represented with a small number of digits, and a scheme to

modify the priority to reflect the current timing property of the message.

Several real-time virtual channel flow control schemes for wormhole networks are

presented in this chapter. The schemes differ in their priority mapping strategies,

arbitration functions and priority adjustment methods. A priority mapping strategy

assigns initial priorities to messages according to their timing properties. The priority

of a message can be represented with a small number of digits and can be carried

within the message header. An arbitration function determines the allocation of

network bandwidth to virtual channels. A priority adjustment method modifies the

initial priority of a message according to the current timing property of the message

and increases the probability for meeting the message deadline. Therefore, an analysis
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of the schemes indicates the relative value of the arbitration functions, the priority

mapping strategies, and the priority adjustment schemes to the performance of real-

time flow control schemes.

Since an appropriate model for communication traffic depends on the real-time

application, we choose two communication models, static and dynamic, in order to

evaluate a wide range of workloads for the proposed schemes. A large number of

the existing real-time systems are operating in static environment, a model of static

communication traffic is necessary to study the performance of the proposed flow

control schemes. The static communication model for our study is the linear bounded

arrival process [82, 86, 93]. In the linear bounded arrival process model, messages

are periodically generated by the message sources and the message sources are stati-

cally allocated to the nodes. The linear bounded arrival process serves as the traffic

model of an environment where task executions or data sampling are periodic. The

performance of the flow control schemes for serving dynamic communication traffic

is discussed in the next chapter.

Although analytical modeling is important for providing insight to the perfor-

mance of new flow control schemes, it is very difficult to model the system that we

study analytically. It is even difficult to construct an analytical model for a general

purpose wormhole network with virtual channels that does not consider real-time.

Simulation is necessary to analyze the performance of the flow control schemes. We

implemented a simulator, which simulates the network at the flit level to study the

detailed behavior of the messages, for analyzing the performance of the flow control

schemes and the message dropping method. The evaluation of a flow control scheme

must consider both the performance and the cost of the hardware implementation to

support the scheme. Simulation experiments were designed to compare and to evalu-

ate the relative importance of the arbitration function, the priority mapping scheme,

and the method for priority adjustment.
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As expected, simulation results show that a priority mapping strategy is crucial to

the system performance. A good priority mapping strategy must assign priorities to

messages according to their timing properties, e.g., deadline tightness and laxity be-

fore deadline. Nevertheless, a priority based arbitration function can greatly improve

the message deadline guarantee ratio in comparison to a conventional round-robin

arbitration scheme that is normally implemented in a wormhole network arbitrator.

In addition, we find that a priority adjustment method can improve the manner that

the flow control scheme of the network adapts to the state of the load of the network.

There is a chance that a low priority message can be blocked by high priority mes-

sages for an indefinite period. A priority adjustment method modifies the priorities

as messages are blocked. Therefore, a low priority message will not be inhibited in-

appropriately from meeting its deadline in case there is a large burst of high priority

traffic.

6.1 Wormhole Networks and Virtual Channels

An increasing number of real-time applications are developed on parallel systems, and

most new parallel systems adopt wormhole networks as their communication subsys-

tems. In a wormhole network, processing nodes are interconnected by a point-to-

point network and communicate by transmitting messages. Real—time tasks executed

on parallel systems exchange information and share data to achieve a common goal.

Due to the timing constraints of task executions in a real-time system, messages must

be delivered before their deadlines. Otherwise, tasks may violate their timing con-

straints and cause severe consequences. A wormhole network with virtual channels,

which has low network latency and can support priority based flow control, is an

attractive system for real-time applications.

The flow control of a wormhole network operates at the flit level in which flits are
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the basic units for buffering. A flit is the smallest unit of information that a queue or

a channel can handle. The size of a flit is usually one or two bytes. Only a few flits

are buffered at each node; therefore, the sizes of buffers required in a node are small.

Wormhole routing transmits messages in a pipelinedfashion. A message is divided

into flits. When the header flits of a message are received by a node, the node decides

the next node the message should be routed based on the information contained in

the message header. As soon as the receiving buffer of the next node is available,

the flits are forwarded to that node. As header flits are forwarded, the subsequent

flits follow one hop from the downstream nodes. In other words, the message uses

the buffers along the path between the source node and the destination node. The

network latency of a message can be calculated as (L, /Bw)D + L/Bw [97], where

L1,, Bw, D and L are the length of a message header, the physical link bandwidth,

the distance between the source and the destination nodes, and the message length,

respectively. When L1. < L, the network latency is mostly determined by L/Bw,

which is insensitive to the distance between the source node and the destination

node. The advantages of wormhole routing, which include small buffer sizes and

low network latency, make it the most promising switching technique for massively

parallel systems.

Physical links in direct networks are precious resources that are usually under

utilized. Virtual channels have been proposed to reduce network contention and to

improve physical link utilization. The virtual channels of a physical link require extra

flit buffers and an arbitration scheme to share the link bandwidth among the buffers.

The cost of virtual channels in a wormhole routed network is low since the number

and the size of buffers are small. In contrast, virtual channels in other networks are

expensive since large buffers are required. Virtual channels provide a different view

in comparison to the physical network since several logical networks can be extracted

from the physical network. Hence, adaptive deadlock-free routing algorithms that
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require multiple channels between two neighboring nodes are feasible to implement

on virtual channels [96, 98]. In addition, virtual channels increase the degree of fault

tolerance and connectivity of a network. For example, in the case of channel or node

failures, a message can be rerouted around the faulty region, which is difficult in a

network without virtual channels. However, network latency is slightly increased by

sharing bandwidth among the virtual channels.

6.2 Flow Control

Messages in a wormhole routed network compete for two types of resources: virtual

channels and the bandwidth of physical links. The two components of a flow control

scheme that manage these two types of resources are the virtual channel assignment

strategy and the arbitration function. A virtual channel assignment strategy decides

which arrival flits can use the virtual channels. Wormhole routing transmits flits in a

pipelined fashion and only the header flits of a message carry the routing information.

Thus, after the header flits of a message are transmitted to the next out-going virtual

channel, the subsequent flits must follow on the same channel. In other words, once

a message is assigned to a virtual channel, it occupies the virtual channel until the

last flit of the message leaves the node. The arbitration function of a physical link

determines the bandwidth sharing strategy, i.e., an arbitration function selects the

next flits to be sent on the physical channels. The relationship of the flow control

components and the resources of a physical link is illustrated in Figure 6.1.

We study a range of flow control schemes that differ in their means of arbitration,

priority mapping and priority adjustment. We will evaluate the effect of each compo-

nent towards the overall performance. Also, we will discuss the hardware complexities

required to provide such schemes. The priority mapping scheme decides the initial ’

priority of a message. The priority of a message can be used for both virtual channel
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Figure 6.1. Flow control components and the resources of a physical link.

assignment and arbitration. A priority adjustment scheme varies the initial priority

according to the current status of a message. Table 6.1 is a brief summary of the

seven schemes discussed in this chapter. A first-come-first-served scheme (FCFS) is

the conventional flow control scheme implemented in general purpose wormhole net-

works. A tightest-deadline-first scheme (TDF) and a least-laxity-first scheme (LLF)

map different timing properties of messages to their priorities. The TDF and LLF

requires n priority bits in a message header to encode the priority."'The strategy for

priority assignment in the TDF scheme is earliest-deadline-first (EDF). The study

in [99] showed that the EDF strategy is a good strategy for dynamic real-time task

scheduling. Mok and Dertouzos [13] showed the effectiveness of the LLF strategy for

dynamic scheduling of real-time tasks. A priority-climbing scheme (PC) adjusts the

priority of a message by counting the number of times the message header is blocked

from accessing an outgoing link. An enhanced priority climbing scheme (EPC) en-

 

‘Suppose we have N (= 2") virtual channels, n is the number of bits that required to represent

all the virtual channels
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hances the PC scheme by means of a priority based arbitration function. In addition

to the n priority hits, the PC and EPC scheme use the remaining bits of a flit for

counting the number of times the message is blocked. A rate-monotonic-scheduling

scheme (RMS) is a variation of the static task scheduling algorithm [17], and an one-

bit scheme is a modification of the RMS scheme. The RMS scheme requires g priority

bits to represent the global priority.lThe one-bit scheme needs one bit to indicate if

the message is normal or early. Although it is expected that schemes for real-time

virtual channel flow control would be based on scheduling algorithms such as earliest

deadline first, least laxity first, and rate monotonic scheduling, the challenge is to

provide flow control schemes that operate efficiently with little modification to exist-

ing wormhole routing technologies. The following discussion presents details of each

scheme.

Table 6.1. A summary of the flow control schemes.

A

one

one

one

as a function of time

as a function of time

for burst arrivals

for burst arrivals 

 

tThe number 9 is the number of bits required to represent all the message sources.



71

6.2.1 Conventional Wormhole Network Flow Control —

First Come First Served

The FCFS scheme assigns a virtual channel to the message with the earliest arrival

time in the waiting queue. The arbitrator of a physical link polls its virtual channels

in a round-robin fashion. The physical link can be allocated to a virtual channel

if there is a flit in the buffer and there are free flit buffers in the direction of next

node. The FCFS scheme is used in general purpose wormhole networks. Therefore,

no extra hardware is needed for serving real-time traffic. Dally’s investigation [16]

showed that increasing the number of virtual channels using the FCFS scheme in

a conventional wormhole network can reduce the message contention problem and

increase bandwidth utilization. He also showed that an oldest-packet-first arbitration

function further improves the performance from the round-robin scheme.t

6.2.2 Priority Mapping Schemes Based on Message Gener-

ation Times

If flow control decisions are based on the time that messages are generated, the header

of a message must carry several extra bytes that encode the message generation

time. Therefore, the buffer size of virtual channels becomes large. On the other

hand, the hardware for maintaining correct timing information in the header flits may

complicate the router design. Since a requirement to carry the message generation

time in the header flits may introduce substantial hardware cost, an uncomplicated

yet powerful time encoding technique is needed. We propose two priority assignment

schemes (TDF and LLF) that embed the timing property of a message in a few

priority bits.

 

iAn oldest-packet-first scheme allocates a physical link to the virtual channel that holds the

oldest flit in the node.
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Tightest Deadline First

The TDF algorithm assigns priorities to messages according to their deadline tightness

factors (DTF). The DTF of a message m,(k), which is generated by message source

k, is calculated as

DTF(m;(k)) = Deadline(m,~(k)) / Latency(m,-(k)),

where DTF(m,-(k)), Deadline(m,~(k)) and Latency(m,°(k)) are the DTF, time before

the message deadline and network latency of m;(k), respectively. The network latency

of a message is calculated as

m,-(k)=3*C’*D+C*L,

where C is the time needed to transmit one flit from a node to a neighboring node.

The value of C depends on the router implementation, and a typical value for C' is

20ns [100]. D is the distance from the source node to the destination node. L is the

number of body flits. Note that a message header consists of three flits, x distance, y

distance and the message priority. Thus the first term on the right hand side of the

formula counts the end-to-end delay of three flits. For a link with 2" virtual channels,

the DTF of a message is mapped to a priority p, where 1 S p S 2". The function for

mapping the DTF of message to the priority p is as follows:

NumVC + 1, if DTF(m,-(k)) < 1

P = NumVC +1 — DTF(m,-(k)), if 1 S DTF(m.-(k)) S NumVC +1

1, if DTF(m,°(k)) > NumVC + 1,

where NumVC is the number of virtual channel of a physical link. The priority of

a message is encoded into n bits and carried by the message header. Based on the
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priority, a message can request to be allocated any virtual channel number that is

lower than its priority. For example, if the priority of a message is 2 and there are 4

virtual channels, then the message can request to be allocated either virtual channel

0 or 1. Note that the virtual channels of a physical link are assumed to be numbered

from 0 to 3. The higher the priority of a message, the larger number of virtual channels

from which a message can request an allocation. Thus, the probability of meeting

deadlines for messages with tight deadlines is increased. The arbitration function is

the round-robin scheme. The TDF scheme needs hardware support for the priority

based channel assignment.

Least Laxity First

The LLF scheme takes a different priority mapping approach than that of the TDF

scheme. The priority assignment of a message is based on its laxity rather than the

DTF as in the TDF scheme. The laxity of a message m;(k) is the delivery time

remaining for the message, and it can be estimated as

Lx(m,(k)) = Deadline(m,-(k)) — Latency(m,-(k)),

where Lx(mg(k) is the laxity of the message. We assign higher priorities to the

messages with less laxity. The function of the priority mapping is the following,

NumVC + 1, if lx(m;(k)) < 1

P = NumVC +1 — lx(m;(k)), if 1 S lx(m,~(k)) S NumVC + 1

1, if lx(m,-(k)) > NumVC + 1,

where

lx(m,~(k)) = Lx(m,-(k))/W (6.1)
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and W is a system dependent constant. The choice of W determines the number of

messages in each priority level. A larger W assigns more messages at each priority

level. Suppose the number of messages that have short laxity is large in a system.

A large W should be used to assign high priorities to these messages. Note that the

number of priority levels is the same as the number of virtual channels associated

with a physical link, and the priority of a message is encoded into n bits to be carried

by the message header. The virtual channel assignment scheme and the arbitration

function for the LLF scheme are the same as those of the TDF scheme. The hardware

support for the LLF scheme is also the same as the TDF scheme.

6.2.3 Dynamic Priority Adjustment Schemes —— Priority

Climbing

In a priority based flow control system, there is a chance that a burst of high pri-

ority messages will block low priority messages for an indefinite long time. As a

result, a large number of low priority messages may miss their deadlines. In the LLF

andTDF schemes, priorities are assigned to messages according to their initial tim-

ing properties. When messages are inserted to the network, their timing properties

change constantly. For example, the laxity of a message becomes shorter. A priority

adjustment scheme is needed to maintain fairness among messages and modify the

priorities to reflect the current timing properties.

A priority adjustment scheme, which requires nodes exchanging messages to mod-

ify message priorities, increases hardware complexity. The PC scheme dynamically

adjust priorities by utilizing the local information available to messages at each node.

The scheme increases the priority of a message in relation to the number of times the

header flit of a message is blocked. Both the TDF and the LLF schemes can be used

to assign the initial priority of a message. Suppose 2" virtual channels are associated
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with each physical link, we need n bits to represent all priority levels. To implement

the PC scheme, each message header carries a one-byte (or one-flit ) priority value,

and the n most significant (leftmost) bits represent the priority. Since only a few bits

are required to represent all the priority values, one byte is sufficient for the scheme.

The 8 — n bits, called the blocked count (BC), are used for counting the blocking time

the message encountered. The initial value of BC is zero. Figure 6.2 is an example

of the priority and the BC carried by a message header. The arbitration method for

 

 

L Priority Block Count a]

5 it

Figure 6.2. An 8-bit priority and block count carried by a message header.

the scheme is the round-robin method. When all the virtual channels are polled once,

the arbitrator of a link increments the BCs of the message headers that are blocked

in the flit buffers of the link by one. If the value of a BC exceeds the maximum value

it can represent, the priority of the message is increased by one and the BC is reset to

0. When transmitting a message, as the laxity of the message is reduced, its priority

is increased. The virtual channel assignment strategy and the arbitration function of

the PC are the same as those of TDF and LLF.

The rate of updating the BC of a message is a design issue that should be consid-

ered. Suppose each physical link has 2" virtual channels, the size of a BC is 8 — n.

Since the polling of all the virtual channels can be done in one cycle, the priority of

a message is incremented by one after the message is blocked for 28’“ cycles.5 For a

 

5A cycle is the time needed to transmit one flit from one node to a neighboring node provided

that all the resources are available.
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message with the lowest priority, the priority of the message becomes the highest one

after 27 blocking cycles. Suppose a wormhole network employs fast routers that the

network cycle is short, the priority updating rate might be too fast such that a large

number of messages have the highest priority when the network is loaded. Thus, the

performance of the PC scheme degrades to that of the FCFS scheme. In order to

prevent the performance degradation, a counter can be used to decrease the priority

updating rate. For example, a counter counts 4 cycles before incrementing the BCs

and the priority updating rate becomes a quarter of the original rate without using

the counter.

6.2.4 Priority Based Arbitration —— Enhanced Priority

Climbing

In the PC scheme, the priority of a message determines the number of virtual channels

from which one can be allocated to a message in a node, and the arbitration function

is round-robin. To improve the PC scheme, the EPC scheme uses the priority of a

message differently to make virtual channel assignments and bandwidth allocation

decisions. When more than one message competes for an available virtual channel,

the virtual channel is assigned to the message with the highest priority. If there

is a tie, the channel is assigned to the message with the earliest arrival time. The

arbitrator of a physical link also uses the priorities of messages assigned to the virtual

channels to make the bandwidth allocation decision. The bandwidth of the link is

allocated to the highest priority message. In the PCPS, TDF, LLF and PC schemes,

the arbitration function is the round-robin scheme and deadlock is prevented by

the underlying routing algorithm. Although the EPC scheme uses a priority based

arbitration, as long as the routing algorithm is deadlock free that the EPC scheme

will not cause deadlock. Figure 6.3 is an example of the virtual channel assignment
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and the bandwidth allocation for the EPC scheme. In the example, three header flits

are competing to be allocated to an outgoing virtual channel VC2. Since Msg 3 has

the highest priority 4, VC2 is assigned to Msg 3. Among all the virtual channels,

VCO, VCl and VC2 have available flits in their buffers. The priority, 4, of VC2 is the

highest among the three virtual channels; therefore, the bandwidth is allocated to

VC2 and Msg 3 is transmitted on the physical link. The EPC scheme further reduces

vco

-:’ \
\

vc1 \

mu ‘\ \ mu

 

VC 3

Figure 6.3. An example of the virtual channel assignment and arbitration decisions

in the EPC scheme.

the chance of being blocked in the PC scheme for high priority messages. The cost

of the EPC scheme is the hardware to support the priority based virtual channel

assignment and arbitration function.
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6.2.5 Frequency-Based Priority Mapping and Arbitration

— RMS

Since a large number of real-time applications are executed at regular intervals, it

is suitable to consider that the traffic generated by these types of applications to be

periodic. The RMS algorithm was proposed by Liu and Layland [17] for scheduling

periodic tasks. The algorithm assigns higher priorities to higher execution frequency

tasks. In the RMS algorithm, the priorities of tasks are fixed during their execution.

The deadline of a task is assumed to be at the end of its period. The RMS algorithm

has been proven to be an optimal algorithm for a restricted class of tasks that are

preemptively executed on a uniprocessor. Mutka [92] proposed a real-time message

scheduling algorithm for wormhole networks that uses the RMS algorithm to schedule

periodic messages with burst arrivals.

In the RMS algorithm, a set of message sources periodically generates messages.

The algorithm first allocates the message sources to the processing nodes in the sys-

tem. The RMS algorithm then assigns global priorities to message sources according

to their periods. The virtual channels on the path of a message source are statically

assigned to the message source. For a given physical link in the network, a number

of different message sources may be routed over the same physical link. The RMS al-

gorithm analyzes the feasibility of the message source allocations, and assigns higher

numbered virtual channels to higher priority sources. The arbitrator of the physical

link allocates the bandwidth to the virtual channel that has a flit waiting in the buffer

with the highest priority. The messages generated by a message source inherit the

priority of the source. The priority of the message is encoded into 9 bits, where g

is the number of bits required to represent all the global priority levels, and carried

by the message header. The deadline of a message is at the end of its period. If a

message is generated earlier than its period, the deadline of the message is calculated
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as the normal period length plus the time before its expected generation time. For

example, suppose the expected message generation time is t and the deadline of the

message is t + d, where d is the length of the period. If a burst message is generated

at t’ (t’ < t), the deadline for the burst message is-t + d rather than t’ + d. The

priority of the message is reassigned to the priority of the message source that shares

the same path with the message and has the shortest deadline that is larger than

the burst message deadline. The global priority adjustment scheme ensures that a

burst message will not block the normal messages generated by lower priority message

sources. In order to support the RMS scheme, each virtual channel in the network

needs a priority register to store the priority carried by a message header. The ar-

bitrator, which is designed using simple combination logic, must include support for

the highest-priority-first scheme. Also, each node needs a static table to save the

deadlines of all the message sources routed through the node.

6.2.6 Reducing the Cost of the RMS Scheme — The One

Bit Approach

The costs for supporting the RMS scheme include several priority bits in the header

of a message and a table at each node that is used for determining the priority

adjustment of burst messages. These costs caused us to design a simplified version of

the scheme. The one-bit scheme is the same as the RMS scheme with the exceptions

of the priority assignment and the adjustment scheme. Instead of carrying a multiple-

bit priority as in the RMS algorithm, the one-bit approach carries one bit to indicate

whether it is generated earlier than its period. The priority of a message at a node is

the outgoing virtual channel number to which the message is assigned. The arbitrator

of a link allocates the bandwidth to the highest numbered virtual channel with a flit

waiting in the buffer. The priority of an early message is locally adjusted at each
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node on the path. When an early message requests a virtual channel in a node, the

message is assigned to an available virtual channel with a lower number than the

channel number that is assigned to its message source. Since the priority of a burst

message is locally adjusted at each node, the one-bit scheme does not need a static

table in each node to store the deadlines of all the message sources routed through

the node. Also, the size of the priority of each message is reduced to one bit.

We have described each of the schemes for managing real-time communication in

a wormhole network. We must evaluate the schemes to determine the benefits of the

different priority mapping strategies, priority adjustment methods and arbitration

functions. The next section presents an evaluation of the schemes on the linear

bounded arrival process traffic model.

6.3 The Simulation Model

We implemented a simulator in CSIM [101] to study the performance of different flow

control schemes. Since constructing an analytic model of the system that we study

is very difficult and complicated, even for a general purpose system that does not

consider real-time, a simulation study is necessary to analyze the performance of the

proposed flow control schemes. The simulator was implemented such that message

sources concurrently generate messages. The simulation was performed at the flit

level to study the detailed behavior of individual flits. Flits are individual processes

in the simulation that compete for resources in the network.

The simulated system is modeled as a 2-D mesh, which is similar to the topology

of an iWarp machine [102], and wormhole routing is the switching mechanism. The

dimension of the mesh is 10x10. Each node of the mesh has a pair of in-coming and

out-going physical links in each direction, and each physical link can support 2" virtual

channels, where 1 S n S 3. The bandwidth of a physical link is 8 flits/time unit. The
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flit buffer of a virtual channel can hold 8 flits. Each physical link has an arbitrator

for multiplexing among the virtual channels associated with the link. Messages are

routed using the X-Y routing (or dimension routing), which is a deterministic and

deadlock-free routing scheme. The X-Y routing first routes a message to the same

coordinate on the X-dimension as the destination, and then the message is routed on

the Y-dimension to the destination.

6.3.1 The Model of Communication Traffic

Since a large number of real-time applications have tasks executed at regular intervals,

it is appropriate to model the messages generated by the tasks as periodic traffic. In

addition to the periodic traffic, a portion of the messages may be generated in bursts

that violate the periods. A model that has often been useful for describing this

type of real-time communications, called the linear bounded arrival process, was first

proposed by Cruz [93]. Anderson et al. [82, 84] used this model for continuous media

in the DASH system [83] and Kandlur et al. [86] used this model to solve problems

of real-time communication in multi-hop networks. With some modifications, the

terminology we use for the model is taken from Anderson et al. [82] and has also been

used by Kandlur et al. [86] and Mutka [92]. Table 6.2 is a description of the parameters

of the communication model. We assume there are M different sources of real-time

messages that can be placed at any processing node in the system. The arrival process

of source k has three important parameters: maximum message size (S(k)), maximum

message rate (B(k)), and maximum burst rate (B(k)), where 1 S k S M. From the

message rate, we define the minimum period between messages to be I(k) = 1/R(k).

The burst parameter B(11:) allows processes to generate short-term bursts of traffic

that: violate the long-term average data rate. The number of messages generated

by a. source cannot exceed (B(k) + R(k)) *t for any time t, where t > 0. The

average data rate is S(k) :1: R(k). The burst parameter is significant for networks that
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Table 6.2. Parameters of the linear bounded arrival process.

 

[Parameter ] Description ]
 

 

 

 

 

 

 

 

    

M Number of message sources

R(k) Maximum message rate of message source k

S( k) Maximum message size of message source k

B(k) Maximum burst rate of message source k

I(K) Minimum period of message source k

Bw The bandwidth of a physical link

l(m,~(k)) The logical generation time of the ith message

generated by message source I:

d,-(k) The deadline of m,(k)
 

perform internal message buffering since it specifies the number of buffers needed at

intermediate nodes along a message path. The maximum size of the burst parameter

is not significant for wormhole networks since they do not buffer entire messages

internally, but rather a small fraction of a message at any time.

The ith message generated by a source k is labeled m,(k). This message is

physically generated at time t,-, but has associated with it a logical generation time,

l(m.-(k)). The logical generation time of the 0th message is defined as l(m0(k)) = to,

the actual generation time. The logical generation times of all subsequent messages

occur at

l(m,-(k)) = max( l(m.-_1(k)) + I(k), t.- ), i > 0. (6.2)

The communication system must guarantee that any message m,(k) with logical gen-

eration time l(m,~(k)) will be delivered to its destination by l(m,~(k)) + d,-(k), where

d.-(k) is the deadline for the message. The deadline d,-(k) will be less than or equal to

the period of the communication pattern between the source and the destination.
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6.3.2 Message Source Generation

The message sources are generated off~line. A message source k is generated by

first randomly selecting source and destination nodes. Next, to generate a range of

short and long messages, a message size S(k) is randomly selected from four sizes,

96, 200, 296 and 400 flits. A message rate R(k) is uniformly drawn from the range

(0, Mr(NumVC)), where Mr(NumVC) is the maximum message rates for NumVC’

virtual channels. The maximum message rate Mr(NumVC) is calculated as

Mr(NumVC) = 2 =1: Btu/(S(k) * NumVC),

where Bw is the bandwidth of the link. After a message source is generated, the

feasibility of the message source is tested using a RMS test at each node of its path.

Suppose there are k message sources that have their paths overlapped on a physical

link with N virtual channels, where k S N. The RMS test is the following:

I:

Z(R(i)*5(i))/Bw) g N(21/"—1). (6.3)

i=1

Since a virtual channel can only be assigned to one message source, the number

of message sources that have their paths overlapped on a physical link is limited

by the number of virtual channels. The RMS inequality was provided by Liu and

Layland [17]. They showed that N(21/N — 1) is the least upper bound of the uti-

lization for N periodic tasks scheduled by the RMS algorithm. As N becomes large,

N(21/N — 1) -r ln2 = 0.69. If the inequality is satisfied, the message source is in-

cluded in the current set. Otherwise, it is rejected. The message source generation is

terminated if the current set can utilize the network bandwidth for at least 95% of the

RMS bound or if 98% of the physical links have all their virtual channels assigned.

Appendix A describes a tool, DRMS, that can perform feasibility tests and message
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source allocation for periodic communication traffic such as the linear bounded arrival

process described in this section.

6.4 Performance Analysis

We conducted experiments to study the three key components that relate to the

performance of real-time flow control: arbitration, priority assignment and priority

adjustment. The performance of a flow control scheme was measured by the message

delayed ratio. The message delayed ratio is the percentage of number of messages

that miss their deadlines to the total number of messages. The simulation results

presented in this chapter are from a network with 8 virtual channels per physical link

unless specified. The simulation results were collected such that the system load was

varied from 0.7 to 0.875, where the load for a fully utilized network was 1.0. When

system load was 0.7, the traffic was generated periodically by the message sources

without burst arrivals and it was close to the RMS bound, which is computed from

Equation 6.3 to be 8(21/8 — l) i 0.72 for 8 virtual channels. The system load was

increased by injecting burst arrivals. At a system load of 0.875, the burst rate (B(k))

of a message source I: is 25% of the maximum message rate (B(k)).

6.4.1 Number of Virtual Channels

Dally [16] showed that increasing the number of virtual channels per physical link can

improve the network utilization and reduce the contention problem in a conventional

wormhole network using the FCFS scheme. Our study verifies that the effect of adding

more virtual channels to a physical link is essential to the real-time performance

measure. Figure 6.4 compares the performance of the FCFS scheme using 2 to 8

virtual channels. The results indicate that increasing the number of virtual channels

per physical link can significantly reduce the delayed ratio. The main reason for the
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effect is that the number of virtual channels is directly related to the probability

of blocking a message. As the number of virtual channels of a link increases, the

probability of a message being blocked is reduced.
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Figure 6.4. Performance of FCFS scheme with different number of virtual channels.

6.4.2 Priority Mapping

Although increasing the number of virtual channels can reduce the delayed ratio,

assigning priorities to messages according to their timing properties can further im-

prove the performance. Figure 6.5 shows the performance comparison of the FCFS,

the RMS, the one-bit, the TDF and the LLF schemes. As expected, the RMS scheme

has the best performance and the FCFS scheme has the worst performance among

the five schemes. The RMS scheme proposed by Mutka [92] guarantees all the peri-

odic messages will meet their deadlines when there are no burst arrivals. In order to
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Figure 6.5. Comparison of priority mapping schemes.

simplify our discussion, the blocking factor‘is neglected in our RMS test for allocat-

ing the message sources as is done in [92]. Nevertheless, we do simulate the message

blocking factor for all the schemes that we study. Therefore, the delayed ratio of

the RMS scheme at system load 0.7 was caused by the blocking factor. The one-bit

scheme has similar performance to the RMS scheme when the burst rate is small. As

burst rate increases, the performance of the scheme declines. The large amount of

burst traffic saturates the lower numbered virtual channels and cause low priority and

burst messages to miss their deadlines. Both the TDF and LLF schemes improve the

performance of the FCFS scheme. The LLF scheme outperforms the TDF scheme

by a small margin, which is due to the choice of the parameter W that is used in

the LLF scheme to determine the number of message sources at each priority level.

W (= NumVC/2) is a function of the number of virtual channels for the results we

 

'The blocking factor is the blocking time due to the preemption of low priority messages when

high priority messages are ready for transmission.
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present in this chapter. Therefore, the laxity of a message used in the LLF scheme is

a better timing property for priority mapping than the TDF. By limiting the number

of virtual channels a message can request, the two schemes reduce the delayed ratio

without the substantial hardware cost of the RMS scheme.

6.4.3 Priority Adjustment

A priority mapping scheme assigns a priority to a message according to the initial

timing property of the message. However, the initial timing property may change

such that the initial priority cannot represent the current status of the message. In

the RMS scheme, a message inherits the priority of the message source that generates

the message. In the case that a message arrives earlier than the period, the priority

is globally adjusted and lowered to prevent the unnecessary blocking of normal low

priority traffic. The initial priority of a message in the TDF and the LLF schemes

reflects the time before the message deadline. As a message is transmitted in the

network, the timing property changes. The PC scheme adjusts the initial priority by

counting the number of times a message is blocked in the network. Figure 6.6 shows

the performance improvement using the PC scheme in comparison with the RMS

scheme. The global priority adjustment of RMS scheme provides stable performance

until the system load is close to the saturation point. The PC scheme increases the

probability of meeting deadlines for low priority messages and reduces the delayed

ratio for both the TDF and the LLF schemes. Although the RMS scheme performs

well, the global priority adjustment needs a static deadline table in each node for

storing the deadlines of all the message sources routed through the node. Since buffers

are the most expensive resources, a system designer should consider the hardware cost

to support the RMS scheme. In contrast, the PC scheme only requires a block count

in each message header and an adder in each arbitrator to increment the block counts.

Since the TDF and the LLF schemes require that a message header carries a priority
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Figure 6.6. Comparison of priority adjustment schemes.

value, we can integrate the priority and the block count into one byte. Also, an

additional adder in each arbitrator will not complicate the hardware design.

6.4.4 Prioritized Virtual Channel Assignment and Arbitra-

tion Function

In the previous performance discussion of the TDF, the LLF and the PC schemes,

the priority of a message is used to determine the number of virtual channels it

can request. The EPC scheme uses the priority of a message for both virtual channel

assignment and arbitration. Figure 6.7 is the comparison of the EPC scheme with the

other schemes. From the results, we can see that the EPC scheme further improves the

performance of the PC scheme. In addition, the EPC scheme has better performance

than the one-bit approach when the system load is greater than 0.8.

The priority adjustment of the PC and the EPC scheme only increases the priority
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Figure 6.7. Comparison of the prioritized virtual channel assignment and arbitration

with the other schemes.

carried by the header of a message. When a body flit arrives at an intermediate node

of its path, it inherits the priority of the message header when the header left the

node. Thus, the priority of the message is higher in the nodes that are closer to the

destination. We can adjust the priorities of a message in all the nodes on its path

by increasing the priorities of all the priority registers that have flits blocked in the

virtual channels of a physical link. The performance of the EPC scheme is enhanced

by adjusting priorities of nodes on the path. The percentage decrease of the delay

ratio by the approach from the EPC scheme versus the system load is presented in

Figure 6.8.

6.4.5 Latency

The latency of a message is measured from the time it is generated to the time the

destination receives the last flit of the message. Although the latency of a message
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Figure 6.8. Percentage of performance improved by adjusting priorities of nodes on

the path.

is not the major performance measure for real-time communication systems, it is

an implication of the performance of a flow control scheme. . Figure 6.9 compares

the average latency of flow control schemes using different priority mapping schemes.

As expected, the RMS scheme has the smallest latency and the FCFS scheme has

the largest latency. Both the TDF and the LLF schemes reduce the latency from

the FCFS scheme. The one-bit scheme has small latency when burst rate is low.

However, the contention in the lower numbered virtual channels affects the latency

of the scheme when burst rate becomes high.

6.5 Summary

As an increasing number of real-time applications are developed on large scale parallel

multicomputers, real-time communication support has become an important issue.
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Figure 6.9. Average latencies of the different flow control schemes.

We presented seven real-time flow control schemes for wormhole networks, which are

the most popular communication subsystems for large scale parallel multiprocessors.

The flow control schemes differ in their priority mapping strategy, priority adjustment

methods and arbitration functions. The tradeoff between the hardware costs and the

performance has been addressed in the discussion.

We implemented a simulator to study the performance of the schemes and designed

experiments to compare the importance of priority mapping, priority adjustment

and arbitration. The linear bounded arrival process, which models static traffic,

was used to evaluate the performance of the schemes. The simulation results have

shown that priority mapping is critical to the performance. An appropriate priority

mapping strategy should embed the timing properties (e.g., the deadline tightness

or the laxity before the message deadline) of a message in the priority such that

flow control can make decisions based on the properties. The timing properties of

a message may change during its transmission. Therefore, a priority adjustment
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method that modifies the priority of a message when the timing properties change

can improve the performance of a flow control scheme. In addition, a priority based

arbitration function reduces the chance that low priority messages are blocked too

long by high priority messages. Since the priority of a message indicates the time

before the message deadline, a priority based arbitration scheme further improves the

performance of a flow control scheme. Figure 6.10 is a summary of the performance

versus the extra hardware costs of the flow control schemes. It is clear that a better

performing scheme introduces extra hardware costs compared to the other schemes.

The one-bit scheme is the only exception since its performance degrades when a large

portion of the messages is generated in bursts.
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Figure 6.10. The tradeoff between performance and extra hardware costs.

The FCFS scheme is a conventional flow control algorithm found in most general
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purpose wormhole routers. The virtual channel assignment is based on the arrival

times of the messages, and the arbitration function is either round-robin or random

allocation. By increasing the number of virtual channels per physical link, the de-

layed ratio, which is the real-time performance measure, can be reduced. Since the

FCFS scheme does not need extra hardware to support real-time communications, it

does not introduce any extra cost to conventional wormhole networks. However, the

performance of the FCFS scheme is the worst among all the schemes presented in the

chapter.

The RMS scheme has the best performance among all the flow control schemes.

The scheme globally assigns priorities to messages sources, and the priority of a source

is determined by the period of the source. When a message is generated earlier than its

period, the priority is globally adjusted to a lower value to prevent the unnecessary

blocking of lower priority messages. However, the hardware cost to support the

scheme is the most expensive. The one-bit approach is a modification of the RMS

scheme. Instead of carrying a priority in each message header, the one-bit indicator

in a header distinguishes the message as a normal message or ‘a burst message. The

scheme uses the number of a scheduled virtual channel to represent the priority of a

normal message, and a burst message is assigned to a lower numbered virtual channel

that is available. The one-bit scheme has similar performance to the RMS scheme

when the burst rate is small. When the burst rate increases, lower priority messages

compete with burst messages for the virtual channels. As a result, the performance

of the scheme degrades with large burst traffic. Nevertheless, the hardware cost of

the one-bit scheme is not as expensive as that of the RMS scheme.

The TDF and the LLF schemes map, respectively, the deadline tightness factor

and the laxity before the deadline of a message to its priority. The priority of a mes-

sage determines the number of virtual channels from which a header flit of a message

can request an assignment. Both schemes increase the probability of meeting dead-
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lines for the messages that have shorter time before the deadlines, and the schemes

perform better than the FCFS scheme. The TDF and the LLF schemes require simple

changes to the conventional router so that the hardware cost is minimized. The PC

scheme is a priority adjustment method that improves the performance of priority

based flow control schemes such as the TDF and the LLF schemes. In addition to the

priority, each message header carries a BC for the purpose of counting the number

of times the message is blocked. When the value of the BC exceeds the maximum

value it can represent, the priority of the message is incremented by one. The EPC

scheme is based on the PC scheme, and the priority of a message in the scheme is

used for making the virtual channel assignment and physical link allocation decisions.

Simulation results showed that the EPC scheme enhances the performance compared

to the PC scheme and performs nearly as well as the RMS scheme. The hardware

support for the EPC scheme increases the complexity of the router design. However,

the increased complexity is for combinatorial logic rather than the buffers, so it is not

as expensive as the RMS scheme.



CHAPTER 7

Virtual Channel Flow Control for

Dynamic Traffic

As the number of dynamic parallel real-time applications increases, communication

support for these systems becomes an important issue. In this chapter, we use the

Poisson arrival process as a communication traffic model for dynamic real-time appli-

cations to evaluate the performance of the LLF, PC and EPC schemes on wormhole

networks. In the Poisson arrival process model, the traffic is modeled as dynamic

arrivals that may be generated as a Poisson process at each node. This traffic model

is suitable for dynamic real-time applications. The possibility for congestion increases

as wormhole networks scale to large sizes. We study the effect of the contention delays

imposed onto messages as the network size increases. Our simulation results indicate

that the performance of the conventional FCFS scheme degrades dramatically as the

network size scales upward. The proposed PC and EPC schemes provide the desired

performance as the network size becomes large.

Real-time messages lose their value if they are not transmitted and received be-

fore their deadlines. If messages become worthless when they are tardy,‘then the

network resources consumed by the tardy messages should be released. Otherwise,

 

‘A tardy message is one that misses its deadline.
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the worthless tardy messages contribute to the load of the network and cause resource

contention. As wormhole networks increase in size, the effect of tardy messages on

the load of the network resources may increase. It is possible that a large number of

tardy messages will consume resources that would better serve other messages. The

message dropping method that we present utilizes the priority of a message and the

local information in each node to drop tardy messages efficiently. The performance

study verifies that the message dropping scheme improves the performance of the PC

and EPC scheme.

7.1 Flow Control

The flow control schemes that we study for dynamic communication traffic are the

LLF, PC and EPC schemes discussed in Chapter 6. Our previous study in Section 6.4

showed that the laxity before the message deadline is an appropriate timing property

for priority mapping. Messages with less laxity should be delivered earlier to meet

the deadline. In a priority based flow control system, there is a chance that high

priority messages block low priority messages for an indefinite period. As a result,

a large number of low priority messages miss their deadlines, and starvation of low

priority messages can occur. For the PC and EPC schemes, the value of the priority

byte is used to estimate the laxity before the message deadline. When transmitting

a message, as the laxity of the message is reduced, its priority is increased.

In Chapter 6, the W in Equation 6.1 of the priority mapping function for the

LLF scheme was assigned a value suitable for the static communication study. The

value was determined by the off-line analysis of the message sources such that com-

munication traffic can utilize all the virtual channels. However, unlike static models,

dynamic communication traffic cannot be analyzed off-line. The W is assigned an

estimated blocking time that causes the priority of a message to be incremented by
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one. By using the estimated blocking time for priority assignment, the priority of a

message can provide accurate estimation of the laxity before deadline. For example,

assume that there are 4 virtual channels. A message with initial priority one means

that the message can be blocked for a total time of 3W ( = (4 —- 1) =1: W) or less

before it misses the deadline. The blocking time W can be estimated as

W = 2(8—11) * T4,

where Td is the estimated period after which a BC is incremented by one. The exact

time used by the PC scheme that causes a BC to be incremented depends on the

number of virtual channels that have flits in the buffers and the number of flits that

are available for transmission. The choice of T4 is a system design issue that requires

extensive study.

7.2 Performance Analysis

We analyze the performance of the flow control schemes in this section. The sim-

ulation experiments are designed to compare the priority based schemes with the

conventional FCFS scheme. We study the effects of upward scaling the network size

on the performance of the flow control schemes.

7.2.1 The Model of Performance Study

The communication traffic is modeled as Poisson arrival process. In this dynamic

traffic model, message arrivals are dynamically generated as an independent Poisson

process at each node. Unless specified, the size of the mesh is 8x8 nodes in this

following discussion. The number of virtual channels associated with each physical

link is 8. The studies in [16] and Section 6.4 showed that 8 virtual channels are
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suitable for wormhole networks to achieve a reasonable performance. In order to

generate a mixture of messages range from short to long, the length of a message

is drawn from the exponential distribution with an average length of 400 flits. The

laxities of messages are exponentially distributed with the average period of five times

the estimated message latencies as described in Section 6.1. It is common in a real-

time system that the majority of the messages have loose deadlines and only a small

number of critical and urgent messages have tight deadlines. The average laxity is

selected such that a large portion of the messages have long laxities, i.e., low priorities.

7.2.2 Priority Based vs. FCFS Flow Control

Figure 7.1 compares the performance of the flow control schemes. The results show

that the LLF scheme, which maps the laxity of a message to a priority, reduces the

deadline missed ratio from the conventional FCFS scheme. Although increasing the
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number of virtual channels increases the network throughput for the FCFS scheme,

the increased throughput does not offer a lower deadline missed ratio. By limiting

the number of virtual channels a message can request, the LLF scheme increases

the chance that a message with smaller laxity can meet its deadline. However, in

the LLF scheme, the messages with low priorities can be blocked by higher priority

messages for an indefinite period. To prevent starvation of low priority messages,

the PC priority adjustment scheme increments the priority of a message when it is

blocked for a period that causes the blocked count to cycle through all its values. An

increment in priority increases the probability that a message may meet its deadline.

The simulation results show that the PC scheme improves the system performance

over the LLF scheme. The EPC scheme further increases the chance that messages

with small laxities can be successfully transmitted in comparison to the PC scheme.

The additional use of the priority of a message for virtual channel assignment and

bandwidth allocation can reduce the deadline missed ratio for the EPC scheme. The

simulation results validate that the EPC scheme has the best performance among all

the flow control schemes. Although, in Figure 7.1, the performance gain from the PC

and EPC schemes at system load lower than 0.3 is small, we expect that the schemes

can significantly improve the performance from the FCFS scheme even at low system

load when the number of nodes in the system becomes large.

7.2.3 Scalable Real-Time Network

The study in [103] presented an analytic representation of a simplified wormhole net-

work in which the authors showed that the contention delay imposed onto a message

increases as the size of a wormhole network increases. It follows in our study that

when the number of nodes in a system becomes large, the real-time performance of

the FCFS scheme drops dramatically due to the long contention delays. Figure 7.2

demonstrates the effect of upward scaling of the network size to the deadline missed
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ratio for the FCFS and the EPC schemes.
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Figure 7.2. Deadline missed ratio increases as the network size scales upward.

The EPC scheme is designed to reduce the contention delays for messages with

smaller laxities. When the network size is small, the differences between the perfor-

mance of the EPC and the FCFS schemes are small. However, the differences increase

as the network size increases. When the system size is 12x12, the performance of the

FCFS scheme is unacceptable when the system load is higher than 0.3. However, the

EPC scheme can provide reasonable performance at higher system loads. The detri-

mental effects of increasing the sizes of scalable multiprocessors lead us to develop a

scheme to reduce network contentions as the sizes of systems increase. In the next

section we present a message dropping scheme to reduce network load.
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7.3 Message Dropping

Unlike a general purpose system, a real-time message loses its value if it misses the

deadline. If a message in the network becomes worthless when it misses its deadline, it

is unnecessary to continue delivering the message. If a tardy message is not removed

from the network, the message contributes to the load of the network and causes con-

tention with other messages. A message dropping method can reduce the contention

delays caused by a tardy message and can improve the system performance. However,

dropping a message in a wormhole network is not as straight forward as in a store-

and-forward network. Since the flits of a message are spread along its path, we need a

distributed scheme that can independently drop a flit without generating additional

traffic (e.g., signaling all the flits). In addition, the decision to drop a flit should be

based on the local information stored in the node where the flit is located. There are

four issues for dropping a message: when to drop a flit, which node is responsible for

dropping the flit, when to release the reserved virtual channel and which flit is the

tail of the dropped message.

7.3.1 The Message Dropping Scheme

In the EPC scheme, the priority register of each virtual channel contains the priority

and the BC of a flit. The contents within a priority register provides a means for

estimating the laxity remaining for the message to meet its deadline. If the value of

the priority register exceeds the maximum value it can represent, the transmission of

the message is considered late, i.e., the flit has missed its deadline. The flit in the

virtual channel should be dropped.

Suppose a flit is dropped at the node where it is found to be late, and the virtual

channel reserved for the message is released. There is a possibility that a portion of

the message has been successfully transmitted to the receiver. Consequently, some
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virtual channels reserved on the message path will not be released. The other problem

with this scheme is that the receiver of a partially dropped message cannot determine

which flit is the last flit of the message. Since a portion of a message is dropped in

the network, the normal tail flit of the message willnot reach the receiver. Only the

on-time flits can be successfully transmitted such that the receiver cannot distinguish

a partially dropped message from a normal message. The message dropping scheme

should generate a new tail flit to signal the receiver that the message is dropped. If

the message dropping scheme does not release the virtual channel when dropping a

flit, the normal tail flit should not be dropped and is responsible for releasing all the

virtual channels reserved for the message. The drawback of not dropping the normal

tail flit is that a reserved virtual channel cannot be used by other messages while

waiting for the tail flit. In order to achieve an improved virtual channel utilization,

we need a message dropping scheme in which individual flits can release the virtual

channels when they are late.

In our message dropping scheme, each virtual channel has a one-bit drop-flag

(DF). When the value of a priority register exceeds the maXimum number it can

represent, an overflow signal is generated to set the DF associated with the virtual

channel. The flit buffered in the virtual channel is considered to be late. When the

late flit leaves the node, a tail flit signal is generated by raising the tail control line

from low to high. In other words, the late flit becomes a tail flit. However, a header

flit cannot be a tail flit that a router distinguishes header and tail flits from body flits

by detect a raise and a drop of voltage, respectively, from the tail control line [100].

When implementing a router to support the message dropping scheme, a header flit

cannot be treated as a late flit. A late flit continues its transmission and is dropped

at the next node on the path that has a DP set. When entering a node, a late flit

checks the DF of the virtual channel. If the DF is set, then the flit is dropped and

the virtual channel is released. If the DF is not set, the flit is transmitted to the next
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node. When the late flit leaves the node, the virtual channel is released. Note that an

on-time flit is dropped at a node where the UP is set by a previous late flit, and the

virtual channel is not released in this case. When a node receives a partial message,

the message is discarded. .

One advantage of using the EPC scheme with the message dropping scheme is that

the trailing flits of a late flit are found to be late and dropped with high probability.

Suppose one flit is blocked at one node, the trailing flits are also blocked. Thus, the

value of the priority registers that buffer the trailing flits are incrementing as the flit

is blocked. In other words, when one flit is found to be late, the trailing flits might

have been found to be late or found to be late in a very short period. Consequently,

the network resources that are consumed by the late flits are efficiently released.

In order to drop a tardy message instantaneously, we can drop messages with

additional hardware support in conjunction with the concept of detecting late flits.

When the DF of a virtual channel is set, we can generate a drop signal propagate on

both directions of the message path until it reaches the header and tail flits. When

receiving such a signal, virtual channels drop flits stored in their flit buffers and

release the virtual channels. The hardware requirement to support this scheme is a

drop signal line for each virtual channel and logics to generate the drop signal.

An example of dropping a late flit is illustrated in Figure 7.3. In Figure 7.3(a), the

DPS of the virtual channels reserved for the message are not set, except at Node 3. A

flit of the message is found to be late at Node 1. The late flit should be dropped at

the next node where the DF is set. Since the DF in Node 1 is not set, the flit should

be transmitted to Node 2. After the flit is transmitted to Node 2, in Figure 7.3(b),

the DF in Node 1 is set and the virtual channel VC1 is released. Since the DF in Node

2 is not set, the flit must be sent to Node 3. In Figure 7.3(c), the flit is transmitted

to Node 3 and virtual channel VC2 is released. Since the DF in Node 3 is set, the flit

is dropped at Node 3.
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Figure 7.3. An example of dropping a flit.
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Our message dropping scheme drops messages correctly. The conditions for cor-

rectly dropping a message include the following:

1. The scheme guarantees that the receiver of a dropped message receives one and

only one tail flit.

2. All the virtual channels reserved for a dropped message are released.

3. The subsequent flits of the first late flit are dropped.

In our scheme, a late flit is dropped at the next node where the DF is set. Suppose

flit f; is the first late flit of the message and f; is found to be late at node nk. Since

the preceding flits of f; are all on-time flits, the DPS of the nodes between 71,, and the

destination node are not set. Flit f1 will be received by the receiving node as the tail

flit of the message. The virtual channels between n], and the destination nodes are

all released by f;. As the DF in n;c is set by f1, all the subsequent flits of f; that reach

n; are dropped. Thus, f; is the only tail flit received by the receiver. Condition (1)

is satisfied.

‘ Suppose all succeeding flits of the new tail flit f; are on-time’; these flits are dropped

at n; and the normal tail flit releases the virtual channels between the sender and

n; such that all the virtual channels reserved for the message are correctly released.

In the case that some succeeding flits of f; are found to be late, the virtual channels

between the two nodes where two adjacent late flits are found will be released. Sup-

pose flits f,- and fj are adjacent late flits, where i > j, and flits between f,- and f,-

are on-time. Further suppose that nodes n, and n" are the nodes where the flits f,-

and f5, respectively, are found to be late. The virtual channels between ns and ny

are released by f5, and fj is dropped at node n,. The normal tail flit will release

the virtual channels between the sender and the node where the last flit is found to

be late. Therefore, the message dropping scheme correctly releases all the virtual

channels reserved for a dropped message and condition (2) is met.
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If the succeeding flits of a late flit are transmitted to the node where the late flit

found to be late, the succeeding flits are dropped at the node. Thus, the subsequent

flits of the new tail flit are all dropped, which satisfies condition (3).

Since the dropping scheme satisfies the correctness conditions, the scheme is cor-

rect. Figure 7.4 is an example of dropping a tardy message. In the example, flits w,
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Figure 7.4. Dropping a tardy message.

x, y and z are found to be late at nodes N1, N2, N3 and N4, respectively. Since w

is the first late flit of the message, it will be received by the receiver as the tail flit

of the message. The virtual channels between node N1 and the destination node are

released by w. The flits between two adjacent late flits, including the latter late flit,

are dropped at the node where the former flit is found to be late. For example, the

flits succeeding w to the next late flit x are dropped at N1, where w is found to be

late. The virtual channels between N1 and N2 are released by x. The subsequent

flits of the last late flit z are dropped at N4, and the virtual channels between the

sender and N4 are released by the tail flit T. The message dropping scheme provides

a distributed means of dropping a flit without any global information. The idle time

of the virtual channels reserved for a tardy message is also reduced.
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7.3.2 The Effect of Message Dropping

The message dropping scheme provides an efficient means for reducing the network

congestion produced by tardy messages. This issue increases in importance as worm-

hole networks scale to large sizes. Figure 7.5 is a comparison of the performance of

the EPC scheme with and without message dropping. Note that the deadline missed

ratio for the message dropping scheme includes both the tardy messages that are com-

pletely received and the dropped messages. The results indicate that the cases with
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Figure 7.5. The effect of the message dropping on the performance.

message dropping have significantly reduced the deadline missed ratio from that of

the EPC scheme. This is especially true when the networks increase in size. In addi-

tion, by dropping tardy messages, the system can provide an acceptable performance

at a higher load than the EPC scheme without message dropping.
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7.3.3 The Size of BC

The number of bits in a BC determines the largest number it can represent and the

rate that the priority of a message is incremented. The priority of a message incre-

ments slower with a larger BC size and faster with 'a smaller BC size. In the message

dropping method, the BC size also determines the rate for dropping a message. A

large BC size drops messages slower such that the message may have missed its dead-

line before it is dropped. In contrast, a small BC size may dr0p messages too fast such

that the dropped message could meet its deadline by continuing to be transmitted.
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Figure 7.6. The size of BCs affects the rate of dropping messages and the performance.

Figure 7.6 shows the performance when BC sizes are equal to 4, 5, and 6 bits.

The detailed statistics indicate that the percentages of the dropped messages that

contribute to the total deadline missed ratio are 99%, 80% and 35% for the 4-, 5-,

and 6-bit BCs, respectively. In other words, the BC size of 4 bits discards messages too

fast so that some dropped messages could have met their deadlines by continuing to
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be transmitted. The 6-bit BC drops a small portion of the tardy messages; therefore,

the performance improvement is less significant than that of the 5-bit BC.

7.4 A Router Design to Support Real-Time Flow

Control

The proposed real-time flow control schemes require special features to support pri-

ority based virtual channel assignment and arbitration. We describe a router design

that can be used for the EPC scheme and the message dropping method.

Figure 7.4 describes the router design for a 2D mesh that each physical link has 2

virtual channels. In the EPC scheme, the priority of a message determines the number

Virtual 1'

Channel Virtual 0
Ph slcel

Managers Channels “fly”

 
Figure 7.7. A router design to support priority based flow control and message drop-

ping.

of virtual channels it can request. When more than one message is competing for an

available virtual channel, the virtual channel is assigned to the message with the

highest priority. A message header consists of three flits. The first two flits contain



110

the distance on X and Y directions. The third flit is the priority and BC of the

message. When a message header arrives at a router, the first two flits are used

to make a routing decision. After the routing decision is made, the virtual channel

manager assigns a virtual channel to the message based on the priority contained in

the third flit and the availability of the virtual channels.

Figure 7.4 illustrates the components of two virtual channels associated with a

physical link. The size of the flit buffer for each virtual channel is 3 flits. When a
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Figure 7.8. The components of virtual channels.

message is assigned to a virtual channel, the value of the priority byte, which is the

third flit of the message header, is stored in the priority register (PR) of the virtual

channel. The value of a priority register retains when the message header leaves

the node, and the trailing flits of the message inherit the priority saved in the PR.
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The arbitrator polls the virtual channels for flits to be transmitted on the physical

channel. The polling of all virtual channels can be done within one cycle. As all the

virtual channels are polled once, the arbitrator increments the value of the increment

counter by one. The counter is designed to adjust the priority updating rate such

that low priority messages will not have the highest priority after been blocked for a

short time. After the counter reaches its full count, an increment signal is triggered

to increase the value of the PRs which have flits blocked in their flit buffers. Before a

message header leaves the node, the value of the third flit is updated with the priority

stored in the PR.

In order to support the message dropping method, each virtual channel has a one-

bit delay flag (DF). As the value of a PR exceeds the maximum value it can represent,

the overflow (OF) signal sets the DF associated with the virtual channel. When the

last flit currently buffered in the virtual channel is transmitting to the next node, a

tail signal is generated such that the flit becomes a tail flit. When flits arrive at a

virtual channel that has its DF set, the flits are dropped. If a tail flit is detected, the

DF is cleared.

By adding one control line to each virtual channel, we can drop a late message

completely and fast. Figure 7.4 illustrates an example of using the drop signal (D/3)

lines. In Figure 7.4(a), the D/S lines associated with the the virtual channels are

initially low and the DF of router 2 is set (flits in the buffers are found to be late). In

Figure 7.4(b), router 2 sends a drop signal to each direction of the message path by

raising the D/S lines to high. The flits stored in router 2 are dropped. When a drop

signal is detected, in Figure 7.4(c), router I and 3 empty their flit buffers and release

all the resources reserved for the message. The UPS in router I and 3 are set. Then,

in Figure 7.4(d) router I and 3 reset the D/S lines to low. When router I detects the

D/S lines become low again, the DF is cleared. After a router receives a drop signal,

if the flits buffered in the router are not tail or header flits, the router generates a
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drop signal to the downstream or upstream routers on the path. Otherwise, the drop

signal is not generated and the message is completely dropped.

7.5 Summary

We studied the performance of the LLF, PC and EPC flow control schemes, which

were described in Chapter 6, for dynamic communication traffic in wormhole net-

works. In addition, a message dropping method, which can be used in conjunction

with the PC and EPC schemes, was presented to reduce the network load that are

contributed by tardy messages.

Simulation experiments were designed to compare: the performance of the FCFS

conventional scheme and the proposed schemes and the effects of upward scaling the

network size on the performance. Simulation studies verified that our flow control

schemes outperform the conventional FCFS scheme implemented in general purpose

wormhole networks. The LLF priority mapping scheme effectively maps the transmis-

sion laxity of a message to a priority. The use of priorities for flow control decisions

reduces the deadline missed ratio from the conventional FCFS strategy. The PC

scheme dynamically adjusts the priority of a message to reflect the current state of

the message such that it can further improve the performance of the system. Further-

more, the use of priorities for virtual channel assignment and bandwidth allocation

in the EPC scheme increases the chance of meeting deadlines for the messages with

smaller transmission laxities. As a result, the EPC scheme improves the performance

in comparison to the PC scheme. When the network sizes increases, the possibility

for congestion is increased. Thus, the performance of the FCFS scheme degrades

dramatically such that a large number of the messages miss their deadlines. The

EPC scheme, which delivers the messages with the shortest laxity first, provides the

desired real-time performance as the network size becomes large.
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Real-time messages lose their value when they miss the message deadlines. How-

ever, tardy messages consume valuable network resources that the messages must

be removed from the network. The proposed message dropping method effectively

releases network resources occupied by the tardy messages, which is very important

as the size of the wormhole network increases. The simulation results indicated that

the system improves its performance by dropping tardy messages. The flow control

schemes and the message dropping method deliver required performance for large-

scale real-time wormhole networks.



CHAPTER 8

Conclusion and Directions for

Future Research

This chapter summarizes the major contributions of this dissertation and sketches

the plan for future work.

8.1 Summary of Major Contributions

A need for new techniques to support parallel and distributed real—time system de-

sign [4] motivates this work. Parallel and distributed systems deliver cost-efficient

computing power and provide reliable operating environments for an increasing num-

ber of real-time applications that are developed on these systems. Although fruitful

research results have been produced for conventional uniprocessor systems, the de-

sign of parallel and distributed real-time applications are still based on ad hoc ap.

proaches [8]. This dissertation addressed two closely related design issues of parallel

and distributed real-time systems: dynamic scheduling of precedent-constrained tasks

and communication support in wormhole networks.

The real-time applications that demand high performance parallel and distributed

computing systems often control complicated jobs and operate in changing environ-
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ments. These applications usually consist of groups of tasks that can be concurrently

executed on separate processors. The key component of a parallel and distributed

system that maximizes the parallelism embedded in a task group and the perfor-

mance of a system is task scheduling. However, dynamic task scheduling on parallel

and distributed real—time systems has not been widely studied. The task scheduling

algorithm presented in this dissertation provides a new approach to solve the prob-

lem. The algorithm combines task graph partitioning, least-laxity-first scheduling and

branch-and-bound task allocation techniques such that the approach is efficient and

can be applied to both parallel and distributed systems. By partitioning a task group

into smaller subgroups, which consist of independent tasks, the cost of scheduling a

subgroup is kept within a constant limit. Consequently, the overhead of scheduling a

task group is increased linearly with the growth of the group size. The least-laxity-

first scheduling optimizes the chance that a task can meet the deadline in a processor.

For a given task subgroup and processor set, the branch-and-bound algorithm ensures

that the tasks can be successfully allocated if there is a feasible schedule. The pa-

rameters that aflects the performance of the scheduling algorithms are addressed to

supply real-time designers with the means of fine tuning the algorithm for different

design considerations.

The success of a task scheduling algorithm for parallel and distributed real-time

systems requires the support from the communication subsystems. Tasks executed in

a parallel and distributed system exchange messages to achieve a common goal. Sup-

pose the transmission time of messages is unpredictable, scheduled tasks might wait

for messages and miss their deadlines. Since wormhole routing is a common switch-

ing mechanism for parallel multiprocessors, the issue of real-time communication in

wormhole networks is anticipated to attract growing attentions. Dally [16] suggested

that flow control decisions that are based on the timing properties of messages can

improve deadline guarantee ratio. The flow control schemes described in this disser-
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tation are proposed for wormhole networks with virtual channels to support real-time

communication. The flow control schemes utilize timing properties of messages to

allocate network resources to messages. The schemes employ several priority map-

ping, priority adjustment, arbitration and message dropping techniques. A priority

mapping scheme encodes the timing property of a message into a priority which can

be represented with a small number of digits. A priority adjustment method modifies

the priority of a message to reflect the current status of the message. An arbitration

function determines how the network bandwidth is allocated to messages. Tardy mes-

sages, which consume valuable network resources, are removed from the network by a

message dropping method. The performance of the flow control schemes are studied

in both static and dynamic environments. The tradeoff between hardware cost and

performance of the schemes are analyzed. With small additional costs and simple

modifications, the flow control schemes outperform the FCFS flow control scheme

implemented in most wormhole routers.

The task scheduling algorithm and flow control schemes are shown to be valuable

for the design of parallel and distributed real-time systems. The directions for future

research are presented in the next sections.

8.2 Priority Based Task Scheduling

A real-time system usually consists of critical tasks and essential tasks [9]. Critical

tasks have hard deadlines such that missing the deadlines causes severe consequences.

Unlike critical tasks, essential tasks, which are less critical, have soft deadlines such

that real-time systems are usually designed to tolerate a small number of essential

tasks to miss their deadlines. A priority based scheduling algorithm, which schedules

critical tasks with higher priorities, can ensure that all critical tasks will meet their

deadlines.
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The concept of imprecise computation [25] can be useful for scheduling a task

group that consists of both critical and essential tasks. The scheduling of a task group

can be done in two phases: mandatory and secondary. Critical tasks are scheduled in

the mandatory phase, and essential are scheduled in secondary phase. Since tasks in

a group have precedence relations, the task graph partitioning scheme of a scheduling

algorithm must consider both the criticalness of tasks and precedence constraints.

Meanwhile, the scheduling overhead should be kept minimal for dynamic scheduling.

By combining our task scheduling algorithm with the imprecise computation task

model, we anticipate that a new priority based scheduling algorithm can solve the

problem.

8.3 Task Scheduling with Resource Requirement

Real-time tasks require resources for their execution. Resource scheduling is equally

important as task scheduling in a scheduling algorithm. However, different types

of resources require different management principles that complicates the scheduling

problem. The scheduling algorithm presented in this dissertation can easily be in-

tegrated with resource scheduling by adding resource requirements to the bounding

condition of the BB algorithm. When searching for a feasible schedule, the BB al-

gorithm considers both the computation demands and resource requirements. Thus,

the scheduling algorithm produces feasible schedules without increasing the schedul-

ing overhead.

8.4 Real-Time Flow Control in ATM Networks

Broadband ISDN (B-ISDN) systems are built on a technology base of asynchronous

transfer mode (ATM) [104]. The B-ISDN networks provide a means for integrated
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transport for a variety of services, which include voice, video telephony, low and high

speed data. Congestion and flow control in ATM networks has been considered as

one of the fundamental challenges. Since continuous media transport, i.e., voice and

video images, is a service in ATM networks, the real-time requirements of continuous

media must be supported [105].

The flow control mechanisms of ATM and wormhole networks have the same

characteristics that they both require simple schemes and limited-sized buffering [106] .

In ATM networks, a cell, which is the basic unit of buffering, can carry a multiple

bit priority for flow control decisions. As real-time cells must be delivered such that

the end-to-end delays are bounded, the concepts of our flow control schemes can be

utilized for ATM flow control schemes. However, the diflerent services have unique

performance requirements that the design of a flow control scheme must guarantee

the “quality of service” promised by B-ISDN systems.
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APPENDIX A

The DRMS Tool

The number of dynamic real-time applications is increasing; however, some real-time

applications are inherently static. For example, most data acquisition systems acquire

data at fixed intervals [107]. As parallel and distributed systems are emerging as the

computer systems for real-time systems, methods to apply existing static design tech-

niques to the new systems is an critical issue. In this appendix, we describe a tool,

DRMS, which combines several static scheduling algorithms and the BB task allo-

cation scheme, which is presented in Chapter 4, to assist real-time system designers

schedule periodic tasks to distributed systems.

Researchers of real-time scheduling have had great success in producing static

algorithms that are practical, widely used, simple to implement and in some cases

optimal. An example of such a result is the real-time scheduling algorithm known as

the rate monotonic scheduling (RMS) algorithm. The RMS algorithm was shown by

Liu and Layland [66] to be an optimal fixed priority real-time scheduling algorithm for

a restricted class of tasks that are preemptively executed on a uniprocessor. The term

“optimal” means that if there exists a feasible schedule‘for which a set of fixed priority

tasks can meet their deadlines, the RMS algorithm will provide such a schedule. RMS

assigns priorities to tasks according to the frequencies that they execute. Accordingly,

 

‘A schedule is feasible if it is a schedule for which all the deadlines will be met.
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the task that executes at the highest frequency (and therefore has the shortest period)

is assigned the highest priority. All other tasks are assigned priorities relative to

the frequency they execute. Typically the tasks served by the RMS algorithm are

periodic, although researchers have investigated how to extend RMS technology for

serving aperiodic tasks by creating a new periodic task that guarantees computing

cycles for aperiodic tasks [108].

The success with the development of the technology associated with RMS has

motivated designers to build systems that apply the RMS algorithm to their appli-

cations [109]. A system designer may define a set of periodic tasks and then must

determine whether the deadlines of all tasks can be met. Simple tests can be con-

ducted to determine whether a set of tasks can be feasibly scheduled on a single

processor. However, the designer may be developing applications on a distributed

system in which tasks may execute on several processors in the system. The situation

becomes complicated when the designer must determine how to partition the set of

tasks so that all tasks are feasibly scheduled on all processors in the system. Further

complications arise when some tasks are more important for the application being

served than other tasks. Some tasks may be characterized as critical tasks, while

other tasks are considered to be less critical but have timing constraints. Critical

tasks are those tasks that must be executed before their deadlines or a catastrophe

may occur. These tasks are often described to have hard deadlines. Less critical

tasks (those tasks with soft deadlines) normally should be scheduled to meet their

deadlines, but it may be acceptable for these tasks to miss their deadlines on a few

occasions. The tasks assigned to a processor normally have deterministic computing

demands and periods. However, on some occasions the previously determined de-

mands or periods may be violated, such that a transient overloaded condition occurs.

During transient overloaded conditions it is more important that the critical tasks

finish their executions before their deadlines than for the non-critical tasks to meet



122

their deadlines. In addition, it is unlikely that a designer simply wants to know if one

particular allocation is feasible. The designer would likely ask questions such as:

0 Suppose I have a set of critical tasks that must meet their deadlines, and a set

of tasks that are less critical but have timing constraints. How do I partition

the tasks to the processors so that in the presence of transient overloads the less

critical tasks are primarily affected? What if the priorities of my critical tasks

do not match the priority assignment of the RMS algorithm?

0 What happens to a feasible set of tasks if I shorten the deadline of one task in

the task set?

0 What happens if one task is moved to a different processor? Will the task set

remain feasible?

0 Will the set of tasks be scheduled feasibly if I change the amount of memory

allocated to a processor in the system? How will the system change as I sub-

stitute a processor with one that has a different processing capacity? What

happens when the context switching time of tasks change?

Researchers have developed solutions to the problems posed by these questions, but it

may be very difficult and time-consuming for designers to obtain the answers to their

questions. Since designers are interested in asking questions about many different

scenarios, we built a tool for analyzing the feasibility of scheduling sets of tasks

that execute on multiple processors. Our tool, called DRMS,lanswers the “what-if”

questions that a designer may ask, such as those listed above. To use DRMS, a user

specifies a set of processors with different processing and memory capacities, and a set

of tasks with different parameters such as periods, processing demands, and context

 

IDRMS gets its name because it serves a Distributed environment composed of processors that

use RMS for scheduling local tasks.
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switching times. The tool searches for feasible allocations of a set of tasks to a set

of processors. If there exists a feasible allocation, the tool can find it. If no task

allocations are feasible, the tool can provide a list of the best infeasible schedules.

The best infeasible solution is a feasible solution for the largest proper subset of the

set of tasks.t In order to make the tool more convenient to use, the user is supplied

with a graphical user interface to specify resources and tasks and to examine the

results of an analysis of the system. For a given allocation of tasks to processors,

a graphical time-line can be generated with important scheduling points labeled so

that a user can examine when critical operations occur on all the processors in the

specified system.

Practical tools have been developed for real-time software development. For ex-

ample, Scheduler 1-2-3 [110] is a X-window based interactive tool that can verify

whether a set of hard real-time tasks will complete by their deadlines. A schedulabil-

ity analyzer component of the tool can verify deadline constraints for rate monotonic

scheduling algorithm. This tool conducts similar tests that DRMS conducts for de-

termining scheduling feasibility. With different goals, DRMS pursues the activity of

determining how to allocate tasks to processors. If there are no feasible allocations,

DRMS finds the best of the infeasible tasks, or performs transformations on the tasks

to attempt to find feasible allocations. DRMS is suitable for making task alloca-

tions in real-time environments that have incorporated RMS technology, such as the

case study of an avionic system reported in [109]. Scheduler 1-2-3 has components

not included in DRMS, which include a synthetic workload generator and a real-

time monitor/debugger. However, Scheduler-1-2—3 does not have the task allocator

of DRMS, nor the features for support of a heterogeneous processor environment.

This appendix provides details about the design and the development of DRMS.

The features of DRMS are described and examples are given of its usage. Section A.1

 

1A proper subset strictly contains fewer elements than the total number of elements of the set.
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provides background information of real-time scheduling technology, and in particular

the development of the RMS technology. The requirements for an RMS analysis tool

are described in Section A.2. Section A.3 presents the design of our strategy for

allocating tasks to processors in order to generate feasible schedules. An example of

the usage of DRMS with the user interface is presented in Section A.4. A example of

using DRMS for scheduling periodic tasks and their communication traffic is described

in Section A.5. Section A.6 summarizes the discussion.

A.1 Background of the Rate Monotonic Schedul-

ing Algorithm

We surveyed the development of the RMS techniques in Section 3.1.1. The detail

background information of the RMS technology, which is relevant to the design of

DRMS, is presented in this section. We describe DRMS in later sections.

A.1.1 The Worst-Case Bound of the Rate Monotonic

Scheduling Algorithm

Liu and Layland [66] were the first to address the problem of scheduling periodic tasks.

They considered both fixed priority and dynamic priority scheduling algorithms. They

assumed that real-time tasks were periodic such that a task was ready for execution

at the beginning of its period and had a deadline at the end of its period. Tasks

could be preempted, but the costs for context switching were ignored. In addition,

there was no synchronization between tasks. Liu and Layland determined that the

RMS algorithm is an optimal real-time scheduling algorithm for task sets with fixed

priorities. In the RMS algorithm, the priority of a task is related to the frequency that

a task is executed, such that the highest frequency task has the highest priority. This
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means that the highest priority task has the shortest period. An important result is

that the worst-case utilization bound for the rate monotonic algorithm is m: (21/" —1),

where n is the number of tasks, which decreases monotonically from 0.83 when n = 2

to ln2 when n —i 00. In addition, they found that the deadline driven scheduling

algorithm is optimal for the case in which priorities vary. This algorithm assigns the

highest priority to the task that has the earliest deadline.

A.1.2 Pre—Period Deadlines and Utilizations Larger than

the Worst-Case Bound

Leung and Whitehead [111] considered the case when the deadline occurs earlier

than at the end of its period. They introduced the deadline monotonic algorithm,

which uses fixed priorities and the priority of a task is assigned to be the inverse of

its deadline. Liu and Layland’s result [66] of the worst-case utilization bound for

the rate monotonic algorithm has been generalized by Lehoczky and Sha [112]and

Lehoczky [113] for the case that deadlines of tasks occur earlier or at the end of the

periods. I

It is common in practice that task sets can be feasibly scheduled with the RMS

algorithm even if they have utilizations greater than the worst-case bound. This has

been described by Lehoczky, Sha, and Ding [114]. An analysis technique to determine

if a task set can be feasibly scheduled is summarized as follows. Consider a set of

n periodic tasks T1, . . . , Tn, with periods T1, ...,T,. respectively, where T,- S T,“ and

1 S i < n. Each task 1'.- has a computation requirement 0.- and a deadline D,- S T,-.

The analysis assumes that the tasks are ready to run at their initiation times and

may be preempted instantly. Overhead such as swapping times is ignored. For the

worst case conditions, the cumulative demand VIC-(t) made by the tasks r1, . . . , 1',- as
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a function of time over the interval [0,t] is

Wi(t) = 203' * lt/le- (A-l)

The following are defined for notational convenience, as was described in [114].

L,(t)a = aVV,-(t)/t, (A.2)

L,-a = amino<tSD,L,-(t), (A.3)

La = amaxlSiSnLg. (A.4)

L.-(t) is the utilization of the processor as a function of time during the interval [0,

t]. Since priorities are assigned to tasks by the RMS algorithm, 1'.- will be preempted

only by tasks T1, . . . , 75-1, and 1',- will only preempt tasks 1',- with periods T, > T.-. A

processor will be busy serving tasks 1'1, . . . , 1',- during the entire time between [O,T.-]

and will not be idle during the period until either 1'.- completes or misses its deadline,

which ever is first. Higher priority tasks may execute several times during the interval

[0, T.-] since their periods are less than or equal to T5.

The criterion for a task set to be feasible is then given by the following two

conditions, which were proved in [114].

1. T,- can be feasibly scheduled for all task phasings using the RMS algorithm if

and only if L.- S 1.

L.- is the least utilization of the processor during the period [0,D;]. As indi-

cated by Equation A.1, the cumulative demand changes only at multiples of

the task periods. To evaluate Lg, we only need to consider t at values equal to

T1,T2, . . . ,T.-_1, and D.- and multiples of T1,T2, . . . ,T,-_1 that are less than D;.

As long as the evaluation of the utilization within the period [0, Dg] is less than

or equal to one, 1’, finishes before or at the time that L.- occurs, so 1',- can be
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feasibly scheduled. One only needs to accumulate the demands of the higher

priority tasks during the period until D;, in addition to the demand of task 7;.

2. The entire task set can be scheduled for all task phasings using the RMS algo-

rithm if and only if L S 1.

This criteria naturally follows the previous criteria by considering all values of

L;,1 S i S n. The entire task set is schedulable if each task is schedulable.

A.1.3 Period Transformations for Critical Tasks

Some practical problems arise when a designer applies RMS to an application. Con-

sider a critical task in the task set that does not have the shortest period, and therefore

does not have the highest priority. If a transient overload in the system occurs, the

critical task might not meet its deadline. However, tasks with shorter periods that

are not critical may meet their periodic constraints. Several situations may cause

transient overloaded conditions. It may occur because a task must briefly violate its

previously defined period or computing demand. Likewise, it may occur because a

new task is introduced to a processor in the system that causes the original schedule

to be invalidated. We need a method to identify an arbitrary task as critical and

to elevate its priority for times of transient overload conditions. The method for en-

abling a critical task to have its priority elevated is period transformation [115]. This

technique transforms the period of a critical task so that its deadline will be met in

spite of periods of transient overload where some non-critical tasks will miss their

deadlines. For example, consider two tasks: 1'1 and 7;. Task 1'1 has a period T; = 13

and a computing demand 0; = 4. Task 7; has a period T; = 22 and a computing

demand Cg = 10. The RMS algorithm elevates the priority of 1'1 over 1'; since T; < T2.

Let us assume that 1': is more critical than 1'1. In order to increase the priority of 7;,

we can transform 1'; into two periods of length 11 with demand 5, and introduce a
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precedence on the two periods of 7;. With the transformation, 1'2 will execute with

higher priority than 1'1.

A.1.4 The Priority Inversion Problem

A higher priority task may be blocked by a lower priority task if the lower priority task

is executing in a critical region or consuming a server’s resources that are requested

by a higher priority task. The condition when a higher priority task is blocked by a

lower priority task is called priority inversion [116]. To deal with this problem, Sha,

Rajkumar and Lehoczky described a priority ceiling protocol in [116] and proved a

theorem that states that a set of n tasks using the priority ceiling protocol can be

scheduled with RMS if the following conditions are satisfied:

Vi, 13 i S n, Cl/Tl + Cg/Tz + . . . + Cg/T,‘ + B,/T,- S i * (21" - 1), (A.5)

where C.- is the service demand for task i, T.- is the period of task i, and B,- is the

worst case blocking time that task i experiences due to lower priority tasks. Notice

that Equation A.5 is the worst case utilization bound given by Liu and Layland [66]

with the addition of the blocking time due to priority inversion experienced by task

7;, which is the task with the longest period.

A.2 Requirements for the DRMS Tool

The components and features to be incorporated within a tool that aids real-time

system designers is probably best specified by the designers who have the experience

building real-time systems. We have been working with real-time system designers

located at the IBM Federal Sector Division in Owego, New York in order to define

the components of DRMS. By means of tapping into their experience, we have iden-
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tified and defined the important features of DRMS, which we have implemented in a

practical tool. A case study of an application that uses RMS technology and requires

the feasibility analysis that DRMS can provide is given in [109].

A.2.1 Task Specifications

A user of DRMS provides the specifications of the tasks and processors for which

DRMS finds feasible allocations. A list of the input parameters for task specifications

is given in Table A.1. The parameters that a user would naturally expect to be

supported include Cg, which is the processing demand of task i required within one

period, and T,, which is the length of the period associated with task i. D.-, which is

the deadline of task i, should be specified if it is less than the period of a task. In

order to model cases of synchronization and requests to remote servers in a distributed

system, the blocking time, B,-, for task i must be specified. The blocking time is the

worst-case time that a task may have to wait due to lower priority tasks. The blocking

time may be due to the fact that a lower priority task is in a critical section, or a

lower priority task is using a server that is requested by a higher priority task. We

assume that the priority ceiling protocol is used to define a worst-case bound for the

blocking time.

Many other parameters have been identified to be important components of

DRMS. These include the following task specification parameters:

0 The amount of memory that task i consumes, MEMg. A practical assumption

is that all tasks are loaded within memory, and the memory of a processor is

shared by all tasks assigned to the processor. It is possible that a processor may

have enough processing capacity to execute all tasks feasibly, but not have the

memory that the tasks require.

0 The time required for the operating system to perform a context switch for a
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Table A.1. Parameters for Task Specification.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

[Parameter 1 Definition J

NumTask Number of tasks to be allocated.

C.- Processing demand of task i.

TST Common constant time for context switching of tasks.

ITST; Context switch time of task i.

T; Period of task i.

D.- Deadline of task i.

B.- Task blocking time.

J.- Jitter of task i.

GID Group identification of a task group.

Pbind Processor identification to which a task is bound for execution

TI.- Importance of task i. TI,- = critical indicates task i is a

critical hard real-time task. If TI.- is an integer, it indicates

the number of periods that task i should be subdivided.

PG Priority granularity.

Priority User specification of task priority.

MEM.- Amount of memory demanded by task i.
 

 

preempted task. There may be a constant context switch time for all tasks,

TST, and separate context switch times for individual tasks, ITSTg.

e A task has a hard deadline or a soft deadline. A hard deadline implies that a

task is critical, and must meet its deadline. A soft deadline implies that the

deadline is important, but it is possible due to transient overload conditions

that a task at times will miss its deadline. If task i is specified to have a hard

deadline, that is TI.- = critical, then if any non-critical task is guaranteed to

meet its deadline, task i must be guaranteed to meet its deadline. Given an

allocation where task i is not guaranteed to meet its deadline but another non-

critical task will be guaranteed to meet its deadline, the tool should perform

period transformation to elevate the priority of the critical task. The tool will

automatically perform period transformation only if it is necessary. In addition,
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a user may control the amount of period transformation that is performed on a

task. A user can manually specify the number of components to transform the

period of task i by means of T1,. For example, if TI.- = 3, then the period of

task i should be transformed into three subperiods.

Task groups, GID. Some tasks may be required to execute as a group on the

same processor. For these tasks there are no restrictions onto which processor

to place the group, but all tasks in the group must be placed on the identical

processor.

A task must execute on a specific processor, Pbind. This requirement allows a

user to explicitly allocate a task to a processor. In some cases the user knows

that a particular task must always execute on a special processor.

Jitter of task i, J.-. A feasible task is guaranteed to be completed by the end of

its period. However, the exact completion time of a task may vary from period

to period. Therefore, if a task sends a message at the end of its period, the time

that messages are generated from the task will not be exactly periodic, but will

have some irregularity of time from period to period, which is known as jitter.

In order to overcome jitter, a completed task may buffer its message until its

latest possible completion time.

The granularity of the priorities assigned to tasks, Pa. The RMS algorithm

orders the priorities of tasks. The granularity states the number of priority

levels between the order determined by the RMS algorithm. If the granularity

is 2, then the RMS algorithm assigns priorities to tasks with values of 2, 4, 6,

. . . n, where n is the highest priority task. A user has the flexibility to provide

a manual assignment of a priority to a particular task by means of the priority

parameter. The specified priority may violate the priority assigned by the RMS
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algorithm. Regardless, DRMS will analyze the feasibility of allocations with

user specified priorities.

A.2.2 Processor Specifications

A few parameters are specified for the processors serving the real-time system. The

parameters include the number of processors in the system, the amount of memory

available for tasks on each processor and the processing capacity of each processor.

The processing capacity PS,c for processor 1: is the capacity of the processor normal-

ized according to the demand Cg specified for tasks where 0 S i S NumTasks. For

example, a task with a computational requirement of 1 unit will execute for 1 unit

on processor i if P5, = 1. The task will execute for 0.5 unit if P5.- = 2. If a value

of P5.- is not explicitly specified, it is assumed to be 1. If P3,, = 2 and P3; = 1,

then processor I: can serve tasks at twice the rate of processor 1. These parameters

are identified in Table A.2.

Table A.2. Parameters for Processor Specification.

 

I Parameterl Definition I
 

 

NumProc Number of processors in the system

PS.- Computing capacity of processor i

M5; Amount of memory on processor i

 

 

    
 

A.2.3 Methods of Analysis

We implemented three schedulability tests in DRMS to determine if a task allocation

can meet its deadlines. The tests are described below and are ordered from the most

pessimistic assumptions for determining feasibility to the least pessimistic assump-
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tions for determining feasibility. However, for all tests, if an allocation is determined

to be feasible, then the deadlines of all tasks are guaranteed. The most pessimistic

test is the single inequality schedulability test. The single inequality test for n tasks

allocated to processor 1:, where n S NumTask, is given by

n

MM»- a a a u..-
:(Wli'mmeMU-Til‘tn Te) S "*(2 1), (A-6)

and ZMEM. 5 M5,“ (A.7)

i=1

where C..- is the task switching overhead for task i. The single inequality test is an

extension of Liu and Layland’s [66] worst-case analysis for the RMS algorithm. 0,.-

is ITST, if task i has specified an individual switch time. Otherwise 0,; is TST.

The equation shows C,.- multiplied by two, since one context switch is represented at

the beginning of the task execution and one context switch is represented at the end

of the task execution. The denominator of the first term in Equation A.6 contains

PS}, which indicates that the processing demand required by tasks on processor lc

is divided appropriately by the rate that processor k can serve tasks. This enables

the feasibility test to be used for distributed environments composed of processors

with heterogeneous processing capacities. For every processor in the system, the

memory requirements of the tasks assigned to the processor must be satisfied, which

is represented in Equation A.7.

We have modified the analysis described in Equation A.5 to incorporate deadlines

that are less than the period. If the deadline is equal to the period, then the term

(1-D;/T.) in Equation A.6 is reduced to zero. Otherwise, the early deadline can be

considered an additional blocking time. The test is pessimistic since it assumes that

the task with the worst blocking time and the worst effect due to a pre-period deadline

is the task that must always be used for the cumulative utilization. Note that we only
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need to accumulate the blocking time, the jitter and the effect due to early deadlines

of one task, since other tasks can execute during the blocking time and the interval

after a pre-period deadline.

A less pessimistic test for RMS feasibility is the multiple inequality test. The

multiple inequality test for n tasks allocated to processor lc is given by

_ _ _ < — .§(———PS HTm)+(1 T—1_+T1+T1 _ 1*(2 1), (A8)

Cpl-21:0“) D2 32 J2 1/2_ _ ._ __ < — .Z(—'——P5 *7. +(1 T2 +1.2 +1.2) _ 2*(2 1). (A9)

C; +2*Cag Dn B11 Jn n

23——PSI; *iT_)+(l—T—+T—+T_) S ”*(21/ '1): (A-10)

and ZMEM, 5 M5,,. (A.11)

i=1

All inequalities must be satisfied for the task sets to be schedulable. This test

is very similar to the single inequality test but the blocking times, jitter and early

deadlines are considered individually. Only the lowest priority task for each inequality

must consider the blocking time, jitter and an early deadline. These conditions are

sufficient for a set of tasks to have a feasible schedule.

The numerical test is the least pessimistic test for determining feasibility of allo-

cations that may have utilizations greater than the worst case bound given by Liu

and Layland [66]. This is the test for exact schedulability described by Lehoczky, Sha

and Ding [114] and cited in Equations A.1—A.4 in Section A.1, with modifications to

include task switching times, memory requirements and processing capacities. The

numerical test may show feasible schedules that are missed by the single and multiple

inequality tests. The numerical test considers scheduling points, where the end of
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a task’s period is a scheduling point. A higher priority task may have several peri-

ods repeated within the period of a lower priority task and therefore have scheduling

points inserted in the list of scheduling points for a lower priority task. There is an

inequality associated with each scheduling point. For a given task, the numerical test

uses only those scheduling points that are less than or equal to the task’s period. For

each task, each scheduling point (less than or equal to the task’s period) is examined

to determine if the execution time, overhead time and blocking associated with the

task can be satisfied before the scheduling point. For example, suppose task T1 has

T1 = 7, 1': has T2 = 10 and 73 has T3 = 22. The set of scheduling points considered

when evaluating the feasibility of task 1'1 is {7}. The set is {7, 10} when evaluating

the feasibility of 1'2 and is {7, 10, 14, 20, 21, 22} when evaluating the feasibility of 1’3.

Since many feasible allocations may be produced when RMS analysis is performed

on a set of tasks allocated to a set of processors, the user should be able to order the

feasible schedules according to different criteria. A user can examine the allocation

on the basis of the lowest mean utilization of the processors, the lowest variance of

the utilizations of the processors, or the smallest difference between the least and the

most utilized processors.

A.3 The Branch-and-Bound Algorithm for Task

Allocation

We implemented a method to allocate a set of tasks to a set of processors in order

to analyze the feasibility of the allocation. Our method for finding allocations will

discover any existing feasible allocation. If there are no feasible means of allocating

the set of tasks to the set of processors, then our method will find allocations that

are the best of the infeasible solutions.

In order to find feasible allocations, we use the Branch-and-Bound (BB) algorithm,
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which is described in Section 4.4.3. The BB algorithm has been used extensively

by researchers for the processor allocation and scheduling problem. Ma, Lee and

Tsuchiya [117] described its use for task allocation in a distributed system that serves

real-time tasks that were scheduled before execution. The use of the BB algorithm for

precedence-constrained periodic tasks has been explored in [38]. These researchers did

not target their methods for allocating tasks to processors with the basic assumption

that each processor would serve the tasks assigned to it using the RMS algorithm, as

we require from our tool.

A basic BB algorithm uses a task assignment tree to generate feasible allocations.

An example of a task assignment tree is given in Figure 4.3. The BB algorithm

traverses the task assignment tree in a depth-first fashion to allocate the tasks to the

processors and to determine if the given allocation can meet the periodic deadlines. If

the BB algorithm determines that a task assignment exceeds the bounding condition,

then it is known that the current task assignment does not lead to a feasible schedule.

The algorithm records an infeasible allocation if it is better than any of the current

allocations stored, up to a user defined limit of the number of infeasible allocations

that will be stored. Then, the BB algorithm backtracks up the tree one level and

searches depth-first with a new untested branch. If it is determined at one level that

the bounding conditions are not exceeded, the search continues down the current

path. When the search has successfully traversed to a leaf of the tree, a feasible task

assignment is found.

Unless a user eXplicitly specifies which feasibility test to use, the algorithm be-

gins searching for feasible schedules using the single inequality test as the bounding

condition at each node in the task assignment tree. If no feasible schedules are found

in the BB search, then the BB algorithm uses the multiple inequality test as the

bounding condition. Likewise, if no feasible schedules are found, then the BB algo-

rithm attempts to find feasible schedules using the numerical test as the bounding
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condition.

It is possible that a large number of feasible schedules can be found. Since infor-

mation for every allocation can consume valuable disk space, the user may limit the

number of feasible schedules stored. For a large number of tasks and processors, the

search could consume an extremely large amount of time in order to find all possi-

ble allocations since the complexity of the BB algorithm is 0(NumProcNumTa’k) for

NumProc processors and NumTask tasks. For example, we tested an example of

16 processors and 40 tasks that required 2 days on a Sun Sparcstation 2 to find all

the 1.4648 feasible allocations. Since it is not expected that a user wants to know all

feasible allocations nor is it expected that a user wants to wait two days to obtain

the results, a user can specify time limits of how long the search may continue before

it is terminated. For example, the user can specify that DRMS should provide all

feasible allocations it can find within two minutes. In addition, a user can specify

a limit on the number feasible allocations to find. This means a user can specify

that the search should stop as soon as the first feasible allocation is found. For most

practical purposes, the user wants to obtain only a few feasible allocations and does

not need all possible allocations. When only a few feasible allocations exist, the

branch-and-bound algorithm quickly eliminates the majority of the branches in the

search tree. Although the time complexity of the branch-and-bound algorithm may

appear distressing for a user, the limits that may be placed on the search time and the

number of allocations needed makes the algorithm very practical for use in DRMS.

Most of the examples we have considered had less than 30 tasks and 8 processors.

On a Sun Sparcstation 2 workstation, the tool completed its search within a minute

for all feasible allocations for the majority of these examples.

The order that untested branches are searched may affect the amount of elapsed

time for the tool to find a feasible schedule. Each branch represents a different

processor to place a task. At each level in the search tree the next untested branch



138

that is selected for searching is a branch that has the lowest accumulated processor

utilization. This means that the initial strategy for allocating tasks to processors

balances the utilizations of all processors. The search algorithm will consider all

branches if the user wants the tool to find all possiblefeasible allocations. Tasks are

inserted into the BB task assignment tree starting from the highest priority task to

the lowest priority task. Priorities are determined by the RMS algorithm unless the

user has specified the priority of a task that might deviate from the RMS priority

order. If a user manually specifies that a task should have its period transformed, the

period transformation will be done before the BB algorithm starts building the task

assignment tree.

Users can specify that period transformations can be performed on critical tasks

while they do not manually specify how the transformations should be performed.

The BB algorithm must perform an extra check when a task assignment tree is built

for which all tasks in a task set cannot be feasibly scheduled. If no feasible allocations

can be found, the algorithm must examine whether any of the non-feasible tasks are

critical. For all critical tasks that are not feasible, the algorithm performs period

transformation on the critical tasks in order to elevate their priorities above less

critical tasks that have been determined to be feasible. Next, the algorithm performs

the RMS analysis to determine if all critical tasks are feasible. If again there are some

non-critical tasks that are feasible while critical tasks are not, the algorithm performs

period transformation on all critical tasks, including those that are feasible and are

lower in the RMS priority than some non-critical task. If no allocation can be found

such that all critical tasks are feasible, it is determined that there are no successful

allocations.
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A.4 User Interface for DRMS

The user interface helps the user define the real-time system parameters for processors

and tasks and display the results of RMS feasibility analysis. The user interface

consists of two parts: the input user interface and the output user interface. We built

the interface for the X window system using routines provided in Xlib and by the

Athena toolkit [118]. These routines enable portability between systems that support

the X window system, regardless of the window toolkit built on the X window system

supported by a workstation. This section briefly introduces the interface of the DRMS

tool.

A.4.1 Input User Interface

The input user interface enables the user to specify real-time system parameters for

which feasible allocations of tasks to processors will be found. For a description of how

the tool is used, suppose the file that is loaded into the tool describes three processors

as presented in Table A.3. Each processor has an associated name, memory size and

processing speed.

Table A.3. Processor Parameters.

 

LProcesor Name I Memory Size I Speed I
 

 

 

 

 

display processor 7000 0.65

signal processor 8192 1.0

mission processor 4384 1.5    

A similar interface is provided for the user to load task descriptions. Suppose the

task descriptions of 16 tasks are loaded by the tool as given in Table A.4. Notice

that each task has specified computational demand (C), period (T), size (MEM),
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individual context switching time (ITST), pre-period deadline (PPD), blocking time

(B), jitter (J), task importance (TI), group identification (GID), processor binding

(PBind) and priority. The entries that do not have a value specified means that the

particular parameter is ignored for the task. The default value for task switching

time in this example is 0.623 units of time and the default size of a task is 10 units

of memory. Notice that only the tasks “TimerJntrpt” and “Radar.Trgt_Upd” have

context switch times different from the default value. The tasks “Camera_Snapshot”,

“Radar-Trcking.Fltr” and “Dsply.Stores-Upd” have pre—period deadlines. All other

tasks have deadlines at the end of their periods.

Table A.4. Task Parameters.

C3 10118

.051 10

l

 

In order to specify new definitions for tasks and processors within the graphi-

cal user interface or change the value of existing parameters, the options “Global,”

“Processor,” and “Task” are available for the user. The “Global” option is used to

change the number of processors and tasks in the system, as well as to specify default

parameters for the processors such as speed and memory size, and parameters for
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Figure A.1. Specifying Global Parameters.

tasks such as context switch times and blocking times. Figure A.1 shows the use of

the “Global” option. Parameters of individual processors can be changed by selecting

the “Processor” option in the main menu. Similarly, individual task parameters can

be changed by selecting the “Task” option in the main menu.

The BB algorithm begins searching for feasible allocations of tasks to processors

after the user selects the “Run” button. Before running the BB algorithm, the user

may want to specify command line options such as the specific test to use, whether

to use period transformation, or the time limit for searching for allocations. These

options are specified when the “Preferences” option is selected on the main menu, as

illustrated in Figure A.2. The “Run” button changes to a “Stop” button when the
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Figure A.3. Execution Results.

BB algorithm starts running. This enables a user to abort the tool in its search for

feasible allocations.

When the DRMS tool completes execution and the allocations are generated, a

report of the feasible allocations is listed in the window as shown in Figure A.3. This

example required less than 30 seconds on a Sun Sparcstation 2 workstation. Notice

that the tool has found that only one feasible allocation exists for the currently defined

set of tasks and processors. The display shows statistics about the allocation, which

include the utilization of each processor and how much each tasks contributes to the

utilization of a processor. Notice in the example that the utilization of each processor

is greater than 95%, which means the single and multiple inequality tests failed to
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find a feasible allocation. Only the numerical test could find a feasible allocation.

When the user specifies that a graphical display is needed, the tool presents the user

with the output user interface.

A.4.2 Output User Interface

The output interface displays the periods during which various tasks are allocated

on various processors along a horizontal time-line. The user may select any point

on the time-line and determine the task that has priority for execution at that point

according to the feasibility analysis. When the user expands the vertical scale suffi-

ciently such that the allocation of only one processor remains visible on the screen,

the output interface marks important points on the time-line, such as points of task

execution, context switching and blocking times.

The user can obtain additional information, such as the parameters of a specific

processor and tasks assigned to the processor, by “clicking” on the corresponding pro-

cessor box on the screen. Figure A.4 shows the parameters of the “mission processor”

and the parameters of the six tasks allocated to the “mission processor.” The task

parameters shown in Figure A.4 are the task execution time (TET), the task period

(TP), the blocking time (TBT) and the context switching time (TST).

The output user interface provides facilities for the user to see the effect of moving

a task from one processor to another. When the user presses the “Move” button on

the main menu, the list of processors and the tasks allocated to them are displayed

on the screen.The user can select a task for moving and then select a processor for

the task. If the user selects the “Redisplay” or the “Analyze” key, the time-line

corresponding to the modified allocation are displayed on the screen.
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Figure A.4. RMS analysis on the Display Processor.

A.5 An Example Usage of DRMS for Schedul-

ing Periodic Tasks with Communication Re-

quirements

The usage of DRMS is not limited to schedule independent periodic tasks. Periodic

tasks that execute on parallel and distributed systems generate communication traffic

at regular intervals. This type of communication traffic can be scheduled by the RMS

scheduling algorithm. The RMS scheduling algorithm has been applied to IEEE 802.5

token rings [65], multi-hop networks [86] and wormhole networks [92]. In this section,

an example of using DRMS for scheduling periodic tasks and their communication

traffic on parallel and distributed real-time systems is illustrated.

Suppose a set of periodic tasks with communication requirements is to be sched-

uled to a parallel or distributed system. DRMS can find feasible allocations of the
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tasks in two phases. In the first phase, DRMS produces all the possible allocations

that the tasks can be successfully executed without communication overhead. As

tasks are allocated to processors, in the second phase DRMS is used to analyzed

the communication traffic generated by the tasks. If. the communication traffic of a

possible allocation passes the RMS tests, a feasible schedule that satisfies both the

tasks’ computational demands and communication requirements is found.

Figure A.5 describes the usage of DRMS for scheduling a set of periodic tasks

with communication requirements. A system designer supplies DRMS with a net-

work description and a task set description. A network description consists of the

network topology and the information of processors connected by the network. A

task description includes the task description and the communication requirements

of each task. DRMS produces possible schedules without considering communication

requirements in the first phase. In a possible schedule, tasks, which generate mes-

sages, become message sources. A message source description is generated according

to the communication requirements of tasks and message source allocations. Accord-

ing to the message source description and the network description, DRMS analyzes

the feasibility of the message source allocations and finds all the feasible schedules

which satisfy both the tasks’ computational demands and communication require-

ments. A network simulator, such as the wormhole network simulator described in

Section 6.3, can also be used to verify the feasibility of message source allocations.

A.6 Summary

Rate monotonic scheduling technology has evolved such that researchers have found

ways to use the technology in a wide variety of practical real-time system applications.

DRMS is a powerful tool that was built after we consulted with engineers who develop

real-time applications. Our work with real—time engineers enabled DRMS to become
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a practical tool for designers and engineers who apply RMS technology. For a set

of tasks and processors, DRMS finds feasible allocations of the tasks to processors

such that real-time constraints are guaranteed. If there exists any feasible allocation,

DRMS will find the allocation. In addition, DRMS allows users to try different

scenarios of task allocations for which DRMS determines the feasibility of the scenario.

Users can adjust practical parameters such as memory and processing capacities,

priority assignments, and many other parameters so that the users can apply rate

monotonic scheduling in a distributed environment that serves real-time applications.
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